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Abstract

The purpose of this paper is to discuss various topics regarding
probability measures on the space R of sequences taking the values
0,1,...,r-1 (where T 1is assumed fixed), together with its Borel subsets,
B(R). We emphasize shift invariant Markov measures, as well as the space of
all shift invariant Markov measures, denoted M(R,T), where T 1is the
(one-sided) shift on &. Throughout, we take an approach to the matrix
representation of Markov measures that is a slight improvement over previous
approaches. -Also, we give direct proofs, for this setting, to some known

results.

Our main reﬁults are the characterization of atomic ergodic measures
as periodic orbit measures, and the characterization of atomic ergodic
Markov measures as Markov measures induced by cyclic permutation matrices.
Other results appear in the discussion of entropy, where we give necessary
and sufficient conditions for a Markov measure to have entropy equal to zero
or log r. We also prove that the entropy map is continuous on M(&,T).
Elsewhere, we prove that M(R,T) is not convex. In addition, as a result
of our discussion of nonatomic measures on (R,B(R)), we give a simple
method for constructing examples of (strictly) increasing continuous

functions on the unit interval.
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Introduction

The purpose of this paper is to discuss various topics regarding the

oo

sequence space & =1II {0,1,...,r-1} (Where r 1is considered fixed) endowed
with the product topglogy, and the space P(®), of all probability measures
on (9,5(9)), where B(R) 1is the o-algebra of Borel subsets of 2. We
shall present some new results for shift invariant Markov measures and

ergodic Markov measures, as well as for the space of all shift invariant

Markov measures, denoted M(R,T), where T is the shift on .

We begin, in sections 1 to 3, with a description of the setting that
we will be working with throughout. In section 1, we discuss the sequence
space &, a topoldgical measurable space, and the shift T (which some
authors call the one-sided shift). In section 2, we give a direct proof
to the Kolmogorov existence theorem.‘ In section 3 we begin discussing the
space PCQ) as well as the subspace, P(Q,T), of all shift invariant
probability measures on (R,B(%)). We then look at ergodicity, presenting
some known results for ergodic measures, as well as for the space of all

ergodic measures, denoted E(R,T).

In section 4 we look at Markov measures. In our presentation of the
existence theorem, (4.1), S denotes the index set for the probability
distribution p and the stochastic matrix P that induce the measure p,
and E denotes the state space for the Markov chain on (R,B(%),u). Here we
avoid assuming that E = S, that is, we allow for the possibility that
E § S. Because of this approach, we have, in (4.13), a slight improvement

over the usual characterization of ergodic Markov measures. In another



theorem, (4.11), we give a simple proof to a theorem of Doob [2]. We close
this section by proving the nonconvexity of three subspaces of P(R): the
subspace of Markov measures, M(R); the subspace of shift invariant Markov

measures, M(%,T); and the subspace of Bernoulli measures, B(®,T).

Our major results appear in sections 6 and 7, where we consider atomic
measures on (R,B(R)). Section 5 begins the discussion with a look at
periodic points, orbits, and orbit measures. The main result in section 6
is the characterization of atomic ergodic measures as periodic orbit
measures. In section 7, we characterize atomic ergodic Markov measures as
Markov measures induced by cyclic permutation matrices. In addition, (7.5)
characterizes non-Markovian atomic ergodic measures, that is, non-Markovian

periodic orbit measures.

In sections 8 to 10, we discuss the nonatomic case, where it is
natural to consider the unit intervall I, with its Borel subsets, B(I).
In section 8 we look at distribution functions, fv, that correspond to
measures v on (I,B(I)). Section 9 then presents some known relationships

between nonatomic measures on (%2,B(%)) and nonatomic measures on (I,B(I)),

d [6V]
using the natural mapping ¢ from R onto I, where o¢(w) = 2 nzl
n=0 r

for any w = (mn):=0 in @. This section closes with (9.19) which
furnishes a direct proof of the isomorphism of the probability spaces
@,B(®),u) and (I,B(I),m), where un € P(R) is nonatomic, and m is
Lebesgue measure. In section 10, a main result is the calculation of
distribution functions. For any shift invariant Markov measure u, (10.5)

gives a simple method for calculating the distribution function f of the

random variéble © on (®,4). Theorem (10.6) gives the corresponding result



for Bernoulli measures. It is known that if a probability measure u is

ergodic, and not equal to (%

seees %J—Bernoulli measure, then the
distribution function f 1is singular. Thus the above method is a mechanism
for constructing examples of (strictly) increasing continuous singular

functions on the unit interval; for example, Lebesgue's singular function is

generated by (%-, 0, %J—Bernoulli measure.

In section 11, we discuss entropy on P(R,T), beginning with basic
definitions and some known results. One of our main results in this section
is (11.10): for any shift invariant Markov measure u, the entropy of T
relative to yu, hu(T), equals zero iff p is induced by a permutation
matrix, i.e., u is an ergodic atomic (Markov) measure. We also show, in
(11.13), that for each measure u € M(Q,T), h (T) = log  iff 4 is the
(%-,..., %J-Bernoulli measure. We close this section by proving that the

entropy map, b hu(T) is continuous on M(R,T).



1. The sequence space &

(1.1) Definitions. Throughout, r will denote a fixed but arbitrary
positive integer such that r = 2. Lét S ={0,1,...,r-1} be a finite

set of r points with the discrete topology. Define the sequence space

R by Q= 1 Sn , Where Sn = S, that is

R = {(mn)nZO Py € S}

Endow the set & with the product topology.

For each n = 0, let X % > S be defined by xn(m) = @ -

A subset of & of the form

{w € R : xoﬁn) = io,...,x (w) = i_}, where 1

seeeri €8, nz20,
n n 0 n

denoted by Z(io,...,in), is called a cylinder set. Let S denote the

collection of all cylinder sets, together with the empty set ¢.

Recall that a topological space is zero-dimensional iff every point

in the space has a neighbourhood base consisting of clopen sets, ie. sets

that are both open and closed.

(1.2) Theorem. The sequence space & with the product topology is a

compact, zero-dimensional Hausdorff space with countable base S.
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5.
proof. Clearly @ 1is a compact Hausdorff space in the product topology.
Frovs
It is easily seen that the collection S is a countable base for the
product topology of ® and that each cylinder set is clopen. m
(1.3) Theorem. The sequence space & with the product topology is
metrizable.
proof. Define d : @ x @ - [0,1] by

= e
d(w,) = 2 . o7
n=0 2™l 14 | m |
n n
Then we see readily that d 1is a metric on Q. Let
U(w,e,N) = {MneR : |nn-mn| < &, 0<=n=N} where wé€R, >0, N20.
Recall that, on the real line R, the two metrics po(x,y) = |x-y| and
o' (x,y) = ——iETXl—— are uniformly equivalent. Hence, given ¢ > 0, there
1+ |x-y|

exists & > 0 such that p(x,y) < & whenever o'(x,y) < 8. Suppose

dM,w) < 2'(N+1)6. Then we have, for 0 <n < N,

-(n+1) , - (N+1)
2 o Cnn,mn) < 2 8§ or

o' () < - (N-n) g o 5,

S0 that ann,mn) < g¢. Thus the d-topology is stronger than the product

topology.



Now consider the set {n € @ : d(n,w) < €}, where w € R 1is
fixed. Choose an N > 2 such that Zn>N2-n < g/2. Choose & > 0 such
that o'(x,y) < &/2 whenever p(x,y) < 8, for any x,y € R. Then we
obtain, for each 7 € U(w,8,N-1),

N-1

dM,n) =2
n=0

2_ (n+1) -n

t
o' (e ) + 2 .32

<ef2 +¢ef2 =¢ ,
so that the d-topology coincides withvthe product topology. @

A collection C of subsets of @ 1is called a semialgebra if the
following three conditions hold: (i) ¢ € C; (ii) if A,B ¢ C, then
AN B E’C; (iii) if A € C, then Q@ - A is a finite union of pairwise
disjoint sets in C. |

n

et sl - 5., where .
i=0 * *

n
n
=)
v
o

(1.4) Lemma. The collection § 1is a semialgebra.

Proof. By definition, ¢ € S. For any Z(io,...,in) and Z(jo,...,jn)
we have

Z(lo,,..,ln) n Z(jo,...,jn) = Z(io,...,in) or ¢

according as (10,,..,1 ) = (JO,...,J ) or (10,..,,in) # (JO,...,Jn),

n n

Gi . . . .
iven Z(lo,...,lm) and Z(JO,,..,Jn) where m < n, we have



Z(iox-"',i):.u “os U Z(io,...,i s 1

so that

Z(1O,..,,im) n Z(JO,..n,Jn) = Z(JO,...,Jn) or ¢

) = (jO,...,j ) or (io,...,im) # (jO”"’jh)'

cording as 1.,00.,1
ac g (Lgseveniy 0

For any cylinder Z(iO’°‘°’in) we have

. .oy . N L s : N+l
Sa - 2(109""111) - U{Z(JO""’Jn) . (JO)""Jn) € S s

Gorresdg) # Ggoeresip)}

which is a union of rn+l—l disjoint cylinders in S. We also have

Q@ =UzZ@). o
i

The algebra generated by the semialgebra S is denoted by A(S).
(1.5) Lemma. The algebra A(S) consists of sets of the form

{w € @ : (wo,...,mn) € E} = g . Z(io,...,in)
(10,...,1n) € E

where E < Sn+1, and n = 0.

Proof. It is plain that A(S) consists of all finite disjoint unions of

sets in the semialgebra S. Thus A € A(S) iff A = {w:(mo,...,wn) € E}

where E C Sn+1, n=0. o



Let B(R) denote the o-algebra generated by all open subsets of &
and let o(S8) denote the o-algebra generated by the semialgebra S.
Then we obtain readilx that B(R) = o(S) (since § 1is a countable base
for Q). Let C(R) denote the set of‘all real-valued continuous functions
on %. Also, for each E € &, we denote the indicator (characteristic)
function of E by lE'
(1.6) Lemma. Let F be the family of all linear combinations of
indicator functions of sets in the semialgebra S. Then F 1is dense in

C(R) 1in the uniform topology.

Proof. We have F = {Z c. 1_ : E. € 8, ¢y € R, n=1}. Since each

cylinder set E is a clopen subset of R, 1 is in C(®), so that F is

E

a subspace of the vector space C(R). It is easily seen that each f ¢ F

n
can be written as f = % c. 1 where ¢. € R and E.,...,E are
. i "E. 1 1 n
i=1 1
n
pairwise disjoint sets in S, so that |f| =2 1ci|lE € F. Thus F is
i=1 i

also a sublattice of the vector lattice C(R). Since F 1is a separating
family of functions on & and contains the function 1, F is dense in

C(®) by the Stone-Weierstrass theorem (see Hewitt-Stromberg [1]). o

(1.7) Definition. The transformation T defined on the sequence space

% by (Tm)n =@ .10 where w € R and n 2 0, 1s called the shift.



(1.8) Lemma. The shift T 1is a continuous surjection from &£ onto
itself. In particular, T 1is a measurable transformation from the
measurable space (%,B(R)) onto itself.

proof. By definition, Tw € @ for each w € ®. Given o = (mn) € %,

n=0

we obtain T—l{m} = {(i,mo,ml,...) : 1€ S} so that T is a surjection

but not an injection. For each cylinder set Z(iO,...,in), we obtain

26, 1) = T e Xo(®) = ig,..oox (@) = i}

{w : xl(m) = iO,...,xh+1(m) = in}

i

g Z(1,10,...,1n)

so that T 1is continuous. a

(1.9) Remark. Since for any n = 0 the mapping Xt > S is
continuous, it is also a measurable function from the measurable space
(,B(R)) onto the measurable space (S,B(S)), where B(S) denotes the

power set of S.
We state without proof the following unique extension theorem.
(1.10) Theorem. Let p and v be probability measures on (R,B(R)).

If Ww(B) = v(E) for each E in the semialgebra S, then p =v on

B(R).

See Blumenthal and Getoor [1], Halmos [1], Royden [1] for the proof.
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2. The Kolmogorov extension theorem

Let p be a probability measure on the measurable space (R,B(R)).
Consider the sequence of random variables, or the stochastic process

} on the probability space (%,B(R),u). For each n = 0, define

X0 120

{
the function P, : Sm‘l -+ [0,1] by

pn(lo,ll,...,ln) = u(x0=10, ;=i e xn=1n),

where {x0=10, e, xn=1n} = {0ER : xo(m)=10, cees xn(m)=1n}. Thep the

following consistency conditions hold:
(

0= pn(lo,...,ln) <1,

! 2 opy() =1,
i€S

pn(io,---,i)= Z p

(i,...,i,i).
N des 0

w n+l

Using a probability vector and a stochastic matrix, we may generate

functions P> n=0 satisfying the consistency conditions.

2, . = (p.). ili .
(2.1) Example. Let p (pl)1ES be any probability vector on the set S

For each n = 0, define

pn(lo,ll,"“.,l ) = p.O pil oo pin , where 1ppdyseeeniy € 8S.

Then {Pn}nzo satisfy the consistency conditions.



11.

(2.2) Example. Let p = (pi)ies‘ be any probability vector on S and

=1

et P = (p..). . be any 7rTXxr stochastic matrix, i.e., 0 = p..
»] €8 1j

ij’i

and 2 Piy = 1 for each 1i,j € 5. For each n 2 0, the function defined

by

p. (i ’il""’i ) =p. p. . ... P, .,
n- 0 n 1O 1011 1n—11n

where 10,11,...,1n €S ,

satisfies the consistency conditions.

There are functions {pn}n>0 satisfying the consistency conditions

that are not induced by any pair of a probability vector and a stochastic

matrix.

(2.3) Example. Let p = (pi) and q = (qi) be two probability vectors

for all i, and

on the set S

H|-

{0,1,...,r-1} such that p; =

for i =2 2. For each n =2 0, define the

H|=

Y9 2r> Y57 4 °

function pn(io,.,.,in) by

It is easily seen that the functions {pn}nzo satisfy the consistency

conditions. 1In particular we obtain
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3 | 5 9
PO(O) = Z? > Pl(O,O) = —_Z' ’ PZ(O,O,O) = K
8r lé6r

Suppose that there exist a probability vector u = (ui) on S and an

pxr stochastic matrix A = (aij) such that

P (io,...,i ) =u., a. . ... a.

for all io,...,in € S and all n = 0. Then we obtain
u, = (0) = 3 a . = (0,0)/u, = ~ and
0~ Pp ar > %po T P1\V.VN/Yy T gy
9 3 5 5 25
= p,(0,0,0) u.a..a — e . =
16r3 2 0700700 4r 6T 6T 48r3
that 9 _ 25 dicti
SO a Tg- =75 a contradiction. m

(2.4) The Kolmogorov extension theorem. Let S = {0,1,..,r-1}, for some

r = 2. Let {pn}n>0 be a sequence of functions satisfying the consistency

A . + . .
conditions, where P, has domain S" 1. Then there exists a unique

probability measure u on (2,B(R)) such that

W(xp=igs .o x =i ) =p (dj,...,1) for all

i ...in €S and all n = 0.

Proof. Define the set function u on the semialgebra S by
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w(z(ig,...sip)) = p (Gg,e.0ri), ule) = 0.

We want to show the following:

(1) If a set A in S 1is a finite union of the disjoint sets

n
in S, then uWwA = 2- uAi .
i=1

S A

172

(ii) If a set A in S 1is a countable union of the disjoint sets

Al’AZ"" in S, then pA = .E uAi.
i1
For any cylinder set Z(io,...,in) and any k = 1, we have
Z(lo,...,ln) = . U s e . U s Z(lo"'"1n’1n+1""’1n+k)’
n+l n+k
and
R(Z(igs-eesi)) = P (g, osip)
= iZ iZ pn+k(107""1n’1n+1""’1n+k)
n+l n+k
= iZ v iZ u(Z(lo,...,ln,1n+l,...,1n+k)).
n+l n+k
Let A = Z(iO,...,im), be an arbitrary cylinder set. Suppose
u
A=y At where Al,...,A.u are pairwise disjoint cylinder sets. For

each At’ there exist in S, n_ =1, such that

Jt, 177 ¢ ,n t

t
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. ).

0;*--,1m:Jt’1" --’Jt’nt

Let n = max{nt 11 <t < u}. Then, as above, we obtain

At = U Lo U 2(10""’1m’3t,1""’Jt,n ’kn +1""’kn)
k k t t
n,+1 n
t.
so that
u
A= U A_=U U UZ(i, ,isj ) :j 3 3 ’k)
t=1 t t | x K 0 m’’t,l t,nt ,nt+1 n
n,+1 n
- _ . . .
q Do 'q Z(1O,. L ,1n)
i i
1 n

Using the preceding results, we obtain

no™MMge

(A =2 2 ...02 “(Z(lo""’1m’3t,1"""3t,nt’kn b2 oK)

1 tik k

t
+1 n
ne

- . ..y .
Z ... fﬂ u(Z(lo,,..,lm,l ,,o.,ln))

n
-
L

>
L

Thus (i) holds.

To prove the o-additivity of u on S, suppose that a cylinder

set A 1s the union of a countable collection U = {An}nzl of disjoint
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sets in S. From (1.2) we see that U is an open covering of the compact

set A, so that there is a finite sub-collection of cylinder sets

n =

= C ='
ur {An ,--.,An } €U such that A

A . Note that, since the sets
1 k i=1 ™

1 i

in U are disjoint, we have An = ¢ whenever An €U -U'. Thus (ii)
holds. Therefore, by a well-known theorem (see Neveu [1], Royden [1]),
u has a unique extension to a probability measure on the c-algebra

o(S) = B(R). o

Let p be a probability measure on (®,B(R)). By (1.8) T is

measurable, and so we define the probability measure Tu by the formula
(Tw) (B) = w(T™'E) where E ¢ B(®).

A probability measure p with Tp = p 1is called. T-invariant.

