
SPARSE MODULAR GCD ALGORITHM FOR

POLYNOMIALS OVER ALGEBRAIC FUNCTION FIELDS

Seyed Mohammad Mahdi Javadi

B.Sc., Sharif University of Technology, 2004

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F THE REQUlREMENTS FOR THE DEGREE O F

MASTER OF SCIENCE

in the School

of

Computing Science

@ Seyed Mohammad Mahdi Javadi 2006

SIMON FRASER UNIVERSITY

Fall 2006

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Seyed Mohammad Mahdi Javadi

Degree: Master of Science

Title of thesis: Sparse Modular GCD Algorithm for Polynomials over Al-

gebraic Function Fields

Examining Committee: Dr. Andrei Bulatov

Chair

Date Approved:

Dr. Michael Monagan, Senior Supervisor

Dr. Arvind Gupta, Supervisor

Dr. Marni Mishna, Examiner

SIMON FRASER
U H I V E R ~ ~ ~ brary

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the "Institutional Repository" link of the SFU Library website
~www.lib.sfu.ca> at: <http:llir.lib.sfu.calhandlell8921112>) and, without changing
the content, to translate the thesislproject or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2006

Abstract

Let F = Q(t1, ..., tk). For i, 1 <= i <= r, let mi(zl,..,zi) be a monic and irreducible polyno-

mial with coeficients from the field F. Let L = F[zl,..,zr]/ < ml, ..., mr>. L is an algebraic

function field in k parameters t l , ..., tk. Let f l and f2 be two polynomials in L[xl,..,xn] \ (0).

The problem treated here is the computation of a greatest common divisor of f l and f2.

One way of solving the problem is using the ModGcd algorithm of Monagan and van Hoeij

which is an extension of both the modular GCD algorithm of Brown for Z[xl, ..., xn] and

Encarnacion's algorithm for Q(z)[x] to function fields. ModGcd uses dense interpolation

to find the image of the gcd modulo a prime. We introduce the SparseModGcd algorithm

which is a modification of ModGcd and takes advantage of Zippel's sparse interpolation

algorithm. As a result, SparseModGcd has a better performance when g = gcd(fl,f2) is

sparse. SparseModGcd is a Las Vegas algorithm.

Keywords:

Modular Algorithms, Zippel's Sparse Interpolation Algorithm, Polynomial Greatest Com-

mon Divisors.

T o m y dearest parents , Nah id and A h m a d ,

and m y beloved wi fe , M a r y a m

"What we know is a drop, what we don 't know, an ocean."

- Isaac Newton

Acknowledgments

I am mostly grateful to my supervisor Dr. Michael Monagan for his generous support and

invaluable remarks on my work. I am also deeply indebted to him for everything he has

taught me.

I would like to thank my co-supervisor, Dr. Arvind Gupta, for reviewing this thesis.

I would like to give my special thanks to my beloved wife, colleague and best friend,

Maryam, whose love, help and tolerance exceeded all reasonable bounds.

Finally, I wish to thank my parents for their unconditional love, continuous supports

and many sacrifices throughout my life.

Contents

Approval

Abstract

Dedication

Quotation

Acknowledgments

Contents

List of Tables

List of Figures

List of Algorithms

iii

vii

Introduction 1

. 1.1 The Chinese Remainder Theorem 3

1.2 PolynomialInterpolation. 4
. 1.3 Polynomial GCD Computation 4

. 1 .3.1 The Euclidean Pseudo PRS algorithm 4

. 1.3.2 Brown's Modular GCD Algorithm 7

. 1.3.3 Zippel's sparse interpolation 9

. 1.3.4 The GCDHEU Algorithm 10

. 1.4 Rational Number and Function Reconstruction 11

vii

. 1.5 Encarnacion Algorithm 12

2 GCD Computation over Algebraic Function Fields 14

. 2.1 Definition of the Problem 14

. 2.2 Dense Algorithm 15

2.2.1 Unlucky and Bad Primes, Unlucky and Bad Evaluation Points 17

. 2.2.2 Zero Divisors 18

. 2.2.3 Termination Conditions 20

. 2.2.4 Algorithm ModGcd 20

. 2.2.5 Treatment of Zero Divisors 22

. 2.2.6 Trial Divisions 23

. 2.2.7 Multivariate Polynomials and Non-trivial Content 24

. 2.3 Sparse Algorithm 25

. 2.3.1 Sparse Interpolation 25

. 2.3.2 Algorithm SparseModGcd 35

3 Implementation 41

. 3.1 Bottlenecks 41

. 3.1.1 Trial Division 42

. 3.1.2 Rational Function Reconstruction 43

. 3.1.3 Sparse Interpolation 44

. 3.1.4 Univariate Gcd Computation 45

. 3.2 Benchmarks 45

4 Summary 50

A Maple Implementation of SparseModGcd algorithm 52

Bibliography 69

viii

List of Tables

3.1 Timings (in CPU seconds) of SparseModGcd compared to ModGcd on the

first set of problems SPARSE-1 (NA means not attempted) 46

3.2 Timings (in CPU seconds) of SparseModGcd compared to ModGcd on the

second set of problems SPARSE-2 (NA means not attempted) 47

3.3 Timings (in CPU seconds) of SparseModGcd compared to ModGcd on the

fourth set of problems DENSE-1 . 48

3.4 Timings (in CPU seconds) of SparseModGcd compared to ModGcd on the

fifth set of problems SPARSE-3 . 49

List of Figures

2.1 Linear system structure for the multiple scaling case, courtesy of Michael

Monagan. 32

List of Algorithms

Algorithm ModGcd . 20

Trial Division Algorithm . 23

Algorithm SparseModGcd . 35

Chapter 1

Introduction

Computing greatest common divisors is an important tool in computer algebra systems

(e.g. Maple and Mathematica) with many applications such as simplifying fractions of

polynomials and factoring polynomials. Let F be a field and f l , f2 E F [xl, ..., x,] be two

non-zero polynomials. The problem here is to find the greatest common divisor g of f l and

f2 which is the polynomial with highest degree that divides both f l and f2.

Example 1.1. Let f l = (x - l) (x + l)(x3 - 10) and f2 = (x - l) (x + 1)(x2 + 3x - 1). Here

the polynomial x2 - 1 divides both of the input polynomials f l and f2. Also the polynomials

x3 - 10 and x2 + 3x - 1 are irreducible. Hence we have

One of the most important methods for finding the gcd of two univariate polynomials is

the Euclidean algorithm. It uses the fact that

where r is the remainder of f2 divided by f l .

In our previous example, the coefficient field was Q. Our main focus in this thesis is

finding the gcd of two polynomials with coefficients in an algebraic function field.

Example 1.2. Let F = Q(t) and m(z) = z2 - t. Let L = F[z]/ (m(z)). Thus L is an

algebraic function field of degree 2 in one parameter t where z = d. Let

CHAPTER 1. INTRODUCTION 2

be the input polynomials. Here f l , f2 E L[x] . To find the gcd of f l and f2 using the

Euclidean algorithm, we divide f l by f2 to get the remainder

Since gcd(fl, f2) = gcd(f2 , r l) , we now proceed with inputs f2 and r l , but we first make the

remainder rl monic to reduce expression swell (see Example 1.8). That is, we divide r l by

its leading coefficient to obtain

Now we divide f l by x + z and the new remainder 7-2 is 0. This means that we have found

the gcd which is the last remainder, namely

and we are done.

Note that the Euclidean algorithm blows up on larger examples and is not directly

applicable to multivariate polynomials over a field.

In the next sections of this chapter, we will first give a brief description of the Chinese

remainder theorem and polynomial interpolation. Next we describe some known methods

of GCD computation for multivariate polynomials with integer coefficients such as the Eu-

clidean pseudo PRS algorithm, Brown's modular GCD algorithm, Zippel's Sparse Interpo-

lation algorithm and the GCDHEU algorithm of Char, Geddes and Gonnet. Finally, we will

give a brief description of rational number and function reconstruction and Encarnacion's

algorithm for univariate polynomials over a number field.

In Chapter 2 we discuss the problem of polynomial GCD computation over algebraic

function fields. We first present Monagan and van Hoeij's ModGcd which is a dense algo-

rithm and then we introduce SparseModGcd, which is our modification of ModGcd and takes

advantage of sparse interpolation for a fast solution in the case where the input polynomials

are sparse.

The details of our Maple implementation for our SparseModGcd algorithm are described

in Chapter 3. We show how different factors such as rational function reconstruction and

polynomial evaluation can affect the speed of the algorithm. We also present a running time

comparison of the dense and sparse algorithms for different choices of input polynomials.

In the last chapter, we give a summary of what we have done in this thesis.

C H A P T E R 1. I N T R O D U C T I O N

1.1 The Chinese Remainder Theorem

Theorem 1.3. (The Integer Chinese Remainder Theorem) There exists a unique integer

0 5 u < M satisfying

u = u1 mod ml,

u - u, mod m,,

where ml, m2, ..., m, are paimise relatively prime integers with M as their product and each

ui E Zmi i s a specified residue.

Example 1.4. Suppose we want to find the smallest positive integer u such that the set of

congruences {u = 1 mod 2, u - 2 mod 3, u = 3 mod 5, u = 4 mod 7) hold. By solving this

system (there are several algorithms, see [6]) we obtain u = 28.

If each mi < B, e.g. mi is a 32 bit prime number, the cost of integer Chinese remaindering

with n moduli is 0 (n2) using classical algorithms.

For the case where each ui is a polynomial instead of an integer, one way to determine

the solution u from its images is to apply the integer Chinese remainder algorithm (as

mentioned above) on each coefficient separately.

Example 1.5. Suppose we want to find the polynomial u with coefficients less than M

such that

u -- 2x2 + 3x + 1 mod 5,

u - x2 + 62 + 2 mod 7 .

The answer is

for some integers ao, a1 and a2. To compute a2 we need to apply the Chinese remainder

algorithm on the set of images {ull = 2, u2l = 1) (the coefficients of x2 in ul and u2) and

the set of moduli {ml = 5, m2 = 7) . This gives a2 = 22. We do the same thing to find the

other two coefficients a1 and ao. The final answer is u = 22x2 + 132 + 16.

CHAPTER 1. INTRODUCTION 4

Note that to recover negative coefficients, we use the symmetric range, i.e. we seek

solutions for u satisfying - L$] 5 u < ($1. This could be done by first computing the

solution in the positive range and then converting it to the symmetric range. Another

approach is to do all the operations in the symmetric range during Chinese remaindering

algorithm.

1.2 Polynomial Interpolation

Interpolation (in our context) is the process of finding a polynomial, from its images obtained

by evaluating at some sample points (see Gathen and Gergard [Ill).

Theorem 1.6. Suppose that ul , ..., u,, vl, ..., v, i n a field F are given. If ul, ..., u, are

distinct, there exists a unique polynomial f E F [x] of degree less than n such that f (ui) = vi

for all i.

Example 1.7. Suppose that we want to interpolate a polynomial f with deg,(f) = 2. We

need at least three (deg, (f) + 1) images to proceed. Given the following images:

the interpolated polynomial, f , is

To determine f , one can solve a system of n linear equations in 0(n3) time, or use

Lagrange Interpolation or Newton Interpolation which both have complexity 0(n2) .

1.3 Polynomial GCD Computation

In this section we will introduce some known GCD algorithms with a simple example for

each.

1.3.1 The Euclidean Pseudo PRS algorithm

Example 1.8. Suppose we want to find the gcd of the following polynomials

CHAPTER 1. INTRODUCTION

If we try Euclid's algorithm, after the first division we get the first remainder

Now we compute the next remainder

Since 7-2 # 0 we continue the algorithm to get the following sequence of remainders

Since rg = 0, a gcd of fi and f2 is r5. Since a gcd is unique only up to a scalar, gcd(fl, f2) =

1.

This example illustrates that Euclid's algorithm is not efficient since we have to deal

with fractions and the rapidly growing coefficients after each division. We can improve the

efficiency of the algorithm by avoiding the fractions by using pseudo-division.

Definition 1.9. Let fl , f2 E Z[x] with deg(fl) 2 deg(f2) and f2 # 0. Let Ic(f) denote the

leading coefficient o f f . Let d = deg(fl)-deg(f2) +l and m = IC(f2)d. The pseudo-remainder

7 and pseudo-quotient ij of fl divided by f2 are the remainder and quotient, respectively, of

m fi divided by fi. They satisfy m fi = gf2 + F and 7 = 0 or deg(F) < deg(f2). Moreover,

if fi, f2 E Z[x] during the division of m fl by f2, no fractions appear, and r", E Z[x] (not

Q[xI).

Example 1.10. Let f l = 3x2 + 2% + 1 and f 2 = 2x + 1. Here d = 2, m = 22 = 4. Now by

dividing m f l by f2 , we have @ = 6x + 1 and F = 3.

CHAPTER 1. INTRODUCTION

Let prem(a, b) denote the pseudo-remainder of a divided by b.

Definition 1.11. (Brown [I]) For non-zero polynomials f l and f 2 with deg(fl) > deg(f2),

let f 1, f2 , ..., fk be a sequence of nonzero polynomials such that fi = prem(fi-2, fi-1) for

i = 3, ..., k , and prem(fk-1, fk) = 0. Such a sequence is called a pseudo polynomial remainder

sequence (pseudo PRS) .

In the Euclidean pseudo PRS algorithm (see Collins [3]) we use pseudo-division to get

a pseudo PRS. Consider the polynomials from the last example. The pseudo PRS in this

case is

r l = prem(fl, f2) = -279x4 + 224x3 + 462x2 - 252 - 270,

This has resolved the problem with fractions, but the coefficient growth is still a serious

problem. One can see that the length of the coefficients is doubling at each step!

Let cont,(f) be the gcd of the coefficients of f with respect to x and pp,(f) =

f /cont,(f) be the primitive part of f with respect to x. One improvement to the Euclidean

pseudo PRS algorithm is to make the remainder ri primitive at each step, by setting

This is called the primitive Euclidean algorithm. Consider the input polynomials of the last

example. If we run the primitive Euclidean algorithm, we will get the following pseudo PRS

CHAPTER 1. INTRODUCTION

The coefficient growth problem is almost solved for this example. One can show that

the growth is linear in the number of steps. But unfortunately this involves many gcd

computations (for finding the content of ri and making it primitive at each step) which

consequently slows down the algorithm. When computing a gcd in Z[xl, ..., x,], the recursive

gcds to make pseudo-remainders primitive are expensive.

1.3.2 Brown's Modular GCD Algorithm

The best solution to the coefficient growth problem is to use a modular algorithm. A

modular algorithm projects down the problem to finding the answer modulo a sequence of

primes and then builds up the desired answer using the Chinese remainder theorem. Brown's

algorithm (see [I]) is a modular algorithm for finding the gcd of two multivariate polynomials

with coefficients in Z. It also uses polynomial evaluation and interpolation. Since we are

computing the gcd modulo a prime p at each step, the coefficients of the polynomials can

not be greater than p, therefore the coefficient growth problem will never occur. Consider

the following example.

