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Abstract 

Many phenomena of interest in the sciences can be modelled 

by a deterministic relation perturbed by a sequence of errors in 

discrete time. Such a model is called a time-series. The 

theory of linear time-series is reviewed in detail and 

imperfections of well established and recent estimation methods 

are pointed out. It is suggested that a priori structural - 

information is a neglected resource in this regard. To clarify 

the meaning of structural information, representation and 

prediction theory for weakly stationary processes is reviewed. 

Weakly stationary processes are seen to consist of . a  

deterministic and a moving average part. Linear models are most 

suited to simulation of the moving average component. Recent 

proposals for non-linear time-series models are assessed in 

light of this discussion. It is argued that one recent proposal 

(threshold autoregression) is more suited to modelling of time- 

series with complicated deterministic parts, and requires a - 

priori structural knowledge to be fully effective. In contrast 

another proposal (bilinear) seems more suited to time-series 

which are non-gaussian moving averages,and are less dependent on 

a priori structure for their usefulness. - 
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I . I NTRODUCTI ON 

Many phenomena of interest in the socia1,life and physical 

sciences can be usefully modelled at time-series. A time-series 

is a discrete-time stochastic process generated by a 

deterministic relation such as a difference equation, which is 

perturbed by errors. Theoretically, the errors are viewed 

either as exogenous disturbances of the deterministic dynamics 

of the system or alternatively, as input. Errors are modelled 

as random variables, which are typically assumed to be 

independently and identically distributed (iid). 

Time-series have been of interest to statisticians because 

time-series data often occurs for which causal mechanisms are 

relatively obscure, but for which it is desirable to 

i) facilitate prediction 

ii) develop an insight into the causal structure 
of the underlying natural phenomenon 

The distinction between the pursuit of (i) (predictivd 

time-series analysis) and of (ii) (structural time-series 

analysis ) is due to ~arzen(1974).  his thesis will focus on 

the close interrelation between these goals and we will maintain 

that a systematic recognition of this relationship is valuable 

for both purposes. This point will be illustrated for a well 

known special class of time-series, and later applied to the 

evaluation of some recent proposals for time-series models. 



The time-series problem is to obtain, from a data set, a 

parametric form for the underlying stochastic process and 

estimate its coefficients. The solution of this problem demands 

more than the classical estimation problems of mathematical 

statistics because the appropriate parametric form is not 

specified in advance. 

A time-series data set is a finite sequence of real numbers 

obtained by observing a phenomenon of the type described above 

at the times t . When the meaning is clear from the context, a 
i 

time-series data set may also be referred to as a time-series. 

Note that the errors occuring in the time-series model are not 

mentionned in this formulation of the pr'oblem, and are assumed 

not to be observed. In practice therefore, the errors can only 

be estimated from residuals, that is, from the differences 

between the predictions of the model and the observed values. , 

while it can be useful to view the errors as input this is not 

the perspective emphasized in this thesis. 

The situation in which input is observed leads to a 

different statistical problem from the one we consider.  his 

alternate problem has a large literature and is appropriately 

treated by different methods (ie.Spectra1 theory) than those to 

be developed here. Instead, we will discuss chiefly the time- 

domain approach to time-series modelling. This approach deals 



~ i t h  a time-series directly rather than via its spectra 

representation. 

Chapter I deals with current methods of solving the time- 

series problem when only linear models are admitted, and 

develops the theory of linear time-series models. Chapter I 1  

assesses these methods, and compares the performance of skilled 

versus automatic procedures on the problem of choice of 

autoregressive order. Because automatic methods are of special 

interest in the context of non-linear time-series modelling, 

Chapter I11 develops the theory of a popular automatic method, 

Akaike's information criterion. We conclude that automatic 

methods are not a panacea, and in Chapter IV demonstrate the use 

of structural assumptions to facilitate linear model fitting. 

This is, in a sense, an alternative approach to the time-series 

problem, and we focus on the application of this approach to 

non-linear modelling. Chapter V reviews representation theory 

for weakly stationary processes and its implication for 

structural modelling. Finally, Chapter VI deals with the 

practical application of these conclusions. 
I 



LINEAR M0DELS:THEORY AND PRACTICE 

1 . 1  TIME-SERIES MODELS 

In attempting the time-series problem it is necessary to 

consider only narrow special classes of candidate models, for 

otherwise the problem would be intractible in practical 

applications. Specific hypotheses are choosen for computational 

convenience and so that they mirror a priori knowledge about the 

real processes being studied. We will enumerate the general 

types of times series model in common use, and discuss the 

solution of the time-series problem in a special case: that of 

the well known BOX-Jenkins (linear) models. This treatment will 

raise general issues relevant to the structural/predictive 

dichotomy in non-linear time-series analysis. 

Two basic types of hypothesis may be distinguished, which 

we will refer to loosely as models. First, models of moving 

average type. The most elementary form of such a model is, 

called simply a moving average and has the form 

( 1 . 1 )  X = q E  + q E  + ... + q e 
t 0 t 1 t-1 n t-n 

where t is integer, q are real constants, and E is an 
i t 

uncorrelated mean-zero sequence of random variables. 

In the notation of Box & Jenkins such a model is an MA(n) 



(moving average process of order n) model and is written as 

where the q are real constants, B is the backward shift 
i 

operator defined by BX = X and Q(B) is a polynomial defined 
t t-1 

by the second equality. If Q(B) instead of being a linear 

. operator is some more general operator defined on the space of 

sequences , then the time-series is of moving average type. In 

considering this model it is important to recall again that the 

errors are not observable. 

The second class of models are those of autoregressive 

type. In the most elementary form of such a model X satisfies 
t 

( 1 . 3 )  X = p X  + P x  + ... + p X + E 

t 1 t-1 2 t-2 n t-n t 

where t is integer and the p are real constants. 
i 

In the notation of Box& Jenkins such a model is an AR(~) 

(autoregressive model of order n) process and it is often 

written 

where P(B) is a polynomial defined by the first equality. We 

will refer to the term 



as the term corresponding to the lag of order m. 

If P ( B )  instead of being a linear operator is some more 

general operator defined on the space of sequences , then the 

time-series is of autoregressive type. ~ime-series which 

satisfy relations of the form 

where the symbols are as above, are said to be of mixed type. 

The elementary linear versions of these models were 

introduced by Yule(1927) and are supported by a large body of 

theory (~ox&~enkins,l970:Koopmans,l974; Deutsh,1965), as well as 

a set of relatively refined estimation techniques. For example, 

many commonly available time-series analysis programmes (such as 

the IMSL routine FTCMP) are devoted to the estimation of 

parameters in Box-Jenkins models. 

1 .2 BOX- JENKI NS MODELS : INVERT1 BI LI TY AND STATI.ONAR1 TY 

We now begin a discussion of the solution of the time- 

series problem in the linear case. To do this it is necessary 

to describe the theory of Box-Jenkins autoregressive/movirig 

average (ARMA) models. We begin with the definition of the 

natural sample statistics to compute if one is interested in the 

linear predictibility of the observations. Consideration of 

these definitions leads to assumptions on the stochastic 

processes so that such procedures make sense; namely weak 



stationarity and invertibility. The meaning and mathematical 

interpretation of these conditions is discussed. Finally, it 

will be shown that under these assumptions the covariance 

structure of a process leads to a nearly unique determination of 

the coefficients of an ARMA model. 

In examining an empirical data series and assessing its 

predictibility it is natural to compute the autocorrelation 

function of the observations. This is defined by 

where N is the length of the series and X is the series mean. 

This statistic summarizes the extent to which we can 

(within the sample) linearly predict X from X . For this 
t+ j t 

procedure to give a result generalizable to another sample from 

the same time-series, it must be assumed that 

independent of t and 

-T 
= Lim - 1 c ( X  - P)(X - p) < w 

T->a 2T T t+ j t 



The first equalities for all t comprise the assumption of weak 

stationarity while the second set of equalities (limits being 

2 
taken in the L sense) characterize ergodicity. The assumption 

of weak stationarity may be contrasted with (strong) 

stationarity, for which the joint probability distribution of 

any finite collection rather than only the first two moments, 

must be independent of t. Thus the process X is strongly v 

stationary if and only if the joint distribution function of the 

collection 

does not depend on t. 

Much of the treatment of Box-Jenkins models assumes only 

weak stationarity of the error series. In particular, it is 

assumed that ~ [ e  1 = 0 and ~ [ e  e 1 is constant in t for each 
t t t-k 

k, and zero for k=O. In general this implies only weak 

stationarity of the resulting series X . However, should be 
t 

noted that when the error series is normally distributed, a Box- 

Jenkins series X has multivariate normal joint distributions 
t 

because of linearity. Thus, in this case weak stationarity of 

the errors implies strong stationarity of the model. 
- 
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y = O  for m>n 
m 

for mSn 

2 
where a is the variance of the E . 

E t 

It is a little more difficult to compute the autocovariance 

function of a ,(stationary) autogressive process and this will be 

postponed until later. For now we wish to deduce its behavior 

for large lags in order to contrast it with an moving average 

process. .To do this notice that because X satisfies the 
t 

difference equa t ion (1 .41 ,  the autocovariances 

Cov(x,X ) = y  satisfy the difference equation 
t t-n ttn 

To see this multiply the original equation by X and take 
t-n 

expectations. Because of stationarity, the t subscript may be 

omitted and it is seen that the autocovariance sequence l y  3 
m 

satisfies the homogeneous difference equation. The difference 



equation ( 2 . 6 )  can be solved to yield a sequence which is a 

linear combination of sequences of the form 

For notice that the operator P ( B )  may be resolved into 

where I is the identity operator and B is the backward shift 

operator, on using the fundamental theorem of algebra, and the 

resulting factors commute. Then substitute terms of the form 

above to see that they are annihilated by the resulting 

operator. The conclusion is that autocorrelations of an AR 

process must grow or decay exponentially with time.   his is 

explained more fully in appendix A. 

STAT1 ONARI TY 

We have seen that a moving average process is automatically 

stationary. In contrast there are non-trivial conditions for an 

autoregressive process to be stationary. For consider the time- 

series 

where p#l, the E are a stationary zero mean process and E is 
t t 

independent of X . The variance of X can be found by 
t-1 t 

squaring both sides of this equation and taking expectations. 

~ o i n g  this, bearing in mind the independence of X and E we 
t-1 t 

find 



2 
where o is the variance of the E . I f  {X 1 were stationary 

E t t 

2 
E[X ] = y a constant, and the equation becomes 

Inspecting equation (2.11) it is seen that there is no constant 

positive solution for y when lpl>l. Thus no process satisfying 
0 

the difference equation (2.9) with lpl > 1 and c independent of 
t 

X is weakly stationary. 
t-1 

m k  
If lpl<1, then the sum C p e defines a stationary 

k=O t-k 

ergodic random process with'a finite variance. It is easy to 

see that this satisfies equation (2.9). Is this solution 

2 
unique? To answer this question note that E[x 1 = y is 

uniquely determined by (2.11). Moreover,because the covariances 

satisfy the homogeneous difference equation 

- 

whenever ~ a r [ ~  1 = E[X 1 is known, COV[X ,X ] for k>O are 
t t t t-k 

uniquely defined. Thus, there is a weakly stationary process 



with unique covariance structure satisfying the difference 

equation with lpl<1. 

When the errors are iid this is the stochastic process 

which results from starting the Markov chain X in its 

stationary distribution. Henceforth, this situation will be 

summarized as; .an AR(1) process is stationary if • ’  Ipl<l. Note 

that we now say stationary, and understand, weakly stationary. 

Now this not the whole story stationarity linear 

processes, for if the above procedure is repeated under the 

assumption that E is independent of X in the defining 
t t 

difference equation, it is then found that the resulting process 

is stationary iff lpl>l. This point will beclarifiedin 

section I 1 1  but first we will extend the above reasoning to more 

complicated AR processes. 

Observe that if X is a stationary process so is P(B)x for 
t t 

any P . To see this just write out the operator, multiply by 

any time translate and take expectations. This fact, together, 

with the discussion of the above process implies that 

can define a weakly stationary process only when the roots of 

P(x)=O lie outside the unit circle ( note that the roots of 

P(x)=O are the reciprocals of the numbers r in the resolution 
i 

of the operator P(B) 1. For resolve P(B) as 





1.2 .2  INVERTIBILITY 

We are now prepared to consider the notion of invertibility 

of a process. The invertibility of a process is an 

algebraically dual condition to stationarity which also has a 

practical meaning. Consider the mixed process 

As shown above, the condition for stationarity is that P(x)=O 

have roots lying outside the unit circle. The algebraic 

condition for invertibility of a process is that Q(x)=O have 

roots lying outside the unit circle. One consequence of this 

will clearly be that Q ( B )  may be inverted to yield a purely 

autoregressive representation 

for the mixed process. 

