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ABSTRACT

Stochastic optimal control methods were applied to an
eight-equation, log-linear econometric model of the Canadian
economy. Certain variables were selected as control - variables
which were used as instruments to direct a group of target
var iables towards preset target values over @& planning time
hor izon.

Several stochastic control models were tested én this
econometric model and an expected pénalty cost, an additive
quadratic function of the deviations from the ©preset targets,
was used as a standard of comparison. The control models ranged
from simple mwodels which ignored uncertainty tor - more
sophisticated adaptive control models, designed to compensate
for the continual revision of the model parameters over time,.
Testing took the form of computer.simulation, generating many
typical time spans while recording the model's overall

performance against the preset targets.

An important finding was that the optimal control
Hamiltonian could be optimized recursively, enabling the
stochastic control problems to be solved by conventional

stochastic dynamic programming me thods.

A simple model, although one that allowed for uncertainty
in the regression coefficients, performed consistently well,
even when tested in an adaptive environment. Such 2 model could
be used to perform control optimizations on a 50-60 equation,

econome tr ic model without excessive computational cost.

iii



Approval

ABSTRACT

List of
List of

I.

TABLE OF CONTENTS

® 6 2 60 000800000 Le e 000l 'u...-o.o.ooou.-oo-oo-aii
--c.lQo....oo.c.-co.oo‘o-..ono.ono-o.-oooc-o-o.--‘-...iii

Tables .‘..o...o..-o..oo-.oo--.o-oo..o-..oo-.o-'-ooooooovi

Figures .ooo.........................................Vii

INTRODUCTION .oo.oooo.ooooooo-.oo.oooooooooooooco’-ooooool

II. GENERAL CONTROLTHEORY .....'...-.............;........4

Process Control ..eeceeceecceccescccccccscccccoccccecns ceeedd
Proportional, Integral and Derivative Control .........8

Control of Economic Systems ..ccicecesaccas scecsesseeaell

ITI. LINEAR QUADRATIC TRACKING CONTROLLER .¢ccccoacecaceeasll

Iv.

State—-Space Transformations ...cecececcceccccccaseacessld
System Objective Criteria ..ciieeivennceenann B
Der ivation of the LQT Controller ....c.ceeeeess ceceeaaa20
ADAPTIVE CONTROL ..cecccececscccccccocccss seeccesceccccas 27
The MacRae Adaptive Control Model ...ceeececccccanascaad8
The Chow Adaptive Control Model ....ceveececccasoccseasall
The Norman First Order Dual Control Model ............34

Other Adaptive Control ModelsS ....cceeececcccacsaaseaocsal®

V. METHODOLOGY ® 6 © 6 6 0 0 0 8 S S 00 OG0B GOS0 OO SO OSSO E ST S C S s 00 .40

VI.

Algorithm Development and Calibration ....eeeececessecadl
An Econometric Model of the Canadien Economy .........42
Control Models ...;..................................,43
Monte Carlo TestinNg ..eieeeeeesessscctccascnnscccaasacaes 44
RESULTS AND DISCUSSTION (.eecessvsccscooscsscasoscnscccscas 46

Compar ison with the Abel Control Study ...... seescasedf

iv



VII.
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

Compéarison with the Kendrick Control Study .ecececeead50
The Laidler Model .....cciieiciecececcsoncsecnsoncccnans . .54
Simple LQT Runs on the Laidler Model-.................57
Acdaptive Control Runs Using the Laidler Model ........65
The Overall Adaptive Simulation Averages ......c.......71

Compar ison of Stochastic Control Solutions with
) ACtual Data o.o.o....o..o.-oo.."‘IO.OOOIOOOI-...074

CONCLUSIONS 4 s e e e eeneenennenneanenceaseaseeaasennasddb
A: OPTIMAL CONTROL THEORY AND DYNAMIC PROGRAMMING ...80
B: REGRESSION THEORY FOR STOCHASTIC CONTROL ¢........83
C: THE ABEL MODEL «vueesncencnnnecnncnonncecannnnaessd0
D: SIMPLE LOT SOLUTIONS FOR THE ABEL MODEL +evovv....93
E: THE LAIDLER MODEL +.veeeveeececececsssaaannnnaeaal00
F: MULTIVARIATE NORMAL COMPUTER SIMULATION «..eo....109

G: COMPUTER RUNS FOR ADAPTIVE CONTROL SIMULATION ..;lll

BIBLIOGRAPHY ou e v eevnnesenseneseseenneseneasaaasesnsaaeasssalB5



LIST OF TABLES

TABLE _ PAGE
6.1 COMPARISON OF STCCHASTIC CONTROL SOLUTIONS WITH

Tl-lE ABEL MODEL ® ® ®© 06 6 ® 0 & 0 6 s 6 06 O S S P S O OO O S S S S S 000 e s 0 a0 48
6.2 STOCHASTIC CONTROL SOLUTIONS USING THE ABEL MODREL

- UNCERTAIN PARAMETERS SCLUTION ....ccccc0cceeceeecsa 49
6.3 EXPECTED PENALTY COSTS FOR THE KENDRICK STUDY

SIMULATIONS I..............f..................~.... 53
6.4 LAIDLER MODEL COEFICIENTS cccccceceocesaacsnccecacnassse 55
6.5 RESTRICTED LAIDLER MODEL COEFFICIENTS +uveeeeeeceeceess 56
6.6 TARGETS FOR THE LAIDLER MODEL .....................;.. 58
6.7 CERTAINTY EQUIVALENT STCCHASTIC CONTROL SOLUTION

FOR THE LAIDLER MODEL — BASE RUN ...c.ccececencess 59

6.8 UNCERTAIN PARAMETERS STOCHASTIC CONTROL SOLUTION .
FOR THE LAIDLER MODEL — BASE RUN ...ccccccccecanss 60

6.9 "UNCERTAIN PARAMETERS STOCHASTIC CONTROL SOLUTION
FOR THE LAIDLER MODEL - HICH TERMINAL FACTOR

e o o o000 ® © © 8 06 0 8 8 8 00 00 CE 0P OL GO G LG E SN S S ees 00 e 'f)l

6.10 UNCERTATIN PARAMETERS STOCHASTIC CONTROL SCLUTION
FOR THE LAIPLFER MODPEL - DISCOUNTED PENALTIES

ee e o e oo ® 6000000800 acc00R 000000000 seseeeLeRses e 52
6.11 UNCERTAIN PARAMETERS STCOCHASTIC CONTROL SOLUTICN

FOR THE LAIDLER MODEL - HIGH TERMINAL TARGETS

® ® @ & & ¢ ® O ¢ 0O O 0O 08 G E 8 G O OO S 8O O G O O 9 S S e S e s 0 S 0 0 e 0 00 s e 0o 63
6.12 STCCHASTIC ADAPTIVE CONTROL SIMULATION PENALTY

COSTS FOR THE LAIDLER MODPEL ..ccceeccocascccancaaas 12
65.13 STCCHASTIC ADAPTIVE CONTRCL SIMULATION PENALTY

COSTS FOR THE ABEL MODEL ooooo e ¢ 000 a0 e e ee0 e 0 ss e 73
6.14 ACTUAL CANADIAN ECONOMIC AGGREGATES 1976 - 1981

eae o0 ® 9 0 6 0P 0 0 0 BTG OO L0 L0000 0000 eses0Seese0Ese 75
6.15 STCCHASTIC CONTROL PREDICTIONS FOR CANADIAN

ECONOMIC AGGREGATES ¢.ceteecscecccscessscsansncans 75

vi



FIGURE

2.1
2.2
2.3

2.4

OPEN—LOOP CONTROL .iceeeveceeecosccnnnssssoccsscsssssaccscs
CLOSED-LOOP FEEDBACK CONTROL ..cccveecncccacsssacsnncsns
FEEDFORWARD AND FEEDBACK CONTRCL
PRCPORTIONAL CONTROL OFFSET EFFECTS

CONTROL OF AN ECONOMY

NORMAN FIRST ORDER DUAL CONTROL FLOWCHART ..sc.... ;...
ADAPTIVE éONTROL SIMULATION — CONSUMPTION ceccecscaseas
ADAPTIVE CONTROL SIMULATION — INVESTMENT ..ceceescocces
ADAPTIVE CONTROL SIMULATION - TRANSITORY INCOME ......
ADAPTIVE CONTRCL SIMULATION — RESERVES ...cecceeccacacs
ADAPTIVE CONTRCL-SIMULATION - EXCHANGE RATE ........ .
ADAPTIVE CONTROL SIMULATION = PRICFE INDEX evveeeenn. e
ADAPTIVE CONTROL SIMULATION - MONEY SUPPLY .(.ciceceeens

LIST OF FIGURES

vii

PAGE

11
37
51
52
6h
67

58

70



-~ I. INTRODUCTION

A large portion of economic textbook theory is static and
deterministic. A static theory is a timeless concept. Very often
a system is assumed to be 1in static equilibrium without
knowledge of how it actually got there or where it might move
next. The position 1is timeless in the sense that there are no
links with the past or with the future. Some textbooks; when
covering dynamics, concentrate only on equilibrium dynamics.
This is the,situatian whére a system 1is moving (or growing)
uniformly over time. Disequilibrium dynamics, a more difficult
concept, assumes non uniform movement throuch time and normally
involves lagged variables along with error-adjustrent or control
mecﬁanisms. Frequently, uncertainty in the system values or
parameters 1is 1ignored and the economic system is treated as if
it were deterministic. In the work that follows, disequilibrium
dynemics 'of a particular stochastic system will be carefully
examined and, amongst other things, the efﬁecﬁs of 1ignoring
uncertainty will be evaluated.

The system chosen for study is a model of the Canadian
economy but it could Jjust as easily have been a model of a
bﬁsiness firm or some other institution. It is assumecd that the
system must meet certaiﬁ objectives for its target variables,
e.g., specific levels of inflation or unemployment over the
plenning time period, Some of the variables in the model are

termed instrument or control variables, e.g., money supply or



level of government expenditure, and these variables are seen as
being available for adjustment to steer the system as close as
possible to its targets. This in 2 nut shell 1is the optimal
control prgblem. In a deterhinistic environment, where the
number of instruments is equal to the number of target
variables, the targets can be achieved precisely. For &
stochastic model where the number of instruments might be less
than the number of target wvariables, the optimal control
solution will be the one that is closest to achieving all the
targets. |

To determine the optimal values of the control variables
under uncertainty, stochastic optimal‘ control theory will be
used. This theory was originally develobed by engineers and
scientists for the céntrol of hardware systems. In the eéfly
seventies much interest was shown in applying the theofy to

economic systems.

The research objectives for this study are:

1. to develop, test and calibrate a set of computer algorithms
for analysing the stochastic optimal control problem under
varying degrees of uncertainty

2. to epply the algorithms to a relatively-small, econometric
model of the Canadian economy

3. to assess the practical applications of stochastic optimal

control theory.



In Chapter II some of the fundamental ideas of general
control theory are. developed. The intent here is to clear up
some of éhe confusing definitions and to set thé stage for .some
later theoretical analysis, Chapter IIT presents the basic
theory behind the linear-quadratic-tracking contrdller for
simple feedback control. Again, the goal 1is to define and
clarify but also it is to provide a framework for compafing ‘the
var ious approeches to adaptive control develgped in Chapter Iv.
The methodology for the study is outlined in Chapter V where
special mention is made of Monte Carlo testing to be carried out
on each propbsed theoretical solution. Unfortunately, ﬁheré “has
been a lot of theorizing and very 1little in the way of
comprehensive testing in many economic control studies. The

results and conclusions follow in Chapters VI and VII.



II. GENERAL CONTROL THEORY

General <control theory wés originally developed for
industrial or scientific applications. In this chapter, the
general theory will be very briefly summarized not merely to
show the similarities with the newer economic control theories
but to define some of the different types of control. 1In the
same way that there are confusions in terms between.the two
schools of forecasting: econometric foreéasting and time series
forecasting,- so there is confusion between the older scientific
control theories and the newer economic control theories. In a
1979 article by Zellner,l a plea is made for less conflict and
more cooperation between the forecasting schools with the aim of
improved forecasts. Even though there 1is some terminology
confusion, there appears to be great potential for cooperation
between the disciplines of control theory. An excellent example
is 2 recent economic control study2 by two economists: Kendrick

and Norman, and two control engineers: Tse and Bar-Shalom.

- ——— T — ———— - — - o i

Journal of the American Statistical Association, Vol. 74, No.
367 (September, 1979), pp. 628-643.

2 pavid A. Kendrick, Stochastic Control for Economic Models (New
York: McGraew-Hill Book Company, 1981)




Process Control

Inputs pee————-PN Process p———> oOutputs

Controller

FIG. 2.1 OPEN-LOOP CONTROL.

Lets begin by 1looking at some of the basic ideas behind
industrial process control. Figure 2.1 illustrates one of the
simplest types of «control: open-loop control. Given some -
requirements for the system which are translated into electronic
or mechanical signals termed set ©points, Vs' the black box
called a controller generates a controlling signal, Vc . This

signal may trigger a switch or a lever in a correction unit to



control the process to its-desired levels. Tf the set points are
fixed, then the control unit is termed a reqgulator. A controller
has the capability to handle varying set points, which are
normally changed by some externél master unit, e.q., during the
warm-up phase of some complex process., |

Notice that the control signal Vc is 1independent of the
outputs of the process. Should an abnormal event take pléce, the
control signal may not respond correctly and the system could
move towards explosive instability. To correct this weakness,
closed-loop feedback control was developed and 1is shown 1in
Figure 2.2." Here a detector is used to sense the output étream
and feedback an output signal to the controller, Vo' in effect
closing the <control loop. Any sudden shocks to the system will
now be sensed by the controller and the necessary conéfol
strategy implemented. |

There are further refinements in process control to improve
the quality of control. For example, another detector may be
placed in the input stream or at some 6ther leading position to
detect shocks before they reach the process. This new loop, a
feedforward loop, gives the system warning of things to come and
allows extra time to react smoothly to the new situation.
Feedforward control is illustrated in Fiqure 2.3.

Yet another wvariation 1in control strategy is cascade
control which has the effect of distributing  control
intelligence more wicdely over the system. Additional controllers

are placed in the input stream, one for each input, with a
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FIG. 2.2 CLOSED-LOOP FEEDBACK CONTROL.
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2.3 FEEDFORWARD AND FEEDBACK CONTROL.



master controller in charge of the input controllers. The master
controller controls the input controllers' set points which it
changes according to the overall state of the process. With the
advent of microprocessors and improved computer ne twork
vcommunication, cascade control with feedforward and feedback

control loops can be readily implemented in modern ~process

control applications.

Proportional, Inteqgral and Derivative Control

As its name implies, under proportional control, the
controlling signal is in direct ©proportion to the difference

between the set-point signel and the feedback signal.g
\') = K (Vv - V ) ‘ (2.1)

Unfortunately, the lag between fhe detected output signal,
Vor and the applied control signal, Vor Causes bias problems or
offset, as it 1is known in process control terminology. Figure
2.4 clearly shows this problem for the case where the set-point.
demand 1is in the form of a linear ramp fqnction. In practice,'
the set point movements 'will rarely follow such a simple
function but the figqure 1is intended to show that,‘during a

per iod of adjustment, the process may not be at the desired

level when only wunder proportional control. This bias problem



Offset

Process Desired

//;ctual

Levels

Outputs Levels

Time

FIG. 2.4 PROPORTIONAL CONTROL OFFSET EFFECTS.

can be removed by adding another component to the control rule,
an ' integral component. Here differences between set-point
signals and feedback signals are constantly integrated and an
addition is made to the control signal in proportion to the
integral. This has the effect of removing bias and, if applied
to the beginning of the ramp in Figure 2.4, would gradually
bring the process to 1its desired levels as indicated by the
dotted curve. Another component is often édded to dampen
irrequlaties and stabilize the process: the derivative
component. The other components could, if necessary, be used by

themselves but the derivative component, though a stabilizing



influence in combination with the others, could be unstable when
used by itself.3 The full proportional, integral and derivative
controller, sometimes referred to as the PID controller, can now

be formulated:
Vo= K + KV + K _Jvdt + KDdV (2.3)

Kis and Kp are constants,

and v = ( Vs - Vo )

Control of Economic Systems

In process controi; after considerable testing, one of the
critical functions of the control engineer is to tune the
process by judicious selection of the PID controller constants.
In economic systems, the control rules can only be developed
from a mathematical model of the system. The model is typically
derived from a limited number of past observations. .The truth
and the accuracy of the model, given the many specificatipn
assumptions and limited information, become vital considerations
later, at the time of implementing the control rules. The’
control of an economic system is schematicélly illustrated in

Figure 2.5.

—— - —— o ——— —— - ——— ——

3 E. I. Lowe and A. E. Hidden, Computer Control in Process
Industries (London: Peter Peregrinus Ltd., 1971 ), p. 31.
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FIG. 2.5 CONTROL OF AN ECONOMY

There are some major.differences between process control
and the control of an economic system. The planning time horizon
is often short, perhaps only six to ten time periods 1into the
future., This would probably mean that the economic system is not
in a steady state; the economic control problem 1is' one of
disequilibrium dynamics and the goal is to produce a stablé,

short-term, controller able to keep the economic system on treck

11



even in times of wunforeseen events or shocks. Perhaps the
biggest difference between process and economic control is the
inclusion of a decision-maker in the 1loop, écting as an
information broker and a correction unit.

