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ABSTRACT

The concept of density of a set of positiye integers is
introduced along with some of the basic properties. A very general
density is defined in tems of a SEquencé of non-negative regular
matrices and two filters. It is shown that most of the known densities,
i.e., matrix method densities, 0~1l densities, uniform density and some

complete densities are subsumed under the general formulation.

The class of sets of upper density zero are called zeroclasses.
Special zeroclasses are studied, in particular zeroclasses consisting
of lacunary sets. Some surprising inclusions between some of these are

proved.

An R-type summability method (RSM), S, is a regular linear
functional on a real sequence space g such. that lCSIO, the set of all
sequences which are s-strongly summable to 2zero, is a solid subspace of
cg - It is shown that s 1is non-negative and continuous. A Bounded
Consistency type theorem for the strong convergence fields of RSMs is
proved. RSMs and non-negative regular summabilities are compared and

interesting matrix methods are examined. Progress is made regarding the

characterization of RSMs in terms of densities and zeroclasses.
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CHAPTER O

INTRODUCTION

In this thesis we shall discuss three aspects of sequence
space theory. The first is general‘density theory, the second is the
concept of =zeroclasses consisting of lacunary sets and, lastly
the theory of strong summability with respect to R-type summability

methods. Most of our work extends that of Freedman and Sember

(31, [41, [s].

In Chapter 1 we define a general set function
4= dM,G,F(A) where A is a subset of I , the set of positive
integers. M 1is a certain type of sequence of infinite matrices and
G and F are filters on I . It turns out that d is a density
(see Definition 1.2) on I . By judicious choices of M, G and F ,
d can become identical with any of densities considered in the
literature: e.g., matrix method densities, O0-1 densities, uniform

density and complete densities.

Chapter II comprises combinatorial results concerning
classes of lacunary sets. Such classes arise naturally in some
sequence space and combinatorial studies. For example, Freedman [5]
has shown that the class L of lacunary sets corresponds exactly
to the set of 0-1 sequences in the space bs + ¢ where bs is
the space of sequences with bounded partial sums and c¢ is the space
of all convergent sequences. More recently, Brown and Freedman [21,
have shown that the famous conjecture of Erdos (that the set A € I has

arbitrarily long arithmetic progressions whenever I {% :a € A} = «)



is true if and only if it is trxue for eyery lucunary set and that the
conjecture does indeed hold when A 1is an Ll—lucunary‘set (see
definition 2.1). In Chapter II we introduce many subclasses of
lucunary sets, show which of them are full (see definition 2.4), [8]
and relate them tc one another by means of set theoretic inclusions
of which some are surprising.

In Ch;pter III we carry on the investigation of R-type
summability methods (RSMs) introduced by Freedman and Sember [3].
The connection between RSMs and densities is made clear through
the usé of an analytic definition based on the concept of zeroclass.
Our efforts culminate with a somewhat surprising result which amounts
to bounded consiétency for RSMs on the associated strong summability
field. The result does not require that the RSM be generated by a
regular matrix and so is in a sense not comparable to the tfaditional
bounded consistency thecrem (BCT). On the other hand, since it applies
only to the strong convergence field, it does not require the powerful
analytic machinery for its proof as does the traditional BCT.

‘Finally, Chapter III attempts to add to the knowledge of
RSMs that are generated by regular matrices. This, as the reader will
see, is a difficult topic.

Many of the propositions are well known but we have not bothered
to cite sources.

Our special notation will be introduced as needed. The
notation used in set theoretic or sequence space discussions is all
standard. A list of symbols and their definitions can be found in the

Appendix.



CHAPTER I

GENERAL DENSITIES

In this Chapter, a generai concept of density is defined.
In particular, density is defined in terms of a sequence of non-
negative regular matrices and two filters. Many of the standard
densities will be subsumed under our definition. These include
ordinary asymptotic density, uniform density, non-negative regular

matrix densities and 0-~1 densities defined by =zeroclasses. [3], [9]

Definition 1.1. Two subsets, A and B of I are asymptotic

if AAB is finite. (A A B means the symmetric difference of A

and B). In this case we write A~ B .

Definition 1.2. [3] A function &: 2% > R is called a lower

asymptotic density (or just a density) if the following five axioms

hold:
(Dl) for each A € 2T , 0=6(a) <1 ;
(D2) if A~ B , then &(a) = §(B) ;

(D3) if AN B=4¢g, then 8§(a) + §(B) =8@A U B) ;

]

(D4) for all a4, B, 6(a) +8(B) =1 +68(aN B ;

(D5) &(I) =1 .

Definition 1.3. If & is a density, we define §: 2t & R , the

upper density associated with § , by S(A) =1 - §(a% where A° =1 - a.



At first, we will list some basic properties of § and §
omitting most of the proofs since the wverifications involve only simple

arguments and most appear in [3].

Proposition 1l.4. Let § be a lower asymptotic density and §

. . . I
its associated upper density. For A,B € 27 , we have

(i) AcCcB=3() =6(B)

(1i) ACB=6(a) < 8(B) ,

(1ii) 6(@) = 8@

o,

(iv ANB=¢g=46(aUB) = G(A) + 8(B) '
(v A~B=238(a) =38(B) ,

(vi) For all A , 8(a) < 6(a) ,

(vii) For all A,B, S(A) + 8(B) = 6(a U B),

(viii) AUB=I=38(A) +3(8) =1 + 8(anN B)

Proof: (iv) Suppose that AN B =¢g . By (D3)
SAUB) +6(°) =1 +68((aUB NE . oOn the other hand, AN B = ¢
implies (AU B N B =2 . Thus S(AUB) + 8B =1+ §().

Therefore we have 6(A U B) = 6(a) + 1 = G(Bc) = §(a) + 8(B).

(viii) Suppose that A U B = I and so we get a®n B¢ = g . By
(p2) §(a%) + 63B% =6 U B%). Therefore
1 -8 +1-68@% 21+1-6@°UB%. Thus we get
S(A) +68B) 21+ 8(ANB).
Definition 1.5. Ilet § and § be associated lower and upper

densities. We define



(AcrI:é&@ =61m1},

=3
(2]
i

{acr S(A)

i
It

0
Ng o} .

We say that A C I has natural density (resp. has natural density

zero) with respect to § in case A € n6 (resp. A € ng).

Note that A € N, and S(A) = 8(A) =0 if and only if

§(A)

The basic facts concerning n6 and ng are contained in

the following proposition. We omit the proofs.

. Proposition 1.6. For any A,B € 2I .

(i) A~TI =2 € n6 '
.. 0
,ll) A~ ¢ = A € 1"‘I(S ’

(iii) A € n6 and A~B =B ¢ n6 .

Definition 1.7. A class X of subsets of I will be called

a zeroclass [4] if the following conditions hold:

(i) A is finite = a € X ,
(ii) A,B € XxX=aAUB€ X,
(iii) A c B € X =AA € X,

(iv) I § X.

Note that a zeroclass is just a non principal ideal on 2I .

Proposition 1.8. If ¢ : ZI +- R 1is a lower asymptotic

density then ng is a zeroclass.



Proof: (i) If A is finite, them A~ ¢ and so ¢ € ng .
(ii) Let A,B € ng so that §(a) =0 and 6(B) =0 . By
Proposition 1.4. (vii) E(A U B) = E(A) + E(B) = 0 . Therefore
S(A UB) =0 . Hence AU B € ng .

(iii) 1If ACBEng,then osS(A)SG(B)=0. Thus 6(('A)=O

and so A € ng..

(iv) Since S(I) =1 - g(¢) = 1, we have I ¢ ng .

Definition 1.9. A filter on a set X is a family F of sub-

sets of X which has the following broperties:
(i) A,B€F=aANBEF,
(if) ACB and A E€F=B¢€F,

(iii) ¢ § F .

Definition 1.10. Let FO = {a € 2I : A% is finite}. Then FO

is called the Fréchet filter.

Remark: If X is a zeroclass then FX ={a°|aexX} isa

filter finer than the Fréchet filter, i.e., Fy 2 FO .

In order to introduce a particular method of constructing
densities, we will first present several lemmas. In these lemmas,

G and F will be filters on I .

Lemma 1.11: For any positive integer m, n let Pp(m,n) and

Q(m,n) be corresponding statements such that for each m, n,

P(m,n) = Q(m,n) .



Then we have
(i) for each n

{m: P(m,n) 1is true} € G

= {m: Q(m,n) is true} € G .

(ii) {n: {m: P(m,n) is true} € G} € F

= {n: {m: Q(m,n) is true} € G} € F .

Proof: (i) For each n , by the hypothesis,
{m: P(m,n) is true} € {m: Q(m,n) is true} . Since G is a filter,
we have the result.

(ii) By (i), {n: {m: P(m,n) is truel} € G} E_{n: {m: Q(m,n) is true} € G}.

Since F is a filter, we have the result.

Corollary 1l.12. For any m,n € I , let S(m,n) and T(m,n) be

corresponding real numbers with S({(m,n) =< T(m,n). Then for any d € R,

(i) foreach n €1 ,

{m: a =smn)} €¢G={m: a <Tmn} €6 .

(ii) {n: {m: o = s(m,n)} € G} € F

> {n: {m: o £ T@m,n)} € G} € F .

Proof: Take P(m,n) to mean & =< S{(m,n) and Q{(m,n) to mean

O = T(mmn). By Lemma 1.11 (i) and (ii) hold.

Lemma 1.13. For any m,n € I , let P{(m,n), Q(m,n) and S(m,n)

be corresponding statements. Suppose that for each m,n € I ,



(P(m,n) and Q(m,n))= s(m,n).
Then
(1) for each n , if {m: P(m,n) is true} € G and

{m: Q(m,n) is true} € G then {m: S(m,n) is true} € G .
(ii) if {n: {m: P(m,n) is true} € G} € F and
{n: {m: 9(m,n) is true} € G} € F then {n: {m: S(m,n) is true} € G} € F.
Proof: (i) For each fixed n, by the hypothesis,
{m: P(m,n) is true} N {m: Q(m,n) is true} ¢ {m: S(m,n) is true}. (1)

Suppose that {m: P(m,n) is true} € G and
{m: Q(m,n) is true} € G . Since G is a filter {m: P(m,n) is ture}

A {m: 9(m,n) is true} € G. By (1), {m: S(m,n) is true} € G .
(ii) For each n , let

Pl(n)

= {m: P(m,n) is true} € G ,
Ql(n) = {m: 9(myn) is true} € G , and
Sl(n) = {m: s(m,n) is true}l € G .

By the proof of (i), for each n €I , (Pl(n) and Ql(n))= Sl(n).
Since F is a filter, we can -apply (i). Thus, we have

{n: P, (n) is true} € F and {n: Q, (m) is true} € F
= {n: s, (n) is true} € F .

Hence the proof of (ii) is completed.



Corollary 1l.14. For each m,n € I , let S(m,n) and

T(m,n) be corresponding real numbers and o € R. Then we have

(i) for each n , if {m: & = S(mn)} € G, and {m: 8 < T(m,n)} € G,
then {m: & + B8 = S(mn) + T(mn)} € G.

(ii) if {n: {m: a = S(m,;n)} € G} € F and {n: {m: 8 = T(mn)} € G} €F

then {n: {m: ¢ + B £ s(mn) + T(m,n)} € G} € F .

Proof: Let P(m,n) "o = S(mn)", Q(mn) Z"B = T(mmn)" and
S(m,n) = "o + B = S(m,n) + T(m,n)". By the lemma 1.13, we get the results

(i) and (ii).

Iemma 1.15. Let F be a filter on I which is finer than the
Fréchet filter, F, - Then for any A ¢ 2! and for any N €1,

A€ Foeani JNc€ F . where J_=11,2,3,...,N}.

Proof: Since F is finer than FO , for any N € I , JNCE F.
Suppose that A € F . Since any intersection of two members of a filter

is also a member, A JNCE F . conversely suppose that A N JNc € F.

Any superset of a member of a filter is also a member. Thus A € F .

Lemma 1.16. For any n,m € I , let S(m,n) and T(m,n) be
corresponding real numbers with the property that there exists N € I
such that n > N = S(m,n) = T(m,n) for all m . Suppose that F is

a filter finer than FO . Then

IA

sup{o: {n: {m: o S s(m,n)} € G} € F}

1A

< sup{a: {n: {m: o = T(m,n)} € G} € F} .

Proof: Since for any n > N and for any m € I , S(m,n) =< T(m,n).
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By Corollary 1.12(i), for any n > N and for any real number O , we

have

{m: ¢« =S(mn)} € G= {m: @ < T(mn)} € G .

Thus we have

{n: {m: o

1A

Smn} €6 na’
N
¢ {n: {m: ¢« = T(m,n)} € G} N JNc .

Since F is a filter,

1A

{n: {m: @ < S(m,n)} € G} N JNC € F

(a)

Q

= {n: {m: & < T(mn)} € G} N JNC € F.

By Iemma 1.15, since F is finer than FO , (A) is logically equivalent

to

{n: {m: o =sS(mun)} € G €F

= {n: {m: @« = T(m,n)} € G} € F.
Thus we have,

{a: {n: {m: o =s(@mn)} € G} € F}

¢ {a: {n: {m: o« = T(m,n)} € G} € F} .

Hence

sup{o: {n: {m: @ S S(m,n)} € G} € F}

< supf{o: {n: {m: @ = T(m,n)} € G} € F} .
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Iemma 1.17. Let G and F be filters and t € R then we have
(i) sup{a: {n: a = t} € F} =t .
(ii) sup{a: {n: {m: a st} € G} ¢ F} = ¢ .

Proof: (i) For each n , we have

I if o=t

{n: a =t}

¢ if a > t .

tA

Thus {a: {n: o =t} € F} = {a: a = t}.

Hence sup{a: {n: a st} € F} =t .

(ii) If B=<+t, then {m: B =t} =1 € G and so ,

o

{n: {m: ast} €¢ Gt =1 €¢F. If B>t , then {m: B =t} =¢ §G and

so, {n: {m: B =t} €Gl =¢ § F. Therefore {a: a =t} =

{a: {n: {m: o =t} € G} € F} . Thus we have the result (ii).

Definition 1.18. Let x = (xn) € w (the space of all real

seguences) and let A = (ank), n,k =1,2,3,... be an infinite real

matrix. Then the product BAx denote the sequence (yi), if it exists,

© xR

where y, = Z a,.x. . We denote (Ax), =y, = L a,.x. . We also
iya i479 i Y i473

define c, = {x € w: ax € c} . In Chapter 3, we will write C, for c,.

Definition 1.19. An infinite matrix A is called regular if

c C Cy and for any x € ¢, lim xi = 1lim (Ax)i .
i i
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Let us state the well known Silverman-Toeplitz Theorem [6]

without proving it. Furthermore

Proposition 1.20. An infinite matrix A is regular if and only if

Z P <°°l
(1) szp ; lalj]

(2) lima,. =0 for 3 = 1,2,3,... ,
ij

i

(3) limZ a,. =1.
A
1 3

Definition 1.21. A matrix A = (aij) is called nonnegative if

>0 i, = eoe o
aij > for any i, 12,3,

Note that, for any matrix 2 , Cp is a linear subspace of w .

Forany x,y € ¢, and o € R, A(x+y) = Ax + Ay and A(GX) = GAx .

A
The following proposition introduces our general method of

constructing densities.

Proposition 1.22. Let M= {Mm} be a sequence of nonnegative

regular matrices. Let us denote L = (a? ). Suppose that the
P

ik

following uniformity conditions hold.

