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Abstract 

This thesis analyzes an amplifier architecture that combines a RF class D amplifier with a 

bandpass sigma-delta modulator, broadening the utility of class D amplification to include 

signals with envelope variation. An integrated design methodology is presented that incor- 

porates the coding efficiency and average pulse transition frequency of the encoded pulse 

train into classical RF class D amplifier design equations. The equations are used to pre- 

dict the power efficiency of a complementary voltage switched class D amplifier design with 

CMOS, pHEMT, and MESFET switches. Simulated results are compared with the analysis 

and verify the design methodology. 

The power efficiency analysis shows a direct link between modulator coding efficiency 

and the output power of the amplifier; therefore, a modulator with high coding efficiency is 

desirable. It is shown that coding efficiency depends significantly on the order of the modu- 

lator loop filter as well as the carrier oversample ratio employed in the design. The variation 

with carrier oversample ratio is not monotonic for second and fourth order modulators, and 

some oversample ratios are more optimal than others. 

Bandpass CA modulation synthesizes a pulse train with synchronous zero-crossings, and 

the coding efficiency limitations of encoding a binary amplitude pulse train with constrained 

zero-crossings is analyzed. The analysis and characterization of other encoder designs shows 

that bandpass CA modulation is remarkably efficient. The analysis is extended to pulse 

train upconversion employing Manchester encoding. Upconversion reduces the difficulty of 

implementing highly selective noise shaping resonators at RF frequencies, and the impact 

of upconversion in terms of coding efficiency and average transition frequency is shown. 



Dedicated to m y  mother, Gwendolyn Johnson 

1929-2005 



We shall not cease from exploration 

And the end of all our exploring 

Will be to  arrive where we started 

And know the place for the first time. 

T.  S. Eliot ''Little Gidding" 
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Chapter 1 

Introduction 

The first description of the RF class D amplifier circuit was given by Baxandall [l] in 1959, 

and still remains as one of the few amplifier topologies with an ideal DC to RF conversion 

efficiency of 100%. The high power efficiency is obtained by operating the active devices as 

switches. The switching action in the amplifier generates a binary amplitude output pulse 

train preserving the zero-crossings of the input signal only. Hence, the primary limitation of 

the class D amplifier topology is the elimination of the signal envelope after amplification, 

which limits the utility of the amplifier to constant envelope signals. 

The class of source signals which can be amplified by a class D circuit topology is 

broadened to include time varying envelope signals, providing the amplifier is preceded by a 

source encoder. The source encoder maps the time varying envelope input signal to a binary 

amplitude pulse train for subsequent amplification in the class D stage. The switches in the 

class D amplifier circuit replicate and amplify the encoded pulse train, and a time varying 

envelope load signal is reconstructed by an output bandpass filter inherent in the class D 

circuit topology. Therefore, the source encoder for a class D amplifier circuit is constrained 

by signal reconstruction in the amplifier. Bandpass sigma-delta (CA) modulation is an 

example of a compatible source encoder for RF class D amplification which is consistent 

with signal reconstruction in the class D amplifier. 

The focus of this thesis is the analysis of the augmented configuration of a bandpass 

CA modulator and RF class D amplifier. By preceding the RF class D amplifier with a 

bandpass CA modulator, the utility of the class D amplifier is broadened and opens up 

many new applications. The efficient amplification of wireless signals such as W-CDMA is 

challenging, and the augmented class D amplifier architecture has the potential to boost 

power efficiency to levels well beyond conventional class AB designs. 
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Although the augmented bandpass CA modulator and RF class D amplifier architec- 

ture has been proposed by other authors [2], the published research has been primarily 

c0nce~tua1.l The motivation for this research project is to extend the conceptual ideas 

into a concrete theoretical framework identifying the key parameters which control power 

efficiency in the bandpass CA modulator and RF class D amplifier architecture. In this 

introductory chapter, an overview of the amplifier is given, and important terms are de- 

fined. The overview includes a summary of related work, and the chapter concludes with a 

discussion of research goals and contributions. 

1.1 Amplifier Architecture Overview 

A simplified model of the bandpass CA modulator and RF class D amplifier architecture 

is given in Fig. 1.1. The amplifier has three main parts: 1) a source encoder to map the 

modulated source signal u(t) into a binary amplitude pulse train p(t), 2) a driver which 

level shifts and amplifies the modulator pulse train to drive the class D switches, and 3) a 

RF class D power amplifier (PA) stage which generates a load signal vL(t). 

The input signal u(t) to the amplifier, also called the source signal, is a modulated 

RF signal with carrier frequency f ,  and bandwidth fb. The amplifier output signal is 

vL(t), and the overall input-output response of the amplifier is ideally equivalent to a linear 

amplifier with gain G,. The amplifier introduces distortion, and the distortion is measured 

by comparing the signal-to-noise ratio (SNR) of the source and load signals. The amplifier 

also introduces signal delay r, as shown in Fig. 1.1 (b). In the following sections, the encoder, 

power amplifier, and driver stages are discussed in more detail. 

1.1.1 Source Encoder 

The function of the source encoder block is to convert a continuous-time (CT) source signal 

u(t) into a CT pulse train p(t). The subsequent amplification of p(t), and the method of 

signal reconstruction in the RF class D amplifier, impose two constraints on the class of 

potential source encoders for the augmented amplifier. First, the switches in the class D 

amplifier limit pulse train amplitude states to two levels. Consequently, a source signal 

 he citation uses the term class S. The distinction between class S and class D is not universal, and the 
author prefers the term class D based on the recommendation of F. Raab, co-author of [3], a frequently cited 
reference on switching amplifier theory. 
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Sampling Clock 

Bandpass 

Modulator 

& Source 
Encoder 

(a) Amplifier architecture 

(b) Amplifier signals: 1) source signal u( t ) ,  2) modulator pulse train p ( t ) ,  amplifier 
pulse train p ~ ( t ) ,  and 4) load signal v ~ ( t ) .  

Figure 1.1: RF class D amplifier with a bandpass CA modulator. 
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with a time varying envelope must first be quantized prior to amplification. The second 

encoder constraint is imposed by the implementation of the decoder, which in this case is 

an analog bandpass filter. Linear signal reconstruction by a bandpass filter significantly 

limits potential encoding methods, and yet the filter is an integral part of the class D 

amplifier and is required to realize high power efficiency. 

Three possible source coding methods compatible with the class D amplifier constraints 

are: 1) pulse width modulation (PWM), 2) click modulation [4] (also known as zero-position 

coding [5,6]), and 3) bandpass C A  modulation. In low frequency applications such as audio 

amplifiers, all three different methods have been applied [7-91. However, when the extension 

of these methods to RF frequencies is considered, the implementation of PWM and click 

modulation becomes more difficult. PWM is intrinsically nonlinear and usually requires a 

high oversample ratio to reduce in-band distortion products, while click modulation requires 

significant digital signal processing [6]. On the other hand, lowpass CA modulation used 

in audio frequency amplifiers can also be implemented in a bandpass configuration, and 

experimental implenientations have been realized with sample rates of several GHz [lo- 

121. The implementation considerations make bandpass CA modulation attractive for RF 

amplifier applications; thus, bandpass C A  modulation is the principle focus of this work. 

As may be expected, the quantization and signal reconstruction constraints have system 

costs. One of the primary goals in this research work has been to develop a methodology to 

evaluate these system costs, determine how efficient bandpass C A  modulation is as a source 

encoder, and explore how to improve source encoding. 

1.1.2 RF Class D Amplifier 

The RF class D amplifier is composed of two switches which close alternately depending 

on the state of the drive signals fpd,(t). The switching action generates a large amplitude 

binary level pulse train pA(t), and a load signal vL(t) is reconstructed from pA(t) by a 

bandpass filter. Examples of the switching signal and load signal are shown in Fig. l.l(b). 

RF class D amplifiers circuits are subdivided into two main circuit topologies depending 

on whether the switched pulse train pA(t) is a current or voltage signal; the corresponding 

circuit topologies are called current switched class D (CSCD) and voltage switched class D 

(VSCD). 

The out-of-band response of the reconstruction filter, g(t), is important, and affects the 

efficiency of the RF class D amplifier. For example, assume pA(t) is a voltage switched 
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signal, and assume the reconstruction filter is a series resonator. The resonator permits the 

circulation of load current at in-band frequencies, while preventing out-of-band current flow 

through the load and switches. Although the spectrum of the voltage signal is broadband, no 

power is dissipated in the switches at out-of-band frequencies because out-of-band current 

is significantly attenuated by the resonator. The simultaneous co-existence of a voltage 

signal with a broadband frequency spectrum, and a narrowband current signal with only 

in-band spectral components are fundamental to the high efficiency operation of the VSCD 

circuit. A similar condition exists in the CSCD amplifier except current and voltage are 

interchanged with respect to a VSCD amplifier. A simple resonator is usually sufficient 

for periodic drive signals, since the spectrum is discrete with widely spaced harmonics, but 

for a broadband power spectrum such as bandpass CA modulation, a higher order filter is 

required. 

In principle, the class D amplifier circuit amplifies any binary amplitude pulse train 

pdr ( t ) ,  and there are no restrictions on the timing of switch closures. Since the timing of 

switch closures is unrestricted, periodic and aperiodic pulse trains are amplified equally well. 

The characteristic that the class D amplifier amplifies any binary amplitude pulse train is 

attractive, and distinguishes it from class E which is also a switch-mode amplifier topology 

that has restrictions on the timing of switch closures. 

Although the class D amplifier circuit can amplify both periodic and aperiodic binary 

amplitude pulse trains, the type of drive signal affects the implementation of the class D 

circuit. Periodic drive signals simplify circuit implementation, and most RF amplifier im- 

plementations reported in the literature have been designed and tested with periodic drive 

signals [13-151. If the input pulse train is periodic with a 50% duty cycle, the circuit imple- 

mentation advantages include zero voltage switching in a CSCD, zero current switching in 

a VSCD amplifier, low order reconstruction filters where a second order resonator usually 

suffices, and orthogonal harmonic components that are compatible with frequency periodic 

transmission line structures. When the pulse train is aperiodic, like bandpass CA modu- 

lation, the phase of the load current is random with respect to switch closures, the pulse 

train power spectrum is continuous and broadband, and the reconstruction filter has tight 

attenuation requirements. The term 'conventional' class D circuit shall sometimes be used 

in reference to circuits designed for periodic square wave pulse trains, and these circuits are 

distinguished from more general class D circuits which amplify both periodic and aperiodic 

signals. 



CHAPTER 1. INTRODUCTION 

1.1.3 Driver 

The driver stage shown in Fig. l . l (a )  is the interface stage between the source encoder and 

the RF class D amplifier stage. The purpose of the driver stage is to level shift and amplify 

the modulator pulse train p(t) to provide sufficient voltage swing and current to control the 

switches in the class D circuit. Depending on the circuit topology of the class D circuit, 

the driver may have a single output pd,(t), or two opposite phase output signals +pd,(t) 

and -pdr(t). A single-ended driver output is used when the RF class D amplifier has a 

transformer coupled input to generate switch control signals [3,16], or when complementary 

(n and p type) devices are employed as switches [3]. Otherwise, two independent drive 

signals from the driver are required for controlling the two switches in the amplifier. 

The implementation of a driver is a difficult design problem, and frequently an ideal 

driver is assumed when reporting results [2,17-191. Driver issues include edge timing to 

prevent significant shoot-through current when both switches are transitioning, generating 

sufficient drive current to have short rise and fall times with a large capacitive load, and 

tracking floating node voltages in the class D circuit. Although the implementation of the 

driver is not the primary focus of this work, a limited analysis of driver issues is given for a 

CMOS amplifier design in Chapter 3. 

1.2 Definitions 

There are several new terms that have been introduced in this work to support the analysis 

of the integrated bandpass CA modulator and RF class D amplifier architecture. The 

new terms are the distinction between envelope and carrier oversample ratio in a bandpass 

EA modulator, the coding efficiency of the encoded pulse train, and the average transition 

frequency of the pulse train. Definitions are also given for drain efficiency and overall power 

efficiency. 

1.2.1 Drain Efficiency 

Drain efficiency (qd) is a common measure of power efficiency in RF power amplifiers. Drain 

efficiency is defined as 
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where PL is the average load power and PDC,pa is the DC supply power provided to the class 

D stage. The total DC power in a VSCD stage is approximately equal to the sum of three 

terms: 1) load power PL, 2) ohmic conduction losses in the switches, PC, and 3) capacitive 

switching losses, PQ. Therefore, in a VSCD amplifier 

1.2.2 Overall Power Efficiency 

Overall power efficiency is more encompassing than drain efficiency and includes the driver 

power as well as the modulator power. Let 7, be the overall amplifier power efficiency, then 

where two additional DC power terms are added, PDc,cn and PDC,dr, to include the DC 

power consumption of the modulator and driver stages, respectively. Specific hardware 

implementations of the modulator are beyond the scope of this work, and overall efficiency 

is constrained to a consideration of driver and class D stage power only. 

1.2.3 Envelope and Carrier Oversample Ratios 

When CA modulation is used in an analog-to-digital converter (ADC), oversampling is 

employed to synthesize an encoded output signal with high SNR over a narrow output 

bandwidth. Oversampling distributes the noise power from a low resolution quantizer over a 

wide bandwidth, and the modulator has a noise shaping loop to create a noise well where the 

source signal is encoded with high SNR. The term 'noise', in the context of a bandpass CA 

modulator, refers to the quantization error signal generated by a low resolution quantizer. 

A binary quantizer is assumed throughout this work. An example of the encoded power 

spectrum at the output of a bandpass CA modulator is shown in Fig. 1.2. The quantization 

noise is spread uniformly over a wide bandwidth depending on the sample rate in the 

modulator, and a signal is encoded in a narrow notch shaped in the noise spectrum. 

There are many factors which affect the SNR of the encoded source signal. One of the 

most important variables is the envelope oversample ratio defined as 
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Figure 1.2: Power spectral density of a sixth order bandpass C A  modulator pulse train; 
the spectrum of the quantization noise is superimposed on the pulse train power. 

The term 'envelope oversample ratio' is usually called 'oversample ratio' by most authors, 

and is applicable to lowpass C A  modulators where there is only one oversample ratio. 

However, in bandpass C A  modulators, there is a second oversample ratio called the carrier 

oversample ratio defined as: 

Both the envelope and carrier oversample ratios are defined such that an oversample ratio 

of unity corresponds to Nyquist sampling. 

The terms 'envelope' and 'carrier' are adopted to distinguish between the two oversam- 

ple ratios, reflecting the communication system application. Other authors prefer not to 

explicitly identify the carrier oversample ratio, and usually describe their designs in terms 

of the ratio f,/fc [20]. However, the distinction of the carrier oversample ratio as a de- 

sign variable is important in this work, and a contribution of this research is to show how 

the carrier oversample ratio affects the power efficiency of the class D amplifier. As a de- 

sign parameter, the carrier oversample ratio impacts both the coding efficiency and average 

transition frequency of the encoded pulse train p( t ) .  
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1.2.4 Coding Efficiency 

Although out-of-band spectral components do not dissipate any power in an ideal class D 

circuit, a high level of out-of-band spectral power is wasteful and reduces the utility of the 

pulse train to generate load power. Significant out-of-band power is generated by one bit 

quantization, and coding efficiency is introduced as a figure of merit to evaluate encoder 

performance. 

Coding efficiency is defined as the ratio of the reconstructed load power relative to the 

total pulse train power [19], and a coding efficiency measurement is illustrated in Fig. 1.3. A 

polar pulse train pa(t) with amplitude levels f A, is filtered with a reconstruction filter, and 

the load power PL is measured across a load RL. The total pulse train power is measured 

without the filter and is A;/RL for a voltage pulse train and A;RL for a current pulse train. 

With these definitions, coding efficiency (qp) is expressed as 

pLRL/A: switched voltage 
..= { pL/(A? RL) switched current 

A simple rearrangement of equation (1.6) leads to 

E , r m s  = fiaa switched voltage 

IL,rms = fi Aa switched current 

which shows that coding efficiency can also be used as an effective gain to relate the root 

mean square (RMS) amplitude of the load signal, VL,rms or IL,rms, to the amplitude of the 

switched pulse train in the circuit. 

Two additional remarks are made about coding efficiency. First, coding efficiency is 

always less than one for bandlimited bandpass source and load signals. In other words, 

the source signal cannot be encoded into a binary amplitude pulse train without generating 

quantization noise, as in the case of bandpass CA modulation, or distortion, as in the case 

of PWM. Coding efficiency is unity in the unquantized case only, and any out-of-band noise 

or distortion generated by the encoder means that the coding efficiency of the pulse train is 

necessarily less than one. The second remark is that coding efficiency is distinct from drain 

efficiency in the class D power amplifier. The coding efficiency of the pulse train depends 

on the encoder, while drain efficiency depends on the circuit design in the amplifier. Hence, 

the coding efficiency of the encoder could be low, while amplifier power efficiency is high. 
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Figure 1.3: Coding efficiency measurement. 

The definition of coding efficiency in (1.6) assumes the reconstructed signal power is 

measured with some reconstruction filter G(s) ,  and the definition stems from the amplifier 

application. The definition indirectly includes assumptions about the reconstruction filter 

bandwidth and center frequency f,. However, another method to estimate coding efficiency 

is from a direct measurement of the power spectral density (PSD) of the modulator pulse 

train p(t). 

Let the one-sided power spectral density of p(t) be Sp(f). Coding efficiency is then 

expressed as 

where p(t) is a polar signal with amplitude levels f Ap, and f b  is the equivalent noise 

bandwidth of the reconstruction filter. The PSD method is also frequently used to estimate 

the reconstructed SNR for CA modulators [21] assuming an ideal bandpass reconstruction 

filter. 

If p(t) is zero mean, which it usually is assuming a bandpass source signal, then the 

total pulse train power can also be written as the variance of p(t) [22]. Therefore coding 

efficiency is unaffected by DC level shifts in the amplifier circuit and is strictly a function 

of the encoding method 
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1.2.5 Average Transit ion Frequency 

One of the most significant power loss mechanisms in RF class D power amplifiers is the 

energy dissipated when a switch changes state [3, 7,231. The stored energy in parasitic 

capacitance and inductance changes during a switch transition, and the current to effect 

the change in stored energy dissipates power in the switches. The frequency of switch 

transitions therefore has a significant impact on the overall power efficiency of the amplifier 

architecture. 

The average transition frequency (ATF) of the modulator pulse train p(t) is defined as 

f a v  = l/Tav (1.10) 

where Taw is the average pulse period (APP) in p(t). A pulse period is defined as the time 

between two consecutive amplitude changes in p(t). Since p(t) is polar, the ATF is the same 

as the average zero-crossing rate of the pulse train. The definition of ATF in (1.10) is similar 

to other definitions in the literature except that a pulse width is sometimes defined as the 

time between two rising edges [7]. 

The bandpass CA modulator pulse train generates a synchronous pulse train, and the 

pulse widths in p ( t )  are integer multiples of the clock period T. Let k be a positive integer, 

then 

where Pr{kT) is the probability of a pulse of width kT  in p(t). Examples of the pulse width 

probability mass function are given in Chapter 2 for the bandpass CA modulator, and in 

Chapter 3, the ATF is incorporated in design equations to predict amplifier power efficiency. 

1.3 Motivation 

The interest in high efficiency amplifier solutions for wireless systems is significant both 

in terms of infrastructure and handsets applications. A reduction in power consumption 

provides many advantages including cost, size, and battery lifetime. These factors make the 

potential benefit of the bandpass CA modulator and class D RF amplifier worthy of further 

consideration. 

The research areas associated with bandpass CA modulation and RF class D amplifiers 

are relatively separate disciplines, and a primary goal of this research project is to bridge 
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these research areas into a cohesive system analysis of the composite amplifier system. As 

a potential high efficiency amplifier solution, implementation issues are paramount, and 

an important question is: how well can we expect the bandpass C A  modulator and RF 

class D amplifier configuration to work at RF frequencies? The question of overall system 

performance is general, and a number of specific questions are posed: 

1. Given the bandwidth of the bandpass CA modulator signal, what RF class D circuit 

topology should be used? 

2. What design methodology should be used to determine the size (gate width) of the 

switches in the amplifier? 

3. What technology parameters are required to make first order predictions about the 

power efficiency of the RF class amplifier stage? 

4. What power efficiency performance is expected using typical monolithic technologies 

such as GaAs and CMOS? 

5. How should the driver be implemented, and what is the overall power efficiency in- 

cluding driver power losses? 

6. What is the coding efficiency of bandpass CA modulation? 

7. What parameters affect the coding efficiency of bandpass CA modulation? 

8. How can the coding efficiency of the modulator be increased? 

9. What is the average transition frequency of a bandpass C A  modulator pulse train? 

10. What parameters affect the average transition frequency of a modulator pulse train? 

11. What architecture changes can be made to reduce the implementation challenges in 

the modulator? 

The methodologies applied to investigate these problems are analysis and simulation. As 

the following literature summary shows, there are relatively few papers which have focused 

on an integrated analysis of the bandpass C A  modulator and RF class D amplifier architec- 

ture. By exploring the design issues through analysis and simulation, important groundwork 

is laid for evaluating the potential power efficiency of the design at RF frequencies. 
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1.4 Literature Review 

The RF class D amplifier and bandpass CA modulator architecture has evolved from the 

merging of three distinct bodies of research. The research areas are: 1) conventional RF 

class D amplifiers with square wave switching signals; 2) bandpass CA modulation, and 3) 

audio class D power amplifiers with lowpass CA modulation. A brief summary of relevant 

contributions in these research areas is given next. 

1.4.1 RF Class D Amplifiers 

The RF class D amplifier topology dates back over 40 years and was initially developed for 

highly efficient sinusoidal sources in high frequency (HF) transmitters [I] and HF heating 

applications [24]. Throughout the 1970's and 1980's a key contributor to RF class D devel- 

opment was Raab [25,26] who implemented a number of different HF class D designs. As 

ways to overcome the envelope limitations of class D amplifiers, he proposed a RF PWM 

scheme in 1977 [25]. Most of his circuits either used the complementary VSCD configura- 

tion or transformer coupled VSCD circuits [3,26]. In recent years, the frequency limits of 

RF class D amplifiers has been pushed up to several GHz based on CSCD topologies with 

transmission line output structures [13-151. However, the experimental work with CSCD 

amplifiers has been constrained to periodic switching. Aperiodic switching in a CMOS 

VSCD amplifier has been demonstrated recently by Wagh et. al. [27]. 

1.4.2 Audio Class D Power Amplifiers 

Audio applications of the class D circuit topology with lowpass CA modulation have been 

around for at least ten years [7], when CA modulation was introduced as an alternate 

to PWM. PWM modulation intrinsically generates harmonic distortion components, and 

the noise shaping characteristics of CA modulation offered attractive solutions to mitigate 

distortion mechanisms. Magrath and Sandler [7] wrote a paper on the analysis of lowpass 

CA modulation and class D amplification. In their paper, they show simulated results for 

the average transition frequency of a lowpass modulator, and describe a way to reduce the 

ATF of the pulse train through pulse grouping. 

Research into improved binary amplitude encoders for class D amplification has been 

limited to audio applications. In 2002, Kato [28] presented a paper at an Audio Engineering 

Society convention, and reported on a modified sigma-delta architecture which replaced the 
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binary quantizer with a trellis search using the Viterbi algorithm. A few other papers have 

reported on similar architectures for lowpass C A  modulators [29,30], and in this work some 

of these ideas are applied to boosting the coding efficiency of bandpass C A  modulation. 

Although these papers report on improved encoding performance, it appears that a bound 

on the coding efficiency of binary amplitude pulse trains with constrained zero-crossings is 

still an open research problem. 

1.4.3 Bandpass CA Modulation 

Since the early 1990's, the first implementations of bandpass CA modulators started to 

appear with Thurston et al. [31] showing a continuous-time bandpass C A  modulator at 

2.5 MHz. Modulator designs have continued to improve and designs with clock rates as high 

as 3 GHz have been reported [12]. The circuit implementation considerations of bandpass 

C A  modulators are beyond the scope of this project with the exception that it is recognized 

that the implementation of integrated high Q resonators on a monolithic silicon substrate 

is very difficult at RF frequencies [32]. Additional references on the design methodology of 

bandpass CA modulators are given in Chapter 2. 

1.4.4 RF Class D Amplifiers With Bandpass CA Modulation 

In 1989, Schreier and Snelgrove [33] made a reference to potential applications of bandpass 

C A  modulation for amplifier applications. Stapleton [34] wrote an amplifier product note 

for Agilent in 1996 which included a bandpass CA modulator and class D RF amplifier, 

and in 1997, Jayaraman et al. [2] published the first simulated results for a bandpass C A  

modulator and RF class D amplifier. As part of his Ph.D. work, Jayaraman implemented a 

fourth order continuous-time bandpass C A  modulator, and the paper summarizes simulation 

results shown in the last chapter of his thesis for a VSCD circuit with HBT switches. The 

primary contribution of his work was to show by simulation the feasibility of the amplifier 

architecture a radio frequencies. 

Other system design papers include Ketola et al. [18] and Dupuy and Wang [35]. Ketola 

et al. propose using images from a bandpass C A  modulator output with a binary ampli- 

tude digital-to-analog converter (DAC) to drive a class D RF amplifier. The advantage is a 

reduction in modulator sample rate, but the disadvantage of this scheme is a significant re- 

duction in coding efficiency, because the carrier oversample rate is less than one. Dupuy and 



CHAPTER 1. INTRODUCTION 15 

Wang have defined a different system architecture called envelope sigma-delta modulation. 

In their scheme, a lowpass CA modulator encodes the envelope into a binary amplitude 

pulse train, and the pulse train directly modulates a RF carrier which is then amplified by a 

class E amplifier. The resultant pulse train after modulation is not a binary amplitude pulse 

train, as in the case of bandpass CA modulation, and an alternate way of upconverting a 

binary amplitude pulse which preserves binary amplitude levels is proposed in Chapter 6. 

In summary, switching RF power amplifiers for wireless applications is an emerging 

research area with relatively few publications, and many research problems still remained 

unsolved. 

1.5 Contributions 

An important theme in this research project is linking the encoder and RF class D amplifier 

through the concepts of coding efficiency and average transition frequency. The synthesis 

of a binary amplitude pulse train with high coding efficiency and low average transition 

frequency is essential to optimize the utility of the RF class D amplifier. The goal of this 

research project has been to evaluate the coding efficiency and average transition frequency 

of bandpass CA modulation, and incorporate these concepts in the analysis of the power 

efficiency of the RF class D amplifier. 

The main contributions of this work are: 

1. RF class D circuit topologies are reviewed and the complementary voltage switched 

class D amplifier circuit is considered to be the best topology. 

2. The concept of coding efficiency is introduced as a link between the modulator and 

the reconstructed load power at the amplifier output. 

3. Conventional RF class D design equations which assume a periodic square wave drive 

signal are generalized to include aperiodic drive signals. The design equations are 

generalized by incorporating coding efficiency, average transition frequency, and peak- 

to-average power ratio terms. 