Example 1.12. Suppose we want to find g = gcd(fl, f2) where

Let the first prime pl to be 11. Now we want to compute gl = gcd(fl mod pl, f2 mod pl).

We do this by first evaluating the input polynomials at some evaluation points for y, compute

the corresponding univariate gcd in Zp, [x] using Euclidean algorithm and then interpolate

these images to get gl. Let's take the first evaluation point a1 = 1. We get

fl(a1) mod pl = 7x3 + lox,

f 2 (~ 1) mod pl = x4 + 5x2 + 6, and

hl = gcd(fi(w), f2(a1)) mod pl = x2 + 3.

CHAPTER 1. INTRODUCTION

Let's take the next evaluation point to be a 2 = 2. We compute

f 1 (a z) mod pl = 4x3 + 6x,

f 2 (a 2) mod pl = x4 + 9x2 + 3, and

h2 = gcd(fi (a 2) , f 2 (4) mod pl = x2 + 7.

At this point we interpolate the images hl and h2 to see if we can get gl. The output of the

interpolation is

h = x2 + 4y + 10.

Since hl f l mod pi and hlf2 mod pl , we conclude that

Now we choose the next prime p2 to be 13 say. Suppose that g2 = gcd(fl mod p2, f2 mod p2).

Similar to how we computed gl, we can easily compute

Now applying the Chinese Remainder theorem to the images gl and g2 we compute a

candidate g' for g, the gcd we are seeking. Because in our example g is monic, if this

candidate divides both of the input polynomials, then it is equal to g and we are done,

otherwise we need to choose another prime p3 and keep going until we get a candidate

which divides both f l and f2. Applying the Chinese remainder theorem results in

Since g'l f and gflf2 we conclude that

and we are done.

There are many details to this algorithm such as the treatment for unlucky and bad

evaluation points, unlucky and bad primes and the leading coefficient construction to make

the described idea work in all cases and work efficiently. We postpone this to Chapter 2.

CHAPTER 1. INTRODUCTION

1.3.3 Zippel's sparse interpolation

In Brown's modular GCD algorithm, we first find the images of the gcd modulo a sequence

of primes, and then recover the actual gcd from these images using the Chinese remainder

theorem. Brown's algorithm will take exponential time in n to interpolate l+xf+x$+ ...+ x i ,

even though this polynomial has only n + 1 terms. Because sparse polynomials occur quite

frequently in practice, several algorithms with time complexity polynomial in d, n and t

where t is the number of terms of g have been developed. Zippel in [16] (see also [17] for a

more accessible reference) presented a new algorithm, which is basically the same as Brown's

algorithm except that after computing the first image gl = g mod pl we know the f o m of

the actual gcd. That is we know which terms are present in g, assuming that gl is of the

correct form. Now for computing g2 = g mod p2 we only need to find the coefficients for

terms in our assumed form of the gcd corresponding to g2. Consider the following example.

Example 1.13. Suppose the two input polynomials are

Let's choose the first prime pl = 11. If we compute gl = gcd(f l , f2) mod pl we get

Now let's take the second prime p2 to be 13. Assuming that gl is of correct form, we have

2 2 92 = gcd(fl,f2) mod p:! = AX^ + (Byz + CZ) X + D ~ Z ~ X + E

for some constants A, B, C, D and E. To find these constants we compute some univariate

gcds in order to obtain some linear equations. Take the first evaluation point a1 = (y =

1 ,z = 1). We have

If we plug in the first evaluation point a1 into our assumed form for the gcd we get

F'rom this we get the following linear equations modulo 13

CHAPTER 1. INTRODUCTION 10

We still don't know the exact values of B and C so we need another image. Take the second

evaluation point a 2 = (y = 2, z = 3), After evaluating f l and f 2 at the new evaluation point

and computing the univariate image we obtain

h2 = gcd(fi (aa), f2 (a2)) mod p2 = x3 + 12x2 + 72 + 1.

Again we plug in the second evaluation point a 2 into the assumed form for the gcd to get:

So we have

6B + 9C = 12 mod 13.

From this equation, and the equation B + C = 3 we find that B = 5 mod 13 and C =

11 mod 13. This means that

2 2 2 2 g2 = AX^ + (Byz + Cz)x + Dyz2x + E = x3 + (5yz + 11z)x + 4yz2x + 1.

Since g21 f l mod 13 and g21 f2 mod 13, we conclude that g2 = gcd(f l , f2) mod pa. We can

find other images of the gcd using the same method as above. If we had used pl = 11 then

the method would fail because the term 11z2x2 would vanish.

1.3.4 The GCDHEU Algorithm

GCDHEU is another GCD algorithm which was first introduced by Char, Geddes and

Gonnet (see [2]). The name GCDHEU stands for Heuristic GCD. Suppose we want to find

the gcd g of two univariate polynomials f l , f2 E Z[x]. Let y = max(yl, y2) where yl and y2

are the biggest coefficients in f l and f 2 respectively. Probably, the maximum coefficient of

g is less than y. Now we take an evaluation point 5 such that 5 > 2/71 and evaluate both

of the input polynomials at this point to get fl((), f2(5) E Z. Next we compute the integer

gcd of f l (0 and f2(5) to get

h = gcd(fi(f), f2(J)).

The idea is to recover g E Z[x] from the integer h. We illustrate this with an example.

Example 1.14. Let

fi = 6x4 + 21x3 + 38x2 + 332 + 14,

CHAPTER 1. INTRODUCTION

Let's take the evaluation point J = 1000. We obtain

Notice how the coefficients of f l and f2 appear in the evaluations. Next we calculate the

integer gcd of fl(J = 1000) and fl(J = 1000) (using the Euclidean algorithm) to get

Notice that this corresponds to the polynomial h = 6x2 + 12x + 14 with x = 1000. If we

divide h by its content (the gcd of its coefficients) we get

Since glfi and gl f2 , g = gcd(f1, f2) and we are done.

There are some more GCD computation methods such as the EEZ-GCD which is devel-

oped by Wang (see [13]) and is a modular algorithm. Another method which is presented

by Encarnacion is called Encamacion's algorithm (see [5]) which is used to compute the gcd

of two polynomials over one algebraic number field. A brief description of this algorithm is

given in Section 1.5

1.4 Rational Number and Function Reconstruction

Definition 1.15. Let n/d E Q with gcd(n, d) = 1, and let m be a positive integer satisfying

gcd(m; d) = 1. Let u = n/d mod m. The rational reconstruction problem is given u and m

find n and d.

Recall that on input of m > u 2 0, the Euclidean algorithm computes a sequence of

triples si, ti, ri E Z satisfying

Sim + tiu = Ti.

Hence we have

tiu = ri (mod m).

Thus for i satisfying gcd(ti, m) = 1, the rationals 2 satisfy 2 = u (mod m) and hence are

possible solutions for our problem.

CHAPTER 1. INTRODUCTION

Example 1.16. For m = 13 and u = 8 we have

Wang et al. (see [14] and [15]) show that if m > 2(ndJ and gcd(m, d) = 1 then n/d appears

in S.

One can use either Wang's algorithm [14] or Monagan's algorithm [8] to select the rational

from the set S. Both of these algorithms have time complexity 0(log2 m) . Wang's algorithm

succeeds and outputs n/d when m > 2(max(lnl, Monagan's algorithm succeeds when

m, is a few bits longer than 21nld with high probability.

Definition 1.17. Let F be a field and let m , u E Fix] where 0 5 deg(u) < deg(m). The

problem of Rational Function Recon.stmction is given m and u, find a rational function

n/d E F(x) such that

n/d z u mod m,

satisfying gcd(m, d) = gcd(n, d) = 1.

Given polynomials m and u as specified in the above definition, again the Extended Eu-

clidean algorithm finds all solutions satisfying deg(n) + deg (d) < deg (m) up to multiplication

by scalars.

Example 1.18. Let F = Z7, u = x2 + 52 + 6 and m = (x - 1) (x - 2) (x - 3). Using the

Extended Euclidean Algorithm we get the following set of solutions:

The solution to the rational function reconstruction is not always unique. We can force

the uniqueness by choosing degree bounds deg(n) 5 N and deg(d) 5 D satisfying N + D <
deg(m). As an example, if we choose degree bounds N = 1 and D = 1 in Example 1.18,

the unique answer is

1.5 Encarnacion Algorithm

Suppose f l , f 2 E Z[x] and g = gcd(f1, fi) = 3x2 + 2n: - 1. When we compute gcd(f l , f2)

mod pl = 11, the gcd is unique up to a scalar multiple in Zp. We usually take the monic

CHAPTER 1. INTRODUCTION

gcd. For pl = 11 and p2 = 13 we obtain

gcd(f1, f2) mod 11 = x2 + 82 + 7,gcd(fl, f2) mod 13 = x2 + 52 + 4.

When we apply the Chinese remainder theorem, we obtain a monic image x2 + 96x + 95.

This is the image of g/lc(g) = x2 + $x - 5 . Thus to recover g, we first recover the rational

coefficients of g/lc(g), namely {I , $, - $} from {1,96,95} mod 11 x 13. We use rational

number reconstruction to do this. Then we clear denominators.

Encarnacion [5] used rational number reconstruction to compute the gcd of fl , f 2 E L[x]

where L is a number field.

Example 1.19. Let z = 4 and L = Q(z). Let the input polynomials be

In this example g = 3 x2 + (22 - 2) x + z - 1 is the gcd of f l and f 2 in L[x]. To compute g,

we first compute the image of g modulo p = 11 to obtain

If we apply the rational number reconstruction on the coefficients of h we get

After clearing the denominators we obtain

A technical difficulty is that some primes may result in zero divisors. For example, let

f l , f2 E Q(z)[x]/(m(z)) and fl = x4 + (z - 2)x2 + zx + 1, f2 = (z - 3)x3 + x + 2z and

m(z) = z2 - 2. If we choose pl = 7 and we divide fl mod pl by f 2 mod pl, we hit a zero

divisor while we are trying to invert lc(f2) = z - 3 mod m(z) = (z - 3) (z + 3). The solution

to this problem is to use another prime. Note that there are only finitely many primes p

that can cause this problem because these primes must divide R = res,(m(z), ml(z)) E Z,

where res denotes the resultant.

Chapter 2

GCD Computation over Algebraic

Function Fields

In this chapter we consider the problem of computing a gcd of two polynomials over an

algebraic function field L. A modular algorithm for computing a gcd for the case of one

field extension was developed by Monagan and van Hoeij in [lo] . Their algorithm uses

dense interpolation. We introduce a modular algorithm which uses sparse interpolation

and consequently is much better on sparse polynomials and remains competitive on dense

polynomials.

In Section 2.1 we describe the problem. In Section 2.2 we present the dense algorithm

of Monagan and van Hoeij. Our sparse algorithm will be described in Section 2.3.

2.1 Definition of the Problem

Let F = Q (t l , ..., t k) . For i , 1 5 i 5 r , let mi(z l , .., zi) E F[z l , ..., zi] be monic and

irreducible over F[z l , .. . , zi- I] / (m l , .. . , mi- 1) . Let L = F[z l , .., zT] / (m l , ... , m,) . L is an

algebraic function field in k parameters t l , ..., tk. Suppose that f l and f 2 are non-zero

polynomials in L[x l , .., x,]. Let g be the monic gcd of f l and f2. Our problem is, given f l

and f 2 to compute g or an associate (scalar multiple) of g.

The followings are some definitions from [lo]:

Definition 2.1. Let D = Z[t l , ..., t k] . A non-zero polynomial in D[zl , .., z,, X I , .., x,] is said

to be primitive with respect to (2 1 , .., z,, x l , .., x,) if the gcd of its coefficients in D is 1.

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 15

Let f be non-zero in L[xl, .., x,]. The denominator of f is the polynomial den(f) E D of

least total degree in (tl , ..., tk) and with smallest integer content such that den(f) f is in

.., 27.1 x1, ", xn].

The primitive associate f of f is the associate of den(f) f which is primitive in

D[zl, .., zT , XI , .., x,] and has positive leading coefficient in a term ordering.

Example 2.2. Let f = 3tx2 + 6tx/(t2 - 1) + 30tz/(l - t) where ml(z) = z2 - t. We have

den(f) = t2-1 and f = (t2-l)x+2x-10z(t+l). Here f E L[x] where L = Q(t)[z]/ (z2 - t)

is an algebraic function field in one parameter t.

2.2 Dense Algorithm

This algorithm which is developed by Monagan and van Hoeij is described in [lo]. Their

algorithm assumes that there is only one minimum polynomial m(z) E F[z] and one variable

x. Later in Section 2.2.7 we will show how to deal with multivariate polynomials. Also

our examples use s and t for parameters and not t l , t2, Their algorithm computes the

primitive associate g. Here is an example from Monagan in [lo]:

Example 2.3. Let z = f i i.e. m(z) = z2 - t . Suppose that the input polynomials are

The algorithm first computes

It then computes the gcd(fll f2) modulo a sequence of primes. Let's start with the prime

p = 11 (on a 64 bit machine, their implementation uses 31 bit primes, but for this example

we choose small primes). We obtain

5111 = gcd(f1, f2) mod 11 = tx + 3t22 + 5,

If we apply the rational number reconstruction to the coefficients of gll modulo 11, it fails.

So we choose a new prime q = 13. We obtain

5113 = gcd(f1, f2) mod 13 = tx - 5t2z + 5.

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 16

By applying the Chinese remainder theorem we obtain

g, = tx + 47t22 + 5 mod 11 x 13.

Now we apply the rational reconstruction to the coefficients of g, modulo m = 143. This

time it succeeds. The output is
2 2 h = t x - - t z + 5 .
3

Clearing the denominator results in

Since h ~ f l and h)f2 then h = 3 and we are done. Now we have to show how we compute

gll and 913. This is done by computing gll and gI3 at a sequence of evaluation points for

t in Zll and Z13 respectively and applying polynomial interpolation then rational function

reconstruction to get the final result.

Suppose we start with t = 2 (The algorithm uses random numbers from [O,p) but for

this example we will use t = 2,3, ...). We run the Euclidean algorithm modulo p = 11 to get

91 = gcd(fl(2, x), f2(2, x)) mod 11 = x - 52 - 3.

Now we apply the rational function reconstruction to the coefficients of gl in x and 2 which

succeeds with output h = gl, but the output does not divide fl modulo 11 so we need more

evaluation points. Using t = 3 we obtain

92 = gcd(fl(3, x), f2(3, x)) mod 11 = x - 22 - 2.

Applying the polynomial interpolation to get the gcd modulo (t - 2)(t - 3) results in

Again, the output of rational function reconstruction applied to c does not divide fl and fi

modulo 11, so we need another evaluation point. Using t = 4 we obtain

93 =gcd(fl(4,z),f2(4,x)) mod 11 = x + z + 4 .

After interpolating the new point we obtain

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 17

which is the gcd of fl and f2 modulo (t - 2)(t - 3)(t - 4). Now we apply rational function

reconstruction to the coefficients of c to obtain linear numerators and linear denominators

Clearing the denominators in t we obtain

Since kl f l (t, x) mod 11 and klf2(t, x) mod 11 then k = gl1 and we are done.