(1) For any € > 0 , there exists N such that n > N implies

[+ o]
1-es T a" S1+¢€ forall m.
nk
k=1
[+ o]
i.e., lim % azk =1 uniformly in m .

n k=1
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(ii) For any € > 0 and for any s € I , there exists N such

: m m m
> i i a + ... < .
that n N implies anl + n2 + ans € , for all mn

Suppose further that F is a filter finer than FO and G
is any filter. Let dM,G,F(A) = sup{d: {n: {m: o = (meg)n} € Gy € F},

0 otherwise) is the characteristic

where XA(n) (=1 if n € a,

sequence of A . Then dM CF is a lower asymptotic density.
14 14
Proof: In this proof, we denote dM G F(A) by d(A). For any
1 14
A € ZI M) = oo an (3) = 5 a® Since M is a non-
P MY 00 T %=1 %aiXatd T 2=y m S

o m
ive lar matri z, . conv h M Yy =
negat regula trix =1 anj erges, thus ( mXA)n

?=l aszA(j) is a real number. Hence our definition of d(a) is well

defined.
Suppose that A C B . Then XA(j) = xB(j) for all j . For
@ oo
m m
each m,n, (M = X a . i) < X ) i) = . lemma
e mXA)n n=1 nJXA(j j=1an3XB(j) (MmXB)n By

1.6 we hawve
sup{a: {n: {m: a = (yy ) } € G} € F}
mAh
< sup{a: {n: {m: o = (M XB) } € G € F} .
mB' n
Hence d(a) = d4(B).

Since X¢ = 0 , we have, for any m,n , (me )n =0 . Thus

by Lemma 1.17, with t = 0, d(¢$) = swp{d: {n< {m: o = (me¢)n} € G} € F} = 0.

Next we will show d(I) = 1. Since X1 = (1,%1,1,...) =e ,

(MmXI)n By the assumption (i) there exists N such that

ft
W ™8
]



am =1+ ¢ for all m .

> i i - = .
n N implies 1 € ni

o8

j=1

et S{(mn) =1~¢€, T(m,m) (meI)n and V(mn) =1 +€ . By

Iemma l.16

sup{a: {n: {m: a =1 - ¢} € G} ¢ F}

1A

sup{o: {n: {m: a s My ) } ¢ G ¢ F}
mIn

IA

sup{d; {n: {m: a1 +¢€} € G} € F} .

14

By Lemma 1.17 and the definition of d, 1 -¢€ =d(I) =1+ € . Since

I .
€ 1is arbitrary a(I) 1. Let A €2 , since ¢ € A CI we have,

0 = d(¢) = d@) = 4@ 1.

Let A € ZI , and L be a positive integer. Then
) : =M ( + Y = M + ; LT > -
MmX(A u JL) n XA XJL/ NmXA MmXJL For any € 0 , by the

assumption (ii) of the proposition there exists a positive integer N

L
such that n > N= (M¥_)_ = % a". <e forall m. Let
m"Jp n j=1 B3
T(m,n) = ('M.mxA)n + € , then by Lemma 1.16, we have
: : : = € .
sup{a: {n: {m: o (me(A U JI))n} € G} € F}

1A

sup{a: {n: {m: a = (M Xp), + e} € G} € F}

]

supfa: {n: {m: o - ¢ = (M X)) € G} € F}

]

1A

sup{B + €: {n: {m: B (meA)n} € G} ¢ F}

IA

€ + supi{B: {n: {m: B

I

(,meA)n} € G} € F} .
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Hence d(A U Jy) <€ + d(A). Since € > 0 is arbitrary d(a U JL)' = d(a).

Also d4(a) = d@a u JL) whence d(a) da U JL) .

If A~B, then AU Jy=BUJ;, for some L €TI.

Hence d(a) = 4{(a U JI’.-) = d(B U JL) = d(B).

Next we prove that:

ANB=4¢ =d(a) + da@) =da@aUB).
By the definition of 4 , for any € > 0 , there exist real numbers o
and B such that

da) - <o, d(a) - e <B ,

{n: {m: a = (MmXA)n} € G} €F
and

{n: {m: B

IA

(meB)n} € G} € F.

Since AN B=4¢ , wehave X, 5= X, +X; and so MX., ;g =
Mm('XA + XB) =M X, + #mXB' Therefore (meA)n + (MmX,B)n = (MmX(A U B))n
By Corollary 1.14

{n: {m: o + B8 = (M X)) + (MmXB)n} € G} €F

equivalently,

(me(AUB))n} € Gl €F.

IA

{n: {m: a + 8B

.Therefore o+ BB <daUB) sowe have d{(a) - € + d(B) ""-€<FOL+BSd(AUB).,

Hence d(a) + d(B) < d(AUB) +2¢ . Since € > 0 is arbitrary

d(a) + d®B) = da U B).
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Finally we want to show that d(a) + d(B) <=1 + d(A N B).

For any € > 0 , there exist o and: 8 such that
d(a) ~e<a, 4d(B) - =<8,

. - < 4
{n: {m: a = (meA)n} € G} € F and

{n: {m: B

1A

(M %) } €6 eF.
By Corollary 1.14,
{n: {m: a + B = (MmXA)n + (MmXB)n} € G} € F.

On the other hand Xy *+ XB = Xa So that

UstXansg %X *Xans -
(-}%A)n + (MmXB)n = (MmXA + MmXB)n = (Mm(XA * XB))n = Mm(XI * X(Af]B))n =
(meI)n + (me @3N B))n . By Corollary 1.12(ii), we have

{n: fm: o + B = M)+ (me(A n B))n} € G} € F.

n

By the hypothesis (i) for any € > 0 , there exists N € I such that

n > N implies

s 0]
m
= < .
(MmXI) E an:.| 1 +¢

n j=1

By Lemma 1.16, we have
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o+ B =< sup{8: {n: {m: § = M X))+ X g B))n} € G} € F}
< sup{6: {n: {m: § 51 +¢ + (MmX(A n B))n} € G} € F}
= sup{S: {n: {m: 6§ -1 +¢ < (me('A Nm)g) €6 €ER
=supf{y + 1 +e: {n: {m: vy = (MmX(A n B))n} € G} € F}

1+ e+ suwly: {n: {m: vy = M X2 B))n} € G} € F}

1+ +d(aNBR)

Hence d(A) - € +dB) - <ad+R =1+¢+d(ANB) . Since € >0

is arbitrary we get d(a) + 4(B) =1 + 4(a N B).

Proposition 1.23. Let M be a nonnegative regular matrix

and M={%£ where M =M for each m=1,2,3,... . Let

G={a€2l.1¢al and F be a filter finer than F, . then
dM’G’F(A) = sup{o: {n: a = (M)(A)_n} € F}

for each A € ZI . In this case, we write

d = sup{a: {n: a = (MXA)n} € F} .

M F

Proof: Clearly conditions (i) and (ii) of Proposition 1.22 are



satisfied. Hence dM'G’F is
L3 <<
{m: a = (meA)n} €
©®a = (MXA)n .

Hence sup{ar

0

sup{a:

a density.

Gel¢€ {m:as MYX.) }
S m

A'n

{n: {m: o = (meA)n} € G} € F}

{n: a < (MXA)n} € F}.

Since for each A ¢ ZI ’

18

Example 1.24. Let FO be the Fréchet filter and- M a non-

negative regular matrix, then d, - (A) = lim inf (My.) . In this
M, F A'n
0 n
case we write dM(A) = lim inf (MXA)n , which is called a matrix method
n
density. ([2] Definition 3.5).
Proof: Let

r = dM’ﬁ;A) = sup{a: {n: a =<

Then for any e > 0 , there exists a

¥y - e <o and

Since FO

implies o = (MXA)n . Hence

is the Fréchet filtexr, there exists N

(MxA)n} € Fb}.
such that

{n: a =< (MXA)n} € FO

r - <o £ lim inf (MXA)n

and

n

such that n > N



= lim inf .
r im 12 (MXA)n

Also

n: r+e=onx) } §Fy oo

and since FO is the Fréchet filter, for infinitely many n ,

r+ € > (MXA)n . Hence

+ > 11 i .
r € lim 12f (MXA)n

There fore we have

r = lim inf (MXA)n‘.

n
Example 1.25. Tet

1 0 0 o. ..
1 1

> 5 0] o . ..

M=
1 1 1
3 3 3 %---

be the Ceséro matrix. Then

d (a) = lim 1nfn (MXA)n

]

D n .
lim J.nfn Zi=l anixA(l)

XA(l) + XA(Z) + ... +X A(n)

= 1lim inf
n n
= lim inf ALEL
‘ n n
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where A(n) is the cardinality of the set A N {1,2,...,n}. We write

A(n)

d(a) = lim infn » and say it is the ordinary asymptotic density

([e], [3D .

Example 1.26. Let M be the Cesaro matrix and let

then MNm'-l = (am,) , where
ni

if m=<i =< mn-1

5|

0 otherwise .

Let M_ = MNm—l, G = {1} and FO be the Frechet filter.

A[m+l ,m+n]

Then d (a) = lim inf min where A[m+l,mtn] is the
M,G,FO n

cardinality of the set A 1 {m+l,m+2,...,m+n}. In this case we write

Alm+1l,mtn]

n >0 n and say that it is the uniform

u(a) = lim infn min

density [9].

Proof: By the definition of dM G.F (n)
rvYe 0



dy,c, F®

By the same method

,6,F =

Since for m =21 ,

inf

n
m=1

Therefore we have

A

sup{a: {n: {m: o = (ux,) } € G € Fpl

sup{a: {n: {m: a = (meA)n} = I} € Fo}

1A

supio: {m: a

. o < 3 € }a
sup{a: {n: a = inf > 1 (MmXA)n} FO
of proof as in the previous example

lim i .
im inf inf (MmXA)n
n m21

x
lim inf inf Z am,xA(i)
n m2z1i=1 ™

m+n-1 1
lim inf inf z = X (i)
. n "aA
n m=1 i=m

lim inf ing Almemm-1]

n
n m=1

Alm,m+n-1] ¢ {1 2

=}
n nl nl .‘°Im 14

alm, m+n-1] , Alm,m+n-1]
—d——"= pmpipn

n
m=1

, A[m+l,m+n]
= mn ————

n
m=0

(M x,)  + for all m € I} € Fo}

21



A[m+1l,m+n]

dM,G,F(A) = lim inf min -

n m=20

The last two examples show that two of the important densities
which have fundamental differences (see [9]) are :subsumed under our

general density in Proposition 1.22.

Example 1.27. Let X be a zeroclass and F ={I -a | A€ X}.

Note that F is finer than FO . Let Mm be the identity matrix for

all m . Let G = {I}. Then
1 if a% € X

,6,F@) =

0 otherwise .

We write dM,G,F(A) = dX(A). (If XO is the set of all finite sets

of I , then dX is called the discrete density.)
0

Proof. Since (meA)n = XA(n) , we have

{m: a = (MmXA)n} =

¢ if o > XA(n)

Thus {n: {m: o < (MmXA)n} € G} = {n: a = XA(n)}. Therefore
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we have dM,G,F(A) = sup{a: {n: g i‘XA(n)} € F} . since

¢ if 1 <ao
{n:OLSXA(n)}= A if 0<a=1

I if ao=0,
it follows that

{a: o =1} if a € F

{o: {n: a = XA(n)} € F}

IA

{o: o s0} if aé F.

Hence

o if A ¢ F

1 4if 1 -a¢€X

0 otherwise .

Now we want to express a (a) by a formula similar to the
M,G,F

definition of 4 .

Proposition 1.28. Suppose that M, G and F are defined as

in Proposition 1.22. Then we have

EM,G,F(A) = inf{af {n: {m: o = (meA)n} € G} € F} .
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. (¢ .
Proof: Consider dM,G,F(A )  first.

IA

dM,G,F(Ac) = sup{o: {n: {m: o (meAc)n} € G} € F}

A

sup{a: {n: {m: a (M (X, - xA))n} € G} € F}

IA

Sup{d: {n: {m: a (MmXI)n -\(MmXA)n} € G} ¢ F}

By the condition (ii) in Proposition 1.22 and Lemma 1.16, it follows

that for any € > 0 ,

sup{a: {n: {m: a =1 -¢ - (meA)n} € G} € F}
< gi;p{a: n: {m < Y . y } G} € F}
< supf{a: {n: {m oS (MX) ‘%ﬁyn'é Gr € F}

< suwpf{o: {n: {m: a1 +¢ (meA)n} € G} € F} .

Thus

-

tA
1

- ¢ + suf{o: {n: {m: a (meA)n} € G} € F}

LA

C
6,37

N
IA

1 +¢ + suwia: {n: {m: o = - (meA)n} € G} € F} .

Hence
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1 ~-¢ - inf{o: {n: {m: o = ('MmXA)n} € G} € F}

[
=< dM'G'F(A )

S 1+¢ - inf{o: {n: {m: o = (MmXA)n} € G} € F} .

Since € > 0 1is arbitrary,

aM'G,F(AC) =1 - inf{o: {n: {m: o > (MmXA)n} € G} € F} .

Consequently,

EM'G'F(A)-= inflo: {n: {m: oz Uy ) } € G} € Fl.

Iemma 1.29. For any m,n € I , let S(m,n) be the corresponding

real number. Iet G, F be filters., Then we have

sup{a: {n: {m: @ = S(mn)} € G} € F}

= sup{d: {n: {m: @ < S(m,n)} € G} € F} .
Proof: For any O € R, O < S{(m,n) >0 =S(m,n). By Lemma 1.11(ii),

{n: {m: a < s(mn)} € G} ¢ F={n: {m: a <sS(m,n)} € G} € F.
Therefore we have

{o: {n: {m: a < s(mn)} € G} € F} < {a: {n: {m: &« = S(m,n)} € G} ¢ Fl.
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Thus

sup{a: {n: {m: @ < S@mn)} € G} € F}

< sup{a: {n: {m: o = s(m,n)} € G} € F} .

Conversely, let € >0 be fixed, then for any o € R, it follows

that @ = S(m,n) = - € < S(m,n). By Lemma 1.11 (ii), we have

sup{a: {n: {m: o = S(m,n)} € G} € F}

1A

sup{a: {n: {m: @ - € < S(mn)} € G} € F}

]

sup{B + €: {n: {m: B < S(mn)} € G} € F}

]

€ + supiB: {n: {m: B < S(m,n)} € G} € F} .

Since € 1is arbitrary,

sup{a: {n: {m: ¢ = sS(m,nn)} € G} € F}

< sup{o: {n: {m: o < s(mn)} € G} € F}l.

Thus we have the result.

Remark 1.30. By Lemma 1.29, we have

4y, g, FB sup{o: {n: {m: a < (meA)n} € G} € F} .

It

aM,G,F(A) inf{a: {n: {m: o > (meA)n} € G} € F} .
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e e s I . .
Definition 1.31. Let d: 2© > R be a lower asymptotic density,

I

we say that d 1is complete if, for any A €2, d(a) = d(a). That

ol

is, every set in I has natural density with respect to d or 27 = nd .

Definition 1.32. An ultrafilter F on a set X is a filter such that

there is no filter on X which is strictly finer than F .

Proposition 1.33. Let M, G, F and dy g p be defined as in
Proposition 1.12. If G, F are ultrafilters then dy g g 1s a complete
density.

Proof. For A € ZI , let

K= {a: {n: {m: a = (meA)n} € G} € F}.

