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ABSTRACT

This thesis presents a numerical study of complex structural
deformations via the example of Lee's frame. The structure of Leé's frame
is discretized into l-dimensional straight beam elements, with each element
having two nodes and eight degrees of freedom. The deformation is assumed
to take place in a plane, and the vertical and horizontal displacements of
the nodes are approximated by cubic polynomials. The finite element method
reduces this problem into solving a system of nonlinear algebraic equations;

in the matrix form, it can be expressed as
[K]{u} = {F}

where [K] 1is the global stiffness matrix of the system, {U} the global
vector of nodal variables, and {F} the global load vector. To arrive at
these equations, the integrals brought by the finite element method are
evaluated by using the Gaussian quadrature method; and to solve these
equations, the Newton-Raphson's method together with the polynomial
interpolation ﬁethod are employed. The polynomial interpolation method has
not been extensively used in structural analysis, and its utilization here
speeds up the accuracy of the Newton-Raphson's method. All these methods
are implemented in an APL program, and the load-displacement diagram for

the Lee's frame is obtained.

(1ii)
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CHAPTER 1
INTRODUCTION

§1.1 GENERALITIES

The fast and unceasing evolution of digital computers in recent years
has permitted a rapid increase in the use of numerical methods for solving
partial differential equations governing the behaviour of solids and fluids.
One of such numerical methods which has gained tremendous popularity for
solving structural problems is the Finite Element Method (F.E.M.). In fact,
its popularity has spilled over to other scientific fields such as heat

transfer, fluid dynamics, etc.

For many structural problems, the deformation of the structure when it is
submitted to external loads can be very complex, and even the numerical
solution can be difficult to obtain by using the F.E.M. alone. And for

such problems, one needs to deploy several numerical methods simultaneously.
In this thesis We have carried out a numerical study of such complex
problems. Although our numerical scheme is quite general and can be adopted
to solve various complex structural problems, we elect to illustrate our

-method via the example of Lee's frame.

The physical and geometrical characteristics of the Lee's frame is described
in the next section. 1In §1.3, we shall give a brief description of the main
numerical methods used in this thesis, which will be followed, in 81.4, a

summary of the mechanical formulation plus a plan of presentation.



§1.2 THE LEE'S FRAME

The Lee's frame is shown in the figure (1.1), and is submitted to a
vertical load F at the point P . The two extremities of the frame are
fixed and only allow rotations. The cross section of the Lee's frame is

constant.

§1.3 NUMERICAL METHODS

The finite element method will be used to discretize the Lee's frame
into beam elements. These elements will be modeled by.a l-dimensional
reference element vhich has two nodes and eight degrees of freedom. The
vertical and horiz.atal displacements at any point will be approximated
by cubic polynomia.s. As a result, the mechanical behaviour of the Lee's

frame can be characterized by a system of nonlinear algebraic equations:.
[K]1{u} = {F} (1.1)

where [K] is the global stiffness matrix of the Lee's frame, {U} the
global vector of nodal variables, and {F} the global load vector. Before
one arrives at the equation (1.1), the finite element method introduces a lot
of integrals, and these integrals will be solved by using the Gaussian
quadrature method. The nonlinear equation (1.1) will be solved by
iterations, with the help of Newton-Raphson's method. Since it is possible
to obtain several displacements for the same load, one needs to fix a
displacement instead of the load. In the particular case of Lee's frame,

the choice of this displacement must be made with care; the polynomial

interpolation method will determine the right choice. The polynomial



ke 3}

x —€
P B
i Physical and geometrical characteristics
i LO = 1.20m
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i - Boundary conditions in A and B
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X / / Width = b

Fig. 1.1 - Lee's frame
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interpolation method will also be used to speed up the convergence of the

Newton-Raphson's method.

§1.4 PURPOSE, METHOD AND PLAN

The purpose of this thesis is to create an A.P.L. program which wili
completely determine the deformations of the Lee's frame. In order to
apply the numerical methods, we must first obtain a mechanical formulation
of the Lee's frame. In our analysis, we will follow all the particles of
the frame in their motion, from the original to the final configuration
of the frame. Thus we have adopted a total Lagrangian formulation. We
shall calculate the 2nd Piola-Kirchhoff stress tensor and the Green-Lagrange
strain tensor, and shall utilize the principle of virtual displacement.
Several other mechanical hypotheses will be used in this thesis including
the Euler-Bernoulli hypothesis, plane stress hypothesis, and the existence

of an elastic behaviour law.
The general plan of the thesis will be the following one:

- Mechanical Analysis

- Application of F.E.M. and Gaussian Quadrature to
Beam Structures

- Numerical Methods for Solving Nonlinear Systems

- Flowcharts and Results

- Conclusion



CHAPTER 2

MECHANICAL ANALYSIS

§2.1 GENERALITIES

The purpose of this chapter is to present a theory concerning the
bending of a beam. Many authors, e.g. Timoshenko [ 1] and Wang [ 2],
studied the deformations of beams. One interesting mathematical
publication, written by Sayir and Mitropoulos [3], provides several

formulations depending on the approximations used.

In our case we will consider isotropic beams subjected to the action
of planar forces. Therefore the calculations will be done in a two

dimensional plane.

This chapter will be divided into two main parts. The first part
establishes the governing differential equations of a two dimensional
body in equilibrium and the second part involves the application of these

equations to a beam element. We will first define some necessary notation.

8§2.2 NOTATION

*
We will call configuration T  the position of the set of points of

*
a given body at the time t . Under a deformation, the trajectories of

these points can be described in the vector form:



* * * *
x (P,t) x {x,z,t )
= (2.1)
* * * *
z (P,t) z (x,z,t )
* * * *
where x and 2z  are the components of the point P at t . At

*
t = 0 the position of P is given by P which has x and z for
coordinates (Fig. 2.1). The coordinate system (0;21;32) will be used

for all configurations.

*
Throughout this thesis, the time t will be associated with the

configuration after deformation. Therefore all the Vériables with the
superscript '"*'" will be considered as belonging to the deformed
configuration. The variables without the superscript '"*'" will be referred
to the body before deformation. The equation (2.1) shows the relation

*
between the initial configuration [I' and the deformed configuration T

§2.3 KINEMATIC RELATIONS

We will establish in this paragraph the expression for the deformation
' *
gradient tensor [F], the Cauchy strain tensor [e ], and the Green-Lagrange

strain tensor [€] . The following developments can be found in Batoz [4].

2.3.1 Kinematic equations for a body

2.3.1.1 Expression of the deformation gradient tensor

* * *
Let x and z be the coordinates of the point P

which corresponds to the point P(x,z) in the initial configuration. The




2 A

Fig. 2.1 - Deformation of a two dimensional body

zy



*
components of the displacement vector PP are u and w . Thus,
*
x (x,2) X u(x,z)
= +
*
z (x,z) vA w(x,z)
Therefore,
) .
dx dxl
- = [F] ) (2.2)
*
dz dz
1 + u, u,,
with [F] = (2.3)
Wsy 1 + w,zJ
= U
and u,, = "y etc

The matrix [F] is called the deformation gradient tensor; its determinant

is different of zero; and
*
dV = det[F]dV

*
where dV  is the volume element associated with the final configuration

*
' and dV with the original configuration T .



2.3.1.2 Expression of the Cauchy strain tensor

The Cauchy strain tensor is defined by:

* 1*
€ =€
* XX 2 "zx
[e]-=
1‘* *
=€ €
2 "xz zZZ
B*
. : * u
with € —%
XX ax
*
€*_Bw
zZZ *
3z
Su- dw
* *
and € =g = u* w*
zZX Xz
oz 9X

* *
where u and w are the components of the displacement vector as

* *
functions of point P  in the configuration T

*
We can define a vectorial representation <e >

*
of the components of [¢ ] as

<g > = < € > 2.4
€ exx €22 zZX ( )

2.3.1.3 Expression of the Green-Lagrange strain tensor

2
The difference ds* - d52 of ‘the square of the

* * 1
infinitesimal length between two points P and P in the deformed
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* 1 R
configuration T and P and P in the configuration T can be used

as a measure for the deformation which occurred in the neighbourhood of P

* «
between the times t and t . Since,
*2 * *
ds = <dx >{dx } ,
2
ds® = <dx>{dx} ,

the Green-Lagrange strain tensor [e] is defined by:

ds - ds2 = 2<dx>[e]{dx} . . (2.5)
Using the relation (2.2}, we obtain:
T

2[e] = [F]"[F] - [1] (2.6)

where [I] represents the identity matrix.

2.3.2 Kinematic relations for a point of a beam element

A beam is a body with one of the dimensions, the length, which
is predominanﬁ in comparison with the other two, the width and the
thickness. Our study is being done in the X-Z plane. We will suppose
the length along the axis OX and the thickness along the axis 0Z .
Therefore the width will be along a line perpendicular to the X-Z plane
and will be neglected in the following calculations (it will just appear
as a multiplicative factor for the area and for the momentum of inertia

of a section of the beam).
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For purpose of calculation, we choose a truss element with an orthogonal
and tangential coordinate system. Therefore we will express the displace-
ment of some point P of the beam as function of the displacement of its
projection PO on the middle axis. The first part of this paragraph

is concerned with those calculations. In the second part we will discuss
the deformation gradient tensor [F] and the Green-Lagrange strain tensor

[e] for the beam.

