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ABSTRACT 

The advantages of linear devices as communications channels 

suggest the need for a linear model of language processing. 

Linear devices have a unique pseudoinverse, so expressions in 

language should have a single most likely interpretation. The 

contrary view that human language is ambiguous should be 

reconsidered with a new understanding of the role of context. 

Computer studies of linear models began with an application 

of the least-effort principle to feature extraction. 

Alphabetical symbols were treated as representing neighbourhoods 

in the output space of a linear device, with text being treated 

as an encoding of a continuous section of a trajectory through 

the space. The constraints this imposes on the relative 

positions of neighbourhoods provide a set of coordinate values 

for the letters of the alphabet similar to the distinctive 

features of generative phonology, but without reference to prior 

knowledge or linguistic intuitions. 

Using coordinate values obtained in this way, text was 

translated into multivariate functions, filtered with various 

simple digital filters, and retranslated into text, in an 

attempt to mimic grammatical processes. In performing these 

operations it was noticed that certain sequences of letters 

would pass through the filtering operation unchanged, while 

others were changed only from an uncommon sequence to a more 

common one. This suggested the construction of a linear 

grammatical filter which would have no effect on acceptable 



sequences of letters, while altering others. 

Such a device was implemented using a projection onto the 

subspace containing the most common trajectories. The similarity 

of the resulting grammatical filter to Markov devices was noted, 

and a reformulation of the latter as filters described. The 

limitations of finite-state Markov sources can be overcome with 

a filtrative model. Other devices from automata theory can also 

be treated as filters, and some of these will be linear. It is 

argued that the distinction between linear and nonlinear devices 

is more relevant to linguistics than the distinctions between 

various classes of automata as originally proposed by Chomsky. 

Psychological consequences of this view include a new 

appreciation of associationism. Possible models of the brain as 

a high-order linear filter are described and evaluated. 
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PREFACE 

The material covered in this thesis bridges several 

disciplines, and seems hard to understand. In order to make it 

as approachable as possible, I have divided the thesis into 

three parts. Part One presents a theory of language and some 

experimental results. This part is made straightforward and 

concise by omitting difficult areas. Hard parts of the theory 

and more details of the experiments are given in Part Two, which 

includes short sections on a number of topics related to the 

earlier material. Part Three contains a summary and conclusions. 

The theory of language presented in Part One is based on 

methods of signal processing and pattern recognition. Although 

computers were used, the ordinary methods of Computational 

Linguistics were not. The examples given here show how linear 

filters may be constructed to play the role of grammars, using 

purely automatic methods. 

Part Two is designed to answer questions and objections 

from a number of viewpoints, It begins with a discussion of 

the relationship between the present approach and generative 

grammar. To emphasize their differences, the theory being 

presented may be described as linear filtrative qrammar. 

Adoption of a filtrative model is possible without accepting 

linearity. However, even if one imagines nonlinear filters, 

there are advantages to using a linear space to analyse them. 



P a r t  Three i s  devoted t o  conclusions.  F i r s t  i s  a s e c t i o n  

d i scuss ing  conclus ions  t h a t  could be drawn from t h e  sca t te rgrams 

produced by a n a l y s i s  of t e x t  from var ious  languages.  Following 

t h i s  a r e  genera l  conclus ions  and a summary of t h e  argument. 



PART ONE 

A New Approach to the Study of Human Language 



1.1 Introduction - 

The following pages contain a theoretical account of human 

language and a report of the results of various experiments with 

computer analysis of text samples. But this thesis is not just 

about language, it is concerned with the distinction between 

linear devices and nonlinear devices, their respective 

capabilities, and the notion that the human brain is a linear 

device. The distinction between linear and nonlinear systems is 

familiar to any mathematician, physicist, or engineer, but to 

few linguists.' For most of the former, this is a pragmatic 

issue, since nonlinear devices pose many difficulties, which are 

most often met by linear approximation. 

I suggest that the human brain can be considered as a 

linear system, and that the best way of analysing human language 

follows from this assumption. The use of linear models for the 

brain is not a new idea, but in the past this has been treated 

as a methodological necessity, not adopted as a theoretical 

position. One reason for accepting linearity as an essential 

property of the brain is just that human beings are able to 

understand and cope with each other: this would be impossible on 

any other assumption. 

------------------ 
'The terms 'linear' and 'linearity' are unfortunately used by 
linguists to mean something entirely different. I feel the 
mathematical and scientific usage has priority and will use 
these terms only in that sense. 



Against this view there are a number of objections, which 

fall into two broad classes: 

1. Mathematicians, physical scientists, and engineers are 

conscious of the severely resticted capabilities of linear 

devices, and may have trouble understanding how a linear 

device can be as powerful and flexible as the human brain. 

2. Linguists and scholars from the humanities are usually 

unaware of the important advantages of linear devices, and 

the difficulties of analysing nonlinear ones. 

The following pages include explanations and arguments 

aimed at objections from each of these classes. With the aid of 

examples it will be shown that nonlinear devices are 

particularly appropriate for applications involving calculation, 

while linear devices are most suitable in the area of 

communication, including simple encoding and decoding, 

summarizing and paraphrasing, classifying, and the recognition 

of patterns. 

Linear devices are by far the easiest to understand, and 

have familiar and well-established mathematical properties. In 

contrast, human language has always been a mystery. By treating 

language as the product of a linear device, the present work 

aims to place the study of human language upon a firm and 

familiar mathematical basis, so that well-known mathematical 

methods can be applied in computer programs. 

An important part of this task is finding some way of 

converting the sounds of speech or the letters of printed text 



into more familiar mathematical objects such as numbers or 

vectors. This is a problem of interpreting symbols, and we may 

think of the meaning or interpretation of symbols as their 

position in some abstract space of many dimensions. An 

utterance, text, or string of symbols can then be treated as a 

path or trajectory in this abstract space. 

On this analogy, the positions of each symbol in the space 

can be arrived at by noting the frequencies with which the 

different symbols occur adjacent to one another. Algorithms 

based on this method will be given, together with examples of 

the results. These algorithms were used to provide information 

about the sounds represented by the letters of the alphabet: 

information derived solely from their relative frequencies of 

co-occurence. This information was subsequently used by other 

programs that performed a simple low-level grammatical analysis. 

One of the experiments to be discussed in a later section 

used the coordinate values obtained from an analysis of - 
co-occurence to create a filter which could serve as a test of 

acceptability. The experiment involved a simulation of the 

phonological syntax or phonotaxis of a language, using a simple 

data compression scheme. A linear transformation was designed 

which compressed a vector of 12 elements into a vector of 9 

elements. The pseudoinverse transformation was also created, 

which took a vector of 9 elements into a vector of 12 elements. 

The combination of forward and reverse transformation was a 

single linear transformation which I call a pseudoidentity 



transformation, since it behaves exactly as an identity 

transformation for some vectors, but not for all. 

In the experiment performed, the vectors represented 

strings of letters forming English text, and the program 

embodying the linear transformation would thus pass ordinary 

English text through unchanged, while altering any other input. 

By comparing input and output, the program could function as a 

simple recognition machine for English text. 

A significant point is that the specification of the 

pseudoidentity transformation used in this device required only 

that certain programs be given a sample of English text. Without 

further information they were then able to construct a 

transformation that would pass the given sample, and because of 

the statistical similarities of all English text, would also 

pass most other samples of ordinary English. This automatic 

production of the phonological (or graphemic) component of a 

grammar can be seen as partly satisfying one of the ultimate * 

aims of the Bloomfieldian era in linguistics: automatic grammar 

writing. 

There are reasons for believing that similar methods could 

be applied at higher levels of linguistic structure, such as the 

arrangement of words within a sentence. I suggest that this 

result can also be extended to the production of grammars for 

parsing an utterance into its structural components, showing 

their interrelation. 



1.1.1 Terminology 

This thesis is about linguistic processes or operations, 

and about real or imaginary devices for performing them. Systems 

of equations are used as a mathematical description of the 

operations performed by a device, and the term 'system' can be 

used as a convenient way of referring to either a physical 

system or a system of equations. We may assume that each device 

can be described by many different systems of equations, and 

that any system of equations can be realized by many different 

devices. For this reason it is useful to adopt the mathematical 

practice of treating various devices and systems of equations as 

equivalent if there is an isomorphism between them. Thus we may 

say that two devices are equivalent, meaning that they are 

isomorphic, or even say that they are identical 9 to 

isomorphism. 

The isomorphism between physical systems and systems of 

equations is easily made if the equations are first transformed' 

into a particular form: each variable corresponding to an 

observable output should appear by itself on the left of the 

equal sign, and each variable corresponding to an input should 

appear as part of a mathematical expression on the right side of 

the equal sign. The system of equations can then be used as a 

model of the physical device or system by assigning a particular 

set of input values to the variables in the expression on the 

right side of the equation, performing the indicated 

mathematical operations, and treating the result as values of 



the output. 

This direct mathematical modelling of a physical process 

using known input values and finding output values is an 

important application of the mathematical model, but it is not 

the only one. It may be that the input to a process is unknown, 

but the output can be observed. In this case the mathematical 

model may or may not be useful, depending on the type of 

equation it involves. 

In studying language, we are often facing this type of 

problem: we have a sample utterance, and want to know what the 

speaker intended it to mean. Thus we are given the output of a 

process and want to find the corresponding input. Neither the 

behaviourists nor the followers of Noam Chomsky have dealt with 

this possibility: the former have denied the reality of meaning, 

and the latter have taken it for granted. Both approaches seem 

misguided. Prior to either should be an investigation of models 

for which the meaning is treated as an unknown input to a ' 

process. 

To find the input of a device from an observed output we 

must rearrange the equations so that the variables representing 

inputs appear alone on the left side of the equals sign. This 

rearrangement is exactly what is meant by solving the system of 

equations. Unfortunately, there may not be a unique solution. If 

a system is solvable, and has a finite number of solutions, the 

number of solutions is called the degree of the system. Linear -- 
systems are systems 2f the first degree, and if solvable, they 



have a unique solution. 

Throughout this thesis I use the term 'linear' and its 

derivatives, but I think these terms are confusing and should be 

replaced. 

The laboratory investigation of such devices is based on 

the known properties of linear and nonlinear systems. A typical 

approach is to consider the device under analysis as a "black 

box" that cannot be opened. The usual problem is this: suppose 

that the experimenter can apply any inputs that he wants to the 

device, and observe the outputs. Can he come up with a 

description of the device that would be adequate to enable him 

to accurately estimate the input corresponding to subsequent. 

outputs in the continued operation of the device? 

Note that this is not the same question as whether or not 

he can describe the device adequately to predict future outputs. 

Both linear and nonlinear devices may be completely 

deterministic so that input completely determines output. Or, ' 

either type of device may be less than predictable because of 

internal noise. 

To avoid giving any impression that the theory to be 

described is deterministic, let us consider a noisy system. 

Given an input known exactly, the most that can be expected of a 

description of the device is a graph of probable outputs. Figure 

1 shows a simple experimental situation. The device contains a 

source of noise, which is added to the output. If an input of 

exactly five volts is applied, and the output measured at 



I 

a) Linear Device with Internal ~ o i s e  

- F 

b) Measured Output Voltage with 5 Volt Input 

c )  Estimated Input Voltage 

- 

Figure 1. Linear Case 

Multiply 
by 5 
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Noise Source 



various instants, we would expect to see a graph such as 

given in the diagram. If the device being investigated is 

linear, as in this case, a similar graph can be given for the 

reverse problem. input from a measurement of the output. The 

second graph on the diagram is identical to the one above it, 

indicating that the problem of finding the most probable input 

corresponding to a measured output value is similar. of 

predicting the output from a knowledge of the input. 

For nonlinear devices the reverse problem is quite 

different, as Figure 2 illustrates. The curve with several peaks 

shows the different situation that will normally hold for the 

reverse nonlinear case. Here there is no single most probable 

input, but several, each at the center of a range of possible 

inputs. The second graph, representing probable input estimated. 

from a measured output will in general be quite different in 

appearance. 

The number of peaks in the second graph for the nonlinear * 

case is an indication of the degree of the system of equations 

describing the device. In general there will be - n peaks for an 
equation or system of equations of degree n , although two or 

more peaks may be superimposed. Linear devices have a single 

peak since they are devices of degree one. If there is only one 

peak, then there is a single value that can be described as the 

most probable input, even though there is a range of possible 

inputs that could have produced it. The range of possible inputs 

forming each peak on the graph can be described as a lack of 

precision or as vagueness. 

10 
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1.1.2 Order - and Context 

The term 'linear' is confusing but I have used itthroughout 

this thesis because it is standard in mathematics. The term 

arises from the shape of the curve describing a functional 

relationship between two variables. If we assume the domain and 

range of the function is the field of real numbers, this 

terminology is appropriate. But mathematicians now apply the 

term 'linear' to similar functional relationships between 

variables defined over fields other than the real or complex 

numbers, and graphs of these functions are not necessarily 

straight lines. 

I would suggest that a better term for use within 

mathematics might be 'pseudo-invertable'. This is clearly a 

weaker property than true invertability, and defines a class of 

algebraic structures which includes the ps class of groups as a . 

proper subclass. 

From this account it should be clear that linearity is a 

desirable property for linguistic processes, since we want to be 

able to find the unique meaning of an utterance, if it has one. 

The linearity of linguistic processes may thus be related 

to the question of amibiguity in language. Early attempts at 

machine translation are often said to have failed because 

natural language is ambiguous. Words are usually assumed to have 

a number of different meanings, and no algorithm could reliably 



choose amongst them. But there is another explanation for this 

failure: word meaning is very context-dependent. It is difficult 

to store enough information about the way meaning depends upon 

context, and to persuade a machine to use it correctly. 

~ m b i g u i t y  and context-dependency seem s i m i l a r ,  and many writers 

have used the terms as loose synonyms, but from a mathematical 

standpoint they are very different. Abiguity is a question of 

degree and context-dependency is a question of order. To 

attribute the failures of machine translating projects to the 

ambiguity of language is to confuse these important mathematical 

concepts. This probably happened because the methods of 

computational linguistics do not involve explicitly formulating 

samples of text as mathematical functions or equations. The 

account given here suggests that it is not necessary to use 

explicit mathematical formulations; we can find out the 

properties of possible formulations without actually creating 

them. Among the most important of these properties is linearity. - 
The major hypothesis behind all the research to be 

presented in this thesis is that human language is not 

ambiguous, even though its interpretation is highly dependent on 

context. 

The mathematical formulation of this hypothesis is a 

statement about the human language processing facility, 

considered as a formal device: 

The human language processing facility is a linear 
device of high 'order. 



In speaking of the order of a device, we are referring to a 

property dependent on the number of integrators, delay 

elements and/or memory locations it contains. The effect of 

these components is to make the output of the device depend not 

only on the current input, but on other recent inputs, or in 

other words, on the current input and its context. For systems 

of equations we do not speak of memory locations or delay 

elements but rather of differential and integral operators. In 

the theory of differential equations or difference equations the 

term 'order' reflects the maximum number of times the 

differential or difference operator is applied to a variable. 

Figure 3 illustrates the range of possible systems. The 

rectangular hyperbola is an arbitrary boundary, intended to show 

how increasing order and increasing degree affect our ability to 

understand and use different systems. Systems represented by 

points between the coordinate axes and the curve are within the 

range of human understanding, while those beyond the curve in 

the right hand corner of the diagram are too complicated for any 

application. 

In order to illustrate the use of this terminology, we may 

consider two examples. Although the class of nonlinear devices 

includes devices of every order, it is worth considering a 

non-trivial device of the lowest order2 Consider a device that 

could be used for simple astronomical calculations, including 

2~ifferent branches of mathematics seem to differ over whether 
the lowest order is zero order or first order. 



Figure 3. 

Terra Incognita 

Increasing Order - 
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the prediction of solar and lunar eclipses. Suppose that the 

input to this device is an electrical voltage representing the 

current date and time as a single value. The output of the 

device is also a voltage representing a value for the angle 

between the solar and lunar discs as observed from a particular 

spot on earth. If the input is increased regularly, the output 

oscillates back and forth over a range of values, so this device 

implements a function of one variable which is clearly 

nonlinear. For use as an eclipse predictor, we would be 

interested in the problem of finding the inputs corresponding to 

a particular output: the one representing an angle of zero. 

Obviously there are infinitely many inputs that could produce 

that output, since there is no limit to the number of eclipses 

which have occured or will occur. 

Note that with this device context is unimportant. A given 

input value will produce a given output regardless of what other 

inputs precede or follow it. Because the device evaluates its * 

input with no consideration of context, it may be described as 

being of zero order. But the infinite number of different inputs 

that could produce any particular output indicates that the 

device is of infinitely high degree. 

Next we may consider a device of first degree, but of 

arbitrarily high order. It is well known that the propositional 

calculus of logic can be represente-d by many different 

notational conventions. Let us envision a translator between two 

of these: fully bracketed infix notation and Polish notation. In 



the former each operator occurs between its operands, and 

parentheses are placed around each compound term: 

(a&b)~(c&d) 

In Polish notation operators are placed to the left of their 

operands and no brackets are used: 

To make this example more comparable to the previous one, let us 

consider that the letters and symbols used in these notations 

are encoded as they would be by a computer terminal with a 

modem, for transmission over a telephone line, and that the 

translating device in question is to be placed between two such 

terminals. Thus, this device also has as a single variable 

voltage as its input and as its output. 

If one were. to sample the input and output voltages at a 

variety of times and tabulate them, the device would seem to be 

highly ambiguous, since a given output voltage will occur at the 

same time as an apparently random selection of input voltages. * 

But indeed, the device is not ambiguous. If the output voltage 

is sampled regularly and frequently for a long enough period of 

time, it can be decoded, and will then be seen as a 

representation of some expression in Polish propositional 

calculus. If so, the input that generated it could be calculated 

quite accurately. 

If we ignore noise and indeterminacies in the computer 

terminals and think only of the relationship between the input 

symbols and output symbols, it can be seen that a particular 



expression in the output corresponds to one and only one 

expression in the input. But the complete expressions must be 

examined to be sure of this correspondence. From the account of 

ambiguity and context given previously it follows that this 

device must be a linear one of very high order, even though we 

cannot give equations to describe it. If there is no limit to 

the length of expressions or the number of variables, the device 

would have to be of infinite order. 3 

How can we be sure the above device is linear? As will be 

shown below, linearity is related to invertability, but is a 

weaker property. If a device is invertable it is linear, 

although the converse does not hold. In this case, we could also 

describe a device that would perform the inverse translation 

from Polish notation into fully bracketted infix notation. Since 

each of these translators acts as the inverse of the other, both 

are invertable and so both are linear. 

It may be objected that known non-linear operations are * 

used in computer programs implementing similar devices. This is 

not a problem, since it is known that the combination of two or 

more nonilinear devices into a single device may yield a linear 

device. The converse does not hold: linear devices combined with 

other linear device can only produce another linear device. 

------------------ 
In practice such a device would be limited in some way and 

realized with a finite state machine. Linear devices acting as 
finite state machines are discussed in a later section. 



1.1.3 Precision and Vaqueness - 
Vagueness, or lack of precision, is a normal and generally 

desirable property of all expressions in any language including 

formal languages. Rather than having one precise meaning, a word 

usually has a range of similar meanings. The term 'animal' is 

vague, but useful. To be less vague, one can say a 'motile, 

food-consuming, life form', thus defining the class of animals. 

Alternatively, one could specify a subclass, or perhaps a single 

animal, such as John's white Scotch Terrier. With either 

approach, some vagueness is left, but there is much less. 

The concept of vagueness is essential to an understanding 

of the range of abilities of linear devices. The previous 

example was a hypothetical translator, and was invertable. Some 

linear devices are not invertable, but they still have a unique 

pseudoinverse, which is the best possible approximation to an 

inverse. For illustration, let us consider two hypothetical 

linear devices, a "summarizer" and an "expander". Neither of - 

these devices is truly invertable. 

A summarizer could be described as a device for 

abbreviating a long text. Given a book length document, it would 

produce a short paper, or perhaps an abstract of it. Obviously 

the output of this device cannot contain as much information as 

the original. One method of abbreviation would be selection of a 

short part of the book, but to live up to its name the device 

should produce a summary that includes all sections of the 

original. Since it must include less information than the 



original, while not omitting any section, its treatment of each 

section must be poorer than in the original. The shortened 

versions of chapters, paragraphs, and statements will have to be 

less precise than before, but this does not mean they will be 

more ambiguous. 

Looking back at Figure l(c) we may imagine t h a t  t h i s  

graph represents a range of interpretations for some statement 

in the original document. The single peak represents the most 

likely interpretation, and the width of the peak indicates the 

amount of vagueness. A summary of this statement will be a 

shorter statement, or perhaps a word, but its range of meanings 

should be a broader or flatter curve, indicating less precision. 

The range of interpretations for the summary will be a broader 

peak, but it should still be a single peak, - not a double peak 

(or bimodal distribution) as in Figure  2(c). It would be 

wrong for a summarizer to introduce ambiguity into the original, 

but vagueness is unavoidable. According to my account of these - 

terms, this would make a summarizer a linear device. 

A linear expander may also be considered. One way of 

describing such a device would be as one that would replace 

uncommon terms in a document by a definition or paraphrase. 

However it works, such a device can be envisioned that would 

come very close to inverting the output of the summarizer just 

described. If we are satisfied that a summarizer is a linear 

device because it does not introduce amibiguity, then we can be 

sure it will have a pseudoinverse, which will come as close as 



possible to inverting its output. Again, such a device should 

not introduce amibiguity into its output, nor should it 

eliminate ambiguity that it finds in its input. But a longer 

treatment of a subject can be expected to be more detailed than 

a shorter one, and so this device may reasonably reduce the 

vagueness found in its input by estimating the most likely 

meaning of laconic expressions. 

One may wonder what would happen if the summarizer and 

expander were both applied, in that order. Ideally, the original 

document would be reproduced unchanged. More likely, however, 

the output would resemble the original but be blander, with 

surprising usages replaced by more conventional ones.4 This is 

the first example of a kind of filter that could be called a 

pseudoidentity filter, since its effect on certain (very 

unoriginal) input texts would be indistinguishable from the 

identity filter (or trivial filter) that passes text through 

unchanged. In a later section I use such a device as a model for - 

the grammar of a language. 

It must be emphasized that the hypothetical summarizing and 

expanding devices should be linear, neither introducing nor 

removing ambiguity. This is true of any device for processing 

language. A machine translator should also have this property, 

since the translation of a text should be exactly as ambiguous 

~ohonen(1977) describes a "novelty filter" designed to remove 
familiar material from its input, leaving only novelties. A 
filter created by combining summarizer and expander, would be 
just the opposite: it would remove novelties, replacing them 
with more familiar usages. 



as the original, but in a different language. Whether or not 

this is possible is not immediately obvious, but it could serve 

as an ideal standard to be approached by actual translating 

devices. The theory that linguistic devices are linear devices 

is not a tautology, since perfect translation between human 

languages may not be possible, and in particular some 

introduction of ambiguity may be unavoidable. 

In the Romance languages there is no neutral pronoun 

corresponding to the English word 'it'. Suppose we read English 

translation including the following sentences: 

'I like your new table, and that is a lovely bowl on it.' 

'Where did you get it?' 

and the reply: 

'He gave it to me.' 

We don't know if the word 'it' refers to the table or the bowl. 

In the original language the pronoun corresponding to 'it' will 

show the gender of the object, and thus may identifify it.(In 

French, 'le' or 'la', for 'le bol' or 'la table', for example.) 



This would have made the statements unambiguous. In this case 

the translator could be criticised for introducing ambiguity, 

and we can see how it could have been avoided. It is not clear 

that it is always possible to avoid ambiguity in translating 

between natural languages. 

We have considered three kinds of devices: summarizers, 

translators, and expanders. These basic units, and any 

combination thereof, could all be described as devices for 

communication, as distinct from calculation. Linear and 

nonlinear devices each have their own area of application, and 

sensing or communicating information is best performed by linear 

devices, since the output of these devices may be described as a 

5 translation, expansion or summary of their input. Given the 

output of a linear device we can recover its input with minimal 

error, and this is a basic requirement for any channel of 

communication. 

The suggestion that human brains are linear devices, 

although very complex ones, emphasizes our role in sensing and 

communicating information, at the expense of our role in 

processing information. This is a very different view of human 

abilities from that common in most academic disciplines. For 

example, researchers in the new field of Artificial Intelligence 

commonly use a model that emphasizes processing abilities, 

------------------ 
5 ~ t  must be noted that the term 'translation' is used in the 
theory of operators to refer to a nonlinear operation. In this 
case I prefer to ignore the mathematical usage and use the term 
translation to refer to the (linear!) operation of translating 
between languages. 



including supposed abilities that seem very much like nonlinear 

operations. Indeed, the A 1  community seems willing to use any 

operations at all to achieve their ends, even if the resulting 

models bear very little resemblence to known features of the 

human brain. Only occasionally does one find a suggestion that 

perhaps more could be accomplished with less, or that there 

might be some point in limiting the operations employed to some 

extent. 

