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A 

REGRESSION ANALYSIS PROCEDURES WITH HIGHER ORDER 

MOVING AVERAGE ERRORS 
\ 

t 

An easily implemented exact transformation ,is presented t o  transform the 

generalized regression problem wi th  movihg average errors; the transformed 

v&iables are used _in Generalized Least Squares and Maxi m Likelihood estimation. T 
Ths MacDonald and MacKinnon Procedure is extended fo r  higher Order moving average 

process f rom the f i rs t  order. A simulation experiment is onducted t o  observe the 3 
performance o f  three di f ferent procedures:.a3 General Procedure b) MacDonald & 

~ a c ~ i n n o n  Procedure c) Phillips Procedure. In smal l  samples, i t  is suggested that 

the General Procedure performs better. A n  ef f ic ient  way t o  obtain the exact - --- 

'covariance determinant occurring in  the l ikelihood funct ion is presented. 

An extension t o  higher order o f  Park and Heikes's Modi f ied Approximate (MAPX) 

transformation for  f i rs t  order moving average process is derived. The relative 

eff ic iency o f  the regression coeff ic ient estimate using this transformation t o  
* .- 

that%sing the exact(GLS) transformation and also t o  Ordinary Least Squares(0LS) is 

obtained numerically. The results suggested that MAPX per forms as we l l  as the exact 
5 ' 

t ransformation fo r  a certain range o f  moving average parameters, depending on.  . 

the sample size. 
/ 

1 
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\ 3 

\ 
\ 

While exact transformation needs much more effort than the 

approximate transformatian, for large samples approximate 

transformations can be uged instead of exact transformations. 

__$n Chapter 4 we have discussed vaiious kinds cf transformation 
;i $ ,- . 

for 1st order moving average process. We have extended the 
c 

Modified Approximate transformation (MAPX) procedure, to apply 

to higher order moving average processes, suggested by park-and 

Heikes, (1983). We have computed numerically the relative 

efficiencies of '&PX to  and and OLS to see its effectiveness for 
a certain =range of moving average parameters. 
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REGRESSION ERRORS 7- 



2.1 . General Problem 

I t  has become an increasing practice to use 'Univariate 

Time Series' analysis c-ogbined with 'Econometric' problems. In 

our conventional regression model, sometimes called Ordinary 

Least Squares (OLS), one of the assumptions about regression 

error is that, the variance-covariance matrix is 021 which n ' 
implies that the error variance is homoscedastic and there arc 

/ 

no correlations between the errors themselves. But problems 

arise when this assumption breaks down., e.g., if the 

homoscedastic property remain and the other one breaks down, 

which usually happens in Time. Series problems. We then have a 
K. 

covariance matrix of regression error of the form a28, wheqe Sl 
* ";- 

-3 ., 3 

is assumed to be known or at least could be tstimated. '1% Q is 
P +. 

known then we can perform the Generalized Least Squares (GLS) 

which has the same properties as OLS. 

In practice 0 is unknown and some kind of restrictive 
t 

assumptions are made about its structure and since we have to 

estimate 8 ( where estimated Q will be denoted as V ) ,  we would 

no longer have the properties of GLS. This would lead us to the 

Estimated Generalized Least squab (EGLS) method. Like GLS, EGLS 

is also performed in two stages, .using OLS in both the stages, 

only with the exception that estimcted values of the parameters 

are used instead of true value of the parameters. Since it is 

not, in general, an easy task to find the finite sample 

poperties of EGLS estimators, we can use the Monte Carlo 



experiment and,since it is, by its nature, model specific and 

also depends on Gata sets, the findings can not be generalized, 

but we will have some insights about the efficiencies of the 

EGLS estimators. When a-specific assumption about the 

distribution of the regression ,err01 is made, the Maximum 

Likelihood (ML) method of esti~ation becomes an alternative to 

EGLS and the parameters are estimated by maximizing the 

likelihood function. 

2.2 Box-Jenkins Approach 

I f  the above mentioned problem arises, i.e., i f  52 is not a * -  

diagonal matrix, we have to classify the error generating 

process and it can be done by using Box-Jenkins approach. We 

will restrict our discussion to the stationary process, since, 

gi-ven stationarity, any series can be well-approximdted by 

either a moving average,<autoregressive or mixture of both (see - \ 

2.2.1 Stationarity 

One of our assumptions is that the underlying stochastic 

process, in our case the regression error vector, is stationary. - 

I f  the covariance characterist.ics of the s t h a s t  ic process 

change over time, the process is nonstationary; on the other 

hand, i f  it is fixed i t  is stationary. A stationary slochastic , 

process can be classified into, 



a )  Strictly Stationary 
7 -  

b) Weakly Stationary 

a) Strictly stationary Process: 

A process is said to be strictly stationary if its 

distributional properties are unaffected by change of time 

origin, i.e., if the joint probality distribution of the 

observations, say u t l  ut2 .......... u at a set of different tn 

time points tl,t2, ..........., tn is invariant with respect to 
displacement of time. 

b )  Weakly Stgtionary Process: 

A stochastic process is said to be weakly stationary if the 

moments up to some order k depends only on time differences but 

not on time origin. Therefore, if the series (process) is 

stationary with respect to mean and covariance, we call it 
) 
\ weakly stationary of second order. This kind of weak stationary 

along with normality assumption makes it strictly stationary. 

(see Box and Jenkins, 1970,*p.30). 



2.2.2 Test for Stationarity 

Therefore, before proceeding to data analysis we need to 

check wh9her the data to be analysed are stationary or not. . ' 4  
Box-Jenkins and others suggested plotting the observations 

against time and looking whether there is any evident trend in 

mean or trend in variance, and also plotting the~autocorrelation 

function ( A C F ) .  If the ACF for different lags does not die out 

quickly, i.e., iffithey are almost.1, then it is an indication 
,vf 9 

that the process is nonstationary; otherwise, it is stationary. 

b ~ecently, an approach to stationarity testing has been given by 

' Ali and ~halheimar(l983~pp.249-257). Casically, they developed 

four test-statistics for four different distributions: normal, 
, 

logistic ,- double exp6ient ial , and Cauchy . They showed 'i f the 

test-statistics are'iinsignif icant then the series may be 

considered stationary. This method is not widely practiced, 

which may be due to unavailability of the program. 

2.2.3 Stationarity Condition 

I f  an A R ( ~ )  process, 

U = #l,ut-1+42ut-2+ . . . . e e  t + @put-p + € t 

or, ( 1-0, 0-4Ji2- . . . . . . -+Po P )ut = 4(/3)ut = e t 

is to be stationary, it must satisfy the condition that roots of 

the characteristic equation (BOX and ,Jenkins, 1976,pp.53-54) 



#(P) = 0 

should lie outside the unit circle, 

i.e., the solutions P I ,  P2, ....., 0 to eqn. (2.1) must all be 
P 

greater than 1 in magnitude. Specifically, for ~R(11 process, . 
the equation (2.1) becomes, 

\ 1 - 4,P = 0 .  

So that the solution should satisfy, 

1 
'101 = > 1 

b1 1 -  
which implies that, l m l l  c 1 . 

2.2.4 Invertibiljty Condition 

Analogous to the stationarity condition for autoregressive 

process, i f  an MA(q) process, 

is.t.0 be invertible, it must satisfy the condition, that the 

roots of the characteristic equation, 

O(p)= 1 - 8,p - 82 o2 - ..... - Bq pq = 0  

must lie outside the unit circle, 3 

i . e . ,  the solutions p,, p2, ..... ,Pq to eqn. (2.2) must all be 

greater than. one (see Box-Jenkins,l976, pp. 5 0 - 5 1 ) .  



For MA( 1 ) process, 

1 - e l p  = o 

Therefore, 

which implies that 1 e l  i < 1 . ' 

2.3 cd&del Building 

In model build 

Strategy 

ing strategy of univariate time series, Box 

and Jenkins (l976,pp. 17-18) suggested selecting a model' which 

has smaller number of parameters, which they called a 

parsimonious model. They actually proposed an iterative 

.procedure in model selection which includes the fo.llowing 

stages. , +- .ptf 
, 

1 .  Identification of the model 
. $ 

2. Estimation of the parameters ',' . 

. 3. Diagnostic checking -- 

2.3.1 Identification Problem 

Box & Jenkins suggested identification of a preliminary 

model in this stage using ACF and PACF (partial autocorrelation 

function) pattern. The reason for using ACF and PACF are 

discussed below. 

The MA(q) process can be defined as one of the form 







Therefore, the autocorrelation funttions for AR(p) process 

becomes (known as Yule-Walker equations), 

which implies that unlike MA proc'ess AR 'proces's does not have 

cuts-off i n ' ~ ~ ~ ' f o r  k > p. Therefore, we can conclude that if  
1 

'. the ACF cuts off after a certain point the process can be 

thought of as an MA process. But, if  it does not cut-off, rather 

dieing out slowly, it can be thought of as an AR process. More 

confirmation can be drawn from PACF. 

Box and Jenkins suggested that the partial autocorrelation 

can be approximated by Yule-Walker estimates of the successive - 
autoregressive process. This is discussed in detail by Pindyck 

I 

and Rubinfield ( 1 3 9 1 . ~ 5 . 5 2 4 - 5 2 6 ) .  For the pth order 4 - 
i 

- autoregressive process PACF has a cut-off after lag p. Box and - - -- , 

~ ~ n k i n s  (lgi6,p.70) also show that for MA process PACF does not 

cut-off after lag q, rather dieing out slowly, as.opposite to AR , 

.- < , process. 



Since we do not know the autocorrelation andkpartial 

autocorrelation in practice, we have to estimate them from the 

observation. But the estimated autocorrelation and partial 

autocorrelation will not necessar,ily be exactly zero. Rather, it 

will be approximately zero for k > q or p for MA process or AR 

process respectively. 

Therefore we need to find the standard error of . 
autocorrelation and partial autocorrelation estimates. Using 

Bartlett's approximation (see Box and Jenkins, 1976,pp.34-35) 

.the variance of r w ich is the estimated autocorrelation 
k (2 

for pk) is, 

For the autoregressive process we can use the result from 

~uenouilie(see Box and Jenkins, 1976,p.65), that the variance of 

partial autocorrelation coefficient for lag period greater than 

the order p of the process can be approximated as, 

where n is the number of observations. 

Recently, some other methods'were proposed for 

identification of the model-. One of them is Corner method 

proposed by ~eguin, Gourierouse and Monfort (1980~pp.423-436) ; 
/--- - - 

and another one is proposed by Pukkila (1982,pi;.81-103). .-lie 



2.3.2 Estimation problem 

Among the estimation methods frequently used for univariate 

time series anaiysis are the method of moments, the method of 

\ 

suggested that, since, specifically for mixed model it is 

difficult to get an idea about the order of the proc,ess using 

ACF and PACF, one should estimate the parsimonious models 

- A R M A ( ~ , ~ )  beginning with one parameter model (either p=l, or -- 
\ 

a 
q = l ' )  and test whether the parameters arb significantly different 

from zero and also test whether the estimated residuals~behaves 

like white noise and of the above tests fails for all 

possible 'low order models, then proceed for higher order model. 

Thus, the models that could be checked are ARMA(O,I), ARMA(l,O), 

ARMA(I,I), ARMA(O,~) and so on. This seems to us to be 

reasonable, because, as Box-Jenkins and other authors agree, the 
b * 

models we have in practice have a small number of parameters. 

Since we have computer packages available to estimate the 

parameters quickly, we can use this technique too. 

After tentatively identifying a model we can proceed to the 

next stage. 

back forecasting,,the method of least squares and the method of 

maximum likelihood(~1). The method of moments estimate for the 
> 

first order moving average process is, 



where, r ,  is the estimated -autocorrelation coefficient of lag 1 .  

From the above we see that there are two4possible solutions, but 
- .  

only one of them will satisfy the invertibility condition. Box 

and Jenkins (1976,~. 188) show that only one of the multiple 

moment solutions for'pny MA order ,yill satisfy the invertibility 

condition. ~ccording &I Judge, et. al. (1980,p.198) these 

estimates are inefficient relative to the Nonlinear Least Square 

(NLS) estimator. Most authors suggest using NLS or ML and -to do 

this we need an initial estimate of .the parameters. 

Box-Jenkins suggest using the gstimate obtained by the 

method of moments as an initial vdlue of the parameters for NLS 
7. 
i 

or ML. 

