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Abstract 

We introduce and implement a hybrid Monte-Carlo fmite difference method for approxi- 

mating the solution of Poisson's equation. This method solves smaller problems multiple 

times to collectively solve a larger main problem, when the solution of the main problem is 

unattainable by known regular direct and iterative methods. The method thereby resolves 

features that a single smaller problem may not. This hybrid Monte-Carlo finite difference 

method achieves second order accuracy on generic problems, and on problems with sharp 

features. 

Keywords: 

Finite difference method; high dimensions; parallel computing; Poisson's equation 



Acknowledgments 

I would like to thank my senior supervisor Dr. Adam Oberman for suggesting this interesting 

topic for my thesis. I would also like to thank Dr. Steve Ruuth, Dr. JF  Williams, Dr. 

Ralf Wittenberg and Dr. Jim Verner for their valuable comments to improve the style of 

this thesis. Special thanks to my colleagues Thomas Humphries and Ryo Takei for their 

constructive comments and suggestions. 

Last but not least, many thanks to my family and Vivian Chen. This would not have 

been possible without their continuous support, patience and encouragement throughout 

my bachelor's and master's degrees at Simon Fraser University. 



Contents 

Approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ii 
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Abstract in 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Acknowledgments iv 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Contents v 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  List of Tables vii 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  List of Figures ix 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 Introduction 1 

2 One Dimensional Poisson's Equation . . . . . . . . . . . . . . . . . . . . . . .  4 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 On a Uniform Grid 4 

. . . . . . . . . . . . . . . . . . . . . . . . . .  2.2 On a Non-uniform Grid 7 

. . . . . . . . . . . . . . . . . . . .  3 Multiple Dimensional Poisson's Equation 10 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 In Two Dimensions 10 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2 In Three Dimensions 13 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3 In Higher Dimensions 17 

. . . . . . . . . . . . . . . . . .  4 Hybrid Monte-Carlo Finite Difference Method 18 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.1 Algorithm 20 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 Implementation 21 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3 In One Dimension 24 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 In Two Dimensions 26 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.5 In Three Dimensions 32 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  4.6 In Higher Dimensions 35 

5 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 In One Dimension 37 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 In Two Dimensions 42 



. . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.3 In Three Dimensions 42 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 Conclusions 51 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.1 Summary 51 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.2 Future Work 52 

Appendices 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  A Computational Complexity 53 

. . . . . . . . . . . . . . .  B MATLAB Codes for Solving 2d Poisson's Equation 56 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Bibliography 67 



List of Tables 

1.1 History of matrix computations over the years. . . . . . . . . . . . . . . . 

5.1 Id smooth test case: Comparison of the 12-error when solved by the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.2 Id smooth test case: Comparison of the 1,-error when solved by the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.3 Id spiky test case: Comparison of the 12-error when solved by the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.4 Id spiky test case: Comparison of the 1,-error when solved by the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.5 2d smooth test case: Comparison of the 12-error when solved by the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.6 2d smooth test case: Comparison of the 1,-error when solved by the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.7 2d spiky test case: Comparison of the 12-error when solved by the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.8 2d spiky test case: Comparison of the 1,-error when solved by the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.9 3d smooth test case: Comparison of the 12-error when solved by the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.10 3d smooth test case: Comparison of the 1,-error when solved by the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.11 3d spiky test case: Comparison of the 12-error when solved by the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

vii 



5.12 3d spiky test case: Comparison of the 1,-error when solved by the regular 

b i t e  difference method and the hybrid Monte-Carlo b i t e  difference method. 49 

A.l Id: Comparison of CPU (in s) with different MATLAB direct and iterative 

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 

A.2 2d: Comparison of CPU (in s) with different MATLAB &rect and iterative 

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 

A.3 3d: Comparison of CPU (in s) with different MATLAB direct and iterative 

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

A.4 4d: Comparison of CPU (in s) with different MATLAB direct and iterative 

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

A.5 5d: Comparison of CPU (in s) with different MATLAB direct and iterative 

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

viii 



List of Figures 

2.1 Uniform grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

2.2 Non-uniform grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

3.1 Example of reshaping a 2d matrix into a vector . . . . . . . . . . . . . . . . . .  11 

3.2 Example of reshaping a 3d matrix into a vector . . . . . . . . . . . . . . . . . .  15 

4.1 Take Brownian paths from "star" until it reaches the coarse grid . . . . . . . .  
4.2 Example for a point that lies on the coarse grid . . . . . . . . . . . . . . . . .  
4.3 Example for a point that does not lies on the coarse grid . . . . . . . . . . . .  

4.4 Example of a coarse grid, fine grid and refined grid in Id . . . . . . . . . . . .  

4.5 Example of a coarse grid, fine grid and refined grid in 2d . . . . . . . . . . . .  

4.6 Schematic of hybrid Monte-Carlo finite difference method on parallel com- 

puting system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4.7 Id: Coarse grid and fine grid . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.8 l d  smooth test case: Exact solution with ni = 3500 . . . . . . . . . . . . . . .  
4.9 Id smooth test case: By regular finite difference method with n, = 24 and 

ni=3500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4.10 Id smooth test case: By hybrid Monte-Carlo finite difference method with 

n, = nf = 24 and ni = 3500 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.11 Id spiky test case: Exact solution with ni = 3500 . . . . . . . . . . . . . . . .  
4.12 Id spiky test case: By regular finite difference method with n, = 24 and 

ni=3500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.13 Id spiky test case: By hybrid Monte-Carlo finite difference method with 

n, = nf = 24 and ni = 3500 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



4.14 2d: Example of the procedure of combining the solution of the coarse grid 

problem and the shifted problem. . . . . . . . . . . . . . . . . . . . . . . . . . 
4.15 2d: Coarse grid and fine grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.16 2d smooth test case: Exact solution with ni = 1500. . . . . . . . . . . . . . . 
4.17 2d smooth test case: By regular finite difference method with n, = 36 and 

ni=l5OO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.18 2d smooth test case: By hybrid Monte-Carlo finite difference method with 

n, = nf = 36 and ni = 1500. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.19 2d spiky test case: Exact solution with ni = 1500. . . . . . . . . . . . . . . . 
4.20 2d spiky test case: By regular finite difference method with n, = 36 and 

ni=l5OO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.21 2d spiky test case: By hybrid Monte-Carlo finite difference method with 

n, = nf = 36 and n, = 1500. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.22 3d smooth test case: Exact solution with ni = 150. . . . . . . . . . . . . . . . 
4.23 3d smooth test case: By regular finite difference method with n, = 12 and 

ni=150. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4.24 3d smooth test case: By hybrid Monte-Carlo finite difference method with 

n, = nf = 12 and ni = 150. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.25 3d spiky test case: Exact solution with ni = 150. . . . . . . . . . . . . . . . . 
4.26 3d spiky test case: By regular finite difference method with n, = 12 and 

ni=150. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4.27 3d spiky test case: By hybrid Monte-Carlo finite difference method with 

n, = n j  = 12 and ni = 150. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.28 4d test case: Exact solution with ni = 50. . . . . . . . . . . . . . . . . . . . . 
4.29 4d test case: By regular finite difference method with n, = 6 and ni = 50. . . 
4.30 4d test case: By hybrid Monte-Carlo finite difference method with n, = nf = 

6 and ni = 50.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.1 Id smooth test case: Log-log plot of the 12-error versus D X  for the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.2 Id smooth test case: Log-log plot of the 1,-error versus D X  for the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 



5.3 Id spiky test case: Log-log plot of the 12-error versus D X  for the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.4 Id spiky test case: Log-log plot of the &-error versus D X  for the regular 

linear solver and the hybrid Monte-Carlo finite difference method. . . . . . . 
5.5 2d smooth test case: Log-log plot of the 12-error versus D X  for the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.6 2d smooth test case: Log-log plot of the 1,-error versus D X  for the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.7 2d spiky test case: Log-log plot of the 12-error versus D X  for the regular 

finite difference method and the hybrid Monte-Carlo fmite difference method. 

5.8 2d spiky test case: Log-log plot of the 1,-error versus D X  for the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.9 3d smooth test case: Log-log plot of the 12-error versus D X  for the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.10 3d smooth test case: Log-log plot of the &-error versus D X  for the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.11 3d spiky test case: Log-log plot of the 12-error versus D X  for the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

5.12 3d spiky test case: Log-log plot of the &-error versus D X  for the regular 

finite difference method and the hybrid Monte-Carlo finite difference method. 

6.1 (a) Shifting used in this thesis. (b) Different way of shifting. . . . . . . . . . . 



Chapter 1 

Introduction 

The aim of this thesis is to construct a hybrid Monte-Carlo finite difference method for the 

use in computing numerical solutions to Poisson's equation in multiple dimensions. This 

method solves smaller problems multiple times to collectively solve a larger, often high cost 

main problem. 

A standard technique for solving Poisson's equation is by using the finite difference 

method, which is essentially equivalent to solving a large system of linear equations. The 

two standard classes of methods for solving system of equations are the direct methods and 

the iterative methods. The work required in solving a general system of N equations with N 

unknowns by direct methods is o ( N ~ ) ,  whereas it is 0 (N2)  by iterative methods. In general, 

direct methods require larger memory and more work, but are more robust. The iterative 

methods require less memory and work, but are also less robust. The drawback of both is the 

rapid increase in computational complexity as the number of dimensions increases, an effect 

known as the curse of dimensionality1. Table 1.1 bom [17] gives a rough approximation to 

what dimensions might have been considered "very large" for direct methods over the years. 