1.1.4 System Identification Techniques 

The notion that human beings are linear devices immediately 

suggests a number of routine mathematical techniques such as are 

employed in systems engineering. The first steps in dealing with 

a linear system of unknown properties are known as system 

identification techniques. There are a variety of different 

methods that can be used, depending on what kind of information 

is available about the system. 

Most methods of system identification involve applying a 

known input to the system, observing the output, and applying 

mathematical techniques to the comparison of input and output. 

The methods of word-association testing used in psychology could 

be described as system identification, with the stimulus word 

being a known input, and the response the output of the system. 

Word associations tests do involve the human language 

processing facility, but only in a limited way. There are many 

other ways of defining an experimental situation where a given 



input can be compared with the response it produces, and one of 

great interest is the study of simultaneous translations, in 

which the translator is under pressure to respond as quickly as 

possible with a translation of whatever he hears. 

Machine translation has often been attempted, but success 

has been limited by the supposed complexity of human language. 

The arguments given above suggest that however complex human 

language processing is, it should be a linear operation. If this 

is so, certain very powerful system identification techniques 

apply, particularly spectral analysis. 

The spectral analysis of linear systems makes use of 

integral transforms such as the fourier transform. Each 

particular sample of input can be transformed into a complex 

frequency spectrum with the fourier transform. The spectra of 

many different inputs can be averaged to yield a characteristic 

spectrum of the' input, and the same process can be applied to 

yield a characteristic spectrum of the output. If the system is - 

linear and certain other conditions exist, the ratio of these is 

the characteristic spectrum or system transfer function of the 

device. Once the system transfer function of a device is 

uncovered, the system is completely identified and its output 

for any other input can be predicted. 

The idea of going through this series of operations and 

arriving at a system transfer function for the process of 

translating from one language to another was very exciting, and 

has served as a stimulus for much of this research. 



Translation from one language to another is often thought 

of as two processes combined: the decoding of an utterance in 

one language, yielding its meaning, and the subsequent 

reencoding of this meaning in the second language. If these two 

processes represent definite subsystems it may be possible to 

isolate them. If we could do this we would have systems for 

translating between an ordinary human language and a neutral 

"language of thought" or "logically perfect language". 

The existence of these systems has often been discussed, 

particularly by grammarians of the school of Generative 

Semantics, for whom the grammar of a language was a system of 

rules for translating a logical representation of meaning into 

the correct form for expressing that meaning in the language. 

System identification techniques do exist for isolating 

subsystems that cannot be directly observed. If there are such 

devices, one way of finding them would involve examining known 

devices with similar properties. This is the essence of a - 

systems identification technique which begins by applying random 

input to a device with externally variable characteristics, and 

then adjusts the device until its output matches that of the 

system being investigated. For linear systems this method is 

valid, with matching outputs implying similar characteristics. 

An attempt to find a linear model of grammar could thus begin 

with an attempt at synthesis: we could try to find or construct 

a linear device whose output is similar to human language. 



Oddly enough, a concrete model of one such process has been 

available for decades. Markov devices whose output approximates 

a natural language are usually represented by probability 

matrices, in which each entry represents the probability of 

transition from one internal state to another. In moving between 

states the device is usually made to output one or more symbols, 

and is therefore treated as a generator of strings of symbols. 

This treatment of Markov devices is misleading, since it 

hides the input. A device with no input is difficult to analyse, 

and cannot even be labelled linear or nonlinear. In any actual 

implementation of a Markov device, the input is a sequence of 

random (or pseudorandom) numbers from a random number generator. 

A Markov device as actually implemented is thus a filter which 

takes an uncorrelated input and imposes some characteristic form 

or structure upon it. 

Markov devices played a central role in the development of . 

modern linguistic theory after being proposed as part of a model - 

of a grammar by C. F. Hockett. One of Noam Chomsky's earliest 

and best known contributions to linguistics was a demonstration 

that "finite-state Markov sources" were inadequate as a model of 

grammar. I believe Chomsky's account of Markov models is 

irrelevent and dangerously misleading. If Markov devices are 

treated as filters rather than generators, their true importance 

can be seen, and their limitations overcome. In a later section 

I show how linear Markov filters can be used as a model for 

grammars. This does not contradict Chomsky's result, since the 



'Markov sources' he discussed were defined differently, and his 

notion of grammar was different. Chomsky's mathematics is not 

wrong, but his definitions are too narrow. 

Markov devices can be implemented as linear devices which 

filter the output of a random number generator. If we accept the 

linearity of human language processes we should then attempt to 

understand linear Markov filters, particulary ones of high 

order, since their output is so similar to ours. 

One problem with high-order Markov devices that has limited 

their application is the large amount of data they must employ. 

A first-order Markov device requires a table of at least 729 

values, representing the probabilities of each letter (including 

the space between words) occurring after each other letter. A 

second order device requires four times as much data, since 

pairs of letters are used. Thus the amount of data required 

grows as the square of the order. There are two possible 

attitudes to this problem: 

1. These requirements are unreasonable: we should use data 

compression or some better algorithm to reduce the amount of 

data required and/or the rate of growth in required data. 

2. These requirements are unavoidable: we must accept the data 

requirements as an inevitable consequence of the complexity 

of human language, and try to find out what function 

complexity serves. 

The first of these attitudes seems justified, and in fact I have 

simulated first and second order Markov devices using tables 



containing fewer than one hundred data values. Unfortunately, it 

is not so easy to extend the methods used in doing this to 

higher-order devices. To create high-order filters that simulate 

human grammars cannot easily be done with compressed data, and 

this reinforces the notion that human language is very 

complicated. 

One central issue in all debates about language is the 

question of the total complexity of a human language. Chomsky 

has argued that language is so complicated that knowledge of it 

must be innate, while others have argued that it must be simple 

enough to be learned. One of the first tasks in the application 

of systems identification techniques must be the estimation of 

this complexity. 

Simplicity and information content are related, since we 

call a system simple if it may be described in a few brief 

sentences, but complex if a lot of information must be given for 

any adequate description. Human languages are considered to be * 

very complicated, since vast amounts of information must be 

given in any usable account of a language. Indeed, it is 

doubtful if any natural language has ever been completely 

described. 

One problem that has not been dealt with by Chomsky is why 

language is not much simpler. Esperanto is an artificial 

language which was intended to be much simpler and more regular 

than ordinary natural languages. But Esperanto is not as simple 

as it could be, since Zamenhof borrowed the vocabulary from a 



number of natural languages. The lexicon of Esperanto is complex 

by comparison with other artificial languages -that have been 

proposed, which have employed a very small number of morphemes 

and simple rules for combining them. Such systems are actually 

used in libraries as classification schemes. The Dewey Decimal 

system, for example, uses 10 morphemes, represented by the 

integers from 0 to 9, and forms expressions representing an 

enormous number of concepts by combining them. 

Very simple schemes along these lines have been proposed 

since the early 16th century (Knowlson 1975) and later by 

Descartes, and by Leibniz. Specific versions tailored more to 

the needs of people, rather than as philosophical ideals, have 

been examined by various European scholars over a period of 500 

years, but none of them has come anywhere near even the limited 

success of Esperanto. 

If language is complicated, its complexity may serve a 

function. It has been suggested that language contains cultural - 
information, and is an essential repository of human knowledge. 

1.1.5 Extraction - of Information from Lanquage - 
The idea that language has content appears with the 

discovery of Sanskrit and the rise of historical philology, 

culminating in the writings of Wilhelm von Humboldt. The 

correlation between sound changes in language and historical 

movements of people was often discussed in the 18th century, and 

the idea of extracting information about historical events from 



language aroused considerable excitement amongst the romantic 

philosophers and philologists. 

It is in the work of Humboldt that this theory is most 

fully developed. In his introduction to language, prefaced to a 

serious work in the comparative linguistics of Indonesian 

languages (Humboldt 1836, see also Miller 1968), Humboldt argues 

for the complete relativity of language to culture. For him, 

language thus does not have any arbitrary components, but is 

precisely determined by national culture. Since the main 

argument for the arbitrariness of language is the supposed 

existence of more than one language, in denying arbitrariness 

Humboldt does indeed suggest that there is only one language, 

In fact, Humboldt argues, it would be equally correct to 

say that there is only language, or that each and every person 

speaks a different language. Which usage is to be preferred 

depends on whether one uses 'language' to refer to the medium in 

which thought is expressed, or the specific reflections of * 

thought in the speech of a single individual. Throughout the 

rest of his treatise Humboldt adopts the latter usage. He speaks 

of a multitude of different languages, each one capturing and 

preserving the culture of some nation or individual. Humboldt 

clearly advocates the preservation of differing national 

languages and even the cultivation of differences. At one point 

he writes that it would be better if each individual spoke a 

completely different language which accurately mirrored his own 

thoughts, regardless of the disruptive effects of this on human 



communication. If each language contains a fixed amount of 

information, it would follow that if more languages are studied, 

more information could be obtained. If each person spoke a 

different language, the total information available would be 

enormous. 

This seems very far from Leibniz's dream of a single ideal 

language for all mankind, but remember that Humboldt allowed 

that 'language' could also refer to the medium in which thoughts 

are reflected. It seems that Humboldt incorporated the ideal 

language of Leibniz as a medium of expression, and went on to 

consider the culture expressed in it. 

Humboldt does give some characteristics of this medium, and 

its properties are wonderfully logical. He speaks of a 'true 

morphology' of language, in which words are formed from 

meaningful sounds, with the stipulation that "Since words are 

always juxtaposed to ideas, it is natural that related ideas are 

designated by related sounds". (Humboldt 1836:55ff) In - 
developing his theory of language Humboldt shows again how 

natural languages deviate from this ideal. But he makes this 

deviation functional; he claims that it expresses national 

culture. 

This is a remarkable view which should be expanded upon. A 

person may suppose that he or she is expressing some meaning, 

represented by the small letter, 'a', or an~ther~represented by 

the small letter 'b'. We may think of these meanings as being 

expressed in some language, which might be described as a 



function that takes the meanings into the sequence of sounds 

forming an utterance. Thus one may say that to express these 

meanings a person utters F(a) or F(b). Another person speaking a 

different language may express the same meanings by uttering 

G(a) or G(b). 

However, if Humboldt is right, each person is expressing 

more than just the meanings he is conscious of. Each person 

expresses some of his own cultural background as well. If we use 

two more small letters, 'f' and 'g', to represent the cultural 

knowledge of the respective speakers, then we could say that the 

first person is really expressing the sum of the intended 

meaning and the cultural knowledge, which could be written 'a+•’' 

while the speaker of the other language is expressing the 

same intended meaning together with his different cultural 
6 

knowledge, which can be described as 'a+gl. Both people could be 

speaking the same universal language, represented by the 

function U. Thus one person says U(a+f) or ~ ( b + f )  while the - 

other says U(a+g) or U(b+g). For Humboldt this is an equivalent 

way of describing what happens when two people speak 

differently. 

If we use lower case letters to represent statements or 

meanings, and upper case letters to represent functions, then 

~umboldtk view can be expressed by saying that F(a)=U(a+f) and 

G(a)=U(a+g). 

'~he plus sign ( + )  in these examples must not be taken as 
ordinary addition, but rather as additicn of vectors in some 
metric space to be defined later. 



In interpreting this it is important to treat If' and 'g' as 

variables depending upon the whole of each person's past input, 

rather than as constants. We should also treat 'a' and 'b' as 

input variables, since we are describing the human language 

processing facility, and intended meaning is an input to that 

facility. If these conditions are observed, the equations given 

above serve to define the functions 'F' and 'G' as linear 

functions of the variables. Thus, this formulation suggests a 

linear model of language such as is being presented here. 

Humboldt's work represented an expansion of the idea of 

recovering historical information from language to include all 

of the cultural knowledge of a society. In Humboldt's view 

language is complicated because it has so much content. But 

what, specifically, is this content, and how exactly can it be 

recovered? 

A possible answer is provided by the methods and results of 

classical scholarship, where fragments of vanished texts may be - 

recovered from existing texts of subsequent authors. A thorough 

knowledge of the style of the latter, aided by statistical 

analysis, can reveal words and phrases, that are probably 

quotations, and these can sometimes be pieced together from 

several sources to yield a reconstruction cf what the earlier 

author may have written. Classical scholarship is a very 

difficult area, and is only used here to show that historical 

information can- be extracted from language, if enough time and 

energy is applied. This historical information may be nothing 



more than samples of text from an earlier period. 

The problem with classical scholarhip as an example is that 

it still depends heavily on the knowledge and intuition of the 

scholar, producing few results from a lot of labour. This would 

be an ideal area for complete automation, in which a large 

computer could digest and analyse masses of material, if only 

some way could be found of making written language more 

accessible to the computer. These methods could then perhaps be 

extended to the study of more recent history, and some of the 

cultural knowledge of societies that so interested Humboldt 

could be extracted. 



1.2 Computational Development of g Linear Model of Languaqe - 
The possibility of synthesizing a linear model of human 

language processes remains as an ultimate goal for research 

based on the linear model of language processing. 

The problem of dealing with human language is that the data 

is not immediately available in a form convenient for 

mathematical analysis. It was necessary to find ways of 

submitting language samples to a computer. 

1.2.1 Mathematical Representations of Lanquaqe - 
The experimental work began with an attempt to use 

digitized speech waveforms as data. The plan as first conceived 

was to digitize utterances of approximately one sentence in 

length, to record digitally many of these sentences, and to 

analyse the data using fourier transforms and related 

techniques. The problem with this approach was the extremely 

large number of data points that had to be collected to 

represent a single sentence. Even short sentences take about one 

second to utter, and in that time about ten thousand values 

would be collected. 

Recording and analysis of that many data points proved 

difficult, so research was then conducted in an attempt to apply 

some relatively simple data compression techniques. This was 

partially successful, but in the absence of special purpose 

hardware still required the recording of thousands of data 



values prior to their application, and this was extremely 

difficult with the available equipment. 

The problems of working with digitized speech could be 

avoided altogether by using a symbolic representation of speech 

in orthographic symbols, if enough samples from different 

languages in the same notation could somehow be obtained. It is 

easy enough to obtain ordinary text samples from various 

languages, but difficult to collect adequate phonetic 

representations of speech. If samples could be obtained and 

entered into the machine, the symbols used could then be 

translated into feature vectors using the values already chosen 

by generative phonologists. 

The idea of borrowing distinctive feature values from 

generative phonology suggested a consideration of other aspects 

of generative phonology. Chomsky and Halle's discussion of the 

phonology of English shows an unusual respect for ordinary 

English spelling and orthography, which are shown to reflect the - 

underlying phonetic forms of English. If this is so, then 

perhaps ordinary printed text could be used instead of special 

phonetic transcriptions. By adopting Chomsky and Halle's feature 

values for phonemes represented by the alphabetic symbols it 

would be possible to convert ordinary printed text into a form 

suitable for further analysis. Methods of factor analysis or 

feature extraction could then be applied to these feature 

vectors to produce vectors that are more suitable for 

mathematical treatment. 



It was supposed that each symbol would be eventually 

represented by several numbers, that is to say by a vector of 

numbers, and that the representation of a sentence would 

therefore be in the form of a rectangular matrix. Such matrices 

would be similar to those used in generative phonology to 

represent sequences of speech sounds. Each vertical column 

represents a single speech sound, and their juxtaposition into a 

matrix is a convenient device for representing a sound sequence. 

My first attempts at finding coordinate values adopted 

feature vector assignments from Chomsky and Halle, encoded text 

samples using them, and then applied factor analysis to look for 

a more convenient set of values. This was not hard to do for 

English, but presented problems in dealing with other languages. 

Although linguists have looked for a universal set of 

distinctive features, there is no agreement on one. Nor is there 

any agreement on the status of alphabetic symbols for other 

languages, which may or may not correspond to underlying- 

phonemes and have an obvious representation as a feature vector. 

Because of these problems it was decided to attempt a 

mechanization of the processes by which phonologist arrive at 

feature vectors. In studying these processes I found several 

interesting ways of representing text. 

The difference between the representations that were 

developed in the course of this research and the feature 

matrices used in generative phonology is that the latter 

originate in the phonologist's personal intuitions, aided by 



various arguments from the philosophy of science. One 

consequence of this process of ascribing features is the common 

use of binary values for features, although certain phonologists 

have argued for a wider range of values. 

In the research discussed here feature vectors for 

alphabetical symbols come from a statistical study of the text, 

and may be positive or negative real numbers, not necessarily 

integers. The number of values required for each vector was not 

known, though some estimate could be made from a review o'f those 

phonologists who do believe in continuously varying features. It 

was originally supposed that about three or four coordinates for 

each vector would be adequate. 

The methods of feature extraction used here are based on 

the least-effort principle of functionalist phonology. 

Functionalists believe that language is shaped by a principle of 

least-effort or economy. Certain sequences of sounds involve 

more effort than others, and are accordingly l e s s  favoured. Some- 

sequences will involve so much effort as to be almost 

impossible. 

Thus for the typical speaker of English the k - a - t 

sequence of /kat/ is an easy and natural motion of the 

articulatory organs, while the k - t - a sequences of /kta/ is 

quite difficult. 

Phonetic features chosen to satisfy a least-effort 

principle will tend to have values which change as seldom as 

possible during the course of an utterance. One way of stating 



this is to suggest that feature values have been chosen so that 

the probability of a pair of sounds occurring in sequence is 

proportional to the similarity of their feature vectors. If 

binary features are used, then counting changes between adjacent 

symbols would reveal their similarity; if continuous features 

are used, utterances would be represented by smooth paths or 

trajectories in some abstract space. 

1.2.2 Findinq Coordinate Values a Successive Approximation 
The task of finding suitable coordinate values for the 

alphabetical symbols can be considered a problem of solving a 

system of equations. The system of equations to be solved is not 

given explicitly, but is implied by the principle of economy or 

least-effort. 

If four coordinates were used for each alphabetic symbol, a 

100 character length of text in a language would be expressed as 

four functions, each represented at 100  points by the values of- 

one of the four coordinates over the whole length of text. One 

simple way of characterizing the desired properties of these 

coordinates is to say that the values for each alphabetic symbol 

should make the resulting four functions as smooth as possible, 

while still encoding the necessary information. 

Given this principle, there is a remarkable method for 

arriving at suitable coordinate values for each symbol. The 

simplest version of this method involves choosing the 

coordinates at random and then passing the resulting functions 



through a l ~ w - ~ a s s  filter. The low-pass filter will replace the 

values of the function at each point with new values that are 

arrived at by averaging the assigned values with some weighted 

sum of the neighbouring values. Thus, the values of neighbouring 

symbols will more closely resemble each other. 7 

Afte r  f i l t e r i n g ,  t h e  four parallel functions representing 

the text sample no longer have a single set of values 

corresponding to each letter of the alphabet, so the various 

values for each symbol will have to be collected together and 

averaged. The original random values for each symbol are thus 

adjusted by the filter to more closely approximate those of the 

symbols which are most usually found nearby. This filtering, 

collecting, and averaging operation can be repeated as often as 

necessary. Each time it is applied the values in the vectors 

representing each symbol become more like the corresponding 

values in its most common neighbours. The filtering process 

could be described as an artificial assimilation, in which the * 

properties(i.e. coordinate values) of each symbol become 

progressively more like those of its most common neighbours. 

The functionalist account suggests a historical process by 

which sequences of sounds are created through the novel 

combination of existing morphemes, and then become altered 

through the replacement of difficult sequences with new 

sequences that are similar, but more easily pronounced. The 

results of this continual process is a language in which most ------------------ 
7 ~ h e  following section on filtering shows more clearly how this 
operation takes place. 



sequences of sounds are relatively easy to pronounce, but which 

contains a few new coinages that are still phonetically awkward. 

The original random assignment of values is like the formation 

of words by combining morphemes. Subsequent filtering parallels 

the phonological changes affecting words as assimilation makes . 

adjacent sounds more similar. 

A series of computer programs performed this filtering 

operation on whatever initial set of coordinate values was 

provided. The new values resulting from this operation were an 

improved set of coordinate values, in that sequences of such 

vectors better obey the least-effort principle. It was possible 

to improve an existing set of coordinate values by applying this 

filtering operation, and it was also possible to create a set of 

good coordinate values by starting with an entirely random 

choice of values and filtering them repeatedly. It should be 

noted that this process has an unfortunate side effect: the four 

sets of coordinates tend to converge to a single set of- 

coordinate values. In order to make sure we recover four 

distinct sets of coordinates from the filtering process, it was 

necessary to 'push them apart', using the Gram-Schmitt 

orthonormalization algorithm after each iteration of the basic 

filtering operation. 

The most interesting case for our present purposes is one 

in which the filtering operation is a simple moving average 

filter of order two. Such a filter would add some fraction of 

the assigned values of each occurence of a symbol together with 



fractions of the assigned values of both the preceeding and 

following symbols. 

The process of averaging the various new values assigned to 

each alphabetical symbol involves adding the values and dividing 

by the number of values. This addition involves a large number 

of terms, which can advantageously be rearranged. Rather than 

include the values of the letter R as separate terms in the 

calculation each time R precedes the given letter, all such 

instances may be expressed as a single term with a multiplying 

factor. 

If we carry out this rearrangement, it is only necessary to 

count the number of times each letter occurs before and after 

each other letter. The simplest way to arrange the number 

representing the results of this counting is in.a matrix. Using 

the ordinary definition of matrix multiplication this matrix can 

serve as a filter that is almost exactly equivalent to that 

specified above. 8 

It should be noted that the intermediate steps of counting 

symbols and multiplication by the resulting matrix can be hidden 

in the program so that from the user's point of view it is the 

text sample which serves to filter the vectors representing 

alphabetical symbols. 

------------------ 
The only difference between the filtering operation as first 

described and the matrix multiplication comes from the elements 
on the diagonal of the matrix which are not correct for this 
purpose. In this regard we may note that adjusting the diagonal 
elements of a matrix is a standard operation of factor analysis. 



1.2.3 Relationship - to Factor Analysis 

Thus, an equivalent algorithm substitutes for the fourth 

step a multiplication by a suitable matrix. The process of 

repeated matrix multiplication and normalization of a single 

vector is a well known method for extracting the principal 

eigenvector of a matrix. Repeated multiplication by a matrix 

tends to turn an arbitrary input vector into an eigenvector. If 

a series of different vectors are repeatedly multiplied by a 

matrix, and are kept othogonal by repeated applications of the 

Gram-Schmitt process, then they are turned into separate 

eigenvectors. 

If the above algorithm is allowed to produce a complete set 

of coordinates, instead of just four for each symbol, so that 

the number of coordinate values assigned to each symbol is the 

same as the number of different symbols, then the above process 

will normally produce an orthogonal set of feature vectors. If . 
the set of coordinate values is considered as a square matrix; 

then the application of the Gram-Schmitt process to the rows of 

the matrix also makes the columns orthogonal, since any square 

matrix with orthogonal rows also has orthogonal columns. 

This method of producing eigenvectors, using the 

Gram-Scmitt process to keep the vectors othogonal, tends to 

order the eigenvectors in order of the size of their 

corresponding eigenvalues. The first vector treated by the 

proces is merely normalized. Subsequent vectors are altered more 

and more drastically by the orthonormalization process, and 



therefore tend to correspond to smaller eigenvalues. 

If the matrix of counts is considered as an autocorrelation 

matrix for some unknown set of vectors, then the process of 

extracting its eigenvectors would be the familiar method of 

factor analysis or the Karhunen-Loeve expansion. 

The above process is interesting since it arises from a 

simple consideration of a principle familiar to linguists. In 

the course of lengthy computational experiments the original 

clumsy method of translating a text sample into features and 

filtering was replaced by the simpler method that used a matrix 

of adjacent symbol counts. For a while this was employed in a 

filtering operation through matrix multiplication, but it was 

eventually realized that this operation was no more than factor 

analysis of the data in the matrix. 

The use of a matrix of adjacent symbols counts as data is 

most interesting when it is remembered that a first order Markov 

device (as usually implemented) contains a table of,adjacent- 

symbol counts. Thus the method just developed amounts to 

applying factor analysis to the matrix contained in a Markov 

device. The results reinforce the view that Markov devices are 

linear filters and usable as a model of grammar. This will be 

discussed again in the last section, which gives examples based 

on analysis of several languages. 



1.2.4 Adjacent Symbol Counts as Data -- 
The fundamental type of data used in the first part of this 

research was obtained by counting the number of times each 

letter occurred before or after each other letter. A program 

created a matrix of 27 rows,27 columns. Each row of this matrix 

represented a different letter of the alphabet, including the 

blank. In counting continuous text, all punctuation was ignored, 

and multiple blanks replaced by a single blank. The program read 

some sample text and assigned one row of the matrix to each 

symbol in the text. For convenience in using text prepared for 

other purposes, the program identified upper and lower case 

letters, and treated all nonalphabetic symbols as blanks. 

Sequences of blanks or other nonalphabetic characters were 

compressed into single blanks. For most of this research the 

standard English alphabet of 26 letters was used, with the 

addition of the blank that indicates the break between words. 

