
IMPROVEMENT OF TCP PERFORMANCE
IN WIRELESS NETWORKS

Wan Gang Zeng
B.Sc. in Computer Science, University of Ottawa, 2000

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the
School

of
Computing Science

O Wan Gang Zeng 2006

SIMON FRASER UNIVERSITY

Fall 2006

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name:

Degrec:

Title of Thcsis:

Wan Gang Zeng

Master of Science

Improvement of TCP Performance in Wireless
Networks

Examining Committee:

Chair: Dr. Lou Hafer

Associate Professor of Computing Science

Dr. Ljiljana Trajkovic

Senior Supervisor
Professor of School of Engineering Science

Dr. Qianping Gu

Supervisor
Professor of Computing Science

Dr. Fundr Ergun

Examiner
Assistant Professor of Computing Science

Date Approvcd: - 7 3 / , 2 0~ 6

SIMON FRASER
UNIVERSITY~ I brary

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the "Institutional Repository" link of the SFU Library website
<www.lib.sfu.ca> at: ~http:llir.lib.sfu.calhandlell8921112>) and, without changing
the content, to translate the thesislproject or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2006

ABSTRACT

Transmission Control Protocol (TCP) was designed and optimized to work well over

wired networks. It suffers significant performance degradation in wireless networks due

to their different characteristics, such as high Bit-Error Rate (BER), large and variable

delay, and bwsty traffic. In this thesis, I propose packet control algorithms to be

deployed in intermediate network routers. They improve TCP performance in wireless

networks with packet delay variations and long sudden packet delays. The ns-2

simulation results show that the proposed algorithms reduce the adverse effect of

spurious fast retransmits and timeouts and greatly improve the goodput compared to the

performance of TCP Reno. The TCP goodput was improved by -30% in wireless

networks with 1% packet loss. TCP performance was also improved in cases of long

sudden delays. These improvements highly depend on the wireless link characteristics.

Keywords: TCP, packet control, wireless networks, delay, congestion control

DEDICATION

To my parents and my wife

ACKNOWLEDGEMENTS

I would like to thank all the people who provided advices and contributed to this

research. Special thanks are due to the members of my committee: Dr. Ljiljana Trajkovic,

who has guided and supported me throughout my research, Dr. Qianping Gu and Dr.

Funda Ergun, who have given me valuable comments and advices. I would also like to

thank Dr. Lou Hafer for chairing the defense.

Thanks also to all the members of the Communication Networks Laboratory at Simon

Fraser University.

TABLE OF CONTENTS

.. Approval .. n
... ... Abstract m

Dedication ... iv

Acknowledgements .. v

Table of Contents .. vi
.. List of Figures .. VII

. . List of Tables .. vu
... Acronyms .. vlu

Chapter One: Introduction .. 1
. .

1.1 Transmission Control Protocol ... 1
1.1.1 TCP Windows ... 2
1.1.2 TCP Congestion Control Algorithms .. 3
1.1.3 Karn's Algorithm: RTT Estimation and RTO ... 7

... 1.2 Wireless Networks 8

... Chapter Two: Related Work 11
.. 2.1 Wireless Link Error 11

.. 2.2 Related Work Regarding Wireless Link Error 1 2
... 2.3 Wireless Link Delays 16

.. 2.4 Related Work Regarding Wireless Link Delays 22

Chapter Three: Proposed TCP with Packet Control .. 24
3.1 Proposed Solution .. 24

3.1.1 Network Architecture .. 24
.. 3.1.2 Packet Control Algorithms 25

3.1.3 Design of Packet Control in Base Stations .. 25
... 3.1.4 Design Considerations and Tradeoffs 28

... 3.2 Performance 29
.. 3.2.1 Implementation of TCP with Packet Control 29

... 3.2.2 Performance of TCP with Packet Control 31
... 3.2.3 Delay Generator 38

.. 3.2.4 NS-2 Implementation 40
... 3.2.5 Performance Comparison -44

Chapter Four: Conclusions .. 45

Chapter Five: Future Work ... 46

Reference List ... 48

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

LIST OF FIGURES

TCP congestion window evolution ... 3

... TCP congestion control algorithms 5

... Split connection design 14

... Link layer design 1 5

... End-to-end design 16

.. The effect of packet re-ordering [19] 18

... TCP Reno: spurious timeout 20

... TCP Reno: spurious timeout 21

.. Network architecture -25

.. Figure 10 Packet control: ACK filter 30

.. Figure 1 1 Packet control: data filter 31

.. Figure 12 Simulated network setup 1

... Figure 13 Link delay variation: number of cwnd reductions 33

.. Figure 14 Link delay variation: cwnd 34

... Figure 15 Link delay variation: goodput 34

.. Figure 16 Link delay variation (1 % segment loss): goodput 35

Figure 17 TCP with packet control: spurious timeout ... 36

Figure 18 TCP with packet control: spurious fast retransmit caused by spurious
.. timeout 37

Figure 19 TCP Reno: spurious fast retransmit caused by spurious timeout 37

Figure 20 TCP with packet control: goodput .. 38

Figure 21 Structure of a unicast node [21] .. 41

LIST OF TABLES

Table 1 Wireless delay for mobile terminals ... 39

vii

ACRONYMS

ACK

BER

BS

CDF

CDMA

CWND

FTP

GPRS

GSM

ICMP

IP

IW

LAN

MAC

PC

PDC

PDC-P

RLC

RLP

RTO

RTT

RWND

SMSS

Acknowledgement

Bit Error Rate

Base Station

Cumulative Distribution Function

Code-Division Multiple Access

Congestion Window

File Transfer Protocol

General Packet Radio Service

Global System for Mobile communication

Internet control message protocol

Internet Protocol

Initial Window

Local Area Network

Medium Access Control layer

Packet Control Algorithms

Packet Data Cellular

Packet Data Convergence Protocol

Radio Link Control

Radio Link Protocol

Retransmission Timeout

Round Trip Time

Receiver Window

Sender Maximum Segment Size

SSTHRESH Slow Start Threshold

TCP Transmission Control Protocol

WLAN Wireless Local Area Network

. . .
Vll l

CHAPTER ONE:
INTRODUCTION

The performance of Transmission Control Protocol (TCP) [26], [28] has greatly

improved since 1988, when the congestion avoidance and control algorithms [16] were

first introduced. TCP is currently the most widely used Internet transport protocol. In

2002, TCP traffic accounted for 95% of the Internet Protocol (IP) network traffic [27].

This was due to a variety of popular Internet applications and protocols. Web (HTTP),

file transfer (FTP), and e-mail (SMTP) rely on TCP as the underlying transport protocol.

Internet applications that rely on TCP today are likely to do so in the future. With a

growing deployment of wireless networks, it is important to support these applications in

both wireline and wireless environments. Hence, wireless networks will also require good

TCP performance.

Wireless networks have different characteristics compared to wireline networks. TCP,

which was carefully designed and tuned to perform well in wireline networks, suffers

performance degradation when deployed in wireless networks. In this section, I will

discuss the issues of TCP and wireless networks that are closely related to my research. I

will also address current research issues and related work.

1.1 Transmission Control Protocol

TCP is a connection-oriented transport layer protocol. It provides reliable byte stream

services for data applications. Its key features are reliability, flow control, connection

management, and congestion control. Major TCP versions are Tahoe [28], Reno [2], and

1

NewReno [ll]. They differ mainly in their congestion control algorithms. Tahoe, the

original version of TCP, employs three congestion control algorithms: slow start,

congestion avoidance, and fast retransmit. TCP Reno extends Tahoe with a fast recovery

mechanism. NewReno, the latest major version of TCP, modifies TCP Reno's fast

recovery algorithm and addresses the issue of partial acknowledgements (ACK) 1111.

Partial acknowledgements are ACKs that cover new data, but not all the outstanding data

when loss is detected 1111.

