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Abstract 

Let F = Q(t1, ..., tk). For i, 1 <= i <= r, let mi(zl,..,zi) be a monic and irreducible polyno- 

mial with coeficients from the field F. Let L = F[zl,..,zr]/ < ml,  ..., mr>. L is an algebraic 

function field in k parameters t l ,  ..., tk. Let f l  and f2 be two polynomials in L[xl,..,xn] \ (0). 

The problem treated here is the computation of a greatest common divisor of f l  and f2. 

One way of solving the problem is using the ModGcd algorithm of Monagan and van Hoeij 

which is an extension of both the modular GCD algorithm of Brown for Z[xl, ..., xn] and 

Encarnacion's algorithm for Q(z)[x] to function fields. ModGcd uses dense interpolation 

to find the image of the gcd modulo a prime. We introduce the SparseModGcd algorithm 

which is a modification of ModGcd and takes advantage of Zippel's sparse interpolation 

algorithm. As a result, SparseModGcd has a better performance when g = gcd(fl,f2) is 

sparse. SparseModGcd is a Las Vegas algorithm. 

Keywords: 

Modular Algorithms, Zippel's Sparse Interpolation Algorithm, Polynomial Greatest Com- 

mon Divisors. 
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Chapter 1 

Introduction 

Computing greatest common divisors is an important tool in computer algebra systems 

(e.g. Maple and Mathematica) with many applications such as simplifying fractions of 

polynomials and factoring polynomials. Let F be a field and f l ,  f2 E F [xl, ..., x,] be two 

non-zero polynomials. The problem here is to find the greatest common divisor g of f l  and 

f2  which is the polynomial with highest degree that divides both f l  and f2. 

Example 1.1. Let f l  = (x - l ) (x  + l)(x3 - 10) and f2  = (x - l ) (x  + 1)(x2 + 3x - 1). Here 

the polynomial x2 - 1 divides both of the input polynomials f l  and f2. Also the polynomials 

x3 - 10 and x2 + 3x - 1 are irreducible. Hence we have 

One of the most important methods for finding the gcd of two univariate polynomials is 

the Euclidean algorithm. It uses the fact that 

where r is the remainder of f2  divided by f l .  

In our previous example, the coefficient field was Q. Our main focus in this thesis is 

finding the gcd of two polynomials with coefficients in an algebraic function field. 

Example 1.2. Let F = Q(t) and m(z) = z2 - t. Let L = F[z]/ (m(z)). Thus L is an 

algebraic function field of degree 2 in one parameter t where z = d. Let 
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be the input polynomials. Here f l ,  f2  E L[x] .  To find the gcd of f l  and f2  using the 

Euclidean algorithm, we divide f l  by f2  to get the remainder 

Since gcd(fl, f2) = gcd( f2 ,  r l ) ,  we now proceed with inputs f2  and r l ,  but we first make the 

remainder rl monic to reduce expression swell (see Example 1.8). That is, we divide r l  by 

its leading coefficient to obtain 

Now we divide f l  by x + z and the new remainder 7-2 is 0. This means that we have found 

the gcd which is the last remainder, namely 

and we are done. 

Note that the Euclidean algorithm blows up on larger examples and is not directly 

applicable to multivariate polynomials over a field. 

In the next sections of this chapter, we will first give a brief description of the Chinese 

remainder theorem and polynomial interpolation. Next we describe some known methods 

of GCD computation for multivariate polynomials with integer coefficients such as the Eu- 

clidean pseudo PRS algorithm, Brown's modular GCD algorithm, Zippel's Sparse Interpo- 

lation algorithm and the GCDHEU algorithm of Char, Geddes and Gonnet. Finally, we will 

give a brief description of rational number and function reconstruction and Encarnacion's 

algorithm for univariate polynomials over a number field. 

In Chapter 2 we discuss the problem of polynomial GCD computation over algebraic 

function fields. We first present Monagan and van Hoeij's ModGcd which is a dense algo- 

rithm and then we introduce SparseModGcd, which is our modification of ModGcd and takes 

advantage of sparse interpolation for a fast solution in the case where the input polynomials 

are sparse. 

The details of our Maple implementation for our SparseModGcd algorithm are described 

in Chapter 3. We show how different factors such as rational function reconstruction and 

polynomial evaluation can affect the speed of the algorithm. We also present a running time 

comparison of the dense and sparse algorithms for different choices of input polynomials. 

In the last chapter, we give a summary of what we have done in this thesis. 



C H A P T E R  1. I N T R O D U C T I O N  

1.1 The Chinese Remainder Theorem 

Theorem 1.3. (The  Integer Chinese Remainder Theorem) There exists a unique integer 

0 5 u < M satisfying 

u = u1 mod ml, 

u - u, mod m,, 

where ml, m2, ..., m, are paimise relatively prime integers with M as their product and each 

ui E Zmi i s  a specified residue. 

Example 1.4. Suppose we want to find the smallest positive integer u such that the set of 

congruences {u = 1 mod 2, u - 2 mod 3, u = 3 mod 5, u = 4 mod 7 )  hold. By solving this 

system (there are several algorithms, see [6])  we obtain u = 28. 

If each mi < B, e.g. mi is a 32 bit prime number, the cost of integer Chinese remaindering 

with n moduli is 0 (n2)  using classical algorithms. 

For the case where each ui is a polynomial instead of an integer, one way to determine 

the solution u from its images is to apply the integer Chinese remainder algorithm (as 

mentioned above) on each coefficient separately. 

Example 1.5. Suppose we want to find the polynomial u with coefficients less than M 

such that 

u -- 2x2 + 3x + 1 mod 5, 

u - x2 + 62 + 2 mod 7 .  

The answer is 

for some integers ao, a1 and a2. To compute a2 we need to apply the Chinese remainder 

algorithm on the set of images {ull = 2,  u2l = 1 )  (the coefficients of x2  in ul and u2) and 

the set of moduli {ml = 5, m2 = 7 ) .  This gives a2 = 22. We do the same thing to find the 

other two coefficients a1 and ao. The final answer is u = 22x2 + 132 + 16. 
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Note that to recover negative coefficients, we use the symmetric range, i.e. we seek 

solutions for u satisfying - L$] 5 u < ($1. This could be done by first computing the 

solution in the positive range and then converting it to the symmetric range. Another 

approach is to do all the operations in the symmetric range during Chinese remaindering 

algorithm. 

1.2 Polynomial Interpolation 

Interpolation (in our context) is the process of finding a polynomial, from its images obtained 

by evaluating at some sample points (see Gathen and Gergard [Ill). 

Theorem 1.6. Suppose that ul ,  ..., u,, vl, ..., v, i n  a field F are given. If ul, ..., u, are 

distinct, there exists a unique polynomial f E F [ x ]  of degree less than n such that f (ui) = vi 

for all i. 

Example 1.7. Suppose that we want to interpolate a polynomial f with deg,(f) = 2. We 

need at least three (deg, ( f )  + 1) images to proceed. Given the following images: 

the interpolated polynomial, f ,  is 

To determine f ,  one can solve a system of n linear equations in 0(n3)  time, or use 

Lagrange Interpolation or Newton Interpolation which both have complexity 0(n2) .  

1.3 Polynomial GCD Computation 

In this section we will introduce some known GCD algorithms with a simple example for 

each. 

1.3.1 The Euclidean Pseudo PRS algorithm 

Example 1.8. Suppose we want to find the gcd of the following polynomials 
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If we try Euclid's algorithm, after the first division we get the first remainder 

Now we compute the next remainder 

Since 7-2 # 0 we continue the algorithm to get the following sequence of remainders 

Since rg = 0, a gcd of fi and f2 is r5. Since a gcd is unique only up to a scalar, gcd(fl, f2)  = 

1. 

This example illustrates that Euclid's algorithm is not efficient since we have to deal 

with fractions and the rapidly growing coefficients after each division. We can improve the 

efficiency of the algorithm by avoiding the fractions by using pseudo-division. 

Definition 1.9. Let fl ,  f2  E Z[x] with deg(fl) 2 deg(f2) and f2 # 0. Let Ic(f) denote the 

leading coefficient o f f .  Let d = deg( fl)-deg( f2) +l and m = IC( f2)d. The pseudo-remainder 

7 and pseudo-quotient ij of fl divided by f2 are the remainder and quotient, respectively, of 

m fi divided by fi. They satisfy m fi = gf2 + F and 7 = 0 or deg(F) < deg(f2). Moreover, 

if fi, f2  E Z[x] during the division of m fl by f2,  no fractions appear, and r", E Z[x] (not 

Q[xI). 

Example 1.10. Let f l  = 3x2 + 2% + 1 and f 2  = 2x + 1. Here d = 2, m = 22 = 4. Now by 

dividing m f l  by f2 ,  we have @ = 6x + 1 and F = 3. 
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Let prem(a, b) denote the pseudo-remainder of a divided by b. 

Definition 1.11. (Brown [I]) For non-zero polynomials f l  and f 2  with deg(fl) > deg(f2), 

let f 1, f2 ,  ..., fk  be a sequence of nonzero polynomials such that fi = prem( fi-2, fi-1) for 

i = 3, ..., k ,  and prem(fk-1, fk) = 0. Such a sequence is called a pseudo polynomial remainder 

sequence (pseudo PRS) . 

In the Euclidean pseudo PRS algorithm (see Collins [3]) we use pseudo-division to get 

a pseudo PRS. Consider the polynomials from the last example. The pseudo PRS in this 

case is 

r l  = prem(fl, f2) = -279x4 + 224x3 + 462x2 - 252 - 270, 

This has resolved the problem with fractions, but the coefficient growth is still a serious 

problem. One can see that the length of the coefficients is doubling at each step! 

Let cont,(f) be the gcd of the coefficients of f with respect to x and pp,(f) = 

f /cont,(f) be the primitive part of f with respect to x. One improvement to the Euclidean 

pseudo PRS algorithm is to make the remainder ri primitive at  each step, by setting 

This is called the primitive Euclidean algorithm. Consider the input polynomials of the last 

example. If we run the primitive Euclidean algorithm, we will get the following pseudo PRS 
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The coefficient growth problem is almost solved for this example. One can show that 

the growth is linear in the number of steps. But unfortunately this involves many gcd 

computations (for finding the content of ri and making it primitive at each step) which 

consequently slows down the algorithm. When computing a gcd in Z[xl, ..., x,], the recursive 

gcds to make pseudo-remainders primitive are expensive. 

1.3.2 Brown's Modular GCD Algorithm 

The best solution to the coefficient growth problem is to use a modular algorithm. A 

modular algorithm projects down the problem to finding the answer modulo a sequence of 

primes and then builds up the desired answer using the Chinese remainder theorem. Brown's 

algorithm (see [I]) is a modular algorithm for finding the gcd of two multivariate polynomials 

with coefficients in Z. It also uses polynomial evaluation and interpolation. Since we are 

computing the gcd modulo a prime p at each step, the coefficients of the polynomials can 

not be greater than p, therefore the coefficient growth problem will never occur. Consider 

the following example. 

Example 1.12. Suppose we want to find g = gcd(fl, f2) where 

Let the first prime pl to be 11. Now we want to compute gl = gcd( fl mod pl, f2 mod pl). 

We do this by first evaluating the input polynomials at some evaluation points for y, compute 

the corresponding univariate gcd in Zp, [x] using Euclidean algorithm and then interpolate 

these images to get gl. Let's take the first evaluation point a1 = 1. We get 

fl(a1) mod pl = 7x3 + lox, 

f 2 ( ~ 1 )  mod pl = x4 + 5x2 + 6, and 

hl = gcd(fi(w), f2(a1)) mod pl = x2 + 3. 
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Let's take the next evaluation point to be a 2  = 2. We compute 

f 1 ( a z )  mod pl = 4x3 + 6x, 

f 2 ( a 2 )  mod pl = x4 + 9x2 + 3, and 

h2 = gcd(fi ( a 2 ) ,  f 2  (4) mod pl = x2 + 7. 

At this point we interpolate the images hl and h2 to see if we can get gl. The output of the 

interpolation is 

h = x2 + 4y + 10. 

Since hl f l  mod pi and hlf2 mod pl ,  we conclude that 

Now we choose the next prime p2 to be 13 say. Suppose that g2 = gcd(fl mod p2, f2  mod p2). 

Similar to how we computed gl, we can easily compute 

Now applying the Chinese Remainder theorem to the images gl and g2 we compute a 

candidate g' for g, the gcd we are seeking. Because in our example g is monic, if this 

candidate divides both of the input polynomials, then it is equal to g and we are done, 

otherwise we need to choose another prime p3 and keep going until we get a candidate 

which divides both f l  and f2. Applying the Chinese remainder theorem results in 

Since g'l f and gflf2 we conclude that 

and we are done. 

There are many details to this algorithm such as the treatment for unlucky and bad 

evaluation points, unlucky and bad primes and the leading coefficient construction to make 

the described idea work in all cases and work efficiently. We postpone this to Chapter 2. 
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1.3.3 Zippel's sparse interpolation 

In Brown's modular GCD algorithm, we first find the images of the gcd modulo a sequence 

of primes, and then recover the actual gcd from these images using the Chinese remainder 

theorem. Brown's algorithm will take exponential time in n to interpolate l+xf+x$+ ...+ x i ,  

even though this polynomial has only n + 1 terms. Because sparse polynomials occur quite 

frequently in practice, several algorithms with time complexity polynomial in d, n and t 

where t is the number of terms of g have been developed. Zippel in [16] (see also [17] for a 

more accessible reference) presented a new algorithm, which is basically the same as Brown's 

algorithm except that after computing the first image gl = g mod pl we know the f o m  of 

the actual gcd. That is we know which terms are present in g, assuming that gl is of the 

correct form. Now for computing g2 = g mod p2 we only need to find the coefficients for 

terms in our assumed form of the gcd corresponding to g2. Consider the following example. 

Example 1.13. Suppose the two input polynomials are 

Let's choose the first prime pl = 11. If we compute gl = gcd( f l  , f2) mod pl we get 

Now let's take the second prime p2 to be 13. Assuming that gl is of correct form, we have 

2 2 92 = gcd(fl,f2) mod p:! =  AX^ + (Byz + CZ ) X  + D ~ Z ~ X  + E 

for some constants A, B, C, D and E. To find these constants we compute some univariate 

gcds in order to obtain some linear equations. Take the first evaluation point a1 = (y = 

1 ,z  = 1). We have 

If we plug in the first evaluation point a1 into our assumed form for the gcd we get 

F'rom this we get the following linear equations modulo 13 
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We still don't know the exact values of B and C so we need another image. Take the second 

evaluation point a 2  = (y = 2, z = 3), After evaluating f l  and f 2  at the new evaluation point 

and computing the univariate image we obtain 

h2 = gcd(fi (aa), f2 (a2)) mod p2 = x3 + 12x2 + 72 + 1. 

