
EFFICIENT SCHEDULERS IN

MULTIVERSION DATABASE SYSTEMS

Carrie Sy

B.Sc.. Simon Fraser University, 1983
B.Sc.. University of the Philippines. 1979

A THESlS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

Q Carrie Sy 1986

SIMON FRASER UNIVERSITY

April 1986

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name: Carrie Sy

Degree: Master of Science

Title of Thesis: Efficient Schedulers in
Multiversion Database Systems

Examining Committee:

Chairperson: Dr. Binay Bhattacharya

Senior Supervisor: Dr. Tiko Kameda

Dr. Wo-Shun Luk

External Examiner: Dr. Naoki Katoh (in absentia)
Department of Management Science
Kobe University of Commerce

Date Approved: *Pi' 986

PARTIAL COPYRIGHT LICENSE

i my thes is , p ro jec t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f the Simon Fraser Un ive rs i t y L ib rary , and t o make p a r t i a l o r

s i n g l e copies only f o r such users o r i n response t o a request from the

l i b r a r y o f any other un ive rs i t y , o r o ther educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean of Graduate Studies. I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l ga in sha l l not be al lowed

wi thout my w r i t t e n permission.

T i t l e o f Thesis/Project/Extended Essay

Eff ic ient Schedulers i n Multiversion Database Systems .

Author:

(s ignature)

Carrie Sy

16 Apri l 1986

(date)

ABSTRACT

One way of achieving a higher level of concurrency in transaction scheduling is to keep past

values of each data item in the database. This thesis will focus itself on efficient multiversion

cautious schedulers which generates output sequences in classes MWW and MWRW.

In the first part of the thesis, we present the results of a simulation study. which compare

the multiversion MWW-scheduler with MWRW-scheduler, assuming that an unbounded number

of versions are available for each data item.

In practice. however, an unlimited number of versions cannot be maintained. In the second

part of the thesis. we develop a theory which will enable us to develop efficient scheduling algo-

rithms for K-version databases, where K is fixed. We propose a K-version cautious MWW-

scheduler and a K-version cautious MWRW-scheduler, which make the scheduling decision in

polynomial time.

ACKNOWLEDGEMENTS

I am most grateful to Dr. Tiko Kameda whose support, patience. and invaluable insights

have enabled me to complete an endeavor which I thought would never finish. I would also like

to thank Dr. Wo-Shun Luk and Dr. Naoki Katoh for their useful comments. as well as the

faculty. staff, and graduate students of the School of Computing Science for making my stay in

SFI; both motivating and enjoyable.

To my family and

my very good friends,

Kimi c d Mawie.

TABLE OF CONTENTS

APPROVAL ..

... ABSTRACT

ACKNOWLEDGEMENTS ..

LIST OF FIGURES ..

LIST OF TABLES ..

CHAPTER 1 : INTRODUCTION ...

1.1 Methods of Achieving Serializability ...

1.2 Statement of the Problem

CHAPTER

1.3 Organization of the Thesis ..

FORMAL CHARACTERIZATION MULTIVERSION SERIALIZABILI-

2.1 Database System Model ...

2.2 Serialization Constraints ..

2.3 TI0 Graph and DITS ..

2.4 Cautious Schedulers ...

CHAPTER 3: MULTIVERSION SCHEDULING ...

3.1 Definitions

3.2 Algorithm MVCS ..

3.3 Concept of OLS ..

CHAPTER 4: SIMULATION STUDY ...

4.1 Algorithms Used ...

iv

viii

. vii .

Simulation Model ...

Experiments and Results ..

CHAPTER 5: LIMITED VERSION SCHEDULING ..

5.1 K-version MWW Scheduling ..

5.2 K-version M WR W Scheduling ...

CHAPTER 6: CONCLUSION

... BIBLIOGRAPHY

LIST OF FIGURES

Figure 2.1 (a): TI0 graph for Example 2.1.

Figure 2.l(b). DITS for TI0 graph in Example 2.1. ..

Figure 2.2. WR W-augmented . exclusion-closed TI0 graph of Example 2.1.

Figure 4.1. Average response time vs . mean transaction inter-arrival time

Figure 4.2. Normalized transaction delay vs . mean transaction inter-arrival time

Figure 4.3. Percentage old versions read vs . mean transaction inter-arrival time

Figure 4.4. Average response time vs . overlap of writeset with readset

Figure 4.5. Normalized transaction delay vs . overlap of writeset with readset

Figure 4.6. Illustration for explanation of results of Experiment 1

Figure 4.7(a). X-segments ..

Figure 4.7(b). X-chains ...
. .

Figure 4.7(c). Illustration of constraint arcs when degree of overlap = 100%

Figure 4.8. Percentage old versions read vs . overlap of writeset with readset

Figure 4.9. Average response time vs . database set size ...

Figure 4.10. Normalized transaction delay vs . database set size ..

Figure 4.11. Percentage old versions read vs . database set size ...

Figure 5.1. Illustration for Proof of Lemma 5.1. ..

Figure 5.2. Illustration for Example 5.1.

. viii .

LIST OF TABLES

Table 4.1. Varied Parameters .. 21

Table 4.2. Fixed Parameters .. 21

Table 4.3. Effects of Varying Mean Transaction Inter-arrival Time 26

Table 4.4. Effects of Varying Degree of Overlap .. 29

Table 4.5. Effects of Varying Database Set Size ... 31

CHAPTER 1

INTRODUCTION

The desire to improve user response time and throughput of database systems has led to con-

current executions of many transactions. Although concurrency does improve overall system per-

formance, there are many problems such as lost updates and data inconsistencies [EGL76] which

occur in uncontrolled concurrent accesses to a database. Therefore. some sort of control must be

exercised in order to maintain the integrity of the database.

In a database system, a transaction scheduler checks each arriving read and write request

and delays it. if necessary. to make sure the database will eventually reach a correct and con-

sistent state. This function is commonly known as concurrency control.

So far, the most accepted criterion for correctness in concurrent database systems is serial-

izability IBSW79. Pap79. SLR761. Serializability can be defined as the property of a sequence of

read and write operations of several transactions which guarantees that the execution of that

sequence will produce the same effect on the database as that produced by a schedule in which tfle

transactions are executed serially one after another. The concept of serializability is based on the

fact that any sequential execution of transactions will leave the database in a consistent state.

(We assume that each transaction. executed alone. transforms a consistent state into another con-

sistent state). Hence. any given schedule which is equivalent to a serial schedule. i-e.. a serializ-

able schedule, will also leave the database in a consistent state.

1.1. Methods of Achieving Serializability

Locking

Locking is a common tool for concurrency control [EGL76]. Each transaction must lock a

data item before any access to that item. In this method, the scheduler is simply a lock manager

- 1 -

- 2 -

that keeps track of the locks and makes sure that no two transactions simultaneously lock the

same data in conflicting mode. Several locking policies have been proposed to guarantee serializa-

bility, the first of which is the two-phase locking policy [EGL76]. Here, each transaction must

lock all data items to be accessed before unlocking any item. Several non-two-phase locking pro-

tocols have since been proposed. These allow a transaction to unlock some data item before all

desired items are locked. Examples of these include the tree policy [SiK8O], protocols based on

directed acyclic graphs [KeS79], hypergraph protocol [Yan82b], and the entry point protocol

[BUSMI.

It is important to note that although locking is very commonly used to achieve serializabil-

ity, deadlocks can occur in the system and if this happens, transactions need to be aborted. Furth-

ermore, its power is limited only to a small subset of serializable schedules, i.e.. those that are

serialized under write-write constraints [Yan81]. This class has been called CPSR [BSW79]. DSR

[Pap79]. and WW [IKM83].

Timestamping

Another commonly used method for concurrency control is timestamping. In this method.

each transaction is assigned a unique timestamp when it begins executing [Ree78]. Each read add

write carries the timestamp of the transaction that issued it and conflicting operations are pro-

cessed in timestamp order. Hence, serialization order is determined by the order in which the tran-

sactions begin executing. Unlike locking, deadlocks do not occur in timestamping but rollbacks of

already granted operations are still required.

Certification

This approach has been presented in [BHR80. StR81] and uses a technique similar to locking.

However, reads and writes are processed on the first-come. first-served basis and synchronization

occurs only when a transaction attempts to terminate. Thereupon the system will decide whether

or not to certify. and therefore, commit the transaction. This method works well if very few

run-time conflicts occur. since executions are then mostly serializable. This method has the

advantage in that is does not delay a transaction while it is being processed and hence, the only

test for correctness is done at the transaction's termination. This method is also called

optimistic concurrency control [K u R ~ 1 1.

Cautious Scheduling

Unfortunately, when conflicts are not rare, it was shown in a simulation study by Carey

[Car841 that transaction rollbacks degrade performance considerably. Hence, algorithms which do

not require rollbacks have been investigated.

-4 cautious scheduler is one that grants input requests if and only if it will never necessitate

rollbacks. Casanova and Bernstein [CaBgO. Cas811 discuss a cautious scheduler for class CPSR

(also called DSR or WW) which is a well-known subclass of the set of all serializable schedules,

SR. Katoh. et al. [KIK85] proposed cautious schedulers which output schedules in class WRW.

WRW is the class of schedules serializabl'e under write-read and read-write constraints. They

showed that although WRW-scheduling is, in general. NP-complete. it can be performed efficiently

if all transactions are of type 1R (i.e.. no more than one read step followed by multiple write

steps) and if admission control (i.e.. the scheduler rejects a transaction if its first request cannot be

immediately granted) can be exercised.

For general. multi-step transactions. [KKI86] have introduced additional constraints in the

form of a subset of ww-constraints to define a new class. WRWX. Scheduling for this class can be

done in polynomial time and since it properly contains the class WW, it allows the most con-

currency among all the efficient cautious transaction schedulers currently known.

Maintaining Multiple Versions

Still another way of achieving serializability with increased level of concurrency is by sup-

porting multiple versions of data items. In this model. a write operation on a data item X does

not overwrite the old value of X, but creates a new version. Hence, if another transaction wants

to read X. there is an option of supplying to it whichever version that will achieve serializability.

Studies on the theoretical aspects of multiversion serializability have been done

[BeG83. IbK83. PaK841 and they have shown that multiversion algorithms are able to provide

more concurrency than their single version counterparts. Several multiversion scheduling algo-

rithms have also been proposed [BeG83, BuS83. Car83, Ree78. Si182. SLR76. StR8lI. A simulation

study by Carey [CaM84] on three kinds of multiversion algorithms confirmed that all the mul-

tiversion algorithms outperformed their single version counterparts if the conflicts were between

transactions which only read (readers) and those which read and write (updaters). Most of these

algorithms [BeG83. Car83, Ree78. SLR76, StR811 utilize locking, timestamping, certification. or a

variation or combination of these methods. However. they require transactions to be aborted if

they fail to satisfy the serialization criterion. Since rollbacks are costly, other algorithms which

'.do not necessitate rollbacks have been proposed. Among these are the multiversion tree protocol

by [Si182] and a generalized "progressive" (i.e. those that do not require rollbacks) protocol by

[Bus831 of which the tree protocol is a special case. This latter protocol requires predeclaration of

the writesets by transactions and uses timestamping and a subset of write-read constraints in

order to determine the correct version to assign to each read request. Write operations are allowed
L

to proceed without delay but read operations are sometimes required to wait if there is an update

transaction with a smaller timestamp that has not written on that same data item yet. This delay

prevents the possible rollbacks that occur in Reed's timestamping scheme [Ree78].

