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thétmolumineséence dating of sedimentary rock 55'studied. Large

gample_thebry is given for three methOGSjof - fitting saturating

exponential additive dose curves when the'errors.are assumed to

-~ o

‘have a standard deviation.propqrtional to the true response. The

three methods, non-linear least squares, maximum likelihood and
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studied by Mon;ewgarlo and shown to be adequate for typical

experimentali situations. 'nallyy”the,techpiqueé are aﬁplied to

S

ﬁeyeral_ data ¢Se;s and -the moaelr'assumptions are checked

informally.
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INTRODUCTION 4

'Thermoluminescence (TL) Is*thE'phenomenon*of‘thE’release‘of“ﬁ**
v1§1ble photons by thermal myﬁhs.7 This behav;our was first

300 - year§~ ago. By the early 14605,

reported by Boyle about
thermolumlnescence was; ell ;regognxzed.;yln; 1950,‘ Dan;elsr
'propoaed ‘the applicat onkrof TL ln‘radiation dosimetryjand in
1961, Johnson applled thxs phenomenon to deégg;::: the aée of
lava flows. To date, fhermolum1n§scence has been applxed to&a~_5
varlety of studles 1nclud1ng radlatlon d051metry, geologxcal agei :“‘
.determlnatlon; archaeology, cllnate and paleotemperafure studxesl
as:well:as meteorite and lunar ‘luminescencer In _geology, for
example, thermolumlnescencel dating techniques have benefitted o
research in glacialacuStrine‘ailts an%,marine sediments, |

>

Thermolumlnescence dating of'redimentéawasvfirst’reoognized :
by G V. Morzov and V.N, Shelkoplyas. Unfortunately, Bbecause :
researchers ‘at that t1me.were not ayare of probleﬁ%'%uch as thetv. W
lower sen51t1v1ty to alpha partlcles and the effect of oxygen 1fn
the sample was. heated in air, early attempts to date rocks'
'produced meanlngless ages. During these early years Bothner and T

-——

Johnson (1969) reported the1r TL studies on four deep sea cores

rich 1n foramlnlfera, but new TL studies of sedlmentary deposxts; -
were not reported unt11 as late as 1976 by Huntlfy and Johnson.

In 1982 Wlntle »and- Huntley applied rhetmoldmlnescence
vtechnxques to the dating of the deposxtxon of'—Quaterﬁaryﬂ'——

=~ sediments from thelr last exposure to sunllght. These Quaternary



e

—_—

,sedinents vere deposited approximately tvo aillxon years ago due

to dtanatzc clzmatxc changes.
. 3

¢ . X - - Loz S

Fundamentally, the general procedure is as follows:

..Sediaeniaty “rocks are eic&vat;d in such a'vgy as to prevent
exposure to sunlight. As a precaution all fuiébet ;iperinents
are carried out ‘under subduéd orangé‘light and Ehe sample's
}outer 1ayers are 'enoved The sample is then treated to a series
of‘ txltrat:ons. acxdxtxcatxon and oxzdxzxng steps, and vashxngs
in order to remove dgbrzs, carbonates and other- organic
natéfials, minerals janér*minéral oxidg;\la}eis. The reéul;ing

| slurty"is‘ treated with chemica; ,(O;idés) - and méchanical

dispersing mechanisms, to arrive at a number of uniform sample

suspensions which Aré},thén dried on a'umihum discg, Bach
aluminum —disc holds one subsample which w§}§hs’§2;roximately 1
'nilligfam. Thési subsaapies (10 to ‘20), are irradiated with
different dbses of gamma (7) radiation. This radiation is
thought of as acting in addxtxon to radiation which Has

irradiated the rock since the rock's last exposure to sunlight.

(Exposure to sunlight' drives off the trapped' eléctrons and
zeroes the TL signal.) Each subsimple‘is then placed into an

oven separately. : 7 —

RS
. I
o~ e

e The TL 1ntens:txes £tom room teﬁperature to about 500°C are
collected from a photomultiplier tube wvhich is connected to an
oven containing an oxygen-free gas at a pressure oiﬂless than 1 -
agg,/zg,intensities are then plotted against the cdrrqspondihg

\
~



temperatures Qt vhich the TL emitted is observed. This TL versus

,temperature‘ curve is called the 'glow curve'. Both the Natural

TL (NTL) versus teapetatu:e‘ahd the TLtvergus féhpég;tu}e curves
are glow curves. Th; NTL signal is the thermoluminescence
‘released by dbse-frée Sedimeht éamples, vhile the TL signal is
the thermdlumineéceﬁce‘ induced from laboratory irradiated
sediment samples (éamples,bohbarded by v radiation). Froﬁ a
~resu;£ibg glov curve a singie,TL value at'some high temperature
(#bove-~250°c) is chosen. This high temperature is chosen '
becau§¢' TL signal becomes unstable at a temperature 1owé; than
- 250°C. For any fixed high temperature a plot of T§§?:?%us added
ép-ﬁQj*;dOSe is poséible.,This pléi“igrcalled an Additive Dose
curve. The diagram on the following page shows .a plot of TL'

X

versus added dose at 2 givgﬁ temperature.
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TL ( 10° PHOTON COUNTS/°C)
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ED— : APPLIED 7y DOSE ( kGY )
[Pigure 0.1] TL versus Added Dose at a given o
temperature. T

A sihgle additive dose curve is shown in this diagram.
The ED is the distance from origin to the intercept of
the curve and the Applied Dose axis (x-axis). - ,
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Extrapolatxon back to the poznt of 1ntersect1on w1th the Applied

g\\\ "Dose axis (x-axis) g1ves the eqguivalent dose, 7ED (or Deq)

Several such curves produce ED values wh1ch, when plotted with
temperature, 1ncrease until a plateau is reached The de31red
ED, therefore, is the ED for the temperature at wh1ch no further ,:
, change is observed "th increasing temperature.;;An 1mproved
method of dattpg, Sedimentary ‘rocks -introduced by Wintle'end
Huntley in 1980 is celled-the‘partial-bleach or R-GAMMA (R-T')
procedure. The R-T procedure is so named because the reductioh
(R) in the TL caused 'by ‘bleaohidg ‘the unirradiated and  the
irradiated sedimentary subsamples is plotted agaihst the epplied
gamma (I') dose. The ED is then-evaluated from the intersection

of bleached and unblgached additive dose curves. 'Bleaching' is

- a means of reducing’the TL due to the radiation dose since

deposition\ by p}acing the sample under a sun lamp for some -
length of ti ore bleaching produces a iarger Bu but not
s1gn1f1cantly larger when compared to the Standard Error (SE) of
the 1ntersegt1on point if the. sample was properly' zeroed
(?fperimental results are shown in Table 5.2.) The plots on the
foilou?ng two pages show the intersectioh points -between the
- bleached 7and unbleached '~ additive dose 'curbes,r.and their

equivalent doses at a given temperature.

S



“TL ( 10® PHOTON COUNTS/°C )

. 10 -

12:1 v
o2 0 02 0.4 0.6 0.8 1 L2 14 .8
Tep— APPLIED 7 DOSE XGY )
—

[Figure 0.2] TL versus Added Dose at a given

temperature, _
Tvo additive dose curves are shown on this diagram. Both
TL signals are induced from y dose irradiation . The
upper figure is the unble curve; and the leuer is
the bleached curve. The ED is the distance from origin
to the intersection of these two TL respomse curves.

-



TL ( 10°® PHOTON COUNTS/°C )

2

-
1

4

L]
N

4

T T T T T —T T T
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IFigure 0.3) TL versus Added Dose at a given
temperature.

Three additive: dose curves are shown in this diagram.

All TL signals are induced from laboratory Y

ir iation. The uppermost figqure 1is the unbleached

curvesa the middle figure is the bleached curve; and the

lower 'is the bleached curve which represents a sample
exposed to a sun lamp for a longer period of time than
the bleached curve of the middle figure. There are two
EDs are observed. ED, is the equivalent dose résulting
from the intersection of the unbleached curve and the
bleached curve of the middle figure wvhile ED, 1is the
equivalent dose resulting from the intersection of the

vnbleached curve and the bleached curve of the lower
figure. Both EDs are the distances from origin to the
intersections of the unbleathed and the bleached curves.



Tﬁei desired ED is then applied to the TL'appareﬁt,age equation

“as follows: . D)

TL Apparent,Age = Bquivalent Dose / Effective bo e Rate,

where the Effect* e Dose Rate is the gamma dose rate

cosmic rays to the sedimentary. subsamples after accounéung for

" -the decay of naturally occur1ng radloactlve ~isotopes U-238,

Th-232 and‘NK-40 in the sediments. The;age of the sediment is

thereby.estimafed;

Even though dating of unheated Quaternary sediments hae'

offered the promise of accurate results, some characteristics

inherent in the experimental data (elucidated in Chapfer One)
make relat1ve¢y451mple statistical ana1y51s 1nappropr1ate. 1t'is

e\tfefore the purpose of this paper to study appropriate
statistical analysis of thermoluminescence based on experimental

results- from the partial-bleach or R¥F'procedure.

For the R-T procedure the fundamental problem in estimating

the TL apparent age |is to accurateI} extrapolate' to .the

intersection point of two non-linear additive dose curves -and to -

estimate the associated uncertainty. - In order to solvevthls

problem the approprlate statlstlcal analys1s is dlscussed in the

followlng Chapters. Chapter One of th1s paper w111 outllne_

possible models for means, such as: Linear, Quadratic, Cublc and.

Exponential ,mode%s{ as well as possible models for the errors.
Chapter Two will examine three methods of estimaeing parameters

(coefficients) of the proposed saturating)expgneatial model:

uﬁﬁﬁ;ed by
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séctéon 2.1.1!ﬁ;80nfLing§;7§east Squares method;” section 2.1,2, A\

Maximum Likelihood method and section 2.1.3, | Iteratively

Reweiéﬁted ‘Least Squares method._In'Chgggg} Tﬁféé“a;ugécurate_

extrapolation method for the intersection points of :unbleached

‘and bleaéﬁed' TL respghse” curves is described. A Maximum.

R 8

Likelihosd technique is applied to the estimation of the

variances (uncertainties) of these intersection Soints. In

’|Chapte: Four a Monte Carlo Simulation will serve to check the.

validity wof  the theories of estimating the parameters.and the
intéféectién points and theip associated variances as vdiscuésed
iﬁ Chépfers Two and Three. Chapter Five uses agtuallexperimental‘j
dafa>to fit the proposed model and analyze the éethods_ of

estimating the parameters and variances of the intersection.

'~ points described above, As well, the model 'assumptigns are

checked informally. Another method of fitting additive dose

4

curves is suggested in Chapter Six,.



