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ABSTRACT

The purpose of this paper is to review some of the
work done by Abraham Robinson in topological groups and
infinite Galois Theory using ultrapowers as our method
of obtaining non-standard models. Chapter One contains
the basic logical foundations needed for the study of
Non-Standard Analysis by the method of constructing
ultrapowers,

In Chapter Two, we look at non-standard models of
topological groups and give the characterizations of
some standard properties in non-standard terms. We also
investigate a non-standard property that has no direct
standard counterpart. In Chapter Three, we analyze an
infinite field extension of a given field F and arrive
at the correspondence between the subfields of our
infinite field that are extensions of F and the subgroups
of the corresponding Galois group through the Krull

topology by non-standard methods.
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INTRODUCTION

In 1961, Abraham Robinson pointed out that the
methods available in contemporary mathematical logic
were sufficient to construct a theory of analysis with
infinitely large and infinitely small numbers. The
resulting theory is termed Non-Standard Analysis. To
date, such topics as topology, real and complex analysis,
field theory and class field theory have been investiga-
ted by non-standard methods.

The purpose of this paper is to review some of the
work done by Abraham Robinson in topological groups and
infinite Galois Theory using ultrapowers as our method
of obtaining non-standard models. Chapter One contains
the basic logical foundations needed for the study of
Non-Standard Analysis by the method of constructing
ultrapowers.

In Chapter Two, we look at non-standard models of
topological groups and give the characterizations of
some standard properties in non-standard terms. We also
investigate a non-standard property that has no direct
standard counterpart. In Chapter Three, we analyze an
infinite field extension of a given field F— and arrive
at the correspondence between the subfields of our
infinite field extension that are extensions of F— and
the subgroups of the corresponding Galois group through

the Krull topology by non-standard methods.



We shall assume throughout the paper a basic know-
ledge of topology, group theory and finite Galois Theory.

The Axiom of Choice is tacitly assumed throughout the

paper as it is fundamental to the ultrapower construction.




CHAPTER I

FOUNDATIONS

The formal system in which we work consists on the
one hand of a formal language_é?-and on the other our
notions of satisfiability and truth in.&(. As we shall
be restricting ourselves to the € relation, we shall
incorporate into our language j?ra simple theory of ‘

types.

Definition 1
We begin with the number O.
i) 0 is a type.
ii) If T,.,T, are types, so is (T,...,T.).
Iet TF be the smallest set satisfying i and

1i. I is called the set of types.

We make the following natural correspondence be-
tween the objects connected with a non-empty set jg:and
T : the elements of X are of type O in X. If P-= {3.,...,\1.\,,.,}
is a collection of objects of type T in X, then ¥ is
of type (T) in X . If %,...Xn are objects of type T,..,Ta
in X respectively, then <X,..,X.> is of type (T .. T.)
in Eg. We shall only consider obJjects of a definite

type in j;.



Our formal languaga[%rshall consist of the follow-
ing symbols:
i) , { ) == =11<> (read comma, parentheses,
negation, implication, equality, set brackets,

pointed brackets)

i1) X Xy ee- (individual variables)
iii) a.a.... (individual constants)
iv) € (epsilon relation)

v) (W) (universal quantifier)
vi) for each TéTf, the symbol TE;( )

(type predicate)

The number of constants in our language.A?-shall
vary with respect to any particular theory we wish to
study within AT. The number of constants shall be large
enough to put into one-to-one correspondencelwith any
desired ultrapower of a model of the theory. This will
be made precise once ultrapowers are defined.

We shall call any finite sequence of symbols an
expression. We do not wish to consider all possible
expressions but Jjust those expressions which are formed
in a regular manner. To this end, we make the following

definitions.

Definition 2

Individual variables and individual constants

are terms. If ¥,..Tn are terms, so is <%,..;%>.



There are no other terms.

Definition 3
i) If . and T, are terms, then t€+ is an
atomic formula.
ii) If t, and T+, are terms, then k=% is an
atomic formula.
iii) If + is a term, then for any oell, jr&(+)
is an atomic formula.

There are no other atomic formulas.

The group of expressions we wish to consider is

embodied in the following definition.

Definition 4
i) 1f @ is an atomic formula, then (I is a
well-formed-formula (WFF).
ii) If Q and B are WFF's, so are {("Q),
@=>a8), and ((¥Vx)@) for any individual
variable X,

There are no other WFF!s.

We shall adopt the standard convention for the
omission of parentheses (see [5]). In a WFF (2, the
occurrence of a variable X is bound iff it is either

the variable of the quantifier (Vx) in the WFF ( or is



under the scope of the quantifier ({x) in the WFF (I,
whereby scope we mean that the WFF @B is the scope of

(V) in ((Wx)@B). Otherwise x 1is said to be free.

Definition 5
A WFF in_A?-is said to be a sentence iff every

variable in the WFF i1s bound.

Definition 6
A mathematical structure jjl[%f is a non-empty
set A called the domain together with an
assignment to each individual constant®in jkr
an object of finite type in A . We denote the

structure by C].

We are now in a position to discuss whether a WFF Q
in our language A?-is satisfiable or true in a given
mathematical structure Cl. To this end, let E:([\) be
the collection of denumerable sequences of objects of
arbitary finite type in A , the domain of @\. Let A' be
the collection of objects of arbitrary finite type in [\.
Let T‘ be the set of terms of X . Let 8=(%,9,-- )e LL(A).
Define QT—-'»A' dependent on S byzs

1) if + is %, S(H) =3

ii) if ¥+ is an individual constant, let 3(+) be that

i
member of A assigned tot .



.

Definition 7

i) if an atomic formula is of the form he+, ,
then s€ 2. (A) satisfies te f, iff §(+.)€§(1;);
ii) if an atomic formula is of the form =1,
then se SJ( A) satisfies h=t iff §(4)= 8 (h);

iii) if an atomic formula is of the form FI;(+).
then s€3 (A) satisfies To_(+) iff §(+) is of
type @ in A;

iv) for any WFF @ in &7, se S:(A) satisfies
“Q iff s does not satisfy @ ;

v) for any WFF's (R and @B in &, se 2(A)
satisfies (=@ iff § satisfies @B or s does
not satisfy ®;

vi) for any WFF Q in &, se S (A) satisfies
(Vx, ) @ iff for each sequence §' in Y (A)
differing from 8 in at most the (™ place, §

satisfies & .

Definition 8

A WFF is true in a mathematical structure Ol
iff every sequence in ».(A) satisfies it. A
WFF is false in a mathematical structure C\

iff no sequence in Y.( A) satisfies it.

Definition 9

A mathematical structure is a model of a set




of WFF's | iff every WFF in 1 is true in the

given structure,

Our interest lies in various models of a mathemati-
cal theory. A mathematical theory consists of the formal
1anguage_é?—together with a schema of logical axioms,
axioms for our type theory, and any other axioms that
are particular to the theory in question, e.g., group
theory, field theory, etc, For all theories, we adopt
the usual rules of inference and the standard definitions

of proof in a theory.

Definition 10
A model of a theory'PIqis a mathematical struc-

ture in which all axioms of Frﬁare true.

Definition 11
A WFF @ in A is valid in a theory 1 iff5

is true in all models ofro.

We have seen that every model of a mathematical
theory'FIﬂis a mathematical structure. Now given aﬁy
mathematical structure O, O\ is a model of the theory
'123 whose axioms are just those statements which are true
in & . Hence se‘may freely interchange the terms model

and mathematical structure as they are, in the above sense,




equivalent.

We know that we may define abstract mathematical
relations in terms of the € relation alone’ Often our
interests lie in investigating some of these relations
within a given mathematical structure. Hence we may
designate certain of the assigned constants in our struc-
ture as relations. Using the axiom of choice, we can
well-order them in some manner, placing them in one-to-one
correspondence with all of the ordinals less than some
initial ordinal, say f. So we may now write our structure
Ot as O+CAR,.. R,..) for all «<¢. We call § the order of
A,

Given two structures (G:{AR,..R,,...) and
fB'(B,S.,...,S,,...) , we call O and B similar iff they have
the same order, p, and for all ¥4, Ky and S, are of the
same type. >t is an extension ofﬁgg iff they are similar
and A2 R and for R, a relation of type o in A, if Ry
is restricted to the objects of type o in B, dencted :&LB,
we have -P,I_B-J st .

