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ABSTRACT

This thesis develops a generalized pretest estimator for
heteroskedasticity as a 'smoothed' version of the traditional
pretest estimator. Principles from Stein-Rule estimation and
Bayesian analysis are wused to combine linearly the ordinary
least squares estimator(OLS) and the Two-Stage Aitken
estimator (2SAE) by developing a weighting system which is a
continuous function of the pretest statistic. First, adopting a
Bayesian view, the probability that the degree of
heteroskedasticity is such that the OLS estimator outperforms
the 2SAE 1is estimated. Second, this probability is used as a
weight to combine linearly the OLS estimator and the 2SAE to
form the generalized pretest estimator. Several versions of this

generalized pretest estimator are developed.

A Monte Carlo study 1is performed to investigate the mean
square error properties of the several 'smoothed' versions of
the generalized pretest estimator relative to those of the
traditional pretest estimator, the ordinary least squares
estimator and the Two-Stage Aitken estimator. The results
indicate that the 'smoothed' pretest estimator is an attractive
alternative to the traditional pretest estimator used in the

context of heteroskedasticity.
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DEDICATION

as the tale of time's mind unfolds
we fling our guilt in shame

and swim with burning fury

in the barreness of our expectations
yet our daily fantasies

are too frail to uproot the scales
that shut the door of our perception
we fume and hate in ignorance

and unlike the skillful kingfisher
we dive into arid oceans

that have never nursed a shoal of fishes

and wade back ashore
with a cup of nothingness in our hands

senyo adjibolosoo

TO SABINA
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CHAPTER 1

GENERAL INTRODUCTION
1. 1. INTRODUCTION

The purpose of this thesis 1is to generalize the pretest
estimator for heteroskedasticity(by 'smoothing' it) and by means
of a Monte Carlo study investigate its properties relative to
those of the traditional pretest estimator.

Suppose the presence of heteroskedasticity is suspected and some
test, such as the Goldfeld and Quandt F-tést, is performed to
investigate whether heteroskedasticity exists in the data. If
this pretest accepts the null hypothesis of homoskedasticity,
the ordinary -+ least squares (OLS) estimator 1is wused for
estimation. If, however, the pretest rejects the null
hypothesis, the two-stage Aitken estimator (2SAE) is wused
instead. This methodology defines the traditional pretest

estimator for heteroskedasticity.

The traditional pretest estimator is a weighted average of
the OLS estimator and the 2SAE where the weighting system is a
dichotomous function of the pretest statistic. This thesis
develops a 'smoothed' version of this pretest estimator in which
the weighting system is a continuous function of the pretest
statistic. This 1is accomplished by borrowing from the Bayesian
approach in which the pretest estimator 1is structured as a
weighted average estimator by combining the unrestricted and the

restricted least squares estimators using as the weighting



system the posterior probability of the null hypothesis.

The main pfoblem with this technique is that it requires an
informative prior for the case of point null versus composite
alternative hypothesis. Without an informative prior, the
computation of the posterior odds breaks down making it

impossible to calculate the Bayesian pretest estimator.

This thesis circumvents this problem by changing the point
null hypothesis into a composite null hypothesis. Although the
OLS estimator is dominated by the generalized least squares(GLS)
estimator, its estimated version(2SAE) does not outperform the
OLS estimator over the whole parameter space. The null
hypothesis thus becomes homoskedasticity or heteroskedasticity
of sufficiently small degree that the ordinary least
squares(OLS) estimator outperforms the two-stage Aitken
estimator (2SAE). We develop a means of computing the probability
that the degree of heteroskedasticity is such that the ordinary
least squares estimator dominates the 2SAE. Assuming that this
is the posterior probability associated with the null hypothesis
it is used as the weighting system in combining the ordinary
least squares estimator and the 2SAE into the
generalized(smoothed) pretest estimator as explained earlier.
The rest of this chapter discusses in more detail the pretest
estimator and 1its properties and the Stein estimator(a
'smoothed’ pretest estimator) that provided the inspiration for
the development of the generalized pretest estimator in this

thesis.



1. 2. THE PRETEST ESTIMATOR

The consequences of incorporating non-sample information
into an estimation procedure depend on the quality of the
information introduced. Consequently, the researcher may want to
test the apriori non-sample information against the data before
utilizing it. In this manner his main desire 1is that his
statistical tests may reveal something about the truth and
falsity of his apriori information; he either adopts or discards
the non-sample information depending upon the results of the
statistical test(s) performed. This procedure and rule of
estimation is often referred to as the pretest estimator. This
pretesting procedure is widely used in a variety of ways in
econometrics of which the following are a few examples:

(i). Testing for the presence of heteroskedasticity or serial
correlation and selecting either the ordinary least squares
estimator or the the generalized least squares estimator based
upon the result of the pretest[Greenberg(1980), King and
Giles(1984)].

(ii). Includiné or Excluding a variable or a set of variables
into a regression model by performing a preliminary t-test or
F-test with the decision to either include or exclude depending
upon the outcome of the test[Toro-Vizcarrondo and Wallace(1968,
1969), Wallace(1977) 1

(iii). Using the Chow testing procedure to test whether or not a
structural change has occurred. This procedure would help him

determine whether to pool or not to pool the available data



[Kennedy(1985),pp 87-88].

(iv). Using Almon distributed lags where the polynomial degree
is selected on the basis of hypothesis tests[Fomby et al(1984),
pp 130]. ‘
(v). Checking the compatibility of stochastic sample and prior
information before a mixed estimation process is used [Judge and
Bock(1978)1.

(vi). Using principal components when the number of components
chosen to delete is based wupon hypothesis testing [Fomby et

al(1984),pp 130].

It is common(Judge et al(1985), Chapter 11) to portray the
the character of a pretest estimator by means of its risk
function(the risk of an estimator is the sum of the mean square
errors of its components usually graphed as a function of the
extent to which the hypothesis being tested 1is false). The
nature of the risk function depends on a variety of parameters
of which the main ones are:

(1). the 1level of significance(! - «) or the pretest critical
vaiue,

(2). the regression variance (o0?),

(3). the number of regressors and the number of restrictions,
(4). the restrictions being tested,

(5). the design matrix, and

(6). the degrees of freedom[Wallace, (1977)].

Risk functions for the restricted, unrestricted, pretest,

and Stein estimators are shown in Figure 1.1 for the case of the



linear regression model and a set of linear restrictions. On the
horizontalvaxis is the measure of the extent to which the
restrictions are false(in this case the non-centrality
parameter); the vertical axis measures the risk of these

estimators| Kennedy, 1985, pp 161; Wallace, 1977, pp 436).

The mean square error is the sum of the wvariance of the
estimator and the sguare of the bias. Since unrestricted least
squares 1s always unbiased and has a constant variance
regardless of the vaiidity of the restrictions, 1its risk
function is a constant and, therefore, is drawn in the figure as
a horizontal line beginning at G. From econometric theory, we
know that the restricted least squares estimator has a smaller
variance than the unrestricted least sguares estimator. If the
restrictions are true, it 1is also unbiased. But if the
restrictions become more and mofe false, it suffers from more
and more bias and therefore its risk function is a positively

sloped line starting from point J in Figure 1.1.

The pretest estimator has a humped shape as shown in Figure
1.1. This humped shape of the risk function of the pretest
estimator is a result of the dichotomous choice between the
unrestricted and the restricted least squares estimators after
pretesting. If the restrictions imposed are true, in repeated
samples the null hypothesis is accepted(1 - a)% of the time on
the basis of the pretests and therefore its risk function 1is
very close to(just above) that of the restricted least squares

estimator. At the other extreme, if the restrictions are far
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from being met(very false), the preliminary tests correctly
reject the nﬁll hypothesis almost 100% of the time and therefore
the risk function of the pretest estimator is very close to(just
above) that of the wunrestricted 1least squares estimator,
Therefore, the pretest estimator does well when the restrictions

are either almost true or very false.

Between these two extremes, the pretest estimator performs
very poorly. Suppose, for the purpose of illustration, that the
extent to which the restrictions are not met is such that the
power of the test is 50%. In this case, the number of times the
pretest estimator incorrectly accepts that the restrictions are
valid in repeated sampling is equal to the number of times it
correctly rejects these restrictions. If it correctly rejects
the restrictions imposed, the parameter estimates that result
are distributed around the true parameter value; if it
incorrectly accepts the restrictions, the estimates it generates
are biased. All this is shown in Figure 1.2. In particular, it
is seen that the resulting density function for the pretest
estimator 1is such that both its variance and its bias are high,
explaining the humped character of the risk function of the

pretest estimator[ Kennedy, 1985, pp 161 - 162].

For future reference we note that the pretest estimator is
often expressed as a weighted average of the restricted and the
unrestricted least squares estimators as follows:

BPT = 110, c)(UIBR + Ifc a)(MEOLS i (1),

where
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gPT = the traditional pretest estimator.

BOLS = the unrestricted least squares estimator

BR = the restricted least squares estimator

I10,c)(U) and I[¢,»)(U) are indicator functions taking on the
values of one if U, a test statistic, falls in the range
subscripted and zero otherwise. Note the dichotomous nature of

this weighted average estimator.

Suppose that a researcher, after having formulated his
model, tests for the presence of autocorrelation at the 90%
level and the null hypothesis is accepted. There 1is also the
possibility that if the test were performed with 80%
probability, the null hypothesis could have been rejected.
Therefore, according to Zaman (1984, pp 77) "such
autocorrelation(or even at lower levels) can cause considerable
damage to the OLS results and should, ideally be accounted for".
1f this 1is the case, then it follows that most pretest
estimators based upon some kind of hypothesis testing are
non-optimal. Zaman argues that an answer to this problem is to
develop and use shrinkage techniques as evidenced by the
James-Stein estimator. With this belief, 2aman(1984), pp 73 has
formulated the following heuristic:

"Under as yet unknown but probably qgquite general regularity
conditions, discontinuous functions of the data are

inadamissible decision rules".

This heuristic actually rules out a large number of

traditional pretest estimators. An ingenious way around this



problem is to develop an appropriate shrinkage technique to
overcome the discontinuity. This procedure involves the
formulation of an estimator that 1is a convex combination of

other selected estimators using a meaningful weighting scheme.

It has been pointed out by many researchers that the
pretesting procedure produces an estimator that is inferior to
the usual maximum likelihood estimator(MLE) based on the sample
information alone over a large portion of the parameter space(as
shown in the figure 1.1 above, to the right of point H ).
Moreover, the pretest estimator possesses an unknown sampling
distribution, rendering classical statistical hypotheses testing
impossible. The arbitrary selection of the level of significance
for the pretesting is also a problem with this estimator. 1In
addition to these negative features of the pretest estimator,
Cohen(1965) showed that when the loss function 1is the squared
error loss, the pretest estimator is inadmissible, due to the
fact that this estimator is a discontinuous function of the test
statistic. Sawa and Horimatsu(1973) made the same observation

andlcomment.
1.3. THE STEIN-ESTIMATORS

From the above discussions, it is clear that the traditional
pretest estimator has undesirable risk properties. An
alternative to the traditional pretest estimator with better
risk properties is a weighted average estimator usually referred

to as the James-Stein rule estimator. This estimator utilizes

10



the available prior information to modify the unrestricted least
squares estimator in such a way that the resulting estimator
dominates the wunrestricted least squares over the whole
parameter space. This estimator dominates the unrestricted least
squares regardless of how correct the prior information is. Note
that the weighting system used by the James-Stein rule estimator
is a function of the F test statistic(U) utilized to test the
set of linear restrictions[Kennedy(1985), pp 161]. The
development of thesel estimator 1is based on the work of
Stein(1965).In this thesis, the Stein-rule estimator is modified
to be applicable to the case of heteroskedasticity. The
hypothesized set of 1linear restrictions 1is replaced by the
hypothesis of homoskedasticity implying that the restricted
least squares estimator is ﬁOLS, and the unrestricted(i.e., the
heteroskeddsticity case) estimator is PB2SAE, Thus for the
pretest estimator in this thesis, the ordinary least squares
estimator 1is employed if the pretest shows that the
restriction(homoskedasticity) 1is true, otherwise, the 2SAE is

employed(heteroskedasticity).

Whereas the pretest estimator utilizes the test statistic U
to choose either the wunrestricted or the restricted least
squares estimator, the James-Stein estimator makes use of the
test statistic U to combine linearly(in a non-dichotomous
fashion) the wunrestricted and the restricted least squares
estimators into a weighted average estimator. The size of the

weights imposed upon each component of this weighted average

11



estimator is a function of the pretesting statistic(U). This
weighted avérage estimator is formally stated as:

85 =(t/UNBR + (1 = £/ UIBOLS it ieiene veenaea(1.2).
where

65 = the Stein estimator,

£t = a scalar constant which depends on the design matrix and the
degrees of freedom.

U = the calculated test statistic,

BOLS = the unrestricted least squares estimator,and

BR = the restricted least squares estimator.

In the literature the set of linear restrictions most
commonly used is a non-stochastic vector for f. But this is not
universal; it 1is not wuncommon to shrink the ordinary least
squares estimator towards an overall mean rather than a fixed
vector, for example. In this thesis, we consider the general
case in which the restricted 1least squares estimator is

considered to be stochastic.

If U = ¢, the Stein-Rule estimator 1is identical to the
restricted least squares estimator. If the testing statistic(U)
is infinite, the Stein-Rule estimator becomes the unrestricted
least squares estimator(that 1is, as the test statistic grows
larger in relation to the scalar f((i.e., as £/U tends towards
zero the Stein-Rule estimator gradually approaches the
unrestricted least squares estimator). Note that the ratio §/U
determines the extent to which the unrestricted least squares

has to be shrunk towards the restricted least squares estimator

12



[Judge et al(1980), pp 69 ; Fomby et al(1984), pp 131-134].
Figure 1.3 shows the sampling distribution of the Stein-Rule
estimator, illustrating how the Stein estimator dominates the

pretest estimator over the whole parameter space.

The Stein-Rule estimator wutilizes sample and non-sample
information in a superior way than the pretest estimator. Its
risk improvement on the maximum 1likelihood estimator wunder a
variety of loss functions 1is assured regardless of the
correctness of the non-sample information. But unfortunately,
these James-Stein Rule estimators have their own problems.

(i). they are highly nonlinear and biased,

(ii). they have unknown small sample distributions,

(iii). they possess covariance matrices depending on unknown
population parameters,

(iv). in many cases(e.g., multicollinearity), they improve upon
the MLE only if design-related conditions hold [Fomby et
al(1984), pp 134],

(v). they depend on the assumption of nbrmally distributed error
tefms, and

(vi). they are only applicable to the case of a set of linear
restrictions and therefore require adaptations for other

estimation situations[Efron and Morris(1974)].

