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Abstract 

Since Colinerauer's introduction of rne t~~ l~~rphos i s  grammars (MGs), with their 

associated type 0-like grammar rules, there- has been a desire to allow more general 

rule formats in logic grammars. Gap' symbols were added ,to the MG rule by 

F. Pereira. resulting in extrapositwn grammars (XGs). Gaps, which are referenced by 
7 ,  

gap symbols, are sequences of zero or more unspecified symbols which may be present 

anywhere in a sentence or in a sentential form. However. XGs imposed restrictions on 
3 

$ 

the posltlon of gap symbols and on t.he contents o f  gaps. With the introdbction of 
i 

gupping p x m m z ~ s  fGCis) bv Dahl, these restrdtions were removed but the rule was 

still requiie, p w s ~ s s  a nonterminal symbol as the first symbol on thei'left hand 
1 

slde. This restriction is removed with the introduction of zinrestricted gapping 

gramnmr . h ~ ( i .  a S exible Implementation o i  Gapping Grammars. represents i n  1% - 
implementation of a large subset of ?mestrifted GGs w h i d  allows either bottomup 

or topdown parsing of sentences. The system provides more built-in control facilities 

than previous logic grammar implementations. This makes it easier for the user to 
-. _ 

create efficie-ecutable grammar rules and restrict ' the applicability of certain 
C 

rules. FIGG can be used to examine bbe psefulne& of unrestricted GGs f i r  describing 

phenomena of natural languages- such as free word order, and partially free . 
V 

word/constituent order. It  can also be &d7as  a programming language to implement 

natural language systems which are based on grammars (or metagrammars) that utilise 

the gap concept, such as Gazdar's generylised phrase structure grammars. 
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Introduction ...- 

It is often desirable to capLure generalisations about the syntactic structure of a 

language with concjse, high level grammar productions. These high level descriptions 

can f ien decrease the number of grammar rules required, and may, in practice, resqlt 

in more efficient parsing (Berwick and Weinberg. 1982). One method to provide more ' 
- < 

general grammars is to i&roduce gap symbols, which ref& to sequences of unspecifie6 , 
. >  

symbols called gaps, into .the grammar rules. Unrestricted gapping gramndrs 

incorporate gaps within the grammar. The motivation - for the development, of 

unrestricted gappng grammars was derived. from the development uf the -+ SAUMER 

,-- svs& (Popowich. 1985~).  and f r o h  the study of gapping grammars ( ( 3 3 5 )  (Dahl and 

I. 1.1. Motivation 

SALMER allows specifications of natural language grammars, which consist of rules 

and metarules. to be used to provide a seman'tic interpretation of an input sentence. 

The two level grammar is based on the format used within gewalised phrase 

structure grammars (GPSGs)' (Gazdar. 1981). From a set of base rules, the met&ides 

will generate. derived rules. Through repeated operation of the ' metarules over the 

base-and derived rules. a &mplete set of rules for a grammar can be generated. 

Consider the set of context-free rules shbwn in (1.1) which describe' some active and 

passive verb phrases. 
1 



- 
2 Y 

/7 
0" 

, ,. 
I 

(a) vpact -->. V. ripa,. pp,,: eg. gives the ball ta"M&y , I  

VP,~ -> V. "Pdai. npacc. eg. gives   my t h  ball . . . , 
(c) vpaCt( --> - V. nPacc. eg. throws the ball 

k > 
(dl vpP -> aux. v, pp,. eg. is given to Mary + 

(el Ypp, --> aux. v. np,,,. eg. is given the ball- 

(f) vpP, -> aux. V. eg. is thrown 

The same set of rules can also be represented by the first three rules (1.la-c) alone. 
' 

. h 
0 

'along with the metarule I 

Any rule b a t  matches the left hand side (pattern) of the metarule. will causi the --. 
generation of a new rule as specified by the right hand side (template). _ Tiie X in 

(1.2) is a string' variable (Thonipson, 1982) that can match zero or more grammar k- , 

symbols. There are two approaches for the the use of (1.2) in conjunction with 

i 
1 l a - c .  The compiled approach, which is used by SAUMER. uses the metarule to . 

- 
generate (l . ld-f),  and then uses base rules along with the derived rules during 

parsing. The interpreted approach would involve the use of the base rules and (1.2) 

during the parse wittiout the generation of (1.ld;f). ~ l th&qh this would require 
6 

parsing according to a con-contexbfree specification, it might be more efficient than 

the compiled approach in some cases (Berwick and Weinberg, 1982). Perhaps the 

conversion of the two l e d 1  grammar into some other grammar, could result in a .- La 

concise specification for interpreted processing. , 

One property of a SAUMER grammar. which was observed in grammars of. the 
- 1 

original GPSG theory. is, that a large number' of d e s  are needed to describe 

structures whose constituents may appear in inany arrangements. Consider the 

English sentence 
\ 

- (1.3) T h e b a l l w a s  

No matter what- order 

B 

thrown in the park to Fido by Marvin. 

the three prepositional p h r a k  following the verb are 'placedl.in. 

4 
k 



-- . - a syntactically valid sentence r e s u l t s . ~ h e  verb phrase in (1.3) can be described by s 

the context-free rule 

( 1.4) verb-phrase -- > verb, prep-phraseloc, prep-phrasedat, .prep-phrase,,, 

where the abbreviations loc, dat and acc, correspond to the locative, dative. and 

accusative arguments of the verb respectively. To inaiiitain this type of* structure and 
-* 
k 

describe the other possible orders of the prepositional phrases would require .five 
t 

additional context-free iules. If context-sensitive rules were allowed, the same result 

could be achieved with the introduction of rules for <switching the order. of these 
4 

phrases. All six context-free rules can be described by a single immediate dominance 

rule, along with a set of linear precedence relations (Gazdar and Pullum. 1982). An 

immediate d~ninance  (ID) rule resembles a context-free rule, but it specifies only that 

9 
-th'$ symbol on the left hgnd side of the iule immediately dominates (is th4  parent 

- 
of)  the symbols of the right side. The order of the right hand side symhok is 

restricted by the l i m ,  precedence (LP) relations. A linear precedence relatsri .  

8, < P, is a transitive relation between two symbols of the grammar. 8, and 0,. 

that states which symbol must precede the other if they both appear in the r igh 

hand side of a context-free rule. For our example, the ID rule 
- - 

( 1.5) - verb-phrase -- > verb prep-phrase,,, prep-phrasedat prep-phrase,,, 

can describe the structure of the context-free rule, while the LP relations 

(1.6) (a) verb < prep-phrasel,, 

(b) verb < prep-phrasedat 

(b) verb < prep-phrase,,, 

will recjuire the verb to precede any prepositional phrase. The current genefalised 

phrase structure grammar theory (Gazdar and Pullum. 1982) uses this formalism to 

describe the coritext-free rules of the grammar. Once again, there are two ways of 
.f - 

using these, grammars to parse sentences., The conversion of, the ID/LP rules into - 

their corresponding context-frq rules before parsing will be referred to as the 
e 



wmpiled approach 

D 
- 

to ID/LP rule processing. There is also interest in the iaerpreted 

\, approach (Shieber. 1982) (Evans and Gazdar. 1984) which entails parqing according to u 
-=-$ 

the ID/LP grammar, instead d using the context-free grammar. Perhaps the ID/l,P 

grammar can be used within some grammatical formalism that will allbw iserpreted 

processing. 

The rules of gapping grammars allow explicit reference to gaps between constituents. 

Consequently. rules lik& 
r- 

- ( 1 7)  noun-phrase(obj), and, gap(G), noun-phrase(obj) 0- 6 -  
-- > [and]. gap(G). noun-phrase(obj) 

B 

can account for linguistic phenomena such as the deletion of the object in sentences 

like f 

11.8) John s w the train and Mary heard the train. L 
Applicatiors of (1.7) to (1.8) will result in the following, sentence. 

(1.9) J o h n s a w a n d M a r y t z e a r d t h e t r a i n .  

Gapping grammar rules can also describe other phenomens like extraposition of 

constituents. and totally free word order' (Dahl. 1984). 

Since the string variables of GPSG metarules can be thought of as gaps symbols. 

and since the ID/LP grammars describe free word order subject to certain restrictions 
11 

(the LP relations), it was decided to use gapping grammars to investigate the 

interpreted processing of metarules and ID/LP , specifications. Unfortunately. the 
" 0 

 implementations of gapping grammars ,.(Dahl and Abramson., 1984) were inadequate. 

and the theory itself was slightly too restrictive, which lead to the formulation of 
t 

unrestricted gapping grammars and the development of a system to process them. 



Lpp 

1.2. Gaps in Grammars 

The notion of gaps is not new to formal grammar study: l h - i g 5 . i .  
-- - 

, . 
programmink languages. It should not, however, be confused with a lingui 

definition of gap which refers to the trace left by a moved constituent. 

Transformational grammars (Radford. 198 1) introduce a trace symbol, which is also 

called a gap. that occupies the position of a moved or deleted constituent. For . 
instance, the WH-movement transformation, (responsible for wh-questions). can be 

applied to <he question 

(1.10) John will give which book to Mary? 

resulting in the followjng question containing a trace. -. 
D 

(1.11) Which book will John give - to Mary? 
4 

The trace differs from the gap discussed in this paper since it acts as a grammar 

symbol which may be present in the sentence, rather. than a meta-symbol which 

refers1 to grammar symbols. 

Scartered context grammars (Greibach and Hopcroft, 1969) use'gaps in the description 

of the derivations allowed by the grammar. The grammar rules, however, do not -A 

explicitly use gap symbols. Productions are of the form 

- i 

where the A's represent nonterminal symbols, and the w's correspond to sequences of 

terminals and nonterminals. Gaps are introduced by the rewrite relation 

associated w-ith each rule. The x's represent gaps of any number of terminals or 

nonterminals present in a sententW form. A sentential form is defined recursively as 

a string consisting of the start symbol of the grammar,? and any- string. w, th$t can 

be obtained from a sentential form. 4, by the application of a grammar production., 



=P 

$ => w. These grammars describe a set of languages 

sensitive languages. . 
which are a subset of ca 

The transformations of trcursjormational grammars ( T G )  (Radford. 1981 ) can be 

viewed as rules containing gaps. For examile, a transformation of NP-moveknt  
I /  

+' 

which allows any 'noun phrase ro be moved Into .an emptG NP' position ( s u b j m  to 
\ 

certain restrictions) could be represented' by the rules shown below. , i 

(1.14) (a )  KP. X. NP(E) --> ~ ' P ( E ) :  X. NP 
(b) NP(E). S ,  NP --> NP. X. NP(€) 

d 
The gap is referenced by X. with N ~ E )  denoting any empty NP node. (1 .14a)  

describes movement to the right, while (1.14b) is required for move'ment to the left. 

-4s was mentioned earlier, ' kgeneralised phrase structure grammars (Gazdar , 198 1 ) 

(Gazdar and Pullum. 1982). which. like TGs, are used in linguistic studies. utilise the 
a 

gap concept within the metarules of the grammar. '  The original GPSG framework 

contains a context-free rule base and set of metarules which generated new context- 

free rules from the existing rules. Consequently, a string variable in a metarule 

references an unspecified region (or gap) within a context-free rule. 

metarule used to generate passive verb phrases resembles 
C 

1 . 1  VP --> V S P  X ==> VP --> Vpa;X (PP,.) - 7 

1 

where X i$ a gap symbol. 

Certain programming languages. which are based on pattern matching. also use gaps 

in their specifications. In particular, SNOBOL (Griswold, Poage - and Polonsky. 

1971) possesses functions like SP'4N. BREAK and REM for this purpose. The 

SSOBOL code ' 



(1.16) Rule 'VP' - -  * 'Vtrans'.v 'NP' REM.x :S(Matched) 

. . 
Matched OUTPUT = ,. 'VPpssive - -  v x 'PPbya 

roughly corresponds to the metarule cited in (1.15). If the R d e  matches the' pattern. 

the new passive' rule' is printed. 

2 

Gaps have been introduced into Xogic grammars, resulting in extraFsition grammars 
-1 

c (Pereira, ' 1981.) and gapping grammars (Dahl and Abramson, 1984). to express a more 

general grammar rule that can be interpreted .*with reasohable efficiency by a 
% 

computer. .The rules of these grammais are of the form 
, 

(1.17) nt, a --> P d 

where nt is a nontermtnal symbol called the head,'and a and /3 may contain terminal 
b 

symbols. nonterminal symbols. 'procedure calls, and gap symbols. ,Extraposition 

grammar rules also have restrictions on the position of gap symbols within the rules. 
L 

and on the contents of the gaps. Gaps may be relocated by the application of the 

rule. Additional details about logic grammars, and logic grammars with gaps. will bi: 

presented in chapter two. , 

Unrestricted gapping gramhurs extend gapping grammars in one important aspect. . 
The adjective unrestricted refers to the removal of the requirement that the left hand, 

I 

side of all rules must start with a nonterminal symbol. Consequently. the 

unrestricted gapping grammar rules resemble 
L 

where cr and j3 may once again contain terminals, nonterminals. gaps and procedure 
I 

calls in any order. The formal introduction of unrestricted gapping grammars appears 

in chapter three. 

- 
,> 

Unfortunately. 'the use of gaps cin result in less efficient computer processing of the 



- - 

rules. Consequently, many applications of gapping grammars have not bee 

except, from a theoretical point of view. One %ethod to* circumvent this efficiqncy 

\ 
problem is to add procedural control to the otherwise declarative grammar rules. ('I'hc", 

/ 

czct facility of Prolog (Clocksin and Mellish. 1981) is an example of this p rowura l '  
I . 7  '. - 1  

intervention). FIGG, a Flexible Implementation of Gapping Grammars, is i n t r o d u c k  ln 

chapter four as a programming language ,that incorporates procedural control to 

provide an implementation of unrestricted gapping grammars. It is assumed that the 
\ 

reader is familiar with Prolog in the discussibn of the FIGG implementation in chapter 

With the aid of this system, one can further examine the uses for unrestricted 

gapping grammars, and can examine the use of procedural control to obtain more 

efficient computer processing of the grammar rules (chapter five). The use of 

unrestricted gapping grammars in the specification of natural language phenomena 

appears to be the most interesting. Dahl has already advocated their use for 
I 

unbounded relocation of sentence components and thus for describing free word order 
- - 

in natural languages .(Dahl. 1984). Until now however, little work has been done 

with respect to their use for partially free word/constituent order. These grammars 

can also be ,used to describe the metarule' cbmponent of generalised phrase structure 
i* 

* 
grammars. Thus FIGG might be used as a programming?anguage for.  implementing 

/' 

systems based on these theories about natural language grammars. However. before 

considering these applications in greater detail, it is appropriate to examine the history 

of logic grammars leading to the formulation of unrestricted gapping gram - 
the FIGG implementation. 



Chapter -2 . . 
LP 

Logic Grammars 

The use of logic in natural language analysis has for a long time been a subject of 

study for linguists, logicians, a n d  computer scientists (McCawley. 1981). However. its ', 

ase was &ally restricted to the domain of knowledge representation. With the 

introduction of logic grammars by Colmerauer (Colmerauer, 1978). logic programming 

entered the domain of natural language grammars. Logic grammars differ f r o 4  ' 

conventional formal grammars since they possess as symbols. 

Consequently. derivations 'according to a grammar may involve unification rather than 
I! 

mere replacement of grammar symbols. Through the insertion of arbitrary predicates 
- * 

into a grammar rule as proced$-e cd ls .  and through the use-of logic variables, a logic 

7 grammar can bften provide a more concise description for a language than is possible 

usirig conventional formal grammars (Pereira. 1981) (Dahl. 1984). 

The logic terms which act 

along with zero or more 

carresponds to the number 

2 

as the symbols of a logic grammar consist of a f a t o r .  

arguments. Each functor pussesses an order, which 

of arguments, and is an element of some finite set 'F. 

The arguments. which are enclosed in parenthesis and sep&ated by commas, may be 
2 , 

L 2 
9 

logic term.  or va+ddes.  fi [F] is used to refer o the set of logic terms that can be 
< *- 

constructed from F. a~], which is also referred to as the Herbrand Universe, 

represents the set of logic terms without variables. In this paper. elements of F will 

be represented by words starting 

quotes. Words which start with 

with a lower case letter, or enclosed in single 

an upper case letter or an underscore. -, will 



denote variables. A List. which is a logic term o f  the form '!(al:!(a 2...!.'(%.nil)...)). . 
is usually represented as [cu,.a 2.....an]. Also. [ t ~ ]  is a shorthand for '.'(t.I). During a 

derivation according to the grammar. variables may- be unified with other logic terms 

(Clocksin and Mellish, 1981). Logic grammars also tend to possess - facilities - for 

handling procedure calls appearing within the grammar rules. Procedure calls are 

often used to restrict of rule applicability. to introduce semantic components into the 

syntax of a .language, and to obtain more efficient parsing. 

Although all logic grammars have the same computational power (recursive 

enumerable). restrictions on the grammar .rule format can make certain languages more 

difficult to describe under one formalism than under anothe e shall examine 

several logic grammars in order of increasing generality of r at  and observe 

the change in the number and type of rules required to desc ample ,context- 

. sensitive language - 

2.1. Definite C l a w  Grammars 
-- 

Definite clause grammars (Pereira and Warren, 1980) possess roles that closely 

resemble those of a context-free grammar in structure. Each production has a single 

nonterminal on the left hand side of the production arrow, -->, with terminals. 

nonterminals and procedure calls forming the right hand side. By convention. 

terminal symbols are represented as lists, while procedure calls are enclosed in braces. 

. Although tlfese grammars ,*context-free grammars. they derive their 

recursive enumerable power of arguments to the symbols. and 

obviously. from the arbitrary procedures that can 'be einbedded within the rules. 

Based on (Colmerauer. 1978) and (Pereira and Warren, 1980). a more formal, but 



not rigorous, definition which excludb . procedure calls can be provided. A definite 
: '  

clause grammar. G . ,  is a quadruple (VN,VT.Z.P) where VN is the set of nonterminal 

symbols, dNCn [a: VT is the set of terminal symbols, V r c d  [F]? with 

. VNnVT ' =  4; C is the set of starting symbols. with , ECVN; . and P is the set of 
-a. 

- )  2 

productions of the  form: 

(2.2) nt --> P I .  P,. . . . , 0, I 

with nl E V,. n 3 0, and 0, E V for 1 < i < n. where V = VNUVT. Ignoring 

variable. substitution, the 'language. L(G), associated with this grammar is defined by 

(2.3) L(G) = {w E vT* I s ->* w for s E. Z] 
1 

P - 
In subsequent definitions, variable substitution will also ky ignored. Details regarding 

it can be found in (Colmerauer, 1978). s represents the Kleene Elosure of a set S. 
' '. 

% 

with S* = UE$i'. -->* is the reflexive transitive closure of -->. 

One can provide a grammar for -the language L1 by permitting each nonterminal to 

have arguments which serve as counters. A set of DCG productions that mrrespond 

to this language is given in (2.4). 

(2.4) (a) start --> x(zero1. 
(b) x(A) --> [a], x(s(A)). 
(c) dStack)  --> y(b. stack), y(c. Stack) 
(d) y(T,  stack)) -->. [TI, y(T, Stack). 
(el y(T, s(zero)) --> [TI. 

Rule (b) is * used to produce/parse an- arbitrary number of a's with- A of x f A )  

representing the number of a's that have been generatedlparsed sol far. Counting is 
P 

done by the successor functicn, s ,  with zero, s(zero), and s(s(zero)) represent& 0. 1 
l 

and 2 respectively. Once n a's have been generatedtparsed, rule (c) is used to request 

processing of n b's and ' c's , b y  rules ( d l  and (el. The first argument of the 

- 
-1 

'usually, the Herbrand universe is used, in place of fi [F] since variables do not generally appear in 
terminal symbols. 



nonterminal- yfTS) stat& whether b's or c's are being processed, while the second 

counts the number of characters that have. yet to be generated/parsed. - - Figure 2-1 

1 shows the parse tree for the sentence a3b3c3 using these rules. . . 

start 

3 3 3  Figure 2-1: Parse Tr& for a b c using a Definite Clause Grammar 

I 

A top-down depth-first parser for DCG rules can be implemented easily in Yrolog 

' by converting each rule into a definite dduse (Pereira and Warren. 1980). A definite 

clause P :-, Ql, Q,. . . . . Q ,  can be translated as P is true i f  Ql and Q2 and ... and Q, 

m e  aL1 true. Each nonterminal 



? 
correspond to the phrase to be: parsed. and 

0 

(2.5) f(cul.a2, ,-. an) 
is converted into a similar logic term ybth two additional arguments 

(2.6) f(al.a2. ..., an.X1.X2> 

The additional argume%ts. which are called the incoming , and outgoing p h r q .  

f(al .a2; .... a,) has been parsed. >rases are 

syrqbol. [term]. is replaced by the connect dlause 
a 

(2.7) c(X,. Word. X2l2 

which will remove Word from the front of X1. 
i 

connect clause is shown below. 

the remainder of the phrase i f ter  

represented as I p s .  Any terminal 

and leave X2. The definition of the 

(2.8) c ( [~ord lX] ,  Word. X) 

So. (2.4b) could be translated -into the Prolog clause 

2.2. Metamorphosis Grammars 
- 

~ e t a k r ~ h o s i s  grammars (Colmerauer. 1978) were the first of the logic grammars. 
5 ,  

The rule format resembles that of the t y p e 0  grammars .of the Chomsky hierarehy. 
J 

Both the left and right hand sides of a rule can contain .any combination of terminal 
L 

and nonterminal symbols. 

- 
One can define a metamorphosis grammar.' G,  in a manner similar to a definite 

clause grammar h a quadruple ( V N  VT. Z. P) where VN. VT. and E hhve their- usual 

interpretations. and P is the set of productions of the form . 
3 

b t 

2 ~ t  is not actually necessary to have a clause fpr each terminal symbol. Inste.ad.%minal symbols can 
be incorporated into the arguments of the nonterminal symbols (Clocksin and Mellish, 1981). The addition 
of the extra term results in w i e r  readability and it  orr responds to the translation produced by C-Prolog 
(Pmira, 1984). \ 



with m > O .  n > O .  a i E V  for 1 6 i d m .  and B , E V  f o r , l , j d n .  Once again. the 

language, L(G), associated' with th,is grammar is defined by 

(2.1 17 L(G) = {o E vTt I s -- > * o for s E T) 

Since DCGs are a subset of MGs, we could use the productions stated in (2.4) as 

MG rules for the language L1. However, we caq eliminate the need for arguments on -* 
the noilterminals by taking advantage of the more general rule format allowed by 

MGs. T h e  following productions. which are-adapted from (Aho and Ullman. 1972). 

can be used to describe L.,. 

(2.12) (a) s --> [a]. [b], [c]. 
(b) ' s --> [a]. s, b. [cl. 
(c) [c], b --> b. [c]. I I_-,- * (dl  [b]. b --> [b].- [b]. 

.I b 1 

The first two productions are used to generate/parse equal quantities of a's, b's and 

c's. Rule (c) is used to shift the b's to the left, until they reach their 'final position . 
3 3 3  as determined by rule (dl.  A derivation of a b c according to this grammar is 

shown in Figure 2-2. 

- 7 

Colmew-&do introduced the notion of w n a l i s e d  mefamorphosis grammars, which 

are a restricted form of MGs that can be converted into Prolog clauses in a straight- 

forward manner (Colmerauer, 1978). MGs in normal form have productions of the 

form 

(2.13) alp 5. . . . . am --> ol. Pz. . . . . /3, 

with m>O.n,O. a l E V N ,  a i E V T  for 2 C i 6 m .  and p , € V  for 1 6 j G n .  The 

sym'bol crl will be referred to as the heud of the rule. Any MG may be converte$ 

i into normal form by following a simple procedure *which may intS-oduce extra 
, 

terminal and nonterminal symbols. The prbcedure, which is d&bed in (Cdmerauer. --- 
1978). is summarised below. 



Figure 2-2: Derivation of a3b3c3 using a Metamorphosis Grammar 

If a1 is a terminal symbol. replace it by the new nonterminal ,"nt(al)" 

and add the production "nt(al)  --> al* to the grammar. ' 

If al (for i 2 2) is a nonterminal, replace it by the new terminal *te(ai)". 

and add the production "a  --> te(al)n to the grammar. *' 
Finally. if 8, is a terminal symbol and if 8, is the h a d  o f  some other 

production. then replace it by "nt(8,)" and add the  rule "nt(/3,) -> 8," to 

the grammar. 

Normalised MGs may be transformed into Prolog clauses by a process similar to the 

one performed on DCGs in order to obtain a top-down depth-first parser. Using the 

notation intpduced in the previous section, the rule (2.13) would result in the clause 



The notation used in (Colmerauer. 1978) differs slightly. According to (2.141, given 

the goal of parsing an crl. first t ry  to parse all of the )6,'s. If this p a w  succeeds. 
\. -- 
\ 

insert the terminals: criSs. at  the beginning of the outgoing phrase argument ' t o  be 

subsequently parsed by some-otktanding goal. , 

2.3. Extrapositio Grammars f 
- 

Extraposition grarnmmr (XGd (Pereira. 19$1) introduced the gap concept into the 

logic grammar domain. During a derivation. an XG rule allows one to - reference L gaps 
(i 

in the left hand side of the rule. and reposition' them, (in the same order) to the 
* ,  

The ' right of all the constituents referenced 'ln the '  right hand side of the r 

contents of the gaps are also restricted to be nested (dne tBtallg contained in another). 

or non-intersecting. An XG rule can be considered as a 'rule schema, representing 
a, 

- 'i - ---- - /' 
many MG rules- in a single rule, or it may be viewed as a context-sensitive rule. 

where the context need not be adjacent to- the symbol being rewritten. 

1 
I 

An extraposition g r a m m a r e a y  be defined as a quintuple (Vw VT, y ,  2. P) where: 

VN, VT, and C have their usual interpretations, y is the gap symbol, with y BV: and 

P is the set of productions of the form 
- 

(2.15) nt, ao. y .  al. . . . , y, am -->. Po. B ~ .  . - . . P, 

with nt E VN, m. n 2 0. 0 < i 6 m, 0 $ j 6 n, and ci$3, E v*. Now !et ' 

V' = VU { < .>);:. The functio* f: V' + V U f a i l  is defined qs 

(2.16) (a) f(xo) = xf(o) for x E V, o E V" 
(b) f(x) = x  for x E V 
(c) f ( < ~ > ) = f ( o )  for w E v'* 
(d) f ( d  = f a i l  otherwise 

Define the rewrite relation, ==>. between elements of V" as 



for a production (2.15) if f(yi) E V* forall 1 6 i 6 rn. where y i  E V'*- The language 

described by grarnmar.G can be described as' 

== > * is the reflexive transitive closure of => . 
I 

The extraposition grammar for L1 shown in (2.19) does not require shifting rules 
- 

like 42.12~). 

(2.19) (a) s --> [a]. bs. [c]. 
(b)  s --> [a]. s, b. [cl. 
(c) bs ... b --> [b], bs. 
(d l  bs .., b --> [b], [b]. 

After rules (a) and (b) have, generated/parsed the required number of a's, b's, and c's. 
t 

i 
rule (c) is used to bring a distant b t; its final location. Rule ( d j  is used to 

\ 
i 

relocate the final b. The logic ... <+d used as the gap symbol. y .  A derivation 

3 3 3  of a b c according to (2.1 in Figure 2-3. Each ellipse that appears in this 

figure represents the contents of a gap. According to fhe nesting constraint on gaps. 

once symbols are encased in an ellipse, they lose their individual identities. So . 

subsequent rule applications must reference the entire ellipse. 