For high dimensions, the commonly used method is the Monte-Carlo method. A classic 

use of the Monte-Carlo method is for the evaluation of definite integrals, particularly multiple 

dimensional integrals with complicated boundary conditions. Moreover, the Monte-Carlo 

method can be used to compute the stochastic processes. Furthermore, it can be used 

to compute solutions of partial differential equations (PDEs), based on the well-known 

'A term coined by Richard Bellman to describe the rapid growth of volume a s  the number of dimensions 
increases. 
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Table 1.1: History of matrix computations over the years. 

Feynman-Kac formula and It6's formula. They are powerful tools that allow one to represent 

the solutions of elliptic and parabolic PDEs as the expected values over a stochastic processes 

under some assumptions (see [3], [5]). Unfortunately, the Monte-Carlo method required M 

times as much work to reduces the numerical approximation by a factor of 1 / a ,  where 

M is the number of simulations. This property holds independently of the number of 

dimensions, but the rate of convergence is still the fatal drawback. 

These two methods offer a tradeoff. The first gives good accuracy if we can solve a 

large linear system. The second requires only inexpensive (unit cost) simulation, but many 

of them to obtain comparable accuracy. The hybrid Monte-Carlo finite difference method 

introduced here aims to find a compromise between the two. 

In this thesis, we are interested in solving what first appears to be a simple problem, 

namely Poisson's equation over a d-dimensional domain R. 

PDE version: 
- 4 4  = f (4, VXER 

4 2 )  = g(xL Vx E aR 

Stochastic version: 

where (Wt , t >_ 0) is a Brownian path and ran = inf (t : Wt E K!), is the stopping time. 

The solution at each point is given as an average of a functional over the Brownian paths 

(see [4], [9], [ll], [lo], [13]). In this thesis: we will not go into detail about the stochastic 

version. Everything we do can be thought of as a special kind of finite difference method. 

The stochastic version is the motivation of the hybrid Monte-Carlo finite method; it gives 

a different way of thinking of the problem. 
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The concept of the hybrid MonteCarlo finite difference method involves solving an 

approximate solution on a coarse grid, then making a refinement of it using a h e  grid. 

Although the method has the appearance of a multigrid method, because we are solving on 

two different scales, it is designed to generalize to nonlinear equations which can be written 

as expectations of stochastic processes, as in (1.2). We hope to generalize this method to 

solving nonlinear elliptic PDEs. 

A summary of the contents of the chapters is as follows: 

The first half of Chapter 2 consists of a quick review of the discretization of the one 

dimensional Poisson's equation with Dirichlet boundary conditions on a uniform grid, and 

the matrix representation of this discretization. The second half is on a non-uniform grid. 

Chapter 3 begins with a discussion of the discretization of the multiple dimensional 

Poisson's equation and the corresponding matrix representation. It then touches briefly on 

the difficulty of solving problems in high dimensions. 

In Chapter 4, we introduce a hybrid MonteCarlo finite difference method, with numer- 

ical results presented for the one, two, three and four dimensional problems. 

In Chapter 5, we investigate the rate of convergence in one, two and three dimensions. 

AU the data throughout this thesis is collected using an Apple Power Mac G5 with dual 

2.5Ghz processors and 2GB RAM. 

Finally, Chapter 6 is divided into two sections: The first section is a summary, followed 

by a discussion on future work. 



Chapter 2 

One Dimensional Poisson's 

Equation 

The purpose of this chapter is to review the finite difference discretization for the one 

dimensional Poisson's equation. Let us first recall the one dimensional Poisson's equation 

with Dirichlet boundary conditions on the domain [a ,  b] C R: 

-ul'(x)  = f ( x ) ,  V x  E ( a ,  b) 

4 a ) = g 1 ,  + ) = g N .  

2.1 On a Uniform Grid 

Finite difference discretization consists of replacing each derivative by a difference quotient. 

The most standard difference quotient for the second derivative is the centered second order 

difference, which could be derived from the Taylor expansion of u ( x  - A x )  and u ( x  + A x ) :  

1 1 
u ( x  - A x )  = u ( x )  - u l ( x ) A x  + - u 1 ' ( x ) ~ x 2  - - u 1 " ( x ) ~ x 3  + 0 ( a x 4 ) ,  

2 6 

By adding (2 .2)  and ( 2 . 3 ) ,  subtracting 2 u ( x )  and dividing by A x 2 ,  we deduce that 

u ( x  + A x )  - 2 u ( x )  + u ( x  - A x )  
u"(x)  = + 0 ( a x 2 ) .  

A x 2  (2 .4 )  
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Figure 2.1: Uniform grid. 

The next step is to choose an integer N, the number of grid points, and define the grid 

size Ax = (b - a) / (N - 1). This partitioned the domain [a, b] into (N  - 1) equal parts of 

length Ax. We define a particular grid point xj  by 

and the value uj by 

For example, if u(x) is approximated by u,, then u(x + Ax) and u(x - Ax) are approximated 

by uj+, and 21,-, respectively. Then (2.4) becomes, 

u,+1 - 2% + u,-1 
This scheme is 0 ( a x 2 )  accurate; in other words, approximates u"(x,) up 

Ax2 
to terms proportional to ax2 .  
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When we replace uff(z) by (2.7) in (2.1), then the discretized one dimensional Poisson's 

equation with Dirichlet boundary conditions is: 

-uj+l + 2uj - Uj-l [ Ax2 = f,, 

The domain [a, b] is partitioned into ( N  - 1) equal parts by N grid points, for which j = 1 

.... and j = N are the boundary points where the solution is given, and j = 2, ( N  - 1) are 

the interior points where the solution is to be computed. In order to solve this discretized 

one dimensional Poisson's equation, we need ( N  - 2) equations for the ( N  - 2) unknowns. 

We can obtain these ( N  - 2) equations by expanding (2.8) from j = 2 to j = ( N  - l), and 

together with the boundary points. This leads to a linear system of equations in the form 

of Au = b, where A is the matrix representation of the one dimensional Poisson's equation 

with Dirichlet boundary conditions: 
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For numerical purposes, when solving such a system, we often rewrite the boundary 

conditions as 

This ensures a lower condition number1. Notice that A is sparse2, tridiagona13 and positive 

definite4. There are many methods that have been designed to solve these types of linear 

system for the vector u. 

2.2 On a Non-uniform Grid 

For non-uniform grids, the corresponding centered second order difference can also be derived 

from the Taylor expansion of u(x - AX,)  and u(x + AX,),  except now, AxL is not necessary 

equal to AX,. 

After multiplying Ax: to ( 2 . 1 2 )  and AX? to (2.13), taking the sum and subtract (AxL + 
Ax,)u(x); then dividing both by ~ ( A X , A X ;  + Ax?Ax,) to deduce: 

Define a particular grid point x, by 

'The condition number of matrix A measures the number of digits lost in solving a linear system with that 
matrix. It is defined by IIAIIIIA-' 1 1 .  A problem with a low condition number is said to  be well-conditioned, 
whereas a problem with a high condition number is said to be ill-conditioned. 

'A is sparse if most of the elements of A are zero. 
3A is tridiagonal matrix, if A is square matrix with nonzero elements only on the diagonal, subdiagonal 

and superdiagonal. 
4 A  is positive definite if X ~ A X  > 0 for all x # 0. 
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Figure 2.2: Non-uniform grid. 

where Axj = xj+, - xj, and we approximate the value uj  by (2.6). Then (2.14) becomes, 

AX,-~U,+~ - (Ax,-, + AxJ)uJ + AX,U,-~ 
u ~ ~ ( x , )  = + O(AxJ-I - Ax,). (2.16) 

+(AX,-,AX,~ + Ax,2_,AxJ) 

This is the centered second order difference for a non-uniform grid. In general, this scheme 

is first order accurate unless the mesh is smoothly graded, or AX, = AX,, in which case it 

would be second order accurate as described in Section 2.1. 

Replace u"(x) by (2.16) in (2.1), and the discretized one dimensional Poisson's equation 

with Dirichlet boundary conditions on a non-uniform grid becomes: 

-AX,-~U,+~ + (Axj-, +  AX,)^, - A X ~ U , _ ~  
= f,, j = 2,3, ..., N - 1 

$(Ax~-,Ax,~ + AX,~- ,AX~)  (2.17) 

211 = 91, u~ = QN. 

As in Section 2.1, we need (N - 2) equations which are all obtained by expanding (2.17), 

from j = 2 to j = ( N  - 1); together with the boundary points, this leads to a linear system 

of equations in the form of Au = b, where A is sparse, tridiagonal and positive definite: 
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where Ax, = x,,, - x,, A] = Ax,-, + Ax, and d, = Ax,-,AX; + AX:-,AX,. The vectors 

u and b are the same a s  in (2.10). 

For numerical purposes. we often rewrite the boundary conditions as 

A lom(Nl2) A f lom(Nl2) 
2L1 = 91 1 

d f l o o r ( ~ / 2 )  floor(Nl2) 
(2.19) 

A f l o m ( N / 2 )  
2LN = A f 1 m ( N ~ 2 )  Q N .  

d f  l W (  ~ / 2 )  d f  loor(Nl2) 

In later chapters, we use this idea of non-uniform grid to perform grid shifting. The grid 

shifting shifts the interior grid point to a given direction by one unit (in term of Ax). 