4. A design methodology is presented that estimates the gate width of the switches for 

the RF class D amplifier given basic device parameters. 
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5 .  The drain efficiency of the complementary VSCD circuit is analyzed for pHEMT, 

MESFET, and CMOS devices. In the case of CMOS, the overall power efficiency 

analysis includes a driver. 

6. Coding efficiency and average transition frequency characteristics are shown for six 

different bandpass modulator designs. The coding efficiency of second and fourth 

order modulators is significantly higher than sixth order designs; therefore, low order 

modulators are recommended for RF class D amplifiers. 

7. Extensive simulation results demonstrate that coding efficiency does not vary mono- 

tonically with carrier oversample ratio for second and fourth order modulators. For 

sinusoidal and narrowband gaussian source signals, it is shown that some carrier over- 

sample ratios are more optimal than others. For example, although R, = 2 has been 

used in bandpass C A  modulator implementations [11, 20,31,36,37], a better carrier 

oversample ratio is R, = 1.7, both in terms of coding efficiency and average transition 

frequency. 

8. The coding efficiency limitations of a binary amplitude pulse train with constrained 

zero-crossings at integer multiples of a clock are analyzed for periodic load signals. The 

model gives insight into how coding efficiency can vary with carrier oversample ratio. 

It is also proven that the maximum amplitude bound of an undistorted sinusoidal 

load signal is 4/7r for pulse trains with constrained zero-crossings and unity amplitude 

levels. 

9. A numerical search algorithm is used to explore the coding efficiency limits of binary 

amplitude pulse train signals with constrained zero-crossings. The results of the nu- 

merical search demonstrate that the coding efficiency of bandpass C A  modulation is 

remarkably good. 

10. A tree search, instead of a binary quantizer, is added in the bandpass C A  modulator 

loop to boost coding efficiency. Simulation results show that the enhanced modulator 

can improve the coding efficiency of a sixth order modulator. 

11. The coding efficiency and ATF of Manchester encoding is analyzed as a method of 

upconverting a low frequency bandpass C A  modulator pulse train. 
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1.7 Organization of Results 

In this chapter, an overview of the bandpass CA modulator and RF class D amplifier has 

been given. Subsequent chapters focus on analyzing and simulating the coding efficiency, 

average transition frequency, and power efficiency of the amplifier configuration. The re- 

maining chapters are organized as follows: 

Chapter 2 focuses exclusively on evaluating the coding efficiency and average transition 

frequency of bandpass CA modulation. Six different modulator designs are shown, 

and simulation results are presented which show how coding efficiency and average 

transition frequency vary with carrier oversample ratio. The principle conclusion is 

that for second and fourth order modulators there are some carrier oversample ratios 

which are more optimal than others. 

In Chapter 3, the focus is shifted to the RF class D amplifier and driver stage. Classical 

design equations for class D amplifiers are modified to include coding efficiency and 

average transition frequency parameters. The equations show how the modulator and 

amplifier are linked, and the power efficiency of a VSCD design is evaluated with 

pHEMT, MESFET, and CMOS switches. 

0 The importance of modulator coding efficiency, and its relationship to load power at 

the output of the amplifier, motivates questions about the limits of coding efficiency 

for a binary amplitude pulse train with constrained zero-crossings. In Chapter 4, 

a sinusoidal load signal is assumed, and periodic binary amplitude pulse trains are 

systematically evaluated to draw conclusions about the limits of coding efficiency for 

sinusoidal source signals. At large input amplitudes, the periodic model mimics the 

behavior of the modulator, and both the model and modulator show variation in 

coding efficiency with carrier oversample. Conclusions about selecting an 'optimal' 

carrier oversample ratio are given. 

Chapter 5 continues the exploration of modulator coding efficiency, and alternate en- 

coding structures are considered to improve coding efficiency. The alternate structures 

replace the binary quantizer with a tree search to look-ahead and select the best se- 

quence which minimizes the mean square error of the reconstructed signal. The most 

significant improvement with tree look-ahead appears to be a boost in the coding ef- 

ficiency of high order modulators, and an example is given for a sixth order design. 
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Otherwise, the coding efficiency of second and fourth order modulators appears to be 

remarkably good. 

Chapter 6 analyzes Manchester encoding as a means of upconverting a low frequency 

pulse train to a high frequency pulse train for driving a RF class D amplifier. The 

analysis is motivated by the difficulty of implementing highly selective resonators at 

RF frequencies. The coding efficiency loss and impact on average transition frequency 

are analyzed and conclusions are made on the best upconversion sequence. 

Chapter 7 presents conclusions and recommendations for future research topics. 



Chapter 2 

Bandpass Sigma-Delt a Modulation 

The purpose of this chapter is to identify what parameters affect coding efficiency and 

average transition frequency in a bandpass CA modulator. In a modulator design, coding 

efficiency and reconstructed signal to noise ratio (SNR) are trade-offs. Therefore, coding 

efficiency cannot be analyzed in isolation, and coding efficiency has meaning when it is 

coupled with a minimum acceptable SNR threshold. Factors which affect coding efficiency 

include the peak-to-average power ratio of the source signal, the carrier oversample ratio, 

and the order of the noise shaping filter. SNR also depends on the type of source signal 

and filter order, as well as the envelope oversample ratio. The average transition frequency 

depends primarily on the carrier oversample ratio and to a lesser degree on the type of 

source signal. 

We begin the chapter by first presenting a high level model of a bandpass CA modu- 

lator. After the model, a summary of the transfer functions for six different discrete and 

continuous-time modulator noise shaping filters is given. The six designs include second, 

fourth, and sixth order filters which are used as examples for demonstrating coding effi- 

ciency and average transition frequency characteristics. A discussion of SNR measurement 

methods for sinusoidal and wideband source signals follows, and the chapter concludes with 

simulated results of the modulator designs. 

The simulated results show how SNR varies with coding efficiency as a function of mod- 

ulator order, source signal peak-to-average power ratio, and with carrier oversample ratio. 

Similar results are shown for the average transition frequency. An important conclusion in 

this chapter is the observation that coding efficiency does not vary monotonically with car- 

rier oversample ratio, and certain carrier oversample ratios should be avoided. For example, 

a carrier oversample ratio of 2.0 has been used in the literature [ll, 20,31,36,37], and this 

leads to inferior coding efficiency relative to a carrier oversample ratio of 1.7. 
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2.1 Bandpass CA Modulator Models 

CA modulators are broadly classified into discrete-time (DT) and continuous-time (CT) 

designs depending on the implementation of the noise shaping filter., At low frequencies, 

DT designs are common and often implemented with switched capacitor techniques [20]. 

The switched capacitor designs are difficult to implement at RF frequencies, and instead, 

DT designs are converted to CT designs [32]. In a CT design, the noise shaping filters are 

most often implemented with passive high Q resonators [31] or transconductors [36] which 

can be integrated into a monolithic design. 

2.1.1 Continuous-Time Model 

A block diagram of a CT bandpass CAM is shown in Fig. 2.l(a). The modulator consists of 

a high Q resonator H(s) ,  followed by an ideal impulse sampler, and a binary level quantizer 

in a loop with a feedback DAC Df(s).  The loop has high gain over a very narrow signal 

bandwidth f b  centered at f,, and very low gain outside the signal band. The action of the 

loop is to shape the quantization noise generated by the low resolution quantizer away from 

the signal band. When the CA modulator is used in an ADC configuration, the impulse 

train b,(t) is decimated and filtered to yield a high resolution, low bandwidth, digital signal. 

In the amplifier application, the impulse train b,(t) is converted to a CT pulse train by an 

output DAC D,(s), and the bandpass CA modulator is configured as an analog-to-analog 

converter or encoder. The encoder converts the CT source signal u(t) to a pulse train p ( t )  

with quantized amplitude levels and quantized zero-crossings. 

The model in Fig. 2.l(a) is conceptual, and the sampling, quantization, feedback DAC, 

and output DAC are shown as different blocks. In an implementation, several of these 

blocks are frequently combined. For example, all four blocks can be combined into a single 

block with a latching comparator where the feedback DAC and output DAC are both NRZ. 

Often there are implementation advantages to have different feedback and output DAC's, 

and several feedback DAC's may be employed to synthesize the required transfer function. 

For instance, Shoaei and Snelgrove [42] use two feedback DAC's, a return-to-zero and half 

return-to-zero DAC, to increase the degrees of freedom for implementing different loop filter 

designs. 

The details of how the resonator functions H ( s )  are implemented, and how to choose 

the feedback DAC's in a design, has been covered by other authors [20,36,42-441. Instead, 
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continuous-time CA modulator I - 
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: discrete-time CA modulator I m 

Figure 2.1: CA modulator models: (a) continuous-time, and (b) discrete-time. 

we revert to the underlying discrete-time equivalent models that are frequently used as a 

prototype for designing CT transfer functions. The synthesis and analysis of CA modulators 

is easier in the discrete-time domain, and the most common methodology applied to CT 

designs is to transform a DT prototype to an equivalent CT design using the pulse transform, 

a Laplace transform which assumes a specific DAC pulse shape [45]. A few examples of 

simulations with equivalent CT modulator designs are shown throughout this work, but for 

the most part, conclusions are derived from DT equivalent models. 

2.1.2 Discrete-Time Model 

Fig. 2.1 (b) shows an equivalent DT model for the CT modulator in Fig. 2.1 (a). The primary 

difference in the DT model is the absence of the feedback DAC, and the sampler now precedes 

the modulator loop. A strictly bandlimited source signal is assumed, and the input sampler 

converts the CT input signal u(t) to a DT signal u [ k ]  at a sample rate of f,, the same as the 

sample rate in the CT model. The DT model has two blocks: a DT resonator H ( z )  with 

at least one sample of delay, and a binary quantizer. The loop works in the same way as 

the CT modulator with high gain in the signal band to shape the quantization noise. The 

binary amplitude DT pulse train b[k] is converted to a CT pulse train p( t )  by a NRZ DAC 

with transfer function D,(s), which is identical to the transfer function of the output DAC 
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discrete-time CA modulator 

Figure 2.2: Discrete-time CA modulator signals. 

in the CT model. 

A more general representation of a DT modulator is shown in Fig. 2.2 where the in- 

put signal transfer function Hi(z )  and feedback path transfer function H f ( z )  are explicitly 

shown. The two transfer functions are usually implemented as a two input, single output, 

transfer function; in a CT design, the equivalent input transfer function Hi(s)  is often de- 

signed as an anti-alias filter. Expressions for the signal and noise shaping loops are derived 

next. 

2.1.3 Signal and Noise Transfer Functions 

Define a quantization error signal E ( z )  as the difference between the quantizer output B ( z )  

and quantizer input signal V ( z ) :  

The output signal B ( z ) ,  shown in Fig. 2.2, is then defined in terms of the input signal U ( z )  

and the quantization noise E ( 2 )  as 

Let Hn(z)  be defined as the noise transfer function (NTF) 
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and HS(z) as the signal transfer function (STF) 

then 

Equation (2.5) shows that the output signal B(z) is composed of a signal component S(Z) 

and a noise component N(z) where: 

Although equation (2.5) appears linear, the quantization noise e[k]  depends on the quan- 

tizer input signal v [ k ]  as shown in (2.1). The quantizer input signal v [ k ]  in turn depends 

on the input signal u [ k ] ;  therefore, the quantization error signal elk] is dependent on the 

input signal. Often the quantization noise is assumed to be independent of the input signal, 

which leads to a linear approximation for the modulator operation 1211. As shown later, this 

approximation is good for moderate level input signals, but at high input levels the noise 

component is correlated with the signal component. 

2.2 Bandpass CA Modulator Designs 

A number of different modulator designs are benchmarked for evaluating SNR and coding 

efficiency performance. For most of this work, a tunable fourth order DT bandpass modu- 

lator design called modulator A is used. Several other designs are also used for comparative 

testing, and are included to verify whether observations about modulator A are consistent 

over different designs. These designs are described next and summarized in Table 2.1. 

2.2.1 Discrete-time Second Order Bandpass Modulator 

A DT bandpass CA modulator design with an adjustable carrier oversample ratio is designed 

by transforming a first order lowpass modulator to a bandpass design. This modulator is 

called design B. 
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Table 2.1: Bandpass CA Modulator Designs 

Name Order Description 

A 4 discrete-time; coincident NTF zeros; tunable Rc 

B 2 discrete-time; coincident NTF zeros; tunable R, 

C 4 discrete-time; spread NTF zeros; specific designs for R, = 1.7 and 2.0 in Table 2.2 

D 4 continuous-time; coincident NTF zeros; tunable R, 

E 2 continuous-time; coincident NTF zeros; tunable R, 

F 6 discrete-time; spread NTF zeros; specific designs for R, = 1.7 and 2.0 in Table 2.2 

The first order lowpass modulator [21] has transfer functions 

1 -1 
Hi(z) = - and Hf(z) = =. 

2 - 1  (2.9) 

In this case, Hf(z) = -Hi (2). The lowpass to bandpass transformation [21, Eqn. 9.41 is 

where 

The parameter a determines the position of the noise well relative to the sample frequency. 

With the transformation, the bandpass modulator is 

Using the expressions Hi(z) and H,(z), the signal transfer function Hs(z) and the noise 

transfer function H,(z) are: 

The signal transfer function gain I ~ ( e j "  I is unity for all values of w and a, while the noise 

transfer function has single zeros at f w, for creating a noise well. 
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2.2.2 Discrete-time Fourth Order Bandpass Modulator 

A similar lowpass to bandpass transformation of the second order double loop modulator [21] 

yields the fourth order tunable bandpass CA modulator with: 

(az + 1)(2z2 + Sax + 1) 
Hf (4 = (z2 + 2az + 

The NTF has two double order complex zeros at w, = 27r fc/ f,, and the STF has unity gain, 

independent of a or R,. The maximum out-of-band NTF gain for this modulator is 4 and 

is independent of R,. This modulator is called design A. 

A value of R, = 2 is a classic bandpass CA modulator configuration [ll, 20,31,36,37], 

corresponding to a modulator with a noise well at fs/4. When R, = 2, the lowpass to 

transformation (2.10) is simple: z + -x2. Despite the simplicity of the transformation, we 

will show later that a carrier oversample ratio of two has low coding efficiency, and other 

carrier oversample ratios are better for class D amplifier applications. 

2.2.3 Discret e-t ime Bandpass Modulators - Spread Zeros 

Although the coincident zero designs for the modulator NTF described so far have compact 

analytic forms, they are not optimal in terms of SNR [46]. By spreading the zeros, the 

SNR can be improved by several dB for a signal bandwidth of fb. The design of modulator 

transfer functions with spread zeros is usually done with numerical optimization algorithms 

[47] assuming bandwidth and NTF out-of-band gain constraints. For this work, a method 

proposed by Schreier [46] was used to design the modulators in Table 2.1 with spread zero 

NTF's. 

The method starts with Butterworth zeros and poles, and moves the zeros to optimal 

positions assuming the quantization noise is independent, white, and uniformly distributed. 

The Butterworth poles are then adjusted to control the maximum NTF out-of-band gain. 

The maximum out-of-band gain affects the stability of the feedback loop in the modulator. 

As a guideline, the maximum NTF gain is usually less than 2, a rule of thumb first established 
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Table 2.2: DT Bandpass CA Modulators With NTF Spread Zeros (Re = 128) 

Order R, NTFISTF Poles STF Zeros NTF Zeros max{lffn(z)l) 

4 1.7 Butterworth Poles Butterworth Zeros -0.280471 h j0.959863 1.72 

for BW = 14.fb for BW = 14.fb -0.266841 & j0.963740 

4 2.0 Butterworth Poles Butterworth Zeros h0.007085 h j0.999975 1.76 

f o r B W = 1 6 f b  f o r B W = l 6 f b  

6 1.7 Butterworth Poles Butterworth Zeros -0.282793 f j0.959181 1.69 

for BW = 9.5fb for BW = 9.5fb -0.273663 f j0.961826 

6 2.0 Butterworth Poles Butterworth Zeros &0.009506 + j0.999955 1.6 

f o r B W = 9 . 5 f b  f o r B W = 9 . 5 f b  &jl.O 

by Lee [48]. A maximum gain of approximately 1.7 is selected as a compromise between 

stability and SNR, and two modulator designs are summarized in Table 2.2. The table 

shows the pole/zero locations for a fourth order modulator design called modulator C, and 

a sixth order modulator called modulator F. Also two variants of each design are shown 

corresponding to carrier oversample ratios of 1.7 and 2.0. 

2.2.4 Continuous-time Bandpass Modulators 

Continuous-time modulator designs are frequently designed by transforming a discrete-time 

prototype into an equivalent continuous-time design [36,49]. The transformation methods 

are well established and synthesize equivalent DT and CT filter impulse responses. An ex- 

ample of this design procedure is given in Appendix A where the second order DT modulator 

B is transformed to an equivalent second order CT modulator, called modulator E. 

In general, the transformation can be extended to higher order filters, although closed 

form expressions can become unwieldy. Some special cases of modulator A, the DT fourth 

order design, have been transformed to equivalent CT designs. Shoaei [36,42] and Sobot 

[44] both have designs which match the DT modulator prototype for R, = 2. At other 

carrier oversample ratios, the CT designs of Shoaei and Sobot do not transform directly to 

modulator A. The second order modulator (design E) and Sobot's fourth order modulator 

[44, Eqn. 291, which shall be called modulator D, are used for comparative testing. 



CHAPTER 2. BANDPASS SIGMA-DELTA MODULATION 

0 
Pulse Train Power Spectrum 

-1 50 
0.22 0.23 0.24 0.25 0.26 0.27 0.28 

Normalized Center Frequency (fc/fs) 

0 
Pulse Train Spectral Components 

-1 50 
I I 

0.22 0.23 0.24 0.25 0.26 0.27 0.28 
Normalized Center Frequency (fc/fs) 

Figure 2.3: Spectral components of a discrete-time pulse train b[k]  for modulator A (see 
section 2.2.2) with a W-CDMA source signal; the source power (a:) is 0.034. 

2.3 Modulator Pulse Train Power Spectral Density 

The coding efficiency and SNR of bandpass CA modulation are derived from the power 

spectral density (PSD) of the output pulse train. An example power spectrum of a discrete 

pulse train b[k]  is shown in Fig. 2.3, and a number of important results are obtained by 

decomposing the spectrum into signal and noise components. 

2.3.1 Signal and Noise Power Spectrums 

Let Sb(f) be the one-sided PSD of b[k]  where the substitutions z = ejw and w = 2 r f /  f, 

are used to express the discrete spectral density in terms of the frequency variable f .  Then, 

with (2.8), the PSD of the pulse train is expanded into the following components: 
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Figure 2.4: Signal and noise components in CA modulator pulse train. 

The term S,(f) is the PSD of the noise component in the pulse train b[k], Ss(f) is the PSD 

of the signal component, and Re{S,,(f)) is the real part of the cross power spectral density 

of the signal and noise components. Since the pulse train is polar with amplitude levels of 

&Ap, the total pulse train power is A;, and we have the constraint: 

In other words, the power of the signal and noise components in the pulse train must always 

equal a constant. 

The power balance between noise and signal components gives insight into the modulator. 

With reference to Fig. 2.4, the noise and signal components are expanded into spectral 

densities for the source signal S,( f )  and the quantization error signal Se( f ) .  The output 

pulse train b[k] is the sum of a signal component s[k] generated by the signal transfer 

function, and a noise component n[k] generated by the noise transfer function. Therefore, 

The signal transfer function H,(f) usually has constant gain A, and linear phase over the 

signal bandwidth, and the first term on the right hand side of (2.22) is equal to AZa: where 

at is the power of the source signal. 

The power balance equation is simplified further by assuming the quantization error e[k] 

is white, uniformly distributed over f Ap, and independent of the source signal u [ k ] .  The 

noise assumptions are commonly employed in linear modulator models [21,33]. With these 
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assumptions, the quantization error PSD is 

Since e[k]  is independent and zero mean, the cross power term in (2.22) is zero, and the 

power balance equation simplifies to: 

If the signal power is snlall such that A2g: << A;, then 

Equation (2.25) is equivalently written as a constraint on the NTF gain characteristic: 

If the NTF is constant for all frequencies outside the signal bandwidth fb,  and zero in the 

signal bandwidth, then (2.26) leads to the conclusion that the out-of-band NTF gain is 

approximately & = 1.7 assuming a high envelope oversample ratio. This conclusion is 

consistent with empirical design methodology that usually constrains the maximum NTF 

gain to be less than 2 [46,48], and provides another guideline for NTF gain characteristics. 

When the large signal behavior of the modulator is analyzed, the independence assump- 

tion is no longer valid, and the quantization error signal becomes correlated with the input 

signal. Large signals generate pulse trains with high coding efficiency; therefore, large signal 

modulator characteristics are important in the amplifier application. 

As with small signal behavior, the power balance equation gives insight into large signal 

behavior. Since the pulse train power is constant, the correlation between e[k]  and u [ k ]  

increases as the source level increases, and the cross power term eventually limits the recon- 

structed signal power. Fig. 2.3 shows the noise, signal, and cross-power spectral components 

of the pulse train power spectrum for a modulator with a W-CDMA signal. The source level 

is typical for an amplifier application, and the cross-correlation between the noise and signal 

is evident. 



CHAPTER 2. BANDPASS SIGMA-DELTA MODULATION 

2.3.2 Power Spectral Density Measurements 

For SNR measurements it is important to separately identify the signal and noise com- 

ponents in the pulse train power spectrum. A common SNR measurement procedure for 

sinusoidal source signals is to capture a time series of the output pulse train and estimate 

the PSD with periodogram techniques. The following excerpt from a book by Norsworthy, 

Schreier and Temes summarizes the procedure [21, pg. 2901: 

Output noise can be estimated by taking a Hann-weighted discrete Fourier trans- 

form (DFT) of the output sequence and summing the power in the in-band 

"bins," excluding those containing the input tone. The input should be chosen 

at a frequency centered in a bin but not at the exact band center because in 

that case symmetries occasionally cause anomalously good SNR readings. 

The above SNR measurement procedure shall be referred to as the 'bin delete' method. The 

main advantage of the bin delete method is that the output pulse train does not need to 

be decomposed into signal and noise components, providing the DFT resolution over the 

modulator bandwidth f b  is large. A limitation of the bin delete method is that it cannot 

be used effectively to estimate the SNR of wideband signals if the noise is not flat over the 

signal bandwidth. If results are published for wideband signals, they usually resort to a 

worst case measurement. The noise level adjacent to the signal spectrum is measured, and 

then assumed to be uniform across the signal bandwidth. 

As an alternative to the bin delete method, the noise component of the pulse train is 

extracted from the pulse train b[k] by generating s [ k ]  in a simulation. A second modulator 

loop is configured without a quantizer, and generates the signal component of the output 

signal; with reference to (2.5), the quantization error signal is set to zero, and the loop 

without the quantizer yields B(x) = S(z). By simultaneously generating b[k] and s [k]  during 

a simulation, the noise component n [ k ]  = b[k] - s [k]  can be extracted during post processing. 

The method is especially useful for calculating the SNR of wideband signals, and was used 

to generate the power spectra shown in Fig. 2.3 for a W-CDMA source signal. Although 

the method of separating signal and noise is simple, it has not been reported before, and 

some authors like Ardalan [50] were unable to verify analytic models for wideband gaussian 

source signals. 

For continuous-time modulators, the output signal component s ( t )  is not easily synthe- 

sized in a simulation because of mixed continuous and discrete time signals, and the bin 
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delete method is simpler in this case. Other post simulation methods can be applied to 

continuous-time pulse trains to separate signal and noise by using an adaptive algorithm to 

cancel the signal component, but the method is not as elegant as the discrete-time method 

with real time signal cancellation. 

Whether the bin delete or signal and noise separation method is used, all power spectral 

density plots shown in this work are estimated using a modified periodogram technique. 

The periodograms are constructed with Hann windowed overlapping blocks of 214 samples 

with 718 overlap. 

2.4 Signal- to-Noise Ratio 

For the purposes of benchmarking modulator performance, it is very common in the litera- 

ture to assume an ideal bandpass reconstruction filter, and measure SNR directly from the 

power spectrum of the output pulse train b[k]. The advantage of this method is that it fo- 

cuses exclusively on evaluating modulator performance providing a common reconstruction 

filter for comparing the SNR of different modulator designs. The ideal bandpass filter is not 

necessarily the optimum reconstruction filter, because the noise floor varies over the signal 

bandwidth. However, as will be shown, the ideal bandpass filter is nearly optimum when 

the SNR is high, and a realizable filter approximating the ideal bandpass filter is the 'best' 

reconstruction filter for the RF amplifier system. SNR also depends on the peak-to-average 

power ratio of the source signal, and examples of SNR responses are given in the following 

sections for sinusoidal, W-CDMA, and narrowband gaussian sources. 

2.4.1 SNR With An Ideal Bandpass Reconstruction Filter 

A complete discrete-time equivalent system model shown in Fig. 2.5 is used for SNR analysis. 

The discrete-time model is justified even when the sequence b[k] is converted to a continuous- 

time pulse train p(t) with an output DAC D,(s) as shown earlier in Fig. 2.l(b). Since the 

envelope oversample ratio is large, the NRZ DAC attenuation is approximately constant 

over a narrow signal bandwidth f b ,  and the SNR of the discrete signal b[k] and the SNR of 

the continuous signal p(t) are approximately the same. 

Let the reconstructed signal be ii[k], and let G[k] be a delayed and amplitude matched 

source signal, that minimizes the mean square error (MSE) of the reconstructed error signal 
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Figure 2.5: Signal reconstruction model for SNR analysis. 

?~[k]. The reconstructed signal-to-noise ratio is then defined as 

S N R  = E { I W 2 >  - E{lWI * g[kIl2> 
E{IWI - 4+112) - E{ln[kl * g[k1I2) 

where E{.) denotes the expected valued value and * denotes convolution. 

The expectations in the SNR expression (2.27) are not easily evaluated directly, and it is 

much more convenient to express SNR in terms of power spectral densities associated with 

the modulator signals b[k] and n[k]. Assuming the reconstruction filter g[k] is ideal with 

frequency response 

and assuming the source signal lies completely within the filter bandwidth, then 

Therefore, an SNR calculation of the reconstructed signal with an ideal bandpass filter 

requires knowledge of both the pulse train power spectral density Sb(f) and the noise com- 

ponent spectral density Sn( f ). 
The SNR can also be expressed in terms of the source signal u[k] by expanding the 

numerator term. After using (2.6), and assuming the STF gain is unity, we get 

fc+fb/2 
S N R  = 

of + Sfi-f,,/2 [ S n ( f )  +2Re{Sun(f)H,*(f)>ldf ,., - 4 
fc+fb/2 s . (2.30) 

J;?;/; s n  ( f df Sf. fb/2 n(f) df 

The approximation is valid up to moderate input powers providing a; < A:, and shows 

the direct relationship between the input signal power and SNR. Eventually the SNR of 
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the modulator reaches a peak value, and once the nlodulator input power is large, the 

cross power t#erm is no longer insignificant. The noise and signal spectrum start to become 

correlated at high source levels, and the reconstructed signal power is limited to maintain 

constant pulse train power. 

