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~erromagnetic resonance has been measured at 24  GHz in ( 1  10 )  

nickel disks at 4 K and from 60  K to room temperature. Samples 

had a nominal purity of 99.99% and a residual resistivity ratio 

of 38. The applied field was in the plane of the sample and 

measurements were made with the field along each of the three 

principal axes ( 1 0 0 ) ,  ( 1 1 1 )  and ( 1 1 0 ) .  The room temperature 

linewidth was found to be isotropic within experimental 

uncertainty, and the linewidth, AH, was found to be 360 Oe. The 

experimental results indicated that the linewidth is anisotropic 

at low temperatures. We found AHll0 > A H l l 1  ana AHloo for 

temperatures below 200 K. At 4 K we found AHloo = 1620+50 Oe, 

AHl1, = 1815+50 Oe and AHl1, = 2050+50 Oe. Kambersky has 

suggested that the large increase in magnetic damping in Nickel 

on cooling to 4 K is due to the presence of degenerate states at 

the Fermi surface near the X points of the Brillouin zone. The 

contribution of these states to the damping has been calculated 

using a simple model of electrons and spin waves coupled via the 

spin-orbit interaction. The results exhibited qualitatively the 

temperature dependence of the damping but the calculated damping 

parameters were approximately 1/200 those required by exper- 

iment. The predicted anisotropy of the linewidth did not agree 

with experiment. The calculation indicated that AHloo should be 

greater than OH,,, by approximately 4% at 4 K. It is suggested 

that the large sheets of the Fermi surface play an important 

role in the magnetic damping of Nickel at low temperatures. 
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1. I NTRODUCT I ON 

1.1 Introduction 

In the work reported in this thesis we were interested in 

the magnetic damping processes operating in Nickel at low 

temperatures. These magnetic damping processes are largely 

responsible for the Ferromagnetic Resonance (FMR) linewidth. 

The temperature dependence of the FMR linewidth in pure Nickel 

has been a subject of interest since 1966 when Bhagat and 

Hirst[l] found that the linewidth increased with decreasing 

temperature and reached a saturation value at approximately 

20 K. ~ambersky[2] in 1970 suggested a damping mechanism for 

Nickel in which the damping increased with an increase in the 

electron lifetime. This work was extended to low temperatures 

by Korenman and Prange[3,4]. They found that the magnetic 

damping should increase with an increasing electron lifetime and 

that the FMR linewidth should saturate at sufficiently long 

electron lifetimes. This was the behaviour observed by Bhagat 

and Hirst. 

A qualitative argument, presented below, suggests that the 

Kambersky-Korenman-Prange damping mechanism may lead to an FMR 

linewidth which differs depending on whether the applied 

magnetic field is parallel to a (loo), a ( 1 1 9 )  or a ( 1 1 0 )  



crystal axis. The difference between the linewidths for the 

different crystal axes should be greatest at low temperatures 

where the linewidth had reached its saturation value. 

We have attacked this possibility of an anisotropic FMR 

linewidth at low temperatures in two ways. We have performed 

the experiment and find that the linewidth is indeed 

anisotropic. We have carried out a calculation of the damping 

to be expected from certain electron states on the Fermi surface 

of Nickel which were thought to be largely responsible for the 

increase in damping at low temperatures. The results of this 

calculation indicate that these states do not account for the 

magnitude or the anisotropy of the linewidth observed in 

experiment. 

In this introductory chapter we give a very brief 

description of FMR in metals to provide a background to the work 

presented in this thesis. This description concludes with the 

presentation of our results. The final section of this chapter 

is a brief historical overview of experimental work relevant to 

our work. TO extract information from an experimental FMR curve 

it is necessary to compare the data with the results of a 

calculation. The theory which is used for these comparisons is 

the subject of Chapter 2. The experimental details are 

discussed in Chapter 3. In Chapter 4 the experimental results 

are presented and compared with the calculations of Chapter 2. 

The calculation of the damping parameter is carried out in 

Chapter 5. 



Introduction to FMR 

For a description of FMR we start with the simplest 

possible situation: a free electron at rest in a uniform 

magnetic field H,. In equilibrium the electron spin magnetic 

moment, z, will lie parallel with the magnetic field. The spin 

angular momentum will point opposite to the magnetic field since 

the magnetic moment points in the opposite direction to the 

angular momentum. If we start with the spin parallel to the 

field, rotate it away from the field direction and let it go, 

what happens? There is a torque on the electron spin of 
- - 
7 = p x SO SO the spin will precess around the field direction 

at a circular frequency o = yHo, where y is the gyromagnetic 

ratio, y = gjel/2mc, the ratio of the magnetic moment to the 

angular momentum. The precession is in a clockwise sense when 

looking along the field direction, and the angle of precession 

is a constant. For an electron y = 1.76x107 0e"sec" so that 

in a magnetic field of 2 kOe, say, the precession frequency is 

5.6 GHz, which is in the microwave range. If the electron 

interacts with other objects the precessional motion may be 

damped as energy is transferred to the surroundings. The angle 

of precession will decrease with time so that the direction af 

the spin will spiral in to the field direction. The 

precessional frequency depends on the magnitude of the applied 

field. If energy is supplied by a magnetic field which varies 



in time with a fixed frequency o, and the magnitude of the 

applied' field is varied the precessing spin will absorb energy 

when the resonance condition, w = yH,, is satisfied. 

We are interested in ferromagnetic materials - materials 
where Avogadro's number of electron spins Rave been welded into 

one giant magnetic moment by the quantum mechanical exchange 

interaction. What happens in this situation when the material 

is placed in an applied field? First of all because of 

electron spin-electron spin and electron spin-lattice 

interactions the field the electron spins 'see' is not just the 

applied field H,. The dipole-dipole interaction between the 

spins leads to a demagnetizing field. Coupling between the 

orbital motion of the electrons and their spins leads to 

magnetocrystalline anisotropy torques, to magnetoelastic torques 

and to dissipative torques. If the direction of the 

magnetization changes rapidly in space the exchange interaction 

can produce a torque on the magnetization. These effects must 

be considered when analysing the behaviour of the ferromagnet in 

a magnetic field. 

The behaviour of the magnetization is described by the 

Landau-Lifshitz equation[5]: 

where @ is the magnetic moment per unit volume of the material, 



and 'eff is the effective field acting on the magnetization 

which includes applied fields, demagnetizing fields, and 

effective fields describing the torques exerted by 

magnetocrystalline anisotropy and exchange. The damping torques 

are included as TD. This equation and the terms entering it are 

discussed in Chapter 2. 

When displaced from equilibrium the magnetization precesses 

as in the free electron case. The natural frequency is no 

longer yHo but depends on the sample shape, the direction of the 

applied field with respect to the sample, magnetocrystalline 

anisotropy, exchange and damping. For example, if a disk shaped 

sample is used, with the applied field parallel to the plane of 

the disk (the configuration used in our experiments) resonance 

occurs when : 

in the absence of magnetocrystalline anisotropy, exchange and 

damping. A Ferromagnetic Resonance experiment consists of 

irradiating a ferromagnetic sample in an applied field with 

microwaves of a fixed frequency. The magnitude of the applied 

field is varied and the energy absorbed by the sample as a 

function of the field is measured. When the applied field 

satisfies the resonance condition the energy absorbed becomes a 

maximum. 



The quantities which combine to determine the shape and 

position of the FMR absorption line include the saturation 

magnetization 4 M S ,  the g-factor, the magnetocrystalline 

anisotropy constants MI, K2..., the exchange constant A ,  and the 

damping torques, usually described by a phenomenological damping 

constant G (Gilbert damping) or X (Landau-~ifshitz damping). In 

practice these quantities are so entangled in determining the 

value of the applied field at which resonance occurs, Him,, the 

linewidth, AH, and the lineshape that it is often difficult to 

extract values for the material parameters from an experimental 

curve. However measurement of the FMR linewidth provides 

information about the magnetic damping processes which cannot be 

so easily obtained usingvany other technique. 

In discussing FMR it is often useful to think in terms of 

spin waves, which are collective modes of the electron spin 

system. In the ferromagnetic ground state all the electron 

spins are parallel. Deviations from this lowest energy 

configuration may be described as the excitation of spin waves. 

In particular the precessional motion of the magnetization may 

be described in terms of spin waves, so that in this picture FMR 

consists of the excitation of spin waves by the microwave field. 

Spin waves are characterized by an approximately quadratic 

dependence of frequency, w ,  on wavenumber, k. For spin waves 

propagating at right angles to the magnetization (as in our 

experiments) the dispersion relation is[6]: , 



where A is the exchange constant. Spin waves may be thought of 

as quasi-particles which interact with other quasi-particles in 

the system, for example with the conduction electrons in a 

metal, or with phonons. Magnetic damping occurs when a spin 

wave is annihilated in a collision with an electron or a phonon. 

In an insulating medium the wavenumber of the microwave 

field is k = 2a/Xo, where Xo is the free space wavelength. For 

microwaves k is of the order of a few cm'l. FMR occurs when the 

frequency and wavenumber (energy and momentum) of a spin wave 

matches the frequency and wavenumber of the microwave field. 

For k of the order of a few cm-' 2Ak2/MS < Ho at FMR and 

resonance occurs when: 

The FMR Linewidth in Metals 

In pure metals the FMR linewidth is largely due to two 

contributions: the exchange-conductivity mechanism, and what is 

described as the intrinsic damping. The relative importance of 

these two contributions differs from metal to metal. In Nickel 

the intrinsic damping is the major factor. For example, at room 

temperature and a microwave frequency of 24 GHz, approximately 



300 Oe of the 320 Oe linewidth arises from the intrinsic damping 

with approximately 20 Oe being due to exchange-conductivity. In 

Iron however the exchange-conductivity line broadening is larger 

than the width due to the intrinsic damping. At room 

temperature and 24 GHz approximately 95 Oe of the 110 Oe 

linewidth comes from exchange-conductivity broadening with 

approximately 15 Oe being due to the intrinsic damping. 

The Exchange-Conductivity Broadening 

Penetration of microwaves into a metal is limited by the 

skin effect. For a metal in which the electrical conduction may 

be described by Ohm's law, j = ooe, where j is the current 

density, e is the electric field and uo is the dc conductivity, . 

the spatial variation of the microwave fields with distance, z, 

into the metal is: 

where 6 is the skin depth. The skin depth is, in CGS units: 

where e is the speed of light and p is the permeability. For 

typical metals at microwave frequencies the skin depth is of the 

order of half a micron. The skin depth depends on the magnitude 



of the applied field since the permeability changes as the 

applied field is swept reaching a maximum at FMR (see 

Chapter 2). The spatial variation of the microwave fields leads 

to a spatial variation of the magnetization. The resulting 

non-uniformity produces an exchange torque which acts to restore 

the parallelism of the electron spins. 

The Fourier spectrum of the field (1.5) consists of a 

distribution of wavevectors, q, the real part of which exhibits 

a maximum at q = 1/6, and has a width of roughly I / & .  Typical 

values of q at FMR are 10'-105 cm-', much larger than for an 

insulator. Spin waves will be excited over a range of values of 

the applied field, leading to a broadening of the resonance and 

to a shift from (1.4) in-the field at which resonance occurs. 

These effects increase with a decreasing skin depth, that is, 

with an increasing conductivity. The combined effects of 

exchange and conductivity on the resonance lineshape have been 

discussed by Ament and Rado[7]. 

Since the conductivity of a pure metal increases with 

decreasing temperature this exchange-conductivity broadening may 

become large at low temperatures. At low temperatures the 

conduction electron mean free path, I ,  may become comparable 

with the skin depth (the 'anomalous skin effect regime'). If 

this occurs Ohm's law is no longer valid and the conductivity 

becomes 'non-local' or 'wavenumber dependent' (see Chapter 2 ) .  

The skin depth is no longer ( 1 . 6 )  but instead saturates at a 

value = (621)1'3[8]. Since the permeability is large at FMR, 



the skin depth is small, and the wavenumber dependence of the 

conductivity may become important at much higher temperatures 

than for non-magnetic metals. The result of the wavenumber 

dependence of the conductivity is that the exchange-conductivity 

broadening is reduced from that which would be expected based on 

the dc conductivity. The treatment of FMR using a wavenumber 

dependent conductivity has been discussed by Hirst and 

~range[91. 

The Intrinsic Damping 

The intrinsic damping has its origin in the coupling 

between the electron spin system and the crystal lattice through 

the spin-orbit interaction. In the presence of spin-orbit 

coupling electron states are no longer spin eigenstates but 

contain a mixture of up and down spin character. Scattering of 

an electron, by phonons or impurities, may change the total spin 

of the system resulting in magnetic damping. The major 

contribution to the damping due to this mechanism comes from 

'spin-flip' scattering in which an electron is scattered from a 

state of predominantly one spin character to a state of 

predominantly the opposite spin character, in a different energy 

band. This inter-band scattering damping mechanism has been 

considered by Elliott[lO] and Kambersky[Z]. The damping due to 

this mechanism varies inversely with the electron relaxation 

time, or, equivalently, varies as the electrical resistivity. 



As a result of spin-orbit coupling the energy of an 

electron state may be shifted from the energy in the absence of 

spin-orbit coupling. In ferromagnetic materials the shift may 

depend on the direction of the magnetization with respect to the 

crystal axes. The effects of these energy shifts may be large, 

for example, the shifts are the origin of magnetocrystalline 

anisotropy, see for example, Kondorskii[ll]. In an FMR 

experiment the precession of the magnetization causes the 

energies of the electron states to vary periodically with time. 

This variation is a source of magnetic damping. The simplest 

way to picture this damping mechanism is to consider the 

electron spin system and the electron system as distinct and to 

consider the coupling between them introduced by the spin orbit 

interaction. An electron on the Fermi surface and a spin wave 

may collide because of this coupling with the annihilation of 

the spin wave and scattering of the electron. Energy and 

momentum must be conserved in such a collision. Energy 

conservation restricts the scattering to states in the same 

energy band ('intra-band scattering') because the spin wave 

energy is much smaller than the electron kinetic energy. The 

annihilation of a spin wave produces magnetic damping. This 

damping mechanism was suggested by Kambersky[2] who showed that, 

near room temperature, the damping should increase with the 

electron relaxation time, that is it should increase as the 

electrical conductivity. This work was extended to low 

temperatures by Korenman and ~range[3,4]. They found that the 



damping due to this mechanism became wavenumber dependent and 

varied as the wavenumber dependent conductivity. For a 

spherical Fermi surface they found that the Gilbert damping 

parameter varied as: 

where q is the wavenumber of the electromagnetic field in the 

metal, and 1 is the electron mean free path. The mean free path 

is related to the relaxation time by the Fermi velocity, 

1 = v r .  The linewidth due to this damping mechanism increases F 
with increasing relaxation time (decreasing temperature) 

eventually reaching a constant value., independent of the 

relaxation time, in the limit ql >> '1 (the extreme anomalous 

limit). 

Intra-band Scattering in Nickel 

The increase with decreasing temperature and eventual 

saturation of the binewidth is the behaviour that was observed 

in pure Nickel at bow temperatures and 22 GHz by Bhagat and 

Hirst[l] and Bhagat and ~ubitz[l2,13]. They found that the FMR 

linewidth increased with decreasing temperature starting at 

approximately 150 K and reached a plateau at approximately 20 K 

of roughly five times the room temperature value. The value of 

the linewidth at this plateau was found to be independent of the 



residual resistivity ratio ( p 2 , , / p 4 )  of the samples if this 

ratio was greater than 30. The increase in linewidth was much 

larger than could be accounted for by any increase in the 

exchange conductivity broadening due to the increased 

conductivity. 

Lloyd and ~hagat[l4] performed experiments with 

Nickel-Copper alloys to test the dependence of the increase in 

the linewidth on the resistivity ratio. It was found that the 

increase in the linewidth disapppeared in a 5.4% Cu-~i alloy 

which had a resistivity ratio of 3. The magnetization and other 

magnetic properties were not much affected by alloying so the 

results were interpreted as evidence that the increase in the 

linewidth and the increase in the electron relaxation time were 

related. 

Further evidence for the wavenumber dependence of the 

damping came from the measurements of Heinrich, Meredith and 

~ochran[l5] in which the transmission of microwaves through thin 

samples of Nickel was measured as a function of the applied 

field. At the field corresponding to Ferromagnetic 

Antiresonance (FMAR) the permeability is small (in the absence 

of damping it is zero). The skin depth at FMAR is much larger 

than at FMR so that the typical wavenumbers are much smaller at 

FMAR than at FMR. The damping parameters deduced from the FMAR 

data were much larger than those quoted by Bhagat and ~ubitz[42] 

.in the same temperature range. This is what would be expected 

from a damping of the form of equation (1.7) since arctan(ql)/q 



decreases with increasing q. 

In'Nickel a large contribution to this intra-band damping 

is conjectured to come from d-band minority spin states near the 

X-points in the Brillouin zone[2] (the X-points are at the zone 

edge in the (100) directions). The Fermi surface from these 

bands is a set of three approximately ellipsoidal surfaces 

centered at the X-points with the long axis of the ellipse along 

the axis connecting X with the center of the Brillouin zone. 

These surfaces are called the X, hole pockets. In the absence 

of spin orbit coupling the X, level is doubly degenerate. The 

degeneracy is lifted by the spin orbit interaction, the 

splitting between the two levels depending on the direction of 

the magnetization with respect to the crystal axes[l6]. As a 

result the size and the shape of the pockets depends on the 

direction of the magnetization. For example with the applied 

field along ( 1 1 1 )  all three pockets are equivalent. With the 

magnetization along (100) the pocket along the field direction 

is smaller in all dimensions than the pockets that are at the 

X-points perpendicular to the field direction. 

In a collision between an electron and a spin wave energy 

and momentum must be conserved. At low temperatures, long 

electron relaxation times, conservation of momentum restricts 

the electrons which may collide with a spin wave to those whose 

velocity is approximately perpendicular to the direction of spin 

wave propagation (see Chapter 5). This leads to the idea of an 

'effective zonev of the Fermi surface consisting of those 



electrons which may interact with spin waves. Since the size 

and shape of the pockets depends on the direction of the 

magnetization with respect to the crystal axes the electrons 

comprising the 'effective zone' will differ depending on the 

direction of the magnetization. The result may be a dependence 

of the magnetic damping on the direction of the magnetization 

which would be manifested as an anisotropy of the FMR linewidth. 

The Work Reported in this Thesis 

This possibility of an anisotropic linewidth at low 

temperatures has been investigated in two ways. Ferromagnetic 

resonance was measured in pure Nickel samples with the applied 

field parallel to each of the three principal crystal axes 

(loo), (111) and (110). The resistivity ratio of the samples 

was 38 so that we were above the limit of approximately 30 for 

which the linewidth was found to reach its limiting value[l]. 

Because the FMR line becomes very broad on cooling, 

approximately 1600 Oe at 24 GHz at 4.2 K t  the signal becomes 

small and difficult to detect. We were unable to observe FMR 

using a conventional field modulation technique at temperatures 

below approximately 60 K. We used a bolometer to detect the 

absorption at 4.2 K. Our results indicate that the linewidth is 

anisotropic at low temperatures. For temperatures below 

approximately 200 K the (110) linewidth is greater than the 

(100) and ( 1 1 1 )  linewidths. The (100) and (111) linewidths were 



the same for temperatures above 60 K, the lowest temperature at 

which we could measure FMR using field modulation. This is the 

same behaviour observed by Anders, Bastian and ~iller[l7] for 

temperatures greater than 77 K. At 4.2 K, the only temperature 

at which the bolometer could be used, we found that the (100) 

linewidth was 1620250 Oe, the ( 1 1 1 )  linewidth was 1820+50 Oe and 

the (110) linewidth was 2050+50 Oe. 

A calculation of the damping parameter has been carried out 

using a simple model of electrons and spin waves coupled by the 

spin orbit interaction. We calculated the susceptibility using 

the method of Green's functions. The imaginary part of this 

susceptibility was related to the damping parameter. The 

expression we obtained for the damping parameter reduced to that 

obtained by Korenman and ~range[3,4] if we assumed a spherical 

Fermi surface. The integrals over the Fermi surface which enter 

the damping parameter were evaluated numerically using the 

description of the X, hole pockets of Hodges, Stone and 

Gold[16]. The results were not in agreement with experiment. 

The values of the damping parameter were approximately 100 times 

too small to account for the linewidth in Nickel at 4.2 K. The 

calculated anisotropy of the damping parameters was also not in 

agreement with experiment. For example, based on the 

calculation we expected that the linewidth for the (100) 

direction should be approximately 4% larger than the linewidth 

for the (111) direction. From experiment we found that the 

( 1 1 1 )  linewidth was approximately 12% larger than the (100) 



linewidth. The implication of these results is that other 

portions of the Fermi surface must play an important role in the 

magnetic damping of Nickel at low temperatures. 

1.2 Historical Overview 

We present a brief historical overview of the experimental 

work relevant to the work presented in this thesis. Most of the 

work cited involves measurements of FMR on Nickel at room 

temperature and below. The order of presentation is as follows: 

first the most important FMR measurements are mentioned: then a 

series of measurements relating to the anisotropy of the FMR 

linewidth of Nickel which are conveniently discussed as a group, 

although made concurrently with the first set of experiments. 

As an example of the treatment of the anomalous skin effect in 

FMR we discuss a measurement on Iron. Finally FMAR measurements 

of the damping in Nickel are discussed. 

FMR in Nickel 

Measurements of the properties of ferromagnets at microwave 

frequencies have been made since the turn of the century. A 

review of work done before 1950 is given by ~ado[l8]. 

The first measurement of FMR was made by ~riffiths[l9] in 

1946 on samples of Nickel, Iron and Cobalt.  is samples were 

thin films (0.025 mm) electrodeposited on a brass disk. The 



Pinewidth for Nickel was approximately 2000 Oe at 9 GHz, This 

is much larger than the linewidth for a good single crystal of 

Nickel at this frequency (approximately 100 Oe, see below). 

Low temperature measurements were made in 1956 by 

Reich[20]. The measurements were made on (110) plane single 

crystal disks at frequencies of 9 and 24 GHz, at 4.2 K, 77 K and 

room temperature. The 'half-line-width' at 24 GHz was of the 

order of 350 Oe and independent of temperature. From the 

resonance field values a value of the g-factor, g = 2.21f0.01, 

and values for the magnetocrystalline anisotropy constants K1 

and K2 were obtained. The values of K1 were -5.4x105 and 

-8.3x105 erg/cm3 at 77 and 4.2 K respectively. These are 

approximately two-thirds- the accepted values of -8.45x10f and 

-12.9x105 [211. The samples had a poor resistivity ratio, 

~ 2 9 5 / ~ 4  = 7. This low purity explains the temperature 

independent linewidth and may also account for the discrepancy 

in the values of the anisotropy constants. Franse [22] has 

shown that the anisotropy constants of Nickel may be sensitive 

to impurities. 

The first measurements in which the intrinsic linewidth of 

Nickel was observed, as opposed to that due to the sample 

quality or surface preparation techniques, were made by 

Rodbe11[23,24] in 1964 on Nickel platelets and whiskers. 

Platelets and whiskers are small, very perfect, single crystals 

grown by a vapor reduction process, The virtue of these samples 

is that the surfaces are smooth and require no polishing or 



other preparation. Thus the measurements reflect as closely as 

possible the ideal behaviour of the material. The samples are 

small and very fragile and require great care in handling. This 

point is discussed further below. Rodbell's measurements were 

made at 9 and 35 GHz at temperatures from 130 K to 635 K (the 

Curie Temperature of Nickel). A t  room temperature the 9.2 GHz 

linewidth was typically 130 Oe. The results were described by a 

Landau-Lifshitz damping parameter X = 2.5x108 sec-I independent 

of temperature and frequency. This parameter varied slightly 

from sample to sample. A frequency and temperature independent 

value for g of 2.2220.03 was found. No spin-pinning was 

required to match the results. values for K1 and K2 were 

deduced over the temperature range. The values of K1 were in 

agreement with those of other authors. The values of K2 are in 

agreement if the correction pointed out by ~ubert[25] is taken 

into account. These measurements are probably the only 

worthwhile FMR results reported on Nickel platelets. 

The frequency dependence of the FMR linewidth at room 

temperature was investigated in 1965 by Frait and ~acFaden[26]. 

Measurements were made on a number of materials including single 

crystals of pure Nickel. These samples were disks spark cut 

from a bulk single crystal, mechanically polished, annealed for 

several hours, then electropolished. The linewidth at 25 GHz 

was 520 Oe. This is much larger than the intrinsic linewidth ~f 

330 Oe expected at this frequency for a good sample. *The 

frequency dependence for Nickel (8 to 72 GHz) could not be 



explained by any macroscopic theory. The large linewidths were 

ascribed to inhomogeneities and stresses in the sample. The 

lesson to be drawn from these results is that it is not 

straightforward to reproduce the linewidth characteristic of the 

metal in bulk samples. A value of g = 2.2120.04 was found. 

Values of K1 and K2 in agreement with accepted values were 

obtained. 

Bhagat, Hirst and ~nderson[27] made measurements similar to 

those of Frait and MacFaden in 1966.  heir samples were (110) 

plane disks and cylinders oriented with the cylinder axis 

parallel to either the ( 1 1 1 )  or (100) axis. These samples were 

spark cut from bulk single crystals and electropolished. The 

linewidth at a frequency-of 21.7 GHz was 300 Oe. From the 

frequency dependence of the linewidth(9 to 57 GHz) they found 

the Landau-Lifshitz damping parameter to be 2.3x108sec-'. It 

was found necessary to use a surface anisotropy Ks=0.25erg/cm3 

with the anisotropy axis parallel to the sample surface to 

reproduce the experimental results. The value of the g-factor 

used in the analysis* was 2.22. 

These measurements were extended to low temperatures by 

Bhagat and ~irst[l] in 1966, in the first good low temperature 

measurements on Nickel. Measurements were made over the 

temperature range 4.2 K to 300 K at 9, 22 and 35 GHz. They 

found that the linewidth increased on cooling and that the 4.2 M 

linewidth was independent of the resistivity ratio in samples 

with resistivity ratios of 30, 60 and 160. The observed 



linewidths at 4.2 K were 640 Oe at 9 GHz, 1500 Oe at 22 GHz and 

2200 Oe at 34.8 GHz. These linewidths were much larger than 

could be explained by the exchange conductivity mechanism. The 

results were interpreted as evidence for a temperature 

dependence of the damping parameter. 

In 1969 ~ranse[28] made FMR measurements on Nickel in an 

attempt to measure the magnetocrystalline anisotropy constants. 

He used (110) plane disks electrically or mechanically polished. 

The linewidths were quite large, being 600 Oe at room 

temperature and 1200 Oe at 77 K at a frequency of 23.3 GHz. The 

values of K1 and K2 deduced from the FMR data at 77 K were in 

agreement with the values obtained using a torque magnetometer. 

Franse comments that the-accuracy of FMR measurements of the 

magnetocrystalline anisotropy constants is much smaller than may 

be obtained from torque experiments. He also states that it is 

impossible to obtain values for the higher order constants, K3, 

K4..., using FMR. This is a problem because these higher order 

constants are important in Nickel at low temperatures. 

The connection between the increase in the linewidth at low 

temperatures and the increase in the conduction electron mean 

free path was made in 1970 in the experiments of Lloyd and 

Bhagatil41. The temperature dependence of the linewidth at 

35 GHz was measured using cylindrical samples oriented with a 

(100) or a ( 1 1 1 )  axis along the cylinder axis. The samples used 

were pure Nickel and 0.17% and 5.4% Copper in Nickel alloys. 

The linewidth of the 0.17% Cu alloy (resistivity ratio of 30) at 



as approxim ately 90% that of pure Nickel, while the 5.4% 

Cu alloy (resistivity ratio of 3) showed no increase in the 

linewidth with decreasing temperature. A value of I K I I / M ~  of 

2150 G for Nickel at 4.2 K is quoted. This is based on "the 

shift in the resonance field as a function of temperature". The 

currently accepted value of I K I I / M ~  is 2460 G (see the 

discussion of Nickel parameters in Section 4.1). There is a 

fair discrepancy between these two values. We will discuss our 

results on the position of FMR in Chapter 4 and argue that this 

discrepancy is due to the wavenumber dependence of the magnetic 

damping. 

In 1971 Anders, Bastian and Biller[l7] made measurements on 

(110) Nickel disks. Thevsamples were cut from 99% pure Nickel, 

electropolished and carefully anndaled. FMR was measured for 

different directions of the applied field with respect to the 

crystal axes in the sample plane. Measurements were made at 

9.2, 19.6 and 26.2 GHz. at temperatures between 77 K and 630 K. 

The linewidth at 26.2 GHz at room temperature was approximately 

350 Oe (this value was taken from their Figure 1). They found 

the Landau-Lifshitz damping parameter to be 2.3x108 sec-' 

independent of temperature and orientation of the applied field 

for temperatures from 273 to 630 K. Below 273 K they found that 

the linewidth was anisotropic, with the (110) linewidth being 

greater than the (100) and ( 1 1 1 )  linewidths. The difference in 

the linewidths for the different crystal axes increased with 

decreasing temperature. From their Figure it appears that the 



difference between the (10Q) and ( 1 1 1 )  linewidths was not 

significant. At 77 K, at 26.2 GHz the (110) linewidth was 

820 Oe and the ( 1 1 1 )  linewidth was 640 Oe. A value for the 

(100) linewidth at this frequency is not quoted. 