Thereby the distance between each interior grid point is unchange, which is Ax. The 

distance between the interior grid point and the boundary point is either larger than or 

smaller than Ax. This can be thought as having a interior uniform grid cell with non- 

uniform boundary grid cell. By rewriting the boundary conditions as (2.19), this ensures the 

diagonal is approximately the same value, therefore resulting in a lower condition number. 



Chapter 3 

Multiple Dimensional Poisson's 

Equation 

3.1 In Two Dimensions 

Consider the two dimensional Poisson's equation 

d2 d2 
-Au(x) = --u(x) - -u(x) = f (x), 

dx2 dy2 'dz = (x, y) E R (3.1) 

where 0 = (ao, a1) x (Po, PI). 

Similar to Section 2.1, we choose integers N, and Ny and define the grid size Ax = 

(al - ao) /(N, - 1) and Ay = (Pl - PO)/(Ny - 1) , which partitions [ao, all and [Po, PI] into 

(N, - 1) and (Ny - 1) equal parts of length Ax and Ay respectively. Define the grid point 

(.l,Y,) by 
xi = a 0  + (i - l)Ax, 2=1 ,2  ,..., N, (3.2) 

and 

Y, = PO + ( j  - ~PY, j = 1,2, ..., N~ (3.3) 
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The centered second order differences are 

The discretized two dimensional Poisson's equation with Dirichlet boundary conditions 

is now 

The domain is partitioned into ( N ,  - l ) ( N y  - 1 )  grid points of which (2Nz +2Ny - 4) are 

the boundary points where the solution is given, and ( N ,  - 2) (Ny  - 2) are the interior points 

where the solution is unknown. In order to solve the discretized two dimensional Poisson's 

equation, we need ( N ,  - 2) (Ny  - 2) equations. We obtain those by expanding (3.7) for each 

of the interior points from top to bottom and left to right, see Figure 3.1. 

Figure 3.1: Example of reshaping a 2d matrix into a vector. 
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Together with the boundary values, this leads to a linear system in the form of A u  = b, 

where 

A =  

with identity matrix I and By and I, as follows: 

1 1 where Szy = + w. 
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Similar to Chapter 2, for numerical purposes, we often rewrite the boundary conditions 

as 

Szy . ul,, = Szy . g l V j  and S,, - uN,,, = Szy . gN,,jr for j = 1,2, ..., Ny 

(3.1 1 )  

Szy . ui,l = Szy . g,,' and Szy - U,,jvy = SZY . gr,Ny. for i = 1, 2, ..., N, 

This ensures a lower condition number. Notice that A is a sparse, positive definite and 

block1 matrix consisting of square sub-matrices By and I,. I, is a diagonal matrix, and By 

is a tridiagonal matrix. So matrix A is a positive definite matrix with 5 non-zero diagonals. 

3.2 In Three Dimensions 

Consider the three dimensional Poisson's equation 

d2 d2 d2 
- ~ u ( x )  = --U(X) - -u(x) - -u(x) = = ( X I ,  

dx2 dy2 dz2 
V x  = (z, y, z) E R 

(3.12) 

44  = 9 ( 4 ,  V x  E d R  

where 0 = ( Q O ,  ~ 1 )  x (PO,  P i )  x (70, 71 ) .  

We choose integers N,, Ny and N, and define the grid size as Ax = (a l  - ao) / (N,  - l ) ,  

Ay = (PI  - Po)/(Ny - 1 )  and AZ = (71 - ~ o ) / ( N ,  - 11, which partitions [ao, all, [Po,PlI 
and [ ~ ~ , - y ~ ]  into (N ,  - l ) ,  ( N y  - 1) and ( N ,  - 1) equal parts of length Ax,  Ay and Az 

respectively. Define the grid point (xi,yl,zk) by 

and 

~k = 70 + (k  - ~ ) A z ,  k = l ,2 ,  ..., N, (3.15) 

and the value u,,,.~ by 

%,j,k u ( x z !  Y I !  ' k ) '  

'A block matrix is a matrix that is defined by partitioning it into smaller matrices. 
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The centered second order differences are 

The discretized three dimensional Poisson's equation is 

for i = 2 , 3 ,  ..., N, - 1 

and j = 2,3, ..., Ny - 1 

and k = 2 , 3 ,  ..., Nz - 1 

U l , j , k  = gl,j,k and U N , , ~ , ~  = gNZ,j,k, for j = 1 , 2 ,  ..., Ny and k = 1 , 2 ,  ..., Nz 

Ui , l , k  = gi,l,k and U i , ~ ~ . k  = g i , ~ ~ , k ,  for i = 1: 2: ..., N, and k = 1 , 2 ,  ..., Nz 

u i , j , ~  = gi,j,l and U i , j , ~ =  = g i , j . ~ , .  for i = 1, 2 ,  ..., Nz and j = 1, 2 ,  ..., Ny 
(3.20) 

We can obtain all the necessary equations to solve this problem by expanding (3.20) 

from back to front and left to right and top to bottom; see Figure 3.2.  

This leads to a linear system of the form Au = b. 
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Figure 3.2: Example of reshaping a 3d matrix into a vector. 

with identity matrix I and BZy and I; as follows: 
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with By and I, as follows: 

Similarly, for numerical purposes, we often rewrite the boundary conditions as 
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This ensures a lower condition number. Notice that matrix A is a block matrix consisting 

of square sub-matrices B,, and I,. I,  is a diagonal matrix, and B,, is again a block matrix 

consisting of square sub-matrices B, and I,. I,  is a diagonal matrix, and B, is a tridiagonal 

matrix. So this matrix A is positive definite with two levels of block matrix structure, and 

it has 7 non-zero diagonals. 

3.3 In Higher Dimensions 

In this section, we use the ideas from Sections 3.1 and 3.2 to generalize to higher dimensions. 

In one dimension, matrix A is a tridiagonal positive definite matrix. In two dimensions, 

matrix A is a positive definite block matrix consisting of tridiagonal and diagonal matrices. 

Hence, A is a definite matrix with 5 non-zero diagonals. In three dmensions, matrix A is 

again a positive definite block matrix consisting of another substructure of block matrices 

and diagonal matrices, and the structure of the inner block matrices are same as the two 

dimensional case. Matrix A is said to have two levels of blocks. Hence it is a positive definite 

matrix with 7 non-zero diagonals and two levels of block matrix structure. 

In d-dimensions, we could also expand the discretized d-dimensional Poisson's equation 

into a linear system in the form of Au = b; this can be done by reshaping this d-dimensional 

domain into a vector. Matrix A will have (d - 1) levels of block, and its structure will be 

a positive definite sparse matrix with (2d + 1) non-zero diagonals, and with size equal to 

the product of the number of grid points in every directions. Notice that, as the number 

of dimensions increases, the size of the matrix will increase, and consequently, many known 

methods will fail to compute in a sufficient period of time. This is the difficulty in solving 

high dimensional problems. 



Chapter 4 

Hybrid Monte-Carlo Finite 

Difference Method 

The main advantage for using a hybrid Monte-Carlo finite difference method is the ability 

to solve a larger main problem collectively by solving smaller problems multiple times. The 

method thereby resolves features that a single smaller problem may not. 

The motivation of the hybrid Monte-Carlo finite difference method is from the stochastic 

version; it can be thought as using the traditional Monte-Car10 method. We will motivate 

this hybrid Monte-Carlo finite difference method by an example. Consider Figure 4.1, the 

goal is to obtain the solution at the "star". By traditional Monte-Carlo method, we take 

some Brownian paths from the star until they reach the boundaries, and the solution is given 

as an average of a functional over those Brownian paths. For the hybrid Monte-Carlo finite 

difference method, unlike the traditional Monte-Carlo method, which take some Brownian 

paths from the star to the boundaries, we take a smaller scale Brownian paths from the star 

to the "circles"; this is same as applying the Monte-Carlo method to the star on the fine 

grid. For each circle, we take a larger scale Brownian paths until they reach the boundaries; 

this is same as applying the Monte-Carlo method from those circles on the coarse grid. 

Notice that, for those circles that lie on the coarse grid (see Figure 4.2), we can directly 

take Brownian paths from those points. For those circles that do not lie on the coarse 

grid, we cannot directly take Brownian paths from those points; we need to shift the coarse 

grid first, then take Brownian paths (see Figure 4.3). Recall from Chapter 1; from the finite 

difference method, the solution is obtained by solving a system of linear equations. From the 
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MonteCarlo method, the solution at each point is given as an average of a functional over 

the Brownian paths. The previous two statements are the PDE version and the stochastic 

version of the solution of Poisson's equation; hence they are equivalent. We replace each of 

the Monte-Carlo method by the finite difference method. This hybrid MonteCarlo finite 

difference method can be thought of as a special kind of finite difference method, which 

motivate by the traditional Montecarlo method. 

Figure 4.1: Take Brownian paths from 
"star" until it reaches the coarse grid. 

Figure 4.2: Example for a point that lies Figure 4.3: Example for a point that does 
on the coarse grid. not lies on the coarse grid. 

