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ABSTRACT 

Residuals in normal regression theory are used to test for 

normality of the unknown error term. This test examines the 

normal probability plot of the residuals, or suitable 

modifications of these residuals, for departure from linearity. 

Noticeable nonlinearity of this plot indicates that the 

residuals, and hence the unknown errors which they estimate, are 

not normal. Such a test is subjective at best. However, these 

plots are now a standard feature of most statistical packages, 

such as Minitab. 

A large sample result of Pierce and Kopecky, combined with 

tables of Stephens, provides an easily applied goodness-of-fit 

test for normality of the error distribution in ordinary least 

squares regression. 

This study uses simulation to examine the validity of 

applying the (large sample) test to samples of small and 

moderate size. Extensive Monte Carlo runs indicate that sample 

size, N=20, is large enough to justify the use-of the test. 

Pierce shows that the same test, using the residuals after 

fitting an autoregressive time series model, may be used to test 

for normality of the error term, in such a model. It is 

demonstrated empirically that sample .size ,N=20, again is 

adequate for the application of the test. 

iii 



Robustness of the Pierce-Kopecky goodness-of-fit test to 

mis-specification of the degree sf the model in the linear 

regression case, and to the order of the model in the 

autoregressive case, is explored. 

When a linear model is fitted to quadratic data with normal 

errors, the EDF tests reject normality, if the sample size 

exceeds n = 20. Similarly, when an AR(I) model is fitted to 

AR(2) data with normal errors, normality is rejected, even for n 

= 20. The EDF tests are robust to overfitting of the model in 

both the linear regression and autoregressive cases. 

If the wrong model is fitted to data and the errors are 

non-normal, the EDF tests will reject normality for any sample 

size. 
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CHAPTER 1 

1.1 Introduction 

Testing for normality is an old and very important area of 

statistical research, both practically and theoretically. In 

regression analysis, the statistical procedures, e g . ,  confidence 

intervals and significance tests for the regression estimates, 

are based on the assumed error distribution. The normal 

distribution is often the hypothesized error distribution, 

because of the desirable properties of the regression estimates, 

when the error distribution is indeed normal. 

1.2 The Method of Least Squares . - -- 

Consider the first order linear regression model in the form: 

yi = Po + /3, xi + oe i 

where, 

1. yi is the i'th observation; 

2. 0, , 0, are unknown parameters; 

3 .  xi is a known constant; 

4.  ei is an unknown random error term with mean ~ [ e ~ ]  = 0, and 

variance var(ei) = 1 ;  e and e are uncorrelated, ie., i j 

Cov(ei,e.) = 0; for all i, j, i # j ,  i = 1,. .., n. 
3 

The Method of Least Squares gives estimates zO, 6, of Po , 0, , 
11 

which minimize the sum of squares: Q = Z [yi-( Po + @I xi)]' . 
i=l 



1.3 Properties of Estimators 

We mention some properties of estimators which are desirable 

and are needed later. Let 8 be an unknown parameter, and let gn, 
gn be estimators of 8 based on samples of size, n. 

1. The estimator, Sn is u n b i a s e d  if: 

E[~,I = 8 ... 0.2.1 
h 

2. The estimator, 8, is a c o n s i s t e n t  e s t i m a t o r  of 8 if: 

P( 1 gn-8 l 2 r )  ---t 0 as n ,  for any s > 0. 
h 

3. The estimator, 8, is a s u f f i c i e n t  e s t i m a t o r  for 8, if the 

conditional joint probability density function, pdf, of the 
A 

sample observations, given 8,, does not depend on the 

parameter, 8. 
A 

4. The estimator, 8, is a m i n i m u m  v g r i a n c e  e s t i m a t o r  of 8, if 

for any other estimator, 8,: var(in) S var(?Jn). I 

1.4 Properties -- of Least Squares Estimators 

The G a u s s - M a r  k o v  T h e o r e m  states: under the conditions imposed on 
the model (0.1.1)~ the least squares estimators are best linear 

unbiased estimators, BLUES, i e . ,  they have m i n i m u m  v a r i a n c e  

among all linear2 

Inference procedures for the least squares estimates 

requires an assumption about the distribution of the error terms 

'see, e g . ,  Neter, Wasserman, and Kutner (1985), Chapters 1 ,  and 
2. 

the least squares estimators are linear combinations of the 
observations, yi, i= 1 ,  ..., n; o p . c i t .  



ei I i = 1,..n. If the r i  are assumed to be ~(0.1) random 

variables, then, the least estimates, in addition to being 

BLUES, have other useful properties. First, they are maximum 

likelihood estimators; and 

1 .  They are consistent; 

2. They are sufficient; 

3. They are minimum variance unbiased, i e . ,  they have minimum 

variance among all unbiased estimators, whether linear or 

not. 

Some inference procedures e g . ,  t-tests for the regression 

estimates are not sensitive to'slight departures from normality 

of the error distribution. However, serious departures from 

normality will affect significance tests and confidence 

intervals for the regression estimates, especially when the 

sample size is small. 

The residuals from regression are used check the assumptions 

of the model, mainly by means of the residual plots. Formal 

tests using the residuals face the problem that the residuals 

are correlated and are not even identically distributed. Most 

formal tests of significance require independent a'nd identically 

distributed observations. If p parameters are estimated by a 

least squares regression, the residuals may be transformed to 

give n-p independent and identically distributed , i.i.d, random 
. . 

variables. These are linear combinations of the raw residuals. 

These i.i.d b e s t  1 i n e a r  u n b i a s e d  s c a l e d ,  BLUS, residuals3 may be 



used in any of the standard tests for normality. The practical 

tester would prefer to be able to use the residuals themselves 

rather than complicated linear combinations of them. 

Pierce and Kopecky (1979) show that for large samples, the 

residuals may be used in formal EDF tests as if they were i.i.d 

observations. 

Following Pierce and Kopecky(l979), we consider the linear 

regression model in the form: 

(1.1) 

where i=l,.. ..n; the yi are independent observations; the xi are 
pxl vectors of known constants; e is a pxl vector of unknown 
parameters; o (>O) is an unknown scale factor; and ei is an 

unknown error term of mean zero and variance one. 

We wish to test whether the ei in ( 1 . 1 )  are independent 

random variables from some specified distribution such as the 

standard normal. Probability plots using the residuals, after 

fitting the regression, give rough' assessments of the 

goodness-of-fit of the hypothesized error distribution. However, 

formal tests of significance are sometimes needed to supplement 

these pictures. This has become increasingly important in 

lifetime testing and survival analysis; see, for example, 



1.5 Specification pf the Model 

The regression model given by equation ( 1 . 1 )  is specified by 

the following : 

1. The (fixed) dimension, p, of the parameter vector , & = (Po, 

Pq1*.., OP- 1 )'.The main result of Pierce and Kopecky (1979) 

requires the model ( 1 . 1 )  to have a constant term, Po. Hence 

the model equation can be written in such a way that the 

first element of each vector - xi equals one. 
2. The null hypothesis distribution, F(.), of the error term, 

E i ' 

In this study we investigate cases with the dimension of 1 

equal to 2, 3, and 4. For all cases the null hypothesis 

distribution is the standard normal distribution. 
D 

1.6 The standardized residuals 

From equation ( 1 . 1 ) ~  the true errors,ri, are given by the 

equation: 

Let , 6 be the maximum likelihood estimators of &, o 

respectively. Define the standardized residuals by the equation, 



The standardized residuals have the useful property of being 

independent of the parameter vector, - 0, and the scale factor, o .  

 his fact which is used to simplify the data generated for our 

simulation study, will be proved in chapter 2. 

1.7 The Empirical (Sample) Distribution  unction(^^^) 

Let x,, ..., xn be a sample from a population with the 

cumulative distribution function(cdf) , F(x). The 

empirical(samp1e)distribution function, Fn(x), is defined by 

Fn(x) = the proportion of sample values not exceeding x, i.e., 

Fn(x) = - 1 card{i5n:xi5x). A form of Fn(x) suitable for - 
11 n n 

computation is, Fn(x) = - 1.2 H(x-xi) = 1.2 H(X-X(~))~ 
.1=1 nl=i 

where the Heaviside function, H(.), is given by 

and x ( ~ )  SX(*) 5 ... 5 x (n) are the ordered sample values. 
We now state some well-known facts about F,(x).~ 

1.  a. Fn(x) = 0, if x < x 
(1)' 

b. Fn(x) = 1, if x 2 x (n) 
c. F,(x) = i/n, if x ( ~ )  S x < x  (i+1 ISi<n. 

2. nFn(x)- ~in(n,~(x)), i.e., nFn(x) is a binomial random 

variable with parameters n and ~(x). 

- 3. The mean and variance of Fn(x) are : 

------------------ 
see, e g . ,  Darling (19571, or, Pratt and Gibbons (1981)~ 

Chapter 7, pp 318-344. 



F,(x) is asymptotically normal with mean and variance given 

Strong law of large numbers : 

Fn(x)+F(x) with probability 1,for each x. 

Glivenko-Cantelli lemma : 

sup IFn(x) - F(x) I+ 0 with probability 1. 
--<x<- 

Fn(x) converges uniformly to F(x) in probability, i.e., 

PEIF,(x) - F(x)l< e for all XI--tl as n+-, for all s>O.  

s(1-t), if slt 
p(s,t) = min(s,t)-st = E 

t(1-s), if s>t, 

Multivariate Central Limit  heo or em : 

For any fixed t,, t,,..., tk, the random variables 

dn[Fn(ti) - F(ti)], i = I,. ..,k , 

have an asymptotic (k fixed, n+=) k-dimensional normal 

distribution, with mean vector, - 0, and covariance matrix , 

with p given in (8). 

1.8 The EDF Statistics -- 

The EDF statistics are so called because they are derived 

from the empirical (sample) distribution function(~~F), Fn(x), 

defined in (1.4). They are goodness-of-fit statistics which 



measure the discrepancy between Fn(x) and the assumed cumulative 

distribution function(cdf), ~(x),from which the sample, xi, i = 

I ,... ,n, comes. 
This study investigates the distributions of 4 EDF 

statistics derived from the standardized residuals defined in 

(1.3). They are 

1.  The Kolmogorov 2-sided statistic, Dn: 

2. The Cramkr-von ~ i s e s  statistic, W: : 
03 

3 .  The Watson statistic, Ui : 
03 03 

Ui = n $[Fn(x) 
-03 

- F(x) - $[Fn(x) - F(X) ] ~ F ( X ) ~ ~ ~ F ( X )  . 
-03 

4. The Anderson-Darling statistic, A: : 
01 

The definitions are not suitable for computatisnai work with 

these statistics. Simple computational forms for them are given 

in Stephens(l974). These forms will be used in all computer 

routines which generate the EDF statistics. 

1.9 The Single Sample Case - 

Suppose we wish to test whether the independent observations 

come from a normal population with both mean,', and variance, 

. u2, unknown. We writexi = r +  ow i where the wi, i = I,...,n, 

are independent standard normal random variables. 