Differences between the characteristics of wireline and wireless networks have

significant impact on TCP performance. TCP was designed and optimized to perform

well in wireline networks. Wireless links, with considerable packet losses due to link

errors, delay variations, and long sudden delays, violate TCP's essential design

assumptions. Improving TCP performance in wireless networks has been an ongoing

research activity since the mid 90's. Most improvements dealt with TCP's reaction to

high Bit-Error Rate (BER) and TCP performance degradation due to delay and delay

variation in wireless links. Performance of TCP's congestion control algorithms

particularly deteriorates when TCP is deployed in mixed wireline/wireless networks. In

this thesis, I describe TCP's timer and window management, congestion control

algorithms, and estimation of round-trip time (RTT).

1.1.1 TCP Windows

TCP maintains two windows to perform congestion control and avoidance: the receiver

window (rwnd) and the congestion window (cwnd). They define the maximum number of

bytes the receiver may receive and the sender may send, respectively. The number of

bytes that may be sent to the network is the minimum of the two. With rwnd sufficiently

large, the larger the cwnd, the more data TCP can send, resulting in larger TCP

throughput. A typical TCP cwnd evolution with respect to time is shown in Figure 1. TCP

always begins with slow start phase and stays in congestion avoidance phase for most of

the duration of the connection. (Slow start and congestion avoidance are two phases in

TCP's congestion control. We will discuss them in detail in the following section.)

Figure 1

The growth of the cwnd is ACK paced. With every segment that TCP sends, the receiver

issues an ACK to acknowledge the receipt of the data. Instead of sending an ACK for

every segment, the delayed ACK can be enabled. The receipt of the ACKs increases the

cwnd and enables the sender to send more data permitted by new cwnd. Change of cwnd

with respect to ACKs is described in the following section.

1.1.2 TCP Congestion Control Algorithms

TCP packets may be lost due to link errors or network congestion. Network congestion

occurs when there is insufficient capacity somewhere along the path of the TCP

connection. Since losses due to link errors in wireline networks are rare, TCP deals only

with packet loss due to network congestion. Hence, packet loss always implies network

congestion. TCP congestion avoidance and control were first introduced by Van Jacobson

when the Internet experienced its first series of "congestion collapses" [28].

TCP detects network congestion via duplicate ACKs and timeouts. Each byte of the

transmitted data is assigned a unique sequence number (seqno). When data packet loss

occurs, TCP receiver issues a duplicate ACK for any out-of-sequence data packet

received. Upon receiving a predefined threshold of consecutive duplicate ACKs, TCP

assumes that a packet is lost. In most TCP implementations, the threshold is set to three

(known as "three duplicate ACKs"). Note, however, that when cwnd < 4 or in case of

data packet or ACK loss, the number of duplicate ACKs is less than three, and, thus,

insufficient to trigger three duplicate ACKs. TCP handles this situation by keeping a

timer called Retransmission Timeout (RTO). When the timer expires, TCP assumes

packet loss [26], which triggers congestion control.

TCP congestion control mechanism includes [12] :

increasing cwnd by one segment size per RTT and halving cwnd for every

window experiencing a packet loss (Additive Increase Multiplicative Decrease,

AIMD)

Retransmission Timeout (RTO), including exponential back-off when timeout

occurs

slow start mechanism for initial probing of the available bandwidth

ACK clocking (self-clocking) the arrival of ACKs at the sender, used to trigger

transmission of new data.

TCP Reno congestion control algorithms are illustrated in Figure 2. We focus our

discussion of TCP congestion control algorithms based on TCP Reno because it is the

most commonly deployed TCP version with more complete congestion control

algorithms than TCP Tahoe.

SS: slow start
CA: congestion avoidance
TO: time out
Fast retransmit & fast recovery

ssthreshl - -

Figure 2 TCP congestion control algorithms.

The following summary [2], describes four congestion control algorithms: slow start,

congestion avoidance, fast retransmit, and fast recovery.

Slow Start: At the onset of a TCP connection, TCP employs the slow start mechanism to

probe the network capacity. Slow start is also employed after a packet loss is detected by

the RTO mechanism. When the transmission starts, the sender's cwnd is set to the initial

window (IW) size, which must be less than or equal to 2xSMSS (Sender Maximum

Segment Size (SMSS)) bytes and should not be larger than two segments. Congestion

window cwnd is increased by at most SMSS bytes for each ACK received that

acknowledges new data. The slow start threshold (ssthresh) may be arbitrarily high and

could be reduced when congestion occurs. When congestion is detected by the RTO

mechanism, cwnd is set to IW and ssthresh is set to 0.5xcwnd.

In both situations, slow start is used as long as cwnd < ssthresh. Slow start ends when

cwnd > ssthresh or when congestion is detected. When cwnd = ssthresh, the sender may

use either slow start or congestion avoidance.

Congestion Avoidance: If cwnd > ssthresh, congestion avoidance is employed to probe

the network capacity more slowly than during the slow start. Congestion window cwnd is

incremented by one full-size segment per RTT. This is a formula commonly used to

approximate this update on every incoming non-duplicate ACK:

SMSS
cwnd = cwnd + SMSS x - .

cwnd

In most cases, TCP operates in the congestion avoidance phase. Congestion avoidance

ends only when congestion is detected.

Fast Retransmit: When three duplicate ACKs are detected, TCP moves from congestion

avoidance to fast retransmit. The incoming segments are considered out-of-order by the

receiver when a packet loss occurs. For any out-of-order packet received, the receiver

immediately sends a duplicate ACK acknowledging the next expected seqno.

AAer receiving three duplicate ACKs, the sender retransmits what appears to be the lost

packet without waiting for the retransmission timer to expire. It uses the sequence

number included in the duplicate ACKs. Along with the retransmission, TCP also sets

ssthresh to

(~ 1 i ~ y
ssthresh = max , 2xSMS.Y).

Flightsize is the size of the outstanding data in the network.

Fast Recovery: Fast recovery takes place immediately after the sender performs fast

retransmit. It ends when a new ACK is received, where a new ACK is defined as the

ACK acknowledging the sequence number beyond the lost segment. TCP first inflates

cwnd to ssthresh + 3 x SMSS . This reflects the three segments that have left the network

because three duplicate ACKs would require three packets to leave the network.

For every additional duplicate ACK received the sender increments cwnd by SMSS to

reflect that an additional segment has left the network. This new cwnd may also allow the

sender to transmit a new segment. When a new ACK is received, the sender sets cwnd to

ssthresh to deflate the cwnd, and the congestion avoidance phase continues.

1.1.3 Karn's Algorithm: RTT Estimation and RTO

After a segment is transmitted, an ACK is expected by the sender. If the RTO timer

expires before the ACK is received, the segment is retransmitted. This resynchronizes the

transmission in case the segment is lost. Therefore, if the calculated RTO is too large,

unnecessary time will be spent waiting for the timer to expire. Thus, it will cause TCP

performance degradation [26] . If the calculated RTO is too small, the timer may expire

prematurely and cause unnecessary retransmissions.

RTT is estimated using Karn's algorithm while RTO is calculated based on the estimated

RTT and the RTT deviation. TCP measures the round-trip time of the ACKs for data

segments. This interval is called sample RTT. The moving average of RTT, called a

smoothed RTT (srtt), and the RTT variation (rttvar) are calculated as

srtt = (1 - g) * srtt + g * sampleRTT

rttvar = (1 - h) * rttvar- h * l ~ a r n ~ l e ~ ~ ~ - srttl .

Recommended parameter values are

RTO is calculated as

RTO = srtt + 4 rttvar

1.2 Wireless Networks

Mobile connectivity provided by wireless networks [23] allows users to access

information anytime and anywhere. The growth of cellular telephone systems is

accompanied with an increased number of wireless-enabled laptops and Personal Digital

Assistants (PDAs). Cellular networks evolved from 1G analog systems to 2G systems

(Global System for Mobile communication (GSM) and Packet Data Cellular (PDC)),

2.5G systems (General Packet Radio Service (GPRS) and Packet Data Convergence

Protocol (PDC-P)), and 3G systems (Wideband Code-Division Multiple Access (CDMA)

and cdma.2000). During the past decade, the quality of wireless links has been improved

in terms of Bit-Error Rate (BER) and link bandwidth. The following wireless network

characteristics still hold:

A. High bit error rate (BER)

Wireless networks experience random losses. BER in wireless networks is significantly

higher than in wireline networks. Packet error rates range from 1% in microcell wireless

networks, up to 10% in macrocell networks [27]. Even with optimized link layer

retransmission algorithms in 3G networks, such as Radio Link Protocol (RLP) and Radio

Link Control (RLC), packet error rate remains -1 %.