2.3.2.1 Calculation of a displacement vector of a point of

a beam

Let us consider a beam of thickness h , width b
and length L . The initial middle axis is the axis O0X (Fig (2.2) and
Fig (2.3)). Suppose the beam is deformed under the application of a
force F . The position of a point P 1is defined by its position vector

(Fig (2.4)). Thus:

P = — _ > > X
= QP = xe1 + 28, = ;}
where x € [0,L] and 1z € ‘: %— , + %J
= _ x\
In the same way, OP0 = {;f
U(x,z) , v u(x)]
1f U= and U =
W(x,z) w(x)

are the respective displacement vectors of P and PO , we get:
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sLLAMLELL
AN

Fig. 2.2 - Thin rectangular beam before and after
planar deformation (h < b « L)

AN

Fig. 2.3 Deformation of the middle axis in the
plane X-Z




p——a

*
o

(o]
(o]

—> — > ‘t
and OP =0P + u = J:

Then the relation

X ‘ k + u(x)
z w(x)

describes the deformation of the middle axis. The unit tangent vector t

*

at P is
o}
1 + u, cosB
>* X 1
t = X a:
Wiy J sind
with m = /{i + u,x)2 + w,i (Fig (2.4) and Fig (2.5))

. >* .
The unit normal vector to t can be written as

3% % *
Thus the vectors t and n form a local orthogonal system at Po



-14-

Z,W ‘

\
\

_ -7 P £/~ {
0 . 1: »
o I X,U

Fig. 2.4 - Beam undergoing deformation

. z )

IANY

Po X

Fig. 2.6 - Rotation of the normal section
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—_—
* *

- * ok > .
Let f be the unit vector along POP and let e be a unit vector

*
orthogonal to I3 (Fig (2.4) and Fig (2.6)). Let us suppose that the

. ,
normal section to the middle axis at Po remains to be a plane after
—

* %
deformation. We will call oz the distance HPOP . The constant o

will be determined further after some supplementary hypotheses. Thus,

Y ek Sk
£

P =0P + az - (2.7)

o

* % 3% 3% =
Then POP =az £ =oaz(-t siny +n cos vy)
KK3 > >
or POP = uz(Xl el *+ 4 e2)
where X, = - = (1 +u,.) sin vy - l-w cos Yy
1 1 ’X m X
Z, = - =w,_ sin vy + l-(l + U, ) cOSs Y
1 m  ’X m ’X

The vectorial equation:

ok o * %
0 =Q0P + PP
[0} [0}

allows a relation between the displacement of P and the displacement of

P
o)

U(x,z) u(x) + oz Xl(x)

W(x,z)

w(x) + az Zl(x) -z
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2.3.2.2 Deformation gradient tensor

The relation (2.3) gives:

1 + U, U,z
X
[F] =
W,x 1 + w,Z
Since u , w , X1 and Z1 are independent of z , we have
_ 8X1 -
1 + u,x + QzZ _8_)2_ O(X1
[F] = . (2.8)
9z
W + 0z L ol
’x ax 1

2.3.2.3 Green-Lagrange strain tensor

In the following discussion, we will introduce
four different expressions for the components of the Green-Lagrange strain
tensor, depending on various additional hypotheses.

2.3.2.3.1 First expression of the components of

the tensor [e]

The equation (2.6) allows us to obtain

the components of the tensor [e] as:



aX 2 aZ 2
1 1 1
£ = = 1 +u, + o0z — +{w, + 0z —w— -1
XX 2 X ax X ax

ZZ

XZ

m
il
N

+

<
<

+

Q

(]

Q

Q

Q

P
—

+
VPR
+
Q
N
ol X
Q
[N

—

2.3.2.3.2 Second expression of the components

of the tensor [e]

Here we advance the hypothesis of the
conservation of orthogonality (Love-Kirchhoff hypothesis), i.e. y =0

(Fig (2.6)). After some calculations, we obtain the following expressions:

€ = e+ ozy + azzzw
XX m
1,2
€. 3 @ - 1) (2.10)
€ =0
XZ
. _ 1 2 1 2 1,2
with e = U, * 5-(u,x) ty (W, )7 = i‘(m -1,
_1 ~ de
X = m (w’x u,xx - w,xx (1 + u,x)) = - m d—}—(— ’
and Y o= 1 (1 + u, w -u )2 =L ég-z
) o’ ’x7 "2 xx xx xt T 7\ dx ’
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2.3.2.3.3 Third expression of the components of

the tensor [g]

The hypothesis pertaining to the
discussion in this section is the Bernoulli-Euler hypothesis which
assumes:

- The sections of the beam remain orthogonal to the middle

axis after the deformation (Love-Kirchhoff hypothesis)

- The sections of the beam remain the same after the

deformation.
This hypothesis leads to the equality o =1 ; . therefore

ém +zZX + 2211)

Cxx ~
€,, = 0 (2.11)
Exz =0

2.3.2.3.4 Fourth expression of the components of

the tensor f{e]

We will add two more hypothesis:

- hypothesis of thin beams (z/L «1)

- hypothesis of small strains

This last hypothesis provides two facts:
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- angle changes between fibers are small
- fiber extensions are small.

Since the value m represents the multiplicative factor of the elongation
of the middle axis during the deformation, m ~ 1 for a small strain,.

We get the equations:

EXX = em + ZL

ezz =0 ) (2.12)
€ =0

Xz

where ¥ 1is obtained by substituting the value 1 for m in the

expression of ¥ . The expression of €x is the same as the one

obtained by Epstein and Murray and will be the one we will use.

From this expression, we could obtain the classical non-linear approxi-
mate expression of € (Von Karman or Koiter Sanders type) by using the.
hypothesis of moderate rotations . Then we would

have:

8§2.4 DIFFERENTIAL EQUILIBRIUM EQUATIONS

2.4.1 Stress tensors

In order to establish the equilibrium equations, we will
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have first to define the Cauchy stress tensor [0*] . But the subsequent
calculations need the knowledge of the 2nd Piola-Kirchhoff stress

tensor [0] . It will be defined in this paragraph after the determination
of the Cauchy stress tensor. We will follow the development as gifen

in Batoz [4].

2.4.1.1 Cauchy stress tensor

Let us consider an elementary rectangular element

*

* . *
subjected to normal stresses O, and g, and shearing stresses T

XZ

*
and Tx (Fig (2.7)). The plane Cauchy stress tensor, which allows us

to define the stress state, can be written:

* *
o} T
* X ZX
[c] =
* *
T o
XZ v4
L. —
It will be shown that:
* *
T =T
ZX Xz

* * * *
g>=<0 ¢ T >
X

The plane Cauchy stress tensor allows the determination of the stress
* *
vector g(n) at a point P acting on a line segment defined by the unit
>%

normal vector n




dz

-21-

/’ ‘ O’; + BGZ dz*

oz
3t *
T
* ZX * T
T * *
X % dz T Xz dx
9z zZX *
_____ e ox
*
* aT *
*—-—" —_’ g + dx
* *
o - ax
X Xz
_____ ‘ —
T
| zX |
! |
I . |
| 9, |
Q * *
X dx

Fig. 2.7 - Plane stress element

A A Sk S>*
g n

(m

Fig. 2.8 - A two dimensional body in equilibrium
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In the matrix form,
{c* = (017"} (2.13)
(n) )

A similar formula holds for the 3-dimensional case.

2.4.1.2 1st and 2nd Piola-Kirchhoff stress tensor

Let dS be the infinitesimal element of surface
*
which becomes dS after deformation and ; be the unit normal vector
>% * -
to dS and n the unit normal vector to dS . We will define the

*
stretch A  of the element of surface dS by:

* *
dS = A ds
5% * %* .
Let G(n) be the stress vector at P associated to dS . The stress
>k >% .
vector O(n) corresponds to G(n) on the non-deformed surface and is
defined by:
%k % *
o] = A g
{~ (n) { (n)}
et . . >*
The stress vector G(n) is linked to the vector G(n) as the vector

. . > .
dx 1is with the vector dx , i.e.

{ffmy =17 {gm ) -

*
The components of the lst Piola-Kirchhoff stress tensor [0 ] and of

~

the 2nd Piola-Kirchhoff stress tensor [o] connect the components of

> * 5% =Y
the stress vectors o to the vector ¢ and G to the vector
~{n) (n) (n)
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{an)} = (') n}
{G(H)} = [G]T{n}

T
Using the Hansen formula {n }ds" = det [F] (}F]_€> {n}dS , we can connect

*

the Cauchy stress tensor [0 ] to the 2nd Piola Kirchhoff stress tensor

[c] as

2.4.1.3

to the stress vector

yields:

where

<%
g

0] = —2— [F1{o][F)" (2.14)
det [F]

Equilibrium equations

*
Let S be an arbitrary closed surface subjected

(n) (Fig (2.8)). The principle of equilibrium

*
V  is the corresponding volume of S , and

*
E is the body force per unit volume with

* *
components F,  and FV
X z
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In the differential form and for 2-dimensional case, the above equations

can be written as;

9g 9T *
ZX
T + = t FV = 0
ax 9z X
(2.15)
* *
9T . aoz %
= = + FV = Q0
ax 3z z
The vanishing of moments can be stated as:
( O_>* Sk ds* ( ok ?* dV* 0
P AC + OP A =
* * ’
Js () Jy v
from which one can deduce, in particular, that
* * 2 6
Txz = Tax (2.16)

The equilibrium equations for beams will be the same equations ((2.15)

and (2.16)).

§2.5 EXPRESSION OF THE VIRTUAL WORK

2.5.1 Expression of the virtual work for a body

2.5.1.1 Boundary conditions

The boundary conditions can be separated into 2 sets:
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*
- the mechanical conditions acting on a part SO of the
surface: These conditions are related to the forces and
they describe the principle action-reaction on the portion

*
of surface SO

*
- the geometrical conditions acting on Su (the complementary
*
part of SO): These conditions are related to the
*
displacements and the rotations of points of Su and they

impose some restrictions for these variables.

Mechanical conditions

* ' *
Let FS be the external force per unit area applied to SO

* *
Suppose its components are st and Fsz . Then the mechanical conditions

* *
on every point P € So can be written:

* * * * *
F =0 p +T n
SX X zZX
(2.17)
* * * * *
F =T P +0_n
Sz X2 Z

* * 5% *
where p and n are the components of unit normal vector n at P

for the considered surface element.

Geometrical conditions

The geometrical conditions impose some displacements or rotations

*

* * *
for each point P ¢ Su Let U be the displacement vector of P and

*
let § bea vector whose components are the values of the rotations

*
at P . Then at this point the geometrical conditions can be written:
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-
S>%* %
u = u
>
. Lk
8 =06

-

i

where u is a vector containing the values of the imposed displacements
-5
_%

and © is a vector containing the values of the imposed rotations.