1.2. Statement of the Problem

This thesis will focus itself on efficient multiversion schedulers which do not resort to roll-

backs to achieve serializability. The first part of this thesis will present results of a simulation

study which compare the relative performance. in terms of response time and transaction delay.

of a multiversion scheduler which makes use of read-write and write-read constraints to order

conflicting transactions (M R W scheduler) and one that utilizes only write-write' constraints

(MWW scheduler). Both schedulers assume that an unbounded number of versions are maintained

- 5 -

for each data item.

Since, in practice, an unlimited number of versions cannot be maintained, this thesis will

propose a limited K-version cautious MWW scheduler and a K-version cautious MWRW

scheduler which run in polynomial time.

1.3. Organization of the Thesis

This thesis is organized as follows: Chapter 2 presents a characterization of multiversion

serializability by first giving a formal definition of the database system model and then reviewing

the concepts of DITS and the TI0 graph which are given in [IKM82, IKM831. Chapter 3 discusses

multiversion scheduling and the concept of OLS (on-line schedulable) [Pa~84]. Chapter 4

presents the results of a simulation study, while Chapter 5 examines how the classes MWW and

MWRW can be scheduled efficiently in a K-version database system. where K is fhed. The final

chapter concludes the thesis and states some open problems.

CHAPTER 2

FORMAL CHAFL4CTERIZATION OF MULTIVERSION SERIALIZABILITY

2.1. Database System Model

This thesis will adopt the same database system model and hence the same definitions as

used in [KIKM]. Let our database system consist of a set D of data items and a set T = {To. T I .

T2 . . - . . T f) of transactions. A transaction T, can execute a read operation, denoted by Ri[X] ,

on the data item X and a wr i te operation. denoted by Wi[X] , on X. A write operation. W i [X] , by

T, creates a new version of data item X, instead of overwriting the existing value. which is the

case for single version database systems. The items written by a transaction need not be a subset

of those read. A read (respectively, wri te) step. Ri[s] (respectively. Wi[S]) . where S is a subset

of D. is an indivisible set of read (respectively, write) operations of transaction T,, and a transac-

tion is simply a totally ordered set of read and write steps. We assume that each data item is ac-
* .

<

cessed by at most one read and at most one write operation of each transaction. and therefore.

every version of any data item can be uniquely identified by the transaction that wrote it. In o;r

model, there are two fictitious transactions. To, the initial transaction and Tf , the final transac-

tion. To consists of a single step. w0[D] , which "writes" the initial values of all data items. Tf

consists of a single read step. RfID]. which "reads" the final values of all data items after all other

transactions have completed.

Let us define a log. h. as a sequence over the set of all the read and write steps of a set T of

transactions. A function LAST^ is the set of all mappings associated with h, from the set of all

read operations of h into the set of the write operations of h such that for each I E LAST^:, if

I(R,[X]) = W;[X] , then w;[x] is one of the last K write operations preceding Rj[X] in h. For a par-

ticular I, if I (R j [x]) = w , [X] . then we say that T, reads X f rom T , in log h. Each 1 E LAST: is

called a K-interpretation for log h. If K = 1, the set LAST; contains just one element. In this

case. its only member is called the standard interpretation and is denoted by I* [Pap79]. Intui-

tively. the standard interpretation maps each read operation on X to the most recent write opera-

tion on X in h. If K = =, on the other hand. a read operation can read any version that has been

written so far (i.e.. the corresponding write operation precedes the read operation in the log.).

A schedule, s, over T is a pair <h, I>, where h is a log over T and I is a K-interpretation.

Two schedules s = <h. I > and s ' = <h1,I'> are said to be equivalent (or view-equivalent

[~an82a]) , written s G s ' , if for all pairs of indices i and j, whenever transaction Tj reads X from

transaction Ti in s , T, also reads X from Ti in s', and vice versa. In other words. s s ' B I = I'.

A schedule s' = <hlJ'> is said to be ser ia l if all the steps of each transaction in h' are or-

dered consecutively and I' = P. A log h is said to be (multiversion) serializable, if there exist

an interpretation I E LAST and a serial schedule s' = <hl,Ir> over the same set of transactions

such that <h. I> G s ' [BSW79. Pap79. PaK841. To determine if a given log is serializable is. in

general. known to be NP-complete [Pap79. PaK841.

2.2. Serialization Constraints

L

To test a given log h for serializability, we look for a serial log h' satisfying certain con-

straints. In a serial log h', if the operations of transaction Ti appear before those of Tj, we say that

Ti is serialized before Tj.

Let MVSR denote the set of all multiversion serializable logs. The following constraints en-

able us to define subclasses of MVSR. where < denotes the total order for a given log h.

(a) [ww-constraint] If Wi[X] < Wj[X] for some data item X, then Ti must be serialized before T,

in h'.

(b) [wr-constraint] If Wi[X] < Rj[X] for some X, then Ti must be serialized before Tj in h'.

(c) [M-constraint] If Ri[X] < Wj[X] for some X. then Ti must be serialized before Tj in h'.

A log h is said to belong to classes MWW, M R . and MRW, if h is serializable under condi-

tions (a), (b), and (c), respectively. That is, there exists an interpretation I for h such that

Ch. I > is equivalent to a serial schedule <h'. P> satisfying the imposed constraints (ww. wr. or

r w) . The single version counterpart of these classes are WW. WR, and RW, respectively.

Since this thesis will be concerned with logs serializable under both wr and rw constraints.

we shall abbreviate the union of these constraints as wm and denote the class of logs serializable

under these constraints as MWRW.

23. TI0 Graph and DITS

Several graph-theoretic models have been proposed in literature to formally characterize

serializability of logs. Papadimitriou [Pap791 used the polygraph. Stearns, et al.. [SLR76] the

version graph. Sethi [Set811 the transaction dag, Bernstein [BeG81] the serialization graph. and

Ibaraki. et al.. [IKM83] the TI0 graph. Recently. Vidyasankar [Vid85] introduced his TRW and

TP graphs which are essentially a hybrid of the TI0 graph and polygraph. Although most of

them d S e r in their notions of serializability and the sets of constraints, all of them characterize

serializability in terms of the acyclicity of appropriate graphs.

L

Since this thesis extends the work of [IKMS~, IKM83. IKK86. ~ ~ 1 8 6 1 . we will use the model

presented there.

Definition 2.1. TI0 GRAPH. The transaction I0 graph, denoted by TIO(s), for a schedule

s = <h. I > over a set T of transactions, is a labeled multigraph with the node set T U T' and

the arc set A. where T' is defined below. For any pair of transaction indices i and j , there is an

arc (Ti. Tj) E A labeled by X (this arc is denoted by (Ti. Tj):X) whenever Tj reads X from Ti. A

dummy node Ti E T' together with a dummy a rc (T,. Ti):Y E A are introduced if Ti writes a

data item Y and if no other transaction reads Y from Ti.

Example 2.1. The TI0 graph for the following log h with the standard interpretation is shown

in Fig. 2.1 (a). The steps of h are shown in the order given by its total order. and Rj[Xi] indi-

cates that P(Rj[x]) = Wi[X].

<h. P> = WJX.Y.ZI Rl[XoI W2EZI R2[Y01 W,[X.ZI WJXI RJX21 WJYI WJZI RfEX2.Y2.ZJ

An interval is defined to be a set of all arcs that have the same label and originate from the

same node [IKM82].

Definition 2.2. DITS. The total order << on the set of nodes of TIO(s) is a disjoint-interval to-

pological sort (DITS, for short), if it satides the following two conditions:

(a) If Ti << Tj then there is no path from Tj to Ti in TIO(s), and

(b) Let (Th. T,):X and (T,. Tk):X be any two arcs labeled by X in TIO(s) such that h Z j. Then

either TL << Th or Ti << Tj. 0

Condition (b) is referred to as the exclusion rule. An unlabeled exclusion an: (Ti. Tj) is in-

troduced if there are two arcs (Th. Ti):X and (Tj. Tk):X such that there is a path in TlO(s) from Th

to Tk (possibly through T, or T,).

Figure 2.l(a) TI0 graph. TIO(s) for Example 2.1.

Intuitively. TIO(s) has a DITS if the nodes can be linearly arranged horizontally in such a

way that all arcs are directed from left to right and no two intervals with the same label "over-

lap". i.e.. no imaginary vertical line intersects more than one interval with the same label, no

matter where it is placed.

The importance of the concept of DITS in serializability theory can be seen in the following

theorem.

Theorem 2.1. [1KM82]. A scheduie s is serializable if and only if TIO(s) ~ Q S a DlTS which w d w s

To jirst and Tf last. 0

Consider the schedule s = <h. IY> given in Example 2.1. The TI0 graph for s has a DITS as

shown in Fig. 2.1 (b) and hence, log h is serializable. The serialization order implied in this

DITS gives rise to the following serial schedule that is equivalent to s.

< h ' P > = Wo[X.~.ZIRl[XoI W~[X.~]R~[Y~]W~[X,Y~Z]R~[X~IW~[Z]R~X~.Y~.Z~].

The equivalence of two schedules. s and s', can be established by testing if TIO(s) = T1O(s1).

One of the main reasons of using the concept of DITS and the TI0 graph in this thesis is that they

not only provide a useful characterization of serializability. but also help in the characterization

and construction of cautious schedulers which we are interested in.
b

Constraints such as ww, wr, m. and wm which are imposed on the serialization order can be

indicated in the TI0 graph by constraint arcs. Depending on the constraint it represents, such an

Figure 2.l(b) DITS for TIO(s) of Example 2.1.

arc is called. a ww-arc, wr-arc or rw-arc. By adding all the constraint arcs corresponding to a

set c of constraints to TlO(s), we obtain the c-augmented TI0 graph, denoted by TIO,(s). Two

schedules. s and s', are said to be c-equivalent if they satisfy the set c of constraints such that

TIO,(s) = TI0,(si) . C-equivalence of these two schedules is denoted by s r, s' . If we repeatedly

introduce exclusion arcs due to the exclusion rule until the rule is no longer applicable. the result-

ing graph is said to be exclusion closed, and is denoted by TIO*,(s).

Theorem 2.2. [I K M B ~] If c is any set of constraints (ww, wr, etc.), d C s t d s for the class of

seridizable logs satisfying the constraints in c , then 4 log h belongs to C , if d only if

T I O , (< h . F >) h a DITS.0

Theorem 23.

(4) IBSW79, Pap791 TIO,,(s) &s a DITS iff TIO.,,(s) is acyclic.