We can obtain the preliminary estimates for AR process by ' 

solving the Yule-Walker equations discussed previously. 

Specifically, for AR(2) process these estimates are, 

'I' 

In this paper, we will focus our attention upon the MA 
4 - .  

process. 
~. 

A great deal of discussion has been given on nonlinear 

estimation technique in Box and Jenkins (1976~pp.231-242). Mpst 

of the computer packages use nonlinear least squares and.-not the 
., 

- maximum' likelihood, because of the complexity in estimating the 

determinant of the covariance matrix for MA process. 

i 



/- 

BOX and Jenkins (1976~p.213) suggested an approximation to 
< 

the ML method by disregarding the determinant, because the 

determinant IS21 is dominated by the exponent od the likelihood 

function. ~cleod(1977, pp.531-534) proposed a method by 

substituting an approximation of the determinant term in the 

likelihood function, claiming a closer approximation to the 

exact ML estimator. Osborn (1976~pp.75-87) uses the technique to 
r 

calculate the exact covariance determinant mentioned By Box and 
bT- 

~enkins(1970~pp.270-272): IQI=IR'R(, where,-R is a matrix of 
- -- 

order (n+q)xq, so that R'R is of order qxq and R can be 

calculated recursively. 1) n is big enough this technique might 7 
make problems in computer space and time in form?fiTthe R matrix 

.i \ 

recursively and also in multiplication of them. As a 

modification of this we will introduce a more effic.ient method - 

to obtain the exact covariance determinant. 

Another approach was given by Phadke and Kedem 

( 1978,pp.51 1-51 9) for the moving average process. They get the 

transformation matrix by decomposing the covariance matrix S2 

using the Cholesky decomposition and they also use the 

decomposed matrix to get the determinant. Later it was extended 

for ARMA mode.1 by Craig(1979,pp.54-65). Bath of them use a . 

library algorithm to decompose Q. 
Gm- 

In this paper later, we will show how the determinant can 

be easily obtained from the transformation procedure (used in 

Chapter 2 for GNL) without any further effort. - -- - -- 



2.3.3 Diagnostic Checking 

In this stage we test the model which we chose centatively, 

as to whether it appears to agree with the data. 

The best way to investigate the adequacy of model fitting, 

is to observe its performance outside the sample period. That 
- 

is, the whole sample is divided into two sets, one set is used 

for estimating the model and the other set is to check how well 

the model fits. But, most of the time insufficient amount of 

data prevents us from doing this. So, we use the same set of 
& 

data for.both the purposes. 

Among the tests, we check whether the estimated parameters 

are significantly different from zero or not. Then we go for 

residuals checking, which should be WN, that is, to see that the 

residuals are as a whole uncorrelated among themselves. One of 

the test statistics suggested by Box and Pierce (1970) is, 
m h 

where, 

n-k 

Z it 4 
t=l 

and they showed that this statistic is asgrnptotically 

distributed as x2 with (m - p - q) d.f., where,. p and q are the 

order of the AR and MA proc'ess respectively and m is the highest 

lag period for autocorrelation (i.e., the time displacement are 

!,2, ...,, m) considered. 
- 



Later, Ljuny and Box (1978,pp.297-303) conclude that the 

test statistic, 

Q2(r) = n(n+2j L 
k =  1 

n-k 

has better statistical properties than the above. 

Pukkila (1982,pp.81-103) said that the above two statistics 

are not sensitive to slight departures from WN for reasonable 

sample size, thus, he proposed another test statistic under null 

hypothesis of WN, 

where, qkk is the estimated partial autocorrelation at lag k and 

m=2jn, which he says reasonable for 50 I n 5100. But, most 

computer packages use the Box-Pierce test for its simplicity. 

Box and Jenkins also suggested overfitting the model, i.e., 
L 

after identifying a model one has to select some other model 

aromd the identified one. I f  two models are identified to be 

selected then choose the one which has the smaller number of 

parameters. 



2.4 Regression Equation with Moving Average Errors: 

I t  can be obserkTed that, recently considerable attention 
54 

bas been given to the regression model with ARMA errors. Though 

the error process can be any of the three processes mentioned 

before, most researchers in practice assume the process to be 

autoregressive and most of the time a conclusion is drawn using 

the ~urbin- ats son (DW) statistic proposed by Durbin and 

~atson(1950~1951). I t  is to be mentioned that the DW-statistic 

is not valid for the error process other than AR(1); see 

Koutsoyiannis(l977,pp.212,216). Harvey (1981~p.209-210) also 

expressed the same view. Therefore the DW-statistic is sometimes 

misleading. In the case where the lag dependent variable appears( 

as ari independent variable, Durbin(l970) suggested another 

test-statistic. Wallis (1972) developed a test-statistic for the 

seasonal fourth order autocorrelation in the error term of a 

regression eqilation etimated from quarterly data, generalizing 

the DW-statistic. Since most computer packages provide a test 
L 

and estimation technique for the A R ( ~ )  process, most researchers 

.assume that the underlying prxess of regression error is AR(l), 

as mentioned by Har~ey(1981~p.189)~ though there is no reason 

why rhe other processes should not be entertained equally. Under 

these circumstances, researchers became interested in exploring 

-the othe-f areas and silrile related works are Phillips( 1966),, 

Nicnolls,Pagan and Terrel(1975) and Pagan & ~icholls(1976). 



The model we considered for this paper is the regression 
- 

model with MA errors. Until recently, little-work have been done 

on higher order MA process. Almost all the Monte Carlo or 

similar kinds of numerical cmparisons were done on the MA(1) 

process. We will attempt a Monte Carlo comparison for three 

different procedures discussed below for the MA(2) process. 

Most of the time transformations developed for ~ ~ ( 1 1  are 

difficult, someti.ds impossible to generalize for higher order: 

e.g., Balestra(l980), ~esaran(l973)~ whicb is also mentioned by 

J~dge(1980~p.196). But the transformation we are in 

this paper does not need the inversion of a matrix nor even the 

transformation mtitrix and can easily be implemented for higher 

order MA process. 

M 2.4.1 Regression Model 

Let us consider a-:egression model, 

Y = X O + U  

(2.3) 

Where, Y is a response vector of dimension nxl 

X is a nonstochastic design matrix of dimension nxk 

with,rank k ,  k < n 

U is a random vector of dimension nxl 

0 is a parameter vector of dimension kx1 





and assume the<dFisturbance term U follows a second order moving 

average process, - 
ut=e -8 r -8 e t 1 t-1 2t-2, 

The random variable et j's assumed to be independent with zero 

b .  2 mean and constant varia ce, 1 . e . .  E(et) = 0, Var(et) = o . 
! 

Therefcre, the random Jector ut is ,thus characterized by, 
/ 

E(ut) = 0 and E& ut') = 02 a. 
/ 

R is a five-diagonal matrix, with in the main 

diagonal, -8, ( 1 -02) in the second diagonal above and below the 

main diagonal and -02 in the third diagonal above and below the 

second diagonal. This follows since, 

2 2 = - 8 , o  + O l e 2  o , (since et  is homoscedas:ic), 



2.5 Different ~rocedures' for Transformation 

It is well known that an analytical expression for the 

transformation to transform the generalized regression problem 

into a simple(0~S) regression problem is generally available for 

the regression model with autoregressive disturbances. See J. 

wig; ( 1 9 5 5 ) ~  for n" and Fuller (1976~p.423) for this 

transformation. However, an analytical expression for such a 

transformation in the cese of a regression model with moving 

average disturbances is availaele only for the first order, 

i.e., for MA(I) disturbances Balestra (1980). Pesaran (1973) 

also found the transformation matrix for the first order moving 

average process, and that involves more complexity.than 

Balestra's method. Both the above procedures have a limitation 

in the sense that they are not readily extended for higher order 

MA process. 

'BY different procedures we mean the different ways of 
transformation of a generalized regression problem into a simple 
regression. problem; in other words, the procedure is a way of - 
writing down the model equations (2.3) and (2.4) so that the 
resulting model becomes an OLS problem. 

t 

2This inverse matrix is also given in Kendall, Stuart and 
Ord(1983,p.543) 



The estimation of regression coefficients when the 

regression model has moving average process disturbances can be 

handled in several ways. We -will discuss the following three 

procedures: 6 

a) General Proceclure 

bl ~ a c ~ o n a l d  and hi--Kinaon Procedure 

C) Phillips Procedurc! 

2.5 .'l Genercal Procedure 

To retain the BLUE (Best Linear Unbiased Estimate) 

properties of regression coefficient with white noise error, we 

need to transform the original 0bservat:ons so that the 

regression residuals after transformation becomes w h i ~ e  noise 

( W . N . ) .  

Let T be z non-singular matrix such that, 

TRT' = I n  

or, T-'TQT* = T - 1 



The transformed model is then, 

TY = TXP + TU 

and the covariance matrix of transformed residual is, 

The Ordinary Least Square (OLS) estimate of regression 

co-ef f icient on transformed observation is, 

\ 
c a l l e d b ~ ~  estimate (see Goldberger, 1963, p.232-234). 

2.5,i.l Transformation Matrix 

To get the transformation matrix we can proceed as follows: 

There exists a uniquely defined positive upper triangular 

matrix S (i.e.,upper triangular with positive,diagonal elements) 



such that, S'S = 52 

or, s = ( ~ ' 1 - l  52 

Since, Si is a (2q+l)-diagonal symmetric band matrix, S is 

an upper triangular matri'x with non-zero elements ,in the main 

diagonal and also the q diagona?~ immediately above the main 

diagonal are non-zero and all other elements' are zero; 'S' is a 

similar kind of lower tciangular matrix and therefore, ( S  is 

also a lower triangular matrix. 

From the relationship, 

assuming we have S and Si, we can solve recursively for the 

elements of the matrix (S')-', which is our requi;ed 

transformation matrix. 

~ ~ a i n -  we know that, S S-'- = I ,  therefore, solving'for the 

elements of S-' from the equation system we could get the 

transformation matrix, which would be more efficient than the 

a b ~ v e  computation. However, we did not use either of these two 

tr,msformation matrices in the simulation experiment, because 

the recursive transformation (described below) is simpler and 

easier to implement. 

-- 
2.5.1.2 Transformation in 'Recursive Form 

The transformation in a recursive way is so simple that it 

avoids the inversion of G! and even the transformation matrix. 

Then all we need to obtain 40 which w,e denote as S, are the 
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4, 

The model to be considered here is same as p e d & u s  one, 

We can combine the above two equations4into Y = X p  + 2'7 + E ;  

with some algebra one can verify that this represents (2.5) and ' 

(2.6) when the transformed variables Y, X and Z are defined and 

calculated recursively as follows: 

2, = @Zt-, , where, 
1. 





These model equations may then be analysed as described in 

2.5.3 Phillips Procedure 

This procedure was first introduced by ~hillips(l966) and 

applied by Trivedi(l970), further studied by Pagan & Nicholls 

(1976). 

The regressi n error ut, which follows MA process, 

c a n  be written as, 

c '=Mc-RT 



nxq 

Pagan and Nicholls establish a theorem, that minimizing 

E'E+T'~ with'respect to 0, 8 and 7 is equivalent to minimizing 

U'Q-'U with respect to /3 and 8 ,  therefore NLS or ML can be 

, L I Z  

applied by calculating the errors in the sum of squares E e + ~  u 

recursively as follows: 





a .  
These model equations may then be analysed as described in 

Section 2.6.3. 

2.6 Method of Estimation 

As a method of estimation we considered Estimated 
C-' 

Generalized Least Squares (EGLS) and Maximum Likelihbod ( M L ~ .  

Details of these two methods for three different Procedures is 

given below. 

2.6.1 General Procedure 

2.6.1.1 ~ s t i ~ a t e d  Generalized Least ~ q u a r e ( ~ G ~ S ) :  

Here, we transform the original observations replacing I9 by 

its estimate* 8 .  One possible estimator of 9 is, 

where, z ,  is the autocorrelation coefficient of OLS errors for 
one per'iod lag. This estimator is used by MacDonald and 

MacKinnon, Judge and others for MA(I). For  MA(^) a similar kind 

of estimate can be obtained by solving the nonlinear equations, ' 



for 8 ,  and ,02, but the estimated values for 8, and 8, can be 

read off directly from 'Chart C' at the end of the book by Box 

and Jenkins (1970,p.519). According to ~udge(1980,p.198) these 

estimates are inefficient relative to the NLS estimator and also 

it is very difficult to get the estimates for 8's as the order 
b 

of the moving average process increases. Therefore, it could be 

suggested that, since there are many computer packages (e.g., 

MINITAB) which can easily give us the NLS estimate of 8's we can 

use these packages to get the estimates of 8's to use in the 

transformation. 

