
DECrSION MAKING BASED ON ASSOCIATION RULES

Senqiang Zhou
&.Eng., Xi'an Jiaotong University, 1995

MSG., National University of Singapore, 2000

THESIS SUBMITTED n\S PARTIAL FULFILLMENT OF
W E REQUIEMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

In the
School

of
Computing Science

@ Senqiang 2 hou 2006

SIMON FRASER UNIVERSITY

Fall 2006

All rights resewed. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission o f the author.

APPROVAL

Name:

Degree:

Title of Thesis:

Examining Committee:

Chair:

Senqiang Zhou

Doctor of Philosophy

Decision Making Based on Association Rules

Dr. Wo-Shun Luk
Professor, School of Computing Science

Dr. Ke Wang
Senior Supervisor
Professor, School of Computing Science

Dr. Martin Ester
Supervisor
Associate Professor, School of Computing Science

- -

Dr. Binay Bhattacharya
Internal Examiner
Professor, School of Computing Science

Dr. Hui Xiong
External Examiner
Assistant Professor, Management Science and
Information Systems Department
Rutgers, the State University of New Jersey

Date DefendedIApproved: Oct. 2 3 4 , 2806

11

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the "Institutional Repository" link of the SFU Library website
<www.lib.sfu.ca> at: ~http:llir.lib.sfu.calhandlell8921112~) and, without changing
the content, to translate the thesislproject or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2006

ABSTRACT

Data is being accumulated in a fast speed for many application domains, like finance and

biology. Utilizing the huge volume of data to help make correct decisions is important for a

companylorganization to survive in this competitive world. Many general algorithms have been

proposed in building decision-making systems. However, it is difficult to apply them to real-

world domains without major changes due to different application natures (e.g. different goals,

different data characteristics, etc). In this thesis, we study the problem of building decision-

making systems using association rules for real-life applications. Unlike many existing algorithms

that only touch the performance issue, we also focus on improving the interpretability of systems,

which is very important in helping users understand how decisions are made (by the system).

Association rules are easy to interpret and, thus, help us achieve this purpose.

There are two major contributions in this thesis. First, we propose a common framework

which can serve as the guideline for building decision-making systems. The design goal of this

framework is to build both understandable and effective systems. To help make the system

understandable, the framework uses association rules as the basic elements. Also it provides the

flexibility for the users to prune the system using the domain knowledge. Such pruning is very

important to keep the system small and, thus, understandable. To help make the system effective,

it emphasizes pushing the application goal down to the rule searching phase (the first step of

system building). As our second contribution, we propose a collection of algorithms for several

real-life applications by following the guidelines in the framework. All proposed algorithms share

the themes in framework; however, each of them is unique and is specially designed to meet the

distinct challenges of its application domain. Experiments show the effectiveness of these

algorithms.

Keywords: association rule; classification; actionability; pessimistic estimation

Subject Terms: data mining

To my family

ACKNOWLEDGEMENTS

First, my gratitude goes to my senior supervisor, Dr. Wang Ke, for his guidance,

generous support and comments to my research work. It is certainly my luck and pleasure to work

with a supervisor so knowledgeable and amiable. I am very thankful to my supervisor, Dr. Martin

Ester, for his insightful comments and advice. I really appreciate his help in improving the quality

of my thesis. My gratitude and appreciation also go to Dr. Binay Bhattacharya and Dr. Hui Xiong

for serving as examiners of my thesis.

I'm also grateful to all the nice people I met here. I thank my friends for their help. It is

their encouragement and friendship that make my days in SFU shining and memorable. In

particular, I want to express my appreciation to people in the Intelligence Database Lab who

provide help and feedback on my research.

Foremost I would like to express my thanks to my parents and my wife, for the love they

have been giving me all along in my life. Without them, I would not be complete. At last, I

would say thanks to my daughter who shows me that it is the simple things in life that bring the

most joy.

TABLE OF CONTENTS

. .
Approval ... 11

...
Abstract ... 111
Dedication ... iv

Acknowledgements .. v

Table of Contents ... vi

... List of Figures ix

List of Tables .. x

CHAPTER 1 Introduction .. 1
1.1 Decision-Making Systems ... 2
1.2 General Learning Algorithms ... -3

... 1.3 Motivation 4
... 1.4 Contributions 5

1.5 Organization of the Thesis ... 8

CHAPTER 2 The General Framework ... 9
... 2.1 Common Properties 9

2.2 Why Association Rules? .. 10
2.3 The General Framework ... 1

.. 2.3.1 The Input 12
... 2.3.2 Generating Interesting Rules 12

2.3.3 Building the Initial Model MI .. 13
2.3.4 Pruning the Initial Model MI ... 14

... 2.4 Summary -15

CHAPTER 3 Growing Decision Trees On Association Rules 16
.. Introduction -16

Related Work ... 18
.. Mining Confident Rules 19

Building the Initial Classifier .. 24
Pruning the Classifier .. 27

Removing Redundant Rules .. 27
.. Building ADT 28
... Pruning ADT 30

.. Experiments -34
Accuracy ... -37

.. Size 40
... Conclusion 40

CHAPTER 4 Mining customer value: from association rules
to direct marketing .. 41

... Motivation 41
... Introduction 43

Task Definition .. 44
Related Work ... 44
Generating FARs (Focused Association Rules) .. 46

... Building the Initial Model 51
Pruning the Model .. -53

.. Validation 57
Sum of Actual Profit .. 58
Profit Lift ... 60

... Classification 61
... Conclusion 62

... CHAPTER 5 Profit Mining: from patterns to actions 63
.. 5.1 Introduction -63

... 5.2 Problem Definition -64
... 5.3 Related Work 65

5.4 Our Approach .. 67
... 5.5 Generating Rules 69

.. 5.6 Building the Initial Recommender 71
... 5.7 Optimizing the Recommender 71

5.8 Evaluation .. 73
5.8.1 The Methodology ... 73
5.8.2 Results on Synthetic Data Sets .. 74
5.8.3 Results on Real Life Data Set .. 79

... 5.9 Conclusion 80

CHAPTER 6 Localization Site Prediction for Membrane
... Proteins by Integrating Rule and SVM Classification 82

... 6.1 Introduction 83
6.2 Algorithm Overview .. 86

.. 6.2.1 Background 86
6.2.2 Our Approach .. 88

.. 6.3 SVM Phase 89
6.4 Rule Phase ... 90

6.4.1 Generating Rules ... 91
.. 6.4.2 Pruning Redundant Features 92

... 6.4.3 Pruning Insignificant Features 92
6.4.4 Pruning Redundant Rules .. 94
6.4.5 Pruning Insignificant Rules ... 95

6.5 Stealing Phase .. 96
6.6 Experiments ... 97

6.6.1 Performance and Significance ... 99
6.6.2 Interpretability ... 101

.. 6.6.3 Pruning Effectiveness 102

vii

... 6.7 Related Work 105
... 6.8 Conclusion 106

... CHAPTER 7 Discovering catalog matchings on the web 108
... Introduction 108

.. Problem Definition 111
.. Matching Rules 112

Catalog Matching .. 114
... Algorithm Overview 1 1 4

.. Generating Matching Rules from Flat Catalogs 116
... Flat-Head 1 1 6
... Flat-Body 118

............................ Generating Matching Rules from Hierarchical Catalogs 119
.. Hierarchical-Head 119

Hierarchical-Body .. 120
.. Evaluation 1 2 1

... Evaluation Criteria 122
... Performance 126

.. Effect of Terms 128
Simplicity ... 129

... Conclusion 131

... CHAPTER 8 Conclusion 132
.. 8.1 Summary of the Thesis 132

... 8.2 Future Research Directions 134

... Bibliography 136

LIST OF FIGURES

Figure 2-1

Figure 3-1

Figure 3-2

Figure 4-1

Figure 4-2

Figure 4-3

Figure 5-1

Figure 5-2

Figure 5-3

Figure 6-1

Figure 6-2

Figure 6-3

Figure 6-4

Figure 6-5

Figure 7-1

Figure 7-2

Figure 7-3

Figure 7-4

Figure 7-5

Figure 7-6

Figure 7-7

Figure 7-8

The general framework of building decision-making systems 11

The unpruned ADT .. 29

The pruned ADT .. 32

Left: before pruning Right: after pruning .. 57

The distribution of donation .. 58

The accumulative profit lift curve ... 61

Hand MOA(H) .. 69

The results for synthetic dataset I .. 76

The results for real life data set ... 77

The five primary localization sites in a Gram-Negative bacterial cell 84

A linear SVM in a two-dimensional space .. 87

Feature coefficients for the sample data .. 93

Selecting the prefix .. 97

CPU time (in seconds) for building classifiers .. 105

Job catalogs ... 109

Example hierarchy ... 112

The overview of catalog mapping algorithm ... 116

Performance comparison . Term-allowance=O% ... 127

Performance of the Rules approach against term-allowance 129

Reuters: Hl=H,. term-allowance=O% .. 130

Tvshow: Hl=Yahoo!. term-allowance=O% ... 130

Industry: H~=Canada. term-allowance=O% .. 1 3 1

LIST OF TABLES

Table 3-1

Table 3-2

Table 3-3

Table 3-4

Table 3-5

Table 3-6

Table 3-7

Table 3-8

Table 3-9

Table 3-1 0

Table 4-1

Table 4-2

Table 4-3

Table 4-4

Table 4-5

Table 4-6

Table 4-7

Table 4-8

Table 4-9

Table 6-1

Table 6-2

Table 6-3

Table 6-4

Table 6-5

Table 6-6

Table 7-1

Table 7-2

Table 7-3

Table 7-4

The sample database .. 22
... The overview of mining confident rules 23

... The sample data sets for a small example 26

... The initial classifier 27

Classification on testing cases ... 33
... 21 Data sets used in experiments 35

Classification accuracy .. 36
.. Win vs . Loss 37

Size of classifiers ... 38

Size of ADTs at different stages .. 39

Algorithm of generating focused association rules (FARs) 48

The sample database ... 49

The D. after applying the maximum support ... 50
... Count of items 50

The FARs generated with minimum support and maximum support
of 40% ... 51

.. Coverage and rank of rules 53

Estimated(r) before and after pruning ... 56

Comparison with published results ... 59
... The confusion matrix 61

A sample data set ... 94
... Data statistics 99

PrecisiodRecall (%) on D(test) ... 100
.. Comparison on interpretability 102
.. Effectiveness of feature pruning 103

... Effectiveness of rule pruning 104
... Example data set 1 2
... The matching set 1 17

.. Planted categories for the Reuters domain 124

... Statistics for three data sets 126

CHAPTER 1

INTRODUCTION

Nowadays data is accumulated in a fast speed thanks to the advanced data collection and

storage technologies. However, more data does not necessarily lead to more information. The gap

between data and decision is large. A survey1 conducted by Businessweek showed that many

companies are incapable of retrieving useful information fiom a huge amount of data to make

sound decisions. On the other hand, making correct decisions is extremely important for a

company to survive in this competitive world. Therefore, the task of using the accumulated data

to increase the chance of making correct decision is becoming more and more urgent.

In data mining community, various technologies have been proposed to help users

manage and analyse their data. Decision-making system is such an approach that reveals useful

patterns from underlying data and assists user to make decisions using these patterns. In this

thesis, we propose a general framework served as guidelines for building such systems.

Moreover, we use the framework to solve the challenges in several real life applications. It would

be ideal if we can have one algorithm that can be applied to all applications. However, the

existence of such algorithm is virtually impossible due to the diverse nature of real-life

applications. Instead, for each application we propose a unique algorithm which addresses the

distinct challenges in that application. Though these algorithms are different, they do share some

common properties identified in the framework.

A good decision-making system should at least satisfy two requirements: effective in

making decisions and easy to interpret. So far the majority of decision-making algorithms only

htt~://www.businessobiects.com/news/~ress/ress2004/20040720 businessweek research comv.asv

1

focus on improving the effectiveness but not the interpretability. The algorithms we propose in

this thesis aim at both targets.

The rest of this chapter is organized as follows. First, we give a brief explanation of

decision-making systems and an introduction on some general decision-making algorithms. After

that, we present the motivation and contribution of our work. Section 1.5 gives the organization

of entire thesis.

1.1 Decision-Making Systems

We start with an example in explaining decision-making systems. Let's take a look at

direct marketing problem which refers to a process of identifying and mailing to potential

"valuable" customers. In particular, given a new customer, we need to make a decision if a

(product promotion) mail should be sent to him. If a mail is sent and the customer responds,

certain profit is generated. If the customer does not reply the mail, we lose the mail postage. The

goal is to generate the profit as much as possible for a group of customers. Certainly the historical

information would help us make such decisions. Due to the large amount of past data, it becomes

virtually impossible to explore them manually. Hence, it is important to build a model (decision-

making system) from the historical information to automatically give recommendations (sending

or not sending a mail) on new customers.

From the previous example it is clear that a decision-making system serves the purpose of

guiding users' actions to achieve an optimal goal by making effective use of the vast array of

information available to the company (organization). To build such system, it requires a

collection of historical data, a user-defined application goal, and optionally, domain knowledge.

A good decision-making system should at least satisfy two primary requirements:

The decisions should be reliable in the sense that users should have certain

confidence to count on these suggestions.

The system build should be easy to interpret so that users can understand how a

decision is made.

For the first requirement, different applications often have different interpretations on

"reliability". For example, in classification it means high accuracy while in direct marketing it

means high profit. For the second one, it requires the final system is compact and presented in an

easy-to-understand way. In this thesis, we use various methods to make sure the system we build

for every application satisfies these two requirements.

1.2 General Learning Algorithms

Quite many algorithms have been proposed to build decision-making systems, in which

most of them focus on classification, a sub-area of decision-making. In this section we give a very

brief introduction on several popular algorithms that are referenced in this thesis. More details

will be given in the following chapters when they are actually used and/or compared.

Association rule-based algorithms. Motivated by market-basket analysis, association

rule [AIS93, AS941 is an important and active area of data mining research. It finds all the rules

above the user specified thresholds in the form of X+Y, where X and Y are set of items. Using

association rules for decision-making generally has the following two main steps. In step 1, it

mines a set of rules in the form of X+C,, where X is a set of items (or set of attribute-value pairs

for table data) and C, is a possible decision. In the second step, given an example t whose

decision needs to be determined, the algorithm selects a rule (based on certain criterion) among

all the rules that match t. (A rule X+C, matches t if XQ.) The decision of the selected rule is

taken as the decision for t. [DL99, LHM98, LMWOO] shows some algorithms in this category.

Decision trees. They are perhaps the most widely studied inductive learning models in

the machine learning and data mining community. Some representative algorithms are: CART

[BFOS84], ID3 [Qui86], CN2 [CN89], C4.5 [Qui93]. Generally speaking, a decision tree is a tree

in which each internal node denotes a test on an attribute, each branch represents an outcome of

the test, and leaf nodes represent classes and class distribution. . The basic strategy of building a

decision tree is "divide and conquer" [Qui93]: A set of cases T is refined into subsets of cases that

are, or seem to be heading towards, single-class collections of cases.

Support vector machines (SVMs) [Vap95] recently demonstrated superior performance

gains and robustness of SVM in many applications over traditional methods. One striking

property of SVMs is the ability to produce the unique global minimum of the error function

[Bur98]. Also it builds the model independent of the dimensionality of the feature space [Joa98b]

because SVMs measure the complexity of hypotheses based on the margin with which they

separate the data, not the number of features. However, the SVM model comes with a major

defect: It involves thousands of features in a single kernel function, making it impossible to see a

simple relationship between the prediction and features that trigger it.

Naive Bayes classifiers [FGG97]. They probably are the most popular statistical

classifiers that encode probabilistic relationships between variables of interest [DH73]. They can

predict class membership probabilities, such as the probability that a given sample belongs to a

particular class. These classifiers learn from the data the conditional probability P(Ai=ailC) of

each attribute A,=a, given the class label C. During classification, given a testing case

t={A,=a~, ... , An=an}, it finds the class C that maximize the posterior probability

HkP(Ak=akJC)P(C) Here it makes the assumption that all attributes are independent, which might

not be always true. Quite a few extensions have been developed, most of which aim at relaxing its

strong independence assumption.

1.3 Motivation

The learning algorithms introduced in the previous section are designed for general-

purpose tasks and do not always work effectively in real-life applications.

1. Those algorithms do not give guidelines on how to integrate domain-specific

requirements into the process of system construction, which is very much needed by

users. Identifling the common properties from various applications and summarizing

them into an easy-to-follow framework would greatly speed up the system

construction.

2. Most algorithms target at achieving high accuracy while many applications have their

own application goals. For example, in direct marketing [WZYY03] the goal is to

produce high profit instead of high accuracy. Such requirement makes it difficult to

apply those algorithms directly without major changes.

3. Most algorithms are not easy to be adapted to accommodate different data

characteristics in different applications. For example, decision tree algorithms

[Qui93] perform poorly on high dimension data. Such behaviour puts serious

restrictions on their usages.

4. Many algorithms do not consider interpretability as one of their goals. For example,

SVM [Vap95] makes use of high dimension kernels for classification, which is a

black box to users. In real life, users often want to know how these decisions are

made. Having insight look into a model could help users understand what happens

and, thus, take appropriate actions in advance.

Apparently, we need a new approach to solve these issues.

1.4 Contributions

We have two major contributions in this thesis. First, we propose a general framework

which targets at solving the issues mentioned in the previous section. The framework is flexible

and easy to incorporate domain-specific application goals. To address issues 3 and 4, the

framework uses association rules as basic elements for decision-making. Rules are relatively easy

to interpret and there are tons of algorithms in mining rules from various types of data sets. In

addition, the framework reflects two important factors in building decision-making systems:

pushing application goal down to the very beginning of system construction and optimizing the

system on future data.

The second contribution is the studies of 5 challenging real-life applications. In these

applications, we build effective and understandable decision-making systems by making use of

the general framework. On the other hand, each application has its own unique challenges and

requires specially designed algorithm to handle them. In the following, we summarize the

contributions for each individual application:

In CHAPTER 3 we study a classical decision-making problem: classification. We

propose an algorithm that combines the advantages of association rules and decision

trees. It leverages the hierarchical organization of decision trees to prune the richness

of association rules and make the model easy to understand. We also propose an

efficient approach to generate confident association rules that do not require a

minimum support threshold. Such characteristic is very useful since in many cases it

is difficult to determine an appropriate threshold.

We study another challenging application in CHAPTER 4: direct marketing. Data set

in this domain generally is very large, and has high dimension and skewed

distribution. Most association rule mining algorithms do not scale up well in such

situation. Making the thing even worse, most rules found (especially non-respondent

rules) are redundant and not interesting to users. To address this issue, we propose an

algorithm to mine focused association rules which are most likely to increase the

profit return. Another challenge in direct marketing is the inverse correlation between

the probability that a customer responds and the dollar amount generated by a

response. Traditional algorithms no longer work in this case since they don't consider

such correlation. We present a solution to this problem based on a creative use of

association rules.

The number of online stores increases fast nowadays. So does the importance of

online product recommendation systems. We discuss this interesting problem in

CHAPTER 5. In a recommendation system, the target is to maximize the profit

generated from the recommended products (thus we call the problem "profit

mining"). Unlike the direct marketing problem, the recommendation here is two-

dimension: recommending "right" items at "right" prices. It puts a unique challenge

in model construction. Moreover, products naturally are categorized and related to

each other. Using such domain knowledge for model construction will help improve

the performance of the system. We propose profit patterns to address these issues.

Such patterns consider both confidence (i.e. how likely a customer would like to buy

the product) and profit (i.e. how much money the seller can get). Also it explores the

product categorization systems and uses them to improve the recommendation.

Experiments results show that the algorithm based on profit patterns has better

performance than its competitors.

CHAPTER 6 studies an interesting biological application: protein localization

prediction. Given a protein, users like to know its position in a cell (e.g. at inner

membrane or outer membrane) and the patterns determining its position. So it

requires the decision model be both accurate and interpretable. Unlike previous

applications where we build systems solely based on rules, this time we try a new

approach: combining high-accuracy SVM model with easy-to-understand rule-based

model. The idea is: The rule part captures the major patterns and presents them to

users. And the SVM part does predictions for the minor patterns that cannot be

captured by the rule part. We have two main challenges. First, the accuracy of the

combined system should not be worse than that of applying SVM model alone.

Second, the rule part should be small and really capture the major patterns. The

algorithm discussed in that chapter addresses these issues.

An interesting web application "catalog mapping" is discussed in CHAPTER 7.

Given a catalog HI which is a hierarchical organization of categories, find the

definitions for its categories (i.e. decide the meanings for its categories) in terms of

the categories from another catalog HZ. The mappings are expressed in rules to make

them understandable. Such catalog mapping is useful for many problems, like catalog

integration. Unlike most existing algorithms that only study 1-to-1 correspondence,

our algorithm finds complex mappings and, at the same time, makes few assumptions

on existing catalogs.

1.5 Organization of the Thesis

We organize this thesis as follows. In CHAPTER 2 we present the general fi-amework of

building a decision-making system. From CHAPTER 3 to CHAPTER 7 we study five

interesting applications: classification, direct marketing, profit mining, protein

localization prediction and web catalog mapping. In each application, we discuss its

unique challenges and the solution. The thesis concludes in CHAPTER 8. Some future

directions are also discussed in this chapter.

CHAPTER 2

THE GENERAL FRAMEWORK

The construction of decision-making systems relies on many factors and users often have

difficulties in applying algorithms built for domain A into domain B. For example, neural network

might be good for statisticians but it would disappoint a financial institute director due to its

difficulties to be interpreted. However, algorithms in various domains could share some common

properties. Identifying such properties can help users develop algorithms in their own domains. In

this chapter, we discuss these properties and propose a general framework based on them.

2.1 Common Properties

Due to various natures of applications, it is very difficult, if not impossible, to invent a

universal algorithm that can be directly applied into different domains. On the other hand, we do

believe that different applications share some common properties. Identifying these properties can

help establish guidelines for building decision-making systems.

1. Building interpretable systems. Building an interpretable system is very much

rewarding since it can greatly help users understand how decisions are made and thus

make appropriate actions. Association rules are easy to understand and, thus, are

good candidates as basic elements for decision-making systems. To make the system

more interpretable, pruning it to a small size often is required. Moreover, pruning can

also remove the over-fitting rules which are generated due to the noise in training

data.

2. Pushing the application goal down to the very begining of system

construction. Often we want to build a system that maximizes the application goal

9

(e.g. maximizing profit for direct marketing). To achieve that, we need to integrate

the goal into the system construction. Many algorithms consider such knowledge

only after the system is built. [Dom99] is such an example. It assumes that each

misclassification is associated with a cost and tries to build a system that minimizes

the overall cost on misclassifications. So it proposes a general method to make

classifiers cost-sensitive. However, the cost of misclassification is only considered

after the basic classifiers are built. Application goal (in this case, minimizing the

cost) is not considered during the construction of basic classifier. As a consequence,

there is no guarantee that the basic classifier is optimum. To maximize the

application goal, we should push down the goal to the very beginning of system

construction.

2.2 Why Association Rules?

When building decision-making systems, a fundmental issue a user faces is: How to

choose the basic structure of the system? It could be a decision tree, a neural network or an SVM.

In this thesis, we use association rules due to the following reasons. However, it does not imply

that association rules could replace other algorithms because each of them has its own

advantages. Actually in one application (protein localization) we integrate association rules with

SVM to achieve optimal results.

Compared to other competitors (like neural network or SVM), association rules

are naturally easy to understand. Such property helps us build interpretable

decision-making systems.

Rule generation algorithms have been studied for a long time. The abundance of

such algorithms makes it relatively easy to select (and modify if necessary) one

to an application.

Association rules are independent to each other. It helps improve the

interpretability of the decision-making system since users need not to consider

the interactions among rules. Moreover, it also makes the system pruning easier

since pruning one rule won't affect other rules.

2.3 The General Framework

Figure 2-1 The general framework of building decision-making systems

Inputs: Training data D; Application goal

Output: Decision-making system M

Algorithm:

1. Generate interesting association rules from D with the consideration of application

goal; try to keep the number of rules minimal;

2. Build an initial model MI from those rules with the consideration of application goal;

prompt the rules that benefit the system most;

3. Prune MI with the consideration of application goal; remove the negative rules and

optimize the system on future data;

4. Return the final model M;

Figure 2-1 shows the general framework of using association rules to build a decision-

making system. It has three major steps: generating interesting rules, building the initial model,

and pruning the initial model. In the following sections, we will present details for each step.

First, we have a brief introduction on the inputs of framework.

2.3.1 The Input

The input of the general framework is the training data D collected by users and the application

goal. Each record t in D at least has two parts: the description of the record and the decision made

based on the description. The exact data format varies across applications. For example, in

supermarket applications the description of a record could be a set of items; while in financial

domains the description could be a collection of attribute-value pairs. In many applications, the

training data itself is pretty challenging due to its huge size, high dimension or skewed

distribution. And there is no general cure for it. In this thesis, for each application we propose an

innovative algorithm to handle these issues.

Besides the training data, many applications also have their unique application goals.

Integrating them into system construction is critical for the success of a system.

2.3.2 Generating Interesting Rules

This step generates a set of rules which forms the foundation of a decision-making

system. Each rule has the form of X d C , where X is a description and C is a decision. A rule is

often associated with some interestingness measurements which reflect the likeliness of using it

for decision-making. Consider a sample rule for document classification: (process, thread,

deadlock}+operating-system, conf-70%. Here, (process, thread, deadlock} is the rule

description, "operating-system" is the decision, and "confl-70%" is the interestingness

measurement. This rule can be explained as: If a document contains the keywords process, thread

and deadlock, we classify it into the topic operating-system, with 70% confidence.