In 1974 Bhagat and Lubitz[l2,13] reported the results of 

further experiments on Nickel at low temperatures. The 

experiments were aimed at defining the temperature dependence of 

the linewidth between 77 K and 4.2 K where the linewidth attains 

its saturation value. The samples were cylinders with a ( 1 1 1 )  

axis along the cylinder axis. These were electropolished and 

annealed. Values of the Landau-Lifshitz damping parameter 

obtained by comparing the experimental data with the calculation 

of Hirst and Prange[9] which includes a non-local conductivity 

are quoted. A value of g = 2.22 and a surface anisotropy of 

0.1 erg/cm2 were used in the analysis. It is important to note 

that in none of the work reported by Bhagat and colleagues is 

there any mention of an anisotropy in the linewidth at low 

temperatures. We will come back to this point when we discuss 

our results in Chapter 4. 

Anisotropy of the Linewidth 

We discuss now a series of measurements related to the 

anisotropy of the FMR linewidth. In 4967 Vittoria, Barker and 

Yelon[29] made measurements on Nickel platelets of the 

dependence of the FMR Pinewidth on the direction of the applied 



field with respect to the crystal axes. They made measurements 

by rotating the applied field both in the sample plane and out 

of the sample plane. Their results were interpreted as evidence 

that the damping parameter was anisotropic. 

In response to these measurements Anderson, Bhagat and 

Cheng[30] in 1971 reported similar measurements made on single 

crystal disks cut from a bulk single crystal. Measurements were 

made on (100) and (110) normal disks at 22 GHz. The linewidth 

was found to be isotropic for in-plane variations of the 

direction of the applied field, within the experiemntal 

uncertainty of +I0 Oe. The linewidth for out of plane 

variations of the direction of the applied field was anisotropic 

because of the misalignment obetween the magnetization and the 

applied field caused by the demagnetizing field. APP the 

results were consistent with an isotropic damping parameter. 

Maksymowicz and ~eaver[31], also in 1971, made similar 

measurements on Nickel platelets, both in and out of the sample 

plane. The dependence of the linewidth on angle was described 

as 'a sum of a constant term and a term resulting from the 

Gilbert type equation of motion'. The damping parameter 

required was isotropic. 

In 1972 ~ailey and ~ittoria[32] reported further 

measurements on platelets. The measurements were of the 

in-plane variation of the linewidth at 9.4 GHz at temperatures 

from 171 to 293 K, The results indicayed that the (100) 

linewidth was larger than the (110) linewidth at all 



temperatures and that the difference between the linewidths for 

the two directions increased on cooling. The room temperature 

linewidth was 165 Oe which was larger by approximately 30% than 

the linewidths found by Rodbe11[24] at a similar frequency. 

Experiments using Nickel platelets are very difficult 

because of the extreme fragility of the samples. Almost any 

handling at all will damage the platelet resulting in broadening 

of the FMR line. This was demonstrated very clearly by Wu, 

Quach and Yelon[33] who made measurements on Nickel-Cobalt 

platelets. Nickel Cobalt platelets are thicker, and hence more 

robust, than pure Nickel platelets. However even with careful 

handling of the samples the results showed anomalies which could 

be explained only as a consequence of damage to the samples due 

to handling. It appears then that the anisotropy of the 

linewidth observed by Vittoria et a1[29,32] resulted from the 

use of damaged samples rather than as a result of an anisotropy 

of the intrinsic damping. 

Vittoria et a1[34,351 were also responsible for two papers 

in which the angular variation of the linewidth was calculated. 

In the second of these papers the claim is made that the 

combination of exchange and magnetocrystalline anisotropy may 

produce an anisotropy of the linewidth. This is true if the 

linewidth is almost entirely due to exchange conductivity 

broadening and if the conductivity is large. The authors 

suggest that they performed calculations appropriate for Nickel, 

however they use a Landau-Lifshitz damping parameter of 

/ 



0.375x10hecc" which is much smaller than the currently 

accepted value of 2.45~10' sec- '. We have performed 

calculations in which both exchange and magnetocrystalline 

anisotropy are included using realistic parameters for Nickel at 

a temperature corresponding to 77 K with a local conductivity 

and we find no difference between the calculated linewidths for 

the (loo), ( 1 1 1 )  or the (110) directions. 

The Anomalous Skin Effect 

At low temperatures the wavenumber dependence of the 

conductivity becomes important and must be considered in a 

calculation carried out for comparison with experiment. A 

calculation of the FMR absorption with a non-local conductivity 

was carried out by ~ i r s t  and ~range[9]. A computer program 

based on their calculation was used in the analysis of the data 

of Bhagat and Hirstil] and Bhagat and ~ubitz[12,13]. The 

linewidth in Nickel is dominated by the intrinsic damping as 

stated in Section 1.1. Measurements on Iron whiskers at low 

temperatures made in 1967 by Bhagat, Anderson and Wu[36] 

provided a test of the Hirst-Prange theory in a material in 

which the linewidth is predominantly due to exchange 

conductivity broadening. The experimental results for Iron were 

in good agreement with the theory, which predicted that the 

exchange conductivity broadening should increase much less 

rapidly with decreasing temperature (increasing conductivity) 



than would be expected if a theory using the dc conductivity 

were used. In addition to broadening the FMR line, exchange 

conductivity produces a shift in the value of the applied 

magnetic field at which resonance occurs. Calculated values of 

this shift as a function of resistivity ratio for Iron are 

quoted in the paper. Unfortunately the shifts in the resonance 

field due to magnetocrystalline anisotropy were not known well 

enough to permit a comparison between the experimental and 

calculated resonance positions. 

FMAR Measurements in Nickel 

The microwave permeability is large at FMR with the result 

that the skin depth is small. As stated above typical 

wavenumbers at FMR are l o 4 - 1 0 5  cm-'. At the value of the 

applied field corresponding to Ferromagnetic Antiresonance(FMAR, 

see Chapter 2) the permeability is small so that the skin depth 

becomes large. Typically wavenumbers at FMAR are 1/20 those at 

FMR. Measurement of the transmission of microwaves at FMAR 

through thin samples provides a very sensitive measure of the 

damping parameter, see for example Cochran and ~einrich[37]. 

Since this is a transmission technique it is sensitive to the 

bulk of the sample as opposed to FMR which is sensitive to a 

surface layer approximately one microwave skin depth thick. 

Transmission measurements through polycrystalline Nickel 

foils by Dewar, Heinrich and Cochran[38] yielded values of 



G = 2.45f.1x108 sec-I for the damping parameter at room 

temperature and a value of g = 2.187k.005 for the 9-factor. 

These may be considered the definitive values for these 

parameters. 

Low temperature measurements were made on single crystal 

samples by Heinrich, Meredith and Cochran[l51 and by Myrtle1391. 

The damping parameter was found to increase with decreasjng 

temperature below approximately 250 K. The increase was much 

more rapid than the increase in the damping parameter found in 

the FMR measurements of Bhagat and ~ubitz[12]. This was 

interpreted as evidence for the wavenumber dependence of the 

damping. The temperature dependence of the FMAR damping 

parameter was described well by the expression: 

where oo and p are the dc conductivity and resistivity 

respectively, and a and b were constants chosen to match 

experiment. The values of a and b which fitted the temperature 

dependence were a = 1.07x108sec'' and b = 1.19x108sec''. The 

first of these terms corresponds to the result of Korenman and 

~range[3,4] with the substitution arctan(ql)/ql 1 since the 

values of q are small at FMAR. The second term corresponds to 

the result of ~lliott[lO] and ~ambersky[2] for spin-flip 

scattering . 



2. THEORY 

2.1 Introduction 

Two different problems are of theoretical interest in 

connection with the work reported in this thesis. First, the 

phenomenological theory which is used to deduce fundamental 

magnetic parameters from experiment, and second, the microscopic 

theory which can be used to calculate a value of the damping 

parameter, G I  from the band structure for comparison with the 

value of G deduced from the data and the phenomenological theory 

used to describe FMR absorption. The phenomenological theory is 

described in this chapter; a discussion of the calculation of 

the damping parameter is postponed until Chapter 5. 

The quantity measured in a ferromagnetic resonance 

experiment is either the absorbed power as a function of the 

applied magnetic field, or the derivative of the absorbed power 

with respect to the field. The resulting curve is described by 

the resonance field, Hfmr, the value of the applied field at 

which the absorbed power is a maximum, and by the linewidth, AH, 

the field interval between the extrema of the derivative of the 

absorption with respect to field. 

The position and shape of an FbrIR absorption line depend 

upon a number of factors. Material parameters include the 



saturation magnetization, M,, the spectroscopic splitting 

factor, 9, magnetocrystalline anisotropy constants, Kt, K2, the 

exchange constant, A, the damping parameter, G I  and the 

electrical conductivity, oo.  The microwave frequency and the 

sample shape also play a role. These factors are so entangled 

in determining the position and linewidth that to extract values 

for material parameters from an experimental line it is.usually 

necessary to compare the data with an FMR lineshape calculated 

using a phenomenological theory. Frequency and temperature 

dependences of the resonance field and linewidth often prove 

useful in sorting out the various contributions. Care must be 

taken when fitting the observed lineshapes as these can be 

easily affected by experimental factors which do not affect 

Hfmr or AH. For example the asymmetry of an experimental 

derivative line, the ratio of the high field derivative peak to 

the low field derivative peak, often differs from that expected 

from a calculation while the linewidth and position are close to 

those expected (see Bhagat, Hirst and Anderson[27]). 

Three calculations are described in this chapter. These 

correspond to the variety of situations with which we are faced 

experimentally. In the first calculation, Section 2.2, the 

standard FMR treatment is presented. The applied field is taken 

to be parallel to the sample plane and also parallel to one of 

the three principal crystal directions ( 1 0 0 ) ~  (110), (1 1 1 ) .  A 

local electrical conductivity is assumed, ie 3 = o, Z ,  where 

is the current density, G the electric field and oo the dc 



conductivity. This calculation is appropriate for temperature 

regimes where the approximation of a local conductivity is 

valid. For Nickel this approximation is valid for temperatures 

above approximately 77 K. The effects of exchange are included. 

This is the simplest geometry to treat as the magnetization is 

parallel to the applied field at the fields at which resonance 

occurs, and it corresponds to the geometry which is used.in an 

experiment. 

If the applied field is allowed an arbitrary orientation 

with respect to the sample plane and the crystal axes, 

magnetocrystalline anisotropy and demagnetizing effects combine 

so the static magnetization is not, in general, parallel to the 

applied field. The angle between the magnetization and the 

field depends on the magnitude of the field. The magnetization 

is said to 'drag' behind the field. In an experiment an attempt 

is made to align the sample such that the external field is 

applied exactly in the sample plane and exactly parallel to a 

crystal axis. If these conditions are not met dragging will 

occur. The observed lines will differ from those expected on 

the basis of the calculation of Section 2.2. To obtain an idea 

of the magnitude of the discrepancy introduced by misalignment a 

calculation is carried out in Section 2.3 which allows for 

arbitrary orientation of the applied field relative to the 

sample plane, as well as relative to the crystal axes. A local 

conductivity is assumed, Exchange is not included as the 

calculation becomes quite complicated. This is not a major 



shortcoming since for Nickel exchange torques are small compared 

with the damping torque. 

At low temperatures (below 77 K) the increase in conduction 

electron mean free path results in the conductivity and the 

damping becoming wavenumber (q) dependent. A different approach 

for a calculation of the absorption is required. These effects 

are considered in the third calculation, outlined in , 

Section 2.4. The geometry is the same as in the first 

calculation the applied field being in the plane of the sample 

and along a principal axis. Exchange is included. 

Experimental Geometry 

In the experiments reported in this thesis the sample was a 

Nickel single crystal in the form of a thin disk cut with a 

( 1 1 0 )  axis normal to its plane. The sample formed part of the 

endwall of a cylindrical microwave cavity. The applied field 

was oriented parallel to the sample plane (the 'parallel 

configuration') and could be rotated in that plane. The sample 

was attached to a demountable endplate so that experiments eoubd 

be performed for the applied field parallel to the different 

crystal directions but with the microwave magnetic field 

maintained perpendicular to the static magnetic field. 

For the calculations outlined in this chapter the geometry 

of Figure 2.1 is assumed. The sample forms an infinite slab 

lying in the x-y plane, with the sample normal along [ 1 i 0 1 :  in 



Figure 2.1 The geometry used for the calculation of the 

absorption. The sample lies in the x-y plane. The geometry 

shown is for a calculation with the applied field parallel to 

- the [ 0 0 1 ]  axis. The sample may be rotated about the z-axis so 

that the [ I 1 1 1  or the [ 1 1 0 ]  axes can be oriented parallel to the 

x-axis. 



consequence the [OOl], [110] and [ 1 1 1 ]  directions lie in the 

sample plane (see Figure 2.2). For the first and third 

calculations (Sections 2.2 and 2.4) the applied field points 

along the x-direction and the crystal is oriented with a 

principal axis in the x-direction. 

Linearly polarized microwaves, with the microwave magnetic 

field along the y-direction, propagate in the z-direction and 

are incident on the sample at z = 0. The slab thickness is much 

larger than the microwave skin depth so the sample may be 

treated as semi-infinite. The slab is taken to be in free 

space. It can be shown (see, for example, Urquhart[40]) that 

the results for the calculation with boundary conditions 

corresponding to a sample in a cavity differ only by a scaling 

factor from those of the free space calculation. 

2.2 Calculation of the Absorption 

This calculation breaks into two distinct pieces. First 

the microwave permeability is found by solving the 

Landau-Eifshitz equation, This permeability is then combined 

with Maxwell's equations to solve the boundary value problem of 

. reflection from the metal surface yielding the absorbed power as 

a function of applied field. 

The Landau-Eifshitz equation (often termed the equation of 

motion) is simply the statement that the rate of change of 

angular momentum is equal to the torque. The Landau-Lifshitz 



equation may be written: 

where is the magnetic moment per unit volume, 

y = glel/2mc = (g/2)(1.7588x107 Oe-' sec-'1 is the gyromagnetic 

ratio, (the ratio of magnetic moment to angular momentum for an 

electron), the g-factor for ~ickel is g = 2.187+.005[38], and 7 

represents the torques acting on tRe magnetization. 

In equilibrium the magnetization is parallel to the applied 

field. Only small deviations from equilibrium will be 

considered and therefore the magnetization can be written: 

where idS is the saturation magnetization (parallel to the 

applied field) and Z(2.t) is the deviation of a from as. The 
magnitude of is taken to be much less than Ms. All quantities 

are assumed to vary in the z-direction only, with a time and 

space dependence exp( i ( kz-wt ) ) so Z(?, t = iii exp( i ( kz-ot ) ) . 
The torques acting on the magnetization are due to 

( i )  static and microwave applied fields; (ii) demagnetizing 

fields; (iii) magnetocrystalline anisotropy; (iv) exchange; 

(v) magnetostriction; and (vi) damping. These are discussed 

individually below. 



The concept of an 'effective field' proves important in 

what follows to describe the torques acting on the 

magnetization. A brief discussion is given here. For more 

detail the reader is referred to 'Micromagnetics' by 

W.F. ~rown[$l]. 

Three components are required to define the vector a. 
These may be the components in a rectangular coordinate .system 

(Mx,M ,MZ), or the components in a spherical-polar coordinate 
Y 

system (M,8,4) where M is the magnitude of a, 8 and t$ are the 

polar and azimuthal angles respectively. The magnitude of the 

magnetization is fixed, M = MS, so only the angles are 

independent. If the energy of the system, magnetization and 

surroundings, is writtenFE(8,t$) the components of the torque on 

the magnetization are -aE/a8 and -aE/at$. It is usually more 

convenient to work with the components (M~,M ,MZ). The vector 
Y 

B = -aE/aW may be regarded as an 'effective field' and the 

torque found from 7 = a x B. The energy may be written 

E(Mx,M M ) or, taking into account the constraint on the length 
Y' 

of a. E(Mx,M ~M:-(M:+M~)). The effective fields obtained from 
Y' Y 

these two ways of writing the energy will be different, however 

the torques will be the same. 

A simple example might be useful. Consider an applied 

magnetic field along the z-axis. The energy is E = -A*Bo. Let 

E l  = -MZHo and E2 = -(JM;-(M:+M~))H~. These expressions are 
Y 

equivalent. The effective fields R = -a~/aR are: 



Although these look very different it is easy to verify that 

they yield the same torque: 

Throughout this thesis energies will be written as E(MxtM ,MZ) Y 
rather than explicitly taking into account the constraint on the 

length of the magnetization. 

Applied Fields 

The torque due to the applied fields is: 

where go is the static applied field and E(Ztt) the microwave 

field. The magnitude of the microwave field is much less than 

Ho. 



~emagnetizinq Field 

The torque due to the demagnetizing effects is written in 

terms of an effective demagnetizing field Hd: 

In the special case of a uniformly magnetized ellipsoidal sample 

the demagnetizing field is uniform and may be written in terms 

of the demagnetizing tensor D: 

The components of IJ are the demagnetizing factors for the three 

principal axes of the ellipsoid. A thin disk may be treated as 

the limiting case of an ellipsoid, with a demagnetizing factor 

Dl, if the magnetization is in the plane of the disk, and DL if 

the magnetization is perpendicular to the sample plane. If the 

ratio of the sample thickness to diameter is small Dl, will be 

small and DL approximately 1. For an infinite slab Dl, = 0. 

Kraus and Frait[42] give an empirical expression for the 

demagnetizing field at the center of a disk when the 

magnetization is in the sample plane: 



where R is the thickness to diameter ratio. For the samples 

used in the present work R was approximately 

2aMS = 3.2 kOe and MS/~,<0.4 at the fields of interest, so the 

demagnetizing field was of the order of 30 Oe. This field is 

included in the calculation by replacing Ho by Ho+Hd, Hd points 

in the opposite direction to H, of course. For the rest of this 

chapter this in plane demagnetizing field will be ignored. In 

the general case where the magnetization may point out of the 

sample plane the z-component of the demagnetizing field is 

-4nMZ where MZ is the component of as normal to the sample 
plane. An important point is that only the demagnetizing field 

due to the static magnetization is considered here. The 

microwave demagnetizing effects are taken into account by means 

of Maxwell's equations, 

Maqnetocrystalline Anisotropy 

As a result of spin-orbit coupling the energy of a 

ferromagnet depends on the direction of the magnetization with 

respect to the crystal axes. This energy is called the 

magnetocrystalline anisotropy energy. The term 

'magnetocrystalline anisotropy' will recur many times in this 

thesis so it will be abbreviated as 'MCA'. MCA is often 

referred to as, simply, the anisotropy. It is thought that this 

usage could lead to confusion with the sought after anisotropy 

of the FMR linewidth, hence the abbreviation. 



MCA is important in this work for a number of reasons. The 

large torque arising from MCA introduces experimental problems 

in mounting the samples; they tend to rotate unless H, is 

accurately aligned with a principal axis. The dragging of the 

magnetization due to MCA can lead to problems of analysing the 

data. Both MCA and magnetic damping are a consequence of 

spin-orbit coupling. The observation of Furey (quoted b.y a 

number of authors, see for example Kambersky [2] or Franse [22]) 

that a large part of the MCA of Nickel arises from the electron 

states around the X, hole pockets played a part in focussing the 

attention of workers interested in magnetic damping on those 

parts of the Fermi surface. 

The standard method70f treating MCA is to write the part of 

the free energy per unit volume of the sample which depends on 

the orientation of the magnetization as a series in the 

direction cosines of the magnetization with respect to the cubic 

crystal axes: 

where K4, M2, M3 ... are the magnetocrystalline anisotropy 
- constants, S = afa: + aza; + a$a: and P = afa:a$, and a,, a,, a3 

are the direction cosines. Any combination of the direction 

cosines which has the necessary cubic symmetry can be written in 

terms of S and P (see for example Aubert et aP[43]). 



MCA in ~ickel at room temperature is well described by the 

first two terms in this series, however the description becomes 

more complicated at low temperatures where four anisotropy 

constants are required plus two additional constants which are 

not part of the series (2.6) (Gersdorf[44]). This will be 

discussed further in chapter 4. For the calculations in this 

chapter the series (2.6) with K1, K2 and K3 will be used. 

In Nickel K1 is negative so the MCA energy is a minimum if 

the magnetization points along a ( 1 1 1 )  direction (the 'easy 

axis'), and a maximum if the magnetization points along a (100) 

direction ( the 'hard axis'). There is a saddle point in the 

energy about the (110) directions. The MCA torque on the 

magnetization is zero for these three directions. If the 

magnetization lies in either a (100) or (110) normal crystal 

plane there is an in plane torque but there is no MCA torque 

tending to rotate the magnetization out of that plane. 

The torque on the magnetization is written in terms of the 

effective field BAN: 

With As along the [001] direction, as in figure 2.1, the 

direction cosines are (see Figure 2.3): 



I 
~ i q u r e  2.2 The crystal axes in the [IT01 plane. 

Figure 2.3 The angles used in determining the effective MCA 

fields. The [100] and [OlOl axes are in the y-z plane. The 

direction cosines are: u l  = cos(6,) = (1/flMS)(My - MZ); 
U, = code,) = ( I / ~ M ~ M  + M ~ ) :  

Y 
U, = COS(~,) = M./M,. 



Recall that the sample normal is along b 1 7 0 ~  The polynomials S 

and P are: 

We are interested in the case where M and MZ are small, 
Y 

M = m MZ = m and Mx = MS. Keeping only terms of first order 
Y Y' Z 

in m and mZ the components of the effective MCA field are: 
Y 

Note that using this method to calculate the effective field 

there is no component of BAN in the direction of 8,. The 

non-zero components of HAN are proportional to the deviation of 

the magnetization from equilibrium, and in equilibrium (m = O r  
Y 



The effective MCA field when 8, is parallel to the [1101 or 

[ 1 1 1 1  directions is found in a similar manner. If BAN is 

written: 

BAN = (0,-amy/MSt-ymZ/Ms) 

then the coefficients a and y are as listed in Table 2-1. This 

notation is that used by Cochran and ~einrich[37], this y should 

not be confused with the gyromagnetic ratio. Note that a and y 

are equal when &is is parallel to a (100) or a ( 1 1 1 )  direction 

but differ when as is parallel to a (110) direction. 

Exchanqe 

The exchange interaction leads to an energy which depends 

on the angle between electron spins. This interaction is 

responsible for ferromagnetism and in a ferromagnet this energy 

is a minimum if all of the spins are parallel, or, equivalently, 

if the magnetization is uniform in space. Any non-uniformity of 

the magnetization increases the exchange energy. 

An expression for this energy increase may be found from 

. symmetry arguments (see Turov[45]). For example, the energy 

expression must have the symmetry of the crystal lattice and 

must be invariant on replacing by -&i. The most general 

expression involving OMx, OM and WZ which does not depend on 
Y 



TABLE 2-1 

Orientation a 7 

of as 

[ool 1 2K 1 /MS 2~ 1 /MS 

[ 1 1 1 1 -4/3 (K1 /MS+K2/3Ms+2K3/3Ms) -4/3 (K1 /MS+K2/3Ms+2K3/3MS) 

[1101 K ~ / M ~ + K ~ / ~ M ~ + K ~ / ~ M ~  -(2K1/MS+K3/Ms) 

the direction of a or the direction of the gradients of the 
components of is, to second order in and V: 

where A is the exchange constant, A = 1 x 1 0 - ~  erg/cm in Nickel, 

see Table 4-1. It can be shown[411 that the effective exchange 

field is: 

B exc = 2(A/M:) (V'M~,V~M Y ,V2MZ) 

With a spatial dependence of exp(ikz) this expression becomes: 

The exchange torque may be important in ferromagnetic 

metals because the limited penetration of microwaves leads to a 



spatial variation of the magnetization. The magnitude of the 

exchange field is discussed below. It is a small effect in 

Nickel. 

Maqnetostriction 

If the sample is strained in any way there is a torque on 

the magnetization due to magnetostriction. The sample may be 

strained during preparation, for example, by mechanical 

polishing followed by inadequate electropolishing, or it may be 

strained during an experiment by the mounting used to hold the 

sample. If the sample is soldered to a diaphragm of a different 

metal the differential thermal contraction on cooling may lead 

to strain. A uniform stress shifts the position of the 

resonance; shifts up to 100 Oe can easily be produced (Cochran 

and Heinrich[37]). A non-uniform stress broadens the resonance 

as different parts of the sample resonate at different values of 

the applied field. Care was taken to avoid straining the 

samples in the present experiments and therefore 

magnetostriction is not included in the calculation of 

linewidths and line positions. The effect of a uniform stress 

on the field at which FMR occurs is discussed by ~ac~onald[46]. 



Magnetic relaxation processes are included in a calculation 

of FMR by introducing a damping torque. Two forms for this 

damping torque are in common use, the Gilbert form: 

where G is the Gilbert damping parameter, and the 

Landau-Lifshitz form: 

where A is the Landau-Lifshitz damping parameter. The field 

entering the Landau-Lifshitz form is the effective field, 

including the applied, demagnetizing, MCA and exchange fields. 

In both forms aWat is perpendicular to R, that is the length of 

the magnetization remains constant during relaxation back to 

equilibrium. It can be demonstrated (see for example 

Baartmani471) that the two forms are equivalent but that the 

values of the damping parameter and the gyromagnetic ratio 

deduced from experimental data will be slightly different 

depending on whether the Gilbert or the Landau-Lifshitz form is 

used in the analysis of the data. If G and -y are values 

appropriate for Gilbert damping, the corresponding parameters 



for Landau-Lifshitz damping are: 

For light damping, (G/yMs) << 1 ,  the two forms are equivalent 

and the parameters have the same values. In Nickel 

G/~M, = 0.026 at room temperature and is of the order of 0.15 at 

4.2 K (based on the value of G required to reproduce the 

experimental linewidth assuming a wavenumber independent 

damping). Thus there is no essential difference between the two 

forms of damping for Nickel in the temperature regions in which 

we are interested. The Gilbert form will be used in this work. 

Calculation of the Permeability 

Gathering these effective fields (2.3, 2.8, 2.9) into the 

Landau-Lifshitz equation and using the Gilbert form for the 

damping torque we have: 

where Seff = ff, + R~ + aexc Recall that a = Rs + s(?,t). as 
is parallel to the x-axis, the z-axis points into the slab, 

parallel to the sample normal. i% and 5 are assumed to vary as 



exp(i(kz-at)) and are considered to be small so that quantities 

second order in m and h may be neglected. Writing out the three 

equations (2.12): 

m, = 0 

o 2A o G -i-m + (H,+y+-kz-i- 
Y Y Ms 

)mz = MShz 
YYMS 

Solving for 6 in terms of 6 gives the susceptibility tensor 3, 

where 6 = 2.6 or: 

where: 

It is interesting to note that the damping torque appears in the 

magnetic field term for Gilbert damping. Had we used the 

Landau-Lifshitz form for the damping torque the second and third 

equations of (2.13) would have read: 



The damping enters the susceptibility through the frequency. 

The microwave demagnetizing field, due to m,, may now be 

included. Since V-5 = 0 from Maxwell's equations, we have 

b, = h, + 4 m z  = 0 or hZ = -4rrmz. Combining this with equations 

( 2 . 1 3 )  we may solve for my, mZ, and h, in terms of h the 
Y' 

quantity which will be related to the applied microwave field. 

with B = H + 4uMs, 
Y Y 

BZ = HZ + 4aMs and H and HZ are given by 
Y 

equation ( 2 .15 ) .  The ratio m /h defines what will be called 
Y Y  

the effective susceptibility X .  This is NOT a component of the 

susceptibility tensor. The ratio mz/m indicates the degree of 
Y 

ellipticity#of the precession of the magnetization. 



The ratio b /h is given by the effective permeability 
Y Y  

where Bo = HI + 4rMs. Ignoring MCA, exchange and damping the 

permeability becomes: 

There are two interesting values of magnetic field in this 

expression. When Bo = ( 0 / y ) ,  that i s  Ho = - 4nMs, the 
permeability vanishes, the microwave 5 field is zero. This 

condition corresponds to ferromagnetic anti-resonance ( F M A R ) .  

When B o H o  = the denominator vanishes and the permeability 

becomes very large. This condition is ferromagnetic resonance. 

The effective permeability contains all the information 

required for this calculation. However when we consider 

dragging of the magnetization in Section 2.3 it will be 

impossible to define a single quantity analogous to the 

effective permeability. It will be necessary to work with the 

permeability tensor. For comparison with the calculation of 

Section 2.3 it is useful to write out the permeability tensor 



Maxwell's Equations 

We now have the microwave permeability of the magnetic 

metal. This permeability is available in two forms, the 

permeability tensor (2.20) in which the microwave demagnetizing 

field has not been included, and the scalar permeability (2.18) 

which relates b to h with the microwave demagnetizing field 
Y Y 

explicitly taken into account. The problem now is to combine 

the permeability (either (2.20) or ( 2 . 1 8 ) )  with Maxwell's 

equations to solve the boundary value problem of the reflection 

of microwaves from the metal surface. Maxwell's equations are, 

in CGS units: 



v-l5 = 0 

In this section we treat the case where the conduction electron 

mean free path is much smaller than the microwave skin depth. 

Ohm's law is valid so that the current density 5 is related to 
the electric field G by: 

where oo is the dc conductivity. With the space and time 

variation exp(i(E.2-at)) the two curl equations become: 

where e is the dielectric constant of the metal. The 

displacement current term in Ampere's law, i(we/c)Z, may be 

neglected at microwave frequencies. For metals oo is typically 

lo1' sec-l and e is of order 1 so that for w 1011 sec-', 

4noo >> oe. For propagation along the z-direction (E = kg) 

these equations become: 



'xx 'xy pxzl /hx 

The microwave demagnetizing condition, bZ = 0, is included 

automatically in the third of equations (2.24). Eliminating the 

electric field leaves the three equations: 

from which one gets the equations: 



where 6' = c2/2nooo, 6 is the skin depth for a permeability 

p = 1. This homogeneous system of equations has a so1u;ion only 

if the determinant of the coefficients is zero. The condition 

that the determinant of the coefficients equal zero determines 

the values of the wavevector k of the microwave fields in the 

metal. 