2.5.1.2 Field of kinematically admissible virtual

displacements

*
A field of arbitrary virtual displacements §a

is said to be kinematically admissible if

2.5.1.3 Expression of the virtual work in the deformed

configuration

The principle of virtual work states that the
equilibrium of a body requires that, for any kinematically admissible
*
small virtual displacements § , the total internal virtual work &U

is equal to the total external virtual work &W .

* * *
Let Su and J&w  be the components of Su . Then the total external

virtual work is
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Then, after application of the equations (2.15), the above equation

3 ' 6. aT

T o T

ZX * z Xz * *
= Jdu  + — + — JSw | dV

9z 9z ax

' [ T .5 ds . (2.18)
*

becomes

*

aox
6W=-[* * *
\ ax

—* .
Since &u =0 on Su , using the equation (2.17), we will obtain:

> —_k * * ok * *6*
Fs * Su ds = IS* (}ox p +T, 1 ) Su

* % * *G*d*
+ (oz n o+ sz P )ow ) S

*
Using the equations (2.4), we can define the transposed vector <8e >

which represents the vector of virtual strains by:

* * * *

<fe > = <§¢ Se e >

XX zz ZX
% * *
with se =g U . 30U
xx 9x ax
* 3 - 36w
se. =& ¥ _ - ooW
2z Bz* Bz*

* . ) i 38 * 996 i
u W u W

égzx = ¢ + — | = — + —
9z ox dz Jx
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Thus, applying integration by parts to the surface integral of the

equation (2.18), we get

* * * *

* * *
SW = [ (0.8 +0_ Se__ +7T__ Se__) dV
)V X XX Z ZZ zX XZ

14

* * *®
or SW J » <0 >{8e } av
'

1)

The integral on the right will be called the total internal virtual

work and will be denoted by 68U , 1i.e.
* * *
U = | , <8 >{8e } av
\ .
Thus the virtual work principle can be stated either as &U = SW or

* * * * * * * * *
[ « <0 >{8e } dv = ( « <E>{8u } dv + { « <F>{6u } ds
v ooV s ° ,
o (2.19)

2.5.1.4 Expression of the virtual work with respect to the

original configuration

The virtual work principle presented previously
*
is expressed with respect to the deformed configuration T . Because
* *

*
the quantities V and S about the configuration [ are unknown,

it is important to restate the principle of the virtual work with respect
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to the original configuration I . We will express the virtual work

principle in terms of Green-Lagrange strains and 2nd Piola-Kirchhoff

stresses.

2.5.1.4.1 Lagrangian formulation of the virtual

work principle

The expression of the total internal

virtual work is:

* * *
6U=J*<o>{6€}dv
Vv
* * * *
Using the relation <o >{8¢ } = tr([oc ][6s ]) , we get
* * *
U = J « tr([o 1[8e 1) av
Vv
*
If we set [8c] = [F]T[6€ J[F] and if we apply the equation (2.14), we get
SU = J tr([o][Se]) dV
v p
The virtual work principle is valid for all fields of kinematically

admissible virtual displacements. In particular it is valid for

>% - .
Su = 8u . In this case,

(8] = [8e] = [F] [8e ] [F]

Using the equations (2.3) and (2.4), we have



(671 = = ([8]" + [B]) and
[SF] = [B][F] -
-g Bu* 5 Bu*q
, ox 0z
where [B] =
5 Bw* 5 Bw*
o9x dz |

After substituting the last 2 equations into the one before, we obtain:
2[8e] = [6F1T[F] + [F1T[6F]

or after integration,

2[e] = [F]'[F] + [C,]
where [Co] is a constant matrix.
Thus, V dx :
<dx>[F]T[F]{dx} + <dx>[Co]{dx} = 2<dx>[e]{dx}

We can choose [Co] in order to obtain the most interesting formulation
for f[e] . In fact, if we choose [Co] = -[I] , then tensor [e] 1is the

Green-Lagrange strain tensor. Thus:

SU = [ tr([o][Sc]) dV (2.20)
Vv
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with [g] = %—([F]T[F] - [I]) -- the Green-Lagrange strain tensor.

The equation (2.20) can also be written:
sU = J <g>{8e} dv
Vv
where <o> 1is the vectorial representation of the components of the 2nd

Piola-Kirchhoff stress tensor,

<8e> is the vectorial representation of the components of the

Green-Lagrange strain variation tensor.

The expression of the virtual work principle, with respect to Lagrangian

. . . - -—> -> *
variables, can be written, for all &8u such that Su =0 on Su s

J <g>{8c}dV = J <I'=V>{6u}dv + J <I'=S>{6u} ds
v v

Ss
*
where SG is the portion of S which becomes’ Sc after deformation,
_ %
<FV> = <FV>det[F] and is the body forces in T , and
- * *
<Fs> = A <Fs> and is the surface forces on SG .

2.5.2 Application of the virtual work principle to a beam

The expression of the virtual work due to external forces
varies as a function of the forces applied and needs to be calculated for
each case. For a beam, nevertheless, we can calculate the internal

virtual work.
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2.5.2.1 Expression of the total internal virtual work for

a beam

The total internal virtual work is (eq. (2.20)):

SU

jr tr([o]{8e]) av
v :

therefore U [ (o.. 8&__ +T. 8. +o0__ 8__) dv .
y XX TTxx Xz X2 zz XX

The equation (2.12) gives the Green-Lagrange strain tensor

€xx = € * ZX.
€,, = 0
€ =0 ,
XZ
R 1 2 1 2
where e, = Usy * E—u,x Wy (2.21)
and X = Woy Uy - (1 + u,x)w,xx
We will have then:
Gexx = Gem + ZGK
Se = 0
zz
Se =0 (2.22)

XZ
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where : Gem = (1 + u,x)Gu,x W, Sw, s

and 8§y = u, Gw,x + W,

Our study restricts itself to elastic deformations. That means the
strained body will recover its original shape and size when the stresses

are removed.

‘In this hypothesis, stress is a function of strain only and Hooke's law
gives this relation. This law can be written:
g = E ¢ ,
XX XX

where E represents the Young's modulus of elasticity.

Therefore JU can be expressed:
2
SU = E Jv (Gem e, * Z(§l e * Gem.ﬁ) + Z §ﬁ.ﬁ) dv

If we complete the orthogonal system OXZ by the axis O0OY , we will
obtain:

dV = dx dy dz
After integration along the length L of the beam, &U can be written:

SU = E JL Gem e JJ dy dz + (Gx_em + Gemz) JJ z dy dz

+ X Sx ” 22 dy dz) dx
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The beam is supposed to be symmetric in the plane OXY with respect to

its middle axis. Therefore all integration of an odd factor of z will

be zero.
Thus:
8U = [L (6em EA e * SK_EI K) dx
where A= JJ dy dz represents the area of the cross
section of the beam,
and I-= JJ 22 dy dz represeﬂts the moment of inertia

of the cross section.

The normal stress N and the bending moment M are

N = EA e s
m

M= EI x

For the particular case of a rectangular beam with a width b along the

axis OY and a thickness h along the axis O0Z :

A=bh ,

b h3

12
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CHAPTER 3

APPLICATION OF FINITE ELEMENT METHOD AND GAUSSIAN QUADRATURE

TO BEAM STRUCTURES

§3.1 GENERALITIES

The Finite Element Method is a very popular technique for solving
partial-differential equations that occur in engineering applications.
In the recent years a lot of publications have been written. Some of
the leading books are: Zienkiewicz [ 5], Gallagher [ 6], Bathe [ 7],
Dhatt and Touzot [ 8], Strang and Fix [ 9] and Oden and Reddy [10].

The last two books consider principally the mathematical aspect of the
Finite Element Method. The books by Zienkiewicz, Bathe, and Dhatt and
Touzot are very detailed and with some numerical programs included. The
book of Gallagher is more related to the structural analysis and is

suited as an introductory book to F.E.M.

The Gaussian quadrature is a technique used in numerical integration and

is employed to solve the numerous integrals brought by the F.E.M. analysis.
This technique is discussed in almost all the books concerning numerical
analysis, e.g. Burden, Faires and Reynolds [11], Davis and Rabinowitz [12],
and Engels [13]. However, we shall give a brief presentation of this

technique at the end of this chapter.

§3.2 FINITE ELEMENT METHOD

This section begins with a presentation of the Finite Element Method
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and ends with some matrix representations of the variables used.

3.2.1 Introduction to the F.E.M.

We will base our study on the "displacements method'. The
basic principle of the Finite Element Method consists of subdividing the
domain of study V into a set of sub-domains v© , called finite
elements. Two distinct elements can have in common only points located
on their common boundary. These elements are represented by a finite
number of nodes. The F.E.M. defines some interpolation fﬁnctions N
which allow us to approximate an unknown function u over v as a
function of a certain set of values, called the nodal variables, at the
nodes of this element. These interpolation functions must assure the
continuity of the variable on the domain V . Thus, for each element o
of a beam,

u = <N>{u’} (3.1)
n

where u is the displacement of points in ve , N the interpolation
function defined over V° , and {ui} represents the vector of the nodal

variables assigned to the nodes of the element v

Assuming V = I v® where K € N , We can express the virtual work

e€k
principle as:
SU = SW
or r oosu® = ¢ W
e€k e€k

after transformation, this relation becomes:
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I <du>(k°1 ud = I <ut>{f7} (3.3)
eck " ek

. . . e
where [ke] is the elementary stiffness matrix of the element V  and

{fg} the elementary load vector.
We can define a gathering technique which allows us to write the relation
(3.3) in the form:

<6Un>[K]{Un} = <8Un>{Fn} | (3.4)
where [K] is the global stiffness matrix, {Un} is the global vector
of nodal variables, and {Fn} is the global load vector.
The preceding equation is valid for all <6Un> , therefore,

(KI{u_} = {F_} (3.5)

The above discussion about equation 3.5 will become more transparent
as the reader continues his reading of the next few sections. The

procedure used to solve this equation will be described in chapter 4.