The implementation of extraposition grammars, which is described in detail in 

(Pereira. 198 1 ), translates the grammar rules into definite clauses for execution by 

Prolog. Whereas DCGs required the addition of two arguments to each nonterminal. 

SGs ,need a total of four extra arguments. As with DCGs. 'two arguments are for 

the incoming and outgoing phrase, while the other two are used in a similar manner .. 
for the extraposition list. While Colmerauer's MG implementation required the ' 

grammars to be normalised by the user, it is done automatically in Pereira's system. 
+ 

tvhen processing a rule. like (2.151, with a gap. all of the left hand side of the 
. , 

production. with the exception of nt, is inserted at the front of the extraposition list. 
& 



Figure 2-3: Derivation of a3b3c3 using an Extraposition Grammar 

This differs from the MG rule prhmsing.  where these s y m b o l s  were put into* the 

outgoing phrase list.  ont terminals and terminals nder certain conditions, 

be "read off" ffom this list, inssead of from the input phrase. 

2.4. Gapping Grammars 
a 

Gapping grmmcrs  (GGs), as introduced by (Dahl and Abramson, 1984). extended 

the extraposition grammar rule by the removal of the restrictions on the locations of 
> 

the gaps in the rule, and by the elimination of the nesting constqlnt  imposed on the - *P' 

contents of a gap. Consequently, the GG rule has the general form 

where nf is a nonterminal symbol (the head). and a and B may contain terminal 
1 



19 

symbols. nonterminal symbols, procedure calls, and gap symbols which are 

' traditionally of the form gapfG,). . -- 

A more formal definition of a gapping grammar. G, which is based on a definition 

appearing in (Dahl. 1984). defines it as a quintuple (VN, VT, r, 2,  P) where: VN, 

VT. and I: have their usual interpretations, r is' the set of gap symbols, with 

r n v  = 6: and P is the set of productions of the form 

(2.21 nt. ao. gap(G1), al. , . . . , gap(Gm). am 

--> /lo, gap(G1). PI .  . ._. . gap(G',>, P, 

with nt E VN, m, n 2 0. b p i s r n .  O Q j 6 n .  a$l E v*. and 

gap(Gl). gap(G',) E T The rewrite relation between sentential forms; which are 

elements 01 v*, may be defined as 

(2.22) nr a(, y ,  a, .. ym cum ==> Po ?'I PI - . .  Y', B, 

for a product~on (2.21) where y,,y', E v'. The language described by gramma 

can be described as 
1 

(2.23) L(G) - ( w  € vTa I s ==>* w for s € C) 

0 

A valid mmar for LI which is equivalent to-the XG grammar (2.19)'is 

(2.24) (a) s --> [a]. bi. [c]. ' 

(b) s --> [a]. s .  b. [c]. 
(c) bs. gap(G). b -->' [b]. bs. gap(G). 
(d) bs. gap(G). b --> [b]. [b]. gap(G). 

However, due to the absence of a nesting restriction on the contents of a gap. this is 

3 3 3  an ambiguous grammar. One derivation for a b c , which differs from the one 

;resented in Figure 2-3. is ilhstrated in Figure 2-4. Once again, an ellipse ' 

corresponds to the contents of a gap. Notice3 that individual symbols can be removed 
r 

from -an ellipse. So the capacity for more general rules may have unwanted side 

effects, like the creation of ambiguity in a g h m m a r .  



Figure 2-4: 

The Prolog implements 

3 3 3  Derivation of a b c using a Gapping Grammar 

tions of gapping grammars presented in (Dahl and Abramson. 

1984) generally follow the methods used in the implementation of the other logic 

grammars described in this chapter. The rules are converted into definite clauses. 

with each nonterminal acquiring two extra arguments for manipulatio'n of the phrase 

to be parsed. The gap predicate, gapfG) .  is.converted to a clause of the fo rm.  

which is defined in Prolog as 
r'-, 

Conseq ently, gapfGJ will flrst return an empty 'string, and upon failure will return "; 



strings of increasing length. Since the gap predicate is simply a variation of 

I 
concatenation, (2:25) is equivalent to 

(2.27) a p p e n d v  X,. X,) 

whicb appends L2 to to and returns X, as the result. 

There are actually two gapping grammar implementations presented in' (Dahl and 

Abramson. 1984). The first implementation, which shall be referred to as GG1, is 
d: 

extremely concise, but the Prolog clauses it procipces r + i l t  in inefficient parsing. To 
, br I * 

simplify the discussion that follows, we will 'Tefer to a GC; rule like (2.21) where 

al. f l L  E V. Such a rule would be converled into the Prolog clause 

where termfXI,X2) would be replaced with cfXl,term,X2) for terminal symbols. 

During the top-down parse of ' nt, in a manner similar to the MG parsing, the input 
. , 

, phrase is first checkecl for a string satisfying (2.28a). Upon finding it. the parser 

then places a new string, generated according to (2.28b). a t  the front of the outgoing 

phrase. The creation of this new string can be inefficient since the variable Y in 

(2.28) is usually f.ree when nt(X,Y) is invoked as a goal. Excessive backtracking is 

thus required when executing (2.28b) to find a Y that will leave 2. In fact, this can 

lead/. to catastrophic results if some al equal to nt appears in (2.28b); since the second 

call to nt will have both X and Y as free variables!. 

. . 

The second implementation. GG2. described in (Dahl and Abramson. 1984). permits 

only a 'subset of the rules described by extraposition grammars. Not surprisingly. 

this is a more efficient implementation than GG1. The rules accepted by this 
:7--  

implementation are of the form 
'\ 

\ (2.29) nr. gap(G). [term] --> 8.  gap(G) 
L 
1. t 



< 

, d 22 
- .  

By modrfying the definition of the gap predicate though. it is possible to permit 

intersecting gaps, and thus obtain a more concise description for some languages than 

is possible with XGs. The implementation is based on a .message passing scheme and 
I 

the assumption that the 'term of (2.29) is a marker which' is introduced for control 

reasons, to be absorbed by the appearance of jill in another rule. Details of this 
I 

implementation can be found in (Dahl and Abramson, 1984). 

b 
It is possible to generalise the gapping grammar definition one step further. and 

introduce a similar formalism that does not possess the restriction of a rule requiring 

an initial nonterminal. This new logic grammar formalism will form the basis of the 
\ 

FIGG system. -- . 
- a 



chapter 3 

Unrestricted Gappirrg Grammars 

The requirement of a nonterminal head in the production rule of logic grammar 
I 

formalisms appeaTs to be a product of its need by the top-down depth-fiist parsers 

described in the previous chapter. The introduction of unrestricted gapping grammars 
> 

removes this restriction and provides a more general rule format which includes all - 

MG and GG r u l ~ s .  An unrestricted GG rule will consequently permit ar72rpinal ' - -.i '. .i 
symbol or even 1 gap as the first symbol on the left hand side o i  the rule. 

An unrestricted gapping grammar is a quintuple (vN, VT, r, E,. P) where VN, VT. 

r. and T represent the same sets-described in the gapping grammar definition. and P 
i 

* is the set of productions of the form: 
' 

- -- >- 

with rn. n b 0. and  gap(^,), gap(G;) E I'. Rules 

where m or n are non-zero are-called gapping rules, since they contain at  least one 

gap. The rewrite relation between elements of V* may be defined as 
- 

(3.2) uo -yl al ... ym am ==> fl0 -ya1 /3, ..- -ynn Pn 

for a production (3.1) where yi.y; E v*. Once again. the language described by 

grammar G is 
%- 

(3.3) L(G) = {o E vTa I s ==>* o for s E E) 

With the removal of the nonterminal head restriction associated with gapping 



grammars. unrestricted Gds can be used to describe some farms of left extraposition 

more simply. To illustrate this point, let us examine the language &', described in 
d 

(Joshi. 1983). This language is obtained from 

(3.4) L2 = {(ba)*cn I r& 1 } - 
by "dislocating some a's to the *left." ' u'sing an unrestricted GG. this language can be 

described by the following productions. 

(3.5) (a) s --> [b]. a. s, [c]. 
(b) s --> [b]. a: [c]. 
(c) gap(G). a --> [a], gap(G). 

Rdes  ( a l ' a n d  (b) correspond to L2. the basis of the grammar. while (c) is used to "a 

dislocclte an a. ( 3 . 5 ~ )  ca; also be used to leave an a in its current location if the gap 

is empty. The productions are designed to allow an a to be moved only once. To 

# 
provide an equivalent grammar 'using GG rules, without shifting' b's to the right. 

=r. 

&-* 

would require the replacement of (3 .5~) .  and minor modifications to the first two 
?. 

h- * 
rules. Ode- set sf productions is illustrated below. 

(3.6) (a) s --> b, a, s. [c]. 
(b) s --> b. a. [cl. 
(c) b. gap(G), a --> [a]. b. gap(G). 
(dl  -a. gap@). a --> [a]. a ,  gap(G). 
(el a -> [a]. 
(f) b - - >  [b]. 

Since an a can be moved to the left of a b. or to the left of another a ,  or can 
- 

remain where it is, rules (c) and (d) are required. (3.6e-f) are needed since (3.6~-d) .  

! a r m h a v e  a terminal. like [a] or [b], as a head symbol. If one introduces the' - 

nonterminal symbbl. target, into the grammar. the following gapping grammar rules 

can be used to describe Lt2. 

(3.7) (a) s --> target. [b]. target. a. s. [cl. 
(b) s --> target. [b], target, a. [c]. 
(c) target. gap(G), a --> [a]. target. gap(G). 
(d) target --> E .  

In (3.7). the nonterminal'target represenp a location where an a may be moved to. 



while epsilon.%. corresponds to the empty string. Rule (3 .7~)  has the same use as 

(3.52). Nonetheless, this gapping grammar requires one additional production. 'and one 
-, 

I 

additional nonterminal than th4e unrestricted GG described in (3.51.' 
(B 

t 

- Along with easier description of unbounded left relocation of symbols, there is 
* 

another bhenomenon that pfollows from the removal of the nonterminal head 

restriciion. The definition of an unrestricted GG does not prohibit rules resembling 

"e --> flu. This restriction was either implicit or explicit in previous logic grammar 
7 
1 formalisms. The use of this type of pr6duction may be unclear, however it can be 

'1 

used to grammatically characterise a certa~h phenomenon found in some spoken 

languages, specifically the introduction of words (syllables) like umm and ahh into 

phrases.3 Consider the following sentence which could be -spoken by an absent 

minded person on Christmas' Day. while trying to recall w gave whom which 3 
presents. 

(3.8) ' Ahh. I gave umm. John. umm, a shirt. 

A grammar that generates .this sentence could include the productions "e --> [umml". 

and *E --> [ahh].. This style of production could also be used to ,introduce 

nonterminal symbols (markers), like target, into arbitrary  location^.^ With this in 

mind, the productions illustrated in (3.7) could be restated as shown in (3.9). 
?6 ! 

(3.9) (a) s --> [b]. a. s ,  [c]. 
(b) s --> [b], a. [c]. '' 

(c) target, gap(G). a --> [a]. ,gap(G). 
(dl  E --> target. 

Any target's introduced somewhere to the left of an a by (3.9d). can be replaced by 
- 

an a which is dislocated to the left according to (3.9~) .  

3 ~ h e  semantic properties of such productions are beyond the scope of this paper. 

4 ~ h e s e  productions arc re iscent of how matkers* are introduced within Markqv algorithms (Korfhage, 
1W). 



a, 

~ n k  other observation about the formal definition of unrestricted-GGs is the absence , 

- ,  

of the r ~ i c t i o n  R(gap(G1)l = {gap(G' )I". There is no requirement fo the same gap to J 3 
appear on both sides of the production. 'GGS did' not require this restriction either. 

% 
4 

'but this was not discussed in the previous literature. The, effect of this is 
b 

that an arbitrary number of unspecified terminals and nonterminals could be generated - - 
or abs6rbed in the parsing or generation process. Consider the ,case where 'm'< na in 

the definition of an unrestricted GG. One possible u$e for productions of this form. 

which poqess an extra gap symbol on the right hand side, may. be for nonsense, 

sentences. Imagine the following phrase being uttered. 
I 

(3.10) He was so drunk last night. he said "coloured sleep pink elephants." 

The quote of the drunk man could be expressed by the rule 'sentence --> gap(b)h: 

A case where the left hand side of the rule contains an extra gap, m > n, is 

'illustrated in rule (e) of a grammar for L',. 

(3.11) (a) s --> x. y. [b]. a. s. [c]. 
(b) s -->. x, y. [b], a. LC]. 
(c) E --> target. 
( d l  target, gap(G). a --> [a], gap(G). 
(e) x, gap(G>. y --> [XI. [y]. 

L; is d ta ined  from L3 

(3.12) L, = I n 3 1)  

by dislocating some of the a's to the left, but the a's are not allowed to be moved 

between an x arid a y. (3.1le) c?n be used to remove any target's that are inserted 
e 

between x and y. However,, for this grammar to generate only LL3. it would be 

necessarg to insert some control mechanism to ensure that, (3 . l le)  is used only after 

all necessary applications of rules (3.11a-d) have been perfofmed. and to prevent the 

gap of (3.11e) from containing other x's and y's. One other exarqple illustrates one 

gap on each side of the rule where the two gaps are not identical. 



I '. 
1 

tr 

27 , 

+ 

b i  . 
The predicate q&e adds a quote symbol to rach symbol of GI, returning the quoted ' 

symbols as G2. consequently.- this rule will rewrite sentential forms like x y z as 

, x ' y ' z ' .  A rule similar to (3.13) is described'& section 5.2. Other us& for such 

' further investigation. 

rules without the same gap appearing on both sides of the rule is a subject for 

To facilitdte further &dy of the uses for unrestri cted g apping grammars, and to 

examine mechanisms for introducing procedural control to provide more efficiently 

executable productions, the FIGG programming language was developed. FIGG. a 

Flexible ~m~lernentatibn of Gapping Grammars, is a Prolog progremme that implements- 

a large subset of unrestricted gapping grammars. 



Chapter 4 

FIGG 

a 
FIG%, currently consists of a bottom-up shift-reduce parser and a top-down depth- 

f i rs tharser  which can operate, independently. on a set of unrestricted GG rules. The 

s also provides built-in control operators which allow the user to create 

efficiently executable grammar rules. Due to the general form of the unrestricted GG 
-\ -- 

rule. FIGG can awAparse sentences using the rules of formalisms like extra'position 

6 
grammars (the nesting constraint must be added). metamorphosis grammars. context- 

- sensitive grammars and context-free grammars. 

The implementations' of logic grammars presented in chapter two illustrated clumsy 

mechanisms for procedural- c~n t ro l .  Unless one resorted to arbitrary procedure calls. 
/- 

the only options available for such control were rule order. the-hcoduct ion of , ' ', *> 

1s or the cur operation. Increased control facilities provided i- ,) 
'. 
\ 
# y' include dornincrtors, which are used to restrict the rules which can be applied to the , , - .  

symbols introduced by another rule. Different forms of the Prolog cut facility are 

available. While the ordinary cut (Clocksin. and Mellish, 1981) prevents backtracking 

into goals before the cut in the current clause, the local cut prevents backtfacking 

within a specified region of the current clause. More details on these forms of 
.- 

procedural control. along with a description of the syntax can be found in 

the section 4.1. 

. 
The topdown depth-first backtrack parser incorporates these procedural contrsl 



mechanisms .in a parser that is based on the GG1 parser described in chapter two. It 

also differs from its predecessor by allowing left recursion in its grammar rules. 
a 

Rules are still required 'to have a nonterminal as the head, so it is really only a 

gapping grammar processor. It is more efficient than GG1. but not quite as general. 

S ~ i f i c a l l y .  the parse illustrated in 4-1. which uses the set of productions specified in 

(4.1). will not be found: This problem has been christened the nested head problem " 
. 

Figure 4- 1: Nested' Heaa - Problem 
v 

To parse the sentence xy. ( 4 . 1 ~ )  must be applied to the y that is nested inside the 

gap of (4.lb). With tBe current implementation. xy could be parsed by rewriting 

(4.1) in a form similar to 
b 

". 
(4.2) . (a )  s --> begin, x. y. z. 
7- (b) begin. x, gap(G). z --> begin. [XI, gap(G). z. 1 A # 

(c) begin. gap(G). y. z --> gap(G). [y]. 
7 

The nested head problem refers to the inability of the top do,wn parser to parse 

* , '  
structures where tlie head symbol of one structure is ~onta ined  within a gap. The ,. . , 

head symbol of a structure is .the head of the rule that correspoyds to the- structure. 

This limitation is due to the parser's depth-first goal-directed control strategy. 

. , 



The shift reduce parser differs from the ,topdowrr parser since it operates in a - 

b o t t o m i p  fashion from the input sentence. According to (Aho and ' ~ l l m a n ,  1972). a 

shift reduce algorithm consists of a shift reduce fugction and a reduce . 
- 

function. Using a left to right input scan, the shift reduce f u n c t i w  will either shift - 

%i" 
a ,  

the current input symbol onto the stack, call the reduce function. succee&or &l. 
& 

based on examination of the input and the stack. Using the &me criteria, the reduce . 
f'anction can replace the top n elements of the stack ( P  by the symbol a if 

* 
the rule a --> /31/32...fin is present. - 

\ 

.L 
The shift reduce parser used with FIGG is a variation of this parser, extended to 

allow non-context-free rules and gaps. A major'difference includes the capacity for a 
& 

P 

reduction to place more than one symbol on the stack. The reduce function may also 
a . ,- 

perform other reductioris while placing these multiple symbols on the stack. Also. 

the input is scanned from right to left to mirror the*,top-down processing. This 

allows some control structures to be interpreted the same way by both parsers. 
u 

Implementation details are discussed iq section 4.2. ~~~ 

, - 

The bottom-up parser does not suffer from the same restrictions as the top-down " 

parser. As with many bottom-up parsers, however, eproductions, which are of the 
4 

. form a -> E ,  can not be used by the parser. Here, a represents any combination of \ 

terminals and nonterminals. and E corresponds to the empty string. ~ottom-up cycles 

wz= 
may also cause problems during paking. A bottom-up cycl'e is prese& if a derivation 

of the form aop ==>' o is permitted by the grammar., Notice that the eproductio! 

is a special case of this restriction. 
7 



\ 

4.1. The Syntax of FIGG 

These tw% parsers forma the basis for FIGG, which is written in Prolog (Clocksin 

and Mellish, 1981). Since there are many similarities% th; syntzjx of FIm and 

Prolog, some knowledge of Prolog would be beneficial for ~ ~ r s t a n d i n g  the syntax of 

FIGG, but i t  is not compul~ory. One can describe F I G G . 3  t e r d  of ' the format 
.- -- J 

A 

required for specifying the grammar, the control mechanisms provided. and the system 
, , 

a 

commands available. \, 

* 

4.1 .l. The Grammar 

Currently. there can only be one grammar at a . t ime in the system. As is 
1. 

traditions! i?-Qgic grammar syntax, terminal. symbols are stated' as lists. Gap 
\ ' ) 

symbols a r k - ~ 6 ~ r e s e n t e d  as logic terms of 'the f o r k  gapfG). where the gap is 

referenced by a variable. G,  unique to the rule. Any other logic terms. denote 

nonterminal symbols. Grammars processed by the bottom-up parser are allowed to 

'have logic variables as grammar symbols. These variables can unify with any 

nonterminal symbol during derivations. The empty string is represented by the 
- e 

- empty list. [ 1. Productions are of the form 

(4.3) RdeName : Rule. , 

where Rule is an unrestricted GG rule. and RuleName is a logic term representing t h e  
C ,  

name of the rule.  he hie name is optional. The colon separating 'the rule and its 

name appears if and only if there is a rule name. All rules. along with any other 

commands. must be terminated with a period. The start symbol. u(u1.u2. . . . ,un), 

of the grammar is specified as L , 
(4.4) start-symbol u(crl.u2, . . . .an) / Success. 

Success specifies, in Prolog. what to do when an input string is successfully 
ib 

according to the grammai If I/ Succesr' is omitted. then a parse found message 4 1 1  



I . .  
,be displayed for  each successful pars&.' FIGG also allows .the user to specify entire 

S 

; 
classes of rules via rule schemata. =Th'e' structure of a schema is 

C --A 

(4.5) forall Var in [al. a2. . . . a,.]. Body 

where Body is executed once for Var equal to each cut for all 1 d i < n. Bqdy may 

contain a grammar rule, another schema, or any Prolog code. 

4i1.2. Control 

w 'a 
Perhaps the most primitive fbrm of control is rule order, since rules are examined 

sequentially for their applicability. The other control- mechanisms provided in FIG<; 

include those of most other logic grammars implementations. ( the cur. and arbitrary 

procedure insertiop), along with more sophisticated variations of cut, control on the 
P 

size of the gap, and restrictions on applicability of rules (through dominatprs). When , 

u s q  control mechanisms. it should be noted that the right hand side of the rule is 

, execu?ed before the left hand side. The top-down parser, however. executes the head 

of the rule first,  then processeS the right hand side and the rest of the left hand side 

of the rule. Each side is processed f r o q l e f t  to right. 

- Procedures 

Arbitrary procedures *can be inserted- into the right and left sides of. a rule by 

enclosing t$e procedural' predicates in braces. {I. The procedures may use variables - .  

referenced in the terminal symbols, the nonterminals, the gaps. and in other 
.> - -  

-% - 
procedures. 

When the FIGG parser is processing a gap symbol, gap(G1. it initially assumes an 

empty gap and .then attempts to parse the next symbol. If the parse fails, it will 

eventually backtrack to this gap and assume a gap containing one more symbol. In 



this manner, the gap size keeps increasing until a successful parse is found, or until 
> 

rl all possibilities have been tried. A gap symbol that is processed in this manner is 

called an increasing gap. FIGG allows the user to override this default to obtain 

decreasing gaps, which are initially assumed to contain the rest of the sentence. and 

afe decreased in size during backtracking. A decreasing gap is specified as gap(-,G). 
? 

with both gap(G) and gap(+,G/ interpreted as an increasing gap. 

Until now, the contents of the gaps have been unrestricted. T%E'<ariety of gap is . 

known as an essential gap.5 There are also restricted gaps. .The syrnb~k~conta ined  in 

. thehgap are restricted to be elements of a ified set. This set can be dkscrjbed 'by 

a list of valid members, or by a list .of elements that are not in the 2et. So. .. 
5 

gap(/a ,b,c) ,~)  specifies that the gap, G, can contain only a's, bas, and c's, while 

gap('-lx,y,zj,G) prevents the gap from containing an x, y .  or z. More details about 
-t 

gap processing 'can be found in section (4.2). 

Dominators 

Dominators are used to specify which &(s) may introduce a symbol that appears 

on the left hand side of another rule. The notion is derived from the concept of one 

syrribol immediately dominating (being the parent of) another in a parse tree. 

Currently. dominators can only be used in conjunction with the bottbm-up parser. 

For a symbol. sym. that appears on the left hand side of a rule. symadom specifies 

that sym must be introduced by the rule named dom. A dominator can not be used 

with the empty string symbol. [ 1. EkhavioOr of a dominator can be illustrated using 

the following FIGG grammar. 

i I 

5 ~ h ~ s ^ -  term 1s adapted from rhc notion"of essemud vatrobles (Shieber el. al.. 1983) in metarules. 



(4.6) (a) start-symbol s. 

1 ,  
(b) 1 s --.> [XI. y. 
(c) 2: s --> y. 
(d) 3: y --> [b]. 

k 

(e) 4: y-1 --> [a]. 

" f -  
The language recognised by this grammar is {xu .  xb. b ) .  I t  i s  the dominator on (4.v) 

i 

that permits this rule's use only after rule 1 is used. Consequently. the string d is 
/ 

not included in .the language as illustrated in Figure 4-2.' Dominators can aldo be 
/ 

specified for the symbols of the input sentence. This is achieved w i t h  the command . 

where dom is once again the dominator. 

0 - - -- not allowed 

I 
g 

a Figure 4-2: Behaviour of Dominator in a Parse Tree 

Cuts 

The behavioar of the cut symbol varies. depending on whether it is being procesxed 

' ,  
by the top-down o r L  bottom-up parser. The parsers differ in that the top-down 

parser manipulates lists of terminal symbols. while the shift reduce parser works with 

sentential forms. 



When the topdown parser is invoked. b e  conventional, cut of Prolog. !, prevents 

backtracking to g d s  to the left _of it in the, Current clause? Examine the following 

grammar rule. a 

(4.11) s --> w. x. !. y. z 

After a w and an x have been successfully parsed, the cut is encountered. Then 8if y 

is successfully parsed but z fails, a 'new parse will be tried for y. Subsequent 

failure of y will not cause new parses for w or x to be attempted. Application of 

this rule will fail, and the cut will prevent other rules possessing s as a head from 

being tried in lieu of (4.8). 

The effect of the local cut. (...I!, is to prevent backtracking within a specified 

region. 

(4.9) s --> w, (x .  y)!. z 

For the rule dlustrated in (4.9). the l ~ c a l  cut )revents backtracking into h and y once 

they have succeeded. So. if all of w ,  x ,  and y are successfully parsed according to 

(4.9). failyre* to parse z will cause a new parse for w to be attempted. If this new 
2' 

parse is found, then x ,  y arrd z are tried. The local cut can be useful in conjunction 

with the gap predicate as illustrated in (5.3). 

During bottom-up parsing, the right hand side of a rule is matched against a 

sentential form. A successful match results in the replacement of the matched region 

of the sentential form by the left hand side of the rule. Consequently. cuts - and 

other control mechanisms - that appear in the right hand of a rule affect the left to 

right matching of the rule to a sentential form. Once the portion of a rule to the 

left of a cut has matched a sentential form. a subsequent failure in the match 
- 

occurring t o  the right of the cu; cannot force the match to the left of the cut to be \ 

reattempted. A cut found in the left hand side of a ru:e. R, will prevent any 



7 
r" 

subsequent rule, R. from matching a region entirely to the right of the cut. That is. 

the application of R to the sentential form resu l t i~g  from the.  application of R must 

include at  least 'one symbol to the left of the cut. If a rule. K. is entirely enclosed 

in a cut, ( R ) ! ,  then the decision to apply R to a sentential form cannot be revoked '- 

once the rule has been successfully applied. 

Left Recursion 

Left recursive GG rules, like 
b 

(4.10) nt. a L> nr. P 

" whichccould not be processed by the logic grammar implementations discussed in 

chapter two, can be processed by the FJGG implementation. This means that rules 

resembling 

might be used to process natural language sentences like John wants to shoot himself. 

In (4.1 1). the arguments of the noun phrase and the feflexive pronoun r e p r e ~ e n t ~ t h e  

parse tree, and the ,case. Additional arguments for concepts such as person. number 

and gender could also be included. 

While rules like (4.11) can be directly processed by the bottom-up parser, there are - 
two restrictions on left recursive rules Which are required by the top-down parser. 

First, there must be a nonterminal. P k ,  in P (4.10) which doses not unify mh rU. 
, that can be used to break the recursion. The first such nonrecursive nontermid is 

used automatically by the system to break tAe recursion. However, in cases where 

there is mutual recursion &tween symbols, or when some other symbol is desired to 

break the recursion (for efficiency reasons), the nonrecursive nonterminal can be . , 
d 

explicitly stated as shown Glow. ?- 



For example, consider a rule responsible for converting (4.13a) into the sentence 

(4.13) (a) John wants John throws the ball. 
(b) John wants' to throw the b d .  

Ignoring number agreement and verb agreement, this can be described by the following 
t 

rule, where to is used as the nonrecursive nonterminal. 