13
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1.4. GENERALIZING THE PRETEST ESTIMATOR

The purpose of this thesis is to apply the principle of the
Stein rule estimator(i.e., wusing its 1idea of a continuous
weighting system) to the case of heteroskedasticity by a
suitable generalization of the pretest estimator. In this way,
even though the Stein rule estimator is a continuous function of
the data, it is considered to retain the flavour of the pretest
estimator, First, a theoretical formulation of the generalized
pretest estimator(a weighted average estimator) 1is undertaken.
This estimator is a linear combination of the unrestricted least
squares(OLS) and the 2SAE. The Two-Stage Aitken estimator (2SAE)
is formulated as follows. First, the ordinary least sgquares(OLS)
regression is run, producing the OLS residuals. Second, these
residuals are used to estimate the nature of the
heteroskedasticity. Third, the data is transformed to produce an
estimating equation for which the ordinary least squares(OLS)
estimator is appropriate. This technique is described in more
detail 1later when specific applications are discussed. Unlike
the‘ traditional pretest estimator the generalized pretest
estimator does not force a dichotomous choice between the
estimators. In this respect, it is like the Stein-Rule estimator
which develops a weighted average estimation procedure with the
weights as a continuous function of the relevant pretest
statistic. The aim is to develop a general rule that can improve

upon the existing pretest estimators.
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Second, Monte Carlo experiments are undertaken to examine
.the properties of several variants of the generalized pretest
estimator, comparing them to those of unrestricted least

squares(OLS) and the traditional pretest(BPT) estimators.

The general outline of this thesis is as follows:
Chapter Two provides a review of the existing body of literature
on pretesting procedures and the James-Stein rule estimating
techniques., It 1is a general survey of the relevant background
material for the thesis. The third chapter contains 'the
theoretical development of the generalized pretest estimator.
Chapter Four describes the Monte Carlo experiments to evaluate
the performance of the generalized pretest estimator and all the
other competing estimators. Chapter Five contains an analysis of
the Monte Carlo results. The final chapter contains a summary of
the results, suggested topics for future research and a

discussion of some limitations of the study.
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CHAPTER 11

PRETEST ESTIMATORS FOR HETEROSKEDASTICITY

(A REVIEW OF THE LITERATURE)

2. 1. PRETEST ESTIMATORS FOR HETEROSKEDASTICITY

The main aim

of this chapter 1is to review the existing

relevant literature on pretest estimators in the context of

heteroskedasticity. It 1is well-known that the presence of

heteroskedasticity has two undesirable effects on the ordinary

least squares(OLS) estimatcr. First, although the OLS estimator

remains unbiased, it is inefficient. Second, its

variance-covariance matrix 1is poorly estimated and so the

standard tests of

If the true
regression model
straightforwardly

estimator(GLS) to

significance have little meaning.

covariance matrix of the error term in a
is known to the researcher, he can
apply the generalized least squares

the data. In this situation, the results are

BLUE. Unfortunately the true covariance matrix of the

disturbances 1is

rarely known., To circumvent this problem,

various techniques have been developed to approximate this

covariance matrix. Each such technique results in some variant

of the estimating
generalized least
Two-Stage Aitken
numerous versions

Chapter 11 of the

procedure usually referred to as the estimated
squares(EGLS) estimator, sometimes called the
estimator (2SAE). An excellent reference on the
of this estimating procedure can be found in

second edition of Judge et al(1985),
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Owing to the fact that uncertainties exist regarding whether
or not hetéroskedasticity exists in the data, most researchers
usually test for its presence. This procedure, as explained in
Chapter one is referred to as the pretesting procedure. The
resulting estimator 1is known as the pretest estimator. The
general form of the pretest estimator for the case of
heteroskedasticity is:

BPT = 110, c)(UIBOES + I o) (WIE2SAE, L o iiiiiiiii(200),
where

BPT = the pretest estimator,

BOLS = the ordinary least squares estimator(OLS), and

ﬁZSAE is the version of the generalized least squares estimator
described above. I[g,¢){(U) and I[. »)(U) are both indicator
functions that assume the value of zero or one. That is, if the
value of U, the test statistic lies between zero and C, the
indicator function takes the value of one, otherwise zero (i.e.,

when the value of U lies between C and «).

The pretest estimator in equation (2.1) above is a function
of many parameters such as ﬁZSAE,'ﬁOLS, U, C, etc. Owing to
this, its probability density function is a conditional density
of BOLS(given that U < C) multiplied by the probability that U <
C added to the conditional density of of B25AE(given that U 2 C)
multiplied by the probability that U 2 C. In general, the
pretest estimator is, therefore, biased [Wallace, 1977].

Most work done on heteroskedasticity pretesting is concerned

with cases where the error terms of the first half of the data
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are assumed to have a constant common variance (0,2) and the
error terms 6f the second half of the data are assumed‘to have a
different constant common variance(o,?). We refer to this case
as the ‘'bivariance' case. The main papers in this area include
those of Mandy(1984), Greenberg(1980), Ohtani and Toyoda(1980),
Yancey, Judge and Miyazaki(1984), Goldfeld and Quandt{1972), and

Sclove, Morris and Radhakrishnan(1972).

Greenberg(1980) formulated the heteroskedasticity pretest
estimator as:
BPT=110,c,) (U)B2SAB+1 ¢ ¢ ) (U)OLS+I (¢, o) (U)F2SAE, [ ... (2.2).
where '

Ila,p] = ' if U e (a,b)

= 0 otherwise

That 1is, I(a, p)(U) is an indicator function that takes on
values of one or zero depending upon the outcome of the pretest.
BOLS is the ordinary least squares estimator (OLS), and

B2SAE jg the Two-Stage Aitken estimator.

C, and C, are the critical values of the two-tailed F-test at
some chosen significance level a. This Greenberg
heteroskedasticity pretest estimator makes intuitive sense. The
underlying principle is described briefly as follows. When
heteroskedasticity 1is suspected, the researcher undertakes a
pretest(a two-tailed test) to test whether the errors are
homoskedastic, wusing the Goldfeld and Quandt test statistic U.
The hypothesis of equal variances is accepted if C, < U < (C,

where
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U = S,2/s,%. 8;? is the wusual estimator of o;2. This test
statistic wés used by Greenberg to construct the pretest
estimator in (2.2). If U assumes values between zero and C,, the
implication is that heteroskedasticity exists in the data and,
therefore, the researcher uses the 2SAE . Similarly, if U falls
between C, and «, heteroskedasticity is again implied and the
2SAE is wused to estimate the data. However, if U falls between
C, and C,, homoskedasticity is implied and the ordinary least
squares estimator is chosen for estimation purposes. Greenberg
further showed in his analysis that the above heteroskedasticity
pretest estimator does not uniformly dominate the unrestricted
least squares estimator or the 2SAE estimator over the whole

parameter space.

The major observations and conclusions of Greenberg(1980)
are summarized in Figure 2.1 below. Greenberg using Monte Carlo
results, observed that the ordinary least sQuares estimator is
superior to the other estimators when gamma (i.e., v = 0,2/0,2)
assumes values that are very close to one. But as soon as gamma
takes on larger and larger values the ordinary least squares
loses its dominance over the other estimators. The estimated
generalized least squares(2SAE) dominates the unrestricted and
the Greenberg pretest estimators over a large range of the
parameter space., However, the Greenberg pretest estimator based
on the Goldfeld and Quandt F-test statistic performs very well
when gamma values are very far away from or close to one. For

gamma values guite close to one, this pretest estimator
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dominates the 2SAE. Since none of these estimators emerges as
the 'best' among the rest the choice of estimator depends on a
prior information about the variance ratio(y). If the prior
gives a large weight to ¥ values quite close to 1, which
Greenberg(1980), pp 1813 argues will be the case unless the
researcher has some specific reason to believe otherwise, both
the ordinary 1least squares and the pretest estimators would be
preferred to the 2SAE. A uniform prior on y, for example, leads

to the choice of the 2SAE.

Ohtani ~and Toyoda(1980) using orthonormal regressors
formulated a similar heteroskedasticity pretest estimator.
Depending on the outcome of the pretest, either the ordinary
least squares estimator or the 2SAE is used in the estimation of
the regression coefficients. They derived the mean square error
of the pretest estimator. The null hypothesis tested is o,2 =
0;? against the alternative hypothesis 0,22 0,2 by their own
assumption(i.e., a one-sided test). Using the Goldfeld and
Quandt F-test statistic, the heteroskedasticity pretest
estimator was developed[ see their first equation on pp 153].
Having developed this pretest estimator the authors showed
theoretically that the pretest estimator dominates the 2SAE and
so that the 2SAE is inadmissible. Their conclusion as summarized
on page 155 1implies that 'we should not use the 2SAE readily
even if we doubt homoskedasticity strongly. It is recommended to

test for homoskedasticity prior to estimatién of g°'.

22



Mandy(1984) following Greenberg(1980) and Ohtani and
Toyoda(1980). examined the 1inequality pretest estimator for
heteroskedasticity‘ without Ohtani and Toyoda's assumption of
orthonormal regressors by testing the null hypothesis Hy : 0,2 =
0,2 against the alternative hypothesis H; : 0;%2 > 0,2. The
inequality pretest estimator usiﬁg the pretest statistic selects
either the OLS estimator or the 2SAE depending upon whether the
test statistic is smaller or larger than the critical value. 1If
the pretest confirms that ¢,2 > o0,? the OLS estimator is
abandoned, otherwise, it is selected for estimating the
parameters. He showed that the risk function of the inequality
pretest estimator is smaller than that of the Greenberg pretest
estimator for all values of gamma greater than one. However, the
behaviour of the risk function of the 1inequality pretest
estimator is similar to that of the Greenberg equality pretest
estimator. Mandy noted that the reason why the risk function of
the 1inequality pretest estimator is smaller than that of the
equality pretest estimator over the parameter space where gamma
is ~greater than one 1is due to the fact that the inequality
pretest estimator pbssesses a high rejection region "in the
upper tail of the distribution and selects the 2SAE more often
when gamma is in fact larger than one. As gamma tends towards
zero the inequality pretest estimator exhibits the same
performance as the OLS estimator and its risk becomes virtually
identical to the risk of the OLS estimator... This is also
expected since the inequality pretest estimator is constrained

to select only the OLS estimator when gamma is less than one".
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Mandy's conclusion 1is that when the non-sample information is
correct (i.e., 0,%2/0,% > 1, the inequality pretest estimator is
superior to the equality pretest estimator. Unfortunately, this

is not the case when the non-sample information is not correct.

According to Mandy, "it 1s important to stress that this
inadmissibility of the 2SAE holds only if the researcher is
absolutely certain that 0,2 > 0,2, It 1is, therefore,
unambiguously beneficial to pretest only if one is dealing with
a- model that rules out the possibility of 0,2 <
0,2"[Mandy(1984), pp 33].‘It should be noted that this gquote
assumes orthonormality, something Mandy is not clear about. The
risk functions of the Greenberg equality pretest and Mandy's
inequality pretest estimators are shown wifh alternative

estimators in Figure 2.1 above[Judge et al, (1985), pp 430].

Several Stein rule heteroskedasticity pretest estimators
that have been developed are briefly discussed in the following
paragraphs., First, note that the James-Stein Positive Rule
estimator was developed to solve a sign reversal problem in the
use of the Stein-rule estimator. This problem occurs when the
test statistic U < ¢ 1leading to the shrinkage of the
unrestricted least squares beyond the restricted least squares
estimator. The occurrence of this usually leads to a problem of
sign reversal of the Stein-rule estimator. Kennedy(1985), pp
165-166 notes that 'by truncating this shrinking factor so as to
prevent this from happening, an estimator superior to the Stein

estimator is created. It 1is called the Stein positive rule
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estimator. The name derives from the popular application to zero
restrictioné: The positive rule estimator prevents the sign of
the Stein estimator from differing from that of the unrestricted
ljeast squares estimator'. This estimator renders the Stein-rule
estimator 1inadmissible since it has a lower risk. This
relationship 1is shown 1in Figure 2.2 below. This estimator
dominates the maximum likelihood estimator when the number of
parameters being estimated is greater than three[Judge et
al(1985) pp 82 - 89]. Sclove, Morris and Radhakrishnan(1972)
developed a Stein-rule like pretest estimator usually referred
to as modified positive-part pretest estimator. In its
formulation, Sclove et al, instead of combining the MLE(ﬁoLS)
with the restricted least squares estimator to form the pretest
estimator, rather combined the James-Stein positve rule
~estimator and the restricted 1least squares estimator. This
procedure 1is based wupon the fact that since the Stein-rule
estimator wuniformly dominates thé ordinary least squares
estimator, its wuse can 1lead to tﬁe'development of a pretest
estimator that is superior to the traditional pretest estimator.
Applying this information to the context of heteroskedasticity,
Sclove et al linearly combined the James-Stein positive rule
estimator and the 2SAE 1into a heteroskedasticity pretest
estimator as specified in (2.3).

gPT = I[o’c)(U)6+ + I[c,m)(U)stAE......................(2.3).
where

Bt is the Stein-rule positive estimator. This pretest estimator

is akin to the Greenberg pretest estimator in (2.2). The only
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difference between these two pretest estimators 1is the
replacement of the ordinary least squares estimator in the
Greenberg estimator with the James-Stein positive rule
estimator. Sclove et al(1972) proved theoretically that the
modified positive-part rule estimator dominates the Greenberg
pretest estimator under the sguared error 1loss criterion and
therefore renders it inadmissible. This pretest estimator has
been proved(theoretically) to dominate the traditional pretest
estimator(2.7) wunder the squared error loss criterion rendering
it inadmissible. Their risk functions are shown with others in
Figure 2.3. Other versions of the heteroskedasticity pretest

estimator developed by Yancey et al(1984) are described below.

Yancey et al(1984), foliowing Taylor (1977, 1978),
Greenberg(1980), Ohtani and Toyoda(1980), and Mandy(1984),
demonstrated that over the parameter space(gamma):

(i). there exists a variety of estimators that wuniformly
dominate the unrestricted 1least squares estimator, the Aitken
estimator, and the 2SAE(i.e., the James-Stein estimator), and

(ii). that there are alternative types of pretest estimators
that possess smaller risks over the whole parameter space than
the traditional pretest estimators in the context of

heteroskedasticity.

There are two versions of the pretest estimator developed by
Yancey et al for the orthonormal case. In the first version of
their development, the pretest estimator was derived as a

combination of the Stein estimator and the 2SAE(equation 31, pp
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148 of their paper). In this case, they replaced the
unrestricted least squares estimator in the Greenberg pretest
estimator with the Stein estimator. This pretest estimator was
shown to be superior to the Greenberg equality pretest
estimator. The second version of the Yancey et al Stein pretest
estimator(equation 33, pp 148 of their paper) combines the Stein
estimator and the Stein version of the 2SAE that they
developed(S2SAE). This estimator shrinks the 2SAE towards the
zero vector instead of the OLS estimator as done by the Stein
estimator. In this development, they replaced both the
unrestricted and the 2SAE estimators in the Greenberg equality
pretest estimator with the Stein estimator and the Stein version
of the 2SAE respectively. It has been shown by the authors that
the two versions of the Yancey et al Stein pretest estimators
dominate the Greenberg equality pretest estimator(hence
rendering it inadmissible), and that the second version of the
Stein pretest estimator dominates the first version[ Yancey et

al, pp 149 figure 2].

Even though there are studies that compare the Greenberg
equality pretest estimator with either the Sclove et al pretest
estimator or the two versions of the Yancey et al Stein versions
of the pretest estimators, there have been no attempts to
compare the performance of the Sclove et al and Yancey et al
heteroskedasticity pretest estimators. In a future study, one
may want to compare and contrast the risk functions of these

estimators with that of the generalized pretest estimator
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developed in this thesis.