Often the rule generation space is huge for many applications. To save time and help

build interpretable systems we must control the number of rules generated. A good way to do that

is to set rule interestingness thresholds and only generate those rules with interestingness not less

than the thresholds. For example, in document classification we can control the number of rules

generated by setting the minimum support and minimum confidence. However, many times it is

difficult for users to select an appropriate value for a threshold. For example, if the minimum

support is too low, too many rules are generated. If it is too high, then many valuable rules could

be left out. It would be good if users are not required to speciy such thresholds. We explore such

possibility in several algorithms.

A big challenge in this step is to integrate application goal into rule mining. Doing that is

critical for the success of a system. General rule mining algorithms (like Apriori [AS94) do not

address this issue. We propose innovative approaches to address this issue in several applications.

2.3.3 Building the Initial Model MI

With a set of rules generated in the previous step, now the problem is: How to organize

these rules so they can work together as a decision-making system? Basically, we need to solve

two issues:

Given a case t, identify the rules that are eligible to make decisions on t

If multiple such rules exist, select the most appropriate one(s)

For the first issue, we need to identify the rules which are "relevant" to the given case t.

Intuitively we can define a rule r is relevant to case t if r's description matches the description of

t's. And only those rules that are relevant to t are eligible to make decisions on t. The exact

"match" definition is application dependent.

Example 2-1 Suppose the description of document t is: {thread, process, deadlock}. And we

have two rules: rl={thread, deadlock}+OS, r2={deadlock, table)+database. We regard rule rl

is relevant to document t since the description of rl matches (a subset in this case) t. But r2 does

not match t.

For the second question, it is equivalent to identify the rule(s) which can maximize user's

application goal. If an interestingness measurement is defined based on user's goal, we could just

simply select the rule(s) with the highest interestingness values. Based on the previous

discussions, we have the following MIF principle for building the initial model.

Definition 2-1 (The MIF Principle). Given a case t, we only select relevant rule(s) to make

decision. If there are choices, the rule(s) of higher interestingness has the priority. This is called

the most-interesting-first principle, or simply MIFprinciple.

The MIF principle turns a set of rules into a decision-making system which can be used

to recommend decisions for new cases. However, it is just a general guideline and users need to

materialize it when they actually apply it.

Given a testing case, the MIF principle allows to use multiple rules for prediction.

However, it becomes a problem when those rules give different predictions. One solution to solve

the conflict is to weight the predictions based on the priority of those rules. However, it is not

easy to assign the weights appropriately. To avoid this problem, in this thesis we only use one

rule (the rule with the highest rank) for prediction. We believe such rule has highest possibility

(compared to other matched rules) to maximize user's application goal. Another advantage of this

approachs is to avoid specifying the threshold for the number of rules to be used for prediction.

2.3.4 Pruning the Initial Model MI

By organizing individual rules into a system in Step 2 we have new opportunities to

optimize the system and prune rules due to the introduction of correlation among rules that does

not exist in Step 1. That's why we have an extra step for refining the model. The actual

optimizinglpruning strategy is application dependent. However, one important thing we should do

in this step is to optimize the system on future data.

In the previous two steps we build a model based on historical (training) data. However,

this model is intended to be used on future data. Typically the training data contains noise, which

could pollute the patterns (rules) mined. Such patterns should be removed so they won't hurt the

system performance on future data.

2.4 Summary

In this chapter, we introduce a general domain-independent framework which can be

served as guidelines to build decision-making systems. Unlike most algorithms that only focus on

performance, the framework emphasizes on both performance and interpretability. More

importantly, it pushes the application goal down to the very beginning of system construction.

In the following chapters we will study several challenging applications using the

framework as guidelines. Each application has its own unique challenges and needs innovative

approaches to solve them. The framework helps and guides users to find such approaches.

CHAPTER 3

GROWING DECISION TREES ON ASSOCIATION RULES

This chapter studies a well-known decision-making problem: classification. Leveraging

association rules for classification is an active research area in data mining. The richness of

association rules gives this approach an edge over heuristically guided rule search. However,

association rules suffer from two major issues. First, the minimum support requirement (i.e.

requiring all the generated rules having support above certain threshold) for mining association

rules often compromises the confidence requirement for classification rules. Second, association

rules are not mutually exclusive, and an ad-hoc handling of rule interaction often diminishes the

classification structure. To deal with the first problem, we abandon the support requirement and

employ all association rules above a minimum confidence for classification. To deal with the ,

second problem, we build an ADT (association based decision tree) from association rules and

prune over-fitting rules on an accuracy-driven basis like the decision tree induction. By

combining the richness of association rules with the accuracy-driven pruning of the classic

decision tree induction, ADT outperforms other classifiers in both accuracy and classifier size. A

paper based on this chapter was accepted by SIGKDD 2000 conference [WZHOO].

3.1 Introduction

In this chapter we introduce an innovative approach for classification: association based

decision tree (ADT). It takes the advantages from both association rules and decision trees by

organizing association rules into a decision-tree-like structure.

In a decision tree, rules are organized into a generalization tree where the cases covered

by a parent are covered exclusively by the child (specific) rules. Such exclusive coverage of the

training cases enables a systematic, accuracy-based bottom-up pruning of over-fitting rules.

However, decision tree evaluates one attribute at a time. Such heuristic-based local search could

diminish the typical structure that several attributes collectively determine the class. On the other

hand, the association mining searches globally for rules according to the joint predictiveness of

several attributes disregarding the interaction of other rules. The richness of rules gives this

approach the potential of finding the true classification structure in the data. Unfortunately, this

strength becomes a weakness when pruning over-fitting rules because rules are inter-related by

covering common cases and by a non-tree generalization hierarchy.

To prune over-fitting association rules, we organize rules into a generalization tree and

leveraging the bottom-up pruning of decision tree. The result is called ADT (association based

decision tree). Thus, the association rules used for building the classifier are selected from the full

set of rules and collectively ensure the maximum accuracy with respect to the bottom-up pruning

allowed. In other words, ADT has the advantage of combining the richness of association rules

and the accuracy-driven pruning of decision tree induction. Our experiments on 21 benchmark

data sets show that ADT leads other classifiers by an average of 2.4% in accuracy and by an

average of 15% in classifier size.

Another major contribution in this chapter is the conJident rule mining algorithm. Several

algorithms have been proposed to use association rules for classification [AMS97, LHM98,

MW99, WZL991. Those approaches generate association rules by specifying minimum support

and minimum confidence thresholds. Often, a good threshold is unknown in advance (if it exists

at all) because different rules may have different requirements [WHHOO]. In such cases, a viable

pruning approach should be accuracy-driven, rather than threshold-driven. In ADT, we abandon

the ad-hoc minimum support requirement and employ association rules satisfying only the

minimum confidence, called con~dent rules, to build a classifier. To find all confident rules

without exhaustive enumeration, we propose a confidence-based pruning by exploiting a certain

monotonicity of confidence so that general rules are examined only if some specific rules are

confident.

This chapter is organized as follows. In Section 3.2 we introduce the related work. From

Section 3.3 to 3.5 we present the algorithm of building ADT by following the guidelines in the

general framework. We evaluate the effectiveness of our approach in Section 3.6. Section 3.7

concludes this chapter.

3.2 Related Work

Classification has been a subject of research in machine learning, statistics, pattern

recognition, neural networks and other areas for several decades. Association rule mining was

first studied in [AIS93], and subsequently in a number of papers, e.g., [AS94, Bay98, HF95,

PCY95, SA95, SON951. These two problems are largely studied in isolation until association

rules are used for classification recently. We focus on the work on classification based on

association rules.

Association rules are used for partial classification in [AMS97] and for covering training

cases in [Bay97]. Both works are not concerned with building a classifier. [LHM98] uses

association rules to build a classifier and prunes specific rules using both the minimum support

and the pessimistic estimation. In particular, [LHM98] uses confidence and support to compute

the observed error of rules. This computation ignores the interaction among rules by repeatedly

covering a training case using all matching rules, thus, fails to model the reality that each case is

classified by one rule. [DZWL99, MW991 combines several association rules to classify a new

case. Thus, this approach partially addresses the "low support" issue of classification rules

because a combined rule could have a lower support. The rule pruning in [DZWL99, MW991 is

essentially threshold-based. In [WZL99], multi-level association rules are used to build

hierarchical classifiers where both the class space and the feature space are organized into

taxonomy or an isa-hierarchy. All the above approaches crucially rely on a minimum support to

prune specific rules. We abandon the support requirement and deal with over-fitting by an

accuracy-driven pruning. Finding association rules between two values without a support

requirement is studied in [CDF+OO]. But such rules are too general for classification. Several

researchers, e.g., [Sch93, MP941, have tried to build classifiers by extensive search. None of

them, however, uses association-mining techniques.

3.3 Mining Confident Rules

For classification application often the goal is to maximize the prediction accuracy.

Hence, rules with high confidences are preferred. As pointed out in the framework, we should

consider this domain constraint when mining association rules. In this section, we propose an

algorithm to mine confident rules. Rules with higher confidences are more preferred. The

algorithm does not require users to select the minimum support, which is often difficult to

determine in many cases.

We assume that the database is represented by a relational table T over m non-class

attributes A], ..., A, and one class attribute C. A case in the database has the form <al, ,., a , c,,

where a, are values of Ai and c is a class of C. A rule, or a k-rule, has the form Ail=arl A . . . A

Aik=a;k+C=c, with each attribute occurring at most once. By prefixing a value with its attribute,

we can omit attributes and write a rule as a,], ..., a,k+c, or simply x+c, where x denotes one or

more values. We say a case t and a rule x+c match if t contains all the values in x. A rule x, ai+c

is a A,-specialization of x+c if a, is a value of A,. denotes the number of cases in T, and

num(x) denotes the number of cases in T that contain all the values in x. The support of rule x+c,

denoted sup(x+c), is num(x, c)llq, where num(x, c) denotes the number of cases in T that contain

both x and c. The confidence of rule x+c, denoted conf(x+c), is num(x, c)/num(x).Given a

minimum confidence minconf, a rule is conzdent if conJ(x+c)2minconJ:

Definition 3-1 (Mining confident rules) The problem of mining conjident rules is to find all

confident rules for a given minimum confidence.

Since mining confident rules does not require a minimum support, the support-based

pruning in [AIS93] is not applicable. What we need is a confidence-based pruning that pushes the

confidence requirement to prune unpromising rules as early as possible. This change turns out to

be drastic. On the one hand, confidence no longer enjoys the downward closure as enjoyed by

support-based pruning [AIS93]: Age=young+Buy=yes and Gender=M+Buy=yes could have

lower confidence than Age=young, Gender=M+Buy=yes. Consequently, even though shorter

rules are not confident, longer rules still need to be examined. On the other hand, confidence does

not enjoy the upward closure either because Age=old, Gender=Firguy=yes could have lower

confidence than Age=old+Buy=yes or Gender=F+Buy=yes. Thus, a straightforward pruning

based on the downward or upward closure does not work.

To motivate the confidence-based pruning, consider the following rules:

Suppose that rl has confidence of 0.60, that is, 60% of young people buy the Internet

service. We can infer that some of r2 and r3 has at least confidence of 0.60. The key observation

is that, since the two conditions Gender=M and Gender=F are mutually exclusive, if one

condition impacts confidence negatively, the other condition must impact confidence positively.

We can exploit this property to prune r l if none of r2 and r3 is confident. We call this property

the existential upward closure because it assures that some specialized rule of a given confident

rule must be confident.

Theorem 3-1 (The existential upward closure) Consider any attribute A, not occurring in rule

x J c . (i) Some A,-specialization of x J c has at least the confidence of conf(x irc). (ii) If x J c is

confident, so is some Aj-specialization of x J c .

Proof: (ii) follows immediately from (i). So we prove (i) only. Suppose that for every value ai of

A,, conf(x, a, Jc)<conf(x irc). That is, num(x, a,, c)/num(x, ad<conf(x +c), or

num(x, a,, c) <num(x, a$ *conf(x +c), where num(x, a,, c) denotes the number of cases in T that

contain x, a, and c. Summing up over all ai on both sides, we have

Ea,num(x, ai) c) <Ea,num(x) aai) *conf(x +c), or,

Since each training case contains at most one value of A,, Zh, num(x, a,, c)=num(x, c) and

Zh, num(x, a$=num(x). Therefore, num(x, c)/num(x)<conf(xJc). But this contradicts the

definition of confidence. (i) is proved.

The existential upward closure suggests the following level-wise rule generation. Assume

that all confident k-rules have been generated (starting with k=m, the number of non-class

attributes). We generate a candidate (k-+rule x irc only if for every attribute A, not occurring in

x J c , some A,-specialization of x +c is confident. We can implement this candidate generation in

relational algebra, thus, in SQL supported by any database system. In particular, let Rk be the set

of confident k-rules and let Rk(X C) be the set of rules in Rk with attributes X on the left-hand

side. Similarly, let Ck and Ck(X C) be the corresponding notations for generated candidate rules.

We represent rules x +c as tuples <x, c> and represent Rk(' C) and Ck(X C) as relational tables

over attributes X and C. Theorem 3-1 (ii) can be restated as: A (k-1)-rule <x, c> is in CR-,(X C),

where x is a vector of values over X, only if <x, c> is in the projection n,,,Rk (X, A,, C) for

every non-class attribute A, not occurring in X. This gives rise to the following computation

of Ck-, (X, C) -

Corollary 3-1 Let Ck-, (X, C) = nAi xx,,Rk (X, Ai, C) , where n,,,Rk (X, A,, C) denotes the

projection onto the attributes Xand C, and A, ranges over all non-class attributes not in X. Then

ck(x c) I> Rk(x c).

The corollary above implies two results. First, it suffices to examine only confident k-

rules, not other rules, in order to generate a superset of confident (k-1)-rules; thus, examining this

superset is sufficient to find all confident rules. Second, this generation can be implemented by a

relational expression over the set of confident k-rules, i.e., Rk, therefore, can be immediately

implemented on top of a commercial database system. The actual confident rules in

C,-, (X, C) can be found by computing the confidence of candidates in Ck-l in one pass of the

database T.

Table 3-1 The sample database

Example 3-1 Consider a sample database in Table 3-1. Suppose minconp80%. We see that:

R2(A,, AL C)={<7,0,1>,<5,0,0>}

R2(A1, Ah C)={<7,O,l>,<7,Iy l>,<5,O,O>}

R2(A2, All, C)={<0,071 >,<27070>,<27 1 1>}

C I can be computed as follows:

C, (A , , C) = n A I , , ~ , (4 , A,, C) n r A I , , ~ , (A , , A , , C) ={<7,1>,<570>1

'1 = n,2 , ,R2(A,7 nrA2,cR2 A37C)={<071>}

'1 7 ') = nA3,C R2 (Al 9 ') n nA3,c R2 7 7 ') ={<0,1>,<1 7 l>?<O,O>}

By finding the confidence of candidates in CI, we have RI(AI,C)={<7,1>}, RI(A2,C)=RI(A,C)=0.

Table 3-2 The overview of mining confident rules

Input: Table T over A], ..., A,, C and minconj

Output: All confident rules;

Algorithm:

1 . k=m;

2. Ck(A1, ..., A,, C)=T;

3 . while k2l and Ck is not empty do

4. Compute the confidence of candidates in Ck in one pass of T;

5. Rk=all confident candidates in Ck;

6 . Generate Ck-, hom Rk (based on Corollary 3-1);

7. k--;

8. Return all Rk;

The table above gives the algorithm for finding confident rules. The seed C,, is initialised

to the set of training cases in the database T (line 2). In iteration k, we compute the confidence of

candidates in Ck in one pass of T (line 4), collect confident k-rules (line 5) from the candidates,

and generate Ck.] (line 6). To compute the confidence of candidates in Ck, we borrow the

computation of itemset support in [AS94]: First, candidates x +c in Ck are stored in the hash-tree

as they are generated. Then, we scan the cases in T, and for each case t, we update num(x) and

num(x, c) for all the matching candidates x+c such that xct using the subset function of the

hash-tree, exactly as in [AS94]. In particular, if t has class c, we increment both num(x) and

num(x, c); otherwise, we increment num(x). At the end of the database scan, the confidence of a

candidate x +c is num(x, c)/ num(x).

3.4 Building the Initial Classifier

Let C denote the set of confident rules plus the default rule, denoted 0% where c is the

majority class in data T. Note that every case matches the default rule. In classification the goal is

to achieve high accuracy. Hence, we prefer the rules with high confidence for prediction. The

following definition ranks rules based on their confidences.

Definition 3-2 (The ranking of confident rules). Consider two rules r and r'. We say that r is

ranked higher than r', written as r 4, r' , if the following condition holds (in that order):

or if conf(r)=confir'), but sup(r)>sup(r 3,

or if sup(r)=sup(r?, but size(r)Qize(r'),

or if size(r)=size(r'), but r precedes r ' in the lexicographical order of rules.

where confir) denotes the confidence of rule r, sup(r) denotes the support of rule r, and size(r)

denotes the number of attributes in the left-hand-side of rule r.

24

In words, 4, ranks rules by confidence, followed by support, followed by size, followed

by the lexicographical order of rules, in that order. The following principle governs the preference

of rules, which favours the most predictive rule among all applicable ones. It is an application of

MIF principle (in the general framework) where the interestingness is measured by confidence.

Definition 3-3 (The MCF principle) If there are choices, the rule of the highest rank has the

priority. This is called the most-conJident-Jirstprinciple, or simple MCFprinciple.

The MCF principle serves two roles in the construction of a classifier. First, it turns the

set of rules into a classifier by covering a case using the rule that matches the case and has the

highest possible rank. This rule is called the covering rule of the case. The term initial classfzer

refers to this classifier. The second role of the MCF principle is resolving the interaction among

rules, by partitioning the covered cases according to covering rules. Each training case belongs to

the partition correspondjng to its covering rule. The significance of this partitioning is that if we

compute the "observed error" of a rule using the training cases covered by the rule, we do not

have the problem of repeatedly considering a training case for several rules. This is clearly a more

truthful error estimation of the prediction model where each new case is predicted using one rule.

With the observed error, we can then estimate the "predictive error" of a classifier and determine

the over-fitting rules to be pruned.

Example 3-2 Consider the training set Tin Table 3-3 (left). Suppose we find 8 confident rules as

shown in Table 3-4. r9 is the default rule. (Ignore the last three columns in Table 3-4 at this time.)

sample data sets for a small example

The testing set

Consider t l l in the testing set. The matching rules of t l l are r,, r8 and r9. rq is the

covering rule of t l l because it is ranked higher than the other two rules. Thus, t l l is classified

into class 1 incorrectly. Similarly, the covering rule of t12, t13, t14 is r2, rl, r2, respectively, all

classified correctly.

3.5 Pruning the Classifier

In this section we introduce the algorithm ADT to prune the classifier. As pointed out in

the general framework, the purpose of pruning is to optimize the system on future data and

improve the interpretability by reducing its size. First, we remove the redundant rules.

Table 3-4 The initial classifier

3.5.1 Removing Redundant Rules

Let Ihs(r) denote the left-hand-side of rule r. we say that rule r is more general than rule

r ', or r ' is more special than r, written as r p r ' , if Ihs(r) clhs (r '). We observe that, under the

Rule ID

rl

'-2

r3

r4

r6

7 7

78

r9

MCF principle, rules that are more specific but do not offer higher confidence will never be used.

Such rules can be removed without affecting classification.

Rule

A]=O, Aj=l +O

Al=l + 1

AI=O, A2=1 3 0

A1=0, A3=0+ 1

AI=2, A2=2*0

AI=2, A3=2+ 1

AI=O+O

0 3 0

Conf.

1 .OO

1 .OO

1 .OO

1 .OO

1 .00

1 .OO

0.75

0.50

Sup.

0.20

0.20

0.10

0.10

0.10

0.10

0.30

1 .OO

Covered

Training

Case

t l , t8

t4, t6

t2

t3

t10

t9

none

t5, t7

N (#case

covered)

2

2

1

I

1

1

0

2

E (#case

covered

wrongly)

0

0

0

0

0

0

0

1

Definition 3-4 (Redundant rules) A rule r is redundant if there is some rule r'that is more

general and ranked higher than r, that is, r l < , r and r l < , r .0

A redundant rule r will have no turn to cover any case because some general rule r'

matches whatever cases r matches and has a higher rank than r. From now on, we assume that

redundant rules are removed from the classifier.

3.5.2 Building ADT

Now we consider pruning non-redundant rules. The idea is to use the error observed in

the training cases to estimate the error on new cases, and to prune rules if it helps to reduce the

estimated error. We borrow the error estimation of decision tree [Qui93]. In decision tree, the

training cases covered by a parent rule (general rule) are refined by child rules (special rules)

using the values of the splitting attribute chosen at the parent. If child rules are over-fitting,

measured by an increase of the estimated error, it is natural to "cancel" such refinement by

pruning the child rules. However, the decision tree method is not directly applicable to our initial

classifier. This is because unlike decision tree, <, is a lattice of rules, rather than a tree of rules,

where an association rule may have several general rules. If a special rule is pruned, more than

one general rule can be used to cover the cases covered by the special rule. Therefore, to adopt

the decision tree pruning, we need to convert the lattice into a tree by resolving the conflict of

parenthood. The significance of having a tree structure is that a parent rule will "act on behalf of '

its child rules if the latter are pruned.

Consider a rule r. If r is pruned, we need to choose a general rule to cover the cases

originally covered by r. Again, the MCF principle helps us to make this choice: The highest

ranked general rule, say r', should be chosen. In this sense, r ' acts on behalf of r in case that r is

pruned. This immediately converts the lattice of association rules into a tree of such "acts on

behalf of ' relationships between rules.

Definition 3-5 (ADT) Consider a non-default rule r. The parent of r is the rule that is more

general than r and has the highest possible rank. The ADT (association based decision tree) for a

rule set SR contains a node for each rule in SR and contains an edge from a non-default rule to its

parent. 0

Figure 3-1 The unpruned ADT

The root of ADT is the default rule, which is the only rule having no parent. Figure 3-1

shows the ADT for the initial classifier (ignore the tuple associated with each node at this time) in

Table 3-4. In the following, the terms "node" and "rule" are interchangeable.

Corollary 3-2. Consider a child rule r and its parent r' in the ADT. (i) r I', r' (ii) There is no

rule r" other than r and r' such that r' p , r" p , r .

ProoJ Notice thatrVI', r . If r I', r' does not hold, r'<, rmust hold. Then r'I', r implies

that r is redundant, contradicting that all redundant rules are removed. This proves (i). To see (ii),

suppose that there is a rule r" such that r ' p , r " p , r . Since r' has the highest rank among all

general rules of r, r'<, r" . This implies that r" is redundant, a contradiction again. 0

From (i), rules at lower levels (i.e., children) have higher rank than those at higher levels

(i.e., parents). Thus, the MCF principle will select the lowest matching rule to be the covering

rule of a case. From (ii), the parent is the most conservative generalization of a child because no

general rule comes in between. Such a dense generalization order helps avoid over-pruning

"good" general rules.

3.5.3 Pruning ADT

The key step of pruning ADT is to estimate the error on new cases. We adopt the

pessimistic estimation for pruning decision tree [Qui93]. The idea is to regard misclassifying the

training cases covered by a rule r as the binomial distribution. This distribution is then used to

estimate the error on the whole population covered by r. In particular, if N(r) training cases are

covered by r, E(r) of them incorrectly, this is regarded as observing E(r) events in N(r) trials in

the binomial distribution. For a given confidence level CF, the upper limit on the probability of

error over the entire population is written UcdE(r), N(r)). Then the upper limit is

(pessimistically) taken as the estimated error rate of r on the whole population. The exact

computation of UcF(E(r), N(r)) is less important and can be found in the C4.5 code [Qui93]. And

a theoretical account can be found in [CP34]. The idea is that a smaller sample size N is penalized

by a larger upper limit U&E(r), N(r)) to guarantee the specified confidence level CF. The default

value of CF in C4.5 is 25%.

Thus, if r is used to classify a set of new cases of the same size as the training cases

covered by r, the estimated error of r is N(r)*UcF(E(r), N(r)), and we have the CFO/o confidence

that the actual error is within this upper limit.

The pruning of ADT proceeds in the bottom-up order by considering all child nodes

before considering a parent node. Suppose that we are currently considering node v. Let tree(v)

denote the subtree rooted by v. If v is a non-leaf node, we check whether pruning tree(v) can

reduce the predicted error of the classifier. Here, pruning tree(v) means making v a leaf node,

which will cover all the cases covered by the rules within tree(v). If pruning is worthwhile, i.e.,

reducing the predicted error, we perform the pruning immediately; otherwise, we do nothing at v.

With such pruning we can both optimize the tree on future data (by reducing the overall estimated

error) and improve the interpretability (by reducing the number of rules).

Let Tree-Err(v) and Leaf-Err(v) denote the predicted error before and after pruning the

subtree rooted by v, respectively. These errors are computed by

where u ranges over all nodes within tree(v). N' is the number of training cases covered

by v as a leaf node, which is equal to the total number of training cases covered by the rules

within tree(v). Er is the number of cases incorrectly covered by v as a leaf node.

If Leaf-Err(v)l Tree-Err(v), we prune tree(v) into leaf node v and update E(v) and N(v)

to E r and N If Leaf-Err(v)>Tree-Err(v), nothing is done at node v. The above consideration is

repeated until the root of ADT is considered.