The maximum likelihood estimators of p and o2 are 

- ,. n - ; = x and 02= - 1.2 (xi - x ) ~ .  By the Invariance Principle of 
nl=I .+ 

write Bi= (xi-;)/ 8 
- 

= (xi-x)/ B 

Let 4(i), i=l, ..., n, be the order statistics of the wi, and let 

'i = 9(P(i)) where 9 is the standard normal cumulative 

distribution function, cdf. Then 0s zis 1, and 2,s 2,s ... 52,. 
If Fn(t) is the EDF of the zi, the empirical process is : 

y n W =  dn[Fn(t)-tl 

~tephens(l976) shows that in the case of a single sample, where 

only a mean and scale are estimated, 

D yn(t) + y(t) 

where y(t) is a Gaussian process, with y(O)=O, y(l)=0 (the 

tied-down brownian bridge), with mean equal zero, and a 

covariance function, p(s,t), which depends on 9, the standard 

normal cdf, but is independent of the unknown parameters, p and 

0. 6 

This is case 3 of ~tephens(1974~1976,et seq. ) . 7  

In chapter four, the EDF statistics are expressed as functionals 

of the empirical process, yn. Arguments based on ~urbin(l973a) 

------------------ 
see Mood, Graybill, and ~oes(1974) 

D means converges i n  distribution to, or, converges 
weakly to. 

7Stephens uses s, instead of 8 above; where s2 is the usual 
unbiased estimator of u 2  



that for an EDF statistic, of the form, G(yn(t)); 

G(yn(t)) D> G(y(t)), 

if G(.) is a continuous functional. This establishes the 

existence of the asymptotic distributions of the EDF statistics, 

in the single sample case. 

1.10 Scope of this Work 

consider the linear regression model given by equation 1.1. For 

any (fixed) dimension of e ,  the large sample distributions of 

the EDF statistics derived from the standardized residuals gi, 

i=l, ..., n, are the same as the large sample distributions of 

these statistics for the single sample case, Pierce and 

~opecky( 1979). 

~ierce(1985) showed that .for a stationary autoregressive time 

series model of any fixed oider, the EDF statistics from the 

standardized regression residuals have large sample 

distributions which , as in the linear regression case, are 

identical to the large sample distributions for the 

corresponding statistics in the single sample case. 

The Pierce-Kopecky Theorem applies to tests for any error 

distribution. the specific case of testing for normality, the 

case 3 tables of Stephens(1974,1976), give the upper tail 

percentage points for the asymptotic distributions of the EDF 

statistics for the single sample. Hence the case 3 tables may be 

used to provide a formal test of the residuals for normality. 



This work uses simulation to investigate four areas 

determined by the specification of the problem, for both the 

linear regression and the autoregressive cases. We state the 

areas examined for the linear regression case: 

I. The null hypothesis case: 
The correct model is fitted to the appropriate data, with 

normal errors, eg ,in the simple linear case the 

'canonical', or, simplest, form of the data is generated and 

the model, yi = PO + 0 1  Xi + uei is fitted. We discuss the 

generated data in section 2.5 of Chapter 2. 

2. The alternative hypothesis case: 

The correct model is fitted but with non-normal errors. We 

use two alternative error distributions. They are: 

a .  The Laplace.(double-exponential) distribution with scale 

factor 2 ;and, 

b. The U!-.5,.5)distriSution,. i.e., the uniform 

distribution over the interval (-.5,.5). 

3. Mis-specified models with normal errors, eg, underfit a 

linear model to quadratic data; or, overfit a quadratic 

model to linear data. 

4. Mis-specified models with non-normal errors; eg, underfit a 

linear model to quadratic data with non-normal errors. 

Table 5 gives a list of all the cases examined when, either the 

error distribution is non-normal or the degree of the model is 

wrong. For the autoregressive case, we may substitute order for 

degree, and underfit an AR(1) model to AR(2) data, e t c .  



In chapter 2 we discuss the general linear model, and a 

special case, the simple trigonometrical model. Chapter 3 states 

the basic facts about the autoregressive time series model. In 

this work, we consider only the models of orders 1 ,  and 2 : 

AR(1)and AR(2). Chapter 4 expresses the EDF statistics as 

functionals of the Empirical Process, and discusses the 

convergence of these Statistics for the regression case. Chapter 

5 discusses the simulation design used for this study. Chapter 6 

concludes with an assessment of our results. 

The goal of the first area we study is to assess the 

validity of applying the Pierce-Kopecky test, valid for large 

samples, to samples of small and moderate size. A sample size, 

N=20, is found to be adequate to justify use of the test. Tables 

7.1 - 7.4 validate this claim. 
1 

Hew robust is the test to mis-specification of the degree, 

in the ordinary regression case, or of the order in the 

autoregressive case? This is one objective of the second area of 

study. Results in this area are in tables.l.la, 2.1aI 3.1aI and, 

How good is the test at detecting non-normality whether the 

model is correct or not? Results in this area are in tables l.1b 

- l.le, 2.lb - 2.le, 3.lb - 3.le, and 4.lb - 4.le. 

Finally we apply the EDF test to the standardized residuals 

from live data. The results of these applications of the test 

are collected in Tables 8.1 - 8.3. 



CHAPTER 2 

THE GENERAL(N~RMAL)LINEAR MODEL 

2.1 Introduction 

We rewrite the linear regression model equation (1.1) in the 

matrix form : 

Y = x g + u e  - - 
where 

Y is an nxl observable random vector; - 

XI the design matrix, is an nxp matrix of known constants, 

assumed to be of full rank, p(<n); 

is a pxl vector of unknown parameters; 

e is an unknown random vector, with 2 - ~(g.1,) , i.e., p - 

has a multivariate normal distribution with mean vector, 0 ,  

and covariance matrix equal to the nxn identity matrix; 

o(>O) is an unknown scale factor. 

Conditions (1)-(4) imply that - Y - N ( x ~ , u ~ I ~ ) ,  i.e., - Y has a 
multivariate normal distribution with mean vector, Xe, and 

covariance matrix, 0 ~ 1 ~ .  

2.2 - The Likelihood Function -- and the ~eqression Estimates 

We need the maximum likelihood estimators - $ and 6 in order 

to compute the standardized residuals. 



The likelihood function for the random vector, - Y, is 

- X'X /u2 
L 

X is an nxp matrix of full rank p, so XIX is positive definite; 

hence - X'X /u2 is negative definite. 
a 1 n ~  = o gives X'Y = X ' X ~  From equation (2.2.3) - ae - 

... (2.2.5) 
where 1 is the maximum likelihood estimator of g,i. e . ,  the value 

of & which makes L(Y;Q,u~) - a maximum. 

m qua ti on (2.2.5) gives 1 = ( X'X 1-l~' - Y ... (2.2.6) 

after substituting for & in equation (2.2.2) 

A 

02' 1 y1 [I - x ( xlx )-'x' ]p = = - 1 - Y'[I - VIY ... (2.2.9) - - 
n n 

where, V = X ( X'X )-'XI . V is called the 'hat matrix'. We note 
that V is symmetric and idempotent:i.e., 

. 1 .  V' = V symmetry. 

2. v2 = W = V idempotence. 
A 

02is the maximum likelihood estimator, mle, for u2. By the 



A 

Invariance Principle for m l e ' s ,  6 = I/ u 2 :  

Standardized Residual Vector 

The residual vector after fitting the regression is given by 
A 

e = I-XB - = [I - x ( x l X  r l x '  I Y  = (I - V)Y ... (2.3.1) 
Since V is symmetric and idempotent, so is P = I-V. It is well 

known that V is the projection operator from R" down to the 

space spanned by the column vectors of X. Similarly, P = I-V is 

the projection operator from R" down to the space orthogonal to 

the column vectors. 

vx = X ( X'X )-'x' X = X ... (2.3.2) 
PX = (I-V)X = X-VX = X-X = - 0 ... (2.3.3) 

where - 0 is the zero matrix. 

Equation(2.2.9) gives 6 =  - 1 /Y-x& ... (2.3.4) 
The standardized residual vector is in 

; = e / 6 = I/~(P-x~)/IY-x~( = I/~PY/IPYI - - - ... (2.3.5) 
Now PY - = P(XB + o ) = PXB + UP - E = UP 5 , since PX = - 0. 

Hence, - ~ = I / I I P ~ /  ( ~ e  - ( ... (2.3.6) 
Equation (2.3.6) implies the following facts: 

#. 

1 .  I L )  = in. Hence - 2 lies on a sphere of radius i n .  This sphere 

lies in the space of dimension n-p, orthogonal to the column 

vectors of X. 

2. - Z depends only on P = I - X ( X'X ) -'x' , and the unknown 

error vector, 2 ; i.e., 2 depends only on X and q . The 



r 

standardized residual vector is independent of the unknown 

parameters, fi and o .  Then, any statistics computed from - 
will depend only on X and 2 . This is a goad reason for 

using the standardized residuals rather than the raw 

residuals. In 2.4 we use this fact to simplify the data we 

generate for fitting the appropriate models in linear 

regression. 

We state some facts about the connection between the hat matrix, 

V and the ordinary residual vector. We do not use these in the 

sequel, but they are relevant to the definition of the 

'leverage', used in the study of the residuals in the 

autoregressive cases. 

Cov(e) = Cov(P - e ) = ~Cov( e )PI = PInPf = PP' = PP = P, - 
since P is symmetric and idempotent. 

Cov(e) = In - V 

Var(ei) = ? - vii,where vii is the i ' t h  diagonal element of 

V. For Ililn, 0 Sv i i 5 1, ki = d (1-v ) is the i'th i i 
leverage. This quantity is used to modify the standardized 

residuals in the autoregressive cases. 

2,4 Forms of the Model --- 

We now discuss the forms of the model which we shall fit to 

data. The generation of the data will be discussed in section 

- 2.5.. 

1. The Simple Linear Model: 

yi = B o  + P I  xi +ue for 1 , n  For this model the i 



mle's $,, $, , and 6 are given by the equations: 

2. The Quadratic Model: i q  '-- 

3. The Cubic Model: 

The mle's, 1 and a, for forms 2, and 3 are obtained by using 
the IMSL subroutine LEQ2S. 

4. The Simple Trigonometric Model: 

This model provides an approximate description of some 

phenomena of a periodic type. T in equation (2.4.7) is a 

known positive integer, the fundamental period of the 

system. We make certain restrictions on the xi,'T, and n, in 

order to simplify the computations for the mle's of the 

parameters, - 0 and o. These are : 

a. The observed xi are integers, 1,2,...,n. In many 

applications, xi is the i'th minute, hour, day, month, 

or year. The observations, yi may be hourly temperature, 

daily commodity prices, or annual rainfall; 

b. The fundamental period, T I  is a known positive integer, 



and T 2 3. Note that if xi =integer and T = 1 ,  or 2, the 

sine term in the above equation is absent. The 

requirement that T 2 3 keeps the sine term in the 

equation. 

c. The number of observations, n, is a known multiple of TI 

the fundamental period: n = CT where C is a positive 

integer. Hence the observations are taken over C 

fundamental periods, and the xi assume the integer 

values 2 . T I  T+1, ..., 2T, 2T+1, ..., CT. For this 

model specification we can derive simple formulae for 

the mle's 1 and 6: 

2.5 Generated Data 

For the null hypothesis distributions of the statistics derived 

from the residuals, we need to generate data which conform to 

the form of the model being studied. Since we showed that the 

statistics do not depend on the parameters, we need only 

consider generated data given by the canonicalform of the data. 

