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ABSTRACT 

This thesis develops a generalized pretest estimator for 

heteroskedasticity as a 'smoothed' version of the traditional 

pretest estimator. Principles from Stein-Rule estimation and 

Bayesian analysis are used to combine linearly the ordinary 

least squares estimator(0LS) and the Two-Stage Aitken 

estimator(2S~E) by developing a weighting system which is a 

continuous function of the pretest statistic. First, adopting a 

Bayesian view, the probability that the degree of 

heteroskedasticity is such that the OLS estimator outperforms 

the 2SAE is estimated. Second, this probability is used as a 

weight to combine linearly the OLS estimator and the 2SAE to 

form the generalized pretest estimator. Several versions of this 

generalized pretest estimator are developed. 

A Monte Carlo study is performed to investigate the mean 

square error properties of the several 'smoothed' versions of 

the generalized pretest estimator relative to those of the 

traditional pretest estimator, the ordinary least squares 

estimator and the Two-Stage Aitken estimator. The results 

indicate that the 'smoothed' pretest estimator is an attractive 

alternative to the traditional pretest estimator used in the 

context of heteroskedasticity. 



DEDICATION 

as the tale of time's mind unfolds 

we fling our guilt in shame 

and swim with burning fury 

in the barreness of our expectations 

yet our daily fantasies 

are too frail to uproot the scales 

that shut the door of our perception 

we fume and hate in ignorance 

and unlike the skillful kingfisher 

we dive into arid oceans 

that have never nursed a shoal of fishes 

and wade back ashore 

with a cup of nothingness in our hands 

senyo adjibolosoo 

TO SABINA 



ACKNOWLEDGEMENT 

First, I extend my greatest thanks to Professor Peter E. Kennedy 

for his time, advice, suggestions and inspiration. I am thankful 

to him for his efforts and commitments to help me in all my 

Fortran programmes by discussing each of them line by line with 

me. I am responsible for any errors in all my programmes. 

Second, I extend my gratitude to all the members of my thesis 

committee and to Professor L. A .  Boland who introduced me to 

economic methodology, the inherent methodological problems in 

economics and how we need to re-examine carefully 'some lies' 

that our teachers told us. I acknowledge the care, love and 

comfort of my dear wife, Mrs Sabina Adjibolosoo. In moments of 

discouragement and disappointments, her presence was invaluable. 

Many thanks to Mr Constantine Osiakwan for his help and 

suggestions for effective Fortran programming, John de Wolf and 

Mary Portelance for helping me in typing and reducing the 

Figures to meet required standards and to Helen Michaels, 

Sherrill Ellis and Gladys Durkson for the great love and 

motherly care they extended to me throughout my studies in the 

economics department. 

Finally, to all of you and everyone who contributed in some 

ways towards the development of my ideas and thoughts, may I say 

to you that 'The Lord bless you, and keep you: the Lord make His 

face shine upon you and be gracious unto you: the Lord lift up 

His countenance upon you and give you peace'. 



TABLE OF CONTENTS 

Approval .................................................... i i  
ABSTRACT ............................................. i i i  
DEDICATION .................................................. iv 
ACKNOWLEDGEMENT ......................................... v 
List of Tables ........................................ viii 
List of Figures ............................................. ix 

. .................................... I GENERAL INTRODUCTION 1 

1.1. INTRODUCTION .................................... 1 
1.2. THE PRETEST ESTIMATOR ........................... 3 

........................... 1.3. THE STEIN-ESTIMATORS 10 

............. 1.4. GENERALIZING THE PRETEST ESTIMATOR 15 

I1 . PRETEST ESTIMATORS FOR HETEROSKEDASTICITY .............. 17 

( A  REVIEW OF THE LITERATURE) ........................ 17 

2.1. PRETEST ESTIMATORS FOR HETEROSKEDASTICITY ...... 17 

2.2. THE BAYESIAN PRETEST ESTIMATOR ................. 30  

1II.THE THEORETICAL MODEL FORMULATION ...................... 32  

3.1. INTRODUCTION ................................... 32  

3.2. THE FIRST FORMULATION .......................... 33  

......................... 3.3. THE SECOND FORMULATION 34  

3.4. OBSERVATION .................................... 38 

3.5. THE IMPORTANCE AND THE ROLE OF 9 ............... 38  

3.6. COMPUTING PHI FROM THE DENSITY FUNCTION(THE 
BIVARIANCE CASE) ................................. 40  

3.7. COMPUTING PHI FROM THE DENSITY FUNCTION(THE 
MULTIVARIANCE CASE) .............................. 43 



3.8. COMPUTING PHI USING THE POSTERIOR ODDS 
RATIO(THE MULTIVARIANCE CASE) .................... 4 6  

................ . IV STRUCTURING THE MONTE CARL0 EXPERIMENTS 48 

................................... 4.1. INTRODUCTION 4 8  

4.2. THE MODEL SPECIFICATION FOR HETEROSKEDASTICITY . 4 8  

4.3. THE PROCEDURE .................................. 5 1  

............... 4.4. AN ARRAY OF COMPETING ESTIMATORS 5 1  

4.5. THE BIVARIANCE CASE ............................ 5 2  

......................... 4.6. THE MULTIVARIANCE CASE 5 4  

............. . V COMPARISONS OF RELATIVE MEAN SQUARE ERRORS 5 8  

.......................... 5.1. THE BIVARIANCE CASE:- 5 8  

5.2.  THE MULTIVARIANCE CASE:- ....................... 8 3  

............................... VI . SUMMARY AND CONCLUSIONS 1 1 5  

6.1.  SUMMARY ....................................... 115  

6.2. SUGGESTED TOPICS FOR FURTHER STUDY AND RESEARCH 1 1 5  



Table 

LIST OF TABLES 

Page 

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(5% 
SL)(THE BIVARIANCE CASE:- SAMPLE SIZE- 20) ........ 59 
RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(I% 
SL)(THE BIVARIANCE CASE:- SAMPLE SIZE- 20) ........ 67 
RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(~% 
SL)(THE BIVARIANCE CASE:- SAMPLE SIZE- 40) ........ 70 
RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(~% 
SL)(THE BIVARIANCE CASE:- SAMPLE SIZE- 40) ........ 73 
RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(~% 
SL)(THE BIVARIANCE CASE:- SAMPLE SIZE- 80) ........ 76 
RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(~% 
SL)(THE BIVARIANCE CASE:- SAMPLE SIZE- 80) ........ 78 
THE LIMITING VALUES OF THE VARIANCE RATIO) ........ 80 
THE MEAN AND VARIANCE OF PHI(FOR ALL SAMPLE SIZES) 
(THE BIVARIANCE CASE) ............................. 82 
RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(~% 
SL)(THE MULTIVARIANCE CASE:- SAMPLE SIZE- 20) ..... 85 
RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(~% 
SL)(THE MUTIIVARIANCE CASE:- SAMPLE SIZE- 40) ..... 90 
RELATIVE(TO GLS) MSE OF COMPETING.ESTIMATORS(5% 
SL)(THE MUTIIVARIANCE CASE:- SAMPLE SIZE- 80) ..... 92 
RELATIVE(TO GLS) MSE OF COMPETING EST1MATORS(5% 
SL)(THE MUTIIVARIANCE CASE:- FOR ALL SAMPLES) ..... 94 
THE MEAN AND VARIANCE OF PHI FOR ALL SAMPLE 

SIZES(DENSITY FUNCTION) ........................... 97 
THE MEAN AND VARIANCE OF PHI FO ALL SAMPLE 

SIZES(POSTERIOR ODDS RATIO) ....................... 98 
RELATIVE(TO 2SAEM) MSE OF COMPETING ESTIMATORS(~% 
SL)(THE MUTIIVARIANCE CASE:- SAMPLE SIZE- 20) .... 101 
RELATIVE(TO 2SAEM) MSE OF COMPETING ESTIMATORS(5% 
SL)(THE MUTIIVARIANCE CASE:- SAMPLE SIZE- 40) .... 104 

v i i i  



5.17. RELATIVE(TO ~SAEM) MSE OF COMPETING ESTIMATORS(~% 
SL)(THE MUTIIVARIANCE CASE:- SAMPLE SIZE- 80) .... 106 

5.18. RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(5% 
SL)(THE MUTIIVARIANCE/BIVARIANCE CASE:- SAMPLE 

SIZE- 20) ........................................ 110 
5.19. RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(~% 

SL)(THE MUTIIVARIANCE/BIVARIANCE CASE:- SAMPLE 
SIZE- 40) ........................................ 112 

5.20. THE MEAN AND VARIANCE OF PHI FOR SAMPLE SIZES 20 AND 
 DENSITY FUNCTION)) ............................ 114 



Figure 

LIST OF FIGURES 

Page 

................... 1.1.RISK FUNCTIONS OF SELECTED ESTIMATORS 6 

1.2.RISK FUNCTIONS OF SELECTED ESTIMATORS ................... 8 
................ 1.3.THE SAMPLING DISTRIBUTION OF ESTIMATORS 14 

.................. 2.1.RISK FUNCTIONS OF SELECTED ESTIMATORS 21 

2.2.RISK FUNCTIONS OF COMPETING ESTIMATORS ................. 26 
2.3.RISK FUNCTIONS OF SELECTED ESTIMATORS .................. 28 

... 5.1.RELATIVE MSE FUNCTIONS OF COMPETING ESTIMATORS(N=~O) 60 

5.1B.RELATIVE MSE FUNCTIONS OF COMPETING ESTIMATORS(N=~O) .... 68 
5.2.RELATIVE MSE FUNCTIONS OF COMPETING ESTIMATORS(N=~O) ..... 71 

.... 5.2B.RELATIVE MSE FUNCTIONS OF COMPETING ESTIMATORS(N=~O) 74 

5.3.RELATIVE MSE FUNCTIONS OF COMPETING ESTIMATORS(N=~O) ..... 78 
5.3B.RELATIVE MSE FUNCTIONS OF COMPETING ESTIMATORS(N=~O). ... 80 
5.4.RELATIVE MSE FUNCTIONS OF COMPETING ESTIMATORS(N=~O) ..... 87 
5.4.RELATiVE MSE FUNCTIONS OF COMPETING ESTIMATORS(N=~O) ..... 93 

.. 5.6.RELATIVE MSE FUNCTIONS OF COMPETING ESTIMATORS(N=~O).. 103 

5.7.RELATIVE MSE FUNCTIONS OF COMPETING ESTIMATORS(N=~O) .... 107 
... 5.7B.RELATIVE MSE FUNCTIONS OF COMPETING ESTIMATORS(N=~O) 109 

.... 5.8.RELATIVE MSE FUNCTIONS OF COMPETING ESTIMATORS(N=~O) 112 

5.9.RELATIVE MSE FUNCTIONS OF COMPETING ESTIMATORS(N=~O) .... 114 



CHAPTER I 

GENERAL INTRODUCTION 

1. I .  INTRODUCTION 

The purpose of this thesis is to generalize the pretest 

estimator for heteroskedasticity(by 'smoothing' it) and by means 

of a Monte Carlo study investigate its properties relative to 

those of the traditional pretest estimator. 

Suppose the presence of heteroskedasticity is suspected and some 

test, such as the Goldfeld and Quandt F-test, is performed to 

investigate whether heteroskedasticity exists in the data. If 

this pretest accepts the null hypothesis of homoskedasticity, 

the ordinary. least squares(0~S) estimator is used for 

estimation. If, however, the pretest rejects the null 

hypothesis, the two-stage Aitken estimator (2SAE) is used 

instead. This methodology defines the traditional pretest 

estimator for heteroskedasticity. 

The traditional pretest estimator is a weighted average of 

the OLS estimator and the 2SAE where the weighting system is a 

dichotomous function of the pretest statistic. This thesis 

develops a 'smoothed' version of this pretest estimator in which 

the weighting system is a continuous function of the pretest 

statistic. This is accomplished by borrowing from the Bayesian 

approach in which the pretest estimator is structured as a 

weighted average estimator by combining the unrestricted and the 

restricted least squares estimators using as the weighting 



system the posterior probability of the null hypothesis. 

The main problem with this technique is that it requires an 

informative prior for the case of point null versus composite 

alternative hypothesis. Without an informative prior, the 

computation of the posterior odds breaks down making it 

impossible to calculate the Bayesian pretest estimator. 

This thesis circumvents this problem by changing the point 

null hypothesis into a composite null hypothesis. Although the 

OLS estimator is dominated by the generalized least squares(G~S) 

estimator, its estimated version(2SAE) does not outperform the 

OLS estimator over the whole parameter space. The null 

hypothesis thus becomes homoskedasticity or heteroskedasticity 

of sufficiently small degree that the ordinary least 

squares(0LS) estimator outperforms the two-stage Aitken 

estimator(2S~~). We develop a means of computing the probability 

that the degree of betel-oskedasticity is such that the ordinary 

least squares estimator dominates the 2SAE. Assuming that this 

is the posterior probability associated with the null hypothesis 

it is used as the weighting system in combining the ordinary 

least squares estimator and the 2SAE into the 

generalized(smoothed) pretest estimator as explained earlier. 

The rest of this chapter discusses in more detail the pretest 

estimator and its properties and the Stein estimator(a 

'smoothed' pretest estimator) that provided the inspiration for 

the development of the generalized pretest estimator in this 

thesis. 



I .  2 .  THE PRETEST EST I MATOR 

The consequences of incorporating non-sample information 

into an estimation procedure depend on the quality of the 

information introduced. Consequently, the researcher may want to 

test the apriori non-sample information against the data before . 

utilizing it. In this manner his main desire is that his 

statistical tests may reveal something about the truth and 

falsity of his apriori information; he either adopts or discards 

the non-sample information depending upon the results of the 

statistical test(s) performed. This procedure and rule of 

estimation is often referred to as the pretest estimator. This 

pretesting procedure is widely used in a variety of ways in 

econometrics of which the following are a few examples: 

(i). Testing for the presence of heteroskedasticity or serial 

correlation and selecting either the ordinary least squares 

estimator or the the generalized least squares estimator based 

upon the result of the pretest[Greenberg(1980), King and 

Giles(1984)l. 

(ii). Including or Excluding a variable or a set of variables 

into a regression model by performing a preliminary t-test or 

F-test with the decision to either include or exclude depending 

upon the outcome of the test[~oro-vizcarrondo and Wallace(1968, 

1969), Wallace(1977) 1 

(iii). Using the Chow testing procedure to test whether or not a 

structural change has occurred. This procedure would help him 

determine whether to pool or not to pool the available data 



[~ennedy(l985),pp 87-88]. 

(iv). Using Almon distributed lags where the polynomial degree 

is selected on the basis of hypothesis tests[Fomby et a1(1984), 

pp 1301. , 

( v ) .  Checking the compatibility of stochastic sample and prior 

information before a mixed estimation process is used [Judge and 

(vi). Using principal components when the number of components 

chosen to delete is based upon hypothesis testing  omby by et 

a1(1984),pp 1301. 

It is conunon(~udge et a1(1985), Chapter 1 1 )  to portray the 

the character of a pretest estimator by means of its risk 

function(the risk of an estimator is the sum of the mean square 

errors of its components usually graphed as a function of the 

extent to which the hypothesis being tested is false). The 

nature of the risk function depends on a variety of parameters 

of which the main ones are: 

( I ) .  the level, of significance(1 - a )  or the pretest critical 
value, 

(2). the regression variance ( u 2 ) ,  

( 3 ) .  the number of regressors and the number of restrictions, 

(4). the restrictions being tested, 

(5). the design matrix, and 

(6). the degrees of freedom[~allace, (1977)l. 

Risk functions for the restricted, unrestricted, pretest, 

and Stein estimators are shown in Figure 1.1 for the case of the 



linear regression model and a set of linear restrictions. On the 

horizontal axis is the measure of the extent to which the 

restrictions are false(in this case the non-centrality 

parameter); the vertical axis measures the risk of these 

estimators[ Kennedy, 1985, pp 161; Wallace, 1977, pp 4361. 

