
Solving Poisson's Equation in High Dimensions by a Hybrid
Monte-Carlo Finite Difference Method

Wilson Au

B.Sc., Simon Fraser University, 2004

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F T H E REQUIREMENTS F O R T H E DEGREE O F

MASTER OF SCIENCE

IN THE DEPARTMENT

O F

MATHEMATICS

@ Wilson Au 2006

SIMON FRASER UNIVERSITY

Fall 2006

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name: Wilson Au

Degree: Master of Science

Title of thesis: Solving Poisson's Equation in High Dimensions by a Hybrid

Monte-Carlo Finite Difference Method

Examining Committee: Dr. Ralf Wittenberg

Chair

Dr. Adam Oberman

Senior Supervisor

Dr. Steve Ruuth

Supervisor

Dr. JF Williams

External Examiner

Date Approved: September 1, 2006

11

SIMON FRASER V uNwmsrnl i bra ry &&

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the "institutional Repository" link of the SFU Library website
cwww.lib.sfu.ca> at: chttp:llir.lib.sfu.calhandle/l892/112~) and, without changing
the content, to translate the thesislproject or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2006

Abstract

We introduce and implement a hybrid Monte-Carlo fmite difference method for approxi-

mating the solution of Poisson's equation. This method solves smaller problems multiple

times to collectively solve a larger main problem, when the solution of the main problem is

unattainable by known regular direct and iterative methods. The method thereby resolves

features that a single smaller problem may not. This hybrid Monte-Carlo finite difference

method achieves second order accuracy on generic problems, and on problems with sharp

features.

Keywords:

Finite difference method; high dimensions; parallel computing; Poisson's equation

Acknowledgments

I would like to thank my senior supervisor Dr. Adam Oberman for suggesting this interesting

topic for my thesis. I would also like to thank Dr. Steve Ruuth, Dr. JF Williams, Dr.

Ralf Wittenberg and Dr. Jim Verner for their valuable comments to improve the style of

this thesis. Special thanks to my colleagues Thomas Humphries and Ryo Takei for their

constructive comments and suggestions.

Last but not least, many thanks to my family and Vivian Chen. This would not have

been possible without their continuous support, patience and encouragement throughout

my bachelor's and master's degrees at Simon Fraser University.

Contents

Approval . ii
... Abstract in

. Acknowledgments iv

. Contents v

. List of Tables vii

. List of Figures ix

. 1 Introduction 1

2 One Dimensional Poisson's Equation . 4

. 2.1 On a Uniform Grid 4

. 2.2 On a Non-uniform Grid 7

. 3 Multiple Dimensional Poisson's Equation 10

. 3.1 In Two Dimensions 10

. 3.2 In Three Dimensions 13

. 3.3 In Higher Dimensions 17

. 4 Hybrid Monte-Carlo Finite Difference Method 18

. 4.1 Algorithm 20

. 4.2 Implementation 21

. 4.3 In One Dimension 24

. 4.4 In Two Dimensions 26

. 4.5 In Three Dimensions 32

. 4.6 In Higher Dimensions 35

5 Convergence Analysis . 37

. 5.1 In One Dimension 37

. 5.2 In Two Dimensions 42

. 5.3 In Three Dimensions 42

. 6 Conclusions 51

. 6.1 Summary 51

. 6.2 Future Work 52

Appendices

. A Computational Complexity 53

. B MATLAB Codes for Solving 2d Poisson's Equation 56

. Bibliography 67

List of Tables

1.1 History of matrix computations over the years.

5.1 Id smooth test case: Comparison of the 12-error when solved by the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.2 Id smooth test case: Comparison of the 1,-error when solved by the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.3 Id spiky test case: Comparison of the 12-error when solved by the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.4 Id spiky test case: Comparison of the 1,-error when solved by the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.5 2d smooth test case: Comparison of the 12-error when solved by the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.6 2d smooth test case: Comparison of the 1,-error when solved by the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.7 2d spiky test case: Comparison of the 12-error when solved by the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.8 2d spiky test case: Comparison of the 1,-error when solved by the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.9 3d smooth test case: Comparison of the 12-error when solved by the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.10 3d smooth test case: Comparison of the 1,-error when solved by the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.11 3d spiky test case: Comparison of the 12-error when solved by the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

vii

5.12 3d spiky test case: Comparison of the 1,-error when solved by the regular

b i t e difference method and the hybrid Monte-Carlo b i t e difference method. 49

A.l Id: Comparison of CPU (in s) with different MATLAB direct and iterative

methods. 54

A.2 2d: Comparison of CPU (in s) with different MATLAB &rect and iterative

methods. 54

A.3 3d: Comparison of CPU (in s) with different MATLAB direct and iterative

methods. 55

A.4 4d: Comparison of CPU (in s) with different MATLAB direct and iterative

methods. 55

A.5 5d: Comparison of CPU (in s) with different MATLAB direct and iterative

methods. 55

viii

List of Figures

2.1 Uniform grid . 5

2.2 Non-uniform grid . 8

3.1 Example of reshaping a 2d matrix into a vector 11

3.2 Example of reshaping a 3d matrix into a vector 15

4.1 Take Brownian paths from "star" until it reaches the coarse grid
4.2 Example for a point that lies on the coarse grid
4.3 Example for a point that does not lies on the coarse grid

4.4 Example of a coarse grid, fine grid and refined grid in Id

4.5 Example of a coarse grid, fine grid and refined grid in 2d

4.6 Schematic of hybrid Monte-Carlo finite difference method on parallel com-

puting system .

4.7 Id: Coarse grid and fine grid .
4.8 l d smooth test case: Exact solution with ni = 3500
4.9 Id smooth test case: By regular finite difference method with n, = 24 and

ni=3500 .

4.10 Id smooth test case: By hybrid Monte-Carlo finite difference method with

n, = nf = 24 and ni = 3500 .
4.11 Id spiky test case: Exact solution with ni = 3500
4.12 Id spiky test case: By regular finite difference method with n, = 24 and

ni=3500 .
4.13 Id spiky test case: By hybrid Monte-Carlo finite difference method with

n, = nf = 24 and ni = 3500 .

4.14 2d: Example of the procedure of combining the solution of the coarse grid

problem and the shifted problem.
4.15 2d: Coarse grid and fine grid.
4.16 2d smooth test case: Exact solution with ni = 1500.
4.17 2d smooth test case: By regular finite difference method with n, = 36 and

ni=l5OO .
4.18 2d smooth test case: By hybrid Monte-Carlo finite difference method with

n, = nf = 36 and ni = 1500.
4.19 2d spiky test case: Exact solution with ni = 1500.
4.20 2d spiky test case: By regular finite difference method with n, = 36 and

ni=l5OO .
4.21 2d spiky test case: By hybrid Monte-Carlo finite difference method with

n, = nf = 36 and n, = 1500.
4.22 3d smooth test case: Exact solution with ni = 150.
4.23 3d smooth test case: By regular finite difference method with n, = 12 and

ni=150.

4.24 3d smooth test case: By hybrid Monte-Carlo finite difference method with

n, = nf = 12 and ni = 150.
4.25 3d spiky test case: Exact solution with ni = 150.
4.26 3d spiky test case: By regular finite difference method with n, = 12 and

ni=150.

4.27 3d spiky test case: By hybrid Monte-Carlo finite difference method with

n, = n j = 12 and ni = 150.
4.28 4d test case: Exact solution with ni = 50.
4.29 4d test case: By regular finite difference method with n, = 6 and ni = 50. . .
4.30 4d test case: By hybrid Monte-Carlo finite difference method with n, = nf =

6 and ni = 50..

5.1 Id smooth test case: Log-log plot of the 12-error versus D X for the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.2 Id smooth test case: Log-log plot of the 1,-error versus D X for the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.3 Id spiky test case: Log-log plot of the 12-error versus D X for the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.4 Id spiky test case: Log-log plot of the &-error versus D X for the regular

linear solver and the hybrid Monte-Carlo finite difference method.
5.5 2d smooth test case: Log-log plot of the 12-error versus D X for the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.6 2d smooth test case: Log-log plot of the 1,-error versus D X for the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.7 2d spiky test case: Log-log plot of the 12-error versus D X for the regular

finite difference method and the hybrid Monte-Carlo fmite difference method.

5.8 2d spiky test case: Log-log plot of the 1,-error versus D X for the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.9 3d smooth test case: Log-log plot of the 12-error versus D X for the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.10 3d smooth test case: Log-log plot of the &-error versus D X for the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.11 3d spiky test case: Log-log plot of the 12-error versus D X for the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

5.12 3d spiky test case: Log-log plot of the &-error versus D X for the regular

finite difference method and the hybrid Monte-Carlo finite difference method.

6.1 (a) Shifting used in this thesis. (b) Different way of shifting.

Chapter 1

Introduction

The aim of this thesis is to construct a hybrid Monte-Carlo finite difference method for the

use in computing numerical solutions to Poisson's equation in multiple dimensions. This

method solves smaller problems multiple times to collectively solve a larger, often high cost

main problem.

A standard technique for solving Poisson's equation is by using the finite difference

method, which is essentially equivalent to solving a large system of linear equations. The

two standard classes of methods for solving system of equations are the direct methods and

the iterative methods. The work required in solving a general system of N equations with N

unknowns by direct methods is o (N ~) , whereas it is 0 (N2) by iterative methods. In general,

direct methods require larger memory and more work, but are more robust. The iterative

methods require less memory and work, but are also less robust. The drawback of both is the

rapid increase in computational complexity as the number of dimensions increases, an effect

known as the curse of dimensionality1. Table 1.1 bom [17] gives a rough approximation to

what dimensions might have been considered "very large" for direct methods over the years.

