
DECrSION MAKING BASED ON ASSOCIATION RULES 

Senqiang Zhou 
&.Eng., Xi'an Jiaotong University, 1995 

MSG., National University of Singapore, 2000 

THESIS SUBMITTED n\S PARTIAL FULFILLMENT OF 
W E  REQUIEMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

In the 
School 

of 
Computing Science 

@ Senqiang 2 hou 2006 

SIMON FRASER UNIVERSITY 

Fall 2006 

All rights resewed. This work may not be 
reproduced in whole or in part, by photocopy 

or other means, without permission o f  the author. 



APPROVAL 

Name: 

Degree: 

Title of Thesis: 

Examining Committee: 

Chair: 

Senqiang Zhou 

Doctor of Philosophy 

Decision Making Based on Association Rules 

Dr. Wo-Shun Luk 
Professor, School of Computing Science 

Dr. Ke Wang 
Senior Supervisor 
Professor, School of Computing Science 

Dr. Martin Ester 
Supervisor 
Associate Professor, School of Computing Science 

- - 

Dr. Binay Bhattacharya 
Internal Examiner 
Professor, School of Computing Science 

Dr. Hui Xiong 
External Examiner 
Assistant Professor, Management Science and 
Information Systems Department 
Rutgers, the State University of New Jersey 

Date DefendedIApproved: Oct. 2 3 4 ,  2806 

11 



DECLARATION OF 
PARTIAL COPYRIGHT LICENCE 

The author, whose copyright is declared on the title page of this work, has granted 
to Simon Fraser University the right to lend this thesis, project or extended essay 
to users of the Simon Fraser University Library, and to make partial or single 
copies only for such users or in response to a request from the library of any other 
university, or other educational institution, on its own behalf or for one of its users. 

The author has further granted permission to Simon Fraser University to keep or 
make a digital copy for use in its circulating collection (currently available to the 
public at the "Institutional Repository" link of the SFU Library website 
<www.lib.sfu.ca> at: ~http:llir.lib.sfu.calhandlell8921112~) and, without changing 
the content, to translate the thesislproject or extended essays, if technically 
possible, to any medium or format for the purpose of preservation of the digital 
work. 

The author has further agreed that permission for multiple copying of this work for 
scholarly purposes may be granted by either the author or the Dean of Graduate 
Studies. 

It is understood that copying or publication of this work for financial gain shall not 
be allowed without the author's written permission. 

Permission for public performance, or limited permission for private scholarly use, 
of any multimedia materials forming part of this work, may have been granted by 
the author. This information may be found on the separately catalogued 
multimedia material and in the signed Partial Copyright Licence. 

The original Partial Copyright Licence attesting to these terms, and signed by this 
author, may be found in the original bound copy of this work, retained in the Simon 
Fraser University Archive. 

Simon Fraser University Library 
Burnaby, BC, Canada 

Revised: Fall 2006 



ABSTRACT 

Data is being accumulated in a fast speed for many application domains, like finance and 

biology. Utilizing the huge volume of data to help make correct decisions is important for a 

companylorganization to survive in this competitive world. Many general algorithms have been 

proposed in building decision-making systems. However, it is difficult to apply them to real- 

world domains without major changes due to different application natures (e.g. different goals, 

different data characteristics, etc). In this thesis, we study the problem of building decision- 

making systems using association rules for real-life applications. Unlike many existing algorithms 

that only touch the performance issue, we also focus on improving the interpretability of systems, 

which is very important in helping users understand how decisions are made (by the system). 

Association rules are easy to interpret and, thus, help us achieve this purpose. 

There are two major contributions in this thesis. First, we propose a common framework 

which can serve as the guideline for building decision-making systems. The design goal of this 

framework is to build both understandable and effective systems. To help make the system 

understandable, the framework uses association rules as the basic elements. Also it provides the 

flexibility for the users to prune the system using the domain knowledge. Such pruning is very 

important to keep the system small and, thus, understandable. To help make the system effective, 

it emphasizes pushing the application goal down to the rule searching phase (the first step of 

system building). As our second contribution, we propose a collection of algorithms for several 

real-life applications by following the guidelines in the framework. All proposed algorithms share 

the themes in framework; however, each of them is unique and is specially designed to meet the 

distinct challenges of its application domain. Experiments show the effectiveness of these 

algorithms. 

Keywords: association rule; classification; actionability; pessimistic estimation 

Subject Terms: data mining 
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CHAPTER 1 

INTRODUCTION 

Nowadays data is accumulated in a fast speed thanks to the advanced data collection and 

storage technologies. However, more data does not necessarily lead to more information. The gap 

between data and decision is large. A survey1 conducted by Businessweek showed that many 

companies are incapable of retrieving useful information fiom a huge amount of data to make 

sound decisions. On the other hand, making correct decisions is extremely important for a 

company to survive in this competitive world. Therefore, the task of using the accumulated data 

to increase the chance of making correct decision is becoming more and more urgent. 

In data mining community, various technologies have been proposed to help users 

manage and analyse their data. Decision-making system is such an approach that reveals useful 

patterns from underlying data and assists user to make decisions using these patterns. In this 

thesis, we propose a general framework served as guidelines for building such systems. 

Moreover, we use the framework to solve the challenges in several real life applications. It would 

be ideal if we can have one algorithm that can be applied to all applications. However, the 

existence of such algorithm is virtually impossible due to the diverse nature of real-life 

applications. Instead, for each application we propose a unique algorithm which addresses the 

distinct challenges in that application. Though these algorithms are different, they do share some 

common properties identified in the framework. 

A good decision-making system should at least satisfy two requirements: effective in 

making decisions and easy to interpret. So far the majority of decision-making algorithms only 

htt~://www.businessobiects.com/news/~ress/ress2004/20040720 businessweek research comv.asv 
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focus on improving the effectiveness but not the interpretability. The algorithms we propose in 

this thesis aim at both targets. 

The rest of this chapter is organized as follows. First, we give a brief explanation of 

decision-making systems and an introduction on some general decision-making algorithms. After 

that, we present the motivation and contribution of our work. Section 1.5 gives the organization 

of entire thesis. 

1.1 Decision-Making Systems 

We start with an example in explaining decision-making systems. Let's take a look at 

direct marketing problem which refers to a process of identifying and mailing to potential 

"valuable" customers. In particular, given a new customer, we need to make a decision if a 

(product promotion) mail should be sent to him. If a mail is sent and the customer responds, 

certain profit is generated. If the customer does not reply the mail, we lose the mail postage. The 

goal is to generate the profit as much as possible for a group of customers. Certainly the historical 

information would help us make such decisions. Due to the large amount of past data, it becomes 

virtually impossible to explore them manually. Hence, it is important to build a model (decision- 

making system) from the historical information to automatically give recommendations (sending 

or not sending a mail) on new customers. 

From the previous example it is clear that a decision-making system serves the purpose of 

guiding users' actions to achieve an optimal goal by making effective use of the vast array of 

information available to the company (organization). To build such system, it requires a 

collection of historical data, a user-defined application goal, and optionally, domain knowledge. 

A good decision-making system should at least satisfy two primary requirements: 

The decisions should be reliable in the sense that users should have certain 

confidence to count on these suggestions. 



The system build should be easy to interpret so that users can understand how a 

decision is made. 

For the first requirement, different applications often have different interpretations on 

"reliability". For example, in classification it means high accuracy while in direct marketing it 

means high profit. For the second one, it requires the final system is compact and presented in an 

easy-to-understand way. In this thesis, we use various methods to make sure the system we build 

for every application satisfies these two requirements. 

1.2 General Learning Algorithms 

Quite many algorithms have been proposed to build decision-making systems, in which 

most of them focus on classification, a sub-area of decision-making. In this section we give a very 

brief introduction on several popular algorithms that are referenced in this thesis. More details 

will be given in the following chapters when they are actually used and/or compared. 

Association rule-based algorithms. Motivated by market-basket analysis, association 

rule [AIS93, AS941 is an important and active area of data mining research. It finds all the rules 

above the user specified thresholds in the form of X+Y, where X and Y are set of items. Using 

association rules for decision-making generally has the following two main steps. In step 1, it 

mines a set of rules in the form of X+C,, where X is a set of items (or set of attribute-value pairs 

for table data) and C, is a possible decision. In the second step, given an example t whose 

decision needs to be determined, the algorithm selects a rule (based on certain criterion) among 

all the rules that match t. (A rule X+C, matches t if XQ.)  The decision of the selected rule is 

taken as the decision for t. [DL99, LHM98, LMWOO] shows some algorithms in this category. 

Decision trees. They are perhaps the most widely studied inductive learning models in 

the machine learning and data mining community. Some representative algorithms are: CART 

[BFOS84], ID3 [Qui86], CN2 [CN89], C4.5 [Qui93]. Generally speaking, a decision tree is a tree 



in which each internal node denotes a test on an attribute, each branch represents an outcome of 

the test, and leaf nodes represent classes and class distribution. . The basic strategy of building a 

decision tree is "divide and conquer" [Qui93]: A set of cases T is refined into subsets of cases that 

are, or seem to be heading towards, single-class collections of cases. 

Support vector machines (SVMs) [Vap95] recently demonstrated superior performance 

gains and robustness of SVM in many applications over traditional methods. One striking 

property of SVMs is the ability to produce the unique global minimum of the error function 

[Bur98]. Also it builds the model independent of the dimensionality of the feature space [Joa98b] 

because SVMs measure the complexity of hypotheses based on the margin with which they 

separate the data, not the number of features. However, the SVM model comes with a major 

defect: It involves thousands of features in a single kernel function, making it impossible to see a 

simple relationship between the prediction and features that trigger it. 

Naive Bayes classifiers [FGG97]. They probably are the most popular statistical 

classifiers that encode probabilistic relationships between variables of interest [DH73]. They can 

predict class membership probabilities, such as the probability that a given sample belongs to a 

particular class. These classifiers learn from the data the conditional probability P(Ai=ailC) of 

each attribute A,=a, given the class label C. During classification, given a testing case 

t={A,=a~, ... , An=an}, it finds the class C that maximize the posterior probability 

HkP(Ak=akJC)P(C) Here it makes the assumption that all attributes are independent, which might 

not be always true. Quite a few extensions have been developed, most of which aim at relaxing its 

strong independence assumption. 

1.3 Motivation 

The learning algorithms introduced in the previous section are designed for general- 

purpose tasks and do not always work effectively in real-life applications. 



1. Those algorithms do not give guidelines on how to integrate domain-specific 

requirements into the process of system construction, which is very much needed by 

users. Identifling the common properties from various applications and summarizing 

them into an easy-to-follow framework would greatly speed up the system 

construction. 

2. Most algorithms target at achieving high accuracy while many applications have their 

own application goals. For example, in direct marketing [WZYY03] the goal is to 

produce high profit instead of high accuracy. Such requirement makes it difficult to 

apply those algorithms directly without major changes. 

3. Most algorithms are not easy to be adapted to accommodate different data 

characteristics in different applications. For example, decision tree algorithms 

[Qui93] perform poorly on high dimension data. Such behaviour puts serious 

restrictions on their usages. 

4. Many algorithms do not consider interpretability as one of their goals. For example, 

SVM [Vap95] makes use of high dimension kernels for classification, which is a 

black box to users. In real life, users often want to know how these decisions are 

made. Having insight look into a model could help users understand what happens 

and, thus, take appropriate actions in advance. 

Apparently, we need a new approach to solve these issues. 

1.4 Contributions 

We have two major contributions in this thesis. First, we propose a general framework 

which targets at solving the issues mentioned in the previous section. The framework is flexible 

and easy to incorporate domain-specific application goals. To address issues 3 and 4, the 

framework uses association rules as basic elements for decision-making. Rules are relatively easy 



to interpret and there are tons of algorithms in mining rules from various types of data sets. In 

addition, the framework reflects two important factors in building decision-making systems: 

pushing application goal down to the very beginning of system construction and optimizing the 

system on future data. 

The second contribution is the studies of 5 challenging real-life applications. In these 

applications, we build effective and understandable decision-making systems by making use of 

the general framework. On the other hand, each application has its own unique challenges and 

requires specially designed algorithm to handle them. In the following, we summarize the 

contributions for each individual application: 

In CHAPTER 3 we study a classical decision-making problem: classification. We 

propose an algorithm that combines the advantages of association rules and decision 

trees. It leverages the hierarchical organization of decision trees to prune the richness 

of association rules and make the model easy to understand. We also propose an 

efficient approach to generate confident association rules that do not require a 

minimum support threshold. Such characteristic is very useful since in many cases it 

is difficult to determine an appropriate threshold. 

We study another challenging application in CHAPTER 4: direct marketing. Data set 

in this domain generally is very large, and has high dimension and skewed 

distribution. Most association rule mining algorithms do not scale up well in such 

situation. Making the thing even worse, most rules found (especially non-respondent 

rules) are redundant and not interesting to users. To address this issue, we propose an 

algorithm to mine focused association rules which are most likely to increase the 

profit return. Another challenge in direct marketing is the inverse correlation between 

the probability that a customer responds and the dollar amount generated by a 

response. Traditional algorithms no longer work in this case since they don't consider 



such correlation. We present a solution to this problem based on a creative use of 

association rules. 

The number of online stores increases fast nowadays. So does the importance of 

online product recommendation systems. We discuss this interesting problem in 

CHAPTER 5. In a recommendation system, the target is to maximize the profit 

generated from the recommended products (thus we call the problem "profit 

mining"). Unlike the direct marketing problem, the recommendation here is two- 

dimension: recommending "right" items at "right" prices. It puts a unique challenge 

in model construction. Moreover, products naturally are categorized and related to 

each other. Using such domain knowledge for model construction will help improve 

the performance of the system. We propose profit patterns to address these issues. 

Such patterns consider both confidence (i.e. how likely a customer would like to buy 

the product) and profit (i.e. how much money the seller can get). Also it explores the 

product categorization systems and uses them to improve the recommendation. 

Experiments results show that the algorithm based on profit patterns has better 

performance than its competitors. 

CHAPTER 6 studies an interesting biological application: protein localization 

prediction. Given a protein, users like to know its position in a cell (e.g. at inner 

membrane or outer membrane) and the patterns determining its position. So it 

requires the decision model be both accurate and interpretable. Unlike previous 

applications where we build systems solely based on rules, this time we try a new 

approach: combining high-accuracy SVM model with easy-to-understand rule-based 

model. The idea is: The rule part captures the major patterns and presents them to 

users. And the SVM part does predictions for the minor patterns that cannot be 

captured by the rule part. We have two main challenges. First, the accuracy of the 



combined system should not be worse than that of applying SVM model alone. 

Second, the rule part should be small and really capture the major patterns. The 

algorithm discussed in that chapter addresses these issues. 

An interesting web application "catalog mapping" is discussed in CHAPTER 7. 

Given a catalog HI which is a hierarchical organization of categories, find the 

definitions for its categories (i.e. decide the meanings for its categories) in terms of 

the categories from another catalog HZ. The mappings are expressed in rules to make 

them understandable. Such catalog mapping is useful for many problems, like catalog 

integration. Unlike most existing algorithms that only study 1-to-1 correspondence, 

our algorithm finds complex mappings and, at the same time, makes few assumptions 

on existing catalogs. 

1.5 Organization of the Thesis 

We organize this thesis as follows. In CHAPTER 2 we present the general fi-amework of 

building a decision-making system. From CHAPTER 3 to CHAPTER 7 we study five 

interesting applications: classification, direct marketing, profit mining, protein 

localization prediction and web catalog mapping. In each application, we discuss its 

unique challenges and the solution. The thesis concludes in CHAPTER 8. Some future 

directions are also discussed in this chapter. 



CHAPTER 2 

THE GENERAL FRAMEWORK 

The construction of decision-making systems relies on many factors and users often have 

difficulties in applying algorithms built for domain A into domain B. For example, neural network 

might be good for statisticians but it would disappoint a financial institute director due to its 

difficulties to be interpreted. However, algorithms in various domains could share some common 

properties. Identifying such properties can help users develop algorithms in their own domains. In 

this chapter, we discuss these properties and propose a general framework based on them. 

2.1 Common Properties 

Due to various natures of applications, it is very difficult, if not impossible, to invent a 

universal algorithm that can be directly applied into different domains. On the other hand, we do 

believe that different applications share some common properties. Identifying these properties can 

help establish guidelines for building decision-making systems. 

1. Building interpretable systems. Building an interpretable system is very much 

rewarding since it can greatly help users understand how decisions are made and thus 

make appropriate actions. Association rules are easy to understand and, thus, are 

good candidates as basic elements for decision-making systems. To make the system 

more interpretable, pruning it to a small size often is required. Moreover, pruning can 

also remove the over-fitting rules which are generated due to the noise in training 

data. 

2. Pushing the application goal down to the very begining of system 

construction. Often we want to build a system that maximizes the application goal 

9 



(e.g. maximizing profit for direct marketing). To achieve that, we need to integrate 

the goal into the system construction. Many algorithms consider such knowledge 

only after the system is built. [Dom99] is such an example. It assumes that each 

misclassification is associated with a cost and tries to build a system that minimizes 

the overall cost on misclassifications. So it proposes a general method to make 

classifiers cost-sensitive. However, the cost of misclassification is only considered 

after the basic classifiers are built. Application goal (in this case, minimizing the 

cost) is not considered during the construction of basic classifier. As a consequence, 

there is no guarantee that the basic classifier is optimum. To maximize the 

application goal, we should push down the goal to the very beginning of system 

construction. 

2.2 Why Association Rules? 

When building decision-making systems, a fundmental issue a user faces is: How to 

choose the basic structure of the system? It could be a decision tree, a neural network or an SVM. 

In this thesis, we use association rules due to the following reasons. However, it does not imply 

that association rules could replace other algorithms because each of them has its own 

advantages. Actually in one application (protein localization) we integrate association rules with 

SVM to achieve optimal results. 

Compared to other competitors (like neural network or SVM), association rules 

are naturally easy to understand. Such property helps us build interpretable 

decision-making systems. 

Rule generation algorithms have been studied for a long time. The abundance of 

such algorithms makes it relatively easy to select (and modify if necessary) one 

to an application. 



Association rules are independent to each other. It helps improve the 

interpretability of the decision-making system since users need not to consider 

the interactions among rules. Moreover, it also makes the system pruning easier 

since pruning one rule won't affect other rules. 

2.3 The General Framework 

Figure 2-1 The general framework of building decision-making systems 

Inputs: Training data D; Application goal 

Output: Decision-making system M 

Algorithm: 

1. Generate interesting association rules from D with the consideration of application 

goal; try to keep the number of rules minimal; 

2. Build an initial model MI from those rules with the consideration of application goal; 

prompt the rules that benefit the system most; 

3. Prune MI with the consideration of application goal; remove the negative rules and 

optimize the system on future data; 

4. Return the final model M; 

Figure 2-1 shows the general framework of using association rules to build a decision- 

making system. It has three major steps: generating interesting rules, building the initial model, 

and pruning the initial model. In the following sections, we will present details for each step. 

First, we have a brief introduction on the inputs of framework. 



2.3.1 The Input 

The input of the general framework is the training data D collected by users and the application 

goal. Each record t in D at least has two parts: the description of the record and the decision made 

based on the description. The exact data format varies across applications. For example, in 

supermarket applications the description of a record could be a set of items; while in financial 

domains the description could be a collection of attribute-value pairs. In many applications, the 

training data itself is pretty challenging due to its huge size, high dimension or skewed 

distribution. And there is no general cure for it. In this thesis, for each application we propose an 

innovative algorithm to handle these issues. 

Besides the training data, many applications also have their unique application goals. 

Integrating them into system construction is critical for the success of a system. 

2.3.2 Generating Interesting Rules 

This step generates a set of rules which forms the foundation of a decision-making 

system. Each rule has the form of X d C ,  where X is a description and C is a decision. A rule is 

often associated with some interestingness measurements which reflect the likeliness of using it 

for decision-making. Consider a sample rule for document classification: (process, thread, 

deadlock}+operating-system, conf-70%. Here, (process, thread, deadlock} is the rule 

description, "operating-system" is the decision, and "confl-70%" is the interestingness 

measurement. This rule can be explained as: If a document contains the keywords process, thread 

and deadlock, we classify it into the topic operating-system, with 70% confidence. 

Often the rule generation space is huge for many applications. To save time and help 

build interpretable systems we must control the number of rules generated. A good way to do that 

is to set rule interestingness thresholds and only generate those rules with interestingness not less 

than the thresholds. For example, in document classification we can control the number of rules 



generated by setting the minimum support and minimum confidence. However, many times it is 

difficult for users to select an appropriate value for a threshold. For example, if the minimum 

support is too low, too many rules are generated. If it is too high, then many valuable rules could 

be left out. It would be good if users are not required to speciy such thresholds. We explore such 

possibility in several algorithms. 

A big challenge in this step is to integrate application goal into rule mining. Doing that is 

critical for the success of a system. General rule mining algorithms (like Apriori [AS94) do not 

address this issue. We propose innovative approaches to address this issue in several applications. 

2.3.3 Building the Initial Model MI 

With a set of rules generated in the previous step, now the problem is: How to organize 

these rules so they can work together as a decision-making system? Basically, we need to solve 

two issues: 

Given a case t, identify the rules that are eligible to make decisions on t 

If multiple such rules exist, select the most appropriate one(s) 

For the first issue, we need to identify the rules which are "relevant" to the given case t. 

Intuitively we can define a rule r is relevant to case t if r's description matches the description of 

t's. And only those rules that are relevant to t are eligible to make decisions on t. The exact 

"match" definition is application dependent. 

Example 2-1 Suppose the description of document t is: {thread, process, deadlock}. And we 

have two rules: rl={thread, deadlock}+OS, r2={deadlock, table)+database. We regard rule rl 

is relevant to document t since the description of rl matches (a subset in this case) t. But r2 does 

not match t. 



For the second question, it is equivalent to identify the rule(s) which can maximize user's 

application goal. If an interestingness measurement is defined based on user's goal, we could just 

simply select the rule(s) with the highest interestingness values. Based on the previous 

discussions, we have the following MIF principle for building the initial model. 

Definition 2-1 (The MIF Principle). Given a case t, we only select relevant rule(s) to make 

decision. If there are choices, the rule(s) of higher interestingness has the priority. This is called 

the most-interesting-first principle, or simply MIFprinciple. 

The MIF principle turns a set of rules into a decision-making system which can be used 

to recommend decisions for new cases. However, it is just a general guideline and users need to 

materialize it when they actually apply it. 

Given a testing case, the MIF principle allows to use multiple rules for prediction. 

However, it becomes a problem when those rules give different predictions. One solution to solve 

the conflict is to weight the predictions based on the priority of those rules. However, it is not 

easy to assign the weights appropriately. To avoid this problem, in this thesis we only use one 

rule (the rule with the highest rank) for prediction. We believe such rule has highest possibility 

(compared to other matched rules) to maximize user's application goal. Another advantage of this 

approachs is to avoid specifying the threshold for the number of rules to be used for prediction. 

2.3.4 Pruning  the  Initial Model MI 

By organizing individual rules into a system in Step 2 we have new opportunities to 

optimize the system and prune rules due to the introduction of correlation among rules that does 

not exist in Step 1. That's why we have an extra step for refining the model. The actual 

optimizinglpruning strategy is application dependent. However, one important thing we should do 

in this step is to optimize the system on future data. 