2.2.1 Unlucky and Bad Primes, Unlucky and Bad Evaluation Points

Recall that f l , f2 E L[x] and g is their monic gcd. As we saw in Example 2.3 this modular

GCD algorithm computes a gcd of fl and f2 by computing the gcd(fl, f2) modulo a sequence

of primes and modulo a sequence of evaluation points. The algorithm then reconstructs

from these images. Only images which are computed modulo good primes and good

evaluation points can be used during the reconstruction for it to be successful. However not

all primes and evaluation points are good.

Definition 2.4. A prime p is a good prime if gp = =cd(f1 mod p, f2 mod p) exists and

monic(gp) = monic(g mod p). Similarly an evaluation point a E zk is a good evaluation

point if 3, = gcd(fl (a), f2 (a)) exists and monic(g;) = monic(ij(cr)).

Definition 2.5. Suppose f l , f2 E L[x]. A prime p is said to be a bad prime if the leading

coefficient of fl or f2 with respect to x or any with respect to zi vanishes mod p.

Example 2.6. Suppose that

fl = 28tx3 + 19ztx + 2t2 + 10 and f2 = 52zx2 + lox + zt3 - t .

All pi = 2 and p2 = 7 and p3 = 13 are bad primes.

Example 2.7. Suppose that

fl = (x + t2z3 - t2 + l)(2x3 + 1) and f2 = (x + t2z3 - t2 + 1)(x3 + 1)

and m(z) = 7z5 + 1. Here ij = gcd(fl, f2) = x + t2z3 - t2 + 1. Modulo p = 7 , e (z) becomes

1. Hence the image of the gcd modulo 7 would be 0 which is not good for reconstructing g.

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 18

The good thing about bad primes is that they can be ruled out in advance.

Definition 2.8. Suppose f l , f2 E L[x]. A prime p is said to be unlucky if gp = gcd(fl, f2)

mod p has a higher degree in x than the actual gcd g.

Example 2.9. Consider the input polynomials

fl = (x + z)(x + l7t + t2 + z) and f2 = (x + t)(x + t2 + z).

Here we have 0 = gcd(fl, f2) = 1 but g17 = gcd(fl, f2) mod 17 = x + t2 + z which obviously

has a higher degree than g, so p = 17 is an unlucky prime.

The same problems that can happen for primes also happen for evaluation points.

Definition 2.10. Suppose f 1, f 2 E L[x]. An evaluation point t l = a is called a bad evalua-

tion point if the degree of fl or f2 with respect to x or any mi with respect to 2i decreases

after evaluating at this point.

Example 2.11. Let fl(t , x) = 3(4t - 1)x3 + zt3x + lot and p = 17. Here t = 13 is a bad

evaluation point because fl (13, x) mod p = 2t3x + lot has lower degree than fl .

Definition 2.12. Suppose f l , f2 E L[x]. An evaluation point t l = a is said to be unlucky

if gcd(f;(a), &(a)) mod p has a higher degree in x than the actual gcd g.

Example 2.13. Let fl = x2 + (t - l) x + 182 and f2 = x2 + 182. When computing the

gcd(fl, A) mod 11, if we choose the evaluation point t = 1, we get gcd(fl (1), f2 (1)) mod 11 =

x2 + 7z but gcd(fl, 6) mod 11 = 1. Hence the evaluation point t = 1 is unlucky.

Like bad primes, bad evaluation points can be determined and discarded beforehand,

but unlucky ones can not.

2.2.2 Zero Divisors

Recall that a non-zero element a of a ring R is a zero divisor if there exist a non-zero element

p E R s.t. ap = 0.

When we are trying to compute the gcd of f 1 (al, ... , a k , x), f2 (a1 , .. . , a k , x) (a1 , ... , a k

are the evaluation points) with the Euclidean algorithm we might encounter a zero divisor,

in which case the Euclidean algorithm fails (see [9]). The bigger the prime p is, the smaller

the chance of hitting a zero divisor would be.

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 19

Example 2.14. Let fl = (z + 2t)x2 + tx + z, f2 = xx3 + tx2 + (x - 2)x + 8t be the input

polynomials and m(x) = z2 - t. Suppose we choose the first prime p = 7. If we evaluate the

inputs at t = 2 we obtain f i = (z - 3)x2 + 2x + x and f; = zx3 + 2x2 + (x - 2)x + 2. When

we run the Euclidean algorithm on the inputs f{ and f h we hit a zero divisor while trying

to invert lc(f{) = z - 3. Note z2 - 2 = (z - 3)(2 + 3) mod 7.

Unlucky primes must be avoided if g is to be correctly reconstructed. Unlike bad primes,

unlucky primes can not be detected and discarded in advance. Brown in [l] showed how

to do this in a way that is efficient for Z[x]. Whenever an image of the gcd does not have

the same degree, we keep only those images of smallest degree and discard the others. His

strategy is based on the following lemma.

Lemma 2.15. (see Geddes et al. [6]) Let R and S be two unique factorization domains

and A, B E R[x]\{O) and G = GCD(A, B). Let 4 : R + S be a ring morphism and

4 : R[x] + S[x] be the natural extension to R[x] and H = GCD(@(A), 4(B)). If 4(lc(A)) # 0

then deg(H) 2 deg(G). Moreover, if 4(lc(A)) # 0 and deg(H) = deg(G) then 4(G) = u H

for some scalar u E S.

Proof: H = GCD(4(A), 4(B)) = GCD(~(AG) , ~ (B G)) for some A, B E R[x]. Hence

H = 4 (~) G C D (~ (A) , 4 (~)) + 4(G) 1 H (provided 4(G) # 0).

Now we want to prove that H # 0. Since R is a unique factorization domain Ic(A) =

IC(AG) = IC(A)~C(G). Since 4(lc(A)) # 0 we have $ (~ (A) Ic (G)) # 0 + ~ (I c (A)) ~ (~ c (G)) #
0. Since S is a unique factorization domain, 4(lc(A)) # 0 and 4(lc(G)) # 0 and we conclude

that GCD($(A), 4 (~)) # 0 and 4(G) # 0, hence H # 0.

S is an integral domain and we have proved that 4(G)IH and H # 0, thus we have

deg(H) 2 deg(G). Also if deg(H) = deg(G) then u = GCD($(A), 4 (~)) must be a constant,

so we have 4(G) = u H and u E S . This completes the proof.

For R = Z[x] Brown uses q5p(f) = f mod p and the lemma holds. In our case R = L[x]

and 4p : L + L mod p so S = L[x] mod p is usually not a unique factorization domain.

Monagan and van Hoeij in [lo] have generalized the lemma as follows.

Theorem 2.16. Let f l , f2 E L[x] be two non-zero polynomials where L =

F[zl, .., zT]/ (ml, ..., m,) and F = Q(tl, ..., tk). Let = gcd(fl, f2). Let p be a prime and

a = (tl = al, ..., tk = a k) . Suppose that the Euclidean algorithm applied to f l (a ,x) and

f2(a, x) modulo p does not fail and outputs gp. If CY is not a bad evaluation point and p is

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 20

not a bad prime, deg, (gp) 2 deg,(j). Moreover if deg, (gp) = deg, (g) then monic(gp) =

monic(gcd(f1(a, 4, f 2 @ , 4) mod P).

Proof: See Monagan and van Hoeij [lo]. The only difference is the number of field exten-

sions but this has no significant change in the proof in [lo].

2.2.3 Termination Conditions

When we are dealing with a modular algorithm, we always encounter the problem of when

to stop the algorithm, i.e., when do we have enough images to construct the actual gcd from

its images.

One approach toward solving this problem is to determine an upper bound for the

number of images we need before starting the algorithm. Unfortunately, we can not compute

a good upper bound efficiently based on the size of the inputs and we may end up wasting

time, computing a lot of extra images. This is because g can be very small compared to fl
and f2.

The modular algorithm ModGcd, which is described in this section stops when the

reconstructed result h does not change from one prime (evaluation point) to the next and

then tests if klfl and hlf2. Then Theorem 2.16 implies h = g. This means that ModGcd

algorithm is output sensitive, i.e., the number of primes (evaluation points) used depends

on the size of 3 and not on any bounds based on the sizes of fl and f2 with high probability.

2.2.4 Algorithm ModGcd

We now present the ModGcd algorithm which is developed by Monagan and van Hoeij in

[lo]. This modular GCD algorithm first calls subroutine M which computes the GCD in L[x]

from a number of images in Lp[x]. Subroutine P which is called by subroutine M computes

the GCD in Lp[x] from a number of images in Zp(tl, ..., tk-l)[zl, .., z,, XI/ (ml , ..., m,). In

Section 2.2.7 we will show how we can extend the algorithm for multivariate polynomials.

Except for the treatment of zero divisors, the algorithm follows Example 2.3.

Remark 2.17. The names which are used for the subroutines M and P in this algorithm

are based on the names Brown has used in his modular algorithm. See [I].

Algorithm ModGcd

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 21

Input: f l , f2 E L[x] and ml, ... ,mT(mi E F[zl, ... ,xi] for 1 5 i 5 r)

Output: g, where g is the monic gcd of f l and fa in L[x].

1. Call Subroutine M with input fl, f2 and rri17...,niT.

Subroutine M

Input: f l , f2 E D[zl, ... zT]/ (ml, .., m,) [XI and ml, ... ,m, E D[zl, ... zT], D = Z[tl, ... , t k]

Output: g, where g is the monic gcd of f l and f2 in L[x].

1. Set n = 1 , G = 0.

2. Main Loop: Take a new prime p,

3. Check if p, is a bad prime, if it is go back to step 2.

4. Let g, E Dpn [zl, .., zr7 x] be the output of subroutine P applied to f17 f2, ml mod p, ...,
m, mod p.

5. If g, = "failed" then go back to step 2.

6. If g, = 1 then return 1.

7. If G = 0 then set G = g, and m, = p then go to step 11.

8. If deg,(g,) < deg,(G) then set G = g, ,me = p then go to step 11. /*All previous

primes where unlucky */
9. If deg,(g,) > deg,(G) then go back to step 2. /* p, is an unlucky prime */

10. Select from {gl, ..., g,) those with the same leading term (in pure lexicographic order

with x > tl > ... > tk) as g,. Combine them using Chinese remaindering to obtain G

mod m,.

11. Set n = n + 1.

12. Apply integer rational reconstruction to obtain h from G mod m,. If this fails, go

back to step 2.

13. Clear fractions in Q: Set h = h.

14. Trial division: If hl f l and hlf2 then return h, otherwise, go back to step 2.

Subroutine P

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 22

Input: fl , f2 E Dp[zl, . . .zT]/ (ml , .., m,) [XI and ml , .. ., m, E Dp [q , .. .z,].

Output: Either g or "failed" if the algorithm fails to compute the primitive associate of

the monic gcd of fl and f2.

0. If k (The number of parameters) = 0 then output the result of the Euclidean algorithm

applied to f l , f2. /* If it fails, then output "failed". */
1. Set n = 1, d = 1, G = 0.

2. Main Loop: Take a new evaluation point a,.

3. Check if a, is a bad evaluation point, if it is go back to step 2.

4. Let g, E ZP[tl, .., tk-I] [zl, .., z,, x] be the output of subroutine P applied to fl , f2, ml , ...,
m, at tk = a,.

5. If g, = L'failed" then

5.1. Set d = d + 1.
5.2. If d > n output "failed", else go back to step 2.

6. If g, = 1 then return 1.

7. If G = 0 then set G = g, and m, = tk - a, then go to step 11.

8. If deg,(g,) < deg,(G) then set G = gn , m, = tk - a, then go to step 11. /*All

previous evaluation points where unlucky */
9. If deg,(g,) > deg,(G) then go back to step 2. /* a, is an unlucky evaluation point

* /
10. Select from {gl, . .., g,) those with the same leading term in x, tl , ..., tk-l as g,. Chinese

remainder those to obtain G mod mc(tk)

11. Set n = n + 1.

12. Apply rational function reconstruction to the coefficients of G in tk to obtain h E

Zp(tk)[tl, ..., tk-l][zl, ..., z7.,x] s.t. h 5 G mod mc(tk). If this fails go back to step 2.

13. Clear fractions in Zp(tk): Set h = h.

14. Trial division: if h(f l and hl f2 then return h, otherwise, go back to step 2.

2.2.5 Treatment of Zero Divisors

Consider the following example from [lo]: Suppose m(z) = z2 + 7t - 1 and fl = x2 + t and

f 2 = (z + 1)x + t . If subroutine M chooses the prime p = 7, we will have mp(z) = z2 - 1.

Since lcx(f2) = z + llmp(z), the Euclidean algorithm will always fail, while trying to invert

1c,(f2) which is a zero divisor for any choice of t = a , a E Z7. For any other prime p # 7,

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 23

the Euclidean algorithm hits a zero divisor only for the evaluation point (I! = 0. This means

that, if we choose the evaluation points at random the probability of hitting a zero divisor

would be 1/p.

Monagan and van Hoeij solve the problem of hitting a zero divisor repeatedly using

the following strategy. The variable d, in subroutine P, counts the number of times which

the Euclidean algorithm fails, which is the number of times the algorithm encounters a zero

divisor. The case where d > n happens when the algorithm encounters a lot of zero divisors.

This could relate to our choice of prime number or a previous evaluation point.

Note that if most evaluation points are good, and if subroutine P has already computed

many good images, then the test d > n prevents, with high probability, that few unlucky

choices in step 2 could cause a lot of useful work to be lost.

2.2.6 Trial Divisions

In Step 14 of subroutines M and P, the algorithm uses trial division to test whether it has

computed the correct gcd. The only difference is that in subroutine P, the trial divisions

take place in characteristic p. In [9] Monagan, van Hoeij presented an algorithm for doing

trial divisions (in characteristic p) of polynomials in Z[z] [XI modulo m(z) E Z[z] which uses

pseudo-division and some gcds in Z to minimize growth of the integer coefficients. We

essentially use the same method for our algorithm in Section 2.3, except that the coefficient

ring is Dp = Zp[tl, ..., tk] instead of Z. The same algorithm can also be used for subroutine

M with Dp replaced by D. Here we show how to extend it to treat multiple field extensions.

Algorithm Trial Division with Multiple field extensions.

Input: A, B E Dp [zl, ... zT]/ (ml, .., m,) [XI and ml , ..., m, E Dp[zl, ... z,], B # 0.

Output: True if BIA, False otherwise.

1. Set m = deg, (A), n = deg,(B).

2. Set dl = deg,, (ml), ..., d, = deg+ (m,)

3. Set lb = lc,(B).

4. Set I,, = lc,, (ml), ..., l,, = lc,,(m,).

5. Set R = A.

6. While r # 0 and m 2 n do

6.1. Set ZR=lc,(R).

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUhrCTION FIELDS 24

6.2. Set g = gcd(cont z,,...,zr (lR), lb) mod p.

6.3. Set lR = lR/g, S = lb/g.

6.4. Set t = lRxm-".

6.5. Set R = s R - tb.

6.6. for i from 1 to r do

6.6.1. while R # 0 and degz,(R) 1 di do

6.6.1.1. Set lR = lcz,(R).

6.6.1.2. Set g = gcd(cont, (lR), l,,) mod p.

6.6.1.3. Set lR = lR/g.
deg,, (R1-4

6.6.1.4. Set t = lRzi

6.6.1.5. Set R = (l,,/g)R - tmi.
6.7. Set m = deg,(R).

7. If R # 0 then return False, otherwise, return True.

Note that degZj (71~~) = 0 if j > i. The outer loop reduces the degree of the remainder R

in x. In the inner loops, for each i, the algorithm reduces the degree of R in zi to be less

than the degree of mi in zi.