Again we plug in the second evaluation point a 2  into the assumed form for the gcd to get: 

So we have 

6B + 9C = 12 mod 13. 

From this equation, and the equation B + C = 3 we find that B = 5 mod 13 and C = 

11 mod 13. This means that 

2 2 2 2 g2 =  AX^ + (Byz + Cz )x + Dyz2x + E = x3 + (5yz + 11z )x + 4yz2x + 1. 

Since g21 f l  mod 13 and g21 f2  mod 13, we conclude that g2 = gcd( f l ,  f2) mod pa. We can 

find other images of the gcd using the same method as above. If we had used pl = 11 then 

the method would fail because the term 11z2x2 would vanish. 

1.3.4 The GCDHEU Algorithm 

GCDHEU is another GCD algorithm which was first introduced by Char, Geddes and 

Gonnet (see [2]). The name GCDHEU stands for Heuristic GCD. Suppose we want to find 

the gcd g of two univariate polynomials f l ,  f2  E Z[x]. Let y = max(yl, y2) where yl and y2 

are the biggest coefficients in f l  and f 2  respectively. Probably, the maximum coefficient of 

g is less than y. Now we take an evaluation point 5 such that 5 > 2/71 and evaluate both 

of the input polynomials at this point to get fl((), f2(5) E Z. Next we compute the integer 

gcd of f l ( 0  and f2(5) to get 

h = gcd(fi(f), f2(J)). 

The idea is to recover g E Z[x] from the integer h. We illustrate this with an example. 

Example 1.14. Let 

fi = 6x4 + 21x3 + 38x2 + 332 + 14, 
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Let's take the evaluation point J = 1000. We obtain 

Notice how the coefficients of f l  and f2 appear in the evaluations. Next we calculate the 

integer gcd of fl(J = 1000) and fl(J = 1000) (using the Euclidean algorithm) to get 

Notice that this corresponds to the polynomial h = 6x2 + 12x + 14 with x = 1000. If we 

divide h by its content (the gcd of its coefficients) we get 

Since glfi and gl f2 ,  g = gcd(f1, f2) and we are done. 

There are some more GCD computation methods such as the EEZ-GCD which is devel- 

oped by Wang (see [13]) and is a modular algorithm. Another method which is presented 

by Encarnacion is called Encamacion's algorithm (see [5]) which is used to compute the gcd 

of two polynomials over one algebraic number field. A brief description of this algorithm is 

given in Section 1.5 

1.4 Rational Number and Function Reconstruction 

Definition 1.15. Let n/d E Q with gcd(n, d) = 1, and let m be a positive integer satisfying 

gcd(m; d) = 1. Let u = n/d mod m. The rational reconstruction problem is given u and m 

find n and d. 

Recall that on input of m > u 2 0, the Euclidean algorithm computes a sequence of 

triples si, ti, ri E Z satisfying 

Sim + tiu = Ti.  

Hence we have 

tiu = ri (mod m). 

Thus for i satisfying gcd(ti, m) = 1, the rationals 2 satisfy 2 = u (mod m) and hence are 

possible solutions for our problem. 
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Example 1.16. For m = 13 and u = 8 we have 

Wang et al. (see [14] and [15]) show that if m > 2(ndJ and gcd(m, d) = 1 then n/d appears 

in S. 

One can use either Wang's algorithm [14] or Monagan's algorithm [8] to select the rational 

from the set S. Both of these algorithms have time complexity 0(log2 m) . Wang's algorithm 

succeeds and outputs n/d when m > 2(max(lnl, Monagan's algorithm succeeds when 

m, is a few bits longer than 21nld with high probability. 

Definition 1.17. Let F be a field and let m , u  E Fix] where 0 5 deg(u) < deg(m). The 

problem of Rational Function Recon.stmction is given m and u, find a rational function 

n/d E F(x)  such that 

n/d z u mod m, 

satisfying gcd(m, d) = gcd(n, d) = 1. 

Given polynomials m and u as specified in the above definition, again the Extended Eu- 

clidean algorithm finds all solutions satisfying deg(n) + deg (d) < deg (m) up to multiplication 

by scalars. 

Example 1.18. Let F = Z7, u = x2 + 52 + 6 and m = (x - 1) (x - 2) (x - 3). Using the 

Extended Euclidean Algorithm we get the following set of solutions: 

The solution to the rational function reconstruction is not always unique. We can force 

the uniqueness by choosing degree bounds deg(n) 5 N and deg(d) 5 D satisfying N + D < 
deg(m). As an example, if we choose degree bounds N = 1 and D = 1 in Example 1.18, 

the unique answer is 

1.5 Encarnacion Algorithm 

Suppose f l ,  f 2  E Z[x] and g = gcd(f1, fi) = 3x2 + 2n: - 1. When we compute gcd( f l ,  f2) 

mod pl = 11, the gcd is unique up to a scalar multiple in Zp. We usually take the monic 
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gcd. For pl = 11 and p2 = 13 we obtain 

gcd(f1, f2) mod 11 = x2 + 82 + 7,gcd(fl, f2) mod 13 = x2 + 52 + 4. 

When we apply the Chinese remainder theorem, we obtain a monic image x2 + 96x + 95. 

This is the image of g/lc(g) = x2 + $x - 5 .  Thus to recover g, we first recover the rational 

coefficients of g/lc(g), namely {I , $, - $} from {1,96,95} mod 11 x 13. We use rational 

number reconstruction to do this. Then we clear denominators. 

Encarnacion [5] used rational number reconstruction to compute the gcd of fl ,  f 2  E L[x] 

where L is a number field. 

Example 1.19. Let z = 4 and L = Q(z). Let the input polynomials be 

In this example g = 3 x2 + (22 - 2) x + z - 1 is the gcd of f l  and f 2  in L[x]. To compute g, 

we first compute the image of g modulo p = 11 to obtain 

If we apply the rational number reconstruction on the coefficients of h we get 

After clearing the denominators we obtain 

A technical difficulty is that some primes may result in zero divisors. For example, let 

f l ,  f2 E Q(z)[x]/(m(z)) and fl = x4 + (z - 2)x2 + zx + 1, f2  = (z - 3)x3 + x +  2z and 

m(z) = z2 - 2. If we choose pl = 7 and we divide fl mod pl by f 2  mod pl,  we hit a zero 

divisor while we are trying to invert lc( f2) = z - 3 mod m(z) = (z - 3) (z + 3). The solution 

to this problem is to use another prime. Note that there are only finitely many primes p 

that can cause this problem because these primes must divide R = res,(m(z), ml(z)) E Z, 

where res denotes the resultant. 



Chapter 2 

GCD Computation over Algebraic 

Function Fields 

In this chapter we consider the problem of computing a gcd of two polynomials over an 

algebraic function field L. A modular algorithm for computing a gcd for the case of one 

field extension was developed by Monagan and van Hoeij in [lo] .  Their algorithm uses 

dense interpolation. We introduce a modular algorithm which uses sparse interpolation 

and consequently is much better on sparse polynomials and remains competitive on dense 

polynomials. 

In Section 2.1 we describe the problem. In Section 2.2 we present the dense algorithm 

of Monagan and van Hoeij. Our sparse algorithm will be described in Section 2.3. 

2.1 Definition of the Problem 

Let F = Q ( t l ,  ..., t k ) .  For i ,  1  5 i 5 r ,  let mi(z l ,  .., zi) E F[z l ,  ..., zi] be monic and 

irreducible over F[z l ,  .. . , zi- I ] /  ( m l  , .. . , mi- 1 ) .  Let L = F[z l ,  .., zT] /  ( m l  , ... , m,) . L is an 

algebraic function field in k parameters t l ,  ..., tk. Suppose that f l  and f 2  are non-zero 

polynomials in L[x l ,  .., x,]. Let g be the monic gcd of f l  and f2. Our problem is, given f l  

and f 2  to compute g or an associate (scalar multiple) of g. 

The followings are some definitions from [lo]:  

Definition 2.1. Let D = Z[ t l ,  ..., t k ] .  A non-zero polynomial in D[zl ,  .., z,, X I ,  .., x,] is said 

to be primitive with respect to ( 2 1 ,  .., z,, x l ,  .., x,) if the gcd of its coefficients in D is 1. 
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Let f be non-zero in L[xl, .., x,]. The denominator of f is the polynomial den(f) E D of 

least total degree in (tl ,  ..., tk)  and with smallest integer content such that den(f) f is in 

.., 27.1 x1, ", xn]. 

The primitive associate f of f is the associate of den(f) f which is primitive in 

D[zl, .., zT , XI ,  .., x,] and has positive leading coefficient in a term ordering. 

Example 2.2. Let f = 3tx2 + 6tx/(t2 - 1) + 30tz/(l - t)  where ml(z) = z2 - t. We have 

den(f) = t2-1 and f = (t2-l)x+2x-10z(t+l). Here f E L[x] where L = Q(t)[z]/ (z2 - t )  

is an algebraic function field in one parameter t. 

2.2 Dense Algorithm 

This algorithm which is developed by Monagan and van Hoeij is described in [lo]. Their 

algorithm assumes that there is only one minimum polynomial m(z) E F[z] and one variable 

x. Later in Section 2.2.7 we will show how to deal with multivariate polynomials. Also 

our examples use s and t for parameters and not t l ,  t2, .... Their algorithm computes the 

primitive associate g. Here is an example from Monagan in [lo]: 

Example 2.3. Let z = f i  i.e. m(z) = z2 - t .  Suppose that the input polynomials are 

The algorithm first computes 

It then computes the gcd(fll f2) modulo a sequence of primes. Let's start with the prime 

p = 11 (on a 64 bit machine, their implementation uses 31 bit primes, but for this example 

we choose small primes). We obtain 

5111 = gcd(f1, f2) mod 11 = tx + 3t22 + 5, 

If we apply the rational number reconstruction to the coefficients of gll modulo 11, it fails. 

So we choose a new prime q = 13. We obtain 

5113 = gcd(f1, f2) mod 13 = tx - 5t2z + 5. 
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By applying the Chinese remainder theorem we obtain 

g, = tx + 47t22 + 5 mod 11 x 13. 

Now we apply the rational reconstruction to the coefficients of g, modulo m = 143. This 

time it succeeds. The output is 
2 2 h = t x - - t  z + 5 .  
3 

Clearing the denominator results in 

Since h ~ f l  and h)f2 then h = 3 and we are done. Now we have to show how we compute 

gll and 913. This is done by computing gll and gI3 at a sequence of evaluation points for 

t in Zll and Z13 respectively and applying polynomial interpolation then rational function 

reconstruction to get the final result. 

Suppose we start with t = 2 (The algorithm uses random numbers from [O,p) but for 

this example we will use t = 2,3, ...). We run the Euclidean algorithm modulo p = 11 to get 

91 = gcd(fl(2, x), f2(2, x)) mod 11 = x - 52 - 3. 

Now we apply the rational function reconstruction to the coefficients of gl in x and 2 which 

succeeds with output h = gl, but the output does not divide fl modulo 11 so we need more 

evaluation points. Using t = 3 we obtain 

92 = gcd(fl(3, x), f2(3, x)) mod 11 = x - 22 - 2. 

Applying the polynomial interpolation to get the gcd modulo (t - 2)(t - 3) results in 

Again, the output of rational function reconstruction applied to c does not divide fl and fi 

modulo 11, so we need another evaluation point. Using t = 4 we obtain 

93 =gcd(fl(4,z),f2(4,x)) mod 11 = x + z + 4 .  

After interpolating the new point we obtain 
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which is the gcd of fl and f2 modulo (t - 2)(t - 3)(t - 4). Now we apply rational function 

reconstruction to the coefficients of c to obtain linear numerators and linear denominators 

Clearing the denominators in t we obtain 

Since kl f l  (t, x) mod 11 and klf2(t, x) mod 11 then k = gl1 and we are done. 

2.2.1 Unlucky and Bad Primes, Unlucky and Bad Evaluation Points 

Recall that f l ,  f2 E L[x] and g is their monic gcd. As we saw in Example 2.3 this modular 

GCD algorithm computes a gcd of fl and f2  by computing the gcd(fl, f2) modulo a sequence 

of primes and modulo a sequence of evaluation points. The algorithm then reconstructs 

from these images. Only images which are computed modulo good primes and good 

evaluation points can be used during the reconstruction for it to be successful. However not 

all primes and evaluation points are good. 

Definition 2.4. A prime p is a good prime if gp = =cd(f1 mod p, f2 mod p) exists and 

monic(gp) = monic(g mod p). Similarly an evaluation point a E zk is a good evaluation 

point if 3, = gcd(fl (a), f2 (a)) exists and monic(g;) = monic(ij(cr)). 

Definition 2.5. Suppose f l ,  f2 E L[x]. A prime p is said to be a bad prime if the leading 

coefficient of fl  or f2 with respect to x or any with respect to zi vanishes mod p. 

Example 2.6. Suppose that 

fl = 28tx3 + 19ztx + 2t2 + 10 and f2 = 52zx2 + lox + zt3 - t .  

All pi = 2 and p2 = 7 and p3 = 13 are bad primes. 

Example 2.7. Suppose that 

fl = (x + t2z3 - t2  + l)(2x3 + 1) and f2 = (x + t2z3 - t2 + 1)(x3 + 1) 

and m(z) = 7z5 + 1. Here ij = gcd(fl, f2) = x + t2z3 - t2 + 1. Modulo p = 7 , e ( z )  becomes 

1. Hence the image of the gcd modulo 7 would be 0 which is not good for reconstructing g. 
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The good thing about bad primes is that they can be ruled out in advance. 

Definition 2.8. Suppose f l ,  f2 E L[x]. A prime p is said to be unlucky if gp = gcd(fl, f2) 

mod p has a higher degree in x than the actual gcd g. 

Example 2.9. Consider the input polynomials 

fl = (x + z)(x + l7t + t2 + z) and f2 = (x + t)(x + t2 + z). 

Here we have 0 = gcd(fl, f2)  = 1 but g17 = gcd(fl, f2)  mod 17 = x + t2 + z which obviously 

has a higher degree than g, so p = 17 is an unlucky prime. 

The same problems that can happen for primes also happen for evaluation points. 