For the case we are considering it is not necessary to work 

with this tensor representation. From (2.20) and (2.26) we 

have : 

bx = hx 

bx = -i k26'/2 hx 

so that: 

-ik26'/2 = 1 

From (2.18) and (2.26) we have: 

by = Yhy 

by = -ik26'/2 h 
Y 

so that: 



Consider first the situation with no exchange ( A  = 0). The 

permeability is then independent of k2 and there are two 

solutions for k2: 

These correspond to four waves which can propagate in the metal, 

two of which propagate in the +z direction and two of which 

propagate in the -2 direction. Only the waves travelling in the 

+z direction will be considered here because we deal only with 

the case where the slab thickness is much greater than the skin 

depth. 

The wave described by k = I/zr~<6 corresponds to the result 

expected for a non-magnetic metal. This wave is linearly 

polarized with its fi field parallel to MS (the x-direction). 

The wave described by k = is the interesting one, as the 

wavevector exhibits the resonant behaviour of the permeability. 

The microwave fi field is perpendicular to as and has both y and 
z components. The fi vector traces out an elliptical path in the 

opposite sense to the precessing components of the 

magnetization, so that hZ = -47rmZ. The ratio h,/h was given 
Y 

above in equation (2.18)- The electric field has only x 

components and the 5 field has only y components as expected. 



If exchange is included in the calculation the permeability 

depends on k2 and the relation r + i k26' = 0 becomes a cubic 

equation in k2: 

where H' = Ho+o-i ( w / y )  (G/7MS) , HZ = Ho+y-i (W /Y )  (G/7MS) and 
Y 

B' = H' + 4MS. There are four values of k 2  and eight waves 

which can propagate in the metal. Consider only those waves 

which propagate in the +i direction. One value ~f k is 

k = 42i/6 and corresponds to the non-magnetic wave as above. 

The other three waves have their fi fields perpendicular to MS. 

For values of the applied magnetic field far from the resonance 

field value these three waves can be categorized as one having 

primarily electromagnetic character, corresponding to the 

no-exchange wave, and two which are primarily of spin-wave 

character. Near FMR it is not possible to make this 

distinction. For a detailed discussion of the nature of these 

waves see Cochran et a1[48l. 



The Boundary Value Problem 

Having found the wavevectors, k, of the waves in the metal, 

the boundary value problem may now be solved. As a reminder, 

the geometry and field amplitudes are indicated in Figure 2.4. 

Microwaves are incident normally on the surface of a metal slab, 

the incoming microwaves, ei, hi, being linearly polarized with 

the a field along the x direction, parallel to the applied field 
,a, and the magnetization as, and the E field along the 

y direction. We wish to determine the reflected field 

amplitudes, err hr, and em, hm the field amplitudes transmitted 

into the metal, as. well as the reflected and the absorbed power. 

The fields and li must satisfy the boundary condition that 

their tangential components be continuous across the interface. 

As an example consider the case with no exchange. With the 

microwaves incident as in Figure 2.4 only the resonant wave is 

excited in the metal. The boundary conditions are: 

From Maxwell's equations, in the vacuum: 



Figure 2 . 4  Geometry for the boundary value.problem. 



and in the metal: 

where: 

ZS is the surface impedance of the metal, and the second 

equality follows from equation (2.30). For a non-magnetic metal 

having a conductivity equal to that of Nickel at room 

temperature ( p  = 7.2~10'' Ocm, o, = 1.25 x 10" sec-', see 

Table 4 - 1 1  and a microwave frequency of 24 GHz, one obtains 

Zs * 2.2~10-~(1 - i ) .  

Solving equations (2.32) for hr and hm we find: 

The reflected power, Pr, is found using the Poynting vector 



Since 6 is perpendicular to E and erx = -h the reflected power 
rY 

is proportional to lh 1 2 .  The ratio of the reflected power tO 
rY 

the incident power, Pi, is: 

The absorbed power, Pa, is the incident power less the reflected 

power : 

Writing Zs = r + ix where both r and x are small, and ignoring 

quantities of second order: 

Therefore, for small Zs (the usual situation): 



From (2.38) and the definition of Zs, the absorbed power is 

proportional to the real part of r/--irT;. 

Returning to the case in which exchange is included, three 

magnetic waves will be excited. We have two boundary conditions 

for the tangential components of and k (2.32): however there 

are four unknown amplitudes (one reflected wave and three 

transmitted waves in the metal). Two additional boundary 

conditions are therefore required. These are the spin-pinning 

conditions on the amplitude of the components of the 

magnetization and the spatial derivatives of the magnetization 

at the surface, see Rado and Weertman[50]. For a uniaxial 

surface anisotropy energy, E = KScosZ(Bf, where 6 is the angle 

between the magnetization and the x-axis and KS is the surface 

anisotropy constant, with the axis parallel to the equilibrium 

direction of the magnetization the boundary conditions are: 

the subscript 0 indicating that the quantities are evaluated at 

the surface of the slab, z = 0. These boundary conditions have 

been discussed by Cochran, Heinrich and Dewar[48]. If Ks = 0 

the conditions (2.39) become aiii/azl, = 0 corresponding to 



'unpinned' or free spins. If Ks is large we have % l o  = 0 

correspo'nding to spins pinned at the surface. 

With the geometry of Figure 2.4, and using space and time 

variations exp(i(kz-at)), the four boundary conditions (2.32) 

and (2.39) become: 

The subscripts 1 ,  2, 3 refer to the value of k for the three 

roots of equation (2.31). The electric field components in the 

metal are related to the 8 components by (see equations (2.33) 

and (2.34)): 

where: 

e = Z  
jx sj ?Y 

Z = -ioazkj/2c 
!Tj 

The components of the microwave magnetizations ii are related to 
j 



the h by equations (2.17) with the appropriate value of k: 
jy 

Combining equations (2.401, (2.41), (2.42) we may solve for the 

field amplitudes hr, h,, h, and h,.   no wing the reflected wave 

amplitude enables one to calculate the power absorbed by the 

sample (see equation 2.37). The expressions for the wave 

amplitudes are complicated and there is little point in writing 

the equations out in detail. However a computer program has 

been written to calculate the susceptibility and to solve the 

boundary value problem numerically. The program calculates the 

absorption and the absorption derivative as a function of the 

applied field for a given set of parameters which characterize 

the metal. 

Application to Nickel 

Calculated curves of the absorption and the absorption 

derivative as a function of the applied field are shown in 



Figure 2.5. Parameters appropriate to Nickel at room 

temperature and a microwave frequency of 24 GHz were used in the 

calculation. The values of the parameters are listed in 

Table 4-1 in Chapter 4. The field at which resonance occurs, 

Hfmr and the FMR linewidth, AH, are indicated on the figure. 

A brief discussion of the effect of the various parameters 

on the FMR absorption will be given here. This discussion will 

be amplified in Chapter 4. In the absence of MCA, damping and 

exchange, FMR occurs at the applied field where the permeability 

becomes infinite: 

(see equation (2.18)). For the remainder of this section this 

field value will be termed HfmrO. Including MCA, but neglecting 

damping and exchange, the permeability becomes, for the applied 

field along a (100) direction and the sample normal along [ 1701: 

The permeability becomes infinite when: 

(Ho+2K1/MS)(Ho+4~M~2K1/~ = 
S 



ABSORPTION 

(ARB. UNITS ) 

A P P L I E D  F I E L D  (Me)  

ABSORPTION 

D E R I V A T I V E  

(ARB. UNITS ) 

A P P L I E D  F I E L D  (Me)  

Fiqure 2.5 Calculated absorption and absorption derivative. 

Parameters appropriate for Nickel at room temperature were used 

in the calculation, see Table 4-1. The microwave frequency was 

23.95 GHz. 



that is the resonance field is shifted from HfmrO by 21K1 l/Ms. 

The shift is to a higher field if K1 is negative, as it is for 

Nickel. For MS along a ( 1 1 1 )  direction the shift is to a lower 

field for Nickel (see Table 2-11. The direction of the shift 

for Ms along a (110) direction is not obvious as the anisotropy 

fields a and y are different. The value 21Kll/~~ provides a 

measure of the magnitude of MCA effects. For Nickel at room 

temperature 2 1 ~ l l / ~ ~  240 Oe, and at 4.2 K 21K11/MS 0; 4.92 kOe. 

Including damping, but neglecting MCA and exchange, the 

permeability becomes: 

. 
where the second order term in (G/yMS) has been neglected in the 

second equation. The permeability is now complex. It is 

important to remember that in an experiment we measure the 

absorbed power which varies as the real part of the square root 

. of - i  times the permeability, see equation (2.38). The real and 

imaginary parts of the permeability become mixed in taking the 

square root. The result of damping is a shift in Hfmr to a 

higher field; and a broadening proportional to, and of the order 

of, (o/y)(G/yMS). At a frequency of 24 GHZ, at room 



temperature, (o/y)(G/yMS) is approximately 200 Oe, while at 

4.2 K it is approximately 1100 Oe. 

Including exchange, but neglecting MCA and damping, the 

permeability becomes: 

The wavenumber, k, depends on the field through the 

permeability: 

Again the permeability is complex. Since k2 is proportional to 

1 / a 2  the exchange field 2 ~ k ' / ~ ~  is proportional to (~/6') or 

(~0,) where oo is the dc conductivity. A large conductivity 

results in a small skin depth and large gradients of the 

magnetization, i.e. the exchange field will be large. For 

Nickel at room temperature and a frequency of 24 GHz the skin 

depth 6 = 0.9 Dm. At FMR lei = 20 so k 5 x 10' cm-l, and 

2Ak2/~, = 10 Oe. The exchange field shifts the resonance. Some - 
broadening is also produced as the field distribution in the 

metal is not described by a single wavenumber. 

An idea of the relative importance of the damping and the 

exchange contributions to the shift in FMR and the linewidth may 

be had from the numbers listed in Table 2-2. Values of the 



TABLE 2-2 

Hfmr (kOe) 6H(Oe) M(0e) 

G=O, A=O 5.326 -- -- 
G=2.45~10~sec'~, A=O 5.337 1 1  300 

G=O, A=l.O~lO-~erg/cm 5.290 -36 50 

G=2.45~1O~sec-~ 5.314 -12 320 

A=l.O~lO'~erg/crn 

Calculated values for the resonance field, Him,, the shift in 

peak position, 6H = Hfmr - Hfmr~, and the linewidth, AH. 
Parameters appropriate for Nickel at room temperature were used 

in the calculations: 4xMs=6.16 kOe, f=23.95 GHz, p=7.2x10q6 Qcm, 

The MCA constants have been set equal to zero for these 

calculations. 

resonance field, Hfmrt the shift 6H = Hfmr-HfmrOt and the 

linewidth, AH are listed for four situations: (i) no damping, no 

and (iv) damping and exchange. Room temperature Nickel 

parameters were used in the calculations. Since MCA does not 

contribute to the linewidth it has not been included in these 

cabculations. As can be seen from Table 2-2 the shift due to 

- exchange is approximately three times that due to damping, and 

in the opposite direction, while the linewidth is dominated by 

'the damping. Of course the shifts for case (iv) are not just 

the sum of those for cases (ii9 and (iii9. 



2.3 Arbitrary Orientation of the Magnetization 

The calculation described in Section 2.2 is valid only for 

the very stringent conditions that the sample plane coincides 

with a (110) crystal plane, that the applied field is parallel 

to the sample plane, and that the applied field be parallel to 

one of the three principal crystal axes (100), (!lo), or. (1119, 

in that plane. Since there is no static MCA torque on the 

magnetization for these directions the magnetization will be 

parallel to the applied field, at least at the field values of 

interest. This is the simplest geometry to treat and is that 

aimed for in an experiment. 

Deviation from this-ideal situation may occur for a number 

of reasons. The sample plane may not coincide with a ( 1  10 )  

plane. The applied field may not be exactly aligned with the 

crystal axis, being tilted out of the sample plane or rotated in 

the plane. In such a case the magnetization will not, in 

general, be parallel to the applied field. A calculation of the 

FMR absorption must take this into account. The result of the 

lack of alignment is a shift and a broadening of the absorption 

line relative to the position and linewidth which would be 

expected if those effects were not considered. The magnitude of 

these so-called dragging effects in Nickel is greatest at low 

temperatures where the MCA becomes large. 

The motives for carrying out the following calculation are 

twofold. First to determine the effect of a small misalignment 



- % I -  

of the field with the crystal axes, either in or out of the 

sample plane, on the absorption. Second, to obtain an idea of 

the angular variation of the resonance field, Hfmr, in the (110) 

plane. The calculated variation of the resonance field may be 

compared with the experimental variation to determine the 

location of the principal axes in the sample plane. The angular 

variation of the resonance field has a maximum when the.applied 

field is parallel to a (100) or (110) axis in the sample plane. 

It is straightforward to locate these axes in an experiment by 

rotating the magnet and finding the angle for which the 

resonance field has the largest value. The.angular variation 

has a minimum near the ( 1 1 1 )  axis but the exact position of the 

minimum depends on the value of the MCA constants. To determine 

the location of the ( 1 1 1 )  a.x.is it is necessary to compare the 

calculated and the experimental angular dependences. Also the 

agreement between the calculated and experimental angular 

variations serves as a test of how closely the sample plane 

coincides with a (110) crystal plane. 

Three steps are involved in the calculation of the 

absorption as a function of the applied field. First the 

orientation of the magnetization in equilibrium for a given 

magnitude and orientation of the applied field must be 

determined. The permeability is then found using the 

Landau-Lifshitz equation. Finally the boundary value problem is 

solved. The second and third steps are the same as in the 

calculation outlined in Section 2.2 but the algebra is much more 



involved. 

A computer program was written to carry out this 

calculation numerically. The program yielded values for the 

orientation of the magnetization, the permeability, the 

wavevectors in the metal, the absorption and the absorption 

derivative. In the calculation that was programmed it was 

assumed that the sample plane was a (110) crystal plane6 The 

applied field was allowed an arbitrary orientation with respect 

to the sample plane and the crystal axes. A local conductivity 

was assumed and exchange was neglected because of the 

complications involved. As was seen above exchange effects are 

comparatively small in Nickel. A further assumption, implicit 

in the calculation of Section 2.2, is that the sample forms a 

single domain. The magnetization changes by rotation only. 

The geometry assumed is shown in Figure 2.6. The x-y-z 

axes are the same as those defined in Figure 2.1: the z-axis 

pointing into the slab, parallel to the sample normal, and the 

y-axis being parallel to the incident microwave magnetic field. 

This coordinate system will be called the 'laboratory frame'. 

The orientation of the applied field and the magnetization are 

specified by angles ( OH, and (O,#) respectively, the 

equilibrium values of (Or#) being (OM,#M). The sample normal is 

the [ti01 axis. The sample may be rotated about the [li01 axis, 

the angle between the [0011 axis and the x-axis being $. 

In the calculation of the permeability it is desirable to 

work in a coordinate system with one axis parallel to the 



Figure 2.6 The angles required for the calculation of 

Section 2.3. The x-y-z axes define the laboratory frame where 

the sample lies in the x-y plane, the z-axis points into the 

slab and the y-axis is the direction of the microwave magnetic 

field. (a) The applied field, a,. (b) The magnetization, as, 

and the magnetization frame x'-y'-z'. The x' axis is parallel 

to as, the y' axis lies in the x-y plane. (c) The crystal axes, 

@ is the angle between the [ 0 0 1 ]  axis and the x-axis. The 

[ 0 0 1 ] ,  [ 1 1 1 ]  and [ 1 1 0 ]  axes lie in the x-y plane. 



magnetization as the Landau-~ifshitz equation has a simple form 

in such a system. The 'magnetization frame', (x',y',z'), is 

defined with the x'-axis along Ms. A convenient choice for a 

second axis is to have the y'-axis in the sample plane. The 

magnetization frame coincides with the laboratory frame if the 

magnetization lies along the x-axis. 

If li is a vector in the laboratory frame, and li' is the 

same vector in the magnetization frame then: 

where T is the matrix representing a rotation about the z-axis 

by mMr followed by a rotation about the y'-axis by (a/2 - OM). 

L J 

The permeability tensor is calculated in the magnetization frame 

2' . The transformation to the lab frame is: 

k =T- l j ' p p  

where T-l is just the transpose of T. 
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Equilibrium Orientation of the Maqnetization 

Three equivalent ways of stating the equilibrium condition 

for the orientation of the magnetization are that Ms is parallel 

to the effective static internal field, that the torque on the 

magnetization is zero, or that the free energy is a minimum. In 

the calculation that was programmed the minimum of the free 

energy was found. 

The contributions to the free energy are due to the applied 

field, E = -e-RQ, the demagnetizing field, E =47M:, where the 

in-plane demagnetizing field is neglected (see Section 2.21 ,  and 

MCA, the energy being given by the series (2.6). The total free 

energy is: 

This expression written out in terms of OH, QH, $, 0 and Q is 

very complicated. No apology is offered for not including it 

here. It is straightforward to set up a numerical procedure to 

find the angles OM and QM which minimize this energy. 

To demonstrate the magnitude of this dragging effect plots 

of the calculated variation of OM and @M with the applied field 

are shown in Figures 2.7 and 2,8. MCA constants for Nickel at 

4.2 K were used in the calculations. These are listed in 

Table 4-1 in Chapter 4. For the calculatisns shown in 

Figure 2.7 the applied field was parallel to the sample plane, 



Figure 2.7 Calculated variation of the the direction of the 

magnetization with the applied field. The applied field was 

assumed to lie in the sample plane and parallel to (a) [ 1 1 1 ] .  

magnetization and the [ 0 0 1 ]  axis is plotted. For (b). (c) and 

(dl the direction of the applied field OH) is indicated by a 

dashed line. Parameters appropriate for ~ickel'at 4.2 K were 

used in the calculation, see Table 4-1. The MCA fields I K I I / M ~  
and 21Kll/MS are indicated on t,he figure. 



5 10 
APPLIED FIELD (kOe) 

Figure 2.8 As Figure 2.7 however the applied field was assumed 

to point 5' out of the sample plane with its in-plane projection 

parallel to [0011. The angle between the in-plane components of 

a, and B,, (@M-@H), and the out-of-plane angle, (OM-OH), are 

plotted. Parameters appropriate for Nickel at 4.2 K were used 

in the calculation, see Table 4-1. 
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and so the magnetization was also parallel to the plane. The 

angle between the magnetization and the [001] direction, 

( 4~ - $1, is plotted rather than mM as this permits several 
plots to be displayed on one figure. The angle the field makes 

with the [001] direction, (mH - $1, is shown by a dashed line. 

Curves are shown for the field along (a) [111]; (b) along [110]; 

(c) along [001]; and (d) 16' from the [001] direction. This 

last direction exhibits the most spectacular dragging effects. 

In curve (a) the magnetization is parallel to the field for all 

values of the field. For curves (b) and (c) the magnetization 

is parallel to the field for fields above approximately IKII/MS 

(2.46 kOe) and 21K11/MS (4.92 kOe) respectively. Alignment of 

the magnetization with the field occurs at exactly these field 

values if K2 and K3 are zero. Ferromagnetic resonance in Nickel 

at 24 GHz at 4.2 K occurs at field values of 5.5 kOe and 10 kOe 

respectively for these two directions so that dragging does not 

affect the observed resonance lines when the external field is 

applied along any of the three principle axes in the sample 

plane. In curve (dl it should be noted that even when the 

magnitude of the applied field is 15 kOe there is an angle of 5* 

between the magnetization and the field. 

For the calculation shown in Figure 2.8 the applied field 

was tipped 5' out of the sample plane but with its in plane 

projection parallel to the [001] axis. The variation of mM is 
similar to that of Figure 2.7 ( c ) .  The variation of OM is 

approximately linear in field with a kink at H, = 2IK1 I/M,, the 



field at which OM becomes zero. The angle between &fS and So 

decreases from 1.5' at H, = 21~ll/M~ to 0.5' at Ho = 12 kOe. 

The permeability 

The Landau-Lifshitz equation, rewritten for reference, is: 

where the primes indicate quantities measured in the 

magnetization frame, since it is convenient to carry out the 

calculations in that frame. The effective fields (both static 

and dynamic) are found by taking the derivative of the free 

energy with respect to t-he magnetization: 

where the energy E is given by equation (2.491, and we use the 

notation Ex to denote the derivative of the free energy with 

respect to M; evaluated at equilibrium (Mi = Ms, M' = 0, 
Y 

MI = 0). H; is the static internal field. Expanding H' for 
Y 

small deviations from equilibrium (Z ' ) :  



Similarly: 

H~ = -a2~/am;210rn; - a2~/am;am;l,m' Y (2.52) 

The cross derivative could be made equal to zero by an 

appropriate rotation of the magnetization frame about the 

x'-axis. However with the frame as defined it is necessary to 

carry this term through. The term is zero if the magnetization 

lies in the sample plane or in a (100) or (110) crystal plane. 

The second derivatives have two parts, one due to MCA, and 

.one due to the microwave demagnetizing field. It was seen above 

(equation (2.24)) that the microwave demagnetizing field was 

treated automatically by Maxwell's equations without including 

it in the calculation of the susceptibility (2.13). By 

reviewing the steps outlined in Section 2.2 it can be seen that 

had the microwave demagnetizing field been included in the 

calculation of the susceptibility it would have been counted 

twice in the complete calculation. The effective fields (2.51 

and 2.52) must include only the MCA contribution. With: 



then: 

If Ms lies in the sample plane (OM = n/2) and along a principal 

axis, then E = MSa and EZ, = Msy where a and y are the 
YY 

effective MCA fields listed in Table 2-1. The equations of 

motion become (with a time variation exp(-iot)): 

The permeability is found following the same steps as in 

Section 2.1. The non-zero components of the permeability tensor 

are: 



This permeability tensor is transformed into the lab frame: 

In general all nine components of 2 are non-zero. 

Maxwell's Equations 

The permeability tensor, 2, is combined with Maxwell's 

equations in the same way as above (see equation (2.26)). We 

are neglecting exchange and therefore there are two values of k 2  

corresponding to two forward and two backward propagating waves 

in the metal. If the magnetization is parallel to the sample 

plane these are the non-resonant wave with FI parallel to 

as, and the resonant wave with E perpendicular to as. If the 
magnetization is perpendicular to the sample plane the two waves 

- correspond to circularly polarized waves, one of which is 

resonant and the other is not. In the general case both waves 

have some resonant character. 



The Boundary Value Problem 

Both waves in the metal will be excited unless the 

magnetization is parallel to either the x or y-axes. As a 

result the reflected microwaves are elliptically polarized. The 

boundary conditions are (see Figure 2.4): 

where el,h, and el,h2 are the amplitudes of the two waves in the 

metal. From these equations, the relations between e and h 
j j '  

e = Z . h  
j SI j r  

and the equations (2.26) with the appropriate value 

of k, the unknown field amplitudes hrx, h 
ry' hlxt hly' hzx and 

h 2 ~  
may be found. The reflected power is: 

The calculation follows through as in Section 2.2. 



An Example of the Effects of Draqginq 

The results of two calculations of the absorbed power as a 

function of the applied field are shown in Figure 2.9. The 

parameters used in the calculations were appropriate for Nickel 

at 4.2 K. These are listed in Table 4-1. For both calculations 

the applied field was parallel to the sample plane and 16' from 

the [001] direction (see Figure 2.7 for the variation of eM with 
the applied field for this situation). Curve (a) is the result 

that would be expected if dragging were not considered, if the 

magnetization remained parallel to the applied field for all 

values of the field. This is not what happens of course. In 

curve (b) the dragging has been taken into consideration. The 

shift in FMR to a lower field and the line broadening are clear 

from the comparison of the two curves. 

Although graphs of the angular variation of Hfmr and the 

linewidth, AH, are presented in Chapter 4, a few numbers are 

worth quoting here. The linewidth is approximately 1600 Oe at 

4.2 K. If the applied field is 1 "  away from the [001] axis, in 

the sample plane, the calculated linewidth is 10 Oe greater than 

the [0011 linewidth. A 2' misalignment results in an additional 

broadening of 40 Oe. If the applied field is tipped 2' out of 

the sample plane with its in plane projection parallel to the 

[001] axis the additional broadening is 10 Oe (compare the 

angular variation of By and eM in Figure 2.8). These 

differences are of the order of the experimental uncertainty. 
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Figure 2.9 Calculated absorption in Nickel at 4.2 K, with the 

applied field assumed to lie parallel to the sample plane and 

16" from the I0011 axis. (a) the magnetization was assumed to 

remain parallel to the applied field for all values of the 

applied field. (b) the lack of alignment between the 

magnetization and the applied field was considered. Parameters 

used are listed in Table 4-1. 



A Further Point 

If we assume that the magnetization and the applied field 

are parallel then, by analogy with (2.45), resonance will occur 

at the value of the applied field which satisfies: 

where # is the angle between the applied field and the [001] 

axis: with $ = 0, 4 = mH = The effective MCA fields are 

(compare '2.53) : 

If we consider K1, K2 and K3 these effective fields are, in a 

(110) normal crystal plane: 



If 21Kll/Ms << Hfmr then Ms will be parallel to the applied 

field at the fields at which FMR occurs and the expression 

(2.55) will describe the angular variation of the resonance 

field (neglecting the damping and exchange shifts). This is the 

situation in Nickel at room temperature where 21Kll/Ms = 240 Oe 

and Hfmr= 5 kOe. If 21Kll/Ms * Idfmr as in Nickel at low 

temperatures where 2]Kll/Ms = 4.92 kOe, dragging will have a 

large effect and (2.55) will not describe the angular variation 

Of Hfmr* 

The expression (2.55) combined with the variation of the 

angle between the magnetization and the applied field, @M - #H, 
enables one to give a simple picture of why dragging leads to 

shifts of FMR and to broadened lines. In Figure 2.10 curves (c) 

and (d) of Figure 2.7 are plotted together with Hfmr(@) of 

(2.55) plotted as @ against Hfmr. The microwave frequency in 

Figure 2.10(a) is 24GHz and 9.5GHz in ~igure2.l0(b). If the 

magnetization were parallel to the applied field FMR would occur 

at the intersection of the two curves @H and Hfmr($J), for 

example at the points A and B in (a). As a first approximation 

we may assume that the effective static internal field (parallel 

to the magnetization) is equal to the applied field. This is 

true only if the magnetization is parallel to the applied field, 



Fiqure 2.10 Calculated variation of the direction of the 

9Q - 

60 - 

magnetization with the applied field, as in Figure 2.7. The 
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short dashed lines are a plot of Hfmr(#) from eqn (2.57) at 
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(a) 24 GHz, (b) 9.5 GHz, plotted with the angle on the vertical 

axis. FMR occurs at the intersection of the curves #M(~) and H 

fmr ( 4 ) :  points A ,  B, D and F if dragging is ignored. points A ,  

C. D and E if dragging is considered. Parameters appropriate 

for Nickel at 4.2 K were used in the calculations. 



but this assumption is adequate for the present qualitative 

discussion. With this assumption FMR would occur at the 

intersection of #M(H) and Hfmr(#), that is at the points A and C 

in (a). We see that the intersection at C is at a much lower 

value of the field than the intersection at B. This is the 

shift in the resonance which is seen in the calculated 

absorption curves shown in Figure 2.9. We could imagine drawing 

dashed lines parallel to Hfmr(#) at Hfmr(#)+AHO/2 where AHo 

represents the linewidth with no dragging. The calculated 

linewidth with dragging would be the field interval between the 

intersections of mM(H) with the curves Hfmr(@)+AHo/2. For the 

[001] curve this interval is just AHo. However for the applied 

field 16' off [001] this interval would be much greater than 

AH0 0 

The effects of dragging become more pronounced at low 

microwave frequencies because of the smaller values of Hfmr. The 

variation of Hfmr(#) at 9.5 GHz is shown in FigureZ.lO(b) with 

the same curves of I$~(H) as in (a). If the applied field is 

parallel to [001] the curve @ M ( H )  intersects Hfmr(#) at two 

points, D and E. This means that the absorption line will have 

two peaks, the peak corresponding to D being the peak expected 

if there were no dragging and the peak at E being purely a 

result of dragging. This behaviour is observed in Nickel at 

4.2 K, see Chapter 4. For the applied field 16' off the 10011 

axis the resonance would be expected at F if there were no 

dragging, but as can be seen from the figure, no resonance will 



be observed as the curves g5M(~) and Hfmr(g5) do not intersect. 

This behaviour is also observed experimentally, the resonance 

disappearing for small angles between the applied field and the 

[0011 axis. 

2.4 The Anomalous Skin Effect and FMR 

The calculations outlined in Sections 2.2 and 2.3 describe 

the experimental results well when the temperature is large 

enough that the electrical conduction at microwave frequencies 

can be described by Ohm's law using the dc conductivity. At low 

temperatures the conductivity increases and the conduction 

electron mean free path, I ,  may become comparable to the 

microwave skin depth, 6. When this occurs Ohm's law does not 

provide a satisfactory description of the electrical conduction, 

The electrical conductivity becomes wavenumber dependent or 

non-local. According to the analysis of Korenman and 

Prange[3,4] the magnetic damping also becomes wavenumber 

dependent at low temperatures. The wavenumber dependence of the 

damping is related to the increase in the conduction electron 

mean free path as discussed in Chapter 1. In this Section we 

outline a procedure for calculating the FMR absorption with 

wavenumber dependent quantities. 