Thus, for the simple linear model: yi = 0, + 0, xi+ ori, we 

------------------ 
'see Graybill(1976) 



generate data with 0, =Or p l  = I ,  and @=I. For the quadratic 

case, y i  = p, + p, x i +  p 2  X I  cue we generate data with 0, = O r  i r  

p 1  = 1 = P z  , and a= 1 .  We treat the c u b i c  case i n  a similar 

manner, adding 0, = 1. For the simple trigonometric model, we 

generate data with 0, =0, and 0, = 1 = 0, = p 2  = o. 

2.6 - The Design Matrix 

In 2.2 we showed that the standardized residuals depend only on 

X and 2 . Hence the EDF statistics derived from these residuals 

may depend on X and - e . By keeping - E fixed (by using the same 

seed to start the pseudo-random number generation) and varying X 

within any assumed form of the model, we may examine the effect 

of X on the limiting distributions of the statistics, or on the 

rates of convergence to the limits. We state the different 

designs used in this study. For the simple linear model, the 

designs used were: 

For the quadratic form of the model, 2 cases were examined : 



Only one case was examined for the cubic model : 

The simplifying restrictions imposed on the simple 

trigonometric form of the model limited the number of cases 

studied to one: 

1. case(tr):xi = i , i = l,...,n 

For the quadratic and cubic forms of the model, the choice 

of X, the design matrix, was limited by the computational 

difficulties involved in the inversion of the matrix, X'X . 



CHAPTER 3 

THE STATIONARY AUTOREGRESSIVE PROCESS 

The general linear autoregressive process is of the form: 

~i = '+$I (Y ~ - ~ - P ) + $ ~  (Y+~-P)+ . . .+~J~(Y~-~-P)+OE i 

and is called an autoregressive process of order p, or, an AR(~) 

process.In this study we consider only the AR(1) and AR(2) 

processes. The equations governing these processes are 

where ei, i =1,2,...,n, are independent standard normal errors. 

3.1 Stationarity 

A stochastic process is said to be s t r i c t l y  s t a t i o n a r y  if its 

properties are unaffected by a change of time origin, i . e . ,  if 

the joint probability distribution of r observations, of the 

process made at any set of times il, ..., ir, is the same as that 

associated with the r observations, made at times il+k, ..., ir+k. 
For the AR(I) process, stationarity requires 1. 

For the AR(2) process, the condition of being stationary 

requires the following inequalities be satisfied:' 

lP!l < 1 

lP2l < 1 

P 1 < ( ~ 2  + 1 )  / 2 

------------------ 
'see Box and Jenkins(l976) 



3.2 - The Standardized Residuals 

For the AR(I) process, following ~ierce(1985), we regress yi on 

yi-l. For the AR(~) process we regress yi on yiml and-yim2. 

We write the equation for the AR(I) model in the form : 

yi = X t p y i - l + ~ ~  i ' where X = ~(1-p). After fitting the 

regression, we get the standardized residuals in the form: 

A 
A 

e i = y i - y l )  6. For the AR(2) process, we write the model 

equation in the form: yi= X + plyi-l+p2yi-2 + UE i where h = 

( ~ - ~ ~ - p .  To find the maximum likelihood estimates of the 

coefficients we regress yi on yiml and yi-2. The standardized 

residual for the ~ ~ ( 2 1  process is 

The argument deriving the large sample distributions of the 

EDF statistics of the standardized residuals from autoregression 

is in terms of the empirical process: yn(t) = I/n[Fn(t)-tl. AS 

in the case of linear regression, the limiting process, y(t), is 

a Gaussian process, with mean zero. The covariance function, 

p(s,t), depends on 9, the standard normal cdf, but is 

independent of the parameters, XI p,, p,. Moreover, the limiting 

process, y(t), is the same as in the single sample case. 



CHAPTER 4 

THE EDF STATISTICS AND THE EMPIRICAL PROCESS 

4.1 Computational ---- Form of the EDF Statistics 

Assume that the independent observations xi, i=l, ..., n, come 
from a population with a cdf, ~(x),where F(.) may contain 

estimated parameters. Let zi = F(x(~)). Then O1z.Sl1 and 
1 

2,s ... 12,. The ~olmogorov-Smirnov Statistics are: 

D;1 - - max (i/n- zi) 
1 1 i,Sn 

Dn 
- - max (2:- (i-1)/n) 

1 Siln 
The Kolmogorov statistic is : 

The Cram6r-von ~ i s e s  statistic is: . 

n 
W: = Z Izi-(2i-1)/2n]2+l/(12n). 

i=1 
The Watson statistic is: 

- n 
U: = W: - n(z-.5)' , where , z = 1.Z zi. - n1=1 

The ~nderson-~arling statistic is: 

n 
A: = - 1 [ . Z  (2i-l){lnzi+ln(l-zn+l-i - 1=1 

))I-n. 
n 

The Kolmogorov statistic is usually used in the form d n ~ ~  rather 

than as Dn above. 

Stephens(l974) modifies the EDF statistics so that a single 

table of asymptotic percentage points may be used in performing 



EDF goodness of fit tests for any finite sample size, n. The 

modifications for the 4 EDF statistics given above, appropriate 

in the single sample case are: 

1. d n ~ ~ ( l  - O.l//n +0.85/n) 

2. W: ( 1  + 0.5/n) 

3. U: ( 1  + 0.5/n) 

4. A: ( 1  +0.75/n +2.25/n2)' 

4.2 The Empirical Process -- for the Standardized Residuals 

The standardized residuals are given by equation (1.3) as 

h 

e i = (yi- xj i)/ 2. Assume that we have ordered the Zi. Let zi = 

+(ai). The zi are ordered in ascending order, and satisfy 

Olzill, for Ililn. As in section 1.6 we can form the EDF of the 

z i I Fn(t), and then get the ekpi.rical process:' 

yn(t) = in [Fn(t)-tl 

Pierce and Kopecky show that for the linear regression case 

regularity conditions are satisfied so that the empirical 

process converges weakly to a Gaussian process with mean zero 

and covariance function p(s,t) which depends only on + and not 
on the parameters estimated. Moreover, they show that the 

limiting Gaussian process is identical to that obtained in the 

case 3 example. 

We now express the EDF statistics in terms of the empirical 

process. 
----------me------ 

The modification for A: is different from that given in 
~tephens(l974)~ see Tablel.3, p732.The new modification is from 
Stephens (personal communication). 



w;, U; , A; are the quadratic EDF statistics. The EDF 

statistics are functionals of the empirical process. Pierce and 

~opecky(l979)~ following Durbin(l973a), argue that continuity 

conditions are satisfied, so that the EDF statistics will 

converge weakly to the same functionals of the Gaussian limiting 

process, y(t), for the empirical process; e g . ,  

Since y(t) is the same for the regression case as for the single 

sample case, the large sample distributions of the EDF 

statistics, under the null hypothesis, i . e .  , the model is the 

right one and the error distribution is normal, for the 

regression and single sample cases will be identical. 



CHAPTER 5 

THE SIMULATION DESIGN 

5.1 The Null Hypothesis Case -- 

For each case mentioned in chapter 2.5 we generated 10,000 

samples of size, n =5, 8,10,12,15,20,30,50, 60, and 100, except 

for case(cu), where the lowest sample size is n = 8. The IMSL 

reference library routine GGNML was used to generate n 

pseudo-random standard normal errors. The normal errors were 

used to construct data appropriate to the model being fitted. 

For cases (q) and (cu), the IMSL subroutine LEQ2S was used to 

invert the matrix X'X in order to solve the normal equations. 

For all the autoregression cases, when we needed to fit a 

model for a sample of size n, we generated a sample of size 

n+10, and used the last n pairs (yi,yi-l) for the AR(I) model, 

or, the last n triples (yi,yi-,,yi-2) for the AR(2) model. 

After fitting the model, the standardized residuals were 

computed. The IMSL routine MDNOR was used to compute the normal 

cdf of the standardized residuals. 

For the autoregression cases we used the unbiased equivalent 

in computing the standardized residuals I,..., n. 

Further, ii/ki, the studentized residual, was used, rather than 

i in computing the EDF statistics.' This study uses the values i ' 

------------------ 
'~ecall 2.3, k. is the i'th leverage for the design matrix, X. 
see pierce( l98$) 



of the EDF statistics computed using the computational forms, 

rather than the e m p i r i c a l  p r o c e s s  , yn(t). The EDF statistics 

were computed using the case 3 modifications of Stephens(l974) 

given in chapter 4. The distribution of the 10,000 values of 

each of the 4 statistics was obtained, and the upper tail 

15%,10%,5%,2.5%, and 1 % were recorded, in Tables 

1.1,2.1,3.1,4.1. The upper tails were recorded since the EDF 

tests are usually upper tail tests. Tables for the single sample 

case were also recorded for comparison.The tables show the same 

rate of convergence to the asymptotic percentage points for the 

single sample case and the null hypothesis case in both the 

ordinary regression and the autoregression cases. 

5,2 - The Simulation Design : non null case ---- 

For the alternative case 1,000 samples were used. Generally the 

sample sizes studied were n = 20,30,50. table 1.a gives a 

mnemonic key for the cases looked at. The IMSL routine GGUBS was 

used to generate uniform pseudo-random variates. Standard 

transformations were then applied to produce the u(-.5,.5) and 

~aplace(0,2) variates used in the power study. In general 

underfitting a linear model to quadratic data causes confounding 

of the effects of model mis-specification and non-normality. A 

similar situation occurs when an AR(1) model is fitted to AR(2) 

data. A separate power study was done for the cases when the 

correct model is fitted, and a mis-specified model is fitted, to 

data with non-normal errors. The alternative error distributions 



used are the ~ a p l a c e ( 0 ~ 2 )  and the u(-.5,.5) distributions. In 

the case when the model was correct, the powers of the EDF tests 

were compared with those for the corresponding tests in the 

single sample case in ~tephens(l974) Tables 5, and, 6,pp734,735. 



CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

Tables 7.1 to 7.4 give a comparison of the estimated sizes of 

the tests compared with the nominal levels, for sample sizes 10 

and 20. For n = 10, the estimated sizes of the 4 EDF statistics 

corresponding to the 10% nominal level, lie between 10.0% and 

13.0%. For n = 20, the estimated sizes corresponding to the 10% 

level, lie between 10.0% and 11.4%. The estimated sizes 

corresponding to the 5% nominal level lie, for n = 10, between 

4.2% and 6.7%; for n = 20, the corresponding range of the 

estimated size is 4.6% to 5.8%. Since, the estimated size is 

always close to the nominal level we conclude that sample size 

20 is adequate to justify the use of the test. 

The greatest difference between the estimaked size and the 

nominal level occurs for A',. This is seen in Tables 7.1 to 7.4. 