The invertibility condition may also be interpreted as 

follows: Suppose that ~ ( t )  is a series of interest and that at 

time t=n a forecast f(n,h) is required of the future value 

x(n+h). If a least square criterion is adopted then the optimal 

forecast is 

(nth) = Ei X(n+h) 1 past) 

or in other words 



where 

and 

X(n+h-j) for j2h 
X 

f (n,h-j) = 

L f (nth-j) for j < h 

e for j < h 
f (nth-j) = 

e(n+h-j) for j2h 

Thus, consider the MA process 

where e is a-stationary zero mean process. On applying ' the 
t 

above principle conclude 

however, the e were not observed and we know only X . Thus e 
t t t 

must be estimated from previous values of X . 
t 

We now investigate the feasibility of this as the data) 

series becomes longer. First note that if there was a good 

guess ( or any guess) 

f o r e  
0 0 

available then the recursion could be used to get a sequence of 

estimates 

since ~ ( t ) ,  t=l,N were observed. It turns out that this is 



only sensible when Iql<l . To see this define the inaccuracy h 
t 

then 

Thus, using this method, on a long data series, the 

inaccuracy inean initial guess dies out when (ql<l and fails to 

die out when I q l 2  1. Because the errors are not observed, this 

is the only possible method of forecasting. Therefore the 

practical interpretation of invertibility is that the optimal 

forecast may be approached arbitrarily closely with sufficiently 

long data series. The above example ( 2 . 2 2 )  is invertible iff 

1~1.1 

For a more complicated MA process 

The optimal forecast (as noted) still involves e . But for any 

initial guess 6 we have 
0 

and the solutions of this difference equation are stable only if 

the roots of Q(x)=O lie outside the unit circle. When this 



condition is satisfied it is again true that the inaccuracies h 

in the choice of C die out, and the optimal forecast may be 
t 

approached arbitrarily closely. 

1.3 EOX-JENKINS M0DELS:COVARIANCE STRUCTURE AND UNIQUENESS OF 

THE MODEL 

To discuss covariance structure it is most convenient to 

have the model in moving average form. We claim that any mixed 

ARMA model P(B)X = Q(B)e for which Ir ] # I  in the resolution of 
t t i 

P, can be written 

0 3  

X = C  v e = V(B) e 
t -= j t-j t 

where V ( x )  is a formal power series. For certainly the factors 

I - rB in the resolution of P with Irl< 1 may be inverted as 

noted above, while for each factor with Irl> 1 rewrite as 

- 1 
(I- rB) = BFr (I r - B) 

where B is the backward shift operator and F is the forward 

shift operator, so that 

In this manner it becomes meaningful to write 



The autocovariances in this model can be computed as 

Next, define the-autocovariance generating function 

Substituting the previous expression for the autocovariances 

obtain 

2 1 2 j-k 
(3.7) A ( B ) = U  c c v V B  = U  c c  V V B  

e j 1 l + j 1  e j k  j k  

We can now show that for a given autocovariance generating 

function, the resolutions of the operators P(B) and Q(B) are 

defined up to reciprocals of the roots. For the autocovariance 
I 

generating function corresponding to (3.4) is 

using (3.7). 

Thus, from the two operator identities(3.9) 



where $ and @ are real constants, it is seen that all the 
i i 

processes 

where 6 is chosen to scale the variance appropriately have the 

same autocovariance generating function and hence the same 

autocovariances. 

Thus, the restrictions of invertibility and stationarity 

allow the choice of exactly one of the reciprocal pairs of 'each 

factor (provided the roots are off the unit circle) and ensure 

that the model corresponding to a given covariance structure is 

unique up to cancellation of factors in the equation. 

It is important to note that the non-uniqueness discussed 

above is not a non-uniqueness in distribution. In fact when the 

errors are normally distributed, knowledge of the covariance 

function is equivalent to knowledge of the joint distributions 

where t is any finite collection of times. Rather, the non- 
7 

uniqueness arises from the fact that the BOX-Jenkins 

representations contain information about the relation of past, 



present and future. No restrictions follow from this when the 

defining relationship involves a finite number of random 

variables. For, if the present is time t=n then a stationary 

process which satisfies 

(3.12) X = p X  + P x  + ... + p X 
n+m o n+m-1 1 n+m-2 n n 

for each n, must also satisfy 

(3.13) X = p X  + P x  + ... + p X 
n o n-1 1 n-2 m n-m 

But thee situation is different for one-sidedly infinite 

relations. Consider the stationary AR(I) process 

Recall that this can be written as 

and this implies (for lqll I) 

Hence, by a straightforward calculation we see that when 

the autocovariance generating function makes sense (ie. when X 

is stationary) it depends only on q. There is no non-uniqueness 

here. However it was seen above that for each value of q there 

is a Box-Jenkins time-series equation giving the same 

autocovariance generating function which depends on l/q. Does 



this equation generate a distinct stationary process? Recall 

that in the discussion of stationarity conditions it was sta~ed 

that if in an AR(I) difference equation e is assumed 
t 

independent of X , the resulting process is stationary iff 
t 

Iql>i. Suppose then that we assume lql>l and e independent of 
t 

X . Rewrite the difference equation for this stationary process 
t 

where F is the forward shift operator and 

then since Iql> 1 this process may be inverted as a function of 

future errors: 

Thus there are two distinct processes with the same/ 

autocorrelation function . while the two processes above will 

have the same autocovariances and possibly the same joint 

distributions, one describes a process independent from past 

e 's and the other a process independent of future e 's. 
t t 

Fortunately the distinction is merely philosophical since the 

errors are not observed, so that there is no way to distinguish 

these models from data. It makes good sense however, to choose 



the representation in which a convergent expansion in terms of 

the past is stationary. 

In a parallel fashion consider the M A ( I )  process 

this may be inverted as (for Ipl<l) 

There is another Box-Jenkins model which gives the same 

autocovariance generating function, which is constructed by 

replacing B with F and p by l/p and multiplying by an 

appropriate scale factor. To verify that a distinct stationary 

process is generated note that if Ipl>l, the original equation 

may be rewritten as 

where F is the forward shift operator and Z = -X / p 

and may be 'inverted' as 

Thus in the first case ( A R ( I ) )  the resulting process X 
t 

depends on its past and a current error e while in the second 
t 

( ~ ~ ( 1 1 )  X depends on its future and a current error e . This 
t t 



ambiguity is again resolved by sppealing to physical intuition. 

1.4 NON-STATIONARY MODELS 

I 

Box-Jenkins models provide naturally for non-stationary 

behavior. The most useful type of non-stationarity occurs when 

Irl = 1 in one or more of the factors I-rB in the polynomials 

P,Q. First note that if r = 1 that the factor I-rB becomes the 

difference operator D defined by 

This suggests a natural model for data which locally 

exhibits a stochastic polynomial trend over time. Differen.cing 

once transforms a sequence which grows linearly to a sequence of 

constants, and differencing twice takes a sequence growing 

quadratically to a sequence of constants. Therefore sequences 

which contain polynomial trends of degree d but which become 

stationary when the trends are removed, may be modelled as the 

solutions of 

If d=l this model is a generalization of a random walk 

model in which the increments, instead of being independent, are 

a BOX- enk kin's process.These models d21 are known as integrated 

autoregressive moving average models and are identified by the 

notational convention A R I M A ( ~ , ~ , ~ )  where p and q are 

respectively the autoregressive and moving average orders and d 



is the order of differencing. On writing down the associated 

difference equations for the autocovariances as we did in 

section 1.2, it is seen that the autocorrelation function for an 

ARIMA model with d2l will tend to grow rather than die out, and 

it is the failure of the sample autocorrelation function to die 

out that is taken as an indication of non-stationarity in 

practice. On the other handif r =cos[8]+isin[8], r+l 

then this implies periodic behavior of the series, for example 

f r = l  r $1, i=1,2 and 
i i 

(4.3) P(B)X I - r B I - r B X = e 
t 1 2 t t 

then the null space of the difference operator includes 

functions such as cos[8t] and sin[8t], as the real and imaginary 

t 
parts of r must separately solve the homogeneous equation. 

This means the difference equation admits non-stationary 

solutions such as 

where w is any solution of the defining relation ( 4 . 3 ) .  

this manner possible to mode 1 data which contains 

periodic components with random changes in amplitude and phase. 

Because the autocovariances must satisfy the homogeneous , 

difference equation, it may be seen as before that the 

autocorrelation function of such a process will fail to die out. 



1.5 SOLVING THE TIME SERIES PROBLEM 

BoxbJenkins ( 1 9 7 0 )  distinguish the following stages of 

model building: 

( 1 )  Identification, in which we attempt to determine 
a class of models which may be sensibly 
entertained in the light of a priori considerations 
and a rough data analysis, but is small enough 
that reasonably efficient parameter estimates are 
available 

( 2 )  Estimation, in which, having decided upon a class 
of models we form estimates of the parameters of 
the models which is supposedly being observed 

(3) ~iagnostic checking, in which by residual analysis 
it is tested whether the model is consistent with 
the observations post hoc. 

We now discuss each of these stages in turn, sketching the 

general- procedures involved. The aim of this section is to 

demonstrate that the linear time-series problem is a difficult 

statistical problem which'leads to many unresolved issues. It 

will become clear that the fitting of a Box-Jenkins model, even 

when the basic assumptions are correct may leave much room, 

(relative to other statistical procedures) for judgement. It 

will be suggested that a somewhat neglected method of coping 

with such difficulties is to make more deliberate use of 

structural information. A discussion of some structural 

properties of BOX-Jenkins models follows which will later be 

contrasted with the properties of non-linear time-series models. 



1 .5.1 IDENTIFICATION 

When it is known in advance what the correct form of the 

linear model is, estimating the coefficients of a time-series is 

relatively straightforward. Unfortunately such knowledge is 

rarely available in convenient form. Thus the goal in the early 

stages of data analysis is to decide whether a time-series is 

purely a moving average, purely autoregressive or mixed and to 

determine the orders of the components. To decide initially on 

the correct class of linear models it is usual to begin by 

computing the autocorrelation function and the partial 

autocorrelation function of the observations. 

The partial autocorrelation function is defined as follows. 

Let H denote the set of random variables {X ,...,X for 
t,s s+l t-1 

t > s+l and let 8 and 8 denote respectively the predictions of 
S t 

X and X from the true regressions of X and X on H . Then 
S t S t t,s 

th 
the t-s partial autocorrelation of a stationary process is, 

defined as 

( 5 .1 )  + =  orr relation[^ - 8 , X - 8 I 
t-s t t s  s 

where we agree that when both the arguments of the correlation 

are constant we will set @ = 1. When both the arguments of 
t-s 

th 
the latter correlation are non-constant random variables the n 



partial autocorrelation is 

( 5 . 2 )  i j  = the last coefficient in the true multiple 
n 

regression of X on X ,X , . . . X 
t t-1 t-2 t-n 

We have seen that the theoretical autocorrelations for an 

MA process have a cutoff, while the autocorrelations of an AR 

process are non-zero for large lags. Now the latter statement 

holds with autocorrelations replaced by partial autocorrelations 

and AR and MA interchanged. Thus, the computation of the 

autocorrelation function and partial autocorrelation function is 

a preliminary procedure for distinguishing MA and AR processes. 

The claim is proved as follows. Consider the autoregression 

n 
e = C  p X  
t i=O i t-i 

where p = 1 ,  the series converges in probability and possibly 
0 

n=m. If the object is to minimize 

where S = f i x  + fix +...+fix for m 2 n then we 
t 1 t-1 2 t-2 m t-m 

must minimize 

+(fi - P I X  + f i  x +..+. i j  x + e  1 
n n t-n n+l t-n-1 m t-m t 



Since the X are jointly non-degenerate random variables, and e 
L 

is uncorrelated with X  for k > O  conclude 
t-k 

(5.6) 6 = p for i=l,m 
i i 

and in particular 6 = 0 for i > n. Thus for i > n ,where n 
i 

is the order of the autoregressive process 4 = 0. 
i 

When m < n the latter variance (5.5) becomes 

+(6 - p ) x  + P  x +..+ p X  
m m t-n 

+ e  1 
m+l t-m-1 n t-n t 

and the first argument fails. In fact, some fi f p unless 
i i 

P x  + ... + p X  + e is uncorrelated with X ,..., X 
m+l t-m-1 n n t t-1 t-m 

but these quantities are known to be correlated. Therefore we 

note that the 'true' coefficients of the multiple regression of 

X on X , ... , X for m < n, are not the coefficients of, 
t t- 1 t-m 

the underlying BOX-Jenkins process. 

The preceding argument shows that when a process is 

autoregressive of finite order, the partial autocorrelation 

function cuts off, and when the process is a moving average, n 

is infinite and so the partial autocorrelation function is 

generally non-zero for arbitrarily large lags as claimed. 

Ramsey(1974) has characterized the partial autocorrelation 



function of a stationary process by the following striking 

result. Define the set of sequences S as 

then a function 4 belongs to S iff it is the partial 
i 

autocorrelation function of a stationary process. A time-series 

whose partial autocorrelation function is eventually unity 

belongs to the class of singular processes, which are processes 

, perfectly predictable in mean square. 

Because the partial autocorrelation function arises in the 

section on AR order selection some remarks on its computation 

are in order. This discussion will also gives some additional 

insight into the nature of the partial autocorrelation function. 

For this purpose we introduce the Yule-Walker equations. 

When the process concerned is purely a moving average or 

purely autoregressive there'is a simple relationship between the 

autocovariances and the parameters of the Box-Jenkins process. 

If the process is autoregressive then the parameters may be) 

obtained uniquely from the Yule-Walker equations which are 

obtained as follows. Suppose the process is of order m. Then 

multiplying both sides of the defining difference equation by 

X for k=l,m and taking expectations obtain 
t - k  



Y = P Y  + p y  +...+py 
i 1 i-1 2 i - 2  m m-i 

Y = P Y  + P Y  +..+PY 
m 1 m-1 2 m-2 m 0 

which may be solved directly for p i=l ,m 
i 

This leads to a natural estimate for the p's (provided that 

the order of the autoregression is known) obtained by replacing 

the theoretical autocorrelations above by their sample 

estimates. This estimate (called the method of moments 

estimate) is used in practice as an initial guess for maximum 

likelihood computations (cf. Box& Jenkins,l970; Appendix 6.2). 