In the previous two steps we build a model based on historical (training) data. However, 

this model is intended to be used on future data. Typically the training data contains noise, which 

could pollute the patterns (rules) mined. Such patterns should be removed so they won't hurt the 

system performance on future data. 

2.4 Summary 

In this chapter, we introduce a general domain-independent framework which can be 

served as guidelines to build decision-making systems. Unlike most algorithms that only focus on 

performance, the framework emphasizes on both performance and interpretability. More 

importantly, it pushes the application goal down to the very beginning of system construction. 

In the following chapters we will study several challenging applications using the 

framework as guidelines. Each application has its own unique challenges and needs innovative 

approaches to solve them. The framework helps and guides users to find such approaches. 



CHAPTER 3 

GROWING DECISION TREES ON ASSOCIATION RULES 

This chapter studies a well-known decision-making problem: classification. Leveraging 

association rules for classification is an active research area in data mining. The richness of 

association rules gives this approach an edge over heuristically guided rule search. However, 

association rules suffer from two major issues. First, the minimum support requirement (i.e. 

requiring all the generated rules having support above certain threshold) for mining association 

rules often compromises the confidence requirement for classification rules. Second, association 

rules are not mutually exclusive, and an ad-hoc handling of rule interaction often diminishes the 

classification structure. To deal with the first problem, we abandon the support requirement and 

employ all association rules above a minimum confidence for classification. To deal with the , 

second problem, we build an ADT (association based decision tree) from association rules and 

prune over-fitting rules on an accuracy-driven basis like the decision tree induction. By 

combining the richness of association rules with the accuracy-driven pruning of the classic 

decision tree induction, ADT outperforms other classifiers in both accuracy and classifier size. A 

paper based on this chapter was accepted by SIGKDD 2000 conference [WZHOO]. 

3.1 Introduction 

In this chapter we introduce an innovative approach for classification: association based 

decision tree (ADT). It takes the advantages from both association rules and decision trees by 

organizing association rules into a decision-tree-like structure. 

In a decision tree, rules are organized into a generalization tree where the cases covered 

by a parent are covered exclusively by the child (specific) rules. Such exclusive coverage of the 



training cases enables a systematic, accuracy-based bottom-up pruning of over-fitting rules. 

However, decision tree evaluates one attribute at a time. Such heuristic-based local search could 

diminish the typical structure that several attributes collectively determine the class. On the other 

hand, the association mining searches globally for rules according to the joint predictiveness of 

several attributes disregarding the interaction of other rules. The richness of rules gives this 

approach the potential of finding the true classification structure in the data. Unfortunately, this 

strength becomes a weakness when pruning over-fitting rules because rules are inter-related by 

covering common cases and by a non-tree generalization hierarchy. 

To prune over-fitting association rules, we organize rules into a generalization tree and 

leveraging the bottom-up pruning of decision tree. The result is called ADT (association based 

decision tree). Thus, the association rules used for building the classifier are selected from the full 

set of rules and collectively ensure the maximum accuracy with respect to the bottom-up pruning 

allowed. In other words, ADT has the advantage of combining the richness of association rules 

and the accuracy-driven pruning of decision tree induction. Our experiments on 21 benchmark 

data sets show that ADT leads other classifiers by an average of 2.4% in accuracy and by an 

average of 15% in classifier size. 

Another major contribution in this chapter is the conJident rule mining algorithm. Several 

algorithms have been proposed to use association rules for classification [AMS97, LHM98, 

MW99, WZL991. Those approaches generate association rules by specifying minimum support 

and minimum confidence thresholds. Often, a good threshold is unknown in advance (if it exists 

at all) because different rules may have different requirements [WHHOO]. In such cases, a viable 

pruning approach should be accuracy-driven, rather than threshold-driven. In ADT, we abandon 

the ad-hoc minimum support requirement and employ association rules satisfying only the 

minimum confidence, called con~dent  rules, to build a classifier. To find all confident rules 

without exhaustive enumeration, we propose a confidence-based pruning by exploiting a certain 



monotonicity of confidence so that general rules are examined only if some specific rules are 

confident. 

This chapter is organized as follows. In Section 3.2 we introduce the related work. From 

Section 3.3 to 3.5 we present the algorithm of building ADT by following the guidelines in the 

general framework. We evaluate the effectiveness of our approach in Section 3.6. Section 3.7 

concludes this chapter. 

3.2 Related Work 

Classification has been a subject of research in machine learning, statistics, pattern 

recognition, neural networks and other areas for several decades. Association rule mining was 

first studied in [AIS93], and subsequently in a number of papers, e.g., [AS94, Bay98, HF95, 

PCY95, SA95, SON951. These two problems are largely studied in isolation until association 

rules are used for classification recently. We focus on the work on classification based on 

association rules. 

Association rules are used for partial classification in [AMS97] and for covering training 

cases in [Bay97]. Both works are not concerned with building a classifier. [LHM98] uses 

association rules to build a classifier and prunes specific rules using both the minimum support 

and the pessimistic estimation. In particular, [LHM98] uses confidence and support to compute 

the observed error of rules. This computation ignores the interaction among rules by repeatedly 

covering a training case using all matching rules, thus, fails to model the reality that each case is 

classified by one rule. [DZWL99, MW991 combines several association rules to classify a new 

case. Thus, this approach partially addresses the "low support" issue of classification rules 

because a combined rule could have a lower support. The rule pruning in [DZWL99, MW991 is 

essentially threshold-based. In [WZL99], multi-level association rules are used to build 

hierarchical classifiers where both the class space and the feature space are organized into 



taxonomy or an isa-hierarchy. All the above approaches crucially rely on a minimum support to 

prune specific rules. We abandon the support requirement and deal with over-fitting by an 

accuracy-driven pruning. Finding association rules between two values without a support 

requirement is studied in [CDF+OO]. But such rules are too general for classification. Several 

researchers, e.g., [Sch93, MP941, have tried to build classifiers by extensive search. None of 

them, however, uses association-mining techniques. 

3.3 Mining Confident Rules 

For classification application often the goal is to maximize the prediction accuracy. 

Hence, rules with high confidences are preferred. As pointed out in the framework, we should 

consider this domain constraint when mining association rules. In this section, we propose an 

algorithm to mine confident rules. Rules with higher confidences are more preferred. The 

algorithm does not require users to select the minimum support, which is often difficult to 

determine in many cases. 

We assume that the database is represented by a relational table T over m non-class 

attributes A], ..., A, and one class attribute C. A case in the database has the form <al, ,., a ,  c,, 

where a, are values of Ai and c is a class of C. A rule, or a k-rule, has the form Ail=arl A . . . A 

Aik=a;k+C=c, with each attribute occurring at most once. By prefixing a value with its attribute, 

we can omit attributes and write a rule as a,], ..., a,k+c, or simply x+c, where x denotes one or 

more values. We say a case t and a rule x+c match if t contains all the values in x. A rule x, ai+c 

is a A,-specialization of x+c if a, is a value of A,. denotes the number of cases in T, and 

num(x) denotes the number of cases in T that contain all the values in x. The support of rule x+c, 

denoted sup(x+c), is num(x, c)llq, where num(x, c) denotes the number of cases in T that contain 

both x and c. The confidence of rule x+c, denoted conf(x+c), is num(x, c)/num(x).Given a 

minimum confidence minconf, a rule is conzdent if conJ(x+c)2minconJ: 



Definition 3-1 (Mining confident rules) The problem of mining conjident rules is to find all 

confident rules for a given minimum confidence. 

Since mining confident rules does not require a minimum support, the support-based 

pruning in [AIS93] is not applicable. What we need is a confidence-based pruning that pushes the 

confidence requirement to prune unpromising rules as early as possible. This change turns out to 

be drastic. On the one hand, confidence no longer enjoys the downward closure as enjoyed by 

support-based pruning [AIS93]: Age=young+Buy=yes and Gender=M+Buy=yes could have 

lower confidence than Age=young, Gender=M+Buy=yes. Consequently, even though shorter 

rules are not confident, longer rules still need to be examined. On the other hand, confidence does 

not enjoy the upward closure either because Age=old, Gender=Firguy=yes could have lower 

confidence than Age=old+Buy=yes or Gender=F+Buy=yes. Thus, a straightforward pruning 

based on the downward or upward closure does not work. 

To motivate the confidence-based pruning, consider the following rules: 

Suppose that rl  has confidence of 0.60, that is, 60% of young people buy the Internet 

service. We can infer that some of r2 and r3 has at least confidence of 0.60. The key observation 

is that, since the two conditions Gender=M and Gender=F are mutually exclusive, if one 

condition impacts confidence negatively, the other condition must impact confidence positively. 

We can exploit this property to prune r l  if none of r2 and r3 is confident. We call this property 

the existential upward closure because it assures that some specialized rule of a given confident 

rule must be confident. 



Theorem 3-1 (The existential upward closure) Consider any attribute A, not occurring in rule 

x J c .  (i) Some A,-specialization of x J c  has at least the confidence of conf(x irc). (ii) If x J c  is 

confident, so is some Aj-specialization of x J c .  

Proof: (ii) follows immediately from (i). So we prove (i) only. Suppose that for every value ai of 

A,, conf(x, a, Jc)<conf(x irc). That is, num(x, a,, c)/num(x, ad<conf(x +c), or 

num(x, a,, c) <num(x, a$ *conf(x +c), where num(x, a,, c) denotes the number of cases in T that 

contain x, a, and c. Summing up over all ai on both sides, we have 

Ea,num(x, ai) c) <Ea,num(x) aai) *conf(x +c), or, 

Since each training case contains at most one value of A,, Zh, num(x, a,, c)=num(x, c) and 

Zh, num(x, a$=num(x). Therefore, num(x, c)/num(x)<conf(xJc). But this contradicts the 

definition of confidence. (i) is proved. 

The existential upward closure suggests the following level-wise rule generation. Assume 

that all confident k-rules have been generated (starting with k=m, the number of non-class 

attributes). We generate a candidate (k-+rule x irc only if for every attribute A, not occurring in 

x J c ,  some A,-specialization of x +c is confident. We can implement this candidate generation in 

relational algebra, thus, in SQL supported by any database system. In particular, let Rk be the set 

of confident k-rules and let Rk(X C) be the set of rules in Rk with attributes X on the left-hand 

side. Similarly, let Ck and Ck(X C) be the corresponding notations for generated candidate rules. 

We represent rules x +c as tuples <x, c> and represent Rk( '  C) and Ck(X C) as relational tables 

over attributes X and C. Theorem 3-1 (ii) can be restated as: A (k-1)-rule <x, c> is in CR-,(X C), 

where x is a vector of values over X, only if <x, c> is in the projection n,,,Rk (X, A,, C )  for 



every non-class attribute A, not occurring in X. This gives rise to the following computation 

of Ck-, (X,  C )  - 

Corollary 3-1 Let Ck-, (X,  C )  = nAi xx,,Rk (X,  Ai, C )  , where n,,,Rk (X, A,, C )  denotes the 

projection onto the attributes Xand C, and A, ranges over all non-class attributes not in X. Then 

ck(x c )  I> Rk(x c). 

The corollary above implies two results. First, it suffices to examine only confident k- 

rules, not other rules, in order to generate a superset of confident (k-1)-rules; thus, examining this 

superset is sufficient to find all confident rules. Second, this generation can be implemented by a 

relational expression over the set of confident k-rules, i.e., Rk, therefore, can be immediately 

implemented on top of a commercial database system. The actual confident rules in 

C,-, (X,  C )  can be found by computing the confidence of candidates in Ck-l in one pass of the 

database T. 

Table 3-1 The sample database 

Example 3-1 Consider a sample database in Table 3-1. Suppose minconp80%. We see that: 

R2(A,, AL C)={<7,0,1>,<5,0,0>} 

R2(A1, Ah C)={<7,O,l>,<7,Iy l>,<5,O,O>} 



R2(A2, All, C)={<0,071 >,<27070>,<27 1 1>} 

C I  can be computed as follows: 

C, ( A , ,  C )  = n A I , , ~ ,  ( 4 ,  A,, C )  n r A I , , ~ ,  ( A , , A , ,  C )  ={<7,1>,<570>1 

'1 = n,2 , ,R2(A,7  nrA2,cR2 A37C)={<071>} 

'1 7 ') = nA3,C R2 (Al  9 ') n nA3,c R2 7 7 ') ={<0,1>,<1 7 l>?<O,O>} 

By finding the confidence of candidates in CI,  we have RI(AI,C)={<7,1>}, RI(A2,C)=RI(A,C)=0. 

Table 3-2 The overview of mining confident rules 

Input: Table T over A], ..., A,, C and minconj 

Output: All confident rules; 

Algorithm: 

1 .  k=m; 

2. Ck(A1, ..., A,, C)=T; 

3 .  while k2l and Ck is not empty do 

4. Compute the confidence of candidates in Ck in one pass of T; 

5.  Rk=all confident candidates in Ck; 

6 .  Generate Ck-, hom Rk (based on Corollary 3-1); 

7. k--; 

8. Return all Rk; 



The table above gives the algorithm for finding confident rules. The seed C,, is initialised 

to the set of training cases in the database T (line 2). In iteration k, we compute the confidence of 

candidates in Ck in one pass of T (line 4), collect confident k-rules (line 5) from the candidates, 

and generate Ck.] (line 6). To compute the confidence of candidates in Ck, we borrow the 

computation of itemset support in [AS94]: First, candidates x +c in Ck are stored in the hash-tree 

as they are generated. Then, we scan the cases in T, and for each case t, we update num(x) and 

num(x, c) for all the matching candidates x+c such that xct using the subset function of the 

hash-tree, exactly as in [AS94]. In particular, if t has class c, we increment both num(x) and 

num(x, c); otherwise, we increment num(x). At the end of the database scan, the confidence of a 

candidate x +c is num(x, c)/ num(x). 

3.4 Building the Initial Classifier 

Let C denote the set of confident rules plus the default rule, denoted 0% where c is the 

majority class in data T. Note that every case matches the default rule. In classification the goal is 

to achieve high accuracy. Hence, we prefer the rules with high confidence for prediction. The 

following definition ranks rules based on their confidences. 

Definition 3-2 (The ranking of confident rules). Consider two rules r and r'. We say that r is 

ranked higher than r', written as r 4, r' , if the following condition holds (in that order): 

or if conf(r)=confir'), but sup(r)>sup(r 3, 

or if sup(r)=sup(r?, but size(r)Qize(r'), 

or if size(r)=size(r'), but r precedes r '  in the lexicographical order of rules. 

where confir) denotes the confidence of rule r, sup(r) denotes the support of rule r, and size(r) 

denotes the number of attributes in the left-hand-side of rule r. 
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In words, 4, ranks rules by confidence, followed by support, followed by size, followed 

by the lexicographical order of rules, in that order. The following principle governs the preference 

of rules, which favours the most predictive rule among all applicable ones. It is an application of 

MIF principle (in the general framework) where the interestingness is measured by confidence. 

Definition 3-3 (The MCF principle) If there are choices, the rule of the highest rank has the 

priority. This is called the most-conJident-Jirstprinciple, or simple MCFprinciple. 

The MCF principle serves two roles in the construction of a classifier. First, it turns the 

set of rules into a classifier by covering a case using the rule that matches the case and has the 

highest possible rank. This rule is called the covering rule of the case. The term initial classfzer 

refers to this classifier. The second role of the MCF principle is resolving the interaction among 

rules, by partitioning the covered cases according to covering rules. Each training case belongs to 

the partition correspondjng to its covering rule. The significance of this partitioning is that if we 

compute the "observed error" of a rule using the training cases covered by the rule, we do not 

have the problem of repeatedly considering a training case for several rules. This is clearly a more 

truthful error estimation of the prediction model where each new case is predicted using one rule. 

With the observed error, we can then estimate the "predictive error" of a classifier and determine 

the over-fitting rules to be pruned. 

Example 3-2 Consider the training set Tin Table 3-3 (left). Suppose we find 8 confident rules as 

shown in Table 3-4. r9 is the default rule. (Ignore the last three columns in Table 3-4 at this time.) 



sample data sets for a small example 

The testing set 

Consider t l l  in the testing set. The matching rules of t l l  are r,, r8 and r9. rq is the 

covering rule of t l l  because it is ranked higher than the other two rules. Thus, t l l  is classified 

into class 1 incorrectly. Similarly, the covering rule of t12, t13, t14 is r2, rl, r2, respectively, all 

classified correctly. 



3.5 Pruning the Classifier 

In this section we introduce the algorithm ADT to prune the classifier. As pointed out in 

the general framework, the purpose of pruning is to optimize the system on future data and 

improve the interpretability by reducing its size. First, we remove the redundant rules. 

Table 3-4 The initial classifier 

3.5.1 Removing Redundant Rules 

Let Ihs(r) denote the left-hand-side of rule r. we say that rule r is more general than rule 

r ', or r ' is more special than r, written as r p r ' ,  if Ihs(r) clhs (r '). We observe that, under the 

Rule ID 

rl 

'-2 

r3 

r4 

r6 

7 7  

78 

r9 

MCF principle, rules that are more specific but do not offer higher confidence will never be used. 

Such rules can be removed without affecting classification. 

Rule 

A]=O, Aj=l +O 

Al=l + 1 

AI=O, A2=1 3 0  

A1=0, A3=0+ 1 

AI=2, A2=2*0 

AI=2, A3=2+ 1 

AI=O+O 

0 3 0  

Conf. 

1 .OO 

1 .OO 

1 .OO 

1 .OO 

1 .00 

1 .OO 

0.75 

0.50 

Sup. 

0.20 

0.20 

0.10 

0.10 

0.10 

0.10 

0.30 

1 .OO 

Covered 

Training 

Case 

t l ,  t8 

t4, t6 

t2 

t3 

t10 

t9 

none 

t5, t7 

N (#case 

covered) 

2 

2 

1 

I 

1 

1 

0 

2 

E (#case 

covered 

wrongly) 

0 

0 

0 

0 

0 

0 

0 

1 



Definition 3-4 (Redundant rules) A rule r is redundant if there is some rule r'that is more 

general and ranked higher than r, that is, r l < ,  r and r l < ,  r .0 

A redundant rule r will have no turn to cover any case because some general rule r' 

matches whatever cases r matches and has a higher rank than r. From now on, we assume that 

redundant rules are removed from the classifier. 

3.5.2 Building ADT 

Now we consider pruning non-redundant rules. The idea is to use the error observed in 

the training cases to estimate the error on new cases, and to prune rules if it helps to reduce the 

estimated error. We borrow the error estimation of decision tree [Qui93]. In decision tree, the 

training cases covered by a parent rule (general rule) are refined by child rules (special rules) 

using the values of the splitting attribute chosen at the parent. If child rules are over-fitting, 

measured by an increase of the estimated error, it is natural to "cancel" such refinement by 

pruning the child rules. However, the decision tree method is not directly applicable to our initial 

classifier. This is because unlike decision tree, <, is a lattice of rules, rather than a tree of rules, 

where an association rule may have several general rules. If a special rule is pruned, more than 

one general rule can be used to cover the cases covered by the special rule. Therefore, to adopt 

the decision tree pruning, we need to convert the lattice into a tree by resolving the conflict of 

parenthood. The significance of having a tree structure is that a parent rule will "act on behalf of '  

its child rules if the latter are pruned. 

Consider a rule r. If r is pruned, we need to choose a general rule to cover the cases 

originally covered by r. Again, the MCF principle helps us to make this choice: The highest 

ranked general rule, say r', should be chosen. In this sense, r '  acts on behalf of r in case that r is 

pruned. This immediately converts the lattice of association rules into a tree of such "acts on 

behalf of '  relationships between rules. 



Definition 3-5 (ADT) Consider a non-default rule r. The parent of r is the rule that is more 

general than r and has the highest possible rank. The ADT (association based decision tree) for a 

rule set SR contains a node for each rule in SR and contains an edge from a non-default rule to its 

parent. 0 

Figure 3-1 The unpruned ADT 

The root of ADT is the default rule, which is the only rule having no parent. Figure 3-1 

shows the ADT for the initial classifier (ignore the tuple associated with each node at this time) in 

Table 3-4. In the following, the terms "node" and "rule" are interchangeable. 

Corollary 3-2. Consider a child rule r and its parent r' in the ADT. (i) r I', r' (ii) There is no 

rule r" other than r and r' such that r' p , r" p , r . 

ProoJ Notice thatrVI', r . If r I', r' does not hold, r'<, rmust hold. Then r'I', r implies 

that r is redundant, contradicting that all redundant rules are removed. This proves (i). To see (ii), 

suppose that there is a rule r" such that r ' p ,  r " p ,  r . Since r' has the highest rank among all 

general rules of r, r'<, r" . This implies that r" is redundant, a contradiction again. 0 



From (i), rules at lower levels (i.e., children) have higher rank than those at higher levels 

(i.e., parents). Thus, the MCF principle will select the lowest matching rule to be the covering 

rule of a case. From (ii), the parent is the most conservative generalization of a child because no 

general rule comes in between. Such a dense generalization order helps avoid over-pruning 

"good" general rules. 

3.5.3 Pruning ADT 

The key step of pruning ADT is to estimate the error on new cases. We adopt the 

pessimistic estimation for pruning decision tree [Qui93]. The idea is to regard misclassifying the 

training cases covered by a rule r as the binomial distribution. This distribution is then used to 

estimate the error on the whole population covered by r. In particular, if N(r) training cases are 

covered by r, E(r) of them incorrectly, this is regarded as observing E(r) events in N(r) trials in 

the binomial distribution. For a given confidence level CF, the upper limit on the probability of 

error over the entire population is written UcdE(r), N(r)). Then the upper limit is 

(pessimistically) taken as the estimated error rate of r on the whole population. The exact 

computation of UcF(E(r), N(r)) is less important and can be found in the C4.5 code [Qui93]. And 

a theoretical account can be found in [CP34]. The idea is that a smaller sample size N is penalized 

by a larger upper limit U&E(r), N(r)) to guarantee the specified confidence level CF. The default 

value of CF in C4.5 is 25%. 

Thus, if r is used to classify a set of new cases of the same size as the training cases 

covered by r, the estimated error of r is N(r)*UcF(E(r), N(r)), and we have the CFO/o confidence 

that the actual error is within this upper limit. 

The pruning of ADT proceeds in the bottom-up order by considering all child nodes 

before considering a parent node. Suppose that we are currently considering node v. Let tree(v) 

denote the subtree rooted by v. If v is a non-leaf node, we check whether pruning tree(v) can 



reduce the predicted error of the classifier. Here, pruning tree(v) means making v a leaf node, 

which will cover all the cases covered by the rules within tree(v). If pruning is worthwhile, i.e., 

reducing the predicted error, we perform the pruning immediately; otherwise, we do nothing at v. 

With such pruning we can both optimize the tree on future data (by reducing the overall estimated 

error) and improve the interpretability (by reducing the number of rules). 

Let Tree-Err(v) and Leaf-Err(v) denote the predicted error before and after pruning the 

subtree rooted by v, respectively. These errors are computed by 

where u ranges over all nodes within tree(v). N' is the number of training cases covered 

by v as a leaf node, which is equal to the total number of training cases covered by the rules 

within tree(v). Er is the number of cases incorrectly covered by v as a leaf node. 

If Leaf-Err(v)l Tree-Err(v), we prune tree(v) into leaf node v and update E(v) and N(v) 

to E r  and N If Leaf-Err(v)>Tree-Err(v), nothing is done at node v. The above consideration is 

repeated until the root of ADT is considered. 