3.2.2 Type of element

The theoretical formulation requires us to deal with
functions of class C1 ~so that the continuity of the displacements and
of their derivatives at the nodes are guaranteed. Thus we opted for a
Hermite's element defined in the book of Dhatt and Touzot [8 ]

(Fig (3.1)) and for which the vector of nodal variables can be written as



zw
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1+

_ J1-E
X =< 7

Fig. 3.1 - Real element V°©

Fig. 3.2 - Reference element Ve

1
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where the index 1 corresponds to the first node of the element and the
index 2 corresponds to the second node of the element (here we deal
with a finite element of a beam. See Fig. 3.1), and u , w Tepresents

the horizontal and vertical displacements respectively.

But the elements V° can have different lengths. In order to simplify
the calculations we will relate all the elements V° with a unique
element V' , called reference element (Fig (3.2)). This can be done

by a bijective geometrical transformation which defines the coordinate X
of each point of the real element V° as function of the coordinate &

of the corresponding point in the reference element.

The displacements u and w of a point of v® will be written as

R e
u(g) = <N, (€)>{u_}
W(g) = <N (E)>{u’}
where <Nu> = <N1 N2 0 O N3 N4 0 0> and

<Nw> =<0 0 N1 N2 0 0 N3 N4> . The functions N N N3 and N4

1) 2,
will be defined later.

Let u,x be the first derivative of U with respect to x . Then
Jdu de 2 du o2 NG
by =% " Ix ° xyx; & o dE n

where p = X5-X In the same way,

1
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a%en (a)> -
( > tu®)
n

The derivatives of the interpolation functions will be defined in the

next section.

3.2.3 Interpolation functions

Suppose we want to approximate the horizontal displacement u

at a point with coordinate £ .

u(g) can be expressed in the rgference element as a linear combination
of independent functions {pi(E) : i€I} . The .choice of these functions
is an important part of the FZE.M. These functions pi(E) will be
chosen from a polynomial basis with their number equal to

the number of nodal variables of the element. The nodal variables

u and

corresponding to the horizontal displacement are Ups Uy s 2
3

Uy oo Therefore, the polynomial basis pi(E) is defined by:
i .
p.(8) =& i=0,1,2,3
We will then obtain
1
) 3 |2
u(g) =<1 & &% &> 9 4 (3.6)
a
, 3
a
L 4&
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(E) = <0 1 28 3% Lt (3.7)

where al, 2y, 2z and a are the generalized coordinates. The

4

approximations (3.6) and (3.7) must give the actual values at

the nodes; therefore, u(-1) = u, u,g(-l) =u u(l) = u, and
g
= iti =L =0
u,E(Z) =uy - The equalities ul’ =3 ul,x and u2’ > u2,x lead
g g g
to the relation
- - - r ~
1 1 0 0 0 u,
a, ) -1 Q» o/2 0 0 u,
TRl L N T B B
a3 u
0 0 0 p/2 2
a - i
L 4J u2,x
L J
1 -1 1 -1
o 1 -2 3
with Pl=11 1 1 1
0o 1 2 3]
Finally we obtain . 5
%1
u1,x
u(®) = <NE> < ¢
2
u2,x
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2 1 2 1
i 3 7 x|t 0 00
3 1 -3 1 ]
, s 1T T 7T 7 0 7 0 0
with <N(§)> =<1 & & &7> 1 1
0 -z 0 Fi|1 0 1 o0
1 1 1 1 )
T ¥ T 7 0 0 3
Let us set <N(&)> = <N1 N2 N3 N4> . Then
1 2
N, = 7 (1-8)7(2+8)

2
L}

0 2
, = & (1-£90-8)

=z,
(1]

5= 7 WwBiee

Z
f

2= - Faghas

We would obtain the same result for the function of interpolation of the
vertical displacement w . For convenience, we supply three tables which
give the interpolation functions for wu, Uy Usors Wy Wy and Wivx

These tables are the tables (3.1}, (3.2) and (3.3).

3.2.4 Discretized expressions

After a short presentation of the Newton-Raphson method,
developed more fully in the next chapter, we will define the residual
vector and the tangent matrix. These explanations can be found in the
book of Dhatt and Touzot [ 8] and the discretized expressions can be

deducted from the materials of Batoz [14]
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TAB. 3.1 - Interpolation function
e
u = <N1 N, 0 0 N, N, 0 0> {un}
e
w=<0 0 N1 N, 0 0 Ng N4> {un}
1 2
N, 7 (1-8)7(2+8)
N & 1-£%) (1-8)
2 8
1 2
Ny 7 (1+8)7(2-8)
N -8 -gh) (1+8)
4 8
TAB. 3.2 - First derivative of the interpolation function
e
= < :
u, Nl,x N2’x 0 0 Ns,x N4,x 0 0> {un}
e
= < >
W 0 0 Nl,x N2,X 0 0 Ns,x N4,X {un}
3 .. ,.2
Nl,x "3 (1-87)
N 1 1egy (1e38)
2,X 4
3 2
N3,x 30 (1-&879)
N -1 aegya-sn
4,x 4 ’
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TAB. 3.3 ~ Second derivative of the interpolation function

= e
Yrxx <Nl,xx 2,Xx 0 0 N3,xx N4,xx 0 0> {un}
e
= >
Woxx <00 Nl,xx N2,xx 0 0 N3,xx N4,xx {un}
6
Nl,xx — &
p
N Lz
2,XX o)
6
N3,xx -7k
p
N 1-(3&4-1)
4,xx o)




The Newton-Raphson method allows us to solve the nonlinear equation (3.5)
([K]{Un} = {Fn}) by iteration. Let &I = 6W - 8U . One looks for an

approximation Un of the solution by expanding &I in Taylor's serie

+1
in the neighbourhood of Un :

— 2 . 7 —
6H(Un+l) = SH(Un) + 6 H(Un) + ....=0

We will then define {U_ .} by {U_ .} = {u_} + {aU }
n n n n

+1 +1

In order to apply this method we must calculate the residual vector {R}

and the tangent matrix [K The residual vector is defined by:

.
dn(Un) = <6Un>({Fn} - [K]{Un}) = <§Un>{R} (3.8)
The tangent matrix [KT] satisfies the equation
(Kpl{au b = R} . (3.9)
To calculate {R} and [K] , one needs first to calculate the residual

vector and tangent matrix for each element V? .

3.2.4.1 Calculation of the residual vector of an element ve

The application of the equation (3.1) for dSu gives
su = <N>{su’}
n
where <6u§> = <fu, &u Sw, 8w Su, du Sw, d&w, _>

1 1,x 1 1,x 2 2,x 2 2,X

The discretization of the equations (2.22) allows us to write
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Se = <yM>{8u’}
m n

>

8x

<vi>{su®y
n

where  <VM> (1 + u,x)<Nu,x> + w,x<Nw, >,

X

and <VK>

fl

u <Nw, > + w,_<N > - + < > - w <Nu, >
?Xx N X >x TN (1 u’x) W, x 'xx X

XX

We can express the expression of the internal virtual work of an element by:

su® = <sus>{r"}
n
+1 ‘
where {r%} = J (EAe_{WM} + EIx{VK}) %dg
-1 -

({re} is called the elementary residual vector).

3.2.4.2 Calculation of the tangent matrix of an element ve

The variation of the internal virtual work is needed

for the calculation of the tangent matrix and can be written as

ASU

JL (GemEAAem + GXFIAX.+ EAemAGem + EIXAGX) dx

Because u and w are essential variables, we will set the following

conditions:

Adu

ASw = AGu,X = AGw,x = Adu,xx = Adw,Xx =0
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Then the expression of Ade ~ and A8y can be written as

ASem = 6u,x Au,  + Gw,x Aw,

X x

A6x_= 6w,x Au’xx + Aw,x Su,xx - Aw’xx Su,x - Su’xx

Therefore, on the element V ,

Ade = <6u§>[VM2]{AuE}

e e
ASy = <6un>[VK2]{Aun}

where  [VM2]

{Nu, }<Nu, > + {Nw,_I}<Nw, >
X X X X

[Vk2] = {Nw,x}<Nu,xx>.+ {Nu,xx}<Nw,x> - {Nw,xx}<Nu,x>
- {Nu,x}<Nw,xx>
Then
A8 = <8us>[kE]{Aut}
n t n
with
e (+1
[k = |  ({VMIEA<W> + {VKJEI<VK> + EAe [VM2]
-1

+ EIx[VK2]) %dg

The matrix [k:] is called the elementary tangent matrix.

Au,



-48-

3.2.4.3 Calculation of the external work

The load F 1is vertical and is applied on the

point P of the frame. Then the external work is given by
SW = Féw
p

or SW

<Su>{£%}
n

with P 1located at the second node of the element Ve and

<% =<0 0 0 0 0 0 F 0>

3.2.4.4 Gathering of the discretized variables

All the variables are calculated with respect
of an element V° and need to be gathered in order to obtain the global
and final equation. This will be done by adding these variables together.
Our discretization of the Lee's frame uses 10 elehents and ‘11 nodes.

On each element we can write the displacement vector {Ue} as

where {Ue,l}= < >
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{Ue,2}= < >

{ur = A . .

Then the final matrix will be
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k1 k1,2 0
. ~N
kp g Ry g%y 0y ks 2 ~
N
0 k3 (ky 4*kz 1) kg o N
~ ~N ~ ~ ~
N ~ ~ - ~
[KT] = ~ ~ ~ ~ ~
~ ~ ~ N ~
~ ~ ~ ~ ~
~ ™~ ~ ~ 0
~ ~ ~ ~
~ S ~
~ O k., +k e
o~ Ko 10,17 *10,2
~ ~
~N ~
L. 0 X10,3 X104

But all the terms of the matrices [ke

t] involve integrals,

therefore, we must first calculate these integrals. This will be

done by the gaussian quadrature method.