Therefore, the EGLS estimate of' regression coefficient is 

p = (X8X)-'X'Y where, X = TX, Y = TY and T is the estimated 

transformation matrix T = T(8). 

2.6.1.2 Maximum Likelihood: 

~nber the assumption of normality, log-likelihood function 

deleting the constant can be written as, 

Where V is defined as before the estimated covariance matrix Q .  

Now replacing u2 by its ML estimator, 



38 - 
after some simplifications the log-likelihood function becomes, 

Therefore maximizing the above likelihood is equivalent to 

minimizing I v I  (l/n)(Y-Xp)'(Y-Xp) with respect t o  P and 8. A 

computer program e.g., FORTRAN subroutine from NAG, for 
* 

mimimizing the above objective function, can give us the ML 
- 

estimate of 0 and 8, where 0 and 8 are the vectors of regression 

and MA parameters respectively. 

2.6.2 MacDonald & MacKinnon .Procedure 

2.6.2.1 ~stimated Generalized Least Square(EGLS) : 

W e  will use the same estimator of 8's as we did in the 

General Procedure, and using the transformation technique 
/ 

discussed in Section 2.5.2 we have the transformed model, I/ 

i 
t 

Y = xp + 2 '7  + E .  i 
/ 

Now by applying Ordinary Least Squares on transformed i 

variables we can obtain the estimates of 0 and q. i .  
I 

2.6.2.2 Maximum Likelihood: I 

Under the assumption of normality, log-likelihood funct4-0; 

after deleting constant term can be written as, 

where 0, and q are vectors of parameters. 

Therefore, maximizing the above log-likelihood is 

- equivalent to minimizing IVI ( 'In' (9-Xp-Z'q) ' (Y~XP-2'q) w i t h  

respect to 0 ,  8 and q. 



2.6.3 ~ h i l l i p  Procedure 

2.6.3.1 Estimated Generalized Least Square(EGLS) (or NLS): 

Since the sum of squares of errors becomes ~'e+z'z.and we 

can calculate them recursively as shown in Section 2.5.3, we can 

minimize the above sum of squares with respect to p ,  0 and ? 

using a minimization program to obtain the EGLS (or NLS) 

estimates of the parameters. 

2.6.3.2 Maximum Likelihood : 

Under the assumption that et are normally distributed, the 

log-likelihood function can be written as, 

Now, replacing 0 2  by its ML estimator 

the log-likelihood function can be written as 

Therefore, maximizing t h e  above log-likelihood is equivalent to 

minimizing IVI *,a+ 
( l ' n ) ( r * r + r  e )  with respect to 8 ,  8 and 7 .  



2.7 SIMULATION EXPERIMENT : 

The simulation experiment is carried out for small samples 

as well as for moderate samples, with MA(2) error process in a 

regression model, to compare the performance of three different 

procedures. For small sample we choose size-10, and 50 as a 

moderate size. 

In this experiment •’'or simplicity the regression model 

considered is, 

Yt = /30+/31Xt+Ut; where, Ut = E -8 c -8 c t 1 t-1 2 t-2 

In the above model we- specified the value of the regression * 

parameters Po = 0 and = 5. 

For each of the sample sizes both the moving average 

parameter\s, namely e l  and O2 are made to vary as below; 

we choose e2 as -0.50 and -0.80. For each e2, e l  takes 

values 21.45 and 21.15. Therefore we have eight different pairs 

of 8's and for each pair of 8's we generate 100 samples 

(repetitions) of same size. 

The different stages involved in this experiment are 

discussed below: 

a )  Stage-I : 

This stage involves computing of u from c a random t t 

variable with mean zero and unit variance from-a'normal -- -- - - -  ---_ -- -- __- 
population using a specified pair of 8's. et is obtained by 

using the MINITAB computer package. Then using the specified 

values of regression parameters and a set of Xt adding witk ut 



we can obtain the response vector Yt for each pair of 0's. Thus 

we are introducing  MA(^) error in our regression model. 

In this stage we regress Y on X (OLS) to estimate the 

regression error 6 ,  which will be used to identify and estimate 

MA parameters. To order of the process we use the 

identification criteria discussed in Chapter-2 and estimate the 

8's from regression errors using BMDQZT computer package. 

c )  Stage- I 1 1  : 

Now, we apply three procedures, which were discussed in 

Section 2.5 and obtain the estimated values of the regression 

coefficients for each pair cf 8's and for two different sample 

sizes mentioned above. 

-. - 

2.8 Empirical.Results : 

Here, we have reported the results found by the simulation 

experiment. We will discuss the performance of different 

procedures through ef.ficiency in twc ways, efficiency due.to 

variance ,of regression coefficiqnt and efficiency due to 

computational time (i.e., cpu time). 

From Appendix A . i  to Appendix A . 8 ,  it can be inferred that 

the regression coefficients are virtually unbiased regardless of 

the procedure and of, the 8 values considered. But it can be 

noticed tKa5 as the sample size increases the amount of bias 
J- 

decreases"~ugh the amount of bias is very small even for 
. , 



sample size 10. 

Concerning efficiency (due to variance), we use the 

relative efficiency of regression coefficients of a particular 

procedure with respect to the OLS (i.e., estimated variance of 

regression coefficient obtained by OLS divided by the estimated 

variance of regression coefficient obtained by using a 

particular procedure from 100 repetitions). 

For the sample size 50, all three procedures are more or 

less the same in efficiency gain, though GNL (General) performs 

better in most of the cases and all three procedures perform 

better than OLS. 

When sample size is 10 (~ppendix A.1 to ~ppendix A . 4 ) ,  the 

efficiency gain by GNL (~eneral) is higher over MM ( ~ a c ~ o n a l d  

and MacKinnon) for both EGLS and ML and for all the pairs of 0's 

considered, but, GNL(ML) is slightly less efficient than PHL(ML) 

(Phillips) in two cases, equal in two cases and better in four 

cases, though the difference is very small."It is also observed 

that PHL(ML) gives regression estimates identical with GNL(ML) ' 

in more than 95% of the samples. It is hard to justify the 

comparison of PHL(NLS) with EGLS of other two, because PHL(NLS) 

has several iterations, whereas GNL and MM need only two OLS 
\ 

regression for EGLS. But it can be noticed that PHL(NLS) does 

better than GNL(EGLS) and MM(EGLS) when 8, takes positive value 

and does poorly than GNL(EGLS') when takes negative value. For 

the same sample size (n=10) efficiency gain is higher by ML than 

by EGLS for both the procedures (GNL and MM) except the cases 



(at Appendix ~ . 2 )  8>= - 1  .IS. O2 = -.50 and (at Appendix A.4) '' 

w 
P - 

when =-  1 .15 and e2=-. 80 , where OLS performs better \than MM: 

the reasofi may be that most of the time O2 lies on the boundary 
.8. 

i 
J 

of the invertibility region. In this context it can be mentioned 

that MacDonald and MacKinnon in their paper (1985, for MA-1) 

also found that OLS performs better than EGLS when 8 is negative 

and MM(%GLS) performs vqry badly when\a= -.80 and n = 100.. 
\ 

+ Another interesting behaviour is that, when sign of 8's are 

different i.e.. when is positive and e2 negative (we consider 

only negative e2 in this paper).-the efficiency gain with 

intercept and s'lope are same, though the tendency is higher for- 

intercept. But, when the sign of is negative, efficiency with 

slope is always higher than with intercept and the difference is 

much more as the sample size increases. 
f l  

Since the results obtained form a complicated structure we 

also use covariance analysis to .summarize our results. In this 

summarization we shall use terms like "Significancew rather 

loosely, This is not a pretense of probability sampling or of 

genuine inference, but only a means of summarizing the extent to 

which the pattern emerging from our simulations conforms to the 

additive ANOCOVA model described. The dependent variables 

considered for the model below are: , 

a) Relative efficiency for intercept, b) ~elative efficiency for 

slope, Bias for intercept and d) Bias for slope (absolute 

bias is used), The independent variables are sample size, value 

of 0 2 ,  sign of e l ,  magnitude of 8, and six different methods as 



a categorical variable, namely, GNL(EGLS), GwQ~L), MM(EGLS), 
j. 

-. 
MM(ML), PHL(NLS) a n d - p L ( ~ ~ ) .  In more detakl, in Appendices B.l , 

and B.2 the additive model, 

Y = -constant + T + (SMSZ x coefficient) + (TH2 x coefficient) + 4 1 

( ~ $ 1 ~  x coefficient) + (MTHI x coefficient) + error 

- -was imposed upon our simulated results, as a meghanical device 

for organizing and presenting our results?, Here, Z Ti = 0, so 

that Ti is the "effect" of using method number as below, \ %.-A 

and also, 
.I 

SMSZ = sample size 
C 

TH2 = specific . . value of O 2  . d L  

-STHI = sign of 8 ,  I 

'(1 

MTHl = magnitude of B 1  - 

In  en end ides B.3 to B.6&similar but separate analyses 

were performed, first for all the simulated samples of size 10 
b 

and then for all the simulated samples'of size 50. 

When bias is concerned from the ANOCOVA table (Appendix 

----B.21, we see that, for all the six methods the value of the -1 
estimated effects of method on bias are so small that they can 

be ignored. The significan~e levels sugg&t that the 
r " 

i. 



f-- 
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'L 

coefficients are not significantly different from zero for both 

intercept.and slope. But for sample size (SMSZ, whichxis an 

independent variable), significance levels indicate that sample 

size has significant effect on bias, though it is very very 

. small. The sign of the coefficient is negative, indicating the 

inverse relationship with the dependent variable, so that as the 

sample size increases bias decreases, which supports our 

previous discussions, which were based on informal examination - 

without using ANOCOVA. Aga n the significance level for sign of 

8 ,  (for intercept) tells us that the sign of 8 ,  has influence on 

the amount of bias. But, since all the estimated coefficients 

for bias as dependent variable are so small we can ignore their 

effects. 

In the case of efficiency gain for both intercept anz'slope 

by different procedures, it can be observe that (~ppendix ~ . 3 )  

the estimated coefficient .25640 for GNL(ML) and .25265 for 

PHL~ML) ifor intercept), and (for slope) the estimated 

coefficient .56810  for GNL(ML) and .49023 for PHL(ML) with - 
significant t-statistic puts the GNL(ML) in the top rank for the 

sample size 10. This can again be verified by exam'ining Appendix 

A .  1 to ~ppendix A.4, where for four pairs of 8's GNL(ML) does 

better than PHL(ML), for two pairs of 8's they are same and for 

two pairs of 8's GNL(ML) could not perform better than P L(ML), 4' 
though the amount of relative efficiency is almost the same. 

Therefore, considering all the eight pairs of 19's GNL(ML) is 

marginally superior than PHL(ML). 



.For the same sample size, both GNL(ML) and PHL(ML) performs 

better than MM(MLS for ail pairs of 8's. Again considering EGLS, 

GNL performs better than MM for both the sample sizes and~for 

all pairs of 8's considered (Appendices A. 1 to A.8). 

The significance levels (Appendix B.l) for sample size 

(SMSZ) in both intercept and slope indicates the certainty of 

-sample size's effect on efficiency gain, though the estimated 

values of the coefficients are very small, but the positiveJ sign 

indicates that as sample size increases efficiency gain also 
/' 

increases. The magnitude of 8 ,  (MTHI) also hds a significance 

level which shcws strong suggestion of positive effect upon 
,. 

efficiency gain and the value of the estimated coefficient is as 

high as 2 982 (~ppendix B.l) for slope efficiency ( also high k, 
for interce&-qfficiency ) with positive sign. This indicates 

that fpr high values of 8 ,  efficiency gain is higher for both 

slope and interceptIawhich is very effective when sample size 

gets large (see Appendix B.3 and Appendix B.5). 