By Lemma 1.11, if al €  and a2 = al , then az € K. Since K

F(A) =r =1, it follows that
K=1{x €¢R: x<zx} or K=1{x €R: x<7r} . Thus

o .
K = {x € R: x = r} or k© = {x € R: x > r} . Hence

r = inf Kc

IA

= inf{a: {n: {m: o

(M x,) } € G} ¢ F}©

IA

= inf{a: {n: {m: o

(M x) } €6} EF}.

Since F is an ultrafilter, for any D € 2T , D § F=p° € F. fThus

we have

r = inf{a: {n: {m: a = (MmXA)n} € GI° ¢ F}

1A

= inf{a: {n: {m: o

(MmXA)n} ¢ G} § F} .



G is also an ultrafilter, so that we have

2
I

inf{o: {n: {m: a < (Mm)(A)n}c € G} € F}

inf{a: {n: {m: o > (MmXA)n} € G} ¢ F}

By Remark 2.30, r =dy . :(8) , andso dy o @) =3y o pA) .

Corollary 1.34. (1) If M is regular matrix and F is an

ultrafilter then d () = sup{a: {n: a = (MXA)n} € F} is complete.

(2) et X be a zeroclass, G = {I - a:2¢€¢ X} . If G iS ultra-

filter, then

1 if I ~-ac¢€¢X

dX(A) =

0 otherwise
is complete.

Proof: By Proposition 1.23, it is obvious that (1) is true. By

example 1.27 it is obvious that (2) is true.

Example 1. 35, Let Mm be defined as in Example 1.27. Let

28

G = {1}, and let F be any filter finer than the Frechet filter. Then

dM,G,F is not complete.

Proof: By Example 1.27 we have

A[m+l,m+n]} ¢ £}

dM,G,F(A) = sup{ot: {n: o < min -

mz0
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- . s Alm41l,m4n ]
dM,G,F(A) = inf{oa: {n: ¢ 2 max -———;—————4 € F} .

m=0

2n,22n+l]

Let A = U[2 . Since for each n ,

+1 , m+
Alm+1,m+n ] =0  and Aln+l,mtn ] -1,
m=>0 n m=>20 n

i fol - = < =— . i
it follows that dM,G,F(A) 0 1 dM,G,F(A) Hence d 1s not

complete. Since F may be taken to be an ultrafilter, this example
shows that, in general we do not get a complete density if G is not

also an ultrafilter.



CHAPTER II

LACUNARY SETS
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As mentioned in the Introduction, the family of lacunary sets

arises naturally in sequence space and combinatorial studies. In this

Chapter we introduce several natural subclasses of the lacunary sets,

show their inter-relationships and consider their "fullness".

First we introduce several types of lacunary sets.

Definition 2.1. Let the elements of a set A = {ai} ¢ 21 be
represented by an increasing sequence (an) and let (dn) be the

difference sequence, that is, dn = an+l - an . Then we define the

following:

(1) L=1{ac¢ 21': 1im d

==} U Xg » where Xq is the class of
n

n

all finite subsets of I ,

@ L ={a€l|a sd  , foreach n}U Xo.'
(3) L,=«(L N{nce ot ZaeA'i ==PU x,

(4) Ly = {AQE L] d <d,, . foreachn} Uy, ,
(5) LMi ={ael | d = d +i, for m=n} Ux, .

A set A € ot is called a lacunary (rasp. LT lacunary)

set if A is a finite union of members of L (resp. LT)Q Note also

that LMO = Ll .



Definition 2.2. Suppose that A is a family of a sets. Let

A={B| B C A, for some A € A} , the hereditary closure of A , and

let [A] be the family of all finite unions of all members of A .
We prove a simple proposition.

~ /\
Proposition 2.3. For any family A of sets, [A] = [A].

Proof: For any B € [A], B = B, Us,. U

... UB for some
2 n

B, €A ,i=1,2,...,n.

For each i € {1,2,3,...,n}, there exists Ai ¢ A such

that A, 2B, . Then B=B_ UB. U ...UB <ca U a_ . U...Un
i i 1 2 n 1 2

n
- 2N\ ~ AN
Since A, Ua U...Un ¢ [A], B€ [A]. Hence [A] C [A].
N

Conversely suppose that B € [A], then B € A where A € [A].

Then A=2a UA U... UA where A, €A . Iet B, =B a, , for
1 2 n i i 1

i€ {1,2,...,n}, then B, €A, and B, ¢ A for i € {1,2,...,n}.

~ SN ~
Hence B = B, U B, Uu...U B, € [A]. Therefore T[A] c [A] .

Now we proceed to investigate the fullness of the various

classes of lacunary sets just defined. We begin with a definition:

Definition 2.4. A class & c 27 is full if,

(a) U{s: s € &} = I (covering);

(b) s € & whenever S C T € for some T (hereditary); and

() 1if (tk) is a sequence of real numbers and zkés 'tk'< © for

(o]
each S € ¢ , then zk=l lt

[ <
k

e
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I
Proposition 2.5. If a class A C 21 is full ana [A] 27,

then [A] is a full zeroclass (see definition 1.7.).

Proof: Suppose that A is a full class, for each a € I , since
UA = I, there exists S € A such that a € S . Thus {a} ¢ S. By
the hereditary property of full classes, {a} € A, since A contains
any‘singleton, [A] contains all finite sets. Clearly [A] is closed
under finite unions. By the hereditary property of full classes, we

have A <A . Thus [A] = [A] = TAL.

Hence [A] also has hereditary
property. By the hypothesis, [A] # ot implies I ¢ [A]. Hence [A]

is a zeroclass.

~

Proposition-2.6. L, L., L. are full classes. (Note that L = L)"

Proof: Since L2 C Ll cL and L, Ll and L3 are hereditary, L,

~
a H

full would imply that L and L, are also full. Hence we prove only that

~

L2 is full. That L2 is covering is obvious. We show L2 has property

(c) of definition 2.4. Let (tk) be a sequence of real numbers for which

0

z }tkl = ® . For each n € I, there exists b € I such that z ]t | =
n
k=1 (b_+2"x)

°

We will construct two sequences (Mn)n > 27 and (Np)p > 1

in I with the following properties:

< < =
Nn Mn+l Nn+l (n z 1) (1)
— n
M b mod 2 (nr = 2) . (2)
n n
_ n
N ZM mod 2 (n = 2) (3)
n n
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= n c =
Mn+l = Nn mod (2 +1) (n = 1) (4)
M >b (nn = 2) (5)
n n
z |ta| > 1 (n 22) (6)

5 §> 1 (n = 2) (7
; 2n
a € 8% [mM,n ]
n’ n
where B° = {a,a+s,a+2s a+[9:éﬂs}
[a,b] ’ ’ reoey s °
Take Nl = bl and suppose that we have constructed two
sequences (M)™ 1 ana )™ such that (1) and (4) true £
q ) n=2 o) =1 Suc a an are true for

n=1,2,...,m-2 and further (2), (3), (5), (6), (7) are true for
s m m . ,
n=2,3,4,...,m1 . Since 2 and 2 +1 are relatively prime, by

the Chinese remainder theorem there exists xo € I such that

x. IIb mod 2m
0 m

(*)

_ m
=N .
X, 1 mod(2” + 1)

X5 mod 2m(2m + 1), x is also a solution of the system

[

As long as x

(*). Therefore we can take Mm € I such that

M =b mod 2",
nm nm
M =N mod (Zm + 1),

m m-1



Since

(o]

z:k=l

|t

M >b and M > N .
m m “m-1
Z:Ll lt I = o and Mm = bm mod 2m we have
® + 2™%) :
m
. o 1
o i = © _ By the integral test, Zk—l —_———— =
(Mm+2k) - Mm+2mk

Now we can take Nm € I such that

and

]
m
[vy)

2m

B
[Mm,Nm]

This completes inductive definitions of (Mm) and (Nn). Let

® 2k+l 2(k+l)
k=1 M M1 N1
Clearly A € L2 and ZaGAlta] = o

~

Proposition 2.7. The class L., is not full.

3

~

A €L

Proof: TFor the real sequence (}—_)°° , L

3

o

= ® _ For any

oo
k k=1 k=1

. then there exists B € L3 such that A € B . Suppose that

34
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B. is expressed as a sequence (bn), and let dn = bn+l -b for

n=1,2,... . For n=2

: n{n-1)
= ces + > " + ... + n-l = ———— |
bn bl + dl + d, + dn—l 1 +2 n >

So that we have

[o0]
§ ofs ] fst. g o .
aén 2 e b bl n=2 n(n 1)

~

Hence L3 is not full.

We next show that if we perform the hereditary closure on LM

1
we get all the lacunary sets.
Proposition 2.8. L =L .
M
1
Proof: Let A ={a,} €L . Let N _=1. Since limd = ,
i 0 n n
2
for any k = 1 , there exists Nk > Nk—l such that dn >k whenever
>N . i = =
n " For each n with Nk n Nk+l '

= an + rn , Wwhere 0 =r <k .
So that an = dn -r > k2 -k = (k-1)k . Hence q, > k-1 and

dn = (qn - rh)k + (k+l)rn . Let a = (anl,anz,...,anqn) be the
finite sequence (k,k,...,k,k+1,...,k+1l) such that there are (qn - rn)
many k's in the first part and rn many (k+1)'s in the second part.

Let

(em) = (al,a fO o)

I
Q

rees O 1,.,°,a yeoo) e

lql,a21,a22,..q,azqz,.,g,an nqn
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Note that e, = ej + 1 for i = 3j but, if

Nk = n1 = n2 = Nk+1 then ei = ej - 1 when ei is the last term of

a and e, 1is the first term of « - Also, clearly
j ‘n2+l

= + + ...+ . i =
dn unl un2 unqn Letting b1 a; and

= + + ... + >
bm al el + e2 em—l where m 1l , we have

B = {bm: m €I} € LMl (and in general B § LMO).

For any a €4,

= + ..
an al+d1 d2+ +dn-l
é} é? é?
= a, + a,. + a,, + ... + a .
-1 i=1 1li i=1 2i ;=1 R
=Db €B
m
where m=1 + q1 + q2 + ... + qn . Hence A C B . Therefore
LcLl, .
M
1

~ ~

Conversely since L =L and L,Z ¢ L wehave L, ¢ L = L.

" "

Note that for i =22 , L c Ll c L , thus we conclude that-

~

We now proceed to show that L1 = LM ; L . Actually, this
0

result is included in the stronger Proposition 2.28 below. We present
it here, however, in order to see the method of proof which is different.

Let's introduce some definitions and lemmas before we prove Ll ; L.

Definition 2.9. (1) Let a,xl,xz,,o.,xn be positive integers
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i = + + ... + = < ... = .
with a xl x2 xn and xl x2 xn Then
(xl,xz,...,xn) is called a partition of a and n is called the

length of the partition (xl,xz,...,xn).

(2) ILet (al,a ..,an) be any finite sequence of positive integexs

2"
1 r reessyg r r resayg BN goeeyg
and et (v))/¥py Y1k ¥21¥22 Yok Yn1 Yo ) Pea
1 2 n
nondecreasing sequence such that (y ,y ,...,y.. ) is a partition of a, .
il i2 lki i
Then ) is called a (monotone)

(Yll,ylz’"'“’ylkl"°"Ynl""'Ynkn

partition of the sequence (al,az,.;.,an).

be a sequence. Then the finite

[ee]
Definition 2.10. Let (x )
n n=1

subsequence (xs,xs+l,,..,xt) is called a part of the sequence

Lemma 2.11. Let (al,az,...,an) be a strictly decreasing
sequence of prime numbers with n = a - Then there does not exist a
partition of (al,az,,..,an) such that its first term is larger

than 1.

Proof: Suppose that there exists a partition

... e, i > 1.
(Yyqr¥ppreeer¥yg reeer¥ppreeee¥y ) of (aj,a5,...02)) with y), > 1

1 n
- < . .
Assume that ki _l for some 1 n . Since y(i+l)l is a member of
L < .
the partition of ai+l' we have y(i+l)l = ai+l . Since

(yll,...,ylkl,...,ynl,...,ynk ) is nondecreasing,
n

a, =

= =< . i i BN S i
i Yil y(i+l)l ai+l This contradicts that (al‘ | an) is

2

"a strictly decreasing sequence. Therefore, for any i = 1,2,...,n~1, ki >1.
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v < 1 = - 1
Clearly yil yili for each 1 1,2,...,n=1, since
i = Yt otee ety =KoY i i
otherwise, ai 1Yo i . kl i1 which contradicts that
. 1s 5 umber. H .. < = )
al is a prime n er ence yll yi . y(l 11 for

i=1,2,...,n~1. Therefore 1 < yll < y21 < v.o. < ynl =< an and

thus n < Y1 = a which contradicts the hypothesis an =n.

P iti 2.12. .
roposition 2.1 Ll ; L

Proof: Let P, <p, < ... <p <... Dbe the sequence of prime
numbers. Let {an} be a sequence of natural numbers whose difference

sequence (dh~= a1 an) is given by

al= e , ceey et , e et Doree-
{ n} {Pk. ,Pzr?l Py’ P3Py ,'pkg P(k,-1) Py }
N S N

—

kl k2-2+l : k3-8+l

where k3-8+l > Py s for each ¢ = 1.

By the construction lim d, == . Thus A € L. We want
~ n
to show that A Ll .

Suppose that A € Ll and thus A C B for some B € Ll .

Let {em} be the difference sequence of B = {bm} so that e, Se

i+l
for all 1 . Since ACB , for any n , an = bf(n) for some function
£ I = - = - = + + ool + )
en and 4y =a 78 T Pequy T Pem® Pt e ©£(n+1)
- (b, + e, + } oo So

vee T =
17 % Cem)’ T Crmy+r Y ey t T C£(n+1)

that (

ooy € ) 1is a partition of dh . Since

Ce(nr+1’ S£(n)+2’ £ (n+1)
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lim e =% , e > 1 for some n . Suppose that
m

m £ (n)

(Pkg'Pkg—l,...,P8+l'P8) is the part of the seguence {dn} such that

(pkglpkg_ll---lpg+llpg) (dm’dm+l"."G'dm+(kg-=5))' and ef(m) > l b
Then (Pkgrpkz_ll~--lpg+llpg) (dml dm+ll"'l m+(kg-5)) is
iti i o e Feoar
partitioned into (e .\ jr---r€ciiay 'ef(m+k8—5)+l ef(m+k8-8+l))

which is a contradiction by previous lemma. Therefore A § Ll .
Next let's prove that L2 ; Ll . First we will prove some
lemmas.

Lemma 2.13. Let  p > 2 be a prime number and let (al,az,...;ap)

be the sequence with a, = p, for all i =1,2,...,p . Let

Y wr . A .
(yllfY12,~--,jlkl,Y21, ..... '12k2""’yplyp2"'"'kap' be a monotone
partition of (al,az,...,ap) with yll > 1 . Then kP = 1 and
ypl =p .

Proof: Suppose that kp > 1 . Then yPk <p and; since p is
p

a prime, yPl < ypk . It follows that ki > 1 for all i < p since
p

if ki = 1, then yil =p > ka , which is a contradiction. Further-
‘ p

< . - . .
more, yil yik. since ai P 1is a prime. Therefore

1

1 <-yll < Ysq < ... <y 1 < p which a contradiction.

b
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Lemma 2.14.

2

P
+

lin  — r211 ~=0

> @ +po o+ ...

n Py ¥ By Foee + R

where, of course, pn is the n-th prime number.