The mean square error is the sum of the variance of the 

estimator and the square of the bias. Since unrestricted least 

squares is always unbiased and has a constant variance 

regardless of the validity of the restrictions, its risk 

function is a constant and, therefore, is drawn in the figure as 

a horizontal line beginning at G. From econometric theory, we 

know that the restricted least squares estimator has a smaller 

variance than the unrestricted least squares estimator. If the 

restrictions are true, it is also unbiased. But if the 

restrictions become more and more false, it suffers from more 

and more bias and therefore its risk function is a positively 

sloped line starting from point 3 in Figure 1.1. 

The pretest estimator has a humped shape as shown in Figure 

1.1. This humped shape of the risk function of the pretest 

estimator is a result of the dichotomous choice between the 

unrestricted and the restricted least squares estimators after 

pretesting. If the restrictions imposed are true, in repeated 

samples the null hypothesis is accepted(1 - a)% of the time on 

the basis of the pretests and therefore its risk function is 

very close to(just above) that of the restricted least squares 

estimator. At the other extreme, if the restrictions are far 
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from being met(very false), the preliminary tests correctly 

reject the null hypothesis almost 100% of the time and therefore 

the risk function of the pretest estimator is very close to(just 

above) that of the unrestricted least squares estimator. 

Therefore, the pretest estimator does well when the restrictions 

are either almost true or very false. 

Between these two extremes, the pretest estimator performs 

very poorly. Suppose, for the purpose of illustration, that the 

extent to which the restrictions are not met is such that the 

power of the test is 50%. In this case, the number of times the 

pretest estimator incorrectly accepts that the restrictions are 

valid in repeated sampling is equal to the number of times it 

correctly rejects these restrictions. If it correctly rejects 

the restrictions imposed, the parameter estimates that result 

are distributed around the true parameter value; if it 

incorrectly accepts the restrictions, the estimates it generates 

are biased. All this is shown in Figure 1.2. In particular, it 

is seen that the resulting density function for the pretest 

estimator is such that both its variance and its bias are high, 

explaining the humped character of the risk function of the 

pretest estimator[ Kennedy, 1985, pp 161 - 1621. 

For future reference we note that the pretest estimator is 

often expressed as a weighted average of the restricted and the 

mrestricted least squares estimators as follows: 

oPT = I [ ~ , ~ ) ( u ) P ~  + (u)pOLS.. . . . . . . . . . . . . . . . . . . . . . . ( 1.1). 
where 
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pPT = the traditional pretest estimator. 

poLS = the unrestricted least squares estimator 

pR = the restricted least squares estimator 

I[oIc)(u) and I[,,,)(u) are indicator functions taking on the 

values of one if U, a test statistic, falls in the range 

subscripted and zero otherwise. Note the dichotomous nature of 

this weighted average estimator. 

Suppose that a researcher, after having formulated his 

model, tests for the presence of autocorrelation at the 90% 

level and the null hyp0thesi.s is accepted. There is also the 

possibility that if the test were performed with 80% 

probability, the null hypothesis could have been rejected. 

Therefore, according to zaman(1984, pp 77) "such 

autocorrelation(or even at lower levels) can cause considerable 

damage to the OLS results and should, ideally be accounted for". 

If this is the case, then it follows that most pretest 

estimators based upon some kind of hypothesis testing are 

non-optimal. Zaman argues that an answer to this problem is to 

develop and use shrinkage techniques as evidenced by the 

James-Stein estimator. With this belief, zaman(1984), pp 73 has 

formulated the following heuristic: 

"Under as yet unknown but probably quite general regularity 

conditions, discontinuous functions of the data are 

inadamissible decision rules". 

This heuristic actually rules out a large number of 

traditional pretest estimators. An ingenious way around this 



problem is to develop an appropriate shrinkage technique to 

overcome the discontinuity. This procedure involves the 

formulation of an estimator that is a convex combination of 

other selected estimators using a meaningful weighting scheme. 

It has been pointed out by many researchers that the 

pretesting procedure produces an estimator that is inferior to 

the usual maximum likelihood estimator(MLE1 based on the sample 

information alone over a large portion of the parameter space(as 

shown in the figure 1.1 above, to the right of point H 1. 

Moreover, the pretest estimator possesses an unknown sampling 

distribution, rendering classical statistical hypotheses testing 

impossible. The arbitrary selection of the level of significance 

for the pretesting is also a problem with this estimator. In 

addition to these negative features of the pretest estimator, 

Cohen(1965) showed that when the loss function is the squared 

error loss, the pretest estimator is inadmissible, due to the 

fact that this estimator is a discontinuous function of the test 

statistic. Sawa and ~orimatsu(l973) made the same observation 

and c omment . 
1 .  3. THE STEIN-ESTIMATORS 

From the above discussions, it is clear that the traditional 

pretest estimator has undesirable risk properties. An 

alternative to the traditional pretest estimator with better 

risk properties is a weighted average estimator usually referred 

to as the ~ames-Stein rule estimator. This estimator utilizes 



the available prior information to modify the unrestricted least 

squares estimator in such a way that the resulting estimator 

dominates the unrestricted least squares over the whole 

parameter space. This estimator dominates the unrestricted least 

squares regardless of how correct the prior information is. Note 

that the weighting system used by the ~ames-Stein rule estimator 

is a function of the F test statistic(U) utilized to test the 

set of linear restrictions[~ennedy(1985), pp 1611. The 

development of these estimator is based on the work of 

~tein(l965).In this thesis, the Stein-rule estimator is modified 

to be applicable to the case of heteroskedasticity. The 

hypothesized set of linear restrictions is replaced by the 

hypothesis of homoskedasticity implying that the restricted 

least squares estimator is poLS, and the unrestricted(i .e., the 

heteroskeda~ticit~ case) estimator is j12SAE. Thus for the 

pretest estimator in this thesis, the ordinary least squares 

estimator is employed if the pretest shows that the 

restriction(homoskedasticity) is true, otherwise, the 2SAE is 

employed(heteroskedasticity). 

Whereas the pretest estimator utilizes the test statistic U 

to choose either the unrestricted or the restricted least 

squares estimator, the James-Stein estimator makes use of the 

test statistic U to combine linearly(in a non-dichotomous 

fashion) the unrestricted and the restricted least squares 

estimators into a weighted average estimator. The size of the 

weights imposed upon each component of this weighted average 



estimator is a function of the pretesting  statistic(^). This 

weighted average estimator is formally stated as: 

where 

BS = the Stein estimator, 

t = a scalar constant which depends on the design matrix and the 

degrees of freedom. 

U = the calculated test statistic, 

poLS = the unrestricted least squares estimator ,and 

pR = the restricted least squares estimator. 

In the literature the set of linear restrictions most 

commonly used is a non-stochastic vector for 0. But this is not 

universal; it is not uncommon to shrink the ordinary least 

squares estimator towards an overall mean rather than a fixed 

vector, for example. In this thesis, we consider the general 

case in which the restricted least squares estimator is 

considered to be stochastic. 

If U = E, the Stein-Rule estimator is identical to the 

restricted least squares estimator. If the testing statistic(U) 

is infinite, the Stein-Rule estimator becomes the unrestricted 

least squares estimator(that is, as the test statistic grows 

larger in relation to the scalar E(i.e., as [/u tends towards 

zero the Stein-Rule estimator gradually approaches the 

unrestricted least squares estimator). Note that the ratio :/u 

determines the extent to which the unrestricted least squares 

has to be shrunk towards the restricted least squares estimator 



[Judge et a1(1980), pp 69 ; Fomby et a1(1984), PP 131-1341. 

Figure 1.3 shows the sampling distribution of the Stein-Rule 

estimator, illustrating how the Stein estimator dominates the 

pretest estimator over the whole parameter space. 

The Stein-Rule estimator utilizes sample and non-sample 

information in a superior way than the pretest estimator. Its 

risk improvement on the maximum likelihood estimator under a 

variety of loss functions is assured regardless of the 

correctness of the non-sample information. But unfortunately, 

these James-Stein Rule estimators have their own problems. 

(i). they are highly nonlinear and biased, 

(ii). they have unknown small sample distributions, 

(iii). they possess covariance matrices depending on unknown 

population parameters, 

(iv). in many cases(e.g., multicollinearity), they improve upon 

the MLE only if design-related conditions hold [Fomby et 

a1(1984), pp 1341, 

(v). they depend on the assumption of normally distributed error 

terms, and 

(vi). they are only applicable to the case of a set of linear 

restrictions and therefore require adaptations for other 

estimation situations[~fron and ~orris(1974)I. 





I. 4. GENERALIZING THE PRETEST ESTIMATOR 

The purpose of this thesis is to apply the principle of the 

Stein rule estimator(i.e., using its idea of a continuous 

weighting system) to the case of heteroskedasticity by a 

suitable generalization of the pretest estimator. In this way, 

even though the Stein rule estimator is a continuous function of 

the data, it is considered to retain the flavour of the pretest 

estimator. First, a theoretical formulation of the generalized 

pretest es,timator(a weighted average estimator) is undertaken. 

This estimator is a linear combination of the unrestricted least 

squares(0~S) and the 2SAE. The Two-Stage Aitken estimator(2S~~) 

is formulated as follows. First, the ordinary least squares(0LS) 

regression is run, producing the OLS residuals. Second, these 

residuals are used to estimate the nature of the 

heteroskedasticity. Third, the data is tran'sformed to produce an 

estimating equation for which the ordinary least squares(0LS) 

estimator is appropriate. This technique is described in more 

detail later when specific applications are discussed. Unlike 

the traditional pretest estimator the generalized pretest 

estimator does not force a dichotomous choice between the 

estimators. In this respect, it is like the Stein-Rule estimator 

which develops a weighted average estimation procedure with the 

weights as a continuous function of the relevant pretest 

statistic. The aim is to develop a general rule that can improve 

upon the existing pretest estimators. 



Second, Monte Carlo experiments are undertaken to examine 

the properties of several variants of the generalized pretest 

estimator, comparing them to those of unrestricted least 

squares(0LS) and the traditional pretest(BPT) estimators. 

The general outline of this thesis is as follows: 

Chapter Two provides a review of the existing body of literature 

on pretesting procedures and the James-Stein rule estimating 

techniques. It is a general survey of the relevant background 

material for the thesis. The third chapter contains the 

theoretical development of the generalized pretest estimator. 

Chapter Four describes the Monte Carlo experiments to evaluate 

the performance of the generalized pretest estimator and all the 

other competing estimators. Chapter Five contains an analysis of 

the Monte Carlo results. The final chapter contains a summary of 

the results, suggested topics for future research and a 

discussion of some limitations of the study. 



CHAPTER I I 

PRETEST ESTIMATORS FOR HETEROSKEDASTICITY 

(A REVIEW OF THE LITERATURE) 

2.1. PRETEST ESTIMATORS FOR HETEROSKEDASTICITY 

The main aim of this chapter is to review the existing 

relevant literature on pretest estimators in the context of 

heteroskedasticity. It is well-known that the presence of 

heteroskedasticity has two undesirable effects on the ordinary 

least squares(0~S) estimator. First, although the OLS estimator 

remains unbiased, it is inefficient. Second, its 

variance-covariance matrix is poorly estimated and so the 

standard tests of significance have little meaning. 

If the true covariance matrix of the error term in a 

regression model is known to the researcher, he can 

straightforwardly apply the generalized least squares 

estimator(GLS) to the data. In this situation, the results are 

BLUE. Unfortunately the true covariance matrix of the 

disturbances is rarely known. To circumvent this problem, 

various techniques have been developed to approximate this 

covariance matrix. Each such technique results in some variant 

of the estimating procedure usually referred to as the estimated 

generalized least squares(EG~S1 estimator, sometimes called the 

Two-Stage Aitken estimator(2S~~). An excellent reference on the 

numerous versions of this estimating procedure can be found in 

Chapter 1 1  of the second edition of Judge et al(1985). 



Owing to the fact that uncertainties exist regarding whether 

or not heteroskedasticity exists in the data, most researchers 

usually test for its presence. This procedure, as explained in 

Chapter one is referred to as the pretesting procedure. The 

resulting estimator is known as the pretest estimator. The 

general form of the pretest estimator for the case of 

heteroskedasticity is: 

pPT = 1[oIc)(U)P OLS + I[c,o)(U)fl 2SAE ...................... (2.1). 
where 

pPT = the pretest estimator, 

poLS = the ordinary least squares estimator(O~S), and 

pZSAE is the version of the generalized least squares estimator 

described above. I[oIc)(U) and I C ) U  are both indicator 

functions that assume the value of zero or one. That is, if the 

value of U, the test statistic lies between zero and C, the 

indicator function takes the value of one, otherwise zero (i.e., 

when the value of U lies between C and a). 

The pretest estimator in equation (2.1) above is a function 

of many parameters such as p2SAEl floLS, U, C, etc. Owing to 

this, its probability density function is a conditional density 

of that U I C) multiplied by the probability that U I 

C added to the conditional density of of fi2SAE(given that U L C) 

multiplied by the probability that U 2 C. In general, the 

pretest estimator is, therefore, biased [wallace, 19771. 

Most work done on heteroskedasticity pretesting is concerned 

with cases where the error terms of the first half of the data 



are assumed to have a constant common variance (u12) and the 

error terms of the second half of the data are assumed to have a 

different constant common  variance(^,^). We refer to this case 

as the 'bivariance' case. The main papers in this area include 

those of Mandy(1984), Greenberg(1980), Ohtani and Toyoda(l980), 

Yancey, Judge and ~iyazaki(l984)~ Goldfehd and Quandt(1972), and 

Sclove, Morris and ~adhakrishnan(l972). 

Greenberg(1980) formulated the heteroskedasticity pretest 

= 0 otherwise 

That is, I(,, b)(~) is an indicator function that takes on 

values of one or zero depending upon the outcome of the pretest. 

poLS is the ordinary least squares estimator(OLS), and . 

oZSAE is the Two-Stage Ait-ken estimator. 

C, and C2 are the critical values of the two-tailed F-test at 

some chosen significance level a. This Greenberg 

heteroskedasticity pretest estimator makes intuitive sense. The 

underlying principle is described briefly as follows. When 

heteroskedasticity is suspected, the researcher undertakes a 

pretest(a two-tailed test) to test whether the errors are 

homoskedastic, using the Goldfeld and Quandt test statistic U. 

The hypothesis of equal variances is accepted if C1 I U I C2 

where 



U = S12/S22. Si2 is the usual estimator of oi2. This test 

statistic was used by Greenberg to construct the pretest 

estimator in (2.2). If U assumes values between zero and C 1 ,  the 

implication is that heteroskedasticity exists in the data and, 

therefore, the researcher uses the 2SAE . Similarly, if U falls 
between C2 and =, heteroskedasticity is again implied and the 

2SAE is used to estimate the data. However, if U falls between 

C1 and C2, homoskedasticity is implied and the ordinary least 

squares estimator is chosen for estimation purposes. Greenberg 

further showed in his analysis that the above heteroskedasticity 

pretest estimator does not uniformly dominate the unrestricted 

least squares estimator or the 2SAE estimator over the whole 

parameter space. 

The major observations and conclusions of Greenberg(l980) 

are summarized in Figure 2.1 below. Greenberg using Monte Carlo 

results, observed that the ordinary least squares estimator is 

superior to the other estimators when gamma (i.e., 7 = o12/a22) 

assumes values that are very close to one. But as soon as gamma 

takes on larger and larger values the ordinary least squares 

loses its dominance over the other estimators. The estimated 

generalized least squares(2SAE) dominates the unrestricted and 

the Greenberg pretest estimators over a large range of the 

parameter space. However, the Greenberg pretest estimator based 

on the Goldfeld and Quandt F-test statistic performs very well 

when gamma values are very far away from or close to one. For 

gamma values quite close to one, this pretest estimator 
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FIGURE 2.1: RISK CHARACTERISTICS OF THE PRETEST AND 
OTHER CONVENTIONAL ESTIXATORS. 