To prepare for future theoretical analysis, the following
definitions are pertinent, Open—lqop control will indicate the
absence of feedback control, 1i.e., a sequence of control
strategies, set beforehand, which are independent of the effects
that they produce. Under normal conditions, one would expect the
model of the economic system to be updated with the latest
observationswbefore developing new control strategies. Assuming
the model to be wel} structured, Jjust like wine, it will improve
with age; the precision»of the model will increase as more
observations are included. It could  be said that the méael
passively learns from these new observations. Some controlbrules
for economic systems take explicit account of this updating
procedure i.e., that the uncertainty in the model will decrease
over the planning time spen. Meth§ds that actively take this
learning into account will be said to produce adaptive control
rules. In the literature, such nemes as dual control,
closed-loop control and active-learning stochastic control are
all used interchangeably to mean adaptive control.

The stage is now set for the simplest of controllers, the
linear—quadratic—tracking controller, It looks completély
different to the PID controller at first sight but it turns out

to be remarkably similar in many respects.

ok
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IT1I. LINEAR QUADRATIC TRACKING CONTROLLER

The following derivation1

of the linear-quadratic-tracking
controller (LQOT controller) serves the dual purpose of defining
terminology to be used 1later in this work and to raise a
framework on which to build the more complex adaptive.cont;ol
models in the next chapter.

Much of scientific control theory focuses on confinuous
systems and dynamic relations are normally represented by a set
of simultaneous differential equations. Economic systems, with
longer time periods, can be assumed discrete in time and the
dynamics can therefore be introduced through a set of finite
difference equations. What better source for the dynamics than
an econometric model of the system. These models, normally used
for testing 'what if' situations or forecasting, contain through
their lag structures all the necessary information to perform
dynamic analysis. Further, an analyst needing an econometric
model for a control study, is likely to pay much more attention
to lag structures and the residuals in the model development

2

rhase. 1Indirectly, this 1is just the goal of Zellner,? stated

earlier, for generally improving the specification of structural
econome tric models,

—— - —— | ———— - W T ——_——

1 Gregory Chow, Analysis and Control of Dynamic Economic Systems
(New York: John Wiley and Sons, 1975), pp. 226 - 232,

2 Zellner, Statisticel Analysis of Econometric Models.

13



State-Space Transformations

First, lets define how time is going to be treated in this

derivation. Assume that N time periods of data exist alreacy and

‘they are available for the development of the econometric model.

The object of‘ the control study, then, 1is to set control
variable values T time periods into the future given N time
periods of historical data. A time period can be three months or
it could be a year; it depends only on the frequency with which
the historical data were gathered. Time period 0, in effect,
represents the last time period at which a set of observations
were includee in the model data. Time period 1, will, of course,
be the first time period into our planning time span of T time
periods; this is normally the most impertant time period for the
decision-maker in terms of immediate implementation of fhe

control study results. Now, lets consider the reduced form of a

gener al econometr ic model:

. s o + A y + C x + . e e +

= + C X
y t-1 nt ° t-m ot t nt t-n

A
t 1t ¥

+ Ew + € (3.1)
t

where Yt is a p-vector of endogenous variables, x, is a g-vector

t

of instrument or control variables, At ' Ct and Et are matrices
of coefficients and wt is an r-vector of exogenous variables
which are not subject to control. The matrices are labelled with

time subscripts to indicate that they or their probability

14



distributions may vary over time. The error vectors are
assumed to be serially uncorrelated with a mean of zero and a
covariance matrix Vt.

The analysis can be simplified by converting the set of
equations in (3}1) to & first order system., This is achieved by
rearranging them to reduce the lags in the redefined states to

be at most one time period as follows in equations (3.2):

- N T Yy ¢ L TR A [ Y r
y A A - o0 A C N e o o C y C X b €
t 1t 2t mt 1t nt t-1 ot] t | t t
' 1 0 e e 0
Yiq : 0 0 0 yt_2 0 0
y 0 0 ..I 0 0 ee. O y 0 0 0
t-m+l = o] Ttem [+ + +
X 0 0 ees 0 0 ees O X I 0 0
t t-1
X 0 0 eeo O 1 ees O 0 0 0
t-1 -2
[ ] L ] L] [ ] O O L ] - L ] L ]
X 0 0 ...0 0 ..IO x 0 0 0
[ t-n+l} | L tn} { ) S T

The system of equations in (3.2) can be written in a nmore
compact form after svuvitable redefinition of the vectors and

matr ices:

y = A vy +  C x4+ b+ € (2.3)

where b = E w

s
w




or y = D z +¢e (3.4)

t t t t
e D =
where c ( Atl Ctl Et)
and z' = (y' | x'" | w')
, t t-1 t t
and | represents a matrix or vector partition

Clearly, the systems (3.3) and (3.4) are much simpler and
consequently should be easier to analyse. This system ié known
as a state-space representation of (3.1) and, in fact, it is an
art to select the best representation. Here, convenience has
guided the transformation along with meaningful economic
representatién. wall3 suggests methods for obtaining oétimum
state-space forms which have minimum realizations. The best
realizetion, according to Wall, 1is the one that produces the
smallest dimension of the state vector. Often sacrificed in this
realization is economic meaning for some of the state variables.
An efficient realization can, however, considerably »reduce the

computational cost; Norman?

states that the computational cost
rises exponentially (as a cubic function of the state vector

dimension) for his methods of optimal control computation.

—— v —— o ——,, — o~ —— W— —— —_ —

Control," IEEE Transactions on Automatic Control, AC-1%, Vol. 6.
(Cecemher, 1974) pp. 852~-873. '

4 Alfred L. Norman, "Linear Quadratic Control for Models with
Long Lags", Econometrica, (forthcoming).
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System Objective Criteria

The performance of the system can be measured as some
function of the deviations ef the state variables, yt,.from
their predetermined targets, a - One particularly convenient
representation (and the one most often used in economic control

studies) is the additive quadratic penalty cost function:
T “ ,
W = I 8 (y - a)' K (y, - a,) < (3.5)

The objective is clearly to minimize the weighted sum of the
squares of "the deviations of the state variables from their
targets. The relative importance of achieving certain . targets
can be introduced by the appropriate selection of the weights in
the matrices Kt . A larger weight for a particular variable Qill
give preference to 1its target achievement over other state
var iables., It is interesting to note that the control wvariables
also appear in the state vector. They too can be given targets
even though they are instrumental in helping others to achieve
theirs. 1Indirectly, the weights given to them represent the
price of control. Clearly, control <can be made expensive or
cheap. In many control studies, as is the case in this work, the
weighting matrices are positive definite diegonal matrices which
are held constant throughout the planning time span. To express
the importance of achieving the last period targets 'over the

others, & terminal factor, o , cen be used to factor the lest

17



s

weighting matrix, KT . The discount factor,si , is inclucded so
that future penalty costs can be appropriately discounted before
addition to the total penalty cost. Values for a Kt, o , and,
Bt would be assigned by the decision-maker. It is quite possible
that some iparameters will be controversial vand the
decision-maker will need to perform sensitivity analysis for
di fferent wvalue combinations. An obvious example ofvthis in
economic applications is the relative weights to assign the
targets of inflation &and unemployment. The decision-maker
probably represents an executive committee or cabinet with each
member. haviﬁg different targets or weights for the stochastic
control analysis. There might also be several 'scenar ios to
explore corresponding to different forecasts for the exogenous
variables. The simple task of assigning values to \fhe
parameters, mentioned above, may, in fact, be the most difficult
and time consuming part of a stochastic control study.

Questions often asked are: why 1is the penalty cost a
quadratic function? - why not a cubic or some other function?
The answer is difficult and certainly it would be more elegant
to leave the function open for & later choice. Unfortunately,
the controller derivation becomes unwieldy for anyfhing other
than & quadratic function. Similarly, if <cross-terms are

included in the penalty function to take account of the

. — ———— —_— - t__ " —— —— e —

5 For simplicity, both the discount factor,B, , and the terminsal
factor, o , are excluded from the derivation of the
linear-quadratic tracking controller. It is 2 simple matter to
include them later.

18



covar iance between ‘the state variables (or even worse,
coyariance between stéte variables in different time periods),
the derivation becomes even more difficult. The choice of a
‘quadratic function, much like the choice of simple least squares
for regression analysis, represents a compromise‘between an
elegant yet insoluble problem and a much simpler yet tractable
approach.

Another undesirable feature of the penalty function is the
equeal treatment it hands out to. undershooting versus
overshooting the targets. This problem can be relieved by
careful seléction of the targets so that the solutioﬁ path
consistently overshoots or undershoots the targets. Where
gradient methods are wused in the stochastic control analysis,
another way to relieve éhis problem is to impose inequaiity
constraints on both the state and control variables, restraining

them from entering forbidden zones.

19



Der ivation of the LQT Controller

It is shown En Appendix‘A that classical optimal control
theory for economic systems with discrete time periods is
directly equivalent to conventional dynamic programming.
Starting at the end of the planning time span and working
back wards, the control variable values would be sought to
minimize the total penalty cost-to-go at each time period. Lets

begin by looking at the penalty cost for the last time period:

w = E (y -a)' K (y -a)
™ T T T T T T
= E (y'" K vy - 2y'"K a + a'K a) (3.5)
T T T T T T T T T T :
= E (y'"H y - 2y'h + c ) (3.7)
T T T T T T T

In the above equations, ET r is the conventional expectation
operator, using all the probabilistic information available at
time period T . For the present, it can be assumed that T has
a value of zero, i.e., that the expectation operator utilizes
only the N historical observations. Later, the range for the
expectation operator will be expanded. The substitution in (3.7).
was purposely made in anticipation of a later recurrence

relation and, of course:
K a (2.8)
T
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The next step is to substitute the state-space relations (3.3)

into the penalty cost (3.7) to get:

w = E (A vy + C x +b)'BH (A vy + C x +b)
T T T T-1 T T T T T T-~-1 T T T
+ E €' H ¢ - 2 E (A vy + C x +b ) h + E ¢
T T T T T T T-1 T T T . T T T
= + ! +
Er (Ap Yp_p + bg)" By (Bpyp bo)
+ x'E (C' HC ) x +2x'E C'H (A vy + b )
T T T TT T T T T T T “7T-1 T
+ Ee ' He - 2E (A vy +b ) h
TT TT T T T-1 T T
- 2x'"E C'h + E ¢ (3.9)
T T T 7 T T
It is now possible to find an expression for the optimal x by

T;\
differentiating the above expression and applying first order

conditions:

= ! + b + E (C' H_C *
0 2 B Cp By (Ap ¥p g * by) 2 E (Cp Hy GO) %,
- 2 (E C' )h (3.10)
T m ™

The expression for the feedback control function can now be

derived from {(3.10).

Tk
Xp = Gp Yqp o 9 ,
G =-(E C'H C) (E C' H A 3.11
T (T T T T) (r T T T) ( )
-1
= ~-(E C' H C E C' H b - E ¢! h
Ip ( T T T ) ‘( . T T T (E Cp ) hy)



By substitution of the expression (3.11) for x* into the
T

terminal penalty cost (3.9), we get:

£
il

E [ (A + CG) vy + b + C
T T T T-1 T T T T

x [ Ay + GGp) yp_ g + by + Cpogp]

+ Ee'H € - 2E A +CG "+ b + C ' h
T T T T T[(T TT)YT—l T Tg”‘]

=y' _[E (A_+ ' + C
YopplB A+ C G " By (A pCpl ) Yooy
+ 2 y! A + C ' - h )
Yp1Br T (g Lp (pbp o)l (3.12)
+ b+ ' + + ' p_ €
E. (b + Cuop)' By (b, + Crgp) Etép Fop &1

- 2E (b +Cg)'h + E ¢
- T T T°T T T T
Now lets move to the next-to-last time period and formulate its

penalty cost:

+ w) (3.13)

It is possible to substitute for the optimal last period cost

(3.12) into (3.13) to get:

2 y'_ h + c ) (3.12)

* =By T-1 'T-1 -1

T-1 T Y

! H
T-1 T-1"T-1

The quadratic constants in (3.14) can be obtained from the

following so-called Riccati recurrence relations:
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H = K + E A_+ CG)' H A 4+ CG
T ( T T T) T ( T T T)

T-1 T-1
= ' ] '
KT—l + ET (AT HT AT) + GT (ET CT HT AT) (3.15)
= ' -
hp_y = Kp_g2pog v Ep Ap+ € GO' (h H, b.)
= K a + E (A + CG)? h
T-1 T-1 T T T T
- E A' H b - G!' (E C' H b)) (3.16)
T T T T T T T T T -
=E (b 4+ C ' H b + C
cT—l T ( T TgT) Y ( T T gT)
- 2 E b + *h + '
r Pr Cp 9p)" Mot oap g Ko1%ng
+ ETeT' HT €p + E:T Crp (3.}7)

The similarity between (32.14) and (3.7) should now be evident
and fortunately the derivation is now complete. In fact the

above Riccati relations hold for every time period and can be so

written:

= . t
Ht—l Kt—l + ET (At + Cth) H (At + Cth)

t |
- ' ' '
Kep* Eg (AL H A) + G (E_CLH_AY (3.18)
Beoy = Keop2pan * Bp (A + GG (hy = Ry by)
= K131+ Ep (AL + C G hy
P ' - ] . 1
B, AL H_ b Gy (B, CL H_b) (3.19)



= + ! + 3
Cc ET (bt Ctgt) H (bt C g )

t-1 t t “t
- L] ]
2B by * Gt b oA K1
+ et + '.
BLfp My E. c, - (3.20)

Starting at the last time period, we simply backtrack, using the

Riccati recurrence relations, storing the values H h G

tl Ctl tl
and 9. all the way back to the first time period. But it-is now

tl

possible to substitute actual values into the first feedback

equation:
X = G Yy + gl (3.21)

The first period control values, can be wused in (3.3) to

Xy
find the first set of state wvalues. Clearly, all the state
values can be determined in a similar manner wusing a forweard
sweep to the last time period in the planning time span. A full
stochastic solution for the LQT cbntroller has now been
obtained. This solution will minimize the total expected penalty
cost as long as E(C'HC) is positive definite or, equivalently,
as long as Ht is positive definite, The symmetrical definition
of penalty cost in (3.5) ensures that Ht' will be positivev
definite.

It is also interesting to compare the LQOT controller with

the PID controller from Chapter I1. First, because the control

variables in (3.3) have an immediate effect (they are not lagged
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compared to Y, ), there is no need for the integral component;
there are no bias or offset problems. At first sight, the

feedback function (3.11) appears to be a simple proportional or

linear controller. However, there may already be first

differences (equivalent to derivatives in a continuous system)
,
in the state wvector. If not they <could be added using a

relationship such as:
Yy, - Y = (A - I)y + C x + b (3.22)

Both proportional and cderivative components would now be present
in the LOT controller. The decision-maker will have to decide
the weight to place on the first differences compared to the
other state veriables. PBut this is Jjust 1like the contfol
engineer in process control tuning the process by
experimentation with the PID constants,

So far no mention has been made regarding the calculation
of the expected values in the feedbéck and Riccati equations,
One approach is to wuse only the mean wvalues of the model
coefficients or parameters, ignoring any covariance relations.
This approach, very appealing 1in its simplicity, yields the
certainty equivalence solution. A more difficult but perhaps.
more realistic approach is the uncertain parameters method which
incorporates the covariance relations. The probability'thedry

required for these methods is to be found in Appendix B and an

example of their applicetion to a relatively simple econometric



model 1is shown in Appendix D. Both methods will be explored
later, along with adaptive control methods which are the subject

of the next chapter.

26



IV. ADAPTIVE CONTROL

The LQOT controller developed in the last chapter does not
take into account how the model will actually be applied; that
the model will‘probably be revised with new information each
time that a new set of control policies are required. Adaptive
controllers coﬁpensate for this updating procedure by allowing
for a decrease in parameter uncertainty over the planniﬁg time
span. Predicted state variable values are treated as if they
were new observations and the model is appropriately updated
Qith them at each time period under consideration. In effect,
the expectation parameter,1 T , will take on a value of (t-1)
when the time period t is under investigation.

For small models with large quantities of historical data
and relatively short planning time spans, the simple LQT
controller from the last éhapter should be quite sufficient.
Typical practical situations, however, tend to produce large
models with a limited number of historical observations. Here
adaptive control policies could be quite different to the simple
LQOT control solutions.

In the last chapter, with T equal to zero, it was obvious
that an earlier state value in the planning time span could not
affect the values of the féedback matrices, (3.11), for a later
time period. With adaptive controllers, this is no longer the

S o —— o —— . ———— o o

Unless otherwise stated the value of T will be (t-1)
throughout this chapter.
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case., Earlier state values do in fact affect later feedback
matrices by working indirectly through their covar iance
relations. It would seem that under these conditions, the besic
foundation of dynamic programming: Bellman's Principle of

2 would be violated. Amaz ingly, with care) dynamic

Optimality
prdgfamﬁing can still be used under these circumstances.