CHAPTER 1

B ) i 7 T - . . \

"POSSIBLE HODELS FOR MEANS AND ERRORS

1In section 1.1 and'section 1.2 of-this Chapter the models
“for means and errors v111 be descr1bed respeCtiveTy. In each of

'these two sect1ons various’ p0551b1e modeTs?w1ll be 1llustrated

'-‘As well the reasons for us1ng the saturat1ng exponent1al model

for the meanvand«assum1ng a constant percent error (unknown in

;dVance)'fornthe proposed model will be explained.
. s '

’

1.1 POSSIBLE MODELS FOR MEANS .

,For' sediments younger than,f0-20 kiloyears (Ra) the two TL'
. . . . » . .
response curves appear linear. ThiS' straight-line behaviour

makes the simple least-squares method poss1ble for stat1st1cal
analysls of the data. The straight- llne, least- squares fit for

young marine sediments has been discusfed by Berger et al.

(1984).

-

For sediments‘older than 20 Ra, dose responseiagzves‘afetno
longer linear but sublinear. Sublinear cé;ves show a linear

relationship with a positive slope between TL and the applied

L4

dose at low dose levels but curvature is observed as the dose-

level increases and finally'a flat TL intensity is reached at a
high dose level. There are several poss1ble curves 'to descr1be
this nonlinearity, Low degree polynomlals such as Quadrat1c and
Cubic are linear in the;r coeff1c1ents and empiricallyl'fit the
data better at the Iinear portion (low dose levels) than at the

év . ) | . | } :,,

10 '1 ‘ _ NS '



curved port1on of the data ‘but as of yet no phy51cal explanat1on'

-+ . accounts for this. The Quadrat1c and Cub1c models were f1tted to

the data and d1scussed by Berger et al (1985) For very old
sediments (older than several hundred thousand years) or at very

- high applied dose levels (greater than several thousand Gray,

EX

kGy; 1 Gray is\the's.l. unit for absorbed dose of 1on1z1ng a

radiation)' a more ph&sitally rea11st1c model is the -non-linear

satUratingexponential model (Huntley et ;l. 1985). This vmodel
';is'ptoposed for the following:two reasons: | n

7“"‘,

[1] The electron traps ‘contributing to the TL 51gnal
become filled. .

[2] The phys1cal characteristics of the data suggest a
saturating exponential curve.

>

 This model may be written (for a particular temperature) as

follows:
Y. = a + b*exp(-cx,) + e, ‘ _—M)
1 . R 1 1 . B . )
where, Y, = TL intensity of sample 1i;
xi = Applied dose to sample i; . " ;
a,b,c = Urknown parameters (coefficients); -
e. = Error in sample 1i;

'The errors, ¢.s, are independent N(O,a; ) random

variables.
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1.2 POSSIBLE MODELS FOR ERRORS

- - . ‘ - ©

1.2.1 POISSON DISTRIBUTION

A TL signal is-actually aphotothunt.‘Thereforé, norﬂéliy'
it would be assumed"that. a Poissbn distributioﬁ‘ would bé7
requirEEf If the TL signal has a’ Poisson distribution, the
, va;ianée of TL is the same as the expectation of the TL,AE(&L),,, 
That is, the SD of a TL measurement is the square ‘root of the
‘mean, ./ETTET; Théreférﬁ,—'%he percent error in TL is [(1/
vE(TL))*100%]); where, perceﬁt error = [(SD of TL)/(ME@ﬁ' OE
TL)J*!OO%. For the saturating exponential model described in
‘equation (1) the‘percent error in TL decreases’ with increasing
applied dose due to the negative value of parameter 'b' if the
signal is assumed to have a Poisson 6£Stribution5 Howevéh, vthe
actual 6bservéd. error. iﬁ”ihelexperimenfal data increases with
increasiﬁg applied dose (e.g. ?igure 0;3). fhis~ observed error.
is larger (see Chapter Five for numerical evidence on this
point) probably owingvto the subsample inhomogeneity. Therefore,

the assumption that the TL has a Poisson distribution is

inappropriate,

‘1.2.2 CONSTANT PERCENT ERROR

_ Straight-line least squares fits for young marine sediments
~were worked out by Berger et al. (1984) based on the assumptions
. ’ S - .

listed on the following page:

-]

*
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(1] There is ho measurement error in the applied dose.

[2] There is a constant percent error
{unknown-in-advance) in each TL measurement
throughout each set of samples,

‘That is , Berger et al. use the model: .

Yi = (a+b +a*(a+b*D Y*e i

Nl

where, Di is the appiied dose;
e, ~ N(0,1).,

1l \

Fér the model (eqguation (2)) of Berger et al. the perceht error

[

in a TL meéasurement is
N

U*(a'{’b*Di)v
a"'b*Dj = o .«

which is constant as a function of D (added dose). In other
: e

words, this percent error is independent of the applied dose, D..

%

Since the percent error in a TL measurement which has a

Poisson distribution depends on ‘the applied dose, a more

realistic model is to consider a random number of grains, N, in

each sample. The ’I‘LN is a sum of all TL signalsrreleaSedtfrbm' N

i ¥
sediment grains., If each of these N TL. 51gmals has a Poisson
distribution with a parameter of A, the mean agf variance of the
. total TL (TLN) can be written as on the following page (Bickél

]
and Doksum, 1977):

(2)



3

E(TLN)zx*E(ﬁ7 . o 7
Var(Thy) = Var(E(Toy[W) I+E[Var(TLy )] -
' = A2*Var (N)+A*E(N). |

The percent error in TL, is as follows:

[VXT*Var (\)+A*E(N) / A*E(N)1*100%
N = [YVar(M+(E(N)/X) / E(N)]*1008.

For large \ the pefcent error in‘TLN is approximately equal to

<‘£/VarlN5/E(N)]- This percént error is independent of 1. In other

“words, this percent error is a constant. Note that the Poisson

distribution with large'mean is quite normal in shape.
. v

For the pr6posed non-linear saturating exponential model;

the constant/percent error means:

o, :
1 FAR. =g ’ —
a+b*exp(-cx,)

The Standard Deviation (SD) of a TL measurement,
{&*fa+b*exp(-cxi)]}, indicates that a weinht, wi .which dependsf
on the parameters 'a', 'b', 'c', |is assigned to ‘each TL
measurement. He;é, wi is the inverse of the variance éﬁd haé the

form [a¢5*exp(-cxi)]". Therefore, another way'of writing the

model (eguation (1)) is shown on the following page:
R

=4
—~

.

- 14
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-Yi*é ;+b*exp(fcxi) + Jo/Vﬁ;)*ei o o ——1(3)

constant = relative error; R

<

. where, o

W,
1

iweight~= [a*b*exp(‘CXi)]"i g(xi,ﬂ):'

‘parameters 'a', 'b', and 'c';

€, ~ N(O,i ¥.

[

For -the R-T prqcedure a non-linear satﬁrating‘exponenfial
model is,uéed to fit the gxpérimental ‘data  becaﬁse of fhc;J
expected saturation of electron traps contributing to‘thé TL
signal and‘the-physical characteristics'of the data. Thefefpre,l'
a model with a saturating ”exponentiél meaﬁv and an unknpﬁﬁ‘

- constant percéﬁt erréf ére used for .each curve. ‘In 'the néxt
\ Chabter, the estimation of théﬁparameters icoefficients) of this
model will be described ahd‘discuésed.‘ |

3
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METHODS FOR ESTIMATING THE PARAMETERS OF THE MODEL

= - -
. .

P

T Por thii'brojbct E@a Iteratively Reweighted Least Squares
(IRLS) ;ngghgﬁ .;rovided by the BMDP3R program from the BMDP
(Bioaedical*Caﬁputer'Prograqs, UCLA gress) Statistical Softuﬁfe
manual is applied to vgstimaté the paraaeter# ofw;ke p:opgsed
‘saturating exponential model. In addition to this IRLS scheme,
the ‘theories of another two estimation schenes‘are described in
this Chapter. These three methods, Non-lin;;r' Least Squares

- method, Maximum Likelihood method and Ite;ativeIQ‘Reveighted

Least Squares method will be illustrated in sections 2.1.1,

2,1.2 and 2.1.3, respectively. Pinally, in :sectionAZ.Z the
_conclusion that these three estimation schemes are approximately

the same is derived vhen ¢ is small.

2.1 DESCRIPTIONS OF METHODS OF ESTIMATION

2.1.1 NON-LINEAR LEAST SQUARES METHOD - - &

—_— In general, the polynomial and eiponéntjaf models have the

Z

form

N(fi(a,b,;),afwi") , — (4)

for i = 1,2,3,++¢,n,

; depends on the

parameters ‘a’', 'b’', 'e', via LA ;:/fg(é.b,c)] (Chapter One).

For constant percent 'error the véight W.

4



Therefore, the _paraseters of the saturaiing;;;ponentialgmgdglggggg,,
are estimated in this method (NLLS) by m:nzmzzxng the: equatxon
of Reszdual Sum of Squares (RSS): '

ass-P. (W, (abc)l*[Y -t (abc)]’ . (5).

S
The estimates are obtained by;setting
dRSS/28 = 0

NS :

=TORSS/3b = 0

aRsS/3¢ = 0.

Throughout this Chapter a/aa means d1fferent1ate with respect{iif

6 and evaluate at 6.

PN

2.1.2 MAXIMUM LIKELIHOOD METHOD

£

Assume that the dependent variable; Yi' is normally

distributed with a mean of [a+b*exp(-cxi)] and a variance of

{[a+b*exp(—cxi)]*a}’. ‘Por the model (equation ~ (3))  the

likelihpod function for-Y,,..., Yn is
>

L = g(Y,)-g(Y,)-~-g(Yn).

In the case of the saturating. exponential model this becomes

{?/[(Zt)n/ziﬁloi]}*exp{-igj[Yi—(afb*exp(-cxi))]’/Zo;}

(6)

vhere, o, = [a+b*exp(-cxi)]*o

"The log likelihood function is shown on the fbllowing page:

17 -




InL = [(-n/2)*1n(2m)] - R {ln[a*(a‘rb*exp(-cx Ny o,

- (1/2)*427{[Y -(a+b*exp(-cx ))]‘/[o*(a+b*exp(-cx )13}
N °fm~*(77; e

The first Nger1vat1ves of this log 1likelihood function with

respect to para-eters, 'a', 'b', 'c', and 'o', are expressed as

i,

follows:

31nL/3a =.% { -1 . Yi*[Yi’a’b*GXP(-cxi)]
s isi a+b*exp(-cx,) az*fa*b*exp(-cxi)]3

-exp(-cx;)
" 21nL/3b =. b i | o | o
nL/ 1"{ a+b*exp(*cxi)

Y *exp(-cx.)*[¥.-a-b*exp(-cx,)].