Let p be a T-invariant probability measure on (2,B8(R)), and
let pn(lo,ll,...,ln) = u(x0=10, X1=1, e, xn=1n) where n = 0 and
io,il,...,in € S. Then the functions {pn} satisfy the consistency

conditions, together with the shift invariance conditions:

.
[
~—
1]

(Tu)(x0=10, vees xn=1n)

= p(x1=i0, cee, X )

=i
n+l n

= ZiES u(x0=1, x1=10, R )

1]

ziES pn+1(1,10,...,1n).
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(2.5) Corollary. If functions {pn} satisfy the consistency

n=0

conditions, together with the shift invariance condition, then there exists

a unique T-invariant measure p on (R,8(R)) such that

U-(XO:.-lo, e xnzln) = pn(lo,...,ln) for all

see.,1_ €S and all n = 0.
0 n

Proof. By the Kolmogorov extension theorem, there is a unique probability

measure 4 such that u(x0=10, ey X ) = pn(lo,...,ln)» for all n= 0

=i
n n

and all iO’”"’in € S. Using the shift invariance condition, we obtain

u(x0=10, T anln) - pn(lO""’ln) = ZiES pn+l(l’10""’ln)

Zieg Wxgmhs xp=io, ooy X g=1)

= u(xl=10, e, X

1]

-1 . .
w(T (x0=10, cees X =1 ))

1]

(Tw) (xg=ig, «es Xp=i)

so that Ww(E) = (Tu)(E) for all E € S. By the unique extension theorem

(1.10) we have u = Tu. 0o

(2.6) Remark. The functions defined in Examples (2.1) and (2.3) satisfy

the shift invariance conditions.



(2.7) Example. Let P = (pij)i,jES be an irreducible stochastic matrix

and let p = (pi)iES be the stationary distribution for P, that is,

pP = p. Let pn(lo,ll,...,ln) =P; Py - Py for n=2 0 and
' 0 071 n-1n

O,...,ln € S. Then the functions {pn}nzo satisfy both the consistency

conditions and the shift invariance conditionms.

17.
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3. Probability measures and ergodic measures

(3.1) Definition. Let P(R) denote the set of all probability measures
on (R,B(R)). For each w € @, define the probability measure € by

sw(A) = lA(w) for A C Q. Let E(Q) = e, o€ Q}.

It is well-known that P(R) 1is a convex set and that each p in

P(®%) 1is regular, that is, for each A € B(R),

w(A) sup{(C) : C compact, C < A}

inf{u(G) : G open, A < G}.

By the Riesz representation theorem, P(R) can be canonically mapped
bijectively onto the set of all positive linear forms J on C(R) such
that J(1) = 1. We shall assume that P(R) is endowed with the weak*
topology. A base for the weak* topology on P(R) is given by the

collection of all sets of the form
U £, 0000 E58) = {veP(R) - Iffidv - ffidul <€, 1 =is=<k},

where p € P(RQ), fi € C(R), k=21 and e > 0. See Parthasarathy [1],

Walters [1] for details.

(3.2) Lemma. Let {En}n>l be an enumeration of the cylinder sets in Q.

Define
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@ )-vE )|

d(u,v) =
n

where pu,v € P(R).

n ™ g

1 2“(1+|u(En)—v(En)\)

Then d 1is a metric on P(R) and the d-topology coincides with the weak*

topology of P(R).

Proof. By the argument given in the proof of (1.3), the d-topology is
equivalent to the topology having as a subbase the collection of all sets
of the form {véP(R) : Iv(En)—u(En)‘< e}, where p € P(®), n=1 and

e > 0. By (1.6), this topology is weaker than the weak* topology. On the

other hand, given f € C(R) and e > 0, there is, by (1.6) a function

g € C(R) of the form g =

[ I B

c. 1 such that ||f-gll < ¢/4. Let
1 B

i
c = max{lcil : 1 <1i<mn}. Suppose |u(Ei)—v(Ei)| <¢ef/2nc for 1 <1i <n.

Then we obtain

| ffdp-Sfdv| < | ffdu-fgdu] + |fgdu-fgdv] + |fgdv-sfdv|
n
s 2lf-gl + 2 feyllnEP-vED] <& o
i=1
(3.3) Corollary. Let u, My Hos oo be probability measures in P(R).

Then the following are equivalent:

(1) {un}n>1 converges to W 1in the weak* topology.

(ii) lim unE = w(E) for each cylinder set E.

T
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(3.4) Theorem. P(R) is a compact convex set in the weak* topology.

Proof. By (3.2), the weak* topology is metrizable. Thus, to prove the
compactness of P(R), it suffices to show that P(R) 1is sequentially

compact. Let {un}nzl be a sequence in P(®), and let be an

Eiher
enumeration of the cylinder sets in 8. By Cantor's diagonal procedure,
we obtain a subsequence {un }.1 of {un}n such that the sequence of
i
real numbers {un (Ek)}i converges for each cylinder set Ek' Define the
i

set function v on S by v(Ek) = lim uh (Ek) for each cylinder set E
i .

—»00 i

K’
and v(¢) = 0. We see readily that v 1is finitely additive on S. By an
argument given in the.proof of (2.4), v is c-additive on S, so 'that it
is uniquely extended to a probability measure on 9? denoted by u. By
(3.3), we obtain By ke d

(3.5) Definition. Let K be a subset of a real vector space X. The

convex hull of K, denoted by ch(K), 1is defined by <ch(K)

il

n n _
{2 ax, :x.€K, 0<a. =<1, 2 a,=1, n=z1}. Apoint x in K is
i=1 Tt ' i=

called an extreme point of K if whenever x = ay + (1-a)z, O < a< 1,

X,y € K, then x=y=z. The set of all extreme points of K is denoted by

ext K.

(3.6) Theorem. ext(P(R)) = {sm T w € QL.

Proof. Suppose €, = P ¥ (1-p) , where u,v € PR), O0O<p<1l, and

® € 8 with xn(m) =i, nz 0. Then we have

n
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L=e (Z(igeeri)) = Pu(Zligs-aasi)) + -PIV(Z(Eqs---Hi))

for all n = 0,

so that u(Z(lO,...,ln)) = v(Z(lo,...,ln)) 1 for all n = 0. Since

{w}

v({w}) = 1, that is,

"
=1
™~
~

[

..,in), we obtain u{{w})

On the other hand, suppose u € P(R) 1is such that p # €, for all

w € . Then

(i) There is a point o € R such that p(U) > 0 for every open

nhd (neighbourhood) U of w.

If not, we choose, for each w € %, an open nhd Um of w with

u(Uw) = 0. By the compactness of &, there are points « W € Q

12"

n
such that & =

n
Um , and thus 0 < p@®) = 2 uU ) =0, a

i=1 % i=1 ®3

contradiction.

(ii) There is an open nhd V of @ with 0 <‘u(V§ < 1, where V denotes

the closure of V.

By (i), we have 0 < w(U) < u(@ <1 for every open nhd U of .
Suppose w(U) = 1 for some open nhd U of . Since p # €, We have
0 < p(U-{w}) = 1. By the regularity of u, there is a compact set
CcU- {w} such that 0 < p(C) < p(U-{w}). Since & 1is a compact
metrizable space, there is an open set V such that o € V C Vel -c.

Using (i) and since u(C) > 0, we obtain 0 < p(V) = u(V) < 1.
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(iii) Let V be as in (ii), and let p = w(¥), q = 1-p. Define the

measures iy and Wy by

uy (B) = %D—u.cha), uy(E) = %u((sz—v)nﬁ)

for any E € B(RQ).

Then By and W, are distinct elements in P(R), and p = Py + Qg

so that p £ ext(P(R)). @

We shall give a simple proof of the Krein-Milman theorem for P(R).

(3.7) Theorem. P(R) is the closed convex hull of E(R) in the weak*

topology, that is, P(R) = cch(E(R)).

Proof. Since P(R) is convex and E(R) < P(R), we obtain
ch(E(R)) € P(R). By (3.4), we also obtain cch(E(®R)) ¢ P(R). To prove
P(R) € cch(E(R)), 1let V(u,n,e) = {veEP(R) : lv(Z(iO,...,in))

- u(Z(iO,...,in))] < €, iO,...,in € S} where p € P(R), € >0, and

n = 0. Let {Ak} n+] Dean enumeration of the partition
{Z(lo,...,l ) igse-esiy € S} of Q. Choose arbitrary points o € Ak’
n+l

T

Define the measure v = 2 u(Ak)°s . We see
k=1

readily that v € ch(E(R)) and v(Ak) = p(Ak) for all Xk, so that

v € V(p,n,e). 0o
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We now consider the mapping T on P(R), introduced in section 2.
Recall that this mapping is derived from the shift, T, on Q, introduced

in section 1. We have the following theorem.

(3.8) Theorem. The mapping T : P(R) - P(R) defined by
(Tu) (A) = u(T—lA), for any A € B(R), 1is continuous and affine, that is,

T(pu+(1-p)v) = pTu + (1-p)Tv, for any u,v € P(R), p € [0,1].

Proof. Suppose by > B in P(®). Let f € C(R). By (1.8), foT ¢ C(%),

s0 that

JEd(Tu ) = [feTdu ~ [foTdu = [£d(Tu).

Thus Tun - Tu.

Let o = pu + (l-p)v where u,v € P(R) and 0 <p = 1. Then

o€ PR and (To)(A) = o(T tA) = pu(r™la) + (1-p)v(T™1a)

p(Tu) (A) + (1-p)(Tv)(A) for each A € B(R), so that T(pu+(1l-p)v) =

1)

p(Tw) + (1-p)(Tv). o

(3.9) Definition. Let P(R,T) denote the set of those measures u in

P(®) such that Tu = u.

Examples (2.1), (2.3) and (2.7), together with theorem (3.8), show

that P(R,T) is a nonempty convex subset of P(R).

(3.10) Theorem. P(Q,T) is a compact convex nowhere dense subset of

P(R).



24.

Proof. For any sequence {un} C P(R,T) © P(R), there is, by (3.4), a

subsequence {un }  such that by > € P(R). By (3.8), we have
i i

T Tun -+ Ty, so that Tu = € P(R,T). Thus P(R,T) is a compact
i i

(closed) subset of P(R).

To prove that P(%,T) 1is nowhere dense-in P{(R), let i be a
measure in P(R,T) and let o € @ be such that Tw # ®. Define the
1 1 _
sequence {un} by by =ty t (1 - Eau for all n =1,2,.... Then

o € P(R) - P(R,T) for all n =1, and ‘un -+ . Thus the interior of

P(®,T) 1is empty, and since it is closed, P(R,T) is nowhere dense. o
For each i in S, 1let [i] denote the point w = (mn) > in
the sequence space & such that w, = i for all n 2 0.

(3.11) Theorem. P(R,T) N ext P(R) = {e : 1€ S} © ext P(R,T).

[1] ;
Proof. By (3.6), we have P(R,T) N ext P(Q) = P(®,T) N {a00 T w € QL.
Suppose € € P(R,T). Then €, = Tam = eTm’ so that Tw = @, orT
equivalently, w = [i] for some i € S. It is plain that

{a[i] : 1 €S cCP@,T)nN {e, 1 o€ ®}, so that {e[i] : 1€ 8} =

P(R2,T) N {a00 o € R},

Suppose a[i] = pu + (1-p)v for some i € S, where
u,v € P(,T) ¢ P(R) and 0 < p< 1. By (3.6), we obtain E[i] = o=y,
so that a[i] € ext P(R,T) for all i € S. It will be shown in sections 4

and 7 that {e.., : i € S} € ext P(R,T). o
ey #



(3.12) Remark. By a theorem of Oxtoby [1], the set of extreme points of

any compact convex metric space is a Gé—set. Thus both ext P(R) and

ext P(R,T) are G6 sets.

(3.13) Definition. A measure p in P(R,T) is called T-ergodic or
1

simply ergodic if whenever T "A = A, A € B(R), then either u(A) =0

or W(A) = 1. Let E(R,T) denote the set of all T-ergodic measures in

P(R,T).

(3.14) Remark. For each u in P(@,T), let I_(u,T) = {AB(2) : A = T 1A}
and I(u,T) = {A€B(R) : u(AATflA) = 0}. Then I,,T) and T(u,T) are

sub-o-algebras of B(R) such that Io(u,T) C T(u,T). It is known that

25.

w € P(®,T) "is ergodic iff p(A) = 0 or p(A) =1 for each A ¢ I(u,T).

~

(See Billingsley [1], Phelps [1], Walters [1]

We state without proof the following useful result (see Brown [1],

Walters [1], Denkers et al [1]).

(3.15) Theorem. Let u be a measure in P(R,T). Then the following are

equivalent:
(1) L e ER,T.
1 vt
(ii) For each A,B in S, lim = Z (T AN B) = pA)u(B).
e i=(

. 1l
(iii) For each f ¢ L, (Q,B(R),n), lim = & (T w) = [fdu

1 n>e N 3=0

nu-almost everywhere.
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By definition, for measures u,v € P(Q), p 1is singular with respect

to v, denoted u | v, if there exist sets A,B € B(R) such that

ANB=¢ and p(A) =1 v(B). Also, -v is absolutely continuous with

respect to u, denoted v << p, if v(B) = 0 whenever u(B) = 0,
B € B(R).
(3.16) Theorem. Let u,v € P(2,T). Then
(1) If u,v ¢ E(R,T), then either p=v or u l_v.
(ii) If v<<u, with w € E(R,T), then u = v.

Proof. (i) (Billingsley [1]): Suppose u # v. Then there exists a set

A € B(®) such that u(A) # v(A). By (3.15), we have

1 n-1 .
lim = 3% 1 (Tlm) = w(A) u-a.e,
n . A
n i=0 .
and
p ot i
lim = Z 1,(T w) = v(A) v-a.e..
n . A
n i=0
p ot i
If we let E = {w : lim = z lA(T w) = u(A)} and
n i=0
p ol i
F={ew: 1lim = z 1A(T w) = v(A)}, then W(E) =1 =v(F) and ENF = ¢,
n i=0

so that u | v.
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" (ii): Let E € B(R) be arbitrary. It follows from (3.15) that

n-1

lim %- zZ lE(Tlm) = w(E) p-a.e.. Since v << u, it follows that
n i=0
p ol i
1lim = Z lE(T w) = w(E) v-a.e.. Thus, from the Lebesgue dominated
n i=0

convergence theorem, we obtain

n-1 .
W(E) = fu(E)dv = lim %— 2 [(geTHdy = v(E). o
n i=0

We now show that E(®,T) = ext P(&,T).
(3.17) Theorem. For each p € P(R,T), uw € E(®,T) iff o € ext P(R,T).

Proof. (=>) Suppose pu € E(R,T) and u = Py * (1-p)u2, for some

his My € P(R,T), 0 < p< 1. Then we have by << U, i=1,2, so that,
by (3.16), u = by = Hoe Thus u € ext P(R,T).

(<=) Lef uw € P(R,T), and suppose u £ E(R,T). Then there is a set

A ¢ B(R) such that T'lA =A and 0 < u(A) < 1. Let B =8 - A. Define

two measures Ky and o by

wi(B) = w(ENA)/u(A)  and W, (E) = w(ENB)/u(B)

for any E € B(R).

Then we obtain u(T‘IEnA) = u(T'IEnT’lA) = u(T'l(EnA)) = u(ENA) so that

(Tu ) (E) = w (B). Thus p, € P(R,T). Similarly, we also obtain
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‘ uy € P(®,T). Note that u,;(A) =1 and u,(A) =0, so that u, # u,.

Thus, since p = u(A)ul + u(B)uz, we have that p £ ext P(R,T). O

(3.18) Remark. By (3.10), the set P(Q,T) is a compact convex set so
that, by the Krein-Milman theorem, P(R,T) = cch E(®,T). Since both
P(R) and P(R,T) are metrizable compact convex sets, we can apply the
Choquet representation theorem (recall that E(R) = ext P(R) and

P() = cch E(R)): For each p in P(R) (or P(R,T)), there is a unique
probability measure T defined on the Borel subsets of the compact
metrizable space P(R) (or P(®,T)) such fhat T(E(R)) =1

{or T(E(R,T)) = 1) and
Jo fdu = Jp (fg fdv)dT(v)

for each f € C(R), where E = E(R) or E = E(R,T). See Phelps [1].
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4. Markov measures and ergodic Markov measures

Note that, given a measure p in P(R) and sets A,B in P(Q),

the conditional probability of A given B, denoted uw(A|B), is defined

by uw(A|B) = uﬁ?g? , provided that u(B) > 0.
On a probability space (R,B(R),u), the sequence {xn}nzo is
called a Markov chain with state space S and transition matrix

P=(Pii)i,5es

if the following conditions hold:

(1) for each i¢S, u(xn=i) >0 for some n = 0,

(ii) The Markov property: u(x

n+1=in+1 XO=iO""’xn=in)
= “(xr*‘ .n+1!xn=in) for any n = 0 and any iO""’in+1 in S. such
that u(xo-lo,...,xn=in) >0
(iii) The stationary property: u(x Xl JlX =i) = p(x X1 =j xn—l)

for any 0 €=m < n and any i,j such that u(xm=i) > 0 and
u(xn=1) > 0. The common value of u(xn+1=3‘xn=1) for all n such that

u(xn=i) > 0 1is denoted by Piio and is called the one-step transition

probability from state i to state j.

The probability vector p = (pi)iES defined by p; = u(xo=i) "is

called the initial distribution for the chain.

Suppose {xn} is a Markov chain on a probability space

n=0

(®,B(R),n) as above. Define the n-step transition probabilities

N
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p(n), n =0, as follows:
ij
p(O) = 5ij where éij denotes the Kronecker symbol,
ij ‘
(1)
p' . - le )
ij .

p(n+1) - 3 p(n)

p,. for n = 1.
1] kes ik M

p(n)

, then
ij ji,j€s

Thus if we denote the n-step transition matrix by [

3

n : . . .