2.4.2 SNR With An Optimum Reconstruction Filter 

The ideal bandpass filt,er is a common reference filter for characterizing the SNR of a mod- 

ulator, but it is not necessarily the optimum reconstruction filter. Optimizing the recon- 

structed SNR is analogous to a signal estimation problem where the signal is assumed to 

be corrupted by an additive noise process. Both the source signal and noise are stochastic, 

and the optimum filter which minimizes the MSE is called the Wiener filter. The design 

of ideal and causal Wiener filters is covered in many references such as [51,52]. Using the 

non-causal form of the Wiener filter for analytic simplicity, we show by way of an example, 

that the optimum reconstruction filter g(t) is well approximated by an ideal bandpass filter 

when the SNR is high. 

The input signal to the reconstruction filter g(t) is a pulse train p(t), and it consists of 

the desired signal s(t) with an additive noise component n(t): 

The frequency response of the optimum non-causal Wiener filter is [51] 

where the cross power spectral density Sps(f) and the power spectral density Sp(f) are 

expanded in terms of the signal PSD Ss( f )  and the noise PSD Sn( f ). An immediate result 

from (2.32) is that if the PSD of the signal is bandlimited, then the optimum filter is 

an attenuator outside the signal bandwidth. However, within the signal bandwidth, the 

optimum filter depends on the signal and noise PSD's. 

As described earlier, the attenuation of the NRZ DAC which converts b[k] to p(t) is 

assumed to be uniform over the narrow signal bandwidth fb. Hence signal and noise are 

attenuated equally, and the relative power spectral densities are unchanged by the DAC. It is 

convenient to first derive results with discrete-time spectral densities, and then renormalize 

for equivalent continuous-time densities. The variable w shall denote the discrete frequency 
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and has values in the interval [0,27r); the equivalent continuous-time expressions use the 

substitution w = 27r f / f s .  

The source signal is a bandlimited bandpass signal with bandwidth wb, carrier frequency 

w,, and total power 02. Assume the source signal PSD is uniformly distributed over the 

signal bandwidth similar to W-CDMA, then the one-sided PSD is: 

- /  I W - W C I  <wb/2 

0 otherwise 

The noise PSD over the signal bandwidth is found by approximating the noise transfer 

function ~ , ( e j ~ )  with a Taylor series expansion about w,, and assuming the quantization 

noise power is uniform. Schreier used this technique for estimating the SNR of a bandpass 

EA modulator [33]. If the noise transfer function has coincident zeros, then a first term 

Taylor expansion leads to the expression 

where K is a gain constant and M is the order of the NTF. For example, the NTF for 

modulator A was given in (2.19), and the corresponding values for K and M are both 4. 

The approximation and the exact equation (2.19) are compared in Fig. 2.6, and shows that 

the approximation is very accurate in the region of the noise well. 

The quantization error signal elk] from the binary quantizer is assumed to independent, 

white, and uniformly distributed over &Ap with variance A:/3. The quantization error 

power is spread over 27r, and the one-sided spectral density is 

The PSD of the noise component in the pulse train is then 

Substituting expressions for the signal and noise PSD's in (2.32) yields 

where the relations 17, = o ~ / A ;  and Re = 7r/wb have been used in the simplification. 

When the frequency is equal to w,, the second term in the denominator is zero, and the 
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Figure 2.6: Top figure: power spectral density of the signal and noise components for 
modulator A with R, = 2 and Re = 128. Bottom figure: Optimal Wiener filter frequency 
responses for different pulse train coding efficiencies. 
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reconstruction filter has unity gain. For frequencies away from the center frequency, the 

second term affects the frequency response, but as shown next, this term is very small when 

the coding efficiency of the signal is high. 

The maximum deviation of the optimum reconstruction filter from unity gain, occurs at  

the band edges when w = wc f wb/2. At these frequencies, the maximum deviation is 

Since the envelope oversample ratio is large, the denominator is large, and the deviation from 

unity is very small. The impact on the noise spectral density starts to become significant 

when the coding efficiency is very low, or equivalently the SNR of the reconstructed signal is 

very low. An example of the optimum filter response for modulator A is given for rl?, = 0.1 

and qp = lop4 in Fig. 2.6. Since the coding efficiency is always large in an amplifier 

application, the analysis shows that the optimum reconstruction filter is well approximated 

by an ideal bandpass filter. 

2.4.3 Sinusoidal Source 

SNR measurements with a sinusoidal source use a test signal of the form 

where $ is a random variable with uniform distribution over [0,2n), and A f is an offset satis- 

fying A f < fb/2. The definition of fc and f b  are consistent with the definitions of carrier and 

envelope oversample ratios. For example, a tone with fc = 113 and A f = ~ / 3 1 4 0  % 0.001 

has a carrier oversample ratio of 1.5, and the offset is within a bandwidth defined by an 

envelope oversample ratio of 128. Depending on the values of the carrier oversample ratio 

and A f ,  the large signal behavior of the modulator may be phase sensitive and ensemble 

averages are required to estimate SNR. However, for most cases where the source frequency 

and sample frequency are non-commensurate, a time average of a single sample function 

is sufficient to estimate SNR. The distinction between ensemble and time averages is im- 

portant in Chapter 4, otherwise all SNR measurements with a sinusoidal signal are derived 

from time averages with a frequency offset of .ir/3140. A noise bandwidth corresponding to 

Re = 128 is consistently applied throughout this work for SNR measurements. 

As an example of a sinusoidal SNR response, Fig. 2.7 shows the SNR for modulator A 

with a carrier oversample ratio of 1.5. The SNR increases linearly over most of the dynamic 
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Source Level (0:) [dBV] 

Source Level (0:) [dBV] 

Figure 2.7: Top figure: SNR characteristics for modulator A with sinusoidal, NGN, and 
W-CDMA source signals; the source levels for a SNR threshold of 65 dB are -3.5 dBV, 
-11.5 dBV, and -13.0 dBV, respectively. Lower figure: signal and noise power for a sinusoidal 
source. 
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range of the modulator, and then it eventually reaches a peak value. With sufficiently 

large input amplitudes, the modulator SNR collapses very rapidly, and in this region the 

modulator may eventually be unstable depending on the design. The SNR response is 

consistent with equation (2.30), and shows the linear range as well as the nonlinear range 

when signal and noise components start to become correlated. For comparison with the 

SNR, the power of the reconstructed signal (a:) and reconstructed noise components (a:) 

are shown in Fig. 2.7(b). Signal power varies linearly with source power, while noise power 

is constant over most of the dynamic range until it abruptly increases around the point of 

SNR collapse. 

2.4.4 W-CDMA Source 

When the input signal to the modulator has a time varying signal envelope like a W-CDMA 

carrier, the SNR response of the modulator changes. Fig. 2.7 shows the SNR response 

for modulator A with a W-CDMA source signal. Over a large dynamic range, the SNR 

increases linearly similar to a sinusoidal source signal, but the peak SNR and the point of 

SNR collapse are backed off relative to the sinusoidal source. The drive characteristics of 

the modulator are therefore similar to a class A drive stage, and the peak-to-average power 

ratio (PAR) of the source signal limits both SNR and coding efficiency. 

The envelope distribution of the W-CDMA signal is shown in Fig. 2.8 where the distri- 

bution is shown as a complementary cumulative distribution function (CCDF). Using the 

65 dB SNR threshold line in Fig. 2.7 as a reference, the maximum W-CDMA drive level 

is -13.0 dBV, or 9.5 dB less than the sinusoidal SNR drive level. From the CCDF, a PAR 

of 9.5 dB corresponds to peak amplitude excursions of less than 10W3, very close to a peak 

PAR of 10.2 dB. 

The sensitivity of modulator SNR relative to peak amplitude levels is not surprising; the 

modulator is an oversampling converter, and the envelope is quasi-static over a large number 

of clock cycles. Therefore, the maximum drive level for a modulated signal is approximately 

equal to the sinusoidal drive level backed off by the envelope PAR. 

2.4.5 Narrowband Gaussian Source 

As an alternate signal source to W-CDMA, narrowband gaussian noise (NGN) can also be 

used to generate a source signal with similar PAR. NGN is easily generated for simulations, 
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Figure 2.8: Complementary cumulative distribution function of envelope power relative to 
mean for narrowband gaussian noise and W-CDMA sources. NGN has a Rayleigh envelope 
distribution, and the analytic CCDF is e-P where p is the PAR level. 

and the gaussian probability distribution has the maximum entropy of any source signal. 

The SNR response for an NGN source is shown in Fig. 2.7, and the maximum drive level 

for an SNR threshold of 65 dB is approximately 1.5 dB higher than W-CDMA. The slightly 

higher drive level for NGN corresponds to a slighter lower peak-to-average power ratio of 

the NGN test signal. 

The NGN source signal is generated with a W-CDMA equivalent root-raised cosine 

(RRC) filter with a roll-off factor of 0.22. The simulated and analytic PAR for the signal 

is shown in Fig. 2.8. The simulated CCDF corresponds to the ensemble average of 20 

sample functions of 215 points, or a total of 2056 symbols with an envelope oversample ratio 

of 128. The W-CDMA response corresponds to a single sample function of 2048 symbols 

of test model 1 in the W-CDMA standard [53]. As the data show, although NGN has a 

higher theoretical PAR, the simulated result has a PAR of about 9.2 dB, and is 1 dB less 

than W-CDMA. Higher PAR is generated by more symbols, but the simulation times are 

very long. The primary reason for using short sample functions and ensemble averaging is 

to limit numerical computation times which are not necessarily linear with the length of 

sample sequences. In Chapter 5, numerical complexity is especially significant where tree 
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search methods are used to evaluate modulator coding efficiency. 

2.5 Coding Efficiency 

As shown in the introductory chapter, the output power of the RF class D amplifier depends 

on the coding efficiency of the modulator pulse train. A primary objective in power amplifier 

design is to maximize load power, and consequently we seek to maximize modulator coding 

efficiency. As with SNR, it is convenient to measure coding efficiency directly from the 

modulator pulse train, and the measurement method using the PSD of p(t) is employed. 

Providing the reconstructed SNR is large, the reconstructed signal power is 

Unlike reconstructed SNR, the attenuation of the output DAC is significant and affects 

coding efficiency; therefore, the coding efficiency of the DT pulse train b[k] must be adjusted 

for DAC attenuation. Assuming the ZOH DAC pulse is a trapezoidal pulse with rise and 

fall times of T, and pulse width T, the CT pulse train p(t) has a coding efficiency of [41] 

The superscript D T  denotes the coding efficiency of the DT pulse train b[k]. If the rise and 

fall times are less than T/8, the term with Te is negligible. We assume the DAC circuit 

satisfies this condition, and CT coding efficiency is then a function of only the carrier 

oversample ratio and the DT modulator coding efficiency. 

The ZOH DAC pulse attenuates the DT coding efficiency, and a large carrier oversample 

ratio is desirable to minimize the reduction in coding efficiency by the sinc[l/(2R,)] term. 

On the other hand, a high sample rate requires higher bandwidth circuitry, consumes more 

power, and as shown later generates more transitions in the pulse train reducing amplifier 

power efficiency. 

If the STF gain in the modulator is unity as in modulator A, then the signal power 

in b[k] is equal to the input power. Under this condition, coding efficiency increases with 

increasing input power. However, coding efficiency is eventually bounded by correlation 

between the input signal and the quantization noise. As shown earlier in Fig. 2.7 (lower 

figure), if the input signal power is restricted to a range around the point of SNR collapse 
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where the SNR is high, no significant signal compression occurs. Therefore, with unity STF 

gain, and unit quantization levels f Ap, 

where a:,,,, is the maximum input power for which the approximation is valid. 

2.5.1 Coding Efficiency and SNR Trade-offs 

If coding efficiency is to be maximized, then the modulator drive level should be set to 

a:,,,,. However, this is unconstrained and does not consider the trade-off with SNR. There 

is a minimum acceptable SNR threshold SNRt which must be met while maximizing coding 

efficiency. A SNR threshold line at 65 dB is shown in Fig. 2.7 and intersects a SNR response 

at two points. Clearly, the optimal operating point corresponds to the larger drive level, 

and the figure shows how important the region near SNR collapse is. It is within this region 

that the coding efficiency becomes significant and where reasonable power can be extracted 

from the encoded signal. 

2.5.2 Coding Efficiency and Carrier Oversample Ratio Trade-offs 

One of the main distinctions between lowpass C A  modulation and bandpass C A  modulation 

is the carrier oversample ratio. From an information theoretic perspective, the SNR of 

the encoded pulse train depends only on the signal bandwidth and is independent of the 

carrier frequency. On the other hand, as (2.41) shows, coding efficiency does depend on 

carrier oversample ratio, and coding efficiency is expected to increase monotonically with 

the carrier oversample ratio. It is therefore interesting to observe that the large signal 

amplitude characteristics of bandpass modulators show variations in coding efficiency that 

are not monotonic, and that some carrier oversample ratios appear more optimal than others. 

These conclusions are based on extensive simulations based on the modulator designs in 

section 2.2, as well as supporting theory from other encoding models presented later in 

Chapters 4 and 5 .  

As examples of coding efficiency variation which are not monotonic with carrier over- 

sample ratio, Fig. 2.9 shows the SNR versus coding efficiency response for six different 

modulator designs at R, = 1.7 and R, = 2.0. All the responses shown in this figure are 

consistent with stable modulators, and the input to the quantizer is bounded. The variance 

of the quantizer input signal v[k] is less than 130 for the shown operating range. 
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The NRZ DAC attenuation is larger for a carrier oversample ratio of 1.7, and yet the 

coding efficiency is substantially better than at 2.0 for all the second and fourth order 

modulator designs. This observation is consistent over designs including spread zero designs 

and DT or CT transfer functions. Since the output power delivered by the amplifier depends 

on coding efficiency, as will be shown in Chapter 3, it is advantageous to select a carrier 

oversample ratio that maximizes coding efficiency. Based on these data, R, = 1.7 is a better 

choice than R, = 2. 

Figure 2.9 also includes the SNR and coding efficiency response of a sixth order modula- 

tor design, called design F. Unlike second and fourth order designs, the sixth order modulator 

performance does not vary significantly with carrier oversample rate. The stability of the 

sixth order modulator becomes the overriding limitation in the design. As the results show, 

although the SNR is about 10 to 15 dB better than a fourth order design, the peak coding 

efficiency is approximately 18%, well below the peak coding efficiency of the second and 

fourth order designs. The stability issues with high order modulators are well known [21], 

and this limits their usefulness for high drive level applications. For this reason, most of 

this research is limited to second and fourth order designs. 

Since the variation of coding efficiency with carrier oversample ratio is not monotonic for 

second and fourth order designs, a characterization of the modulator design should include a 

sweep over carrier oversample ratio. In the following sections, the coding efficiency variation 

of modulator A is shown for sinusoidal and W-CDMA sources. 

2.5.2.1 Coding Efficiency with a Sinusoidal Source 

Fig. 2.10 shows a detailed characterization of modulator A where the coding efficiency at 

different SNR thresholds is shown as a function of the carrier oversample ratio. The coding 

efficiency is for a CT pulse train and includes the sinc response of the NRZ DAC. For these 

data, a sinusoidal source signal with 218 samples is used with an irrational frequency offset 

of ;.r/3140. The SNR versus coding efficiency is measured at each carrier oversample ratio, 

then the coding efficiency corresponding to an SNR threshold is found. 

The data clearly show dips in coding efficiency that are not predicted by a simple overlay 

of the NRZ DAC frequency response. For example, at an SNR threshold of 65 dB, there 

are dips in coding efficiency at carrier oversample ratios of 1.5, 2, and 2.5. As the SNR 

threshold is increased, the dips become less pronounced, and eventually the coding effi- 

ciency varies monotonically with the NRZ DAC frequency response. Therefore, the coding 
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Figure 2.9: SNR and coding efficiency variation with carrier oversample ratio (Re = 128; 
a: < 130). 
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Figure 2.10: Continuous-time pulse train coding efficiency of modulator A at different 
SNR thresholds for a sinusoidal source. The dashed line is the expected response assuming 
a NRZ DAC. 
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The variation in coding efficiency with carrier oversample ratio and the SNR threshold 

is substantial. For example, at an SNR threshold of 65 dB, a carrier oversample ratio of 1.7 

has as much as 10% more coding efficiency compared to a modulator encoding at a carrier 

oversample ratio of 2.0. Assuming DAC attenuation characteristics only, the exact opposite 

response is expected - coding efficiency should be less at a lower carrier oversample ratio. 

1 1.5 2 2.5 3 3.5 4 
Carrier Oversample Ratio (Rc) 

SNR threshold also has a significant impact on coding efficiency. For a carrier oversample 

ratio of 1.7, the coding efficiency is approximately 18% at 75 dB, 32% at 70 dB, and 42% at 

65 dB. A 10 dB reduction in the SNR threshold results in more tha.n double the reconstructed 

signal power. 

As another representation of the same data, Fig. 2.11 shows the same data set for the DT 

pulse train b[k] without the DAC response. Also, instead of plotting the coding efficiency 

versus carrier oversample ratio, the x-axis is shown in terms of a normalized center frequency. 

The dips in coding efficiency occur around low fractional ratios of $ (R, = 1.5); (R, = 2.0), 

and $ (R, = 2.5). The periodic model in Chapter 4 predicts the dips at these fractional 
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Figure 2.11: Discrete-time pulse train coding efficiency with a sinusoidal source for mod- 
ulator A. 

ratios, and the large signal characteristics of modulators shows similar variation in the 

neighborhood of these specific carrier oversample ratios. 

2.5.2.2 Coding Efficiency with a W-CDMA Source 

The coding efficiency variation with carrier oversample ratio is consistent with more complex 

source signals such as W-CDMA. As an example of this behavior, Fig. 2.12(a) shows the 

SNR versus coding efficiency responses for six different carrier oversample ratios. A 65 dB 

threshold line is shown for reference, and the carrier oversample ratios in order of increasing 

coding efficiency are 2.0, 1.3, 1.5, 1.7, 3, and 2.6. As with the sinusoidal source signal, 

the variation is not monotonic, and some carrier oversample ratios are more optimal than 

others. 

In Fig. 2.12(b), a series of responses are shown in the neighborhood of a carrier oversam- 

ple ratio of 2.0. The responses show that the coding efficiency at R, = 2 is not a singularity 

- there is a narrow range about R, = 2 where coding efficiency deviates significantly from 

the NRZ DAC response. The behavior is centered at a carrier oversample ratio of 2, and 

shows that the coding efficiency dip is not anomalous. 
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Figure 2.12: SNR versus coding efficiency for modulator A with a W-CDMA source signal. 
The marked points in (a) correspond to an SNR threshold of 65 dB with coding efficiencies 
of: 4.4%, 4.8%, 5.7%, 4.1%, 6.5%, and 7.0% for R, = 1.3,1.5,1.7,2,3 and 2.6, respectively. 
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Figure 2.13: Probability mass function of pulse widths for sinusoidal and W-CDMA source 
signals. The data are for modulator A with R, = 1.5. 

$ 

2.6 Average Transition F'requency 

A third modulator parameter, in addition to SNR and coding efficiency, that is important 

in RF class D amplifier design is the average transition frequency (ATF) of the pulse train. 

The definition of ATF was given in Chapter 1, equation (1.10), and is defined as the inverse 

of the average pulse period (T,,). The average pulse period is the expected value of the pulse 

widths in the modulator pulse train p ( t ) .  Estimates of the probability mass function for the 

1 6 '  

pulse widths are made by capturing long sample functions of the modulator pulse train, and 

counting the distribution of pulse widths. An example of a pulse width probability mass 

function is given in Fig. 2.13. 

The pulse width distribution changes with source level and source type. The ATF of 

modulator A for sinusoidal and W-CDMA sources is shown in Fig. 2.14. Unlike coding 

efficiency variation with respect to carrier oversample ratio, ATF varies monotonically with 

changes in carrier oversample ratio. 

For W-CDMA source signals, the ATF is nearly independent of the modulator drive 

level and is primarily a function of carrier oversample ratio. As shown in Fig. 2.14(b), an 
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Coding Efficiency [%I 
(a) Sinusoidal source signal. 

Coding Efficiency [%I 
(b) W-CDMA source signal. 

Figure 2.14: Average transition frequency for modulator A with a sinusoidal and W-CDMA 
source signal. 
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empirical approximation for ATF is 

fa, R, fc  = fs/2 (W-CDMA). (2.43) 

The coding efficiency of the pulse train with a W-CDMA source is low, and most of the 

pulse train power is quantization noise. The noise has a mean frequency of fs/2; hence 

the approximation (2.43). From this, we conclude that it is best to choose a low carrier 

oversample ratio to minimize ATF for W-CDMA source signals. 

The ATF for a sinusoidal source signal is more interesting, and Fig. 2.14(a) shows that 

ATF asymptotically approaches 2 f, for all carrier oversample ratios as the modulator input 

levels increases. As will be shown later in Chapter 4, the maximum coding efficiency for a 

sinusoidal load signal at  frequency f, corresponds to the fundamental frequency component 

of a square wave signal with a 50% duty cycle. The ATF of the square wave pulse train is 

2 f,, and the ATF convergence of the modulator to 2 f, shows that the modulator eventually 

attempts to generate a square wave signal as the amplitude of the source signal gets large. 

For low amplitude sinusoidal signals, the ATF depends on carrier oversample ratios, similar 

to W-CDMA source signals. 

2.7 Conclusions 

The SNR, coding efficiency, and average transition frequency characteristics of six different 

bandpass CA modulators have been shown. Coding efficiency increases with source ampli- 

tude, and this means the large amplitude behavior of the modulator is important in RF 

class D amplifier applications. The NRZ DAC attenuation characteristics have a significant 

impact on coding efficiency, and high oversample ratios minimize DAC attenuation. In ad- 

dition to the DAC frequency response, all the second and fourth order modulator designs 

show a significant dip in coding efficiency in the neighborhood of R, = 2. The simulated 

data show that it is better to choose a carrier oversample ratio of less than 1.7, or more 

than 2.2 to avoid the drop in coding efficiency. Since ATF increases with carrier oversam- 

ple ratio, switching power losses in the amplifier also increase; therefore, the selection of 

a carrier oversample ratio involves trade-offs between coding efficiency and ATF. In the 

next chapter, amplifier design equations are derived which incorporate coding efficiency and 

ATF parameters, and the equations provide a way to select a carrier oversample ratio that 

balances load power and power efficiency. 



Chapter 3 

RF Class D Amplifier Power 

Efficiency 

In this chapter, we analyze the power efficiency of the augmented bandpass CA modulator 

and RF class D amplifier configuration. The concepts of coding efficiency and average tran- 

sition frequency developed in the previous chapter are parameters that link the modulator 

with the analysis of amplifier power efficiency. 

We begin by first selecting an RF class D amplifier topology which has a broadband 

frequency response for amplifying a bandpass CA modulator pulse train. The complemen- 

tary voltage switched amplifier topology is considered to be the best choice for bandpass 

CA modulation. The power efficiency of the circuit is then analyzed. Design and analysis 

equations are derived which estimate the optimum load resistance, load power, conduction 

losses, and capacitive switching losses. The equations are applied to three different designs 

with pHEMT, MESFET, and CMOS switches. In the latter case, a design with a CMOS 

driver stage is included in the power efficiency analysis. The analysis is based on first order 

device models and verified by simulation. 

3.1 Complementary Voltage Switched Class D Amplifier 

The complementary voltage switched class D (CVSCD) amplifier is considered to be the 

best circuit topology for amplifying a broadband bandpass CA modulator pulse train. The 

advantage of the complementary voltage switched class D amplifier (CVSCD) configuration 

[3], also called the half bridge circuit in audio class D amplifier literature [54], is that it 

does not require transformers or baluns. Other RF class D amplifier configurations such as 

the transformer coupled current switched amplifier (CSCD) [3,24], or modifications of the 
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Figure 3.1: Complementary voltage switched class D (CVSCD) amplifier. 

CSCD amplifier such as a shunt current filter [13-151, require transformers or baluns, and 

are likely to be more challenging to implement given the GHz bandwidth of CA modulated 

pulse trains at  wireless frequencies. The CVSCD circuit also has the advantage that it 

is easily implemented in CMOS technology, and advances in RF CMOS technology open 

potential low power applications for the amplifier architecture. 

A simplified model of the CVSCD circuit is shown in Fig. 3.1. Two switches are arranged 

in a totem pole configuration, and the reconstruction filter is connected to the switches at 

node A. The switches in the amplifier are modeled as an ideal switch in series with a linear 

'on' resistance denoted a,s Ron. The simplified switch model represents a semiconductor 

device such as a pHEMT, and the equivalent on resistance is derived from device technology 

parameters. 

An elegant feature of class D amplification with a conventional square wave drive signal 

is that the current is ideally zero at switching instants. The amplifier generates a periodic 

switched voltage pulse train vA(t) with a 50% duty cycle square wave, and the load current 

is the first harmonic of the pulse train. When the input drive signal pd,(t) is changed to an 

aperiodic pulse train, the timing of pulse train transitions varies, and the phase of the load 

signal no longer has a fixed relationship with the voltage transitions. A comparison of the 

current iA(t) and the polar signal p,(t), defined as vA(t) - VDc/2 in the CVSCD circuit, 

are shown in Fig. 3.2 for periodic and aperiodic switching. 
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a "  

200 201 202 203 204 205 
Time [ns] 

(a) Zero Current Switching - 50% Duty Cycle Square Wave Drive 

. - '-0.6 
2000 2001 2002 2003 2004 2005 

Time [ns] 

(b) Non-zero Current Switching - Bandpass CA Modulator Drive 

Figure 3.2: Switching conditions in a VSCD amplifier with non-zero switch resistance. 
The current at the switching transitions is marked by a dot, and the voltage pulse train 
has ripple generated by non-zero switch resistance. If switch resistance is zero, then the 
amplitude levels of p,(t) would be exactly f 7.5 V. 
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Although the principal operation of the class D amplifier remains unchanged whether 

the input pulse train is a periodic or aperiodic, the switch requirements are different in the 

two cases. When pdr(t) is a 50% duty cycle square wave, the switch currents il(t) and ia(t) 

are always positive for the current directions shown in Fig. 3.2. On the other hand, when 

pdr (t) is aperiodic, the switch currents are no longer unidirectional, and the sign of il (t) and 

&(t) can change while the switch is on. Bidirectional current switches are therefore required 

when the CVSCD amplifier is driven by aperiodic pulse trains. Switches are discussed more 

in section 3.1.3. 

3.1.1 Ideal Circuit Analysis - Zero Switch Resistance 

We start the analysis of the CVSCD circuit assuming zero switch resistance, and then adjust 

design equations to compensate for non-zero switch resistance. The ideal load resistance, 

assuming zero switch resistance, is indicated with a prime, R i ,  and compensated load 

resistance for non-zero switch resistance is indicated without a prime, RL. 