For high dimensions, the commonly used method is the Monte-Carlo method. A classic

use of the Monte-Carlo method is for the evaluation of definite integrals, particularly multiple

dimensional integrals with complicated boundary conditions. Moreover, the Monte-Carlo

method can be used to compute the stochastic processes. Furthermore, it can be used

to compute solutions of partial differential equations (PDEs), based on the well-known

'A term coined by Richard Bellman to describe the rapid growth of volume a s the number of dimensions
increases.

CHAPTER 1. INTRODUCTION

Table 1.1: History of matrix computations over the years.

Feynman-Kac formula and It6's formula. They are powerful tools that allow one to represent

the solutions of elliptic and parabolic PDEs as the expected values over a stochastic processes

under some assumptions (see [3], [5]). Unfortunately, the Monte-Carlo method required M

times as much work to reduces the numerical approximation by a factor of 1 / a , where

M is the number of simulations. This property holds independently of the number of

dimensions, but the rate of convergence is still the fatal drawback.

These two methods offer a tradeoff. The first gives good accuracy if we can solve a

large linear system. The second requires only inexpensive (unit cost) simulation, but many

of them to obtain comparable accuracy. The hybrid Monte-Carlo finite difference method

introduced here aims to find a compromise between the two.

In this thesis, we are interested in solving what first appears to be a simple problem,

namely Poisson's equation over a d-dimensional domain R.

PDE version:
- 4 4 = f (4, VXER

4 2) = g(xL Vx E aR

Stochastic version:

where (Wt , t >_ 0) is a Brownian path and ran = inf (t : Wt E K!), is the stopping time.

The solution at each point is given as an average of a functional over the Brownian paths

(see [4], [9], [ll], [lo], [13]). In this thesis: we will not go into detail about the stochastic

version. Everything we do can be thought of as a special kind of finite difference method.

The stochastic version is the motivation of the hybrid Monte-Carlo finite method; it gives

a different way of thinking of the problem.

CHAPTER 1. INTRODUCTION 3

The concept of the hybrid MonteCarlo finite difference method involves solving an

approximate solution on a coarse grid, then making a refinement of it using a h e grid.

Although the method has the appearance of a multigrid method, because we are solving on

two different scales, it is designed to generalize to nonlinear equations which can be written

as expectations of stochastic processes, as in (1.2). We hope to generalize this method to

solving nonlinear elliptic PDEs.

A summary of the contents of the chapters is as follows:

The first half of Chapter 2 consists of a quick review of the discretization of the one

dimensional Poisson's equation with Dirichlet boundary conditions on a uniform grid, and

the matrix representation of this discretization. The second half is on a non-uniform grid.

Chapter 3 begins with a discussion of the discretization of the multiple dimensional

Poisson's equation and the corresponding matrix representation. It then touches briefly on

the difficulty of solving problems in high dimensions.

In Chapter 4, we introduce a hybrid MonteCarlo finite difference method, with numer-

ical results presented for the one, two, three and four dimensional problems.

In Chapter 5, we investigate the rate of convergence in one, two and three dimensions.

AU the data throughout this thesis is collected using an Apple Power Mac G5 with dual

2.5Ghz processors and 2GB RAM.

Finally, Chapter 6 is divided into two sections: The first section is a summary, followed

by a discussion on future work.

Chapter 2

One Dimensional Poisson's

Equation

The purpose of this chapter is to review the finite difference discretization for the one

dimensional Poisson's equation. Let us first recall the one dimensional Poisson's equation

with Dirichlet boundary conditions on the domain [a , b] C R:

-ul'(x) = f (x) , V x E (a , b)

4 a) = g 1 , +) = g N .

2.1 On a Uniform Grid

Finite difference discretization consists of replacing each derivative by a difference quotient.

The most standard difference quotient for the second derivative is the centered second order

difference, which could be derived from the Taylor expansion of u (x - A x) and u (x + A x) :

1 1
u (x - A x) = u (x) - u l (x) A x + - u 1 ' (x) ~ x 2 - - u 1 " (x) ~ x 3 + 0 (a x 4) ,

2 6

By adding (2 .2) and (2 . 3) , subtracting 2 u (x) and dividing by A x 2 , we deduce that

u (x + A x) - 2 u (x) + u (x - A x)
u"(x) = + 0 (a x 2) .

A x 2 (2 .4)

CHAPTER 2. ONE DIMENSIONAL POISSON'S EQUATION

Figure 2.1: Uniform grid.

The next step is to choose an integer N, the number of grid points, and define the grid

size Ax = (b - a) / (N - 1). This partitioned the domain [a, b] into (N - 1) equal parts of

length Ax. We define a particular grid point xj by

and the value uj by

For example, if u(x) is approximated by u,, then u(x + Ax) and u(x - Ax) are approximated

by uj+, and 21,-, respectively. Then (2.4) becomes,

u,+1 - 2% + u,-1
This scheme is 0 (a x 2) accurate; in other words, approximates u"(x,) up

Ax2
to terms proportional to ax2 .

CHAPTER 2. ONE DIMENSIONAL POISSON'S EQUATION 6

When we replace uff(z) by (2.7) in (2.1), then the discretized one dimensional Poisson's

equation with Dirichlet boundary conditions is:

-uj+l + 2uj - Uj-l [Ax2 = f,,

The domain [a, b] is partitioned into (N - 1) equal parts by N grid points, for which j = 1

.... and j = N are the boundary points where the solution is given, and j = 2, (N - 1) are

the interior points where the solution is to be computed. In order to solve this discretized

one dimensional Poisson's equation, we need (N - 2) equations for the (N - 2) unknowns.

We can obtain these (N - 2) equations by expanding (2.8) from j = 2 to j = (N - l), and

together with the boundary points. This leads to a linear system of equations in the form

of Au = b, where A is the matrix representation of the one dimensional Poisson's equation

with Dirichlet boundary conditions:

CHAPTER 2. ONE DIMENSIONAL POISSON'S EQUATION 7

For numerical purposes, when solving such a system, we often rewrite the boundary

conditions as

This ensures a lower condition number1. Notice that A is sparse2, tridiagona13 and positive

definite4. There are many methods that have been designed to solve these types of linear

system for the vector u.

2.2 On a Non-uniform Grid

For non-uniform grids, the corresponding centered second order difference can also be derived

from the Taylor expansion of u(x - AX,) and u(x + AX,), except now, AxL is not necessary

equal to AX,.

After multiplying Ax: to (2 . 1 2) and AX? to (2.13), taking the sum and subtract (AxL +
Ax,)u(x); then dividing both by ~ (A X , A X ; + Ax?Ax,) to deduce:

Define a particular grid point x, by

'The condition number of matrix A measures the number of digits lost in solving a linear system with that
matrix. It is defined by IIAIIIIA-' 1 1 . A problem with a low condition number is said to be well-conditioned,
whereas a problem with a high condition number is said to be ill-conditioned.

'A is sparse if most of the elements of A are zero.
3A is tridiagonal matrix, if A is square matrix with nonzero elements only on the diagonal, subdiagonal

and superdiagonal.
4 A is positive definite if X ~ A X > 0 for all x # 0.

CHAPTER 2. ONE DIMENSIONAL POISSON'S EQUATION

Figure 2.2: Non-uniform grid.

where Axj = xj+, - xj, and we approximate the value uj by (2.6). Then (2.14) becomes,

AX,-~U,+~ - (Ax,-, + AxJ)uJ + AX,U,-~
u ~ ~ (x ,) = + O(AxJ-I - Ax,). (2.16)

+(AX,-,AX,~ + Ax,2_,AxJ)

This is the centered second order difference for a non-uniform grid. In general, this scheme

is first order accurate unless the mesh is smoothly graded, or AX, = AX,, in which case it

would be second order accurate as described in Section 2.1.

Replace u"(x) by (2.16) in (2.1), and the discretized one dimensional Poisson's equation

with Dirichlet boundary conditions on a non-uniform grid becomes:

-AX,-~U,+~ + (Axj-, + AX,)^, - A X ~ U , _ ~
= f,, j = 2,3, ..., N - 1

$(Ax~-,Ax,~ + AX,~- ,AX~) (2.17)

211 = 91, u~ = QN.

As in Section 2.1, we need (N - 2) equations which are all obtained by expanding (2.17),

from j = 2 to j = (N - 1); together with the boundary points, this leads to a linear system

of equations in the form of Au = b, where A is sparse, tridiagonal and positive definite:

CHAPTER 2. ONE DIMENSIONAL POISSON'S EQUATION

where Ax, = x,,, - x,, A] = Ax,-, + Ax, and d, = Ax,-,AX; + AX:-,AX,. The vectors

u and b are the same a s in (2.10).

For numerical purposes. we often rewrite the boundary conditions as

A lom(Nl2) A f lom(Nl2)
2L1 = 91 1

d f l o o r (~ / 2) floor(Nl2)
(2.19)

A f l o m (N / 2)
2LN = A f 1 m (N ~ 2) Q N .

d f l W (~ / 2) d f loor(Nl2)

In later chapters, we use this idea of non-uniform grid to perform grid shifting. The grid

shifting shifts the interior grid point to a given direction by one unit (in term of Ax).

Thereby the distance between each interior grid point is unchange, which is Ax. The

distance between the interior grid point and the boundary point is either larger than or

smaller than Ax. This can be thought as having a interior uniform grid cell with non-

uniform boundary grid cell. By rewriting the boundary conditions as (2.19), this ensures the

diagonal is approximately the same value, therefore resulting in a lower condition number.

Chapter 3

Multiple Dimensional Poisson's

Equation

3.1 In Two Dimensions

Consider the two dimensional Poisson's equation

d2 d2
-Au(x) = --u(x) - -u(x) = f (x),

dx2 dy2 'dz = (x, y) E R (3.1)

where 0 = (ao, a1) x (Po, PI).