B. Long and variable delay

Wireless links have a large latency. Typical RTTs in 2.5G and 3G networks vary from a

few hundred milliseconds to one second. Furthermore, wireless links are likely to

experience sudden delay changes (or delay spikes, which are defined as a sudden increase

in the latency of the communication path [8] .) greatly exceeding the typical RTT [1 51.

Wireless WANs have a typical latency of up to 1 sec. 1141. These delay changes may

cause spurious (unnecessary) TCP timeouts and fast retransmits. Wireless links

experience delay changes due to:

Link recovery: Wireless link recovers from a temporary link downtime due to radio

interference or mobility of the user, such as the user moves through a tunnel or a

building. While not significantly large, this type of delay is the major source of delay

variations.

Temporary disconnection: Mobile device recovers fiom handoff operations. Handoff is

the activity when a mobile user moves between cells. During handoffs, there is usually a

blackout period when there is no communication between mobile device and base station.

Traflc priority: Different traffic priorities are enforced in cellular networks. For

example, when there is a mixed traffic of voice and data, voice traffic has higher priority.

LinWUAC layerprotocol: Certain wireless networks hide data losses from the sender by

performing extensive link-layer retransmission, causing variable delays in data

transmission [141.

C. Bandwidth

Bandwidth of cellular networks increases as they evolved from 1G analog systems to 2G

systems (10-20 kbps for uplink and downlink connections), to 2.5G (10-20 kbps uplink

and 1 0 4 0 kbps downlink connections), and 3G systems (up to 64 kbps uplink and 384

kbps downlink) [15].

Data rates vary due to mobility and the interference from other users [15]. Mobile users

share the bandwidth within a cell. As users move among cells, they affect the bandwidth

available to other users. Furthermore, a user may move to another cell with higher or

lower bandwidth. These factors cause variable wireless link data rates. TCP was designed

to handle the changes in bandwidth with its self-clocking scheme. However, a sudden

increase in RTT could still cause spurious timeouts.

D. Path asymmetv

Cellular networks, especially 2.5G and 3G systems, may run asymmetric uplink and

downlink data rates.

CHAPTER TWO:
RELATED WORK

Wireless network characteristics have significant impact on TCP performance due to the

difference fiom wireline networks. Wireless links with considerable packet losses

because of link error, delay variations, and large sudden delay violate TCP's essential

design assumptions. TCP was not designed with wireless network in mind. Hence, we

should not expect TCP to perform well in a wireless network [lo].

Since mid 1990s, a great effort has been placed on improving TCP performance in

wireless environment. A number of solutions have been proposed to solve the problem

of non-congestion related packet losses misinterpreted by TCP [3], [4], [30]. In recent

years, researchers have also started to pay attention to the impact of delays and delay

variations on TCP performance in wireless networks [13], [14], [19], [20], [27], [33].

2.1 Wireless Link Error

The main characteristic of a wireless network is the high link BER. It violates the

fundamental assumption of TCP that packet losses caused by link errors are negligible

(much less than 1%) [16] and that packet losses are caused only by network congestion.

High BER in wireless networks causes packet loss regardless of network congestion. This

will cause TCP to unnecessarily reduce its transmission rate [9]. The main cause for

TCP's performance degradation in a mixed wireless/wireline environment is its inability

to detect the origin of the packet loss.

When a packet loss is detected, TCP employs congestion control algorithms to reduce the

transmission rate. A single packet loss will cause duplicate ACKs and cwnd to be reduced

by half according to the fast retransmit and fast recovery algorithms. TCP resolves the

congestion in the network by lowering its transmission rate. However, lowering the

transmission rate will degrade TCP performance if the packet loss is not caused by

network congestion.

(Note that wireless link errors are not the problem that I attempt to solve with my

proposed algorithms. Nevertheless, since they are a major part of the wireless TCP

research and most of the work has been done in this area, I will address it here for the

sake of completeness.)

2.2 Related Work Regarding Wireless Link Error

One approach to improving TCP performance is to reduce the adverse effect of wireless

link errors. Proposed solutions either hide the wireless link error from the TCP sender or

make the sender aware of the causes of segment losses [29]. The first approach resolves

the error within the wireless domain without the TCP sender being aware of the error.

These solutions often modify the base station andor the mobile host. If the link error is

well shielded from the sender, modifymg the sender is not necessary. The examples are

I-TCP [3], M-TCP [6], [31], [32] and Snoop [4], [5]. Since TCP sender cannot

differentiate the causes of segment losses, the second approach explicitly makes the

sender aware of the wireless link error and handles segment losses caused by wireless

link errors differently from losses due to network congestion. This approach requires that

the base station sends explicit congestion messages to the sender or a mechanism to

detect the causes of loss at the sender. An example is TCP Westwood [7].

A more general categorization is based on the algorithm design principles [I], [27].

The solutions may also be categorized as: split connection, link layer retransmission, and

end-to-end.

Split connection

Indirect-TCP (I-TCP) [3] is one of the first protocols proposed using this approach. As

illustrated in Figure 3, the TCP connection is split into two connections at the base station

(BS): between the fixed host (FH) and the BS (wireline domain) and between the BS and

the mobile host (MH) (wireless domain). For every TCP data segment received at the

BS, an ACK is generated at the BS on the wireline TCP connection. This ACK is then

sent to the sender (FH). The work to guarantee the actual delivery of TCP data is

imposed on the second connection in wireless network. Since the second connection is

within the wireless domain, an optimized protocol may be employed. The idea behind

this protocol is to hide the wireless losses from the sender. By using more optimised

wireless transport protocol, data have higher chance of getting successfully transmitted.

Figure 3 Split connection design.

The major drawback of this approach is that the TCP end-to-end semantics is not

preserved. Since an ACK is sent from BS to FH before the data segment is transmitted,

an ACK may be received at FH before the data segment is received at the MH or is even

lost. This is a serious issue for many applications. Another drawback is the software

overhead due to the establishment of two connections and due to the movement of data

segments between connections. This overhead introduces high latency at the BS. Buffers

are required for both connections. Hence, higher handoff latency is expected when the

content of the buffers needs to be transferred from one BS to another. The end-to-end

semantics was preserved in another proposed protocol in this category called M-TCP [6].

The simulation results of M-TCP's performance evaluation in OPNET network simulator

[22] shows that M-TCP outperforms TCP in terms of maintaining congestion window

size, goodput, and sender size retransmission timer [3 11, [32].

Link layer retransmission

The Snoop protocol [4] is a well known protocol in this category. As illustrated in Figure

4, an agent is implemented at the link layer in BS. It hides wireless packet loss from the

sender (FH). Data segment received at the BS is first queued and then forwarded to the

MH. When a packet is lost in the wireless link, a local retransmission of the data

segments queued at the BS is performed. Therefore, loss is transparent to the FH.

j transport

: link 7
TCP :.physical.. .. .;. :

- _
Wireless - - - - - - BS

TCP

Figure 4 Link layer design.

Snoop protocol has less overhead because it is implemented at the link layer. It has faster

recovery time due to the local retransmissions from the BS. As a result, it has typically

higher throughput than the split-connection approach. The major drawback of the Snoop

protocol is its data queue because per-connection buffers are required. Since the

unacknowledged segments need to be kept at the BS, the memory requirement becomes a

scalability issue. Another drawback is the increased handoff time, when the data queue

needs to be transferred between the two BSs. The third drawback is the increased delay

variation because Snoop solves segment losses individually [I] with local

retransmissions.