The final step is to remove any remaining rule that covers many cases incorrectly. The 

merit of a rule r is defined by 

Thus, a small merit means many cases are covered incorrectly. If the merit of a rule r is below a 

user-specified threshold, denoted by minmeri, we can prune r from ADT. Unlike confidence, the 

notion of merit is based on the non-repeated covering of training cases. A rule may have a high 



confidence but a small merit because many cases contributing to the high confidence could be 

covered by other rules. Pruning such rules often improves the accuracy of classifier. 

Example 3-3 Consider pruning the ADT in Figure 3-1. Suppose that we like to have 25% 

confidence that the actual error rate does not exceed the estimated error rate. Then CF=25%. See 

Table 3-4 for the training cases covered by each rule. Associated with each node v in Figure 3-1 

is a tuple (N(v), E(v), Err(v)). Err(v)= N(v)* UcAE(v), N(v)) denotes the estimated error of v.  

Figure 3-2 The pruned ADT 

(2, 0, 1.00) (4, 1, 2.19) ( I ,  0, 0.75) ( I ,  0, 0.75) 

First, we consider non-leaf node r8. The estimated error of tree(r8) is the total error of rl ,  

r3, r,, and ~ 8 .  SO Tree-Err(r8)=0.75*2+l.00=2.50. The estimated error of r8 as a leaf node, 

Leaf-Err(r~), is computed by assuming that it covers all cases covered by tree(r8). From Table 

3-4, these cases are t l ,  t2, t3, t8, of which three are correctly classified into class 0, and one 

incorrectly into class 1 .  So, N'=4, E k l ,  and Leaf-Err(r8)=N'*Ucr;(EJ, N')=2.19. Since 

Leaf-Err(rs)<Tree-Err(r8), tree(rS) is pruned into leaf node r8. 

Next, we consider non-leaf node r9. Tree-Err(r9)=1+0.75+0.75+2.19+1.80=6.49 and 

Leaf-Err(r9)=NwUcF(E', N9)=6.54, where Ek5 and NklO. Therefore, there is no pruning at r9. 

The final ADT is shown in Figure 3-2. 



Table 3-5 shows the result of classifying the testing cases in Table 3-1 using both 

unpruned and pruned ADT. The pruning improves the accuracy from 75% to 100%. In the 

unpruned ADT, the error is caused by r4 on the case t l  I .  From the training set we can see that the 

classification structure mainly consists of r2 and r8. r4, generated by the noise case t3, is an overly 

specialized rule of r8. Without the pruning, r4 takes over r8 to cover t l l ,  thereby, producing an 

error. 

Table 3-5 Classification on testing cases 

It is heIpfbl to compare ADT with decision tree. Decision tree is both a rule generator and 

a pruning method. At each step, decision tree selects the attribute that best splits the classes in the 

current partition of data, evaluated by the information gain. Such a one-attribute-at-a-time top- 

down data splitting induces a tree structure where a root-to-leaf path corresponds to a rule. 

Consequently, the rules in decision tree follow a tree-structured sharing of features. In 

comparison, ADT is built from rules produced elsewhere and its purpose is to prune over-fitting 

rules. Though we have considered mainly association rules, ADT can be built using rules 

produced by any rule generator. This decoupling of rule generating from rule pruning eliminates 

Testing case 

t l l  

t12 

113 

t14 

Pruned ADT 

Covering Rule 

r8 

"2 

r8 

r2 

Unpruned ADT 

Error 

0 

0 

0 

0 

Covering RuIe 

r4 

r2 

rl 

r2 

Error 

1 

0 

0 

0 



the unnatural sharing of features in decision tree, and combines the richness of externally 

generated rules with the systematic pruning of decision tree induction. 

In particular, by leveraging association rules we are able to evaluate rules several- 

attribute-at-a-time, rather than one-attribute-at-a-time. This change is highly desirable for 

capturing co-occurred features. Unlike decision tree that explicitly represents rules themselves, 

ADT represents the "acting" relationship of rules and hides rules within nodes. Thus, ADT does 

not impose an actual structure on rules. 

3.6 Experiments 

We evaluate ADT performance on 21 datasets from UCI Repository [MM96] as shown in 

Table 3-6. The columns "#Tuple", "#Attributem and ''#ClassW denote the number of tuples, the 

number of attributes, and the number of different classes for each data set. 

We compare the performance of ADT with five other methods, i.e., C4.5 [Qui93], NB 

[DH73], TAN [FGG97], CBA [LHM98] and LB [MW99]. C4.5 is frequently used as the 

benchmark in the classification paradigm. NB is a Naive Bayes classifier which shows reasonable 

accuracy in many cases. TAN is an extension of NB and outperforms many Bayesian Network 

classifiers. CBA is a classification based on association rules, like ours. LB is a hybrid of NB and 

association rule approach, by extending NB from itemsets of length 1 to length k. 

For all methods, the parameters are set to their default values as suggested in the 

literature. For example, CBA uses the minimum support of 0.5% plus the pruning option; TAN 

uses the smoothing factor of 5, etc. For ADT, minconfis 50% and minmeri is 10%. 



Table 3-6 21 Data sets used in experiments 

I Data set 

I Australia I 690 I 14 I 2 

Balance 

Bridges 

625 

CRX 

Diabetes 

Flare 

Glass 

Iris 

I I I 

108 

Monks3 

New-Thyr 

Nursery 

Page-Blo 

I Tic-Tac-Toe 

4 

69 1 

768 

323 

214 

150 

Post-Ope 

Shuttle4 

-- 

3 

13 

432 

215 

12415 

5473 

6 

15 

8 

10 

10 

4 

90 

15 

Voting 

Wine 

Our study focuses on the accuracy and the size of classifiers obtained as the average of 

the 5-fold cross validation. If a data set is already pre-partitioned into the training set and testing 

set, we combine them before applying the 5-fold cross validation. Since all methods, except C4.5, 

deal with discrete attributes, continuous attributes are discretized using entropy discretization as 

implemented in the MLC++ system [KJL+94]. 

2 

2 

3 

7 

3 

6 

5 

8 

10 

Zoo 

2 

3 

5 

5 

8 

6 

43 5 

178 

- 

3 

2 

101 

16 

13 

2 

3 

17 7 



Data set 

Australia 

Balance 

Bridges 

Car 

CRX 

Diabetes 

Flare 

Glass 

Iris 

Monks-1 

Monks-2 

Monks-3 

New-Thyr 

Nursery 

Page-Blo 

Post-Ope 

Shuttle4 

Tic-Tac-Toe 

Voting 

Wine 

Zoo 

Average 

C4.5-con 

0.857 

0.560 

0.657 

0.917 

0.857* 

0.737 

0.823 

0.681 

0.933 

0.978 

0.616 

0.989* 

0.916 

0.965 

0.969* 

0.689 

0.997 

0.841 

0.966* 

0.897 

0.950* 

0.847 

Table 

C4.5-dis 

0.865 

0.560 

0.670 

0.917 

0.854 

0.737 

0.826 

0.690 

0.940* 

0.978 

0.616 

0.989* 

0.935 

0.965 

0.966 

0.711 

0.996 

0.841 

0.966* 

0.874 

0.950* 

0.850 

3-7 

TAN 

0.845 

0.640 

0.943* 

0.740 

0.826 

0.681 

0.920 

1.000* 

0.622 

0.987 

0.940 

0.935 

0.954 

0.689 

0.998* 

0.743 

0.989* 

0.940 

0.855 

Classification 

NB 

0.859 

0.778 

0.632 

0.856 

0.851 

0.750* 

0.804 

0.690 

0.927 

0.746 

0.627 

0.964 

0.944 

0.903 

0.932 

0.667 

0.992 

0.702 

0.905 

0.989* 

0.950* 

0.832 

accuracy 

LB 

0.867* 

0.778 

0.632 

0.886 

0.857 

0.736 

0.823 

0.690 

0.927 

1.000* 

0.627 

0.965 

0.944 

0.946 

0.961 

0.667 

0.997 

0.689 

0.931 

0.989* 

0.950* 

0.851 

CBA 

0.849 

0.683 

0.671 

0.938 

0.842 

0.729 

0.801 

0.710 

0.920 

1.000* 

0.763* 

0.971 

0.944 

0.981 

0.954 

0.533 

0.997 

0.991* 

0.940 

0.920 

0,940 

0.861 

ADT 

0.855 

0.797* 

0.690* 

0.921. 

0.852. 

0.739. 

0.830* 

0.714* 

0.920 

1.000* 

0.730. 

0.989* 

0.953* 

0.983* 

0.952 

0.712* 

0.997. 

0.974. 

0.949. 

0.931 

0.940 

0.877* 

Avg. 

0.857 

0.685 

0.565 

0.911 

0.730 

0.738 

0.819 

0.694 

0.927 

0.958 

0.657 

0.979 

0.939 

0.954 

0.955 

0.667 

0.996 

0.826 

0.808 

0.941 

0.946 

0.853 



3.6.1 Accuracy 

Table 3-7 shows the average accuracy on 5-fold cross-validation of seven different 

classifiers. The standard deviations of accuracy across different folds are small so we do not show 

them here. "C4.5-con" stands for C4.5 without attribute discretization, and "C4.5-dis" stands for 

C4.5 with attribute discretization. The blanks in the column for TAN indicate that TAN is not 

applicable to those data sets with missing values. For each data set (indicated by a row), the most 

accurate classifier(s) is marked with '*'. The last row is the average accuracy of a classifier over 

all data sets, and the last column is the average accuracy of each data set over all classifiers. 

We can see that no classifier is uniformly superior across all data sets. However, ADT 

performs better in several ways. First, ADT scores the highest average accuracy, i.e., 0.877 in 

bold face. This is 3.0% and 2.7% higher than that of "C4.5-dis" and "C4.5-con", and is 1.6% 

higher than the second best, CBA. Second, ADT scores the most number of '*', i.e., the highest 

accuracy. Third, shown in the last two columns, for the 13 data sets for which ADT does not 

score '*', ADT is above the average for 8 of them, marked with '*', and is close to the average 

for the other 5. 

In Table 3-8, the first row shows the average win of ADT for the data sets for which 

ADT is the best, and the second row shows the average loss of ADT to the best classifier for the 

data sets for which ADT is not the best. The comparison of the two rows shows that the win is 

always more substantial than the loss. 

Table 3-8 Win vs. Loss 

Loser 
ADT's win 

Winner 
ADT's loss 

NB 
0.037 

NB 
0.034 

C4.5-con 
0.055 

C4.5-con 
0.009 

LB 
0.028 

LB 
0.012 

C4.5-dis 
0.046 

C4.5-dis 
0.020 

CBA 
0.05 1 

CBA 
0.026 

TAN 
0.138 

TAN 
0.008 



Table 3-9 Size of classifiers 
- -- 

~ 4 . 5 - i n  1 C4.5-dis I CBA 1 ADT Avg. I Data set 

I Australia 

I Balance 

1 car  

Diabetes t-- I Flare 

Monks- 1 I 

New-Thyr 

Nursery I 
Page-Blo I 

Tic-Tac-Toe I 
Voting I 

I zoo 

I Average 



Table 3-10 Size of  ADTs at different stages 

Confident Unpruned Pruned Data set Final 

Classifier Rules ADT ADT 

2.27* 1 o6 9.67* 1 o3 3.04* lo3 

1.15*103 3.98*102 3.28*101 

9.80* 1 o4 7.64* 1 o2 6.72* 1 o2 

Australia 

Balance 

Bridges 

Car 

CRX 

Diabetes 

Flare 

Glass 

Iris 

Monks- 1 

Monks-2 

New-Thyr 

Nursery 

Page-Blo 

Post-Ope 

Shuttle-S 

Tic-Tac-Toe 

Voting 

Wine 

zoo 



3.6.2 Size 

Table 3-9 shows the size of classifiers in the number of rules. The size information is not 

available for LB, NB, and TAN. ADT produces the smallest classifier for many data sets. 

Interestingly, there seems to be a strong correlation between the datasets on which ADT produces 

the most accurate classifier and the datasets on which ADT produces the smallest classifier. Table 

3-10 shows the size of ADT at each stage of the construction. "Confident Rules" stands for the 

total number of confident rules generated; "Unpruned ADT" represents the number of rules in the 

initial classifier with redundant rules removed; "Pruned ADT" is the size of the pruned ADT 

before applying minmeri; "Final ADT" shows the size of the final classifier. The comparison of 

these stages shows that every stage of pruning is effective in reducing the classifier size. 

3.7 Conclusion 

In this chapter we propose a novel algorithm for the classification problem by integrating 

two techniques together: association rule and decision tree induction. Association rules are rich, 

but lacking of a systematic method of pruning over-fitting rules for classification. Decision tree 

induction, on the other hand, has an accuracy-driven pruning, but imposes restrictive structures on 

rules. The comparison motivates our work of combining the two approaches for building better 

classifiers. We propose a method to build decision trees from association rules, i.e., ADT. The 

advantage of ADT is the preservation of the strength of both approaches, i.e., the richness of rules 

and the systematic accuracy-based pruning. To give ADT the full pruning power, we use all 

confident association rules without a support requirement. A confidence-based mining is 

proposed for finding all such rules. Experiments have shown that the proposed ADT not only 

builds more accurate classifiers, but also does this by finding more truthful structures, as 

indicated by the smaller size of classifiers. 



CHAPTER 4 

MINING CUSTOMER VALUE: FROM ASSOCIATION 

RULES TO DIRECT MARKETING 

Direct marketing is a modern business activity with an aim to maximize the profit 

generated from marketing to a selected group of customers. A key to direct marketing is to select 

a right subset of customers so as to maximize the profit return while minimizing the cost. 

Achieving this goal is difficult due to the extremely imbalanced data and the inverse correlation 

between the probability that a customer responds and the dollar amount generated by a response. 

Traditional probability based approaches cannot solve this problem. In this chapter, we present a 

solution based on a creative use of association rules. A chief advantage is the completeness of 

association rule search and the focus on promising customers by pushing the recorded customer 

value. A paper based on the algorithm proposed in this chapter was accepted by DMKD 

international journal [WZYYOS]. 

4.1 Motivation 

Direct marketing makes it possible to offer goods or services or transmit messages to a 

specific, targeted segment of the population by mail, telephone, email or other direct means. 

However, building decision-making systems for direct marketing is a challenging task due to the 

following reasons. 

1. The high dimensionality and the scare target population present a significant 

challenge for extracting the features of the "respond" class. For example, the 

KDD-CUP-98 dataset [KDD98-data] used in our experiment contains 191,779 

records about individuals contacted in the 1997 mailing campaign. Each record is 



described by 479 non-target variables and two target variables indicating the 

"respond" or "not-respond" classes and the actual donation in dollars. About 5% 

of records are "respond" records and the rest are "not-respond" records. Since 

any subset of variables can be a feature for distinguishing the "respond" class 

from "not-respond" class, searching for such features is similar to searching for a 

needle from a haystack The "one attribute at a time" gain criterion [Qui93] does 

not search for correlated variables as features. 

Quoted from [KDD98-result], "there is often an inverse correlation between the 

likelihood to respond and the dollar amount of the gift". It means that there are 

many "small customers" making small purchases and few "big customers" 

making big purchases. A pure probability based ranking tends to favour "small 

customers" because of higher likelihood to respond, and ignore "big customers". 

Previous researches addressed this issue in two steps: obtain the probability 

estimation from a standard classification model such as decision tree [LL98, 

MS961, bagging [Dom99] and smoothing [ZEOl], and re-rank the probability 

based ranking by taking into account the customer value [MS96, ZEOl]. The 

disadvantage of this approach is that the customer value is ignored in the first 

step. 

To address challenge 1, we propose the notion of focused association rules to focus on 

the features that are typical of the "respond" class and not typical of the "not-respond" class. A 

focused association rule makes use of only items that have higher frequency and correlation in the 

"respond" class. The search space is determined by "respond" records and items that occur 

infrequently in the "not-respond" records. This prunes all "not-respond" records (to deal with the 

scarcity of the target class) and all items that occur frequently in the "not-respond" class (to deal 

with the high dimensionality). 



In the presence of Challenge 2, innovative solutions are needed because statistically 

insignificant rules could generate a significant profit. Our approach is to push the customer value 

into the model buildinglpruning so that the estimated profit over the whole population is 

maximized. 

4.2 Introduction 

In direct marketing, typically, what available is a historical database containing 

information about previous mailing campaigns, including whether a customer responded and the 

dollar amount collected if responded. The task is to build a model to predict current customers 

who are likely to respond. The goal is to maximize the sum of net profit, qdollar amount - 

mailing cost), over the contacted customers. We choose the KDD-CUP-98 dataset [KDD98-data] 

as the case study. This dataset was collected from the result of the 1997 Paralysed Veterans of 

America fundraising mailing campaign and only 5% of records are responders. Thus, simply 

classifying all customers into non-responders would give 95% accuracy, but this does not 

generate profit. 

In this chapter, we propose a novel approach to address the above issues. First, we exploit 

association rules [AIS93, AS94) of the form X+respond to extract features for responders, where 

X is a set of items that is correlated with the "respond" class. We select a small subset of 

association rules to identify potential customers in the current campaign. We address two key 

issues, namely, push the customer value in selecting association rules, and maximize profitability 

over the current customers (instead of historical ones). On the challenging KDD-CUP-98 task, 

which has 5% responders and 95% non-responders, this method generates 41% more profit than 

the winner of the competition and 35% more profit than the best known result after the 

competition, and the average profit per mail is 3.3 times that of the winner. This method identifies 



correctly 57.7% of responders and 78% of non-responders, thus, also provides a competitive 

solution to the cost sensitive classification. 

4.2.1 Task Definition 

Historical records are stored in a relational table of in non-target variables A,, ..., A, and 

two target variables Class and V. Class takes one of the "respond" and "not-respond" classes as 

the value. V represents a continuous donation amount. Given a set of records of this format, our 

task is to build a model for predicting the donation profit over current customers represented by 

the validation set in the KDD-CUP-98 dataset. Precisely, we want to maximize Z;(Vu-$0.68), 

where u ranges over the current customers who are predicted to have a donation greater than the 

mailing cost $0.68. An implicit assumption is that current customers follow the same class and 

donation distribution as that of historical records. Since the donation amount V for a current 

customer is not known until the customer responds, the algorithm is evaluated using a holdout 

subset from the historical data, i.e., the validation set. 

In the following sections we first examine the related work. Next, we present our 

algorithms by following the steps in the general framework. Section 4.7 gives the experiment 

results on KDD-CUP-98 dataset. In Section 0 we conclude the chapter. 

4.3 Related Work 

In direct marketing, a principled method is ranking customers by the estimated 

probability to respond and selecting some top portion of the ranked list [LL98, MS961. For 

example, if the top 5% of the ranked list contains 30% of all responders, the lift model gives the 

lift of 30/5=6. A significant drawback of this approach is that the actual customer value, e.g., the 

donation amount in the example of fundraising, is ignored in the ranking, or it requires a uniform 

customer value for all customers. As pointed out in [KDD98-result] for the KDD-CUP-98 task, 

there is an inverse correlation between the likelihood to buy (or donate) and the dollar amount to 



spend (or donate). This inverse correlation reflects the general trend that the more dollar amount 

is involved, the more cautious the buyer (or donor) is in making a purchase (or donation) 

decision. As a result, a probability based ranking tends to rank down, rather than rank up, the 

valuable customers. 

The realization that a cost-sensitive treatment is required in applications like direct 

marketing has led to a substantial amount of research. [Dom99] proposed the MetaCost 

framework for adapting accuracy-based classification to cost-sensitive learning by incorporating a 

cost matrix C(i, j )  for misclassifying true class j into class i. [ZEOl] examined a more general 

case where the benefit B(i, j, x) depends not only on the classes involved but also on the 

individual customers x. For a given customer x, the "optimal prediction" is the class i that leads to 

the minimum expected cost [Dom99] 

or the maximum expected benefit [ZEO 11 

Both methods require to estimate the conditional class probability P(j(x). In this phase, 

since only the frequency information about x, not the customer value of x, is examined, valuable 

customers, who tend to be infrequent because of the "inverse correlation", are likely to be 

ignored. The customer value is factored only at the end via the factor B(i, j, x). 

The motivation of association rules in the market basket analysis has led to several 

attempts to extend and apply such rules in business environments. [SON981 considers negative 

association rules that tell what items a customer will not likely buy given that hehhe buys a 

certain set of other items. [TKSOO] considers indirect association rules where the association of 

two items is conditioned on the presence of some set of other items. Such associations are purely 



count or occurrence based and have no direct relationships with the "inverse correlation" 

considered here that addresses profit. We focus on using association rules based on customer 

value, whereas these works focus onJinding association rules based on count information. This 

distinction is substantial because association rules themselves do not tell how to maximize an 

objective function, especially in the presence of the "inverse correlation". Our work differs from 

the product recommendation in [WZH02] and item selection in [BSVW99, WS021 in that we 

identifir valuable customers instead of items or products. 

In the rest of this chapter, the following terms are interchangeable: customer and record, 

responder and "respond" record, non-responder and "not-respond" record. 

4.4 Generating FARs (Focused Association Rules) 

Obviously, general association rule mining algorithms (like Apriori) won't work well due 

to the high dimension and huge data size. In addition, mining confident rules (discussed in 

CHAPTER 3) no longer works here since the application goal is not accuracy. Actually we need 

to find the ruleslpatterns that have the potential to bring high profit. In this section we introduce 

focused association rules to solve these issues. 

As a necessary data pre-processing step, we discretize continuous non-target variables 

using the MLC discretization utility' before generating any rules. After discretization, each value 

a, is either a categorical value or an interval. We are interested in "respond" rules of the form 
J 

that are potentially useful for discriminating responders from non-responders. Despite many 

efficient algorithms for mining association rules (see [AIS93, AMS+96, AS941, for example), we 

encountered a significant difficulty in this step: To find "respond" rules we have to set the 



minimum support well below 5%, i.e., the percentage of "respond" records in the dataset; 

however, with 481 variables and 95% records in the "not-respond" class, the number of "not- 

respond" rules satisfying the minimum support is so large that finding "respond" rules is similar 

to searching a needle from a haystack. Sampling techniques cannot reduce the "width" of records 

that is the real curse behind the long running time. We consider a simple but efficient solution to 

this problem by focusing on items that occur frequently in "respond" records but occur 

inzequentl'y in "not-respond" records. 

Let D, be the set of "respond" records and let Dn be the set of "not-respond" records. We 

have the following definition: 

Definition 4-1 (Focused association rules) The support of item Ai=ai in D, or D, is the 

percentage of the records in D, or D, that contain A,=a,. The support of a rule in D, or D, is the 

percentage of the records in D, or D, that contain all the items in the rule. Given a minimum 

support for D, and a maximum support for D,, an item Ai=ai is focused if its support in D, is not 

more than the maximum support and its support in D, is not less than the minimum support. A 

"respond" rule is a focused association rule (FAR) if it contains only focused items and its 

support in D, is not less than the minimum support. 0 

In words, a FAR occurs frequently in D, (as per the minimum support) but none of its 

items occurs frequently in D, (as per the maximum support). Notice that FARs exclude the 

"respond" rules that as a whole do not occur frequently in Dn but some of its items does. This 

"incompleteness" trades for the data reduction achieved by pruning all non-focused items. For the 

KDD-CUP-98 dataset, this prunes all "not-respond" records, which accounts for 95% of the 

dataset, and all items that occur frequently in D,, which accounts for 40%-60% of all items. Our 

experiments show that the notion of FARs works exactly towards this goal. 