+

o?*[a+b*exp(-cx;)]?

b*xl*exp(-fx.)
alnL/ac'-.E { i
1=1 a+b*exp('cx1)

Y, *b*x  *exp(-cx, ) [¥,-a-b*expl —ex; )]

+
2"‘[a+b"‘exp(--c:xi)]’
- | Y--é-b*exp(-cx.)
31nL/30 =, B f—te + b & [ . 132
9inL/20 1"{ ¢ - o? f a+b*exp(-cxi) 1%

(8).

The MLEBs, &, B, &, &, are then solved by setting the above

equations to zero.

. . - a \'\
2.1.3 ITERATIVELY &wmmn LEAST SQUARES . ‘ 3

If the>weight~wi‘did not depend on the parameters ‘a', 'b' _.

and ‘'c' then the MLEs of 'a', 'b' and 'e' would simply minimize
RSS of equation (5). If the weight LA does depend on the

18
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parameters 'a', 'b’' énd 'c', two cases should-he considered.

These two cases are:

.[A] fi(a,b,c)'are linear in parameters 'a', 'b' and 'c'.

and
- [B] fi(a,b,c) are/nén—linear iﬂjparameters ‘a', 'b' and 'c'.
, | - v

They are illustrated as follows: , a

- ‘ AL | | | .
{A]f;i(a,b,c) are linear in parameters 'a’', 'b? and 'c'. \

v v . ]

When the function ﬁi(a,b,c) is linear, the guantity RSS, can

be minimized exactly by the technigue of Weighted Least Squareé
(WLS). The teqhnigue of Iteratively Reweighted Least Squarés '

(IRLS) proceeds as follows:

(i) With each W., set W. to be one and carry out WLS to

obtain the estimates, *d,, Bo, €o.

(ii) Replace the weight by wi(ég,Bo,éo) then perform WLS to

get another-set of estimates, &,, B, and &,.

— ~

(iii) 'Iterate step (ii) until the estimates do not change.

That is, calculate the weights using the updated estimates, &

o
Bk and €, :to obtain Wi(ak fsk ’Ck) then solve the following
equations to obtain the ngw estimates, namely, ak+1, Bk+1' ck+1:
. | .
A A _ R R . _
igl[wi(ak'Bk'ck)]*[Yi fi(ékfj'5k+1'ck+1)] (3f /2a) = 0 -

P

19



*[y.-f (8,,,,b )1*(3f /3c) = o.

k+1'Ck+1

- +

Note that thevabove equations are a linear system in §k+1, 5k+1'

6k+1 because (afi/aa)} (afi/ab) and (afi/ac) do not depend on

'a', 'b' and 'c'. The estimates are iteratively éstimated in

this manner until they do not change any more. That is, the

iteration is terminated when the.following condition is reached,

®k+1 T %k
By+r = By =
c = Ck.

k+1

i

sx°

The final estimates solve the following equations:

8w (5,B,8)1*[Y.-f. (4,B,8)]*(2f./3a) = O

i=1 i i 1 i

B [w (5,B,8)]*[Y.-f.(4,5,8)1*(3f./3b) = 0 ——— (9).
1=t i 1 1 b : e
B [W.(58,p,8)1*[Y.-F.(5,5,8))1%(2f./3c) = O

1=1" 3 . i 2 | i

[B] gi(a,b,c) are non-linear in parameters 'a', 'b' and 'c’.

. When the function f. is non-linear, one cannot immediately
minimize RSS; therefore, the Gauss-Newton algorithm is used to
calculate 8p4qr 5k+1' Crey from aps Bki S The estimates ayr

Bk’ ék will converge to the roots of equation (8).



The Gauss-Newton algorithm works as follows: . o

‘Gauss-Nevton'Algorithn: &-,

: \5‘5, o A S

An ordinary least‘squérgskmethéd is applied to the
linear terms of the non-linear regression model in order to
estimate tﬁe 'parameters ofrthese linear terms. The non4linea:
terms in the‘model are approximated By the linear terms of a
Taylor series expansion. v;quationf (3) in"vChaptet One is a
fuﬁction_of the applied dose and the parameters,> f(xi,a,b,c).>
The lineer terms in the Tay;or sefies expansion of equation (3)

at the initial parameter values can be written as follows:
e

f(xi,a,b,c) = f(xi,a°,b°,c°)

+ (af(xi,a,b,c)/aa)a=ao,b=bo,c=cot(a—a0)

=hO

+ (af(xi’a'b’C)/ab)a=aﬂLb=b°,c=c°*(b b°)
: ) ~~0Y )
+ (af(xi’a’b’C)/ac)a=a°,b=b°,c=c9*}c c®) (10).

It can be rewritten.as

“f{x,,0) = f(x,,8°) + 2 [3f(x.,8)/36. ] *(§ -6°) ———(11)
1 i k=1 i K k S

k" 9=8°

where,

r

8° =-a column vector of initial parameter values;

69 a®
8° = | 83 | = | b°
8% | L c?®

[2f{x;,8)/36  }g_gv = the partial derivative of equstion
(3) with respect to the kth
parameter and is evaluated at all
initial parameter values.

21



r

<

our non-linear model, equation (3), has a form of

Y, = £(x,,8)+0%E(x,,8)%e, B 77 P
1 ' 1 1 1 L |

Let Y; = Yi-f(xi,9°); it follows from eQuations (11) 5225(12)
that, . N v .‘

7=l E (af (x, ,e)/aek)Je eo*(a 9°)}+ £x, ,9)*0*

Let ' | . i/;'

Y1 "7 .f(x1,99)

Yinxq) = s
tn 2 ¥, - £(x,,08°)

P{nx3)be the~(nx3) matrix as\féllows:

. . -

(0£(x,8)/28,) oo  (3f(x,,0)/262) ., (af(x,,e)/aa,)e=e°

(0f(x ,0)/200) ¢ o0 (3f(x ,0)/282) . (2t(x ,0)/20,)y o0

. - ) : ‘ o4

/) [NOTE]: the first column in P?an) is a column

y of 1's.
/ _
ang,
> 8,-6% a-a® , v
BY3xyy = [ 6,-69 } - [ b-bo ] - 6-8° — (),
- 84363 c-cf :

22



then equation (13) can be written in matrix notation as

4yb ~'N(P°5°,ozw”),”

(a+b*exp(-cx,)) "2
w=" ) .

(a+b*exp(-cxp))-? J

This model cah be rewritten as
YO ax POBO+¢0 e —— (153
‘where, E? ~ N(O,o%wW-").

1 : .
Let g° = W°Z¢, then E{g = 0, and

o 1 1 1 1
Var(g®) :$E{$°g°') = E[W°%e(Wo%¢)'] = WOZE(ee')WO?,
- = wO“I wo-% wo-% wO%OZ = 102.

.Therefore, g° becomes as follows:> .
g® ~ N(0,10%).

1
Multiplying equation (15) by W°Z,

1 1 1
WOZ2yg0 5 wo? POBO+ WOZ,0

. or 29 = §080+g®

[~

The estimates are obtained by the ordinary least squares

method which is shown on the'following page:



S “ : . . N : ) . ‘ -

%

B° = (s°'s°)-'s°'z°,

The estimates. are then reexpressed in terms of the original ———

variable Y° as

- F 1 . 1° 1 \V«a
g° = (p° 'Wo' 7 woipo )- 1 (PO'We '3 )(woi_ Y0) :
or Bo = (PO'W® PO)-'(PO'W° ¥°) . — (16).

By evaluating egquation (16), the estimated parametérsvoffthe
linear terms from the Taylor series expansion of the nonlinear
model is obtaihed. Now B° is an estimate of (8-8°) so the
updated estimates for the nonlinear model are obtained as
follows:
= 6 = 80450 \k/ —_— 7).

The séheme of Gauss-Newton algorithm énd IRLS is therefore
summarized iﬁ the following steps:

(i)a Evaluate the weight of eguation (5) with éhe initial
parameter values. The method for finding the 1initial estimates
will be described in Chapter Four. .

(ii) Input the initial parameter values to equation (16) to
obtain the' estimated parameters of the linear terms from the
Taylor series expénsion of the non-linear model. To obtain tﬁe///
updated (new) estimates of the non-linear model, eguation (17)
is evaluated.- A

(iii) Recalculate the weights then repeat step (ii). Continue

the process until estimates are changed very little. Again the
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final estlmate solve equat1on (9)4 .

Minimizing the RSS means setting the following equations to

- zero:

Q-

 3RSS/98 = -

be used in two ways

(8,B,8)*[7;-£,(5,B,8)1*[2£,(a,,8)/28])
[aw (4,5, c)/BS]*[Y -£, (a B, 2)12)

o ) . -

w

{
.

Ill"’D llND .

(18)

~

' where, ® are 4, b, ¢.

But the IRLS algorithm oniy sets the first term of equation (18)
‘zero for the estimates, &, b and &. This means that the IRLS
algorithm at each step need not reduce the value of RSS. “This

algorithm can be ¢ rr{ed out u51ng BMDP3R. This BMDP program can

s follows: ‘ -?\\/ e

ameters are estimated 51mply by folldk\?g the

(l)‘ The

Gauss-Newton  algotithm. I N\

With this method the estimates are the IRLS estimates. In

order to use this method; two additional &commands have to be
included to the Regress section of the BMDP3R program used for
method (2). These two additional commands are illustrated as

follows:

(a) Specify the number of iterations. .
(b) Set the permissible number of halvings (see method

(2) below) to be zero.

25
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- (2) I Ad; ion to the first two steps Qf thg__ﬁau554Nenton444f7,

algorithm- nd the 'IRLS scheme ment1oned on the prev1ous page,

this method carries out the steps 11sted as follows-

(i) At the (k+1)tb”iteration, evaluate the following

equa}ion: , , : —
K+1 (k)
{Rns(*)-,nns ] | _— (19
(k+1)
RRS = Re51dua1 gum of squares of the (k+1)th
1teratlon (updated) ;
. RRS(k) = Residual sum of squares of the kth
" iteration (previous).
. | (k+1) . —__(x) |
(ii) If the\RSS is larger than the RSS , then replace
&

the increment size, B°, by,(ﬁ°/2) and recompute the RSS. This
halving 1increment ~procedure is continued unqgg ' the - RSS

decreases,

Witk method (1) the BMDP3R program 'displays the parameter

estimates and their associated asymptotic correlation matrices

and ‘asymptotic standard deviations on the output (Chapter Four).