The final step is to remove any remaining rule that covers many cases incorrectly. The

merit of a rule r is defined by

Thus, a small merit means many cases are covered incorrectly. If the merit of a rule r is below a

user-specified threshold, denoted by minmeri, we can prune r from ADT. Unlike confidence, the

notion of merit is based on the non-repeated covering of training cases. A rule may have a high

confidence but a small merit because many cases contributing to the high confidence could be

covered by other rules. Pruning such rules often improves the accuracy of classifier.

Example 3-3 Consider pruning the ADT in Figure 3-1. Suppose that we like to have 25%

confidence that the actual error rate does not exceed the estimated error rate. Then CF=25%. See

Table 3-4 for the training cases covered by each rule. Associated with each node v in Figure 3-1

is a tuple (N(v), E(v), Err(v)). Err(v)= N(v)* UcAE(v), N(v)) denotes the estimated error of v.

Figure 3-2 The pruned ADT

(2, 0, 1.00) (4, 1, 2.19) (I , 0, 0.75) (I , 0, 0.75)

First, we consider non-leaf node r8. The estimated error of tree(r8) is the total error of rl ,

r3, r,, and ~ 8 . SO Tree-Err(r8)=0.75*2+l.00=2.50. The estimated error of r8 as a leaf node,

Leaf-Err(r~), is computed by assuming that it covers all cases covered by tree(r8). From Table

3-4, these cases are t l , t2, t3, t8, of which three are correctly classified into class 0, and one

incorrectly into class 1 . So, N'=4, E k l , and Leaf-Err(r8)=N'*Ucr;(EJ, N')=2.19. Since

Leaf-Err(rs)<Tree-Err(r8), tree(rS) is pruned into leaf node r8.

Next, we consider non-leaf node r9. Tree-Err(r9)=1+0.75+0.75+2.19+1.80=6.49 and

Leaf-Err(r9)=NwUcF(E', N9)=6.54, where Ek5 and NklO. Therefore, there is no pruning at r9.

The final ADT is shown in Figure 3-2.

Table 3-5 shows the result of classifying the testing cases in Table 3-1 using both

unpruned and pruned ADT. The pruning improves the accuracy from 75% to 100%. In the

unpruned ADT, the error is caused by r4 on the case t l I . From the training set we can see that the

classification structure mainly consists of r2 and r8. r4, generated by the noise case t3, is an overly

specialized rule of r8. Without the pruning, r4 takes over r8 to cover t l l , thereby, producing an

error.

Table 3-5 Classification on testing cases

It is heIpfbl to compare ADT with decision tree. Decision tree is both a rule generator and

a pruning method. At each step, decision tree selects the attribute that best splits the classes in the

current partition of data, evaluated by the information gain. Such a one-attribute-at-a-time top-

down data splitting induces a tree structure where a root-to-leaf path corresponds to a rule.

Consequently, the rules in decision tree follow a tree-structured sharing of features. In

comparison, ADT is built from rules produced elsewhere and its purpose is to prune over-fitting

rules. Though we have considered mainly association rules, ADT can be built using rules

produced by any rule generator. This decoupling of rule generating from rule pruning eliminates

Testing case

t l l

t12

113

t14

Pruned ADT

Covering Rule

r8

"2

r8

r2

Unpruned ADT

Error

0

0

0

0

Covering RuIe

r4

r2

rl

r2

Error

1

0

0

0

the unnatural sharing of features in decision tree, and combines the richness of externally

generated rules with the systematic pruning of decision tree induction.

In particular, by leveraging association rules we are able to evaluate rules several-

attribute-at-a-time, rather than one-attribute-at-a-time. This change is highly desirable for

capturing co-occurred features. Unlike decision tree that explicitly represents rules themselves,

ADT represents the "acting" relationship of rules and hides rules within nodes. Thus, ADT does

not impose an actual structure on rules.

3.6 Experiments

We evaluate ADT performance on 21 datasets from UCI Repository [MM96] as shown in

Table 3-6. The columns "#Tuple", "#Attributem and ''#ClassW denote the number of tuples, the

number of attributes, and the number of different classes for each data set.

We compare the performance of ADT with five other methods, i.e., C4.5 [Qui93], NB

[DH73], TAN [FGG97], CBA [LHM98] and LB [MW99]. C4.5 is frequently used as the

benchmark in the classification paradigm. NB is a Naive Bayes classifier which shows reasonable

accuracy in many cases. TAN is an extension of NB and outperforms many Bayesian Network

classifiers. CBA is a classification based on association rules, like ours. LB is a hybrid of NB and

association rule approach, by extending NB from itemsets of length 1 to length k.

For all methods, the parameters are set to their default values as suggested in the

literature. For example, CBA uses the minimum support of 0.5% plus the pruning option; TAN

uses the smoothing factor of 5, etc. For ADT, minconfis 50% and minmeri is 10%.

Table 3-6 21 Data sets used in experiments

I Data set

I Australia I 690 I 14 I 2

Balance

Bridges

625

CRX

Diabetes

Flare

Glass

Iris

I I I

108

Monks3

New-Thyr

Nursery

Page-Blo

I Tic-Tac-Toe

4

69 1

768

323

214

150

Post-Ope

Shuttle4

--

3

13

432

215

12415

5473

6

15

8

10

10

4

90

15

Voting

Wine

Our study focuses on the accuracy and the size of classifiers obtained as the average of

the 5-fold cross validation. If a data set is already pre-partitioned into the training set and testing

set, we combine them before applying the 5-fold cross validation. Since all methods, except C4.5,

deal with discrete attributes, continuous attributes are discretized using entropy discretization as

implemented in the MLC++ system [KJL+94].

2

2

3

7

3

6

5

8

10

Zoo

2

3

5

5

8

6

43 5

178

-

3

2

101

16

13

2

3

17 7

Data set

Australia

Balance

Bridges

Car

CRX

Diabetes

Flare

Glass

Iris

Monks-1

Monks-2

Monks-3

New-Thyr

Nursery

Page-Blo

Post-Ope

Shuttle4

Tic-Tac-Toe

Voting

Wine

Zoo

Average

C4.5-con

0.857

0.560

0.657

0.917

0.857*

0.737

0.823

0.681

0.933

0.978

0.616

0.989*

0.916

0.965

0.969*

0.689

0.997

0.841

0.966*

0.897

0.950*

0.847

Table

C4.5-dis

0.865

0.560

0.670

0.917

0.854

0.737

0.826

0.690

0.940*

0.978

0.616

0.989*

0.935

0.965

0.966

0.711

0.996

0.841

0.966*

0.874

0.950*

0.850

3-7

TAN

0.845

0.640

0.943*

0.740

0.826

0.681

0.920

1.000*

0.622

0.987

0.940

0.935

0.954

0.689

0.998*

0.743

0.989*

0.940

0.855

Classification

NB

0.859

0.778

0.632

0.856

0.851

0.750*

0.804

0.690

0.927

0.746

0.627

0.964

0.944

0.903

0.932

0.667

0.992

0.702

0.905

0.989*

0.950*

0.832

accuracy

LB

0.867*

0.778

0.632

0.886

0.857

0.736

0.823

0.690

0.927

1.000*

0.627

0.965

0.944

0.946

0.961

0.667

0.997

0.689

0.931

0.989*

0.950*

0.851

CBA

0.849

0.683

0.671

0.938

0.842

0.729

0.801

0.710

0.920

1.000*

0.763*

0.971

0.944

0.981

0.954

0.533

0.997

0.991*

0.940

0.920

0,940

0.861

ADT

0.855

0.797*

0.690*

0.921.

0.852.

0.739.

0.830*

0.714*

0.920

1.000*

0.730.

0.989*

0.953*

0.983*

0.952

0.712*

0.997.

0.974.

0.949.

0.931

0.940

0.877*

Avg.

0.857

0.685

0.565

0.911

0.730

0.738

0.819

0.694

0.927

0.958

0.657

0.979

0.939

0.954

0.955

0.667

0.996

0.826

0.808

0.941

0.946

0.853

3.6.1 Accuracy

Table 3-7 shows the average accuracy on 5-fold cross-validation of seven different

classifiers. The standard deviations of accuracy across different folds are small so we do not show

them here. "C4.5-con" stands for C4.5 without attribute discretization, and "C4.5-dis" stands for

C4.5 with attribute discretization. The blanks in the column for TAN indicate that TAN is not

applicable to those data sets with missing values. For each data set (indicated by a row), the most

accurate classifier(s) is marked with '*'. The last row is the average accuracy of a classifier over

all data sets, and the last column is the average accuracy of each data set over all classifiers.

We can see that no classifier is uniformly superior across all data sets. However, ADT

performs better in several ways. First, ADT scores the highest average accuracy, i.e., 0.877 in

bold face. This is 3.0% and 2.7% higher than that of "C4.5-dis" and "C4.5-con", and is 1.6%

higher than the second best, CBA. Second, ADT scores the most number of '*', i.e., the highest

accuracy. Third, shown in the last two columns, for the 13 data sets for which ADT does not

score '*', ADT is above the average for 8 of them, marked with '*', and is close to the average

for the other 5.

In Table 3-8, the first row shows the average win of ADT for the data sets for which

ADT is the best, and the second row shows the average loss of ADT to the best classifier for the

data sets for which ADT is not the best. The comparison of the two rows shows that the win is

always more substantial than the loss.

Table 3-8 Win vs. Loss

Loser
ADT's win

Winner
ADT's loss

NB
0.037

NB
0.034

C4.5-con
0.055

C4.5-con
0.009

LB
0.028

LB
0.012

C4.5-dis
0.046

C4.5-dis
0.020

CBA
0.05 1

CBA
0.026

TAN
0.138

TAN
0.008

Table 3-9 Size of classifiers
- --

~ 4 . 5 - i n 1 C4.5-dis I CBA 1 ADT Avg. I Data set

I Australia

I Balance

1 car

Diabetes t-- I Flare

Monks- 1 I

New-Thyr

Nursery I
Page-Blo I

Tic-Tac-Toe I
Voting I

I zoo

I Average

Table 3-10 Size of ADTs at different stages

Confident Unpruned Pruned Data set Final

Classifier Rules ADT ADT

2.27* 1 o6 9.67* 1 o3 3.04* lo3

1.15*103 3.98*102 3.28*101

9.80* 1 o4 7.64* 1 o2 6.72* 1 o2

Australia

Balance

Bridges

Car

CRX

Diabetes

Flare

Glass

Iris

Monks- 1

Monks-2

New-Thyr

Nursery

Page-Blo

Post-Ope

Shuttle-S

Tic-Tac-Toe

Voting

Wine

zoo

3.6.2 Size

Table 3-9 shows the size of classifiers in the number of rules. The size information is not

available for LB, NB, and TAN. ADT produces the smallest classifier for many data sets.

Interestingly, there seems to be a strong correlation between the datasets on which ADT produces

the most accurate classifier and the datasets on which ADT produces the smallest classifier. Table

3-10 shows the size of ADT at each stage of the construction. "Confident Rules" stands for the

total number of confident rules generated; "Unpruned ADT" represents the number of rules in the

initial classifier with redundant rules removed; "Pruned ADT" is the size of the pruned ADT

before applying minmeri; "Final ADT" shows the size of the final classifier. The comparison of

these stages shows that every stage of pruning is effective in reducing the classifier size.

3.7 Conclusion

In this chapter we propose a novel algorithm for the classification problem by integrating

two techniques together: association rule and decision tree induction. Association rules are rich,

but lacking of a systematic method of pruning over-fitting rules for classification. Decision tree

induction, on the other hand, has an accuracy-driven pruning, but imposes restrictive structures on

rules. The comparison motivates our work of combining the two approaches for building better

classifiers. We propose a method to build decision trees from association rules, i.e., ADT. The

advantage of ADT is the preservation of the strength of both approaches, i.e., the richness of rules

and the systematic accuracy-based pruning. To give ADT the full pruning power, we use all

confident association rules without a support requirement. A confidence-based mining is

proposed for finding all such rules. Experiments have shown that the proposed ADT not only

builds more accurate classifiers, but also does this by finding more truthful structures, as

indicated by the smaller size of classifiers.

CHAPTER 4

MINING CUSTOMER VALUE: FROM ASSOCIATION

RULES TO DIRECT MARKETING

Direct marketing is a modern business activity with an aim to maximize the profit

generated from marketing to a selected group of customers. A key to direct marketing is to select

a right subset of customers so as to maximize the profit return while minimizing the cost.

Achieving this goal is difficult due to the extremely imbalanced data and the inverse correlation

between the probability that a customer responds and the dollar amount generated by a response.

Traditional probability based approaches cannot solve this problem. In this chapter, we present a

solution based on a creative use of association rules. A chief advantage is the completeness of

association rule search and the focus on promising customers by pushing the recorded customer

value. A paper based on the algorithm proposed in this chapter was accepted by DMKD

international journal [WZYYOS].

4.1 Motivation

Direct marketing makes it possible to offer goods or services or transmit messages to a

specific, targeted segment of the population by mail, telephone, email or other direct means.

However, building decision-making systems for direct marketing is a challenging task due to the

following reasons.

1. The high dimensionality and the scare target population present a significant

challenge for extracting the features of the "respond" class. For example, the

KDD-CUP-98 dataset [KDD98-data] used in our experiment contains 191,779

records about individuals contacted in the 1997 mailing campaign. Each record is

described by 479 non-target variables and two target variables indicating the

"respond" or "not-respond" classes and the actual donation in dollars. About 5%

of records are "respond" records and the rest are "not-respond" records. Since

any subset of variables can be a feature for distinguishing the "respond" class

from "not-respond" class, searching for such features is similar to searching for a

needle from a haystack The "one attribute at a time" gain criterion [Qui93] does

not search for correlated variables as features.

Quoted from [KDD98-result], "there is often an inverse correlation between the

likelihood to respond and the dollar amount of the gift". It means that there are

many "small customers" making small purchases and few "big customers"

making big purchases. A pure probability based ranking tends to favour "small

customers" because of higher likelihood to respond, and ignore "big customers".

Previous researches addressed this issue in two steps: obtain the probability

estimation from a standard classification model such as decision tree [LL98,

MS961, bagging [Dom99] and smoothing [ZEOl], and re-rank the probability

based ranking by taking into account the customer value [MS96, ZEOl]. The

disadvantage of this approach is that the customer value is ignored in the first

step.

To address challenge 1, we propose the notion of focused association rules to focus on

the features that are typical of the "respond" class and not typical of the "not-respond" class. A

focused association rule makes use of only items that have higher frequency and correlation in the

"respond" class. The search space is determined by "respond" records and items that occur

infrequently in the "not-respond" records. This prunes all "not-respond" records (to deal with the

scarcity of the target class) and all items that occur frequently in the "not-respond" class (to deal

with the high dimensionality).

In the presence of Challenge 2, innovative solutions are needed because statistically

insignificant rules could generate a significant profit. Our approach is to push the customer value

into the model buildinglpruning so that the estimated profit over the whole population is

maximized.

4.2 Introduction

In direct marketing, typically, what available is a historical database containing

information about previous mailing campaigns, including whether a customer responded and the

dollar amount collected if responded. The task is to build a model to predict current customers

who are likely to respond. The goal is to maximize the sum of net profit, qdollar amount -

mailing cost), over the contacted customers. We choose the KDD-CUP-98 dataset [KDD98-data]

as the case study. This dataset was collected from the result of the 1997 Paralysed Veterans of

America fundraising mailing campaign and only 5% of records are responders. Thus, simply

classifying all customers into non-responders would give 95% accuracy, but this does not

generate profit.

In this chapter, we propose a novel approach to address the above issues. First, we exploit

association rules [AIS93, AS94) of the form X+respond to extract features for responders, where

X is a set of items that is correlated with the "respond" class. We select a small subset of

association rules to identify potential customers in the current campaign. We address two key

issues, namely, push the customer value in selecting association rules, and maximize profitability

over the current customers (instead of historical ones). On the challenging KDD-CUP-98 task,

which has 5% responders and 95% non-responders, this method generates 41% more profit than

the winner of the competition and 35% more profit than the best known result after the

competition, and the average profit per mail is 3.3 times that of the winner. This method identifies

correctly 57.7% of responders and 78% of non-responders, thus, also provides a competitive

solution to the cost sensitive classification.

4.2.1 Task Definition

Historical records are stored in a relational table of in non-target variables A,, ..., A, and

two target variables Class and V. Class takes one of the "respond" and "not-respond" classes as

the value. V represents a continuous donation amount. Given a set of records of this format, our

task is to build a model for predicting the donation profit over current customers represented by

the validation set in the KDD-CUP-98 dataset. Precisely, we want to maximize Z;(Vu-$0.68),

where u ranges over the current customers who are predicted to have a donation greater than the

mailing cost $0.68. An implicit assumption is that current customers follow the same class and

donation distribution as that of historical records. Since the donation amount V for a current

customer is not known until the customer responds, the algorithm is evaluated using a holdout

subset from the historical data, i.e., the validation set.

In the following sections we first examine the related work. Next, we present our

algorithms by following the steps in the general framework. Section 4.7 gives the experiment

results on KDD-CUP-98 dataset. In Section 0 we conclude the chapter.

4.3 Related Work

In direct marketing, a principled method is ranking customers by the estimated

probability to respond and selecting some top portion of the ranked list [LL98, MS961. For

example, if the top 5% of the ranked list contains 30% of all responders, the lift model gives the

lift of 30/5=6. A significant drawback of this approach is that the actual customer value, e.g., the

donation amount in the example of fundraising, is ignored in the ranking, or it requires a uniform

customer value for all customers. As pointed out in [KDD98-result] for the KDD-CUP-98 task,

there is an inverse correlation between the likelihood to buy (or donate) and the dollar amount to

spend (or donate). This inverse correlation reflects the general trend that the more dollar amount

is involved, the more cautious the buyer (or donor) is in making a purchase (or donation)

decision. As a result, a probability based ranking tends to rank down, rather than rank up, the

valuable customers.

The realization that a cost-sensitive treatment is required in applications like direct

marketing has led to a substantial amount of research. [Dom99] proposed the MetaCost

framework for adapting accuracy-based classification to cost-sensitive learning by incorporating a

cost matrix C(i, j) for misclassifying true class j into class i. [ZEOl] examined a more general

case where the benefit B(i, j, x) depends not only on the classes involved but also on the

individual customers x. For a given customer x, the "optimal prediction" is the class i that leads to

the minimum expected cost [Dom99]

or the maximum expected benefit [ZEO 11

Both methods require to estimate the conditional class probability P(j(x). In this phase,

since only the frequency information about x, not the customer value of x, is examined, valuable

customers, who tend to be infrequent because of the "inverse correlation", are likely to be

ignored. The customer value is factored only at the end via the factor B(i, j, x).

The motivation of association rules in the market basket analysis has led to several

attempts to extend and apply such rules in business environments. [SON981 considers negative

association rules that tell what items a customer will not likely buy given that hehhe buys a

certain set of other items. [TKSOO] considers indirect association rules where the association of

two items is conditioned on the presence of some set of other items. Such associations are purely

count or occurrence based and have no direct relationships with the "inverse correlation"

considered here that addresses profit. We focus on using association rules based on customer

value, whereas these works focus onJinding association rules based on count information. This

distinction is substantial because association rules themselves do not tell how to maximize an

objective function, especially in the presence of the "inverse correlation". Our work differs from

the product recommendation in [WZH02] and item selection in [BSVW99, WS021 in that we

identifir valuable customers instead of items or products.

In the rest of this chapter, the following terms are interchangeable: customer and record,

responder and "respond" record, non-responder and "not-respond" record.

4.4 Generating FARs (Focused Association Rules)

Obviously, general association rule mining algorithms (like Apriori) won't work well due

to the high dimension and huge data size. In addition, mining confident rules (discussed in

CHAPTER 3) no longer works here since the application goal is not accuracy. Actually we need

to find the ruleslpatterns that have the potential to bring high profit. In this section we introduce

focused association rules to solve these issues.

As a necessary data pre-processing step, we discretize continuous non-target variables

using the MLC discretization utility' before generating any rules. After discretization, each value

a, is either a categorical value or an interval. We are interested in "respond" rules of the form
J

that are potentially useful for discriminating responders from non-responders. Despite many

efficient algorithms for mining association rules (see [AIS93, AMS+96, AS941, for example), we

encountered a significant difficulty in this step: To find "respond" rules we have to set the

minimum support well below 5%, i.e., the percentage of "respond" records in the dataset;

however, with 481 variables and 95% records in the "not-respond" class, the number of "not-

respond" rules satisfying the minimum support is so large that finding "respond" rules is similar

to searching a needle from a haystack. Sampling techniques cannot reduce the "width" of records

that is the real curse behind the long running time. We consider a simple but efficient solution to

this problem by focusing on items that occur frequently in "respond" records but occur

inzequentl'y in "not-respond" records.

Let D, be the set of "respond" records and let Dn be the set of "not-respond" records. We

have the following definition:

Definition 4-1 (Focused association rules) The support of item Ai=ai in D, or D, is the

percentage of the records in D, or D, that contain A,=a,. The support of a rule in D, or D, is the

percentage of the records in D, or D, that contain all the items in the rule. Given a minimum

support for D, and a maximum support for D,, an item Ai=ai is focused if its support in D, is not

more than the maximum support and its support in D, is not less than the minimum support. A

"respond" rule is a focused association rule (FAR) if it contains only focused items and its

support in D, is not less than the minimum support. 0

In words, a FAR occurs frequently in D, (as per the minimum support) but none of its

items occurs frequently in D, (as per the maximum support). Notice that FARs exclude the

"respond" rules that as a whole do not occur frequently in Dn but some of its items does. This

"incompleteness" trades for the data reduction achieved by pruning all non-focused items. For the

KDD-CUP-98 dataset, this prunes all "not-respond" records, which accounts for 95% of the

dataset, and all items that occur frequently in D,, which accounts for 40%-60% of all items. Our

experiments show that the notion of FARs works exactly towards this goal.

Table 4-1 Algorithm of generating focused association rules (FARs)

Input: D,, D,, the minimum support for D, and the maximum support for D,

Output: F ARs

Algorithm:

/* Compute the support in D, for items in D, */

for all tuple t i n D, do

for all item in t do

Create a counter for the item if not yet created;

end for

end for

for all tuple r in D, do

for all item in t do

Increment the counter for the item if found;

end for

end for

I* Remove the items from D, whose support in D, exceeds the maximum support */

for all tuple t in D, do

Remove the items from t whose support in D, exceeds the maximum support;

end for

Find "respond" rules above the minimum support in D, such as in [AIS93];

Algorithm shown in Table 4-1 finds FARs for given minimum support in Dr and

maximum support in D,. First, it computes the support in D, for the items in Dr(line 1-1 1) and

removes those items from D, for which this support exceeds the maximum support (line 12-15).

Then, it applies any association rule mining algorithm such as [AIS93] to the updated Dr to find

"respond" rules above the minimum support (line 16). This association rule mining is expensive,

but is applied to only "respond" records and only items whose support in D,, is not more than the

maximum support. After finding the FARs, we add to the rule set the (only) "not-respond" rule of

the form

This rule, called the default rule, is used only if a customer matches no FAR.

Table 4-2 The sample database

Table 4-3 The D, after applying the maximum support

Table 4-4 Count of items

Item Count in D, Count in Dr

bl* 3 2

Example 4-1 Consider a small sample database in Table 4-2. There are 10 records, 5 in

D, and 5 in D,. Each record has 3 attributes A, B, C and donation V. Suppose that both minimum

support for D, and maximum support for D, are 40%.

Table 4-4 shows the support count for each item in Dr. The items exceeding the

maximum support in D, (i.e., occur in more than 2 records in D,) are marked with "*".

Table 4-3 shows the D, with such items removed. Table 4-5 shows the FARs found from D,, plus

the default rule. 0

Table 4-5 The FARs generated with minimum support and maximum support of 40%

In the rest of this chapter, a "rule" refers to either a FAR or the default rule; sup(r)

denotes the support of rule r in D, uD,, i.e., the percentage of all records containing both sides of

the rule, Ihs(r) denotes the set of items on the left-hand side of rule r, I Ihs(r)l denotes the number

of items in Ihs(r). We say that a rule r matches a record t, or vice versa, if t contains all the items

in Ihs(r). We say that a rule r is more general than a rule r' if Ihs(r)c Ihs(r I).

RID

r l

4.5 Building the Initial Model

In direct marketing, to maximize the profit generated, we prefer the rule that matches the

customer and has the largest observed profit on the learning set. We should consider this domain

knowledge when constructing the system. Let proJit(r, t) denote the profit generated by the

prediction of r on a learning record t . The observed profit of r is defined as:

Rule

0+not-respond

Support in D,

5/5=100%

where t is a learning record that matches r and P is the number of such records. A large 0-avg(r)

means that the customers (in the learning set) matched by r make a large donation on average.

profzt(r, t) can be calculated as follow:

V-0.68 if t (as a respondent) is classified as a respondent

profzt(r, t) = -0.68 if t (as a non-respondent) is classified as a respondent

0 otherwise

To maximize the profit on a current customer, we prefer the matching rule of the largest

possible 0-avg. We give the total rule ranking definition below.

Definition 4-2 (Ranking rules) Consider two rules r and r'. We say that r is ranked higher than

r: written as r <, r' , if the following condition holds (in that order):

(Average profit) 0-avg (r)>O-avg (r'), or

(Generality) if 0-avg (r)=O-uvg (r'), but sup(r)>sup(r'), or

(Simplicity) if sup(r)=sup(r'), but Ilhs(r)l<llhs(r')l, or

if Ilhs(r)l=llhs(r')l, but r precedes r' in the lexicographical order of rules.