These protocols, such as TCP Westwood (TCPW) [7], require modification of TCP at the

sender (FH) and possible modifications in the BS or the MH. This is illustrated in Figure

5. The TCP sender continuously monitors the bandwidth used by the connection by

monitoring the rate of returning ACKs. The cwnd and ssthresh are calculated based on

this rate after congestion is detected by either three duplicate ACKs or timeouts. Instead

of "blindly" reducing cwnd, as in the congestion control algorithms of TCP Reno, TCPW

sets the cwnd and ssthresh to the values that better reflect the wireless link bandwidth

when congestion occurs.

i application [application
: : I

, n

j transport . i
i network i

I ,

i P!IYS~C.~!. -1.; TCPW -

P - - - - -

MH
Wireless

BS FH

Figure 5 End-to-end design.

Although effective in mixed wireline and wireless networks, the major drawback of

TCPW is that it might face deployment challenges. FH clients need to deploy TCPW to

replace the standard TCP. Nevertheless, TCPW represents an effective design approach.

TCP-Jersey [30], an extension of TCPW, employs Available Bandwidth Estimation

(ABE) algorithm and congestion warning (CW) mechanism to improve the estimation of

wireless link bandwidth. WTCP [24] enforces a rate-based transmission scheme and

detects congestion by inter-packet separation at MH, where MH does most of the

computations for congestion control.

2.3 Wireless Link Delays

Wireless networks have larger latency and delay variations than wireline networks. Long

sudden delays during data transfers are common in GPRS wireless WANs [14], [19].

Furthermore, experimental [19] and analytical [20] data indicate that mobility increases

packet delay and delay variation and degrades the throughput of TCP connections in

wireless environments. TCP reaction to the large sudden delays and delay variations has

not been widely studied in the past, since these properties are not common in wireline

networks. One of the earliest studies was conducted in [19], where the authors had

performed both experimental study and detailed analysis. Three major adverse effects

are identified as: spurious fast retransmit, spurious timeouts, and ACK compression.

Spurious fast retransmit: The primary source for unnecessary fast retransmit is the link

delay variations. A side effect of spurious timeout can also cause spurious fast

retransmit, which is explained in the next section. Delay variations can cause the re-

ordering of data segments during transmission. Since IP protocol does not guarantee in-

order delivery of packets, when there are delay variations on the transmission path, the

packets could be re-ordered. Therefore, when TCP runs over IP, TCP also experiences

out-of-order segments.

TCP generates a duplicate ACK whenever an out-of-order data segment is received. The

number of out-of-order segments that had arrived consecutively prior to the current

segment is called the re-ordering length [19]. Thus, the re-ordering length represents the

number of duplicate ACKs expected to arrive at the TCP sender. Figure 6 shows no

segment loss or network congestion. Nevertheless, fast retransmit is triggered because

TCP misinterprets the duplicate ACKs as packet loss and a sign of network congestion.

This event is called spurious fast retransmit.

TCP sender halves its congestion window to reduce the transmission rate in response to

fast retransmits. As illustrated in Figure 6, a packet was held in a queue by the hiccup (a

delay generator [19]) at time 37.7 sec (marked +) and then retransmitted after six

segments at time 41.9 sec (marked+). Upon receiving the six segments prior to

receiving the queued segment, the receiver generates six duplicate ACKs, triggering a

fast retransmit. Since the congestion window is reduced, the number of segments that

can be sent into the network is also reduced.

Figure 6 The effect of packet re-ordering 1191.

Spurious timeout: Unnecessary timeouts may occur on links with long sudden delays.

RTO is the conservative estimates of RTT. It is dynamically adjusted with running

average RTT and RTT variation. With its RTO timer, TCP is designed to handle even

large gradual changes in delays. Nevertheless, TCP cannot handle well long sudden

delays because it is unable to adjust its RTO fast enough. When the RTO timer expires,

TCP assumes that the outstanding packets are lost and triggers the congestion control.

Spurious timeout is illustrated in Figure 7 and Figure 8 (a finer view of Figure 7). The

three arrows show three critical events. The sudden long delay in the link occurs at 5 sec.

The first arrow indicates the moment when the TCP sender's RTO timer expires. TCP

sender assumes that the previously sent packets are lost. The cwnd is reduced to the initial

window (two segments). TCP then retransmits the first two unacknowledged segments.

At 11 sec, the link delay terminates (marked by the second arrow). The sender receives

the first new ACK (the new ACK is defined as an ACK that acknowledges a data

segment which has not been acknowledged earlier) and starts recovering from timeouts

by entering the slow start phase. All the unacknowledged segments are to be

retransmitted. Since some ACKs in the wireless link have also been delayed, they

accumulate and arrive together at the sender when the link recovers. This causes a burst

of data segments to be sent. This is known as ACK compression. The retransmission

unnecessarily utilizes the scarce wireless bandwidth and may potentially increase the

recovery time.

9 10 11 12 13
Time (sec)

Figure 7 TCP Reno: spurious timeout.

The unnecessary retransmission of segments may introduce an additional spurious fast

retransmit. At 11.97 sec, the retransmitted segments arrive at the receiver. Since

previously transmitted segments have been received after the link recovered, TCP

receiver generates a duplicate ACK for every out-of-order segment. These duplicate

ACKs (ACK 136) are shown between 11.97 sec and 12.54 sec. (These duplicate ACKs

between 11.97 and 12.54 sec are not shown in the cwnd graph because of the way ns-2

simulator generates traces. Ns-2 tracks the cwnd changes. Since these are duplicate

ACKs and the ACK number does not change, they are not recorded in the trace file.)

When the number of duplicate ACKs exceeds the duplicate ACK threshold, another

spurious fast retransmit is triggered. This further worsens the situation. A gap appears

after 12.54 sec (graph labelled seqno) immediately after ACK 137 is received. During the

fast recovery, for every duplicate ACK received, the sender artificially inflates the cwnd

by one segment and, if the cwnd permits, transmits the next segment. (Even though the

changes in cwnd graph are not shown during this period, this can be seen from the seqno

graph showing new segments that are sent with ACKs received. The reason that the

cwnd graph does not show the changes may be that TCP implementation in ns-2 makes

this change transparent to the cwnd variable. Therefore, cwnd appears to be unchanged in

the trace file.) When the new ACK 137 is received (marked by the third arrow), the fast

recovery is terminated and cwnd is deflated back to the size that it had at 11.97 sec. No

segments are transmitted during the period between 12.50 sec and 13.10 sec (graph

labelled seqno) due to this decrease of cwnd.

seqno

cwnd -
cwnd

I L 1 6 I 1 I 1

4 5 6 7 8 9
4 -

10 11 12 13
Time (sec)

Figure 8 TCP Reno: spurious timeout.

ACK compression: ACK compression is another issue that possibly arises with wireless

link delays. The essence of TCP self-clocking is the observation that data segments

arrive at the receiver at the rate the bottleneck link can support. If the receiver's ACKs

arrive at the sender with the equal spacing, then the sender can avoid congesting the

bottleneck link by sending new data packets at the same rate. The TCP self-clocking

depends on the arrival of ACKs at the spacing with which the receiver generated them. If

the spacing is altered or ACKs are accumulated during the transmission in the network,

the ACKs might be too close comparing to the spacing when they are sent. As a result,

the sender could send more data than the network can accept at an instance of time. The

phenomenon of ACK compression is observed even for TCP connections in wireline

networks.

2.4 Related Work Regarding Wireless Link Delays

Even though this is not the major part of the research on wireless TCP, it has attracted

some researchers to try to enhance TCP to adapt to various link delays experienced in

wireless networks.