Tables 1.1 - 4.1 show the Monte Carlo upper tail percentage 

points for the null hypothesis cases for each of the 4 EDF 

statistics. In each case the correct model is fitted to the data 

with N(O,1) errors. ~ase(ls) is Stephens case 3: the single 

sample case where only a mean and a scale are fitted. The last 

row of percentage points are the case 3 asymptotic percentage 

points. ' 

Examination of Tables 1.1 to 4.1 for the different designs, 

X, shows that from n = 10 the tables for the cases are very 
------------------ 
'see Stephens (1974) Table 1.3 p732. 



similar to the case 3 table. This suggests that the rate of 

convergence to the case 3 asymptotic points, for the null 

hypothesis distributions of the EDF statistics is independent of 

the design. 

Throughout this study we used the Stephens case 3 

modifications for the EDF statistics. These modifications are 

appropriate for the single sample case.  heir purpose is to 

enable the tester to use one table of asymptotic percentage 

points when performing a test for any sample size, n. For the 

null hypothesis case where the correct model is fitted to the 

appropriate data with nornmal errors, the similarity of the 

tables to the tables for the single sample case suggests that 

the case 3 modifications are appropriate for the linear 

regression case. In that case to carry out a test •’.or normality 

of the error distribution, for any finite sample size, n, the 

tester would treat the residuals as though they formed a single 

independent sample of size = n, and perform the case 3 test as 

in 1.6. 

The same tentative suggestion may be made for ,the 

autoregression case. 

If a linear model is fitted to quadratic data 

(underfitting), the effects of non-normality are confounded with 

those of model mis-specification, for sample size N > 20. Large 

samples will nearly always reject normality. This is seen in 

Tables l.l.a to 4.l.a, for cases 



These tables show a maximum difference between the estimated 

size and the nominal level of 2.1 percentage points at the 10% 

nominal level, and 1.4% at the 5% level in any of the 

cases:(uflql) and (uflq2). 

1. overfitting a quadratic model to linear data. 

2. overfitting a cubic model to quadratic data. 

3. overfitting an ~~(2)model to AR(1) data. 

For the autoregressive case, underfitting an AR(I) model to 

AR(~) data with normal errors, leads to rejection of normality 

by the EDF statistics. This is seen in Tables l.la to 4.la, 

case(ufarl2). In both the linear and autoregressive cases 

underfitting can seriously undermine the test for normality. If 

in the linear regression case, the test rejects normality after 

ritting a linear model, the pattern of residuals should be 

checked. A set of residuals of one sign followed by a set of the" 

other sign should alert thetester to the fact that he/she may 

have fitted a linear model to quadratic data. In the 

autoregressive case, case(ofar21) shows that, for the 4 EDF 

statistics, the maximum difference between the estimated size 

and the nominal level is 2.3% at the 10% level, and 1.6% at the 

5% level. Overfitting an AR(~) model to suspected AR(I) data is 

recommended. 

The u(-.5,.5) and Laplace distributions are natural 

symmetric alternatives to the normal distribution. The U(-.5,.5) 

is short-tailed, while the Laplace is long-tailed. We compared 

the power of the EDF test for normality against either 



F- 
, 

alternative with -Tables 5, 6 of Stephens(l974), where the power 

study is done for the EDF tests for case 3. This appears in 

Table 6. The powers are smaller in the regression case. This 

suggests that fitting a line to the data produces a better fit 

than if only a mean is fitted. The errors are then smaller and 

the test is then less likely to reject normality. This is shown 

in Tables I.lb, 1.ld - 4. 

Mis-specification of 

against both alternatives 

b, 4.ld. 

the model alters the power of the test 

If the model is underfitted to the data and the error is 

non-normal, the power of the EDF test is greater than that for 

the single sample case. If the model is overfitted to the data, 

the power of the test is less than that for the single sample 

case. These power studies appear in Tables 1 . 1 ~ ~  l.le to 4 . 1 ~ ~  

4. le. 

6.1 Further Research 

The Pierce-Kopecky result holds for any error distribution. 

Non-normal error distributions are now common in Survival 

Analysis.'. Further work in this direction should test the 

residuals from regression for the Logistic and Extreme-value 

distributions for which ~tephens(1977~1979) has worked out the 

details and provided tables of the asymptotic percentage points, 

for the case of the single independent sample. 

------------------ 
'see Lawless(l981) 



Comparison of the power of the EDF statistics against the 

u(-.5,.5) and the Laplace alternatives with the values obtained 

in Stephens(l974)j, shows that, for all 4 statistics, the powers 

are only slightly smaller in both the ordinary regression and 

autoregression cases. This is the situation where the correct 

model is fitted, but the error is non-normal. The closeness of 

the powers in the regression case and case 3 suggests that the 

large sample distributions of the EDF statistics under the 

alternative distributions are the same as those for the case 3 

situation. 

------------------ 
3see Tables, p734, and Table6, p735 



Table 1.1 : Monte Carlo Upper tail significance points for dn~, 
based on 10,000 samples 



Table 1 . 1  : Monte Carlo Upper tail significance points for dnDn 
based on 10,000 samples. 

Case ( sq) 
10.0 5.0 



TABLE 1.1 : Monte Carlo Upper tail significance points for dnDn 
based on 10,000 samples. 
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TABLE 1.1 : Monte Carlo Upper tail significance points for dnDn 
based on 10,000 samples. 



TABLE 1.1 : Monte Carlo Upper tail significance points for dnDn 
based on 10,000 samples. 



Table 2.1 : Monte Carlo Upper tail significance points for W: 
based on 10,000 samples 

case ( 1s) 
10.0 5.0 



Table 2.1 : Monte Carlo Upper tail significance points for W: 
based on 10,000 samples 

case (e) 
15.0 10.0 5.0 2.5 1 . O  



Table 2.1 : Monte Carlo Upper tail significance points for Wi 
based on 10,000 samples 



Table 2.1 : Monte Carlo Upper tail significance points for W: 
based on 10,000 samples 

case (tr ) 
15.0 10.0 5.0 2.5 1 . O  



Table 2.1 : Monte Carlo Upper tail significance points for WA 
based on 10,000 samples 



Table 2.1 : Monte Carlo Upper tail significance points for WA 
based on 10,000 samples 



Table 3.1 : Monte Carlo Upper tail significance points for U: 
based on 10,000 samples 

case (b  
15.0 10.0 5 



Table 3.1 : Monte Cerlo Upper tail significance points for UE 
based on 10,000 samples 

case (q) 
N 15.0 10.0 5.0 2.5 1 . O  



Table 3.1 : Monte Carlo Upper tail significance points for U: 
based on 10,000 samples 

case (lg ) 
10.0 5.0 

case (qsq) 
10.0 5.0 



Table 3.1 : Monte Carlo Upper tail significance points for Ui 
based on 10,000 samples 



Table 3.1 : Monte Carlo Upper tail significance points for Ui 
based on 10,000 samples 



Table 3.1 : Monte Carlo Upper tail significance points for U: 
based on 10,000 samples 



Table 4.1 : Monte Carlo Upper tail significance points for A: 
based on 10,000 samples 

case (a) 
10.0 5.0 



Table 4.1 : Monte Carlo Upper tail significance points for A: 
based on 10,QOO samples 

case ( sq) 
N 15.0  10.0 5.0 .2 .5  1 .O 



Table 4.1 : Monte Carlo Upper tail significance points for A: 
based on 10 ,000  samples 

case (qsq) 
N 15.0 10.0 5.0 2.5 1 .O 

case ( cu )  
15.0 10.0 5.0 2.5 1 . O  



Table 4.1 : Monte Carlo Upper tail significance points for A; 
based on 10,000 samples 



Table 4.1 : Monte Carlo Upper tail significance points for A: 
based on 10,000 samples 



Table 4.1 : Monte Carlo Upper tail significance points for A: 
based on 10,000 samples 



TABLE 5 

EY 

uf lq l  

o f q l l  

uf lq2 

o fq le  

uf qc 

ofqc 

u f a r l 2  

ofar2  1 

b l e  1 

ble2 

ble2 

a r  1 l e  

a r 2 i e  

uf l q l e  

o f q l l e  

a r  l 2 l e  

ar2112 

blue 1 

blue2 

que 1 

que2 

a r  lue 

: Mnemonic Key to Alternative Models and 

Error Distributions, 

E x p l  a n a t  i  o n  

f i t  a  l i n e a r  m o d e l  t o  q u a d r a t i c  d a t a  

f i t  a  q u a d r a t i c  m o d e l  t o  1 i n e a r  d a t a  

f i  t  a  1  i  n e a r  m o d e l  t o  q u a d r a t  i  c  d a t a  

f i t  a  q u a d r a t i c  m o d e l  t o  1 i n e a r  d a t a  

f i t  a  q u a d r a t i c  m o d e l  t o  c u b i c  d a t a  

f i t  a  c u b i c  m o d e l  t o  q u a d r a t i c  d a t a  

f i t  a n  A R ( 1 )  m o d e l  t o  A R ( 2 )  d a t a  

f i  t  a n  A R ( 2 )  m o d e l  t o  A R ( 1 )  d a t a  

f i t  a  l i n e a r  m o d e l  t o  l i n e a r  d a t a  

f i t  a  l i n e a r  m o d e l  t o  l i n e a r  d a t a  

f i t  a  q u a d r a t i c  m o d e l  t o  q u a d r a t i c  d a t a  

f i  t  a n  A R ( 1 ) t  o  A R ( 1 )  d a t a  

f i t  a n  A R ( 2 )  m o d e i  i o  A R ( 2 )  d a t a  

f i t  a  1  i n e a r  m o d e l  t o  q u a d r a t i c  d a t a  

f i t  a  q u a d r a t i c  m o d e l  t o  1 i n e a r  d a t a  

f i t  a n  A R ( 1 )  m o d e l  t o  A R ( 2 )  d a t a  

f i t  a n  A R ( 2 )  m o d e l  t o  A R ( 1 )  d a t a  

f i t  a  l i n e a r  m o d e l  t d  l i n e a r  d a t a  

f i t  a  l i n e a r  m o d e l  t o  1 i  n e a r  d a t a  

f i t  a  q u a d r a t i c  m o d e l  t o  q u a d r a t i c  d a t a  

f i t  a q u a d r a t i c  m o d e l  t o  q u a d r a t i c  d a t a  

f  i  t  a n  A R ( 1 )  m o d e l  t  o  A R ( 1 )  d a t  a  

f i t  a n  A R ( 2 )  m o d e l  t o  A R ( 2 )  d a t a  



Key E x p l  a n a t  i o n  

uf lque f i t  a  l i n e a r  m o d e l  t o  q u a d r a t i c  d a t a  

ofqlue f i t  a  q u a d r a t i c  m o d e l  t o  1 i n e a r  d a t a  

ar l2ue f i t  a n  A R ( 1 )  m o d e l  t o  A R ( 2 )  d a t a  

ar2lue f i  t  a n  A R ( 2 )  m o d e l  t o  A R ( 1 )  d a t a  3 

'EC gives the error distribution code. 1 = Normal, 2 = 
~aplace(doub1e exponential), 3 = u(.-5,.5), i.e.,uniform over 
the interval (-.5,.5). Except for ufarl2 and ofar21,keys ending 
in 1 refer to xi even-spaced ( =  i, or, = 5 keys ending in 2 
refer to xi = 41. 