2.2.7 Multivariate Polynomials and Non-t rivial Content

In the previous examples for the ModGcd algorithm, we assumed that fl and f2 E L[x],

i.e. there is only one variable, x. In [lo] Monagan and van Hoeij proposed a simple method

for dealing with multivariate input polynomials. Let fl , f2 E L[xl, ..., x,] with n > 1.

In order to compute the gcd of f l and fi we may consider f l , f2 E K[x,], where K =

L[xl, ..., x,-11. So we treat the inputs as polynomials in x, with coefficients in K. Now

reca11 that gcd(fl, f2) = cb where c = gcd(c0ntX1 ,.... ZT&-l (fl), contXl ,..., Zn-l (f2)) and b =

gcd(fl/c, f2/c). As you see, computing c, requires calling the ModGcd algorithm recursively

with one less variable. To compute b, we simply treat xl, ...,x,-1 as parameters!, i.e.

we write the input polynomials in K[x,] where K = G[zl, .., zT]/ (ml, ..., mT) and G =

Q(tl, ..., tk , X I , ..., 5,-1). NOW we compute ij using ModGcd. However g could have a non-

trivial content in x, which needs to be computed and divided out to get b. Here is an

example from [lo] illustrating this.

Example 2.18. Suppose we have computed j = (x? -s)x2 -z+xl where z = &. Here z-xl

is the non-trivial content of g. We need to divide g by this content to get b = (xl + z)xz + 1.

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 25

2.3 Sparse Algorithm

In the previous section, we described the ModGcd algorithm which is a dense modular

algorithm for finding the GCD of two polynomials over algebraic function fields. Suppose

di = degtz (g). Then ModGcd calls the Euclidean algorithm (in the first step of subroutine

P) approximately O(n,=l, ,k di) times. Now suppose we have two input polynomials fl and

fi such that g = x: + tioozx + tgoox + tioo. Since dl = d2 = dg = 100, ModGcd calls

the Euclidean algorithm approximately 1000000 times. This motivates us to use sparse

interpolation instead of dense interpolation in subroutine P, because the number of times

we need to call Euclidean algorithm in sparse interpolation, depends on the number of terms

present in the gcd and not its degree, i.e. 300 calls.

In this section we will introduce a new algorithm called SparseModGcd, which is a sparse

modular GCD algorithm. SparseModGcd takes advantage of sparse interpolation and has

a better performance for polynomials which are sparse.

Again the input polynomials are f l , f2 E L[x], and g is their monic gcd. The problem is

to find g.

In [4], Wittkopf et al. presented a new algorithm called LINZIP, which is an extension

to Zippel's algorithm (for gcd computation in Z[xl, ..., x,]; see [16]) for the case where g

is not monic in the main variable. When LINZIP uses sparse interpolation, it projects

the input polynomials from Z[xl, ..., x,] to Zp[xl] by evaluating them at some evaluation

points modulo a prime p. Similarly SparseModGcd projects the input polynomials from

Q(tl, . . . , tk) [zl, . . . , z,] [XI to Zp [zl , . . . , z,] [XI. Another difference between LINZIP and Sparse-

ModGcd is that, (as we discussed in Section 2.2.2) we need to deal with the zero divisors.

Finally, similar to what is done in step 12 of subroutine P in ModGcd, we use univariate

rational function reconstruction in SparseModGcd to recover the parameters tl , . . . , tk .

2.3.1 Sparse Interpolation

The sparse interpolation algorithm first appeared in 1979 Ph.D. thesis of R. Zippel [16].

Later Wittkopf, Monagan and de Kleine (see [4]) extended the algorithm for the case where

the gcd of the inputs is not monic. The main idea of using sparse interpolation in the

modular gcd algorithm is that after finding the first image of the gcd in subroutine P or

M(using dense interpolation) we know the form of the answer, i.e. we know (assuming the

first image is of the correct form) the degree of g and which terms are present in g.

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 26

Example 2.19. Let z = &. Consider the polynomials

For pl = 7, with the same method as Example 2.3, we get the first image g7 = tx +
4zt2 + 5 mod 7.

Now we assume that g7 is of the correct form, that is, g = atx + bzt2 + c, for some

constants a , b, c. This will be true with high probability if p is large. Now we want to

compute the gcd modulo a second prime p2 = 11. First we choose t = 2 (again the actual

choice for t needs to be random from a large set), evaluate the input polynomials at this

point and run the Euclidean algorithm to get the first image

h2 =gcd(f1(2,x), f2(2,x)) mod 11 = x - 5 2 - 3 .

If we evaluate the assumed form of the gcd g at t = 2 we will have

g(2, x) mod 11 = 2ax + 4bz + c.

Hence 2ax + 4bz + c mod 11 = x - 52 - 3. From this we get the following linear system of

equations

(2a = 1,4b = -5, c = -3) mod 11.

Solving this system, we get a = 6, b = 7, c = 8 which means gcd(fl, f2) mod 11 =

6tx + 7zt2 + 8. After making this monic, we obtain

gll = tx + 3t22 + 5 mod 11.

The reader may see that using a dense interpolation for computing the gcd modulo

p = 11, requires at least three evaluation points, but using sparse interpolation needed only

one evaluation point. This will improve performance when g is sparse and the improvement

is multiplied for each variable.

Here is another example showing that we apply the sparse interpolation recursively when

computing the first image of gcd(fi, f2) mod pl.

Example 2.20. Let m(z) = z2 - s - t. Consider the following monic polynomials

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 27

f 2 = (x + t - s)(x3 + 10x2z + x2st2 + 3x2s + 36x2 + 17t)

Suppose that we want to find the first image of g = gcd(fl, f2) , modulo pl = 7. We

take the first evaluation point to be s = 1 (note that these evaluation points must be chosen

randomly in our algorithm, but here we choose small integers). By recursively calling the

algorithm we get

91 = gcd(fi(l , t) , f 2 (l , t)) mod 7 = x3 + t2x2 + 3zx2 + 4x2 + 3t.

Now we take the next evaluation point for s to be s = 3. Suppose g3 =

gcd(fl(3, t) , f2(3, t)) mod 7. From gl we know that, with high probability and assuming

that gl is of the correct form, g3 = Ax3 + ~ t ~ x ~ + czx2 + 0 x 2 + E t for some constants

A, B , C, D and E . Take the next evaluation point to be t = 1. By applying the Euclidean

algorithm on f l (3 , l) and f2(3, 1) we get

But we know that g31 = g3(t = I) , SO we have the following equation

Solving these systems of equations,we obtain

This means g3 = gcd(fl(3, t), f2(3, t)) = x3 + 3t2x2 + 32x2 + 3x2 + 3t. After interpolating s

(using dense interpolation), we get

Now we apply the rational function reconstruction to the coefficients of hl but the output

is hl and since hll f l mod 7 and hl 1 f2 mod 7 we conclude that hl = gcd(fl, f2) mod 7. On

the other hand hl I fl and hl I f 2 over Q. So we need other images. This time we choose

the next prime to be p2 = 11. Let h2 = gcd(fl, f2) mod 11. From hl, we know that (with

high probability i.e. if hl is of the correct form)

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUXCTION FIELDS 28

From the form of hz, we need at least two images to solve for a3 and ad. Let our first set

of evaluation points be a = (s = 1, t = 1). Applying the Euclidean algorithm on fl(a) and

f2(a) will result in

gll = x% x2 - zz2 + 6x2 + 6.

Again we know that gll = h2(a), hence we have

Let's take our next evaluation point to be 0 = (s = 2, t = 2). Again we apply Euclidean

algorithm on fl (P) and f2 (P) to obtain

Solving the system of equations results in

So h2 = x3 + st2x2 - zx2 + (3s + 3)xz + 6t. Since h21 f l mod 11 and h2J f 2 mod 11,

h2 = gcd(fl, f2) mod 11. We can compute other images with the same method.

Remark 2.21. In general, we could evaluate at t = ai E Z,[z]/m(z). Instead we always

evaluate at t i = ai E Zp for two critical reasons. First, the linear system is over Z, which

means it can not run into zero divisors, which would further complicate the algorithm.

Second, it means that we equate coefficients in zixj instead of xj. This reduces the number

of images needed, hence the size of the linear systems to be solved.

Next we identify four classes of problems which may happen during sparse interpola-

tion. These problems are normalization problem, missing terms, unlucky contents and zero

divisors.

Normalization Problem

The first problem with sparse interpolation is called normaliza,tion problem. This problem

happens when we are dealing with polynomials with a non-monic gcd in x. Consider the

following example:

Example 2.22. Let z = m. Suppose the input polynomials are

f i = (x - s + l)g and f2 = (x + t +s)g

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 29

where

8 = (15s + t)x2 + 12s2xx + 40st

is the gcd of f; and f2. Suppose we have computed our first image modulo pl = 7 and

obtained

g7 = (S + t)x2 + 5s2xx + 5st.

So our assumed form of the actual gcd is

gf = (As + Bt)x2 + cs2xz + Dst

for some constants A, B, C and D. Now we want to compute the next image of gcd modulo

p2 = 11. Consider the evaluation point a = (s = 2, t = I) , we have

The problem is that this image is unique up to a scaling factor m. That is

But we do not know what m is. If we knew the leading coefficient of g, lc,(@) = 15s + t ,

then we could easily compute m

m = lc,(g(2, 1)) mod 11 = 9.

Unfortunately there is no easy way of computing leg. An ingenious solution to the

normalization problem, which we use in our algorithm, is presented by Wittkopf et al. in

[4]. This solution does not require any factorization (which could be very expensive). The

idea is to scale each image gi with a scaling factor mi. This introduces a new unknown

variable, so we need some more images to construct consistent systems of linear equations.

We give an example. Here, we follow the presentation of Wittkopf et al. but modify the

example for L with L = Q(s, t) [x] mod m(z).

Example 2.23. Consider the input polynomials from the previous example. Our assumed

form for the gcd is

gf = (As + Bt)x2 + cs2xx + Dst

for some constants A, B, C and D. Again we want to compute the next image of gcd modulo

p2 = 11. Remember the images of the gcd for evaluation point a = (s = 2, t = 1).

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 30

Our first set of equations will be

m1 (x2 + 9x2 + 4) = (As + ~ t) x ~ + cs2xz + Dst.

Here we have three equations {ml = 2A + B,9ml = 4C,4ml = 2 0) mod 11, and 5

unknown variables so we need another evaluation point. Consider the next evaluation point

to be /3 = (S = 1, t = 2). After applying the Euclidean algorithm on the inputs A(@) and

f2(:2(P) we have

g12 = gcd(f1(1,2), .f2(1,2)) = x2 + 2x2 + 6.

So multiplying with the next scaling factor m2 will result in

m2(x2 + 2x2 + 6) = (As + ~ t) x ~ + c s 2 x z + Dst.

Now we have the following system of linear equations:

It seems that we have 6 unknowns and 6 equations, but the last equation is a linear

combination of the first five equations, so this system does not have a unique solution. NOW

we fix m l (the first multiplier) to be 1. Note that this can be done because the result we are

seeking is only unique up to a scaling factor. Using this fact, our system of linear equations

is now determined. The unique solution is

Hence the image of gcd modulo p2 = 11 will be

Since hl fl mod 11 and hlf2 mod 11, we are done.

Here we ask how many images do we need to compute in order to have a determined

system of linear equations.

Suppose the input polynomials are f l and f2 such that gcd(lcx(fl), lcx(f2)) = 1, i.e. the

leading coefficients are relatively prime (this guarantees that g = gcd(f l , f2) is monic).

Suppose that our assumed form for the gcd is

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 31

and aij E Q(tl, ..., tk). Let T be the number of terms in gf. The number of images which is

needed to construct a determined system of linear equations is the number of terms in the

biggest (the one with more terms) coefficient among all aij's.

This is quite obvious, since there is one system of equations for each coefficient aij, and

the one for the biggest coefficient is the one with the most number of unknowns, so with

this many equations, all the systems are guaranteed to be determined.

For the case where the gcd is non-monic, we use the scaling factors (multiple scaling

case). Let ni be the number of terms in the i'th coefficient of the assumed form and n,

be the sum over all ni7s. This time, after computing each image of the gcd we add d

new equations to our system of linear equations (one equation for each term), but we also

introduce a new unknown variable mi which is the new scaling factor. For example, after

computing i images, we will have n, + i - 1 unknowns (there are originally n, unknowns,

and we have added one for each image except for the first scaling factor which is fixed to be

1). Hence in order to have a determined system, we need at least /w] images.

This means that the worst case for this solution (adding the scaling factors) happens

when g = gcd(f1, f2) has only a few terms (g is sparse in x, z and d is small) but each

coefficient has a lot of terms.

In [4], Wittkopf et al. discuss the efficiency of the multiple scaling case. Consider the

problem of finding a gcd which looks like

The linear system of equations has a structure shown in Figure 2.1 where all entries not

shown are zero. The solution can be easily computed by solution of a number of smaller

subsystems corresponding to the rectangular blocks of non-zero entries augmented with the

multiplier columns. With this method, the solution expense of the multiple scaling case is

the same order as the single scaling case.

Bad form: Missing terms

The second problem which we may encounter during the use of sparse interpolation is called

missing terns.

Suppose that our assumed form for the gcd is gf.

Definition 2.24. A prime p is said to introduce missing terms if any term of gf vanishes

modulo p.

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 32

C C C
C C
C C

C C C
C C.
C C

Figure 2.1: Linear system structure for the multiple scaling case, courtesy of Michael Mon-
agan .

Definition 2.25. An evaluation point cu is said to introduce missing terms if any coefficient

of g f vanishes at this evaluation point.

Unfortunately primes (or evaluation points) which introduce missing terms can not be

avoided before computing the image. However, it is a good idea to impose that no term in

the inputs f;, f2 should vanish modulo any of the primes. The problem with the missing

terms is most important when we choose our assumed form based on an image which is

computed modulo a prime (or at an evaluation point) which introduces a missing term.

Example 2.26. Let m(z) = z2 - s + t. Consider the following input polynomials,

f i = (x + zs + t)g and f2 = (x2 + 1)g

where

ij = (t2 - s + 1)x3 + 70zx2 + 13(t + 2).

is the gcd of f l and f2.