Eifel algorithm [19] was proposed to enhance TCP's adaptation to link delays in wireless

networks. Both spurious timeout and spurious fast retransmit are caused by TCP's

retransmission ambiguity [18], which occurs when an ACK arrives for a segment that has

been retransmitted. Hence, there is no indication which transmission is being

acknowledged. Eifel algorithm is an end-to-end solution, which requires modifymg only

the TCP sender and enabling timestamp option in the TCP receiver. It first eliminates the

retransmission ambiguity by using additional information in the ACKs. Then, it restores

the payload and resumes transmission with the next unsent segment [19]. Timestamp

option is used to provide the additional information to identify the segment that triggered

the duplicate ACK. Timestamp clock is stored in the header of every outgoing segment

and echoed back with its corresponding ACK. The sender also keeps track of the

timestamp of the first retransmission. The received ACK can be identified by comparing

the timestamp stored in the sender with the timestamp in the received ACK. If the ACK

was triggered by the original segment, spurious retransmission has occurred. The sender

then restores the cwnd and possibly RTO. Instead of retransmitting the unacknowledged

segments, the next unsent segment is transmitted.

Although Eifel algorithm effectively reduces the impact of spurious timeouts and

spurious fast retransmits by eliminating the retransmission ambiguity, it has two major

drawbacks: it requires modification of all TCP clients in the wireline domain and requires

that both the sender and the receiver have the 12-byte TCP timestamp option enabled in

every segment and the corresponding ACKs. Furthermore, its performance in the cases of

high link errors is questionable [13]. Even though the authors argue that this algorithm

does not require any modification on either wireless end device or any intermediate

router, inherited from the end-to-end scheme, requiring modification on all the TCP

clients in the wireline domain alone could face serious deployment challenge

Authors of [14] also studied the long sudden delays in GPRS wireless WAN.

Experiments were setup to investigate how the widely deployed TCP implementations

recover from a spurious timeout. Implementations on FreeBSD 4.1, Windows 98, Linux

2.2, and Linux 2.4 were tested. All were shown to have various levels of adverse effects,

along with several implementation faults. Few recommendations for possible

improvements were discussed.

CHAPTER THREE:
PROPOSED TCP WITH PACKET CONTROL

We propose packet control algorithms designed to reduce the adverse effect of long

delays and delay variations on TCP performance in wireless networks. We will describe

the algorithms, their implementation, and performance evaluated using the ns-2 simulator

[211.

3.1 Proposed Solution

3.1.1 Network Architecture

Network architecture, shown in Figure 9, represents a cellular network or a Wireless

Local Area Network (WLAN). A Mobile Host (MH) initiates a TCP connection with a

Fixed Host (FH) through a Base Station (BS), which is an edge node in the wireless

network. TCP packets are sent from the FH to the MH through the BS and MH

acknowledges every data packet received [20]. TCP data may be either a long lived FTP

connection with a large volume of data traffic or a short lived HTTP connection with a

typically smaller volume of data traffic. We assume that the condition of the wireless link

may change with time (leading to variable wireless link delay), that the mobile device

roams between cells [25], and that mobile applications have limited data bandwidth.

BSS

MH: mobile host
BS: base station
FH: fixed host
BSS: infrastructure

basic service set

Figure 9 Network architecture.

3.1.2 Packet Control Algorithms

TCP with packet control consists of ACK and data packet filters. The two filters improve

TCP performance in mixed wireline/wireless networks and maintain TCP's end-to-end

semantics. They deal with wireless links with long sudden delays and delay variations,

maintain regular TCP functions, and have small impact on handoffs. They do not depend

on end-user TCP flavours.

The filters are to be deployed at the wireless network edge (typically the BS). This is a

TCP-aware link layer solution. The algorithms keep track of TCP data and ACK packets

received fiom the FH and the MH respectively. Packet control filters forward packets to

both client ends based on the information gathered in the BS.

3.1.3 Design of Packet Control in Base Stations

After TCP connection is established, data is sent fiom FH to MH through BS. Upon

receiving data segments, MH sends acknowledgements to FH for every segment received

[20]. For simplicity, we do not consider the case when "delayed ACK" option [26] is

enabled in TCP receiver. Since all packets traverse through the intermediate node (BS),

BS is the good place to deploy packet control algorithms, without a need of any changes

in either FH or MH. Packet control is designed to focus on the spurious fast retransmit

and spurious timeout caused by delay variations and large sudden delays in wireless

links.

3.1.3.1 ACK Filter

Packet control is designed to reduce adverse effect of spurious fast retransmit. It reacts to

ACKs received from the MH using the ACK filter. It drops the old ACKs and duplicate

ACKs classified according to the duplicate ACK threshold defined by the user. It

remembers the last new ACK received from the wireless receiver, called the last received

ACK. When an ACK arrives, its ACK number is checked against the last received ACK.

We consider three cases:

Old ACK The ACK is considered old if the ACK number has already been received and

is smaller than the last received ACK. It is immediately dropped at BS since there is no

need to transmit them to the sender and it would unnecessarily consume network

bandwidth.

Duplicate ACE If the newly received ACK number is identical to the largest ACK

currently received, it is considered to be a duplicate. Packet control keeps track of the

current number of duplicate ACKs received at the BS. Based on the number of duplicate

ACKs received and the user-defined duplicate ACK threshold, duplicate ACKs are

evenly dropped and are not sent to the sender. The number of ACKs to be dropped is

equal to the difference between the user-defined duplicate ACK thresholds at the BS and

at the FH. For example, if the user-defined duplicate ACK threshold is six and TCP has

defined the three-duplicate-ACK threshold, every second duplicate ACK is dropped.

New ACK: If the ACK number has not been previously received, the ACK is considered

new. The last wireless ACK is updated, the counter for the current number of duplicate

ACKs is reset, and the ACK is forwarded to the sender.

The design of the ACK filter is based on the observation that a wireless link has higher

number of re-ordered segments, which is the primary cause of spurious fast retransmit.

By filtering some duplicate ACKs at the BS, the spurious fast retransmit may be reduced.

If the duplicate ACK is not caused by packet loss in the network, filtering duplicate

ACKs results in better TCP performance.

3.1.3.2 Data Filter

When the packet control receives a data segment from the FH, it passes it to the MH. The

data filter at the BS is designed to save wireless bandwidth and to prevent the spurious

fast retransmit caused by spurious timeout.

In the case of spurious timeout, retransmissions of the unacknowledged segments

unnecessarily consume the scarce wireless link bandwidth and also trigger additional

spurious fast retransmits. Therefore, their prevention is essential in solving spurious

timeout. The data filter checks whether data segments have been acknowledged. The

sequence number is checked against the last ACK received from the receiver. We

consider two cases:

New data segment or unacknowledged segment: If the segment has not been

acknowledged, it is forwarded to the receiver. The segment is either a new data segment

or an unacknowledged segment. In the latter case, the system cannot distinguish whether

the last transmission of the same segment has been received by the receiver or its ACK

was lost. In both cases, even if the received segment is a retransmission, it should be

forwarded.

Acknowledged segment: This segment is a retransmission due to spurious timeout. This

occurs because the ACK from the BS is lost or has not arrived at the FH. In both cases,

the segment should be dropped. We consider that a loss of ACKs could occur even

though the BER and the possibility of congestion for ACKs are small in wireline

networks. For every two identical retransmitted segments received, a corresponding ACK

is generated and sent fi-om the BS to the sender. Hence, unnecessary retransmissions are

eliminated and the problem of lost ACKs is resolved.

3.1.4 Design Considerations and Tradeoffs

Packet control filters designed to deal with the wireless link delays have to be simple to

implement and easy to deploy. This has been reflected in various aspect of the design:

TCP option: Packet control has been designed as an option for TCP rather than a

modification of TCP. Hence, it is less difficult to deploy in an existing network. TCP is

the most successful and, more importantly, most tested transport protocol. TCP currently

can provide services for data application in wireless networks. Any new protocol would

require thorough validation and would face difficulties of deployment in the existing

network.

A link layer solution in BS: Packet control requires modification in the BS only. No

modifications are required at the end users. Furthermore, it can be deployed

incrementally because it does not require changes in the protocol stack.

Scalable: With proper implementation, packet control filters only require retaining few

constant state variables, and, hence, require minimal additional memory in the BS.