There have been several attempts to produce efficient
adaptive cSntrollers in the past. Because the covariance
relations are so complex and not easily represented, they are
all approximations: and differ markedly in their initial

assumptions and computational approaches. A few of the more

popular ones will be described in the following sections.

The MacRae Adaptive Control Mcdel
3

Elizabeth Chase MacRae~” developed one of the simpleét yet

most elegant adaptive control models. Before describing her

The Principle of Optimality states:

An optimal policy has the property that whatever the
initial state and the initial decision are, the
remaining decisions must constitute an optimal policy
with regard to the state resulting from the first
decision.

Taken from: Richard E. Pellman, Adaptive Control Processes:

>

Guided Tour, (Princetown, New Jersey: Princetown University

Press, 1961), p. 57.

3 Elizabeth C. MacRae, "An Adaptive Learning Rule for
Multiperiod Decision Problems, " Econometrica, Vol. 43 No. 5-6,
(September - November, 1975), pp. 893-906.
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model in detail, a small digression on the mechanics of updating
an econometric model would be wuseful. Assume that a set of
exogenous observations are stbrgd in @ matrix Z and thet we are
about to revise the model with a single set of observations in a
column vector zt. Clearly, as indicated in Appendix B, the old
parameters of the model, T _jpwere derived from simple regression

analysis:

~1
Tel = (z' z) 2' Yy (4.1)
and after revision the new parameters will be: .
T = ' + N (2! 2.2
L (z' z ztzt) ( | zt) Y (\‘)
The coefficient or parameter covariance matrix,4 Ft 1 at time
{t-1) is:
T = v, (2 Z)_l. (4.2)
t_l t—l 71 L
and at time period t is :
v oot 4.4y
= A"/ Z2' 2 4+ z 2z .
r, t@( ) (

A simple covariance recurrence relation is thus revealed:

T —— " — —— — - — " ‘——

For & fuller description of the updating variance covariance
relations, see Appendix B and in particular note the derivation
of equation (B.17).



= -1 '
roo= T ., ¢ A ()(zt z}) (4.5)

MacRae adds this recurrent covariance relationship to the
previous penalty cost function (3.5) with appropriate

multiplication by a matrix of Lagrange multipliers, M :
t

T -
W = Et=§ E [(yt - at) Kt (yt - aﬁ)
-1 -1
+ Mt®{I‘t o1 Ve ®(zz)}] (4.6)

which can be r:ear:ranged5 into the following form:

w E g tftr( )* K ( )
! = - a ) - a
=1 + yt t t y t
A () M) oz, (4.7)
l l
+ M (r - )]
t @ t Pt%l

The middle term in (4.7) can be expanded by substituting for z
from (3.4) and splitting M = V"l® Mt into partitions
t .

corresponding to A, C, and E in the system equations (3.3):

4 N » N
: : : AR AC  AE
et xg IwY M Mcc Mc Yea
, c 2
MR M X,
EA EC _EE -
MM W, (4.2)
\ I | -

The Kronecker product operator, ®, and the staer product, @ ’
used in (4.3) through (4.7) are defined in Appendix B.
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Similarly the first term in (4.7), (y' Ky ) can be partitioned
t tt

after substituting for Y from (3.3):

4 Y ( 3
! ! w! A A A HC AH '
(yt_l! X, ! &) H E Yi 1
CHA CHC CHE xt
E HA EHRC EHE wt (4.9)
\ FAN )

From (4.8) and (4.9) it 1s obvious that wherever the
expectation of a triple product occurs in the MacRae model, it
- will be reéuced by the appropriate partition matrix of (4.8).
For example, E (A H A) in the simple LQOT controller will become
E (A HA - MAA ) in the MacRae model.

By simply augmenting the triple product expectationsx\we
have, in effect, completed the differentiation of (4.7).with
respect to Xy and the Riccati recurrence relations (3.18),
(2.19) and (2.20) suitably modi fied® can be used, But we can

also differentiate (4.7) with respect to the coefficient

variance, Ft-l’ and obtain yet another recurrence relationship:

= ' A
Bt Mtrl {Mt + Ft—l { Htx Er(zt zp ) ]Ftsl } (4.10)

In ectual fact the triple product expectations should be
reduced by only a propgétion of M, for example, E (C H C) would
become E (C H C - v M-“™ » where the stability factor, Y , is
in the range 0 £ Y § 1. This is to guard against the augmented
triple product of E (C H C) becoming negative definite, changing
the optimization from one of minimization to maximizetion. The
value of the stability factor would be ascertained by experiment
and for most models it is expected to be unity.
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With this recurrentl relation we are éable to tailor the
coefficient covariance matrices for minimum penalty cost.
Unfortunately, this controi problem cannot be solved as
easily as in the last chapter because of the compleiity of the
new covariance relations, Numerical techniques must therefore be
used. One approach is to start the solution off with thé simple
LQT controller solution assuming uncertain parameters.: The se
values can be wused to update the covariance relations in the
planning time span. 'Assuming that M is zero, the MacRae
recurrence ;elations (4.10) can be applied to yield a sequence
of Lagrange multiplier matrices. When the first time period 1is
reached, a new solution can be obtained by substitution in the
system equations (3.3). This new solution can then be used:\to
update the covariance relations in the planning time spén and
another iteration of the MacRae model under taken. With each
iteration the penalty cost should get smaller and when the
decrease is below & predetermined leﬁel, the iterations are
terminated, vyielding a full adaptive solution. It is a simple
matter to repeat the above steps for the <case where the
stability factor, Y , 1is zero. This too will yield a learning
solution but without the MacRae recurrence relations (4.10). In
fact this model embodies accidental 1learning. It will be
referred to as the heuristic uncertain parameters model_ and it

too will be tested later in this work.

L3
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The Chow Adaptive Control Model

Chow’ also developed an adaptive control model. He
incorporated the state covariance relations in the planning time

span by using a non-additive penalty cost function.

T T '
K Yy + 3 I Yy' K y + I y' K (4.11)
t t t t

Notice the 1large number of quadratic, forms that will be
generated from (4.11) which not only include interstate impacts
within a pérticular time period but also interstate iﬁpacts
between time periods. Chow applies the normal dynamic
programming approach except that he splits the penalty function

into two parts at each time period: a part that is dependent on

xt - ET wt , @and a part VNt that is independent of Xe . For
example, at the last time period, the dependent part is :
W, = E_ [ yy B, .V y'('g H‘y + h_ ) 1 (4.12)
T T T 'T,T'T T'o1 T,8"s T -

His approach directly pareallels that of the simple LQT
controller in the last chapter except that the expressions are
longer and more unwieldy. Chow's model, like any other adaptive
model which includes the complex covariance relations, does not
necessarily have a quadratic cost~to-go penalty functiqnf Chow

7 Gregory Chow, "A Solution to Optimal Control of Linear Systems
with Unknown Paremeters, " The Review of Economics and
Statistics, (Augqust, 1975), pp. 338-345,




in effect approximates it as a quadratic by numerically fitting
a second order Taylor series., In this way he is able to produce
simple recurrence relations. Unfortunately, the computational
cost for these simple recurrencé relations can be enormous. Just
to give an idea, consicder the case of a model with 10 States, 10
exogenous variables for regression and lO\time periods in the
planning time span. At each iteration, 220 Hessians or hatrices
of numerical second order derivatives of order 10 by 10, would
be required. Each entry in 2 Hessian matrix would require 2
regression calculations, each one requiring the inversion of a
10 by 10 matéix; in total, just for part of the overall anaiysis
per iteration, this is 44,000 inversions. A marathon of
computation fraught with many sources of error and 1loss of

accuracy.

The Norman First Order Dual Control Model

Norman & developed a simple yet efficient open-loop adaptive
control model. His approach dependé on the separation of the
control problem into a deterministic part and a stochastic part.
The system equations from (3.3) can be rewritten to reflect this

separation. The deterministic component of Yy would be:

y. = A y + C x + b (4.13)

s > —— —— —————— ————— ————

Alfred L. Norman, "First Order Dual Control," Annals Of

FEconomic and Social Measurement, Vol. 5 No. 3. (1976) pp.
311-321
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and the stochastic component of Y Wwould be:

A = A + C + AA Yy + AC X% 4.14
Y e 8% e A% AR Y, e Xe 0 )
+ A Db + €
t t
where = ¥ + A
Yt Yt Yt
and X = ; + A X
t S Tt

Again general dynamic programming can be applied using an
objective function of the following form:
-t

B I(y - a) K (3 - a) + ¢.1] (2.15)
t t -t t t t t .

T

w = E I
t=1
where ¢,, in effect, includes the effect of the coefficient
covar iance relations over the planning time horizon and can be

formulated as follows:

- ]
¢t ET( Ayt Ht Ayt)
: - - - ( \V2 3
= (y! . I'x |w) E A'HA A'HC A'HE|| ¥
yt—l t t T Ye-1
C'HA C'HC C'HE §t
E'HA E'HC E'HE|| w (4.16)
\ /\ )

Norman wuses a gradient method to obtain a stochastic

control solution and, at each staqe, he obtains a simple
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certainty equivalence solution using a modified version of the
Riccati equations (3.20). The only <change 1is to the last

equation for c and simply requires the addition of a new

t-1
term,¢t , on the right hand side.

The method can be explained more easily with reférence to
the flowchart shown in Figure 4.1. To begin, a simple certainty
equivalence solution is derived. This is used to generéte the
covariance relétions, (4.18), and enables the penalty ceost fof
all time periods to be evaluated. Gradients are then derived for
each control variable to see if the optimum has been reached.
Gradients clése to zero signal that an optimal solution haé been
found. I1f the search is not over, 2 new set of control values
are computed9 and the preceding steps repeated. When the search
is over, the optimal control is applied to determine the stéte
values at time period t; this new observation set is recérded
and the next time period is then considered.

The method is fast and has the advantage that constraints
can be applied to the state valués if so required. The
disadvantage is that it is open-loop control and may not perform

as well as feedback control in the later time periods.

9 Normally some type of gredient search algorithm would be used
here such as ZXCGR or ZXMIN from the computer package IMSL by
IMSL Inc., NBC Building, Houston, Texas, U.S.A. described in:

John R, Rice, Numerical Methods, Software, and Analysis: IMSL
Reference Edition, {(New York, New York: McGraw—-Hill Book
Company, 1983), p. 632.
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Other Adaptive Control Models

The literature abounds with other adaptive control methods.

10 The ir

One of the most famous is that of Bar-Shalom and Tse.
model is a more refined version of the Norman model and can
handle more difficult situations. For example, the systems
equations can be non-linear or the state values can contain
measurement error., Given some assumptions about the parameter
relationships, the model can elso cope with unknown paraemeters.
The disadvantage of the method is the high computational cost,
like Chow's model, attributable to a second order Taylor series

11

approximation compared to the first order approximation of

Norman. This same criticism can be levelled at some other fine

13

adaptive control methods: Kendrick!?2 and Upadhyay using the

adaptive model of Deshpande.14 Prestcott!® also produced some

very interesting adaptive control results. Unfortunately, the

Y. Bar-Shalom and Edson Tse, "Ceution Probing and the Value
of information in the Control of Uncertain Systems," Annals of
Economic and Social Measurement, Vol. 5 (1976), 323-338.

11 par-Shalom and Tse apply the second order Taylor series
approximation before taking expectations whilst Chow does it
afterwards. They claim their method is more efficient.

12 Kendrick, Stochastic Control for Economic Models.

13 Treveni Upadhyay, "Application of Adaptive Control to
Economic Stabilization Policy," ,International Journal of
Systems Science, Vol. 7 No. 10. (1976) pp. 641-550.

14 J. G. Deshpande, T. N. Upadhyay and D. G. Leiniotis,
"Acdaptive Control of Linear Stochastic Systems," Automatice,
Vol. 9. (1973), pp. 107-115,

15 Edwerd C. Prestcott, "The Multi-Period Control Proktlem,"
Econometrica, Vol. 40, NMo. 6 (November,1972) pp. 1043-1058,




results were found by coﬁplete enumeration for a very simple
model and the approach would not be prectical for most
situations. Rausser and E‘reebairn16 have also contributed to the
wealth of adaptive control information. They looked at severel
adaptive control methods and tried varying the numberv of time
per iods ovér which learning. took place. They referred to the
me thod as M-Control, M being the number of periods ovef which
learning was considered and applied the simple LQT controller
for the the remaining (T-M) periods in the rlanning time span.
An important research objective in this work is to test the
application of control methods to practical situations. Somé of
the adeptive controllers descrihed above will be tested to see
how they measure up to this objective. The rationale for
choosing controllers énd the testing procedure itself willbbe

the subject of the next chapter.

. o Y ———— ————— ——

G. C. Rausser and J. W. Freebairn, "Approximate Adaptive
Control Solutions to US Beef Trade Policy," Annals of Econonmic
and Social Measurement, Vol. 3, (Jenuary, 1974), pp. 177-203.
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V. METHODOLOGY

In this chapter, the first item to be considered will be

- checking and testing of the control algorithms. As mentioned in

the last chépter, there are many control studies in the
literature, each differing slightly in data used, assumptions
made or numerical procedures followed. The second part of this
chapter will concentrate on the selection of some of. these
control models for testing. Finally, we will be cdescribing the
testing procedure itself.

A set of computer programs (the contrdl algorithms) will be
used to test the various models on several econohetric models.
The author has tried” to resurrect the control models . as
accurately as possible from articles in the literature. With
ambiguity or vaque descriptions, there might bLe slight
differences to the original models. Similarly, the econometric
models were also taken from articles in the control literature.
Differences 1in regression me thods or err&rs in data
communication may ceuse small variations from the original

models. The author has tried to be as accurate as possible,
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Algorithm Development and Calibration

A search was conducted to find a simple econometric model
for checking the computer algorithms. Preference was given to
one that had been used previouély in other control studies;
especially one that had been subjected to a widé range of
control models. The one eventually selected was developed by
Abell and was originally uséd for comparing monetary and’ fiscal

2

policies. Chow® also has used it for some control investigations

as has Kendrick,3 employing an updated version of the Bar-Shalom

and Tse model.4

The Abel model élong with its data is fully
described in Appendix C. |

At the heart of the computer algorithms is the simple LQT
controller which, as mentioned in Chapter 111, was based upon
the work of Chow.> Agel's computer algorithms were also baged

upon the work of Chow &nd therefore should provide an

interesting compear ison.

" — . A T —— o ———— ——— 2 ——

1 Andrew B. Abel, "A Comparison of Three Control Algorithms as
Applied to the Monetarist-Fiscalist Debate,"” Annals of Economic
and Social Measurement, Vol. 4, No. 2 (1975) pp. 229-253

2

Chow, Control of Economic Systems, p. 271.

3 David Kendrick, "Caution and Probing in a Macroeconomic
Model, " Journal of Economic Dynamics and Control, Vol. 4, No. 2,
(May 1982) pp. 149-170. '

4

Bar-Shalom, Control of Uncertain Systems.

3 Chow, Control of Economic Systems.

11




An Econometric Model of the Canadian Economy

A key research objective from Chapter I is to conduct a
control study on a relatively-small, econometric model of the
Canadian economy. The Laidler model6 was selected for the
purpose and it is described more fully in Appendix E.

The Laidler model contains seven equations and, although
developed in a monetarist environment, is neutral with respect
to the monetarist-fiscalist debate. It contains both monetar ist
and fiscalist control variables. The suspicious absence of the
interest rate as an endogenous variable is explained by the use
of a much wiéer definition of money, M3, rather than the more
common definition, Ml. Testing revealed that M3 is not sensitive
to interest rate. The model is log linear and quite robust. With
minor differences, the model has been applied to the econoﬁies
of Britain,7 USA,8 and Italy.9

It should bhe noted that Laidler used constrained, full

information, maximum 1likelihood regression techniques in

6 David Laidler et al., "A Small Macroeconomic Model of an Open
Fconomy: The Case of Canada," Paper Presented at the Fifth

Par is-Dauphine Conference on International Monetary Economics,
Paris, June 1981,

7 Dpavid Laidler and P 0O'Shea, "An Empirical Macromodel of an
Open Economy Under Fixed Exchange Rates: The United Kingdom
1954-1970," Economica, Vol. 47, (1980), pp. 141-158,

€ pavid Laidler and B. Bentley, "A Small Macromodel.of the
Post~War United States," University of Western Ontario Research
Report 8101, (1981), Mimeo.

2 p. Spinelli, "Fixed Exchange Rates and Monetar ism: The Italian
Case,"” University of Western Ontario Research Report 7915,
(1979), Mimeo.



developing his model. The frequency with which regressions are
required, especially in adaptive control models, make this
approach computationally impractical forv this control study.
However, one method that can be uséd, again' a compromi se
approach, is simple regression utilizing extraneous information
(see Appendix B). The extraneous information would take the form
of 2 set of zero linear constraints on the model's coefficients.
At least some of the major constraints can be inéorporated in

this way.

Control Models

‘The simple LOT control model from Chapter III is an obvious
candidate for testing,.both certainty equivalence (no pareéameter
covariance relationships assumed) and with uncertain paramete;s.
It will also be interesting to test them 1in a- leafning
environment compar ing their performance with some of the nmore
complex adaptive models from Chapter IV.