Proof: By the prime number theorem
P
lim I =1 .
n n énn
P P
So that lim = 1. It follows, for any k € I, that 1lim = 1.
n pn+l n Pn+x
Hence
p2
T n+1
lim 3 3

n->® p, + p2 + ... +p

n
1i

2
pn—r

lim
n->® p_ + p2 + ...+ p2
} 1 2 n

2

P
< - n-k "
= lim Tl

2
foe]
n > (k+1) pn-k

since k is arbitrary the lemma follows.

Iemma 2.15.

© 2(p2 + p2 + ... + p2)
1 1 2 m
(1) ) p_ Inm 7 2 3 z 5 ®
m=1 “m 2(pl + P, + ... + pm_l) + Po
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© 2(p +p2+. . +p) +p
1 1 2 m+1l
(2) z — £n <
m=1 ¥m 2(p2 + P2 * + PZ)
1 5 n

Proof: The proof of (1) and (2) are similar. We prove (2) only.

We know 1lim (In(l+x))/x = 1. Now using this and

x > 07t
lemma 2.14, we have
© 2(p2+pé+...+p2)+p2
1 p) 1 2 m m+l
S = 2 — U
m=1 Pm 2(2+ 2+ + 2)
pl Pz .o pm
=5 T oma+ mtl )
1 2 Tt m
+
=o(§ = mrl ) .
m=1 Fm 2(p2 + p2 + ...+ p2)
1 2 m

Since 1lim p
m = ®©

m+l/pm =1

@ p
) — 5
m=1 p1 + P, + ... + P

0
]

m

2 2’
+ ... + In

s 2
0(2 > m 4n m
m=10 1 + 1

[00]
fn n
o( ) 5
m=10 m

[e¢]
2
Since 2 (fn m)/m converges, S is finite.
m=10
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L .

Proposition 2.16. L2 ; 1

Proof: We construct A € Ll such that A § L2 . Let

{pl <vp2 < ... <p_ < ...} be the set of all prime numbers. Let

m
Dm = (pm,pm,...,pm) be the sequence of 2pm repetitions of pm .
Let {dh} = (Dl,...,Dm,...) and finally let A = {am} cI bé the
sequence such that an =3 + dl + ...+ dn—l for n = 2 where al = 1.

Clearly A € L, €L . Suppose that A € L, so that ACB= {bu} ,
where B € L2 . Let {eu} be the difference sequence of B . Since

B € L , there exists N such that for any k 2 N , ey >1. Let

. - <
us consider D the m-th part of {dn} such that b, =a .

Consider the following diagram:

D
m
pm pm pm pm pm
\ NN NN\, Ny
& | | L} v \J 1 [ § l
a
by 2m Bm a0 (m+l)

Clearly Om = 1 + 2 (pl + Py F et pm—l) and Pfm =om + P, -

Since A C B = {bu}, some part of {eu} is a partition of the m~th
part D_ of {dn}. (See the proof of Lemma 2.11). Suppose that

(e is the partition of Dm . Then bN =a_=Db .

e .
s’ s+l ’et) om s

Thus N = s and eS >1. By Lemma 2.13, if

< < < = .
agy = b, < b, 24 (m+l) then e, pm (3)



Since {eu} is a nondecreasing sequence if

< h <« < <
qy (1) = Cu S aB(m+l) then P S €SP - (4)
Let
= ‘. < ¥ =<
B_ {x € B: ., < X aBm}
B* = {x €B: a, <x= }
m Rm T 7o (m+l)
for m=1,2,3,... .
Then from (3), we have
P
 Eep 2
bép* b =1 %Bm kpm
m
Pn
< [ —-——%—xp——- dx
a Y
0. Bm ~m
a
= 2 gn 2t | (5)
Pn Bm
From (4) we have
b
R S e —
BE€B .. k=1 2o (m+1) "
P
< f N S
aOL(m+l) XP
0
1 aB(m+l)

= - fn — (6)
pm a()l.(m+l)



44

Now we have

b€B b€s béT
[s0] oo
where S = U B and T = UB*. Let
m m
m=1 m=1
— = *
51 o U Baer © T2 o E b Bn -
om = bN Om ~ N

Then S - S and T - T are finite. Thus for some real M

1 1
EITTRNE I
b€B €S, ber,
1 1
S R A S
0 =N bfB & > N beép*
1] n+l m m
By (5) and (6)
+ +
Y %SM+ 7 2 ta Z(ml) 7 Lo B (mt1)
bE€EB o =b_ Pm Bra o >b_ Pn o (ma+1)
m N m N
© (5] a
<M 2 —l—Zn Z(m+l) + 2 1, B (m+1) ]
m=1 Pm Bm n=1 Fm o (m+1)
By the construction of aam, aBm , WwWe have
2 2 2
aum =1+ 2 (pl + p2 + ... + Pmrl) ’

)
|

2 2 2 2
Bm—l+2 (pl+p2+.“+pm_l)+pm.
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Therefore by Lemma 2.15, we have

' 2 2 2
o 1 +2 + + ... +
P Lem+ § Lo F1 " P Pn)

b D 2 2 2 2

: = + + ... + +
b€B m=1 “m 1+ 2(pl P, pm_l) P

2 2 2 2
® 1+ 2(p, +p,+ ... +p) +p
+ E L Zn 1 2 L mtl < ®

'o

m=1 "m l+2(pi+p2+...+p

Proposition 2.17. [L_.] ¢ [L

Proof: Obviously [£3] c [fl] . Let D={aczI: § §-< w},

~

Then obviously D = [D]. Since L3 ¢ D (see the proof of

Proposition 2.7), it follows that [L3] c [P] = D. since L2 is full

(Proposition 2.6) there exists X ¢ Ll with Z i- © ., Therefore
x€X

X¢D and so X ¢ [E3] . Thus [I3] g [El]..

The following lemma will be used to prove that

[LM ] ; [LM ] for 0 =i <4 . (Compare the remark following
i 3

Proposition 2.7).

Lemma 2.18. Suppose that 4, k, s, t, u, v, 1 and j are
2
integers such that 4 >k~ +k, 0=i<j<k, 0=s=k,

l1=v=k and 1 =t =k , then
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(1) v(a+j) = t(@+j)+i = v =t and v(d+j) = t(d+j) ,

(2) vdstad+i=v =t and vd = td ,

(3) v(d+j) = s(d+j)+td+i = v < s+tv and v(d+j) < s(d+j)+td ,
(4) v(d+j)+sd = td+i = v+s < t and v(d+j)+sd < td ,

(5) vd = sd+t(d+j)+i = v = s+t and vd < sd+t (d+j),

(6) vd+s(d+j) = t(d+j)+i = v#s =t and vd+s(d+]) < t(d+j).

Proof: The proofs of (1) and (2) are similar so we prove (1)
only: If v >t then v(d+j) = t(d+j)+d+j > t(d+j)+i contrary to

hypothesis, thus v =< t and clearly (1) holds.

The proofs of (3) and (4) are similar, so we prove (3) only:
If v = s then the conclusion clearly holds. Assume v > s then
t.>0 . If v = s+t then v(d+j) = s(d+j)+t(d+j) > s(d+j)+td+i con-

trary to hypothesis. Hence v < s+t and

v(d+j) = s(d+]j) +t(d+j)-(d+j)

s (d+3) +td+(t-1) j-d
< s(a+j)+td . (Since (t-1)j - 4 <O0).

The proofs of (5) and (6) are similar and so we prove (5)
only. Since vd = sd+t(d+j)+i is equivalent to -i-tj = (s+t~-v)4d ,
we have -4 <-k—k2 < -i-tj = (s+t-v)d. Thus we get =1 < (s+t-v) or,

equivalently, Vv = s+t.
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If vd = sd+t(d+j) then we have (v-s)d = t(d+j). Since

1=<t,1=d and 1 =3 we have v-s > t which is a contradiction.

Therefore (5) holds.

Proposition 2.19. If 0 <4i < i, then [LM ] g [LM 1.
i ,
Proof: Let

(m3+j,m3+j,...,nﬁ+j), m repetitions of m3+j ,

L =
m
3 3 3 L 3
R.In = (m,m,...,0) , m repetitions of m ,
and
B =(L,R,L,R,...,L ,R), m repetitions of L , R .
m m m-'m m m m m' “m

Let {dn} = (B/By,.-+/B_,--.). Let A= {anin € I} such that

a =1+d4 + ... +4d for n =21 . ILet
n 1 n-1

[am,an] = {ar €A |mszr=n}

and

(a_sa) {ar €alm<r<n}l=|[a

w1’ %n-1

Clearly A € LM .
J

Let us consider the m~th part of A corresponding to Bm

(diagram is actually illustrated below).

L R L R L R
m m ™ m m o

- . . o e I o ————— &

3o(m,1) 2Bm,1) 2a(m,2) 2B(m,2) 2am,3)  Zalmm “Bm,m Zo(m,m+l)
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2

2
Here a(m,t) =1+ 21 +2° + ... + (m.-l)2)+ 2(t-1)m for 1 =m and

1=t=ml and B(mt) = o{mt) + m . Note that a(m+l,l) = o(m,m+l).

Let

],AO = ( )

A = [ ,mt aoc(m,t) %8 (m, t)

Lt % (m, t) 2B (m, t)

0
]r A =

rmt = ¥ (m, t) 2o (m,t41) "

ARmt = [aB(m,t)'aa(m,t+l)

Suppose that X = {xq} € LM and X C A . We want to show
i

that if m3>m2+m and j < m then

lx 0 a =2 . (*)

-

Let {yq} be the difference sequence of {xq} and f be

the function on I such that xq = Then £(s+l) - £(s) equals

af(q)

the number of dn's in the sum vg = + +

deg) T 9(gy+1 T oo T deseny -1

At first we will consider the following six cases which will be used

in proving |x N ARmml =2
(1) If aoc(m,t) = xq < xq+l < xq+2 = aB (m,t) i.e., three consecutive
elements of X are in ALmt , then since X € LMi and yq = yq+l + i,
we have

b'4 - X = - X + i,

(L) T e S 2f(qe2) T Pe(qen T 1

i
E]

(E(g+l) = £(gl(d+j) = (£(g+2) - £(g+l)) (d+j) + i, where 4
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By the previous lemma, case (1), we conclude that

Fe - < -
£ (g+1) f(g) = f;(q+g/‘) f(q_+l? and yq = Yq+l

- , < < v . .
(2) Similarly, if xq xq+l xq+2 are ;n the interval A , then

we apply the previous lemma case (2) and we get

f(g+l) - £(q) = f(g+2)- f(g+l) and Yq <y

g+l
' < < < < < hat i
(I Ay me) %G S Fe1 T ) < Xgez T amesny Rt s
xq, xq+l are in ALmt and xq+l is in ARmt . then, since

- X =x - X + 1 , it follows that

xq+l q q+2 g+l
+ i

el T %E(@ T PE(gr2) T PE(qHl)

= %m0 " %) T e ) T B@me) T

which is equivalent to

(£ (q+1) = £ (@) (d+3) = (B(m,t) - £(g+l)) (d+3) + (£(gq+2) ~ B(m,t))d +1i.

Now we apply the previous lemma case (3) and we get

f(g+l) - £(q) < £(g+2) - £(g+l) and so Yq < Y41

(4) similarly if

< < = < =
Sam,t) - Xg " %Bm,t) T Fgrl T *g T Za(m,t+l)
that is, xq is in ALmt and Xq+l R xq+2 are in A e then we

can apply the previous lemma case (4) and get
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f-(q+l) - f(q) < £(g+2) - £(g+l) and Yy < Yos1 -
(5) If

< < < <
B(m,t) q - Fg+1 T Tam,t+l) T Fg+2 T 28 (m,t-1)

- ) . .
where t =< m , that is, xq and xq+l are in ARmt and xq+2 is

in ALm(t+l) , then we have

G (q+l) T %) S 8 (qe2) T Zg(grn) T i

T qmt+l) T PE(qr) T %(gr2) T Pa(m,t+l)
equivalently
(f£(g+1) - f£(gq))d = (a(m,t+l) - f(g+l))d + (f(g+2) - G(m,t+1))(d+j) + i.
We apply the previous lemma case (5) and we get

- < - ' <
£f(g+1) flg) = £(g+2) f{g+l) and 4yq yq+1

(6) Again, if

< X

<
x g+2 = %8 (m, t+1)

< < <
% m,t) - *g T %om,t+l) T Fg+l

then we can apply the previous lemma case (6) and obtain

- < - <

Now assume that |[X 0 A 2 3 and so there exist three con-

R |

secutive elements xw, xw+l’ Xw+2 of Xin A . By the case (2)
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f(w+l) - flw) = f(w+2) - f(w+l)
and so

2(F(wtl) - £(0)) S £(wtl) - £(w) + E(wb2) - £wel)

fw+2) - £(w) S m .

1 4
Thus £(wtl) - £6) S 3m and y_ = (£(wtl) - £E@)d S 7 md =3m"
the half length of A .
W i e g < >
e claim for any u w and xu > a&(m,l) , we have
<
Y, =Y, ~

Proof of claim: Since X.€ LM , we have yu = yw+i. Thus
i
let Y, = t(a+j) + vd and Y, = qd . Then we have t(d;!-j) + vd = gd+i.

If t >0 (resp. t = 0), then we apply the previous lemma

case (4) (resp. case (2)) and so we get Y = Y, -

By the above claim we conclude that for any u <w and

1 4 1 1
> < < = = = < =
xu > aon(m,l) we have yu = yw =3 m > length of ARmt >
length of ALmt for t=1,2,...,m+1l .
Hence, for any t, ARmt and ALmt each contain at least
two elements of X .
Therefore we conclude that:
B ase (3) and (4), if x € 0 and x € AO
Y C . ’ g © Pome q+2 © CRmt

then £ (g+l) - £(g) < £(g+#2) - £(g+l) .
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. 0
By case (5) and (6), if *g €A and X 42 € AL (e+1)
then f(g+l) - f(q) = £(g+2) - £(g+l).
By case (1) and (2) if Xq'xq+l’xq+2 € ALmt or

€ A then f£(g+l) - £(q) = f£(g+2) - £(g+l).

xq ! xq+1 ,xq+2 Rmt *

Now if we let xS be the element of X such that
q

blq € AO and x € Ap for g=1,2,...,m . Then we have
sq sq+2 Rmg

for g=1,2,...,m1,

+ 1) - f(s;q+ )

1

f(sq+l) - f(sq) < f(sq+l

There fore we get the sequence of inequalities
1 = f(s,+1) - f(s.) < f(s,+1) - f(s,) < ... < f(s_+1) - (s )
1 1 2 2 m m

SfWﬂ)—fW)S%m.

Since there are m-1 inequalities, we get a contradiction. Therefore

Iz n ARmm' >

Finally we show that A § [LM ]. Suppose that A € [LM ]
i i

and so A=X UxX U...UZX where X €L . Since
1 2 n S M

i
n 3 2
= i > > 5
A 'U (A n Xi)’ if we take m m + m and m j , we have
i=1
n
- < <

m= |a I_izl la, N x| =2n.

Since m can be arbitrarily large, we get a contradiction. Hence

A ¢ (L, 1-

1
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Corollary 2.20. For all i =0 , [LM ] ; L] .
L :

In particular [Ll] ; L] .

W 1elLl.

Proof: Obviously, by Proposition 2.19;'[LM ] ; [L
i i+l

Propositién 2.21. [LZJ ; [Ll] .