The idea behind the hybrid MonteCarlo finite difference method is that it can break 

the problem into two steps; the first step consists of shifting the coarse grid in different 

directions, the shifted grids representing different Brownian paths taken; the second step 

consists of solving smaller systems using a regular finite difference method multiple times 

collectively to solve a larger system. 
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4.1 Algorithm 

The algorithm is as follows: 

1. Initialize: Define two sets of grids, namely the coarse grid and the h e  

grid. Let the coarse grid have n, points, with grid size DX, and the fine grid 

have nf points, with grid size dx. Each space between consecutive coarse grid 

points contains a fine grid. This is equivalent of having a refined grid with 

n,,f points, where n,,f = (n, - l)(nf - 1) + 1. In general, we choose nf = n,. 

Fine grid: n, 

(n, = 6 )  

Coarse grid: nc 

(Nc = 6)  

Retined grid: n, 

(n, = 26) 

Fine grid: n, x n, 

(n, = 6)  

Coarse grid: nc x nc 

(nc = 6) 

Figure 4.4: Example of a coarse grid, h e  Figure 4.5: Example of a coarse grid, fine 
grid and refined grid in Id. grid and refined grid in 2d. 

2. First step: Solve the problem on coarse grid using the finite difference 

method. Then shift the coarse grid such that it lies on the boundary of the 

h e  grid, and solve this "shifted problem"; keep shifting the coarse grid and 

solving the shifted problem until we obtain all the boundary points for the 

fine grid. An illustration of this shifting procedure will be made for the two 

dimensional case in Section 4.4. 

(Special case: in one dimension, do not need to shift the coarse grid.) 

3. Second step: Solve the problem on each h e  grid using the finite difference 

method. 

4. Interpolation (Optional): Interpolate the refined solution onto an interpe 

lated grid. The purpose of interpolation is to compute error for convergence 

analysis. 
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4.2 Implementat ion 

Recall that n, denotes the number of points on the coarse grid, nf denotes the number 

of points on the fine grid between two consecutive coarse grid points. Since nf = n,, 

we denote n = nf = n,, and nref as the number of points on the refined grid, so that 

nref = (n, - l)(nf - 1) + 1. Let n, denotes the number of points on the interpolated grid, 

with nr,f < ni. We are assuming the number of points is the same in every direction for all 

grids. 

There are a few difficulties in the implementation: 

1. Setting up the problem on the non-uniform coarse grid: As we mentioned 

in Chapter 1, a standard technique for solving Poisson's equation is by using 

the finite difference method, which is essentially equivalent to solving a large 

system of linear equations in the form of Au = b, with the size of A depending 

on the dimensionality. In d-dimension, A is an (nc)d x (nc)d matrix, with 

(2d+l) non-zero diagonals. It turns out that setting up the system of equations 

is efficient, even with nested for-loops, since (2d + 1) << (nc)d. The following 

is a part of the MATLAB script for setting up the system of equations in one 

dimension: 

f o r  i = 2:Nx-1 

DXL = xm(i)-xm(i-1); DXR = xm(i+l)-xm(i); % Grid s izes  

bX = 0.5*(DXL*DXRA2 + DXLA2*DXR); % Denominator 

emid(i) = (DXL+DXR) /bX; % Diagonal 

edx~( i -1)  = -DXR/bX; % Subdiagonal 

edxR(i+l) = -DXL/bX; % Superdiagonal 

end 

A = spdiags([edxL, emid, edxR1, [-1, 0 ,  11, Nx, Nx); 
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2. Solving the system of equations: This is a bottleneck of the hybrid Monte- 

Carlo finite difference method. For this thesis, for one and two dimensions, we 

chose to use the direct method, such as MATLAB7s built-in function backslash 

("\"); for three and four dimensions, we chose to use the iterative methods, 

such as BiConjugate gradients method (MATLAB7s built-in function bicg). 

The iterative methods generally work better than direct methods in terms of 

efficiency, provided the solution does not diverge. The direct methods gener- 

ally work better than iterative methods in terms of robustness, provided the 

computer does not run out of memory. Details are provided in Appenduc A. 

The following is the MATLAB script for solving the system of equations: 

% For low dimensions 

u = A\b; 

% For high dimensions 

u = bicg(A, b) ; 

3. Interpolating the numerical solution: This is also a bottleneck of the hybrid 

Monte-Carlo finite difference method. We used MATLAB7s built-in function 

interpl to perform the interpolation, which is expensive and inefficient as the 

number of dimensions increases. 

Since each shifting is an independent calculation, we are able to perform the hybrid 

Monte-Carlo finite difference method in a parallel computing system, and the CPU time 

can be reduced by approximately a factor of the number of processors available; see Figure 

4.6. For example, for a two dimensional Poisson's equation with two processors; we assign 

one processor to perform shifting and solving the shifted problem in the x-direction, and 

the other for the ydirection. We then split the domain into two pieces, and assign each 

processor to solve the fine grid problem in their assigned domain. Therefore, the CPU time 

can be reduced by approximately a factor of 2. 

Two types of test cases are investigated in one, two and three dimensions: the "smooth 

test case and the "spiky" test case. 
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Initial Data & 
Solving 
Shied 
Problem 

Solving 
Fine Grid 
Problem 

I Collect Data 1 

Solution m 
Figure 4.6: Schematic of hybrid Monte-Carlo finite difference method on parallel computing 
system. 
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4.3 In One Dimension 

The one dimensional hybrid Monte-Carlo finite difference method is a special case, since we 

do not need to shift the coarse grid; the coarse grid already lies on the boundary for each 

h e  grid. The steps are as follows: 

Step 1: Define the coarse grid and h e  grid 

Step 2: Solve the problem on the coarse grid (circles in Figure 4.7) 

Step 3: Solve the problem inside each fine grid (triangles in Figure 4.7) 

~ i r s t  Step: 

Second Step: 

Given Boundary Conditions 

Solution at Coarse Grid 

A Solution at Fine Grid 

Figure 4.7: Id: Coarse grid and h e  grid. 

Consider the following smooth test case (Id smooth test case): 

which has an exact solution, 

U(X)  = 4x(1 - x). 

The numerical results are presented in Figures 4.8, 4.9 and 4.10. Figure 4.8 is the exact 

solution. Figure 4.9 is the numerical solution solved by the regular h i t e  difference method. 

Figure 4.10 is the numerical solution solved by the hybrid Monte-Carlo finite difference 

method. From these figures, the numerical solutions by those methods are almost identical; 

later in Chapter 5, we will show that the hybrid Monte-Carlo finite difference method is 

better than the regular finite difference method. 
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Figure 4.8: Id smooth test case: Exact 
solution with n, = 3500. 

Figure 4.9: Id  smooth test case: By reg- 
ular finite difference method with n, = 24 
and n, = 3500. 

Figure 4.10: Id smooth test case: By hy- 
brid Monte-Carlo finite difference method 
with n, = nf = 24 and n, = 3500. 
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Consider the following spiky test case (Id spiky test case): o = &, where o is the 

standard deviation of a gaussian. 

which has an exact solution, 

The numerical results are presented in Figures 4.11, 4.12 and 4.13. Figure 4.1 1 is the 

exact solution. Figure 4.12 is the numerical solution solved by the regular finite difference 

method. Figure 4.13 is the numerical solution solved by the hybrid Monte-Carlo finite 

difference method. From these figures, we can see that the regular finite difference method 

failed to resolve the spike, whereas the hybrid Monte-Carlo finite difference method resolved 

the spike. 

4.4 In Two Dimensions 

In two dimensions, we need to shift the coarse grid in two directions, the x and y directions. 

The boundary conditions on the fine grid are along the four edges. The implementation 

of the shifting is straightforward: f ist  fix x and vary y; this will give us the left and right 

edges. Then fix y and vary x, and this will give us the top and bottom edges. An example of 

the procedure of combining the solution of the coarse grid problem and the shifted problem 

is given in Figure 4.14. 

The steps are as follows: 

Step 1: Define the coarse grid and fine grid 

Step 2: Solve the problem on the coarse grid (circles in Figure 4.15) 

Step 3: Shift the coarse grid and solve the shifted problem (stars in Figure 

4.15) 

Step 4: Solve the problem inside each fine grid (triangles in Figure 4.15) 

Consider the following smooth test case (2d smooth test case): 

-Au(x) = 32x(1 - x) + 32y(l - y), Vx = (x, y) E (0, 1)2 = R 

u(x) = 0, Vx E dR 
(4.5) 
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Figure 4.11: Id spiky test case: Exact so- 
lution with ni = 3500. 

Figure 4.12: Id spiky test case: By regular 
finite difference method with n, = 24 and 
ni = 3500. 

Figure 4.13: Id spiky test case: By hybrid 
Monte-Carlo finite difference method with 
n, = nf = 24 and ni = 3500. 
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... 
. . 

0 Shifting the grid . . . . 

. . . .  . . . . . .  . . .  . . .  solve . . . . .  . . . .  . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  

. . . . .  * ; : ;  . . .  . .  . . . . .  . . .  . . . . .  

@ 
............... . . . . . . . . . . . . . . .  .,. 
. . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . .  . . .  . . 