Now given a mathematical structure, we are interested
in constructing non-standard models of the structure. A
non-standard model of a structure is a generalized model--
a model of the theory of the structure in which quanti-
fication is interpreted as limited to a particular sub-
collection of the objects of finite type, known as

internal objects, such that the objects of any finite
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type in_the original structure are members of the col-

lection of internal objects, and such that any mathema-
tical notion definable. in the original structure is
defined in the new model and that any mathematical state-
ment true in the original structure is true in the new
model with the quantification restricted to the internal
objects only. There are various methods for obtaining
non-standard models. The method we shall use is the
ultrapower construction., We shall identify precisely
those objects which are selected to be internal and give
a relatively simple counterexample to show why all of
the objects of finite type in a particular non-standard
model can not be considered as internal,

For our construction, we need the purely set

theoretic notion of a filter.

Definition 12
Let 1 be a non-empty set. A filter /A on _L
is a non-empty set of subsets of ¥ satisfying
the following condit ions:
i) gf¢ D
11) ADe N and T2L22A implies Lhe A
i1i) A, and A, in A implies ANA,eA.

Theorem 1

Given any filter é& cnlt[ , there exists a




"

maximal filter L® on L that contains A .

Such maximal filters are called ultrafilters.

Proof:
The proof is a straight forward application of
Zorn's Lemma to the collection of all filters
on ]: that contain l} and is left to the reader.
O
Perhaps one of the most useful of all theorems on

ultrafilters is the following:

Theorem 2
Let A\ be any ultrafilter on L . Then for any
AsT, either AeDor CA=filicTavi¢A{e A .

Proof:

Let ASXL and suppose A¢ A. Then A# L and
furthermore no subset of A is in A due to
the closure under supersets. Hence any Be A
is such that BNUCA+ & . so let A be that
collection of subsets of 1 that are supersets
of sets of the form BNLA for each Be A .
Straight forward checking shows that A is a
filter on L ., Clearly A contains each Re A,

hence A2A ., But A is maximal, hence A2 A .,
Thus CDEA,
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Definition 13
An ultrafilter is called principal iff it
consists of all supersets of [ui , for some
€], Otherwise the ultrafilter is called

non-principal.

Now let {ﬁ)ﬁiéIf be a non-empty family of similar

structures, say Oh=<AR....R..>. Let A\ be a filter on I .

Definition 14
The reduced direct product of the family of
mathematical structures {CﬁaheTE§ relative to
A is

‘ZUIO\-./A= <§gA;/A R, Ry D

where the domain is the set of equivalence
classes -F/A wnere ¥ is a function on I with
foe A-‘ and where the equivalence relation is EA
defined by -P=_(A3 iff YL\(-'G):gmfeA . We say
that K= HPJ/A is of type o in EA;/A iff
{Q'Ei_is of type 7 in A;gééﬁ(whereby ;y@ﬁ@uﬁ“zzg
we mean <m‘/b"" ,‘i\;r\"t.\‘/ﬂ?). We define I{TT;/A G.ITT'\;'/A
iff (il wet {en .
If A is an ultrafilter, we call the reduced
direct product an ultraproduct. If, in addition,
Ch:=@ for each (¢l , we call ;\:EG%:@}A an

ultrapower,
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It is straight forward to show that GAY &2’ ir
A is principal or if 1 1is finite or if Ol is finite.
However, if I and O are at least countably infinite
and if A is non-principal, then GII/A has cardinality

R°. For further details, see [11].

at least 2
In any case, there is a natural embedding of A\ in
@I/A , namely for acA, let @@ denote the equivalence
class to which the function ¥ on T with fw=a, ror
all ie L , belongs. By a standard point in (ﬂt/&=*@1 , we
mean the point @@)for some deA. We generally denote the
standard element @@\ in *@\ by a and} arbitrary elements
of *@l (standard or not) by *& . For any element "¢ *A=AZ,
*3 is the equivalence class of some functions d:IT—sA,
and we may often represent )it by *a = (ot(é)},;g_/& for some
representative function «, Similar comments hold for
standard objects and arbitrary objects of arbitrary
finite type in ¥@ . We note in particular that for {S.;\ze'[f
a family of sets of type (o) in A, we can embed in *o
the ultraproduct of the family of sets,gga/& , as the

set of *s such that “s= (suﬂm:/A , where SweS; for each (¢l .

Definition 15°
A set*B of objects of type @ in O\% is
internal iff there exists a family {S;\celf

"
of sets of type (¢) in A such ‘c,ha.‘c,kB='ﬂSa/A .
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We now state the fundamental theorem of ultrapro-
ducts due originally to ¥os. As a notational convenience,

for a WFF @ in & we write Ok G iff Q is true in Q.

Theorem 3
Let {Cﬂ;léeﬁfg be a non-empty collection of
similar mathematical structures, and let 4\
be an ultrafilter on I . Let *s«(*s,...) Dbe any
denumerable sequence of objects?of arbitrary
finite type LQTJ;ASQ . Then for ((*s) a WFF
in 1}-6%22,

TIO FAmirr fil ok F Qlsm,si, .. D] ea

iex
3

for ’ﬁj = (Sj(i“;ér/ﬁ .

Proof:

The proof is by induction on the length of "
and is similar to that given in [11] with the
following additions:'®
Case 1:

Suppose (! is of the form +et,.

e irr (1 f € (kg

irr kltwetw{eA by definition 14,

Case 2:

Suppose (! is of the form %= +.

Then again by definition 14 we see that

=" irr filtw= fwfeas.
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Case 3:
Suppose ({ is of the form PH:A+).

—y

Then Ll (%) iff * is of type o in TTAy
iff ?L\'H‘c\ 'S OF TVPE T IN AgfeA
irr §i| T (@) nreoe mhife A
0
It can now be seen that if X and I are at least
countably infinite and if A is a non-principal ultra-
filter on 1 , then <fﬂ§£ is a non-standard model of Ol.
There are, in general, many types of non-standard models
of a given structure Cl. We wish to consider those that

have desirable properties., One of these properties deals

with the notion of concurrency.

Definition 16
Let O be a mathematical structure,‘ﬁysa binary
relation of certain type in Q. & is in the
domain of F@ iff there exists an object b in O\
such that <a,b>€Rs. We say that Ks is con-
current in Of (or finitely satisfiable in O})
if for each finite set of objects &,..,d.1in the
domain of ?&, there exists a b in O\ such that
<a.,b> €W, ... <aabreR,
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Definition 17
A non-standard mode].ﬁ)(of a structure QA is
an enlargement of QO ifr for every concurrent
relation PP in (31, there exists an object *b in
*o1 such that <ab>€R, in ¥ for all standard

objects & in the domain of Re in *O1.

One can naturally ask when ultrapowers are enlarge-
ments. To that end, we introduce the notion of an ultra-
filter on a set ]: being adequate, The original definition
appears in [1], but we shall use a slightly more general

definition as put forth by W. A. J. Luxemburg.

Definition 18
Let K be an infinite cardinal. A filter A on
T is called K-adequate iff for every family
B of subsets of £ with the finite intersec-
tion property, there is a mapping Q:I}—»m such
that the filter generated by all supersets of

sets of the form -p(A\ , for each Ae A, containc
6 .

It can be shown that if.]: has cardinality greater
than or equal to ZK, then K-adequate ultrafilters exist
on L for some prechosen cardinal K (see [1] or [2]).

The following theorem gives a sufficient condition for
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an ultrapower to be an enlargement.

Theorem 4
If A is a non-principal ultrafilter on L
which is K -adequate for K> card(A') where A
is the set of all objects of all finite types

in X, then O!I/A is an enlargement of .

Proof:
Let ?F be any concurrent relation in Q. Then
for each @ in the domain of Ka, let ‘—;=fbl<a.b>c?,f.
Thus the family F= {!—1 ‘ A N THe DOMAIS o;:"\?pf
is a non-empty set of non-empty sets which have
the finite intersection property as ?ﬁ is con-
current. Hence, /A being K-adequate for
K > card(A'), it follows that there exists a
map £:I-—> A such that for every A in the
domain of P,, there exists a subset A,eA such
that Q)€ Fa . That is, for every & in the
domain of Rs we have {i|<afw> eRf2A e .
Therefore the object *= (Q(U\ze:/b is such
that <&,T><¢R, in - O‘tT/A for all standard
objects & in the domain of P,o in *bf as seen

from theorem 3, That is, *Of is an enlargement

ofOl.
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We have mentioned that we can not make all objects
of arbitrary finite type in*A; internal, To see this,
let C% be the structure consisting of the domain A the
set of positive natural numbers, along with the usual re-
lations of order, addition and subtraction. Let t[ be
any infinite index set, and A any non-principal ultra-
filter ond-. Then ﬁl= Aez& is the set of positive
natural numbers, both finite and "infinite'"-- that is,
for any *fE*A— A, *>a for all standard &€ A [for
%2 (ftt)\cet/A , either {L‘ fw>af or {a\gmsa{ is in A
for any ae€A, But f\.l ?msa@eA implies {L!?tt)=b§ea for
some b <&Win A due to the nature of ultrafilters and
that there are only finitely many elements less than any
fixed &eA, That is,“fd*A-A . If, for each acA we
have that J¢|§W>a{ €A, then¥>& for all standard acA?
That is, *§ € *M-A o]

The following statement is true in G : every non-empty
subset of A has a least element., In *Cﬁ it reads: every
non-empty internal subset of *ﬂ\ has a least element.

