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ABSTRACT 

Transmission Control Protocol (TCP) was designed and optimized to work well over 

wired networks. It suffers significant performance degradation in wireless networks due 

to their different characteristics, such as high Bit-Error Rate (BER), large and variable 

delay, and bwsty traffic. In this thesis, I propose packet control algorithms to be 

deployed in intermediate network routers. They improve TCP performance in wireless 

networks with packet delay variations and long sudden packet delays. The ns-2 

simulation results show that the proposed algorithms reduce the adverse effect of 

spurious fast retransmits and timeouts and greatly improve the goodput compared to the 

performance of TCP Reno. The TCP goodput was improved by -30% in wireless 

networks with 1% packet loss. TCP performance was also improved in cases of long 

sudden delays. These improvements highly depend on the wireless link characteristics. 

Keywords: TCP, packet control, wireless networks, delay, congestion control 
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CHAPTER ONE: 
INTRODUCTION 

The performance of Transmission Control Protocol (TCP) [26], [28] has greatly 

improved since 1988, when the congestion avoidance and control algorithms [16] were 

first introduced. TCP is currently the most widely used Internet transport protocol. In 

2002, TCP traffic accounted for 95% of the Internet Protocol (IP) network traffic [27]. 

This was due to a variety of popular Internet applications and protocols. Web (HTTP), 

file transfer (FTP), and e-mail (SMTP) rely on TCP as the underlying transport protocol. 

Internet applications that rely on TCP today are likely to do so in the future. With a 

growing deployment of wireless networks, it is important to support these applications in 

both wireline and wireless environments. Hence, wireless networks will also require good 

TCP performance. 

Wireless networks have different characteristics compared to wireline networks. TCP, 

which was carefully designed and tuned to perform well in wireline networks, suffers 

performance degradation when deployed in wireless networks. In this section, I will 

discuss the issues of TCP and wireless networks that are closely related to my research. I 

will also address current research issues and related work. 

1.1 Transmission Control Protocol 

TCP is a connection-oriented transport layer protocol. It provides reliable byte stream 

services for data applications. Its key features are reliability, flow control, connection 

management, and congestion control. Major TCP versions are Tahoe [28], Reno [2], and 

1 



NewReno [ll]. They differ mainly in their congestion control algorithms. Tahoe, the 

original version of TCP, employs three congestion control algorithms: slow start, 

congestion avoidance, and fast retransmit. TCP Reno extends Tahoe with a fast recovery 

mechanism. NewReno, the latest major version of TCP, modifies TCP Reno's fast 

recovery algorithm and addresses the issue of partial acknowledgements (ACK) 1111. 

Partial acknowledgements are ACKs that cover new data, but not all the outstanding data 

when loss is detected 1111. 

Differences between the characteristics of wireline and wireless networks have 

significant impact on TCP performance. TCP was designed and optimized to perform 

well in wireline networks. Wireless links, with considerable packet losses due to link 

errors, delay variations, and long sudden delays, violate TCP's essential design 

assumptions. Improving TCP performance in wireless networks has been an ongoing 

research activity since the mid 90's. Most improvements dealt with TCP's reaction to 

high Bit-Error Rate (BER) and TCP performance degradation due to delay and delay 

variation in wireless links. Performance of TCP's congestion control algorithms 

particularly deteriorates when TCP is deployed in mixed wireline/wireless networks. In 

this thesis, I describe TCP's timer and window management, congestion control 

algorithms, and estimation of round-trip time (RTT). 

1.1.1 TCP Windows 

TCP maintains two windows to perform congestion control and avoidance: the receiver 

window (rwnd) and the congestion window (cwnd). They define the maximum number of 

bytes the receiver may receive and the sender may send, respectively. The number of 



bytes that may be sent to the network is the minimum of the two. With rwnd sufficiently 

large, the larger the cwnd, the more data TCP can send, resulting in larger TCP 

throughput. A typical TCP cwnd evolution with respect to time is shown in Figure 1. TCP 

always begins with slow start phase and stays in congestion avoidance phase for most of 

the duration of the connection. (Slow start and congestion avoidance are two phases in 

TCP's congestion control. We will discuss them in detail in the following section.) 

Figure 1 

The growth of the cwnd is ACK paced. With every segment that TCP sends, the receiver 

issues an ACK to acknowledge the receipt of the data. Instead of sending an ACK for 

every segment, the delayed ACK can be enabled. The receipt of the ACKs increases the 

cwnd and enables the sender to send more data permitted by new cwnd. Change of cwnd 

with respect to ACKs is described in the following section. 

1.1.2 TCP Congestion Control Algorithms 

TCP packets may be lost due to link errors or network congestion. Network congestion 

occurs when there is insufficient capacity somewhere along the path of the TCP 

connection. Since losses due to link errors in wireline networks are rare, TCP deals only 

with packet loss due to network congestion. Hence, packet loss always implies network 



congestion. TCP congestion avoidance and control were first introduced by Van Jacobson 

when the Internet experienced its first series of "congestion collapses" [28]. 

TCP detects network congestion via duplicate ACKs and timeouts. Each byte of the 

transmitted data is assigned a unique sequence number (seqno). When data packet loss 

occurs, TCP receiver issues a duplicate ACK for any out-of-sequence data packet 

received. Upon receiving a predefined threshold of consecutive duplicate ACKs, TCP 

assumes that a packet is lost. In most TCP implementations, the threshold is set to three 

(known as "three duplicate ACKs"). Note, however, that when cwnd < 4 or in case of 

data packet or ACK loss, the number of duplicate ACKs is less than three, and, thus, 

insufficient to trigger three duplicate ACKs. TCP handles this situation by keeping a 

timer called Retransmission Timeout (RTO). When the timer expires, TCP assumes 

packet loss [26], which triggers congestion control. 

TCP congestion control mechanism includes [12] : 

increasing cwnd by one segment size per RTT and halving cwnd for every 

window experiencing a packet loss (Additive Increase Multiplicative Decrease, 

AIMD) 

Retransmission Timeout (RTO), including exponential back-off when timeout 

occurs 

slow start mechanism for initial probing of the available bandwidth 

ACK clocking (self-clocking) the arrival of ACKs at the sender, used to trigger 

transmission of new data. 



TCP Reno congestion control algorithms are illustrated in Figure 2. We focus our 

discussion of TCP congestion control algorithms based on TCP Reno because it is the 

most commonly deployed TCP version with more complete congestion control 

algorithms than TCP Tahoe. 

SS: slow start 
CA: congestion avoidance 
TO: time out 
Fast retransmit & fast recovery 

ssthreshl - - 

Figure 2 TCP congestion control algorithms. 

The following summary [2], describes four congestion control algorithms: slow start, 

congestion avoidance, fast retransmit, and fast recovery. 