(b) (IKM82. I ~ M 8 3 1 TlO,,,(s) has a DlTS iff TIO*,,,(s) is acyclic. 0

Example 2.2. Consider schedule s = <h. I> of Example 2.1 again. Fig. 2 .2 illustrates the wr-

and rw-arcs, as well as some exclusion arcs (unlabeled). Note that the exclusion arc (T 2 . T3) is

due to the reads-from arcs (T2. T2) :Z . (T3. Tf):Z and a path from T2 to Tf. Since the graph is acf-

clic, log h belongs to WRW.

Now. if we impose the ww-constraints on the serialization of h. we obtain a ww-arc from T1

to Tz as well as from T2 to T I , because Wl[X] < W2[X] while W2[Z] < W,[Z] in h. Therefore. by

Theorem 2 .2 , h is not serializable under the ww-constraints. It is known that single version WW is

a proper subset of the single version WRW [IKM82].

2.4. Cautious Schedulers

So far. we have concerned ourselves with the testing of membership in different serializabili-

ty classes. However. testing for membership in particular classes has no practical use, per se.

What is practically important in a database system with concurrent transactions is the

Figure 2.2. The wrw-augmented, exclusion-closed TIO(s) of Example 2.1.

database scheduler. Although the scheduler for class C makes sure that its output log is in C.

the information available to it is not the same as in membership testing. Whereas in a member-

ship test the entire log to be tested is assumed to be known, in a database scheduler, the decision

of whether to grant or delay the current request must be made based solely on the information

that is currently known. In addition, a multiversion scheduler must also decide which of the

available versions to assign to each read request.

As mentioned earlier. no operation is ever rolled back in cautious-scheduling. A cautious
< .

scheduler may delay a request if granting it immediately leads to nonserializable output, but it

never aborts or rolls back any operation that has been granted. In order to realize a "reasonable"'

cautious scheduler, we assume that, upon arrival, each transaction informs the scheduler of its

read set (i.e.. the set of data items that it is going to read) and write set (i.e.. the set of data items

that it is going to write).

The most essential element and usually the most time-consuming part of any cautious

scheduler is the completion test [KIK85]. It determines whether or not it is "safe" to grant the

current request by testing whether the partial schedule consisting of the already output sequence

followed by the current request can be augmented by a sequence of all pending steps in such a

way that the resulting schedule belongs to the desired class, e.g.. WRW or CPSR. Here. we may

.4 scheduler that allows only the serial execution of transactions is clearly "unreasonable".

assume that the pending steps arrive in the most favorable sequence; otherwise, the scheduler can

delay some of them in order to force them into such a sequence.

In the following chapter. we take a closer look at multiversion scheduling by presenting an

algorithm for a general multiversion scheduler and also discussing the intrinsic limitations of any

multiversion scheduler.

CHAPTER 3

MULTIVERSION SCHEDULING

Before presenting a general multiversion scheduling algorithm, we first define a few terms

that we will use frequently.

3.1. Definitions

Definition 3.1 A partial schedule < P , I'> is the log P together with an interpretation I' that has

so far been granted and output by the multiversion scheduler. The current request, q, is the

step of operations which is being examined for granting or delaying. There are two groups of

steps that are examined by the scheduler.

The first group consists of delayed steps and they are all kept in a list DEL. The steps in

DEL have already arrived and have been delayed by the multiversion scheduler. Note that

there is at most one step from any one transaction since a transaction does not send its next re-

quest if the last one is delayed. The second group. ANT, consists of anticipated steps. Each

step in ANT belongs to a transaction whose initial request has already arrived, irrespective of

whether that request has been granted or not. All steps in ANT have not arrived yet but they

are all expected to. Lastly. we call the steps in PEND = DEL U ANT - { q] pending steps.

in the previous chapter, we mentioned that the most crucial part of cautious scheduling is

the completion test. Now, we give a formal definition of a multiversion completion test.

Definition 3.2. Multiversion Completion Test. Given <P, I'>. q, and PEND, the multiversion

scheduler determines whether it is possible to complete the partial schedule <P. I'>, by ap-

pending to it a sequence qQRf[D] with an interpretation I, such that

(i) Q is a sequence over PEND,

- 14 -

(ii) the order of steps in Q is consistent with that among the steps of each T,.

(iii) the resulting schedule <PqQRf[D]. I > belongs to a given class C. and

(iv) I is an extension of I'.

Let I and I' be interpretations for logs h and h', respectively, such that h' is a prefix of h.

I is said to be an extension of I' if I = I' in the domain h'.

This test is called the multiversion C-completion test, where C refers to the class men-

tioned in (iii) above. A C-completion can be defined as <PqQRkD]. I> such that

< PqQRjD]. I > E C. In this paper, the class C is either MWW or MWR W . One must remember

that. besides deciding on-line whether to grant or delay the current request. as all ordinary

(single version) schedulers do. the multiversion scheduler must also decide which of the ver-

sions available to assign to each read request: that is, it must also select an interpretation.

Since completion test also requires some sort of membership test, it will be natural to modi-

fy the T I 0 graph to reflect the information that is currently available to the multiversion

scheduler. This graph is called the ATIO graph and it is with the use of this graph and DITS that

this thesis will construct a multiversion scheduler.

Defmition 33 . AT10 Graph [IKK86] The active TI0 graph, denoted by

ATIO(<P. I'>, q, PEND), has a node set consisting of the transactions currently known to the

scheduler, as well as some dummy nodes. The reads-from and dummy arcs corresponding to

the steps in P are constructed in the same way as those in the TI0 graph. For each Wi[X] in

PEND, a dummy arc (T,, T',):X is introduced, where T i is a dummy node.

For convenience. the arcs corresponding to the steps in P are drawn thick and those in PEND

thin. Moreover. if q is a write step. the corresponding dummy arc is also drawn thick. Although

it is not included in the formal definition of the AT10 graph. we will indicate a pending read

operation on X by a transaction Ti as a dangling arc to node Ti labeled by X. These arcs simply

serve to remind us pictorially which transactions still have pending read operations.

Since we are interested in a MWRW (respectively. MWW)-completion. we need to test only

those serial schedules which satisfy the constraints implied by the AT10 graph augmented by the

rw- and wr-arcs (respectively, ww-arcs). To take the wrw-constraints into account, we modify

the existing AT10 graph by adding the following arcs. For each X E D. add an rw-arc (T,.Tj) if ei-

ther R,[X] precedes w~[x] in Pq. or Ri[X] E Pq and Wj[X] E PEND. Similarly, a wr-arc is intro-

duced if either Wi[x] precedes Rj[X] in Pq. or wi[X] E Pq and Rj[XI E PEND. The resulting graph

is called the wrw-augmented AT10 graph and is denoted by ATIO,,(< P. I'> , q. PEND). Simi-

larly, if we repeatedly add exclusion arcs due to the exclusion rule (condition b of Definition 2.2).

until the rule is no longer applicable. we obtain the exclusion closure of the graph and this is

denoted by ATIO*,,,(<P. I'>, q. PEND). To take the ww-constraints into account. we add. for

each X E D, a ww-arc (Ti. Tj>. if either wi[X] precedes W,[X] in Pq, or Wi[X] E Pq and

w~[x] E PEND. The exclusion rule is similarly applied in order to obtain the

ATIO*,,(<P. I'> , q. PEND). A DITS for an AT10 graph is defined in exactly the same way as

for a TI0 graph.

Now, we are ready to present our multiversion scheduling algorithm. This algorithm is

similar to the one presented in [IKK86]
L

3.2. Algorithm MVCS

MVO : [Initialization]

P := Wo[D]. q := the first request. DEL := nil.

ANT := 0.

Include a node representing the first transaction in the AT10 graph

MVl : [Test the current request. q]

Draw all necessary constraint and exclusion arcs.

Perform MV-COMPLETION TEST

If completion test is successful. go to MV3.

else restore the AT10 graph to the state just before

q arrived.

MV2 : [q was delayed / rejected]

If q E DEL

then if all steps in DEL have been unsuccessfully tested

then go to MV5;

else do; let q be the next step ofDEL

return to MV1

end:

else if q E ANT

then do;

- delete q from ANT and add it to the end of DEL

go to MV4

end:

MV3 : [q was granted]

P:= Pq;

if q E DEL

then delete q from DEL;

else if q E ANT

then delete q from ANT:

MV4 : [Pick the next q in DELI

if DEL Z nil

then do;

q := next step in DEL

go to MV1

end;

MV5 : [Pick the next arriving request]

q := next arriving request

if q is the first step of a new transaction T,

then do:

ANT := ANT U {steps of Ti} -{q)

include node representing Tj in the AT10 graph and

draw all the necessary constraint arcs due to Tj

go to MVI

end:

Before going any further into constructing multiversion schedulers. we digress a little bit by

discussing the intrinsic limitations of multiversion schedulers.

33. Concept of OLS

Papadimitriou [PaK84] defined the concept of OLS (on-line schedulable) in relation to mul-

tiversion concurrency control algorithms. Informally, a set S of log is OLS iff the scheduler can.

as long as it sees a legal prefix of a log in S, decide on one interpretation that is guaranteed to be

good for d possible continuations. OLS is the basic requirement for a set of logs to be output b?

a multiversion scheduler. Unfortunately, it was proved that DMVSR (= MWW [IbK83]) is not

OLS [PaK84]. Since MRW. which the the largest polynomially recognizable subclass for multiver-

sion schedules. is a superset of MWW [1bK83], then it is also not OLS [HaP85].

Since we are also interested in class MWRW in this thesis, we would like to know whether

this class is OLS or not. We prove that MWRW is not OLS by an example.

Example 3.1. Consider

It is easy to see that both schedules are in MWRW but h1 is wm-equivalent to TJlT3T2Tf if

T2 reads X from T3 and this is the only interpretation that makes hl wrw-equivalent to a serial

schedule. On the other hand. h-, is wrw-equivalent to TJ3T1T2Tf only if T2 reads X from Tl and

this is again the only way to serialize hZ. At the time R2[X] arrives. the scheduler must select a

version of X to assign to this read operation. If it selects X3 and W3[Y] arrives next, then it must

be delayed, even though h, belongs to MWRW. If it selects X1, on the other hand. and R~[Y] ar-

rives next. R1[Y] must be delayed, even though h2 also belongs to MWRW. Hence, we see that

MWRW is not OLS. 0

Since neither MWW. MRW, nor MWRW is OLS. we would like to find subclasses of these

classes which are maximal with respect to the OLS property. A subset of MVSR is a

maximal set of OLS logs if, when any log E MVSR is added to the set, it ceases to be OLS. We

would, of course. like to design multiversion schedulers which output these maximal sets. How-

ever. [Hap851 proved that there cannot be any efficient multiversion scheduler which can do this.

Hence. any practical scheduler will output a non-maximal subset.