Given a record t, a rule r is the covering rule oft , or r covers t, if r matches t and has the highest

possible rank.

Similar to the ADT algorithm, we remove the redundant rules before we continue on the

next step.

Example 4-2 Continue with Example 4-1. Rules are ranked by 0-avg in Table 4-6. For example,

r2 matches 4 records pl, p2, p 3 and nl. O_avg(r2)=Zprofit(r2, t)/4=($30+$50+$40-

$0.68)/4=$29.83. 0-avg for other rules is similarly computed. p2 is matched by all 6 rules and is

covered by r5, the matching rule of highest rank. Similarly, the covering rules of other records

can be determined.

Table 4-6 Coverage and rank of rules

4.6 Pruning the Model

The above rule ranking criterion favours specific rules that match a small number of

customers of high profit. In the classic classification problem, such rules are pruned due to

statistical insignificance. In the presence of inverse correlation between the likelihood to respond

and the dollar amount generated by a response, extra care should be taken because valuable

customers do not show up very often and pruning their rules could lead to the loss of significant

profit. To address this issue, we propose pruning rules on the basis of increasing the estimated

profit over the whole population. Below, we describe this new pruning method.

RID

r5

7-6

r2

1-3

r4

r l

First, we explain how to estimate the profit of a rule r over the whole population; then,

we give a method for pruning rules based on this estimation. The profit of r (over the whole

Records matched

~ 2 ~ 3

P I , P2

p l , p2, p3, nl

p2, p3, p4, n3, n5

p l , p2, p5, n2, n4

pl-p5, nl-n5

Records covered

~ 2 , P3

P l

nl

p4, n3, n5

p5, n2, n4

0

0-avg

$45.00

$40.00

$29.83

$21.73

$19.73

$0.00

Ranking

1 st

2nd

3 Id

4h

5h

6~

population) can be estimated in two steps. First, we estimate the "hits" of r over the whole

population. Second, we compute the profit of the estimated hits using the observations in the

learning set. Similar to what we did for ADT, we borrow the pessimistic estimation [CP34,

Qui93J for estimating the "hits" of r.

Let Cover(r) denote the set of learning records covered by a respond rule r. Let N(r)

denote the number of records in Cover(r), E(r) of which do not match the class in r. E(r)/N(r) is

the observed error rate of r on the learning sample. Given a confidence level CF, we estimate the

"hits7' is N(T)*(l-UCF(E(r), N(r))), and the number of "misses" is N(r)*UcF(E(r), N(r)). The

average profit per hit in Cover(r) is

where t is a "respond" record in Cover(r), V is the donation amount in t. The average

profit per miss in Cover(r) is the cost of mailing to a non-responder, i.e., 0.68. We extend these

averages to the above estimated hits and misses.

Definition 4-3 (Estimated profit) Assume that r covers N learning records, E incorrectly. The

estimatedproJit of r is

i
N*(l- UcF(E(r), N(r)))*avgh(r) -N* &(E(r), N(r))*0.68 if r is a respond rule

Estimated(r)

0 if r is the default rule

The estimated average projit of r, denoted E-avg(r), is Estimate(r)lN. The estimated

p ro j t of a model is ZrEstimated(r) over all rules r (for lDrl+lDnl customers randomly chosen from

the whole population). 0

Notice the difference between 0-avg(r) and E-mg(r). 0-avg(r) is the average profit

observed for the learning records that are matched by r. The matching rule of the largest 0-avg(r)

is the covering rule of a given record. E-mg(r) is the average profit estimated for the records in

the whole population that are covered by r. We use E-avg(r) to estimate the profit generated by

each prediction of r over the whole population. E-mg(r) depends on 0-mg(r) to define the

notion of covering rules.

To prune over-fitting rules to maximize Z;Estimated(r), we organize rules into a decision

tree, like what we did in CHAPTER 3 for ADT. However, different rule pruning criterion is

required. This time we use estimated profit. Let Estimated(r) denote the estimated profit for a

node r, Estimated-tree(r) denote the estimated profit for the subtree rooted at r, and

Estimated-leafir) denote the estimated profit after pruning the tree at r. Estimated-tree(r) is

C,Estimated(u) over all nodes u within the subtree at r. If Estimated-tree(r)astimated-leaf(r), it

prunes the subtree at r by making r a new leaf node in the covering tree and removing the rules in

the subtree. If Estimated-tree(r)>Estimated-leafir), it does nothing at r. The nodes outside the

subtree at r are not considered because their estimated profit remains unchanged. Essentially, the

bottom-up pruning has the effect of cutting off some lower portion of the tree to maximize

C,Estimated(r) over remaining rules r.

Example 4-3 In this example we show how to prune the tree using the estimated profit criterion.

First we build the tree for Example 4-2. Consider rule r5 for example. r l , r2 and r3 are more

general than r.5, but r2 has the highest rank among them. So, r2 is the parent of r.5. In this way,

we build the tree on the left of Figure 4-1.

Table 4-7 shows Estimated(r) before and after the pruning at r. For example, r.5 covers

correctly p2 and p3, so N=2 and E=O. The estimated number of misses is

2*U&0,2)=2*0.50=1.00, and the estimated number of hits is 2*(l-Uc~0,2))=l.00.

avgh(r5)=[(50.68-0.68)+(40.68-0.68)]/(2-0)$45.00. From Definition 4-3, Estimated(r5)=1.00*

avgh(r.5)-1 .00*0.68=$44.32.

After examining nodes r5 and r6, the bottom-up pruning examines the node r2.

Estimated-tree(r2)=Estimated(r2)+Estimated(r5)+Estimated(r@=-O.68+44.32+6.99=$50.63 .

Pruning the subtree at r2 makes r2 cover pl, p2, p3 and nl, and N=4 and E=l. In this case, the

estimated number of misses is 4*Ucdl,4)=4*0.55=2.20, the estimated number of hits is 4*(1-

Ucdl ,4))=4*0.45=1.80, and avgh(r2)=[(50.68-0.68)+(40.68-0.68)+(30.68-O.68)]/(4-l)=$40.00.

Following Definition 4-3,

Since Estimated-tree(r2)Sstimated-leaf(r2), the subtree at r2 is pruned.

Using the same approach we examine nodes 1-2, r3, r4, and rl.The final pruned tree is shown on

the right of Figure 4-1.17

Table 4-7 Estimated(r) before and after pruning

RID

r5

r6

r2

r3

r4

rl

Before pruning I After pruning I

Figure 4-1 Left: before pruning

r l
Right: after pruning

4.7 Validation

In this section, we validate the proposed method using the standard split of the KDD98-

learning-set (95,412 records, 4,843 "responders") and KDD98-validation-set (96,367 records,

4,873 "responders") used by the KDD competition [KDD98-data]. The KDD98-learning-set is

used for learning a model. In our method, we split the KDD98-learning-set randomly into 70%

for the building set (66,788 records, 3,390 "respond" records) and 30% for the testing set (28,624

records, 1,453 "respond" records). The testing set is used for tuning the minimum and maximum

support in our method, not for evaluation purpose. The evaluation is performed using the standard

KDD98-validation-set, which is held out from the learning phase of all algorithms. The

competition criterion is the sum of actual profit on the KDD98-validation-set, defined as C,(V-

0.68) for all validation records t predicted to have a positive profit, where V is the donation

amount in t.

We compare our method with three categories of published results. The first includes the

top five results from the KDD-CUP-98 competition. As pointed out by [KDD98-result], these

contestants used state-of-the-arts techniques such as 2-stage, multiple strategies, combined

boosting and bagging. The second category includes the results produced by the MetaCost

technique [Dom99]. The third category includes the results produced by the direct cost-sensitive

decision-making [ZEOl]. The results from the latter two categories are taken from [ZEOl], which

implemented MetaCost and direct cost-sensitive decision-making using advanced techniques for

probability estimation and donation estimation, including multiple linear regression, C4.5, N dve

Bayes classifier, smoothing, curtailment, binning, averaging, and Heckman procedure. Interested

readers are referred to [ZEO 11 for more details.

Figure 4-2 The distribution of donation

Figure 4-2 shows the distribution of donation amount for "respond" records in validation

set. There is a clear inverse correlation between the probability that a customer responds and the

dollar amount generated by a response.

4.7.1 Sum of Actual Profit

The summary of comparison is shown in Table 4-8 based on the KDD98-validation-set.

The first row (in bold face) is our result. Next come the three categories of published results: the

top five contestants of the KDD-CUP-98 as reported in [KDD98-result], five algorithms of

MetaCost and five algorithms of direct cost-sensitive decision-making as reported in [ZEOl].

Table 4-8 Comparison with published results

#Mailed Average I Category Algorithm Sum of actual

nrnfit

Our algorithm $20,693

KDD-CUP-

98 results

Gainsmarts (the winner) $14,7 12.24

SAS (#2) 1 $14,662.43

Quadstone (#3) 1 $13,954.47

Amdocs (#5) 1 $13,794.24

NIA I NIA Smoothed C4.5 (sm) ($12,835

C4.5 with curtailment (cur) $1 1,283 NIA 1 NIA

Binned nai've Bayes (bin) $14,113

Average(sm, cur) $13,284

Average(sm, cur, bin) $13,515

Smoothed C4.5 (sm) $14,321

NIA / NIA

NIA 1 NiA

Direct Cost-

Sensitive C4.5 with curtailment (cur) $14,16 1 I
Binned niive Bayes (bin) 1 $1 5,094 NIA 1 NIA

Average(sm, cur) NIA 1 NIA

Average(sm, cur, bin) 1 $15,329 NIA / NIA

Max possible profit 1 $72,776

Mail to everyone 1 $10,548

Our method generated the sum of actual profit of $20,693. This is 41% more than the

KDD-CUP-98 winner ($14,7 1 2.24), 47% more than the best profit of MetaCost ($14,113), and

35% more than the best profit of direct cost-sensitive decision-making ($15,329). According to

the analysis in [ZEOI], a minimum difference of $1,090 is required to be statistically significant.

Our performance gain far exceeds this requirement. Our average profit per mail is $0.88. This is

3.38 times that of the KDD-CUP-98 winner, and 8 times that of the Mail to Everyone Solution.

Compared to the KDD-CUP-98 winner, we generated 41% more profit by predicting less than a

half number of contacts. [ZEOl] did not report the number of mailed, so we cannot compute their.

average profit. These higher total profit and average profit suggest that the proposed method is

highly successful in focusing on valuable customers. This success is credited to the novel feature

extraction based on the global search of association rule mining, and the profit estimation that

pushes the customer value as the first class information.

4.7.2 Profit Lift

We extend the concept of "lift" in the literature [LL98, MS961 to evaluate the "profit lift"

of our result. In the cumulative lift curve [LL98, MS961, validation records are ranked by the

estimated probability of belonging to the "respond" class, and each point (x, y) on the curve

represents that the top x percent of the ranked list contains y percent of all actual responders. In

the cumulative profit lift curve, each point (x, y) represents that the top x percent of the ranked list

generates y percent of the total profit. Thus, the cumulative lift curve is a special case of the

cumulative profit lift curve when every responder generates the same profit. Figure 4-3 shows the

cumulative profit lift curve of our result. For example, the top 20% of the ranked list generates

42% of the total actual profit, giving the profit lift of 2.1. The bend toward the upper-left corner

suggests that our method ranks valuable customers toward the top of the list.

Figure 4-3 The accumulative profit lift curve

4.7.3 Classification

Table 4-9 shows the confusion matrix for the KDD98-validation-set. 2,813 of the 4,873

responders are predicted as responders (i.e., contacted), and 71,389 of the 91,494 non-responders

are predicted as non-responders (i.e., not contacted), giving the "hit rate" of 57.7% on responders

and 78.0% on non-responders. In other words, the hit rate for responders is more than 10 times

the percentage of responders in the data (i.e., 5%). This strongly suggests that our method has

achieved the goal of identifying valuable customers.

Table 4-9 The confusion matrix

Contacted

20,105

2,8 13

Non-responder

Responder

Not contacted

71,389

2,060

4.8 Conclusion

In this chapter we study the direct marketing problem which becomes increasingly

important in retail, banking, and insurance industries. One challenge in direct marketing is the

inverse correlation between the likelihood to buy and the dollar amount to spend, which implies

that the traditional probability based ranking will rank valuable customers low rather than high.

Another challenge is the extremely high dimensionality and extremely low proportion of the

target class. In such cases, finding rules to distinguish the target class from non-target classes is

similar to finding a needle from a haystack.

To solve the first challenge, we push the customer value as the first class information.

Our approach is to estimate directly the profit generated on a customer without estimating the

class probability. For the second challenge, we only mine "focused rules" on respondents only. It

reduces the rule searching space by discarding the items that are not so "unique" to respondents.

The evaluation on the well known, large, and challenging KDD-CUP-98 task shows the

effectiveness of our algorithm.

CHAPTER 5

PROFIT MINING: FROM PATTERNS TO ACTIONS

A major obstacle in data mining applications is the gap between the statistic-based

pattern extraction and the value-based decision-making. "Profit mining" aims to reduce this gap.

In profit mining, given a set of past transactions and pre-determined target items, we like to build

a model for recommending target items and promotion strategies to new customers, with the goal

of maximizing profit. Though this problem is studied in the context of retailing environment, the

concept and techniques are applicable to other applications under a general notion of "utility".

There are several unique challenges in profit mining. First, we need to recommend both

products and their prices, which are much more difficult than just predicting a class. And for most

products they have different prices at different times, which makes the problem even more

challenging. Second, products often have relationships among themselves. Making use of this

domain knowledge for recommendation is a non-trivial task. We study these challenges and

propose solutions in this chapter. Also we evaluate the effectiveness of our approach using both

real and synthetic data sets. A paper based on the algorithm proposed in this chapter was accepted

by EDBT 2002 conference [WZH02].

5.1 Introduction

It is a very complicated issue whether a customer buys a recommended item.

Consideration includes items stocked, prices or promotions, competitors' offers, recommendation

by friends or customers, psychological issues, conveniences, etc. For on-line retailing, it also

depends on security consideration. It is unrealistic to model all such factors into a single system.

In this chapter, we focus on one type of information available in most retailing applications,

namely past transactions. The belief is that shopping behaviors in the past may shed some light on

what customers like. We try to use patterns of such behaviors to recommend items and prices.

Consider an on-line store that is promoting a set of target items. At the cashier counter,

the store likes to recommend one target item and a promotion strategy (such as a price) to the

customer based on non-target items purchased. The challenge is determining an item interesting

to the customer at a price affordable to the customer and profitable to the store. We call this

problem profit mining.

Most statistics-based rule mining, such as association rules [AS94], considers a rule as

"interesting" if it passes certain statistical tests such as supportlconfidence. To an enterprise,

however, it remains unclear how such rules can be used to maximize a given business object. For

example, knowing "Perfume +Lipstick" and "Perfume +Diamond", a store manager still cannot

tell which of Lipstick and Diamond, and what price should be recommended to a customer who

'buys Perfume. Simply recommending the most profitable item, say Diamond, or the most likely

item, say Lipstick, does not maximize the profit because there is often an inverse correlation

between the likelihood to buy and the dollar amount to spend. This inverse correlation reflects the

general trend that the more dollar amount is involved, the more cautious the buyer is when

making a purchase decision.

5.2 Problem Definition

In profit mining, we are given a collection of past transactions, target items and non-

target items, and promotion codes containing the pricing and cost information of items. A

transaction contains one target sale of the form <I, P, e>, for some target item I, and several non-

target sales of the form <I: P, e>, for non-target items I'. The presence of <I, P, e> (or <I: P,

Q>) in a transaction conveys that I (or I ') was sold in the quantity of Q under the promotion code

P. Profit mining is to build a model, called recommender, that recommends a pair of target item I

and promotion code P to future customers whenever they buy non-target items. A successful

recommendation generates (Price(P)-Cost(P))*Qprofit, where Price(P) and Cost(P) are the price

and cost represented by P, and Q is the quantity sold because of the recommendation. The benefit

goal is to maximize the total profit of target items on future customers.

Example 5-1 Suppose that a target item 2%-Milk has four promotion codes (not necessarily

offered at the same time): ($3.214-pack, $2), ($3.014-pack, $1.8), ($1.2lpack, $0.5) and ($l/pack,

$0.5), where the first element denotes the price and the second element denotes the cost. Let P

denote ($3.214-pack, $2). A sale <Egg, P, 5> generates of 5*($3.2-$2)=$6 profit on the target

item. Note that the price, cost and quantity in a sale refer to the same packing (e.g., 4-pack).

Some (descriptive) items, such as Gender=Male, do not have a natural notion of

promotion code. For such items, we set Price(P) and Q to 1 and Cost(P) to 0, and the notion of

profit becomes the notion of support.

5.3 Related Work

Profit maximization is different from the "hit" maximization as in classic classification

because each hit may generate different profit. Several approaches were proposed to make

classification cost-sensitive. [Dom99] proposed a general method that can serve as a wrapper to

make a traditional classifies cost-sensitive. [ZEOl] extended the error metric by allowing the cost

to be example dependent. [PAZ02] introduced a method to make sequential cost-sensitive

decisions, and the goal is to maximize the total benefit over a period of time. These approaches

assume a given error metric for each type of misclassification, which is not available in profit

mining.

Profit mining is related in motivation to actionability (or utility) of patterns: A pattern is

interesting in the sense that the user can act upon it to her advantage [ST96]. Recently, there were

several works applying association rules to address business related problems. [BSVW99,

WFW03, WS021 studied the problem of selecting a given number of items for stocking. The goal

is to maximize the profit generated by selected items or customers. These works present one

important step beyond association rue mining, i.e., addressing the issue of converting a set of

individual rules into a single actionable model for recommending actions in a given scenario.

There were several attempts to generalize association rules to capture more semantics

[CYS03, YHB041. Instead of a uniform weight associated with each occurrence of an item, these

works associate a general weight with an item and mine all itemsets that pass some threshold on

the aggregated weight of items in an itemset. Like association rule mining, these works did not

address the issue of converting a set of rules or itemsets into a model for recommending actions.

Collaborative filtering [RV97] makes recommendation by aggregating the "opinions"

(such as rating about movies) of several "advisors" who share the taste with the customer. Built

on this technology, many large commerce web sites help their customers to find products. The

goal is to maximize the hit rate of recommendation. For items of varied profit, maximizing profit

is quite different from maximizing hit rate. Also, collaborative filtering relies on carefully

selected "item endorsements" for similarity computation, and a good set of "advisors" to offer

opinions. Such data are not easy to obtain. The ability of recommending prices, in addition to

items, is another major difference between profit mining and other recommender systems.

Another application where data mining is heavily used for business targets is direct

marketing. See [LL98, MS96, WZYY031, for example. The problem is to identify buyers using

data collected from previous campaigns, where the product to be promoted is usually fixed and

the best guess is about who are likely to buy. The profit mining, on the other hand, is to guess the

best item and price for a given customer. Interestingly, these two problems are closely related to

each other. We can model the direct marketing problem as profit mining problem by including

customer demographic data as part of her transactions and including a special target item NULL

representing no recommendation. Now, each recommendation of a non-NULL item (and price)

corresponds to identifying a buyer of the item. This modeling is more general than the traditional

direct marketing in that it can identify buyers for more than one type of item and promotion

strategies.

5.4 Our Approach

Our first consideration is that recommendation often depends on some categories (or

concepts) of items. The categorization of items can be specified by a concept hierarchy [HF95,

SA951.

Concept hierarchy. A concept hierarchy, denoted H, is a rooted, directed acyclic graph,

with each leaf node representing an item and a non-leaf node representing a concept. For

example, assume that an item Flake-Chicken belongs to categories Chicken, Meat, Food, ANY. If

a customer bought Flake-Chicken, obviously the customer also "bought" Chicken, Meat, Food,

Any. For non-target items, such generalization allows us to search for the best category that

captures certain recommendations. We do not consider categories for target items because it does

not make sense to recommend a concept and a price (such as Appliance for $1 00).

The key to profit mining is to recommend "right" items and "right" prices. If the price is

too high, the customer will go away without generating any profit; if the price is too low or if the

item is not profitable, the profit will not be maximized. To maximize profit, it is important to

recognize that paying a higher price does not imply that the customer will not pay a lower price;

rather, it is because no lower price was available at the transaction time. This behaviour is called

shopping on unavailability. Taking into account this behaviour in rule extraction will bring new

opportunities for increasing the profit.

Mining on availability - MOA. If a customer is willing to buy an item under some

promotion code, we assume that the customer will buy the item under a more favourable

promotion code. This assumption is called the mining on availability, or simply MOA. To

incorporate the knowledge of MOA into search, we treat a more favourable promotion code P as

a "concept" of a less favourable one P'. The effect is that a sale under P' implies a sale under P.

This can be done by extending the concept hierarchy H a s follows.

Definition 5-1 (MOA(H)) For each item I, let (4, I) denote the hierarchy of pairs <I P> induced

by 4 on the promotion codes P for I, with I being added as the root. MOA(H) is the hierarchy

obtained by making each leaf node I in H a s the root of the hierarchy (+ , I).

A transaction can be generalized by generalizing its sales using MOA(H) as defined

below.

Definition 5-2 (Generalized sales) In MOA(H), (i) every parent node is a generalized sale of

every child node; (ii) every node of the form <I, P> is a generalized sale of a sale of the form <I,

P, e>; (iii) "is a generalized sale of ' is transitive. A set of generalized sales G={gl, ..., gk}

matches a set of sales S={sl, ..., s,) if each g, is a generalized sale of some s,.

(i) generalizes a sale using concepts and favourable promotion codes. (ii) generalizes a

sale by ignoring the quantity of the sale. A generalized sale has one of the forms <I, P>, or I, or

C, where P is a promotion code, I is an item, C is a concept. For a target item I, we consider only

generalized sales of the form <I, P> because only this form represents our recommendation of a

pair of target item and promotion code. Note that a generalized sale of the form <I, P> contains

the packing quantity defined by the promotion code P. The quantity of individual sales will be

factored in the profit of rules.

Example 5-2 Consider a non-target item Flaked-Chicken, abbreviated as FC, and a target item

Sunchip. Figure 5-l(a) shows the concept hierarchy H. Suppose that F C has three promotion

codes: $3, $3.5, and $3.8. Sunchip has three promotion codes: $3.8, $4.5, and $5. For simplicity,

we omit the cost and assume that the packing quantity for all promotion codes is 1. Figure 5-1 (b)

shows MOA(H). <FC, $3.8> and its ancestors are generalized sales of sales <FC, $3.8, Q>. <FC,

$3> and its ancestors are generalized sales of sales <FC, $3, Q>, or <FC, $3.5, Q>, or <FC, $3.8,

Q>. Similar generalization exists for target item Sunchip.

With the definition of MOA(H), a rule has the form {g], ..., gk}+<I, P>, where gl, ..., g~

are generalized non-target sales such that no g, is a generalized sale of other g,, and <I, P> is a

generalized target sale. Consider a customer represented by a set of non-target sales (sl, ..., s,}. A

rule {gl, ..., gk}%I, P> matches the customer if {gl, ..., gk} generalizes isl, ..., s,}.

5.5 Generating Rules

In profit mining the application goal is to maximize the profit by selling customers the

recommended products. So we prefer the rules that can capture "customer intention" well. The

confidence no longer serves this purpose and we need a new measurement here.

Suppose that a rule r: {gl, ... , gk} +<l; P> matches a given transaction t: {sl, ... , s , <I,, PI,

Q?}, where <I,, P, Q S is the target sale. If <l, P> generalizes <I,, PI, Q?, that is, I=& and P 4 PI,

then r has captured the intention o f t . In this case, we credit the worth of r by the profit of r

generated on t. To estimate this profit, we regard t as a future customer and determine the

69

quantity Q the customer will buy under the more favourable promotion code P. The generated

profit of r on t is defined as

A conservative of estimation of the actual purchase quantity Q for the more favourable

promotion code P under MOA is to keep the original quantity Q, unchanged, thus, saving money.

This estimation does not increase the spending at a favourable promotion for a customer. A more

greedy estimation could associate the increase of spending with the relative favourability of P

over P, and the uncertainty of customer behaviours. We will consider such estimation in our

experiments.

Definition 5-3 (Recommendation profit) Consider a rule r: G J g . The rule profit of r, denoted

as ProjJr), is defined as Cg(r, t), where t is a transaction matched by r. The recommendation

proJit of r, denoted as Prof,(r), is defined as Prof,(r)lN, where N is the number of transactions

matched by r.

The recommendation profit is on a per-recommendation basis and factors in both the hit

rate (i.e., confidence) and the profit of the recommended item. It is possible that a rule of high

recommendation profit matches only a small number of transactions that have large profit.

Determining whether such rules should be used is a tricky issue and will be examined later.

To find rules of minimum worth, the user can specify minimum thresholds on these

measures. The minimum support could be specified to take advantage of the support-based

pruning [AS94]. If all target items have non-negative profit, a similar pruning is possible for rule

profit and the minimum support can be replaced by the minimum rule profit. We follow [SA95,

HF951 to find association rules, with MOA(H) being the input concept hierarchy.

In the rest of discussion, let R denotes the set of rules generated as above, plus the default

rule 0+g, where g is the generalized target sale that maximizes P r o f , (B g) . Adding the

default rule ensures that any set of non-target sales has at least one matching rule in R.