The result of counting could be shown in a tabbe or matrix* 

such as given in Table 1. In treating the matrix of adjacent 

symbol counts as 27 pieces of data about each of 27 items, 

statistical methods were employed to condition and describe this 

data. 

The 27 data values in each row vector can be taken as 

defining the position of that letter in a 27 dimensional space. 

The statistical methods employed include methods of factor 

analysis, used to rotate and project this space onto a 

two-dimensional subspace that may conveniently be represented as 

a scatter diagram. (see Figure 9 page 62) 



I - a b c d e f g h i j k l m n o p q r s  

0  4 0  1 2  3 0  3 2  1 9  14 7  7  40  1 2  1 6  14  8  2 0  3 3  0  9  28  
A 1 3  0 1 6  8  1 0  0  8 0  4  0  2 2 0  7 2 7  0  6 0 2 7  8  
B 0 3 0 0 0 7 0 0 0 6 0 0 1 3 0 0 7 0 0 0 2  
C 1 1 3 0 3 0 2 4 0 0 8 6 0 0 5 0 0 2 5 0 0 4 0  
D 2 4 1 0 0 0 3 0 0 0 0 1 4 0 0 0 0 0 3 0 0 0 6  
E 9 9 1 4  0 1 0 1 6  2  3  2  0  1 0  0  9 1 4 3 3  1 5  9 3 7 3 1  
F 7 4 0 0 0 6 7 0 0 6 0 0 0 0 0 1 0 0 0 3 0  
G 1 8 2 0 0 0 8 0 0 3 4 0 0 2 0 1 0 0 0 7 2  
H I 4  9  0  0  0 4 6  0  0  0 1 2  0  0  0  0  0 1 2  0  0  0  0  
I 6  5  5 2 7  2  6  9  5  0  3  0  0 1 3 1 0 6 1 3 2  2  0  3 1 6  
J 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
K 2 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3  
L 1 6 1 4  0  2  2 2 3  0  0  0 1 6  0  0  5 0  0  5  0  0  0  4  
M I 0 1 5  3  0  0 1 5  0  0  0  8  0  0  0  7  0  8  8  0  0  4  
N 4 8  5  0 1 5  9 1 3  1 2 9  0  4  0  1 1 0  0 1 1  6  0  0 1 7  
0 1 2  0  5  1 1 0  0  5 4  0  0  1 2  8 1 4 5 1  4  6  0 2 4  4  
P 0 9 0 0 0 1 4 0 0 5 0 0 0 5 0 0 7 2 0 1 8 2  
Q O O O O O O O O O O O O O O O O O O O O  
R 2 3 2 3  0  0  3 3 4  1 0  1 1 2  0  1 3  8 1 1 2  2  0  4  6  
S 6 9  1 0  7  0 1 4  3  0  4 1 9  0  1 2  1 0  5  0  0  0 1 0  
T 4 6 1 1  0  0  0 3 3  0  0 6 5 4 9  0  0  1 0  0 1 1  3  0 1 0  8  
U 0 1 0 1 4 5 6 0 1 0 2 0 0 1 1 4 7 1 0 0 2 9  
v 1 9 0 0 0 1 4 0 0 0 1 2 0 0 0 0 0 1 0 0 0 0  
W 1 1 0 0 0 3 0 0 3 6 0 0 0 0 1 3 0 0 0 1  
X 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0  
Y 1 7 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 4  
2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  

Table 1 .  

Adjacent Symbol Counts 

Several  rows of t h e  t a b l e  given previous ly  a r e  reproduced 

again i n  Table 2 .  

The f i r s t  s e t  of f i v e  rows a r e  f o r  t h e  vowel sounds; t h e  

second i s  f o r  t h e  l a b i a l  consonants. Examine t h e  va lues  i n  t h e  

t h e  s i x t h  column, under the  symbol ' e '  . The va lues  i n  t h i s  



Table 2. 

Vowels and Labial Consonants Compared 

column are low for the vowel sounds, but high for the labial 

consonants. In constrast, columns fourteen and fifteen, under 

the symbols 'm' and In' have large values for all of the vowel 

sounds but much smaller values for the labial consonants. The 

similarity between the corresponding values in each set of five- 

rows can be described as a correlation, and measured using 

familiar techniques, yielding a value for the similarity, 

interdependence, or interchangability of the two letters. The 

correlation between the rows in the first set reflects the fact 

that each row of data describes adjacency patterns for .letters 

representing vowel sounds. 

The correlation between adjacency patterns for vowel sounds 

has been noticed before, and used in an attempt at a definition 

of the difference between vowel and consonant (O'Connor and 



Trim, 1953). 

A more sophisticated statistical treatment can yield 

considerably more information about the sounds represented by 

the letters, as the scatter diagrams in the last section show. 



Figure 4. Method of Producing Scatter Diagrams 

1.3 - Computational Algorithms 
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This chapter discusses why and how the computational 

algorithms work, and gives further results. 

To find suitable coordinate values for representing the 

letters of the alphabet, several distinct methods were employed. 

There are various arguments for and against each of these 

methods, and I will note some of these in describing the methods 

and presenting typical results. The results given below are 

remarkable because they show how an unknown symbol system may be 
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decoded, but the method used is not particularly remarkable. It 

is worth presenting an informal account of this method. In 

reading ordinary text a person often comes across a word that he 

has never seen before and whose morphology baffles him. If the 

word occurs several times in the text, the person may have a 

very good idea of what it means by the time he is through. How 

does he do this? 

Introspectively, it seems that the meaning of an unknown 

word is found by looking at the context and imagining other, 

known words which might fit that context. It is rather as if 

each example of the word in a context is an equation, and the 

set of examples forms a system of simultaneous equations to be 

solved. If I say 'Put the blarque on the table1 it is difficult 

to form any firm idea about the meaning of the word 'blarque'. 

If after that I say 'Take the cover off the blarque' and 'Help 

yourself to the rice in the blarquei and 'Watch out, the'blarque 

is hot1 then one can easily figure out what sort of thing a- 

blarque is. It is not at all clear that one could write a 

computer program that would figure out that a blarque is a kind 

of cooking pot, but perhaps there is an easier task that could 

be programmed. 

If a large sample of text, such as stack of books, is 

available, and the above sentences occur in that text, there is 

also an excellant possibility that more ordinary sentences such 

as 'Take the cover off the pot1 may occur. Seeing this sentence 

with the analogous sentence above would suggest to anybody that 



a blarque is a pot, or that a pot is a blarque. Without any real 

understanding of either word it is possible to see that the two 

words have a similar meaning. It is very easy to envision a 

computer program that would simply find out which words occur in 

similar contexts. If occurence in similar contexts implies a 

similarity of meaning, then some information about the meanings 

of words will have been obtained. 

In the following section I show how this notion was pursued 

at a lower level, to find out the interpretation of alphabetical 

symbols. 

Not all of the research performed can be described here, 

and much of the research that is described is given only a brief 

review. There are too many different combinations of possible 

data sources and methods: only a few can be presented in any 

detail. To illustrate the problem, here is a list of some of the 

choices that had to be made: 

1. Languages to be studied 

a. related languages from one family 

b. single samples from different families 

2. Type of sample used 

-a. continuous text 

b. common phrases and typical sentences (assorted) 

c. lists of common words 

3. Mathematical analysis 

a. Statistical methods 

b. Equation solving methods 



c. Optimizational methods 

Type of data collected 

a. Unsymmetrical data table 

b. Symmetrical data table 

Amount of data collected 

a. adjacent symbols only 

b. nearby symbols at various distances. 

Accuracy of data storage 

After along period of attempting to evaluate these statistical 

methods for assigning coordinate values I have come to the 

conclusion that it is not necessary to choose the best method, 

since any one of a number of methods will produce a coordinate 

assignment that can be used by other programs. Some of the 

programs that can be applied, given an initial coordinate 

assignment, result in a more accurate choice of coordinate 

values. These latter programs are nonstatistical in nature and 

work by solving systems of equations. It is important to note - 

that the information which is discovered by solving equations 

based on a text sample or utterance is essentially the same 

information arrived at with the statistical method, but there is 

more of it. We thus rediscover what should have been found by 

the statistical method. For example, the first purpose of the 

statistical method is to provide a set of coordinates for the 

letters and, later on at a higher level , a set of coordinates 

for words. Suppose one discovers with a statistical method a set 

of coordinates for the letters of the alphabet. Coordinating the 



text and treating it as equations, then solving them, results in 

a series of coordinates. While it may also be other things, this 

series will be another set of coordinated values, and a more 

accurate set, since it is based on a nonstatistical method. 

Such accurate sets of coordinates, in which data 

compressions would be better and smaller text samples used, 

could then replace the original sets of coordinates. 

Alternately, the same text sample could be used at a higher 

level of accuracy. Such considerations suggest a boot-strapping 

method by which an initial approximate set of coordinates would 

be revised, creating better coordinates which could, in turn, 

produce yet better. 

Statistical studies of language have usually been more 

concerned with obtaining representative samples for analysis 

than they have been with grammaticality or acceptability, since 

the addition of a grammatically incorrect sentence to a sample 

may not affect the results of the study at all, whereas the 

censorship implicit in obtaining a sample that is perfectly 

correct may be enough to make the sample nonrepresentative. 

Transformational grammarians, on the other hand have focussed on 

obtaining purely grammatical sentences for analysis, even if 

such sentences do not reflect actual usage. 

The methods discussed above suggest a new view of deviant 

usage. Modern linguistics has often claimed that idiosyncratic 

usage may be perfectly valid and correct personal language; on 

this view such a language is impossible, since such a language 



would allow the possiblity of genuinely deviant text. We could 

define deviant text as text whose statistically derived 

coordinates are different than those derived by an application 

of the boot-strapping process. Ordinary text derived from casual 

conversation would tend to be nondeviant; the statistical 

properties of it would tend to resemble properties discovered by 

the complete analysis. The results of such a study could include 

a common or central set of coordinate values that could be 

considered absolute or universal. 

1.3.1 Factor Analysis of - Symbol Counts 

A table of adjacent symbol counts can be treated in two 

different ways: 

1. as a set of 27 vectors 

2. as a matrix describing a linear transformation. 

Both of these approaches lead in the same direction, and 

the distinction between them is similar to the distinction - 

between statistical and nonstatistical methods discussed 

previously. In treating the matrix of adjacent symbol counts as 

27 pieces of data about each of 27 items, statistical methods 

were employed to condition and describe this data. 

Alternatively, the matrix of adjacent symbol counts can be used 

as a transform applied to some initial estimate of the solution 

to a system of equations, and this method is essentially 

nonstatistical. The first successful treatment of the data 

actually involved both methods; this will be explained after 



each approach is described separately. 

The most familiar use of the data treats it as a collection 

of measured values for each of 27 distinct objects. A 

description of the statistical techniques applied to the data 

will be supplemented by an explanation of its origin and 

significance in terms from associationist psychology. 

An optional preliminary method for factor analysis is the 

preprocessing of the data. This ought to at least include 

subtraction of the means of each column of corresponding 

coordinates. A preliminary examination of the adjacent symbol 

count data suggested that this was not enough preprocessing, and 

that for the results of factor analysis to be significant other 

steps would have to be applied. One reason for this is that 

certain row vectors representing counts of symbols adjacent to 

rare letters such as 'q' and 'z' are almost entirely filled with 

zeros. If the means of each column are subtracted, all of the 

vectors representing rare letters will become more similar, and - 

then these letters will be placed in similar places on the 

scatter diagram. (see Figure 5.) 

This is not an error, but merely an unwanted result. The 

simple preprocessing method of subtracting column means 

emphasizes a factor that is indeed a significant difference 

between letters: frequency of occurrence. For some purposes this 

factor might be considered important, I view it as resulting 

from historical accidents in the development of writing, and 

want to minimize its importance. 
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Figure 5. Simple Preprocessing Method 

To emphasize factors relating to the sound of letters and 

de-emphasize absolute letter frequency, row vectors can be 

normalized before column means are calculated and subtracted. 

This combination of preprocessing operations was the minimum 

that produced acceptable diagrams in which the positions of the 

letters reflected their sounds. 

An improved set of preprocessing operations replaced the 

two basic operations of normalizing rows and subtracting column - 

means with related operations. (see Figure 6.) These operations 

are the simplest versions of two more general types of 

operation, which involve subtracting expected values and 

weighting by an estimate of significance. 

The mean of each row or column is the value that would be 

given if one were asked to guess a particular value, told only 

that it occurs in a certain row or column. Subtracting such an 

expected value is a typical operation in pattern recognition, 

where one wants to maximize the impact of each datum by 
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Figure 6. Better Preprocessing Method 

comparing it with the best estimate that can be made before the 

actual data is available. The mean of each column in the matrix' 

of counts is proportional to the number of occurences of that 

letter. Similarly for the mean of each row. The best guess we 

can make for a particular value in the matrix is not either of 

these, but is proportional to their product, and represents the 

probability of one of the letters occuring before the other 

letter. This probability can be calculated by knowing how 

frequently each letter occurs in the text. Thus, better expected 

value is derived from the product of row and column means. Thus, 

the expected number of time Is' appears before or after 't' is 



the product of the total number of times 't' appears and the 

total number of times 's' appears, divided by a constant. This 

expected value could be described as the number of times 's' 

would occur with 't' if the letters in the text sample were 

shuffled randomly. In other words, the expected value is based 

on the number of times each letter occurs but not on the 

syntactic properties that letters have. Subtracting the expected 

value, is an operation on individual values in the table, not on 

rows or columns. 

A similar version of the normalizing operation can be made 

by producing an 'expected scale' value. Rather than normalizing 

the rows or columns, the differences between calculated and 

counted values can be scaled by the mean of these two values. 

The result i s  a table of variances, showing how the actual 

counts of adjacent symbols compare with the number of adjacent 

symbols that would have been found if the same number of symbols 

had been distributed randomly in the text. Scatter diagrams- 

based on this series of operations are similar to ones based on 

simply subtracting means and normalizing, but the positions of 

the letters seems to match my linguistic intuitions better. One 

such diagram appears in the next section, and several others 

obtained from texts in various languages are discussed in a 

section devoted to linguistic analysis of results. 

Various combinations of the ordinary and revised versions 

of the two basic preprocessing operations were tried, with a 

variety of results. For most of the samples used, the two 



revised operations in the order described seemed to produce the 

best results upon subsequent factor analysis, but this cannot be 

considered a proof of their optimality. Two forms of factor 

analysis used are shown in figures 7 and 8 on page 61. 

An alternative to either form of normalization was also 

used in some experiments. From a consideration of the Law of 

Frequency in associationist psychology, the logarithm of each 

value in the table was taken. This also led to improved results 

in some experiments. 

In the next section I will present results based on a 

single one of the various combinations of methods of 

preprocessing mentioned here. The lengthy section of this 

research that involved attempting to find the best preprocessing 

method, and included other attempts at finding a good 

statistical approach to the data, was beset with difficulties 

similar to those that trouble social scientists and others 

attempting to apply mathematics in the absence of a thorougK 

theoretical understanding of the problem they are studying. The 

class of nonstatistical methods to be discussed next is simpler, 

since it involves framing specific theoretical requirments. 

1.3.1.1 ~epresentation - of Results 

The results of the above method may be represented as 

scatter diagrams, in which the letters of the alphabet are 

displayed at various positions on the page according to the 

values of two coordinates. Figure 9 gives a typical result for 



Figure 7. simple Form of Factor Analysis 
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Figure 9. Analysis of English Word List 



English text.g 

This diagram is far from perfect. It is important to 

realize that the best two sets of coordinate values according to 

the criteria employed in factor analysis may be only marginally 

better than several other sets. Other sets of coordinates may 

reveal that certain letters shown as neighbours on this diagram 

are actually quite distant in the higher dimensional space that 

is projected onto the two-dimensional diagram. There is no 

avoiding the fact that the symbols are being represented by 

points in a space of many dimensions, and that no two 

dimensional scatter diagram can properly convey all of these. 

It can be shown through the use of these coordinates in 

programs such as described later that they are acceptable as a 

representation of the sounds of the letters. To some extent this 

can be seen by merely examining the scatter diagrams, and noting 

that letters of similar sound tend to occur 'nearby. With this 

particular method the number of coordinates required for a good* 

representation of the data is quite high, and so individual 

scatter diagrams tend to be confusing and hard to evaluate. 

For example in Figure 9, above, the cluster in the lower 

right hand side contains all labial consonants, except for the 

letters 'G' and 'H' which seem out of place. Actually their 

position makes sense when you consider the number of English 

words containing 'ough' in which the 'gh' sequence is pronounced 

------------------ 
9 This diagram is reproduced again in the last chapter, where it 
is analysed in attempt to determine its linguistic significance. 
Similar diagrams for other languages are also discussed. 



as if it was 'f'. 

1.3.2 Optimization Method 

All of the methods described here are closely related to 

those of a branch of statistics known as multivariate analysis. 

In multivariate analysis it is assumed that the observations can 

be described in terms of a function of more than one variable: 

that there are some unknown variables which can vary 

independently of one another, and that the observations to be 

accounted for depend in some way on all of these variables 

together. A typical problem is then to recover the underlying 

variables and describe the effect of each of them on the 

observables. Notice that the underlying variables are themselves 

often not directly observables; they constitute a level of 

underlying structure analogous to the deep structures of 

transformational grammar. 

Printing text makes use of twenty six alphabetic characters' 

plus the blank space between words and several punctuation 

marks. The number of possible combinations of these symbols into 

two and three letter strings depends on the number of symbols 

used, but is quite large. However, only some of the possible 

strings of symbols occur. Roughly 70% of the two-letter digrams 

do actually occur in a lengthy sample of text, although most of 

these are quite rare. Why does a common trigram like "and" occur 

more often than an uncommon one like "jxl"? Obviously it has 

something t o  do with the  fact that the latter is almost 



impossible to pronounce. If the transition between "a", "n" and 

"dm in and are smoother and more easily managed than those 

between "j", "x" and "l", then one should be able to express 

this fact mathematically. If one uses the letters to stand for 

their representation as vectors, then one could try to express 

this by saying that 

(n-a)+(d-n) < (x-j)+(l-x) 

This quasi-mathematical representation uses (n-d) to stand 

for the difference between "n" and "d" or, perhaps, for the 

amount of effort it takes to move the speech organs so that they 

will pronouce a "dl1 after an "n". There are a number of 

different mathematical statements which could be used to state 

this observed inequality more precisely. However it is 

expressed, it should be clear that it is just one of a great 

many inequalities that could be formulated, asserting that 

sequences of sounds which do occur are made with less effort 

than those which do not. 

Note that since "and" occurs very often, there is 

presumably some simple and natural transiton from "a" to "dm 

that passes through "n". The most obvious example of such a 

transition would be one in which "n" was exactly halfway between 

"a" and "dm. This could be expressed by 

n = a/2 + d/2 

However, the mere fact that "and" is a common string of 

symbols does not guarantee that this holds. We may assume that 

"n" is only approximately between "a" and "d". This can be 



expressed by saying that 

n = (a2 + d/2) - X 
where X represents the unknown discrepancy between "n" and the 

point halfway between "a" and "dm. 

Variables such as "X" above are called "slack variables". 

They are introduced to "take up the slack" between the 

approximation and the ideal. Each occuring trigram can easily be 

converted to an equation involving a slack variable. However, 

each such equation must have a different slack variable, so that 

the number of variables is always more than the number of 

equations, no matter how many equations are constructed. This 

means there will be no true solution to the problem, and we have 

to find a best approximate solution by minimizing or maximizing 

some combination of variables. 

In treating the assignment of coordinate values as an 

optimization problem, it is necessary to find some numerical 

value representing the "goodness of fit" or appropriateness of a - 

particular assignment. One such measure is the sum of all of the 

differences between the values assigned to successive letters. 

This is just the sum of the slack variables, and my minimizing 

it we minimize the 'slack', or reduce the length of the path 

traced by the text sample in some multidimensional vector space. 

If we take the length just described as a quantity to be 

minimized, we can use a simple optimization algorithm to assign 

coordinate values, or to choose amongst possible assignments. 

This has advantages over the method discussed previously. With 



the earlier method values are assigned to two letters if their 

statistical properties are similar. This is certainly a 

desirable feature for some purposes, since it reflects a genuine 

property of the set of symbols. But for algorithms such as those 

to be discussed below, it is a source of difficulty. These 

algorithms make use of the inverse process of finding a letter 

to match a set of values, and are easily confused if two letters 

have very similar values. This problem will be discussed further 

in the next section. 

Figure 10 shows the basic principle employed in optimizing 

a coordinate assignment. The initial assignment is based on the 

alphabetical ordering of letters, while the final one is 

obtained by applying optimization to minimize the length of the 

trajectory representing a text sample. 

The example given below shows all of the steps of an 

optimization process used to find two coordinate values for each 

of the symbols used in a selection of Spanish text. Each 

rectangular array of letters is organized to reflect the values 

currently assigned, using the same coordinate system as in 

Figure 8. The hyphen near the center of the diagram represents 

the space between words. In the initial assignment the letter 

'a' appears in the upper left hand corner because it is 

temporarily assigned the coordinates -2,-3. The letter 'b' is 

assigned -1,-3 and the letter 'f' below the 'a' is assigned 

-2,-2 while the space between words is assigned 0,O . With this 

assignment of values the total length of the function 



Initial Coordinate 
Assignment 

Total distance 

= 2 4  

------ indicates trajectory metric: d = Ix - xl + ly - Y I 

V P M L Z Final Coordinate 
Assignment 

Q U W C K Total distance 

- 2  - 1 0 1 2 

Figure 10. Optimization Example 



corresponding to the text sample is 14412. (see Table 3.) 

Each successive array of letters shows a slight alteration 

in the coordinate assignments made by swapping the values 

assigned to two letters. For illustrative purposes the swapping 

is chosen by exhaustive examination to yield the greatest 

possible improvement (reduction in total length). Practical use 

of this method can involve more sophisticated methods of 

choosing pairs of letters to swap. 

For example, the second array of letters differs from the 

first only in the exchange of 'e' and 'm', so that 'e' is 

assigned the coordinates 2,O instead of 2,-2. The final array 

represents an assignment of coordinates that gives the whole 

function a total length of 8732. No further improvement is 

possible by swapping of single letter pairs. 

The resulting coordinate assignment seems to reflect the 

phonology of Spanish as well as might be expected for a simple 

two dimensional solution. All of the vowels are clustered around- 

the center of the diagram. There are not enough vowels in the 

language, so the same inner square of letters includes the 

continuents 'n' and '1'. The letter 'c' is also in this inner 

square, but this must be an anomaly.  h he position of 'c' in the 

English example below is more appropriate.) We may also notice 

that 'y' and 'l', which are often the same sound in Spanish, are 

neighbours, and that the upper right hand corner of the diagram 

contains the letters 'b', 'm', 'p', and 'v' representing labial 

sounds. 



initial Leng th  i s  14414 

a b c d e  a b c d m  
f g h i j  f g h i j  
k l - m n  k l - e n  
o p q r s  o p q r s  
t u v w x  t u v w x  
y z . . .  y z . .  . 

h b c d m  h b c d m  
f g a i  j 
y l - e n  

f g a i j  
y l - e n  

q p o r s  q p o r s  
t u v w x  t u v w x  
k z . . .  k z . . .  

h b c r g  
f  m a  i j  

h b c r g  
f m a i  j  

y l - e n  y l - e d  
q p o d v  q p o n v  
w u s t x  w u s t x  
k z . . .  k z  . . .  

h b c r v  h b c r v  
f m a i p  z m a i p  
y l - e d  y l - e d  
q u o n 9  • ÷ ' J o n 9  
w j s t x  w j s t x  
k z . . .  k f . . .  

z b m r v  z b m p v  
h c a i p  h c a i r  
y l - e d  y l - e d  
q u o n 9  q u o n 9  
w j s t x  w j s t x  
k . f . .  k . f . .  

F i n a l  Leng th  i s  8732 

h b c d m  
f g a i j  
k l - e n  
o p q r s  
t u v w x  
y z . . .  

h b c d m  
f g a i  j 
y l - e n  
q p r o v  
w u s t x  
k z . . .  

h b c r g  
f m a  i j 
y l - e d  
q u o n v  
w p s t x  
k z  . . .  

h b c r v  
z m a i p  
y l - e d  
q u o n g  
w j s t x  
k . f . .  

z b m p v  
h c a i r  
y l - e d  
q u o n 9  
w f s t x  

h b c d m  
f g a i j  
k l - e n  
q p o r s  
t u v w x  
y z . .  . 

h b c d g  
f  m a  i j 
y l - e n  
q p o r v  
w u s t x  
k z . . .  

h b c r v  
f m a i  j  
y l - e d  
q u o n 9  
w p s t x  
k z . .  . 

z b c r v  
h m a  i p  
y l - e d  
q u o n 9  
w j s t x  
k . f . .  