Proof: Obviously we know [Lz] C [Ll] . We want to show that

a={n’} ¢ L, but 2§ [L)].

Suppose that A € [L2] then there exists an infinite
X € L2 such that X C A . Then we have « = 2 (/%) = 2 (l/n2) < o,
x€X
which is a contradiction.

~

Proposition 2.22. let G = [Ll], then Ll ; G .

Proof: Let A {nz} and B = {n“+1}. Then

AUB € [Ll] c [El] G. But AUBE¢L = L > El . Therefore

ngG.
We will also prove that [Ll] ; G . First, let's define

some terms and prove a lemma.

Definition 2.23. Let {an} = A CTI Dbe a sequence and

(a_,a

s s+l""’as+r) be a part of {an}.

If (ds’ds+l""'ds+r-l) is strictly decreasing sequence,
he = - . .
where di a; .1 ai + then we say that (as'as+l"'°’as+r) is a
descending wave of length +1 i A . t 4, = -
ng g r in Le £ at+l at be

called the decreasing steps of the wave.
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Ilemma 2.24. There exists a function £(n) such that, if

A ,A

1 ,...,A.n € Ll and X is any descending wave in

2
A, U A, g ... U A then the length of X is less than or equal to

f(n).

Proof: We take f£(1l) = 2

Suppose there exists £(n-1l) such that for any

Al’A2""’ and An—l in Ll , and any descending wave X in
. < _
Al U A2 u... U An_l, the length of X = f£(n-1).
et A=2a Ua U...U~’a and B = A  where
1 2 n-1 n
Al,AZ,...,An € ._Ll , let
= < <
W {a€en l_bu a bu+l} ,
= € B S ¢ = .
v, {cenus | b IS¢ bu+l}

(1) Suppose that X is a descending wave in A U B and Vu cX

and V C X , then we wish to prove that ,|Wu| < |W

u+l u+l|'

b
Let el > e2 > ... > e > cl S e > .. > °p+l e the

decreasing steps of V. U V . Since B € Ll ,

u u+l
(q+l)eq+l = €1 * ) e # eq+l = bu+l - bu = bu+2 - bu+l =
Cp t oyt .l 4 cp+l = (p+l)cl < (p+l)eq+l . Therefore g+l < p+l
and so gq < p where, clearly gq = |Wu| and p = qu+ll'

(2) If xcAUB is a descending wave then we show

|x N B} = £(n-1) + 2 .
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Suppose otherwise so that ]X N Bl > f(n-1)+2 . Let

{br'br+l""’bs} CXMN'B , where s = r + f(n-1) + 2. Then Vk c X

for all r <k <s-1. By (1), 0 =< lwr] < [wr+ < ... < |w

l| s--li !

thus we have |W > £f(n-1)+1 which is a

= |W .
s—ll | r+f (1n--l)+lI
contradiction since Ws—l is a descending wave in A .

Finally let X be a descending wave of A U B . Then by

r+l,...,bs}.

(2) we have |x 0 B| = £(m-1)+2. write XN B = {b_,b
Then X CHU Vr U ... U Vo1 UJ where H and J are the
(possibly empty) descending waves in A (1 X which come before br

s-1
and after b,_, - Thus x| = 5| + |g] + } |Vil = (£(n-1) +3) (£(n-1) +2)
i=r

-1

and so we can sét f(n) = (f(n-1)+2) (f(n=-1)+3).

Proposition 2.25. et G = [L,], then [L,] ; G .

Proof: Clearly [Ll] C G, let Bn = (n2,(n-l)n,(n-2)n,...,2n,n)
and {dn} = {Bl,Bz,...,Bq,...} = (1,4,2,9,6,316,12,8,4,...). Let

= e . = cee i +
an 1+ dl + + dn—l let Wm (m,m, ,m , with m(m+l)/2

repetitions of m and {ym} = (wl,wz,...,wp,...) =

(11212i21313l3l3l3l3l4l4l°")" Let xm =1+ Yl + Y2 ...+ Ym—l ©

Then {x } ¢ L. and {a } c {x}. Thus {a} € I c [L.] . since
m 1 n m n 1 1

{an} contains arbitrary long descending waves, by the previous lemma,

{an}' ¢ [L;] . Thus [L] g G .

We have seen (Proposition 2.12) that Ll ; L . It follows
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that Ll ” [L] . pProposition 2.25 shows that [Ll] ; G and it

follows that [Ll] ;‘2 [L] . These together, however, do not imply
that [Ll] ; [L]. This strict inclusion is the last goal of the present

chapter. We first prove some useful lemmas.

Lemma 2.26. Suppose that H.l, G and B are given real numbers.

Then the following two methods of defining Hl'HZ"' .,Hk and

Ml’MZ sewe 'Mk are equivalent,

= + = = oo o °
(1) Mt G(Ht B) and H't+l Ht +Mt for t 1,2, P

= 1+6) " v, anda = =H_+ M,

2 = +
(2) M) = GEH) +B), M 1 el - B

1

for t =1,2,...,k .

Proof: ((1) = (2)). Since Mt = G(Ht + B), we get Ml = G(H_l + B)

and, for t = 2,

=
1
@
=
t
+
=
u
)
T
t
1
+
=
+
z

= G(M + H + Bl =G _, + (1/6M__,)

1 1

i
5
+
e

L=
[}

1
_ £-1
Thus Mt = (G+1) Ml .
((2) = (1)). Now
He-Hy=®E -H )+ E _J-H )+ .o+ H) -H)
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t-2 t=3
= M + + ... + M
(1L+G) l+ (1+G) Ml 1
(1+G) t-l—l
T e ———————————s M
G 1

((1+q Ty (1, + B)

t-1
(1+G) (H.l + B) - (Hl + B) .

Therefore we have Ht + B = (1+G) t-'l(Hl + B) = —é— Mt which proves

the lemma.

Tlemma 2.27. Let x, u, and v be positive integers. Suppose

that:

x+ (x-1) + ... + (x-utl) =dl+d + ... +4d_ ,

2 o
- —_1— . (x-u=-vy+1) = .. -
(x=1) + (x-u-1) + ... + (x-u-v+l) dOL+l + + dOL+B
d, £d4d. ... =d and iuv(u+v) < d, .
1 2 a+8 2 1

<
Then we have d dOL+

Proof: Suppose that dl = d2 = L. = dOL+B =d . Then we get
2 -
u(2x - utl) _ od

2

v(2x - 2u - v+l)
2

= Bd .

It follows that
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ux - %—u(u—l) = od

vx - %-V(Zu + v=-1) = Rd

and
1
uvx - E-uv(u—l) = qvd
1
uvx - E-uv(Zu + v-1) = Bud .

By subtracting the second equation from the first, we get the equation

%-uv(u+v) = (av - Bu)d. We conclude that d | %-uv(u+v) so that
d = %-uv(u+v). This is a contradiction to the hypothesis.
~
Proposition 2.28. [Ll] ; [L] .
2 2
Proof: Let Dm = (m +m-l1,m +m-2,...,m) and
I 3 ——
(@) = (D),DysecesD yeun). ILet A= {an} €27 with a =1,

= +d. +. ..+ . i . W i
a =a; dl dn—l Then obviously A € L e claim that

~ ~
. c cee
a¢ [Ll] Assume that A € [Ll] so that A c A, U A, U U A
where A, € L for i=1,2,...,k . Let us denote A, = {al} ’
1 1 i n
& =al -at for i=1,2 k . si A 1 t
=a a or i=1,2,...,k . ince A, are lacunary sets,

there exists N such that n 2 N implies d; > (3k)3 for all

. 1 2 k
i=1,2,...,k. Take a* = max(aN,aN,...,aN).

Consider the part Pm of A corresponding to Dm as

indicated in the diagram below,
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2
m +m-1 ,
Vi =

_ aO{,(m) m aOL(m+l)

Iet o(m) be the function such that a_ | is the initial element

O (m)
of Pm . Then we compute

O (m) = 12 + 22 + ...+ (m—lY2+l = %—(m—l)m(Zm—l)+l .

: 3
Let M. = 3k B=%’-(3k-—l),G=9k,

Take m such that a* < a . ’
o (m) 0

M, = G(m+3k+B) and M_ = (l+G)t—lM, for t =2,3,...,k . Then we

Il

. 1 k
Mo+ Mt MMy = = ((1HG) -1 M+ My

((l+G)k—l)(m+3k+B) + 3k .

Since Mk+"'+M0 = ((1+G)k—l) (m+3k+B) + 3k is a polynomial of m  of
2
degree 1, we can further take m such that m" = Mk + Mk—l + ... + Mo.

We will partition part of P, backwards from ad (m+1) so that we get

intervals L P from right to left where the number of

A ARRELN

differences of A in the interval Lt is Mt for t =0,1,2,...,k.

Iet Ht be the smallest dn in the interval Lt at the

right hand end of Lt .

Mk differences M0 di fferences

N N

\ L ,,' Hk/l \ Lo,._._'flo/

20 (m) : 20 (m+1)
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= - > Q0. Since H, = m+3k,
Then clearly Ht+l H.t + Mt , =20 1

(t—l)M

1 we apply lemma

1
Ml = G(Hl+B), B = 5{3k-l), and Mt = (1+@)

2.26 and we get Mt = G(Ht+B) for t=1,2,...,k .

At first we partition Lt by 3k differences in A from

left to right and we get intexvals I;’Ig""’li of A .

£

3k

3k differences Mt differences
! ; \l
t t
It

1 St
L, 3

For each I? . the number of elements of A in the interval is 3k+1.

. t
- e ’
Since Ij Al U A, U U Ak we get

t

o R R, ; t - t
¥+l o= ] = jaynap UainayU... U a0 Ak)i

(]

1A

t t t
IIj n All + |Ij N Azl + ...+ )Ij N Akl .

Thus there exists A, such that [I? N Ail > 3.

1t
J
e DE—
< ot a = at 2 = gt
Bo+1 T 38+1 g+l “S+o+l r+l S+o+R+1
_ i _ i _ i i t
Let Gpr1 T G641 8+l = 2s+a+1” and a ) = 25+0+B+1 be in Ij n By

Then we get the equations
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i i i
- ee. + -u) = d + ... +
x + (x~-1) + (x-u) s + d6+1 dG -1
(x-u-1) + (x-u-2) + b o(xmu-y) = db + ;g
x-u X-1 - u-v) = §+q . S+0+B
where = d u = g- and v = r- Of course di = di and
=% P q - s T s+l

i 3 i i
> < .
recall d6 (3k) 7, so we can apply lemma 2.27 and get d6 d6+a+8

t .
Therefore we conclude that, for any Ij , there exists Ai such that
i .
d increases in IF .
n ]

. . k.
At first for the interval L _, there are M /3k Ij S.

k

k . . i
Thus there are at least 3¢ increases in the dn's among

Al’AZ""’ and Ak . Thus there exists Ai such that there are at

leést -—— 1increases of dl's in A, N [min Lk’ max Lk]. Iet
n i

3
n n . On the other hand M /G =M, /9% = (Hk+B) and so

2 .
Mk/3k = 3k(Hk+B) = 3k(2Hk+3k—l)/2 is the length of the interval I

e

as indicated in the diagram below.

Iy
K

3k

H, +3k-1 k k

Since Dm is a decreasing sequence, length of I > length of I;

Q=7

whenever k > t . Therefore we get di > length of Ig whenever k > t.
k
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. Then for

M1

3k

Without loss of generxality let us assume that Ai =

Al
=

any t <k, lAl N I?l =1 . For I?-l with 1= 3 , there

exists as before AE such that ‘I?fl N Ail > 3 and clearly Ai # AlJ

Thus we know that there are at leat M /3k increases of the d;‘s

among A , max L .]. So there exists

2,-- kl

.,-and Ak in [min L _ k-1

2 . i,
s
Ai # Al such that there are at least Mk—l/3k increases of dn

in the interval [min Ly max Lk_ﬂ. Without loss of generality we

assume that Ai = A2 . Then di > Mk-l/3k2 where di is
(k~1) - (k-1

the largest difference of A in the interval [min Lk—l' max Lk—l}'

2

+ B) = 3k(2Hk_ + 3k-1)/2

1

since M__ /3%’ = (M. /Q) = K (H__ .

e

is the length of the last interval I -1 . Thus A2 cannot appear
-1

3k

e

1~
more than once in I;'s where h < k-1. Thus there exists A3 such

that there are at least Mk~3/3k2 increases in the differences of A3

in the interval [min Ly 4 max_Lk_3].
By repeating this process k timés, for all d; are
‘ i

1
larger than the length of I . Thus lAi n Iol <1, for

3k

i =1,2,...,k . Hence

[Ty N Ua, U Ul

tA

|z, N All + IIO n A2[ + ..o+ |0 Akl

YA

k < 3k+l = lIol .
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There fore I, is not covered by Ay U A, Ui.. U A which is a

-contradiction. This completes the proof.

Summary for Chapter II,.

In Chapter II, we have shown that:

”~ ~
(1) L, L, L. and LM (for i = 1) are full. (Propositions 2.6

1 2
i
and 2.8).
~
(2) LM =L (for i=1). (Proposition 2.8).
i .

~

c .
(3) LM Ll ; L and L2 g Ll . (Propositions 2.12 and 2.16).

@ (L) g L] () g L] Ly g lty] 35 05i<s,

and [L2] ; [Ll]. (Propositions 2.17, 2.20, 2.19 and 2.21).

5y [L.]

1 [Ll] and Ll g [Ll] (Propositions 2.25 and 2.22).

h.Ng!

(6) [I ]

(L] . (Proposition 2.28).

h.Ng

1

Freedman has found the relation:

A€ [L] if and only if Xp € bs + ¢y, where

n
bs = {x € w : sup l 2 xil < o} and c¢ is the space of convergent
n i=1

sequences.

We have tried to find a sequence space V with A € [Ll]

1

if and only if XA €V This is especially important because, as

1
~
we have seen, [Ll] turns out to be unequal to [L] . 1In particular

we wanted to construct a Vl which can be defined by an analytic



n
expression as the space bs 1is defined by sup | z Xi' < ®  or
(o1
mo+n *
bs + ¢ 1is defined by sup lim sup l z (x.—r)l < ® (5). The
n m  i=m+l *

existence of such an analytic formulation for V. is still an open

1

question. However, for any zero class < , if we take
V={x€w: forany o >0, {i €1; ]xi‘ > a} € 7}

then we have A € X if and only if Xa € vO (Proposition 3.29).

This is the main motivation of our study in Chapter IIT.

64
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CHAPTER III

R—-TYPE SUMMABILITY METHODS

The concept of an R-type summability method (RSM) is
introduced and studied to some depth. Each RSM is @efined on a
subspace of W , the space of all real sequences. We topologize W
with the topology induced by uniform convergence (this is somewhat
unorthodox). It turns out that an RSM is regular, non-negative and

continuous with respect to this topology. .

We will build on the results of Freedman and Sember [3]
and ultimately obtain a bounded consisténcy type theorem for RSMs
on their strong summability fields. When the RSM is induced by a
regular matrix, our result is implied by the standard Bounded
Consistency Theorem [7] although our proof does not require the same
degree of depth. There are however RSMs: which are not generated

by any matrix. (See Proposition 3.46).

The thesis finishes with an attempt to understand those

RSMs which are generated by regular matrices.

Most of the notation employed in this chapter can be

found in the appendix.