In summary, the. significance of the concept of OLS in multiversion scheduling is that the

class of logs that we want our scheduler to output must first of all be OLS. If it is not. then it i t

possible that the scheduler will delay some steps even though the given input sequence. in fact.

belongs to the desired subclass. Furthermore, any efficient scheduler that one can come up with

will form a non-maximal class.

Now that we know the functions and limitations of a general multiversion scheduler, we

present, in the next chapter, the results of a simulation study aimed at comparing the relative per-

formance of an MWW-scheduler and an MWRW-scheduler, assuming unlimited number of ver-

sions for each data item.

CHAPTER 4

SIMULATION STUDY

4.1. Algorithms Used

This section briefly points out the differences between the two scheduling algorithms that we

are going to compare by simulation.

4.1.1. MWWScheduling

The class MWW is also called DMVSR [PaK84]. Basically, an MWW-scheduler reorders in-

put requests, if necessary. so that the output log it produces is serializable under the write-write

(ww, for short) constraints. The simulation program which updates the AT10 graph. implements -

this by drawing constraint arcs, called ww-arcs, from those transactions which have already writ-

ten a data item to a newly arrived transaction which will eventually write that data item. We

also draw a ww-arc from the current transaction with a write request on a data item to all tran-

sactions with pending writes on that data item. Namely, we pretend as if the current request had
b

been granted. If the current request contains a read operation R~[x], an exclusion arc is drawn

from Tj to Tk, where Wk[X] is a pending write request. This exclusion arc is due to two intervals

labeled by X. (Ti. Tj):X and (Tk, Tr.):X. and a ww-arc (Ti. T,). where T, is the transaction from

which Tj reads X. If the scheduler concludes that the current request cannot be granted. the

current request is placed in a queue of delayed requests and all arcs introduced due to the current

request are deleted.

4.1.2. M R W Scheduling

This scheduler uses both the read-write a .o serialize interacting

transactions. The rw-arcs are drawn from those transactions whose read operations on a data

writ .e-read constrai

item have been granted, to those which will write on that item. Similarly, a wr-arc is drawn

from each transaction whose write request on a data item has been granted, to those transactions

which will read the same data item. As in the MWW-scheduler, we pretend as if the current re-

quest had been granted, and if it cannot be granted, we undo the changes caused by it.

For both schedulers, a request is granted if the exclusion-closed AT10 graph augmented by

the necessary constraint arcs is acyclic. [IKK86].

4.2. Simulation Model

The program was written in the C language and run under UNIX 4.2 BSD on SUN-2.

4.2.1. Parameters

Table 4.1 shows the parameters which were varied in the different runs of the simulation

program in order to see how interaction among transactions aEects performance. Table 4.2 shows

the fixed parameters.

NwnT (see Table 4.2) is the number of transactions that are generated in one simulation run.

The number of data items available for access in the simulated database system is given by DSize
L

and these data items are represented by integers ranging from 1 to DSize. The size of the writeset

Parameters
DSize
OV
T-Int-Arr

Parameters
NumT
MXWSIZE
S-Int-Arr
MXDPERSTEP
TLIMIT

TABLE 4.1: VARIED PARAMETERS

Range
20-100
0-100
6-15

Description
number of data items in dbs
percentage of writeset that overlaps with readset
mean transaction interarrival time

TABLE 4.2: FIXED PARAMETERS

Set Values
750
6
5
3

25

Description
maximum number of transactions
maximum size of a transaction's writeset
mean step interarrival time
max number of data items in a step
max number of concurrently active processes

of transactions. WSize. is assumed to be a random variable having a uniform distribution over the

range [I .MXWSIZE] with mean (1+MXWSIZE)/2. The size of the readset is assumed to be. on the

average. 20 % larger than the writeset. OV is the average percentage of a transaction's writeset

that overlaps with its readset. More precisely. (OV/lOO)*(l+MXWSIZE)I2 is mean of the number

of data items that are in both readset and writeset of a transaction. MXDPERSTEP is the max-

imum number of data items that a step may access and the actual numbers are assumed to be uni-

f ormly distributed over [1 .MXDPERSTEP] w ith mean (1 +MXDPERSTEP)/2. The inter-arrival

times of the transactions and of the steps of a transaction are assumed to have exponential distri-

bution with means. T-Id-An and S-InfArr, respectively. The ratio of these two will deter-

mine to what degree the interleaving of the steps of different transactions will occur in the re-

quest arrival sequence. TLIMIT sets the limit on the number of concurrently running transactions

in the system. This limit had to be artificially imposed because UNIX on the SUN-2 workstation

which was used to run the simulation allows only 30 file descriptors. including the standard in-

put. standard output. and standard errbr file, that a program can maintain at any one time. How-

ever. this limit was never reached in any of the simulation runs whose results we have presented
<

in this thesis.

4.2.2. Over-all Description of Simulation Process

To simulate transaction arrivals, the first transaction is generated at logical time 0. Whenev-

er a new transaction begins execution, the logical time when the next transaction will start is gen-

erated using an exponential distribution with mean T-la-Arr. The anticipated arrival of a new

transaction is recorded in an event queue so that when the time for arrival of the new transaction

is reached. a new child process is spawned to generate the requests of that transaction. For each

transaction. the number of data items that it accesses, that is, the size of the union of its readset

and writeset is given by:

rw-union = WSize + 1.2*WSize - WSize*(OV/100) = (2.2 - OV/lOO)*WSize

where WSize is determined by randomly picking a number from a uniform distribution over the

range [l.MXWSIZE]. (2.2 - OV/lOO)*WSize distinct integers are randomly selected from a uni-

form distribution over the range [l .DSize] . These data items are then "marked" as either for

read-only, for write-only. or for readlwrite by the following method. For each data item, an in-

teger is randomly selected from a uniform distribution over the range [1.10000]. If the number

generated is less than ro-bound = 10000*(OV/100) / (2.2 - OV/100), then that data item will be

marked as for read/write. If the number generated falls between the range

[ro-bound, m-bound], where m-bound = 10000*1.2/(2.2 - OV/100), then it is marked as read-

only; otherwise. it is marked as write-only. This method will, on the average. generate readsets

that are 20% larger than the writesets but it may also generate read-only as well as write-only

transactions.

A step of a transaction is generated by first randomly choosing the type of step. i-e.. read or

write. with equal probability. If it is a read step, a random number (between 1 and MXDPER-

STEP) of data items that are tagged as either read-only or read/write are selected to form the read

step. On the other hand. if it is a write step, a random number (between 1 and MXDPERSTEP) of

data items tagged write-only or those tagged read/write (provided they have already been used in

a read step), are selected to form the write step. Therefore, whenever an item is both read and .
written. the read always precedes the write. Once a step has been formed, the child process writes

the description of the step onto a pipe for the main parent process to read. The description also

contains the time increment from the current step to the next step of that transaction, which is

generated by the child process with the use of S-Znt-An-. This enables the main process to ex-

pect the arrival of a transaction's next request and to know when to read the pipe associated with

that transaction. Step generation for a transaction continues until all data items in its readset and

writeset have been used. During step generation. if all data items are for read-only. then only

read steps are generated. Similarly, for the case where all remaining data items are for write-

only.

There are several queues that the program maintains. One of them is an event queue. the

head of which is pointed to by qhead. An event may either be the arrival of a new transaction or

the arrival of the next request from a transaction that is already in the system. This queue is or-

dered according to the time that the events are scheduled to occur.

The scheduler follows basically the same algorithm as described in Chapter 3. In order to

decide whether or not to grant the current request, the scheduler "draws" the necessary arcs in the

AT10 graph and tests its exclusion-closure for acyclicity. If the request cannot be granted. the

state which the system was in before the arcs were put in is restored and the request is appended

to the tail of the DEL queue.

4.2.3. Mapr Data Structures

The AT10 graph is represented as an adjacency structure called T-ABLE. This table contains

the pointers to the nodes and has twice as many entries as the number of transactions. NwnT. The

nodes adjacent to transaction i are chained together and pointed to by T A B L a 2 * i] . h d .

T ~ B L a 2 * i + l] points to the dummy node. if it exists, associated with transaction i. To facilitate

the 'drawingm of exclusion arcs. a structure called dlist is used. It is an array of size MAXD

(upper bound on DSize), and each element of the array points to the list of arcs labeled by a par-

ticular data item.

To determine the version of the data item to assign to a read request, the AT10 graph is to-

pologically sorted. The standard interpretation for the log corresponding to the resulting transac-

tion order is used to assign appropriate versions to the current read request.

In order to keep the graph within a manageable size, we merge with To (the initial transac-

tion) any transaction whose last request has already been granted and which has only To as its

predecessor in the AT10 graph. Once a transaction is merged with To. all the reads-from arcs

coming out of it now come out of To and that transaction is. in effect, forgotten by the scheduler.

43. Experiments and Results

In this section we present the results of three simulation experiments designed to compare

the performance of the two multiversion schedulers. MWW-scheduler and MWRW-scheduler, for

different sets of parameters. Experiment 1 examines the effect of varying the mean transaction

inter-arrival time on the performance of the two schedulers. Experiment 2 examines the effect of

varying the degree of the mean overlap of the writeset with the readset. Lastly, Experiment 3 ex-

amines the effect of varying the number of items available in the database. DSize.

The 'typical' values assumed for the three parameters varied in the experiments are 80 % for

the degree of overlap (OV). 8 for the mean transaction inter-arrival time (therefore.

T-In lArr lS - ln tArr = 8/5 =1.6). and 45 for database size (DSize). DSize = 45 should be con-

trasted to MXWSIZE = 6 . Performance of the schedulers is measured in terms of

average response time and average n o d i z e d transaction delay. Average response time is the

time a step has to wait from the time it submits a request to the time the request is granted. In all

the experiments, this value has been normalized with respect to the mean step interarrival time.

S-Inf-Arr. This is done to give an indication of how much delay is incurred in relation to the

mean step interarrival time. Average normalized transaction delay gives a measure of the de-
b

lay that a transaction suffers due to interaction among the transactions. with respect to its length.

In other words.

actual time it took a transaction to jinish - length of the rransaction Norm. Tdelay =
length of the transaction

where actual time refers to the duration of time when a transaction's first request is submitted to

the time when its last request is granted. Length of the transaction refers to the time it would

take from the start of a transaction until its last request is granted. assuming there were no de-

lays. If the transaction has only one step, then normalized transaction delay is 0 because a one

step transaction is always granted immediately. Another aspect that we investigated in the 3 ex-

periments is the percentage of reads that are assigned versions other than the most recent. We

wanted to see whether varying the different parameters would have any effect on the percentage.

Experiment 1:

This experiment examines the effect of the mean transaction inter-arrival time. T-int-Arr.

on the performance of the schedulers as it is varied from 6-15. The ratio.

T-Int-Arr / S-int-AT, (indirectly) determines the degree of interleaving among the steps of

different transactions. Figure 4.1 and columns 2-3 of Table 4.3 show the relation of the average

response time versus the mean transaction inter-arrival time, while Figure 4.2 and columns 4-5 of

Table 4.3 show the relation of the normalized transaction delay versus the same parameter.