Definition 2.10. Suppose f 1, f 2  E L[x]. An evaluation point t l  = a is called a bad evalua- 

tion point if the degree of fl  or f2 with respect to x or any mi with respect to 2i decreases 

after evaluating at this point. 

Example 2.11. Let fl(t ,  x) = 3(4t - 1)x3 + zt3x + lot and p = 17. Here t = 13 is a bad 

evaluation point because fl (13, x) mod p = 2t3x + lot has lower degree than fl . 

Definition 2.12. Suppose f l ,  f2  E L[x]. An evaluation point t l  = a is said to be unlucky 

if gcd(f;(a), &(a)) mod p has a higher degree in x than the actual gcd g. 

Example 2.13. Let fl = x2 + (t - l ) x  + 182 and f2 = x2 + 182. When computing the 

gcd(fl, A) mod 11, if we choose the evaluation point t = 1, we get gcd(fl (1), f2 (1)) mod 11 = 

x2 + 7z but gcd(fl, 6) mod 11 = 1. Hence the evaluation point t = 1 is unlucky. 

Like bad primes, bad evaluation points can be determined and discarded beforehand, 

but unlucky ones can not. 

2.2.2 Zero Divisors 

Recall that a non-zero element a of a ring R is a zero divisor if there exist a non-zero element 

p E R s.t. ap = 0. 

When we are trying to compute the gcd of f 1 (al, ... , a k ,  x), f2  (a1 , .. . , a k ,  x) (a1 , ... , a k  

are the evaluation points) with the Euclidean algorithm we might encounter a zero divisor, 

in which case the Euclidean algorithm fails (see [9]). The bigger the prime p is, the smaller 

the chance of hitting a zero divisor would be. 
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Example 2.14. Let fl = (z + 2t)x2 + tx + z, f2  = xx3 + tx2 + (x - 2)x + 8t be the input 

polynomials and m(x) = z2 - t. Suppose we choose the first prime p = 7. If we evaluate the 

inputs at t = 2 we obtain f i  = (z - 3)x2 + 2x + x and f; = zx3 + 2x2 + (x - 2)x + 2. When 

we run the Euclidean algorithm on the inputs f{ and f h  we hit a zero divisor while trying 

to invert lc(f{) = z - 3. Note z2 - 2 = (z - 3)(2 + 3) mod 7. 

Unlucky primes must be avoided if g is to be correctly reconstructed. Unlike bad primes, 

unlucky primes can not be detected and discarded in advance. Brown in [l] showed how 

to do this in a way that is efficient for Z[x]. Whenever an image of the gcd does not have 

the same degree, we keep only those images of smallest degree and discard the others. His 

strategy is based on the following lemma. 

Lemma 2.15. (see Geddes et al. [6]) Let R and S be two unique factorization domains 

and A, B E R[x]\{O) and G = GCD(A, B). Let 4 : R + S be a ring morphism and 

4 : R[x] + S[x] be the natural extension to R[x] and H = GCD(@(A), 4(B)).  If 4(lc(A)) # 0 

then deg(H) 2 deg(G). Moreover, if 4(lc(A)) # 0 and deg(H) = deg(G) then 4(G) = u H  

for some scalar u E S.  

Proof: H = GCD(4(A), 4(B)) = GCD(~(AG) ,  ~ ( B G ) )  for some A, B E R[x]. Hence 

H = 4 ( ~ )  G C D ( ~ ( A ) ,  4 ( ~ ) )  + 4(G) 1 H (provided 4(G) # 0). 

Now we want to prove that H # 0. Since R is a unique factorization domain Ic(A) = 

IC(AG) = IC(A)~C(G). Since 4(lc(A)) # 0 we have $ (~ (A) Ic (G) )  # 0 + ~ ( I c ( A ) ) ~ ( ~ c ( G ) )  # 
0. Since S is a unique factorization domain, 4(lc(A)) # 0 and 4(lc(G)) # 0 and we conclude 

that GCD($(A), 4 ( ~ ) )  # 0 and 4(G) # 0, hence H # 0. 

S is an integral domain and we have proved that 4(G)IH and H # 0, thus we have 

deg(H) 2 deg(G). Also if deg(H) = deg(G) then u = GCD($(A), 4 ( ~ ) )  must be a constant, 

so we have 4(G) = u H  and u E S .  This completes the proof. 

For R = Z[x] Brown uses q5p( f )  = f mod p and the lemma holds. In our case R = L[x] 

and 4p : L + L mod p so S = L[x] mod p is usually not a unique factorization domain. 

Monagan and van Hoeij in [lo] have generalized the lemma as follows. 

Theorem 2.16. Let f l , f2  E L[x] be two non-zero polynomials where L = 

F[zl,  .., zT]/ (ml, ..., m,) and F = Q(tl, ..., tk).  Let = gcd(fl, f2). Let p be a prime and 

a = (tl = al, ..., tk = a k ) .  Suppose that the Euclidean algorithm applied to f l ( a ,x )  and 

f2(a,  x) modulo p does not fail and outputs gp. If CY is not a bad evaluation point and p is 
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not a bad prime, deg, (gp) 2 deg,(j). Moreover if deg, (gp) = deg, (g) then monic(gp) = 

monic(gcd(f1(a, 4, f 2 @ ,  4) mod P). 

Proof: See Monagan and van Hoeij [lo]. The only difference is the number of field exten- 

sions but this has no significant change in the proof in [lo]. 

2.2.3 Termination Conditions 

When we are dealing with a modular algorithm, we always encounter the problem of when 

to stop the algorithm, i.e., when do we have enough images to construct the actual gcd from 

its images. 

One approach toward solving this problem is to determine an upper bound for the 

number of images we need before starting the algorithm. Unfortunately, we can not compute 

a good upper bound efficiently based on the size of the inputs and we may end up wasting 

time, computing a lot of extra images. This is because g can be very small compared to fl 
and f2. 

The modular algorithm ModGcd, which is described in this section stops when the 

reconstructed result h does not change from one prime (evaluation point) to the next and 

then tests if klfl and hlf2. Then Theorem 2.16 implies h = g. This means that ModGcd 

algorithm is output sensitive, i.e., the number of primes (evaluation points) used depends 

on the size of 3 and not on any bounds based on the sizes of fl and f2 with high probability. 

2.2.4 Algorithm ModGcd 

We now present the ModGcd algorithm which is developed by Monagan and van Hoeij in 

[lo]. This modular GCD algorithm first calls subroutine M which computes the GCD in L[x] 

from a number of images in Lp[x]. Subroutine P which is called by subroutine M computes 

the GCD in Lp[x] from a number of images in Zp(tl, ..., tk-l)[zl, .., z,, XI/  (ml ,  ..., m,). In 

Section 2.2.7 we will show how we can extend the algorithm for multivariate polynomials. 

Except for the treatment of zero divisors, the algorithm follows Example 2.3. 

Remark 2.17. The names which are used for the subroutines M and P in this algorithm 

are based on the names Brown has used in his modular algorithm. See [I]. 

Algorithm ModGcd 
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Input: f l ,  f2 E L[x] and ml, ... ,mT(mi E F[zl, ... ,xi] for 1 5 i 5 r )  

Output: g, where g is the monic gcd of f l  and fa  in L[x]. 

1. Call Subroutine M with input fl, f2 and rri17...,niT. 

Subroutine M 

Input: f l ,  f2 E D[zl, ... zT]/ (ml, .., m,) [XI and ml,  ... ,m, E D[zl, ... zT], D = Z[tl, ... , t  k]  

Output: g, where g is the monic gcd of f l  and f2 in L[x]. 

1. Set n = 1 , G = 0. 

2. Main Loop: Take a new prime p, 

3. Check if p, is a bad prime, if it is go back to step 2. 

4. Let g, E Dpn [zl, .., zr7 x] be the output of subroutine P applied to f17 f2, ml mod p, ..., 
m, mod p. 

5. If g, = "failed" then go back to step 2. 

6. If g, = 1 then return 1. 

7. If G = 0 then set G = g, and m, = p then go to step 11. 

8. If deg,(g,) < deg,(G) then set G = g, ,me = p then go to step 11. /*All previous 

primes where unlucky */ 
9. If deg,(g,) > deg,(G) then go back to step 2. /* p, is an unlucky prime */ 

10. Select from {gl, ..., g,) those with the same leading term (in pure lexicographic order 

with x > tl > ... > tk) as g,. Combine them using Chinese remaindering to obtain G 

mod m,. 

11. Set n = n + 1. 

12. Apply integer rational reconstruction to obtain h from G mod m,. If this fails, go 

back to step 2. 

13. Clear fractions in Q: Set h = h. 

14. Trial division: If hl f l  and hlf2 then return h, otherwise, go back to step 2. 

Subroutine P 
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Input: fl ,  f2 E Dp[zl, . . .zT]/ (ml , .., m,) [XI and ml , .. ., m, E Dp [q , .. .z,]. 

Output: Either g or "failed" if the algorithm fails to compute the primitive associate of 

the monic gcd of fl  and f2. 

0. If k (The number of parameters) = 0 then output the result of the Euclidean algorithm 

applied to f l ,  f2. /* If it fails, then output "failed". */ 
1. Set n = 1, d = 1, G = 0. 

2. Main Loop: Take a new evaluation point a,. 

3. Check if a, is a bad evaluation point, if it is go back to step 2. 

4. Let g, E ZP[tl, .., tk-I] [zl, .., z,, x] be the output of subroutine P applied to fl ,  f2, ml ,  ..., 
m, at tk = a,. 

5. If g, = L'failed" then 

5.1. Set d = d + 1. 
5.2. If d > n output "failed", else go back to step 2. 

6. If g, = 1 then return 1. 

7. If G = 0 then set G = g, and m, = tk - a, then go to step 11. 

8. If deg,(g,) < deg,(G) then set G = gn , m, = tk - a, then go to step 11. /*All 

previous evaluation points where unlucky */ 
9. If deg,(g,) > deg,(G) then go back to step 2. /* a, is an unlucky evaluation point 

* / 
10. Select from {gl, . .., g,) those with the same leading term in x, tl , ..., tk-l as g,. Chinese 

remainder those to obtain G mod mc(tk) 

11. Set n = n + 1. 

12. Apply rational function reconstruction to the coefficients of G in tk to obtain h E 

Zp(tk)[tl, ..., tk-l][zl, ..., z7.,x] s.t. h 5 G mod mc(tk). If this fails go back to step 2. 

13. Clear fractions in Zp(tk): Set h = h. 

14. Trial division: if h( f l  and hl f2  then return h, otherwise, go back to step 2. 

2.2.5 Treatment of Zero Divisors 

Consider the following example from [lo]: Suppose m(z) = z2 + 7t - 1 and fl = x2 + t and 

f 2  = (z + 1)x + t .  If subroutine M chooses the prime p = 7, we will have mp(z) = z2 - 1. 

Since lcx(f2) = z + llmp(z), the Euclidean algorithm will always fail, while trying to invert 

1c,(f2) which is a zero divisor for any choice of t = a , a E Z7. For any other prime p # 7, 
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the Euclidean algorithm hits a zero divisor only for the evaluation point (I! = 0. This means 

that, if we choose the evaluation points at random the probability of hitting a zero divisor 

would be 1/p. 

Monagan and van Hoeij solve the problem of hitting a zero divisor repeatedly using 

the following strategy. The variable d, in subroutine P, counts the number of times which 

the Euclidean algorithm fails, which is the number of times the algorithm encounters a zero 

divisor. The case where d > n happens when the algorithm encounters a lot of zero divisors. 

This could relate to our choice of prime number or a previous evaluation point. 

Note that if most evaluation points are good, and if subroutine P has already computed 

many good images, then the test d > n prevents, with high probability, that few unlucky 

choices in step 2 could cause a lot of useful work to be lost. 

2.2.6 Trial Divisions 

In Step 14 of subroutines M and P, the algorithm uses trial division to test whether it has 

computed the correct gcd. The only difference is that in subroutine P, the trial divisions 

take place in characteristic p. In [9] Monagan, van Hoeij presented an algorithm for doing 

trial divisions (in characteristic p) of polynomials in Z[z] [XI modulo m(z) E Z[z] which uses 

pseudo-division and some gcds in Z to minimize growth of the integer coefficients. We 

essentially use the same method for our algorithm in Section 2.3, except that the coefficient 

ring is Dp = Zp[tl, ..., tk] instead of Z. The same algorithm can also be used for subroutine 

M with Dp replaced by D. Here we show how to extend it to treat multiple field extensions. 

Algorithm Trial Division with Multiple field extensions. 

Input: A, B E Dp [zl, ... zT]/ (ml, .., m,) [XI and ml ,  ..., m, E Dp[zl, ... z,], B # 0. 

Output: True if BIA, False otherwise. 

1. Set m = deg, (A), n = deg,(B). 

2. Set dl = deg,, (ml), ..., d, = deg+ (m,) 

3. Set lb = lc,(B). 

4. Set I,, = lc,, (ml), ..., l,, = lc,,(m,). 

5. Set R = A. 

6. While r # 0 and m 2 n do 

6.1. Set ZR=lc,(R). 
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6.2. Set g = gcd(cont z,,...,zr (lR), lb) mod p. 

6.3. Set lR = lR/g, S = lb/g. 

6.4. Set t = lRxm-". 

6.5. Set R = s R  - tb. 

6.6. for i from 1 to r do 

6.6.1. while R # 0 and degz,(R) 1 di do 

6.6.1.1. Set lR = lcz,(R). 

6.6.1.2. Set g = gcd(cont, (lR), l,,) mod p. 

6.6.1.3. Set lR = lR/g. 
deg,, (R1-4 

6.6.1.4. Set t = lRzi 

6.6.1.5. Set R = (l,,/g)R - tmi. 
6.7. Set m = deg,(R). 

7. If R # 0 then return False, otherwise, return True. 

Note that degZj (71~~) = 0 if j > i. The outer loop reduces the degree of the remainder R 

in x. In the inner loops, for each i, the algorithm reduces the degree of R in zi to be less 

than the degree of mi in zi. 

2.2.7 Multivariate Polynomials and Non-t rivial Content 

In the previous examples for the ModGcd algorithm, we assumed that fl and f2 E L[x], 

i.e. there is only one variable, x. In [lo] Monagan and van Hoeij proposed a simple method 

for dealing with multivariate input polynomials. Let fl ,  f2 E L[xl, ..., x,] with n > 1. 