First let us consider the criteria for determining when 

wavenumber dependent effects will be important. The electrons 

in a metal which contribute to the electrical conduction travel 



at the Fermi velocity vF. The conductivity is limited by the 

scattering of these conduction electrons by phonons or 

impurities. If the average time between scattering of an 

electron is T, the electron mean free path is I = vFre 

Ohm's law is: 

where j is the current density, e is the electric field and o, 

is the dc conductivity. Ohm's law states that the current 

density, at a point in space at a certain time is related to the 

electric field at that point and at that time only. The 

relationship between the-current density and the electric field 

is said to be a local one. This relation holds if (i) the mean 

free path I is much shorter than the length of spatial 

variations of the electric field, or ql << 1 where q is a 

typical wavevector of the electric field; and (ii) the 

relaxation time T is much shorter than the period of oscillation 

of the electric field, or 07 << 1 where o is the angular 

frequency of the electric field. These two conditions are 

equivalent to saying that the electron experiences a constant 

electric field between scattering events. If either of these 

conditions does not hold the simple local relation between the 

current density and the electric field must be replaced by a '  

non-local relation which accounts for the fact that the current 

density at a point at a given time depends on the value sf the 



electric field at other points in space and at earlier times. 

The non-local relation is written: 

The electrical conductivity is described by the quantity K. If 

the electric field varies in space and time as exp(i(6-%at)), 

i.e. if the field is described by a single wavenumber q, and a 

single frequency o, this relation becomes, for an infinite 

medium: 

where o(G,w) is the frequency and wavenumber dependent 

conductivity, o(G,o) is the Fourier transform of ~(i,t). This 

expression resembles Ohm's law and may be called a generalized 

Ohm's law. 

If we assume that the local Ohm's law is valid and consider 

what happens when an electromagnetic wave of frequency w is 

incident on a non-magnetic metal(p = I ) ,  the electric field in 

the metal will be: 

where k = ( 1  + i)/6 and 6 is the skin .depth for a local 

conductivity, S2 = c2/2ro&. The electric field oscillates in 



space with a wavelength 2n6 and the amplitude decays 

exponentially with distance into the metal with a decay 

constant 6. The wavenumber spectrum of this electric field 

distribution has a maximum at q = 1/6, that is, the scale of 

spatial variation of the electric field is determined by the 

skin depth. The condition ql << 1 is equivalent to 1/6 << 1 .  

The wavenumber dependence of the conductivity becomes important 

when ql = 1 ,  or when the electron mean free path becomes 

comparable to the skin depth expected from a calculation based 

on a local conductivity. 

In a magnetic metal k = d=/6 '(equation 2.291, the 

effective skin depth is reduced by the permeability. Since the 

permeability is large at FMR the values of q are also large and 

~ ( F M R ) ~  may be >> ql for a non-magnetic metal having the same 

dc conductivity. This means that wavenumber dependent effects 

may be important at FMR at much higher temperatures than for a 

non-magnetic metal having the same dc conductivity. 

A consequence of the wavenumber dependence of the 

conductivity is that the microwave penetration depth is no 

longer 6  when ql > 1 but saturates at a constant value 

6~ = (6'1 ) ' 1 3 [ 8 ] .  For FMR measurements this means that the 

effects of exchange at low temperatures are reduced over those 

which would be expected if a local conductivity were used. 

Some representative values for ~ickel are given in 

Table 2-3 for room temperature, and for resistivity ratios of 

10, corresponding to 77 R, 38, corresponding to 4.2 K for the 



samples used in our experiments, and 100. Listed in the Table 

are the values of the skin depth for a permeability of 1 ,  the 

magnitude of the permeability at FMR calculated using the 

program of Section 2.3 with the values of the damping parameter 

required by experiment (see Chapter 4 ) ,  the values of the 

average wavevector q for permeability 1 and at FMR assuming 

q = 1/6, the electron mean free path and the dimensionless 

ratios UT and ql. These numbers should be viewed as 

approximate, not absolute. As can be seen U T  is estimated to be 

much less than 1 over the range of temperature and purity 

represented in the Table. While ql is much less than 1 at room 

temperature it is clear that wavenumber dependent effects are 

likely to be important at low temperatures. The temperature at 

which wavenumber dependent effects become important is a matter 

for experiment to decide but we can see, for example, that a 

local conductivity would probably be applicable for Nickel at 

77 K. 

Having established the need for considering a non-local 

conductivity we may write down the expression for the 

conductivity of a metal characterized by a spherical Fermi 

surface[51 I :  

In the limit q l < < l  and u ~ < < l  this expressi~n reduces to the dc 



TABLE 2-3 

77 

10 

10-j3 

4 . ~ x I O - ~  

2 . 7 ~ 1 0 - ~  

3.6x104 

8x108 

7.6 

10.0~104 

250 

0.25 

62 = c2/2130o0 = 109p(Qcm)/4azf 

~(FMR) = qdl P(FMR) 1 
pzg5 = 7.2~10-~Qcrn 

f = 24 GHz 

v = 2.5x107 cm/sec F 

I = VFT 

The values of the damping parameter used in calculating the 

permeability are those required by experiment, if a non-local 

conductivity and a wavenumber independent damping is assumed, 

see Chapter 4. 



conductivity 0 , ;  in the limit ql>l and w r < < l :  

using arctan(x) = (i/2)ln[(l-ix)/(l+ix)]. Although the Fermi 

surface of Nickel is not spherical this expression can be 

expected to provide a good first approximation. 

The permeability is also wavenumber dependent. The 

calculation of the permeability follows exactly as in 

Section 2.2. If the exchange torque is considered the 

permeability depends on q. This wavenumber dependence was 

treated in Section 2.2. At low temperatures the magnetic 

damping becomes wavenumber dependent introducing an additional 

q-dependence. This is a result of the intra-band scattering 

mechanism mentioned in the Chapter 1. Following the discussion 

of Cochran and Heinrich[37] the spin-flip and intra-band 

contributions to the damping may be included by assuming: 

where T is the temperature. The first term corresponds to the 

result of Korenman and Prange[3,4] for intra-band scattering, 

while the second is the result expected for spin-flip 

scattering(~lliott[lO], ~ambersky[2]). The parameters a and b 

are varied to match the experimental results for the temperature 



dependence of the damping parameter[37]. The mean free path 

which en'ters the damping, ID, is the mean free path of the 

d-band electrons on the X5 hole pockets. There is no reason to 

assume that this mean free path should be the same as the mean 

free path which enters the conductivity. This expression 

provided a good description of the FMAR results of Cochran and 

Heinrich with the substitution arctan(qlD)/qlD = 1 at FMR. 

Since 6 is large at FMAR, qlD is small. 

The wavenumber dependent permeability, including exchange 

and wavenumber dependent damping is: 

A calculation involving a wavenumber dependent conductivity 

requires a knowledge of how the conduction electrons scatter 

after a collision with the metal surface. Two limiting cases 

are usually discussed: (i) specular scattering, or mirror 

reflection of electrons colliding with the surface; or 

(ii) diffuse scattering, where the trajectory of an electron 

after a collision with the surface is totally unrelated to the 

trajectory before the collision. A complete calculation would 

also have to include the effect of the applied magnetic field on 

the trajectories of the conduction electrons. 

Cochran and Heinrich[52] have carried out calculations of 

the absorption and transmission of microwaves in ferromagnetic 



materials using a non-local conductivity. Three combinations of 

surface scattering, curvature of electron orbits in the applied 

magnetic field and exchange were used in the calculations: 

(i) specular scattering, curvature of the orbits neglected and 

exchange; (ii) diffuse scattering, curved orbits and no 

exchange; and (iii) diffuse scattering, curvature of the orbits 

neglected and no exchange. Their results show that the field 

dependence of the absorption is insensitive to the type of 

surface scattering, and that neglect of the curvature of the 

electron orbits has little effect. This insensitivity is a 

result of the similarity of the electric field distributions in 

the skin layer for the two forms of surface scattering. 

The computer program we used to make calculations for 

comparison with experiment was the program of (i) above with the 

addition of a wavenumber dependent damping of the form 2.60. We 

will outline the procedure used to calculate the absorption with 

the assumptions of specular scattering, wavenumber dependent 

permeability and no curvature of electron orbits. For a 

discussion of the calculation of the absorption if diffuse 

scattering is assumed the reader is referred to the paper of 

Hirst and Prange[9]. 

The same geometry was used for this calculation as was used 

for the calculation of Section 2.2, see Figures 2.1 and 2.4. 

The sample is assumed to form a slab of infinite extent lying in 

the x-y plane. The front surface of the slab is at z = 0. The 

slab thickness is much greater than the microwave skin depth so 



that the sample may be considered semi-infinite in the 

z-direction. The applied field lies in the sample plane and 

points in the x-direction. We consider only cases where the 

applied field is parallel to a principal axis and assume that 

the magnetization is parallel to the applied field for all 

values of the applied field. The calculation will be valid for 

all field values if the field is along (111), for fields. greater 

than IKII/Ms if the field is along (110) and for fields greater 

than 21K11/Ms if the field is along (100). see Section 2.3. MCA 

is included through the effective fields a and y ,  see Table 2-1, 

Microwaves travel in the +z-direction with the electric field in 

the x-direction and the magnetic field in the y-direction. 

As was demonstratedFin Section 2.2 the power absorbed by 

the specimen is proportional to the real part of the surface 

impedance. The surface impedance is the ratio of the electric 

and magnetic fields at the surface of the metal. With the 

geometry of Section 2.2: 

In Section 2.2 this quantity was found by ( i )  solving the 

- Landau-Lifshitz equation for the permeability D ;  (ii) combining 

this permeability with Maxwell's equations to determine the 

wavevectors of the waves which could propagate in the metal; and 

(iii) solving the boundary value problem of the reflection of 

microwaves from the surface of the metal. With a wavenumber 
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dependent conductivity (ii) is not simple as in the local 

conductivity case as we cannot use Ohm's law to relate the 

current density in the metal to the electric field. ~nstead we 

work with the Fourier transforms of the fields in the metal and 

use the generalized Ohm's law (2.58). 

To describe the approach taken when assuming specular 

scattering we can do no better than to quote ~ippard[8]:."With 

specular scattering electrons leaving the surface have suffered 

an energy change exactly as if they had come straight through 

the surface from an identical semi-infinite metal in which the 

real electric field is mirrored. We may therefore replace the 

real problem by one in which the metal is infinite and 

ex(-z) = ex(z). There will be a discontinuity in the gradient 

of ex at z = 0 which means that there must be a current sheet 1 

supplied by an external source at z = 0 in order to produce any 

field in the infinite metal." Pippard was considering the case 

in which there was no applied magnetic field so that the 

electron orbits were not curved. We have a magnetic field but 

are neglecting the curvature of the orbits and so may us'e the 

same replacement. Since ex(-z) = ex(z), from Faraday's law 

h (-2) = -h (z) and there will be a discontinuity in h at 
Y Y Y 
z = 0. 

Maxwell's equations are: 



where the displacement current has been neglected as in 

Section 2.2. The fields are assumed to vary in the z-direction 

only and to have a time dependence exp(-iot) so: 

If Ohm's law were valid we would have jx = ooex and we would 

recover the results of Section 2.2. We take the Fourier 

transform of these equations by multiplying by exp(iqz) and 

integrating from z = -a to z = +a. Remembering the 

discontinuity at z = 0 we have: 

OD 

where f (q) = exp(iqz)f(z) and ho is the value of the magnetic 

field at z = O+. Combining these equations: 

Since: 



then: 

and the surface impedance is: 

The absorbed power is: 

Given expressions for the wavenumber dependent conductivity and 

permeability it is straightforward to carry out this integration 

numerically. 

The integral may be evaluated analytically in the extreme 

anomalous limit, ( q l > > l ) ,  if the permeability is wavenumber 

independent, ie if a local damping parameter is used and 

exchange is neglected. In the extreme anomalous limit the 



and the surf ace impedance becomest: 

This expression may be combined with the permeability obtained 

with the calculation of Section 2.3 to obtain the absorption in 

the extreme anomalous limit with no exchange and a local 

damping. The computer program written to perform the 

calculation of the absorption assuming a wavenumber dependent 

conductivity and damping gave results in good agreement with 

those calculated using this expression for the surface impedance 

in the extreme anomalous limit. 

We had two other checks on the program. The results of the 

program agreed with the results of the program which carried out 

the calculation of Section 2.2 in the local limit, ql << 1. The 

second check was to compare line positions and widths with the 

calculated line positions and widths quoted by Hirst and 

Prange[9] from their calculation of the absorption which assumed 

a non-local conductivity and diffuse scattering of electrons at 

the sample surface. Our results were in good agreement with 

theirs. 

' A factor of 4a/c is often included in the definition of the 
surface impedance, see for example Hirst and ~range[9]. 



3. EXPERIMENTAL DETAILS 

3.1 Introduction 

The FMR linewidth, AH, increases with decreasing 

temperature and saturates at low temperatures if the resistivity 

ratio is greater than approximately 30(Bhagat and ~irst[l]). We 

wish to determine whether the linewidth, and hence the magnetic 

damping, is anisotropic at low temperatures. To do this we 

measure FMR with the external field parallel to each of the 

three principal axes, (loo), (110) and ( 1 1 1 ) .  .Ideally we would 

measure the temperature dependence of AH for each of these three 

axes from room temperature to 4.2 K where the linewidth 

saturates. The greatest interest is attached to the 4.2 K 

measurements where any dependence of AH on the direction of the 

external field with respect to the crystal axes should be most 

evident. 

The FMR line becomes very broad on cooling: AH at a 

microwave frequency of 24 GHz increases from 320 Oe at room 

temperature to approximately 1600 Oe at 4.2 K. The peak 

absorption also becomes weaker as the specimen is cooled and at 

4.2 K is approximately 7% that at room temperature (based on the 

calculations outlined in Chapter 2 ) .  The conventional method 

for measuring FMR uses a field modulation technique which 
," 

/ 



measures the derivative of the absorption with respect to the 

applied field. If a constant modulation amplitude is maintained 

the signal at 4.2 K is smaller than the room temperature signal 

by a factor greater than 50. In practice the modulation 

amplitude is reduced at low temperatures by screening due to 

eddy currents. Using this technique we were able to observe FMR 

at the lowest temperature accessible with liquid nitrogen 

(pumped liquid nitrogen = 60 K), but could not see any signal at 

4.2 K. For the 4.2 K measurements the absorption of the sample 

was measured directly using a bolometer. Measurements of the 

linewidth were not made between 4.2 K and 60 K, however the 

resonance field could be measured over the entire temperature 

range by monitoring the dc voltage on the microwave diode. 

In this chapter we discuss (i) the samples and their 

preparation; (ii) detection of the FMR signal; (iii) the 24 GHz 

microwave cavity and the sample mounting; (iv) the 24 GHz 

microwave system and (v) measurements at other frequencies. 

Useful references for this chapter are "Technique of 

Microwave Measurements" by Montgomery[53] and "Microwave 

Measurementsw by GinztonL541 for the properties of microwave 

components and resonant cavities and "Electron Spin Resonance" 

. by Poole[55] for information on all experimental aspects of 

magnetic resonance studies. Any unreferenced statements in this 

chapter may be traced to one of these three books. 



3.2 Samples 

The quality and preparation of a sample used in an FMR 

experiment is extremely important for obtaining reliable 

results. Strains, imperfections and deviations from flatness 

lead to broadening of the FMR line which obscures the intrinsic 

contribution to the linewidth. We cite for example the ' 

experience of Frait and MacFaden[26] with Nickel. Even with 

careful preparation of the sample they obtained linewidths some 

200 Oe larger than the intrinsic linewidth (at 25 GHz). 

The samples used for the present experiments were thin 

disks cut with a (110) direction normal to the plane of the 

disk. The (110) plane contains the three principal axes ( 1 0 0 ) ~  

(410) and ( 1 1 1 )  (see Figure 2.2). The starting material was a 

boule of single crystal Nickel, 3/4 inches in diameter, nominal 

purity 99.99%, purchased from Mono crystalst. The residual 

resistivity ratio (RRR = P295/~4) of this material measured on 

one of the samples used for FMR measurements was 38. Bhagat and 

HirstCl] found that the linewidth at 4.2 K was independent of 

the resistivity ratio if this ratio was greater than 

approximately 30. 

The boule was oriented with x-rays using the Laue back 

reflection technique. The error in alignment (angle between the 

sample normal and a (110) axis) was less than 1.5 degrees. 

Slabs approximately 1 mm thick were spark cut from the boule, 

'~ono Crystals, 1721 Sherwood Blvd., Cleveland, Ohio 



then spark cut into circular disks 16 mm in diameter, the 

largest diameter consistent with the microwave cavity used. The 

disks were mechanically polished, on both sides, initially with 

300 grit silicon carbide paper, followed by 600 grit paper, to a 

thickness of approximately 500 pm. ~pproximately 75 pm was 

removed from each side alternately to a thickness of 

approximately 300 pm. One side was polished with 4 pm d,iamond 

grit then electropolished. Electropolishing was done in a 

solution of 60% H,SO,, 40% distilled water at room temperature 

with a current density of approximately 1 amp/cm2[56]. The 

other side of the sample was then diamond polished to within 50 

pm of the final thickness and electropolished. Sample surfaces 

after electropolishing were smooth and mirror-like. The final 

thickness was approximately 150 pm. This was a convenient 

thickness to work with. The ratio of diameter to thickness was 

100 so that the demagnetizing field (equation 2.3) was small, 

being approximately 30 Oe. 

The samples were not annealed. Bhagat and ~ubitz[l3] found 

that the FMR linewidth at 22 GHz of well annealed samples was at 

most 20 Oe narrower than samples which had not been annealed. 

Also annealing usually causes the resistivity ratio to decrease, 

. presumably because of incorporation of impurities(~ewar[57]). 



3.3 Experimental Observation of FMR 

The task is to measure the power absorbed by a sample from 

an incident microwave field polarized with the microwave 

magnetic field perpendicular to a static magnetic field. The 

simplest way to do this is to use the sample as a termination on 

the end of a piece of waveguide and monitor the reflected pow.er. 

The microwave circuit for such a system would consist of a 

klystron, an isolator to match the klystron to the rest of the 

circuit, a directional coupler to intercept a portion of the 

microwaves reflected from the sample, and a diode to detect this 

signal. 

If the steps outlined in Section 2.2 to obtain the 

equation (2.36) were repeated using boundary conditions 

appropriate for a sample in a waveguide the power reflected from 

the metal surface would be found to be: 

where Po is the incident power, Zs is the surface impedance of 

the metal, if the conductivity is described by Ohm's law 

zs =(o6/2c)/-, 6 is the skin depth, 62=c2/2noo, and Zw is the 

waveguide impedance, the ratio of the maximum amplitudes of e 

and h in the waveguide. The waveguide used in the 24 GHz 

experiments was WR42 or RG53/U waveguide (equivalent 

designations). The inside dimensions of this guide are 



0.420 x 0.170 inches. The cutoff wavelength, Itc, the guide 

wavelength, X and the impedance for the TElo waveguide mode are 
9 

(for 24 GHz, X = 1.25 cm): 

X = 2x(0.420 inches) = 2.13 cm 
C. 

hg 
= X/I/I-(X/X~)~ = 1.54 cm 

Since Zw is close to 1 we will equate it to 1 in the essentially 

qualitative discussion that follows. For Nickel at room 

temperature and 24 GHz the surface impedance is: 

Since the surface impedance is small (see equations 2.38): 

write the absorbed power in terms of the 

magnetic field at the surface of the sample since it is the 

magnetic field at the surface that is known in a resonant cavity 



(see below): 

where f is the frequency and the integral is over the tangential 

components of the microwave magnetic field. The magnetic field 

at the surface is just twice the incident magnetic field. 

The absorbed and reflected power vary as the external field 

is swept through FMR. The fraction of the incident power 

absorbed when 4 = 1 and the ratio of the change in reflected 

power on sweeping through FMR to the reflected power are (using 

the values of ZS quoted above): 

The signal is small and is superimposed on a large background. 

The signal to noise ratio may be improved by using field 

modulation. A small alternating magnetic field is applied 

parallel to the dc magnetic field. The component of the 

reflected signal at the frequency of the modulation field is 

detected and amplified by a Pock-in amplifier. If the 

modulation amplitude is small compared with the FMR linewidth 

the resulting signal is the derivative of the absorption with 

respect to the dc field. 



The choice of modulation frequency is governed by a number 

of factors. Since the noise contributed by the microwave 

detector (a diode in our experiments) decreases as the inverse 

of the frequency a higher modulation frequency usually results 

in a better signal to noise ratio. There are problems with high 

frequencies however which are discussed below. 

The signal may be increased by placing the sample in a 

resonant cavity. For our experiments the sample formed part of 

the endwall of a cavity. The sensitivity of a cavity reflection 

system has been discussed by Peher[58]. A resonant cavity is 

the microwave anal.ogue of a resonant LCR circuit. The cavity is 

characterized by a resonant frequency, f o r  and a quality factor, 

Qf which relates the energy stored in the cavity. Estoredf to 

the energy dissipated in one cycle: 

= '* E~tored /E dissipated in one cycle 

Energy is dissipated in three ways: by resistive losses in the 

walls of the cavity, by absorption in the sample and by 

radiation through the hole used to couple microwaves into the 

cavity. The unloaded Q, QU, the external Q, Qe and the loaded 

Q, QL are defined: 



- 
Qe - 2 n  Estored /E lost through coupling hole 

in one cycle 

where Ew is the energy dissipated in the walls of the cavity in 

one cycle and Es is the energy dissipated in the sample in one 

cycle. The loaded Q takes into consideration all the energy 

lost or dissipated. The energy stored in the cavity is: 

where the integral is over the volume of the cavity and is 

evaluated at a time when-the magnetic fields are at their 

maximum value (the electric fields are zero at this time). The 

energy absorbed in the walls of the cavity in one cycle is Ew: 

where 6, is the skin depth of the walls, the permeability of the 

walls is taken to be 1 and the integral is evaluated when the 

fields have their maximum value. In addition to the quality 

factors defined above it is convenient to define what may be 

called the sample Q, Qs, and,the filling factor, q :  



Qs = 27r Estored/E dissipated in one cycle 

These integrals are straightforward to work out given the field 

distributions for the cavity mode of interest. 

If microwave power Po is incident on the cavity the power 

absorbed in the cavity, and the power reflected from the 

cavity, Pr, are determined by the coupling constant 8: 

If equals one the cavity is said to be 'critically coupled'. 

If the klystron frequency matches the resonant frequency of the 

cavity at critical coupling the reflected power is zero and all 

the incident power is dissipated in the sample and the cavity 

walls. If is greater(1ess) than one the cavity is 

under (over )coupled. 

Use of a cavity has two effects, the power absorbed by the 

sample may be increased, and the sensitivity, the ratio APr/p,, 



is increased over that if no cavity is used. 

The ratio of the energy absorbed in the sample to the total 

energy absorbed in the cavity (walls plus sample) is: 

A very crude estimate of this ratio is the ratio of the 'area of 

the sample to the total wall area. Suppose the sample area was 

1/30 the total wall area and that the coupling of the cavity was 

adjusted so that 2/3 of the incident power was absorbed in the 

cavity (a  typical situation). The power absorbed by the sample 

would be approximately 1/45 of the incident power, a large 

increase over the power absorbed if the sample formed a short on 

the end of the waveguide (compare (3.2) above). If we wished to 

maximize the power absorbed by the sample we would use a 

. critically coupled cavity, so that all the incident power was 

absorbed in the cavity, and make the area of the sample as large 

a fraction of the total wall area as possible. The Q of the 

cavity is irrelevant in maximizing the absorbed power. 

The increase in sensitivity is a more important effect for 

reflection measurements. We assume for this discussion that the 

ratio of the energy dissipated in the sample to that dissipated 

in the walls is small. The change in absorption of the sample 

on sweeping through FMR has then only a small effect on the 

cavity Q. If the energy absorbed by the sample changes by an 



amount AEs the change in the unloaded Q is: 

AQu = ( aQ,/aES)AEs = -QuAES/(E w +ES (3.11) 

This change in Q produces a change in the power reflected from 

the cavity: 

For a given AE, the change in reflected power is a maximum if 

fl = 2fd3, the plus(minus) sign corresponding to an under(over1 

coupled cavity. The sensitivity for the two couplings is the 

same. The maximum is fairly broad so that it is not necessary 

that f l  be exactly 2243. It is clear that critical coupling 

(fl = I )  must be avoided. With f i  = 2fd3 the power reflected from 

the cavity when Us = 0 is 1/3 of the incident power. The 

change in reflected power if AES + 0 is: 

The quantity AES/(Ew+Es) may be related to the unloaded Q: 



so that, at optimum coupling: 

where Es has been neglected with respect to Ew. The sensitivity 

now involves a factor containing the unloaded Q of the cavity. 

Since values of the Q are typically several thousand this may 

provide a substantial increase in signal. Note that the filling 

factor, q ,  is important in determining the sensitivity. When 

comparing cavities resonating in different modes, for example a 

rectangular vs a cylindrical cavity, the filling factor must be 

considered. In other words the Q isn't everything. To maximize 

the sensitivity in reflection measurements we would choose a 

cavity with as high a combination of filling factor and Q as 

possible, coupled so that 1/3 of the incident power is 

reflected. 

 his analysis holds only if the fraction of the power 

absorbed by the sample is small in which case the power 

reflected from the cavity varies linearly with the change in 

absorption of the sample. If the change in power absorbed by 

the sample is an appreciable fraction of the total power 

absorbed in the cavity the reflected power no longer varies 

directly with the absorption of the sample. The sample is said 



to load the cavity. If the loading is severe the PMR lineshape 

will be distorted. 

The resonant frequency of the cavity is shifted by the 

absorption and by the reactive component of the surface 

impedance of the sample. In an absorption experiment we are 

interested in the changes in power reflected from the cavity due 

to the change in the cavity Q not those due to change in'the 

cavity frequency relative to the klystron frequency. The 

klystron frequency is usually locked to the cavity resonant 

frequency. The klystron frequency can be modulated by applying 

a small alternating voltage on top of the dc klystron reflector 

voltage. The amplitude and phase of the component of the signal 

reflected from the cavity at the modulation frequency depend on 

the difference between the klystron center frequency and. the 

cavity frequency because at resonance there is a decrease in the 

power reflected from the cavity. For small differences the 

amplitude is directly proportional to the difference. Using a 

lock-in amplifier this component may be detected and used to 

generate a dc voltage which is fed back to the klystron 

reflector so that the klystron frequency follows the cavity 

frequency. 

The sample forms part of the cavity endwall. Since 

microwave currents flow across the junction between the cavity 

and the sample good electrical contact is essential to avoid 

distorting the cavity mode. Poor contact reduces the cavity Q 

and changes the resonant frequency and the coupling. These 



changes may depend on the external field due to the changing 

surface impedance of the sample. Therefore when FMR is measured 

with a poor contact the lineshape may be badly distorted. 

The energy dissipated in the cavity depends on the 

electrical conductivity of the walls. The conductivity 

increases with decreasing temperature leading to a higher Q, a 

higher resonant frequency and different coupling. Usually it is 

necessary to use a tuning rod, a piece of quartz for example, 

which lowers the resonant frequency when inserted into the 

cavity, to ensure that the cavity resonant frequency does not 

escape the frequency range of the klystron. The cavity 

frequency also shifts when the cavity is evacuated, due to the 

dielectric constant of air. In our experiments these shifts 

were of the order of a tenth of a gigahertz. 

As stated above the field modulation technique yields the 

derivative of the absorption. For very broad lines, such as 

those for ~ickel at low temperatures, the sensitivity of this 

technique is small. The amplitude of the extrema of the 

absorption derivative varies as ( A H )  - I o 5  so for a constant 

modulation amplitude the signal would decrease in the same 

manner. In our case it became necessary to measure the 

- absorption directly. We used a bolometer to measure the 

temperature of the sample. The use of a bolometer in magnetic 

resonance measurements has been discussed by Schmidt and 

Solomon[59] and by Cochran, Heinrich and Dewar[60]. The field 

modulation and bolometric systems used in our experiments are 



described in Section 3.5. 

3.4 The Cavity and the Sample Holder 

The Cavity 

The microwave resonant cavity which was used in these 

experiments is sketched in Figure 3.l(a). The cavity consisted 

of two parts: the main body, which was basically a metal bucket, 

and an endwall which was clamped over the open end of the 

cavity. The endwall is sketched in Figure 3.l(b) and is 

described below. The cavity dimensions were 14 mm deep and 

16.3 mm inside diameter. The thickness of the upper end, the 

end with the coupling hole, was 0.020 inches. 

The cavity resonated in the TE,,, cylindrical cavity mode. 

The field distributions for this mode are shown in ~igure 3.2. 

The cylindrical TE,, waveguide mode is the dominant mode for a 

cylindrical geometry, the cutoff wavelength being 3.413 times 

the cylinder radius. This mode is similar to the rectangular 

TElo waveguide mode and may be derived from the rectangular mode 

by a distortion of the rectangular guide to a cylindrical shape, 

The cavity was coupled to the waveguide through the upper 

endwall and the cavity was oriented so that the sample was in a 

horizontal plane. The angle between the sample normal and the 

vertical was less than 1'. 
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Figure 3.1 The 24 GHz microwave cavity (a) and the sample 

holder (b). 

Fiqure 3.2 Field configurations for the TE,,, cylindrical cavity 

mode. The dashed lines represent the microwave magnetic field 

and the dots and crosses represent the microwave electric field. 



The cavity was designed for a high frequency modulation 

system. For this purpose it was desired to use a material with 

a poor electrical conductivity which would not shield the 

modulation field. The material used was a 30% Ni-70% Cu alloy 

which has a room temperature resistivity of approximately 

40x10-~ Ocm which is essentially temperature independent. To 

improve the Q the cavity was polished with diamond polish and 

plated with a layer of gold several microwave skin depths thick. 

Since the high frequency modulation did not work well, however, 

the use of a poor conductivity material for the cavity was not 

important. 