No f u r t h e r  improvement i s  p o s s i b l e  by s w a p p i n g r o f  s i n g l e  l e t t e r  



For comparison purposes the final diagram for Spanish is 

repeated again below beside the diagram obtained by applying the 

same program to a sample of English text. 

Spanish English 

z b m p v  v p m l z  
h c a i r  b r e i d  
y l - e d  y s - a n  
q u o n g  f o t h g  
w f s t x  q u w c k  
k . j . .  . x j . .  

The same algorithm can be applied to a three-dimensional 

pattern of letters. Typical results for Spanish and English are 

'given below. For each language three small square patterns of 

letters are given. They represent successive layers of a 

three-dimensional structure and should be imagined as lying one 

above the other. 

Spanish 

h c b  a l m  z g k 
i d r  e - s  O Y P  
v t j  u n q  x f w  

English 

z m k  i d n  g f o  
V W P  a - e r t h  
q b x  Y S l  j c u  



1.3.3 Filterinq 

The account of linear Markov filters given previously ' 

suggested that they could be considered as equivalent to the 

hypothetical device which translates deep logical form into a 

recognizable human language. If this is true, it would be an 

interesting project to create a linear Markov filter of high 

order for each of two languages, invert one of them, and then 

attempt machine translation by using the inverted filter to 

remove the correlations of one language and the other filter to 

impose new correlations on the result. Unfortunately, even a 

filter of order 10 would present extreme computational 

difficulties because of storage requirements. An order 10 filter 

would use vectors of length 270, and these would be transformed 

by matrices containing a total of 72,900 values. 

The reduced set of coordinates provided by factor analysis 

seems an obvious way of overcoming this difficulty. I•’ the two 

coordinates assigned to letters in creating a scatter diagram ' 

such as the one shown above were employed, then a filter of 

order 10 would only be a 20 by 20 matrix, and this could easily 

be handled on a small computer. The appropriate matrix would be 

created by a process called autocorrelation, described in detail 

in another section. 

In the course of this research various autocorrelation 

matrices were constructed and tested as filters, both with and 

without feedback. Small autocorrelation matrices were used 

successfully in simple filters that acted as low-order Markov 



filters, but higher order filters of this form were not 

satisfactory. In fact, higher order filters made from 

autocorrelation matrices behaved just like lower order filters. 

This result was disappointing and puzzling. It was 

difficult to find any .reason for the failure of high-order 

autocorrelation matrices to perform better than lower order 

ones. The application of factor analysis seemed successful, 

since the results closely approximate our understanding of the 

relationships between sounds represented by the letters, yet the 

autocorrelation matrices could not be made to work. The reason 

for this became apparent on inspection of the actual values of 

matrix elements. Elements of the matrix representing 

correlations between letters more than three spaces apart in the 

text were almost zero, and became closer to zero in larger text 

samples, as random fluctuations cancelled out. A possible reason 

for this did not appear until a different-model of grammar was 

studied. 

Since it only seemed possible to create low order filters 

using the coordinate values found through factor analysis, it 

seemed worthwhile to investigate low order filters. One possible 

use of these filters is in simulating the process of 

assimilation by which most phonetic changes in the historical 

development of languages are known to occur. None of my attempts 

at simulating phonetic change through assimilation were very 

successful, but in the process of applying simple filters to 

various text samples, it was possible to observe an interesting 



property of common phonetic sequences. In analysing this, new 

ideas about the nature of grammar were developed, which 

explained the difficulties encountered in all attempts at 

filtering text. A few examples of filtering will suffice to 

demonstrate these problems and the effect that was observed. 

1.3.4 Filterins Examples 

To avoid problems with varying word lengths, a set of words 

was chosen that had the same length in each of five languages: 

Latin French Spanish Italian Portuquese 

contra contre contra contro contra 

liber livre libro libro livro 

catena chaine cadena catena cadeia 

octo hui t ocho otto oito 

lingua langue lengua lingua lingua 

The following two examples are with a small amount of 

filtering. The coordinate values used were from the optimization 

method.These example are based on a simple two-dimensional model 

(two coordinates assigned to each symbol). 

The numerical values given are filter coefficients. Each 

coefficient represents the amount of influence a particular 

coordinate of neigbouring symbols has on the values of the 

current symbol. Two filter coefficients are given since in each 

of these example two coordinates per letter were used, and the 

amount of filtering in each dimension were listed seperately. 



The first example has twice as much filtering on the first as on 

the second coordinates. 

Filter coefficients 0.1 and 0.05: 

Latin 

contra 

liber 

catena 

*olto 

lingua 

Notice that 

French Spanish Italian Portuguese 

contre contra - *contdo contra 

livre libro libro livro 

chaine cadena catena cadeia 

*hue t *echo otto *oeto 

langue lengua lingua lingua 

in this example there are few changes. Italian 

'contro' became 'contdo' but there were no changes in the 

equivalent words of other languages. On the other hand, the 

Latin word 'octo' and its derivates in French and Portuguese 

changed, while the Italian and Spanish equivalents remained the 

same. 

The next example is with more filtering on the second- 

coordinates. 

Filter coefficients 0.05 and 0.1: 

Latin French Spanish 

contra contre contra 

liber livre libro 

catena chaine cadena 

octo *cui t ocho 

lingua langue lengua 

Italian Portuquese 

contro contra 

libro livro 

catena cadeia 

otto oito 

lingua lingua 



Notice that although the total amount of filtering is the same 

as in the last example, the only change is the French 'huit' 

becoming 'cuit' . 
One more example can be given to show more drastic 

filtering. In the following case just twice as much filtering 

was used as in the preceding example. 

Filter coefficients 0.1 and 0.2: 

Latin French Spanish Italian Portuquese 

*aontia *aontie *aontia *aontdo *aontia 

*lam- i *lapre *labio *labio *lapro 

catena *chcine *caeena catena *caeeia 

In this example I have used the hyphen ' - '  to indicate the * 

character normally used for the space between words. This might 

be considered as the vanishing of the original letter. Thus 

Latin 'octo' is written above as '0-to' but might better be 

written 'oto' or even 'otto' where the duplicated letter 't' 

might not be pronounced as parts of separate syllables. This 

latter form is identical to the Italian 'otto' which must be 

noted as one of the stablest forms of those shown. 

The existence of stable forms is interesting and leads to 

many questions. Why are the Italizn and Latin words 'catena' and 



the Italian word 'otto' the only forms that undergo no changes 

with this much filtering? What difference between 'liber' and 

'catena' explains why the former is changed almost beyond 

recognition into 'lam-i' while the latter is unchanged? 

1.3.5 Invariants and Grammatical Theory - 
Forms that are unchanged by a transformation such as the 

above filtering operation are called invariants. There is a 

different notion of grammar that can be developed using the 

notion of invariants. The linear Markov filters mentioned 

earlier are interesting as they relate to one theory of grammar 

that proposes transformational processes acting on some common 

core of all human languages to impose the properties of a 

specific language. Another view of grammar has focussed on 

grammars as acceptors or correctors of 'improper' 'usage. A 

filter could be imagined that would mark unacceptable forms in 

some way, or even correct them. Suppose a grammatical filter of * 

this sort is given ordinary correct text as input. What should 

it do? Clearly, it should just pass the text through without any 

change at all. Grammatical text samples should be invariant 

under the filtering operation; To investigate such grammars 

involved preparing filters that would pass ordinary English 

through unchanged but alter any 'unrecognized' forms. 

In matrix algebra we do not always have true invariants 

which remain unchanged by transformations, but we can usually 

define certain vectors uhich are invariant with respect to 
7 



orientation. Such vectors, called 'eigenvectors' or 

'characteristic vectors', are only changed in magnitude by a 

particular linear transformation, and can serve as a part of a 

definition of that transformation. It is possible to design a 

linear transformation for which the eigenvectors are true 

invariants: unchanged either in magnitude or direction. If - all 

of the eigenvectors are true invariants, then the transformation 

is just the identity. A more interesting and useful 

transformation is one for which some of the eigenvectors are 

true invariants and the others are anihilated (changed to zero 

vectors). I refer to such a transformation as a pseudoidentity 

transformation, to emphasize its similarity to the identity>' 

For many inputs it behaves exactly like the identity, while for 

others it performs radical changes. 

A pseudoidentity filter must be constructed using enough of 

the eigenvectors to capture the properties of the text. The 

version constructed for English began with vectors of length* 

twelve, so the autocorrelation matrix had twelve eigenvectors. 

Use of all twelve leads to a genuine identity filter which 

passes the origal text unchanged: 

THE SENTENCES HERE ARE FOR USE AS AN EXAMPLE OF ENGLISH TEXT 

If only the six largest eigenvectors were -used, the resulting 

I0In mathematical terms this particular pseudoidentity 
transformation is just a projection, but I will argue that this 
is not always the case. 



pseudoidentity filter passed the text with many errors: 

THT SENTERCES HTRT ART BOR USE AS AN ERAUUDE OB TNBDUSH EERT 

With the use of nine eigenvectors the original text was passed 

correctly. ( s e e  Figure 11, page 80)  

Notice in this example that some of the words made up only 

of very common letter sequences were passed correctly by the 

pseudoidentity filter based on six eigenvectors, while a word 

like 'ENGLISH' which include the unusual sequence 'NGL' was 

considerably distorted. In general as more and more eigenvectors 

are used the filters constructed pass more and more words 

correctly, beginning with those containing the most common 

sequences of letters. By the time nine eigenvectors are used, 

all of the sequences in typical English text are accepted, but 

some unusual sequences will still be altered. With the final 

addition of the twelfth eigenvector the filter becomes a real- 

identity matrix and accepts any sequence of letters. 

The filter created by using nine eigenvectors is adequate 

as an example but is very limited in its abilities. This type of 

filter could in principle be of any order, and we may assume 

that as with linear Markov filters, the higher-order examples 

would be better. In a later section I suggest that the class of 

linear Markov filters and the class of pseudoidentity filters 

are not disjoint: it is possible to construct a filter that can 

play both roles. 



4-Vector Inpu 

Data Compression: 
1. Rotate to Diagonalize 

Autocorrelation Matrix 
2. Project on the 9 Most 

Important Eigenvectors . 
9- 

Figure 11. Pseudo-Identity Filter 



Of particular interest is an unexpected property of some 

pseudoidentity filters: they can act as associative memories. 

This will be explored in a later section. 

One problem with the pseudoidentity filter as described is 

that it involves a loss of information, which certainly seems an 

unlikely property for any memory-like device. Technically this 

kind of filter is a projection, which maps a multidimensional 

space onto a subspace, and in doing so information is lost. It 

is difficult at first to see how the grammar for a language 

could possibly be a projection. Surely it should be possible to 

encode whatever information is to be transmitted without any 

necessary loss. Indeed, it is usally supposed that human 

language is highly redundant, with information being encoded to 

ensure correct transmission. 

In the section on associative memory I note that feedback 

can be added to a linear corrective or pseudoidentity filter to 

change it from a projection into a nonsingular transformation* 

that passes all information without loss, while retaining the 

desirable properties that make it a model for human language 

processing. 

1.3.6 Markov Filters 

The usual way of implementing such a filter begins with an 

analysis of a text sample in a natural language. For a 

first-order Markov filter we need to know the probabilites of 

each symbol following each other symbol, and this can be found 



by counting the number of times each symbol actually does follow 

each other in a large enough text sample. The result of counting 

adjacent symbols is a matrix such as given earlier. Each row of 

this matrix represents a letter of the alphabet, in the usual 

order, and the numbers in that row represent the number of times 

each other letter occurred immediately following the given one, 

and thus the probability of its occurrence in that context. 

To use this matrix as a filter we must first find a 

representation of the letters of the alphabet as vectors. One 

such representation is interesting because it allows the matrix 

of adjacent symbol counts to be used with only minimal 

modification. Let each vector have as many components as there 

are symbols in the alphabet. For each symbol, define a vector 

that consists of zeros for all components but one. The component 

whose position in the vector corresponds to the position of the 

letter in the alphabet should have the value one. Thus the 

letter ' A '  is represented as 

while the letters 'B' and 'C' are 

and 



If any of these vectors are multiplied by the matrix of 

adjacent symbol counts in the usual way, the result is a vector 

identical to one of the corresponding row of the table. Although 

the conclusion of this process is obvious for such a simple 

example, we should follow it through to its conclusion since 

subsequent examples will use the same approach. The output 

vector is not exactly the same as any one of the input vectors, 

so we must find the best match. The usual way to do this is to 

take the inner product ( or 'dot product') of the output vector 

with each of the vectors previously assigned to letters of the 

alphabet. Since each of these vectors has the value 'one' in 

exactly one place, and 'zero' everywhere else, the inner product 

can be obtained by inspection. If the output vector is 

and we are comparing it with the vector for 'A', 

inner product of these two vectors is just the number 9 in the 

"To take less room on the page these vectors and those on 
subsequent pages have been written as rows of numbers, even 
though they may be column vectors. An alphabet of twenty-seven 
symbols is assumed here, counting the space between words as a 
symbol and ignoring punctuation. 



first column of the output vector. The best match to the output 

vector corresponds to the largest value of the inner product, 

and that will be just the largest component of the output 

vector. 

Suppose we wanted to find the - most probable output 

following a given output. The simple filter just described gives 

the most probable output for a given input, so we need only turn 

the last output into an input by adding a feedback loop. For a 

Markov device we don't want to always get the most probable 

outputs, instead we want the more probable outputs to occur more 

frequently. If the  only input was the  previous output,  feedback, 

the device would be completely determinate, and so a source of 

random vectors must be added to the input. If this is done with 

appropriate amounts of feedback and added random noise input, 

the result can be identical to an ordinary first-order Markov 

device. ~ndeed, the actual implementation of any first-order 

Markov device involves the same operations, although they are * 

not described in terms of vectors, filtering, or feedback. The 

diagrams on the following page illustrate these steps. 

The same operations can be performed with vectors having 

twice as many components and representing pairs of letters. The 

result is a second-order Markov filter. Extension to still 

higher orders is limited only by computer processing ability and 

memory, in exactly the same way as ordinary Markov generators 

are limited. In general the higher the order of the device, the 

greater is the similarity between its output and genuine samples 



of whatever language was used as a source of data. It should be 

noted that the filters described above are linear devices, since 

matrix multiplication is a linear operation and feedback applied 

to a truly linear device does not make it nonlinear. 

what' is the relationship between Markov filters as just 

described and the ' hypothetical device for translating 

expressions in some underlying logical form into natural 

language? I suggest that they are the same. 

1.3.7 Examples Based - on Markov Filters 

The algorithm used in creating the pseudoidentity filter 

described above requires extraction of eigenvectors as a data 

compression scheme. This is difficult to do for larger matrices, 

and limits the order of the filter. An entirely different 

algorithm can be employed, reducing the memory requirements but 

increasing processing time. This algorithm is much closer to 

those used in creating Markov devices: it stores sections of' 

text and their probabilities, or a continuous length of text in 

which sections are repeated as often as necessary to encode 

their probability. Indeed, since the probability of a short 

section of text occurring is estimated by measuring the number 

of times it occurs in a given sample, a large sample of text may 

be stored without modification, and used to calculate the 

necessary probabilities as they are needed. 

This algorithm was used to construct Markov filters that 

could also be described as pseudoidentity filters and as 



corrective filters. 

In implementing this algorithm, a short sample to be 

filtered must be coded as a vector, and compared with vectors 

representing sections of text in the larger sample that is 

stored as a source of data. A machine language routine was used 

to quickly encode sections of text, so that it was not necessary 

to encode the whole internal data sample before running the 

program. One routine quickly found the inner product of the two 

vectors representing the sample and successive sections of the 

internal text. The result of this comparison was a text 

selection of text representing the best match between samples. 

This text section was not output in its entirety, since this 

would limit high-order filters to whole sections of the internal 

text. Instead a single letter from the center of the matched 

text was output. As with the pseudoidentity filter described 

before, the program took single letters as input and output 

single letters, but a delay was used internally to store letters- 

until strings of the appropriate order were collected. Several 

versions of this program were studied, both with and without 

feedback. The best of these was used to produce the sample given 

below. This program implemented a filter of order 2n+l, using 

the last - n values of the output, juxtaposed with the next n+l 

values of the input to produce a single string of length 2n+l. 

The device incorporated a delay of - n spaces, so the 

juxtaposition of parts of output and input produced a string 

resembling a continuous segment of the input. This string was 



used in the routine described above, and the best match found. 

As before, only the middle letter of this matching string was 

used as output. 

The examples below illustrate the three aspects of this 

filter: as Markov device, as pseudoidentity filter, and as 

corrective filter. 

The f i l t e r  used in t h i s  algorithm uses an internally stored 

tex t  sample, and the quality of the output depends on the 

size of the sample. In the examples given above the stored text 

sample was the first chapter of the book of Mark in the New 

Testament, and the output visibly tends to resemble sections of 

that text. This is also true of ordinary Markov devices whose 

probability matrices are calculated on the basis of a small text 

sample. As with such devices, it is to be expected that a larger 

text sample would lessen the resemblence of the output to any 

particular text without lessening its resemblence to the 

language in which the sample is written. 

The first line of each pair is the input text, and 

immediately following it the corresponding output. For Markov 

filtering the input text is a randomly generated sequence of 

letters. The same input was applied to filters of different 

orders.  he input text is repeated each time to facilitate 

comparison. 1 



Markov filter: 

rnhcqlhogbvvcopxzyqdqmueo skjcsrl 
m cod oabapcopeloudemyet skict 1 

rnhcqlhogbvvcopxzyqdqmueo skjcsrl 
m coth gbb comeloud mue skjesse 

rnhcqlhogbvvcopxzyqdqmueo skjcsrl 
m coly ght jorthy locust skoes 1 

mhcqlhogbvvcopxzyqdqmueo skjcsrl 
m woly ghostop dord my mes the 1 

rnhcqlhogbvvcopxzyqdqmueo skjcsrl 
e holy ghost many devils ahe spi 

rnhcqlhogbvvcopxzyqdqmueo skjcsrl 
m cometh one mightier at saw him 

rnhcqlhogbvvcopxzyqdqmueo skjcsrl 
e holy ghost and it even when te 

(random input sample) 
(order 3 )  

(random input sample) 
(order 5) 

(random input sample) 
(order 7) 

(random input sample) 
(order 9) 

(random input sample) 
(order 1 1 )  

(random input sample) 
(order 13) 

(random input sample) 
(order 15) 

The above example shows the effect of increasing order:- 

each output is locally similar to English, but what is 

considered 'local' depends on the order of the filter. With the 

third order filter in the first example three letter sequences 

are similar to English, with unfamiliar consonant clusters like 

'cql' being replaced with the more familiar 'cod'. Notice that 

although the output becomes more and more like English for the 

higher order filters, the process of increasing order is not 

convergent. The last three examples are not increasingly close 

to the same ~nglish text, rather they approximate different 



texts. This probably reflects the size of the text sample stored 

in memory. A filter of order 15 compares strings of 15 

characters, and the number of near matches in the stored sample 

may be very few. 

The same program can be applied to text that is already in 

English. The examples below show what happens to an ordinary 

English sentence that is not a perfect match for any sentence in 

the stored text sample. Of particular interest is the word 

'this' which begins the sample. With filters of order 3 and 5, 

the word is passed through unchanged. In fact the whole sequence . 

'this is a ' passed through the order 5 filter unchanged. Thus 

the filter of order five is a pseudo-identity filter: in the 

above example it altered a random sequence of letters to more 

nearly approximate English; here it passes a sequence from 

English unchanged. This is particularly interesting since the 

exact sequence 'this is a ' does not occur in the stored text 

sample. Because it does not, it does not survive the move to * 

higher orders. With a larger text sample we would not expect 

such a familiar sequence of letters to be altered. 

this is a sample sentence (test sample input) 
this is a samele sentence (order 3 )  

this is a sample sentence (test sample input) 
this is a semplr sentance (order 5) 

this is a sample sentence (test sample input) 
thit is a shipleasentance (order 7 )  



this is a sample sentence 
thit is a shiped sontance 

this is a sample sentence 
thishired servants galile 

this is a sample sentence 
thishired servants ahence 

this is a sample sentence 
this ired servants and we 

(test sample input) 
(order 9) 

(test sample input) 

(test sample input) 
(order 13) 

(test sample input) 
(order 15) 

The above example showed a perfectly good English word 

'sample' being changed into another, 'servants'. This happened 

because the word 'sample' was not sufficiently like anything in 

the programs memory. If a much larger text sample was provided, 

we could expect words such as 'sample' to remain unchanged. 

This program can also be used as a corrective filter. If 

the input is very similar to a part of the text in memory, but 

does not exactly match anything, it will probably be changed 

until it is locally identical with the stored text. This can 

result in correction of typographical errors, as the following 

example shows: 

and they weke both axtonished at (text with errors) 
and they weke both autonished at (order 3 )  

and they weke both axtonished at (text with errors) 
and they were both astonished at (order 5) 



In this example the input was a string that matched a part 

of the stored text sample except for two errors. An order 3 

filter did not correct these errors, since it only compares 

strings of three letters. For the input word 'weke', with an 

error in  the third l e t t e r ,  the three l e t t e r  strings *wekt, 'eke' 

and 'ket are sufficiently similar to three letter strings in 

the stored sample. An order five filter compares longer strings, 

and therefore performs more correction. 

An interesting further example relates to the question of 

learning, and has many implications, to be discussed later. This 

example starts with no text in memory, and adds each input line 

after having attempted to match it to whatever is in memory. 

Because the memory is empty to start with, the first input 

sample is matched by a string of blanks. The first and second 

sample have one word in common 'of', and this leads to a short 

match for the second sample. After that the sample more often 

finds matching str ings,  but the result i s  sometimes more l ike*  

one of the preceding samples. Finally, after ten or more samples 

have been processed there is enough text in memory for 

reasonable matches to occur. 

For all of the following examples a filter of order 7 was 

used: 

the beginning of (start of input text) 
(blank line is only match) 

the gospel of jesus christ the s 
g of beginninning 



on of god as it is written in th 
g of the beginninnininninnin th 

e prophet isaiah behold i send m 
e gospelt ist th beginn jespel o 

y messenger before thy face whic 
jespel of beholf the beginning 

h shall prepare thy way before t 
the e ptophre thy •’ah before t 

hee the voice of one crying in t 
hen the gospe of the peging of t 

he wilderness prepare ye the way 
hy wengermessengepare if thy way 

of the lord make his paths stra 
of the send mace ger besus chri 

ight john did baptize in the wil 
iahe gospegir be•’ ihe in the wil 

derness and preach the baptism o 
derness all prepye the baptize o 



1 . 3 . 8  Feedback - and Stable States 

A serious problem with the pseudoidentity filter and the 

other linear devices described above is the one-to-one mapping 

of input symbols to output symbols. These devices perform as 

expected as long as the input symbols keep coming in at a 

predictable rate, but they are quite unlike the typical acceptor 

of automata theory, which just sits and waits for an acceptable 

input. The advantages of a device with stable states may be seen 

by examining more examples of simple filtering, this time as 

applied to continuous text.12 

The text samples below illustrate artificial assimilation 

and dissimilation applied to Latin and Spanish, respectively. 

For Latin the filter coefficients are positive, indicating the 

same kind of low pass filtering as in the previous examples. The 

Spanish examples involve the use of negative filter 

coefficients; these produce high-pass filters, or synthetic* 

dissimilation. For all of these examples the same filter 

coefficient is used for both dimensions. 

------------------ 
121n these examples, as in the previous ones, I have used the 
hypen ( - )  to indicate a letter that has been transformed into a 
blank or word space character. 



Original Latin text: 

Facta autem hac voce convenit 

multitudo et mente confusa est 

quoniam audiebat unusquisque lengua 

sua illos loquentes. 

2-D model, filter coefficients: .075 .075 

Facta autem cac poce convenit 

multitoeo et mente confusa est 

quoniam aoeiebat uousquisque linnoe 

sua illos loquentes. 

2-0 model, filter coefficients: . 1  . 1  

Faaoa aotem ccc -i-a conrenen 

aulnetoeo et mente coofusa est 

uuoniam aoeieman ooofuu-suu- -inno- 

sua allos luuuentes. 

As before we may notice certain very common words such as 

lest', 'et', and 'sua' which are unchanged by the filter. Other 

words are more drastically changed. If we examine these changes, 

it should be obvious that the artificial assimilation presented 

here does not correspond to any possible assimilation such as 



could have happened in the course of history. The filtered text 

has long sequences of vowels which are unlike those of any real 

language. The problem is not the actual assimilation, but the 

failure to compress sequences of vowels into shorter sequences 

or single vowels. The requirement that an output symbol must be 

produced for each input symbol prevents compression of 

sequences. 

High-pass filtering, or artificial dissimilation, leads to 

the opposite problem, as the following example illustrates: 

Original Spanish text: 

Y hecho este estruendo se junto la 

multitud y estaban confusos porque 

cada uno les oia hablar su propia 

lengua. 

2-D model, filter coefficients: -.075 -.075 

Y hdcho este estrqendo se junto la 

multitqd y estaban confusos porque 

cada uno les oia hablar propia 

lengqa . 