For this projeé& the estimates are obtained by the IRLS
method using the  BMDP3R program Zmethod {1)). In the next
section (2.2), the IRLS estimates shown to be approximately
equal to the MLEs when o |is sméll, will be discussed and

derived.
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2.2 DISCUSSION OF METHODS OF ESTIMATION
Z :

——,

;\ ’ . - * — - [ — - -

:\Upr to this point thrée possible estimation ]séhemes,
Nonl&ihear Least - Séuares (NLLS), Maximum Likelihoéd.(MD) aﬁd f
Iteratively Ré§eighted Least Squarec (IRLS) 'aref'described i;F
sections 2,1,1, 2.1.2'and 2.1.3, respectiveiy. For t?&s proﬂecf
the estimatés are obtgined by the IRLS algorithm ﬁsihé the
BMDR3R prdgram. Qur discussion focusés on estimation of 'a"', 'b;
and 'c', For all three methods' o is estimated. vié the iast
eqﬁation‘ in (8). For the maximum likelihood estimates the four
equations in (8) mﬁst be solved‘simultaneously'sincé o appears’
in ‘each .equation. 'The other two methods yive a set of three
estimating equations for ‘a', 'b' and 'c’ whiéh may be solved
without reference to o. The following aiscussion will focus on
the fact that the IRLS and the NLLskestimatestife the same as

the MLEs when o is small. ¢

2.2.1 MAXIMUM LIRELIHOOD ESTiMATION

P
Each observation, Yi, has & normal distribution such as that

mentioned in (4) on page one of this chapter, a more .general

form of the likelihood function can be written as foilowéi

-

-1 - y2 2 v
o B 2, (- €571/ 120 /M) )
1 1 ‘

i

Cono| -

where, fi = fi(arb,é) = The proposed model is a function

of parameters, ‘'a', 'b’ and ‘'c';
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) o

W, #jwi(a,b,c) = The weight is'aﬁfunction of

parameters, 'a', 'b' and 'c'.

The log likelihood function is

InL = (-n/2)*1n(2%)+(1/2)* 3 (1nW.)-nlno- 3 {[(Ya-f.)z*w%?géaz}.
: o } 1=1 1 i=1 171 ‘

The maximum likelihbod'estimators a:a’then obtained by solving
the following eguation: ) |
Uypg(8) = 81nL/28 = (1/2)% 2 [(ow;/26)]
o - (1/0%) * B (W (2,-£)% (28, /20)]
- (1/200)% B 1(7;-£,) 2% (a0, /28)]
S (20).

=0

(The likelihood equation for ¢ may be solved explicitly to give

0 = [(1/n)*i§1wi*(yi—fi)’].)

The mean vector and variance-covariance matrix for the first

three components of UMLE(G) are:

E‘{UMLE(G)] = (1/2)*E {, E [(ainw /236)1}
- (1/02)*3 {2 [w. > (v, -f )*(af, /aa)]}

1=1
- (1/202)*E {. g [(y .5fi)=*(awi/a9)]}

(172)% B [aw./ae)/w.]}
. 1=1 1 ) 1
-0 ’
- (1/207T* £ [(0%/W,)*(2W;/26) ]

0 (21)
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and, Var [UMLE(G)] = Var {(1/2)* E [(alnw /aa)]}

_+ var {(1/00)x & [w *(¥,-£,)%(2£,/20) 1)
T Var‘{(1/202)*ig1[(Yi-fi)z*(awi/ae)J}
=0 +. 8 1(W;2/0*)*[(3£,/20) (£ /26) T1*(0?/4,) }
o+ (1/40‘)* £ (oW /26) (oW, /ae)*]*(z* -/w=)}
< =By /az)*[(af ./30) (3£, /26) 71}
| + (2/a)% B Tlalnwi/ae)(alnwi/ae)fl
= (1/0%)%{, 21 Wi*[(28;/20) (2£;/20) 7]} s
. o + (1/2)% g [ (3InwW,/36) (a1nw, /26)T1

(22).

When o is smal), the second tergébi\squétion (22) is Vefy small
compared to the\first term. Therefore
v 2 T
var [Uyg(6) 1= (1/00)% &  wi*((a£,/06) (a£,/20)71)
when o is small.

| >w> 2ol
Var {(o )IN(O, 1)]2} = 20'/wz
E (Y -f )¢ = a’/w

3

[NOTE]: Var (v,-£,)°

E (¥,-f;) = 0. _
{[(aw;/26) (aW;/26)T1/W,?} = (2lnW,/36) (3lnW,/26).

The covarianceé terms in Var[UMLE(O)], Var[U (6)]

‘ IRLS
‘and Var[UNLLS 6)] are zero because E(Yi-fi)3f='0;
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2.2,2 ITERATIVELY REWEIGHTED LEAST SQUARES

The IRLS slgorithm vas discussed in section 2.1.3. The IRLS -
esij-atcs can be obtained by sétting only the second . term of

.gquatioh (20} to zetoi(sﬁe equation (23)) which is the same as
 solving equation (Si. . L

s, .
By W g A
Ea

).'UIRLS(O)'-»-(I/a’)'ig‘[ﬁi’(:é:fi)*tafi/ae)] =0

The expectation and the variancz of U&RLS‘G) are shown as

(23)

follows:

E [Ujpg(8)) = E ((-1/02)-i21[wi-(ri-fi)t(afi/ae)]} =0
o ' S ’ ' : : — (24);

[ 4

Lver [ g(0)) = var ((-1/00) B (wir(T-g )% 08, /000 1)
| (1/0%)% & (w2s((a¢,/20) (28;/20) 7] (o2 /M V-
C/o0)+ B (Wi x((ae;/20) (98 /20) T

(25),

2.2.3 NON-LINEAR LEAST SQUARES

‘Solving equation (18) for the NLLS estimates is the same as
: | J

setting the second and the third terms of equation (20) to zeré;

that is:

Ugrrs(8) = - (1/0’)'igi[Hi'(yi-fi)*(afiJéa)]
- (1/20%)% 8 [(v.-£.)2%(2W./238)]) = 0O
- 1= b3 1l 1

(26).

30



The expeétioh of UNLLS(G) is not zero. i;\is shown as follows:

By s(8)] = B (- (1/0%)%, E [9,*(7,-£, )% o /ao)]} |

+ B {(- 1/203)* E I(Y -f; )2* (oW, /ao)]}

= (m1/200)% B [(oz/w )* (29, /26) )
NGV E (alnw ;/28)

- (27).

The variance of U

NLL5(9) is shown as follgvs:

Var [Uyypq(8)) = var ((1/00)% 8 (0 (v,-2,)% (28, /000 1)
+ Var {(:/za=)- E [(y -£,) 2% (3£, /20) 1)
T B w200 )*[(af./ae)(af./ae)*]*(o’/w.)}
j=m1 i i i RS |
+ (1/40‘)*i21{[(awi/aa)(awi/ae)T]*(z*o'/wg)}'
= 8 (W, 0%)[*(3F./36)(3E./86)7]}
o im i i 179”7
. (2/4)*ig1{[(awi/ae)(awi/ae)’]/wg}
. 8 ((W./0?)[*(3F./86) (2f./28)7]}
i i i i
» (2/4)+ 8 1310w, /26) (2103 /30) ")
= (s/o’)*igiiwi*{(afi/ae)(afi/ae)*]} |
. (2/4)*ig [(alnw, /26)(alnw, /26)T] "
= (20%+41) Yar {u (6)]

= Var [UHLE(e)I

IRLS

(28).

—_—

When ¢ is small, the second term of equation (28) is very small.
Therefore, the vé?fhnée of UNLLS(E) (equation (26)) is
. approximately: ’ S e
(6) 1= (1/07)* B Aw (0t /20) (28, /30) 1)

Var (Uypes

3



vﬁén o is small. The above information can be summa:ized in the

 féllowing table: (NOTE;‘Ki=f(3fi/aa)(afi/35)*1) -

ESTIMATES E[U(8)] var{u(6)]
ME 0 - (1/0%) .} [W.*M.] * (20%+1)
— i1i=1 1 1
1RL$ S B ;*7 (1/0%) *ig1twifnij
NLLS (?1/2).5 (31nW./36) (1/02)‘*.5'[w.*m.jff (202+1)
-_— _ i=l 1 1g1 1 1

2.2.4 DISCUSSION

=

I1f estimating equations have the form

— ue) = 0 (29)
and have the‘ptoperties

0

E[U(8)]
var[0(8)] = Z,

then by Taylor expansion, equation (29) can be expressed as

follows:

U(g) = 0 = U(E)+(§—6)*(aq/ae)+_negligible terms.

Ignoring the negligible terms in the above egquation then it can

be expressed on the following page:



/n/ - Ed

(6-6) = -(3U/26)"'*u(p) (30):

If U(8) = N(0O,Z), then
V '(31)

(8-6) ~ N(O,v-'Zv-1)

where, V = -E(3U/36).

For MLEs, the matrices I .and V are equal to the Fisher
Information Matrix, 1. (Fisher Information Matrix is shown on

the following page.) The variance term of (31) is then

V-I1Zv-' = 101 170 = 10,

Therefore, for MLEs the distribution ofh(a-e) has a form of
—46-6) ~ N(0,1-)).

By deriving the second derivatives of the lbg likelihood
function (equation (31)) with respect to parameters, ‘a', 'b',
'c', and 'o', a symmetric (4x4) Fisher information'matrix, I, is

constructed as fdllOWSL

E(-3%1nL/3a?) E(-23%1nL/23adb) E(-3%1nL/3adc) E(-bzlnb/aaao) .
E(-321nL/3b2?) E(-321nL/3bac) E(-321nL/dbdo) ’
E(-221nL/dc?) E(-321nL/dcdo)

E(—B’lnL/ao?)

33
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" where,
E = Expectation and the values of 'a', 'b', 'c' and o0
are the true parameter values, '

The entries of the Fisher information matrix are shown - as

follows:

E(-321nL/3a?) zigt{(202+1)/[oz*(a+b*exp(-cxi))2]}
E{(-2%1nL/3adb) =i21f[(202+1)*exp(-cxi)]/[o’*(afb*exp(—cxi))2]}

E(-321nL/3adc)

=ig’{[—xi*b*(2az+1)*exp(-cxi)l/[a?*(a+b*exp(-cxi))2]}

E(-azlnL/aaaa)‘=121{2/[0*(a+b*exp(~cxi))]}

E(-321nL/3b?) ?ig1{[(20’+7)*exp(-2cxi)]/[o’*(a+b*exp(-cxi))2]}

E(-321nL/3abdc)

= 4121{[b*xi*(202+1)*exp('2cxi)]/[o’*(a+b*exp(-cii))5]}

4 o ,
E(-3%1nL/3bdo) =ig1{[Z*exp(-cxi)]/[a*(a+b*exp(-cxi))]}

E{-83%21nL/3c?)

