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The statistical analysis ~ % , t h e  partial bleaching mithod of 
, . 

tharmoluminescence dating of sedimentary rock is studied. Large 

sample theory is given for three methods of . fitting saturating 
* 

exponential additive dose curves when the errors are assumed to - -. L *  

have a standard deviation proprtional to the true response. The 
6 

.. 
three methods, non-linear least squares, maximum likelihood and 

iterati;ely reweighted least squares, are shown to be 

approximately equivalent in the limit of small errors. 

Approximate standarb errors art provided for the intersection 

point of two such'curves. The%qwlity of these approximations is , 

studied by Monte Carlo and shown to be adequate for typical 
, 

experimental situations. nally-, the techniques are. applied to - - 
several data =sets 

, - - -  . - 
informally. 

t 

and -fhe model assumptions are qhec ked 
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< 
sediments bere Bepogited - - - - approximetely - - - ppp - - tuo -- million pears 

to dramatic climatic changes. 
c t 

1 - 

-7 

PuridsrsentaLly. the general procedure is as follows: 

~ediwntarg ' rocks arc excavated in such way as fo prevent 

exposure to sun1ig)st. As s precaution, all further experiments - 

a te  carried out under subdued orangt'light and the sample's 

outer layers are zeacwed. The sample is then treated to a series 
- 

of filtratiotrs, acidification and oxidizing steps, and washings 

in order to remove debris, carbonates and other- organic 
'i 

' 1 

materials, minerals and mineral oxide laiers. The resulting 

slurry is treated with chemical .,(oxides) and mechanical 

dispersing mechanisms, to arrive at a number of uniform sample 

suspensions 

s1minlt;at--di 

which are thcn dried on s discs. Each . 

sc holds one subssmplt vhich approximately 1 

milligram.  best sub~.si~les 4 10 to 20)  arc irradiated with 

different doses of a ( 7 )  radiation. This radiation is 

thought of us  acting in dddition to radiation which & 
irradiated the rock since the  rock's last exposure to sunlight. 

I ( ~ r p r u r e  to sunlight drives off the trapped electrons and 
/- 

zeroes tbe TL signal. I Each subsbmplc is then placed into an 
. 

oven separately. 

- -  The TL intensities f r m  roost temperature to about 500•‹C are 

collected Iroa a photoaultlp~itr' tube which i s  connect& to an 

oven containing an oxygen-free gas ae a pressure ot-less than I 
- 

r 

P- intensities ate then plotted against the corresponding 
L 



temperatures at vh'ich - the - pppp TL emitted - - - - -- is -- observed.+This TL versus 

.temperature curve is called the 'glow curve'. Both the Natural 
- - - - - - - 

h, (NTL) versus temperature and the TL versus temperature curves - 
- 

are glow curves. The NTL signal is the thermoluminescence 

released by dose-free sediment samples, while the TL signal is 

the thermoluminescence induced from laboratory irradiated 

sediment samples (samples.bombarded by 7 .  radiation). From a 

resulting glow curve a single TL value at some high temperature 

(above -250•‹C) is chosen. This high temperature is chosen ' 

because TL signal becomes unstable at a temperature lower than 

25O0&. For any fixed high temperature a plot of u s  added - 

Co-60-3 dose is possible. This plot is called an Additive Dose 

curve. The diagram on the following page shows ,a plot of ' TL 

versus added -dose at a given temperature. 



fti- 8 .3 )  R. +trw Ad&d Dose at c @~en - I 

temptratUte. 
A single additive dose curre is rbom i n  thin diagram. 
?be ED is tbe d i r t a x e  fta origin to  the intercept of 
the m, .ad the Oorc ui. b - u x % ~ ) .  



Extrapolation back to the point of intersection with the Applied , - pp - -- - 

Dose axis (x-axis) gives the equivalent dose, En (0-r Dep). 
- -- 

Several such ' curves produce Eb v S m e s  whieh, when plotted with 

temperature, incxease until a plateau is reached. The desired 

ED, therefore, is the ED for the temperature a t  which no further 

change is observed with increasing temperature, An improved 

method of dating sedimentary rocks .introduced by Wintle and - 

Huntley in 1980 is called tht'partial-bleach or R - G w  (R-r) 
- 

prwedure. The R-r procedure ig so named because the reduct ion 

(R) in the TL caused by bleaching the unirradiated and the 

irradiated sedimentary subsamples is plotted against the applied 

gamma ( r )  dose. The'ED is theu evaluated from the intersection 
/-' 

of bleach ached additive dose curves. 'Bleaching' is 

a means of reduci he TL due to the radiation dose since # 

i deposit ion acing the sample under a sun lamp for some * 

length of ore'bleaching produces a larger ED, but not - 
significantly larger when compared to the Standard Error (SE) of 

the intersection p d n t  i f  the- sample was properly zeroed, , 0 

(Experimental results are shown in Table 5.2.) The plots on the 
r- 

follo~ing two pages show the intersection, points between the 

bleached and unbleached additive dose curves, and their 

equivalent doses at a given temperature, 



Ifigure 0 .21  TL versus Added Dose a t  a given 
temperature. 

Two additive dose curves arc shown on this diagram. Both 
R. signals are induced from 7 dose irradiation . The 
m r  figure is tbe w&ik 7 cttwt; a d  the l w e r  is 
t h e  bleached cune. Th ED is tbe distance fxm origin 
to the intersection of these tuo 7% respas t  curves.  



1 I I I i 1 1 I 1 1 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.8 1.8 

APPLIED 7 DOSE ( LGY ) E4- f -"- 
lfigure 0.3) TL versus Added Dose at a given 

t_$mperature. 
Three additive dose curves are shovn in this d s g r a m .  \ 

All R signals a r e  induced from laboratory -y \ 

tion. The uppermost figure is the unbleached 
the middle f i g u r e  is the bleached curve; and the 
is the bleached curve which represents a sample , 

exposed to a sun lamp for a longer period of  time than 
the bleached curve of the middle figure, There are two - - 
EDs are observed. ED, is thef equivalent dose rtisultimg 
from the intersection of the unbleached curve and the 
bleached curve of the middle figure uhile ED, is the 
equivalent dose resulting from the intersection of the 
unbleached curve and the bleached curve pf the lower 
figure. Both EDs are the  distances from origin t o  the 

- 

U intersections of the unbleathed and the bleached curveq. 



~ h c '  desired ED is then applied to the TL appareht age equation 
J 

TL Apparent Age : Equivalent Dose / Effective Dose Rate, 

where the Effectiye Dose Rate is the gamma dose rate/-ied by 
I 

cosmic ray's to the sedimentary subsamples after accounr\ing for 

the decay of naturally occuring radioactive isotopes U-238, 
- 

Th-232 and' K-40 in the sediments. The.age of the sqdiment is 

thereby. estimated. 

. Even though dat ng of unheated Quaternary sediments has - .  
- 

~t.f fered the prowisc of accurate results, some characteristics 

inherent in the experimental data (elucjdated in Chapter One) 

make r e l a t i v w  .simple statistical analysis inappropriate. 1tZ' is 

th '&f efore the purpose of this paper to study appropriate 

statistical analysis of thetmoluminescence based on experimental 

results- from the partial-bleach or R-r' procedure. 