Handofi Packet control requires very small additional operations during handoffs in

terms of additional memory requirements or message exchanges, and should not

adversely affect handoffs.

3.2 Performance

We implemented the packet control algorithms in ns-2.26 (ns-2.lbl0 for old version

number) simulator on RedHat Linux 9. Simulations are conducted to investigate the

performance of the packet control algorithms comparing to TCP Reno. We used TCP

Reno rather than other version of TCP because TCP Reno has complete congestion

control algorithms and it is the most widely deployed version of TCP.

3.2.1 Implementation of TCP with Packet Control

The implementation followed closely the algorithms design described earlier. Figure 10

illustrates the logic flow of the ACK filter. The variable numOflastDupAck indicates the

number of duplicate ACKs that have been received for the last received wireless ACK. It

is updated when a new ACK is received. It is then used, along with the user-defined

duplicate ACK threshold (rede$ne3DupAck), to determine whether an ACK should be

sent or dropped. The next duplicate ACK to be sent (nextDupAckToSend) is calculated as:

numOflastDupAck - 1
numOpupAckSent = / redefined 3 DupAck \

The variable numOpupAckSent is the number of duplicate ACKs that should be sent,

triggered by the previous duplicate ACKs received. This ensures that duplicate ACKs

will be evenly sent to the sender according to the user-defined duplicate ACK threshold

in the BS.

Calculate next duplicated ACK
to send (nextDupAckToSenc) w

Forward ACK

Figure 10 Packet control: ACK filter.

Figure 11 illustrates the logic flow of data filter. The variable 1stRetransWiredDataPkt

stores the segment numbers of retransmitted segments from the FH. A retransmitted

segment is defined as a segment with the sequence number smaller or equal to the largest

ACK number that has already been sent to the FH. These retransmitted segments are

dropped. The number of retransmissions for each retransmitted segment (m - iNumOJRtm)

is kept in the list for each segment. An ACK for a segment is generated and sent to the

FH for every second retransmission of the same segment. This handles the rare situations

when an ACK is lost along the path from the BS to the FH.

Insert into IstRetransWiredDataPkt
F : rr-iNumOtRtm = 1 rr-iNumOtRtm = rr-iNumOtRtm t 1

Drop segment I.

Generate a new ACK with ACK number = seqna
Forward ACK to FH

I Exil -

Figure 11 Packet control: data filter.

3.2.2 Performance of TCP with Packet Control

The simulated network is illustrated as shown in Figure 12. (For implementation

purpose, the network setup used for ns-2 simulations consists of one additional node. It

has been omitted here for simplicity.) The simulated network reflects our network

architecture. A wired link connects the FH to the BS, while a wireless link connects the

BS and the MH.

1 Mbps ~ . ~

-.......
~

FH BS
- -250Kbps 0

MH

Figure 12 Simulated network setup.

3.2.2.1 Scenario I: Link Delay Variation with Small Delay

This scenario is used to investigate TCP's reaction to link delay variations. For 20 sec,

FTP (with TCP Reno) data are being sent fiom the FH to the MH in TCP packets of

1,040 bytes (default in ns-2). Link capacity between FH and BS is 1 Mbps, with 5 msec

of delay. Link capacity between BS to MH is 250 kbps, with 170 msec of variable delay.

Link delay variation is introduced at 0.5 sec. Links employ DropTail queues.

The simulation results show improvement in TCP performance. The number of cwnd

reductions vs. time is shown in Figure 13. Due to the spurious fast retransmit caused by

link delay variation, TCP without packet control has the largest number of cwnd

reductions. It also implies the largest number of fast retransmits. TCP with packet control

and the user-defined duplicate ACK threshold set to 12 has the smallest number of cwnd

reductions. The larger the duplicate ACK threshold, the more duplicate ACKs will be

dropped and fewer fast retransmits will be performed by TCP. These fast retransmits are

spurious and reducing them results in higher TCP performance.

Graph with no packet control and graph with user-defined duplicate ACK threshold of

three overlap, validating the implementation of the filters. Since TCP sender also has the

threshold of three, no duplicate ACKs are dropped and the two cases coincide.

Time (sec)

Figure 13 Link delay variation: number of cwnd reductions.

Variations of cwnd are shown in Figure 14. Since larger duplicate ACK threshold in

packet control results in fewer spurious fast retransmits, cwnd remains large. Cwnd is

directly related to TCP's throughput. TCP's performance may also be examined by

observing the goodput shown in Figure 15. With an appropriate user-defined duplicate

ACK threshold, TCP with packet control successfully reduces the number of spurious

fast retransmits. It may improve TCP goodput by -1 00%.

10 12 14 16 18
Time (sec)

Figure 14 Link delay variation: cwnd.

PC: threshold = 6
PC: threshold = 9 .-- _ _

PC: Packet Control
1 1 I I I I I I I

2 4 6 8 10 12 14 16 18 20
Time (sec)

Figure 15 Link delay variation: goodput.

3.2.2.2 Scenario 11: Link Delay Variation with Small Delay and Link Errors

Even though link error is not the problem our algorithms are targeting to solve, it would

still be interesting to see how packet control reacts to it. Based on the experiments in

Scenario I, we conducted another set of similar experiments to investigate the case with

1% bidirectional packet loss in the wireless link. (We are interested in 1% packet loss

because that link layer retransmission protocols, such as RLP and RLC, used in Third

Generation (3G) cellular networks ensure packet loss probability of less than 1% [15].)

TCP goodput is shown in Figure 16. With user-defined duplicate ACK threshold of 9,

TCP with packet control achieves -30% improvement.

- Without PC
PC: threshold = 3

PC: Packet Control
I I 1 I 1 I I I I

I 2 4 6 8 10 12 14 16 18 20
Time (sec)

Figure 16 Link delay variation (1% segment loss): goodput.

3.2.2.3 Scenario III: Spurious Timeout

We also investigate TCP's reaction to sudden large delay increase. It has similar settings

as in Scenario I. Instead of introducing variable delays at wireless link, a delay of 6 sec is

introduced at time instance equal to 5 sec.

3 5

The reaction of TCP without packet control to the long sudden delay is shown in Figure 7

and Figure 8. They clearly show the adverse effect of spurious timeout and the spurious

fast retransmit caused by the unnecessary retransmissions. Identical simulation scenario,

with packet control enabled, is used to generate the results shown in Figure 17. They

illustrate that TCP recovers faster (indicated by the third arrow) than in the case shown in

Figure 8. Finer versions of both scenario results (from 10 sec to 13.5 sec) are shown in

Figure 18 and Figure 19. As shown in Figure 18, the gap where TCP receives duplicate

ACKs and the gap where TCP cannot send new data due to deflation of cwnd are much

smaller than gaps shown in Figure 19.

p q
seqno

cwnd -
cwnd

Time (sec)

Figure 17 TCP with packet control: spurious timeout.

Figure 18

Time (sec)

TCP with packet control: spurious fast retransmit caused by spurious timeout.

I 10.5 11 11.5 12 12.5 13 13.5
Time (sec)

Figure 19 TCP Reno: spurious fast retransmit caused by spurious timeout.

A comparison of TCP goodput is shown in Figure 20. The dotted line in the graph

represents the scenario with packet control. It is evident that TCP with packet control

outperforms TCP Reno. We did not try to find the exact percentage of the improvement,

since this simulation is only one incidence of a long delay. The improvement is highly

dependent on the path characteristics. Frequent long delays during each TCP connection

would result in higher improvement. Also, even though it is not shown in our

simulations, we should also count the wireless link bandwidth saved by eliminating

unnecessary retransmissions.

Figure 20 TCP with packet control: goodput.

3.2.3 Delay Generator

We do not have wireless testing environment to run real experiments nor do we have real

wireless network traces to use. Hence, wireless link delays in ns-2 simulations are

generated by a delay generator. We implemented two types of delays: short delay

variations and relatively long sudden delays.