The best summary on pretest and Stein-rule estimators is
found in Judge and Bock(1978). Proofs of the theorems concerning
the properties and characteristics of these estimators have been

outlined for the general regression and orthonormal models.
2. 2. THE BAYESIAN PRETEST ESTIMATOR

Suppose that the researcher is interested in obtaining point
estimates of parameters, and 1is uncertain as to whether the
appropriate model 1is the one with or without the given
restrictions. The Bayesian computes the optimal Bayesian point
estimate through minimization of the expected 1loss function
which is averaged across both hypotheses. The posterior
probabilities of the hypotheses are used as the weighting
system. Having computed the posterior probability of the null
hypothesis[P(Hp|y)] and the posterior probability of the
alternative hypothesis[P(H,|y)], the Bayesian obtains the point
estimate (B*) that minimizes the foilowing expected loss
function:

E[L(,6%)] =

P(Ho |y)EIL(B,B8%)|Ho 1 + P(H,|y)EIL(B,B%)|H,)e..... ceeeee.(2.4),
According to Judge et al(1985), 'with quadratic loss where the
posterior means are optimal, the minimizing value for g* is a
weighted average of the posterior means'. This is computed as:
B* = P(Ho|y).E[B|Ho) + P(H,|y) ElB|H Jeuueernerennnnnn .(2.5).

I1f under the null hypothesis the restrictions are true, then the
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restricted least squares estimator (BR) is used. That is,
E[B|Ho] = '6R. If, however, the restrictions are false, the
unrestricted least squares estimator (BY) is used and hence
E[B|H,) = BU(which is referred to earlier as BOLS when an
ignorant prior is employed). Assuming that these values are the
posterior means, the Bayesian pretest estimator in (2.5) above
can be re-written as:

B* = P(Ho|y)BR + P(H 9Bl et iiiiiiiiieeinnneneennaa(2.6).
where P(H,|y) = 1 - P(Hqy|y), and therefore.(2.6) becomes

B* = P(Ho|y)BR + (1 = P(Ho|9)BYuiiieiinnnrnnnrnnnnnen(2.7),

Casting the problem in the non-spherical mold, we treat
homoskedasticity as the restriction under consideration. Thus,
in tﬁis context, the null and the alternative hypotheses refer
to homoskedasticity and heteroskedasticity respectively. With
this view the generalized pretest estimator can be written(using
the principle underlying the Bayesian pretest estimator) as:

B* = P(Ho|y)BOLS + P(H,|y)B2SAE, . ... i, (2.8).
where P(H,|y) = 1 - P(Ho|y), and therefore (2.8) becomes

B* = P(Ho|y)BOLS + (1 - P(Ho|y)B2SAE, ., ... ..cvvve.. (2.9,

Notice that both the Bayesian and the generalized pretest
estimators are different from the traditional pretest estimator
in that they are continuous functions of the datal[ Judge et

al,(1985) pp 117 - 118 1].
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CHAPTER 111

THE THEORETICAL MODEL FORMULATION

3. 1. INTRODUCTION

The purpose of this thesis is to develop a weighted average
estimator which 1is comparable to the traditional pretest
estimators. This estimator 1is a linear combination of the OLS
and the 2SAE estimators. Unlike the traditional pretest
estimators, the weighted average estimator does not lead to a
dichotomous choice between the estimators used in the linear
convex combination. In this respect, it is like the Stein-Rule
estimator which structures a weighted average estimation
procedure with the weights as a continuous function of the

relevant test statistic.

Suppose that the model under consideration is of the form:
Y = X + € tuineneeenesoosarscssscsscseassnnnnns sanssaaeal3.1),
where Y is (N x 1) column vector and so is e(the error term, e,
has mean =zero and 1is suspected of being heteroskedastic).

X(fixed in repeated samples) is (N x K) and 8 is (K x 1).

Now, consider the problem of choosing between the OLS and
the 2SAE estimators as far as model(3.1) above is concerned. In
the econometrics literature, many researchers using regression
analysis begin their estimation procedures with some hypothesis
testing. If uncertain about the nature of the available data(in
this case about the presence or absence of heteroskedasticity),

the researcher may test for the presence of heteroskedasticity.
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Based upon the outcome of the above pretesting procedure the
usual preteét estimator is written as a weighted average of the
OLS estimator and the 2SAE. The mathematical formulation of this
estimator 1is specified in equation(1.1) of chapter 1. Depending
on the outcome of the pretest the choice made by the pretest
estimator between the OLS and the 2SAE estimators 1is

dichotomous.
3. 2. THE FIRST FORMULATION

To circumvent the dichotomous choice between . these two

combined estimators, a generalized pretest estimating
technique(GPE) is proposed from which the above mentioned
dichotomous pretest procedure could be perceived as a special
case. Recall that the Bayesian pretest estimator linearly
combines the wunrestricted and the restricted least squares
estimators by using the posterior odds in favour of the null
hypothesis as the weighting system. Casting the problem in the
non-spherical error mold and exploiting the Bayesian view and
the Stein-Rule estimation principle, the development of the
generalized pretest estimator is a two-step procedure. These
steps include:
(1). Utilize the sample data to determine(in an objective
fashion) the subjective probability(¢) that the nature of
heteroskedasticity is such that the ordinary least squares
estimator dominates(has smaller relative mean square error) the
2SAE,

(2). Use this probability(¢) as the weighting scheme to combine
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the ordinary least squares estimator and the 2SAE into the

generalized pretest estimator as:
ﬁ(GPE)=¢BOLS+ (1_¢)325AE'.......II...I...‘.........I...(3l2)l

Note that the motivation for doing this comes from the Bayesian

view outlined earlier in chapter two.

3.3. THE SECOND FORMULATION

The second development is also a two-step procedure. These steps
include:

(1). Based upon a pretesting procedure utilizing the sample data
at hand, determine (in an objective fashion) the subjective
probability(¢) that the nature of heteroskedasticity is such
that the ordinary least squares estimator dominates the 2SAE.

(2)Calculate the generalized pretest estimator as:

B(GPE) = ABOLS 4+ (1-0)B2SAE | . . ... iiiiieeenennnnnaneanaa(3.3).

where A 1is chosen to minimize the subjective(based on ¢ from
above) expectation of the risk of the 'smoothed' pretest
estimator, B(GPE).

That is,

mintrEV(GPE) = ¢trV(GPE)|ge * (1 - ¢)trV(GPE) |pggeses...(3.4).
where se and nse imply spherical and nonspherical error real
worlds respectively.

The value of A is determined as follows. Suppose that Q, the

variance-covariance matrix of the error vector is known. Then in
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an OLS world,

BOLS = (Xv X)'1 X' v

BELS = (X' 071 X) T X' Q7' Y ittt Cereeeee (3.5).

v(gOLS) = g2(x' x)!

V(B2SAE) = o2 (X' @' X)7' X' Q 2 X (X Q'X) ....... (3.6).
COV(BOLS; BOLS) = 52 (K" B) 1 i itirrennnnnoeeoesossonearanss (3.7).
Similarly, in a GLS world;

BOLS = (X' X)"1 X' v

BOLS = (X' Q7! X) ! &' 0 ! Yiitiiernnrnnnnnens e eeene (3.8).
V(BOLS) = o2(X' X) ' X' QX(X' X) !

V(BCLS) = 62 (B' 07 Z) ' tiiteineennnecasnnnnsns vee..(3.9).
COV(BOLS:8GLS) = 62 (X' Q1 X) ' v'rvrrvnvnnnnnns e .(3.10)

Note that in order to operationalize all these, € (which is
rarely known) must be estimated as € (its unbiased estimator).
Using the above definitions, derive the wvariance of the

generalized pretest estimator as:

V(GPE) = A2v(BOLS) + (1-2)2v(BGLS)
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+ 20(1=20)Ccov(BOLS, BGLS) . it ceee.(3.11),

Combining (3.3) through (3.7), we obtain,
V(GPE) | ge = A(2-1)o%(X' X)7!

+ (1-0)2%202 (X' ' X)) " X' Q@ "2 x (X Q"X .ol (3012),
Similarly, by combining (3.8) through (3.10), we have,

V(GPE) |nge = A202(X' X)7' X' QX(X' X)7'

+ (17A2) 02 (X' Q7 ) ittt enoeneessanannensasl(3.13).

Substituting(3.12) and (3.13) into equation (3.4), choose A to
minimize the trace of the subjective expectation of the variance

of the generalized pretest estimator(GPE). That is ,

mintrEV(GPE) = o¢tr{A{2-A)o?(X' X) !
+{1-20)2¢2 (X' @' X)) ' X' Q@ "2 X (X' Q' X)) ]

+(1-¢)tr[A%202(X' X) ' X' QxX(X' X) '

(1) (X 97T X)) e, eearerecanasaann (3.14).
That is,
8trEV(GPE)
N = ¢tr[(2-2X\)02 (X' X) ' -2(1-2\)e? (X' @' X)" ' X'

Q@ "2x (x' @' X)) ]
+(1-¢)tr[2no?(X' X) ' X' QX(X' X) !

~2202 (X" @' X)) I=0iiieeenennnnnna.a(3.15),
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expanding and collecting terms together, it turns out that,
Atr{ol (X' @' X)7T X' Q@ 2X (X' QX - (X' X))
+ (1= ¢)[ - (X @7 X))+ (X' X)X QX' X)T'}

=tr{ ¢ [ (XX @' X)7"TX'" Q@ 22X (X Q"X)" - (X' X)) ]}

Therefore,

A= fotr[ (X Q' X)VX'Q T2 X (X QX)) -(x'" )7 1Y/
fotr[ (X' @' X)) X' Q 2X (X' Q"X (X' X))
+(1=¢)tr[(X' X)7' X' QX(X' X)'' - (xr @' x)7!

) B I < TR -

and hence dividing both numerator and the denominator by the

numerator yields,

A= 1/ (1 4 &/ X)eeeeeeeeeoonenoonesnnsansnsesns ceeennn (3.17).
where,
¥ = (1 - ¢)tr[- (X' @' X)"" + (X" X)X QX(X' X))

x = ¢otr[ (X' ' X)X Q@ 2X (X Q') - (x' X))

Use this value of A, evaluated at € = €, to operationalize

the (GPE) as defined in equation 3.3 above.

37



3.4. OBSERVATION

Note that if the procedure of the traditional pretest

estimation is followed, the implication of the above derivations

is that:
(a) If ¢ = 1, it implies that A = 1; choose the OLS estimator.
(b) If ¢ = 0, it implies that A = 1/» =~ 0; choose the 2SAE

estimator.

However, this dichotomous choice 1is of 1little interest; the
value of ¢ (which 1in 1itself depends on the relevant test
statistic) however small it is, will seldom be set equal to

Zero.
3.5. THE IMPORTANCE AND THE ROLE OF ¢.

To calculate the pretest estimator the researcher first
performs a pretest on the sample information at hand. 1If the
researcher subjectively selects ¢ equal to zero or one on the
basis of his pretests, then this implies a corresponding choice
of AN of one or zero respectively. Since the critical value of
the pretest is chosen subjectively, this selection is
subjective. In this sense, the researcher is implicitly choosing
the weights as one and zero on the basis of his personal belief

(¢) as affected by the outcome of the pretest.

Based upon Jeffreys' rule for a theory of inductive

|

inference we do accept inductive inference in some sense; we
have a certain amount of confidence(¢) that it will be right in

any particular case, though this confidence does not amount to
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logical certainty' [Zellner, 1971, pp 8]. Yet, unfortunately,
this(certainty) is what most researchers assert when they go

through pretesting procedures.

If the researcher is not restricted to a zero-one choice for
¢, the corresponding choice of A is no longer dichotomous; it is
a continuous function of ¢ (his subjective probability). This
way of viewing the pretest procedure suggests a generalization
based on using the pretest to produce a value of ¢ which is not

restricted to the values of one or zero.

The resulting estimating formula, referred to as the
generalized pretest estimator (GPE), 1is one in which the
weights, A and ¢ are continuous functions of the pretest
statistic and this this 1is in general respect similar to the
Stein estimator. This similarity to the Stein estimator raises
the hope that its sampling properties may be preferable to those
of the traditional pretest estimators. One aim of this thesis is

to investigate this by means of a Monte Carlo study.

Note that the introduction of the sﬁbjective probability(¢)
into the analysis is crucial, since this is what circumvents the
dichotomy inherent in traditional pretesting procedures. Since ¢
is calculated as an objective function of the pretest statistic,
this procedure is consistent with standard practice in classical
statistics, in spite of having a Bayesian flavour. The analysis
is not really a Bayesian one. All it does 1is to employ a

Bayesian-like justification for structuring the generalized
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pretest estimator. Therefore, this novel formulation must be
viewed as an extension or generalization of the usual pretest

methodology.

3.6. COMPUTING PHI FROM THE DENSITY FUNCTION(THE BIVARIANCE
CASE)

Since we cannot calculate the generalized pretest estimator
without a means of estimating the value of ¢, the development of
a procedure for calculating ¢ is required. The probability(¢)
that the degree of heteroskedasticity is such that the ordinary
least squares estimator outperforms the 2SAE is computed as the
area under the posterior distribution of gamma in a specified
range of gamma values. Gamma(y), it will be recalled, 1is the
ratio 0,2/0,2 where 0,2 and 0,2 are the true error variances.

The procedure is carefully explained below.

To operationalize the generalized pretest estimator and
hence produce a' smoothed' version of the traditional pretest
estimator, we must first recall that Taylor(1977, 1978),
Gréenberg(1980), Ohtani and Toyoda(1980), Mandy(1984) have shown
that the ordinary least squares estimator is not only superior
to the 2SAE when 4 = 1, but also over some range of gammas quite
close to one. In other words, in the neighbourhood of 7y < v <
7y, the ordinary least squares estimator is superior to the
2SAE. Although the generalized least squares estimator dominates
the ordinary least squares estimator, its estimated

version(2SAE) does not.
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Second, this 1leads us to the notion that the poinf null
hypothesis fhat v = 1 should be respecified as a composite null
hypothesis. That is, Ho : 77 <7 <€ vy,. Thus to estimate ¢ we must
devise a technique to calculate the probability (¢) that y lies

in the specified range.

In developing these ideas further, we need to have some
information about the limiting values of gamma(i.e., ] and 7vy).
We speculate that perfect knowledge of the critical values of
gamma is neither important nor <crucial to our development,
implying that approximate values for these critical values 1is
sufficient for smoothing the pretest estimator. This speculation
is based on the belief that the improved mean square error
property of the generalized pretest estimator is due to its
smoothing of the traditional pretest estimator; its success

stems from the principle of the Stein estimator.

The points of integration, vy; and 14, are taken from the
table constructed by Taylor(1977, pp 505). This table gives
conservative lower and upper gamma values that define the region
within which the ordinary least squares estimator outperforms
the estimated generalized 1least squares estimator(2SAE). The
table 1is computed giving the 1limiting gamma values for the
degrees of freedom for cases when N, = N,. Taylor(1978, pp 669 -
671) further showed that these values‘from the table are good
approximations to the true values of the lower and upper values
of gamma. We, therefore, make use of these values for the Monte

Carlo experiments in this thesis.
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Zellner (1971, pp 107), using an ignorance prior computed the
posterior density function(distribution) of gamma. This

posterior distribution of gamma is written as:

plyly) = cly(N1=2)/2) 14, "1/21

[(Y," Y,+y Y,' Y,-H,' H, 'H,) (Na*N=K)/27 . ...(3.18).

where C 1is the constant of proportionality(or a normalizing
constant), N, and N, are the sizes of the two subsamples, K is
the number of independent variables, H,; = X,' X,+9X,' X, and

Hz = X1' Y1 + 7X2' Yz.