The amplifier generates an average load power PL in RL, and the load signal has a time 

varying envelope with a peak-to-average power ratio of p. The peak load power is 

The average load power (3.2) can also be expressed in terms of the coding efficiency qp 

of the pulse train pa(t). With reference to Fig. 3.1, the switch closures generate a voltage 

switched pulse train vA(t) with amplitude levels of either OV or VDc. The switched pulse 

train vA(t) has a DC offset of VDc/2, and the equivalent zero mean pulse train p,(t) is 

Let A, = VDc/2, then with the coding efficiency equation (1.6), the required load 

resistance given load power PL is 
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If (3.5) is substituted for RL in (3.3), then an expression for the peak load current is derived. 

Equation (3.6) is consistent with conventional square wave drive signal equations [3] assum- 

ing coding efficiency is set to 8/7r2 and p is set to 1. The coding efficiency value of 8/7r2 is 

derived by using equation (1.7) from Chapter 1, where the 'signal component' corresponds 

to the fundamental frequency component of a 50% duty square wave pulse train. 

Assuming a switch has a gate (or base) width of WSw mm, (3.6) is rearranged to give 

an expression for normalized load power. Let PL be a normalized load power defined as 

PL/Ws, with units of W/mm, where the overbar denotes a normalized variable. Typical 

semiconductor devices are often characterized by a maximum drain current called I,,, [55] 

which can also be normalized, and the normalized current, La,, is a figure of merit for 

device technology. For example, a typical pHEMT may have an La, of 0.4 A/mm. With 

these definitions, (3.6) is rewritten as 

where it is assumed that IL,pk -- I,,, and the device is fully utilized. 

Equation (3.7) shows the fundamental parameters that affect the utility of both the 

device and circuit topology to generate load power. Both Lax and VDc are determined by 

the device technology, coding efficiency is a function of the modulator, and p is a function 

of the source signal. The utilization of a specific device technology can therefore be boosted 

either by increasing coding efficiency or by reducing the PAR of the source signal. 

3.1.2 Compensation for Switch Resistance 

The load current, through switches with non-zero resistance, generates a voltage drop which 

adds a small ripple component to the switched voltage waveform vA(t)  as shown in Fig. 3.2. 

The voltage drop across the switches reduces the amplitude of the desired signal compo- 

nent in the switched pulse train, and the loss is compensated by decreasing the ideal load 

resistance RL. The compensated load resistance, RL, assuming a switch resistance of Ron 

is calculated next. 

Since the switch resistance is not zero, power is dissipated in both switches and the load. 

The power dissipated in the switches (conduction losses) PC and the power dissipated in the 
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load PL must equal the total signal power P, available in the switched pulsed train. 

The conduction power loss is I&,,R~,, the load power is l&,,RL, and the available signal 

power in the switched voltage pulse train for an effective load of R,,+RL is 7pAE/(Ron+R~). 

With these relations, (3.8) is written as 

Equation (3.9) is rearranged as a quadratic equation in RL, 

and RL is 

The solution corresponds to the positive root such that limRo,+o RL 

(3.5), the zero resistance solution. Using (3.5), RL is expressed as 

Assuming R,, << RL, the root is expanded in a Taylor series and 

(3.11) 

: RL and collapses to 

The design equations are consistent with conventional equations [26] assuming the coding 

efficiency and PAR for a 50% duty cycle square wave are used. 

3.1.3 Current Utilization Margin 

A FET like switch, such as a MESFET or pHEMT, is well suited for voltage switched class 

D circuits, since it supports bidirectional current flow when the switch is turned on. The 

main precaution in designing the switch is to ensure that the gate-drain junction does not 

forward bias significantly, and in low frequency circuits the source to drain terminals are 

often shunted by a diode for additional protection [54]. At RF frequencies, the addition of 

a shunt diode increases parasitic capacitance, and a design without a diode is considered by 
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Figure 3.3: Normalized I V  characteristics for a typical 0.5 pm pHEMT in the on and off 
states. Angelov model values for equation (3.30): Ipk = 0.23 A, Vpk = -0.3 V, PI = 1.6, 
P3 = 0.7, X = -0.035 and a = 1.5. 

limiting load current to a safe operating range where negative drain-source voltage swings 

do not forward bias the gate-drain junction. 

The typical I V  characteristics for a n-type depletion pHEMT are shown in Fig. 3.3. The 

drain current Ids has been normalized to the gate width Ws, and shown in A/mm. The 

load resistance in the amplifier is selected to operate the switch in the linear region where 

the on resistance is approximately constant, and the load current swings from -IL,pk to 

+JL,pk. 

The gate to source voltage, VgS,,,, is selected to minimize the on resistance of the device, 

while at the same time maximize the peak current swing +IL,pk without forward biasing the 

gate-drain junction at a drain current of -IL,pk. Depending on the device I V  characteristics, 

the maximum drain current at Vg,,,,, called Ion, will probably lie in the range of IDss to 

I,,, for a typical microwave power FET. For example, in Fig. 3.3, Ln is approximately 

0.4 A/mm when the gate source voltage is 0.4 V and is typical for pHEMT devices. At this 

gate bias, negative drain current up to a maximum level of -Jon A/mm does not forward 

bias the gate drain junction, and gate current is kept to a level of less than 1 mA/mm. 

Assuming a current utilization margin UMi is applied in the design, IL,pk is selected to be 
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less than Ion where 

IL ,~ /~  = UMJon Wsw 

There are several reasons for incorporating a current utilization margin in the design. 

First, the on resistance becomes much larger if signal peaks drive current to a maximum 

level of Ion. When on resistance becomes highly nonlinear, conduction losses are higher, 

and distortion is larger. Thus, a current margin constrains current swing to a more linear 

range. A second reason for applying a current margin is to have sufficient overhead to source 

capacitive switching current during switch transitions. During switch transitions, the phase 

of the load current could be near a peak, and sufficient current must be supplied to prevent 

current starvation during a transition. Current is also required during a transition to change 

the stored charge in parasitic capacitances; therefore, the utilization margin affects switching 

time by balancing the competing current loads during transitions. An example of a 50% 

current utilization margin is shown by the heavy line in Fig. 3.3; over this range, the 

normalized on resistance, Ron, is approximately 2 R mm. 

Another switch configuration is to shunt a bipolar device such as a HBT with a diode [2]. 

The main advantage of bipolar switches is the nearly constant saturation voltage which is 

independent of switch current; however, the advantage of a constant saturation voltage is 

diminished when the load current changes polarity. Both the HBT and diode have saturation 

voltages which create an abrupt transition region in load current as the switch voltage 

changes polarity. The abrupt current transition generates distortion and given the advantage 

of the linear on resistance in FET's, the bipolar switch configuration is not analyzed further. 

3.2 Conduction Losses 

Conduction losses are defined as the dissipated power in the switches arising from load 

current. Assuming instantaneous switching, the current iA(t) passes through either SWl 

or SW2, and the conduction loss, denoted as PC, is I'&,,,R,,. The drain efficiency of the 

amplifier assuming only conduction losses is 

77d = p~ - - RL 
PL + P c  RL + Ron 

where RL is given by (3.11). 

The expression for RL in (3.11) is written in terms of the load power PL, and it is 

desirable to have an efficiency expression in terms of fundamental device parameters only. 
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With equations (3.1) and (3.3), PL is 

Substituting (3.16) in (3.10) and solving the revised quadratic equation yields: 

Equation (3.14) is now substituted for IL,pk in (3.17) and 

RL = 
na 

UMi Jon w s w  
- R,,. 

By multiplying (3.18) by the switch gate width W,,, a normalized load resistance RL is 
computed and substituted in (3.15). In terms of normalized device parameters Ion and R,,, 

the drain efficiency is: 

The peak-to-peak amplitude of the switched voltage pulse train is 2 A a ,  and the voltage 

swing is limited by the gate-drain breakdown voltage lBVgdl of the device. Assuming a 

voltage utilization margin UMu is assigned to provide margin for peak gate-drain voltages 

which are at least IVgSIoSf - 2&(, then 

and 

Equation (3.21) shows how drain efficiency and coding efficiency are linked. If the 

amplifier is ideal, R,, = 0 ,  and drain efficiency is unity. On the other hand, if R, # 0 ,  

coding efficiency affects the conduction losses in the amplifier. 

3.3 Capacitive Switching Losses 

In this section, the analysis of the class D amplifier is expanded to include switching losses 

generated by the change in stored energy of parasitic switch capacitance. The analysis of 
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capacitive switching losses for conventional switching with a square wave is well known [3,23], 

and the intent here is to expand the analysis to include switching losses with a bandpass 

CA modulator drive signal. 

The analysis of switching losses for square wave signals is typically done by computing 

the change in stored energy after a switch transition, and then combining the net change in 

stored energy with the frequency of transitions to compute dissipated power. The analysis 

assumes that the amount of dissipated energy is equal to the change in stored energy, and 

is strictly valid for linear capacitance models only where conservation of energy holds. 

The same energy loss approach is considered for the bandpass CA modulator driven 

class D amplifier configuration, except the validity of the energy loss assumptions has to 

be re-evaluated. Since switch current is non-zero during transitions, there is a voltage drop 

across the switch, and the stored energy varies with load current. Device capacitances 

such as Cgs and Cgd are typically nonlinear, and the combined variation in stored energy 

with load current is expected to be greater than if device capacitances are assumed to be 

linear. These effects make the analysis of switching loss more complicated with bandpass 

CA modulation. In the following sections, we evaluate the potential errors in calculating 

switching loss with storage energy methods by considering a typical pHEMT, and show that 

these errors are within 20% for a first order analysis. 

3.3.1 Charge and Discharge Current Paths 

In Fig. 3.4, the CVSCD circuit is shown with switches modeled by an ideal switch, a current 

source, and three intrinsic capacitances: Cg,, Cgd and Cds. The circuit model is set up to 

analyze the charge and discharge current paths in the various capacitors during an instan- 

taneous switching transition when SWl is switched off and SW2 is switched on. A pulse 

is shown next to the current sources which are active during the transition, and the peak 

current available for charging is limited by the device, in this case no more than I,, A. 

Prior to the change in switch states, iA(t) is flowing through SWl, and the capacitances 

Cgsl, Cgdl, and Cdsl are a11 charged to low voltages, while the capacitances Cgs2, Cgd2, and 

Cds2 are all charged to high voltages. After SWl opens and SW2 closes, current is sourced 

by Ids2 to change the capacitor voltages to the alternate state. The capacitor currents icgdl, 

iCdsl, icgd2 and icdS2 all pass through SW2 and dissipate power. Power is also dissipated 

in the drivers Idrl and Ihz, by currents iCgdl, iCgsl, icgs2 and icgd2. 

Let the change in stored energy of the device capacitances for a single switch be AW,,, 
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Figure 3.4: Capacitive currents when SWl opens and SW2 closes. 

AWgd, and AWgd, then the total energy dissipated per voltage transition is 

For a periodic drive signal, WQ is deterministic, but for a bandpass CA modulator WQ 

is a random variable and depends on the distribution of the current iA(t) at the voltage 

transitions. The average power dissipated by capacitive switching losses is dependent further 

on the average frequency of transitions determined from the random process p,(t). If the 

distribution of the current iA(t) at transitions is assumed to be independent of when a 

transition occurs, then the total switching loss is 

PQ = 2 f a ,  E{WQ) (3.23) 

where E{.) is the expectation taken over iA (t) , fa, is the average transition frequency (ATF) 

of the pulse train p,(t), and the factor of two accounts for two switches. 

The amplitude probability distribution function (PDF) of the current iA(t) is the same 

as the source PDF, and the transitions in the pulse train p,(t) occur at integer multiples 

of the sampling clock (see Fig. 3.2(b)). Since sampling is independent of the source signal, 
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and the modulator oversamples the envelope by a large ratio, the amplitude distribution 

of iA(t) is expected to be independent of when a transition occurs. This is readily verified 

by simulation; for example, when the source is a modulated W-CDMA signal, we find the 

amplitude distribution of the current is approximately gaussian, which is expected for this 

type of source signal. Proceeding with the independence assumption, we now focus on 

evaluating (3.23). 

3.3.2 pHEMT/MESFET Capacitance Models 

A simplified large signal device model is considered for the analysis of switching loss in the 

CVSCD amplifier. Both the gate-source Cgs and gate-drain Cgd capacitances are consid- 

ered as nonlinear capacitances, while the drain-source capacitance is modeled as a linear 

capacitor. The intrinsic capacitances are typical of large signal models for pHEMT's and 

MESFET's such as the Curtice [56], Angelov [57], Statz [58], and COBRA [59] models. 

In a modulator driven CVSCD circuit, the device drain-source voltage Vd, is reverse 

biased when the switch is on, and the switch currents il (t) and ia(t) are negative. Con- 

sequently, devices must be characterized over reverse bias conditions for class D amplifier 

design. A literature survey was made to find examples of modeled and experimental mea- 

surements for pHEMT's and MESFET's under reverse bias conditions and this yielded rela- 

tively few papers. Example data from two papers is used for illustrative purposes. The first, 

is a paper by Angelov [57] in which he provides a complete model for a 0.35 pm x 200 pm 

pHEMT which is valid over a Vd, range from - lV to +5V. A second paper, by Cojocaru 

and Brazil [59], includes measured characteristics for a 0.2 pm x 120 pm pHEMT. 

In Angelov's paper he gave nonlinear model equations for Cgs and Cgd with dependencies 

on the gate-to-source voltage Vgs and the drain-to-source voltage Vds The model equations 

are shown in Fig. 3.5 for two gate source conditions: VgSloff = -1.2 V and Vgs,On = +0.4 V. 
The capacitances are normalized to the gate width of the device, in this case 200 bm, for 

extrapolation. 

Two additional data points indicated by the triangles in Fig. 3.5 correspond to normal- 

ized capacitances measured at Vds = 0 V for an 0.2 pm pHEMT in Cojocaru and Brazil's 

paper. The normalized data are relatively consistent, and Angelov's model equations are 

used for subsequent examples. 

For analyzing switching loss, the data in Fig. 3.5 is simplified and only the capacitance 

ranges corresponding to the on and off device states are considered. When the switch is on, 
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Figure 3.5: Angelov's Cgs and Cgd functions normalized to the gate width for Vgs,on = 0.4 V 
and Vgs,of = -1.2 V. The device is a 0.35 pm x 200 pm pHEMT. The triangles are data 
for a 0.2 pm x 120 pm pHEMT from Cojocaru and Brazil. 

~ ~ ~ , ~ ~ ( t )  is low and equals 

The range over which ( t )  swings is [- IL,pk Ron, +IL,pkRon], and the capacitances vary 

over the range indicated by the heavy lines in Fig. 3.5.  Both Cgs and Cgd are highly nonlinear 

when the switch is on, but well approximated by simple equations: 

On the other hand, when the device is off, Vds is large and equal to V&. In this region, the 

capacitances are relatively constant and, from Fig. 3.5, C,s,of and Cgd,o are approximately 

equal to 0.2 pF/mm and 0.3 pF/mm, respectively. The data is now analyzed to determine 

the change in stored energy for each capacitance in the CVSCD circuit. 
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Table 3.1: Change in Stored Energy vs. Switch Current 

Energy change when Id,,,, is: Simplified Approx. 

0 A/mm -0.2 A/mm +0.2 A/mm Approx. Error 

AW,, 0.22 pJ 0.21 pJ 0.24 pJ 0.26 pJ  f 17 % 

3.3.3 Stored Energy 

Assume an amplifier generates a switched voltage pulse train vA( t )  of 10 V, Vgs,on = 0.4 V, 

and = -1.2 V. Let the switch resistance Ron be 2 R mm and Im,, = 0.4 A/mm. If a 

current utilization margin of 50% is used for the peak load current, then ~ds,,, is in the range 

of k0.2 A/mm. Table 3.1 shows the corresponding change in stored energy for Cgs, Cds, and 

Cgd versus different load current conditions during a switching interval. Equations (3.25) 

and (3.26) are used for CgS,,, and Cgd,on, while Cgs,off = 0.2 pF/mm, Cgd,off = 0.3 pF/mm, 

and Cd, = 0.05 pF/mm. 

The data leads to several simplifications for the analysis of parasitic capacitance energy 

loss in the CVSCD circuit. First, Cgd is the dominant parasitic and has the largest change 

in stored energy. Second, with reference to columns 3, 4, and 5 in Table 3.1, the sensitivity 

in stored energy to different load current conditions is small, and within 8% of the stored 

energy when Ids,on is equal to zero. Third, the net change in energy is dominated by the 

stored energy when the switch is off. The tabulated data does not show this explicitly, but 

this is easily understood in the context of the energy storage equation ~ c v ~ .  When the 

switch is on, the voltage across the capacitances is relatively small and the stored energy is 

small, even though the nonlinear capacitance of Cgd and Cg, are large in the on state. In 

the off state, the nonlinear capacitances are small while the voltage is large, and since the 

stored energy is proportional to the square of the voltage, the stored energy is much larger. 

Based on the relative magnitudes of stored energy in the on and off states, the analytic 

equations for energy storage are simplified in the following ways. First, the capacitor volt- 

ages are assumed to be constant and independent of the load current during the transition 

interval. By making this assumption, the expected value of energy loss E{WQ) in (3.23) is 

reduced to a deterministic quantity. Second, Cgs and Cgd are assumed to be constant and 

equal to the off state capacitances, and third, the stored energy when the switch is on is 
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assumed to be zero for Cgd and Cds  Based on these assumptions, the following equations 

are used as analytic estimates of energy dissipation during a transition: 

The energy equations (3.27)-(3.29) for the parasitic capacitances are independent of the 

input drive signal, and apply equally well to conventional square wave drive signals as 

well as CA modulator drive signals. The drive signal independence results from a low on 

resistance which leads to the approximation that capacitances are fully discharged in the 

on state, and fully charged to static voltages in the off state. 

If the simplified equations are used to approximate the change in stored energy, the 

worst case errors are 17%, 8%, and 8% for AWgs, AWds, and AWgd, respectively. The 

data is tabulated in columns 4 and 5 of Table 3.1 for comparison with the example. Since 

A Wgd is much larger than the other two stored energy components, the error in A Wgd is the 

most important term in power loss calculations and the equations are used for first order 

approximations. 

3.4 pHEMT/MESFET Amplifier Design 

The design equations are now applied to predict the load power and drain efficiency of a 

CVSCD design. The design is evaluated for pHEMT and MESFET switches with a gate 

width of 1 mm assuming normalized device parameters shown in Table 3.2. The input 

pulse train is assumed to be generated by modulator A, and we begin by first selecting a 

modulator operating point that balances load power and power efficiency. 

3.4.1 Modulator Operating Point 

In chapter 2, it was shown how coding efficiency and ATF vary with the carrier oversample 

ratio of modulator A. The coding efficiency data show that there is a local maximum around 

R, = 1.7. The data also show that coding efficiencies greater than the local maximum 

are obtained for higher carrier oversample ratios in excess of 2.2. However, high carrier 

oversarnple ratios increase ATF, and power efficiency is expected to decrease. 
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Table 3.2: pHEMT and MESFET Normalized Device Parameters 

Normalized Parameter pHEMT Value MESFET 

Lm 0.4 A/mm 0.26 A/mm 
- 

Ron 2 R m m  4 R m m  

cg~ 0.2 pF/mm 1 pF/mm 

The relationship between load power and drain efficiency as a function of the modulator 

carrier oversample ratio are shown in Fig. 3.6. For this figure, the source is a W-CDMA 

signal, the SNR threshold is 65dB, the device is a 1 mm pHEMT, the current utilization 

margin is 1, and the voltage utilization margin is 0.9. As expected, the general trends are 

that load power increases with carrier oversample ratio, while power efficiency decreases 

with oversample ratio. Both load power and power efficiency drop in the neighborhood of 

R, = 2, which is consistent with the observation that coding efficiency dips significantly 

for this range of carrier oversample ratios. The local maximums for load power around 

R, = 1.7 and R, = 2.6 are similar to the variation in modulator coding efficiency with 

carrier oversample ratio, and either point represents a good operating point. Since power 

efficiency is about 6% better at R, = 1.7, it is selected as the operating point for the design. 

At this operating point, the predicted load power is 128 mW and the drain efficiency is 

60.6%. 

3.4.2 Optimum Load 

Using design equation (3.18), the optimum load resistance is calculated for three different 

pulse trains assuming a pHEMT switch. The pulse trains are: 1) a periodic square wave 

with 50% duty cycle, 2) a bandpass CAM pulse train with a sinusoidal source, and 3) a 

bandpass CAM pulse train with a 10 dB PAR W-CDMA source. Table 3.3 summarizes the 

different designs for W,, = 1 mm. 
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Figure 3.6: Power efficiency and load power for a 1 mm pHEMT as a function of carrier 
oversample ratio with f, = 500 MHz. The coding efficiency and ATF correspond to a SNR 
threshold of 65 dB (Re = 128) for a W-CDMA source signal. 

Table 3.3: Design Values for CVSCD Amplifier with pHEMT Switch 

Sq. Wave CA tone CA W-CDMA CA W-CDMA 

PAR [dB] 0 0 10 7.1 

a, [dBV] -2.5 -11.2 -8.3 

V P  [%I 8/7r2 41.9 5.7 11.0 

f a v l f c  2 1.937 1.706 1.706 

U Mi 0.8 0.5 1 1 
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Figure 3.7: CVSCD circuit model for analysis and simulation. 

3.4.3 Reconstruction Filter 

After the optimum load is calculated, the remaining step in the design procedure is to 

calculate the filter component values. The design is evaluated at a carrier frequency of 

500 MHz. For modulator pulse trains, a lOMHz sixth order Butterworth reconstruction 

filter is used. The filter is designed to match the nominal on resistance, 2 ohms for the 

pHEMT switch, to the optimum load resistance. In the case of the square wave pulse train, 

a relaxed filter specification is adequate, because the spectra is discrete, and a series LC 

resonator is sufficient. 

3.4.4 Analytic and Simulated Results 

The comparison between analytic and simulated results is made with the circuit model 

shown in Fig. 3.7. The simulation circuit is similar to the circuit in Fig. 3.4 except that the 

capacitances are linear, the current sources are nonlinear, and the circuit no longer switches 

instantaneously. 
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The voltage controlled current sources in Fig. 3.7 are modeled by 

where 

Equation (3.30) is a modified Angelov model and generates the I V  curve shown earlier in 

Fig. 3.3. The drivers in Fig. 3.7 are modeled as voltage sources and generate a pulse train 

pdr(t) with amplitude levels of VgS,,, and Vg,,,ff. A normalized driver resistance of 5 ohms 

is assumed and corresponds to a device with a gate width which is 40% of the switch gate 

width. 

The analytic and simulated results for the circuit in Fig. 3.7 are compared in Table 3.4 

for three different drive signals at a carrier frequency of 500 MHz and modulator sample 

rate of 1700 MHz. For each source signal, the simulated and analytic results (shown in 

brackets) are tabulated for two model levels. The first model level includes only conduction 

losses (PC) and the capacitances are omitted, while the second model level includes both 

conduction and capacitive switching (PQ) losses. The total dissipated power in the switch, 

either PC or PC + PQ, is shown in the column labeled P,,. Most of the analytic results are 

within 10% of the simulated results, verifying the design methodology which incorporates 

the concepts of coding efficiency, signal PAR, and ATF. 

The rise and fall times of the pulse train pd, (t) are important and affect power efficiency. 

In the simulation, switching times have a duration of T/32. If the rate is reduced, then the 

simultaneous conduction of the switches during amplitude transitions starts to generate a 

short circuit current path. The short circuit current generates a loss, called shoot-through 

loss, that reduces power efficiency. It is noted, that if the instantaneous switching model 

in Fig. 3.1 is simulated, the conduction losses, load power, and efficiency are within a few 

percent of the analytic values. Therefore, the switching transition time of the pulse train is 

significant, and fast edges are required for good power efficiency. 

Another significant factor which controls the accuracy of the design equations is the 

current margin. The allocation of current margin depends on the probability distribution 

of the current distribution at switching intervals, since the peak switch current is limited to 

I,,, and during a transition, capacitive switching current and load current compete. The 
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Table 3.4: Simulated and (Analytic) Results for a pHEMT CVSCD Amplifier 

Source Configuration P,, [mW] PQ [mW] PL [mW] rld [%I 

Square wave PC 101.4 (102.4) 1297.0 (1272.7) 92.8 (92.6) 

PC + PQ 172.6 (180.7) 71.2 (78.3) 1295.0 (1272.7) 88.5 (87.6) 

EA tone PC 43.2 (40.0) 589.7 (578.2) 93.2 (93.5) 

PC + PQ 117.1 (115.8) 73.9 (75.8) 554.0 (578.2) 83.1 (83.3) 

EA W-CDMA PC 23.8 (16.0) 127.9 (127.6) 84.3 (88.9) 

probability of large current swings near *IL,pk is much larger with a sinusoidal load signal 

than with a W-CDMA signal. For this reason, the current margin is set to 0.5 for the 

design with the tone source, while no margin is assigned for the W-CDMA source as shown 

in Table 3.3. Clearly the case of the W-CDMA source signal is more interesting, because 

sinusoidal load signals are generated more efficiently without encoding, and the simulation 

results validate the selected margins. 

In Fig. 3.8, power spectral density plots are shown for signals in the W-CDMA sim- 

ulation. The source u(t), the modulator pulse train p(t), and the load signal vL(t) are 

shown. The power normalizations used to generate the overlays were calculated directly 

from the analytic equations and compare well. The data also shows the degradation in SNR 

of the source signal, first by the quantization in the modulator, and then by distortion in 

the amplifier. The reconstructed SNR is degraded and shows that distortion cancellation 

techniques may be required to improve SNR. For example, predistortion techniques could 

be used, or the power amplifier could be configured in a closed loop with the modulator. 

3.4.5 Power Efficiency 

The analytic equations for power efficiency are very useful for initial estimates of perfor- 

mance and are easily applied to explore design trade-offs. Two trade-offs are explored in 

the following sections: 1) a reduction in PAR assuming some kind of crest factor reduction 

method, and 2) MESFET versus pHEMT switches. 
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Figure 3.8: PSD of the W-CDMA source u(t), modulator pulse train p(t), and the load 
signal UL ( t )  . 

3.4.5.1 Low Peak-to-Average Power Ratio W-CDMA 

There has been significant work in reducing the PAR of a W-CDMA signal envelope through 

crest factor reduction techniques to improve the power efficiency of linear amplifiers [60]. In 

a similar way, the power efficiency of the bandpass CA modulator class D configuration also 

improves from reductions in envelope PAR. By reducing the source PAR, the modulator 

drive level is increased, and coding efficiency is improved as explained in section 2.4.4. W- 

CDMA with PAR values as low as 7.1 dB have been reported [60], and if this source signal is 

used, coding efficiency is boosted from 5.7% to 11%. The boost in coding efficiency increases 

the reconstructed load power, and since switching losses are approximately constant, there 

is an overall increase in power efficiency. Fig. 3.9 shows the predicted efficiency response for 

the low PAR signal. The plot includes a reconstruction filter insertion loss of 0.5 dB. At a 

frequency of 500 MHz, the power efficiency is boosted by nearly 10% from 54.1% to 63.9% 

when the PAR of the W-CDMA source signal is reduced from 10 dB to 7.1 dB. 