The effect of varying the mean transaction inter-arrival time on both measures of perfor-

ma.nce is as expected. When the mean transaction inter-arrival time is short (relative to the mean

step inter-arrival time). transactions tend to come into the system before existing transactions

have had a chance to finish or do much. This causes interference among the transactions. resulting

in increased delay for requests. When the mean transaction inter-arrival time is long, transac-

tions are executed almost serially since the next transaction does not usually arrive until most. if

not all, of the steps of the previous transactions have been carried out. Another point to note in

both graphs is that MWRW scheduler generally performs only slightly. better than the MWW

scheduler.

The effect of varying the mean transaction inter-arrival time on the percentage of version as-

signments from the old versions can be seen in Figure 4.3 and columns 6-7 of Table 4.3. These

Mean transaction

inter-arrival

time

Average response
time

TABLE 4.3: Effects of Varying Mean Transaction Inter-arrival Time

ww
1.22

Normalized trans-
action delay

Percentage of old
versions read

wrw
' 1.14

ww
2.75

wrw
2.35

ww
2.81

wrw
4.42

results are also as expected. When the mean transaction inter-arrival time is long, transactions

arrive almost serially; hence, the interpretation given by the scheduler to these transactions

closely resembles the standard interpretation. The fact that the percentage for the MWRW-

scheduler is consistently higher than that for the MWW-scheduler indicates that the w-

constraints allow more flexibility in version assignment. This is because for the MWW scheduler.

all transactions writing data item X will be ordered with ww-arcs with the most recent version on

the rightmost end (Figure 4.6a). whereas such ordering is not imposed by the MWRW scheduler.

Now, consider a read request Rj[X]. Since the degree of overlap of the writeset with the readset is

80%. many of these read requests will also be writing X. So. a "typicaln transaction like Tj will

have to read the most recent version of X in the MWW-scheduler (because of the ww arc from the

most recent version to Tj (Figure 4.6a)). On the other hand, in the MWRW scheduler, these tran-

sactions may read from older versions (Figure 4.6b).

Experiment 2

This experiment examines the effect of OV, the degree of overlap of the writeset with the

readset. on the performance of the two schedulers. Note that since the average sizes of the readset

and writeset are kept constant as OV is varied. the total number of data accessed by a transaction

decreases as OV increases.

The effect of varying the degree of overlap on the average response time and the normalized

transaction delay can be seen in Figures 4.4. 4.5, and Table 4.4. Although it is difficult to discern

a clear-cut trend, it is probably safe to conclude for both schedulers that at lower (respectively.

higher) degree of overlap, average response time and normalized transaction delay are shorter

(respectively, longer). At lower OV, say OV = 0, a transaction that reads a data item X never

writes X and those that write X never read X. This gives rise to isolated X-segments (Figure 4.7a)

in the AT10 graph, as contrasted to the Xshains (Figure 4.7b) that may be formed when OV is

higher. Therefore. a transaction that reads but does not write X will be less constrained in the

sense that it has more choices of versions to read from without violating the DITS property of the

(a) ww arcs forces T, to read from the most recent version.

(b): Tj reads X from either Tk or Tl but
these need not be the most recent version. -

Figure 4.6: Illustration for explanation of the results of Experiment 1.

AT10 graph. On the other hand, if the transaction both reads and writes X, the constraint arcs

will order this transaction into some DITS position and this severely limits its choices of versions.

To be more specilic. in the case of the MWW scheduler, although the X-segments are linked by

ww-arcs, a transaction that reads but does not write X could read X from any of the available

versions, because there are no ww arcs to constrain it to read from the most recent version. As for

the MWRW scheduler, transactions that write X are not ordered by ww-arcs, so a read request

may read from any of them within the constraints given by the AT10 graph. When OV is very

high. say lm, then the ww- (wrw-) arc to a transaction Ti that both reads and writes X forces

Ti to read only from the tail end of the chain. that is, the transaction that wrote the most recent

version of X (Figure 4.7~).

Figure 4.7(a): X-segments

Figure 4.7(b): X-chain

Figure 4.7(c): Constraint arcs forces Ti to read from the most recent version.

Overlap of

writeset with

readset
0
10
20
30
40
50
60
70
80
90
100

TABLE 4.4: Effects of Varying Degree of Overlap

,Average response
time

Percentage of old
version read

ww
0.53
0.69
0.79
0.64
0.99
0.95
1.12
1.33
0.80
1.06
1.01

Normalized trans-
action delay ,

ww
5.81
6.24
6.25
4.83
4.44
4.23
3.98
3.11
2.19
2.59
0.81

wrw
0.43
0.61
0.64
0.54
0.86
0.82
1.03
1.29
0.78
0.96
1 .05

ww
1.17
1.39
1.81
1.29
1.95
1.66
2.22
2.81
1.74
2.39
2.34

wrw
13.64
12.96
11.05
9.82
10.37
10.20
7.96
4:11
2.61
1.86
0.00

wrw
0.83
1.12
1.25
1.26
1.58
1.37
1.95
2.78
1.71
2.07
2.45

The results also show that except for degree of overlap very close to 1000/0. the MWRW

scheduler performs slightly better than the MWW scheduler. We now give an explanation for the

slightly better performance of MWW at degrees of overlap close to 100%. Although a transaction

that reads and writes X is constrained in both schedulers to read only from the tail end of the

chain (i.e.. the most recent version), there are still some transactions which read but do not write

X. (Recall from the definition of OV that OV = 100% means that any transaction writing X also

reads X but not vice versa). These transactions are still constrained in the MWRW scheduler.

through wr-arcs, to read the most recent version of X; but they are not in the MWW scheduler.

These findings and the fact that Ibaraki & al. [1b~83],, showed that MWW properly contains

MWRW when the writeset is a subset of the readset seem to indicate that the MWW scheduler de-

lays fewer requests than the MWRW scheduler whenever the writeset is a subset of the readset.

The sudden peaks and dips of the values in the middle range are most likely caused by ran-

dom variations in the numbers generated by the random number generator. and probably have no

definitely identifiable causes.

The results shown in Figure 4.7 and columns 5-6 of Table 4.4 support our earlier explana-

tion that at lower degree of overlap. a read request is allowed to read any of a number of versions

and at higher degrees of overlap, more restrictions force most transactions to read from the most

recent versions. Notice that at 1 W o overlap. only the most recent versions are ever read in the

MWW-scheduler.

Experiment 3:

This experiment examines the effect of the database set size. DSize, on the performance of the

two schedulers. The simulation results are shown in Figures 4.8, 4.9. and Table 4.5. When DSize

is small, the same data item is accessed by many transactions; hence. more conflicts occur among

transactions, which, in turn, cause more delay. On the other hand, when DSize is large, there are

more data available for a transaction to access: hence, fewer transactions will access the same data

more data available for a transaction to access: hence, fewer transactions will access the same data

items. resulting in fewer conflicts and in a decrease in delay.

Although not very pronounced. the trend shown in Figure 4.10 and columns 6 & 7 of Table

4.5 shows that older versions tend to be read more often when the database size DSize is smaller.

We now attempt a plausible explanation to these results. Imagine an AT10 graph for a particular

value of DSize and consider the relative position of a transaction requesting to read the data item

X with respect to the transactions which have written X. Assume that it is constrained to follow

the one that wrote the most recent version of X. Now, if DSize is decreased. more transactions

will be accessing X. So, another transaction that might have written another data item may now

write the most recent version of X. Hence, that version of X which was the most recent when

DSize was larger has become an "older" version when DSize decreased. This argument is some-

what oversimplified, but is probably one reason for the observed behavior.

Summaw

We have seen above that both schedulers seem to perform just about equally with the

MWRW scheduler slightly better in most cases. except when the degree of overlap is very close to

lm. What we have simulated so far are schedulers which assume unlimited number of avail-'

'/ Database 1 Average response I Normalized trans- I Percentage of old

wrw

I time
set size

wrw
4.22
2.51
1.91
1.71
2.02
1.93
1.71
1.64
1.55
1 .52

wrw
4.20
5.28
4.28
2.61
3.79
2.73
3.11
3.11
3.02
2.15

action delay

TABLE 4.5: Effects of Varying Database Set Size

versions read

- 32 -

able versions. This enabled us to obtain easily implementable efficient scheduling algorithms; but

this assumption is not practical in the real systems. In the next chapter, we present conditions

necessary to implement schedulers efficiently for classes MWW and MWRW, assuming a bounded

number of versions maintained by the system.

A wrw

0 ww

Figure 4.1. Average response time vs. mean transaction inter-arrival time.

A wrw

0 ww

4 5 6 7 8 9 10 11 12 13 14 15

T-Int- Arr

Figure 4.2. Normalized transaction delay vs. mean transaction inter-arrival time.

0 ww

A wrw

Figure 4.3. Percentage of old versions read vs. mean tansaction inter-arrival time.

A wrw

Figure 4.4. Average response time vs. overlap of writeset with readset.

0 w w
A wrw

Figure 4.5. Normalized transaction delay vs. overlap of writeset with readset.

Figure 4.8. Percentage of old versions read vs. Overlap of writeset wrt readset

A wrw
0 ww

0 10 20 30 40 50 60 70 80 90 1 0 0 1 1 0

DSize

Figure 4.9. Average response time vs. database set size.

A wrw

0 w w

0 10 20 30 40 50 60 70 80 90 100 110

DSize

Figure 4.10. Normalized transaction delay vs. database set size.

0 w w

A wrw

Figure 4.11. Percentage of old versions read vs. database set size.

CHAPTER 5

LIMITED VERSION SCHEDULING

-4s we have mentioned earlier, the completion test is the most crucial step in cautious

scheduling. If an unbounded number of versions are available, the completion test for class

MWRW (or MWW) simply entails checking for the acyclicity of the exclusion-closed, wrw-

augmented (or ww-augmented) AT10 graph [IKK86]. This follows from the following theorem.

Theorem 5.1. [IKK86]. Let c be a set of constraints of the sort dejned in Chapter 2 curd let MC

denote the set of logs which is seriaiizable under c . A pcutid schedule < P , I>, where

I E L A S T , together with the current request q and a set of pending steps PEND her a comple-

tion in MC iff ATIO,(< P, I > . q . PEND) her a DITS. 0

Suppose the c-augmented AT10 graph referred to in the above theorem has a DITS. The seri-

al schedule corresponding to such a DITS order is called an eligible serial schedule w i th respect

t o ATIO,(< P, I>, q. PEND). According to the above theorem. if an unbounded number of ver-

sions are allowed. a completion in class MC exists if and only if an eligible serial schedule exists.

The proof for Theorem 5.1 in [I K K ~ ~] shows that every eligible serial schedule is equivalent to

some completion. However, for a fixed K, no K-version completion (i.e.. a completion in a K-

version system) may exist even if the AT10 graph has a DITS. In other words, an eligible serial

schedule may not be equivalent to any K-version completion. Additional conditions must be

satisfied by an eligible serial schedule to guarantee that only the available K versions are assigned

to current and pending read requests. It is mentioned in [IKK86] that c = ww and wrw are the

only practical cases. Hence, in this thesis, we discuss only classes MWW and MWRW. A comple-

tion in class MC will be called an MC -completion.