2-D model, filter coefficients: -.l -.I 

Y hdcho este estvqendo se jqnto la 

multptqd y estaban cogfusos pfrqud 

cada qgo yds oia hiblar su prfpia 

yen9qa 

Here we have consonant clusters that would be difficult to 

pronounce. Pronunciation of consonanant clusters is usually 

aided by insertion of transient vowel sounds, which often are 

lengthened into real vowels, as in Japanese borrowings of 

English terms. Excrescent vowels added to the filtered output 

given above would aid the pronunciation and produce something 

more closely resembling real speech. These examples clearly 

indicate a problem with the kind of filter previously described 

which produced exactly one output symbol for each input symbol. 

The root of this problem in the lack of stable states. The* 

acceptors and other automata normally used in modelling language 

have stable states, and the devices remain in each state until 

an appropriate input arrives. Inappropriate inputs will cause no 

change of state. In the next section I will discuss the the 

automata used in modelling grammars. These devices have stable 

states, and are more suitable models of actual linguistic 

processes. Unfortunately many of them seem to be non-linear 

devices. It will be argued that only linear automata are 

appropriate models of linguistic operations. 



1.3.9 Rotation into the Time Domain --- 
A device involving feedback and having stable states may 

also have unstable states. If so, it may respond quite 

differently to different inputs. Some inputs may simply cause a 

single change of state, producing a single output. Other inputs 

might cause no change of state and no output, while still others 

might lead to an unstable state, which will change 

spontaneously. 

Let us consider a simple example using ordinary binary 

phonetic features. Suppose the input has the value 1 (or 'plus', 

as phonologists say) for each of the coordinates labelled 

'strident', 'continuent' , ' stop'., and 'vocalic' . This 

combination cannot represent a sound in any human language, and 

so could be called 'ungrammatical'. A simple project'ion could be 

designed to replace it with a feature vector representing a 

possible sound, but which one? It could be 'sf, (because of the - 

stridency), or t ,  (a typical stop), or a continuent such as 

'r', or the most common vowel, 'e'. But choosing any one of 

these would involve a loss of information. The alternative is to 

produce a sequence 'stre' which contains each of the various 

sounds in a predictable order.13 

This latter situation can be important in modelling some 

aspects of language. A problem with grammatical filters was 

mentioned earlier in discussing the pseudo-identity filter. This ------------------ 
'?his idea was brought to my attention by Dr. E. W. Roberts. See 
Roberts( 1972). 



filter is technically a projection, and thus seems to involve a 

loss of information. How can we design a filter to correct or 

reject ungrammatical inputs that will not lose information? 

An alternative to projection is rotation in time. A feature 

vector representing a single symbol has no coordinates 

representing time. Implicitly, this symbol occurs at an instant 

in time. If we add to each set of coordinate values a single 

time coordinate, then instead of considering an utterance as a 

feature matrix, or ordered sequence of vectors, we may choose to 

consider it as an unordered set of vectors. Translation from 

the unordered set back to the ordered sequence just involves 

placing the vectors in order of their time coordinate. 

A filter that is not a projection but a rotation involving 

the time coordinate could be applied to a set of vectors, and 

after it is applied, the unordered set could be translated into 

a sequence of vectors, and then into symbols. 

If the filter is designed properly, its output will always- 

be a grammatical sequence. To design a such a filter we can 

first produce a filter that projects its input onto a hyperplane 

containing only grammatical sequences. The method described 

previously for creating a pseudo-identity filter can be employed 

for this purpose. Suppose we now take the output of the 

projection and compare it with a (similarly delayed) copy of the 

input that produced it. The result is a vector containing only 

those components suppressed by the projection. If we add these 

components to the current input, the information they contain 

will not be lost. 
98 



PART TWO 

Problems in the Development and Application of Linear Models 



In this part I discuss difficult aspects of the theory and 

subtler details of the experiments, including short sections on 

a number of topics related to the earlier material. 

First is a discussion of the relationship between the 

present linear filtrative theory and generative grammar. The 

difference between filters and devices from automata theory is 

reviewed and it is shown that filters can model all of the 

others, and so are the most general approach. 

Adoption of a filtrative model is possible without 

accepting the restriction to linear filters, but even if one 

imagines nonlinear filters, there are advantages to using the 

terminology of linear operator theory to analyse them. An 

algebraic basis for doing this is provided. 

The next section of Part Two gives biological and physical- 

models of the brain based onelinear devices, attempting to show 

by example how human beings could be linear. In this section I 

attempt t o  meet objections t h a t  might be raised by scientists, 

engineers, or mathematicians familiar with linear devices. One 

objection is that each of us has some training in arithmetic 

which enables him to square numbers and perform other nonlinear 

operations. How can we do this if the human brain is linear? The 

answer is to be found in an account of simulation, showing how 



linear devices can be constructed to simulate nonlinear 

operations with arbitrary accuracy, at the cost of great 

inefficiency. 

The last section discusses additional details of the 

experimental work, including different kinds of text samples and 

different languages. This discussion is also intended to show 

how the methods can be extended and improved. 



2 . 1  Generative and Filtrative Grammar - - 

Almost every linguist has his own theory of language, but 

most of these seem to be variants of Chomsky's generative 

grammars, which are based on the notion that individual human 

beings follow rules to generate utterances (Chomsky 1 9 6 1 ) .  Many 

of the theories of generative grammars include both generative 

and filtrative components, with filtrative processes acting on 

the output of the generative component (Chomsky 1 9 6 5 : 1 3 9 ) .  The 

theory to be presented in this thesis leaves out the generative 

component altogether while emphasizing the role of filtering, 

and so could be called filtrative grammar. 

The notion of a grammar as a filter serves to correct a 

serious conceptual error that I believe has limited the 

development of linguistics in recent years. Certain older 

theories such as Immediate Constituent analysis have been 

prematurely abandoned on the basis of mathematical results that 

I find irrelevent and misleading. Their adoption as standards of 

proof in linguistics has led away from a view of language that 

was compatible with known psychological and biological theories 

towards a treatment of language as an abstract calculus or logic 

with improbable properties, that could not be learned, but must 

be largely innate. 

Evidence that generative grammar may still be an 

unscientific discipline may be found in the behavior of 



contemporary linguists, many of whom spend a lot of time and 

effort in relatively informal argumentation, often aimed at 

convincing their opponents of the relative superiority of their 

own particular version of generative grammar. In recent years 

many linguists have described these disagreements as being over 

differences in notation, with some suggesting that two or more 

proposed theories are just notational variants of one another, 

and others denying this. 

The question of whether or not two notational devices are 

equivalent is a mathematical question, and need not interest the 

linguist at all. If this discipline had reached the mathematical 

stage in the development of its formal notation, one would 

expect that mathematical proofs would be the common method of 

settling purely notational questions. It seems inevitable that 

the current state of affairs will be replaced with one which is 

more satisfactory, (although perhaps less enjoyable), 

characterized by the rigorous mathematical treatment of the - 

kinds of problems that give rise to disputation today. 

How might this change to a more scientific discipline come 

about? In the next sections I examine various approaches to 

formal linguistics that have already been developed. There are 

two related ways of linguistic analysis: 

1. The analysis of the speaker of language, or the listener, or 

both, as formal devices with certain capabilities. 

2. The abstract treatment of language as a mathematical 

structure, without reference to the speaker or listener. 



This approach involves treating language as a kind of logic 

or algebra. 

In what follows I will describe both approaches, and the 

parallelism between them. 

2.1.1 Devices -- Used in Modellinq Lanquaqe 

To describe the first approach I will make use of 

information theory and the notion of information flow. 

Proponents of generative grammar are vague about the flow of 

information at the generative level. The branch of generative 

grammar known as Generative Semantics is most specific. In this 

version of generative grammar, also known as 'semantic syntax', 

the input to the collection of rules and transformations is some 

semantic representation. For some generative semanticists, the 

semantic representation is taken to be similar or identical to 

the first-order Predicate calculus of formal logic. If so there 

must be some process by which a person's meaning is encoded in 

this logical form prior to the linguistic processes that produce 

an expression of it in a natural language, but this process is 

not discussed. 

In other versions of generative. grammar, such as the 

'Standard Theory' proclaimed by Chomsky, or the 'Extended 

Standard Theory' and other extensions and simplifications that 

followed it, there is some level known as the 'base', to which 

transformations apply. The base is generated by phrase structure 

rules, but does not represent meaning. ~ifferent bases are 



generated for different purposes, and are transformed in 

different ways, by the selective use of optional rules and 

transformations. Presumably the input or source which directs 

the choice of rules and transformations is some component of the 

human mind, but its exact role is unclear. 

In making mathematical models and proving theorems about 

generative grammars, many linguists seem to assume the existence 

of some kind of stochastic process that controls the application 

of optional rules or transformations. Chomsky refers to an early 

theory of grammar as the "theory of finite-state Markov 

sources", and regards it as disproved. This theory is based on a 

finite-state machine driven by a stochastic process. It could be 

argued that the input to a generator is stochastic, not in the 

sense of being random, but in being uncorrelated, since the 

speaker ought to be able to say anything, or generate an 

expression of any meaning whatsoever. I suspect such a notion is 

at the root of generative grammar, but this is not clear from 

the literature. Indeed, it is not clear why generative grammar 

has such a name, since the actual generative processes are so 

poorly described. , 

I suggest that all of these theories are -- in fact filtrative 

theories. In writing phrase structure and transformational 

grammars, linguists only concern themselves with writing rules, 

and not with the element of choice or chance that determines -how 

these rules will apply. A system of rules is only made into a 

generative system when some system for choosing and applying the 



rules is specified. Linguists do not bother specifying how rules 

are chosen, and so have not actually developed a generative 

grammar. 

Nor would there be any basis for doing so. I can see no 

justification for assuming any particular kind of generative 

source or input. The most we can do is describe a formal device 

that processes an input, and this is best described as a filter. 

There are actually two filters at least that need to be 

described, unless one is going to adopt a behaviourist approach, 

in which case we would describe one combined filter. If we 

follow Chomsky's "mentalistic" approach, then we must describe 

an input filter that processes speech and produces or induces 

mental states, and a output filter that expresses mental states 

in speech. 

In fact, generative grammarians do describe two kinds of 

grammatical devices, generators and acceptors. Acceptors are 

clearly some kind of filter, although the term is not usually* 

applied to them, since they accept an input and produce a 

corresponding output. It would be easier to describe these 

acceptors if it wege explicitly stated what output they produce 

is for a nongrammatical input. Ordinarily the output of a 

finite-state acceptor is taken to be its current state, and the 

devices do not change state except on receipt of a grammatical 

input. But in actual implementation of acceptors, (in computer 

software), ungrammatical inputs send the automaton to a special 

error state. 



As I have indicated in an earlier section, generators are 

also implemented as filters, applied to a random noise source. 

The difficult question is whether or not these various filters 

are linear or nonlinear. Formal languages defined by phrase 

structure rules may be ambiguous in that the same string of 

terminal symbols may have two or more different derivations. It 

follows that the formal devices corresponding to these grammars 

may be nonlinear. I suggest that only linear automata are worthy 

of being considered as linguistic devices. It remains to be 

shown that linear automata can be developed to play the normal 

roles of automata in modelling grammatical devices. How can 

these properties be simulated with linear devices? 

The fact that a linear device can have several distinct 

stable states may come as a surprise to anyone familiar with the 

more common linear devices used in electronics. Such devices 

often have just one input, and unless they have memory or delay 

elements in them, have only one stable state. In fact the number- 

of stable states of a device depends on its order, and on the 

number of feedback loops. At most, the number of stable states 

is the same as the order of the device. For there to be any 

stable states at all, there must be feedback. For devices that 

accept vector inputs of order greater than one, it is not so 

easy to label feedback as negative or positive, but it is 

possible to say that when the device is in a stable state, the 

feedback is negative or homeostatic, i.e. tending to bring the 

system back to that state. Rather than using the delay, we may 



choose another form of output that will let us produce a 

multistable device. Let the output be a vector made up of two 

sets of components, one of which is itself a vector 

representation of the last acceptable symbol, and one of which 

is a representation of the current state of the device. Let the 

components representing the current state of the device be fed 

back to the input. The operation performed on the combined input 

vector can be chosen so that the resulting device with feedback 

has several stable states, and will move between them only on 

receiving appropriate inputs. Figure 1 2 '  shows a simple finite 

state machine and how it may be implemented with a linear 

device. 

Let us try to describe an automaton that will function as 

an acceptor for strings of alphabetical symbols. There are 

several problems of definition to be solved. Such an automaton 

will change state if it receives an appropriate symbol. 

Otherwise it will stubbornly remain in whatever state it was in* 

before receipt of the symbol. Thus if the symbol "B" puts the 

device into state 47  and the device is one designed to accept 

English phonology, then the receipt of the symbol "Q" while it 

is in state 47  will cause no change of state, since "BQ" is not 

normally found' in English. In fact "BQ" may appear in printed 

text, as in the term "subquote". Some people would be more 

inclined to write this term as "sub-quote", with the "-" 

indicating a morpheme boundary. This is a vital point, and the 

------------------ 
'adapted from ~lbus(1975) 



Finite-State Machine 

Transitions between states 
are indicated by arrows 

Input 
Data 

P - 
0 
0 
0 
0 
1  
1  
1  
1  

t 

Inputs values are written 
beside the arrows, and the 
outputs, or state vectors, 
are indicated as numbers 
inside circles. 

Another way of describing 
the same device is to give 
a list of all possible 
inputs, together with the 
corresponding outputs for 
each state. 

Current 
State 

'2 r 
0 0 
0 1  
1 0  
1 1  
0 0 
0 1  
1 0  
1 1  

Can the input/output list 
shown here be implemented 
as a linear device? 

output - 
State 

s t 

1 0  
0 0 
0 1  
1 1  
1 1  
0 1  
0 0 
1 0  

.b 

Yes. All that is necessary 
is a vector representing 
the current state. This 
can be obtained from the 
previous output as feedback 
previous output. 

Let: input data = P 
current state = q,r 
output state = s,t 

The following system of 
linear equations over the 
binary finite field 
specifies such a device: 

s = -  (q + r) 
s = p + q  

Here ' + I  represents the 
Exclusive-Or operation 
which is addition in the 
binary finite field. 

Figure 12.Linear Implementation of Finite-State Machine 



key to more general application of linear automata: boundary 

symbcls can be generated to permit the machine to output a 

signal and change state. I believe natural language contains 

boundary symbols such as pauses and changes of tempo, and that 

these are properly written in text as punctuation symbols, which 

are vital to the understanding of written material. This is 

discussed again in the next section. 

If we do not have an intervening punctuation symbol, "BQ" 

will not be accepted, and so the receipt of "Q" after "B" will 

not cause a change of state. On the other hand, the symbol "S" 

may folloy "B", so its receipt will cause a change of state. 



2.2 Language as Algebra - - 

The primary purpose .of this section is to show the 

deficiencies of current algebraic treatments of language, and to 

suggest an adequate algebraic formalism. Such a formalism can be 

adopted whether or not one accepts the filtrative model of 

grammar, and without any committment to linear models. 

It has often been noted that generative grammar is based on 

a kind of algebra, but the current state of linguistics is quite 

unlike the orderly discipline that is modern algebra. It is more 

like the difficult discipline of formal logic, which is 

splintered by philosophical disputes. This is not coincidental, 

since the course of modern linguistics has been very much 

influenced by the work of logicians. 

Chomsky's original theory of transformational generative 

grammar was developed in Logical Structure - of Linguistic Theory 

(Chomsky 1955). This early work does contain some applied logic, 

but it makes no use of the algebraic theory of formal systems 

and languages. Chomsky seems to have based his new theory of 

grammar on formal devices such as used by logicians, without 

being aware that many logicians were reexamining their work on 

an algebraic basis. It was only later that Chomsky attempted to 

analyse the algebraic implications of his work, and by that time 

he was committed to a form of algebra that presents enormous 

technical problems. 



In order to illustrate what a difficult branch of algebra 

has been employed by generative grammarians, it should suffice 

to note some of the theorems proved about phrase-structure 

grammars and transformational grammars based on them (see 

Chomsky 1963:382ff). These so-called "undecidability theorems" 

demonstrate that the solution to certain problems in algebraic 

syntax depends on the skill of the mathematician and may require 

years of research, which may not produce any results. There are 

theorems showing that it is undecidable whether or not a 

context-free grammar generates all strings of its terminal 

elements. Also, it is undecidable whether or not two such 

grammars generate the same language, or whether the language 

generated by one grammar is a part of that generated by another. 

Thus there is no algorithm for deciding whether or not a 

context-free grammar is trivial, or whether two such grammars 

are just notational variants of one another. It is still a 

mathematical question whether or not two such grammars are * 

equivalent, but there is no systematic way of attacking the 

question with guaranteed results. 

Chomsky's early work, and indeed the work of linguists 

preceeding him, made use of algebra. But Chomsky apparently made 

no attempt to employ the vast theoretical repertoire of the 

algebraist in selecting an appropriate formalism. Instead he 

invented a formalism, and only later made an attempt to apply 

algebra to it. The thorough application of existing theory might 

have led to a more fruitful approach. 



I believe that a thorough and systematic attempt to apply 

algebra to the study of language would lead to a treatment of 

grammar within the theory of linear operators. The current use 

of algebra in linguistics involves much weaker systems with few 

of the formal properties that make linear operator theory so 

easy to use. To illustrate the differences between algebraic 

theories it may be useful to discuss a few of the more basic 

properties in some detail. 

Let us begin by considering an algebraic structure formed 

from a human language in the most natural way. We may note that 

the vocabulary of most human languages is a finite list of 

words, and that sentences are strings of these words. We may 

also note that there are constituents of sentences which consist 

of shorter strings of words, called phrases. All of these 

phrases in a language can be made by juxtaposing words in the 

language, and all of the sentences can be made by juxtaposing 

2 words and phrases. 

The most natural algebraic structure is probably the one 

which includes as elements all of the words, phrases and 

sentences of a language, and has juxtaposition as an operator. 

The most important properties to consider are closure, 

associativity, and commutativity. We might also attempt to 

define a second operator related to juxtaposition as 

multiplication is related to addition by the distributive 

2 ~ e  might also consider the formation of words from morphemes, 
but this involves a few problems and is better left for a later 
stage. 



property. Closure and associativity are so important to the 

solution of algebraic problems that I would have expected that 

any algebraic approach to syntax would abandon them only after 

considerable study had proved they could not be retained. 

However linguists seem to have attached little importance to 

closure and associativity, as if they had some deep seated 

belief that they were irrelevent to human languages. On the 

surface, this might seem to be an entirely reasonable belief, 

and it is easy to construct an argument supporting it. 

The closure property demands that an operator be applicable 

to any two elements of the algebraic structure, and that the 

result of the operation be another element of the structure. But 

juxtaposing words and phrases at random will not always produce 

phrases and sentences in the language, so it seems that the 

closure property does not apply to such structures. 

Next consider associativity. Suppose that we consider each 

word or phrase to have a particular meaning. The phrase 'cars 

and women' refers to a union of two large classes, and we wish 

it to retain that reference even when combined with the word 

'fast' and the phrase 'are interesting' to form a sentence 

listing a playboy's passions and pastimes. But the sentence 

'Fast cars and women are interesting' could either be the 

sentence formed by combining the elements mentioned above, or 

the sentence formed by combining the phrase 'Fast cars' with 

'and women', and 'are interesting'. We know that these are two 

different sentences, one about fast cars and fast women, and one 



that includes less cooperative women as well. But to say that 

these are two different sentences is to deny the associative 

property, according to the way i n  which the strings are 

grouped before juxtaposition has no influence on the string 

formed by juxtaposing them. 

It seems on first inspection, therefore, that the two 

properties of closure and associativity must not apply to human 

languages. Indeed, the common notion of syntax seems to depend 

entirely on the absence of these properties. 

It is due to this supposed lack of closure that linguists 

can claim that the object of syntax is to generate the sentences 

of the language and only the sentences of the language. If 

closure applied then all combinations of words would be 

allowable sentences, and grammars. would differ only in their 

vocabulary. Similarly, the lack of associativity seems essential 

to syntax. We know that a phrase structure grammar is formally 

equivalent to immediate constituent analysis, in that both types* 

of syntax give an analysis of the sentence into smaller and 

smaller constituents. The constituents of a sentence are the 

phrases from which it is composed, and the constituents of a 

phrase are smaller phrases or words. Sentences which contain the 

same words in the same order are considered to be different if 

the groupings of words into phrases, and phrases into sentences, 

are different. Yet this is just the denial of the associative 

law. 



The associative property may be extended to the cases that 

formerly told against it with the aid of Chomsky's distinction 

between competance and performance. It should be noticed that 

pairs of sentences such as 'Fast (cars and women) are 

interesting' and '(Fast cars) (and women) are interesting' are 

often pronounced differently. We can disambiguate these 

sentences either by inserting a slight pause to mark the 

parentheses shown in the above examples, or by speaking the part 

of the sentence within one set of parentheses at a slightly 

accelerated tempo, or by using both of these methods at once. 

The fact that we have the ability to disambiguate sentences by 

careful attention to prosody indicates that ambiguity is a 

matter of linguistic performance rather than competance. Poor 

perfomance can leave the sentences ambiguous, but it seems that 

linguistic competence includes a means for disambiguating 

sentences by giving verbal clues to their internal structure. 

Most mathematicians would probably agree that if there is * 

any practical way of redefining a problem to make the 

associative law apply, this should be done. The simplest way to 

accomplish this is to add a slight pause to the basic vocabulary 

of the language. We could thus rewrite the two different 

sentences as two different strings of words: 

Fast (pause) cars and women are interesting. 

and 

Fast cars (pause) and women are interesting. 



This solution amounts to the assertion that human languages 

incorporate punctuation markings in an essential way, and is 

thus not a comma-free - code. As noted before, the addition of 

punctuation symbols greatly extends the abilities of finite 

state machines, and makes linear models of grammar an easier 

task. The fact that these punctuation symbols are prosodic, 

rather than distinct symbols does not change this. In fact, 

words such as 'that' and 'which', or phrases employing them, may 

be seen as little more than punctuation symbols, serving the 

same role played by parentheses in computer languages. 

2 . 2 . 1  Closure 

Closure presents an entirely different kind of problem, but 

fortunately it is one that has a familiar treatment within 

mathematics. 

Mathematicians make extensive use of an artificial number 

system called the complex numbers, which has the property of - 
closure, even though data from the real world is always in the 

form of real numbers. The system of real numbers is not 

algebraically closed, so a related closed system is used 

instead. This involves inventing a whole new class of numbers 

called imaginary numbers, which are used when the results of 

operations on real numbers have no real numbers as results. For 

example, the operation of square root is often used in the real 

number system. Yet no real number is the result of taking the 

square root of a negative real number. Imaginary numbers fill 



the gap by providing the square roots of negative numbers, so 

that the system of real and imaginary numbers becomes closed 

under the operation of square root. 

Although data from the real word is in the form of real 

numbers, physicists and others who use the mathematics of 

complex numbers have found that this number system is not only 

more tractable mathematically, but also provides insightful 

formulations of phenomena in their discipline. This is a 

familiar effect: a sophisticated new notation with "nicen 

mathematical properties is often found to be a source of 

insights about the subject matter to which it is applied. 

It would seem reasonable to investigate the possibility of 

obtaining closure in a syntactic algebra by allowing imaginary 

sentences. Thus, we could consider all combinations and 

permutations of the vocabulary as sentences, hoping that some 

natural criteria will emerge to distinguish the real and 

imaginary sentences. This approach could be more fruitful than* 

the use of phrase structure rules or other such devices that 

lead to unwieldly mathematical formulations. 

If the formalism employed to study language allows the 

consideration of all possible strings of symbols, acceptable and 

nonacceptable, then algebraic closure is achieved. 

If closure and associativity hold, then by definition, each 

word in a language is an element in a semigroup, with the 

operation of juxtaposition forming other elements of the 

semigroup. Rather than dealing directly with semigroups, it is 



possible to find another kind of structure in which any 

semigroups serving to model natural languages can be embedded. 

When one system or structure is embedded in another, the 

larger system may be a mathematically interesting one with very 

desirable properties, while the embedded structure may have only 

those properties that are needed to reflect or model some aspect 

of reality. The problem of embedding an algebraic structure to 

be studied within a more convenient kind of structure is known 

as the representation problem. 

If one structure is embedded within another, the term 

'extension' is often used, as when we say that the complex 

number system is an extension of the real number system. In 

order for extension or embedding to be possible the two kinds of 

structure must share certain properties. The term 'hereditary 

property' is sometimes applied to properties which must apply to 

an embedded structure if they apply to the structure embedding 

it. Closure is not a hereditary property, but associativity and' 

commutativity are. 

If language is indeed associative then we may choose to 

model it within an associative algebraic structure, such as the 

algebra of matrices over the real or complex numbers, or the 

algebra of linear operators. 