Similar to Section 2.1, we choose integers N, and Ny and define the grid size Ax =

(al - ao) /(N, - 1) and Ay = (Pl - PO)/(Ny - 1) , which partitions [ao, all and [Po, PI] into

(N, - 1) and (Ny - 1) equal parts of length Ax and Ay respectively. Define the grid point

(.l,Y,) by
xi = a 0 + (i - l)Ax, 2=1 ,2 ,..., N, (3.2)

and

Y, = PO + (j - ~PY, j = 1,2, ..., N~ (3.3)

CHAPTER 3. MULTIPLE DIMENSIONAL POISSON'S EQUATION

The centered second order differences are

The discretized two dimensional Poisson's equation with Dirichlet boundary conditions

is now

The domain is partitioned into (N , - l) (N y - 1) grid points of which (2Nz +2Ny - 4) are

the boundary points where the solution is given, and (N , - 2) (Ny - 2) are the interior points

where the solution is unknown. In order to solve the discretized two dimensional Poisson's

equation, we need (N , - 2) (Ny - 2) equations. We obtain those by expanding (3.7) for each

of the interior points from top to bottom and left to right, see Figure 3.1.

Figure 3.1: Example of reshaping a 2d matrix into a vector.

CHAPTER 3. MULTIPLE DIMENSIONAL POISSON'S EQUATION 12

Together with the boundary values, this leads to a linear system in the form of A u = b,

where

A =

with identity matrix I and By and I, as follows:

1 1 where Szy = + w.

CHAPTER 3. MULTIPLE DIMENSIONAL POISSON'S EQUATION 13

Similar to Chapter 2, for numerical purposes, we often rewrite the boundary conditions

as

Szy . ul,, = Szy . g l V j and S,, - uN,,, = Szy . gN,,jr for j = 1,2, ..., Ny

(3.1 1)

Szy . ui,l = Szy . g,,' and Szy - U,,jvy = SZY . gr,Ny. for i = 1, 2, ..., N,

This ensures a lower condition number. Notice that A is a sparse, positive definite and

block1 matrix consisting of square sub-matrices By and I,. I, is a diagonal matrix, and By

is a tridiagonal matrix. So matrix A is a positive definite matrix with 5 non-zero diagonals.

3.2 In Three Dimensions

Consider the three dimensional Poisson's equation

d2 d2 d2
- ~ u (x) = --U(X) - -u(x) - -u(x) = = (X I ,

dx2 dy2 dz2
V x = (z, y, z) E R

(3.12)

44 = 9 (4 , V x E d R

where 0 = (Q O , ~ 1) x (PO, P i) x (70, 71) .

We choose integers N,, Ny and N, and define the grid size as Ax = (a l - ao) / (N, - l) ,

Ay = (PI - Po)/(Ny - 1) and AZ = (71 - ~ o) / (N , - 11, which partitions [ao, all, [Po,PlI
and [~ ~ , - y ~] into (N , - l) , (N y - 1) and (N , - 1) equal parts of length Ax, Ay and Az

respectively. Define the grid point (xi,yl,zk) by

and

~k = 70 + (k - ~) A z , k = l ,2 , ..., N, (3.15)

and the value u,,,.~ by

%,j,k u (x z ! Y I ! ' k) '

'A block matrix is a matrix that is defined by partitioning it into smaller matrices.

CHAPTER 3. MULTIPLE DIMENSIONAL POISSON'S EQUATION

The centered second order differences are

The discretized three dimensional Poisson's equation is

for i = 2 , 3 , ..., N, - 1

and j = 2,3, ..., Ny - 1

and k = 2 , 3 , ..., Nz - 1

U l , j , k = gl,j,k and U N , , ~ , ~ = gNZ,j,k, for j = 1 , 2 , ..., Ny and k = 1 , 2 , ..., Nz

Ui , l , k = gi,l,k and U i , ~ ~ . k = g i , ~ ~ , k , for i = 1: 2: ..., N, and k = 1 , 2 , ..., Nz

u i , j , ~ = gi,j,l and U i , j , ~ = = g i , j . ~ , . for i = 1, 2 , ..., Nz and j = 1, 2 , ..., Ny
(3.20)

We can obtain all the necessary equations to solve this problem by expanding (3.20)

from back to front and left to right and top to bottom; see Figure 3.2.

This leads to a linear system of the form Au = b.

CHAPTER 3. MULTIPLE DIMEMENSIONAL POISSON'S EQUATION

Figure 3.2: Example of reshaping a 3d matrix into a vector.

with identity matrix I and BZy and I; as follows:

CHAPTER 3. MULTIPLE DIMENSIONAL POISSON'S EQUATION

with By and I, as follows:

Similarly, for numerical purposes, we often rewrite the boundary conditions as

CHAPTER 3. MULTIPLE DIMENSIONAL POISSON'S EQUATION 17

This ensures a lower condition number. Notice that matrix A is a block matrix consisting

of square sub-matrices B,, and I,. I, is a diagonal matrix, and B,, is again a block matrix

consisting of square sub-matrices B, and I,. I, is a diagonal matrix, and B, is a tridiagonal

matrix. So this matrix A is positive definite with two levels of block matrix structure, and

it has 7 non-zero diagonals.

3.3 In Higher Dimensions

In this section, we use the ideas from Sections 3.1 and 3.2 to generalize to higher dimensions.

In one dimension, matrix A is a tridiagonal positive definite matrix. In two dimensions,

matrix A is a positive definite block matrix consisting of tridiagonal and diagonal matrices.

Hence, A is a definite matrix with 5 non-zero diagonals. In three dmensions, matrix A is

again a positive definite block matrix consisting of another substructure of block matrices

and diagonal matrices, and the structure of the inner block matrices are same as the two

dimensional case. Matrix A is said to have two levels of blocks. Hence it is a positive definite

matrix with 7 non-zero diagonals and two levels of block matrix structure.

In d-dimensions, we could also expand the discretized d-dimensional Poisson's equation

into a linear system in the form of Au = b; this can be done by reshaping this d-dimensional

domain into a vector. Matrix A will have (d - 1) levels of block, and its structure will be

a positive definite sparse matrix with (2d + 1) non-zero diagonals, and with size equal to

the product of the number of grid points in every directions. Notice that, as the number

of dimensions increases, the size of the matrix will increase, and consequently, many known

methods will fail to compute in a sufficient period of time. This is the difficulty in solving

high dimensional problems.

Chapter 4

Hybrid Monte-Carlo Finite

Difference Method

The main advantage for using a hybrid Monte-Carlo finite difference method is the ability

to solve a larger main problem collectively by solving smaller problems multiple times. The

method thereby resolves features that a single smaller problem may not.

The motivation of the hybrid Monte-Carlo finite difference method is from the stochastic

version; it can be thought as using the traditional Monte-Car10 method. We will motivate

this hybrid Monte-Carlo finite difference method by an example. Consider Figure 4.1, the

goal is to obtain the solution at the "star". By traditional Monte-Carlo method, we take

some Brownian paths from the star until they reach the boundaries, and the solution is given

as an average of a functional over those Brownian paths. For the hybrid Monte-Carlo finite

difference method, unlike the traditional Monte-Carlo method, which take some Brownian

paths from the star to the boundaries, we take a smaller scale Brownian paths from the star

to the "circles"; this is same as applying the Monte-Carlo method to the star on the fine

grid. For each circle, we take a larger scale Brownian paths until they reach the boundaries;

this is same as applying the Monte-Carlo method from those circles on the coarse grid.

Notice that, for those circles that lie on the coarse grid (see Figure 4.2), we can directly

take Brownian paths from those points. For those circles that do not lie on the coarse

grid, we cannot directly take Brownian paths from those points; we need to shift the coarse

grid first, then take Brownian paths (see Figure 4.3). Recall from Chapter 1; from the finite

difference method, the solution is obtained by solving a system of linear equations. From the

CHAPTER 4. HYBRID M O N T E C A R L O FINITE DIFFERENCE METHOD 19

MonteCarlo method, the solution at each point is given as an average of a functional over

the Brownian paths. The previous two statements are the PDE version and the stochastic

version of the solution of Poisson's equation; hence they are equivalent. We replace each of

the Monte-Carlo method by the finite difference method. This hybrid MonteCarlo finite

difference method can be thought of as a special kind of finite difference method, which

motivate by the traditional Montecarlo method.

Figure 4.1: Take Brownian paths from
"star" until it reaches the coarse grid.

Figure 4.2: Example for a point that lies Figure 4.3: Example for a point that does
on the coarse grid. not lies on the coarse grid.

The idea behind the hybrid MonteCarlo finite difference method is that it can break

the problem into two steps; the first step consists of shifting the coarse grid in different

directions, the shifted grids representing different Brownian paths taken; the second step

consists of solving smaller systems using a regular finite difference method multiple times

collectively to solve a larger system.

CHAPTER 4. HYBRlD MONTE-CARL0 FINITE DIFFERENCE METHOD 20

4.1 Algorithm

The algorithm is as follows:

1. Initialize: Define two sets of grids, namely the coarse grid and the h e

grid. Let the coarse grid have n, points, with grid size DX, and the fine grid

have nf points, with grid size dx. Each space between consecutive coarse grid

points contains a fine grid. This is equivalent of having a refined grid with

n,,f points, where n,,f = (n, - l)(nf - 1) + 1. In general, we choose nf = n,.

Fine grid: n,

(n, = 6)

Coarse grid: nc

(Nc = 6)

Retined grid: n,

(n, = 26)

Fine grid: n, x n,

(n, = 6)

Coarse grid: nc x nc

(nc = 6)

Figure 4.4: Example of a coarse grid, h e Figure 4.5: Example of a coarse grid, fine
grid and refined grid in Id. grid and refined grid in 2d.