(4.14) np(NP.nom). v(want). np(NP,nom), v(V) - I 

--> to \ np(NP.nom),  want), to, v(V). s 

* 
The second restriction requires that when a nonrecursive nonterminal from a rule R 

appears in the left side of any rule, R; then unless it is the head it must also appear 

on the right side of R. Moreover. both instances must be appended with @ followed 

by a variable unique to the rule. The need for this restlrktion is described in the 

discussion of the topdown parser in the next section. According to these restrictions. 

(4.1;) could be rewritten as L 

with verb(VI added to the rule and used as the nonrecursive nonterminal. 

3.1 3. System Commands 
r' 

FIGG commands are translated into Prolog for execution. If a command 

that is not a FIGG command, it will be passed to the Prolog processor for 

Consequently. most Pralog commands are also allowed by the .system. 

terminal session that illustrates the use of some commands is provided in 

is entered 

execution. Y 
A sample 

Appendix 

L 
Commands can be entered interact,ively. or they can be read from a series of files ' 

by entering 



(4.16) [file,,  filez . . . . . file,]. 

As with Prolog. these files may themdelves consult other filf The file name user is 

reserved to represent the keyboard and terminal. Files that contain Prolog cohe can 

also be processed by the system. by using 

(4.1 7)  .prolog [filel, file2. . . . . file,]. 

If the Prolog file's name is preceded by a minus sign. -, the file will be reconsulted 
.. 

That is. t e existing *definitions for all predicates defined in the file will be P 
eliminated and replaced by ,  the new definitions. Any Prolog file may be reconsulted. 

even those Xsed by the lexicon. 
P 

. . 
Currently, there can only be one grammar at a time in the system. To remove all 4 

rules associated with a grammar from the database, &he clear command need only be 
i 

entered. This command also removes any specified start symbols, and clears all 

system flags to their default values. 
I 

A lexicon, which is written in Prolog, can be entered with the command 

(4.18) lexicon [file+,$ilez. . . . . file,]. 

The lexicon should supply a definition for the predicate ~ m k u p f ~ t r i n ~ , W u r d ) .  
Y- 

string corresponding to a word of the input sentence, lookup should return - 
representing the word found in the lexicon, and should fail otherwise. 

String="lovesn, then lookup(String,Wmd) would result in Wwd=loves if krves 

the .  lexicon. Entering the lexicon command with no arguments will disable 

defined lexicon. 

The parser can be called with . 
(4.19) parse. input filei. output file, 

Criven a 

an atom 

So, if - s 

were in 

any user 

where the input and output files. filei and file, respectively, are optional. Sentences. 
* 

9 



which are term'inated with periods, will be read.-'and parsed until an end of file. 

d 
CTRL-D, is' encounter-@. When sentences are being read for parsing, the FIGG 

command prefix. >. is replaced by the prompt. ?. When parse mode is entered, the 
* " 

system will state whether the system will attempt to find all parses, or if it will 

look for only a single parse. Parsing can be suspended. to c d l  the FIGG command 
- ,  

interpreter, by entering ">" in place of a sentence. This facilitates the changing of 

system flags (such as number of parses). The prefix is changed to "?>" at this time 

to remind the user that parsing has been suspended. Parsivg is coptinued until an 

end of file is reached. If the same output file is re@renced in subsequent'parse 

commands. the output will be appended to the end of the file, preventing the 

previous output from being overwritten. An output file can be closed by entering 

. (4.20) closefile. - 

The + and - commands are used to set and clear the system flag whose name 

follows the. command. The oneparse flag specifies if one parse or all parses will be 

attempted. Initially. this flag is not set. So to rkquest single parse mode. the 

command +oneparse must be entered. To return to aU parses mode. -oneparse can be 

entered. When the display flag is set, the Prolog translation of any rules processed 

by the system will be displayed. No rules are added to the database when this flag 

is set. This allows the user to examine the translation of the grammar without 

modifying the database. Entering -display will return the system to generate Znode. 

By default. the bottom-up parser is used in the system. If the top-down parser is to 

be used, the topdown flag must be set before the grammar is read .into the system. 

(4.21 ) +topdown. C 

J -. . . 
L The bottom-up parser is called by entering -topdown. , This parser flag ihbuld not be 

i 
changed when there is an active grammar in the system. The flags command will 

- 
display the status of all flags. 
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If the execution of the FIGG processor is aborted, due to an interrupt or an error. 

it may be re-invoked by entering the predic@e ,figg from Prolog. 

4.2. Implementation of FIGG 

FIGG is written in wC-Prolog (Pereira. 1984). and runs in a UNIX' environment on u 

VAX 750 and on a Motorola 68000 based SUN Workstation. The source code for the 

system can be found in Appendix D. To describe the implementation, it is better to - 

restate the form of a unrestricted gapping grammar rule as 

gap(Gz). gap(?) E r U { ~ l .  (4.22) is equivalent to (3.1). . We can now examine how 
7 

unrestricted GG rules are processed by bothvthe 'top-down and bottom-up parsers. 4 

b .  
4.2.1. The Top-Down Parser 

Ci 

The topdown parser used in FIGG is based on one of the GG implementa~ions. 

GG1, proposed in (Dahl and Abramson, 1984). +For a nonrecursive rule such as 

(4.22). processing proceeds in much the same manner as in GGI. The major 

difference is thar the translation into Prolog 'will result in each ,nonterminal. 

a,., € a being replaced by a pseuho-terminuZ. [.te(an,)] (Colmerauer. 1978). In 

I gapping grammar notation, this, can be expressed as 

assbming all ol to be nonterminals. This is part  of the normalisation process. which 

was described in chapter two (Colmerauer. 1978). Each pseudo-terminal is related to 
r *  

i t s  corresponding nonterminal through a normalisation rule resembling 

6~rademark of Bell Labs 



Pseudo-terminals and normalisation rules are' generated automaticailjr by the system. , 

The translation of (4.23) into Prolog proceeds in a manner similar to gapping 

grammar processing. resulting in the clause 

E. replace its 

assume that none of the rule symbols equals E. If some symbol equals 

translation by " X = p  where X and X are the incorning and outgoing 

phrase arguments. If any of the ai's or pj 's  are terminals, they are translated as 

clX2,,ei.X2i) and.cfX2j-I,p,.X2j) respectively. ' The productions specified in (2.24). 

which are restated below. 

(4.26) (a) s --> [a]. bs. [c]. 
(b) s - -> [a]. s. b. [cl. 
(c) bs, gap(G), b --> [b], bs, gap(G). . - 
(d l  bs, gap(G), b --> [b]. [b], gap(G). 

can result in clauses similar to 

(4.27) (a) s([].x.Y) :- c(x.aX0). bs(-.XO,Xl), c(X1.c.Y). 
(b) .s([],x.Y) :- c(X.a.X0), s(-,XO.X~), b ( - , ~ 1 . ~ 2 ) ,  c(X2,c.Y). 
(c) bs([].X.~) :- c(X..b.XO). bs(-.XO.X~), gap(G.X1 ,Z), gap(G.Y.Yo). 

c(YO.te([],b).Z>. 
(d) bs([].X.Y) :- c(X,b.XO).,c(XO.b.Xl). gap(G.Xl,Z), gap(G.Y,YO). 

c(YO.te([I,b).Z). 
. (el b(-1.X.Y) :- c(X.te(-l,b).Y). 

B 

The first argument of the translatio&f nonierminal symbols (the recursive argument) 

is used for processing left recur?/e r u l e .  (4.27e) is a normalisation rule. Figure ' 
-3 

4-3 illustrates the depth first goal tree for the top-down parse of the sentence 

aaabbbccc shown in Figure 2-4. The superscript associated k i t h  each nontermin'al 

node corresphds to the rule used from (4.27). 'Since the recursive argument is not * 

required to parse this sentence, it is omitted ih Figure 4-3. 



Cuts 'and procedures that Appear in the rules are inserted directly into 

translation. For example, the rule 
y\ 

(4.28) s --> x.'\ y. {foo}. 

the 

would be translated'- 



- 
The local ~ u t s  are implemented using the call1 pqedicate. A call to this predicate will 

execute its single argument. and once this call succeeds. backtfackiq into the 

'argument will not be allowed. 

To process' the various gap symbols. backtraqking is used to 6btain the various gap 
A 

sizes. Since iweasing gaps are initially assumed to contain no symbols, and are 

subsequently increased in size. they can be implemented according to the following 

rules. . 
(4.31) gap(+.[]) --> [I. 

gap(+.[~ordlG]) --> [word], gap(+.G). 

For a decreasing gap, the order of the rules is reversed. 
C 

(4.32) gap(-.[Wordl~])' --> [word], gap(-.G). 
gap(-.[]) --> [I. 

The restricted gaps &quire an addition check to see8 if the- Word in .the gap is 'an ' 

b 

element of the specified set. When a list of balid gap elem&. [ X l Y ] .  is provided. 

the ryle used for the gap predicate is shown M o w .  

(4.33) gap([XIYI.[l) --> [I. , 
g a p ( [ ~ ~ ~ l . ~ ~ o ~ d l ~ ] )  --> [Word]. {element(Word.[XIY])). gap([XIY].G). 

Similarly, if an exclusion list is given, the definition is modified by the insertion of 

the nnt operator. 

(4.34) gap(lXlYl.[l) --> [I, . 
gap(7XIY].[Wordl~]) --> [Word], {not element(Word,[XI~])). gap(^lXIY].G). 

The gap predicates could also be defined more efficiently in terms of Prolog clauses. 

instead of grammar rules, but the definitions would be less clear. 

@% 

Left recursive rules. resembling (4.22) where ao=nI=& 



i 

(4.35) nt, gap((+). al. . . . . gap(G,J, am 

-->o nt. gap(G1). 8,. . . . . gap(G'J. f in  
'-c 

are interpreted rather than converted into similar rules11 that, are not left recursive. , A m 

1 

simple approach taken in (Popowich. 1 9 8 5 ~ )  involyes skipping over the region 

corresponding to  nt to look for the next symbol', then etramining the gap for a valid 

nt. Extending this for (4.35) would result in something similar to 

(4.36) nt(X,Y) :- gap(G,X.Xo). Bk(XO.X1), nt(G.[I). tr(/3), t r (a )  - B 
where Pk is the nonrecursive nonterminal. tr(fl> is the translation of the right side of 

(4.35) with f i k  omitted and X' used as the argument for the initial incoming phrase. e 

and t r (a )  is thk translation of the left side of (4.35) with the head omitted. (4.36) \ L q 

will not work however. since nt will be processed by the predicate n t ( ~ . U )  without a \ 
\ 

the benefit of the context - that is, the rest of the string. ', 

To process (4.35) the following translation is used 

" , The string is first checked (4.37a)' for a substring satisfying the mnrecursive 
l i *  

I 

nontermincrl. Pk. To determine the applicability of the rule. Recall that, by default. 

the nonrecursive nonterminal is the first PL that does not unify with t iO.  If such a 

subaring, is found. it is then replaced by a pseudo- tyn&al which is marked with a 
1 

e 

number that corresponds to the rule (4.37b). , This prevents the same string from 

being used to break the recursion in subsecuent applications of the 'same rule. Then 



the modified string is processed according to the rule (4.37~-f), while forcing Pk to 

use the normalking rule to match with the pseudo-terminal marked by the current 

application of the ~ u l e  (4.37d). The 5-ary gap predicate in (4.37a) breaks the 
\ 

recursion "%IS by uring that the current rule. R, will not succeed more than once f&r 

the same gap. To k&p track <of which rules have used which symbols as 
'L / 

nonrecursive nonterminals, a recursive argument, which appears as the first argument. 

is automatically generated for every nonterminal. It contains a list of pairs. 'where 

egch pair is of the form' ' [RIN]~ with R and N integers unique to each rule, and each 
b 

application of a rule respectively. The appearance of @Var following a nontekninal 

causes Var to be used as the recursive argument. Thus when @Var appears on both 

sides of a rule the associated nonterminals will possess the same 'recursive argument. 
+ 

2 

So, the restriction mentioned- in section 4.1.2 ensures that the recursive argument 
* 

associated with a symbol is not forgoiten when a rule is applied. The translation of 

(4.15) 1s shown In (4.38) 

(4.38) noun~phrase([].N~,nom,~,~) :- 
(a) gap(Gap.[l ~N].IV~WRA.X.XI). verb(-.~.XI .X2). 

l ( b )  numgedN), ~oncaten(G,[te(NewRA,~~erb(V))IX2].NewX), 

(c) noun~phrase(~,NP.~om,NewX,NewX1), 
(d)  nonemptylist(V1). verb(~l,V.?*lewXl.NewX2), e l e m e n t ( [ l l ~ j . ~ l )  
(e) gap(GpNewX2.X3), pronoun(-,reflex.NP.acc.X3,Z), 
( f ) c(Y .te(Vl .l;erb(V)).Y I), gap(G.Yl .Y2), 

'\ .y 2 te([l.noun-phrase(NP,acc)).~). . ' 

Now let us examiqe the use of (4.38) for parsing the nominative noun phrase and the 

maphor in the sentence John mixes a drink for himself. 8 

We start with the goal 

(4 .39)  noun-phrase(, Tree, ~~ohn.mixes.a.drink.for.himself]. Rest) 

where Tree .will be our parse tree for the noun phrzlse and Rest will be the 

remainder of the sentence after the noun phrase has been found. (4.40) traces the 

execution 04 (4.38) for the goal (4.39). In (4.40aj, the indented lisu befdre &d after 

i 



each satisfied goal correspond to their values for X and Y respectively. The indented 
- 

lists of (4.40b) represent the value of Rest before land after the execution of each 
- 

clause. 

(4.40) (a) [John, mixes, a, drink. for, himself] 
gap([~ohn], [lIN]. I[lINl]. X. Y) 

[mixes, a. drink, for, himserf] * 

verb([], verb(mixes1.' X. Y) 
[a, drink. for, himself 1 

numgen(2 
concaten([John]. ' [te([[ll2]].verb(verb(mixes)))l~ Y ). 

[John, te([[ll2]].verb(verb(mixes))), a. drink, for, himself 1 
noun-phrase([]. np(noun(pro@r.~ohn)), nom. X: Y) B 

[te([[ll2]].verb(ver6?mixes))). a. drin'k. for, himself] 
nonFmptylist([-al-b]) 
verb([[l12]1[]], verb(mixes), X, Y) /* -a=[112] and -b=[] */ 
elernent([ll21. [[11211) 

[a; drink, for, himself] 
gap([a.drink.for],, X. Y )  

[himself 1 ' 
pronoun([], reflex. np(noun(yroper.~ohn)), acc. X. Y) 

[I - 

Rest 
c(Rest. te([[ll2]l,verb(verb(mixes))). Y1) 

[te([[ll2]].verb(verb(mixes))) I Y 11 
gap([a,drink.for]. Y 1. ?2) 

[te([[ll2]].verb(verb(mixes))). a, drink. for I ~ 2 ]  
c(Y2. te([].noun~phrase(np(noun(proper.John)).acc)). [I). 

[te([[ll2]].verb(verb(mixes))). a ,  drink. for. 
c;$r 

te([1.noun~~hrase(n~(noun(~ro~r,~ohn)).acc))1 

Recall that there was also a restriction imposed on a nonrecursive nontzrminal that 

. prohibited it from appearing on only the left side of a rule. unless it was the head . 

of the rule. To see why this restriction is necessary, consider the following rule 

which could 'be used in conjunction with (4.15) to parse the sentence A drink is 

mixed by John for hirnsel f . 



To obtain the sentence. 14.41) must be applied after (4.15). However. (4.15) will fail 

since the nonrecursive nonterminal, verb(V), requires mixes to be present in the 

sentence. Mixes would be introduced later by the application of (4.41). 

4.2.2.. The Bottom-Up Parser 5 

\ 

. , 

The bottom-up shift reduce parser used with FIGG is based on tlie predicates 

sr_parss(lnput ,Stack ,NewStack) and reduce(Stack ,NavStack). The arguments of 
I 

sr_parse correspond to the input phrase, Input. the initial stack. Stack, and the stack 

after the parse has been attempted. NewStack. S r g a r s e  will shift one input symbol 

at a time onto the stack, and will let the reduce predicate perform zero or more 

reductions on the stack symbols. Recall that the input is processed from right to 

'left. The actual Prolog 'definition of this predicate i& shown in (4.42). 

(4.42) ~ r _ ~ a r s e ( [ ~ o r d l ~ e s t ] ,  Stack. ~ e w e r ~ t a c k )  :- 
sr--parse(Re,st. ~ t a c k .  NewStack), reduce([~ordl~ew%ack].  ~ e w e r ~ t a c k ) .  

~r-~arse([] ,  Stack. Stack). 
4 

The decision to ~ e r f o r m  a reduction is determined by the Prolog control structure 

according to the order of the,  clauses. Reductions are attempted in an order that 

corresponds to the order of the giammar rules. Initially, if a reduction is possible, it 

will be performed. Backtracking to this decision will cause it to be revoked. The 

parse of the entire sentence succeeds if the start symbol is the only symbol left on 

the stack. For a sentence, Sentence, a parse is requested by the top-level goal 

(4.43) . ST-prse(Sentence.[].[s]) 

where s is the start symbol. 

, 
I f  this parser only had to process context-free rules of the form 

then each reduce predi6ie could resemble 



' This would replace the top n symbols of the stack that correspond to the right hand 
\ . side of (4.44) with a. and then attempt further reductions on the stack. The 

predicate reducefX,X) is used when no reduction takes place. Since FIGG must also 

process context-sensitive rules. more than one symbol must be added to the stack. b,, 4 
One m i g h  therefore be tempted to translate , e i 

as follows. - 
(4.47) reduce([P1 .B2 ..... /~,Ix], ~ e w s t a c k )  :- reduce([cr, .(Y ,..... amlX], NewStack). 

But. Phis would block any reduction i f  aial+, ... am. where i f  1. during the next 

reduction application. Therefore, reductions after the addition of each bl to the stack 

must' be allowed. To achieve this, the following translation of (4.46) is used. 
\ 

(4.48) reduce([P, .8 ,.... ,P,IX],NewStack) :- ~ r - ~ a r s e ( [ a ~  .aZ . . .  am].S,NewStack). 

The r p a r s e  predicate will add the new stack symbols. one by one. and allow 

reductions to take place. To simplify the translation procedure context-free rules are 

also translated in this 'manner, although this results in less efficient parsing. . 
- 

Until now, the translation of the  gap symbols and 'procedural control that may 

appear in the rules has been ignored. Gaps and control that appear on the right hand 

side will affect the pattern matching of the stack symbols. ,Placement of gaps and 

control in the left side of the rule will influence the 'symbol of the new . 

stack symbols. The pattern matching process occurs first as specified by the left to 

right processing of the right hand side of the rule. Afterwards. the symbol 

generation is done, also in a left to right sash&. We shall now examine how gap 

symbol$. cuts. procedures, and dominators are incorporated in the translat~on of the 

rules into reduce predicates. 
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To incorporate gap symbols intc these translations, the same definition of the gap 
! 

predicate as' presented in the description of the top-down parser can be used. The 

gap symbols that appear on the right hand side will contain stack symbols that,. can 

be inserted into the new stack by the gapsvon the left side of rule. Consider the 

following unrestricted gappi grammar for L,. B" 
(4.49) (a) s --> [a], [b], [c]. 

0) s --> [a], s, b, c, 
(c) [b]. gap(-.G), b. dX-> lbl. [b]. gap(-.GI. [cl: '. 

According to the translation pr d cedure pr&senkd so far. this would result in the 
. , 

generation of the clauses listed below. 

(4.50) (a) reduce([[a].[b],[c]l~],~ew~tack) :- sr-parse([s],~,~ew~tack). 
(b) reduce([[a],s,b.cl~].New~tack) :- ~ r - ~ a r s e ( [ s ] . ~ . ~ e w ~ t a c k ) .  
(c) reduce([[b].[b]lXO].NewStack) :- gap(-,G.XO.[[cllXl). gap(-.G.YO.[b.cl). 

sr~parse([[b]l~O],X.New~tack). 

Figure 4-4 shows 

clauses provided 

abbreviated as rd . 
in Figure 2-4. 

- ,  

part of the goal tree for the parse of the sentence a3b3c3 using the 

In (4.42) and (4.50). In this tree. reduce and s r p s e  are 

and sr respectively. This goal tree corresponds to the parse .shown 

Procedures. which are included in 'braces, can affect pattern matching and symbol 

generation. They are inserted directly into the definition of reduce for the rule. 

However, with the addition of procedures. it is necessary to ensure that the correct 

order of pattern matching, procedure execution, and. symbol generation occurs. 

Consider the following rule which is similar to (4.49~5. but does not permit an empty 

gap. 

(4.51) [b], gap(-.G). b, c --> [b]. [b]. gap(-.G). {G\==[]}. [c]. 

During the pattern match, the procedure call should be executed before the attempt to 

match the [c]. This is done in the following translation. 



3 3 3  Figure 4-4: Goal Tree for Shift-Reduce Parse of a b c \ 
(4.52) reduce([[5],[b]lXO],NewStack) :- gap(-.G.XO.Xl). G\==[l. Xl-[[c]lX]: 

g a p ( - . ~ . ~ ~ . [ b , c ] ) ,  sr-parse([[b]l~O].X.New~tack). 
7 

This translation and ( 4 .50~ )  are very similar except for the appearance of the 

procedure call and an extra variable. XI ,  in (4.52). The extra variable is required to . 

defer the match of the / c /  until after the execution of "G\==fl". 
Q 



When a cut appears on the right 'hand side of a rule, it is interpreted in exactly 

the =me manner as a procedure can. In fact, enclosing the cut in- braces will result - .  
in an identical translation +s a bare cut. The cut prevents backtracking into .regions 

before the cut during the pattern matching phase. The left hand side may contain a 

single cut, but this cut behaves differently than the ,conventional cut. In the 

translation, the symbols to the left of the cut are placed into the Input argument of 

sr-reduce. with the symbols to the right of the cut placed directly onto the stack. 

Thus. . a  rule with a cut at  the right end of the left hand side is equivalent to a 

d 
similar rule without the cut. This use of the cut prevents any reduction attempts 

until after the first symbol to the left of the cut has been onto the stack. 

Consider the following rule which results from modification of (4.49~).  

(4.53) [b]. !.  gap(-.^): b. c --> [b]: !, [b], gap(-.GI, [c]. 

The translation method for cats would result in a clause' similar to 

> 
, -. 

Local cuts are once again implemented with the d l  predicate. . So, the translation - 

a 

(4.55) [b]. !, gap(-.G). b. c --> [b]. !. [b], (gap(-.GI. [c])!. 

would result in the following Prolog code. 

There is a special case of the local cut in which the entire rule is englxed in the 

cut. 

. (4.57) ([b]. !, gap(-.GI, b, c --> [b]. [b]. gap(-.GI, {c])!. 

While cuts within a rule affect ihe pattern matching and symbol generation. this local \ 

- cut prevents backtracking once the rule has successfully reduced the stack. 
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- 
reduce~[[b].[b11X0].New~taek) :- gap(-.G.XO.[[c]lX]). gap(-.G.Y.[b.clX]). 

(4*% sr-pafse([[b]l.Y.NewStack), !. 

This also prevents any subreductions done by sr-se in (4.58) "from 
\king 

reattempted. <J 

The dominators work in conjhct ion With the rule name. For each grammir 

symbol, x,  the stack symbol is actually of the form xAName. When a dominator is 

specified for ii rule symbol, it becomes the Name of the stack symbol. Each symbol 

of the ' r igh t  side of the rulg, y ,  is irahslated into y*R Name where RuLeName is the ' % 
name of the rule. If the rule does nbt have a name, the system gives it a unique 

name. Thus the specification df a dominator during the symbol generation stage. will 
, 

result in a stack symbol that will match only the specified rule during subsequent 

I ,  

patt2rn matching stages. Since dominators can' also be specified for gaps. a 

redefinition of the gap predicate 1s 'required. The gapD predicate is similar to gap 
r 

except that  i t  possesses an extra argument (rhe first argument) whlch is used7for the - 

rulename. This argument IS the Name of each symbol contained in the gap. 'I'he I 
- - " 

name '$undef is reserved to signify that  no dominator was specified for a gap a l c h  

is on the left hand side of the rule. So, consider the following efficient grammar. 

(4.59) . (a) s --> [a]. [b]. [c]. - - --. 
(b) s --> [a]. s. b, c. 
(c) ([b]. !, gap(-.G). b. c --> [b]. [b], gap(-.GI. [c])!. 

Since no rule names are specified, the system will generate them. Assuming that . 

(4.59a-c) are named 1 ,  2, and 3 respectively. reduce clauses similar to the following 

would be generated. 

(4-.60) (a) reciuce([[a]*l .[bTl .[cIAl lx ] .~ews tack)  :- ~r-~arse([s~Dl].X,IVew~tack 1. 
(b) reduce([[aIA2 .s12 .bA2 .cA21~] ,New~tack)  :- sr-parse([s-~l ] , ~ . N e w ~ t a c k ) .  
(c) reduce([[bIA3 . [b ] -31~0] .~ew~tack)  :-  gap^( 3 . - .G,X~.[[C~~]IX]) ,  

gap('$undef ',-,G.Y .[bAD1 .ciD2l~]), ~ r - ~ a r s e ( [ [ b * ~ 3 ] ] , ~  ,~e 'ws tack  1, !. 
9 -- 

The actual translation produced by the system differs slightly but is equivalent to 
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, % 

(4.60). This discrepa y arises from the desire for a concise translation procedure, 
... 

.. which can be found in Appendix D. .The actual translation of (4.59) produced by 

FIGG is shown in Figure 4-5. 

reduce([[aIA$namel ,[bIh$namel ,[cIA$namel 1-361.-29) :- 

- 39=-36. 
sr-parse([sA-371.-39,-29). 
true. 

reduce([[a1~$name2,s~$name2.b~$name2,c"$name21~36].~29) :- 

- 39=-36, 
sr-parse([sA-371.-39,-29). 

I . 
true. 

redu~e([[b]~$name3,[b]*%name31-361.-29) :- 
gapD($name3 .-.-43 .-36.[[c]"$name31-371). 

A-38='[]'. I . 
' gap~($undef .-.-43.-44,[bA-39.c"-401-371). 

sr-parse([[b]A-411-38].-44.-29), 
!. 

Figure 4-5: FIGG translation of an Unrestricted GG Rule 



Chapter 5 

Applications 
Unrestricted Gapping Grammars 

~nr i s t r i c t ed  gapping grammars, as implemented in FIGG, can be considered cis a 

programmirig language, and can be used to parse sentences, according to a grammatical ' 
specification. Few studies have been done to examine the applicability of gapping 

I 

grammars as a progtamming tool. since the earlier implementations were either 

inefficient or proc&ed too small of a subset of these grammars. As a programming 

language, the recurrrve e n u w a b l e  power of unrestricted gapping grammars is a 

benefit, hot a hmirance W; will first examine .the use of procedural control with 

unrestricted gappirig grammars. Then. FIGG will be used to examine the use o f .  

unrestricted gapping grammars in describing free and partially free word order 

languages, and in implementing the metarules of generalised phrase structure 
d '  

grammars. 

5.1. Use of Procedural Control 

Procedural control can be introduced into the productions of the grammar to restrict 

the language bribed. or to improve parsing efficiency. In this section, we shall use 

% 
a selection of iliar formal languages to examine the use of the various control 

mechanisms. \ 
Since initial results suggest that the determination of what goes into the gap to be 



r fk 
one of the major problems (the gap determination* probled- (Dahl. 1984)). procedural 

control can help determine the contents of a gap. ~ o n s i & ~ -  the context sensitive * 
, c 

language. L1 = {ambncmdn I m,n 3 0). A set of productions (Dahl. 1984) of a 
s 4 

grammar. GI, that describes this language is proyided in (5.1). - 
(5.1) (a) s --> as, bs, cs, ds. 