Now if we allow all objects of arbitrary finite type in
*A as internal, then 4k-A—A is internal. Hence it has a
least element, ®§=(pudier )\ say. Then (*)-1= (§00-Dicxy
is less than *f, hence (*f) -1 is in A, But then ey -4

is standard, so (*Pp-1+L =* is standard also as A has

no maximal element, Thus ’3’6 A and "'j’G*A-A s & contra-

diction. So we can not allow all objects of arbitrary
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finite type in*A tlo be internal,

Now consider the language [ If we wish to study
a theoryT that has a standard model whose set of arbi-
trary finite type has cardinality &, then we shall
require ]J to have a((?d constants so that we may construct
within Xany adequate ultrapower of‘T that is desired.
This may, in general, be many more constants than we need,

but it assures us of being able to construct within z(

both standard and non-standard models of T
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CHAPTER IT

TOPOLOGICAL GROUPS

Definition 19
Thé Y-tuple (G,*, ', ZT) is a topological
group iff
1) (G,*, ") forms a group
ii) T is a topology on*
iii) "k g—G is a continuous function
with respect to the topology T on GQ
iv) «: GxQ — G is a continuous function

on GXG with the product topology on G\*G

Let (G,*, ™', T) be a topological group. We would
1ike to analyze (G,*, ~',C) using non-standard methods.
Hence, it will prove beneficial to see what kind of
topology € induces on GI/A (which shall henceforth
be written 1*G ), for L an infinite set, &\ a non-prin-
cipal ultrafilter on T which may be assumed to be
adequate for a fixed infinite cardinal G if necessary.
We shall always indicate when such an assumption is

needed.

Lemma 1
2 =LTI T, | T €T or cncn e T

forms a base for a topology on '*'G which we
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shall call the Quasi—t—tOpology (or Q-topology)

on *G . (The terminology is due essentially to

A. Robinson).

Proof':

A base for a topology on G is a collection T’
of subsets of G that satisfy:
i) deT, GeT'
1) T, LeT >TaleT.
The resulting topology consists of all possible
unions of sets in the base,
i) ¢€*'CQ as g€ C and &b = ngZ G*Z'Q.
*Q € *'ZQ as Ge C and thus *C-\=GZ e*Z’Q .
i1) Tet *T,* T, e *Tg. Then *T= TT T,/
and *'\_1" E—r;,¢/A for —]T.,; €C and T3, €T
for each (e l. Now *(T‘n‘\:_\ = }:(1':(‘(‘,“ (\‘r,_.i%
e"Z’Q as T,.; (\Tz,.- € 7 for each ¢ceX,

Thus *x= 6(().,‘4-1:/ € *(T.(\T-z_)

irr fel x;e'r.‘fm"i;,cf e

irf Jil xe T {alil ke ea
ifr fi} e T.,;{e& AND Yi)xce'ﬁ,ifeAl
iff *x € *TT anp *x e *T;

T N*T, . Hence 1'I'T;r\"*T,, € *'ZQ .

iff "x €
Therefore *ZQ is a base for a topology

on *G.
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Theorem 5

T I .
The group operations”on G are continuous

with respect to the Q-topology on *G .

Proof:
Let *a= <a-.).-e% , b= (b;\ce::/A , e = A
be elements of *G , such that *a="b"c. Let
*T_"T;%éﬁ be a neighborhood of *a&, for
T e *70% Then {i{|T: €T{=-Ten, lilaieT{ca
and {ilai=bic{eA. So J=[ilai=bieicTieTfeA.
Now for each ¢€ ¥, 1; is an open neigh-
borhood of &i=b:ki , so by the continuity of
multiplication in ( G,*, ~',T), there exist
open sets U; and V. in <€ such that b;e U,
c.e Vi and UVee .. For ie I-7J, let
U =V = G . Then
T = {i] aebee: €T 2UNL ano bieU €T amo £:VieTfea,
Hence, for *U'HU':/A’ = I}_"\f. /L
have by theorem 3 that *a="b"% € o MU
and *be *U e*TQ, € "\Te"”?:q and '*Te *TQ .
That is, multiplication in *C| is continuous
with respect to the Q-topology on *G .
The proof that the inverse operation in
*G is continuous with respect to the Q-topology
is similar to that of multiplication and 1is
left to the reader.

0
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Hence, when we wish to analyze a topological group
(G,*, ", T) by non-standard methods, we shall consider
(*G ,*, ~,*Z ) where *¥T 1is the Q-topology on ¥G ,

generated by the topological base *'CQ

Definition 20
Let *a€¥G . We define the Ti-monad of "a,
/uz("a) , by /uz(“a) - (\ETI/A lTe'Z and

*a, eTI/Ag .

Theorem 6

Let & be a standard point of ™G . Then

M a™') = (/u.c(a))—| .

Proof:

For any open neighborhood V of &', there
exists an open neighborhood U of @& such that
a'le U'eV . Thus *Va VI/A .D_/az(a.") and
*U’-UI/A is such that *U E/Lc(a,) , and

- : e ¥y- *
*U'e*V . merefore (w af c¥UT etV
As V was an arbltrary open neighborhood,
}“z (a\)ﬂ = (\{VI/'A lV I3 AN OPEN  NEIGHTORHOOD
o a."f =/U~7_.(a.") .

o . ~ny ! c -fy\=1 -
Similarly, fu, (&) € e (@) e (@),

hence /atca:') < /(LL‘(&))-' . Hence

o (AT =t @)

d
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Theorem 7

"Let &,b be any two standard points of *G .

Then /“’c (a.)/«z(b) -;/«C(ab) .

Proor':
Let "te tp(a) *d € #z(b) . We wish to show
that for any open neighborhood of ab s W say,
in €, "9 € *W=WIA G*ZQ . But for any
open neighborhood W of @b, there exist open
neighborhoods U,V of d,b respectively, such
that UV €W by the continuity of multipli-
cation in G. Hence for *U-= UIA , *V'VI/A ,
we have YU ¥V ¢ *W . now *U 2 Uy ), .
i'\/‘2/((z(b) , hence *x_e*U,*de WV , SO
wo*d ¢ Ma7. As \W was an arbitrary neighborhood «
of ab, **d € (\{_*Wz W]:/A ‘W 'S AN OPEN NEIGHBORHOOD 1
of abg . That is, %e"d € (ab) . Hence !
/a.,(a.)/az(b) e/ut(a.b) .
Now let e e/az(ab). For _*d“'e/at(a") s
* 4l e/ar(&") z(&b) . By the above, we see
that ‘97 % € w (a'ab) s w4 () . Hence
@ oz (e € o (d) i (B) . Thus

/az(ab) Q/Lc(a)/pcc(b) . SO
Sz (ab) =/a.e (a)/acfb).
O
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Lemma 2

. . . T
T is open in G iff for all PeT,/at_(P) ET/A,

provided A is adequate for Z“ED«’) .

Proof:
AssumeT is open in G. As Rl is an open neigh-
borhood of all its points, clear]y/u.cq:») G_T:Z
for all pel.

So, suppose for all F’GT’/‘%(F) ETU}A s

cArD (G) The

and that A is adequate for 2
relation ?:c (A,B) which holds between two

subsets of G iff A is an open neighborhood
of &£ and B is an open neighborhood of < and

A2B , is concurrent on G as for any finite

collection of open neighborhoods of a point & ,

M
A, ... A, say, (\. A; is an open neighborhood
L‘
M
of £ and R (A;,JQAJ-\ holds in G for all
. D (6)
é=)...,n , Hence, as A\ is adequate for 2 CARS

we know that for any collection of open neigh-
borhoods of the point £ in G, {A:\Ije '.YE say,
there exists by the methods of theorem 4 a
function §: T—> J such that ii\.ce Ahzs '-'-'Ali €A
for every je J. Thus I—Y:. Afm/A =*¥A is such
that £ € *A € A;‘I/A , for every je 3. Hence
this holds if {Ailie I3 is the collection of

all open neighborhoods of & in G . That is,
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L€ *AS «w) . Therefore/at(ﬁ\ is a neighbor-
hood of £ in *G .
I
Hence, as T/A Q/aza;) for all ceV,
I . . N
T /A is a neighborhood of £ in "G . Thus
TI/A must contain a basic open set, "\:X_T%A
say, where {'n\,c.éT.; éZféﬂ. Hence
fil T2 2923 A TieZ feA . That is, |
is a neighborhood of £ in G, for all ce I.
Thus T is an open set.
O

Henceforth we shall assume that /\ is adequate for
Zcmzb QD

Theorem 8

Let a€G, WaG.\W is open iff Wa is open. .