The cavity coupling was adjusted to give nearly maximum 

sensitivity in reflection. As pointed out above this is not a 

critical adjustment. However care must be taken to avoid the 

condition corresponding to critical coupling. Critical coupling 

may accidentally occur if the cavity is undercoupled at room 

temperature and if the Q increases upon cooling. The resonant 

frequency at room temperature was near 23.95 GHz. The loaded Q 

was approximately 3500. All of these quantities depended on the 

quality of the contact established between the endwall and the 

cavity. Before making a measurement the clamping bolts were 

adjusted to obtain the maximum loaded Q. The cavity frequency 

could be varied by means of a quartz tuning rod driven 

vertically into the cavity by a micrometer drive mounted on the 

upper flange (see Figure 3.4). 



The Sample Holder 

To measure FMR it is necessary to hold the sample in a 

fixed orientation with respect to the applied field. The 

magnetocrystalline anisotropy becomes large in Nickel at low 

temperatures, the first MCA constant increasing from a room 

temperature value of -0.59x105 erg/cm3 to -12.9x105 erg/c.m3 at 

4.2 K. This corresponds to an effective field of approximately 

2.5 kOe at 4.2 K. If the applied field is not parallel to an 

easy axis (( 1 1 1 )  direction) large torques arise which tend to 

rotate the sample until an easy axis is parallel to the field. 

If the sample is prevented from rotating by being glued or 

soldered to a substrate the strain resulting from the 

differential thermal contraction of the sample and the substrate 

leads, through magnetostriction, to shifts in the position of 

FMR and may lead to broadening of the line. The mounting of the 

sample is thus of critical importance for low temperature 

measurements. 

Our solution to this problem is shown in Figure 3.l(b). 

The sample was held in a demduntable endwall assembly which was 

clamped over the open end of the cavity. The endwall was a 

- circular piece of copper 1/4 inch thick. The surface forming 

part of the cavity was gold plated. The center of the endwall . 
was machined to 8.020 inches thick to accommodate the sample. 

The center of the sample was exposed to the microwaves through a 

hole 7 mm in diameter. The sample was lightly pushed against 



this wall by a brass plunger attached to the endwall. Springs 

were placed on the bolts holding the plunger to the endwall to 

avoid having the pressure on the sample vary with temperature 

due to the thermal contraction of the various pieces. These 

springs were wound from phosphor bronze wire. The plunger had a 

hole in it to allow access to the back of the sample for the 

measurements made with the bolometer (Section 3.5). 

The endwall was clamped to the cavity using the two rings 

shown in the figure. The bolts used here were also spring 

loaded. The endwall assembly could be rotated on the cavity; 

thus rotating the sample in order to measure FMR along each of 

the three principal axes was straightforward and meant that the 

sample mounting remained unchanged between coolings to 4.2 K. 

The endwall also fitted a cavity which was part of a 9.5 GHz 

system so that measurements could be made at the two frequencies 

without having to remount the sample. 

3.5 The 24 GHz Microwave System 

A schematic drawing of the 24 GHz system is shown in Figure 

3 , 3 .  The part of the system to the left of the vertical dashed 

line in the Figure was part of a microwave transmission system 

which has been described in detail[60], with the addition of the 

electronic switch. Apart from the klystron and the klystron 

power supply all the microwave components were the same as those 

described in that paper. The reader is referred to that paper 



Fiqure 3.3 Schematic drawing of the 24 GHz microwave system. 



if more information is required. 

The components were mounted on a table approximately 2 m 

high from which the resonant cavity was suspended in the magnet 

gap. The magnet was mounted on rails and could be moved to 

allow easy access to the cavity. For low temperature 

measurements a stainless steel liquid helium dewar was placed 

around the cavity and bolted to a flange on the table. . 

The magnet was a Varian V-3800 electromagnet having a 

3 1/2 inch gap. Fields up to 16 kOe could be obtained. A 

Bell 810 Field Meter was used to provide a signal proportional 

to the value of the field. The field values were calibrated 

with an NMR system[61]. In addition to being mounted on rails 

the magnet yoke could be rotated about a vertical axis. 

Microwaves were generated by a Varian klystron (type 

VA 282 EY) driven by a PRD Electronics Inc Type 819-A Universal 

Klystron Power Supply. The klystron operated in a frequency 

range 23.8' to 24.0 GHz with an output power of 300 mW. The 

klystron frequency was locked to the resonant frequency of the 

microwave cavity as described above. 

The electronic switch was used to amplitude modulate the 

microwave power for measurements made with the bolometer (see 

below). The four port switch was not essential for the FMR 

measurements but was useful for diverting the microwaves when 

changing the sample. The signal reflected from the cavity was 

detected by the microwave diode attached to the directional 

coupler. The diode mount was electrically isolated from the 



microwave track by placing a mica gasket between the waveguide 

flanges and using nylon bolts. This overcame problems with 

ground loops. The microwave frequency could be measured with an 

accuracy of .005 GHz by means of a Hewlett Packard K532A 

frequency meter. The variable attenuator served to vary the 

power incident on the cavity. 

The part of the system to the right of the dashed line in 

Figure 3.3 is shown in Figure 3.4. This part of the system was 

designed specifically for these experiments. A vacuum seal 

consisting of a mica gasket and a Viton O-ring was placed 

between the microwave flanges above the upper flange. A length 

of stainless steel waveguide between the upper flange and the 

cavity provided for thermal isolation of the cavity. The 

copper-stainless steel waveguide joint was made by milling out 

the inside of a portion of the copper waveguide and soldering 

the stainless guide to it. 

The cavity was bolted to a flat flange at the end of the 

guide, and could be easily removed for changing samples and 

,mounting the bolometer. A stainless steel can, 2 inches in 

diameter, could be attached to the lower flange to isolate the 

cavity for low temperature measurements. This can could be 

. evacuated through the stainless steel tube shown in the figure. 

The tuning rod for the cavity and wires were brought into the 

can through this tube. Two additional vacuum feedthroughs were 

placed in the lower flange. A heater resistor was attached to 

the waveguide above the cavity to allow one to vary the 
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temperature of the cavity. 

Temperatures were measured using a copper constantan 

thermocouple and using a carbon glass resistance thermometer 

attached to the cavity endwall. The resistance of the carbon 

glass thermometer was measured by means of a Keithley digital 

multimeter in four-wire mode or with an SHE Conductance Bridge. 

A calibration table was supplied by the manufacturer. 

Measurements between 4.2 K and approximately 60 K were made 

on the fly as the system warmed from 4.2 K, At 60 K 

measurements were made by pumping on liquid nitrogen around the 

can. Temperatures above 7 7  K could be held constant by means of 

a controller which regulated the current through the heater 

resistor in order to maintain a constant signal from the 

thermocouple. The controller kept the temperature constant to 

better than 0.5 K. Since both the magnetocrystalline 

anisotropy, which shifts the position of the resonance, and the 

damping are strong functions of temperature between 4.2 K and 

room teGperature it is essential that the temperature be held 

constant. For example the effective magnetocrystalline 

anisotropy field, 2 1 ~ 1  I/M~, changes by approximately 12 Oe per 

degree at 200 K and by approximately 24 Oe per degree at 100 K. 

The linewidth changes by approximately 12 Oe per degree at 7 7  K. 

For temperatures accesible using liquid nitrogen, down to 

approximately 60 K by pumping on the liquid, low frequency 

(=I00 Hz) field modulation was used. No signal could be 

observed at 4.2 K using this technique. An attempt was made to 



use high frequency modulation but this was unsuccessful (see 

below). For the 4.2 K measurements we used a bolometer to 

detect the absorption directly. 

The dc voltage across the microwave diode was monitored in 

all measurements made. FMR was observed as a change in the dc 

level. The variation with the external field could be traced on 

an X-Y recorder and was used to determine whether the sample was 

loading the cavity. The signal could be used to find the 

resonance field Hfmr, but it was too noisy to yield reliable 

values of the FMR linewidth. 

Low Frequency Modulation 

A pair of Helmholtz coils, approximately 30 cm in diameter, 

were mounted on the pole pieces of the magnet. These were 

driven by the reference channel of a PAR 124  lock-in amplifier, 

amplified by a Kepco Bipolar Operational Power Supply/~mplifier. 

These coils produced a field of approximately 1 Oe per volt of 

driving at 100 Hz in an empty gap. The Kepco power supply could 

deliver 75 volts. The field amplitude at the sample was less 

than 1 0e/volt because of screening of the field by eddy 

currents in the cavity walls and in the dewar. The dewar 

contained a liquid nitrogen cooled copper shield around the 

helium pot so the screening became appreciable at low 

temperatures, even at a frequency of 100 Hz. 



The voltage from the microwave diode was fed to the lock-in 

amplifier. The output from the lock-in amplifier went to the 

Y-channel of an X-Y recorder. The input to the X-channel was 

obtained from a Hall probe which provided a voltage proportional 

to the external field. Since a field modulation technique 

yields the derivative of the absorption with respect to the 

external field the linewidth, defined as the field interval 

between extrema of the derivative, and the resonance field, the 

zero crossing of the derivative, could be read directly from the 

X-Y recorder trace. Traces were taken at least twice, sweeping 

in the direction of both increasing and decreasing values of the 

external field, in order to check reproducibility and in order 

to check that the field sweep rate was sufficiently slow 

compared with the lock-in amplifier time constant so that the 

absorption line was not distorted by too fast a sweep rate. 

High Frequency Modulation 

The signal to noise ratio in a field modulation system may 

be improved by using a higher modulation frequency as the noise 

contributed by the detector varies approximately inversely with 

the frequency. The use of high frequency modulation is attended 

with problems. The modulation field must penetrate to the 

inside of the cavity, however the penetration decreases with 

increasing frequency, The current must be increased,or the 

modulation coils placed close to the sample, to achieve the same 



modulation amplitude at a high frequency as at low frequencies. 

Since the skin depth decreases with increasing conductivity the 

problem becomes more severe at low temperatures. Eddy currents 

are induced in the cavity walls and in the sample by the 

modulation field. The interaction between these eddy currents 

and the external field causes the walls and the sample to 

vibrate. Essentially, the resonant frequency of the cavi'ty is 

modulated. This gives rise to a signal in the reflected 

microwaves at the modulation frequency proportional to the 

strength of the external field. This field dependent background 

may become large and obscure the FMR signal. Heating due to the 

eddy currents may result in the temperature of the sample 

drifting with time or it may result in excessive boil-off of 

liquid Helium. Due to these problems we were unable to 

construct a high frequency modulation system which worked as 

well as the low frequency modulation system. 

The Bolometer 

A bolometer is a chunk of material whose electrical 

resistivity depends in some known way on its temperature. The 

temperature of the sample increases slightly with the power 

absorbed. The change in temperature can be detected by 

measuring the resistance of a bolometer attached to the sample. 

The bolometer which was used was purchased from Infrared 



Laboratories lnci. It is sketched in Figure 3.5. A piece of 

Germanium approximately 0.4 mm square was attached to Indium 

blobs on a sapphire substrate. Brass leads were attached to the 

Indium in order to measure the bolometer resistance. In 

operation the sapphire substrate was attached to the 

ferromagnetic sample (see below). The bolometer resistance was 

15 52 at room temperature, approximately 400 51 at 12 K, 21.0 KQ-at 

4.4 K and 250 KQ at 4.2 K. The change in resistance on a sweep 

through FMR was approximately 1 KQ, small enough so that the 

dependence of the resistance on temperature was essentially 

linear. 

The bolometer was placed in series with a 9 volt battery 

and a 1.5 MQ resistor. The microwave power was chopped with the 

electronic switch (see Figure 3.3). A chopping frequency of 

80  Hz worked well. The chopper was driven by the reference 

channel of a PAR 122 lock-in amplifier and the voltage across 

the bolometer provided the input to the lock-in amplifier. The 

signal was observed at the chopping frequency. The amplifier 

output went to the Y-channel of an X-Y recorder and to a 

data-acquisition system where the data was stored in digital 

form. The data could be transferred to the main SFU computer 

for analysis (see Chapter 4 ) .  The program used in the data 

acquisition required a zero level for scaling the data. This 

was provided by shorting the input to the lock-in amplifier 

'~nfrared Laboratories Inc, 1808 E 17th St, Tucson ~rizona, 
85719  
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F'HIRX SUBSTRATE 

1/16" DIA x 0.004" 

Fiqure 3.5 The bolometer which was used for the 4.2 K 

measurements, approximate scale 1 inch = 1 mm. 



(equivalent to turning off the microwave power). The program 

then scaled the data so that the maximum signal was 1. 

The power reflected from the cavity was monitored using the 

microwave diode to determine the variation of the power 

reflected from the cavity. The reflected power, and hence the 

power in the cavity, changed by less than 0.7% during a field 

sweep. Since this power variation was so small the differential 

technique of Cochran et al[60] using two bolometers was not 

needed. 

The procedure for making a measurement was as follows. The 

sample was placed in the endwall assembly, the endwall attached 

to the cavity and the sample orientation determined by measuring 

the angular variation of the resonance field. When the desired 

crystal axis was located the endwall was rotated until that axis 

was parallel to the applied field when the applied and microwave 

magnetic fields were perpendicular. The cavity was removed from 

the waveguide and the bolometer attached to the back of the 

sample with dilute GE 7031 adhesive. The cavity was reattached 

to the waveguide, the stainless steel can flushed with Helium 

gas and attached to the the lower flange and precooling started. 

The can was not evacuated until the temperature fell to 

approximately 120 K in order to avoid drying out the adhesive. 

It was desirable that the adhesive remain semi-fluid during 

cooling so as not to strain the specimen. The Helium transfer 

was then started. 



The pressure of Helium gas in the can while using the 

bolometer was critical for reproducible results. It appears 

that the thermal contact with the liquid Helium bath provided by 

the gas is an important effect. Best results were obtained with 

a pressure of approximately 1 torr. The system usually worked 

well although there were occasional drifts with time and sudden 

jumps in the signal level that remain unexplained. A suf'ficient 

length of time spent fiddling with the pressure in the can 

usually cured these problems. A second reference bolometer 

would have been of great help in order to extract the sample 

signal from these background noises. 

Several field sweeps were made, in the direction of both 

increasing and decreasing field, to check reproducibility, When 

the system was working properly the reproducibility was good. 

In the early experiments with the bolometer the bolometer 

was left attached to the sample(samp1e 1 )  for four successive 

coolings to 4.2 K. Upon removal of the sample from the endwall 

assembly a small dimple was noted where the bolometer had been 

attached. For all subsequent measurements the bolometer was 

removed and reattached between coolings. Measurements on the 

dimpled sample were in agreement with those on an undimpled 

sample(samp1e 2 ) .  For sample 2 measurements were made at room 

temperature and at 7 7  K before attaching the bolometer. The 

4.2 K measurements were then made and the room temperature and 

77 K measurements repeated. The results before and after 

cooling to 4.2 K were the same. We conclude that the attachment 



of the bolometer to the sample did not produce any strain in the 

sample which would have led to shifts or broadening of the FMR 

line. 

3.6 Measurements at other Frequencies 

Measurements were made at 9.1, 34.7 and 73.0 GHz at room 

temperature and at 9.5 GHz at 4.2 K in addition to the 

measurements at 24 GHz, The 9.5 GHz system was identical to the 

24 GHz system except that a circulator was used to separate the 

reflected microwaves from the incident microwave power instead 

of a directional coupler. The cavity was of the same 

construction as the 24 GHz cavity, although of a different size 

of course, and resonated in the same mode (TE,,,). As mentioned 

in Section 3.3 the sample mount fitted both the 9.5 and 24 GHz 

cavities so that measurements could be made at both frequencies 

without having to remount the sample. 

Room temperature measurements at frequencies other than 

24 GHz were made without resonant cavities. The sample formed 

part of a termination at the end of a piece of waveguide. A 

circular area 3 mm in diameter was exposed through a 0.005 inch 

thick copper diaphragm for the 9.1 and 34.7 GHz measurements. 

The sample was placed directly across the waveguide 

( 2  mm x 3.5 mm) at 73 GHz. Field modulation at a frequency near 

20 KHz was provided by a wire passing directly underneath the 

sample. 



4 .  EXPERIMENTAL RESULTS AND DISCUSSION 

4.1 Introduction 

In this chapter we present and discuss our experimental 

results. The measurements were made primarily to investigate 

the magnetic damping in Nickel at low temperatures. There are 

two main thrusts to our work. First, we wish to determine 

whether or not the FMR linewidth, AH, is different with the 

applied field parallel to each of the three principal crystal 

axes at low temperatures. Second, we are interested in the 

information about the damping processes that can be obtained by 

comparing the experimental FMR line widths, positions and shapes 

with widths, positions and shapes calculated using computer 

programs based on the calculations outlined in Chapter 2. 

We have made measurements on two samples cut from the same 

boule of Nickel and prepared in the same way. FMR was measured 

with the applied field in the sample plane and along each of the 

three principal axes at 23.95 GHz at room temperature and from 

4.2 to 200 K .  As stated in Chapter 3 we were unable to obtain 

values for the FMR linewidth between 4.2 and approximately 60 K. 

The variation of the resonance field, Hfmr, with the direction 

of the applied field in the sample plane, for directions in 

addition to the three principal axes, was measured at room 

temperature, 77 K and 4.2 K .  The angular variation ~f the 



linewidth was measured at 77 K. Also, the frequency dependence 

of FMR was measured at room temperature for Sample 2. A 

measurement was made at 9.5 GHz at 4.2 K, but no other 

measurements were made at other frequencies at temperatures 

other than room temperature. Low temperature systems were not 

available for frequencies other than 9.5  and 23.95 GHz. At 

9.5 GHz the magnetocrystalline anisotropy shifts mean that FMR 

can be observed only for the ( 1 0 0 )  direction. The results are 

presented in the following Sections: room temperature results in 

Section 4.2; 77 K results in Section 4.3; 4.2 K results in 

Section 4.4; and in Section 4.5 the measurements made at 

intermediate temperatures. We discuss the results briefly in 

each Section but postpone a more comprehensive discussion until 

Section 4.6. 

Before presenting the results it is worthwhile to summarize 

the calculations available for comparison with experiment. If 

damping and exchange are neglected FMR occurs at the field where 

the permeability becomes infinite. From Chapter 2 this is when: 

where a and y are effective MCA fields, see Table 2-1 and 

equations ( 2 . 5 7 ) .  Ho is the applied field and Hd is the 

demagnetizing field. The value of the applied field which 

satisfies this relation will be referred to as the 'no-exchange 

no-damping' value of the resonance field. The experimental 



value of the resonance field will differ from this value of 

course, because of the shifts due to damping and exchange. We 

will be interested in comparing the experimental resonance 

fields with calculated resonance fields and in such a comparison 

this no-exchange no-damping value forms a useful reference 

point. 

Three computer programs incorporating different options 

were used for calculating the absorption and the absorption 

derivative. The first program, to be referred to as program I ,  

used a local conductivity, exchange, wavenumber independent 

Gilbert damping and magnetocrystalline anisotropy (MCA) .  In 

this program it was assumed that the applied field was parallel 

to a crystal axis and that the magnetization was parallel to the 

applied field. This calculation was outlined in Section 2.2. 

The second program, which will be referred to as program 11, 

used a local conductivity, Gilbert damping and neglected 

exchange. The absorption was calculated for arbitrary 

orientation of the applied field with respect to the sample 

plane and the crystal axes and allowed for the lack of alignment 

between the magnetization and the applied field. Exchange was 

neglected because the calculation becomes quite complicated and 

exchange is a comparatively small effect in Nickel. This 

program was used primarily to determine the effect on the 

resonance line of misalignment between the applied field and a 

crystal axis. It was also useful for calculating the variation 

of the resonance field with the direction of the applied field 



in the sample plane. This calculation was outlined in 

Section 2.3. The third program, which will be referred to as 

program 111, assumed, as in program I, that the applied field 

was parallel to a crystal axis and that the magnetization was 

parallel to the applied field. Exchange and MCA were included. 

The program incorporated the option of a local or a non-local 

conductivity and a wavenumber dependent or independent Gilbert 

damping. This calculation was outlined in Section 2.4. The 

program used a Fourier sum to evaluate the absorption and 

absorption derivative. The results of this piogram agreed with 

those of programs I and I1 in the limits where they could be 

compared of course. This is the program which was used for most 

of the discussion which follows. 

Material Parameters for Nickel 

A large number of factors enter these calculations which 

serve to determine the experimentally observed quantities. 

These include the saturation magnetization, the g-factor, the 

exchange constant, the.dc conductivity and its dependence on 

wavenumber, the damping parameter and its dependence on 

wavenumber, and the magnetocrystalline anisotropy constants. In 

addition the microwave frequency, the sample size and shape, the 

direction of the applied field with respect to the crystal axes, 

and the temperature all have profound effects. In principle it 

is possible to obtain values for many of the material parameters 



entering FMR from the FMR measurements. Our interest is 

primarily in the damping and so we take values for most of the 

parameters from the literature. It is convenient to collect the 

parameters which we will use in our discussion in one place. 

The parameters used in the calculations at room temperature, 77 

and 4.2 K are listed in Table 4-1. The values of the saturation 

magnetization were taken from the work of Kaul and ~hompson[62] 

and Danan, Herr and ~eyer[63]. The resistivity ratio at 4.2 K 

was measured on Sample 1 ,  and was found to be p2,,/p4=38. The 

resistivity at any temperature was assumed to be given by the 

sum of a constant residual resistivity and the resistivity that 

would be observed in an ideally pure Nickel sample[64,65,66]. 

The values of the condu=tion electron relaxation time 7 enter 

the calculations made using a non-local conductivity. Following 

Cochran and Heinrich[37] we have assumed a room temperature 

value of lo-" sec and a value for the Fermi velocity vF 

= 2.5x107 cm/sec. These correspond to a room temperature mean 

free path, I = vFr, of 25 A.  These values were extracted from 

the low temperature cyclotron resonance data for s-p band belly 

orbits as reported by Goy and Grimes[68]. This relaxation time 

varied with temperature in the same way as the dc electrical 

conductivity. The values of the damping parameter are listed 

for comparison purposes as we will vary the damping parameter 

when comparing calculations with experiment. The room 

temperature value is that of Dewar, Heinrich and cochran[381 

while the low temperature values are taken from the work of 



TABLE 4-1 

Nickel Parameters 

295 K 77 K 4.2 K 

4rm~~(kG) 162,631 6.16 6.60 6.60 

B = 7.4x105 erg/cm3; @, = 17": SB@~/M~ = 180 Oe 

K1' = Kt + 5~@2/2 = -12.44X105 erg/cm3[21] 

Temperature Independent Parameters: 

g = 2.187[38] 

w / y  = 7.82 kOe at f = 23.95 GHz 

A = 1 . 0 ~ 1 0 - ~  erg/cm[38,13] 

v = 2.5x107 cm/sec[37] F 

Demagnetizing field Hd = 30 Oe 

Bhagat and ~ubitzE131. The numbers were taken from Figure 16 of 

[13](an enlarged version of Figure 6 of [12]). These are 

actually values of the Landau-Lifshitz damping parameter, but, 

as pointed out in Chapter 2, the difference between the 

Landau-Lifshitz and Gilbert damping parameters is small. , 



The value of the g-factor is due to Dewar, Heinrich and 

Cochran[38] and was derived from FMAR transmission measurements, 

The values of g quoted by different authors[24,38] are 

independent of temperature. The exchange constant is that used 

by Cochran, Heinrich and ~ewar[48] and Bhagat and ~ubitz[l31. 

The Fermi velocity was discussed above. The demagnetizing field 

was calculated using the formula of Kraus and ~rait[42], . 

equation (2.5). A temperature independent value of 30 Oe was 

used. The demagnetizing field shifts the resonance but has no 

effect on the FMR lineshape if the applied field is in the 

sample plane. 

The MCA constants listed in the Table are those of 

~okunaga[67] at room temperature and Tung, Said and ~verett[21] 

at 77 and 4.2 K. The room temperature MCA constants of Tokunaga 

are in good agreement with those of ~ranse[28]. In the past 

there has been wild disagreement about the values of the MCA 

constants, particularly the higher order constants K2 and K3 at 

low temperatures[28]. However some accord seems to have been 

reached. The constants of Tung et a1 at 4.2 K are in good 

agreement with those obtained by ~ersdorf[44] from the torque 

measurements of Aubert et a1[43]. The constants of Tung et a1 

at 77 K are in good agreement with those of Franse[28]. However 

Tokunaga's constants at these two temperatures do not agree with 

these values. For example at 77 K Tokunaga has 

K2 = -1.4x105 erg/cm3 and K3 = .28x105 erg/cm3 which are of the 

same order of magnitude but have opposite signs to the constants 



of Tung.et a1 and of Franse. At 4.2 K Tokunaga has 

K2 = 2.0x105 erg/cm3 and K3 = 3.3x105 erg/cm3 which have the 

same sign as the constants of Tung et al. These differences are 

important because the calculated values of the resonance field 

will be shifted depending on which MCA constants are used. 

At intermediate temperatures the only data available is 

that of ~okunaga[67]. Since these constants do not agree 'with 

those of Tung et a1 at 77 K we will be careful in the 

conclusions we draw from their use. 

At 4.2 K there is an additional contribution to the MCA 

which has been ascribed to the presence of a small piece of 

Fermi surface, the X,'hole pocket, which exists only when the 

magnetization is within an angle qjO of a (100) direction. 

Gersdorfi441 has suggested that the extra free energy 

contributed by this piece of Fermi surface is: 

if the angle, betweeh the magnetization and a (100) direction, 

4,  is less than 4, and zero otherwise. This additional energy 

produces a torque which enters the effective MCA fields a and 7. 

If the magnetization is parallel to a (100) direction the 

effective MCA fields are (compare Table 2-11: 



where K.1' = K 1  + 5B4;/2. This result is obtained by taking the 

second derivative a2E/ad2 evaluated at 4 = 0 .  The effective MCA 

fields for the ( 1 1 1 )  and ( 1 1 0 )  directions are not changed since 

the X2 pocket does not exist if the magnetization points along a 

( 1 1 1 )  or a ( 1 1 0 )  direction. The values of K 1 '  and 5 ~ 4 : / ~ ~  are 

listed in the Table using the values of Tung et a1 for B and do. 

These are in good agreement with Gersdorf's values for these 

parameters. The effect of this extra MCA torque is to shift the 

position of the ( 1 0 0 )  resonance some 200 Oe to lower fields. 

~ l t h o u g h  the suggested presence of the X, pocket has resolved 

problems with the description of MCA in Nickel at 4 . 2 ' ~ ,  the 

actual existence of the pocket is still not a certainty. For 

example it has not been observed in de Haas van Alphen 

experiments[69]. It should be pointed out that the MCA torques 

for the three principal axes at 4.2  K may be calculated directly 

from the Fourier coefficients of the torque curves given by 

Aubert et aP[43]. The values of a and y obtained in this manner 

agree closely with those obtained using the MCA constants of 

Tung et a1 and of Gersdorf, as they should since Gersdorf used 

Aubert's numbers to obtain his MCA constants. 

Gersdorf and Tung et a1 quote values for K4 at 4.2  K which 

do not agree at all. Since K4 has only a small effect on the 

position of FMR we have neglected it in our calculations. 



4.2 Room Temperature Results 

For measurements at temperatures above 60 K FMR was 

measured using a field modulation technique, see Chapter 3. The 

result of an experiment was an X-Y recorder trace of a signal 

proportional to the derivative of the power absorbed by the 

sample as a function of the applied field. The linewidth, AH, 

was measured directly from the recorder trace as the field 

interval between the extrema of the derivative. The resonance 

field, Hfmr, was measured as the zero crossing of the 

derivative. FMR was also measured by monitoring the dc voltage 

across the microwave diode which provided a signal proportional 

to the absorbed power. -The resonance field could be obtained 

from the maximum of this absorption signal. 

The experimental values of the resonance field and the 

linewidth for the two samples at room temperature and at 

23.95 GHz are listed in Table 4-2, along with the no-exchange 

no-damping values of Hfmr. The results for the two samples are 

generally in good agreement although the ( 1 1 0 )  linewidth for 

sample 2 is larger than the other measured linewidths. 

The Frequency Dependence of FMR 

The linewidth calculated using program 1 with 

G = 2.45x108 sec-I at 23.95 GMz is 320 Oe. This is the 

linewidth expected for a sample in which the linewidth was due 



TABLE 4-2 

Results for room temperature, 23.95 GHz. 

[loo1 [1101 6 1 1 1 1  

Hfmr ( kOe) Sample 1 5.58+0.02 5.35 5.14 

Sample 2 5.58 5.34 5.14 

Calc. 5.60 5.38 5.17 

AH(0e) Sample 1 350230 365 360 

Sample 2 340 380 360 

Calc: No-exchange, no-damping value of Hfmr. 

In this and all subsequent Tables the quoted experimental 

uncertainties apply to all entries in the ,Table. 

only to the intrinsic damping and the exchange conductivity with 

no surface anisotropy. The average linewidth we have measured 

at this frequency is 360 Oe which is 40 Oe larger than the 

'ideal linewidth' of 320 Oe. The linewidth measured in an FMR 

experiment may be increased over the ideal linewidth because of, 

for example, strain in the sample, inhomogeneities, impurities, 

surface roughness or polycrystallinity. The mechanism may be 

spin-pinning, described by a surface anisotropy energy, 

two-magnon scattering, or the sample may see an inhomogeneous 

applied field because of, say, surface irregularities. 