Here the primes 2,5,7 and 13 introduce missing terms (the first three cause the second

term to vanish and the last one makes the last term to vanish). The prime p = 11 does

not introduce missing terms, but when we are computing the image of the gcd modulo this

prime, cu = (s = 8, t = 10) is not a good evaluation point since lcg(8, 10) = 0. Now suppose

that we do not know what the gcd is, and we take our first prime to be pl = 7 (which is

not a good choice). We get our first image

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 33

From this image we take our assumed form for the gcd to be

Now when we try to compute the gcd modulo p = 11, we will not get an image which

is consistent with our assumed form with high probability. The inconsistency tells us that

our assumed form is not of the correct form so we must restart the algorithm.

The probability of choosing a prime (or evaluation point) that makes a term of the gcd

vanish is about T l p (T is the number of terms in the gcd). This means choosing larger

primes will reduce the probability of having a missing term. In fact the primes should be

much larger than the number of terms in the input polynomials.

Unlucky Content

Another problem which we have to avoid during sparse interpolation is an unlucky content.

Definition 2.27. (Wittkopf et al. [4]) For a polynomial f = anxn + ... + a1x + a0 with

ai E R for 0 5 i 5 n, the content contx(f) is defined to be

A prime p, is said to introduce an unlucky content if for two input polynomials f l , f2

with gcd g = gcd(fl, fi), contx(g) = 1 but contx(g mod p) # 1. Similarly an evaluation

point t = cr is said to introduce an unlucky content if contx(g) = 1 but contx(g(cr))# 1.

Example 2.28. Consider the gcd g = (12s + t)x + (s + 12t). We have

But if we choose p = 11 we will obtain

contx(g mod p) = contx((s + t)x + (s + t)) = gcd(s + t , s + t) = s + t

Hence p = 11 introduces an unlucky content and we must not use p = 11 to reconstruct the

gcd. For any other prime p # 11 no content is present. The evaluation points t = 0 and

s = 0 also introduce unlucky contents:

contx(g(O, t)) = contx(tx + 1%) = t ,

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 34

If during sparse interpolation we choose our assumed form, gf , based on an image which

is computed modulo a prime (or evaluation point) which introduces an unlucky content, it

is more likely that we will never get a system of linear equations which is determined and

has a unique solution, no matter how many images we compute.

Example 2.29. Suppose we want to find the gcd of two polynomials fl, f2 with gcd g =

gcd(fi, f2)= (10s + 7t)x2 + 19sxz + 14st. If we choose our first prime pl = 7, using the

dense interpolation we get the first image

In fact g mod 7 = sx2 + 4.522, but since our algorithm always returns the primitive

associate of the gcd, it will remove cont,(g mod 7)= s and returns x2 + 4x2. At this point

we choose our assumed form to be (based on our images of the gcd modulo pl = 7)

for some constants A and B. Now for our next image, we choose p2 = 11. Consider the

first evaluation point to be a =(s = 1, t = 1). After applying the Euclidean algorithm on

fi (1 , l) and f 2 (L 1) we get

But we can not equate hl = gf to solve for A and B. Since the degree of the new image

is the same as the degree of the assumed form, the image is not unlucky so the assumed

form must not be of the correct form. Now suppose we choose another evaluation point

,B =(s = 2, t = 2). Again we apply Euclidean algorithm on f1(2, 2) and f2(2, 2) to get

Again we have the same problem. In fact since pl = 7 introduced an unlucky content

but p2 = 11 does not, this problem always happens no matter how many evaluation points

we choose. At this point we should throw away the assumed form and restart the algorithm

since we do not know if it was the prime or a previous evaluation point that introduced the

unlucky content.

As we discussed in the previous example, since the primes or evaluation points which

introduce unlucky contents are rare, we do not detect the problem in advance. This is

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 35

because the detection of such primes and evaluation points could be expensive and cre-

ate a bottleneck for the algorithm. We will detect an unlucky content by checking if

fl(cr, ti, ..., tk, x) mod p and f2(cr, ti, ..., tk, x) mod p have a common content in Z[ti] where

cr = (tl = al, ..., ti-1 = q-1) is the evaluation point. If they do, the algorithm discards p

and chooses another prime (this is because we don't know if it is p or cr which introduced

the unlucky content). Note that with this method, the algorithm only computes univariate

contents to detect the unlucky content. This is because the unlucky content will eventually

be reduced to a univariate content as we evaluate the parameters one by one.

Zero Divisors

The next problem which may happen during the sparse interpolation is that when we are

trying to compute univariate gcds, the Euclidean algorithm could hit a zero divisor in which

case it fails. See Example 2.14.

2.3.2 Algorithm SparseModGcd

We now present the SparseModGcd algorithm. This modular GCD algorithm first calls

subroutine M which computes the GCD in L[x] from a number of images in Lp[x]. Subroutine

P which is called by subroutine M computes the GCD in Lp[x] using both dense and sparse

interpolations. Finally subroutine S, which stands for Sparse Interpolation and is called by

subroutine P, does the sparse Interpolation.

Algorithm SparseModGcd

Input: f l , f 2 € L[x]andml ,..., m, E F[zl ,..., z,] whereF=Q(t l ,..., tk)s.t. cont,(g) = l .

Output : g, where g is the monic gcd of f l and f2 in L[x].

1. Call Subroutine M with input fl, f 2 and ml , ..., m,.

Subroutine M

Input : f l , f2 E D[zl, ... z,]/ (ml, .., m,) [x] and ml, ..., m,€ D[zl, ... z,] were D = Z[tl, ..., tk].

Output : g, where g is the monic gcd of f l and f2.

1. Set n = 1, G = 0, form = 0.

2. Main Loop: Take a new prime p,.

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 36

3. Check if p, is a bad prime, if it is go back to step 2.

4. Let gn E Dp, [zl, .., z,, x] be the output of subroutine P applied to f l , f2, form,

ml mod p ,..., m, mod p. If g, = "contfailed" then go back to step 2.

5. If g, = "ZeroDivisor" or gn = "Unlucky" then go back to step 2.

6. If g, = "Bad-Form" then go back to step 1.

7. If g, = 1 then return 1.

8. If G = 0 then set G = gn and m, = p then go to step 12.

9. If deg,(g,) < deg,(G) then set G = g, , m, = p , form = g, then go to step 11.

/*All previous primes where unlucky */
10. If deg,(g,) > deg,(G) then go back to step 2. /* p, is an unlucky prime */
11. Combine the images {gl, ..., g,) using Chinese remaindering to obtain G mod m,.

12. Set n = n + 1.

13. Apply integer rational reconstruction to obtain h from G mod m,. If this fails, Set

form = g, then go back to step 2.

14. Clear fractions in Q: Set h = h.

15. Set form = gn.

16. Trial division: if h,lfl and hl f2 then return h, otherwise, go back to step 2.

Subroutine P

Input: fl,f2, form E Dp[zl, ... z,]/(ml, .., m,) [XI and ml , ..., m , ~ Dp[zl, ..+I.

Output: Either g or "ZeroDivisor" or "Unlucky" or "Bad-Form" or "contfailed" if the

algorithm fails to compute the primitive associate of the monic gcd of f l and fi because of

the bad choice of the prime or evaluation point.

0. If the GCD of the inputs has a content in tk then return "contfailed". /* There is an

unlucky content */
1. If k (The number of parameters) = 0 then output the result of the Euclidean algorithm

applied to f 1 ,f2.

2. If form # 0 then go to step 28.

3. S e t n = l , d = l , G = O .

4. Take a new evaluation point a, at random from Zp.

5. Check if a, is a bad evaluation point, if it is go back to step 4.

6. Let g, E Zp[tl, .., tk-11 [zl, .., z,, x] be the output of subroutine P applied to f l , f i ,ml, ..., m,

at tk = a, and form = 0. If g, = "contfailed" then return "contfailed".

CHAPTER 2. GCD COMPUrJATION OVER ALGEBRAIC FUNCTION FIELDS 37

7. If g, = "ZeroDivisor" then return "ZeroDivisor".

8. If g, = "Unlucky" then go back to step 4. / *Unlucky evaluation point */
9. If g, = "failed" or "ZeroDivisor" then

9.1. Set d = d + 1.

9.2. If d > n output "ZeroDivisor", else go back to step 4.

10. If g, = 1 then return 1.

11. Set form = g,, n = n + 1.

12. Main Loop: Take a new evaluation point a, at random from Zp.

13. Check if a, is a bad evaluation point. If it is go back to step 12.

14. Let g, E Zp [tl , .., tk-I] [a, .., z,, x] be the output of subroutine S applied to f l , f2,ml, ..., m,

at tk = a, and form.

15. If g, = "Bad-Form" then go back to step 3. /*Our assumed form for gcd is not of the

correct form */
16. If g, = "Unlucky" then go back to step 12. /* Unlucky evaluation point */
17. If g, ="failed" or "ZeroDivisor" then

17.1. Set d = d + 1.

17.2. If d > n output "ZeroDivisor", else go back to step 12.

18. Set g, = monic(g,).

19. If g, = 1 then return 1.

20. If G = 0 then set G = g, and m, = tk - a, then go to step 25.

21. If degx(gn) < degx(G) then set G = g, , m, = tk - a,, form = g, then go to step 25.

/*All previous evaluation points where unlucky */
22. If degx(gn) > deg,(G) then go back to step 12. /* an is an unlucky evaluation point

* /
23. Chinese remainder {gl, ..., gn) to obtain G mod mc(tk).

24. Set n = n + 1.

25. Apply rational function reconstruction to the coefficients of G to obtain h E Zp(tk)

[tl, ..., tk-11 [zl, ..., z,, x] s.t. h =. G mod mc(tk). If this fails, go back to step 12.

26. Clear fractions in Zp(tk): Set h = A.
27. Trial division: if h) fl and h J f2 then return h, otherwise, go back to step 12.

28. Let g, E Zp[tl, .., tk][zl, .., z,, x] be the output of subroutine S applied to fl , filml, ..., m,

and form. /*At this step, we already know the form of the gcd */

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 38

29. If g, = "Bad-Form" then return "Bad-Form". /*Our assumed form for the gcd is not

of the correct form */
30. If g, = "Unlucky" or g, = "ZeroDivisor" then return g,.

31. return monic(g,) .

Subroutine S

Input: f l , f2, form E Dp[zl, ... z,]/ (ml, .., m,) [x] and ml, ..., m, E Dp[zl, ... zT] where Dp =

zp[t l , - . a , tk].

Output: Either g or "Bad-Form" or "ZeroDivisor" or "Unlucky" if the algorithm fails to

compute the primitive associate of the monic gcd of fl and f2.

1. If k (the number of parameters) = 0 then output the result of the Euclidean algorithm

applied to f 1, fi.

2. Set C = coeffs, ,,,,...,, , (f orm), T = monomials, ,,,,...,, , (f orm). /*C is the list of all

coefficients of form in Dp and T is the list of all monomials s.t. f = C(CiTi) */
3. Set U to be the minimum number of images needed. /* This is based on what we

discussed in Section 2.3.2 */
4. Set z = 0, u = 0.

5. for i from 1 to U do

5.1. Take a new random evaluation point ai = (tl = a l , ...! tk = ak) in Z; which is

not bad.

5.2. Let gi be the output of the Euclidean algorithm applied to f l (ai) , f i (a i) , ml(ai),

..., m, (ai).

5.3. If gi = "failed" then
5.3.1. Set z = z + 1.
5.3.2. If z > i then return "ZeroDivisor" else go back to step 5.1.

5.4. If deg, (gi) > deg, (f orm) then

5.4.1. Set u = u + 1.
5.4.2. If u > i then return "Unlucky" else go back to step 5.1.

5.5. If degx(gi) < deg,(form) then return "Bad-Form".

5.6. If the number of terms in gi with respect to to x, zl, . .., z, is greater than the

number of terms in the assumed form then return "Bad-Form". /* Missing

terms in the assumed form*/

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 39

6. Construct the system of linear equations based on the gi's (images), ai 's (evaluation

points), and C, and solve it.

7. If the system is inconsistent, return "Bad-Form".

8. Construct and return gp (g mod p), using the solution from the system of equations

and T (Terms in the assumed form).

We now describe how SparseModGcd deals with three main problems, namely bad primes

and evaluations, unlucky primes and evaluations, unlucky contents and missing terms.

Note that the zero divisors problem is treated in the same way as in ModGcd algorithm

(see Section 2.2.5).

Bad Primes and Bad Evaluation Points

As we stated before in Section 2.2.1, bad primes and bad evaluation points must not be used

during the gcd computation. Fortunately there is an easy way of finding whether or not a

prime p (or an evaluation point a) is bad. In subroutine L/I of SparseModGcd algorithm,

we avoid bad primes, by testing if the new prime p, divides the leading coefficient of any of

f l , f2 , ml , ..., m,. If it does, then p, is a bad prime.

For the case of bad evaluation points, in subroutine P (for both dense and sparse inter-

polation parts) we discard bad evaluation points by simply testing if the leading coefficient

of any of f f 2 , ml , . . ., m, vanishes after evaluating at the new evaluation point a,.

Unlucky Primes and Evaluation Points

As we discussed before, unlucky primes and evaluation points, cause the new image to have

a higher degree in the main variable x compared to g. Unfortunately there is no way of

checking if a prime (or an evaluation point) is unlucky before computing the image of the

gcd.

During the sparse interpolation, we evaluate the inputs fl and f2 at a sequence of

evaluation points, then we interpolate the last parameter, using a dense method. At this

point we have our first image from which we choose the assumed form. If this image is

based on an unlucky evaluation point, subroutine S will eventually get an image with lower

degree in x than the assumed form. In this case the sparse interpolation fails by returning

"Bad-Form" and the algorithm restarts. If the first image is based on an unlucky prime,

subroutine P does not detect it and returns an image with a high degree. But in this case,

CHAPTER 2. GCD COMPUTATION OVER ALGEBRAIC FUNCTION FIELDS 40

subroutine M will choose the new assumed form based on this bad image and hence the

algorithm will eventually detect it during the sparse interpolation by computing an image

with lower degree. At this point we assume that the first image is of the correct form.

If during the interpolation of other variables using the sparse interpolation algorithm we

encounter an image which has a higher degree than the assumed form, it can be because of

the choice of the evaluation points in either subroutines P or S. In Step 5.4 of the algorithm,

we count the number of times which we encounter an unlucky image. If this happens a lot,

we conclude that the evaluation point in subroutine P is unlucky otherwise we assume that

the current evaluation point is unlucky so we choose another one.

Finally, after we compute the image of the gcd modulo the first prime which is not

unlucky, if we choose a new unlucky prime, we will get unlucky images during the sparse

interpolation so subroutine M simply chooses another prime. Since there are finitely many

unlucky primes, subroutine M will eventually compute some good images.

Unlucky Contents

As we described in Section 2.3.1, the single variable content check in Step 0 of subroutine P

will eventually detect an unlucky content. If the check in Step 0 detects an unlucky content,

subroutine P will fail all the way up to subroutine M which then throws away the current

prime and starts with another one.

This strategy which is first introduced in [4] is efficient since from the point where an

unlucky content is introduced to the point where it is detected only some variable evaluations

and single variable content checks have been performed.

Missing Terms

If the algorithm chooses the assumed form of the gcd based on an image with missing terms,

subroutine S will eventually get an image with more terms than the assumed form. In this

case (step 5.6 of subroutine S) the algorithm restarts (step 15 of subroutine P) to find a

new assumed form.