Proof':

If \W open implies Wa is open then Wa open
implies Wa(&") =W is open. Hence it suffices
to show that W open implies WWa is open.

_ Let W/ be open in G . Let beW. Then
e () -C-*W=WT';/A . Let ceWa . Then c=da
for some deW. 'I‘hus}dz(d\)& _C./u,c(d\/l.c (D =
/az(da,) =/Lz(£)by theorem 7. If e e/LC ) ,
then " =%e (&) is such that

*f G/u.z.(.c)/dz(d") =/az(4:a.") =/ur(d§ . Thus
"e.-.*eaf'b.-*(,&s/ac(d\ a. That is,/u,r(c) ‘E/QQZCd\)a. .
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So/az(c) ;{az(d))a. . Hence, as /Quz(d))ae*\dafl
Mg e) <

By lemma 2, as ceWa was arbitrary, Wa

is open.

Definition 21

A topological space (G ,Z) is said to be

Hausdorfrf (or T2) iff for any two points
p,%eq such that p#g , there exist two open

sets T,, 1,€T such that PeT,', cLe_rz and
T AT, =¢.

Theorem 9

A topological group (G,*, ~',T) is Hausdorff

iff for any two standard points F,g'e *G such

that P¢%,/¢%<p)r\/¢<z(q_)= @ -

Proof:

if (G,*, ', ) is Hausdorff (more precisely,
if (G ,C) is Hausdorff) then for any two
distinct points P’?OGG’ there exist open sets
T,, T, such that PeT ,q‘e—\—,_ and T, AT =d.

T I T T
Hence PeT.A "Le—';'/A ,andT/A(WT:A=
(Tn—l;_)j/:b = g as seen in the proof of

X I

lemma 1, As/a.C(P) QT/A and /az(QD)ET;_/A s
/LLC (P) ﬁ/LLzC?.)=¢.
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Let /‘z(P’ (‘\/q((%)=¢ for all standard
P,qoe"ti such that P+q - Then, as seen in the
proof of lemma 2, there exist open sets in *aQ’
*T and *O say, such that *T.G/atq:w and
pe'T, and O -/%(qo) and qe O . Hence
T ~*0 . . *r _ X *~ o .

O =@, For T-HT/A , TO EIO"/A ,
we necessarily have {"i pe i anp q,€ O; aAand
T NO =@ anvo T;€T ano O.;EZ?eA . That is,
there exist non-empty disjoint open sets about
p and qorespectively, hence (G,*, ~, T) is
Hausdorff.

Theorem 10
Let *,™d € (4@ for some standard point ae*q.
Then % *d~'e 4 (€) for e the identity of the

group G .

Proof:

d e/a_t(a) implies *d' e./Qa.r @)~ = e @) by
theorem 6, Hence "¢ *d” 5/%‘&)/‘% @’ =

aa™") =u,.(e) by theorem 7.
/e e ’
Theorem 11
/uzle) is a subgroup of *G\ , for € the iden-
tity of the group G.
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Proof:

Clearly e € 4 (e). Let "3, "o € 4. (e) . Then
*a"b e/a.c(e)/ut(e)-/uz (e€) =y () by theorem 7.
Let "ae () . *a' e}ut(e))-' = (€)= Uy le)
by theorem 6. Hence /az(e) is a subgroup of *G .
0
Definition 22
let "ae *G . *& is said to be near-standard

in *G iff there exists a standard point be ¥
such that *a.é/az(b).

Theorem 12

The near-standard points of *G , denoted

ns (*G), form a subgroup of *G .

Proof':

If % € A (D) , ! € 4L (&) for &b standard
points in *G , then we have *e™ e/ucco.)/ac(b):
/I,_,(a\a) by theorem 7. Hence "e"d e ms(*G). If
*b e:/at(a) , for & a standard point of *G s
then *b’ e/c«z(a))" =/u.c<a:') by theorem 6, Thus
*b"' e ms(*Q) . Hence ns (*G)
*G‘ .

is a subgroup of

Theorem 13

/at(e) is a normal subgroup of Mms (*G.) .
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Proof:
Clearly i, (e) S ms (*G) . Actually, by the
argument of theorem 11, /a?(e) is a subgroup
of ms (*G)
Let "a %(e), *3e ms(*G) . Then there
exists a standard point be*G such that
*3 £/u,(b). Thus *3“&‘3" E/tr(b)/«tlcwt(b))"E

/ur(b)/uz(e)/uz(b") =itz (b) U (€8) = et (B) p (K1) =
/a_r(bb") =/‘-z(e) by theorem 6 and theorem 7.

That is,/a_e(e) is a normal subgroup of ’)?s(*é).

O

Utilizing theorems 9, 10, 11, and 12, we have:

Theorem 14

Let (G,*, ', T) be a Hausdorff space. Then

s (*G)%a,m ¥ Q .

Proof:

Let pe G . Then P e (€ E—/-(z(P)/uz(e) =g (pe) =
M (p) but p () = Tpal"a e perf 2

{pr g e e = Ter) Rl caepi=ap.
Thus P/“r‘e) ’/“z‘f’) s S0 the cosets of/ur(e)

in 72s (¥*GQ) are precisely the monads of stan-
dard points in *G . Thus any element of

ns (*G)Z“z(e) looks 1like /‘r(”)/at(e) =
P/(z(e)//“t(e) for p a standard point of *qG .

g

. g
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Now define W: nS(*G%,t(e) — & by
Y (“c®P)fy 1) =p for p a standard point in
¥G . Let V(4T huper) # YT Ry ce))
Then qu%. So by theorem 9,/2. (P n/uc(%) -
so/uZ(P)/az(eJ #Ar®) frtrre) - THUS Y is
well defined. Let P=9: Then/«z(,o) =/¢(.C(¢(°) s
hence /Z(P)//Cr(e)v _ /‘((g%a,(e) . Thus ¥

is 1:1.

Y is onto as any point in ( forms a
distinct monad in ¥G by theorem 9. Now
V(% O et (o)) = V(%P Q) o)

V(2P rier) = pq, = VO pte Y ‘(%z,e,
Hence ¥ is an isomorphism and thus

'ns(*G)/

o
O
Before we look at something in *G which has no
direct counterpart in G , we present the characterization

of compactness by means of monads, which will prove

useful in chapter 3.

Definition 23
A topological space (G, ) is compact iff for
any non-empty family of open sets {Oc | CeIf
such that uL:éo‘ =G , there exists a finite
subfamily iO.-_‘ce'Si ,d&X , J rinite, such
that a%)SCD.- =G.

s *
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Theorem 15

A topological space (G,T) is compact iff all

points of ¥GQ are near-standard.

Proof:

Let (G,T) be compact., Suppose there exists

a point "p= (pder /p such that *p ¢ #s(¥q).

Then for any standard point qe *G , “p ¢ A (Q) -

Hence there exists an open neighborhood U?o of

g in G such that *p ¢ ((JL)I/A . Now

G2U U, 2 U8 =G . Hence U, \q e G{ is

G 2€4 2€Q L G { L\t i

such that U U& =G .

fea
Thus there exists a finite subfamily,
m
Uh,..., U, say, such that .IL")' Ui =G . so
" T ~”

-t _ * N . -
(jL:’)Uj\‘/A— G . That is, {c\‘:ce}:‘,qgeﬂ.
Thus {“ p: € Uji e for some ;y=42,..,M, otherwise
i(\ P ¢ U_\fe &> for j=,z..,m , hence

A {i\?q‘. UlfeA . But this is impossible as
) : b4} »

Qi&\p; ¢t_§f= {i(?;¢ }=)' UJ:E[‘JP;GJL:')Q-Z, and by
theorem 2 and that Y“Pc CQ U;f A ,

“ . N

Melreyl¢ a .

That is, for some j=1,2,..,M, ?-‘.l p,;eUif €A .
Hence ™p € (L)_g)I/lA , which is a contradiction.
Therefore % must be a near-standard point of
*G

Suppose (G, T) is not compact. Then for
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some family of open sets {Q, [i€ _5§ such that
J%oi =G , for any finite 'S'g_j,]%)x,OS +G .
Consider the relation R(A,a) which holds iff
Ae iDj\je'Sf and 8¢ A . Then by our hypothesis,
TR 1is concurrent. Hence, as A is adequate for
2@ | there exists an element "k € ¥G such
T

that ¥k ¢ ©), for all O; e{cjlje I .