3.4.5.2 Comparison of pHEMT and MESFET Switches 

In section 3.3, it was noted that capacitive switching losses are dominated by the off state 

gate to drain capacitance. A normalized value of 0.3 pF/mm has been used for pHEMT 
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Figure 3.9: Drain efficiency including conductive losses, switching losses, and filter inser- 
tion loss (0.5 dB) with a modulator pulse train (R, = 1.7). 

switches, but a smaller value is typical of MESFET switches. For example, Wei reports 

on a 2 mm MESFET [61], and a normalized Cgd,off of approximately 0.125 pF/mm is ob- 

tained for this device. The gate-to-source capacitance is significantly larger than Cgd and 

is approximately 1 pF/mm; the normalized on resistance is also larger than a pHEMT and 

approximately 4 R mm for Vg,,,, = 0.4 V. For comparison, Fig. 3.9 includes the predicted 

efficiency for a MESFET with values tabulated in Table 3.2. The advantage of the MES- 

FET7s lower Cgd,off becomes apparent at high frequencies where the power efficiency is 

slightly better than the pHEMT. However, at low frequencies, the conduction losses dom- 

inate and the power efficiency is less than the pHEMT. The efficiencies of the two devices 

cross over at a carrier frequency of about 750 MHz. 

The data in Fig. 3.9 are useful for making preliminary estimates on drain efficiency 

for potential W-CDMA applications. There are three main bands of frequencies specified 

in the W-CDMA standard centered around 850 MHz, 1.8 GHz, and 2.1 GHz. At these 

frequencies, assuming a PAR of 7.1 dB and MESFET devices, the corresponding power 

efficiency is approximately 56%, 42% , and dl%, respectively. 
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3.5 CMOS Amplifier Design with Driver 

A disadvantage of using two depletion mode n-channel devices in the CVSCD configuration 

is the construction of a driver for the upper switch in Fig. 3.7. The source of SWl swings 

with the switched voltage at node A, and the driver pulse train pd,(t) must track this 

node voltage to turn the device on and off. Two possible ways to drive the upper device 

include a full swing driver that matches the required gate swing with the source voltage, or 

a bootstrap [62] or level-shifter [8] circuit which has a floating reference to track the voltage 

at node A. 

The design of a driver for the CVSCD is greatly simplified if low voltage complementary 

devices are employed in the circuit. For this reason, CMOS technology has significant 

advantages for the circuit topology. An example of a design in 0.5 pm CMOS is shown 

next including the driver stage. Although 0.5 pm is not state of the art technology, public 

technology parameters are available for this technology through MOSIS [63] for analytic 

calculations. The results of the analysis are confirmed with SPICE simulations based on a 

commercial foundry model. The SPICE simulations were run by a colleague, Robert Sobot, 

using proprietary BSIM3 models for IBM's 5HP SiGe BiCMOS process. 

3.5.1 CMOS Amplifier Overview 

A CMOS amplifier design with six stages is shown in Fig. 3.10. The first five stages of the 

amplifier are the driver stages. The first driver stage consists of a 0.5 pm x 10 pm NMOS 

device (Nl) with a 0.5 pm x 20 pm PMOS device (P I ) .  Subsequent stages are scaled by 

a factor of three relative to the preceding stage to minimize propagation delay, similar to 

device scaling in digital CMOS design for output buffers [64, pg. 2671. The last driver stage 

(N5 and P5) provides enough current to drive the gate capacitance of the switches (N6 and 

P6) in the class D output stage. 

The six stages generate approximately 100 mW of output power at  181 MHz with a 

3.3 V DC supply voltage (VDD). A sixth order Butterworth bandpass filter with a 3 dB 

bandwidth of 10 MHz is used for reconstruction. The component values for the filter are 

given in Table 3.5, and assume a load impedance of 2.0 ohms. Matching to 50 ohms is not 

considered in this design. 

The encoded pulse train p ( t )  in this design is synthesized by a fourth order continuous- 

time modulator called modulator D (see section 2.2.4). The carrier oversample ratio is 2.21 
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Figure 3.10: CMOS driver and class D amplifier. 

Table 3.5: Bandpass Filter Values (f, = 181 MHz, BW = 10 MHz) 

with a center frequency of 181 MHz, and corresponds to test conditions that Sobot used 

in an implementation of this modulator [65]. Simulations were made with both a two tone 

and W-CDMA source signal. The corresponding coding efficiency and ATF's for the pulse 

trains are given in Table 3.6. 

Examples of the circuit signals are shown in Fig. 3.11 for a modulator pulse train with 

a two tone source signal. The level shifted modulator pulse train is called v,(t), and the 

switched voltage pulse train at the output of the amplifier (node A) is shown as vA(t). The 

delay between vA(t) and v,(t) is approximately 700 ps. The switched voltage pulse train 

at node A also has distortion caused by non-zero switch resistance. The load current iA(t) 

creates a voltage drop across the switch and superimposes the reconstructed load signal on 

Table 3.6: Bandpass CA Modulator Parameters for R, = 2.21 

Source PAR [dB] f c  [MHz] 7, [%] f a ,  [MHz] 

Two tone 3.0 181 25.04 397.8 

W-CDMA 8.7 181 6.58 398.9 
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Figure 3.11: CMOS amplifier signals with a two tone source: v,(t) the level shifted 
modulator pulse train; vA(t)  the class D switched voltage pulse train; and iA( t )  the load 
current signal into the bandpass filter. 

the switched voltage pulse train. 

The corresponding power spectrum for the reconstructed load signal vL(t)  is shown in 

Fig. 3.12. The spectrum shows an intermodulation distortion level of approximately -40 dBc. 

A second PSD plot for the W-CDMA source signal is shown in Fig. 3.13, and the SNR of 

the W-CDMA signal is approximately 37 dB. The figures also include an overlay of the 

modulator pulse train p(t) to show the distortion introduced by the driver and class D 

amplifier stages. 

3.5.2 Switch Design 

Since load current flows in either direction during a transition, the drain current of N6 and 

P6 can have either polarity. Similar to pHEMT and MESFET switches, MOSFET switch 

current is continuous even under reverse bias drain conditions. Negative drain current is 

limited to a small reverse bias range, and the voltage drop under reverse bias must be 

designed to prevent the substrate-drain junction from conducting. In the circuit shown in 

Fig. 3.10, the substrate is biased to the source potential; additional protection for reverse 

bias voltage swings can be provided by applying a separate substrate voltage. A gate oxide 

breakdown voltage of 4 V is assumed, and has been cited by others [66] as a conservative 
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Figure 3.12: PSD of a reconstructed load signal with a two tone source signal. 
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Figure 3.13: PSD of a reconstructed load signal with a W-CDMA source signal. 
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Figure 3.14: Channel resistance for 0.5 pm x 1 mm NMOS and PMOS devices. The 
effective switch resistance for a 2 mm PMOS and 1 mm NMOS are labeled as R,,. 

estimate of maximum voltages in a 3.3 V CMOS process with a typical oxide thickness of 

9.5 nm. The corresponding voltage margin is then 0.825 for the design. 

When N6 or P6 is on, the channel resistance is nonlinear, and the load current swing is 

restricted to a range where the resistance variation is within an acceptable range. Figure 

3.14 shows the normalized on resistance, R,,, for a NMOS and PMOS device with 1 mm 

of gate width. The resistance characteristics are obtained by differentiating the I V  device 

characteristics when they are turned on (IV,,l = 3.3 V). 

The PMOS device has a much larger channel resistance, and the PMOS gate width 

is scaled relative to the NMOS device width to match on resistances. In the design, a 

PMOS to NMOS gate width of two is used. The gate ratio provides a balance between 

DC on resistance characteristics, as well as equalizing the rise and fall times under dynamic 

switching conditions. A third curve in Fig. 3.14 shows the effective switch resistance R,, 

for a scaled switch pair assuming each device is active for half the time. A dashed line at 

2.9 0-mm corresponds to a nominal linear on resistance used for power loss calculations. 

With a 2 R load in the amplifier design, the peak current swings over the range shown by 

the heavy lines in Fig. 3.14. Even with the device scaling factor of two, the PMOS cha.nne1 

resistance is larger than the NMOS channel resistance, and the voltage swing across the 
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Table 3.7: CMOS Capacitance Equations 

Description Parameter Equation NMOS PMOS 

Gate Length Leff  L - 2LINT 0.324pm 0.284pm 

Gate Capacitance c 9  Co,Leff + CGSO 1.579 fF/pm 1.439 P / p m  

Gate-drain Capacitance c g d  CGDO 0.356 P / p m  0.365 F l p m  

Drain Capacitance c d  C j b  + C j s w g  0.906 F / p m  0.950 P / p m  

PMOS switch is larger than the NMOS switch. The current utilization margin shown 

by the heavy lines is 0.37 for the NMOS device and 0.59 for the PMOS device. Maximum 

normalized switch currents of I,,,, = 0.384 A/mm and = -0.120 A/mm at IVds = 11 V 

and IVg, = 3.31 V are assumed for the current utilization margin, and correspond to the 

x-axis limits of Fig. 3.14. 

3.5.3 Capacitive Switching Losses 

Capacitive switching losses are significant in the CMOS amplifier. Similar to the pHEMT 

switch analysis, energy is dissipated each time the voltage changes across parasitic capac- 

itance during a level transition in the pulse train. The capacitance losses for the driver 

and the class D RF stage are analyzed separately in anticipation of calculating drain effi- 

ciency for the class D stage only, and overall power efficiency which includes both driver 

and amplifier losses. 

A first order physical capacitor model is used for analyzing switching losses in the cir- 

cuit [67]. The analytic model includes gate oxide capacitance, gate-drain overlap capaci- 

tance, and drain/source diffusion capacitances. The capacitance model equations are sum- 

marized in Table 3.7, and capacitance values are derived from a selected set of BSIM3 model 

parameters given in Table 3.8. The complete BSIM3 model provided by MOSIS [63] is given 

in Appendix B. 

The nonlinear junction capacitances Cjb and CjSwg are significant. The equivalent linear 

capacitance given in Table 3.7 is calculated assuming a voltage transition of VDD and in- 

cludes the bottom and gate sidewall junction areas. For the calculations, the drain diffusion 

area is 1.4 pm x 10 pm for a 10 pm cell, and the corresponding bottom area of the junction 

is 14 pm2. 

Using the normalized capacitance values in Table 3.7, the total parasitic capacitance 

for the driver and the PA are calculated. For the calculation, Cgd is modeled as a Miller 
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Table 3.8: CMOS Capacitance Model Values 

Parameter NMOS PMOS 

TOX [nm] 9.3 9.3 

LINT [pm] 0.088 0.108 

CGDO [fF/pm] 0.356 0.365 

CGSO [fF/pm] 0.356 0.365 

CJ [fF/pm21 0.871 0.844 

PB [Vl 0.8 0.6 

MJ 0.38 0.204 

CJSWG [fF/pm] 0.164 0.064 

PBSWG [V] 0.8 0.7 

MJSWG 0.91 0.99 

capacitance and contributes 2Cgd to the gate and drain terminals. The sum of the effective 

capacitance at the driver drain nodes Nl through N5 is 60.2pF, and the total class D 

capacitance at node A is 24.2pF. These capacitance values, with the corresponding ATF's 

in Table 3.6, yield the driver (PQ,~,) and class D (PQ,~,) switching losses shown in Table 3.9. 

3.5.4 Power Efficiency 

Expressions for load power, conduction loss, driver and class D switching loss, and DC power 

are combined to predict the drain efficiency and overall efficiency of the amplifier. Table 3.9 

summarizes the analytic and simulated results. The simulated results use a foundry BSIM3 

model, while the analysis results use a simplified model based on extracted model parameters 

from MOSIS. 

The estimated drain efficiency (qd) of the amplifier is 64.2% for the two tone source 

and 43.7% with the W-CDMA source, compared to simulated results of 55.4% and 31.7%, 

respectively. The overall efficiency of the amplifier (7,) includes driver power losses, and 

was defined in Chapter 1, equation (1.3). The corresponding overall power efficiency for 

the two tone and W-CDMA sources are 45.5% and 21.1%, compared with simulated results 

of 40.1% and 16.6%. The analytic results are optimistic and obviously do not consider all 

the complexity in a BSIM3 model. On the other hand, the simplified equations provide an 

initial estimate of performance, and confirm the proposed design methodology for making 

an initial CMOS design. 
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Table 3.9: Analytic and Simulated Results for a RF CMOS Amplifier 

Parameter Two Tone W-CDMA 

Analytic Simulated Analytic Simulated 

i ~ , ~ m s  [A] 0.318 0.330 0.163 0.162 

3.6 Conclusions 

An analysis of a bandpass CA modulator driven class D RF amplifier has been presented 

for the complementary voltage switched configuration. First order design equations were 

developed for calculating optimum load resistance, load power, and power efficiency. As a 

link between the amplifier design and the modulator design, coding efficiency and average 

transition frequency parameters were incorporated into the design equations. Both coding 

efficiency and average transition frequency depend on the carrier oversample ratio of the 

modulator, and the choice of the oversample ratio impacts the amplifier output power and 

power efficiency. The analysis was confirmed with simulations of a typical pHEMT device 

and showed a drain efficiency of over 50% with W-CDMA at 500 MHz. An example of a 

CMOS class D RF amplifier with a driver was also presented. Improvements in amplifier 

power efficiency can be expected if modulator coding efficiency is improved, or if better 

devices with low on resistance, low gate-to-drain capacitance, or high breakdown voltages 

are used for the switches. 



Chapter 4 

Coding Efficiency of a Periodic 

Signal Model 

The power efficiency analysis of the RF class D amplifier demonstrates the importance of 

coding efficiency. It has been shown that the pulse train coding efficiency has a direct 

relationship with the scaling of the devices in the class D circuit for a given load power. 

Since coding efficiency is so important, a relevant question is: what are the coding efficiency 

limits for a binary amplitude pulse train with constrained zero-crossings? A coding efficiency 

bound would show how much margin is available if better encoding methods were used. It 

appears that the answer to this question is quite difficult for general source signals, and 

in this chapter we consider the problem of encoding a sinusoidal source signal into a pulse 

train. 

A bandpass CA modulator synthesizes a pulse train with synchronous zero-crossings 

that are determined by the sample period T. Since the timing of zero-crossings are con- 

strained, a sequence of L bits, y [0] . . . y [L - 11, generates a finite number of reconstructed 

signals. We consider the periodic extension of the L bit sequence, and construct a Fourier 

series expansion for the continuous-time pulse train corresponding to the sequence. The 

reconstructed signal space, defined as the amplitude and phase of a harmonic component at 

f,, is then examined as a function of L. 

It is shown that the reconstructed signal constellation is bounded by a regular n-sided 

polygon for rational carrier oversample ratios. Within the bounding polygon, the SNR 

is determined by the length of the sequence L, and SNR can be large by choosing L to 

be sufficiently large. There is also a circular region within the constellation, defined by a 

maximum amplitude r,,,, where the reconstructed signal is phase insensitive. The value 

of r,,, varies with carrier oversample ratio, and the periodic model shows that coding 
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efficiency does not vary monotonically with an increase in carrier oversample ratio. The 

model shows dips in coding efficiency at specific carrier oversample ratios, similar to the 

dips shown in Chapter 2 for bandpass CA modulators. 

Although the model is constrained to the c a e  where the source and load frequency are 

commensurate with the sample rate, the model shows that the frequency error for non- 

commensurate frequencies is not uniformly distributed for a fixed sequence length. The 

frequency resolution around carrier oversample ratios such as R, = 2 is much coarser than, 

for example, a sample ratio of 1.7. By attempting to mimic the synthesis of a periodic load 

signal, and imposing a constraint on zero-crossings as in a bandpass CA modulator, insight 

is gained into why large amplitude behavior can exhibit variation with carrier oversample 

ratio. The model also shows that the maximum amplitude of the reconstructed signal 

constellation is bounded by (4/7r)Ap as L -+ m 

A, = 51.  

4.1 Periodic Binary Amplitude 

for a pulse train with amplitude levels of 

Pulse Trains 

A Fourier series (FS) expansion is calculated for a binary level periodic signal p(t) which 

has a period of LT where L is a positive integer and T is the clock period. The construction 

of p(t) is constrained to be similar to a bandpass CA modulator pulse train. The pulse 

train has only two amplitude levels 51, and zero-crossings at integer multiples of T as 

shown in Fig. 4.1. After calculating the FS for p(t), we map the reconstruction signal space 

(amplitude and phase) for sequences with a harmonic component corresponding to a carrier 

oversample ratio of Rc. 

4.1.1 Fourier Series 

Let f be a family of functions synthesized by an L bit sequence from a zero-order hold 

digital-to-analog converter. The ZOH DAC pulse is defined as d(t) 

1 O S t l T  
d(t) = 

0  otherwise 

where T is the clock period and T  > 0. The functions are defined as 
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Figure 4.1: Binary level pulse train with amplitude levels of f 1 and zero-crossings at 
integer multiples of T .  

over the interval [0, LT] and the bits are binary with values bk E (-1, + I ) .  

For L bits there are 2L possible functions and these functions are expanded in a Fourier 

series. Let 

where: 

After evaluating (4.6) with (4.1) and (4.2), the coefficients are: 

A change of variables is made to express the coefficients in terms of the carrier oversample 

ratio Rc. Assume we want to synthesize a periodic pulse train with a harmonic frequency 

component at f ,  = 1/(2RcT). Since the clock period is fixed, f, must be a fractional ratio 

of the clock frequency f,, and R, is a rational number. Let R, be defined as 
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where M and N are positive integers, then f, = (N/M) fs. 

Using (4.5)) the frequency of the nth harmonic is (n/L)f,; therefore, any sequence of 

length L = mM,  and corresponding harmonic n = m N  wherem is a positive integer, has 

a frequency component that satisfies (4.8). A sequence length of L = M is the shortest se- 

quence satisfying (4.8). Longer sequences, whose length is a multiple of M ,  2M, 3M) . . ., also 

have frequency components at f, = (N/M) fs corresponding to harmonics n = 2N, 3N, .  . ., 
respectively. 

The FS coefficient c, in (4.7) is rewritten as c , ~  

where W = ed2T/M,  the Mth  root of unity. 

Since W is periodic over M bits, (4.9) is written as a double sum: 

The bit sequence {bo, bl ,  . . . , bL-l) corresponds to a reordered bit sequence of {bo, bl ,  . . . , bL-1) 

and is consistent with the expansion of (4.9) into a double sum. Let 

. m-l 

and 

then (4.10) is finally written as: 

Three terms are identified in (4.10). The first term sinc[l/(2R,)] corresponds to the 

ZOH response of a DAC with a hold period of T. The DAC attenuation is expressed in 

terms of the carrier oversample ratio R,, and shows that the attenuation is reduced as the 

carrier oversample ratio is increased. The second term is a constant phase rotation wNI2  

and has no impact on the magnitude of the harmonic. The third term g~ is a weighted sum 
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of the M roots of unity and shows how the bit sequence affects the amplitude and phase of 

the FS coefficient. The weights ar, are bounded and take on rational values in the interval 

1-1, +I]. The resolution of ak  depends on the sequence length factor m as shown in (4.1 1). 

Since our goal is to compare the periodic signal model with bandpass CA modulation, 

the range of R, is restricted to values where f, is less than the Nyquist rate fs/2. The mod- 

ulators are sampled systems and aliasing is avoided by restricting f, < f,/2. A subsampling 

modulator design could also be implemented if the input is a bandlimited bandpass signal, 

but the coding efficiency is less than an oversampled design. In an oversampled design, R, 

is restricted to a range greater than 1 which implies M and N satisfy M > 2N. 

4.1.2 Signal Reconstruction Space Examples 

In this section, the amplitude and phase of the FS coefficients c , ~  are systematically eval- 

uated for all combinations of bits in a sequence of length mM. Equation (4.13) is written in 

terms of the carrier oversample ratio variable R, and provides a way to compare the periodic 

pulse train model with bandpass CA modulation. In the model, the harmonic at f, is the 

reconstructed signal G(t), and the bits are selected to minimize the reconstruction error for 

a source signal u(t) = r cos(2.irfct + 4 ) .  The reconstruction error Ju(t) - C(t) I then depends 

on how close the amplitude and phase of the reconstructed signal match the source signal. 

The term signal reconstruction space describes the set of all possible amplitudes and 

phases generated by a bit sequence of length mM at a frequency f,. As subsequent examples 

demonstrate, the reconstruction space for a periodic pulse train p(t) is easily visualized as a 

constellation of discrete reconstruction points plotted in the complex plane. The examples 

also show: 

1. the signal constellations lie in an equal sided polygon and the number of edges depends 

on M; 

2. the density (resolution) in the constellation depends on m, and as m gets large, the 

resolution increases; 

3. the length of the vertices that defines the signal constellation polygon depends on M 

and N. 

The examples are arranged in terms of increasing M ,  and we begin with M = 3, as this is 

the shortest sequence satisfying M > 2N. 
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For M = 3, there is one value of N,  N = 1, which satisfies M > 2N. This configuration is 

analogous to a bandpass CA modulator with a noise notch at a center frequency of fs/3 or 

Rc = 1.5. 

In this case, W = e-j2"I3 and there are three vectors, w', w', and w2 as shown in Fig. 

4.2(a), which establish the shape of the signal constellation. Let a k  = cos[nk/(2M)] then 

When m = 1, and using (4.11), ah has values of {-1,l). Evaluating the third term of 

(4.14) for all combinations of ak, then yields a hexagonal constellation as shown in Fig. 

4.2(b). The vertices of the hexagon are generated by all three bit sequences that have a 

zero-crossing, and the constellation point at the origin corresponds to a sequence where all 

the bits are the same sign (DC), hence no harmonic at f c .  

The symmetry of the bounding hexagon makes the polar form of the FS coefficient 

convenient. Adopting the notation (r,, 4,) for the FS coefficient c,, we have r, = 21c, 1 and 

4, = arg(c,) from (4.4). Let r, be the radius of the vertices of the bounding hexagon, then 

r, = max(r,). Since the bounding hexagon is invariant to the phase rotation term e-j"I3 

in (4.14), two vertices lie on the real axis as shown in Fig. 4.2(b). Choosing the vertex on 

the positive real axis yields the following expression for r,: 

Longer bit sequences generate additional reconstruction points in the constellation by 

increasing the resolution of the values ak. For m = 2, the sequence is 6 bits long, and the 

values of ak are from the set {-1,0,1). For m = 3, the sequence is 9 bits long and the 

values of ak are from the set (-1, -5, 5, 1). By induction, it is clear that the amplitude and 

phase resolution within the hexagonal signal constellation continues to grow as the sequence 

length increases. The increase in resolution is illustrated in Fig. 4.4 for m equal to 1, 2, and 

3. 
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(a) Vectors  or M = 3. 

I (1 , I  ,-I 1 

(b) Addition of signal vectors with M = 3 and m = 1. 

Figure 4.2: M = 3 signal constellation construction (al = 612; a2 = 112). 
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When M = 4 and N = 1, the harmonic has a period of 4T or frequency of fs/4. This 

corresponds to a bandpass modulator with R, = 2 and is a classic modulator example which 

is generated by transforming a lowpass DT modulator with the x -+ -x2 transformation [31]. 

When M = 4, W' takes on one of four values: f 1 or f j. If vl = 1 and v2 = j, then c, 

is constructed from two orthogonal basis vectors and the bits in the sequence determine the 

weights of the two basis vectors. Evalua,ting the signal constellations for sequences lengths 

of 4, 8, and 12 bits yields the constellations shown in Fig. 4.4. 

The constellation is enclosed within a square with vertices that have a distance of 

4/7r from the origin. The vertices correspond to the following ordered sets of ar, values: 

(1, I ,  - 1, -I), (-1,1,1, -I), (- 1, -1,1, I), and (1, - 1, -1,l). Each set of values synthesizes 

a square wave pulse train with a 50% duty cycle, and the sets are generated by a cyclic 

shift of any one of the four sequences. We expand on this point later in the context of a 

computing a bound on the maximum coding efficiency for a periodic sequence. 

Also, observe that the number of edges of the constellation polygon is equal to 4 and 

this equals the minimum sequence length M.  In the previous example with M odd, the 

constellation was enclosed in a six sided polygon or 2M. In general, if M is odd, then the 

polygon has 2M edges, and if M is even then the polygon has M edges. 

As a final example, the constellation for M = 5 is shown in Fig. 4.4. In this case, there are 

two values of N which satisfy M > 2N, and the example demonstrates that the only effect 

of N on the signal constellation is to scale the vertex length r,. 

With reference to Fig. 4.3, the real and imaginary components of vectors wk are ex- 

pressed in terms of a k  = cos(lcr/(2M)). The term g~ defined in (4.12) is then 

and the vertex radius of the constellation is: 
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Figure 4.3: W' vectors for M = 5. 

There are ten different bit sequences which maximize lgM 1 and the bounding polygon for 

the signal constellation is a decagon. The vertices correspond to bit sequences which generate 

an ordered set (ao, a1 , a2, as, ad) which is a cyclic shift of the sequence (1,1, - 1, - 1, - 1) or 

a cyclic shift of the same sequence with opposite sign: (-1, -1,1,1,1). 

One of the vertices lies on the positive real axis, and choosing this vertex we get 

For N = 1, r, = 1.21, and for N = 2 r, E 0.98. The example shows how the term g~ 

determines the shape and number of points in the constellation, while the term sinc(l/(2RC)) 

is a global scale factor and depends on both M and N. 

4.1.2.4 General M 

The preceding examples show some of the characteristics of reconstructed signals obtained 

from Fourier series expansions of periodic pulse trains. In general, for positive integers M 

and N where M > 2N, the reconstruction constellations have the following properties: 

1. for even M the signal constellation is bounded by a polygon with M edges and each 

face has m points excluding the vertices, 
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Figure 4.4: Normalized signal constellations for different values of M and m; the amplitude 
is normalized to r,. 
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2. for odd M  the signal constellation is bounded by a polygon with 2M edges and each 

face has m  - 1 points excluding the vertices, 

3. for even M  the maximum vertex distance r, is 4/7r 

4. for odd M the maximum vertex distance r, is 4/7r cos[7r/(2M)] 

5. the resolution of the reconstruction points in the signal constellation increases with 

the length of the sequence L = m M .  

Points 1, 2, and 5 are derived by induction by continuing the examples to higher M. A 

proof of 3 and 4 is given in Appendix C. 

4.2 Maximum Amplitude Boundary Model 

The periodic signal model derived for binary pulse trains with a harmonic at f, and carrier 

oversample ratio R, is now used as a model for analyzing SNR and coding efficiency. The 

analysis so far has shown that the reconstructed signal lies within a bounded region de- 

fined by an equal sided polygon. The bounding polygon is called the maximum amplitude 

boundary, and within the boundary, the reconstructed SNR depends on the sequence length 

L = m M .  