% For the R-r procedure the fundamental problem in estimating 

Q the TL apparent age is to accurate& extrapolite' to the 

ihtersection point of two non-linear additive dose curves and to 
. 

estimate the associated uncertainty. In order to solvesthis - 
- 

problem the appropriate statistical analysis is discussed in the 

P following Chapters. Chapter One of this paper will outline 

, possible models far means, such as: Linear, Quadratic, Cubic and 

Exponential models, a s  well as possible models for the errors. 
3 

Chapter Two will examine three methods of estimating parameters , 

- 

(coefficients) of the proposed s a t u r a t ~ e x p p n e n t i a l  model: 
- 



1 I 

sectoion 2.  I . 1 , Non-Linear Least Squares methodf sect ion 2.1 ,2-,fP 
- - pp - - - -- - - 

- 

Maximum Likelihood method and section 2.1.3,  Iteratively . . 
-- .- . -- - - -- - 

~ewei~xted .Least Squares method. In Chapter Three an accurate 

extrapolation method for the intersection points of unbleached 

and bleached T+ response curves is described. A Maximum. 
a B 

Likelihogd technique is applied to the estimation of the 

variances (uncertainties) of the& intersection hints. In 
-- 

,Chapter Four a Monte Carlo Simulation will serve to check thei 
1 

\ - 
validity .of the theories of estimating the parameters.and the 

intersect ion points and theig associated variances as discussed 
, 

in Chapters Two and Three. Chapter Five uses a~tual experimental 
v 

data to fit the proposed model and analyze the methods of 

estimating the parameters and variances of the intersection, 

points described above. As well, the ~odel assumptions are 
-9 

checked informally. Another method of fitting additive dose 
w 

curves is suggested in Chapter Six. 

i 



\ 

- -POSSIBLE 2 4 0 ~ ~ ~ s  FOR ME&s M D  ERRORS 
, 

- 

- 

. - 

In section 1 . i  and section 1.2 br this Chapter the models 

'for means and errors will be described, respectivefy. In each of 
7 

.- 
these two sections various possible mode3will be illustrated. 

'As well the reasons for using the saturating exponential, model - 
for the mean and.assuming a constant percent error (unknown in 

b - advancef 'for the proposed model will be explained. . 

d / , 
.4 

1.1 POSSIBLE MODELS - FOR MEANS . 
'   or sediments younger than io -20  kiloyears ( ~ b )  the two TL' 

8 

response curves appear linear. This straight-lime behaviour 

makes the simple least-squares method possible for statistical 

analysis of the data. The straight-line, least-squares fit for 

young marine sediments has been discussd by Berger et al. 

e 

For sediments older than 20 Ra, dose response &.ves are no 

longer linear but sublinear." Sublinear cbves show a linear 

relationship with a positive slope between TL and the applied 
* 

dose at low dose levels but curvature is observed as the dose* 
- ) - 

level increases and finally a flat TL intensity is reached at a 
* . ' 

high dose level, There are several possible curves to describe 
- 

. this nonlinearity. Low degree polynomials such as Quadratic and 

Cubic are linear in .:heir coefficients and empirically fit the 

data better at the linear portion (low dose levels) than at the 

4 





1.2.1 POISSON Dl STRI BUT1 ON 

A TL signal is.act@illy a photon count. Therefore, nor d ally, 
it would be assumed that a Poisson distribution would be 

7 requirer I f .  the TL signal has a Poisson distribution, the 

variance of TL is the same as the expectation of the TL, E(TL). 

That is, the SD of a TL measurement is the square root of the - 
,mean, . Therefor?, - & h e  percent error in TL is [ ( I /  

{~')*100%3; where, percent error = [(SD of TL)/(MEAN of 

TL)J*IOO%. For the saturating exponential model described in 

equation ( 1 )  the percent error in TL decreases' with increasing 

applied dose due to the negative value of parameter 'b' if  the 

signal is assumed to have a Poisson distribution., Howevec, the 

act1-l observed. error inthe experimental data increases with 
r )  

increasing applied dose (e.9. Figure 0.3). This observed error 

is larger (see Chapter Five for numerical evidence on this - 

point) probably owing to the subsample inhomogeneity. Therefore, 

the assumption that the TL has a Poisson distribution is 

inappropriate. 

,1.2,2 CONSTANT PERCENT ERROR 

Straight-line least squares fits for young marine sediments 

were worked out by Berger et ale LL9@4)-ed on the assuinptions 
' -J 

listed on the'following page: 
0 



c- [ I ]   here is no measurement -- error in -- the applied -- dose.- 

- 
r 

f2) There is a constant percent error 
(unknown-in-aavance in each TL measurement 
throughout each set of samples. - 

That is , Berger eel. use the model. 

\ 
where, D: i4 the abplied dose; 

For the model (equation ( 2 ) )  of Berger et al, the percent error 

which is constant as a function of D (added dose). In other 
A'' 

words, this percent error is independent of the applied dose, DL 
B 

Since the percent e=Cr in a TL measurement which has a 

Poisson distribution depends on the applied dose, a more 

realistic model is to consider a random &umber of grains, N, in 

each sample. The TLN is a sum of all TL signals,released from N - I s 

sediment grains. If each of these N TL sigGals has a Poisson 
i 

distribution with a parameter of X, the mean a d variance of the P . total TL (TLN) can be written as on the f~llowi<~ge CBick3l 



The percent error in TLN is as follows: 

For large X the percent error in TLN is approximately equal to 

[ / ~ I ' / E ( N )  1. This percent error k is independent of X. In other 

words, this percent error is a constant. Note that the Poisson 

distribution with large mean is quite normal Fn shape. 
1 

For the proposed non-linear saturating exponential model, 
i 

the constan rcent error meams: 

/I 0 i = 0 .  ' - a+b*exp(-cril 

The Standard Deviation (SD) of a TL measurement, 

{ u* f a+b*exp( -cx )]I, indi.cates that a weiqht, W: which depends. 

on the parameters a ,  b ,  c ,  is assigned 

measurement. Here, W. is the inverse of the variance 

form [aG*exp(-cx: I-'. Therefore, &other way of 

model (equation ( 1 ) )  is shown on the following page: 

to each TL 

and has the 

writing the 



where, o = constant = relative error; - - 

-- C 
t 

W. = weight = la+b*e~p(~cx.)l-~= g(x.,e); 
1 - 1 1 

9 = parameters 'a', 'b', and 'c'; - 

For a the R-I' procedure a non-linear saturating exponential 
i 

model is .used to fit the experimental data because of thc d 

expected saturation of electron traps contributing to the TL 
- 

signal and. the physical characteristics of t h e  data. ~heieforc, 

. a model with a saturating exponential mean and an unknuwn 
0 

constant percent error are used for .each curve. I the next 
a 

Chapter, the estimation of the parameters (coefficients). of this 

model will' be described and discdssed. 