That is, as for any %"'G"/“z‘&) c (OQ\)T'A

for a suitable je¥ , ™k 1is not in/a.c (g) for

any standard %e*G. That is, ™k is not near-

standard.,

O
* * *

Let *H be any subgroup of "G . H may or may not

be internal. We know that ‘H is closed under finite

g 7

products. Let N be the non-negative natural numbers.,

*N-N—'Z is a non-standard model of the non-negative

r W d

natural numbers, We speak of elements in*N but not in
N as star-finite elements. We wish to consider the
collection of all star-fihite products of length *wG*N—N
in¥H , that is, *Y 16 do this we need the defini-
tion of an internal sequence of length ™ne '5\1‘, of ele-

ments of 1"'H .

Definition 24
Tet ne™N . (&, ...,*&.,,\ ) is an internal

sequence of elements of *L\ iff it can be
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obtained from a doubly indexed array

au alz e &.,m
da Q22 * v avm,,

\

a."_\ &.’,1 ° . &.m

such that *n = ('m,;)m:/A and for any k:T—T

such that k(ysm;, we have "a.‘h = (a‘,.u.,\)“ré

a member of " . If these conditions hold,
# * - .

then (*a,,..., Gwn) = :\:{_ K:/f where

K" = (a-il,...,ai,mi) ,2'3

Consider the functions Ti;: G"— G by

ﬂl ((a‘\ - a
™ (o) = ab

Won (., A)) = BB

Then TV, is defined for each meN. Then for ™ =(Mliex )
*‘WM:*GM—»"C‘ is defined by *’\T.‘M= l\;(ﬁmg‘/ﬁ , and, for
any sequence of length ™n, "n;“((*a.,...,*a..“)) = *a..-...-"a..“ .
Hence we can now multiply together the members of any
sequence of star-finite length.

Now let ™wo C*N-N. Let N(*w) = {*’r\\*‘ne*N AND THERE
emsts MeXN  guem Twax *msvm*wf. It is straight forward

to show that N (*w) is an initial segment of ¥N .

3
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Definition 25

Let Yl be any subgroup of i"G. . Define ¥

by e {*a.-...-‘a.,,“] *am, €™ ano ("a, .. ")
IS aN INTERNAL SEQUENCE oc‘ ELEMENTS oF F\
AND  *m e NIC*GSY, anp 3,0 ... ¢ Ay =*’\T~“((“a......'a,“\)§ .
Define *™= U *n" |

e

Theorem 16

¥, (R0)
H is a subgroup of *‘G\ .

Proof:

4y (un) .
B a5 % s

The identity *e of *G is in
in %4 and (%) is an internal sequence (of
length 1 in N(™w)), the product of whose mem-
bers is *e ,

Now suppose ("a.,...,*a..,\) is an internal
sequence of length *n of elements of *H , for
*n ¢ N, Then, as seen from definition 24,
(") -0y Bond = IV Kipy  for {K:\cex§ a family
of sequences of elements of G ( K¢ is the
sequence formed by the ¢™ row in our doubly
indexed array).

Let {\(f'\ce‘.\:g be the family of sequences
of elements of G such that if Ki= (@,.., Qim),
then K= (@a.q, e, a;mi") . Then ;r]g \(.'-'A

is an internal sequence of length *m of elements
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of ¥ . mn fact, Il'_\'l("/A = (%3, ...,*a.,n-') ,
hence (*&,,..., *&*,n—w is an internal sequence

of length ™ of elements of 1. We need, how-
ever, (aw, ..., &) an internal sequence of
length "M of elements of Y .

Let us define a sequence of functions
(3~hm£11, by

£, 16— G by s @)

R, — & by R (@)= (61

RPN YA

Y
So (§-\~\GNZ defines a sequence of functions in

G, hence for *m= Cni)tet/b » and ™%, - I\.:(gm)/a g

% . . .
( ”“\M“N is a sequence of internal functions

in ¥G . Now for *'S‘M s *i,@,\ (A -, * Ry V) =
Ay s - *a,') and as " and G S Wi
are internal, so is (®awn,..., &, ) . It is

clearly of length "M and is constructed of
elements of *H .

Thus we have "&,*...° *&n,n € *\-\M\ s
e A € FUtD | ang ar RS
closed under multiplication, we have
L YOS PREL TIRTENE Ry W S T T
is, *u‘*‘*" is closed under inversion.

Tt remains to show that ¥U“™ is closed

under multiplication and that multiplication
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in *W™Y 45 associative. So let "&,*...* *dxy ,
*6,*...""bs,, be elements of 1)) | Then there
exist b.,‘zJN such that "m s k™o, *m s k™o,
Hence, *n +*m < (hak )% . Thus na™me N (W)

It is now straight forward to show that

*
*a,0 % A by v b € ¥U™) | and that

Hon

the multiplication in ®R ™ is associative.

Therefore L R

O

is a subgroup of*G .

Theorem 17

¥4® is a subgroup of *'G .

Proof':
The proof is similar to that of theorem 16 and
is left to the reader.
O
Theorem 18
Let ¥ be a normal subgroup of ¥G . Then

| | and ¥\~ are normal subgroups of *G .

Proof':
Let (*ne* ... ) € ¥U™D L Then (.., *h)
is an internal sequence of elements of m and
e N, As ¥l is normal, for any "¢ *q
(*%*k,'g", cee, *3*'-\*4“"'3"\ is an internal
sequence in*H . Thus %9%a"q" =9 q'... +H%as,'q'=
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(et A e WY That st
is a normal subgroup of *G .
Let *he* ™ . Then *h e *U™) for some
«we*N. Thus for any *Se*é, ‘3*\-\*3" e *po
by the above. Thus %“§*h%g’ ¢ *\" . Hence, *H™
is a normal subgroup of e
O
The connected component of the identity, G (e) ,
is the largest connected subset of (G containing e .
That is, the largest subset of (G containing € that can
not be decomposed into A, B such that A+é+B
ANnBR-¢ and A/B are both closed®subsets of &G . It is
straight forward to show that G(e) is a normal subgroup

of G . We now give a non-standard proof of a standard

theorem.

Theorem 19
1f UJ is an open neighborhood of € and U € Gte)

then O U™= Gle).

Mzt

Proof:
Let G'=“L)‘ U™ . G' is open as it is the union
of open sets in G . To show it is closed, let

2. €Gbe such that & is in the closure of Sur.

Nei

Then any neighborhood V of & is such that
VAG*@ . Tus for *V= Vi *G'= (G')IA :
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WoAka's o , for V any neighborhood of &
in G . Thus/ue(a.) f\*G'#qS“.’ Let ¥be * .
(UZ)(M‘\ . ™b €4, (@) implies
*Ha! €/uz(a.)/uz(a") -/(z(a.a" = pig(e) . Thus
fpa)™ = 27 %L = atb” € ppcey .

But/«z(e) c *J, thus a™b' ¢ *LJ Hence
* c*U (""n\, co &z a¥'"b e 4—0 13 Y, Ay .

21

Hence a¢¥G'. so & €G' and hence Q' is closed.

G(e 2 G', hence Gy - &' is open®and
G (e) is both open”and closed. Also, &(e)-&'
is closed as G' is open. Thus G(€) = Q' for
otherwise G(e) is not connected, a contradic-

tion.
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CHAPTER III

INFINITE GALOIS THEORY

Let F be a commutative field. Let @ be an infinite,

normal, seperable extension of F . We know that if & is
a finite extension of F , then there is a 1:1 correspon-
dence between the extensions of F that are subfields of
®d and the subgroups of the group of automorphisms on *
that leave F invariant. If CB is an infinite extension
of F , this correspondence fails to be 1:1. So let us
analyze by non-standard methods the relationship between
extensions of F that are subfields of @ and the group
G of automorphisms of @ that leave F invariant. We
shall do this with the aid of an infinite index set L
and a non-principal ultrafilter A on I . we shall assume

¢
that A is adequate for 2 @

(as noted in chapter 2).

We shall also require one further degree of adequacy of
po

&\ which will be noted accordingly. We shall denote &7

as *@ and l--_:l:/A as ¥F throughout -this chapter.

Lemma 1
Let (G be the Galois group of @/:- , that is,
the group of all automorphisms of @ that
leave F invariant. Then ¥G = GT/A is the
Galois group of internal automorphisms of *’Cb

that leave *F invariant. *G is a subgroup of
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*
the Galois group of Q/ir_— ,*Go say.