In this chapter, we shall discuss the additional conditions to guarantee the existence of a

K-version completion as well as algorithms for K-version completion tests for classes MWW.' and

MWRW. Basically. we add extra constraints in order to make sure that versions older than the

Kth are not assigned to read requests. In the MWW scheduler, it is possible to represent the condi-

tion precisely by means of some wr constraints. whereas in the MWRW scheduler, we need to use

a subset of ww constraints as a sufficient condition, thus imposing more constraints than is neces-

sary to have a K-version completion in MWRW. We start with the simpler case. namely. K-

version MWW-scheduling. In what follows. a partial schedule <P, I> with I E LAST$ is called

a partial K- version schedule.

5.1. K-version MWW Scheduling

In K-version MWW scheduling, the additional conditions are easily incorporated into the

AT10 graph by additional constraint arcs that we introduce below. We shall prove that any eligi-

ble serializable schedule with respect to the modified AT10 graph is equivalent to a K-version

MWW-completion. For each data item X, a wr-arc is drawn from the transaction which wrote the

Kth most recent version of X to each transaction with a pending read request on X and also to the

transaction which issued the current request, if it contains a read on X. (As in the unlimited-.

version case [IKKB~] , if the current request contains a read operation R,[x], an exclusion arc is

drawn from T, to TL where wk[X] is a pending write request).

Let MWU'K denote the class of logs serializable under the ww constraints in a K-version sys-

tem as described above. We shall present a polynomial time completion test for class MWWK.

5.1.1. Algorithm MWWK-Complete

Input: A partial K-version schedule < P. I>. where I E LAST;, the current request q, the set

PEND of pending steps. and the exclusion-closed active TI0 graph

ATIO*,,,(<P. I > , q. PEND).

Butput: A MWWK-completion of Pq, if one exists: otherwise an indication that the test has failed.

(1) [~nitialization] For each data item X, draw a wr-arc in the input AT10 graph from the tran-

saction which wrote the Kth last version of X (if it exists) in P to each transaction with a

pending or current read on X, and take the exclusion closure of the graph. Let 7 = To.

t := u(To), where u(TJ denotes the sequence of steps forming Ti. and remove To and all

dummy nodes, together with the arcs incident on them, from ATIO*,wk(CP. I> qPEND).

(2) If the set of transactions which form 7 is equal to T, then go to step 5 .

(3) For each source node Ti in the truncated ATIO*wwk(<P, I> ,q.PEND), extend T and t by

T = 7T, and t = tu(Ti), and remove T,, its dummy node T',, together with all the arcs incident

on them, from the graph.

(4) If T and t did not change in step 3, then stop (Pq has no MWWK-completion); else go to step

(5) Completion test is successful and QRAD] = tl(Pq). where tl(Pq) denote the sequence obtained

from t by removing the steps belonging to Pq. For each Rk[X] E q. draw a reads-from arc

(together with their exclusion arcs) from the last transaction preceding Tk in the serial order

specified by t that has written X. Stop.
b

In the remainder of this section we shall prove that the above completion test is correct. The

correctness proof will have to show that if the test stops in step 5. then P~QRAD], where Q is gen-

erated by the above algorithm, indeed belongs to MWWA-, and if it stops in step 4, then <P. I>

has no MWWK-completion starting in Pq.

Theorem 5.2 Algorithm MWWK-Complete is correct and runs in polynomial time.

Proof: The algorithm obviously runs in polynomial time since its most time-consuming part is the

computation of exclusion closure in step 1. This entails updating the existing exclusion-closed

graph upon the addition of a new edge. This is basically an incremental transitive closure

problem which can be done in O (P) where N is the number of nodes in the AT10 graph

[IKK86].

To prove that the algorithm is correct. we first show that if it stops in step 5 then

ATIOw,,(< P, I > ,q.PEND) has a DITS. We claim that T (produced by the above algorithm) is a

DITS order for ATIOw,,(< P . I> q.PEND). To prove this claim, arrange the nodes of this AT10

graph linearly from left to right in the order given by T . The dummy nodes, if any, are placed

immediately to the right of their nodes". It is clear from the way T was constructed

he. . topological sort in step 3) that all arcs (both reads-from and constraint arcs) are directed

from left to right in this linear order. We must now show that no two intervals (Definition

2.1) labeled by the same data item overlap. Consider any reads-from arc due to a read opera-

tion on X. It cannot overlap with another thick arc (unless they belong to the same interval).

since the ww-arcs and the exclusion arcs in ATIO*,,(< P. I > . q, PEND) force such intervals to

be ordered serially in any topological sort.

To complete the proof, we must show that there exists an interpretation for qQRAD1

which maps each pending read to a version not older than the Kth last in P. Such an interpre-

tation is defined by assigning to each pending or current read operation Rj [X] , the version of X

created by the last transaction with a write operation on X which precedes Tj in the transactioq

order given by T . In order to realize this version assignment, the scheduler can "force" the

pending steps into the sequence Q. That is to. say. if the arrival sequence of the pending steps

does not agree with Q, then the scheduler can delay some steps as necessary. Thus, if T dictates

that a pending read R j [x] be assigned a version to be created by a pending write request, it will

be assigned the most recent version available at the time it is granted. On the other hand. if T

dictates that Rj[X] be assigned a version created by an already granted write operation, then

the extra wr-arcs that we introduced in step 1 ensure that this version is not older than the

Kth most recent. It is clear that such a reads-from arc cannot overlap any other reads-from

arc.

Lastly, it is easy to show that if the algorithm stops at step 4, no MWWK-completion can

exist. This is so because the algorithm stopping at step 4 means that there are no more source

nodes in the AT10 graph, i.e.. it has a cycle. This implies that the serialization constraints be-

ing imposed conflict with one another. and hence there can be no DITS.

5.2. K-version MWRW Scheduling

Unfortunately, the modifications to the completion test required for the limited version

MWRW scheduler is not as straightforward as that for the MWWK scheduler. We cannot simply

add a constraint arc from the Kth newest write on each data item X to the current and pending

read requests on X because it doesn't guarantee that during the topological sort, older (than K)

versions are not ordered between the Kth newest and the current read request. This possibility

now arises because ww constraints are no longer imposed. Hence, some more conditions will have

to be introduced in order to find a K-version completion in MWRW. We first prove a necessary

and sufficient condition for an eligible serial schedule with respect to the wm-augmented AT10

graph to be equivalent to a K-version M.WRW-completion (Theorem 5.3). Some implications of

the necessary and sufficient condition will be proved in Lemmas 5.1-5.3. Based on these lemmas.

we introduce a set of new constraints that are sufficient to guarantee the two conditions in

Theorem 5.3.

Theorem 5.3. Let < h . P> be an eligible serial schedule with respect to a given

ATIO,.,,.(< P . I> .q.PEND). where <P. I> is a K-version particd schedule. There exists a K-

version completion in MWRW which is equivalent to < h . P> iff the following two conditions are

satisbd for each current or pending read operation Rj[X] such that PZ(Rj[X]) = W,[X] in h.

(A) Either Wi[X] E PEND or Wi[X] is one of the last K write operations on X in P.

(B) I f W,[X] is the nth (I d n d K) last write operation on X in P, then no more than K-n

write operations on X in PEND precede Wi[X] in h.

Proof: The necessity of condition (A) follows from the definition of a K-version completion. The

necessity of condition (B) can be proved by contradiction. Let < PqQRf[D]. 1'> be a K-version

completion wrw-equivalent to < h. P > , i.e.. TIOW,,(< PqQRJD]. I' >) = TIOW,,(< h. T* > 1.

Suppose more than K-n write operations on X in PEND precede Wi[X] in h. If such a write

Wk[X] occurs after R,[X] in Q, then there'll be an rw-arc from T, to Tk in

TIOW,.(<PqQRflD]. I'>). Since there is a wr-arc from Tk to T, in TIOW,,(< h , P >) and it is

cycle-free, this contradicts the assumption that <P~QR~ED] . I'> =,,, <h. P > . Therefore. all

such write operations precede Rj[X] in Q. Since Wi[X] is in P, and there are more than K-1

writes on X between Wi[X] and Rj[X] in PqQRfED]. Tj cannot read from Ti in a K-version data-

base, thus contradicting the assumption.

We now prove the sufficiency, that is, if an eligible serial schedule with respect to the

AT10 graph. < h . IX> . satisfies (A) and (B) , then there is a K-version completion equivalent to

< h , P > . We claim that <P(h/P). 1'> is a desired K-version completion to <P, I > , where

h/P denotes the sequence obtained from h by deleting the steps belonging to P from it. and I' is

an extension to I such that for Rj[X] E h/P, I'(Rj[X]> = w i [X] if and only if P (R ~ [x]) = Wi[X]

in h. To prove this claim. we first show that TIOW,,(<h. P >) and TIOW,,(<P(h/P)J'>) have

the same reads from arcs as well as nv- and wr- arcs. By definition of I'. they share the same

reads-from arcs. Each wrw-arc in TIOW,,(< h . P >) is due to a pair of operations, a write .
operation w,[x] and a read operation R ~ [x] in h. hence in P(h/P) because P(h/P) contains the

same set of operations as h. If one of these operations belongs to P, then such a m p - a r c al-

ready exists in ATIOu,ru,(<P.I>.q.PEND) and both TIO, , , , (<h.P>) and

TIO,,,.(< P(h/P).I1>) simply "inherit" it. If both belong to h/P, then clearly both

TIO,,,(<h. T*>) and TIO,,,(<P(h/P). I'>) have the same wrw-arc. What remains to be

shown is that. if I'(R,[X]) = Wi[X] for a R ~ [x] E h/P, then there are no more than K-1 inter-

vening writes on X between Wi[X] and R ~ [x] . If Wi[X] E PEND, then obviously Rj[X] follows

Wi[X] in h/P with no intervening writes on X. If Wi[X] is the nth last write in P, by condition

(B) . there are no more than K-n pending writes on X preceding Rj[X] in h. Therefore. h/P has

no more than K-n writes on X preceding R,[X] and hence. there are at most

(n-l)+(K-n)=K-1 writes on X between Wi[X] and Rj[X] in P(hIP).O

With this theorem, a possible K-version completion test would test each eligible serial

schedule against conditions (A) and (B) of Theorem 5.3. If we find one eligible serial schedule

which satisfies both, then we know that there is a K-version completion in MWRW. Unfortunate-

ly. this approach can be very time-consuming. In fact. WRW-completion test is. in general. NP-

complete [KKI86], even for single version (K = 1) systems. To achieve an efficient K-version com-

pletion test, we shall impose some additional constraints on the serialization order.

Before specifying exactly what these additional constraints are. let us first define some con-

cepts which will be helpful in justifying their introduction.