P o= {p(n)J . Note that the transition matrices are stochastic
ij ji,jes

matrices. Recall that a square matrix (a..) is stochastic if

ij’1<i,j<m

4

0 =a,, =1 for each 1i,j, and a., =1 for each i. If a stochastic

1 U

Wtg

j

matrix (

)

m
also satisfies 2 a.. =1 for each i, it is

a.. .o .
< <j
1j71<i,j=m j=1 17

called doubly stochastic. A probability vector p = (pi)ies is called

a stationary distribution for a stochastic matrix P = (p.

1j) if

i,jes

pP = p, that is, 2 p.p.. = p. for each j in S.
ies ¥

(4.1) The Existence Theorem. Let p = (pi)ies be any probability vector

and let P = be any stochastic matrix. Then there exist a

(P55)5 5es

unique measure p € P(R) and a unique nonempty set E € S such that

(1) R(XA=1ns eoey X =1 ) =P, P. & oo for any n = 0
00 nn 1O 101l n-11n
and any iO"“"in € S,



(ii)

chain with state space

)

matrix (p

ij
(1)

Proof.

and any igs--

ieS

extension theorem (2.4), there exists a unique

u(x0=10, e

(11)

LJ'(xn+1=

Suppose u(xo=i

the sequence

i,

.,i_ € S.
n

E,

jEE”

Define pn(io,...

Z po(l) = iis p; = 1 and

i Py

If u(xn=i) > (0, then

n n+l

{x_}

n nz0

,1n) = P; P

Z

n+l

=P

€S

1

1

xn=1) = u(xn=1, X
. u(x0=10, .
’"n-1
. u(x0=10, s
’"n-1
P: P: - . P
,i_ . to to'1
n-1
0r Tt xn=1n) > 0.

0

n+

X

n-1

P

n-

defined on (®,B(R),u)

initial distribution

0 Yo'

i it Py

01 n-1

= )/ulx =)

1

n—l= n-1’ Xn=i)

D, ./
iF137,

(p;

Then we have that 0 = pn(io,..

n

uw € P(R)

)iEE

is a Markov

31.

and transition

for any n=2 0

1 <
.,1n) <1,

By the Kolmogorov

1=1n—1’ xn=1, xn+1=J)/

Then we also obtain

with
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u(xn+l=3 Xg=lgs oo xn=1n)

= u(x0=10, e X =1, xn+l=3)/u(x0=10, cees xn=1n)
=Dp. p. . D. . P. :/P: P: P. .

o toh1 n-1'n *n? 1o to': th-1'n
= pinj = uix =7 Xn=ln)

]

Let E = {i¢€S : u(xn=i) > 0 for some n = 0}. By definition,

p; = u(x0=i) and 2 p; = 1, so that E > {ie€S : p; > 0} # ¢. We also

iesS
have 1 = 2 p; = Z p; - Let i € E. Then, p(x =1i) > 0 for some
ies i¢E "
n=0 and u(xn+l=j) = (0 for all j € S - E, so that
1= 2 p..= 2 px jlx =1i)
jes M jes MWLM
= 2 plx_ . .=jlx=1) = % p u]
je n+l n jeE 1j

(4.2) Definition. The measure p € P(R) defined by means of the

probability vector p = (p and stochastic matrix P = (p

iies i501,j¢€s

as in (4.1) is called the (p,P)-Markov measure.

(4.3) Corollary. For any two probability vectors p = (pi)ies and

. q = (qi)ies there exists a unique probability measure u in P(R), called

the (q,p)-Markov measure, such that

u(x0=10, coos xn=1n) =q; P; .- P
01 n
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,i_ in S. Moreover, {x_} is a

for any n = 0 and any Igoerenly n n=0

sequence of independent random variables on (8,B(R),u) with
w(xp=i) =q; and p(x=1) =p, ,
for any i € S and any n = 1.

Proof. Define the stochastic matrix P = (pij) by Py = Ps for

i,j€S ] ]
all 1i,j € S. By (4.1), there exists a unique p € P(R) with

u(x0=10, cees xn=1n) = qiopil e pin . Clearly u(x0=1) =q - We also

obtain, for n =1 and i € S,

u(xn=1) = 2 . u(x0=10, > Xn1™tn-1? Xn=l)
i 00,1
0 n-1
T : i gha P P T R
0’"""’"n-1
Therefore, u(x0=10, v xn=1n) = q.lop.11 .o pin = u(x0=10)u(x1=11)...

. u(xn=1n). o

As an immediate consequence of (4.3) we have

(4.4) Corollary. For any probability vector p = (p there exists

i)iGS’
a unique probability measure up € P(R), called the p-Bernoulli measure,

such that
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p(x,=i,, +v., x. =i ) = p. p. ... P
00 n n 10 11 n

for any n = 0 and any Lgseensiy € S. Moreover, {xn}nzo is a

sequence of i.i.d. (independent identically distributed) random variables

on (R,B(R),n) with common distribution p.

(4.5) Theorem. Let u be the (p,P)-Markov measure. Then the following
are equivalent:
(i) p 1is a stationary distribution for P, 1i.e. pP = p.

(ii) w is T-invariant, i.e. p € P(R,T).

(iii) {xn}n>0 is a stationary process on (%,B(R),u), that is,

u(xk=10, X 1=ty s xk+n=1n) = u(x0=10, e PERRERR xn=1n)

for any n= 0, k= 1 and any iO,...,in in S.

Proof. Let p = (pi)iES and P = (pij)

i,jes’
(i) = (ii): Suppose (i) holds. Let pn(lo,ll,...,ln) = pi pi PPy g
07071 n-1"n
for any n = 0 and any iO,...,in in- S. By (i), we obtain
2 p. ,(E,i,.0051 ) =2 PP.. P o o.. P . =P D: s ... P .=
ies M0 R Inain o ik *n-1tn

= pn(lo,ll,...,ln), so that, by (2.5), u € P(SE,T)‘°
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(ii) = (iii): Suppose (ii) holds. Then we have

i) = uT—k(x

R IR S bt SERREEREE S > X

O=1O’ e n=1n)

(iii) = (i): If (iii) holds, then for each j in S, we have

(4.6) Definition. Let M(R) denote the set of all (p,P)-Markov measures
and let M(R,T) denote the set of those (p,P)-Markov measures with

pP = p. Let B(®,T) denote the set of all Bernoulli measures.

From (4.4) and (4.5) we have ¢ # B(R,T) € M(®,T) € P(®R,T). We
shall characterize the set M(R,T) N E(R,T) of ergodic Markov measures.

We begin with a lemma.

(4.7) Lemma, Let P = (pij)i,jes be a stochastic matrix. Then
1 o
(1) The Césaro limit 1lim = L p = q,. exists for each
e k=l ij 1t

i and j.

(ii) The matrix Q = (q is a stochastic matrix such that

i34, 5€s

PK, Qp =PQ=0q, and Q> = Q.

n Mz

.1
Q—llmﬁ'

N> k=1

(iii) Each row of the matrix Q is a stationary distribution for P.
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' n
Proof. (i), (ii): Let Qn =L Z Pm, where n = 1. If we write
" =1
3 n
Qn = q(n) , then q(n) = %— Z p(m) so that 0 <= q(n) <1, for
ij Ji,j¢€s ij m=1 ij ij

each 1 and j. Therefore, there is a subsequence {Qn } of {Qn} such
k

(n,)
) k’_ _
that lim qij = qij for each i,j in S. Let Q = (qij)i,jES' Then
n, —+o
‘ k
we have
n n
(n,) k k
z q.l.k=2‘.Hl— z p(m)_;}- 2oz p™ g
jes 13 Mk om=l o ij k m=1l3j ij
so that
(n, ) (n,)
2 q.;, =% lim q.. = lim 2 q,. =1
ij . ij ij
] J Mo =]
Thus Q 1is stochastic. On the other hand, we have
n
k n, +1
PQ_ =Qn1>=-ni- z 1>m+1=QTl @K - p
k k k m=1 k k

and so, taking the limit as n, >, PQ = QP = Q.

Suppose {Qm } is a subsequence of {Qn} such that 1lim Qm = Q'.
k

m, e k

Then we obtain

ko

P =Q = Q
%, " G,

LD
1}

m
Q|- =
k i=1

So that Q = QQ' = Q'Q. By interchanging the roles of Q and Q' we have
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2

Q' = QQ' = Q'Q = Q. Therefore, Q = Q" and
1 Dok
Q = lim Qn = lim —- Z P, that is,
n ,
N+ noe - k=1
n
q.. = lim 1 Z p(k) for each 1i,j € S.
ij n ..
o - k=1 ij
(iii) Let " be the i-th row of the matrix Q, that is, m,o= (qij)jES’

and let ﬂi(k) be the k-th coordinate of ﬂi, that is ﬂi(k) = Qg

Since QP = Q, we get for each j,

z ﬂi(k)ij =2 A3 Pr5 = 945 = (). o
k k
See Chung.[l] and Hoel et al. [1] for probabilistic proofs of the above

lemma.

(4.8) Remarks. Let P = (pij)i jes be a stochastic matrix. A state i

(n)

P = o and is called
1 ii

in S 4is called recurrent (or P-recurrent) if

[T S I

n

Z p(n) < o, For each transient state j,

n=1 ii

transient (or P-transient) if

p(n) <= for all i€ S. Let C and D denote the set of

1 ij

we have

n g

n
recurrent states and the set of transient states, respectively. Then

S =CUD. A nonempty subset E of S 1is called a closed (or P-closed)

set if Z p.. =1 for each i € E. A closed set E 1is called
jeg I
(m)

ij

irreducible if, for any 1i,j € E, p > 0 for some m =1 and
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p(n) > 0 for some n = 1. It is well-known that the set C 1is a
ji
nonempty closed set and is the union of a finite number of disjoint

irreducible closed sets Cl""’cm and that the set D is not closed.
Therefore, the state space S can be partitioned uniquely into the set D
of transient states and a finite collection {Ck}lSkSm of irreducible
closed sets (of recurrent states). The matrix P 1is called irreducible

if S is irreducible. See Chung [1], Doob [1], Feller [1], Hoel et al. [1]

for details.

be a stochastic matrix and let

(4.9) Lemma. Let P = (pij)i,jES
1 ok '
Q= (q..). . where Q = 1lim — Z P. Suppose that the set C of
1j°1,j€S ) n n k=1

P-recurrent states is P-irreducible and that the set D of P-transient

states is not empty. Then

(1) qij = 0 for all (i,j) € SxD,
(ii) qij = qjj > 0 for all (i,j) € SxC,
(iii) P has a unique stationary distribution p =-(pi)ies given
by Py = 4y
Proof. (i): For each j € D, we have I p(n) < o for all i €S, so -
n=1 1ij
1 2 ()
that q.,. = lim = 2 p = 0 for all i € S.
ij n ..
n k=1 1ij

(ii): Let i Dbe an arbitrary state in S and let Ei = {j€C : qij > 0}.

We claim that Ei = C. By (4.7), together with (i), we get
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so that q.lj > 0 for some jo € C. Let k be any state in C. Since C
o)

p(n) > 0 for some n = 1, so that by (4.7),
i ok

is irreducible, we have

1}

= (n) (n) -
Ay = Z Qg P Zq.. P > 0. Thus k € Ei’ and so Ei C. Since

mes mk o ik

was arbitrary, it follows that qij > 0 for each (i,j) € SxC.

It remains to show that qjj = qij for each i €S, j € C. For

an arbitrary j € C, let qj = max{qij : 1 € S}. Suppose qj > qy s for
. . . i} . =
some k € S. Since Q = Q°, we obtain qij = i qimqmj < [2 qim} qj = q.,

for all i so that qj < qj, a contradiction. Thus q.. = g.. > QO for

(iii) By (4.7), together with (i) and (ii), the probability vector

P = (p.) defined by p;, = q;; 1isa stationary distribution of P.

i’ies

Suppose @ = (ni)ies is a stationary distribution of P. Then we have
T, =2 W, p(n) for each j and each n =1,

L T

so that

n
T, =2 ﬁi L z p(k) for each j and each n 2 1.
i k=1 1ij

Letting n - «, we obtain
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. =q.. for all j. o
qJJ J

(4.10) Corollary. Let P = (p..)

A be an irreducible stochastic
1j71,jeS °

10 x
where Q = 1lim = Z p . Then P has a
n
n k=1

matrix and let Q = (q

i394, 5¢s

unique positive stationary distribution p = (pi) given by

i€sS

P; =45 > 0, 1 € S.

We prove the following version of a theorem of Doob [1].

(4.11) Theorem. Let P = (p..)

be a stochastic matrix and

ij’i,jes
' 1 0k
Q= (q..). . be given by Q = 1lim = Z P, Then the state space S
1j71,j€S L D k=1

can be partitioned uniquely into the set D of P-transient states and a

finite collection {Cl,...,Cm} of P-irreducible closed sets such that

(1) for each i € S and each j ¢ D, qij = 0,

(ii for each (., .. = (.. i,3
) e %45 = 9 for all i,j € C,, and

M = (q..). is a unique stationary distribution of the stochastic
3] JECk
matrix (p..). . s
1j 1,J€Ck
. (iii) for distinct Cs and Ct’ qij = Q0 for each i € Cs and
J € Ct’

teC

(iv) for each i ¢ D and each j ¢ Cyo qij = [ Z qit)qjj'
k

Furthermore, we have
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(v) P = (pi)ies is a stationary distribution for P iff

m
p= 2 S where oy is the probability distribution on S such that
k=1
: m
ok(l) = nk(l) for each 1 € Ck’ and 0 = S < 1 with kil ¢ = 1.

1,...,Cm} follows

from (4.8). Clearly (i) holds. (ii) follows from (4.10).

Proof. The existence of the partition of S into {D,C

(iii): Suppose Cg n C,=¢. Let i¢€C j € C,. Since both C. and

s’ t

C are P-closed sets, we have P(n) = 0 for all n = 0, and thus qij = 0,
ij

(iv): Let i €D and j ¢ Ck' It follows from (4.7), together with the

preceding results; that

=
Lde

(v) (=) Suppose p = (pi)iES is a stationary distribution of P. Fix

Ck’ where 1 < k =m. Then we have, for each j ¢ Ck’
p. = Z 1 p(t) = 2 P; p(t) for t =1,2,...,
I ies ij  ieC, T ij
so that
n
p: = Z p; %— Z p(t) for n=1,2,....
I iec t=1 ij

Letting n - =, we obtain,
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. = .q.. = Z . =¢4g.., for each j €C(,,
PJ ) qulj Pi qJJ quJ J k
1€C €C
k k
where ¢, = 2 p. . By similar reasoning, we have p. = Z p. q.. =0
k . i ] . i 1ij
1€C i€s
k
m
for all j € D. It follows that 2 ¢p = 1. Define the probability
k=1

vector o, on S by ok(J) = qjj for j ¢ Ck and ok(J) = 0 otherwise.

Then we obtain ok(i) = Q..

e nk(i) for each i € €, and

k

C, C.

p = .
1 k7k

[ =

k

(<=): It is straightforward to show that any probability vector p of

the form p =
k

c where ¢ and o, are defined as in (v), is

k°k’ k X

[T

1

a stationary distribution of P. 0«

(4.12) Remark. Let p € M(R,T) be a (p,P)-Markov measure with

P = (pij)i,jes and p = (pi)iES' By (4.1) and (4.5), the stationary

process {xn}nzo defined on (Q,B(R),u) has p; = u(xn=i) for each i € §-

and each n2 0. Let E = {i € S : P; > 0}. Then, on (R,B(Q),w),

{xn}nzo is a Markov chain with state space E, transition matrix

. . e . . . Vo=
P (Pij)i,jEE and stationary initial distribution p (pi)iEE' By

definition, the chain {xn} is called a recurrent chain iff the state

nz0

space E 1s irreducible, or equivalently, the matrix P' is irreducible.

In this case, all states in E are called recurrent as well.
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From the definition of the n-step transition probabilities we see

by induction that, for any u € M(®) with stochastic matrix

P = (p")i,jes and initial distribution .p = (pi)ies’

u(x0=io, coe Xp=io, T F PR X kan - Jn)
=P. P P . P(k) *P: o5 - p. ;
o toh1 n-1'm ij Jol1 In-17n
m” 0
for any iO,...,im,jO,...,jn €S, and any m,n =0, k=1

(4.13) Theorem. For each (p,P)-Markov measure .u in M(R,T), the

following are equivalent:
(i) L 1s ergodic.

(ii) there is a unique P-irreducible closed subset C of S

such that p; > 0 for each 1€ C and 1 p; = 1.
? ieC

(iii) the stationary process {xn}nzo defined on (R,B(®),n) is

a recurrent chain.

Proof. Notation is as in (4.11).

(1) => (ii): Suppose u 1is ergodic. Then pipj = piqij for all 1i,j € S,

- for we have from (3.15) that
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' .1 1! . k.
w(xp=ilu(xy=j) = lim — § w((xy=1) 0T "(x4=3))

pP;P; =
1) n k=1
n
=lin s 2 p p - Pidy;
n k=1 ij
m
By part (v) of (4.11), p= 2 ¢,0,, where 0 =<¢ <1,
k=1 k'k k
m -
kil ¢ = 1. Thus S 0 for some k. Let i € Ck, where ¢ 0.

Then p; = ckck(l) = .9

i1~ Of But by above, P; = 955> and thus we

have ¢ = 1. Therefore, p = o> SO that pj = qjj > 0 for all j € Ck,
and Z p.= 2 q..=1.