I dominates the 2SAE. Since none of these estimators emerges as 

the 'best' among the rest the choice of estimator depends on a 

prior information about the variance ratio(y1. If the prior 

gives a large weight to y values quite close to 1, which 

~reenberg(1980)~ pp 1813 argues will be the case unless the 

researcher has some specific reason to believe otherwise, both 

the ordinary least squares and the pretest estimators would be 

preferred to the 2SAE. A uniform prior on y, for example, leads 

to the choice of the 2SAE. 

Ohtani and ~oyoda(l980) using, orthonormal regressors 

formulated a similar heteroskedasticity pretest estimator. 

Depending on the outcome of the pretest, either the ordinary 

least squares estimator or the 2SAE is used in the estimation of 

the regression coefficients. They derived the mean square error 

of the pretest estimator. The null hypothesis tested is u 1 2  = 

u z 2  against the alternative hypothesis u l 2 2  u 2 2  by their own 

assumption(i.e., a one-sided test). Using the Goldfeld and 

Quandt F-test statistic, the heteroskedasticity pretest 

estimator was developed[ see their first equation on pp 1531.  

Having developed this pretest estimator the authors showed 

theoretically that the pretest estimator dominates the 2SAE and 

so that the 2SAE is inadmissible. Their conclusion as summarized 

on page 155 implies that 'we should not use the 2SAE readily 

even if we doubt homoskedasticity strongly. It is recommended to 

test for homoskedasticity prior to estimation of 0 ' .  



~andy(1984) following Greenberg(l980) and Ohtani and 

~o~oda(l980) examined the inequality pretest estimator for 

heteroskedasticity without Ohtani and Toyoda's assumption of 

orthonormal regressors by testing the null hypothesis HO : 0 1 2  = 

against the alternative hypothesis H, : o I 2  > ~ 7 ~ ~ .  The 

inequality pretest estimator using the pretest statistic selects 

either the OLS estimator or the 2SAE depending upon whether the 

test statistic is smaller or larger than the critical value. If 

the pretest confirms that 0 1 2  > 022 the OLS estimator is 

abandoned, otherwise, it is selected for estimating the 

parameters. He showed that the risk function of the inequality 

pretest estimator is smaller than that of the Greenberg pretest 

estimator for all values of gamma greater than one. However, the 

behaviour of the risk function of the inequality pretest 

estimator is similar to that of the Greenberg equality pretest 

estimator. Mandy noted that the reason why the risk function of 

the inequality pretest estimator is smaller than that of the 

equality pretest estimator over the parameter space where gamma 

is greater than one is due to the fact that the inequality 

pretest estimator possesses a high rejection region "in the 

upper tail of the distribution and selects the 2SAE more often 

when gamma is in fact larger than one. As gamma tends towards 

zero the inequality pretest estimator exhibits the same 

performance as the OLS estimator and its risk becomes virtually 

identical to the risk of the OLS estimator... This is also 

expected since the inequality pretest estimator is constrained 

to select only the OLS estimator when gamma is less than one". 



Mandy's conclusion is that when the non-sample information is 

correct (i.e., 012/022 > 1, the inequality pretest estimator is 

superior to the equality pretest estimator. Unfortunately, this 

is not the case when the non-sample information is not correct. 