1 



trRt5) mpthod , , provided by t h e  BllDP3R program the BWP 

(Bioecrdicsl Caasputsr Ptograras, WCU Press) StatiaticAl Softwre 

rrranubl is applied to estimate the parameters of the proposed 

sstursttng sxpnentidl  aodel. - In addition to this IRLS scheme, 

t h e  thu~si4s of another two estimation schcslts are described in 

this Chsptct. Thast three methods, Non-linear Least Squares 

methob, ~xirorp Likclihubd at thod  and fterativcly Reweighted 
I 

b a s t  Squares method wilt bt il~uattattd in sections 2.1.1, 
--- 

2.1 .2  and 2.1 .3 ,  respectively. Finally, in section 2.2 the 

conclusion that  these three err iaat ion schemes are op&nimat& 

t h e  suwc,is derived when a is srasll. 

In general, the polynomial and exponontaa1 models have the 
I 

form 

for i = 1,2,3,b-a,n., 

- 

For constant percent 'error the weight Wi depends on t h e  

parameters a * ,  b ,  c * ,  v i a  W ,  = !l/ff(&,b,c)] (Chapter One). 
i 

? 

t, -. '1 6 





d .  

The first 

respect to 
*4 

w follows: 

9 * - - -  - m. - 
- - -  

$erivatives of this log likelihood function with - 
ilj 

parameters, a ,  b ' c ' ,  and ' u ' ,  are.expressed as  

The K E s ,  - 6 5, are  then solved by se t t ing  the above - 
equat,ions t o  zero. 

\ 
, 

2.1.3 ITERATIVELY 
'\ 

I 

1 f the weight -Si did n o t  depend on the parameters a ,  ' b' -- 
- - 

and 'c' then the WLE5 of a , 'b' and ' c '  would-simply minimize 

RSS of equation ( 5 ) .  If the weight Wi does depend on the 
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- .  LP-- 

1 

~otettiat the above equations are a linear system in P 
- - 

5 
k+l' k+1' 

because (af . / a d ,  O f . / a b )  and O f  . / a d  do not depend on 
k+ 1 1 1 1 

a ' ,  b and c .  T h e m m a t e s  are iteratively estimated in 
- 

this manner until t h e y  do not change any more. That is, the 
79 

iteration is terminated when the-following condition is reached, 

  he final estimates solve the following equations: 

[B] fi(a,b,c) are non-linear in parameters a ,  'b' and 'c'. - - --- - I ,  

When the function f i  is non-linear, one cannot immediately 

- minimize RSS; therefore, the Gauss-Newton algorithm is usedto 

calculate d k + l ,  Ek+]* it+l from B k ,  bk, The estimates P k ,  

Bk, Ck will converge to the roots of equation (9). 





o u r  nun-linear model, _equation ( 3 ) ,  has a. form 03 - 
- 

- 

Y = ffr.,6)+o*f(xir0f*c 
i 1 i 

il n. 

~ c t  yo = Y.-f(x,,BO); it follows from 
i 1 I 

- 

t h a t ,  

Yo ukf,  carcx. , e l m ; )  legeO 
i 1 .  1 

.- 
(13). 

Let 

PTnx3)be the (nx3) matrix as,follows: 
i 

) [NOTE]: the first column i n  PPnx3) is a column 

i of 1 ' s .  
- 

and, 

' 8$-8: a-a O 
@?3*1) [ ] = [ b-b: ] = 8-0' (14), 

a 83 c-c 





T h e  estimates ate f hen reexpressed in ters sf t b e ~ % g h d  

variable Yo as 
3 .  

By evaluating equation ( 1 6 ) ,  the estimated parameters of the 
3 

linear terms from the Taylor series expansion of the nonlinear 

model is obtained. Now i0 is an estimate of ( e g o )  so the 

updated estimates for - the nonlinear model are obtained as 

follows: 

The scheme of Gauss-Newton algorithm and IRLS is therefore 

summarized in the following steps: 

(i) Evaluate the weight of equation ( 5 )  with the initial 

parameter vabes. The method for finding the initial estimates 

will be described in Chapter Four. - 
(ii) Input the initial parameter values to equation ( 1 6 )  to 

obtain the estimated parameters of the linear terms from the 
/ 

Taylor series expansion of the non-linear model. To obtain t h d  - 
updated (new) estimates of the non-linear model, equation ( 1 7 )  

is evaluated, 3 

{iii) Recalculate the weights then- repeat step fiil. Continue 

the process until estimates are changed very little. Again the 

- 



final estimate solve equation ( 9 ) s  

Minimizing the  RSS beans setting the fellowing eqmttiom~-rrr--- 
. % 

zero: 

* 
where, 8 ace S t  6, e .  

But the IRLS algorithm oniy sets the first term of equation ( 1 8 )  
b 

to zero for the estimates, 8 ,  b and e. This means that the IRLS . 
. . '  

algorithm at each step'need not reduce the value of RSS. This 

algorithm can be c rried out usin6 BMDP3R. This BMDP program can 'a. 
.il - - - 

be used in two w "Y 

(1) The - 
\, 

d simply by follo ing the 'f 
Gauss-Newton algotithm. '1 

r With this method the estimates are the IRLS estimates. In 

order to use this method; two additional kornmands have to be 

included to the Regress section of the BMDP3R program used for 

m=thod - ( 2 ) .  These two additidnal commands are illustrated as . -. 

follows: 

( a )  Specify the number of iterat.ions. - - 

(b) Set the permissible number o,f halvings (see method 



( 2 1 t a M i  tion to- thhee f i s t  twosette-psS&_tk-_Gaus s - N e w t o n -  
- 

a1gorit.h.m - k  a d the IRLS scheme mentioned on the previous page, 
- - - - - _ 

this method carries out the steps listed as follows; 

th (I) At the (k+l) iteration, evaluate the following 

equation: 

(k) 
RRS = Residual sum of squares of the, kth - - 

iteration (previous). 

\ (k+1) 
(ii) I f  the RSS 

(k) 
is larger than the-RSS , then replace 

4 A 

the increment size, BO, by (i0/2) and recompute the RSS. This 

halving 'Increment procedure is continued un* ' the R S S  

decreases. 

Wit?' method (t) the BMDP3R program displays the parameter 

estimates and their associated asymptotic correlation matrices 
a 

and asymptoiic standard deviations on the output (Chapter Four). 
a 

For this project the estimates are obtained by the fRLS 
9 

method using the BMDP3R program (method ( 1  1 ) .  In the next - 
section (2.21, the 1RLS estimates shown to be approximately 

x equal to the MLEs when o is small, will be discussed and -- 
&rived. 

- 



YL 
-- 

,Up to this point three possible estimation schemes, 

 on-Linear Least Squares (NLLS), Maximum Likelihood ( M E )  and 
\ -- 

Iteratively ~ebci~hted Least Squares (IRLS) are described in 

sections 2.1.1, 2.1.2 and 2.1.3, respectively. tF 
the estimates dre obtained by the IRLS algorithm using the 

BMDBOR program. Our discussion focuses on estimation ,of a ,  ' b' 

and 'c'. F s r  all three methods a is estimated via the last 

equation' in (8). For the maximum likelihood estimates the four 

equations in ( 8 )  must be solved simultaneously since u appears 

in each equation. .The other two methods give a set of three 

estimating equations for 'a', 'b' and 'c' which may be solved 
. .', 

without reference to o. The following discussion will focus on 

the fact that the IRLS and the NLLS estimates are the same as C I 
the MLEs when a is small. 