Sign of (STHI) also has a-definite effect for intercept 

efficiency gain (looking through significance level) and the 

value of the coefficient is 2.657 (Appendix B.1) with positive 

sign. This suggests that, as long as the sign for is 

positive, zfficiency gain is higher than for negative and this 

is true for both the sample sizes (Appendix B.3 and Appendix 

B.5) and for sample size 50 the estimated coefficient is as high 

as 4.905. I t  can be further confirmed by looking through the - 

Rel. Efficiency table (Appendix A.l to Appendix A.41, for sample 
-1 - 



size 10 (except for one case 82=-.50.,, el= 51.45 in GNL(ML)) that 

efficiency gain with intercept is higher when is positive. 
- 
This can also be seen when n=50 (Appendix A.5 to Appendix A.8). 

I t  is observed that for all pairs of. 8's and for' each method, 

efficiency gain with intercept is higher for positive e l a n d  the 

difference is more as the magnitude of goes up. This is also 

true for slope efficiency i.e., as the magnitude of 6, increases 

the amount of relative efficiency increases (Appendix A.5 to 

Appendix A.8, n=50) in every case and fnr all methods. This .is 
t 

further confirmed by the ANOCOVA table (~ppendix B.5, n=50), 

where with very much favourable significance level and an 

estimated coefficient of 47.128 the positive sign tells us that 

as increases in magnitude efficiency gain also increases. But 

with slope efficiency for sign of (Appendix B.l), 
e 

significance level is not favourable and the estimated value of 

the coefficient has a negative sign. Therefore with a , 

non-significant significance level and a small estimated 

coefficient (as - . 7 6 5 ) ,  it appears that the sign of 8, virtually 

has no"ffect on efficiency gain with slope. 

For the value of d2 (TH2), which appears as an independent 

variable in the model described above, the significance level 

(Appendix B.1, for the combined samples) confirms the effect on 

slope efficiency but not on intercept efficiency, though the 

estimated value of the coefficients is high for both with 

positive sign. Again, for sample size 10 (~ppendix B.3) the 

estimated coefficients of the TH2 variable are very smHll and 



the signs are negative, whereas for sample size 50 (Appendix 

B.5) the estimated coefficients are high with positive.sign, for 

slope it as high as 23.146 and is confirmed through 

significance level. Therefore,, i,t is tempting to draw the 

conclusion with sample size 50, that as e2 increases (decreases 

in magnitude) the efficiency gain is higher, but if we look to 

the results in Appendix A.5 to Appendix A . 8 ,  specifically for 

slope, when +1.15, then as O2 goes from -.50 to -.80 

efficiency increases (Appendix A.6 and Appendix A.8) andsfor e l =  

21.45 ef-iciensy decreases for the same change of .e2 (Appendix 

A.5 and Appendix A.7). Therefore, it is difficult to draw any 

conclusion only with two values of e2 and at the same time 
> 

ignoring 8 , .  

I f  we consider computing efficiency, i.e., the c p u  time 

. required for the computations, using the method EGLS for GNL and 

MM procedure, it seems that both procedures are more or less the 

same in c p u  time requirement and they need a fraction of a 
+J 

second. Since ML or NLS needs several iterations and therefore 

more c p u  time, we recorded the c p u  time (in IBM-3081) for 

different procedures in Appendix A.l to Appendix A.8. For sample 

size 10 GNL(ML) takes always less time than the others and in 

general all methods take less time when 8, is negative. I f  we - 
consider rank of taking less c p u  time, it is GNL(ML), PHL(ML) 

and MM(ML.) respectively for both sample sizes. It is also 

observed that as sample size increases the time requirement is . . 

-1 

also increased, but the proportion of time requirement more or 



less remains same among the three procedures. (r- ,I 
Now, if we bring PHL(NLS) in consideration, we see that for 

sample size 10 GNL(ML) is always in the first rank (in respect 

of taking leis time) and PHL(ML) is in the second position 

except the case el = -1.15 pnd O 2  =-.80,  where PHL(NLS) takes 

the second position and MM(ML) is either in 3rd or 4th position. 

But, for sample size 50 PHL(NLS) is in the first position in six 

sets, GNL(ML) is in the second position in six sets and first in 

other two, whereas PHL(ML) takes the third position in six sets. 

Therefore, PHL(NLS) may have considerable attentim for 

computing efficiency in large sample, but, considering 

efficiency due to variance simultaneously, GNL(ML) should be 

preferred over the others. However, M M ~ M L )  did not perform very 

well in computing efficiency. 

Therefore, from the above discussions", it appears that 

con~idering all factors GNL performs better than all others. Of 

course this kind of conclusion has limitations in ;he sense that 

the results ,may be sensitive to the particular model chosen and 

also the X va?ues(given) and the MA parameters considered. In I 

conclusion, considering all aspects, this simulated experiment 

is able to make a suggestion that GNL is to be preferred than 
, 

the others foK higher order MA process in regression e-rrors. 



2.9 Specification Error: 

In a variety of specification errors, one kind is about the 

assumptian of regression error, which costs on efficiency of 

regression estimates very much. I f  the assumed process is not 

the true process, the variance of the estimated regression 

coefficient will be biased, i.e., if the true process is (let us 

say), MA(2) and the assumed process is MA(I) or ~ ~ ( 1 1 ,  the 

regression coefficient will be inefficient. G. S. Watson (1955) 

found the analytical expression of the lower bound to the 

efficiency of the regression estimates for the special case X'X 

= I and in continuation to that paper Watson and Hannan (1956) 

apply that lower bound for various choice of true error process 
I 

and assumed process. 

On an experimental basis, we did a similar kind of 
- 

experiment tc see how good the identificati.on criteria discussed 

in Section 2.3.1 (SOX-Jenkins approach) works for small sampJes 

such as 10. For large samples and even for moderate size as 50 

Box-Jenkins identification criteria works very well. But for 

small sample using ACF (autocorrelation function) and PACF 

(partial autocorrelation function) it is sometimes hard to 

detect the order and the model of the process. 

Tk.erefore, after identifying the model using the criteria 

discussed in Section 233.1, we apply GNL(ML) procedure for 

correcting the regression errors when it is M A ( I J  and parallel 

to that for AR(I) we use Beach and MacKinnonls (1978) procedure 



of Maximum Likelihood and we also apply correction for  MA!^), 

since we know the- true process is M A ( 2 ) .  We ,use only two pairs 

of MA parameters, 
1 

a) O2 = -.50 and = 1.15 

b) 8* = -.50 and = -1-.15 

and the relative ef.ficiencies of assumed (identified) process to 

the true process is given below*: 
r 

From the above results we see that relative efficiency3 

REAR 1 

Where, the relative efficiency REAR1 is defined as the 
estimated ~ar~iance of true process  MA(^) divided by the 
estimated variance of identified process AR(1) for the 
identified number of samples nl and n2 for two pairs of 8's. 
Similarly, REMAl is the relative eff.iciency defined as the 
estimated variance of true m ( 2 )  process divided by the- 
estimated variance of identified MA(1) process for the 
identified number of samples n3 and n4. 

nl = 30 

.9318 .9143 

n2 = 21 

.9908 .9580 



I 

does not fall v d y  much with respect to the true process, which 
r 

tells us that,.,.'the Box-jenkins 'identification criteria does not 
. _/'. 

give us very poor result though it identifies the model wrongly 

for the number of cases mentioned in the table (i.e. the number 

of repetitio'rrs). But, since the results obtained only used a few 

cases (where it identifies the model other than  MA(^)), these 

, filldings can not be very reliable and may not be justified for 

/ 'other \_ cases. But the truth is that a wrongly identified model 
1 --- 

can give us a better estimate of the regression coefficient, 

though this is not.always true. 



C H A P T E R  3 
\ 

EXACT DETERMINANT OF COVARIANCE MATRIX 



3.1 Determinant of Covariance Matrix S l  

For Maximum Likelihood method the determinant of $2 plays an 

important role. Ju?.ge(1980fp.205) mentioned that evaluation of 

IS21 is a headache in the case of ML. 
C ' 
There have been a number of approaches for exact maximum 

likelihood and also for approximate ML, blit the latter one is 

asymptotically the former one. The approximation can arise from 

the approximation in transformation or from the approximation in 

determinant. Box and Jenkins(1976,p.213) for univariate time 

series suggested an approximation of the latter kind by 

disregarding the the.determinant. McLeod(1978) proposed an 

approximation of the determinant term and claims a closer 

approximation to the exact ML. ~nsley(1976,p.59) discussed the 

fact that approximation by disregarding the determinant can lead 

to inferior estimates; he gave references to different Monte 

Carlo works. 

3.2 Determinant from the Transformation of General Procedure 

Ansley use the determinant proposed$ by Phadke and 

Kedem(l978) usinq library subroutine: It is, 

= ls'l lsl 
2 

= ( product of diagonal elements in S ) . 



I 
This can be obtained from our square root matrix S discussed in 

Chapter 2, when we are using General Procedure, because the 

elements of S are already obtained for transformation. We just 

need to use the diagonal elements of S. Therefore, we are 

getting the determinant as a by-product. But, if one is not 

using General Procedure (GNL), then it is better to apply the ' ' 

technique discussed'below to estimate the determinant of $2. 

3.3 Exact Determinant Using 8 Matrix 

We know from Osborn(1976,pp.76-77) that the determinant of 

Sl can be written as I R ' R I = I Q I  
where, 

- - 
R = 0 1 0  0 ......... 0 1 ,r 

0 0 0 ......... 1 0 

. . . . . . . . . a  . . . . . . . . . .  . 
0 0 1 ......... D 0 

0 1 0 ......... 0 0 

1 0 0 ......... 0 0 

......... 1 @2 e3  Oq- 1 e q 

.......... 812+82 8182+83 8183+84 +8 8 8 8 1 e q - ~  q 1 q 

and so on 
./ 

\ 



More precisely, the rows of R4 a 

follows: 

fter q rows can be found as 

1. The (q+l.j)th element is the sum of multiplied by (q.j)th 

element. O2 multiplied by iq-l.j)th element. ........ 
8q 

multiplied by (1,j)th element. 

2. The (q+2,j)th element is the sum of 8 ,  multiplied by(q+l,j)th 

ement, B2multiplied by (q,j)th element. ........., 8 multiplied 
9 

by (2,j)th element. 

n. The,.--@nIj)th element is the sum of O 1  multiplied by 

(q+n-1,j)th element, z2 multiplied by (q+n-2,j)th element, 
8 multiplies by (q+n-q, j)th element. 
9 

In compact form R can be written as, 

~1nskead of R, Osborn(1976) and Box & ~enkins(1970) use the 
notation X. 



where, 

and A  = [ A ,  A 2  A 3  ..... A k  ... An 1 

where, A . ' s  a r e  column v e c t o r s ,  such t h a t ,  
1 



The above O matrix is defined earlier (Section 2.5.2). 

Now, R'R can be written as, 

R'R = [ ' A ] 

= [ I + AA'] 

•÷xq 

Where, 

AA' = A 1 A I P +  A2A2'+ ....+ A Pr . = Z AiAi' n n 



or, A A '  = € 9 A O A O ' B ' + € 9 ~ l A 1 ' B ' +  ...... +BAn- IA 'n -1€3 '  
t 

Therefore, 

I R ' R ~  = I T 'T+AA' I  

where, MI= A O A O  1 0 0 .... 0 



we can also use , 

where IR'R/ is of order qxq. 

Thus, we are reducing our work to dealing with a qxq matrix 

rather than a big matrix (n+q)xq, and usually the order q' of the 

MA process is very smaller relative to n. Therefore, one can use 

either ( 3 . 1 )  or (3.2) above to get the determinant of covariance 

matrix. The computer program in FORTRAN to calculate the 

determinant is given in Appendix H.2. I t  is also simple in the 

sense that here we do not need to form the complicated matrix R. 

It can be noticed that for the 1st order MA process our 

determinant becomes, 



Since 8 i sca 1 and MI is 1, 

which was reportedby Box and ~enkins(1976,~.272) aqd also by 
b 

~alestra(1980,p.381). 



C H A P T E R  4 

APPROXIMATE ESTIMATOR FOR THE HIGHER ORDER MOVING AVERAGE 

- PROCESS IN REGRESSION ERRORS 



1 

4.1 Approximate ~ransformdtions for MA Process: 

Along with the exact transformations, researchers also get 

themselves involved with approximate transformations. It is 

obvious that we can get better results using exact 

transformation than using approximate, but the latter is 

asymptotica.1ly'the former. Approximate transformations are used 

for computational simplicity. Balestra(1950.pp.390-394) proposed 
'-', 

an 'approximate transformation matrix T* of d4mension (n-1)xn for 

MA(1) and showed that the transformation can be carried out 

recursively as, 

where, c is the MA parameter; 

Thus, Balestra is loosing the first observation. With that in 

mind later Park and Heikes(1983) propose another approximate. 

transformation P augmenting T* by a first row consisting of 1 in 

the 1st column and zeroes in others for the same order of MA 

process, where P is of order nxn. 