In choosing adaptive control ﬁodels for testing, a
compromise has to be struck between accuracy of representation
and computational cost. The models ofj Chow, Bar-Shalom,
Kendrick, Prestcott, and» Upadhyay were felt to be too
computationelly demanding, especially when including extraneous
information in the analysis. However, the MacRae model,
including the heuristic uncertain parameters model as a special
case, looks ‘computétionally possible., Arguing along similar

lines, the Norman model also should be chosen; it contains the



elements of some of the more complex models but without the

concomitant computational cost.

Monte Carlo Testing

-

The testing of each control model 1is considered an
extremely important part of this work and something often
neglected in pfevious control studies. Consider thé‘simple
certainty equivalence solution for a moment. Having assumed away
the covariance relations, the expected penalty cost must look
very attractive to a decision-maker; it could be much lower than
for the unccétain par ame ters solution. However, if the cerﬁainty
equivalence solution were actually implemented and the estimated
covar iance relations were reasonably realistic, the tables could
be turned; it might perform badly against the uncerﬁéin
paraéeters solution. It is just this sort of effect thét the
Monte Carlo testing is designed to capture.

It should be possible to simulate typical planning time
spans, using covariance relations forlthe error terms and the
par ame ters, starting at the first time period. A method for
generating a vector of typical values for a2 multivariate normal
distribution with a given covariance matrix is described in
Appendix F. At each time period in the p]anning time horizon, a
set of typical coefficients and error terms for the econometric
model could be generated. Using the appropriate feedback pontrol

matrices (or control wvariable values in the case of open-loop

control) and the previous state values, a new set of state

44



values could be derived. With a full set of state variable
values over the p]anhing time span and a given set of weighting
par ameters, a typical value for the penalty cost could be
obtained, Over many time spané, it would be a simple matter to
obtain an avetage penalty cost and standard deviation. At least
50 simulations would be required for this average penalty cost,
although 100 or more simulations would be preferred if fcomputer
CPU time permits.

As long as the weighting matrices and control factors are
kept constant, simulations of the wvarious LQT or adaptive
controllers should be directly comparable., Obviously, a full
regime of model wvariations could be tésted. Model size,
par ame ter uncertainty and model dynemics <could be tested by
compar ing the Abel ﬁédel to the Laidler model and the siﬁple
Laidler model to the restricted Leaidler mocdel. The importahce of
current versus future penalty costs could be tested by varying
the terminal factor or discount factor. Finally, to test the
anticipatory characteristics of the adaptive models, a sudden
step change to large terminal targets could be incorporated in
the model.

The simulation of adaptive controllers raises a
computational challenge; the regression analysis and covariance
determination must be repeated T times per -pianning time span
simulation. If 50 or more time spans are simulated and
extraneous information is incorporated, the required coﬁputation

cost could be excessively large.



VI. RESULTS AND DISCUSSION

Checking the cohtrol algorithms against the previous work
of Abel, Chow and Kendrick occupies thé first two sections of
this chapter. 1In the next section the Laidler model is
summar ized followed by some preliminary trials using the control
algorithms. The chapﬁer concludes with a discussion of the.

similation results for both simple and adaptive control models.

Compar ison with the Abel Control Study

The data for the Abel model were taken from a study by
Kendrick.! Given that only 39 of the original 40 observations
were available from this study, slight differences in the
regression equations would be expected. In fact they are
remarkably similar and the derived model with coefficient

standard deviations is:

= ~ 3 427 - 50.¢
€, = 0.9144 ¢ - pF0.3037 G 4 0.4270 M - 59.66

(0.0522) (0.0927) (0.1470) (0.1820) (24.50)

0.0173 I
t

-—

= 7 . I - . o4 = M- 4.5
It 0.0973 C%_f 0.42 44 b1 0.1036 Gt+ 1.4589 t 184 .62

(0.0780) (0.1385) ‘ (0.2196) (0.2824) {26.17)

. . ‘ . 2 :
As to be expected for time series regression, the R~ values are

1 Kendrick, "Caution and Probing in a Macroeconomic Model".
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high at 0.296 and 0.875 and autocorrelation of the residuals is
present, but not excessive, as indicated by the Durbin-Watson
statistics of 1.69 and 1.72.

A compar ison of stochastic control results from this work
and the Abel study are shown in Table 6.1. Here are‘shown for
the first six time periods some of the key matrices for the
simple LQT solution derivation. A detailed derivation of these
results is to be found in Appendix D. The quadratic matrix Hl ,
der ived frdm (2.18), the feedback matrices Gland 9, derived

from (3.11), and the solution for the control variables

government expenditure G - and  money supply M. , derived from

1’
(3.21), are all shown in Table 6.1. Notice the similarity in the
results.

A full stochastic control solution for the uncertéin
parameters case using this regression model is shown in Table
6.2. A schedule of state and control variable values and their
targets over the planning time span 1is 1illustrated. For
convenience all values and targets haQe been divided by one
thousand; the penalty cost, as a result, is very small and
therefore is not shown in Table 6.2.

The résults from this section 1indicate that the basic

regression, covariance and control algorithms appear to be

working satisfactorily.

i
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TABLE

6.1

COMPARISON OF STOCHASTIC CONTROL SOLUTIONS
WITH THE ABEL MODEL

This Control Study

Abel Control Study

0.00 0.00

1.00 0.00 0.00 0.00 1.00 0.00
0.00 1.00 0.00 0.00 0.00 1,00 0.00 0.00
H ,
o 1
o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00
[0}
= 0.00 0.00 0.00 0,00 0.00 0.00 0.00 .0.00
ke
3 .
g -2.65 0.42 0.00 0,00 -2.61 0.37 0.00 0,00
G .
> 1
B -0.26 -0.26 0,00 0.00 -0.22 -0.23 0.00 0.00
-
S
H g 1023.57 260.10 1013.01 243.13
O
X, 114,11 147.59 111.72 142.90 .
1.44 -0.14 0.00 0.00 1.41 -0.13 0.00 0.00
m -0.14 1.09 0.00 0.00 -0.13 1.08 0.00 0.00
Y H '
1
3 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00
Q
g
g 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00
[}
[aT]
5 -1.67 0.08 0.00 0.00 ~-1.69 0.06 0.00 0.00
: G
[}
8 ' 1-0.27 -0.23 0.00 0.00 -0.25 -0,20 0.00 0.00
5 g 701.50 261.60 709.04 249.70
X, 114.00 147.44 111.78 142.85
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TABLE 6.2

STOCHASTIC CONTROL SOLUTIONS USING THE ABEL MODEL

UNCERTAIN PARAMETERS SOLUTION

Government
Consumption Investment Spending Money Supply

Control Target Control Target Control Target Control Target

L 0.362 0.36 0.089 0.09 0.114 0.14 0.147 0.15
2 0.367 0.37 0.090 0.09 0.113 0.14  0.146 0.15

3 0.371 0.37 0.091 - 0.09 0.114 0.14 0.146 0.15

4 0.376 0.38 0,092 0.09 0.115 0.14 0.147 0.15

5 0,380 0.38 0.093 0.09 0.116 0.15 0.147 0.16

6 0.384 - 0.38 0.094 0.09 0.116 0.15 0.147 0.16
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Comparison with the Kendrick Control Study

Kendrick? used the same Abel data for testing his adaptive
control algorithms except that he applied a high terminal factor
of 10,000. This hich termineal faétor, in effect, placed greater
importance on> achieving the terminal targets. Figureé 6.1 and
6.2 attempt to replicate part of his study with the Norman model
used in place of the Kendrick model. As mentioned in Chapﬁer v,
the Norman model is a simpler version of the Bar-Shalom/Tse
model which in turn is a simpler version of the Kendrick model,
Although we would not expect to get the same reshlts,3 we might
expect to see similar patterns. In fact the patterns.showh in
Fiqures 6.1 and 6.2 were taken from the last simulation4 of 50
for this study. The last simulation was chosen quite arbitrarily
and, like Kendrick, the intent is to show patterns reather thén
actual values,

As in the Kendrick study, the simple LOQOT contrpllers for
certainty equivalence (labelled CERTAINTY) and for uncertain
par ame ters (labelled UNCERTAIN), useﬁ here in a learning
environment, are very close in pattern and in value. The Norman
model (labelled NORMAN) 1is more aggressive than the other
models, displaying some violent fluctuations in the early time

3 The error that Xendrick made in the initial states was
faithfully reproduced in this control study to bring the results
as close as possible to his,

4 Kendrick was only able to undertake 20 simulations per case

because each simulation consumed roughly eicht minutes of
computer CPU time,
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FIG. 61 ADAPTIVE CONTROL SIMULATION — CONSUMPTION
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FIG. 6.2 ADAPTIVE CONTROL SIMULATION — INVESTMENT
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per iods, and achieves the smallest overall penalty cost. Like
the Kendrick model, the Norman model seems to probe and
experiment in the earlier less costly time periods in order to
improve control for the more important last peribd.

The expected penalty costs and their standard deviations,
as derived from these 50 simulations, are shown in Table 6.3. A
summary of the computer runs from which these entries weré taken

is to be found in Appendix G.

TABLE 6.3
EXPECTED PENALTY COSTS FOR THE KENDRICK

STUDY SIMULATIONS,

Control Expected Penalty Standard
Mcdel Cost Deviation
Certainty 11980 11070
Equivalence

Uncertain 4604 1%91¢
Par ame ters

Norman 157 288
Model

Clearly, the Norman model dominates the others. More
comprebensive testing 1is required to see if this dominance is

lasting.



The Laidler Model

| In most controi studies, as in the Abel and Kendrick
'studies, simple regression analysis is wused to estimate the
parameters of the model. For the Laidler model, ﬁore fully
described in Appendix E( the simpl; regression coefficients are
shown in Table 6.4. The model 1in this form 1is ﬁot very
satisfactory; the standard errors for the second equation aré
large and some of the coefficients do not agree in magnitude or
sign with those derived by Laidler. As mentioned previously, he
used full information, maximum likelihood techniques to obtain
his estimates. Using zero constraints as extraneous information
for the Laidler model, regression yields the results shown in
Table 6.5. These coefficients look much better and the standérd
deviations are smaller &and more manageable. The simultaneous
nature of the regression, as outlined in Appendix B, has still
been retained even under extraneous inforﬁation. The hodel is
now much more in the spirit of the oriéinal Laidler model. Most
of the coefficients agree in sign, approximately in magnitude
and variance. Except for the domestic price equation, there is
little evidence of autocorrelation as indicated by the
Durbin~-Watson statistics in Table &6.5. The model is not perfect
but it is much closer to the original model compared to that
obtained by simple regression. As a test bed for comparing

controllers, it shoulé be more than adequate.
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Simple LOT Runs on the Laidler Model

Using the Laidler model, a series of simple LQT control
runs were made for a variety of initial and terminal conditions.
Teble 6.6 contaihs the targets used for all of these variations.
The targets were chosen to represent choices that should be
quite acéeptable to a Canadian policy-maker. They require modest
growth for the economy with little infiation and growth in thé
money supply. The base run with unit conttol factors and unit

diagonal weighting matrices, K_ , is shown in Table 6.7 for ‘the

t
case of certainty equivalence and in Table 6.8 for for the
uncer tain parameters case. At first sight, the certainty
equivalence case, with a penalty cost of 4.3, looks much better
than the uncertain parameters case with a penalty cost of 13.0.
All the variations are applied to the uncertain parameters base
run, one at a time, and the results for these cases, are shown
in Tables 6.9 to 6.11.

Table 6.9 1illustrates the situstion of a high terminal
factor; in this case the penalty costs for the last time period
were multiplied by 10. As expected, the targets for the last
time period are achieved more closely et the expense of the
others. The reverse effect is produced in Table 6.1C where a
di scount factor of 1.2 is dperating on the peﬁalty costs. Here
the future is less important and the near-term targets are more
closely followed. Finally, in Teble /.11, the effects of a step

changé in the terminal targets are explored. The reserves and



TABLE 6.6

TARGETS FOR THE LAIDLER MODEL

State Variables

Control Variables

58

natural logarithms.

; . . Govern-
] Time Transitory Exchange Domestic Money | Domestic ment Tax
Period Income Reserves Rate Price Supply| Credit Spending Rate

1 0.01 1.60 4.68 5.00 4.30 4.20 0.00 0.00
2 0.02 1.66 4.68 5.06 4.38 4,27 0.00 0.00
3 0.03 1.72 4.69 5.12 4.46 4,34 0.00 0.00
4 0.04 1.78 4.69 5.18 4.54 4,41 0.00 0.00
5 0.05 1.84 4,70 5.24 4,62 4.48 0.00 0.00
6 0.06 1.90 4,70 5.30 4,70 4.55 0.00 0.00
7 0.07 1.96 4.70 5.36 4,78 4.62 0.00 0.00
8 0.08 2.02 4,71 5.42 4,86 4,69 0.00 0.00
9 0.09 2,18 4,71 5.48 4.94 4,76 0.00 .00
10 0.10 2,24 4,72 5.54 5.02 4.83 0.00 0.00

i

1

Note: All values, except time period, are given in




TABLE 6.7

CERTAINTY EQUIVALENT STOCHASTIC CONTROL SOLUTION FOR
THE LAIDLER MODEL - BASE RUN

Total Penalty Cost: 4.270

State Variables Control Variables
Govern-

Time Transitory Exchange Domestic Money :|Domestic ment Tax

Period Income Reserves ‘Rate Price Supply| Credit Spending Rate
1 -0.102 1.686 4.673 5.073 4,146 3.968 -0.339 0.162
2 -0.393 1.768 4.369 5.165 4,321 4,161 -0.178 0.085
3 -0.526 1.849 4,107 5.113 4,459 4.304 -0.031 0.015
4 -0.472 1.930 3.025 5.008 4,539 4,398 0.040 -0,019
5 -0.316 2,005 4,116 4,922 4,586 4,467 0.039 -0.019
6 -0.143 2,071 4,299 4,895 4,635 4,544 0.007 -0.003
7 -0.015 2,130 4,474 4,939 4.712 4,645 -0.011 -0.005
8 0.030 2,184 4,567 5.037 4,813 4,759 0.007 -0.003
9 -0.020 2,239 4,550 5.158 4,912 4,850 0.045 -0,021
10 -0.156 2,299 4, 441 5.266 4,966 4,870 0.058 -0.028

Note: All values, except time period, are given in natural logarithms.
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TABLE 6.8

UNCERTAIN PARAMETERS STOCHASTIC CONTROL SOLUTION FOR

THE LAIDLER MODEL - BASE RUN

Total Penalty Cost: 13,006

60

State Variables Control Variables:
Govern-

Time Transitory Exchange Domestic Money *|Domestic ment Tax

Period Income Rese;ves Rate Price Supply| Credit Spending Rate
1 -0.209 1.686 4.673 5.073 3.948 3.698 -0.735 0.327
2 -0.518 1.779 4,392 5.131 4,190 3.980 -0.286 0,131
3 -0.506 1.859 4,172 .5.041 4,314 4,111 0.055 -0.028
4 -0.377 1.939 4,158 4.947 4,371 4,183 0.154 -0.082k
5 ~0.236 2,011 4,282 4,898 4,422 '4.259 0.098 -0.060
6 -0.119 2,075 4,444 4,907 4,506 4,376 0.012 -0,017
7 -0.039 2,131 4,565 4,967 4.625 4.523 -0.021 0.004
8 -0,012 2.185 4,604 5.062 4,746 4.658 0.019 -0.011
9 -0.067 2,241 4,554 5.172 4,857 4,765 0.073 -0.036
10 -0.193 2,303 4,435  5.265 4,972 4.868 0.086 ~0.042

;Note: All values, except time perioé, are given in natural logarithms.




TABLE 6.9

UNCERTAIN PARAMETERS STOCHASTIC CONTROL SOLUTION FOR
THE LAIDLER MODEL - HIGH TERMINAL FACTOR

Total Penalty Cost: 19.924

State Variables Control Variables
. Govern-

Time Transitory Exchange Domestic Money |Domestic ment Tax

Period Income Reserves Rate Price Supply| Credit Spending Rate
1 —0.526 1.686 4.673 5.073 3.919 3.659 -0.802 0.346
2 -0.527 1.780 4,396 5.125 4,204 3.999 -0.270 0.120
3 ~0.471 1.859 ﬁ.178 5.052 4.309 4,105 0.125 -0.059
4 -0.349 1.938 4,171 4,950 4,304 4,094 0.209 -0.115
5 -0.267 2.014 4,294 4,912 4,282 4.068 0.096 -~0.077
6 -0.216 2,083 4,453 4,911 4.334 4,136 -0.051 -0,016
7 ~-0.150 2,143 4,587 4,940 4.509 4.360 -0.12§ 0.026
8 -0,041 2,195 4,659 5.002 4,707 4,605 ~0.056 0.015
9 0.064 2.244 4,655 5.107 4.787 4,681 0.217 -0.105
10 -0.098 2,303 4,575 5.247 4,963 .4.873 0.060 -0.029

Note: All vaiues, except time period, are given in natural logarithms.
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TABLE 6.10

UNCERTAIN PARAMETERS STOCHASTIC CONTROL SOLUTION FOR
-~ DISCOUNTED PENALTIES

THE LAIDLER MODEL

Total Penalty Cost: 6,433

State Variables

Control Variables .