As shown in Fig. 4.5, a second bounding region is defined by a circle of radius r,,, 

that is tangent to the normals of each edge. For source amplitude levels r 5 r,,,, the 

reconstruction error is phase insensitive, and the reconstruction error lu(t) - ii(t)l is made 

arbitrarily small for any source phase angle 4 by choosing L to be sufficiently long. For 

amplitude levels which exceed r,,,, the reconstruction error is phase sensitive and may 

or may not depend on the sequence length L. If the source vector (r, 4) falls within the 

maximum amplitude boundary, then the reconstruction error can be arbitrarily small. On 

the other hand, if (r, 4) falls outside the bounding polygon, the reconstruction becomes a 

function of the displacement between the maximum amplitude boundary and the source 

vector. The term overload shall be used to refer to the condition when (r, 4) falls outside 

the maximum amplitude boundary. 

As a general model for subsequent analysis, a polygon with 2K edges is assumed for the 

maximum amplitude boundary as shown in Fig. 4.5. If M is even, then K = M/2; if M is 

odd, then K = M. The polygon is centered at the origin 0 of the complex plane, and the 
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Figure 4.5: Maximum amplitude boundary for the periodic model. 

vertices of the polygon lie on a circle with radius r,. Each face of the polygon subtends an 

angle 

and r,,, = r, COS(Q/~).  

4.3 Overload SNR 

The maximum amplitude boundary model derived from the analysis of periodic pulse trains 

is now used to model SNR in overload for sinusoidal signals. The set of all possible re- 

constructed signals are confined to periodic signal constellations which are bounded by a 

2K-sided polygon. In the model, we use the amplitude r and phase of the source signal 

4 to decide on the best reconstructed signal which minimizes the mean square error. The 

magnitude of the reconstructed signal, denoted as .E;, and the magnitude of the reconstructed 

error, denoted as re, are calculated as functions of the source signal (r, 4). Model equations 

for the reconstructed signal power ( ~ { i ~ ) / 2 )  and reconstructed SNR ( ~ { i ~ / r z ) )  are then 

derived by computing ensemble averages assuming the source phase is uniformly distributed 

over [O, ZT] radians. 
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4.3.1 Overload Regions 

Overload is divided into two distinct amplitude ranges depending on the magnitude of the 

source signal: r,,, < r < r, and r > r,. The different overload conditions are shown in 

Fig. 4.6. Since the source is assumed to have a uniform phase distribution, and the bounding 

polygon is symmetrical with 2K edges, we limit the analysis of overload to a single edge of 

the polygon. Ensemble averages over all phase angles are computed later and exploit the 

symmetry. 

For r,,, < r < r,, the overload error vector is always orthogonal to the maximum 

amplitude boundary as shown in Fig. 4.6(a). Depending on the phase of the source, two 

subregions are distinguished: Ro and R1. The region Ro is not an overload region and 

corresponds to the region within the periodic signal constellation where reconstruction error 

is a function of sequence length L. The magnitude of the reconstruction error re is small in 

Ro and assumed to be less than a value called e. In R1, the phase of the source signal is in 

a region where the source vector falls outside the maximum amplitude boundary resulting 

in a reconstruction error vector that is normal to the nearest face. The boundary between 

Ro and R1 is denoted by the phase angle a. 

For source amplitudes which exceed r,, the source vector always falls outside the bound- 

ing polygon for all source phase angles; however, the reconstructed error vector that mini- 

mizes the mean square error may or may not be orthogonal to a bounding edge. As shown 

in Fig. 4.6(b), two subregions, R1 and R2, are defined to distinguish the conditions when 

the source phase generates an orthogonal error vector and a non-orthogonal error vector, 

respectively. Similar to the range r,,, < r < r,, R1 is a region where the source phase angle 

generates an error vector which is normal to the maximum amplitude boundary. I11 R2, the 

source phase angle lies close to a vertex of the bounding polygon and the best reconstructed 

signal is a signal that corresponds to a vertex of the polygon. The resulting reconstruction 

error vector is no longer orthogonal to a bounding edge. The boundary between R1 and R2 

is denoted by the phase angle P. 

4.3.2 Model Equations 

Wit,h reference to Fig. 4.7, the vector OA depicts the source signal (r, 4) where 4 is measured 

relative to the normal ON. The reconstructed signal ( i ,  4) is vector OB and the error vector 

is BA. In Fig. 4.7(a) the error vector is normal to the face, while in Fig. 4.7(b) the error 
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Figure 4.6: Signal reconstruction regions for a sinusoidal source. 
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Tv 

Figure 4.7: Signal reconstruction in overload for a sinusoidal source. 
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vector is non-orthogonal. We want to find expressions for magnitude of the reconstructed 

signal 1' and the magnitude of the reconstruction error re as functions of the source (r, 4). 

The reconstruction vector OB and the error vector BA are found from the components, OC 

and CA, of the source vector. Using basic trigonometry, we find the length of OC, denoted 

as lOCl is: 

The magnitude of the error vector BA is /CAI cos(4) where ICA( is r - loci, and with 

(4.20) we get: 

re is nonzero when (41 < a where 

With lOAl and lBAl known, the cosine law is used to compute the squared magnitude 

of the reconstruction vector OB. 

Substituting (4.21) into (4.23) and changing variables ((OBI = 1' and lOAl = r ) ,  1' is 

The derivation of expressions for rz and i2 is completed for r,,, < r < r, by considering 

the boundary conditions between Ro and R1. In Ro, the magnitude of the reconstruction 

error is bounded and less than or equal to E. From the triangle inequality, r2  5 f 2  + e2, and 

for small E ,  1'2 M r2.  Therefore, in Ro 

At the boundary of Ro and R1, when 4 = a,  the expressions for r2  and rz should 

match. The expression in R1 given by (4.21) is zero for 4 = a, and the derivation assumes 
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that if a source vector falls on the maximum amplitude boundary, then there is perfect 

reconstruction. The expression (4.21) is modified to include the constant E and provide a 

consistent boundary condition at 4 = a: 

For the source range r > r,, the error spans two regions, R1 and R2. The boundary between 

R1 and R2 occurs at 4 = ,B and is defined as the point when i = r ,  in R1. From (4.24) we 

have 

which is rearranged to find ,B: 

P = arcsin ( J ( r 2  - r&,,)/r2). (4.29) 

In R1, the equations in the previous section are applicable except a is replaced with P 
(4.29). In R2, the reconstruction vector O F  is constant and has a magnitude equal to the 

vertex radius r ,  as shown in Fig 4.7. The reconstruction error vector A F  is non-orthogonal, 

and the magnitude of the reconstruction error re is found using the cosine law to get: 

4.3.3 Reconstructed Signal Power 

For a sinusoidal source, the reconstructed signal power is equal to E { i 2 ) .  The probability 

density function of the source phase is uniformly distributed over 27r, and by the symmetry 

of the maximum amplitude boundary, the expected value over the phase range [ 0 , 2 ~ ]  is 

equal to 4 K  times the expected value over [O, 8/21. 

For r,,, < r < r,, i2 is given by (4.26) in Ro and given by (4.24) in R1. Let ps0 and 

pSl be the reconstructed power contributions in region Ro and R1, respectively. Then, 
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and 

- 2 r' 
- - (2 r,,, + r2) - - sin(2a). 

48 
(4.32) 

28 

For r > r,, the integration is over regions R1 and R2 with a boundary angle of /3. 

The power in R1 is the same as (4.32) except a is replaced with /3 (4.29). In Rz, the 

reconstruction amplitude is fixed and corresponds to the amplitude of the vertex r,. The 

reconstruction power contributed in region R2 is 

Together (4.31), (4.32), and (4.33) give expressions for reconstruction power pS for all 

source amplitudes. For r < r,,,, a = 0, and (4.31) gives pS = r2/2. For r,,, < r < r,, 
is equal to pSo + ps1 where a! is given by (4.22). For r > r,, is equal to psi + ~~2 where 

p is given by (4.29). Asymptotically, the reconstruction power is bounded and approaches 

rE/2 as the source amplitude gets large. 

4.3.4 Reconstructed SNR 

The SNR of the reconstructed signal is defined as ~ { i ~ / r z ) .  In RO the SNR is 

In R1 the SNR is given by 

Let 

then SNRl is written as 

where 
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and 

The integrals (4.38) and (4.39) have closed form solutions [68]. Let 

then 

and 

d = arctanh [ /= a - 1  t a n ( a / 2 ) ]  

The SNR in R2 is 

Let k = ( r 2  + r i ) / 2 r r ,  and 11, = 0 /2  - 4, then 

where y = 0 / 2  - p. 
The SNR as a function of source amplitude r is summarized as follows. For r 5 r,,,, 

the source vector falls entirely within the polygon for all phases and the SNR is r2/e2.  For 

r,,, < r < r v ,  the SNR is equal to S N R o  + S N R l  where a is given by (4.22). For r > r,, 

the SNR is equal to S N R l  + S N R 2  where ,ll is given by (4.29), and equations (4.40) to 

(4.42) for S N R l  are modified by changing a to P (4.29). 
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4.4 Comparison of the Periodic Model with Bandpass CA 

Modulation 

The analytic expressions developed for the periodic signal model are now compared with 

simulated SNR results for bandpass CA modulator pulse trains. Before discussing the com- 

parison, we remark that the analysis of the periodic pulse train and the resulting structure 

of the reconstruction signal constellations leads to interesting large signal behavior. The 

maximum source amplitude r,,, that defines the region where the reconstructed SNR is 

phase insensitive depends on the carrier oversample ratio. Also, within this region, the 

reconstruction error is constant (E) and SNR increases with an increase in source amplitude 

r .  For source amplitude levels larger than r,,,, the reconstructed SNR become phase sensi- 

tive. Regions of high SNR occur if the source phase and amplitude lie within the maximum 

amplitude boundary. If the source phase and amplitude exceed the maximum amplitude 

boundary, then the SNR becomes dependent on the distance between the source vector 

and the maximum amplitude boundary. When r > r,, the SNR is expected to drop off 

very rapidly, since the source vector falls outside the maximum amplitude boundary for all 

phases. 

Simulation results for modulator A in section 2.2.2 are compared with the periodic model 

for a sinusoidal source signal, r cos[27r( f, + A f )t + 41. Figure 4.8(a) shows simulation results 

for Rc = 2 (f, = f,/4) versus source amplitude and phase. The fs/4 modulator design is 

a classic bandpass CA modulator configuration [ll, 20,31,36,37]. When the modulator is 

driven with large amplitude signals and Af = 0, the SNR eventually collapses and enters 

a region of phase sensitivity. Most interesting is the occurrence of four dips in SNR at 

source phase angles of 0,7r/2,7r and 3 ~ / 2  which is exactly what would be expected from 

the corresponding square constellation in the periodic model (Fig. 4.4) except for a phase 

offset of 7r/4. In Fig. 4.8(b), a similar plot is shown for the case when R, = 1.5. Again, the 

presence of six dips in SNR is consistent with the hexagonal constellation for the periodic 

model. Because the large amplitude modulator behavior is consistent with the periodic 

model, it is likely that the modulator is limit cycling [69], and the data shows how the limit 

cycle behavior is phase sensitive. 

In Fig. 4.9, the simulated SNR response of modulator A is compared with the SNR 

equations derived for the periodic model. Unlike other SNR responses shown earlier in 

Chapter 2, the SNR for each random trial is shown explicitly, and the ensemble average 
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(a) R, = 2. 

(b) R, = 1.5. 

Figure 4.8: SNR response of modulator A versus amplitude and phase for a sinusoidal 
source (A f = 0). 
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corresponds to the thick dashed line. For region Ro in the periodic model, a value of 1. 10W5 

is used for E ,  and the value is derived from a linear analysis of the noise power in a fourth 

order bandpass n~odulator [33]. The figures show that the ensemble SNR averages of the 

simulation and model converge at low amplitudes and high amplitudes. 

A vertical reference line denoted qmas is added to the figures. qmaz corresponds to 

rka,/2, the maximum coding efficiency of a reconstructed signal in the phase insensitive 

region of the periodic model. Although the simulated results show some minor phase sen- 

sitivity for r < r,,,, the phase sensitivity is much greater when r > r,,,, and the coding 

efficiency in this region is tightly bounded to the right of the qmaz reference line. 

The nlodulator SNR measurements are made with an envelope oversample ratio of 128, 

and the SNR depends on the offset frequency A f .  When A f is zero and the carrier over- 

sample ratio is rational, the source frequency and sample rate are commensurate. Under 

this condition, the modulator SNR is sensitive to the source phase as shown in the left hand 

graphs of Fig. 4.9(a) and Fig. 4.9(b). On the other hand, if Af is not zero, the phase 

sensitivity is significantly reduced as shown in the right hand graphs. From the periodic 

model, the reduction in phase sensitivity is expected providing the offset still generates a 

rational carrier oversample ratio. A small offset would significantly increase the number 

of edges on the reconstructed signal boundary reducing the overload region where source 

phase affects SNR. If the polygon has a large number of edges, then the boundary is nearly 

circular and phase sensitivity becomes small. 

Another result derived from the periodic model is the relationship between the sequence 

length L and the frequency resolution of the reconstructed sinusoidal signal. As an exam- 

ple of the frequency resolution, consider all possible frequencies which are synthesized by 

periodic pulse trains with values of L up to 64 bits. After computing the difference between 

the discrete reconstruction frequencies, we get a graph of frequency resolution A f c  versus 

f c  as shown in Fig. 4.10. The figure is very interesting and shows that frequency resolution 

is not uniform, and frequencies in the neighborhood of low integer ratios such as f c  = 114 

and f c  = 113 have coarse frequency resolution. The distribution of resolution with center 

frequency is independent of L, and therefore the resolution is consistently poorer in the 

neighborhood of frequencies with low integer ratios. Thus, reconstruction frequencies with 

low integer ratios have both a maximum amplitude boundary with a small number of edges 

as well as coarse frequency resolution. 

The relationship between frequency resolution and sequence length has implications in 
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Figure 4.9: SNR versus coding efficiency for modulator A with a sinusoidal source. 
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Figure 4.10: Reconstructed signal frequency resolution for sequences up to 64 bits. 

terms of the pulse train synthesized by a modulator. Since the instantaneous frequency of the 

sinusoidal reconstruction signal varies in cases where the source frequency and modulator 

sample rate are not commensurate, the modulator attempts to find the best pulse train 

which minimizes the reconstructed signal error. If the source frequency is near a low integer 

ratio, then the pulse train must have a very long period to construct a signal with high SNR., 

and the modulator must track the error over a very long time window. On the other hand, 

if the source signal frequency is in the neighborhood of a frequency with fine resolution such 

as jF, = 5/17 (Rc = 1.7), then shorter sequences are expected to generate the same SNR. 

relative to less optimal center frequencies. 

The relationship between frequency resolution and SNR is tested in two ways. First, the 

SNR of the reconstructed signal drops when the source frequency is offset by 0.001 f, relative 

to source frequencies of 114 f ,  and 113 f,. This is shown by comparing the ensemble SNR of 

the left hand graphs in Fig. 4.9(a) and Fig. 4.9(b) with the SNR of the right hand graphs 

with offset. The peak gain in the noise shaping loop occurs at frequencies corresponding to 

the zeros in the noise shaping filter. As the source frequency shifts away from the zeros, the 

gain is reduced. Therefore, we expect that the reconstructed SNR will be less for source 

signals which are offset relative to the frequency of zeros in the noise shaping loop. 
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Figure 4.11: SNR versus coding efficiency for sinusoidal source signals with A f = 0; the 
figure legend values correspond to f,. 

Instead of offsetting the source frequency relative to zeros in the modulator noise shaping 

loop, a second test is made where the modulator and source frequencies are locked and 

simultaneously tuned in the neighborhood of frequencies where the periodic model predicts 

coarse frequency resolution. The simulation results are summarized in Fig 4.11. SNR is 

first shown for f, = 1/4,1/3, and 5/17 with Af = 0, and then for an irrational offset of 

i.r/3140 = 0.001 with A f = 0 again. The simulations show that when the frequency is offset 

near f, = 114 and f, = 113, the SNR drops, while the SNR remains approximately the 

same around f, = 5/17. In all cases, the loop filter gain at the source frequency is the 

same, yet the modulator has difficulty synthesizing pulse trains with constant SNR in the 

neighborhood of f, = 114 and f, = 113. The observation is consistent with predictions from 

the periodic model which show that the length of the sequences changes depending on the 

frequency of the source signal. 

The other modulator behavior worth noting in Fig. 4.11 is the apparent decrease in 

stability of the loop as the frequency is shifted away from f, = 114 and f, = 113. The 

SNR versus coding efficiency responses shown in the figure correspond to identical source 

level ranges which range from a: = 0.01 to a: = 0.8. Although the SNR is phase sensitive 

for f, = 114 and f, = 113 without offset, the modulator is stable and the SNR does not 
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Figure 4.12: Coding efficiency versus carrier oversample ratio for a sinusoidal source signal. 

collapse. However, when the source and noise shaping loop are offset, the SNR collapses 

sooner and the same range generates unstable operation as shown by the tails of the SNR 

responses near 10 dB. On the other hand, the robustness of the modulator at f, = 5/17 is 

apparent. The coliclusion from both the periodic model and modulator simulations is that 

SNR and coding efficiency vary depending on the carrier oversample ratio. 

As a final result, the coding efficiency predicted by the periodic model is compared with 

the coding efficiency of bandpass CA modulation over a range of carrier oversample ratios. 

For the comparison, the model values of qmax are used for all rational carrier oversample 

ratios satisfying M 5 16 and M > 2N. The model values are compared with simulation 

results for coding efficiency at SNR thresholds of 50 dB and 65 dB, where the noise shaping 

loop is set to the corresponding carrier oversample ratio, and the input signal has an offset 

of 0.001 f,. With reference to Fig. 4.9(a) and Fig. 4.9(b) again, the 50 dB threshold is 

expected to correspond closely with hax, while the 65 dB threshold is expected to have 

lower coding efficiency than the model. The comparative results are shown in Fig. 4.12. 

Both the model and modulator show similar variation in coding efficiency and the coding 

efficiency dip around R, = 2 is significant. R, = 2 corresponds to the square reconstruction 

signal constellation, and r,,, is significantly less than r, in this case. Other significant dips 
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in coding efficiency occur when M has a low value such as M = 6 for carrier oversample 

ratios of 1.5 and 3. As expected, the correlation of the model is better at an SNR thresh- 

old of 50 dB than at a threshold of 65 dB. There are also differences between the model 

and modulator, and a more comprehensive model would integrate both the amplitude and 

frequency resolution aspects which were analyzed separately. 

4.5 Conclusions 

As an approach to understanding how coding efficiency varies in binary amplitude pulse 

trains with synchronous zero-crossings, we analyzed the class of periodic pulse trains. The 

analysis was motivated by considering how to encode a sinusoidal source signal into a pulse 

train with constraints similar to a bandpass CA modulator. A comparison of the periodic 

model with a fourth order bandpass CA modulator shows that coding efficiency dips at  

certain common carrier oversample ratios including 1.5, 2.0, and 2.5, and carrier oversample 

ratios in the neighborhood of these values should be avoided in a RF class D amplifier 

design. 



Chapter 5 

Signal Reconstruct ion and Coding 

Efficiency 

In the previous chapters, we have evaluated the coding efficiency of different bandpass CA 

modulators, shown how coding efficiency is related to load power in a RF class D amplifier, 

and compared modulator coding efficiency with a periodic model. Since the coding efficiency 

of the binary amplitude pulse train is so important in the amplifier application, a natural 

question to ask is: are there better source coding methods than bandpass CA modulation? 

And if there are better methods, how much better are they? 

Linear signal reconstruction in the RF class D amplifier imposes significant constraints 

on the encoding method. The distinction of a linear reconstruction filter is important, and 

differentiates the problem from classic rate-distortion theorems. For example, there is a 

source coding theorem for gaussian sources with memory [70], and the application of this 

theorem to a bandlimited source signal shows that far superior encoders and decoders exist. 

An example of this theorem is given in Appendix D. Although the theorem shows the 

existence of better encoders and decoders, it does not consider system constraints which are 

consistent with class D amplification. 

In this chapter, several different methods are taken to evaluate the coding efficiency 

limitations of linear signal reconstruction. The first method is to examine the reconstruction 

signal space assuming a second order bandpass filter. An elementary analysis of the second 

order bandpass filter shows that the maximum reconstructed signal is bounded by 4/7r for 

any binary amplitude pulse train without any constraint on the zero-crossing positions. 

From this, we show that the maximum coding efficiency for an undistorted sinusoidal signal 

is approximately 81%. The result is consistent with the periodic signal model in Chapter 4, 

except that it is derived from the assumption of a linear reconstruction filter only. 
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In the second and third parts of this chapter, we attempt to synthesize more optimal 

binary amplitude pulse trains with higher coding efficiency than bandpass CA nlodulation. 

Two alternate encoding methods are considered. First, a numerical search algorithm is used 

to synthesize a semi-infinite binary sequence which minimizes the reconstruction signal 

error power. The high envelope oversample ratio in the encoder makes the computational 

complexity of the search very challenging, and after trying different algorithms, the M- 

algorithm was selected for linear numerical complexity. The results of the numerical search 

suggest that bandpass CA modulation is remarkably efficient and difficult to exceed. The 

numerical search results also show similar coding efficiency variation with changes in carrier 

oversample ratio as observed with bandpass CA modulation. 

The second alternate encoder replaces the binary quantizer in a bandpass CA modulator 

with a more general decision unit. The concept is recent, and began with a paper by 

Kato [28]. He proposed a trellis search with the Viterbi algorithm in place of the binary 

quantizer in a lowpass modulator. We build on Kato's concept, and define a decision unit 

which 'looks ahead' to make a better decision than a binary quantizer. An encoder design 

with a decision unit in a bandpass modulator loop is evaluated, and the results show t,hat 

a few bits of look-ahead can improve the robustness of the modulator especially for high 

order loop filters. 

5.1 Linear Signal Reconstruction 

Assume the input signal to the reconstruction filter g(t) is limited to two amplitude states 

of +1 V. The output (reconstructed) signal is then a superposition of step responses for the 

reconstruction filter. Let the input to the filter be a pulse train p(t) with zero-crossings at 

times ti. The input pulse train is 

p(t) = (uS(t) + 2 C ( - l ) '  us(t - ti) 
i=l 

where us(t) is the unit step input and the sign depends on whether the pulse train starts 

with a +l at t = 0 or a -1 at t = 0. The reconstructed signal, called ii(t), is then a 

superposition of the filter step response gs(t) and equal to 
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Equations (5.1) and (5.2) are very general, and they describe every possible type of 

encoder pulse train, and every possible reconstructed signal at the output of a RF class D 

amplifier. The source signal is encoded entirely in the zero-crossings at times ti of the input 

pulse train, and signal reconstruction depends on the step response g,(t) of the reconstruc- 

tion filter. 

The zero-crossing times ti can be synchronous with a periodic clock signal as i11 CA 

modulation or asynchronous as in PWM. Synchronous zero-crossing times are assumed, and 

ti is restricted to an integer multiple of the clock period T. Under these conditions, the 

number of output amplitude levels at t = kT, where k is an integer, is countable, and the 

set of all possible output levels lies on a discrete lattice. 

5.1.1 Signal Reconstruction with a Second Order Filter 

A second order bandpass filter has a transfer function 

where < is the damping factor and v is the natural frequency of the resonator. The step 

response is a damped oscillation with a single harmonic component at a frequency of v 

rad/s: 

Although the step response is an elementary signal with a single sinusoidal frequency compo- 

nent, the superposition of step responses can generate signals with time varying amplitude 

and phase. 

The step response of the second order bandpass filter is shown in Fig. 5.1 for different 

damping values < and a fixed natural frequency v of 10 rad/s. A high damping value 

or low Q resonator generates an initial large amplitude sinusoidal step and the amplitude 

decreases rapidly with time. From a signal reconstruction perspective, this step function 

has coarse amplitude resolution and short memory. On the other hand, a low damping value 

or high Q resonator generates a low amplitude sinusoid with a slowly drooping envelope; 

the step function provides fine amplitude resolution with long memory. In CA modulators, 

second order resonator sections with very high Q are used, and consequently fine amplitude 

resolution with very long memory is obtained. It also shows why a large envelope oversample 

ratio is required to obtain good SNR. 
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Figure 5.1: Second order bandpass filter step response for w, = 10 rad/s. 

Focusing on high Q resonators and assuming the peak amplitude of the oscillation is 

nearly constant for many cycles, it is easy to construct a sinusoid with quantized ampli- 

tude values. Let T, be the duration of the step response where the peak amplitude of the 

oscillation is within E of some peak amplitude A = 2Clv: 

If T, >> T,, then the peak amplitude at time t = T,/4 is a good approximation of the future 

peak amplitudes for 0 < t < T,. An example based on this assumption is shown in Fig. 

5.2 where the amplitude is stepped up and then down in amplitude increments of 2A. A 

crude approximation based on this assumption is that the amplitude error is &A, and a 

reconstructed signal consists of lattice points spaced by 2A. 

5.1.2 Maximum Output Amplitude with a Second Order Filter 

The maximum output amplitude from the filter is generated by an infinite sequence of step 

responses that add constructively at the output of the filter. Hence, the zero-crossings of 

the input pulse train must be synchronized and periodic. The input pulse train p( t )  that 

maximizes the superposition of step responses at the filter output is a pulse train that 

changes sign every T,/2 where Tv = 2 ~ 1 ~ .  Note that the pulse train is selected without any 
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Figure 5.2: Example of a reconstructed load signal u(t) with a second order bandpass filter 
for an input pulse train p(t). 

prior constraint on where the zero-crossings are located, and is 

The maximum amplitude of the step response occurs at t = T,/4, and 

C* 
where a = (/v and a = e-2; .  After k time steps, the peak amplitude is 

and the limit as k + cc is 

For a high Q resonator, the damping factor, (, is small. Consequently, cu = (/v is small, 

and in the limit as < -+ 0 we get 

4 
- - 

4 
lim g,,, = lim - 
a 4 0  

(5.10) 
a-o 7r cosh(7raI2) 7r 

where I'Hopital's rule is used to evaluate the limit. The maximum output amplitude is 4/7r 

for a perfect resonator; otherwise it is (5.9), and less than 4/7r. 
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The maximum output amplitude signal is sinusoidal and generated by input pulse train 

(5.6) which is a square wave with a 50% duty cycle. If p(t) is extended to a hi-infinite interval 

t E (-a, GO), then the Fourier series for p(t) has a fundamental frequency component with 

amplitude 4/7r, and is identical to a causal resonator with infinite Q as t -+ oo. The 

implication of (5.10) is that the coding efficiency of the pulse train for an undistorted 

sinusoidal load signal is limited to approximately 81%. The example also shows that any 

attempt to encode a more complex source signal like W-CDMA with signal peaks exceeding 

4/7r will have a clipped reconstructed signal. 

5.2 Binary Sequence Search 

In this section, the constraint of linear reconstruction filters is explored further for higher 

order filters. Analytic results are more difficult to genera.te for filter orders greater than two, 

and conclusions on coding efficiency for more complex signals such as narrowband gaussian 

noise (NGN) are desirable. Therefore, we revert to simulation to gain further insight. 