Slow Start: At the onset of a TCP connection, TCP employs the slow start mechanism to 

probe the network capacity. Slow start is also employed after a packet loss is detected by 

the RTO mechanism. When the transmission starts, the sender's cwnd is set to the initial 

window (IW) size, which must be less than or equal to 2xSMSS (Sender Maximum 

Segment Size (SMSS)) bytes and should not be larger than two segments. Congestion 

window cwnd is increased by at most SMSS bytes for each ACK received that 

acknowledges new data. The slow start threshold (ssthresh) may be arbitrarily high and 



could be reduced when congestion occurs. When congestion is detected by the RTO 

mechanism, cwnd is set to IW and ssthresh is set to 0.5xcwnd. 

In both situations, slow start is used as long as cwnd < ssthresh. Slow start ends when 

cwnd > ssthresh or when congestion is detected. When cwnd = ssthresh, the sender may 

use either slow start or congestion avoidance. 

Congestion Avoidance: If cwnd > ssthresh, congestion avoidance is employed to probe 

the network capacity more slowly than during the slow start. Congestion window cwnd is 

incremented by one full-size segment per RTT. This is a formula commonly used to 

approximate this update on every incoming non-duplicate ACK: 

SMSS 
cwnd = cwnd + SMSS x - . 

cwnd 

In most cases, TCP operates in the congestion avoidance phase. Congestion avoidance 

ends only when congestion is detected. 

Fast Retransmit: When three duplicate ACKs are detected, TCP moves from congestion 

avoidance to fast retransmit. The incoming segments are considered out-of-order by the 

receiver when a packet loss occurs. For any out-of-order packet received, the receiver 

immediately sends a duplicate ACK acknowledging the next expected seqno. 

AAer receiving three duplicate ACKs, the sender retransmits what appears to be the lost 

packet without waiting for the retransmission timer to expire. It uses the sequence 

number included in the duplicate ACKs. Along with the retransmission, TCP also sets 

ssthresh to 



( ~ 1 i ~ y  
ssthresh = max , 2xSMS.Y). 

Flightsize is the size of the outstanding data in the network. 

Fast Recovery: Fast recovery takes place immediately after the sender performs fast 

retransmit. It ends when a new ACK is received, where a new ACK is defined as the 

ACK acknowledging the sequence number beyond the lost segment. TCP first inflates 

cwnd to ssthresh + 3 x SMSS . This reflects the three segments that have left the network 

because three duplicate ACKs would require three packets to leave the network. 

For every additional duplicate ACK received the sender increments cwnd by SMSS to 

reflect that an additional segment has left the network. This new cwnd may also allow the 

sender to transmit a new segment. When a new ACK is received, the sender sets cwnd to 

ssthresh to deflate the cwnd, and the congestion avoidance phase continues. 

1.1.3 Karn's Algorithm: RTT Estimation and RTO 

After a segment is transmitted, an ACK is expected by the sender. If the RTO timer 

expires before the ACK is received, the segment is retransmitted. This resynchronizes the 

transmission in case the segment is lost. Therefore, if the calculated RTO is too large, 

unnecessary time will be spent waiting for the timer to expire. Thus, it will cause TCP 

performance degradation [26] .  If the calculated RTO is too small, the timer may expire 

prematurely and cause unnecessary retransmissions. 

RTT is estimated using Karn's algorithm while RTO is calculated based on the estimated 

RTT and the RTT deviation. TCP measures the round-trip time of the ACKs for data 



segments. This interval is called sample RTT. The moving average of RTT, called a 

smoothed RTT (srtt), and the RTT variation (rttvar) are calculated as 

srtt = (1 - g)  * srtt + g * sampleRTT 

rttvar = (1 - h) * rttvar- h * l ~ a r n ~ l e ~ ~ ~  - srttl . 

Recommended parameter values are 

RTO is calculated as 

RTO = srtt + 4 rttvar 

1.2 Wireless Networks 

Mobile connectivity provided by wireless networks [23] allows users to access 

information anytime and anywhere. The growth of cellular telephone systems is 

accompanied with an increased number of wireless-enabled laptops and Personal Digital 

Assistants (PDAs). Cellular networks evolved from 1G analog systems to 2G systems 

(Global System for Mobile communication (GSM) and Packet Data Cellular (PDC)), 

2.5G systems (General Packet Radio Service (GPRS) and Packet Data Convergence 

Protocol (PDC-P)), and 3G systems (Wideband Code-Division Multiple Access (CDMA) 

and cdma.2000). During the past decade, the quality of wireless links has been improved 

in terms of Bit-Error Rate (BER) and link bandwidth. The following wireless network 

characteristics still hold: 



A. High bit error rate (BER) 

Wireless networks experience random losses. BER in wireless networks is significantly 

higher than in wireline networks. Packet error rates range from 1% in microcell wireless 

networks, up to 10% in macrocell networks [27]. Even with optimized link layer 

retransmission algorithms in 3G networks, such as Radio Link Protocol (RLP) and Radio 

Link Control (RLC), packet error rate remains -1 %. 

B. Long and variable delay 

Wireless links have a large latency. Typical RTTs in 2.5G and 3G networks vary from a 

few hundred milliseconds to one second. Furthermore, wireless links are likely to 

experience sudden delay changes (or delay spikes, which are defined as a sudden increase 

in the latency of the communication path [8] .) greatly exceeding the typical RTT [ 1 51. 

Wireless WANs have a typical latency of up to 1 sec. 1141. These delay changes may 

cause spurious (unnecessary) TCP timeouts and fast retransmits. Wireless links 

experience delay changes due to: 

Link recovery: Wireless link recovers from a temporary link downtime due to radio 

interference or mobility of the user, such as the user moves through a tunnel or a 

building. While not significantly large, this type of delay is the major source of delay 

variations. 

Temporary disconnection: Mobile device recovers fiom handoff operations. Handoff is 

the activity when a mobile user moves between cells. During handoffs, there is usually a 

blackout period when there is no communication between mobile device and base station. 



Traflc priority: Different traffic priorities are enforced in cellular networks. For 

example, when there is a mixed traffic of voice and data, voice traffic has higher priority. 

LinWUAC layerprotocol: Certain wireless networks hide data losses from the sender by 

performing extensive link-layer retransmission, causing variable delays in data 

transmission [ 141. 

C. Bandwidth 

Bandwidth of cellular networks increases as they evolved from 1G analog systems to 2G 

systems (10-20 kbps for uplink and downlink connections), to 2.5G (10-20 kbps uplink 

and 1 0 4 0  kbps downlink connections), and 3G systems (up to 64 kbps uplink and 384 

kbps downlink) [15]. 