Govern-—
Time Transitory Exchange Domestic Money -|Domestic ment Tax
Period Income ReseFves Rate »Price Supply! Credit Spending Rate
1 -0.140 1.686 4,673 5.073 4,066 3.860 -0.479 0.220
2 -0.440 1.773 4,379 5.153 4,236 4,045 -0.211 0.099
3 -0.525 1.855 4.135 5.086 4.358 4.167 0.040 -0.020
4 -0.439 1.936 4.081 5.984 4.430 4,254 0.153 -0.078
5 -0.282 2,011 4,189 4.911 4.484 4,333 0.140 —0.0?4
6 -0.129 2,076 4,366 4,900 4,551 4,431 0.070 -0,041
7 -0.026 2,133 4,520 4,952 47644 4,551 0.021 -0,015
8 0.003 2,187 4,590 5.049 4,751 4.669 0.029 -0.016
9 -0.053 2,242 4.559 5.163 4.857 4.770 0.067 -0.033
10 =0.179 2,303 4.448 . 5.261 4,970 4,869 0.083 -0.040
Note: All values, except time period, are given in na;ural logarithms.
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TABLE 6.11

UNCERTAIN PARAMETERS STOCHASTIC CONTROL SOLUTION FOR
THE LAIDLER MODEL - HIGH TERMINAL TARGETS

Total Penalty Cost: 1752.157

State Variables Control Variables
. Govern-

Time Transitory Exchange Domestic Money |Domestic ment Tax

Period Income Reserves Rate Price Supply} Credit Spending Rate
1 - -0,221 1.686 4.673 5.073 3.907 3.643 -0,778 0.346
2 -0.556 1.781 4,397 5.127 4.141 3;913 . —-0.352 0.160
3 -0.541 B 1.863 4.184 5.025 4.279 4.063 -0.013 0.003
4 -0.376 1.941 4.186 4.921 4.379 4,196 0.121 -0.067
5 -0.169 2,010 4.325 4,875 4,493 4,362 0.152 —0.084
6 0.015 2,069 4,487 4,908 4,619 4,538 0.;88 -0.097
7 0.107 2,121 4,578 5.013 4,695 4,624 0.251 -0.123
8 0.025 2,176 4.556 5,155 4,646 4,515 0.257 -0.123
9 -0.259 2,245 4,438 5.273 4,618 4,416 0.112 -0.054
10 -0.485 2,322 4,285 “5.296 20.684 |26.215 0.147 -0.071

Note: All values, except time period, are given in natural logarithms.
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money supply targets for the tenth time period are factored by
10 compared to the base runs. As would be expected for a simple
LOT controller, this variation should produce confusion in the
latter time periods along with a high penalty cost. For adaptive
controllers, .to be tested in the next section, it will be
interesting to see how well they anticipate this step change and

prepare for it in the earlier time periods.



Adaptive Control Runs Using the Laidler Model

Figures §.3 through 6.7 display the simulated movemént of
the endogenous variables over the planning time span under an
adaptive or learning environment. As with Fiqures 1 and 2, they
represent the results of just one simulation, quite arbitrarily
chosen to be the last of 50. It is the general trend and
patterns that are of interest rather than the actual values.

Again the Norman model shows a different tracking pattern
to the others but this time it is not the closest to the
targets. Actually, this looks a particularly bad simulation for
the Normen model and illustrates the situation where everything
goes wrong. One or two simulations 1like this in 50 can
drastically increase the overall average penalty cost. |

The other control models are very similar and, except for
the Reserves simulation in Figure 6.4, the certainty equivalence
model (labelled CERTAINTY) and the uncertain parameters model
(labelled UNCERTAIN) are almost identiéal. The latter model, not
desiagned for an adaptive environment, does almost as well as the
best adaptive model, the MacRee model, Actually the MacRae
model, achieved the lowest overall penalty cost for this
simulation, «clearly domiﬁating its rival adaptive controller,
the Norman model. The heuristic model, the model which learns by
chance, @&nd is in fact the MacRae model with a stability_facﬁor
of zero, seems to fall between the certainty equivalence and

uncertain parameters models.



FIG. 6.3 ADAPTIVE CONTROL SIMULATION — TRANSITORY INCOME
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FIG. 6.4 ADAPTIVE CONTROL SIMULATION — RESERVES
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FIG. 65 ADAPTIVE CONTROL SIMULATION — EXCHANGE RATE
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FIG. 6.6 ADAPTIVE CONTROL SIMULATION — PRICE INDEX
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FIG. 6.7 ADAPTIVE CONTROL SIMULATION ~ MONEY SUPPLY
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The Overall Adaptive Simulation Averages

The results from avefaging 50 acdaptive control simulations
are shown in Table 6.12 for fhe Laidler model and in Table 6,13
for the Abel model. |

The earlier dominance of the Norman model is clearly broken
by the results in Teble 6.12. There is no cleer winnef, except
that the uncertain parameters model does consistently well. The
Norman model encountered difficulty with the high terminal
factor case, the gradients taking a long time to converge. On
the other hand, the MacRae model had difficulties with tHe high
terminal targets case and required the selection of a smaller
stability fector to solve the convergence problem.

The results in\ Table 6.12 are similar to the Kenbrick
results in Teble 6.3. Here the base run for the Abel .model,
shown in Table 6.2, has been changed to generafe a8 set of
variations similar to the Laidler model. For the high terminel
factor case, the Kendrick fiqure df 10,000 has been used and a
di scount factor of 1.2 was wused 1in the discounted penalties
case, The high terhinal targets case was generated by
multiplying the terminal targets for consumption and investment
by 1CO.

The Norman model repeats its excellent performance although
unlike the Kendrick simulations, it does not totally dpminéte
the others. The uncertain paremeters model does extremely well

for the high‘terminal targets case.
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TABLE 6.12

STOCHASTIC ADAPTIVE CONTROL SIMULATION

PENALTY COSTS2 FOR THE LAIDLER MODEL

: High Discounted
? Terminal Penalty High
' Base Factor Costs Terminal
Solution® Run a = 100 B = 1.2 Targets
Certainty ,
Equivalence . 2,681,717 40,312, 279 725,557 1,000,555
§ (16,843,126) (265,822,044) (4,765,233) (5,305,561)
Uncertain .
Parameters _ 597,126 4,881, 208 227,126 485,157
( 2,936,271) ( 24,030,976) (1,290,508) (2,410,785)
Heuristic
Uncertain 1,138,224 12,992,322 372,341 739,348
Parameters (6,264,002) ( 75,927,452) (2,283,329) (3,714,662)
MacRae
Model 522,681 5,495,886 169,720 739,330
(2,580,855) (27,273,212) ( 898,611) (3,714,554)
Norman
Dual 686,779 3,889,679 63,856 801, 624
Control (4,760,975) (26,683,289) ( 431,579) (5,602,102)

4The figures in parenthesis

deviations.

b

are estimates of population standard

The last period base run targets for Reserves and Money Supply

were multiplied by 10.

CThe computer runs from which the table entries were recorded are to
be found in Appendix G. ,
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TABLE 6.13

STOCHASTIC ADAPTIVE CONTROL SIMULATION

PENALTY COSTS? FOR THE ABEL MODEL

High Discounted :
, Terminal Penalty High
Base Factor Costs Terminal
Solution® Run a = 10000 g = 1.2 Targetsb
Certainty .
Equivalence 1.2 9,749 0.4 9,131
(4.6) (39, 760) (1.6) (9,743)
Uncertain . .
Parameters 0.2 10,276 0.1 342
(0.7) (43,369) (0.2) ( 257)
Heuristic
Uncertain 0.2 3,178 0.1 8,602
Parameters (0.7) (11,932) (0.2) (9,427)
MacRae
Model 0.2 26 0.1 3,199
Norman
Dual 0.0 63 0.0 742
Control (0.1) ( 99) (0.0) ( 907)

8The figures in parenthesis are estimates of population standard

deviations.

bThe last period targets for Consumption and Investment were
multiplied by 100.

CThe computer runs from which the table entries were recorded

are to be found in Appendix G.
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Comparison of Stochastic Control Solutions with Actual Data

Actuel results (measured in natural logarithms for ease of
compar ison} for the Canadian eéonomy over the time span 1976 to
1981 are summarized in Table 6.14. These values were estimated
as closely as ©possible, wusing the same data sources as those
listed in Laidler (1981).

Sfochastic control predictions for six time periods using
the uncertain parameters control model are shown in Table 6.15.
The targets used in this table are the same as those used
previously over the first six time periods. As stated. béfore,
they were chosen quite arbitrarily and the results in Table 6.15
are heavily influenced by their choice. In fact, the actuel
values 1in Table 6.14’cou1d have been used as targets for fhis
run and, of course, the results would then have been cloée to
the actual wvalues. Unfortunately, we can only speculate what
targets were behind the actugl values in fable 6.14,

There are some obvious differences between the two sets of
results., The actual fiqures reflect &a larger money supply,
higher inflation, ond smaller reserve levels. Transitory income
is also higher and even though a2 weighting factor of 100 (as
opposed to unity for the base run) was applied to the transitory'
income penalties, the Lefidler model seemed reluctant to move

closer to its income targets.
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TABLE 6.14

ACTUAL CANADIAN ECONOMIC AGGREGATES

1976 - 1981

Govern—
Transitory Reserves Exchange Domestic Money Domestic ment Tax
! Year Income Rate Price Supply Credit Spending Rate
. 1976 0.178 1.765 4,671 5.032 4,443 4,371 0.094 ~0.405
- 1977 0.143 1,528 4,752 5.108 4,554 4,504 0.089 -0.439
§ 1978 0.107 1.520 4,833 5.195 4,762 4,722 0.040 -0.480
§ 1979 0.098 1.358 4,818 5.282 4,868 4,837 -0.013 - -0.532
; 1980 0.059 1.394 4,840 5.376 5.010 4,983 -0.012 -0.514
§ 1981 0.023 1.475 4,833 5.496 5.148 5.122 -0, 040 -0.494
TABLE 6.15
STOCHASTIC CONTROL PREDICTIONS FOR
CANADIAN ECONOMIC AGGREGATES 1976 - 1981
Govern—
Transitory Reserves Exchange Domestic Money Domestic ment Tax

Year Income Rate Price Supply Credit Spending Rate

1976 ~0.141 1.686 4,673 5.073 4,204 4,047 -0, 554 0.080

1977 -0. 259 1.765 4,363 5.152 4,627 4.579 0.249 1.006
i 1978 -0,.181 1.833 4,081 5.142 4.877 4,881 0.689 -0.154
f 1979 -0, 095 1.903 3.929 5.146 5.070 5.125 0.912 -0.308
: 1980 -0.034 1,971 3.851 5.172 5.228 5.324 1.033 -0.392
i .
L}?Sl ~0,017 2.036 3.798‘ 5.217 4,687 4,568 1.076 -0,425
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VII. CONCLUSIONS

Many of the‘control studies reviewed used small, linear
regression models 1in which standard regression methods were
employed, More practical situations, as in this study, often
demand non linear models and special reqgression techniques. The
results from simple regression were simply not good enough for
the Laidler model. The need to impose extraneous informa£ion on
the regression by way of zero restrictiong resulted in & large
computational overhead, especially noticeable in the simulation
bhase of the analysis. These restrictions did bring the model
closer to the actual Laidler model in which maximum likelihood,
full information methods were used in the parameter estimation.

Without simulation, it would be tempting to conclude that
the simple cerféinty equivalence model is the best stochastic
control model. Certainly, it is computationally efficient, has
the smallest penalty cost and its always easy to 1ignore
uncertainty. However, when tested with simulation, it is clearly
inferior to the uncertain parameters model, a model specifically
designed to handle wuncertainty in the error terms and in the
regression coefficients. One would expect this suvperiority to
increase, the more the uncertainty in the regression model.

The testina of the various control models under simulation
was an important wpart of this study. Fifty simulations,
representing 500 years for the Leidler model, were performed for

each control model. Without the computeztional burden mentioned



above, a higher number of simulations would have been
under taken, especially in view of the high penelty cost
distribution variances. A small number of outliers were the
‘culprits for these large variénces, rroducing high ©positive
skewness in the penalty cost distributions, much like a
chi—équare probability distribution. |

The tracking patterns for the wvarious adaptive'control
models, under simulation, showed how similar most models were in
the ir stochastic control solutions, the only dissident being the
Norman model with its very acgressive contrdl fluctuations in
the early étages of the planning time span. Norman would érgue
that learning is taking place in the early stages, just 1like a
captain with a newly commissioned vessel, rapidiy manoeuvr ing
the ship from the dock in order to quickly learn its respoﬁse
characteristics. One should also note that the Norman model is
completely different in its approach to stochastic control
analysis; one obvious difference 1is that it moves forward
through the planning time span whilst all the others move
backwards.

Simulation was particularly wuseful in examining the
performance of the adaptive controllers. None of them came close
to their theoretical penalty cost predictions which underscores
the complexity and the difficulty in modeliing the adeptive or
learning environment. qu the relatively simple, Abel
econometric model, the Norman adaptive control model is by far

the best choice. For the Laicdler econometric model, however, the
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MacRae acaptive control model did well, even though it suffered
information overloadr for the high terminal targets case. A
simple model, the uncertain parameters model, not even designed
to cope with the adaptive environment, performed well for both
econometric models. These <confusing results are tyﬁical for
stochastic control studies. Reausser, Norman and Kendrick also
found that there was no clear winner; that different’ models
excelled for different control problems.

Based upon a simple average rank _index, the uncertain
parameters and the MacRae model emerge just ahead of the Norman
model as thewbest control models for the Leidler econohetric
model. A key advantage for the uncertain parameters model is its
relative cormputational efficiency, requiring only 12 seconds of
computer central processing unit (CPU) time for its Laidler
control solution as opposed to 60 seconds for the MacRac hodel
and 200 seconds for the Norman model (all of the models took
about 400 seconds of CPU time for the 50 adaptive simulations).
In fact, its required computer centrei processing time seems to
grow exponentially with the dimension of the. state wvariable
vector at a rate of 2.6. For the Abel model, with a state
var iable vector dimension of 4, the CPU time was 2 seconds
while, for the Laidler model, with a state vector dimension of
8, the CPU time was 12 seconds. It would seem to indicate that
the uncertain parameters model could be applied to 50-60
equation regression models without placing too much strain on

the computer facilities (the required CPU time would be about 30
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minutes
An
study:
dynamic
simple

yield

counter -

for this situation).

important message for the policy-maker emerges from this
economic policies should be investigated in & stochastic
framework, not deterministic and static. Even a very
econometric model, such as the one in this Study, can
surprising results which are sometimes guite

intuitive. A medium-sized model of the economy, 50-60

equations, say, developed with a keen eye on the error terms and

system

dynamics, could be an extremely valuable policy-making

tool when incorporated in a stochastic control analysis, much

like the onewdescribed in this study.



APPENDIX A

OPTIMAL CONTROL THEORY

AND DYNAMIC PROGRAMMING
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Cptimal control theory was originally developed for continuous,

deterministic control problems. For the moment, therefore,

stochastic wvariations will be ignored. We begin by augmenting

the penalty cost function with a state equaetion constraint:

[ (y-a ) K (y-a) + 2x' (y.-D z)] | (A.1)
t t t Tt ,

=1 t t £ £t

Cptimal control theory provides a solution to the above equation

along with the Lagrange multipliers or costate var iables, as

they are called. A careful choicel for the Hamiltonian is next

made:

B = (y-a)' K (y-a) + 2x\' (y - D z) (A.2)
t 1 Y7 % e e Tt t yt t t .
Pontryagin's maximum or minimum princip]e2 is then appliéd in

order to minimize Ht for each time period over all possible

values for the control variables:

oH oH oH
_— = 0 —_ = 0 = = 0 (A.3)
BXt Byt 3 £

—— v — - — ———_— - —— o o—

Arthur E. Bryson and Yu-Chi Ho, Applied Optimal Control,
(Waltham, Mass: Blaisdell Publishing Company, 1969, p. 44.

2 L. S. Pontryagin et al., The Mathematical Theory of Optimal
Processes, (Mew York: Intersclences, 1962).
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The first two conditions yield:

- a.) - A+ A A = 0 (A.4)

The logical place to start the solution is at the last time

period, T, where AT+1= 0, which gives:

We would then continue moving backwards in time, solving for Y
and At R using the recurrence relations (A.4{. But this‘is
equivalent to applying Bellman's Principle3 and therefore to
using conventional dynamic programming methods. If dynemic
programming methods are used, without regard to minimizing the
Hamiltonian, the same results will be obtained except that the
costate variables will not be evaluatéd. Obviously, it would be

a simple matter to evaluate them, if required, by wusing a

recurrence relationship developed from (A.4).