Solution at Coarse Grid without shifting 
* Solution at Coarse Grid with shifting 

Figure 4.14: 2d: Example of the procedure of combining the solution of the coarse grid 
problem and the shifted problem. 
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Grid: First Step: Second Step: 

Boundary conditions A Solution at fine grid 

0 Solution at coarse grid without shifting 

* Solution at coarse grid with shifting 

Figure 4.15: 2d: Coarse grid and fine grid. 

which has an exact solution, 

u(x) = 16xy(l - x)(l  - y). (4.6) 

The numerical results are presented in Figures 4.16, 4.17 and 4.18. Figure 4.16 is the 

exact solution. Figure 4.17 is the numerical solution solved by the regular finite difference 

method. Figure 4.18 is the numerical solution solved by the hybrid Monte-Carlo finite 

difference method. Similar to one dimension, from these figures, the numerical solutions 

by those methods are almost identical; later in Chapter 5, we will show that the hybrid 

Monte-Carlo finite difference method is better than the regular finite difference method. 

Consider the following spiky test case (2d spiky test case): a = & 
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Figure 4.16: 2d smooth test case: Exact 
solution with ni = 1500. 

Figure 4.17: 2d smooth test case: By reg- 
ular finite difference method with n, = 36 
and ni = 1500. 

Figure 4.18: 2d smooth test case: By hy- 
brid Monte-Carlo finite difference method 
with n, = nf  = 36 and ni = 1500. 
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which has an exact solution, 

The numerical results are presented in Figures 4.19, 4.20 and 4.21. Figure 4.19 is the 

exact solution. Figure 4.20 is the numerical solution solved by the regular finite difference 

method. Figure 4.21 is the numerical solution solved by the hybrid Monte-Carlo finite 

difference method. Similar to one dimension, from these figures, we can see that the regular 

h i t e  difference method failed to resolve the spike, whereas the hybrid Monte-Carlo finite 

difference method resolved the spike. 

Figure 4.19: 2d spiky test case: Exact so- 
lution with ni = 1500. 

Figure 4.20: 2d spiky test case: By regular Figure 4.21: 2d spiky test case: By hybrid 
h i t e  difference method with n, = 36 and Monte-Carlo finite difference method with 
ni = 1500. n, = nf  = 36 and ni = 1500. 
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4.5 In Three Dimensions 

In three dimensions, we need to shift the coarse grid in three directions, the x, y and z 

directions. For the shifting, the idea is similar as two dimensional case. First we fix x and 

vary y and z; this will give us the left and right planes. Then we fix y and vary x and r ;  

which will give us the front and back planes. Finally we fix z and vary x and y, this will 

give us the top and bottom planes. We then have all 6 planes for boundary conditions. The 

steps are as follows: 

Step 1: Define the coarse grid and fine grid 

Step 2: Solve the problem on the coarse grid 

Step 3: Shift the coarse grid and solve the shifted problem 

Step 4: Solve the problem inside each fine grid 

Consider the following smooth test case (3d smooth test case): 

- ~ u ( x )  = 128xy(i - x) ( i  - 9) + i28xz(i - X ) ( I  - Z) + 128yz(l- y)( i  - z), 

vx = (x, y, Z) E (0, q3 = R 

U(X) = 0, vx E a n  
(4.9) 

which has an exact solution, 

The numerical results for the 0.5-isosurface are presented in Figures 4.22, 4.23 and 4.24. 

Figure 4.22 is the exact solution. Figure 4.23 is the numerical solution solved by the regular 

finite difference method. Figure 4.24 is the numerical solution solved by the hybrid Monte 

Carlo finite difference method. From these figures, we can see that the numerical solution 

solved by the hybrid Montecarlo finite difference method give a smoother solution than 

the regular finite difference method. 

Consider the following spiky test case (3d spiky test case): a  = & 

.(XI = 0, vx E a a  
1 (x - 0 . 5 ) ~  (y - 0 .5 )~  

where A = - (" - - a d 5  a  a4 a4 
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Figure 4.22: 3d smooth test case: Exact 
solution with ni = 150. 

S m a h  la -: HybndMdhd 

Figure 4.23: 3d smooth test case: By reg- 
ular finite difference method with n, = 12 
and ni = 150. 

Figure 4.24: 3d smooth test case: By hy- 
brid Monte-Carlo finite difference method 
with n, = nf = 12 and ni = 150. 
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which has an exact solution, 

The numerical results for the 1.5-isosurface are presented in Figures 4.25, 4.26 and 4.27. 

Figure 4.25 is the exact solution. Figure 4.26 is the numerical solution solved by the regular 

finite difference method. Figure 4.27 is the numerical solution solved by the hybrid Monte- 

Carlo finite difference method. In these figures, we can see that the regular finite difference 

method failed to resolve the sharp feature, whereas the hybrid Monte-Carlo finite difference 

method resolved the spike. 

Figure 4.25: 3d spiky test case: Exact so- 
lution with ni = 150. 

Figure 4.26: 3d spiky test case: By regular Figure 4.27: 3d spiky test case: By hybrid 
finite difference method with n, = 12 and Monte-Carlo finite difference method with 
ni = 150. n, = nf = 12 and ni = 150. 
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4.6 In Higher Dimensions 

In this section, we will generalize the idea from previous sections into higher dimensions. For 

four dimensions, we need to shift the coarse grid in four directions, and the corresponding 

boundary conditions on the h e  grid are eight cubes. For the shifting, the idea is to fixed 

one direction, and vary the other three. After fixing all four directions, then we will have 

all eight cubes for boundary conditions as desired. 

Consider the following test case (4d test case): 

-Au(x) = 57n2 sin (nxl) sin ( 4 ~ x 2 )  sin (2nx3) sin (6nx4), 

VX = (21, X 2 , X 3 , ~ 4 )  E (0, 1)4 = !d (4.13) 

U(X) = 0, Vx E dR 

which has an exact solution, 

U(X) = sin (nxl) sin ( 4 ~ x 2 )  sin (2nx3) sin(6nx4). (4.14) 

The numerical results for the 0.05-isosurface at 2 4  = are presented in Figures 4.28, 

4.29 and 4.30. Figure 4.28 is the exact solution. Figure 4.29 is the numerical solution solved 

by the regular finite difference method. Figure 4.30 is the numerical solution solved by 

the hybrid Monte-Carlo finite difference method. Similar to three dimensions, from those 

figures, we can see that numerical solution solved by the hybrid Monte-Carlo finite difference 

method give a smoother solution than the regular finite difference method. 

In general, for a d-dimensional problem, we need to shift the coarse grid in d different 

directions. For the shifting, we need to fix one direction and vary the other (d - 1) directions. 

We continue until all d directions have been shifted. Then we solve the problem for each 

h e  grid cell. 
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Figure 4.28: 4d test case: Exact solution 
with ni = 50. 

Figure 4.29: 4d test case: By regular finite 
difference method with n, = 6 and ni = 
50. 

Figure 4.30: 4d test case: By hybrid 
Monte-Carlo finite difference method with 
n, = nf = 6 and ni = 50. 



Chapter 5 

Convergence Analysis 

As was explained in Chapters 2 and 3, the hybrid Monte-Carlo finite difference method is 

second order accurate. In this chapter, we will verify this accuracy in one: two and three 

dimensions. The test cases are the same as those introduced in Chapter 4. 

Recall that the d-dimensional domain is [0, lId, n is the number of points on coarse grid 

and fine grid. DX is the size of the coarse grid, and dx is the size of the fine grid, which 

satisfy, 

This implies 

O(dx) = o((Dx)~) .  

5.1 In One Dimension 

The 12-error and &-error are computed by first solving the problem using a regular finite 

difference method and the hybrid Monte-Carlo finite difference method, interpolating these 

numerical solutions onto a grid with 3500 points, then computing the errors on this interpe 

lated grid. For the smooth test case, Figures 5.1 and 5.2 illustrate that when the problem 

is solved by the regular finite difference method, both the h-error and &-error are second 

order accurate with respect to DX, which implies they are first order accurate with respect 

to dx. When the same problem is solved by the hybrid Monte-Carlo finite difference method, 

both the L2-error and &-error are fourth order accurate with respect to DX, which implies 

they are second order accurate with respect to dx. 
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Table 5.1: Id smooth test case: Comparison of the 12-error when solved by the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 

Convergence Analysis in ! 
2 - 

-c- I, enor lor regular method 
y =2.0616 x + 4.0444 

y = 4.1232 x + 4.3229 

Number of 
mid ~oints,  n 

Figure 5.1: Id smooth test case: Log-log plot of the 12-error versus DX for the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 

Number of non-zero 
elements of A 

Size of 
A. N 

Regular finite 
difference method 

Hybrid Monte-Carlo 
finite difference method 
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Table 5.2: Id smooth test case: Comparison of the 1,-error when solved by the regular 
finite difference method and the hybrid Montecarlo finite difference method. 

Convergence Analysis in 1, 

Number of 
mid ~o in t s ,  n 

Figure 5.2: Id smooth test case: Log-log plot of the 1,-error versus DX for the regular 
finite difference method and the hybrid Monte-Carlo finite difference method. 

Size of 
A. N 

-2 

4 

Hybrid Montecarlo 
finite difference method 

Number of non-zero 
elements of A 

- - I= error for regular method 

y = 2.0616 x + 0.27855 

- 4 I, error for hybrid memcd 

y =4.1232x +0.55711 

Regular finite 
difference method 
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For the spiky test case, the conclusion is the same as for the smooth test case; Figures 

5.3 and 5.4 illustrate that when the same problem is solved by the hybrid Monte-Carlo finite 

difference method, both the 12-error and 1,-error are fourth order accurate with respect to 

DX, which implies they are second order accurate with respect to dx. 