5.6 Building the Initial Recommender

A key for making recommendation is to select a recommendation rule from R for a given

customer. Our selection criterion is maximizing the recommendation profit of the selected rule, as

stated below.

Definition 5-4 (Rule ranking) For any two rules r and r ', we say that r is ranked higher than r'

(Recommendation profit) if ProJ;.,(r)> Prof,(r '), or

(Generality) if Prof,(r)= Prof,,(r '), but Supp(r)>Supp(r '), or

(Simplicity) if Supp(r)=Supp(r'), but Jlhs(r)J<Jlhs(r')l, or

(Totality of order) if Ilhs(r)J=llhs(r')l, but r is generated before r'.

Given a set B of non-target sales, a rule r in R is the recommendation rule for B if r matches B

and has highest possible rank. We also say that recommendation rule r covers B. O

If a rule is more special and ranked lower than some other rule in R, this rule will never

be used as a recommendation rule because some general rule of higher rank will cover whatever it

matches. From now on, we assume all such rules are removed from R.

With ranking criterion being established, we can turn a set of rules into a recommender

like we did in previous chapters.

5.7 Optimizing the Recommender

So far we have not dealt with the over-fitting rules yet because a high recommendation

profit does not imply a high support. It does not work to simply remove rules of low support

because high-profit items typically have a low support. Our approach is to prune rules on the

basis of increasing the projected profit on future customers. Suppose that we know how to

estimate the projected profit of a rule r using the given transactions covered by r, denoted by

Cover(r). We can prune one rule at a time if doing so increases the projected profit of the

recommender, defined as the sum of the projected profit of all rules in the recommender.

Similar to what we did in direct marketing, we can build a decision-tree-like structure in

which each node is a rule, and a rule r is the parent of rule r ' if r is more general than r ' and has

the highest possible rank. If a rule r is pruned, the parent of r will cover the transactions covered

by r.

Consider the current non-leaf node r. Let Tree-Profir) denote the projected profit of the

subtree at r . Let Leaf-Prof(r) denote the projected profit of r as a leaf node. The estimation of

these profits will be explained shortly. If Leaf-Prof(r)>_Tree-Profir), we prune the subtree at r

immediately; otherwise, we do nothing at r.

Now we sketch the idea of estimating the projected profit of a rule r , denoted Prof,,(r).

We estimate Prof,,(r) by X*Y. X is the (estimated) number of "hits" of r, i.e., number of

acceptances of the recommendation, in a random population of N=ICover(r)j customers that are

covered by r . Y is the observed average profit per hit.

We can compute Xusing the pessimistic estimation borrowed from [Qui93]. Suppose that

E(r) of N(r) transactions covered by r are not hit. For a given confidence level CF, the upper limit

of the probability of non-hit in the entire population is estimated by UcF(E(r), N(r)) as computed

in [Qui93]. Then, X=N*(l-UcF(E(r), N(r))). Y is estimated by

num of hits in Cover(r)

Recall that p(r, t) is the generated profit of r on transaction t. Tree-Proflr) is computed as

the sum of Prof,,(u) over all nodes u in the subtree at r. This sum can be computed incrementally

in the bottom-up traversal of the tree. Leaf-Proflr) is computed as Prof,,(r) by assuming that r

covers all the transactions covered by the subtree at r.

5.8 Evaluation

In this section we like to validate two claims: The refined recommender is profitable, and

incorporating profit and MOA into model building is essential for achieving this profitability.

5.8.1 The Methodology

We perform 5 runs on each dataset using the 5-fold cross-validation. The average result

of the 5 runs is reported. We define the gain of a recommender as the ratio of generated profit

over the recorded profit in the validating transactions:

Cp(r, t)lC, (the recorded profit in t)

where p(r, t) is the generated profit of the recommendation rule r on a validating

transaction t. The higher the gain is, the more profitable is the recommender.

Let PROF+MOA represent the recommender that makes use of both profit and MOA in

model construction. We compare PROF+MOA with:

PROF-MOA: the recommender without MOA. This comparison will reveal the

effectiveness of MOA.

CONF-tMOA: the recommender using the binary profit: p(r, t)=l if the

recommendation is a hit; otherwise, p(r, t)=O. Thus, the model building ignores the

profit and relies on the hit rate (i.e., confidence) for ranking and pruning rules. This

comparison will reveal the effectiveness of profit-based model building.

CONF-MOA: CONF+MOA without MOA.

kNN: the k-nearest neighbour classifier [YP97]. Given a set of non-target sales, kNN

selects k transactions (the k nearest neighbours), for some fixed integer k, that are

most similar to the given non-target sales and recommends the pair of target item and

promotion code most "voted" by these transactions. We used the kNN that is tailored

to sparse data, as in [YP97] for classifying text documents, and we applied MOA to

tell whether a recommendation is a hit. These modifications substantially increase the

hit rate and profit.

MPI: the most profitable item approach, which simply recommends the pair of target

item and promotion code that has generated most profit in past transactions.

5.8.2 Results on Synthetic Data Sets

5.8.2.1 Datasets

The synthetic datasets were generated by the IBM synthetic data generator', but modified

to have price and cost for each item in a transaction. First, we apply the IBM generator to

generate a set of transactions, with the number of transactions lOOK and the number of items

1000, and default settings for other parameters. For simplicity, each item has single cost and

single packing for all promotion codes. In this case, we use "price" for "promotion code". The

cost of item I (here I is an integer) is denoted by Cost(l). For item I, we generate the cost

Cost(I)=clI, where c is the maximum cost of a single item, and m prices PJ=(l+j*6)*Cost(l), j= l ,

..., m. We use m=4 and &lo%. Thus, the profit of item I at its price P, is j*cPCost(l). Each item

in a transaction is mapped to a non-target sale by randomly selecting one price from the m prices

of the item. For simplicity, all sales have unit quantity.

We consider two distributions for generating the target sale in each transaction. In dataset

I, we consider two target items with cost of $2 and $10 respectively. Many important decision-

makings such as direct marketing are in the form of two-target recommendation. We model the

sales distribution of the two target items using the Zipf law1: The target item of cost $2 occurs

five times as frequently in the dataset as the target item of cost $10. The price generation and

selection for target items are similar to those for non-target items. In dataset 11, there are 10 target

items, numbered from 1 to 10. The cost of target item I is Cost(I)=lO*I. Unlike dataset I, the

frequency of target items follows the normal distribution2: Most customers buy target items with

the cost around the mean. In the following we only discuss the results obtained on dataset I.

Similar results are observed on dataset I1 as well. Figure 5-2(e) show the profit distribution of

target sales in dataset I.

5.8.2.2 Results

Figure 5-2 shows the results on dataset I. Figure 5-2 (a) shows the gain of the six

recommenders (for kNN, , 7 2 4 gives the best result) with two obvious trends: PROF+MOA

performs significantly better than other recommenders, and the recommenders with MOA

perform significantly better than their counterparts without MOA. This clearly demonstrates the

effectiveness of incorporating profit and MOA into the search of recommenders. PROF+MOA

achieves 76% gain at minimum support 0.1%. This gain is encouraging because the MOA

adopted is conservative in profit estimation.

See htt~://www.nslii-penetics.orp/wli/ziv•’/ for example
See htt~://www.itl.nist.~ovldiv898/handbooWedalsection3/eda3661 .htm, for example

Figure 5-2 The results for synthetic dataset I

Figure 5-3 The results for real life data set

Interestingly, the curve for PROF-MOA shows that profit-based mining is not effective

without MOA and the curves for CONF + MOA shows that MOA is not effective either without

profit-based mining.

To model that a customer buys and spends more at a more favourable price, for each

validating transaction, we compare the recommended price P, with the recorded price P, of the

target item. Recall that Pj=(1+j*6)*Cost(l), j=l, ..., 4, for item I. If q-p=l or q-p=2, that is, the

recommended price P, is 1 or 2 step lower than the recorded price P,, we assume that the

customer doubles the purchase quantity in the transaction with the probability of 30%. We denote

this setting by (x=2, y=30%). If q-p=3 or q-p=4, we assume that the customer triples the purchase

quantity in the transaction with the probability of 40%. We denote this setting by (x=3, y=40%).

Figure 5-2 (b) shows the gain of all recommenders using MOA with the purchase quantity

determined by (x=2, ~ ~ 3 0 %) and (~ 3 , y=40%). With this more realistic shopping behaviour, the

gain for all recommenders increases. PROF+MOA with the setting (x=3, y-40%), denoted

PROF(x=3, y=40%), achieves the encouraging gain of 2.23 (at minimum support of 0.1%)!

Figure 5-2 (c), which uses the legend in Figure 5-2 (a), shows the hit rate of

recommenders. PROF+MOA and CONF+MOA achieve the hit rate of 95%. For minimum

support of 0.08%, Figure 5-2 (d) shows the hit rate at different profit ranges. "Low", "Medium",

and "High" represent the low, middle, and high 113 of the maximum profit of a single

recommendation. The legend from top to bottom corresponds to left to right in the bar chart. For

example, kNN has nearly 100% hit rate at the "Low" range, but less than 10% at the "High"

range. CONF+MOA and CONF-MOA also have a similar trend. In contrast, PROF+MOA is

"profit smart" in maintaining a high hit rate in a high profit range. Though MPI picks up the hit

rate in a high profit range, the hit rate is still too low compared to PROF+MOA. PROF-MOA is

unstable for this dataset.

Figure 5-2 (f), which uses the legend in Figure 5-2 (a), shows the number of rules in

recommenders. kNN and MPI have no model, so no curve is shown. The number of rules prior to

the model-pruning phase (not shown here) is typically several hundreds times the final number.

This shows that the pruning method proposed effectively improves the interpretability of

recommenders. MOA generally increases the size due to additional rules for alternative prices.

Not surprisingly, the minimum support has a major impact of the size. The execution time is

dominated by the step of generating association rules. In our experiments, we adopted the multi-

level association rule mining whose performance has been studied elsewhere [SA95, HF951. The

time for constructing the pruning tree from generated association rules and for the bottom-up

traversal is insignificant.

We also conducted the experiment on data set 11. This dataset has 40 itedprice pairs for

recommendation because each target item has 4 prices. Therefore, the random hit rate is 1/40,

which is more challenging than dataset I. Despite the difference in cost distribution and a lower

hit rate, the results are consistent with those of dataset I, that is, support the effectiveness of

profit-based mining and MOA.

We also modified kNN to recommend the itedprice of the most profit in the k nearest

neighbours. This is a post-processing approach because the profit is considered only after the k

nearest neighbours are determined. For dataset I, the gain increases by about 2%, and for dataset

11, the gain decreases by about 5% (not shown in the figure). Thus, the post-processing does not

improve much.

5.8.3 Results on Real Life Data Set

5.8.3.1 Dataset

This dataset comes from a retail chain store which sells goods and drugs across Canada.

The raw data contains the information about items (i.e., price, cost, category, etc.) and the

information about sales (i.e., transaction id, item, price, quantity, date of shopping, etc.) in several

tables. Items are organized into a six-le+el category hierarchy. For our experiments, we extracted

a dataset by specifying the category of target items and treating all items not in the category as

non-target items. Transactions containing either no target item or no non-target item are

discarded. If a transaction contains more than one target sale, we use the target sale of most profit.

We report the result on the dataset with target items specified by the path:

There are 32 target itedprice pairs, 1898 transactions containing these target items, and

3477 non-target items. Figure 5-3 (e) shows the profit distribution of target sales, which is quite

different from those of synthetic datasets.

5.8.3.2 Results

The gain in Figure 5-3 (a) and (b) show that PROF+MOA is a clear winner over other

recommenders. Again, Figure 5-3 (d) (for minimum support of 0.2%) shows that PROF+MOA

picks up the hit rate quickly in a high profit range. The kNN modified to recommend the most

profitable itedprice (instead of most voted) only increases the gain by about 1% (not shown in

the figure). This experiment further confirms the effectiveness of using profit and MOA in

building recommenders. Figure 5-3 (0 shows that all recommenders for this real life dataset are

much smaller than those for the synthetic datasets. This is due to the increased data sparsity in the

case of more non-target items.

In summary, the experiments on both synthetic and real life datasets confirm our goals set

at the beginning of the section.

5.9 Conclusion

In this chapter we study a profit-based decision-making application called profzt mining.

The goal of profit mining is to construct a recommender that recommends target items and

promotion codes on the basis of maximizing the profit of target sales on future customers. We

address several unique issues in profit mining: pruning specific rules on a profit-sensitive basis

and dealing with the behaviour of shopping on unavailability. Experiments on a wide range of

data characteristics show very encouraging results. This economic orientation and actionability

will contribute to wider and faster deployment of data mining technologies in real life

applications.

CHAPTER 6

LOCALIZATION SITE PREDICTION FOR MEMBRANE

PROTEINS BY INTEGRATING RULE AND SVM

CLASSIFICATION

In this chapter we study a localization prediction problem for membrane proteins in

biology domain. Identifying a protein's location in a bacterial cell is of primary research interests

for antibiotic and vaccine drug design. Biologists often have two basic requirements on the

models built for localization prediction. First, prediction of a target localization site must have a

high precision in order to be useful to biologists. Achieving such a precision is made harder by

the fact that target sequences are often much fewer than background sequences. Second, the

rationale of prediction should be understandable to biologists for taking actions. Meeting all these

requirements presents a significant challenge.

Recent research shows that the support vector machine (SVM) models [Vap95] achieve

high precision in localization prediction. However, the kernel function of a SVM model could

involve many features and is not easy for users to understand, therefore, does not address the

second requirement. We address both requirements by integrating the SVM model with a rule-

based model, where the understandable rules capture "major structures" and the elaborated SVM

model captures "subtle structures". Importantly, the integrated model preserves the

precisiodrecall performance of SVM and, at the same time, exposes major structures in a form

understandable to human users. The purpose of the algorithm proposed in this chapter is not

improving the precisiodrecall of SVM, but is manifesting the rationale of an SVM classifier

through partitioning the classification between rules and the SVM classifier, and preserving the

precision/recall of SVM. Unlike previous applications where we build pure rule based systems, in

this chapter we build a hybrid decision-making system which consists of two components: rule-

part and SVM-part. When constructing the rule-part, we still follow the ideas in the general

framework. A paper based on the algorithm in this chapter was accepted by IEEE TKDE journal

[ZWOS].

6.1 Introduction

In the last decade, biologists have accumulated a huge amount of protein sequences. Each

protein is composed of a linear sequence of amino acid residues. Since proteins play critical roles

in determining the structures and functions of all living organisms [Str95], classifying these

sequences into corresponding functional families is an important task for biologists.

One of the most important protein classification problems is to predict the subcellular

localization of proteins [EB98]. For proper hnctioning, a protein has to be transported to the

correct intra- or extra-cellular compartments in a soluble form, or attached to a membrane that

surrounds the cell; hence the subcellular localization of a protein plays a key role with regard to

its functions. Figure 6-1 shows the 5 primary localization sites for a family of disease-causing

bacteria, collectively known as Gram-Negative bacteria. The ability to identify the localization

site from the sequence information alone would allow researchers to quickly prioritise a list of

proteins for potential drug and vaccine targets [SCW+03].

Figure 6-1 The five primary localization sites in a Gram-Negative bacterial cell

The above problem can be summarized as predicting the localization site for a protein

from its amino acid sequence with the following requirements.

High precision. The precision of predicting the target localization site must be "very

high", in most cases at least 90% or even 95%, while the recall is as high as possible. Whenever a

protein is predicted to be located at the target site, the biologist wants to be fairly sure that the

prediction is indeed correct [SCW+03]. Achieving high precision is made harder by the fact that

the target examples are often much fewer than the examples in the contrasting class.

Interpretable models. Relevant patterns that summarize what triggers the prediction in a

concise form are useful for biologists to perform further analysis and devise actions. To address

the issue in a domain-independent manner, the interpretability refers to the syntax simplicity of

the model such as the number and size of rules, not anything that requires domain knowledge.

High dimensionality. With any subsequence of amino acids being potentially a feature,

it is common to have tens or even hundreds of thousands of features that are necessarily needed

for high precision. Typically, combinations of features must be used to achieve high precision

because general rules tend to include sequences in the contrasting class. Searching such

combinations in a high dimensionality requires pruning a large portion of search space.

84

Meeting all these requirements presents a significant challenge because an inherently

high dimensional problem requires a complex model that is hard to understand. Equally

challenging is pruning a large portion of search space without degrading the performance of the

final model. Finally, too much dependency on user-specified thresholds would introduce

uncertainty to the robustness of the model, and an approach that minimizes this dependency is

preferred.

Recently, SVMs demonstrate superior performance gains and robustness in many

applications over traditional methods'. However, the SVM model comes with a major defect: It

involves thousands of features in a single kernel function, making it impossible to see a simple

relationship between the prediction and features that trigger it. A rule-based model such as ID3

and C4.5, on the other hand, presents the logic of prediction in the user-friendly rule format, but

has inferior performance and often involves too many rules on high dimensional problems. To

address the above requirements, an innovative solution is needed.

In this chapter, we integrate the SVM model with the rule-based model. The idea is to

partition the classification so that each model captures the type of structures they are good at. The

rule-based model captures "major structures" shared by many sequences in a small number of

rules, and the SVM model captures "subtle structures" representing special case patterns and

more complex relationships that do not have a concise description. The integrated model, called

rule-SVM (MVM), places the rules at the top and the SVM at the bottom: The SVM classifier is

applied only if there is no matching rule. For this reason, we say that the rules steal classification

from the SVM.

6.2 Algorithm Overview

The algorithm must address two key issues. First, the rules used must preserve the

precision of SVM, which is typically higher than that of a rule-based classifier. Only high quality

rules can be used. Second, the rules used are not to replace the SVM entirely, but to replace only

the portion of classification that can be accurately represented by simple rules; the other

remaining classification is still performed by SVM.

6.2.1 Background

A sequence is a string of items chosen from a fixed alphabet. For protein sequences, the

alphabet consists of the 20 amino acid residues. A labelled sequence is associated with one of two

classes: "positive" (+I) or "negative" (-1). A labelled sequence is positivetnegative if its class is.

Given a collection of labelled sequences D, D(train) and D(test) denote the split of the training

set and the testing set. A classifier is built using D(train) and is evaluated by the precision and

recall of classification on the testing sequences in D(test). Theprecisdon refers to the percentage

of positive sequences among those that are classified as positive. The recall refers to the

percentage of the sequences classified as positive among those that are indeed positive. A

classifier is over-fitting if it is only accurate on D(train) but not on D(test). To avoid over-fitting,

a classifier should use structures that are statistically significant, therefore, likely repeating in the

whole population.

Figure 6-2 A linear SVM in a two-dimensional space

Optimal

Origin

SVMs are based on the Structural Risk Minimization principle [Vap95] from

computational learning theory. The idea is finding a hyperplane that separates the positive

examples from negative ones in the training set while maximizing the total distance of support

vectors from the hyperplane, where support vectors are the examples (positive and negative) that

have the shortest distance to the hyperplane. Figure 6-2 illustrates the maximum margin

separating hyperplane and the support vectors in the two dimensional space. The norm vector

represents the direction of the separating hyperplane, which is determined through a set of

support vectors. For an SVM with a linear kernel, a new sequence d is classified by the sign of

the following decision function:

-
where d=<xl, x2 x,>, w =<wl,wz w,> and w, is the weight for the ith feature. d is

classified as positive iffO>U, and as negative otherwise. In this case, finding the SVM classifier

is determining the weight w, and the bias b. We consider SVMs with a linear kernel function in

this chapter. Our previous studies show that the linear kernel function achieves better or similar

results on outer membrane proteins [SCW+03]. For the non-linearly separable case, we can first

transform the problem into a linearly separable problem [Bur981 and apply the method presented

in this chapter.

6.2.2 Our Approach

We first map each sequence into a data point in a multi-dimensional space. Each

dimension, also called a feature, is defined by afi.equent segment, i.e., some consecutive items

that occur in at least some minimum fraction of sequences specified by the minimum support. We

find frequent segments only from positive sequences since we are interested in predicting the

positive class. Compared to the spectrum kernel [LEN021 that uses features of a fixed length, our

approach allows features of flexible length. Suppose that we have n features. We map a sequence

to a 110 vector <xi, x2 ..., x,> in the feature space: If the ith feature occurs in the sequence, xi=l ,

otherwise, x,=O.

As in most cases, we consider only rules that predict the positive class (but our work can

be extended to rules for two classes). A rule is a set of features. A rule matches a sequence (or

vice versa) if the sequence contains all the features in the rule. Given a set of sequences, the

support of a rule is the percentage of matched sequences among all the sequences, and the

con$dence of a rule is the percentage of positive sequences among all matched sequences. A rule

classifies a matched sequence as the positive class.

We are interested in a classification model that has the performance of SVM classifiers

but expresses "major structures" in the form of rules. We propose such a model called RSVM.

Definition 6-1 Let M be an SVM classifier. Let rl, r2 ... r, be a set of rules. A RSVMclassifier

has the form:

R(RSVM) denotes the set of rules rl, r2 ..., r,. R(RSVM) steals the classification from M as

follows: if a sequence matches some rule ri, classify the sequence as the positive class, otherwise,

classify the sequence by M. A RSVM is required to satisfy three properties:

Performance: R(RSVM) has a precision similar to that of M on D(test).

Signijkance: R(RSVM) steals a large portion of classification from M. In other

words, R(RSVM) shares a significant portion of recall.

Interpretability: R(RSVM) contains a small number of simple rules.

The intention is that the rule portion R(RSVM) captures simple and major structures,

whereas M captures subtle structures that do not have simple rule representation. The

performance requirement ensures that R(RSVM) preserves the precision of the SVM (therefore,

RSVM preserves the precision of the SVM). Under this condition, rules are preferred to the SVM.

The significance and interpretability requirements ensure that the rules play active roles in

manifesting a significant portion of classification in a simple and understandable form. Our

objective is to capture simple structures by rules whenever they exist.

We find a RSVM classifier in three phases. SVMphase maps training sequences to the

feature space and builds the SVM classifier M using the standard software. Rule phase generates

a set of high performance rules preserving the precision of M. Stealing phase determines the

partition of classification between the rules and M. We explain each phase in details.

6.3 SVM Phase

First, we find a set of frequent segments as the feature space. Frequent segments are

mined from the positive sequences in D(train). To count the support of segments, we

implemented the generalized suffix tree (GST) [WCM+94].

To avoid losing useful features, a small minimum support should be used. We used the

minimum support of 1 % in all our experiments and it worked fine. SVM is quite robust in dealing

with the high dimensionality and ignoring insignificant features (by assigning a small weight). In

addition, our pruning strategies will prune insignificant features before the rule generation.

Therefore, a small minimum support does not necessarily blow up the rule generation, but helps

include potentially usehl features.

Next, we map the sequences in D(train) to data points in the feature space, as described in

Section 6.2.2, and apply the standard SVM software to produce the SVM classifier M, in

particular, the weights wi and the bias b. We use the S V M - Z ~ ~ ~ ~ ' implementation of SVMs in

[Joa98a].

6.4 Rule Phase

This phase generates statistically significant rules that preserve the precision of M.

Before generating rules, we split D(train) into two disjoint parts randomly: D(bui1d) and

D(prune). We use D(bui1d) for the rule generation and use D(prune) for making pruning

decisions. We use the split of 415 vs. 115.

Since the application goal here is to build a mixed classifier which has at least the

accuracy given by SVMs, we should only include the rules that have at least the same precision as

the SVM classifier M. Such requirement needs to be accommodated during rule mining.

A major challenge for rule generation in this case is the large search space due to tens of

thousands of features. A limitation with most rule generation algorithms such as [AIS93] and

[AS941 is the heavy dependency on user-specified thresholds (e.g., minimum support) to prune

rules. It is often difficult for the user to decide appropriate values for such thresholds, while this

decision significantly impacts the performance of resulting classifiers. Note that we use minimum

support in the SVM phase for feature generation, not rule generation, where the suffix tree

algorithm is very efficient, and generated features are subject to the weighting by the SVM model

and further pruning by our method.

Definition 6-2 A rule preserves the SVM M if the precision of the rule is not less than the

precision of M on the sequences in D(bui1d) that match the rule.

If a preserving rule is "statistically significant", it will preserve the SVM precision over

unseen sequences. We will consider a measure of statistical significance shortly. Unlike other

works such as [AIS93], which require users to specify thresholds in advance, our algorithm

determins the statistical significance automatically.

6.4.1 Generating Rules

The task here is to find all statistically significant, preserving rules. To reduce the

database scan, we search rules in a level-wise manner starting from shortest rules. For details of

level-wise rule generation please refer to [AMS+96]. Here we briefly explain how it is used to

generate significant rules. Let RI be the set of all size-1 rules (f;} over the features for which M

has a non-zero weight w, Next, we extend every rule V;} in RI by adding one feature$ in RI to

generate all size-2 statistically significant rules (f;, J } , where f#$, denoted RZ. If a rule is not

statistically significant (see Section 6.4.5 for the definition of rule significance), we will not

include it in R2 and not extend it further because any extended rule is not statistically significant.

In general, at the kth iteration, we generate the size-(k+l) statistically significant rules, denoted

Rk+].using two rules V;, ..., &-I,&} and V;, ..., &-I,fk+I) in Rk. One scan of D(bui1d) would check

the statistical significance of generated rules. We continue this process until no statistically

significant rule is generated. Then, we scan D(bui1d) once to filter out all rules that do not

preserve M. This rule generation can be expensive if the number of features is large.

Below, we consider several strategies to prune the search space. The first two strategies

are aimed at pruning features before the rule generation. The last two strategies are aimed at

pruning rules during the rule generation.