3 Bellman, Adaptive Control Processes, p. 57.
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Der ivation of Reqression Coefficients

Civen a set of observations on the endogenous variables, ¥, and
a set of observations on the lagged endogenous, control and
: ‘ t . -

exogenous variables, Z, related by Y =2 T + e , the ordinary

least squares estimate of the coefficient matrix, I , is:
I = (2" 2 ) 2'vY (B.1)

If we impose zero restrictions on II.by way of extraneous
L

information, e.g., R; T, =0 for the i th equation, then:
~ '
T, = T7N.R. . (B.2)
i ivi
R [} V . L} [} —l ] _l ) 3
3= I - (2 z) Ri f Ri( z' z2) Ri ] Ri ‘(B. )
“i is a set of restricted coefficients to be found in the i th

N
row of I , the restricted coefficient matrix. The sum of

squares, residual cross-product matrix, S, can be written:
B N »
s = (Y - z2') (Y - 2 Io0o°") (B.4)

This cross-product matrix, S, cen then be used along with N, the

”~

number of observations, 's, the number of columns in I and p,
the number of endogenous var isbles to obtain an estimator for

the residual covariance matrix, Vt:
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9>]

(B.5)

Ial

It should be noted that the regression coefficients, ® ,

only represent part of the D, matrix in (3.4) of the main text.

t
In fact, they are the first row of matrices in (3.2), the
remainder being either null or identity matrices. 1In tﬁe next
section, the regression coefficient covariance relationships
will be analysed. The covariance matrix derived will be for the

first row of coefficient matrices in matrix Dt'

Derivation of the Coefficient Covariance Relationships

This section closely follows the work of Elizabeth MacRae.l we
begin by making the assumption that the regressién coefficient
matrix, Dt » will have a multivariate normal probabiiity
distribution with covariancé, Pt , of order equal to the ﬁumber

of rows in D, multiplied by the number of columns in Dt « The

t

probability distribution of D under these assumptions, will

tl
be:

Fxp - 5[ P (D') =P(D' ) ]'T™1 (P(p') -P(D' )]  (B.5)

t t-1 t-1 t - t-1
Where P is a pack operator which forms a vector from a omatrix
by stacking the matrix columns, one above the other. The

1 MacRae, An Adaptive Learning Rule, p. 905.
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conditional distribution of Dt + 9iven the npext

observations, may then be written, using Bayes rule:

per iod

(-
(Dl vy z

P ytl D

The first term of the numerator in (B.7) can be simplified by

substituting for the system relations (3.4) to yield:

P ( | D Z z cee )
Yol S Fer Feart o

-1 .

Exp - % - bz v - Dz B.8

p -5l (y, A A A L E )] , (B.8)
Beceuse x_ and w_ in z, contribute nothing to the posterior

distribution beyond that contributed by y, ; (also in z ), the
other term in the numerator of (B.7) is proportional to the
right-hand side of (B.6). The denominator in (B.7) .is
independent of Dy and can therefore be ignored by Simply
changing the equality sign in (B.7) to a proportional sign, q.
After substitution into the numerator of (B.7) and

expansion of the quadratic forms:



P( Dt‘ yt, Zt,Z s oo e )a

t-1
E K[y vl 22t b v T + 22D VD
Xp - - z ! z ' Z
P Y t Y t t t yt t t t tt
-1 -1
+ P'(D') T P (D! - 2P'(D) T _P(D!
( t) t=1 ( t) ( t) te1 ( t—«l)‘
-1 ,
+ P'(D' YT _P(D'" ) ] - (B.9)

t-1 t-1 t-1

Now the pack operator in (B.9) has the following property:

Dz, = P (Dz) = P(z! D) = 1 zt)P’(Dt) (B.10)

In (B.10), C) is termed the Kronecker product in which each
element to the left of the operator is multiplied by the
matrix on the 1right of the operator. This should not be

2

confused with the MacRae star product operator” which is a

special form of matrix multiplication defined by:

c = a®B =1 a B (B.11)

ij ij i3
The matrices in (B.1l1l) must be compatible such that, if A is an
m by n matrix, and the submatrix Bi' is of order p by q, then
the size of B must be mp by nq and the resulting C will be a P

by q matrix.
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Exploiting the Kronecker product relationship in (B.9)

gives:

P D | z z e
( £ Yt' tl t—l’ )a

-1
E - P ‘(D) + v ' P (D'
xp - % { (D)) [T (t®ztzt) 1 P (D)

t-1
[] ] -1 P [] -1
- ) +
2P'(pl) [T 5 P(D! ) (V. ®z) vy,
- ( other terms independent of Dt ) (B.12)
After completing the square, neglecting terms that are

‘independent of Dt , (B.12) can be rewritten to givé (B.13):

P ( D | z Z eee )
e Yet Zet Feor @

_]_ _l
Exp =% [B(D') = nl'lr + (V Xz z"') ] [P(D') -y, ]
t t=1 t. tt t
where

-

po= [T + (V. ®zz)1 [T P(D ) + (V ®Dz)y ]
t t t t=l t=l t t ot
In fact, by comparing (B.13) with (B.8), & multivariate normal
probability distribution is revealed with a mean of ﬂ and a
precision given by:
-1 -1

-1 |
= + (V z z! (8-14)
1-|‘l‘_ 1-|t-l t CD t t)
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The mean, y , can then be further simplified after substituting

for Pt and the state equations, (3.4):

-1 | -1
P ' = ] (] - ]
(D}) LU 20 ) ¢ (v @2z P ) )
-1 -1 :
= T [ (T + (Vv ®zz") } P(D )]
t t-1 t -t t t-1
<1 :
= I T P(D' ) = P(D'" ) * (B.15)
t t t-1 tfl

The above equation, (B.15), implies that all the coefficient
means are equal to the prior mean and are therefore constant
over the planning time span. It is also possible to develop an

expression for covariance after substituting:

) (B.16)

2'2 = ( z2° Z + z z'!
t t t-1l t-1 t t
into equation (B.l14) to get:
T = v.® (z!z )’l (B.17)
t t t 't ¢
The above equation, (B.17), <can be wused to obtain the

coefficient <covariance matrix, Ft » at any time period. For
simple regression, the covariance between the i th and j th

-1 :

equations is v _, (Z'Zt) while, for restricted regression, it
1]

is wv,. R (z2'z TlR_'.

i] i tt Jj
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The Abel model is a two endogenous, two control variable model
of the U.S. ec0nomy..It ishquarterly and covers the period from
about the end of the Korean war (1954-I) to the beginning of
heavy involvement in the Vieﬁnam war (1963-1IV). The theory for
the model is based on the concept of a private éonsumption
accelerator cdeveloped by Paul A. Samuelson1 and takes the

following form:

Co = 01 Oy F Oplyny T o3 G+ Myt oo ©.1)
I, = By Cp 1 * BT 1 + B3 G+ By M+ By (C.2)
where Ct is personal consumption expenditureé in billions of

1958 dollars, I, 1is gross private investment in billions of i958

t
dollars, Gt is government purchases of goods and serviées in
billions of 1958 dollars, Mt is money stock defined as currency
plus demand deposits (M1), and GDC is & fixed weight price index
for personal consumption expenditure.lThe data which was used to

develop the model 1is shown in Table C.1 and was taken from a

study by Kendrick.?

. — - ——— o ——— — . o -

Paul A. Samuelson, "Interactions Between the Multiplier )
Analysis and the Principle of Acceleration," Review of Economic
Statistics, Vol. 21 (May 1939), pp. 75-78.

Kendrick, "Caution &nd Probing in a Macroeconomic Model," P-.
&.

DN
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TABLE C.1
DATA USED IN DEVELOPING ABEL MODEL

Consumption Investment Government Money Price

: Expenditure Stock Index

éf 1954-1 250,8 - 56.3 94,1 129.1 92.6
‘ 1954-11 253.3 57.0 88.8 129.4 92.6
1954-I11 256.9 59.8 87.2 130.6 92.4

1954-1IV 261.9 : 64.3 85.4 131.9 92.3

1955-1I 267.6 70.8 85.5 133.5. 92,6

1955-11 273.0 75.5 84,2 134.3 92.6

1955-I11 276.3 76.9 85.8 134.9 92.9

1955-1V 279.9 78.5 85.1 135.1 . 93.0

1956-1 279.8 75.5 85.2 135.5 93.6

1956-I1I 280,3 74.5 .85.8 135.9 94.3

1956-I11 280.8 74.0 84.3 135.9 95.3

1956-1IV 284,7 73.3 85.7 136.6 95.8

1957-1 . 286.6 70.5 89.0 136.8 96.7

4 1957-11 287.0 69.9 ’ 89.4 136.9 97.3
é 1957-II1 289.3 70.9 89.1 136.9 98.1
f 1957-1V 289.7 . 64.0 89.9 136.2 98.5
1958-1 285.6 57.5 91.8 . 136.0 99.6

1958-I1I 287.5 56.0 93.6 137.6 100.0

1958-I11 291.9 ’ 61.6 94.8 139.0 100.1

: 1958-1IV 295,2 68.5 96.5 140.7 100.3
. 1959-1 302.3 70.9 95.5 142.6 100.6
. 1959-II 307.0 78.5 95.1 143.8 100.9
1959-II1 309.9 70.2 94.3 144.5 101.6

1959-1V 310.0 75.0 94, 2 143,6 102.0

1960-I 313.8 79.9 93.9 143,0 102.3

1960-II 317.7 73.5 94.7 142.7 102.7

1960-I1II 316.4 71.0 : 95.4 143.9 103.0

1960-1IV 316.4 65.2 95.9 144.2 103.6

1961-1 316.2 62.4 97.6 144,8 103.8

1961-1I 320.4 67.8 99.5 146.0 103.7

1961-III 323.9 71.2 102.0 146.8 104.0

1961-1V 329.5 74,7 102.9 148.3 104.2

1962-1 333.3 77.2 105.5 149,1 104.5

1962-1I1 335.7 79.0 107.8 149.,8 104.7

1962-II1 340.1 80.6 107.8 149.5 105.0

1962-1IV 344.6 80.7 108.5 150.4 105.3

1963-I 348.5 78.7 110.2 151.8 105.6

1963-II 350.9 80.6 108.7 153.3 106.0

1963-I1I 356.1 83.1 110.0 154.8 106.2

1963-1IV 357.7 87.7 109.5 156.4 106.7
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The Abel econometric model can be derived from the 29 sets of

observationsl in Table C.1, Appendix ¢C, using the following

regression formula:
T = (z'z) 2' Y (D.1)

giving the following reduced form (D.2):

€. = 0.9144 C = 0.0173 I _g 0.3037. G .+ 0.4270 M - 59.66
(0.0522) ©(0.0927) (0.1470) (0.1890) (24.50)

I =0.0973 C + 0.4244 I - 0.1036 G + 1.4589 M - 184,
t ' £-1 t-1 t >89 M- 184.62

(0.078C) (0.1385) (0.2196) (0.2824) (36.17)

It will be convenient later to consider three submatrices of the

coefficients from (D.2) in the form m = [ﬂA WC ﬂ']_where:
Ty = 0.9144 -0.0173 0.0 0.0
0.0973 0.4244 0.0 0.0

o = 0.3037 0.4270 Tg = [ -59.56
-0.1036 1.4589 -184.,2

INote that there are two endogenous veriables for the same set
of four exogenous variables. Consequently, Z will be a 39 by 4
matrix and Y will be 2 3% by 2 matrix,.




The coefficient matrices in

defined:

The inverse,

is ta

N

bulated

-1811.1
1210.8

-134.8

Y ¢

- 0.9144

0.0973
0.0

0.0

0.3037

-0.1036

(z'7)

below:

-945.2
2115.2
0.0

0.0
2323.4
-2963.0

333.7

-0.0173
0.4244
0.0

0.0

\
0.4270

1.4589

95

a by-product from the derivation of

0.0

the state equation (3.3) can also be

£
A
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
/
b =[ -59.66
~184.2
0.0
0.0
\ /

(D.2),

\
~-1811.1 1210.8 -134.8
2323.4 -2963.0 323.7
0.0. 0.0 0.0
0.0 0.0 0.0
5321.9 -3090.3 312.9
-3090.3 8800.0 -1108.5

312.9 -1108.5 144 .4 J



An estimate of the error term covariance matrix, V, using (B.4)

and (B.5) from Appendix B, again a by-product of the

regression

analysis, is:
- -6
\Y = 4,063 2,500} % 1¢
2.500 9.063
It is now possible to derive the £full -14 by 14 coefficient

covariance matrix? by eapplying (B.17) from Appendix B, i.e.,

that T ='\7®(z'2)'l to get:

_671.8 X 4.063 x 10™6 ~134.8 x 2.500 x 10°°

.

J

— . e e #

L =
t \
- -
=\ ‘ / N

~134.8 x 2.500% 10 ° 144.4 x 2.063 x 10

At each stage in the stochastic control analysis, the next set

and c , are obtained from the current set

of values, H . h
t t-1

2por clarity, only the corner terms have actually been derived.
The objective here is to show how (B.17) can be applied.
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B L e

of wvalues H h c G _  and . The Riccati equaetions (3.20
’ £ Dyt e Tt gt q ( )
are used for this purpose and they require, @emongst other
things, the evaluation of several triple matrix product

expectations, e.qg., E(A'HA). These matrix products can be easily

derived from theifollowing matrix product.3

P — S ll ll b [] ‘
= T Ht T + [ Trace ( Ht v )y 1 ( Zt Zt) (D.3)
11 X a
where Ht is a submatrix of the current H matrix:
11 12
= 1
Hy ‘ H H
H21 H22
11 : .
For example, the submatrix H2 for the second time period,

uncertain parameters quadratic matrix, H , is:

11
H

A = 1.4358 -0.1415

-0.1415 1.0893

———— o ——— - ——— ——————— —

3The equation (D.3), as it stands, would be used in the
development of the uncertain parameters solution. By dropping

the last term, it cen also be used for the certainty equivalence
solution.



The triple matrix product expections can now be readily derived.
E(A'HA) is simply PAA and, for example,

. PcA 21 - '
E (C' HA) = + B om, | (D.4)

A summary of the control analysis for the last two stages
(or first two time periods) 1is shown in Table D.l. For
but the

simplicity, only the derivation of E(A'HA) is shown

other terms E(C'HA), E(C'HC), E(A'Hb) er E(C'Hb) are obtained

just as easily.

an



TABLE D.1

SIMPLE LQT SOLUTIONS
FOR THE ABEL MODEL

Certainty Equivalence

Uncertain Parameters

1 0 0 0 1.4358 -.1415 0. 0
H, 0 1 0 0 -.1415 1.0893 0 0
o 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
.8457 .0255 0 0 1.196 -.0469 0 0
E(A'H,A) | L0255 .1805 0 0 -.0469 L2311 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 1.1362 -.1417 0 0
i, 0 1 0 0 -.1417 1.0893 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
G, 2.6529 L4238 - 0 -1.6690 .0825 0O 0
.25508 -.2608 - 0 0 - .2664 ~.2323 0
g 1.0236 .7015
.2601 .2616
Y, .3622 .0888 .1141 .1476 L3621  .0886 .1140 .1474
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APPENDIX E

THE LAIDLER MODEL
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The Basic Model

The Laidler modell is in the tradition of open-economy

monetariaSm and was designed to cope with data generated under
fixed exchange rates. Thus the interaction of the balance of
payments with the supply and demand for money, and the
interaction of actual and expected inflation rates with
fluctuations in real income, are its key ingredients. Tﬁe model

is in log-linear form and may be set out as follows:
y = o) (ms - mdLl + 0, (m+e+ a- p)_l

+ a3 t"l + Oy g (E-l)

Ar = v, (mS - mdll + vy, (m+e+a - p)__l (F.Z)
"

my = 50 + &y y + p (E.3)
A= By, + (- p) (E.4)

p -1 1 o
(pe - p) = g, Am + €2 (m + e + a - p) (E.5)
Ams = (1 - p) Ac + u Ar (E.6)
y = 8, + Ot | (B.7)

—— ——— ————— —— - - o —

Yin part, this material was taken directly from:
Laidler et al., "A €Small Macroeconomic Model of an Open
Economy".
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The variables used above are all, with the exception of
(time), naturel logarithms and are defined as follows: y the

transitory component of the log of real income;lns the log of

d

nominal money demanded; m the log of the price level ruling in

the nominal money supply; m, the log of the long-run quantity of

the world economy; e the log of the exchange rate or price of
foreign currency; p the log of domestic price level; vpe the
value fhat the 1log of the domestic price level is expected to
take ne#t period; t the deviation of the log of the economy's
average tax rate from trend; g the deviation of the log of
government e#penditure from trend; r the log of foreign excﬁange
reserves; ; the permanent component of the log of income; c¢
the log of domestic credit extended by the consoiidated bank ing
system; and 'a' is a constant to be described below. i
Equation (E.l) may be regarded as a reduced form of an
income expenditure system that tells wus that deviations of
output from 1its ‘'permanent' level (or natural 1level, the
concepts are interchangeable in this médel) depend upon the size
of any difference between the supply of money on the one hand
and the long-run demand for money on the other, the deviation of
domestic prices from some equilibrium value relative to world
prices and the exchange rates (with units qf‘measurement chosen‘
so that the equilibrium value of that relative price term 1is
zero) and the deviation of the tax rate and governmént

expenditure from trend. In fact, equation (E.l1) is a log-linear

approximation to the following, more conveniently expressed
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relationship, where capital 1letters are used to indicate the
natural values of the relevant variables, with C being rea}l
consumption, I investment and X net exports. The approximation

in question is obtained by linearising the logarithmic form of

~

the relationship about the steady state values of the logarithms

of the variables following a procedure set out in wYmer.2

t t 4

’\l -
Y = C+I+X+G = k[(ms)“lgsazfr%] Y + G- (E.8)

M

el

The par ame ters of equation (E.1) bear the following

relationships to those of equation (E.8):
1 ] ‘
0y = ka; ; oy = kas; ; o3 = kos ; oy, = (1-k)

It is worth noting two points explicitly here. First; to
enter fiscal period variables as deviations from trend while
mak ing permanent, or steady state, income solely a function of
time 1imposes long-run crowding out‘ of fiscal policy on the
behaviour of the model, while 1leaving short-run crowding out
open as an empirical matter. Second, the relative price level
includes a constant 'a': in empirical work, prices and the
exchange rate are measured as index numbers with a base of 1970
(i.e., the 1970 index is one) so their logs are zero in that.
year, and the constant 'a' is thus a measure of the proportion

C. R. Wymer, "Linearization of Non-Linear Systems", Supplement
$15, Computer Progremmer, London School of Economics, 19746,
Mimeo.
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by which the home currency, in this case the Canadian dollar,
was undervalued in 1970.