2. First step: Solve the problem on coarse grid using the finite difference

method. Then shift the coarse grid such that it lies on the boundary of the

h e grid, and solve this "shifted problem"; keep shifting the coarse grid and

solving the shifted problem until we obtain all the boundary points for the

fine grid. An illustration of this shifting procedure will be made for the two

dimensional case in Section 4.4.

(Special case: in one dimension, do not need to shift the coarse grid.)

3. Second step: Solve the problem on each h e grid using the finite difference

method.

4. Interpolation (Optional): Interpolate the refined solution onto an interpe

lated grid. The purpose of interpolation is to compute error for convergence

analysis.

CHAPTER 4. HYBRID MONTE-CARL0 FINITE DIFFERENCE METHOD 2 1

4.2 Implementat ion

Recall that n, denotes the number of points on the coarse grid, nf denotes the number

of points on the fine grid between two consecutive coarse grid points. Since nf = n,,

we denote n = nf = n,, and nref as the number of points on the refined grid, so that

nref = (n, - l)(nf - 1) + 1. Let n, denotes the number of points on the interpolated grid,

with nr,f < ni. We are assuming the number of points is the same in every direction for all

grids.

There are a few difficulties in the implementation:

1. Setting up the problem on the non-uniform coarse grid: As we mentioned

in Chapter 1, a standard technique for solving Poisson's equation is by using

the finite difference method, which is essentially equivalent to solving a large

system of linear equations in the form of Au = b, with the size of A depending

on the dimensionality. In d-dimension, A is an (nc)d x (nc)d matrix, with

(2d+l) non-zero diagonals. It turns out that setting up the system of equations

is efficient, even with nested for-loops, since (2d + 1) << (nc)d. The following

is a part of the MATLAB script for setting up the system of equations in one

dimension:

f o r i = 2:Nx-1

DXL = xm(i)-xm(i-1); DXR = xm(i+l)-xm(i); % Grid s izes

bX = 0.5*(DXL*DXRA2 + DXLA2*DXR); % Denominator

emid(i) = (DXL+DXR) /bX; % Diagonal

edx~(i -1) = -DXR/bX; % Subdiagonal

edxR(i+l) = -DXL/bX; % Superdiagonal

end

A = spdiags([edxL, emid, edxR1, [-1, 0 , 11, Nx, Nx);

CHAPTER 4. HYBRID MONTE-CARL0 FINITE DIFFERENCE METHOD 22

2. Solving the system of equations: This is a bottleneck of the hybrid Monte-

Carlo finite difference method. For this thesis, for one and two dimensions, we

chose to use the direct method, such as MATLAB7s built-in function backslash

("\"); for three and four dimensions, we chose to use the iterative methods,

such as BiConjugate gradients method (MATLAB7s built-in function bicg).

The iterative methods generally work better than direct methods in terms of

efficiency, provided the solution does not diverge. The direct methods gener-

ally work better than iterative methods in terms of robustness, provided the

computer does not run out of memory. Details are provided in Appenduc A.

The following is the MATLAB script for solving the system of equations:

% For low dimensions

u = A\b;

% For high dimensions

u = bicg(A, b) ;

3. Interpolating the numerical solution: This is also a bottleneck of the hybrid

Monte-Carlo finite difference method. We used MATLAB7s built-in function

interpl to perform the interpolation, which is expensive and inefficient as the

number of dimensions increases.

Since each shifting is an independent calculation, we are able to perform the hybrid

Monte-Carlo finite difference method in a parallel computing system, and the CPU time

can be reduced by approximately a factor of the number of processors available; see Figure

4.6. For example, for a two dimensional Poisson's equation with two processors; we assign

one processor to perform shifting and solving the shifted problem in the x-direction, and

the other for the ydirection. We then split the domain into two pieces, and assign each

processor to solve the fine grid problem in their assigned domain. Therefore, the CPU time

can be reduced by approximately a factor of 2.

Two types of test cases are investigated in one, two and three dimensions: the "smooth

test case and the "spiky" test case.

CHAPTER 4. HYBRID MONTECARLO FIMTE DIFFERENCE METHOD 23

Initial Data &
Solving
Shied
Problem

Solving
Fine Grid
Problem

I Collect Data 1

Solution m
Figure 4.6: Schematic of hybrid Monte-Carlo finite difference method on parallel computing
system.

CHAPTER 4. HYBRID MONTECARLO FINITE DIFFERENCE METHOD 24

4.3 In One Dimension

The one dimensional hybrid Monte-Carlo finite difference method is a special case, since we

do not need to shift the coarse grid; the coarse grid already lies on the boundary for each

h e grid. The steps are as follows:

Step 1: Define the coarse grid and h e grid

Step 2: Solve the problem on the coarse grid (circles in Figure 4.7)

Step 3: Solve the problem inside each fine grid (triangles in Figure 4.7)

~ i r s t Step:

Second Step:

Given Boundary Conditions

Solution at Coarse Grid

A Solution at Fine Grid

Figure 4.7: Id: Coarse grid and h e grid.

Consider the following smooth test case (Id smooth test case):

which has an exact solution,

U(X) = 4x(1 - x).

The numerical results are presented in Figures 4.8, 4.9 and 4.10. Figure 4.8 is the exact

solution. Figure 4.9 is the numerical solution solved by the regular h i t e difference method.

Figure 4.10 is the numerical solution solved by the hybrid Monte-Carlo finite difference

method. From these figures, the numerical solutions by those methods are almost identical;

later in Chapter 5, we will show that the hybrid Monte-Carlo finite difference method is

better than the regular finite difference method.

CHAPTER 4. HYBRID MONTECARLO FINITE DIFFERENCE METHOD 25

Figure 4.8: Id smooth test case: Exact
solution with n, = 3500.

Figure 4.9: Id smooth test case: By reg-
ular finite difference method with n, = 24
and n, = 3500.

Figure 4.10: Id smooth test case: By hy-
brid Monte-Carlo finite difference method
with n, = nf = 24 and n, = 3500.

CHAPTER 4. HYBRID MONTE-CARLO FINITE DIFFERENCE METHOD 26

Consider the following spiky test case (Id spiky test case): o = &, where o is the

standard deviation of a gaussian.

which has an exact solution,

The numerical results are presented in Figures 4.11, 4.12 and 4.13. Figure 4.1 1 is the

exact solution. Figure 4.12 is the numerical solution solved by the regular finite difference

method. Figure 4.13 is the numerical solution solved by the hybrid Monte-Carlo finite

difference method. From these figures, we can see that the regular finite difference method

failed to resolve the spike, whereas the hybrid Monte-Carlo finite difference method resolved

the spike.

4.4 In Two Dimensions

In two dimensions, we need to shift the coarse grid in two directions, the x and y directions.

The boundary conditions on the fine grid are along the four edges. The implementation

of the shifting is straightforward: f ist fix x and vary y; this will give us the left and right

edges. Then fix y and vary x, and this will give us the top and bottom edges. An example of

the procedure of combining the solution of the coarse grid problem and the shifted problem

is given in Figure 4.14.

The steps are as follows:

Step 1: Define the coarse grid and fine grid

Step 2: Solve the problem on the coarse grid (circles in Figure 4.15)

Step 3: Shift the coarse grid and solve the shifted problem (stars in Figure

4.15)

Step 4: Solve the problem inside each fine grid (triangles in Figure 4.15)

Consider the following smooth test case (2d smooth test case):

-Au(x) = 32x(1 - x) + 32y(l - y), Vx = (x, y) E (0, 1)2 = R

u(x) = 0, Vx E dR
(4.5)

CHAPTER 4. HYBRlD MONTECARLO FINITE DIFFERENCE METHOD

Figure 4.11: Id spiky test case: Exact so-
lution with ni = 3500.

Figure 4.12: Id spiky test case: By regular
finite difference method with n, = 24 and
ni = 3500.

Figure 4.13: Id spiky test case: By hybrid
Monte-Carlo finite difference method with
n, = nf = 24 and ni = 3500.

CHAPTER 4. HYBRID MONTECARLO FINITE DIFFERENCE METHOD

...
. .

0 Shifting the grid

. solve

. * ; : ;

@
...............,.
.

Solution at Coarse Grid without shifting
* Solution at Coarse Grid with shifting

Figure 4.14: 2d: Example of the procedure of combining the solution of the coarse grid
problem and the shifted problem.

CHAPTER 4. H Y B H D MONTGCARLO FINITE DIFFERENCE METHOD 29

Grid: First Step: Second Step:

Boundary conditions A Solution at fine grid

0 Solution at coarse grid without shifting

* Solution at coarse grid with shifting

Figure 4.15: 2d: Coarse grid and fine grid.

which has an exact solution,

u(x) = 16xy(l - x)(l - y). (4.6)

The numerical results are presented in Figures 4.16, 4.17 and 4.18. Figure 4.16 is the

exact solution. Figure 4.17 is the numerical solution solved by the regular finite difference

method. Figure 4.18 is the numerical solution solved by the hybrid Monte-Carlo finite

difference method. Similar to one dimension, from these figures, the numerical solutions

by those methods are almost identical; later in Chapter 5, we will show that the hybrid

Monte-Carlo finite difference method is better than the regular finite difference method.

Consider the following spiky test case (2d spiky test case): a = &

CHAPTER 4. HYBRID MONTECARLO FINITE DIFFERENCE METHOD 30

Figure 4.16: 2d smooth test case: Exact
solution with ni = 1500.

Figure 4.17: 2d smooth test case: By reg-
ular finite difference method with n, = 36
and ni = 1500.

Figure 4.18: 2d smooth test case: By hy-
brid Monte-Carlo finite difference method
with n, = nf = 36 and ni = 1500.