Short delay variations are generated based on the measurements of packet delays in

wireless data networks [20]. The configuration for TCP performance measurement is

based on CDMA lxRTT network architecture. A mobile host in a wireless network was

connected to a host computer in a wired Local Area Network (LAN) through a single BS.

During the entire experiment, the mobile host was connected to the same BS. The "ping"

application was generated by the Internet Control Message Protocol (ICMP) ECHO. In

one scenario named "Ping Wireless Mobile Terminal", ping packets were sent from the

host computer in the LAN to the mobile terminal moving at pedestrian speed. "Figure 3"

[20] provided the Cumulative Distribution Function (CDF) for packet delay (or RTT) for

this scenario.

Based on this figure, we derived delay values used in simulations, as shown in Table 1.

Each case is simulated with a uniform distribution generated by the ns-2 random

generator. The delays are in agreement with results reported in [8], varying from 179

msec to 1 sec in a 3G1X system. The wireline link delay was kept constant at 5 msec.

A long delay was generated by a timer. The only criterion was to have a delay long

enough to generate a timeout in TCP. The one-way wireless link delay was kept constant

Table 1 Wireless delay for mobile terminals.

Percentage
(%I
80

10

8

2

Wireline RTT
(ms)

10

10

10

10

Total RTT
(ms)

316-400

400 - 460

460 - 605

605 - 1,252

Wireless RTT
(ms)

306 - 390

390 - 450

450 - 595

595 - 1,242

Wireless Link Delay
(ms)

153 - 195

195 - 225

225 - 297

297 - 621

at 170 msec. This value is close to the -300 msec average RTT reported in [20]. The

sudden increase of delay was simulated for 6 sec, which was sufficiently long to cause a

regular TCP timeout with at least one exponential back-off.

3.2.4 NS-2 Implementation

Network simulator ns-2 is a discrete event simulator developed for networking research.

It provides substantial support for simulation of TCP, routing, and multicast protocols

over wired and wireless (local and satellite) networks [21]. The simulator is written in

C++ because of its rich computer programming capability, object oriented programming

model, and the speed. It uses Object Tool Command Language (OTcl) to script the

simulation scenario setups and perform result analysis. OTcl is an extension to TclITk

for object-oriented programming. It was chosen for its simplicity and flexibility.

One can modify or extend the existing ns-2 models in C++ to fit various simulation

needs. An ns-2 simulation typically involves node creation and configuration, packet

forwarding, link creation, queue management, error model, network setup, and trace

collection. A typical structure of a unicast node is as shown in Figure 21. Two

classifiers (address and port classifier) distribute incoming packets to the correct agent or

outgoing link [2 11.

-.-.-.-.-.-.-.-.-.
[NODE port

Classifler

Figure 21 Structure of a unicast node [21].

The packet control (for historical reasons, we used "ACK Control" in the code to mean

"packet control") algorithms are mostly implemented in the link layer of a BS. The ns-2

link layer implementation (class LL) was extended by defining and exporting variables,

such as enableAckContro1- and RedeJine3DupAck - . It overwrites the recvo function to

implement various aspects of the packet control algorithms.

* Packet Control for Wireless TCP implemented as a link layer solution
with TCP awareness.
*/
class LLWz : public LL
{

int enableAckContro1-; I/ 0 - enable the packet control, 1 - disable
int m - iRedefine3DupAck; //in seconds.

//overwrite recv(. .).
virtual void recv(Packet* p, Handler* h);

1;

//export properties to OTcl, so that user can change these
// properties through OTcl in their simulation scripts.
bind("enableAckControl_", &enableAckControl_);
bind("Redefine3DupAck - ", &m - iRedefine3DupAck);

In the OTcl simulation script, this allows using the new link layer in BS node, enabling

packet control, and set user-defined duplicate ACK thresholds. The following example

enables packet control in BS node with user-defined duplicate ACK threshold equal to 8:

Use Packet Control Link Layer on BS ($node(O) in our network setup)
$lan addNode [list $node(O)] $opt(bw) $opt(delay) LLILLWz $opt(ifq)
$opt(mac)

get LL object of BS
set nif [$lan set lanIface-($node(O))] ;#get network interface object.
set llBS [$nif set 11 J

configure Packet Control
$11BS set enableAckContro1 1 //enables packet control
$llBS set ~ e d e f i n e 3 ~ u ~ ~ c k 8 Nset user defined dup ACK to 8
$node(O) label "no <AC [$ll& set enableAckContro1 J>"

In the similar way, we extended delay model in ns-2 to be able to generate long delay and

delay variations:

class LinkDelay : public Connector {

// define the delay modes.
enurn LinkDelay-DelayMode
{

LD-DelayMode Constant = 0, //constant delay.
LD - ~ela~~ode- and om - //variable delay.

1;

double m-dWirelessDownTime;
double m - dWirelessDownDuration;

int delayMode-; //delay mode.
1

// export properties to OTcl.
bind("de1ayMode-", &delayModeJ;
bind("Wire1essDownTime ", &m dWirelessDownTime);
bind("~ire1ess~ownDura~on - ", &m - dWirelessDownDuration);

Once the above properties are implemented and exported to OTcl, we then can configure

the wireless link delays in simulation scripts. Example 1 starts a delay at 5 sec after

simulation lasts 6 sec. Example 2 shows a part of the code that enables the variable delay

in our performance evaluation Scenario I.

Example 1 : --------
DelayLink set delayMode- 0; #O - constant, 1 - LD-DelayMode-Random
DelayLink set WirelessDownTime- 5.0;
DelayLink set WirelessDownDuration 6.0;
$d label "d <delay [DelayLink set de l ay~ode _I>"
set lanDest [$ns make-lan $nodelistDestLan $opt(bw) \

$opt(delay) $opt(ll) $opt(i fq) $opt(mac) $opt(chan)]

Example 2:

DelayLink set delayMode- 1 ; #O - constant, 1 - LD-DelayMode - Random

#the data in this delay is from K. Luo and A. 0. Fapojuwo paper.
proc changeDelay {) {

global d node delaypercent delay1 delay2 delay3 delay4

set ns [Simulator instance]
set now [$ns now]

set whichDelay [$delaypercent value]
if ($whichDelay<80) then {

set new-delay [$delay1 value]
) elseif ($whichDelay<90) then {

set new-delay [$delay2 value]
) elseif ($whichDelay<98) then {

set new-delay [$delay3 value]
) else {

set new - delay [$delay4 value]
1

$ns delay $d $node(l) $new-delay duplex ;#duplex ;#simplex
set time 0.0005;
$ns at [expr $now+$time] "changeDelayW

1

3.2.5 Performance Comparison

In our simulation, we compared the performance of TCP with packet control with TCP

Reno. Due to the lack of time, we have not performed comparisons with other proposed

algorithms. This comparison would be certainly useful. Eifel algorithm is the only

known solution proposed specifically to improve TCP performance in wireless networks

with respect to long sudden delay and delay variation. Hence, it is necessary to compare

performance of packet control and Eifel algorithms. Despite the drawbacks of Eifel

algorithm that we discussed earlier, in terms of performance only, Eifel algorithm would

still outperform TCP with packet control because the best packet control can do is to

prevent spurious fast retransmit caused by spurious timeout. In contrast, Eifel algorithm

not only tries to do this, but also tries to reverse the adverse effects of spurious timeout

already performed (TCP sender's cwnd and ssthresh). However, packet control would

perform better in wireless bandwidth savings and avoiding network congestion.

Furthermore, Eifel algorithm is an end-to-end solution, while packet control is a TCP

aware link layer solution.

CHAPTER FOUR:
CONCLUSIONS

In this research, we first studied various issues and related work dealing with TCP in

wireless networks. We then proposed packet control filters to improve TCP performance

in wireless networks with delay variations and long sudden delays. TCP connections

were simulated in a mixed wireline and wireless network using the ns-2 simulator. The

simulation results show that the proposed algorithms reduce spurious fast retransmit and

spurious timeouts in TCP. They improve TCP's response time, goodput, and bandwidth

consumption. Goodput of TCP Reno is improved by -100% in networks with delay

variations and by -30% in networks with 1% packet losses in the wireless link. In cases

of long sudden delays, TCP performance is also improved, depending on the path

characteristics.