With this relevant information, the probability(¢) that the
nature of heteroskedasticity is such that the ordinary least
squares estimator outperforms the 2SAE is, therefore, computed
as the area under the above specified density function between
the 1lower and upper gamma values through univariate numerical
integration techniques. Making use of this probability as the
weighting system, the two versions of the generalized bretest
estimator are calculated as specified 1in equations (3.2) and
(3.3) above. Note that the probability(¢) is a continuous
function of the available data and hence the generalized pretest
estimator is a continuous function of the data. It is hoped that
its non-dichotomous nature will make it a superior pretest
estimatqr. Its risk improvement wupon the traditional pretest
estimator is due to the fact that the weighting system 1is a

continuous rather than a discontinuous function of the sample
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data.

3.7. COMPUTING PHI FROM THE DENSITY FUNCTION(THE MULTIV ARI ANCE
CASE)

The discussion above refers exclusively to what we have
called the bivariance case, in which the variance of the error
term takes one of two values. We examine now a variant to which
we refer as the multivariance case, in which the variances of

all error terms are different.

Suppose that the functional form of heteroskedasticity(for

the multivariance case) is known to be:

0t2=KXt 6.0...-0--o.o'oc.l...'oooo---oloc-o--o --0-000(3-19)-

In this case , Hp: 8 = O(homoskedasticity) and the alternative
is Hy: 8 # O(heteroskedasticity).

The ordinary least sqguares estimator is superior to the 2SAE
over some range of § values close to zero. In the region between
the lower delta($)) and the upper delta(é,) values, the risk of
the ordinary least squares estimator is smaller than that of the
2SAE. The above point null hypothesis is replaced by a composite
null hypothesis, namely the range of delta values between 81 and
dy- In this way, the probability(¢) that the null hypothesis is
- true can be calculated as the area under the posterior density

function of delta between 6, and §.
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A common estimating technique used for calculating § 1is to
regress the 1logarithm of the squared residuals(using the
residuals from the ordinary least sqQuares regression on the
original data) on an intercept and the logarithm of the
explanatory variable X (i.e.,1nU;? =1nK+8lnX +V ).' A problem
with this estimator is that the resulting error term from this
regression has non-zero mean and 1is both heteroskedastic and
autocorrelated. However, if the e; are normally distributed and
if ;t converges in distribution to ¢, then, asymptotically, the
Vi will be independent with mean and variance given by
Harvey(1976)' [Judge et al(1985), pp 440)]. Since the efficiency
of the parameter estimates from the model depends on the nature
of the estimators of the error variances, a great deal of effort
has been put into developing techniques that are wused to
estimate the heteroskedastic variances in linear models. Among
the intensive researches in this area are Nozari(1984), Horn,
Horn and Duncan(1975), Chew(1970), Hartley, Rao and
Kiefer(1969), Duncan(1966), Mandel(1964), Duncan and

Carroll(1962).

In the estimation of the heteroskedastic error model, the
selection of the heteroskedastic error structure has been found
to be of 1little importance; the choice of the error structure
can be undertaken on the basis of estimation convenience.
Surekha and Griffiths{1984) observed that the efficiency of the
2SAE for f rests more on the choice of estimator and sample size

than it does on specification of the correct variance structure.
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Judge et al(1985, pp 455) concluded that 'in summary, a choice

between variance structures such as oy?=Z;'e , oy %= (Z.'«)?, and

ot? = exp{Zi'e) is not likely to be very important providing
estimators with poor properties are avoided'. Note that zi' = [1
lnxt]

Taking a Bayesian view, the OLS estimation of & described
above produces a posterior distribution for § centred at & and
with variance given by Var(S) = the lower right hand element of
4.9348[Zzyz:' )71 Harvey(1976), pp 461 - 466) taking the form of
a t-distribution. In our analysis, the probability(¢) has been
calculated by wusing Fortran NAG routines to perform the
appropriate integral of this density function of 5. In
performing this integration, the critical values of §; and §,
must be known. For the same reasons as given above for the
bivariance case, we speculate that approximate values for §; and
8, will suffice. To obtain these approximate values, a series of
mini Monte Carlo studies were performed to compare the risk
functions of both the ordinary least squares estimator and the
2SAE. In performing these mini Mdnte Carlo experiments,
different wvalues of & quite close to zero were used in
generating the heteroskedastic data. To this data, we applied
both the OLS estimator and the 2SAE and calculated their
relative mean square errors. By so doing we obtained approximate
values of & that define the parameter space within which the OLS
estimator dominates the 2SAE. Note that in theory this can be

done in an actual study so 1long as the functional form of
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heteroskedasticity is assumed. Two delta values (& and §,) were
obtained to represent the boundaries of the region beyond which
the estimated generalized least squares estimator(2SAE) begins
to outperform(using the MSE criterion) the unrestricted least

squares estimator.

3.8. COMPUT ING PHI USING THE POSTERIOR ODDS RATIO(THE
MULT IV ARI ANCE CASE)

A second technique suggested for computing ¢ in the
multivariance case is a suggestion of Villegas(1986) for
calculating the posterior odds ratio in the context of a point
null hypothesis versus a composite alternative hypothesis. As
noted earlier, for the case of a point null hypothesis versus a
composite alternative hypothesis, the Bayesian technique
requires an informative prior for the calculation of the
posterior odds. This requirement renders the use of the Bayesian
approach unpalatable to non-Bayesians; an 'objective' subjective

probability for the null hypothesis cannot be calculated.

Villegas(1986) has suggested a way around this dilemma. He
proposes truncating the diffuse prior at levels above which and
below which everyone can agree that there is zero probability
that a parameter would lie. He notes, for example, that the mean
height of humans must lie above zero and below that height at
which the oxygen content of air can no longer sustain life. This
truncation of the diffuse prior allows him to develop the

following formula for the posterior odds of a point null
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hypothesis versus a composite alternative hypothesis in the
regression context. Using the results from the OLS regression of
the logarithm of the squared residuals on an intercept and the
logarithm of the explanatory variables, compute the probability

that 6 is not equal to zero as:

prob(s # 0) = 1/(1 + e(A=BY/2) . L iiieiee....(3.20).

where

o
n

(mxn)022/02+21an2/2ﬂ+ 2lnﬂ.........IIIII......'I...(3I21).

'B= (mxn)012/02+1an2/27l’+21n2...........................(3.22)-

m = number of replications,

n = sample size,

K = arbitrary number(set equal to 10), where K/2 is the number
of - standard deviations from the mean that it is felt reasonable
to truancate the diffuse prior,

0% = 4.9348(by Harvey's(1976) calculation),

0,2 = SSE/n from the OLS regression of lne? on a constant and
1nX, where e is the residual from the OLS regression of Y on X

and a constant, o0,% = Z(zi2 - E)Z/n, from the OLS regression of

lne on a constant.
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CHAPTER 1V

STRUCTURING THE MONTE CARLO EXPERIMENTS
4. 1. INTRODUCTION

In this chapter, we outline the strategy and structure of
the experimental design for the experiments to discover the
sampling properties of the generalized pretest estimator(GPE)
and other traditional estimators. The design is constructed in
such a manner so as to be comparable to previous Monte Carlo
studies [Goldfeld and Quandt(1974); Breusch and Pagan(1979);
Buse (1984)]. | '

The estimators considered are those discussed at the end of
this chapter. The first three estimators(the ordinary least
squares estimator, the 2SAE and the traditional pretest
estimators) have been included in the Monte Carlo study because

they correspond to what researchers most often employ.

4.2. THE MODEL SPECIFICATION FOR HETEROSKEDASTICITY
In. keeping with most Monte Carlo Studies examining
heteroskedasticity , we assume the data to be generated by a

single explanatory variable such that,
Yt = 61 + Bzxt + Utl ® 8 0 5 5 & 5 5 B 8 O B ¢ PP TS P L S OB e PG SN S e LI (4. 1 ) L]
where Ut ~ N(O, atz ) S 5 5 & 5 0 0 & 0 8 0 B O O S SO S S S BB SO OO 000 O S S e (4.2) L]

With this model specification and the distribution of the error

term, two different types of heteroskedasticity structures were
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considered, mainly the bivariance and the multivariance cases.

In the sampling experiments, with the linear model(4.1) as
specified above, we began with a sample size of 20 and then
considered the sample size of 40 and 80(by replication). A
single explanatory variable was used for simplicity-and
By = 0.025 and B, = 0.0025. The choice of the <coefficients g,
and B, is irrelevant since the joint distribution of the U; does
not involve them[Breusch and Pagan(1979). Moreover, for the
bivariance case the X values for the two halves of the sample
are generated so that they are identical. This is in 1line with

Ohtani and Toyoda(1980).

For the bivariance case, the distribution of the error term

for each half of the sample is given as,

U2~N(O, 022)000000olo-ouo.uo-u-o--ol- uooo-looo-loluo4o4)-

For the multivariance case, the distribution of the error

term Uy is such that,

Ut ~ N(O, Otz)-.-----...--..----.-..-..---...---.-.--(4.5).

Otz = (!Xta...........................................(4.6).

where 8§ = 0 corresponds to homoskedasticity.
The experiments are repeated for several values of § between

minus two(-2) and two(2).
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The 1log-normal distribution 1is wused to generate the
regressor values [Buse,(1984)] . The contention is that 'by and
large heteroskedasticity is a cross-section phenomenon and 1in
this context the data are almost invariably skewed. The uniform
distribution does not, therefore, seem particularly
relevant'[ Buse(1984), pp 207-208]. See also Goldfeld and
Quandt(1972), and Harvey and Phillips(1974)

The values of the regressor are identical 1in repeated
samples and are drawn from the log-normal distribution with mean
3 and variance 1. Three different sample siées of 20, 40 and 80
are used and the sample sizes of 40 énd 80 are obtained from the
sample size 20 by replication. Six hundred different samples for
each sample size were generated and used in all the experiments.
Lovell(1983) observed that 25 replications gave basically
identical results as 50. In view ¢f this, it seems that the
number of replications is not the crucial issue in the sampling
experiments; the choice of 600 as the number of replications in
thel current study 1is arbitrary, but judging by the arbitrary
number chosen by others for their Monte Carlo studies, our
choice is unexceptionable. All comparisons are carried out using
the relative mean square errors of all competing

estimators(relative to mean square error of the GLS).
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4.3. THE PROCEDURE

In order to operationalize the Monte Carlo experiments
described above, Fortran programmes have been written. The
subroutines such as AVGE2, VRANC2, TRANSG, CLUHAG, TRANS1,
TRANS2 and TRANS3 can easily be derived from their corresponding
counterparts and, therefore, have not been included 1in the
appendices. In generating the variables used for all
experiments, NAG Fortran Library Routines GO5DEF,GO5CBF and
GO5DDF " are used. For the calculation of the OLS and the EGLS
estimates, other NAG Fortran Library Routines such as
FO1CKF,FO1AAF,and FOICDF are utilized. Other relevant and
necessary subroutines have been written to implement the Monte
Carlo experiments. The detailed Fortran programmes for the Monte

Carlo study in this thesis are provided in appendix A and B.
4.4. AN ARRAY OF COMPETING ESTIMATORS

The general mathematical form of the generalized pretest

estimator is given as:

B(GPE) = §BO0LS + (1 - §)B2SAE i (407D
where

B(GPE) = the generalized(smoothed) pretest estimator.

BOLS = the ordinary least squares estimator.

p2SAE - The Two-Stage Aitken estimator.
For the traditional pretest estimator § = I[O’c)(U), an
indicator function taking on the value of one if U, a test

statistic, falls in the range subscripted and zero otherwise. In
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what follows, the various versions of the generalized pretest
estimator and all other competing estimators considered here are
described. The descriptions are separated into two categories:

the bivariance and the multivariance cases.

4.5. THE BIVARIANCE CASE.
The first of these structures we refer to as the bivariance
case, in which the data are broken into two sub-sections leading

to the specification of the general linear regression model as:
Y1 =ﬁ1 +62X1+U]------o--oo-.--.---oo-oo--oo.oc--o----(4-8)-
Y2=61 +62X2+Uz.‘..............................7'...(4.9).

where the notation is traditional.

U1~N(0, ajz)oooc-o--.---o-ooc--------o. -a--o--o--oc-(4o10)o

U2~N(0, 022)............-.--........... -0010-0000000(4-11)-

with 0,2 # 0,2 and 0,%/0,% = 7.

The estimators compared are:

(1). OLS :- The ordinary least squares estimator.

(2). 2SAE :- The OLS estimator is used to compute the variance
of the error term for each half of the sample data as S;2 and
S,2. To obtain S,2 and S,%, two ordinary least squares
regressions are run on the two halves of the data separately.
From these regressions the residuals from the first and second

sub-samples are used to compute S,? and S,? respectively. The
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first and the second halves of the data are then transformed by
dividing both the dependent and the independent variables by the
square root of S,2 and S,%, respectively. Finally, the
application of the OLS estimator to this transformed data

results in the estimator referred to as the 2SAE.

(3). BPT :-This 1is the pretest estimator(combining the OLS
estimator and the 2SAE) that results from using the Goldfeld and
Quandt F-test statistic in testing for the ©presence of

heteroskedasticity at the 5% significance level.

(4). BPTGB :This estimator is an 'improved' version of BPT, in
which the pretest tests not for the existence of
heteroskedasticity, but instead for the existence of
heteroskedasticity of sufficient magnitude to render the 2SAE
superior to the OLS estimator. Taylor(1977, pp 505-6) notes that
the statistic v,5,2%/v,S,%y ~ F(v,, v,) can be used for this
purpose, where 7y takes on the relevant critical values 7y} and 7,
from the Taylor(1977) table and v, and v, are the corresponding
degrees of freedom. 1If for 7y, this statistic is less than the
critical value obtained from the F-tables, and if for +vy; the
inverse of this statistic is greater than the inverse of this
critical F-value, § takes the value of one and BPTGB is
equivalent to the ordihary least squares estimator, otherwise, §
assumes the value of zero and hence BPTGB 1is 1idential to the

2SAE.

(5). BPTB :-The probability(¢) that the degree of

53



heteroskedasticity is such that the ordinary 1least squares
estimator dominates the 2SAE 1is computed by integrating
Zellner's(1971) posterior density function for +y between the
relevant «critical y values taken from Taylor(1977) . Using this
probability as §, the ordinary least squares estimator and the
2SAE are combined in a non-dichotomous fashion to form this

'smoothed' pretest estimator.

(6). GPESB :- 1In the theoretical model formulation in Chapter
three, a weighting system, A, was developed, calculated as a
function of ¢. Using the value of A as § estimated by using the
value of ¢ from (5) above, GPESB combines the ordinary least
squares estimator and the 2SAE as another 'smoothed' version of

the generalized pretest estimator.
4.6. THE MULTIV ARI ANCE CASE.

The second heteroskedasticity structure considered 1in this
thesis is the one we have referred to as the multivariance case.
For this case the distribution of the error term is such that
Ut ~ (0, o0¢2) and o2 = aXc®; where § = 0 corresponds to
homoskedasticity. Different values of § are used for the

experiments.

The estimators compared are:

(1). OLS :- The ordinary least squares estimator.

~

(2). 2SAEM :- In this case, § is estimated by regressing the

logarithm of the squared OLS residual on the logarithm of the
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explanatory yariable. Both the dependent and the independent
variables are transformed by dividing through by the square root
of th. The 2SAEM is calculated by dcing an OLS regression on

the transformed variables.