These algebras have two operators, addition and 

multiplication. Addition is commutative in the algebras of 

matrices and the algebra -of linear operators, but multiplication ------------------ 
3 The algebra of linear operators includes the algebra of 
matrices as a proper subalgebra. 



is not. We may embed the noncommutative semigroups discussed 

above within the multiplicative group of either of these 

algebras, since the existence of inverses is not a hereditary 

property. 

To create such an algebraic model of language, each word is 

taken as a symbolic representation of some element of an 

algebraic structure. It is important to realize that in any 

mathematical model of human language we will need to employ very 

large structures. Using single words we can refer to only some 

of these elements. To refer to the others we need to concatenate 

words into phrases and sentences. 

In suggesting that linguistic items be formalized as linear 

operators, I am not committing us to any particular 

formalization or model of the human language user who 

manipulates these operators. Nevertheless, there are interesting 

reasons for adopting a compatible model of the language user. It 

is common in formal language and automata theory to consider* 

that there are types of languages and corresponding types of 

automata that accept or generate them. We often use the same 

term to describe the language and the automaton. 

There is a well known correspondence between languages and 

automata: 

- Unrestricted phrase structure grammars correspond to members 

of the class of Type 0 languages (or recursively enumerable 

functions), and the class of Turing machines. 

- Context Sensitive grammars correspond to members of the 



class of Type 1 ,  or CS-languages, and the class of 

linear-bounded automata. 4 

- Context Free grammars correspond to members of the class of 

Type 2 or CF-languages, and the class of pushdown automata. 

- Regualar or Finite state grammars correspond to members of 

the class of Type 3 or regular or finite state languages, 

and to the class of finite-state automata. 

Chomsky's transformational grammars used transformation 

rules applied to structures generated by Context-Free phrase 

structure rules. The class of languages definable by 

transformational grammars of this type has been shown to be the 

class of Type 0 languages. This result has caused much 

disturbance in the TGG community, since it was originally 

suggested that the class of possible human languages lies 

somewhere between Types 1 and 2 (CS and CF languages.) 

The arguments presented in this thesis are intended to show 

that this nice set of correspondences is quite misleading, and' 

entirely irrelevent to the study of human language. All of the 

classes of machines listed above can be treated as filters, by 

treating their variables as inputs. If this is done, it may been 

seen that among all classes there are both linear and nonlinear 

machines. My view is that only linear machines correspond to 

languages. 

What 1 -  have called variables, are treated by linguists as 

category symbols, and are important to them as giving the ------------------ 
4~inear in this term means one-dimensional, and does not 
correspond to the term linear as used elsewhere in this thesis. 



structural description of the generated sentence. The structural 

description -of a sentence includes many things, but its most 

essential aspect is an account of the grouping or bracketting of 

components. I have argued that this is an error, and that 

brackets should be generated as terminal symbols. 

In this regard it is worth considering the use of brackets 

as symbols in set theory. This use is consistent with their use 

as grouping devices in linguistics. Yet pure abstract set theory 

is often formulated so that its only terminal symbols are 

parentheses. An empty set of parentheses indicates the null set, 

and all other mathematical objects are ultimately may up from 

combining sets containing the null set into elaborate 

structures. In set theory a string of parentheses such as 

is a well-formed expression standing for some mathematical- 

object . 5  

Chomsky's theory of grammar involves more than mere 

bracketting: he uses tree structures, or their equivalents, 

labelled brackets. I believe that this is not necessary. Some 

indication of bracketting is important, but the attribution of 

grammatical labels may be treated differently. According to 

Firth, grammatical categorization is a form of meaning, since 

the concepts of 'noun' and 'verb' are abstactions of common ------------------ 
5 ~ h i s  is easier to see if blanks are added: 
( (0) ( ( ( 0 ) )  ( 0 )  



meanings. It would follow that the labelling of brackets is a 

part of the process of decoding language, the inverse of the 

encoding process described by Generative Semantics. I suggest 

that there is some linear filter which can decode the meaning of 

utterances, and a simplified version of this filter could be 

used to provide grammatical labels. This aspect of parsing 

should thus await the development of filters for encoding and 

decoding. I believe such filters are easily developed as linear 

implementations of Markov filters, and their inverses. 

The problem of creating filters to perform a specific task 

is discussed in a later chapter, as part of an analysis of how 

the human brain may solve the same problem. 



2.3 Creating Linear Devices for Specific Purposes - - 

Consider,how such an acceptor might be simulated with a 

linear device. The first problem is that we have no actual 

output to express as output vectors. There are several 

possibilities: 

The output could be zero or one, indicating acceptance or 

rejection of the input. 

The output could be a symbol representing the current state. 

The output could be the last acceptable input. 

The output could be identical to the input if it was 

acceptable, and zero otherwise. 

The output could be the nearest acceptable sequence to the 

input. 

In extending the theory of acceptors to linear devices, we 

choose whichever of these alternatives seems most 

appropriate. Or we may have several outputs. One factor that may 

help determine our choice of output is the possible need to feed 

some or all of the output back to the input. By considering this 

possibility, we can make a preliminary choice from among the 

last three of these cases, since in any of these cases the 

output is an alphabetical symbol like the input. 

Suppose the input is a single alphabetical symbol, and so 

is the output, which is normally identical with the input. If we 

merely perform the process described above, we will produce 



something very much like the identity matrix. Obviously the 

identity matrix cannot serve as a linear acceptor. One solution 

is to make the input and output a sequence of two or three 

symbols. Some of the possible sequences of two or three 

alphabetical symbols are acceptable in English, and others are 

not. Using a well known algorithm, to be described in a later 

chapter, a matrix can be produced which will transform a vector 

representation of the input sequences into whatever form of 

output sequence has been chosen. 

But will this produce a genuine linear acceptor? The 

acceptors described in automata theory take in single symbols, 

not sequences of symbols. Can we not produce a linear device 

that will take in just one symbol at a time and either accept or 

reject it? In order to do so, we may employ a device. that 

introduces a time delay. As shown in the diagram of the 

Pseudo-Identity filter in the next section, we may accept a 

single symbol, copy it into three identical inputs, and then 

delay one of them. The resulting three inputs are then a 

sequence of symbols. 

2.3.1 Autocorrelation Filtering - and Pseudo-Identity Filters 

The creation of a linear grammatical device involves the 

creation of a filter which will pass grammatically correct or 

acceptable text without changing it in any way, but will perform 

some correction on any other input. Ideally the output of the 

device should be grammatically correct no matter what the input 



is, with small deviations from correctness being changed in a 

natural way. Such a device would have practical applications in 

word processing where it could be used to check and correct 

spelling and/or grammar without the need of large dictionaries 

and lists of rules. 

The requirement that the output of the device be 

grammatically correct for any input cannot be easily met, but it 

can be approximated for a wide range of inputs. There are two 

types of input that must be considered, input that is already 

grammatically correct, and random input. The former will be 

correlated input, the latter uncorrelated. Thus the device must 

impose a correlation on the input if it does not exist already, 

but must not significantly alter the input if it is suitably 

correlated. Let us consider that the correlation of 

grammatically correct material is represented by an 

autocorrelation matrix. An autocorrelation matrix can be used as 

a filter, and will impose its own correlation on random input, * 

thus satisfying one of the requirements. But what will it do to 

input that is already correlated? The autocorrelative filters 

that produce approximations or simulations of English from a 

random input are not what is wanted for corrective filters, 

since they produce very strange looking text when given ordinary 

English text as input. The reason for this can be seen in 

analysing these filters. 

If input with a certain correlation is passed through an 

autocorrelation matrix representing the same correlation, the 



correlation of the resulting output would be as represented by 

the square of the autocorrelation matrix. This may or may not 

mean that the correlated input is altered. A matrix may be equal 

to its square if it is a matrix representing a projection. This 

leads to the conclusion that a grammar is a projection of the 

space of possible linguistic forms onto the subspace of 

acceptable forms. 

To see what an autocorrelation matrix does do to its input 

vectors, I used a program to calculate the eigenvalues and 

eigenvectors of an autocorrelation matrix. 

The eigenvalues for autocorrelation matrices that acted as 

linear Markov filters tended to cluster near zero and one, with 

a few eigenvalues in between. Thus the effect on the 

eigenvectors tended to be one or the other of two actions, to 

leave the eigenvector almost unchanged in magnitude, or to 

almost annihilate it. This suggested the creation of a matrix 

that would be based on the autocorrelation matrix, but would do* 

just one or the other of these operations exactly. 

To form such a matrix the following algorithm can be used: 

1. Create an autocorrelative filter and calculate its 

eigenvectors and eigenvalues. 

2. List the eigenvectors corresponding to eigenvalues above 

some cutoff point. 

3. For each of these eigenvectors create a matrix by 

multiplying the vector by itself. Such a matrix has rows 

that are identical except in magnitude, being scaled by 



values of successive coordinates in the vector, and its 

columns are just like its rows. 

4. Take the direct sum of these matrices by adding them point 

by point. 

5. Normalize the matrix. 

The resulting matrix describes a projection onto a 

hyperplane containing only the chosen eigenvectors. Vectors 

consisting of linear combinations of those eigenvectors (only) 

will be unchanged by the transformation. The fact that such a 

matrix does pass English text through unchanged amounts to a 

definition of English grammatology, since it implies that all 

correct sequences of letters in English can be represented as 

linear combinations of a few letters, and are thus contained on 

a hyperplane embedded in the space of all possible sequences of 

letters. 

2.3.2 Towards Linear Corrective Filters 

By using the algorithm just given, a particular matrix can 

be described which will serve as a linear corrector and will 

produce only grammatically acceptable or syntactically correct 

strings of symbols. This is similar to a type of filter used to 

remove noise from data. The pseudoidentity filter just described 

is a member of a class of filters which approximate more and 

more to the ideal of a linear corrective filter. 

It is worth considering linear corrective filters in more 

detail. The usual application of a linear corrective filter, or 



linear corrector, can be described as follows: Given a linear 

corrective filter of order Q , and n samples of noisy data - 
representing successive values of some coordinate, the output of 

the filter is an estimation of the correct value of one of the 2 

values, usually the first or last one. This estimated value may 

be used with other corrected values in an attempt to further 

improve the data. If the filter is used recursively, the quality 

of each successive correction is lower than its predecessor, and 

there is some danger of the device being unstable. 

An interesting property of such corrective filters is that 

they have no effect at all on some functions. Analytic functions 

are a class of functions that are exactly correctable, and a 

linear corrective filter that matches a given analytic function 

will pass it unchanged. Since the filter is based on the 

autocorrelation function derived from a typical data sample, and 

since a large number of different functions may have the same 

autocorrelation function, it seems that these filters will pass 

many different functions without having any effect on them. 

Although the usual application of a linear corrective 

filter is in correcting the next value of a changing variable 

quantity, and may be used with a feedback loop so that this 

corrected value is used in correcting subsequent values, it is 

possible to use the filter in a much simpler application in 

which it will convert a long input function into a long output 

function that resembles it more or less closely. Each value of 

the output function (for a filter of order - n) will be a weighted 



sum of 2 values of the input function. The weights are so chosen 

that for certain analytic functions the weighted sum of - n 
successive input values is just the next input value. If random 

noise is added to one of these analytic functions, the sum of - n 
successive input values will be equal to what the next value of 

the analytic function alone would be, plus the weighted sum of 

the random noise values. If the random noise had zero mean, then 

this part of the weighted sum would probably be very near zero. 

Thus the filter would tend to remove the noise while leaving the 

analytic function unchanged. 

Unfortunately, the pseudo-identity filter produced by the 

above process is not a good linear corrective filter. Although 

it passes English text through unchanged and alters other 

sequences of letters, it does not always change them into 

correct English sequences. How close it comes to this goal 

depends on the size of the matrix, in a way that is independent 

of the number of letters represented in the vectors it handles.' 

The linear corrective filters being prepared by the algorithm 

just given can also be partitioned into blocks in which each 

block is a cross-correlation matrix for pairs of letters. The 

accuracy of the filter in correcting non-English sequences into 

English or pseudo-English depends on the size of these blocks 

more than on the number of blocks in the matrix. 

Analysing autocorrelative filters with varying block sizes 

showed that the eigenvalues of such matrices are more closely 

clustered around the two extreme values when the matrices have a 



large block size. This may be explained in the following way: 

The eigenvectors of the smaller matrices are related to the 

eigenvectors of the larger matrices in a simple way, since both 

sizes of matrix are based on similar sets of vectors. There is 

actually a homomorphism between the large vector space on which 

the larger matrix operates and the smaller space of the smaller 

matrix. 

For example, consider two autocorrelation matrices which 

are based on vectors of size 8 and 16, respectively. Suppose 

they both act on vectors representing pairs of letters. Each 

single letter block of the larger matrix is an eight by eight 

submatrix, and each block of the smaller matrix is a four by 

four submatrix. There are many ways of defining a homomorphism 

from the space whose vectors have 16 components into the smaller 

space with 8 components to each vector. The simplest of these 

simply maps pairs of coordinates in the larger space onto single 

coordinates in the smaller by taking the arithmetic mean of each* 

pair of coordinates. For example, the two rows of numbers given 

below might represent vectors in each of the two spaces: 

Each value in the second vector is the arithmetic mean of two 



values from the first vector, those above and slightly to either 

side of it. The first vector has only binary values, while the 

second has an intermediate value: the arithmetic mean of 0 and 

1. 

The same homomorphism that transforms vectors in this way 

must be applied to matrices, and is similar in effect. The 

blocks of the larger matrix will be mapped onto blocks of the 

smaller, with two by two subblocks being mapped onto single 

values of the smaller. 

Autocorrelation matrices defined on the larger space will 

have 16 eigenvectors, while the those of the smaller space will 

have only eight. This is because two distinct eigenvectors of 

larger matrix will be mapped onto single eigenvectors of the 

smaller. 

This mapping of pairs of eigenvectors onto single ones 

affects the clustering of eigenvalues: If one eigenvalue of the 

larger matrix is nearly one, and another is nearly zero, and 

this pair is mapped onto a single eigenvalue of the smaller 

matrix, that eigenvalue will have to be intermediate between the 

extremes, as in the above example. Thus if we find a matrix 

whose eigenvalues are spread over a range of values, we can 

postulate the existence of an equivalent matrix (defined on a 

larger space) whose eigenvalues are clustered around two 

extremes. 

I suggest that the difference between autocorrelative 

filters and linear corrective filters is the distribution of 



their eigenvalues. If the intermediate eigenvalues of 

autocorrelation matrices can be treated as resulting from the 

combination of eigenvalues from a higher space, then the use of 

larger spaces would lead to autocorrelation matrices that are 

more nearly usable as corrective filters. 

Ideally we should consider a space of very large size in 

which the autocorrelative filter and linear corrective filter 

are the same since there are no intermediate eigenvalues. 

There is a simple and natural way to ensure that the 

underlying space is of this form and that there are indeed no 

intermediate eigenvectors, and that is to base the linear model 

on the binary finite field. 

2.3.3 Binary Linear Models 

It must be noted that the property of linearity is 

definable for the transformations and operators of vector spaces 

over any field. The usual fields for any work with vector spaces* 

are the field of real numbers and the field of complex numbers. 

Experience that is limited to vector spaces over these fields 

may mislead one to believe that continuity is an important part 

of linearity. Thus, for example, one may believe that any linear 

operator must have some representation as a continuous straight 

line. This is not at all true. A linear operator may be defined 

on a vector space over a finite field, and all of the values of 

any components of the vectors in that space will be one of the 

finite set of allowable values. An example of this that is very 



important in what follows is the use of the smallest finite 

field in defining vector spaces. 

The set containing only the two numbers zero and one is the 

basis for a field that can be defined in either of two ways. It 

has been shown that such a field must use two binary operations 

whose Cayley tables are essentially the truth tables for the 

'exclusive-or' and the logical 'and'. However, the number zero 

does not have to be the additive identity it usually represents, 

nor does the number one have to represent the multiplicative 

identity. These roles can be reversed, in which case the two 

operations that look like the logical 'exclusive-or' and the 

logical 'and' are actually the logical identity and the logical 

'or'. 

These represent the only two different interpretations for 

the formal symbols of the smallest finite field, they are 

equivalent. For most of what follows we shall assume the more 

usual interpretation, in which the operation of addition is' 

represented by the 'exclusive-or', and the operation of 

multiplication is represented by the logical 'and'. 

This field bears an interesting relationship to formal 

logic. It has become customary in computing science to use the 

term Boolean for any system that uses only the numbers zero and 

one. This usage is contrary to history. Various algebraic 

structures based on zero and one were known before George Boole 

invented Boolean algebra. His contribution was not the 

restriction of the underlying set to two values, but the 



definition of a new type of algebraic structure that used the 

two operators similar -to logical 'or' and logical 'and'. Logical 

'and' is often called logical multiplication since its role in a 

boolean algebra is analogous to the role of multiplication in 

the real numbers, as it is in the smallest finite field. Where 

boolean algebra differs from the field built on 0 and 1 is in 

the operator known as logical addition. Boolean algebra and 

propositional logic use the nonexclusive o r  operation as a 

kind of logical addition, whereas the smallest finite field uses 

the 'exclusive-or'. 

The investigation of the binary finite field may lead to 

genuine linear corrective filters, which do more than just 

recognize text, but will actually correct it. I have made some 

.progress in this direction already and look on it as the next 

avenue of research. 

The binary finite field and its extensions pose a difficult 

methodological problem. In constructing filters to serve a* 

specific purpose we often want to average or perform a direct 

summation of simpler filters. In doing this we often make use of 

the notion that unwanted additive noise in a variety of simple 

linear devices will cancel each other out when the devices are 

averaged or added. This is not true for linear devices defined 

on fields of characteristic two, such as the binary finite 

field. The same problem is found in other algebraic structures. 

To solve it, we need to use some version of the optimization 

method described earlier. 



One serious question remains, and that is the adequacy of 

linear models. The human brain is generally assumed to be a very 

powerful information processor. Are linear devices capable of 

performing the operations we know the brain can perform? Each of 

us has some training in arithmetic which enables him to square 

numbers and perform other nonlinear operations. How can we do 

this if the human brain is linear? 

Although it is difficult to say for sure what a linear 

device cannot do, it is easy enough to list some operations 

familiar in information processing that are easily accomplished 

with nonlinear devices such as digital computers, but are far 

beyond the normal capabilities of linear devices: 

Storing information by address to 

arbitrary interval of time. 

Performing a processing loop a 

depending on a stored value. 

Performing some operation only if 

certain threshold. 

Multiplying two inputs together. 

Adding a constant to an input. 

In contrast, linear operations are 

be recovered after an 

certain number of times 

some variable exceeds a *  

usually considered to 

include only those that can be made up from the following simple 

processes: 

1. Adding two inputs together. 

2. Multiplying an input by a constant. 

3. Delaying an input by a fixed period of time. 



Although these operations seem very limited, it can be 

shown that any nonlinear device can be accurately simulated over 

a finite part of its domain of possible inputs by a linear 

device. Such a simulation can be very cumbersome, requiring a 

linear device of enormous size to simulate the simplest 

nonlinear device, but it is always possible. A possible example 

of this is the human ability to perform simple arithmetic. 

Although human memory and processing power vastly exceed the 

abilities of a pocket calculator, we often depend on one for 

arithmetic, since this simple machine is much better at 

arithmetic than any human being. That we can learn arithmetic at 

all may be an example of linear simulation. 

Another way of asserting human linearity is to say that we 

do not modulate our inputs, but only add to them. This is not to 

say that we pass input to output unmodified but for simple 

additions, since a constant distortion of input is not 

modulation as understood here. Modulation is essentially 

multiplication by a varying part of the signal. In practice it 

is usually implemented with a nonlinear element. Multiplication 

by a constant is not modulation since the constant is not itself 

a signal to be impressed on the input. 

This allows us to add to our external inputs some internal 

input or meaning, and then to linearly transform the result. We 

may also linearly transform external or internal inputs before 

addition. Recursion (feedback) is also allowed. Altogether, our 

output may bear little resemblance to our external input, and 



thus our role as a communications channel may be disguised. 

Indeed, the disguise may be so good that we forget the 

limitations of that role and think of ourselves as a kind of 

computer. But it remains true that we are not very good at 

ordinary computing. What is remarkable, if we accept the 

restriction to linearity, is that we can perform arithmetical 

computations at all. How do we actually do it? 

2.3.4 Simulation - of Nonlinear Devices 

To investigate this question we can approach a typical 

simulation problem. Suppose that the possible inputs and outputs 

of a system are given in a list of input-output pairs. This list 

of pairs might be obtained by applying various inputs to some 

device and recording the output corresponding to each. If the 

device being investigated is a nonlinear one, then the task of 

developing a linear device that would be characterized by the 

same list of input-output pairs is the problem of developing a 

linear simulation of a nonlinear device. Such a simulation need 

only be accurate for inputs represented in the list. 

A typical input-output list representing a nonlinear device 

is given below. 



This list clearly represents a device that squares its 

input, provided that that input is one of those listed. Only 

after seeing a list of all possible input-output pairs could one 

say for sure if the device is indeed nonlinear or merely a 

linear simulation good over the given input domain. 

To show that a linear simulation of this device is 

possible, I will give a method for developing such a device as 

well as a specific example of a device accomplishing this 

operation. There are actually many linear devices that could be 

represented by the above list. The easiest one to understand is 

the one constructed by a general simulation algorithm. The first 

step in this algorithm is to find a representation for the input 

and output. In the list above the input and output are 

represented by a pattern of dots on paper. Such a representation 

might actually be a possible choice for use in a simulation 

problem. It is not a difficult problem to find a linear device 

that transforms the pattern of dots in the number '5' into the 

pattern of dots in the number '25' and also does the appropriate 

transformations on the other input patterns. Yet this is 

overkill. A much simpler linear device transforms a small vector 

representing each input into a similar vector representing each 

output. 

Suppose we represent all numbers, both input and output, by 

vectors of length 25. Each of the given inputs and outputs is 

represented by a (row) vector having zeroes everywhere except in 

the position given by the number being represented. 



I f  input and output values are represented this way, the 

(rather sparse) matrix given below represents a linear operation 

that will transform each of the inputs into the appropriate 

outputs. 

~ultiplying the input vectors by this matrix will produce 

the specified output vectors. 



I f  t h e  i n p u t  is 5 ,  r ep re sen ted  as 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

t h e  ou tput  i s  2 5 ,  r ep resen ted  a s  

This is obviously not the most economical representation of the 

input and output values, but it is one that guarantees a linear 

mapping between input and output. 

It is worth noting that this device is certainly linear and 

as such has some properties that one would not expect of a 

nonlinear device. Suppose the device above is given an input not 

on the original list of inputs, such as 

The output corresponding to this input is 

Even without knowing the matrix representation of the device it 

is quite possible to predict this result by applying the 

principle of superposition which applies to all linear dev ices .  

This principle states that the output corresponding to the sum 

of two inputs is the sum of the outputs that correspond to each 



individual input. The input vector just given is the sum of the 

input vectors representing two of the inputs in the list, and 

therefore the corresponding output is the sum of the outputs 

corresponding to each of those inputs. Thus, in constructing a 

linear device to simulate a squarer over a narrow range of 

values we have produced a device that will simultaneously square 

more than one number in its input range. 

It must be observed, however, that the success of this 

simulation depends upon the restriction to a narrow range. A 

real squarer is a nonlinear device, and according to the account 

given in a previous section, is therefore inherently ambiguous. 

If we see that the output of a squarer is 25 then we cannot know 

whether its input was 5 or -5. Our simulation is unambiguous: if 

we see the output that represents 25 we know that the input was 

5. 

The matrix just given for this linear simulation is 

obtained by a process of cross-correlation. The easiest way to' 

understand this process is to consider the resulting matrix as 

the sum of a number of simpler matrices. Let each input vector 

and its matching output vector describe a matrix in the 

following way: 

Each column of the matrix is a scaled copy of the input (row) 

vector, with the scaling values for successive columns being the 

values of the output vector, divided by the dot product of the 

input vector with itself. 



Suppose the input vector is - 1 0 1 2  

and the output vector is 4 3 2 1  

The dot product of the input vector with itself is 6, so we 

scale the input vector by 4/6, 3/6, 2/6, and 1/6, producing the 

matrix 

This matrix will take the input vector into the output vector. 

Note that at this stage there is no connection between the 

shape of the input and output. The output vector may be chosen 

arbitrarily without consideration of the input. Indeed, the 

outputs of a linear device described by this matrix will differ 

only in magnitude, which depends on how well the actual applied 

input matches the input vector. This type of device can be 

described as a matched filter, since like other devices of that 

name it produces its maximum output for an input which exactly 

matches the intended input. A simple matched filter like this is 

not particularly interesting by itself, but it becomes an 

interesting part of a larger system when paralleled with other, 

similar, devices. 

Suppose that the vectors chosen to represent the inputs and 

outputs given in an input-output list are made up so that all of 

the input vectors are orthogonal to one another, and all of 



the output vectors are also orthogonal to each other. Such was 

the case in the squarer example above, as may be easily 

verified. Using the algorithm given above to produce a matched 

filter for each input-output pair will result in devices that 

can operate in parallel without interfering with one another. 