Chapter 3

Implement at ion

We have implemented algorithm SparseModGcd in Maple 10 (see Appendix A). In this

chapter we will first describe the bottlenecks in the implementation of SparseModGcd al-

gorithm and finally we present a running time comparison of SparseModGcd and ModGcd

algorithms.

3.1 Bottlenecks

In this section we will discuss some bottlenecks in the implementation of our SparseModGcd

algorithm namely trial division, rational function reconstruction, sparse interpolation and

univariate gcd computation. We will start with an example. In our example Maple is using

31.5 bit primes on a 64 bit machine.

Example 3.1. Let

f 2 = 2 ~ " ~ + (2 t 2 + 5 z y 2) x4 + (5 z y 2 - 3 t z 2 y + 1) x 2 - 3 t z 2 y + 1

be input polynomials and m (z) = z3 - 2t. The output of our program is as follows.

Entering MGCD . . .
Calling PGCD . . . Current prime is : 3037000453

y=2926416935

t=198304613

t=640439653

CHAPTER 3. IMPLEMENTATION

t=417177802

t=2984266210

t=537655880

t=1361931892

RFR(t) succeeded. Number of points used is 5

Assumed form for the gcd is computed. Monomials are [l,tz2, zx2,t2x4]

y=2107063881

Sparse Interpolation . . . succeeded.
y=1884392679

Sparse Interpolation . . . succeeded.
y=902841101

Sparse Interpolation . . . succeeded.
y=802611721

Sparse Interpolation . . . succeeded.
RFR(y) succeeded. Number of points used is 4

PGCD succeeded.

Integer Rational Reconstruction . . . succeeded.
Division Check . . . succeeded ...g cd found !

2t2x4 + 5 ~ ~ 2 ~ 2 - 3tz2y + I
Timings :

Total time: 0.057 (in CPU seconds)

Trial Division: 6.78%, Rational Function Reconstruction: 3.39%

Sparse Interpolation: 5.08%, Univariate GCD computation: 67.79%

As you see, more than eighty percent of the total running time is spent on the four specified

bottlenecks. And this is after our optimizations.

3.1.1 Trial Division

Recall from Section 2.2.5 that trial division is used to check whether we have computed the

correct image of the gcd at the end of subroutine P. Suppose that a is the average number

of times which the trial division routine is called for computing gp the image of gcd modulo

p. Let q be the probability that the trial division succeeds and t d be the average time for

doing one trial division.

Unfortunately we can not decrease td, i.e. we can not improve the trial division algorithm

very much, but we can decrease a by increasing q. This means that we will not do the trial

CHAPTER 3. IMPLEMENTATION 43

division unless we know with high probability it will succeed. This can be accomplished by

reducing the number of times that the rational function reconstruction method (in Step 25

of subroutine P) succeeds but does not output g.

We achieve this by using a slightly different method for rational function reconstruction

which is described in the next section. Now, the average number of times which the trial

division routine is called, is very close to 1.

3.1.2 Rational Function Reconstruct ion

As we discussed in the previous section, we need to do the rational function reconstruction

in such a way that when it succeeds, its output (after clearing the fractions) is the gcd, g

and hence will divide both of the input polynomials f l and f 2 modulo the prime p. For

this, we use the Maximal Quotient Rational Reconstruction method which is presented by

Monagan in [8].

The idea is to use more (one more) evaluation points than are necessary to reconstruct

n l d E F (Y 1.

Example 3.2. Suppose we have f E z23[?J] such that

We want to find a rational function n l d E z23(?J) such that

Using polynomial interpolation we can easily compute u = 5 y5 + 11 y4 + 22 y3 + 5 y2 + 4 y + 8

satisfying u(a) = f (a) on these six points. Let

After applying the extended Euclidean algorithm as described in Section 1.4 to inputs m

and u, we get the following set of solutions

CHAPTER 3. IMPLEMENTATION 44

All have degree 5, so rational function reconstruction fails. As we mentioned before,

maximal quotient rational reconstruction method uses one more evaluation point to select

2. Assuming 4 7) = 14 we have

Again using the extended Euclidean algorithm we get the following set of solutions

One can see that 2 = is the only solution from the above set with deg(n) +
deg(u) = 5, hence it is the output of maximal quotient rational reconstruction method.

We refer the reader to Monagan [8] for a detailed description of the Maximal Quotient

Rational Reconstruction algorithm.

3.1.3 Sparse Interpolation

Sparse interpolation is another part which could slow down the algorithm significantly if it

is not implemented properly.

The most time consuming part of the sparse interpolation routine is at Step 5.2 where

the algorithm evaluates the input polynomials fi and f2 at the new evaluation point cri.

To overcome this, we first form a matrix which includes all the coefficients of both input

polynomials fl and f 2 with respect to the main variable x and 21, ..., 2,. Next we use a

modular method (which is part of the LinearAlgebra package in Maple 10 and is coded in

C for machine primes) to evaluate each entry of the matrix at the new evaluation point cri.

Finally, using the evaluated matrix, we can easily form fl(cr) and f2(cr).

CHAPTER 3. IMPLEMENTATION

3.1.4 Univariate Gcd Computation

Suppose that we want to compute gp = gcd(fl, f2) mod p using the sparse interpolation.

This involves some univariate gcd computations in R[x] where R = L(tl = crl , ..., tk =

ak)/ (ml, ..., m,). Thus R mod p is a finite ring with r extensions. As we discussed

in Section 2.3.1, the number of univariate images we need to compute is at least np =

[(n, - 1)/(T - 1)l where n, is the number of unknown variables in our assumed form for

the gcd and T is the number of terms in the assumed form. If np is a large number, then

the Euclidean algorithm (which is used for univariate gcd computation) could take a large

amount of time. Therefore the Euclidean algorithm should be implemented efficiently (it

needs to be coded in C).

In our implementation of the SparseModGcd algorithm, we use a version of Euclidean

algorithm which is designed for polynomials over a ring R (Monagan and van Hoeij [9]).

The cost of the Euclidean algorithm is 0 (n 2 ~ ') x N as implemented. Here D is the degree

of the algebraic function field L, n is the degree of g in the main variable and N is the

number of times that the Euclidean algorithm is called.

3.2 Benchmarks

We have compared the Maple implementations of SparseModGcd and ModGcd on three

problem sets. The first two sets consist of input polynomials f l and f 2 with a sparse gcd

g = gcd(f1, f2). In contrast, each pair of polynomials in the third set has a rather dense gcd.

There is only one field extension available in these problem sets. Next, we present some

timings for SparseModGcd algorithm on a problem set with two field extensions (r = 2).

The purpose of the last benchmark is to count the number of bad and unlucky primes and

evaluation points, zero divisors, unlucky contents and missing terms that SparseModGcd

encounters for two random polynomials. All the timings in this section are in CPU seconds

and obtained using Maple 10 on a 64 bit AMD Opteron CPU running Linux using 31.5 bit

primes.

As we discussed in Chapter 2, SparseModGcd is expected to have a better performance

than ModGcd on the first two sets of problems.

CHAPTER 3. IMPLEMENTATION

SPARSE- 1

Let

(9 where each rjk is a positive random number less than 100. For n = 1,2 , ..., 10, let f l = a x g

and f 2 = b x g. Thus we have 10 gcd problems, all with one field extension m(z), three

parameters s , t and u and three variables X I , x2 and xs. Each input polynomial is of degree

2n in each variable X I , x2,23 and the gcd g = gcd(fl, f2) is of degree n in each variable.

SparseModGcd
0.170
0.359
0.662
1.164
1.868
2.938
4.476
6.512
9.187
12.611

ModGcd
0.50
2.30
7.94

23.57
60.54
139.9

301.58
602.765
> 2000

NA

Table 3.1: Timings (in CPU seconds) of SparseModGcd compared to ModGcd on the first
set of problems SPARSE-1 (NA means not attempted)

Table 3.1 shows the running time comparison between SparseModGcd and ModGcd

algorithms. Since the gcd g in this case is very sparse (g has 6 n + 3 terms and deg(g) = n

in any of X I , 2 2 and x3), a better performance is expected from SparseModGcd. The data

demonstrates this clearly.

CHAPTER 3. IMPLEMENTATION

SPARSE-2

Let

(i) This problem is similar to the previous problem set. Each rjk is a positive random

number less than 100. For n = 1,2 , ..., 10 with fl = a x g and f2 = b x g, we have 10 gcd

problems, all with one field extension m(z). This time there are five parameters r, s , t , u and

v and four variables XI , x2, x3 and x4. Each input polynomial is of degree 2n in the first

three variables and 2n - 2 in x4.

SparseModGcd
0.40
1.29
2.40
4.46
7.57
12.51
20.25
29.73
43.03
61.87

ModGcd
8.70

114.78
879.26
> 2000

NA
NA
NA
NA
NA
NA

Table 3.2: Timings (in CPU seconds) of SparseModGcd compared to ModGcd on the second
set of problems SPARSE-2 (NA means not attempted)

Table 3.2 illustrates the running time comparison of the two algorithms. Again Sparse-

ModGcd has a better performance compared to ModGcd, which is expected because g =

CHAPTER 3. IMPLEIVENTATION 48

gcd(fl, f2) is sparse. But since there are more variables and more parameters in this exam-

ple, the exponential running time of ModGcd results in it being even less competitive with

SparseModGcd.

DENSE-I

Let m(z) = z2 - sz - 3. Suppose g, a and b are three randomly chosen polynomials in

variables XI , x2, s and z of total degree n which are dense. That is the term zf' z$ sd3 zd4

with dl + d2 + dg + dq 5 n is present in each of these three polynomials. This means that

each of them has exactly Cr=o (ny) number of terms.

For n = 1,2, ..., 10,15, let fl = g x a and f2 = g x b. Since in this set of problems the

gcd g is dense, ModGcd algorithm is expected to perform better.

SparseModGcd
0.033
0.072
0.151
0.313
0.498
0.921
1.584
2.527
4.191
7.704

62.758

ModGcd
0.029
0.058
0.141
0.307
0.557
1.272
2.091
3.244
5.024
7.437
50.228

Table 3.3: Timings (in CPU seconds) of SparseModGcd compared to ModGcd on the fourth
set of problems DENSE-1

Table 3.3 shows the running times of both ModGcd and SparseModGcd algorithms for

this set of problems.

In this problem set the input polynomials are the same as SPARSE-1, but there are two

field extensions ml(zl) = zf - sz: - t2zl - 5 - 3u and m2(z2) = 222 - zzzl + sz2 + 3t - u.

The timings for SparseModGcd algorithm on this problem set are shown in Table 3.4.

Table 3.4: Timings (in C'PU sccontls) of Sparsch4odGcd compared to SIodGcd on the fifth
sct of problcins SPARSE-3

The inininla1 polq-nomials in this sct of pxoblcms are thc same as SPARSE-3. Let

Hcre PI: P2 and p3 arc three raadom polynonlids in {.XI, rs, :cs, s, t: u: 21 , DL}. For n =

1: 2, ..., 10: lct f l = (1, x g arid f 2 = b x g. WC havc run SparscModGcd algoxithrn 100 times

for cach n arid UT have ci1~0111ltcrcd 110 bad pximcs, 110 bad cvahmtion point,s, no 1in111cky

prirncs, no nnlucky c w l u a t i o ~ ~ points, no zcxo divisors, no unlucky contcnts :md no missing

t,erms. We used this command in h4aplc 10:

> ml := z1^3-s*z1^2-t^2*~1-5-3*~;

> m2 := z2^2-z2*zl+s*z2+3*t-u;

> g : = s*xl^n+t*x2^n+u*x3^n+randpoly ([XI ,x2 ,x3, s, t ,u, zI,z21 , terms=50, degree=n) ;

> a : = t*xl^n+u*x2^n+s*x3^n+randpoly ([XI ,x2,x3,s,t ,u,z1 ,221 , terms=50, degree=n) ;
> b := u*xl^n+s*x2^n+t*x3^n+randpoly([xl ,x2,x3, s ,t ,u,21,221 , terms=50, degree=n) ;

> f 1 := expand(g*a) ; f2 := expand(g*b) ;

So Pl; P2 and P3 have two digits rantlorn integer coefficients.

Chapter 4

Summary

We have designed and implemented SparseModGcd, a sparse modular GCD algorithm for

polynomials over algebraic function fields based on ModGcd algorithm which is presented

by Monagan, van Hoeij in [lo]. In contrast to ModGcd, SparseModGcd uses Zippel's sparse

interpolation algorithm, so it is much more efficient for polynomials with a sparse gcd.

Moreover it can be used in the case where there are multiple field extensions to the algebraic

function field.

ModGcd and accordingly SparseModGcd are extensions of the modular GCD algorithm

of Brown for Z[xl, ..., x,] and Encarnacion for Q(a) [XI to function fields. In these algo-

rithms, we first try to find some images of the gcd modulo a series of prime numbers using

an interpolation algorithm, and then apply the Chinese remainder theorem to compute the

actual gcd. ModGcd uses dense interpolation but SparseModGcd uses both dense interpo-

lation (for finding the first image) and sparse interpolation. As a result, SparseModGcd has

a better performance when g = gcd(fi, f2) is sparse. Zippel's sparse interpolation however

only works when the gcd is monic, i.e., when the leading coefficient of the gcd is 1. To over-

come this problem, we use the multiple scaling factors idea, which is presented by Wittkopf

et al. in [4]. Furthermore, to speed up the algorithm, our implementation uses Monagan's

maximal quotient rational function reconstruction.

Finally, to demonstrate the efficiency of our algorithm, we have compared the Maple

implementation of ModGcd with our Maple implementation of SparseModGcd on three

problem sets. As expected, SparseModGcd turned out to have a much better performance

on the problem sets which contain two input polynomials with a sparse gcd.

One future extension point is to parallelize the SparseModGcd algorithm, so that it can

CHAPTER 4. SUMMARY 51

compute two or more images simultaneously. This could increase the performance of the

algorithm significantly, since in most cases more than sixty percent of the running time of

the algorithm is spent on univariate gcd computation.

Another improvement to our algorithm is to speed up the implementation of the Eu-

clidean algorithm by coding it in C.

Finally, we are planning to put the implementation of SparseModGcd in the next release

of Maple.

Appendix A

Maple Implement at ion of

SparseModGcd algorithm

Code is available on http: / /www.sfu.ca/"s javadi /SparseModGcd/

Input: fl, f 2 .

Output: g, where g is the monic gcd of fl and f2.