In a similar fashion, it was shown in section 1.2 that for 

a moving average process of order m the autocovariances are 

( 5 . 10 )  Y = ( q 9  + g q  +...+q q ) o  
k 1l+k 2 2 + k  m - k m  e 

2 
where o is the variance of the errors. These non-linear 

e 

equations may be solved for q i=l,m. While the non-linear 
i 

equations will have multiple solutions it follows from the 

discussion of section 1.3 that there is a unique invertible Box 

Jenkins model corresponding to a given autocorrelation function. 



We now return to the partial autocorrelation function . I t  

is not hard to see that if the Yule-Walker system has an order 

less than the true one, then the resulting coefficients are the 

m 
coefficients in the multiple regression of 

X on X . X . This is because to minimize the 
t t-1 t-m 

variance Var[~ - 8 ] we compute this variance as a function of 
t t 

m 
the p's ( a quadratic form with coefficients 7 and variates 6 ) 

i i 

and set its* gradient with respect to the p's to zero.  his 

results in a set of formulas for the partial autocorrelation 

function in terms of determinants. The linearity of this 

problem enables an easy computation of the residual variance -. 
For let H =  span{^ , . . . X I,  x = 2 and y = X ~ e f  ine 

n t-1 t-n t t 

the inner product [z,v] = E{ zv I . With these definitions, the 

problem is equivalent to the ~ilbert space problem of finding 

S = Min 1 )  y - x I I where X is a subspace of H of dimension m. 
n x e X  n 

* 
It is well known that the solution x to this problem is 

* * * 
characterized by [x :y ,x 1 = 0 and that the norm of x is the 

norm of the projection of y on H . The latter projection is 
m 

equal to 



m 
(5.11) E[X (p X ,...,p X ) 1 = z P Y 

t 1 t-1 m t-m k=l k k 

where p are the true coefficients of the autoregressive 
k 

representation of the process. Thus, applying the pythagorean 

theorem we obtain 

as the residual of the autoregression of order n. 

We can now state the recursive formulae due to ~urbin(l960) 

for computation of the partial autocorrelation function . As 

m th 
noted earlier, fi is the m partial autocorrelation of X . For 

m t 

m 
ease of notation we now drop the A on fi , since the distinction 

i 

is clear from the superscript. Durbin's algorithm is a 

m 
recursive joint computation S and p for k=l,m . The recursion 

begins , 

and 'the general steps are 

n n-1 n-1 
P = h  - C  P Y 
n n k=l n n-k 

I / s  
n- 1 



n n- 1 n n-1 
P " P  - P P  for k=l ,n-1 
k k n n-k 

From the last equation the necessity of the conditions on the 

n n 
set S above are evident. For clearly [ p I S 1 and if I p I = 1 

n n 

. this implies S = 0 . When S = 0 this means that the 
n+ 1 n+ 1 

process satisfies a homogeneous difference equation of orde-r n+l 

or less. Thus the correlation in the definition of 4 reduces 
n+ 1 

to a correlation between identically zero variates and so, by 

definition, is unity. Ramsey's result arises by observing that 

these equations can be used to generate an admissible sequence 

of autocovariances from the partial autocorrelation function . 
His result is not completely trivial, for in contrast to 

the weak conditions on a sequence of numbers which make it 
, 

admissible as a partial autocorrelation function , many 

sequences cannot be the autocorrelation function of a stationary 

process. Thus, for example, there are non-vaccuous conditions 

on a set of m autocorrelations generated by a moving average 

process in addition to exhibiting cut off. For example given an 

MA( I ) process 

compute 



so that 

and solving for q in terms of p we find q is real iff 
1 

Ip 11.5 . Since Ip I = .5 implies q = 1 , the resulting 
1 1 

process is an invertible moving average iff the inequality is 

strict. 

A general necessary and sufficient condition for a sequence 

of numbers p , i=l,..m to be the autocorrelation function of an 
i 

invertible moving average process was given by Wold (1953). 

Define 

now define 

Then the condition is: ~ ( z )  has no root in the interval [-2,2]. 

" W e  sketch the proof. To begin, we recall that from the 

th 
discussion of section 1.2, any m degree polynomial 8 



corresponds to some moving average model x[@]. Such a moving 

average model is always stationary, but conceivably not 

invertible. For invertibility of the associated moving average 

model, the roots of the operator resolution of O must lie in the 

interior of the unit disk of the complex plane. However, the 

discussion of section 1.3 shows that if one or more roots lie in 

the interior of the complement of the disk, a new (unique) 

invertible moving average process may be defined with r replaced 

by - 1 possessing  he same autocovariances. Thus any choice of O 
r 

such that the roots lie off the unit circle corresponds to a 

unique invertible moving average (and thus a set of m moving 

average autocorrelations). On the other hand it can be shown 

th 
that any sequence of m autocorrelations corresponds to an m 

degree Box-Jenkins (moving average) operator O. The preceding 

remarks thus show that a given autocorrelation sequence 

corresponds to an invertible moving average process iff roots of 

the associated operator O do not lie on the unit circle. Our 
, 

object is to translate this condition on O into a condition on 

the autocorrelation function (or equivalently, the 

autocovariance function) of the process. 

To do this first recall that the autocovariances of a 

2 
moving average process are y = o C q q . Inspection of this 

t j t+j j 

formula shows that we can represent the autocovariance sequence 

alternatively as follows. Define the fourier transform of a 



sequence q , i=O,m-1 
i 

i @ 
Set x = e and consider (abusing notation slightly) 

where the * denotes complex conjugation. The result of this 

computation is certainly real and can be shown to equal twice 

the cosine transform of the autocovariance sequence. Thus the 

autocovariances could be recovered from r. This representation 

is useful because on inspecting (5.21) we notice r ( @ )  = O'iff 

B(x) = 0. Thus, as B(x) is just the BOX-Jenkins operator 

evaluated on the unit circle, we can detect the presence of 

roots of O on the unit circle by inspecting r, which is twice 

the cosine transform of the autocorrelation sequence of length 

m. Therefore our aim of translating the condition on the roots 

of O has been acheived. To complete the proof, note that the 

- 1 , 
transformation z = x + x maps x on the unit circle to the real 

interval [-2,2]. 

For example, in the model (5.15) we obtain for ~(x), on 

substituting q for q 
1 
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In this example it is clear that that to avoid a root on the 

unit circle in (5.22) j p  1 < .5 . This is the same condition 
1 

obtained earlier in this section. 

1.5.2 MODEL ESTIMATION 

Once the order of the ARMA processes have been specified it 

becomes feasible to estimate the parameters of the model. The 

usual method is the method of maximum likelihood or some 

variation of it. The method of maximum likelihood has several 

peculiarities in its application to time-series analysis which 

are treated in this section. In particular we describe the 

conditional and unconditional likelihoods and sum of squares 

functions. We then derive the exact likelihood function 

(~aussian case) of a moving average which in practice suffices 

for a general ARMA process. 

Suppose we are given an ARMA model 

(5.23) e = X - p X ... -p X 
t 

+ 9 e  
t 1 t - 1  n t-n 1 t-1 

+ 9 e  
n t-m 

Imagine for now that X and e the values of the observations, 
- i - i 

and the errors prior to the start of the series are known . 
Then using the known values for X the recursion can be solved 

i 

to give the unobserved values of e . Thus, e is a function of 
i t 

P,Q,X and e which we denote by e' [P,QIx e 1. 
-i - i t -i -i 

Since these values are iid normally distributed 



where a is a real constant. 

Thus we may write the likelihood conditional on the choice 

of X and e as above. The term in the exponential 
- i - i 

is called the conditional sum of squares function. The 

conditional likelihood is not yet a true likelihood as it 

contains unobserved values. In a long series however, this will 

make little difference because the inaccuracy in the choice. of 

initial values will die out. However, since the likelihood is a 

useful practical tool we give the derivation of an exact 

likelihood function.  his derivation for a moving average model 

will also furnish approximate likelihoods for mixed and 

autoregressive models on' inversion and truncation of the 

operator series at convenient orders. 

Thus consider the  MA(^) model 

( 5 . 2 6 )  X = e  + q e  + ... + q e 
t t 1 t-1 n t-m 

where the model is assumed to be invertible and e is 
t+k 

independent of X for k>O. We derive the likelihood for a 
t- 

series of length n. 

' Because e and hence X are normally distributed we have 
t . t 



T 
where [ X I  = (X ,..., X ) 

nx 1 1 n 

- 1  2 
and M a is the covariance matrix of [ X I  

Thus, to make this expression explicit one must evaluate 

1x1 M 1x1 . To do this, first write the n+m equations 
nx 1 nx 1 

e = X  + q e  + ... + q e 
n n 1 n-1 m n-m 

Now set 

~ropping the dimension subscripts, partition the resulting 

matrices as 

( 5 . 3 0 )  

[el = 

q q ..q . 1 0  0.. 
1 2  n .  . . . t 1 0 . .  . 21 

v v . t t 1.. 
2 1 2n. 31 32 

v . . v  t t 1 
n 1 nn. nl n2 



where I is the identity, 0 is the zero matrix, T is lower 

triangular,and the coefficients of T and V are complicated 

functions of q obtained on expressing the e as functions of 
i i 

e and [XI. It is seen from the first form that the 
-i 

transformation has unit jacobian, so the joint distribution of 

[XI and [Z] is 

where, defining 

It is now sought to minimize S(Q,[Z]) as a function of [GI. 

To do this write 

(5.33) L [XI + K [g] = iL [XI + K [El) + {K([Z] - [El)) 

so that if 



the quantities in braces are orthogonal vectors and so 

and it follows [ E l  defined by the penultimate equation ( 5 . 3 4 )  is 

the minimizing value of [ Z ] .  Now by the above it follows that 

And since 

Therefore, on inspecting the exponential conclude 

(5..39) [ E l  = E E  [ Z l I [ x ] , Q  1 

  his means that [ E l ,  the minimizing estimate of [ E l  may be 

computed from the difference equation by a technique known as 
I 

backcasting. This is a trick which utilizes the fact that the 

distributions of X for the model written in forward form are 
t 

the same as those for the model written in backward form, though 

as noted in section ( 1 . 4 )  the assumptions on the error sequence 

are different. The strategy is to compute the expected 

preliminary errors e from the expected preliminary values of 
- i 

X . Once the conditional expectations of the X are known we 
-i -i 
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can combine this with knowledge that for a moving average of 

order m the conditional expectations ~ ( e  I X  ) = 0 for k>m . 
t-K t 

Using these facts in (5.26) we can obtain the conditional - 

expectations for e k=O,l-m given the data . Thus for example 
t-k 

wecompute (via 5.26) that ~ [ e  I d a t a ] = ~ [ ~  Idata]. If we 
-m -m 

denote conditional expectation given the data by square brackets 

this yields [ e  1 = [x 1 ,  [e 1 = EX 1 - q [e I, etc. 
m -m -m+ 1 -m+ 1 I -m 

The trick is necessary because it will not do to compute 

the X (or e by running the original recursion ( 5 . 2 6 )  
-i ~i 

backwards with estimated errors for i>O. Because of 
i 

invertibility, in this model inaccuracies die out with 

increasing time, but they must blow up as the time index 

decreases. A reversed version of this statement is true of the 

backward model 

where E is independent of X for k>O. That is, the 
t-k t 

inaccuracy in a guess for E dies out as the time index 
t 

decreases. Thus, using (5.40), accurate estimates of the E 

-k 

m a y  be computed by guessing values near the end of the series 

and proceding backwards. These values of E are used to 
t 

construct the conditional expectations for the 



obvious way, and hence the expectations for e may be found as 
-k 

described above. In this manner we arrive at 

n 2 
where S ( Q )  = C a 

t=l-m t 

(a being conditional expectations of e given the data). 
t t 

The necessary complicated function of the q may be found by 
i 

iteration. Note however, that maximum likelihood estimates'for 

time-series may not always be found by setting the derivatives 

of the log likelihood to zero, since the parameters 

corresponding to a given covariance structure are not unique. 

Thus it is necessary to constrain the maximization so that the 

resulting estimates satisfy 'the stationarity and invertibility 

conditions. We skip over the large literature on numerical 

computation of maximum likelihood and least squares estimates, 

because it is not relevant to the argument. 

The purpose here is to make clear the conventional 

assumptions involved in the derivation and computation of 

maximum likelihood estimates for time-series. When the model is 

correct the likelihood function contains all useful information 

relevant to the estimation of parameters (cf. 

Box&Jenkins,l970). It appears that in addition likelihood 

functions may have a deeper significance than is evident, from 
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this derivation. For even if false but close to correct (in 

some sense) we will see that the (false) likelihood contains 

valuable information. Thus, although the model is misspecified 

and the above theory is incorrect, a likelihood function may 

still be useful. 

1.5.3 REVISING THE MODEL 

It is possible and indeed likely that the identification 

stage of the time-series problem will have produced an incorrect 

choice of model. In other words, the application of the 

operator 

(where Q and P are estimated ) ,  to X may fail to transform * * t 

the series to second order white noise (a sequence of 

uncorrelated random variables with zero mean). This outcome is 

likely first because the class of Box-~enkins models is 

sufficiently rich that serious errors in mo.del selection are 
I 

probable. In addition, the requirement that a time-series be 

generated by a Box-Jenkins model is restrictive, and can be a 

misspecification in itself. When the parametrization is 

seriously wrong the maximum likelihood estimates will be invalid 

and we are in a situation which is at present, imperfectly 

understood. 