In order to compute the gcd of f l  and fi we may consider f l ,  f2  E K[x,], where K = 

L[xl, ..., x,-11. So we treat the inputs as polynomials in x, with coefficients in K. Now 

reca11 that gcd(fl, f2) = cb where c = gcd(c0ntX1 ,.... ZT&-l (fl), contXl ,..., Zn-l (f2)) and b = 

gcd(fl/c, f2/c). As you see, computing c, requires calling the ModGcd algorithm recursively 

with one less variable. To compute b, we simply treat xl,  ...,x,-1 as parameters!, i.e. 

we write the input polynomials in K[x,] where K = G[zl, .., zT]/ (ml, ..., mT) and G = 

Q(tl, ..., tk ,  X I ,  ..., 5,-1). NOW we compute ij using ModGcd. However g could have a non- 

trivial content in x, which needs to be computed and divided out to get b. Here is an 

example from [lo] illustrating this. 

Example 2.18. Suppose we have computed j = (x? -s)x2 -z+xl where z = &. Here z-xl 

is the non-trivial content of g. We need to divide g by this content to get b = (xl + z)xz + 1. 
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2.3 Sparse Algorithm 

In the previous section, we described the ModGcd algorithm which is a dense modular 

algorithm for finding the GCD of two polynomials over algebraic function fields. Suppose 

di = degtz (g). Then ModGcd calls the Euclidean algorithm (in the first step of subroutine 

P)  approximately O(n,=l, ,k di) times. Now suppose we have two input polynomials fl  and 

fi such that g = x: + tioozx + tgoox + tioo. Since dl = d2 = dg = 100, ModGcd calls 

the Euclidean algorithm approximately 1000000 times. This motivates us to use sparse 

interpolation instead of dense interpolation in subroutine P, because the number of times 

we need to call Euclidean algorithm in sparse interpolation, depends on the number of terms 

present in the gcd and not its degree, i.e. 300 calls. 

In this section we will introduce a new algorithm called SparseModGcd, which is a sparse 

modular GCD algorithm. SparseModGcd takes advantage of sparse interpolation and has 

a better performance for polynomials which are sparse. 

Again the input polynomials are f l ,  f2 E L[x], and g is their monic gcd. The problem is 

to find g. 

In [4], Wittkopf et al. presented a new algorithm called LINZIP, which is an extension 

to Zippel's algorithm (for gcd computation in Z[xl, ..., x,]; see [16]) for the case where g 

is not monic in the main variable. When LINZIP uses sparse interpolation, it projects 

the input polynomials from Z[xl, ..., x,] to Zp[xl] by evaluating them at some evaluation 

points modulo a prime p. Similarly SparseModGcd projects the input polynomials from 

Q(tl, . . . , tk) [zl, . . . , z,] [XI to Zp [zl , . . . , z,] [XI. Another difference between LINZIP and Sparse- 

ModGcd is that, (as we discussed in Section 2.2.2) we need to deal with the zero divisors. 

Finally, similar to what is done in step 12 of subroutine P in ModGcd, we use univariate 

rational function reconstruction in SparseModGcd to recover the parameters tl , . . . , tk . 

2.3.1 Sparse Interpolation 

The sparse interpolation algorithm first appeared in 1979 Ph.D. thesis of R. Zippel [16]. 

Later Wittkopf, Monagan and de Kleine (see [4]) extended the algorithm for the case where 

the gcd of the inputs is not monic. The main idea of using sparse interpolation in the 

modular gcd algorithm is that after finding the first image of the gcd in subroutine P or 

M(using dense interpolation) we know the form of the answer, i.e. we know (assuming the 

first image is of the correct form) the degree of g and which terms are present in g. 
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Example 2.19. Let z = &. Consider the polynomials 

For pl = 7, with the same method as Example 2.3, we get the first image g7 = tx + 
4zt2 + 5 mod 7. 

Now we assume that g7 is of the correct form, that is, g = atx + bzt2 + c, for some 

constants a ,  b, c. This will be true with high probability if p is large. Now we want to 

compute the gcd modulo a second prime p2 = 11. First we choose t = 2 (again the actual 

choice for t needs to be random from a large set), evaluate the input polynomials at this 

point and run the Euclidean algorithm to get the first image 

h2 =gcd(f1(2,x), f2(2,x)) mod 11 = x - 5 2 - 3 .  

If we evaluate the assumed form of the gcd g at t = 2 we will have 

g(2, x) mod 11 = 2ax + 4bz + c. 

Hence 2ax + 4bz + c mod 11 = x - 52 - 3. From this we get the following linear system of 

equations 

(2a = 1,4b = -5, c = -3) mod 11. 

Solving this system, we get a = 6, b = 7, c = 8 which means gcd(fl, f2) mod 11 = 

6tx + 7zt2 + 8. After making this monic, we obtain 

gll = tx + 3t22 + 5 mod 11. 

The reader may see that using a dense interpolation for computing the gcd modulo 

p = 11, requires at least three evaluation points, but using sparse interpolation needed only 

one evaluation point. This will improve performance when g is sparse and the improvement 

is multiplied for each variable. 

Here is another example showing that we apply the sparse interpolation recursively when 

computing the first image of gcd(fi, f2) mod pl. 

Example 2.20. Let m(z) = z2 - s - t. Consider the following monic polynomials 
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f 2  = (x + t - s)(x3 + 10x2z + x2st2 + 3x2s + 36x2 + 17t) 

Suppose that we want to find the first image of g = gcd(fl, f2) ,  modulo pl = 7. We 

take the first evaluation point to be s = 1 (note that these evaluation points must be chosen 

randomly in our algorithm, but here we choose small integers). By recursively calling the 

algorithm we get 

91 = gcd(fi(l , t) ,  f 2 ( l ,  t)) mod 7 = x3 + t2x2 + 3zx2 + 4x2 + 3t. 

Now we take the next evaluation point for s to be s = 3. Suppose g3 = 

gcd(fl(3, t) ,  f2(3, t)) mod 7. From gl we know that, with high probability and assuming 

that gl is of the correct form, g3 = Ax3 + ~ t ~ x ~  + czx2  + 0 x 2  + E t  for some constants 

A, B ,  C, D and E .  Take the next evaluation point to be t = 1. By applying the Euclidean 

algorithm on f l (3 , l )  and f2(3, 1) we get 

But we know that g31 = g3(t = I) ,  SO we have the following equation 

Solving these systems of equations,we obtain 

This means g3 = gcd(fl(3, t), f2(3, t)) = x3 + 3t2x2 + 32x2 + 3x2 + 3t. After interpolating s 

(using dense interpolation), we get 

Now we apply the rational function reconstruction to the coefficients of hl but the output 

is hl and since hll f l  mod 7 and hl 1 f2 mod 7 we conclude that hl = gcd(fl, f2) mod 7. On 

the other hand hl I fl  and hl I f 2  over Q. So we need other images. This time we choose 

the next prime to be p2 = 11. Let h2 = gcd(fl, f2) mod 11. From hl, we know that (with 

high probability i.e. if hl is of the correct form) 
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From the form of hz, we need at least two images to solve for a3 and ad. Let our first set 

of evaluation points be a = (s = 1, t = 1). Applying the Euclidean algorithm on fl(a) and 

f2(a) will result in 

gll = x% x2 - zz2 + 6x2 + 6. 

Again we know that gll = h2(a),  hence we have 

Let's take our next evaluation point to be 0 = (s = 2, t = 2). Again we apply Euclidean 

algorithm on fl (P) and f2 (P) to obtain 

Solving the system of equations results in 

So h2 = x3 + st2x2 - zx2 + (3s + 3)xz + 6t. Since h21 f l  mod 11 and h2J f 2  mod 11, 

h2 = gcd(fl, f2)  mod 11. We can compute other images with the same method. 

Remark  2.21. In general, we could evaluate at t = ai E Z,[z]/m(z). Instead we always 

evaluate at t i  = ai E Zp for two critical reasons. First, the linear system is over Z, which 

means it can not run into zero divisors, which would further complicate the algorithm. 

Second, it means that we equate coefficients in zixj instead of xj. This reduces the number 

of images needed, hence the size of the linear systems to be solved. 

Next we identify four classes of problems which may happen during sparse interpola- 

tion. These problems are normalization problem, missing terms, unlucky contents and zero 

divisors. 

Normalization Problem 

The first problem with sparse interpolation is called normaliza,tion problem. This problem 

happens when we are dealing with polynomials with a non-monic gcd in x. Consider the 

following example: 

Example 2.22. Let z = m. Suppose the input polynomials are 

f i  = (x - s + l)g and f2 = ( x +  t +s)g  
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where 

8 = (15s + t)x2 + 12s2xx + 40st 

is the gcd of f; and f2. Suppose we have computed our first image modulo pl = 7 and 

obtained 

g7 = (S + t)x2 + 5s2xx + 5st. 

So our assumed form of the actual gcd is 

gf = (As + Bt)x2 + cs2xz  + Dst 

for some constants A, B, C and D. Now we want to compute the next image of gcd modulo 

p2 = 11. Consider the evaluation point a = (s = 2, t = I ) ,  we have 

The problem is that this image is unique up to a scaling factor m. That is 

But we do not know what m is. If we knew the leading coefficient of g, lc,(@) = 15s + t ,  

then we could easily compute m 

m = lc,(g(2, 1)) mod 11 = 9. 

Unfortunately there is no easy way of computing leg. An ingenious solution to the 

normalization problem, which we use in our algorithm, is presented by Wittkopf et al. in 

[4]. This solution does not require any factorization (which could be very expensive). The 

idea is to scale each image gi with a scaling factor mi. This introduces a new unknown 

variable, so we need some more images to construct consistent systems of linear equations. 

We give an example. Here, we follow the presentation of Wittkopf et al. but modify the 

example for L with L = Q(s,  t) [x] mod m(z). 

Example 2.23. Consider the input polynomials from the previous example. Our assumed 

form for the gcd is 

gf = (As + Bt)x2 + cs2xx + Dst 

for some constants A, B, C and D. Again we want to compute the next image of gcd modulo 

p2 = 11. Remember the images of the gcd for evaluation point a = (s = 2, t = 1). 
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Our first set of equations will be 

m1 (x2 + 9x2 + 4) = (As + ~ t ) x ~  + cs2xz  + Dst. 

Here we have three equations {ml = 2A + B,9ml = 4C,4ml = 2 0 )  mod 11, and 5 

unknown variables so we need another evaluation point. Consider the next evaluation point 

to  be /3 = (S = 1, t = 2). After applying the Euclidean algorithm on the inputs A(@) and 

f2(:2(P) we have 

g12 = gcd(f1(1,2), .f2(1,2)) = x2 + 2x2 + 6. 

So multiplying with the next scaling factor m2 will result in 

m2(x2 + 2x2 + 6) = (As + ~ t ) x ~  + c s 2 x z  + Dst. 

Now we have the following system of linear equations: 

It seems that we have 6 unknowns and 6 equations, but the last equation is a linear 

combination of the first five equations, so this system does not have a unique solution. NOW 

we fix m l  (the first multiplier) to  be 1. Note that this can be done because the result we are 

seeking is only unique up to  a scaling factor. Using this fact, our system of linear equations 

is now determined. The unique solution is 

Hence the image of gcd modulo p2 = 11 will be 

Since hl fl mod 11 and hlf2 mod 11, we are done. 

Here we ask how many images do we need to compute in order to have a determined 

system of linear equations. 

Suppose the input polynomials are f l  and f2 such that gcd(lcx(fl), lcx(f2)) = 1, i.e. the 

leading coefficients are relatively prime (this guarantees that g = gcd( f l ,  f2) is monic). 

Suppose that our assumed form for the gcd is 
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and aij E Q(tl, ..., tk). Let T be the number of terms in gf. The number of images which is 

needed to  construct a determined system of linear equations is the number of terms in the 

biggest (the one with more terms) coefficient among all aij's. 

This is quite obvious, since there is one system of equations for each coefficient aij, and 

the one for the biggest coefficient is the one with the most number of unknowns, so with 

this many equations, all the systems are guaranteed to be determined. 

For the case where the gcd is non-monic, we use the scaling factors (multiple scaling 

case). Let ni be the number of terms in the i'th coefficient of the assumed form and n, 

be the sum over all ni7s. This time, after computing each image of the gcd we add d 

new equations to our system of linear equations (one equation for each term), but we also 

introduce a new unknown variable mi which is the new scaling factor. For example, after 

computing i images, we will have n, + i - 1 unknowns (there are originally n, unknowns, 

and we have added one for each image except for the first scaling factor which is fixed to be 

1). Hence in order to have a determined system, we need at least /w] images. 

This means that the worst case for this solution (adding the scaling factors) happens 

when g = gcd(f1, f2) has only a few terms (g is sparse in x, z and d is small) but each 

coefficient has a lot of terms. 

In [4], Wittkopf et al. discuss the efficiency of the multiple scaling case. Consider the 

problem of finding a gcd which looks like 

The linear system of equations has a structure shown in Figure 2.1 where all entries not 

shown are zero. The solution can be easily computed by solution of a number of smaller 

subsystems corresponding to the rectangular blocks of non-zero entries augmented with the 

multiplier columns. With this method, the solution expense of the multiple scaling case is 

the same order as the single scaling case. 

Bad form: Missing terms 

The second problem which we may encounter during the use of sparse interpolation is called 

missing terns. 

Suppose that our assumed form for the gcd is gf. 

Definition 2.24. A prime p is said to introduce missing terms if any term of gf vanishes 

modulo p. 
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C  C  C  
C C  
C  C  

C C C  
C C. 
C  C 

Figure 2.1: Linear system structure for the multiple scaling case, courtesy of Michael Mon- 
agan . 

Definition 2.25. An evaluation point cu is said to introduce missing terms if any coefficient 

of g f  vanishes at this evaluation point. 

Unfortunately primes (or evaluation points) which introduce missing terms can not be 

avoided before computing the image. However, it is a good idea to impose that no term in 

the inputs f;, f2 should vanish modulo any of the primes. The problem with the missing 

terms is most important when we choose our assumed form based on an image which is 

computed modulo a prime (or at an evaluation point) which introduces a missing term. 

Example 2.26. Let m(z) = z2 - s + t. Consider the following input polynomials, 

f i  = (x + zs + t)g and f2  = (x2 + 1)g 

where 

ij = (t2 - s + 1)x3 + 70zx2 + 13(t + 2). 

is the gcd of f l  and f2. 