Definition 3.1. Let Cs be a subspace of W . Let S: Cs + R

be a linear functional. We let
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c,£ = {x € C,: S(x) =0} ;
‘Cslq~= {x € w: ‘xl € CZ} ;
|Cs| = {x € w: 3r € R such that x-r € }CS[O}.

We say that S is a summability method, CS is the convergence field

associated with S , |CS| is the strong convergence field associated

with § .

Remark: Since S 1is a linear functional Cg is the kernel of

o . .
S and so CS is a linear space.

We introduce several types of summability methods.

Definition 3.2. Let S: CS - R be a summability method. We

say that

(1) s is regular, in case c C Cg and for any x € ¢, S(X) = lim x.

(2) S is nonnegative if x € Cs' x 20 (i.e., X, 2 0 for each 1)
then S(x) = 0.

lO

‘ 0
(3) S 1is an R-type summability method (RSM) in case mlCSI = ICS

and S 1is regular.
Note: For matrix methods "regular" has the usual meaning but "non-

negative" is somewhat different here. Definition (1) and (3) are from [3].

Proposition 3.3. For any summability method S: CS - R , the
I 0

‘o . , ‘s 0
condition mle c CS is equivalent to the condition x € ICS[ and

lyl = |x| implies vy € Cs .

' 0
Proof. Assume that m]CS[O C CS . Suppose that x € ICSI and
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and |y| = |x|. Let z € w with

1 if x, =0,
i
Z_ =
i v _
i .
% if xi # 0 .
i
Then lzl e =(1,1,...) and y = zx. By the assumption
0
m]csl CCg. oy €,
Assume that x € ICS]O and |y| = |x| implies 1y € c, -
Suppose a € m, x € ICS|0 . lLet [ail <M for each i =1,2,... .

Then S(lMxl) = MS(|x|) = MO = 0 . Therefore Mx € ICSIO . Since

lax| = |Mx| and Mx € ]Cslo » by the assumption, ax € C_ .

Proposition 3.4. Let S: CS > R be a regular summability

 method. Then S is an RSM if and only if
0 o 0
x € lcsl and |y| = |x| implies vy € [Cs] .

Pfoof: Assume that mlcslo = ICSIO . Suppose that x € ]CS]O

and |y| = |x|]. et 2z € w with

1 if x, =0,
i
z; =
¥.
i .
% if X, # 1.
i

As in the proof of the previous proposition z € m and y = zx. By

the assumption y € ICSIO .
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Assume that, if =x ¢ ICSIO and’ Iy[ ==x , then y ¢ [CSIO

0
Since ICSIO c mlcslo . it is enough to show mlcslo c !Cs] . The

proof is similar to that of the previous proposition and is omitted.

Proposition 3.5. ([3]. Proposition 4.8). If S: C,” R is an

RSM, then
0 0
@ e 7 e,
(2) mjc ‘0 cc?,
S S

Proof: We omit the proof since readers can find the proof in

the reference.

‘Proposition 3.6. ([3]. Proposition 4.9). If S is an RSM;

0 .
then |Csl and ]Cslo are subspaces of Cs and Cs , respectively.

Furthermore, c¢ C [c_ | and ¢4 < |C °
S 0 S

Proof: We omit the proof.

Now we proceed to investigate further properties of an RSM.

Proposition 3.7. If S 1s an RSM then S is nonnegative.

Proof: Suppose that x ¢ Cs and x =2 0 . We want to show

that S(x) = 0.

Assume that S(x) = -r , where r > 0 . Then |x+r} = x+r and

S(x+r) = S(x) + S(re) = S(x)+r = ~x+r = 0 . Hence x+r € ICS|O . By
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0
proposition 3.4, and since re = x+r, re € [Csl . Thus S(re) =0,

which contradicts that S 1is regular. Thus S(x) =20 ,

Proposition 3.8. If s: Cs + R ‘is a nonnegative summability

method then for any x, y in C v X <y implies S(x) = S{y).

Proof: This is a standard result.

Proposition 3.9. If S: Cs + R 1s a nonnegative and regular
summability method then S: Cs + R 1is a continuous function where
Cs is given the topology of uniform convergence (write T_. for this

topology) .

Proof: For x € m, we denote |lx||_ = sup |xn| . It is sufficient
n

to show that, for any € > 0 , there exist & > 0 such that

<

[s(x) - s(y)| =€ whenever x,y €¢C_, x-y €m and flx-yll < & .

Take 6§ =¢. If x,y € C,r %Y €m and |x-yll <8 , then
-0e < x-y < e . Thus, by Proposition 3.8, S(-8e) = S(x~y) = S(8e).

Since S 1is regular and linear, =0 = S(x) = S(y) = $

Corollary 3.10. If S: Cs - R is an RSM then S 1is continuous,

where Cs has the topology T .

Proof: If S: Cs - R 1is an RSM then S 1is a nonnegative and
regular by Proposition 3.7. It follows that, by Proposition 3.9, S

is continuous.

Proposition 3.11. If S: Cs - R is an RSM then for any x ¢ Cs'
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lim inf x S S(x) = 1lim sup X

n n
Proof: Let x € Cs . If 1lim inf x = - then obviously
n 0
lim inf X = S(x). Suppose that 1lim inf X > -0, Let x € CS and
n n

y, = infkz n X € R. Then y = (yl,yz,...,yn,...) < x and

lim y = lim inf x - Consider the eventually constant sequences
n

n
z , where

vy if i =n,
n
zZ . =
i
. DS
yn if 1 n .
n . n n . .
Then 2z € ¢ and 1limz = yn and 2z = x . Since S 1is an RSM,
n n . n .
z €ccC Cs and S(z') = lim z = Y, - Since S preserves order by
Proposition 3.8, y, = S(zn) < 8(x). Therefore 1lim inf x, = limy = s(x).

n

Finally, lim inf (—xn) = S(-x). Thus S(x) = lim sup X -
n n

Corollary 3.12. If S: c,6 >R is an RSM then Cg # w (the

space of all sequences).

Proof: By the previous proposition 1lim inf X = S(x) < and

n

lim sup xn > - . Hence no sequence which divexrges to ® or -
n

can be in Cs

Proposition 3.13. Suppose that S: Cs - R 1is a regular

summability method, mlcslo c Cq and m ¢ S Then S 1is an RSM.
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- 0
Proof: By Proposition 3,4, it is sufficient to show, x ¢ !csl

and |y| = |x| implies vy € ]CSIO . Suppose that x € [CSIO and

[y| = [xl. By Proposition 3.3, ly[ € CS .

Case (1). Assume that S(|y|) = -r < 0 . Then |y[ +r >0 and

S(IYI + ) = S([fl) + S(re) = -xr + ¥ =0 . By the definition of [Cslo

14

0
+
ny r € ICS] .
Let z €m with |z =b . Then, for each i,

2
R

il =

KO

Thus

z
€ m and so
|y + r

Z

0
z = T;T_:—; (‘yi + r) € mlcsl c CS

by the hypothesis. Therefore m C Cs , which contradicts the hypothesis.

Hence S(lyl) =20 .

Case (2). Assume that s(|y|) =r >0 . Take w = |x| - |y].
‘Then |w| = w = |x|. By Proposition 3.3 and the condition mlcslo cc, .,
|w|] € c . Therefore stlw) =sdx| - lyh =s(x]) - s(y]) =0 -1 <o.
We can apply the argument of Case (1) to w and get S(|w]) =0,

a contradiction. Thus S(|y]) =0 and y € |CS|O .
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Example 3.14. ILet B be a Hamel basis for ¢ and B UD be a

¢ . For any X € w , We can express

It

Hamel basis for w where B 1D

uniquely
X = z OLbb+ z de
b€B deD
where Gy Bd are all zero except for finitely many. Let us write
Xy = z abb ro Xy = z de . We define linear functional S: w > R
b€B deD
such that S(x) = lim Xg for any x va . Then S: CS = >R is a

regular summability method such that mlC lo CC ,mccC but S 1is
s s s

not an RSM .

Proof: Obviously m|CslO c Cs and m < CS . By Corollary 3.12,

since Cs =@ , S cannot be an RSM .

If S: Cs + R 1is a regular summability method and CS is
small, that is, m ¢ CS ; then we can replace the condition

mICs]O = lelo to m]Cs]O c CS for s being an RSM. For example,

AC, W where § is ordinary density (see Definition 3.22), VX when

X is not an ultra zeroclass (see Definition 3.27 and Proposition 3.45).

We have studied some properties of RSMs . Next we will
illustrate some examples which show the difference between nonnegative

regular summabilities and RSMs .

Example 3.15. Let A € 2 be an infinite set with 3(a) = 0 ,

where ¢§ 1is the ordinary density. Let Cs =c ® < X > where < Xp >




73

denotes the linear subspace of w spanned by XA . Let S: Cs -+ R Dbe

defined by S(x+t) = lim x , where x € ¢ and t € < XA > . Then
is regular and nonnegative, Cs is a closed subset of (w,Tw) but

0
mICsI ¢ CS .

Proof: S 1is nonnegative and regular immediately from the
definition. Next we want to show: ¢ ® < Xa > 1is a closed subset

of (w,Tw) .

Suppose that x' € ¢ and x" + tnxA -+ z € w with respect
to T, that is, <™ + t Xp " zl,> 0 as n > ® . Suppose that

lim xn = rn for each n . First let us show {rn} is a Cauchy

sequence. For any € > 0 , there exists N € I such that if n,m >
n m
then + t - + t < £ . Then
B Xy - (% X0 e

lr -x | =] - X E X - xR - |
n m n i i i i m

1A

]x? - Ihl + Ix? - x?l + Ix? - rml.

Since I-A is infinite, for each 1 € I-A, we get

n n . m . m
r - rml < Ixi - rnl + ]xi - tnXA(l) - (xi tmxA(l)?l + |xi rml
S A N R AN I (ORI R C L Il
= x? -r l + lx@ - r + € .
1 n 1 - m

S

N
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. n m
Thus, since x, > r and x, >+ r , we have
i n i m

(l

r =-r | =inf,
n m in i€1I-a

i
O

+ €

= -r |+~ ]) +e
1 n 1 m

Therefore {rn} is a Cauchy sequence. Further we know that for any

€ > 0 there exists N € I such

n m
(=" - £ Xy - (x - £ X,) l, <€

Suppose n,m > N and

t -t | [tnxA(i) - tm_xA(;i)l

. . n n
'tnXA(l) - xi + Xi

. n m
=< ItnxA(l) - xi + xi

< n _ S
< (x - tnXA) (x

1A

26 + |x0 - x |+]x"
1 n 1

. m n
Since x, » r , X. + ¢ and A
i m i n

(lxn -

i .
i

m
nf, 0 rnl + lxi - rm{) =
'{tn} is a cauchy sequence. Let
converges to tyY, , and so x =
A n

to z -t Xp - Since ¢ 1is a

that n,m > N implies

and |r -r | <e.
n m

i € A ., then we have

m m .
-r +r ~-r +r =X, +x. -t i
n n m m 1 1 mXA( )I

_ . n _ 7 _ . T
tmxA(l)l+}xi , rn}+[rn rmt+[rm xi]

thA)“w+‘rm - rn‘+[x? - rn{+lx? -

- rm[.

is given to be infinite, we have
0 . Therefore tn - tml = 22 . Hence
lim,n tn =t . Then tnXA uni formly
(xn - tﬁXA) + tnXA uniformly converges

closed subset of (w,Tm), it follows

that 2z - tij € c and so z € c ® < XA > . Consequently c¢ ® < XA >

is a closed subset of (w,Tm).
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. 0
Finally we prove that mlcsl ¢ Cs - Let B ¢ A such that

B and A - B are infinite. Then X5 € mlcs[o since Xa € lcslo .

We show that XB ¢ Cs

Suppose otherwise and assume that XB = X + r’XA where x € C

and r € R . We get

O. ‘= 1] i = ! i = i = i -
: ?.1m Xp (1) ?_nn (.xi + IXA(l)) :.le X, lim x
1> 1->-00 >0
ifa ifa ifa

Again,

o = . 0] = . 13 = . ° -
: ]..J.m xB(J.) ]‘.J.m (xi + rxA(_J.)) ]..1m rXA(J.) r .
1> 1 1<
i€aA-B ifa-B i€a-B

Consequently Xg = %+ OXA = x . But Xg f ¢ , a contradiction.

By this example we can declare the following proposition.

Proposition 3.17. S being regular and nonnegative does not

imply mfcs|Q c Cs .

Example 3.18, Suppose that f£: m~> R and g: m~=~ R are

continuous regular summabilities from (m,Too) into R. e.g., £ and

g can be "Banach limits" [4] . Let us define h: m~+ R such that

h(x) = 2f(x_,X_,...,%X

17%3 - g(xz,x4,x6,...,x2n,...) .

2n+l’"° -

. . 0 : . .
Then h 1is continuous and regular and mlcsl c Cs but h is not nonnegative.
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).

Proof: Given x, let y = (xlrx3rx ye..) and z = sz,x4,x6,...

Then we have

Ihx)| = [2£(y) - g(z)|

1A

21£@ | + g(z) |

A

20l gyl + Nalllizl,

A

el + labli=l, -

Thus h is bounded, equivalently h is continuous.

For any x € ¢ , since £f and g are regular,

h (x) PRIS .- g(xz,x4,...,x2n,-e-)

2E(x)r%4 2n+1’""
= 2 lim x2n+l - l;m x2n = lim xX .

Thus h is regular. But h(o0,1,0,1,...) = 2£(0,0,0,...) - g(1,1,1,...)
=2,0-1=-1. Thus h is not nonnegative.

By the above example we conclude that:

Proposition 3.19. A summability method S: Cg ™R being

. . 0 .
regular, continuous and satisfying mICSI c CS does not imply that

S 1is nonnegative (compare example 3.14).



Proposition 3.20. If S: CS > R 1is regular and nonnegative and

0 -
~m|Csl cCg then S 1is an RSM . (Compare Proposition 3.4.).

Proof: Suppose that x € ICSIO' and Iyl = lxl . Since
m|C Io cc and |y| € m]c lo we get |y| €cC Since S is
s s Y st + ¥ 9 s
nonnegative, 0 =< s(|y|) = s(|x|) =0, it follows that s(ly|) =0,
equivalently vy € ICSIO . By Proposition 3.4. S 1is an RSM.

We have shown that an RSM is nonnegative and continuous under
the topology T . Next we will find some relation between densities
and RSMs  Freedman and Sember have found a conneqtion between RSMs and
densities. ([3], Proéosition 4.10). We will extend this result so
that we obtain a "Bounded Consistency Theorem" on strong convergence

fields.

Definition 3.21. Let x €w and r € R and A € 2° with I-A

infinite. We write x— r 1in case for each € > 0 there exists
(B)

N > 0 such that Ixn-rl <& whenever n =N , n §A.

Definition 3.22. For any density & , let

m6={x€w:3r€R and A C I with 5(A)=0 and x——>» r} .
(A)

For any zeroclass X , let w, = {x € w: Jxr € R and A C I with
X

x € X and x —>r}. We call Wg the set of (8-) nearly convergent
(a)

sequences. We call Lux the set of (X-) nearly convergent sequences.
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]

Proposition 3.23. For any density § , ﬂg {a cw l S(A) = 0}

is a zeroclass (definition 1l.7.).

Proof: Ilet A € 2I be finite. Then &(Aa) §(p) =0 (by

Proposition 1.1, V). Thus A € ﬂg . Suppose that A and B are in Ug.