GCD := proc(f 1 , f2)
local R,ml,zl,g,ffl,ff2,i,lR;

R := [op(indets([fl,f2] ,RootOf))];

if nops(R) = 0 then return primpart(gcd(f1 , f2)); fi;

R := sort(R, proc(x,y) evalb(length(x1 < length(y1) end proc);

ml , zl := RootConvert(R , 1);
ffl := fl;

ff2 := f2;

1R := R;

for i from 1 to nops(1R) do

ffl := SUES(R[i] = zl[i] , ffl);
ff2 := SUBS(R[i] = zl[i] , ff2);
R : = SUBS (R [i] = zl [i] , R) ;

od;

g := ModGcd(expand(ff1) ,expand(ff2) ,ml,zl) ;

if g = "failed" then return g; fi;

g := RConvert (g , zl , 1R) ;
return g;

APPENDIX A. MAPLE IMPLEMENTATION OF SPARSEMODGCD ALGORITHM 53

end :

macro (

EVALSUBS = evalsubs ,
MATRIXSOLVE = mSolve ,
MCHREM = mgcd-chrem,

IRATRECON = n-iratrecon ,
MDIV = MTrialDivision,

CONTENT = mContent ,
EVAL = Phi,

PCHREM = pgcd-chrem,

RATRECON = nRatrecon,

PDIV = PTrialDivision,

EUCLID = euclidean,

SUBS = subs

1 :
Uses recden package.

See http://unuw.cecrn.sfu.ca/CAG/code/NGCD/recden

euclidean := proc (fl, f2, vl, p, ml)

local rl , r2 , g , tt;
rl := rpoly(f1 , vl , ml, p);
r2 : = rpoly (f 2 , vl , ml, p) ;
g := traperror(gcdrpoly(r1 , r2));
if g=lasterror then return "failed" fi;

g := rpoly(g) ;

return g;

end :

evalsubs : = module (1
option package;

export initialize, substitute;

local MA,MB,CA,CB,NA,NB,RA,RB,CML,NM,NML,MR;

initialize := proc(a,b,vzl,zl,dat-t,ml,p)

local MNM;

CA:=[coeffs(a,vzl,'~~')] ;MA:=[MA] ;~~:=nops(CA);CA:=Vector(CA);

CB:=[coeffs(b,vzl, 'MB')] ;MB:=[MB] ;~B:=nops(CB);CB:=Vector(CB);

RA := Create(p, NA, 0, 0, dat-t); RB := Create(p, NB, 0, 0, dat-t);

CML:=map(proc(m) cm:=coef f s(m,zl, 'MM') ; return [[cm] , [MM] 1 ; end,ml) ;
NM : = nops (ml) ;

APPENDIX A. MAPLE IMPLEiVIENTATION OF SPARSEMODGCD ALGORITHM 54

NML := map(proc(m) nops (mC11) end proc , CML) ;
MNM : = max (op (NML)) ;

MR := Create(p,NM,MNM,O,dat-t);

end :

substitute := proc(tt ,p)

local nml,na,nb,i;

Mod(p,CA,tt,RA) ;

Mod(p,CB,tt ,RB) ;

na := add(RA[i]*MACi] , i = l..NA);

nb := add(RB[i]*MB[i], i = l..NB);

nml : = C1 ;
Mod(p,CMLCl. .NM,l] ,tt,MR);

for i from I to NM do

nml := [op(nml) , add(MR[i, j]*C~~[i,2, j] , j= 1. .NML[i])] ;

od;

return na,nb,nml;

end :

end module:

MQRR := proc(u,m,MQ,NN,DD,p)

local to, ti, q, rO, rl, r, n, d , B, dq,L,x;
if modpl (Degree(m) , p) <= MQ then return false; f i;

x : = modpi (~ndeterminate (u) ,p) ;

rl := modpl(Rem(u,m) , p);
to := modpl (Zero(x) , p) ;
rO := m;

ti := modpI(One(x) , p) ;
B := MQ;

while modpl (Degree(r1) ,p) >=O and modpi (Degree (r0) ,p) >B do

q := modpi(Quo(rO,rl, 'r') ,p);

dq := modpl(Degree(q) , p) ;
if dq >= B then (n,d,B) := (rl,tl,dq); fi;

(rO,rl,tO,tl) := (r1,r,tl,modpl('~ubtractJ (t~,'~ultiply'(q,tI)),p));

od;

if not assigned(n) then return false; fi;

if modpl(Degree(Gcd(n,d)),p) > 0 then return false; fi;

L := modpi (Lcoef f (dl , p) ;
if not L = I then

APPENDIX A. MAPLE IMPLEMENTATION OF SPARSEMODGCD ALGORITHM 55

L : = modpi (constant (l/L mod p ,x) ,p) ;

d := modpl(Multiply(L,d) , p) ;
n := modpl(Multiply(L,n) , p) ;

f i;

NN,DD := n,d;

true ;

end :

myRatrecon := proc(U,M,x,MQ,p)

global lastlnonomial;

local y,c,tt,n,i,r,NN,DD,u,m , nn,dd;
y := indets(U,name) minus {x);

if nops(y) > 0 then

c := coeffs(U,y,'tt');

c := LC]; tt := [ttl; n := nops(c>;

if member(lastmonomial,tt,'i') then else i := n fi;

to n do

r[i] := my~atrecon(c[i] ,M,x,MQ ,p);

if r [i] = FAIL then lastlnonomial := tt [i] ; return FAIL; f i;

if i = I then i := n else i := i-1 fi;

od;

return add(r [i] *tt [i] , i=l . .n) ;
fi;

u := modpi (Convert~n(expand(U) mod p,x) ,p) ;

m : = modpl (ConvertIn(expand(M) mod p, x) ,p) ;

if MQRR(u,m,MQ,NN,DD,p) then

nn := modpl(ConvertOut(NN,x),p) mod p;

dd := modpl (Convertout (DD,~) ,P) mod p;

return nn/dd;

fi;

FAIL;

end :

mSolve := module0

option package;

export constructmatrix , solve-system;
local M, matrixsize, sz;

constructlnatrix := proc(gl,pl,coft,p,nt,maxu,mn,dat-t,vzl,termlength)

local zero-counter,i,RA,gcoeffs,j,gt,NA;

APPENDIX A. MAPLE IMPLEMENTATION OF SPARSEMODGCD ALGORITHM 56

s z : = mn + (nt*maxu) ;

matrix-size := add(termlengthCi.1 , i = I . .nops(termlength)) ;

zero-counter := 0; i := I ;

RA := Create(p,nt,maxu,O,dat-t);

Mod(p, cof t , p l [il ,RA) ;

M := Matrix(sz,mn + matrix-size , datatype = dat- t) ;

gcoef f s : = Ccoef f s(expand(g1 [I]) , vzl)] ;

f o r j from 1 t o n t do

g t := gcoeffsCj1;

M[j ,zero-counter+l. .zero-counter+termlength[j]l := R A C j ,

I . . termlengthCj11 ;

M[j,-I] := g t ;

zero-counter : = zero-counter + t e rmleng th [j] ;

od;

f o r i from 2 t o mn do

Mod(p, co f t , p l Cil ,RA) ;

zero-counter := 0 ;

gcoeff s := Ccoeff s(expand(g1 Cil) , vzl)] ;

f o r j from I t o n t do

g t := g c o e f f s [j l ;

NA := (i - l)*n t + j ;

i f (NA > sz) then break; f i ;

M [NA,zero-counter+l . . zero-counter+termlength [j]] :=RA [j ,
I . . termlengthCj11 ;

M[NA , i - mn - 21 := g t ;

zero-counter := zero-counter + term-length Cj] ;

od ;

od;

end :

solve-system := proc (p,dat- t ,mn)

l o c a l s o l ;

s o l : = M o d (p , M , da t - t) ;

~ow~educe(p,sol,sz,matrixsize+mn,matrixsize+mn,0,0,0,0,'1~~~0~',true);

i f INCROW <> 0 then r e t u r n "Bad_FormI1 ; f i ;

r e t u r n s o l [I . . sz , m a t r i x s i z e + mn] ;

end :

end module:

APPENDIX A. MAPLE IMPLEMENTATION OF SPARSEMODGCD ALGORITHM 57

nRatrecon := proc(G,mc ,t ,p)

myRatrecon(G,mc ,t ,2,p) ;

end :

n-iratrecon : = proc (G,mc)

iratrecon(G,mc) ;

end :

PrimitiveAssociate := proc(f , s)
local opf , den;
den : = denom(f) ;

if op(0 , f) = ' * ' then return primpart(expand(den*f) , s); fi;

opf := [op(f)l;

primpart (expand(add(expand(den*opf [i]) , i=1 . . nops (opf))) , s) ;
end :

lcbadP := proc(f 1, f 2, ml, p, x, zl)

local lm, 11, 12,lml;

lml := map(proc(mi,zi) lcoeff (mi , zi) end proc , ml , zl);
11 := lcoeff(f1, x);

12 := lcoeff(f2, x);

for lm in lml do if lm mod p = 0 then return true; fi; od;

if (11 mod p = 0) or (12 mod p = 0) then return true; fi;

false ;

end :

#MBM

Phi := proc(f ,t,z,p) local d,s,i,n;

Compute eval(f,t=z) mod p efficiently

if type(f,integer) then return f mod p fi;

d := degree(f ,t) ; s := series(f ,t ,d+l) ; n := nops(s) ;

Because 0 0 is undefined, we need to test for z=0 directly

if z=0 then coeff (s,t ,0) else

add(op(2*i-1,s) * modp(z &- op(2*i,s),p), i=l..n/2) mod p;

fi;

end :

lcbadEP := proc(f1, f2, ml, p, alpha, t, x, zl)

local lm , 11, 12,lml;
lml := map(~roc (mi, zi) lcoef f (mi , zi) end proc , ml , zl) ;
11 := lcoeff(f1, x);

12 := lcoeff(f2, x);

APPENDIX A. MAPLE IMPLEMENTATION OF SPARSEMODGCD ALGORITHM 58

for lm in lml do

if EVAL(1m , t ,alpha,p) = 0 then return true; f i;

od;

if EVAL(11 , t , alpha,p) = 0 then return true; fi;

if EVAL(12 , t , alpha,p) = 0 then return true; fi;

false;

end :

MTrialDivision := proc(A, B, M1 , zl , x , Q : : name)

local a,b,m,n,dl,ca,cb,tl,lb,lml,r,lr,g,t~,~q,c,bl,t,~,d,~~,~~,~,~,p;

m : = degree (A , x) ;
n := degree(B , x);
dl := map (proc(mi,zi) degree(mi , zi) end proc ,M1 , zl) ;
ca := content(A , [x,op(zl)l);
cb := content(B , [x,op(zl)l) ;

divide(A , ca , 'a') ;
divide(B , cb , 'b') ;
lb := lcoeff(b , x);
lml := map(proc(mi,zi) lcoeff (mi , zi) end proc , M1 , zl) ;
r := a; s := I; q := 0;

while (r <> 0) and (m >= n) do

lr := lcoeff(r , x);
g := gcd(content (lr , zl) , lb) ;
divide(1r , g , 'lrJ);
divide(1b , g , 'ti');
s := expand(tl*s);

t := expand(1r * x- (m-n));
divide(t, s , 't2');
q := expand(q + t2);

r := expand(tl*r - t*b);
p := I;

for i from I to nops(M1) do

d := dl[i];

lm := lml [i] ;

zz : = zl [il ;

while (r <> 0) and (degree(r , zz) >= d) do

lr : = lcoef f (r , zz) ;
g := gcd(content (lr , x) , lm) ;

APPENDIX A. MAPLE IMPLEMENTATION OF SPARSEMODGCD ALGORITHM 59

divide(1r , g , 'lr7);
t := expand(lr*zz- (degree(r , zz) - d)) ;

divide(1m , g , 't2');
p := expand(p * t2);
r := expand(t2*r - t*Ml[i]);

od;

od;

s := s * p;
m := degree(r , x);

od;

if r <> 0 then return false f i;

bl := divide(ca , cb , 'cq');
if not bl then return false fi;

if nargs > 5 then Q := expand(cq*q); fi;

return true ;

end :

PTrialDivision := proc(A, B,Ml,zl, x , p)
local a,b,m,n,d,ca,cb,tl,lb,lm,r,lr,g,t2,cq,c,bl,t,lml,dl,zz,i;

m : = degree(A , x) ;
n : = degree (B , x) ;
dl := map (proc(mi,zi) degree(mi , zi) end proc,Ml , 21);
a := A; b := B;

lb := lcoeff(b , x);

lml := map(proc(mi,zi) lcoeff (mi , zi) end proc , M1 , zl) ;
r := a;

while (r <> 0) and (m >= n) do

lr := lcoeff(r , x);
g := Gcd(Content(1r , zl) mod p , lb) mod p;
if g <> I then

Divide(1r , g , 'lr') mod p;

Divide(1b , g , 'ti') mod p;

else ti := lb;

fi;

t := expand(1r * x- (m-n)) mod p;

r := expand(tl*r - t*b) mod p;
for i from I to nops(M1) do

d := dl[i];

APPENDIX A. MAPLE IMPLEMENTATION OF SPARSEMODGCD ALGORITHM 60

lm : = lml [il ;

zz : = zl [il ;

while (r <> 0) and (degree(r , zz) >= d) do

lr : = lcoeff (r , zz) ;
g := Gcd(Content(1r , x) mod p, lm) mod p;

if g <> 1 then Divide(1r , g , 'lr') mod p; fi;
t := 1r*zzA (degree(r , zz) - d) ;
if g <> 1 then Divide(1m , g , 't2') mod p; else t2 := lm; fi;

r := expand(t2*r - t*Ml[i]) mod p;

od;

od ;

m := degree(r , x);
od;

if r <> 0 then return false; f i;
return true;

end :

MinIndex := proc(1)

local m;

if nops(1) = 1 then return 1; f i;

m := MinIndex(lC2. .-I]) + 1;

if 1 [m] > 1 [I] then return 1 else return m; fi;

end :

mContent := proc(f , x , ml , zl)
local cl,dl,mindex , fl,bound,rgen,f2,i,r,g,k;
if type(f , list) then

cl := [coeffs(f [I] ,x) ,coeffs(f 121 ,x)l ;

else

cl := [coeff s(f , x)] ;

f i;

if nops(c1) = I then return cl[l]; fi;

dl := map(degree , cl) ;
mindex := MinIndex(d1);

f 1 : = cl [mindex] ;

bound := 10- 2;

rgen : = rand (-bound. . bound) ;
f2 := 0;

for i from 1 to nops(c1) do

APPENDIX A. MAPLE IMPLEMENTATION OF SPARSEMODGCD ALGORITHM 61

if i = mindex then next ; f i ;

r := rgeno;

f2 := f2 + r*cl[i];

od;

f2 := expand(f2);

g :=~odGcd(fl, f 2 , ml, zl);

if g = "failed" or g = I then return 1; fi;

k := 0;

while k < nops (cl) do
k := k + I;

if k = mindex then next ; f i ;

if not MTrialDivision(cl[kl, g, ml , zl , x) then
g : = ModGcd(f 1 , cl [kl , ml , zl) ;
if g = "failed" or g = I then return I ; fi;

k := 0;

f i;

end :

return g;

end :

RConvert := proc(e , zl , al)
local i , m;
m := e;

for i from I to nops(a1) do m := SUBS(z1 [il = al[il , m) ; od;

m;

end :