Proof:
As *C—. is internal, it consists of internal
automorphisms, all of which are automorphisms
of "’6 and leave *F invariant as filo;® =3
AND T LEAVES F\ancmm'g-:IsA for
o= Oiker e *G .

Let ¥~ be any internal automorphism of
*5 that leaves *F_ invariant. Then o= (O-()CGI/A
and {c‘ 0:P=F andp Oov rLeaves F mvaemur{ =Ye A .
For ¢¢ J, let ql¢ be the identity automorphism.
Then %o = (O‘a)iez/A ---(75'&)“:/A for ¥ =0 if
(e, ¥:=d, if (€3. But ¥:e G for all ieT ,
hence *o-e *G . Hence ¥GQ consists of all auto-
morphisms on *@ that leave *F' invariant and
that are internal.

*G is clearly a subgroup of *G\n as the
composition and inversion of internal automor-
phisms are internal.

O

Let =. index the finite, normal, algebraic extensions

K. of F that are subfields of ® . For each Se.?_., let

{¥\ve= ano \(,:ngi . Let T-frg\seEK :




4o

Theorem 20

I is closed under the taking of finite inter-

sections.

Proof':

Let I, Jg €T" . Then Ky =F(a,...,a.) say,
and KP = F(b,..,b,) say. Let

Ke =F(@...8w, b, ...,8,) . Then Ky 2Ky
Ky 2 K/‘ , thus for any ')LET; , an Kq and
K"La\(ﬁ' Hence mel; and MeTa . Therefore
I elinls . Let xe [T, . Then

Kx 2 F@,,...,a)) and Ky 2 F(b,., b.) .
Hence K, 2 Fa,,...,a., b, ..., b)) . Thus xe]/.
That is, [« 0 Ip = Tg

Assume for our induction hypothesis that
any k-elements of T have their intersection
equal to a set in Iﬁ.

Let I, Tq T3, be lvlelements of I
Then E(. 0---0Ig, - Tf for some fCE, by
the induction hypothesis. Hence
Lo-nly Ty, =Tgo Ty -T3 for
some § € = by the above. That is, the inter-
section of M-elements of “ﬁ is again an ele-
ment of L . So X 'is closed under finite

intersections.
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Thus T generates a filter on —. , by taking all

A
supersets of elements of II'. call it 1. If A is adequate

for eAamb (=) , there exists a function.'s:I¥—>::such
that the filter generated by sets of the form S(A\ for
eacrlliééﬁ, contains ﬁ%. Henceforth we shall assume that
A\ is adequate for carp (=) .

Now let *K=‘.H K"“/A . Then as {i] Kyo = a
FINITE | NORMAL, ALGEBRAIC EXTENSION OF T AND SUBFIELD
oF @g = g7 () € A by the construction of’ 9 » we have
that *}< is a star-finite (in the sense mentioned in
chapter 2), normal, algebraic extension of *F' and sub-
field of *é . Also, as {LI Kawy2 Kaf 2 g7 (gl e &
we have that *KQ M , where 14 in ‘Cﬁ means the stan-
dard points O’e‘@ such that oeli. As - L‘);— Ke
mhwe*KQQ. =

Now as, for each iel, Kg‘n is a finite, normal,
algebraic extension of F and subfield of ®, there
exists a corresponding Galois group LAga\ of automor-
phisms of R;Ln that leave F invariant. By the nature
of g9, we see that *L4=»II L%smAa is an internal group
of automorphisms of *K that leave * invariant. By an
argument similar to lemma 3,#L4 is the group of aiil
internal automorphisms of *k' that leave *F invariant.
We can carry through in much the same manner the usual

1:1 Galois correspondence between the internal subfields

.
of K which extend ' F and the internal subgroups of *A
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Theorem 21
Let "o-e®-. Then %o , when restricted to & ,

is an automorphism of Cb .

Proof':
*.
Since *ore H, *0- is internal. So let
o IV Tifp - Now for each ¢«I', 0O; is an
automorphism of Ky_c, O and by a fundamental
theorem of Galois theory, 0, 1s the restriction
of an element of G to KS“) , say @;. Then
» . . . % — . *
0 1is the restriction of CP—-D-:CQ‘/A to K,
where “@ < *G.
- * =
As @ aLe')Q-r-' F(a) , we have *g &
* - *
O—(&'e)é—r l:‘(a.\\ —&%_‘__L"(*Ua\ as "0 leaves
%, and hence F, invariant.
Now ae® satisfies some minimal polynomial
£ o0 e Fix], that is, f@)=0. Thus as
- ,
g (X™) = (*ox) and *ob=b for all beF, *o
can only map & to one of the k-roots of
fooe FIx), say a,,-....&, in ® . Hence
{L\OI&=&. oR 0’:3.:&;02 e . OR O'Caaa_bi PR AN
But, similar to the argument in theorem 15, we
see that {L\O’,; a= aifeA for some j€ {(,2,--.\:? .
That is, *oa=3;€ Q.
%, = *ra) & .
Thus *0® a&.%_rl-_( y €9
Similarly, T 'de® , so *¢d=&. Thus
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*
any automorphism *o or *K that leaves F
invariant is, when restricted to @ , an auto-
morphism of @ that necessarily leaves ¥

invariant.

Definition 26

* o
For any *oe W, let (%) = *O'\C_Q .

Then evidently °“("o)e G for all *Te*H by theorem
21.

Now let & be a subfield of @ and extension of r
Then *@= 9% is an internal subfield of *@ and exten-
sion of ¥F . TLet *Q =Yoo ~*K . This is again an inter-
nal subfield of *@ and extension of ¥ and, in fact,

a subfield of *K . As we have the Galois correspondence
between the internal subfields of *K that are extensions
of ¥F and the internal subgroups of *\1 , let ik'\--\e be
the subgroup corresponding to *@K . Define °(* \—le‘) by
°(*\—-l9\' {'T\'T’ °(*0) For some Mo € J"\--\eg. Then
°(*\-—-l9\ ¢ G. In fact, as *L—-\e is a subgroup of *G ,

°(*\-\e\ is a subgroup of (§.

Lemma 4

© is the set of invariants of @ under

T ).




Proof:

* #* *
S <™®,, thus as "€ . leaves GK

()
invariant, o~ leaves @ invariant. Hence
(o) leaves © invariant.
Suppose 3€H-O. Then 3¢O. Hence a¢*O ,
thus & ¢ *Q<. Therefore there exists a
*O'E*He such that *oga.+a . a€ ® , hence
(“0Ya+a& . Thus © is precisely the set of
invariants of @ under °(*$—\e\ .
O
Lemma 5
Let g be an automorphism of @ leaving F
invariant. Then forD a finite, normal, alge- )

braic extension of F- and subfield of @ s "

a®=D. "

Proof': f.:
Suppose D=F(a,,...,&,)) . As & satisfies a min-
imal polynomial £ in FIX] , and since D
is normal, 0d; must be a root of -C;_Lx) , say b:,
which is necessarily in D due to the normality

of D. That 1s, D €D . similarly 0°'D €D .

Thus TD=D .
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Corollary 5.1
% . *
For "0° any internal automorphism of @ leaving
* .
F invariant, if *D is an internal, star-
finite, normal, algebraic extension of *F and

subfield of *@ , then "o *D =*D .

Proof:

This is a direct consequence of theorem 3 and

lemma 5.

Lemma 6

T*Hg) 1s precisely the set of automorphisms

of G leaving the elements of & invariant.

Proof':

Suppose O€ G is such that O leaves the ele-

ments of © invariant. Then the standard ele-

ment 0"€*G leaves the elements of “@ invar-

iant. Thus CTX*K leaves the elements of *GBK

invariant. Thus by corollary 5.1, and the fact

that *K 1is a star-finite, normal, algebraic

extension of ¥F and subfield of*® , O-\"\(

is an automorphism of *K . Hence, as a_‘*\(

is internal, 01‘ is in *FAGB' Hence

0(0_*\(\ = 0 € *(*Hg) which is a subset of G .
Hence, using lemma 4, we have that *(*WHg)

is precisely the set of automorphisms of G
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leaving the elements of @ invariant.
O
Hence we have a map YV from the subfields of @
that are extensions of F into the set of subgroups of

G . We wish to characterize the range of V.

Definition 27
For any *o¢ %G, let °(*@)= O(*O-\*K\
For any *ZE*C‘\ , let °(*%) = Ifrl"l‘-- °Ca) eor

some “ge ¥ { .

Theorem 22 A .
A subgroup J of G is in the image®of V iff |
o/ & - e k=
(*3)=7 for *I =T, .