According to Mandy, "it is important to stress that this 

inadmissibility of the 2SAE holds only if the researcher is 

absolutely certain that o I 2  > uz2. It is, therefore, 

unambiguously beneficial to pretest only if one is dealing with 

a, model that rules out the possibility of u , ~  < 

~~~"[~andy(1984), pp 3 3 1 .  It should be noted that this quote 

assumes orthonormality, something Mandy is not clear about. The 

risk functions of the Greenberg equality pretest and Mandy's 

inequality pretest estimators are shown with alternative 

estimators in Figure.2.1 above[Judge et all (1985), pp 4301. 

Several Stein rule heteroskedasticity pretest estimators 

that have been developed are briefly discussed in the following 

paragraphs. First, note that the James-Stein Positive Rule 

estimator was developed to solve a sign reversal problem in the 

use of the Stein-rule estimator. This problem occurs when the 

test statistic U 5 leading to the shrinkage of the 

unrestricted least squares beyond the restricted least squares 

estimator. The occurrence of this usually leads to a problem of 

sign reversal of the Stein-rule estimator. ~ennedy(l985)~ pp 

165-166 notes that 'by truncating this shrinking factor so as to 

prevent this from happening, an estimator superior to the Stein 

estimator is created. It is called the Stein positive rule 



-- 

I 
estimator. The name derives from the popular application to zero 

restrictions: The positive rule estimator prevents the sign of 

the stein estimator from differing from that of the unrestricted 

least squares estimator'. This estimator renders the Stein-rule 

estimator inadmissible since it has a lower risk. This 

relationship is shown in Figure 2.2 below. This estimator 

dominates the maximum likelihood estimator when the number of 

parameters being estimated is greater than three[~udge et 

al(1985) pp 82 - 891. Sclove, Morris and Radhakrishnan(l972) 

developed a Stein-rule like pretest estimator usually referred 

to as modified positive-part pretest estimator. In its 

formulation, Sclove et al, instead of combining the M L E ( ~ O ~ ~ )  

with the restricted least squares estimator to form the pretest 

estimator, rather combined the James-Stein positve rule 

estimator and the restricted least squares estimator. This 

procedure is based upon the fact that since the Stein-rule 

estimator uniformly dominates the ordinary least squares 

estimator, its use can lead to the development of a pretest 

estimator that is superior to the traditional pretest estimator. 

Applying this information to the context of heteroskedasticity, 

Sclove et a1 linearly combined the James-Stein positive rule 

estimator and the 2SAE into a heteroskedasticity pretest 

estimator as specified in (2.3). 

pPT = I[~,~)(u)P+ * (u) pAE ...................... (2.3). 
where 

p+ is the Stein-rule positive estimator. This pretest estimator 

is akin to the Greenberg pretest estimator in (2.2). The only 
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difference between these two pretest estimators is the 

replacement of the ordinary least squares estimator in the 

Greenberg estimator with the James-Stein positive rule 

estimator. Sclove et al(1972) proved theoretically thac the 

modified positive-part rule estimator dominates the Greenberg 

pretest estimator under the squared error loss criterion and 

therefore renders it inadmissible. This pretest estimator has 

been proved(theoretical1y) to dominate the traditional pretest 

estimator(2.7) under the squared error loss criterion rendering 

it inadmissible. Their risk functions are shown with others in 

Figure 2.3. Other versions of the heteroskedasticity pretest 

estimator developed by Yancey et al(1984) are described below. 

Yancey et a1(1984), following Taylor(1977, 1978), 

  re en berg ( 1980)~ Ohtani and ~oyoda ( 1980) , and   and^ ( l984), 

demonstrated that over the parameter space(gamma): 

(i). there exists a variety of estimators that uniformly 

dominate the unrestricted least squares estimator, the Aitken 

estimator, and the 2SAE(i.e., the James-Stein estimator), and 

(ii). that there are alternative types of pretest estimators 

that possess smaller risks over the whole parameter space than 

the traditional pretest estimators in the context of 

heteroskedasticity. 

There are two versions of the pretest estimator developed by 

Yancey et a1 for the orthonormal case. In the first version of 

their development, the pretest estimator was derived as a 

combination of the Stein estimator and the 2SA~(equation 31, pp 
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148 of their paper). In this case, they replaced the 

unrestricted least squares estimator in the Greenberg pretest 

estimator with the Stein estimator. This pretest estimator was 

shown to be superior to the Greenberg equality pretest 

estimator. The second version of the Yancey et a1 Stein pretest 

estimator(equation 3 3 ,  pp 148 of their paper) combines the Stein 

estimator and the Stein version of the 2SAE that they 

developed(S2S~E). This estimator shrinks the 2SAE towards the 

zero vector instead of the OLS estimator as done by the Stein 

estimator. In this development, they replaced both the 

unrestricted and the 2SAE estimators in the Greenberg equality 

pretest estimator with the Stein estimator and the Stein version 

of the 2SAE respectively. It has been shown by the authors that 

the two versions of the Yancey et a1 Stein pretest estimators 

dominate the Greenberg equality pretest estimator(hence 

rendering it inadmissible), and that the second version of the 

Stein pretest estimator dominates the first version[ Yancey et 

al, pp 149 figure 21. 

Even though there are studies that compare the Greenberg 

equality pretest estimator with either the Sclove et a1 pretest 

estimator or the two versions of the Yancey et a1 Stein versions 

of the pretest estimators, there have been no attempts to 

compare the performance of the Sclove et a1 and Yancey et a1 

heteroskedasticity pretest estimators. In a future study, one 

may want to compare and contrast the risk functions of these 

estimators with that of the generalized pretest estimator 



developed in this thesis. 

The best summary on pretest and Stein-rule estimators is 

found in Judge and ~ock(1978). Proofs of the theorems concerning 

the properties and characteristics of these estimators have been 

outlined for the general regression and orthonormal models. 

2 .  2 .  THE BAYESIAN PRETEST ESTIMATOR 

Suppose that the researcher is interested in obtaining point 

estimates of parameters, and is uncertain as to whether the 

appropriate model is the one with or without the given 

restrictions. The Bayesian computes the optimal Bayesian point 

estimate through minimization of the expected loss function 

which is averaged across both hypotheses. The posterior 

probabilities of the hypotheses are used as the weighting 

system. Having computed the posterior probability of the null 

hypothesis[P(HOly)] and the posterior probability of the 

alternative hypothesis[P(~, ly)], the Bayesian obtains the point 

estimate (P*) that minimizes the following expected loss 

function: 

E[L(P,P*)I = 

* 
P(H~ lY)E[~(fl.fl*) I H ~  1 + P(H, ~~)E[L(P,P ) I H ,  1.. . . . . . . . . . . . (2.4). 
According to Judge et a1(1985), 'with quadratic loss where the 

posterior means are optimal, the minimizing value for P* is a 

weighted average of the posterior means'. This is computed as: 

p* = P(Holy).E[PIH0I + P(H, ly) .E[PIH, I.. . . . ... .. .. . .. .. . (2.5). 
If under the null hypothesis the restrictions are true, then the 



restricted least squares estimator (pR) is used. That is, 

E[@IH,] = pR. If, however, the restrictions are false, the 

unrestricted least squares estimator (flu) is used and hence 

E[PIH,) = pU(which is referred to earlier as poLS when an 

ignorant prior is employed). Assuming that these values are the 

posterior means, the Bayesian pretest estimator in (2.5) above 

can be re-written as: 

p* = P(H, ly)pR + P(H, ly)pU.. ........................... (2.6). 
where P(H, ly) = 1 - P(H, l y  
B* = p(~~ly)p* + ( 1  - P(Ho 

Casting the problem in 

1, and therefore.(2,6) becomes 

Iy)pU ........................ (2.7). 
the non-spherical mold, we treat 

homoskedasticity as the restriction under consideration. Thus, 

in this context, the null and the alternative hypotheses refer 

to homoskedasticity and heteroskedasticity respectively. With 

this view the generalized pretest estimator can be written(using 

the principle underlying the Bayesian pretest estimator) as: 

B* = P(Ho lY)/3OLS + P(H, ly)pZSAE ........................ (2.8). 
where ~(H,ly) = 1 - P(Ho)y), and therefore (2.8) becomes 
B* = P(H,~Y)B OLs + ( 1  - P ( H , ~ ~ ) ~ ~ S A E  ................. (2.9. 

Notice that both the Bayesian and the generalized pretest 

estimators are different from the traditional pretest estimator 

in that they are continuous functions of the data[ Judge et 

a1,(1985) pp 117 - 118 1. 



CHAPTER I 1 1  

THE THEORETICAL MODEL FORMULATION 

3.  I .  INTRODUCTION 

The purpose of this thesis is to develop a weighted average 

estimator which is comparable to the traditional pretest 

estimators. This estimator is a linear combination of the OLS 

and the 2SAE estimators. Unlike the traditional pretest 

estimators, the weighted average estimator does not lead to a 

dichotomous choice between the estimators used in the linear 

convex combination. In this respect, it is like the Stein-Rule 

estimator which structures a weighted average estimation 

procedure with the weights as a continuous function of the 

relevant test statistic. 

Suppose that the model under consideration is of the form: 

Y = xp + E ............... r . . . . . . . . . . . . . . . . . . .  ......... (3.1). 
where Y is (N x 1 )  column vector and so is €(the error term, e ,  

has mean zero and is suspected of being heteroskedastic). 

X(fixed in repeated samples) is (N x K) and P is (K x 1). 

Now, consider the problem of choosing between the OLS and 

the 2SAE estimators as far as model(3.1) above is concerned. In 

the econometrics literature, many researchers using regression 

analysis begin their estimation procedures with some hypothesis 

testing. If uncertain about the nature of the available data(in 

this case about the presence or absence of heteroskedasticity), 

the researcher may test for the presence of heteroskedasticity. 



Based upon the outcome of the above pretesting procedure the 

usual pretest estimator is written as a weighted average of the 

OLS estimator and the 2SAE. The mathematical formulation of this 

estimator is specified in equation(l.1) of chapter 1. Depending 

on the outcome of the pretest the choice made by the pretest 

estimator between the OLS and the 2SAE estimators is 

dichotomous. 

3. 2. THE FIRST FORMULATION 

To circumvent the dichotomous choice between these two 

combined estimators, a generalized pretest estimating 

technique(G~~1 is proposed from which the above mentioned 

dichotomous pretest procedure could be perceived as a special 

case. Recall that the Bayesian pretest estimator linearly 

combines the unrestricted and the restricted least squares 

estimators by using the posterior odds in favour of the null 

hypothesis as the weighting system. Casting the problem in the 

non-spherical error mold and exploiting the Bayesian view and 

the Stein-Rule estimation principle, the development of the 

generalized pretest estimator is a two-step procedure. These 

steps include: 

(1). Utilize the sample data to determine(in an objective 

fashion) the subjective probability(@) that the nature of 

heteroskedasticity is such that the ordinary least squares 

estimator dominates(has smailer relative mean square error) the 

2SAE. 

( 2 ) .  Use this probability(@) as the weighting scheme to combine 



the ordinary least squares estimator and the 2SAE into the 

generalized pretest estimator as: 

Note that the motivation for doing this comes from the Bayesian 

view outlined earlier in chapter two. 

3 .  3 .  THE SECOND FORMULATION 

The second development is also a two-step procedure. These steps 

include: 

(1). Based upon a pretesting procedure utilizing the sample data 

at hand, determine (in an objective fashion) the subjective 

probability(#) that the nature of heteroskedasticity is such 

that the ordinary least squares estimator dominates the 2SAE. 

(2)Calculate the generalized pretest estimator as: 

where X is chosen to minimize the subjective(based on # from 

above) expectation of the risk of the 'smoothed' pretest 

estimator, P(GPE). 

That is, 

= - mintrE~(GpE) 4trv(GPE)lse + ( 1  #)trv(GPE)l rise....... (3.4). * 

where se and nse imply spherical and nonspherical error real 

worlds respectively. 

The value of X is determined as follows. Suppose that , the 

variance-covariance matrix of the error vector is known. Then in 





combining (3.3) through (3.71, we obtain, 

V(GPE) l s e  = x(~-X)U~(X~ X I -  

+ ( I - X ) ~ ~ ~  (X' 0-' x)-' X' S2 - 2  X (X' 0-I XI-' ......... (3.12). 

similarly, by combining (3.8) through (3.10)~ we have, 

Substituting(3.12) and (3.13) into equation (3.41, choose X to 

minimize the trace of the subjective expectation of the variance 

of the generalized pretest estimator(GPE). That is , 

That is, 

$2 - 2  X (X' 0-I X I - I  ] 

+(I-@)tr[2X02(x' x)-' X' S~X(X' x)-l 

............... -2X02 (x' S2-' X I - '  ]=O.. (3.15). 



expanding and collecting terms together, it turns out that, 

Therefore, 

and hence dividing both numerator and the denominator by the 

numerator yields, 

where, 

A 

Use this value of A ,  evaluated at 0 = 0, to operationalize 

the (GPE)  as defined in equation 3.3 above. 



B 3. 4. OBSERVATION 

Note that if the procedure of the traditional pretest 

estimation is followed, the implication o'f the above derivations 

is that: 

(a) If # = 1, it implies that A = 1; choose the OLS estimator. 

(b) If # = 0, it implies that X = 1 0; choose the 2SAE 

estimator. 

However, this dichotomous choice is of little interest; the 

value of (which in itself depends on the relevant test 

statistic) however small it is, will seldom be set equal to 

zero. 

3.5. THE IMPORTANCE AND THE ROLE OF #. 

To calculate the pretest estimator the researcher first 

performs a pretest on the sample information at hand. If the 

researcher subjectively selects # equal to zero or one on the 

basis of his pretests, then this implies a corresponding choice 

of A of one or zero respectively. Since the critical value of 

the pretest is chosen subjectively, this selection is 

subjective. In this sense, the researcher is implicitly choosing 

the weights as one and zero on the basis of his personal belief 

( 9 )  as affected by the outcome of the pretest. 

Based upon Jeffreys' rule for a theory of inductive 

inference 'we do accept inductive inference in some sense; we 

have a certain amount of confidence(#) that it will be right in 

any particular case, though this confidence does not amount to 



logical certainty' [Zellner, 1971, pp 81. Yet, unfortunately, 

this(certainty) is what most researchers assert when they go 

through pretesting procedures. 

If the researcher is not restricted to a zero-one choice for 

4, the corresponding choice of X is no longer dichotomous; it is 

a continuous function of 4 (his subjective probability). This 

way of viewing the pretest procedure suggests a generalization 

based on using the pretest to produce a value of 4 which is not 

restricted to the values of one or zero. 

The resulting estimating formula, referred to as the 

generalized pre.test estimator (GPE), is one in which the 

weights, X and 4 are continuous functions of the pretest 

statistic and this this is in general respect similar to the 

Stein estimator. This similarity to the Stein estimator raises 

the hope that its sampling properties may be preferable to those 

of the traditional pretest estimators. One aim of this thesis is 

to investigate this by means of a Monte Carlo study. 

Note that the introduction of the subjective probability(4) 

into the analysis is crucial, since this is what circumvents the 

dichotomy inherent in traditional pretesting procedures. Since 4 

is calculated as an objective function of the pretest statistic, 

this procedure is consistent with standard practice in classical 

statistics, in spite of having a Bayesian flavour. The analysis 

is not really a Bayesian one. All it does is to employ a 

Bayesian-like justification for structuring the generalized 



viewed as an extension or generalization of the usual pretest 
$ 

methodology. 

3.6. COMPUTING PHI FROM THE DENSITY FUNCTION(THE BIVARIANCE 

CASE) 

Since we cannot calculate the generalized pretest estimator 

without a means of estimating the value of 4, the development of 

a procedure for calculating 4 is required. The probability(4) 

that the degree of heteroskedasticity is such that the ordinary 

least squares estimator outperforms the 2SAE is computed as the 

area under the posterior distribution of gamma in a specified 

range of gamma values. Gamma(y), it will be recalled, is the 

ratio 0 1 2 / 0 2 2  where u , ~  and 0 2 2  are the true error variances. 

The procedure is carefully explained below. 

To operationalize the generalized pretest estimator and 

hence produce a' smoothed' version of the traditional pretest 

estimator, we must first recall that ~aylor(1977, 1978)~ 

~reenberg(1980)~ Ohtani and ~oyoda(l980), ~andy(1984) have shown 

that the ordinary least squares estimator is not only superior 

to the 2SAE when 7 = 1 ,  but also over some range of gammas quite 

close to one. In other words, in the neighbourhood of yl 5 y 5 

yu, the ordinary least squares estimator is superior to the 

2SAE. Although the generalized least squares estimator dominates 

the ordinary least squares estimator, its estimated 

version(2SAE) does not. 



Second, this leads us to the notion that the point null 

hypothesis that y = 1 should be respecified as a composite null 

hypothesis. That is, H, : yl sy 5 7,. Thus to estimate 4 we must 

devise a technique to calculate the probability (4) that y lies 

in the specified range. 

In developing these ideas further, we need to have some 

information about the limiting values of gamma(i.e., yl and 7,). 

We speculate that perfect knowledge of the critical values of 

gamma is neither important nor crucial to our development, 

implying that approximate values for these critical values is 

sufficient for smoothing the pretest estimator. This speculation 

is based on the belief that the improved mean square error 

property of the generalized pretest estimator is due to its 

smoothing of the traditional pretest estimator; its success 

stems from the principle of the Stein estimator. 

The points of integration, yl and yU are taken from the 

table constructed by ~aylor(1977, pp 505). This table gives 

conservative lower and upper gamma values that define the region 

within which the ordinary least squares estimator outperforms 

the estimated generalized least squares estimator(2~~~). The 

table is computed giving the limiting gamma values for the 

degrees of freedom 'for cases when N, = N,. ~aylor( 1978, pp 669 - 

671) further showed that these values from the table are good 

approximations to the true values of the lower and upper values 

of gamma. We, therefore, make use of these values for the Monte 

Carlo experiments in this thesis. 



~ellner(l971, pp 107), using an ignorance prior computed the 

posterior density function(distribution) of gamma. This 

posterior distribution of gamma is written as: 

where C is the constant of proportionality(or a normalizing 

constant), N 1  and N2 are the sizes of the two subsamples, K is 

th,e number of independent variables, H 1  = X I 1  Xl+yX2' X2 and 

H 2  = X I 1  Y 1  + rX2' Y2. 

With this relevant information, the probability($) that the 

nature of heteroskedasticity is such that the ordinary least 

squares estimator outperforms the 2SAE is, therefore, computed 

as the area under the above specified density function between 

the lower and upper gamma values through univariate numerical 

integration techniques. Making use of this probability as the 

weighting system, the two versions of the. generalized pretest 

estimator are calculated as specified in equations (3.2) and 

(3.3) above. Note that the probability($) is a continuous 

function of the available data and hence the generalized pretest 

estimator is a continuous function of the data. It is hoped that 

its non-dichotomous nature will make it a superior pretest 

estimator. Its risk improvement upon the traditional pretest 

estimator is due to the fact that the weighting system is a 

continuous rather than a discontinuous function of the sample 



data. 

3. 7. COMPUTING PHI FROM THE DENSITY FUNCTION(THE MULTIVARIANCE 

CASE) 

The discussion above refers exclusively to what we have 

called the bivariance case, in which the variance of the error 

term takes one of two values. We examine now a variant to which 

we refer as the multivariance case, in which the variances of 

all error terms are different. 

Suppose that the functional form of heteroskedasticity(for 

the multivariance case) is known to be: 

In this case , Ho: 6 = O(homoskedasticity) and the alternative 

is HI: 6 # O(heteroskedasticity). 

The ordinary least squares estimator is superior to the 2SAE 

over some range of 6 values close to zero. In the region between 

the lower and the upper delta(&,) values, the risk of 

the ordinary least squares estimator is smaller than that of the 

2SAE. The above point null hypothesis is replaced by a composite 

null hypothesis, namely the range of delta values between 61 and 

6,. In this way, the probability(@) that the null hypothesis is 

true can be calculated as the area under the posterior density 

function of delta between 61 and 6,. 



A common estimating technique used for calculating 6 is to 

regress the logarithm of the squared residuals(using the 

residuals from the ordinary least squares regression on the 

original data) on an intercept and the logarithm of the 

explanatory variable X (i.e.,lnUt2 =lnK+61nXt+Vt.).' A problem 

with this estimator is that the resulting error term from this 

regression has non-zero mean and is both heteroskedastic and 

autocorrelated. However, if the et are normally distributed and 
A 

if et converges in distribution to et, then, asymptotically, the 

Vt will be independent with mean and variance given by 

~arvey(1976)' [~udge et a1(1985), pp 44011. Since the efficiency 

of the parameter estimates from the model depends on the nature 

of the estimators of the error variances, a great deal of effort 

has been put into developing techniques that are used to 

estimate the heteroskedastic variances in linear models. Among 

the intensive researches in this area are ~ozari(1984)~ Horn, 

Horn and Duncan(1975), Chew(1970), Hartley, Rao and 

~iefer(1969)~ ~uncan(1966)~  ande el ( 1 964) , Duncan and 

~arroll(1962). 

In the estimation of the heteroskedastic error model, the 

selection of the heteroskedastic error structure has been found 

to be of little importance; the choice of the error structure 

can be undertaken on the basis of estimation convenience. 

Surekha and Griffiths(l984) observed that the efficiency of the 

2SAE for 0 rests more on the choice of estimator and sample size 

than it does on specification of the correct variance structure. 



Judge et al(1985, pp 455) concluded that 'in summary, a choice 

between variance structures such as ot2=Zt'a , ot2= ( z ~ ~ u ) ~ ,  and 

ot2 = exp(Zt'u) is not likely to be very important providing 

estimators with poor properties are avoided'. Note that ztl = [I 

Taking a Bayesian view, the OLS estimation of 6 described 
A 

above produces a posterior distribution for 6 centred at 6 and 

with variance given by ~ar(6) = the lower right hand element of 

4.9348[Zztzt1 ]-I [ Harvey(1976), pp 461 - 4661 taking the form of 
a t-distribution. In our analysis, the probability(#) has been 

calculated by using Fortran NAG routines to perform the 
A 

appropriate integral of this density function of 6. In 

performing this integration, the critical values of S1 and 6U 

must be known. For the same reasons as given above for the 

bivariance case, we speculate that approximate values for 61 - and 
6U will suffice. To obtain these approximate values, a series of 

mini, Monte Carlo studies were performed to compare the risk 

functions of both the ordinary least squares estimator and the 

2SAE. In performing these mini Monte Carlo experiments, 

different values of 6 quite close to zero were used in 

generating the heteroskedastic data. To this data, we applied 

both the OLS estimator and the 2SAE and calculated their 

relative mean square errors. By so doing we obtained approximate 

values of 6 that define the parameter space within which the OLS 

estimator dominates the 2SAE. Note that in theory this can be 

done in an actual study so long as the functional form of 



het.eroskedasticity is assumed. Two delta values (bl and bU) were 

obtained to represent the boundaries of the region beyond which 

the estimated generalized least squares estimator(2SAE) begins 

to outperform(using the MSE criterion) the unrestricted least 

squares estimator. 

3. 8. COMPUTING PHI USING THE POSTERIOR ODDS RATIO(THE 

MULTIVARIANCE CASE) 

A second technique suggested for computing 4 in the 

multivariance case is a suggestion of villegas(1986) for 

calculating the posterior odds ratio in the context of a point 

null hypothesis versus a composite alternative hypothesis. As 

noted earlier, for the case of a point null hypothesis versus a 

composite alternative hypothesis, the Bayesian technique 

requires an informative prior for the calculation of the 

posterior odds. This requirement renders the use of the Bayesian 

approach unpalatable to non-Bayesians; an 'objective' subjective 

probability for the null hypothesis cannot be calculated. 

~illegas(1986) has suggested a way around this dilemma. He 

proposes truncating the diffuse prior at levels above which and 

below which everyone can agree that there is zero probability 

that a parameter would lie. He notes, for example, that the mean 

height of humans must lie above zgro and below that height at 

which the oxygen content of air can no longer sustain life. This 

truncation of the diffuse prior allows him to develop the 

following formula for the posterior odds of a point null 



hypothesis versus a composite alternative hypothesis in the 

regression context. Using the results from the OLS regression of 

the logarithm of the squared residuals on an intercept and the 

logarithm of the explanatory variables, compute the probability 

that 6 is not equal to zero as: 

where 

A = ( m ~ n ) o ~ ~ / u ~ + 2 1 n m ~ ~ / 2 r +  21x1 r......................... (3.21). 

and 

m = number of replications, 

n = sample size, 

K = arbitrary number(set equal to lo), where K/2 is the number 

of standard deviations from the mean that it is felt reasonable 

to truancate the diffuse prior, 

02 = 4.9348(by ~arvey's(1976) calculation), 
-. 

o 1 2  = SSE/n from the OLS regression of lne2 on a constant and 
A 

lnX, where e is the residual from the OLS regression of Y on X 
A A 

and a constant, 022 = C(ei2 - ~ ) ~ / n ,  from the OLS regression of 
A 

lne on a constant. 



CHAPTER IV 

STRUCTURING THE MONTE CARL0 EXPERIMENTS 

4. 1 .  INTRODUCTION 

In this chapter, we outline the strategy and structure of 

the experimental design for the experiments to discover the 

sampling properties of the generalized pretest estimator(GPE) 

and other traditional estimators. The design is constructed in 

such a manner so as to be comparable to previous Monte Carlo 

studies [~oldfeld and Quandt(1974); Breusch and ~agan(1979); 

The estimators considered are those discussed at the end of 

this chapter. The first three estimators(the ordinary least 

squares estimator, the 2SAE and the traditional pretest 

estimators) have been included in the Monte Carlo study because 

they cofrespond to what researchers most often employ. 

4.2. THE W D E L  SPECIFICATION FOR HETEROSKEDASTICITY 

In keeping with most Monte Carlo Studies examining 

heteroskedasticity , we assume the data to be generated by a 

single explanatory variable such that, 

Yt = P I  + P2xt + Up................................ ..(4.1). 

- 
where Ut ~ ( 0 ,  ot2) ...................................( 4.2). 

With this model specification and the distribution of the error 

term, two different types of heteroskedasticity structures were 



considered, mainly the bivariance and the multivariance cases. 

In the sampling experiments, with the linear model(4.1) as 

specified above, we began with a sample size of 20 and then 

considered the sample size of 40 and 80(by replication). A 

single explanatory variable was used for simplicity-and 

p l  = 0.025 and f12 = 0.0025. The choice of the coefficients D l  

and P2 is irrelevant since the joint distribution of the Ut does 

not involve them[~reusch and Pagan(1979). Moreover, for the 

bivariance case the X values for the two halves of the sample 

are generated so that they are identical. This is in line with 

Ohtani and Toyoda(l980). 

For the bivariance case, the distribution of the error term 

for each half of the sample is given as, 

For the multivariance case, the distribution of the error 

term Ut is such that, 

ot2 = axt6. .......................................... (4.6). 
where 6 = 0 corresponds to homoskedasticity. 

The experiments are repeated for several values of 6 between 

minus two(-2) and two(2). 



The log-normal distribution is used to generate the 

regressor values [Buse,(1984)] . The contention is that 'by and 
large heteroskedasticity is a cross-section phenomenon and in 

this context the data are almost invariably skewed. The uniform 

distribution does not, therefore, seem particularly 

relevant1[ Buse(1984), pp 207-2081. See also Goldfeld and 

~uandt(1972)~ and Harvey and ~hillips(1974) 

The values of the regressor are identical in repeated 

samples and are drawn from the log-normal distribution with mean 

3 and variance 1. Three different sample sizes of 20, 40 and 80 

are used and the sample sizes of 40 and 80 are obtained from the 

sample size 20 by replication. Six hundred different samples for 

each sample size were generated and used in all the experiments. 

~ovell(1983) observed that 25 repli-cations gave basically 

identical results as 50. In view of this, it seems that the 

number of replications is not the crucial issue in the sampling 

experiments; the choice of 600 as the number of replications in 

the current study is arbitrary, but judging by the arbitrary 

number chosen by others for their Monte Carlo studies, our 

choice is unexceptionable. All comparisons are carried out using 

the relative mean square errors of all competing 

estimators(re1ative to mean square error of the GLS). 
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4. 3. THE PROCEDURE 

In order to operationalize the Monte Carlo experiments 

described above, Fortran programmes have been written. The 

subroutines such as AVGE2, VRANC2, TRANSG, CLUHAG, TRANSI, 

 TRANS^ and TRANS3 can easily be derived from their corresponding 

counterparts and, therefore, have not been included in the 

appendices. In generating the variables used for all 

experiments, NAG Fortran Library Routines G05DEFIG05CBF and 

G05DDF are used. For the calculation of the OLS and the EGLS 

estimates, other NAG Fortran Library Routines such as 

F01CKFIF01AAF,and FO1CDF are utilized. Other relevant and 

necessary subroutines have been written to implement the Monte 

Carlo experiments. The detailed Fortran programmes for the Monte 

Carlo study in this thesis are provided in appendix A and B. 

4. 4. AN ARRAY OF COMPETING ESTIMATORS 

The general mathematical form of the generalized pr,etest 

estimator is given as: 

~(GPE) = @S+ ( 1  - 002sAE ............................ ( 4 . 7 ) .  

where 

P(GPE) = the generalized(smoothed) pretest estimator. 

poLS = the ordinary least squares estimator. 

/32SAE = The Two-Stage Aitken estimator. 

For the traditional pretest estimator 5 = I[o,,)(u), an 

indicator function taking on the value of one if U, a test 

statistic, falls in the range subscripted and zero otherwise. In 



what follows, the various versions of the generalized pretest 

estimator and all other competing estimators considered here are 

described. The descriptions are separated into two categories: 

the bivariance and the multivariance cases. 

4. 5. THE BIVARIANCE CASE. 

The first of these structures we refer to as the bivariance 

case, in which the data are broken into two sub-sections leading 

to the specification of the general linear regression model as: 

where the notation is traditional. 
N ........................................ U 1  N(O, o 1 2 )  (4.10). 

C1 

U2 N O )  0 2  2)........................... ............. (4.11). 
with o 1 2  # 022 and o12/025 = y .  

The estimators compared are: 

( 1 ) .  OLS :- The ordinary least squares estimator. 

(2). 2SAE :- The OLS estimator is used to compute the variance 

of the error term for each half of the sample data as S 1 2  and 

S22. TO obtain S 1 2  and S22, two ordinary least squares 

regressions are run on the two halves of the data separately. 

From these regressions the residuals from the first and second 

sub-samples are used to compute S 1 2  and S 2 2  respectively. The 



first and the second halves of the data are then transformed by 

dividing both the dependent and the independent variables by the 

square root of S 1 2  and S22, respectively. Finally, the 

application of the OLS estimator to this transformed data 

results in the estimator referred to as the 2SAE. 

( 3 ) .  B P T  :-This is the pretest estimator(combining the OLS 

estimator and the ~SAE) that results from using the Goldfeld and 

Quandt F-test statistic in testing for the presence of 

heteroskedasticity at the 5% significance level. 

( 4 ) .  BPTGB :This estimator is an 'improved' version of BPT, in 

which the pretest tests not for the existence of 

heteroskedasticity, but instead for the existence of 

heteroskedasticity of sufficient magnitude to render the 2SAE 

superior to the OLS estimator. Taylor(1977, pp 505-6) notes that 

the statistic V , S ~ ~ / V , S ~ ~ ~  - F(vlr v2) can be used for this 

purpose, where y takes on the relevant critical values yl and y, 

from the Taylor(1977) table and v, and v2 are the corresponding 

degrees of freedom. If for yU this statistic is less than the 

critical value obtained from the F-tables, and if for 71 the 

inverse of this statistic is greater than the inverse of this 

critical F-value, 3 takes the value of one and BPTGB is 

equivalent to the ordinary least squares estimator, otherwise, 5 

. assumes the value of zero and hence BPTGB is idential to the 

2SAE. 

( 5 ) .  BPTB :-The probability(#) that the degree of 



heteroskedasticity is such that the ordinary least squares 

estimator dominates the 2SAE is computed by integrating 

zellner1s(1971) posterior density function for 7 between the 

relevant critical 7 values taken from Taylor(1977) . Using this 
probability as J ,  the ordinary least squares estimator and the 

2SAE are combined in a non-dichotomous fashion to form this 

'smoothed' pretest estimator. 

( 6 ) .  GPESB :- In the theoretical model formulation in Chapter 

three, a weighting system, A ,  was developed, calculated as a 

function of 4.  Using the value of X as J estimated by using the 

value of 4 from (5) above, GPESB combines the ordinary least 

squares estimator and the 2SAE as another 'smoothed1 version of 

the generalized pretest estimator. 

4. 6. THE MULTIVARIANCE CASE. 

The second heteroskedasticity structure considered in this 

thesis is the one we have referred to as the multivariance case. 

For this case the distribution of the error term is such that 

6 Ut - (0, ot2 and ot2 = uXt ; where 6 = 0 corresponds to 

homoskedasticity. Different values of 6 are used for the 

experiments. 

The estimators compared are: 

( 1 ) .  OLS :- The ordinary least squares estimator. 

A 

( 2 ) .  2SAEM :- In this case, 6 is estimated by regressing the 

logarithm of the squared OLS residual on the logarithm of the 



explanatory variable. Both the dependent and the independent 

variables are transformed by dividing through by the square root 

8 of Xt . The 2SAEM is calculated by dcing an OLS regression on 

the transformed variables. 

( 3 ) .  BPT :- This is the traditional pretest estimator using the 

Goldfeld and Quandt F-test statistic, identical to ( 3 )  for the 

bivariance case(i.e., it selects between the OLS estimator and 

the ~SAE). Note that BPT is included so that we can examine the 

impact of erroneously assuming that the heteroskedasticity is 

bivariate rather than multivariate. 

( 4 ) .  BPTl :- This is the traditional pretest estimator using the 

Goldfeld and Quandt F-test statistic, identical to ( 3 )  for the 

bivariance case, however,' it selects between the OLS estimator 

and the 2SAEM. 

( 5 ) .  BPTT : This is the traditional pretest estimator using the 
A 

usual t-test on the estimated value of 6. 

( 6 ) .  BPTGM :This estimator is an 'improved' version of BPTT, in 

which the pretest(as for BPTGB) tests for the existence of 

heteroskedasticity of sufficient magnitude to render the 2SAEM 

superior to the ordinary least squares estimator. A mini Monte 
A 

Carlo study is used to estimate the relevant values of and 
A 

. 6,) and a t-test is employed to test whether 6 lies between 

these values. If this hypothesis is accepted on the basis of the 

t-test, 3 assumes the value of one and the ordinary least 
A 

squares estimator is used. However, if the test shows that 6 



lies outside this region, 5 takes on the value of zero and the 

2SAEM is used instead. 

A 

( 7 ) .  BPTM :- Assuming that the posterior density of 6 is a 
A 

t-distribution with mean 6 and its variance is given by 

~arveytl976) as 4.9348(ztVzt)-' , the probability that the degree 
of heteroskedasticity is such that the ordinary least squares 

estimator is superior to the 2SAEM is estimated by integrating 
A 

this t-density function for 6 between 61 and 6,. Using this 

probability as 5, the ordinary least squares estimator and the 

2SAEM are linearly combined into the 'smoothed' pretest 

estimator. It is the multivariance counterpart for 