= £ {0 b?*x;2%(202+ 1) %exp(-2cx;) /L o7* (a+b*exp(-cx,)) ]}
E(-2321nL/3cdo) =121{{-Z*b*xi*exp(-cxi)]/[a*(a+b*exp(-cxif)]}

E{-2%1nL/202) = E((Z/a’).

iF
The theoretical Variance-Covariance matrix is therefore obtained
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by inverting the above Fisher information matrix.

When o is small, the (3x3) upper left array of the x(4x4)wgg’7
Fisher iigormation matrix can be inverted to a (3x3) theoreticai
variahcé?covariance matrix that has nearly the same entfieé as
those obtained by inverting the whole (4x4) Fisher informatibn

matrix. This may be seen as follows:

[1] The (3x3) ﬁppér left arfay_df the (4x4) Fisher
information matrix is proportional to (1/0’5;q a }&
[2) The remaining off-diagonal portions of this (4x4)
Fisher, information matrix, E(-321nL/3630), (where,
6 is 'a', 'b’ or 'c') have the form as félqus{
~{(1/a)*i§1{(alnwi/ae)]}; féﬂﬂ//
[3] The remaining diagonal portion, E(-3%1nL/30?), is (2n/¢?)
which is proportional to (1/02);
[4] The matrix o021 is therefore a block diagonal matrix plus
a matrik proportional to o. The matrix I-' is then nearly
the inverse of the Slock diagonal métrix so that o and

a, b, ¢ are nearly uncorrelated.

From the table on page 32 we see that the Var [U, .(8)] =

_var (U (6)] = Var [Uyp;c(6)] for small a.,Moreovef, for IRLS

NLLS

the matrix V = E (23U/38) = var [U (8)]7and for NLLS V

IRLS
\\ii?ariﬁMLS(8>3‘ Thus all three methods lead to approximately the

same value of V- 'ZV,
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Finally, for the NLLS estimates the following information is
concluded from the results of eguation (27) and (28) when. o is -

-'small:

E (8-6) = -v-'[-.8 (31nW,/26)] & o
| (32)

and Var (5-6) = V-' Yar (U) V! = o2
. . X

where, V= ~E(3U/36) a (1/0?) (equation (28)).

E(6-6) is proportional to o¢? which is small compared to the SE

of 8. (The SE is proportional to o.)

It should be noted that the IRLS'and NLLS methods separate
the estimates of ¢ from the estimation of the other parameters.

The ML method requires the simultaneous solution of four

equations; the other two methods give three eguations not

including o and a simple formula for 0.
’ &

2.3 SUMMARY

The general theory of estimating equations provide the roots

o~

of UMLE(g)' U (6) and U (8)- with asymptotic properties.

IRLS NLLS
All three methods produce variances of matrix form M-' where

M =1+ R, .

The entries in matrix I are proportional to (1/¢2) and those in
matrix R are proportional to (1/0). For small o, matrix R Iis
negligible, The gstlmatlng functions, UMLE(G) and UIRLS(G)’ have

mean values of zero but UNLLS(G) has a mean which is —
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proportional/tq 0? (equation (32)). -The mean O;“UNEESLQL is

negligible because the SEs of the estimates are proportional to

o. The IRLS and the NLLS estimating/échemeé ,fheféfo;eA lead to
approximately the same answers as the ML estimating 5cheme'wh;n
o is small. For this project the IRLS algorithm, is épplied to
‘caltulate the estimates but the MLE thgo;y is used to obtain the
variance-covariénCe of the IRLS estimates because thése_ are

relatively simple to calculate. This technigue will be juétified

by Monte Carlo studies of Chapter,Four.
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CHAPTER 3

S

ESTIMATIONS OF THE INTERSECTION POINTS AND THEIR ASSOCIATED

@ B . - - e e e — e - - PR _——
 VARIANCES | o

For the R-T procedure in dating sediments, accurate
éktrapoiatiog'is necessary to obtain th$L intersection point
beyond the origin. In section 3.1 of this Chapter tﬁe method of
accurately extrapolating the intersection points willv be

*illustrated. It is followed ih section 3.2 by the estimation of

the variances of these intersection points by the maximum

likelihood method.

3.1 ESTIMATION OF THE INTERSECTION POINTS - | —

The intersection point 1is the point at which the TL
»ihtensities of both curves are the same. Referring to Figure 0.3
}Introduttion) with 1# as the top curve, 1B the middle curve,
and 1C the bottom curve, curves 1A and 1B can be desqribed by

the following equations:

curve 1A: Y = a+Brexp(-éz*) (33)
curve 1B: Y = (34)

a+B*exp! -gx%)
/

where, 38, b , are estimated parameters of curve 1A;

‘(»

1]
m

' are estimated parameters of curve 1B.
These estimated parameters are the IRLS estimates. They are
obtained by fitting each data set to the saturating'exponentia14
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T { u e

model separately with the IRLS algorithm using the BMDP3R '

program.

. The estimate
*

. \

- - N \\ . N T T T o T

intersection point of curve 1A and curve 1B
5 - .

~% : - ~ ~ ~ 4
(8 ,Y ), is the point at which ¥ = Y = Y. It .is shown as
follows: | S
; . Ak — ~ak '
~ - d+b*exp(-Ex ) = F+B*exp(-C% ) (35)

where, i*, the estimated intersection point, is a
function of all six estimated parameters
4, b, &, &, b, &; that is,

14
A* -~ -~ ~ PR
= f£(3, b, ¢, @, b, c)p

b

L

% B ' ] ,
In order to solve for % , an IMSL routine called ZBRENT, a
combination of linear interpolation, inverse’ quadraticﬁfa\\
interpolation, and a bisection algorithm procedure is applied to

find the root of the following equation:

(36).

G+B*exp(-8% ) - (F+B*exp(-8%7)) = 0

3.2 ESTIMATION OF VARIANCE OF THE INTERSECTION POINT

~

A% . ’ rS ~ -~ * :
For X~ being a function of &8, b, €, @, b and € and x  being

2 v A’ g CB.

a function of 'a,’ "bpty ‘et 'ag's 'bg', ey iﬁ*-x*)acan be
‘approximated by Taylor expansion on the following pagg:?”i

I

T
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(i ~x ) = f(é_é,xvhg? E)-f(aA, A’aB’bB*cB)’

o - (a-a )*(3£/0a, )+(5-b )*(28/3b, ) +(8=c,)* (3£ /¢, )
. " | ' +ia'a3)*(af/aaB)+(5-bB)#(af/ab3}¢(cYCB}HfaffacB _

The expectation of this apprqximation’is as follows: -
* *
E(X -x ) = 0.

Its variance has the following form:

/ Var(i*-x*) =‘(af/aa )Z*Var(§)+(af/ab )z*Var(5)+(af/ac )2*var (&)
+2(af/aa )*(af/ab )%*Cov (3, 5)+2(af/aa )*(af/BcA)*Cov(a &)

+2(af/ab )*(af/ac )*Cov (B, &) ¢
. +(af/aaB)’*Var(a)+(af/abBL’*Var(5)+(af/acé)z*Vaf(E)

+2(0£/3a5) * (BE/2by ) *CoNERB) +2(31/a,) * (2£/3c ) *Cov (5, T)

+2(3£/3by)* (3£/3c ) *Cov (B,
=(VE)TI' (VE).

Therefore’, the estimated intersection Moint has approximately a
normal distribution with a mean of x*
var (x*). H{&E\ the IRLS estimates and their corresponding

variance-covariance matrices calculated by the MLE theory the

estimated variance of the intersection point can be obtained by

using the equation (Serfling 1980) as faTlowS:

var(f) = (VE)T I'(Vf) . (37)

where,

f=£(8,b,¢,3 B,C)=2;

)

(V£)T = The transpose of the gradient array; .
= (df/2a, of/3b, 3f/oé&, -9f/93, -0f/3b, -0f/aC);

40
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l

and

1' = Varianee-Covariance matrix of (4,5,¢&,3,5,¢),

Each element in (V)T is obtained by evaluating the first
derivatives of equat1on (35)‘ with respect to each of the six

estimated parameters. They are explicitly shown q//follows:

L

v

a 1
oX /oa = :
/ Béexp(-£% ) -BEexp(-c% ) ‘
exp(-€x ) ‘
3b = —
/ Beexp(-£%" )-Beexp(-E&")
x
Ak o n -b%x exp(- gz*)
ok /oc = - .
/ Béexp(-&%" )-Blexp(-Ex’)
ax* /33 = !
BEexp( -Z2")-Béexp(-&x")
33% /3B = exp(*cx )
BCexp(-¢% *y- Bcexp(-éi*)'
ok - _-Bi*exp(-ai*)

3% /o3¢ -
: BEexp(-C&" )-Béexp(-&x")

Because data 1A are independent of data 1B, the covariances of

1A and 1B are zero,. Therefofe, the theoretical

Variance-Covariance matrix, I', can be written as follows:

alixs  0O3x3
O3z3  BIYgs : }

The (3X3) upper left array of the (4xh&a
theoretical variance- covar1ance matrix ]
for data set 1A;

gligz = The (3X3) upper left array of the (4X4)
theoretical variance-covariance matrix

whefe, AI§X3
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for data set 1B; R
- 03x3 = (3%3) zero matrix with-all entries of zero. ——

The ’ SDs (uncerta1nt1es) of these intersection points . are

| obta1ned by VVarlfS

I1f the estimated iﬁtefgec;ion point has épproximately a
normal disfribUtion, interval® estimates ‘can be cal¢ulated;
Interval estimatés for the estimated intersection point (é'
margiﬁ of uncertainty) can be caléulated by 5»cohstf0cting
confldence intervals fortt interSection point For the small
sample sizes studied in this paper (n=11 to n= 17) the confidence
1nterv;ls‘ of the 1ntersectlon point are ca;culated by the

N\ following equation:

+ yVar(f) -t (38).

3

>
np*ng-é

Here, a t-distribution critical point with a degrees of freedom

of (nA+nB-6) is .used because the variance of this estimated

“intersection point is an estimated value using eguation (37).