Proof': -
Suppose J is in the range of V. Then ::q
J = °(*\—-\e) for some field @,L_G @< d
Thus for any o€ J, O leaves © invariant.
Hence *G‘e*:)- leaves *© = GD:FA invariant, for
*3- II/A . Also, as any *re *G is internal,
say o= IRy 'T.-/A , then if ™T leaves *o
invariant, we must have f_il'Ta €G anup T EAvES
THE ELemenTs oF B wwvarianT i: U,e A . That
is, SL\'T.;E'Sf =U e A, so *te*3 .7
Now (*J) 1is such that °(*d) e “*T)
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leaves @ invariant. Hence (*J) S T , as

J = °(*H@\ . Clearly J c*y by the natural

embedding, thus TEY*J) . Hence J = (*7).
suppose “(*3I)=7T. Let *SK be the group

of automorphisms of *:Y restricted to *K . By

corollary 5.1, any element of *D_K is an auto-

morphism of *K .

vow *Jy = {0, 1*oce *Tf =TT T 4
for Jyu = ?_O'g\Ksm lov e 3} . Hence *J is
internal.

So let i"/\. be its corresponding subfield
under the "usual" Galois correspondence. Then
"re *Ty leaves *A. invariant. Thus © = *And
is left invariant by the elements of *-‘)_K , ot
hence by the elements of o(*:)_\() =°(*j)' J . b

r a¢ O,ae ®, then ac K-, Thus .

there exists Y0 € *3\< such that “oa+a.

£ =

Hence Y*¢)a+a , and (*0)€ J . Therefore &
is the set™f invariants under all members of
J. Thus *© =@I/A is the set of all invar-
jants under all members of ¥J . Therefore *@K
is the set of all invariants under all members
of *J . That is, *® = “A .
Thus *3'\( = *.\—\e, hence J = A(*J)-=

°("Hg) . mhat is, V(@) =T .

O
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Using the above result, we may prove the following

standard theorem:

Theorem 23
J = V@®)is a normal subgroup of G iff © is

a normal extension of F .

Proof':

If Fe©®<Q for © a normal extension of F
then *@ = @I/A is a normal extension of ¥F .
Hence *@K is a normal extension of *F . Con-
versely, if'*EEK is a normal extension of ¥
then *QK N® is a normal extension of F .
That is, ® is a normal extension of F iff
*G?K is a normal extension of ¥ .

If J is a normal subgroup of G, *3— is
a normal subgroup of *G , thus *o *3- o~ 9-*3-
for all *O'E*G. Thus by corollary 5.1,
(“a'H,, « Mt *D'K)(*O'-'\*K\ QB’K for a1l o e *G .
Thus *-‘Y\( is a normal subgroup of *G . In rfact,
it is normal in the Galois group *L-I of *‘(
over “__3::, Conversely, if *TK is a normal sub-
group of ¥id, then °(*J)= T is normal in G
by the previous theorem and the assumption that
V(®)=J . Tus J is normal in G irr *Jy

*
is a normal subgroup of M.
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Now ¥Jy corresponds to *@K iff” T
corresponds to @.“ So suppose & is a normal
extension of F . Then *(:h< being normal corres-
ponds to *'Jk‘ under the "usual" Galois corres-
pondence and the fundamental theorem of Galois
theory tells us that *3Q must be normal in
*\1. Hence J is normal in G . Similarly, if
J is normal in G , © must be a normal exten-
sion of F .

O

We now state the existence theorem for the Krull

topology on CS.

Theorem 24

There is a topology T on 3 which is compatible
with the group structure of Ci and which has
‘n= {3\'5 15 & suegrowr oF (G AND Tue suRFELd
CORRESFONDING TO U IS A FINITE EXTEMSION OF F-'J,:W

as a fundamenfal system of neighborhoods of the

identity.

Proof:

The proof is a standard one and may be found in

61].
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Now consider the following statement: if J— is open
in the Krull topology on G and if o€ J then there exist
ad.,...,a,€ @ such that for all Te G , if ga.=Ta,, ...,
0an=Td, , then Te J .

If this statement is false, then for any &.,...,d,e®
there exists a T€ G such that 03,=Ta.,. .., Can= Ta.,
and T J ® Then the following relation, 1?0. @, %) , defined
by (&, ¥) € “20. iff &Gé and ¥¢J and O&=Ya&, is concur-
rent. Then by theorem 4, we see that for
L) = {.Q.,‘i x € Dom Ry AND .Q.K={‘o'l(x.zr)eﬁ,§f, if A is
adequate for K=caed(q), then there exists a function
h:I——>G such that for any Lu.c{ D, there exists A e
such that h(A,) €2y . That is, {{(x h) € Rp{e
so *h= (\r\LL\\:e::/IA is such that ™\a&=oa for all ae Jd,
and "k ¢ SI/& . Tus X("NY=0¢ J, a contradiction,
provided A is adequate for ¥X=CARD(4). But in chapter 2

R0 (C)

we assumed A adequate for K=2 , hence it must be

adequate for CARD(G) also.

Theorem 25

For any *O'E*G\, *a e/a.c(°(“0'))

Proof:
Let °(™0)='T . Then for every &€ d, va -Ta
Thus for every &€ ®, {L\cr.-a='ra§ € A . Hence

for any finite collection of elements of &,
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&, .-, 4 say, {L\O‘;&.:T&.,...,oza,“-:'l'a.\{-
ﬁ? [ala:aj=¢a¢? € N as ultrafilters are closed
under finite intersections.

Thus, by the observation made above, we
see that for J any open neighborhood of T ,
{f-lo'c G'Sfeﬂ , hence o € :YI/A . As J was
arbitrary, we necessarily have '0'€/ALZ(T)

O
Corollary 25.1

(G, T) is compact.

Proof:
This is a direct consequence of theorem 15

and theorem 25.

Theorem 26
(G, T) is Hausdorff.

Proof':
Due to the continuity of multiplication, it
suffices to show that ;:%:S =je}.
Let CT€§;%:S . Then g leaves each element
of each finite extension of F and subfield of
d invariant. as = U) . F () , we see that

aed-
g 1s necessarily the identity.

O
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Theorem 27

Tis closed in the Krull topology iff
™3)=7.

Proof:

Let (*I) =T . O in the closure of J implies
Az (0) N*JI+ ¢, ror otherwise /«Z(O') is
contained in the complement of *3’. But in this
case, as O'E*V ‘:"-_/45(0') for some ¥V open in
. the Q-topology on *C; as seen in lemma 2, we
see that *:Y is contained in the complement
of *W which is closed. Thus o is not in the
closure of *:T, hence not in the closure of J .
Hence there exists *3 € *D’ n/u.c (o). Hence,
as *S € (°(”§)) by theorem 25, and that
/a,(d) (\/az(,s)=¢ if o(#/s by theorem 26 and
theorem 9, we see that °("§) = 0. But
°(*T)=3-,°(*§3=0' , hence CE€Y ., Thus J is
closed in the Krull topology on.(}.
Let J be closed in the Krull topology on
GB Now J € (*J) as each element of J is a
standard element of *J under the natural
embedding. Let °(*t) e *(*3) . Then *we*7 .
S0 sy (°("Tr‘)30*3'# @ as "w € iy () vy
O(’O

theorem 25. So ) 1is not in the complement

of J as it is open, hence by lemma 2,

£7 £
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/b(z(cf) E*t:)-:[*Jfor any oeJ .
So (*r)e I . That is, *T) =7
g
Also, (G, T ) is totally disconnected, for if
0¢ l—-le')?, then o W is an open set containing O and
H(\O’\—\-qs. Hence H is closed and, utilizing the fact

that (G, ) is Hausdorff, (G, T) is totally disconnected.

il |

LUK
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FOOTNOTES

This should read: "... large enough so that some
subset of the constants may be put into one-to-

one correspondence with ..." .

Change "... to each individual constant in ..."

to " ... to some of the individual constants in...".

~ ‘::‘-:I }
Note that S is a partial function from < to A .

A
Add the following clause to the definition of S :

A
"i331) if +a2<+,. ,tw>and S has been defined
for 1-“-4‘, +4v\, then §(‘\") =(§C‘.c),.... S"(T‘V\S\ ."

Chenge "... iff is true..." to ".., iff (R is true..."
Change "se" to "we" .

Delete this paragraph (beginning with "We know
that...") and insert in its place the following
paragraph:

"Using the axiom of cholce we can well-order
the set C of constants of K placing them in one-
to-one correspondence with all of the ordinals less
than some initial ordinal K . We shall agree to
consider only structures in which the constants
given an assignment from an initial segment of C .
So we may now write our structure &l as
&:<AR.,-+Ra..), vhere A runs through some initial
segment of ordinals, of order type §{ say, and
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where R 15 the object of finite type in A which
is assigned to the d'° constant. We call ¢ the
order of Q .