Then 5(a UB) < 8(a) + 6(8) =0 +0 =0 and A UB € ﬂg- let A CB and B € ng,

- - 0
Then 6(A) =< 6(B) = 0 and & € ng . Finally 8(I) = 1 so that I $ Ng -

Proposition 3.24. For any zeroclass X let

1 if I-a € X
dX(A) =
0 otherwise.
: . . 0
Then d, is a density with N = X .
X dX

4 . : . T
Proof: By example 1.27 dX is a density. For any A € 27 ,
A € X if and only if I - (I-A) € X if and only if dy(1-a) =1 if

and only if we EX(A) =0 if and only if A € ”Z . Therefore
X

0
X—ndx'

Remark: For any density 6 , ﬂg is a zeroclass. And for any

zeroclass X , there exists a density 6 such that ng = X . Therefore
we do not have to distinguish between wﬁ and wx . wG may be

considered as W o and wx may be considered as wd
g X
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_Proposition 3.25. For any zeroclass X, wx is a linear space

of sequences with c C wy . (I3], Proposition 4.3.).

Proof: If x € ¢ then X——>r for some r € R. Since ¢ € X ,

(9)
x € (ux .

Let x and y Dbe in wx and let rl,rZ,A,B be such that

2,B € X and X~=»r and y——>r. , AUB € X and
a * B 2

X+ Yy ————>Dr +r

1 5 - So that xt+ty € w
(A U B) '

X - Suppose that k € R,

then kx-—%>krl . Therefore kx € wX . Hence wx is a linear space.
(a)

Definition 3.26. [3]. A density & (resp. zeroclass X)

and RSM are related if, for each A € ZI
T 0
§(a) =0 (resp. A € X) = X € ]csl .

Now, let us introduce a new technique using the zeroclass
éoncept which will pave the way to the bounded consistency theorem on

the strong convergence fields.

Definition 3.27. For any zeroclass X , we denote

Vi = {x €w: Forany o >0 {i: a < lxi]} € X}

Vy = {x ¢ w: 3r ¢ R , x-r € Vi} .

Proposition 3.28. For any zeroclass X ,
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(1) VX is a linear space of sequences.

(2) vO

X is a subspace of Vx .

Proof: Suppose that x € VX and y € VX and rl,r2 € R with

0 0 . .
x--rl € VX ; y-r2 € VX . Since, for any 1i ,

[xi ty, - (rl + rz)l = lxi - rl[ + [yi - rzl,
for any o > 0 ,
< %- and |y, - y,} = %-=‘ x ty, - (rg o+ rz)(S a .
Thus

. . o . o
{1:[xi ty; - (x4 r2)| > a}gj1:|xi - rll > EJ U {1:]yi - y2| > E&.

C i 0 )
By the definition of VX and the properties of zeroclasses

{i:fxi - rl{ > %-} U {i:lyi - rzl > %}6 X . Thus

{i: a < !(xi + yi) - (rl + rz)!} € X . cConsequently it follows

that xty € Vx .

If k € R, then for any o > 0 ,
) if k=0

{i:T%]-< %, - x|} if x#0 .

Therefore for any o > 0 ,{i: a < ]kxi = krll} € X , which implies
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kx € VX . Hence VX is a linear space of sequences.

(2) In the proof of (1) we can put rl =r, = 0. The other steps are

c '
all the same. Hence VX is a subspace of VX .

Proposition 3.29. For any zeroclass X , let TX: VX - R be

the function from YX to R defined by

Tx(x) = r & x-r € Vi .

i . Further, TX is related with the zeroclass X.

Proof: In this proof we will write Tx as T for convenience.

We first prove T is well defined.

0

0 . o
Suppose that x-r, € VX and x-T, € VX . Since VX is a

. 0
linear space (x-rl) - (x—rz) = (r2—rl)e € vX . From the facts

o) if o= Irz—rl]
{i: o < |(rl-r2)ei|} =

I if a < |r2—rl|

and {i: a < |(r2—rl)ei|} € X, for any o > 0 , it follows that

¥. =r_ . Thus T 1is well defined.

Suppose that x,y € VX and T(x) = r., and T(y) =1r, .
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0 0 . o . .
Then X-r € Vy and y-r, € VX . Since Vg is a linear space,

0 0
xty - (rl+r2) € VX and kx - krl € VX for any real number k .

T(x) + T(y) and T(kx) = kT(xX). Hence T 1is a

There fore T (x+y)

linear functional.

We have

o {x € w: T(x) =o0}

T
-— - O — O
-{xew.xevx}-vx
= {x € w: forany o >0, {i: a < [xil} € X}
0
= {g € w: |x| € VX}
= {x € w: |x| € CO}
T
_ 0
-|ch .
Therefore
0 0 0
Cr = Vy = lcl™ .
Furthermore,
€r = ¥

i

{x € w: Ir € R x-r € Vg}

It

{fx €w: Ir € R x-r € ICgl}

= ICTI.
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Thus
Cp =Yy = lcTL.
We now use Proposition 3.4 to show that T is anv RSM.
Suppose that x € WCT‘O and |y} = |x|. For amy 1,
Iyil = ]Xi]. Thus o < Iyil =0 < lxil. Hence for any o > 0,

{i: o< |y;[}clizax |x,[}. On the other hand {i: o < lxil} € X
for any a > 0 . Hence, for any a > 0, {i: a < [yi|} € X.
Consequently, we have y ¢ ICT|0 . Hence T is an RSM.

For any A E-ZI s

A if 0<a<x<x1

{i: a < XA(i)}

’—I
1A
o)

L¢ if

Hence x, € Vi = |CT!0 oA €X. Thus T and X are

related.

Proposition 3.30. For any zeroclass X , VX is closed with respect’

to the topological space (w,T)

Proof: Suppose that x € vx and choose {x"} ¢ VX such that
n - n 1. n, _ -
lx" - x|l = i:E lxi - xi| <= (n 2 1). Suppose that Tx(x ) = T(X) r .

Since {x"} converges to ¥ , we have, for any € > 0., that there exists

N € I such that n,m = N = |[x" - mem <€ . We want to show that
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n,m> N = Irn - rm| < e . Suppose that n,m = N . For each i €I

|r

8 T B B B et I P oale
n m n i i i i m

<lr - x0T +e+ |8 -1 |
n 1 - 1 m

Clearly
I={i:fr -r | -e<|r =%+ |x; -1 |}
n m n it T m
' |rn - rml - € . r - rm| - €
c {1i 5 < lr - xi[}U{i: 5 <l - rml}o
If
ir_ - ¢ | >¢e,
n m
then
|xr - | -¢
{i: 2m < |zt - |} eX
n
and
lr -] -c¢
{i: —2 Zmb <]xIP—r]}€X
i m

and it follows that I € X , which is a contradiction. Therefore

Irn - rml < € . Consequently it follows that {rm} 'is a Cauchy

sequence of real numbers. Let 1lim r =r € R .
n
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Now we claim that x € YX . For any o > 0 there exists

, n o o
N €I such that n>N=|x-x | < 3 and |rn - x| < 3 « For

any 1 €1,

20 n
R
So that
{i:a<|x, -} c i < |-z |}
. i "3 i m '

Since T(xn) =r

. O
{i: 3 < Ix? - rn|} € X .

Therefore {i: a < |x; - r|} € X . Hence x € Vy » and so, it follows

that VX C VX o

Proposition 3.31. For any zeroclass X , Vg is a closed subset

of (w,T).

Proof: TX:.(V ,T,) R is an RSM and so it is continuous. Thus
T‘l(O) = V0 is a closed subset of (V,,T ). Since, by previous
X X X? oo ’
proposition, V, is a closed subset of (w,T ), Vg is a closed

subset of (w,T )
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Proposition 3.32. For any zeroclass X , QX = VX (where GX

denotes the closure of wx with respect to the topology Tm).

Proof: Suppose that x € Wy and r € R and A € X with
X —>71r . Then by the definition of x — r , we have, for any o > 0
(4) (a)

there exists N € I such that {i: o < [xi - r]} c AU {1,2,...,N}.

Since A € X and {1,2,...,N} € X, we have A U {1,2,...,N} € X .

Thus for any o > 0 ,{i: o < Ixi r|} € X . So that x ¢ Vy -
Therefore wx - Vx . Since Vx is closed wx C VX .

Suppose that x € Vx and T(x) =r , For each n , let

{i:-l <|x, -r|]}=A . Then A € X . Let us define x € w by
n i n n :

r if 1 €I -~-A
ol

n
X, =
i
X, if 1 €A
i n
Obviously, xXt—>71r and A € X , thus X € Wy - Since
(a) "
n
lr = x,| if 1 €I - A
i n
n
L ox | =
i i
0 if i ¢ A.n s

We get [x" - x|, = %-. So that it follows that x € BX . Hence
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Q 0
Proposition 3.33, For any zeroclass X , wx = VX where

0

Wy = {x € wy I8 ¢ X x ——>0} .

(A)
Proof: 1In the proof of the previous proposition, we change wX

to wi » Vy to V; and r to O . Then we get the proof.

Proposition 3.34. ([3], Proposition 4.10). If X and S are

related zeroclass and RSM then

0 0 0
(1) wxﬂmclcsl C Vy -

(2) wxﬂmc|cs| vy,

(3) s and Ty have some value on ICSI, that is,

Sl = ™xlje | -

Proof: (1) Let x € wi'ﬂ m . Then there exist a set A € 2I

, 0
such that A € X and x-753>0 . Since A € X , we have X € ICS] .
Writing x = XX, * XX(I—A) and noting that x € m, we have, by the

0
definition of RSM, XX € ICSIO . Further X1 a € ¢y C ]Csl by

Proposition 3.6, it follows that x € ICSIO .

Next we consider any x € ICSlO . Then for any & > O

ax{i: o < Ixil} = le € ’Cs]o . By Proposition 3.4, ax{i: o < ]xil} € ]CSIOH
Thus ¥x{i: o < [xi|} € |Cs|0, equivalently {i: a < |xi[} € X . Therefore

0
x € VX .
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(2) Ssuppose that x € Wy M m , then there exist r € R and A € X

such that x—>xr . Since x-r € w())( Nm and by (1), =x-r € (Cslo .

(a)

Thus we get x € ICSl. Hence u, NmcC lcsl .
Suppose that x € ICSI and r € R such that x-r € ICS|O .

0 -
Then, by (1), x-r € VX . Therefore x € VX . Thus ICSI C VX .

0]
(3) Suppose that x € ’Csl and r € R with x-r € ]CSl . By
Proposition 3.5 (1), x-r € Cg , so that S(x-r) = 0 and S(x) = r.
0]

On the other hand x-r € [CS[O CIVX by (1). Therefore

TX(X) = r. Hence, we get Six) =r = Tx(x).

Proposition 3.35. If Xl and X2 are zeroclasses with

X, € X, . Then we have
1 2

0 0
(1) VXl c VX2 '

2y v, ©¢v, ,
Xl X2

Proof: (1) Suppose that x € Vi . Then for any o > 0 ,
1

{i: w < Ixi[} € Xl C X2 . Therefore for any 0O > 0 ,

{i: a < 1x,|} € X, , equivalently x € VO . Hence VO c VO .
i 2 ! X2 Xl X2

(2) and (3). For any x € VX , let TX (x) = r . Then we have
1 1
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x-r € Vi C Vi . Thus x-r € Vi and so TX (x) = =T
1 2 2 2 1 2

Proposition 3.36. (The bounded consistency theorem on strong

convergent fields). Let sl; CS + R be an RSM related with a
1

zeroclass Xl and SZ: CS -~ R be an RSM related with a zeroclass X2 .
2

Suppose that X, ¢ X, and ¢ NmcC , Then;: .
1 2 s1 s,

W Jc °tmclc I°0Nm,
s S

1 2
(2) Ics [ A mc lcsl Nm,
1 2
(3) S =8 .
e, [nm o 2lde, [nm
1 1
Proof: If x € |c IO Nm. Then |x|] €c Nm, s (|]x])=o0,
—_— S ] 1
1 1
[xl € Vg)< (by Proposition 3.34) and Ty (_lxl) = 0 . Since by
1 1
hypothesis, ¢ (mcC , we also have |x| €cC so that s, (|x])
s s ] 2
1 2 2
is defined. By Propositions 3.34 and 3.35, Wy Nmc|c |Nmc ax N m
2 S2 2

and |x| ¢ Vi NMm C ax Nm . Thus we can find a sequence {x '} in
2 2

hé| N m such that x" > |x| in the sense of T, - Since S, is a
2

RSM and by Proposition 3.9, S, is continuous. Thus S2(xn) - S2(|x|).

Since we know that x = € VX . by Proposition 3,34, TX (xh) = S2(xn).
2 2

0
On the other hand |xl € Vi c VX and so by Proposition 3.35,

1 2

0 = TXl(le) = sz(lxl). Hence we have
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0 =1, (Jx]) = lim T, (x") = 1im s, ") = 5, (x|},
2 n 2 n

So that x € ‘cs lo . Consequently, we have
5 v
ICs [O Nmclc !O N m.
1 2
(2) 1If =x ¢ [CS | " m , then there exists r € R with x-r € ICS Io
1 1

By (1) =x-r € |C Io Am. Thus x € |c_ | Nm .,
52 S2

(3) Let x€J|c | Nm and r € R with x-r € |C lfjm. Then by
s, s, -

Proposition 3.34, x-r € Vi and TX (x) = r . Again by Proposition
1 1 '

3.35, x-r € Vo -and T, (x) = r. By Proposition 3.34,
X2 X2

SI(X) = TXl(x) =r = sz(x) = Sz(x).

Hence we have Sl = 52 .

Corollary 3.37. et S,;: C > R and 52: CS + R Dbe

RSMs defined on the same domain Cs = C = Cs and related with

the same zeroclass X . Then |C | Nm=]|c | Nm and
s, s,

S

e

=5
1 (JCS | 0 m) 2!(JC | N m)
1 52

Proof: By the previous proposition ICS | 0mc |CS | N m
1 2

and |c |Nm>]c | Nm Thus |c | Nm= ]Cs | N m and
1 S2 S1 2
|
l

s. =S .
e | nm
51

2

(Je. | N m)
S2
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-Remark: Let F be the collectigon of all RSMs which are re lated

with zeroclass X . Then TX is a member of F and for any RSM

S: CS - R in F, s is TX on the boundéd strong convergence

field associated with S .

Next, we will study RSMs induced from matrices. Also, we
will show that in the matrix case Proposition 3.36 1is a special case
of the standard Bounded Consistency Theorem on regular matrices. We
will also show that Proposition 3.36 is not subsummed under the

standard Bounded Consistency Theorem on regular matrices.

Definition 3.38. et A be a regular matrix. Let fA: CA *+ R

be a function defined by fA(x) = lim (Ax)i for any x € CA . Note
i

that CA is a linear space of sequences and fA is a linear functiocnal.

Definition 3.39,. A matrix A 1is called an RSM if fA: CA + R

is an RSM.

nk

Proposition 3.40. Suppose that A is nonnegative (i.e., A _ 220

for all n,k = 1,2,3,...) regular matrix. Then fA: CA + R is an

RSM.

0 0
Proof: Let us write Cf = CA , le i = lCAl and lC

A A A

(see definition 3.1.). Clearly fA is regular. ©Now suppose that

x € ICAiO and |y| = |x|. since A 4is nonnegative

os @alyh_ =

a ly | =
oy i Yk

1

N ™8

~
I ™ 8

. ank]xk’ = (Alx[)nq
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Thus

0 < 1inm (_Aly-l)n. < lim (Alxl)n = _fA(.lxl) =0
n n

Hence

. Io
lim (_.A[y[)n =0 and |y| € 'CAl .

n
By Proposition 3.4, fA is an RSM,
Let us state the Bounded Consistency Theorem (BCT) with-

out proof. [7].