(3). BPT :- This is the traditional pretest estimator using the
Goldfeld and Quandt F-test statistic, identical to (3) for the
bivariance case(i.e., it selects between the OLS estimator and
the 2SAE). Note that BPT is included so that we can examine the
impact of erroneously assuming that the heteroskedasticity is

bivariate rather than multivariate.

(4). BPT1 :- This is the traditional pretest estimator using the
Goldfeld and Quandt F-test statistic, identical to (3) for the
bivariance case, however, it selects between the OLS estimator

and the 2SAEM.

(5). BPTT : This is the traditional pretest estimator using the

usual t-test on the estimated value of 3.

(6). BPTGM :This estimator is an 'improved' version of BPTT, in
which the pretest(as for BPTGB) tests for the existence of
heteroskedasticity of sufficient magnitude to render the 2SAEM
superior to the ordinary least squares estimator. A mini Monte
Carlo study is used to estimate the relevant values of 3(61 and
6y,) and a t-test is employed to test whether 5 lies between
these values. If this hypothesis is accepted on the basis of the

t-test, ¢ assumes the value of one and the ordinary least

squares estimator 1is wused. However, if the test shows that $
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lies outside this region, § takes on the value of zero and the

2SAEM is used instead.

(7). BPTM :- Assuming that the posterior density of 5 is a
t-distribution with mean 5 and its variance is given by
Harvey(1976) as 4.9348(zt‘zt)'1, the probability that the degree
of heteroskedasticity is such that the ordinary 1least squares
estimator 1is superior to the 2SAEM is estimated by integrating
this t-density function for 5 between 81 and §,. Using this
probability as ¢, the ordinary least squares estimator and the
2SAEM are linearly combined into the 'smoothed’ pretest

estimator. It is the multivariance counterpart for

BPTB(bivariance).

(8). GPESM :This version of the generalized pretest estimator is
the multivariance counterpart for GPESB(bivariance). § is
calculated using the formula for A given earlier, where ¢ is
computed from the integration of the density function for & as

described in (6) above.

(9).' BPE :- The probability(¢) associated with the null
hypothesis 1is calculated via the posterior odds ratio technique
developed by Villegas(1986). Setting § equal to this value, the
ordinary least squares estimator and the 2SAE are combined to

form BPE.

(10) .GPEV :- This is GPESM(as described in 8 above) caculating A
by using the ¢ computed using the posterior odds ratio technigue

of Villegas.

56



(11). BPTBM :- This 1is the version of the smoothed pretest
estimator that results when the researcher decides to apply the
bivariance technique of calculating ¢ to the data suspected of
having multiplicative heteroskedasticity. It is accomplished
first, by wusing this technigue to calculate the probability(¢)
that heteroskedasticity 1is such that the OLS estimator
outperforms the 2SAEM. Second, BPTBM linearly combines both the

OLS estimator and the 2SAEM by using this value of ¢.

Note that the difference between GPESM and GPEV is that
while GPESM utilizes the ¢ calculated from the integration of
the posterior density function for 5 in computig the weighting
system, A, GPEV wuses- the ¢ derived from the method for
calculating the posterior odds ratio which was developed by

Villegas(1986).
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CHAPTER V

COMPARISONS OF RELATIVE MEAN SQUARE ERRORS
5.1. THE BIVARIANCE CASE: -

We begin the analysis of the results with the sample size of
20. In Table 5.1 the values of the relative mean square errors
of all competing estimators are presented as a function of the
variance ratio v(y = 0,%/0,%). Consider the characteristics of
the traditional pretest estimator(BPT). As evident from Table
5.1 and Figure 5.1 respectively, as vy diverges from one the risk
function of the traditional pretest estimator(BPT) rises
continuously for some time, reaches a maximum and then gradually
declines approaching the risk function of the 2SAE in value. The
farther v diverges from one, the hypothesis of equal variances
is rejected more often and hence the pretest estimator selects
and uses the 2SAE more often than it selects the ordinary least
squares estimator. 1In this way, its risk function continues to
decrease in magnitude, approaching the risk function of the
2SAE. As v tends towards 1(i.e., for gy values between 0.70 and
1.75) the traditional pretest estimator(BPT) has a smaller
relative mean square error than the 2SAE. In this region of the
parameter space, the relative mean square error of BPT is quite
close to that of the ordinary least squares estimator. The
explanation of this phenomenon is that in this region(the region
between 0.70 and 1.75), the pretest accepts the null hypothesis

most often and, therefore, selects the ordinary least
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TABLE 5.1

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(5% SL).

(THE BIVARIANCE CASE:- SAMPLE SIZE - 20).

GAMMA
0.10
0.15
0.35
0.50
0.80

1.50

6.00
10.0
15.0

20.0

OLS

3.0769
2.2382
1.3147
1.1327
1.0148
1.0000
1.0251
1.0374
1.2143
2.0127
2.9740
4.1895

5.4091

2SAE

1.0604
1.0673
1.0741
1.0751
1.0772
1.0790
1.0827
1.0836
1.0901
1.0926
1.0854
1.0760
1.0682

GPESB

1.1393
1.1608
1.1291
1.0862
1.0328
1.0216
1.0322
1.0388
1.1335
1.2158
1.1813
1.1778

1.1689

BPT

1.2562
1.3391
1.2100
1.1596
1.0532
1.0388
1.0432
1.0572
1.1604
1.3328
1.2760
1.2257

1.1773

BPTGB

1.7569
1.7505
1.3279
1.1432
1.0296
1.0018
1.0232
1.0444
1.2190
1.5749
1.8387
1.8148
1.7562

BPTB

1.0954
1.1021
1.0856
1.0671
1.0482
1.0453
1.0509
1.0535
1.0854
1.1367
1.1458
1.1231

1.1116
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Sample Size = 20
Bivariance Case
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FIGURE 5.1:

(Logarithmic scale)

RELATIVE MSE OF COMPETING ESTIMATORS
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sgquares estimator and uses it to estimate the parameters more
often than it uses the 2SAE. In this range, BPT dominates the
2SAE. This finding confirms the conclusions of Taylor(1977,

1978), Greenberg(1980), Toyoda and Ohtani(1980) and Mandy(1984).

The ordinary least squares estimator attains the smallest
relative mean square error when ¥ is 1. In this case, since
there is no heteroskedasticity, the ordinary least squares
estimator achieves its minimum variance and hence maintains its
BLUE properties. Above all, it has a smaller relative mean
square error than all the other competing estimators between «
values very close to 0.80 and 1.65. However, the range within
which it dominates BPTB is smaller, and still smaller for GPESB.
Even though the ordinary least squares estimator possesses this
attractive power of retaining its BLUE properties over all the
other competing estimators for y = 1 its relative mean square
error becomes very large either as 4y tends towards 0 or =, That
is, as the null hypothesis becomes more and more false(i.e., the
severity of heteroskedasticity increases), even though it
maintains its property of unbiasednecs, its variance estimator
is no longer efficient. Kennedy(1985), pp 96 - 97 notes that
'the higher absolute values of the residuals... indicate a
positive relationship between the error variance and the
independent variable. With this kind of error pattern, a few
additional large positive errors near the right... would tilt
the OLS regression 1line considerably. A few additional large

negative errors would tilt it in the opposite direction
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considerably. In repeated sampling these unusual cases would
average out, leaving the OLS estimator wunbiased, but the
variation of the OLS regression line around it§ mean will be
greater, 1i.e., the wvariance of gOLS  will be greater'. This
explains why the relative mean square error of the ordinary
least sqQuares estimator rises continuously as the severity.of
heteroskedasticity increases. It is, therefore, outperformed by
the 2SAE outside the region of the parameter space defined

approximately by 0.60 and 1.80.

The mean square error functions of all the pretest
estimators(both traditional and smoothed) have the same basic
shape for the reasons discussed earlier. The level of
significance is 5% as given earlier in the previous Chapter.
Note, however, that the smoothed pretest estimators have flatter
relative mean square error functions than the traditional
pretest estimator. The various versions of the generalized
pretest estimator can be viewed as competing alternatives to the
traditional pretest ‘estimator because even though they do not
outpérfofm the traditional pretest estimator over the whole
parameter space, they do outperform it over a large portion of
the parameter space. For v values quite close to one the
traditional pretest estimator outperforms all the various
versions of the smoothed pretest estimators with exception of
GPESB which dominates the traditional pretest estimator over the
whole parameter space(more will be said about this below). 1In

view of this, the choice of estimator for estimation purposes
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depends on  one's prior view of the severity of
heteroskedasticity. If one's prior is concentrated quite close
to one, then the OLS estimator or the traditional pretest
estimator would be preferred to the smoothed pretest estimators

and the 2SAE.

Greenberg observes that "any a priori information concerning
v possessed by the researcher may be used to determine which
estimator has the smallest variance in the range of y considered
to be reasonable. If a prior distribution for vy is available,
the choice may be based on Bayes' risk of each éstimator"
[Greenberg(1980), PP 1811]. This choice of estimator is
therefore made easier 1if the researcher has 'good' prior
information about the magnitude of the wvariance ratio. For
example, if the researcher's prior distributuion is concentrated
in an area close to ¥ = 1, then the best choice is the ordinary
least squares estimator. Similarly, if the prior distribution
for y places substantial weight outside the approximate interval

0.50 < ¥ £ 2.0, then the 2SAE appears to be the best choice.

There exist cases 1in which the researcher possesses prior
knowledge about higher magnitudes of the variance ratio(y). For
example, Taylor(1977) states that it is possible to have large ¥
values in cross-section data since in this case aggregates of
great differences and sizes are under consideration. In these
situations, it should be expected that the 2SAE would perform
better than the ordinary least squares estimator and should,

therefore, be preferred to it[Taylor(1977), pp 504 - 505]. It
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clearly also should be preferred to the smoothed pretest

estimators.

The most interesting case occurs when one's prior belief
concerning the degree of heteroskedasticity 1is completely
diffuse, presumably the case of most interest to non-Bayesians.
In this case the choice of estimator can be based on various
criteria described as follows. First, as noted in Wallace(1976),
pp 439, the researcher can consider the overall performance of
each estimator bf comparing the differences between the relative
mean square error functions of all competing estimators
integ;ated over all values of 4. In terms of Figure 5.1 this
implies choosing that estimator whose relative mean square error
function has the smallest area under it. Using this criterion,
Figure 5.1 suggests that the 2SAE is the best choice. Note also
that it also suggests that the smoothed pretest estimator is
preferred to the traditional pretest estimator. Second, as also
noted by Wallace, the comparison of estimators can be undertaken
by using the 'minimization of the maximum regret' criterion. In
terms of Figure 5.1 this implies choosing the estimator with the
smallest maximum height. Once again, Figure 5.1 suggests that
the 2SAE is the estimator of choice, and that the smoothed
pretest estimator 1is superior to the traditional pretest

estimator.

It seems reasonable, however, that the prior distribution on
vy is not diffuse. Wallace, for example, notes that 'such priors

may be too conservative 1in the direction of large #(which is
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denoted as vy in this thesis), since the very fact that the
investigator is interested in a particular set of restrictions
presupposes that he must have a prior belief that 6 is small,
although this is not always the case'[Wallace T. D.(1977), pp
438]. This would tend to make the choice between the smoothed
pretest estimator (BPTB) and the 2SAE less obvious. Clearly the
smoothed pretest estimator is an attractive alternative to the
2SAE and seems under reasonable circumstances to be more
preferrable to the traditional pretest estimator. Note that 6 is

the variance ratio and is denoted as v in this thesis.

It is'interesting to note that at the 5% significance level,
GPESB dominates the traditional pfetest estimator completely
over the whole parameter space for the sample size 20. This
dominance does not hold for the sample sizes 40 and 80. This
suggests that for small sample sizes the traditional pretest
estimator should never be employed when significance tests are
performed at the 5% level. As the sémple size becomes larger,
the traditional pretest estimator (BPT) improves because with a
largér sample size a 'better' estimatebof vy must outweigh the
impact of the improvement for GPESB in estimating A (and +v) as

the sample size grows. This is a surprising result.

Table 5.2 and Figure 5.1B show the relative mean square
errors and their corresponding graphs for all competing
estimators when the F-test was performed using 1% as the
significance 1level. As evident from these results, the relative

mean square errors of the traditional pretest estimator(BPT),
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and its modified version(BPTGB) are larger for high values of 1«
than they were when the 5% significance level was used, for low
values of v, as illustrated in Figure 5.1B. This result |is
exactly what would have been expected, following the logic of
Toyoda and Wallace(1976). Thus, as the level of significance
tends towards zero the risk function of the traditional pretest
estimator tends towards that of the restricted least squares
estimator. On the other hand, as the chosen 1level of
significance tends towards one, the risk function of this
estimator gradually approaches that of the unrestricted(OLS)
least squares estimator. It must be stated clearly that at the
1% significance level, GPESB no longer domonates the traditional
pretest estimator completely. Note, however, that the level of
significance does not affect the performance of any of the other
competing estimators, in particular the 'smoothed' pretest
estimator. This could be viewed as an advantage of the smoothed
pretest estimator relative to the traditional pretest estimator,
since a researcher would not have the additional dilemma of

arbitrarily choosing an 'optimal' significance level.
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TABLE 5.2

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(1% SL).

(THE BIVARIANCE CASE:- SAMPLE SIZE - 20).

6.00
10.0
15.0.
20.0

OLS

3.0769
2.2382
1.3147

1.1327

—y

.0148

—y

.0000
1.0251

—_

.0374

—_

.2143
2.0127
2.9740
4.1895

5.4091

2SAE

1.0604
1.0673
1.0741
1.0751
1.0772
1.0790
1.0827
1.0836
1.0901
1.0926
1.0854
1.0760
1.0682

GPESB

1.1393
1.1608
1.1291
1.0862
1.0328
1.0216
1.0322
1.0388
1.1335
1.2158
1.1813
1.1778

1.1689

BPT

1

1

1

1

.3041
.5891
.3189
. 1442
.0297
.0184
.0382
. 0505
. 1965
.5144
.6594
.6066
.4488

BPTGB

2.3641
2.0957
1.3173
1.1408
1.0160
1.0037
1.0266
1.0389
1.2162
1.7097
2.3715
2.4973

2.5236

BPTB

1

1

1

1

1

1

1

1

.0954
.1021
.0856
.0671
.0482
.0453
.0509
.0535
.0854
. 1367
. 1458
. 1231

L1116

67



Sample Size = 20
Bivariance Case
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FIGURE 5.1b: RELATIVE MSE OF COMPETING ESTIMATORS
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Table 5.3 contains the relative mean square errors of all
competing estimators(for the sample size of 40). These are
stéted as functions of the variance ratio. Figure 5.2 portrays
the graphs of the relative mean square errors of these
estimators. The shapes and the relationships among these
estimators are similar to those discussed above for the sample
size of 20 and, therefore, suggest no changes in our
conclusions. Note that in general the relative mean square
errors of the competing estimators are smaller than those they
attained for the sample size of 20. This means that as the
sample size increases, the efficiency of each competing
estimator improves. This makes sense because as the sample size
increases, the variance-covariance estimator of the 2SAE becomes

as efficient as that of the GLS estimator.
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TABLE 5.3

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(5% SL).

(THE BIVARIANCE CASE:- SAMPLE SIZE - 40).