Let <P. I> be a partial K-version schedule, q be the current request. and PEND be a set of

pending steps. For each X E D, the last K write operations, if any, on X in P are said to be ripe.

RipdX) denotes the set of the ripe write operations on X.

We call a write operation Wi[X] fresh if either it is in PEND or it is ripe. Fresh writes are

those which can potentially be assigned to the current or pending reads. More formally, the set of

fresh write operations on X can be defined as:

FRESH(X) = (w,[x] I w,[x] E PEND} U Ripe(X)

We call a write operation old, if it is not in PEND. More formally, the set of old write

operations can be defined as:

OLD(X) = { w,[x] I WJX] 4 PEND)

Note that a ripe operation is both fresh and old. In order to define a "readable" write opera-

tion on X, we introduce a fictitious read-only transaction T, with only one read operation R,[X].

and we let T = T U {T,} and PEND = PEND U (R,[X]}. Wi[X] is unreadable if no K-version

completion in MWRW has interpretation which maps R,[X] to Wi[X].

Although one might suspect no fresh write operation to be unreadable. this is not so because

of condition (B) of Theorem 5.3. Such exceptions can be discussed in terms of a spoiler. A spoiler

is defined as a pair of write operations, Wh[X] E FRESH(X) and Wk[X] E OLD(X), such that there

exists a path from Th to Tk in the AT10 graph. Such a pair is a member of SPOILER(X) and

W,,[X] and Wk[X] are called the fresh end and old end of the spoiler. respectively.

Lemma 5.1. The fresh end of any spoiler is weadable.

Proof: Suppose there is a completion with an interpretation which maps the pending fictitious

read. R,[x], to the fresh end of a spoiler (w,[x]. w ~ [x]) E SmILER(X). The wr-arc from Tk

to Tx induces an exclusion arc from Tk (which reads X from Tk) to Th. thus creating a cycle

and hence no DITS can exist. (Fig. 5.1) 0

Lemma 5.2. Let (Wh[X]. Wk[X]) E SPOILER(X) and let w,[x] be the nth (1 6 n 6 K) Last write

on X in P . Wi[X] (k-i possible) is unreadable if there are more thun K-n spoilers in

SPOILERfX) whose fresh ends me pending.

Proof: The fresh ends of all spoilers are unreadable (Lemma 5.11, so assume w i [X] is not a fresh

end. We claim that in no K-version completion does the fictitious read R,[X] appear before the

fresh end of any spoiler. To prove this, assume Rx[X] precedes Wh[X] in a K-version comple-
3

tion. Then the rw-arc from Tx to Th and the wr-arc from Tk to Tx, together with a path from
L

Th to Tk. create a cycle. Hence all such writes must precede R,[X]. If there are more than K-n

Figure 5.1. Illustration for Proof of Lemma 5.1.

spoilers in SPOILER(X) whose fresh ends are pending. then this makes W,[X] unreadable

(Theorem 5.3(B)) because there are now more than K-1 writes between Wi[X] and R,[X].

We can now specify the set of unreadable write operations. If SPOILER(X) = 0. then

UNR(X) = OLD(X) - Ripe(X). Otherwise. Lemmas 5.1 and 5.2 specify the additional unreadable

operations in UNR(X).

Let us call a write operation that is not in uNR(X) potentially readable and let RBL(X)

denote the set of all potentially readable writes on X. We use the term "potential", because even if

assigning a potentially readable write operation to a pending read does not directly cause a cycle

in the graph, there maybe no K-version completion.

As mentioned earlier, we shall impose additional constraints in the form of a subset of ww

constraints to make the K-version completion test more efficient. A similar type of constraint was

also imposed by [KK186] in their single version WRW-scheduler.

Definition 5.1. Let m X k denote the set of wrw constraints augmented by the following subset

of ww constraints. The ww constraints used are of the form "TI, must 6e serialized before T," if:

a) wk[x] E UNR(X) and Wi[X] E RBL(X), or .

b) w,[X] E Ripe(X) n RBL(X) and Wj[X] E RBL(X) - Ripe(X).

Let MWRWXK denote the set of logs that are K-version serializable under these constraints.

The completion test. then. is to determine if there is a serial schedule <h, P> satisfying the

relation < P ~ Q R ~ D] . I > E _ ~ I , <h. P> for some Q over PEND. where I E LAST$qQRlol. Obvi-

ously, if the exclusion closed wrwxk-augmented AT10 graph has a cycle, then no such <h. P>

exists. It is important to remember that unlike the wtw-arcs. the ww-arcs due to Definition 5.1

are not permanent in the AT10 graph but are deleted after a request is processed.

Intuitively. what these added constraints do is to make sure that all unreadable writes pre-

cede readable ones so that during the construction of a serial schedule in the completion test. once

a readable write on X is in the partially formed serial schedule. we are assured that any subse-

quent pending read on the same data item will be able to read from a potentially readable write

(Definition 5.1 (a)). Furthermore, it makes sure that all potentially readable pending writes on X

appear after any ripe writes on X (Definition 5.1 (b)).

Let us define RBLj(X) C RBL(X) as the set of write operations Wi[X] which are potentially

readable by a pending read Rj[X] or final read RAX] without creating a cycle in the m X k -

augmented AT10 graph. In order words.

RBLj(X) = {w,.[x] € RBL(X) I Ti is nor a descendant of Ti in the ATI@~,*,(<P. I> .QPEND)).

Although it is necessary that RBLj(X) # 0 for each pending and final read operation R~[x] and

RAX], it is not sufficient because of condition (B) of he or em 5.3. As an example, consider the

following 3-version partial schedule.

Example 5.1.

PEND = { W,[X.Yl. W2[XY]. W3[XYll. W4[X.YI1. R5[X]. WS[Y]. R6[Y]. W6[Xl).

The wrwxk-augmented AT10 graph is illustrated in Fig. 5.2. The potentially readablg

writes lor the six read operations not in P are: R B L S (X > = R B L f (X) = { W 6 [X] J .

RBL6(Y) = RBLXJ') = { W5[Y]). RBLAZ) = { W4[Z]). and RBLf(V) = { W2[V]). Note that the pend-

ing writes of T I . T2. and T3 are not potentially readable because of Lemma 5.1. and W4[X] and

W4[Y] are also not potentially readable because of Lemma 5.2. Although there is a potentially

readable write for each pending and final read operation, there is no serial schedule that satisfies

condition (B) of Theorem 5.3 for all X € D. To see this. consider the only two possible transac-

tion orderings. ToTlT2T3T4T5T6Tf and TJlT2T3T4T6T5Tf: the first (resp. the second) ordering does

not satisfy condition (B) for R5[X] (resp. R~[Y]).

Fig. 5.2. Illustration for Example 5.1.
(* indicates a readable write)

Now. we present a polynomial time algorithm for MWRWXK-completion test. The approach

used here is to t ry to construct a serial schedule h such that <P(h/P)J'> =,,+, <h, P>.

where, as a function. I' is the same as P.

The construction is very similar to the one used in MWWK scheduling. Recall the transaction

sequence 7 and partial log t defined in the completion test for MWWK. 1n testing for MWRWfK-

completion. we will select a source node. Ti, in the truncated AT10 graph such that t contains at

least one write operation from RBL,(X) for all X E D such that Ri[X] E q U PEND U {RADII.

This condition can be more formally restated as

DRBL(t) = {X E D I t contains Q write operation E RBL(X))

and

NEED(Ti) = {X E D I R,[x] E q U PEND U {RJD])

If we find such a node, T,, we append T, to T and the steps of Ti to t, and delete Ti as well as

all the arcs incident on it from the wrwfk-augmented AT10 graph. If we are not able to append all

the transactions in T to 7. then the completion test fails. Otherwise, the resulting <t. P> gives

the serial schedule which is wrw-equivalent to a K-version completion of <P. I > .

Algorithm MWR WXK-Complete

Input: Partial K-version schedule <P, I> , current request q, set PEND of pending requests, and

AT10 graph ATPwW+,(< P. I> ,q,PEND). and set T of currently known transactions.

Output: A completion of <P. I> in MWRWIK if one exists: otherwise an indication that the test

has failed.

(1) [Initialization] Compute RBL(X) for all X E D and RBLj(X) for each read operation

Rj[X] E q U PEND U {RJD]). If RBLj(X) = 0 for some current or pending R~[x], or if

ATIO*,,+,(<P. I> .q.PEND) has a cycle, then stop (P has no completion); else. let 7 := To

and t := u(To). Compute NEED(Ti).

(2) If all the transactions in T appear in T, then go to step 6 .

(3) Compute DRBL(t).

(4) For each source node Ti in the truncated ATIOWrw+,(<P. I>.q.PEND). let 7 = ?Ti and

r = ru(T,) provided NEED(T,) G DRBL(t). Remove T,, its dummy node T',, and all the arcs

incident on them from the graph.

(5) If 7 and t did not change in step 4. then stop (P has no completion): else go to step 2.

(6) Completion test is successful and <t. P> is the serial schedule wrwXk-equivalent to some

completion of <P. I> in MWRWXK. For each R,[X] E q, draw a reads-from arc (together

with their exclusion arcs) from the last transaction preceding Tk in T that has written X.

ANALYSIS OF ALGORITHM.

Lemma 5.4. Given < P. I > , q, cutd PEND, let < h. P > be on eligible serial schedule with respect

to ATZ@,,,c,(< P. I > .q.PEND). I f , for every X E D, the first read operation on X in h t h is

not in P, Rk[X] , satisfies T*(Rk[X]) € RBL,(X), then <h. P> satisfies the conditions (A) and

f B) of Theorem 5.3.

Proof: Condition (A) is satisfied because if P"(R,[X]) = w 1 [X] € RBLk(X), then due to the extra

ww constraints that we have imposed (see Definition 5.1 (a)), no write operation in UNR(X)

can follow Wi[X] in h and any pending read operation R ~ [X] that follows &[XI in h will read

from a write in RBL(X). Thus if r"(Rj[X]) is ripe. then it must be the nth last write on X for

some n (1 d n < K).
To prove that <h. P"> also satisfies condition (B), let Rj[X] be any pending read opera-

tion such that T*(Rj[X]) = Wi[X] E R ipdX) . i t was proved in the previous paragraph that

W,[X] E RBLj(X). This implies. by Lemma 5.2, that there are in SPOZLER(X) no more than

K-n spoilers whose fresh ends are pending. Since w,[x] is ripe, due to the extra ww-

constraints of Definition 5.1 (b), no member of RBL(X) - R i p d X) can precede Wi[X] in h.

Therefore. there are no more than K-n pending writes on X preceding Rj[X] in h.

Theorem 5.4. Algorithm MWRWXK-Complete is correct.