MAXIMUM LIKELIHOOD ESTIMATION 

F 
Each observation, Yip has b normal distribution such as that 

mentioned in ( 4 )  on page one of this chapter, a more general 

form of the likelihood function can be written as follows: 

where, f i  = f i i a , . b , c )  = The proposed model is a function 

of parameters, 'a', 'bf and ' c ' ;  



Wi = wi(a,b,c) = The weight is a-function of 
- - - -- -- -- -- --- - - -- - 

parameters, a ,  'b' and 'c'. 

The log likelihood function is 

The maxi'mum likelihood ,estimators are then obtained by solving ' 

the following equation: 

(The lTke1ihood equation for o may be solved explicitly to give 

The mean vector and variance-covariance matrix for the first 
- 

three components of UmE(B) are: 



When a  i s s m a l F t h e  second term equation (22) isvery small A 
compared to the term. Therefore a - 

when a  is small. 

f 
[NOTE]: Var Y i 2  I = Yar a Z [ , l 2  = 2 0 4 / ~ f .  - 

-- 
Var (Yi-fi) = E (Yi-fi)l = 02/wi. 

- 
E (Yi-f.) = 0. ' . 1 i' 

9 ~ [ ( a ~ ~ / a s ) ( a w ~ / a e ) ~ l / w . ~ ~  = ( a i n ~ ~ / a e ) ( a i ~ w ~ / a e ) ~ .  
1 

The covariance terms in Var[UmE(B)], yar[UIRLS(6)] 

and var[SLLS ( @ ) I  are zero because E(Yi-fiI3 = 0. 



- ?hr nuis argot~th. ras biscusmd i n  =actz-bnz I .f. raims . 
\ 

urtimtes  can k obtained dy setting o n l y  the second . term of 

equation (20) t o  zero (s.te equation ( 2 3 ) )  which is  the  same a s  
1 .  

solving equation ( 5 ; .  ' - 

The axpcctation and the variance of UIRI.S. ( 8 )  are shown as 

- 

2 .2 .3  WON-LINEAR LEAST SQUARES 
I__ 

I .  

met ing  the  second and the t h i r d  tecgs of equation ( 2 0 )  t o  zero; 

that i s :  



- -- -- - - 

The expection of UNtLS (8) is not zero. It- is shorn as follovs: 
V 

- - 4 The variance of Uyw ( 8 )  is shown as  foflovs: 

When o is small, the second term of equation 128) is very small. - 
- - 

Therefore, the variance of UHLLS($) (equation ( 2 6 ) )  is 

approxiinatelr: - 



- -- 

when o is small. The above information can be summarized in the 

ESTIMATES E I U ~ ~ )  I 
-- 

varfU(9) I 

MLE 0 - (1/u2) *.! [ w ~ * M ~ ]  * (2u2+1) - 1= 1 

I RLS - 

2.2 .4  Dl SCUSSION 

9 

I f  estimating equations have the form 

and have the'properties 

then by Taylor expansion, equation (29) can be expressed as 

follows: 

negligible terms' i n  the above equation then it can 

be expressed on the following page: 







by inverting the above Fisher information matrix. 

When o is small, the ( 3x3 )  upper left array of the ( 4 x 4 )  
'b 

Fisher information matrix can be inverted to a ( 3 x 3 )  theoretical 

variance-covariance matrix that has nearly the same entries as 

those obtained by inverting the whole ( 4 x 4 )  Fisher information 

matrix. This may be seen as follows: 
- 

• ’ 1 1  The ( 3 x 3 1  upper left array-of the ( 4 x 4 )  Fisher 

information matrix is proportional to ( f / 0 2 ) ;  
9 

[ 2 ]  The remaining off-diagonal portions of this ( 4 x 4 )  

Fisher,lnformation matrix, E(-a21nL/aBao), (where, 

6 is 'a', 'b' or 'c') have the form as follows: 

[3] The remaining diagonal portion, E(-a21n~/ao2), is (2n/02) 

which is proportional to (l/02); 

[ 4 1  The matrix 0'1 is therefore a block diagonal matrix plus 

a matrix proportional to o. The matrix. I - '  is then nearly 

the inverse of the block diagonal matrix so that and 

g ,  6, 2 are nearly uncorrelated. 

From the table on page 32 we see that the Var [U,,(e)l = 

'lar I UNLLS - ( 8 ) l  - Var [UIRLS (8)] for small a. Moreover, for 

the matrix V = E (aU/a6) = Var [U,,, ($).]'and for NLLS V 

v a r h L S  ( B ) ] .  Thus all three methods lead to approximately IRLL the -- 

same value of V-'CV, 



J - 

Finally, -f6r t h e  =S est i i i i i t i  the following information is 

concluded f r m  the results of: equation (271 and (28L-uhcn.-a- iS 

small: 

where, V L  - ~ ( X ? / a t i )  a (l/u2) (equation ( 2 8 ) ) .  

E(;-8) is proportional to o2 which is small compared to the SE 
A 

of 8 .  (The SE is proportional to o.) 

It should be noted that the IRLS. and NLLS methods separate 

the estimates of a from the estimation of the other parameters. 

The ML method requires the simultane,ous solution of four 
a 

equations; the other two methods give three equations not 

including o and a simple formula for G .  
63 

The general theory of estimating eq-tsati,ons provide the ro'ots 

Afl three methods produce variances of matrix form M-' where 

M = I + R .  
i \ 

The entries in matrix I are proportional to (l/a2) and those in 

matrix R are proportional to (l/o). For small o, matrix ft is 

negligible. The estimating functions, UmE(B) and UIRLS (8), have 

mean values of zero but UmLS (8) has a mean which is- - - 



negligible because the SEs of the estimates are proportional to . 
U .  The IRLS and the N U S  estimating-schemes therefore. lead to 

approximately the same answers as the ML estimating scheme when 

a is'small. For this project the IRLS algorithm is applied to 

calculate the estimates but the MLE theory is used to obtain the 

variance-covariance of the IRLS estimates because these are 
\ 

relatively simple to calculate. This technique willo be justified 

Monte Carlo studies of Chapf er Four. 



For Lhe 

OF THE IWTBPSBCTION POINTS AND THEIR ASSOCIATED 
I@ 

R-r procedure in dating sediments, accurate 

extrapolation is necessary .to obtain th7 intersection point 

beyond the origin. In section 3.1 of this Chapter the method of 
t 

accurately extrapolating the intersection points will be 

illustrated. It is followed in section 3.2 by the estimation of 

the variances of these intersection points by the maximum 

likelihood method. 

The intersection point is the point at whtch the TL 

'intensities of both curves are the same. Referring to Figure 0.3 . 

(~ntroduction) with tA as the top curve, 1B the middle curve, 
/ 

and 1C the bottom curve, curves 1A and 1B can be described by 

the fol?owing equations: 

A - 
curve IA: Y = ~+6*exp(-e8*) - ( 3 3 )  

LI 

9 
-A* curve 1B: Y = Z+E* xp(-cx - (34) 

t' 
where, S ,  6 , E are estimated parameters of curve 1A; 

g, ;El, I F.are estimated parameters of curve 1B. 