Proceeding by analogy with the regression situation it is hoped

that the distribution of

g -x* : (39)
yVar(f) '

will be well approximated by a t-distribution ‘with (nA+nB~6)

dégrees of freedom.
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MONTE CARLO SIMULATION
&

For the non—linear\saturatiné exponential model, f{(a,b,é),
*hébing a weight as a function of baramefers 'a', 'b' and 'c",
initial parameters are required to_ invoke an IRLS’algorithm
using the BMDP3R program (Chapte} Two). Two pdssible’méthods of
obtainin%l the initial pafameters}described‘in section 4.1 are

the Grapﬁical Method and the Quadratic Equation Method. 1In

section 4.2 Monte Carlo study is applied to examine the gquality"

of the estimation scheme discussed in Chapter TWO.

4.1 HOW TO OBTAIN INITIAL ESTIMATES

In order to proceed with the IRLSfélgo;ithm using the BMDP3R

program, 1initial estimates (coefficients) of the non-linear

. saturating exponential model ' are required (section 2.1.3;

Chapter Two). Two possible methods of obtaining these are the
Graphical Method and the Quadratic equétions as described in

sections 4.1.1 and 4.1.2, fespectively.
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4.1.1 GRAPHICAL METMOD ——

of the follouxng page: - N B

The non-linear saturating exponential model has the

" folloving form:

B -

t(D) = E(TL) = a+b'exp(~c*0)

(40).

vhere, D = abplied dose;

a,b,c = coefficients (parameters).

-

When incréasing the applied dose the second term in eguation:

 £/96), [b'exp(-c*D)], tends. toward zero. Thus for large applied

doses, D, ‘the TL measyrements approach1ng a constant 'a’.
Theréfore; plotting TL intenSitieé 'versus thext/’cbrreéponding
applied doses produces 8 curve of pos1t1ve slope followed by 2
plateau at higher dose levels. The "value of 'af is * the
thermoluminescence intensity found by extrapolating the plateau

back to the TL intensity axis. The plot is SthP on F1gure 4. 1.

s
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[Figure §.1 ll“Thermolumznescence versus applied dose to
"obtain the initial parameter ‘a', for the
' Graphical Method. .
A plateau is reachec at some high applied dose levels.
The value of parameter 'a' in equation (40) is the
thermocluminescence 1ntenszty by extrapolatzng this
plateau back to the TL axis.

Habing found 'a’', the initial values of 'b’ and ‘¢! are
obtained algebraiclly a few steps after expreSsing equationyfqoi v

as follows : -

(41).

, f(TL-a) = btexp(-c*D)
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Here parameter 'b' has a negative value because experimentally

the TL measurements tend to increase with increasing applied

dose (D). Taking the iogérithmron'both éidés éf:eqﬁation (41),

1nte=TLy = ln(-b)-c*D (42)
. produces a straight line with a slope of (-¢) and an intercept
of (ln(-b)). If plotting [1ln(a-TL)] versus D, the parameter
values of 'b' and 'c' will be obtained algebraically by equating
therintercept to (In(-b)) and the siope to v(~c). ~Of course
valuesr of TL  larger éhan 'a' must be omitted. In Figure 4.1.1

all’ data points with applied dose of 1.6 or more would be

omittéd.

4.1.2 .QUADRATIC EQUATION METHOD

The Quadratic Equation Methaé&TEfoceeds by the followihg

~

three steps:

4%%’Empirically at each appliéa dose lével a number og‘TL}
intensities are reéorded from several AL discs (introduiﬁion).
For the quadratic equation method the average ,of these TL
‘intenéities at each applied dose level is required,/; quadraﬁic
equatioﬂ 15 then sought to fit the ‘data set, in which the
average TL intensity is calculated at each applied dose ievel.‘
The above description 1is illustrated on’Fng:e'4.l;2 of'the

following page:



\

~ TL (10° PHOTON COUNTS/°C)

12 - A A
= . l ﬁ’
10+ N -
a—i
6-
¥is the symbol for the average
. - {thermoluminescences of the
o /- r : : corresponding appiled doses.
<
3 T LE T 1 T \ L 3 A\ T I )
0 0.3 0.4 0.8 0.8 1 13 Lt - L8 18 2
APPLIED v DOSE ( kGY ) ST

[Figure 4.1.2]) Thermoluminescence versus applied dose to

* obtain the initial parameters for the
. * Quadratic Equation Method.
TLo, TL,, TL,, TL,, TL. and TLs; are the average
thermoluminescences for the given doses D,, D,, D;, D;, =«
D,, D5, respectively. o

ERRY

The quadra{ictequatioh has a form of

(43)

L,+r,*D+r,*D? = TED

The‘coefficieﬁ?s: éonstants;

Where, f1,'rz,‘r3

rApﬁliéd dose;

D
T,

Average TL intensity at the éppliedv

dose, D.



\

This §ﬁ53fa€§é equation approximates the saturating exponential

curve for the same data set. (To get r,, r, and r; simply

regress TLp on D, D?,)

| (ii) The first and the secondvdefivatives of the gquadratic
equ&tion (equation (43)) and the saturéting eprnential’équatibn’
(equation (40)) are derived separately. This is follpwed by‘ the
evaluation of ‘theée'rand ~theirrcorresponding first and second
derivatives at dose zero (i.e. D=0). It can be summarized as

folldws:

andtatiCquuatioh: (ry,rz2,ry are known coefficients)

. r,+r,*D+r;*D? = ."I'_LD; . ry = TL =0 (44) -
'[First Derivativel: |
. ra+2%ry*D = Thy; . 1, = Thpg © —— (45)
[Second Derivative]: | |
’ 2%r, = Tﬁs'; ' 2ry = Tfs;o —_— (46)
Exponential Equation:
f(D) = a+b*exp(-c*b); vf{O) = a+b - — (47)
[First Derivativel: -
£ (D) = -bc*exp(-c*D); £ (0) = -be (48)
[Second Derivativel: A
.+ £77(D) = be*exp(-c*D); £ (0) = be? —— (49)

(iii) Because the quadratic curve and the saturating
%
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exponential curve approximate each other and the coefficients of

-

the guadratic equation, ri, r; and r; are known; the

coefficients of the satuiﬁting exponential équaticn (rar,” 'E*A;"w
‘and 'c') can be found initially byx'ééuatfng the quadratic
equations to the exponential equation and then by équatihg ‘the .
first and second derivatives. of the quadratic'equati&h with the
first and second derivatives of the exponential equation‘ while

at zero dose. =

Therefore, equating equation (44) to (47), (45) to (48), and
(46) to (49), the values of parameters 'a', 'b' and 'c' are

calculated as fcllows:

3
N

! | _a‘=-r,'- (r2 / 2ry )
b=(r§/3r3') -
c =

( =2r, / ry ).

a

4.2 MONTE CARLO SIMULATION

The gquality of the estimation scheme discussed in Chapter
Two will be studied by Monte Carlo simulation in this section.

This study will be outlined in the following sections:

4.2.1 DESIGN OF MONTR CARLO STUDY -
‘ - J
4.2.2 ESTIMATION OF THE PARAMETERS ‘ -
and 4.2.3 NOMINAL CONFIDENCE LEVEL VERSUS OBSERVED ..
CONFIDENCE LEVEL OF PARAMETERS AND

INTERSECTION POINTS,
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&
4.2.1 DESIGN OF MONTE CARLO STUDY

e

Five sets of Monte Carlo data sets -were generated as

follows:

[SET71]:v a set of 2000 data sets each of size 12 with

| :parameter values 'a‘=8, 'b'=a6,v'c:%2 and 0=0.03,

[SET 2]: a set of 2000 data sets each qf size 24 with

parameter values 'a'=8, 'b'=;6, 'c'=2 and 0=0.03.

[SET 3]: a set of71000 data sets each of size 16 (data set

. 1A:of sample QNL84-1) with parameter values
'a'=10.805539, 'b'=-7.933527, 'c'=2,306339
and o=0. 053371,

[SET 4]: a set of 1000 data sets each of size 14 (data set
1B of sample QNL84- 17 with parameter values
'a'=6.297899, 'b'=-4.486734, 'c'=1,854243

®  and 0=0.04993506, D |

[SET 5]: a set of 1000 data sets each of size 11 (data set f

’ 1C of saﬁpleﬁQNL84-1i with parameter values.
'a'=2.695834, 'b'=-1.887451, 'c'=1,565%47
and 0=0.05599857.

‘ The?parameter valﬁes for the first two sets were rounded off
versio.us' based on a suggestion by Df. G. Berger. (These
parameter '6alues used to generat; random numbers"willrzbe
referred to as the true parameter‘values.) The remaining three

sets of parameter values are the fitted values for- data sets 1A

1B and 1C analysed in Chap¢er Five. o
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The above five sets of Monte Carlo data sets were generated

based on the saturating 'exponential mode1.4 The ' saturating

exponential model of equation (3) can be rewrittenrasiféilowsg

'Y, = [a+b*exp(-cx,)]1*(1+ge,) (50).
b 1 1

The error terms of eguation (50), ei; aré’ independently
identically 'distribgted N(0,1) (i.i;diN(O,l)); Because eacﬁ_ei
is an i.i.d. N(0,1) random number, artificial N(0,1) rahdom‘
numbers were. simulated by an IMSL routine called GGNML. From thé
sihuléteva(0,1) random humbers of a given sample size, the trﬁe
parameters, 'a', 'b' and 'c', and the given values of the
independent variable (the applied ’dosés), thé  valﬁes of the
dependent variéble (the TL 1intensities), wefe calculated by

equatién (50).

In spite of the fact that the.range of experimehtél samﬁle»
. sizes given for the R-T' 1§ from 11 to 17, MontévCarlo data sets
each of sizes 12 and 2 vere g erated. The‘results in Table

4.2;2’showAthat’the estimateaﬂq;;ndard errors of sizei ;2, $s
blafger than which of size 24 by a factor of approximateiy V2 as

éxpected.

- The estimated intersection points, at’whiqh the saturating
exponential curve and the x-axis cross, are calculated for each

' 'Monte Carlo data set by the following'eqﬁation:

8% = (-1/8)*1n(-4/B) = £(4,B,&),



whére, 2* is the pstimated intersection point;

5,'5 and & are the estimated parameters.

2000 intersection points were calculated for each of the first.
two' ‘Monte Carlo daté sets ,and 1000 infersection‘ poiht; weregr
‘calculated for each of the remaining _three sefs.»*!These
calculations were d;ne by FORTRAN programs CONFIFIS4,
CONFIFISs-24, CONFIFIS4A, CONFIFIS4B and CONFIFIS4C (APPENDIX

A).