Table 4-1 Algorithm of generating focused association rules (FARs) 

Input: D,, D,, the minimum support for D, and the maximum support for D, 

Output: F ARs 

Algorithm: 

/* Compute the support in D, for items in D, */ 

for all tuple t i n  D, do 

for all item in t do 

Create a counter for the item if not yet created; 

end for 

end for 

for all tuple r in D, do 

for all item in t do 

Increment the counter for the item if found; 

end for 

end for 

I* Remove the items from D, whose support in D, exceeds the maximum support */ 

for all tuple t in D, do 

Remove the items from t whose support in D, exceeds the maximum support; 

end for 

Find "respond" rules above the minimum support in D, such as in [AIS93]; 



Algorithm shown in Table 4-1 finds FARs for given minimum support in Dr and 

maximum support in D,. First, it computes the support in D, for the items in Dr(line 1-1 1) and 

removes those items from D, for which this support exceeds the maximum support (line 12-15). 

Then, it applies any association rule mining algorithm such as [AIS93] to the updated Dr to find 

"respond" rules above the minimum support (line 16). This association rule mining is expensive, 

but is applied to only "respond" records and only items whose support in D,, is not more than the 

maximum support. After finding the FARs, we add to the rule set the (only) "not-respond" rule of 

the form 

This rule, called the default rule, is used only if a customer matches no FAR. 

Table 4-2 The sample database 



Table 4-3 The D, after applying the maximum support 

Table 4-4 Count of items 

Item Count in D, Count in Dr 

bl*  3 2 

Example 4-1 Consider a small sample database in Table 4-2. There are 10 records, 5 in 

D, and 5 in D,. Each record has 3 attributes A, B, C and donation V. Suppose that both minimum 

support for D, and maximum support for D, are 40%. 

Table 4-4 shows the support count for each item in Dr. The items exceeding the 

maximum support in D, (i.e., occur in more than 2 records in D,) are marked with "*". 



Table 4-3 shows the D, with such items removed. Table 4-5 shows the FARs found from D,, plus 

the default rule. 0 

Table 4-5 The FARs generated with minimum support and maximum support of 40% 

In the rest of this chapter, a "rule" refers to either a FAR or the default rule; sup(r) 

denotes the support of rule r in D, uD,, i.e., the percentage of all records containing both sides of 

the rule, Ihs(r) denotes the set of items on the left-hand side of rule r,  I Ihs(r)l denotes the number 

of items in Ihs(r). We say that a rule r matches a record t, or vice versa, if t contains all the items 

in Ihs(r). We say that a rule r is more general than a rule r' if Ihs(r)c Ihs(r I). 

RID 

r l  

4.5 Building the Initial Model 

In direct marketing, to maximize the profit generated, we prefer the rule that matches the 

customer and has the largest observed profit on the learning set. We should consider this domain 

knowledge when constructing the system. Let proJit(r, t )  denote the profit generated by the 

prediction of r on a learning record t .  The observed profit of r is defined as: 

Rule 

0+not-respond 

Support in D, 

5/5=100% 



where t is a learning record that matches r and P is the number of such records. A large 0-avg(r) 

means that the customers (in the learning set) matched by r make a large donation on average. 

profzt(r, t) can be calculated as follow: 

V-0.68 if t (as a respondent) is classified as a respondent 

profzt(r, t) = -0.68 if t (as a non-respondent) is classified as a respondent 

0 otherwise 

To maximize the profit on a current customer, we prefer the matching rule of the largest 

possible 0-avg. We give the total rule ranking definition below. 

Definition 4-2 (Ranking rules) Consider two rules r and r'. We say that r is ranked higher than 

r: written as r <, r' , if the following condition holds (in that order): 

(Average profit) 0-avg (r)>O-avg (r'), or 

(Generality) if 0-avg (r)=O-uvg (r'), but sup(r)>sup(r'), or 

(Simplicity) if sup(r)=sup(r'), but Ilhs(r)l<llhs(r')l, or 

if Ilhs(r)l=llhs(r')l, but r precedes r' in the lexicographical order of rules. 

Given a record t, a rule r is the covering rule oft ,  or r covers t, if r matches t and has the highest 

possible rank. 

Similar to the ADT algorithm, we remove the redundant rules before we continue on the 

next step. 

Example 4-2 Continue with Example 4-1. Rules are ranked by 0-avg in Table 4-6. For example, 

r2 matches 4 records pl, p2, p 3  and nl.  O_avg(r2)=Zprofit(r2, t)/4=($30+$50+$40- 



$0.68)/4=$29.83. 0-avg for other rules is similarly computed. p2 is matched by all 6 rules and is 

covered by r5, the matching rule of highest rank. Similarly, the covering rules of other records 

can be determined. 

Table 4-6 Coverage and rank of rules 

4.6 Pruning the Model 

The above rule ranking criterion favours specific rules that match a small number of 

customers of high profit. In the classic classification problem, such rules are pruned due to 

statistical insignificance. In the presence of inverse correlation between the likelihood to respond 

and the dollar amount generated by a response, extra care should be taken because valuable 

customers do not show up very often and pruning their rules could lead to the loss of significant 

profit. To address this issue, we propose pruning rules on the basis of increasing the estimated 

profit over the whole population. Below, we describe this new pruning method. 

RID 

r5 

7-6 

r2 

1-3 

r4 

r l  

First, we explain how to estimate the profit of a rule r over the whole population; then, 

we give a method for pruning rules based on this estimation. The profit of r (over the whole 

Records matched 

~ 2 ~ 3  

P I ,  P2 

p l ,  p2, p3, nl 

p2, p3, p4, n3, n5 

p l ,  p2, p5, n2, n4 

pl-p5, nl-n5 

Records covered 

~ 2 ,  P3 

P l  

nl 

p4, n3, n5 

p5, n2, n4 

0 

0-avg 

$45.00 

$40.00 

$29.83 

$21.73 

$19.73 

$0.00 

Ranking 

1 st 

2nd 

3 Id 

4h 

5h 

6~ 



population) can be estimated in two steps. First, we estimate the "hits" of r over the whole 

population. Second, we compute the profit of the estimated hits using the observations in the 

learning set. Similar to what we did for ADT, we borrow the pessimistic estimation [CP34, 

Qui93J for estimating the "hits" of r. 

Let Cover(r) denote the set of learning records covered by a respond rule r. Let N(r) 

denote the number of records in Cover(r), E(r) of which do not match the class in r. E(r)/N(r) is 

the observed error rate of r on the learning sample. Given a confidence level CF, we estimate the 

"hits7' is N(T)*(l-UCF(E(r), N(r))), and the number of "misses" is N(r)*UcF(E(r), N(r)). The 

average profit per hit in Cover(r) is 

where t is a "respond" record in Cover(r), V is the donation amount in t. The average 

profit per miss in Cover(r) is the cost of mailing to a non-responder, i.e., 0.68. We extend these 

averages to the above estimated hits and misses. 

Definition 4-3 (Estimated profit) Assume that r covers N learning records, E incorrectly. The 

estimatedproJit of r is 

i 
N*(l- UcF(E(r), N(r)))*avgh(r) -N* &(E(r), N(r))*0.68 if r is a respond rule 

Estimated(r) 

0 if r is the default rule 

The estimated average projit of r, denoted E-avg(r), is Estimate(r)lN. The estimated 

p ro j t  of a model is ZrEstimated(r) over all rules r (for lDrl+lDnl customers randomly chosen from 

the whole population). 0 



Notice the difference between 0-avg(r) and E-mg(r). 0-avg(r) is the average profit 

observed for the learning records that are matched by r. The matching rule of the largest 0-avg(r) 

is the covering rule of a given record. E-mg(r) is the average profit estimated for the records in 

the whole population that are covered by r. We use E-avg(r) to estimate the profit generated by 

each prediction of r over the whole population. E-mg(r) depends on 0-mg(r) to define the 

notion of covering rules. 

To prune over-fitting rules to maximize Z;Estimated(r), we organize rules into a decision 

tree, like what we did in CHAPTER 3 for ADT. However, different rule pruning criterion is 

required. This time we use estimated profit. Let Estimated(r) denote the estimated profit for a 

node r, Estimated-tree(r) denote the estimated profit for the subtree rooted at r, and 

Estimated-leafir) denote the estimated profit after pruning the tree at r. Estimated-tree(r) is 

C,Estimated(u) over all nodes u within the subtree at r.  If Estimated-tree(r)astimated-leaf(r), it 

prunes the subtree at r by making r a new leaf node in the covering tree and removing the rules in 

the subtree. If Estimated-tree(r)>Estimated-leafir), it does nothing at r. The nodes outside the 

subtree at r are not considered because their estimated profit remains unchanged. Essentially, the 

bottom-up pruning has the effect of cutting off some lower portion of the tree to maximize 

C,Estimated(r) over remaining rules r. 

Example 4-3 In this example we show how to prune the tree using the estimated profit criterion. 

First we build the tree for Example 4-2. Consider rule r5 for example. r l ,  r2 and r3 are more 

general than r.5, but r2 has the highest rank among them. So, r2 is the parent of r.5. In this way, 

we build the tree on the left of Figure 4-1. 

Table 4-7 shows Estimated(r) before and after the pruning at r. For example, r.5 covers 

correctly p2 and p3, so N=2 and E=O. The estimated number of misses is 

2*U&0,2)=2*0.50=1.00, and the estimated number of hits is 2*(l-Uc~0,2))=l.00. 



avgh(r5)=[(50.68-0.68)+(40.68-0.68)]/(2-0)$45.00. From Definition 4-3, Estimated(r5)=1.00* 

avgh(r.5)-1 .00*0.68=$44.32. 

After examining nodes r5 and r6, the bottom-up pruning examines the node r2. 

Estimated-tree(r2)=Estimated(r2)+Estimated(r5)+Estimated(r@=-O.68+44.32+6.99=$50.63 . 

Pruning the subtree at r2 makes r2 cover pl, p2, p3 and nl, and N=4 and E=l. In this case, the 

estimated number of misses is 4*Ucdl,4)=4*0.55=2.20, the estimated number of hits is 4*(1- 

Ucdl ,4))=4*0.45=1.80, and avgh(r2)=[(50.68-0.68)+(40.68-0.68)+(30.68-O.68)]/(4-l)=$40.00. 

Following Definition 4-3, 

Since Estimated-tree(r2)Sstimated-leaf(r2), the subtree at r2 is pruned. 

Using the same approach we examine nodes 1-2, r3, r4, and rl.The final pruned tree is shown on 

the right of Figure 4-1.17 

Table 4-7 Estimated(r) before and after pruning 

RID 

r5 

r6 

r2 

r3 

r4 

rl 

Before pruning I After pruning I 



Figure 4-1 Left: before pruning 

r l  
Right: after pruning 

4.7 Validation 

In this section, we validate the proposed method using the standard split of the KDD98- 

learning-set (95,412 records, 4,843 "responders") and KDD98-validation-set (96,367 records, 

4,873 "responders") used by the KDD competition [KDD98-data]. The KDD98-learning-set is 

used for learning a model. In our method, we split the KDD98-learning-set randomly into 70% 

for the building set (66,788 records, 3,390 "respond" records) and 30% for the testing set (28,624 

records, 1,453 "respond" records). The testing set is used for tuning the minimum and maximum 

support in our method, not for evaluation purpose. The evaluation is performed using the standard 

KDD98-validation-set, which is held out from the learning phase of all algorithms. The 

competition criterion is the sum of actual profit on the KDD98-validation-set, defined as C,(V- 

0.68) for all validation records t predicted to have a positive profit, where V is the donation 

amount in t. 

We compare our method with three categories of published results. The first includes the 

top five results from the KDD-CUP-98 competition. As pointed out by [KDD98-result], these 

contestants used state-of-the-arts techniques such as 2-stage, multiple strategies, combined 

boosting and bagging. The second category includes the results produced by the MetaCost 

technique [Dom99]. The third category includes the results produced by the direct cost-sensitive 

decision-making [ZEOl]. The results from the latter two categories are taken from [ZEOl], which 



implemented MetaCost and direct cost-sensitive decision-making using advanced techniques for 

probability estimation and donation estimation, including multiple linear regression, C4.5, N dve 

Bayes classifier, smoothing, curtailment, binning, averaging, and Heckman procedure. Interested 

readers are referred to [ZEO 11 for more details. 

Figure 4-2 The distribution of donation 

Figure 4-2 shows the distribution of donation amount for "respond" records in validation 

set. There is a clear inverse correlation between the probability that a customer responds and the 

dollar amount generated by a response. 

4.7.1 Sum of Actual Profit 

The summary of comparison is shown in Table 4-8 based on the KDD98-validation-set. 

The first row (in bold face) is our result. Next come the three categories of published results: the 

top five contestants of the KDD-CUP-98 as reported in [KDD98-result], five algorithms of 

MetaCost and five algorithms of direct cost-sensitive decision-making as reported in [ZEOl]. 



Table 4-8 Comparison with published results 

#Mailed Average I Category Algorithm Sum of actual 

nrnfit 

Our algorithm $20,693 

KDD-CUP- 

98 results 

Gainsmarts (the winner) $14,7 12.24 

SAS (#2) 1 $14,662.43 

Quadstone (#3) 1 $13,954.47 

Amdocs (#5) 1 $13,794.24 

NIA I NIA Smoothed C4.5 (sm) ( $12,835 

C4.5 with curtailment (cur) $1 1,283 NIA 1 NIA 

Binned nai've Bayes (bin) $14,113 

Average(sm, cur) $13,284 

Average(sm, cur, bin) $13,515 

Smoothed C4.5 (sm) $14,321 

NIA / NIA 

NIA 1 NiA 

Direct Cost- 

Sensitive C4.5 with curtailment (cur) $14,16 1 I 
Binned niive Bayes (bin) 1 $1 5,094 NIA 1 NIA 

Average(sm, cur) NIA 1 NIA 

Average(sm, cur, bin) 1 $15,329 NIA / NIA 

Max possible profit 1 $72,776 

Mail to everyone 1 $10,548 



Our method generated the sum of actual profit of $20,693. This is 41% more than the 

KDD-CUP-98 winner ($14,7 1 2.24), 47% more than the best profit of MetaCost ($14,113), and 

35% more than the best profit of direct cost-sensitive decision-making ($15,329). According to 

the analysis in [ZEOI], a minimum difference of $1,090 is required to be statistically significant. 

Our performance gain far exceeds this requirement. Our average profit per mail is $0.88. This is 

3.38 times that of the KDD-CUP-98 winner, and 8 times that of the Mail to Everyone Solution. 

Compared to the KDD-CUP-98 winner, we generated 41% more profit by predicting less than a 

half number of contacts. [ZEOl] did not report the number of mailed, so we cannot compute their. 

average profit. These higher total profit and average profit suggest that the proposed method is 

highly successful in focusing on valuable customers. This success is credited to the novel feature 

extraction based on the global search of association rule mining, and the profit estimation that 

pushes the customer value as the first class information. 

4.7.2 Profit Lift 

We extend the concept of "lift" in the literature [LL98, MS961 to evaluate the "profit lift" 

of our result. In the cumulative lift curve [LL98, MS961, validation records are ranked by the 

estimated probability of belonging to the "respond" class, and each point (x, y) on the curve 

represents that the top x percent of the ranked list contains y percent of all actual responders. In 

the cumulative profit lift curve, each point (x, y) represents that the top x percent of the ranked list 

generates y percent of the total profit. Thus, the cumulative lift curve is a special case of the 

cumulative profit lift curve when every responder generates the same profit. Figure 4-3 shows the 

cumulative profit lift curve of our result. For example, the top 20% of the ranked list generates 

42% of the total actual profit, giving the profit lift of 2.1. The bend toward the upper-left corner 

suggests that our method ranks valuable customers toward the top of the list. 



Figure 4-3 The accumulative profit lift curve 

4.7.3 Classification 

Table 4-9 shows the confusion matrix for the KDD98-validation-set. 2,813 of the 4,873 

responders are predicted as responders (i.e., contacted), and 71,389 of the 91,494 non-responders 

are predicted as non-responders (i.e., not contacted), giving the "hit rate" of 57.7% on responders 

and 78.0% on non-responders. In other words, the hit rate for responders is more than 10 times 

the percentage of responders in the data (i.e., 5%). This strongly suggests that our method has 

achieved the goal of identifying valuable customers. 

Table 4-9 The confusion matrix 

Contacted 

20,105 

2,8 13 

Non-responder 

Responder 

Not contacted 

71,389 

2,060 



4.8 Conclusion 

In this chapter we study the direct marketing problem which becomes increasingly 

important in retail, banking, and insurance industries. One challenge in direct marketing is the 

inverse correlation between the likelihood to buy and the dollar amount to spend, which implies 

that the traditional probability based ranking will rank valuable customers low rather than high. 

Another challenge is the extremely high dimensionality and extremely low proportion of the 

target class. In such cases, finding rules to distinguish the target class from non-target classes is 

similar to finding a needle from a haystack. 

To solve the first challenge, we push the customer value as the first class information. 

Our approach is to estimate directly the profit generated on a customer without estimating the 

class probability. For the second challenge, we only mine "focused rules" on respondents only. It 

reduces the rule searching space by discarding the items that are not so "unique" to respondents. 

The evaluation on the well known, large, and challenging KDD-CUP-98 task shows the 

effectiveness of our algorithm. 



CHAPTER 5 

PROFIT MINING: FROM PATTERNS TO ACTIONS 

A major obstacle in data mining applications is the gap between the statistic-based 

pattern extraction and the value-based decision-making. "Profit mining" aims to reduce this gap. 

In profit mining, given a set of past transactions and pre-determined target items, we like to build 

a model for recommending target items and promotion strategies to new customers, with the goal 

of maximizing profit. Though this problem is studied in the context of retailing environment, the 

concept and techniques are applicable to other applications under a general notion of "utility". 

There are several unique challenges in profit mining. First, we need to recommend both 

products and their prices, which are much more difficult than just predicting a class. And for most 

products they have different prices at different times, which makes the problem even more 

challenging. Second, products often have relationships among themselves. Making use of this 

domain knowledge for recommendation is a non-trivial task. We study these challenges and 

propose solutions in this chapter. Also we evaluate the effectiveness of our approach using both 

real and synthetic data sets. A paper based on the algorithm proposed in this chapter was accepted 

by EDBT 2002 conference [WZH02]. 

5.1 Introduction 

It is a very complicated issue whether a customer buys a recommended item. 

Consideration includes items stocked, prices or promotions, competitors' offers, recommendation 

by friends or customers, psychological issues, conveniences, etc. For on-line retailing, it also 

depends on security consideration. It is unrealistic to model all such factors into a single system. 

In this chapter, we focus on one type of information available in most retailing applications, 



namely past transactions. The belief is that shopping behaviors in the past may shed some light on 

what customers like. We try to use patterns of such behaviors to recommend items and prices. 

Consider an on-line store that is promoting a set of target items. At the cashier counter, 

the store likes to recommend one target item and a promotion strategy (such as a price) to the 

customer based on non-target items purchased. The challenge is determining an item interesting 

to the customer at a price affordable to the customer and profitable to the store. We call this 

problem profit mining. 

Most statistics-based rule mining, such as association rules [AS94], considers a rule as 

"interesting" if it passes certain statistical tests such as supportlconfidence. To an enterprise, 

however, it remains unclear how such rules can be used to maximize a given business object. For 

example, knowing "Perfume +Lipstick" and "Perfume +Diamond", a store manager still cannot 

tell which of Lipstick and Diamond, and what price should be recommended to a customer who 

'buys Perfume. Simply recommending the most profitable item, say Diamond, or the most likely 

item, say Lipstick, does not maximize the profit because there is often an inverse correlation 

between the likelihood to buy and the dollar amount to spend. This inverse correlation reflects the 

general trend that the more dollar amount is involved, the more cautious the buyer is when 

making a purchase decision. 

5.2 Problem Definition 

In profit mining, we are given a collection of past transactions, target items and non- 

target items, and promotion codes containing the pricing and cost information of items. A 

transaction contains one target sale of the form <I, P, e>, for some target item I, and several non- 

target sales of the form <I: P, e>, for non-target items I'. The presence of <I, P, e> (or <I: P, 

Q>) in a transaction conveys that I (or I ') was sold in the quantity of Q under the promotion code 

P. Profit mining is to build a model, called recommender, that recommends a pair of target item I 



and promotion code P to future customers whenever they buy non-target items. A successful 

recommendation generates (Price(P)-Cost(P))*Qprofit, where Price(P) and Cost(P) are the price 

and cost represented by P,  and Q is the quantity sold because of the recommendation. The benefit 

goal is to maximize the total profit of target items on future customers. 

Example 5-1 Suppose that a target item 2%-Milk has four promotion codes (not necessarily 

offered at the same time): ($3.214-pack, $2), ($3.014-pack, $1.8), ($1.2lpack, $0.5) and ($l/pack, 

$0.5), where the first element denotes the price and the second element denotes the cost. Let P 

denote ($3.214-pack, $2). A sale <Egg, P, 5> generates of 5*($3.2-$2)=$6 profit on the target 

item. Note that the price, cost and quantity in a sale refer to the same packing (e.g., 4-pack). 

Some (descriptive) items, such as Gender=Male, do not have a natural notion of 

promotion code. For such items, we set Price(P) and Q to 1 and Cost(P) to 0, and the notion of 

profit becomes the notion of support. 

5.3 Related Work 

Profit maximization is different from the "hit" maximization as in classic classification 

because each hit may generate different profit. Several approaches were proposed to make 

classification cost-sensitive. [Dom99] proposed a general method that can serve as a wrapper to 

make a traditional classifies cost-sensitive. [ZEOl] extended the error metric by allowing the cost 

to be example dependent. [PAZ02] introduced a method to make sequential cost-sensitive 

decisions, and the goal is to maximize the total benefit over a period of time. These approaches 

assume a given error metric for each type of misclassification, which is not available in profit 

mining. 

Profit mining is related in motivation to actionability (or utility) of patterns: A pattern is 

interesting in the sense that the user can act upon it to her advantage [ST96]. Recently, there were 

several works applying association rules to address business related problems. [BSVW99, 



WFW03, WS021 studied the problem of selecting a given number of items for stocking. The goal 

is to maximize the profit generated by selected items or customers. These works present one 

important step beyond association rue mining, i.e., addressing the issue of converting a set of 

individual rules into a single actionable model for recommending actions in a given scenario. 

There were several attempts to generalize association rules to capture more semantics 

[CYS03, YHB041. Instead of a uniform weight associated with each occurrence of an item, these 

works associate a general weight with an item and mine all itemsets that pass some threshold on 

the aggregated weight of items in an itemset. Like association rule mining, these works did not 

address the issue of converting a set of rules or itemsets into a model for recommending actions. 

Collaborative filtering [RV97] makes recommendation by aggregating the "opinions" 

(such as rating about movies) of several "advisors" who share the taste with the customer. Built 

on this technology, many large commerce web sites help their customers to find products. The 

goal is to maximize the hit rate of recommendation. For items of varied profit, maximizing profit 

is quite different from maximizing hit rate. Also, collaborative filtering relies on carefully 

selected "item endorsements" for similarity computation, and a good set of "advisors" to offer 

opinions. Such data are not easy to obtain. The ability of recommending prices, in addition to 

items, is another major difference between profit mining and other recommender systems. 