~~~~(bivariance). 

( 8 ) .  GPESM :This version of the generalized pretest estimator is 

the multivariance counterpart for GPESB(bivariance). 5 is 

calculated using the formula for X given earlier, where @ is 

computed from the integration of the density function for 6 as 

described in (6) above. 

(9). BPE :- The probability(@) associated with the null 

hypothesis is calculated via the posterior odds ratio technique 

developed by Villegas(1986). Setting 5 equal to this value, the 

ordinary least squares estimator and the 2SAE are combined to 

form BPE. 

(IO).GPEV :- This is G P E S M ( ~ ~  described in 8 above) caculating X 

by using the @ computed using the posterior odds ratio technique 

of Villegas. 



( 1 1 ) .  BPTBM :- This is the version of the smoothed pretest 

estimator that results when the researcher decides to apply the 

bivariance technique of calculating t#J to the data suspected of 

having multiplicative heteroskedasticity. It is accomplished 

first, by using this technique to calculate the probability($) 

that heteroskedasticity is such that the OLS estimator 

outperforms the 2SAEM. Second, BPTBM linearly combines both the 

OLS estimator and the 2SAEM by using this value of 4. 

Note that the difference between GPESM and GPEV is that 

while GPESM utilizes the $ calculated from the integration of 
A 

the posterior density function for 6 in computig the weighting 

system, X ,  GPEV uses- the ip derived from the method for 

calculating the posterior odds ratio which was developed by 

~illegas(1986). 



CHAPTER V 

COMPARISONS OF RELATIVE MEAN SQUARE ERRORS 

5 . 1 .  THE BIVARIANCE CASE: - 

We begin the analysis of the results with the sample size of 

20. In Table 5.1 the values of the relative mean square errors 

of all competing estimators are presented as a function of the 

variance ratio y(y = o , ~ / o ~ ~ ) .  Consider the characteristics of 

the traditional pretest  estimator(^^^). As evident from Tabhe 

5.1 and Figure 5.1 respectively, as y diverges from one the risk 

function of the traditional pretest estimator(B~~) rises 

continuously for some time, reaches a maximum and then gradually 

declines approaching the risk function of the 2SAE in value. The 

farther y diverges from one, the hypothesis of equal variances 

is rejected more often and hence the pretest estimator selects 

and uses the 2SAE more often than it selects the ordinary least 

squares estimator. In this way, its risk function continues to 

decrease in magnitude, approaching the risk function of the 

2SAE. As y tends towards l(i.e., for y values between 0.70 and 

1.75) the traditional pretest  estimator(^^^) has a smaller 

relative mean square error than the 2SAE. In this region of the 

parameter space, the relative mean square error of BPT is quite 

close to that of the ordinary least squares estimator. The 

. explanation of this phenomenon is that in this region(the region 

between 0.70 and 1.75), the pretest accepts the null hypothesis 

most often and, therefore, selects the ordinary least 



TABLE 5.1 

RELATIVE(TO GLS) USE OF COMPETING ESTIMATORS(~% SL). 

(THE BIVARIANCE CASE:- SAMPLE SIZE - 2 0 ) .  

GAMMA 

0.10 

0.15 

0.35 

0.50 

0.80 

1 .oo 

1.40 

1.50 

2.50 

6.00 

10.0 

15.0 

20.0 

OLS 

3.0769 

2.2382 

1.3147 

1 .I327 

1.0148 

1 .oooo 

1.0251 

1 .O374 

1,2143 

2.0127 

2.9740 

4.1895 

5.4091 

G P E S B  

1.1393 

1.1608 

1.1291 

1 .O862 

1 .O328 

1 .O216 

1 .O322 

1.0388 

1.1335 

1.2158 

1.1813 

1.1778 

1 .I689 

B P T  

1.2562 

1.3391 

1.2100 

1.1596 

1 .O532 

1 .O388 

1 .O432 

1 .O572 

1.1604 

1.3328 

1.2760 

1.2257 

1 .I773 

BPTGB 

1.7569 

1.7505 

1.3279 

1 .I432 

1 .O296 

1 .OOl8 

1 .O232 

1 .O444 

1.2190 

1.5749 

1.8387 

1.8148 

1.7562 

B P T B  

1 .O954 

1.1021 

1 .O856 

1 .O67l 

1.0482 

1 .O453 

1 .O5O9 

1 .O535 

1 .O854 

1.1367 

1.1458 

1.1231 

1.1116 
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FIGURE 5.1: RELATIVE MSE OF COMPETING ESTIMATORS 



squares estimator and uses it to estimate the parameters more 

often than it uses the 2SAE. In this range, BPT dominates the 

2SAE. This finding confirms the conclusions of Taylor(1977, 

1978)~ Greenberg(1980), Toyoda and Ohtani(1980) and ~andy(1984). 

The ordinary least squares estimator attains the smallest 

relative mean square error when y is 1. In this case, since 

there is no heteroskedasticity, the ordinary least squares 

estimator achieves its minimum variance and hence maintains its 

BLUE properties. Above all, it has a smaller relative mean 

square error than all the other competing estimators between y . 

values very close to 0.80 and 1.65. However, the range within 

which it dominates BPTB is smaller, and still smaller for GPESB. 

Even though the ordinary least squares estimator possesses this 

attractive power of retaining its BLUE properties over all the 

other competing estimators for y = 1 its relative mean square 

error becomes verp large either as y tends towards 0 or =. That 

is, as the null hypothesis becomes more and more false(i.e., the 

severity of heteroskedasticity increases), even though it 

maintains its property of unbiasedne~s, its variance estimator 

is no longer efficient. Kennedy(l985), pp 96 - 97 notes that 

'the higher absolute values of the residuals... indicate a 

positive relationship between the error variance and the 

independent variable. With this kind of error pattern, a few 

additional large positive errors near the right ... would tilt 

the OLS regression line considerably. A few additional large 

negative errors would tilt it in the opposite direction 



considerably. In repeated sampling these unusual cases would 

average out, leaving the OLS estimator unbiased, but the 

variation of the OLS regression line around its mean will be 

greater, i.e., the variance of poLS will be greater'. This 

explains why the relative mean square error of the ordinary 

least squares estimator rises continuously as the severity of 

heteroskedasticity increases. It is, therefore, outperformed by 

the 2SAE outside the region of the parameter space defined 

approximately by 0.60 and 1.80. 

The mean square error functions of all the pretest 

estimators(both traditional and smoothed) have the same basic 

shape for the reasons discussed earlier. The level of 

significance is 5% as given earlier in the previous Chapter. 

Note, however, that the smoothed pretest estimators have flatter 

relative mean square error functions than the traditional 

pretest estimator. The various versions of the generalized 

pretest estimator can be viewed as competing alternatives to the 

traditional pretest ,estimator because even though they do not 

outperform the traditional pretest estimator over the whole 

parameter space, they do outperform it over a large portion of 

the parameter space. For y values quite close to one the 

traditional pretest estimator outperforms all the various 

versions of the smoothed pretest estimators with exception of 

GPESB which dominates the traditional pretest estimator over the 

whole parameter space(more will be said about this below). In 

view of this, the choice of estimator for estimation purposes 



depends on one's prior view of the severity of 

heteroskedasticity. If one's prior is concentrated quite close 

to one, then the OLS estimator or the traditional pretest 

estimator would be preferred to the smoothed pretest estimators 

and the 2SAE. 

Greenberg observes that "any a priori information concerning 

y possessed by the researcher may be used to determine which 

estimator has the smallest variance in the range of y considered 

to be reasonable. If a prior distribution for y is available, 

the choice may be based on Bayes' risk of each estimator" 

[~reenberg(l980), pp 18111. This choice of estimator is 

therefore made easier if the researcher has 'good' prior 

information about the magnitude of the variance ratio. For 

example, if the researcher's prior distributuion is concentrated 

in an area close to = 1, then the best choice is the ordinary 

least squares estimator. Similarly, if the prior distribution 

for y places substantial weight outside the approximate interval 

0.50 I y I 2.0, then the 2SAE appears to be the best choice. 

There exist cases in which the researcher possesses prior 

knowledge about higher magnitudes of the variance ratio(?). For 

example, Taylor(1977) states that it is possible to have large y 

values in cross-section data since in this case aggregates of 

. great differences and sizes are under consideration. In these 

situations, it should be expected that the 2SAE would perform 

better than the ordinary least squares estimator and should, 

therefore, be preferred to it[Taylor( l977), pp 504 - 5051. It 



clearly also should be preferred to the smoothed pretest 

estimators. 