CHAPTER 4. HYBRID MONTE-CARL0 FINITE DIFFERENCE METHOD 31

which has an exact solution,

The numerical results are presented in Figures 4.19, 4.20 and 4.21. Figure 4.19 is the

exact solution. Figure 4.20 is the numerical solution solved by the regular finite difference

method. Figure 4.21 is the numerical solution solved by the hybrid Monte-Carlo finite

difference method. Similar to one dimension, from these figures, we can see that the regular

h i t e difference method failed to resolve the spike, whereas the hybrid Monte-Carlo finite

difference method resolved the spike.

Figure 4.19: 2d spiky test case: Exact so-
lution with ni = 1500.

Figure 4.20: 2d spiky test case: By regular Figure 4.21: 2d spiky test case: By hybrid
h i t e difference method with n, = 36 and Monte-Carlo finite difference method with
ni = 1500. n, = nf = 36 and ni = 1500.

CHAPTER 4. HYBRID MONTECARLO FINITE DIFFERENCE METHOD 32

4.5 In Three Dimensions

In three dimensions, we need to shift the coarse grid in three directions, the x, y and z

directions. For the shifting, the idea is similar as two dimensional case. First we fix x and

vary y and z; this will give us the left and right planes. Then we fix y and vary x and r ;

which will give us the front and back planes. Finally we fix z and vary x and y, this will

give us the top and bottom planes. We then have all 6 planes for boundary conditions. The

steps are as follows:

Step 1: Define the coarse grid and fine grid

Step 2: Solve the problem on the coarse grid

Step 3: Shift the coarse grid and solve the shifted problem

Step 4: Solve the problem inside each fine grid

Consider the following smooth test case (3d smooth test case):

- ~ u (x) = 128xy(i - x) (i - 9) + i28xz(i - X) (I - Z) + 128yz(l- y)(i - z),

vx = (x, y, Z) E (0, q3 = R

U(X) = 0, vx E a n
(4.9)

which has an exact solution,

The numerical results for the 0.5-isosurface are presented in Figures 4.22, 4.23 and 4.24.

Figure 4.22 is the exact solution. Figure 4.23 is the numerical solution solved by the regular

finite difference method. Figure 4.24 is the numerical solution solved by the hybrid Monte

Carlo finite difference method. From these figures, we can see that the numerical solution

solved by the hybrid Montecarlo finite difference method give a smoother solution than

the regular finite difference method.

Consider the following spiky test case (3d spiky test case): a = &

.(XI = 0, vx E a a
1 (x - 0 . 5) ~ (y - 0 .5)~

where A = - (" - - a d 5 a a4 a4

CHAPTER 4. HYBRID MONTE-CARL0 FINITE DIFFERENCE METHOD

Figure 4.22: 3d smooth test case: Exact
solution with ni = 150.

S m a h la -: HybndMdhd

Figure 4.23: 3d smooth test case: By reg-
ular finite difference method with n, = 12
and ni = 150.

Figure 4.24: 3d smooth test case: By hy-
brid Monte-Carlo finite difference method
with n, = nf = 12 and ni = 150.

CHAPTER 4. HYBRID MONTECARLO FINITE DIFFERENCE METHOD 34

which has an exact solution,

The numerical results for the 1.5-isosurface are presented in Figures 4.25, 4.26 and 4.27.

Figure 4.25 is the exact solution. Figure 4.26 is the numerical solution solved by the regular

finite difference method. Figure 4.27 is the numerical solution solved by the hybrid Monte-

Carlo finite difference method. In these figures, we can see that the regular finite difference

method failed to resolve the sharp feature, whereas the hybrid Monte-Carlo finite difference

method resolved the spike.

Figure 4.25: 3d spiky test case: Exact so-
lution with ni = 150.

Figure 4.26: 3d spiky test case: By regular Figure 4.27: 3d spiky test case: By hybrid
finite difference method with n, = 12 and Monte-Carlo finite difference method with
ni = 150. n, = nf = 12 and ni = 150.

CHAPTER 4. HYBRID MONTECARLO FINITE DIFFERENCE METHOD 35

4.6 In Higher Dimensions

In this section, we will generalize the idea from previous sections into higher dimensions. For

four dimensions, we need to shift the coarse grid in four directions, and the corresponding

boundary conditions on the h e grid are eight cubes. For the shifting, the idea is to fixed

one direction, and vary the other three. After fixing all four directions, then we will have

all eight cubes for boundary conditions as desired.

Consider the following test case (4d test case):

-Au(x) = 57n2 sin (nxl) sin (4 ~ x 2) sin (2nx3) sin (6nx4),

VX = (21, X 2 , X 3 , ~ 4) E (0, 1)4 = !d (4.13)

U(X) = 0, Vx E dR

which has an exact solution,

U(X) = sin (nxl) sin (4 ~ x 2) sin (2nx3) sin(6nx4). (4.14)

The numerical results for the 0.05-isosurface at 2 4 = are presented in Figures 4.28,

4.29 and 4.30. Figure 4.28 is the exact solution. Figure 4.29 is the numerical solution solved

by the regular finite difference method. Figure 4.30 is the numerical solution solved by

the hybrid Monte-Carlo finite difference method. Similar to three dimensions, from those

figures, we can see that numerical solution solved by the hybrid Monte-Carlo finite difference

method give a smoother solution than the regular finite difference method.

In general, for a d-dimensional problem, we need to shift the coarse grid in d different

directions. For the shifting, we need to fix one direction and vary the other (d - 1) directions.

We continue until all d directions have been shifted. Then we solve the problem for each

h e grid cell.

CHAPTER 4. HYBRID MONTECARLO FINITE DIFFERENCE METHOD 36

Figure 4.28: 4d test case: Exact solution
with ni = 50.

Figure 4.29: 4d test case: By regular finite
difference method with n, = 6 and ni =
50.

Figure 4.30: 4d test case: By hybrid
Monte-Carlo finite difference method with
n, = nf = 6 and ni = 50.

Chapter 5

Convergence Analysis

As was explained in Chapters 2 and 3, the hybrid Monte-Carlo finite difference method is

second order accurate. In this chapter, we will verify this accuracy in one: two and three

dimensions. The test cases are the same as those introduced in Chapter 4.

Recall that the d-dimensional domain is [0, lId, n is the number of points on coarse grid

and fine grid. DX is the size of the coarse grid, and dx is the size of the fine grid, which

satisfy,

This implies

O(dx) = o((Dx)~) .

5.1 In One Dimension

The 12-error and &-error are computed by first solving the problem using a regular finite

difference method and the hybrid Monte-Carlo finite difference method, interpolating these

numerical solutions onto a grid with 3500 points, then computing the errors on this interpe

lated grid. For the smooth test case, Figures 5.1 and 5.2 illustrate that when the problem

is solved by the regular finite difference method, both the h-error and &-error are second

order accurate with respect to DX, which implies they are first order accurate with respect

to dx. When the same problem is solved by the hybrid Monte-Carlo finite difference method,

both the L2-error and &-error are fourth order accurate with respect to DX, which implies

they are second order accurate with respect to dx.

CHAPTER 5. CONVERGENCE ANALYSIS

Table 5.1: Id smooth test case: Comparison of the 12-error when solved by the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

Convergence Analysis in !
2 -

-c- I, enor lor regular method
y =2.0616 x + 4.0444

y = 4.1232 x + 4.3229

Number of
mid ~oints, n

Figure 5.1: Id smooth test case: Log-log plot of the 12-error versus DX for the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

Number of non-zero
elements of A

Size of
A. N

Regular finite
difference method

Hybrid Monte-Carlo
finite difference method

CHAPTER 5. CONVERGENCE ANALYSH

Table 5.2: Id smooth test case: Comparison of the 1,-error when solved by the regular
finite difference method and the hybrid Montecarlo finite difference method.

Convergence Analysis in 1,

Number of
mid ~o in t s , n

Figure 5.2: Id smooth test case: Log-log plot of the 1,-error versus DX for the regular
finite difference method and the hybrid Monte-Carlo finite difference method.

Size of
A. N

-2

4

Hybrid Montecarlo
finite difference method

Number of non-zero
elements of A

- - I= error for regular method

y = 2.0616 x + 0.27855

- 4 I, error for hybrid memcd

y =4.1232x +0.55711

Regular finite
difference method

CHAPTER 5. CONVERGENCE ANALYSIS 40

For the spiky test case, the conclusion is the same as for the smooth test case; Figures

5.3 and 5.4 illustrate that when the same problem is solved by the hybrid Monte-Carlo finite

difference method, both the 12-error and 1,-error are fourth order accurate with respect to

DX, which implies they are second order accurate with respect to dx.

Table 5.3: Id spiky test case: Comparison of the 12-error when solved by the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

Table 5.4: Id spiky test case: Comparison of the 1,-error when solved by the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

Number of
grid points, n

We should expect first order accuracy with respect to dx for the regular finite difference

method since we discretized the PDE using a O (D X ~) scheme, by (5.1), this is a O(dx)

scheme. Whereas for the hybrid Monte-Carlo finite difference method, each of the fine grid

problem is solved by a 0(dx2) scheme. Notice that at the boundaries of the h e grid, the

Size of
A, N

Number of
grid points, n

24
28
32
36

Number of non-zero
elements of A

Size of
A, N

24
28
32
36

Regular finite
difference method

Number of non-zero
elements of A

68
80
92
104

Hybrid Monte-Carlo
finite difference method

Regular finite
difference method

2.3848907e+02
2.3848855e+02
2.3848822e+02
2.3848800e+02

Hybrid Monte-Carlo
finite difference method

1.8259998e+01
1 .0258321e+01
3.4652194e+00
3.9194268e+00

CHAPTER 5. CONVERGENCE ANALYSIS

Convergence Analysis in !