: J : 3]

JECk JECk
(11) = (i): We may assume without loss of generality that p = - Let
A= {x0=10,...,xm=1m} and B = {XO=JO,...,Xt=Jt} where m,t =2 0 and

10"“"1m’30"°"3t € S. Then we have, for each k > m,

-k . . . .
w(ANT B) = u(xo—lo, ceey Xo=1, X =3 s xk+t"3t)
=p P P p(k"m)
i fii, YL Li T T .
0 0l m-lmo 1dg TIodg Je-17t
so that
1 D -k
lim= 2 uw(AOT B) =p. p «v. D, . Q: + P: s ... D. .
noe N k=1 o To'1 m-1"m *mlo J071 -1’
We also have
wAu(B) = p. P, . ... p. . P. P. . oo P ..
o oy m-1'm J0 Jo’1 Je-17¢
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n
We want to show lim %— Z w(AN T_kB) = p(A)p(B). If {io,...,im} cC

n k=1 1

then since q; = p. by (4.11), the equality holds. Otherwise, we have

mo  J0

n
lim %— 2 (AN T'kB) =0 and w(A) = 0, so that again the equality holds.
n k=1

By (3.15), we obtain (i). The equivalence (ii) <= (iii) follows from

(4.12). o

(4.14) Corollary. If P = (p.lj)i jes is an irreducible stochastic matrix
and p = (pi)iES is the positive stationéry distribution of P, then the

(p,P)-Markov measure is ergodic.
(4.15) Corollary. Every Bernoulli measure is ergodic.

(4.16) Definition. A measure u € P(R,T) shall be called mixing (some

authors use strong-mixing) if lim p(A N T™B) = w(A)u(B) for each
n_-»m

A,B € B(R), or equivalently, for each A,B € S.

It is clear that every mixing measure p in P(R,T) 1is ergodic.

(4.17) Definition. A stochastic matrix P is called

= (Pi5)5 jes

primitive if there is an n =1 such that P" is positive, that is,
(n)
1ij

P > 0 for all 1i,j.

Every primitive stochastic matrix is irreducible.
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(4.18) Theorem. Let be an irreducible stochastic matrix

P = (Pi5)5 jes
and let p = (pi)iés be the positive stationary distribution of P.

-Let u be the (p,P)-Markov measure. Then the following are equivalent:

(1) L 1is mixing.
(i1) lim p(n) = p. for each i and j.
e ij J

(iii) P 1is primitive.

Proof. (i) => (ii): Suppose p 1is mixing. Let A = {x0=i} ‘and
- = (n) _ . . -n
B = {XO-J}. Then we have pipij = u(xo—l, xn—J) = u(ANT "B) > p(A)u(B)

= p.p. as n - =, Since p; > 0, we obtain (ii).

itj
(ii) = (i): Suppose (ii) holds. Let A = {x0=io,...,xk=ik} and
B = {x0=f0,...,xm=jm}. Then, for n > k, we have
' -n . . . s
w(ANT 7B) = u(xo-lo,...,xk—lk, X =igr oo Xy n™) )
=p; P p pn k) 5 p
Yo Toh1 -1 i, 70’1 In-17m

. -n
so that lim p(ANT "B) = p. p. . ... P. . DP. P: i ... P .

n o toh1 -1k Jo Jol1 Im-17m

= p(A)(B). Hence p 1is mixing.
‘(ii) = (iii): Suppose (ii) holds. For each j, there is an nj > 1 such

o

that p(n) > 0 for all n 2 nj, i €S. Let n = max nj. Then P% is
ij j

positive.
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" The implication (iii) = (ii) is the Markov-Kolmogorov theorem. See

Chung [1], Feller [1]. o

(4.19) Theorem. Every p-Bernoulli measure, with p positive, is mixing.

We close this section by showing that B(®,T), M(®,T) and M(R)

are compact nonconvex sets.
(4.20) Theorem. B(R,T) 1s a compact nonconvex subset of P(R,T).

Proof. To prove B(R,T) is compact, it is enough to show that it is

sequentially compact. Suppose {un} is a sequence of pn—Bernoulli

n=1

measures, where P, = (pn(i))iES is a probability vector for each n = 1.

Then there exists a subsequence {pn }n of {pn}n such that

k 'k
lim P, (1) = 1 for each i in S. If we define p = (pi)iES’ then p
n, > k

is a probability vector. Let p be the p-Bernoulli measure. By (3.3) and

(4.4), we obtain p_ - pu.
"k

To prove B(R,T) 1is not convex, let p = (pi)iES and q = (q,)

be two positive probability vectors (that is, p; > 0, q; > 0 for all

i 1€S

i € S) such that p # q. We may assume without loss of generality that
Py # dg> and P, # q,- Let u and v be the p-Bernoulli measure and the
q-Bernoulli measure, respectively. Clearly cup + (l-c)v € P(®,T) for each
c € [0,1]. We claim that cu + (1-c)v € P(R,T) - M(R,T) for each

c € (0,1). Let T =cu +c'v, where c' = l-c. Suppose T € M(@®Q,T) for

some c € (0,1)., If we let t, = T(Xo=i) for i € S, then
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- =2 1 =3 = '
v ti = cu(xo-l) + C v(xo i) cp;, * c'q, > 0, and

- = = 1 . .
T(Xo-l, Xy i) cp.lpj +C q.lqj > 0 for each 1,j € S.

Let tij = T(x1=3|x0=1) for i,j € S. Then t = (ti)iES is a positive

)

stationary distribution of the stochastic matrix ( Therefore,

Y5504, 5es

the sequence {Xn}n>0 defined on (R,B(R),T) is a Markov chain with state

space S, transition matrix and stationary initial

(t55)1,5es°
distribution t, and by (4.5), {Xn}nzo is a stationary process on

(R,B(®),T). Now we have

T(xy=0, X =l Xp=1) = oty tyy = (tgtop) (b7t

2 2
= (epgp; *+ c'aga;) (epy + c'a))/(epy * c'qp), and

T(x0=0, x.=1, x2=1) = cu(x0=0, x,=1, x2=1) + c'v(x0=0, x,=1, x2=1)

1

1 1

_ 2 , 2
- cpopl +C qoqls
so that
(cpyp; + €'qnq )(CP2 + C'qz) = (cp p2 +c'q qz)(cp +¢'q,)
0r1 0'1 1 1 01 0'1 1 1’

. A simple calculation yields poplql(ql-pl) = plqoql(ql-pl) and thus

either Py =dy» OT Py =9; a contradiction. o

(4.21) Theorem. M(R) 1is a compact nonconvex subset of P(R).
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Proof. By the proof of (4.20), M(R) 1is not convex. It remains to show

that M(R) 1is sequentially compact. Suppose {u_} is a sequence of

n'n=1
(pn,Pn)—Markov measures, where P, = (pn(i))ies is a probability vector
and Pn = (pn(i’j))i,jés is a stochastic matrix for each n =1,2,....
Then each measure Ky is identified with a vector in Ik, where
I=1[0,1] and k =71 + r2, so that there exists a subsequence {un }nk
such that -

limp_ (i) =p., 20 and limp_ (i,j) =p,. = 0,
Ko g i v Dy ij

where 1i,j € S.
Observe that

Z p. =1lim 2 p_ (i)

=1 and 2 p.,. =1lim Z p_(i,j) =1
ies 1 ke i€s jes M kee jes ™k
for each 1i.
If we let p = (p.l)iES and P = (pij)i,jés’ then p 1is a probability

vector, and P 1is a stochastic matrix. Let p denote the (p,P)-Markov

measure. Then we obtain

u(x0=10,...,xm=1m)

I
e
o
aol

lim (p_, (i)°p, (1410 ceeep (451 ))
Kepco nk 0 nk 0°71 nk m-1’"m

Iim p (x=i.,...,x =i )
Koo nk 00 m  m
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for any m =2 0 and any io,...,im in S, and thus, by (3.3), b i D
' K

(4.22) Theorem. M(R,T) 1is a compact nonconvex subset of P(%).

Proof. By the proof of (4.20), M(®,T) is not convex. Since

M(R,T) = P(®,T) N M(R), the set M(R,T) 1is compact by (3.10) and (4.21). &

(4.23) Remark. Given the probability distributions P>PysPys - and the

stochastic matrices P,Pl,Pz,..., let u be the (p,P)-Markov measure and

let Ky be the (pn,Pn)—Markov measure, for n = 1,2,.... If

lim pn(l) =P and 1lim pn(l,J) = pij for each i and j, then by ™ Hs
N0 n—>o

by (3.3).

Suppose b, > e Then

P; = u(x0=1) = lim un(x0=1) = lim pn(l) for each i,
oo Ti>eo

and

Pij = wixy=jlx,=1) = lim p_(x;=j[xy=1) = lim p_(i,J)
nN-+° N>

for each j provided p; > 0.

Thus, if p = (pi) is a positive probability vector, then

ies
pij = lim pn(i,j) for all i,j € S. However, if p 1is not positive, then
-0

there may be stochastic matrices Q = (q. such that P # Q, and the

1504, 5€s

pairs (p,Q) also represent the measure u, that is,



p{x,=i.,...,x =1 )} = p. q. . q .
0 0 m 10 1011 o1t
for any m 2 0 and any iO”"’im in S.
For example, let Q@ =1II {0,1} and S = {0,1}. Define
0
R
5 > c 1-¢c
P = , QC = 1 , Where 0 =c¢c =1,
0 1 L0 1|
ool
2 2
P = ,
n
1 1__1_J
n n
= (0,1) = (5=, 23, n=1,2
P = ’ ’ Pn' 2+n > 2+n’° - LI BN
Let by denote the (pn,Pn)-Markov measure and let u denote the

(r,Q.)

(p,P)-Markov measure. Note that each pair

measure u and by =~ s although Pn + QC.

c #
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H

1
2

also represents the



5. Periodic points and orbits

(5.1) Definition. An w €  1is called a periodic point of T (or a

T-periodic point) with period n =21 if ™0 = @ and Tw # o for all

52.

mé€ {1,2,...,n-1}. Let Pn(T) denote the set of all periodic points of T

with period n, and let 5(T) denote the set of all periodic points of

i.e., P(T) = U, P (T).

1

For each n= 1, let F(Tn) denote the set of all fixed points

of Tn, i.e., F(Tn) = {w : ™o = w}. For any states iO,. ’in-l €S,
let [i.,...,1 ] denote the point « € @ such that =i for
0 n-1 qn+m m
all q=0 and all m € {0,1,...,n-1}.
(5.2) Lemma. Let w € & and n =1 . The following are equivalent:
(i) ™0 = .
(ii) W= W for all k = 0.
(iii) w = [10,...,1n_1] for some igseresiy  1n S.

Proof. (i) = (ii): If T'w = «, then, for each k = 0,

oy = X (@) = xk(an) =x (@) =0 ..

T,

(ii) = (iii): Suppose (ii) holds., Let i_ = o for m ¢ {0,1,...,n-1}.

m

We obtain



i =0 = = = .., = where q € N,

w
qn+m

so that (iii) holds. It is plain that (iii) = (i). «

(5.3) Lemma. Let n be any positive integer. Then

(i) PN = FM < F(MY, PNT) < F(1Y.
(i1) B n F™ = BeD).

i) F™ = ueder) ¢ dfn}.

u

(iv) P(T) = U__.F(Th.

n=1

(v) P(T) is a countably infinite dense subset of &.

Proof. (i) is obvious.
(ii): By (i) we obtain F(T) c B(T™ n F(T™Y). To prove (ii), let

0= [ig...,i] € FO™H. If o € F(TY), then, by (5.2),

0% %qn = “qn-(q-1) (n+1) T ®n-(q-1) T *n-(q-1), T FE ="
so that o = [iO] € F(T). Thus (ii) holds.
(iii): Suppose o € F(Tn). If we define d = min{m : T'w = »}, then

l=<=d=n and o € Pd(T). Let n=qd + s, where q 0 =s <d-1.

IV
(]

It follows that o = T w = Ts(quw) = Tsw, so that s Thus

fi
o

FT™ < upd(m) : dln}. 1f oepd(t) and dln, then w ¢ F(T™. Thus

(iii) holds.
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(iv): If w € P(T), then, by (5.1) together with (i), @ ¢ PS(T) € F(T%)
for some d =2 1. On the other hand, if € F(Tn), then by (iii),

w € Pd(T) for some d 2 1 such that d|n. Thus (iv) holds.

n for each n = 1. It follows

(v): By (5.2) we have card F(Tn) =T
from (iv) that B(T) is a countably infinite subset of Q. Given o« € &
and n=z 1, let n = [10,...,1n_1] where i = o 0 =k €£n-1. Then
we have m ¢ F(Tn) and Ny = O 1 <k €£n-1. Thus P(t) 1is dense

in 2. o

(5.4) Definition. A point ® € Q is called T-wandering if there is an
open neighbourhood U of « such that the sets T-nU, n=0 are
pairwise disjoint. Let W(T) denote the set of all T-wandering points.

The set @ - W(T) is called the non-wandering set for T.
(5.5) Theorem. P(T) € & - W(T) = Q.

Proof. It is easy to see that o € @ - W(T) 1iff for each open neighbour-

hood of ®, UN T™ # ¢ for some n = 1. Suppose € P(T). By

(5.3 iv), w € F(Tn) for some n = 1. If U 1is any open neighbourhood
-n

of ®, then T'w=w €U and o€ T "0 c T, so that o € UN T U.

Thus we obtain BCT) e - W.

It is plain that W(T) is an open subset of & so that Q - W(T)
is a closed subset of & which contains the dense subset P(T).

Thus R - W(T) = R. «
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(5.6) Definition; The set OT(m) = {Tnm :n = 0} 1is called the
T-orbit, or simply the orbit of « € R. We shall write O(w) for
OT(mj and 0(x) for ﬁhe closure of the orbit O(w). The orbit O(w)

is called a periodic orbit if w is a pefiodic point of T.

(5.7) Lemma. For each € R, the orbit O(w) is an infinite set iff

™o # Tw whenever m #n in Z, = {0,1,2,...}.

Proof. Given w € 2, define themap £ :Z, »2 by £(n) = Tho.

If £ is an injection, then O(w) 1is infinite. Suppose f is not an
injection. Then there exists an m € Z_ such that £(m) = f(m+k), 1i.e.,
™ = Tk(Tmm) for some k=21. Let n = min{m € Z+ . Tl € E(T)} and
let T have period d. It follows that fim 4 5(T), 0 <i=n-1, and

0(w) = {Tim :0<1i=n+«d-1}. o

From the proof of (5.7) we obtain immediately,

(5.8) Lemma. For each o € R, the orbit O(w) .is a finite set iff there
exists a unique n € Z, such that T w £ 5(T), for 0 =<=1i<n-1, and

™ € B(T). In this case O(w) = {Tiw : 0 < i < n+d-1} where T € PO(T).

(5.9) Lemma. For any two periodicvpoints w, o' of T, either

0(w) = 0(w') or O(w) N O(w') = ¢.

Proof. Let € PY(T) and o' € P2 (T). If O(w) N O(x') # #, then

T'o = Tdo' for some i,j, where 0 =1i=d-1, 0=j=d'-l1. It

follows that, for each n = 0, T = T e € O(w') so that



O(w) € O(w'). Similarly we obtain O(w') € 0(w). Thus O0(w) = 0(w")

and d =d*'. o

By (5.3.v) and (5.9) we obtain

(5.10) Theoremn. E(T) is a countably infinite union of pairwise

disjoint periodic orbits.

(5.11) Lemma. If o € P(T) and «' ¢ P(T), then either

O(w) N O(w') = ¢ or O(w') 1is finite and O(w) < O(w').

Proof. Let w € Pd(T). Suppose O(w) N O(w') # ¢. Then we have

T'o = TP’ where 0 <i<d-1, j =1, so that O(w) < O(w'). Also,
we obtain T9(Te') = T¢(T ) = Tt = Tw', so that

T -

0(0") = {o',Te',....,T0 Yo'} Uo(). m

(5.12) Example. Define three points o, @', " in & by

w = (0,1,0,0,1,0,0,1,...),
o' = (1,1,0,0,1,0,0,1,...),
o' = (0,1,1,1,...).

It is plain that o, o', @'  are not periodic points of T. We see

readily that Tw = Tw' so that

56.
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0(w) = {w} U {T% : n=1}, O(e) = {w'} U {T"» : n 2 1},

O(w) A O(w"') = {w,w'}.

Observe also that O(w'") = {w',[1]} and O(w) N O(w") = O0(w') N O(w'") = ¢.

—

If the orbit of w € R 1is finite, then O(w) = O(w) € R, so that
. #

O(w) 4dis not dense in R. We shall show

(5.13) Theorem. {w : O(w) = R} is a dehse Gﬁ'
Proof. Let U = {Um}mzl denote the countably infinite family of all

cylinder sets Z(io,...,in_l). Recall that U 1is a countable base for .

Note that O(w) = iff O(w) N Um # ¢ for each m. It is straightforward

to show that

—— -n

{w : 0(w) = R}

]
-]
[y
-3

Let Um’ U, € U be arbitrary and let

k
Up = Z(ipeenig )y Up = Z(0gs-vendp )-

If G = U T U, then for each n' = t,



so that Gm is a dense open subset of Q.

the set {w : O(w) = K} 1is a dense G6'

a

58.

By the Baire category theorem,
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6. Atomic ergodic measures

(6.1) Definition. Let p be a measure in P(R). A point o« € Q& is
called an atom of p if w({w}) > 0. The measure u is called purely
atomic if p(A(w)) = 1, where A(p) denotes the set of all atoms of .
For any w € & a purely atomic measure u € P(R) such that A(y) = O(w)

is called a T-orbit measure, or simply an orbit measure of . An orbit

measure of w € @ 1is called a periodic orbit measure if o is a periodic

point of T.

Note that the set A(p) <can easily be seen to be countable, since
ZmEA(u)“({w}) = 1‘< o, with p({w}) >0 for all o € A(p). Also, it
is plain that there exists a surjection from the set of all purely atomic

measures in P(Q) onto the set of all probability vectors p = (pn)nzl'

(6.2) Lemma. For each w € R, p 1is an orbit measure of « iff there

exists a unique positive probability vector p = (pn)n>O such that

W =2 p_E¢ , Where the ™ are distinct.
T w )

Proof. Suppose @ is an orbit measure of . Then for any B € B(R)

we have

w(B) = u(B N O(w) =2 u(Tw =3__ u(a)e  (B),
TMweB nz0 T

and so u = 2 (Tnm)-a h If we define P, = u(Tnm) for n =0, then

T w

P = (pn)nzo is a positive probability vector, and p = Zn P, sTn .