Table 5.3: Id spiky test case: Comparison of the 12-error when solved by the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 

Table 5.4: Id spiky test case: Comparison of the 1,-error when solved by the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 

Number of 
grid points, n 

We should expect first order accuracy with respect to dx for the regular finite difference 

method since we discretized the PDE using a O ( D X ~ )  scheme, by (5.1), this is a O(dx) 

scheme. Whereas for the hybrid Monte-Carlo finite difference method, each of the fine grid 

problem is solved by a 0(dx2) scheme. Notice that at the boundaries of the h e  grid, the 

Size of 
A, N 

Number of 
grid points, n 

24 
28 
32 
36 

Number of non-zero 
elements of A 

Size of 
A, N 

24 
28 
32 
36 

Regular finite 
difference method 

Number of non-zero 
elements of A 

68 
80 
92 
104 

Hybrid Monte-Carlo 
finite difference method 

Regular finite 
difference method 

2.3848907e+02 
2.3848855e+02 
2.3848822e+02 
2.3848800e+02 

Hybrid Monte-Carlo 
finite difference method 

1.8259998e+01 
1 .0258321e+01 
3.4652194e+00 
3.9194268e+00 
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Convergence Analysis in ! 

Figure 5.3: Id  spiky test case: Log-log plot of the 12-error versus DX for the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 

Convergence Analysis in I, 

Figure 5.4: Id spiky test case: Log-log plot of the 1,-error versus DX for the regular linear 
solver and the hybrid Monte-Carlo finite difference method. 
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errors could be O ( d x )  in the worst case, we suspect the affect of the interpolation average 

out the O(dx)  to 0 ( h 2 ) .  

5.2 In Two Dimensions 

Similar to one dimension, for two dimensions, the 12-error and 1,-error are computed by fist  

solving the problem using a regular finite difference method and the hybrid Monte-Carlo 

fmite difference method, interpolating these numerical solutions onto a 2500 x 2500 grid, 

then computing the errors on this interpolated grid. For the smooth test case, Figures 5.5 

and 5.6 illustrate that when the problem is solved by the regular finite difference method, 

both the 12-error and 1,-error are first order accurate with respect to d x .  When the same 

problem is solved by the hybrid Monte-Carlo finite difference method, both the 12-error and 

1,-error are second order accurate with respect to d x .  

Table 5.5: 2d smooth test case: Comparison of the 12-error when solved by the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 

For the spiky test case, the conclusion is the same as for the smooth test case; Figures 

5.7 and 5.8 illustrate that both the 12-error and 1,-error are second order accurate with 

respect to dx, when the problem solved by the hybrid Monte-Carlo fmite difference method. 

Number of 
grid points, n 

5.3 In Three Dimensions 

Similar to previous sections, the 12-error and 1,-error are computed by first solving the 

problem using a regular finite difference method and the hybrid Monte-Carlo finite difference 

Size of 
A, N 

Number of non-zero 
elements of A 

Regular finite 
difference method 

Hybrid Monte-Carlo 
finite difference method 
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Convergence Analysis in I, 
6 - 

-c- I, error for regular method 

y = 2.0607 x + 8.0695 

y = 4 1232 x + 8.3625 

Figure 5.5: 2d smooth test case: Log-log plot of the 12-error versus DX for the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 

Table 5.6: 2d smooth test case: Comparison of the 1,-error when solved by the regular 
b i t e  difference method and the hybrid Monte-Carlo finite difference method. 

Number of 
grid points, n 

24 

Regular finite 
difference method 

3.7768246e-03 

Hybrid Monte-Carlo 
finite difference method 

7.1430280e-06 

Size of 
A, N 
576 

Number of non-zero 
elements of A 

2512 
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Convergence Analysis in 1- 

y = 2.0609 x + 0.9687/ 
+ I ,  enor for hybrid memod 

Figure 5.6: 2d smooth test case: Log-log plot of the 1,-error versus DX for the regular 
finite difference method and the hybrid Monte-Carlo iinite difference method. 

Table 5.7: 2d spiky test case: Comparison of the 12-error when solved by the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 

Number of 
grid points, n 

24 

Size of 
A, N 
5 76 

Number of non-zero 
elements of A 

2512 

Regular finite 
difference method 

1.7671214ef03 

Hybrid Monte-Carlo 
finite difference method 

1.6818751ef02 



CHAPTER 5. CONVERGENCE ANALYSIS 

Convergence Analysis in I, 

y = 3.8169e405 x + 7.4772 
+ $ ermr for hybrid method 

Figure 5.7: 2d spiky test case: Log-log plot of the &error versus DX for the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 

Table 5.8: 2d spiky test case: Comparison of the 1,-error when solved by the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 
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Convergence Analysis in 1, 

y = 1.7135e-005 x + 5.4636 
+ I, error lor hybrd method 

Figure 5.8: 2d spiky test case: Log-log plot of the 1,-error versus DX for the regular finite 
difference method and the hybrid Monte-Carlo h t e  difference method. 

method, interpolating these numerical solutions onto a 450 x 450 x 450 grid, then computing 

the errors on this interpolated grid. For the smooth test case, Figures 5.9 and 5.10 illustrate 

that when the problem is solved by a regular finite difference method, both the 12-error and 

1,-error are first order accurate with respect to dx. When the same problem is solved by 

the hybrid Monte-Carlo finite difference method, both the 12-error and 1,-error are second 

order accurate with respect to dx. 

Table 5.9: 3d smooth test case: Comparison of the 12-error when solved by the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 

Number of 
grid points, n 

12 

Size of 
A, N 
1728 

Number of non-zero 
elements of A 

7728 

Regular finite 
difference method 

8.1431117e-tOl 

Hybrid Monte-Carlo 
finite difference method 

6.7756377601 
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Convergence Analysis in I, 

-c- I, error for regular method 
y = 2.1376 x + 9.7102 

+ I, enor lor hybrid memod 

Figure 5.9: 3d smooth test case: Log-log plot of the 12-error versus DX for the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 

Table 5.10: 3d smooth test case: Comparison of the 1,-error when solved by the regular 
finite difference method and the hybrid Monte-Carlo finite difference method. 

Number of 
grid points, n 

12 
14 
16 
18 

Size of 
A, N 
1728 
2744 
4096 
5832 

Hybrid Monte-Carlo 
finite difference method 

2.0414153e-04 
1.0366868e-04 
4.7750951e-05 
4.4105264e-05 

Number of non-zero 
elements of A 

7728 
13112 
20560 
30408 

Regular finite 
difference method 

2.4574169e-02 
1.763 1753e-02 
1.3259284e-02 
1.0329876e-02 
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Convergence Analysis in I= 

y =Z.l376x+ l.Md5 
4 I, error for hybrid method 

-3 

Figure 5.10: 3d smooth test case: Log-log plot of the &-error versus DX for the regular 
finite difference method and the hybrid Monte-Carlo finite difference method. 

For the spiky test case, the conclusion is the same as for the smooth test case; Figures 

5.11 and 5.12 illustrate that when the problem is solved by the hybrid Monte-Carlo finite 

difference method, both the 12-error and 1,-error are second order accurate with respect to 

dx, . 

Table 5.11: 3d spiky test case: Comparison of the 12-error when solved by the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 

Hybrid Monte-Carlo 
finite difference method 

2.0864511e+02 
7.4289823e+01 
3.9009422e+01 
2.2621176e+01 

Number of 
gridpoints,n 

12 
14 
16 
18 

Number of non-zero 
elements of A 

7728 
13112 
20560 
30408 

Size of 
A,N 
1728 
2744 
4096 
5832 

Regular finite 
difference method 

6.7316365e+02 
6.7058706e+02 
6.6936635e+02 
6.6872254e+02 
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Convergence Analysis in I, 

4 I, error for regular method 

y = OOl629x+ 6.5619 

Figure 5.11: 3d spiky test case: Log-log plot of the 12-error versus DX for the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 

Table 5.12: 3d spiky test case: Comparison of the 1,-error when solved by the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 

Number of 
grid points, n 

12 

Size of 
A, N 
1728 

Number of non-zero 
elements of A 

7728 

Regular iinite 
difference method 

6.7634227e+01 

Hybrid Monte-Carlo 
finite difference method 

3.4418625e+01 
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Convergence Analysis in I= 

Figure 5.12: 3d spiky test case: Log-log plot of the 1,-error versus DX for the regular finite 
difference method and the hybrid Monte-Carlo finite difference method. 

7 -  - I ,  emr for regular method 

y = O.WO52W8 x + 4.21 54 6-F! Y = 6.6802 x + a.22l 9 



Chapter 6 

Conclusions 

Summary 

In this thesis, we presented a hybrid Monte-Carlo finite difference method for approximating 

the solution of Poisson's equation, with numerical results presented in one, two, three and 

four dimensions. This method combined the idea from the Monte-Carlo method and the 

finite difference method. From the test cases, we have successfully shown that the hybrid 

Monte-Carlo finite difference method is second order accurate on generic problems, and on 

problems with sharp features, such as spike. 