Data rates vary due to mobility and the interference from other users [15]. Mobile users 

share the bandwidth within a cell. As users move among cells, they affect the bandwidth 

available to other users. Furthermore, a user may move to another cell with higher or 

lower bandwidth. These factors cause variable wireless link data rates. TCP was designed 

to handle the changes in bandwidth with its self-clocking scheme. However, a sudden 

increase in RTT could still cause spurious timeouts. 

D. Path asymmetv 

Cellular networks, especially 2.5G and 3G systems, may run asymmetric uplink and 

downlink data rates. 



CHAPTER TWO: 
RELATED WORK 

Wireless network characteristics have significant impact on TCP performance due to the 

difference fiom wireline networks. Wireless links with considerable packet losses 

because of link error, delay variations, and large sudden delay violate TCP's essential 

design assumptions. TCP was not designed with wireless network in mind. Hence, we 

should not expect TCP to perform well in a wireless network [lo]. 

Since mid 1990s, a great effort has been placed on improving TCP performance in 

wireless environment. A number of solutions have been proposed to solve the problem 

of non-congestion related packet losses misinterpreted by TCP [3], [4], [30]. In recent 

years, researchers have also started to pay attention to the impact of delays and delay 

variations on TCP performance in wireless networks [13], [14], [19], [20], [27], [33]. 

2.1 Wireless Link Error 

The main characteristic of a wireless network is the high link BER. It violates the 

fundamental assumption of TCP that packet losses caused by link errors are negligible 

(much less than 1%) [16] and that packet losses are caused only by network congestion. 

High BER in wireless networks causes packet loss regardless of network congestion. This 

will cause TCP to unnecessarily reduce its transmission rate [9]. The main cause for 

TCP's performance degradation in a mixed wireless/wireline environment is its inability 

to detect the origin of the packet loss. 



When a packet loss is detected, TCP employs congestion control algorithms to reduce the 

transmission rate. A single packet loss will cause duplicate ACKs and cwnd to be reduced 

by half according to the fast retransmit and fast recovery algorithms. TCP resolves the 

congestion in the network by lowering its transmission rate. However, lowering the 

transmission rate will degrade TCP performance if the packet loss is not caused by 

network congestion. 

(Note that wireless link errors are not the problem that I attempt to solve with my 

proposed algorithms. Nevertheless, since they are a major part of the wireless TCP 

research and most of the work has been done in this area, I will address it here for the 

sake of completeness.) 

2.2 Related Work Regarding Wireless Link Error 

One approach to improving TCP performance is to reduce the adverse effect of wireless 

link errors. Proposed solutions either hide the wireless link error from the TCP sender or 

make the sender aware of the causes of segment losses [29]. The first approach resolves 

the error within the wireless domain without the TCP sender being aware of the error. 

These solutions often modify the base station andor the mobile host. If the link error is 

well shielded from the sender, modifymg the sender is not necessary. The examples are 

I-TCP [3], M-TCP [6], [31], [32] and Snoop [4], [5]. Since TCP sender cannot 

differentiate the causes of segment losses, the second approach explicitly makes the 

sender aware of the wireless link error and handles segment losses caused by wireless 

link errors differently from losses due to network congestion. This approach requires that 



the base station sends explicit congestion messages to the sender or a mechanism to 

detect the causes of loss at the sender. An example is TCP Westwood [7]. 

A more general categorization is based on the algorithm design principles [I], [27]. 

The solutions may also be categorized as: split connection, link layer retransmission, and 

end-to-end. 

Split connection 

Indirect-TCP (I-TCP) [3] is one of the first protocols proposed using this approach. As 

illustrated in Figure 3, the TCP connection is split into two connections at the base station 

(BS): between the fixed host (FH) and the BS (wireline domain) and between the BS and 

the mobile host (MH) (wireless domain). For every TCP data segment received at the 

BS, an ACK is generated at the BS on the wireline TCP connection. This ACK is then 

sent to the sender (FH). The work to guarantee the actual delivery of TCP data is 

imposed on the second connection in wireless network. Since the second connection is 

within the wireless domain, an optimized protocol may be employed. The idea behind 

this protocol is to hide the wireless losses from the sender. By using more optimised 

wireless transport protocol, data have higher chance of getting successfully transmitted. 



Figure 3 Split connection design. 

The major drawback of this approach is that the TCP end-to-end semantics is not 

preserved. Since an ACK is sent from BS to FH before the data segment is transmitted, 

an ACK may be received at FH before the data segment is received at the MH or is even 

lost. This is a serious issue for many applications. Another drawback is the software 

overhead due to the establishment of two connections and due to the movement of data 

segments between connections. This overhead introduces high latency at the BS. Buffers 

are required for both connections. Hence, higher handoff latency is expected when the 

content of the buffers needs to be transferred from one BS to another. The end-to-end 

semantics was preserved in another proposed protocol in this category called M-TCP [6]. 

The simulation results of M-TCP's performance evaluation in OPNET network simulator 

[22] shows that M-TCP outperforms TCP in terms of maintaining congestion window 

size, goodput, and sender size retransmission timer [3 11, [32]. 

Link layer retransmission 

The Snoop protocol [4] is a well known protocol in this category. As illustrated in Figure 

4, an agent is implemented at the link layer in BS. It hides wireless packet loss from the 

sender (FH). Data segment received at the BS is first queued and then forwarded to the 



MH. When a packet is lost in the wireless link, a local retransmission of the data 

segments queued at the BS is performed. Therefore, loss is transparent to the FH. 

j transport 

: link 7 
TCP :.physical.. .. .;. : 

- _ 
Wireless - - - -  - - BS 

TCP 

Figure 4 Link layer design. 

Snoop protocol has less overhead because it is implemented at the link layer. It has faster 

recovery time due to the local retransmissions from the BS. As a result, it has typically 

higher throughput than the split-connection approach. The major drawback of the Snoop 

protocol is its data queue because per-connection buffers are required. Since the 

unacknowledged segments need to be kept at the BS, the memory requirement becomes a 

scalability issue. Another drawback is the increased handoff time, when the data queue 

needs to be transferred between the two BSs. The third drawback is the increased delay 

variation because Snoop solves segment losses individually [I] with local 

retransmissions. 

These protocols, such as TCP Westwood (TCPW) [7], require modification of TCP at the 

sender (FH) and possible modifications in the BS or the MH. This is illustrated in Figure 

5. The TCP sender continuously monitors the bandwidth used by the connection by 

monitoring the rate of returning ACKs. The cwnd and ssthresh are calculated based on 



this rate after congestion is detected by either three duplicate ACKs or timeouts. Instead 

of "blindly" reducing cwnd, as in the congestion control algorithms of TCP Reno, TCPW 

sets the cwnd and ssthresh to the values that better reflect the wireless link bandwidth 

when congestion occurs. 

i application [ application 
: . . .  . . .  : I  

, n 

j transport . i 
i network i 

I ,  

i P!IYS~C.~!. . . . . -1.; TCPW - 

P - - - - - 

MH 
Wireless 

BS FH 

Figure 5 End-to-end design. 