Since the input vectors used in designing the matched 

filters are mutually orthogonal, each matched filter will 

produce its intended output for its intended input, but no 

output at all for any other input in the list. When the devices 

are operated in parallel, the inputs are applied to all devices 

together and their outputs added. For each of the specified 

inputs only one of the devices will produce an output. 

The same result as could be obtained by paralleling matched 

filters can be achieved more economically by creating one device 

whose matrix representation is the sum of the matrix 

representation of all the paralleled filters. This gives us an 

algorithm for producing a single linear device which will take 

any of a collection of orthogonal inputs to any given outputs. 

This result may easily be extended to collections of vectors 

which are not mutually orthogonal but merely linearly 

independent. If a collection of linearly independent input 

vectors is represented as a matrix, the inverse of that matrix 

will be a linear operator which will transform the original 

collection of input vectors into a collection of mutually 

orthogonal vectors. 



The successive application of two linear operations is 

itself a linear operation, so we thus have an algorithm for 

producing a single linear device that will transform any of a 

collection of linearly independent input vectors into 

arbitrarily chosen outputs. 

It should be clear from the above brief account that the 

problem of simulating a nonlinear device has two subproblems: 

1 .  Finding a suitable representation of the input and output as 

vectors. 

2. Creating a linear operation which takes the input vectors 

into the corresponding output vectors. 

Essentially this method is an algorithm for producing a linear 

device to order. The workings of the algorithm are particulary 

interesting as a possible model of biological systems, including 

the human nervous system. We may try to consider a neural net or 

a brain as a linear device. 



2.4 Towards a Linear Associationist Model of Language and the - - - -- 
Brain 

This chapter is directed to those who find the preceding 

pages too abstract, and would like a more concrete model of 

language processing in the brain. 

2.4.1 Associative Memory 

The associationist school of psychology attempted to 

explain how the brain worked, using only a few very limited 

operations. 

The basic principle of the associationist psychology is 

expressed in Proposition 10 of David Hartley's Observations - on 

Man (Hartley 1749:65), which reads: - 
Any Sensations AIB,CI Etc. by being associated with one 
another a sufficient Number of Times get such a Power 
over the corresponding Ideas a,b,c, etc. that any one of 
the Sensations A ,  when impressed alone, shall be able to 
excite in the Mind b,c, etc, the Ideas of the rest. 

This principle was interpreted in different ways by 

Hartley's successors, who were concerned about what it meant to 

say that two sensations or ideas are associated. It was 

variously proposed that sensations or ideas were to be 

considered associated if they: 

1. Occurred at the same instant (Simultaneous ~ssociation) 

2. Occurred sucessively, one after another (Temporal 

Contiguity) 



3. Occurred beside one another in the visual field (Contiguity) 

4. Were noticeably similar (Similarity) 

Various attempts were made to isolate one or another of 

these types of association as the most fundamental, and to 

express the others in terms of it (see .Anderson and Bower 1973). 

In particular, most of the earlier associationists accepted only 

the first two types of association as distinct types and defined 

the other two in terms of them. Perception leading to 

association was either of simultaneous or (temporally) 

contiguous sensations. For many associationists, the most 

important factor in determining the relative strengths of 

associations was that embodied in the Law of Frequency which 

states a relationship between the frequency with which an 

association of stimuli occurs and the (resulting) strength of 

the association between those stimuli. Some quantitative studies 

of the Law of Frequency have indicated that this relationship is 

logarithmic, with the first few occurrences of a set of 

associated stimuli having a far greater effect than later 

repetitions. 

Another factor in determining the strength of associations 

was the effect of related associations due to the action of some 

form of transitive law, which also served to create new 

associations out of the interaction of old ones. The existence 

of a scalar quantity, strength, and an interaction between 

associations are important to any formalization of the 

associationist theory in terms of vector spaces and their 



associated operators. 

The question of whether or not the associationist theory 

can be described in terms of vector spaces and linear operators 

was not directly addressed by the early associationists, who 

lacked this mathematical vocabulary. A related and possibly 

equivalent question was raised by John Stuart Mill in reacting 

to the extreme associationist views of his father, James Mill. 

The elder Mill had argued that complex ideas are made up of 

simple ideas, and in turn make up even more complex ideas, which 

are thus ultimately composed of the same simple ideas. His son 

denied that complex ideas are simply the sum of their 

constituents. He argued that there was a kind of "mental 

chemistry" which happened so that the nature of complex ideas 

could he entirely different than that of their simple 

constituents, as the nature of a chemical compound is different 

than it constituent elements. 

John Stuart Mill thus advocated a view somewhat like the 

central tenet of modern Gestalt psychology, that the whole is 

more than the sum of its parts. The view being presented in this 

thesis may be treated as a denial of that tenet, and thus is 

more closely related to the associationism of James Mill. 

In subsequent years followers of the associationist school 

made use of a number of mathematical methods which are only 

known to be accurate when the underlying mathematical model is a 

linear one. Methods such as factor analysis continue to be used 

in psychology even though a there is almost no discussion of 



linear models of mental processes. The present theory could be 

viewed as an approach to the formalization of an associationist 

theory ~f mind using vector spaces and their associated 

mathematical tools. 

It seems that associationist psychology can be described as 

including these principles: 

Each set of associated stimuli or ideas defines an entity 

called an association. 

There is a scalar quantity called strength which reflects or 

measures the ability of a stimulus to cause the recollection 

of another stimulus that has been associated with it. 

An association will have a certain strength at any given 

time, but this may get stronger or weaker from time to time 

through reinforcement or extinction. 

There is some interaction between associations such that the 

association of A and B represented by A&B, together with the 

association between B and C represented by B&C, produce an 

association between A and C, which we can represent by A&C. 

The strength of an association A&C formed in this way from 

A&B and B&C will depend (in part) on the strengths of its 

two component associations A&B and B&C. 

Briefly, suppose that we consider an association of ideas 

be represented as a vector. This is a natural enough 

representation, since a vector is often given as a set of 

numerical values that are in some way associated. In order for a 

set of numbers to be called a vector, we have to have some 



definition of length and of addition. Thus we need a scalar 

quantity, length, that is defined for each vector, and we need 

to be able to define the vector that results from the addition 

of any two vectors. It seems clear enough that the 

associationist allowed for some interaction between 

associations, as in points three and four above, although it is 

not yet clear that this interaction can be described as an 

operation of addition. It also remains to be seen how the 

strength of an association is related to the length of the 

vector that describes the association. 

A tentative formulation of association theory in such terms 

may begin by identifying the strength of an association between 

A and B with the probability of the stimulus A evoking the 

memory B. On this basis we could describe the addition of 

associations as follows: If A evokes B and B evokes C then A can 

be said to evoke C. 

What about the relative strengths of the associations* 

between A and B, B and C, and A and C? Since the strength of an 

association is taken here to be the probabilty of one part 

evoking the other, then the strength of the association between 

A and C will be the probability of A evoking C, which can be 

described as the product of the probabilities of A evoking B and 

B evoking C. In order to translate the notion of the strength of 

an association into the mathematical notion of the length of a 

vector, and to treat the transitive evocation of a new 

association as a resultant formed by addition of vectors, it 



would be necessary to define the length of a vector as the 

logarithm of the probability of one part evoking the other, so 

that the product of probabilites will become the addition of 

vectors. This is quite compatible with the familiar 

psychological principle that there is a logarithmic relationship 

between stimuli and perception. 

This description can provide the basis for a mathematical 

model of associative memory, but it is not yet sufficient for a 

physical model. In the next section I review some simple 

physical models of memory. The significance of these models for 

language study lies in differences between models that may have 

reflections in the properties of language. 

2.4.2 - An Optical Model -- of Associative Memory 
A concrete example of a linear device that can serve as a 

model for some human mental processes is provided by newly 

discovered techniques of holography. Physicists apply the term 

holography to a process of lensless three-dimensional 

photography invented by Dennis Gabor. (Gabor 1949)  

The best known use of the hologram model of a brain 

function was by the American psychologist Karl H. Pribram 

(Pribram 1971 ) .  Pribram ws interested in the location of stored 

information in the human brain. Drawing upon experimental 

evidence that any given item of memory can- be recovered in spite 

of almost arbitrary brain lesions, Pribram argued that 

information must be stored diffusely throughout the brain, as 



information is stored diffusely over the suriace of the film in 

one of Dr. Gabor's holograms. However much this may seem a mere 

metaphor, Pribram argues, it could be a strictly accurate, 

literal statement, since a hologram is a spatial fourier 

transform of the light leaving the suface of an object. Pribram 

suggested that the word hologram just means spatial fourier 

transform. He cited a certain amount of physiological evidence 

that the brain performs the mathematical operation of taking the 

fourier transform of incoming data. 

Pribram's reasons for wishing to treat memory storage as a 

holographic record depended upon the many remarkable properties 

of holograms. These are in fact just properties of the fourier 

transform, familiar to mathematicians for decades. What is 

remarkable about Dr. Gabor's process is the ability to perform 

this complicated mathematical operation (in two or three 

dimensions) by a simple optical process. 

2.4.3 Holoqrams - and Photoqraphs 

Let us compare the two processes by which information about 

the visual appearance of an object may be recorded on film. One 

of these is photography; the other holography. In making a 

photograph, a lens is used to create an image of the object on 

the film. In making a holograph, light reflected from the 

object, together with light from a reference beam forms a 

pattern on the film as waves of different frequency and phase 

interfere with one another. The piece of film can be placed so 



as to capture almost any part of this interference pattern. The 

developed piece of film will diffract light from a suitable 

source to reproduce a copy of the original reflected light from 

the object. 6 

For the purpose of this comparison it is interesting to ask 

what determines how the photographic or holographic film will 

darken at a specific point. In the case of the photograph, each 

point on the film corresponds to a specific point on the object. 

The darkening of the film at a point depends on the amount of 

light reflected in the direction of the lens by the 

corresponding point on the object. For holographs, the case is 

different. The darkening of the film at any point depends in a 

complicated way on the light reflected from all points. 

Information about the appearance of the object is stored 

diffusely over the entire surface of the film. Any small piece 

of the film will suffice for reconstructing light patterns from 

the entire object, although these may give a view of reduced* 

quality or scope. 

Figure 13 shows a simple process for recording information 

on film. 

At A is a coherent light source, which illuminates an 

object, - B. The focussing effect of the lens at C casts an image - 
of the object on a piece of film at - E. If the film is exactly as 
far from the focal plane of the lens, - D, as the lens is, then 

the image on the film will be quite clear. It will be an ------------------ 
"TO understand the role of the reference beam in this process, 
see the next section on the associative property of holograms. 



Figure 13. Recording Information on Film 
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The same apparatus can be used to make either 

photographs or holograms. To make a photograph, 

the film is placed at a distance from the focal 
plane of the lens. As the film is moved closer 

to the focal plane, the image gets more and more 

'out of focus' until it is unrecognizable. If 
coherent light is used, a Fourier hologram can 

be made by placing the film on the focal plane. 



inverted two-dimensional view of the object. Suppose the film is 

now moved a small distance towards the focal plane of the lens. 

The image will become more and more blurred as it is moved 

closer to the focal plane. 

To understand the effect of blurring, consider what happens 

when the film is moved all the way from its original position to 

the focal plane of the lens. For simplicity, assume that the 

object is two-dimensional. In this case the pattern of light on 

the film at the focal plane is the fourier transform of the 

pattern on the surface of the object. Another way of describing 

this is to say that by moving the film to the focal plane of the 

lens we have made a hologram of the object. Thus we could 

construct either a photograph or a hologram using the same 

experimental situation, depending only on where the film was 

placed. In fact, if the film is placed anywhere between the two 

extremes, a usable record of the original transparency will 

result. 

The image produced by placing the film anywhere except at 

the focal plane will be somewhat blurred; it will be literally 

"out of focusn. But, an out-of-focus photograph is still as 

complete a record of information as the original photograph. In 

fact it may be more complete. Since a hologram of a 

three-dimensional object includes enough information to 

reconstruct a three dimensional image, it will include more 

information than an ordinary two-dimensional photograph of such 

an object. A blurred photograph may be considered as being half 



way between a photograph and a hologram, and may include an 

intermediate amount of information. 

Ordinarily lenses are not used in making holograms, in 

which case the relationship between object and hologram will not 

be exactly describable by the fourier transform, but will be one 

of a family of related integral transforms. ~econstructing such 

a hologram involves inverting whatever integral transform has 

applied, and this can be difficult unless the associative 

property of holograms is used. 

2.4.4 - The Associative Property of Holograms 

A hologram that is made in the above way as a record of a 

collection of adjacent objects rather than a single object, may 

be illuminated with coherent light reflected from a single one 

of the objects after the others have been removed. If this is 

done, the remainder of the collection of objects will be seen. 

The resulting hologram may be considered an associative record' 

of the collection of objects, since light reflected from any 

object in the collection may be used to reconstruct the image of 

the others. What is most interesting is that multiple exposures 

using various collections of objects can be created and 

reconstructed without much interaction between them. In other 

words, the light from a single object from any collection can be 

used to reconstruct the images of the other objects, with which 

it was associated. 



The piece of film used to make a hologram may be double 

exposed, or even exposed several times. At each exposure a 

collection of objects may be recorded. If none of the 

collections have any objects in ~ o m m o n , ~  then light from any 

object will produce a perfect view of exactly those objects 

holographed in the same exposure. But if a single object occurs 

in two or more collections, the light from this object would 

reconstruct the images of all of these collections 

simultaneously, and these images would be superimposed over one 

another. A single exposure can be viewed as the construction of 

a matched filter, and then the additional exposures add other 

matched filters to be used in parallel. 

This phenomenon has been described many times, and various 

authors have proposed exploiting it to create a 

content-addressed memory or associative memory for use in a 

computer. Various experimental versions of such an associative 

memory have been devised and tested. The existence of' 

associative memory models based on holograms is important to the 

present theory, since the fourier transform is known to be a 

linear operation. One problem with holographic models of memory 

is that although the experimental setup produces a pattern of 

light on the film which is related to the pattern of light at 

the surface of the object by a linear transformation, the actual 

recording of this pattern on the film by chemical means is not a 

linear operation. ------------------ 
'or, more precisely, if their individual holograms would be 
orthogonal to each other, 



This problem can be overcome through the use of an 

approximately linear storage medium. An example of such a medium 

is photopositive film, which darkens if deprived of light, and 

then bleaches to a lighter colour when light is applied. This 

medium can be driven back and forth between dark and light 

shades by slowly varying illumination. Its colour at any moment 

is some weighted average of the light intensities over a 

preceding period of time. 

Figure 14 shows a simple model of associative memory using 

photopositive film as the storage medium. In this model, light 

passing through the system forms a hologram of objects appearing 

on the left. This hologram also serves as filter, determining 

what image will be seen, by modulating the same beam of light 

that affects the film. Points on the film that regularly receive 

a lot of light will be bleached by it, and thus pass light more 

easily. In this way the model is similar to some proposed models 

of the human nervous system, in which the response of a synapse' 

is supposed to be affected by the number of impulses crossing 

it. This model, like those proposed by Kohonen and others8 is 

not actually a linear device, since the film modulates the same 

beam of light which changes its colour, and this modulation is a 

multiplicative process in which the current light intensity is 

attenuated to some fraction of its value by the film. 

Since I argue that human beings are actually linear 

devices, I do not think this model is quite correct, but it is 

------------------ 
 ohon on en ( 1 977)~ described below 



Figure 14. Simultaneous Storage and Retrieval in an 

Optical Memory System 
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A model of an associative memory can be made 

using a film of a special material that slowly 

changes colour on exposure to light. The film 

can be exposed to light from several objects, 
and the holograms of those objects will be 

superimposed. Light from the current object 

is filtered by the film, but may still form 

a real image. The contents of this image will 

depend on the similarity between the current 

object and objects previously recorded. 



of heuristic importance, in that it shares many features of a 

truly linear model. In particular, the response of this device 

to sequences of stimuli presented to it very quickly are of 

interest. If we supply the device with light patterns that vary 

too fast for the film to respond by changing colour, then we can 

use the device for associative recall without concern for the 

nonlinear nature of storage-recall sequence. The rate of colour 

change (which depends partially on the average intensity of 

illumination) determines the frequency response of the device. 

For very low frequency (or very high intensity) changes in input 

the device will be nonlinear, but display both memory storage 

and recall. For higher frequencies the device will be 

approximately linear, but useful only for recall. 

The properties of devices that are approximately linear 

over some range of inputs are familiar as practical 

communications systems. The linearity of such devices is often 

improved by negative feedback, and this suggests a possible way' 

of improving this model. 

Feedback also serves a critical role in another possible 

model of memory that should be mentioned at this point. The 

problem with the above model is the way stored data modulates 

the current flow of data, which is a nonlinear process. But 

stored data can be used in another way: suppose the incoming 

data encoded as light impinges upon the photopositive film along 

one path, while the same film passes another beam of light 

travelling along another path,as illustrated in Figure 15. If 



Figure 15. Possible Linear Version of Optical Memory 
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If two separate light sources are used, a less 

useful but more accurate model may result. 

This version is more likely to be linear, since 

the current input will not modulate itself, but 

without the addition of external feedback it is 

little more than a low-pass filter. 



the second beam of light is a constant, then it may be modulated 

by the stored data on the film, and passed to the output. Such a 

device is linear, since the multiplicative process of modulating 

a constant beam is a linear operation. The problem with this 

kind of device is that the output is only a weighted average of 

recent inputs, and not particularly useful. Although data is 

stored, and stored data affects the output, so that the device 

is some kind of memory, it is not much more than a low-pass 

filter, and thus not very useful. As I have tried to show in 

earlier sections, the addition of positive feedback to a device 

of this type can result in something more interesting and 

useful. 

To sum up, an associative memory can be implemented in with 

a nonlinear optical device, which negative feedback could make 

more nearly linear, and a simple filter with some of the 

properties of memory can be implemented as a linear optical 

device, which positive feedback can make more useful. To* 

implement a model of the brain one need not be restricted to one 

or the other of these methods, but may use a complicated mixture 

of them both. What they have in common is the use of feedback. 

It seems that some form of recursion or feedback is necessary 

for any adequate model of the brain. 

Kohonen's study of associative memory (Kohonen 1977)  

includes such a suggestion, and a linear model of the cerebellum 

has been made by David Marr and James Albus (~lbus 1975). These 

models of neural networks as linear de-?ices are limited in one 



fundamental way. They are linear as regards information 

retrieval, but the storage sf new information involves 

modifiable parameters, and if we consider that incoming 

information serves to modify these parameters, the result is 

actually a nonlinear device. 

The models which store information in modifiable weighting 

coefficients are technically not linear models, but multilinear 

models. A multilinear device is one with several inputs, which 

acts like a linear device with respect to some of those inputs 

if the others are held constant, but is nonlinear if all inputs 

are considered together. 

All of these multilinear models i ncorpora te  a s t e p  t h a t  

produces weighted sums of input  vec to r s .  This is the most basic 

type of linear operation, and is usually represented as a matrix 

multiplication. But linear operators are known that cannot be 

described as producing weighted sums of their inputs. 

Recursively defined operators, which incorporate feedback loops,* 

have what is described as an infinite impulse response, and so 

cannot be represented as multiplication by any finite matrix. 

Norbert Weiner(1949) showed that such operators can be described 

using a finite matrix; if the operation of matrix multiplication 

is combined with the fourier transform and its inverse. A Wiener 

filter consists of a nonrecursive (finite impulse response) 

linear operator 'sandwiched' between two integral transforms. 

If we represent a linear device as a Wiener filter, as in 

Figure 16 we can see its relationship to the holographic models 
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discussed previously. Pribram's view of memory involves storage 

of information after a fourier transform, and is similar to 

Kohonen's model, in which the operation following the fourier 

transform is redefined as new information is stored. If a Weiner 

filter is treated as a realistic model of the human brain, 

information storage is more likely to be in the transform step, 

since integral transforms such as the fourier transform involve 

memory. 

The models mentioned are models of vision, in which the two 

(or three) dimensional visual field is transformed. The 

transform applied is a spatial fourier transform, applied at a 

particular instant of time. For speech, only the time dimension . 
is important, so we may imagine a Wiener filter for speech, 

involving a fourier transform, simple filtering, and an inverse 

transform. It would be quite redundant to add to this model a 

memory-storage system that adjusts filter coefficients or 

weights, since the temporal fourier transorm and its inverse ' 

must both involve information storage. A three (or four) 

dimensional model of vision involving a spatio-temporal fourier 

transform would similarly need no memory-storage system. When we 

omit the operation of adjusting filter weights, we omit the only 

nonlinearity remaining in the model. A pure linear device 

remains, and that is a most attractive model of the brain. 

It is true that on the minute physiological level memory 

may be a nonlinear operation, but this nonlinear operation may 

be hidden within some larger linear operation. Suppose we 



attempt to simulate a Wiener filter on a digital computer. The 

computer will have to act as a device that performs the linear 

operation of taking the fourier transform of its input. To do so 

will involve the use of computer memory elements, which are 

nonlinear. But the nonlinearity of individual memory elements is 

hidden within the simulated linear device. The theory being 

suggested here is that a human brain considered as a complete 

system is perfectly linear, but I will admit that memory storage 

at the microscopic level is nonlinear. It is important to 

remember that making an network of nonlinear devices may result 

in a linear device, as nonlinearities cancel out, but a network 

of linear devices can only be a linear device. 

The models of Kohonen and others may not be entirely linear 

in operation, but they are the closest yet developed to a linear 

model of the brain. In operation these models behave as 

associative storage and recall systems, with some processing 

ability. Their discovery followed attempts to model the* 

operations of neurons. 

It is common to model the neuron as a device that passes 

its inputs to its output as a weighted sum, with variable 

weights. Variable weighting would be a nonlinear operation. I 

propose instead that neurons are also constrained to the 

performance of linear operations, for the same reason the brain 

as a whole is: linear devices are better for the transmission of 

information. 



The algorithm given above for creating linear devices to 

order can be studied to see how neurons may combine to perform 

complex filters capable of difficult transformations such as 

those involved in human language processing. This algorithm can 

be.described in several different ways, but it is useful to 

consider it as an application of a direct sum decomposition. Any 

linear device can be expressed as the sum of a number of other 

linear devices, usually simpler ones. The decomposition of a 

linear operator into simpler linear operators is known as a 

direct sum decomposition. The particular decomposition that is 

most interesting for the present purposes is the decomposition 

into simple matched filters. 

A matched filter is any filter which is matched to a 

particular input, so that it produces its maximum output when 

given that input, and as little output as possible for any other 

input. The exact form of the output can vary between one type of 

matched filter and another. Indeed, the output can have any 

desired form. 

Most biological systems are made up of a number of separate 

components which work in parallel. Many modern biologists accept 

the idea advocated by Sir Peter Medawar that the responses of 

simple biological units is elective rather than instructive, or 

in other words that the simplest life forms have a number of 

simple responses which they can choose between, but they do not 

learn new respones. As a simplification of this theory we may 

imagine biological units that have just two responses, a null 



response, and any other response. Such a unit can be considered 

as a matched filter, as described above. 

The advantage of considering simple biological units as 

matched filters is that composite life forms containing many 

units operating in parallel may be then considered as a direct 

sum of matched filters. This reduces the question of the 

linearity of biological systems to questions about the linearity 

of their components and about the way in which these components 

combine. 

For example, we may consider the question of the linearity 

of the human nervous system. It has long been noted that neurons 

have an all-or-none response. This can certainly be described as 

nonlinearity, but there is no advantage to be gained by this 

description if a linear one is possible. One way of making 

neural responses look more linear is to consider the output of 

neurons in a different way, not as an amplitude but as a 

frequency. From a mathematical point of view this is a change in' 

the underlying field over which the space of responses is 

described. Experimental stimulation of peripheral nerves which 

respond to inputs of varying amplitudes with outputs of varying 

discharge frequencies shows a correlation between input 

amplitude and discharge frequency that is approximately 

logarithmic over most of its range. Again a change in underlying 

field can help: the input space can be defined over the field of 

logarithms of actual input amplitudes. 



Within the brain the inputs of neurons include the synaptic 

connections with other neurons, and here the underlying field of 

the input space of a neuron may be conveniently taken as the 

same field of frequencies as the output space. 

All of this is to suggest that individual neurons be 

modelled as linear devices, particularly as matched filters or 

sums of small numbers of matched filters. The task of producing 

such a model may be difficult by comparison with the task of 

isolating the familiar all-or-none response, but the advantages 

are considerable. We may incorporate the familiar response 

patterns of neurons into linear operations if we redefine the 

underlying linear space. Linear spaces are defined in terms of 

an underlying field, and by giving a set of orthogonal basis 

vectors, such as the X,Y, and Z axes used in describing three 

dimensional space. Linear spaces may be of infinite dimension, 

in which case the term 'basis function' may be used instead of 

basis vector, and any set of orthogonal functions may be used as* 

a basis for a linear space. 