In both the papers, they considered a simple regression : 

equation with constant term only and they derived the analytical 

expression for the variance of the estimated constant using 

their transformation, which is reproduced here below. 



Balestra 

For c<l : 

OLS : 

2 (1-CI2 + 

0 [ 
n 

2c I 
n 

APX: 

n- 1 where r,=(l-c )/(l-c), and r,=(l-~~~-~)/(l-c'). 

2 n .  
2 (1-c) 2c(l-c ) I - 1 

0 [ I -  

For c=l : 

2 2 OLS: 0 - 
n 

'APX: o 
2 3n(n2-1)(3n+10) 



.._ . 

Park and Heikes 

For eek 

n n+l ) where H = n(1-c2)-c(1-c )(2+c-c 

For c = 1 :  

where, APX stands for Approximate Transformation by Balestra 
- 

(her.eafter EL) and MAPX is the Modified Approximate 

Transformation by Parks and Heikes. 
,- >- 

On the basis 0.f numerical/computations of relative 

efficiencies, for six sample sizes and six values of c, EL finds 

that: 

(a) OLS performs better thaa APX when c is low. 

(b) APX performs extremely well for c around 0.5, but does very 

poorly for high values of c, even in 1-er sample sizes. 

On the other hand, Park and Heikes using their 
- 

transformation observe that: 

(a) For c around 0.5, MAPX performs extremely well and better 

than APX for c10.5 . 
(b') Like A.PX, MAPX does not perform well for high values of c, 



and the per.formance is about the same as APX for c in the 

interval of 0.5 to 0.99 . 
From ~ppendix C . l  (reproduced here) it can be observed 

that, MAPX does better than APX for c below 0.5, but, does not 
- 

perform as APX for c above 0.5. 

Choudhury and Chaudhury(l984) propose another approximate , 

transformation P of dimension nxn as below: 

where the transfokmation can be carried out in a simple 

recursive way, 

- 
€ 1  = c,/J(l+c2) 

- 
€ 2  = € 2  + E,C/(1+c2) 



They found the variance of the estimate of constant for the 

same 'intercept only' model is, 

k 

where, A = (1-c)(l+c2)(n+nc2-2c)-c2(1+c)(l-cn-'~(c2-cn~1+2~ 

For c=l, the variance is: 

They also compute numerically the relative efficiency for 

APX, MAPX and FMAPX(~urther Modified Approximate transformation) 

to the GLS for eight differeA~t sample sizes and six values of c 

in Appendix C.1, which shows that FMAPX is a hetter 

approximation in the sense that, it performs better than the 

previous two for all values of c and;the sample sizes, 

considered. It  can be found that FMAPX performs as well as GLS 

for c less than 0.7. In Appendix C.2 (reproduced here), they 

showed the relative efficiency of APX and MAPX to FMAPX. 

The approximation proposed by Park and ~eikes is also 

discussed by ~ollock(1979,pp.203-207) for MA(I) process. 

- Both the previous two approximations i.e., APX and MAPX 

uses the covariance matrix whose determinant is 1 ds shown by 

Balestra (1980,p.390). Therefore, ML estimate for these is 



I 

equivalent to the least squares. For the FMAPX the determinant 

can be found as l+c2. Therefore,* ML estimate can be obtained by 

maximizing the log-likelihood, 

using the ML estimate of 02,, the concentrated log-likelihood 
function becomes, --.- 

where, 8 and P are the transformed variables. 



4.2 Modified Approximate Transformation(~APX) for Higher Order 

MA Process: 

Unfortunately, FMAPX can not readily be generalized for 

higher order MA process, but MAPX can be generalized as below. 

Where the transformation matrix for  MA(^) can be written as, 

nxn 

( @ 1 3 + 2 8 1 8 2 + g 3 )  ( g l 2 + g 2 )  

and so on 

This transformation matrix '?' is the square root matrix 
- 1 obtained from VO-', where Vo is the inverse of approximate 

covariance matrix Vo, which for  MA(^) can be defined as below: 



Therefore, we can see that only the first four elements in 

the left upper corner of Vo are approximated with the 

corresponding elements of exact V matrix; elsewhere the elements -- 
are identical. 

The abov~ transformation matrix 'l' can be obtained starting, 

with 1's in the main diagonal and all zeroes above the main 

diagonal.,,*Then the (2,l)th element is the multiplication of O 1  

with the (1,l)th element; (3,l)th element is the sum of 

multiplication of e l  with (2,1) and e2 with (2.2); (3,2)th 

element is the multiplilcation of O 1  with ( 2 . 2 ) ;  ....; (k,l)th 
element is the sum of multiplication of el with (k-1,1), O2 with 

(k-112), ......, 8 k -.l with (k-1,k-1)th element; similarly tk,2)th 

element is the sum of multiplication of e l  with (k-1.2)~ O 2  with 

(k-1 ,3) I,.. . . . , 'k-2 with (k-1,k-1); and so on. 

But, more simply, we can obtain the transformation matrix 

after obtaining the 1st column, because, all the diagonal 

elements of a diagonal on and below'the main diagonal are the 

same. Therefore, first element of 1st row will construct main ' 

diagonal, first element of 2nd row will construct 2nd diagonal, 

first element of 3rd row will construct 3rd diagonal and so on. 

It  is easy toobtain the first column recursively as follows: 

a) 1st element is 1.  

(;G 
b )  2nd element is el(a). 

C) 3rd element is 81(b)+62(a). 



d) 4th element is 81(~)+82(b)+83(a). 

I q) qth element is 81(q-1)+82(q-2)+...+B 9- 1 (a). 

q+l) (q+l)th element is B1(q)+82(q-1)+...+B (a). 
9 

n) nth element is B,,(n-l)+82(n-2)+...+8 (n-q). 
q 

Ifawe want to form the transformation matrix, the above 

procedure is convenient, but, if our objective is only to 

transform the ~ariable~then the former procedure seems more 

convenient in respect of computer space,. because, all we need to 

store is the previous row, to form the present row. d 

But, for practical purposes, we can use the recursive 

transformation discussed below. 
b 

Since our purgose is to transform the variable, the 

following super-simple recursive procedure can be adopted. 



Thus, for example, for ? 4 ~ ( 2 )  process 'the transformation can be 

carried out as, 

'3 Therefore, i f  6' is unkno,n, using the estimated value of. 

8's we can transform the variables using our above recyrsive 

transformation procedure to perform two-stage EGLS. 
b 





- - , n is the sample size, 
2 a n 

MAPX: o 2  (x'vo-~x)-' X ~ V O - ~ V  VO-'X (x*vo-~x)-' 

where, 2 is thz transformed observations using the approx'imate 

- I transformation and Vo is .the inverse of the approximate 

Vo matrix which is defined* above., 

GLS: 02(x*v-'xP 

- where, X is the exact using the transformation 

matrix S discussed in Chapter 2. 

~rom'the results presented in Appendix F.l to Appendix F.6 

for six different sample sizes, we observe that, 

a) MAPX does extremely well with respect to OLS when 8 ,  and 

- e2  both are positive and sample size is greater than 10: for 

sample size 10 or less its'performance is not very good. 

b) For the region of O 2  in between -0.55 and 0.0 

(inclusive), with positive 8, its performance is very good for 

all sampbe sizes considered and as sample size increase; the 

performance is excellent, specifically for higher values of e l .  

For negat-ive e l  it does not perform very well except for the 

couple of points in the region , 



C) Again its performance can be appreciated in the (tablt!s, 

i.e. Appendix F.l to Appendix F.6) lower triangle of the 

reactangle bounded by the region, 

. - 
for sample sizes greater than 10 and for size 10 or less the 

I 

performance is reasonable. 

Compared with GLS, the approximate estimator does well 

(middle of the ~ppendix G.l to Appendix G.6) and as the sample 
% 

size increases the performance jncreases too. If we compare 

Appendix G.l and Appendix G.6, we see that in the middle of 

\ tables the'number of ones -(1.000) increases in sutseantial 

amount. Again comparing Appendix G.5(n=50) and ~ppendix 

G.6(n=100) the improvement of approximate estimator .can be 

observed very clearJy, specifically the lower part of the table, 

i .e . ,  when both 8's are positive. Therefore, ion negative 8's it 

is not doing very well. " 



As w'e said before, for the region, 

-.30 S 8 ,  5 0.30 

-.25 5 O 2  C 0.25 
5 

(ire, in the middle of the tables) there is no reason not to 

consider approximate estimator rather than -exact (GLS) on the 

ground o•’ computational simplicity and the above region of 8's 

becomes increases as sample size gets larger. 

Thus, we can say that the approximate estimator does as 

well as exact for small values of 0's and can also be considered 

for large 8's when sample size is larger. 

From Appendix E.1 to Appendix E'.6, it is observed that OLS 

does worse with respect to GLS'in the bottom line of the tables 

( i , e, for the highest values of e l ,  •’0.- tach 02) but does well 

in the middle of tables, where both 8's are near to zero, which -- , 
means there is virtually no moving average effect and hence GLS 

merges to OLS. Another important aspect is that, as both the 8's 

tends to zero from both ends efficiency gain by GLS over OLS 

diminishes. 

As we discussed in the previous Chapter, for- high values of 

H I  (for intercept) efficiency gain over OLS is higher than for 
i 

?ow values of 8 , ;  this can be reconfirmed from ~ppendix E.l to 

Appendix E.6 and also it is to be observed that wnen the sign of 

8, is positive (with high Value of 8,) efficiency gain is much 

n s r e  cian k i t h  negative 6;, wnich verifies our previous result. 



C H A P T E R  5 

C O N C L U S I O N  



It is apparent from the results of simulation experiment 

from Appendix A.l to Appendix A . 8  that the General Procedure 

(GNL) performs better than the other two procedure for both 

sample sizes considered. It performs excellently for' sample size 

10. We have compared the relative efficiency of the esErmated 

regression coefficient for a simple regression model with an, 

intercept and a slope coefficient. The relative efficiency is 

defined as the estimated variance of the regression coefficient 

by OLS divided by the estimated variance of regression 

coefficient by three different procedures obtained from 100 
L 

repetitions. The results obtained are reported in Appendix A.l 

to Appendix A.8, which are further analysed using analysis of 
b 

covariance and the findings are reported h* Appendix B. 1 to 
d 

Appendix B.6. It can be observed from Appendix A.l to Appendix 

A.4, fpr sample size 10, that the G,eneral  procedure(^^^) 
i .  J 

performs very well over the others. Which can easily be 

understood from Appendix B.3 (sample size 10) that the proposed 

transformation GNL(ML) does better than the others. I; 

The efficiency due to computational time, i.e., the time 

req;ired by the central processing unit ( c p u )  in the computer is 

reported in Appendix A.l to Appendix A.8 and it is observed that 

GNL(ML) takes always less time than the Sther two for both the' 

sample sizes considered. 



In Chapter 3 we have shown the determinant for covariance 

matrix can be obtained as a by-product when General Procedure 

(GNL) is in consider,ation. We also have shown in details how an 

exact determinant can be obtained. 1f can be' observed that the 
J 

dimension of the matrix for which the determinant is to be 

calcuiated is reduced from (n+q)xq to qxq, which reduces our 

work and makes the computational effo; much simpler. Because, 

the order of the moving average process q is very much smaller 

than the number of observations n, we have in practice. 