There are two possibilities in this regard. The simplest 

occurs when it is possible to establish that the model is 



incorrect through some diagnostic test. To cope with this 

situation, it is necessary to detect it, to elucidate the nature 

of the problem and modify the model appropriately. The other 

possibility is that several models may fit the data equally 

well, so that while identification has in a sense, failed, no 

obvious course of action is available. In practice it is usual 

to choose the simplest model which is acceptable. 

To detect a failure in identification, two criteria have 

been used extensively in non-automatic procedures, namely, 

~uenouille's(l947) test and ~ox&~enkins(l970) Portemanteau test. 

' th 
If the k+i partial autocorrelation is zero for i=O,m-k 

th 
then (~nderson,l971) if is the 1 estimated partial 

1 

autocorrelation for the series, d ~ $  i=O,m-k have a limiting 
k+i 

joint distributions which are independent ~ ( 0 ~ 1 )  under 

the null hypothesis. Thus, the statistic 

is distributed asymptotically as a chi-square random variable 

with m-k degrees of freedom. For an autoregressive order' k 

gaussian model, the hypothesis that the model is correct is 

equivalent to the hypothesis that all partial autocorrelations 

after order k are zero. For white noise, this is true for k=O. 

Thus, this statistic may be applied to the residuals to detect 

failures of model fitting. 



The Portemanteau test is an analogue of Quenouille's test 

with partial autocorrelations replaced by the usual 

th 
autocorrelations Thus, if & are the residuals of the m order 

t 

fitted model and p the i autocorrelation of the residuals, 
i 

then the statistic 

has an asymptotic chi-square distribution with m-p degrees of 

freedom. 

These procedures for model selection terminate, in 

principle, when the residuals do not fail a test of randomness, 

and no simpler model has this property. 

Several automatic and semi-automatic procedures for model 

determination have been proposed. The most well known of these 

is Akaike's ( 1 9 7 3 )  criterion. This criterion is based on 

information theory and will be discussed in detail in Chapter. 

111. Applied to the problem of choosing the correct 

autoregressive order, Akaike's criterion which would select an 

autoregressive order by minimizing 

2 
where N is the sample size, 6 is the estimate of the residual 

P 

variance for the fitted model of order p. 



When the hypothesis that the residuals are white noise is 

rejected, or if the model is unsatisfactory for some other 

reason, several kinds of situation may obtain. By linear model 

underfitting we refer to the fitting of a model with an 

insufficient number of parameters, that is models which set 

truely non-zero parameters to zero. Since it is usual to begin 

by fitting the simplest models this sort of problem should show 

up early in the fitting procedure, and be manifested in 

autocorrelated residuals and a large estimated error variance. 

Linear model overfitting refers to a situation in which a model 

of the correct, type is fitted but the fitted model makes 

provision for non-zero values of parameters which are actually 

zero. The effect of this situation may be to reduce or increase 

the estimated prediction error variance and in a non-automatic 

procedure the only general means of testing for its occurence is 

to fit all simpler models to see whether they are acceptable. 

One case of overfitting, called parameter redundancy may however 

result in a certain pattern in the contours of the sum of, 

squares (likelihood) function in the parameter space. For 

example consider the model 

When Ir-sl is small the factors on each side of the difference 

equation will nearly cancel so that the model is nearly 



As this is an operator equation, some discussion 

required to establish that cancellation is meaningful. To 

this, rewrite the model as 

is 

see 

and invert explicitly to obtain 

This means that the behavior of the series with nearly 

equal values of s-r will ressemble one another. In particular, 

changes in (s,r) in the neighbourhood of the line s=r will have 

little effect on the goodness of fit of the model. Thus if the 

true parameters r and s are nearly one it will be difficult to 

discriminate a stationary from a non-stationary model when the 

more complex one is fitted. However examination of the 

likelihood will reveal a ridge in the sum of squares function 

along the line s=r, indicating parameter redundancy. At the 
I 

expense of a small increase in lack of fit, the offending 

factors may be dropped from the model. This then, is a 

practical situation in which the nature of misspecification is 

evident from the likelihood function. We will see later that 

other, more theoretical, approaches to the detection of 

misspecification are also based upon likelihood functions. 



1.6 USE OF RESIDUALS TO MODIFY THE MODEL 

Suppose that the residuals ; from the fitted model 
t 1 

appear to be non-random in the sense of section 1.5.3. Suppose 

further that one could correctly fit the model 

where e are iid random variables with zero mean and the. model 
t 

defined by R and S is stationary and invertible. 

Then, the, model could be corrected to 

or, avoiding infinite series 

1.7 SUMMARY 

I 

The time-domain theory for linear time-series was reviewed, 

including the relationship between covariance structure and Box- 

Jenkins coefficients, and the interpretation of the 

invertibility and stationarity conditions. Current methods of 

attacking the linear time-series problem were reviewed. It was 

seen that these procedures may require judgement in detecting 

misspecification. There is some indication, however that the 

likelihood function contains much of the relevant information 



for this judgement. Thus, it is natural to ask whether 

automatic procedures based on the likelihood function are a 

practical way to address the problem of misspecification. If 

such automatic procedures were marked improvements on the 

skilled procedures, they would be helpful in the (harder) non- 

linear case. Succeeding sections will evaluate this 

possibility. 



11. HOW WELL DO THESE METHODS WORK? 

The paper of Bora-Senta& ~ounias(l979) systematically 

compares order determination schemes using Qaenouille's test, 

the Portemanteau test and Akaike's criterion for various 

estimation methods in a Monte Carlo simulation. We present some 

of the results of.the study in Tables 1-111. The method of 

estimation used was the method of unconditional least squares. 

Significance levels for the portemanteau test were determined 

from the theoretical Chi-squared variate distributed with m-p 

degrees of freedom where m=10 and p is the order of the fitted 

model. Similarly, significance levels for Quenouille's test 

were determined from the Chi-squared variate distributed with m- 

p degrees of freedom with m=6 and p the order of the fitted 

model. Thus the comparison between Portemanteau and Quenouilles 

test may not be fair, though neither test can be valid owing to 

the small sample size (n=20)'. The model adopted was the model 

of lowest order which passed the respective tests at the .05 

level of significance. , 

All simulations were involved one of the 6 autoregressive 

models quoted in Tables 1-111. For a large sample size (n=200) 

fifty simulation runs were performed and all criteria performed 

well. Quenouille's test was the best performer, failing in only 

1/6 cases to select the correct AR order on all fifty runs. The 

other two criteria, each failed in 2/6 cases to have a perfect 

record, misclassifying at least 10 runs when they failed. 

For the small sample size, performance is less impressive. 



Examination of the modal choice of order shows only Quenouilles 

test has the wrong mode (AR(5)) for the first model. Both 

portemanteau and Quenouille are wrong for the second AR(1) 

model, though only Portemanteau is wrong if the choice AR(5) is 

disallowed. All criter'ia fail to have correct modal choice of 

order for the first AR(~) model, each criterion instead 

selecting the AR(I) model most frequently. For the second AR(2) 

mcdel correct modes resulted with each criterion. 

Performance was further summarized by the use of the index 

W 

where p is the true order, and f is the frequency of selection 
0 fi 

of order 6 . 
By this index, Portemanteau wins for the first and second 

AR(I) models with Akaike a close second. In the other 4/6 cases 

Akaike wins, decisively in 3/6 cases. Mean values of W are 

respectively 1.398, 5.607, 2.147 for Akaike, Quenouille and, 

Portemanteau respectively. The relatively poor performance of 

Portemanteau and Quenouille might be expected here since as 

noted they are large sample tests, however, it should also be 

pointed out that the order selection problem considered by Bora- 

Senta et. al. was a simplified one in which the alternatives 

were, just six autoregressive models (order=0,..,5) which were 

assumed a priori to be stationary. 

When models are allowed to be non-stationary by introducing 



powers of difference operators into the defining equations and 

moving average terms, then the model-discriminating powers of 

these procedures begins to be taxed even at large sample sizes. 

ozaki(1977) compared the models of data series A-F (data given 

in ~ox&Jenkins book) obtained by Box&Jenkins with those adopted 

by ~kaike's criterion. We discuss his results for series A, 

which are the most completely presented. 

Series A from Box&Jenkins(l970) consists of 197 

observations of concentration readings for a chemical process 

taken every two hours. From inspection of the sample 

autocorrelation function and partial autocorrelation function 

Box&Jenkins suggest that this time-series might be described by 

an 1~~(0,1,1) or ~WA(1,0,1) model. Ozaki concluded however 

that (7,0,0) and (6,1,0) and (1,1,1) were also candidate models, 

by the same procedure. 

The results of fitting these models to the data are given 

in Table IV. All these models passed the Portemanteau test. 

Akaikes criterion was useful in automatically weeding out a 
, 

large number of other models (which likely would have failed the 

eyeball test) but somewhat less helpful in discriminating 

amongst models which were good candidates. Values of Akaike's 

criterion for the various models considered are given in Table 

V. While BoxGJenkins concluded that each of (1,0,1) and (0,1,1) 

fitted equally well Akaikes criterion gives (1,1,1) as the model 

of choice amongst 



and ( 3 , 0 , 3 )  as the model of choice amongst 

(ii) ( (p,d,q), d=0,1 O5p,q 59 1 

However, the (3,0,3) model failed the Portemanteau test. 

It can be seen that the models adopted by Box&Jenkins 

exhibit AIC values near the minimum. On the other hand, while 

Ozaki claims that the automatic procedure's results are similar 

to those of Box &Jenkins, examination of the numbers seems to 

show that Akaike's procedure recornends 9 of a possible 18 models 

(i) as well as recommending the higher order models of Table IV. 

In particular 9 models had AIC values between -449 and '451 

whereas, for comparison, the models selected by Box&Jenkins had 

~IC(1,0,1)=-450.2 and ~1C(O,t,l)=-448.16. See Table V. Now it 

is very well to say that one should apply Ockham's razor but in 

the first place, 3 of these models have the same number of 

parameters, and in the second, it is not sensible to do this 

without regard for the explanatory power of the model . 
Akaike's criterion, which is supposed to formalize the tradeoff, 

between explanatory power and parsimony is what gives us these 

results in the first place. Thus the data seem ambiguous. 

Examination of the other results in Ozaki 's paper suggest that 

this situation is not untypical. This problem is less 

disastrous than it appears, since in several cases the different 

models differ only by the addition of nearly cancelling factors 

on each side of the equation, which implies that very similar 

forecast would be obtained from these apparently different 



models. 

The conclusion appears to be that while practice shows that 

useful prediction can be obtained, optimal prediction may be 

difficult, for presumably not all of the motels the data admits 

will be correct. Automatic procedures give a clear reduction in 

labour, though not necessarily an improvement in performance. 

Ozaki remarks that a classical BOX-~enkins identification by 

visual inspection of the autocorrelations etc, can produce 

reasonable results, but only by 'skilful analysis which requires 

expertise perhaps not commonly possessed by ordinary practicing 

statisticians.' Both automatic and skilled procedures invariably 

result in the acceptance of some useful model. However, the 

results of either procedure are usually far from unique when the 

class of admissible models is large. 



Table I - AR order Selection 

1 

Model 

Akaike 
order 
selected 

0 360  
1 60  
2 30  
3 40 
4 10 
5 0 

Quenouille Portemanteau 

Model 

Method of maximum likelihood was used for 
estimation of coefficients. Sample series 
were of length 20.  



Table I 1  - AR order selection 

Model x(t)= . 3  X(t-1) + .5 ~ ( t - 2 )  + e(t) 

Akaike Quenouille Portmanteau 
order 
selected 

0 2 4 0  145 4 1 0  
1 105  55 9 0  
2 110  90 0 
3 35 45 0 
4 5 45 0 
5 5 210  0 

Model ~ ( t ) =  .8 ~ ( t - 1 )  -.9 ~ ( t - 2 )  + e(t) 



Table I 1 1  - AR Order Selection 

Model x(t)= 1.6 ~ ( t - 1 )  -.79 ~ ( t - 2 )  + .12 ~ ( t - 3 )  + e(t) 

Akaike Quenouille Portemanteau 
order 
selected 
0 0 0 40 
1 110 30 380 
2 320 230 80 
3 60 20 0 
4 10 10 0 
5 0 210 0 

Model X(t)= 1.8 ~ ( t - 1 )  - 1.14 ~ ( t - 2 )  + .272 ~ ( t - 3 )  .+ e(t) 



Table IV - Models for Series A 

Model N-d Fitted Model Residual Portemanteau d 
Variance Statistic 

All the above models passed the portemanteau test 
with p=.05, k=25 (d.f.=k-p-q for model (p,d,q) 1. 



Table V - values of A J C  for various Models 

Model A I C  Model A I C  



111. METHODS OF SELECTING AR ORDER 

statisticiansnare often faced with the problem of choosing 

the appropriate dimensionality of a model that will fit a given 

set of observations. The problem is particularly acute in the 

analysis of time-series data. This is because, in practice, the 

time-series problem is often posed to the statistician in the 

form we have posed it, without much knowledge of the underlying 

structure. In this situation, the problem must be attacked 

frontally despite its formidable nature. Thus, whether the aim 

is structural characterization or optimal prediction, the 

parametrization (misspecification) problem in time-series 

analysis is basic. It is the purpose of this section to 

describe some recent work on this problem. 

It is part of statistical folklore (cf. Schwartz,l978) 

that the method of maximum likelihood perfdrms badly in the 

selection of over-parametri2ed models. In particular there is a 

bias toward the selection of models with too high a 

dimensionality. With the method of least squares for example,, 

the minimization of prediction error on the data set leads to 

non-zero estimates of parameters which are zero and biases the 

estimate of mean square error. 