Measurement of the frequency dependence of the linewidth 

provides a way of sorting out some of these non-intrinsic 

contributions to the linewidth. We have measured FMR at 

frequencies of 9.115, 34.7 and 73 GHz in addition to 23.95 GHz, 



at room, temperature. These measurements were made only on 

sample 2 because sample 1 was damaged slightly after the 

measurement of the resistivity ratio. The measurements at 

73 GHz were difficult because the signal was very small. As a 

result we were able to measure only the resonance for the (100) 

direction at this frequency. The resonance fields and 

linewidths obtained from experiment and those calculated using 

program I are listed in Table 4-3, and the frequency dependence 

of the linewidth is shown in Figure 4.1. The agreement between 

the experimental and calculated values of Hfmr is generally 

good. The experimental linewidths are larger than the 

calculated linewidths at 9.115 and 23.95 GHz. It is somewhat 

disturbing that the (110) linewidth is consistently larger than 

the (100) and ( 1 1 1 )  linewidths. The differences are roughly 

equal to the experimental uncertainty at each frequency. It was 

demonstrated by Anderson, Bhagat and ~heng[30] that the in-plane 

linewidth in Nickel at 22 GHz at room temperature was isotropic, 

within their experimental uncertainty of 210 Oe. 

From calculations carried out with program I the frequency 

dependence of the linewidth at room temperature and in the 

frequency range of interest, 2 9 GHz,is: 

where f is the frequency and G is the Gilbert damping parameter, 

This expression has been verified for values of G between 1 and 



TABLE 4-3 

Frequency dependence of Hfmr and AH at room temperature, 

Sample 2. 

F(GHZ) Hfmr AH(0e) 

( kOe 

[loo] [1101 [ 1 1 1 1  [loo] [1101 [ 1 1 1 1  

9.115 

Expt. 1.485.02 1.28 1.07 160220 190 160 

Calc. 1.46 1.31 1.03 140 140 140 

Expt. 5.58f.02 5.34 5.14 340f30 380 360 

Calc. 5.58 5.37 5.16 320 320 320 

34.7 

Expt. 8.92k.03 8.69 8.57 420f40 475 430 

Calc. 8.92 8.69 8.50 450 450 450 

73.0 

Expt. 21.1f.l - - 900k100 - - 
Calc. 21.2 21 .O 20.8 920 920 920 

Calc: Program I, local conductivity, exchange, local damping, 

G = 2.45x108 sec-', no surface anisotropy. 



4x108 get-l. The zero frequency intercept is a result of the 

exchange conductivity broadening. 

The frequency dependence of the (100) linewidth is shown in 

Figure 4.1. The (100) data is shown because we have values for 

the linewidth at four frequencies. The solid lines on the 

figure are a least squares fit of this data to a straight 

line (a), and the frequency dependence expected using program I 

with G = 2.45x108 sec-l(b). The slopes and intercepts of these 

two lines are listed in the figure caption. Comparing the 

experimental slope with (4.2) we see that our data are 

consistent with a Gilbert damping parameter . 

G = 2.3+0.3x108 sec-l. The uncertainty in this value is large 

but it agrees well with the values of other authors[38,24,27,17] 

(see the numbers quoted in section 1.2). The zero frequency 

intercept is 50 Oe which is some 25 Oe larger than the 25 Oe 

expected from the calculations made with program I from which 

equation (4.2) was obtained. A possible explanation for this 

difference would be the presence of some surface spin-pinning. 

If a surface anisotropy Ks = -0.1 erg/cm2 with the anisotropy 

axis parallel to the static magnetization was assumed, the 

frequency dependence of the linewidth would be linear with the 

same slope as ( 4 . 2 )  but having a zero frequency intercept of 

50 Oe. This surface anisotropy would neatly explain our (100) 

linewidth data, 

In additi~n to broadening the FMR line spin pinning 

produces a shift in the position of the resonance. A surface 
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Fiqure 4.1 Frequency dependence of the FMR linewidth at room 

temperature, sample 2. The applied field was parallel to the 

[ 0 0 1 ]  axis. (a) Linear fit to the data, slope = 11.6 0e/GHz, 

intercept = 50 O e .  (b) Calculated dependence using program I, 

with the parameters of Table 4-1 and no spin-pinning, 

slope = 12.3 o ~ / G H ~ ,  intercept = 25 Oe. 



anisotropy of this magnitude would shift FMR to lower fields by 

approximately 25 Oe at 9 GHz, approximately 30 Oe at 23.95 GHz, 

and by approximately 35 Oe at 34.7 GHz. These shifts are 

roughly equal to the uncertainty in the experimental values of 

Hfmr . We note that Bhagat and Lubitz[l31 used a surface 
anisotropy of 0.1 erg/cm2 in their analysis. 

Comparison of Experimental and Calculated Lineshapes 

A typical FMR derivative curve at 23.95 GHz is shown in 

Figure 4.2. This curve was measured on sample 2 with the 

applied field parallel to the (100) axis. The solid line on the 

figure is the absorption derivative calculated using program I ,  

with a Gilbert damping of 2.6x108 sec-' and no surface 

anisotropy. This value of the damping parameter was chosen to 

reproduce the linewidth of 340 Oe, The other parameters used in 

the calculation are those listed in Table 4-1. If we assumed a 

Gilbert damping of G = 2.45x108 sec-I and a surface anisotropy 

Ks = -0.1 erg/cm2 the calculated linewidth would equal the 

experimental linewidth and the match between the lineshapes 

would be comparable to that shown in the figure. The peaks in 

the experimental curve near zero field are associated with 

domain wall motion during saturation of the sample. The low 

field zero crossing of the derivative occurs at Ferromagnetic 

Antiresonance (FMAR).  The asymmetry of the experimental 

derivative, the ratio of the low field derivative peak amplitude 
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Fiqure 4.2 Experimental FMR absorption derivative at room 

temperature, 23.95 GHz, with the applied field parallel to 

[OOl]. The solid line is the absorption derivative calculated 

using program I, with a Gilbert damping parameter 

G = 2.6x108 sec-'. The other parameters used in the calculation 

are listed in Table 4-1. 



to the high field derivative peak amplitude, does not agree with 

the calculated asymmetry. This is a common observation. For 

example Bhagat, Hirst and Anderson[27] quote experimental 

asymmetries in Nickel of 1.32 to 1.40 at 22 GHz which may be 

compared with their calculated asymmetry of 1.18. Our 

asymmetries are similar in magnitude to those of Bhagat, Hirst 

and Anderson. 

The Angular Variation of 

The variation of the resonance field with the direction of 

the applied field in the sample plane is shown in Figure 4.3. 

The data was collected by measuring FMR with the magnet rotated 

from a position where the applied field was parallel to a 

principal axis and perpendicular to the microwave magnetic 

field. The signal becomes small, and the lineshape may be 

distorted, if the angle between the applied and microwave 

magnetic fields becomes small so data may be taken only in a 

limited range of angles about each principal axis. The solid 

line in the figure is the no-exchange no-damping value of the 

resonance field calculated using the MCA fields a ( $ )  and 

see equations (2.57). The agreement between the calculation and 

experiment is splendid. This plot is useful primarily because 

it indicates that the sample plane does indeed coincide closely 

with a ( 1  1 0 )  normal crystal plane. 
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Fiqure 4.3 Variation of the resonance field, Hfmr, with the 

direction of the applied field in the sample plane, room 

temperature, 23.95 GHz. The data was taken by rotating the 

magnet about: ( 100 )  W ; (111)  + ; (110)  0 . The experimental 
uncertainty is indicated by the single error bar at -50'. The 

solid line is the no-exchange no-damping value of Hfmr. 



As was pointed out in Section 2.3 the angular variation of 

Hfmr should follow the no-exchange no-damping variation if 

21K11/MS << Hfmr, that is, if the magnetization is parallel to 

the applied field at FMR. This is certainly true here where 

2IK11/MS = 240 Oe. Of course the experimental values of Hfmr 

will not equal the calculated values because the damping and 

exchange shifts are not considered in the calculation. The 

angular variation of Hfmr obtained using equations (2.57) is the 

same as that which would be obtained from calculations using 

program 11, the only program which could be used for calculating 

FMR when the applied field was not parallel to a principal axis. 

Program I 1  did not include exchange so that the values of Hfm, 

calculated with that program would not equal the experimental 

values because of the neglect of the exchange shift. 

The damping and exchange shift, the difference between the 

experimental and the no-exchange no-damping values of Hfmr, is 

approximately 30 Oe to lower fields in Nickel at room 

temperature at 23.95 GHz, from the calculations listed in 

Table 4-2. This is roughly the experimental uncertainty in 

Hfmr . It is not reasonable to compare the resonance field values 
on the scale of Oersteds as the parameters entering a 

calculation are not known with this precision. For example a 

change in Kt from -.59x105 esg/em3 to -.57x105 erg/cm3, 

corresponding to a change in the temperature of the sample of 

approximately 2'[67], produces a shift in Hfmr of approximately 

10 Oe. 



4.3 Results at 77 K 

The experimental values of the resonance field and the 

linewidth for the two samples at 77 K at 23.95 GHz are listed in 

Table 4-4. The results for the two samples were in good 

agreement with each other. We found that the linewidth at 77 K 

was anisotropic. The linewidths measured with the applied field 

parallel to the (100) and ( 1 1 1 )  axes were identical within 

experimental uncertainty. The (110) linewidth was approximately 

160 Oe, or 16% larger, for both samples. 

Also listed in Table 4-4 are the no-exchange, no-damping 

values of HfmrI and the values of Hfmr calculated using a local 

conductivity and wavenumber independent Gilbert damping with and 

without exchange (programs I and 11) and the damping parameter 

required to reproduce the experimental linewidth using 

program I, assuming no pinning of the spins. If we assume a 

surface an"isotropy of K = -0.1 erg/cm2 the calculated 
S 

linewidths are approximately 50 Oe larger and the resonance 

fields are approximately 50 Oe lower than if Ks = 0. The value 

of the Gilbert damping parameter required to reproduce the (108) 

linewidth with KS = -0.1 erg/cm2 was G = 6.6~10' sec-' as 

opposed to G = 7.0x108 sec-' for KS = 0. The calculated 

resonance fields are discussed in Section 4.6. 

Experimental absorption derivative curves are shown in 

Figure 4.4 for the three principal axes. These curves have been 



TABLE 4-4 

Results for 77 K, 23.95 GHz. 

61001 [I101 [ I 1 1 1  

Hfmr (kOe Sample 1 8.39r0.04 5.51 2.81 

Sample 2 8.45 5.47 2.80 

Calc. A 8.44 5.59 2.91 

Calc. B 8.49 5.64 2.96 

Calc. C 8.42 5.58 2.91 

m(0e) Sample 1 880+50 1020 860 

Sample 2 860 1020 840 

G(sec-l) 7.Ox1O8 8.2x108 7.Ox1O8 

Calc. A: No-exchange, no-damping value of Hfmr. 

Calc. B: Local conductivity, no exchange, local damping with 

the value of G listed in the Table, program 11. 

Calc. C: Local conductivity, exchange, no surface anisotropy, 

local damping with the value of G listed in the Table, 

program I. 

normalized to the same Pow field derivative peak amplitude. The 

large shifts in the resonance due to MCA are evident by 

comparing the field at which resonance occurs for the three 

axes. The sharp spikes near zero field are due to domain wall 

motion as at room temperature. The field values, 21~11/M~ and 

I K I  I/M~, at which the magnetization becomes parallel to the 

applied field if the applied field is parallel to the (100) or 

(110) axes respectively have been indicated on the figures. 



Recall the calculated variation of the angle between the 

magnetization and the applied field shown in Figure 2.7. The 

irregular absorption below these field values is due to 

absorption during rotation of the magnetization, see below. 

Comparison of Experimental and Calculated Lineshapes 

In Figure 4.5 we show a comparison of the experimental 

(100) absorption derivative with calculated curves. The curve 

in (a) was calculated with program I, using a value of 

G = 7.0x108 sec-l, and no spin-pinning. The curve in (b) was 

calculated using program I1 and the same value of G as was used 

for the calculation shown in (a). The experimental asymmetry 

differs from the calculated asymmetry, curve (a): however the 

difference between calculation and experiment is smaller than at 

room temperature. If we assumed a Gilbert damping of 

G = 6.6x108 sec-' and a surface anisotropy Ks = -0.1 erg/cm2 

instead of G = 7.0x108 sec-', the calculated lineshape was the 

same as that shown in (a). Absorption derivatives were also 

calculated using program 111, with a non-local conductivity and 

a wavenumber independent damping. The lineshape obtained using 

a non-local conductivity was almost indistinguishable from that 

obtained using a local conductivity so the non-local line is not 

reproduced here. Based on this comparison it appears that the 

local conductivity theory may be used to describe the absorption 

in Nickel at 77 K. From a comparison of the calculated 
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Fiqure 4.4 Absorption derivatives vs applied field at 77 K, 

23.95 GHz, Sample 2 for the three principal axes. The fields 

I K I I / M ~  and 2 1 ~ 1 I / ~ ~  at which the magnetization becomes parallel 

to the applied field if the applied field were parallel to the 

(110) or (100) axes respectively are indicated on the 

appropriate figure. 21~1]/~~=3.22 kOe at 77 K. 
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Figure 4.5 Comparison of calculated absorption derivatives with 

experiment, 77 K t  23.95 GHz, Sample 2. The applied field was 

parallel to a (100) axis. (a) Calculation using program I. 

local conductivity. exchange, no surface anisotropy. A damping 

parameter G = 7.0x108sec-' was used. Other parameters are 

listed in Table 4-1. (b) Calculation using program 11, local 

conductivity, no exchange, dragging. The parameters used in (a) 

were used for this calculation. 



linewidths for (a) and (b) it appears that exchange, with no 

spin pinning, contributes approximately 80 Oe to the linewidth 

at 77 K. Curve (b) demonstrates that the absorption at low 

fields, (H,<~~K~I/M~), is due to dragging of the magnetization. 

It is remarkable how well the simple model used for the dragging 

processes describes the data. It is interesting to note the 

discontinuity in the calculated derivative at 3.22 kOe where the 

external field equals 2 1 ~ 1 1 / ~ ~ .  

The Angular Variation of Hfmr 

The variation of the resonance field with the orientation 

of the applied field in the sample plane is shown in Figure 4.6. 

for sample 2. A s  was pointed out in Section 4.2 data can be 

taken by rotating the magnet through only a limited range of 

angles about the position where the applied field is parallel to 

a principal axis and perpendicular to the microwave magnetic 

field. As a result collecting the data shown in Figure 4.6 

required cooling to 77 K three times, once for each axis, with a 

return to room temperature to rotate the endwall assembly 

holding the sample between each cooling. The solid line on the 

figure represents the variation with angle expected on the basis 

of program 11, which allows for arbitrary orientation of the 

applied field with respect to the crystal axes.  ragging of the 

magnetization must bet taken into account when considering the 
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Fiqure 4.6 Variation of the resonance field, Hfmr, with the 

angle of the applied field in the sample plane, 77 K, 23.95 GHz. 

Data taken by rotating about (100): 36 ; (11 I 1: t ; ( 1  10): o . 
Experimental uncertainty ( ~ 2 4 0  0e) is approximately the symbol 

size. The solid line is the result of calculations made with 

program 11, which allows for the lack of alignment between the 

magnetization and the applied field. 



angular variation of Hfmr and the linewidth since ZIKII/M~ is of 

the order of Hfmr. To obtain these curves the absorption 

derivative was calculated for each angle of the applied field 

and the resonance field determined from the calculated curves. 

Since this calculation did not include exchange we used a value 

of G = 7.7x108 sec-' in order to reproduce the experimental 

linewidth for the (100) direction. The experimental and. 

calculated variations of Hfmr agree well. 

Since the calculations were made using a value of G larger 

than required by experiment, and neglecting exchange, the 

calculated values of Hfmr will be larger than if the correct 

value of G was used and exchange included, compare 

calculations B and C in Table 4-4 for example. Because of the 

neglect of exchange we would not expect the numerical values of 

the calculated resonance fields to equal the experimental 

values, however we would expect an approximately constant offset 

between the experimental and the calculated values. The damping 

is anisotropic so that the damping shift in Hfmr will be 

anisotropic, but, as can be seen from Table 4-4, the anisotropy 

in the shift is no greater than 10 Oe. Although the 

experimental and calculated angular variations agree well there 

. is a systematic difference between the offset for data taken by 

rotating the magnet about the (100) axis and the data taken by 

rotating about the ( 1 1 1 )  and (140) axes. I have no explanation 

for this difference. It is clearly an experimental problem 

because it does not show up in the room temperature (Figure 4.3) 



or the 4.2 K (~igure 4.13) angular variations. The difference 

is too large to be explained by a difference in the microwave 

frequency used for the different sets of measurements. A 

difference in the microwave frequency of 0.1 GHz (half of the 

tuning range of the klystron) would shift the resonance field by 

only 30 Oe. 

The Angular Variation of AH 

The variation of the linewidth with the direction of the 

applied field in the sample plane is shown in Figure 4.7. The 

linewidths plotted here were measured at the same time as the 

resonance fields shown in Figure 4-6. The solid line in the 

figure was calculated using the procedure outlined above for the 

calculation of the angular variation of the resonance field. 

This calculated angular variation of the linewidth demonstrates 

clearly the effects of dragging on the FMR linewidth. Note 

especially the large increase in the linewidth at angles near 

the (100) and ( 1 1 1 )  directions. We do not expect the calculated 

variation of the linewidth to reproduce the experimental 

variation since an isotropic damping parameter was assumed for 

the calculation with the result that the calculated linewidths 

for the (loo), ( 1 1 1 )  and (110) directions were the same. The 

discrepancy between experiment and calculation near the ( 1 10) 

direction is certainly because the damping is not isotropic. 

The discrepancy at angles between the (1 00) and (1 1 1  ) directions 
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Fiqure 4.7 Variation of the FMR linewidth, AH, with the angle of 

the applied field in the sample plane, 77 K, 23.95 GHz. Data 

. taken by rotating about ( 1 0 0 ) :  K ; 1 :  + ; ( 1 1 0 ) :  o . The 
solid line is the result of calculations made with program 11, 

which allows for the lack of alignment between the magnetization 

and the applied field. An isotropic damping parameter 

G = 7.7x108sec-I was assumed for the calculation. 
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is possibly due to an anisotropy of the damping parameter. 

4.4 Results at 4.2 K 

Data at 4.2 K were collected using a bolometer to measure 

the absorption rather than the absorption derivative as was 

measured with the field modulation technique used at higher 

temperatures. It was necessary to use the bolometer because the 

FMR line becomes very broad and the field modulation system 

lacked the sensitivity required to detect the FMR signal. The 

result of an experiment was a signal proportional to the power 

absorbed by the sample as a function of the applied field. This 

data was stored on a computer and could be handled numerically. 

For analysis the data was differentiated numerically and the 

linewidth and resonance field obtained from the derivative. 

The experimental values of the resonance field and the 

linewidth for the two samples at 4.2 K, at 23.95 GHz are listed 

in Table 4-5. The results for the two samples agree within the 

experimental uncertainty. Our results indicate that the 

linewidth is anisotropic at 4.2 K. As at 77 K the 

(110) linewidth was greater than the (111) and (100) linewidths. 

- The difference between the (110) and the (111) linewidths was 

approximately 200 Oe or 10%. At 77 K we found that the (100) 

and (111) Pinewidths were the same, however at 4.2 K the 

(111) Pinewidth was greater than the (100) linewidth, by 

approximately 200 Oe. The differences between the linewidths 
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TABLE 4-5 

Results for 4.2 K, 23,95 GHz. 

e1003 [1103 [ 1 1 1 1  

Hfmr ( kOe) Sample 1 9.56k0.85 5.17 2.15 

Sample 2 9.65 5.23 2.22 

Calc. A 9.96 5.58 2.48 

Calc. B 10.09 5.78 2.53 

Calc. C 9.99 5.63 2.56 

Calc. D 9.97 5.61 2.53 

Calc. E 9.62 5.22 2.15 

AH(Oe) Sample 1 1600k50 2000 1800 

Sample 2 1640 2100 1830 

Calc. A: No-exchange, no-damping values of Hfmr. 

Calc. B: Local conductivity, no exchange, local damping, values 

of G as listed above, program 11. 

Calc. C: Local conductivity, exchange, local damping, values of 

G as listed above, program 111. 

Calc. D: Non-local conductivity, exchange, local damping, values 

of G as listed above, program 111. 

Calc. E: Non-local conductivity, exchange, isotropic non-local 

damping, values of a=1.19x108sec-l, b=1.07~10~sec-~, 

ID=620 A at 4.2 K (calculated linewidth at 4.2 K=1610 Oe), 

program III. 



for the three axes are four times the experimental uncertainty 

in the linewidth, 250 Oe. 

Also listed in Table 4-5 are values of Hfmr calculated with 

a number of combinations of damping, exchange and conductivity: 

the resonance fields for the (100) direction were calculated 

using the value of K1' which includes the MCA torque ascribed to 

the X, pocket[44]. If this contribution were neglected the 

calculated resonance fields for the (100) direction would be 

shifted 180 Oe to higher fields. The calculated values listed 

in Table 4-5 will be discussed in Section 4.6, but it is worth 

noting here the wide variations between them. In particular the 

difference between the calculated resonance fields for the 

wavenumber dependent and the wavenumber independent damping. E 

and D respectively in the Table, is approximately 400 Oe. The 

values of the damping parameter, G, listed in the Table are 

those required to reproduce the experimental linewidths using 

program 111 with a non-local conductivity and a wavenumber 

independent damping. The surface anisotropy was assumed to be 

zero in all of these calculations. The difference between the 

linewidth calculated using program I1 with G = 14x108 sec-' and 

that calculated using program 111 with a non-local conductivity 

. and G = 14x108 sec-I was 30 Oe, so that exchange, with no spin 

pinning, contributes approximately 30 Oe to the linewidth at 

4.2 K. A surface anisotropy Ks = -0.1 erg/cm2 changes the 

calculated linewidth by less than 10 0e and shifts the resonance 

by approximately 25 Oe to lower fields. We may safely neglect 



spin pinning in the discussion of our 4.2 K results which 

follows. 

The experimental absorption curves for the two samples at 

23.95 GHz are shown in Figure 4.8. As at 77 K the irregular 

absorption at fields below 2IK1I/MS or IKII/MS for the (100) and 

(110) axes respectively occurs during rotation of the 

magnetization. These field values have been indicated on the 

figures. The experimental zero has been suppressed on these 

figures, but except for the (100) trace of sample 2, the curves 

have not been scaled relative to each other. The zero for the 

(100) trace of sample 2 was mistakenly taken without shorting 

the input to the lock-in amplifier, see'chapter 3, and so the 

scaling of the data by the data acquisition program was 

different to that of the other curves shown. By analogy with 

Figure 4.8(a) this curve has been scaled to give the same 

absorption at the peak and at the saturation field 21K11/Ms as 

the (110) absorption curve for this sample. 

In Figure 4.9(a) we show a comparison of the absorption 

curves for the two samples. Since the experimental zero is not 

meaningful the curves have been scaled vertically to the same 

absorption at 200 Oe and at the peak for this comparison. The 

agreement between the absorption lineshapes for the two samples 

for the two other crystal axes was of similar quality. In 

Figure 4.9(b) is a comparison of the absorption measured with 

the bolometer and the absorption measured by monitoring the 

microwave power reflected from the cavity with the microwave 
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- Fiqure 4.8 ~bsorption curves at 4.2 K, 23.95 GHz for the three 

- crystal axes. ( a )  Sample 1:  (b) Sample 2; The fields IKII/MS and 

~ I K I ~ / M ,  at which the magnetization becomes parallel to the 

applied field if the applied field is parallel to the (110) or 

(100) axes respectively are indicated on the appropriate figure. 

2(~11/~~=4.92 kOe at 4.2-K. 
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Figure 4.9 ( a )  Comparison of the absorption for sample 1 and 

sample 2. The applied field was parallel to ( 1  1 1  ).  The curves 

have been scaled vertically to match at 200 Oe and at the peak. 

(b) Comparison of the absorption measured using the bolometer 

(solid line), and the microwave diode ( + ) ,  sample 2. The 

applied field was parallel to (100). 



diode. The diode data was taken by sweeping the applied field 

in the direction of increasing and decreasing field and 

averaging the two curves to compensate for an approximately 

linear drift with time in the diode voltage. The lineshapes 

measured with the two techniques agree well which gives some 

confidence in the data obtained with the bolometer. Although 

the diode data appears smooth in the figure we were unable to 

obtain a reliable value of the linewidth by differentiating the 

data numerically, even with considerable massaging before 

differentiation. 

In Figure 4.10 we show an absorption curve measured using 

the bolometer, with the numerically calculated derivative 

superimposed. The linewidth has been indicated on the figure to 

indicate the position of the inflection points relative to the 

absorption peak. 

Comparison of Experimental and Calculated Lineshapes 

In Figures 4.11 and 4.12 we show comparisons of calculated 

curves with the experimental curves. The calculations shown 

were made using program I11 with a non-local conductivity. 

Since ql > 1 at FMR at 4.2 K, see Table 2-3, the wavenumber 

dependence of the conductivity is important and must be 

considered when calculating the absorption for comparison with 

experiment. A wavenumber dependent (non-local) damping was 

assumed for the calculation shown in Figure 4.11, and a 



Fiqure 4.10 The absorption and the absorption derivative at 

4.2 K, 23.95 GHz for sample 2. The applied field was parallel 

to (100). The FMR linewidth is indicated on the figure. 



wavenumber independent damping for the calculation shown in 

Figure 4.12. The experimental data is the resonance for the 

(100) direction of sample 2. The absorption was calculated 

ignoring MCA and the resulting curves were shifted along the 

field axis until the peak position matched that of experiment. 

This is valid since MCA shifts the position of the resonance but 

has no effect on the lineshape, at least for the (100) and (1  1 1 )  

directions where the effective MCA fields, a and 7, are equal. 

We consider in Section 4.6 the effect of the form of the damping 

on the resonance field, but for the moment we consider only the 

lineshape. The comparison between calculation and experiment is 

shown for both the absorption and the absorption derivative. In 

a comparison between the calculated and experimental derivatives 

the attention is drawn to the field region around the FMR peak, 

while in a comparison of the absorption attention is focussed on 

the tails. It is worthwhile to examine both cases. The results 

of the calculations are shown only for fields greater than 

21K11/~~ as the calculation is not valid if the magnetization is 

not parallel to the applied field. 

The form of the wavenumber dependent damping assumed in the 

calculation was: 

The curve shown in Figure 4.11 was calculated using the values 



ABSORPTION 

DERIVATIVE 

(ARB. U N I T S  ) 

APPLIED FIEZIT) ( k O e )  

Fiqure 4.11 Comparison of calculated absorption and absorption 

- derivative with experiment, 4.2 K, 23.95 GHz, sample 2. The 

applied field was parallel to (100). The calculation assumed a 

non-local conductivity and a wavenumber dependent damping with 

a = 1 . 0 7 ~ 1 0 ~  secml b = 1.19~10~ sec'l and I,, = 620 A.    he 

calculated curves have been shifted along the field axis so that 

the FMR peak positions coincide. 
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Figure 4 . 1 2  Comparison of calculated absorption and absorption 

derivative with experiment, 4 . 2  K, 2 3 . 9 5  GHz, sample 2 .  The 

applied field was paralle1,to ( 1 0 0 ) .  The calculation assumed a 

non-local conductivity and a wavenumber independent damping 

F = 1 4 x 1 0 8  sec-'. The calculated curves have been shifted along 

the field axis so that the PMR peak positions coincide. 



a = 1.07x108 sec-l and b = 1.19x108 sec-I suggested by Cochran 

and Heinrich[37], using the experimental resistivity ratib of 

38, and the value of the d-electron mean free path, l D  = 620 A 

at 4.2 K t  adjusted to reproduce the experimental linewidth of 

1640 Oe. This 4.2 K mean free path corresponds to a room 

temperature mean free path l D  = 16 A. Calculations were made 

with a variety of values of a, b and ID, subject to the - 

constraints that the room temperature damping parameter, 

essentially (a + b), be 2.45x108 sec", and that the 4.2 K 

linewidth be 1640 Oe. The lineshapes calculated using a = 0.8, 

1.2 and 2.0x108 sec-I with corresponding values of b and ID, 

were virtually identical. The positions however were different, 

see Section 4.6. The agreement between the calculated and 

experimental lineshapes is superb if one looks only at the high 

field side of the resonance, Ho > Hfmr. The lineshapes on the 

low field side, Ho < Hfmr, do not agree at all. 

In Figure 4.12 the comparison is made for a wavenumber 

independent damping G = 14x108 sec-I. Again the calculated 

curve has been shifted along the field axis to match the 

experimental peak position. The agreement between the 

calculated lineshape and the experimental lineshape is good in 

the peak region but not so good in the tails. The agreement 

between the experimental and calculated asymmetries is 

excellent. This match is equivalent to that shown by Bhagat and 

Hirstel] in their Figure 3. If fits to the lineshape were the 

only consideration it would appear that the data was better 



described by a wavenumber independent damping than by a 

wavenumber dependent damping. 

The Angular Variation of Hfmr 

In Figure 4.13 we show the angular variation of the 

resonance field. The solid line is the result of calculations 

made using program PI, which neglects exchange, using an 

isotropic wavenumber independent damping parameter 

G = 14x108 sec-' to reproduce the (100) linewidth. The 

experimental and calculated angular variations agree well 

although there is an offset of approximately 400 Oe between - 
them. This is simply because the damping and exchange shifts 

are not treated correctly in the theory. 

FMR at 9.495 GHz at 4.2 K 

Finally we present the results of measurements on sample 1 

at 9.495 GHz at 4.2 K. The data is shown in Figure 4.14 for the 

applied field along (100). The field 21Kll/MS is indicated on 

. the figure. The subsidiary peak is a result of dragging. As a 

result of MCA shifts and dragging FMR can be observed only when 

the applied field is within a small angle of a (100) direction. 