§3.3 GAUSSIAN QUADRATURE

b
This procedure solves the integral I = J f(x) dx by choosing
a

n values x,, x, ... X and n constants c¢,, ¢, ... ¢ with the
1 2 n 1 2 n
objective of minimizing the error term
b n
E = J f(x) dx - Z c¢. f(x.) (3.10)
. i i
a i=1

The purpose of this section is to find the right xi's and ci's. We will

need some knowledge about Legendre polynomials.
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3.3.1 Legendre polynomials

The following explanation can be found in Godsil [15]

A set of functions {Po, Pl’ .o Pn} is said to be orthogonal on [a,b]
with respect of the positive weight function w{x) if
b
J Pk(x) Pj(x) w(x) dx 1is equal to zero when j#k and positive when j=k .
a b}

An important property of orthogonal polynomials is the following one:

if the functions Po, P1 “en Pn are polynomials and if Pk

of order k for k=0, 1, ..., n then Pk has k distinct roots in the

is a polynomial

interval J[a,b] .

The set of Legendre polynomials is a set of orthogonal polynomials on
[-1,1] with respect to the weight function w(x) = 1 which satisfies the

recursive relation:

_ 2k+1 -k
Pre1® = o7 * PO - 57 B 1

where k 21 , Po(x) =1, Pl(x) = X .

3.3.2 Evaluation of the variables

The values of the points x., ..., x_ minimizing the error
‘ 1 n
term (eq 3.10) are found to be the n distinct roots of the Legendre

polynomial Pn(x) (Davis and Rabinowitz [12]).
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The coefficients c;, are given by

2(1-x§)

T e ol
n n-1 xi

The gaussian quadrature allows the exact integration of a polynomial of order

(2n-1). The choice of n = 3 will give us a good enough approximation.

Therefore the values of x. will be the roots of the polynomial

5 3 3
PS(X) Ex "é'x
3 \/5
These values are x1 =-V5 , X, = 0, Xz = +V 5 . The corresponding
coefficients c¢. will be c> =¢_ = 2 c, = 8
i 1 3 9’ 27 9°

The finite element method and the gaussian quadrature allow us to

characterize the behaviour of Lee's frame by the equation:
[x1{u_} = {F}
n n

The following chapter will introduce the methods used to solve this

equation.



CHAPTER 4

NUMERICAL METHODS

FOR SOLVING NONLINEAR SYSTEMS

§4.1 GENERALITIES

This chapter presents the numerical methods we will use in order

to solve the nonlinear equation:
[K]{Un} = tFn} (4.1)

We will proceed by iteration; and at each iterative step, we will solve

the linear equation

[Kp(u;_pd1Haugd = {R(u, D) . 4.2)
This chapter will be divided into three parts:
- the first part concerns the method for solving the
relation (4.2)
- the second part presents the usual iterative process

- the third part, which is the most important one, will
introduce a special technique needed for finding the

deformations of the Lee's frame.
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§4.2 SOLUTION OF THE LINEAR SYSTEM

4.2.1 Boundary conditions

The equation (4.2) doesn't take into account the boundary
conditions, we will introduce them by using the method of the diagonal

dominant term.
Let {U_} be the approximation of the solution vector {U} . Then {U }

is obtained by iteration, using the following process:.

{Ul}

{UO} + {AUl}

{Uz} {Ul} + {AUZ}

. i

fud={u 1+ {au }

Let m be the dimension of the vector space containing {U} . Then the m

components of '{UO} are usually chosen equal to zero and
/0\

{u} = Y oor

Let U. , U. , ... .and U; be the boundary conditions for the
2 P

vector {U} . We will define {UO} by
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N
i
U2

{UO} = 4 : >

m

V)

. i_ .
with U~ =0 i# Sl""’sp
vt = U; in the other cases.

In order to keep the same boundary conditions for the final approximation,
we have to modify the matrix [K;] and the vector {R} in the

equation (4.2).

We will bring the following modifications:

8
where j =1,2 ... p and o = 10

These two modifications will insure that

AU = AU =, . . =AU =0
°1 52 o
in the vectors
aut
{AUi} ={ - , i=1,2, ,n
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4.2.2 Storage of the matrix [KT]

The matrix

K]

tridiagonal matrix, and can be written:

and

is a symmetric, positive definite block

KS(10)

XD (11)

{Ks}

KD (1) KS(1)
ks()T  kD(2)  KS(2)
T ~
KS(2) KD(3) ~
~ ~ N
~ ~ ~
~ ~ ~
~ ~
~
[Kp] = ~
KT ~ ~ ~ ~
~ ~ ~
~ ~
~ ~
™~
ks(10)"
The order of [KT] is 44 and all the internal matrices are matrices of
order 4. The storage scheme will consist of 2 vectors {KD}
such that
- ~N r ~
KD (1) KS(1)
KD (2) KS(2)
{kp} = y +« [ and {KS} = -0
KD (11) KS(10)
\ / . ~

4,2.3 Block L-U factorization

All the details concerning this method can be found in the

book by Golub and Van Loan [16]
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We use this method in order to take advantage of the block structure of
the symmetric positive definite matrix [KT] . By considering a block

factorization for the matrix [KT] , we obtain

I MU(1) KS(1)
ML(2)T Q W) KS(2) Q
~ ~
ML (3)I ~ >
NN “ AN
[KT] = NN ~ N
NN ~ ~
NN SN KS(10)
AN N\ ~
ML(11)I MU(11)

where the matrices ML({(i) and MU(i) are matrices of order 4 and
obtained by the following algorithm:

-

(1) MU(1) = KD(1)

(2) For i =2, ... 11

(3) ) Solve ML(i)*MU(i-1) = KS(i)T for ML(3i)

4 MU(i) = KD(i) - ML(i)+KS(i-1)
-

This procedure is well defined as MU(1l), ... MU(10) are non-singular
due to the construction of [KT] . The vector {AU} can be obtained
by block forward elimination and backward substitution using the following

algorithm:
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(3 For i=1, ... 11
(6) y(i) = R(i) - ML(1)y(i-1) (ML(1)y(0) = 0)
(79 ) For i =11, ... 1

(8) Solve MU(i)AU(1i) = y(i) - KS(i)AU(i+1)

kfor AU(1) (KS(11)Aau(12) = 0)

To carry out the instructions (3) and (8) we use the matrix inverse

function included in the A.P.L. instructions.

§4.3 TITERATIVE PROCESS

This section begins by a presentation of the Newton-Raphson's method
and ends with the description- of a modification of this method --this

modification is the imposition of an increment.

4.3.1 Newton-Raphson algorithm (Fig. (4.1))

The following expansion is given in the book of Dhatt and

Touzot [8 ]
The equation brought by the F.E.M. is

[KW)]1{u} = {F} (4.3)
This equation can be written:

(R} = {F} - [KW]{U} =0
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F=pP

actual

Fig. 4.1 - Newton-Raphson's algorithm
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The solution of the equation (4.3) requires us to find a vector {U}
such that {R(U)} is as close to zero as possible. The actual solution

gives {R(U)} = 0 .

The search for the solution will be done in an iterative manner: if

{Ui_l} is the solution after (i-1) loops, we have:
[K(Ui_z)]{Ui_l} = {F}
But the residual vector

RU, ) = {F} - [KQu. DU, )

is different of zero. Therefore the new solution must satisfy

{u.} = {u, .} + {au.}
i i-1 i
with {RWHY = {RU; _; + AU} =0

Expanding this last equation into a Taylor's series of first order, we

get

3R
RO = R, DY+ <}ﬁi>{J {av} =0

i-1
Therefore, we must have

ARy
- <%ﬁ> fau,} = {r(u, )}
Yi-1
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The expression of the tangent matrix [KT(Ui_l)] is then
_ aR
U.
i-1
The Newton-Raphson's method solves at each step

[KT(Ui_l)]{AUi} = {R(Ui_l)}

The termination of this iterative processes will depend on the value of

{auU.}
1

4.3.2 Imposition of a displacement

The following explanations are given in the publication of

Batoz and Dhatt [17] .

So far we have supposed that the load was given and that the displacements
{Un} were the unknowns. For some problems (Fig. 4.2) it's possible to
obtain several displacements for a given load "F . 1In this example the
Newton-Raphson's method can't give the solution in the interval [B,C]

In order to obtain a solution in this interval, we must fix one component
U of the displacement vector {Un} and consider the load F (F = XFO s
Fs fixed) as unknown. As a matter of fact, in [B,C] there is only one

load F corresponding to a given value of U .

For each iterative step the Newton-Raphson's method imposes the solution

of the equation

[KT]{AU} = {R}
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F = AF
(o]

B pr— —— —

P /\
' | ]
| . l
| '
’ ’
: ! ¢ !
() .
" u? u

Fig. 4.2 - Several displacements for one load
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The residual vector {R} can be written in the form
{R} = A{F_} - [K]{U} : (4.4)

where fFo} is the initial load vector, and A the load parameter

with the initial value 1 .

Let UL be the value of the imposed component of the solution vector {U}
The technique used is to substitute the considered component of the initial
vector {Uo} by U and then to fix AUL = 0 for each loop. Then we

must solve the two equations:

]

(Kp]1aU,} = {F ) » (4.5)

]

[kp1{a0} = (R} (4.6)

where {R} satisfies the equation (4.4).