On the other hand, for each positive (infinite or finite) probability vector,

n=o"
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p = (pn) the formula u = Zn P, € defines the orbit measure p

n T

of w such that u(Tnm) =P, >0 for all n. a

n=0’

(6.3) Lemma. If u 1is an orbit measure of w € @ for which fhe orbit
O(w) 1is finite, then there exist p € (0,1], a purely atomic measure

Ky with a finite number of atoms,and a periodic orbit measure Ko such
that p = (1—p)u1 + U, and Hq l.“z' The number p and measures Hi>

w, are uniquely determined.

Proof. By (5.8) there exists a unique n ¢ Z+ such that T e [4 §(T) for

i<n and T ¢ P(T). Let T'w ¢ P(T) where d = 1. Let p_ = u(T')

_ n+d-1
for 0 <k <n+d-1 and p=2 p, - Note that 0<p <1l and p =1
k=n
iff n = 0. Define
1 n-1
ey = —= I P, € if p< 1, and
1 1-p k=0 k Tkm
n+d-1
o = L 2 P, €
2P k=n k Tkm

Then By is a periodic orbit measure of ™o and Ho= i, when p = 1,
If p<1, then u = (l—p)u,1 + Pi,. Since A(ulj n A(uZ) = ¢, we have
ul-l-“Z' It is straightforward to show the uniqueness of the decomposition

of p. o

(6.4) Lemma. If p € P(R) 1is purely atomic, then Tp also is purely

atomic and A(Tw = TA(W).



Proof. If A(u) is finite, say A(u) = {o; 1 1=1is n}, then

n
W= 2z p;*e where p; = u(mi). Since T is an affine map on P(R)
i=1 ®3
n
and Tsm' = Er,.r  We obtain Tu = Z. P, &g, -
i i i=1 1

Suppose A(u) = {mi : 1 =1} 1is infinite. Then u = Zizl P smi

where P; = u(mi). Define

. . &
1i>n pl m.)

1
’ Ho = 'q'—(z'
n 1

where n = 1,2,.... It is easily seen that Ky € P(R) and
=2 p. € +q Ky for each n = 1, so that

-

€ C(8%), we obtain

=
1=
i
™
he
)
+
o)
-3
=
g
e}
H
(]
o
0
=
H

|<£,Tu> - <f, 2 P; br, >| = qn|<f’T“n>l < anfH -0 as n - »,
i=1 i

€ . 0

where <f,u> = [fdu. Thus Tu = Zizl 1 Tmi

(6.5) Lemma. Let p € P(R,T) be atomic. If w € @ is an atom of u,
then w 1is a periodic point of T, u(w) = u(Tnm) for all n=1, and
L(0(w)) = du(w) where d denotes the period of w.

Proof. We have, for each n = 0, T w ¢ TclT(Tnm) = T'l(Tn+l

w) so that
n n+l n . .
LT w) € (T "w) and {u(T m)}n>0 is a non-decreasing sequence of

positive numbers. Note that ™o is an atom of pw for any n = 0.

>
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If O(w) 1is infinite, then, by (5.7), wn(0(w)) = +«, a contradiction.

Thus O(w) 1is finite. By (5.8) there exists a unique m = 0 such that
i ~ . m ~ m d

T w £ P(T), 0<i=<m-1, and T w € P(T). Let Tw € P (T). If m= 0,

then we are done. Suppose m = 1. We obtain easily that

(o) = (M Pw) for all n € {1,2,...,d}; and
m-1 n -

w(o(w)) =2 (T w) + du(T w).
n=0

Since TO(w) ¢ O(w), we also obtain O0(a) < T_lTO(m) c T—lO(m) and thus

m-1
I w(Te) + du(T"e) = u(0(w)) = w(To(w))
n=0
m-1
=2 w(Tw) + ([@d+Dp(Tw),
n=1 '

so that u(w) = u(Tmm). Since o £ E(T), we have w # Tdm. It follows

that {o,T%} ¢ T™" = 7™ (1% and
d m
) < plo) + p(T o) £ (T o) = ulw),
a contradiction. o

(6.6) Lemma. If p € P(R,T) 1is atomic, then the set A(u) of all

atoms of p 1is a countable union of pairwise disjoint periodic orbits.

Proof. By (6.5) each w € A(u) 1is a periodic point of T and

A(w) = U{O(w) : @ € A(u)}. The result follows from (5.9).
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(6.7) Theorem. Let o € . Then

(i) w 1is a periodic point of T iff there exists an orbit
measure of w in P(&,T).

(ii) If an orbit measure of w exists in P(R,T), then it is the

periodic orbit measure of «w in P(R,T).

Proof. Suppose € Pd(T). If = é-z € ;s then u 1is an orbit
i=0 T o

d

2 €

i=1 T e

L. By (6.5) we obtain the theorem. O

a—

measure of o and Tup =

(6.8) Lemma. Let up € P(R) be purely atomic. The following are
equivalent:

(1) w = Tu;

(ii) The restriction of T to A(u) 1is a bijection of A(u) onto

itself and w(w) = w(Tw) for each w € A(p).

Proof. (i) => (ii): Suppose p = Tpu. By (6.5) we show readily that T

is a surjection of A(n) onto itself and u(mj = u(Tw) for each o € A(p).
Suppose Tw = Tw' for some w # o' in A(w). It follows from (6.6) théﬁ
O(w) = O(w'), and both ® and ' have the same period d, so that,

Y . v s .
by (5.2), w = [10,...,1d_1] and o' = [JO,...,Jd_l], where

. . . . . n_ _.n., .
10’""’1d-1’30""’3d-1 € S. Using T w=Tw' for n =1, we obtain

®w = ',
(ii) = (1): Sﬁppose (ii) holds. Since p 1is purely atomic, we obtain

W o= anl P, swn where A(u) = {wn :n =1} and P, = u(wn) > 0. By (6.4),
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Ty is also purely atomic and A(Tw) = TA(n)

A(w). Given @, € A(n),

there is a unique « € A(w) such that Te = o . It follows that

Tu(o) = wT o ) = u(T e} N AW

wlo) = w(Tw) = wlo).
so that Ty = p. 0o

(6.9) Theorem. Let p € P(R,T). The following are equivalent:
(1) i 1is a purely atomic ergodic measure.
(ii) (L 1s an atomic ergodic measure.

(iid) i 1is a periodic orbit measure.

n-1
2 € . for some w € @ and n = 1.

(iv) b= ;
i=0 T w

S

Proof. It is plain that (i) = (ii). To prove (ii) => (iii), suppose u
is an atomic ergodic measure. Let w ¢ A(w). We have from (6.5) that
o ¢ PU(T) for some d =1, 0(w € A(), and p(0(w) = du(w) > 0. It
is easy to see that O(w) < T_lo(w), so that u(T-lo(w)AO(aﬂ) = 0. By
(3.14) and the ergodicity of u, we have p(O(w)) =1, and 0(w) = Alw).
(1ii) = (iv): Suppose A(p) = O(w) where w € Pd(T). By (6.5) we
obtain 1 = u(0(w)) = du(w) and u(w) = u(T'w), 0 <i <d-1 so that
d-1

1
b =-=2 € . .
d i=0 le
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n-1

Z e ., where w € ® and n = 1.
. i
i=0 T w

=

(iv) => (i): Suppose u =

Since p = Ty, we obtain ™o = 0. If we denote the period of w by d,

d-1
Z e 5 - Note that yu 1is purely atomic. To prove
i=0 T w

=

then d|n and u =

the ergodicity of u, suppose E = T-lE and w(E) > 0. Then T o € E
1

for some i € {0,1,...,d-1}. Since TT "E = E (T is onto by (1.8)),
we obtain TE = E, so that by induction, T'E = E fer all n = 1.
It follows that O(w) € E and u(E) = 1. o

d-1

z € for some w € Pd(T), then -
n
n=0 T w

|

(6.10) Corollary. If p =

Te = W.

(6.11) Theorem. u is a purely atomic measure in P(R,T) iff p is a

countable convex combination of purely atomic ergodic measures in P(&,T).

Proof. (=>): Suppose u 1is a purely atomic nonergodic measure in
P(R,T). By (6.5) and (6.6) there exists a countable set {wn} C AW
such that @, has period dn and A(p) = UO(mn) where O(wn) are

pairwise disjoint with u(O(wn)) = dnu(wn) > 0. If we put P, = dnu(wn),

< - . .
then 0 pn and anl pn 1. For each n, define the purely atomic
1 dn‘l
ergodic measure W = — 2 € . . Then we have
n d . i
n 1i=0 T w
n
dn—l
po=2 riw ) (2 e . ) =21 P K.
n=1 n =0 le n=21 “n n
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(<=): Suppose u = Z 51 Py My where P,>0, 2,,p =1 and u = are

purely atomic ergodic measures in P(R,T). By (6.9) there exists a

d
sequence {w_} such that @, €P n(T) and A(un) = O(mn) so that

n nzl
Alpw) = Unzl A(un) = Unzl O(mn). It is clear that p 1is a purely atomic

measure in P(R). Note also that for all m,n, either O(mm) = O(mn)

or O(mm) n O(wn) = ¢ . We can see readily that the restriction of T to
A(u) 1is a bijection of A(u) onto itself. By (6.8) it remains to show
that p(w) = w(Tw) for each w € A(u).. Given w € A(u), let w € O(mm)
and E ={n : o € A(un)}. Then we have A(un) = O(mm) for all n € E,
so that b= u for all n € E. It follows that
@ =u (@ =2 forall n¢E
bo(w) =p (@) =3 n .
m
Since Tw € O(mm), we also have
1

un(Tm) = um(Tm) = a;- for all n. € E,.

Thus we have

1
b)) = Zcp Py Byle) = d Zneg Py = W{Tw),

so that u = Tu. Alternatively, we may show u = Tu by a minor

modification of the proof of (6.4). O



(7.1)

where

matrix

E.

(7.2)

p=(pJ

be the

j €E,

Proof.
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7. Atomic ergodic Markov measures

The main result of this section is the following. -

Theorem. The following are equivalent:

(1) i 1s a purely atomic ergodic Markov measure.
p 4ol d
(ii) W= 2 ¢ for some w = [i,,...,i, .] € P (T)
d ~ n 0 d-1
n=0 T w
igseeeriy  are distinct states.

(iii) u 1is the Markov measure induced by a cyclic permutation

(pjk)j KEE? where E ¢ §, and the uniform probability vector on

The proof is based on the following lemmas.

Lemma. Let E = {iO,...,id_l} be a subset of S and let
')jEE be the uniform probability vector on E. Let P = (pjk)j,kEE
cyclic permutation matrix such that P, s = Bi . for 0 £n =d-1,
n’ n+l
where id = io. If p is the (p,P)-Markov measure, then
1 d-1
b=g Z ¢ n where o = [10’°"’ld—1]‘
n=0 T o
In particular, u is a purely atomic ergodic Markov measure.
Clearly pP = p, so that u € P(R,T) by (4.5). Let
,a,,ld_l]. Then o has period d, since the states 1gsevenly g

are distinct. We obtain, for each n = 1,



so that p(w)

Thus p(0(w))
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L(T ) =

=

1. It follows from (6.9) that u = Z e 4 and that

i 1s a purely atomic ergodic Markov measure. o

Note that if p is the (p,P)-Markov measure, where P contains

no cyclic permutation matrix, then p 1is nonatomic. Consider the

product p

S

. P: for any i

.,1 € S. The states 1
i T

O,.. O,-o-,lr

i
r-1"r

T
are not distinct and thus we have [T p, . <1, for otherwise, P

v=] lv-llv

would contain a cyclic permutation matrix. Let

p!' = max

Jgre-

X = i
L (@) i

H(w)

P P . . Let o € @ be arbitrary, where

,erS I o7 Jr-1ly

n = 0. We obtain

tA

ner
lim u(Z(iO,.u,,i )) = lim P; I p,

ner i i
N> N> 0 v=1 v-1"v

lim p. (p') = 0.
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(7.3) Lemma. If w = [10,...,1d_1] where igsav.riy  are distinct

d-1
states, then p = L Z € is a purely atomic ergodic Markov measure.

d n=0 T ow

Proof. Clearly Tu = p. It follows from (6.9) that u -is a purely atomic
ergodic measure., It remains to show that p 1is Markov. Consider the

process {xn}n>0 on the probability space (R,B(R),u). It is plain that

{x_} is stationary. Let E = {io,..

atn=0 } and let 1q = i for

oldo1 t

q = t(mod d). We obtain, for each j € E,
_iy = - n. _1° 1
k(xy=]) = _2-_ u((xy=3) N T'w) = 3 i 8, 5 =7 -

Define the probability vector p = (p )jEE by pj = é-. We obtain, for

j
each 1i_ ¢ E,
m

L

d-1

s _ _ . _ k
u(xo—lm, xl—k) = 7 u((xo—lm, xl—k) N T w)
n=0
d-1
1 1
== % §. . & = = 8.
d -0 inlp 1n+1k d 1m+1k

for all k € E so that

wix,=klx.,=1_) = 8.
1 0 ™m 1m+1k

for all k ¢ E. Define the stochastic matrix P = (pjk)i,kEE by
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ka = U‘(xlzk XO=J)
Note that, for each im € E,

P; ¢ T 6i X for all k ¢ E,
m m+1

that is, P is a dxd cyclic permutation matrix. It is easily seen that

pP = p. We show readily that, for each iﬁ €E and n =1,

S e R TS R VO RRETEPIE Sl Sy
= 8, - = p.
1m+n+1k ‘m+n
for all k € E. Thus {x_} is a Markov chain with state space E,
n n=0

transition matrix P and stationary initial distribution p, so that u

is the (p,P)-Markov measure. o

Proof of the theorem. In view of (7.2) and (7.3), it remains to show the

implication (i) => (ii). Suppose that u is a purely atomic ergodic

Markov measure, or equivalently, by (6.9),

d-1 4
Z € for some w € P (T)

w o=
n=0 T'w

=

We see readily that if d=1 or 2, then w = [i] for some i €S, or
w = [i,j] for some i,j € S with i # j. Thus it is enough to show that

if o= [10"°"1d—1] where d 2 3 and i -»iy_y are not distinct,

0°""

then the measure p is not Markov. Let E be the set of distinct states
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in [10,...,1d_1]. Then card E = 2. Let 1, = i for q = t(mod d).

For each j € E define

It follows that 1 < mj =d-1 for each j € E, Z m.=d and
j€E

2 =m, <d-1 for some j € E.

J

Consider the process {xn}n>0 on the probability space (&,B(R),u).
Since Twp = w, the process {xn}n>0 is stationéry. We obtain, for each
j € E,

d-1 1 1 d-1 m
p(xg=i) = 2 w((x,=)) NThw) =3 % 6., =
0 0 : d ji d
. n=0 n=0 n

and u(xOEE) = 1. Note that, for all n=1, u(xn=j) = u(x0=j) for each

j € E, and u(xnéE) = 1. Define the probability vector p = (pj)jEE by

pj = 7% . For any j,k € E we obtain
d-1 n
w(xg=j, x;=k) = 2 p((x4=j, x;=k) N T w)
n=0
LS s
d n=0 i, k1n+l ’

so that
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.y _ d s _
H(X]_"k XO_J) - m. !“L(XO_J’ Xl-k)

| d-1
"o 2 % Sy o
j n=0 It n+l
I oux ok|xp=i) = = u(xg=3) = 1
KeE j

Define the stochastic matrix P = (p.
Note that pP = p and that pjk = u(xn+1=k xn=3) for all n= 0 and all

j,k € E.

To prove that p© is not Markov, it is enough to show that the

process {Xn}n>0 does not have the Markov property. For each J € E,

let Aj fn:j=1_ =1

, i , 0<n<d-1} and let
n n+l

min A, if . A, ,
J J # ¢

o if A. = ¢.
3 ¢
Suppose that there is a state j € E such that Tj < », i,e.,

0 =<1, =d-1. (Note that this condition is always satisfied when d=3.)

m.

We obtain p.., = —L-> 0 and
1] 3



u(x0=x1=.,.=xd_l=J) =0 < e

so that u 1is not Markov.
Suppose that Tj = o for all j € E. (In this case d = 4.)

We mdy assume without loss of generality that

i, # i1 and mj < miO for all j ¢ E.

Let m = m, and let {t, }
1, k

l<k<m+1 be such that

i, = it for all k.

0 Tty
Define s = min{tk+1-tk : 1 <k<m}t., Then 2 <=s < %- and 4 = ms < d.
Let s = tk +1_tk where 1 = kO <= m. If we write
o) o)
i, = it v for 0=v =<s-1,
k
o)
then 1p=1, and
s-1
T p. p, > 0
v=0 Iy Ty+1

We have then,
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, 0=g=<m-1l, 0<=<v=s-1; xms=j0)

s-1
=0<p, | O p. . o,
olv=0 Tvivel

1]

(otherwise, either w ¢ PS(T), s <d, or m, m+1l) so that u 1is not

Yo

Markov. @&

(7.4) Lemma. For any d> 71 and any o € Pd(T), wo= %~ Z € is a

purely atomic ergodic non-Markov measure.

Proof. Suppose that d >r and o € Pd(T). It follows that

w = [iO""’id-l] - where are not distinct states. Using (6.9)

igseeenly g
and (7.1) we obtain the result. &

We obtain, from (7.1) and (7.4), the following theorem.

(7.5) Theorem. Let u be a purely atomic ergodic measure. Then the

following are equivalent:
(1) g is non-Markov.

(i) u 1is the periodic orbit measure of some o € Pd(T) provided

that either d>r or 3 =<d=<r and o = [io,. where

°"1d-1]

1gse-0ly_y are not distinct states.

By (7.1) we also have the following theorem.

{(7.6) Theorem. Let i be the (p,P}—Markov measure. Then the following are



equivalent:

(1)

(i1)

7!

7!

is nonatomic ergodic.

is ergodic and P

is not a cyclic permutation.