Although effective in mixed wireline and wireless networks, the major drawback of 

TCPW is that it might face deployment challenges. FH clients need to deploy TCPW to 

replace the standard TCP. Nevertheless, TCPW represents an effective design approach. 

TCP-Jersey [30], an extension of TCPW, employs Available Bandwidth Estimation 

(ABE) algorithm and congestion warning (CW) mechanism to improve the estimation of 

wireless link bandwidth. WTCP [24] enforces a rate-based transmission scheme and 

detects congestion by inter-packet separation at MH, where MH does most of the 

computations for congestion control. 

2.3 Wireless Link Delays 

Wireless networks have larger latency and delay variations than wireline networks. Long 

sudden delays during data transfers are common in GPRS wireless WANs [14], [19]. 

Furthermore, experimental [19] and analytical [20] data indicate that mobility increases 



packet delay and delay variation and degrades the throughput of TCP connections in 

wireless environments. TCP reaction to the large sudden delays and delay variations has 

not been widely studied in the past, since these properties are not common in wireline 

networks. One of the earliest studies was conducted in [19], where the authors had 

performed both experimental study and detailed analysis. Three major adverse effects 

are identified as: spurious fast retransmit, spurious timeouts, and ACK compression. 

Spurious fast retransmit: The primary source for unnecessary fast retransmit is the link 

delay variations. A side effect of spurious timeout can also cause spurious fast 

retransmit, which is explained in the next section. Delay variations can cause the re- 

ordering of data segments during transmission. Since IP protocol does not guarantee in- 

order delivery of packets, when there are delay variations on the transmission path, the 

packets could be re-ordered. Therefore, when TCP runs over IP, TCP also experiences 

out-of-order segments. 

TCP generates a duplicate ACK whenever an out-of-order data segment is received. The 

number of out-of-order segments that had arrived consecutively prior to the current 

segment is called the re-ordering length [19]. Thus, the re-ordering length represents the 

number of duplicate ACKs expected to arrive at the TCP sender. Figure 6 shows no 

segment loss or network congestion. Nevertheless, fast retransmit is triggered because 

TCP misinterprets the duplicate ACKs as packet loss and a sign of network congestion. 

This event is called spurious fast retransmit. 

TCP sender halves its congestion window to reduce the transmission rate in response to 

fast retransmits. As illustrated in Figure 6, a packet was held in a queue by the hiccup (a 



delay generator [19]) at time 37.7 sec (marked +) and then retransmitted after six 

segments at time 41.9 sec (marked+). Upon receiving the six segments prior to 

receiving the queued segment, the receiver generates six duplicate ACKs, triggering a 

fast retransmit. Since the congestion window is reduced, the number of segments that 

can be sent into the network is also reduced. 

Figure 6 The effect of packet re-ordering 1191. 

Spurious timeout: Unnecessary timeouts may occur on links with long sudden delays. 

RTO is the conservative estimates of RTT. It is dynamically adjusted with running 

average RTT and RTT variation. With its RTO timer, TCP is designed to handle even 

large gradual changes in delays. Nevertheless, TCP cannot handle well long sudden 

delays because it is unable to adjust its RTO fast enough. When the RTO timer expires, 

TCP assumes that the outstanding packets are lost and triggers the congestion control. 



Spurious timeout is illustrated in Figure 7 and Figure 8 (a finer view of Figure 7). The 

three arrows show three critical events. The sudden long delay in the link occurs at 5 sec. 

The first arrow indicates the moment when the TCP sender's RTO timer expires. TCP 

sender assumes that the previously sent packets are lost. The cwnd is reduced to the initial 

window (two segments). TCP then retransmits the first two unacknowledged segments. 

At 11 sec, the link delay terminates (marked by the second arrow). The sender receives 

the first new ACK (the new ACK is defined as an ACK that acknowledges a data 

segment which has not been acknowledged earlier) and starts recovering from timeouts 

by entering the slow start phase. All the unacknowledged segments are to be 

retransmitted. Since some ACKs in the wireless link have also been delayed, they 

accumulate and arrive together at the sender when the link recovers. This causes a burst 

of data segments to be sent. This is known as ACK compression. The retransmission 

unnecessarily utilizes the scarce wireless bandwidth and may potentially increase the 

recovery time. 
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Figure 7 TCP Reno: spurious timeout. 

The unnecessary retransmission of segments may introduce an additional spurious fast 

retransmit. At 11.97 sec, the retransmitted segments arrive at the receiver. Since 

previously transmitted segments have been received after the link recovered, TCP 

receiver generates a duplicate ACK for every out-of-order segment. These duplicate 

ACKs (ACK 136) are shown between 11.97 sec and 12.54 sec. (These duplicate ACKs 

between 11.97 and 12.54 sec are not shown in the cwnd graph because of the way ns-2 

simulator generates traces. Ns-2 tracks the cwnd changes. Since these are duplicate 

ACKs and the ACK number does not change, they are not recorded in the trace file.) 

When the number of duplicate ACKs exceeds the duplicate ACK threshold, another 

spurious fast retransmit is triggered. This further worsens the situation. A gap appears 

after 12.54 sec (graph labelled seqno) immediately after ACK 137 is received. During the 

fast recovery, for every duplicate ACK received, the sender artificially inflates the cwnd 

by one segment and, if the cwnd permits, transmits the next segment. (Even though the 



changes in cwnd graph are not shown during this period, this can be seen from the seqno 

graph showing new segments that are sent with ACKs received. The reason that the 

cwnd graph does not show the changes may be that TCP implementation in ns-2 makes 

this change transparent to the cwnd variable. Therefore, cwnd appears to be unchanged in 

the trace file.) When the new ACK 137 is received (marked by the third arrow), the fast 

recovery is terminated and cwnd is deflated back to the size that it had at 11.97 sec. No 

segments are transmitted during the period between 12.50 sec and 13.10 sec (graph 

labelled seqno) due to this decrease of cwnd. 

seqno 

cwnd - 
cwnd 
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Figure 8 TCP Reno: spurious timeout. 

ACK compression: ACK compression is another issue that possibly arises with wireless 

link delays. The essence of TCP self-clocking is the observation that data segments 

arrive at the receiver at the rate the bottleneck link can support. If the receiver's ACKs 

arrive at the sender with the equal spacing, then the sender can avoid congesting the 



bottleneck link by sending new data packets at the same rate. The TCP self-clocking 

depends on the arrival of ACKs at the spacing with which the receiver generated them. If 

the spacing is altered or ACKs are accumulated during the transmission in the network, 

the ACKs might be too close comparing to the spacing when they are sent. As a result, 

the sender could send more data than the network can accept at an instance of time. The 

phenomenon of ACK compression is observed even for TCP connections in wireline 

networks. 