Let (AU and (AU be the variations of the component relative

1 L2

to the imposed displacement, obtained respectively by the equations
(4.6) and (4.5). Then the total variation {AU} of the vector solution

is defined by

{aU} = {AUl} + AA{AUZ} )

(AU, )
where AN = - —(—A—UL)—I'
L'2 .
Therefore for the loop considered here, AU, = 0 and the new load vector

L
is (A + AA){FO}
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§4.4 AUTOMATIC INCREMENTATION

The figure (4.3) shows the load-displacements curve of the Lee's
frame. In order to find the curve in the intervals ({B,C] and [A,D]
we need to impose a displacement (u or w) . We will call this imposed
displacement "increment'. In the interval ({E,G] , we can't use w as
increment; and in [F,H] , u can't be the increment either. These
2 impossibilities are due to the fact that in these intervals we reach
an extrema for one displacement, and therefore, we can't always increase
the value of this displacement. But u 1is increasing in [E,G] and w
in [F,H] . So, we can obtain the complete curve by using the 2 increments
u and w , 1if we choose the increment carefully at each stage of the
deformation (u must be the increment in ([E,G] and w the increment in

[F,H])

This thesis presents an automatic method for this choice and proposes
values for stepsizes (values of the increase of the increment). The
general>techniqu¢ is based on polynomial interpdlation. We also tried
to take advantage of this method to improve the precision of our program.

Our plan, for this section, will be the following one:

- choice of the increment
- choice of the stepsize

- general improvements.
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max

min = = = = = - —« ~ —~ -

Fig. 4.3 - Displacements vs load
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4.4.1 Choice of the increment

The purpose of this study is to find an increasing increment.
We shall choose the displacement which increases the most as an increment.
Consequently, the slope of the tangent will allow us to predict the right'

choice.

We will use polynomial interpolation of order 3 or 4 to determine the
slope of the tangent for u and w (Fig. (4.4) polynomial interpolation

of order 3, points chosen have load Fo’ F, and Fz). The value that we

1
obtain for the slope won't be the exact value, but the precision is not
very important and we just need the order of magnitude. The smallest

absolute value of the slope will give the displacement which increases

the most.

4.4,1.1 Polynomial interpolation

A summary on this method can be found in the book

of Burden, Faires, and Reynolds [11]

Interpolation can be used to approximate an original function in the
calculation of integrals or derivatives or in other operations. The most

useful interpolating class is then the class of polynomials.

The curves of load-displacements (Fig. (4.3)) can be considered as functions
over intervals. These intervals mustn't contain any extrema for the
displacement considered. On these intervals, let us define the function

f and g such that



~
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real
tangent

real curve

-
-—
—

approximate tangent
slope = T
P u

approximate curve

(a) horizontal displacement

real
tangent .
A real curve

- approximate tangent
ope = T
slop y
approximate curve
i
. . W
(b) vertical displacement
. Tl < |Tu] next increment = w
1 .
ITW' > |Tu[ next increment = u

Fig. 4.4 - Choice of the increment
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T
1}

f(u)

Tl
]

g(w)

In order to approximate f by a polynomial P of order (s+1)
choose (s+l1) points in the interval of definition of f and we will
use a divided-difference table. Let us suppose that we know the values
of the function f at the different displacements Ugs Ups eees Ug -

Then the polynomial PS of degree at most s that agrees with the

function f at those points is

Ps(u) = f(uo) + f[uo,ul](u—uo) + f[uo,ul,uz](u—uo)(u—ul)

P f[uo,ul, cens usl(u—uo)(u—ul) cen (u-us_l)
f(u.) - ftui)
where f[u,,u.] = J R i#di ,
i’ u. - u,
j i
and flu.,, ..., u, ,] =
i i+k - u
i+k i

Once the polynomial PS is found it's easy to find the value of the
derivative, which is the slope of the tangent, at the last point.

The algorithm used is the following one:

Fo’ F1’ ’ Fs
U Uys oo Ug are known
W, W w

1° 0 s
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(1) find Ps(u) which interpolates f(u)

and Qs(w) which interpolates g(w)
(2) calculate Pé(us) and Qé(ws)

(3) if |Pé(us)! < [Qé(ws)| then u 1is the increment and

u = u_ + stepsize .
s+l S P

Otherwise, w 1is the increment and Wl = W + stepsize.

The stepsize is generally small, therefore we don't need a high value of
s for a good interpolation of the functions £ and g . Our program
will compute 2 polynomial interpolations, one with s =3 and the other

with s = 4

4.4,2 Choice of the stepsize

Once we found the increment, we have to define its variation,
called stepsizé. The value of the stepsize is important, and it determines
the convergence and also the speed of convergence of the Newton-Raphson's
method. Because the imposition of a relaxation factor has the same effect,

our program will use the following two techniques.

The technique of imposition of a relaxation factor fixes a definite
value AS for the stepsize and then modifies slightly the iterations of
the equation (4.2) in order to attain the fastest convergence. The
modification is the introduction of a coefficient W, such that each

loop solves:
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[Kpu, _pHau Y = {RU, D}

and {Ui} = {Ui_l} + wi{AUi}

If w., < 1 we have an under relaxation method which improves the

possibility of convergence

and if w, > 1 we have an over relaxation method which improves the

speed of convergence.

The optimum value for W depends on the problem studied; it is determined
by numerical experimentation. The experimental results we obtained are not

very good and we decided to use a variation of stepsize.

The technique we used is based principally on the number of iteration we

needed to obtain the preceding deformation.
Let us define:

NITi as the previous number of iteration,
NITW as the number of iteration wished,

ASi as the previous stepsize.

Then the general formulation for the stepsize Asi+1 is

‘ . o
: _ NITi
BSip1 = 854 (NITW)
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where o 1s a coefficient which the experimental tries and the publication
of Deuflhard [18] shows that its optimum value is 1. We linked the value
of ASi+1 with the value of the slope but this modification doesn't bring

a big change in the total number of iterations.

The stepsize chosen previously with the increment determined by polynomial
interpolation gives the complete load-displacements curves of the Lee's

frame. The next section will be only concerned with the amelioration of

the method.

4.4.3 General improvements

The 2 ameliorations, discussed in this section, will concern
the precision of the curves and the speed of convergence of the Newton-

Raphson's method.

4.4.3.1 Approximation of extrema

In engineering practice, the determination of the
buckling point is quite important. It occurs at the first extremum of
the load. The polynomial interpolation, which allowed us to find P and

Q

s will approximate this extrema for a load corresponding to the points
where the values of the derivatives of P and Q are zero. In the

same way we will estimate all the extrema for u, w and F . The extrema
for u or w occur at points where the derivative of P or Q are

infinite. In order to palliate this inconvenience we will then consider

the polynomials R and S which interpolate u = h(F) and w = k(F) ,
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and the extrema will be for the points where the derivatives of R or S

is zero.

4.4.3,.2 Prediction of the solution

The deformations of the Lee's frame are represented
by 44 variables which are all the displacements and rotations at each node.

Therefore we have to find a prediction for all these variables.

Let us suppose that up is the horizontal displacement. at the point P

(Fig. (1.1)) and is the next increment. The value of the stepsize found

is Aup . For the node j (j=0, ..., 11), we will construct 4 polynomials
PUl’ PU2, PU3 and PU4 appr?x1mat1ng the functions Ul’ U2, U3 and U4
defined by: -
u. = U, (u
j 1{ P)
Yy,x = Uplp)
W, = U, (u
: 5 ()
wj,x = U4(up)

The prediction of the new position for the node j will be:

uj = PUl(up + Aup)
uj,x = PUZ(up + Aup)
wj = PU3(up + Aup)
wj,x = PU4(uP + Aup)

The last operation will consist of the prediction of the new value for the

load F .
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All of these preceding strategies are implemented in our program, and the

algorithms and results will be shown in the next chapter.
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CHAPTER 5
RESULTS

§5.1 GENERALITIES

In this chapter we shall present the numerical program which is
broken into many succinct algorithms. In this way, our presentation will
allow one to understand the different stages of this program. The
application of this program to the Lee's frame will be aone in the last

part of this chapter.

§5.2 FLOWCHARTS

5.2.1 Introduction

To comprehend the following flowcharts, one needs first to

define some variables.

IPAS : represents the number of the solution considered

NITER: determines the maximum number of iterations

SMIN : represents the value of the minimum stepsize

SMAX : represents the value of the maximum stepsize

STEP : represents the value of the stepsize at the iteration

considered
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DIV : indicates if we obtained a convergence or not for the
previous solution; DIV = 0 means we obtained convergence;
DIV = 1 means we had divergence for the soluﬁion considered
but we obtained convergence for the preceding solution;
DIV = 2 means we had divergence for the second time in
a row; DIV = 3 means we had divergence for the third
time in a row with the minimum stepsize and this value of

DIV stops the program.

{VFF}: is the vector of the n 1last values obtained for the

force F when using polynomial interpolation of order n .

{VUU}: is the vector of the n last values obtained for the

horizontal displacement at the point P

{VWW}: is the vector of the n 1last values obtained for the

vertical displacement at the point P

{U} : is the vector solution and has 44‘components.

Uy : indicates the value of the horizontal displacement at the
node 1

NIW : represents the number of iterations we would like to have

at each step.

8 : if the absolute value of the tangent of one of the load-
displacement curve is greater than B , we divide the

stepsize by 2.
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if the absolute value of the tangent of one of the load-
displacement curve is smaller than o , we divide the

stepsize by 2.

We will present 7 flowcharts:

Algorithm of the main program.

Algorithm of the block '"resolution': this algorithm is

concerned with the solution of the equation [K]{U} = {F} .

Algorithm of the block 'diverge': this algorithm studies

the change of stepsize in a case of divergence.

Algorithm of the block "predict'": this algorithm is used for

the prediction of the solution.

Algorithm of the block "extrema': this algorithm calculates

the values of the extrema.

Algorithm of the block "interpolation': this algorithm defines

a polynomial interpolation using the 3 last points obtained.

Algorithm of the block "stepsize'": this algorithm defines the

value of the stepsize.
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5.2.2 Flowchart of the main program

Internal inputs

physical and geometrical characteristics
discretization in finite elements
boundary conditions _J

4

External inputs

maximum number of iterations

number of iterations wished

extrema of the stepsize

n initial increments and stepsizes .
{interpolation by polynomials of order n)

o

IPAS:=01

—

—pt IPAS:=IPAS + 1 ¢

¥

{ BLOCK RESOLUTION

v

TEST of ‘ yes

convergence i -
DIV > 0

v
BLOCK EXTREMA
!