75.
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8. Nonatomic measures on the unit interval

We now state and prove some well-known results (see Billingsley [2],

Halmos [1], Hewitt-Stromberg [1], Royden [1]) that will be used in the next
section. Let I denote the closed unit interval and m, Lebesgue

measure on I.
(8.1) Lemma. Let f : I - I be a continuous nondecreasing function.
Then f 1is a surjection iff £(0) = 0 and f(1) = 1.

The proof is simple and is omitted.
(8.2) Lemma. Let f : I - I be a continuous nondecreasing function such
that £(0) = 0 and £(1) = 1. Then

(i) For each [a,b] € I with a< b, £ ([a,b]) isa
nondegenerate interval in I, i.e., f-l([a,b]) = [s,t] for some s,t € I,

s < t.

(ii) For x ¢ I, fcl({x}) is either a singleton or a non-

degenerate closed interval in 1I.

(iii) The set E = {x €¢I : f—l({x}) is a nondegenerate interval}

is either empty or countable.

(iv) The map £ : I - f-l(E) - I - E, where E 1is the set

defined in (iii), is a strictly increasing homeomorphism.
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Proof. (i) Let 0 =a<b =1. By (8.1) there exist points X,y in I
such that f(x) = a < b = f(y), so that x <y and x,y € f'l([a,b]).

For any u,v € f_l([a,b]) with u < v, we have
as< f(u) s f(z) =f(v) b for all =z € [u,v]

so that [u,v] ¢ ftl([a,b]). Thus f_l([a,b]) is a connected subset of 1I.
Since fnl([a,b]) is also closed, f_l([a,b]) is a nondegenerate closed

subinterval of I.

(i1): By the argument used above we see that, for each x ¢ I, f'l({x})
is a nonempty closed connected subset of I, so that it is either a

singleton or a nondegenerate closed subinterval of TI.

(iii): Suppose E # ¢. It follows from (ii) that, for any x,y € E with
X # Y, f‘l({x}) and f—l({y}) are disjoint nondegenerate closed
subintervals of I. We show readily that f'l(E) consists of countable
pairwise disjoint nondegenerate closed subintervals of I so that E

must be countable.

(iv): By (iii), both I - f_l(E) and I - E are nonempty Borel subsets

of I. Since f 1is a surjection on I, we obtain
-1 -1
f(I - £ "(E)) = f f "(I-E) = I - E.

Suppose that f(x) = f(y) for some x,y € I - fnl(E), X < y. Then we have
£(x), f(y) € 1 -E sothat x = £ £(x) = £1£(y) =y, a contradiction.
Thus £ @ I - f“l(E) -+ I - E 1is a strictly increasing bijection. It is

plain that f is continuous on I - fal(E). To prove that f 1is an open
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map on I - f-l(E), let (a,b) N (I - f_l(E)) = A, a < b. Then we have

£(A) = (£(a),£(b)) N T - E, so that (iv) holds. O

Let P(I) .be the set of all probability measures on (I,B(I))

‘where B(I) denotes the c-algebra of Borel sets in 1I.

(8.3) Lemma. Let v € P(I) and let fv be the distribution function

of v defined by fv(x) = v([0,x)), x € I. Then

(1) fv is a nondecreasing function on I with fV(O) = 0,

fv(l) <1 and is continuous on the left in (0,1].

(ii) f is continuous on I with fV(O) = 0, fv(l) =1

iff v 1is nonatomic.

Proof. Let f = fv’ It is plain that £(0) = 0 < f(x) < f(y) =1 for

0sx<sy=<l.

(i): To prove the left continuity of £, 1let x € (0,1] and let {xn}n>l

be a nondecreasing sequence in (0,1] such that 1lim x_ = x. It follows

, n
that

f(x) = v(U [O,Xn)) = lim v([O,xn)) = lim f(xn).
n n n

(ii): Let x € [0,1] and let {xn}n>l be a nonincreasing sequence in

[0,1) such that lim X = X. Then we have v({x}) = v(N [x,xn)) =

n n
= lim v([x,xn)) = lim (f(xn)-f(x)) = f(x+) - f(x), so that v({x}) =0
n - n
"iff f is continuous at x. On the other hand we also have, f(1) =1

iff v({1}) = 0. ©
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(8.4) Theorem. Let v € P(I) be nonatomic and let fv(x) = v([0,x)),
x € I. Then fv is a measure-preserving continuous nondecreasing

surjection from (I,B(I),v) onto (I,B(I),m).

Proof. Llet £ = fv. By the preceding lemmas, f 1is a continuous
nondecreasing surjection of I onto itself, so that it is Borel measurable.
It remains to show that fv =m, 1i.e., v(f_l(A)) = m(A) for each Borel
set A. It follows from (8.2.i) that, for each [a,b] € I with a < b,

f-l([a,b]) [s,t] and [a,b] = [f(s),f(t)] for some Oss<t<l,

i

so that m([a,b]) = £(t) - £(s) = ([s,t)) = v([s,t]) = v(£ ' [a,b]). By a

general form of the unique extension theorem (see Blumenthal and Getoor [1],

Halmos [1], Royden [1]) we obtain fv =m. a

Let f be a nondecreasing function, f : I - I. f 1is called
singular if f' = 0 m-a.e.. By a well-known theorem, f is absolutely
continuous iff f 1is an indefinite integral with respect to m. We quote

without proof the following. (See Billingsley [2], Hewitt-Stromberg [1].)

(8.5) Theorem. Let v € P(I) and let fv(x) = v([0,x)). Then fv is

absolutely continuous (f  is singular) iff v <<m (v | m).

(8.6) Theorem. Let v € P(I) be nonatomic, fv(x) = v([0,x)), x € I.

Then

(1) There exist two uniquely determined nondecreasing continuous

functions g, and g, on I whose sum is fv, such that gl(O) = g2(0) =0,



g, is absolutely continuous and g, is singular.

(ii) Let Vi and 2 be the Borel measures defined by

v, ([0,x)) = g, (x), v,([0,x)) = g,(x), where x € I.

Then v = v, + v, with v, <<m, v, | m. This decomposition is the

Lebesgue decomposition of wv.

Proof. (i): Let f = £ . It is well-known (see Hewitt-Stromberg [1],

Y
Royden [1]) that f' exists m-a.e., and 0 < [.f'(t)dt =< f(y) - f(x)
b'e

whenever x < y in 1I. If we define the functions g, and g5 by

g () = J £, g,(x) = £(x) - g ()

where x € I, then g, and g, have the desired properties.

To prove the uniqueness of the decomposition of £, let

f = g * g and f =h, + h

1 2 be two such decompositions of f£. Then

g - h1 is absolutely continuous with gi - h! = 0 m-a.e., so that

1
1
gl(x) - hl(x) = gl(O) - hl(O) = (0 for all x € I. Thus we obtain

g = h1 and g, = h2.

(ii): We have that vy <<m and v, J m, by (8.5).

80.
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(8.7) Corollary. Let v € P(I) and fv(x) = v([0,x)), x € I.

Then

v =m iff fv(x) = x for all x € I.

(8.8) Theorem. For each nonatomic v € P(I), there exist Borel sets

I1 and 12

homeomorphism from (Il,B(Il),v) onto (IZ,B(IZ),m). (In particular,

in I such that v(Il) = m(IZ) = 1 and a measure-preserving
(I,B(I),v) and (I,B(I),m) are isomorphic. Seé section 9.)

Proof. Let £(x) = v([0,x)) for x € I. By (8.4), f 1is a measure-
preserving continuous nondecreasing surjection from (I,B(I),v) onto
(I,B(I),m). Let E = {x €1 : f_l(x) is a nondegenerate interval}l,

I.=1-f1YE and I,=1-E. It follows from (8.2) and (8.4) that

1 2
both I1 and I2 are Borel sets and v(Il) = m(I2) = 1. Denote by g
the restriction of f to I.,. By (8.2), g 1is a strictly increasing

1

measure-preserving homeomorphism from (Il,B(Il),v) onto (I2,B(I2),m). i
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9. Relationship between nonatomic measures on &

and nonatomic measures on I

(9.1) Definition. Define the subsets 90, Qr 1 and Q* of Q by

90 = {w: o# [0], 3n=1 such that @, = 0 for all m = n.}

Qr-l = {w: o # [r-1], 3n = 1 such that 0, = r-1 for all m = n.}

* = -
2 =0 -8 .

Let IO be the set of all r-adic rational numbers in (0,1), i.e.,

I ={x:0<«<x<«<1l, x=— where a,n € N} .

a
.1

Q

T

Let ¢ : @ - 1 be defined by

and let V¥ be the restriction of the map ¢ to Q*.

(9.2) Lemma. (i) The map ¢ 1is a continuous éurjection from @ onto I.

(1i) The restriction of the map ¢ to ® - (QO U Qr 1) is a

homeomorphlsm of 9—(80ﬂ gr—l) onto I - IO



Proof. (i): It is plain that 0 < ¢(w) <1 for all w € 2, o¢(w) =0

iff w = [0], and ¢(w) =1 iff o = [r-1]. Suppose f%-e I0 where
T

r / a. Applying the division algorithm n times, we obtain a unique
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by

sequence (io,il,...,in_l) in S with in—l =z 1 such that
a =il M2 + 1
0 1 e n-1
i i i
a _ 0 "1 n-1 . _ Voo .
so that - =5 i SR - - Define o = (mm) and (wm)
T T T
w, = im for 0 <m < n-1, w = 0 for all m=n
and
w' =i for 0 =m < n-2, o = i -1,
m m -1 n-1
w& = r-1 for all m = n.
a
1 = 1y = =
Then we have o € 90, w' € Rr-l and ¢ (w) ?(w ) 5 .
-l i '
Suppose x € (0,1) - Io. Since [0,1) = U [;—, -;70, there is a
i=0
unique iO € S such that
i i +1) i r-1 [, . )
0 0 1 i i+l
XE[—;—, I.jOI‘ 0<X——I;—€[O,§-)—.U I—Z—,Ti
i=0 |r T

Next, there exists a unique i, € S such that

1
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i i i +1) i i
X - 9 € {;l-, 1 J or 0 < X - 9 ~l-€ [0, —lﬂ
r r2 r

By é'repetition of the argument just used, we obtain a unique sequence

{1n}nZO in S such that
n ik 1
0<x - 2 X < for all n > 0,
+1 n+l
k=0 r T
oo in
so that x = 2 T If we define w = (1n)n20’ then o € 9—(90U Qr-l)
n=0 r '
and ¢(w) = x. We see readily that o¢(w) # ¢(w') whenever w # ' in
9—(90U Rr_l).
Recall that, for each n = 0, the map Xt ® - S defined by
xn(m) = o is continuous. It follows from the Weierstrass M-test that
@ X ()
the map ¢(w) = 2 1 is continuous on &. Thus (i) holds.
n=0 r
(ii): The preceding argument shows that the restriction of the map ¢
to 9-(90U Qr-l) is a continuous bijection of 9—(90U Qr-l) onto I - I..

We see readily that, for any i ,in € S,

0,ll,...

O({xg=igs--ox =i} N @-(@U 2, )

1
e - Ty
T

n .
where u = 2 so that ¢ : 9-(90U Rr—l) -1 - I0 is an open map.

k=0 r

Thus (ii) holds.
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(9.3) Lemma. The map V¥ : ®* - I 1is a continuous bijection such that

W_l is Borel measurable.

Proof. By (9.2) the map ¥ 1is a continuous bijection from &* onto 1I.

Since we have, for any io,...,in € S,

W(x0=10,...,xn=1n) = @({x0=10,...,xn=1n} N (R—RT_l))
- 1
- [u’ u + n+1)
nooi -1
where u = 2 , the map V : I » ®* 1is Borel measurable.
k=0 r<*!

(9.4) Definition. Let Xi = (Xi,Bi,ui), i = 1,2, be probability spaces,

each with a measure-preserving transformation Ti : Xi - Xi'

For any measurable transformation f : Xl - X2, define the

probability measure ful on X

, by (fu))(B) = ul(f“l(B)) for each

B € BZ'

The probability spaces X4 and X, are said to be isomorphic if

there exists Yi € B.1 with ui(Yi) = 1, where i = 1,2, and an invertible
measure-preserving transformation f : Y1 - Y2 (i.e., £ 1is bijective, and
f, f-1 are measurable and measure-preserving) . The space Yi is assumed

to be equipped with the o-algebra Yi N Bi and the restriction of the

measure . to this o-algebra.
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The transformation Tl is said to be isomorphic to T, if there
exist Y, € B, with p.(Y.) =1 such that T.(Y.) €Y., 1i=1,2, and
i i iti ivi i

an invertible measure-preserving transformation f : Yl > Y, such that

le(x) = T2f(x) for each x ¢ Xl,

(9.5) Definition. Let P(R*) = {u € P(R) : w(®*) = 1, or equivalently,
U-(Sar_l) = 0}, P(R*,T) = {u € P(R*) : Tp = p} and E(R*,T) =

= {u € ER,T) : p(@*) = 1}.

(9.6) Lemma. Let ¢ and V¥ be as in (9.1) and let u € P(&%). Then we

have

(1) ou € P(I), Vu 1is a measure on (I,B(I)), and VYu < ou ,

(1) Vu = ou 1iff u € P(R%).

Proof. (i): It is plain that o¢up € P(I) and VYu 1is a measure on (I,B(I)).

For each B € B(I), we have
o7t®) = eTTB N e Uiy ne,_ ) 20Tt nex = TR

so that (e T(B)) 2 u(¥ 1 (B)).

(1) Tf u e P@), then w(e™'(®) = wle (B N &%) +u@ (B N2 )
= u(¢_l(B) ne*x) = u(wﬂl(B)), for each B € B(I), so that ou = VYu.
IF w € P@) - P@), then u(@, ;) >0 and we (D) = u®) * @, )

> @) = p@ I(D), so that Vu # eu. ©
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(9.7) Theorem. The mapping V : P(R*) - P(I) defined by

(W) (B) = w(v " 1(B)), where p € P(@%), B € B(I),

is a bijection.

Proof. Let v € P(I). By (9.3) we have W—lv € P(R*), so that

vor Iy € P(I). Since V(¥ X(B)) = B for each B € B(I), we also have

o tnTe) = v i)y = v

for each B € B(I) so that W(W-lv) = v,

On the other hand, if u € P(Q*), then V¥ *(Vu) € P(R*) and
r|."1r. 1, ru,"lr FANYY Iy -~ z Ie N\ -
vV ") I(A) = uy "(W(A))) = p(A) for each A € B{R*), sot
W_l(wu) = u. Suppose that Vu = yu' where p,u' € P(R*). It follows that

w= v low = v lew) =u. o

(9.8) Definition. Let NA(R) = {gw € P(R) : p 1is nonatomic} and
NA(I) = {v € P(I) : v 1is nonatomic}.
(9.9) Theorem. Let ¢ and V¥ be as in (9.1). Then we have

(1) NA(R) < P(@*),

(i11) the restriction of the mapping V¥ to NA(R) 1is a bijection

between NA(R) and NA(I), and op = Vu for all u € NA(R).
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Proof. (i): Suppose p € NA(R). Since the set Qr-l is a countably

infinite subset of &, we obtain u(ﬁr_l) = 0 so that p € P(R*).

(ii): Let p € NA(R). For each x € I, @-l({x}) is either a one-point

set in 9—(QOU Qr-l) or a two-point set in ROU Qr-l so that

(pu) ({x}) = u(@_l({x})) =0, i.e., ou € NA(I). By (9.6) we obtain

ou = Vu. Given v € NA(I), we have, by (9.7), V¥ 'v € P(2*) and

W) ({e}) = v({¥(@)}) = 0 for each w € *
so that ¥ 'v € NA(R). Thus (ii) follows from (9.7). o
(9.10) Definition; Define the r-adic transformation’ T' on I by
T'(x) = rx (mod 1) for 0 <x< 1 and T'(1) = 1.
Let P(I,T') = {v € P(I) : T'v = v}.
(9.11) Lemma. V¥(Tw) = T'(¥(w)) for each w € R*.

Proof. It is clear that T(R*) = @* and T'(I) = I. For each w € &*

we obtain

V(Tw) = ( ; “n

n

» T'W(w) =T

nosg
" |8

1

T-1 . r-2 .
It is readily seen that ®* = U {x. =i}l ng+*, 1= U [>,
© i=0 0 i=0 ¥

i+l
T

) U EE, 1,
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and

V(ixg=i} N 2*) = [T, —1;—1) for 0 <i <1-2,

1]
l
-
[
[

W({x0=r-1} N Q*)

Thus, if o E'{x0=i} NR*, 0<1i=<r-1, we obtain

T'(¥(w)) = r¥(w)

]
=)
u
[}
TS
=
+
N og

e

n
— = ¥(To). o

i
Mg

3
—
=

(9.12) Lemma. P@,T) N NA@®) = P(@*,T) N NA(R).
The proof is simple and is omitted.
(9.13) Lemma. Let ¥ be the bijection between P(R*) and P(I) as

defined in (9.7). Then the restriction of the mapping V¥ to P(®*,T) is

a bijection between P(R*,T) and P(I,T').
Proof. It is enough to show that V¥ is a surjection from P(&*,T) onto
P(I,T'). Let u € P(R*,T). It follows from (9.7) and (9.11) that

Yu € P(I) and

et tey) 2wt e

it

[T (bu) 1 (B)

(W(Tw)1(B) = (Yu)(B) for each B € B(I),
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so that VYu € P(I,T'). Similarly we obtain, for each v € P(I,T'),

Ty = v v = wttoy = v iy = vy

so that \lz"lv € P(R*,T). a

We obtain from (9.9), (9.12) and (9.13) the following:

(9.14) Theorem. Let V be the bijection between P(R*,T) and P(I,T')

as defined in (9.13). The restriction of the mapping V¥ to -

P(R,T) N NA(R) is a bijection between P(R,T) N NA(R) -and P(I,T') N NA(I).
(9.15) Lemma. E(,T) = E(R*,T) ¢ P(R*,T).