6.4.2 Pruning Redundant Features

Our first observation is that if several features occur exactly in the same set of sequences

in D(build), the rule generation is not able to distinguish them and we can remove all such

features except one before the rule generation. A special case is that such features have sub-

strindsuper-string relationships (e.g., "bc", "abc", "bcd", "abcd").

Strategy 1: For all features that occur exactly in the same set of sequences in D(build), we keep

only one of them for the rule generation.

6.4.3 Pruning Insignificant Features

If a feature does not have a significant contribution, it can be pruned before the rule

generation. Consider Equation (6-1). The further the weight wi is from zero, the more influential

the ith featuref; is on the decision value f(x). Therefore, we can sort the features J; having non-

zero wi according to the influence lwil into a list F and concentrate on the features in some prefix

of F. (Other ranking criteria such as information gain can be used instead. But we believe that w,

is preferred because such weights are determined in the presence of all features.) To determine

this prefix, for each prefix F', we consider the simplified SVM, denoted M', based on only the

features in the prefix F'. M' is obtained from M by setting w,=O for all featuresJ; not in F'. Let E'

be the error of My on D(prune).

Strategy 2: Select the shortest prefix F' of F with the minimum E '.

In other words, F' is selected to minimize the error of the simplified SVM on D(prune).

The use of D(prune) instead of D(bui1d) is to avoid the over-fitting that tends to select the full list

F.

Figure 6-3 Feature coefficients for the sample data

Example 6-1 We use D(train), split into D(bui1d) and D(prune), in Table 6-1 to show Strategy 2.

Ignore the last column at this moment. For simplicity, we show the features (i.e., fi, fi, ..., fg)

contained in each sequence instead of actual amino acids. Applying the software SVM-light to

D(build), we get the SVM classifier M described by the weights w, and the bias b in Figure 6-3,

sorted by Iw,l Consider the prefix F7=<fi>. All the sequences in D(prune) are predicted as

negative by the simplified SVM M' because wl+b<O. So E'=2. Similarly, we can compute the

error for all other prefixes. The shortest prefix with the minimum error is <A, h, &, A>, which has

1 error on d l l . The remaining five features, i.e., f j - f g , are pruned from D(bui1d) and D(prune).

The classes predicted by this simplified SVM are listed in the column "Predicted class7', which

happens to be exactly the same as that of the original M based on all 9 features. 0

Table 6-1 A sample data set

ID Examples Class Predicted class

6.4.4 Pruning Redundant Rules

Consider two rules rl=Cfi, fi ... fk} and rz=Vl, fi ... fk, fk+]}, where r2 is obtained by

extending rl with the featurefk,]. Iffk+] is a sub-string of some feature in rl, e.g., rl=("abcd"}

and r2={"abcd", "ab"), the two rules will match exactly the same set of sequences, and we can

keep the shorter rule rl and prune the longer rule r2. Now consider the case that&+] is a super-

string of some feature in rule rl, sayfi without loss of generality. From the above discussion, we

only need to consider u2, ... fk,fk+l) instead of r2. We summarize these observations in the next

strategy.

Strategy 3: If a fea t~refk ,~ has sub-string or super-string relationship with some feature in rule rl,

stop extending rl withfk+l.

6.4.5 Pruning Insignificant Rules

Now we consider how to tell if a rule is statistically significant. A statistically significant

rule should be accurate on the whole population, in addition to D(bui1d). Like what we did in

previous chapters, we use the pessimistic error estimation [Qui93] to estimate the error rate of rl

on the whole population. Suppose that a rule ri matches Nl sequences in D(build), among which

El are classified wrongly. Given a confidence level CF, we take UCF(El,Nl) as the estimated error

rate of rl on the whole population.

Suppose that we extend the rule rl=Cfi, fi ... fk) with El/N, to the rule r2=(fi,fi ... fR,fk+])

with E2/N2. Note that N2f11. If UCF(EI,Nl)< UCF(E2,N2), we regard the rule r2 as over-fitting, i.e.,

statistically insignificant, because it does not decrease the error rate on the whole population.

Once r2 is over-fitting, so is any rule obtained by extending r2.

Strategy 4: If r2 is an extension of rl such that UCF(EbNl)< UCF(E2,N2), stop generating r2 and any

extension of r2 (because r2 is statistically insignificant).

Example 6-2 Let CF be 25%. Suppose that the featuresfi, h, h, fi represent frequent segments

' 6 9, 6' 9 , LC 3, 'C a , b , c , ab", respectively. The rule rl=Cfi} matches 6 examples in D(bui1d) in Table 6-1,

with 2 being negative. So Nl =6, El =2, and the upper limit UCF(E1,Nl) is estimated to be 0.56. We

extend rl into r2=V;,f2). Note thatfi has no sub-string or super-string relationship withfi. r2

matches 3 examples in D(build), all being positive. So N2=3, E2=0, and UcF(E2,N2) is estimated

to be 0.3 7. Since 0.3 7 < 0.56, according to Strategy 4, rule r2 is kept. Now consider extending r2

to r3=(fi,h,fj). r3 matches 2 examples in D(build), both being positive. So N3=2, E3=0, and

UCF(E3, N3) is estimated to be 0.50. Since 0.50 > 0.3 7, rule r3 is dropped and no further rule is

extended from r3.

6.5 Stealing Phase

Let R={ul, r2 ... rk} be the set of statistically significant, preserving rules found in the rule

phase. Let us assume that the rules rl, r2 ... rk are sorted by the confidence on D(build), and in

case of tie, sorted by support. Now we can turn the rule list into a classifier: To classify a

sequence, the first matching rule in the list, if there is one, is applied because of higher

confidence. Under this preference, rules towards the end of the list tend to classify fewer

examples, therefore, have less contribution. To reduce the classifier size, we only select a prefix

of R for building the RSVM classifier.

Consider a prefix R' of R. Let E(R 7 be the error of R' on the matching sequences in

D(prune), and let E(M R 7 be the error of M on such sequences. E(MR ')-E(R ') measures the

(possibly negative) performance gain of replacing M with R ' over such sequences. To ensure that

as many sequences as possible are classified by rules, we select the longest prefix R ' that

maximizes E(M;R')-E(R 7. Note that the selected prefix has a non-negative performance gain

E(M,R 7-E(R 7 because the empty prefix gives the zero performance gain. We then remove all the

rules in the selected R' that classify no sequence in D(prune). Finally, we put R' on top of the

SVM to construct the RSVM classifier:

Example 6-3 Continue on Example 6-2. Suppose that two rules, rl=Cfi, f j } and r2=u2, f j } , are

found in the rule phase. They have the same confidence in D(build), but the first rule has higher

support. So, R in the sorted order is (rl,r2). Figure 6-4 shows the classification of the examples in

D(prune) by each prefix R'. The prefix R1=(rl) is selected because it is the longest prefix that

maximizes E(M, R 7-E(R 7 . The RSVM classifier is:

r1, M.

On D(prune), rl correctly classifies two positive examples (i.e., dl1 and d12) and

classifies no negative example as positive. In comparison, M incorrectly classifies one of the two

positive examples (i.e., d l l) as negative. Therefore, the use of rl has actually improved the

performance of the SVM classifier on D(prune). In terms of interpretability, rl presents a more

understandable structure of positive sequences than the SVM kernel function that involves 9

features.

Figure 6-4 Selecting the prefix

Prefix R'

Examples classified in D(prune)

EfR ')

E f M 3 ')

E(M,R ')-E(R ')

The empty prefix

none

0

0

0

I

dll, d l2 dl 1, dl 2, dl 3, dl 5

6.6 Experiments

The purpose of experiments is to evaluate the properties of RSVM classifiers and the

effectiveness of various pruning strategies. We use the ~ ~ ~ - 1 i ~ h t ' implementation [Joa98a] of

SVMs, and compare the interpretability of RSVMs against the C4.5 classifie? [Qui93], which is

widely considered as accurate and understandable classifiers. For fair comparison, we choose the

rule option C4.5 classifier that has fewer rules than the tree option. We use default settings in

both systems and conduct experiments on a PC with 2.4G CPU and 1 GB main memory.

The evaluation was conducted using two groups of membrane: Gram-Negative bacteria'

and Gram-Positive bacteria2. All proteins included in these data sets have been experimentally

verified for their localization sites. Each group has several primary localization sites. One data set

can be created by taking each primary localization site as the positive class and taking the

remaining sites as the negative class. We chose the 5 data sets on which SVMs have at least 90%

precision and 30% recall. The feature set was mined with the minimum support of 1% or 2

positive sequences, whichever is larger, and features of length less than 3 were discarded because

they tended to occur in every sequence. Table 6-2 describes the data sets based on the average of

the 5-fold cross validation. For example, the data set named "Neg-Inner" is from Gram-Negative

bacteria and has "Inner membrane" as the positive class.

For comparison purpose, we considered several competing classifiers: SVM, Rule-alone,

C4.5-prune and C4.5-all. SVM is the standard SVM classifier. Rule-alone is the rule list produced

in the rule phase but cut off by minimizing the error on D(prune), with the negative class being

the default class. Rule-alone serves the baseline for our rules without integration with SVMs.

C4.5-all is the standard C4.5 classifier (of the rule option). C4.5-prune is the standard C4.5

classifier built using the feature set produced after pruning redundant and insignificant features as

described in Section 6.4. We also followed [Joa98b] and built the C4.5 classifier using the topp%

features (ranked by information gain), where p={ l , 5, 10, 20, 50). The results are either much

worse or very close to C4.5-prune, so are not included here.

' httu://www.usort.orddatasetldatasetvl .htrnl, Version 1 .I. This is the version available at the time of experiments
' httu://www.usort.orddataset/, Version 2.0.

Table 6-2 Data statistics

Data sets I # Seq. I # Pos. seq. I Seq. length I # Features I # ~eaturesper seq.

Neg-Inner / 1572 1 292- 1410 1 34828 13817

Neg-Outer 1572 377 559 42079 3507

Neg-Extra 1572 191 469 1 15786 7904

Pos-Cellwall 576 61 1059 87727 9449

Pos-Extra 576 183 45 1 67381 3096

6.6.1 Performance and Significance

Table 6-3 shows the precisiodrecall (in percentage) on D(test). RSVM preserves the

precision and recall of SVM quite well. This is because the rule portion R(RSVM) has a precision

comparable to the precision of SVM. Consequently, RSVM outperforms the C4.5 classifiers by a

similar margin as SVM does. Rule-alone has a (slightly) higher precision than RSVM, i.e., 3%,

because it was selected to minimize the error on the sequences it matches. However, this slight

advantage is at the heavy expense of a much lower recall, i.e., 18% compared to 69% of RSVM.

RSVM has at least as much recall as the SVM. This is a consequence of using positive rules only

in RSVM: If a sequence is predicted as positive by the SVM, it will be predicted as positive by

either R(RSVM) or the (same) SVM in the RSVM. Typically, the recall of RSVM is several

percentage points higher than that of the SVM because additional structures were captured by

rules.

The significance of the RSVM is measured by the portion of classification performed by

rules, i.e., the recall of R(RSVM). This is shown under the R(RSVM) column in Table 6-3. The

larger this recall is, the more classification is stolen by the rules and the more effective the rules

are. Note that these rules are constrained to preserve the precision of SVM, so simply including

more rules in R(RSVM) does not help. On average, the recall of R(RSVM) is 30%, compared to

99

the 69% recall of the RSVM. This means that about 43% of the classification (of the positive

class) done by the RSVM was performed by rules, therefore, was manifested to the human user.

As we will show shortly, these rules are quite compact and are understandable to the human user.

Data sets

Neg-Inner

Neg-Outer

Neg-Extra

Pos-Cellwall

Pos-Extra

Average

Table 6-3 Precision/Recall (%) on D(test)

Compared to the C4.5 classifiers, R(RSVM) is more than 36% more accurate in

precision. This huge gain makes the rules of the RSVM more useful to the biologist, who wants

to be damn sure that any prediction about the target localization is correct. Though the C4.5

classifiers have a larger recall, their quality is much less trusted, because of the significantly

lower precision (i.e., 36% lower). Compared to Rule-alone, R(RSVM) is preferred due to the

much higher recall (i.e., 12% higher) with only slightly lower precision (i.e., 2% lower).

We also compare with publicly available software tools TMHMM' and ~hobius' that are

primarily used to identify the presence and location of transmembrane helices in a protein. The

presence of transmembrane helices indicates inner membrane proteins (also called the

cytoplasmic membrane), and 3 or more transmembrane helices is a more reliable indication

[GSW+03]. Based on this property, TMHMM and Phobius produce PrecisionIRecall of 98/83 and

99/82 on the testing data of our 5-fold cross validation. While the precision is similar to that of

RSVM and SVM, the recall is 3% to 6% lower. If we require only 2 or more transmembrane

helices, these numbers are 94/91 and 95/88, and if we require only 1 or more transmembrane

helices, these numbers are 66/96 and 87/96. Note that this method cannot predict the other

localization sites where proteins do not necessarily contain transmembrane helices.

6.6.2 Interpretability

Table 6-4 compares xlylz in R(RSVM), Rule-alone and C4.5-prune, where x is the

number of rules, y is the average rule length, and z is the average feature length (C4.5-all has

more rules than C4.5-prune, so is not included). The column "# Non-zero weight features in

SVM" contains the number (and percentage) of non-zero weight features in the kernel function of

the SVM classifier. R(RSVM) and Rule-alone have a rather small number of rules, i.e., 2 1 and 14

respectively, with short rules (i.e., average of 2.2 features per rule) and simple features (i.e.,

average of 5.5 amino acids per feature). Rule-alone has fewer rules than R(RSVM), but it comes

with a much lower recall (see the above discussion). C4.5-prune uses much more rules, i.e., 50,

and the features in these rules are much longer, i.e., the average of 25.8 amino acids per feature,

than those in R(RSVM) and Rule-alone. These features were chosen by C4.5 because of high

confidence in D(train), therefore, high information gain. But since these features have very low

support, they did not perform well on D(test), which explains why C4.5-prune has a low precision

(see Table 6-3). Our rule generation prunes rules containing such features due to statistical

insignificance. The SVM classifier has tens of thousands of features in its kernel function even

after removing all zero weight features. A complexity of this scale would bury any useful and

simple structures that the biologist could use for further analysis and actions.

Table 6-4 Comparison on interpretability

Data sets R(RSVM) Rule-alone C4.5-prune # weight features in ! I I S Y M

Neg-Inner I 31 12.0 14.0 1 22 12.0 14.0 1 61 I 2.1 1 1 15176 (43.57%) I
Neg-Outer 15 I 2.6 I 12 I 2.7 1 63 1 2.1 1 39895 (94.80%)

Neg-Extra 12 1 2.1 / 4.1 11 I 2.1 14.1 40 I 2.2 I 17902 (15.46%)

POS- 13/2.0/4.1 812.014.1 15 1 2 . 2 1 13345(15.21%)

Pos-Extra 33 1 2.1 1 4.0 17 1 2.3 14.0 72 1 2.1 1 26591 (39.46%)

Average 21 12.2 / 5.4 14 12.2 / 5.5 50 / 2.1 / 22581 (41.7%)

6.6.3 Pruning Effectiveness

As shown in Table 6-2, there are tens and even hundreds of thousands of features, and

each sequence contains more than 3000 features. Mining rules from such high dimensional data is

extremely expensive and must rely on strong pruning strategies to reduce the search space. The

column "Features kept" in Table 6-5 shows the percentages of features remaining at different

stages, with respect to the initial number of features. The first number is the percentage of

features after pruning redundant features (Strategy 1). The second number is the percentage of

features after pruning those with zero weight in the SVM model. The third number is the

percentage of features after pruning insignificant features (Strategy 2). Roughly speaking, almost

213 of features are redundant, 113 of non-redundant features have zero weight, and 113 of the

remaining non-zero weight features are further pruned due to insignificance. As a result, the rules

of R(RSVM) are searched using no more than 1 1% of the features that are used for training SVM.

The column "Features per seq." in Table 6-5 shows that, by feature pruning (Strategy 1 and 2),

the average number of features contained in a sequence is reduced to 2.1% of the number of

features in a sequence before the pruning. This significantly reduces the data size, the search

space, and the rules generated.

Table 6-5 Effectiveness of feature pruning

Features kept (%) Features per seq. (%)

I Average 1 31.3 1 15.5 1 10.5 I 2.0

Neg-Extra

Pos-Cellwall

Pos-Extra

With only 10% (of the features in Table 6-2) remaining after the feature pruning, the

number of features ranges from lo3 to lo4. Without any rule pruning, the number of size-k rules is

to 1 0 ~ * ~ . The maximum k for the rules in our RSVMs is 3. This amounts to the search space

of lo9 to 1 012 rules if no rule pruning is done.

Figure 6-5 compares the average CPU time (seconds) for building RSVM and C4.5

classifiers. The time for generating the feature set is the same for all algorithms and is not

included. For .RSVM, the time includes building the SVM model, rule generation and stealing

phase. More than 70% of the time was spent on the rule phase. For this reason, the time for Rule-

alone (not shown) is similar to the time for RSVM. For the C4.5 classifiers, the time includes

building the decision tree and rule pruning. RSVM is more efficient than C4.5-prune. C4.5-all is

too slow due to the high dimensionality of data.

28.7 16.3 14.1

17.0 / 10.6 17.0

30.6 I 19.3 113.0

1.5

2 .O

2.1

Table 6-6 presents the number of rules generated at different phases in our algorithm.

Compared to the above search space without rule pruning, the number of rules generated (denoted

"#Significantyy for statistically significant rules) is significantly reduced. Among the rules

generated, about 1 % to 10% are preserving rules (denoted "#Preservingy'), and only about 0.0 1 %

is included in the final RSVM (denoted "#Final3').

Figure 6-5 compares the average CPU time (seconds) for building RSVM and C4.5

classifiers. The time for generating the feature set is the same for all algorithms and is not

included. For RSVM, the time includes building the SVM model, rule generation and stealing

phase. More than 70% of the time was spent on the rule phase. For this reason, the time for Rule-

alone (not shown) is similar to the time for RSVM. For the C4.5 classifiers, the time includes

building the decision tree and rule pruning. RSVM is more efficient than C4.5-prune. C4.5-all is

too slow due to the high dimensionality of data.

Table 6-6 Effectiveness of rule pruning

I Data sets I #Significant 1 #Preserving I #Final

I Neg-Extra 1 1.1*106 1 l.2*lo4 I l 2

Neg-Inner

Neg-Outer

6.0* 1 o6

8.7*106

Pos-Cellwall

Pos-Extra

5.6* lo4

1.9*105

5.1 * 1 o6

3 1

15

3.4*106

8.6* 1 o4 13

2.5* 1 o4 3 3

Figure 6-5 CPU time (in seconds) for building classifiers

Time RSVM H C4.S-prune C4.5-all

Neg-Inner Neg-Outer Neg-Extra Pos-Cellwall Pos-Extra

6.7 Related Work

Many algorithms have been proposed on membrane protein localization problem,

including neural network [DFU+98, JMF+Ol, RH981, Markov chain model [Yua99], hidden

Markov model [MFKC02], and SVM [HSOl, Ver021. In all these works, the prediction is a black

box because there was no attempt to make the prediction understandable. On the other hand,

traditional rule-based classifiers, such as C4.5 and ID3, are relatively easy to understand but they

perform poorly on high dimensional problems such as the one considered here, compared to the

SVM model. Many algorithms were proposed that try to combine the strengths of these two

approaches.

Extracting understandable rules has been intensively studied for neural network

classification [ADT95]. The decomposition method focuses on extracting rules at the level of

individual components of neural networks, such as clustering the hidden unit activation, searching

for weighted links that caused hidden or output units to be active. The leaming-based method

extracts rules by using the neural network to generate examples for a rule-based method. The

situation is similar in the case of SVMs. All these works attempt to replace the neural network or

SVM with the rules extracted, which tends to produce too many rules and unmatched

performance. We emphasize preserving the performance of SVM, by employing only high quality

rules and replacing only part of the SVM classification.

The hybrid decision tree [ZC02] builds an upper portion of the standard decision tree and

embeds neural networks into some leaves to accomplish the remaining prediction. The

classification at a leaf node represented by a neural network is still a black box. The perceptron

decision tree generalizes the standard one-attribute split at each internal node by a general split

represented by a hyperplane. See [BCWOO] for examples. Each conjunct in the body of a rule is a

multivariate linear inequality. Though perceptron decision trees have demonstrated good results

for some real world problems, they tend to over-fit the data by involving many variables in a

split, due to the increased flexibility. Rules generated by such splits are less interpretable.

Recently, association rules have been used for classification for high dimensional

transactional data [AMS97, LHM98, WZHOO] and have shown promising results on outer

membrane localization prediction [SCW+03]. However, this approach has several limitations: It

depends on a carefully chosen minimum support; the performance is not as good as SVM; and the

number of rules used is large, therefore, not easily understandable.

6.8 Conclusion

Motivated by applications in antibiotic and vaccine drug design, we examine the

subcellular protein localization problem for disease-causing bacteria in this chapter. This problem

has several demanding and conflicting requirements: high precision of prediction, interpretability

of models, and high dimensionality of data. Our approach is integrating the precision-driven

SVM model with the interpretable rule-based model, with each doing what they are best at. The

SVM model focuses on classification involving subtle structures, whereas the rule-based model

focuses on main structures that can be represented by concise rules. The integrated model, called

RSVM, preserves the performance of the SVM model and exposes simple structures in

understandable rules. The experiments on real subcellular protein localization tasks have

demonstrated the effectiveness of RSVMs.

CHAPTER 7

DISCOVERING CATALOG MATCHINGS ON THE WEB

In this chapter we study an interesting decision-making problem which establishes the

mapping between two different catalogs. Unlike previous applications where we mainly discuss

how to build decision-making systems from a given data set, in this chapter we focus on how to

generate the appropriate data set (from given data) so we can apply rule-based decision-making

algorithms on it.

The most successful paradigm for making the mass of information on the Internet

comprehensible is by organizing them into catalogs, i.e., categories (or topics) of hierarchical

specificity. Due to the distributed nature, there are explosive numbers of catalogs even for

applications in the same domain. It makes the information exchange and comparison difficult and

slows down the business negotiation. In this chapter, we address this problem by learning the

concept of a given category in one catalog in terms of the categories in the other catalog. Such

characterization tells how the documents in a given category in one catalog are categorized in

another catalog, even without knowing what these documents are. We express the learning results

in interpretable rules so they are easy to understand. We evaluate this approach using real world

data sets and the results are promising.

7.1 Introduction

An essential requirement for information interchange in electronic markets is the

following catalog matching: given two distributed catalogs (HI, DB,) and (HZ, DBZ) in the same

domain, where DB, is a collection of text documents categorized according to the categories in H,,

characterize a given category in HI in terms of the categories in H2. The characterization tells

whenever a document falls into certain categories in Hz, it falls into the given category in HI. The

two catalogs are distributed in that they were created independently, and are in the same domain

in that they addressed a similar applicatidn. The following example illustrates some of the points.

Figure 7-1 Job catalogs

Jobs in other area
k b s in US

Example 7-1 Consider two job catalogs (HI, DB,) and (H2, DB2), one for North America and one

for other regions, shown in Figure 7-1. Suppose that a catalog matching for the "Assogrof"

category in HI could be

Sen - lecturer, Australia + Assoqrof

where "Sen-lecturer" and "Australia" are categories from Hz. This matching says that a job

opening under both the "Sen-lecturer" and "Australia" categories in H2 would be under the

"Assoqrof' category in HI. Knowing this matching, an employer in North America may

consider offering an associate professor position to a senior lecturer applicant from Australia.

The major challenge for catalog matching comes from the distributed nature of sources

where the catalogs were created independently and catalog matching is an after-thought. They do

not necessarily share same categories or documents (collection diversity); different terms may be

used for semantically similar categories, and the same term may be used for semantically

dissimilar categories (naming diversity); pair wise or structural correspondence rarely exists

(structural diversity).

Our approach. A key issue is how to model the notion of "same domain" under the "distributed

assumption". A recent study by He and Chang [HC03] suggests that sources of the same domain

tend to have converging vocabularies. Though their study is for schema matching in the context

of "deep web", it is applicable to catalog matching because the distributed nature remains the

same. This observation leads us to hypothesize the following:

Hypothesis 7-1 For two catalogs (HI, DB]) and (H2, DB2) in the same domain, there exists a

common underlying document distribution from which DBI and DBz are drawn. 0

The essence of this hypothesis is that a model MA learned about a category A from (HI,

DBI) could be applied to the documents in (Hz, DB2) to determine their A or 4 category.

Therefore, for each document <C2, D2> in (Hz, DB2), where D2 contains terms and C2 is the set of

Hz-categories for D2, we create a new example <A, C2u D2 > or <-,A, C2u D2 >, stating that a

document <C2, D2> will have the A or category in (HI, DB]). By ignoring D2, we have a set of

examples <A, C2> or <-,A, C2> that tell what Hz-categories co-occur with the A or -4 category.

Then we can extract and refine rules of the form xl, . . ., xk+A for expressing the matching for A,

where x,'s are categories or absence of categories in Hz.

This approach has several major differences from existing works.

The two sources do not have to share common documents, or similar structures and

category names. In contrast, [ChaOO, MWJ99, NMOO] uses a variety of heuristics,

such as common tokens, to match ontology elements, and [DMDH02, ITHOI, LGOl]

assumes that a category is always mapped to a single (i.e., the most similar) category

in the other catalog, i.e., pair wise correspondence. For example, these approaches

cannot find the matching in Example 7-1.