4.2.,2 ESTIMATION OF THE PARAMETERS

‘The ig;y;ating exponential model (equation (3)) was fitted

to each of the five Monte Caflo data sets by the IRLS algorithm
using  tHe BMDP3R :program. The true parameter values were used
for the iﬁitiél estimates to feed to the BMDP3R program. The
BMDP3R output produces values for the Asymﬁtotic Cor;elation\:
Matrix of the Parameteré, Re$idua1 Mgn Square, Degree of
Freedom, the Estimated Parameters (IRLS estimates) and their
associated Asyﬁptotic Standard ADeviations. A sample BMDP3h-’
ouﬁput is displayed on the following page. The asymptotic
standard degiations produced by BMDP rare qpt strictly
'appropriate\;ince they appéar tb be baseq on the assumption that

the weights are known.

m—— i .
The average IRLS estimates (the Monte Carlo estimates) and

-the estimated standard errors‘(the SD is the' SD 'of‘ thé fMonte

- Carlo — estimates) obtained ,Afrom, the  theoretical
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variance-covariance matrices are summarized in Table 4.2.2 for

each set of Monte Carlo dataiéets.ria this table, the average
IRLS estimate of Monte Carlo data sets [SET t] (n=12) and TSETﬁ S
2] (n=24) are the average df the 2000 IRLS estimates while [SET
3] (1a), [SET 4] (1B) and [SET 5] (1C) are the average—of the
100b IRLS estimates. The Monte Carlo'standard.errbrs ére the
root mean square errors of the Monte Carlo values about the true
parameter values. If our asymptotic theory is working well these
SE's should be close to the values labeiied asymptotic standard
error which are coﬁputed using the formular of Chap:ter Two and’

Three,

ASYMPTOTIC CORRELATION MATRIX OF THE PARAMETERS

\ P1 ' P2 P3 ’ B

s 1 2 3 : | )

P 1 1.0000
-P2 2 -0.9835 1.6000 : -

P3 3 -0.8753 0.8374 1.0000
RESIDUAL MEAN SQUARE ‘ 0.588612E-03 ’
DEGREES OF FREEDOM - 9 .
PARAMETER 'ESTIMATE ASYMPTOTIC TOLERANCE’

| STANDARD DEVIATION ,
P 7.889383 0.154078  0.0237842773
P2 -5.878509. . 0.154078 0.0303805494
P3 7 2.012553 0.110435 0.2170771782
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The entries of the (4x4) Fisher information matrix are"

calculated by the formula givén %E:Eection 2.2.4 of Chapter Two.

The (4x4)  theoretical variance-covariance matrix is then
obtained by invertihg this Fisher information matrix. The

theoretical variances of the estimates are the diagonal entries

of this theoretical variance-covariance matrix. Then the

theoretical standard deviations are obtained by taking the

~

square roots.of their theoretical variances.. FORTRAN programs

called CONFIFIS4, CONFIFIS4-24, CONEIFISQA, CONFIFIS4B and

. CONFIFIS4C (APPENDIX A) were written to calculate the elements

df the Fisher information matrix and the theoretical

variance-covariance matrix.

Ial
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4. 2 3 NOMINAL CONFIDENCE L L VERSUS OBSERVED CONFIDENCE LEVEL;

e ——

The - 1nterva1 [9109 t,, (d/z)] is supposed to be a level (1- a)u:
C.I. (nominal confidence levelf}\}ts real conf1dence level can

be estimated from the Monte Carlo results by taking

such that

[ number of simulations ]
equatlon (51) is satisfied

[total ntmber .of simulations].

Where equation (51) is as follows: R (

QP

- < - * ga
676 | st (ar2) " %

where, 6 'c';

True parameters, 'a', 'b', and

>
L}

Estimated parameters, 4, B ,-and ¢ (the IRLS”

estimates);

t t- d1str1b tion critical int with degree of
v, (a/2) u c o] po th a g e

v freedom of (sample 51ze - number of parameters
estimated) and upper tail area (a/2); |
(It should be noted that the t-distribution

critical point is used because vi:.iance of-

the estimated parameter 6 is estimated.)

"

The theoretical standard deviation of estimated

Q?
Y
1}

-

’ parameﬁer e .

The observed confidence level based on équation (51) has an SD
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of'

i Iy - —

vTa*(1-a)/1000] * 100%.
FORTRAN  programs CONFIFIS4, CONFIFIS4-24, CONFIFIS4A,
CONFIFIS4B and CONFIFISAC (APPENDIX A) were written to compute
various observed confidence levels with the theoretical standard

deviations. The ‘theoretical standard deviations are the square

~ . N -
roots _of the  diagnol entries of the theoretical -
variance-covariance matrix. The standard deviation at,;ﬁthe ]
estimated intersection point is obtained as follows:
The intersection point with the x-axis: cam be obtained by
. ' ! N L
solving the following equitions, .
o .
atb*exp(-cx”) = 0
-~ ' AA* V
d+b*exp(-¢%x ) = 0 .
where, 'a', 'b' and 'c' are the true parameters; BT
4, b and & are the estimated parameters.,
The roots of these equations are as follows: -
x* = (-1/c)*1n(-a/b) = £(a,b,c)" ~ - | . |
* ) ' . T ' ’ V K‘r.'
8 = (-1/&)*1n(-&/B) = £(4,B,¢) — (52). .. .
. Lo ‘ “ g i T . - d"»- - . .
Because (%*-x*) is normally " distributed - as follows (Chapter
Three): | 1 ) 7 o

- (2"-x") ~ N(0,VETI'VE)

T

L 57




.~ the standard éfvxatxon ofﬁti*-x ) 13 YVETI ' VE .-wherefore, the

A

55 where, vr* = (ag/as at/ab af/ae)~

1'is the same as those in- Chapter Three,

-3

ﬁobsetved confzdence Ievel of the 1ntersec 1onvp01nt is estimated

the same_as that of pavameters. Where, equab1on (51) bécomes aS'

follows: e S  ;_ !‘*a* | k‘ <
L T xtxt st L P YVETDVE, |

v,(a/2) s
. , . ey

.Various nominal confidence levels and observed confidence

levéls‘ ot paraméters ‘a', 'b', ‘¢ and &% for all five Monte .

Carlo data sets are summarized in Table 4. 2.3 of the following

o page., - | o . T
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.To, fit' a4 non-linear saturating exponengial model with a

weiﬁﬁifwhich‘fs arﬁunction"of’ its coefficients (parameters),

— ) .. -‘.,—’——‘

'initial parameter, ‘estimates dre required to proceed with the

IRLS algbrithm usihg the BMDP3R' program.;.:TheSe 'initial_i

' parameters ‘can be obta1ned by a Graphical Method or a Quadrat1c

Egquation Héthoa The est1mat1on scheme, u51ng the IRLS ‘estimates

anq -the theoret1cal standard d§y£§t1ops calculated by the MLE

theory, 'is then examined by Monte Carlo study. Estimated

*éariabces, are 'then célculafed by  the MLE theory\using'the' -

theoretical variances obtained from the diagonal entries of

theoretical variance-covariance matrix.

The intersection point x* based on the MLE theory ;ppligd to

the IRLS estimates ‘or MLEs discussed here have true coverage-

probabilipy close to the nominal coverage probability. The

quality of these appfoximations is improved by using

critical points as explained in Chapter Three.

t~distribution critical points instead of \normal"distribution



e

CHAPTER 5

—= B E L A0 - - p

o E ANALYSIS OF EXPERIMENTAL DATA
- e ° : - e

JFive‘ différeht Sedihent samples} classified aé’QNLB4—1[
QNL84-2, QNL84L3f§w, ONLB4-4, QNLB4-3;12,‘ underwent the R-T
procedure; ‘For;:each sediment samplé there were three data sets
collected,»data set A, daté‘set B and data set C. The actual -

’ éaﬁa are in/‘APPENDIi BF Data set A is‘thg tﬁermolumineSCencej,
ES;ghal observed for the unbleached sediments,‘data set B is for
Rbleached sediments, and data set C is for sedimenté bleached for
a longer.time than data ;et‘B. They ’are Aplotted on the Same
diégram of‘ TL versus‘appliéd dose. Two intersection points,are
extrapolated from these three curves on the same diagram. The
'satu;ating exponen;ial» model with’ éonstant percent error was
" fitted to each data set. The IRLS ‘estimaées and their .
theoretical =standar::d ‘deviations are shown in séction_s.l. Iﬁ
sgctibn 5.2 both intersection points of each éédiment sample are
calculated by the IMSL routine ZBRENT and their standard errérs
“are calculated. To. conclude, ‘the validity of the constant
berceht error assumption and the adequacy of the saturating‘
exponential model will be exéminéd in sectién 5.3, Finally, the
results of the anélyses of thef'expefimental data will be

summarized in section 5.4.
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5.1 ES%iﬁATION OF PARAMETERS BY ITERAT‘VELY REWEIGHTED LEAST

UARES

As mentioned in Chapter Two when ¢ is small the IRLS

estimation scheme is the same as the MLE estimation scheme. Fdr_

ea€h experimental data the IRLS estimates are sought in' this:

section, To obtain the IRLS estimates the initial parameter

valugs, 'a'=2, 'b'=-8, 'c'=6, and '0'=0.03 were entered into the

BMDP3R program. The IRLS  estimates ,prodUCed by the BMDP and

A

their theoretical standard deviations are listed in Table 5.1. .

These theoretical standard deviations for each of the data sets

were computed by entering the IRLS estimates into FORTRAN

programs ,EFISHER4*4-1, EFISHER4%*4-2, EFISHER4*4-3, EFISHER4*4-4

and EFISHER4*4-5.
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5.2 zsﬁmrrous’@ 'rni m':"iﬁsscrlon POINTS AND THEIR VARIANCES

—n

The est1mated 1ntersect1on poxnts of the TL response- curves
_were computed using the IMSL algor1thm ZBRENT The1r est1matedt
var1ances were' calculated by the maximum l1ke11hood method
V(eguat1on (37) in Chapter ~lTwo). The computat1ons vere
_~incorporated gnto‘the programs EFIS4*4;1 EFIS4*4-2 EFIS4*4—3

| EFPIS4*4- 4 and EFIS4*4-5, The results are dlsplayed in Table 5.2

of the follow1ng page.

The estimated'»'standard v‘deviations at }the Jestimated ,
| intersection polnt of two doSe"response curves for each sample
shown in Table 5.2 range from 0. 00100 (sample 3, data sets A and
C) to 0.03885 (sample 4, datalsets A and B). These estimated

standard deviations .enable‘ the estimation of the TL apparent

ages of the sediment<Samples to an accuratefrange.