These estimated parameters are the IRLS estimates. They are 

obtained by fitting each data set to the saturatingexponential 
3 
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- / 
-- - 

Each element in (VfIT is obtained by evaluating the first 

derivatives of equation (35) with respect to each of the six 
i 

estimated parameters. They are explicitly shown a ~ o l l o w s r  - 

? Because data 1A are independent- of data I B ,  the covariances of 

t A  and 1B are zero .% ' Therefore, the theoretical 

Variance-Covariance matrix, 1', can be written as follows: 

5 
where, AIiX3 = The ( 3 x 3 )  upper left array of the ( 4 ~ b  

theoretical variance-covariance matrix 1 - - 
for data set 1A;  

= The ( 3 x 3 )  upper left array of the (4x4) 
theoretical variance-covariance m'tr ix  



The ' SDs (uncertain~iks) of these intersection points are 

obtained 'by d m .  

If the estimated intr&ction point has approximately a 

norpal distribution, interval- estimates can be calculated. 

Interval estimates for the estimated intersection point (a 

margin of uncertainty) can be calculated by constructing 

confidence intervals o r  intersection point. For the small 
- - 

sample sizes studied in this paper (n=11 to n=17).the confidence 

intervals of the intersection point are calculated by the 

following equation: 

Here, a t-distribution critical point with a degrees of freedom 

of (nA+nB-6) is .used because the variance of this estimated 
)L 

intersection point is an estimated value using equation (37). - 
Proceeding by analogy uith the regression situation it is hoped 

that the distribution of 

will be well approximated by a t-distribution with (nA+nB-6) 

Sggrces of freedom. 



- - MONTE CARLO SIMULATION 

For the non-linear .saturating exponential model, f i ( a ,  b,=), 

. . 
hhing a weight as a function of parameters 'a', 'b' and ' c ' ,  

initial paramete-rs are required to- invoke an IRLS algorithm 

using the BMDPJR program (Chapter Two). Two possible methods of 

S 
- - 

obtainin the initial parameters described in section 4.1 are 

the Graphical Method and the Quadrattic Equation Method. In 
8 

section 4.2 Monte Carlo study is applied to examine the qualitye - 

of the estimation scheme discussed in Chapter Two. - \ - - 

4.1 HOW TO OBTAIN INITIAL ESTIMATES , -- 

In order to proceed with the IRLS algorithm using the BMDP3R 

program, initial estimates (coefficients) of the non-linear 

saturating exponential model ' are required (section 2 .1 .3 :  - - 

Chapter Two). Two possible methods of obtaining these are the 

Graphical Method and the Quadratic equations as described in 
- 

sections 4.1.1 and 4 . 1 . 2 ,  respectively. 



e non-linear saturating expsniintial model has the 
f 

folroving forat2 

whtre, D - applied dose; 
a,&,c = cuefficirnts fpcrrsantcraL 

- 
2 

when incrtasing the applied dose the second term in equation 

f b*erp(-cW) 1. tends. toward zero. Thus lor large applied 
- 

doses, D, the e#asurcmcnt's approaching a constant ' a ' ,  

Thereforei plotting TL intensities versus their-corresponding 

applied dosee produces'e curve of ssitive slope followed by a - -  P 
- 

plateau a t  higher dose levels. The ' value of ' a '  i s  the 

thermolumincscence intensity found by extrapolating tht plateau 

back t o  the TL intensity axis. The plot is sh wn on 95 
of the following page: 

Figure 4 , l . f  
i . L 



[ ~ i g u r e  4. t . I 1 m-ermoluminescence versus -applied dose to 
obtain the initial para6ter ' a ' ,  for the 
Graphical Method. 

A plateau is reacheo at some high applied dose levels. 
The value of parameter ' a *  in equation ( 40 )  is the 
therrnolumfnescence inten~ity~by extrapolating this 
plateau back to the TL axis. 

Having found * a ' ,  the initial values of 'b' anb 'c' are 

obtained algebraiclly a few steps after expressing equation ( 4 0 j  - 



Here parameter ' b' &is a negative value because-e~plirimentally- 
- --- 

the TI, measurements tend to increase with increasing applied 
- --- -- - 

I dose (D). Taking the logarithm on both sides of equation ( 4 1 ) ,  

I-== In(-b)-c*D . (42) 

/ 

produces a straight line with a slope of (-s) and an intercept 

of (ln(-b)). If plotting [ln(a-~~)] versus D, the parameter 

- values of 'b' and ' c '  will be obtained algebraically by eqhting 

the intercept to (In(-b)) and the slope to c Of course 

values of TL larger than 'a' must be omitted. In Figure 4.1.1 

all' data points with-tpplied dose of 1.6 or more would be 

omitted. 

QUADRAT1 C EQUATION METHOD 

-- -- - 

The Quadratic Equation Method proceeds by the followihg 

three steps: 

4 9  Empirically at each applied dose level a number of TL 

intensities are recorded from several AL discs (introduction). 
t 

For the quadratic equation method the of these TL 
e 

intensities at each applied dose level i s  quadratic 

equation is then sought fit the data set,. in which. the 

average 19, intensity is calculated at each applied dose level. 

The above description is illustrated on Figure 4 . 1 . 2  of the 

following page: 



*is the symbol for the avemge 
scences of the 

ed doses. - 

[Figure 4 . 1 . 2 1  Thermoluminescence versus applied dose to 
obtain the initial Darameters for the 

- Quadratic - Equation Efethod. 
T L ,  E,, z2, E,, TL, and E, are the average - 

thermoluminescences for the given doses Do, D l ,  D2, D,, 
- - 

s D,, D5, respectively. 

- 1 

The quadratic equation has a f orm of 

where, r,, r2, r3 = The. coefficie&s; constants; 

D = ~ p p l i e d  dose; 
- 

. T$ = Average TL intensity at the applied 

dose, D,. 



- 

v 
'. 

This qGafatic eqGt ion i i ~ r o h h i ~ ~ s  the saturating exponential 
- 

curve for the  ram data set. !TO get r i p  I, and r, -- 
regress on D, Dz.l 

(ii). The first and the second derivatives of the quadratic 

equation (equation ( 431  and the saturating exponential equationp 

(equation (40)) are derived separately. This is follpwed by the 

evaluation of these and their corresponding first and second - 

y derivatives at dose zero (i .e. D=O). It can be summarized as 

fof lows: 

Quadratic Equation: (r,,r2,r3 are known coefficients) 

[First Derivative]: 

[Second Derivative]: 

~xponential Equation: 

f ( ~ )  = a+b*exp(-c*D); •’(0) = a+b 

f ~ i r s t  Derivative]: 
t 1 

f (D) = -bc*exp(-c*~); f (0) = -bc 

[second Derivative]: 
9 8 t t  

f (D) '= k2*exp(-c*D); f '(0) = bc2 

(iii) Because the quadratic curve and 
3. 

the saturating 
% 



- J 
exponential curve approximate each other and t'he coefficients of 

- - - - - 

the quadratic equation, r;, r, and r ,  are known; the 

coefficients of the s a t m t i n g  exponent iaf equation -+, 'FPL- 
, . 

and c 1 can be found initially by, iquating the quadratic 
% 

equations to the exponential equation and then by equating the. 