Quenouilles test and the Portemanteau test were derived 

with no particular alternative in mind and in practice are 

applied repeatedly (which is not a recommended approach to 

hypothesis testing) however they represent a considerable 

improvement on simple maximum likelihood. In particular these 



tests may be understood as likelihood ratio tests against 

particular alternatives so that they are maximum power tests 

under the usual conditions(~osking,l978). Thu~,the use of the 
-- 
Portemanteau test statistic 

is equivalent to a likelihood ratio test of 

versus 

where a and 2 are white noise processes possibly with 
t 4- 

different variances. Thus the alternative is an autoregression 

fitted to the residuals or from another point of view, an 

autoregression of order m+p with p roots restricted to the same 

values as the null hypothesis. 

Quenouille's test statistic (~hittle~1952) 

m 2 - 2 
N C  $ X 

k+l i m-k 

is equivalent asymptotically to a likelihood ratio test of 

(1.4) H : P(B)Y = a 
0 t t 

versus 

where deg P = p and deg S = p+m for small variations about the 

null, hypothesis ( the size of the variation affects the 

approximations used in deriving the results). 

As we noted, Quenouille's test and the Portemanteau test 
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are usually applied repeatedly. Therefore this approach is not 

completely satisfactory. Another set of approaches may be 

thought of as based on the following empirical observation, well 

known to statisticians . Namely, that if spurious explanatory 

variables are added to a regression model, estimated mean square 

error first exhibits a drop as the first few are added, then 

after a certain number have been added, mean square error begins 

to rise.  his suggests that some function of estimated mean 

square error might be a sensible order selection criterion. 

Note that in the Gaussian case the mean square error is an 

estimate of log likelihood. There have been a number of 

attempts to formalize such procedures of which we will discuss 

the most systematic. 

To illustrate the phenomenon we mention the simulation 

study of ~ones(1976). In this study, autoregressive models of 

various orders were fitted to white noise for samples of size 20 

and 40 and the results averaged over 100 realizations. Possibly 

because white noise was being fitted, no initial drop in mean 

square error was evident as the order of the autoregression was 

increased. However, estimated mean square error rose 

drastically as the order, p of the fitted autoregression 

approached the length of the sample. Thus, estimated error 

doubled as p approached 15/20 and 25/40 respectively. 

~kaike's(l969) final prediction error criterion was based 

directly on this phenomenon. It is 



where 

- 
and 6 denote the residuals from the fitted autoregression of 

t 

order p. The factor multiplying the mean square error is 

calculated to compensate for the effect of errors in estimating 

the parameters so that FPE is an estimate of the average 

prediction error when a fitted model of order p is used. 

~ones(l975)and ~ersh&~harp(l973) presented favourable simulation 

and practical results for the use of this criterion in the 

selection of autoregressive order. Minimization of final 

prediction error turns out to be a special case of minimization 

of ~kaike's(l973) information criterion which, because of its 

widespread use and interesting theoretical rationale, we discuss 

in some detail. 

Akaike's information criterion is 

( 1 . 6 )  -21og likelihood + 2 (no. of parameters adjusted) 
, 

~euristically, the idea is to measure the amount of structure in 

the estimated model ( ie. in its probability density ) and to 

choose the fitted model of a class which exhibits the least 

structure. Such a procedure, made precise, is conservative in 

the sense that it attributes the least possible structure to the 

data, consistent with membership in a certain class~of models. 

It will turn out that the definition of structure employed will 

assign less structure to models with small error variance, and 



to models with small numbers of parameters. While the notion 

that more parameters mean more structure should cause no 

difficulty, that a small variance should ccrrespond to less 

structure may seem problematic. It is useful to think of the 

case of a discrete random va'riable in which a large variance 

might mean that more different, widely scattered values occur in 

the distribution. Alternatively Akaike's criterion can be 

thought of as one possible choice of loss function in the trade- 

off between reduced (sample) error variance and number of 

parameters, that is, a formalization of the principle of 

parsimony. In the case of a one parameter family of 

distributions, Akaike's method obviously reduces to the method 

of maximum likelihood. 

We now present a series of heuristic arguments justifying 

Akaike's criterion, beginning from the desire to develop a model 

selection procedure which is conservative in the above sense. 

To begin, we argue that a parameter in a model represents 

structure only because it indexes significant deviations from 
I 

some reference model. So it is reasonable to think of small 

deviations from reference as implying less structure, and larger 

deviations as implying more structure. It is natural to take 

the true model as reference, so that the attribution of least 

structure leads to a correct choice when the model is known. 

These considerations mean that we need to look for an index of 

the deviations of a putative model from the true one. 

The well known fact that for large N the maximum likelihood 



estimator approaches that theoretical minimum variance estimator 

suggests that the likelihood function is a sensible index of 

deviation of the model parameters from the true values. This 

motivates the assumption that the information (structure) 

function I is proportional to 

where f is the likelihood function of the observations. The 

choice of is equivalent to the choice of a loss function for 

decision making, for if the loss function were chosen as h{8,83 
0 

and it were sought to minimize ~[X[8,8]) then this expectation 
0 

could be defined as the previous integral for some @ provided 

that 

using the inverse function theorem. The choice of the, 

appropriate follows from the hypothesis that, if X and Y are 

independent random variables then 

(1.9) I( X + Y ) = I(X) + I(Y) 

where I(.) is the information function 

Since the joint density (X,Y) is the product of the 

densities of X and Y, it immediately follows that the 

appropriate choice of @ is 

(1.10) +(r)= c log(r) 



and furthermore, if f and g are probability densities 

E { log f ) = max 
9 

iff f=g a.e. since this is true when f and g are simple 

functions, using a lagrange multiplier argument. 

In practice, the true density will be unknown, so that we 

will work with the natural estimate of @(8 ) namely, 
0 

It is now possible to formulate the problem of order 

estimation precisely. Suppose then that we want to choose a 

density f{xl8) which best approximates the density • ’ 1  xi8 ) 
0 

for 8 E O  and 8eO where O is a k dimensional subspace of O. 
0 k k 

Thus, the problem of order choice is replaced with a problem in 

k 
density estimation. We define 8 and 8 to be the maximum 

likelihood estimates of 8 on restriction to the respective 

linear spaces. Note the notational distinction between 8 which, 
k 

is the maximum likelihood estimate of 8 projected onto O , and 
0 k 

k 
8 which is the maximum likelihood estimate in the restricted 

parameter space O. Now the ultimate object is to obtain the 
k 

estimate - 8 which minimizes 1(f(8)). However this is not 

completely straightforward. If k is fixed and 8 E O  then the 
o k  



result of maximizing the function 

(1.13) F(8) = -2 C log fix 1 8) - 
N i i 

will be just the ordinary maximum likelihood estimator. However - 
k 

when 8 {O the statistic ~ ( 8  ) cannot estimate 1(f(8)) or 
o k  0 

afortiori I(fC0)) for 8 # e  - and some adjustment becomes 
0 

necessary. This is done as follows: define the matrix 

for i,j=i,...L where L is the dimension of O.  his is the 

Fisher information matrix. 

It is ordinarily positive definite, being the variance 

coGariance matrix of the random variable(s1 

I 

Let - 8 be the maximizing argument of 1(8,8) restricted to O . 
0 k 

T 
Finally define the J inner product as {u,v) = u J v then 

(i) it can be shown that approximately 

and . 

(ii) - 8 is approximately the projection of 8 on O in the J inner 
0 k 





of 1(8,v) assuming that 
0 

Fact (ii) follows from the first fact and the variational 

characterization of projections. To get the third fact procede 

as follows. Assume that O contains 8 and recall 8 denotes the 
0 

unrestricted maximum likelihood estimate of 0 . Assume 
0 

for m=l,...,L 

for m=l,...,k 

Then using the mean value theorem 

C log f(x I$) 
i=1 i 

1 C - a log • ’ ( x  1 8- p(g- 8)) 
~ i = l  ae[mIae[l] i 

N k k  k 
I c a log f(x 1 8 -  p (2- 8 1 )  
N k = i  ae[m]ae[l] i 

k 
where 0 I p ,p I 1. 



We assume that the matrices in the second terms converge in 

probability as N -> = to the corresponding   is her Information 

matrices. 

On differentiating the above expressions with respect to 8 - 

and dividing by N it is seen that for l=l,k 

1 - c a log f(x I $) 
N i=l ae[lI i 

We need the first member in this sequence of equations to 

tend to zero as N -> m. This is reasonable given some mild 

conditions on f since 8 maximizes the structure function I by - 

hypothesis. It would hold for example if 8 is a normal mean or - 

variance. If so then the last equations imply that 

asymptotically (for N large) , 

k 
(1.26) J (8-8 - 1 = J (2-0 

kxk Lxk 

or in other words 

k 
11 J n (  e-8 ) =  J n (  8-81 - - 

LxL LxL 

where ll denotes the J-orthogonal projection onto O , J is the 
k 

Fisher ~nformation matrix. 



Since the equation (1.27) characterizes the projection we 

conclude that asymptotically 

which may be written 

We can now use this equality to derive the distribution of 

k 2 1 /2 D 
NH €9 -$ 1 1  from the assumption that N (8-8) --- > 

J 

- 1 
N(O,J - . 'First note that for any Y in O, if' 

- 1 
Y - MVN(O ,K (multivariate normal) this implies there 

1 

exists a matrix M such that that MY is standard normal of 

T 
dimension 1 and M M = K . Since 

it follows the norm 

in a space of dimen 

projection (for J 

dimension k < L, and 

2 
(1.30) is x . Thus, we need only show that 

1 

ion L, if n is the J-orthogonal 

positive definite) onto a subspace O of 
k 

- 1 
X-MVN(O ,J ) then 

L 



This is certainly true if J is diagonal, since the density 

of an independent MVN distribution will factor. Let P 

diagonalize J. Then in P coordinates the same result holds. 

This is equivalent to the projection result ( 5 . 3 1 ) .  Finally 

because J is positive definite the L-dimensional distribution, 

and thus the k-dimensional distribution is non-degenerate. Thus 

we conclude that ] I $  - B 1 1  is distributed as x as required. 
J k 

Another technique which was formulated to solve the 

parametrization problem is known as cross validation. It is 

based on the notion of optimizing final prediction error 

estimated in a slightly different manner. The procedure is as 

follows for each candidate parametrization. For each data point 

( x ,y J compute the maximum likelihood estimate for the 
i i 

parameters of interest with this data' point omitted. ~ h u s  

compute B for the 'omitted ith point. Measure the 
-i 

prediction error by the squared difference from the observed 
I 

value, or more generally log f((x ,y 118 ) . Repeat for 
i i -i 

each sample point and add prediction errors. Chose the 

parametrization giving the least summed error. Stone(1977) 

shows that this technique is asymptotically equivalent to 

Akaike's criterion under assumptions similar to those above. 

Shibata (1976) showed that Akaike's technique is not consistent, 

and that it over-estimates autoregressive order with non-zero 

probability as N --> =. This implies that cross-validation also 



fails to be a consistent technique. ~annan(1979) has modified 

~ k a i k e ' s  criterion so that the result is consistent. 



IV. STRUCTURAL PROPERTIES: LINEAR EXAKPLES 

We have seen that data may be ambiguous with respect to the 
1 

correct choice of parametrization. This suggests that it will - 

be advantageous to try to employ any available structural 

information even though it may not be in convenient form. It 

will be suggested that recent proposals for non-linear models 

ought to be examined with this emphasis rather than as general 

data prescriptions. That is, in contrast to the widely followed 

emphasis of Box&Jenkins on modelling data for which little or no 

a priori structure is postulated, we suggest that time-series 

data analytic models must be chosen in accord with known general 

facts about the natural process. succeeding sections will deal 

with how (and why ) non-linear models may be utilized for this 

purpose. 

We first show that within the class of linear models it is 

possible to augment the useful information available by an 

appeal to relatively vague structural knowledge. The fact that 

these examples due to Granger& ~orris(1976) are not better known, 

illustrates the neglect of structural data by time-series 

analysts. Suppose it is reasonable to assume that an underlying 

time-series X is Markov. In the linear case this means that 
t 

the partial autocorrelation function cuts o•’f and 4 = 0 for 
i 

i>l, that is no additional useful information for prediction 

exists once X is known.  his might be the case for instance 
t- 1 



in a physical model for which all theoretical models are 

differential equations, and so are all Markov. Suppose however 

that an independent source of white noise is added to the 

observations. 

The time-series described above will be identified by Box- 

Jenkins procedures as an ARMA(I,I) process. To see this define 

where 

a is a real constant such that lal<l, B is the backward shift 

operator, and w and v are uncorrelated white noise processes. 
t t 

Suppose that we are observing 

then: 

Computing the autocorrelations for the process on the right 

hand side (=m ) of the latter equation we get: 
t 

and 

E( m m )=O for i22 
t t-i 



We will construct a putative representation in the form 

2 
by choosing the parameters c,d and o to produce the values of 

e 

u computed above . To this end we let c=a, and define the 
i 

other parameters via the equations 

and 

to complete the construction. However, observe that these 

equations can always be solved, and that the resulting processes 

(n have the same covariance structure as (m 1. Thus the 
t t 

construction works and ge'nerates a process with the same 

covariances as (1.2). 

In contrast, it may not be possible to represent AM( 1,1) 

as AR(~)+ white noise . The realizability (necessary) 

conditions may be stated as follows. 