TEST on
the stopping yes
of the |
program

4
BLOCK INTERPOLATION i

end
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5.2.3 Flowchart of the "BLOCK RESOLUTION"

> Loop on the number of iteration

I:=1, NITER
¥

—3p Loop on the elements
IE:=1,10

¥

Calculation of the residual vector {re} and

the tangent matrix [K:] of the element IE
¥

Gathering of {r%} and' [K:] with the residual

vector and the tangent matrice of the precedent element k

¥

« End of the loop on the elements
¥
Solution of [K;]{AU} = {R}.
using - Block L-U decomposition
¥

{u}:={u} + ax{au}
using - imposition of an increment

¥
TEST of convergence

yes
—-—————<AU>{A2} < precision r »>—
llu-aufl

¥

< End of the loop on number DIV:

of iterations

+ 3
DIV:=DIV + 1
v

BLOCK DIVERGE <
¥

Return in MAIN
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5.2.4 Flowchart of the "BLOCK DIVERGE"

TEST yes
DIV:=0 —> , l
lecture of the
Tesults
yes
l ¢
v
7 ize:= ; | END
| step51ze.—§tep51ze/2 [ PROCRAN
e '
i storage of new 3
f vectors
M {VFF}, {vuu},
stepsize:=SMIN { {vww}, {ul
! !
-
- BLOCK PREDICT ] |
M
A 4

v

( Return in RESOLUTION )
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5.2.5 Flowchart of the "BLOCK PREDICT"

Let's suppose up is the increment.

Loop on the nodes ‘
»- I=1,11 I4#7 i
the 7th node corresponds to the point P
\
calculation of polynomials Pl’ P2, PS’ P4
such that: up = Pl(up)
uI,x = Pz(up)
wp = Ps(up)
wI,x = P4(up)
\L p
up = Pl(up + STEP).
QI,X = Pz(up + STEP)
Wy = PS(up + STEP)
wI,x = P4(up + STEP)
¥
————«€———| end of the loop on the nodes
J
calculation of polynomials Qi’ Q2, QS’ Q4
such that: W= Ql(up)
Uy x * Qz(up)
Wy = Q)
F=Qu)
v
w_ o= Ql(up + STEP)
= Q2(up + STEP)
W x QS(up + STEP)
F = Q4(up + STEP)
}

RETURN
in DIVERG or INTERPOLATION
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5.2.6 Flowchart of the ""BLOCK EXTREMA"

TEST s
(VEF (1) -VFF (2))x (VFE (2) -VFF(3)) > 0

MUsing the last increment (let's suppose u)
calculation of Pf s.t. F = Pf(u)

gnd Pw s.t. w= Pw(u)

1

i calculation of u verifying
' max

1N =
Pf(umax) 0

with u € [VUU(1), VUU(3)]

L s e e

lecture of maxima !

i maximum of F = Pf(u ) obtained |
; max !
i for u=u with w=P (u_ ) | |
: max womax’ t
. N’ ' !
; TEST s
E (VOU(1)-VUU(2))x(VUU(2)-VUU(3)) > O [

i = = i
calculation of Pf, Pu s.t. F Pf(w) u Pu(w)

)
i

calculation of w_ s.t. P'(w ) = O |
m u''m

with w € [VWW(1),VWW(3)]

AV
lecture of maximum of u = Pw(wm)

at the point W Pf(wm) = F

TE\‘VST —s—
l (VW (1) ~VWW (2) )X (VWW(2) -VWW (3)) > 0 [P =
\
lcalculation of Pf, Pw s.t. F = Pf(u) w = Pw(u)j

v
calculation of u_ s.t. P'(u ) =0 !
m w ™ m i

with u_ € [VUU(1),VUU(3)]

lecture of maximum of w = Pw(um)

at the point u s Pf(um) = F

]
\V2

( Return to the MAIN programj‘ —¢
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5.2.7 Flowchart of the '"BLOCK INTERPOLATION"

Test ' yes

(VUU(1)-VUU(2))x(VUU(2)-VUU(3)) < O

No

< A (VWW (1) -VWW(2) )x (VWW(2) -VWW(3)) < 0

No

calculation of polynomials
Pu and Pw such that

F = Pu(up) = Pw(wp)

l

up is the next yes Test

€1 [P wu)| < [y ()|

increment

w_ is the next increment <
P

P BLOCK STEPSIZE

BLOCK PREDICT

Return to the MAIN
program
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5.2.8 Flowchart of the "BLOCK STEPSIZE"

Let's suppose the value of the new increment at the last

point is A (A = u; or A= w3)

the value of the preceding increment at the last point is B (B = u

(u3 = VUU(3) and Wy = VWW(3)) ,

3

or B = w3) , and NIT is the value of the number of iteration at the

previous step.

‘ !
STEP:=STEPX<?in (% 1>> NIT |

Iw
]
v

test .
|tan u,| > B or |tan u,| < a yes
3 3

Z

or '

| tan wz| > B or ltan w3[ < q

4

No STEP:=STEP/2

TEST < . !
STEP > SMAX yes >

v No

< TEST
STEP < SMIN

iSTEP:=SMIN ‘ STEP : =SMAX
No

\ 4

yes

v

@urn to INTERPOLAT@
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§5.3 PRESENTATION OF THE RESULTS

The main purpose of this thesis is to create a program which allows
us to determine the load-displacement curves of the Lee's frame. This
objective has been realized by using a polynomial interpolation of order ,
3 or 4. The program, with the algorithms given in the previous section,
allows us to find the load-displacement curves without any failure.

Thus, the next step concerns the optimization of this program. In order
to try to reduce the cost of a run we use polynomial interpolation to
predict the solution. The precision of the curves can.be increased by
using polynomial interpolation to find the extrema of the curves.

In order to appreciate the precision of the extfema found by polynomial
interpolation we must first find the load-displacement curves with
exact values for these extrema. This discussion will be done in the
next section. All the curves and the tables presented below correspond

to the displacements at the point P of the frame (fig. (1.1)).

5.3.1 Load-displacement curves

In order to determine the extrema precisely we supplied
a program which allows the user to choose the next increment and
stepsize. The values we obtained for the extrema are shown in the
table (5.1). The precision on these extrema, nevertheless, depends on
the value of the precision chosen for the Newton-Raphson convergence
criterion. The values obtained for the curves are shown in the
table (5.2), and the schematization of the curves is done on the

figure (5.2). The figure (5.1) shows some deflected shapes of the Lee's
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EXTREMUM

LOAD F
(expressed

in Newton)

Horizontal
displacement u

(in meters)

Vertical

displacement wp

(in meters)

Local maximum of

the load (Buckling

point)

1.87160

0.2719

0.4875

Local maximum of
the vertical
displacement w

1.194

0.6231

0.61023

Local minimum
of the vertical
displacement wp

-0.462

0.8128

0.50827

Local minimum
of the load F

-0.97420

0.5028

0.5820

Local minimum
of the horizontal
displacement up

-0.706

0.94503

0.7140

~ TAB.

5.

1

- Extrema of the curves load-displacement
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Horizontal Vertical
Load F displacement up displacement wP
{(in Newton) (in meters) (in meters)
0.8 0.0101 0.073
0.96 0.0171 0.1
1.35 0.0528 0.2
1.54 0.0867 0.27
1.75 0.1522 0.37
1.85 0.2208 0.445
1.85 0.3201 0.5198
1.68 0.4451 0.5777
1.51 0.5201 0.5984
1.37 0.5701 0.6068
1.20 0.6201 0.6102
1.00 0.6701 0.6070
0.74 0.7201 0.5936
0.57 0.7451 0.5809
0.34 0.7701 0.5612
-0.04 0.7951 0.5276
-0.39 0.8094 0.5091
-0.56 0.8189 0.5093
-0.79 0.8439 0.5232
-0.95 0.8811 0.5556
-0.94 0.9252 0.6211
-0.74 0.9449 0.7044
-0.61 0.9429 0.7444
-0.39 0.9304 0.7944
-0.07 0.9066 0.8444
Q.17 0.8908 0.8694
0.58 0.8734 0.8944
1.48 0.8595 0.9194
2.53 0.8590 0.9319

TAB. 5.2 - Variations of F, up and wP
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Fig. 5.1 - Different shapes of the Lee's frame
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frame at some points pointed in the figure (5.1).

5.3.2 Comparison of procedures

In order to be able to understand the following results we

will briefly define some values.

The "preceding number of iterations' (NIT) represents how many times we
solved the equation [K]{U} = {F} before obtaining the last point from
the point preceding it. Then the value of the stepsize. for the following

point will be an inverse factor of NIT.

The 'total number of iterations' represents howgmany times we solved the
equation [K]{U} = {F} before obtaining all the points needed to

schematize the curves load-displacement.

Sometimes it appears that the value of the stepsize (between two points)
is too big then we obtain a divergence (no convergence of the Newton-
Raphson's method before the maximum number of iterations fixed by the
user). The progfam will then come back to the previous point

and try again with a smaller stepsize. The ''total number of divergences"
represents how many times we get a divergence before the obtainment

of the curves.

The first comparison will be done roughly but will indicate the utility

of the prediction.
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5.3.2.1 Prediction in Newton-Raphson method

A first test has been done for a dozen of steps,
using a very small stepsize (STEP = 0.01). For each step the prediction
method allowed us to obtain the convergence in 2 or 3 iterations and
the simple Newton Raphson's needed 7 or 8 iterations before the

convergence.

This test seems already to have proved the merit of the prediction method.
But it would be wrong to conclude now of the superiority of this method
because the values of the stepsize have a big influence on the convergence
and we are not sure that the values we used don't advantage a lot the
prediction method over the other one. To be absolutely sure of our
conclusion we must use some Sther values for the stepsize. Therefore

we tried 2 more tests.

The first one used a stepsize depending only on the preceding number of
iterations; the second one used a stepsize also depending on the slope

of the curves. With the method without prediction we obtained the

curves in respectively 450 and 550 iterations (total number of iterations).