Delete definition 14. In its place insert the
following introductory paragraphs and revised
definition :

" N

We define J;[;/-\c/A to be the set of
equivalence classes ‘C/A where *Q is a function on
T with €A and where the equivalence relation
is EA defined by "'\'-;Acz) iff {(\Cm =‘3(£)§6A .

"We now proceed to define by induction on (O
the object ‘I;I;S/A where for all (¢ L, S; is of
type O in A, . Further we shall show that B’_S A
has type 0" . When U= 0O, define E&/tb to be
\ 3 .
L/A where L(E): S; for all (¢ . 1In this case,
;\;;SL/A is certainly of type O in E:A‘/A

"Suppose now that J LE&/ has been defined of
(44

A
type '] in cl(_\IA\ /A whenever |2: 1s of type T
for all (€ L. Then if S; is of type ¢ = (T) in

A" for all fét., we define
TTSL/A = SER‘/A\ R: e St ror ALL Lélz

el
which is clearly of type (T ) in IS:-:A‘/A .
"Suppose nou that O=(T.. . T.)and that for each
| .. j | .
jin rejem, LSJ:R‘/A has been defined of type ‘\:\
: § ) :
in :{;\—IAL/A whenever R; is of type T; in A for a11

(e T . Then we define

wiflj

e
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. . "
TS =< TRy 0 TR
where S ={R...R Yis of type O in A: for eacn
ceL . Then clearly E‘—S%A is of type g in YS;A%A
Definition 14
The reduced direct product of the family of
mathematical structures {Ol;lCeI { relative to
A 1s
TVO\/A <TTA7/A ) ., . ..,TEQ“...>
[
where ]Pu L;”Rq/Q ,
If A is an ultrafilter, we call the reduced
direct product an ultraproduct. If, in
addition, ®=CR for each ce., we eall
?;T:;O‘/A -Olz an ultrapower.
"The reader may now easily prove by & stralght forward

induction argument that TTS% \'"[_3 /A
Is. =S¥ {ea."

9. :': is the usual isomorphism notation.

10. Definition 15 should read: "An ob,ject*B of type O
T
in A /A is internal iff there exists a family
Sstliexi of objects of type T in A such that
*'B=T\'S; L
T /(A
. T
11. Note that in the definition of /A , all of the
R{S are internal objects.

12. This should read: "let *s =(')§u---°§ be any denumerable

sequence of internal objects of arbitrary ..."
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14,

15.

16.
17.
18.

19.

20.
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Change "... for *Sj= (S_'\‘C“,:erA " to "... where

for each positive integer J s S ) is any function
* .

on I such that S_’, :(S_}(L)\;;-VA , and where \: on

the left is interpreted in terms of quantification

restricted to internal objects."

Change "... on the length of ..." to "... on the
length of & ..."

The proof of theorem 13 should be amended as to be
consistent with the § notation. For example,
consider case 3 (on page 15). Let + be a term and
let *S.\. be thatinterna.l object assigned to + by
% . ThenAwe have: LKQ)A = TO‘(+) (*s)

irf S (4) 1s of type T in IED\:/A

i££ 7Sy is of type O in YT Dify

iff S+(<:) is of type O in OV for each

te T , where ™S, = (S.t.('k)\)ict

irr {o| O hT¢(S+LL)§j=I e A

1er fionk T (s,w0,s:00- ) e A
‘12'9 is the object to which the 'en’ constant is mapped.
For "b<a" read "b<a".
For "a_eA " read "ae* A".

For " Z is a topology on" read " Z is a topology on

Gn_

: K
‘Note that the group operations in G come from G\ by
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23.
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way of theorem 3 and appropriate Rdfs.

For ", 1"'I": TVA be a neighborhood of ¥A , for
*Te *Z:Q " read "... *T: “e‘: ":/A e*'Z'Q_be a basic
open neighborhood of *A in*G .»

¥
Note that ("W)w (\/Ja) by theorem 3.

Note that we can define a finite sequence of elements
of G as being a function (i.e. a binary relation of
the obvious type) defined on an initial segment of

IN with values in G . So finite sequences have

type ((0,0)). Iet S represent the set of all finite
sequences of elements in G . Sis of type (((o,o\\\ . ”
Hence an internal sequence of elements of *é is an

element of ¥S= SI/A. Note that this gives us all

sequences of star-finite length in *G . u

For (Z.)meN, as well as for (Mu)meN , we can |
define functions W:S>G, §:S—>S ang L:S—-> N .
as functions corresponding to the product of all

elements of a sequence, reversal of a sequence and

the length of a sequence respectively. They are of

type ((((0,0)),Ul0,0) 1)) ; (L((2)0)), ©)) and

((((0,0)),0)) respectively. Hence we may speak of

their counterparts in *G by means of theorem 3.

For exa.mple,*g*“ is the restriction of *S : J*'S---f"'S ;

to the elements *04*3 such that ™4 (*0)=" .
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26.

27.

28.
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31.
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For "... closed ..." read "... relatively closed..."

Note that 4(@) "“G#@ comes from the fact that the
relation R,(V,UU) defined by V is a neighborhood
of & and UJ 1s a neighborhood of & and V 2 U is
concurrent. Hence as A is adequate for ZCA@(G) s
we see by the methods of theorem 4 that if
EUjl 1€ ins the set of all open neighborhoods of
d, we know that there is a function £ from L to
such that Y"Ucm cV f €4 for any neighborhood W of
d . Hence /At(a);.’*U; &UC“'/A and as
si-ﬂ.:}:l;, N G'i¢§=164\ as d1s in the closure of G ,
we have ¥U ﬂ?é‘#ﬁ. Hence /az(am*é‘ ¥ .

M
Note that we define U by means of a function F
from pairs of the form < ,m)>to the powerset of G

such that F'(<Un*\>\ = U™ {u.'.-"u“ (ﬂ;eU FoR 1< (Em { .

Hence we may consider the corresponding function *f—_
in *C*. which maps pairs of the form <KT,%n) into
the powerset of *G for ™ an internal subset of

*G such that ¥F K*U *n ) ) A5

For "... open ..." read "... relatively open ..."

For "... open ..." read "... relatively open ..."

For "... automorphisms on ..." read "... automorphisms

on @ eel”

For "... image ..." read "... range ..."

t

I
f
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34.

35.
36,

37.
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Note that the two lines beginning with "Also, as
any ..." and "That is, ..." are unnecessary for the

proof of theorem 22 and may be deleted.

For "... 1s the set ..." read "... 1s precisely the

set ,.."

Delete "Thus *3 ¥ 1s a normal subgroup of *'61 . In
fact, 1t is nomal in the Galois group *l—\ of *K
over *= ." Insert the following: "*’Sg 1s thus a
normal subgroup of *H the internal Galois group of
* over ¥ .

For "... 1ff ..," read "..., if ..."

This correspondence comes from the assumption that
V(®)s T and that * Tz W by theorem 3 and
e

corollary 5.1.

The definition of 7( should read as follows:
N = {‘SI T s A suBeeour of & and S 4(Me) e
some mieed K viar s A suBri€Ld oC§ AND FiOITE exravS/ouoﬁCg
Delete this entire paragraph (lines 5-18, page 52)
and insert in its place the following paragraph:

"If ) is open, then I= U“'E—S:;for an
appropriate collection of 3'5 3 7'( and T. € § .
Thus any 0€J is such that T=T.0"' rfor an

\ ! !
appropriate 0" in some J: . Now J ¢ consists of all

automorphisms leaving some finite extension of F
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invarient, say ¥ (&.,--4+&«) . Then if T '‘2;= 0 4dy
for {ehyn®, then Tr6™2u =T 6au~T-T0 2= A ,
hence T.'0"'e 3: . mus TT 00"« I .

So the statement is true."

Delete this entire paragraph (lines -1 through -7 on
page 54 and lines 1,2 on page 55) and insert the
following paragraph:

\"Let 3 be closed in the Krull topology on Q.
1r e 3)but O¢ Y then as I is closed, there
exists an open set V such that O‘EVSE-S « Thus
the standard element T€¥{ is such that
T€ py1 ) © Vi < LD'S)I/A =*CSJ 50
/ut(v) c ™3 '-‘-Q*'S by theorem 3. Now C°= o(%*)
for some i € *S . So we have that ~""'l"é/é(t(v) by

theorem 25. Thus/az(v)n*ftfﬁ » & contradiction
s0 9*T) =7.
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