It expresses the matching at the category level, not the term level. Rules of the form

xl, ..., xk+A tell the correspondence between the categories x,'s in H2 and the

category A in HI for all documents. Such matching is at the summary level, therefore,

easier to understand. In contrast, catalog integration [AS0 1, OF0 1, SMO 1, ZL041 and

cross-training [SCG03] perform the matching "one document at a time" because the

target category A of a document in (H,, DB,) depends on both terms and categories of

the document.

It deals with the language, search, and accuracy of matching by principled machine

learning techniques. A set of rules X I , .. ., xk+A for A expresses general Boolean

relationships between xi's and A and can be searched as classification rules for A.

Machine learning was used in [DMDH02], but only pair wise correspondence was

considered where the language and search of matching were not a major issue.

Catalog matching is semantically different from schema matching [RBOl]. In

[DLD+04, HCH041, complex semantic correspondences between schemas are

studied. For example, the attribute "author" in one database could correspond to the

attribute group {'tfirst name", "last name") in another database. Quite differently,

catalog matching is about the correspondence of the topics of documents categorized:

"Sen-lecturer", "Azcstralia"+ "Assoqroj" represents the documents summarized in

the bi2ssoqroj" category are summarized in both "Sen-lecturer" and "Australia"

categories in another source. Schema information often is available for schema

matching, including data type, relationships, constraints, schema structure [RBOl].

However, such information is not available for catalog matching.

7.2 Problem Definition

We first define some concepts. A document is a bag of terms. A catalog is a collection of

documents DB categorized into categories of a hierarchical structure. A child category represents

a specialization (e.g., Sedan) of a parent category (e.g., Car). The hierarchical categorization

implies that if a document belongs to a category, it also belongs to all ancestor categories. In this

chapter, a category starts with the upper case and a term starts with the lower case.

Example 7-2 (Running example) Figure 7-2 and Table 7-1 show two catalogs (HI, DB,) and (Hz,

DB2). Document DII contains the terms corn, farm, rice and belongs to the category Grain,

therefore, Plant. Document DZ2 belongs to the categories Vegetable and Dairy.

Figure 7-2 Example hierarchy

G-ain Bmn Cattle Poultq C C R ~ Vegetable n;lirq. k w l

Table 7-1 Example data set

Terms Categories

Dl,: corn, farm, rice

Dl,: farm, pea, soybean Clz: Bean, Plant

D13: bee$ milk, rice CI3: Cattle, Grain, Animal, Plant

Dl,: chicken, egg I C l i Poultry, Animal

7.2.1 Matching Rules

Consider two catalogs (HI, DB,) and (Hz, DB2). A matching rule for a category A in HI

has the form,

(HA DBz)

D21: farm, rice, wheat

Dzz: milk, pea, potato

D23: farm, milk

D2,: egg, hatchery

CZ1: Cereal, Crop

C2Z: Vegetable, Dairy, Crop, Livestock

CZ3: Dairy, Livestock

Cz,: Fowl, Livestock

where each conjunct x, is a category, or term, or absence of such, from (HZ, DB2). We read this

matching rule as: If a document fits the description xl, ..., xk in (H2, DB2), it would belong to the

category A in (HI, DBJ. A single matching rule expresses A as A (intersection) and

(differentiation) of the sets of documents containing certain terms or belonging to certain

categories in HZ. A set of matching rules for A expresses A as v (union) of several such

descriptions. Thus, matching rules are substantial generalization of the pair wise correspondence

in [DMDH02].

For hierarchical catalogs, categories are not independent of each other and there is a

further requirement on matching rules. If a category x, is an ancestor of a category x,, xi and x,

cannot co-occur in a matching rule, neither can ~ x , and -,xj However, x, and -aJ can co-occur in

a matching rule. Matching rules extracted by C4.5 [Qui93] automatically ensure this property.

We are primarily interested in matching rules in which x,'s are either categories or

absence of categories, but not terms. Such rules are more explicit and understandable to the

human user because they express the matching by the categories that summarize the documents,

not the detailed terms in the documents. However, there are cases where terms are necessary for

accurate matching. For example, the "Camry" category in one catalog cannot be accurately

described by any combination of the categories "Sedan", "SUV", and "TruckIMini Van" in

another catalog. Since "Camry" corresponds to a subclass of "Sedan" that has the medium size,

terms such as "medsize" in some documents under "Sedan" would help: "Sedan,

medsize+Camry". However, we hypothesize that most catalog matching can be captured at the

category level or nearly category level, as stated below.

Hypothesis 7-2 For two catalogs in the same domain, only matching rules involving no or few

terms are needed.

Hypothesis 7-2 does not mean that terms can be ignored in the search of catalog

matching. To the contrary, our approach heavily depends on documents' terms to learn a model

for determining the external categories in the other catalog. However, once such categories are

determined, Hypothesis 7-2 allows us to search for matching rules by ignoring most terms. We

will experimentally study the extent to which Hypothesis 7-1 and Hypothesis 7-2 hold.

7.2.2 Catalog Matching

Motivated by Hypothesis 7-2, we define the problem of catalog matching as follows.

Consider two catalogs (HI, DB]) and (H2, DB2). The catalog matching for a category A in HI is a

set of matching rules for A learnt from a data set that contains no more than a user-specified o

percentage of the terms in DB2. o is called term-allowance. We say that a catalog matching is at

the category level if the term-allowance is zero, i.e., the matching rules involve only categories.

A catalog matching serves two purposes. The first purpose is to predict the A or 4

category for documents whose categories in H2 are known, therefore, to integrate the documents

in (H2, DB2) into (HI, DBI). If the catalog matching is at the category level, this prediction or

integration depends on only the categories, not the content, of the documents. The second purpose

is to characterize the A category in terms of the categories in HZ, in order to understand the

relationships between the categories in the two catalogs.

7.3 Algorithm Overview

To find the catalog matching for A in HI, our approach works as follows. From (HI, DBI)

in which each document belongs to either A or 4 , we learn a model, called the head-generating

model, to determine A or 4 for each document <Cz, D2> in (H2, DB2), where C2 is the H2-

categories of document D2. Hypothesis 7-1 implies that such cross-source application is valid.

This would create examples of the form <A, C2uD2> or <TA, C2uD2>, stating that D2

categorized as C2 in (Hz, DB2) would be categorized as A or 4 in (HI, DBI). This set of

examples, called the matching set for A, provides a training data for learning matching rules xl,

..., xk+A , with the descriptors xi coming from C2uD2. To satisfy the term-allowance constraint,

we remove all but the top o percentage of terms from the matching set. A standard feature

selection can be used for this purpose.

Alternatively, the matching set for A can be obtained by generating the Hz-categories for

each document <A, Dl> or < 4 , Dl> in (HI, DBI). In particular, we learn a model for each

category B in Hz using the training set (Hz, DB2). The collection of these models is called the

body-generating model. We then apply these models to each document <A, Dl> or <-A, Dl> in

(HI, DBI) to determine their Hz-categories, say C2. The matching set consists of the documents

<A, C2uDI> or <4, C2uDl>. The terms in Dl but not in DBz are removed because the

descriptors in a matching rule come from (Hz, DB2).

Figure 7-3 summarizes the above approach in four steps. Step 1 learns either a head-

generating model or a body-generating model. Step 4 extracts a catalog matching by learning a

rule-based classifier from the matching set. Both steps can be done by applying standard learning

algorithm. Step 3 removes all but the top opercentage of terms and is done by a standard feature

selection. Below, we focus on the key step of generating the matching set, which involves Step 1

and Step 2.

We first consider flat HI and Hz to present the main ideas, and then extend them to

hierarchical HI and Hz where the impact of hierarchical categories is examined. In each case, we

consider head-generating model and body-generating model for generating the matching set.

Figure 7-3 The overview of catalog mapping algorithm

Input: (HI, DB,) and (HZ, DB2), the target category A in HI, and term-allowance a

Output: the catalog matching for A

Algorithm

1. Learn the (head- or body-) generating model;

2. Apply the generating model to generate the matching set for A;

3. Remove all but the top apercentage of terms from the matching set;

4. Learn the catalog matching for A using the matching set;

7.4 Generating Matching Rules from Flat Catalogs

This section assumes that the hierarchies HI and H2 are flat. We consider two alternative

implementations.

7.4.1 Flat-Head

In the first algorithm, called Flat-Head, Step 1 learns the head-generating model. The

training set contains a positive example for each document in (HI, DB,) that belongs to A, and a

negative example for each remaining document in (Hj, DBJ). Let MA denote this model. Step 2

applies MA to the documents in (Hz, DB2) to generate the A or -4 category for them. The example

below explains.

Example 7-3 Consider (HI, DB,) and (Hz, DB2) in Table 7-1, but ignore the hierarchies above the

Table 7-2 The matching set

table. Suppose that we want to find the catalog matching for Grain in H1. To learn the head-

Class

Grain

 grain

7Grain

7Grain

generating model MGraln, the positive examples are Dl,, Dlj because they belong to Grain, and the

negative examples are D12, Dl, because they belong to grain. Suppose that MGraln has only one

rule: rice3Grain. Note that this is a regular classification rule, not a matching rule. Finding

classification rules from a given training set is a standard classification problem.

Next, we apply MG,, to the documents in (Hz, DBz) to generate the matching set for

Grain: If a document contains rice, label it as Grain, otherwise, as --,Grain. This produces the

matching set:

Attributes

C2, denotes the categories for D2, as given in Table 7-1. Suppose that the terms farm,

hatchery, potato, and wheat are pruned for satisfaction of the term-allowance constraint. Table

7-2 shows the matching set in the form of a relational table with Grain and 7Grain being as the

class labels and the remaining terms and categories from (H7, DBz) being the features. Now, a

egg

0

0

0

1

milk

0

1

1

0

pea

0

1

0

0

Cereal

1

0

0

0

Fowl

0

0

0

1

rice

1

0

0

0

Vegetable

0

1

0

0

Crop

1

1

0

0

Dairy

0

1

1

0

Livestock

0

1

1

1

standard rule-based learner can be applied to extract the matching rules for Grain from this

matching set.

7.4.2 Flat-Body

In the second algorithm, called Flat-Body, we produce the matching set by generating the

H2-categories for the documents in (HI, DBI). First, we learn a body-generating model from (Hz,

DB2), consisting of one model Me for each Hz-category B. The training set for MB contains the

documents belonging to B as positive examples and the documents belonging to TB as negative

examples. Then, for each document <A, Dl> or <-,A, Dl> in (HI, DB]), we generate its Hz-

categories by applying every MB to Dl. Let C2 be the set of Hz-categories B which MB categorizes

Dl as belonging to. Before adding <A, C2uDI> or <-,A, CZUDI> to the matching set, we remove

all terms in Dl that do not occur in DBz. Step 3 and Step 4 remain the same as in Flat-Head.

Example 7-4 Suppose that the body-generating model is:

M&,=@rrn+ Crop}, M~,vesroc~={milk+Livestock} ,

Mcere0~{rice+ Cereal}, MYegeroble= (pea+ Vegetable),

Mutli,={milk+ Dairy), MF,w~{egg+Fowl).

To produce the matching set for Grain, we apply these models to the documents in (HI,

DBl). Consider Dll for example. Since DII contains terms corn, farm and rice, rules Mcro,, and

Mcerea, match it. Hence, Dll is assigned Hz-categories Crop and Cereal, creating the example:

<Grain, {Cereal, Crop}uDII>

Similarly, we create other examples in the matching set for Grain:

<-,Grain, {Vegetable, Crop)uD12>, <Grain, {Dairy, Livestock, Cereal}uD13>,

In Flat-Body, it is possible that the body-generating model MB may generate "conflict"

categories B for a document in (HI, DB,). Consider DI,. M~,iveslock classifies it as 7Livestock.

However, MFolvl classifies it as Fowl, which is a child of Livestock. This issue will be addressed

later when we discuss Hierarchical-Body approach.

7.5 Generating Matching Rules from Hierarchical Catalogs

Now, we consider hierarchical HI and Hz. In this case, a category B (i.e., those at a lower

level) can get so specific that few documents belong to B and most documents belong to 7B.

Many learning algorithms get into trouble when faced with such imbalanced data [ProOO]. In

particular, extracting rules for B will be difficult at Step 1 and 4. We address this issue below.

7.5.1 Hierarchical-Head

Our observation is that if we have a model to test whether a document belongs to the

parent of B, say B', we do not need to include those documents that fail the test when learning the

model for B. This makes sense because we can classify a document into B or 7B by first applying

the model for B', if succeeded, further applying the model for B. This approach excludes all

documents not belonging to B' from the training set for B, thereby, making the B17B distribution

more balanced. Similarly, to learn a model for Br, we could consider only those documents that

belong to the parent of B'; and so on.

This observation leads to a new algorithm, called Hierarchical-Head. Consider the path

from the root of HI to A,

where A. is the root and Ak=A. We build the head-generating model for A as a sequence

of models,

where MA, is a model for A, learned using only the documents that belong to the parent of

A,. To generate the matching set for A, for each document <C2, D2> in (HZ, DB2), we apply these

models hierarchically: D2 is initially categorized as AD, and we apply MA; to D2 only if D2 has

been categorized as A,-, by MA;-/. If D2 is eventually categorized as A, we add <A, C2uD2> to the

matching set; if D2 is categorized as the parent of A but not A, we add <-A, C2uD2>. Note that all

the documents not categorized as the parent ofA are not included in the matching set for A.

Example 7-5 The head-generating model for Grain consists of two models, Mmr and MGraln.

Mplan, is built using positive examples {Dl,, D12, DI3} and negative example {DI,}. Suppose

Mp~Dn,=@-m+Plant}. To build MGraln, we consider only the documents belonging to Plant: DII

and DI3 are the positive examples, and D12 is the negative example. Suppose

MG,,,={rice+ Grain}.

The matching set for Grain is generated as follows. First, we apply Mplonr to all

documents in (H2, DB2), categorizing D2/ and D23 as Plant. Then, we apply MGrain to (only) these

documents, categorizing Dzl as Grain, and 0 2 3 as 7Grain. So, the matching set for Grain consists

of

This data set is more balanced compared to the matching set in Example 7-3.

7.5.2 Hierarchical-Body

In Hierarchical-Body, we create the matching set for A using a body-generating model.

Like in Flat-Body, the body-generating model consists of one model MB for each category B in

H2. Unlike in Flat-Body, Me is learned using only the documents in (Hz, DB2) belonging to the

parent of B, as in Section 7.5.1. To produce the matching set for A, we consider only the

documents D, in (HI, DB,) that belong to the parent ofA and determine its H2-categories, denoted

Cz using the body-generating model. Particularly, for each category B in Hz, we apply the models

120

MB, on the path to B "hierarchically" as in Section 7.5.1. C2 is the set of categories B which Dl is

categorized as belonging to.

Example 7-6 In general, the body-generating model for Flat-Body is not the same as for

Hierarchical-Body. For simplicity, we borrow the body-generating model in Example 7-4 to

illustrate how to apply it in Hierarchical-Body. To produce the matching set for Grain, we apply

these models to the documents in (HI, DB]) that belong to the parent of Grain, namely, Dl,, Dlz,

Dl,, to determine their Hz-categories. Consider Dll for example. First, McrOp categorizes Dll as

Crop, then, MGreal categorizes Dll as Cereal and Mvege,a61e categorizes Dll as -,Vegetable. MLlvesrock

categorizes Dll as TLivestock. We do not further apply Mo,,v and MFo,,,, to Dl]. So, Crop and

Cereal are the Hz-categories for Dl]. Similarly, we can generate the Hz-categories for D12 and Dl3.

This gives the following matching set for Grain:

<Grain, {Dairy, Livestock)uD+-. 0

7.6 Evaluation

This section evaluates the three approaches, Flat-Head, Hierarchical-Head, Hierarchical-

Body, in terms of the effectiveness of discovering catalog matching, and makes

recommendations. Flat-Body is not considered because it may produce conflict categories as

discussed earlier. We used S V M - Z ~ ~ ~ ~ ' in Step 1 for learning the generating model due to its good

performance for handling text documents. In Step 4, we used ~4.5-rules2 since it also has rule

generation and rule pruning phases. The default settings were used for both tools.

7.6.1 Evaluation Criteria

We evaluate catalog matching by accuracy and simplicity. The accuracy is measured by

the recall and precision of predicting the given category A in HI for the documents in H,. Recall

refers to the percentage of documents that are predicted as belonging to A among those that

actually belong to A. Precision refers to the percentage of documents that actually belong to A

among those that are predicted as belonging to A. Both precision and recall are computed on an

independent testing data. For a catalog matching to be useful, precision and recall must be above

some specified minimum thresholds. We set both thresholds at 70%. Coverage refers to the

percentage of the categories A in HI whose catalog matching have precision and recall above the

specified thresholds. Simplicity is measured by the number and length of matching rules, and the

percentage of terms used.

We consider two other competing methods.

The Meta-Learner method. This method was proposed in [DMDH02]. It combines the

predictions of several base learners via weighted sum by assigning learner weights to base

learners. Same as in [DMDH02], we used content learner (with 0.6 learner weight) and name

learner (with 0.4 learner weight) as base learners. The core idea for each base learner is the same:

Given a category A in HI, it finds the "most similar7' category B in Hz for A, i.e., B maximizes

some notion of similarity between A and B. We consider the Jaccard similarity:

where a term like P(AAB) is the probability that a randomly chosen document belongs to

both A and B. We implemented the method described in [DMDH02] for estimating these

probabilities using Naive Bayes classifier. This approach considers only 140-1 matching or pair

wise correspondence.

The 1-rule method. This is a degenerated version of our method by restricting the length

of C4.5 rules to 1 at Step 4. In particular, if B is the attribute selected at the root node of the

decision tree, the catalog matching for A will have exactly 1 matching rule B+A. This method

also produces 1-to-1 matching. However, unlike the Meta-learner method, it can exploit the

hierarchy structure as described in Section 7.5. Comparison with this method would reveal the

benefit from considering more general matching rules.

We conducted three experiments, each on a different domain. In the first experiment, we

planted some known matching in the data and verify if we can find them. In the second and third

experiments, we aimed to find whatever matching in the data sets, which are not known to us. To

evaluate a catalog matching, a testing set is chosen so that it contains categories from both

catalogs. Since matching rules are to predict the HI-categories for the documents in (Hz, DB,), we

choose the testing data from the documents in (H,, DB2) whose HI-categories are also known. We

will explain this choice for each domain.

Domain 1: Reuters. This is a benchmark for text categorization with one flat catalog1.

Using this catalog, we created two catalogs, (H, DB,) and (Hb, DBb), such that (Hb, DBb)

resembles the original catalog and (H, DB,) resembles a new catalog obtained by applying set-

operations to original categories. First, we randomly split the document collection into two

disjoint sets of equal size, DB, and DBb. We created new categories for DB,, as shown in Table

7-3, by applying set-operations to DB,. For example, the documents for the new category

CII=GraimWheat were obtained as the intersection of Grain's documents and Wheat's documents

in DB,. All documents in DB, that do not have any new category are removed. Let H, denote the

set of new categories for DB, and let Hb be the set of original categories for DBb. Since both H,

and Hb are flat, the Flat and Hierarchical implementations in Section 7.4 and 7.5 coincide.

Table 7-3 Planted categories for the Reuters domain

Created categories #Document

C~~=Money-fh1Interest 243

C ~ y G r a i n ~ ~ Wheat 126

-

-
-

-

-

-

-

-

-

-

-

-

-

-

2

This experiment was evaluated by 5-fold cross validation. First, the original data set in

the Reuters source was split into the training set and the testing set in five different ways. For

each way of splitting, two catalogs (H , DB,) and (Hb, DBb) were created using the training set as

described above and were used to find the catalog matching. Every document in the testing set

already has the Hb-categories. We determine their Ha-categories according to the definition in

Table 7-3. If a testing document does not have any Ha-category, we discard it. The remaining

testing documents have categories from both Ha and Hb.

Domain 2: Tvshow. This domain has one catalog from yahoo!' and one catalog from

~ y c o s ~ . Each document is text description for an object such as a PDF file to JPEG file, with

URLs linking the document to the described object. We consider only categories with at least 20

documents. To create the testing set, we consider the mirror documents in the two catalogs. A

document in Yahoo! and a document in Lycos are mirrors of each other if their URLs link to the

same object, i.e., if they describe the same object. If two documents are mirrors of each other, we

consider they inherit each other's categories. Therefore, a mirror document has the categories

from both Yahoo! and Lycos. We reserved all mirror documents in H2 as the testing set and used

the remaining documents as the training set.

Domain 3: Industry. In this domain, we used two different industry classification

systems, one for the United at ion^, and one for Canada4. Each system organizes the industry

products/activities into a hierarchy catalog. In the Canada catalog, each category has a text

description and example activities, and we create a single document using the description and

example activities. In the UN catalog, each category has several explanatory notes, and we create

one document for each explanatory note. We considered only categories at the top two levels by

htt~:Ndir.vahoo.com/Entertainrnent/Television Shows/
httv://dir.lvcos.com/Arts/Television/Pro~s This URL is no longer valid and Lycos does not provide a replacement

for this catalog.

assigning the documents at a lower level to the ancestor categories at the top two levels. We

remove the categories whose documents are less than 10. We randomly select 115 documents

from H2 as the testing set and manually determine their HI-categories.

As usual, we removed stop-words and performed stemming as in Information Retrieval.

We also removed words appearing in less than two documents, and documents having less than 5

words (for the industry domain, this value is 2 due to many short documents). Table 7-4

summarizes the statistics of all data sets. For Reuters, these are the average of 5-fold cross

validation. The average fan out is calculated over internal nodes only. "#Trainingv is the number

of training documents in a catalog, and "#Testing3' is the number of testing documents when that

catalog is taken as HZ.

Table 7-4 Statistics for three data sets

7.6.2 Performance

Figure 7-4 shows the average coverage, precision and recall over the three domains,

where each domain takes one of the two catalogs as HI in turn. The term-allowance is set at zero.

Rules, I-Rule and Meta-learner refer to our method, 1 -rule method, and Meta-learner method,

respectively. Rules and]-Rule have two implementations: Hierarchical-Head and Hierarchical-

Body. (Flat-Head will be examined below.) The minimum thresholds for precision and recall are

70%.

Figure 7-4 Performance comparison. Term-allowance=OoA

K

1

Rub

Rules and I-Rule have higher coverage than Meta-learner. This is because Meta-learner

does not exploit the hierarchical structure. We observed that Rules has much higher coverage than

I-Rule and Meta-learner on the Reuters domain (not shown), up to 70%. In fact, the catalog

matching planted in Table 7-3 are not 140-1 matching. Hence, Meta-learner and I-Rule do not

work well on Reuters domain. On the Tvshow and Industry domains, all three methods have

similar coverage since most catalog matches are 1-to-1 correspondences. On precision and recall,

Rules always performed better due to its capability of capturing matching gener-a1 than I-to-1

correspondences. I-Rule has a similar precision and recall to those of Meta-learner, but has much

higher coverage than that of Meta-learner.

One of our objectives is to study which of Hierarchical-Head and Hierarchical-Body is

more effective. Figure 7-4 shows that the precision and recall are similar in both cases, but

Hierarchical-Body has a higher coverage consistently for all the term-allowances examined. With

Hierarchical-Body, the matching set is generated from the documents in (HI, DBI) where the

target category A is located. This ensures that the matching set has some positive examples for A.

With Hierarchical-Head, on the other hand, the target category A (or 4) is assigned to the

documents in (Hz, DB2), in which case it is possible that no or very few documents in (Hz, DB2)

are assigned with the category A and most documents are assigned the category 4. This is more

so if A is at a lower level. Consequently, Hierarchical-Head more frequently fails to find a good

catalog matching for A.

7.6.3 Effect of Terms

Another objective is to study whether terms have a major impact on catalog matching.

We tested a range of term-allowances from zero to loo%, as shown in Figure 7-5. One striking

trend is that a non-zero term-allowance does not increase, in fact, decreases, precision and recall

in all cases. Coverage may increase a bit for up to 1% term-allowance; however, a larger term-

allowance beyond 1 .O% does not further increase coverage. When the term-allowance is loo%,

i.e., no term is removed, the coverage is less than that for the zero term-allowance. This study

confirms Hypothesis 7-2 that categories are the primary information needed for catalog matching

and terms do not have a major effect. This is good news in that matchings in terms of mostly

categories are more understandable to the human user.

This experiment also verified that Hierarchical-Head and Hierarchical-Body performed

better than Flat-Head, demonstrating that the proposed method of handling hierarchical structures

is effective in dealing with imbalanced class distribution. Indeed, the lack of positive examples in

the case of Flat-Head leads to the frequent failure of finding matching rules, therefore, a low

coverage.

In summary, the experimental study suggests the following: The proposed catalog

matching for A can be highly accurate if the target category A is sufficiently general (i.e., has

sufficient examples); Hierarchical-Body is preferred and the proposed handling of hierarchical

categories is effective; matching rules are able to capture complex relationships; and catalog

matching at the category level is as accurate as the catalog matching where terms are freely

allowed.

Figure 7-5 Performance of the Rules approach against term-allowance

@I
Flat-Head

7.6.4 Simplicity

The final objective is to study whether the proposed catalog matching is simple enough

to be understood human users. A catalog matching is simple if it involves a small number of short

matching rules xl, . . ., xk+A, with the descriptions xl, . . ., xk mostly given by categories instead of

terms. The study in Section 7.6.3 has shown that x, can indeed be mostly categories without

losing the power of capturing matches. Therefore, we focus on the case of zero term-allowance.