Let the u be given by the ~ M ( 1 , l )  process 1 as 
i 

computed above . Define 

(1.7) 

Then 



As long as these inequalities are satisfied, some choice 

2 2 
the parameters o and o will allow the construction of a 

v W 

candidate AR(l)+noise model. Therefore (1.8) is a 

realizability condition on the ARMA process for - an 

AR(l)+noise , .representation. 

Thus, under the original assumptions, this condition should 

be satisfied by parameter estimates for A~(l)+noise and its 

application will simplify computation of maximum likelihood 

estimates. It is possible moreover, to reduce the number of 

parameters in some cases. For example, using methods like these 

it can be shown that AR(2)+noise identifies as ARl4~(2,2). 

Writing out the respective models it may be seen that A~hl~(2.2) . 
involves five parameters and AR(2)+noise only four. For if 

(1.9) 

where 

then 

where E and q are independent white noise processes, while the 
t t 



ARMA model is 

where $ is a white noise series. 
t 

This fact is reflected in the realizability conditions for 

representing A R M A ( ~ , ~ )  as AR(2)+noise . As before let the 

symbols u denote the successive autocorrelations of the process 
i 

on the right hand side of the above equations. ~efine 

and 

It may be shown that a given ARMA(~,~) process is expressible as 

~~(2)+noise provided 

and 

c / c ( 1 + c )  = p / p  
2 1 2 2 1 

Because these conditions involve an equality, the dimension of 

the parameter space has been reduced. This is a gain in 

simplicity which, if justified, will reduce the final error of 

prediction. 



V. REPRESENTATION THEORY FOR WEAKLY STATIONARY 

PR0CESSES:IMPLICATIONS FOR NON-LINEAR TIME-SERIES MODELLING 

5.1 WOLD'S THEOREM AND SINGULAR PARTS 

We contend that to make full use of non-linear time-series 

models the use of available structural information is 

essential . The insistence on structural restrictions is 

closely related to prediction since enlarging the class of 

admissible models means that the errors made in choice of 

parametrization become more important. These errors affect the 

final prediction error. It seems clear from our discussion of 

AR order choice that this phenomenon leads to difficulties in 

the case of linear identification, and that in the non-linear 

case the problem will be worse. 

 his observation is of little use without some 

clarification however, since the notion of structure is 

multifaceted. To the scientific investigator, structural models 

are those which express interpretable relationships between a 

Some non-linear time-series modelling might be possible with 
minimal resort to structural information if a useful non- 
parametric approach could be formulated. There is already a 
literature on non-parametric regression (eg. Stone, 1977; 
Friedman& Stuetzle,l981). To make this work for time-series one 
might start with an extremely general autoregressive model. For 
example, a time-series might be modelled as the solution of an 
autonomous continuous time stochastic differential equation 
(SDE) (cf. Jones,l981; Ludwig,1975) and the parameters 
estimated locally using techniques of non-parametric regression. 
The special case when the underlying deterministic flow is a 
gradient field was investigated and partially solved, in work 
related to this thesis. Unfortunately this investigation had to 
be abandonned due to time constraints. 



priori state variables in the system of interest. To the 

statistician structure means the specification of a data 

prescription. In order to reconcile these views we need to 

formulate the idea of the structure of a process in a more 

precise fashion. 

Recall that our definition of a time-series explicitly 

mentions a deterministic relation forced by errors, so that 

conceivably, not all weakly stationary processes may correspond 

to time-series. This section is devoted to clarifying the 

probabilistic structure of weakly stationary processes and their 

representations as time-series . From this discussion 

conclusions are drawn about the connection between interpretable 

relationships and data prescriptions, as well as the 

appropriateness of different types of model. 

For stationary Box-Jenkins models it was shown that a 

moving average representation can always be computed. However 

this representation is not completely general. A weakly 

stationary time-series consists of the sum of a moving average 

part and a deterministic part. Specifically, Wold's theorem 

guarantees that if x is weakly stationary, then it can be 
t 

written as the sum of two components 

where x is deterministic, in the sense that it may be forecast 
1 t 

linearly from previous values with zero mean square error, and 

OD j 
x = Z b  r, 
2t j = O  t - j  



where q is a zero mean uncorrelated sequence of random 
t 

variables. 
3 

The deterministic part is also known as the singular 

component. Its appearance in a weakly stationary process may 

seem puzzling because it seems to imply that the level of the 

series depends on time.  his is indeed the case for fixed w. 

However, the definition of mean-stationarity refers only to an w 

average. While the presence of a non-zero singular part 

generally implies that the time-series is not ergodic, w 

averages may still remain stationary. In fact it is possible to 

construct nori-ergodic stationary time-series whose sing'ular 

parts may be arbitrary finite fourier series. 

To show this it suffices to construct a stationary time- 

series which has singular part A cos(nbt ) + B sin(~bt) 

because any more complicated one may be constructed by summing 

independent series of this form. Let C and C be independent 
1 2 

2 
normal random variables with variance o with mean zero. 

Consider the time-series 

for all t , only C being random 
i 

Obviously this series has mean zero. Computing E [ X  X 1 we 
t t-k 



find the latter ( 1 . 2 )  

= cos( nbk) 

so that the process has stationary covariances. Since the 

magnitudes of the covariances computed using a time average 

depend on w in this example, this process is not ergodic. Since 

for each realization this time-series is periodic it could not 

be discriminated from a non-stationary one in practice. For 

this reason it is usually assumed that the overall stochastic 

process being 'sampled has no singular component. 

This does not mean that in practice time-series do not have 

singular parts. It is important to point out that Wold's 

theorem is a theorem about stochastic processes, and not about 

time-series. Specifically, the process constructed by starting 

a discrete time-series in its stationary distribution, is 

different from the process obtained when the initial value is 

fixed. This distinction is usually not made in discussing time-/ 

series but it can make the difference between a non-zero 

singular component and none. 

A time-series conditioned on a fixed initial value usually 

contains a singular component which must die out more or less 

rapidly as the stationary solution is approached . For example, 

in the linear case the solution may contain a sine-wave which 

damps more slowly as a root of the equation approaches a point 

on the unit circle . Thus, as the root approaches a point on 



the unit circle, the time-series looks more and more singular 

(non-stationary). However, no matter how slowly the singular 

part may die out, if it tends to zero then the recursion admits 

stationary solutions, and the series is stationary in principle. 

In speaking of time-series then, 'near non-stationarity' means 

that a slowly dying singular component may appear in the 

solution of the defining equation, for fixed initial values. 

For non-linear time-series the 'almost non-stationary ' case 

seems the most interesting. 

The generic non-linear time-series is different in 

character for the following reason. To construct a non- 

stationary solution in the linear case, one need only find a 

non-zero deterministic solution for the difference equation 

which specifies the time-series. The non-stationary solution is 

constructed by adding the latter to any stationary solution and 

applying linearity. The result is truely non-stationary . In 

the non-linear case this construction generally fails. It seems, 

reasonable to speculate that most (in some sense) useful non- 

linear recursions will admit true non-stationary solutions only 

with zero probability. For input errors will interact with a 

deterministic solution and cause the system to drift away from 

it. 

In fact it is possible to give sufficient conditions for 

stationarity and ergodicity of a non-linear time-series via a 

result of ~weedie(l975). The relevant result is as follows. 



Let x ] be a Markov chain taking values in a normed space s 
n 

n 
(such as R )  with temporally homogeneous transition 

probabilities 

n 
(1.4) P ( x , ~ )  = P[X E A I X  = X I  

n o 

where xeS, and A is a Borel set. Assume that there is a o- 

finite measure 4 such that that whenever Q(A)>O 

-n n 
(1.5) C 2 P ( x , ~ )  > 0 for every XES 

n 

That is almost all of S is reachable from any xeS. Further 

assume that for every Borel set A of Sf P(X,A) is a continuous 

function of x in the topology of the norm. The result gives 

sufficient conditions for the existence of a finite invariant 

measure p, that is a measure such that for each Borel set A 

Specifically,(i) p with this property exists if 

and 

(ii) there exists 

(1.8) E C  

whenever x # K . 

a compact set K 

bounded for all x 

with p(K)>O and e>O such that 

Whenever such a measure p exists it can be shown  w wee die 

,1974) that except for yeN where N is a null set of S (ie. 

@(N) = 0 



So that the Markov process settles down eventually into its 

invariant distribution. This is equivalent to our definition of 

stationarity. 

Most time-series are not Markov because X depends on 
n 

X ... X . Moreover, time-series do not always possess 
n- 1 n-k 

temporally homogenous transition probabilities, as was shown by 

the example of the second order autoregression with roots on the 

unit circle in section 1.4 . However, when the time-series 

defined by a non-linear recursion has temporally homogeneous 

transition probabilities it is possible to apply Tweedie's 

result. Consider an autoregression satisfying 

X = F(x ,...,X ) + E 

n+ 1 n- 1 n-k n 

where the error series E is normal. If we define 
n 

p-1 " 
then the processes {Y 1 are Markov whenever p > k. Let 

np n=l 

I I . 1 I be defined by the summed absolute values of the p-tuple 
P 

P 
and let S = R . We claim that the following conditions are 

sufficient for stationarity. 



(i) The transition probabilities of the time-series are 

temporally homogeneous. 

(ii) the conditional expectations 

k 
are bounded on R . 
(iii) There exists a ball B of radius R such that 

k- 1 
As X = F(Y ) + E , the condition (1.13) depends on the 

n+ 1 n t 

distribution of the errors as well as on F. 

We prove this result by first verifying   wee die's condition 

k- 1 
for the process (Y 1 under these assumptions. Without loss 

nk n 

of generality we may take R'such that 

k- 1 
To dothis take R'  ax( R ,  k S U ~ E I I X  I I Y  1 using 

n+l nk 

boundedness of the conditional expectation. Finally, define 

We now show that for each p, A > R implies 
nk 

k- 1 
E[ IX J I Y  I < R . Using the definition of the norm, this 

nk+p nk 



k- 1 
will establish Tweedie's condition for the process {Y 1 since 

Y consists of k coordinates of this form. 
(n+l )k 

To begin observe that if A exceeds R then 
nk 

k- 1 
E[X I Y  ] < R/k by (1.13). Note also that (1.13) means that 

kn+l nk 

for each p=l,k-1 , A > R implies 
kn+p- 1 

using the Markov property, for p2l we can write 

(1.16) E [ 

= E[ E[ 

Applying (1.13) to the 

always strictly less than 

k- 1 
X I  I y  1 
kn+p+l nk 

k- 1 k- 1 
X I  I y  1 p  I 
kn+p+l kn+p nk 

inner expectation we see that it is 

~ / k  as required. 
I 

We now argue that because the transition probabilities are 

not tine-dependent the stationary distribution we obtain does 

not depend on how the X were grouped to produce a Markov 
n 

process and thus that there is a stationary distribution for X . 
n 

While such series are stationary, there are many examples 

of stable non-linear recursions with complicated slowly dying 

solutions. Because non-linear recursions admit a rich variety 



of singular parts in the associated time-series, non-linear 

autoregressive models are appropriate when knowledge of a 

complicated singular component exists. 

5.2 A NONLINEAR AUTOREGRESSIVE/MOVING AVERAGE DUALITY 

It will be shown that linear time-series models compare 

well with non-linear models where series of moving average type 

are concerned. However it is difficult to make precise the 

claim that non-linear autoregressive models are generically more 

singular than linear ones (and thus more useful in modelling 

singular parts). The computation of singular and moving average 

parts is not easy in the general case and no procedure seems to 

be known. However, a type of duality between series of input- 

output type and series of autoregressive type may be 

demonstrated formally for certain non-linear processes. This is 

acheived by a novel expansion technique due to ~ones(1978) who 

employed it to do moment calculations. The result suggests that 

large non-linearities correspond to large singular parts. Note 

however that the computed processes are not, strictly speaking,, 

moving averages. 

Suppose that a non-linear autoregression satisfies the 

equa t ion 

where X is infinitely differentiable. For example A(x)= 

exp(-1 - x 1. Consider the family of processes indexed by [ which 
2 



satisfy equations of the form 

Suppose for now that when t=O, w =w for each . but that 
t o  

each process has a stationary distribution (as a Markov 

process). Then for each [ by substitution 

On expanding A whenever necessary obtain ( 2 . 4 )  

2 ( 1  
W([)=e + [ A ( e  )+[X(e ) A (e ) +  higherterms 
n n n- 1 n-2 n- 1 

To approximate the original series set [ = 1. 

Since the processes have a stationary dis-tribution, we 
I 

expect that the effect of the starting value w will die out. 
0 

Thus the influence of e must diminish as j grows, and the 
n-j 

values of e for small j must have greater influence. Such 
. n-j 

heuristic reasoning suggests that the expansion obtained above 

may, be a valid decomposition of X into stationary processes 
n 

which are explicit functions of the e . That is, a 
n 



representation in input-output form. While this is not a true 

moving average, examination of this result seems to indicate 

that in this type of representation is more useful when 4 (which 

determines the size of the singular part) is small. This 

suggests that a generic non-linear autoregressiSe time-series 

will have a slowly dying singular part and will not be usefully 

expressible in input-output form. In the linear case a time- 

series with a singular component (non-stationary model) 

similarly has no moving average representation. 

5.3 PREDICTION THEORY FOR MOVING AVERAGES 

Many theoretical results exist for the moving average part 

of a weakly stationary process. See for example Anderson (1971) 

for general linear theory and Schetzen (1980) for an exposition 

of some general non-linear theory. Such results seem to show 

that the emphasis on linear models is often entirely proper. In 

particular, certain results in prediction theory show that the 

improvement in prediction attainable through non-linear 

predictive schemes is limited. , 

Specifically, when the constituent variables q of a linear 
t 

moving average are independent identically distributed (iid) 

random variables, classical prediction theory gives the error of 

the best linear forecast (eg. Deutsch,l965) as follows. 