Here the primes 2,5,7 and 13 introduce missing terms (the first three cause the second 

term to vanish and the last one makes the last term to vanish). The prime p = 11 does 

not introduce missing terms, but when we are computing the image of the gcd modulo this 

prime, cu = (s = 8, t = 10) is not a good evaluation point since lcg(8, 10) = 0. Now suppose 

that we do not know what the gcd is, and we take our first prime to be pl = 7 (which is 

not a good choice). We get our first image 
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From this image we take our assumed form for the gcd to be 

Now when we try to compute the gcd modulo p = 11, we will not get an image which 

is consistent with our assumed form with high probability. The inconsistency tells us that 

our assumed form is not of the correct form so we must restart the algorithm. 

The probability of choosing a prime (or evaluation point) that makes a term of the gcd 

vanish is about T l p  (T  is the number of terms in the gcd). This means choosing larger 

primes will reduce the probability of having a missing term. In fact the primes should be 

much larger than the number of terms in the input polynomials. 

Unlucky Content 

Another problem which we have to avoid during sparse interpolation is an unlucky content. 

Definition 2.27. ( Wittkopf et al. [4]) For a polynomial f = anxn + ... + a1x + a0 with 

ai E R for 0 5 i 5 n, the content contx(f) is defined to be 

A prime p, is said to introduce an unlucky content if for two input polynomials f l , f2  

with gcd g = gcd(fl, fi), contx(g) = 1 but contx(g mod p) # 1. Similarly an evaluation 

point t = cr is said to introduce an unlucky content if contx(g) = 1 but contx(g(cr))# 1. 

Example 2.28. Consider the gcd g = (12s + t)x + (s + 12t). We have 

But if we choose p = 11 we will obtain 

contx(g mod p) = contx((s + t)x + (s + t)) = gcd(s + t ,  s + t)  = s + t 

Hence p = 11 introduces an unlucky content and we must not use p = 11 to reconstruct the 

gcd. For any other prime p # 11 no content is present. The evaluation points t = 0 and 

s = 0 also introduce unlucky contents: 

contx(g(O, t)) = contx(tx + 1%) = t ,  
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If during sparse interpolation we choose our assumed form, gf ,  based on an image which 

is computed modulo a prime (or evaluation point) which introduces an unlucky content, it 

is more likely that we will never get a system of linear equations which is determined and 

has a unique solution, no matter how many images we compute. 

Example 2.29. Suppose we want to  find the gcd of two polynomials fl,  f2 with gcd g = 

gcd(fi, f2)= (10s + 7t)x2 + 19sxz + 14st. If we choose our first prime pl = 7, using the 

dense interpolation we get the first image 

In fact g mod 7 = sx2 + 4.522, but since our algorithm always returns the primitive 

associate of the gcd, it will remove cont,(g mod 7)= s and returns x2 + 4x2. At this point 

we choose our assumed form to be (based on our images of the gcd modulo pl = 7) 

for some constants A and B. Now for our next image, we choose p2 = 11. Consider the 

first evaluation point to be a =(s = 1, t = 1). After applying the Euclidean algorithm on 

fi (1 , l )  and f 2 ( L  1) we get 

But we can not equate hl = gf to solve for A and B. Since the degree of the new image 

is the same as the degree of the assumed form, the image is not unlucky so the assumed 

form must not be of the correct form. Now suppose we choose another evaluation point 

,B =(s = 2, t = 2). Again we apply Euclidean algorithm on f1(2, 2) and f2(2, 2) to get 

Again we have the same problem. In fact since pl  = 7 introduced an unlucky content 

but p2 = 11 does not, this problem always happens no matter how many evaluation points 

we choose. At this point we should throw away the assumed form and restart the algorithm 

since we do not know if it was the prime or a previous evaluation point that introduced the 

unlucky content. 

As we discussed in the previous example, since the primes or evaluation points which 

introduce unlucky contents are rare, we do not detect the problem in advance. This is 
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because the detection of such primes and evaluation points could be expensive and cre- 

ate a bottleneck for the algorithm. We will detect an unlucky content by checking if 

fl(cr, ti, ..., tk, x) mod p and f2(cr, ti, ..., tk, x) mod p have a common content in Z[ti] where 

cr = (tl = al, ..., ti-1 = q-1)  is the evaluation point. If they do, the algorithm discards p 

and chooses another prime (this is because we don't know if it is p or cr which introduced 

the unlucky content). Note that with this method, the algorithm only computes univariate 

contents to detect the unlucky content. This is because the unlucky content will eventually 

be reduced to a univariate content as we evaluate the parameters one by one. 

Zero Divisors 

The next problem which may happen during the sparse interpolation is that when we are 

trying to compute univariate gcds, the Euclidean algorithm could hit a zero divisor in which 

case it fails. See Example 2.14. 

2.3.2 Algorithm SparseModGcd 

We now present the SparseModGcd algorithm. This modular GCD algorithm first calls 

subroutine M which computes the GCD in L[x] from a number of images in Lp[x]. Subroutine 

P which is called by subroutine M computes the GCD in Lp[x] using both dense and sparse 

interpolations. Finally subroutine S, which stands for Sparse Interpolation and is called by 

subroutine P, does the sparse Interpolation. 

Algorithm SparseModGcd 

Input:  f l , f 2 €  L[x]andml ,..., m, E F[zl ,..., z,] whereF=Q( t l  ,..., tk)s.t. cont,(g) = l .  

Output :  g, where g is the monic gcd of f l  and f2  in L[x]. 

1. Call Subroutine M with input fl, f 2  and ml ,  ..., m,. 

Subroutine M 

Input :  f l ,  f2  E D[zl, ... z,]/ (ml,  .., m,) [x] and ml,  ..., m,€ D[zl, ... z,] were D = Z[tl, ..., tk]. 

Output :  g, where g is the monic gcd of f l  and f2. 

1. Set n = 1, G = 0, form = 0. 

2. Main Loop: Take a new prime p,. 
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3. Check if p, is a bad prime, if it is go back to step 2. 

4. Let gn E Dp, [zl, .., z,, x] be the output of subroutine P applied to f l ,  f2,  form, 

ml mod p ,..., m, mod p. If g, = "contfailed" then go back to step 2. 

5. If g, = "ZeroDivisor" or gn = "Unlucky" then go back to step 2. 

6. If g, = "Bad-Form" then go back to step 1. 

7. If g, = 1 then return 1. 

8. If G = 0 then set G = gn and m, = p then go to step 12. 

9. If deg,(g,) < deg,(G) then set G = g, , m, = p , form = g, then go to step 11. 

/*All previous primes where unlucky */ 
10. If deg,(g,) > deg,(G) then go back to step 2. /* p, is an unlucky prime */ 
11. Combine the images {gl, ..., g,) using Chinese remaindering to obtain G mod m,. 

12. Set n = n + 1. 

13. Apply integer rational reconstruction to obtain h from G mod m,. If this fails, Set 

form = g, then go back to step 2. 

14. Clear fractions in Q: Set h = h. 

15. Set form = gn. 

16. Trial division: if h,lfl and hl f2  then return h, otherwise, go back to step 2. 

Subroutine P 

Input: fl,f2, form E Dp[zl, ... z,]/(ml, .., m,) [XI and ml ,  ..., m , ~  Dp[zl, ..+I. 

Output: Either g or "ZeroDivisor" or "Unlucky" or "Bad-Form" or "contfailed" if the 

algorithm fails to compute the primitive associate of the monic gcd of f l  and fi because of 

the bad choice of the prime or evaluation point. 

0. If the GCD of the inputs has a content in tk then return "contfailed". /* There is an 

unlucky content */ 
1. If k (The number of parameters) = 0 then output the result of the Euclidean algorithm 

applied to f 1 ,f2. 

2. If form # 0 then go to step 28. 

3. S e t n = l , d = l , G = O .  

4. Take a new evaluation point a, at random from Zp. 

5. Check if a, is a bad evaluation point, if it is go back to step 4. 

6. Let g, E Zp[tl, .., tk-11 [zl, .., z,, x] be the output of subroutine P applied to f l ,  f i ,ml,  ..., m, 

at tk = a, and form = 0. If g, = "contfailed" then return "contfailed". 
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7. If g, = "ZeroDivisor" then return "ZeroDivisor". 

8. If g, = "Unlucky" then go back to step 4. / *Unlucky evaluation point */ 
9. If g, = "failed" or "ZeroDivisor" then 

9.1. Set d = d + 1. 

9.2. If d > n output "ZeroDivisor", else go back to step 4. 

10. If g, = 1 then return 1. 

11. Set form = g,, n = n + 1. 

12. Main Loop: Take a new evaluation point a, at random from Zp. 

13. Check if a, is a bad evaluation point. If it is go back to step 12. 

14. Let g, E Zp [tl , .., tk-I] [a, .., z,, x] be the output of subroutine S applied to f l ,  f2,ml, ..., m, 

at tk = a, and form. 

15. If g, = "Bad-Form" then go back to step 3. /*Our assumed form for gcd is not of the 

correct form */ 
16. If g, = "Unlucky" then go back to step 12. /* Unlucky evaluation point */ 
17. If g, ="failed" or "ZeroDivisor" then 

17.1. Set d = d + 1. 

17.2. If d > n output "ZeroDivisor", else go back to step 12. 

18. Set g, = monic(g,). 

19. If g, = 1 then return 1. 

20. If G = 0 then set G = g, and m, = tk - a, then go to step 25. 

21. If degx(gn) < degx(G) then set G = g, , m, = tk - a,, form = g, then go to step 25. 

/*All previous evaluation points where unlucky */ 
22. If degx(gn) > deg,(G) then go back to step 12. /*  an is an unlucky evaluation point 

* / 
23. Chinese remainder {gl, ..., gn) to obtain G mod mc(tk). 

24. Set n = n + 1. 

25. Apply rational function reconstruction to the coefficients of G to obtain h E Zp(tk) 

[tl, ..., tk-11 [zl, ..., z,, x] s.t. h =. G mod mc(tk). If this fails, go back to step 12. 

26. Clear fractions in Zp(tk): Set h = A. 
27. Trial division: if h)  fl and h J  f2  then return h, otherwise, go back to step 12. 

28. Let g, E Zp[tl, .., tk][zl, .., z,, x] be the output of subroutine S applied to fl ,  filml, ..., m, 

and form. /*At this step, we already know the form of the gcd */ 



CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 38 

29. If g, = "Bad-Form" then return "Bad-Form". /*Our assumed form for the gcd is not 

of the correct form */ 
30. If g, = "Unlucky" or g, = "ZeroDivisor" then return g,. 

31. return monic(g,) . 

Subroutine S 

Input: f l ,  f2,  form E Dp[zl, ... z,]/ (ml, .., m,) [x] and ml,  ..., m, E Dp[zl, ... zT] where Dp = 

zp[t l ,  - . a ,  tk]. 

Output: Either g or "Bad-Form" or "ZeroDivisor" or "Unlucky" if the algorithm fails to 

compute the primitive associate of the monic gcd of fl and f2.  

1. If k (the number of parameters) = 0 then output the result of the Euclidean algorithm 

applied to f 1, fi. 

2. Set C = coeffs, ,,,,...,, , (f orm), T = monomials, ,,,,...,, , (f orm). /*C is the list of all 

coefficients of form in Dp and T is the list of all monomials s.t. f = C(CiTi) */ 
3. Set U to be the minimum number of images needed. /* This is based on what we 

discussed in Section 2.3.2 */ 
4. Set z = 0, u = 0. 

5. for i from 1 to U do 

5.1. Take a new random evaluation point ai = (tl = a l ,  ...! tk = ak) in Z; which is 

not bad. 

5.2. Let gi be the output of the Euclidean algorithm applied to f l (ai) ,  f i (a i ) ,  ml(ai),  

..., m, (ai). 

5.3. If gi = "failed" then 
5.3.1. Set z = z + 1. 
5.3.2. If z > i then return "ZeroDivisor" else go back to step 5.1. 

5.4. If deg, (gi) > deg, (f orm) then 

5.4.1. Set u = u + 1. 
5.4.2. If u > i then return "Unlucky" else go back to step 5.1. 

5.5. If degx(gi) < deg,(form) then return "Bad-Form". 

5.6. If the number of terms in gi with respect to to x, zl, . .., z, is greater than the 

number of terms in the assumed form then return "Bad-Form". /* Missing 

terms in the assumed form*/ 
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6. Construct the system of linear equations based on the gi's (images), ai 's (evaluation 

points), and C, and solve it. 

7. If the system is inconsistent, return "Bad-Form". 

8. Construct and return gp (g mod p), using the solution from the system of equations 

and T (Terms in the assumed form). 

We now describe how SparseModGcd deals with three main problems, namely bad primes 

and evaluations, unlucky primes and evaluations, unlucky contents and missing terms. 

Note that the zero divisors problem is treated in the same way as in ModGcd algorithm 

(see Section 2.2.5). 

Bad Primes and Bad Evaluation Points 

As we stated before in Section 2.2.1, bad primes and bad evaluation points must not be used 

during the gcd computation. Fortunately there is an easy way of finding whether or not a 

prime p (or an evaluation point a) is bad. In subroutine L/I of SparseModGcd algorithm, 

we avoid bad primes, by testing if the new prime p, divides the leading coefficient of any of 

f l ,  f2 ,  ml ,  ..., m,. If it does, then p, is a bad prime. 

For the case of bad evaluation points, in subroutine P (for both dense and sparse inter- 

polation parts) we discard bad evaluation points by simply testing if the leading coefficient 

of any of f f 2 ,  ml  , . . ., m, vanishes after evaluating at the new evaluation point a,. 

Unlucky Primes and Evaluation Points 

As we discussed before, unlucky primes and evaluation points, cause the new image to have 

a higher degree in the main variable x compared to g. Unfortunately there is no way of 

checking if a prime (or an evaluation point) is unlucky before computing the image of the 

gcd. 

During the sparse interpolation, we evaluate the inputs fl and f2  at a sequence of 

evaluation points, then we interpolate the last parameter, using a dense method. At this 

point we have our first image from which we choose the assumed form. If this image is 

based on an unlucky evaluation point, subroutine S will eventually get an image with lower 

degree in x than the assumed form. In this case the sparse interpolation fails by returning 

"Bad-Form" and the algorithm restarts. If the first image is based on an unlucky prime, 

subroutine P does not detect it and returns an image with a high degree. But in this case, 
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subroutine M will choose the new assumed form based on this bad image and hence the 

algorithm will eventually detect it during the sparse interpolation by computing an image 

with lower degree. At this point we assume that the first image is of the correct form. 