A Butterworth filter, with a 3 dB bandwidth of f b  and center frequency f,, is selected 

where f b  and f, correspond to a specific envelope and carrier oversample ratio, respectively. 

A numerical search algorithm is then used to synthesize the best binary sequence which 

minimizes the MSE of the reconstructed signal. 

A discrete-time equivalent model, shown in the top of Fig. 5.3, is constructed for the 

simulation. The impulse response of the reconstruction filter is g[k], and a search algorithm 

synthesizes a binary pulse train b[k ]  which minimizes the MSE of the reconstructed signal 

ii[k]. The SNR and coding efficiency of the synthesized pulse train are then computed. The 

coding efficiency of the discrete-time pulse train is adjusted for a NRZ DAC response to 

compare with bandpass CA modulation. The search algorithm implemented in the encoder 

and simulation results are described next. 

Since the encoder synthesizes a semi-infinite binary sequence b [ k ] ,  a numerically efficient 

search algorithm is required. After experimenting with different numerical algorithms, the 

sub-optimal M-algorithm by Anderson [71] was selected for its linear computation complex- 

ity. Other algorithms tested on the problem were sphere decoding, the T-algorithm, and 

semi-definite programming. The sphere decoding algorithm finds optimal binary sequences, 
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Figure 5.3: Binary sequence search with the M-algorithm. 

but numerical simulation times were exponential with sequence length, and Matlab simu- 

lations beyond 30 bits were very long. The T-algorithm has a threshold which limits the 

number of retained branches in a tree search. It was found that even a very small thresh- 

old accumulated a large number of branches, and hard limits were required to limit tree 

growth effectively reducing the algorithm to the M-algorithm. In joint work with Amin 

Mobasher, semi-definite programming methods were tested on the problem, and again we 

jointly concluded that this method was no better than the M-algorithm. 

The M-algorithm is briefly summarized below and reference is made to Fig. 5.3. 

- 

1. There are two key variables: W is the number (breadth) of contenders retained at 

each step in the tree search, and L is the depth (delay) after which an output bit is 

released. 

2. At each iteration, the W paths are extended by 1 bit to generate 2W contenders. The 

2W contenders are sorted in terms of a MSE and W paths with the lowest MSE are 

Filter plkl 

retained. 

rn 

'Mobasher et a1 [72] have successively applied SDP methods to lattice search problems. 
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Figure 5.4: Comparison of SNR versus coding efficiency for different Butterworth recon- 
struction filters for a NGN source; the 3 dB filter bandwidths are f s /256  and R, = 2.0. The 
second order parameters are L = 2 and W = 4, while the fourth order parameters are L = 8 
and W = 128. 

3. At each iteration k, the k - L th bit is released for the best path. After releasing the 

bit, any remaining contenders with a different bit in the k - L th position are purged. 

5.2.2 Selecting Algorithm Parameters 

A number of different numerical experiments were conducted to determine what algorithm 

parameters should be selected for L and W. The experimental results show asymptotic 

behavior, and the increase in performance diminishes with increasing parameter values. 

Parameters values which balance numerical simulation time and performance were selected, 

and the results of the numerical experiments are summarized in Figures 5.4 and 5.5. 

Fig. 5.4 shows SNR versus coding efficiency responses for a binary sequence of 32768 

bits encoding a NGN source with different filter orders and different algorithm parameters. 

Starting with filter order, there is a direct relationship between the selectivity of the filter 

which increases with filter order, and the complexity of the numerical search. For a second 

order filter, the reconstructed SNR is low, and a binary sequence is easily found with two 

bits of look ahead (L = 2;  W = 4).  As the filter order increases, the impulse response of 



CHAPTER 5. SIGNAL RECONSTRUCTION AND CODING EFFICIENCY 116 

the filter spans a larger time window, and the parameters need to be much larger in order 

to find sequences with large SNR and high coding efficiency. For example, typical fourth 

order filter search parameters are L = 8 and W = 128, while typical sixth order parameters 

are L = 40 and W = 1024. Also, with the sixth order filter, the experiments show that 

even with large parameter values the algorithm fails to find binary sequences with large 

coding efficiency. For convergence, a large number of contender paths must be retained and 

memory starts to be a limiting resource in the search. Since robust results are obtained 

with the fourth order filter, it is selected for comparison with bandpass CA modulation. 

A detailed characterization of the algorithm parameters with the fourth order recon- 

struction filter is shown in Fig. 5.5 for sinusoidal and NGN sources. The data show there 

are significant improvements as L is increased to 8, and as W is increased to 128. Beyond 

these values, the SNR and coding efficiency improvements diminish rapidly for both sinu- 

soidal and NGN sources. Therefore the algorithm parameters are set to L = 8 and W = 128, 

and the binary sequence search is employed to characterize the variation in SNR and coding 

efficiency with carrier oversample ratio. 

5.2.3 Simulation Results 

For both sinusoidal and NGN sources, the M-algorithm sequence search generates results 

very similar to bandpass CA modulation. These results are summarized in Figures 5.6-5.8. 

Fig. 5.6 compares the binary sequence search with different modulator designs for a 

carrier oversample ratio of 2.0. The CA modulator (SDM) SNR and coding efficiency are 

measured with a sixth order (BPF6) Butterworth reconstruction filter, while binary search 

(BS) results are presented for both fourth order (BPF4) and sixth order (BPF6) Butterworth 

filters. The tails of the SNR responses converge for fourth order CQ modulator designs and 

for the binary search with a fourth order reconstruction filter (BS; BPF4). On the other 

hand, both the sixth order modulator (SDM F) and the binary sequence search with a sixth 

order reconstruction filter (BS; BPF6) show abrupt collapses in the SNR responses. 

The sixth order modulator provides superior SNR performance for low amplitude input 

signals; however, the maximum coding efficiency is limited by stability - a well known 

problem with high order modulators [21]. A similar collapse in SNR is observed for the 

binary search when a sixth order reconstruction filter is used. For large input amplitudes, 

the sequence search is unable to retain a low MSE branch, and much more memory (L 

and W) is required to synthesize a sequence with comparable performance to bandpass CA 
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Figure 5.5: Comparison of SNR versus coding efficiency for different hl-algorithm param- 
eters with a fourth order reconstruction filter; the 3 dB filter bandwidth is fs /256.  
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Figure 5.6: Coding efficiency of sequences generated by the M-algorithm binary sequence 
search for sinusoidal source signals; R, = 2 and the 3 dB filter bandwidth is fs/256. 

modulation. For example, modulators A, B, and C all synthesize more optimal sequences 

with better coding efficiency. Since the sequence search with a fourth order filter is much 

better for large source amplitudes, a better search algorithm might include an adaptive 

bandwidth or adaptive order reconstruction filter. The filter order could be adjusted in 

response to the source amplitude, result,ing in a smooth transition from high SNR pulse 

trains at low source amplitudes, to moderate SNR pulse trains at high source amplitudes. 

This is not explored further in this research project, and it could be an area for future 

research. 

A more extensive sweep of SNR versus coding efficiency is used to generate the coding 

efficiency plots shown in Fig. 5.7. Two SNR thresholds of 52.5 dB and 62.5 dB are selected, 

and the coding efficiency of the synthesized pulse train is measured versus carrier oversample 

ratio. Similar to results shown in Chapter 2 for bandpass CA modulation (cf. Fig. 2.10) 

and for the periodic model (cf. Fig. 4.12), the coding efficiency dips significantly at  carrier 

oversample ratios of 1.5, 2.0, and 3.0. The data also shows the coding efficiency dips in the 

neighborhood of these carrier oversample ratios. 

The SNR versus coding efficiency for a NGN source is shown in Fig. 5.8. Data are 

shown for four carrier oversample ratios of 1.5, 1.7, 2.0, and 2.2. In terms of increasing 
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Figure 5.7: Coding efficiency of sequences generated by the M-algorithm binary sequence 
search with a fourth order Butterworth bandpass reconstruction filter. The source signal is 
sinusoidal and the 3 dB filter bandwidth is fs/256. 

coding efficiency, the carrier oversample ratios are ordered as 2.0, 1.5, 1.7, and 2.2. Similar 

results are obtained for bandpass C A  modulation (cf. Fig. 2.12). 

From these simulations we make several conclusions. First, a numerical search does not 

generate substantially better pulse trains with higher coding efficiency than bandpass C A  

modulation. Since the search parameters in the algorithm are selected to be large enough 

where the gains in performance diminish, the data suggests that the coding efficiency of 

bandpass C A  modulation appears difficult to exceed. Second, there is a region before SNR 

collapse that SNR can be boosted by higher order reconstruction filters or higher order 

modulators, as illustrated by the sixth order filters. However, higher order filters have long 

impulse responses, and the memory starts to limit the efficient synthesis of pulse trains at 

high amplitudes where the SNR starts to collapse. Third, as with bandpass C A  modulation, 

the binary sequence search confirms that the coding efficiency of some carrier oversample 

ratios are more optimal than others. 
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Figure 5.8: Coding efficiency of sequences generated by the M-algorithm binary sequence 
search with a fourth order Butterworth bandpass reconstruction filter. The source signal is 
NGN and the 3 dB filter bandwidth is fs/256. 

5.3 Bandpass CA Modulation with a Decision Unit 

The results of the M-algorithm binary sequence search suggests that the bandpass CA 

modulator is efficient. One of the reasons the modulator is so efficient has to do with the 

long memory of high Q resonators, and the large envelope oversample ratio. The high Q 

resonator h[k] is in a feedback loop as shown in Fig. 5.9, and stores a long history of the error 

signal w[k], defined as the difference between the input u[k] and output b[k] signals. The 

high Q resonator creates a long search window over which the error signal is integrated, and 

the sign of the weighted error signal v[k] is used as a decision in the circuit. The quantizer 

is a simple and an easily implemented decision unit in the modulator loop, but are there 

better ways to make a decision with the error signal v[k] that improve coding efficiency? 

5.3.1 L Bit Look-Ahead 

There has been recent work in lowpass audio modulators [28-301 where alternate decision 

units have been considered in the modulator loop instead of a quantizer. A similar idea 

is applied here to bandpass CA modulators. The bandpass CA modulator is modified 
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Figure 5.9: CA modulator (a) and equivalent model (b) where the quantizer is replaced 
by a decision unit. 

to include a short length look-ahead tree search of L bits, and a bit is released from the 

path with the lowest MSE. The depth of the tree search is limited to eight bits, and the 

accumulated MSE of all W = 2L paths are evaluated before releasing a bit from the path 

with the minimum MSE. The modified modulator architecture is shown in Fig. 5.9. 

When a decision unit with at least one cycle of delay is included in the modulator loop, 

the loop filter no longer requires delay for the loop to be causal. Usually the noise shaping 

filter h[k]  has a least one delay, and the delay can now be moved or shared with the decision 

unit. As an example, the transfer function of modulator A is modified to have zero delay, 

and the corresponding transfer function is 

Equation (5.11) can be compared with the transfer functions (2.16) and (2.17) shown earlier 

in Chapter 2. Note that in this case, H (z) is equivalent to Hi(z), the input transfer function, 

and -H(z) is equivalent to Hf(z),  the feedback transfer function. Simulation results for 

this transfer function, as well as a sixth order design using a delayed transfer, modulator F, 

are shown next. 
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5.3.2 Simulation Results 

It has already been shown that a bandpass CA modulator, composed of a high Q resonator 

and a binary quantizer in a feedback loop, is highly efficient. The memory of a high Q 

resonator is analogous to a long tree search; therefore, it might be expected that long tree 

searches in the decision unit after the resonator are unlikely to yield much improvement. 

As the simulation data show, the improvements in coding efficiency depend on the SNR 

threshold, the carrier oversample ratio, and on the modulator design. The greatest benefit 

from a tree search decision unit appears to be improved robustness in the modulator by 

improving loop stability. 

Figure 5.10(a) shows the SNR versus coding efficiency of the enhanced fourth order 

modulator design using the loop filter in (5.11) with look-ahead. The results are compared 

with modulator A for a carrier oversample ratio of 2.0, and show that look-ahead can boost 

the SNR near the point of SNR collapse. All the tails of the different designs converge 

around an SNR of 50dB, and the tails of the designs with a decision unit extend farther to 

the right. For L = 7, the SNR results have the appearance of pushing up against a boundary 

layer, and the limits of coding efficiency appear to be close to the simulation results. 

A similar comparison between the enhanced modulator and modulator A is shown in 

Figure 5.10(b) for a carrier oversample ratio of 2.1. The carrier oversample ratio is near 2.0, 

and the SNR response for modulator A is jagged showing signs of instability at high source 

levels. The response is typical near the coding efficiency dip at a carrier oversample ratio 

of 2.0. The effectiveness of look-ahead is substantially better in this case, and significant 

improvements in coding efficiency are obtained even with one bit of look-ahead. This shows 

that the breadth of the dip in coding efficiency near 2.0 seen in bandpass CA modulators 

with a binary quantizer, could be narrowed significantly with an improved decision unit. 

Since the robustness of the modulator appears to improve with a tree search, experiments 

were also made with a sixth order modulator design, modulator F. Sixth order modulators 

are notoriously unstable at high amplitudes, yet they have significant advantages in terms of 

SNR. The results of the simulations are shown in Fig. 5.11. The SNR collapses very rapidly 

in sixth order designs. Since the SNR of the modulators does not collapse gracefully as the 

source amplitude gets large, some form of clipping is required at the input to insure the 

modulator remains stable. If this is done, then the addition of look-ahead has substantial 

benefits in the sixth order design, and clearly pulse trains with higher coding efficiency can 
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Figure 5.10: Coding efficiency of a fourth order bandpass CA modulator with a tree search 
decision unit. The source signal is sinusoidal and the reconstruction filter is a sixth order 
Butterworth filter with a 3 dB bandwidth of f,/256. 
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Figure 5.11: Coding efficiency of a sixth order bandpass CA modulator with a tree search 
decision unit. The source signal is sinusoidal, the reconstruction filter is a sixth order 
Butterworth filter with a 3 dB bandwidth of fs/256, and R, = 2.0. 

be synthesized. For example, at an SNR threshold of 80 dB, 2 bits of look-ahead could 

boost coding efficiency by 3%, and 7 bits could boost coding efficiency by 5%. 

5.4 Conclusions 

The goal of this chapter has been to explore limitations in coding efficiency for the synthesis 

of binary amplitude pulse trains with constrained zero-crossings. A fundamental constraint 

in the RF class D amplifier stage is linear signal reconstruction, and different approaches 

were taken to evaluate coding efficiency limits assuming a bandpass reconstruction filter. 

The first approach was to assume the filter is a second order resonator, and then ask what 

kind of signal reconstruction is possible with this filter. It was proven for the second order 

filter, that the maximum amplitude of any reconstructed signal is 4/7r for a pulse train 

with unit amplitude levels. The amplitude bound corresponds to a periodic excitation, and 

consequently the maximum coding efficiency of a sinusoidal load signal without distortion 

is 81%. 

Signal reconstruction was explored more generally for other filters and source signals 
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using a binary sequence search. The simulation results with the M-algorithm show that 

bandpass CA modulation is an efficient search engine, and it is difficult to exceed the 

performance by employing numerical methods for generating binary sequences. As a final 

approach to evaluating coding efficiency limitations, the efficiency of bandpass CA mod- 

ulation was combined with a tree search, and together modest improvements in coding 

efficiency were obtained. The main advantages of the enhanced modulator architecture 

were: 1) a boost in SNR near the point of SNR collapse, 2) a reduction in the range of 

carrier oversample ratios where coding efficiency dips, and 3) improved stability in a sixth 

order modulator. 



Chapter 6 

Manchester Encoded Bandpass 

Sigma-Delt a Modulation 

A challenge in high frequency continuous-time modulator implementations is the design of 

RF resonators with sufficient Q to obtain good signal-to-noise ratio (SNR) [32]. A discrete 

component design can take advantage of high Q inductors and capacitors [31]. In monolithic 

implementations, on chip inductors have low Q, and Q enhancement techniques are required 

to improve resonator selectivity [43,73]. Other monolithic resonator structures such as Gm- 

C filters are also feasible, but high frequency designs are still challenging. 

As an alternative to the implementation of RF resonators, frequency conversion [74] can 

be employed in the modulator to reduce the resonator frequency in the noise shaping loop. 

In this chapter, a general form of Manchester encoding is analyzed as a way to upconvert 

the output of a low frequency bandpass CAM to a RF output, and thereby mitigate issues 

with RF resonator implementations. The proposed concept is to multiply the output pulse 

train b[k] with a synchronized clock signal which effectively maps each modulator bit to an 

integer multiple m of a (+I, -1) or (-1, +1) pattern depending on the sign of the modulator 

bit [40,75]. Although m = 1 is usually defined as Manchester encoding, the term Manchester 

encoding shall be used generically for any m > 0 as used by the authors in [75]. The objective 

of the analysis is to evaluate the coding efficiency and average transition frequency of the 

upconverted pulse train, and assess the cost of the upconversion relative to a direct synthesis 

of the pulse train. 

The analysis yields interesting conclusions. When a power loss ratio (PLR) term is 

constructed to compare the coding efficiency of a bandpass CT CAM with and without 

upconversion, a relatively simple equation results which depends only on the upconversion 

frequency ratio. The PLR equation is independent of m,  and shows that the reduction 
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in coding efficiency with upconversion does not exceed 40.5%. Coding efficiency losses are 

high when the upconversion frequency ratio is large, and low when the upconversion ratio 

is small. The analysis of ATF, on the other hand, does depend on m; ATF is minimized, 

hence power efficiency is maximized, when m is unity. The overall conclusion of the analysis 

is that m = 1 is the best configuration for minimizing the upconversion power loss ratio and 

ATF. The analysis is verified by sinlulations with modulator A. 

The chapter is organized as follows. An overview is given of a Manchester encoded CAM 

in a RF class D amplifier application. Then the coding efficiency of Manchester encoding is 

analyzed, and the chapter concludes with an analysis of ATF. 

6.1 Upconversion and Manchester Encoding 

As an alternate to direct synthesis, upconversion of a low frequency pulse train y(t) to a RF 

frequency pulse train p(t) is considered. With upconversion, the load signal has a carrier 

frequency ,f,, while the source signal has a carrier frequency fc, and the ratio f,/ f, is defined 

as the upconversion ratio: 

In the direct path f, -- fc and p(t) -- y(t). 

One way to upconvert is to multiply the binary amplitude signal y(t) with a clock signal 

c(t) as shown in Fig. 6.1 when the switches are in position (b). The bit period (sample 

period) from the modulator is T ,  and the clock period in the upconversion path is T/m.  

When m = 1, the method is equivalent to Manchester encoding [76]; each bit in y(t) is 

mapped to a high-low or low-high pulse. In general, m is any positive integer, and a 

designer may want to choose m > 1 because the modulator and upconverter circuitry might 

be implemented in different device technologies. An example of upconversion with m = 2 

is shown in Fig. 6.2, and in [75], an example with m = 5 is given. 

In Fig. 6.2(a), the power spectral density of the modulator pulse train Sv(f)  is shown for 

a source signal with fc = fs/3. The upconverted PSD, Sp( f ) ,  is shown in Fig. 6.2(b) for a 

UCR of 5. The dashed lines in Fig. 6.2(a)-(b) outline the spectral shaping by the modulator: 

NRZ spectral shaping without upconversion, and Manchester spectral shaping from c(t) with 

upconversion. The equations for spectral shaping are given later in section 6.2. Besides 

upconverting the modulator signal, the upconverter reduces low frequency power which has 
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Figure 6.1: CA modulator, upconverter, and RF class D amplifier model. 

the additional benefit that AC coupling can be used in the RF amplifier. Fig. 6.2(c) shows 

a narrow span of Sp(f) around the upconverted signal. After upconversion, a pulse train 

with high coding efficiency and low ATF are desirable for subsequent amplification. 

6.2 Power Loss Ratio 

Upconversion changes the CAM pulse train power spectrum and reduces coding efficiency. 

The reduction in coding efficiency is analyzed by constructing a ratio of the upconverted 

pulse train coding efficiency over the direct conversion pulse train coding efficiency. The 

ratio turns out to be a ratio of reconstructed signal powers if upconversion does not alter the 

amplitude (Ap) of the modulator pulse train. The ratio is called the power loss ratio (PLR). 

The PLR is a measure of the relative change in load power at  the output of the amplifier 

after changing the switch from the direct path, switch position ( a ) ,  to the upconvert path, 

switch position (b), in Fig. 6.1. 

Let the coding efficiency of the direct path and upconverter path be qu and qp, respec- 

tively. The amplitude of the modulator pulse train y ( t )  is f Ap, and the amplitude of the 
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Figure 6.2: PSD of modulator pulse train y ( t )  and upconverted puke train p( t ) .  
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clock signal is f 1. Then, 

VP - PLR - - 
P r / A ;  - PF 

- - 
rly P L / ~  PL 

where PL is the reconstructed signal power obtained from the CAM pulse train y(t), and 

P r  is the reconstructed signal power obtained from the upconverted pulse train p(t). 

6.2.1 Power Loss Ratio Analysis 

Rather than using the multiplier upconverter model in Fig. 6.1, an impulse train model 

shown in Fig. 6.3 is used for analysis. The approach is similar to the PSD analysis of 

pulse amplitude modulated signals [76,77]. In the impulse train model, the upconverter has 

an impulse response dm(t), and generates a burst of m pulses per modulator bit period T .  

Each pulse in the burst is defined as a rectangular pulse of width Tl(2m) and amplitude +1, 

followed by a second rectangular pulse of equal duration and amplitude -1. An equation 

for the impulse response is 

m 
t + a,T 

dm@ + T/2) = rect [ - ' n T ]  - rect [ ] n=l TI (2m) TI (W 
where rect(t) is a rectangular pulse function defined as 

rect(t) = 
1 It1 < 112 

0 otherwise 

and a, is a normalized delay function: 

The impulse response in (6.3) is shown with a T/2 time advance, and results in an odd 

function; the time advance is compensated for later in the Fourier transform domain. 

The impulse train from the modulator is defined as a wide-sense stationary random 

process bc(t) 

with binary weights b[k] E {-Ap, Ap) and sample period T .  The polarity of each pulse 

sequence at the upconverter output depends on the sign of the modulator bit b[k]. An 
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Figure 6.3: Bandpass CAM model: direct conversion when d o ( t )  = d,,,(t) and upconver- 
sion when d o ( t )  = d,(t). 

arbitrary initial delay 4 is assumed, and 4 is a random variable with a uniform distribution 

over the interval [-T/2, T/2]. The impulse train bc( t )  is derived by either differentiating 

the modulator pulse train y ( t ) ,  or, as shown next, it is a signal which is directly available 

in a CT CAM behavioral model. 

A CT CAM model is shown in Fig. 6.3. In the model, a noise shaping filter h(t)  is 

followed by an ideal sampler and quantizer with a feedback DAC d f ( t ) .  Since the model 

has an ideal sampler in the loop, an impulse train b,(t) already exists in the model. In a 

direct conversion configuration, b,(t) drives an N R Z  output DAC: d o ( t )  5 d,,,(t); in an 

upconverter configuration it drives a Manchester pulse: d o ( t )  = d,(t). The bandpass CAM 

is assumed to be tunable and the center frequency of the noise notch f ,  is set by the carrier 

oversample ratio R,. The carrier oversample ratio and upconversion frequency ratio are 

related as shown below: 
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Since R, > 1, equation (6.7) imposes a constraint on the relationship between UCR and m: 

The PSD of bc(t) is [77] 

where w = 27r f / f s, and Sb(ejw) is the discrete-time Fourier transform of the autocorrelation 

function of the bit sequence b [ k ] .  Since Sb(ejw) is periodic with period f,, S b , ( f )  is periodic. 

In the upconversion path, the mth image of the principal spectral part If 1 < fs/2 is selected 

by spectral shaping in the upconverter. The index m corresponds to which image is selected. 

The output PSD after upconversion is 

where D,(f) is the Fourier transform of dm(t) .  Similarly, the output PSD for the direct 

path is 

where D,,,( f )  is the transform of the NRZ impulse response d,,,(t). With (6.2)-(6.11), the 

PLR is 

+fb12 
PLR = 

J-n /2  IDm(f + fo)12Sb(f + m f s  - fc)df 

J?;$I~nr.z(f + f c ) 1 2 s b ( f  + fc)df 

where the substitution f o  = mf, - fc  has been used. 

CAM's are oversampling converters and the signal bandwidth of the carrier fb  is much 

less than the sample rate f,. Since fb  << f,, the attenuation over the signal bandwidth is 

approximately constant for both the encoder Dm ( f )  and the NRZ pulse D,,, ( f  ) . The pulse 

shaping terms in the integrals of (6.12) are approximately constant, and 

PLR w IDm(fo)12 - - IDm(UCRfc)12 
lDnr.z(fc)I2 (Dnrz(fc) l 2  ' 

We begin the evaluation of the PLR by first computing t,he transforms of the impulse 

responses. The Fourier transforms of the NRZ pulse is 
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Normalized Frequency (f/fs) 

Figure 6.4: Upconverter spectral shaping from 1 D,( f)I2 (T = 1) 

and the transform of the upconverter pulse (6.3) is 

At this point it is useful to plot (D,(f)I2 and it is shown in Fig. 6.4 for values of 

m = 1,2,3.  The spectral shaping has a global maximum for f > 0 at each value of m in 

the interval 0 < (mf, - f )  < 1. If coding efficiency is to be maximized, then it is clearly 

desirable to have an image of the encoded source signal fall near a maxima. Also, spectral 

attenuation is minimum for m = 1; however, as we show next, when PLR is calculated, 

there is no longer a dependence on m, and this results because of the construction of a ratio 

where terms cancel out. Instead, the spectral shaping manifests itself in terms of the UCR. 

Continuing with the analysis of PLR, let u = f T  be a normalized frequency, then 

vc = fcT and f,T = m - uc. With these variable changes 

m sinc[(m - vc)/(2m)] 
PLR = sin[2rr(m - vc)an] . 

m sinc(vc) 
n=l I 
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By converting the sum to a closed form solution, (6.16) can be reduced to 

The derivation of (6.17) is given in Appendix E. The ratio v,/m is equal to UCR + 1 and 

(6.17) is finally written as 

PLR = 
cot [7r/(2UCR + 2)] [ UCR 1 

with the constraint UCR > 2m - 1 as was given earlier in (6.8). The PLR equation (6.18) 

is shown in Fig. 6.5. 

From the PLR equation, several important conclusions are made. First, the equation 

collapses to a PLR of unity when the UCR is unity, and hence is consistent with the trivial 

case when there is no upconversion. Second, the lower bound on the PLR is 4/7r2 = 0.405 

and found by letting UCR t oo. Third, and most important, is the observation that 

the PLR is independent of the number of clock cycles m in the upconverter pulse shape. 