2.4 Related Work Regarding Wireless Link Delays 

Even though this is not the major part of the research on wireless TCP, it has attracted 

some researchers to try to enhance TCP to adapt to various link delays experienced in 

wireless networks. 

Eifel algorithm [19] was proposed to enhance TCP's adaptation to link delays in wireless 

networks. Both spurious timeout and spurious fast retransmit are caused by TCP's 

retransmission ambiguity [18], which occurs when an ACK arrives for a segment that has 

been retransmitted. Hence, there is no indication which transmission is being 

acknowledged. Eifel algorithm is an end-to-end solution, which requires modifymg only 

the TCP sender and enabling timestamp option in the TCP receiver. It first eliminates the 

retransmission ambiguity by using additional information in the ACKs. Then, it restores 

the payload and resumes transmission with the next unsent segment [19]. Timestamp 

option is used to provide the additional information to identify the segment that triggered 

the duplicate ACK. Timestamp clock is stored in the header of every outgoing segment 

and echoed back with its corresponding ACK. The sender also keeps track of the 



timestamp of the first retransmission. The received ACK can be identified by comparing 

the timestamp stored in the sender with the timestamp in the received ACK. If the ACK 

was triggered by the original segment, spurious retransmission has occurred. The sender 

then restores the cwnd and possibly RTO. Instead of retransmitting the unacknowledged 

segments, the next unsent segment is transmitted. 

Although Eifel algorithm effectively reduces the impact of spurious timeouts and 

spurious fast retransmits by eliminating the retransmission ambiguity, it has two major 

drawbacks: it requires modification of all TCP clients in the wireline domain and requires 

that both the sender and the receiver have the 12-byte TCP timestamp option enabled in 

every segment and the corresponding ACKs. Furthermore, its performance in the cases of 

high link errors is questionable [13]. Even though the authors argue that this algorithm 

does not require any modification on either wireless end device or any intermediate 

router, inherited from the end-to-end scheme, requiring modification on all the TCP 

clients in the wireline domain alone could face serious deployment challenge 

Authors of [14] also studied the long sudden delays in GPRS wireless WAN. 

Experiments were setup to investigate how the widely deployed TCP implementations 

recover from a spurious timeout. Implementations on FreeBSD 4.1, Windows 98, Linux 

2.2, and Linux 2.4 were tested. All were shown to have various levels of adverse effects, 

along with several implementation faults. Few recommendations for possible 

improvements were discussed. 



CHAPTER THREE: 
PROPOSED TCP WITH PACKET CONTROL 

We propose packet control algorithms designed to reduce the adverse effect of long 

delays and delay variations on TCP performance in wireless networks. We will describe 

the algorithms, their implementation, and performance evaluated using the ns-2 simulator 

[211. 

3.1 Proposed Solution 

3.1.1 Network Architecture 

Network architecture, shown in Figure 9, represents a cellular network or a Wireless 

Local Area Network (WLAN). A Mobile Host (MH) initiates a TCP connection with a 

Fixed Host (FH) through a Base Station (BS), which is an edge node in the wireless 

network. TCP packets are sent from the FH to the MH through the BS and MH 

acknowledges every data packet received [20]. TCP data may be either a long lived FTP 

connection with a large volume of data traffic or a short lived HTTP connection with a 

typically smaller volume of data traffic. We assume that the condition of the wireless link 

may change with time (leading to variable wireless link delay), that the mobile device 

roams between cells [25], and that mobile applications have limited data bandwidth. 



BSS 

MH: mobile host 
BS: base station 
FH: fixed host 
BSS: infrastructure 

basic service set 

Figure 9 Network architecture. 

3.1.2 Packet Control Algorithms 

TCP with packet control consists of ACK and data packet filters. The two filters improve 

TCP performance in mixed wireline/wireless networks and maintain TCP's end-to-end 

semantics. They deal with wireless links with long sudden delays and delay variations, 

maintain regular TCP functions, and have small impact on handoffs. They do not depend 

on end-user TCP flavours. 

The filters are to be deployed at the wireless network edge (typically the BS). This is a 

TCP-aware link layer solution. The algorithms keep track of TCP data and ACK packets 

received fiom the FH and the MH respectively. Packet control filters forward packets to 

both client ends based on the information gathered in the BS. 

3.1.3 Design of Packet Control in Base Stations 

After TCP connection is established, data is sent fiom FH to MH through BS. Upon 

receiving data segments, MH sends acknowledgements to FH for every segment received 

[20]. For simplicity, we do not consider the case when "delayed ACK" option [26] is 

enabled in TCP receiver. Since all packets traverse through the intermediate node (BS), 

BS is the good place to deploy packet control algorithms, without a need of any changes 



in either FH or MH. Packet control is designed to focus on the spurious fast retransmit 

and spurious timeout caused by delay variations and large sudden delays in wireless 

links. 

3.1.3.1 ACK Filter 

Packet control is designed to reduce adverse effect of spurious fast retransmit. It reacts to 

ACKs received from the MH using the ACK filter. It drops the old ACKs and duplicate 

ACKs classified according to the duplicate ACK threshold defined by the user. It 

remembers the last new ACK received from the wireless receiver, called the last received 

ACK. When an ACK arrives, its ACK number is checked against the last received ACK. 

We consider three cases: 

Old ACK The ACK is considered old if the ACK number has already been received and 

is smaller than the last received ACK. It is immediately dropped at BS since there is no 

need to transmit them to the sender and it would unnecessarily consume network 

bandwidth. 

Duplicate ACE If the newly received ACK number is identical to the largest ACK 

currently received, it is considered to be a duplicate. Packet control keeps track of the 

current number of duplicate ACKs received at the BS. Based on the number of duplicate 

ACKs received and the user-defined duplicate ACK threshold, duplicate ACKs are 

evenly dropped and are not sent to the sender. The number of ACKs to be dropped is 

equal to the difference between the user-defined duplicate ACK thresholds at the BS and 

at the FH. For example, if the user-defined duplicate ACK threshold is six and TCP has 

defined the three-duplicate-ACK threshold, every second duplicate ACK is dropped. 



New ACK: If the ACK number has not been previously received, the ACK is considered 

new. The last wireless ACK is updated, the counter for the current number of duplicate 

ACKs is reset, and the ACK is forwarded to the sender. 

The design of the ACK filter is based on the observation that a wireless link has higher 

number of re-ordered segments, which is the primary cause of spurious fast retransmit. 

By filtering some duplicate ACKs at the BS, the spurious fast retransmit may be reduced. 

If the duplicate ACK is not caused by packet loss in the network, filtering duplicate 

ACKs results in better TCP performance. 

3.1.3.2 Data Filter 

When the packet control receives a data segment from the FH, it passes it to the MH. The 

data filter at the BS is designed to save wireless bandwidth and to prevent the spurious 

fast retransmit caused by spurious timeout. 