The most interesting case occurs when one's prior belief 

concerning the degree of heteroskedasticity is completely 

@ 
i diffuse, presumably the case of most interest to non-Bayesians. 
$ 

In this case the choice of estimator can be based on various 

criteria described as follows. First, as noted in Wallace(1976), 

pp 439, the researcher can consider the overall performance of 

each estimator by comparing the differences between the relative 

mean square error functions of all competing estimators 

integrated over all values of y .  In terms of Figure 5.1 this 

implies choosing that estimator whose relative mean square error 

function has the smallest area under it. Using this criterion, 

Figure 5.1 suggests that the 2SAE is the best choice. Note also 

that it also suggests that the smoothed pretest estimator is 

preferred to the traditional pretest estimator. Second, as also 

noted by Wallace, the comparison of estimators can be undertaken 

by using the 'minimization of the maximum regret' criterion. In 

terms of Figure 5.1 this implies choosing the estimator with the 

smallest maximum height. Once again, Figure 5.1 suggests that 

the 2SAE is the estimator of choice, and that the smoothed 

pretest estimator is superior to the traditional pretest 

estimator. 

It seems reasonable, however, that the prior distribution on 

y is not diffuse. Wallace, for example, notes that 'such priors 

may be too conservative in the direction of large B(which is 



denoted as y in this thesis), since the very fact that the 

investigator is interested in a particular set of restrictions 

presupposes that he must have a prior belief that 8 is small, 

although this is not always the case'[~allace T. D.(1977), pp 

4381. This would tend to make the choice between the smoothed 

pretest estirnator(~~TB1 and the 2SAE less obvious. Clearly the 

smoothed pretest estimator is an attractive alternative to the 

2SAE and seems under reasonable circumstances to be more 

preferrable to the traditional pretest estimator. Note that 0 is 

the variance ratio and is denoted as y in this thesis. 

It is interesting to note that at the 5% significance level, 

GPESB dominates the traditional pretest estimator completely 

over the whole parameter space for the sample size 20. This 

dominance does not hold for the sample sizes 40 and 80. This 

suggests that for small sample sizes the traditional pretest 

estimator should never be employed when significance tests are 

performed at the 5% level. As the sGple size becomes larger, 

the traditional pretest estimator(BPT1 improves because with a 

larger sample size a 'better' estimate of y must outweigh the 

impact of the improvement for GPESB in estimating X (and y )  as 

the sample size grows. This is a surprising result. 

Table 5.2 and Figure 5.1B show the relative mean square 

. errors and their corresponding graphs for all competing 

estimators when the F-test was performed using 1% as the 

significance level. As evident from these results, the relative 

mean square errors of the traditional pretest estimator(BPT), 



and its modified version(~PTGB1 are larger for high values of y 

than they were when the 5% significance level was used, for low 

values of y, as illustrated in Figure 5.1B. This result is 

exactly what would have been expected, following the logic of 

Toyoda and Wallace(1976). Thus, as the level of significance 

tends towards zero the risk function of the traditional pretest 

estimator tends towards that of the restricted least squares 

estimator. On the other hand, as the chosen level of 

significance tends towards one, the risk function of this 

estimator gradually approaches that of the unrestricted(0LS) 

least squares estimator. It must be stated clearly that at the 

1 %  significance level, GPESB no longer domonates the traditional 

pretest estimator completely. Note, however, that the level of 

significance does not affect the performance of any of the other 

competing estimators, in particular the 'smoothed1 pretest 

estimator. This could be viewed as an advantage of the smoothed 

pretest estimator relative to the traditional pretest estimator, 

since a researcher would not have the additional dilemma of 

arbitrarily choosing an 'optimal1 significance level. 



TABLE 5.2 

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(I% SL). 

(THE BIVARIANCE CASE:- SAMPLE SIZE - 20). 

GAMMA 

0.10 

0.15 

0.35 

0.50 

0.80 

1 .oo 

1.40 

1.50 

2.50 

6.00 

10.0 

15.0. 

20.0 

O L S  

3.0769 

2.2382 

1.3147 

1 .I327 

1 .Ol48 

1 .oooo 

1 .O25l 

1 .O374 

1.2143 

2.0127 

2.9740 

4.1895 

5.4091 

G P E S B  

1 .I393 

1 .I608 

1 .I291 

1 .O862 

1 .O328 

1 .O216 

1 .O322 

1 .O388 

1 .I335 

1.2158 

1 .I813 

1 .I778 

1 .I689 

B P T  

1.3041 

1.5891 

1.3189 

1.1442 

1 .O297 

1 .Ol84 

1 .O382 

1 .O5O5 

1.1965 

1.5144 

1.6594 

1.6066 

1.4488 

BPTGB 

2.3641 

2.0957 

1.3173 

1 .I408 

1 .Ol6O 

1 .OO37 

1 .O266 

1.0389 

1.2162 

1 .7O97 

2.3715 

2.4973 

2.5236 

B P T B  

1 .O954 

1 .I021 

1 .O856 

1 .O67l 

1 .O482 

1 .O453 

1 .O5O9 

1.0535 

1 .O854 

1.1367 

1 .I458 

1.1231 

1.1116 
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(Logarithmic sca le )  

FIGURE 5. l b ;  RELATIVE S E  OF COWPETING ESTIMATORS 



Table 5.3 contains the relative mean square errors of all 

competing estimators(for the sample size of 40). These are 

stated as functions of the variance ratio. Figure 5.2 portrays 

the graphs of the relative mean square errors of these 

estimators. The shapes and the relationships among these 

estimators are similar to those discussed above for the sample 

size of 20 and, therefore, suggest no changes in our 

conclusions. Note that in general the relative mean square 

errors of the competing estimators are smaller than those they 

attained for the sample size of 20. This means that as the 

sample size increases, the efficiency of each competing 

estimator improves, This makes sense because as the sample size . 

increases, the variance-covariance estimator of the 2SAE becomes 

as efficient as that of the GLS estimator. 



TABLE 5.3 

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(~% SL). 

(THE BIVARIANCE CASE:- SAMPLE SIZE - 4 0 ) .  

GAMMA 

0.10 

0.15 

0.35 

0.50 

0.80 

1 .oo 

1.40 

1.50 

2.50 

5.00 

10.0 

15.0. 

20.0 

OLS 

2.9205 

2.1353 

1.2752 

1 .I090 

1 .OO77 

1 .oooo 

1 .O36O 

1 .O5O6 

1.2477 

2.1063 

3.1342 

4.4301 

5.7310 

GPESB 

1 .O52O 

1 .O728 

1.1286 

1 .O966 

1 .O367 

1 .027-0 

1 .O477 

1 .O569 

1.1501 

1.1258 

1 .O5O9 

1 .O335 

1 .O338 

BPT 

1 .O686 

1 .O8O2 

1.1710 

1.1160 

1 .O5ll 

1 .O487 

1 .O59O 

1 .O687 

1.1841 

1 .I364 

1 .O5O5 

1 .O393 

1 .O323 

BPTGB 

1.1180 

1.2061 

1.2458 

1.1248 

1.0075 

1 .oooo 

1.0513 

1 .O647 

1.2279 

1.1336 

1.2057 

1 .O427 

1.0323 

BPTB 

1 .O396 

1 .O566 

1 .O873 

1 .O83O 

1 .O6ll 

1 .O56l 

1 .O645 

1 .O682 

1 .O989 

1 .O864 

1 .O524 

1 .O4O9 

1 .O329 



RELATIVE 
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SQUARE 
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1.33 

1.25 

1.12 

1.08 

1.0 
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Bivariance Case 

\ 
\ 
1 
\ 

BPTB \ 

FIGURE 5.2: RELATIVE WEAN SQUARE ERRORS OF C O H P f i I N G  ESTIMATORS 



r- 

For the sample size of 40 a corresponding pretest was 

carried out at 1 %  significance level. The results are specified 

in Table 5.4 and the relative mean square error functions are 

portrayed in Figure 5.2B. Since the conclusions arrived at for 

the sample size of 20(at the 1 %  signicance level) do not differ 

from the results obtained for the sample size of 40, they do not 

need any further elaboration. 



r RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(I% SL). 

(THE BIVARIANCE CASE:- SAMPLE SIZE - 4 0 ) .  

GAMMA OLS 2SAE GPESB BPT BPTGB BPTB 



RELATIVE 
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SQUARE 
ERROR 

Sample S i z e  = 4 0  
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\ 

BPTB \ 

F I G U R E  5.2b: ~ T I V E  ( ~ n  SQU& ERRORS OF COIQLTING ESTIMATORS 



Table 5.5 and Figure 5.3 contain the estimates of the 

relative mean square errors and the graphs of these functions of 

all competing estimators under consideration for the sample size 

of 80, respectively. These results confirm the results for the 

sample sizes of 20 and 40. Though the corresponding graph has 

been drawn for the sample size of 80, due to the fact that most 

of these relative MSE estimates for all estimators are very 

close to each other, the vertical scale was slightly modified. 

Even though the scale used in drawing the graphs for the sample 

size of 80 is different from that used for the sample sizes of 

20 and 40, the differences in the relative performance of all 

competing estimators stand out conspicuously. 



TABLE 5.5 

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(~% SL). 

(THE BIVARIANCE CASE:- SAMPLE SIZE - 8 0 ) .  

GAMMA OLS 2SAE GPESB BPT BPTGB BPTB 

0.10 3.0623 1 .0098 1 .0244 1 .0098 1 .0098 1.0069 

0.15 2.2290 1.0134 1.0181 1.0134 1 .Oi34 1 .0140 

0.35 1.31 16 1.0211 1.0328 1.0378 1.0211 1.0252 
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.FIGURE 5.3: RELATIVE M E  OF COMPETING ESTIMATORS 



The results for the pretests conducted at the 1% significance 

level for the sample size of 80 are presented in Table 5.6 and 

~igure 5.3B. Our conclusions are the same as for the sample 

sizes of 20 and 40. 

TABLE 5.6 

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(~% SL). 

(THE BIVARIANCE CASE:- SAMPLE SIZE - 80). 

GAMMA 

0.10 

0.15 

0.35 

0.50 

0.80 

1 .oo 

1.40 

1.50 

2.50- 

5.00 

10.0 

15.0 

20.0 

OLS 

3.0623 

2.2290 

1.31 16 

1 .I309 

1 .Ol43 

1 .oooo 

1 .O259 

1.0384 

1.2168 

1.7817 

2.988 1 

4.21 17 

5.4396 

GPESB 

1 .O244 

1 .Ol8l 

1 .O328 

1 .O23O 

1 .OOO9 

1 .oooo 

1 .OO6l 

1.0090 

1.1236 

0.9382 

0.9993 

0.9992 

1.6701 

BPT 

1,0098 

1 .Ol34 

I .  0897 

1 .lo28 

1 .OO65 

1 .OOl8 

1 .O355 

1 .O456 

1 .O938 

1 .OO46 

1.001 1 

1.0010 

1 .OOO8 

BPTGB 

1 .OO98 

1 .Ol34 

1.021 1 

1.0232 

1.0235 

1 .O226 

1.0201 

1 .Ol94 

1 .Ol63 

1 .OO6O 

1.001 1 

7.0010 

1 .OOO8 

BPTB 

1 .OO69 

1 .Ol4O 

1 .O252 

1 .O216 

1 .OO79 

1 .OOl8 

1 .OO36 

1 .OO52 

1 .O32l 

1 .oooo 

1 .OOO6 

0.9995 

1 .OO76 
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In conclusion, Table 5.7 shows the minimum and maximum 

variance ratios(yl and 7,) that define the boundaries of the 

parameter space over which the ordinary least squares estimator 

performs better than the 2SAE as observed from the present Monte 

Carlo study results. These values are obtained from Tables 5.1, 

5.2 and 5.3 respectively. 

TABLE 5.7 

THE LIMITING VALUES OF THE VARIANCE RATIO. 

It is interesting to notice that these values are very close 

to the values obtained from ~aylor(1977)~ shown in brackets in 

Table 5.7 above. 

Recall that BPTGB was developed by using an F-test suggested 

by Taylor(1977). This pretest estimator, even though 

dichotomous, was expected to be an 'improved' version of the 

traditional pretest estimator. Even though it does not 

outperform the traditional pretest estimator over the whole 



parameter space its performance is comparable to that of BPT. 

Its relative mean square errors have been specitied in all the 

tables above. 

The following Table 5.8 contains the mean values and 

variances of phi with their corresponding gamma values. The 

characteristics of these # values are what we expect 

theoretically. That is, at y values close and equal to 1 ,  we 

expect larger 9 values than when y values are very far away from 

1. This is so because at y value of l(homoskedasticity), a high 

weight should be assigned to the null hypothesis. However, as we 

move away from homoskedasticity to towards higher degrees of 

heteroskedasticity, the null hypothesis becomes more false and 

hence the probability(#) associated with it becomes smaller and 

smaller. 

Notice that at y equal to 1 ,  the # estimator places 

approximately equal weights on both the null and the alternative 

hypotheses. This phenomenon is one reason why the risk functions 

of the various versions of the smoothed pretest estimator are 

not as close to that of the ordinary least squares estimator as 

we expected when y is 1. At the other extreme, the # estimator 

continuously places small positive weights on the ordinary least 

squares estimator as evident from Table 5.8. These # values help 

us give some explanation to the performance and the risk 

characteristics of the various versions of the smoothed pretest 

estimator. 



TABLE 5.8 

THE MEAN AND VARIANCE OF PHI ( $ ) .  

(FOR ALL SAMPLE SIZES(BIVARIANCE CASE)). 

GAMMA 

0.10 

0.15 

0.35 

0.50 

0.80 

1 .oo  

1.40 

1.50 

2.50 

5 .00  

10.00 

N = 20 

MEAN 

0.0830 

0.1320 

0.3273 

0 .4174 

0.4974 

0.5106 

0 .4958 

0 .4879 

0 .3895 

0 .2170 

0.0958 

N = 40 

VAR MEAN 

0.0076 0 .0347 

0.0197 0 .0276 

0.0493 0 .2006 

0.0462 0 .2547 

0.0324 0 .5131 

0.0291 0 .5323 

0.0322 0 .4758 

0.0337 0 .4538 

0 .0436 0 .2479 

0.0310 0.0532 

0.0121 0 .0049  

N = 8 0  

VAR MEAN 

0.0025 0 .0046 

0 .0034 0.0004 

0.0383 0.0403 

0 .0514 0.1777 

0 .0364 0.4701 

0.0297 0 ,5581 

0 .0386 0 .4974 

0.0420 0.4587 

0 .0466 0.3852 

0.0094 0 .0135 

0.0002 0 .0006 

VAR 

0.0024 

0 .0025 

0 .0045 

0.0031 

0.0257 

0.0223 

0.0218 

0 .0166 

0.0278 

0.0033 

0 .0195 



5 .  2 .  THE MULTIVARIANCE CASE: - 

Table 5.9 contains the relative mean square errors of all 

competing estimators for the sample size of 20. As expected 

(theoretically), the OLS estimator retains its BLUE properties 

when 6 = O(homoskedasticity). However, as the degree of 

heteroskedasticity increases, it loses this attractive property 

and performs very poorly as compared to all the other competing 

estimators. That is, its relative mean square error increases 

continuously since it suffers from larger and larger variances. 

This observation confirms the results of the OLS estimator as 

described above for the bivariance case. The relative mean 

square error functions of all competing estimators are shown in 

Figure 5.4. 

Unfortunately, the behaviour of the relative mean square 

error function of the 2SAEM is not as expected theoretically. We 

expected that as the degree of heteroskedasticity increases, the 

relative mean square error of the 2SAEM would take a form 

similar to the form it takes in the bivariance case. But the 

Monte Carlo results for the multivariance case do not confirm 

this observation(Tab1e 5.9 and Figure 5.4). The relative mean 

square error of the 2SAEM rises continuously as do the relative 

mean square errors of all the competing estimators. One reason 

why this occurred may be that the estimator for delta(6) 

deteriorates as the degree of heteroskedasticity increases. This 

high degree of inefficiency in estimating 6 also affects the 

parameter estimates of the 2SAEM. That is, they are poorly 



estimated. Due to this poor performance of the 2SAEM, all the 

other competing estimators do not retain the characteristics and 

the shapes of the relative mean square errors observed for the 

bivariance case. Like the relative mean square errors of the of 

the ordinary least squares(0~S) estimator and the 2SAEM the 

relative mean square errors of all the other competing 

estimators increase continuously[~able 5.9 and Figure 5.41. Note 

that BPE and GPEV perform very poorly. We speculate that the 

Villegas procedure for estimating the probability(#) that the 

degree of heteroskedasticity is such that the OLS estimator 

performs better than the 2SAEM is inefficient. This procedure 

estimates these probabilities very poorly. These poor estimates 

of phi and their variances are specified in Table 5.14 below. 