Figure 5.3: Id spiky test case: Log-log plot of the 12-error versus DX for the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

Convergence Analysis in I,

Figure 5.4: Id spiky test case: Log-log plot of the 1,-error versus DX for the regular linear
solver and the hybrid Monte-Carlo finite difference method.

CHAPTER 5. CONVERGENCE ANALYSIS 42

errors could be O (d x) in the worst case, we suspect the affect of the interpolation average

out the O(dx) to 0 (h 2) .

5.2 In Two Dimensions

Similar to one dimension, for two dimensions, the 12-error and 1,-error are computed by fist

solving the problem using a regular finite difference method and the hybrid Monte-Carlo

fmite difference method, interpolating these numerical solutions onto a 2500 x 2500 grid,

then computing the errors on this interpolated grid. For the smooth test case, Figures 5.5

and 5.6 illustrate that when the problem is solved by the regular finite difference method,

both the 12-error and 1,-error are first order accurate with respect to d x . When the same

problem is solved by the hybrid Monte-Carlo finite difference method, both the 12-error and

1,-error are second order accurate with respect to d x .

Table 5.5: 2d smooth test case: Comparison of the 12-error when solved by the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

For the spiky test case, the conclusion is the same as for the smooth test case; Figures

5.7 and 5.8 illustrate that both the 12-error and 1,-error are second order accurate with

respect to dx, when the problem solved by the hybrid Monte-Carlo fmite difference method.

Number of
grid points, n

5.3 In Three Dimensions

Similar to previous sections, the 12-error and 1,-error are computed by first solving the

problem using a regular finite difference method and the hybrid Monte-Carlo finite difference

Size of
A, N

Number of non-zero
elements of A

Regular finite
difference method

Hybrid Monte-Carlo
finite difference method

CHAPTER 5. CONVERGENCE ANALYSIS

Convergence Analysis in I,
6 -

-c- I, error for regular method

y = 2.0607 x + 8.0695

y = 4 1232 x + 8.3625

Figure 5.5: 2d smooth test case: Log-log plot of the 12-error versus DX for the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

Table 5.6: 2d smooth test case: Comparison of the 1,-error when solved by the regular
b i t e difference method and the hybrid Monte-Carlo finite difference method.

Number of
grid points, n

24

Regular finite
difference method

3.7768246e-03

Hybrid Monte-Carlo
finite difference method

7.1430280e-06

Size of
A, N
576

Number of non-zero
elements of A

2512

CHAPTER 5. CONVERGENCE ANALYSIS

Convergence Analysis in 1-

y = 2.0609 x + 0.9687/
+ I , enor for hybrid memod

Figure 5.6: 2d smooth test case: Log-log plot of the 1,-error versus DX for the regular
finite difference method and the hybrid Monte-Carlo iinite difference method.

Table 5.7: 2d spiky test case: Comparison of the 12-error when solved by the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

Number of
grid points, n

24

Size of
A, N
5 76

Number of non-zero
elements of A

2512

Regular finite
difference method

1.7671214ef03

Hybrid Monte-Carlo
finite difference method

1.6818751ef02

CHAPTER 5. CONVERGENCE ANALYSIS

Convergence Analysis in I,

y = 3.8169e405 x + 7.4772
+ $ ermr for hybrid method

Figure 5.7: 2d spiky test case: Log-log plot of the &error versus DX for the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

Table 5.8: 2d spiky test case: Comparison of the 1,-error when solved by the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

CHAPTER 5. CONVERGENCE ANALYSIS

Convergence Analysis in 1,

y = 1.7135e-005 x + 5.4636
+ I, error lor hybrd method

Figure 5.8: 2d spiky test case: Log-log plot of the 1,-error versus DX for the regular finite
difference method and the hybrid Monte-Carlo h t e difference method.

method, interpolating these numerical solutions onto a 450 x 450 x 450 grid, then computing

the errors on this interpolated grid. For the smooth test case, Figures 5.9 and 5.10 illustrate

that when the problem is solved by a regular finite difference method, both the 12-error and

1,-error are first order accurate with respect to dx. When the same problem is solved by

the hybrid Monte-Carlo finite difference method, both the 12-error and 1,-error are second

order accurate with respect to dx.

Table 5.9: 3d smooth test case: Comparison of the 12-error when solved by the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

Number of
grid points, n

12

Size of
A, N
1728

Number of non-zero
elements of A

7728

Regular finite
difference method

8.1431117e-tOl

Hybrid Monte-Carlo
finite difference method

6.7756377601

CHAPTER 5. CONVERGENCE ANALYSIS

Convergence Analysis in I,

-c- I, error for regular method
y = 2.1376 x + 9.7102

+ I, enor lor hybrid memod

Figure 5.9: 3d smooth test case: Log-log plot of the 12-error versus DX for the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

Table 5.10: 3d smooth test case: Comparison of the 1,-error when solved by the regular
finite difference method and the hybrid Monte-Carlo finite difference method.

Number of
grid points, n

12
14
16
18

Size of
A, N
1728
2744
4096
5832

Hybrid Monte-Carlo
finite difference method

2.0414153e-04
1.0366868e-04
4.7750951e-05
4.4105264e-05

Number of non-zero
elements of A

7728
13112
20560
30408

Regular finite
difference method

2.4574169e-02
1.763 1753e-02
1.3259284e-02
1.0329876e-02

CHAPTER 5. CONVERGENCE ANALYSIS

Convergence Analysis in I=

y =Z.l376x+ l.Md5
4 I, error for hybrid method

-3

Figure 5.10: 3d smooth test case: Log-log plot of the &-error versus DX for the regular
finite difference method and the hybrid Monte-Carlo finite difference method.

For the spiky test case, the conclusion is the same as for the smooth test case; Figures

5.11 and 5.12 illustrate that when the problem is solved by the hybrid Monte-Carlo finite

difference method, both the 12-error and 1,-error are second order accurate with respect to

dx, .

Table 5.11: 3d spiky test case: Comparison of the 12-error when solved by the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

Hybrid Monte-Carlo
finite difference method

2.0864511e+02
7.4289823e+01
3.9009422e+01
2.2621176e+01

Number of
gridpoints,n

12
14
16
18

Number of non-zero
elements of A

7728
13112
20560
30408

Size of
A,N
1728
2744
4096
5832

Regular finite
difference method

6.7316365e+02
6.7058706e+02
6.6936635e+02
6.6872254e+02

CHAPTER 5. CONVERGENCE ANALYSIS

Convergence Analysis in I,

4 I, error for regular method

y = OOl629x+ 6.5619

Figure 5.11: 3d spiky test case: Log-log plot of the 12-error versus DX for the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

Table 5.12: 3d spiky test case: Comparison of the 1,-error when solved by the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

Number of
grid points, n

12

Size of
A, N
1728

Number of non-zero
elements of A

7728

Regular iinite
difference method

6.7634227e+01

Hybrid Monte-Carlo
finite difference method

3.4418625e+01

CHAPTER 5. CONVERGENCE ANALYSIS

Convergence Analysis in I=

Figure 5.12: 3d spiky test case: Log-log plot of the 1,-error versus DX for the regular finite
difference method and the hybrid Monte-Carlo finite difference method.

7 - - I , emr for regular method

y = O.WO52W8 x + 4.21 54 6-F! Y = 6.6802 x + a.22l 9

Chapter 6

Conclusions

Summary

In this thesis, we presented a hybrid Monte-Carlo finite difference method for approximating

the solution of Poisson's equation, with numerical results presented in one, two, three and

four dimensions. This method combined the idea from the Monte-Carlo method and the

finite difference method. From the test cases, we have successfully shown that the hybrid

Monte-Carlo finite difference method is second order accurate on generic problems, and on

problems with sharp features, such as spike.

This hybrid method solves smaller problems multiple times to collectively solve a larger

main problem. A bottleneck of this method is the solvable size of the linear solver, which

could be direct or iterative method. In general, direct methods require larger memory

and more work, but are more robust, while iterative methods require less memory and less

work, but are also less robust. For the purpose of this thesis, we chose to use the direct

method for one and two dimensions, and the BiConjugate gradient method for three and

four dimensions.

We were able to perform the hybrid Monte-Carlo finite difference method in a parallel

computing system, and the CPU time can be reduced by approximately a factor of the

number of processors available.

CHAPTER 6. CONCLUSIONS _

6.2 Future Work

It is worthwhile to investigate different ways of shifting the coarse grid to improve accuracy,

see Figure 6.1 for example.

Solution at Coarse Grid without shifting
* Solution at Coarse grid with shifting

A Solution at Fine Grid

Figure 6.1: (a) Shifting used in this thesis. (b) Different way of shifting.

The investigation of fast linear solver is also worthy of future research, as the hybrid

Monte-Carlo finite difference method can be performed on a parallel computing system.

The next step is to use a higher order finite difference scheme to discretize the PDE instead

of using a second order scheme. The final goal is to generalize this higher order hybrid

Monte-Carlo finite difference method to solve nonlinear elliptic PDEs in high dimensions.

Appendix A

Computational Complexity

As stated in Chapter 4, a bottleneck of the hybrid Monte-Carlo fmite difference method is the

linear solver. We showed that the matrix representation A is always sparse, non-symmetric1

and positive definite. For an N x N matrix A, the commonly used direct algorithm for solving

A u = b for u is as follows: first apply the LU factorization, then use backward and forward

substitutions; this is exactly the algorithm in MATLAB7s "\" when non-symmetric matrices

are detected, see [6] . Theoretically, for some commonly used iterative methods, such as

the BiConjugate gradents method (BiCG) or Generalized Minimum Residual (GMRES)

method, it will converge in N iterations; however, this N can be very large in practice,

and with the presence of rounding errors, this does not guarantee convergence after N

iterations. Sometimes one needs to pick a good initial value, or use preconditioners to

accelerate convergence speed, which depend on the structure of the matrix, see [I] for

details. Tables A.1, A.2, A.3, A.4 and A.5 give an idea of the CPU time it takes to solve a

sparse non-symmetric positive defmite matrix using above methods in different dimensions.