Another application where data mining is heavily used for business targets is direct 

marketing. See [LL98, MS96, WZYY031, for example. The problem is to identify buyers using 

data collected from previous campaigns, where the product to be promoted is usually fixed and 

the best guess is about who are likely to buy. The profit mining, on the other hand, is to guess the 

best item and price for a given customer. Interestingly, these two problems are closely related to 

each other. We can model the direct marketing problem as profit mining problem by including 

customer demographic data as part of her transactions and including a special target item NULL 

representing no recommendation. Now, each recommendation of a non-NULL item (and price) 



corresponds to identifying a buyer of the item. This modeling is more general than the traditional 

direct marketing in that it can identify buyers for more than one type of item and promotion 

strategies. 

5.4 Our Approach 

Our first consideration is that recommendation often depends on some categories (or 

concepts) of items. The categorization of items can be specified by a concept hierarchy [HF95, 

SA951. 

Concept hierarchy. A concept hierarchy, denoted H, is a rooted, directed acyclic graph, 

with each leaf node representing an item and a non-leaf node representing a concept. For 

example, assume that an item Flake-Chicken belongs to categories Chicken, Meat, Food, ANY. If 

a customer bought Flake-Chicken, obviously the customer also "bought" Chicken, Meat, Food, 

Any. For non-target items, such generalization allows us to search for the best category that 

captures certain recommendations. We do not consider categories for target items because it does 

not make sense to recommend a concept and a price (such as Appliance for $1 00). 

The key to profit mining is to recommend "right" items and "right" prices. If the price is 

too high, the customer will go away without generating any profit; if the price is too low or if the 

item is not profitable, the profit will not be maximized. To maximize profit, it is important to 

recognize that paying a higher price does not imply that the customer will not pay a lower price; 

rather, it is because no lower price was available at the transaction time. This behaviour is called 

shopping on unavailability. Taking into account this behaviour in rule extraction will bring new 

opportunities for increasing the profit. 

Mining on availability - MOA. If a customer is willing to buy an item under some 

promotion code, we assume that the customer will buy the item under a more favourable 

promotion code. This assumption is called the mining on availability, or simply MOA. To 



incorporate the knowledge of MOA into search, we treat a more favourable promotion code P as 

a "concept" of a less favourable one P'. The effect is that a sale under P' implies a sale under P. 

This can be done by extending the concept hierarchy H a s  follows. 

Definition 5-1 (MOA(H)) For each item I, let (4, I) denote the hierarchy of pairs <I P> induced 

by 4 on the promotion codes P for I, with I being added as the root. MOA(H) is the hierarchy 

obtained by making each leaf node I in H a s  the root of the hierarchy ( + , I).  

A transaction can be generalized by generalizing its sales using MOA(H) as defined 

below. 

Definition 5-2 (Generalized sales) In MOA(H), (i) every parent node is a generalized sale of 

every child node; (ii) every node of the form <I, P> is a generalized sale of a sale of the form <I, 

P, e>; (iii) "is a generalized sale of '  is transitive. A set of generalized sales G={gl, ..., gk} 

matches a set of sales S={sl, ..., s,) if each g, is a generalized sale of some s,. 

(i) generalizes a sale using concepts and favourable promotion codes. (ii) generalizes a 

sale by ignoring the quantity of the sale. A generalized sale has one of the forms <I, P>, or I, or 

C, where P is a promotion code, I is an item, C is a concept. For a target item I, we consider only 

generalized sales of the form <I, P> because only this form represents our recommendation of a 

pair of target item and promotion code. Note that a generalized sale of the form <I, P> contains 

the packing quantity defined by the promotion code P. The quantity of individual sales will be 

factored in the profit of rules. 

Example 5-2 Consider a non-target item Flaked-Chicken, abbreviated as FC, and a target item 

Sunchip. Figure 5-l(a) shows the concept hierarchy H. Suppose that F C  has three promotion 

codes: $3, $3.5, and $3.8. Sunchip has three promotion codes: $3.8, $4.5, and $5. For simplicity, 

we omit the cost and assume that the packing quantity for all promotion codes is 1. Figure 5-1 (b) 

shows MOA(H). <FC, $3.8> and its ancestors are generalized sales of sales <FC, $3.8, Q>. <FC, 



$3> and its ancestors are generalized sales of sales <FC, $3, Q>, or <FC, $3.5, Q>, or <FC, $3.8, 

Q>. Similar generalization exists for target item Sunchip. 

With the definition of MOA(H), a rule has the form {g],  ..., gk}+<I, P>, where gl, ..., g~ 

are generalized non-target sales such that no g, is a generalized sale of other g,, and <I, P> is a 

generalized target sale. Consider a customer represented by a set of non-target sales (sl, ..., s,}. A 

rule {gl, ..., gk}%I, P> matches the customer if {gl, ..., gk} generalizes isl, ..., s,}. 

5.5 Generating Rules 

In profit mining the application goal is to maximize the profit by selling customers the 

recommended products. So we prefer the rules that can capture "customer intention" well. The 

confidence no longer serves this purpose and we need a new measurement here. 

Suppose that a rule r: {gl, ... , gk} +<l; P> matches a given transaction t: {sl, ... , s ,  <I,, PI, 

Q?}, where <I,, P, Q S  is the target sale. If <l, P> generalizes <I,, PI, Q?, that is, I=& and P 4  PI, 

then r has captured the intention o f t .  In this case, we credit the worth of r by the profit of r 

generated on t. To estimate this profit, we regard t as a future customer and determine the 
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quantity Q the customer will buy under the more favourable promotion code P. The generated 

profit of r on t is defined as 

A conservative of estimation of the actual purchase quantity Q for the more favourable 

promotion code P under MOA is to keep the original quantity Q, unchanged, thus, saving money. 

This estimation does not increase the spending at a favourable promotion for a customer. A more 

greedy estimation could associate the increase of spending with the relative favourability of P 

over P, and the uncertainty of customer behaviours. We will consider such estimation in our 

experiments. 

Definition 5-3 (Recommendation profit) Consider a rule r: G J g .  The rule profit of r, denoted 

as ProjJr), is defined as Cg(r, t), where t is a transaction matched by r. The recommendation 

proJit of r, denoted as Prof,(r), is defined as Prof,(r)lN, where N is the number of transactions 

matched by r. 

The recommendation profit is on a per-recommendation basis and factors in both the hit 

rate (i.e., confidence) and the profit of the recommended item. It is possible that a rule of high 

recommendation profit matches only a small number of transactions that have large profit. 

Determining whether such rules should be used is a tricky issue and will be examined later. 

To find rules of minimum worth, the user can specify minimum thresholds on these 

measures. The minimum support could be specified to take advantage of the support-based 

pruning [AS94]. If all target items have non-negative profit, a similar pruning is possible for rule 

profit and the minimum support can be replaced by the minimum rule profit. We follow [SA95, 

HF951 to find association rules, with MOA(H) being the input concept hierarchy. 



In the rest of discussion, let R denotes the set of rules generated as above, plus the default 

rule 0+g, where g is the generalized target sale that maximizes P r o f , ( B g ) .  Adding the 

default rule ensures that any set of non-target sales has at least one matching rule in R. 

5.6 Building the Initial Recommender 

A key for making recommendation is to select a recommendation rule from R for a given 

customer. Our selection criterion is maximizing the recommendation profit of the selected rule, as 

stated below. 

Definition 5-4 (Rule ranking) For any two rules r and r ', we say that r is ranked higher than r' 

(Recommendation profit) if ProJ;.,(r)> Prof,(r '), or 

(Generality) if Prof,(r)= Prof,,(r '), but Supp(r)>Supp(r '), or 

(Simplicity) if Supp(r)=Supp(r'), but Jlhs(r)J<Jlhs(r')l, or 

(Totality of order) if Ilhs(r)J=llhs(r')l, but r is generated before r'. 

Given a set B of non-target sales, a rule r in R is the recommendation rule for B if r matches B 

and has highest possible rank. We also say that recommendation rule r covers B. O 

If a rule is more special and ranked lower than some other rule in R, this rule will never 

be used as a recommendation rule because some general rule of higher rank will cover whatever it 

matches. From now on, we assume all such rules are removed from R. 

With ranking criterion being established, we can turn a set of rules into a recommender 

like we did in previous chapters. 

5.7 Optimizing the Recommender 

So far we have not dealt with the over-fitting rules yet because a high recommendation 

profit does not imply a high support. It does not work to simply remove rules of low support 



because high-profit items typically have a low support. Our approach is to prune rules on the 

basis of increasing the projected profit on future customers. Suppose that we know how to 

estimate the projected profit of a rule r using the given transactions covered by r, denoted by 

Cover(r). We can prune one rule at a time if doing so increases the projected profit of the 

recommender, defined as the sum of the projected profit of all rules in the recommender. 

Similar to what we did in direct marketing, we can build a decision-tree-like structure in 

which each node is a rule, and a rule r is the parent of rule r ' if r is more general than r ' and has 

the highest possible rank. If a rule r is pruned, the parent of r will cover the transactions covered 

by r.  

Consider the current non-leaf node r.  Let Tree-Profir) denote the projected profit of the 

subtree at r .  Let Leaf-Prof(r) denote the projected profit of r as a leaf node. The estimation of 

these profits will be explained shortly. If Leaf-Prof(r)>_Tree-Profir), we prune the subtree at r 

immediately; otherwise, we do nothing at r.  

Now we sketch the idea of estimating the projected profit of a rule r ,  denoted Prof,,(r). 

We estimate Prof,,(r) by X*Y. X is the (estimated) number of "hits" of r, i.e., number of 

acceptances of the recommendation, in a random population of N=ICover(r)j customers that are 

covered by r .  Y is the observed average profit per hit. 

We can compute Xusing the pessimistic estimation borrowed from [Qui93]. Suppose that 

E(r) of N(r) transactions covered by r are not hit. For a given confidence level CF, the upper limit 

of the probability of non-hit in the entire population is estimated by UcF(E(r), N(r)) as computed 

in [Qui93]. Then, X=N*(l-UcF(E(r), N(r))). Y is estimated by 

num of hits in Cover(r) 



Recall that p(r, t) is the generated profit of r on transaction t. Tree-Proflr) is computed as 

the sum of Prof,,(u) over all nodes u in the subtree at r. This sum can be computed incrementally 

in the bottom-up traversal of the tree. Leaf-Proflr) is computed as Prof,,(r) by assuming that r 

covers all the transactions covered by the subtree at r. 

5.8 Evaluation 

In this section we like to validate two claims: The refined recommender is profitable, and 

incorporating profit and MOA into model building is essential for achieving this profitability. 

5.8.1 The Methodology 

We perform 5 runs on each dataset using the 5-fold cross-validation. The average result 

of the 5 runs is reported. We define the gain of a recommender as the ratio of generated profit 

over the recorded profit in the validating transactions: 

Cp(r, t)lC, (the recorded profit in t )  

where p(r, t) is the generated profit of the recommendation rule r on a validating 

transaction t. The higher the gain is, the more profitable is the recommender. 

Let PROF+MOA represent the recommender that makes use of both profit and MOA in 

model construction. We compare PROF+MOA with: 

PROF-MOA: the recommender without MOA. This comparison will reveal the 

effectiveness of MOA. 

CONF-tMOA: the recommender using the binary profit: p(r, t)=l if the 

recommendation is a hit; otherwise, p(r, t)=O. Thus, the model building ignores the 

profit and relies on the hit rate (i.e., confidence) for ranking and pruning rules. This 

comparison will reveal the effectiveness of profit-based model building. 



CONF-MOA: CONF+MOA without MOA. 

kNN: the k-nearest neighbour classifier [YP97]. Given a set of non-target sales, kNN 

selects k transactions (the k nearest neighbours), for some fixed integer k, that are 

most similar to the given non-target sales and recommends the pair of target item and 

promotion code most "voted" by these transactions. We used the kNN that is tailored 

to sparse data, as in [YP97] for classifying text documents, and we applied MOA to 

tell whether a recommendation is a hit. These modifications substantially increase the 

hit rate and profit. 

MPI: the most profitable item approach, which simply recommends the pair of target 

item and promotion code that has generated most profit in past transactions. 

5.8.2 Results on Synthetic Data Sets 

5.8.2.1 Datasets 

The synthetic datasets were generated by the IBM synthetic data generator', but modified 

to have price and cost for each item in a transaction. First, we apply the IBM generator to 

generate a set of transactions, with the number of transactions lOOK and the number of items 

1000, and default settings for other parameters. For simplicity, each item has single cost and 

single packing for all promotion codes. In this case, we use "price" for "promotion code". The 

cost of item I (here I is an integer) is denoted by Cost(l). For item I, we generate the cost 

Cost(I)=clI, where c is the maximum cost of a single item, and m prices PJ=(l+j*6)*Cost(l), j= l ,  

..., m. We use m=4 and &lo%. Thus, the profit of item I at its price P, is j*cPCost(l). Each item 

in a transaction is mapped to a non-target sale by randomly selecting one price from the m prices 

of the item. For simplicity, all sales have unit quantity. 



We consider two distributions for generating the target sale in each transaction. In dataset 

I, we consider two target items with cost of $2 and $10 respectively. Many important decision- 

makings such as direct marketing are in the form of two-target recommendation. We model the 

sales distribution of the two target items using the Zipf law1: The target item of cost $2 occurs 

five times as frequently in the dataset as the target item of cost $10. The price generation and 

selection for target items are similar to those for non-target items. In dataset 11, there are 10 target 

items, numbered from 1 to 10. The cost of target item I is Cost(I)=lO*I. Unlike dataset I, the 

frequency of target items follows the normal distribution2: Most customers buy target items with 

the cost around the mean. In the following we only discuss the results obtained on dataset I. 

Similar results are observed on dataset I1 as well. Figure 5-2(e) show the profit distribution of 

target sales in dataset I. 

5.8.2.2 Results 

Figure 5-2 shows the results on dataset I. Figure 5-2 (a) shows the gain of the six 

recommenders (for kNN, , 7 2 4  gives the best result) with two obvious trends: PROF+MOA 

performs significantly better than other recommenders, and the recommenders with MOA 

perform significantly better than their counterparts without MOA. This clearly demonstrates the 

effectiveness of incorporating profit and MOA into the search of recommenders. PROF+MOA 

achieves 76% gain at minimum support 0.1%. This gain is encouraging because the MOA 

adopted is conservative in profit estimation. 

See htt~://www.nslii-penetics.orp/wli/ziv•’/ for example 
See htt~://www.itl.nist.~ovldiv898/handbooWedalsection3/eda3661 .htm, for example 



Figure 5-2 The results for synthetic dataset I 



Figure 5-3 The results for real life data set 

Interestingly, the curve for PROF-MOA shows that profit-based mining is not effective 

without MOA and the curves for CONF + MOA shows that MOA is not effective either without 

profit-based mining. 



To model that a customer buys and spends more at a more favourable price, for each 

validating transaction, we compare the recommended price P, with the recorded price P, of the 

target item. Recall that Pj=(1+j*6)*Cost(l), j=l, ..., 4, for item I. If q-p=l or q-p=2, that is, the 

recommended price P, is 1 or 2 step lower than the recorded price P,, we assume that the 

customer doubles the purchase quantity in the transaction with the probability of 30%. We denote 

this setting by (x=2, y=30%). If q-p=3 or q-p=4, we assume that the customer triples the purchase 

quantity in the transaction with the probability of 40%. We denote this setting by (x=3, y=40%). 

Figure 5-2 (b) shows the gain of all recommenders using MOA with the purchase quantity 

determined by (x=2, ~ ~ 3 0 % )  and ( ~ 3 ,  y=40%). With this more realistic shopping behaviour, the 

gain for all recommenders increases. PROF+MOA with the setting (x=3, y-40%), denoted 

PROF(x=3, y=40%), achieves the encouraging gain of 2.23 (at minimum support of 0.1%)! 

Figure 5-2 (c), which uses the legend in Figure 5-2 (a), shows the hit rate of 

recommenders. PROF+MOA and CONF+MOA achieve the hit rate of 95%. For minimum 

support of 0.08%, Figure 5-2 (d) shows the hit rate at different profit ranges. "Low", "Medium", 

and "High" represent the low, middle, and high 113 of the maximum profit of a single 

recommendation. The legend from top to bottom corresponds to left to right in the bar chart. For 

example, kNN has nearly 100% hit rate at the "Low" range, but less than 10% at the "High" 

range. CONF+MOA and CONF-MOA also have a similar trend. In contrast, PROF+MOA is 

"profit smart" in maintaining a high hit rate in a high profit range. Though MPI picks up the hit 

rate in a high profit range, the hit rate is still too low compared to PROF+MOA. PROF-MOA is 

unstable for this dataset. 

Figure 5-2 (f), which uses the legend in Figure 5-2 (a), shows the number of rules in 

recommenders. kNN and MPI have no model, so no curve is shown. The number of rules prior to 

the model-pruning phase (not shown here) is typically several hundreds times the final number. 

This shows that the pruning method proposed effectively improves the interpretability of 



recommenders. MOA generally increases the size due to additional rules for alternative prices. 

Not surprisingly, the minimum support has a major impact of the size. The execution time is 

dominated by the step of generating association rules. In our experiments, we adopted the multi- 

level association rule mining whose performance has been studied elsewhere [SA95, HF951. The 

time for constructing the pruning tree from generated association rules and for the bottom-up 

traversal is insignificant. 

We also conducted the experiment on data set 11. This dataset has 40 itedprice pairs for 

recommendation because each target item has 4 prices. Therefore, the random hit rate is 1/40, 

which is more challenging than dataset I. Despite the difference in cost distribution and a lower 

hit rate, the results are consistent with those of dataset I, that is, support the effectiveness of 

profit-based mining and MOA. 

We also modified kNN to recommend the itedprice of the most profit in the k nearest 

neighbours. This is a post-processing approach because the profit is considered only after the k 

nearest neighbours are determined. For dataset I, the gain increases by about 2%, and for dataset 

11, the gain decreases by about 5% (not shown in the figure). Thus, the post-processing does not 

improve much. 

5.8.3 Results on Real Life Data Set 

5.8.3.1 Dataset 

This dataset comes from a retail chain store which sells goods and drugs across Canada. 

The raw data contains the information about items (i.e., price, cost, category, etc.) and the 

information about sales (i.e., transaction id, item, price, quantity, date of shopping, etc.) in several 

tables. Items are organized into a six-le+el category hierarchy. For our experiments, we extracted 

a dataset by specifying the category of target items and treating all items not in the category as 

non-target items. Transactions containing either no target item or no non-target item are 



discarded. If a transaction contains more than one target sale, we use the target sale of most profit. 

We report the result on the dataset with target items specified by the path: 

There are 32 target itedprice pairs, 1898 transactions containing these target items, and 

3477 non-target items. Figure 5-3 (e) shows the profit distribution of target sales, which is quite 

different from those of synthetic datasets. 

5.8.3.2 Results 

The gain in Figure 5-3 (a) and (b) show that PROF+MOA is a clear winner over other 

recommenders. Again, Figure 5-3 (d) (for minimum support of 0.2%) shows that PROF+MOA 

picks up the hit rate quickly in a high profit range. The kNN modified to recommend the most 

profitable itedprice (instead of most voted) only increases the gain by about 1% (not shown in 

the figure). This experiment further confirms the effectiveness of using profit and MOA in 

building recommenders. Figure 5-3 (0 shows that all recommenders for this real life dataset are 

much smaller than those for the synthetic datasets. This is due to the increased data sparsity in the 

case of more non-target items. 

In summary, the experiments on both synthetic and real life datasets confirm our goals set 

at the beginning of the section. 

5.9 Conclusion 

In this chapter we study a profit-based decision-making application called profzt mining. 

The goal of profit mining is to construct a recommender that recommends target items and 

promotion codes on the basis of maximizing the profit of target sales on future customers. We 

address several unique issues in profit mining: pruning specific rules on a profit-sensitive basis 

and dealing with the behaviour of shopping on unavailability. Experiments on a wide range of 



data characteristics show very encouraging results. This economic orientation and actionability 

will contribute to wider and faster deployment of data mining technologies in real life 

applications. 



CHAPTER 6 

LOCALIZATION SITE PREDICTION FOR MEMBRANE 

PROTEINS BY INTEGRATING RULE AND SVM 

CLASSIFICATION 

In this chapter we study a localization prediction problem for membrane proteins in 

biology domain. Identifying a protein's location in a bacterial cell is of primary research interests 

for antibiotic and vaccine drug design. Biologists often have two basic requirements on the 

models built for localization prediction. First, prediction of a target localization site must have a 

high precision in order to be useful to biologists. Achieving such a precision is made harder by 

the fact that target sequences are often much fewer than background sequences. Second, the 

rationale of prediction should be understandable to biologists for taking actions. Meeting all these 

requirements presents a significant challenge. 

Recent research shows that the support vector machine (SVM) models [Vap95] achieve 

high precision in localization prediction. However, the kernel function of a SVM model could 

involve many features and is not easy for users to understand, therefore, does not address the 

second requirement. We address both requirements by integrating the SVM model with a rule- 

based model, where the understandable rules capture "major structures" and the elaborated SVM 

model captures "subtle structures". Importantly, the integrated model preserves the 

precisiodrecall performance of SVM and, at the same time, exposes major structures in a form 

understandable to human users. The purpose of the algorithm proposed in this chapter is not 

improving the precisiodrecall of SVM, but is manifesting the rationale of an SVM classifier 

through partitioning the classification between rules and the SVM classifier, and preserving the 



precision/recall of SVM. Unlike previous applications where we build pure rule based systems, in 

this chapter we build a hybrid decision-making system which consists of two components: rule- 

part and SVM-part. When constructing the rule-part, we still follow the ideas in the general 

framework. A paper based on the algorithm in this chapter was accepted by IEEE TKDE journal 

[ZWOS]. 

6.1 Introduction 

In the last decade, biologists have accumulated a huge amount of protein sequences. Each 

protein is composed of a linear sequence of amino acid residues. Since proteins play critical roles 

in determining the structures and functions of all living organisms [Str95], classifying these 

sequences into corresponding functional families is an important task for biologists. 

One of the most important protein classification problems is to predict the subcellular 

localization of proteins [EB98]. For proper hnctioning, a protein has to be transported to the 

correct intra- or extra-cellular compartments in a soluble form, or attached to a membrane that 

surrounds the cell; hence the subcellular localization of a protein plays a key role with regard to 

its functions. Figure 6-1 shows the 5 primary localization sites for a family of disease-causing 

bacteria, collectively known as Gram-Negative bacteria. The ability to identify the localization 

site from the sequence information alone would allow researchers to quickly prioritise a list of 

proteins for potential drug and vaccine targets [SCW+03]. 



Figure 6-1 The five primary localization sites in a Gram-Negative bacterial cell 

The above problem can be summarized as predicting the localization site for a protein 

from its amino acid sequence with the following requirements. 

High precision. The precision of predicting the target localization site must be "very 

high", in most cases at least 90% or even 95%, while the recall is as high as possible. Whenever a 

protein is predicted to be located at the target site, the biologist wants to be fairly sure that the 

prediction is indeed correct [SCW+03]. Achieving high precision is made harder by the fact that 

the target examples are often much fewer than the examples in the contrasting class. 

Interpretable models. Relevant patterns that summarize what triggers the prediction in a 

concise form are useful for biologists to perform further analysis and devise actions. To address 

the issue in a domain-independent manner, the interpretability refers to the syntax simplicity of 

the model such as the number and size of rules, not anything that requires domain knowledge. 