Suppose X has such a representation 
t 

X = C  a Y 
n j j n-j 



Now define 

and set 

2 2 2 
If E(Y )=O and ~ a r ( ~  )=u < then A u is the mean square 

j j 

error of optimal one step prediction, that is 

2 2 r 2 
(3.4) A u  = i n f ~ ( ( X  - C b X 1 )  

n+l j=O j n-j 

where the in•’ is taken over all finite sequences b of real 
i 

numbers. 

It is well known that for Gaussian time-series the linear 

forecast (obtained by a Box-Jenkins model) is the optimal one in 

mean square. This is not 'true for the Non-Gaussian case. 

Therefore some gain in forecasting power may conceivably be 

obtained using some non-linear function of preceding, 

observations. However, ~anter(1979) has proved the following 

result for linear moving averages which assumes only some mild 

conditions on the distribution of Y (which must be iid). Let Q 
j 

OD 

denote the set of all Bore1 measurable functions f from R 

into R. Then, letting 



we have 

where the constant Q(Y ) is defined to be variance of the 
0 

Gaussian random variable whose entropy equals the entropy of Y . 
0 

The entropy of a random variable Y is simply -E{ log •’(Y) ) 

where f is the density of Y . It is thus just the information 

function defined earlier evaluated at f(.) . For ~aussian 

2 
sequences Q(Y ) is just a . The result means that for sequences 

0 

2 
Y with Q(Y > 0 and a < then non-linear prediction can 
j o 

2 
improve prediction by at most a factor Q(Y )/a . In particular, 

0 

if perfect non-linear prediction is po;sible then perfect linear 

prediction is possible for moving average processes with finite 

variance and Q ( Y  > 0. 
0 

Thus, the use of Box-Jenkins models to compute predictions 

for weakly stationary processes with iid moving average 

representations is sensible provided the random variables in the 

moving average are not very far from ~aussian. Since however, 

the random variables of Wold's theorem may not be iid, in 

principle there may still be some value in other non-linear 

representations for weakly stationary processes with small 

singular parts. 



For example, Granger and ~ewbold(1976) considered series of 

the form 

where y is an instantaneous transform of x . If a linear model 
t t 

is identified for y then this implies a non-linear model for 
t 

x . Let the inverse transformation of g be denoted by h. If h 
t 

is known and is in some sense well behaved then an analytical 

X 
expression for the optimal non-linear h-step forecast f , of 

nth 

x can be obtained. It may be shown that i f  the 
n+h 

forecastability of the series is measured by 

2 2 
then R > R . That is, the non-Gaussian series constructed 

~ I Y  h,x 

in this manner is always less forecastable than the 'original', 

Gaussian series. Since in addition the construction of non- 

linear forecasts is more difficult than the construction of 

linear forecasts, this observation ought to motivate the search 

for transformations assuming such non-Gaussian series occur in 

practice. Unfortunately this search is not easy. It must be 

born, in mind that for a series to be Gaussian, all the joint 

distributions must be multivariate normal, an extremely 

stringent condition. The most well known set of candidate 



transformations is the Box-Cox (1964) class which are of the 

form 

and include logarithmic (8=0) and linear transformations (8=1) 

as special cases. Nelson (1976) found however,that when this 

transformation was applied to a number of economic time-series 

the resulting optimal forecasts were often no better than the 

linear ones, suggesting that in fact the transformations did not 

give Gaussian series. Thus, without a priori knowledge the 

search for such a transformation seems problematic. 

Other proposals for non-singular non-linear models 

eg.Nelson&Van ~ess(1973) are less well known and difficult to 

interpret. Because the potential improvement in prediction is 

limited and identifying non-linear models is difficult, attempts 

to formulate general non-linear models which are based upon 

modelling the moving average portion of a stationary time-series 

will not likely produce great rewards. 

5.4 BILINEAR MODELS 

Despite the preceding remarks it may sometimes be 

worthwhile to develop non-linear representations for processes 

with small'singular parts. For one thing, even small increments 

in predictive power may be highly desirable. In addition, the 

fitting of such models may be useful as a preliminary procedure 

in a more detailled structural model fitting protocol . 



The most promising class of non-linear weakly stationary 

non-singular models to appear are the bilinear models of 

Granger& Andersen(1978) and Subba Rao (1980). While experience 

with these models is still lacking, it appears that these models 

are sucessful in formulating non-linear forecasts which acheive 

some of the gain in predictive power available without resort to 

structural information. Moreover consideration of these models 

may lead to useful tools for the empirical detection of non- 

linearity. These models may be derived as follows. ~ i r s t  

observe that if a time-series follows the non-linear difference 

equation 

then one can derive an AR(I) model by approximating g using the 

first term of a Taylor expansion. Suppose now that we iterate 

once before doing the expansion. It is found (again taking 

first terms only) that 

which may be approximated by the model 

assuming g(O)=O, and is differentiable. 

This is a bilinear model, so called because X is linear 
t 

both in X and E . Under some circumstances it has a useful 
t - 1  t 



structural interpretation. The terms in the expansion may be 

thought of as representing respectively, the dependence of X on 

X , the interaction of X and E , and the dependence of x 
t-1 t-1 t-1 t 

on an input disturbance E . Such a model might also arise if 
t 

(say) an AR(I) process were observed with multiplicative white 

noise observation error. For if 

and 

where u. is a white noise. 
t 

then 

which is approximately 

These models may be generalized to ( 4 . 7 )  

P 9 Q P 
X = C  a X + C  b e  + C  C  /3 E X 
t j=1 j t-j i=O i t-i k=O 1=1 kl t-k t-1 

(note the absence of a term in X e 1. This is the model which 

would arise on approximating 

(4 .8 -  X = F(X ,X ,..., X ; e ,e ,..., e ) 
t t-1 t-2 t-n t-1 t-2 t-n 

by the first terms of the Taylor series for F, where F is 



st 
derived by iterating once in an n-1 order non-linear AR model. 

To compute effectively with this model is it necessary to assume 

that the errors e are independent random variables, in contrast 
t 

to the linear theory, in which errors need only be uncorrelated. 

theory, in which errors need only be uncorrelated. 

Although there is a large literature on engineering and 

control applications of such models in which the error series is 

replaced by a control variable (Bruni,~ipillo&~och,1974). a 

complete theory does not exist. For example necessary and 

sufficient conditions for stationarity and invertibility are not 

known. Therefore we confine ourselves to a subclass of models 

(the so-called diagonal models) in the sequel, and actually 

discuss only one example.  his class of models is known to 

generate useful weakly stationary processes. However, a true 

bilinear model may be discriminated from a BOX-~enkins model 

(with iid errors) by examining the covariance structure of the 

2 
squared series X . Following Granger&Anderson (1978) we, 

t 

demonstrate these assertions for the particular diagonal 

bilinear model 

Define X = po . Using the standard operator techniques it 
E 

is found 



Multiplying by E and taking expectations gives 
t 

Thus the solution given makes the latter product mean- 

stationary. Returning to the defining relation this implies 

To obtain the variance of X first square the defining relation 
t 

to obtain 

Now take expectations 

To compute the expectation,on the right hand side of the latter 

2 
equation,use the squared defining relation, multiply by e and 

t 
I 

take expectations. From the independence of the error series we 

thus get 

This difference equation has a positive solution for 



independent of t iff 111 < 1. Thus this model is variance 

stationary iff  l h l  < 1 .  TO obtain the first order 

autocovariance p procede as follows. using independence note 
1 

that 

2 
Now substitute for X using the difference equation and take 

t- 1 

expectations to obtain 

Since ( 4 . 1 9 )  

a formula for p may be computed. 

For Gaussian errors, the formula can be made a little more 

explicit . In particular, 





Hence 

( 4 . 2 4 )  
2 

cov(x ,X ) = E[X X ] - (E[X I) 
t t-k t t-k t 

Thus the correlation structure of this model is that of an ~ ~ ( 1 1  

BOX-Jenkins model. 

2 
Consider now the series Z = Y where Y is generated by an 

t t t 

M A ( I )  Box-Jenkins model with iid errors e then 
t 

E[Z Z ] = 
t t-k 

0 n 1 n-1 0 n-k 1 n-k-1 

= 0 for k>1 

Thus Z again has the correlation structure of an ~ ~ ( 1 1  series. 
t 

In contrast, i f  W = X where X is generated by the 
t t t 

bilinear model then it may be shown, by a series of, 

manipulations similar to the forgoing that if the 4th moment of 

the error series exists 

W 2 w  
P = A  p for r>1 
r  7- 1 

W 

while p is a complicated function of A. Thus the correlation 
1 

structure of the squared series is that of an A R M A ( ~ , I )  process. 

In this manner, the linear and bilinear processes may be 



distinguished. 

It is possible to compare in principle the performances of 

predictors based on the two models if the process is actually 

bilinear. If a linear moving average model is used and the 

covariance structure is known then b in the model 

where ( 8  ) is white noise, may be calculated as the solution of 
t 

bP1 for invertibility 

Then as shown earlier 

2 
(4.28) var 8 = var(X) / ( 1  + b )  

t t 

Recall that variances and covariances were calculated- as 

2 
functions of X and a . Thus, the relative performance of the 

E 

two models can be summarized by the ratio 

2 
For o = 1, P increases from 1.000 to 4.20 as as h increases 

E 

from .O1 to .75 and P increases from 4.20 to 23.838 as X 

increases from .75 to .95 . Thus, for larger values of X 

impressive gains in forecasting power are possible. We note 

that for IXI>1 the model becomes non-stationary. 

However, whether such gains are commonly realized in 



practice depends on the frequency with which bilinear models 

occur in nature. As ~ong&~im(l980) remark bilinear models do 

not seem to simulate a large fraction of the types of non- 

linearity possible, thus the specification of bilinearity is 

relatively restrictive. Bilinear series do not have interesting 

singular parts. However, the distributions of the random 

variables of a bilinear process differ from those of a linear 

process. For example, GrangerLAnderson show the diagonal 

processes have non-zero third central moments in general , so 

that the distributions may be skewed, and some higher moments - 
need not exist, assuming the input errors are normal. These 

observations suggest that bilinear models are best suited to the 

simulation of time-series which are non-Gaussian moving 

averages. 

Bilinear models have been fitted to the classical data- 

series such as the Wolfer sunspot numbers and ~anadian Lynx data 

as well as other sample series. It is difficult to compare the 

results between investigators (e.g. Subba-Rao 
I 

(1979),~ranger&~nderson (1978),~ong&~im (1980)) owing to the 

tendency for each to employ individual fitting procedures and to 

fit their models to different intervals of the series concerned. 

In addition the performance of these models is typically 

assessed by omitting a few (usually 10-20) points from the end 

of the data series and examining the ability of the model to 

predict these omitted points. While this method cannot be 

criticized in view of the shortness of these data series, it 



means that no one instance is particularly conclusive, 

Invariably however, an improvement in power of prediction over 

the linear model between 5 and 25% of mean square error is 

reported. This suggests that bilinear modelling procedures do 

provide non-linear predictive power in the absence of structural 

data. 



APPROPRIATENESS OF FULLY NON-LINEAR MODELS: PRACTICE 

6.1 VIOLATIONS OF LINEARITY 

We have indicated that small non-linearities can be 

modelled via a general model such as the bilinear class. When 

models with large non-linearities are admitted potentially 

greater rewards are possible. However, the richness of 

structure which such models admit can lead to difficulties in 

model selection. We have maintained that it is necessary to use 

structural information in this case. In the following section 

we discuss the application of this suggestion in practice. 

It seems best to think of serious non-linearity as one does 

non-stationarity - as an assumption forced upon the analyst 

either a priori, or by the failure of the data to exhibit the 

pleasant features of linear model data. We will discuss 

examples. A non-stationary Box-Jenkins model, as discussed 

earlier is of the form 

where D is the difference operator. As noted, this model form 

is designed to simulate data which is homogeneous in time except 

for a deterministic or stochastic polynomial trend. A non- 

linear model, in contrast, must simulate significant 

deterministic or stochastic inhomogeneities over space, where by 

space we mean the values taken on by X . The most promising 
t 

classes of models for this purpose in our view are the so called 



piecewise linear autoregressive models. 

Non-linear models are required when it is known that a 

linear model leads to a failure to simulate behavior of the 

system under study. To clarify this criterion, note that linear 

structure leads to a number of properties which might loosely be 

called independence properties, because their statements assert 

that some output property is independent of some input property. 

;ust as different types of non-stationarity justify different 

choices of differencing order d, violations of different 

independence properties will indicate that certain non-linear 

models are appropriate. 

We now recall some independence properties of linear 

models. Most importantly, a linear system is amplitude 

independent in that if c is a constant 

That is, inputs of differing amplitudes are output without 

distortion. This assumption is an unrealistic one for many 

models since most physical, biological and economic systems 

exhibit some form of saturation, as well as a linear range. The 

simplest conceptual example (not the simplest mathematical 

example) is to define the operator F such that 

provided (e ( < c for all t < s and 
t 

otherwise 



This is the behavior exhibited by a fuse. Models o f flooding 

and river overflow (~ugawara~1962) as well as earthquakes and 

stock market prices are natursl examples of such phenomena. 

Tong&Lim (1980) propose, and fit piecewise linear models 

which are similar to the fuse in that they contain amplitude 

dependent thresholds, though they do not have infinite memory. 