(b) as. gap(G), cs --> [a], as, gap(G), [c], cs. 
t 

6 
(c) bs, gap(G). ds --> [b], bs, gap(G), id]. ds. 
(d) as, gap(G). cs --> [a]. gap(G), [c]. 

! 

(e) bs. gap(G). ds --> [bl, gap(G). [dl. 

- Behaviour of FlGG with this grammar and with strings of increasing length is 

summarised in Table 5-1. Times are in CPU seconds for a SUN Workstation running 

C-Prolog (Pereira. 1984) under UNIX. The first number represents-the time required 

for a $uccessful parse, and the second number includes the time spent looking for all 

other possible parses. The results expose a severe parsing problem for GI with 

increasing sentence length. However, closer examination of (5.1) illustrates that the 
- 

gaps should result in the ith a matching the ith c,  and similarly for the b's and d's. 

If a decreasing 'gap is used in the  production^. then the first successful gap' followed 

F 
by a c (or d. depending on the rule) will result in the correct matching. . A  cut can 

then prevent the other alternatives from being tried. Thus, G; is obtained .by 

modifying (5.lb-el as shown in (5.2). resulting in much improved performance as 

illustrated in Table 5-1. 

(5.2) (b) as. gap(-.G), cs --> [a], as, gap(-.GI, [c], !. cs. 
(c) as. gap(-,GI. cs --> [a], gap(-.G), [c]. !. 
(d l  - bs, gap(-.G), ds --> [b]. bs. gap(-.G). [dl. !, ds. 
(e) bs. gap(-,G), ds --> [b], gap(-,GI, [dl. !. 

W h i k  G,l and G', are processed by the topdown parser, G; in Table 5-1 represents a 
P 
-, grammar equivalent to G', that is processed by the bottom-up parser. The . \ 

'j 

productions of G; are provided in (5.3). 
I 



r" 
(5:3) (a) s --> as. bs, cs. ds. 

(b) (as. !. gap(-.GI, cs --> [a]. as. (gap(-.GI. [c])!, cs)!. 
(c) (as. !. gap(-.GI, cs --> [a], gap(-.G). [c])!. 
(d) (bs. !. gap(-.GI. ds --> [b]. d. (gap(-.G). [dl)!. N. .. . 
(el (bs. !. gap(-.GI, ds  --> [b]. gap(-.G). [dl)!. \, 

\ r".. 
In this case. the bottom-up processing takes about two and a half tl$es lonjer than 

: 
\ 

top-down parsing. 1 
,7 
/I< i 

I 
1 .  

: 
Table 5-1: Parse, and total analysis t i h e q f o r  ambprhdm 

k. -. ''.-+/ 

Now consider the productions that describe the language L2 = {anbncn I n > 0). 

(5.4) (a) s --> [a]. bs. [c]. 
(b) s --> [a], s, b, [c]. 

(c) h g a p ( G ) .  , b  -> [bl. bs. gap(G). 
(d) bs --> [b]. 

vt 
Unfortunately, a gapping grammer containing these productions would be ambiguous. 

w 

I t  should be noted that these productions, would not form an ambiguous extraposition 

h 
grammar. The ambiguity can be removed through modification of (5.4b-c). as shdwn 

/ 

in (5.5). resulting in a new gapping grammar G;. I 

(5.5) ( b ) ,  s --> [a], s. b. c. 
1 

(c) bs. gap(-.GI, b, c -->. [bl. b~ -&~~- .~ i ) .  icl. !. 

-4n unambiguous unrestricted gapping grammar. 'G;,  which has one less production and 

one less nonterminal symbol than G2, c ~ n  also be provided for this language. 
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(5.6) (a) s --> [a]. [b]. LC]. 
(b) s --> [a]. s. b, c. 
(c) ( [b], !. gap(-.GI. b. c --> [b]. [bj, gap(-.GI, [c] I!. .\ 

4 
The parse times for various sentences. w-G; and G; are processed by the t o p  

down and bottom-up parsers respe&ely. are summarised in Table 5-2. This time. 

the bottom-up parser is slower by a constant multiple of three. Further development 

on this Prolog parser may improve its efficiency. 

Table 5-2. Parse and total analysis times foi  ambmcm 
- 

(9 . 

Thus. the results illust te that the introduction of some limited procedural cgntrol 1' 
can be done ;Imply with very beneficial results. Without its inkduct ion.  the 

t processing time may be intolerable in ,  some cases. It% wdl  no€ always be possible 

though. to introduce simple restrictions on gaps and parsing. The effect of a control . 
mechanism is also very d e p n d e h  on the grammar itself. As illustrated in the 

examples. the same operator - the cut - can result in more efficient parsing, or can 

restrict the language described by the grammar. The determination of which control 

- to use, and how to use it, is the responsibility of the person' who contructs the 
, . 

/' - - grammar. Obviously. more study of procedural control is required. 



5.2 Descriptiqh of Non-Fixed Word Order 
/ 

L 

One of the benefits that has been cited for gapping grammars is the ease with 

which they can describe languages with free 'word order (Dahl. 1984). MGs. 
e 

augmented with a capacity for 'floating terminals, have also been used in an attempt 
1 

to grammatically capture partially free word order (Bien et.al.. 1980). F l t ~ i n g  

terminals, as opposed to the conventional, anchored Erminal symbols. are introduced < 

? 

into the MG rule. They denote symbols that may be foynd in a sentence anywhere - 
to the right of the position specified in the rule. However. ,arbitrary relocation of 

nonterminal symbols in not permitted. While this method successfully describes 

totally free word order, it can not adequately capthre restrictions on symbol 

relocation of a partially free word order language in a concise form. We shall 

examine the use of 'FIGG for processing (totally 
d 

word order languages by providing unrestricted 
% '  

languages. i 

5.2.1. Free Word Order - - 
+ 

fie; word order and partially free 

gappinb that describe the 

. 

Dahl proposed the use of GGs for des&ibing totally free word order (Dahl. 1984). 

As with flwting terminals, the unrestricted relocation of a symbol is obtained by 

shifting symbols to the right. 

(5.7) sym. gap(G) --> gap(G). sym. t 
A 

A symbol, syrfr. ,is shifted tb the left by shifting of all symbqls between sym and its 

new location to the right. Since GG rules can not start with a gap symbol. direct 

specification of left shifting is not possible. However, it could be described using an 

unrestricted gapping grammar rule of the form 

(5.8) gap(G). sym L> sym, gap(G). 



' Latin verse an eqample of a language t h a t  allows an arbitrary rearrangement of 

words. Since FIGG Bas been shown to have trouble parsing sentences of increasing 
a C '  

length, the- grammar shown' in (5.91, which is an extension of one found in (Dahl. . , 

1984). was examined to determine if FIGG encountered a similar problem with it. 

This grammar does not iliclude restrictions on person/number agreement. The last 

4 four rules of $5.9)  give the Ianguag its free word order property. Table 5-3 

' 7 0  symmarises the rekults obtained using the p-down parser on the sentences shown in - h /' 
C5.10). 

(5 .9 )  star tLsymbol  sentence(Tree) / ( w r i  te ( 'Barsa Tree:  ' j ,  wr i te t ree (T ree ) )  

aentence(s(NP,VP)) -> noun-phrase(NP,nom). verb-phrbse<VP). 

> 

v e r b - p h r o s e ( v p ( ~ 0 ~ , D A T , ~ C C , V ) ) =  -> prep-phrase(AB~),  ~ ~ u n - ~ h r a s e ( ~ A ~ ,  d o t ) .  

noun-phrase(ACC. acc) . verb(V, occ-dot ) . 
L 

t 
verb,phrase(vp(DAT.ACC,V)) -> noun-phrase(DAT,dat). 

noun-phrase(~CC,acc), verb(V.acc,dat). 

v e r b - p h ~ a s e ( v F ( ~ ~ ~ , ~ ) )  -> noun-phrase(ACC,acc), ve rb (V . t rans ) .  

verb,phrase(vp(V))- -> ve rb (V , in t rqns ) .  

noun-phrase(np(N),~ase) , -> noun(N,Case.Gender) . 
noun-phrase(np(N,ADJS) .Cam)' -> noun(N.Case ,Gender), 

. ', 
a d j e c t  i V ~ ~ ( A D J S , C ~ S ~  , ~ e n d e r ) .  

1 

adjec!ives(adjs(~D~,ADJS),Casc,Gender)'-> o d j e c t  ive(ADJ.Cose,Gender), 

a d j e c t i v e s ( M J S , C a s e , G e n d e r ) .  

n,oun(n(Word) . ~ a s e . ~ e n d e r ) ,  gap(G) -> gap(G), [Word], 

a0 j e c t  i ve(ad j (Word) ,Case ,Gende ) , &(G) -> gap(G) , [Word], 

j d i c t  ( a d j e c t  i v e ( ~ a s e , ~ e n d e r )  .ward) t .  

verb(v(Word) ,Type), gap(G) -.> gap(G) , [Word], j d  i c t  (verb(Type) ,Word) f . 

i 

p r e ~ ( p r s p ( ~ o r d ) ) .  gap(G) -> gap(G). [Word]. j d i c t (p rep ,Word ) f  



vir est. 
puella puerum ;mat. 
puella bona puerum amat. 
puella bona puerum parvum amat. t 

puer bonus puellae parvae florem dat. 
puer bonus puellae parvae florem rubrum dat. 
vir bonus vetus puellae parvae florem. rubrum dat. 
vir bonus in agro puellae florem rubrum dat. 
vir bonus in agro puellae parvae florem rubrum dat. 
vir bonus in agro rubro puellae parvae florem rubrum dat. 

Table 5-3: Summary of results for parsing according to the latin grammar 

sent ence l e n g t h  parse t ime t o t a l  t ime parse  t ime t o t a l  t ime ' 
(words) (set > , (sec)  reverse  (I$)  reverse  ( W C )  

The results iiiustrate satisfactory behaviour with increasing sentence length. T h e  

exponential growth is still present, but not to the degree observed with the r u l e  

illustrated in (5.1). One may even be tempted to improve the efficiency by placini a 
< 

cut. !. a t  the end of the last four clauses to prevent backtracking. But, it is worth 

noting that  when a sentence contains two adjectives which modify the same noun, the , 

introduction of the cut  would prevent both parses from being found. -(5.10g), which 



is shown below along with its translation, is an example of a sentence with this 

property. 

(5.1 1)  (a) vir bonus vetus puellae parvae florem rubrum dat. 

(b) the good old man gives the small girl the red flower. 

5.2.2. Partial&-Free Word/Constituent Order 

While totally free .word order may be very easy to describe with GGs, most natural 

languages possess some restrictions on the location4f the phrasal constituents. The 

immediate dominance/ linear precedknce 'format- for grammar rules, whiq2is  ' used with 

- 9 ~ .  
generalised phrase structure grammars (Gazdar and Pullum. 1982). allows a conclse 

description of a potentially very large set of context-free rules that describe the 

, . 
allowed constituent order. 

Recall that. an imrnedicrte dominance (ID) rule resembles 'a .context-free rule, but it 

specifies only , that the symbol on the left hand side of the rule immediately 
. c 

dominates (is the parent of) the symbols of the right side. The order of the right 

hand Side symbols is not restricted by this rule. Instead, it is restricted by the 

linear precedence (LP) relations. A linear precedence relation. Pi < 8,. is a transitive 
. . 

relalion between two symbols of the grammar. Pi and P,, that states which symbol 

must precede the other if they both appear in the right hand side of a context-free 

rule. Not all context-free grammars can be describeLusing the ID/LP format. For 

example, if the symbol syk precedes another symbol syml in .one context-free r u l e  

the reverse order can not appear in any context-free rule. 
z-- 

.Although ID/LFQ-elations are intended to repyesent a collection of context-free rules. 
Y 

(which will betreferred to as base rules). they can be interpreted by a collection of 

urhestricted gapping grammar rules that c ~ n t a i n  procedural control. The rriethod for 



converting an  ID/LP specification into a unrestricted GG will be called the I D / t P  - 

UGG conversion procedure. Let us  first consider how to convert a single ID rule /7 

into a FIGG specification according to the LP restrictions. 1 
// 

We will assume that each Pr is unique. . An ID rule where each PI is pnique will 

1/ 
be called mnnmbigunus. Let B = u :,I { PI] .  , If PI = PI and i < j. then th& ambiguuu~ 

, ID rule can be converted to a nonambiguous ID rule* by the fo!!owing thqee steps. 

,@ Replace P by a new symbol P; which is unique to the rule. 
1 11 

\ 

Introduce the linear precedence $lation Pi < 
\\ 

-b 

Add the rule 6; --> PI to  the grammar. 

From the .nonambiguous ID rule. construct one context-free rule that does not 

violate the LP restrictions. (This is trivial if we assume that the order oi' the 

sym,bols on the r g h t  hand, side of the ID rule does not violate the LP restrictions.) 

( 5 1 3 )  nt --> P I .  P 2 .  . . . 8,. 

Given zhis context-free rule, we can obtain all other permutations o 

allowed by the LP restrictions by introducing a gapping rule similar 

(5.14) gap(G). PI --> P1, gap(G) 

along with the following restrictions. 

lf the 0,'s that are 

to 

(5.15) (a)  Each symbol. pi, can be relocated a t  most one time per derivation 

(b) For each symbol. g ,  contained in the gap. G ,  the LP restriction 
g < 8, must not be present. 

The first restriction ensures that  the procedure will terminate. while the second 

prevents violation of t h e l ~  restrictions. 

Let us examine one m e t h o d A r  incorporating the first restriction into the grammar. 



Given an'  ID rule (5.12), create a context-free rule that does not violate any LP 
0 

relations where each symbol. 8,. on the right hand side of (5.12) will be replaced by 

- the nonterminal 0;. 

Let B = U:=~{B:). The quote means that the symbol can be moved, whereas' 

unq-uoted symbols cannot be moved. To incorporate the restrictions of (5.15). (5.14) 
& 

can be rewritten as 

a list ( x  = [x,x z...xn]). This predicate succeeds when none of the LP relation9 xl  < y.  

x ,  < y. . . . . xn < y are present. Th$ rule can be' thought of as a rule schema 
L 

for the many context-sensitive rules that would be required to shift the symbol to 

the left. . What would take several rule applications of context-sensitive rules can be 

achieved by the application of a single unrestricted GG rule. For an ID .rule R,  
-r\ 

(5.12). the set PR will refer to the two productions, (5.16) and (5.17). required to 

' describe the set of base rules.' RR, constructable from R and the LP relations. 

I 

. . 
Given a base rule. RRl, a unique leftmost derivation can be obtained, using PR, which 

is equivalent to the application of RRi. The definition of leftmost derivation, which is 
' 

based on one found in (Hopcroft and  ~ l l m a n .  1979). is that a rule is applied to the 

leftmost nonterminal of a sentential form. With respect to (5.17). this means that 
1 

the leftmost quoted symbol is shifted according to the rule. By definition. the 

grammar will be unambiguous if and on& if the leftmost derivation for each 

sentential form permitted by the granimar is unique. For example, all possible 

leftmost derivations of the unrestricted GG based on the 

with no LP restrictions are provided in the permutation 

ID rule 

tree illustrated in Figure 5-1 



A permutation tree for an ID rule (5.12) possesses sentential forms as nodes with 

m8;~2...pnn as the root node. Nodes which contain no quoted symbols are terminal 
I 

nodes. The root node will be considered a level 0 node. while a descendant of a node 
r=F1 

will have a level number which is one greater than that of its parent. A node. $. 

has a descendant. o, iff t,b ==> w using rule *(5.17). 

Figure 5-1: Permutation Tree 

Lemma 1: All sentential forms of a permutation tree are of the form xi$, 
with Ixil = i and = Pi+I.../3k where i is the level of the node. /3;p!../3; is 

the root node, with xi E B* and E 8*.' 

Proof: The ,root node, flip; .../3;. which is on level zero is of the required* 

'form since x o = €  and %= B;p; ...p'. (E denotes the empty string). Assume 

that a sentegial form of level i, ~~w~fi;+~o; (where vi,ol E B*. oi E B', and /" 
/ / 

blwil = i )  is of this form, and p:,lw: = fli+1pi+2...B',. Application of (5.17) Lo 
l 

7kl represents the length of the string r. 



this sentential form yields the new sentential form ~ ~ / 3 ~ + ~ o ~ + $  which will be 
- 

on level i + l .  IvtPL+ = $i+2...pn. By induction, we can 

conclude that this is a 
I 

Corollary 1: No sentential form can appear on two different levels of a - 

permutation tree. 

Corollary 2 For any node. o. of a permutation tree corresponding to a 

'> L 
h e ,  R. Iwl=n, where n is the number of symbols on thi?,rigt hand side of 

Lemma 2: For any node. B1flz. . .Bij3i+l. . . /3n, of a permutation tree. where 

B, E B when 1 < j < i and B, € B' when i+ l  < j 6 n, each f l .  is unqwted 
J 

t is. f@,)= f(Pk) if a d D o d y  if j = k ,  where, the functioh 
: % 

f: BUB' + B is defined as follows. 

( 5 . 1 9 )  f ( x l )  = x if x' E B' 
f (x )  = x otherwise. 

Proof: From our assumption that the ID rule is nonambiguous, the 
r 

mquoted uniqueness property holds for the root of the permutation tree. 

By straight forward induction on the level of the node, it can be shown to 

be true for all nodes of &he tree. 

Theorem 1: The unrestricte gapping grammar GR = (V,.V,,T.E.P) associated e 
with R .  where VN = B'U(nf}. VT = B, T=(gap(G)). S = {d}. and P = P R  

is not ambiguous. 
\ 

Proof: Assume that there are two leftmost derivations for some sentential 

form. Then. ==> w and $2 ==> w, where f $2. If =nt, then o 

must equal 8;8;...8,. which would in turn imply ( I 2  =nt = $ l .  rhulting in a 
/- 

contradiction. Similarly. a contradiction aim ar'ises if il2=nt. For the other 



k 

cases, let the level of o be i. From corollary 1 'and from the definition of 

level, we knok that both and are of level i-1. From lemma 1. let 

Application of (5.17) to JI1 and $2 yields 

Since each 8, is unquoted unique ( l e m ~ a  2 ) .  this implies v, = v 2  $d ol = o,. 
,- 

I 
Consequently. $I =t,!q2, w h ; ~  contradicts our assumption. Therefore Gk is 

/ 
not ambiguous. 

8 
Lemma 3: When no LP relations are present. the jth level of the 

b 

permutation tree will conta~n j! nodes, where 0 6 J 6 n. 

-. 

Prmf: The root of the tree, is the only node of level zero by definition. 

-4ssume that there are i! nodes on level i. From lemma 1, each of these 

nodes will resemble v i w i ~ ~ + l o ' .  where vimi E B*, w' E B'. and lviuil = i. 

Application of rule (5.17) to this sentenfial form will result in i+l 

descendant; corresponding to thk i+l  different possibilities for the contents of 

the gap, wi. Since .each node of level i will have i+l descendants, this 
. 

implies that there wi 1 be (i+l)! nodes on level i+l .  .By induction, any level 

j of t3e tree contains j! nodes. 
' . 

Lemma 4: When no LP relations are present, nt =->* w  if and only if the 
GR 

base rule nt -- > o is in RR, where- w  E B'. 
, 

Proof: When no LP relations are present. there are n! unique context-free 

rules in RR corresponding to the n! different permutations of the n symbols. 

3 
B, on the right hand side of the ID rule. R. From lemma 2 and corollary 

2 ,  we can conclude that the terminal nodes of the prmutation tree are also 

permutations of the elements of B. Also, from lemma 1 .  they will be on 



level n of the "permutation tree. 'Since there is a unique leftmost clerivation 

/ ;theorem 1) for each terminal node. all n! terminal nodes (lemma 3) will be -. % ,  

distinct permutations of the elements of B.' So if nt -> o is in RR, the ., 

derivation 3 

/ 

d (5.21) nt ==> P'P'  p' ==>I o 
1 2"- n 

will be allowed in GR. If nt =->* o. then since o is a permutation of the 
GR 

symbols of B. it will correspond to the valid base rule nt --> w. 

Lemma 5: The presence of the no-LPs predicate in (5.17) disallows those -k_ 

derivations, and only those derivations according to GR that would result in -; 

a sentential form that is not allowed by the LP relations. (If a symbol. pi .  

precedes another symbol. P,. in a sentential form. the sentential form violates 

an LP relation if t he  restkiction f@,)  < ' f (bi)  is present. The function f is 

defined in (5.19)). 

Proof: The initial sentential form 'of the permutation tree does not violate 

any LP restrictions. Given a sentential form, m@f, that does not violate 

any LP restrictions, assume that the application of (5.17) results in vflpm'. 

which does violate an LP restriction, where v,o E B*, o' E B'*. But the only 

symbols whose relative positions have changed are the pi and the symbols in 
i 

o. However, the procedural restriction of,- (5.17) prevents these symbols 

from violating the LP restrictions. Therefore W ~ ~ U J J '  does not violate any 

restrictions. From this contradiction, we know that rule application can not 
- 

violate any LP relations. So the presence of an LP relation disallows invalid 

sentential forms. 
I 

Now, let V O ~ / ~ ~ ~ ~ @ J ' ,  be a valid sentential form, and let P k  < pi be Ann 
1 

LP relation (v,oloz E B', a ~ d  d E B*). Application of (5.17) could not result 



in since this would violate the LP relation. A sentential form 
4 

which does-not violate this LP restriction not is derivable from u f l l w r @ p Z d  

since i t ,  would require shifting f l k  to the left. However. f l k  can not be 

moved by  (5.17) since it is not quoted. 

Theorem 2 There is a derivation 

nt --> w 'is allowed by the ID rule 

Proof: This result follows directly 

nt =-> * w if and only if the base rule * 

GR 

R and the LP relations. where w € B*. - 
from lemma 4 and lemma 5. 

* 

To adapt the IDILP conv'ersion procedure for use with 'FIGG. (5.17) is replaced by 

the following bottom-up FIGG rule. 

(5.22) gap(G). X' --> X,  (unquoted(~)) .  !, gap(G). {no-LPs(G,X)). 

The reverse-uote. ', is used in place of the quote, ', due to restrictions associated 
- 

with the implementation. Since variables are allowed in bottom-up FIGG rules. we 

i 

do not need a gapping rule for each symbol, X. The cut. !. is used to obtain the 

lefthost derivation, while the predicate unquoted is required to prevent a cycle during 

bottom-up parsing. y 

Until now, only the processing of single ID rules -has 'been examined. To process all 

the ID rules according to the ID/LP-UGG conversion procedure we must combine the 

prod;ctions from e k h  grammar, GRi, that corresponds to an ID rule. Pi.   he G 's 
R, 

will be called subgrammars. Also, we must restrict (5.17) to shift a s;mbol only $ 

* 
over a region that corresponds to the sentential form from the permutation tree of 

the subgrammar. Tbis 

of other subgrammars. 

once a production of a 

from that subgrammar 

scope r*estriction prevents interT&m=ce- with the sententid forms -_ 
We will also include an independence rbitrictwn stating that 

I 

subgrammar is applied to a sentential form\, only productions 
i' 

can be used unless all symbols of the kntential form are 
, 



symbols from the ID/LP grammar. In other words, the permutation of the symbols' 

of the right-hand side of an ID rule must be completed before the processing bf *the 
u 

next ID rule is started.. 

For a base grammar GB = (VT,- VN, Z, PI, we can provide an equivalent 

unrestricted gapping grammar G' =, ( V T  ?N. r, E. pl), obtained from the JBkP.., 
k / ! 

description specification according* to the ID/LP-UGG conversion procedure. I. Let '', 
f \ 

I P = UIPRi. and VN = V ~ U  {xilx f VN}. The means for including the' scope restr ic t iy  \\ 
- I 

C LA 
and independence restriction wifl be presented after the following theorems. / 

li 
I1 

Theorem 3 .Given an ~ ~ D / L P  specification which corresponds to # base 
i 

grammar, GI, a ~ d  an unjestricted gapping grammar. G', obtained according to 
/ ,  

the ID/LP-u~G convekion procedure. then for any string o E ('vNuvT)* 
-4 

i 

cr =->' w if and o d y  ;f u ->* 0. where u E E. 
GB # 

-- -ic 

Proof: Given a sequence of m rule applicatiobs which, derive o using GB, 

where oi E (JN U V ~ ) *  and Ri E P. the following derivation is possible in G' 

using the subgrammars. G which correspond to each rule application in 
Ri 

(5.23) (theorem 2). 

Given a derivation according to G" that derives w, the independence 

restriction requires any such derivation to resemble (5.24). For oi = v l ~ .  
- 

where u1 .u2 E (VN U V ~ ) *  and x E VNUVTp the scope restriction requires 

w , + ~  = v , p 2 ,  where x E ( v N u v T ) * .  According to theorem 2. the rule 

x --> x is in the base grammar, From this, we can conclude that the 

derivation (5.23) is allowed by GB. 



Theorem 4.G is ambiguous- if and only if G' is ambiguous. 

P r e  The only if case is trivial. To prove the if case, let us re-examine 

(5.24). Theorem 1 states that each G is nonam,biguous. Therefore, if G' is 
Ri 

< 

ambiguous th'en it must be due to two derivations with a different order of 

subgrammar application. 
-- 

u r,>* W', c=,>* . . . E=,> * W 

R1 Rz Rrn 
This would imply that the following two derivations would be allowed by 

To incorporate the scope- restriction we can introduce nonterminal symbols (markers 
, - -- - ,L.+ 

rnk, to delimit the-symbols on the right hand side of ID rule. The addition of the 
/ 

linear precedence relation mk < X for all symbols X will prevent any symbols from 

being-repositioned outside of these delimiters by (5.22). To ensure that the processihg 

of one base rule is completed, before another base rule is attempted, (5.22) can" be 
/ - 

-L 

C . 
modified 'as follows. 'a, 

(5.27). . gap(G), !. X' --> X". !,  gap(^): {~O-LP~(G.X)].  . 
Now. after a quoted symbol has been moved it will be' double quo,wd. and it will 

not be allowed to move again. To complete the processing of the base rule. the 

symbols, which must all be double quoted. that appear between the markers will 

have the double quotes removed by the following rule. A - '  

=---. 
(5.28) mk, gap(-.G1), mk - - = m a p ( - , G I .  {d~uble-~uote(G.Gl)} . 

n 

This rule will also remove the markers. Consider the following ID/LP grammar. 



I - 
(a) ' s --> np vp -/ - 
(b) vp --> v pp(with) pp(in) , 

1' 

(c) np --> ['John'] x rf - --- 
(d) np --> ['Mary'] d2 
(e) np --> ['LOIXGT 
(f>' v , - - - - e S 1  
(g)'x-$p(with) --> [with] np 
(h) pp(in) - - > [ i n ]  np 
( i )  np < vp. 

LCj) v < pp(-). 
(k)  [Word] < X. /* for any 

This grammar can be translated into the 

(5.30) ( a )  r ( 1 ) :  s -> m k .  np ' .  vp'  

(b') r ( 2 ) :  vp -> m k ,  v ' .  pp(w 

( c )  r ( 3 ) :  - np -> m k .  [ 'John' ]  

(d) r ( 4 ) :  np -> m k .  [ 'Mary ' ]  

category X iF/ 

following unrestricted gapping grammar, G3. 
\ - 

, m k .  l i d - r u l e ) .  

i t h ) ' ,  p p ( i n ) * ,  m k ,  ( id - ru le ) .  

' , m k ,  l i d - r u l e f .  

' , m k .  l i d - r u l e ) .  