Even though our algorithms may be further enhanced, we showed that packet control

filters can be conveniently deployed at the intermediate routers to control the

transmission of TCP segments and ACKs.

CHAPTER FIVE:
FUTURE WORK

Future improvements of the proposed algorithms may include:

Existing algorithm improvement: Even though we have illustrated the effectiveness of our

algorithms, these algorithms could be further improved.

Delay generator: Further analysis of delay generators is required for simulations. More

accurate delay generator or genuine wireless traces should be used for the analysis and

performance evaluation.

Multi-connections: Multi-connection simulation scenarios could be considered.

ACK compression: Algorithms to deal with ACK compression caused by wireless

network delays should also be considered. T h ~ s is especially important when considering

possible congestion in a presence of multiple connections. The ACKs are accumulated

during long delay. When link recovers, TCP senders generate bursty traffic that triggers

network congestion, especially at the wireless edge note (BS).

If long delays could be detected, BS can then control the rate ACKs are forwarded to the

sender. The idea is to smooth out the burstiness of TCP transmission by controlling the

ACK rate [17]. There are two related issues: how to detect long delays and how to

determine the proper rate. It will be very useful to consult the work that has been done in

end-to-end solutions for TCP rate control [7], [24], [30].

End-to-End solution consideration: Even though this has the least priority on this list, it

will be interesting to consider the possibility of the end-to-end approach based on the

knowledge in the BS. Changes could be made in the TCP sender to convey sender

information to a BS. The BS can then generate events (packets) to control TCP sender

with both sender information and information at the BS.

REFERENCE LIST

[I] A. Aaron and S. Tsao, "Techniques to improve TCP over wireless links," Final
Report, EE 359, Stanford University, December 2000.

[2] M. Allman, V. Paxson, and W. Stevens, "TCP congestion control," IETF RFC 2581,
April 1999.

[3] A. Bakre and B. R. Badrinath, "I-TCP: indirect TCP for mobile hosts," in Proc. 15th
International Conference on Distributed Computing Systems (ICDCS), Vancouver,
BC, May 1995, pp. 136-143.

[4] H. Balakrishan, S. Seshan, E. Arnir, and R. H. Katz, "Improving TCPIIP
performance over wireless networks," in Proc. ACM MobiCom, Berkeley, CA,
November 1995, pp. 2-1 1.

[5] J. Border, M. Kojo, J. Griner, G. Montenegro, and 2. Shelby "Performance
enhancing proxies," Internet Draft [Online]. Available: http://community.
roxen.com/developers/idocs/drafts/drafi-ietf-pilc-pep-04.html.

[6] K. Brown and S. Singh, "M-TCP: TCP for mobile cellular networks," ACM
SIGCOMM Computer Communication Review, vol. 27, no. 5, pp. 1942 , October
1997.

[7] C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi, and R. Wang, "TCP Westwood:
end-to-end congestion control for wiredlwireless networks," Wireless Networks
(WINET), vol. 8, no. 5, pp. 467479, September 2002.

[8] M. C. Chan and R. Ramjee, "TCP/IP performance over 3G wireless links with rate
and delay variation," in Proc. ACM MobiCom, Atlanta, GA, September 2002, pp.
71-82.

[9] D. Chandra, R. Harris, and N. Shenoy, "TCP performance for future IP-based
wireless networks," 3rd IASTED International Conference on Wireless and Optical
Communications (WOC2003), Banff, Canada, July 2003.

[lo] H. Elaarag, "Improving TCP performance over mobile networks," Journal of ACM
Computing Surveys, vol. 34, no. 3, pp.357-374, September 2002.

[l l] S. Floyd and T. Henderson, "The NewReno modification to TCP's fast recovery
algorithm," IETF RFC 2582, April 1999.

[12] S. Floyd, "A report on recent developments in TCP congestion control," IEEE
Communications Magazine, vol. 39, no. 4, pp. 84-90, April 2001.

[13] S. Fu, M. Atiquzzaman, and W. Ivancic, "Effect of delay spike on SCTP, TCP Reno,
and Eifel in a wireless mobile environment," in Proc. International Conference on
Computer Communications and Networks, Miami, FL, October 2002, pp. 575-578.

[14] A. Gurtov, "Effect of delays on TCP performance," in Proc. IFIP Personal Wireless
Communications (PWC'Ol), Lappeenranta, Finland, August 2001.

[15] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, and F. Khafizov, "TCP over
second (2.5G) and third (3G) generation wireless networks," IETF RFC 3481,
February 2003.

[16]V. Jacobson, "Congestion avoidance and control," in Proc. ACM SIGCOMM,
Stanford, CA, August 1988, pp. 3 14329.

[17] S. Karandikar, S. Kalyanaraman, P. Bagal, and B. Packer, "TCP Rate Control," ACM
SIGCOMM Computer Communication Review, vol. 30, no. 1, pp. 45-58, January
2000.

[18] P. Karn and C. Partridge, "Improving round-trip time estimates in reliable transport
protocol," ACM Transactions on Computer Systems, vol. 9, no. 4, pp. 364373,
November 1 99 1.

[19]R. Ludwig and R. H. Katz, "The Eifel algorithm: making TCP robust against
spurious retransmission," ACM Computer Communications Review, vol. 30, no. 1,
pp. 30-36, January 2000.

[20]K. Luo and A. 0. Fapojuwo, "Impact of terminal mobility on TCP congestion
control performance," in Proc. 3rd LASTED International Conference on Wireless
and Optical Communications, Banff, Canada, July 2003, pp. 360-365.

[2 1] ns-2 [Online]. Available: http://www.isi .edu/nsnam/ns.

[22] OPNET documentation V.8.O.B, OPNET Technologies Inc., Washington DC.

[23] R. Prasad and M. Ruggieri, Technology trends in wireless communications, Artech
House, Boston, MA, 2003.

[24] P. Sinha, N. Venlutaraman, R. Sivakurnar, and V. Bhargavan, "WTCP: a reliable
transport protocol for wireless wide-area networks," in Proc. ACM MobiCom,
Seattle, WA, August 1999, pp. 23 1-241.

[25] S. Singh, "Quality of service guarantees in mobile computing," Journal of Computer
Communications, vol. 19, no. 4, pp. 359-371, April 1996.

[26] W. Stevens, TCP/IP Illustrated, Volume I: The Protocols. Reading, MA: Addison-
Wesley, Professional Computing Series, 1984.

[27] I. Stojmenovic, Handbook of Wireless Networks and Mobile Computing. New York,
NY: John Wiley & Sons, 2002.

[28] Information Sciences Institute, "Transmission control protocol," IETF RFC 793,
September 198 1.

[29]V. Tsaoussidis and I. Matta, "Open issues on TCP for mobile computing," The
Journal of Wireless Communications and Mobile Computing, John Wiley & Sons,
vol. 2, no. 1, February 2002.

[30] K. Xu, Y. Tian, and N. Ansari, "TCP-Jersey for wireless IP communications," IEEE
Journal on Selected Areas in Communications, vol. 22, no. 4, pp. 747-756, May
2004.

[31] W. Zeng, H. Zhang, J. Liu, N. Cackov, S. Vujicic, B. Vujicic, V. Vukadinovic, and
Lj. Trajkovic, "Improvement of TCP over wireless links," The ASI Exchange,
Vancouver, BC, Canada, March 2003. (Poster)

[32] W. G. Zeng, M. Zhan, Z. Li, and Lj. Trajkovic, "Performance evaluation of M-TCP
over wireless links with periodic disconnections," OPNETWORK 2003, Washington,
DC, August 2003.

[33] W. G. Zeng and Lj. Trajkovic, "TCP packet control for wireless networks," IEEE
Int. Con$ on Wireless and Mobile Computing, Networking and Communications
(WiMob 2005), Montreal, Canada, August 2005, pp. 196-203.