- - first and second derivatives of the quadratic equation with the 

first and second derivatives of the exponential equation while 

at zero dose. 

Therefore, equating equation (44) to (47), (45) to ( 4 8 1 ,  and 

(46) to (491, the values of parameters 'a', ' b' and 'c' are 

calculated as follows: 

- 

4 . 2  MONTE CARLO SEWULATION a 

The quality of the estimation scheme discussed in Chapter 

Two will be studied by Monte Carlo simulation in this section. 
6 

This study will be outlined in the following sections: 

4.2.1 DESIGN OF MNT& CARLO STUDY 
---\ I 

4.2.2 ESTIMATION OF THE PARAMETERS 

and 4.2.3 NOMINAL CONFIDENCE LEVEL VERSUS OBSERVED. 

CONFIDENCE LEVEL OF PARAMETERS AND 

INTERSECTION POINTS. 



Five sets of Monte Carlo data sets -were generated~ 
1 

follows: 

a s e t  of 2000 data se ts -each of s i ze  12 with 
- 

r parameter values ' a f = 8 ,  'b'=-6, ' c P = 2  and o=0.03. 
-- 

a s e t  of 2000 data s e t s  each qf s i ze  24 with 

parameter values ' a1=8,  'b'=-6, ' c1=2 and o=0.03. 

a s e t  of 1000 data s e t s  each of s ize  16 (data set 

I A  of sample Q N L ~ ~ - 1 )  w i t h  parameter values 

and u=O.O5337l. 

a s e t  of 1000 data s e t s  each of s ize  1 4  (data s e t  

1B of sample Q N L ~ ~ - 1 7  w i t h  parameter values 

and u=0.04993506. 

a s e t  of 1OOO data sets each of s ize  1 1  (data se t  

1C of sample QNL84-1) w i t h  parameter values 

and u=0.05599857. 
0 

The"rameter values fo r  the f i r s t  two s e t s  wererounded off 

ve r s io : .~ '  based on a suggestion by Dr. G. Berger. ( ~ h e s e  
a 

parameter values used t o  generate random numbers w i l l  be 

referredst0 a s  the t rue  parameter values.) The remaining three 

s e t s  of parameter values are the f i t t e d  values for  data s e t s  1 A ,  

13 and 1~ analysed i n  Chapter Five. - 



The above five sets of Monte - Carlo data sets - were generated 

based on the saturating exponential model. The saturating 

exponential model of equation ( 3 )  can be rewritten as follows? 

The error terms of equation (50). ei, are independently 

Identically distributed N(0,l) (i.i.d. N(0,l)). Because each e i 
is an i.i.d. N(0,1) random number, artifi;ial N(0,l) random 

numbers were.simulated by an IMSL routine called GGNML. From the 

simulated N(0,l) random numbers of a given sample size, the true 

parameters, a 'b' and c and the given values of the 

independent variable (the applied doses), the values of the 

dependent variable (the TL intensities), were calculated by 

equation (50). 

In spite of the fact that the.range of experimental sample 

sizes given for the R-T to 17, Monte Carlo data sets 

each of sizes 12 and The results in Table 
1 

4.2,2 show that the of size 12 ,&s 

larger than which of size 24 by a factor of approximately as 

expected. 

D The estimated intersection points, at which the saturating 
.A- 

exponential curve and the x-axis cross, are calculated for each 

I Monte Carlo data set by the follcwing' equation: 



where, 1" is the estimated intersection point; 
- - - - -- --9-- - - -- 

6, B and E are ths estimated parameters. 

2000 intersection points were calculated for each of 

two Monte Carlo data sets and 1000 intersection points were 

calculated for each of the remaining three sets. -.These 

calculations were done by FORTRAN programs CONFIFISI, 
I 

CONFIFIS4-24, CONFIFISIA, CONFIFISIB and CONFIFISIC (APPENDIX * .  

A ) .  

b 
4 . 2 . 2  ESTIYATI ON OF THE PARAMETERS - -- 

- 

The sprating exponential model (equation ( 3 ) )  was fitted 
- 

to each of the five Monte Carlo data sets by the IRLS algorithm 

- using t ~ e  BMDP3R program. The true parameter values were used 

for the initial estimates to feed to the BMDP3R program. The 

BMDP3R output produces values for the Asymptotic Correlation. 

Matrix of ,the Parameters, Residua1 W n  Square, Degree of 

Freedom, the Estimated Parameters (IRLS estimates) and their 

associated Asymptotic Standard Deviations. A sample BMDP3R 

output is displayed on the following page. The asymptotic 

P 

, .  -' 

'appropriate since they 

standard deviations produced by BMDP are not strictly 

appear to be based on the assumption that 

the weights are known. 

/ 

The average IRLS 

the estimated standard 

Carlo - estimates) 

- ~- -- 

estimates (the ~ o h t e  Carlo 

errors (the SD is the SD 

obtained , from- the. 

estimates ) and 
- 

of the Monte 

theoretical 



- - 
variance-covariance matrices are summarized in Table 4.2.2 for 

-- - - -- - - - - G 

each set of Monte Carlo data sets. In $his table, the average 

I R E S  estimate of Monte Carlo data sets [SET 11 4 ~ 1 2 )  am3  SET - 

23 (n=24) arc the average of the 2000 IRLS estimates while [SET 

3 3  (1A), [SET 4 1  (1B) and [SETS] (1C) are the average-of the 

1000 IRLS estimates. The Monte Carlo standard ertbrs are the 

root mean square errors of the Monte Carlo values about the true 

parameter values. I f  our asymptotic theory is working well these 
- 

SE's should be close to the values labelled asymptotic standard 
- 

error which are computed using the formular of Chapter Two and 

Three. 

ASYMPTOTI C CORRELATI 0 MATRIX OF THE PARAMETERS 1 

d 

RESIDUAL MEAN SQUARE 0.5886 12E-03 

DEGREES OF FREEDOM 9 " * 
PARAMETER ESTIMATE ASYMPTOTIC TOLERANCE' 

STANDARD DEVIATION 



The entries of -- the - - - - - (4x4) - - - - Fisher - - -- information matrix are 
- 

calculated by the formula given section 2.2.4 of Chapter Two. 
- G -- - - - - - - - - 

The (4x4) theoretical variance-covariance matrix' is then 

obtained by inverting this Fisher information matrix. The 

theoretical variances of the estimates are the diagonal entries 

of this theoretical variance-covariance matrix. Then the 

theoretical standard deviations are obtained by taking the 

square rootsoof their theoretic-a1 variances.- FORTRAN programs -. 
called CONFIFISQ, CONFIFIS4-24, CONFIFISQA, CONFIFISBB and 

COWIFISQC (APPENDIX A) were written to calculate the elements 

of the Fisher inforrnaticm matrix and the theoretical 

variance-covariance matrix. 
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4.2.3 VERSUS OBSERVED CONFIDENCE LEVEL 
a-- 

A 

The interval [@fC;*t,,(,/2) 1 is supposed to b e a  level (1-a) 

C.I. (nominal confidence levelr Its real confidence' level can L 
be estimated from the Monte Carlo results by taking 

number of simulations 
such that [ equation ( 5 1 )  is satisfied 1 
ber simulations]. 