Tables A.l and A.2 showed that both GMRES and BiCG are slower than MATLAB's

"\" for one and two dimensional problems. We can avoid divergence by increasing the

maximum number of iterations for the iterative methods, as the default is 20 iterations, but

consequently this will also increase the CPU time. Therefore the preferable linear solver for

low dimensions is MATLAB7s "\".
As the number of dimensions gets to three or higher, the iterative methods start to

dominate over MATLAB7s "\". Eventually MATLAB's "\" runs out of memory, while

' A is non-symmetric if A # AT, the transpose of A.

APPENDIX A. COMPUTATIONAL COMPLEXITY 54

BiCG is still capable of computing the solution within seconds, see Tables A.3, A.4 and

A.5. Therefore the preferable linear solver for three and higher dimensional problem is

BiCG. Notice that GMRES seems to diverge for high dimensions; we could either start with

different initial values, use preconditioners, or increase the maximum number of iterations.

Studies had been done on the choice of initial values and preconditioners in [l] and [15].

Unfortunately, there are no rules governing the choice of the maximum number of iterations.

If it is too small, the iterative method may fail to converge while if it is too big, the CPU

time will increase. For this thesis, the maximum number of iterations for 3d and 4d is 50.

Table A.l: Id: Comparison of CPU (in s) with different MATLAB direct and iterative
methods.

Table A.2: 2d: Comparison of CPU (in s) with different MATLAB direct and iterative

Number
of grid

point, n

8
32
64
256

methods.

Sizeof

8
32
64
256

Number
of grid

point, n

Number of
non-zero

elements of A
20
92
188
764

GMRES
Size of
A,

GMRES

2.9469297e-03
8.2514993e-03
2.034729Oe-02
2.8997676e-01

"\,,

6.282639Oe-05
7.5697699e-05
1.0510069e-04
3.3165373604

BiCG

1.4277552e-03
3.9552423603
8.0481086603
4.0565146602

Number of
non-zero

elements of A
BiCG

APPENDIX A. COMPUTATIONAL COMPLEXITY

Table A.3: 3d: Comparison of CPU (in s) with different MATLAB direct and iterative
methods.

Number
of grid
point, n

8
12

Table A.4: 4d: Comparison of CPU (in s) with different MATLAB direct and iterative
methods.

22 [10648 1 58648
36 1 46656 1 282480

Size of

A, N

512
1728

1 7.5399983e-01
1 1.7687460e+01

Table A.5: 5d: Comparison of CPU (in s) with different MATLAB direct and iterative
methods.

Number of
non-zero

elements of A
1808
7728

Number
of grid

point, n

8
12
16
20

6.4005761e-01
4.4085357e-tOO

Size of
A, N

4096

Number of
non-zero

elements of A
14464

L L \ 7 7

5.9455005e-03
2.858445Oe-02 -

diverges
diverges

20736
65536
160000

1.1719691e-01

Number
of grid

point, n

4

BiCG

5.7127436e-03
4.1951017e-02

6
8
10

GMRES

1.3564642e-02
diverges

BiCG

8.9810176e-02
100736
372864
999808

GMRES

1.1699926e-02

Size of
A, N

1024

"\"

2.570615Oe-03
1.4277831e-01

9.3720557e+OO
out of memory

GMRES

1.4953934e-01
5.2448255e+00
9.0207953e+01
out of memory

8.1901567e-01
3.1677558e+00
5.3657419e+00

Number of
non-zero

elements of A
1344

BiCG

8.3475234e-03
7776

32768
100000

diverges
diverges
diverges

18016
110528
427680

8.0995105e-02
7.0985322e-01
5.2838733e+00

1.6461228e-01
9.2218488e-01

diverges

Appendix B

MATLAB Codes for Solving 2d

Poisson's Equation

function Ctop,right ,bottom,leftl = bc (xm,ym)

% Boundary conditions

%

% by Wilson Au 2006

%

top = ones (Ny , Nx) ;
bottom = O*ones (Ny , Nx) ;
left = O*ones (Ny , Nx) ;
right = O*ones(Ny,Nx);

%

% Solving 2d Poisson's equation in a unit square

% -u" = f for 0 < x,y < 1

APPENDIX B. MATLAB CODES FOR SOLVlNG 2D POISSON'S EQUATION 57

% u = g at x,y = 0,l

%
% required: shiftGrid.m, hybridMethod.m, solvePoisson.m,

% by Wilson Au 2006

%

0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 0 0 . 0 0 9 0 0 ~ 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 9 0 ~ 0 0 9 0 9 0 0 0 0 0 0 0 0 9 0 0 0 0 * * ~ ~ 0 0 0 0 LLL
% Choice of Method

% 1: Regular Finite Difference Method

% 2: Hybrid Monte-Carlo Finite Difference Method

choiceMethod = 1;

close all;

% Number of point on coarse grid

Nx = 24; Ny = 24;

if choiceMethod == 1 X Regular Finite Difference Method

m = 0; ny = 0;

nNx = Nx; nNy = Ny;

else % Hybrid Monte-Carlo Finite Difference Method

% Number of point on fine grid

m = Nx; ny = Ny;

nNx = (m-2)*(Nx-l)+Nx; nNy = (ny-2)*(Ny-l)+Ny;

end

% Interpolation

Nxi = 550; Nyi = 550;

% Solving Poisson's equation

[p,tl = hybridMethod(Nx,Ny,m,ny,[O 11, CO 11);

APPENDIX B. MATLAB CODES FOR SOLVING 20 POISSON'S EQUATION 58

% Interpolating the numerical solution

Xc = linspace(O,l,nNx); Yc = linspace(O,l,nNy);

[ymc ,xmcl = ndgrid(Yc,Xc) ;

Xi = linspace (0,l ,Nxi) ; Yi = linspace(0,l ,Nyi) ;

[ymi,xmi] = ndgrid(Yi,Xi);

ui = interp2(xmc,ymc,p,xmiYymi);

% Exact solution

exacti = exactSol (xmi ,pi) ;

% Calculating the error

di = abs(exacti-ui);

1-2-errori = sqrt (sum(sum(di. '2) 1) ;

1-inf-errori = rnax(max(di1) ;

% Display the error

disp([' 'I);
disp(['l-2 error = ' ,num2str(1_2_errori)l) ;
disp(['l-inf error = ' ,num2str(Linf -errori)]) ;

disp(['CPU time = ',num2str(t), ' second(s)'l);

% Plotting

figure(l), clf;

mesh(xmi,pi,exacti); colorbar;

xlabel('x'); ylabel('y'); zlabel('u(x,y)');

title('Exact solution') ;

axis([O 1 0 1 0 11);

shading interp;

view(-35,401

figure (21, clf ;

mesh(xmi , p i ,ui) ; colorbar;

APPENDIX B. MATLAB CODES FOR SOLVING 2 0 POISSON'S EQUATION 59

xlabel('x') ; ylabel('y') ; zlabel ('u(x,y) ') ;

title('Numerica1 solution') ;

axis([O 1 0 1 0 11);

shading interp;

view (-35,40)

function sol = exactSol (xm, ym)

% Compute the exact solution

%

% by Wilson Au 2006

%

sol = 4*4*xm.*ym.*(l-xm) . * (l - y d ;

function sol = f (xm,ym)

% Forcing term of the Poisson's equation

%

% by Wilson Au 2006

function [p,tl = hybridMethod(Nx ,Ny ,nx,ny ,Xd,Yd)

%

% Description:

% Solving Poisson's equation with dirichlet b.c.

% if nx == 0,

APPENDIX B. MATLAB CODES FOR SOLVING 2D POISSON'S EQUATION 60

% then perform Regular Finite Difference Method

% if nx '= 0,

% then perform Hybrid Monte-Carlo Finite Difference Method

%

% Wilson Au 2006

%

tic;

% Forcing term

f -c = f (xms-c ,yms-c) ;

% Boundary condition

[gt , gr ,gb ,gll = bc(xms-c ,yms-c) ;

% Solving Poisson's equation on coarse grid

p-c = solvePoisson(f -c ,Nx,Ny ,gt ,gr,gb,gl Jxms-cJyms-c) ;

if nx == 0

p = p-c;

t = toc;

return

end

% Store data

for i = 1:Nx

for j = 1:Ny

APPENDIX B. MATLAB CODES FOR SOLVING 2 0 POISSON'S EQUATION 61

p((j-l)*(ny-l>+l, (i-I)*(=-l)+l) = p-c(j ,i);

end

end

% Fixed DY-c, vary DX-c

for k = [-(nx-2):-l,l:(nx-2)l

% Shift the coarse grid in x-direction

dx-c = -k*DX-c/h-1) ;

dy-c = O*DY-c/ by- 1) ;

[xms-c ,yms-c] = shif tGrid(dx-c, dy-c ,xm-c , ym-c) ;

% Forcing term

f -c = f (xms-c ,yms-c) ;

% Boundary conditions

[gt,gr,gb,gll = bc(xms-c,yms-c);

% Solving Poisson's equation

p-c = solve~oisson(f -c,~x,Ny,gt,gr ,gb ,gl , xms-C, yms-c) ;