The signal amplitude decreased rapidly as the field was tilted 

away from the (100) direction and disappeared entirely at an 
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Fiqure 4.13 Variation of the resonance field, Hfmr, with the 

direction of the applied field in the sample plane, 4.2 K, 

23.95 GHz. The data was taken by rotating the magnet about: 

(100) * : ( 1 1 1 )  + . The experimental uncertainty is less 
than the symbol size. The solid line is calculated using 

program PI with an isotropic damping parameter, 

G = 14x108 see". 



ABSORPTION 

(ARB. UNITS ) 

APPLIED FIELD ( M e )  

Fiqure 4.14 Absorption curve at 9.495 GHz, at 4.2 K, sample 1. 

The applied field was parallel to the (100) axis. The field 

- 2IK1I/MS at which the magnetization becomes parallel to the 

applied field is indicated on the figure. The double peak is an 

effect sf dragging of the magnetization. 



angle of, very approximately, 10' between the field and the 

(100) direction. This is also a result of the dragging of the 

magnetization due to MCA, see the discussion in Section 2.3. 

The resonance field and the linewidth for the main peak 

were Hfmr = 5.76k0.05 kOe and AH = 790250 Oe. The values of the 

resonance field and linewidth calculated using program I11 with 

a non-local conductivity and a wavenumber dependent damping 

using the parameters which described the 23.95 GHz linewidth, 

a = 1.07x108 sec-I, b = 1.19x108 sec-I and ID = 620 A, were 

5.80 kOe and 830 Oe respectively. These values are in good 

agreement with the experimental values. The agreement between 

lineshapes calculated assuming a wavenumber dependent or a 

wavenumber independent damping and the main peak was similar to 

that of the comparisons with the 23.95 GHz data shown in 

Figures 4.11 and 4.12. 

4.5 Results at Intermediate Temperatures 

The Temperature Dependence of the Linewidth 

The temperature dependence of the FMR linewidth for 

sample 1 for the three axes is shown in Figure 4.15. We found 

that the linewidths for the (100) and (111) directions for 

temperatures greater than approximately 60 K were the same 

within experimental uncertainty. As discussed in Section 4.4 

the (111) linewidth at 4.2 K was larger than the (100) 
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Fiqure 4.15 The variation of the FMR linewidth, AH, with 

temperature for the three principal crystal axes, 23.95 GHz, 

(100) ; ( 1 1 1 )  ; (110) .The u n c e r t a i n t y i n t h e l i n e w i d t h  

for temperatures below 100 K was f50 Oe. To avoid confusion in 

the plot a single error bar is shown at 4.2 K. The solid line 

is the data of Bhagat and ~ubitz[l3] scaled by the ratio of the 

microwave frequencies, 23.95/22. 



linewidth. The linewidth for the (110) direction was the same 

as the (100) and ( 1 1 1 )  Pinewidths at room temperature but was 

larger than the (100) and ( 9 1 1 )  linewidths at 200 K and below 

for this sample. 

The solid line in Figure 4.15 is the data of Bhagat and 

Lubitz[l3] at 22 GHz, scaled by the ratio of our microwave 

frequency to theirs, 23.95/22. The validity of this scaling is 

discussed in Section 4.6. This data was taken from Figure 15 of 

[ 131 (a  larger version of Figure 5 of 1 1 2 1 ) .  The data of Bhagat 

and Lubitz matches our (100) and ( 1 1 1 )  data quite well at 

temperatures above 60 K, and our (100) linewidth at 4.2 K, if 

the difference in the microwave frequency is considered. We are 

unable to say anything about the saturation of the linewidth 

from our data, however the close correspondence with the data of 

Bhagat and Lubitz is suggestive. The temperature variation of 

the linewidth is discussed in Section 4.6 below. 

The Temperature Dependence of Hfmr 

The variation with temperature of the resonance field for 

the three principal axes is shown in Figure 4.16. The solid 

lines are the no-exchange no-damping values of Hfmr calculated 

using the MCA constants of Tokunaga[67]. The inset to 

Figure 4.16 is included to demonstrate the effect of the higher 

order MCA constants on the resonance'position. Curves are shown 

in the inset for a calculation made using only K1 and a 
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Fiqure 4.16 The variation of the resonance field, Hfmr, with 

temperature for the three principal crystal axes, 23.95 GHz. 

The experimental uncertainty is indicated approximately by the 

symbol size. The solid lines represent the no-exchange 

- no-damping values of Hfmr calculated using K1, K2 and K3. The 

inset shows the no-exchange no-damping values of Hfmr calculated 

using K1 only compared with the calculation using K1, K2 and K3 

to demonstrate the effect of the higher order MCA constants on 

the resonance position. 
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determining Hfmr in Nickel 

calculated lines are shown 
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K2 and K3. It is clear from this 

MCA constants are important in 

at low temperatures. These 

because they are simple to calculate 

and because they demonstrate, in a qualitative manner, the 

temperature dependence which may be expected for Hfmr. 

Tokunaga's MCA constants are used because they are available for 

the whole temperature range, room temperature to 4.2 K. As 

pointed out in Section 4.1 there is a discrepancy between the 

higher order MCA constants of Tokunaga and those of 

Tung et a1[21] at the temperatures at which they can be 

compared. Because of the uncertainty in the values of the MCA 

constants it is difficult to extract any information from this 

data. If we wished to determine values for the MCA constants 

from this data we would have to know the damping and exchange 

shifts. Conversely if we wished to determine the damping and 

exchange shift we would need to know the MCA constants 

accurately. We know the MCA constants at 77 and 4.2 K well and 

so are restricted to those temperatures for an analysis of the 

damping and exchange shifts. These are discussed in 

Section 4.6. 



4.6 Discussion 

In this Section we discuss the results which have been 

presented thus far in this Chapter. First we discuss our 

linewidth data, how it compares with that of other workers and 

the implications of our measurements. Then we discuss the 

consequences of a wavenumber dependent damping of the form of 

equation ( 4 . 3 )  for the temperature dependence of the linewidth 

and the resonance field. 

Let us start by summarizing our linewidth results. At room 

temperature and for 23.95 GHz we found that the linewidths were 

an average of 40 Oe larger than the ideal linewidth of 320 Oe. 

The linewidth for sample -1 was isotropic within 15 Oe, while 

there was a 40 Oe spread in the linewidths for the different 

crystal axes for sample 2. The frequency dependence of the 

linewidth for this sample showed that the ( 1 1 0 )  linewidths were 

consistently larger than the ( 1 0 0 )  and ( 1 1 1 )  linewidths by an 

amount roughly equal to the experimental uncertainty. The 

frequency dependence of the linewidth was consistent with a 

surface anisotropy of KS = -0.1 erg/cmz. 

The ( 1  10)  linewidth for sample 1 was larger than the ( 1 0 0 )  

and ( 1 1 1 )  linewidths for this sample at 200 K, the highest 

temperature measured below room temperature. The ( 1 0 0 )  and 

( 1 1 1 )  linewidths were the same at all temperatures above 60 K. 

At 77 K the ( 1 1 0 )  linewidth for both samples was approximately 

16% larger than the ( 1 0 0 )  and ( 1 1 1 )  linewidths at that 



temperature. At 4.2 K the (110) linewidth was 2050250 Oe, the 

( 1 1 1 )  linewidth was 1815+50 Oe and the (100) linewidth was 

1620+50 Oe. The linewidths for the two samples were in good 

agreement at all temperatures. 

The low temperature data available for comparison includes 

the measurement of ~ranse[28] at 77 K, the measurements of 

Anders, Bastian and Biller[l7] at temperatures from 77 K.to 

630 K and the measurements of Bhagat and ~irst[t] and Bhagat and 

~ubitz[l2,13] at temperatures from 4.2 K to room temperature. 

~ranse[28] measured a linewidth of 1200 Oe at 23.3 GHz at 

77 K. He does not state the orientation of the magnetic field 

for this measurement. Franse's room temperature linewidth was 

600 Oe or approximately twice the linewidth due to the intrinsic 

damping and exchange conductivity. Presumably part of his large 

77 K linewidth was due to the increase in the intrinsic damping 

and part was due to whatever was responsible for the extra 

linewidth at room temperature. This linewidth is larger than 

our (110) linewidths at this temperature, 1020 Oe, and our (100) 

and ( 1 1 1 )  linewidths, 860 Oe. 

Anders et al[17] made measurements on carefully annealed 

and electropolished (110) Nickel disks. They measured the 

linewidth for the three principal crystal directions at 9.19, 

19.67 and 26.2 GHz at temperatures from 77 K to 630 K. Their 

room temperature lines were'narrow, being 350 Oe at 26.2 GHz, 

the ideal linewidth at this frequency. The room temperature 

linewidths were isotropic within a spread of approximately 50 Oe 



at 26.2 GHz. They found that the (110) linewidth became larger 

than the (100) and the ( 1 1 1 )  linewidths at temperatures below 

273 K, and that the difference in the linewidths increased with 

decreasing temperature. At 77 K they had the (110) linewidth 

equal to 820 Oe, and the ( 1 1 1 )  linewidth equal to 640 Oe at 

26.2 GHz. No value for the (100) linewidth is quoted at this 

frequency but it appears from the data for the other frequencies 

that there was no significant difference between the ( 1 1 1 )  and 

(100) linewidths. Our observations as to the anisotropy of the 

linewidth are in agreement with Anders et al. Their 77 K 

linewidths are much narrower than those measured by us and by 

Bhagat and Lubitz[l2,13]. They do not quote a resistivity ratio 

for their samples. It ism likely that their Nickel was less pure 

than ours or that of Bhagat and Lubitz. Since the linewidth 

increases with increasing resistivity ratio the linewidth for a 

lower purity sample should increase less rapidly with decreasing 

temperature than the linewidth for a pure sample, Recall that 

Lloyd and Bhagat[l4] found no increase with decreasing 

temperature in a 5.4% Copper in Nickel alloy. 

Bhagat and Hirst report measurements made on cylinders 

oriented with a (100) or a ( 1 1 1 )  direction parallel to the 

cylinder axis and on (190) disks. The orientation of the 

applied field in the sample plane for the disk measurements is 

not stated. Presumably these authors did not make any 

measurements with the applied field along the (110) direction 

and so make no comment as to an anisotropy of the linewidth for 



this direction as compared with the (100) or (111) directions. 

They make no mention either of a difference between the (100) 

and the (111) linewidths at 4.2 K. 

Bhagat and Lubitz report measurements on (111) cylinders. 

To compare our data with that of Bhagat and Lubitz the simplest 

thing to do is to simply multiply their linewidths by the ratio 

of the microwave frequencies, 23.95/22. In doing this we ignore 

the zero frequency intercept in the frequency dependence due to 

exchange. The exchange contribution to the linewidth is small, 

and the frequencies are quite close, so the error introduced 

thereby is negligible. For example at 77 K the error is less 

than 10 Oe. At 77 K and 4.2 K Bhagat and Lubitz have linewidths 

of 780 Oe and 1480 Oe respectively. When scaled by the ratio of 

the frequencies these linewidths become 850 Oe and 1610 Oe 

respectively, which are in good agreement with our (100) and 

(111) linewidths at 77 K, 860 Oe, and with our (100) linewidth 

at 4.2 K, 1620 Oe. Our (111) linewidth at 4.2 K, 1815 Oe, is 

larger than that of Bhagat and Lubitz. 

We need to ask what else besides an anisotropy in the 

intrinsic damping could produce the observed anisotropy in the 

linewidth, especially the difference between the (100) and ( 1 1 1 )  

linewidths at 4.2 K. It is unlikely that it could be due to any 

strain in the surface due to the surface preparation or to 

strain in the sample induced by the mounting used since the 

anisotropy for the (111) and (100) directions appears only at 

temperatures below 60 K. If the anisotropy were produced by 



strain it would be expected that the (100) axis, being the hard 

MCA axis, would be affected more than the ( 1 1 1 )  axis, which is 

the easy MCA axis, with the result that the (100) linewidth 

would be greater than the ( 1 1 1 )  linewidth because of effects due 

to the misalignment between the magnetization and the applied 

field. I can think of no experimental factors which would 

produce a temperature dependence of the (100) and ( 1 1 1 )  . 

linewidths similar to that which we have observed. 

With the qualification that the measurements were made on 

samples cut from the same boule, so that the effect may be a 

result of a peculiarity of the sample, we conclude that the 

effect is real and is due to an anisotropy of the damping 

parameter. The disagreement between our ( 1 1 1 )  linewidths and 

those of Bhagat and Lubitz remains unexplained. It would be 

worthwhile to repeat our measurements on samples cut from a 

different single crystal to be absolutely sure that the 

difference between the (100) and ( 1 1 1 )  linewidths at 4.2 K is 

not a sample dependent effect. In any event the anisotropy for 

the (110) linewidth appears well established since it has been 

observed by both Anders, Bastian and Biller and by us. 

The Wavenumber Dependent Damping 

We now wish to examine the consequences of a wavenumber 

dependent damping of the form: 



We will discuss the temperature dependence of the linew.idth, AH, 

and the shift in the position of the resonance, 6M, defined as 

the difference between the value of Hfmr expected using (4.3) 

and the no-exchange no-damping value of Hfmr. It is 

straightforward to compare the calculated temperature dependence 

of the linewidth with experiment, however it is difficult to 

compare the shift, 6H, because the resonance is also shifted by 

MCA. The MCA shifts are much larger than the damping and 

exchange shifts, 6H. For example at 4.2 K the MCA shift for the 

( 1 0 0 )  direction, 21Kll/Ms-, is 4.92 kOe while the damping and 

exchange shift is of the order of 300 Oe, from the numbers in 

Table 4-5. To compare the calculated shifts with experiment we 

would need to know the MCA shifts accurately. Conversely, to 

determine the MCA constants from our data we would need to know 

the damping and exchange shift. 

Cochran and HeinrichL371 fitted the temperature dependence 

of the damping parameter deduced from FMAR transmission 

experiments with the limiting form of (4.3) for small q: 

Their values of a and b were a = 1.07x108 sec" and 

b = 1.19x108 sec''. Rather than trying to fit the temperature 



dependence of our linewidths we will display some representative 

possible calculated temperature dependences. A t  room 

temperature (295 K) ql << 1 so that: 

Taking the value of G = 2.45x108 sec-l at room temperature, we 

have a constraint on the values of a and b which may be used in 

(4.31, i.e. (a + b) = 2.45x10a sec-I. We impose as a second 

constraint on the parameters entering (4.3) that the calculated 

linewidth equal the average of our (100) linewidth at 

4.2 K, 1620 Oe. So for a given value of a the values of b and 

of I D  at any temperature-are fixed. We have chosen values of 

a = 0.8, 1.2, and 2.0x108 sec-' as covering a wide range of 

ratios of intra-band to inter-band scattering at room 

temperature. The values of b, and of I D  at room temperature, 

corresponding to these values of a were b = 1.65, 1.25, and 

0.45x108 sec-l, and I D  = 10, 16, and 28 A respectively. 

In figure 4.17 the linewidth calculated using program I11 

with a non-local conductivity and a wavenumber dependent damping 

with the three sets of parameters a, b, and I D  is plotted as a 

function of the logarithm of the resistivity ratio p(~)/p(295). 

This is a convenient way of displaying the results since it is 

the resistivity ratio which enters the damping (4.3). Also 

shown on the figure is our data for the temperature dependence 

of the (100) linewidth. Resistivity ratios of 10 and 38 are 
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Fiqure 4.17 The variation of the FMR linewidth with the 

logarithm of the resistivity ratio. The solid lines were 

calculated with program I11 with a non-local conductivity and a 

wavenumber dependent damping with (A)a = 0.8x108 sec-l, 

b = 1.65x108 sec-l; (B)a = 1.2x108 sec-l, b = 1.25x108 sec-': 

(C)a = 2.0x108 sec'l, b = 0.45x108 sec-l; The circles are the 

experimental data. Resistivity ratios of 10 and 38 correspond 

to temperatures of 77 and 4.2 K respectively for our samples. 



indicated on the figure, corresponding to 77 and 4.2 R 

respectively for our samples. A temperature was associated with 

each resistivity ratio using the resistivity ratios of our 

samples. The value of the magnetization corresponding to that 

temperature was used in the calculations. The magnetization is 

not a strong function of temperature in the temperature range we 

are considering so the effects of a small inaccuracy in relating 

the temperature to the resistivity ratio should be negligible. 

The calculated variation of AH with temperature 

(resistivity ratio) exhibits the increase with decreasing 

temperature (increasing resistivity ratio) observed 

experimentally and the saturation at large resistivity ratios 

discussed by Bhagat and ~irst[l]. As expected the linewidth 

saturates at higher temperatures for larger values of a, that is 

for a larger contribution of the intra-band damping to the total 

damping at room temperature. For the smallest value of a shown 

the linewidth had not saturated at a resistivity ratio of 38. 

The values of AH at saturation were AH = 1770, 1700 and 1630 Oe 

respectively for a = 0.8, 1.2, and 2.0x108 sec-l. 

Comparing our data with these calculated curves it appears 

that the data follows the temperature dependence calculated 

assuming a = 0.8x108 sec"' reasonably well. Of course there is 

the problem of the extra linebroadening in our experimental 

results, but this would not affect our linewidths by more than 

approximately 40 Oe at any temperature, see the discussion's in 

Sections 4.2, 4.3 and 4.4. The values of a and b which would be 



chosen to match the experimental temperature dependence would be 

close to a = 0.8x108 sec-' and b = 1.65x108 sec-'. It would be 

possible to better define the best values of a and b, but it is 

probably not worth the large effort. 

In Figure 4.18 the damping and exchange shift 6H, is 

plotted as a function of the logarithm of the resistivity ratio 

for the three sets of a, b and I D .  As in Figure 4.17 resistivity 

ratios of 10 and 38 have been indicated on the figure. The 

variation of 6H for the three sets of parameters are quite 

similar, the damping and exchange shift being to lower fields 

(6H is negative). At a resistivity ratio of 38 the shifts are 

6H = -200, -280, and -340 Oe for a = 0.8, 1.2, and 2.0~10~' sec-l 

respectively. 

Before attempting to compare these calculated temperature 

variations with experiment it is instructive to examine the 

temperature variation of 6H to be expected for a wavenumber 

independent damping. In Figure 4.19 we have assembled the 

results of calculations for the following combinations of 

damping and conductivity: 

(a) non-local conductivity, wavenumber dependent damping. For 

this plot we have used the parameters of Cochran and Heinrich 

with I D  = 16 A at room temperature as in Section 4.4. The 

variation of 6H is similar to that calculated assuming 

a = 4.2x108 sec-I in Figure 4.98. 

(b) non-local conductivity, wavenumber independent damping 

G = 2.45x108 secPf. This is the variation of 6H which would be 
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Figure 4.18 The variation of the shift, 6H, with the logarithm 

of the resistivity ratio. The shift is defined as the 

difference between the no-exchange no-damping value of Hfmr and 

that calculated with program 111. A non-local conductivity and 

a wavenumber independent damping was assumed, with 

(A)a = 0.8x108 sec-l, b = 1.65x1Q8 sec": (B)a = 1.2x108 sec-I, 

b = 1.25x108 secel; (C)a = 2.0x1Q8 sec'l, b = 0.45x1Q8 sec-': 

Resistivity ratios of 10 and 38 correspond to temperatures of 77 

and 4.2 K respectively for our samples. 
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Fiqure 4.19 The variation of the shift, 6H, with the logarithm 

of the resistivity ratio. The curves were calculated assuming: 

(a) non-local conductivity, wavenumber dependent damping; 

(b) non-local conductivity, wavenumber independent damping 

G = 2.45~10' sec-'; (c) non-local conductivity, wavenumber 

independent damping G = 8.0~10' sec-l; (dl non-local 

. conductivity, wavenumber independent damping G = 14x10' sec-'; 

(el local conductivity, wavenumber independent damping 

G = 2.45x108 sec-I. The circles are the experimental data at 77 

and 4.2 K. ~esisfivity ratios of 10 and 38 correspond to 

temperatures of 77 and 4.2 K respectively for our samples. 



expected for a material having a temperature independent damping 

equal to that of Nickel at room temperature. 

(c) the same as (b) except that G = 8.0x108 sec-', approximately 

the damping parameter required to reproduce the linewidth in 

Nickel at 77 K. 

(dl The same as (b) except that G = 14x108 sec'l, the damping 

parameter required to reproduce the (100) linewidth in Nickel at 

(el to demonstrate the effect of a local vs a non-local 

conductivity curve (el has been calculated assuming a local 

conductivity with G = 2.45x108 sec-l. This curve is useful 

because it gives a rough idea of the temperature at which the 

effects of a non-local conductivity become important, curves (b) 

and (el diverge at a resistivity ratio of approximately 20. 

The crosses on the Figure are the experimental shifts at 77 and 

4.2 K calculated using the MCA constants of Tung et a1[21]. 

These shifts were obtained by subtracting Calc. A in Tables 4-4 

and 4-5 from the experimental values of Hfmr. 

The magnetic damping in Nickel is temperature dependent. A 

feeling for the temperature variation of 6H if a wavenumber 

independent damping were assumed can be obtained by looking at 

curve (b) at room temperature, curve (c) at 77 K (resistivity 

ratio = 10) and curve (dl at 4.2 K (resistivity ratio = 38). 

The shift is small and not strongly dependent on temperature. 

On the other hand the shift due to the wavenumber dependent 

damping, curve (a), is strongly temperature dependent and much 



larger than for a wavenumber independent damping. We may 

compare these calculated shifts with experiment at 77 K and 

4.2 K where the MCA shifts are known with reasonable certainty. 

From Table 4-4 the shift 6M at 7 7  K varies from +10 to -120 Oe. 

From Table 4-5 the shift at 4.2 K varies from -260 to -430 Oe. 

At 7 7  K the difference between the calculated shifts for a 

wavenumber dependent and a wavenumber independent damping are 

small so that it is not possible to choose between the two forms 

of the damping from the experimental values. However at 4.2 K 

the wavenumber dependent damping shift is in much better 

agreement with experiment than the wavenumber independent 

damping shift, as evidenced by the data on the figure. 

Rather than comparing the calculated shifts with experiment 

we may approach the problem from a different direction and ask 

how the values of the MCA constants deduced from experiment 

assuming the two different forms of the damping compare with 

accepted values. If a wavenumber dependent damping was assumed 

the value of K1' obtained from the position of the resonance for 

the (100) direction would be in good agreement with the value of 

Tung, Said and Everettf211, Kf' = -12.44x105 erg.cm3. If a 

wavenumber independent damping was assumed the value of K1' 

would be K1' = -11.5x105 erg.cmJ. To demonstrate that our 

results are not a peculiarity of our samples we cite the value 

of IKII/M~ of 2150 G quoted by Lloyd and ~hagatfl41 at 4.2 K. 

This corresponds to a value ~ 1 '  = -11.3x1Q5 erg/cm3, in good 

agreement with our wavenumber independent damping value of K1'. 



To summarize, the temperature variation of the (100) 

linewidth was consistent with a wavenumber dependent damping of 

the form (4.3) with a = 0.8x108 sec-l, b = 1.65x108 sec-' and 

I D  = 28 A at room temperature. The damping and exchange shift, 

6H, also appears consistent with this form of the damping. 

However the experimental lineshapes and those calculated 

assuming a wavenumber dependent damping are only in partial 

agreement, see Figure 4.11. 



5 .  CALCULATION OF THE DAMPING PARAMETER 

5.1 Introduction 

We now turn from experiment to a consideration of the 

microscopic origins of magnetic damping. The first part of this 

chapter contains a qualitative discussion of the effects of 

spin-orbit coupling on electron states and how spin-orbit 

coupling may lead to magnetic damping. This is followed by 

presentation of a calculation of the damping parameter using a ' 

simple model of electrons and spin waves coupled through the 

spin-orbit interaction. The ideas discussed here are largely 

due to Kambersky[2,70,71,72]. The low temperature damping 

mechanism has been discussed by Korenman and ~range[3,4,73]. 

~erger[74] has also presented a theory of magnetic damping 

applicable to Nickel. 

Spin-orbit coupling has two effects on the electron states 

in a solid, it mixes the spin and it shifts the energy. These 

two effects lead to two magnetic damping mechanisms with 

different temperature dependences. 

In the absence of spin-orbit coupling a band state is 

either spin-up or spin-down. In the presence of spin-orbit 

coupling the band states are not spin eigenstates. A state 

Ik,n,+> where k is the momentum, n the band index and + the spin 



index, becomes (following ~lliott[tO]) (akn+l+> + bkn+l->) and a 

state lk,n,-> becomes (akn-I-> + b kn- I+>) where la1 is >> (bl. 

The constants a and b depend on both k and n. Scattering of an 

electron by a phonon or impurity results in a change of the spin 

of the system. Three types of scattering may be distinguished 

depending on whether the band and spin indices change: (i) an 

electron in state Ik,n,+> scatters to Ik',n,+> (intraband 

scattering), (ii) lk,n,+> scatters to Ik',n',+> (interband 

scattering with no change of spin index), and (iii) lk,n,+> 

scatters to (k',n',->. The third type of scattering (spin-flip 

scattering) is not possible in the absence of spin-orbit 

coupling. since the spin of the system is not conserved it is 

clear that scattering may lead to magnetic damping. Apparently 

spin-flip scattering gives the largest contribution to the 

magnetic damping. The magnitude of the damping depends on the 

relative magnitudes of the gap between the bands (AE) and the 

reciprocal lifetime of the electrons K/r. If a single gap is 

present the damping varies as: 

If K / r  is <c AE the damping varies as 1/r, This has been 

demonstrated by Heinrich, Fraitova and ~ambersky[75] who 

considered the damping introduced by the s-electron d-electron 

exchange interaction. In a real metal there is a spectrum of 

energy gaps present ranging from zero at accidental degeneracies 



to the full exchange splitting. The damping will consist of a 

sum of terms like (5.1). It is thought that this mechanism is 

responsible for the flat temperature dependence of the damping 

in Nickel between approximately 200 K and 600 K. This mechanism 

was considered in the damping used in Chapter 4 by the term that 

varied as the resistivity. For pure metals T becomes large at 

low temperatures so that the damping due to this mechanism 

becomes small. 

The other effect of spin-orbit coupling is to shift the 

energy of an electronic state. This leads to a magnetic damping 

responsible for a linewidth which has a temperature dependence 

similar to that observed in Nickel at low temperatures, namely 

an increase with decreasing temperature leading to saturation at 

very low temperatures. In a ferromagnetic metal the shifts 

depend on the direction of the magnetization. Generally the 

shifts are small, being second order in the spin-orbit coupling 

parameter 4121 which is small (4 for Nickel is of the order of 

0.1 eV[161). The situation may be quite different if there are 

degenerate states whose degeneracy is lifted by spin-orbit 

coupling. The splitting of the bands then depends on the 

direction of the magnetization with respect to the crystal axes, 

. If the degeneracy is near the Fermi surface the shifts in the 

energy levels lead to changes in the size and shape of the Fermi 

surface. The effect of spin orbit coupling on the band 

structure when degeneracies are present has been discussed by 

~lliott[lO]. His Figures 3-6 demonstrate the effects which may 



occur. 

A useful picture, and the one which will be used in the 

calculation of the damping parameter, is to consider the metal 

as containing collective magnetic excitations (spin waves) and 

single particle excitations (electrons). Precessional motion of 

the magnetization may be described in terms of spin wave 

amplitudes. FMR consists of exciting spin waves by the . 

microwave magnetic field. The spin waves may be described in 

terms of electron states but such a description need not concern 

us. The electron and spin wave systems are coupled by spin 

orbit coupling because the electron energy depends on the 

direction of the magnetization of the magnetization. Magnetic 

damping occurs when a spin wave is annihilated in a collision 

with an electron and the electron is excited into a higher 

energy state. Energy and momentum must be conserved in such a 

collision. An estimate of the spin wave energy, momentum and 

velocity is: 

where o is the spin wave frequency (the microwave frequency) and 

6 is the microwave skin depth (see Chapter 2). An estimate of 

the electron energy, momentum and velocity is: 



where a is the lattice spacing. Clearly Esw << E, q << k and 

v << v If an electron is excited from a state E to a state sw F* 

E' in a collision with a spin wave, then, by conservation of 

energy and momentum we have: 

Combining these two equations: 

E' - E = (K2/2m)(2E*G + q2) = Kw 

or: 

where E = E2k2/2m, and qS has been neglected compared with 2E*GO 

vFq is approximately 1 0 '  while o is approximately 1 0 '  SO that: 



In other words only those electrons whose velocity is 

approximately perpendicular to that of the spin wave interact 

with the spin wave. More precisely the component of the 

electron's velocity parallel to 6 must equal the spin wave phase 
velocity for an electron spin wave collision to occur. If the 

electron lifetime r ,  due to phonon and impurity scattering, is 

short the electron momentum is not well defined and'the momentum 

conservation condition is not stringent. The number of 

electrons which may interact with the spin wave is large but the 

interaction time is short so that the damping is small. At low 

temperatures where the lifetime increases the momentum 

conservation condition is stringent and restricts the number of 

electrons which may interact with the spin wave. However 

because the lifetime is long the interaction is much more 

effective and the total effect becomes large. We may think of 

the electrons as 'surf-riding' on the spin wave. The energy 

which the electrons may absorb from the spin waves is limited 

only by the time of the ride. This leads to a damping which 

increases with the electron relaxation time as is observed in 

Nic kel. 

The calculation which is carried out in this chapter is 

based on this idea. The X, hole pockets in the Fermi surface of 

Nickel are known to change size and shape with the direction of 

the magnetization. We consider only those electrons in states 



near these pockets. These are minority spin electrons so we 

consider' only electrons of a single spin. We use the Fermi 

surface of Hodges, Stone and Gold[l6], the description of spin 

waves given by Sparks[6] and the variation of energy levels with 

the direction of the magnetization given by Gold[76]. These are 

described in Section 5.2. The approach is to calculate the 

response of the spin wave system to a magnetic field which 

varies as exp(i (qy-ot)) using the method of Green's functions. 