If during the interpolation of other variables using the sparse interpolation algorithm we 

encounter an image which has a higher degree than the assumed form, it can be because of 

the choice of the evaluation points in either subroutines P or S. In Step 5.4 of the algorithm, 

we count the number of times which we encounter an unlucky image. If this happens a lot, 

we conclude that the evaluation point in subroutine P is unlucky otherwise we assume that 

the current evaluation point is unlucky so we choose another one. 

Finally, after we compute the image of the gcd modulo the first prime which is not 

unlucky, if we choose a new unlucky prime, we will get unlucky images during the sparse 

interpolation so subroutine M simply chooses another prime. Since there are finitely many 

unlucky primes, subroutine M will eventually compute some good images. 

Unlucky Contents 

As we described in Section 2.3.1, the single variable content check in Step 0 of subroutine P 

will eventually detect an unlucky content. If the check in Step 0 detects an unlucky content, 

subroutine P will fail all the way up to subroutine M which then throws away the current 

prime and starts with another one. 

This strategy which is first introduced in [4] is efficient since from the point where an 

unlucky content is introduced to the point where it is detected only some variable evaluations 

and single variable content checks have been performed. 

Missing Terms 

If the algorithm chooses the assumed form of the gcd based on an image with missing terms, 

subroutine S will eventually get an image with more terms than the assumed form. In this 

case (step 5.6 of subroutine S) the algorithm restarts (step 15 of subroutine P) to find a 

new assumed form. 



Chapter 3 

Implement at ion 

We have implemented algorithm SparseModGcd in Maple 10 (see Appendix A). In this 

chapter we will first describe the bottlenecks in the implementation of SparseModGcd al- 

gorithm and finally we present a running time comparison of SparseModGcd and ModGcd 

algorithms. 

3.1 Bottlenecks 

In this section we will discuss some bottlenecks in the implementation of our SparseModGcd 

algorithm namely trial division, rational function reconstruction, sparse interpolation and 

univariate gcd computation. We will start with an example. In our example Maple is using 

31.5 bit primes on a 64 bit machine. 

Example 3.1. Let 

f 2  = 2 ~ " ~  + ( 2 t 2  + 5 z y 2 )  x4  + ( 5 z y 2  - 3 t z 2 y  + 1 )  x 2  - 3 t z 2 y  + 1 

be input polynomials and m ( z )  = z3 - 2t. The output of our program is as follows. 

Entering MGCD . . .  
Calling PGCD . . .  Current prime is : 3037000453 

y=2926416935 

t=198304613 

t=640439653 
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t=417177802 

t=2984266210 

t=537655880 

t=1361931892 

RFR(t) succeeded. Number of points used is 5 

Assumed form for the gcd is computed. Monomials are [l,tz2, zx2,t2x4] 

y=2107063881 

Sparse Interpolation . . .  succeeded. 
y=1884392679 

Sparse Interpolation . . .  succeeded. 
y=902841101 

Sparse Interpolation . . .  succeeded. 
y=802611721 

Sparse Interpolation . . .  succeeded. 
RFR(y) succeeded. Number of points used is 4 

PGCD succeeded. 

Integer Rational Reconstruction . . .  succeeded. 
Division Check . . .  succeeded ...g cd found ! 

2t2x4 + 5 ~ ~ 2 ~ 2  - 3tz2y + I 
Timings : 

Total time: 0.057 (in CPU seconds) 

Trial Division: 6.78%, Rational Function Reconstruction: 3.39% 

Sparse Interpolation: 5.08%, Univariate GCD computation: 67.79% 

As you see, more than eighty percent of the total running time is spent on the four specified 

bottlenecks. And this is after our optimizations. 

3.1.1 Trial Division 

Recall from Section 2.2.5 that trial division is used to check whether we have computed the 

correct image of the gcd at the end of subroutine P. Suppose that a is the average number 

of times which the trial division routine is called for computing gp the image of gcd modulo 

p. Let q be the probability that the trial division succeeds and t d  be the average time for 

doing one trial division. 

Unfortunately we can not decrease td,  i.e. we can not improve the trial division algorithm 

very much, but we can decrease a by increasing q. This means that we will not do the trial 
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division unless we know with high probability it will succeed. This can be accomplished by 

reducing the number of times that the rational function reconstruction method (in Step 25 

of subroutine P) succeeds but does not output g. 

We achieve this by using a slightly different method for rational function reconstruction 

which is described in the next section. Now, the average number of times which the trial 

division routine is called, is very close to 1. 

3.1.2 Rational Function Reconstruct ion 

As we discussed in the previous section, we need to do the rational function reconstruction 

in such a way that when it succeeds, its output (after clearing the fractions) is the gcd, g 

and hence will divide both of the input polynomials f l  and f 2  modulo the prime p. For 

this, we use the Maximal Quotient Rational Reconstruction method which is presented by 

Monagan in [8]. 

The idea is to use more (one more) evaluation points than are necessary to  reconstruct 

n l d  E F ( Y  1. 

Example 3.2. Suppose we have f E z23[?J] such that 

We want to find a rational function n l d  E z23(?J) such that 

Using polynomial interpolation we can easily compute u = 5 y5 + 11 y4 + 22 y3 + 5 y2 + 4 y + 8 

satisfying u(a)  = f (a)  on these six points. Let 

After applying the extended Euclidean algorithm as described in Section 1.4 to inputs m 

and u,  we get the following set of solutions 
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All have degree 5, so rational function reconstruction fails. As we mentioned before, 

maximal quotient rational reconstruction method uses one more evaluation point to select 

2.  Assuming 4 7 )  = 14 we have 

Again using the extended Euclidean algorithm we get the following set of solutions 

One can see that 2 = is the only solution from the above set with deg(n) + 
deg(u) = 5, hence it is the output of maximal quotient rational reconstruction method. 

We refer the reader to Monagan [8] for a detailed description of the Maximal Quotient 

Rational Reconstruction algorithm. 

3.1.3 Sparse Interpolation 

Sparse interpolation is another part which could slow down the algorithm significantly if it 

is not implemented properly. 

The most time consuming part of the sparse interpolation routine is at Step 5.2 where 

the algorithm evaluates the input polynomials fi and f2 at the new evaluation point cri. 

To overcome this, we first form a matrix which includes all the coefficients of both input 

polynomials fl and f 2  with respect to the main variable x and 21, ..., 2,. Next we use a 

modular method (which is part of the LinearAlgebra package in Maple 10 and is coded in 

C for machine primes) to evaluate each entry of the matrix at  the new evaluation point cri. 

Finally, using the evaluated matrix, we can easily form fl(cr) and f2(cr). 
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3.1.4 Univariate Gcd Computation 

Suppose that we want to compute gp = gcd(fl, f2) mod p using the sparse interpolation. 

This involves some univariate gcd computations in R[x] where R = L(tl = crl , ..., tk = 

ak)/ (ml,  ..., m,). Thus R mod p is a finite ring with r extensions. As we discussed 

in Section 2.3.1, the number of univariate images we need to compute is at  least np = 

[(n, - 1)/(T - 1)l where n, is the number of unknown variables in our assumed form for 

the gcd and T is the number of terms in the assumed form. If np is a large number, then 

the Euclidean algorithm (which is used for univariate gcd computation) could take a large 

amount of time. Therefore the Euclidean algorithm should be implemented efficiently (it 

needs to be coded in C). 

In our implementation of the SparseModGcd algorithm, we use a version of Euclidean 

algorithm which is designed for polynomials over a ring R (Monagan and van Hoeij [9]). 

The cost of the Euclidean algorithm is 0 ( n 2 ~ ' )  x N as implemented. Here D is the degree 

of the algebraic function field L, n is the degree of g in the main variable and N is the 

number of times that the Euclidean algorithm is called. 

3.2 Benchmarks 

We have compared the Maple implementations of SparseModGcd and ModGcd on three 

problem sets. The first two sets consist of input polynomials f l  and f 2  with a sparse gcd 

g = gcd(f1, f2). In contrast, each pair of polynomials in the third set has a rather dense gcd. 

There is only one field extension available in these problem sets. Next, we present some 

timings for SparseModGcd algorithm on a problem set with two field extensions (r = 2). 

The purpose of the last benchmark is to count the number of bad and unlucky primes and 

evaluation points, zero divisors, unlucky contents and missing terms that SparseModGcd 

encounters for two random polynomials. All the timings in this section are in CPU seconds 

and obtained using Maple 10 on a 64 bit AMD Opteron CPU running Linux using 31.5 bit 

primes. 

As we discussed in Chapter 2, SparseModGcd is expected to have a better performance 

than ModGcd on the first two sets of problems. 
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SPARSE- 1 

Let 

(9 where each rjk is a positive random number less than 100. For n = 1,2 ,  ..., 10, let f l  = a x g 

and f 2  = b x g. Thus we have 10 gcd problems, all with one field extension m(z), three 

parameters s ,  t and u and three variables X I ,  x2 and xs. Each input polynomial is of degree 

2n in each variable X I ,  x2,23 and the gcd g = gcd(fl, f2) is of degree n in each variable. 

SparseModGcd 
0.170 
0.359 
0.662 
1.164 
1.868 
2.938 
4.476 
6.512 
9.187 
12.611 

ModGcd 
0.50 
2.30 
7.94 

23.57 
60.54 
139.9 

301.58 
602.765 
> 2000 

NA 

Table 3.1: Timings (in CPU seconds) of SparseModGcd compared to ModGcd on the first 
set of problems SPARSE-1 (NA means not attempted) 

Table 3.1 shows the running time comparison between SparseModGcd and ModGcd 

algorithms. Since the gcd g in this case is very sparse (g has 6 n  + 3 terms and deg(g) = n 

in any of X I ,  2 2  and x3), a better performance is expected from SparseModGcd. The data 

demonstrates this clearly. 
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SPARSE-2 

Let 

(i) This problem is similar to the previous problem set. Each rjk is a positive random 

number less than 100. For n = 1,2 ,  ..., 10 with fl  = a x g and f2  = b x g, we have 10 gcd 

problems, all with one field extension m(z). This time there are five parameters r, s ,  t ,  u and 

v and four variables XI ,  x2, x3 and x4. Each input polynomial is of degree 2n in the first 

three variables and 2n - 2 in x4. 

SparseModGcd 
0.40 
1.29 
2.40 
4.46 
7.57 
12.51 
20.25 
29.73 
43.03 
61.87 

ModGcd 
8.70 

114.78 
879.26 
> 2000 

NA 
NA 
NA 
NA 
NA 
NA 

Table 3.2: Timings (in CPU seconds) of SparseModGcd compared to ModGcd on the second 
set of problems SPARSE-2 (NA means not attempted) 

Table 3.2 illustrates the running time comparison of the two algorithms. Again Sparse- 

ModGcd has a better performance compared to ModGcd, which is expected because g = 
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gcd(fl, f2) is sparse. But since there are more variables and more parameters in this exam- 

ple, the exponential running time of ModGcd results in it being even less competitive with 

SparseModGcd. 

DENSE-I 

Let m(z) = z2 - sz - 3. Suppose g, a and b are three randomly chosen polynomials in 

variables XI ,  x2, s and z of total degree n which are dense. That is the term zf' z$ sd3 zd4 

with dl + d2 + dg + dq 5 n is present in each of these three polynomials. This means that 

each of them has exactly Cr=o (ny) number of terms. 

For n = 1,2, ..., 10,15, let fl = g x a and f2 = g x b. Since in this set of problems the 

gcd g is dense, ModGcd algorithm is expected to perform better. 

SparseModGcd 
0.033 
0.072 
0.151 
0.313 
0.498 
0.921 
1.584 
2.527 
4.191 
7.704 

62.758 

ModGcd 
0.029 
0.058 
0.141 
0.307 
0.557 
1.272 
2.091 
3.244 
5.024 
7.437 
50.228 

Table 3.3: Timings (in CPU seconds) of SparseModGcd compared to ModGcd on the fourth 
set of problems DENSE-1 

Table 3.3 shows the running times of both ModGcd and SparseModGcd algorithms for 

this set of problems. 

In this problem set the input polynomials are the same as SPARSE-1, but there are two 

field extensions ml(zl) = zf - sz: - t2zl - 5 - 3u and m2(z2) = 222 - zzzl + sz2 + 3t - u. 

The timings for SparseModGcd algorithm on this problem set are shown in Table 3.4. 



Table 3.4: Timings (in C'PU sccontls) of Sparsch4odGcd compared to SIodGcd on the fifth 
sct of problcins SPARSE-3 

The inininla1 polq-nomials in this sct of pxoblcms are thc same as SPARSE-3. Let 

Hcre PI: P2 and p3 arc three raadom polynonlids in {.XI, rs, :cs, s, t: u: 21 , DL}. For n = 

1: 2, ..., 10: lct f l  = (1, x g arid f 2  = b x g. WC havc run SparscModGcd algoxithrn 100 times 

for cach n arid UT have ci1~0111ltcrcd 110 bad pximcs, 110 bad cvahmtion point,s, no 1in111cky 

prirncs, no nnlucky c w l u a t i o ~ ~  points, no zcxo divisors, no unlucky contcnts :md no missing 

t,erms. We used this command in h4aplc 10: 

> ml := z1^3-s*z1^2-t^2*~1-5-3*~; 

> m2 := z2^2-z2*zl+s*z2+3*t-u; 

> g : = s*xl^n+t*x2^n+u*x3^n+randpoly ( [XI ,x2 ,x3, s, t ,u, zI,z21 , terms=50, degree=n) ; 

> a : = t*xl^n+u*x2^n+s*x3^n+randpoly ( [XI ,x2,x3,s,t ,u,z1 ,221 , terms=50, degree=n) ; 
> b := u*xl^n+s*x2^n+t*x3^n+randpoly( [xl ,x2,x3, s ,t ,u,21,221 , terms=50, degree=n) ; 

> f 1 := expand(g*a) ; f2 := expand(g*b) ; 

So Pl; P2 and P3 have two digits rantlorn integer coefficients. 
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Summary 

We have designed and implemented SparseModGcd, a sparse modular GCD algorithm for 

polynomials over algebraic function fields based on ModGcd algorithm which is presented 

by Monagan, van Hoeij in [lo]. In contrast to ModGcd, SparseModGcd uses Zippel's sparse 

interpolation algorithm, so it is much more efficient for polynomials with a sparse gcd. 

Moreover it can be used in the case where there are multiple field extensions to the algebraic 

function field. 