High dimensionality. With any subsequence of amino acids being potentially a feature, 

it is common to have tens or even hundreds of thousands of features that are necessarily needed 

for high precision. Typically, combinations of features must be used to achieve high precision 

because general rules tend to include sequences in the contrasting class. Searching such 

combinations in a high dimensionality requires pruning a large portion of search space. 
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Meeting all these requirements presents a significant challenge because an inherently 

high dimensional problem requires a complex model that is hard to understand. Equally 

challenging is pruning a large portion of search space without degrading the performance of the 

final model. Finally, too much dependency on user-specified thresholds would introduce 

uncertainty to the robustness of the model, and an approach that minimizes this dependency is 

preferred. 

Recently, SVMs demonstrate superior performance gains and robustness in many 

applications over traditional methods'. However, the SVM model comes with a major defect: It 

involves thousands of features in a single kernel function, making it impossible to see a simple 

relationship between the prediction and features that trigger it. A rule-based model such as ID3 

and C4.5, on the other hand, presents the logic of prediction in the user-friendly rule format, but 

has inferior performance and often involves too many rules on high dimensional problems. To 

address the above requirements, an innovative solution is needed. 

In this chapter, we integrate the SVM model with the rule-based model. The idea is to 

partition the classification so that each model captures the type of structures they are good at. The 

rule-based model captures "major structures" shared by many sequences in a small number of 

rules, and the SVM model captures "subtle structures" representing special case patterns and 

more complex relationships that do not have a concise description. The integrated model, called 

rule-SVM (MVM), places the rules at the top and the SVM at the bottom: The SVM classifier is 

applied only if there is no matching rule. For this reason, we say that the rules steal classification 

from the SVM. 



6.2 Algorithm Overview 

The algorithm must address two key issues. First, the rules used must preserve the 

precision of SVM, which is typically higher than that of a rule-based classifier. Only high quality 

rules can be used. Second, the rules used are not to replace the SVM entirely, but to replace only 

the portion of classification that can be accurately represented by simple rules; the other 

remaining classification is still performed by SVM. 

6.2.1 Background 

A sequence is a string of items chosen from a fixed alphabet. For protein sequences, the 

alphabet consists of the 20 amino acid residues. A labelled sequence is associated with one of two 

classes: "positive" (+I) or "negative" (-1). A labelled sequence is positivetnegative if its class is. 

Given a collection of labelled sequences D, D(train) and D(test) denote the split of the training 

set and the testing set. A classifier is built using D(train) and is evaluated by the precision and 

recall of classification on the testing sequences in D(test). Theprecisdon refers to the percentage 

of positive sequences among those that are classified as positive. The recall refers to the 

percentage of the sequences classified as positive among those that are indeed positive. A 

classifier is over-fitting if it is only accurate on D(train) but not on D(test). To avoid over-fitting, 

a classifier should use structures that are statistically significant, therefore, likely repeating in the 

whole population. 



Figure 6-2 A linear SVM in a two-dimensional space 

Optimal 

Origin 

SVMs are based on the Structural Risk Minimization principle [Vap95] from 

computational learning theory. The idea is finding a hyperplane that separates the positive 

examples from negative ones in the training set while maximizing the total distance of support 

vectors from the hyperplane, where support vectors are the examples (positive and negative) that 

have the shortest distance to the hyperplane. Figure 6-2 illustrates the maximum margin 

separating hyperplane and the support vectors in the two dimensional space. The norm vector 

represents the direction of the separating hyperplane, which is determined through a set of 

support vectors. For an SVM with a linear kernel, a new sequence d is classified by the sign of 

the following decision function: 

- 
where d=<xl, x2 .... x,>, w =<wl,wz .... w,> and w, is the weight for the ith feature. d is 

classified as positive iffO>U, and as negative otherwise. In this case, finding the SVM classifier 

is determining the weight w, and the bias b. We consider SVMs with a linear kernel function in 

this chapter. Our previous studies show that the linear kernel function achieves better or similar 

results on outer membrane proteins [SCW+03]. For the non-linearly separable case, we can first 



transform the problem into a linearly separable problem [Bur981 and apply the method presented 

in this chapter. 

6.2.2 Our Approach 

We first map each sequence into a data point in a multi-dimensional space. Each 

dimension, also called a feature, is defined by afi.equent segment, i.e., some consecutive items 

that occur in at least some minimum fraction of sequences specified by the minimum support. We 

find frequent segments only from positive sequences since we are interested in predicting the 

positive class. Compared to the spectrum kernel [LEN021 that uses features of a fixed length, our 

approach allows features of flexible length. Suppose that we have n features. We map a sequence 

to a 110 vector <xi, x2 ..., x,> in the feature space: If the ith feature occurs in the sequence, xi=l ,  

otherwise, x,=O. 

As in most cases, we consider only rules that predict the positive class (but our work can 

be extended to rules for two classes). A rule is a set of features. A rule matches a sequence (or 

vice versa) if the sequence contains all the features in the rule. Given a set of sequences, the 

support of a rule is the percentage of matched sequences among all the sequences, and the 

con$dence of a rule is the percentage of positive sequences among all matched sequences. A rule 

classifies a matched sequence as the positive class. 

We are interested in a classification model that has the performance of SVM classifiers 

but expresses "major structures" in the form of rules. We propose such a model called RSVM. 

Definition 6-1 Let M be an SVM classifier. Let rl, r2 ... r, be a set of rules. A RSVMclassifier 

has the form: 



R(RSVM) denotes the set of rules rl, r2 ..., r,. R(RSVM) steals the classification from M as 

follows: if a sequence matches some rule ri, classify the sequence as the positive class, otherwise, 

classify the sequence by M. A RSVM is required to satisfy three properties: 

Performance: R(RSVM) has a precision similar to that of M on D(test). 

Signijkance: R(RSVM) steals a large portion of classification from M. In other 

words, R(RSVM) shares a significant portion of recall. 

Interpretability: R(RSVM) contains a small number of simple rules. 

The intention is that the rule portion R(RSVM) captures simple and major structures, 

whereas M captures subtle structures that do not have simple rule representation. The 

performance requirement ensures that R(RSVM) preserves the precision of the SVM (therefore, 

RSVM preserves the precision of the SVM). Under this condition, rules are preferred to the SVM. 

The significance and interpretability requirements ensure that the rules play active roles in 

manifesting a significant portion of classification in a simple and understandable form. Our 

objective is to capture simple structures by rules whenever they exist. 

We find a RSVM classifier in three phases. SVMphase maps training sequences to the 

feature space and builds the SVM classifier M using the standard software. Rule phase generates 

a set of high performance rules preserving the precision of M. Stealing phase determines the 

partition of classification between the rules and M. We explain each phase in details. 

6.3 SVM Phase 

First, we find a set of frequent segments as the feature space. Frequent segments are 

mined from the positive sequences in D(train). To count the support of segments, we 

implemented the generalized suffix tree (GST) [WCM+94]. 



To avoid losing useful features, a small minimum support should be used. We used the 

minimum support of 1 % in all our experiments and it worked fine. SVM is quite robust in dealing 

with the high dimensionality and ignoring insignificant features (by assigning a small weight). In 

addition, our pruning strategies will prune insignificant features before the rule generation. 

Therefore, a small minimum support does not necessarily blow up the rule generation, but helps 

include potentially usehl features. 

Next, we map the sequences in D(train) to data points in the feature space, as described in 

Section 6.2.2, and apply the standard SVM software to produce the SVM classifier M, in 

particular, the weights wi and the bias b. We use the S V M - Z ~ ~ ~ ~ '  implementation of SVMs in 

[Joa98a]. 

6.4 Rule Phase 

This phase generates statistically significant rules that preserve the precision of M. 

Before generating rules, we split D(train) into two disjoint parts randomly: D(bui1d) and 

D(prune). We use D(bui1d) for the rule generation and use D(prune) for making pruning 

decisions. We use the split of 415 vs. 115. 

Since the application goal here is to build a mixed classifier which has at least the 

accuracy given by SVMs, we should only include the rules that have at least the same precision as 

the SVM classifier M. Such requirement needs to be accommodated during rule mining. 

A major challenge for rule generation in this case is the large search space due to tens of 

thousands of features. A limitation with most rule generation algorithms such as [AIS93] and 

[AS941 is the heavy dependency on user-specified thresholds (e.g., minimum support) to prune 

rules. It is often difficult for the user to decide appropriate values for such thresholds, while this 

decision significantly impacts the performance of resulting classifiers. Note that we use minimum 



support in the SVM phase for feature generation, not rule generation, where the suffix tree 

algorithm is very efficient, and generated features are subject to the weighting by the SVM model 

and further pruning by our method. 

Definition 6-2 A rule preserves the SVM M if the precision of the rule is not less than the 

precision of M on the sequences in D(bui1d) that match the rule. 

If a preserving rule is "statistically significant", it will preserve the SVM precision over 

unseen sequences. We will consider a measure of statistical significance shortly. Unlike other 

works such as [AIS93], which require users to specify thresholds in advance, our algorithm 

determins the statistical significance automatically. 

6.4.1 Generating Rules 

The task here is to find all statistically significant, preserving rules. To reduce the 

database scan, we search rules in a level-wise manner starting from shortest rules. For details of 

level-wise rule generation please refer to [AMS+96]. Here we briefly explain how it is used to 

generate significant rules. Let RI be the set of all size-1 rules (f;} over the features for which M 

has a non-zero weight w, Next, we extend every rule V;} in RI by adding one feature$ in RI to 

generate all size-2 statistically significant rules (f;, J } ,  where f#$, denoted RZ. If a rule is not 

statistically significant (see Section 6.4.5 for the definition of rule significance), we will not 

include it in R2 and not extend it further because any extended rule is not statistically significant. 

In general, at the kth iteration, we generate the size-(k+l) statistically significant rules, denoted 

Rk+].using two rules V;, ..., &-I,&} and V;, ..., &-I,fk+I) in Rk. One scan of D(bui1d) would check 

the statistical significance of generated rules. We continue this process until no statistically 

significant rule is generated. Then, we scan D(bui1d) once to filter out all rules that do not 

preserve M. This rule generation can be expensive if the number of features is large. 



Below, we consider several strategies to prune the search space. The first two strategies 

are aimed at pruning features before the rule generation. The last two strategies are aimed at 

pruning rules during the rule generation. 

6.4.2 Pruning Redundant Features 

Our first observation is that if several features occur exactly in the same set of sequences 

in D(build), the rule generation is not able to distinguish them and we can remove all such 

features except one before the rule generation. A special case is that such features have sub- 

strindsuper-string relationships (e.g., "bc", "abc", "bcd", "abcd"). 

Strategy 1: For all features that occur exactly in the same set of sequences in D(build), we keep 

only one of them for the rule generation. 

6.4.3 Pruning Insignificant Features 

If a feature does not have a significant contribution, it can be pruned before the rule 

generation. Consider Equation (6-1). The further the weight wi is from zero, the more influential 

the ith featuref; is on the decision value f(x). Therefore, we can sort the features J; having non- 

zero wi according to the influence lwil into a list F and concentrate on the features in some prefix 

of F. (Other ranking criteria such as information gain can be used instead. But we believe that w, 

is preferred because such weights are determined in the presence of all features.) To determine 

this prefix, for each prefix F', we consider the simplified SVM, denoted M', based on only the 

features in the prefix F'. M' is obtained from M by setting w,=O for all featuresJ; not in F'. Let E' 

be the error of My on D(prune). 

Strategy 2: Select the shortest prefix F' of F with the minimum E '. 



In other words, F' is selected to minimize the error of the simplified SVM on D(prune). 

The use of D(prune) instead of D(bui1d) is to avoid the over-fitting that tends to select the full list 

F. 

Figure 6-3 Feature coefficients for the sample data 

Example 6-1 We use D(train), split into D(bui1d) and D(prune), in Table 6-1 to show Strategy 2. 

Ignore the last column at this moment. For simplicity, we show the features (i.e., fi, fi, ..., fg) 

contained in each sequence instead of actual amino acids. Applying the software SVM-light to 

D(build), we get the SVM classifier M described by the weights w, and the bias b in Figure 6-3, 

sorted by Iw,l Consider the prefix F7=<fi>. All the sequences in D(prune) are predicted as 

negative by the simplified SVM M' because wl+b<O. So E'=2. Similarly, we can compute the 

error for all other prefixes. The shortest prefix with the minimum error is <A, h, &, A>, which has 

1 error on d l l .  The remaining five features, i.e., f j - f g ,  are pruned from D(bui1d) and D(prune). 

The classes predicted by this simplified SVM are listed in the column "Predicted class7', which 

happens to be exactly the same as that of the original M based on all 9 features. 0 



Table 6-1 A sample data set 

ID Examples Class Predicted class 

6.4.4 Pruning Redundant Rules 

Consider two rules rl=Cfi, fi ... fk} and rz=Vl, fi ... fk, fk+]}, where r2 is obtained by 

extending rl  with the featurefk,]. Iffk+] is a sub-string of some feature in rl, e.g., rl=("abcd"} 



and r2={"abcd", "ab"), the two rules will match exactly the same set of sequences, and we can 

keep the shorter rule rl and prune the longer rule r2. Now consider the case that&+] is a super- 

string of some feature in rule rl, sayfi without loss of generality. From the above discussion, we 

only need to consider u2, ... fk,fk+l) instead of r2. We summarize these observations in the next 

strategy. 

Strategy 3: If a fea t~refk ,~  has sub-string or super-string relationship with some feature in rule rl, 

stop extending rl  withfk+l. 

6.4.5 Pruning Insignificant Rules 

Now we consider how to tell if a rule is statistically significant. A statistically significant 

rule should be accurate on the whole population, in addition to D(bui1d). Like what we did in 

previous chapters, we use the pessimistic error estimation [Qui93] to estimate the error rate of rl 

on the whole population. Suppose that a rule ri matches Nl sequences in D(build), among which 

El are classified wrongly. Given a confidence level CF, we take UCF(El,Nl) as the estimated error 

rate of rl on the whole population. 

Suppose that we extend the rule rl=Cfi, fi ... fk) with El/N, to the rule r2=(fi,fi ... fR,fk+]) 

with E2/N2. Note that N2f11. If UCF(EI,Nl)< UCF(E2,N2), we regard the rule r2 as over-fitting, i.e., 

statistically insignificant, because it does not decrease the error rate on the whole population. 

Once r2 is over-fitting, so is any rule obtained by extending r2. 

Strategy 4: If r2 is an extension of rl such that UCF(EbNl)< UCF(E2,N2), stop generating r2 and any 

extension of r2 (because r2 is statistically insignificant). 

Example 6-2 Let CF be 25%. Suppose that the featuresfi, h, h, fi represent frequent segments 

' 6  9, 6' 9 ,  LC 3, 'C a , b , c , ab", respectively. The rule rl=Cfi} matches 6 examples in D(bui1d) in Table 6-1, 

with 2 being negative. So Nl =6, El =2, and the upper limit UCF(E1,Nl) is estimated to be 0.56. We 

extend rl  into r2=V;,f2). Note thatfi has no sub-string or super-string relationship withfi. r2 



matches 3 examples in D(build), all being positive. So N2=3, E2=0, and UcF(E2,N2) is estimated 

to be 0.3 7. Since 0.3 7 < 0.56, according to Strategy 4, rule r2 is kept. Now consider extending r2 

to r3=(fi,h,fj). r3 matches 2 examples in D(build), both being positive. So N3=2, E3=0, and 

UCF(E3, N3) is estimated to be 0.50. Since 0.50 > 0.3 7, rule r3 is dropped and no further rule is 

extended from r3. 

6.5 Stealing Phase 

Let R={ul, r2 ... rk} be the set of statistically significant, preserving rules found in the rule 

phase. Let us assume that the rules rl, r2 ... rk are sorted by the confidence on D(build), and in 

case of tie, sorted by support. Now we can turn the rule list into a classifier: To classify a 

sequence, the first matching rule in the list, if there is one, is applied because of higher 

confidence. Under this preference, rules towards the end of the list tend to classify fewer 

examples, therefore, have less contribution. To reduce the classifier size, we only select a prefix 

of R for building the RSVM classifier. 

Consider a prefix R' of R. Let E(R 7 be the error of R' on the matching sequences in 

D(prune), and let E(M R 7 be the error of M on such sequences. E(MR ')-E(R ') measures the 

(possibly negative) performance gain of replacing M with R ' over such sequences. To ensure that 

as many sequences as possible are classified by rules, we select the longest prefix R '  that 

maximizes E(M;R')-E(R 7. Note that the selected prefix has a non-negative performance gain 

E(M,R 7-E(R 7 because the empty prefix gives the zero performance gain. We then remove all the 

rules in the selected R' that classify no sequence in D(prune). Finally, we put R' on top of the 

SVM to construct the RSVM classifier: 

Example 6-3 Continue on Example 6-2. Suppose that two rules, rl=Cfi, f j }  and r2=u2, f j } ,  are 

found in the rule phase. They have the same confidence in D(build), but the first rule has higher 



support. So, R in the sorted order is (rl,r2). Figure 6-4 shows the classification of the examples in 

D(prune) by each prefix R'. The prefix R1=(rl) is selected because it is the longest prefix that 

maximizes E(M, R 7-E(R 7 .  The RSVM classifier is: 

r1, M. 

On D(prune), rl  correctly classifies two positive examples (i.e., dl1 and d12) and 

classifies no negative example as positive. In comparison, M incorrectly classifies one of the two 

positive examples (i.e., d l l )  as negative. Therefore, the use of rl has actually improved the 

performance of the SVM classifier on D(prune). In terms of interpretability, rl presents a more 

understandable structure of positive sequences than the SVM kernel function that involves 9 

features. 

Figure 6-4 Selecting the prefix 

Prefix R' 

Examples classified in D(prune) 

EfR ') 

E f M 3  ') 

E(M,R ')-E(R ') 

The empty prefix 

none 

0 

0 

0 

I 

dll, d l2  dl 1, dl 2, dl 3, dl 5 

6.6 Experiments 

The purpose of experiments is to evaluate the properties of RSVM classifiers and the 

effectiveness of various pruning strategies. We use the ~ ~ ~ - 1 i ~ h t '  implementation [Joa98a] of 

SVMs, and compare the interpretability of RSVMs against the C4.5 classifie? [Qui93], which is 

widely considered as accurate and understandable classifiers. For fair comparison, we choose the 



rule option C4.5 classifier that has fewer rules than the tree option. We use default settings in 

both systems and conduct experiments on a PC with 2.4G CPU and 1 GB main memory. 

The evaluation was conducted using two groups of membrane: Gram-Negative bacteria' 

and Gram-Positive bacteria2. All proteins included in these data sets have been experimentally 

verified for their localization sites. Each group has several primary localization sites. One data set 

can be created by taking each primary localization site as the positive class and taking the 

remaining sites as the negative class. We chose the 5 data sets on which SVMs have at least 90% 

precision and 30% recall. The feature set was mined with the minimum support of 1% or 2 

positive sequences, whichever is larger, and features of length less than 3 were discarded because 

they tended to occur in every sequence. Table 6-2 describes the data sets based on the average of 

the 5-fold cross validation. For example, the data set named "Neg-Inner" is from Gram-Negative 

bacteria and has "Inner membrane" as the positive class. 

For comparison purpose, we considered several competing classifiers: SVM, Rule-alone, 

C4.5-prune and C4.5-all. SVM is the standard SVM classifier. Rule-alone is the rule list produced 

in the rule phase but cut off by minimizing the error on D(prune), with the negative class being 

the default class. Rule-alone serves the baseline for our rules without integration with SVMs. 

C4.5-all is the standard C4.5 classifier (of the rule option). C4.5-prune is the standard C4.5 

classifier built using the feature set produced after pruning redundant and insignificant features as 

described in Section 6.4. We also followed [Joa98b] and built the C4.5 classifier using the topp% 

features (ranked by information gain), where p={ l ,  5, 10, 20, 50). The results are either much 

worse or very close to C4.5-prune, so are not included here. 

' httu://www.usort.orddatasetldatasetvl .htrnl, Version 1 .I. This is the version available at the time of experiments 
' httu://www.usort.orddataset/, Version 2.0. 



Table 6-2 Data statistics 

Data sets I # Seq. I # Pos. seq. I Seq. length I # Features I # ~eaturesper seq. 

Neg-Inner / 1572 1 292- 1410 1 34828 13817 

Neg-Outer 1572 377 559 42079 3507 

Neg-Extra 1572 191 469 1 15786 7904 

Pos-Cellwall 576 61 1059 87727 9449 

Pos-Extra 576 183 45 1 67381 3096 

6.6.1 Performance and Significance 

Table 6-3 shows the precisiodrecall (in percentage) on D(test). RSVM preserves the 

precision and recall of SVM quite well. This is because the rule portion R(RSVM) has a precision 

comparable to the precision of SVM. Consequently, RSVM outperforms the C4.5 classifiers by a 

similar margin as SVM does. Rule-alone has a (slightly) higher precision than RSVM, i.e., 3%, 

because it was selected to minimize the error on the sequences it matches. However, this slight 

advantage is at the heavy expense of a much lower recall, i.e., 18% compared to 69% of RSVM. 

RSVM has at least as much recall as the SVM. This is a consequence of using positive rules only 

in RSVM: If a sequence is predicted as positive by the SVM, it will be predicted as positive by 

either R(RSVM) or the (same) SVM in the RSVM. Typically, the recall of RSVM is several 

percentage points higher than that of the SVM because additional structures were captured by 

rules. 

The significance of the RSVM is measured by the portion of classification performed by 

rules, i.e., the recall of R(RSVM). This is shown under the R(RSVM) column in Table 6-3. The 

larger this recall is, the more classification is stolen by the rules and the more effective the rules 

are. Note that these rules are constrained to preserve the precision of SVM, so simply including 

more rules in R(RSVM) does not help. On average, the recall of R(RSVM) is 30%, compared to 

99 



the 69% recall of the RSVM. This means that about 43% of the classification (of the positive 

class) done by the RSVM was performed by rules, therefore, was manifested to the human user. 

As we will show shortly, these rules are quite compact and are understandable to the human user. 

Data sets 

Neg-Inner 

Neg-Outer 

Neg-Extra 

Pos-Cellwall 

Pos-Extra 

Average 

Table 6-3 Precision/Recall (%) on D(test) 

Compared to the C4.5 classifiers, R(RSVM) is more than 36% more accurate in 

precision. This huge gain makes the rules of the RSVM more useful to the biologist, who wants 

to be damn sure that any prediction about the target localization is correct. Though the C4.5 

classifiers have a larger recall, their quality is much less trusted, because of the significantly 

lower precision (i.e., 36% lower). Compared to Rule-alone, R(RSVM) is preferred due to the 

much higher recall (i.e., 12% higher) with only slightly lower precision (i.e., 2% lower). 

We also compare with publicly available software tools TMHMM' and ~hobius' that are 

primarily used to identify the presence and location of transmembrane helices in a protein. The 



presence of transmembrane helices indicates inner membrane proteins (also called the 

cytoplasmic membrane), and 3 or more transmembrane helices is a more reliable indication 

[GSW+03]. Based on this property, TMHMM and Phobius produce PrecisionIRecall of 98/83 and 

99/82 on the testing data of our 5-fold cross validation. While the precision is similar to that of 

RSVM and SVM, the recall is 3% to 6% lower. If we require only 2 or more transmembrane 

helices, these numbers are 94/91 and 95/88, and if we require only 1 or more transmembrane 

helices, these numbers are 66/96 and 87/96. Note that this method cannot predict the other 

localization sites where proteins do not necessarily contain transmembrane helices. 