Table 1.la : Estimated Sizes ( % )  of d n ~  compared with 
nominal levels, based on 1,000 samples 

MIS-SPECIFIED MODELS(Norma1 ~rrors) 
Estimated sizes(%) based on 1,000 samples 
compared with the nominal levels(%) 

case (uflql) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ofqll) 
N 15.0 10.0 5.0 2.5 1 . O  

case (uflq2) 
N 15.0 10.0 5.0 2.5 1 .O 

case iofql2) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ufqc) 
N 15.0 10.0 5.0 2.5 1.0 

case (ofcq) 
N 15.0 10.0 5.0 2.5 1.0 



Table 1.la : Estimated Sizes ( % )  of d n ~  compared with 
nominal levels, based on 1,800 samples 

case (ufar12) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ofar21) 
N 15.0 10.0 5.0 2.5 1 .O 



Table 1 . l b  : Power ( % )  of dnD, agains t  t h e  Laplace 
d i s t r i b u t i o n ,  based on 1 , 0 0 0  samples 

CORRECT MODELS with LAPLACE e r r o r s  
power(%) a t  var ious s ign i f i cance  l e v e l s  

case ( b l e l )  
N 15.0 10.0  5.0 2.5 1 . O  

case  ( b l e 2 )  
N 15 .0  10.0 5.0 2 .5  1 . O  

case  ( q l e l )  
N 15 .0  10.0 5.0 2 .5  1 . O  

case  ( q l e 2 )  
10 .0  5.0 2 .5  

case  ( a r l l e )  
10 .0  5 .0  2 .5  

case  ( a r 2 l e )  
10 .0  5.0 2 .5  



Table 1. lc : Power ( % )  of  in^, against the ~ a ~ l b c e  
distribution, based on 1,000 samples 

MIS-SPECIFIED MODELS(LAPLACE Errors) 
power(%) at various significance levels 

case (uflqle) 
N 15.0 10.0 5.0 2.5 1 . O  

case (ofqlle) 
N 15.0 10.0 5.0 2.5 1 . O  

case (arl2le) 
N 15.0 10.0 5.0 2.5 1 . O  

case (ar2lle) 
N 15.0 10.0 5.0 2.5 1 .O 



Table 1.ld : Power(%) of dnDn against the U(-.5,.5) 
distribution, based on 1,000 samples 

CORRECT MODELS with U(-.5,.5)errors 
Power ( % )  at different significance levels 

case (blue11 
N 15.0 10.0 5.0 2.5 1 .O 

case (blue21 
N 15.0 10.0 5.0 2.5 1 .O 

case (quell 
N 15.0 10.0 5.0 2.5 1 .O 

case (que2) 
10.0 5.0 2.5 1. . 0 

case (arlue) 
10.0 5.0 2.5 1 .O 

case (ar2ue) 
10.0 5.0 2.5 1 .O 



Table 1.le : power(%) of dnD, against the U(-.5,.5) 
distribution,. based on 1,000 samples 

MIS-SPECIFIED MODELS with U(-.5,.5) errors 
power(%) at various significance levels 

case (uflque) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ofqlue) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ar12ue) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ar2lue) 
N 15.0 10.0 5.0 2.5 1 .O 



Table 2.la : Estimated Sizes ( % )  of W 2  compared with 
nominal levels, based on ?, 000 samples 

MIS-SPECIFIED M O D E L S ( N O ~ ~ ~ ~  ~rrors) 
Estimated Sizes ( 8 )  based on 1,000 samples 
compared with nominal levels(%) 

case (uflql) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ofqll) 
N 15.0 10.0 5.0 2.5 1 .O 

case (uflq2) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ofql2) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ufqc) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ofcq) 
N 15.0 10.0 5.0 2.5 1 .O 



Table 2.la : Estimated Sizes ( % )  of W 2  compared with 
nominal levels, based on ?,000 samples 

case (ufarl2) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ofar21) 
N 15.0 10.0 5.0 2.5 1 .O 



Table 2.1.b : Power ( % )  of WE against the Laplace 
distribution, based on 1,000 samples 

CORRECT MODELS with LAPLACE Errors 
Power ( % )  at various significance levels 

case (blel) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ble2) 
N 15.0 10.0 5.0 2.5 1 .O 

case (qlel) 
N 15.0 10.0 5.0 2.5 1 .O 

- case (qle2) 
N 15.0 10.0 5.0 2.5 1 .O 

case (arlle) 
N 15.0 10.0 5.0 2.5 1 .O 

case (arile) 
N 15.0 10.0 5.0 2.5 1 .O 



Table 2.lc : Power ( % )  of WA against the Laplace 
distribution, based on 1,000 samples 

MIS-SPECIFIED MODELS(LAPLACE Errors) 
Power ( % )  at various significance levels 

case (uflqle) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ofqlle) 
N 15.0 10.0 5.0 2.5 1 .O 

case (arl2le) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ar2lle) 
N 15.0 10.0 5.0 2.5 1 .O 



Table 2.ld : Power ( % )  of W: against the u(-.5,.5) 
distribution, based on 1,000 samples 

CORRECT MODELS with u(-.5,:5)~rrors 
Power ( % )  at various significance levels 

case (bluel) 
N 15.0 10.0 5.0 2.5 1 .O 

case (blue2) 
N 15.0 10.0 5.0 2.5 1 .O 

case (quell 
10.0 5.0 2.5 1 .O 

case (que2) 
10.0 5.0 2.5 1 .O 

case (arlue) 
10.0 5.0 2.5 1 .O 

case (ar2ue) 
10.0 5.0 2.5 1 .O 



Table 2.le : Power ( % )  of W: against the u(-.5,.5) 
distribution, based on 1,000 samples 

MIS-SPECIFIED MODELS with U(-.5,.5)Errors 
Power ( % )  at various significant levels 

case (uflque) 
10.0 5.0 2.5 

case (ofqlue) 
10.0 5.0 2.5 

case (arl2ue) 
10.0 5.0 2.5 

case (ar2lue) 
10.0 5.0 2.5 



Table 3.la : Estimated Sizes ( % )  of U2 compared with 
nominal levels, based on ?, 000 samples 

MIS-SPECIFIED M O D E L S ( N O ~ ~ ~ ~  Errors) 
Estimated Sizes ( % )  based on 1,000 samples 
compared with the nominal levels 

case (uflql) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ofqll) 
N 15.0 10.0 5.0 2.5 1 .O 

case (uflq2) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ofql2) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ufqc) 
N 15.0 10.0 5.0 2.5 1 . O  

case (ofcq) 
N 15.0 10.0 5.0 2.5 1 .O 



Table 3.la : Estimated Sizes ( % )  of U2 compared with 
nominal levels, based on ? ,000 samples 

case (ufarl2) 
10.0 5.0 2.5 1 .O 

case (ofar21) 
10.0 5.0 2.5 1 .O 



Table 3.lb : Power ( % )  of Ui against the Laplace 
distribution, based on 1,000 samples 

CORRECT MODELS with LAPLACE Errors 
Power ( % )  at various significance levels 

case (blel ) 
N 15.6 10.0 5.0 2.5 1 .O 

case (ble2) 
N 15.0 10.0 5.0 2.5 1 .O 

case (qlel) 
N 15.0 10.0 5.0 2.5 1 .O 

case (qle2) 
N 15.0 10.0 5.0 2.5 1 .O 

case (arlle) 
N 15.0 13.0 5.0 2.5 1 .O 

case (ar2le) 
N 15.0 10.0 5.0 2.5 1 .O 



Table 3.lc : Power ( % )  of U: against the Laplace 
distribution, based on 1,000 samples 

MIS-SPECIFIED MODELS(LAPLACE Errors) 
Power ( % )  at various significance levels 

case (uflqle) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ofqlle) 
N 15.0 10.0 5.0 2.5 1 .O 

case (arl2le) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ar2lle) 
N 15.0 10.0 5.0 2.5 1 .O 



Table 3.ld : Power ( % )  of U; against the u(-.5,.5) 
distribution, based on 1,000 samples 

CORRECT MODELS with U(-.5,:5) Errors 
Power ( % )  at various significance levels 

case (blue11 
N 15.0 10.0 5.0 2.5 1 .O 

case (blue21 
N 15.0 10.0 5.0 2.5 1 .O 

case (quell 
N 15.0 10.0 5.0 2.5 1 .O 

case. (que2) 
15.0 10.0 5.0 2.5 1 .O 

case (arlue) 
15.0 10.0 5.0 2.5 1 .O 

case (ar2ue) 
N 15.0 10.0 5.0 2.5 1 .O 



Table 3.le : Power ( % )  of U; against the u(-.5,.5) 
distribution, based on 1,000 samples 

MIS-SPECIFIED MODELS with U(-.5,.5) errors 
Power ( % )  at various significance levels 

case (uflque) 
10.0 5.0 2.5 1 .O 

case (ofqlue) 
10.0 5.0 2.5 1 . O  

case (arl2ue) 
10.0 5.0 2.5 1 .O 

case (ar2lue) 
10.0 5.0 2.5 1 .O 



Table 4.la : Estimated Sizes ( % )  of compared with 
nominal levels, based on ?, 000 samples 

MIS-SPECIFIED ~ o ~ E ~ S ( ~ o r m a 1  ~rrors) 
Estimated Sizes(%) based on 1,000 samples 
compared with nominal levels(%) 

case (uflql) 
10.0 5.0 2.5 1 .O 

case (ofqll) 
10.0 5.0 2.5 1 .O 

case (uflq2) 
10.0 5.0 2.5 1 .O 

case iofq12j 
10.0 5.0 2.5 1 .O 

case (ufqc) 
10.0 5.0 2.5 1 .O 

case (ofcq) 
10.0 5.0 2.5 1 .O 



Table 4.la : Estimated Sizes ( 8 )  of compared with 
nominal levels, based on ?, 000 samples 

case (ufarl2) 
10.0 5.0 2.5 1 .O 

case (ofar21) 
10.0 5.0 2.5 1 .O 



Table 4.lb : Power ( % )  of A: against the Laplace 
distribution, based on 1,000 samples 

CORRECT MODELS with LAPLACE Errors 
Power ( % )  at various significance levels 

case (blef) 
15.0 10.0 5.0 2.5 

case (ble2) 
15.0 10.0 5.0 2.5 

case (qlel ) 
15.0 10.0 5.0 2.5 

case (qle2) 
15.0 10.0 5.0 2.5 

case (arfle) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ar2le) 
N 15.0 10.0 5.0 2.5 1 .O 



Table 4.lc : Power ( % )  of A: against the Laplace 
distribution, based on 1,000 samples 

MIS-SPECIFIED MODELS(LAPLACE Errors) 
Power ( % )  at various significance levels 

case (uf lqle) 
15.0 10.0 5.0 2.5 1 .O 

31.2 25.5 16.3 9.4 4.9 
41.7 33.8 23.0 14.3 7.4 

case (ofqlle) 
15.0 10.0 5.0 2.5 1 .O 

34.4 27.4 18.4 11.5 7.4 
66.2 59.1 49.0 39.9 31.5 

case (arl2le) 
15.0 10.0 5.0 2.5 1 .O 

31.5 24.9 15.5 9.4 5.5 
38.7 31.4 23.4 16.7 10.9 

case (ar2l le) 
15.0 10.0 5.0 2.5 1 .O 

36.0 28.6 20.4- 14.7 8.9 
63.3 55.8 45.2 36.3 26.9 



Table 4.ld : Power ( % )  of A: against the u(-.5,.5) 
. distribution, based on 1,000 samples 

CORRECT MODELS with u(-.5,.5) Errors 
Power ( % )  at various significance levels 

case (blue11 
N 15.0 10.0 5.0 2.5 1 .O 

case (blue21 
N 15.0 10.0 5.0 2.5 1 .O 

case (quell 
N 15.0 10.0 5.0 2.5 1 . O  

case (que2) 
N 15.0 10.0 5.0 2.5 1 .O 

case (arlue) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ar2ue) 
N 15.0 10.0 5.0 2.5 1 .O 



Table 4.le : Power ( % )  of A: against the u(-.5,.5) 
distribution, based on 1,000 samples 

MIS-SPECIFIED MODELS with u(-.5,.5) Errors 
Power ( % )  at various significance levels 

case (uflque) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ofqlue) 
N 15.0 10.0 5.0 2.5 1 .O 

case (arl2ue) 
N 15.0 10.0 5.0 2.5 1 .O 

case (ar2lue) 
N 15.0 10.0 5.0 2.5 1 .O 



Table 6 : Comparison of powers(%) against the Laplace and 
u(-.5,.5) alternatives with those for the single sample case, at 
the 5% and 10% significance levels.' 