In the case of spurious timeout, retransmissions of the unacknowledged segments 

unnecessarily consume the scarce wireless link bandwidth and also trigger additional 

spurious fast retransmits. Therefore, their prevention is essential in solving spurious 

timeout. The data filter checks whether data segments have been acknowledged. The 

sequence number is checked against the last ACK received from the receiver. We 

consider two cases: 

New data segment or unacknowledged segment: If the segment has not been 

acknowledged, it is forwarded to the receiver. The segment is either a new data segment 

or an unacknowledged segment. In the latter case, the system cannot distinguish whether 

the last transmission of the same segment has been received by the receiver or its ACK 



was lost. In both cases, even if the received segment is a retransmission, it should be 

forwarded. 

Acknowledged segment: This segment is a retransmission due to spurious timeout. This 

occurs because the ACK from the BS is lost or has not arrived at the FH. In both cases, 

the segment should be dropped. We consider that a loss of ACKs could occur even 

though the BER and the possibility of congestion for ACKs are small in wireline 

networks. For every two identical retransmitted segments received, a corresponding ACK 

is generated and sent fi-om the BS to the sender. Hence, unnecessary retransmissions are 

eliminated and the problem of lost ACKs is resolved. 

3.1.4 Design Considerations and Tradeoffs 

Packet control filters designed to deal with the wireless link delays have to be simple to 

implement and easy to deploy. This has been reflected in various aspect of the design: 

TCP option: Packet control has been designed as an option for TCP rather than a 

modification of TCP. Hence, it is less difficult to deploy in an existing network. TCP is 

the most successful and, more importantly, most tested transport protocol. TCP currently 

can provide services for data application in wireless networks. Any new protocol would 

require thorough validation and would face difficulties of deployment in the existing 

network. 

A link layer solution in BS: Packet control requires modification in the BS only. No 

modifications are required at the end users. Furthermore, it can be deployed 

incrementally because it does not require changes in the protocol stack. 



Scalable: With proper implementation, packet control filters only require retaining few 

constant state variables, and, hence, require minimal additional memory in the BS. 

Handofi Packet control requires very small additional operations during handoffs in 

terms of additional memory requirements or message exchanges, and should not 

adversely affect handoffs. 

3.2 Performance 

We implemented the packet control algorithms in ns-2.26 (ns-2.lbl0 for old version 

number) simulator on RedHat Linux 9. Simulations are conducted to investigate the 

performance of the packet control algorithms comparing to TCP Reno. We used TCP 

Reno rather than other version of TCP because TCP Reno has complete congestion 

control algorithms and it is the most widely deployed version of TCP. 

3.2.1 Implementation of TCP with Packet Control 

The implementation followed closely the algorithms design described earlier. Figure 10 

illustrates the logic flow of the ACK filter. The variable numOflastDupAck indicates the 

number of duplicate ACKs that have been received for the last received wireless ACK. It 

is updated when a new ACK is received. It is then used, along with the user-defined 

duplicate ACK threshold (rede$ne3DupAck), to determine whether an ACK should be 

sent or dropped. The next duplicate ACK to be sent (nextDupAckToSend) is calculated as: 

numOflastDupAck - 1 
numOpupAckSent = / redefined 3 DupAck \ 



The variable numOpupAckSent is the number of duplicate ACKs that should be sent, 

triggered by the previous duplicate ACKs received. This ensures that duplicate ACKs 

will be evenly sent to the sender according to the user-defined duplicate ACK threshold 

in the BS. 

Calculate next duplicated ACK 
to send (nextDupAckToSenc) w 

Forward ACK 

Figure 10 Packet control: ACK filter. 

Figure 11 illustrates the logic flow of data filter. The variable 1stRetransWiredDataPkt 

stores the segment numbers of retransmitted segments from the FH. A retransmitted 

segment is defined as a segment with the sequence number smaller or equal to the largest 

ACK number that has already been sent to the FH. These retransmitted segments are 

dropped. The number of retransmissions for each retransmitted segment (m - iNumOJRtm) 



is kept in the list for each segment. An ACK for a segment is generated and sent to the 

FH for every second retransmission of the same segment. This handles the rare situations 

when an ACK is lost along the path from the BS to the FH. 

Insert into IstRetransWiredDataPkt 
F : rr-iNumOtRtm = 1 rr-iNumOtRtm = rr-iNumOtRtm t 1 

Drop segment I. 

Generate a new ACK with ACK number = seqna 
Forward ACK to FH 

I Exil - 

Figure 11 Packet control: data filter. 

3.2.2 Performance of TCP with Packet Control 

The simulated network is illustrated as shown in Figure 12. (For implementation 

purpose, the network setup used for ns-2 simulations consists of one additional node. It 

has been omitted here for simplicity.) The simulated network reflects our network 

architecture. A wired link connects the FH to the BS, while a wireless link connects the 

BS and the MH. 

1 Mbps . . . . . . . ~ . ~  

-....... 
~ 

FH BS 
- -250Kbps 0 

MH 

Figure 12 Simulated network setup. 



3.2.2.1 Scenario I: Link Delay Variation with Small Delay 

This scenario is used to investigate TCP's reaction to link delay variations. For 20 sec, 

FTP (with TCP Reno) data are being sent fiom the FH to the MH in TCP packets of 

1,040 bytes (default in ns-2). Link capacity between FH and BS is 1 Mbps, with 5 msec 

of delay. Link capacity between BS to MH is 250 kbps, with 170 msec of variable delay. 

Link delay variation is introduced at 0.5 sec. Links employ DropTail queues. 

The simulation results show improvement in TCP performance. The number of cwnd 

reductions vs. time is shown in Figure 13. Due to the spurious fast retransmit caused by 

link delay variation, TCP without packet control has the largest number of cwnd 

reductions. It also implies the largest number of fast retransmits. TCP with packet control 

and the user-defined duplicate ACK threshold set to 12 has the smallest number of cwnd 

reductions. The larger the duplicate ACK threshold, the more duplicate ACKs will be 

dropped and fewer fast retransmits will be performed by TCP. These fast retransmits are 

spurious and reducing them results in higher TCP performance. 

Graph with no packet control and graph with user-defined duplicate ACK threshold of 

three overlap, validating the implementation of the filters. Since TCP sender also has the 

threshold of three, no duplicate ACKs are dropped and the two cases coincide. 
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Figure 13 Link delay variation: number of cwnd reductions. 

Variations of cwnd are shown in Figure 14. Since larger duplicate ACK threshold in 

packet control results in fewer spurious fast retransmits, cwnd remains large. Cwnd is 

directly related to TCP's throughput. TCP's performance may also be examined by 

observing the goodput shown in Figure 15. With an appropriate user-defined duplicate 

ACK threshold, TCP with packet control successfully reduces the number of spurious 

fast retransmits. It may improve TCP goodput by -1 00%. 
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Figure 14 Link delay variation: cwnd. 
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Figure 15 Link delay variation: goodput. 