This gives the frequency and wavenumber dependent susceptibilty. 

The imaginary part of this susceptibility is related to the 

damping parameter. This calculation is presented in 

Section 5.3. The integrals over the Fermi surface which enter 

the damping parameter have been evaluated. The results are 

compared with the calculations of Kambersky and with the 

experimental results presented in Chapter 4 in Section 5.4. Our 

calculation is similar to that carried out by Heinrich, Fraitova 

and Kambersky[75]. 

5.2 The Model 

The Fermi Surface of Nickel 

The band structure and Fermi surface of Nickel have been 

calculated by a number of workers. The calculations of 

~ornberg[77] are useful for the complete Fermi surface including 

the effects of spin-orbit coupling. A recent reference is the 



work of Weling and Callaway[781. A schematic sketch of the band 

structure of Nickel as presented by Gold[69] is shown in 

Figure 5.1, as well as the band structure near the X points, see 

below. 

Most people in the field seem to agree as to the large 

features of the ~ermi surface although there are a few small 

areas whose existence is still a matter of discussion. The 

large features include six distinct sheets. There are two 

sheets of predominantly s-character, a majority spin sheet and a 

minority spin sheet. The two sheets are similar in shape having 

pronounced 'bulges' in the ( 1 1 1 )  directions. The majority spin 

sheet contacts the Brillouin zone edge in the ( 1 1 1 )  directions 

with the formation of 'necks' similar to those of the Fermi 

surface of copper. There is a predominantly d-character 

minority spin sheet with 'bulges' in the (110) directions. 

These three sheets are centered in the Brillouin zone. There 

are three minority spin sheets centered about the X-points of 

the Brillouin zone (the X-points are located at 2n/a(fl,O,O), 

2n/a(O,fl,O) and 2a/a(O,O,fl)). These sheets arise from the X5 

d-band. They are much smaller than the other three sheets 

above, they are approximately ellipsoidal in shape and have 

hole-like character. These are the X, hole pockets which form 

the focus of this chapter. There is a possibility that small 

hole pockets at the X-points arising from the minority spin X2 

level may exist. The X2 level is close to the Fermi level and 

may be shifted, in a calculation, above or below with small 
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Fiqure 5.1 (a)A schematic sketch of the energy bands of Nickel 

as presented by Gold[69]. 

(b)The band structure at the Fermi level near the X points as 

given by Hodges, Stone and Gold[16]. The magnetization is 

parallel to [001]. Solid curve: 5 = 0.1 eV; Dashed 

curve: 5 = 0. 

Inset Directions in the reciprocal lattice of a face. centered 

cubic lattice. 



changes in parameters, see Figure 5.1 where the X, level appears 

just below the minority spin Fermi energy. The only 

experimental evidence for the existence of these pockets is the 

torque measurements of GersdorfL441 and Tung et a1[211. 

According to Zornberg degeneracies in the band structure 

occur near the L-points ( ( 1 1 1 )  directions), along A (r - L), 
along A (I' - X) and at accidental degeneracies due to band 
crossings which occur when the exchange splitting is added to 

the band calculation. The band structure in the rest of the 

Brillouin zone is largely independent of magnetic field 

direction. 

In the absence of spin-orbit coupling the X, 1eve.l is 

doubly degenerate. The degeneracy is lifted by spin-orbit 

coupling, the splitting of the levels depending on the angle 

between the magnetization and the (100) axis of interest. Since 

the position in k-space where the band crosses the Fermi level 

changes with the direction of the magnetization, the dimensions 

of the Fermi surface change. 

This change in size and shape of the Fermi surface with the 

direction of the magnetization was first invoked to explain 

unusual de Haas-van Alphen results (~odges,Stone and Gold[16], 

this paper will be referred to as HSG). These authors produced 

a band structure and a F'ermi surface using the interpolation 

scheme of Hodges, Ehrenreich and ~ang[79] which fitted the dHvA 

data from the pockets well. The calculated band structure did 

not fit the results for the rest of the Brillouin zone well. 



However since we are interested only in the hole pockets we will 

use the ~ermi surface parameters of HSG. 

Dimensions of the hole pockets at the different X-points 

for the magnetization along [001], [ 1 1 1 ]  and [110] are listed in 

Table 5-1. These numbers are taken from Table 1 of HSG. Also 

listed in Table 5-1 are values of the spin-orbit coupling 

parameter l ,  the Fermi energy EF and the energy of the X, level 

at the X-point in the absence of spin-orbit coupling, Ex, quoted 
* * 

by HSG. Effective masses m, for the direction kXW and m 2  for 

the direction kXr in the absence of spin-orbit coupling are 
* 

listed, as well as the Fermi velocity appropriate for EF and m,. 

The band structure at the Fermi energy near the X-points is 

shown in Figure 5.1 and the X, pockets are illustrated in 

Figure 5.2 when MS points along [001]. The pockets are shown in 

the presence and absence of spin-orbit coupling. Different 

authors quote different dimensions for the pockets. For example 

Weling and Callaway quote values of kXr ranging from 0.195 to 

0.256 times 27r/a in the absence of spin-orbit coupling. A 

comprehensive discussion of the pockets is given by 

Zornberg[77]. 

To calculate the damping parameter we need to know the 

dimensions of the Fermi surface and how the energies depend on 

the direction of the magnetization. Gold[76] has given a simple 

analysis of the dependence of the energy levels on the direction 

of the magnetization. By considering only the degenerate levels 

and neglecting any mixing from other states at the X-points and 
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TABLE 5-1 

Distances from X to the surface of the hole pocket in units sf 

2r/a, where a=3.5166 A (Hodges, Stone and Gold) 

E = 0.1 eV 

Field Location k ~ r  kxw k~~ 

Direction of pockets 

[0013 (o,o,+l) 0.195 0.100 0.094 

(kl ,OIo) 0.220 0.142 0.108 

(0,91 ,O) 

  and Parameters for 5 = 0 

m = free electron mass 

k 
vF(m,) = 5.6~10' cm/sec 



Fiqure 5.2 The X, hole pockets in the Fermi Surface of Nickel, 

based on the parameters of HSG. In this plot the pockets at 

2n/a(1,0,0) and 2n/a(0,0,1) are shown. The magnetization points 

along [ 0 0 1 ] .  The dotted curves represent the Fermi Surface in 

the absence of spin-orbit coupling. The solid curves represent 

the Fermi Surface with t = 0.1 eV. The boundary of the 

Brillouin zone is shown, 



treating spin-orbit coupling as a perturbation he found that: 

where E,(k) is the energy in the absence of spin-orbit coupling, 

6 is the spin-orbit coupling parameter and OM is the angle 

between the magnetization and the (1 00) axis being considered. 

According to this picture if the magnetization is along [001] 

the levels at [100] and [010] should not be shifted. This is 

not true as can be seen from Table 5-1 and Figure 5.2. The 

difference is small however and the expression (5.2) will be 

used in the discussion which follows. 

Neglecting the light fluting of the hole pockets, ie 

considering them as ellipsoids with major axis kXr, and minor 

axis kXW, the energy of electrons near the X-points may be 

written: 

where k is measured from the X-point and the kZ axis is along 

the I?-X axis of the pocket being considered. These simplified 

pockets change size, but not shape, with changes in the 

direction of the magnetization. 



Geometry for the Calculation 

We now address the problem of actually calculating the 

damping parameter for the low temperature damping mechanism. 

The approach is to evaluate the microwave susceptibility using 

the method of Green's functions (see below). The imaginary part 

of the susceptibilty is related to the damping parameter'. 

The geometry assumed is shown in Figure 5.3. The sample 

forms a slab of infinite extent lying in the x-z plane. The 

external field and the magnetization point along the 

z-direction. We consider only cases where a principal crystal 

axis is parallel to z .  As was demonstrated in Section 2.3 the 

magnetization will then be parallel to the applied field if the 

magnitude of the applied field is greater than some critical 

value. Microwaves travel in the +y-direction with the microwave 

magnetic field in the x-direction. The time and space variation 

exp(i (qy-wt)) is assumed. This geometry is essentially the same 

as that of the calculations outlined in Chapter 2, Sections 2 . 1  

and 2.3, however the coordinate system has been changed so that 

the magnetization points in the z-direction (for quantum 

mechanical reasons). Only small deviations of the magnetization 

from equilibrium are considered. The components of the 

magnetization are (mx,m ,M ) to first order in the small 
Y S  

quantities mx and m 
ye 

There are three principal crystal axes ( 100), ( 1 1  0) and 

(111). In our experiments the samples were cut with a 



[ 170 1 axis normal to the sample plane. We could measure FMR 

with the applied field parallel to [0011,  [ 1 1 0 ]  or [ 1 1 1 ]  with 

the spin wave wavevector q along [ i 1 0 ] .  Experiments may also be 

performed on samples cut with an [ 0 1 0 ]  axis normal to the sample 

plane. The [ 0 1 0 ]  plane contains the [ 0 0 1 ]  and [ 1 0 1 ]  crystal 

axes. An experiment performed with a [ 0 1 0 ]  normal sample with 

the applied field along the [ 0 0 1 1  axis is not equivalent, to an 

experiment performed with a [ 1701 normal sample and the applied 

field along [ 0 0 1 ]  as the direction of the spin wave wavevector 

with respect to the crystal axes is different. Thus there are 

five orientations of the crystal axes of interest: with the 

sample plane being a [ 0 1 0 1  normal crystal plane, (i) Ms parallel 

to the [ 0 0 1 ]  axis, (ii) MS parallel to the [ 1 0 1 ]  axis; with the 

sample plane being a [ 1701 normal crystal plane, (iii) M 
S 

parallel to the [ 0 0 1 ]  axis, (iv) MS parallel to the [ 1 1 1 ]  axis 

and (v) Ms parallel to the [ 1 1 0 1  axis. Case (i) is shown in 

Figure 5.3(a) and case (iii) in Figure 5.3(b). 



Figure 5.3 The geometry assumed for the calculation of the 

damping parameter. The X, hole pockets are indicated on the 

. figures. 

(a) case ( i )  of the text, the sample normal is [010], the fool] 
axis is parallel to the z-axis. 

(b) case (iii) of the text, the sample normal is   TO], the 

[001] axis is parallel to the z-axis. 



The Hamiltonian 

To carry out the calculation we need the Hamiltonian which 

describes the model system. This consists of three parts: the 

spin wave Hamiltonian, the electron Hamiltonian and the 

interaction Hamiltonian. Following Sparks161 the spin wave 

Hamiltonian may be written: 

where b' and b are spin wave creation and annihilation 
9 4 

operators, (Bose operators), H is the external field (including 

the static demagnetizing field), A is the exchange constant, y 

is the gyromagnetic ratio, q the spin wave wave-vector, and 8 
9 

and @ are the polar and azimuthal angles of the spin wave 
9 

wave-vector, with respect to the direction of as. The wave 
vector q should be written as a vector but will not be so 

written for typographical ease. Equation ( 5 . 4 )  may be obtained 

by writing the energy of the spin system including the exchange 

interaction, the dipole-dipole interaction and the interaction 

with the external field, and carrying out the first two 





where V is the volume of the system. Sparks relates m+ to b 
9 

and m- to bt If this convention is used the commutator (5.5) 
q' 

must have the opposite sign. This may be seen by comparing the 

commutation relations for the magnetic moment components with 

the relations for the angular momentum, t, and recalling that 

8 = -YE, see ~urov[45]. 

The electron Hamiltonian is simply: 

t Xel- = ZE c c k k k  

where ci and ck are electron creation and annihilation 

operators, (Fermi operators), k the electron momentum and Ek the 

energy of an electron with momentum k. We need to consider 

electron states located about the three cube axes [100], [OiO] 

and [001]. To keep track of which states are under 

t consideration we define three sets of operators: elk , clk for 
t the states along [1001, c2k , cpk for the states along [010], 

t and cjk , cjk for the states along [0011. In terms of these 

operators the electron Hamiltonian is: 



The electron operators anti-commute: 

The energies Elk, EZk and E3k are those of equation (5.3). 

evaluated in equilibrium (mx = 0). They include the kinetic 

energy and a spin-orbit shift. 

The interaction Hamiltonian describes the changes in energy 

which arise as the magnetization deviates from equilibrium. 

Consider case (i), Figure 5.3(a). For the electron states 

about the 11001 axis cos(BM) * mx/Ms and the change in energy, 

A E l o o .  is -(E/2Ms)mx = -(1/2)([/2MS)(m+ + m-1. For the states 

about the [010] axis cos(eM) = my/Ms and A E , , ,  = -(E/2Ms)my 

= -(1/2i)(E/2MS)(m+ - m-1. For the states about the [0011 axis 

cos(eM) does not change to first order in mx and m Let 
Y 

AE+ = -(E/2MS)m+ and AE. = -((/2MS)m-. Transforming to second 

quantized notation: 



where = (~Nv)exp(ik,r) is an electron wave function and 

P = -(1/2)((/2MS)l/~(this symbol. P. is called 'thorn'). 

Similarly: 

AE. = ~BZLC' c b t' 
k-q k q 

Placing the axis labels on the electron operators: 

In general, 

axis. M100. 

The interaction Hamiltonian is the sum AE,,, + AE,,, + AEoo,. 

the component of the magnetization along the [100] 

may be written: 

In equi ibrium m+ and m- are zero so that MI,, = yMZ. The change 

in energy for the states on the pocket at [100] for a deviation 

of the magnetization from equilibrium is: 



since the change in MZ is second order in m- and m+. If we let 

( a - i / 3 )  = A+ and (a+i@) = A _ ,  with similar definitions of B+, B- 

and C+ and C- for the pockets at [ 0 1 0 ]  and 10011 respectively, 

the interaction ~amiltonian may be written: 

* * * 
with A+ = A_, B+ = B- and C+ = C-. This Hamiltonian is in fact 

Hermitian. The constants A+, B+ and C+ are listed in Table 5-2 

for the five cases of interest. 

The total Hamiltmian is X = HSw + Belt+ Hint. 



5.3 Calculation of the Damping 

Green's Functions 

Green's functions and their applications to physical 

problems have been discussed in detail by ~ubarev[80]. The 

reader is referred to that paper for elaboration of the 

statements made in this section. For our purposes the Green's 

function for two (time dependent) operators A and B is: 

where the square brackets represent a commutator, p o  is the 

density matrix for the system under consideration when in 

thermal equilibrium, the trace represents a thermal average and 

8(t) is the step function, 8(t1 = 1 if t > 0, 8(t) = 0 if t < 0. 

It can be demonstrated that the Green's function is the response 

of the operator A to a perturbation ~6(t). The response to a 

perturbation of the form Bexp(-iwt) is described by the 

susceptibility ~(w): 

where G(o) is the Fourier Transform of G(t.1: 



since G is zero for t 5 0. 

To evaluate the Green's function we differentiate equation 

(5.13) with respect to time. The time derivative of the 

operator A is the commutator of A with the Hamiltonian of the 

system: 

iKd~/dt = [A,H] ( 5 . 1 6 )  

The result of this differentiation will be new Green's 

functions. These may be- differentiated in turn until the 

original Green's function is obtained, in which case the system 

of equations resulting from differentiation may be solved 

exactly, or until Green's functions are obtained which may be 

related to the original function by an approximation. 

The Calculation 

In the calculation which follows we wish to determine the 

response of the magnetization to a transverse driving field: 



The perturbation is then: 

Writing mx in terms of spin wave creation and annihilation 

operators (5.7): 

These operators enter the Green's functions as the operator 

B. The operator A is that representing the component of the 

magnetization of interest, mx or m or m+ or m-. For example: 
Y' 

m- = -(1/2) (r/-v) (r/-) Z<<bm;b '9 +b 9 7' >>exp(imr)hx (5.18) 

Because there is no coupling between spin waves in this 

model, only the following Green's functions will be non-zero: 



Then : 

t m-/hx = --$iMS<<b *b +b >> = -7RMs(GI + G2) 
9' -4 9 

m+/hx = -yFiMs(G3 + GI) 

mx/hx = -7fi~S/2 (GI + G2 + G3 + GI 

my/h, = iyKMs/2(Gl + G2 - G3 - GI) 

The steps in the calculation will be indicated for the Green's 

function G I ,  the procedure being the same for the three other 

functions. 

Taking the time derivative of G, and multiplying ,by iK: 

The commutator of b with H is: 
4 

so that: 



where F,,(k), Fl,(k) and F13(k) are new Green's functions which 

contain both electron and spin wave operators: 

F 1 2  and F1, are defined in a similar manner. The first 

subscript indicates which of the original Green's functions the 

new Green's function is derived from. The second subscript 

represents the pocket with which the electron operators are 

associated. 

Taking the time derivative of F1,(k) and multiplying by ifi 

(and not writing down the intervening steps): 

- A + < <  c I b' ; b h  I k-q-m '1 k m q 

. Again we have new Green's functions. These may be related to 

the original Green's functions by an approximation (the random 

phase approximation). For example: 



t where < ''1 k-q Clk-m > is the expectation value of the operator 
t 
'lk-q 'lk-m ' t This will be zero unless m = q and < c , ~ - ~  clkUq > 

= n 
1 k-q' the occupation number of the state (k-q) in thermal 

equilibrium. The assumption is made that the electron spin wave 

interaction does not disturb the electron distribution. The 

Green's functions << c , ~ - ~  t c  b ;b t >> reduce to the single fk-m m q 
Green's function nlk-q <<b *b >> = n 

9' 9 1 k-q 
GI. We have recovered 

the original Green's functions. Performing the same contraction 

on the three other sets of Green's functions in equation (5.15) 

leaves: 

Changing to the Fourier components of these Green's functions 

(equation (5.15)) we can write the equations for the Green's 

functions in a form which does not contain time derivatives, 

(ifidF/dt becomes KwF). We find: 

Fll(k) = p[(nlkmq - nlk)/(Hw -(Elk - k-q ) ) I  (A+G, + A-G,) 

(5.28) 

using the same notation for the Green's functions and their 

Fourier components. Substituting this expression and the 

equivalent expressions for F12(k) and F13(k) into the Fourier 

transformed equation for G, yields: 



r 2  AND r3 are defined similarly for the pockets at [ 0 1 0 1  and 

[001 I .  Performing the same operations (equations 5.21 through 

5.29) with G, yields: 

where the fact that.A- = A and B = B has been used. 
q ? 9' -9 9 .  

Define: 

Solving for GI 

GI = a 

and G,: 



Performing the calculation for G2 and G,: 

The denominator, D, is the same for all four Green's functions. 

For our case 19 = r/2, 
9 %I 

= r/2, so, from equation (5.4): 

In the absence of spin-orbit coupling P,, P2, /3, are zero. The 

denominator D and the ratios mx/hx and m /h become: 
Y x 

my/hx = -(yfi)'MSi(w/7)/D 

These expressions are the same as equations (2.18) (the 

denominator of (2.18) is rewritten below) in the absence of MCA 

and damping (note the difference in the coordinate system of 

equation (2.18)). If 0, = 6, the denominator may be factored 



as: 

Such factoring will be possible if A: = A', B: = B' and C: = ~ f ,  

which is true if the sample plane is a (100) plane, see . 

Table 5 - 2 .  If the sample plane is a (110) plane the 

coefficients A+, A_, B+ and B- are related by A+ = B- and 

A- = B+. In this situation p2 will equal 0, if r ,  = r2, that is 

if the sums for the pockets at [100] and [010] are the same. 

Due to the symmetry of the situation this will be true (see 

Figure 5.3(a)) so that for all cases of interest 0, = P 3 c  The 

denominator of equation ( 2 . 1 8 )  is: 

where a and y are effective magnetocrystalline anisotropy (MCA) 

fields (this y should not be confused with the gyromagnetic 

ratio) and G is the Gilbert damping parameter (not to be 

confused with the Green's functions GI. Comparing the two 

. expressions ( 2 . 1 8 )  and (5.36) suggests identifying the real part 

of (PI 2 p2)/yK with an effective MCA field (possibly wavenumber 

dependent) and the imaginary part with i(w/y)(G/yM,): 



An interesting result of this calculation is the possibility of 

the damping depending on the direction of the excursion of MS 

from equilibrium, G I  being the damping parameter for in-plane 

excursions and G 2  being the damping parameter for out of plane 

excursions. Writing the expressions for these damping 

parameters out in full: 



Evaluation of the Damping Parameters 

To obtain values for these damping parameters we have to 

evaluate a sum of the form: 

for each of the three pockets. The sum is converted to an 

integral : 

S = .fd3k/C2a)3 [(n(k-q) - n(k))/(Kw-(E(k)-~(k-q)))l (5.40) 

where n(k) is the Fermi distribution function and E(k) is the 

energy of an electron in state k. Since k is of the order of 

kF (=lo8 cm-'1 and q is of the order of 1/6 (=lo5 cm-'1, we may 

expand n(k-q) and E(k-q) about k: 

where (an/aE) = -6(E(k) - EF) assuming the Fermi distribution is 
a step function, and aE/ak = Kv(k). Expanding E(k-q): 



The integral (5.40) becomes: 

Following Heinrich, Fraitova and ~ambersky1751 the finite 

lifetime of the excited electron states is taken into account by 

adding a small imaginary part, K T ,  to the energy, where r is 

the average time between collisions of an electron with a phonon 

or an impurity. This term must be included on the top of the 

integrand (in the An term) as well as the bottom (in the AE 

term) so that: 

or, writing this in terms of real and imaginary parts: 

For a spherical Fermi surface this integral may be 

evaluated analytically, the imaginary part of the integral 

being: 



where vF is the Fermi velocity and 1 is the electron mean free 

path, I = v T. If ql and wr are both small compared to 1 F 
arctan(q1fwr) * (ql+wr) and the sum varies directly with the 

relaxation time T: 

If wr << 1 and ql * 1 ,  arctan(q1 + wr) = arctan(q1) and: 

When multiplied by the appropriate constants (see equation 5.39) 

this is the result of Korenman and Prange[3,4]. It is the form 

of the wavenumber dependent part of the damping used in 

Chapter 4 for comparison with experiment. 

For a non-spherical Fermi surface, such as our pockets, the 

integral must be evaluated numerically. The integral may be 

evaluated in a coordinate system in which the z-axis is parallel 

to the r-X axis of the pocket under consideration. This 

coordinate system is different for each pocket. The direction 

of q must be considered for each pocket and each case, see 

Table 5-2. The energy E(k) in such a coordinate system is 

(equation 5.3): 



where Ex is the energy of the X, level at the X-point in the 

absence of spin-orbit coupling and OM is the angle between the 

equilibrium direction of the magnetization and the F-X axis. 

The Fermi surface is given by E(k) = EF or: 

The Fermi velocity is given by fivF = Ivk~(k) 1 : 

The volume element d3k may be written: 

where dSk is an element of area on a surface of constant energy 

and dk is an element of length perpendicular to that surface. 

Carrying out the integration over the energy the integral 

becomes : 

The dot product q*vF is different for each of the pockets 

because we use a coordinate system in which kZ is along the F-X 



axis of the pocket of interest. 

5.4 Results 

The summations of equation (5.39) have been carried out for 

the three orientations of the magnetization in the (110) plane. 

These correspond to the configurations investigated in this 

thesis. Values of T of 10-14, 10-13, and 10-l2 sec, 

corresponding to room temperature, 77 K, and a resistivity ratio 

of 100 were used. The parameters for Nickel listed in Table 4-1 

and the parameters of HSG for the hole pockets, Table 5-1, were 

used. A useful conversion factor is 1 0e2 = 1.5687~10~~ ev/cm3. 

The sums were evaluated for q varying from 0 to 106 cm-I which 

includes the q-vectors of interest at the three temperatures 

(see the numbers quoted in Table 2 - 3 ) .  

The absolute value of the effective MCA field which arises 

from the real part of the integrals is shown on Figure 5.4 for 

the magnetization along [001] for the three values of r .  The 

two MCA fields, a and y, are the same for this orientation 

a = y = (~2/8~S)R1(Sloo+Solo) where SloO and S o l o  represent the 

integrals for the pockets at [100] and [010] respectively. 

Since these two pockets are equivalent: 

The calculated fields for T = lo-'& see and 7 = 10-l3 sec were 



150 - 12 ,740 sec 

Fiqure 5.4 The effective MCA field due to the real part of the 

pocket integrals, as a function of wavenumber q, for three 

values of the electron relaxation time 7 .  For the calculation 

the magnetization was assumed to be parallel to the [0011 axis. 

100 - 

~=10-'~sec 

-\ T=IO-'~S~C 

EFFECTIVE 
FIELD (0e) 

SO - 

0 I I 

0 2 4 x l o s  A 1 

q(cm-'> 



found to be independent of q with magnitudes 137 and 128 Oe 

respectively. This difference is due to the change in the 

saturation magnetization, since the values of Ms were chosen to 

correspond to 300 K and 99  K respectively, not to the variation 

with T of the integral. There is a small q-dependence at 

r = 10-l2 sec near q = 0 where qvr = w r .  The fields are 

negative which leads to a shift of FMR to higher field values. 

The fields for the magnetization along [110] and [111] have 

similar q-dependences and magnitudes. The fields are negative 

for all three orientations of the magnetization. 

The expressions for the two damping parameters, G 1  and G2, 

for the three orientat ions of the magnetization in the [ 170 1 

plane are listed in Table 5-3. 

TABLE 5-3 

G 1 G2 

Recall that G l  is the damping parameter for in-plane excursions 

of the magnetization from equilibrium while G2 is the damping 

parameter for out-of-plane excursions. Note that the damping 

parameter G2 is the same for the three orientations of the 

magnetization and that with the magnetization along [001] 

- G I  = G,. If the three pockets are equivalent (SloO = Solo - 

So,,) then G 1  = G, and the damping for the three orientations is 

the same. Values of G 1  and G, for the three temperatures at 



q = 0 are listed in Table 5-4 with the values of the wavenumber 

independent Gilbert damping parameter required by experiment, 

see Chapter 4. Plots of GI and G2 versus q for the three 

temperatures and three orientations are shown in Figures 5-5 

(M, along [001]), and 5.7(a) (M, along [111]) and 5.7(b) (M s 

along [110]). Also plotted on Figure 5.5 is G(0) arctan(ql)/qI 

for 7 = 10-12, the form of the wavenumber dependent part.of the 

damping assumed in Chapter 4. The mean free path I = 4 x 1 0 - ~  cm 

was chosen to match the calculated variation of the damping 

parameter as closely as possible. It may be compared with the 
* 

value I =.5.0~10-~ cm determined using vF = Fikxw/ml. listed in 

Table 5-1 . 
- TABLE 5-4 

(001 1 ( 1 1 4 )  (110) Expt 

7 G 1 G4 G 1 G2 G 1 G2 G 

(sec) (lo8 sec-l) 

lo-''' 0.0055 0.0055 0.0052 0.0052 0.0051 0.0055 2.45 

1 0.055 0.055 0.052 0.052 0.051 0.055 7.8 

0.53 0.53 0.51 0.51 0.50 0.53 14 

calc 

It appears that Kambersky is the only one to have attempted 

ulation of the damping parameter from the known band 

structure of Nickel. The numbers quoted in 1723 supersede the 

earlier estimates in [23 and [ 7 1 3 .  Kamberskyss calculations 

were carried out for both Nickel and Iron ignoring the shifts in 



Figure 5.5 The variation of the damping parameter with 

wavenumber q for three values of the elecbron relaxation time 7. 

- The magnetization points along [001], G I  = G, for this case. 

The crosses are a plot of G(O)arctan(ql )/ql where 1 = 4x10'~ cm 

is an electron mean free path at a = sec. 



. Fiqure 5.6 The variation of the damping parameters GI and G2 

with wavenumber q for three values of the electron relaxation 

time r .  (a) The magnetization points along [ 1 1 1 ] .  

(b) The magnetization points along [ 1 1 0 ] .  



energy levels due to spin-orbit coupling. Calculations were 

also made for the states around r - X  including the energy shifts. 

These results are quoted in his Table IV which is reproduced 

here: 

G is the Gilbert damping parameter for Nickel when Ms points 

along a ( 1 1 1 )  direction, and for q = 0. These numbers may be 

'compared with those in .Table 5-4. 

The damping assumed-in Chapter 4 for comparison with 

experiment was 

where oo was the dc conductivity, p the resistivity and l D  the 

d-electron mean free path. The values of a and b required to 

fit the FMAR data of Cochran and ~einrich[37] were 

a = 1.07x108 sec-' and b = 1.19x108 sec-l. With a resistivity 

ratio of 100 (r=10-'~) the spin-flip damping, b, is negligible 

and the damping would be: 



When this expression is evaluated for q approaching zero the 

resulting value for G is some 200 times the values listed in 

Table 5-4. 

The predicted anisotropy of the linewidth is not in 

agreement with experiment. For example, using G,(~=O) and 

G2(q=O) for our comparison, it would be expected that AHloo 

should be larger than AH,,, by approximately 4%. Since G 1  is 

not equal to G2 for Ms along ( 1 1 1 )  the predicted anisotropy 

would have to be determined by carrying out a calculation of the 

absorption which included the two damping parameters GI and G 2 .  

This has not been done, however it is unlikely that the 

anisotropy in the linewidth would exceed 4%. In any event the 

anisotropy is opposite to that observed experimentally, since 

AH1 was found to be greater than AHloo by approximately 12%. 

The damping due to the X, hole pockets calculated using 

this simple model of interacting electrons and spin waves is 

unable to account for the magnitude or the anisotropy of the 

damping observed in experiment. We conclude that other portions 

of the Fermi surface must play a more important role in the 

magnetic damping in Nickel at low temperatures than has been 

hitherto recognized. 
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