Equation (E.2) 1is an‘equation that determines the balance
of official settlements concept‘of the balance of payments and
makes it depend ﬁpon the excess supply of money, as weil as upon
.relative price levels and the exchange rate.

Equation (E.3) tells us that the long-run demand for real
money balances depends ~upon permanent income, and omits an
opportunity cost arqument. This last oﬁission might disturb some
readers, but the following points should be noted. First, and
most importént, because this is a model in which the econohy is
allowed to be off its long-run demand for money function, to
leave an interest rete out of this relationship'does not, es it
would in a conventional IS-LM fremework, ensure that only mohey
matters as far as the determination of real income and pricés is
concerned. Second, some preliminary work carried» out using
ordinary least squares on equation (E.l) suggests that to add an
interest rate to the demand for honey. function makes no
important . difference to the results obtained for other
parameters of the system, a conclusion that receives further
support from the work of Leidler and Bentley3 (1981) on United
States data. Third, and of considerable impqrtance, the omission‘
of interest rates from the model enables us to keep the.

structure simple. Were such a variable included, the model would

Leidler and Bentley, "A Small Macromodel of the Post-War
United States".
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have to be extended in order to cope with its determination, and
that would be no easy matter. Finally, omitting the interest
rate from the model does not imply that the wvariable is
unimportant in the transmission mechanism of monetary policy.
The model may be interpreted as 1ignoring interést rate
vafiations, not because they do not matter, but because they are
an intermediate step in that mechanism.

Equation (E.4) 1is a conventional expectation augﬁented
Philips curve while equation (E.5) tells wus that inflation
expectations depend ' both wupon the rate of inflation ruling in
the world ecdnomy, and on the deviation of the domestic brice
level from 1its long-run equilibrium level. Equation (E.6) is a
standard log-linear approximation to the money supply identity
while equation (E.7) defines the permanent or natural componént
of the logarithm of incdme as a simple time trend.

The Data Used in Developing the Laidler Model

The output variable upon which y and Q are based is real gross
domestic’ product. The price variable is the consumer price
index, chosen because it is the most readily compearable with the
data wupon which the world price level variable is based. The
latter vaeriable is a GNP weighted geometric average of the
consumer or retail price indices of sixteen other countries,
while the exchange rate, defined as the doméstic currency price
of foreicn currency, is a similarly weighted 1index of the

individual exchange rates on the same sixteen countries.



The government expenditure and tax variables appertain to
federal, provincial and locel government activities. As with the
output series, they represent deviations of the 1logs of the
var iables 1in qﬁestion from ﬁrends fitted by ordinary least
squares to the original data.

The 'reserve' series is constructed by starting in a bench
mark year end then adding, to the value of reserves obsefved in
that year, the current Canadian dollar value of the balance of
official settlements concept of the balance of payments observed
in the next and each successive year. This practice ensures that
the proportiénal change in reserves var iables on the leftv hand
side of the equation (E.2) is appropriately measured. The money
supply identity, to which equation (E.6) is a log-lineer
approximation, 1is then preserved by subtracting the resefves
variable from the money supply (M3) to generate a series. for
domestic credit. The latter variable is treated as exogenous,
and all <changes 1in foreign exchange reserves arising from
exchange rate changes that were af any time ©permitted to
influence the money supply rather than the net worth of the
banking system are hence included in it. They are thus treated
as exogenous. The actual data used 1in developing the ULaidler

model is shown in Tables E.l1 aend E.2.
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TABLE E.1

DATA USED IN DEVELQPING THE LAIDLER MODEL

Real GDP Consumer Prices World Prices Exchange Ra::_—:1
$ Billion 1970 = 100 1970 = 100 $/FCU 1975 = 100]
] 1952 31.84 69.5 64.5 96.8
& 1953 33. 46 68.9 65.0 97.1
1954 33.57 69.3 65.5 96, 2
1955 36.93 ) 69. 4 65.7 97.3
1956 40.65 70.5 67.0 97.1
1957 41.38 72,7 68. 7 94.3
1958 41.63 74.7 71.0 94,7
1959 43.48 75.5 71.9 92,5
1960 44.75 76..4 73.2 : 93.4
1961 45,84 -77.2 74.2 97.9
1962 49.14 78.1 76.0 103.5
1963 51.83 79.4 77.9 104.6
1964 55.25 80.9 - 79.6 ~ 104.6
1965 59.05 82.8 81.8 104.6
1966 63.75 1 85.9 © 84.6 104.6
1967 66.06 89.0 87.0 104.5
1968 69. 30 92.6 90.4 103.3
1969 73.12 96. 8 94,7 103.2
1970 75.43 100.0 100.0 100.0
1971 80.53 102.8 104.9 97.5
1972 86.01 107.8 109.5 99.7
1973 - 94,76 115.9 117.7 106, 2
1974 102. 85 128.6 132.5 102.3
1975 105. 87 142.5 145,8 107.6
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TABLE E.2

DATA USED IN DEVELOPING THE LAIDLER MODEL

(CONTINUED)
: Domestic Real Govt. Taxes as a .
Money Supply Reserves Credit : Exp. Proportion :

$§ Cdn. Bill, $ Cdn. Bill. $ Cdn. Bill. $ Cdn. Bill. of GDP

1952 9.26 ‘ 5.21 - .176
1953 9.32 1.75 7.57 5,55 . .174
1954 10.14 1.88 8.26 5.52 .161
1955 10.88 1.38 9.50 5.82 .164
1956 11.19 1.88 9.31 6.28 172
1957 11,50 177 9.73 6.29 .166
1958 12,93 1.89 © 11.04 6.50 .137
1959 12.79 1.87 10.92 6.59 .149
1960 13.40 1.47 11.57 6.91 .146
1961 14,58 2,13 12,45 7.24 .164
1962 15.12 2.28 12.84 7.59 .168 ’
1963 16.15 2,42 13,73 7.81 .166
1964 17.35 2.78 14.57 8.29 .179
1965 19.34 2. 94 16. 40 8.88 .187
1966 20.58 2.59 17.99 9.96 .199
1967 23. 68 2.60 21.08 10. 96 .202
1968 27.19 2.96 24,23 11,92 .209
1969 27.91 3.02 24, 89 12.75 224
1970 31.16 4.56 26.60 14.46 .221
1971 36. 35 5.33 31.02 15. 49 .214
1972 41.42 5.55 35,87  16.31 .207
1973 49.03 5.08 43,95 17.22 .205
1974 57.44 5.10 52.34 18.68 -, 212
1975 67.38 4.70 62.68 20.16 .172
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APPENDIX F

MULTIVARIATE NORMAL
COMPUTER SIMULATION
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In stochastic control éimulation, it is often required to
gener ate a vector of typical values for & multivariate normal
distribution with a mean vector, y ,and a variance-covariance
matrix, € , of order n.

The method is extremely simple and begins by féctoringl the
var iance-covariance matrix into @ Jower triangular matrix, P,

such that:
Q = P P! (E.1)

Using conventional Monte Carlo sampling, a vector, z, can be
created where each of its n elements is a random drawing from an
independent standard normal distribution. Now define another

vector, x, to be:

X = P z + H ‘ (E.2)

Clearly the vector x will have a multivariate normal
distribution with mean p and variance E(P z z' P') or E(P P'")

which, by definition, is the required _variance-covariance

matrix, Q.

!

! The Choleski factorization method is ideal for this purpose

and is described in:
Richard L. Burden, et al., Numerical Analysis, (Boston, Mass:

Prindle, Weber end Schmidt, 1981), p. 309.
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APPENDIX G

COMPUTER RUNS FOR
ADAPTIVE CONTROL SIMULATION
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CTHO®W STCCHASTIC CONTROL HODﬁL ~ CERTAINTY EQUIVALENCE SCLUTION

USING THE KENDRICK MODEL FOR THE CASE:

HIGH TERMINAL FACTCR

SOLUTION SUFMARY FOR TCTAL COST

WITH STANDARD DEVIATION

TERMINAL FACTOR

STABILITY FACTOR -

WT

CONSOM' N

0.063

0.374

0.382

0.390

0.432

0.475
0.544

0.541

TGT INVEST'T TGT GVISPEND

10000.

1.000
0.074
0.084
€. 070
0.108
0.126
0.267

€C.115

0.09

0.08

112

1979. 638
11070.592
DISCOUNT FACTOR -  1.000

1.000
0.119
0.125
0.128
0.129
0.099

-0.027

0.116

1.000 NO. SIMULATIONS - 50

TGT $SUPPLY

O.44y
0.11 0.145
0.1 0.151
0.11 0.149
0.11 0.153
0.1 0.130
0.12 0.090

0.12 0.094

TGT

0.15
0.15
0.15
0.15
0.15
0.15

0.16



CHOW STCCHASTIC CONTROL MODEL - UNCERTAIN PARAMETERS SOLUTION

USING THE KENDRICK MODEL FOR THE CASE: HIGH TERHINAL FACTCR

SOLUTICN SUMMARY FOR TCTAL COST ﬂ60ﬂ.299

WITH STANDARD DEVIATION 19910. 291

TERMINAL FACTOR - 10000. DISCOUNT FACTOR - 1.000

STABILITY FACTOER - 1.000 NO. SINULATIONS - 50

CONSUM'N TGT INVEST'T TGT GVISPEND TGT $SUPPLY TGT

RT 0.063 1.000 1.000 0.444

1 0.373 0.39 0.073 0.09 ©0.115 0.11 0.144 0.15
2 0.383 0.39 0.083 0.09 0.128 0.711 (C.151 0.15
3 0.391 0.40 0.067 0.09 0.129 O0.11 0.186 0.15
4 0.430 0.40 C.0%1 0.09 0.120 O0.11 0.142 0.15
5 ¢.524 (©.40 0.137 0.09 0.050 0.11 0.125 0.15
6 0.705 0.41 (.246 0.09 -0.063 0.12 0.093 0.15

7 0.709 0.41 C€.159 0.09 0.114 0.12 0.090 0.16
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N

NORMAN STOCHASTIC CONTROL MODEL - ADAPTIVE SOLUTICN

USING THE KENDRICK MODEL FOR THE CASE: HIGH TERMINAL FACTOF

SOLUTION SUEMARY FOR TOTAL COST 157.593
WITH STANDARD DEVIATION 253.536
TERMINAL FACTOR - 10000. DISCOUNT FACTOR - 1. 000
STABILITY FACTOR - l1.000 NO. SIMULATIONS - 50

CONSUHM'N TGT INVEST'T TGT GVISPEND TGT $SUFPLY TGT

WT 0.063 1.000 1.000 0.444
1 0.295 0.39 -0.157 0.09 0.319 0.17 -0.072 0.15
2 1.447 0.39 0.318 0.09 2.879 0.117 1.080 0.15
3 1.051 0.4C €.004 0.09 -0.327 0.11 -0.295 0.15
b4 0.839 0.40 0.072 0.09 -0.373 0.11 -0.034 0.15
5 0.637 0.40 ¢€.113 0.0S9 -0.423 0.11 -0.001 0.15
6 0.474 70.41 0.225 0.09 -0.565 0.12 0.1217 0.15

1 C.469 0.41 C€.18%6 0.09 0.117 0.12 0.148 0.16
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CHOW STOCHASTIC CCNTROL MODEL - CERTAINTY FQUIVALENCE SCLUTION

USING THE ABEL MCDEL FOR THE CASE: BASE RUN
SOLUTION SUMMARY FOR TOTAL COST 1. 154
WITH STANDARD DEVIATION 4.631
TERMINAL FACTOR -~ 1. DISCQUNT FACTOR - 1.000
STABILITY FACTOR - 1.000 NC. SINULATIONS - 50

CONSUM'N TGT INVESTI'T TGT GVISPEND TGT $SUfPLY TGT

WT 1.000 1.000 0.0 0.0
1 0.367 0.36 0.117 0.09 O.114 O0.14 O0.148 0.15
2 0.346 0.37 0.078 0.09 0.112 0.14 0.138 0.15
3 0f33ﬂ 0.37 0.053 0.09 0.163 0.1% 0.155 0.15
4 0.321 0.38 0.007 0.09 0.197 0.14 0.166 0.15
5 0.343 0.38 0.041 0.09 0.225 0.15 0.183 0.16

6 0.388 0.38 0.7116¢ 0.09 0.194 0.15 0.170 0.16
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CHOW STOCHASTIC CONTROL MODEL - CERTAINTY EQUIVALENCE SOLUTION

FOR THE CASE:

HIGH TERMINAL FACTOR

SOLUTION SUMMARY FOR TOTAL COST

WITH STANDARD DEVIATION

TERMINAL FACTOR

STABILITY FACTOR -

NT

CONSUM'N

1.000

0. 367

0.346

0.334
0.321
0.343

0.388

TGT INVEST'T

9749.013
39760. 226
10000. DISCOUNT FACTOR - 1.000
1.000 NO. SIKULATIONS -

1.000
0.117

0.078

0.053

0.007
0.041

0.116

TGT GVTSPEND IGT $SUPPLY

0.0
0.09 0.114
0.09 0.112
0.09 0.163
0.09 0.197

0.09 0.225

0.09 0.194
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0.0
0.148

0.138
0.155

0.166

0.183

0.170

TGT

0.15
0.15
0.15

0.15



CHOW STCCHASTIC CONT KCL MODFL - CERTAINTY EQUIVALENCE SOLUTION

USING TEF ABEL MCDEL FOR THE CASE: DISCCUNTED PENALTIES
SOLUTICN SUMRARY FOR TOTAL COST ) 0.401
WITH STANDARD DEVIATION 1.604
TERMIN AL FACTOR - 1. DISCOUNT FACTOR = 1.200
STABILITY .FACTOR -~ 1.000 NC. STMULATIONS - 50

CCNSUE'N TGT INVESI'T TGT GVISPEND TGT $SUPPLY TGT

WT 1.000 1. 000 0.0 0.0
1 0.367 0.36' 0.117 0.09 0.17114 0.14 0.148 0.15.
2 0.3436 0.37 0.078 0.09 0.112 0.1 0.138 0.15
3  0.334 0.37 0.053 0.09 0.163 0.14 0.155 0.15
4 0.321 0.38 0.007 0.09 0.19# 0.14 0.166 0.15
5 0.343 0.38 0.041 0.09 0.225 0.15 (€.183 0.16

6 0.388 0.38 0.116 0.09 0.194 0.15 0.170 0.16
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CHO¥ STOGCHASTIC CCNTEROL HODfL = CERTAINTY EQUIVALENCE SOLUTION

USING THE ABEL MCDEL FOR THE CASE: HIGH TERMINAL TARGETS
SCLUTION SUMMARY FOR TOTAL COST 9130.651

WITE STANLCARD DEVIATION 9743.196
TERMINAL FACTOR .~ 1. DISCOUNT FACTOR - 1. 000
STABILITY FACTOR - 1.000 NC. SIMULATIONS - 50

CONSUM'N TGT INVESTI'T TGT GVISPEND TGT $SUFPLY TGT

RT 1.000 1.000 0.0 0.0
1 0.367 0.36 0.117 0.09 0.114 0.1 0.148 0.15
2 0.346 0.37 0.078 0.09 0.112 O0.14 0.138 0.15
3 0.334 0.37 0.053 0.09 0.163 0.14 0.155 0.15
4 0.3217 0.38 0.007 0.09 0.197 0.14 0.166 0.15
5 0.343 0.38 0.041 0.09 0.225 0.15 (€.183 0.16

‘6 -43.571 38.45-9S.948 9.43105.992 0.15 14.082 . 0.16
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CHOW STOCHASTIC CCNI RCL MODFL - UNCERTAIN PARAMETERS SOLUTICN

USING TEF ABFL MCDEL FOR THE CASE: BASE RON
SOLUTION SUMMARY FOR TOTAL COST 0. 196
WITH STANDARD DEVIATION 0.707
TERMINAL FACTOR -~ 1. DISCOUNT FACTOR =  1.000
STABILITY FACTOR - 1.000 NO. SIMULATIONS - 50