Proof: The algorithm halts either in step 1. 5, or 6. First, we show that if i t halts in step 6. thep

the t constructed by the above algorithm is an eligible serial schedule with respect to

ATIOwrMc,(<P . I > q.PEND) which is equivalent to a X-version completion in MWRW. To

prove that r is indeed such an eligible serial schedule. we show that T is a DITS order for

ATIOwrw+,(<PI I > .q.PEND). Arrange the nodes of the AT10 graph from left to right in the

order of 7. Since only source nodes are considered in step 4, it is assured that all the arcs are

directed from left to right. Furthermore, no two intervals labeled by the same data item over-

lap, because the wr, r w . and exclusion arcs in ATIO,,,,,,~~(< P . I > .q.PEND) force such intervals

to be ordered serially in any topological sort. Hence. <t. T*> is an eligible serial schedule with

respect to ATIOwrU.=,(< P. I > ,q.PEND). Since t was constructed in a way that satisfies Lemma

5.4, there exists a K-version completion in MWRW.

Clearly. if the algorithm stops in step 1. no completion exists. since it implies that the

serialization constraints conflict with one another. What remains to be proven is that that is

also the case if the algorithm stops in step 5. We prove this by contradiction. Let us assume

that there exists an eligible serial schedule <h. T* > which is equivalent to a K-version comple-

tion in MWRW. Let t be the partial schedule output so far when the algorithm stopped in step

5. If Ti is the first transaction in h, among those transactions whose steps are not in t , then Ti

has a pending read R,[X] such that no write on X in t belongs to RBL(X). Let h' be a prefix of

h preceding the operations of T, in h. From the definition of Ti, the transactions in h' are clearly

a subset of the transactions in t . So. if t contains no element of RBL(X). neither does h'.

Therefore, Ti couldn't have read from any potentially readable writes in h' and this contradicts

our assumption that <h. F > is equivalent to a K-version completion in MWRW. 0

Theorem 5 5 Algorithm MWRWXK-Complete runs in polynomial time.

Proof: Most of the steps in our algorithms can be executed in a straightforward manner. Com-

puting DRBL(t) involves computing RBL(X) for each X E D, which in turn involves determina-

tion of spoilers in an exclusion-closed -4TIO graph. As shown in Theorem 5.2, exclusion clo-

sure can be computed in polynomial time. Transitive closure also facilitates the determination*

of spoilers. since for W,[X] E PEND U Ripe(X), a pair (W:[X]. W,[X]) belongs to SPOILER(X)

iff there is a path from T, to T, and W,[X] E OLD(X) . Hence. the algorithm can be executed in

polynomial time. 0

CHAPTER 6

CONCLUSION

In the first part of this thesis, we have examined and compared the performance of two mul-

tiversion schedulers. MWW and MWRW schedulers, assuming that an unlimited number of ver-

sions are available.

Experiment 1 examined the effect of the mean transaction inter-arrival time. T-I&-An-, on

the performance of the two said schedulers. It was found that for both schedulers. the average

response time and the normalized transaction delay improve as T-Id-Arr increases. It was also

seen that both schedulers tend to perform roughly equally. although the MWRW scheduler, in

general, slightly outperforms the MWW scheduler. In Experiment 2. the degree of overlap of the

writeset with the repdset was varied from 0-lm. It was found that both schedulers perform

better at lower degree of overlap. Furthermore, when the overlap is close to 1 W o . the MWW-

scheduler performs better; but at lower degree of overlap, the opposite% true. Finally. Experi-

ment 3 varied the database set size and it was found that performance of both schedulers i m ~

proves generally with increase in DSize and that MWRW-scheduler slightly outperforms the

MWW-scheduler.

Since it is not practical to maintain an unlimited number of versions, we have proposed

efficient scheduling algorithms for classes MWRW and MWW, that use only a bounded number

(K) of versions. Basically, we add additional constraint arcs to the AT10 graph, which ensure

that the current and pending read requests always read from within the K most recent versions.

In the K-version MWW-scheduler, a wr-arc is added from the Kth oldest version to each current

or pending read request. In the K-version MWRW scheduler, a ww-arc is added from "unreadable"

writes to "readable" ones.

Even though the MWRW-scheduler, in general, slightly outperformed the MWW-scheduler

in the unbounded version case. the extra complexity of implementing a K-version MWRW-

scheduler would add so much overhead to this scheduler that it will probably be more practical to

use a K-version MWW-scheduler. We also know that when the overlap of the writeset with the

readset is very close to lom (which is generally the case for most real world applications), the

MWW-scheduler performs better than the MWRW-scheduler.

During the entire simulation project involving more than one hundred runs, it was found

that more than 9m of the versions read were the most recent version and the oldest version read

ever was the 6th oldest. With these results, an obvious extension to this work is to fix the

number of versions, K , for the MWW-scheduler at 1, 2, . . . , 6, etc.. and compare the increase in

the degree of concurrency achieved as K is increased. Such results could help a database designer

decide how many versions he would want to maintain in order to achieve a desired degree of con-

currency. As for the MWRW-scheduler, it will be interesting to examine just how much more

overhead, in terms of CPC time. memory, etc.. the MWRW-scheduler incurs. Finally. it is not

sure yet. at this time. whether we have imposed too much constraint on the MWRW-scheduler in

order to ensure that current and pending reads are assigned only the K most recent versions;

There may be less stringent ways to guarantee this goal and i t would certainly improve the con-

currency of the K-version MWRW-scheduler.

BIBLIOGRAPHY

R. Bayer. H. Heller and A. Reiser, Parallelism and recovery in database systems. ACM
Trans. Database Systems 5 . 2 (June 1980). 139-156.

P. A. Bernstein. D. W. Shipman and S. W. Wong. Formal aspects of serializability in
database concurrency control. IEEE Trans. on Software Eng. SE-5. 3 (May 1979). 203-
216.

P. A. Bernstein and N. Goodman. Concurrency Control in Distributed Database
Systems. ACM Computing Surveys 1 3 . 2 (June 1981). 185-221.

P. A. Bernstein and N. Goodman. Multiversion Concurrency Control-Theory and
Algorithms. ACM Trans. Database Systems 8 . 4 (Dec. 1983). 465-483.

G. IV. Buckley and A. Silberschatz. A complete characterization of a multiversion
database model with effective schedulers. Tech. Rept. Tech. Rep.-217. Dept. Computer
Science. Univ. of Texas. Austin. 1983.

G. N. Buckley and A. Silberschatz. Beyond Two-Phase Locking, J. ACM 32. 2 (April.
1985). 314-326.

M. J. Carey. Multiple Versions and the Performance of Optimistic Concurrency
Control. Computer Sciences Tech. Rept. No. 517. University of Wisconsin-Madison.
October 1983.

M. J. Carey and W. A. Muhanna. The Performance of Multiversion Concunency
Control Algorithms. Computing Sciences Tech Report No. 550. University of
Wisconsin-Madison. Aug 1984.

M. J. Carey, The performance of concurrency control algorithms for database
management systems. Computer Sciences Tech. Rept. No. 530. University of
Wisconsin-Madison, 1984.

M. A. Casanova and P. A. Bernstein. General purpose schedulers for database systems.
Acta Infonndica 14. (1980). 195-220.

M. A. Casanova. The concurrency control problem for database systems, in Lecture
Notes in Computer Science 116. Springer Verlag, Berlin. 1981.

K. P. Eswaran. J. N. Gray. R. A. Lorie and I. L. Traiger, The notions of consistency and
predicate locks in a database system. Comm. ACM 19. 11 (Nov. 1976). 624-633.

To Hadzilacos and C. H. Papadimitriou. Algorithmic Aspects of Multiversion
Concurrency Control. Proc. 4th ACM SIGACT News-SIGOPS SPODS. Oregon. Mar
1985.

T. Ibaraki. T. Kameda and T. Minoura. Serializability made simple. TR82-12.
Department of CS. Simon Fraser Univ.. Dec. 1982.

T. Ibaraki. T. Kameda and T. Minoura. Disjoint-interval topological sort: a useful
concept in serializability theory. Proc. 9th Int. Conf. on VLDB. Florence. Italy. 89-91.
Oct/Nov 1983.

T. Ibaraki and T. Kameda. Multi-version vs. Single-version serializability. LCCR
TR83-1. Lab for Computer & Communication Research, Simon Fraser University.
1983.

T. Ibaraki. T. Kameda and N. Katoh. Multiversion Cautious Schedulers for Database
Concurrency Control. LCCR TR86-2. Lab for Computer & Communication Research.
Simon Fraser University, 1986.

N. Katoh. T. Ibaraki and T. Kameda. Cautious transaction schedulers with admission
control. ACM ACM Trans. Database Systems 10. 2 (June 1985). 205-229.

N. Katoh. T. Kameda and T. Ibaraki. A cautious scheduler for multi-step transactions.
To appear in Algorithmica 1. , 1986.

Z. Kedem and A. Silberschatz. Controlling Concurrency using Locking Protocols. Proc
of the 20th IEEE Symposium on Foundations of Computer Science. IEEE. New York.
Oct 1979.

H. T. Kung and J. T. Robinson, On optimistic methods for concurrency control, ACM
Trans. Database Systems 6 . 2 (June 1981). 213-227.

C. H. Papadimitriou, The serializability of concurrent database updates. J. ACM 26, 4
(Oct. 1979). 631-653.

C. H. Papadimitriou and P. C. Kanellakis. On concurrency control by multiple versions.
ACM Trans. Database Systems 9. 1 (March 1984). 89-99.

D. P. Reed. Naming and Synchronization in a Decentralized Computer System.
Technical Report MIT/LCS/Tech. Rep.-205, Dept. of Electrical Engineering and
Computer Science. M.I.T.. Sept. 1978.

R. Sethi. A model of concurrent database transactions. Proc. 22nd IEEE Symp.
Foundation of Comp. Sci.. Oct. 1981.

A. Silberschatz and Z. Kedem, Consistency in hierarchichal database systems. J. ACM
27. 1 (Jan 1980). 72-80.

A. Silberschatz. A Multi-version Concurrency Scheme with No Rollbacks. SIGACT
News-SIGOPS Symposium on Principles of Distributed Computing. Aug 1982.

R. E. Stearns. P. M. I. Lewis and D. J. Rosenkrantz. Concurrency control for database
systems. Proc. 17th IEEE Symp. ~oundation of Computer Sci.. Houston. Texas. 19-32.
Oct. 1976. .
R. E. Stearns and D. J. Rosenkrantz. Distributed Database Concurrency Controls Using
Bef ore-Values. Proc. 198 1 ACM-SIGMOD Conference. 198 1.

k. Vidyasankar. A Simple Characterization of Database Serializability, Technical
Report #8509. Dept. of Computer Science, ~ e m o r i a l University of Newfoundland.
May. 1985.

M. 'iannakakis. lssues of Correctness in Database Concurrency Control by Locking.
Proc. ACM Symposium Theory of Computing. 1981.

M. Yannakakis. A Theory of Safe Locking Policies in Database Systems. J. ACM 29. 3
(Jul 1982). 718-740.

M. Yannakakis. Freedom from Deadlock of Safe Locking Policies. SIAM Journal of
Computing 11.2 (May 1982). 391-408.