In modelling neurons, we could use functions representing 

the outputs of neurons firing at different rates. Each function 

would be an infinite series of spikes, regularly spaced, with 

the number of spikes in a given length of time the critical 

difference between them. In considering individual neurons, we 

would be interested in the expected firing rate or mean firing 

rate for each neuron in its usual environment. The expected 



firing rate could be a complex weighted sum9 of the inputs, to 

which is added a complex weighted sum of past firing rates, 

multiplied by a (time-varying) constant. This addition of a 

complex weighted sum can take the place of the multiplicative 

operation found in most models of neurons if the environment 

provides enough feedback of a suitable kind. The problem is 

identical to the second optical model discussed above. It is 

also similar to the linear Markov model of human language 

processes. 

The total model of a human brain can thus be similar to the 

model of each of its neurons. In implementing a linear Markov 

filter we can perform a single counting operation on a text 

sample, or we can count continuously. The first approach creates 

a constant linear device that 'knows' some part of the language, 

while the second would learn the language. In modelling an 

individual neuron we use firing rate, or firing probability; in 

modelling a whole language processing system we treat uttering- 

any symbol as a kind of 'firing' and need to establish the 

probability of that occurence. This probability is just the 

number of times it has already occurred, divided by the length 

to time the device has been in operation. The former is a sum of 

past input occurrences, and the latter a 'time-varying 

constant'. Thus the device can be considered as a linear filter, 

and it serves as a model of human language learning as well as a 

model of language processing. ------------------ 
9using time-varying but 'constant' weights: constant with 
respect to the input signal 



Both of these models show a kind of learning: neurons 

acquire a mean firing rate, and the language learning filters 

acquire mean frequencies for uttering particular expressions. As 

statistical linguistics has demonstrated, these frequencies are 

remarkably stable and characteristic of the individual and his 

history. and this learning process is essentially the addition 

of probabilities. As indicated above, it is also similar to a 

linear model of the neuron. I believe that the best models of 

single neurons, complex networks of neurons, and the whole brain 

is a linear one that does include associative abilities, and 

that many of the properties of human language support such a 

model. 

The arguments which have been used t o  support  t h e  hologram 

model of memory p o i n t  out  how a l l  memories s e e m  t o  be s t o r e d  i n  

a l l  p a r t s  of t h e  b r a i n  a t  once. This  is i n  sha rp  c o n t r a s t  wi th  

t h e  usual  p r a c t i c e  i n  d i g i t a l  computers where each  d a t a  i tem has  

a s p e c i f i c  memory l o c a t i o n .  The d i s t r i b u t e d  n a t u r e  of t h e  human 

memory system has  suggested models of t h e  b r a i n  based on t h e  

~ o u r i e r  Transform. But any o the r  i n t e g r a l  t ransform would be 

j u s t  a s  v a l i d  a conclusion,  s i n c e  any i n t e g r a l  t ransform depends 

on i n t e g r a t i o n  over t h e  whole ( s p a t i a l )  domain. Indeed, none of 

t h e  evidence proves t h a t  a l l  memories a r e  s t o r e d  equa l ly  a t  each  

and every memory l o c a t i o n ,  only  t h a t  memory seems t o  be widely 

d i s t r i b u t e d .  Thus, w e  a r e  only j u s t i f i e d  i n  concluding t h a t  t h e  

b r a i n  is a device of very h igh  o rde r .  I have t r i e d  t o  show t h a t  

devices  of h igh  order  a r e  s u f f i c i e n t l y  powerful t o  c a r r y  out  a l l  



of t h e  opera t ions  we know the  b r a i n  t o  be capable  o f ,  even i f  

of very low degree,  o r  even l i n e a r .  Linear  devices  a r e  t h e  most 

i n t e r e s t i n g  c a s e ,  s i n c e  they have unique advantages i n  message 

encoding, t ransmiss ion ,  c o r r e c t i o n ,  and decoding. 



PART THREE 

L i n g u i s t i c  Consequences and Conclusions 



3.1 Results for Various Languaqes - - 

3.1.1 Evaluation - of Coordinate Assiqnments 

The problem of evaluating coordinate assignments is 

complicated by the existence of several different methods which 

do not produce exactly identical results. 

In each of the scatter diagrams that follow the symbols 

appear in loose clusters. Symbols representing vowels tend to 

appear on one side of the diagram, with a wide spacing between 

them. Although it is quite clear that this pattern holds in each 

of the languages studied so far, the analysis of data that falls 

into such clusters is not entirely straightforward. Another 

recognizable cluster in each of the languages being discussed is 

the cluster of labial stops and fricatives which occurs on 

another side of the diagram. This cluster is a much more tightly 

knit one than the cluster of vowels. 

In these diagrams two sounds appear close together if they 

are likely to appear in similar context, or, in other words, if 

they are functionally interchangable. The fact that the vowel 

sounds form a group or cluster indicates that the vowel sounds 

are all more or less interchangable. Similarly, the labial stops 

and fricatives are all more or less interchangable. But the 

vowels are quite different from the labials. Not only are the 

individual vowels very easily distinguished from the individual 



labials, but the cluster of vowels does not resemble the cluster 

of labials. If a diagram such as those below is given with 

missing or incorrect labels for the points, it would be unlikely 

that the cluster of vowels would be confused with the cluster of 

labials, or any other recognizable cluster. Thus, although the 

different languages produce different patterns of sounds, the 

patterns are similar in ways that make types of sounds 

recognizable. 

The patterns of sounds given by the above methods do not 

depend on any prior information about the sounds of the symbols, 

rather they are a way of extracting such information. Given an 

entirely unknown system of symbols for representing speech 

sounds, it seems likely that the symbols could be at least 

partially decoded by representing them on a diagram as before. 

Those symbols that appear in a widely spaced cluster on one side 

of the diagram would probably be vowels, those that appeared in 

a more compact cluster on another side of the diagram would * 

probably be labial consonants. Of the vowels, it may be noted, 

in examining the above diagrams that the front vowels tend to be 

on the side of the cluster closest to the labial consonants. In 

this way the various unknown symbols may be partially 

deciphered. 

It is not clear at the present time how successful this 

method can be, nor is it clear whether it depends on the 

linguist/interpreterVs insight, or can be entirely automated. I 

suggest that it is a relatively simple pattern recognition and 



matching problem that can be solved by computer. Only tests with 

a lot of data from exotic languages will help to decide this 

matter. 

The available data from a small number of languages shows 

that the patterns of symbols in these languages are very 

similar. If this holds true of the remainder of human languages, 

then the system of relative coordinates that have been developed 

for each language can be compounded into a system of absolute 

coordinates. This may be accomplished with the aid of methods 

from pattern recognition theory. It may be found that all 

languages have a distinctive cluster of vowels and of labial 

consonants. The best coordinates for each language are, it 

seems, ones that pass through the centre of each of these 

clusters. If each language is treated in this way, similar 

patterns may be created, implying that the coordinate systems 

arrived at for each language are basically similar. It only then 

remains to treat the coordinate values arrived at for each' 

language as data, allowing comparison of languages. Languages 

with differing coordinate systems can be compared if there is 

some reason to believe that the coordinate systems are basically 

similar, and if there are enough different languages to provide 

a large scattering of data. 



3.1.2 - The Interpretation - of Scatter Diaqrams 

It must be noted that the scatter diagrams discussed in 

this section are included as examples only. The research 

reported here was directed at the problem of finding algorithms 

and testing them, - not at producing usable results. Thus 

linguists are advised that the results given are based on 

limited text samples and may not be reliable. 

The comments given here are based on the notion that the 

actual positions in a higher-dimensional space are represented 

here in very abbreviated form, but that the two dimensions given 

are almost optimum for the problem. 

The text samples used in two of the examples were 

continuous text of a moderate length, constituting the first 

chapter of the book of Mark in the New Testament. The other 

examples are based on word lists. Lists were compiled of very 

common words in four languages, and because of the commonness of 

these words, I believe these lists are more representative of 

the language than continuous text samples of the same size. One 

scatter diagram represents the results of applying the program 

described above to all of the four word lists taken together. 

This procedure gives a better picture of the interrelationship 

of speech sounds, since eccentricities cr deficiencies in the 

use of alphabetical symbols in one of the languages can be made 

up by another. This diagram (see Figure 17) shows several 

features which are harder to see in the other diagrams. 



Figure 17. Analysis of Word Lists from Four Languages 



As in all of the following diagrams, the vowels are clearly 

separate from the rest of the letters. With the vowels occurs a 

symbol ' @ '  representing the space between words, which is 

indistinguishable from a vowel in all of these diagrams, and 

indeed in all other produced in the course of this research. 

This may suggest that the role of vowels in these languages is 

as transition elements between components, rather than as the 

core or center of a syllable as often believed. 

Near the vowels occur three letters representing 

continuents or semivowels: 'n', 'r', and '1'. This treatment of 

'n' as a semivowel is typical of the results obtained. In none 

of these experiments was 'n' placed near to 'm' as if forming a 

class of nasals. Instead, 'n' was either near the vowels or the 

coronal consonants 't' and Id'. This does not mean that there is 

no natural class of nasals in these languages, but only that the 

importance of this classfication is less than some other 

divisions of the letters. 

The position of 'y' is interesting. This symbol rarely 

appears as a vowel or semivowel, but is treated as a consonant, 

although usually at a distance from the central core of 

consonants. The ' j '  symbol occurs near 'y' and near 'd' but 

otherwise away from the mass of ordinary consonants. This is 

appropriate for a letter that sometimes represents an affricate 

(the only single letter to do so in English, where it is an 

affricated /d/.) 



Amongst the class of ordinary stops and fricatives, we can 

see a difference between the voiced and voiceless versions of 

each sound. If we look at the pairs of letters p-b, f-v, t-d, 

s-z, and g-k, we can see that in every case the voicless sounds, 

(p,t,k,f,s); appear more towards the left of the diagram than 

their voiced equivalents (b,d,g,v,z). In all of these but the 

pair k-9, the voicless version is also towards the top of the 

page. The deviance of k-g may be due to the inadequacies of the 

text sample. The letter 'k' did not appear at all in some 

languages, and only rarely in the rest. 

We may now look at the diagrams for individual language 

with more understanding of what to look for. The first two 

diagrams to examine are English and German, which show their 

family relationship, as do the diagrams for French and Spanish 

which follow. The diagram for English (see Figure 18)on the 

following page is similar to the diagram just described for all 

four languages, but the consonants are not clustered so closely* 

together. Here we can notice a tendancy to distinguish between 

the coronal consonants (t,d,s,n, and perhaps r) and the 

noncoronal class containing labial and velar consonants. In 

every case except 'k' the labial and velar consonants are 

further to the right than the coronal ones. Again 'k' is poorly 

represented in the sample. In this diagram the distinction 

between voiced and voiceless is not visible. This may be 

interpreted as meaning that the distinction between coronal and 

noncoronal soun2s is more important than the distinction between 



Figure 18. Analysis of English Word List 
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voiced and voiceless sounds. Considering the tendancy for 

voicing to change in context, this conclusion is possible. Thus 

't' is sometimes pronounced more as a /d/ intervocalically, and 

's' if often pronounced /z/, but 'p' or 'k' would rarely be 

pronounced as a /t/ and 'b' or '9' rarely as a 'dl. 

For German (see Figure 19) the relative importance of these 

two distinctions is reversed. In every case the voiceless 

consonant is higher on the page than its voiced equivalent. '2' 

is a rare letter in English and did not appear in the sample. In 

German it is much more common, and occupies a place below (and 

slightly to the right of 's'.) The right and left dimension does 

not seem to represent any reasonable sound distinction in the 

consonants, although there are more labial and velar consonants 

to the right, and more coronal consonants in the middle. For 

German the distinction between consonants articulated in 

different places may be just as important as in English, but 

this particular projection does not reveal it. One reason for 

this is a need to use the left and right dimension for 

distinguishing between consonants and vowels. In the English 

example the vowels were much higher on the page than the 

consonants. Here the difference between consonant and vowel is 

more clearly one of horizontal position, as if the diagram had 

been rotated slightly counterclockwise. 

It is interesting to note that 'n' appears in the cluster 

of vowels in German, and is much further from 'r' and '1'. It is 

true that nasal vowels are much more common in German than in 



Figure 19. Analysis of German Word List 
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most dialects of English, but this may or may not be an 

explanation. 

The position of the 'c' is odd, and hard to explain, 

although it may relate to the frequency of the 'sch' cluster in 

German. This suggests that the principal role of 'c' is as part 

of a fricative. We may notice that the large empty space in the 

lower left hand corner of the diagram is bordered by 'c', 's', 

z '  f and 'v', (moving clockwise from 'c') and that these 

are exactly the fricatives. 

We may compare the diagram of French (see Figure 20)  with 

English and with the Spanish diagram that follows it. French 

shows similarities to both English and Spanish, but is quite 

different from German. One similarity that can be noted to the 

German case is the position of the ' n l ,  much closer to the 

vowels than any other consonant, and indeed closer to the vowels 

than the consonants. The pattern of sounds in French is very 

nearly one-dimensional, with the various sounds forming a* 

snake-like curve with little width at any point. Because of this 

effect, few of the familiar linguistic distinctions other than 

vowel and consonant are apparent. In French we do find 'm' 

getting closer to 'n', and the letters 'n', 'r', m ' ,  and '1' 

almost form a class, although 'm' is also close to 'p', 'b' and 

'f'. Oddly enough the letters 'c' and 's' are near 'b' and 'p'. 

This may also be seen in the Spanish example below. This is 

actually an anomally of the projection, as can be seen from a 

different Spanish example discussed later. The overall 



Figure 20. Analysis of French Word List 
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similarities between the French and the Spanish examples (see 

Figure 22) are striking. In the Spanish case the curve is curled 

around a litte more, so that the sequence of vowels 'a', 'el, 

'0' forms a right angle to the sequence ' 0 ,  u ,  and 'i'. 

Whether or not this reflects some significant distinction 

between Spanish vowels is a difficult question. It may be that 

the proper description of Spanish is as a one dimensional curve. 

This notion is born out by comparing English and Spanish using a 

different algorithm and a better text sample. 

The following two diagrams were prepared using factor 

analysis based on extraction of eigenvectors. The problem with 

ordinary factor analysis is that it produces a set of 

coordinates 'custom-fitted' to the data, so that two different 

sample of data from two different languages will each have their 

own set of coordinates and not be very comparable. Nevertheless, 

the comparison of English and Spanish is striking. 

In the Spanish example (see Figure 20) the optimum set of * 

coordinates leaves consonants at the top, with little of 

linguistic interest in their distribution, although the labial 

p ,  'b', and 'm' are neighbours, with voiced consonants more to 

the right of the page than voiceless ones. After that, the 

pattern of letters extends around in a semicircle, that is 

clearly one-dimensional. Indeed, we have here a fairly simple 

pattern, since the pattern of consonants could be described as 

voiced clockwise from voiceless (for the usual pairs, except 

perhaps for the pair q-g of velar stops,) and the vowels being 



Figure 21. Analysis of Spanish Word List 



Figure 22. Analysis of Spanish Text Sample 



more voiced than the consonants just continues the pattern. 

This one-dimensional pattern is in sharp contrast to the 

English case, which does show a slight tendancy to a circular 

sweep, but it is clearly two dimensional. Note that the 

'customizing' process of factor analysis makes details of 

position incomparable. Thus it does not make sense to wonder why 

the English diagram (see Figure 23) seems rotated slightly 

counterclockwise from the Spanish, with vowels on the right hand 

side instead of directly below. This is not significant, but an 

artifact of the process. In contrast, the earlier algorithm 

showed a slight rotation between English and German, and that 

could be significant. The interpretation of the diagrams 

produced by factor analysis is much harder than the earlier 

diagrams, but they do demonstrate the real distance between 

letters that appeared close together in the earlier diagrams. 

Thus in Spanish we can see that 'sf and ' 2 '  are not adjacent to 

'p '  and 'b' but closer to 'h'. In the earlier English diagram* 

'9' and 'h' appeared as neighbours, while here they are much 

more distant. A comparison of the two diagrams for English and 

the two diagrams for Spanish reveals more about the nature of 

each language, but also shows how poorly any two dimensional 

picture captures the multidimensional reality. 
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3.2 General Conclusions - 
I have shown that information about the sounds of 

alphabetical symbols may be obtained from a study of printed 

text, and suggested that this may eventually be extended to a 

theory that all information necessary to understand and use a 

human language may be easily extracted from a long enough sample 

of the language. 

The existence of methods such as described here has many 

important consequences. The possibility of performing a complete 

analysis of a sample of human language without the aid of 

additional information provides an interesting model of human 

language acquisition. It also shows how the linguist may 

describe the grammar of a language without learning the language 

first. 

Bloomfieldian linguistics gave the linguist a well-defined 

and limited input: actual utterances of native speakers. From 

these utterances, observed in context, the linguist was supposed * 

to be able to develop a grammar of the language. Any theory 

capable of showing how and why this could be done would also 

serve to explain language acquisition. The modern generative 

grammarian never needs to show how and why he can produce a 

grammar of a language, since he must in some sense "know" the 

grammar of the language before he starts. His work is only an 

externalization of what he has internally. 

If human language processes ' are linear, then the 

investigation of language can proceed without any need for 

introspective judgements or reference to mental states. 



The claim that human language use is a linear process is 

based on the narrower claim that spontaneous unrehearsed 

(real-time) speech is a linear process, because in such 

circumstances the constraints of time and social pressure leave 

little alternative but immediate acceptance of the promptings of 

memory. This leads to the notion that a stream of linguistic 

items in real-time speech is somewhat self-determining, or tends 

to run its course, with only limited direction from the will. 

It was noted earlier that linear devices produce outputs 

which is related to the input in a certain limited way. In 

dealing with human language use and treating it as a linear 

operation, I have suggested an inevitable resemblence between 

inputs and outputs. An ordinary person exposed to a large number 

of different inputs will tend to use synonymous expressions 

since his various inputs provide him with various different ways 

of saying the same thing. Ordinarily the choice of one synonym 

rather than another will depend on context. 

The generative model of language, which focuses on the 

activities of a message source, differs from the earlier, 

behaviourist model in which a person is treated as a "black boxw 

which responds in observable ways to observable stimuli. 

~lthough I am suggesting that we mimic others, and emphasize the 

close correspondance between stimuli and response in language, I 

do not agree with behaviourists who suppose that stimuli somehow 

determine response, or that responses may be controlled by 

conditioning or other manipulation of stimuli. The closest 

traditional theory of psychology to the views presented here is 



not behaviourism, but rather associationism, particularly the 

simple early associationism of James Mill. 

The theory presented here can most easily be described as a 

theory of associative memory and its consequences. Associative 

memory relates to another aspect of memory, data compression. 

Data compression involves recognizing the patterns that occur in 

data because of redundancy, and re-organizing the data so that 

these redundancies can be eliminated. The reconstruction of data 

from compressed storage involves the recreation of expected 

patterns of redundancy. Imperfect reconstruction of data leads 

to an associative memory where seeing or hearing one of pair of 

items may bring to mind the other. A consequence of this is a 

tendency to reproduce familiar patterns of co-occurence. 

In real-time speech utterances must be produced without 

reflection. There is little option but to utter whatever 

associative memory produces. Note, however, that one's own 

utterances are also part of the real-time context: the utterance 

of a single word itself changes the overall context and should 

be considered as a alteration in that context. The word one has 

uttered, together with the other contextual material stimulates 

the memory, and the need for quick continuity makes one accept 

the newly remembered material as one did the old. 

A consequence of data-compression and associative memory 

for language is thus a tendency for certain linguistic items to 

occur together, which may broadly be called syntax. 



The successful use of language begins with the ability to 

use words in context, and proceeds with the learning of what 

they mean. Rather than choosing to use expressions that most 

accurately reflect the meanings to be expressed, people seem 

often to use expressions they have heard, most often in contexts 

like those in which they heard the expressions used by other 

people. This may be seen as a result of the individual's 

associative memory. A person tends to associate certain 

utternaces with the contexts in which he has heard them. If the 

association between utterance and context is strong enough, 

similar contexts may evoke similar utterances on his part, even 

if the full semantic content of these utterances is unknown to 

him. Indeed, I would suggest that we rarely have any idea of the 

full content of what we say. In using language without knowing 

the exact meanings of what they say, people pass on information 

over and above their intended meanings. It is my contention that 

this flow of information is vitally important to the functioning 

of society as a whole. 

It is common in sociology to consider human society as a 

vast network of interacting human beings. This societal 

information network is constrained by the same basic limitation 

as all networks: individual nodes need to communicate with many 

other nodes, yet they can interact directly with only a few of 

them. Rather than have each individual human being do as much 

information processing as possible, society functions by having 

each person spend much of his time just acting as a channel for 

communications. 



Information flows through people when they use words and 

expressions, accents and intonations, without necessarily 

understanding much of their semantic and social implications. 

Each person passes on information about the people he has 

listened to. A person may be able to consciously control the 

extent to which he mimics others, but this is only a process of 

regulating a flow of information between other people. 

Regardless of how a person may attempt to control his speech, he 

still acts as a communication channel between the people he 

listens to and other people he later talks to. 

If it was important to society that people controlled the 

statistical properties of their speech, such abilities would 

probably have evolved at the time man's ancestors became social 

animals and began to develop speech. On the other hand, the 

human inability to control statistical properties of speech may 

lead to a flow of information that would not otherwise occur. A 

society may need a flow of information between people who cannot 

directly communicate with one another, or who would not choose 

to do so. Existing limitations on human language processing may 

serve to guarantee a flow of information between individuals 

regardless of their intentions. 

Chomsky ( 1 9 7 5 : 4 0 )  has described language as a uniquely 

human facility, without precedent in the animal world. He has 

not been able to give any satisfactory account of how such an 

ability could have evolved. I suggest instead that we use 

..language in imitation of other people to whom we have listened, 



and that this is just an elaborate development of the familiar 

processes of mimicry and imitation by which advanced animals 

coordinate their behaviour with the observed behaviour of 

others. 

For mimicry to be valuable, it has to occur at the right 

time and place, and so the evolution of behaviour must have 

involved an increasing awareness of environment and social 

circumstance. What differentiates the human language facility 

from the simple mimicry of the parrot is not, therefore, the 

possession of some complicated system of grammatical rules, but 

merely an extreme sensitivity to context, so that utterances 

appropriate to each particular social situation are more likely 

to be reproduced. 



3. - 3 Summary of - Argument 

This thesis includes several arguments leading to 

conclusions that should be listed together: 

The notion of linearity has been restricted because of its 

association with systems of equations. 

The term linear means pseudo-invertable 

The theory of perfect coding and decoding is the theory of 

invertable devices, which is just the theory of groups. 

A theory of language must be a  theory of imperfect coding 

and decoding devices, i.e. pseudo-invertable devices, i.e. 

linear devices. 

Linear devices can code and decode by convolution and 

deconvolut ion. 

  he grammar of a device is  its system t r a n s f e r  funct ion .  

One way of finding system transfer function is with 

simulation. We can try to produce a device which has the 

same output as the system being studied. For this purpose 

the input is usually assumed to be uncorrelated. 

Markov devices are implemented by applying an uncorrelated 

input to a filter, and thus are simulations of human 

language processes that should have similar system transfer 

functions. 

Chomsky's objections to finite-state Markov sources can be 

overcome by treating these devices as filters. 



10. Chomsky's classification of grammatical devices is 

irrelevent to linguistics. Instead the distinction between 

linear and nonl inear  devices  should be considered. 

11. F i n i t e - s t a t e  machines may be implemented a s  l i n e a r  devices .  

1 2 .  ~ i n i t e - s t a t e  machines may be adequate models of 

language if punctuation is added. Human languages do express 

punctuation, both prosodically and with punctuation words. 

13. With punctuation language is associative and closed, and 

thus may be easily treated as an algebraic structure. 

14. Finite state machines can be extended upward to Chomsky's 

other classes by adding feedback, or by rearranging feedback 

and output so that what is fedback is not just a copy of the 

output. 

15. If this is done, hidden states and unstable states are 

added, thus better modelling human language. 

16. These abstract machines can be thought of as linear 

corrective filters. 

17. A linear corrective filter can function as an associative 

memory by 'correcting' current observations with a reminder 

of what is missing from them, i.e., what similar situations 

contained in the past. 

1 8 .  Thus associationist psychology can be related to this theory 

of language. 

19. A problem with associationism is the apparent need for 



variable weights. How are these to be varied without 

non-linearity? 

20. Instead of multiplicative weights, additive functions of 

past inputs can be used. 

21. Output processes involve a matching, such as finding the 

best match of vector. This is a linear process. ~ddition of 

functions of past inputs can increase the probability of a 

vector being chosen as best match, and thus simulate 

multiplicative weighting. 

22. Thus, we learn language by accumulating instances of possible 

outputs,which are stored associatively by context, with both 

storage and retrieval being linear processes. 
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