3.2.2.2 Scenario 11: Link Delay Variation with Small Delay and Link Errors 

Even though link error is not the problem our algorithms are targeting to solve, it would 

still be interesting to see how packet control reacts to it. Based on the experiments in 

Scenario I, we conducted another set of similar experiments to investigate the case with 

1% bidirectional packet loss in the wireless link. (We are interested in 1% packet loss 

because that link layer retransmission protocols, such as RLP and RLC, used in Third 

Generation (3G) cellular networks ensure packet loss probability of less than 1% [15].) 

TCP goodput is shown in Figure 16. With user-defined duplicate ACK threshold of 9, 

TCP with packet control achieves -30% improvement. 

- Without PC 
PC: threshold = 3 

PC: Packet Control 
I I 1 I 1 I I I I 

I 2 4 6 8 10 12 14 16 18 20 
Time (sec) 

Figure 16 Link delay variation (1% segment loss): goodput. 

3.2.2.3 Scenario III: Spurious Timeout 

We also investigate TCP's reaction to sudden large delay increase. It has similar settings 

as in Scenario I. Instead of introducing variable delays at wireless link, a delay of 6 sec is 

introduced at time instance equal to 5 sec. 

3 5 



The reaction of TCP without packet control to the long sudden delay is shown in Figure 7 

and Figure 8. They clearly show the adverse effect of spurious timeout and the spurious 

fast retransmit caused by the unnecessary retransmissions. Identical simulation scenario, 

with packet control enabled, is used to generate the results shown in Figure 17. They 

illustrate that TCP recovers faster (indicated by the third arrow) than in the case shown in 

Figure 8. Finer versions of both scenario results (from 10 sec to 13.5 sec) are shown in 

Figure 18 and Figure 19. As shown in Figure 18, the gap where TCP receives duplicate 

ACKs and the gap where TCP cannot send new data due to deflation of cwnd are much 

smaller than gaps shown in Figure 19. 

p q  
seqno 

cwnd - 
cwnd 

Time (sec) 

Figure 17 TCP with packet control: spurious timeout. 



Figure 18 
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TCP with packet control: spurious fast retransmit caused by spurious timeout. 
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Figure 19 TCP Reno: spurious fast retransmit caused by spurious timeout. 

A comparison of TCP goodput is shown in Figure 20. The dotted line in the graph 

represents the scenario with packet control. It is evident that TCP with packet control 



outperforms TCP Reno. We did not try to find the exact percentage of the improvement, 

since this simulation is only one incidence of a long delay. The improvement is highly 

dependent on the path characteristics. Frequent long delays during each TCP connection 

would result in higher improvement. Also, even though it is not shown in our 

simulations, we should also count the wireless link bandwidth saved by eliminating 

unnecessary retransmissions. 

Figure 20 TCP with packet control: goodput. 

3.2.3 Delay Generator 

We do not have wireless testing environment to run real experiments nor do we have real 

wireless network traces to use. Hence, wireless link delays in ns-2 simulations are 

generated by a delay generator. We implemented two types of delays: short delay 

variations and relatively long sudden delays. 



Short delay variations are generated based on the measurements of packet delays in 

wireless data networks [20]. The configuration for TCP performance measurement is 

based on CDMA lxRTT network architecture. A mobile host in a wireless network was 

connected to a host computer in a wired Local Area Network (LAN) through a single BS. 

During the entire experiment, the mobile host was connected to the same BS. The "ping" 

application was generated by the Internet Control Message Protocol (ICMP) ECHO. In 

one scenario named "Ping Wireless Mobile Terminal", ping packets were sent from the 

host computer in the LAN to the mobile terminal moving at pedestrian speed. "Figure 3" 

[20] provided the Cumulative Distribution Function (CDF) for packet delay (or RTT) for 

this scenario. 

Based on this figure, we derived delay values used in simulations, as shown in Table 1. 

Each case is simulated with a uniform distribution generated by the ns-2 random 

generator. The delays are in agreement with results reported in [8], varying from 179 

msec to 1 sec in a 3G1X system. The wireline link delay was kept constant at 5 msec. 

A long delay was generated by a timer. The only criterion was to have a delay long 

enough to generate a timeout in TCP. The one-way wireless link delay was kept constant 

Table 1 Wireless delay for mobile terminals. 

Percentage 
(%I 
80 

10 

8 

2 

Wireline RTT 
(ms) 

10 

10 

10 

10 

Total RTT 
(ms) 

316-400 

400 - 460 

460 - 605 

605 - 1,252 

Wireless RTT 
(ms) 

306 - 390 

390 - 450 

450 - 595 

595 - 1,242 

Wireless Link Delay 
(ms) 

153 - 195 

195 - 225 

225 - 297 

297 - 621 



at 170 msec. This value is close to the -300 msec average RTT reported in [20]. The 

sudden increase of delay was simulated for 6 sec, which was sufficiently long to cause a 

regular TCP timeout with at least one exponential back-off. 

3.2.4 NS-2 Implementation 

Network simulator ns-2 is a discrete event simulator developed for networking research. 

It provides substantial support for simulation of TCP, routing, and multicast protocols 

over wired and wireless (local and satellite) networks [21]. The simulator is written in 

C++ because of its rich computer programming capability, object oriented programming 

model, and the speed. It uses Object Tool Command Language (OTcl) to script the 

simulation scenario setups and perform result analysis. OTcl is an extension to TclITk 

for object-oriented programming. It was chosen for its simplicity and flexibility. 

One can modify or extend the existing ns-2 models in C++ to fit various simulation 

needs. An ns-2 simulation typically involves node creation and configuration, packet 

forwarding, link creation, queue management, error model, network setup, and trace 

collection. A typical structure of a unicast node is as shown in Figure 21. Two 

classifiers (address and port classifier) distribute incoming packets to the correct agent or 

outgoing link [2 11. 
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Figure 21 Structure of a unicast node [21]. 

The packet control (for historical reasons, we used "ACK Control" in the code to mean 

"packet control") algorithms are mostly implemented in the link layer of a BS. The ns-2 

link layer implementation (class LL) was extended by defining and exporting variables, 

such as enableAckContro1- and RedeJine3DupAck - . It overwrites the recvo function to 

implement various aspects of the packet control algorithms. 

* Packet Control for Wireless TCP implemented as a link layer solution 
with TCP awareness. 
*/ 
class LLWz : public LL 
{ 

int enableAckContro1-; I/ 0 - enable the packet control, 1 - disable 
int m - iRedefine3DupAck; //in seconds. 