10.0

15.0

20.0

OLS
2.9205
2.1353

"1.2752
1.1090
1.0077
1.0000
1.0360
1.0506
1.2477
2.1063
3.1342
4.4301
5.7310

2SAE

1.0399
1.0450
1.0707
1.0780
1.0852
1.0874
1.0889
1.0889
1.0851
1.0654
1.0505
1.0393
1.0323

GPESB

1.0520
1.0728
1.1286
1.0966
1.0367
1.0270
1.0477
1.0569
1.1501
1.1258
1.0509
1.0335
1.0338

BPT

1.0686
1.0802
1.1710
1.1160
1.0511
1.0487
1.0590
1.0687
1.1841
1.1364
1.0505
1.0393
1.0323

BPTGB

1.1180
1.2061
1.2458
1.1248
1.0075
1.0000
1.0513
1.0647
1.2279
1.1336
1.2057
1.0427
1.0323

BPTB

1

1

1

1

1

.0396
.0566
.0873
.0830
.0611
.0561
.0645
.0682
.0989
.0864
.0524
.0409
.0329
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Sample Size = 40
pivariance Case

] '
RELATIVE || :
MEAN
SQUARE 1 |
ERROR { 1 oLS
' I
\ !
! i
1 { 1
1 !
\ )
\ ]
< ‘ ’
1
4 1 !
3 i
1 |
[ i
1.33
\ b
\ !
\ !
\ !
d 1 {
\ !
\ !
BPTB \ 4 BPT
1.25 \ }
)
. \ b-"\.
o’ -” \.\0 \\ I’.'.‘.n\
P4 o/, °
1.12 . e -\ ,‘, [ o.\.\
ol IR L N ,1 GPESB ‘%)
. .’ .p' . A\ " l - \
rd 4 . _--- @ - '
1.08 V”:..‘.. Y. \ s -- ,r) ~~~:\ c..
- '/a ",\% ) \~\\
SR e \-—, /4 - ‘...
* - et . / DL
f"o" T -\ 0... , ~\q
1o 2SAE " - )
0.10 0.15 0.35 1.0 ' 2.50 10 20

(Logarithmic Scale)

FIGURE 5.2: RELATIVE MEAN SQUARE ERRORS OF COMPETING ESTIMATORS

71



For the sample size of 40 a corresponding pretest was
carried out at 1% significance level. The results are specified
in Table 5.4 and the relative mean square error functions are
portrayed in Figure 5.2B. Since the conclusions arrived at for
the sample size of 20(at the 1% signicance level) do not differ
from the results obtained for the sample size of 40, they do not

need any further elaboration.
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TABLE 5.4

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(1% SL).

(THE BIVARIANCE CASE:- SAMPLE SIZE - 40).

GAMMA

0.10
0.15
0.35
0.50

1.40
1.50

10.0
15.0
20.0

OLS

2.9205
2.1353
1.2752
1.1090
1.0077
1.0000
1.0360
1.0506
1.2477
2.1063
3.1342
4.4301

5.7310

2SAE

1.0399
1.0450
1.0707
1.0780
1.0852

*1.0874

1.0889
1.0889
1.0851
1.0654
1.0505
1.0393
1.0323

GPESB

1

1

1

.0520
.0728
. 1286
.0966
.0367
.0270
.0477
.0569
. 1501
.1258
.0508
.0335
.0338

BPT

1.0924

1.1554

1.2261
1.1339
1.0294
1.0135
1.0502
1.0638
1.2091
1.2468
1.1435
1.0391
1.0323

BPTGB

1.2890
1.5560
1.2768
1.1230
1.0077
1.0000
1.0354
1.0634
1.2552
1.5489
1.4278
1.2626
1.0490

BPTB

1.0396
1.0566
1.0873
1.0830
1.0611
1.0561
1.0645
1.0682
1.0989
1.0864
1.0524
1.0409
1.0329
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Sample Size = 40
Bivariance Case
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Table 5.5 and Figure 5.3 contain the estimates of the
relative mean square errors and the graphs of these functions of
all competing estimators under consideration for the sampie size
of 80, respectively. These results confirm the results for the
sample sizes of 20 and 40. Though the corresponding graph has
been drawn for the sample size of 80, due to the fact that most
of these relative MSE estimates for all estimators are very
close to each other, the vertical scale was slightly modified.
Even though the scale used in drawing the graphs for the sample
size of 80 is different from that used for the sample sizes of
20 and 40, the differences in the relative performance of all

competing estimators stand out conspicuously.
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TABLE 5.5

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(5% SL).

(THE BIVARIANCE CASE:- SAMPLE SIZE - 80).

5.00
10.0

15.0

20.0

OLS

3.
2.
1.
1.
1.
1.

1.

1

0623
2290
3116
1309
0143
0000
0259

.0384
.2168
.7817
.9881
L2117
.4396

2SAE

1.0098
1.0134
1.0211
1.0232
1.0235
1.0226
1.0201
1.0194
1.0136
1.0060
1.0011
1.0010
1.0008

GPESB
1.0244
1.0181
1.0328
1.0230
1.0009
1.0000
1.0061
1.0090
1.1236
0.9382
0.9993
0.9992
1.6701

1-

1.

1.

1.

1.

1.

1.

—

BPT

0098
0134
0378
0569
0193
0004
0319

.0447

.0067
.0011
.0010
.0008

BPTB

1.0069
1.0140
1.0252
1.0216
1.0079
1.0018
1.0036
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Sample Size = 80
Bivariance Case
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The results for the pretests conducted at the 1% significance
level for the sample size of 80 are presented in Table 5.6 and
Figure 5.3B. Our conclusions are the same as for the sample
sizes of 20 and 40.

TABLE 5.6

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(1% SL).

(THE BIVARIANCE CASE:- SAMPLE SIZE -~ 80).

GAMMA OLS 2SAE GPESB BPT BPTGB BPTB

0.10 3.0623 1.0088 1.0244 1.0098 1.0098 1.0068
0.15 2.2290 1.0134 1.0181 1.0134 1.0134 1.0140
0.35 1.3116 1.0211 H.0328 1.0897 1.0211 1.0252
.0.50 1.1309 1.0232 1.0230 1.1028 1.0232 1.0216
0.80 1.0143 1.0235 1.0009 1.0065 1.0235 1.0079
1.00 1.0000 1.0226 1.0000 1.0018 1.0226 1.0018
1.40 1.0259 1.0201 1.0061 1.0355 1.0201 1.0036
1.50 1.0384 1.0194 1.0090 1.0456 1.0194 1.0052
2.50 1.2168 1.0136 1.1236 1.0938 1.0163 1.0321
5.00 1.7817 1.0060 0.9382 1.0046 1.0060 1.0000
10.0 2.9881 1.0011 0.9993 1.0011 1.0011 1.0006
15.0 4.2117 1.0010 0.9992 1.0010 1.0010 0.99S5
20.0 5.4396 1.0008 1.6701 1.0008 1.0008 1.0076
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sample Size = 80
Bivariance Case
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In conclusion, Table 5.7 shows the minimum and maximum
variance ratibs(71 and y,) that define the boundaries of the
parameter space over which the ordinary least squares estimator
performs better than the 2SAE as observed from the present Monte
Carlo study results. These values are obtained from Tables 5.1,

5.2 and 5.3 respectively.

TABLE 5.7

THE LIMITING VALUES OF THE VARIANCE RATIO.

N 71 Tu

20 0.50 (0.50) 2.02 (2.09)
40 0.64 (0.61) 1.70 (1.65)
80 0.76 (0.70) 1.40 (1.43)

It is interesting to notice that these values are very close
to the values obtained from Taylor(1977), shown in brackets in

Table 5.7 above.

Recall that BPTGB was developed by using an F-test suggested
by Taylor(1977). This pretest estimator, even though
dichotomous, was expected to be an 'improved' version of the
traditional pretest estimator. Even though it does not

outperform the traditional pretest estimator over the whole
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parameter space its performance is comparable to that of BPT.
Its relative mean square errors have been specified in all the

tables above.

The following Table 5.8 contains the mean values and
variances of phi with their corresponding gamma values. The
characteristics of these ¢ values are what we expect
theoretically. That is, at y values close and equal to 1, we
expect larger ¢ values than when y values are very far away from
1. This is so because at y value of 1(homoskedasticity), a high
weight should be assigned to the null hypothesis. However, as we
move away from homoskedasticity to towards higher degrees of
heteroskedasticity, the null hypothesis becomes more false and
hence the probability(¢) associated with it becomes smaller and

smaller.

Notice that at v equal to 1, the ¢ estimator places
approximately equal weights on both the null and the alternative
hypotheses. This phenomenon is one reason why the risk functions
of the various versions of the smoothed pretest estimator are
not as close to that of the ordinary least squares estimator as
we expected when v is 1. At the other extreme, the ¢ estimator
continuously places small positive weights on the ordinary least
squares estimator as evident from Table 5.8. These ¢ values help
us give some explanation to the performance and the risk
characteristics of the various versiqns of the smoothed pretest

estimator.
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TABLE 5.8

THE MEAN AND VARIANCE OF PHI(¢).

(FOR ALL SAMPLE SIZES(BIVARIANCE CASE)).

GAMMA
0.10
0.15
0.35

0.80
1.00

5.00

10.00
15.00
20.00

MEAN

0.0830
0.1320
0.3273
0.4174
0.4974
0.5106
0.4958
0.4879
0.3895
0.2170
0.0958
0.0571
0.0400

VAR

0.0076
0.0197
0.0493
0.0462
0.0324
0.0291
0.0322
0.0337
0.0436
0.0310
0.0121
0.0062
0.0037

N = 40
MEAN

0.0347
0.0276
0.2006
0.2547
0.5131
0.5323
0.4758
0.4538
0.2479
0.0532
0.0049
0.0009
0.0003

VAR

0.
0.
0.
0.

0

0025
0034
0383

0514

.0364
.0297
.0386
.0420
.0466
.0094
.0002

80

MEAN

0.
0‘

.0046
.0004
.0403
1777
L4701
.5581
.4974
.4587
.3852
0135
0006

.93E-05 0.0001
.73E-06 0.0633

VAR

0.0024
0.0025
0.0045
0.0031
0.0257
0.0223
0.0218
0.0166
0.0278
0.0033
0.0195
0.0129
0.0036
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5. 2. THE MULTIVARIANCE CASE:-

Table 5.9 contains the relative mean square errors of all
competing estimators for the sample size of 20. As expected
(theoretically), the OLS estimator retains its BLUE properties
when 8 = O(homoskedasticity). However, as the degree of
heteroskedasticity increases, it loses this attractive property
and performs very poorly as compared to all the other competing
estimators. That is, its relative mean square error increases
continuously since it suffers from larger and larger variances.
This observation cénfirms the results of the OLS estimator as
described above for the bivariance case. The felative mean
square error functions of all competing estimators are shown 1in

Figure 5.4.

Unfortunatély, the behaviour of the relative mean square
error function of the 2SAEM is not as expected theoretically. We
expected that as the degree of heteroskedasticity increases, the
relative mean sqQuare error of the 2SAEM would take a form
similar to the form it takes in the bivariance case. But the
Monte Carlo results for the multivariance case do not confirm
this observation(Table 5.9 and Figure 5.4). The relative mean
square error of the 2SAEM rises continuously as do the relative
mean square errors of all the competing estimators. One reason
why this occurred may be that the estimator for delta($)
deteriorates as the degree of heteroskedasticity increases. This
high degree of inefficiency in estimating 6 also affects the

parameter estimates of the 2SAEM. That 1is, they are poorly
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estimated. Due to this poor performance of the 2SAEM, all the
other competing estimators do not retain the characteristics and
the shapes of the relatiye mean square errors observed for the
bivariance case. Like the relative mean square errors of the of
the ordinary least squares(OLS) estimator and the 2SAEM the
relative mean square errors of all the other competing
estimators increase continuously[Table 5.9 and Figure 5.4]. Note
that BPE and GPEV perform very poorly. We speculate that the
Villegas procedure for estimating the probability(¢) that the
degree of heteroskedasticity is such that the OLS estimator
performs better than the 2SAEM is inefficient. This procedure
estimates these probabilities very poorly. These poor estimates
of phi and their variances are specified in Table 5.14 below.
The information <concerning BPTT and BPTG is recorded in Table

5.12.
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DELTA

-1.60
-1.40
-1.20
~-1.00
-~0.80
-0.60
-0.40
-0.20
0.00
0.20
0.40

1.00
1.20
1.40

TABLE 5.9

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS (5% SL).

(THE MULTIVARIANCE CASE:- SAMPLE SIZE - 20).

OLS

8.8344
4.5903
3.3894
2.5543
1.9751
1.5780
1.3122
1.1427
1.0446
1.0000
1.0015
1.0246
1.0799
1.1606
1.2681
1.4077
1.5887
1.8254
2.5585

2SAEM

1.3470
1.2179
1.1883
1.1505
1.1275
1.1347
1.1126
1.1157
1.1059
1.1067
1.1207
1.1478
1.1296
1.1392
1.1289
1.1727
1.2034
1.2427

1.5183

BPE

8.0945
4.3993
3.2895
2.5140
1.9539
1.5672
1.3069
1.1395
1.0438
1.0000
1.0014
1.0243
1.0787
1.1575
1.2615
1.3999
1.5728
1.8049
2.5323

GPEV

6.1228
3.4827
2.7565
2.2494
1.8410
1.5368
1.2903
1.1318
1.0438
1.0012
1.0018
1.0245
1.0798
1.1603
1.2676
1.4071
1.5877
1.8242

2.5575

GPESM

5.7706
3.2130
2.4804
1.9643
1.6120
1.3841
1.2241
1.1344
1.0776
1.0653
1.0841
1.1266
1.1230
1.1419
1.1410
1.1896
1.2212
1.2605
1.5384

BPT

1.3554
1.3108
1.3134
1.3086
1.3122
1.3062
1.2514
1.1439
1.0603
1.0409
1.0446
1.1104
1.1223
1.1845
1.1621
1.1883
1.2173
1.2524
1.5223

BPTM

1.5950
1.3712
1.2987
1.2469
1.2014
1.1738
1.1279
1.0959
1.0685
1.0497
1.0608
1.0986
1.1476
1.1362
1.1537
1.2223
1.2802
1.3421

1.6677
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At § = 0, the traditional pretest estimator(BPT) outperforms
the 2SAEM, BPTM and GPESM. Note, however, that since the values
of the relative mean square errors of BPE and GPEV are almost
always 1identical to that of the OLS estimator, BPT does not
perform better than these versions of the smoothed pretest
estimator. As soon as § departs from zero, the pretest selects
the 2SAEM more often than it selects the OLS estimator, By so
doing, 1its relative mean square error gradually approaches that
of the 2SAEM. As the severity of heteroskedasticity grows, the
relative mean square error of the traditional pretest estimator

tends to that of the 2SAEM.

Over a large section of the parameter space the 'smoothed'
pretest estimator(BPTM) outperforms the traditional pretest
estimator. However, inexplicably, at very high degrees of
heteroskedasticity, the traditional pretest estimator begins to
attain a smaller relative mean &guare error than all the
versions of the 'smoothed' pretest estimator. This is a matter
for further investigation since this observation does not agree
vwitﬁ our theoretical expectation. We speculate, however, that
this occurs because the smoothed pretest estimators continue to
give a small weight(i.e., non-zero) weight to the OLS estimator,
whose relative mean square error at that point is extremely

large.