6.6.2 Interpretability 

Table 6-4 compares xlylz in R(RSVM), Rule-alone and C4.5-prune, where x is the 

number of rules, y is the average rule length, and z is the average feature length (C4.5-all has 

more rules than C4.5-prune, so is not included). The column "# Non-zero weight features in 

SVM" contains the number (and percentage) of non-zero weight features in the kernel function of 

the SVM classifier. R(RSVM) and Rule-alone have a rather small number of rules, i.e., 2 1 and 14 

respectively, with short rules (i.e., average of 2.2 features per rule) and simple features (i.e., 

average of 5.5 amino acids per feature). Rule-alone has fewer rules than R(RSVM), but it comes 

with a much lower recall (see the above discussion). C4.5-prune uses much more rules, i.e., 50, 

and the features in these rules are much longer, i.e., the average of 25.8 amino acids per feature, 

than those in R(RSVM) and Rule-alone. These features were chosen by C4.5 because of high 

confidence in D(train), therefore, high information gain. But since these features have very low 

support, they did not perform well on D(test), which explains why C4.5-prune has a low precision 

(see Table 6-3). Our rule generation prunes rules containing such features due to statistical 

insignificance. The SVM classifier has tens of thousands of features in its kernel function even 

after removing all zero weight features. A complexity of this scale would bury any useful and 

simple structures that the biologist could use for further analysis and actions. 



Table 6-4 Comparison on interpretability 

Data sets R(RSVM) Rule-alone C4.5-prune # weight features in ! I I S Y M  

Neg-Inner I 31 12.0 14.0 1 22 12.0 14.0 1 61 I 2.1 1 1 15176 (43.57%) I 
Neg-Outer 15 I 2.6 I 12 I 2.7 1 63 1 2.1 1 39895 (94.80%) 

Neg-Extra 12 1 2.1 / 4.1 11 I 2.1 14.1 40 I 2.2 I 17902 (15.46%) 

POS- 13/2.0/4.1 812.014.1 15 1 2 . 2  1 13345(15.21%) 

Pos-Extra 33 1 2.1 1 4.0 17 1 2.3 14.0 72 1 2.1 1 26591 (39.46%) 

Average 21 12.2 / 5.4 14 12.2 / 5.5 50 / 2.1 / 22581 (41.7%) 

6.6.3 Pruning  Effectiveness 

As shown in Table 6-2, there are tens and even hundreds of thousands of features, and 

each sequence contains more than 3000 features. Mining rules from such high dimensional data is 

extremely expensive and must rely on strong pruning strategies to reduce the search space. The 

column "Features kept" in Table 6-5 shows the percentages of features remaining at different 

stages, with respect to the initial number of features. The first number is the percentage of 

features after pruning redundant features (Strategy 1). The second number is the percentage of 

features after pruning those with zero weight in the SVM model. The third number is the 

percentage of features after pruning insignificant features (Strategy 2). Roughly speaking, almost 

213 of features are redundant, 113 of non-redundant features have zero weight, and 113 of the 

remaining non-zero weight features are further pruned due to insignificance. As a result, the rules 

of R(RSVM) are searched using no more than 1 1% of the features that are used for training SVM. 

The column "Features per seq." in Table 6-5 shows that, by feature pruning (Strategy 1 and 2), 

the average number of features contained in a sequence is reduced to 2.1% of the number of 



features in a sequence before the pruning. This significantly reduces the data size, the search 

space, and the rules generated. 

Table 6-5 Effectiveness of feature pruning 

Features kept (%) Features per seq. (%) 

I Average 1 31.3 1 15.5 1 10.5 I 2.0 

Neg-Extra 

Pos-Cellwall 

Pos-Extra 

With only 10% (of the features in Table 6-2) remaining after the feature pruning, the 

number of features ranges from lo3 to lo4. Without any rule pruning, the number of size-k rules is 

to 1 0 ~ * ~ .  The maximum k for the rules in our RSVMs is 3. This amounts to the search space 

of lo9 to 1 012 rules if no rule pruning is done. 

Figure 6-5 compares the average CPU time (seconds) for building RSVM and C4.5 

classifiers. The time for generating the feature set is the same for all algorithms and is not 

included. For .RSVM, the time includes building the SVM model, rule generation and stealing 

phase. More than 70% of the time was spent on the rule phase. For this reason, the time for Rule- 

alone (not shown) is similar to the time for RSVM. For the C4.5 classifiers, the time includes 

building the decision tree and rule pruning. RSVM is more efficient than C4.5-prune. C4.5-all is 

too slow due to the high dimensionality of data. 

28.7 16.3 14.1 

17.0 / 10.6 17.0 

30.6 I 19.3 113.0 

1.5 

2 .O 

2.1 



Table 6-6 presents the number of rules generated at different phases in our algorithm. 

Compared to the above search space without rule pruning, the number of rules generated (denoted 

"#Significantyy for statistically significant rules) is significantly reduced. Among the rules 

generated, about 1 % to 10% are preserving rules (denoted "#Preservingy'), and only about 0.0 1 % 

is included in the final RSVM (denoted "#Final3'). 

Figure 6-5 compares the average CPU time (seconds) for building RSVM and C4.5 

classifiers. The time for generating the feature set is the same for all algorithms and is not 

included. For RSVM, the time includes building the SVM model, rule generation and stealing 

phase. More than 70% of the time was spent on the rule phase. For this reason, the time for Rule- 

alone (not shown) is similar to the time for RSVM. For the C4.5 classifiers, the time includes 

building the decision tree and rule pruning. RSVM is more efficient than C4.5-prune. C4.5-all is 

too slow due to the high dimensionality of data. 

Table 6-6 Effectiveness of rule pruning 

I Data sets I #Significant 1 #Preserving I #Final 

I Neg-Extra 1 1.1*106 1 l.2*lo4 I l 2  

Neg-Inner 

Neg-Outer 

6.0* 1 o6 

8.7*106 

Pos-Cellwall 

Pos-Extra 

5.6* lo4 

1.9*105 

5.1 * 1 o6 

3 1 

15 

3.4*106 

8.6* 1 o4 13 

2.5* 1 o4 3 3 



Figure 6-5 CPU time (in seconds) for building classifiers 

Time RSVM H C4.S-prune C4.5-all 

Neg-Inner Neg-Outer Neg-Extra Pos-Cellwall Pos-Extra 

6.7 Related Work 

Many algorithms have been proposed on membrane protein localization problem, 

including neural network [DFU+98, JMF+Ol, RH981, Markov chain model [Yua99], hidden 

Markov model [MFKC02], and SVM [HSOl, Ver021. In all these works, the prediction is a black 

box because there was no attempt to make the prediction understandable. On the other hand, 

traditional rule-based classifiers, such as C4.5 and ID3, are relatively easy to understand but they 

perform poorly on high dimensional problems such as the one considered here, compared to the 

SVM model. Many algorithms were proposed that try to combine the strengths of these two 

approaches. 

Extracting understandable rules has been intensively studied for neural network 

classification [ADT95]. The decomposition method focuses on extracting rules at the level of 

individual components of neural networks, such as clustering the hidden unit activation, searching 

for weighted links that caused hidden or output units to be active. The leaming-based method 

extracts rules by using the neural network to generate examples for a rule-based method. The 

situation is similar in the case of SVMs. All these works attempt to replace the neural network or 

SVM with the rules extracted, which tends to produce too many rules and unmatched 



performance. We emphasize preserving the performance of SVM, by employing only high quality 

rules and replacing only part of the SVM classification. 

The hybrid decision tree [ZC02] builds an upper portion of the standard decision tree and 

embeds neural networks into some leaves to accomplish the remaining prediction. The 

classification at a leaf node represented by a neural network is still a black box. The perceptron 

decision tree generalizes the standard one-attribute split at each internal node by a general split 

represented by a hyperplane. See [BCWOO] for examples. Each conjunct in the body of a rule is a 

multivariate linear inequality. Though perceptron decision trees have demonstrated good results 

for some real world problems, they tend to over-fit the data by involving many variables in a 

split, due to the increased flexibility. Rules generated by such splits are less interpretable. 

Recently, association rules have been used for classification for high dimensional 

transactional data [AMS97, LHM98, WZHOO] and have shown promising results on outer 

membrane localization prediction [SCW+03]. However, this approach has several limitations: It 

depends on a carefully chosen minimum support; the performance is not as good as SVM; and the 

number of rules used is large, therefore, not easily understandable. 

6.8 Conclusion 

Motivated by applications in antibiotic and vaccine drug design, we examine the 

subcellular protein localization problem for disease-causing bacteria in this chapter. This problem 

has several demanding and conflicting requirements: high precision of prediction, interpretability 

of models, and high dimensionality of data. Our approach is integrating the precision-driven 

SVM model with the interpretable rule-based model, with each doing what they are best at. The 

SVM model focuses on classification involving subtle structures, whereas the rule-based model 

focuses on main structures that can be represented by concise rules. The integrated model, called 

RSVM, preserves the performance of the SVM model and exposes simple structures in 



understandable rules. The experiments on real subcellular protein localization tasks have 

demonstrated the effectiveness of RSVMs. 



CHAPTER 7 

DISCOVERING CATALOG MATCHINGS ON THE WEB 

In this chapter we study an interesting decision-making problem which establishes the 

mapping between two different catalogs. Unlike previous applications where we mainly discuss 

how to build decision-making systems from a given data set, in this chapter we focus on how to 

generate the appropriate data set (from given data) so we can apply rule-based decision-making 

algorithms on it. 

The most successful paradigm for making the mass of information on the Internet 

comprehensible is by organizing them into catalogs, i.e., categories (or topics) of hierarchical 

specificity. Due to the distributed nature, there are explosive numbers of catalogs even for 

applications in the same domain. It makes the information exchange and comparison difficult and 

slows down the business negotiation. In this chapter, we address this problem by learning the 

concept of a given category in one catalog in terms of the categories in the other catalog. Such 

characterization tells how the documents in a given category in one catalog are categorized in 

another catalog, even without knowing what these documents are. We express the learning results 

in interpretable rules so they are easy to understand. We evaluate this approach using real world 

data sets and the results are promising. 

7.1 Introduction 

An essential requirement for information interchange in electronic markets is the 

following catalog matching: given two distributed catalogs (HI, DB,) and (HZ, DBZ) in the same 

domain, where DB, is a collection of text documents categorized according to the categories in H,, 

characterize a given category in HI in terms of the categories in H2. The characterization tells 



whenever a document falls into certain categories in Hz, it falls into the given category in HI. The 

two catalogs are distributed in that they were created independently, and are in the same domain 

in that they addressed a similar applicatidn. The following example illustrates some of the points. 

Figure 7-1 Job catalogs 

Jobs in other area 
k b s  in US 

Example 7-1 Consider two job catalogs (HI, DB,) and (H2, DB2), one for North America and one 

for other regions, shown in Figure 7-1. Suppose that a catalog matching for the "Assogrof" 

category in HI could be 

Sen - lecturer, Australia + Assoqrof 

where "Sen-lecturer" and "Australia" are categories from Hz. This matching says that a job 

opening under both the "Sen-lecturer" and "Australia" categories in H2 would be under the 

"Assoqrof' category in HI. Knowing this matching, an employer in North America may 

consider offering an associate professor position to a senior lecturer applicant from Australia. 

The major challenge for catalog matching comes from the distributed nature of sources 

where the catalogs were created independently and catalog matching is an after-thought. They do 

not necessarily share same categories or documents (collection diversity); different terms may be 

used for semantically similar categories, and the same term may be used for semantically 

dissimilar categories (naming diversity); pair wise or structural correspondence rarely exists 

(structural diversity). 

Our approach. A key issue is how to model the notion of "same domain" under the "distributed 

assumption". A recent study by He and Chang [HC03] suggests that sources of the same domain 



tend to have converging vocabularies. Though their study is for schema matching in the context 

of "deep web", it is applicable to catalog matching because the distributed nature remains the 

same. This observation leads us to hypothesize the following: 

Hypothesis 7-1 For two catalogs (HI, DB]) and (H2, DB2) in the same domain, there exists a 

common underlying document distribution from which DBI and DBz are drawn. 0 

The essence of this hypothesis is that a model MA learned about a category A from (HI, 

DBI) could be applied to the documents in (Hz, DB2) to determine their A or 4 category. 

Therefore, for each document <C2, D2> in (Hz, DB2), where D2 contains terms and C2 is the set of 

Hz-categories for D2, we create a new example <A, C2u D2 > or <-,A, C2u D2 >, stating that a 

document <C2, D2> will have the A or category in (HI, DB]). By ignoring D2, we have a set of 

examples <A, C2> or <-,A, C2> that tell what Hz-categories co-occur with the A or -4 category. 

Then we can extract and refine rules of the form xl, . . ., xk+A for expressing the matching for A, 

where x,'s are categories or absence of categories in Hz. 

This approach has several major differences from existing works. 

The two sources do not have to share common documents, or similar structures and 

category names. In contrast, [ChaOO, MWJ99, NMOO] uses a variety of heuristics, 

such as common tokens, to match ontology elements, and [DMDH02, ITHOI, LGOl] 

assumes that a category is always mapped to a single (i.e., the most similar) category 

in the other catalog, i.e., pair wise correspondence. For example, these approaches 

cannot find the matching in Example 7-1. 

It expresses the matching at the category level, not the term level. Rules of the form 

xl, ..., xk+A tell the correspondence between the categories x,'s in H2 and the 

category A in HI for all documents. Such matching is at the summary level, therefore, 

easier to understand. In contrast, catalog integration [AS0 1, OF0 1, SMO 1, ZL041 and 



cross-training [SCG03] perform the matching "one document at a time" because the 

target category A of a document in (H,, DB,) depends on both terms and categories of 

the document. 

It deals with the language, search, and accuracy of matching by principled machine 

learning techniques. A set of rules X I ,  .. ., xk+A for A expresses general Boolean 

relationships between xi's and A and can be searched as classification rules for A. 

Machine learning was used in [DMDH02], but only pair wise correspondence was 

considered where the language and search of matching were not a major issue. 

Catalog matching is semantically different from schema matching [RBOl]. In 

[DLD+04, HCH041, complex semantic correspondences between schemas are 

studied. For example, the attribute "author" in one database could correspond to the 

attribute group {'tfirst name", "last name") in another database. Quite differently, 

catalog matching is about the correspondence of the topics of documents categorized: 

"Sen-lecturer", "Azcstralia"+ "Assoqroj" represents the documents summarized in 

the bi2ssoqroj" category are summarized in both "Sen-lecturer" and "Australia" 

categories in another source. Schema information often is available for schema 

matching, including data type, relationships, constraints, schema structure [RBOl]. 

However, such information is not available for catalog matching. 

7.2 Problem Definition 

We first define some concepts. A document is a bag of terms. A catalog is a collection of 

documents DB categorized into categories of a hierarchical structure. A child category represents 

a specialization (e.g., Sedan) of a parent category (e.g., Car). The hierarchical categorization 

implies that if a document belongs to a category, it also belongs to all ancestor categories. In this 

chapter, a category starts with the upper case and a term starts with the lower case. 



Example 7-2 (Running example) Figure 7-2 and Table 7-1 show two catalogs (HI,  DB,) and (Hz, 

DB2). Document DII contains the terms corn, farm, rice and belongs to the category Grain, 

therefore, Plant. Document DZ2 belongs to the categories Vegetable and Dairy. 

Figure 7-2 Example hierarchy 

G-ain Bmn Cattle Poultq C C R ~  Vegetable n;lirq. k w l  

Table 7-1 Example data set 

Terms Categories 

Dl,: corn, farm, rice 

Dl,: farm, pea, soybean Clz: Bean, Plant 

D13: bee$ milk, rice CI3: Cattle, Grain, Animal, Plant 

Dl,: chicken, egg I C l i  Poultry, Animal 

7.2.1 Matching Rules 

Consider two catalogs (HI,  DB,) and (Hz, DB2). A matching rule for a category A in HI 

has the form, 

(HA DBz) 

D21: farm, rice, wheat 

Dzz: milk, pea, potato 

D23: farm, milk 

D2,: egg, hatchery 

CZ1: Cereal, Crop 

C2Z: Vegetable, Dairy, Crop, Livestock 

CZ3: Dairy, Livestock 

Cz,: Fowl, Livestock 



where each conjunct x, is a category, or term, or absence of such, from (HZ, DB2). We read this 

matching rule as: If a document fits the description xl, ..., xk in (H2, DB2), it would belong to the 

category A in (HI, DBJ. A single matching rule expresses A as A (intersection) and 

(differentiation) of the sets of documents containing certain terms or belonging to certain 

categories in HZ. A set of matching rules for A expresses A as v (union) of several such 

descriptions. Thus, matching rules are substantial generalization of the pair wise correspondence 

in [DMDH02]. 

For hierarchical catalogs, categories are not independent of each other and there is a 

further requirement on matching rules. If a category x, is an ancestor of a category x,, xi and x, 

cannot co-occur in a matching rule, neither can ~ x ,  and -,xj However, x, and -aJ can co-occur in 

a matching rule. Matching rules extracted by C4.5 [Qui93] automatically ensure this property. 

We are primarily interested in matching rules in which x,'s are either categories or 

absence of categories, but not terms. Such rules are more explicit and understandable to the 

human user because they express the matching by the categories that summarize the documents, 

not the detailed terms in the documents. However, there are cases where terms are necessary for 

accurate matching. For example, the "Camry" category in one catalog cannot be accurately 

described by any combination of the categories "Sedan", "SUV", and "TruckIMini Van" in 

another catalog. Since "Camry" corresponds to a subclass of "Sedan" that has the medium size, 

terms such as "medsize" in some documents under "Sedan" would help: "Sedan, 

medsize+Camry". However, we hypothesize that most catalog matching can be captured at the 

category level or nearly category level, as stated below. 

Hypothesis 7-2 For two catalogs in the same domain, only matching rules involving no or few 

terms are needed. 



Hypothesis 7-2 does not mean that terms can be ignored in the search of catalog 

matching. To the contrary, our approach heavily depends on documents' terms to learn a model 

for determining the external categories in the other catalog. However, once such categories are 

determined, Hypothesis 7-2 allows us to search for matching rules by ignoring most terms. We 

will experimentally study the extent to which Hypothesis 7-1 and Hypothesis 7-2 hold. 

7.2.2 Catalog Matching 

Motivated by Hypothesis 7-2, we define the problem of catalog matching as follows. 

Consider two catalogs (HI, DB]) and (H2, DB2). The catalog matching for a category A in HI is a 

set of matching rules for A learnt from a data set that contains no more than a user-specified o 

percentage of the terms in DB2. o is called term-allowance. We say that a catalog matching is at 

the category level if the term-allowance is zero, i.e., the matching rules involve only categories. 

A catalog matching serves two purposes. The first purpose is to predict the A or 4 

category for documents whose categories in H2 are known, therefore, to integrate the documents 

in (H2, DB2) into (HI, DBI). If the catalog matching is at the category level, this prediction or 

integration depends on only the categories, not the content, of the documents. The second purpose 

is to characterize the A category in terms of the categories in HZ, in order to understand the 

relationships between the categories in the two catalogs. 

7.3 Algorithm Overview 

To find the catalog matching for A in HI, our approach works as follows. From (HI, DBI) 

in which each document belongs to either A or 4 ,  we learn a model, called the head-generating 

model, to determine A or 4 for each document <Cz, D2> in (H2, DB2), where C2 is the H2- 

categories of document D2. Hypothesis 7-1 implies that such cross-source application is valid. 

This would create examples of the form <A, C2uD2> or <TA, C2uD2>, stating that D2 



categorized as C2 in (Hz, DB2) would be categorized as A or 4 in (HI, DBI). This set of 

examples, called the matching set for A, provides a training data for learning matching rules xl, 

..., xk+A , with the descriptors xi coming from C2uD2. To satisfy the term-allowance constraint, 

we remove all but the top o percentage of terms from the matching set. A standard feature 

selection can be used for this purpose. 

Alternatively, the matching set for A can be obtained by generating the Hz-categories for 

each document <A, Dl> or < 4 ,  Dl> in (HI, DBI). In particular, we learn a model for each 

category B in Hz using the training set (Hz, DB2). The collection of these models is called the 

body-generating model. We then apply these models to each document <A, Dl> or <-A, Dl> in 

(HI, DBI) to determine their Hz-categories, say C2. The matching set consists of the documents 

<A, C2uDI> or <4, C2uDl>. The terms in Dl but not in DBz are removed because the 

descriptors in a matching rule come from (Hz, DB2). 

Figure 7-3 summarizes the above approach in four steps. Step 1 learns either a head- 

generating model or a body-generating model. Step 4 extracts a catalog matching by learning a 

rule-based classifier from the matching set. Both steps can be done by applying standard learning 

algorithm. Step 3 removes all but the top opercentage of terms and is done by a standard feature 

selection. Below, we focus on the key step of generating the matching set, which involves Step 1 

and Step 2. 

We first consider flat HI and Hz to present the main ideas, and then extend them to 

hierarchical HI and Hz where the impact of hierarchical categories is examined. In each case, we 

consider head-generating model and body-generating model for generating the matching set. 



Figure 7-3 The overview of catalog mapping algorithm 

Input: (HI, DB,) and (HZ, DB2), the target category A in HI, and term-allowance a 

Output: the catalog matching for A 

Algorithm 

1. Learn the (head- or body-) generating model; 

2. Apply the generating model to generate the matching set for A; 

3. Remove all but the top apercentage of terms from the matching set; 

4. Learn the catalog matching for A using the matching set; 

7.4 Generating Matching Rules from Flat Catalogs 

This section assumes that the hierarchies HI and H2 are flat. We consider two alternative 

implementations. 

7.4.1 Flat-Head 

In the first algorithm, called Flat-Head, Step 1 learns the head-generating model. The 

training set contains a positive example for each document in (HI,  DB,) that belongs to A, and a 

negative example for each remaining document in (Hj, DBJ). Let MA denote this model. Step 2 

applies MA to the documents in (Hz, DB2) to generate the A or -4 category for them. The example 

below explains. 



Example 7-3 Consider (HI, DB,) and (Hz, DB2) in Table 7-1, but ignore the hierarchies above the 

Table 7-2 The matching set 

table. Suppose that we want to find the catalog matching for Grain in H1. To learn the head- 

Class 

Grain 

 grain 

7Grain 

7Grain 

generating model MGraln, the positive examples are Dl,, Dlj because they belong to Grain, and the 

negative examples are D12, Dl, because they belong to   grain. Suppose that MGraln has only one 

rule: rice3Grain. Note that this is a regular classification rule, not a matching rule. Finding 

classification rules from a given training set is a standard classification problem. 

Next, we apply MG,, to the documents in (Hz, DBz) to generate the matching set for 

Grain: If a document contains rice, label it as Grain, otherwise, as --,Grain. This produces the 

matching set: 

Attributes 

C2, denotes the categories for D2, as given in Table 7-1. Suppose that the terms farm, 

hatchery, potato, and wheat are pruned for satisfaction of the term-allowance constraint. Table 

7-2 shows the matching set in the form of a relational table with Grain and 7Grain being as the 

class labels and the remaining terms and categories from (H7, DBz) being the features. Now, a 

egg 

0 

0 

0 

1 

milk 

0 

1 

1 

0 

pea 

0 

1 

0 

0 

Cereal 

1 

0 

0 

0 

Fowl 

0 

0 

0 

1 

rice 

1 

0 

0 

0 

Vegetable 

0 

1 

0 

0 

Crop 

1 

1 

0 

0 

Dairy 

0 

1 

1 

0 

Livestock 

0 

1 

1 

1 



standard rule-based learner can be applied to extract the matching rules for Grain from this 

matching set. 