This hybrid method solves smaller problems multiple times to collectively solve a larger 

main problem. A bottleneck of this method is the solvable size of the linear solver, which 

could be direct or iterative method. In general, direct methods require larger memory 

and more work, but are more robust, while iterative methods require less memory and less 

work, but are also less robust. For the purpose of this thesis, we chose to use the direct 

method for one and two dimensions, and the BiConjugate gradient method for three and 

four dimensions. 

We were able to perform the hybrid Monte-Carlo finite difference method in a parallel 

computing system, and the CPU time can be reduced by approximately a factor of the 

number of processors available. 



CHAPTER 6. CONCLUSIONS _ 

6.2 Future Work 

It is worthwhile to investigate different ways of shifting the coarse grid to improve accuracy, 

see Figure 6.1 for example. 

Solution at Coarse Grid without shifting 
* Solution at Coarse grid with shifting 

A Solution at Fine Grid 

Figure 6.1: (a) Shifting used in this thesis. (b) Different way of shifting. 

The investigation of fast linear solver is also worthy of future research, as the hybrid 

Monte-Carlo finite difference method can be performed on a parallel computing system. 

The next step is to use a higher order finite difference scheme to discretize the PDE instead 

of using a second order scheme. The final goal is to generalize this higher order hybrid 

Monte-Carlo finite difference method to solve nonlinear elliptic PDEs in high dimensions. 



Appendix A 

Computational Complexity 

As stated in Chapter 4, a bottleneck of the hybrid Monte-Carlo fmite difference method is the 

linear solver. We showed that the matrix representation A  is always sparse, non-symmetric1 

and positive definite. For an N x N matrix A, the commonly used direct algorithm for solving 

A u  = b for u is as follows: first apply the LU factorization, then use backward and forward 

substitutions; this is exactly the algorithm in MATLAB7s "\" when non-symmetric matrices 

are detected, see [6] .  Theoretically, for some commonly used iterative methods, such as 

the BiConjugate gradents method (BiCG) or Generalized Minimum Residual (GMRES) 

method, it will converge in N iterations; however, this N can be very large in practice, 

and with the presence of rounding errors, this does not guarantee convergence after N 

iterations. Sometimes one needs to pick a good initial value, or use preconditioners to 

accelerate convergence speed, which depend on the structure of the matrix, see [I] for 

details. Tables A.1, A.2, A.3, A.4 and A.5 give an idea of the CPU time it takes to solve a 

sparse non-symmetric positive defmite matrix using above methods in different dimensions. 

Tables A.l and A.2 showed that both GMRES and BiCG are slower than MATLAB's 

"\" for one and two dimensional problems. We can avoid divergence by increasing the 

maximum number of iterations for the iterative methods, as the default is 20 iterations, but 

consequently this will also increase the CPU time. Therefore the preferable linear solver for 

low dimensions is MATLAB7s "\". 
As the number of dimensions gets to three or higher, the iterative methods start to 

dominate over MATLAB7s "\". Eventually MATLAB's "\" runs out of memory, while 

' A  is non-symmetric if A # AT, the transpose of A. 
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BiCG is still capable of computing the solution within seconds, see Tables A.3, A.4 and 

A.5. Therefore the preferable linear solver for three and higher dimensional problem is 

BiCG. Notice that GMRES seems to diverge for high dimensions; we could either start with 

different initial values, use preconditioners, or increase the maximum number of iterations. 

Studies had been done on the choice of initial values and preconditioners in [l] and [15]. 

Unfortunately, there are no rules governing the choice of the maximum number of iterations. 

If it is too small, the iterative method may fail to converge while if it is too big, the CPU 

time will increase. For this thesis, the maximum number of iterations for 3d and 4d is 50. 

Table A.l: Id: Comparison of CPU (in s) with different MATLAB direct and iterative 
methods. 

Table A.2: 2d: Comparison of CPU (in s) with different MATLAB direct and iterative 

Number 
of grid 

point, n 

8 
32 
64 
256 

methods. 

Sizeof 

8 
32 
64 
256 

Number 
of grid 

point, n 

Number of 
non-zero 

elements of A 
20 
92 
188 
764 

GMRES 
Size of 
A, 

GMRES 

2.9469297e-03 
8.2514993e-03 
2.034729Oe-02 
2.8997676e-01 

"\,, 

6.282639Oe-05 
7.5697699e-05 
1.0510069e-04 
3.3165373604 

BiCG 

1.4277552e-03 
3.9552423603 
8.0481086603 
4.0565146602 

Number of 
non-zero 

elements of A 
BiCG 
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Table A.3: 3d: Comparison of CPU (in s) with different MATLAB direct and iterative 
methods. 

Number 
of grid 
point, n 

8 
12 

Table A.4: 4d: Comparison of CPU (in s) with different MATLAB direct and iterative 
methods. 

22 [ 10648 1 58648 
36 1 46656 1 282480 

Size of 

A, N 

512 
1728 

1 7.5399983e-01 
1 1.7687460e+01 

Table A.5: 5d: Comparison of CPU (in s) with different MATLAB direct and iterative 
methods. 

Number of 
non-zero 

elements of A 
1808 
7728 

Number 
of grid 

point, n 

8 
12 
16 
20 

6.4005761e-01 
4.4085357e-tOO 

Size of 
A, N 

4096 

Number of 
non-zero 

elements of A 
14464 

L L \ 7 7  

5.9455005e-03 
2.858445Oe-02 - 

diverges 
diverges 

20736 
65536 
160000 

1.1719691e-01 

Number 
of grid 

point, n 

4 

BiCG 

5.7127436e-03 
4.1951017e-02 

6 
8 
10 

GMRES 

1.3564642e-02 
diverges 

BiCG 

8.9810176e-02 
100736 
372864 
999808 

GMRES 

1.1699926e-02 

Size of 
A, N 

1024 

"\" 

2.570615Oe-03 
1.4277831e-01 

9.3720557e+OO 
out of memory 

GMRES 

1.4953934e-01 
5.2448255e+00 
9.0207953e+01 
out of memory 

8.1901567e-01 
3.1677558e+00 
5.3657419e+00 

Number of 
non-zero 

elements of A 
1344 

BiCG 

8.3475234e-03 
7776 

32768 
100000 

diverges 
diverges 
diverges 

18016 
110528 
427680 

8.0995105e-02 
7.0985322e-01 
5.2838733e+00 

1.6461228e-01 
9.2218488e-01 

diverges 



Appendix B 

MATLAB Codes for Solving 2d 

Poisson's Equation 

function Ctop,right ,bottom,leftl = bc (xm,ym) 

% Boundary conditions 

% 

% by Wilson Au 2006 

% 

top =  ones (Ny , Nx) ; 
bottom = O*ones (Ny , Nx) ; 
left = O*ones (Ny , Nx) ; 
right = O*ones(Ny,Nx); 

% 

% Solving 2d Poisson's equation in a unit square 

% -u" = f for 0 < x,y < 1 
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% u = g at x,y = 0,l 

% 
% required: shiftGrid.m, hybridMethod.m, solvePoisson.m, 

% by Wilson Au 2006 

% 

0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 0 0 . 0 0 9 0 0 ~ 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 9 0 ~ 0 0 9 0 9 0 0 0 0 0 0 0 0 9 0 0 0 0 * * ~ ~ 0 0 0 0  LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL 
% Choice of Method 

% 1: Regular Finite Difference Method 

% 2: Hybrid Monte-Carlo Finite Difference Method 

choiceMethod = 1; 

close all; 

% Number of point on coarse grid 

Nx = 24; Ny = 24; 

if choiceMethod == 1 X Regular Finite Difference Method 

m = 0; ny = 0; 

nNx = Nx; nNy = Ny; 

else % Hybrid Monte-Carlo Finite Difference Method 

% Number of point on fine grid 

m = Nx; ny = Ny; 

nNx = (m-2)*(Nx-l)+Nx; nNy = (ny-2)*(Ny-l)+Ny; 

end 

% Interpolation 

Nxi = 550; Nyi = 550; 

% Solving Poisson's equation 

[p,tl = hybridMethod(Nx,Ny,m,ny,[O 11, CO 11); 
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% Interpolating the numerical solution 

Xc = linspace(O,l,nNx); Yc = linspace(O,l,nNy); 

[ymc ,xmcl = ndgrid(Yc,Xc) ; 

Xi = linspace (0,l ,Nxi) ; Yi = linspace(0,l ,Nyi) ; 

[ymi,xmi] = ndgrid(Yi,Xi); 

ui = interp2(xmc,ymc,p,xmiYymi); 

% Exact solution 

exacti = exactSol (xmi ,pi) ; 

% Calculating the error 

di = abs(exacti-ui); 

1-2-errori = sqrt (sum(sum(di. '2) 1) ; 

1-inf-errori = rnax(max(di1) ; 

% Display the error 

disp([' 'I); 
disp( ['l-2 error = ' ,num2str(1_2_errori)l) ; 
disp( ['l-inf error = ' ,num2str(Linf -errori)] ) ; 

disp(['CPU time = ',num2str(t), ' second(s)'l); 

% Plotting 

figure(l), clf; 

mesh(xmi,pi,exacti); colorbar; 

xlabel('x'); ylabel('y'); zlabel('u(x,y)'); 

title('Exact solution') ; 

axis([O 1 0  1 0  11); 

shading interp; 

view(-35,401 

figure (21, clf ; 

mesh(xmi , p i  ,ui) ; colorbar; 
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xlabel('x') ; ylabel('y') ; zlabel ('u(x,y) ' )  ; 

title('Numerica1 solution' ) ; 

axis([O 1 0  1 0  11); 

shading interp; 

view (-35,40) 

function sol = exactSol (xm, ym) 

% Compute the exact solution 

% 

% by Wilson Au 2006 

% 

sol = 4*4*xm.*ym.*(l-xm) . * ( l - y d ;  

function sol = f (xm,ym) 

% Forcing term of the Poisson's equation 

% 

% by Wilson Au 2006 

function [p,tl = hybridMethod(Nx ,Ny ,nx,ny ,Xd,Yd) 

% 

% Description: 

% Solving Poisson's equation with dirichlet b.c. 