ModGcd and accordingly SparseModGcd are extensions of the modular GCD algorithm 

of Brown for Z[xl, ..., x,] and Encarnacion for Q(a) [XI to function fields. In these algo- 

rithms, we first try to find some images of the gcd modulo a series of prime numbers using 

an interpolation algorithm, and then apply the Chinese remainder theorem to compute the 

actual gcd. ModGcd uses dense interpolation but SparseModGcd uses both dense interpo- 

lation (for finding the first image) and sparse interpolation. As a result, SparseModGcd has 

a better performance when g = gcd(fi, f2) is sparse. Zippel's sparse interpolation however 

only works when the gcd is monic, i.e., when the leading coefficient of the gcd is 1. To over- 

come this problem, we use the multiple scaling factors idea, which is presented by Wittkopf 

et al. in [4]. Furthermore, to speed up the algorithm, our implementation uses Monagan's 

maximal quotient rational function reconstruction. 

Finally, to demonstrate the efficiency of our algorithm, we have compared the Maple 

implementation of ModGcd with our Maple implementation of SparseModGcd on three 

problem sets. As expected, SparseModGcd turned out to have a much better performance 

on the problem sets which contain two input polynomials with a sparse gcd. 

One future extension point is to parallelize the SparseModGcd algorithm, so that it can 
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compute two or more images simultaneously. This could increase the performance of the 

algorithm significantly, since in most cases more than sixty percent of the running time of 

the algorithm is spent on univariate gcd computation. 

Another improvement to our algorithm is to speed up the implementation of the Eu- 

clidean algorithm by coding it in C. 

Finally, we are planning to put the implementation of SparseModGcd in the next release 

of Maple. 



Appendix A 

Maple Implement at ion of 

SparseModGcd algorithm 

# Code is available on http: / /www.sfu.ca/"s javadi /SparseModGcd/ 

# Input: fl, f 2 .  

# Output: g, where g is the monic gcd of fl and f2. 

GCD := proc(f 1 , f2) 
local R,ml,zl,g,ffl,ff2,i,lR; 

R := [op(indets([fl,f2] ,RootOf))]; 

if nops(R) = 0 then return primpart(gcd(f1 , f2)); fi; 

R := sort(R, proc(x,y) evalb(length(x1 < length(y1) end proc); 

ml , zl := RootConvert(R , 1); 
ffl := fl; 

ff2 := f2; 

1R := R; 

for i from 1 to nops(1R) do 

ffl := SUES(R[i] = zl[i] , ffl); 
ff2 := SUBS(R[i] = zl[i] , ff2); 
R : = SUBS (R [i] = zl [i] , R) ; 

od; 

g := ModGcd(expand(ff1) ,expand(ff2) ,ml,zl) ; 

if g = "failed" then return g; fi; 

g := RConvert (g , zl , 1R) ; 
return g; 



APPENDIX A. MAPLE IMPLEMENTATION OF SPARSEMODGCD ALGORITHM 53 

end : 

macro ( 

EVALSUBS = evalsubs , 
MATRIXSOLVE = mSolve , 
MCHREM = mgcd-chrem, 

IRATRECON = n-iratrecon , 
MDIV = MTrialDivision, 

CONTENT = mContent , 
EVAL = Phi, 

PCHREM = pgcd-chrem, 

RATRECON = nRatrecon, 

PDIV = PTrialDivision, 

EUCLID = euclidean, 

SUBS = subs 

1 : 
# Uses recden package. 

# See http://unuw.cecrn.sfu.ca/CAG/code/NGCD/recden 

euclidean := proc (fl, f2, vl, p, ml) 

local rl , r2 , g , tt; 
rl := rpoly(f1 , vl , ml, p); 
r2 : = rpoly (f 2 , vl , ml, p) ; 
g := traperror(gcdrpoly(r1 , r2)); 
if g=lasterror then return "failed" fi; 

g := rpoly(g) ; 

return g; 

end : 

evalsubs : = module (1 
option package; 

export initialize, substitute; 

local MA,MB,CA,CB,NA,NB,RA,RB,CML,NM,NML,MR; 

initialize := proc(a,b,vzl,zl,dat-t,ml,p) 

local MNM; 

CA:=[coeffs(a,vzl,'~~')] ;MA:=[MA] ;~~:=nops(CA);CA:=Vector(CA); 

CB:=[coeffs(b,vzl, 'MB')] ;MB:=[MB] ;~B:=nops(CB);CB:=Vector(CB); 

RA := Create(p, NA, 0, 0, dat-t); RB := Create(p, NB, 0, 0, dat-t); 

CML:=map(proc(m) cm:=coef f s(m,zl, 'MM') ; return [[cm] , [MM] 1 ; end,ml) ; 
NM : = nops (ml) ; 
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NML := map(proc(m) nops (mC11) end proc , CML) ; 
MNM : = max (op (NML) ) ; 

MR := Create(p,NM,MNM,O,dat-t); 

end : 

substitute := proc(tt ,p) 

local nml,na,nb,i; 

Mod(p,CA,tt,RA) ; 

Mod(p,CB,tt ,RB) ; 

na := add(RA[i]*MACi] , i = l..NA); 

nb := add(RB[i]*MB[i], i = l..NB); 

nml : = C1 ; 
Mod(p,CMLCl. .NM,l] ,tt,MR); 

for i from I to NM do 

nml := [op(nml) , add(MR[i, j]*C~~[i,2, j] , j= 1. .NML[i] )] ; 

od; 

return na,nb,nml; 

end : 

end module: 

MQRR := proc(u,m,MQ,NN,DD,p) 

local to, ti, q, rO, rl, r, n, d , B, dq,L,x; 
if modpl (Degree(m) , p) <= MQ then return false; f i; 

x : = modpi (~ndeterminate (u) ,p) ; 

rl := modpl(Rem(u,m) , p); 
to := modpl (Zero(x) , p) ; 
rO := m; 

ti := modpI(One(x) , p) ; 
B := MQ; 

while modpl (Degree(r1) ,p) >=O and modpi (Degree (r0) ,p) >B do 

q := modpi(Quo(rO,rl, 'r') ,p); 

dq := modpl(Degree(q) , p) ; 
if dq >= B then (n,d,B) := (rl,tl,dq); fi; 

(rO,rl,tO,tl) := (r1,r,tl,modpl('~ubtractJ (t~,'~ultiply'(q,tI)),p)); 

od; 

if not assigned(n) then return false; fi; 

if modpl(Degree(Gcd(n,d)),p) > 0 then return false; fi; 

L := modpi (Lcoef f (dl , p) ; 
if not L = I then 
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L : = modpi (constant (l/L mod p ,x) ,p) ; 

d := modpl(Multiply(L,d) , p) ; 
n := modpl(Multiply(L,n) , p) ; 

f i; 

NN,DD := n,d; 

true ; 

end : 

myRatrecon := proc(U,M,x,MQ,p) 

global lastlnonomial; 

local y,c,tt,n,i,r,NN,DD,u,m , nn,dd; 
y := indets(U,name) minus {x); 

if nops(y) > 0 then 

c := coeffs(U,y,'tt'); 

c := LC]; tt := [ttl; n := nops(c>; 

if member(lastmonomial,tt,'i') then else i := n fi; 

to n do 

r[i] := my~atrecon(c[i] ,M,x,MQ ,p); 

if r [i] = FAIL then lastlnonomial := tt [i] ; return FAIL; f i; 

if i = I then i := n else i := i-1 fi; 

od; 

return add(r [i] *tt [i] , i=l . .n) ; 
fi; 

u := modpi (Convert~n(expand(U) mod p,x) ,p) ; 

m : = modpl (ConvertIn(expand(M) mod p, x) ,p) ; 

if MQRR(u,m,MQ,NN,DD,p) then 

nn := modpl(ConvertOut(NN,x),p) mod p; 

dd := modpl (Convertout (DD,~) ,P) mod p; 

return nn/dd; 

fi; 

FAIL; 

end : 

mSolve := module0 

option package; 

export constructmatrix , solve-system; 
local M, matrixsize, sz; 

constructlnatrix := proc(gl,pl,coft,p,nt,maxu,mn,dat-t,vzl,termlength) 

local zero-counter,i,RA,gcoeffs,j,gt,NA; 
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s z  : = mn + (nt*maxu) ; 

matrix-size := add(termlengthCi.1 , i = I .  .nops(termlength))  ; 

zero-counter := 0; i := I ;  

RA := Create(p,nt,maxu,O,dat-t); 

Mod(p, cof t , p l  [il ,RA) ; 

M := Matrix(sz,mn + matrix-size , datatype = dat- t)  ; 

gcoef f s : = Ccoef f s(expand(g1 [I] ) , vzl ) ]  ; 

f o r  j from 1 t o  n t  do 

g t  := gcoeffsCj1; 

M[j ,zero-counter+l.  .zero-counter+termlength[j]l := R A C j  , 

I . .  termlengthCj11 ; 

M[j,-I] := g t ;  

zero-counter : = zero-counter + t e rmleng th  [j] ; 

od; 

f o r  i from 2 t o  mn do 

Mod(p, co f t  , p l  Cil ,RA) ; 

zero-counter := 0 ;  

gcoeff s := Ccoeff s(expand(g1 Cil) , vzl ) ]  ; 

f o r  j from I t o  n t  do 

g t  := g c o e f f s [ j l ;  

NA := ( i - l )*n t  + j ;  

i f  (NA > sz)  then break; f i ;  

M [NA,zero-counter+l . . zero-counter+termlength [j]] :=RA [ j  , 
I .  . termlengthCj11 ; 

M[NA , i - mn - 21 := g t ;  

zero-counter := zero-counter + term-length Cj] ; 

od ; 

od; 

end : 

solve-system := proc (p,dat- t  ,mn) 

l o c a l  s o l ;  

s o l  : = M o d ( p ,  M ,  da t - t ) ;  

~ow~educe(p,sol,sz,matrixsize+mn,matrixsize+mn,0,0,0,0,'1~~~0~',true); 

i f  INCROW <> 0 then r e t u r n  "Bad_FormI1 ; f i ;  

r e t u r n  s o l  [ I .  . sz , m a t r i x s i z e  + mn] ; 

end : 

end module: 
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nRatrecon := proc(G,mc ,t ,p) 

myRatrecon(G,mc ,t ,2,p) ; 

end : 

n-iratrecon : = proc (G,mc) 

iratrecon(G,mc) ; 

end : 

PrimitiveAssociate := proc(f , s) 
local opf , den; 
den : = denom(f ) ; 

if op(0 , f) = ' * '  then return primpart(expand(den*f) , s); fi; 

opf := [op(f)l; 

primpart (expand(add(expand(den*opf [i] ) , i=1 . . nops (opf) ) ) , s) ; 
end : 

lcbadP := proc(f 1, f 2, ml, p, x, zl) 

local lm, 11, 12,lml; 

lml := map(proc(mi,zi) lcoeff (mi , zi) end proc , ml , zl); 
11 := lcoeff(f1, x); 

12 := lcoeff(f2, x); 

for lm in lml do if lm mod p = 0 then return true; fi; od; 

if (11 mod p = 0) or (12 mod p = 0) then return true; fi; 

false ; 

end : 

#MBM 

Phi := proc(f ,t,z,p) local d,s,i,n; 

# Compute eval(f,t=z) mod p efficiently 

if type(f,integer) then return f mod p fi; 

d := degree(f ,t) ; s := series(f ,t ,d+l) ; n := nops(s) ; 

# Because 0 0 is undefined, we need to test for z=0 directly 

if z=0 then coeff (s,t ,0) else 

add( op(2*i-1,s) * modp(z &- op(2*i,s),p), i=l..n/2 ) mod p; 

fi; 

end : 

lcbadEP := proc(f1, f2, ml, p, alpha, t, x, zl) 

local lm , 11, 12,lml; 
lml := map(~roc (mi, zi) lcoef f (mi , zi) end proc , ml , zl) ; 
11 := lcoeff(f1, x); 

12 := lcoeff(f2, x); 
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for lm in lml do 

if EVAL(1m , t ,alpha,p) = 0 then return true; f i; 

od; 

if EVAL(11 , t , alpha,p) = 0 then return true; fi; 

if EVAL(12 , t , alpha,p) = 0 then return true; fi; 

false; 

end : 

MTrialDivision := proc(A, B, M1 , zl , x , Q : :  name) 

local a,b,m,n,dl,ca,cb,tl,lb,lml,r,lr,g,t~,~q,c,bl,t,~,d,~~,~~,~,~,p; 

m : = degree (A , x) ; 
n := degree(B , x); 
dl := map (proc(mi,zi) degree(mi , zi) end proc ,M1 , zl) ; 
ca := content(A , [x,op(zl)l); 
cb := content(B , [x,op(zl)l) ; 

divide(A , ca , 'a') ; 
divide(B , cb , 'b') ; 
lb := lcoeff(b , x); 
lml := map(proc(mi,zi) lcoeff (mi , zi) end proc , M1 , zl) ; 
r := a; s := I; q := 0; 

while (r <> 0) and (m >= n) do 

lr := lcoeff(r , x); 
g := gcd(content (lr , zl) , lb) ; 
divide(1r , g , 'lrJ); 
divide(1b , g , 'ti'); 
s := expand(tl*s); 

t := expand(1r * x- (m-n)); 
divide(t, s , 't2'); 
q := expand(q + t2); 

r := expand(tl*r - t*b); 
p := I; 

for i from I to nops(M1) do 

d := dl[i]; 

lm := lml [i] ; 

zz : = zl [il ; 

while (r <> 0) and (degree(r , zz) >= d) do 

lr : = lcoef f (r , zz) ; 
g := gcd(content (lr , x) , lm) ; 
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divide(1r , g , 'lr7); 
t := expand(lr*zz- (degree(r , zz) - d)) ; 

divide(1m , g , 't2'); 
p := expand(p * t2); 
r := expand(t2*r - t*Ml[i]); 

od; 

od; 

s := s * p; 
m := degree(r , x); 

od; 

if r <> 0 then return false f i; 

bl := divide(ca , cb , 'cq'); 
if not bl then return false fi; 

if nargs > 5 then Q := expand(cq*q); fi; 

return true ; 

end : 

PTrialDivision := proc(A, B,Ml,zl, x , p) 
local a,b,m,n,d,ca,cb,tl,lb,lm,r,lr,g,t2,cq,c,bl,t,lml,dl,zz,i; 

m : = degree(A , x) ; 
n : = degree (B , x) ; 
dl := map (proc(mi,zi) degree(mi , zi) end proc,Ml , 21); 
a := A; b := B; 

lb := lcoeff(b , x); 

lml := map(proc(mi,zi) lcoeff (mi , zi) end proc , M1 , zl) ; 
r := a; 

while (r <> 0) and (m >= n) do 

lr := lcoeff(r , x); 
g := Gcd(Content(1r , zl) mod p , lb) mod p; 
if g <> I then 