7.4.2 Flat-Body 

In the second algorithm, called Flat-Body, we produce the matching set by generating the 

H2-categories for the documents in (HI, DBI). First, we learn a body-generating model from (Hz, 

DB2), consisting of one model Me for each Hz-category B. The training set for MB contains the 

documents belonging to B as positive examples and the documents belonging to TB as negative 

examples. Then, for each document <A, Dl> or <-,A, Dl> in (HI, DB]), we generate its Hz- 

categories by applying every MB to Dl. Let C2 be the set of Hz-categories B which MB categorizes 

Dl as belonging to. Before adding <A, C2uDI> or <-,A, CZUDI> to the matching set, we remove 

all terms in Dl that do not occur in DBz. Step 3 and Step 4 remain the same as in Flat-Head. 

Example 7-4 Suppose that the body-generating model is: 

M&,=@rrn+ Crop}, M~,vesroc~={milk+Livestock} , 

Mcere0~{rice+ Cereal}, MYegeroble= (pea+ Vegetable), 

Mutli,={milk+ Dairy), MF,w~{egg+Fowl). 

To produce the matching set for Grain, we apply these models to the documents in (HI, 

DBl). Consider Dll for example. Since DII contains terms corn, farm and rice, rules Mcro,, and 

Mcerea, match it. Hence, Dll is assigned Hz-categories Crop and Cereal, creating the example: 

<Grain, {Cereal, Crop}uDII> 

Similarly, we create other examples in the matching set for Grain: 

<-,Grain, {Vegetable, Crop)uD12>, <Grain, {Dairy, Livestock, Cereal}uD13>, 



In Flat-Body, it is possible that the body-generating model MB may generate "conflict" 

categories B for a document in (HI, DB,). Consider DI,. M~,iveslock classifies it as 7Livestock. 

However, MFolvl classifies it as Fowl, which is a child of Livestock. This issue will be addressed 

later when we discuss Hierarchical-Body approach. 

7.5 Generating Matching Rules from Hierarchical Catalogs 

Now, we consider hierarchical HI and Hz. In this case, a category B (i.e., those at a lower 

level) can get so specific that few documents belong to B and most documents belong to 7B. 

Many learning algorithms get into trouble when faced with such imbalanced data [ProOO]. In 

particular, extracting rules for B will be difficult at Step 1 and 4. We address this issue below. 

7.5.1 Hierarchical-Head 

Our observation is that if we have a model to test whether a document belongs to the 

parent of B, say B', we do not need to include those documents that fail the test when learning the 

model for B. This makes sense because we can classify a document into B or 7B by first applying 

the model for B', if succeeded, further applying the model for B. This approach excludes all 

documents not belonging to B' from the training set for B, thereby, making the B17B distribution 

more balanced. Similarly, to learn a model for Br, we could consider only those documents that 

belong to the parent of B'; and so on. 

This observation leads to a new algorithm, called Hierarchical-Head. Consider the path 

from the root of HI to A, 

where A. is the root and Ak=A. We build the head-generating model for A as a sequence 

of models, 



where MA, is a model for A,  learned using only the documents that belong to the parent of 

A,. To generate the matching set for A, for each document <C2, D2> in (HZ, DB2), we apply these 

models hierarchically: D2 is initially categorized as AD, and we apply MA; to D2 only if D2 has 

been categorized as A,-, by MA;-/. If D2 is eventually categorized as A, we add <A, C2uD2> to the 

matching set; if D2 is categorized as the parent of A but not A, we add <-A, C2uD2>. Note that all 

the documents not categorized as the parent ofA are not included in the matching set for A. 

Example 7-5 The head-generating model for Grain consists of two models, Mmr and MGraln. 

Mplan, is built using positive examples {Dl,, D12, DI3} and negative example {DI,}. Suppose 

Mp~Dn,=@-m+Plant}. To build MGraln, we consider only the documents belonging to Plant: DII 

and DI3 are the positive examples, and D12 is the negative example. Suppose 

MG,,,={rice+ Grain}. 

The matching set for Grain is generated as follows. First, we apply Mplonr to all 

documents in (H2, DB2), categorizing D2/ and D23 as Plant. Then, we apply MGrain to (only) these 

documents, categorizing Dzl as Grain, and 0 2 3  as 7Grain. So, the matching set for Grain consists 

of 

This data set is more balanced compared to the matching set in Example 7-3. 

7.5.2 Hierarchical-Body 

In Hierarchical-Body, we create the matching set for A using a body-generating model. 

Like in Flat-Body, the body-generating model consists of one model MB for each category B in 

H2. Unlike in Flat-Body, Me is learned using only the documents in (Hz, DB2) belonging to the 

parent of B, as in Section 7.5.1. To produce the matching set for A, we consider only the 

documents D, in (HI, DB,) that belong to the parent ofA and determine its H2-categories, denoted 

Cz using the body-generating model. Particularly, for each category B in Hz, we apply the models 

120 



MB, on the path to B "hierarchically" as in Section 7.5.1. C2 is the set of categories B which Dl is 

categorized as belonging to. 

Example 7-6 In general, the body-generating model for Flat-Body is not the same as for 

Hierarchical-Body. For simplicity, we borrow the body-generating model in Example 7-4 to 

illustrate how to apply it in Hierarchical-Body. To produce the matching set for Grain, we apply 

these models to the documents in (HI, DB]) that belong to the parent of Grain, namely, Dl,, Dlz, 

Dl,, to determine their Hz-categories. Consider Dll for example. First, McrOp categorizes Dll as 

Crop, then, MGreal categorizes Dll as Cereal and Mvege,a61e categorizes Dll as -,Vegetable. MLlvesrock 

categorizes Dll as TLivestock. We do not further apply Mo,,v and MFo,,,, to Dl]. So, Crop and 

Cereal are the Hz-categories for Dl]. Similarly, we can generate the Hz-categories for D12 and Dl3. 

This gives the following matching set for Grain: 

<Grain, {Dairy, Livestock)uD+-. 0 

7.6 Evaluation 

This section evaluates the three approaches, Flat-Head, Hierarchical-Head, Hierarchical- 

Body, in terms of the effectiveness of discovering catalog matching, and makes 

recommendations. Flat-Body is not considered because it may produce conflict categories as 

discussed earlier. We used S V M - Z ~ ~ ~ ~ '  in Step 1 for learning the generating model due to its good 

performance for handling text documents. In Step 4, we used ~4.5-rules2 since it also has rule 

generation and rule pruning phases. The default settings were used for both tools. 



7.6.1 Evaluation Criteria 

We evaluate catalog matching by accuracy and simplicity. The accuracy is measured by 

the recall and precision of predicting the given category A in HI for the documents in H,. Recall 

refers to the percentage of documents that are predicted as belonging to A among those that 

actually belong to A. Precision refers to the percentage of documents that actually belong to A 

among those that are predicted as belonging to A. Both precision and recall are computed on an 

independent testing data. For a catalog matching to be useful, precision and recall must be above 

some specified minimum thresholds. We set both thresholds at 70%. Coverage refers to the 

percentage of the categories A in HI whose catalog matching have precision and recall above the 

specified thresholds. Simplicity is measured by the number and length of matching rules, and the 

percentage of terms used. 

We consider two other competing methods. 

The Meta-Learner method. This method was proposed in [DMDH02]. It combines the 

predictions of several base learners via weighted sum by assigning learner weights to base 

learners. Same as in [DMDH02], we used content learner (with 0.6 learner weight) and name 

learner (with 0.4 learner weight) as base learners. The core idea for each base learner is the same: 

Given a category A in HI, it finds the "most similar7' category B in Hz for A, i.e., B maximizes 

some notion of similarity between A and B. We consider the Jaccard similarity: 

where a term like P(AAB) is the probability that a randomly chosen document belongs to 

both A and B. We implemented the method described in [DMDH02] for estimating these 

probabilities using Naive Bayes classifier. This approach considers only 140-1 matching or pair 

wise correspondence. 



The 1-rule method. This is a degenerated version of our method by restricting the length 

of C4.5 rules to 1 at Step 4. In particular, if B is the attribute selected at the root node of the 

decision tree, the catalog matching for A will have exactly 1 matching rule B+A. This method 

also produces 1-to-1 matching. However, unlike the Meta-learner method, it can exploit the 

hierarchy structure as described in Section 7.5. Comparison with this method would reveal the 

benefit from considering more general matching rules. 

We conducted three experiments, each on a different domain. In the first experiment, we 

planted some known matching in the data and verify if we can find them. In the second and third 

experiments, we aimed to find whatever matching in the data sets, which are not known to us. To 

evaluate a catalog matching, a testing set is chosen so that it contains categories from both 

catalogs. Since matching rules are to predict the HI-categories for the documents in (Hz, DB,), we 

choose the testing data from the documents in (H,, DB2) whose HI-categories are also known. We 

will explain this choice for each domain. 

Domain 1: Reuters. This is a benchmark for text categorization with one flat catalog1. 

Using this catalog, we created two catalogs, (H, DB,) and (Hb, DBb), such that (Hb, DBb) 

resembles the original catalog and (H,  DB,) resembles a new catalog obtained by applying set- 

operations to original categories. First, we randomly split the document collection into two 

disjoint sets of equal size, DB, and DBb. We created new categories for DB,, as shown in Table 

7-3, by applying set-operations to DB,. For example, the documents for the new category 

CII=GraimWheat were obtained as the intersection of Grain's documents and Wheat's documents 

in DB,. All documents in DB, that do not have any new category are removed. Let H, denote the 

set of new categories for DB, and let Hb be the set of original categories for DBb. Since both H, 

and Hb are flat, the Flat and Hierarchical implementations in Section 7.4 and 7.5 coincide. 



Table 7-3 Planted categories for the Reuters domain 

Created categories #Document 

C~~=Money-fh1Interest 243 

C ~ y G r a i n ~ ~  Wheat 126 

- 

- 
- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

2 



This experiment was evaluated by 5-fold cross validation. First, the original data set in 

the Reuters source was split into the training set and the testing set in five different ways. For 

each way of splitting, two catalogs ( H ,  DB,) and (Hb, DBb) were created using the training set as 

described above and were used to find the catalog matching. Every document in the testing set 

already has the Hb-categories. We determine their Ha-categories according to the definition in 

Table 7-3. If a testing document does not have any Ha-category, we discard it. The remaining 

testing documents have categories from both Ha and Hb. 

Domain 2: Tvshow. This domain has one catalog from yahoo!' and one catalog from 

~ y c o s ~ .  Each document is text description for an object such as a PDF file to JPEG file, with 

URLs linking the document to the described object. We consider only categories with at least 20 

documents. To create the testing set, we consider the mirror documents in the two catalogs. A 

document in Yahoo! and a document in Lycos are mirrors of each other if their URLs link to the 

same object, i.e., if they describe the same object. If two documents are mirrors of each other, we 

consider they inherit each other's categories. Therefore, a mirror document has the categories 

from both Yahoo! and Lycos. We reserved all mirror documents in H2 as the testing set and used 

the remaining documents as the training set. 

Domain 3: Industry. In this domain, we used two different industry classification 

systems, one for the United   at ion^, and one for Canada4. Each system organizes the industry 

products/activities into a hierarchy catalog. In the Canada catalog, each category has a text 

description and example activities, and we create a single document using the description and 

example activities. In the UN catalog, each category has several explanatory notes, and we create 

one document for each explanatory note. We considered only categories at the top two levels by 

htt~:Ndir.vahoo.com/Entertainrnent/Television Shows/ 
httv://dir.lvcos.com/Arts/Television/Pro~s This URL is no longer valid and Lycos does not provide a replacement 

for this catalog. 



assigning the documents at a lower level to the ancestor categories at the top two levels. We 

remove the categories whose documents are less than 10. We randomly select 115 documents 

from H2 as the testing set and manually determine their HI-categories. 

As usual, we removed stop-words and performed stemming as in Information Retrieval. 

We also removed words appearing in less than two documents, and documents having less than 5 

words (for the industry domain, this value is 2 due to many short documents). Table 7-4 

summarizes the statistics of all data sets. For Reuters, these are the average of 5-fold cross 

validation. The average fan out is calculated over internal nodes only. "#Trainingv is the number 

of training documents in a catalog, and "#Testing3' is the number of testing documents when that 

catalog is taken as HZ. 

Table 7-4 Statistics for three data sets 

7.6.2 Performance 

Figure 7-4 shows the average coverage, precision and recall over the three domains, 

where each domain takes one of the two catalogs as HI in turn. The term-allowance is set at zero. 



Rules, I-Rule and Meta-learner refer to our method, 1 -rule method, and Meta-learner method, 

respectively. Rules and ]-Rule have two implementations: Hierarchical-Head and Hierarchical- 

Body. (Flat-Head will be examined below.) The minimum thresholds for precision and recall are 

70%. 

Figure 7-4 Performance comparison. Term-allowance=OoA 
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Rules and I-Rule have higher coverage than Meta-learner. This is because Meta-learner 

does not exploit the hierarchical structure. We observed that Rules has much higher coverage than 

I-Rule and Meta-learner on the Reuters domain (not shown), up to 70%. In fact, the catalog 

matching planted in Table 7-3 are not 140-1 matching. Hence, Meta-learner and I-Rule do not 

work well on Reuters domain. On the Tvshow and Industry domains, all three methods have 

similar coverage since most catalog matches are 1-to-1 correspondences. On precision and recall, 

Rules always performed better due to its capability of capturing matching gener-a1 than I-to-1 

correspondences. I-Rule has a similar precision and recall to those of Meta-learner, but has much 

higher coverage than that of Meta-learner. 

One of our objectives is to study which of Hierarchical-Head and Hierarchical-Body is 

more effective. Figure 7-4 shows that the precision and recall are similar in both cases, but 

Hierarchical-Body has a higher coverage consistently for all the term-allowances examined. With 



Hierarchical-Body, the matching set is generated from the documents in (HI, DBI) where the 

target category A is located. This ensures that the matching set has some positive examples for A. 

With Hierarchical-Head, on the other hand, the target category A (or 4) is assigned to the 

documents in (Hz, DB2), in which case it is possible that no or very few documents in (Hz, DB2) 

are assigned with the category A and most documents are assigned the category 4. This is more 

so if A is at a lower level. Consequently, Hierarchical-Head more frequently fails to find a good 

catalog matching for A. 

7.6.3 Effect of Terms 

Another objective is to study whether terms have a major impact on catalog matching. 

We tested a range of term-allowances from zero to loo%, as shown in Figure 7-5. One striking 

trend is that a non-zero term-allowance does not increase, in fact, decreases, precision and recall 

in all cases. Coverage may increase a bit for up to 1% term-allowance; however, a larger term- 

allowance beyond 1 .O% does not further increase coverage. When the term-allowance is loo%, 

i.e., no term is removed, the coverage is less than that for the zero term-allowance. This study 

confirms Hypothesis 7-2 that categories are the primary information needed for catalog matching 

and terms do not have a major effect. This is good news in that matchings in terms of mostly 

categories are more understandable to the human user. 

This experiment also verified that Hierarchical-Head and Hierarchical-Body performed 

better than Flat-Head, demonstrating that the proposed method of handling hierarchical structures 

is effective in dealing with imbalanced class distribution. Indeed, the lack of positive examples in 

the case of Flat-Head leads to the frequent failure of finding matching rules, therefore, a low 

coverage. 

In summary, the experimental study suggests the following: The proposed catalog 

matching for A can be highly accurate if the target category A is sufficiently general (i.e., has 



sufficient examples); Hierarchical-Body is preferred and the proposed handling of hierarchical 

categories is effective; matching rules are able to capture complex relationships; and catalog 

matching at the category level is as accurate as the catalog matching where terms are freely 

allowed. 

Figure 7-5 Performance of the Rules approach against term-allowance 
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7.6.4 Simplicity 

The final objective is to study whether the proposed catalog matching is simple enough 

to be understood human users. A catalog matching is simple if it involves a small number of short 

matching rules xl, . . ., xk+A, with the descriptions xl, . . ., xk mostly given by categories instead of 

terms. The study in Section 7.6.3 has shown that x, can indeed be mostly categories without 

losing the power of capturing matches. Therefore, we focus on the case of zero term-allowance. 

We report the study for Reuters with Hl=H,, Tvshow with H,=Yahoo! and Industry with 

Hl=Canada. The results are similar in the other three cases where the other catalog in each 

domain is taken as HI. Figure 7-6, Figure 7-7 and Figure 7-8 plot the number of categories A in 

HI whose catalog matching is found (i.e., y-axis) vs. the numberlaverage length of matching rules 

in the catalog matching (i.e., x-axis). Only the categories with precision and recall above 70% are 

included. For example, for Flat-Head in Figure 7-7, there are 3 categories @-axis) in which each 

category has 3 mapping rules (x-axis). We see most categories have no more than 5 matching 



rules, and most matching rules have length no more than 3. Catalog matching of this scale is easy 

to understand for human users. These findings confirm that catalog matching can be both accurate 

and simple. 

Figure 7-6 Reuters: HI=H,, term-allowance=OO/~ 
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Figure 7-7 Tvshow: 



Figure 7-8 Industry: H,=Canada, term-allowance=O% 

7.7 Conclusion 

In this chapter we use rules to capture category matching which can help share 

information across applications on the web. We examine two important issues: capturing the 

matches that are more than l-to-1 correspondences and expressing the matches explicitly at the 

category level so that they can be understood without examining underlying data instances. We 

present several algorithms for finding such matches and evaluate their feasibility in terms of 

accuracy and simplicity. The evaluation on real life domains shows that accurate and 

understandable matches at the category level are possible and can be found by the proposed 

algorithms. 



CHAPTER 8 

CONCLUSION 

Now we are in information era and the data accumulation rate increases fast. Mining and 

using knowledge from this huge amount of data become more and more important for this fast- 

changing world. This thesis focuses on using such data to help people making decisions. In 

particular, we use association rules to build interpretable decision-making systems which aim to 

maximize users' goals. 

8.1 Summary of the Thesis 

We study several important decision-making systems based on association rules across a 

wide range of application domains. Each domain has its own unique challenges and we propose 

novel algorithms to address them. Though these algorithms are different from each other, they 

follow the same general framework and share common themes. First, these algorithms use 

association rules as basic elements for system construction. Second, all the algorithms emphasize 

on pushing application goal down into the very beginning of model construction. Third, the 

algorithms take both interpretability and effectiveness as the essential requirements for decision- 

making systems. CHAPTER 2 gives the details on these common properties. In the following we 

briefly summarize the contributions we made on the studied application domains: 

In CHAPTER 3 we propose an algorithm to build decision tree from association 

rules, i.e., ADT. Decision trees and rule-based algorithms are two types of well- 

studied approaches fro classification. Association rules are rich, but lacking of a 

systematic method to prune over-fitting rules for classification. Decision tree 

induction, on the other hand, has an accuracy-driven pruning, but imposes restrictive 



structures on rules. The comparison motivates our work of combining the two 

approaches for building better classifiers. To optimize classifier's performance and 

improve its interpretability, we leverage the pessimistic bottom-up pruning from 

decision tree. The experiments results have shown that the proposed ADT algorithm 

not only builds more accurate classifiers, but also does this by finding more truthful 

structures, as indicated by the smaller size of classifiers 

We study the direct marketing problem in CHAPTER 4. In particular, we solve two 

major challenges. First, the classical rule-ranking criterion based on statistic 

probability no longer works here due to the inverse correlation between the 

likelihood to buy and the dollar amount to spend. To handle this issue, we propose a 

new criterion which combines both probability and profit information for rule 

ranking. The second challenge is that the historical data in direct marketing often 

have extremely high dimensionality and extremely low proportion of the target class. 

To attack this problem, we mine "focused rules" on respondents only, which 

dramatically reduces the rule searching space. The evaluation on the well known, 

large, and challenging KDD-CUP-98 task shows the effectiveness of our algorithm. 

CHAPTER 5 presents our approach in solving an interesting problem: profit mining. 

It is more challenge than direct marketing problem in the sense that it requires to 

recommend both "right" price and "right" product. We handle this issue by exploring 

the customers' behaviour of shopping on unavailability. Another challenge which 

makes this problem more interesting is how to make use of the relations among 

different products (e.g., TV and DVD player both are home electronics.). We propose 

MOA (mining on availability) technique which utilizes such product relations in rule 

mining and ranking. The experiments show the effectiveness of our algorithm. 



CHAPTER 6 introduces an algorithm on combining rules and SVM into one 

integrated classifier for the protein localization problem. The rule part exposes the 

main patterns which can be easily interpreted by human. The SVM part, which has 

shown high accuracy in many other applications, is responsible for classification 

involving subtle structures. This integrated model preserves the performance of the 

SVM and exposes simple structures in understandable rules. The algorithm proposed 

can be extended to integrate other classification algorithms (like neural network) as 

well. The experimental results on real subcellular protein localization tasks are quite 

promising. 

We study the catalog matching problem in CHAPTER 7. In many web-related 

applications catalog matching is important since it can help exchange information 

and speed up business decision process. To make the model understandable, we 

expressed catalog matching as a set of rules at the category level in which each rule 

defines a category in one catalog using categories from the other catalog. To make 

the model accurate, we also capture the matches that are more than 1-to-1 

correspondences. Several variations of algorithms are studied in that chapter. The 

evaluation on real life domains showed that accurate and understandable matches at 

the category level are possible and can be found by the proposed algorithms. 

8.2 Future Research Directions 

With the success of using rules in many real life applications, it is worthwhile to extend 

its usage in other domains. Some of them are listed here. 

Interactive model construction. So far for each application we build "best" 

models in background and users have little control on the process. However, in 

many cases users want to guide the process. In addition, often users have some 



special requests on the model. For example, users may prefer to sacrifice the 

accuracy a little bit to have a much smaller model. Ideally, users can have control 

on every step and the algorithm will give the (estimated) feedback on user's 

decision (e.g., the estimated accuracy if user chooses to prune some rules). 

XML document classiJication. Nowadays more and more documents on web 

adopt the extensible Markup Language (XML). Thus, there arises the need to 

develop new techniques to classify .these documents. Since XML documents are 

plain text, text classification algorithms can be applied here as well. But these 

algorithms cannot make use of the structures of XML documents. [FW02,ZA03] 

introduces some algorithms which assume that the presence of a particular kind 

of structural pattern in an XML document is related to its likelihood of belonging 

to a particular class (category). How to mine rules and rank them while 

considering both content and structure of XML documents is a big challenge 

when using rules for classification. 

Spatial data prediction. In many areas, we have collected a large quantity of 

spatial data, like maps, biomedical data and images. Building decision-making 

models on these data sets has unique challenges. First, the data itself is more 

complex than a typical business transactional database. Also it is very huge (e.g. 

terabytes or peta-bytes). Hence, the richness of rules could be a curse of rule 

mining. We need more efficient algorithms and data structures here. Second, 

spatial data tends to be highly auto-correlated (eg. people with the same 

background tend to live in the same neighbourhood), which is un-true in classicai 

statistics analysis. Integrating such correlation in rule mining and ranking is 

another challenge yet to be solved. 
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