% if nx == 0, 
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% then perform Regular Finite Difference Method 

% if nx '= 0, 

% then perform Hybrid Monte-Carlo Finite Difference Method 

% 

% Wilson Au 2006 

% 

tic; 

% Forcing term 

f -c = f (xms-c ,yms-c) ; 

% Boundary condition 

[gt , gr ,gb ,gll = bc(xms-c ,yms-c) ; 

% Solving Poisson's equation on coarse grid 

p-c = solvePoisson(f -c ,Nx,Ny ,gt ,gr,gb,gl Jxms-cJyms-c) ; 

if nx == 0 

p = p-c; 

t = toc; 

return 

end 

% Store data 

for i = 1:Nx 

for j = 1:Ny 
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p((j-l)*(ny-l>+l, (i-I)*(=-l)+l) = p-c(j ,i); 

end 

end 

% Fixed DY-c, vary DX-c 

for k = [-(nx-2):-l,l:(nx-2)l 

% Shift the coarse grid in x-direction 

dx-c = -k*DX-c/h-1) ; 

dy-c = O*DY-c/ by- 1 ) ; 

[xms-c ,yms-c] = shif tGrid(dx-c, dy-c ,xm-c , ym-c) ; 

% Forcing term 

f -c = f (xms-c ,yms-c) ; 

% Boundary conditions 

[gt,gr,gb,gll = bc(xms-c,yms-c); 

% Solving Poisson's equation 

p-c = solve~oisson(f -c,~x,Ny,gt,gr ,gb ,gl , xms-C, yms-c) ; 

% Store data 

for i = 2:Nx-1 

for j = 1:Ny 

p((j-l>*(ny-l>+l, (i-I)*(=-l)+l+k) = p-c(j ,i) ; 

end 

end 

end 

% Fixed DX-c, vary DY-c 

for k = C-(ny-2):-1,l:by-2)l 

% Shift the coarse grid in y-direction 

dx-c = O*DX-c/ (nx-1) ; 

dy-c = -k*DY-c/(ny-1) ; 

[ms-c,yms-cl = shift~rid(dx-c,dy-c ,xm-c , ym-c) ; 
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% Forcing term 
f -c = f (xms-c, yms-c) ; 

% Boundary conditions 

[gt,gr,gb,gll = bc(xms-c,yms-c); 

% Solving the Poisson equation 

p-c = solvePoisson(f -c,Nx,Ny,gt,gr,gb,gl , x m ~ ~ ~ , y m s ~ c ~  ; 

% Store data 

for i = 1:Nx 

for j = 2:Ny-1 

p((j-l)*(ny-l)+l+k, (i-l)*(nx-l)+l) = p-c(j ,i) ; 

end 

end 

end 

% Forcing term 

f-f = f (m-f ,ym-f); 

% Initialize the boundary conditions 

top = zeros(ny,nx) ; 
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bottom = zeros (ny,nx) ; 

left = zeros (ny,nx) ; 

right = zeros (ny,nx) ; 

% Boundary conditions 

top(1,l:nx) = p((j-l)*(ny-l)+l, (i-l)*(nx-l)+(l:nx)) ; 

bottom(ny, 1:nx) = p(j*(ny-l)+l, (i-l)*(nx-l)+(l:nx)) ; 

left(l:ny, 1) = p((j-l)*(ny-l)+(l:ny), (i-l)*(nx-l)+l); 

right (l:ny,nx) = p((j-l)*(ny-l)+(l:ny) ,i*(nx-l)+l) ; 

% Solving Poisson's equation on fine grid 

p-f = solvePoisson(f~f,nx,ny,top,right,bottom,left,xm~f,ym~f~; 

% Store data 

p((j-l)*(ny-1)+(2:ny-1), (i-l)*(nx-1)+(2:-1 = . . . 
p-f (2:ny-1,2:nx-1); 

end 

end 

t = toc; 

function [xms , yms] = shiftGrid(dx,dy ,xm, ym) 

% Description: 

% Perform shifting on the coarse grid 

% 

% Wilson Au 2006 

% 

xms = xm; yms = ym; 
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function p = solvePoisson(f ,Nx, Ny, top,right ,bottom,left ,xm,ym) 

% 

% Description: 

% Solving -uJJ = f with dirichlet boundary conditions 

% by MATLAB ' \ '  
% 

% Wilson Au 2006 

% 

NxNy = Nx*Ny; 

DXL = xm(f loor(Ny/2) ,f loor(Nx/2)) -xm(f loor(~y/2) ,floor (NX/~) -1) ; 

DXR = xm(f loor(Ny/2) ,f loor(Nx/2)+1)-xm(f loor(Ny/2) ,floor (NX/~) ; 

DYT = ym(f loor(Ny/2) ,f loor(Nx/2) 1-ym(floor(Ny/2)-1 ,f loor (Nx/2) ; 

DYB = ym(f loor (Ny/2)+l, f loor (Nx/2) ) -ym(f loor (Ny/2), f loor (Nx/2) ; 

bX = 0.5*DXL*DXRa2 + 0.5*DXLA2*DXR; 

bY = O.S*DYT*DYB-2 + 0.5*DYTA2*DYB; 

em = (DxL+DXR)/~X + (DYT+DYB) /by; 

f -vector = reshape(f, NxNy, 1) ; 

f-vector(l:Ny:Ny*(Nx-l)+l) = em*to-vec(l:~y:~y*(~x-l)+l); 

f -vector (Ny : Ny : NxNy) = em*bo-vec ( ~ y  : ~y : NXN~) ; 

f -vector (1 : Ny) = em*le-vec(1 : Ny) ; 

f-vector(Ny*(Nx-l)+l:NxNy) = em*ri-vec(Ny*(Nx-l)+l:~xNy) ; 
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emid = zeros (NxNy , 1) ; 

edyR = zeros (NxNy, 1) ; edyL = zeros (NxNy, 1) ; 

edxR = zeros (NxNy , 1) ; edxL = zeros (NXN~, 1) ; 

% Top-Lef t Comer 

emid(1) = em; edyR(2) = 0; edxR(Ny+l) = 0; 

% Bottom-Left Corner 

emid(Ny1 = em; edyL(Ny-1) =O; edyR(Ny+l) = 0; edxR(2*Ny) = 0; 

% Top-Right Corner 

emid(Ny*Nx-Ny+l) = em; edyL(Ny*Nx-Ny) = 0 ; edyR(Ny*Nx-Ny+2) = 0 ; 

edx2L(Ny*Nx-2*Ny+l) = 0; 

% Bottom-Right Corner 

emid(NxNy1 = em; edyL(NxNy-1) = 0; edxL(NxNy-Ny) = 0; 

% Left boundary 

for k = 2:Ny-1 

emid(k) = em; 

edyL(k-1) = 0; edyR(k+l) = 0; edxR(k+Ny) = 0; 

end 

% Right boundary 

for k = Ny*Nx-Ny+2:NxNy-1 

emid(k) = em; 

edyL(k-1) = 0; edyR(k+l) = 0; edxL(k-Ny) = 0; 

end 

% Top boundary 

for k = Ny+l:Ny:Ny*Nx-2*Ny+l 

emid(k) = em; 

edyL(k-1) = 0; edyR(k+l) = 0; 

edxL(k-Ny) = 0; edxR(k+Ny) = 0; 

end 

% Bottom boundary 

for k = 2*Ny:Ny:Nx*Ny-Ny 

emid(k) = em; 
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edyl(k-1) = 0; edyR(k+l) = 0; 

edxL(k-Ny) = 0; edxR(k+Ny) = 0; 

end 

for i = 2:Nx-1 

for j = 2:Ny-1 

DXL = xm(j,i)-xm(j,i-1); DXR = xm(j,i+l)-xm(j,i); 

DYT = ym(j ,i)-ym(j-1,i) ; DYB = ym(j+l,i)-ym(j ,i) ; 

bX = 0.5*DXL*DXRe2 + 0.5*DXLe2*DXR; 

bY = 0.5*DYT*DYBe2 + 0.5*DYTe2*DYB; 

emid((i-1) *Ny+ j) = (DXL+DXR) /bX + (DYT+DYB) /by; 

edyL((i-l)*Ny+j-1) = -DYB/bY; edy~((i-l)*Ny+j+l) = -DYT/bY; 

edx~( (i-2) *Ny+j) = -DXR/bX; edxR(i*Ny+j) = -DXL/bX; 

end 

end 

A = spdiags([edxL, edyL, emid, edyR, edx~l, . . .  
[-NY, -1, 0, 1, Nyl, NxNy, NxNy); 

sol-vector = A\f -vector; p = reshape(so1-vector,~y,~x) ; 
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