Proposition 3.41. If A and B are regular matrices such that

C =
Cy N m CB then fA(x) fB(x) for all x € CA Nm .

Remark: The BCT is very general and so this theorem implies

Proposition 3.36 when the RSMs Sl and 82 are induced by matrices.

Corollary 3.42. Suppose that A and B are RSM matrices

and f, and £  are corresponding RSMs. If C, NmcC Cg then

1) e °Nnmc ‘CBlo Nm,

al

(2) ICA[ Nmc |CB| Nm,

(3) £ = f .
A B
(,IcA] N m) (_IcBl N m)

Proof: By the ordinary BCT, £ = f .
B Al Nm = Bl nm

Hence (3) is true. Let x ¢ ICAIO Nm, then |x] € o Nm and
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fA(lxl) = 0. By the hypothesis C, Nm c Cp and by the BCT,
Ix| € Ca Nm and fB(le) = Q , Therefore x € ICB]O Nm . Hence

(1) is true.

(2) Follows from (1) as before,

Next we want to show that our Proposition 3,36 is meaningful.
In other words Proposition 3.36 is not deduced from the BCT for the
non-matrix case. For this purpose, we will construct an RSM

S: Cs + R such that for any RSM matrix A , ‘Cs’ N m ; iCA‘ Am .

At first let us introduce a definition and some propositions.

Definition 3.43. An ultra zeroclass on I is a zeroclass X

such that there is no zeroclass on I which is strictly finer than X.
(In other words, a maximal element in the ordered family of all zero-

classes on I). This is the same as maximal ideal in 2I [11].

Proposition 3.44. Let X be an ultra zeroclass on I . Then for

any A €27, n¢€ X or I-A€X.

proof: Tet F={an €2, 1-n € X} . Then F is an ultrafilter.
I
Thus for any A €2~ , A € F or 1I-a € F (see [1], cChapter 1, §6.4,

Proposition 5). Hence for any A € 2I, A€X or I-Ac€X.

Proposition 3.45. X is an ultra zeroclass if and only if m C vy -

Proof: Suppose that X is an ultra zeroclass. Then for any

I

a€2’, a€X or 1-a€X, ifandonly if X €V, or X, €y

if and only if Xa € Vy or Xy * 1€ Vy - Thus, since Vy is a
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linear space which contains ¢ , - Xy * 1¢ vy is equivalent to
v I
. Th € . .
Xp € Vy erefore, for any A € 27 , Xy € Vy Thus

I . . _
: C ) i : - .
{XA' A €27} VX « Since VX is a linear space of sequence, mO VX

Since VX is closed in (w,Tm), ﬁo =m C VX (see [10], p. 24,

15 Example).

Suppose that X is not an ultra zeroclass, then there exists

an A €2° such that A f X and I-a f X .

Suppose that X € Vy - Then there is an r € R such that

{i: a < [x, (1) = x|} €X forany a>o0 .
If r =1, then {i: %-< ]XA(i) -~ 1|} =1-a £ X .
If r =0, then {i: %< le(,i) ~-0|l}=na§X.

If r#0 and r# 1, take 0 <0 <min {lz|, {r-1]} .
Then {i: % < IXA(iI - r|} =1 §X. And so we have a contradiction.

Hence X, f Vy since Xp €m we have m ¢ Vy

Proposition 3.46. If X 1is an ultra 2eroclass then there does

not exist an RSM matrix A such that lvxl Nm= Cy Nm.

Proof: Since X is an ultra zeroclass m C VX , and so
le‘ Nm= Vy N m = m. On the other hand, for any regular matrix A ,
CA NmCcm (see [6], p. 187 Theorem 14 (The Steinhaus Theorem)).

#

Therefore for any RSM matrix A , ICAI Nmc Ca N m ; m = lVXI Nm .
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Corollary 3.47. Let X be an ultra zeroclass and let CS = vy

and let S: CS - R be TX" Then for any RSM matrix A ,
CiNmc :
| Al n ]CSI Nm .

Proof: By the previous proposition

[cs[ﬂm=]vxlﬂm=m;>cAﬂmD]cAlﬂm.

Hence our BCT (Proposition 3,36) can be applied in cases unapproached

by matrix methods.

In the matrix cases, there are many interesting examples which
are not ESMs. For the rest of this chapter we will study regular
matrices vis-a-vis RSMs. At first let us define a regular matrix which

is not an RSM.

Example 3.48. Let A Dbe given by

- -
1 -+ L1 1 1 1 1 1
2 2 4 1 78 8 16 16 "
1 1 1 1 1 1
% 13 777 778 o8 o
A=
1 1 1 1
0 0 0 0 1 “5 3 "z I -
101
o 0 0o 0 0 0 1 -3 F ... .
-~ =

By the Silverman-Toeplitz Theorem, we can easily see that A 1is regular.

‘0

)

et x=(1,2,1,2,1,2,...). Then BAx = Q0. Hence X . But if

€ |
A
v 2 1 2
we take vy = (1,1,1,2,1,1,1,2,...) then Ay = (E,E’,E’, , ««<) and

W]
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v § CA . Thus mlCAl ¢ CA .

Also, if we take x = (0,1,Q,1,0,1,...) then BAx = (~1,-1,-1,...).

Therefore fA is not nonnegative, This example is generalized in Prop-

osition 3.50. The previous example is also interesting in view of the

following.

Proposition 3.49. If A is a regular matrix then fA: (CA:Tw) > R

is continuous.

We omit the proof.

If A is a nonnegative regular matrix then A is an RSM.
Thus being a nonnegative regular matrix is a sufficient condition of
being an RSM. Bﬁt it is hard to find nice necessary conditions for a
matrix to be an RSM. The following proposition is an attempt to find

necessary conditions for being an RSM.

Proposition 3.50. Let A be a regular matrix. Suppose

that for each column of A , all members of that column are either non-

©
negative or nonpositive and lim z a‘k =r and r > 0 where
n k=l‘n
at = max(a,0) and a~ = max(-a,Q). Then fA cannot be nonnegative.
©
Proof: Since A is regular and Z la | =M< >,
—_— nk
k=1
©
the series Z a_ converges for each n 2 1 .
kel nk

Now let x € w such that



0 if k-~th column of A

x =

1 if k-~th column of A is nonpositive.

Then

fA(x)

I}

i

Therefore fA is not

Remark:; Thus an RSM matrix cannot have the property stated in

Proposition 3.50.

Example 3.51.

Then A .is an RSM.

nonnegative. Hence fA

(=

© Wl O P D

Iet a matrix

o

1
[

© Wik N N

A be given by:

0 0 0 0 ...
-1 0 0 0 ...
1

= a 0 ...
3 0

2 -1 0 0 ...

is nonnegative or all zero

cannot be an RSM.
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Proof: We can easily see that A 1is regular., Suppose that

x € ]CA}O and so

]+ Lyl e+ [yl

n

-0

2|xn} a Ixn+lI

Then we show Ixn| + 0 . Assume that |xn|4# 0 so that there exists

€ > 0 such that for infinitely many n , lxn| > € . Since
2[xn| - lxn+ll + Q , there exists N such that n > N implies
. > :
- = >
2|xn] Ixn+l| <3 . Take n, such that Ixnol >€ and n, > N . Then
we have 2¢ < 2|x_ | < £+ x |. Therefore € | |l. If kx >n
n 2 no+l : 2 no+l : 0

and |’ﬁ<l >€ then 28 <2fx | <+ |x .[. Thus =< l’ﬁ<+1l'

v

Therefore by induction for any n n., E= Ixn]. Thus we have

0

|, | + x| + .o+ x|
lim inf —= 2 D>¢
n+°°. n

which is a contradiction.

Hence 1lim Ix | = 0 and |CslO = C,. Since X € ¢, and
n )

ly[ = |x| implies 1lim vy, = 0. we haye that A is an RSM.
n

Example 3.52., Let A be given by
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-
%~ if j is odd and 1 = j = 2i+1
0 if j is even and 2 = j = 2i
%3079
—;- if § = 2i42
1
0 if 3§ > 2i+2
.
that is
1 0 1 -1 0 0 0 0o ...
1 1 1 1
A—EO -2-0 ‘2——-2—0 0o ...
1 1 1 1 1
13 0] 3 0] 3 0] 3 T3 -
L -

By the Silverman-Toepliz Theorem, we can easily see that A is reqular.

et x € W be given by

i if i =29+2 and j €1

X, =
i
0 otherwise.
that is, x = (0,0,0,1,0,2,0,3,0,4,0,...). Then (Ax)n = -1 for all n. Hence
lim (Ax)n = -1 and x ¢ CA and fA(x) ==-1. Since x = 0 and
n
fA(x) = -1, fA is not nonnegative so that fA is not an RSM.

Next let us take x € w by
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1 if i 1is odd

j if i =2j+2 and j € 1 U {0},

that is, x = (1,1,1,2,1,3,1,4,1,5,1,6,...). Take vy € w by

29+1 if i = 4j+2 and j €I

1 otherwise,

that is vy = (1,1,1,1,1,3,1,1,1,5,1,1,1,7,...). We know that

(Ax)n = 0 for each n € I so that x € ICA[O . Since

1 if n is odd
(Ay)n =

0 if n 1is even ,

it follows that vy f Cy - Obviously !yl = le . Therefore

mchIO ¢ c, -

The previous example is important in the sense that there
exists a regular matrix A which is essentially nonnegative and still
not an RSM. Essentially, nonnegative matrices were studied by

Sonnenschein [9] because of the following proposition.

Proposition 3.53. Suppose that A is a regular and essentially
o«
nonnegative matrix. Tet d_(S) = lim inf (AX_) = lim inf 2 a (k)
A n S'n n k=l‘nkXS

for any S € 2I‘. Then dA is an asymptotic density.
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Proof: (see [9], page 26, Theorem 3.3).

.Definition 3.54. A matrix A is said to be essentially non-

negative if

1im]§a;k=o.
While we have shown in example 3.52 there exists an essentially non-
negative regular matrix A such that fA: CA - R 1s not an RSM, if
A 1is an essentially nonnegative reguiar matrix, then the restriction
of £, to C, Mm is an RSM. To prove that, at first, let us

A

prove two lemmas.

Definition 3.55. Let A be a matrix, then we denote

At = (at.) and A = (a_.) .
ni ni

Lemma 3.56. lLet A be an essentially nonnegative regular matrix.

Then we have
(1) CA Nm= CA+ Mm,

(2) £ = £
-\ at
(c, N m) () N m)

Proof: (1) For any x € m, x € CA if and only if Ax € ¢ .

. . . + - .
Since A 1is a regular matrix, if Ax € ¢ then A x and A x exist
+ -
and further Ax = A X - A x. Since A 1is essentially nonnegative and

%x € m, we have



(A x), | = Tox | = x > Q.
L™, | 'lkzl, ag b = I, szl-k

Thus we get Ax € %
=C . Nm
CA N m Cp+ Nm

X s +. -
(2) For any x € CA N m, fA(X) = lJ:m (Ax)i = lJ..m ((a x)i (a x)_i)

1l 1

. + . - . +
lim (A& x)i ~- lim (A x)i = lim (A x)i = fA+(x). Therefore
i i i

£ = £

A at
(CA N m)

(c, N m)

Lemma 3.57. Iet S: cs - R be an RSM and let

= N > -
T Si(cs N m® CS Nm-> R and CT CS Nm . Then

0 0
(1) ]CT} = }CS] N m
(2) T: CT +~ R 1is also an RSM.

Proof: (1) For any x € w .

0 0
x € ]CTI o |x| € Co

o |x] € C, and T(|x]) =0

)

|x| € c, Nm and s(|x]) =0
0
o x € ICsl and x € m

ex€lc|®nm.
S

Thus ICTIO = ]Cslo Nm .

+
,and so Ax € ¢ if and only if A x € ¢ .

102

Hence
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(2) Let x € lCT‘O and |y} = I#l. Then x € lcslo N mand|y} = |x].
Since S 1is an RSHM, lyl € [CS‘O . Since x €m and lyl = ]x[, it
follows that y € m . Thus, by (1) y € ICSlO NMm= ICTIO . Therefore

T is an RSM.

Proposition 3.58. Let A Dbe an essentially nonnegative regular

matrix. Let S = f : (C. Nm) R be the restriction of £
A A A
(CA N m)

to CA Tm . Then S is an RSM.

Proof: since A% is a nonnegative regular matrix fA+: CA+ - R

is an RSM. By the previous lemma fA+ ) (CA+ N m) R is
(CA+ N m)

= f

also an RSM. - By ILemma -3.57 , £ £,
N m) _ (CA N m)

at

(C, 4

Thus S 1s an RSM.
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APPENDIX

List of Notations

R 1is the set of real numbers,
I 1is the set of positive integers.
X .
2 is the power set of a given set X .
If a,b € R, then max(a,b) (resp. min(a,b)] is the maximum (resp.
minimum) of the set {a,b}.

If S CR, sup S (resp. inf S) is the supremum (resp. infimum) of S .

+ -
If a €¢R, a = max(a,0), a = max(-a,0).
w 1is the set of all real sequences.

If x € w , then (xi) or (xl,x ) denote x .

preee

limi x, or lim x denote the limit of a real sequence X .

m= {x € w: sup, lxkl < @},
c = {x € w: lim x exists} .
oy = {x € ®¥: lim x = 0},

1 for all k and e’ =0

k k

n
e, e are the sequences given by e

for k # n, en =1,
n

I . . . s
If A €27, X, 1is the characteristic sequence of A , that is

(), =1 if n€a, (x)) =0 if n §a.

m_ is the linear span of '{XA: a¢2%y .

0

n
bs = {x € w: sup_ l zlxkl < w} |
k=




xy

For

For

For

For

M =
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(xiyi) is the co-ordinate wise product of two sequences x and
x €w, we let |x]| = (inl).

x €w and r € R, we write x+r = (xi+r) and rx = (rxi) .
A,B Cw , we write

AB ='{xy‘ x €A and y € B} ,

A+B

'{x+y1 x €A and y € B},

x,y €W, x =y means X, = ¥ .for each 1i

(a ,) denotes infinite matrices.

nk

If M= (a,) is an infinite matrix and (xi) is any sequence, the

nk

product Mx denotes the sequence (y.,), if it exists, where
i

write

0 € w denotes zero sequence (0,0,0,...)

[o0]
z a..xj . We also define Sy = {x € w: Mx € c}t. In Chapter 3, we
CM for “?M -

Zero matrice A = (ani)’ where a. = 0 for all i, j is denoted by

f: S > T denotes a function from a set S into a set T .

If f: s> T 1is a function and U C S then f gt U->T is the

restriction of £ into U .

a,b € 1, la,b]

{x €1: a=x =0},

(a,b) = {x € I: a < x < b},



IAI is the cardinal number of a given set A .

For two sets A and B , we let A A B= (A-B) U (B~A) be the
difference of A and B .
For two sets A and B, A~ B means A A B 1is finite.

For A € 21, we let A = I-A be the complement of A .

-
1]

{a € 2%, a° is finite} is the Fréchet filter.

g
[0}

{1,2,3,...,N} when N € T .

{a €2, & is finite} .

S
1l
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