Therefore, one can use this exact determinant for any o-f the 

three procedures discussed in Chapter 2. Specifically, it is 

impvtant to use this determinant when one is using MacDonald 
," 

, and MacKinnon Procedure or Phillips Procedure. Because, they do 

not have any determinant to be obtain as a by-product like 

General Procedure. , 

In Chapter 4, we ha;e discussed the efficiency of proposed 

approximate estimator relative to the GLS and OLS. We have 

computed the relative efficiency for six different sample sizes. 

abulated from Appendix E.l to Appendix E.6 for 

cy of GLS to OLS, from Appendix F.l to Appendix 
r 

ive efficiency of MAPX to OLS and from Appendix G.l 
/ 

to Appendix G.6 for relative efficiency of GLS to MAPX. It  is to 

be observed from Appendix G.l to ~ppendix (3.6 that approximate 

estimstor performs as well as exact estimator in the middle of 

the tables, i . e . ,  when both the moving average parameters are- 

s n a l i  i~ m a g n i t u d e ,  k s  sample size increases, i c e . ,  as we move 



J from Appendix G.l to Appendix G.6 the efficiency of the 

approximate estimator increases. Therefore, in that region of 

the MA parameters, i.e., in the middle of the- tables the 

approximate transformation may be considered instead of exact 

transformation on the ground of computational simplicity. 



APPENDIX A .  1 

REL. EFFICIENCY AND BIAS OF Bo AND B1 ESTIMATES 

n = 10 

GNL : 

MM: 

WITH RESPECT TO OLS 

EGLS 

Bo B 1 

Eff. Bias. Eff. Bias 

Bo B 1 

Eff. Bias Eff. Bias 

1.734 0.038 1.616 -.021 

1.607 -.006 1.469 .007 

1.709 0.028 1.592 -.017 

CPU TIME:( in milliseconds) 
G N L ( ~ ~ )  M~(rn1) P H L ( ~ ~ )  PHL(n1s) 

REL. EFFICIENCY AND BIAS OF Bo AND B 1  ESTIMATES 
WITH RESPECT TO OLS 

GNL : 

MM: 

EGLS 

Bo B 1 

Eff. Bias Eff. Bias 

1.562 -.I69 2.162 0.034 

1.260 -.I95 1.585 0.012 

1.535 -.089 1.912 -.003 

Eff. ~ i a s  Eff. Bias 

1.763 -.I15 2.821 0.006 



APPENDIX A.2 -. . 

REL. EFFICIENCY AND BIAS OF Bo AND B1 ESTIMATES 

GNL : 

MM: 
I. 

PHL: (NLS) 

WITH RESPECT TO OLS 

Eff. Bias Ef f. ~ i a s  ' 1  Ef f. Bias Eff. ~ i a s  

EGLS 

8 ,  = 1.15 CPU TIME:( in milliseconds) 
GNL(m1) MM(rn1) P H L ( ~ ~ )  ~ ~ ~ ( n l s )  

ML 

REL. EFFICIENCY AND BIAS OF BO AND B1 ESTIMATES 
WITH RESPECT TO OLS 

GNL : 

w: 
PHL: (NLS) 

Eff. Bias Eff. Bias 

- 
ML 

Bo B 1 

Eff. ~ i a s  Eff. ~ i a s  

8 ,  = - 1 . 1 5  CPU TIME:( in milliseconds) 
~~Lirnl) M M ( r n 1 )  ~H~(rn1) PHL(n1s) 

O 2  = - . 5 0  166 .3  5 4 1  .O 295.0  4 3 4 . 0  
'I 



APPENDIX A. 3 

REL. EFFICIENCY AND BIAS OF BO AND B1 %ESTIMATES 
WITH RESPECT TO OLS 

GNL : 

EGLS 

Bo B 1 

Eff. Bias Eff. ~ i a s  

2.113 0.080 1.958 -.050 

1.941 0.065 1.772 -.044 

2.940 0.071 2.621 -.046 

ML 

Bo B 1 

Eff. ~ i a s  Eff. ~ i a s  

CPU TIME:( in milliseconds) 
G N L ( ~ ~ )  M M ( ~ )  P~L(rn1) PH~(nls) 

REL. EFFICIENCY AND BIAS OF Bo AND B1 ESTIMATES 
WITH RESPECT TO OLS 

GNL : 

MM: 

PHL: (NLS) 

Bo B 1 
i 

Eff. Bias Eff. Bias 

1.528 -.I73 2.422 0.027 

1.161 -.I39 1.488 -.027 

1.506 -.074 1.959 -..0*20 

Bo B 1 

Eff. Bias Eff. Bias 

1,707 -.I44 3.927 0.019 



APPENDIX A . 4  

REL. EFFICIENCY AND BIAS OF Bo AND B l  ESTIMATES 

GNL : 

MM: 

WITH RESPECT TO' OLS 

EGLS 

Bo B 1 

E f f .  B i a s  E f f .  B i a s  

2.246 -.006 2.214 -.013 

1.740 0.003 1.535 -.021 

2.763 0.018 2.829 -.023 

-- - 

ML 

Bo B 1 

E f f .  B i a s  E f f .  B i a s  

CPU TIME: ( i n  m i l l i s e c o n d s )  
G N L ( ~ ~ )  MM(m1) ~ ~ ~ ( r n l )  P H L ( E ~ ' s )  
-266.8 547.0 3 7 4 . 7  506.0 

* 
REL. E F F I C I ~ C Y  AND BIAS OF BO AND B1 ESTIMATES 

WITH RESPECT TO OLS 

GNL : 

MM: 

PHL: ( N L S )  

EGLS 

Bo - B1 

E f f .  B i a s  E f f .  B i a s  

1.364 -.I69 1.747 0.033 

1.002 -.I16 0.024 -.044 

1.282 -.I55 1.613 0.024 

BO B 1 

E f f .  B i a s  E f f .  B i a s  

CPU TIME:( i n  m i l l i s e c o n d s )  
G ~ L ( r n 1 )  MM(m1) P H L ( ~ ~ )  ~ ~ ~ ( n l s )  



APPENDIX A . 5  

REL. EFFICIENCY AND BIAS OF Bo AND B1 ESTIMATES 

n = 50 

GNL : 

MM: 

PHL: (NLS) 

WITH RESPECT TO OLS 

EGLS 

Eff. Bias Eff. Bias 

ML z' 

1 

Bo B 1 

Eff. Bias Eff. Bias 

25.057 - .012 23 .850  0.007 

27.229 - .007  27.350 ' 0 ; 0 0 4  

31.123 - .008 30 .664  0 .005 

8 ,  = 1.45 CPU TIME:( in milliseconds) 
GN~(rn1) MM(m1) ~ ~ ~ ( r n l )  PHL(nl5) 

8 ,  =-e50 1807.0 3675.0  2581  . O  2653.0 

REL. EFFICIENCY AND BIAS OF Bo AND B1 ESTIMATES 
WITH RESPECT TO OLS 

GNL : 

MM: 

PHL : ( NLS 

EGLS 

Eff. ~ i a s  Eff. ~ i a s  

Bo B 1 

Eff. Bias Eff. ~ i a s  

1.861 0.030 43.952 0 .003 

1 .819 0 .025 47.362 0 .004 

8 ,  =-1 .45 CPU TIME:( in milliseconds) 
G N L ( ~ ~ )  ~ ~ ( m l )  PHL(~~), --,iP#LLnls) 



APPENDIX A. 6 :, 

v" 

-7 

REL. EFFICIENCY AND BIAS OF Bo AND B1 ESTIMATES 
WITH RESPECT TO OLS 

GNL : 

MM: 

PHL: (NLS) 

EGLS 

Bo B 1 

Eff. Bias Eff. Bias Eff. ~ i a s  Eff. ~ i a s  

8 ,  = 1.15 CPU TIME:( in milliseconds) 
G~L(rn1) MM(rn1) PHL(rn1) PHL(nls) 

O 2  =-.50 1037.0 1841 . O  121 1 . O  917.0 

6 REL. EFFICIENCY AND BIA$ OF BO AND B1 ESTIMATES 
WITH RESPECT TO OLS 

EGLS 

Eff. Bias . Eff. Bias 

GNL : 11.477 -.012 3.830 - 0.0m 

<*, A 

Ef f.' Bias Ef f .k 



1 .  

I 

P 3- -. 

1 * ' 

r '  1 
APPENDIX A . 7  

-b 

Bo . i " B 1  
I 

5%" 
a % 

* 

' E f f .  . B i a s  E f f .  B i a s  

d - 
Bo ' I '  3 1 

- 
Ef f .  B i a s  E f f .  ~ i a s  

1 3 . 1 7 5  - . 0 0 7  1 5 . 8 2 3  . 0 . 0 0 5  

1 3 . 5 9 6  - . 0 0 4  1 4 . 0 6 0  0 . 0 0 4  
*'. 

1 4 . 7 4 6  - . 0 0 6  14 .732  0 . 0 0 4  

8 ,  = 1 . 4 5  . CPU T I M E : (  i n  m i l l i s e c o n d s )  
~ ~ i 2 4 , m l  ) MM(rn1) ~ H L ( r n 1 )  P H ~ ( n 1 s )  

e 2  =-  . 8 0  1 0 0 2 . 0  1 4 0 5 . 0  1 2 2 4 . 0  4 7 6 . 0  
, , 
2- 

*c. 

REL? EFFICIENCY AND BIAS OF Bo AND B 1  ESTIMATES 
WITH RESPECT TO OLS 

GNL : 11 .816  0 . 0 0 3  9 . 5 2 6  0 . 0 1 6  

ML 

Bo B 1 

E f f .  B i a s  E f f .  B i a s  

1 . 7 0 3  0 . 0 0 8  1 2 . 1 6 7  0 . 0 1 4  

1 . 6 1 8  0 . 0 1 1  1 0 . 7 3 4  0 . 0 0 9  

1 . 6 9 2  0 . 0 1 0  1 2 . 5 5 9  0 . 0 1 3  
I 

I REL. E F F I C I E N C Y  A W B I A S  OF BO AND B I  ESTIMATES , 
WITHr RESPECT TO OLS 

* <  

8 ,  = - 1 . 4 5  CPU TIME: (  i n  m i l l i s e c o n d s )  
G N L h l )  MM(ml) P H L ( m 1 )  ~ ~ L ( n i s )  

i .. EGLS Mp 



APPENDIX A.8 

I 
- - 

REL. EFFICIENCY AND BIAS OF BO AND B1 ESTIMATES 
WITH RESPECT TO OLS 

p- 
EGLS 

I 
n = 50-  Bo B 1 

- 
Eff. Bias Eff. ~ i a s  

;NL : 5.829  - . 016  5 .710  0 .011  

0 4 :  5.746 - . 0 1 8 k  5 .448 0 .012 

)HL:(NLS) 5.620 0 .014  5 .547 - .003 

ML - 

Bo ' B 1  

Eff. Bias Eff. Bias 

7.667 0.001 7.755 0.003 

6.824 0.0'10 6 .816  - .002 

7 .167  0 ,004  7 .101  0.001 

I 8 ,  = 1.15 CPU TIME:( in milliseconds) 
GNL(rn1) MM(m1) P H L ( ~ ~ )  ~ ~ ~ ( n l s )  

I 

a 

REL. EFFICIENCY AND BIAS OF Bo AND B1 ESTIMATES 
WITH RESPECT TO OLS 

EGLS 

Bo B 1 

Eff. Bias Eff. Bias 

1.448 - . 015  5 .382 0 .024  

1 .415 - . 018  4.934 0 .021  

1 .444 0 ,029  8 .487  0 .002  

ML 

Bo B 1 

Eff. ~ i a s  Eff. Bias 

1.446 0 .023 9 .125  0 .006 

1.379 0 .019  8 .270  0 .003 

1.436 0 .025  8 .960  0 .005  

8 ,  5 -1 .15  c ? U  TIME:( in milliseconds) 
GNL (ml) !m(ml) ~HL(rn1) P H L ~ ~ S )  



I ,  

APPEWDIX B.l 
( ANOCOVA ) 

(combined samples) 

- - - - - - - 

SOURCE DF' SUM SQRS MEAN SQR F-STAT SIGNIF 
REGRESSION 9 1477.,8 164.20 8.6434 .OOOO 
FIRST 5VARS 5 40.081, 8.0162 .42198 .a322 
ERROR 86 1633.7 18.997 
TOTAL" 95 - 3111.5 

VARIABLE COEFF STD .ERROR T-STAT SIGNIF 

CONSTANT -10,645 4.3843 -2.4279 .0173 - 101 .TI -.731 .9947 -.7349 .4644 
102.T2 .439 .9947 .4410 .6603 
103 .T3 -. 953 .9947 -. 9580 .3408 
104.T4 .327 .9947 .3285 .7433 
105.T5 .460 - 1  . ,9947 .4621 - 1  .9632 
106.T6 . .873 f 9947 .8772 . 3828  
5. SMSZ ,117 .2224 - 1  5.2580 .OOOO 
6.TH2 2.743 2.9656 .3248 .3577 
7.STH1 2.657 .4448 5.9720 .oooo 
8 .MTHl 10.061 2.9656 3.3927 .0010 