A visual inspection of the relative mean square error
functions of all estimators in Figure 5.4 reveals that it is

very difficult to select a preferred estimator. However, the
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choice of any of these estimators for the regression analyses
can be enhénced if the researcher possesses some apriori
knowledge about the degree of heteroskedasticity in the
particular data he is dealing with. Judging from our Monte Carlo
results, if the degree of heteroskedasticity is very mild(i.e.,
for & values quite close to zero), the OLS estimator, BPE, GPEV
and the traditional pretest estimators would be favoured over
all other competing estimators. On the other hand, for § values
greater or less than =zero the 2SAEM, BPTM and GPESM would be
preferred to the OLS estimator, BPE, GPEV and the traditional

pretest estimator.

The Monte Carlo study results for the sample sizes of 40 and
80 are reported in Tables 5.10 and 5.11. The corresponding graph
for the respective relative mean square errors of all competing
estimators(for the sample size of 40) are shown in Figure 5.5.
All results for the sample sizes of 40 and 80 do not differ
gualitatively from those observed and explained for the sample
size of 20 above and, therefore, need no further elaboration.
Notice, however, that thé traditional pretest estimator using
the Goldfeld and Quandt F - test(BPT) attains smaller relative
mean square error than both BPTM and the pretest estimator using
the t - test(BPTT)(Table 5.12) over(almost) the whole parameter
space[Harvey(1976), Judge and Bock(1978) ]. This suggests that
the smoothed pretest estimators suggested in this thesis may not
be very useful in the context of this kind of

heteroskedasticity. Further, it lends support to the conclusions
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of Harvey(lgﬁs), Judge and " Bock(1978) that the; Goldfeld an@
Quandt F - test is superior to the t - test in detecting
h;teroskedasticity. Note also that as the sample size increaées -
the efficiency of all competing estimators imp:oves. This same
conclusion emerged‘from the discussion of the Monte Carlo study

results for the bivariance case above.
£y : ¥
’ 5

- Y
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TABLE 5.10

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(5% SL).

(THE MULTIVARIANCE CASE:- SAMPLE SIZE - 40).

DELTA
-2.00
-1.60
-1.40
-1.20
-1.00
-0.80
-0.60
-0.40
-0.20
0.00
0.20
0.40
0.60
0.80

OLS

8.6286
4.4595
3.2893
2.4793
1.9201
1.5385
1.28590
1.1254
1.0360
1.0000
1.0053
1.0435
1.1096
1.2018
1.3211
1.4725
i.6648
1.9119
2.6594

2SAEM BPE

1

1

1

1

1

1

1

.1221 8.5642
.0759 4.4385
.0611 3.2854
.0465 2.4784
.0493 1.9196
.0452 1.5382
.0567 1.2848
.0484 1.1254
.0486 1.0361
.0455 1.0000
.0466 1.0052
.0524 1.0434
.0689 1.1095
.0856 1.2016
.1070 1.3209
L1116 1,4723
.1454 1.6645
.1634 1.9112
.2647 2.6586

GPEV
8.0204
4.3252
3.2223
2.4614
1.9073
1.5347
1.2834
1.1252
1.0486
1.0000
1.0052
1.0435
1.1096
1.2017
1.3211
1.2725
1.6648
1.9119
2.6594

GPESM

1.2428
1.1939
1.1784
1.1586
1.1450
1.1208
1.1064
1.0618
1.0368
1.0236
1.0330
1.0538
1.0797
1.0975
1.1187
1.1200
1.1512
1.1675
1.2669

BPT

1.1221
1.0908
1.0713
1.0584
1.0825
1.0914
1.1087
1.0682
1.0149
1.0000
1.0263
1.0630
1.1191
1.1085
1.1165
1.1161
1.1493
1.1678
1.2647

BPTM

1.1305
1.0911
1.0778
1.0673
1.0697
1.0645
1.0721
1.0529
1.0355
1.0197
1.0252
1.0459
1.0805
1.1110
1.1412
1.1440
1.1755
1.1877
1.2843
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TABLE 5.11

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(5% SL).

(THE MULTIVARIANCE CASE:- SAMPLE SIZE - 80).

DELTA
-2.00
-1.60
-1.40
-1.20
-1.00
-0.80
-0.60
-0.40
-0.20
0.00

.20

.40

o O o

.60

1.20
1.40

OLS

8.0011
4.,1532
3.0696
2.3198
1.8042
1.4555
1.2283
1.0907
1.0202
1.0000
1.0181
1.0657
1.1377
1.2322
1.3507
1.4984
1.6844
1.9231
2.6495

2SAEM

1.0295
1.0173
1.0223
1.0259
1.0240
1.0268
1.0241
1.0235
1.0222
1.0216
1.0128
1.0093
1.0039
1.0176
1.0243
1.0267
1.0319
1.0433
1.1338

BPE GPEV

8.0011 8.0003
4,1532 44,1531
3.0696 3.0695
2.3198 2.3198
1.8042 1.8042
1.4555 11,4555
1.2283 11,2283
1.0907 1.0907
1.0202 1.0202
1.0000 1.0000
1.0181 1.,0181
1.0657 1.0657
1.1377 1,1377
1.2322 11,2322
1.3507 1.3507
1.4984 1.4984
1.6844 11,6844
1.9231 1.9231
2.6495 2.6495

GPESM

1.0299
1.0183
1.0287
1.0416
1.0457
1.0490
1.0423
1.0268
1.0133
1.0082
1.0093
1.0182
1.0135
1.0244
1.0275
1.0279
1.0323
1.0434
1.1339

BPT

1.0295
1.0173
1.0223
1.0259
1.0260
1.0387
1.0479
1.0297
1.0121
1.0073
1.0053
1.0335
1.0197
1.0238
1.0243
1.0267
1.0319
1.0433
1.1338

BPTM

1.0295
1.0174
1.0230
1.0293
1.0312
1.0364
1.0315
1.0223
1.0139
1.0090
1.0091
1.0228
1.0243
1.0382
1.0379
1.0336
1.0353
1.0451
1.1348
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The rest of the results are stated in Table 5.12 below for
BPTT and BPTG for the sample sizes of 20, 40 and 80. 2
comparison of these results clearly reveals that the traditional
pretest estimator performs better than BPTT for the sample sizes
20 and 40. Note that the performance of BPTT improves greatly as
the sample size increases. This is evident from Tables 5.11 and
5.12. It is also interesting to note that BPTT performs better
than BPE and GPEV over a large region of the parameter space.
Similarly, BPTG also performs well compared to the OLS
estimatof, BPE and GPEV. It must be reiterated again that since
none of these estimators exhibits complete dominance over the
others, the choice of estimator becomes extremely difficult.
However, the existence of a prior information about the severity
of heteroskedasticﬁty would be useful to the researcher. This
information would aid the researcher to search for the ‘'best'
estimator to use when he suspects that heteroskedasticity exists

in the data he is working with.
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TABLE 5.12

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(5% SL).

(THE MULTIVARIANCE CASE:- FOR ALL SAMPLES).

N = 20 N = 40 N = 80

DELTA BPTT BPTG BPTT BPTG BPTT BPTG
-2.00 2.7095 5.1396 1.1426 1.2157 1.0295 1.0295
-1.60 2.1541 3.2233 1.1452 1.3241 1.0173 1.0173
-1.40 1.9673 2.6842 1.1230 1.3962 1.0223 1.0424
-1.20 1.9027 2.2748 1.1859 1.3984 1.0378 1.0733
-1.00 1.6642 1.8640 1.1866 1.4128 1.0554 1.1015
-0.80 1.4718 1.5586 1.2136 1.3806 1.0636 1.1380
-0.60  1.2790 1.3294 11,2046 1.2416 1.0766 1.1291
-0.40 1.1656 1.1495 1.1212 1.0909 1.0623 1.0842
-0.20 1.0694 11,0439 1.0293 1.0255 1.0156 1.0232
0.00 1.0211 1.0000 1,0140 1.0000 1.0087 1.0000
0.20 1.0461 1.0098 1.0212 1.0247 1.0133  1.0223
0.40 1.0997 1.0673 1.0658 1.0498 1.0486 1.0648
0.60  1.1476 1.0998 1,1218 1.1242 1.0475 1.1039
0.80 1.2173 1.1923 1,1929 1.2117 1.0396 1.1537
1.00 1.2533 1.2975 1.2136 1.3115 1.0293 1.1107
1.20 1.3601 1.4322 1.1958 11,4006 1.0299  1.0690
1.40 1.4282 1.6017 1.2039 1.4312 1.0319  1.0389
1.60 1.4946 1.7818 1.1951 1.4463 1.0433  1.0490
2.00 1.8405 2.4096 1.2856 1.5408 1.1338  1,1338
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The following Table 5.13 contains the mean values and the
correspondiné variances of phi(¢) computed by integrating the
density function of délta. The values for the three sample sizes
are specified in such a way that each delta($) for all sample
sizes has shown against it its corresponding mean and variance
of phi. Note that the major feature-of the mean values of phi is
their decline as one moves towards higher degrees of
heteroskedasticity. That 1is, for delta values quite close to
zero, the probabilities(¢) that the degree of heteroskedasticity
is such that the OLS estimator performs better than the 2SAEM
are larger than at the two extreme ends(i.e., & = -2, 2) where
the phi values decline gradually towards zero. This agrees with
our theoretical expectaéions even though these values are not as
large as we thought they should be. Theoretically, one expects
that for low degrees of heteroskedasticity, the phi estimator
must assign high values to the probability that the null
hypothesis is true(i.e., homoskedasticity). Similarly, as the
severity of heteroskedasticity increases, the phi estimator must
compute phi values that are very small indicating the extent to
which the alternative hypothesis is true. Note that very small
phi values imply that the alternative hypothesis 1is more
probable than the null hypothesis, hence casting doubts on its
validity. Another notable characteristic of the mean phi values
is that as the sample size increases, the efficiency of the ¢
estimator improves in that at delta values quite close to zero,
the mean phi values are largest for the sample size 80. These

values are also larger for the sample size 40 than 20. That is,
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as the sample size increases, the phi estimator computes larger
phi values for the null hypothesis. This observation also agrees

with econometric theory.

Finally, it must be noted also that as the sample size
increases the phi estimator computes phi values that are smaller
as the severity of heteroskedasticity increases. Intuitively,
the results specified in Table 5.13 suggest that the efficiency
of the smoothed pretest estimator may improve greatly if 'large'
sample sizes are used. The corresponding phi values computed by
using the posterior odds .ratio(Villegas' procedure) are as
specified in Table 5.14. Note that these phi values are not
encouraging at all. Their values suggest that this technique is
an inefficient way of calculating the probability(¢); As stated
earlier, this poor estimation 1is probably one of the major
reasons that account for the poor performance of both BPE and
GPEV. Note that the corresponding probabilities for the combined

multivariance/bivariance case are specified in Table 5.20.
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DELTA

-2.00

-1.40
-1.20
-1.00
-0.80
-0.60
-0.40
-0.20
0.00
0.20
0.40
0.60
0.80
1.00

2.00

TABLE 5.13

THE MEAN AND VARIANCE OF PHI(¢).

(FOR ALL SAMPLE SIZES(DENSITY FUNCTION) ).

N = 20
MEAN

0.0597
0.0949
0.1211
0.1598
0.2060
0.2598
0.3143
0.3651
0.4120
0.4408
0.4489
0.4370
0.4078
0.3673
0.3188
0.2723
0.2323
0.1962
0.1435

VAR

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0
0.

0054
0103
0128
0162
0197
0222
0226
0206
0174
0138
0126
0143

.0181

0214

.0236
.0245
.0236
.0017
.0176

N

= 40

MEAN

o O

o O O o o o

o O O O O o

.0015
.0079
.0180
.0378
.0747
. 1364
.2165
.3153
.4038
.4599
.4670
.4215
.3373
.2404
.1573
.0912
.0488
.0256
.0089

VAR

0.0007
0.0007
0.0020
0.0055
0.0143
0.0270
0.0363
0.0403
0.0362
0.0275
0.0262
0.0351
0.0436
0.0405
0.0296
0.0158
0.0073
0.0030
0.0008

N = 80
MEAN
0.34E-05
0.16E-03
0.10E-02
0.49E-02
0.21E-01
0.63E-01
. 16E+00
.31E+00
.49E+00

o O O o

.61E+00
0.62E+00
0.51E+00
0.33E+00
0.17E+00
0.70E-01
0.23E-01
0.63E-02
0.14E-02

0.18E-03

VAR

0.12E-08
0.21E-05
0.42E-04
0.38E-03
0.36E-02
0.14E-01
0.35E-01
0.58E-01
0.57E-01
0.04E-01
0.35E-01
0.60E-01
0.61E-01
0.35E-01
0.12E-01
0.24E-02
0.38E-03
0.34E-04
0.21E-05
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As noted earlier, the relative(relative to GLS) mean sguare
errors of all competing estimators rise continuously. Alarmed by
the poor results of the estimators for the cases discussed
above, we decided to compute the mean square error of all
competing estimators relative to that of the 2SAEM. The results
for this experiment for the sample size 20 are shown in Table
5.15 and Figure 5.6. Though the conclusions reached earlier for
the sample size 20 do not differ significantly, a few comments
are necessary. First, observe from these results that BPTM
performs better than the traditional pretest estimator over a
relatively large ‘region of the parameter space. However, their
relative mean square errors increase continuously. Similarly,
for delta values quite close to zero, BPE and GPEV perform
better than the traditional pretest estimator. The performance
of GPESM is not very -encouraging since it outperforms the
traditional pretest estimator for only a few values of delta.
Second, note also that when the mean square errors are computed
relative to that of the 2SAEM, the relative mean sqguare error
function of the traditional pretest estimator exhibits the
expected characteristics. This occurs because as the degree of
severity of heteroskedasticity increases, the pretest selects
the 2SAEM more often than it selects the ordinary least squares
estimator and hence allowing the relative mean square error to
get closer and closer to that of the 2SAEM. For higher degrees
of heteroskedasticity, the relative mean square error of’ the

traditional pretest estimator tends gradually towards that of

9%



the 2SAEM,
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TABLE 5,15

RELATIVE(TO 2SAEM) MSE OF COMPETING ESTIMATORS(5% SL).

(THE MULTIVARIANCE CASE:- SAMPLE SIZE - 20).