% Store data

for i = 2:Nx-1

for j = 1:Ny

p((j-l>*(ny-l>+l, (i-I)*(=-l)+l+k) = p-c(j ,i) ;

end

end

end

% Fixed DX-c, vary DY-c

for k = C-(ny-2):-1,l:by-2)l

% Shift the coarse grid in y-direction

dx-c = O*DX-c/ (nx-1) ;

dy-c = -k*DY-c/(ny-1) ;

[ms-c,yms-cl = shift~rid(dx-c,dy-c ,xm-c , ym-c) ;

APPENDIX B. MATLAB CODES FOR SOLVING 2 0 POISSON'S EQUATION 62

% Forcing term
f -c = f (xms-c, yms-c) ;

% Boundary conditions

[gt,gr,gb,gll = bc(xms-c,yms-c);

% Solving the Poisson equation

p-c = solvePoisson(f -c,Nx,Ny,gt,gr,gb,gl , x m ~ ~ ~ , y m s ~ c ~ ;

% Store data

for i = 1:Nx

for j = 2:Ny-1

p((j-l)*(ny-l)+l+k, (i-l)*(nx-l)+l) = p-c(j ,i) ;

end

end

end

% Forcing term

f-f = f (m-f ,ym-f);

% Initialize the boundary conditions

top = zeros(ny,nx) ;

APPENDIX B. MATLAB CODES FOR SOLVING 2D POISSON'S EQUATION 63

bottom = zeros (ny,nx) ;

left = zeros (ny,nx) ;

right = zeros (ny,nx) ;

% Boundary conditions

top(1,l:nx) = p((j-l)*(ny-l)+l, (i-l)*(nx-l)+(l:nx)) ;

bottom(ny, 1:nx) = p(j*(ny-l)+l, (i-l)*(nx-l)+(l:nx)) ;

left(l:ny, 1) = p((j-l)*(ny-l)+(l:ny), (i-l)*(nx-l)+l);

right (l:ny,nx) = p((j-l)*(ny-l)+(l:ny) ,i*(nx-l)+l) ;

% Solving Poisson's equation on fine grid

p-f = solvePoisson(f~f,nx,ny,top,right,bottom,left,xm~f,ym~f~;

% Store data

p((j-l)*(ny-1)+(2:ny-1), (i-l)*(nx-1)+(2:-1 = . . .
p-f (2:ny-1,2:nx-1);

end

end

t = toc;

function [xms , yms] = shiftGrid(dx,dy ,xm, ym)

% Description:

% Perform shifting on the coarse grid

%

% Wilson Au 2006

%

xms = xm; yms = ym;

APPENDIX B. MATLAB CODES FOR SOLVING 2 0 POISSON'S EQUATION 64

function p = solvePoisson(f ,Nx, Ny, top,right ,bottom,left ,xm,ym)

%

% Description:

% Solving -uJJ = f with dirichlet boundary conditions

% by MATLAB ' \ '
%

% Wilson Au 2006

%

NxNy = Nx*Ny;

DXL = xm(f loor(Ny/2) ,f loor(Nx/2)) -xm(f loor(~y/2) ,floor (NX/~) -1) ;

DXR = xm(f loor(Ny/2) ,f loor(Nx/2)+1)-xm(f loor(Ny/2) ,floor (NX/~) ;

DYT = ym(f loor(Ny/2) ,f loor(Nx/2) 1-ym(floor(Ny/2)-1 ,f loor (Nx/2) ;

DYB = ym(f loor (Ny/2)+l, f loor (Nx/2)) -ym(f loor (Ny/2), f loor (Nx/2) ;

bX = 0.5*DXL*DXRa2 + 0.5*DXLA2*DXR;

bY = O.S*DYT*DYB-2 + 0.5*DYTA2*DYB;

em = (DxL+DXR)/~X + (DYT+DYB) /by;

f -vector = reshape(f, NxNy, 1) ;

f-vector(l:Ny:Ny*(Nx-l)+l) = em*to-vec(l:~y:~y*(~x-l)+l);

f -vector (Ny : Ny : NxNy) = em*bo-vec (~ y : ~y : NXN~) ;

f -vector (1 : Ny) = em*le-vec(1 : Ny) ;

f-vector(Ny*(Nx-l)+l:NxNy) = em*ri-vec(Ny*(Nx-l)+l:~xNy) ;

APPENDIX B. MATLAB CODES FOR SOLVING 2 0 POISSON'S EQUATION 65

emid = zeros (NxNy , 1) ;

edyR = zeros (NxNy, 1) ; edyL = zeros (NxNy, 1) ;

edxR = zeros (NxNy , 1) ; edxL = zeros (NXN~, 1) ;

% Top-Lef t Comer

emid(1) = em; edyR(2) = 0; edxR(Ny+l) = 0;

% Bottom-Left Corner

emid(Ny1 = em; edyL(Ny-1) =O; edyR(Ny+l) = 0; edxR(2*Ny) = 0;

% Top-Right Corner

emid(Ny*Nx-Ny+l) = em; edyL(Ny*Nx-Ny) = 0 ; edyR(Ny*Nx-Ny+2) = 0 ;

edx2L(Ny*Nx-2*Ny+l) = 0;

% Bottom-Right Corner

emid(NxNy1 = em; edyL(NxNy-1) = 0; edxL(NxNy-Ny) = 0;

% Left boundary

for k = 2:Ny-1

emid(k) = em;

edyL(k-1) = 0; edyR(k+l) = 0; edxR(k+Ny) = 0;

end

% Right boundary

for k = Ny*Nx-Ny+2:NxNy-1

emid(k) = em;

edyL(k-1) = 0; edyR(k+l) = 0; edxL(k-Ny) = 0;

end

% Top boundary

for k = Ny+l:Ny:Ny*Nx-2*Ny+l

emid(k) = em;

edyL(k-1) = 0; edyR(k+l) = 0;

edxL(k-Ny) = 0; edxR(k+Ny) = 0;

end

% Bottom boundary

for k = 2*Ny:Ny:Nx*Ny-Ny

emid(k) = em;

APPENDIX B. MATLAB CODES FOR SOLVlNG 2 0 POISSON'S EQUATION 66

edyl(k-1) = 0; edyR(k+l) = 0;

edxL(k-Ny) = 0; edxR(k+Ny) = 0;

end

for i = 2:Nx-1

for j = 2:Ny-1

DXL = xm(j,i)-xm(j,i-1); DXR = xm(j,i+l)-xm(j,i);

DYT = ym(j ,i)-ym(j-1,i) ; DYB = ym(j+l,i)-ym(j ,i) ;

bX = 0.5*DXL*DXRe2 + 0.5*DXLe2*DXR;

bY = 0.5*DYT*DYBe2 + 0.5*DYTe2*DYB;

emid((i-1) *Ny+ j) = (DXL+DXR) /bX + (DYT+DYB) /by;

edyL((i-l)*Ny+j-1) = -DYB/bY; edy~((i-l)*Ny+j+l) = -DYT/bY;

edx~((i-2) *Ny+j) = -DXR/bX; edxR(i*Ny+j) = -DXL/bX;

end

end

A = spdiags([edxL, edyL, emid, edyR, edx~l, . . .
[-NY, -1, 0, 1, Nyl, NxNy, NxNy);

sol-vector = A\f -vector; p = reshape(so1-vector,~y,~x) ;

Bibliography

[I] R. Barrett, M. Berry, T. F. Chan, J . Demrnel, J. M. Donato, J . Dongarra, V. Eijkhout,

R. Pozo, C. Romine and H. Van der Vorst, Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods, SIAM, Philadelpia, 1994.

[2] R. L. Burden and J . D. Faires, Numerical Analysis, Brooks/Cole, Pacific Grove, seventh

edition, 2001.

[3] K. L. Chung and Z. Zhao, From Brownian Motion to Schrodinger's Equation, Springer-

Verlag, Berlin, 1995.

[4] R. Durrett, Stochastic Calculus: A Practical Introduction, CRC Press, Florida, 1996.

[5] M. Freidlin, Functional Integration and Partial Differential Equations, Princeton Uni-

versity Press, Princetion, 1985.

[6] J . R. Gilbert, C. Moler, and R. Schreiber, Sparse Matrices in MATLAB: Design and

Implementation, SIAM Journal on Matrix Analysis and Applications, 13, 1992, 333-

256.

[7] P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer-Verlag, New

York, 2004.

[8] K. Hardy, Linear algebra for engineers and scientists wing MATLAB, Pearson Prentice

Hall, New Jersey, 2005.

[9] C. 0. Hwang, M. Mascagni and J . A . Given, A Feynman-Kac path-integral implemen-

tation for Poisson's equation using an h-conditioned Green's function, Mathematics and

Comuters in Simulation, 62, 1994, 347-355.

BIBLIOGRAPHY 68

[lo] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-

Verlag, New York, second edition, 1991.

[ll] Y. D. Lyuu, Financial Engineering and Computation: Principles, Mathematics, Algo-

rithms, Cambridge University Press, New York, 2002.

[12] M. J. Miranda and P. L. Fackler, Applied Computational Economics and Finance, The

MIT Press, Massachusetts, 2002.

[13] B. Bksendal, Stochastic Differential Equations: An Introduction with Applications,

Springer-Verlag, Berlin, fourth edition, 1995.

[14] D. L. Powers, Boundary Value Problems, Academic Press, San Diego, fourth edition,

1995.

[15] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelpia, second edi-

tion, 2003.

[16] W. A. Strauss, Partial Differential Equations: An Introduction, John Wiley & Sons,

New York, 1992.

[17] L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, Philadelpia, 1997.

[18] U. Trottenberg, C.W. Oosterlee and A. Schiiller, Multigrid, Academic Press, London,

200 1.

[19] W. Y. Yang, W. Cao, T. S. Chung and J. Morris, Applied Numerical Methods Using

MATLAB, Wiley-Interscience, New Jersey, 2005.