//overwrite recv(. .). 
virtual void recv(Packet* p, Handler* h); 

1; 



//export properties to OTcl, so that user can change these 
// properties through OTcl in their simulation scripts. 
bind("enableAckControl_", &enableAckControl_); 
bind("Redefine3DupAck - ", &m - iRedefine3DupAck); 

In the OTcl simulation script, this allows using the new link layer in BS node, enabling 

packet control, and set user-defined duplicate ACK thresholds. The following example 

enables packet control in BS node with user-defined duplicate ACK threshold equal to 8: 

# Use Packet Control Link Layer on BS ($node(O) in our network setup) 
$lan addNode [list $node(O)] $opt(bw) $opt(delay) LLILLWz $opt(ifq) 
$opt(mac) 

# get LL object of BS 
set nif [$lan set lanIface-($node(O))] ;#get network interface object. 
set llBS [$nif set 11 J 

# configure Packet Control 
$11BS set enableAckContro1 1 //enables packet control 
$llBS set ~ e d e f i n e 3 ~ u ~ ~ c k  8 Nset user defined dup ACK to 8 
$node(O) label "no <AC [$ll& set enableAckContro1 J>" 

In the similar way, we extended delay model in ns-2 to be able to generate long delay and 

delay variations: 

class LinkDelay : public Connector { 

// define the delay modes. 
enurn LinkDelay-DelayMode 
{ 

LD-DelayMode Constant = 0, //constant delay. 
LD - ~ela~~ode-  and om - //variable delay. 

1; 

double m-dWirelessDownTime; 
double m - dWirelessDownDuration; 

int delayMode-; //delay mode. 
1 



// export properties to OTcl. 
bind("de1ayMode-", &delayModeJ; 
bind("Wire1essDownTime ", &m dWirelessDownTime); 
bind("~ire1ess~ownDura~on - ", &m - dWirelessDownDuration); 

Once the above properties are implemented and exported to OTcl, we then can configure 

the wireless link delays in simulation scripts. Example 1 starts a delay at 5 sec after 

simulation lasts 6 sec. Example 2 shows a part of the code that enables the variable delay 

in our performance evaluation Scenario I. 

Example 1 : -------- 
DelayLink set delayMode- 0; #O - constant, 1 - LD-DelayMode-Random 
DelayLink set WirelessDownTime- 5.0; 
DelayLink set WirelessDownDuration 6.0; 
$d label "d <delay [DelayLink set de l ay~ode  _I>" 
set lanDest [$ns make-lan $nodelistDestLan $opt(bw) \ 

$opt(delay) $opt(ll) $opt(i fq) $opt(mac) $opt(chan)] 

Example 2: 

DelayLink set delayMode- 1 ; #O - constant, 1 - LD-DelayMode - Random 

#the data in this delay is from K. Luo and A. 0. Fapojuwo paper. 
proc changeDelay {) { 

global d node delaypercent delay1 delay2 delay3 delay4 

set ns [Simulator instance] 
set now [$ns now] 

set whichDelay [$delaypercent value] 
if ($whichDelay<80) then { 

set new-delay [$delay1 value] 
) elseif ($whichDelay<90) then { 

set new-delay [$delay2 value] 
) elseif ($whichDelay<98) then { 

set new-delay [$delay3 value] 
) else { 

set new - delay [$delay4 value] 
1 



$ns delay $d $node(l) $new-delay duplex ;#duplex ;#simplex 
set time 0.0005; 
$ns at [expr $now+$time] "changeDelayW 

1 

3.2.5 Performance Comparison 

In our simulation, we compared the performance of TCP with packet control with TCP 

Reno. Due to the lack of time, we have not performed comparisons with other proposed 

algorithms. This comparison would be certainly useful. Eifel algorithm is the only 

known solution proposed specifically to improve TCP performance in wireless networks 

with respect to long sudden delay and delay variation. Hence, it is necessary to compare 

performance of packet control and Eifel algorithms. Despite the drawbacks of Eifel 

algorithm that we discussed earlier, in terms of performance only, Eifel algorithm would 

still outperform TCP with packet control because the best packet control can do is to 

prevent spurious fast retransmit caused by spurious timeout. In contrast, Eifel algorithm 

not only tries to do this, but also tries to reverse the adverse effects of spurious timeout 

already performed (TCP sender's cwnd and ssthresh). However, packet control would 

perform better in wireless bandwidth savings and avoiding network congestion. 

Furthermore, Eifel algorithm is an end-to-end solution, while packet control is a TCP 

aware link layer solution. 



CHAPTER FOUR: 
CONCLUSIONS 

In this research, we first studied various issues and related work dealing with TCP in 

wireless networks. We then proposed packet control filters to improve TCP performance 

in wireless networks with delay variations and long sudden delays. TCP connections 

were simulated in a mixed wireline and wireless network using the ns-2 simulator. The 

simulation results show that the proposed algorithms reduce spurious fast retransmit and 

spurious timeouts in TCP. They improve TCP's response time, goodput, and bandwidth 

consumption. Goodput of TCP Reno is improved by -100% in networks with delay 

variations and by -30% in networks with 1% packet losses in the wireless link. In cases 

of long sudden delays, TCP performance is also improved, depending on the path 

characteristics. 

Even though our algorithms may be further enhanced, we showed that packet control 

filters can be conveniently deployed at the intermediate routers to control the 

transmission of TCP segments and ACKs. 



CHAPTER FIVE: 
FUTURE WORK 

Future improvements of the proposed algorithms may include: 

Existing algorithm improvement: Even though we have illustrated the effectiveness of our 

algorithms, these algorithms could be further improved. 

Delay generator: Further analysis of delay generators is required for simulations. More 

accurate delay generator or genuine wireless traces should be used for the analysis and 

performance evaluation. 

Multi-connections: Multi-connection simulation scenarios could be considered. 

ACK compression: Algorithms to deal with ACK compression caused by wireless 

network delays should also be considered. T h ~ s  is especially important when considering 

possible congestion in a presence of multiple connections. The ACKs are accumulated 

during long delay. When link recovers, TCP senders generate bursty traffic that triggers 

network congestion, especially at the wireless edge note (BS). 

If long delays could be detected, BS can then control the rate ACKs are forwarded to the 

sender. The idea is to smooth out the burstiness of TCP transmission by controlling the 

ACK rate [17]. There are two related issues: how to detect long delays and how to 

determine the proper rate. It will be very useful to consult the work that has been done in 

end-to-end solutions for TCP rate control [7], [24], [30]. 



End-to-End solution consideration: Even though this has the least priority on this list, it 

will be interesting to consider the possibility of the end-to-end approach based on the 

knowledge in the BS. Changes could be made in the TCP sender to convey sender 

information to a BS. The BS can then generate events (packets) to control TCP sender 

with both sender information and information at the BS. 
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