Using the method with prediction we needed only 150 iterations in both

cases.

The previous examples clearly prove the superiority of the method with
prediction which is also more reliable than the simple Newton-Raphson
method. To obtain the curves we got, with this method, only 1 or 2

divergences (total number of divergences). When we didn't use the
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prediction we got globally 15 divergences before the obtainment of the.

curves.

The next section will be concerned by a comparison between 2 different
predictions, a prediction done in approximating the deformations by a
polynomial of order 3 and a prediction done in approximéting the

deformations by a polynomial of order 4.

5.3.2.2 Comparison of the order of the polynomial

interpolation

A general observation given by the results concerns
the stepsize strategy (or the method we will usé to determine the value of
the‘stepsize between 2 points): The simple Newton-Raphson's method
needs a well defined stepsize in order to obtain good results. This
need implies an important study for the length of the stepsize which
influences a lot on the total number of iterations. The interval of
admissible stepsizes is very small and a value of the stepsize outside
this interval woﬁld immediately lead to a divergence. In the opposite
direction the convergence is almost always obtained for any stepsize when
using the Newton-Raphson's method with prediction. In this case, due
to the rapidity of convergence, the value éf the stepsize determined by
our algorithm is very often equal to the maximum stepsize SMAX .
Therefore the values chosen for NIW, a, and B don't bring big
modifications. We will fix NIW=5, a=10 and 8=0.5. The only factor
concerning the precision and the cost of a run will then be the value

of the maximum stepsize. The tables (5.3), (5.4), (5.5) and (5.6) show



-92-

MAXIMUM STEPSIZE = 0.025

Ordgr of Polygomial 4 3
interpolation
of iterations 201 213
! !
Buckling point f {
P AF/F 1.87160 | 0 1.87161 : 0
u Au_/u 0.2708 . 0.004 0.2712 .003
W D/ 0.4867 ' 0.002 0.4860 : . 003
Local maximum of w : :
F AF/F 1.193 i 0.001 . 1.191 | .003
u Au_/u 0.6233 : 0 0.6227 ; .001
W Awp/wp 0.61023 : 0 0.61024 0
Local minimum of w : :
F AF/F -0.474 1 0.026 -0.467 ,  0.011
u AU /u 0.8141 : 0.002 0.8139 ' 0.001
o SVEN 0.50808 | 0 0.50849 0
{ {
Local minimum of F ; ;
F AF/F -0.97352 4  0.001 0.97436 0
u Au_/u 0.9022 ' 0.001 0.9024 : 0
W Awp/wp 0.5786 .  0.006 0.5829 f .002
i N
 Local maximum of u : i
F AF/F -0.711 0.007 -0.708 : .003
u bu/u 0.94503 0 0.94503 | 0
W Awp/wp 0.7131 .  0.001 0.7131 ! .001

TAB. 5.3 - Extrema for SMAX = 0.

025
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MAXIMUM STEPSIZE = 0.05
Order of polynomial ! 4 3
interpolation
Totgl num?er 150 154
of iterations
; !
Buckling point
F AF/F 1.87160 0 1.87154 0
u AU /u 0.2708 0.004 0.2720 ) 0
W AW /W 0.4865 . 0.002 0.4842 ' 0.007
p pp ! -
Local maximum of w
F AF/F - 1,195 © 0.001 - = 1.189 0.004
u, Au_/u ; 0.6228 ‘ 0o 0.6220 0.002
W aw /w1 0.61020 0 0.61034 0
p p/ 1 ‘
Local minimum of wp i : :
F AF/F § -0.468 i 0.013 -0.476 ©0.030
u bu_/u ©0.8156 | 0.003 0.8136 0.001
W AW /w_ . 0.50894 |, 0.001 | 0.49666 0.023
p Pp ‘ =
. E i
Local minimum of F ! , ;
F AF/F -0.97496 i 0.001 -0.97426 ! 0
: |
u Au_/u 0.9017 . 0.001 0.9010 ,  0.002
w AW Jw 0.5795 ©0.004 0.5862 ¢ 0.007
p pp ) ,
] 1
Local maximum of u ! |
F AF/F -0.711  , 0.007 | -0.701 ' 0.007
u Aup/u 0.94504 ! 0 0.94462 : 0.004
§ i
W AW _/w 0.7131 0.00 0.7134 . 0.001
P , p"p ‘ ! ,
L 4
TAB. 5.4 - Extrema for SMAX = 0.05
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MAXIMUM STEPSIZE = 0.1

i Order of polynomial
| interpolation 4 5
of iterations 144 143
i {
Buckling point f (
F AF/F 1.87135 0 1.87097 0
u M_/u 0.2704  0.006 0.2763 ; .016
W, Awp/wp 0.4854 0.004 0:4750 j .026
|
Local maximum of w |
F AE/F 1.196 0.002 . 1.192 j .002
u Au_/u 0.6223  0.001 0.6229 0
Wy Awp/wp .0.61030 0 0.61019 ; 0
Local minimum of wp E :
F ¢ AF/F -0.465 . 0.006 -0.291 | .370
u, Aup/u 0.8233 ' 0.013 0.8113 | .002
Wy Awp/wp 0.51287 - 0.009 0.50319 | .010
. Local minimum of F | ; .
F AF/F -0.97231 ' 0.002  -0.97404 ' 0
u bu_/u 0.9019 : 0.001 0.9024 | 0 |
L Awp/wp 0.5790 ' 0.005 0.5834 i .002
| ' |
| Local maximum of u ; i g
¥ AF/F -0.716 ' 0.014 -0.688 ' 0.025
u_ Au_/u 0.94502 ; 0 0.94483 : .002
W AR 0.7130  * 0.001 0.7136 | .001
\

TAB.

5.5 - Extrema for SMAX = 0.1
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MAXIMUM STEPSIZE = 1

Order of polynomial ! 4 3
interpolation i
i
]
Total number | 160 178
of iterations g
Buckling point ‘ ‘ i
F AF/E  © 1.87079 0 1.87192 0
u, Aup/up . 0.2653 . 0.024 0.2738  0.007
W Aw /w_ . 0.4706 + 0.035 0.4798 0.016
P p/ P , :
Local maximum of w ‘ v
F AF/F 1.300 ©0.089 . 1.140 ~0.045
u Bufu 0.6218  0.002 | 0.6066 | 0.026
W Aw Jw_ | .0.61022 0 0.61110 ' 0.001
P PP ‘ i
i
Local minimum of wp i
. i )
F AF/F . -0.460 ©0.004 -0.511 ; 0.106
u Aup/up ©0.8171 ' 0.005 0.7945 |  0.023
1 .
W Aw_/w_ ¢ 0.51289 , 0.009 0.50909 '  0.002
P PP : | |
§ i
Local minimum of F : v i
F AF/F ' -0.97478 i 0.001 -0.97423 : 0
: |
u, Aup/up . 0.9017 ., 0.001 0.9026 | 0
W Aw_/w_ 0.5791 £ 0.005 0.5821 ' 0
P PP | ;
. i i
Local maximum of u j i
i F AF/F . -0.756 t0.071 -0.705 b0.001
H t ;
1 u, bufu | 0.94498 , 0.001 0.94460 ., 0.004
‘ 1
W Aw /w_ | 0.7125 ' 0.002 0.7128 0.002
;p P/Pi i !

TAB. 5.6 - Extrema for SMAX =1
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results obtained from 4 different values for the maximum stepsize. The
tabulated values are the extrema of the curves, their relative errors

and the total number of iterations. The 2 first values will allow us to
evaluate the precision on the extrema of the curves. The last value of

the table allows us to approximate the cost of a run.

The comparison of the total number of iterations must be done roughly
because the end points are not always the same. This fact can bring

as far as a difference of 8 iterations (on the total number of iterations).
It appears then that the total number of iterations of a run doesn't
depend very much on the order of the polynomial interpolation used.

The main difference appears when the value of the maximum stepsize is 1
and, in this case, the polynomial interpolation of order 3 needs only
10 per cent more iterations. Furthermore this value of the maximum
stepsize doesn't allow a good drawing of the load-displacement curves
because we didn't obtain enough points. Therefore we will restrict our
comparison to smaller values of the maximum stepsize. These values
don't bring a big difference to the values obtained for the extrema of
the curves. 1In fact the accuracy of our results for the extrema seems
to depend in major part on the distribution of the points found and

their proximity to the extrema.

Therefore the more elaborate polynomial interpolation of order 4 doesn't
seem to prevail on the polynomiél interpolation of order 3 and we can
suspect that we would have the same conclusion for a higher order

polynomial interpolation.
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The value of the maximum stepsize appears to be more influential although
all the stepsizes gave a very good approximation of the curves. We
obtained the best ratio (number of points obtained/number of iterations

needed) for a value of 0.05 for the maximum stepsize.
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CHAPTER 6
CONCLUSION

The first and primordial objective of this thesis--which was to find -
a way fo obfain the load-displacement curves of the Lee's frame--has been
solved by using a program with an automatic incrementation based on
polynomial interpolation. The polynomial interpolation technique has

also been used in the following connections:

i. to approximate the extrema of the curves, and
ii. to predict an initial value for the solution in order to improve

the rapidity of convergence of the Newton-Raphson's method.

In the first instance, the estimation of the extrema is interesting only.
when a small number of points on the load-displacement curve are known.
Since the task of finding the extrema can be accomplished after the curve
has been found, we do not recommend the use of polynomial interpolation

method for this‘purpose alone.

As for the second point, the prediction brought a tremendous improvement in
the speed of convergence of Newton-Raphson's method, and furthermore, it
eliminated most of the risks of divergence. It is our opinion that the
polynomial interpolation technique should be used as often as possible in
making an initial prediction of the solution. This is not quite the case
for the automatic incrementation scheme as it is not useful for the

situations where the load-displacement curves have no local extrema.
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The final conclusion is that: this thesis has reached its objective. Its
main contribution resides in the 'prediction" method, which is very effective

and henceforth should be used for solving nonlinear static problems.
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