Proof. By definition, E(Q*,T) = E(R,T) N P(R*) ¢ P(R*,T). Let u be an
atomic ergodic measure, i.e. u € E(®,T) N A(R). We see readily that no

points in Qr are periodic points of T, so that, by (6.9), u(Rr_l) = 0.

-1
Thus we obtain E(®,T) N A(R) € E(®@*,T). By (9.9) we also have

E®,T) N NA(R) € E(R,T) N P(@*) = E(@*,T). Using (6.9) we obtain
E@®,T) = (E@,T) N A®)) U (E®,T) N NA(R)) € E(@*,T)
so that E(®,T) = E®@*,T). o
(9.16) Theorem. Let V¥ be the bijection between P(R*,T) and P(I,T")

as defined in (9.13). Then the restriction of the mapping V¥ to E(®,T)

is a bijection between E(R,T) and E(I,T').
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Proof. Let u € E(®,T) and v = Yyu. It follows from (9.15) and (9.13)
that. v € P(I,T'). Suppose T‘—lB;= B where B € B(I). By (9.11), we
- I -1, - -1
have 1 (B) = v (T iB)) = T i (B)) so that v(B) = (T (B)) = 0

or 1. Thus v € E(I,T').

Let v € E(I,T') and pu = Wnlv. Note that u € P(R*,T). Suppose

TIA = A where A ¢ B(R). We readily see that

1 1

TR* € @* ¢ T "TR* € T "Q* ,

1

Aner =T ian e et lan 7ler = 77hanex

1

Set E = AN Q% Then we have E ¢ T™E and V(E) € v(TL(E)) = T' L (v (E))

so that v(T'"X(¥(E)) A ¥(E)) = 0. Therefore we have

it
o

w(E) = v(¥(E)) or 1, i.e. u(ANR*) =0 or 1.

Since W(A) = pu(ANR*), we have u(A) = 0 or 1, and thus u € E®,T). 0

Using (9.14) and (9.16) we obtain the following:

(9.17) Theorem. Let V¥ be the bijection between E(R,T) and E(I,T') as
defined in (9.16). Then the restriction of the mapping V¥ to

“E(Q,T) N NA(R) 1is a bijection between E(Q,T) N NA(R) and E(I,T') N NA(I).

1
Let A denote the p = (pi) Bernoulli measure where P; =% -

i€S
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(9.18) Theorem. The probability spaces & = (R,B(R),\) and
I = (I,B(I),m) are isomorphic, and the Bernoulli shift T on & and the

r-adic transformation T' on I are isomorphic.

Proof. Since X\ € E(®,T) N NA(R), - we obtain, by (9.17),
¥\ € E(I,T') N NA(I). By (9.3) and (9.11), it remains to show that ¥\ = m.

It is easily seen that, for each n = 1,

A0, 5)) = A(ix=0, 0 £ k £ n-1} N 2¥)
T

= A(x,=0, 0 < k= n-1) = rin

AT - A 1) = adxer-1, 0= ks ne1d 0@
: T

A T [u, u o+ -1;1-)) = M{x =i, 0 = k = n-1} 0 &%)

=
jons
o
[x]
[}
o
i
W ™

The following result is a generalization of (8.8).
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(9.19) .Theorem. Let pun € P(2) be nonatomic. Then the probability spaces

(8,8B(®R),u) and (I,B(I),m) are isomorphic.

Proof. Let ¢ and V¥ be the mappings as defined in (9.1), let

g € NA(R), and let v = VYu. By (9.9), v € NA(I). ©Let £(x) = v([0,x))
for x €I, E = {x€I : f-l({x}) is a nondegenerate interval in I},
1,=1-£"E) and I,=1-E. By (8.8), we have v(1) = m(L,) =1
and the mapping f :'(Il,B(Il),v) > (Iz,B(Iz),m) is a measure-preserving

homeomorphism. In particular, the two probability spaces (I, B(I),v) and

(I,B(I),m) are isomorphic.

1

Define ' = ¢~ l(I Then we have R' = w‘l(Il) N @* ¢ B®) and

- 1) )
L®') = u(W-l(Il)) = v(Il) = 1. It is easily seen from (9.3) that the
restriction of the mapping V¥ to &' is an invertible measure-preserving

map from (R',B(R'),u) onto (Il,B(Il),v). Note that (8,B(®),u) and

(I,B(I),v) are isomorphic.

Define the mapping g by g(w) = f(¥(w)) for each o € R'. It is
straightforward to show that the mapping g 1is an invertible measure-
preserving map from (R',B(R'),u) onto (IZ,B(IZ),m) so that the theorem

follows. a
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10. Continuous singular distribution functions

In this section, notation is as in section 9. Our point of

departure is the following lemma.

(10.1) Lemma. Let oty € P(R*). Then we have
(i) wy Loy IFF dng | Vmo,

(ii) By << B, iff Wul << Wuz.

Proof. By (9.7) we have Wui € P(I), 1i=1,2.

i) : 0% = = = ] =
(i): Suppose that Q* = A U A2, A1 N A2 ¢ and ui(Ai) 1, i 1,2.

1
It follows from (9.3) that I = y(2*) = ¥(A}) U V(A W(Al) N y(A,)

1\

il

VA N A =4, and ¥TIVA)) = A, so that Vi, (V(AD) = 1y (A))

1,2. Thus ¥p, l_Wuze

1]
—
“

[ Y
il

Suppose that I = B1 U B2, B1 N B2 =_¢ and (Wui)(Bi) =1,

i = 1,2. Then we have % = ¥™1(1) = ¥ (8)) U viep, viepn VB =@

and p (WN(BD) = (e (B) =1, i=1,2 sothat u |,

-1
(ii): Suppose that By << By If (Wuz)(B) = uz(v (B)) 0, then

Ml(le(B)) = (bu)(B) = 0 so that Yp) << Y, .

0 where A € B(R*). By

Suppose that Wul << Wuz and pZ(A)

(9.3) we have ¥ L(¥(A)) = A and so py(A) = (Yu,) (W(A)) = 0, so that

(\"U'l) (\" (A)) = U‘l (A) = 0. Thus U-l << U-2° m]

Using (9.16), (10.1) and (3.16), we obtain the following result.
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(16.2) Theorem. Let p,v € P(I,T'). Then

n

(1) if p,v € E(I,T'), then either pw =v or u | v,

n
<

(ii) if ve<y, u€E(IT'), then u

(10.3) Discussion and Definition. For any v € P(I,T'), let f be

the distribution function of v defined by f(x) = v([0,x)), x € I.

r-1 . .
Since T'v = v, we obtain easily that f£(x) = 2 {f(%-+ %9 - f(%q},
i=0
x € I. Let D(I,T') denote the set of all continuous singular nondecreasing
. . r-1 i x i
functions f on I with the property f(x) = Z {f(;—+ ?) - f(}—)},
. i=0 :

x € I. It is plain that the set D(I,T') 1is convex and is identified with

the set of those nonatomic v € P(I,T') such that v l_m.
(10.4) Theorem. Let w € P(R,T), v =V¥u and f£f(x) = v{([0,x)), x € I,
and assume that v # m. Then the following are equivalent:
(1) L is nonatomic T-ergodic, i.e., W € E(R,T) N NA(R).
(ii) v is nonatomic T'-ergodic, i.e., v € E(I,T') N NA(I).
(iii) f is an extreme point of D(I,T')
Proof. By (9.17), we obtain (i) <= (ii).
(i1) => (iii): Suppose v € E(I,T') N NA(I) and f£f(x) = v([{0,x)), x € I.

Assume that f = pg + qh, where g,h € D(I,T'), O<p,qg< 1, p+¥q =1.

Let o and T denote the measure on I induced by the distribution g
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and h, respectively. It follows that o,T € P(I,T') N NA(I) and
v = pg + qt. Since v 1s an extreme point of P(I,T') (as is easily

seen by (3.17) and (9.17)), we must have v = ¢ =T, so that f =g = h.

(iii) => (ii): Suppose f 1is an extreme point of D(I,T'). Let v  be

the measure induced by f. Assume that v = po + qT where o,T € P(I,T'),
0<p,gq<1l, p+tq=1. Let g and h be the distribution functions of

o and T, respectively. Then we have f(x) = pg(x) + qh(x), x € I.

Since v is nonatomic, both o and T are nonatomic, or equivalently,
both g and h are continuous. We also have f'(x) = pg'(x) + gh'(x) =0
m-a.e. so that g'(x) = h'(x) = 0 m-a.e., since g' 2 0 and h' = 0 m-a.e.
Consequently, we have f = pg + qh where g,h € D(I,T'). Since f is an

extreme point of D(I,T'), we must have f =g =h, so that v =o0c=7T. O

N
—
[en]

.5) Theorem. Let p be a (p,P)-Markov measure such that pP = p, and
let f be the distribution function of the random variable ¢ on (%,u¢),

i.e. £(x) = plow @ o(w) < x); Then

n ik—l 3
(1) fi Z <l = Z p. + P; Z Py 5| ¥
k=1 T jei, 0lj<i, *o’
0 1
5 3
+ p. . . P. . P .
To'1 1n-3'n-2 {J<l -1 ln—ZJJ
(i) f is a strictly increasing (continuous) function iff P 1is

positive.
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Proof. (i) For any lgseeenin g € S with i1 2 1, we obtain

(ii)

and

3
n i ni
fi Z kil = u{m olw) < 2 kil
k=1 r L 1 r
n j ni
_ i _ . k-1 k-1
MXg=J g oXy 1™0p 0 P2 T <2 ¢
l r 1l r
n j ni
k-1 k-1
= Zp. P. . D. . 2z <2 }
{ Jo Jo1 In-29n-1 1 rk 1 rk
4
= Z p.+p. Z p + +Pp. P P . .
J<10 J lO j<i1 0J lO l011 ln-31n-2
( . 3
J<i pin-ZJl
> n-1

Suppose P is positive. Then the probability p also is positive

the measure u is nonatomic ergodic so that f is continuous. To

prove that f is strictly increasing, let 0 < x < x' < 1. There exist

two

r-adic rationals u and v such that x <u < Vv < x', with

n i n+m i
k-1 _ k-1 .
Z > V= Z < where i

k=1 r k=1

R 1
0’ > n+m-~1
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f(x") - £f(x) =2 £(v) - f(u)
> i _s s
- .Z. U'(XO o2 Xnam-2" nem-2° *nem-1 1)
I<1nsm-1
=P. P: : ... D . 2 P .| >0 .
o to'1 tnem-3Tn+m-2] j<i tn+m-27
n+m-1
Suppose P is not positive. Then 1 j = 0 for some io,jO € S.
0”0
io jOI ' ) io j°+1
It follows that f|—+ —{ = 2 p. +p. | 2 p, .| = f|—+ ,
T ZJ L i 0.0, Fij T 2
T j<ig o|j<j, "o T

so that f 1is not strictly increasing. O

(10.6) Theorem. Let up be a p-Bernoulli measure where p = (Pi)ies is a
positive probability, and let f be the distribution function of the random

variable ¢ on (2,u). Then

(i) if p is uniform, p; = %— for all i, then f(x) = x

for all x € I,

(ii) if p 1is not uniform, then f 1is a strictly increasing
continuous singular function such that
i-1

£(x) = % p. + p.f(rx-1) for =< x < , 0<i=<r-l.
§=0 j i T

Proof. (i): It follows from the proof of (10.5) that, for each r-adic

n-1 i
rational u of the form u = 2
k=0

k

;E:T-’ f(u) = u. Since r-adic rationals
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are dense in I and f 1is continuous, f(x) = x for all x € I,

(ii): Suppose p is not uniform. It follows from (10.5) together with

(10.2) that f dis a strictly increasing continuous singular function.

i+l

i
—_—< <
Suppose = t =< T

0 <1i<r-1. Since {Xn}nzo are i.i.d. random

variables with a common distribution, (pi)iES’ we obtain for v = yu,

-l i
£(t) = 2 v([z, =) + (g, )

j=0
i-1 5 @ X

= .é U'(XO=J) * LL(X0=1, ; + 2 n+l < t)
j=0 n=l r
i-1 © X

= 2 p. + u(x0=i)u( I — < rTt-1i)
j=0 J n=l r
i-1

= Z p. *p.ulo: olw < rt-i)
. j i
j=0
i-1

= 2 p. +p.f(rt-i). o
j=0 31

(10.7) Example. Let p be the (pO,O,pz)-Bernoulli measure on

@ =1 {0,1,2} where O < p,,P,< 1, D, + P, =1. Let f be the
0 0’72 <0 2
distribution function of the random variable ¢ on (2,B(®),u). Since

i 1is nonatomic ergodic, f 1is a continuous singular function and is not

strictly increasing by (10.5).
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Define the open interval

( _ . _ .
TRgsdpseendy p) = nzz ;El — ?22 ;El * j%' ’
n k=0 3% 3 k=0 3 3
where 1, € {0,2}, 0<%k =n-2, n=1. Let

k

i

V= U{I(lo,...,l 02"

n ',ln_z E {0,2}}

n-2)

Then the Cantor set K 1is defined by, K =1 - U Vn . Using (10.5), we
n=1 '
obtain, for Lgseeesl 5 € {0,2},
I : 3 _ : 3
. n»2 1 1 n-2 1 2
S5 iy i B v
k=0 3 37 k=0 3 3
Z Z ) [ Z
= P; * P. P;| * + P. P. P p
J Iat: s ] 1,1 2] s J
j<i, 0fj<i, J 0 "1 n 3L3<1n_2
+ P. P - P; P
o M1 120

= Pylg * POPiOJ1 + .. popiopi ce. P j +

where 5 0 = k £ n-2. Observe that

Ik
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1 2 2 1
f(=) =£(5) =py» £+ =£fF+ -3 =p,* PP, >
32 32 0 32" 3 32 0 02
1 2 3 2 1 2
f(__) = f('_') =P > f(__ + —) = f(_ + ——) = P, *T P5P >
33 33 0 32 33 32 33 0 02
2 1 2 2
f(§+ _3') = f(§'+ —3) = po * p0p2 >
3 3
2 2 1 2 2 2 2
fG+-5+=) =f(F+—=5+= =p, + P~P, * PaDn -
3 32 33 3 32 33 0 0 2’ 0t2
1

Suppose Pg =P =75 - In this case, the function f is called
the Cantor function or Lebesgue's singular function. We obtain from the

preceding result that

1, _ .2 _ 1
I =1z =5,
1 2 1 2 1 2 2 1 1
() =P =5, G+ - H-L. L1,
32 32 22 3 32 3 432 2 22
F) = f( ) =5, (S =D =S5,
3 3 2 3 3 3 3 2 2
2 1 2 2 1 1
FG+ ) = fG+2) =5+ =,
3 33 3 33 2 23
f(%+-£2=+-—1§)=f(-§;+—g2-+-2?)=%+—12-+-13—,
3 3 3 3 2 2

and that, for i I S € {0,2},

0*°e
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_ . - . \ _ .

[n 2 i 1 n-2 i 5 n-2 Ik 1
B2 13 "8 o0t 2 1 " Tn

k=0 3 3 k=0 3 3 k=0 2 2

i
Yy
where Ik > .
Define U=1 - U V;. The set U Vh is a union of countably
n=1 n=1

infinite pairwise disjoint closed intervals Jk such that f(Jk) = Cp

(constant). We shall show that f is strictly increasing on the set U.

It is straightforward to show that, for each x € U, there is a unique

w = (mn) € & such that @ € {0,2}, n=0, and x = Z Suppose

k=0 35*1

X,y € U, x<y. Let

] where lk,Jk € {0,2}.

Since x < y, there is an n = 0 such that

i =0y for k <n and ln#Jn’ i.e. 1.=0, ] =2

1]
™

Let u Then we obtain

u< X< u+

Since not all jk’ k 2 n+l, are zero (for otherwise, y € n+1)’ there

is an m = n+l such that jm = 2, so that
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2 n
X<u+ < U+ —+ L —— <Y
30+l L R
Thus we obtain f(y) - £(x) = f( + Z + g. —ik_ f + 2 0
y e n+l P n+l| ~
3 n+l 3 3

Note that m({x : £'(x) = 0}) = m(U Vn) = 1. 0O
1

We shall give an example of a class of nonatomic non-Markov ergodic

measures.
(10.8) Example. Let S = 0,1,...,r-1 and S' = 0,1,...,r where
r=22. Let q-= (qi)oEiSr be a positive probability vector such that
-1 . . .
Eh £y, max{q;} < > . Define the doubly stochastic matrix P = (pij)i,jES'
by
P = 9 9y c-- q,
4 q0 -1
- -

Clearly P is irreducible and the uniform probability vector p on S' is

the stationary distribution for P. Let u denote the (p,P)-Markov measure

<o

defined on Q' =11 S'. Then u is a nonatomic T-ergodic Markov measure on
0

(',B(R'")). For each n > 0, define yn(m) = @, for w € '. Then

{yn}n>0 is a Markov chain with the state space S', the stationary

transition matrix P and the stationary initial distribution p.
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Let £ : S' > S be such that f(i) = i for all i € S and

f(r) = 0. Define the stochastic process {x_}

1 1
sg OF @LBE@D,W by

x (@) = £(y (@), weR'.
It follows that, for any i
(x,=i =) = nlygef (1) ee7(i )
wlxp=igs .. xp =iy ) = vy, o) 2oy 8F Ty
= uly €f 1) es1(,)) = pix =i =i )
23 yn 0 "'°,yn+k k = u(xn—lo,...,xn+k—1k

so that {x_} is stationary with state space S. However {x }

is
n n=0 n n=0

not a Markov chain on (R',B(R'),n), for we have

=11x.=0) = = 1
u(xl—l‘xo-O) = (P0p01 + PrPrl)/(PO"'Pr) = 2(q1+q0) »

wlxp=1ixg=1,x,=0) = Py (PygPyy * P1yPyy)/Py(P1o*Pyy)

( 3
S R (i [
4 *qp) 1 |91*dp) O

whose only real solution is 4, = 9p»

a contradiction.