CONSUM'N TGT INVESTI'T TGT GVISPEND TGT $SUPPLY TGT

WT 1.000 1.000 0.0 0.0
1 0.367 0.36 0.117 0.09 O0.114 0.14 0.147 0.15
2 0.345 0.37 0.081 0.09 0.1C7 0.7% 0.138 0.15
3 0.33% 0.37 0.060 0.09 0.149 0.1 0.154 0.15
4 0.322 0.38 0.018 0.09 0.175 0.4 0.764 0.15
5 0.347 0.38 0.056 0.09 0.199 0.15 (.178 0.16

6 0.397 0.38 0.137 0.9 0.165 0.15 0.165 0.16
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CHOW STOCHASTIC CCNT RGL MODEL - UNCERTAIN PARAMETERS SOLUOTION

USING THE ABET MCDEL FOR THE CASE: HIGH TERMINAL FACTOR

SOLUTICN SUMMARY FOR TOTAL COST 10276.136

¥ITH STANDARD DEVIATION 43368.539

TERMINAL FACTOR - 10000. DISCOUNT FACTOR - 1. 000

STABILITY FACTOR - 1.000 NOG. SIMULATIONS - 50

CCNSUKE'N TGT INVEST'T TGT GVISPEND TGT $SUPPLY TGT

¥T 1.006 1.000 0.0 0.0
1 0.369 0.36 0.116 0.09 0.119 0.1 0.147 0.15
2 0.350 0.37 0.089 0.09 0.112 0.14% 0.139 0.15
3 0.335 0.37 €.075 0.09 0.155 0.1 0.152 0.15
4 0.37% 0.38 0.041 0.09 0.192 0.14 0.160 0.15
5 0.313 0.38 0.060 0.09 0.238 0.15 0.174 0.16

6 0.349 0.38 0.130 0.09 0.216 0.15 0.173 0.16
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CHOW® STOCHASTIC CONT RCL MODEL - UNCERTAIN PARAMETEES SOLUTION

USING TEF¥ ABEL MCDEL POE THE CASE: DISCCUNTED PENALTIES
SOLUTION SUMMARY FOR TOTAL COST 0.066
WITH STANDARD DEVIATION 0.236
TERMINAL FACTOR % 1. DISCCUNT FACTCR -~ 1. 200
STABILITY FACTOR - 1.000 NC. SIMULATIONS - 50

CCNSUM'N TGT INVEST'T TGT GVISPEND TGT $SUFPLY TGT

WT 1.000 1.000 0.0 0.0
1 0.367 0.36 .0.117 0.09 O0.114 0.1 0.147 0.15
2 0.345 0.37 0.081 0.09 0.1€7 0.14 0.138 0.15
3 0.334 0.37 0.059 0.09 0.148 0.1 0.154 Q.15
4 0.322 0.38 0.017 0.09 0.174 O0.14 0.164 0.15
5 0.348 0.38 0.056 0.09 0.197 0.15 0.178 0.16
6 0.398 0.38 0.138 0.0¢ 0.164 0.15 0.164 0.16
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CHOW STOCHASTIC CONT EQOL MODEI - UNCERTAIN PARAMETERS SOLUTION

USING THE ABEL MCDEL FOR THE CASE: HIGH TERMINAL TARGETIS
SOLUTION SUMMARY FOR TOTAL COST 342.091

WITH STANDARD DEVIATION 256.649
TERMINAL FACTOR -~ 1. DISCOUNT FACTOR - 1. 000
STABILITY FACTOR - 1.000 NC. SIMULATIONS - 50

CONSUM'N TGT INVEST'T TGI GVISPEND TGT $SUPEFLY TGT

T 1.000 1.000 0.0 0.0
1 0.437 0.36 0.073 0.09 0.340 O0.14 0.189 (.15
2 0.592 0.37 0.018 0.C9 0$.659 0.74 0.136 0.15
3 1.025 0.37 -0.152 0.09 1.735 O0.14 0.120 0.15
4 2.342 0.38 -0.605 0.09 4.996 0.14 0.093 0.15
5 6.656 0.38 -1.419 0.09 15.129 0.15 0.354 0.16

31.923 38.45 14.990 9.43 56.491 0.15 12.847 0.16

(=)}
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HEURISTIEC STOCHASTIC CCNTRCL MODEL

USING THE ABEl MCDEL FOF THE CASE: BASE ROUN
SOLUTION SUMMARY FOR TOTAL COST 0. 196
WITH STANDARD DEVIATION 0.707
TERMINAL FACTOR - 1. DISCOUNT FACTOR - 1.000
STABILITY FACTOR - 0.0 NC. SINULATIONS - 50

CCNSUM'N TGT INVEST'T TGTI GVISPEND TGT $SUFFLY TGT

WT 1.000 1.000 0.0 0.0
1 0.367 0.36 0.117 0.09 0.114 0.14 0.147 0.15
2 0.345 0.37 0.081 0.09 0.1C7 O.14 0.138 0.15
3 0.334 0.37 0.058 0.09 Of150 0.14 0.154 0.15
4 0.322 0.38 0.016 0.09 0.176 0.34 0.164 0.15
5 0.348 0.38 0.054 0.09 0.200 0.15 0.179 0.16

6 0.399 0.38 0.138 0.9 0.165 0.15 0.165 0.16
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HEURISTIC STOCHASTIC CCKTRCI MODEL

USING THE ABEL MCDEL FOE THE CASE: HIGH TERMINAL FACTOR

SOLUTION SUMMARY FOR TOTAL COST 3178.011

WITH STANDARD DEVIATION 11932.101

TERMINAL FACTOR -~ 10000. DISCOUNT FACTOR - 1.000

STABILITY FACTOR - 0.0 NO. SIMULATIONS - 50

CONSUN'N TGT INVEST'T TGT GVISPEND TGT $SUPELY TGT

AT 1.000 1.000 c.0 0.0
1 0.367 0.36 0.117 0.09 0.114 0.14 0.147 0.15
2 0.346 0.37 0.080 0.09 0.110 0.14 0.139 0.15
3 0.332 0.37 0.053 0.09 0.158 0.14 0.154 0.15
5 0.318 0.38 C€.005 0.09 0.192 0.14 C.164 0.15
5 0.381 0.38 0.036 0.09 0.220 0.15 0.180 0.16

6 0.401 0.38 0.135 0.6S C€.180 0.15 0.171 0.16
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HEURISTIC STCCHASTIC CONTRCI MCDEL

USING THE ABEL MCDEL FOR THE CASE: CISCOUONTED PENALTIES

SOLUTION SUMMARY FOR TOTAL COST 0.067
WITH STANDARD DEVIATION 0.239
TERMINAL FACTOR =~ 1. DISCOUNT FACTOR - 1.200
STABILITYWFACTOR - 0.0 NC. SIMULATICNS - 50

CCNSUM'N TGT INVESI'T TGT GVISPEND TGT $SUPELY TGT

¥T  1.000 1.000 0.0 0.0
1 0.367 0.36 0.117 0.09 0.114 0.1% 0.147 0.15
2 0.385 0.37 0.087 0.09 0.1C¢7 0.14 0.138 0.15
3 0.334 0.37 0.058 0.09 0.149 0.1% 0.154 0.15
4 0.322 0.38 0.016 0.09 0.175 0.14 0.164 0.15
5 0.389 0.38 0.055 0.09 0.198 0.15 0.179 0.16

6 0.400 0.38 0.138 0.0¢ 0.164 0.15 0.164 0.16
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BEURISTIC STOCHASTIC CCNTROL MODEL

OUSING THE ABEL MCDEL FOF THE CASE: HIGH TERMINAL TARGETS

SOLUTION SUKMARY FOR TOTAL COST ' 8602.205
WITH STANDARD DEVIATICN 9427.214
TERMIK AL FACTOR -~ 1. DISCCUNT FACTOR - 1.000
STABILITY FACTOR -~ 0.0 NC. SIMULATIONS - 50

CONSUN'N TGT INVEST'T TGT GVISPEND TGT $SUPPLY TGT

WT 1.000 1.000 _‘d 0.0 0.0
1 0.367 0.36 0.117 0.09 0.%113 0.14 0.147 0.15
2 0.345 0.37 0.080 0.09 0.1(8 0.14 0.138 0.15
3 0.333 0.37 0€.055 0.09 0.156 0.14 0.154 0.15
4 0.3¢5 0.38 ~0.027 0.09 0.223 0.14 0.160 0.15
5 -0.334 0.38 -1.523 0.09 1.468 0.15 0.176 0.16

6 -36.792 38.45-50.745 9.43105.878 0.15 14.729 0.16
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MACRAE STOCHASTIC CCNTROL MODEL -~ ACAPTIVE SOLUTION

USING THBF ABEL MCDEL FOF THE CASE: BASE RUN
SOLUTION SUMMARY FOR TOTAL COST 0.201
WITH STANDARD DEVIATION 0.727
TERMINAL FACTOR - 1. DISCOUNT FACTOR -  1.000
STABILITY FACTOR - 1.000 NO. SIMULATICNS - 50
CONSUM'N TGT INVEST'T TGT GVISPEND TGT $SUPPLY TGT
T  1.000 1.000 0.0 0.0
1 0.367 0.36 0.117 0.09 0.114 0.14% 0.147 0.15
2 0.345 0.37 0.081 0.09 0.1C¢7 0.14 0.138 0.15
3 0.33¢ 0.37 0.059 0.09 0.150 0.4 0.154 0.15
4 0.322 0.38 (.016 0.09 0.176 0.14 0.164 0.15
5 0.3437 0.38 0.054 0.09 0.200 0.15 0.179 0.16
0.16

6 0.398 0.38 0.137 0.0S 0.166 0.15 0.165
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MACRAE STOCHASTIC CONTRCL MCDEL - ALAPTIVE SOIUTION

USING THE AREL MCDEL FOR THE CASFE: HIGH TERMINAL FACTOR
SOLUTION SUMMARY FOR TOTAL COST 25.846
RITH STANDARE DEVIATION 42.170
TERMINAL FACTOR -~ 10000. DISCOUNT FACTOR - 1.000
STABILITY FACTOR - 1.000 NC. SIMULATIONS - 50

CCNSUM'N TGT INVEST'T TGT GVISPEND TGT $SUPPLY TGT

WT 1.000 1.000 0.0 0.0
1 0.270 0.36 -0.085 0.09 -0.0C6 O0.14 0.023 0.15
2. 0.102 0.37 -0.232 0.C9 -0.154 0.14 -0.075 0.15
3 0.148 0.37 -0.053 0.09 0.199 0.14 0.167 0.15
4 0.305 0.38 -0.289 0.09 O0.65& 0.14 0.184 0.15
5 0.379 0.38 0.197 0.09 0.157 0.15 0.241 0.16

6 0.398 0.38 0.077 0.069 0.127 0.15 0.123 0.16
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MACRAE STOCHASTIC CCKNTRCL MCDEL - ALAPTIVE SOLUTION

USING THE ABEL MCDEL FOR THE CASE: DISCOUNTED PENALTIES
SOLUTICN SUMMARY FOR TOTIAL COST : 0.068
WITH STANDARD DEVIATION 0. 245
TERMINAL FACTOR -~ 1. DISCCUNT FACTOR - 1. 200
STABILITY FACTOR - 1.000 NC. SIMULATIONS - 50

CONSDOM'N TGT INVEST'T TGT GVISPEND TGT $SUPPLY TGT

§T  1.000 1.000 0.0 0.0
1 0.367 0.36 0.117 0.09 0.114 0.14 0.187 0.15
2 0.345 0.37 0.081 0.09 0.1¢7 0.14 0.138 0.15
3 0.338 0.37 0.058 0.09 0.149 0.1% C.154 0.15
4 0.322 0.38 0.016 0.09 0.175 0.14 0.164 0.15
5 0.348 0.38 €.055 0.09 0.199 0.15 0.179 0.16

6 0.3%9 0.38 0.138 0.09 0.165 0.15 0.165 0.16



MACRARE STOCHASTIC CONTROL HObEL -~ ADAPTIVE SCLUTION

USING THE ABEL MODEL FOR THE CASF: HIGH TERMINAL TAEGETS
SOLUTICN SUMMARY FOR TOTAL CCST 3199, 260
WITH STANDARD DEVIATICN 5157. 128
TERMINAL FACTOR - 1. DISCOUNT FACTOR -  1.000
STABILITY FACTCR - 1.000 NO. SIMULATIONS - 50

COGNSUOM'N TGT INVEST'T TGT GVISPEND TGT $SUPPLY TGT

WT 1.000 1.000 0.0 | 0.0

1 0.373 (€.36 0.099 0.09 0.142 0.1 C.141 0.15
2 0.359 0.37 0.09% 0.09 0.111 0.14 0.146 0.15
3 0.393 0.37 0.119 0.C€9 0©€.271 0.1 0.139 0.15
4 §.379 0.38 0.102 0.09 0.155 0.14 0.149 0.15

5 0.396 0.38 0.121 0.0 0.203 0.15 0.143 0.16

(=2}

40.254 38.45 38.904 9.43105.426 0.15 13.625 0.16
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NORMAN STOCHASTIC CONTRCL MCDEL - ATCAPTIVE SOLUT ION

USING THE ABEI MCDEL FCF THE CASE:

BEASE RUN

SOLUTICN SOMMARY FOR TOTAL COST

WITH STANDARD DEVIATION

TERMIN AL FACTOR -

STABILITY FACTOR -

¥T

CCNSUM'RN

1.000
0.366

0.3€7

-0.392

0.373
0.347

0.307

1.

1.000 NO.

DISCCUNT FACTOR —~

SIMULATIGNS -

TGT INVESI'T TGT GVISPEND TGT $SUFFLY

1.000
0.36 0.107
0.37 0.105
0.37 0.106
0.38 0.088
0.38 0.086
0.38 0.073

151

0.0

0.114
0.113
0.114
0.115
0.116

0.117

0.0

C.148

0.146

0.146

0.147

C. 147

0.147

0.041

0.066

1.000

50

TGT




NORMAN STOCHASTIC CONTROL MODEL - ALAPTIVE SOLUTION

USING TEF ABEL MCDEL FOR THE CASE: HIGH TERMINAL FACTOR
SOLUTION SUMMARY FOR TOTAL COST 63.032
WITH STANDARD DEVIATION E 98. 721
TERMINAL FACTOR - 10000. DISCOUNT FACTOR - 1.000
STABILITY FACTOR -~ 1.000 NC. SIMULATIONS - 50

CONSUM'N TGT INVESI'T TGT GVISPEND TGT $SUPPELY TGT

WT 1.000 1.000 0.0 -0.0
1 1.445 0.36 0.4311 0.09 3.178 0.14 0.578 .0.15
2 ¢.381 0.37 0.087 0.09 -2.710 O0.14 -0.222‘ 0.15
3 0.410 0.37 0.109 0.09 0.115 0.14 0.154 .0'15
4 0.379 0.38 0.081 0.09 0.112 0.14 O0.144 0.15
5 0.327 0.38 0.069 0.09 0.004 O0.15 0.131 0.16

6 0.310 0.38 0.063 0.09 ©0.2C8 0.15 0.159 0.16
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NORMAN STOCHASTIC COKRTROL NODEL - ADAPTIVE SGLUTIO#

USING THE ABEL MOTEL FOR THE CASE: DISCOUNTED PENALTIES
SOLUTION SUMMARY FOR TOTAL COST 0.017
WITH STANDARD DEVIATION 0.027
TERMINAL FACTOR - 1. DISCOUNT FACTOR -  1.200
STABILITY FACTOR - 1.000 NO. SIMULATIONS — 50

CONSUM'N TGT INVEST'T TGT GVISPEND TIGT $SUPPLY TGT

T 1.000 1.000 0.0 0.0
1 0.366 0.36 0.107 0.09 0.114 0.14 0.148 0.15
2  0.367 0.37 (.105 0.09 0.113 0.14 0.146 0.15
4 =,403 =y48 =/2=7 =/=0 =/114 0.14 0.146 0.15
4 0.373 0.38 0.088 0.09 0.115 0.1 0.147 0.15
5 0.337 0.38 0.086 0.09 0.116 0.15 0.147 0.16

6 0.307 0.38 0.073 0.09 0.117 0.15 0.147 0.16
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NORMAN STOCHASTIC CONTRCL MODEL - ACAPTIVE SCLUTION

' USING THE ABEL MCDEL FOR THE CASE: BIGH TERMINAL TARGETS
SOLUTICK SOMMARY FOR TOTAL COST 741.687
WITH STANCARD DEVIATION 907.432
TERMINAL FACTOR - 1. DISCOUNT FACTOR =~ 1. 000
STABILITY FACTOR - 1.000 NC. SIMOLATIONS - 590

CONSUH'N TGT INVEST'T TGT GVISPEND TGT $SUPPLY TGT

WT 1.000 1.000 0.0 0.0
1 0.510 0.36 0.143 0.09 0.528 0.1 0.202 0.15
2 0.368 0.37 0.088 0.09 -0.267 0.14 0.099 ‘0.15
3 0.393 0.37 0.095 0.09 0.114 0.14 0.1746 0.15
4 0.367 0.38 0.080 0.09 0.115 0.3 0.747 0.15

5 0.337 0.38 0.077 0.09 0.116 0.15 0.147 0.16

[«)}

40.530 38.45 12.787 9.43105.915 0.15 14.059 0.16
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