The information concerning BPTT and BPTG is recorded in Table 

5.12. 



TABLE 5.9 

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(~% SL). 

(THE MULTIVARIANCE CASE:- SAMPLE SIZE - 20). 

DELTA 

-2.00 

-1.60 

-1.40 

-1.20 

- 1  .oo 

.-0.80 

-0.60 

-0.40 

-0.20 

0.00 

0.20 

0.40 

0.60 

0.80 

1 .oo 

1.20 

1.40 

. 1.60 

2.00 

OLS 

8.8344 

4.5903 

3.3894 

2.5543 

1.9751 

1.5780 

1.3122 

1.1427 

1.0446 

1.0000 

1.0015 

1 .(I246 

1.0799 

1.1606 

1.2681 

1.4077 

1.5887 

1.8254 

2.5585 

BPE 

8.0945 

4.3993 

3.2895 

2.5140 

1.9539 

1.5672 

1.3069 

1.1395 

1 .O438 

1 .oooo 

1 .OOl4 

1 .O243 

1 .O787 

1 .I575 

1.2615 

1.3999 

1.5728 

1.8049 

2.5323 

GPEV 

6.1228 

3.4827 

2.7565 

2.2494 

1.8410 

1.5368 

1.2903 

1.1318 

1 .O438 

1.0012 

1 .OOl8 

1 .O245 

1 .O798 

1.1603 

1.2676 

1.4071 

1.5877 

1.8242 

2.5575 

GPESM 

5.7706 

3.2130 

2.4804 

1.9643 

1.6120 

1.3841 

1.2241 

1.1344 

1 .O776 

1 .O653 

1 .O84l 

1 .I266 

1.1230 

1.1419 

1.1410 

1.1896 

1.2212 

1.2605 

1.5384 

BPT 

1.3554 

1.3108 

1.3134 

1.3086 

1.3122 

1.3062 

1.2514 

1.1439 

1 .O6O3 

1 .O4O9 

1 .O446 

1.1104 

1.1223 

1 .I845 

1.1621 

1 .I883 

1.2173 

1.2524 

1.5223 

BPTM 

1.5950 

1.3712 

1.2987 

1.2469 

1.2014 

1.1738 

1 .I279 

1.0959 

1 .O685 

1 .O497 

1.0608 

1 .O986 

1.1476 

1 .I362 

1.1537 

1.2223 

1.2802 

1.3421 

1.6677 
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FIGURE 5.4:- R M T I V E  HSE OF COMPETING EST113ATORS 



-- 

At 6 = 0, the traditional pretest estimator(BPT1 outperforms 

r the 2SAEM, BPTM and GPESM. Note, however, that since the values 

of the relative mean square errors of BPE and GPEV are almost 

always identical to that of the OLS estimator, BPT does not 

perform better than these versions of the smoothed pretest 

estimator. As soon as 6 departs from zero, the pretest selects 

the 2SAEM more often than it selects the OLS estimator. By so 

doing, its relative mean square error gradually approaches that 

of the 2SAEM. As the severity of heteroskedasticity grows, the 

relative mean square error of the traditional pretest estimator 

tends to that of the 2SAEM. 

Over a large section of the parameter space the 'smoothed' 

pretest estimator(B~T~) outperforms the traditional pretest 

estimator. However, inexplicably, at very high degrees of 

heteroskedasticity, the traditional pretest estimator begins to 

attain a smaller relative mean Square error than all the 

versions of the 'smoothed' pretest estimator. This is a matter 

for further investigation since this observation does not agree 

with our theoretical expectation. We speculate, however, that 

this occurs because the smoothed pretest estimators continue to 

give a small weight(i.e., non-zero) weight to the OLS estimator, 

whose relative mean square error at that point is extremely 

large. 

A visual inspection of the relative mean square error 

functions of all estimators in Figure 5.4 reveals that it is 

very difficult to select a preferred estimator. However, the 



1, 
4 
F choice of any of these estimators for the regression analyses 
i 

can be enhanced if the researcher possesses some apriori 

knowledge about the degree of heteroskedasticity in the 

particular data he is dealing with. Judging from our Monte Carlo 

results, if the degree of heteroskedasticity is very mild(i.e., 

for 6 values quite close to zero), the OLS estimator, BPE, GPEV 

and the traditional pretest estimators would be favoured over 

all other competing estimators. On the other hand, for 6 values 

greater or less than zero the 2SAEM, BPTM and GPESM would be 

preferred to the OLS estimator, BPE, GPEV and the traditional 

pretest estimator. 

The Monte Carlo study results for the sample sizes of 40 and 

80 are reported in Tables 5.10 and 5.11. The corresponding graph 

for the respective relative mean square errors of all competing 

estimators(for the sample size of 40) are shown in Figure 5.5. 

All results for the sample sizes of 40 and 80 do not differ 

qualitatively from those observed and explained for the sample 

size of 20 above and, therefore, need no. further elaboration. 

Notice, however, that the traditional pretest estimator using 

the Goldfeld and Quandt F -  test(^^^) attains smaller relative 

mean square error than both BPTM and the pretest estimator using 

the t - test(BPTT)(Table 5.12) over(a1most) the whole parameter 

space[~arvey(l976), Judge and ~ock(1978) I .  This suggests that 

the smoothed pretest estimators suggested in this thesis may not 

be very useful in the context of this kind of 

heteroskedasticity. Further, it lends support to the conclusions 



of Harvey( 19761, Judge and Bock( ,978) that the doldfeld and 

Quandt P - test is superior to the t - test in detecting 
i 

heteroskedasticity. Note also that as the sample size increases - 
the efficiency of all competing estimators improves. This same 

conclusion emerged from the discussion of the Monte Carlo study 

results for the bivariance case above. 
.? 

\ 

P 

I, %< 



TABLE 5.10 

RELATIVE(T0 GLS) MSE OF COMPETING ESTIMATORS(S% SL). 

(THE MULTIVARIANCE CASE:- SAMPLE SIZE - 4 0 ) .  

DELTA OLS 2SAEM BPE GPEV GPESM BPT BPTM 

-2.00 8.6286 1.1221 8.5642 8.0204 1.2428 1.1221 1.1305 

-1.60 4.4595 1.0759 4.4385 4.32.52 1.1939 1.0908 1.0911 

-1.40 3.2893 1.0611 3.2854 3.2223 1.1784 1.0713 1.0778 

-1.20 2.4793 1.0465 2.4784 2.4614 1.1586 1.0584 1.0673 

-1.00 1.9201 1.0493 1.9196 1.9073 1.1450 1.0825 1.0697 



i 
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TABLE 5.11 

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(S% SL). 
s 

t 
(THE MULTIVARIANCE CASE:- SAMPLE SIZE - 8 0 ) .  

DELTA 

-2.00 

-1.60 

-1.40 

-1.20 

- 1  .oo 

-0.80 

-0.60 

OLS 

8.001 1 

4.1532 

3.0696 

2.3198 

1.8042 

1.4555 

1.2283 

BPE 

8.001 1 

4.1532 

3.0696 

2.3198 

1.8042 

1.4555 

1.2283 

GPEV 

8.0003 

4.1531 

3.0695 

2.3198 

1.8042 

1.4555 

1.2283 

GPESM 

5 .O299 

1 .Ol83 

1 .O287 

1 .O416 

1 .O457 

1 .O49O 

1 .O423 

BPTM 

1 .O295 

1 .Ol74 

1 .O23O 

1 .O293 

1 .O3l2 

1 .O364 

1.0315 



The rest of the results are stated in Table 5.12 below for 

BPTT and BPTG for the sample sizes of 20, 40 and 80. A , 

comparison of these results clearly reveals that the traditional 

pretest estimator performs better than BPTT for the sample sizes 

20 and 40. Note that the performance of BPTT improves greatly as 

the sample size increases. This is evident from Tables 5.11 and 

5.12. It is also interesting to note that BPTT performs better 

than BPE and GPEV over a large region of the parameter space. 

Similarly, BPTG also performs well compared to the OLS 

estimator, BPE and GPEV. It must be reiterated again that since 

none of these estimators exhibits complete dominance over the 

others, the choice of estimator becomes extremely difficult. 

However, the existence of a prior information about the severity 

of heteroskedasticity would be useful to the researcher. This 

information would aid the researcher to search for the 'best' 

estimator to use when he suspects that heteroskedasticity exists 

in the data he is working with. 



DELTA 

-2.00 

-1.60 

-1.40 

-1.20 

- 1  .oo 

-0.80 

-0.60 

-0.40 

-.o. 20 

0.00 

0.20 

0.40 

0.60. 

0.80 

1 .oo 

1.20 

1.40 

1.60 

2.00 

TABLE 5.12 

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(~% SL). 

(THE MULTIVARIANCE CASE:- FOR ALL SAMPLES). 

N = 20 N = 40 

BPTT BPTG BPTT BPTG 

2.7095 5.1396 1.1426 1.2157 

2.1541 3.2233 1.1452 1.3241 

1.9673 2.6842 1.1230 1.3962 

1.9027 2.2748 1.1859 1.3984 

1.6642 1.8640 1.1866 1.4128 

1.4718 1.5586 1.2136 1.3806 

1.2790 1.3294 1.2046 1.2416 

1.1656 1.1495 1.1212 1.0909 

1.0694 1.0439 1.0293 1.0255 

1.0211 1.0000 1,0140 1.0000 

1.0461 1.0098 1.0212 1.0247 

1.0997 1.0673 1.0658 1.0498 

1.1476 1.0998 1.1218 1.1242 

1.2173 1.1923 1.1929 1.2117 

1.2533 1.2975 1.2136 1.3115 

1.3601 1.4322 1.1958 1.4006 

1.4282 1.6017 1.2039 1.4312 

1.4946 1.7818 1.1951 1.4463 

1.8405 2.4096 1.2856 1.5408 

N = 80 

BPTT 

1 .O295 

1 .Ol73 

1 .O223 

1 .O378 

1 .O554 

1 .@636 

1 .O766 

1 .O623 

1 .Ol56 

1 .OO87 

1 .Ol33 

1 .O486 

1 .O475 

1 .O396 

1.0293 

1 .O299 

1 .O3l9 

1 .O433 

1.1338 

BPTG 

1.0295 

1 .Ol73 

1.0424 

1 .O733 

1.1015 

1.1380 

1.1291 

1 .O842 

1 .O232 

1.0000 

1.0223 

1 .O648 

1.1039 

1.1537 

1.1107 

1.0690 

1 .O389 

1.0490 

1.1338 



The following Table 5.13 contains the mean values and the 

corresponding variances of phi(4) computed by integrating the 

density function of delta. The values for the three sample sizes 

are specified in such a way that each delta(b) for all sample 

sizes has shown against it its corresponding mean and variance 

of phi. Note that the major feature of the mean values of phi is 

their decline as one moves towards higher degrees of 

heteroskedasticity. That is, for delta values quite close to 

zero, the probabilities(4) that the degree of heteroskedasticity 

is such that the OLS estimator performs better than the 2SAEM 

are larger than at the two extreme ends(i.e., 6 = -2, 2) where 

the phi values decline gradually towards zero. This agrees with 

our theoretical expectations even though these values are not as 

large as we thought they should be. Theoretically, one expects 

that for low degrees of heteroskedasticity, the phi estimator 

must assign high values to the probability that the null 

hypothesis is true(i.e., homoskedasticity). Similarly, as the 

severity of heteroskedasticity increases, the phi estimator must 

compute phi values that are very small indicating the extent to 

which the alternative hypothesis is true. Note that very small 

phi values imply that the alternative hypothesis is more 

probable than the null hypothesis, hence casting doubts on its 

validity. Another notable characteristic of the mean phi values 

is that as the sample size increases, the efficiency of the 4 

estimator improves in that at delta values quite close to zero, 

the mean phi values are largest for the sample size 80. These 

values are also larger for the sample size 40 than 20. That is, 



as the sample size increases, the phi estimator computes larger 

phi values for the null hypothesis. This observation also agrees 

with econometric theory. 

 ina ally, it must be noted also that as the sample size 

increases the phi estimator computes phi values that are smaller 

as the severity of heteroskedasticity increases. Intuitively, 

the results specified in Table 5.13 suggest that the efficiency 

of the smoothed pretest estimator may improve greatly if 'large' 

sample sizes are used. The corresponding phi values computed by 

using the posterior odds ratio(vil1egas' procedure) are as 

specified in Table 5.14. Note that these phi values are not 

encouraging at all. Their values suggest that this technique is 

an inefficient way of calculating the probability($). As stated 

earlier, this poor estimation is probably one of the major 

reasons that account for the poor performance of both BPE and 

GPEV. Note that the corresponding probabilities for the combined 

multivariance/bivariance case are specified in Table 5.20. 



DELTA 

-2.00 

-1.60 

-1.40 

-1.20 

- 1  .oo 

-0.80 

-0.60 

-0.40 

-0.20 

0.00 

0.20 

0.40 

0 .6,0 

0.80 

1 .oo 

1.20 

1.40 

1.60 

2.00 

TABLE 5.'13 

THE MEAN AND VARIANCE OF PHI($). 

(FOR ALL SAMPLE SIZES(DENSITY FUNCTION) ) .  

N = 20 

MEAN 

0.0597 

0.0949 

0.121 1 

0.1598 

0.2060 

0.2598 

0.3143 

0.3651 

0.4120 

0.4408 

0.4489 

0.4370 

0.4079 

0.3673 

0.3188 

0.2723 

0.2323 

0.1962 

0.1435 

VAR 

0.0054 

0.0103 

0.0128 

0.0162 

0.0197 

0.0222 

0.0226 

0.0206 

0.0174 

0.0138 

0.0126 

0.0143 

0.0181 

0.0214 

0.0236 

0.0245 

0.0236 

0.0017 

0.0176 

N = 40 

MEAN VAR 

0.0015 0.0007 

0.0079 0.0007 

0.0180 0.0020 

0.0378 0.0055 

0.0747 0.0143 

0.1364 0.0270 

0.2165 0.0363 

0.3153 0.0403 

0.4038 0.0362 

0.4599 0.0275 

0.4670 0.0262 

0.4215 0.0351 

0.3373 0.0436 

0.2404 0.0405 

0.1573 0.0296 

0.0912 0.0158 

0.0488 0.0073 

0.0256 0.0030 

0.0089 0.0008 

N = 80 

MEAN VAR 

0.343-05 0.12E-08 

0.163-03 0.213-05 

0.10E-02 0.423-04 

0.493-02 0.383-03 

0.21E-01 0.363-02 

0.63E-01 0.14E-01 

0.16E+00 0.35E-01 

0.31E+OO 0.583-01 

0.49E+00 0.57E-01 

0.61E+00 0.04E-01 

0.62E+00 0.35E-01 

0.51~+00 0.60E-01 

0.33E+00 0.61E-01 

0.17E+00 0.35E-01 

0.703-01 0.12E-01 

0.23E-01 0.243-02 

0.633-02 0.383-03 

0.14E-02 0.343-04 

0.18E-03 0.21E-05 
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As noted earlier, the relative(re1ative to GLS) mean square 

errors of all competing estimators rise continuously. Alarmed by 

the poor results of the estimators for the cases discussed 

above, we decided to compute the mean square error of all 

competing estimators relative to that of the 2SAEM. The results 

for this experiment for the sample size 20 are shown in Table 

5.15 and Figure 5.6. Though the conclusions reached earlier for 

the sample size 20 do not differ significantly, a few comments 

are necessary. First, observe from these results that BPTM 

performs better than the traditional pretest estimator over a 

relatively large .region of the parameter space. However, their 

relative mean square errors increa'se continuously. Similarly, 

for delta values quite close to zero, BPE and GPEV perform 

better than the traditional pretest estimator. The performance 

of GPESM is not very encouraging since it outperforms the 

traditional pretest estimator for only a few values of delta. 