Dist. 

Laplace 20 16.1(22) 19.9(26) 20.4(25) 
5% 30 25.3(29) 29.8(35) 30.4(34) 

Laplace 50 52.3(-) 59.2(63) 59.7(-) 
10% 

'The numbers in brackets are from Stephens(l974), Tables 5,6, 
~~734,735. These are the powers of the EDF tests for normality 
against the 2 alternatives, for the single sample case (case 3). 



Table 7.1 : Comparison of Estimated sizes(%) with Nominal Levels 
for sample sizes n = 10, 20, tor d n ~ ~ ,  based on 10,000 samples.' 

Case sample Nominal Levels ( % )  
size 

10.0 5.0 2 . 5  1 .O 

'The first row of numbers are the nominal levels. The rows 
below give the Monte Carlo estimated sizes. 



Table 7.2 : Comparison of Estimated sizes(%) with Nominal Levels 
for sample sizes n = 10, 20 ,  for W: , based on 10,000 samples. 

Case sample Nominal Levels ( % )  
size 

10.0 5.0 2.5 1 .O 



Table 7.3 : Comparison of Estimated Sizes(%) with Nominal Levels 
for sample sizes n = 10, 20, for Ui , based on 10,000 samples. 

Case sample Nominal Levels ( % )  
size 

10.0 5.0 2.5 1 . O  



Table 7.4 : Comparison of Estimated sizes(%) with Nominal Levels 
for sample sizes n = 10, 20, for A: , based on 10,000 samples. 

Case sample Nominal Levels ( % )  
size 

10.0 5.0 2 .5  1 . O  



TABLE 8.1 : Air quality Data 

I 

"Carbon aerosols have been identified as a contributing factor 
in a number of air quality problems. In a chemical analysis of 
diesel engine exhaust, x = mass(pg/cm2) and y = elemental carbon 
hg/cm2) were recorded ("comparison of Solvent ~xtraction and 
Thermal Optical Carbon Analysis Methods: ~pplication to Diesel 
Vehicle Exhaust Aerosol" Envi r o n .  Sci . T e c h .  ( 1  984) :231-234). 
The estimated regression line for this data set is = 31 + 

.737x," 

Table 8.1 gives the (x,y) values and the corresponding 
standardized residuals after fitting a simple linear model to 
the data set. The EDF and @, the standard normal cdf, are shown. 

When the Pierce-Kopecky test is applied to the standardized 
residuals, the values of the EDF statistics are : dnDn = 0.783, 
W2 = 0.135, U2 = 0.112, A: = 0.778. Using Table 1.3 from 

. ~ee~hens(19744, d n ~  is not significant at the 10% level; U2 is 
significant at the PO% level; W: and A: are both significanf at 
the 5% level. 

------------------ 
I see Devore and ~eck(19861, p488, Problem 11.53 





TABLE 8.2 : Rocket Propellant Data 

"A rocket motor is manufactured by bonding an igniter propellant 
and a sustainer propellant together inside a metal housing. The 
shear strength of the bond between the two types of propellant 
is an important quality characteristic. It is suspected that 
shear strength is related to age in weeks of the batch of 
sustainer propellant. ?I2 

Table 8.2 shows 20 observations of shear strength and age of the 
corresponding batch of propellant. x i  is age in weeks; yi is 
shear strength in psi. The fitted regression line is = 
2,627.82 - 37.15~. The fitted y values, the residuals, and the 
standardized residuals are also given in Table 8.2. 

When the EDF test is done on the standardized residuals the 
4 statistics have the values: d n ~ ~  = 0.864; W: = 0.126: U; = 
0.106; and A: = 0.848. . 

Using the case 3 Table, d n ~  , W: , and U: are significant at 
the 10% level: A: is significan? at the 5% level. 

------------------ 
2see Montgomery and ~eck(1982), pp11-15, and pp62-65. 





TABLE 8 . 3  : DNA Sequence Data 

A large DNA molecule is often studied by analysing the 
fragments generated by several different restriction enzymes. 
These fragments are then used to construct a restriction map of 
the whole molecule. Usually the lengths of the fragments are not 
known very accurately. One technique of estimating the lengths 
of the fragments is to inject the into an electrophoretic gel 
and measure their migration distances under a fixed voltage. 
Duggelby e l  a1.(1981) proposed the equation :mi = a, + a,logL.+ 
a , ( l ~ g L ~ ) ~  to explaih the assumed relationship between migration 
distance and length of a fragment. Table 8.3 gives the migration 
distance against known standard lengths of DNA, expressed in 
base pairs (bp). One bp is approximately 2.7 angstroms depending 
on the exact base composition. Duggelby used least squares to 
fit the model to the observations. The fit is very good with R ~ =  
100%. However, the measurement of the migration distance in the 
gel is subject to several types of errors.3 Can the distribution 
of the total measurement error be considered normal? 

The normal probability plot of the standardized residuals 
seems quite straight. We apply the EDF test to the standardized 
residuals to test for normality. For the data set in Table 8.3 
we get for the values of the 4 EDF statistics: d n ~ ~  = 0.380, W: 
= 0.020, u2 = 0.019, and A: = 0.162. From the case 3 Tablel.3 of 
stephens(1974), none of the 4 statistics is significant, even at 
the 15% level. In this case, the informal test using the 
probability plot and the formal test agree in not rejecting 
normality of the error distribution. 

------------------ 
see weir, B.S., ed(1983) 











APPENDIX : ROUTINES USED 

C PROGRAMME TO MONTECARLO THE DBNS OF EDF STATISTICS FOR 
C THE PIERCE-KOPECKY RESIDUALS AFTER FITTING A SIMPLE 
C LINEAR REGRESSION 
C 
EXTERNAL REGR 
CALL MCFREQ(REGR) 
STOP 
END 
C * * * * * * * * * * * * * * * k * * * * * * * * * * * * * * * * * * * * * * * * * *  MONTE1 
SUBROUTINE REGR(MCLO,DSEED) 
DIMENSION s(~),ss(~) ,~(100) ,~(100),~(100),~(100) 
REAL ~(100),~(100),~(100) 
DOUBLE PRECISION DSEED 
COMMON /IPAR/ N 
COMMON /RPAR/ c 
COMMON /STAT/ S 
COMMON /STATI/ ss 
ICASE=3 
AL = 2. 
C CALL GGNML(D~EED,N,R) 
CALL GGUBS(DSEED,N,U) 
CALL GGUBS(DSEED,N,V) 
DO 1 1  I= l,N 
R(1) = SIGN(-AL*ALOG(U(I)),V(I)-.~) 
C R(I) = U(1)-.5 
1 1  CONTINUE 
CALL GENR(N,R,E,X,Y) 
DO 40 3 = 1 ,N 
CALL MDNOR(E(J),Z(J)) 
40 CONTINUE 
CALL VSRTA ( Z , N ) 
CALL EDF(N,Z,S,ICASE) 
SS(1) = S(3) 
SS(2) = S(5) 
SS(3) = S(6) 
SS(4) = s(7) 
RETURN 
END 
~ * X * k k * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  GENR 
SUBROUTINE GENR(N,R,E,X,Y) 
DIMENSION R(~),E(I),X(~),Y(~) 
INTEGER N 
XSUM = 0.0 
YSUM = 0.0 
XSQ = 0.0 
YSQ=0.0 
PROD = 0.0 
c**************************************** 
C**DATA GENERATED WITH U(-.5,.5) ERRORSk* c**************************************** 
C**FIT LINEAR MODEL TO QUADRATIC DATA**** 



c**************************************** 
C 
RN = N 
DO 30 I = 1 ,N 
RI = I 
X(I) = SQRT(RI) 
Y(I) = x(I)+x(I)*x(I)+R(I) 
C 
c************************ 
C*END OF DATA GENERATION* 
C************************ 
C 
C******************************** 
C*FIT MODEL Y(I)=A+B*x(I)+s*E(I)* 
................................. 
YSUM = YSUM+Y(I) 
XSUM = XSUM+X(I) 
YSQ = YSQ+Y(I)*Y(I) 
XSQ = XSQ+X(I)*X(I) 
PROD = PROD+X(I)*Y(I) 
30 CONTINUE 
AN = N 
BN = 1 .O/AN 
YMU = YSUMkBN 
XMU = XSUM*BN 
VY = YSQ-(YMU*YMU)*AN 
vx = XSQ-(XMU*XMU)*AN 
cov = PROD-(XMU*YMU)*AN 
SSQ = (VY-(cov*cov)/vx)*~~ 
SIGMA = SQRT(SSQ) 
SI = I.O/SIGMA 
BETA = COV/VX 
ALPHA = YMU-BETAkXMU 
C 
C***********y********** 
C*END OF FITTING MODEL* 
C********************** 
C 
c********************************************* 
C*COMPUTATION OF THE PIERCE-KOPECKY RESIDUALS* 
c********************************************* 
C 
DO 50 J = 1 ,N 
YFJ = ALPHA+BETA*X(J) 
E(J) = (Y(J)-YFJ)*SI 
50 CONTINUE 
RETURN 
END 



C * * * * k * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  QMTCLO 
C MAIN PROGRAMME FOR QMTCLO 
C PROGRAMME TO MONTE CARL0 THE DBNS OF EDF STATISTICS 
C FOR THE PIERCE-KOPECKY RESIDUALS AFTER FITTING A 
C QUADRATIC MODEL. 
C 
EXTERNAL REGR 
CALL MCFREQ ( REGR ) 
STOP 
END 
C 
........................................ REGR 
C 
SUBROUTINE REGR(MCLO,DSEED) 