It  should be noted from Table 5. 2 that the ED extrapolated
from curves A and C is larger than that of curves A and- B/‘Curve :

C was based of the subsamples bleached for" longer per1ods. The

standard error of the 1ntersectlon polnt does not encompass theﬂf

drfference between the AED produced these two 1ntersect1on
points. As stated'in the Introductlon i?‘hould be expected that
, this dlfference in ED would be within the range of the SE. Th1s

ldlscrepaney-ls attrlbutable to the fact that the sample was

1mproperl{/;eroed (personal communlcation»with,Dr. Berger).
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5. 3 DIAGNOSES OF THE STATISTICAL ANALYSIS OF THE EXPERIMENTAL

kS

- DATA o D

In tﬁis sectlon the assumptlon of c&estant percent’ error is »M
assessed in section 5.3, 1. As well, the. adequecy of the model is

~examined in section 5.3.2.

5.3.1 CHECKING THE VALIDITY OF THE CONSTANT PERCENT ERROR

ASSUMPTION

The standard deviation at each dose level can be estimated
A N . LA . N X

7

as follows: '~ S » .

(53)

SD = {?;gT(TLijfTLi)zl/(m-1)

= The jth.TL measurement at dose level i;

’TE. = The average TL measurement at the ith

€

oy
o
A
(14

-3

c
|

dose level;
=7 ) * { LI S .
(/m* 8 (TLg (+ oor TLy )
m = The number of TL measurements
at dose level i.
For the assumption of constant pércent‘ error this standardl,"
deviation should be roughly equal to o multlplled by the mean,

[a*b*exp(-cx. ;)1 as follows-

SD = ¢ * Mean,

Plotting SD versus Mean shouid produce a straight line passing
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through the origin with a §qp§tangvslqpé of 0. For each data set

the corresponding SD versus Mean scattered plots are shown in
Figures 5.3.1(b), 5.3.1(c), 5.3.1(d), 5.3.1(e) and 5.3.1(f) on
the following pages. In addition, the error bars are shown for:
the ﬁlots of the experimentalﬂdéta.sets 5B and 3A. The plot of
data set 5B is.thé most linear of all while the pth of 3A is
curved at high ﬁeah values,»‘Although ‘data set. BA éxhibits

chrvature, a W;Eraight line is still possible within the giveh .

error bars (95% C.I.) in figure 5.3.1(a).

The error bars are constructed as follows: CE

Knowing that (SD?/¢2?) has a . chi-square distribution with a
degree of freedom (m-1), a (1-a) confidence is then calculated

as follows: ' | R ' .

Vil (m-1_)'*SDz]/X%a/2) ) (m-1“)} Sais‘}/{[ (m—-1)#*sD? ]/Xf 1'-a./27), : (m-T)}

‘where, o Standard deviation of TL at dose level ij;

SD Standard Deviation;

]

m = Number of data points at a given dose level i,

S

In Figures 5.3.1(b), 5.3.1(c), 5.3.1(d), 5.3.1(e) and 5.3.1(f), -

straight lines passing thfough the origin can usually. be drawn N\
inside the error bars. The linéar lines passing through the
origin suggest thét the constant percent error assumption for
the model is not unreasonable., No formal test. of assumption has .

been applied.

v
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. SDveMEAN (SMWREA) .

SD e MEAN ( SAMPLE 5B )
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5.3.2 CHECKING THE ADEQUACY OF THE MODEL

1f th§~ satutat;ng exponentxal model is apptept1ate andwghe

assumptxons of satutat1ng exponentzal mean and constant percent

- ) 4A%;£ror are satxsfxed, the residuals should‘be structureless. This
'i o may be ‘examined by plotting the (Residual/uean)‘vetsus the ‘Mean
for each, data 'sét. These plots are shown in ngures 5. 3.2~ n

5.3. 2 2 5. 3 2= 3 5.3.2-4 and 5.3. 2~ 5 on 5the following . pages.

~"They are scattered randomly about the MEAN axis (x-ax1s(: ‘These

_ pattern-free plots suggest that the model is adequate.‘ It is

‘ .noted that the data points are 'w1dely scattered along thé‘

vertical axis at each;dose level. This 1is primarily due to

selection of the vertical scale,
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" model appears to be adeguate.

e S

Incorporatlng 'the IRﬁs ~e5timation : scheme Qith;fthe'
theoret1cal varlances by the MLE theory, the est1mated etandard.
deviations of the intesection points »are obtalned for each
sedimentary Sample; The vaiidfty'of the constant -percent error
assumpt1on “ and ‘the adequacy of the proposed satnrating,
‘exponentlal model are examined by the plots of the SD versus the

: Mean and the (Res1dual/Mean) versus the Mean, respect1vely. The

80
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~ CHAPTER 6

SUGGESTIONS FOR FURTHER WORK

__ For a three dose response curve diagram, the &aturating

exponential model is fitted to each offdgta-separately. This
procedure yields three estimated pérameters and-one estimated 0

(Chapter Five) for each "dose response curve as well as two

intersection points. Both these intersection ,point%E are

functions of six estimated parameters (three from each curve),
This condition results in an estimated variance of interseétion

points which is dependent'on these estimated parameters as well

as on the ﬁeights from both curves and the two estimated o's.

Other methods of fitting these data could be tried. For example,

assuming that.the two érossingvTL response curves have the "same

percent J erfors, one could fit these two TL . curves

simultaneously. Possible physical reasons for. assuming the- same
percent error .for two crossing TLpresponse curves are descrlbed"

in Berger et al. (1985). This method, while not actually’ carrledu 

out for this project, is described in this chapter.

When fitting two TL response curves at the same time with

seven parameters, namely, 'aA', 'bA', 'c.', 'a.', 'b_', 'c_' and -

o, -the mean response appears as.

{[a +b *exp( C, %4 )1*(1+0e; }*G

(54)

+{fa +b *exp( ch I*(140e; }*(1 G)

where, G=Indicator variable;

81



‘ —~G=Offorudataﬂbelong—té=kr;;
G=1 for data,bélong to B.

-

The IRLS estimates can be obtained the same way as that was .-

described in Chapter Four where two curves were ”fib;ed  

separately. o o | ’ PR

The likelihood function for mean reSponIes,lY,,...,zﬁi with .

a single o for the two curves is as follows:

L =ﬁég//7?q)(nA+nB)*{expC-1/2d2)*Iig?[Yi-(aA+bA*exp(—chi))]?_

(55).

Bfy - e (= 2
+ig1[Yi (ag+bg*exp(-cpx.))1%]}
The log iikelihood function is shown as follows:

1nL = (-nA/Z)ln(Zr)-ig?(lno).

[

-(1/2) B0 (Y- (a, +b, *exp(~c,x;))) /(0(a, +b, *exp(-c,D))) 12 |

4‘(-nB/2)ln(21) -ig?(lno) | ,
-(1/2)12.?[(Yi~(aB+bB*exp(-chi)))/(o(aB+b*exp(4chi)))]2
| , (56).

The Fisher information matrix is then a (7x7) matrix, \17x7

produced by .overlapping o terms from A14x4 and BI4x4‘

>

Where,

alaxq = The Fisher Information matrix derived from
"equation {56). The four dimensions are
, parameters 'aA'. 'bA', 'cA', and o;
glyxg = The Fisher Information matrix derived from
equation (56). The four dimensions are
parameters 'aB‘; 'bB', 'cB','aﬂd o.

82 ..
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‘ The theoretlcal variance= covarlanee matrfx'——ft;/;y44r544the

1nverse of the Fisher 1nform;¥10n matrix, (1 7)° The var1ance -

 -of the 1ntersect10n point is. then estimated by equation (37)

4_(shown in Chapter Three) w1th a (7x7) variance- covariance matrix

aﬂd a (Vf)'r of the form as follows'

’(af/aa af/aB 08/02,, 0£/90, -0t /08y, ~of /By, ~af/at).
. N | 8 |
[NOTE]: 2£/28 = O. -

The: (7x7) ‘Fisher information matrix is illustrated as

»

follows- , f : :

1130

1727 = | a7 ¢ bT

0 b1,
o whéreA I, is the .(3x3) upper left array of the alaxq matrix
j end has the following form:
.
/

/

! -

E(-2?1nL/?a,?)” E(-321nL/da,2b,) E(-3%1nL/da,dc,)
E(- a=1nL/ab ) E(-2%1nL/3b,dc,)
E(-9%1nL/3c,?)

B3



I,v1s the (3x3) upper left array of th

oy

R

c

and ‘has the followlng form~

T | | | o
E(-azlnL/aaB’)- E(-3%1nL/dagdbp)
. E(-321nL/3bg?)
- -

E(- azlnL/aaA A)

E('azlnL/aoA A)

. -2
E(-2 lnL/aoAacé)

-

c = E(-lenL/BaAZ) + E(-2?1nL/d0y).

[NOTE]: =g = ¢

[

E(—azlnL/éa
E(- a=1nL/a

E(-a?lnL/acb?) )

E(- azlnL/ao
E(-lenL/ao

E(- azlnL/aa

is the o in the term of

Ia A
equation (56);
og = 0 = 0g is the ¢ in

equation (56).
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cONCLUSION =

£
Y

This paper stddies_the statistical analysis of the partial -

bleaching method for thermolhminescenté agting of,~seqimehtéry~

rock. The non-linear saturating exponential model with d‘

saturating exponential mean and an unknbwn constant percent’

~ . <

error was_fitted to -several sets of data. It was shown that when

"q is‘relatively small, the Iteratively Reweighted Least Sqnares

(IRLS) estiﬁation, scheme approximates the Maximum Likelihood

_‘(ML) estimation scheme. Therefore, a Monte, Carlo study was

- applied " to examine the applicability of the large sample‘theor&-

of the IRLS estimation scheme when o is small and the number of .

observations . is small. The intersection point of two additive

. dose curves was extrapolated using an IMSL algorithm and in

addition, the standard deviations 2t these intersection points -

techniques were applied to several ‘experimental data sets.

Finally, the model assumptions were checked by the plots of SD
versus Mean and (Residual/ﬁean) versus Mean. The characteristics
of linearity passing through the origin shown in the'plots'dfvSD
ver§u§ Mean indicated .the appropriﬁieness of the constant
percent error assumption while the-randomnéss shovh in the ﬁlots
of (Residﬁal/Mean) versus Mean assured phe adéquacy of the

proposed model.

[

With these techniqués the eguivalent dose value was computed

accurately as the distance from the origin to the interséction

- -
4

were approximately estimated by maximum likelihood theory. These

-85 S
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- p01nt (beyond the or1g1n) 'of two add1t1ve dose curves. In

o ,add1t1on, the est1mated error of th1s rntersectxon p01nt was .
: calculated by the max1mum liﬁelxhood theory. The TL apr;eﬁt age>7ﬁf
- is then ‘obtained by the equatlon shown 1n=the Introductlon (page
= E . 2 . * N ’ 4 " . ’
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