We report the study for Reuters with Hl=H,, Tvshow with H,=Yahoo! and Industry with

Hl=Canada. The results are similar in the other three cases where the other catalog in each

domain is taken as HI. Figure 7-6, Figure 7-7 and Figure 7-8 plot the number of categories A in

HI whose catalog matching is found (i.e., y-axis) vs. the numberlaverage length of matching rules

in the catalog matching (i.e., x-axis). Only the categories with precision and recall above 70% are

included. For example, for Flat-Head in Figure 7-7, there are 3 categories @-axis) in which each

category has 3 mapping rules (x-axis). We see most categories have no more than 5 matching

rules, and most matching rules have length no more than 3. Catalog matching of this scale is easy

to understand for human users. These findings confirm that catalog matching can be both accurate

and simple.

Figure 7-6 Reuters: HI=H,, term-allowance=OO/~

C .i.fagfxFg R p s

Figure 7-7 Tvshow:

Figure 7-8 Industry: H,=Canada, term-allowance=O%

7.7 Conclusion

In this chapter we use rules to capture category matching which can help share

information across applications on the web. We examine two important issues: capturing the

matches that are more than l-to-1 correspondences and expressing the matches explicitly at the

category level so that they can be understood without examining underlying data instances. We

present several algorithms for finding such matches and evaluate their feasibility in terms of

accuracy and simplicity. The evaluation on real life domains shows that accurate and

understandable matches at the category level are possible and can be found by the proposed

algorithms.

CHAPTER 8

CONCLUSION

Now we are in information era and the data accumulation rate increases fast. Mining and

using knowledge from this huge amount of data become more and more important for this fast-

changing world. This thesis focuses on using such data to help people making decisions. In

particular, we use association rules to build interpretable decision-making systems which aim to

maximize users' goals.

8.1 Summary of the Thesis

We study several important decision-making systems based on association rules across a

wide range of application domains. Each domain has its own unique challenges and we propose

novel algorithms to address them. Though these algorithms are different from each other, they

follow the same general framework and share common themes. First, these algorithms use

association rules as basic elements for system construction. Second, all the algorithms emphasize

on pushing application goal down into the very beginning of model construction. Third, the

algorithms take both interpretability and effectiveness as the essential requirements for decision-

making systems. CHAPTER 2 gives the details on these common properties. In the following we

briefly summarize the contributions we made on the studied application domains:

In CHAPTER 3 we propose an algorithm to build decision tree from association

rules, i.e., ADT. Decision trees and rule-based algorithms are two types of well-

studied approaches fro classification. Association rules are rich, but lacking of a

systematic method to prune over-fitting rules for classification. Decision tree

induction, on the other hand, has an accuracy-driven pruning, but imposes restrictive

structures on rules. The comparison motivates our work of combining the two

approaches for building better classifiers. To optimize classifier's performance and

improve its interpretability, we leverage the pessimistic bottom-up pruning from

decision tree. The experiments results have shown that the proposed ADT algorithm

not only builds more accurate classifiers, but also does this by finding more truthful

structures, as indicated by the smaller size of classifiers

We study the direct marketing problem in CHAPTER 4. In particular, we solve two

major challenges. First, the classical rule-ranking criterion based on statistic

probability no longer works here due to the inverse correlation between the

likelihood to buy and the dollar amount to spend. To handle this issue, we propose a

new criterion which combines both probability and profit information for rule

ranking. The second challenge is that the historical data in direct marketing often

have extremely high dimensionality and extremely low proportion of the target class.

To attack this problem, we mine "focused rules" on respondents only, which

dramatically reduces the rule searching space. The evaluation on the well known,

large, and challenging KDD-CUP-98 task shows the effectiveness of our algorithm.

CHAPTER 5 presents our approach in solving an interesting problem: profit mining.

It is more challenge than direct marketing problem in the sense that it requires to

recommend both "right" price and "right" product. We handle this issue by exploring

the customers' behaviour of shopping on unavailability. Another challenge which

makes this problem more interesting is how to make use of the relations among

different products (e.g., TV and DVD player both are home electronics.). We propose

MOA (mining on availability) technique which utilizes such product relations in rule

mining and ranking. The experiments show the effectiveness of our algorithm.

CHAPTER 6 introduces an algorithm on combining rules and SVM into one

integrated classifier for the protein localization problem. The rule part exposes the

main patterns which can be easily interpreted by human. The SVM part, which has

shown high accuracy in many other applications, is responsible for classification

involving subtle structures. This integrated model preserves the performance of the

SVM and exposes simple structures in understandable rules. The algorithm proposed

can be extended to integrate other classification algorithms (like neural network) as

well. The experimental results on real subcellular protein localization tasks are quite

promising.

We study the catalog matching problem in CHAPTER 7. In many web-related

applications catalog matching is important since it can help exchange information

and speed up business decision process. To make the model understandable, we

expressed catalog matching as a set of rules at the category level in which each rule

defines a category in one catalog using categories from the other catalog. To make

the model accurate, we also capture the matches that are more than 1-to-1

correspondences. Several variations of algorithms are studied in that chapter. The

evaluation on real life domains showed that accurate and understandable matches at

the category level are possible and can be found by the proposed algorithms.

8.2 Future Research Directions

With the success of using rules in many real life applications, it is worthwhile to extend

its usage in other domains. Some of them are listed here.

Interactive model construction. So far for each application we build "best"

models in background and users have little control on the process. However, in

many cases users want to guide the process. In addition, often users have some

special requests on the model. For example, users may prefer to sacrifice the

accuracy a little bit to have a much smaller model. Ideally, users can have control

on every step and the algorithm will give the (estimated) feedback on user's

decision (e.g., the estimated accuracy if user chooses to prune some rules).

XML document classiJication. Nowadays more and more documents on web

adopt the extensible Markup Language (XML). Thus, there arises the need to

develop new techniques to classify .these documents. Since XML documents are

plain text, text classification algorithms can be applied here as well. But these

algorithms cannot make use of the structures of XML documents. [FW02,ZA03]

introduces some algorithms which assume that the presence of a particular kind

of structural pattern in an XML document is related to its likelihood of belonging

to a particular class (category). How to mine rules and rank them while

considering both content and structure of XML documents is a big challenge

when using rules for classification.

Spatial data prediction. In many areas, we have collected a large quantity of

spatial data, like maps, biomedical data and images. Building decision-making

models on these data sets has unique challenges. First, the data itself is more

complex than a typical business transactional database. Also it is very huge (e.g.

terabytes or peta-bytes). Hence, the richness of rules could be a curse of rule

mining. We need more efficient algorithms and data structures here. Second,

spatial data tends to be highly auto-correlated (eg. people with the same

background tend to live in the same neighbourhood), which is un-true in classicai

statistics analysis. Integrating such correlation in rule mining and ranking is

another challenge yet to be solved.

BIBLIOGRAPHY

[ADT95]

[AIS93]

[AMS97]

[AMS+96]

[AS0 11

[AS941

[Bay971

[Bay981

[BCWOO]

[BFOS84]

[BSVW99]

[Bur981

R. Andrews, J. Diederich and A. Tickle. A survey and critique of techniques of
extracting rules from trained artificial neural networks. In Journal of Knowledge-
Base Systems, 8(6), pages 373-389, 1995.

R. Agrawal, T. Imilienski and A. Swami. Mining association rules between sets
of items in large datasets. In Proc.of 1993 ACM-SIGMOD International
Conference on Management of Data (SIGMOD '93), pages 207-2 1 6, Washington,
D.C., May, 1993.

K. Ali, S. Manganaris and R. Srikant. Partial classification using association
rules. In Proc. of the Third International Conference on Knowledge Discovery
and Data Mining (KDD '97), pages 1 15-1 18, Newport Beach, CA, August, 1997.

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A.I. Verkamo. Fast
discovery of association rules. In Advances in knowledge discovery and data
mining, pages 307-328, AAAIIMIT Press, 1996.

R. Agrawal and R. Srikant. On integrating catalogs. In Proc. of the Tenth
International Conference on World Wide Web, pages 603-612, Hong Kong, May,
2001.

R. Agrawal and R. Srikant. Fast algorithm for mining association rules in large
databases. In Proc. of the 20th International Conference on Very Large Data
Bases(VLDB '94), pages 487-499, Santiago de Chile, Chile, September, 1994.

R.J. Bayardo. Brute-force mining of high-confidence classification rules. In
Proceeding of the third International Conference of Knowledge Discovery and
Data Mining, pages 123-126, Newport Beach, CA, August, 1997.

R.J. Bayardo. Efficient mining long patterns from databases. In Proc. of 1998
ACM- SIGMOD International Conference on Management of Data
(SIGMODJ98), pages 85-93, Seattle, WA, June, 1998.

K. P. Bennett, N. Cristianni and D. Wu. Enlarging the margins in perceptron
decision trees. Machine Learning, Vol. 41(3), pages 295-3 13, December, 2000.

L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone. ClassiJication and
regression trees. Wadsworth, Belmont, CA, 1984.

T. Brijs, G. Swinnen, K. Vanhoof and G. Wets. Using association rules for
product assortment decisions: a case study. In Proc. of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(SIGKDD '99) pages 254-260, San Diego, CA, August, 1999.

C.J.C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2): 121 -1 67. Kluwer Academic
Publishers, Hingham, MA, USA, June, 1998.

E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J.D. Ullman
and C. Yang. Finding interesting associations without support pruning. In Proc. of
161h International Conference on Data Engineering (ICDE '2000), pages 489-499,
San Diego, CA, Feb. 2000.

H. Chalupsky. Ontomorph: a translation system for symbolic knowledge. In Proc
of the 7th International Conference on Principles of Knowledge Representation
and Reasoning (KR'ZOOO), pages 471-482, Breckenridge, Colorado, April, 2000.

P. Clark and T. Niblett . The CN2 induction algorithm. Machine Learning
Journal 3(4), pages 261-283, 1989.

C.J. Clopper and E.S. Pearson. The use of confidence or Fiducial limits illustrated
in the case of the binomial. Biometrika, 26:4, 404-413. December, 1934. (Also
available from http://www.istor.ore/iournalslbio.html)

R. Chan, Q. Yang and Y. Shen. Mining high utility itemsets. In Proc. of 2003
IEEE International Conference on Data Mining (ICDM103), pages 19-26,
Melbourne, FL, November, 2003.

K. Diederichs, J. Freigang, S. Urnhau, K. Zeth and J. Breed. Prediction by a
neural network of outer membrane b-strand topology. Protein Science, 7:24 13-
2420,1998.

R. Duda and P. Hart. Pattern classijkation and Scene analysis. New York, John
Wiley & Sons, 1937.

G. Dong and J. Li. Efficient mining of emerging patterns: discovering trends and
differences. In Proc. of 1999 International Conference on Knowledge Discovery
and Data Mining (KDD '99), pages 43-52, San Diego, CA, August, 1999.

R. Dhamankar, Y. Lee, A. Doan, A. Halevy and P. Domingos. iMAP: discovering
complex mappings between database schemas. In Proc. of International
Conference on Management of Data (SIGMOD'04), pages 383-394, Paris,
France, June, 2004.

A. Doan, J. Madhavan, P. Domingos and A. Halevy. Learning to map between
ontologies on the semantic web. In Proc. of the Eleventh International
Conference on World Wide Web, pages 662-673, Honolulu, HA, May, 2002.

P. Domingos. Metacost: A general method for making classifiers cost sensitive.
In Proc. of the Fvth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD'99), pages 155-164, San Diego, CA, USA,
August, 1999.

G. Dong, X. Zhang, L. Wong and J. Li. CAEP: Classification by aggregating
emerging patterns. In Proc. of Second International Conference on Discovery
Science, pages 30-42, Tokyo, Japan, December, 1999

F. Eisenhaber and P. Bork. Wanted: subcellular localization of proteins based on
sequences. Trends in Cell Biology, 8: 169-170, 1998.

N. Friedman, D. Geiger and M. Goldszmidt. Bayesian network classifiers.
Machine Learning, 29: 13 1-1 63, 1997.

[FW02]

[GS W+03]

[HC03]

[HCH04]

[HF95]

[HSO 11

[ITHO I]

[JMF+O 1]

[Joa98a]

[Joa98b]

N. Fuhr and G. Weikum. Classification and Intelligent Search on Information
XML. Bulletin of the IEEE Technical Committee on Data Engineering, 25(1),
2002.

J.L. Gardy, C. Spencer, K. Wang, M. Ester, G.E. Tusnady, I. Simon, S. Hua, K.
deFays, C. Lambert, K. Nakai and F.S.L. Brinkman. PSORT-B: improving
protein subcellular localization prediction for Gram-negative bacteria. Nucleic
Acids Research, 3 1(13):3613-3617,2003.

B. He and K. C. Chang. Statistical schema matching across web query interfaces.
In Proc. of 2003 AC- SIGMOD Interna2ional Conference on Management of Data
(SIGMOD '03), pages 21 7-228, San Diego, CA, June, 2003.

B. He, K. C. Chang and J. Han. Discovering complex matchings across web
query interfaces: a correlation mining approach. In Proc. of the Tenth
International Conference on Knowledge Discovery and Data Mining (KDD'04),
pages148-157, Seattle, WA, August, 2004.

J. Han and Y. Fu. Discovery of multiple-level association rules from large
databases. In Proc. of the 21"' International Conference on Very Large Data
BasePLDB '95), pages 420-43 1, Zurich, Switzerland, September, 1995.

S. Hua and Z. Sun. Support vector machine approach for protein subcellular
localization prediction. Bioinformatics, 17(8):72 1-728,2001.

R. Ichise, H. Takeda and S. Honiden. Rule induction for concept hierarchy
alignment. In Proc. of the Second Workshop on OntologyLearning at the 17Ih
International Conference on AI (IJCAI'OI), Seattle, WA, August, 2001.

I. Jacoboni, P. Martelli, P. Fariselli, V. De Pinto and R. Casadio. Prediction of the
transmembrane regions of P-barrel membrane proteins with a neural network-
based predictor. Protein Science, 10, pages 779-787,200 1.

T. Joachims. Making large-scale SVM learning practical. Advances in Kernel
Methods - Support Vector Learning. MIT Press, 1998.

T. Joachims. Text categorization with support vector machines: learning with
many relevant features. In Proceedings of the European Conference on Machine
Learning. pages 137-142, Springer, 1998.

[KDD98-data] KDD98 (1998a). The kdd-cup-98 dataset. In
http://kdd. ics. uci. edu/databases/kddcup98/kddcup98. html.

[KDD98-result] KDD98 (1998b). The kdd-cup-98 result. In
http://www. kdnumets. com/meetinas/kdd98/kdd-cu~98. htm I.

[KJL+94] R. Kohavi, G. John, R. Long, D. Manley and K. Pfleger. MLC++: a machine
learning library in C++. Tools with artificial Intelligence, pages 740-743, 1994.

[LEN021 C. Leslie, E. Eskin and W. S. Nobel. The spectrum kernel: a string kernel for
SVM protein classification. In Proc. of P a c f i Symposuim on Biocomputing,
pages 564-575, Lihue, HA, January, 2002.

[LGO 1]

[LMWOO]

[MFKC02]

M. Lacher and G. Groh. Facilitating the exchange of explicit knowledge through
ontology mappings. In Proc. of the Fouteenth International Florida Artificial
Intelligence Research Society Conference, pages 305-309, Key west, FL, May,
2001.

B. Liu, W. Hsu and Y. Ma. Integrating classification and association rule mining.
In Proc. of the Fourth International Conference on Knowledge Discovery and
Data Mining (KDD '98), pages 80-86, New York, NY, August, 1998.

C. Ling and C. Li (1998). Data mining for direct marketing: problems and
solutions. In Proc. of the Fourth International Conference on Knowledge
Discovery and Data Mining (KDD'98), pages 73-79, New York, NY, August,
1998.

B. Liu, Y. Ma and C. Wong. Improving an association rule based classifier. In
Principles of Data Mining and Knowledge Discovery, pages 504-509,2000.

P. Martelli, P. Fariseli, A. Krogh and R. Casadio. A sequence-profile-based
HMM for predicting and discriminating 0 barrel membrane proteins.
Bioinformatics, 18(1), S46-S53,2002.

C.J. Merz and P. Murphy. UCI repository of machine learning databases, 1996
(http://www.cs.uci.edu/ ~mlearn/MLRepository.html).

P. Murphy and M. Pazzani. Exploring the decision forest: an empirical
investigation of Occam's razor in decision tree induction. Journal ofAI Research,
1 :257-275, 1994.

B. Masand and G. P. Shapiro. A comparison of approaches for maximizing
business payoff of prediction models. In Proc. of the Second International
Conference on Knowledge Discovery and Data Mining (KDD'96), pages 195-
20 1, Portland, OR, August, 1996.

D. Meretakis and B. Wuthrich. Extending naive bayes classifiers using long
itemsets. In Proc. of the Fifth International Conference on Knowledge Discovery
and Data Mining (KDD '99), pages 165-1 74, San Diego, CA, August, 1999.

P. Mitra, G. Wiederhold and J. Jannink. Semi-automatic integration of knowledge
sources. In Proc. of Fusion 1999, pages 572-58 1 , Sunnyvale, USA, July, 1999.

N. Noy and M. Musen. PROMPT: algorithm and tool for automated ontology
merging and alignment. In Proc. of the 17th National Conference on Artificial
Intellegence(AAAI/Le4IJ0O), pages 450-455, Austin, TX, August, 2000.

B. Omelayenko and D. Fensel. An analysis of B2B catalogue integration
problems. In Proc. ofthe 3rd International Conference on Enterprise Information
Systems (ICEIS'OI), pages 945-952, Setubal, Portugal, July, 200 1.

E. Pednault, N. Abe and B. Zadrozny. Sequential cost-sensitive decision making
with reinforcement learning. In Proc. of the Eighth International Conference on
Knowledge Discovery and Data Mining (KDD '02), pages 259-268, Edmonton,
Canada, July, 2002.

[PCY95] J.S. Part, M.S. Chen and P.S. Yu. An efficient hash-based algorithm for mining
association rules. In Proc. of 1995 ACM-SIGMOD International Conference on
Management of Data (SIGMOD '95), pages 175-1 86, San Jose, CA, May, 1995.

[ProOO] F. Provost. Machine learning from imbalanced data sets 101. In AR41 Workshop
on Learningfiom Imbalanced Data Sets. Invitedpaper for the AAAI Workshop on
Imbalanced Data Sets, 2000.

J. Quinlan. Induction of decision tree. In Machine Learning, pages 8 1-1 06, 1986.

J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

E. Rahm and P. Bernstein. A survey of approaches to automatic schema
matching. VLDB Journal: Very Large Data Bases, 1 0(4):33&350,2OO 1.

A. Reinhardt and T. Hubbard. Using neural networks for prediction of the
subcellular location of proteins. Nucleic Acids Research, 26(9):2230-2236, 1998.

P. Resnick and H.R. Varian, Eds. CACM special issue on recommender systems.
Communications of the ACM, 40(3):56-58, 1997.

R. Srikant and R. Agrawal. Mining generalized association rules. In Proc. of the
21" International Conference on Very large Data Bases (VLDB'95), pages 407-
4 19, Zurich, Switzerland, September 1995.

S. Sarawagi, S. Chakrabarti and S. Godbole. Crosstraining: learning probabilistic
mappings between topics. In Proc. of the Ninth International Conference on
Knowledge Discovery and Data Mining (KDD '03), Washing DC, USA, August,
2003.

J. Schlimmer. Efficiently inducing determinations: a complete and systematic
search algorithm that uses optimal pruning. International Conference on Machine
Learning, pages 284-290, Arnherst, MA, June, 1993.

R. She, F. Chen, K. Wang, M. Ester, J.L. Gardy and F. Brinkman. Frequent
subsequence-based prediction of outer membrane proteins. In Proc. of the Ninth
International Conference on Knowledge Discovery and Data Mining (KDD '03),
Washing DC, USA, August, 2003.

G. Stumme and A. Madche. Fca-merge: Bottom-up merging of ontologies. In
Proc. of the 17th International Joint Conference on Artz$cial Intelligence, Seattle,
USA, August, 2001.

A. Savasere, E. Omiecinski and S. Navathe. An efficient algorithm for mining
association rules in large databases. In Proc. of the 21" International Conference
on Very large Data Bases (VLDBJ95), pages 432-444, Zurich, Switzerland,
September, 1995.

A. Savasere, E. Omiecinski and S. Navathe . Mining for strong negative
associations in a large database of customer transactions. In Proc. of the
Fourteenth International Conference on DataEngineering (ICDE198), pages 494-
502, Orlando, FL, February, 1998.

[Str95]

[TKSOO]

[WFW03]

[WHHOO]

[WS02]

[WZHOO]

[WZH02]

[WZL99]

[WZYYO3]

[WZYYOS]

A. Silberschatz and A. Tuzhilin. What makes patterns interesting in knowledge
discovery systems? IEEE Transactions on Knowledge and Data Engineering,
8(6):970-974, 1996.

L. Stryer. Biochemistry. 41h Edition. W.H. Freeman, NY, 1995.

P. N. Tan, V. Kumar and J. Srivastav. Indirect association: mining higher order
dependencies in data. In Proc. of the Fourth European Conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD 'OO), pages 632-637,
Lyon, France, September, 2000.

V. Vapnik. The Nature of Statistical Learning Theory. Springer, NY, 1995.

J.P. Vert. Support vector machine prediction of signal peptide cleavage site using
a new class of kernels for strings. In Proc. of the PaclJic Symposium on
Biocomputing, pages 649-660, Lihue, HA, January, 2002.

J. Wang, G. Chirn, T. Man; B.Shapiro, D. Shasha and K. Zhang. Combinatorial
pattern discovery for scientific data: some preliminary results. In Proc. of 1994
ACMSIGMOD International Conference on Management of Data (SIGMOD194),
pages 1 15-125, Minneapolis, MN, May, 1994.

R. Wong, A. Fu and K. Wang. MPIS: Maximal-profit item selection with cross-
selling considerations. In Proc. of 2003 IEEE International Conference on Data
Mining (ICDM), pages 371-378, Melbourne, FL, November, 2003.

K. Wang, Y. He and J. Han. Mining frequent itemsets using support constraints.
In Proc. of the 261h International Conference on Very large Data Bases
(VLDB'OO), pages 43-52, Cairo, Egypt, September, 2000.

K. Wang and M. Y. Su. Item selection by hub-authority profit ranking. In Proc. of
the Eighth International Conference on Knowledge Discovery and Data Mining
(KDDJ02), pages 652-657, Edmonton, Canada, July, 2002.

K. Wang, S. Zhou and Y. He. Growing decision tree on support-less association
rules. . In Proc. of the Sixth International Conference on Knowledge Discovery
and Data Mining (KDD'OO), pages 265-269, Boston, MA, August, 2000.

K. Wang, S. Zhou and J. Han. Profit mining: from patterns to actions. In Proc. of
the Eighth International Conference on fitending Database Technology
(EDBT'02), pages 70-87, Prague, Czech Republic, March, 2002.

K. Wang, S. Zhou and S.C. Liew. Building hierarchical classifiers using class
proximity. In Proc. of the 25"' International Conference on Very large Data
Bases (VLDB199), pages 363-374, Edinburgh, UK, September, 1999.

K. Wang, S. Zhou, J.M.S. Yeung and Q. Yang. Mining customer value: from
association rules to direct marketing. In Proc. of 19" International Conference on
Data Engineering (ICDE 'O3), pages 73 8-740, Bangalore, India, March, 2003.

K. Wang, S. Zhou, J.M.S. Yeung and Q. Yang. Mining customer value: from
association rules to direct marketing. In Journal of Data Mining and Knowledge
Discovery, 1 1 (1):57-80, July, 2005.

[ZC02]

[ZEO 1]

H. Yao, H.J. Hamilton and C.J. Butz. A foundational approach for mining itemset
utilities from databases. In Proc. of ZOO4 S U M International Conference on Data
Mining (SDM104), pages 482-486, Lake Buena, FL, April, 2004.

Y. Yang and J.O. Pederson. A comparative study on feature selection in text
categorization. In Proc. of 14'~ International Conference on Machine
Learning(ICML '97), pages 41 2-420, Nashville, TN, July, 1997.

Z. Yuan. Prediction of protein in subcellular locations using Markov chain
models. FEBS Letter, 45 1 :23-25, 1999.

M. J. Zaki and C. Aggarwal. XRULES: An effective structural classifier for XML
data. In Proc. of the 9th International Conference on Knowledge Discovely and
Data Mining(KDD '03), pages 3 16-325, Washington, DC, August, 2003.

Z. Zhou and Z. Chen. Hybrid decision tree. Knowledge-based systems, 15(8):
5 15-528, Elsevier, 2002.

B. Zadromy and C. Elkan. Learning and making decisions when costs and
probabilities are both unknown. In Proc. of the seventh international conference
on Knowledge discovery and data mining (KDD'OI), pages 204-213, San
Francisco, CA, August, 200 1.

D. Zhang and W. Lee. Web taxonomy integration using support vector machines.
In Proc. of the 13Ih International Conference on World Wide Web(WWW'04),
pages 472-481 ,New York, NY, May, 2004.

S. Zhou and K. Wang. Localization Site Prediction for Membrane Proteins by
Integrating Rule and SVM Classification. In IEEE Transactions on Knowledge
and Data Engineering, l7(l2): 1694-1 705, December, 2005.