Second, note also that when the mean square errors are computed 

relative to that of the 2SAEM, the relative mean square error 

function of the traditional pretest estimator exhibits the 

expected characteristics. This occurs because as the degree of 

severity of heteroskedasticity increases, the pretest selects 

the 2SAEM more often than it selects the ordinary least squares 

estimator and hence allowing the relative mean square error to 

get closer and closer to that of the 2SAEM. For higher degrees 

of heteroskedasticity, the relative mean square error of the 

traditional pretest estimator tends gradually towards that of 



t h e  2SAEM. 



TABLE 5.15 

RELATIVE(T0 ~ S A E M )  MSE OF COMPETING ESTIMATORS(5% SL). 

(THE MULTIVARIANCE CASE:- SAMPLE SIZE - 20). 

DELTA OLS BPE GPEV GPESM BPT BPTT BPTM 

-2.00 6.5585 6.0092 4.5454 4.2840 1.0062 2.0115 1.1841 

-1.60 3.7690 3.6122 2.8596 2.6382 1.0763 1.7687 1.1259 

-1.40 2.8523 2.7682 2.3197 2.0874 1.1053 1.6556 1.0929 

-1.20 2.2201 2.1851 1.9551 1.7073 1.1376 2.6537 1.0838 

Table 5.16 and Figure 5.7 contain Monte Carlo results for 

the sample size 40. Clearly, no estimator dominates the other 





I competing estimators. For delta values very close to zero, the 

OLS estimator, BPE, GPEV and BPT perform better than the other 

estimators. The performance of BPTM is comparable to that of the 

traditional pretest estimator in that even though it does not 

dominate BPT over the whole parameter space, it performs better 

than it for delta values ranging from -1.20 to -0.40 and from 

0.20 to 0.80. As noted earlier for the sample size 20, though 

the performance of GPESM is not very good it performs better 

than the OLS estimator, BPE, GPEV and BPTT over a large region 

of the parameter space. 

With the exception of BPE and GPEV, the relative mean square 

errors of all other competing estimators exhibit the 

characteristics we expect theoretically. That is, as we move 

away from very low degree of heteroskedasticity, their relative 

mean square errors begin to rise continuously up to some point, 

reach a maximum, and then decline gradually towards one. The 

relative mean square error of the OLS estimator rises 

continuously as we move closer to higher degrees of 

heteroskedasticity. In Figure 5.7, the characteristics of the 

relative mean square errors of the competing estimators of 

interest are shown. The results of the sample size 80(as 

specified in Table 5.17 and Figure 5.7B) do not differ greatly 

from that discussed above for the sample size 40 and, therefore, 

do not warrant any further discussions. However, it must be 

noted that the efficiency of most estimators improved greatly. 



1 TABLE 5.16 

RELATIVE(TO ~ S A E M )  MSE OF COMPETING ESTIMATORS(~% SL). 

(THE MULTIVARIANCE CASE:- SAMPLE SIZE - 4 0 ) .  

DELTA 

-2.00 

-1.60 

-1.40 

-1.20 

-1 .oo 

-0.80 

-0.60 

-0.40 

-0.20 

0.00 

OLS BPE 

7.6896 7.6325 

4.1449 4.1253 

3.0998 3.0963 

2.3691 2.3683 

1.8298 1.8294 

1.4719 1.4717 

1.2160 1.2159 

1.0734 1.0735 

0.9879 0.9880 

0.9564 0.9564 

GPEV 

7.1478 

4.0200 

3.0369 

2.3520 

1.8176 

1.4684 

1.2145 

1 .O733 

0.9880 

0.9564 

GPESM 

1 .lo76 

1.1096 

1.1106 

1.1071 

1 .O9l2 

1 .O724 

1 . O U O  

1 .Ol29 

0,9887 

0 

BPT 

1 .oooo 

1.0138 

1 .OO97 

1 .0112 

1 .O316 

1 .O443 

1.0492 

1 .Ol89 

0.9678 

0.9564 

BPTT 

1 .Ol8O 

1 .O644 

1 .O583 

1.1332 

1 .I308 

1 .I61 1 

1.1399 

1 .O695 

0.9816 

0.9699 

BPTM 

1 .OO75 

1.0141 

1.0158 

1 .Ol98 

1 .Ol94 

1 .Ol85 

1 .Ol45 

1 .OO43 

0.9875 

0.9753 
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TABLE 5 . 1 7  

RELATIVE(~~AEM) MSE OF COMPETING ESTIMATORS(S% SL). 

(THE MULTIVARIANCE CASE:- SAMPLE SIZE - 8 0 ) .  

- - 

DELTA 

-2.00 

-1.60 

-1.40 

-1.20 

-1 .oo 

-0.80 

-0.60 

-0.40 

-0.20 

0.00 

0.20 

0.40 

0.60 

0.80 

1 .oo 

1.20 

1.40 

1.60 

2.00 

OLS 

7.7718 

4.0625 

3.0026 

2.2612 

1 J 6 l 9  

1.4175 

1.1993 

1.0657 

0.9980 

0,9789 

0.0052 

1 .O559 

1 .I334 

1.2109 

1.3187 

1.4594 

1.6324 

1.8433 

2.3367 

BPE 

7.7718 

4.0825 

3.0026 

2.2612 

1.7619 

1.4175 

1 .I993 

1 .O657 

0.9980 

0.9789 

1 .OO52 

1 .O559 

1 .I334 

1.2109 

1.3187 

1.4594 

1.6324 

1.8433 

2.3367 

GPEV 

7.771 1 

4.0824 

3.0025 

2.2612 

1.7619 

1.4175 

1.1993 

1 .O657 

0.9980 

0.9789 

1 .OO52 

1 .O559 

1.1334 

1.2109 

1.3187 

1.4594 

1.6324 

1.8433 

2.3367 

GPESM 

1 .OOO4 

1,0010 

1.0063 

1 .Ol53 

1.0212 

1 .O2l7 

1.0178 

1 .OO33 

0.9913 

0.9869 

0.9965 

1 .OO88 

1 .OO96 

1.0066 

1 .OO32 

1.0012 

1 .OOO5 

1.0002 

1 .oooo 

BPT 

1 .oooo 

1.0000 

1 .oooo 

1 .oooo 

1.0020 

1 .Oll7 

1 .O232 

1 .OO6O 

0.9901 

0.9860 

0.9926 

1 .O24O 

1 .Ol57 

1 .OO6l 

1.0000 

1 .oooo 

1 .oooo 

1.0000 

1 .oooo 

BPTT 

1 .oooo 

1 .oooo 

1 .oooo 

1.01 17 

1 .O3O7 

1.0358 

1 .O5l2 

1.3795 

0.9935 

0.9874 

1 .OOO5 

1 .O39O 

1 .O435 

1 .O2l6 

1.0049 

1 .OO3l 

1 .oooo 

1 .oooo 

1 .oooo 

BPTM 

1 .oooo 

1.0001 

1 .OOO7 

1.0033 

1 .OO7O 

1 .OO93 

1 .OO7l 

0.9988 

0.9918 

0.9877 

0.9964 

1 .Ol34 

1 .O2O4 

1.0202 

1 .Oll3 

1 .OO67 

1 .OO33 

l.OOl8 

1 .OOO9 
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FIGURE 5.7B : - RELATIVL HSE OF CO!4?ETI:K ESTI?lhTORS 



: Finally, owing to the poor results of the estimators for the 

multivariance case, we decided to see if the successful 

techniques employed for the bivariance case could be useful in 

the multivariance context. Thus, we tried using the bivariance 

technique for estimating d, the probability that the degree of 

heteroskedasticity is such that the OLS estimator outperforms 

the 2SAEM, while keeping intact the other dimensions of the 

estimators for the multivariance case(i.e., 9 was calculated 

under the assumption that the heteroskedasticity was of the 

bivariance type). Judge et al(19851, pp 454 - 455 have shown 

that in some cases knowledge of the functional form of the 

heteroskedasticity is not important. Inspired by this result we 

first tried to employ the @ estimation technique of the more 

successful of the bivariance estimators, namely BPTB, to the 

data exhibiting multivariance heteroskedasticity. This produced 

an additional estimator we refer to as BPTBM. We also 

investigated the use of BPTB itself in this context(i.e., 

implicitly assuming that the researcher believes 

heteroskedasticity is of the bivariance rather than the 

multivariance type). In addition, we evaluated the two 

traditional pretest estimators, BPT and BP~l(recal1 that the 

former uses 2SAE whereas the latter uses the ~SAEM). The results 

of this experiment are reported in Tables 5.18, 5.19, and 

Figures 5.8 and 5.9. These results suggest that using the 

Goldfeld/Quandt F - test helps but using the bivariance 

transformation hinders. Except for 6 values quite close to zero, 

BPTBM performs better than both traditional pretest estimators, 



1 relati-ve mean square errors of all competing estimators do not 
t 

exhibit the expected characteristcs; they do not eventually 

decline(as expected) as 6 grows in size. The results obtained 

from this experiment suggest that this smoothed pretest 

estimator(BPT~M1 is an appealing alternative to the traditional 

pretest estimator(B~T1) even if the researcher is not ignorant 

about the functional form of the existing heterokedasticity. 

Note also that these results suggest that BPTB should not be 

preferred to the traditional pretest estimator in any instance 

since it is completely dominated by the traditional pretest 

estimator(~~~1). Note also the very poor performance of both the 

2SAE and BPT. 



TABLE 5.18 

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(S% SL). 

(THE MULTIVARIANCE/BIVARIANCE CASE:- SAMPLE SIZE - 20). 

DELTA 

-2.00 

-1.60 

-1.20 

-1 .oo 

-0.80 

-0.60 

-0.40 

-0.20 

0.00 

0.20 

0.40 

0 . 6.0 
0.80 

1 .oo 

1.20 

1.40 

2.00 

OLS 

8.8344 

4.5903 

2.5543 

1,9751 

1.5780 

1.3122 

1.1427 

1 . 04.46 
1 .oooo 

1 .OO32 

1 .O246 

1 .O799 

1.1606 

1.2681 

1.4077 

1.5887 

2.5585 

BPT 1 

1.3554 

1.3108 

1.3088 

1.3122 

1.3062 

1.2514 

1 .I439 

1 .O6O3 

1 .O4O9 

1.0446 

1.1104 

1 .I223 

1 .I845 

1 .I621 

1 .I883 

1 

1.5230 

BPT 

2.1956 

2.2084 

2.0768 

1.9455 

1.8282 

1.6698 

1.3929 

1 .I875 

1 .O624 

1 .I627 

1.3061 

1.6256 

1.8818 

2.3226 

2.7587 

3.1509 

4.9222 

BPTBM 

1.4438 

1.2991 

1.2267 

1.1975 

1.1854 

1.1369 

1 .O99l 

1.0759 

1 .O594 

1 .O728 

i.ii39 

1.1175 

1 .I373 

1.1279 

1 .I708 

1.2059 

1.5601 

BPTB 

2.0967 

1.9776 

1.8479 

1.7598 

1.6545 

1.5414 

1.4436 

1.3920 

1.4120 

1.5187 

1.7044 

1.9430 

2.2073 

2.4819 

2.7697 

3.0934 

4.6901 



FIGURE 5.8:- RELATIVE SQUARE ERRORS OF CQQETING ES'IIXATORS 



- 
TABLE 5.19 

RELATIVE(T0 GLS) MSE OF COMPETING ESTIMATORS(5% SL). 

(THE MULTIVARIANCE/BIVARIANCE CASE:- SAMPLE SIZE - 4 0 ) .  

DELTA 

-2.00 

-1.60 

-1.20 

-1 .oo 

-0.80 

-0.60 

-0.40 

-0.20 

0.00 

0.20 

0.40 

0.60 

0.80 

1 .oo 

1.20 

1.40 

2.00 

OLS 

8.6286 

4.4595 

2.4793 

1.9201 

1.5385 

1.2850 

1 .I254 

1 .O36O 

1 .oooo 

1 .OOO5 

1 .O435 

1.1096 

1.2018 

1.321 1 

1.4725 

1.6648 

2.6594 

BPT 1 

1.1221 

1 .O9O8 

1.0582 

1 .O7O3 

1 .O9O9 

1 .O948 

1 .O646 

1 .Ol43 

1 .oooo 

1 .O234 

1 .O633 

1 . 1 1 1 1  

1 .O973 

1.1148 

1.1149 

1 .I498 

1.2647 

BPT 

2.0397 

1.9568 

1.9929 

1 .go15 

1.6763 

1.4625 

1 .I686 

1 .Ol27 

1.0020 

1.0066 

1 .I838 

1.5076 

1.9936 

2.462 1 

2.9935 

3.3740 

5.1623 

BPTBM 

1.1226 

1 .O783 

1.0558 

1 .O615 

1.0588 

1 .O643 

1 .O48O 

1.0273 

1 .Ol4l 

1.0284 

1 .O54O 

1 .O794 

1 .O9O8 

1 .lo49 

1.1038 

1.1419 

1.4020 

BPTB 

2.0130 

1.9424 

1.9203 

1.8935 

1.8131 

1.6661 

1.4858 

1.3398 

1.3216 

1.4890 

1.8057 

2.1800 

2.5182 

2.7830 

3.0121 

3.2569 

4.5592 





TABLE 5.20 

THE MEAN AND VARIANCE OF PHI ( $ ) .  

(FOR SAMPLE SIZES 20,  DENSITY FUNCTION) ) .  

N = 20 N = 40 

DELTA MEAN VAR MEAN VAR 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

6 .  I .  SUMMARY 

The major conclusions of this study are briefly stated as 

follows. First, the traditional pretest estimator can be 

smoothed to attain lower relative mean square errors over 

certain regions of the parameter space with only a small 

increase in relative mean square error in a narrorw region of 

the parameter space close to homoskedasticity. For certain 

reasonable priors on the degree of heteroskedasticity this makes 

the smoothed pretest estimator a very attractive alternative to 

its competitor. Second, the Monte Carlo study experiments in 

this thesis suggest that even in the presence of prior knowledge 

about the functional form of the heteroskedasticity in the data, 

the Goldfeld and Quandt F - test is a superior way of testing 

for the presence of heteroskedasticity. Finally note, however, 

that if a prior knowledge about the type(i.e., bivariance or 

multivariance) of heteroskedasticity exists, regardless of the 

functional form of heteroskedasticity, using the bivariance 

technique for calculating 4 for estimation purposes can be very 

useful. 

6 .  2 .  SUGGESTED TOPICS FOR FURTHER STUDY AND RESEARCH 

( 1 ) .  I t  should be of interest to compare the generalized or 

'smoothed' pretest estimator with the Yancey et. al. and Sclove 

et. al. pretest estimators and to develop a smoothed version of 

these pretest estimators. 



a the functional form of heteroskedasticity is known seems i 
I 

warranted. 

( 3 ) .  We have not been abie to explain why the relative mean 

square error of the 2SAEM, the traditional pretest estimator and 

the various versions of the generalized pretest estimator 

increase continuously for the multivariance case. This, and its 

implications would be a fruitful area for further research. 

( 4 ) .  The experiment could be extended to examine other forms of 

heteroskedasticity. 

(5). Most tests in this study were conducted at the 1% and 5% 

significance levels. It would be of interest to investigate the 

question of the optimal choice of significance level. 

(6). In the current study, we assumed that the posterior density 
A 

function for 6 is a t-distribution. This should be investigated. 

It is quite possible that one of the reasons why the relative 

mean square errors of all the versions of the smoothed pretest 

estimator do not decline is that we have made an incorrect 
A 

assumption about the distribution of 6. 
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