(0 )  r ( 5 ) :  np -> m k .  [ 'London*] ' ,  m k .  { i d - r u l e # .  

i (t) r ( 6 ) :  v  - > m k ,  [ l i v e s ] ' ,  m k .  l i d - r u l e ) .  
.. (9) r ( 7 ) :  pp(with) -> m k .  [ w i t h ] ' ,  n p ' ,  m k ,  { i d - r u l e j .  

(h) r ( 8 ) :  pp( in)  -> mk,  [ i n ] ' ,  n p ' ,  m k ,  { i d - r u l e ) .  
b --  

i s t ( X ) .  
H 

' . !, gap(G). lno-LPs(G.X)l. 

(n)  ( )  9 -  k )  -> ( i n t e r - r u l e ) ,  gap(-.G), h 
IG\-[I. ~ o u ~ I ~ - ~ u o ~ ~ ( G . G I  ) )  . 

- Since this grammar must be processed by a bottom-up some additional control 
* 

was added to prevent cyclek and obtain more efficient parsing. The procedures 

id-& and infer rule ensure that (5.30n) can not & used agvn until a correspond& 
-7 

id-rule is -used. . - 

(5.31) ' inter-rule :- not inrule. !. ( assert(inru1e) ; abolish(inrule.0). fail 1. 
id-rule -:- abolish(inrule.0) : assert(inru1e) . fail. 

C- The dominat&s. ;(XI. of (5.3011) also improve parsing efficiency by requiring both 

markers to be symbols from the right i a n d  side of a rule named r(X), for some X. 
= - 

~ i l  quotes are removed from- the symbols before linear precedence relations are 

checked. For any two symbols. pi and B,. the cla& ip(/3J3j) is present if the 

> 
relation 8, < fl, holds. / 



0 For each ID rule one unrestricted GG rule is required. and for each LP relation 

single clause is required., Note that the use of logig variables in LP relations allows 

L P  schemata. representing classq of relations. to be speiif ied as seen in (5.301). (hl y 

two, extra rules. (5.30m) and (5.3011). and one new LP schema. (5.301).. are required 
. . 

in the conversion process. .So the conversion is, linear with respect to the number of 
r 

. rules. This conversion also approximately triples the number of grammar symbols. 

The parse .of the sentence John lives in London with Mary which uses G3 is shown in 

Figure 5-2. 

The parse was obtained in 3.3 seconds on a Motorola 68000 based SUN Workstation 

running C-Prolog in 5 UNIX environment. Total processing time, ' which includes time 

spent lpoking for other parses, was 103 seconds. No other parses were found. The 
6- > 

no-LPs predicate was. modified, to improve 9fficiency. so that it would fail if it 

found two symbols (betw&n markers) that were not both from .the same ID rule. 
Q 

As it stands. once the parser finds a gap that results in the violation of an*,Y 
* .  

relatidn, it still tries larger gaps to see if they might not violate this 

Therefore, the gap predicate used in (5.30m) can be modified to incorporate the 

no-LPs t e s .  Also. ID rules that have a single symbol on the right hand side do not 
d .  

require any permutation of this lone symbol. With these modifications, the parse time 

was only 1.7 seconds, and the total processing time was reduced to 67 seconds. 

The ~ r b ~ r a r n  system , (Evans and ~ a z d i r .  1984) also uses ID/LP specifications 

, 
without converting them into their corresponding context-free grammars. It 

preprocesses ID/LP grammars into a m r d  form Ghich is then used for parslng. This 

system, however, was designed as a grammar developmenl system, so efficiency was not 

a major consideration. Using a grammar similar to (5.29). the ProGram grammar 

development system (Evans and Gazdar., 1984) required 16 seconds to parse the same 

sentence with a total processing tiine of 49 seconds. 



Figure 5-2 
"+. 

Parse using an unrestricted GG based on an ID/LP description 

For a more thorough comparison of these two systems, consider the following ID/LP 
\ 

grammarvwhich is adapted from (42) of (Gazdar and Pullurn.-1982). I 



i 

(5.32) s --> n p  vp. 
y p  -> v. 
v p  --> v np. 
v p  --> v s. 
v p  --> v n p  pp. 
v p  --> v np  s. 
np  --> n. 
pp -- > p . np. 

ProGram and FIGG were compared 

nP < VP 
P < "P 
v < s  

n --> [n]. 
v --> [v]. 
p --> [PI. 

on the following collectian of 

varying, lengths. 

valid sentences of 
r 

(a) n v. (g) '  n v n p n. ( m )  n v-n v n V. 
(b) n v n. (h) n v p n n. - (n) n v n n n v .  ' 

(c) n n v. ( i s *  n n v p n. (01 n v n n v n. 
( d l  n v n v .  ill ,II 3 2 v. (p) n v n v n n. 
(el  n v n v n. (k) n p n v n. ( q )  n n v n v n. 
( f )  n v n n v .  (1) n p n n v .  (I-) n n v n n v. 

Note that sentences (5.33e-f) and (5.330) are ambiguous. The GPSG used by ProGram 

and the unresiricted' gapping grammar used by FIGG are provided in Appendix 

B. M~dification of (5.32) by increasing or decr g the ,number of LP relations did 

not greatly affect the parse times .of either syst Table 5-4 summarises t h i  averige 

time for finding the first parse., 1st. and the average total time. total. for 

each system according to  sentence length, m. 

I Table 5-4: comparison of FIGG and ProGram using an ID/LP grammar. . 
, P 

m=2 w 3  = w 4  w 5  m 6  

FIGG 1st I 8.3 3.7 2.1 48. 470. 
total I 1.9 14. ' 98. 330. 2788. 

I 
ProGram 1st - 1 3.1 16. -. 12. 42. 200. 

, total I 12.. 35. 118. 168. 988. 

Firstly, one should notice that neither system is efficient at processing ID/L.I' 
' -, 

grammars. They both exhibit exponentla! growth of processing t m e .  ~l t bough the 



FIGG system is markedly superior to ~ r o ~ r a m  in obtaining the first &se of shorter 
, 

sentences, its growth of CPU time as a function of sentence length is greater than 

ProGram's. To .illustrate why FIGG does not efficiently execute the unrestricted 

gapping grammar, consider' the .application of (5.30n) to1 some sentential form. The 

. bottom-up parser will ,enclose arbitrary substrings within the markers, and it >may 

take a great deal of processing before the system determines that the contents of gap 

does not correspond to the right Band side of some ID rule., When viewed from the 

top down, it is impossible to obtain a sentential form in which she contents of the 

markers does not correspond to a permutation of the right hand side of a rule. One 
, 

may be tempted to introduce more procedural knowledge to rule 'out these sentential, - 

forms earlier, .but addition of this large amount of compiled knowledge is contrary to 
\ 8 

our desire for an inlerpreted approach.. A possible solution would require the 

development of a unrestricted gapping parnma; parser that can parse the grammar 

produced by the ID/LP-UGG conversion procedure in a '  top-down manner. Currently. 
4 

such a parser does not exist. Another solution might entail rewriting the shifting 

(5.34) X'. gap(G), -.-> gap(G), X". {no-LPsl(X.G)). 
' 1  u 

for use b y q h e  current top-down parser. Instead of shifting symbols to the left. 

(5.34) would shift a symbol to the right as long as the LP reiations were hot 

violated, as determined by no-LPsl. Unfortunately, this would r q u i r e  a rightmost 

- .  \ 
derivation. which /the parser would be unable to obtain ciue to the nested b u d  

problem - which* results from its depth-first parsing strategy. 
\ 



5.3. Implementation of GPSG ~ e t a r h k  
-, 

Unrestricted gapping grammars may be used to describe the grammars and 
I 

metagrammars of linguistic theories which possess the gap concept. This should not 

be confused with a claim that  unrestricted gapping grammars constitute a kqguin ic  
*. 

theory. They merely provide the medium for expressing theYtheory. Although FIGG 

-may not supply the most efficient implementation. it can be used to process 

generalised .phrase structure grammars. 

As was mentioned in chapter one. there are two approaches to metarule processing 
/- 

A 

for use in 8 parser. The compiled approach uses the metarules to generate all possible 

context-free rules before the actual parsing begins. When using this method, care 
4 

must be taken to ensure that the generation process terminates (Shieber et. al.. 1983). 

The interpreted approach avoids generating all possible rules by using the metarule 

during parsing. However, the use of metarules in this manner may result in a 

grammar with more than context-free power (Shieber et. al.. 1983) (Gazdar and 

Pbllum. 1982). Unrestricted gapping grammars e used to describe %n interpreted 

t 
approach for brocessing metarules that operate on context-free rtiles.* 

J 

The notation used in the GPSG references differs from the conventions used in this . 
3 

paper. The context-free rules of GPSG shall be presented here in the familiar 

notation 
I 

where nt is a nonterminal; and f l l  is a terminal or nonterminal for 1 < i < n. ' 

' ~ c c o r d i n ~  to the description of generalised phrase structure grammars provided in (Gazdar. 1981). the 
metarules of the grammar operate on the context-free rules of the grammar to produce more context free 
rules. The revlsed theory (Gazdar and Pullum, 1982) uses an ID/LP grammar to describe the context frrc 
rule Lase, with the metarules operating on the ID relat~ons to produce new ID rules. 



Regular expressions. optional components. and other such ab iatory devices which 
L 

&it 

may appear in the right hand side of GPSG rules will be ignored in this discussion. 

Also, features and semantics will be ignored for the moment, with an outline of how 

' 
they might be incorporatCd presented later. Metarules are of the form 

(5.36) nt --> P I .  P z .  . . .. 0, ==> ntl --> P I 1 ,  P i .  . . .. P,' 

where a context-free rule bn the left side of the rfietarule arrow, -->, is called the 

pattern, and the rule on the right hand side is the template. In (5.36). any pi 

( 1  6 i < m) or P,' ( I  6 j 6 n )  p.m be a gap symbol (string variable). A gap contained 
re 

in the pattern can correspond to a region of zero or more symbols in a i u l e  tbac 

matches the pattern. ,The metarule may also contain variables. A variable that 

appears in the pattern may match any symbol. If a gap or a variable appears on one 

srde of the metarule. it must also appear on the other side. 

In order to describe how the metarules can be translated into unrestricted GGs, h t  

I s  examine the following metarule. f 

\ v 

(5.37) nt --> 0 ==> ntl --> PI 

In (5.371, nt and ntl can Qe nonterminal symbols or variables. 8 and may 

contain terminals, nonterminals. variables, and gaps. Now qonsider the top down 

processing of the virtual rule 4 

(5.38) nt', --> P', 

that results frpm ihe successful application of (5.37) to some bare rule. R ~ . ~  

- To obtain a derivation equivalent to the application of the virtual rule, we start with 

nt;. and apply. the context-free rule. Rl;, 

' ~ o t i c e  that if neither ru nor m1 arc variables. then # = d  and al =a;. Similarly, if no gaps or 
variables arc present in B and B 1 ,  then 8 = E and 4 = $. - . I  
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(5.40) nt, 

metarule. (5.37). 

, 

The nonterminals and "> 1" of 
% 

(5.40) are scope m k o ; r  unique to this derivation. After application. of (5.40) to dj. - 
Rb can be applied to  nt' to obtain 0'. If 8" matches 8 in the pattern df the metarule. 

then we are allowed to replace it with the sequence described by in the template. 
I 

\ (L,d 
To achieve this operation, the folloWing unrestricted gapping rule. Rr' ,  is introduced. * 

-3 1 

This rule also removes the scope markersowhich ensure that 0 matches all of 8'. The 

sentential form that results from the. application of (5.41; c 1 L  nd to 8;. 
d 

which is the rig k t hand bide of the virtual rile.' Procedural cdhtrol mi s t  be added \ 
< 

.a 

~ to ensure thgt the conteqs of scope markers, before the appli~ation\~5.41). is 

b 

derived. from the application of a single rule to the. contents of these markers after 

the application of (5.40). If this procedu5& control were not included, the method 

would process metarules of. the form 

(5.42) nt ->' @ :=> dl -->-el - .  
1 

This entire process is illustrated in Figure-3-3. ~ h b " n o d e s  of this g r a ~ h  are sentvtial  ' 
I * 

i L t  
I 

forms. The dashed arrow corresponds to the application of the virtual rule. while . 

the solid arrows represent the path actually taken to piocess the rule. 
G 

Figure 5-3: Processing of GPSG Metarules 

This method can also be used to handle multiple application of metarules. Figure 
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9 

5-4 illustrates the 'use of n. not necessarily distinct, metaruls.  lnst 
- 

base rule operate within the scope mAkers. <,, and >,. a v 
a 

instead. I 

ii , 

Figure 5-4: Processing of Multi e GPSG Metarules e b 

A consequence of this method of metaruie processing i f  that the resulting language is 

. not necessarily context-fe .  Restrictions like finite closure (Thompson, 1982). could 

be imposed upon this process. by the addition of some procedures, to prevent this 

iide-effect. Under finite closure. each ketarule can only. be -appli-d-one in the 
/' 

derivation of a rule. i 

\ 

T; illustrate the use of this process; consider the following base grammar. 



(5.43) s: s(dec1) --> np(subj). ~ ~ ( V o i c e ) .  
np l  : np(Case) - > dec. noun(Case.-pn). 
np2: np(Case1 -- > n o h ( ~ a s e . + ~ n ) .  
vp: vp(active) --> v(trans.active). np(obj). pp(to). 1 

ppl: pp(by) --> [by]. np(obj). 
pp2: pp(to) --> [to]. np(obj). 

To permit passive and inverted sentences. the following two metarules can be used. 

These metarules can be incorporated into the FIGG specification for the grammar by 

adding the following four rules. 

(5.45) (a) vp(passi ve)  -> mk(X). vp(act  i v e ) ,  mk(X). 

i n~mgen(X )  1 ,  mk(X) , v ( t  rans,act  i  ve)-D, np(obj ) -0 ,  g a p ( ~ ) A ~ ,  mk(X) 
-i 

-> aux(be) ,  v ( t r a n s . p s t p r t ) ,  gap(G), pp(by) .  

numgen(X1 generates a upique number associated with each application of the rule. - 
The scope markers, represented as m k f X ) .  use this unique number to allow multiple 

applications of the"same rule, Notice that the dominators. in (3.45) will provide 
. 

the necessary control on the contents of scope markers to ensure that 'only one rule 

application has been done. Figure 5-5 illustrates the derivation required to parse the 

sentence Is the ball given to John by Mary. The addition of extia arguments to the 

grammar symbols and markers can result in the construction of the actual context- 
--- 

free parse tree. This parse was obtained in 1.1 seconds. 

time of 43 seconds is not at all encouraging considering 

grammar. Once again, the system can 

First notice that the use of markers 

is nor fooltroof. This is illustrated in 

made. more efficient 

But the total proceysing ' , 

the small size o A h e  

with procedural control. 

to ensure the application of a single .b;lse rule 

the contrived grammar in (5.46). . 



Figure 5-5: Derivation graph using an interpreted GPSG vetarule 

(5.46) (a) s --> a. 
* f' (b) a --> b. 

( c )  .b --> [c]. 
(d) s --> b'==> s --'> [dl. ,$ 

The metarule. (5.46d). should not generate any new context-free rules, but the 
/ .\. 

unrestricted GG (5.47) whkh corresponds to this grammar will recognise d as a valid 
7- '\ 

sentence. .-, '-- 



Also. notice that once we process one of the R,, by the ,bottom-up parer ,  the. 
I 

diagram from Figure 5-4 illustrates that the next rule must be R,, or a base rule. 
1-1 

I 

Then, after a single base rule has been processed, the next n rules must be Qne of the 
- 

Rll 
, where n . corresponds to the number of R, used. This restriction can be 

1 ', 
i 

incorporated by introducing the procedure Ihs into all the R1 's. khs into the RI 's, and 
I i' 

rule into all the base rules. These predicates. which are defined in (5.48). maintiin a 

stack for the number of rhs's and Lhs's executed. 

(5.48) virtual([],[]). 
rhs :- virtual([].-), !, (virtual-push(right) : virtual-popbight), fail). 
lhs :- virtual([ I I,[]). !, (virtual-pop(1eft) : virtual-push(1eft). fail). 
rule :- virtual([].[]). !. 

Y rule :- virtual([].-), !. (virtual-swap(1eft) : virtual-swap(right1, fail). . 

The predicates v i r tw lpush ,  v i r tw lpop .  and virtual-swap modify the argumeents of 

the virtual(lRft,Righ.t) predicate that is stored in the database. Right is a list whose 
- 

length corresponds to the number of times rhs has been executed. Execution of rule 

moves this list into Left. Subsequent execution of Lhs will decrement the number 

stored in Left. Notice that the 'definitionis in (5.48) provide the required restrictions 

, on the order of execution of -all R,,'s. R 's. and base rules. - ~ 

li ' 
2 

/? 

- b 

Until now, we have used essential gaps. within our GPSG metarule translations. 

4hwequently. the parser has allowed the gap to contain any nonterminals or 

terminals. This is actually too general for our needs. The formal definition of 

Tetarulek used by Thompson in his GPSG metarule parser (Thompson, 1982) includes . 

a range for his string variables (which correspond to our ggps). This range can be 
- 

specified with thh use of the restricted gap predicate. The gapping rules of (5.45) 
1' 

can be replaced by the following. 
i 



In (5.49aj. the gap 'may contain np's, pp's, and vpinfs. S ing  the sentence inversion 

metarule may be applied to a rule created by the passivisation metarule,, its gap may ' 

contain any the previously mentioned categories in addition to vp's and v's. 

The efficiency can also be improved by restructuring the grammar. It  is possible to 

construct the grammar so that rules created by the passivisation metarule do not have 

to be operated on by the sentence inversion metaruh. The two metarules of (5.44) 

can be restated as follows. 

The verb phrase described by the template of (5.50a) must be used in, conjunctidn' --- -. , 
7 

with the rule 

to ~ b t a i n  passive verb phrases. (5.50b) generates inverted sentences by changing vpl 

into a sentence, s l .  and transferring all of the verb phrase features to this new 

symbol. i j i" 

- ,  

With these procedural control mechanisms and grammar modi;ications, a larger 
n 

grammar was developed -to examine the behaviour of FIGG. This grammar. which 

appears in Appendix C, uses a fmt argument on the nonterminal symbols tp capture 
/ 

tlfe slash categories of GPSG. It can describe a variety of active and passive 

sentences. including inverted sentences. questions, topicalised sentences, and sentences 

containing relative c l a u k .  Siirce €-productions (eg. nt --> E )  cannot be processed by 

the h t tom-up parser. the grammar was modified to remove these rules by the 



.- - 
1 

I 

i 
adciition of extra rules. Although this removal was done manually. it can be done 

8" 

1 automatically by standard E-production removal. techniques ( H o p c ~ l l m a n .  
I 

', 1979). This system was tested on a series of eight sentences. shown below. - 
(5.52) (a) John takes cmptlOl - _ 

48 
(b) does John take cmptlOl 
(c) John wants to take cmptlOl 
(d l  does John want .to take cmptlOl 
(e) John is loved by Mary ', 

( f )  does John want to be loved by Mary 
/ 

t (g) is the ball given to John by Mary r- \ 

- - (h') does John want to see the house fly 
,/ ) 

The parse of sentences (5.52b.d.e.h) requires one ~i@'.~ule. dhi le  the p a w  of 
t f' 

t I---" % 

(5.52f.g) requires two virtual rules. All of the senjenceq are y ambiguous. excepk 
f i  1 

L f' 
. 

i - @  
(5.52h) which has two different readings.   he parse ?i es obtai ed with FIGG are 

~~ d shown in Table 5-5. They are compared with those obtained/ by ProGram with a 
"\ ~3 

s imi la r  grammar. which is also shown in Appendix C. ihc! ',/ with the- 

SAUMER which uses the gramma of the Automated Academic Advisor (Yopowich.'--, 
/> -.,\ 

- 1985d). Once agairl, for a given sentence and system, the t i r n k ~ o v i d e d  correspond 

to the time for the first parse and the total processing time (in seconds). Also, recall 
. .. -. . . 

that the ProGram system uses ID/LP grammars. which contributes to its inefficient , ... 

parsing. Words th t have multiple lexical entries, such as.fly, also lead to inefficient \ 
parsing by the ProGram parser. For this reason, the inverted auxiliary is was not 

i 

included in its lexicon, which explains why thetsystem could not parse (5.52g). 
-. t 

, <', 
e I 

The results from this table show a very disappointing performance by FIGG on this . I  

larger grammar. Part of the reason for this performance is the shear inefficiency of 
C 

the parser. F IGG~ in Table 5-5 sufimarises the performance of FIG& using the same 

grammar withact the metarules. When the metarules are added. the efficiency drop is 1 

1 considerable, but it -is not as bad as suggested by the examination of *the grammar 
Y 

I 2 
with metmule results alone. AFo, the procedural control predicates Ihs. rhs. and rule 
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Table 5-3: Comparison of FIGG, SAUMER. and ProGram using GPSG 

\ 

FIGG I 0.5  1 .4  2 .4  . 7.0 t 3 . v  h. -348. 
1 4.B 13. 40. 130. 87. 1500. 1000. 2200. 

I 

result in an extra overhead associated with each rule dpplication. The restrictions on 
- 

the gaps improve the performance dramatically however. ' Without these restrictions. 

the amount of time required to parse even a very short sentence would, be 

/ 
prohibitive. Another factor that was not a problem with our g r m m a r  but could be 

- 
4- 

I ' 

~n other applications is ambiguitb introduced into the grammar by the translation of 
\ 

-, 
F 

I 
the metagrammar into an unrestrictv GG. If a derived ru2e can be generated two 

I 
/ 

- 
ways by the metagrammar. FIGG will find a parse for each .way the virtual r u h  can 

/ 
-+ 

be processed. More study of ~ W h t r o d u c t i o n  of ambiguity by the translation process 
b 

is required: . 
. . 

This discussion has concentrated on the translation'of the rules and ,  metarules into 

unrestricted GGs but has neglected many of the other components of GPSG grammars. 

Information. such as values for f%ures or semantia i n ~ r ~ r e h t i o n s ,  can be passed 

i 
from one side of a virtual 'rule to the other by mearixof extw arguments on the 

_2__ 

nonterminal symbols and markers. For example, if the context-free parse tree is 

de$red for a deriva_tion, it can,  be contained in an extra argument of the grammar 

symbols. In the following rule. the first argument of a symbol is a list that 
-- 



describes the tree which possesses the sy'mbol as its root.'' 

(5.53) vp~[vp(active).V.NP.PP],active) -- > v(V .trans.active), np(NP.obj). pp(PP.to). 

Now. the two rules associated with the passive metarule (S.JOa)? could be of tl\r 
$ 

following form. + 

(5.54) (a) v p ( [ v p ( p s t p r t ) I ~ i s t ] . p s t p r t )  -> mk(X.List ) .  vp(-. 'active). m k ( i l .  
5 

ri 
4 

(b) i n u m g e n ( ~ ) l ,  mk(X,k ist ) ,  v(- ,  t rans .ac t  i v e ) " ~ ,  np(,,obj)*D. 

 gap(-,+,^)^^. 'mk(X) 

-> V ( V ,  t r 0 n s , ~ s t ~ r t 8 ) .  gop(Tree.+.G),  pp(PP%y). 

4 join([V,Tree.~~].List)l. 

The information is passed from the right hand side of the virtual rule to the left -<.  by 

means of the List argument of the first marker. To capture the structured categories 
B 

of GPSGs, an approach like that taken. in PrbGram coulb be used. The grammar \t 
9 

I symbds  could be replaced by the structures similar 'to 

This strycture cor;esponds to a noun phrase in conventional GPSG grammars. Other 

&features €auld be included in this single lisl. or added into extra argume s of the 
/ f 

node. Various prbcedures would have to be supplied to manipulate the features. 

assign defaults, and rule out various feature combinations. 
a 

I:** 

Althobgh ,the method provided for converting GPSG grammars into unrestricted GGs 
, 

is very straightforward, the resulting grammars can not currently be used efficiently 

. by FIGG. A top-down parser 'may piovide U f f i c i e n !  processing of these 

grammars. but the current topdown parser can not process these grammars due to 
, \< t 

the nested head problem - which was discussed in chapter four. Upon examination 

of the derivation tree in Figure 5-5, one notices that the vftrns,pstprt),  ppfto), and 
'= 

", * 
ppfby) are nested in a gap and are edch a head symbol of a rule. 

' 

l ~ ~ , [ n p , [ n , ~ o h n ] ] . [ v p , [ v , ~ ~ m m  denotes a parse tree for John nms.  \ 
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5.4. s b a r y  * 

%@& . 
@ a  Lnrestrlcted gapping grimmars provlde more conclse grammatical descr~ptlons than 

# .  

e 
previous logic grammar formalisms for many languages due to the r n s e  general rulp 

format allowed. However, with such a general rule format, caution must be taken to , 
/ 

e 

ensure that the grammar is restricted, by sclme form of control, to .describe the 

Y 
'required language. " Gontrol facilities provlded in FIGG p e r m ~ t  reflned contiol 

t 

mechanisms without detracting from the high degree of descriptiveness present in the ' 

' I  3 I ,' < 

*granirnar rules. These control facilities can be used {either to restrict the language 

described by the grammar. or to obtaln more efficient parslng. The bottom-up parse& ' 

* 
of F1C.i can process grammars obtained by ID/LP-UGG conversion procedure. and can 

also process those grammars obtained by the translation of GI'SG-like rules and- 

metarules ioto unrestricted GGs. Although this parse; is far from efficient, it ca; 

process these grammars whlle the current top-down parser can not. The II)/I,P-UCK; 
- 

C 

conversion procedure IS a silizple (linear) ,method for translating ID/LP relatfons into a - 

directly executable loglc grammar which does not introduce ambiguity int$ the 

grammar. .Unlike the. approaches taken in (Shieber, 1982. Evans and Gazdar, 1984). 

th; ID/LP-uGG' conversion procedure 1s not an algorithm for dtrect processing  of^ 
, 

ID/LP grammars, but rather a method for converting these grammars tnio aqother 

grammar that can be directly executed. Consequently. the efficiency of ID/LI' 
'. 

-e P 

grammar processing is affected by the ,efficiency of the urirestricted gapping grammar , 

interpreter. (as well as by the structcre of the grammar). ~ i m i l a r l ~ ,  the simple 

procedure for translatmg GPSGs into unrestrlcted gapplng grahmars  1s not Itself an- 
-- c. + 

algorithm for dlrect processing of mewrules. While. thls approach to metarule 

processing is not feaslble to use with the current ~mplementation. f u t u r e  parsers of 
L 

P ' unrestrlcted gapping grammars should produce more reasonable results. The 
i 

,development of a less restrictive top-down parser woulfl remove the need for much of - 
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'[he procedural control t h a t ,  was required for the bottom- 
% 

-up parsing of gramm ars 

pz~duce,! by the ID/LP-UGG conversion procedure, and could lead to more efficient 

interpreted' pro,-essmg of GPSG metarules, and ID/LP grammars. 



chapter 6 

Unrestricted gapping grammars, an extension of the  gapping grariimar formalism: 
I . *  , 

promote high-level descriptions for  grammatical specifications of languages. f h e y  . .. , - / 

include grammars such a s  XGs, MGs, and the conventional grammars of the C b m s k y ,  

hierarchy. Unrestricted GGs facilitate easier description of unbounded Ieft symbol 

movemenl subject t o  constraints inserted directly - Into the grammar rule. Thls " type 

of movement is useful to describe ID/LP grammars. which permit relocation of 
i 

const:uents subject to constraints " In th# thesls. a simple procedure for convers~on, 
e 

of an IDI'LP grammar into a unrestrlcted GG has -been mtroduced. W S G  metarules, -- 
i which can contam gap symbols. can be expressed In terms of a gapping grammar as 

/' ~l lus t ra ted  in thls work.  But the conversion- of a complete GPSG, Into an equivalent 
1 "-3 

unrestricted GG requires fur ther  s tudy.  Other linguistic theories which u s e v h e  gap 

'. I 

concept - sdqh as transformational in t e r m s  of 
\ 

GGs or  u n r e s t r h 4 ~ ~ s .  examiningp \ the-use . ' 
of unrestricted of some movement - allowed ~n - 

F 

' t?ansformatlonal GGs should 

prove to be a useful tool for  explorikg these relationships. 

b 

Results obtained with FIGG illustrate that procedural control can succe&fully be 

l l ~ x ~ r a p o s : t l o n  does no? a d e q ~ a t e : ?  describe thls rnovernefil since 11 suggests the unbounded movement of 
a stngle cons t~ tuen t .  