It is plain that the mapping & : (R',B(R')) - (,8(R)) defined by

E@@), = x (@) for o €', n=z0 is a measurable surjection and that
Q ¢ @', B(R) = B(R') N Q. Define the probability v on (R,B(R)) by

v = Eu. It can be shown that v is nonatomic. We see readily that

xn(m) = @ for each w €  and n = 0, so that
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v(xo=10,..,,xn=1n) = u(x0=10,...,xn=1n),

where 1

LRRREE € S. It follows that v(x1=1 x0=0) # v(x2=1 X

0=1,x1=0)

so that v 1is not Markov. Denote also by T the restriction of the

shift T to Q. Then we obtain

(E(T0)_ = x (To) = £(y_(Tw)) = £(y_,, (@)

n+l

= x_, (@) = (T&(w))_ ,

where « € ®', n = 0, so that &T = T&. To prove that v is T-ergodic,

suppose T—lE = E, where E € B(R). It follows that

1

é—lE =g il - T-1£-1E, where &'E €B(R'), so that, by the ergodicity

of u, v(E) = u(E'E) =0or 1. o
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11. Entropy

(11.1) Definition. A partition & of (@,B(Q)) 1is a finite disjoint

k

of measurable sets Ay such that @ = U Ai .

collection & = {Al""’A
1=1

i)

For any two partitions & = {Al,...,Ak} and 7 = {Bl,...,B } of

n

(2,B(R)), the join of g and 1, denoted by &Vn, is the partition

defined hy &Vn = {Ai n Bj :1si<k, 1<j<m}. For each partition
g = {Al""’A of (®2,B(R)) and for each positive integer n, the join

n-1 s -1 ' (n-1) .
V T )¢ of the partitions £,T "&,...,T " /£ is defined by

"

j=0
n-1 . ’
vV T g = {A; N T‘lAi N1 Dy Aj seesA € EL
j=0 0 1 n-1 Yo n-1
(11.2) Definition. Let £ = {A1""’Ak} be a partition of (®,B(®)) and

let p € P(®,T). The entropy Hu(g) of the partition & relative to un
is defined by

k

Hp(é) = -iil w(A;)log w(A,)

where log u(Ai) = logeu(Ai) and 0log0 = 0. The entropy hu(T,é) of the
shift T relative to & and p is defined by
n-1

-i
Hu(.v T 7€).

h (T,g) = lim
B n i=0

B

The entropy (or the measure-theoretic entropy) hu(T) of the shift T

relative to p 1is defined by
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hM(T) = sup{hu(T,E) : & 1is a partition of (R,B(R))}

We state without proof the following result. (See Walters [1].)
(11.3) Lemma. Let m : [0,1] - [0, 1/e] Dbe the function defined by
-x log x if 0<x=s1
nx) =

0 if x = 0.

Then

(1) N is strictly concave, that is,

en(x) + (l-eIn(y) = n(ex+(1-c)y) for all x,y;c € [0,1],

and equality holds iff x=y or c¢=0 or c=1.

k k ) ‘
(i) 2 cnx.) =M ¥ c.x, for any k = 1 and any
. i . i%i
i=1 i=1
k
XyseeesXps Cpyene,Cy € [0,1] such that iil c, = L. Equality holds iff

- all the xi's corresponding to nonzero c; are equal.

T
(11.4) Corollary. For each {xi}i=l < [0,1] with

Wt

x. =1, r=2,
. i
i

N(x.) < log r.

([ ]

i



The equality holds iff x; = %- for all 1i.
Proof. By (11.3), we obtain
3
T T
1 1 SRS N |
Z ;n(xl) =7 Z ;xl = n(;) = I'Tlog r,
i=1 i=1
T
so that 2 n(xi) < log r. Again by (11.3), equality holds iff X,
i=1

for all i. m

B~

for all i, or equivalently, x; =

(11.5) Remark. Let u € P(R,T) and let & be the partition of

(%,B(R)) defined by & = {{x0=i} : i € S}. By (11.4), we obtain

joto)
~
'R
—
0]
1
| ]
s
~~
-
o
1]
H .
p—
‘—_l
Q
[e]
T
~~
te]
o
I}
fur
A
IA
—t
O
4,0}
2]

It is easily seen that Hu(T'lE) = Hu(i) for each i = 0 and

n-1 - n-1 .
H(V T ') s 2 H(T') for each n
Hi=0 i=g M

v
—

n-1
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so that H (V T_li) <n Hu(é) <nlogr for each n=1. It is well-

i=0
known (see Billingsley [1], Walters [1]) that the sequence

n-1
Vv

1
{=H (
? H i=0

T—IE)} is nonincreasing, so that
nz

n-1 .
0 =h (T,8) = lim l-H (v T—lé) < log r.
K n * Mg
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We state the following version of the Kolmogorov-Sinai theorem.

(11.6) Theorem. Let & = {{x0=i} : 1 € S}. Then

0 = hu(T) hu(T,g) < log r for each y € P(Q,T).

See Billingsley [1] and Walters [1] for the proof.

(11.7) Definition. The mapping p + hu(T) from P(R,T) dinto [0, log r]

is called the entropy map of the shift.

Entropy was introduced into communication theory by Shannon [1] in
1948. 1In 1958, Kolmogorov [1] defined the entropy of the general measure-
preserving transformation, and a basic contribution was made by Sinai [1],
in 1959. We shall compute the entropy hu(T) for Markov measures and

Bernoulli measures and investigate properties of the entropy map.

(11.8) Theorem. For each (p,P)-Markov measure | in M(Q,T),

log p..

ieS jeS

Proof. Let E = {i € S : p; > 0} and F =S - E. Clearly E # ¢. It is
easily seen that 2 P; = 1 and p.. =0 for each i €E, j €F, so
i€E 1
that 2 p.. =1 for each i € E. We also have p. = Z p.p.. for each
jeg J e P Y

j €S. Let & = {{x0=i} : 1 € S}, Then we have, for each n > 1,
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n-1

-k . . L. .
V T g = {{xo—lo,...,xn_l-ln_l} i i g € S}
k=0
n-1 -k
Hu( g T "E) = —Z{u(x0=10,...,xn_1=1n_1) o
* log w(xg=ig, ..o g=i 1) @ dg,...,i €S

= —Z{pi P; 5 o+ Py 1og(pi P; 4 --- P

0 ‘o't t'n-2'n-1 o ‘o1 'n-2'n-1 n-l
= -Z{p. pP: : --- P: log(p. P: : .- P-: )
to *oh1 *h-2*n-1 to toh1 tn-2'n-1
P. + oo P: - >0, ip,...,i__, € E}
iyl i 5,101 0 n-1
n-1
= -Z{p. p. P. (log p. + Z 1log p, )
o o1 *n-2'n-1 oo j=1 Fio1t
P. . P. . >0, ip,...,1 . € E}
1011 1n-21n-1 0 n-1
= -Z{p. p. - P. . logp. @ i,,...,1 € E}
iy ig1, 124 i, 0 n-1
n-1
- 2 Z{p. p. . P . log p. . P . >0,
j=1 o ‘o1 n-2'n-1 ity it
igseeesiy € E}
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n-1
= -3 p, logp, - Z{p. (log p. s s eee D .
1O€E 10 10 J=l 1j_l 1j-11j 1j"11j 1n—21n-1
iy poeeodpy € B

- Z P, log P; - (n-1) 2 Z p

log p..
i€S i€E j€E 1

iPij

=-2 p, logp, - (n-1) 2 2 p.p.. logop..,
ies * t ies jes + Y tJ

Since 0 = - 2 P; log p; = log r, we obtain

i€S
1 ™k
h (T,§) =lim=H (V T &) =-2 I p.p.. log p..
b e ©OH g ies jes 1 1]
By the Kolmogorov-Sinai theorem, h (T) = h (T,&) = - 2 .p.. lo ... 0O
y g ore u( ) u( ) 2 P;P;; 108 Py;
(11.9) Theorem. For each p-Bernoulli measure U, hu(T) = - Z P; log P; -
: i€S

Proof. Each p-Bernoulli measure u 1is the (p,P)-Markov measure where

pij = pj for all i,j € S. By (11.8), we obtain
h (T) =-2 % p.p.. logp,. =-2 2 p.p; log p.
H ieS jes T M L ies jes 3 ]

Z p. log p.. ©
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(11.10) Theorem. For each p € M(®,T), the following are equivalent:
i h (T) = 0.
(1) LL( )

(ii) w is a (p,P)-Markov measure such that P = (pij)i,jes is a

permutation matrix and p = (pi)ies is a stationary distribution of P.

Proof. (ii) = (i): Suppose (ii) holds. Since P is a permutation matrix,

there exists a bijection ¢ of S onto itself such that

for all 1i,j € S.

2 p.. log p.. = ... log8 ....=0
P & Py ?5@(1)3 %8 o (i)j

o

so that, by (11.9), hu(T) =

(1) = (ii): Suppose (i) holds. Since p € M(R,T), there exist a stochastic

matrix P = (pij)i,jES and a stationary distribution p = (pi)iES of P
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such that u is the (p,P)-Markov measure. Suppose P is not a permutation
matrix. Define E = {i € S : p; > 0} and F =S - E. Then E # ¢. As we
have shown in the proof of (11.8), p' = (pi)iEE is a positive probability

vector on E, the matrix P' = (p is stochastic, and p'P' = p'.

ij)i,jEE
Note that pij = (0 for each i € E, j € F.

We shall show that P' 1is a permutation matrix. Since
hu(T) = X (-2 P;; log pij)p. = 0, we obtain

i€E jes *J t

0 for each i ¢ E,

-2 p., log p..
j€S ) )

so that, for each i ¢ E,

pij = 0or 1l for all j €8S,

or equivalently, pij =0or 1 for all j € E. Since 2 pij = 1 for
j€E

each i € E, there is, for each i ¢ E, a unique ¢(i) ¢ E such that

.. =68 ... for all j € E.
Pij ¢ (1)] !
It remains to show that the mapping ¢ is a surjection of E onto itself.
If not, there is a k € E such that pik = 0 for all i ¢ E. Then we
obtain p, = Z p.p., = 0, a contradiction. Since E 1is a finite set,

k . itik

i€E

the mapping ¢ is a bijection of E onto itself so that P' 1is a

permutation matrix. Note that
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pij = 5¢(i)j for each i € E and each j € S.

We extend the permutation matrix P' = (p.lj).l i €E to a permutation
matrix Q = (qij)i,jES by letting
qij = pij for (i,j) € E x S; qij = 5ij
for (i,j) € F x S,
It follows that
Z p.q.;= % pq.= 2 p.p.. =D
ieg 'Y e 'Y qegg YY)

for each j € S, so that pQ = p. Let Vv denote the (p,Q)-Markov measure.
To complete the proof, it is enough to show that for each n 2= 0,

u(xo=1o,...,xn=1n) = v(x0=10,.7.,xn=1n)

. q. i for any states

or equivalently, P; Py 4 +++ P i
n-1"n

071
iO"’“’in’ We see at once that the above equality holds for n = 0,1.

Suppose equality holds for some n > 1. Let iO"'°’i be any states.

n+l
If u(x0=i0,...,xn=in) = 0, then u(x0=i0’°’°’xn+1=in+1) =0 =
= v(x0=i0,...,xn+1=in+l). If u(x0=io,...,xn=in) > 0, then all states
io,...,in are in E, so that P; 5 =9 ; and u(io=io,...;xn+1=in+1)=
n n+l n n+l
= V(x0=i0’°°"xn+1=in+1)‘ By induction, pu =v. o
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From (7.1) and (11.10) we obtain the following result.
(11.11) Corollary. hu(T) = 0 for each atomic ergodic Markov measure u.

(11.12) Theorem. For each p € M(®,T), the following are equivalent:

(1) hu(T) = log T

l-,..., %J—Bernoulli measure.

. - . 1
(i1) L is the (;-, -

Proof. (i) => (ii): Suppose (i) holds. Let u be the (p,P)-Markov

measure in M(®,T). By (11.8), we obtain 0 = hu(T) = Z f(i)pi = log T,

(=1

1A

where f(i) = - pij log P;j i €S. Since 0 =< f(i) = logr for each i,

J
if f(j) < log r for some j € S with pj > 0, then

hu(T) = 2 f(i)pi < log r, a contradiction. Thus we héve f(i) = log r for
i
all i, so that, by (11.4), Py =1 for all i,j with p; > 0. Also,

we have, for each 7j,

so that u is the (%»,..., %J-Bernoulli measure.

(ii) = (i): If p 1is the t%—,..., %J—Bernoulli measure, then, by (11.9),

hu(T) = -2 log == logr. m

o

1

R
==

We shall show that the entropy map is affine upper semicontinuous.

We begin with a lemma.
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k

(11.13) Lemma. Let & = {Ai}i=1 , k=2, be a partition of (8,3(R)).
Then the mapping u H-Hu(g) from P(R) into [0,~) is a bounded concave

function.

k
Proof. By (11.4), we have 0 < Hu(g) = -3 p(Ai)log h(Ai) < log k for
i=1

each p € P(R). Let u,v € P(R) and 0 <c = 1. Then, by (11.3),

HCp+(l-C)V(E) -

MR

N(eu(A) + (1-c)v(A,))

i=1

v

¢ 2 MA)) + (1-0)Z N(v(A;))
1 - 1

1)

cHu(g) + (l—c)HV(g). o

(11.14) Lemma. Let & = {{x0=i} : 1 € S}. Then the mapping u H-hu(T,E)

is an affine mapping from P(®,T) into [0, log r].

Proof. Let u,v € P(®,T) and 0 <c =< 1. By (11.13) we obtain

n-1 i n-1 i
HCU-"‘(I‘C)V(iZO T78) 2 cH X T 'E)
. n-1 .
+ (1-0)H (V. T'8)
0

for each n =1 so that

hcu+(l—c)v(T’E) > chu(T,g) + (1=c)hu(T,g)°



117.

Let a be any partition of (R,B(R)) and let A € a. Put

p = n(A) and q = v(A). Then
0 =mn(eu(A) + (1-c)v(A)) - en(u(A)) - (1-cIn(v(A))

= -(cp + (1-c)q)log(cp + (1-c)q) + cp log p + (1-c)q log q

= -cp[log(cp + (1-c)q) - log(cp)] - pcllog cp - log p]
-(1-c)q[log(ep + (1-c)q) - log(l-c)q]

-q(1l-c)[log(l-c)q - log q]

-pc log ¢ - q(l-c)log(l-c)

1A

= w(An(c) + v(AN(l-c).

By summing the above inequality over all A € a, we obtain

o
l

ch+(1-c)v(“) - CHu(G) - (1-0)H (o)

A

n(c) + n(l-c) = log 2,

for any partition a. Thus we have, for each n = 1,

n-1 i n-1 i
(V T &) - cH Vv T &)

0 <H (
i=0 o

cu+r(l-c)v

n-1 s
- (1-0)H (V T7*) < log 2,
Vo
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so -that

hcu+(1-C)V(T’g) = chu(T,E) + (l—c)hv(T’g)‘

By (11.5), the proof is complete. O

(11.15) Theorem. The entropy map hu(T) is a bounded affine function on

P(%,T).

The proof follows from (11.6) and (11.14).

(11.16) Theorem. The entropy map hu(T) is a bounded affine upper semi-

continuous function on P(R,T).

Proof. Let & = {{x0=i} : i € S}. By the Kolmogorov-Sinai theorem,
hu(T) = hu(T,a) for each u ¢ P(R,T). By (11.15), it remains to show that

hu(T,E) is upper semicontinuous on P(R,T).

Suppose by > K in P(R,T). Let n be a fixed positive integer.

n-1

We have then, V TJ& = {Z(i.,...,i_ ) : i
0 0 n-1

.1 € S} and

n-1

uk(Z(lo,...,in)) - u(Z(lo,.n.,ln)) for each Z(1O,...,1n), so that

n-1 . n-1 . . n-1 .
limH (V T8 =H (V TJE). Therefore for each fixed n, H (VT 3
ke Pk 0 H 0 0

is a continuous function of p. Since, by (1l1.5),

n-1 .
h (T,&) = 1im,¢ l-H (v T_JE), h (T,E) is an upper semicontinuous function
H o nou 0 K

of u. o )
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(11.17) Remark. We shall construct an example to show that the entropy
mapping of T 1is not continuous on P(&8,T). For each n = 1, consider
the set of fixed points of Tn, P(Tn). By (5.2), card F(Tn) = .

Let b be defined by

b, = —%; Z n am , n=1,
T wéF(T)

By (6.8), we have that Ky € P(2,T), n=1. For any cylinder set

Z(ip,-..,i ), we obtain, for n zm,

lJ'n(Z(iO"""im_l)) = —lm—= )\.(Z(io,.--,im_l)))

T
h X i 1 1 .
where is (;—,...,;J—Bernoulll measure, X € P(®,T). Thus s .
However h (T) = 0 for all n 2= 1, because |_ is concentrated on a finite

n

number of‘poinps, while hX(T) = log r, by (11.12). Thus hu (T) # hX(T)'
n
(11.18) Theorem. The entropy map p > hu(T) is continuous on M(&,T).

Proof. Suppose by > u in M(R,T), where W, are the (pn,Pn)~Markov
measures and u is the (p,P)-Markov measure. By (4.23), we have

lim p_(i) = p. for each i € S, and 1lim p_(i,j) = p,. for each j €8,
n i n ij
n>e0 N>

provided p; > 0.

If p, =0, then since 0 < -pn(i)pn(i,j)log p (1,3) = pn(i)/e

for each j, we have lim pn(i)pn(i,j)log pn(i,j) = 0 for each j.

N>
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It follows from (11.8) that

limh (T) = -1im 2 2 p_(i)p_(i,j)log p_(i,])
noe  Hp n>e 1€S jES n n n

-Zxp

log p.. =h (T). o
i ij i

iPij
(11.19) Remark. It follows from the Choquet representation theorem

(3.18) together with (11.16) that, for each up € P(R,T), there is a unique
probability measure < defined on P(R,T) such that <(E(?,T)) =1 and

h (T) = [ h (T)dt(v).
K ER,T) ¥
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