DOUBLE PRECISION DSEED 
COMMON /STAT/ s 
COMMON /STATI/ ss 
COMMON /PKRES/ E 
COMMON /IPAR/ N 
COMMON /IVARS/ J,L,IB,IJOB 
COMMON /COEFF/ B(3) 
COMMON /I ARR/I CHNG ( 6 ) 
COMMON /RARR/H(~),DET(~~) 
C 
J =3 
L = 1  
IB =3 
IJOB =O 
I CASE= 3 
C 
C******************************************* 
CxGENERATION OF DATA WITH U(-.5,.5) ERRORS*" 
............................................ 
C******************************************* 
C*GENERATE LINEAR DATA; FIT QUADRATIC MODEL* 
............................................ 
C CALL GGNML(D~EED,N,R) 
CALL GGUBS(DSEED,N,U) 
CALL GGUBS(DSEED,N,V) 
RN = N 
AL = 2. 
DO 42 I = 1 ,N 
RK = I 
X(I) = SQRT(RK) 
R(I) = -AL*ALOG(U(I)) 
IF(V(I).LT.O.~)R(I)=-R(I) 
C R(1) = ~(1)-.5 
Y(I) = x(I)+R(I) 
42 CONTINUE 
C 
C * * * * * * * * * * * * * R * * * * * * * * * *  



C*END OF DATA GENERATION* 
C************************ 
C 
CALL GPKR(x,R,Y,YF,YR) 
DO 1 1  I = 1,N 
CALL MDNoR(E(I),z(I)) 
1 1 CONTINUE 
CALL VSRTA(Z,N) 
CALL EDF(N,Z,S,ICASE) 
SS(1) = S(3) 
SS(2) = S(5) 
SS(3) = S(6) 
SS(4) = S(7) 
RETURN 
END 
C C*****k**k***********************************GpKR 
CkDERIVATION OF THE PIERCE-KOPECKY RESIDUALS* 
............................................. 
C 
SUBROUTINE GPKR(x,R,Y,YF,YR) 
REAL X(I),R(I),Y(~),YF(~),YR(I),E(~) 
COMMON /COEFF/ B(3) 
COMMON /PKRES/ E 
COMMON /IPAR/ N 
COMMON /IVARS/ J,L,IB,IJOB 
COMMON /I ARR/ I CHNG ( 6 ) 
COMMON /RARR/ H(~),DET(~~) 
C 
CALL PREG(X,R,Y,IER) 
RN = N 
SSE = 0.0 
DO 13 I = 1,N 
YF(1) = B(~)+B(~)*x(I)+B(~)*x(I)*X(I) 
YR(I) = Y(I) - YF(I) 
SSE = SSE + YR(I)*YR(I) 
13 CONTINUE 
so = SQRT(SSE/RN) 
Sl = 1./SO 
DO 115 I = 1,N 
E(I) = YR(I)*SI 
1 1 5 CONTINUE 
RETURN 
END 
C 
C********************************************* 
Ck***END OF DERIVATION OF THE RESIDUALS******* 
.............................................. 
C 
C********************************************* 
C*FIT MODEL:Y(I) = A+B*x(I)+c*x(I)**~ +S*E(I)* 
.............................................. 
C * * * * * * * * * * k * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  PREG 
C 



SUBROUTINE PREG(X,R,Y,IER) 
REAL ~(1),~(1),~(1) 
COMMON /IPAR/ N 
COMMON /COEFF/ ~ ( 3 )  
COMMON /IVARS/ J,L,IB,IJOB 
COMMON /I ARR/ I CHNG ( 6 ) 
COMMON /RARR/ H(~),DET(~~) 
C 
SX1 = 0.0 
SX2 = 0.0 
SX3 = 0.0 
SX4 = 0.0 
SY = 0.0 
SYXI = 0.0 
SYX2 = 0.0 
RN = N 
DO 3 I = l,N 
SXI = SXI+X(I) 
SX2 = ~X~+X(I)*X(I) 
SX3 = ~X~+X(I)*X(I)*X(I) 
SX4 = sX~+X(I )*x(I )*x(I )*x(I 
SY = SY +Y(I) 
SYXI = SYX~+~(I)*Y(I) 
SYX2 = SYX~+X(I)*X(I)*Y(I) 
3 CONTINUE 
~ ( 1 )  = RN 
~ ( 2 )  = SX1 
~ ( 3 )  = SX2 
~ ( 4 )  = SX2 
~ ( 5 )  = SX3 
~ ( 6 )  = SX4 
~ ( 1 )  = SY 
~ ( 2 )  = SYXl 
B(3) = SYX2 
CALL LEQ~S(H,J,B,L,IB,IJOB,ICHNG,DET,IER) 
RETURN 
END 



C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  CMTCLO 
C MAIN PROGRAMME FOR CMTCLO 
C PROGRAMME TO MONTE CARL0 THE DBNS OF EDF STATISTICS 
C FOR THE PIERCE-KOPECKY RESIDUALS AFTER FITTING A 
C CUBIC MODEL. 
C 
EXTERNAL REGR 
CALL MCFREQ(REGR) 
STOP 
END 
C 
C*********************** **************** REGR 
C 
SUBROUTINE REGR(MCLO,DSEED) 
REAL ~(100),~(100),~(100),~~(100),~~(100) 
REAL E(100),~(100),~(16),SS(11) 
DOUBLE PRECI SI ON DSEED 
COMMON /STAT/ s 
COMMON /STATI / ss 
COMMON /PKRES/ E 
COMMON /IPAR/ N 
COMMON /IVARS/ J , L , I B , I JOB 
COMMON /RARR/ ~(10),DET(22) 
COMMON /COEFF/B ( 4 ) 
COMMON /IARR/ ICHNG(~) 
C 
J =4 
L = 1  
IB =4 
IJOB =O 
I CASE=3 
C 
c***************************************** 
C*********GENERATION OF DATA************** 
C***************************************** 
C*GENERATE QUADRATIC DATA;FIT CUBIC MODEL* 
C***************************************** 
CALL GGNML(DSEED,N,R) 
RN = N 
DO 42 I = 1 ,N 
RK = I 
X(I) = RK/RN 
Y(I) = x(I)+x(I)*x(I )+R(I) 
42 CONTINUE 
C 
c****************************************** 
C***********END OF DATA GENERATIONk******** 
c****************************************** 
C 
CALL GPKR(x,R,Y,YF,YR) 
DO 1 1  I = 1,N 
CALL MDNOR(E(I) ,z(I)) 
1 1 CONTINUE 



CALL VSRTA(Z,N) 
CALL EDF(N,Z,S,ICASE) 
SS(1) = S(3) 
ss(2) = S(5) 
SS(3) = S(6) 
SS(4) = S(7) 
RETURN 
END 
C 
C * * * * * * * * * k * * * * * * * * * * * * * * * * * * * * * * * * * *  GPKR 
C*DERIVATION OF THE PIERCE-KOPECKY RESIDUALS*" 
C********************************************* 
C 
SUBROUTINE GPKR(x,R,Y,YF,YR) 
REAL X(I),R(l),Y(l),YF(l),YR(1),E(1) 
COMMON /COEFF/ B(4) 
COMMON /PKRES/ E 
COMMON /IPAR/ N 
COMMON /IVARS/ J,L,IB,IJOB 
COMMON /RARR/ H(10),~ET(22) 
COMMON /I ARR/ I CHNG ( 8 ) 
C 
CALL PREG(x,R,Y,IER) 
RN = N 
SSE = 0.0 
DO 13 I = l,N 
YF(I)=B(~)+B(~)*X(I)+B(~)*X(I)*X(I)+B(~)*X(~)*X(~)*X(~) 
YR(I) = Y(I) - YF(I) 
SSE = SSE +~YR(I)*YR(I) 
1 3 CONTINUE 
so = SQRT(SSE/RN) 
St = 1 ./so 
DO 115 I = l,N 
E(I) = YR(I)*SI 
115 CONTINUE 
RETURN 
END 
C 
C****************************************** 
C****END OF DERIVATION OF THE RESIDUALS**** 
c************************************* 
C 
C**** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C*FIT MODEL:Y(I)=A+B*X(I)+C*X(I)**~+D*X(I)**~+S*E(I)**** 
C******************************************************* 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  PREG 
C 
SUBROUTINE PREG(x,R,Y,IER) 
REAL ~(l),R(l),Y(l) 
COMMON /IPAR/ N 
COMMON /COEFF/ B(4) 
COMMON /IVARS/ J,L,IB,IJOB 
COMMON /RARR/ H(lO),DET(22) 



COMMON /I ARR/ I CHNG ( 8 ) 
C 
SXI = 0.0 
SX2 = 0.0 
SX3 = 0.0 
SX4 = 0.0 
SX5 = 0.0 
SX6 = 0.0 
SY = 0.0 
SYX1 = 0.0 
SYX2 = 0.0 
SYX3 = 0.0 
RN = N 
DO 3 I = 1,N 
SX1 = SXI+X(I) 
SX2 = SX~+X(I)*X(I) 
SX3 = sx3+x(1)*x(1)*x(I) 
SX4 = sx4+x(1)*x(1)*x(1)*x(1) 
sx5 = s ~ ~ + ~ ( I ) * x ( I ) * ~ ( I ) * ~ ( I ) * ~ ( I )  
SX6 = SX~+X(I)*X(I)*X(I)*X(I)*X(I)*X(I) 
SY = SY +Y(I) 
SYXl = SY~I+~(I)*Y(I) 

3 CONTINUE 
H(1) = RN 
~ ( 2 )  = SX1 
~ ( 3 )  = SX2 
~ ( 4 )  = H(3) 
~ ( 5 )  = SX3 
~ ( 6 )  = SX4 
~ ( 7 )  = ~ ( 5 )  
~ ( 8 )  = H(6) 
~ ( 9 )  = SX5 
~ ( 1 0 )  = SX6 
~ ( 1 )  = SY 
~ ( 2 )  = SYX1 
~ ( 3 )  = SYX2 
~ ( 4 )  = SYX3 
CALL LEQ~S(H,J,B,L,IB,IJOB,ICHNG,DET~IER) 
RETURN 
END 



C*X***************************************************MONTE~ 
C PROGRAMME TO MONTECARLO THE DBNS OF EDF STATISTICS 
C FOR THE PIERCE-KOPECKY RESIDUALS FROM FITTING A 
C FIRST-ORDER AUTOREGRESSIVE PROCESS 
EXTERNAL REGR 
CALL MCFREQ(REGR) 
STOP 
END 
...................................................... 
SUBROUTINE REGR(MCLO,DSEED) 
DIMENSION ~ ( 7 )  ,ss(~) ,~(120) ,~(120) ,~(120) ,x(120) 
REAL ~(120),~(120),~(120) 
DOUBLE PRECISION DSEED 
COMMON /I PAR/ N 
COMMON /RPAR/ c 
COMMON /STAT/ s 
COMMON /STATI / ss 
C 
ICASE=3 
AL =2. 
C CALL GGNML(DSEED,N,R) 
CALL GGUBS(DSEED,N,U) 
CALL GGUBS(DSEED,N,V) 
DO 1 1  I= 1,N 
R(I) = -AL*ALOG(U(I)) 
IF(v(I).LT.O.~)R(I)=-R(1) 
C R(1) = ~(1)-.5 
1 1 CONTINUE 
CALL GENR(N,R,E,x,Y) 
M = N-10 i) 