* L .. 
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3 used to restrict the language described, by the g mmar. and to obtain more. efficient 
1 

1 rule processing. However, the definition of unrestricted GGs does not predefine a set - 
of control mechanisms. FIGS introduces a selection of mechanisms to control the -' 

parse, but these features are imple~pentation dependent. Some of ' t h e  control 
* + 

operators, such as the cut. behave differently under the~different  parsers, while other 

forms of control. such as gap control, behave essentially the same. The control 
* 

mechanisms supplied in FIGG q e  sufficient for the applications Presented in thi$ 
-/ ---- 

k work. and will probably be useful for fu tuie  applicatibns. ' Greater control on rule * 
selection is on; feaqjre that could be beneficial. in many applications. This could 

eliminate the '  need for the procedures added during the ID/LP-UGG conversion 

procedure ( i n t e r - d e  and id-rule).. and for those required by the d IGG representation 

of a GPSG (rhs .  Ihs and rule). Rules could be divided into classes according to their 
1 

.names. Then a metagrammar could control rule application by requiring rules from 
$ 

one class to be attempted before rules from another class could be used. Future 

\ - experimentation may suggest the addition of other features t o  the system. :Perhaps 
', " 
L .  

some of these mechanisms might be motivated from a more theoretical point of view, 

\ resulting in the construction, of a "minimally adequate set" of features (Dahl. 1985). 

I 
Nonetheless, the decision of which control mechanism to  use, and how to use it. rests - - 

wlth the person cwhd constructs the grammar. 

-- 
f 

Even with the gse of procedural control. FIGG can not process GPSG grammars as - 
- \  I 

eff~ciently as SAUMER, and even- the ProGram system can outperform 'FIGG with 
\ 
\ 

respect to processmg ID/LP grammars. The inefficiency of FIGG i 4  its greatest 

weakness. , An ,efficient grammar processor could result in efficient iqterpreted 
P 

-ing of IDILP or GPSG grammars. Further development of FIGG should include 

optimisation of so'me of the code. Frequently used routines, such as gap and the rule 

F. 
 ransl slat ion routines, could be altered from the concise descriptions presented in this 

I 



t h e m  into a more efficent, but  less readable, format. Parallel gap processing could ' 
/c 

also lead to irnfilemen&ation efficiencies (Dahl and Abramson. '1984). , The bottom-up " 

shift reduce parser of FIGG is an essentially complete processor -of unrestricted GCk 
P . - 

- 
* e Howgv4r. this parser's major limitation is its inabil~ty to process grammars which 

&*' 
i 

permit bottom-up cycles unless procedural control is inserted into the rulesito prevent 
4 

7 / / 
I' 

the cycles. ,-'Recall that this means that derivations of the form cvoP =->* w lare not 
A 

4 
allowed. Since epsilon productions, nt --> E ,  are often conveni,ent to use in many 

4 
grammars. FIGG might be modified to automatically normahe grammars containihg 

1 a 
1 

these productions into equivalent grammars that do not. -4lthough the top-down 

parser is more efficient than its bottom-up counterpart. i t  is only a GG parser. In 
', 

this thesis, the top-down parser wqs shown to ,be a reasonably efficent processor of a 

totally Jree word order grammar. But it can not prbcess grammars produced by the 

ID/LP-UGG conversion procedure, nor $can it use the gapping grammah produced from 
u i 

GPSG metarules. Both of the& inadequacies are due to the nested head problem. 

Left recursive rules can be processed by this parser. but the grammar must often be . 
b 

modified due to the complicated restrictions imposed on the format of these rules. 

'ionetheless, the development of the top-down parser solved some,  of the problems 
/ 

associated witp the GGI ~mplementation, and resulted in a parser .that can operate BP 

efficiently on a subset of unrestricted GGs. It is apparent that furiher research into 

more efficient and complete unrestricted GG parsers is required. 

+ i 

Finally, the applications of GGs and unrestricted GGs have thus far  been llmited to 

sentence parsing. Research into the use of these grammars for sentence generation , ' 

would also be appropriate. 



Sample Terminal Seqion 
3 

  his is a sample terminal session on a SUN Workstation 'using the latin grammar. 

A, poX f i g g  
> ,  

C-Prolog v e t q i o n  1 .5  

> /* Let  us f i r $ t  see how the  system t r a n s l a t e s  some r u l e s  */ 
> 
> + d i s p l a y  
D i s p l a y  mode 

b. s(dec1) -> np(Agr1) .  vp(Agr2).  ~ o ~ r ' e e ( ~ ~ r l  ,Agr2) ( .  

reduce([np(-17)^ l  vp(-21)*1 1 1211 ,-76):- 

ogres(  1 7  - 2 1 )  121=~102,~7@=~102:sr~porse([s(decl)A~106] ,-78.-76) t rue 
> t t opdown. ,*,* - 
Top-Down Po r se  r  

- > s(dec.1) -> np(Agr1) .  vp(Agr2).  jogree(Agr1  .Ag r2 ) i .  
4=- 

-- 
> /* Now l e t  us reod i n  o  grommor */ j 

a 

> - d i s p l a y .  
f 

Gene r s  t  e  mode I I 

i 
/ 

> [grommor]. 
"1, -./ "4 

FIOG: g r o m o r  c o n s u l t e d  4136 by tes  2.68333 seconds J 
> s tor t -symbol  sentence(Tree) / ( w r i  t e ( 'Po rse  ~ r e e ' )  ,kri te t ree (0 ,T ree ) )  
> pa rse .  
Parse Mode: A l l  Porses 
3 v i r  e s t .  

I 

Sentence: v i r  e s t .  

C 
T o t a l  0.0833333 sec. B 

B r. 

'b /* . Oops, f o r g o t  t c - r e o d  i n  some P r o l o g  c  louses t h o t  we need */ 
k. 

7 ?> 
?> p r o l o g  [ p l o g ] .  
p l o g  c o n s u l t e d  1992 by tes  1  sec.  
?> -D ' 1  

? I 



?, v i  r e s t .  . 
Sentence: v i r  e s t .  

9 - 
Parse' T r e y  

T o t a l  0.483334 sec. * 
-\ 

D 

? v i r  bonus ve tus  pue l lam amat 
Sentence: v i r  bonus ve tus  pue l lam amat; 
Parse Tree 

9 ( 
np( 

n(v  i r) 
a d j s (  

a d j  (bonus) 
" ' a d j ( v e t u s )  

) c 
) :- 

. VP( 
np( 

o n(pue l lam)  

) 
v(amat) - >. 

), i n  1.93333 sec 
Parse Tree 

s ( .  e 
hp?' .= -- 

' , n ( v i r )  
* a d j s (  i gs;'gb,q .. 

a d j ( v e t u s )  
$ ad j (bonus)  

1 
- 

) 
) i n  0.699997 sec 
T o t a l  3.11667 sec.  

One parse mode - 
?> -D 



? * 

? v i r  b o n d  ve%s pue l lam af tat .  
Sentence: v i r  b@nustvetus pue l lam amat. 

)Pa rse  Tree 

8 ( 
3 

P 
np( 

n(v i r )  -, 
. a d j s (  

ad j (bonus)  
a d j ( v e t u s )  

) A, 

1 
V P (  

- np( 
" n(puel  lam) 

1 

T o t a l  1.91667 sec. 

,> /* Now l e t s  t r y  Tother pa rse r  */ i 

> 
> c l e a r  
> f l a g s .  
Bottom-Up Parser  
Paras Mode: A l l  Parses , 
Generate Mode 
> 
> [grammarl ] .  /* The s t a r t  symbol 

> 
> 

FIGG: prammarl consu l  t a d  3 d b y t e s  

> +onhparse. 
One parse mode 
> parse.  
Parse Mode: One Parse 
? v i r  e s t . '  I 

/ 
Sentence: v i  r  l e s t .  , 
Parse Tree:  

s ( 
"P ( 

n ( v i  r )  

) 
VP(  

v ( e s t )  

1 
) . i n  8.399994 sac.  
T o t a l  0.483343 sec.  
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Y 
Direct messing of IDLP Grammars 

,/'---- 

' , 
& 1. &Gram ~pecification' and Test Results 

ProGram Specification .-- ' 

i ' -  

- - 

The following is a description of th& generalised phrase structure grammar that is 

equivalent to the ID/LP grammar specified in (5.37). This specification is processed, 

by the ProGram system. 

/* Spec i f y  the  f e a t u r e  syntax  */ - - 

syncat r o o t .  
f e a t u r e  [ r o o t ,  c a t ] .  
f e a t u r e  [ c a t ,  b a r ,  head]. 

, f e a t u r e  [ba r ,  # l e x i c a l .  1, 211. 
f e a t u r e  [head, m a j o r ] .  
f e a b r e  [major .  j v ,  n, p t ] .  

L/-- 
/* D e f i n e  some a b b r e v i a t i o n s  f o r  c e r t a i n  f e a t u r e  c o m b h a t i o n s  */ 

/* The ID r u l e s  */ 5 

s :  v (2 )  -> n ( 2 ) . h ( l ) . .  
vp :  v(1)  -> h .  

. vp:  v (1)  -> h ,n (2 ) .  
vp:  v (1 )  -> h , v ( 2 ) .  
vp:  v (1 )  -> h .n (2 ) ,n (2 ) .  
vp: v (1 )  -> h .n (2 ) .p (2 ) .  
vp: v(1)  -> h .n (2 ) , v (2 ) .  
np:  n (2)  .-> h .  

PP: ~ ( 2 )  -> h . n ( 2 ) .  



. . 
/* L e x i c a l  r u l e s  */ 

/* l ' i n e a j  precedence r e l a t  i ons  */ 

- i 
/* p r o h i b i t  c g e g o r i e s  w i t h  u n s p e c m  m a j o r  o r  bar l e v e l  */ 

% 

r a c ( ' b a r ,  [ I ,  n o t  (ynspac) )  . 
r o c (  m a j o r ,  [ I ,  not (unspec) ) .  

5- 

Test Results 

The parse times for the individual sentences shown in '(5.38). along with" the total 

processing times are given below. [ 

Sentence n  v - 

1 s t  Parse 3  15334 sac 
T o t a l  , 11.5339 sac.  

A Sentence:  n  v n  
1 s t  Purse.  1 1 . 9 5 s e c  - 
T o t a l  : 35.7176 sec. a I- 

Sentence:  n n  v .  
1 s t  Parse:  20.25 sec.  
T o t a l  : 33.8001 sec. - 

- Sentence:  n  v n  v .  

1 s t  Parse:  11.95 sec. 
T o t a l .  108.234 sec .  

 sentence: n  v n  v n .  
1 s t  Parse:  22.0833 sec.  
T o t a l  : 310.1  sec.  ' , 

Sentence:  n  v n  n  v .  

1 s t  Parse:  22.6834 sec.  
T o t a l :  * 303.25 sec . 

Sentence: n  v n  p  n .  

i 
1 s t  Parse:  23.4333 sec .  
T o t a l  : 118.3 sec.  

Sentence: n  v p n  'n. 



f 9 * - 
1 s t  'Parse: 17.4334 see.? 

/ T o t a l  : 91.8502 sec.  

Sentence: n n u p n. -- 
1 s t  Parse:  32.35 sec. 
T o t a l  :- 112.067 sec.  4 

-&= 
Sentence: n n p,n v .  

1 s t  Parse:  68.0333 sec.  
T o t a l :  . 97.5344 sec.  

Sentence: n p n v n. k ' -  1 s t  Parse: 967.45 sec. 
T o t a l  : 124.667 sec.  

, 

, 
, Sentence: n p n n v .  

1 s t  Parse:  89.35 sec. 
T o t a l  : 117.702 sec. 

Sentence: n v n v n v .  A 

1s t  Parse,: 70.3666 sec 
T o t a l :  909.933 sec 

S e n t e n c e  n v n n n v .  
-1-st Parse . 155.683 sec .  
T o t a l  : 6'91.183 sec. , , 

Sentence: n v n n v n. 
1 s t  Parse:  288.233 ssc.  
T o t a l  : 851.817-sec.  

Sentence: n v n v n n 
ls!arse: 87.86d6 sec. 
T o t a l t  927.083 sec.  

Sentence: n n v n v n 
1 s t  Pa i se :  218.433 s>c. 
T o t a l  : 1017.5 SBC. 

Sentence: n n v n n v S 
1 s t  pa rse :&  396.683 sec.  ? c 

Tots I : 984 .317 - jec .  ' 

% I 
I 



B.2. FIGG Smification '1 -and Test Resultsts 

The FIGG Specification \ +if 1 
\ '  

s .  * .  
/ 

The following rules and clauses are' used by FIGG to process those sentences allowed 
', 

by the grammar in (5.37). - 
I 

op(700, y f .  ' ) .  /* D e f i n e  the  reve rse  quote  */ 
_ .  - 

star t -symbol  s.  

I 

/* The I D  r u l e s  */ 

r ( 1 ) :  -s ->mk, n p ' ,  v p ' ,  mk 
r ( 2 ) :  vp -> v ,  # i n t e r - r u l e ,  
r ( 3 ) :  vp -> mk, v ' ,  np': mk, 
( 4 )  vp -> mk, v ' ,  s ' ,  mk. 
r ( 5 ) :  vp -> mk, v ' ,  np ' .  pp '  
r ( 6 ) :  vp -> mk, b ' ,  np ' ,  s ' .  

- 

4 i d-ru 1 &'k. 
d- ru le ) .  
# i d - r u l e { .  . 

'A 

i d - r u l e ) .  
mk, j i d - r u l e ) .  

mk, 3 i d - r u l e { .  

r ( 7 ) :  np -> n ,  # i n t e r - r u l e ,  i d - r u l e { .  

r ( 8 ) :  p p - > m k ,  p ' ,  n p ' ,  rnk. # i d - r u f e ) .  
+ ( ] e x ) :  X . -> [ X I .  # i n t e r - r u l e ,  i d - r b l e ) .  

/r The two e x t r a  ghpping r u l e s  */ 
- 

gap(G), ! ,  X' -> Xt ' , ! . gap( 1 p(X) ,GI. 

L mkAr(-) ,. g a p ( ~ l )  ;mkAr(-) -> 4 i n t e r - r u l e { ,  ~ & ( [ X . Y ~ Z ] ) ,  

#double-quote( [X,YIZ]  ,Gl)f . 
f 

' p r ~ i o g  [ u s e r ] .  /* The t_ol l o v i n g  i s  processed by C-&?jog.. no t  by FIGG */ 
-=% 

/* Pa i  r s  o f  symbols wh ich  may b o t h  appear on the  r i g h t  hand s i d e  o f  s&e r u l e  */ 
4 L-.< - 

p a i  r (X,X).  

p a i  r (np .vp) .  
pa i r (p .np) . '  
pa i  r ( v , n p ) .  - 

p a i r ( v , s ) .  

id 
I % p a i r ( v , p p ) .  % A- 

p o i  ~ ( ~ P , P P ) .  . 
p a i r ( n p . s ) .  

f 



- 
/* And the  & f  i n i  t i o n s  o f  t h e  procedures */ 

no-LPs( [Hd' IRes t  ] . X)  : - 
( poir(!-fd,X) ; pair(X,Hd) ) .  I 

, not  Ip(Hd.X) 

, no-LPs (Res t  . X) . 

a 
~o-LP(x ' .Y )  :- no t  Ip (x .Y) .  I ,  ( pa: ~ ( Y . x )  ; po i  r(X.Y) ) .  1 

i n t e r - r u l e  :- not  i h r u l e .  ! .  ( a s s e r t ( i n r u 1 e )  ; o b o l i s h ( i n r u l e . 0 ) ,  f a i l  ) .  

' 
i d - r u l h  :- abol  i s h ( i n r u l e . 0 )  ; a s s e r t ( i n r u 1 e )  . f a i  I .  

The Test Resuits - 

The actual output produced by FIGG while the sentences (5.38) is shown 

below. 

Sentence: n  v .  

Parse found i n  0.283333 sec.  
T o t a l  1.93334 sec. 

Sahtence: n v n .  
Porse found i n  1.95 sec.  
T o t a l  13.7333 sec.  

Sentence: n n  v .  

Parse found i n  5.46666 sec.  

< - T o t a l  14.0167 sec.  

Sentence: n v n  v .  

Porse found i n  2.18335 sec.  
Tota  1 .go.  2667 sec.  

Sentence: n v n  v n. 
Parse found i n  6.73328 sec. 
Parse found i n  57.9501 sec.  
T o t a l  503.4 sec.  

Sentence: n v n  n  v .  

Porse found i n  6.3667 sec.  
'Porse found i n  170.9 sec.  

T o t a l  488.55 sec.  



Sentence :  n  v n  p n .  
Pa r s e  found  i n  .6.08398 set< 

T o t a l  264.617 s e c .  ' 

d n t e n c e :  n  v p n  n .  
P a r s e  f o u n d  i n  5.06738 s e c .  
T o t a l  266.617 s e c .  

Sen tence :  n  n  v  p n .  
P a r s e  found  , i n  12.8672 s e c .  
Tot.01 274.117 sec.0 

" ' 

Sentence :  n  n  p n  v .  

P a r s e  found  i n  105.383 s e c .  
T o t a l  257.867 s e c .  

Sen tence :  n  p n  v  n .  
P a r s e  f o u n d  i n  55.4844 s e c .  
T o t a l  283.117 sec .  

Sen tence :  n  p n  n  v .  
P a r s e  found  i n  123.467 s e c .  
T o t a l  284.251 s e c .  

Sen tence :  n  v n  v n  v .  

P a r s e  f o u n d  i n  64.1166 s e c .  
T o t a l  2967.95 s e c .  

Sen tence :  n  v n  n  n  v .  
P a r s e  f o u n d  i n  922.418 s e c .  
T o t a l  2546.57 s e c .  

S e n t e n c e :  n  v n  n  v  n .  
P a r s e  f o u n d  i n  327.016 s e c .  
P a r s e  f o u n d  i n  173 .137sec .  
T o t a l  2591.35 sec .  

. S e n t e n c e :  n  v n  v  n  n .  
P o r s e  f o u n d  i n  150.816 s e c .  

0 T o t a l  2530.4 sec .  

S e n t e n c e :  n  n v  n v  n .  
P a r s e  f o u n d  i n  378.813 s e c .  
T o t a l  2765.94 a e c .  

Sen tence :  n  n  v  n  n  v .  

P o r s e  found  i n  978.617 sec 
' T o t a l  2640.29 s e c .  

e n d - o f - f i l e  



' - s .  Appendix C 

Direct Processing of GPSG 

C.1. ProGram GPSG Grammar 
> 

e 

* 
'6 

/ *  T h i s  grammar was a d o p t e d  f r o m  a  ProGr-am D e m o n s t r a t i  

Gazdar , 1984) 

/* F e a t u r e s  */ 

s y n c a t  r o o t .  

Metarules 

on Grammar (Evans and 

f e a t u r e  [ r o o t ,  c a t ,  f o o t ,  c o n j ] .  
f e a t u r e  [ c a t ,  b o r ,  head ] .  
f e a t u r e  [ b a r ,  I l e x i c o l .  1 ,  211 .  
f e a t u r e  [head,  m a j o r ,  m i n o r ] .  

f e a t u r e  [ p .  , I b y ,  t o ,  i n ,  on ,  w i t h ) ] .  

i 
f e a t u r e  [ m a j o r ,  j v ,  n, o ,  p ,  c o n j ,  r e l j ] .  

f e a t u r e  [ m i n o r ,  a g r ,  j c a s e ,  v f o r m ) ] .  

f e a t u r e  [ v f o r m ,  Ifinite,passive,base,infinitive{, a u x i l i a r y ,  i n v e r t e d ]  

f e a t u r e  [ c a s e .  I n o m i n a t  i v e ,  p o s s e s s i v e ) ] .  

/* A l ~ a s e s  - a l i a s e s  l e t  you  w r i t e  v ( 2 )  t o  mean a  b a s i c  v e r b a l  c a t e g o r y  o f  
b o r  l e v e l  2 ( s i m i l a r l y  f o r  o t h e r  b a r  l e v e l s ,  and f o r  nouns,  a d j e c t i v e s  and 
p r e p o s i t i o n s )  */ . 

,- / -,-/'-' 
01 i a s (  v ( N ) .  [ r o o t , [ c a t , [ b a r . N ] , [ h e a d ~ m a j o r , v ] ] ] ]  ) .  . 1 

a1 i a 4 (  n(N) .  [ r o o t  .[cat,[bar,N],[head,[major,n]]]] ) .  
a l  i a s (  a ( N ) .  [ r o o t . [ c a t  .[bar,N],[head,[major,a]]]] ) .  I 

01 i a s (  P ( N ) .  [ r o o t  . [ c ~ t , [ b o r , N ] . [ h e a d . [ m a j o r . p ] ] ] ]  ) .  ' ,-- , 
a1 i a s (  v(N,M). [ r o o t  , [ ca t  , [ b a r . N ] , [ h e a d . [ m a j o r . v ] , [ m i n o r ~ ] ] ] ]  ) .  
a l i a s (  n(N.M), [ r o o t , [ c a t , [ b a r . ~ ] . [ h e a d , [ m a j o r , n ] , [ m i n o r ~ ] ] ] ]  ) .  
aC*ias( a(N.M). [root,[cat.[bar.~.[head.[major,a],[minor~~]]]] ) .  
a l  i a s (  h(N) ,  [ r o o t  . [ c a t ,    bar.^], [ h e a d , [ m a j o r ] ] ] ]  ) .  
01 i a s (  p(N.P) .[root.[cat.[bor.~],[head,[major. [ p P ] ] ] ] ]  ) .  
a l i a s (  0 .  l e x i c a l ) .  
a1 i a s (  h ,  h ( l e x i c o 1 ) ) .  



a l i a s (  s i n g .  
a l i a s (  p l u r ,  
a l i a s (  nom, 
a l i a s (  acc ,  
a l i ~ s ( ~ a u x ,  
a l i a s (  i n v ,  
a l i a s (  f i n ,  
o l  i a s (  bse,. 

' a l i a s (  b s e l ,  
a l i a s (  bse2,  
a l i a s (  ? n f ,  

a t  i;s( pass,  

[ a g r  
[ a g r  
[ c a s  

. s i n g u l a r ] ) .  ,- 

. p l u r a l ] ) .  
e , n o m i n a t i v e ] ) .  

- case) .  
[ v f o r m ,  f i n i t e ,  +aux 
[ v f o r m ,  f i n i t e .  +aux 
[ v f o r m ,  f i n i t e ,  -aux 
[ v f o r m ,  bose.  - i n v e r  
[ v f  orm ,, base.  +aux i I  

[ v f o r t n ,  bose,  - a u x i l  

l i a r y .  - i n ' v e r t e d ] ) .  
l i a r y  , + i n v e r t e d ] ) .  
l i a r y ;  - i n v e r t e d ] ) .  
ed] )  .' 
a r y .  - i n v e r t e d j ) .  
a r y ,  - i n v e r t e d ] ) .  

[ v f o r m ,  i n f i n i t i v e .  - a u x i l i a r y ,  - i n v e r t e d ] )  

[ v f o r m ,  p a s s i v e ,  - a u x i l  i a r y .  - i n v e r t e d ] ) .  

/ e- 
. / *  an  a l i a s  f o r  s l a s h  c a t e g o r i e s  */ 

/ - v  
a l i o s ( X / Y ,  Z)  :- 

p a t h f o r ( q a ~ Y N , Y C a t ) ,  
p a t h f o r ( f o o t  ,XN, [ [ c o t  IYCat ]  I ) ,  

= p r o t e c t ( X N ) .  

"? 
/ a  The Immediate Dominance R u l e s  */ 

s :  v (2 )  -> N2 ,H l  'where  N2 i s  n (2 , [ nom] ) ,  

, H I  i s  h ( l ) ,  
N2 c o n t r o l s  H I .  

vp-1: v(1)  -> h .  

vp-2: v (1 )  -> h , n ( 2 ) .  ' 
vp-3: v (1 )  -> h , n ( 2 ) , n ( 2 ) .  

vp-3: ~ ( 1 )  --> hBn (2 ) ; p (2 , t o ) .  

, S vp-4: v ( l  . [aux ] )  -> h , v ( l  , [ b s e ] ) .  

i p -5 :  v (1 .  [oux ] )  -> h . v ( l  . [ p a s s ] ) .  
vp-6: v ( 1 .  [ b s e l ] )  -> h , v ( l ,  [ p a s s ] ) .  
vp-7: v (1 )  -> h , n ( 2 ) . v ( l S [ i n f ] ) .  
vp-8: v d l )  -> h , v ( l  , [ i n f ] ) .  

vp-9:. v ( l  , [ i n f ] )  -> h . v ( l  . [ b s e ] ) .  

vp-0: ~ ( 1 )  -> h , v ( 2 , [ b s e 2 ] ) .  

np-1: n (2 )  -> DET,Hl where DET i s  a ( @ ) ,  

H I  i s  h (1 ) .  
H I  c o n t r o l s  DET 

n t - 2 :  n (2 )  ->. h .  i 



I . , 

/ * ' ~ r e p o s i t i o n a ~  p h r a s e t o p i c o I i s a t i o n r u I e ~ /  , -  
0 

- 
top :  v (2)  -> C1. h(2),k2 

where M  i s  [major,p]., 

\ C1 i s  [ r o o t . [ c a t . [ b a r , 2 ] , [ h e o d . M ] ] ] ,  A 

C2 i s  [ r o o t .  [ c u t ,  [bar  ,2 ] ,    head,^]]]. 

/* The Me ta ru les  */ 

/* pass ive :  */ - 
pass : (VP1 -> . . . , n(2) where VP1 i s  v (1) )  

=> 
(VP2 -> . . .  . op t (p (2 ,by ) )  where VP2 i s  v ( l . [ p a s s ] ) ,  

VP1 matches VP2). 

- /*  oux i n v e r s i o n  */ 

i nv : (yP1 -> h.VP2 where VP1 i s  v ( l , [aux ] ) ,VP2 i s  v (1 ) )  

=> -7 

I 
(S1 -> h,S2 where S1 i s  v ( 2 , [ i n v ] ) ,  S2 i s  v ( 2 ) ,  

St matct.es VP1. 

S2 matches VP2). 

/* the  s imp les t  s l a s h  t e r m i n a t i o n  meto-r;~e */ e 

s tm l  : (C1 ->-C2, . . . where C1 i s  [ r o o t ] ,  

C2 i s  [ r o o t , [ c o t  . [ b a r . 2 ] ,  
[head,[minor.-cake]]] ]) 

=> 
C1/C2 -> . . . . 

c- 

f *  L inea r  P-recedence R e l a t i o n s  */ 

/ *  Any l e x i c a l  ca tego ry  precedes a  non - lex i ca l  */ 

[ r o o t .  [ c a t . [ b a r ,  l e x i c a l ] ] ]  << j [ roo t :  [ c o t ,  [ b o r . l ] + ] ] ,  

[ r o o t . [ c a t , [ b a r , 2 ] ] ]  1 .  
/ 8 

/*  0 few s t r a i g h t f o r w a r d  precedences *,! 