Divide(1r , g , 'lr') mod p; 

Divide(1b , g , 'ti') mod p; 

else ti := lb; 

fi; 

t := expand(1r * x- (m-n)) mod p; 

r := expand(tl*r - t*b) mod p; 
for i from I to nops(M1) do 

d := dl[i]; 
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lm : = lml [il ; 

zz : = zl [il ; 

while (r <> 0) and (degree(r , zz) >= d) do 

lr : = lcoeff (r , zz) ; 
g := Gcd(Content(1r , x) mod p, lm) mod p; 

if g <> 1 then Divide(1r , g , 'lr') mod p; fi; 
t := 1r*zzA (degree(r , zz) - d) ; 
if g <> 1 then Divide(1m , g , 't2') mod p; else t2 := lm; fi; 

r := expand(t2*r - t*Ml[i]) mod p; 

od; 

od ; 

m := degree(r , x); 
od; 

if r <> 0 then return false; f i; 
return true; 

end : 

MinIndex := proc(1) 

local m; 

if nops(1) = 1 then return 1; f i; 

m := MinIndex(lC2. .-I]) + 1; 

if 1 [m] > 1 [I] then return 1 else return m; fi; 

end : 

mContent := proc(f , x , ml , zl ) 
local cl,dl,mindex , fl,bound,rgen,f2,i,r,g,k; 
if type(f , list) then 

cl := [coeffs(f [I] ,x) ,coeffs(f 121 ,x)l ; 

else 

cl := [coeff s(f , x)] ; 

f i; 

if nops(c1) = I then return cl[l]; fi; 

dl := map(degree , cl) ; 
mindex := MinIndex(d1); 

f 1 : = cl [mindex] ; 

bound := 10- 2; 

rgen : = rand (-bound. . bound) ; 
f2 := 0; 

for i from 1 to nops(c1) do 
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if i = mindex then next ; f i ; 

r := rgeno; 

f2 := f2 + r*cl[i]; 

od; 

f2 := expand(f2); 

g :=~odGcd(fl, f 2 ,  ml, zl); 

if g = "failed" or g = I then return 1; fi; 

k := 0; 

while k < nops (cl) do 
k := k + I; 

if k = mindex then next ; f i ; 

if not MTrialDivision(cl[kl, g, ml , zl , x) then 
g : = ModGcd(f 1 , cl [kl , ml , zl) ; 
if g = "failed" or g = I then return I ;  fi; 

k := 0; 

f i; 

end : 

return g; 

end : 

RConvert := proc(e , zl , al) 
local i , m; 
m := e; 

for i from I to nops(a1) do m := SUBS(z1 [il = al[il , m) ; od; 

m; 

end : 

Rootconvert := proc(r1 , n) 
local v,sn,ml,m,rln,vl; 

ml := [I; 
m := O~(SUBS(Z=Z[~] , rl[lI)); 

if nops(r1) = I then return [m], [z[n]] ; 

fi; 

rln : = map(proc (x) SUBS (rl [I] =z [n] ,x) end proc , rl[2. .-I] ) ; 
rln , vl := RootConvert(r1n , n + I); 

return [op(rln> ,ml , [op(vl) , z Cnl I ; 

end : 

SparseInterp := proc(A , B , pattern , x, tl , zl, ml, p) 
local a,b,maxu,r,c,t,v,nt,k,i,l,temp,pl,gl,tt,na,nb,g,~,gt,re~,M,~~~,~~ft 
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,pat,mn,j,nml,coftnm,coft~cnt,matrixsize,termlength,sz,vzl,dat~t 

,z,u,dpatx,dax,dbx,dmlx,patnt,gnt,dl; 

k := nops(t1); 

if (k < 1) then return EUCLID(A,B, [x,op(zl)] ,p,ml) ; f i; 

a , b := A , B; pat := pattern; 

r := rand(l..p - 1); 

v := x; 1 := tl; 

c := [coeffs(pat, [v , op(zl)] , 't')]; t := [t]; 

coft-cnt := 0; maxu := 0; coft := [I; coftnm := LO]; 

nt := nops(t) ; 

for i from 1 to nt - 1 do 
coeffs(c[i], 1 , 'temp'); 
coft := [op(coft) , [temp]]; 
maxu : = max (maxu , nops ( [temp] ) ) ; 
cof t-cnt : = cof t-cnt + nops ( [temp] ) ; 

coftnm := [op(coftnm) , coft-cnt] ; 
od; 

coeffs(c[-I], 1 , 'temp'); 
coft := [op(coft) , [temp]]; 
patnt := nops(c); 

if patmt = 1 then 

mn := maxu + I 

else 

mn := maxu + ceil(maxu / (patmt - 1)); 
fi; 

pl := [I; gl := [I; 
vzl := [v,op(zl)l; 

if p < 10 ' 6 then dat-t :=integer [4] ; else dat-t : =integer [8] ; f i; 

EVALSUBS [: - initialize] (a,b,vzl ,zl ,dat-t ,ml ,p) ; 

z := 0; u := 0; 

dpatx : = degree (pat, x) ; 

dax , dbx := degree(a , x) , degree(b , x); 
dmlx := map(degree , ml , x); 
while nops (pl) < mn do 

tt := {seq(v = r 0  , v = op(1)) ); 

if member (tt , {op(pl))) then next ; f i ; 

na,nb,nml := EVALSUBS [: - substitute] (tt ,p) ; 
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i f  dax < degree(na , x) o r  dbx < degree(nb , x) then next ;  f i ;  

d l  : = map(degree , nml , x) ; 
i f  evalb(d1 <> dmlx) then next ;  f i ;  

g := EUCLID(na , nb ,vz l  ,p,nml) ; 

i f  g = " f a i l e d "  then 

z := z + 1 ;  

i f  nops (g l )  + 1 < z then r e tu rn  "ZeroDivisorPrime" ; f i ;  

next ; 

f i ;  

i f  degree(g , x) < dpatx then 

r e tu rn  "Bad_Form" ; 

e l i f  degree(g , x) > dpatx then 

u := u + 1 ;  

i f  nops(g1) + 1 < u then r e tu rn  "UNLUCKY"; f i ;  

next ; 

f i ;  

gnt  := nops([coeffs(expand(g) , [ v , o p ( z l > l > l > ;  

i f  gnt > p a t n t  then 

r e tu rn  "Bad_Form" ; 

f i ;  

p l  := Cop(p l ) , t t l ;  

g l  : = Cop(g1) ,gl ; 

od ; 

term-length := map(nops , c o f t ) ;  

MATRIXSOLVE [:-constructmatrix](gl,pl,coft,p,nt,maxu,m,dat~t,vzl, 

t e rmlength)  ; 

s o l  : =MATRIXSOLVE [ :  -solvesystem] (p ,  dat-t  , m )  ; 

res:=add(add(coft [i] [ j ] * s o l [ c o f t m [ i ] + j ]  , j=l.  . te rmlength[ i l  )*t  [i] , 

i=l. .n t )  ; 

i f  r e s  = 0 then print("ZERO_ERROR"); r e tu rn  "BadJorm"; f i ;  

r e tu rn  r e s ;  

end : 

mgcd-chrem := proc(Gl,mcl,g,p) 

l o c a l  In,v,G,mc; 

G,mc := GI, mcl; 

I n  := l/mc mod p ;  

v := In*(g-G) mod p ;  
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G := G + mc*v; 

mc := mc * p; 
G,mc; 

end : 

pgcd-chrem := proc(Gl,mcl,g,alpha,t,p) 

local delta,In,v,G,mc; 

G,mc := GI, mcl; 

delta := EVAL(G , t , alpha,p) ; 
In := Rem(mc,t-alpha,t); 

In := 1/In mod p; 

v := In*(g-delta) mod p; 

G := G + expand( v*mc) mod p; 

mc := expand((t-alpha)*mc) mod p; 

G,mc; 

end : 

# Input: fi ,f2 and the list of minimal polynomials. 
# Output: g, where g is the gcd of fi and f2. 

MGCD := proc(f1, f2, ml, zl, x ,  t1,vl) 

local pbound , pgen, p , n,d, g, G, mc, h,i,Q,tt,pat, LM, LC,GT; 
pbound := modpl(Prime(l))+l; 

p := 1; n := 1; d := 1; 

pat := 0; 

while true do 

p : = modpl (Prime (p) ) ; 

while lcbadP(fl,f2,ml,p,x,zl) do p := modpl(Prime(p)); od; 

g := PGCD(f1, f2, p, ml , zl , x , tl,vl,pat); 

If g = "contfailed" then next; fi; 

If g = "ZeroDivisorPrimel' or g = "Unlucky" then next; fi; 

If g = "BadIorm" then pat := 0; next; fi; 

if g <> "failed" then 

if g = 1 then return 1; fi; 

LC := lcoeff (g, [x,op(tl)l, 'LMJ); 

if not assigned(GT [LM] ) then 

G := expand(g); 

mc := p; 

GT[LM] := G,mc; 

elif degree(g,x) < degree(G,x) then 
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G := g; 

mc := p; 

pat := g; 

GTCLM] := G,mc; 

elif degree(g,x) > degree(G,x) then 

next ; 

else 

G,mc := MCHREM(GT[LM] ,g,p); 

GTCLM] := G,mc; 

fi; 

n := n + 1; 

h : = IRATRECON(G ,mc) ; 

if h <> FAIL then 

h := ~rimitiveAssociate(h, {op(zl) ,x)) ; 

pat := g; 

if MDIV(f I, h, ml, zl, x) and MDIV(f2, h, ml, zl , x) then 
return h; 

fi; 

else pat := g; fi; 

f i; 

else 

d := d + 1; 

if d > n then return "failed"; fi; 

pat := 0; 

f i; 

od; 

end : 

# Input: f l , f i , p ,  the list of minimal polynomials and the assumed form. 

# Output: Either g or an error message if the algorithm fails to compute the gcd. 

PGCD := proc(f1 , f2, p, ml, zl, x, tl , vl , pat) 
local k,G,n,d,alpha,rg,t,cml,ffl,ff2,g,h,mc,c,tt,eg,i,LC,LM,ptr,D,E,F,GT; 

if CONTENT([f 1 ,f2] , [op(l. .-2,tl) ,op(vl)] , ml , zl) <> 1 then return "contfailed"; fi; 

k : = nops(t1) ; 

if k = 0 then return EUCLID(fl,f2,vl,p,ml); fi; 

if (pat = 0) then 

n :=I; d :=I; 

rg := rand(1. .p-1) ; 
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t := tlCkl; 

alpha := r g 0 ;  

while lcbad~~(f1, f2, ml, p, alpha, t, x, zl) do 

alpha := rg0; 

od; 

ffl := ~vAL(f1 , t , alpha , p); 
ff2 := ~vAL(f2 , t , alpha , p); 
cml : = map (proc (m) EVAL (m, t ,alpha, p) ; end proc , ml) ; 
ptr := PGCD(ff1, ff2, p, cml, zl, x, tl[l..k-11 , ~ 1 ~ 0 ) ;  
if ptr = "contfailed" then return "contfailed"; fi; 

if ptr = "ZeroDivisor-rimen or ptr = "failed" then return "ZeroDivisorPrime"; fi; 

if ptr = I then return I fi; 

while true do 

alpha := r g 0 ;  

while lcbadEP(f1, f2, ml, p, alpha, t, x, zl) do alpha := r g o ;  od; 

cml : = map(proc (m) EVAL(m, t , alpha,p) ; end proc , ml) ; 
ffl := EVAL(f1 , t , alpha , p); 
ff2 :=~vAL(f2, t , alpha, p); 
g := SparseInterp(ffl,ff2,ptr,x,tl[l. .k-I] ,zl,cml,p); 

if g = "BadIorm" then 

return PGCD(f1 , f2, p, ml, zl, x, tl , vl , 0); 
f i; 

if g = "failed" then 

d := d + I; 

if d > n then return "ZeroDivisorPrime" fi; 

else 

LC := lcoeff (g, [x,op(tl)], 'LM') ; 

LC := l/LC mod p; 

g : = g*LC mod p; 

fi; 

if g <> "failed" and g <> "Unlucky" then 

if g = I then return I ; f i ; 

if not assigned(GT [LM] ) then 

G : = expand($ mod p; 

mc := t - alpha; 
GTCLM] := G,mc; 

elif degree(g,x) < degree(G,x) then 
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ptr := g; 

G := g; 

mc := p; 

GT[LM] := G,mc; 

elif degree(g,x) > degree(G,x) then 

next ; 

else 

G,mc := PCHREM(GT[LM~ ,g,alpha,t,p); 

GT[LM] := G,mc; 

fi; 

n := n + I; 

h := RATRECON(G,mc,t,p); 

if h <> FAIL then 

h : = PrimitiveAssociate(h, {op(zl) ,x)) ; 

if PDIV(fl,h,ml,zl,x,p) and ~~I~(f2,h,ml,zl,x,p) then 

return h; 

f i; 

fi; 

fi; 

od; 

else 

h := Sparse1nterp(f1 , f2 , pat , x, tl , zl, ml, p); 
if h = "BadIorm" then return "BadIormtl ; f i ; 

LC := lcoeff (h, [x,op(tl)] ,'LM'); 

LC := l/LC mod p; 

h := h*LC mod p; 

return h; 

f i; 

end : 

ModGcd := proc(f I, f2, ml, zl) 

local ma , fla , f2a , x , ntl, c, g, ct, G,R,tl,xl,V,vl; 
V := indets (ml) ; 

tl : = [op(V minus {op(zl)))l; 

xl := [op(indets([fl,f21) minus V)]; 

if nops(x1) = 0 then return I; f i; 

x := xl[ll; 

vl := [x , op(z1)I; 
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ma:=map(proc (m) PrimitiveAssociate (m , [op(zl) ,XI end,ml) ; 

f la := ~rimitive~ssociate(f I , [op(zl) ,XI ) ; 

f 2a := PrimitiveAssociate(f 2 , [op(zl) ,x] ; 

if nops(x1) = I then return MGCD(fla,f2a,ma,zl,x,tl , vl); fi; 
ntl := [op(tl) , op(2..-l,xl)]; 
c :=CONTENT([fl, f21 , x ,  D l ,  A); 

g := MGCD(fla,f2a,ma,zl,x,ntl,vl); 

if g = "failed" then return g; f i; 

ct := CONTENT(g , x , ml , zl); 
MTrialDivision(g, ct, ma , zl , x , 'G'); 
return expand(c*G) ; 

end : 
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