ANALYSIS OF VARIANCE OF REL. EFFICIENCY of B1 

SOURCE DF SUM SQRS MEAN SQR F-STAT SIGNIF 
REGRESSION 9 4680.1 520.01 9.7655 .OOOO 
FIRST 5 VARS 5 360.51 72.101 1.3540 .2497 
ERROR 86 4579.5 53.249 
TOTAL 95 9259.5 , 

VARIABLE COEFF STD ERROR T-STAT SIGNIF 

CONSTANT 
" .  101 .TI 
102.T2 
103 ,T3 
104.~4 
105.T5 
106.T6 
5. SMSZ 
6.TH2 
7.STH1 
8 .MTH1 



2 & "s 

i; * B%, 
i- 

APPENDIX B.2 

-( ANOC3VA ) 
, (combined samples) 

ANALYSIS OF VARIANCE%F BIAS OF BO 

SOURCE DF SUM SQRS MEAN SQR F-STAT SIGNIF 
REGRESSION 9 .20377 .22641 - 1  17.225 .OOOO 
FIRST 5 VARS 5 .37730 -2 .75461 -3 .57410 .7196 
ERROR 86 .I1304 13144.-2 
TOTAL r 95 .31681 

COEFF . STDERROR T-STAT SIGNIF 

CONSTANT 
101 .TI 
102.T2 
103.T3 
104.T4 
105.T5 
106.T6 
5. SMSZ 
6. TH2 
7.STH1 
8 .MTHl 

ANALYSIS OF VARIANCE OF BIAS OF B1 

SOURCE . DF SUM SQRS MEAN SQR , F-STAT SIGNIF 
REGRESSIC.4 9 .71467 -2 .79408 -3 5.8421 .OOOO 
FIRST 5 VARS 5 .I3378 -2 .26756 -3 1.9684 .0914 
ERROR 86 .I1690 - 1  .I3592 -3 
TOTAL 95 .18836 - 1  

VARIABLE COEFF STD ERROR T-STAT SIGNIF 

CONSTANT 
101 .TI 
102.T2 
103.T3 
104 .T4 
105.T5 
106.T6 
5. SMSZ 
6. TM2 
7.STH1 
8.MTHI 



( ANOCOVA ) 
(Sample Size = *lo) 

ANALYSIS OF VARIANCE OF REL. EFFICIENCY OF Bo'- 
* + 

SOURCE DF SUM SQRS MEAN SQR F-STA~- SIGNIF 
REGRESS1 ON 8 11.817 1.4771 13i462 .OOOO 
FIRST5VARS 5 2.6112 .52224 4.7597 .a017 
ERROR 39 4.2792 .I0972 
TOTAL 4 7  16,096 

VA&I ABLE COEFF S'l'D ERROR T-STAT- SIGNIF 

CONSTANT 
101 .TI 
102 .T2 
103.T3 
104 .T4 
105.T5 
1 0-6. T6 
6.TH2 
7.STH1 
8 .MTH1 

SOURCE DF SUM SQRS MEAN SQ& F-STAT SIGN1 F 
REGRESSION 8 11.726 1.4658 '5 6.41 64 .OOOO 
FIRST 5 VARS 5 , 8.8933- 1.7787 7.7860 .OOOO 
ERROR, 39 8,."!JO-93 J2844 
TOTAL 47 20."635 B 

P -, 

I VARIABLE COEFF STD ERROR T-STAT SIGNIF 
I 

CONSTANT .93514 - 1  .57201 .I391 6 
101.T1 -.51146 - 1  $:I5426 1, -.33156 
102 .T2 .568 10 .'l 5426 3.6828 
103.T3 -.6132? .I5426 -3.9756 ' 
'104.T4 -.41177 .I5426 -2.6693 
1 0'5.T5 .I7854 - 1 ,15426 .I1574 
JO8".T6 ,49023 .I5426 3.17790 
6.TH2 -1.2837 .45991 -2.7913 
7.STH1 ,79104 - 1  .68987 - 1  1.1467 
8.MTH1 .83486 .4599 1 1.8153 

,' 



APPENDIX B.4 

. ( ANOWVA 1 , 
(Sample, Size = 10) 

ANALYSIS OF VARIANCE OF BIAS OF Bo 

SOURCE DF SUM SQRS MEAN SQR F-STAT SIGNIF 
REGRESSION 8 .I4085 .I7607 -1 17.945 .OOOO 
FIRST.5 VARS 5 .78468 -2 .I5694 -2 1.5995 .I831 

ERROR 39 .38265 - 1  .98115 -3 
TOTAL 47 .I7912 

VARIABLE COEFF STD ERROR T-STAT SIGNIF 

CONSTANT .55708 -1 .44041 - 1  1.2649 
101 .TI .24692 -1' .'lo110 - 1  2.4424 
102.T2 -.344!08 -2 .lo110 ~1 -.33838 
103 .T3 .64667 -2 .lo110 - 1  .63966 
104.T4 -.I5633 - 1  .lo110 -1 -1.5464 
105.T5 -.GO583 -2 .1011Q -1 -.59927 
106.T6 -.60458 -2 .lo110 -1 -.59803 
6.TH2. .I9778 -1 .30141 - 1  .65618 
7.STH1 -.52287 -1 .45211 -2--11.565 
8 . XTH 1 .35389 -1 .30141 '1 1.1741 

ANALYSIS OF VARIANCE OF BIAS OF B1 

SOURCE DF SUM SQRS MEAN SQR F-STAT SIGNIF 
REGRESSION 8 .I9637 -2 .24547 -3 1.0281 .4319 
FIRST 5 VARS 5 .!I2370 -,2 .24739 -3 1.0362 .4102 

ERROR 39 .93114 -2 .23875 -3 
TOTAL 47 .I1275 -1 

VARIABLE COEFF STD ERROR T-STAT SIGNIF 

CONSTANT .27111 -2 .21725 - 1  .I248 
101 .TI .97229 -2 - .49870 -2 1 .9496 
102.T2 -.40646 -2 .49870 -2 -.8150 
103 .T3 .5104i -3 .49870 -2 .I024 
104.T4 -.20146 -2 .49870 -2 -.4040 
105.T5 .I8354 -2 .49870 -2 .3680 
106.T6 -.59896 -2 .49870 -2 -1.2010 
6.TH2 -.22931 - 1  .I4868 - 1  -1.5422 
7. STH1 .I5896 -2 .22303 -2 .7127 
8.MTH1 .59028 -2 .I4868 - 1  .3970 



APPENDIX B. 5 

( ANOCOVA 
(Sample Size-= 50) 

ANALYSIS OF VARIANCE OF REL. EFFICIENCY OF Bo I 

VARIABLE COEFF STD ERROR T-STAT SIGNIF -I  

SOURCE ' DF SUM', SQRS MEAN SQR F-STAT SIGNIF 
RE@ESSION 8 1692.1 21 1.51 9.3942 .OOOO 
,FIRST 5 VARS 5 59.265 1 1  .853 .52644 .7548 
ERROR 39 878.10 22.515 
TOTAL 47 2570.2 b3 

CONSTANT -15.253 6.6715 
101 .TI -1.379 1.5315 
102.T2 .62 1 1.5315 
1 03.T3 - 1 .506 1.5315 
104.T4 .790 1.5315 
lO5.T5 - .I72 - 1  1.5315 
106.T6 1.492 1.5315 
6.TH2 6.531 4.5659 
7 ..STH 1 4.905 . .G849 
8.MTH1. 19.999 4.5659 

' 

" . ANALYSIS 'OF VARIANCE OF REL. EFFICIENCY OF B 1 
m 

URCE DF SUM SQRS MEAN SQR F-STAT SIGVIF 
8 3724.3 465.53 li 6.5982 ' .OOOO 

@%RST 5 VARS 5 622.52 124.50 1.7646 %I430 
ERROR 39 2751.6 70.555 % 

TOTAL 47 6475.9 

VARIABLE COEFF STD ERROR T-STAT SIGNIF 
'= 

CONSTANT -33.479 11.810' -2.8348 .0072 
101 .TI -4.752 2.710 ' -1.7530 .0875 
102.T2 2.619 2.71 1 .9660 .3400 
103.T3 -5.187 2.71 1 - 1  .9134 .0631 
104.T4 2.699 2.71 1 .9953 .3257 
'1 05.T5 .989 2.71 1 .3647 ,7173 
106.T6 3.634 2.71 1 1.3404 .I879 
,6.TH2 23.146 8.083 2.8636- .0067 
7'.STH1 -1.610 1.212 - 1.3278 .I920 I- 
8.MTH1 47.128 8.083 5.8309 .OOOO 

1-- 



( ANOCOVA 1% 
(Sample Size = 50) 

ANALYSIS OF VARIANCE OF BIAS OF BO 

SOURCE " DF SUM SQRS MEAN SQR F-STAT SIGNIF 
REGRESSION . 8 .20657 -2 .25821 -3 1.24'42 .3003 
F ~ ~ S T  5 VhBS 5 .89468 -3 .I7894 -3 .86219 .5151 
ERROR $39 .80940 -2 .20754 -3 
TOTAL, " 27 .lo160 - 1  

* < 

VARIABLE GOEFF STD ERROR T-STAT %.$IGNIF 
h 

4% * d 

Q 
f 

ANALYSIS OF VARIANCE OF BIAS OF B1 
% %  5 

SOURCE Dl? SUM SQRS MEAN SQR PSTAT SIGNIF 
REGRESSION 8 .I0259 -2 ,12824 -3 6.0295 .OOOO 
FIRS* 5 VARS 5 .40314 -3 .80627 -4 3.7909 .0068 
ERROR ) 39 '.82947 -3 .21269 -4 
TOTAL 47 .I8554 -2 

VARI ABLE COEFF STD ERROR 'T-STAT SIGNIF 

CONSTANT .37135 - 1  .64842 -2 5.7270 .OOOO 
101.T1 '.47167 -2, .I4884 -2 3.1689 .0030 
102.T2 , -.12083 -2 .I4884 -2 -.8118 .4218 
103.T3 .32167 -2 .I4884 -2 2.1611 .0369 
104.T4 -.31333 -2 .I4884 -2 -2.1051 .0418 
105.T5 -.I9833 -2 .I4884 -2 -1.3325 .I904 
1 0 6 . T,6 -.I6083 -2. .I4884 -2 -1.0805 : 2865 
6.TH2 .I2778 - 1  .44377 -2 2.8794 .0064 
7.STH1 -.21250 -2 .66565 -3 -3.1924 .0028 
8.MTH1 -.I4583 - 1  .44377 -2 -3.2862 .0022 



The ratios of the varian'ce of :AITKEN to 'the 
variances of APX, MAPX and FMAPX. For a given 
sample size, the first' row is for APX,the 
'second iqr MAPX, and the third for FMAPX. 



tbt r a ,,T c c c u  

R a t i o s  of t h e  va r i ance  of @ PX t q f b h e  v a r i a n c e s  
of A P X  and MAPX. The f i r s t  row- is-'&r APX, end 

' t h e  second f o r  MAPX. ?& 
k b  
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APPENDIX H.l 

This FORTRAN program is t q b e  use to obtais chc transformed 
variables, to perform the EGLS and can also be use as a sub 
--qoutine for ML, when the Regression Moc?el has ~ ~ ( 2 1  Errors. 
REAL*8 T H ( ~ ) , Y T ( ~ O ) , X T O ( ~ ~ ) , X T ( ~ O ) , S ( ~ ~ , ~ O )  - 
V A L  *8 ~ ~ ~ ( 1 0 ) , ~ S ~ 1 ( 1 0 ) , X S T 2 ( 1 0 ) , ~ l l , h l 2 , A 1 3  
TH's are the two MA prameters readinq from MTS file. 
YT,XTO,XT are the-dejendent variable and two independent 7 variable, one of thek may be csLumn of 1 ' s for intercept.. 
S is the square root matrix of covariance matrix V. 