- 
/* s l a s h  c ~ t e g o r i e t  a lways l a s t  */ - 



: s lashed ca tego ry  ( i  f  any) minor3  */ 

/ f e a t u r e  e x c l  1 ex i ca l phraso l 
- 

*/ 
f c d (  case. [ f o o t ] ,  f r e e .  acc 
f c d (  i n v e r t e d ,  [ f o o t ] .  - i n v e r t e d ,  f r e e  

f c d (  o u x i l i a , r y ,  [ f o o t ] ,  - a u x i l i a r y ,  f r e e  

L 

2 

/* Feature  C o - e f f i c i e n t  D e f a u l t s  */ 
4 

L 

/* j u s t  t h r e e  f c d ' s ,  g i v i n g  d e f a u l t s  f o r  t he  minor f e a t u r e s .  S p e c i f y i n g  FOOT 
i n  t he  e x c l u s i o n  l i s t  f o r c e s  the  d e f a u l t s  on to  the  r e a l  m ino rs ,  no t  the 

/* Feature  Co-occurrence R e s t r i c t i o n s  */ 
E 7 

[ f o o t ] ,  V ,  

m i  r .  [ f o o t ] ,  no t ( cose ) ) .  

/* +v -> -case i n  s lashed categories too  */ 

' f c r (  f o o t .  [ l', [ f o o t , [ c ~ . [ h e a d , [ m a j o r . v ] ] f l .  I 

f o o t ,  11. n o t ( [ f o o t  , [ ca t  ,[head.[minor,cose]]]])). 

/* + inv  -> +aux */ 
f c r (  i n v e r t e d .  [ f o o t ] ,  + i n v e r t e d ,  

vform, [ f o o t ] ,  [ v fo rm,  f i n i t e ,  + a u x i l i a r y ] ) .  

J? 1 

' /*  P r o h i b i t  c a t e g o r i e s . w i t h  u n s p e c i f i e d  major  o r  bar l e v e l  */ 

\ 
r ~ c (  b a r .  [ f o o t ] ,  no t (unspec) ) .  

roc(  major ,  [ f o o t ] .  not(un!pec)). 

/* The l e x i c o n  */ 
f 

v p - l ( s f ) :  v ( @ , [ s i n g , f i n ] )  ->- r u n s , f  

vp- l (bs) :  v (@. [bse] )  . -+. run; f  

, v p _ 2 ( s f ) :  v ( @ , [ s i n g ; f i n ] )  ->- loves 
vp-2(b3s): v (@. [bse ] )  - > '  t ake .  

vp_2(ps):  v (B. [poss ] )  -> loved 

vp_3 (s f ) :  v ( @ , [ s i n g . f i n ] )  ->- g i v e s .  
->- g i v e .  
->- g i v e n .  

t0kes.see.s. 
love,  see. A 



vp lb (bs ) :  u ( 0 ,  [ b s e l ] )  -2- be. 

vpq7(sf):, v ( @ , [ s i n g , f  i n ] )  -2- 
vp_7(bs): v(0, [bss])  -2- 

vb_7(ps) : v (0 ,  [pass]) -+ 
L ' -, 

vp_8(s f ) :  v (B . [ s i ng , f  i n ] )  ->- 
vp_8(bs):  v(@,[bse])  ->- 
vp_8(ps) : v(0. [pqss])  -+ 

i 

/' 
expects .  
expect  . 
expected.  

wants.  , 

want . 
wanted? 

sees. 

see. .  
seen. 

nP-2(prop_nom): n (0 ,  [ s i n g ,  nom]) -2- john,math101. 
np-2(prop-acc): n (0 . [s ing ,acc ] )  -2- mary.marv in ,cmpt l@l .  

nb- l (s-acc):  n (B , [ s i ng ,acc ] )  -2- b a ~ l . ~ ; r l . f  l y .  

, 
nb-1 (s-nom): n(O, [ s i n g .  nom]) -2- book. boy, house. 

np:l(sdet): o ( 0 . [ s i n g ] )  -+ the .  

P P ( ~ Y ) :  ~ ( 0 . b ~ )  L* by .  
p p ( t 0 ) :  p ( 0 . t o )  -* t o .  

C.2. U k r i c t e d  Gapping Grammar  for GPSG Grammar  

star t -symbol  s (Type , - , - , n i l ) .  

/*  For sentences. t he  f i r s t  argument s t a t e s  i f  i t ' s  i n v e r t e d ,  t he  second 
- s t a t e s  what form o f  the  f in i - te ve rb  i t  con ta ins ,  o r  i d ,  i t ' s  the  i n f i n i t i v e ,  

past  p a r t i c i p l e .  e t c .  The t h i r d  argument s t a t e s  i f  i t s  a c t i v e  o r  passive. '  
w h i l e  the l a s t  argument i s  f o r  the  " f o o t  f ea tu re " .  I n  our case. i t ' s  " n i l "  
f o r  non-slash c a t e g o r i e s ,  and the  " m i s s i ~ g "  c o n s t i t u e n t  f o r  s l a s h  c a t e g o r i e s .  

/ 

8 : s ( - i n v , ~ g r . ~ o i c e , F o o t )  -> np(A.subj .WH.ni I ) .  v p ( ~ g r . V o i c e , F o o t )  

, #agree(A,Agr ) ,  r u l e l .  
pp-top: s ( l ~ ~ . A ~ r , V o i c e . n i  I )  -> p p ( t o , n i  I ) .  s(INV.~gr.Voice,pp(to.ni I ) ) ,  # r u l e ) .  , 



/* For  noun phrases,  t h e  f i r s t  argument i s  f o r  agreement, the second f o r  case. 
t h e  t h i  r d  i s  +wh f o r  "wh" noun phrases ( I  i kg "what") ,  and the  l o s t  argument - 

I 
i s  once laga in  f o r  s l a s h  c a t e g o r i e s  */ 
i 

np-1 ! n p ( A g r . C a s e . W H . n i  I )  --> det(WH), n p l  (Agr.Case,-wh,-pn). # r u l e ) .  
np-2: np(sg3.Case.WH.nil) -> noun(~gr,Case.WH.PN). {PN \= -pn).  j r u l e j .  
np- re l :  np(Agr.Case1 .WH.ni I )  --> np(Agr.Case1 .WH,ni I ) .  re lpro(Agr.Case) 

1 , s ( d e c l . n p ( A g r . C a s e . - w h , n i I ) ) .  { r u l e # .  

npl-1 : npl(Agr,Case.-wh.-pn) -> noun(Agr.Case.-ah,-pn). { r u l e ) .  
npl-2: n p l  (Agr .Case,-wh,-pn) -> a d j p ,  noun(Agr ,Case.-wh,-pn) , { r u l e )  

ad jp :  a d j p  -> a d j .  ) r u l e ) .  - .- 
/* Verb phrases have arguments for .agreement.  vo i ce ,  and s l a s h  c a t e g o r i e s .  */ 

, ' 

vp-1 : v p ( ~ g r ' , a c t  i v e , n i l )  -> v(f-; igr, i n t  rans.dct  i v e ) ,  ( r u l e ) .  

vp-2: . v p ( ~ g r q o c t  i v e , n i  I )  L> v(-.Agr. t  rans ,ac t  i v e ) ,  np(-,obj , W , n i  I ) .  j r u l e  
vp-3: v p ( A g r , a c t i v e . n i  I )  -> v ( - ,Ag r . t r ans .ac t i ve ) ,  np(-.obj,WH.ni I ) .  

np( - ,ob j .WH,n i l ) ,  j r u l e ) .  

vp-4: vp (Agr ,ac t i ve ,Foo t )  -> v ( - , A g r . t r a n s . a c t i ~ e ) ,  vp - i n f (Vo i ce ,Foo t ) .  { r u  l e j .  
rl 

vp-5: v p ( A g r . a c t i v e . F o o t ) - > v ( s e e , A g r . t r a n s . a c t , i v e ) ,  s ( - i n v . b s e . a ~ v e . F o o t ) .  
) r u l e ) .  . 

vp-pp: v p ( A g r . a c t i v e . n i l )  -> v ( - ,Ag r . t r ans .ac t i ve ) .  np( - .ob j .WH.n i l ) .  
p p ( t o , n i l ) .  ) q u l e { .  / 

vp-A: v p ( ~ g r , a c t i v e , F o o t )  -> v(-,Agr, t r a n s . o c t i v e ) ,  np(-,obj .WH.ni I ) .  
- v p - i n f ( ~ o i c e , F o o t ) .  ) r u l e ) .  

vp-B: vp (Ag r .ac t i ve .Foo t )  -> aux ) ,  vp(bse,act  i va .Foo t ) .  { r u l e ) .  
vp-C: vp(Agr ,pass i  ve, Foot)-> aux ) .  vp(pass ,pass ive ,Foot ) ,  { r u l e l .  

I 

vp-20: vp(Agr ,ac t  i ve ,np( - ,ob j  ,WH.n > v(-.Agr, trans.:act i v e ) .  { r u l e r .  
vp-30: vp(Agr .ac t  i ve ,np( - .ob j  .WH.ni'l)) -> v( - .Agr , t rans .ac t  i v e ) ,  

np(-,obj,WH,ni I ) .  # r u l e ) .  

vp-Aa: - vp(Agr .ac t  i ve ,np( - .ob j  ,WH,ni I ) )  -> v ( - . A g r . t r a n s , a c ~ ~ i v e ) .  
v p - i n f ( V o i c e . n i l ) ,  { r u l e ) .  -- 

vp-ppa: v p ( A g r . a c t i v e , n p ( - , o b j . W H , n i l ) )  -> v ( - ,Aq r . t r ans .ac t i ve ) .  p p ( t o l n i l ) .  
) r u l e ) .  

v p - ~ & :  vp(Agr ,ac t ive ,np( - ,ob j  ,WH,ni I ) )  -> v ( - , A g r , t r a n s , a c t i v e ) .  np(-,obj .WH.ni 1 )  

- . pp( to .np( - .ob j  ,WH.ni I$). # r u l e ) .  
vp-ppc: vp(Agr,active,pp(to.nil)) -> v ( - ,Ag r . t r ans ,ac t i ve ) .  np(-.obj,,WH.nil). 

# r u l e ) .  

vp - i n f (Vo i ce .Foo t )  -> [ t o ] ,  v p ( b s e , ~ o i c e . ~ o o t ) .  { r u l d  e 

pp2: pp (by .n i  I )  -> [ b y ] ,  np(- .obj  . W . n i  L ) ,  ) r u l e { .  
p p l a :  pp( to ,np( - ,ob j  , -wh ,n i  I ) )  -> [ t o ] ,  j r u l e ) . '  

pp2a: pp(by,np(- .obj  ,-wh.n!q)) -> [by ] .  ) r u l e ) .  

/*  The l e x i c a l  r u l e s  */ 

 expect , sg3, t  r ans .ac t  i v e )  -> [expec ts ] ,  { r u l e )  
 expect .bse,  t  rans ,ac t  i v e )  -> [expec t ] .  4 r u l e ) .  



v(f1y,sg3,intrans,active) -> [ f l i e s ] ,  j r u l e ) .  
v(fly,>se,intrans.active) -> [ f l y ] .  ) r u l e ) .  

v(gire,sg3,trans,activc) -> [g.ives], j r u l e ) .  \ 
v(give,bse,trans,active) -> [g i ve ] ;  I r u I e ) .  
v ( g i v e . t r o n s , p s t p r t )  -> [ g i v e n ] .  j r u l e ) .  c 

v(love.sg3,trans.activej -> [ l o v e s ] ,  { r u l e )  
v(love.bse.trans,active) - -> [ l o v e ] ,  j r u l e ) .  
v ( l o v e . t r a n s . p s t p r t )  -> [ l o v e d ] .  $ r u l e ) .  

v ( r u n , s g 3 , i n t r o n s , a c t i v e )  -> [Puns]. j r u l e ) .  
v(run;bse. i n t  rans .ac t  i v e )  -> [ r u n ] ,  j r u l e ) .  

i. 
v (see ,sg3 , t rans ,ac t1ve )  -> [sees] ,  { r u l e ) .  
v ( s e e . b s e . t r o n s . a c t i ~ e )  ->.[see]. j r u l e ) .  
v ( s e e , t r o n s , p s t p r t )  -> [seen],  { r u l e ) .  

v(toke.sg3.trans,active) -> [ t a k e s ] .  j r u l e ) .  
v ( t ake ,hse . t rans .ac t  i v e )  -> [ t a k e ] .  ( r u l e ) .  
 take. t r o n s , p s t p r t )  -> [ t aken ] ,  ( r u l e ) .  - , 

v(want,sg3.trons.active) -> [wants] ,  ) r u l e ) .  
v(wont.bse,trahs,active) -> [want ] .  ) r u l e ) .  
v ( w o n t . t r a n s , p s t p r t )  -> [wanted] ,  { r u l e ) .  

oux(be.sg3) -> [ i s ] ,  j r u l e ) .  
oux(be, bse) -> [be] ,  j r u l e ) .  

de t ( -wh )  -> I t h e ] .  # r u l e ) .  
det(+wh) -> [what ] .  ( r u l e ) .  
det(+wh) -> [wh ich ] ,  j r u l w  

'7- 



'.. .. 
8 

a d j  -> [house]. # r u l e ( .  
*'\, 

\ - / a d j  -> [ l i t t l e ] ,  # r u l e ( .  
-- 

re lpro(sg3, - )  -> [ t h a t ]  
r e lp ro ( - . sub j )  -> [who], 
r e lp ro ( - . ob j )  -> [whom] 

e 

/* ac t ive-ppss ive  metaru  

S C- 

- - vp(pass.passive,Foot 

I hs )  

/* sentence i n v e r s i o n  me to ru le  */ s 

a -  
sc+ i 'nv ,sg3.Vo i~e.Foot )  -> mk(X), vp(Agr ,Vo ice ,Foot ) ,  mk(X). ) 

{numgen(X) 1 ,  mk(X) , a u x ( ~ ~ ~ e  , A ~ ~ ) - D ,  V ~ . ( A . V .  ~ o o t ) ~ ~ .  mk(X) 
--> aux( type.Agr ) ,  s ( - inv ,A,V,Foot ) ,  ( r h s ) .  

/* And read i n  some Prohlog 
\ 

p r o  1 og [ use r ] .  
- ' #  

v i r t u a l ( [ ] , [ ] ) .  

d e f i n i t i o n s  t h a t  we need */ 

rhs  :- . v i r t ua l . ( [ ] , - ) ,  ! ,  ( 

I h s  :- v i  r t u a l ( [ - 1 - I , [ ] ) .  

v i r t ' u a l - p u s h ( r i g h t )  ; v i r t u a l - p o p ( r i g h t ) ,  f a i l  

l e f t )  ; v i r t u a l - p u s h ( l e f t ) ,  f a  
-a 

, ( v i r t u a l - p o p  

r u l e  :- v i r t u a l ( [ ] . [ ] ) ,  ! .  

r u l e  : - t v i r t u a l ( [ ] ; - )  -> ( t )  ; v i r t u a l - s w a p ( r i g h t ) .  f a i l  

v i r t u a l - p u s h ( l e f t )  : -  v i r t u a l ( X , [ ] ) ,  a b ' o l ~  

a s s e r t ( v i r t u a l ( [ x l X ] , [ ] ) ) , ! .  
v i r t u a l - p u s h ( r i g h t )  :- v i r t u a l ( [ ] . X ) ,  a b o l i  

v i  r t u a l - p o p ( l e f t )  :- v i  r t u a  
a s s e r t ( v i r t u a l ( X . [ ] ) ) , ! .  

v i r t u a l - p o p ( r i g h t )  :- v i r t u a  

a s s e r t ( v i r t u a l ( [ ] . ~ ) ) , ! .  

v i r t u a l - s w a p ( l e f t )  :- v i r t u a  
v i  r t u a l - s w a p ( r i g h t )  :- v i  r t u a  

* 

agree(- , - ) .  /*  We a r e n ' t  w o r r y i n g  about person n  ber  agreememt r i g h t  now */ @b 



Appendix D 

FIGG Source Code - 

' FIGG 2 . 3  

, k. 
Developed by Fred Popowich a t  Simon F rase f  U n i v e r s i t y .  Burnaby B.C..  

d u r i n g  1984 and 1985. I t  was o r i g i n a l l y  based on a Gapping Grammar 
parser  devqloped by Veron ica  D a h l .  The system commands f o r  FIGG were 
developed i n  p a r a l l e l  w i t h  those o f  SAUMER. 

Copy r i gh t  c . F red  Popowich, 1985. FIGG can be used f o r  non-commercial 
burposes p rov ided  t h a t  the  au tho r  and the  Labora tory  f o r  Computer and 
Communications Research a t  Simon Fraser  U n i v e r s i t y  o r e  a p p r o p r i a t e l y  
acknowledged. 

a 

Labora tory  f o r  Cpnputer and Communications Rqdearch 
Simon Fraser  U n i v e r s i t y  

Burnaby. B.C. , ., 
CANADA V5A IS6  

*/ % 

/*  The ope ra to rs  used by FIGG */ 

:- op(1180, f x ,  c a l c ) .  /* obso 
:- op(1170, xfx,. ->). 
:- o p ( l t 5 0 ,  x f x .  \ ) .  /* f o r  

l e t e  - rep laced  by the  " d i s p l a y "  

l e f t  r e c u r s i o n  removal specifics 
:-  op(1101. x f y ,  #) .  /* pa ra l , l e l  OR */ 

f l a g  */ 

:- op(1050, x f x ,  : ) .  /* t o  separa te  the  r u l e  name.from the r u l e  */ 

:- op(990, f x,,,foral I ) .  / *  some meta-cont r o l  c o n s t r u c t s  */ 
,, 

:- op(970, x&, i n ) .  
i 

:- op(800, f x ,  s ta r t -symbol ) .  
:- op(800, f x ,  l e x i c o n ) .  
:- op(888, f x ,  p r o l o g ) .  
:- op(800. f x ,  m w p h e r ) .  
:- op(800, f x ,  i n p u t ) .  
:- op(800. f x ,  o u t p u t ) .  
:-' op(800, f x ,  c l o s e ) .  

: - b p ( 8 m .  x f .  # ) .  
:- op(800. x f x .  0) .  
:- op(800, f y  -1. 
:- op(750, x f x .  t )  

'9 

/,r t o  s p e c i f y  t he  grammar's s t a r t  s i m b o L * /  
/* t o  s p e c i f y  the  l e x i c o n  f i l e s  */ 
/* t o  s p e c i f y  p r o l o g  f i l e s  */ 
/* t o  s p e c i f y  t,he morpher f i l e s  */ 
/ *  t o  s p e c i f y ' t h e  parse i npu t  f i l e  */ 
/* t-o' s p e c i f y  the  p a r s e , o u t p u t  f i l e  */ 
/* t o  f l u s h  and c l o s e  a f i l e  */ 
/* obso le te  */ 

/* f o r  r e c u r s i v e  arguments, top-down pa rse r  */ 
/* NOT p r e f i x  f o r , a b b r e v i a t o r y  gaps */ , 

/* t o  s p e c i f y ' t h e  dominat ing  r u l e  number */ , 
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/* denotes l o c a l  c u t  */ 

:- op(800, f x ,  <<). /* used i n  AAA l e x i  cqn f o r  SAUMER b/ 
:- op(Q97, x f y ,  k k ) .  

\ 
:- op(996, x f y .  Imda). 

&- 

L 

C 
-- .- - /* D e f i n i t i o n  o f  p a r a l  l e l k f ?  */ 

\ m 

-1 i + - 2  :--I , (-2 ; t r u e ) .  - 
Y 

- 

-1 ++ -2 :- 12. 

The FIGG Command I n t e r p r e t e r  

T h i s  d e s s e s  a1 I t o p  e v e  i npu t  t o  FIGG. 

*/ 2: 

. f i g g  :- n l  , wr i t e ln ( 'F1GG 2 .3 ' )  . n l ,  I .  n o f i l e e r r o r s ,  f i g g l ( ' >  ' ) .  
1 4 - 

7 

/ 
To a l l o w  us t o  read i n p u t  f rom o the r  f i l e s .  the  f i lenames can be en te red  
as a  l i s t .  

/ 
r 

f i g g ( [ H d l R e s t ] )  :- ! , 
( see ing(Old)  . . 
, see(Hd) /* open i npu.t f i l e  */ 
. Space0 i s  heapused 

- - , Time0 i s  cput ime 

. f i g g l ( " )  , 
, seen 
, see(0 ld)  + 

, Space i s  heapused - Space0 
, Time i s  cput ime - Time0 
, wr i te( 'F1GG: ' ) ,  w r i t e ( H d ) ,  w r i t e ( '  c o n s u l t e d  ' ) ,  wr i te (Spoce)  
, w r i  to(.' by tes  ' ) ,  w r i  te(T.ime), w r i t e l n ( '  seconds. ' )  - . - 
; w r i t e ( ' U n a b l e  t o  open ' ) ,  , w r i t e l n ( H d )  

) 
, f i g g ( R e s t ) ,  ! .  

f  igg(-body) :- ! , /*  the  main c o n t r o l  procedure */ 
con t ro l ( -body ,  -body l )  . ! 

, ( -body1 ; w r i t e l n ( ' F A 1 L ' )  ) .  ! .  - - -  
- 

f i g g l ( P r o m p t )  :- 

p r m p t ( 0 l d .  P ranp t )  3 
, repeat t 

, read(X) 

, ( X  = 'end-of-f i s l e '  



, prompt (-,'old) 
, ( Prompt = '> ' -> ( n l ,  w r i t e l n ( ' [  FIGG execu t i on  h a l t e d  1') .  h a l t )  ; n l  ) 
; f i gg (X ) ,  f a i l  

. I .  

P o i n t e r s  t o  P r o l o g  r u l e s  genera ted f rom DCG r u l e s  */ , r i c r b m  . - J 

/* The FIGG commands */ i , 
i 

c o n t r o l  (- d i s p l a y ,  (abo l  ishtcalc-mode,@),  w r i  teIn( 'GeneFQt4 mode']..)) :- 1 1 .  
\ 

c o n t r o l  (+ d i s p l a y .  ( a s s e r t ( c ~ I c - m o d e ) ,  w r i  t e l n ( ' D i s p l a y  mode'))) :- ! i . . .  \ 
* 

'h c o n t r o l ( '  oneparse, (abol ish(one-parse,@).  w r i t e l n ( ' A l 1  parses mode'))) :- 
- I .  f: 

c o n t r o l ( +  oneparse, (assert(one-parse).. w r i t e I n ( ' 0 n e  parse mode'))) :- I .  

c o n t r o l ( -  topdown, (abolish(top,down,B), w r i t e l n ( ' 8 o t t o m - u p  P a r s e r ' ) ) )  :- ! .  ' 
-a 

c o n t r o l ( +  topdown, (assert ( top-down),  wr i te ln( 'Top-Down Par -ser ' ) ) )  :- !. 

c o n t r o l ( f l a g s .  (parser .prsmode,calcmode))  :- ! .  /* D i s p l a y  t h e  f l a g s  */ J - 
/* I s ' a d o i n i n a t o r  se t  f o r  \he  i n p u t  sentence.* /  

c o n t r o l ( s e n t e n c e t V a r .  abolish(s,dom.l)).:- va r (Va r ) ,  ! .  - 

c o n t r o I ( s e n t e n c e t D o m i n a t o r ,  (aboI ish(s-dom,l ) ,  assert(s-dom(Dominator))))  :- ! .  

- 
c o n t r o l ( c l e a r . (  

*i 
' re ferences(Referenccs)  ? 

, abol  ish(top-down,@), abol  i eh ( re fe rences .1 ) .  abol  i ~ h ( s t a r t ? ~ m , 2 )  
d 

, a b o I i s h ( r e d ~ c e . 3 ~ .  aboIish(s-dom.1). oboI ish(one-parse,@) 
, obol ish(calc-mods,@),  a s s e r t ( r e f e r e n c e s ( [ ] ) )  

, c o n t r o l ( ( f o r a 1  l Ref i n  ~ e f e r e n b a s ,  e rase(Ref ) ) ,  Code), Codb) ) :- ! .  , .  

I* - 
The "parse" command. I f  any arguments a r e  given,. open the  a p p r o p r i a t e  
i npu t  and ou tpu t  f i l e s .  They w i l t  remain opened u n t i l  e x p l i c i t l y  c l o s e d  

c o n t r o l  (prsmode,main('? I ) ) )  :- ! . 

con t ro l ( (pa rse .A rgs ) ,  (prsrnode, seeing(See) 

seq(See), t e l  l ( T o l l ) ) )  :- ! . 
cont ro l (Args .Code) .  

i 

c o n t r o l ( ( i n p u t  F i l e ) ,  ( ( s e e ( F i l e )  ; w r i t e l n  
I ) )  :- ! .  

\ 

c o n t r o l ( ( o u t p u t  F i l e ) ,  ( ( t e l l ( F i l e )  ; w r i t e  
-4 i ) )  :.- ! .  I 

d 

t e l  l i n $ ( ~ e l  I ) ,  code, ma in ( ' ?  ' ) .  

, - 

'Unable t o  open i n p u t  f  i le');.-fai I ) ,  

n( 'Unable t o  open ou tpu t  f i l e ' ) ,  f a i l ) .  

, 



c o n t r o l ( ( c l o s e f i l e ) ,  ( ( t e l I ( F i l e ) ,  t o l d  ; w r i t e l n ( ' U n a b l e  t o  access f i l s ' ) .  f a i l ) , _  
I)) :- I .  % * :  

- - I  
B 

- ,  

/* For  t o p  down p a r s e r ,  c a l l  td-convert  */ 

c o n t r o l ( ( c a l c  R u l e ) ,  (td-convert(Rule,Rulel). w r i t e l n ( ~ u l e 1 ) )  ) :- top-gown: I .  

h , - - 
c o n t r o I ( ( A  -> B) ,  ( tb -conver t ( (A  --> B),RuIel).ossertr(Rulel))) :- top-down.!. 

>- 

/ I 0 .  - .& 

Fo5 bot tom up ( s h i f t  reduce) p a r s e r ,  invoke the  " s r - t r ans "  r o u t i n e  
120 process r u l e s ,  o r  t o  d i s p l a y  processed r u l e s .  

*/ 

c o n t r o l ' ( ( c a l c  Ru le ) ,  ( s r - t r ons (Ru le ,Ru le l )  , w r i t e l n ( R u l e 1 )  ) ) :--&I 

c o n t r o l  (Ru le ! ,  ( s r - t  r a n s ' ( ~ u l e r , ~ u l e l ) .  a s s e r t r ( q u l e 1 ) ) )  :- I .  - 

c o n t r o l  ( ( A  -> B ) ,  4 r - t r q n s ( ( ~  -> B ) , R u l e l ) .  a s s e r t r ( ~ ~ l e 1 ) ) )  ;- I 
9 

/* And the  v a r i o u s  o t h e r  common$s */ 

p r o l o g  F i l e s  ) .  F i l e s  ) :- !,,Files=[-1-1. - 
c o n t r o l (  l e x i c o n .  ( a b o l i s h ( l o o k u p , 2 ) ,  :- name(Y.X))))) :- I .  

c o n t r o l ( (  l e x i c o h  F i  l e s  ) .  (abo l  i sh( lookup,2) .  F i  l e s )  ) :- I ,  ~i ies=[-1-1. . t 
i 

c h t  r o l ( (  morpher F i  l e s  ) .  ~i i e s  ) :- 1 .  F i  les=[-1-1. 

e- 
F - c o 6 t r o l ( (  s tar t -symbol  S  / Sem ) ,  assert(star tsym(S.Sem)) ) :- I .  ,-. 