Where equation (51) is as follows: t 

. - 

where, 8 = True parameters, 'a', 'b', and 'c'; 

5 = ~stikted paranieters, S,  6 ,- and S . ( the LBLS* 

t = t-distribution critical point with a degree of 
v ,  (a/2) 

IJ freedom of (sample size - number of' earaineters 
estimated) and upper tail area ( 4 2 ) ;  

(It should be noted that the t-distribution . 

critical point is used because v;:iance of 
- - -- 

LL 

the estimated parameter 6 is estimated. 1 P 
! 

9 .  

A 

O 5 -  
= The theoretical standard deviation of estimated 

- The observed confidence level based on equation (51 ) has an SD 
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1' is the same as those inpChhptef ~hree: 

*, 

observed confidence level of the* intersechion point is egtimateil .- 

the same-as that  of pammeters. 
I - 

**  * I x - x  * dVff1'vf% - -  3 d' , 
.- t Y f  ( 0 / 2 )  , A 

nominal confidence levels and observed 

parameters a ,  b 'c' and f 'for all l e v e l s  of' f i v e  'Monte . 

summarized in Table 4.2.3 b f  the data sets are f ollowinrj 
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To fit a non-linear saturating exponential mbdel with a 

weightwhich 5s a function of its coefficients (parameters), 
--- - 

-- 
initial parameter, estimates &re reqcired to proceed with the 

/ I 

IRLS algbrithm using the BMDP3R program. These initial _ 

parameters can be obtained by s Graphical Method or a Quadratic 

Equation  leth hod. The estimation scheme, ,using the IRLS estimates 
and the theiretical standard deviations calculated by the MLE 

-- 

theory, is then examined. by Monte I Carlo study. Estimated 

-variances are then calculated by the MLE theory using the - 

theoretical variances obtained from the diagonal entries o•’ . . 

theoretical variance-covariance matrix. 

The intersection point x* based on the HLE theory appli d to P 
the IRLS estimates or MLEs discussed here I_-si have true coverage- - 

probability close to the nominal coverage probability. The 

quality of these approximat ions is improved by using 

t-distribution critical pints instead of normal -distribution 

points as explained- in Chapter Three. 



Five different sediment samples, classified as QNL84-1, 

QNL84-2, ~ ~ ~ 8 4 ' - 3 , 5 ~ ,  QNL84-4, QNL84-3,12, underwent the R - r  
P- 

procedure. For- each sediment sample there were three data sets 

collected, data set A ,  data set B and data set C. The actual , 

data are in, APFENDIX B. Data' set A is the th~rmoluminescence - 

I 
,signal observed for the unbleached sediments, data set B is for 

/ 

bleached sediments, and data set C is for sediments bleached for 

a longer time than data set B. They are plotted on the same 

diagram of TL versus applied dose. Two intersection points are 

extrapolated from these three curves on the same diagram. The 

saturating exponential model with constant percent error was 

fitted to each data set. The IRLS estimates and their 

theoretical 'standacd deviations are shown in section 5.1. In 

section 5.2 both intersection points of each sediment sample are 

calculated by the IMSL routine ZBRENT and their standard errors 
- 
are calculated. To- conclude, '$he validity of the constant 

percent error assumption and the adequacy of the saturating 

exponential model will be examined in eection 5.3. Finally, the 

results of the analyses of the experimental data will be 

summarized in section 5.4. 



5 . 1  BSFIKhTION - OF PARAMETERS BY ITERATIVELY REWEIGH'PBD LEAST 

As mentioned in Chapter Two when a is small the IRLS 

estimation scheme is the same as the MLE estimation scheme. For 

- - eat% experimental data the IRLS estimates are sought in. this. 
- 

section. To obtain the IRLS estimates the initial parameter 

values, 'a1=2, 'b'=-8, 'c1=6, and '0~=0..03 were entered into the ' 

J 
BMDP3R program, The IRLS estimates produced by the BMDP-and 

\ 

their' theoretical sta,ndard deviations are. listed in Table 5.1. 

These theoretical standard aviations for each of the data sets 

were computed by entering the IRLS estimates into FORTRAN 

programs /EFISHERI*Q- I ,  EFISHER4*4-2, EFISHER4*4-3, EPISHl3R4*4-4 
& 

and EFISHER4*4-5. 
* 'I' 
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- 

5 . 2  I~%%ATIO#S - -- OF ~ ~ I = R S ~ T I ~ ~ ~ A W D  THE f R VAR I A N C % ~  
- - - 

f - - -  - -  Lpp 

The estimated intersection points of the TL response curves . 
a 

were computed using the IMSL algorithm ZBRENT. Their estimated 

variances were calculated by the maximum likelihood method 

- (equation (37) in Chapter Two). The computations were 
- 0  . . 

iricorporated Ynto the programs EFIS4*4-1, EFIS4*4-2, EFIS4*4-3, 

EFIS4*4-4 and EFIS4*4-5. The results are displayed in Table 5.2 

of the following page. 

The estimated * standard deviations at the estimated 
- 

intersection point of two dose response curves for each sample i - - 
shown in Table 5.2 range from 0.00100 (sample 3, data sets A and 

C) to 0.03885 (sample 4, data sets A and B). These estimated 
-? 

standard deviations enable the estimation of the TL apparent 

ages of the sediment samples to an accurate-range. 

, I t  should be noted from Table 5.2 that the ED extrapolated 
y' 

frqm curves A and C is 1higer than that of curves A and-B] Curve 
i 

C was based ob the subsamples bleached for .longer periods. The 

standard error' ~f the intersection point does not -encompass the 
1 

difference between the ED produced these two intersection Y *. 
points. As stated in the Introduction it bould be expec'ted that - , 

- this difference in ED would be within the range of the SE. This 

discre~nq-is attributable to the fact that the. sample was 
t 

improperly zeroed (personal communication with Dr* Bergerl. 
,-'- 

-- 
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5.3  DIAGNOSES -- OF TIIE STATIST1 CAL ANALYSIS -- OF T f l ~  EXPERIMENTAL 
?3 

In t h b  section the assumption of ckstant percent error is 
t 

assessed in section 5.5.1.  As well, the+adequecy of the model is 

examined in section 5.3 .2 .  

CHECK-I NG OF THE -- CONSTANT PERCENT ERROR 
ASSUMPTI ON 

The standard deviation at each doge level can be estimated 
I 

as follows: 4 
i 

wliere, TLi = The j th TL measurement at dose level i; 
- 
TLi = The average TL measurement at the i th 1 

dose level; 

m = The number of TL measurements 

at dose level i. - 

For the assumption of constant percent error this standard 

I deviation should be roughly equal to o multiplied by the mean, 

[a+b*exp(-cxi)] as follows: 

fD = IT * Mean, -- 

Plotting SD versus Mean shouid produce a straight line passing 
* - 



through the orlgin with a constant pp - - slope of o. For -- each data set 
- 

the corresponding SD versus Mean scattered plots are shown in 
- - -- 

Figures 5.3.1(b), 5.3.1(c), 5.3.1(d), 5.3.l(e) and 5 3 .  on 

the following pages. In addition, the errgr bars are shown for- 
I . D  

the plots of the experimental data sets 5B and 3h. The plot of 

data set 5B is the most liftear of -all while the plgt of 3A is 

curved at high mean values, Although data set. 3A exhibits 
- - 

curvature, a straight line is still possible within the given 

error bars (95% C.I.) in Figure 5.3.l(a). 