Rootconvert := proc(r1 , n)
local v,sn,ml,m,rln,vl;

ml := [I;
m := O~(SUBS(Z=Z[~] , rl[lI));

if nops(r1) = I then return [m], [z[n]] ;

fi;

rln : = map(proc (x) SUBS (rl [I] =z [n] ,x) end proc , rl[2. .-I]) ;
rln , vl := RootConvert(r1n , n + I);

return [op(rln> ,ml , [op(vl) , z Cnl I ;

end :

SparseInterp := proc(A , B , pattern , x, tl , zl, ml, p)
local a,b,maxu,r,c,t,v,nt,k,i,l,temp,pl,gl,tt,na,nb,g,~,gt,re~,M,~~~,~~ft

APPENDIX A. MAPLE IMPLEMENTATION OF SPARSEMODGCD ALGORITHM 62

,pat,mn,j,nml,coftnm,coft~cnt,matrixsize,termlength,sz,vzl,dat~t

,z,u,dpatx,dax,dbx,dmlx,patnt,gnt,dl;

k := nops(t1);

if (k < 1) then return EUCLID(A,B, [x,op(zl)] ,p,ml) ; f i;

a , b := A , B; pat := pattern;

r := rand(l..p - 1);

v := x; 1 := tl;

c := [coeffs(pat, [v , op(zl)] , 't')]; t := [t];

coft-cnt := 0; maxu := 0; coft := [I; coftnm := LO];

nt := nops(t) ;

for i from 1 to nt - 1 do
coeffs(c[i], 1 , 'temp');
coft := [op(coft) , [temp]];
maxu : = max (maxu , nops ([temp])) ;
cof t-cnt : = cof t-cnt + nops ([temp]) ;

coftnm := [op(coftnm) , coft-cnt] ;
od;

coeffs(c[-I], 1 , 'temp');
coft := [op(coft) , [temp]];
patnt := nops(c);

if patmt = 1 then

mn := maxu + I

else

mn := maxu + ceil(maxu / (patmt - 1));
fi;

pl := [I; gl := [I;
vzl := [v,op(zl)l;

if p < 10 ' 6 then dat-t :=integer [4] ; else dat-t : =integer [8] ; f i;

EVALSUBS [: - initialize] (a,b,vzl ,zl ,dat-t ,ml ,p) ;

z := 0; u := 0;

dpatx : = degree (pat, x) ;

dax , dbx := degree(a , x) , degree(b , x);
dmlx := map(degree , ml , x);
while nops (pl) < mn do

tt := {seq(v = r 0 , v = op(1)));

if member (tt , {op(pl))) then next ; f i ;

na,nb,nml := EVALSUBS [: - substitute] (tt ,p) ;

APPENDIX A. MAPLE IMPLEMENTATION OF SPARSEMODGCD ALGORITHM 63

i f dax < degree(na , x) o r dbx < degree(nb , x) then next ; f i ;

d l : = map(degree , nml , x) ;
i f evalb(d1 <> dmlx) then next ; f i ;

g := EUCLID(na , nb ,vz l ,p,nml) ;

i f g = " f a i l e d " then

z := z + 1 ;

i f nops (g l) + 1 < z then r e tu rn "ZeroDivisorPrime" ; f i ;

next ;

f i ;

i f degree(g , x) < dpatx then

r e tu rn "Bad_Form" ;

e l i f degree(g , x) > dpatx then

u := u + 1 ;

i f nops(g1) + 1 < u then r e tu rn "UNLUCKY"; f i ;

next ;

f i ;

gnt := nops([coeffs(expand(g) , [v , o p (z l > l > l > ;

i f gnt > p a t n t then

r e tu rn "Bad_Form" ;

f i ;

p l := Cop(p l) , t t l ;

g l : = Cop(g1) ,gl ;

od ;

term-length := map(nops , c o f t) ;

MATRIXSOLVE [:-constructmatrix](gl,pl,coft,p,nt,maxu,m,dat~t,vzl,

t e rmlength) ;

s o l : =MATRIXSOLVE [: -solvesystem] (p , dat-t , m) ;

res:=add(add(coft [i] [j] * s o l [c o f t m [i] + j] , j=l. . te rmlength[i l)*t [i] ,

i=l. .n t) ;

i f r e s = 0 then print("ZERO_ERROR"); r e tu rn "BadJorm"; f i ;

r e tu rn r e s ;

end :

mgcd-chrem := proc(Gl,mcl,g,p)

l o c a l In,v,G,mc;

G,mc := GI, mcl;

I n := l/mc mod p ;

v := In*(g-G) mod p ;

APPENDIX A. MAPLE IMPLEMENTATION O F SPARSEMODGCD ALGORITHM 64

G := G + mc*v;

mc := mc * p;
G,mc;

end :

pgcd-chrem := proc(Gl,mcl,g,alpha,t,p)

local delta,In,v,G,mc;

G,mc := GI, mcl;

delta := EVAL(G , t , alpha,p) ;
In := Rem(mc,t-alpha,t);

In := 1/In mod p;

v := In*(g-delta) mod p;

G := G + expand(v*mc) mod p;

mc := expand((t-alpha)*mc) mod p;

G,mc;

end :

Input: fi ,f2 and the list of minimal polynomials.
Output: g, where g is the gcd of fi and f2.

MGCD := proc(f1, f2, ml, zl, x , t1,vl)

local pbound , pgen, p , n,d, g, G, mc, h,i,Q,tt,pat, LM, LC,GT;
pbound := modpl(Prime(l))+l;

p := 1; n := 1; d := 1;

pat := 0;

while true do

p : = modpl (Prime (p)) ;

while lcbadP(fl,f2,ml,p,x,zl) do p := modpl(Prime(p)); od;

g := PGCD(f1, f2, p, ml , zl , x , tl,vl,pat);

If g = "contfailed" then next; fi;

If g = "ZeroDivisorPrimel' or g = "Unlucky" then next; fi;

If g = "BadIorm" then pat := 0; next; fi;

if g <> "failed" then

if g = 1 then return 1; fi;

LC := lcoeff (g, [x,op(tl)l, 'LMJ);

if not assigned(GT [LM]) then

G := expand(g);

mc := p;

GT[LM] := G,mc;

elif degree(g,x) < degree(G,x) then

APPENDIX A. MAPLE IMPLEMENTATION O F SPARSEMODGCD ALGORITHM 65

G := g;

mc := p;

pat := g;

GTCLM] := G,mc;

elif degree(g,x) > degree(G,x) then

next ;

else

G,mc := MCHREM(GT[LM] ,g,p);

GTCLM] := G,mc;

fi;

n := n + 1;

h : = IRATRECON(G ,mc) ;

if h <> FAIL then

h := ~rimitiveAssociate(h, {op(zl) ,x)) ;

pat := g;

if MDIV(f I, h, ml, zl, x) and MDIV(f2, h, ml, zl , x) then
return h;

fi;

else pat := g; fi;

f i;

else

d := d + 1;

if d > n then return "failed"; fi;

pat := 0;

f i;

od;

end :

Input: f l , f i , p , the list of minimal polynomials and the assumed form.

Output: Either g or an error message if the algorithm fails to compute the gcd.

PGCD := proc(f1 , f2, p, ml, zl, x, tl , vl , pat)
local k,G,n,d,alpha,rg,t,cml,ffl,ff2,g,h,mc,c,tt,eg,i,LC,LM,ptr,D,E,F,GT;

if CONTENT([f 1 ,f2] , [op(l. .-2,tl) ,op(vl)] , ml , zl) <> 1 then return "contfailed"; fi;

k : = nops(t1) ;

if k = 0 then return EUCLID(fl,f2,vl,p,ml); fi;

if (pat = 0) then

n :=I; d :=I;

rg := rand(1. .p-1) ;

APPENDIX A. MAPLE IMPLEMENTATION OF SPARSEMODGCD ALGORITHM 66

t := tlCkl;

alpha := r g 0 ;

while lcbad~~(f1, f2, ml, p, alpha, t, x, zl) do

alpha := rg0;

od;

ffl := ~vAL(f1 , t , alpha , p);
ff2 := ~vAL(f2 , t , alpha , p);
cml : = map (proc (m) EVAL (m, t ,alpha, p) ; end proc , ml) ;
ptr := PGCD(ff1, ff2, p, cml, zl, x, tl[l..k-11 , ~ 1 ~ 0) ;
if ptr = "contfailed" then return "contfailed"; fi;

if ptr = "ZeroDivisor-rimen or ptr = "failed" then return "ZeroDivisorPrime"; fi;

if ptr = I then return I fi;

while true do

alpha := r g 0 ;

while lcbadEP(f1, f2, ml, p, alpha, t, x, zl) do alpha := r g o ; od;

cml : = map(proc (m) EVAL(m, t , alpha,p) ; end proc , ml) ;
ffl := EVAL(f1 , t , alpha , p);
ff2 :=~vAL(f2, t , alpha, p);
g := SparseInterp(ffl,ff2,ptr,x,tl[l. .k-I] ,zl,cml,p);

if g = "BadIorm" then

return PGCD(f1 , f2, p, ml, zl, x, tl , vl , 0);
f i;

if g = "failed" then

d := d + I;

if d > n then return "ZeroDivisorPrime" fi;

else

LC := lcoeff (g, [x,op(tl)], 'LM') ;

LC := l/LC mod p;

g : = g*LC mod p;

fi;

if g <> "failed" and g <> "Unlucky" then

if g = I then return I ; f i ;

if not assigned(GT [LM]) then

G : = expand($ mod p;

mc := t - alpha;
GTCLM] := G,mc;

elif degree(g,x) < degree(G,x) then

APPENDIX A. MAPLE IMPLEMENTATION OF SPARSEMODGCD ALGORITHM 67

ptr := g;

G := g;

mc := p;

GT[LM] := G,mc;

elif degree(g,x) > degree(G,x) then

next ;

else

G,mc := PCHREM(GT[LM~ ,g,alpha,t,p);

GT[LM] := G,mc;

fi;

n := n + I;

h := RATRECON(G,mc,t,p);

if h <> FAIL then

h : = PrimitiveAssociate(h, {op(zl) ,x)) ;

if PDIV(fl,h,ml,zl,x,p) and ~~I~(f2,h,ml,zl,x,p) then

return h;

f i;

fi;

fi;

od;

else

h := Sparse1nterp(f1 , f2 , pat , x, tl , zl, ml, p);
if h = "BadIorm" then return "BadIormtl ; f i ;

LC := lcoeff (h, [x,op(tl)] ,'LM');

LC := l/LC mod p;

h := h*LC mod p;

return h;

f i;

end :

ModGcd := proc(f I, f2, ml, zl)

local ma , fla , f2a , x , ntl, c, g, ct, G,R,tl,xl,V,vl;
V := indets (ml) ;

tl : = [op(V minus {op(zl)))l;

xl := [op(indets([fl,f21) minus V)];

if nops(x1) = 0 then return I; f i;

x := xl[ll;

vl := [x , op(z1)I;

APPENDIX A. MAPLE IMPLEMENTATION OF SPARSEMODGCD ALGORITHM 68

ma:=map(proc (m) PrimitiveAssociate (m , [op(zl) ,XI end,ml) ;

f la := ~rimitive~ssociate(f I , [op(zl) ,XI) ;

f 2a := PrimitiveAssociate(f 2 , [op(zl) ,x] ;

if nops(x1) = I then return MGCD(fla,f2a,ma,zl,x,tl , vl); fi;
ntl := [op(tl) , op(2..-l,xl)];
c :=CONTENT([fl, f21 , x , D l , A);

g := MGCD(fla,f2a,ma,zl,x,ntl,vl);

if g = "failed" then return g; f i;

ct := CONTENT(g , x , ml , zl);
MTrialDivision(g, ct, ma , zl , x , 'G');
return expand(c*G) ;

end :

Bibliography

[I] W. S. Brown. On Euclid's algorithm and the computation of polynomial greatest
common divisors. J. A CM, 18(4):478-504, 1971.

[2] Bruce W. Char, Keith 0 . Geddes, and Gaston H. Gonnet. Gcdheu: Heuristic polyno-
mial gcd algorithm based on integer gcd computation. J, Symb. Comput., 7(1):31-48,
1989.

[3] George E. Collins. Subresultants and reduced polynomial remainder sequences. J.
ACM, 14(1):128-142, 1967.

[4] Jennifer de Kleine, Michael Monagan, and Allan Wittkopf. Algorithms for the non-
monic case of the sparse modular gcd algorithm. In ISSAC '05: Proceedings of the 2005
international symposium on Symbolic and algebraic computation, pages 124-131, New
York, NY, USA, 2005. ACM Press.

[5] Mark J. Encarnaci6n. On a modular algorithm for computing gcds of polynomials over
algebraic number fields. In ISSAC '94: Proceedings of the International Symposium on
Symbolic and Algebraic Computation, pages 58-65. ACM Press: New York, NY, 1994.

[6] Keith 0 . Geddes, Stephen R. Czapor, and George Labahn. Algorithms for Computer
Algebra. Kluwer Academic Publishers: Boston/Dordrecht/London, 2002.

[7] Erich Kaltofen. Sparse hensel lifting. In EUROCAL '85: Research Contributions from
the European Conference on Computer Algebra-Volume 2; pages 4-17, London, UK,
1985. Springer-Verlag.

[8] Michael Monagan. Maximal quotient rational reconstruction: An almost optimal al-
gorithm for rational reconstruction. In Proceedings of the International Symposium
on Symbolic and Algebraic Computation, pages 243-249. ACM Press: New York, NY,
2004.

[9] Mark van Hoeij and Michael Monagan. A modular gcd algorithm over number fields
presented with multiple extensions. In ISSAC '02: Proceedings of the 2002 international
symposium on Symbolic and algebraic computation, pages 109-116, New York, NY,
USA, 2002. ACM Press.

BIBLIOGRAPHY 70

[lo] Mark van Hoeij and Michael Monagan. Algorithms for polynomial gcd computation over
algebraic function fields. In Proceedings of the International Symposium on Symbolic
and Algebraic Computation, pages 297-304. ACM Press: New York, NY, 2004.

[Il l Joachim von zur Gathen and Jiirgen Gerhard. Modem Computer Algebra. Cambridge
University Press: Cambridge, New York, Port Melbourne, Madrid, Cape Town, second
edition, 2003.

[12] Paul S. Wang. An improved multivariate polynomial factorization algorithm. Math.
Comp., 32(144):1215-1231, 1978.

[13] Paul S. Wang. The eez-gcd algorithm. SIGSAM Bull., 14(2):50-60, 1980.

[14] Paul S. Wang. A p-adic algorithm for univariate partial fractions. In SYMSAC '81:
Proceedings of the fourth ACM symposium on Symbolic and algebraic computation,
pages 212-217, New York, NY, USA, 1981. ACM Press.

[15] Paul S. Wang, M. J . T . Guy, and J . H. Davenport. P-adic reconstruction of rational
numbers. SIGSAM Bull., 16(2):2-3, 1982.

[I61 Richard Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM '79:
Proceedings of the International Symposiumon on Symbolic and Algebraic Computation,
pages 216-226, London, UK, 1979. Springer-Verlag.

[17] Richard Zippel. Effective polynomial Computation. Kluwer Academic Publishers, 1993.