The independence of PLR in terms of m has resulted from the normalization of coding 

efficiency to a configuration without upconversion (ie: an NRZ DAC), and shows that there 

is no advantage in using m > 1. Later, when the average pulse period is analyzed for 

upconversion, it is shown that the average period is proportional to m; therefore, m = 1 is 

the best overall choice to maximize coding efficiency and minimize switching losses. 

6.2.2 Power Loss Ratio Simulations 

A simulation of a fourth order continuous-time modulator, design D, is used to verify the 

power loss ratio equation. The simulated power loss ratio is found by measuring the power of 

the encoded signal in the upconverted pulse train p ( t )  relative to the power of the encoded 

signal in the pulse train y ( t ) .  The source signal is a sinusoid with random phase, and 

the signal power is measured both with an ideal bandpass filter and with a sixth order 

Butterworth filter. The reconstruction filter bandwidth is fb/256, corresponding to an 

envelope over~a~mple ratio of 128. With both methods, an ensemble of 25 random trials is 

calculated for the shown data and the tone has an input level of -4.5 dBV relative to the 

quantizer step size Ap. 

The analytic and simulated results are shown in Fig. 6.5. As the simulated data in 

Fig. 6.5 show, the measured power loss ratio tracks the analytic results well, and deviates 
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Figure 6.5: Upconverter power loss ratio calculated over a pulse train duration of 215T. 

slightly at high UCR's. The power loss ratio is slightly lower than the analytic result when 

the power is measured with a Butterworth filter, while the simulated results are slightly 

higher than analytic results when the reconstruction filter is ideal. Overall, the variability 

between simulated and analytic results is small, and confirms that (6.18) is a suitable design 

equation for evaluating the impact of upconversion on coding efficiency. 

6.3 Average Pulse Period 

The ATF (fa,) of the upconverted pulse train is analyzed by first computing the average 

pulse period (APP) of the upconverted pulse train. Unlike the CAM pulse train which has 

a range of different pulse widths corresponding to integer multiples of T ,  the upconverted 

pulse train has only two pulse widths: T l m  or Tl(2m). An example of the modulator 

pulse period distribution was given in Chapter 2 (see Fig. 2.13), and shows pulse widths 

ranging from T to 38T. An upconverted pulse train on the other hand, has pulses of width 

Tl(2m) generated by each transition in c( t ) ,  and pulses of width T l m  when two successive 

modulator bits are of opposite sign. The two different pulse widths are easily identified in the 
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pulse train p ( t )  shown in Fig. 6.3. The effect of upconversion on APP is to therefore reduce 

what was formerly a probability mass function of different pulse widths corresponding to 

multiples of the clock period to only two pulse widths. 

An estimate of APP is obtained by assuming the bits in the modulator pulse train are 

independent with equal probability. Of course, the modulator bits are not independent, but 

the analysis is simplified significantly by the independence assumption and useful conclusions 

are obtained. 

With reference to Fig. 6.3, the APP is calculated for a period spanning two successive 

bits. All four bit sequences are equally probable and two sequences, (+I,  - 1) and (- 1, +I) ,  

create a transition, while the other two do not. When there is no transition, the pulse burst 

has only one pulse width, T/(2m), and there are 4m pulses per 2T. On the other hand, 

when there is a transition, there are 4m - 1 pulses in the burst of which 4m - 2 have a width 

T/(2m), and one pulse has a width of Tlm.  The average pulse width in a two bit sequence 

with a transition is 

The average pulse width for any two bit sequence is then 

Equation (6.20) shows that for large m the APP converges to T/(2m) which is expected. 

For m = 1, T,, is AT, and for m = 2, the APP is nearly halved and is %T. An important 

observation about (6.20) is that Tau is independent of UCR, or equivalently R,, while the 

CAM without upconversion does depend on R,. 

The effect of upconversion on APP is to reduce what was formerly a probability mass 

function of different pulse widths corresponding to multiples of the clock period to only two 

pulse widths. An example of the modulator pulse period distribution was given earlier in 

Fig. 2.13, Chapter 2. Simulated measurements of the APP for the upconverter configuration 

are compared with the direct configuration in Fig. 6.6. The analytic approximation for APP 

(6.20) is also shown for the upconversion cases with m = 1 and m = 2. The relative insen- 

sitivity to UCR is evident in the simulated results for the configuration with upconversion, 

and the data are well approximated by (6.20). 

Since T,, is approximately equal to T/(2m), the average pulse period is largest when 

m = 1. If the analysis of pulse period is combined with the analysis of coding efficiency 
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Figure 6.6: Average pulse period (APP) of a fourth order CT bandpass CAM (modulator 
D) with and without upconversion (UC); the source is a tone at -4.5 dBV. 

and PLR, the conclusion is that m = 1 is the best overall choice for a RF class D amplifier 

application. 

6.4 Conclusions 

A general form of Manchester coding for upconverting a bandpass CA modulator pulse train 

was analyzed in this chapter. The analysis focused on evaluating two parameters: coding 

efficiency and average pulse period. Coding efficiency was analyzed by comparing the coding 

efficiency of an upconverted pulse train with a direct path configuration. A term called the 

power loss ratio was constructed, and the power loss ratio was shown to depend only on the 

upconversion ratio and was independent of m,  the number of clock periods used to encode 

each modulator bit. On the other hand, the analysis showed that the average pulse period 

depends only on m, and is independent of the upconversion ratio. Considering both factors, 

it is concluded that m = 1 maximizes coding efficiency and minimizes the average pulse 

period. The equations provide a designer a way to evaluate changes in coding efficiency and 

average transition frequency depending on the upconversion frequency ratio in the encoder. 



Chapter 7 

Conclusions and Future Work 

An integrated analysis of the bandpass CA modulator and RF class D amplifier has been 

presented. The analysis links modulator coding efficiency and the average transition fre- 

quency of the synthesized pulse train, with power amplifier efficiency and output power. 

Load power depends directly on the coding efficiency of the encoded pulse train, and a 

highly efficient encoder is desirable as this directly affects the size of the class D switches for 

a specific target load power. The average transition frequency of the pulse train is equally 

important and directly affects switching losses in the amplifier. Design equations were de- 

rived for the RF class D amplifier which integrate coding efficiency and average transition 

frequency factors. The equations provide first order estimates of the expected amplifier 

performance, and they are consistent with both periodic and aperiodic pulse trains. 

Several chapters in this thesis were devoted to the characterization and analysis of binary 

amplitude pulse train coding efficiency assuming constrained zero-crossings. The bandpass 

CA modulated pulse train transitions are synchronous and timed with a clock edge. The 

restriction on zero-crossing timing impacts coding efficiency; this was illustrated by the 

Fourier series analysis of periodic pulse trains. Although the periodic pulse train analysis 

is a restricted case and applicable to only sinusoidal load signals, it revealed behavior that 

is observed in bandpass CA modulators. It is noted that the analysis of the periodic pulse 

train model motivated the extensive characterization of bandpass CA modulator coding 

efficiency, and the charact,eriza.tion shows that some carrier oversample ratios are more 

optimal than others. Very distinct variation is observed in a variety of second and fourth 

order modulators, and a carrier oversample ratio of 1.7 was found to be a good compromise 

between coding efficiency and average transition frequency. One of the next steps in future 

work shall be to build an experimental modulator and see if the selection of a 'sweet spot' 

has benefits in an experimental modulator with many other non-ideal characteristics. 
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Coding efficiency and SNR are fundamental trade-offs i11 an encoder design. An im- 

portant example of this is the sixth order modulator design which has significantly better 

SNR than a fourth order modulator, but the stability of the loop limits coding efficiency, 

and the reconstructed SNR immediately collapses beyond a certain modulator drive level. 

The difference in coding efficiency is substantial and the coding efficiency of a fourth order 

modulator was twice as large as a sixth order modulator. Simulation experiments with a 

look-ahead tree search in the modulator loop, instead of a binary quantizer, showed that 

coding efficiency could be boosted in a sixth order design. Furthermore, a sixth order design 

with significantly better stability should have a smooth SNR collapse similar to second and 

fourth order designs. An overall conclusion from characterizing bandpass CA modulators, 

binary sequence searches, and enhanced modulator designs with tree searches, suggests that 

a better encoder design might include an adaptive filter which relaxes the selectivity of the 

noise shaping filter for large signal levels. 

An analytic bound on SNR versus coding efficiency assuming linear reconstruction filters 

is highly desirable. The overload model generated from the periodic signal analysis was taken 

as a step towards evaluating a bound for sinusoidal load signals. From this model, we were 

able to prove that the peak amplitude of any sinusoidal load signal cannot exceed 4/7r for 

a unity amplitude pulse train. An even more general result was proved for a second order 

bandpass reconstruction filter, where it was shown that the maximum amplitude bound is 

4/7r for any pulse train. A comprehensive and rigorous model is desirable that includes a 

bound for narrowband gaussian sources, and integrates a general class of linear bandpass 

reconstruction filters. In spite of a comprehensive analytic model, a comparison of bandpass 

CA modulation coding efficiency with alternate encoders, such as a binary sequence search, 

and an enhanced modulator with a tree search, shows that it may be difficult to substantially 

exceed the performance of bandpass CA modulation assuming constrained zero-crossings. 

Better coding efficiency may be obtained by relaxing the zero-crossing constraint, although 

the implementation of the encoder and filter reconstruction would need to be considered. 

The concluding work in this research project was an evaluation of Manchester encoding 

as a means of upconverting a pulse train from a low frequency bandpass CA modulator. The 

benefits of employing Manchester encoding are a reduction in the implementation frequency 

of noise shaping filters, and spectral shaping that enables AC coupling. The analysis focused 

on evaluating the cost of upconversion in terms of coding efficiency and average transition 

frequency. The analysis showed that an upconversion sequence of exactly two bits per 
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modulator bit was most optimal. Also, the modulator should have a large carrier oversample 

ratio to maximize the upconversion frequency ratio, and thereby minimize upconversion 

coding efficiency losses. 

Groundwork has been laid for experimental work. A CMOS amplifier design incorpo- 

rating a bandpass CA modulator and RF class D amplifier in a complementary voltage 

switched configuration is recommended. An implementation in small scale technology, such 

as 0.18 pm, could increase the operating frequency of the design compared to simulation 

results which were shown for 0.5 pm technology. The maximum operating frequency de- 

pends significantly on the load power requirement, and low power designs at RF  frequencies 

may be possible. Other RF circuit topologies may be viable by employing Manchester 

encoding or spectral shaping, and an implementation with pHEMT or MESFET devices 

would significantly boost the operating range of the amplifier architecture. Since there are 

many applications for highly efficient RF amplifiers, it is expected that as implementation 

challenges are resolved, interest in the bandpass CA modulator and RF class D amplifier 

architecture will continue to grow. 



Appendix A 

Second Order Continuous-Time 

Bandpass CA Modulator 

The design of a second order continuous-time bandpass CA modulator is given in this 

appendix. The modulator is called design E, and transforms to an equivalent second order 

discrete-time modulator called design B (cf. section 2.2.1). The modulator has a tunable 

carrier oversample ratio, and includes delay compensation for a general rectangular feedback 

DAC pulse Df  (s) (cf. Fig. 2.1). 

A. l  s to x Plane Mapping 

One way to define equivalence between the continuous-time modulator and the discrete-time 

modulator is to match impulse responses at  sampling instants. With reference to Fig. 2.1, 

the CT feedback loop consists of the DAC transfer function Df (s) and the loop filter H(s) ,  

and the impulse response of the cascade must match the DT transfer function H(z).  The 

equivalence is expressed as 

where the inverse Laplace transform of the CT transfer function is equal to the inverse z- 

transform at t = k T .  The transformation, also called the pulse transformation [45], assumes 

an ideal sampler with period T follows the cascade. The complex mapping from the s plane 

to z plane is obtained with the transformation z = eST. 

Equation (A.l) can also be written as 
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and shows that the sampling must follow the convolution; in other words, df ( k T ) h ( k T )  # 
h[k], where the discrete variable is indicated with square brackets. Consequently, the equiv- 

alence mapping must be applied to the cascade of both the feedback DAC and loop filter. 

A.2 Transformation with a Rectangular DAC Pulse 

Assume the feedback DAC is a rectangular pulse of width rw and delayed by ~ d .  The delayed 

DAC pulse is 

and the Laplace transform of the pulse is 

If the continuous-time loop filter has single order zeros with a partial fraction expansion of 

then 

Focusing on the transformation of a single pole X i ,  the contribution to the continuous- 

time impulse response is 

Assuming ~d + T, < T, the equivalent discrete-time impulse function corresponding to 

the i'th pole is 
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where pi = eXiT and Ci is equal to 

Equation (A.9) shows how a discrete-time pole pi with residue Ci is transformed to a, 

continuous-time pole Xi with residue yi. The transform is now used to map the second 

order tunable discrete-time modulator, modulator B, to a continuous-time equivalent. 

A.3 Second Order Modulator Transfer Function 

The discrete-time second order transfer functions were given in equation (2.12). For the 

second order modulator we focus on transforming only the feedback loop function Hf (z ) .  

A  special input transfer function Hi(s) could also be implemented to bandlimit the source 

signal, but in this design we set Hi(s) = - Hf ( s ) .  

The discrete-time transfer function Hf ( z )  is rewritten as a partial fraction expansion 

4- Hf(z )  = - 4- * +- 
z - p  z-p* 

where p = e3"iRc and < = -p/2. The expansion has a pair of conjugate poles, since hf [k]  is 

real. The corresponding impulse response is 

With (A.9), and expressions for p and C, we get: 

-r exp [ j r ( 7 d  + rw 12) / (RCT)] 
Y = 4R,T sin [ ~ , / ( R , T ) ]  

Combining the conjugate poles and residues, yields the desired continuous-time function 

where 0, = r/(R,T). The expression is valid for rd + rw 5 T and covers feedback config- 

urations such as NRZ (rd = 0, rw = T ) ,  return-to-zero (rd = 0, rw = T/2),  and delayed 

return-to-zero (0 5 rd < T/2, r, = T/2) configurations. The delay compensation is impor- 

tant in implementations, and compensates for physical delay arising from the layout of the 

circuit. The results shown in this work use the NRZ configuration, but any configuration 

consistent with the design assumptions matches the underlying discrete-time prototype. 



Appendix B 

MOSIS BSIM3 Model Parameters 

The following BSIM3 model files for IBM's 5HP SiGe BiCMOS process are publicly available 

from the MOSIS website 1631. The following model data has been reprinted with permission 

from MOSIS. 
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The NMOS BSIM3v3 model: 

.MODEL CMOSN NMOS ( 

+VERSION = 3.1 

+XJ = 1.5E-7 

+K 1 = 0.8580719 

+K3B = 0.4939298 

+DVTOW = 0 

+DVTO = 0.5812673 

+UO = 430.1140074 

+UC = 1.810789E-13 

+ AGS = 0 

+KETA = 5.662343E-3 

+RDSW = 886.6087295 

+WR = 1 

+DWG = -5.98056E-9 

+NFACTOR = 2.5 

+CDSCD = 0 

+ETAB = -0.2 

+PDIBLCI = 1.888868E-3 

+DROUT = 0.0781941 

+PVAG = 5.731754E-3 

+MOBMOD = 1 

+KT1 = -0.11 

+UA I = 4.31E-9 

+AT = 3.3E4 

+WW = 0 

+LL = 0 

+LWN = 1 

+XPART = 0.5 

+CGBO = 8E-9 

+MJ = 0.380292 

+MJSW = 0.9100091 

+MJSWG = 0.9100091 

+PRDSW = -113.3047521 

+LKETA = -0.0360384 

TNOM = 27 

NCH = 1 .7El7 

K2 = -0.0532947 

WO = 1E-8 

DVTIW = 0 

DVTl = 0.2558206 

UA = 1.412819E-13 

VSAT = 1.164741E5 

BO = 1.595763E-8 

A1 = 3.046233E-3 

PRWG = -2.48676E-14 

WINT = 1.007498E-7 

D WB = -5.160179E-9 

CIT = 0 

CDSCB = 0 

DSUB = 1.3234467 

PDIBLC2 = 3.814985E-3 

PSCBEI = 3.553249E8 

DELTA = 0 .O1 

PRT = 0 

KTIL = 0 

UBI = -7.61E-18 

WL = 0 

WWN = 1 

LLN = I 

LWL = 0 

CGDO = 3.56E-10 

CJ = 8.705838E-4 

CJSW = 1E-12 

CJSWG = 1.64E-10 

CF = 0 

PK2 = -7.091507E-3 

LEVEL = 49 

TOX = 9.3E-9 

VTHO =0.5711857 

K3 = -1.9862763 

NLX = 2.203657E-7 

DVT2W = 0 

DVT2 = -0.2635266 

UB = 1.348015E-18 

A0 = 0.7106364 

B 1 = 7.54285E-7 

A2 = 0.518668 

PRWB =-0.0536069 

LINT =8.816408E-8 

VOFF = -0.15 

CDSC = 2.4E-4 

ETA0 = 0.5 

PCLM = 1.4594414 

PDIBLCB = -0.1003047 

PSCBE2 = 7.276963E-6 

RSH =4.9 

UTE = -1.5 

KT2 = 0.022 

UC 1 = -5.6E-11 

WLN = 1 

WWL = 0 

L W = 0 

CAPMOD = 2 

CGSO = 3.56E-10 

PB = 0.8 

PBSW = 0.8 

PBSWG = 0.8 

PVTHO = 2.750475E-3 

WKETA = -6.114503E-3 



APPENDIX B. MOSIS BSIM3 MODEL PARAMETERS 

The PMOS BSIM3v3 model: 

.MODEL CMOSP PMOS ( 

+VERSION = 3 .1  

+XJ = 1.5E-7 

+K 1 = 0.8352946 

+K3B = 3.5528102 

+DVTOW = 0 

+DVTO = 1.4102179 

+UO = 136.9497274 

+UC = 2.926207E-12 

+AGS = 0.1826775 

+KETA = -0.0195473 

+RDSW = 3E3 

+WR = 1 

+DWG = -1.237077E-8 

+NFACTOR = 0.8753188 

+CDSCD = 0 

+ETAB = -0.0685902 

+PDIBLC1 = 0.037445 

+DROUT = 0.2789967 

+PVAG = 0.014985 

+MOBMOD = 1 

+KT 1 = -0.11 

+UA 1 = 4.31E-9 

+AT = 3.3E4 

+WW = 0 

+LL = 0 

+LWN = 1 

+XPART = 0 .5  

+CGBO = 8E-9 

+MJ = 0.2044972 

+MJSW = 0.9900098 

+MJSWG = 0.9900098 

+PRDSW = 14.8598424 

TNOM = 27 

NCH = 1.7Ei7 

K2 = -0.1 

WO = 1E-8 

DVTlW = 0 

DVT1 = 0.5535835 

U A = 1.72401E-9 

VSAT = 2E5 

BO = 1.952907E-6 

A 1 = 0 

PRWG = -0.0417495 

WINT = 8.2492E-8 

DWB = 1.429735E-8 

CIT = 0 

CDSCB = 0 

DSUB = 1 

PDIBLC2 = 3.79828E-3 

PSCBEl = 5.066296E9 

DELTA = 0.01 

PRT = 0 

KTiL = O  

UB1 = -7.61E-18 

WL = 0 

WWN = 1 

LLN = 1 

L WL = 0 

CGDO =3.65E-10 

CJ = 8.435277E-4 

CJSW = 8E-13 

CJSWG = 6.4E-11 

CF = 0 

PK2 = 3.73981E-3 

LEVEL = 49 

TOX = 9.3E-9 

VTHO = -0.517194 

K3 = 0 

NLX = 5.686989E-9 

DVT2W = 0 

DVT2 = -0.3 

UB = 1E-21 

A0 = 0.4829056 

B 1 = 5E-6 

A2 = 0.6016027 

PRWB = -0.1055256 

LINT = 1.078283E-7 

VOFF = -0.0361606 

CDSC = 2.4E-4 

ETA0 = 0 

PCLM = 1.3089385 

PDIBLCB = -0.1 

PSCBE2 = 5E-10 

RSH = 2.9 

UTE = -1.5 

KT2 = 0.022 

UC 1 = -5.6E-11 

WLN = 1 

WWL = 0 

LW = 0 

CAPMOD = 2 

CGSO = 3.65E-10 

PB = 0.6 

PBSW = 0.7 

PBSWG = 0.7 

PVTHO = 5.98016E-3 

WKETA = 7.455348E-5 



Appendix C 

Sinusoidal Amplitude Bound 

We want to show that the amplitude of a harmonic at f, = N/M is no greater than 4/7r 

assuming Ap = 1. The FS coefficient is given in (4.13) and the goal is to find the sequences 

{arc) that maximize rmN = 2 1 ~ ~ ~  I. We first focus on maximizing the term IgM 1 ,  since this 

is the only term which is a function of a k .  

As the examples in section 4.1.2 show, the bounding polygon of the signal constellation 

is defined completely by the shortest sequence m = 1, and longer sequences increase the 

resolution of reconstruction points either in or on the bounding polygon. Therefore, without 

loss of generality, assume m = 1 which limits arc to the binary set (-1, +l), and the maxima 

of (cmMI correspond to the vertices of the bounding polygon. 

As stated earlier, if f, < fs/2, then M > 2N where M and N are positive integers and 

M takes values from the set S = {3,4,5, . . . ). Divide S into three sets: 

The set partitioning simplifies the evaluation of the maxima of lgM 1 and distinguishes two 

features. First, the set S1 has only odd values of M ,  while sets S2 and S3 have even values 

of M .  Second, the roots of unity (wk) for M E S 2  include f j ,  while M E S1 or M E S3 do 

not. 

When M E S1, M is odd and the bounding polygon for all sequences arc has 2M vertices. 

Examples for M = 3 and M = 5 where given earlier and show this feature. The 2M vertices 

are generated because there are M base vectors wk and a sign reversal of each vector 

generates an additional M vectors. The other feature of M E S1 is that a vertex lies on 
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(a) Vectors  or M = 6. 

M=3 

(b) M = 6 reconstruction signal constellation for m = 1. 

Figure C.l:  The M = 6 signal constellation generated from the superposition of scaled 
and translated M = 3 constellations shown in Fig. 4.2. 
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the positive real axis which is exploited for computing the vertex radius r,. By choosing a 

sequence ak which maximizes the projection of the vectors wk on the positive real axis, we 

where n = ( M  + 1)/2. 

For M E S3, M has the characteristic that max (gM ( = max (gMp ( The members of 

S3 are even and have the property that the base vectors are the union of two sets ~ " n d  

-wk where wlc are the base vectors for M/2 E S1. The implication of this composition 

is that the bounding polygon of M E S3 has M vertices, the same number of vertices as 

A272 E S1. 

An example is shown in Fig. C.l(a) for M = 6; the six base vectors wk are equal to 

the base vectors of Ad = 3 plus the reflections of the M = 3 vectors. The bounding polygon 

for M = 3 and M = 6 is a hexagon and the difference is the density of the reconstruction 

points in the constellation. As shown in Fig. C.l(b), the signal constellation of M = 6 can 

be visualized as the superposition and translation of M = 3 constellations. The M = 6 

bounding polygon is generated by x:lo akwk and has a vertex radius twice as long as the 

M = 3 bounding polygon generated by c ~ = ~ & w ~ .  However, the function g~ as defined 

in (4.12) includes a normalizing factor of 1/M and the normalized vertex lengths of the 

bounding polygons for M = 3 and M = 6 are identical. We therefore conclude that the 

maximum of lgM1 for M E S3 is given by (C.l) with the substitution of M -, M/2. 

Unlike S1 and S3, when M E Sz the bounding polygon for g~ does not have vertices on 

the real axis. Instead, the positive real axis bisects a edge of the polygon. The maximum of 

lgMl is computed by projecting the base vectors onto the line f ( r )  = {rejeI2 : 0 > r 5 GO) 

as shown in Fig. C.2. 6' is defined as the angle subtended by an edge of the polygon given 

by (4.19). By choosing a sequence a k  which maximizes the projection onto this line we get 

MI4 
max(gM( = - C cos 

M 
k=l 
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Figure C.2: M = 8 signal constellation; a vertex passes through a line at 012. 

All that remains to find max lcmlvl is to combine (C.l) and (C.2) with the sinc(N/M) 

term. Since M > 2N, N/M < and the range where a maximum is computed is confined 

to the main lobe of the sine(-) function. Therefore sinc(N/M) is maximized when N = 1, 

and the maximum vertex radius of the bounding polygon is 

maxr, = 2 sinc(l/M) max lgM I. (C-3) 

Combining (C.l)-(C.3) yields the expressions: 

maxr, = 
M ( S 2  U 5'3) 



Appendix D 

Unconstrained Coding Theorem 

for Gaussian Sources 

Encoding a source signal into a binary amplitude pulse train with synchronous zero crossings 

and linear reconstruction filters is a constrained case of more general source coding problems. 

An example of a more general result is given in the following theorem where there any no 

constraints on the implementation of either the encoder or decoder. The theorem and a 

proof can be found in [70]. 

Theorem 1 Suppose a discrete-time gaussian source has a two-sided power spectral density 

given by 

k=-m 

then the information content of the source with respect to  a quadratic distortion measure 

has the following parametric representation: 

fa12 
D(0)  = 1 minl0, SuIf  ) I @  03-31 

Rb is the bit rate of the encoder and D is the corresponding distortion generated by the 

encoder. 

As an example of the bound which the theorem predicts, consider a bandlimited gaus- 

sian source signal with power a: distributed uniformly over a bandwidth f b  with a carrier 

frequency f,. Let D* be the required distortion level for a target SNR threshold, then 
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From (D.2) the minimurn encoder rate to generate a distortion level D* is 

The ratio a : / ~ *  is the SNR threshold SNRt  of the reconstructed signal and the minimum 

rate is then expressed as 

Assuming the sample rate Rb is equal to f,, (D.6) is rearranged to yield 

The rate-distortion theorem shows that in an unconstrained case, the reconstructed signal 

depends only on the envelope oversample ratio - an intuitively satisfying result since the 

source information is in the lowpass envelope only. 

For comparison with bandpass CA modulation, consider the comparative envelope over- 

sample ratio of the unconstrained case for an SNR threshold of 65 dB. Evaluating (D.7) 

shows that the theoretical minimum envelope oversample ratio is 10.8 much less than 128 

which is typical for a bandpass CA modulator. As stated earlier, the theorem shows that 

much more efficient encoding/decoding methods exist, but it does not consider constraints 

on pulse train amplitude levels, the timing of transitions, or linear signal reconstruction 

filters. 



Appendix E 

Derivation of the Manchester 

Power Loss Equation 

The principal steps in the derivation of the PLR equation (6.17) are shown below. The 

derivation begins with (6.16) and the following steps are taken to convert the sum into a 

closed form expression. 

The term 

is rewritten as 

The equivalence of (E.l) and (E.2) is found by enumerating the delay a,  over n = 1,2 , .  . . m. 

The term (E.2) is of the form sin(a - /3) and after expanding reduces to 

The sum term in (6.16) is now 

and has a well known closed form solution of [78] 
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With a closed form expression for the sum, the remaining steps are easy. The expression 

for )D,(u) l 2  is 

and finally the PLR is given by 

PLR = 
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