DELTA OLS BPE GPEV GPESM BPT BPTT BPTM

-2.00 6.5585 6.0092 4.5454 4.2840 1.0062 2.0115 1.1841
-1.60 3.7690 3.6122 2.8596 2.6382 11,0763 1.7687 1.1259
-1.40 2.8523 2.7682 2.3197 12,0874 1.1053 1.6556 1.0929
-1.20 2.2201 2.1851 11,9551 11,7073 1.1376 2.6537 1.0838
-1.00 1.7518 1.7330 1.6328 11,4297 1.1639 1.4761 1,0656
-0.80 1.3907 1.3812 1.3545 11,2199 1.1512 1.2971 11,0345
-0.60 1.1794 1.1746 11,1597 11,1002 1.1247 1.1495 11,0137
-0.40 1.0243 .1.0214 1.0144 1.0168 1.0253 1.0448 0.9822
-0.20 0.9446 0.9439 0.9439 0.9744 0.9588 0.9670 0.9663
0.00 0.9036. 0.9037 0.9047 0.9626 0.9406 0.9227 0.9485
0.20 0.8889 0.8891 10.8892

o

.9674 0.9321 0.9334 0.9465
0.40 0.8926 0.8925 0.8926

o

.9816 .9675 0.9581 0.9572

o O

0.60 0.9560 0.9549 0.9559

o

.9942 0.9935 1.0159 0.9744
0.80  1.0188 1.0161 1.0185 1.0024 1.0398 1.0686 0.9975
1.00  1.1233 1.1175 1.1228 1.0107 1.0295 1.1103 1.0220
1.20  1.2004 1.1937 1.1998 1.0146 1.0133 1.1598 1.0423
1.40  1.3201 1.3069 1.3193 1.0148 1.0115 1.1868 1.0638
1.60  1.4689 1.4525 1.4680 1.0144 1.0078 1.2027 1.0800

2.00 1.6851 1.6679 1.6844 1.0132 11,0031 1.2122 11,0984

Table 5.16 and Figure 5.7 contain Monte Carlo results for

the sample size 40. Clearly, no estimator dominates the other
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competing estimators. For delta values very close to zero, the
OLS estimator, BPE, GPEV and BPT perform better than the other
estimators. The performance of BPTM is comparable to that of the
traditional pretest estimator in that even though it does not
dominate BPT over the whole parameter space, it performs better
than it fof delta values ranging from -1.20 to -0.40 and from
0.20 to 0.80. As noted earlier for the sample size 20, though
the performance of GPESM is not very good it performs better
than the OLS estimator, BPE, GPEV and BPTT over a large region

of the parameter space.

With the exception of BPE and GPEV, the relative mean square
errors of all other competing estimators exhibit the
charactéristics we expect theoretically. That is, as we move
away from very low degree of heteroskedasticity, their relative
mean square errors begin to rise continuously up to some point,
reach a maximum, and then decline gradually towards one. The
relative mean square error of the OLS estimator rises
continuously as we move closer to higher degrees of
heferoskedasticity. In Figqure 5.7, the characteristics of the
relative mean square errors of the competing estimators of
interest are shown. The results of the sample size 80(as
specified in Table 5.17 and Figure 5.7B) do not differ greatly
from that discussed above for the sample size 40 and, therefore,
do not warrant any further discussions. However, it must be

noted that the efficiency of most estimators improved greatly.
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TABLE 5.16

RELATIVE(TO 2SAEM) MSE OF COMPETING ESTIMATORS(5% SL).

(THE MULTIVARIANCE CASE:- SAMPLE SIZE -~ 40).

OLS

7.6896
4.1449
3.0998
2.3691
1.8298
1.4719
1.2160
1.0734
0.9879
0.9564
0.9605
0.9915
1.0380
1.1070
1.1934
1.3241
1.4534
1.6433
2.1027

BPE

7.6325
4,.1253
3.0963
2.3683
1.8294
1.4717
1.2159
1.0735
0.9880
0.9564
0.9604
0.9915
1.0380
1.1068
1.1932
1.3244
1.4531
1.6427

2.1022

GPEV

7.1478
4.0200
3.0369
2.3520
1.8176
1.4684
1.2145
1.0733
0.9880
0.9564
0.9604
0.9915
1.0381
1.1070
1.1934
1.3246
1.4535
1.6433
2.1028

GPESM

1.1076
1.1096
1.1106
1.1071
1.0912
1.0724
1.0470
1.0129
.9887
.9790

o o o

. 9869
1.0013
1.0101
1.0109
1.0115
1.0075
1.0051
1.0035
1.0018

BPT

1.0000
1.0138
1.0087
1.0112
1.0316
1.0443
1.0492
1.0189
0.9678
0.9564
0.9804
1.0100
1.0470
1.0211
1.0086
1.0040
1.0034
1.0038
1.0000

BPTT

1.
1.
1.
1.
1.
1.
1.
1.
0.
0.
0.

1

1

1

1.

1.

1.

0180
0644
0583
1332
1308
1611
1399
0695
9816
9699
9756

.0127
.0485
.0988
.0962
.0757

0511
0272
0166

BPTM

1.0075
1.0141
1.0158
1.0198
1.0194 .
1.0185
1.0145
1.0043
0.9875
0.9753
0.9795
0.9938
1.0108
1.0233
1.0308
1.0291
1.0263
1.0209
1.0155
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TABLE 5.17

RELATIVE (2SAEM) MSE OF COMPETING ESTIMATORS (5% SL).

(THE MULTIVARIANCE CASE:- SAMPLE SIZE - 80).

DELTA

-2
-1
=1

-1

-0
-0
-0
-0
0.
0.
0.
0.

.00
.60
.40
.20
.00
.80
.60
.40
.20
00
20
40
60

OLS

7.7718
4.0825
3.0026
2.2612
1.7619
1.4175
1.1993
1.0657
0.9980
0.9789
0.0052
1.0559
1.1334
1.2109
1.3187
1.4594
1.6324
1.8433
2.3367

BPE

7.7718
4.0825
3.0026
2.2612
1.7619
1.4175
1.1993
1.0657
0.9980
0.9789
1.0052
1.0559
1.1334
1.2109
1.3187
1.4594
1.6324
1.8433
2.3367

GPEV

7.7711
4.0824
3.0025
2.2612
1.7619
1.4175
1.1993
1.0657
0.9980
0.9789
1.0052
1.0559
1.1334
1.2109
1.3187
1.4594
1.6324
1.8433
2.3367

GPESM

1.0004
1.0010
1.0063
1.0153
1.0212
1.0217
1.0178
1.0033
0.9913
0.9869
0.9965
1.0088

1.0096

1.0066
1.0032
1.0012
1.0005
1.0002
1.0000

BPT BPTT BPTM

1.0000 1.0000 1.0000
1.0000 1.0000 1.0001
1.0000 1.0000 1.0007
1.0000 1.0117 1.0033
1.0020 1.0307 1.0070
1.0117 1.0358 1.0093
1.0232 1.0512 1.0071
1.0060 1.3795 0.9988
0.9901 0.9935 0.9918
0.9860 0.9874 0.9877
0.9926 1.0005 0.9964
1.0240 1.0390 1.0134
1.0157 1.0435 11,0204
1.0061 1.0216 1.0202
1.0000 1.0649 1.0113
1.0000 1.0031 1.0067
1.0000 1.0000 1.0033
1.0000 1.0000 1.0018
1.0000 1.0000 1.0009
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Finally, owing to the poor results of the estimators for the
multivariance case, we decided to see if the successful
techniques employed for the bivariance case could be useful in
the multivariance context. Thus, we tried using the bivariance
technique for estimating ¢, the probability that the degree of
heteroskedasticity is such that the OLS estﬁmator outperforms
the 2SAEM, while keeping 1intact the other dimensions of the
estimators for the multivariance case(i.e., ¢ was calculated
under the assumption that the heteroskedasticity was of the
bivariance type). Judge et al(1985), pp 454 - 455 have shown
that 1in some cases knowledge of the functional form of the
heteroskedasticity is not important. Inspired by this result we
first tried to employ the ¢ estimation technique of the more
successful of the bivariance estimators, namely BPTB, to the
data exhibiting multivariance heteroskedasticity. This produced
an additional estimator we refer to as BPTBM. We also
investigated the use of BPTB itself in this context(i.e.,
implicitly assuming that the researcher believes
heteréskedasticity is of the bivariance rather than the
multivariance type). In addition, we evaluated the two
traditional pretest estimators, BPT and BPT1(recall that the
former uses 2SAE whereas the latter uses the 2SAEM). The results
of this experiment are reported in Tables 5.18, 5.19, and
Figures 5.8 and 5.9. These results suggest that using the
Goldfeld/Quandt F - test helps but wusing the bivariance
transformation hinders. Except for § values quite close to zero,

BPTBM performs better than both traditional pretest estimators,
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and 1is comparable to that of the 2SAEM. Note, however, that the
relative mean square errors of all competing estimators do not
exhibit the expected characteristcs; they do not eventually
decline(as expected) as & grows in size. The results obtained
from this experiment suggest that this smoothed pretest
estimator (BPTBM) is an appealing alternative to the traditional
pretest estimator(BPT1) even if the researcher is not ignorant
about the functional form of the existing heterokedasticity.
Note also that these results suggest that BPTB should not be
preferred to the traditional pretest estimator in any instance
since it is completely dominated by the traditional pretest
estimator(BPT1). Note also the very poor performance of both the

2SAE and BPT.
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TABLE 5.18

/RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(5% SL).

(THE MULTIVARIANCE/BIVARIANCE CASE:— SAMPLE SIZE - 20).

DELTA

~1.60
-1.20
-1.00
-0.80
-0.60
-0.40
-0.20
0.00
0.20
0.40
0.60
0.80

OLS

8.8344
4.5903
2.5543
1.9751
1.5780
1.3122
1.1427
1.0446
1.0000
1.0032
1.0246
1.0799
1.1606
1.2681
1.4077
1.5887
2.5585

2SAEM

1.3470
1.2179
1.1505
1.1275
1.1347
1.1126
1.1157
1.1059
1.1067
1.1207
1.1478
1.1296
1.1392
1.1289
1.1727
1.2034
1.5183

2SAE

2.
2.
2.
2.
2.
2.
2.

2

2.
2.
2.
2.
2.
2.
2.
3.

4.

1986
1261
1087
1152
1295
1506
1778

2114

2529
3050
3722
4608
5794
7392
9556
2491
9326

BPT1

1.3554
1.3108
1.3088
1.3122
1.3062
1.2514
1.1439
1.0603
1.0409
1.0446
1.1104
1.1223
1.1845
1.1621
1.,1883
1.2173

1.5230

BPT

1
1
1
2
2
3
4

. 1956
.2084
.0768
. 9455
.8282
.6698
.3929
. 1875
.0624
. 1627
.3061
.6256
.8818
.3226
.7587
. 1509
.9222

BPTBM

1.4438
1.2991
1.2267
1.1975
1.1854
1.1369
1.0991
1.0759
1.0594
1.0728
1.1139
1.1175
1.1373
1.1279
1,1708
1.2059
1.5601

BPTB

2.0967
1.9776
1.8479
1.7598
1.6545
1.5414
1.4436
1.3920
1.4120
1.5187
1.7044
1.9430
2.2073
2.4819
2.7687
3.0934
4,6901
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TABLE 5.19

RELATIVE(TO GLS) MSE OF COMPETING ESTIMATORS(5% SL).

(THE MULTIVARIANCE/BIVARIANCE CASE:- SAMPLE SIZE - 40).

-0.60
~0.40
-0.20
0.00
0.20
0.40
0.60
0.80

2.00

OLS

8.6286
4.4595
2.4793
1.9201
1.5385
1.2850
1.1254
1.0360
1.0000
1.0005
1.0435
1.1096
1.2018
1.3211
1.4725
1.6648
2.6594

2SAEM
1.1221
1.0759
1.0465
1.0493
1.0452
1.0567
1.0484
1.0486
1.0455
1.0466
1.0524
1.0689
1.0856
1.1070
1.1116
1.1454

1.2647

2SAE

2.0137
1.9472
1.9425
1.9597
1.9885
2.0282
2.0783

'2.1386

2.2098
2.2936
2.3932
2.5139
2.6633
2.8525
3.0964
3.4154
5.1595

BPT1

1.1221
1.0908
1.0582
1.0703
1.0909
1.0948
1.0646
1.0143
1.0000
1.0234
1.0633
1.111
1.0973
1.1148
1.1149
1.1498

1.2647

BPT

2.0397
1.9568
1.9929
1.9015
1.6763
1.4625
1.1686
1.0127
1.0020
1.0066
1.1838

1.5076 -

1.9936
2.4621
2.9935
3.3740
5.1623

BPTBM

1.1226
1.0783
1.0558
1.0615
1.0588
1.0643
1.0480
1.0273
1.0141
1.0284
1.0540
1.0794
1.0908
1.1049
1.1038
1.1419

1.4020

BPTB

2.0130
1.9424
1.9203
1.8935
1.8131
1.6661
1.4858
1.3398
1.3216
1.4890
1.8057
2.1800
2.5182
2.7830
3.0121
3.2569
4.5592
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TABLE 5.20

THE MEAN AND VARIANCE OF PHI(¢).

(FOR SAMPLE SIZES 20, 40(DENSITY FUNCTION) ).

N = 20 N = 40

DELTA MEAN VAR MEAN VAR

-2.00 0.0739 0.0106 0.0006 0.4375E-05
-1.60 0.1047 0.0158 0.0035 0.1202E-03
-1.40 0.1339 0.0212 0.0097 0.7052E-03
-1.20 0.1765 0.0290 0.0253 0.3512E-02
-1.00 0.2341 0.0380 0.0597 0.1275E-01
-0.80 0.3047 0.0456 0.1245 0.3089E-01
-0.60 0.3802 0.0485 0.2288 0.4884E-01
-0.40 0.4457 0.0455 0.3648 0.5185E-01
-0.20 0.4817 0.0405 0.4833 0.4061E-01
0.00 0.4742 0.0390 0.5119 0.3811E-01
0.20 0.4237 0.0442 0.4250 0.4990E-01
0.40 0.3442 0.0506 0.2776 0.5211E-01
0.60 0.2548 0.0485 0.1465 0.3631E-01
0.80 0.1753 0.0370 0.0678 0.1657E-01
1.00 0.1189 0.0227 0.0420 0.6296E-02
1.20 0.0879 0.0112 0.0584 0.5183E-02
1.40 0.0775 0.0049 0.0996 0.6314E-02
1.60 0.0704 0.0025 0.0814 0.6544E-02
2.00 0.0405 0.0013 0.0636 0.3941E-02
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CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1. SUMMARY

The major‘ conclusions of this study are briefly stated as
follows. First, the traditional pretest estimator can be
smoothed to attain lower relative mean square errors over
certain regions of the parameter space with only a small
increase in relative mean sqQuare error in a narrorw region of
the parameter space close to homoskedasticity. For certain
reasonable priors on the degree of heteroskedasticity this makes
the smoothed pretest estimator a very attractive élternative to
its competitor. Second, the Monte Carlo study experiments in
this thesis suggest that even in the presence of prior knowledge
about the functional form of the heteroskedasticity in the data,
the Goldfeld and Quandt F - test is a superior way of testing
for the presence of heteroskedasticity. Finally note, however,
that if a prior knowledge about the type(i.e., bivariance or
multivariance) of heteroskedasticity exists, regardless of the
functional form of heteroskedasticity, wusing the bivariance
technigque for calculating ¢ for estimation purposes can be very

useful.

6. 2. SUGGESTED TOPICS FOR FURTHER STUDY AND RESEARCH

(1). It should be of interest to compare the generalized or
'smoothed' pretest estimator with the Yancey et. al. and Sclove
et. al. pretest estimators and to develop a smoothed version of

these pretest estimators.
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(2). Further 1investigation of the role of the assumption that
the functidnal form of heteroskedasticity 1is known seems
warranted.

(3). We have not been able to explain why the relative mean
square error of the 2SAEM, the traditional pretest estimator and
the various versions of the generalized pretest estimator
increase continuously for the multivariance case. This, and its
implications would be a fruitful area for further research.

(4). The experiment could be extended to examine other forms of
heteroskedasticity.

(5). Most tests in this study were conducted at the 1% and 5%
significance levels. It would be of interest to investigate the
guestion of the optimal choice of significance level.

(6). In the current study, we assumed that the posterior density
function for & is a t-distribution. This should be investigated.
It is guite possible that one of the reasons why the relative
mean square errors of all the versions of the smoothed pretest
estimator do not decline is that we have made an incorrect

assumption about the distribution of §.
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