DO 40 J = i ,M 
CALL MDNOR(E(J),Z(J)) 
40 CONTINUE 
CALL VSRTA(Z,M) 
CALL EDF(M,Z,S,ICASE) 
SS(1) = S(3) 
SS(2) = S(5) 
SS(3) = S(6) 
SS(4) = S(7) 
RETURN 
END 
C * k * * * t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  GENR 
SUBROUTINE GENR(N,R,E,X,Y) 
DIMENSION ~ ( 1 ) , ~ ( 1 ) , ~ ( 1 ) , ~ ( 1 ) ~ ~ ( 1 2 0 )  
INTEGER N 
C 
XSUM = 0.0 

- YSUM = 0.0 
XSQ = 0.0 
YSQ = 0.0 
PROD = 0.0 
............................................ 
C****DATA GENERATED WITH LAPLACE ERRORS***** 



c******************************************* 
C 
c P = -0.9 
C AU = 3.5 
c x(1) = 1.5 
c AL = AU*(I.-P) 
C AS = 2.0 
c ~ ( 1 )  = AL+P*X(I)+AS*R(I) 
C D O  30 I = 2,N 
c X(1) = Y(1-1) 
c Y(I) = AL+P*X(I)+AS*R(I) 
C 
C *** GENERATION OF AR(~) DATA *** 
C 
PI = -0.10DO 
P2 = 0.90DO 
AU = -2.50DO 
AL = AU*(I.-PI-P2) 
AS = 1 . OD0 
~ ( 1 )  = 1.50DO 
W(1) = O.OD0 
~ ( 1 )  = AL+P~*X(I)+P~*W(~)+AS*R(I) 
x(2) = Y(1) 
W(2) = X(1) 
~ ( 2 )  = A L + P ~ * x ( ~ ) + P ~ * w ( ~ ) + A S * R ( ~ )  
DO 30 I = 3,N 
x(1) = Y(1-1) 
w(1) = x(1-1) 
~ ( 1 )  = AL+P~*x(I)+P~*w(I)+AS*R(I) 
30 CONTINUE 
C C************************************* 
C**********END OF DATA GENERATION*********** 
C******************************************* 
C c******************************************* 
C**FIT MODEL Y(I)=AL+P*X(I)+AS*E(I),I=~~~N** 
............................................ 
DO 40 I = 11,N 
YSUM = YSUM+Y ( I ) 
XSUM = XSUM+X( I ) 
YSQ = YSQ+Y(I)*Y(I) 
XSQ = XSQ+X(I)*X(I) 
PROD = PROD+X ( I ) *Y ( I ) 
40 CONTINUE 
AN = N-10 
BN = 1 .O/AN 
CN = ~.O/(AN-2.) 
YMU = YSUM*BN 
XMU = XSUM*BN 
VY = YSQ-(YMU*YMU)*AN 
vx = XSQ-(XMU*XMU)*AN 
cov = PROD-(XMU*YMU)*AN 
SSQ = (VY-(COV*COV)/VX)*CN 



SIGMA = SQRTWQ) 
SI = 1 . O/SIGMA 
BETA = COV/VX 
ALPHA = YMU-BETA*XMU 
C c**************************** 
C****END OF FITTING MODEL**** 
c**************************** 
C 
.............................................. 
C*COMPUTATION OF THE PIERCE-KOPECKY RESIDUALS* c********************************************* 
C 
T = AN*VX 
XU = 2""XMU 
DO 50 J = 11,N 
YFJ = ALPHA+BETA*x(J) 
UJ = XSQ+AN*X(J)*(X(J)-XU) 
VJ = SQRT(I.-UJ/T) 
E(J-10) = ((Y(J)-YFJ)*SI)/VJ 
50 CONTINUE 
RETURN 
END 



IMPLICIT REAL*8 (A-H,O-Z) 
C PROGRAM TO MONTECARLO THE DBNS OF THE EDF STATISTICS 
C FROM THE PIERCE-KOPECKY RESIDUALS AFTER FITTING A 
C SECOND-ORDER AUTOREGRESSIVE PROCESS : 
C y. = A + P I Y - - ~ + P , Y ~ - ~  +uei EXTERNAL REG& 
CALL MCFREQ(REGR) 
STOP 
END 
C * * * * * * * * * * k * * k * * * * * * * * * * * * * * * * * * * * * * * k *  AR2* 
SUBROUTINE REGR(MCLO,DSEED) 

DOUBLE PRECISION DSEED 
COMMON /IPAR/ N 
COMMON /STAT/ s 
COMMON /STATI/ ss 
C 
I CASE= 3 
AL =2. 
C CALL GGNML(DSEED,N,R) 
CALL GGUBS(DSEED,N,Ul) 
CALL GGUBS(DSEED,N,VI) 
DO 1 1  I= 1 ,N 
R(I) = -AL*ALOG(UI(I)) 
IF(v~(I).LT.~.~)R(I)=-R(I) 
C R(I) = Ul(1)-.5 
1 1  CONTINUE 
CALL GENR(N,R,E,X,Y,W,YF,YR,U,V) 
M = N-10 
DO 40 3 = 1 ,M 
CALL MDNOR(E(J),Z(J)) 
40 CONTINUE 
CALL VSRTA(Z,M) 
CALL EDF(M,Z,S,ICASE) 
SS(1) = S(3) 
SS(2) = S(5) 
SS(3) = S(6) 
SS(4) = S(7) 
RETURN 
END 
ckk****k*************************************GENR 
SUBROUTINE GENR(N,R,E,X,Y,W,YF,YR,U~V) 
IMPLICIT REAL*8 (A-H,O-Z) 
REAL*8 x(~),Y(~),W(~),YF(~),YR(~),U(~),V(I) 
REAL R(I),E(I) 
INTEGER N 
C 
XSUM = 0.0 
WSUM = 0.0 
YSUM = 0.0 
XSQ = 0.0 
WSQ = 0.0 



YSQ = 0.0 
PRODXY = 0.0 
PRODWY = 0.0 
PRODXW = 0.0 
C 
....................................... 
C**DATA GENERATED WITH LAPLACE ERRORS*" 
....................................... 
C 
C PI = 0.50DO 
C P2 = 0.20DO 
C AU = 0.50DO 
C AL = AU*(~.-PI-~2) 
C AS = 1 . OD0 
C ~ ( 1 )  = 1.50DO 
C ~ ( 1 )  = O.ODO 
C ~ ( 1 )  = A L + P ~ * x ( ~ ) + P ~ * w ( ~ ) + A S * R ( ~ )  
c x(2) = ~ ( 1 )  
c w(2) = x(1) 
C ~ ( 2 )  = A L + P ~ * x ( ~ ) + P ~ * W ( ~ ) + A S * R ( ~ )  
C DO 30 I = 3,N 
c x(1) = Y(1-1) 
c w(1) = X(1-1) 
C ~ ( 1 )  = AL+P~*x(I)+P~*w(I)+AS*R(I) 
C 
C*** GENERATION OF AR(I) DATA *** 
C 
P = -0.90DO 
AU = 3.50DO 
X(1) = 1.50DO 
W(1) = O.ODO 
W(2) = x(1) 
AL = Au*(I.-P) 
AS = 2.ODO 
~ ( 1 )  = AL+P*X(I)+AS*R(I) 
X(2) = Y(1) 
DO 30 I = 3,N 
x(1) = ~ ( 1 - 1 )  
w(1) = x(1-1) 
Y(I) = AL+P*X(I)+AS*R(I) 
30 CONTINUE 
C 
C************************** 
C**END OF DATA GENERATION*" 
C************************** 
C 
C*************************************************** 
C*FIT MODEL Y(I)=AL+P~*X(I)+P~*W~I)+AS*E(I),I=II,N** 
.................................................... 
DO 40 I = ll,N 
YSUM = YSuM+Y(I) 
WSUM = WSUM+W ( I 
XSUM = XSUM+X( I 



YSQ = YSQ+Y(I)*Y(I) 
WSQ = WSQ+W(I)*W(I) 
XSQ = XSQ+X(I)*X(I) 
PRODXY = PRODXY+X(I)*Y(I) 
PRODWY = PRODWY+W(I)*Y(I) 
PRODXW = PRODXW+X(I)*W(I) 
40 CONTINUE 
AN = DFLOAT(N-10) 
BN = I.ODO/AN 
CN = I.ODO/(AN-3.0~0) 
YMU = YSUM*BN 
XMU = XSUM*BN 
WMU = WSUM*BN 
VY = YSQ-(YMU*YMU)*AN 
vx = XSQ-(XMU*XMU)*AN 
vw = WSQ-(WMU*WMU)*AN 
COVXY = PRODXY-(XMU*YMU)*AN 
COVXW = PRODXW-(XMU*WMU)*AN 
COVWY = PRODWY-(WMU*YMU)*AN 
C 
C** COMPUTE DENOMINATOR D COMMON TO BETA & GAMMA ** 
C 
D = VX*VW - COVXW*COVXW 
C 
C** CHECK IF D = 0 ***** 
C 
IF (D)5,3,5 
C 
C*** IF D =. 0 EXIT WITH A MESSAGE 
C 
3 WRITE(3,4) 
4 FORMAT(IOX,'THE REGRESSION COEFFICIENTS CANNOT BE FOUND') 
C 
C*** IF D # 0 COMPUTE THE REGRESSION COEFFICIENTS 
C 
5 BETA = (COVXY*VW -COVWY*COVXW)/D 
GAMMA = (COVWY*VX -COVXY*COVXW)/D 
ALPHA = YMU-BETAkXMU-GAMMA*WMU 
C 
........................... 
C***END OF FITTING MODEL*** 
C************************** 
C 
C*********************************************** 
C**COMPUTATION OF THE PIERCE-KOPECKY RESIDUALS** 
C*********************************************** 
C 
A = XSQ*WSQ-PRODXW*PRODXW 
B = WMU*COVXW-XMU*VW 
C = XMu*CovXW-WMu*vx 
T = AN*D 
SSE = O.ODO 
TRACE = O.ODO 



YRT = O.DO 
DO 150 J = ll,N 
YF(J) = ALPHA+BETA*X(J)+GAMMA*W(J) 
YR(J) = Y(J)-YP(J) 
SSE = SSE+YR(J)*YR(J) 
UJ = AN*(x(J)*B+w(J)*c-X(J)*W(J)*COVXW) 
RJ = AN*(x(J)*x(J)*vw+w(J)*w(J)*vx) 
U(J) = (A+~.ODO*UJ+RJ)/T 
C 
......................................................... 
C*****UJ = j'th diagonal of ~((X'~)inv)~'=j'th lever-**** 
C*****age. UJ > 0 for X of full ~~~~.TRAcE=suM(uJ)=****** 
C*****3.0 = # of parameters estimated.UJ measures the**** 
C*****effect of the j'th predictor variable on the******* 
C******************regre~sor variable.******************* 
......................................................... 
C 
TRACE = TRACE+U(J) 
YRT = YRT+YR(J) 
V(J) = DSQRT(I.ODO-u(J)) 
1 50 CONTINUE 
RMSE = SSE*CN 
si = DSQRT(RMSE) 
S2 = 1 . ODO/S1 
DO 155 J = 11,N 
E(J-10) = YR(J)*S~/V(J) 
1 5 5. CONTI NUE 
RETURN' 
END 
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