The error bars are constructed as follows: 

Knowing that (SD2/u2) has a -chi-square distribution with a 

degree of freedom (m-11, a (1-a) confidence is then calculated 

as follows: v 

where, us = Standard deviation of TL at dose level i; 

SD = Standard Deviation; 

m = Number of data points at a given dose level i. 

In Figures 5.3.l(b), 5.3.l(c), 5.3.l(d), 5.3.l(e) and 5.3.l(f), 

straight lines passing through the origin can usually be dram f? 
inside the error bars. The linear lines passing through the *. 

origin suggest that the constant percent error assumption for 

the model is not unreasonable, No formal test of asswnptian has , 

been applied. 















P 

5.3.2 CHECKING TiIB ADEQUACY .OF m M k L  - 
-- - - - - -- - -- 

--- 
I f  thc saturat,jrig exponential model is appropriate a n d h e  

assumptiorrs of saturating cxponantidl mean and constant percent , 
+$ 

b error are sstisf ied', the 'residuals should be structureless. This 

may be 'examined'by plotting the (Residual/Mean) versus the Mean 

for each, data set. These plots ate shown in Figures 5.3.2-1, 
- - 

5.3.2-2, 5.3,2-3, 5.3.2-4 and 5.3.2-5 on the following pages. 

 hey are- scattered randomly about the MEXd axis (k-axis)! These 

a x  pattern-free plots suggest that the model is adequate. ( It is 
-- 

. noted that the data points are widely scattered along the 

vertical a x i s  at each dose level. This is primarily due to 

selection of the vertical scale. --- - 
- - 













~ncorporat~ing the IRLS estimation scheme with the 

theoretical variances by the MLE theory, the estimated standard 

deviations of the inte~ection points a-re obtained for each 

sedimentary sample. The validi'ty of the constant percent error 

assumption and the adequacy of the proposed saturating 

exponential model are examined by the plots of the SD versus the 

Mean and the (~esidual/~eanJ versus the Mean, respectively. The' 

model appears to be adequate. 



CBA1?TERUL 

SUGGESTIONS FOR FURTHER WORK 
- --- 

-- -- - 

- ,  

. . For a three dose response curve diagram, the saturating 

exponential model is fitted to each of data separately. This 

procedure yields three estimated parameters and.one estimated o 

(Chapter Five) for e a ~ h  dose response curve as well as two 

Q, intersection points. Both these intersection points are 

functions of six estimated parameters (three from each curve). 

This condition results in an estimated Variance of intersection 

points which is dependent on these estimated parameters as well - 

as on the weights from both curves and the two estimated 0's. 

Other methods of fitting these data could be tried. For example, 

assuming that the two crossing TL response curves have the same 

percent errors, one could •’,it these two TL . curves 

simultaneously. - Possible physical reasons for. assuming the same 
a - 

percent error .for two crossing TL-response curves are described 

in Berger et al. (1985). This method, while not actually'carried 
- 

aut for this project, is described in this chapter. 

When fitting two TL response curves at the same time with 

seven parameters, namely, 'a , b , 'c ' 'a , 'bgl, 'C ' and 
A A A '  B B 

u, the mean response appears as 

where, GsIndicator variable; - 





' . 
, theoretical variance-coverianee m a t - i ; w G L -  

- (7x7) irs-+he 
F 

. inLerse of the Fisher informhion matrix, I The variance 
(7x7)' - - - -  - 

"of the intersection point is then estimated by equation (37) 

A ($hewn in Chapter Three) with a (7x7) variance-covariance matrix 
b - .  

and q of the form as follows: 

The (7x7) "~ishqr information matrix is illustrated as 
, 

follows: i 

- 1 

.. 

- I 

whire, I, is the,.(3x3) upper left array of the A14x4 matrix 

and has the following form: 



- s 
. L 

< 

I .  
1 , ,  '-. " - - 

, Z 5 

* -- - 
I ,  is the (3x3)  upper left array of the I 

- - - 

matri-x B4-+---- 
V 

. . 
4 ' and has the following form: 

[ NOTE 1 : = oA is the o in the term of 

equation ( 5 6 ) ;  

' A '  of 

o = o = o is the o in the term of 'B' of B B 

equation ( 5 6 ) .  



- - -- 

This paper studies the statistical analysis of the hrtisl = I 

bleaching method for thermoluminescence dpting of seqiplent;ry - 

rock. The non-linear saturating exponential model with a 
I _ 

' saturating exponential mean and an unknbwn constant percent 
" 3 

. 
erzqr was. fitted to several sets of data. It was shown that when 

' .. / -  

' o  is relatively small, the Iteratively Reweighted Least Squares - 

3 .  

(IRLS) estimation, scheme approximates the Maximum Likelihood 

(ML) estimation scheme. Therefore, a Monte-, Carlo study was 

applied ' to exami7e the applicability of the large sample theory 
? 

- 

of the IRLS estimation scgeme when u'is small and the number of. 
P 

observations is small; The intersection point of two additive 

dose curves was extrapolated using an IMSL algorithm and in . 
addition, the standard deviations i t  these intersect ion points 

were approximately estimated by maximum likelihood theory. These 

techniques were applied to several' experimental data sets. 

Finally, the model assumptions were checked by the plots of SD 

versus '~ean and (~esidual/~ean) versus ~ e a n .  The characteriZt ics 

of linearity through the origin s,houn in the of SD 

versus Mean indicated the appropriateness of t h e  constant . 
percent error assumption while the randomndss shown ihn the plots 

of (Residual/Mean) versus Mean assured the adequacy of the  

proposed model. 

4 

With these techniques the equivalent dose value was computed 

-accurately ag the distance from the origin to t interstction 



P * point (beyond the origin) of " two additive . dose curves. I n  
- - - - - - - -- -- 

6 .addition, the estimated error of this'iptersection point was 
%"k - -  - ' -- 

calculated by the maximum likelihood theory. The TL apparent age 
- 

is then obtain*d by the equation shown in, the 
, r4 - ,  

8 ) .  
> 2 

/ . - 
/ * 

i 
P = .  

. t 
fl 

e- . 
?- 

+ I 

~ntroduction' (page 



FORTRAN programs FOR, CONFIFIS4, CONFFIS~~~~, CC!lIETELS4A, 
L 

. 
TONFICALA, CONFICALB, CONFICALC wi 11 be ?rovided upon request. - 

:  he. mailing address for fBhe request gf there pro,grams is as 

follows : 

I L 

Jen-ni Kuo --- 
Department of Mathpmatics 'and statistics 
Simon Fraser University 
Burnaby, British< Columbia, - 
Canada V5A IrS6 
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