By experimenting with parameters in such models it is possible 

to illustrate several types of violation of the independence 

properties possessed by linear systems. 

Other manifestations of non-linearity arise from 

interpreting an amplitude dependence in the frequency domain. 

Such interpretation is sensible structurally because many 

natural phenomena are known to be periodic (often because they 

satisfy linear differential equations) and thus it can happen 

that the input to a system is a superposition of a finite number 

of frequency components. , When response depends on input 

amplitude, clear empirical relations may appear in the data 

between frequency and amplitude. In particular the data 
I 

contains epochs in which large vibrations of high (low) 

frequency are interspersed with small vibrations of low (high) 

frequency. This is observed for example, in records of EEG 

during sleep. ~ong&Lim give the example 



otherwise 

(i 1 2 
where var(~ ) = 0.003 , i=1,2 

n 

which simulates the first mentioned behavior, and another 

similarly complex example which simulates the opposite case. An 

important question here seems to be determining the simplest 

process which gives such behavior. 

The superposition pri'nciple is an obvious consequence of 

linearity, which also has consequences in the frequency domain. 

It may be seen that if a sinusoidal input is applied to a linear1 

system defined by 

then setting 

m 

X C a  Y 
n j=O n-j j 

the output is given by 



Thus, the output is a sum of attenuated (amplified) and delayed 

(advanced) sinusoids of the same frequency. This is true of a 

general linear system, and unsurprisingly may fail for non- 

linear systems. For example the output of a non-linear system 

may contain harmonics of the input frequency. ~ o n g & ~ i m  give the 

example 

which responds to some input sinusoids Y with a waveform having1 
n 

frequency double that of the input. This phenomenon is 

difficult to detect by inspection of the data though it must be 

born in mind when a system exhibits systematic periodicity of a 

higher (lower) frequency than can be justified by a linear 

theory. 

From the point of view of time-series analysis the most 

restrictive feature of linear models is that a stationary linear 



system converges to zero in the absence of input, independent of 

the initial condition. Recall that to see this one puts the 

system in autoregressive form and a difference equation is 

solved for the output. It was seen earlier that it is possible 

to generalize'the linear model to simulate processes containing 

sinusoidal components but that the other types of non- 

stationarity encompassed by this model lead to processes with 

unbounded variance and are thus of limited interest. 

In contrast non-linear recursions may have deterministic 

solutions such that-for various initial conditions C X E I 1 
0 - 

there are distinct limit sets A(I) with the property 

XEA iff for all E > O  (x-x I <E 
n 

infinitely often 

We will call such a set an attractor. In particular if the 

state space is partitioned into a finite number of initial sets 

I such that for each i>l A(I ) is a single point then we say 
i i 

the system possesses multiple equilibria. If for some initial! 

set I A(I) contains a closed trajectory of the system we say 

the system admits a cycle. If there exists an I containing an 

open neighbourhood of ~ ( 1 )  and ~ ( 1 )  contains only finite closed 

trajectories then the system admits stable limit cycles. 

Finally, trajectories of non-linear recursions need not be 

closed even though they are bounded. In this case it is said 

the system admits chaotic solutions. (Li&Yorke,l975). When 

limit cycles or chaotic solutions exist deterministic non-linear 



phenomena may account for most of the variance of the series, 

although it may present a random appearance to some conventional 

analyses (~ay,1974; ~unow&Weiss,l979). 

The paper of Bunow &Weiss illustrates the complexities 

which ensue when simple deterministic recursions are analysed as 

linear time-series via their autocovariance functions. These 

examples are non-linear time-series which are entirely singular. 

Several recursions were studied including the discrete logistic 

recursion ( ~ ~ & ~ o r k e ,  1975) 

and the triangle recurrence (Guckenheimer,Oster&Ipaktchi(l977) 

by systematically varying parameters and initial values. 

For the logistic recursion, the most common case (eg. 

r=3.64, X =.878 ) is an almost uniform comblike autocorrelation 
0 

function of high amplitude extending to very large lags, in 

excess of 100 points. Less common (eg. r=3.75, X =.374) was a, 
0 

rapidly decaying oscillatory autocorrelation function with small 

spindles at large lags. Sometimes (eg. r=4.00, X ) the 
0 

autocorrelation function was indistinguishable from that of a 

sequence of independent random variables, or at the other 

extr,eme, was periodic. The triangle recursion graph is similar 

to that of the logistic recursion with r=4.00 so it is perhaps 

not surprizing that its autocorrelation function was usually 



identically zero. 

Limit cycles, chaos, and other non-linear . phenomena 
characterize the rich variety of singular parts in non-linear 

time-series models. This fact is practically important because 

of examples in which a priori models which predict non-linear 

phenomena and yet investigators have persistently fitted linear 

models to data.  his is true particularly of the ecological 

literature (cf. Campbell&Walker,l977; ~ong,1977) as well as 

certain phenomena in economics (cf. Granger&Anderson,l978). 

6.2 THE THRESHOLD MODELS OF TONG&LIM 

~ong&~im+( 1980) proposed a variety of non-linear 

autoregressive models, with the property that different linear 

difference equations were satisfied for different values of X . 
t 

As noted, such models can simulate many of the non-linear 

phenomena described above., However, because this class of 

models is considerably richer than the linear class there is 

some difficulty in conducting the identification procedure. The 
I 

fitting procedure for one type of model is described as follows. 

Let - P be a.partition of the real line corresponding to the 

1+1 points ir ,r ,... r ) .  arranged in increasing order. The r 
o ' 1  1 i 

will be referred to as thresholds. ~efine R = (r ~r 1 0  
j i-1 i 

Then, a self-exciting threshold autoregressive model of order 

; k  or SETkR(l;k, ..., k) ( k is repeated 1 times and 

gives the order of the linear autoregression for each of 1 



regimes) has the form 

-- 
where we write 

and J is a random variable such that J = j if 

(k) 
X E R  - for j=l,l . It is assumed that the errors are 
n-1 j 

Gaussian ( the series is not) independent in different regimes, 

. . 

and that R is a cylinder set of R , of the 'form 
-4 

R x R x . . R  ... x R x R depending on some fixed lag d. Because 
j 

these models are autoregressions they are always invertible. 

To fit such a model, it is necessary to estimate the 

thresholds, the critical lag d and the respective orders of the 

linear autoregressive regimes. Tong&Lim describe the procedure 

followed in fitting a S E T A R ( ~ , ~  ,k ) .  To begin, Q candidate, 
1 2  

thresholds t and D critical lags are selected. In this case 
9 

each threshold distinguishes two regimes. Method ' of model 

comparison used is Akaike's criterion which in this case is 

proportional to 

(2.2) AIC(~) = N In( RSS / N) + 2k 

where N is the number of observations, k the number of fitted 

parameters and RSS denotes the residual sum of squares. On each 



data set determined by each fixed t and d the autoregressive 
q 

orders are determined to minimize AIC(~) for 0 5 k S K where 

K is some fixed maximum order. Because the errors on each 

regime are independent one may next write 

This criterion is minimized in turn to estimate t . The latter 
q 

procedures establish a minimum AIC model for each value of d. 

A difficulty arises in comparing models with different 

values of d because of the asymptotic nature of Akaike's 

statistic. In particular, the selection of a different ' lag 

results in a different effective number of observations. 

~ong&Lim apply a normalization and thus compute 

This procedure produces semi-automatic estimates for all the 

necessary parameters. As in the linear case residuals may be 

plotted and analysed and the model possibly rejected. 
1 

It is difficult to evaluate the sucess of Tong&Lim's 

procedures at this relatively early stage. In fitting classical 

data series such as the Canadian Lynx data and the Wolfer Sun 

spot numbers they report 'disappointing' results.  onet the less, 

for the fitting periods chosen by Tong&Lim, modest improvements 

in prediction power over the linear (and bilinear) model were 

reported. For example for the Wolfer sunspot numbers from 1770- 

1869 the mean square error of one step prediction over the next 



20 years was 346.6 for an ~ ~ ( 2 1  model(~ox&~enkins), 

293.4 for the linear model in combination with a bilinear model 

fitted by ~ranger~~nderson(1978) to the residuals e 

and 267.6 for the S E T A R ( ~ ; ~ , ~ )  model fitted by Tong&Lim 

This seems an impressive gain in predictive power, however, 

there appears to be some non-stationarity in this data which is 

difficult to model. One step predictions over a longer period 

deteriorate. The predictions of a S E T A R ( ~ ; ~ , ~ )  fitted to the 

1837 to 1920 data deteriorate after 1944. 

For the (logarithmically transformed) Lynx data (1821-1920) 

a linear AR(12) model, selected using Akaike's criterion 

Tong(1977) had a mean square error of prediction of .018 , while 

a SETAR(~; 8,3) had mean square error .0144 and a bilinear model 



fitted by Subba-Rao (AR order 1 1  with cross terms up to 

X e ) had the same mean square error as the linear mode1 
t-8 t-10 

over 14 subsequent years. The most striking feature of these 

results is that the mean-square errors are so similar. 

Certainly no clear margin of superiority is evident for 

piecewise linear over bilinear models, or even over linear ones. 

It seems consistent with the evidence to speculate that there is 

a practical limit on the expected improvement over a linear 

model without resort to structural data, and both bilinear and 

piecewise linear models are just rich enough to be close to the 

optimum in these cases. 

In contrast a fitted model for flow of the Kanna river in 

Japan as a function of rainfall and past flow gave a reduction 

of 18% in mean square error against an (unspecified) competing 

linear model over 86 time points. This is their most clearly 

sucessful model in this respect. It is a complicated model. 

There is one (rainfall) threshold distinguishing two regimes. 

One involves log riverflow X to lag 5 and rainfall Y to lag 4 . 1  
t t 

The other regime involves each variable to lag 2. while the 

model may be criticized for its complexity, before presenting 

the fitted model Tong&Lim note that seasonal variations of 

Japanese rivers are quite regular due to the rather well defined 

rainy season there. In addition, the ground soil is rarely dry 

so that variations in the water table are small. Since rainfall 

is not dissipated instantly, it is reasonable that present 



riverflow is a function of past river flow. They conclude that 

it is reasonable to model river flow data as a function of rain 

fall which may contain thresholds. This model thus has some 

structural justification, unlike those for the classical series. 

In view of what we have said so far the success of this model is 

predictable. Akaike notes in the discussion that in his 

experience (implementing control strategies for industrial 

processes) success had been acheived by characterizing the 

system physically in order to chose the particular non- 

linearitities to be modelled. He does not suggest that a 

coherent theory need exist, only that the appropriate 

conditioning variables should be chosen from physical 

considerations, or simple examination of the data. 

In evaluating Tong&Limls approach it is useful to focus on 

Chatfield's questions. 'How can we tell if a given time-series 

is non-linear?' and 'How can we decide if it is worth trying to 

fit a non-linear model?'. In our view, a serious attempt to 

answer these questions even in particular analyses is a large 
I 

step towards a successful model. If so there would be much 

value in future research to determine the simplest threshold 

models which produce particular violations of linearity, and to 

catzlogue examples where threshold models are scientifically 

justified. 



6.3 SUMMARY 

The problems inherent in identifying time-series models 

were discussed and it was shown that structural information can 

be judiciously utilized when a parametrization is to be 

selected. Recent proposals for non-linear time-series models 

were examined in this light. Weakly stationary time-series were 

seen to consist of deterministic and moving average components. 

The potential for non-linear modelling of the moving average 

component was shown to be limited, but it was suggested that 

worthwhile improvements could result from modelling this 

component with'a weakly non-linear (bilinear) data prescription. 

Conversely, we suggest that modelling of the deterministic 

component might best be accomplished via the strongly non-linear 

(piecewise linear) data prescriptions, but that for this purpose 

some structural inform'ation may be required. 



APPENDIX A - SOLVING A HOMOGENEOUS DIFFERENCE EQUATION 

~et'Z(t) be a real function of an integer time index 
satisfying 

We will discuss the method of solution of such a recursion. 

It turns out that the solutions are completely analogous to the 

solutions of homogeneous linear differential equations . Thus 

the solutions can be obtained by first substituting for ~ ( t )  

functions of the form 

Next, determine r from the resulting algebraic equation, 

and count linearly independent solutions to see that the general 

solution has been obtained. Another way to express this 

procedure is as follows. Note that because P(B) is formally a 

polynomial in B, it can be factored using the fundamental 

theorem of algebra as 

( A . 3 )  (I - r B ) (  I - r B ) ... (I - r B) 
1 2 n 

where 
I is the identity operator on sequences 
B is the backward shift operator on 

sequences defined by 
B X  = X 

t t - 1  
r are complex scalars 
i 



Because IB=BI, each of the bracketed factors commute, any 

factor we choose may be written last. Also note that any 

operator polynomial T(B) operating on the zero sequence gives 

zero by linearity. These facts together reduce the solution of 

the difference equation to the solution of 

Thus for each root of multiplicity m there corresponds an 

arrangement of the factors so that the operator in the latter 

equation appears last. If this equation is solved, we have a 

solution of the original equation, for the effect of the last m 

factors is to annihilate ~(t). To solve this equation use an 

inductive approach. First note that for n=l the obvious 

t 
solution is Ar 

We claim that the equation (~.4) has m independent 

solutions of the form 
I 

Since the result is true for m=l it suffices to show 



but 

( A . 7 )  

So that the degree of the putative solution is reduced by 1 by 

the operator I-rB. Thus, the result follows because applying 

each of the m factors one after another must eventually 

annihilate the original form ( A . 5 ) .  
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