, 

YST,XSTI,XST2 are the transformed variables of YT,XTQ,XT. 
INTEGER N,M,I,L,J,K . a - 
N=10 *-. A 

This N is for sample size,to beJchanged,when necessary. 
READ (3,601 TH 
READ (5,601 YT 
READ (2,58) XTO 
READ (4,601 XT 
A ~ ~ = ~ . ~ + T H ( ~ ) * T H ( ~ ) + T H ( ~ ~ T H ( ~ )  
~12=-TH(l)*(l.~-TH(2)) , 
A13=-TH(2) , 
~(1,1)=~11**.5 
YST(I)=YT(I)/S(~,I) - 
xs~i(i)=x~O(i)/s(i,i~ 
X S T ~ ( ~ ~ = X T ( I ) / S ( ~ , ~ )  
~(1,2)=~12/S(l,l) 

~~~1(2)=(~~0(2)-S(1,2)*XSTl(l))/S(2,2) 
XST~(~)=(XT(~)-S( 1 ,~)*xsT~T~) )/~(2,2) . -.. . K= 1 .- 
L=2 
The values given to K and L are fixed, not to be changed. 
DO 10 J=3,N 
s(K';u)=A~~/s(K,K) 
s(L,'J,)=(A~~-S(L-1 ,i-1 )*S(L-1 ,J) )/S(L,L) 
s(J,J)=(A~~-s(K,J)*s(K,J)-s(L,J)*S(L,J))**.~ 
YST(J)=(YT(J)-S(L,J)*YST(J-~)-S(K,J)*YST(J-~))/S(J,J) 

K = K +  1 
L=L+ 1 
CONTI NUE 
WRITE (6,10025) YST 
WRITE (7,10025) XSTl 

I 

WRITE (8,10025) XST2 
These transformed variables may be used for EGLS. 
FORMAT(F16.8) 
FORMAT(F3.0) 
FORMAT(F9.5) 
STOP 
END 



APPENDIX H.2 

C*** T h i s  program w i l l  c a l c u l a t e  t h e  exact  determinant  of 
C*** covariance matrix 0 f o r  MA(2) e r r o r  process  using 8 matr ix .  

-, 

REAL*8 A ~ ( ~ O , ~ ) , S A ~ , S A ~ , S A ~ , D E T , T H E T A ( ~ ) , Z ~ ( ~ ~ ) , Z ~ ( ~ O )  
READ (5,100) THETA 

C*** Where THETA is  fM moving average parameters .  

MM=50 
c*** Where MM is  t h e  sample s i z e ,  change when necessary along 
C*** with the  dimensions s p e c i f i e d  above. 

ZI(I)=-I*THETA(I) 
~2(1)=-lXTHETA(2) 
~ 1 ( 1 , 1 ~ = ~ 1 ~ 1 ~ * ~ 1 ~ 1 ~  
A I  t 1  ,2)=22( 1 )*Z2( 1) 

. . ~1(1,3)=~l(l)*Z2(1) 
S A I = A I ( I , I )  
~ ~ 2 = ~ 1 ( 1 , 2 )  
~ ~ 3 = ~ 1 ( 1 , 3 )  
DO 115 I=2,MM 
~ 1 ( 1 ) = ~ ~ ~ ~ ~ ~ 1 ) * Z l ( 1 - 1 ) + ~ 2 ~ 1 - 1 )  
Z ~ ( I ) = T H E T A ( ~ ) * Z ~ ( I - ~ )  
A I ( I , ~ ) = z I ( I ) * z ~ ( I )  
AT(I ,2)=~2(1 ) * z ~ ( I )  

\ 
~ 1 ( 1 , 3 ) = ~ 1 ( 1 ) * ~ 2 ( 1 )  - 
S A I = A ~ ( I , I ) + S A I  
SA2=~1(1,2)+SA2 

115 SA3_=A1(I13)+SA3 

D E T = ( ~ + s A ~ ) * ~ ~ + s A ~ ) - ( S A ~ ) * ( S A ~ )  

~R1TE(6,121) DET 
. 121 FORMAT(FIO.~) 

100 F o ~ T ( ~ 1 2 . 8 )  
STOP 
END ' 



Aigner, D.j. (1971). A compendium of estimation of the 
autoregressive moving average model from time series 
data, I n t  e r n a t  I o n a l  E c o n o m l  c R e v 1  e w ,  12, 348-371. 

Ali, M.M. and Thalheimar, R. (1983). Stationary tests in 
time series model, J o u r n a l  o f  F o r e c a s t  i n g ,  vo1.2, %- 

r 
249-257. f a  . + 

3 

Ansley, C.F. (1979). An algorithm for the exact likelihood of 
a mixed autoregressive-moving average process, B l o m e r r i k a .  
66,1, 59-65. 

Balestra, P. (1980). A note on the exact transformation 
associated with the first-order moving average process, 
J o u r n a l  o f  E c o n o m e t r i c s ,  14, 381-394. 

Beach, C.M. and MacKinnon, J.G.(1978). A maximum likelihood 
procedure for regression with autocorrelated errors, 

E c o n o m e t r i c a ,  46, 51-58. - 
-. 

Beguin, J.-M., Gourieroux, C. and Monfort, A .  (1980). 
Identification of a mixed autoregressive-moving average 
process: The corner method, T l r n e  S e r l e s ,  Amsterdam: 
North-Holland publis.hing company, 423-436. 

BMDQ~T,( . BMDQ2T T S P A C K ,  Health sciences computing I 

facility, University of California, LA, CA 90024. 

Box, G.E.P. and Jenkins,'G.M. (1970). T i m e  S e r i e s  A ~ a l y s i ~  
F o r e c a s t i n g  a n d  C o n t r o l ,  San Francisco: Holden Day. 

B-\ G.E.P. and ~enkins, G.M. (1976). T i m e  Series A , ~ o l y r f r  
' F o r e c a s t  i  n g  a n d  Corrt r o l  , San Francisco: Holden Day. 

Box, G.E.P. and Pierce, D.A. (1970). distribution of residual 
autocorrelation in a~toregressive-integrated moving 
average time series models, J o u r n a l  o f  Arneri c a n  
S t a t i s t i c a l  A s s o c i a t i o n ,  6 5 ,  1509-1526. 

-- 

~ h o u d h u r ~ ,  A.H. and Chaudhury, M.M. ( 1984). A note on 
approximat,? estimator for the first-order moving aver+age 
process, J o ~ r n a l  o f  E c o n o m e t  r i  c s  , (submitted). 

Durbin, J. ( 1 9 7 0 ) ~  Testing for serial correlation in least 
squares regression when some of the regressors are lagged 
dependent variables. E c o n o m e t  r i  c a ,  38, 410. 

Durbin, J. and Watson ,G.S. ( 1950). Testing for serial  orr relation 
i n  Least Squares Reqression I ,  Bi o m e t  r i  k a ,  37, -. 409-428. --- . - 



Durbin, J. and Watson, G.S.( 1951). Testing for serial correlation 
in Least Squares Regression 11,  Bi omet r i.ka, 38, 1-59-1 78. 

-- 
Fuller, W.A. (1976). Introduction to Statistical Time Series, 

New York: Wiley. 

Goldberger, A.S. (1963). Econometric Theory, New York: Wiley, 

, Granger, C.W.J. ( 1  980) ." Forecast i ng i n busi ness and economi cs, 
New York: Academic Press. 

Harvey, A.CJ: ( 1981 1.  The Economet r i  c Anal ysi s' of Time Seri es, 
London: Philip Allan. 

z. - 

Johnston, J. (1972). Economet r i  c Met hods. New York: Wiley, 
MacGraw-Hill. 

Judge, G.G., Griffiths, W.E., Hill, R.C. and Lee, T.-C. 
(1980). The Theory and Pract i ce of Economet r i  cs, 
.New York: Wiley. 

Kendall, Sir.M., Stuart, A. and Ord, J.K. ( 1 9 8 3 ) ~  ~ 0 1 . 3 . ~  
The Advanced Theory of St at i s t  ics, Londo~: Griffin. 

Ljung, G.M. and Box, G.E.P. (1978). On a measure of lack of 
fit in time series model, Biomet r i  ka, 65, 297-303. 

MacDonald, G.M. and MacKinnon, J.G. (1985). C nvenient methods 
for estimation of linear )regression mo 82 1s with  MA(^) 
errors, Canadian Journal of Economi cs, XVIII, no. 1, 106. 

McLeod, A.I. (1977). Improved Box-Jenkins estimators, 
, Biometrika, 64, 531-534. 

_I= . 

MINITAB, (1982). MINITAB Reference Manual, Statistics 
department, 215 pond laboratory, The Pennsylvania State 
University, pa. 16802. 

NAG, (1982). NAG Library Manual, Numerical ~lgorithms Group, 
~ a y f v - H o u s e ,  256 Banbury Road, Oxford, 0x2 7DE, UK. 

Nicholls, Ih., Pagan, A.g and Terrel, R.D. (19751, The estimati 
-on and use of models with moving average disturbance terms: 
A Survey, Int ernat i onal Economi c Review, 16, ll3-134.* 

Osborn, D.R.(1976). Maximum Likelihood estimation of moving 
average process, Anna1 s of Economic and Ssci a l  4 

meas-ur ement , 3, 75-87, 

Pagan, A. ( 1973). ~ f f  icien't estimation of models with composite 
disturbance terms,' Journal of Economet r i  cs,' 1 ,  329-340. -'% 



Pagan, A .  (1974). A Generalized approach to the treatment of 
autocorrelation, A u s t  r a l  i a n ' E c o n o m i  c  p a p e r s ,  13, 267-280. 

'd , 
Pagan, A.R. and Nicholls, D.F.(1976). Exact Maximw Likelihood ' 

estimation of regression models with finite order moving 
average errors, R e v i  ew o f  E c o n o m i  c  S i  u d i  e s ,  43, 383-388. 

-Park, C.Y. andHeikes, R.G. (1983). Anote on Balestra's (1980) . 

approximate estimator for the first-order moving average 
process, J o u r n a l  o f  E c o n o m e t  r i  c s ,  21, 387-388. 

4 

Pesaran, M.H. (1973). Exact maximum likelihood estimation of a 
regression equation with a first-order moving average 
errors, R e v i  ew  o f  Econorni  c  S t  u d i  e s ,  40, 529-536. 

Phadke, M.S. and Kedem, G. (1978). Computation of the exact 
likelihood function of multivariate moving average models, 
Bi omet  r i  k a ,  65, 3, 51 1-519. 

e - 
phislips, A.W. (1966). The estimation of sy tems of $if ference P, equations with moving average disturba ces, Econometric 

Society Meeting, San Francisco, reprinted in A.E. Bergstrom, 
et al., eds., S t a b i l i t y  a n d  I n f l a t i o n ,  New York: Wiley. 

Pierce, D.A. (1971). Distrikution of residual autocorrelations 
in the regres5:on model with autoregressive-moving average 
errors, J o u r n a l  o f  t h e  R o y a l  S f  a t  i , s t  i  c a l  S o c i e t y ,  series B ,  
33, 140-146. 

< 4 
Pindyck, R.S.,-and Rubinfeld, D'.L. (1981). Econorne t  r i  c  m o d e l s  

a n d  e c o n o m i c  f o r e c a s t s .  New York: McGraw-Hill. 

Pollock, D.S.G. (1979). T h e  a1 g e b r a  o f  e c o n o m e t  r i  c s ,  
New Yorkq Wiley. 

Pukkila, T.M. (1982). On the identification of ~ ~ ~ ~ ( p , q ) m o d e l s ,  
T i m e  S e r i e s  A n a l y s i s :  T h e o r y  a n d  p r a c r i c e  1 ,  
Amsterdam: North-Holland publishing company, 81-103. 

Trivedi, P.L. (1970). Inventory ~ehavior in U.K. ~anufacturing, 
1956-6?, R e v i  e w  o f  E c o n o m i , ~  S t  u d i  e s ,  37, 517-527. 

- -- 

Wallis, K.F. (1972). Testing for fourth-order autocorrelation in 
quarterly regression equations, E c o n o m e t t i c a ,  40, 617-636. 

Watson,G.S. (1955.). Serial correlation in regression analysis I ,  
B i o m e t r i k a ,  42, 327-341. ' 

Watson,G.S. and Hannan, E.J..(1956). Serial correlation in 
regression analysis 1 1 ,  Bi ornet r i  k a ,  43, 436-445. 

Wise, J. (1955). Autocorrelation function and the spectral 
density function, Bi omet  r i  k a ,  42, 151-159. 