'F 
c o n t r o l  ( (  star t -symbol  S  ) ,  asser t (s tar tsym(S. - ) )  ) :- I .  

I \ 

1 
r 

/* And f i n q l l y , ' f o r  r u l e  schemata we have . . .  */ 
i I ,  

c o n t r o l ( ( f o r a 1 1  - p .  -body). (-p , c o l l l ( - b o d y Q  . f a i l  ; t r u e ) ) - : -  
nonvar(-p) , ! 

. con t ro l ( -body ,  -body l ) .  

loop(X, [l, Body) :- ! .  

loop( f .  [Y IRes t ] .  Body) :- ! ,  

( X=Y.. c a l  l l ( E o d y ) ,  f o i l  

; loop(X, Rest .  Body) ) .  



/*  And we a l s o  a l l o w  the  f o l l o w i n g  P r o l o g  syntax  */ 

c o n t r o l ( q o t  -a, no t  -01) :- ! ,  con t ro l ( -a , , - 01 )  

parser  :- ! ,  

t o p ~ d o w n  -> wr?teln('~o~- own P a r s e r ' )  ; wr i te ' ln( 'Bot tom-Up P a r s e r ' )  

prsmode :- ! .  

w r i t e ( ' P a r s e  Mode: ' )  
, one-parse -> w r i t e l n ( ' 0 n e  Pa rse ' )  ; w r i t e l n ( ' A l l  Pa rses ' )  

c o  1 cmode :- ! . 
calc-mode -> w r i t e l n ( ' D i s p 1 a y  Mode') ; w r i t e l n ( ' G e n e r a t e  Moae-') 

f 
The P r o l o g  code f o r  the  Shift-Reduce Parser  f o r  FIGG. (Bottom-Up) 
Convert  a l l  r u l e s  i n t o  "reduce(Stack~ ,NewStack)"  c lauses.  

f o r  non-context- f ree r u l e s ,  we t r e a t  them as t r a n s f o r m o t i o n s  on the  i n p u t .  
if. they  put  the new i n f o r m a t i o n  on the  s t o c k ,  r a t h e r  than i n t o  t he  " i n p u t " .  
o t h r  a p p l i c a b l e  r u l e s  would no t  ge t  a  chance t o  app l y ,  s i n c e  the  a d d i t i o n  
o f  more than one.symbol t o  the  s tack  may prevent  t h e i r  use.  An e q u i v a l e n t  
s o l u t i o n  would be t o  "reduce" af ter- ing each new "s tack  symbol" .  
(By p u t t i n g  i t  i n t o  t he  i npu t  though. we l e t  "parse" wor ry  about t h i s  adding 
o f  symbols, one a t  a  t ime.  The r u l e :  

would be t r a n s l a t e d  as :  'i 

3 
reduce ( [ [ a ] . x lS tock ] .  Newstack) :- sr -parse( [s ,x ] .  S tock ,  Newstock). 

A l though t h i s  i s  no t  the  most e f f i c i e n t ,  i t  p rov ides  a  4 

more symmetric t r a n s l a t i o n  a l g o r i t h m ' p o s s i b l e  s ince  ALL r u l e s  wLi I I be 
t r o n s l a t e d  i2nto c lauses  o f  t h i s  form. 

I f  the  l e f t  hand s i d e  c o n t a i n s  a  c u t  symbol, then a l l  symbols t o  t  e  r i g h t  o f  , d 
the c u t  w i l l  be added t o  the  s t a c k ,  w h i l e  the  o t h e r s  w i l l  be r e t u r n  th rough 
the  NewInpqt argument t o  be added t o  the  s tack  one by one. The r u l e :  

s, t .  ! ,  x, y  -> [ o l ,  x  

w 
would be t r a n s l a t e d  as:  



reduce( [ [a ] ;x lStack] ,  Newstack)  :- s r - ~ a r s e ( [ s ,  t ] .  [ x , ~  J ~ t a c k ] ,  Newstack ) .  

F o r  c o n t e x t - f r e e  r u l e s  o f  t h e  f o r m :  

s  -> [ a ] ,  s .  
. , 

t h e  f o l l o w i n g  c l a u s e  w i l l  r e s u l t .  

r e d u c e ( [ [ a ] , s l S t a c k ] ,  NewStack) :- s r - p a r s e ( [ s ] ,  S t a c k .  NewStack) 

*/ 
d 

/* P r e p r o c e s s  f o r  r u l e s  c o n t a i n e d  i n  a  c u t  */ 

s r - t r a n s ( ( R u l e ) ! ,  NewRule) :- ! ,  

s r - t r a n s ( ! .  R u l e ,  NewRule).  

2 ,  

s r - t  r a n s ( R u l e ,  NewRule) :- 

s r - t r a n s ( t r u e ,  R u l e ,  NewRule).  

s r - t r a n s ( C u t ,  (Lhs->Rhs), (reduce(RhsStack.NewStack) :- Code)) : -  
ru lename(Lhs ,  L h s l ,  RuleName) 

\' ,-, , I hs (Lhs1 ,  F o r I n p u t .  F o r S t a c k )  
, s r - t r a n s ( ' $ u n d e f ' .  F o r S t a c k .  LhsStack .  StackBase,  StackCode)  
, s r - t r a n s ( ' $ u n d e f ' .  F o r I n p u t ,  I n p u t .  [I. InputC,ode) 
, sr - t rans(RuleName, Rhs,  RhsStack ,  StackBaqe,  RhsCode) 
, combine( Inpu tCode,  StackCode,  LhsCode) . combine(RhsCode, LhsCoda, RhsLhsCode) - 
. combi ne(RhsLhsCode , s r - p a r s e ( 1  n p u t  , ~ h s s t a c k  ,Newstack ) .  NewCode) 

, '$flatconj'((NewCode.Cut), Code).  

, / *  I f  a  R u l e  Name i s  p r o v i d e d ,  use i t  ! ! !  O t h e r w i s e ,  gene' rate one * /  

ru lename(A,  A ,  RuieName) :- v a r ( A ) ,  !', namegen(Ru1eName). 

rulename((RuleName:Lhs), Lhs ,  RuleName) :- ! .  

ru lename(Lhs .  Lh's. RuleName) :- ! ,  namegen(Ru1eName). 

n a m e b e n ( ~ u  1 eName) : - \ 

name('$name',X) 
, n u m g e n ( S u f f i x )  

, name (Suf f i x , Y) - . '$append' (X,Y,Z)  
, name(Rtf1e~ame.Z). ! .  

8 

/ *  
I f  t h e ( e  i s  a  c u t  i n  t h e  l e f t  hand s i d e  o f  a  r u l e ,  t h e n  t h e  s t u f f  b e f o r e  
i t  i s  F o r I n p u t  and t h e  s t u f f  t o  t h e  r i g h t  i s  F o r S t a c k .  I f  t h e r e  i s  no c u t .  

I t h e n  e v e r y t h i n g  i s  F o r I n p u t .  

1 



I hs(Lhs,  For- Input  . Fors tock)  

/ 
Ihs(Var .  v a t .  3 t r u e ) )  :- v a r ( ~ a r ) ,  ! . 

I hs ( ( l ,Code ) ,  i t r u e $ ,  Code) :- ! .  
i 

I  hs((A.B). (A ,kes t ) ,  ForStack) :- ! , I  hs(B, Res t ,  ForStack) .  

I h s ( ! ,  { t r u e ) ,  { t r u e ) )  :- ! .  
* 

Ihs(A.  A, I t r u e ) ) .  

A* . 
/ sr - t  rans(Rul eNome, FIGG-Rule, S tock .  StackBase. Code) 

. . 
For a  FIGG r u l e ,  mod i f y  the  s tock  o p p r o p r i a t e J y  and r e t u r n  any P r o l o g  code 

t o  be ~ x e c u t e d  a t  t h a t  p o i n t  i n  the  r u l e .  The RuleName w i l l  be unde f i ned  
"$undef '  f o r  the  l e f t  hand s i d e  o f  the FIGG r u l e  , 

/*  For v a r i a b l e s  i n  the  r u l e s  */ ' 

s r - t r ons ( ' $unde f l , '  X ,  [XtDomJR], R, t r u e )  :- vor (X) ,  I .  
s r - t r o n s ( ' $ u n d e f ' ,  XtDom, [ ~ t D o m l R ] ,  R ,  t r u e )  :- va r (X ) .  ! 

, sr-trons(Nome, X. [XtNomelR]. R, t r u e )  :- va r (X ) .  I .  

sr- t rans(RuleNo, (X,Y).  L.  R, New) :- I ,  

s r - t  rons(RuleNo. X, L, L1, NewX) 
, sr- t rons(RuleNo, Y, L1. R .  NewY) 
, comb i ne ( N ~ W X ,  N ~ W Y ,  New) . 

s r - t r ans ( - .  i t r u e ) ,  L ,  R. (La!?) 
B 

) :- I .  /* Spec ia l  Case */ 

s r - t rans( - ,  !Code). L ,  R, (Code, L*)) :- ! .  / * W p w a n t  t o e x e c u t e  t h e c o d e  

b e f o r e  match ing the r e s t  o f  
the  r u l e  */ 

s r - t r ans ( - .  ! .  L, R,--(!, L=R)) :- ! .  

s r - t rans(No.  (Expr)l . ,+L. R, c a l  l l(NewExpr)) : -  ! ,  /* Loca l  Cut */ 
s r - t rons(No.  Expr.  L ,  R, NewExpr). 

/ *  For gaps on the l e f t  and on the  r i g h t  s'ides o f  r u l e s .  */  

s r - t r a n s ( ' $ u n d e f ' ,  GaptDom, L. R, NewGap) :- t 

Gap =.  . [gap l ~ r g s ] ,  ! t 

, '$oppendl(Args,  [L,R],  NewArgs) 
, NewGop =:L [gopD,Doml~ewArgs] .  /* use gapD, wh ich  i n s e r t s  the  ru leno  */ 

s r - t rons(No,  Gap. L. R, NewGop) : -  

Gap = .  . [ g a p l ~ r g s ]  , ! 

, '.$oppend',(Args; [L ,R] ,  NewArgs) 



, NewGap P [g@,NoINewArgs]. 

/* F o r  t e r m i n a l  symbo ls  a p p e a r i n g  on t h e  l d f t  hand s i d e  o f  r u l e s  . . .  */ 

s r - t r a n s ( ' $ u n d e f ' .  [TermItDom. [ [Term]tDomlR] .  R, t r u e )  :- ! .  

s r - t r a n s ( ' $ u n d e f ' .  [Term],  [ [ T e r m ] t ~ o m ( ~ ] .  R, t r u e )  :- 1 .  
, s r - t r a n s ( ' $ u n d e f l .  [ ] , _ R ,  R, t r u e )  :- ! .  

/*  . .  . and on  t h e  r i g h t  */ 
I 

s r - t  rans(No,  [Term].  [ [ T e r m I t N o l R ] .  R,, t r u e )  :- 1 .  

/ *  F o r  n o n t e r m i n a l s  o n  t h e  l e f t  hand s i d e  . . .  */ 

s r - t r o n s ( ' $ u n d e f ' ,  NonTermtDom, [NogTermtDomlR], R, t r u e )  :- ! .  

s r - t r a n s ( ' $ u n d e f ' .  NonTerm, [NonTermtDomlR], R, t r u e )  :- ! .  

/*  . . .  and f o r  r i g h t  hand s i d e s  */ 

s r - t r a n s ( N o ,  NonTerm. [ N o n ~ e r m ' t N o ( ~ ] .  R. t r u e )  :- ! .  

And t h e  r e v i s e d  gap p r e d i c a t e .  w i t h  d o m i n a t o r s .  I f  a. r u l e  number i s  
p r o v i d e d ,  use i t  as  t h e  d o m i n a t o r  f o r  a l l  t h e  e l e m e n t s  i n  t h e  gap.  

1 I 
i i 

T h e r e  a r e  f i v e  d i f f e r e n t  d e f i n i - t i o n s  o f  gap.  

gap(+.G) = i nc r e a s  i ng  gap 
gop(-.G) = d e c r e a s i n g  gap 
g a p ( l p ( X )  .G) = e n s u r e s  t h a t  t h e  l i n e a r  p recedence  r e l o t  i o n  g < X 

i s  n o t  p r e s e n t  f o r a l l  g r i n  G. 
g a p ( L i 3 t . G )  = ensures  t h a t  t h e  gap c o n t a i n s  o n l y  e l e m e n t s  o f  L i s t  

( a b b r e v i a t o r y  gap)  
gap(-Exc1.G) = ensures  t h a t  t h e  DOES NOT c o n t o i n  e l - m e n t s  o f  E x c l  

/ 

\ gopD(No,-[XIY].  [WordARest])-> I , {No, \- '$undef  ' -> D o d N o ;  't r u e 1  , 

\, [WordtDom], ! .  
j n o t  e lement  (Word, [ X I Y ] )  I ,  gapD(No.-[XIY] , R e s t )  



gopD(No. lp(x)  , [ ~ o r d J R e s t ] )  -> ! .   NO \=- '$undef ' -> DowNo; ' t r u e ) ,  
[WordtDom]. 1 ,  
# n o - ~ P ( w o r d . ~ ) # .  g a p ~ ( ~ o . l p ( X ) , R s s t ) .  

gapD(No.Sign.[~ordlRest]) -> jNo \== '$undef '  -> D w N o ;  t r u e ( .  ' 

[WordtDom] .gopD(yo,Sign ,Rest ) .  

gopD(-.-. [I)-->[I. \ 

/* And now the  a c t u a l  parser  */ 

s r ( I n p u t ,  F i n a l s t a c k )  .- 
p r e p o r e ( I n p u t ,  I n p u t l )  . 

, sr -porse( Input1 .  [I, F i n a l s t o c k ) .  6.4: 
'j;r - * 

. 5  
sr-porse([Word)Rest ] .  S tack .  NewerStock) :- 

sr-porse(Rest: S tack ,  Newstock) .-\ 
, reduce([Word)NewStack]. NewerStock). 

/* I f  a r u l e  was s p e c i f i e d  t o  dominate t h e  i n p u t ,  then use i t s  number */ 

prepare(Phrase.  NewPhrose) :- 

s-dom(Dom) , prepore(Dom, Phrase. NewPhrose) 
; p r e p a r e ( ' $ u n d e f ' ,  Phrase,  NewPhrose). 

/* For p rocess ing  a gapping grammar f o r  t o p  down p a r s i n g .  */ 

td -conver t ( (A .B -> C).Clausa) :- I - ,  
rec-arg( [ ]  . A , A R A , A ~ ) ,  /* remove the  " r e c u r s i v e  argument */ 
t d - c o n v e r t l ( A l , $ c - n o n t e r v X ) , C C l a u s a ) .  /* check f o r  l e f t  r e c y r s i o n  */ 
clouseparts(CClouse.CHsad,CBody), 
CHead=..[c-nonterm,CRA.X.Z]. 

. pseudo-ta(B,Bl), /*  c o n t r u c t  l i s t  o f  pseudo-terminals */ 
expand-terml((b-nonterm->Bl),BCIouse). ~. 
c l a u s e p o ~ t s ~ ( B C l a u s e , B H e a d , B B o d y ) .  
BHead=. . [b-nonterm,BRA.Y.Z] ,  
Al= . . [P red lA rgs ] .  -~ L 8  

$ a p p e n d ' ( A r g . s , [ ~ , ~ ]  ,NewArgs), 
New&. . [Pred.ARAI~ewArgs] .  

'$ond'(CBody,BBody.Body). - IP -8 - -  8 

formclause(NewA.Body,Clouss). 
norm-ru l e(3 ,  NewA) . /*  genpra te  a "normal i s i n g  ' r u l e "  i f  necessary */ 

/* f o r  .processing r u l e s  w i t h  a s i n g l e  non-terminal  on the  l e f t  */ 



< 
/* For  p rocess ing  l e f t  r e c u r s i o n  */ 

t d -conv ) r t l  ( ~ h s .  (A -> B,C) .~ l . abse )  :- 

u n i f i a b l e ( L h s . B ) .  ! ,  /* we do have l e f t  r e c u r s i o n  */ 
! 

f indc Iause(C,F i  rst,NewC,Nl). /* f i n d  a  c lause t o  e v a l u a t e  f i r s t  t/ ~- 
ngt  u n i f  i a b l e ( L h s , F i r s t ) ,  ! .  /* make sure i t ' s  ok */ 
t d - c o n v e r t 2 ( ( ~ - > B , ~ e w C ) , F i r s t , ~ l , C l a u s e ) .  . $4' 

/* i f  the user  s p e c i f i e s  t he  symbol f i r s t  checked d u r i n g  l e f t  r e c u r s i o n  */ 
9, C 

t d - conve r t l ( Lhs , (A  -> F i r s t \B ) .C lause )  :- 1 .  I 

not  u n i f i a b l e ( L h s . F i r s t ) ,  
findclause(B.First.NewB,Nl). /* f i n d  i t  i n b e  r h s .  o f  t h e  r u l e  */ . t d -conve r t2 ( (~ ->~ewB) ,  F i r s t  ,NI ,Clause) . 

b 

/ . , 

genera te  a  un ique pseudo-terminal  name, (N),  f o r  t h i s  r u l e .  Then, prevent 
t h i s  pseudo- termina l  from b e i n g  used when we a r e  l o o k i n g  t o r  " F i r s t " .  

(no t  i c e  use 'o'f 3 argument "gap" p r e d i c a t e ) .  N1 i s  un ique t o  f o r  each c o l  l 

o f  the r u l e .  

*/ 

td -conver t2( (~->B)  , F i  r s t  ,N1 ,Clause) :- 

nurngen(N). 
expand-terml((x-nont i rm -> g a p ( G . [ ~ I ~ l ] , ~ i s t ) ,  F i r s t ) ,   clause), 
c  I  auseports(XCl ause. XHead,XBody) . 
XHead =.  . [x-nonterm.XRA.Xl .X2]. 

/ 
I f  we do f i n d  " F i r s t " .  we pu t  i t  i n t o  a  pseudo t e r m i n a l  wh ich  w i l l  be found 
l a t e r .  I t  i s m a r k e d a n d w o n ' t  be found i n o  subsequent l e f t  recu;sion . 

removal a t t emp t .  

* / 

expand-terml( ( r -nonter->B) .RightCIause) ,  
c l a u s e p o r t s ( ~ i g h t ~ l d u s e , ~ i g h t ~ e a d , ~ i g h t ~ o d y ) ,  
RightHead =.  . [.r-nonterm.RR~.Newlnput ,R2]. 

Body = (XBody,numgen(Nl).'$append'(G,[te(~ist,First)~X2],~ewlnput),RightBody), 
rec-arg( [ ]  ,A,ARA.Al). 
A l= .  .  ad l A r g s ] ,  
'$appendp (Args ,  [ X I  .R2] ,NewArgs) , 
NewA=..[Pred,ARAINewArge], 
formcIa,use(NewA.Body~Clause) .  I .  



formclause(Head.true,Head) :- 1 .  
formclause(Head,Body.(Hsod :- Body)). 

gap(+. [I)->[]. 
gap(+.[WordlRest])->[Word].gop(+,Rest).  

gap(-.[WordlRest])->[Word],gap(-+Rest). P %/' 
gap(-. [ 1 I->[ 1. 

? 
i 

/ 
T h i s  gap p r e d i c a t e  succeeds un less  the  2nd akgument i s  an "element 1" o f  the  
L i s t  o f  a " t e n  pseudo-terminal t h a t  i s  the f i r s t  element f o l l w i n g  the  gap. 
I f ,  a l ega l  pseudo-terminal  f o l l o w s  the  gap, augment t he  " i n v a l i d  number 
l i s t "  ( 3 r d  argument) w i t h  our  new "Nu. Othe iw ise .  mere ly  r e t u r n  a l i s t  
c o n s i s t i n g  o f  N. I 

/ 
element l  succeeds i f  the  head o f  the  f i r s t  
element i n  t he  l i s t  (2nd a5g) 

*/ 

argument i s  the  head o f  some 

f' . 
e l e m e n t l ( ~ , [ ] j  :- ! ,  f a i l .  s 

'\ 

C 

e lemenSt l ( [X IX1] ,  [ [Y I - . ] IRes t ] )  :- X = Y. I ; 
I I  '-,,? 

I X l ] ,  Res t ) .  e lement l  ( [ X  

- /* conve r t  any non te rm ina l s  i n t o  pseudo-term 

o f  gaps. ,Generate new axioms i f  necessary.  
i n a l s ,  w i t h  

*/ 
the  e x c e p t i o n  

p k c u d o - t e ( ( ~ . ~ ) ,  (NewX.NewY)) :- ! , 
pseudo-te l (X.  NewX), 
pseudo-te(Y. NewY). 

pseudo-te(X..NewX) :- ! , -  
pseudo-te l (X.  NewX). 

/ *  de termine i f  a r e c u r s i v e  argument was g i v e n  +/ 
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-t 

pseudo-tel(XOW$, [NewX]) :- 1 .  
NewX =. . [te.RA.X], 
norm-rule(0.X). - 

i 4 
'i 

pseudo-tel ( x .    new^]) :- ! , 
NewX =.. [ t e . [ ] . x ] .  
norm-rule(0.X). " 

/ * ~ f o r t h e s p e c i f i e d n o n t e r m i , n a l . a d d a , r u l e t o t h e a p p ~ o p r i a t e p s e u d o  , 
' n o n t e r m i n a l  i f  i t  doesn ' t  a l ready  e x i s t .  N  w i l l  be th ree  i f  the  l o s t  

two "pa rs ing  arguments", and' lurecurs ion argument", have a l  ready ' 
been added. Otherwise ,  i t  w i l l  be 0  

/ 
1 

norm-rule(N,X) :- ! . 
f u n c t o r ( X . F . A r i t y ) .  
A2 i s  A r i t y  - N. 
l i s t l e n ( ~ 2 , L i s t ) ,  

r 

F1 =. . [ F I L i s t ] ,  
Term =..  [ t e .RA ,F l ] .  /* te (RA,F l )  1s t  a r g  i s  f o r  l e f t  r e c u r s i o n  removal */ 
'$append'([F.R~~~ist],[~0,~l],~ewX1), 
NewX = . .  NewX1. 

assertu((NewX :- c(SB.Term,Sl))) . 

l i s t l e n ( f f , [ - I R e s t ] )  :- ! ,  N1 i s  N  - 1 ,  l i s t l e n ( N 1 ,  Res t ) .  

/ 
the  a rgs  corresponcb t o  the  i n i t i a l  body, the  found c 
and the  un ique i n t e g e r  assoc ia ted  w i t h  t,his a p p l i c a t  

*/ ' 

iause,  t he  new body. 
i o n  o f  t he  r u l e .  

d , . 

f indc Iause( (gap(G) ,Rest_ ) ,  Found. (gop(G),NewRest) 
f  indc  Iouse(Rest .Found.NewRest , N l ) .  

\ 

f i ndc l ause((gap(Si  gn .G) ,Rest ) ,  Found. (gap (s i  gn .G 
findclause(Rest.Found,NewRest.~1). 

, N l )  :- ! ,  

I 

) . N e w ~ e s t ) .  N l )  :- I ,  

f i n d c l a u s e ( ( [ X I Y ] . R e s t ) .  Found, ( [X IY ] .~ewRes t ) ,  N l )  :- ! ,  

findclause(Rest.Found.NewRest.N1). , 
C 

f  i n d c l a u s e ' ( ( ] ~ ( , ~ e s t ) .  Found, (jX(,NewRest); N1) :- I .  

findclouse(Rest,Found.NewRest,Nl). 

/ * 
For the  te rm t h a t  i s  s&'sted, modi fy  the  r u l e A t o  f o r c e  the  
"Term -r te(-,Term)" r u l e - t o  be;sed. ( i t ' s  the o n l y  one t h a t  has a  non- 

empty l i s t  as  i t s  f i r s t  argument). A l so ,  enqure t h a t  we match the  c o r r e c t  

pseudo- te rm ina l .  ( t h a t ' s  why we need the  "N l " )  

*/ 

findclouse((TermORA.Rest). Term. (iRA=[-1-11, ,TermORA, l e l emen t ( [ - (N l ] ,RA) I .  



~ e s t j .  ~ 1 ) .  

z f i n d c l a u s e ( ( T e r m . R ~ s t ) .  Term. (~RAE[-I-'II, TermORA. 4element([,lNl],RA)I, Res t ) ,  
N1) :- 

' not  Term=(-~-). 

f indc louse( (Term.Rest ) ,  Found. ( T e r m , ~ e w ~ e s t ) ,  ~ 1 )  :- ! .  
f i ndc l ause(Res1, Found ,NewRest ,N1) . ! - 

6 
q f  i ndc l a u ~ e ( ~ a p ( ~ ) .  _Term, -. -) :- ! . fa;  I . 

i i ndc lause(gop(Si  gn.C), Term, -, -) :- ! , f  o i  I .  

--. 
f indc lause(Term~RA,  Term. ( i R ~ = [ - l - ] k .  TermORA. 4 e l e m e n t C [ - I N l ] . R A ) ~ ) , ~  :- I .  

& ,  

f~ndc louse (Te rm.  Term. ( IRA=[- I - ] I .  ~ e r m O ~ &  ie tement ( [ - IN l ] ,RA) I ) .  N1) :- ! ,  
a '. not  Term=(-@-) . \ 

/* I 

Th4s s e c t ~ o n  o f  code 1s used t o  process the  r u l e s  f o r  use by the  top- 
down parsec  For con tex t - f r ee  r u l e s  o n l y  p lease.  . 

Adppted f rom PL0G:DCGSOUBCG-MTS, and f rom c lockson  and Me1 l i s h  

/ 

expand-terml((Lhs --> Rhs), (-p :- -q)) I- 
' $dcg lhs ' (Lhs . -sB , -s ._p )  , ! .  
' $ d c g r h s ' ( R h s . - s 0 , - s . _ q l )  , ! ,  
' $ f  lot con^ ' ( -q l  ,-q) , ! . 

'$dcglhs'(NT.-30,-s,-p) . -  
nonvor(NT) , 

roc-erg([] .NT,X,NewNT) , /* i f  t h e r e  i s  a  r e c u r s i v e  argument */ 
'$tog'(X,NewNT,-s0,-s2-p). 5 

4 

/* determine the  c o r r e c t  r e c u r s i v e  argument */ 

rec-erg(-, NT. -, NT) :- vor(NT) . ! .  

b 

rec-erg(-, NT 0 RA, RA. NT) :- 1 .  

rec-org(RA. NT. RA. NT) :- ! 

' f dcg rhs ' ( (X1  . X2) ! . -90 , -s ,co l l l ( -p ) )  :- ! ,  /* and t h e  now r i g h t  hand s i d e  */ 
'$dcgrhs'(Xl,-s0,-sl,-pl) , 
' $dcg rhse  (X2 . -s l  .-s .-p2) , . L 

'$and' ( -PI  .,P~.-P). 

' $dcgrhs l ( (X1 , X2),-80.-s,-p) :- ! , 

' $ d c g r h s ' ( X l , - s B . - s l . _ p l )  . 
'$dcgrhs ' (X2. -s l  .-s._p2) , 

' f o n d '  (-PI , - P ~ . - P ) .  



s p e c i a l  case f o r  t he  gap p r e d i c a t e  */ 

'S tag '  (R+.-x.-s0,-s,-p) :- 
- X  =. . [gap' l-args] . ! . ' 

p = . .  [gapl-newarqs] . 

J 
'$append1(-args, [-80.-s], -newargs) . 
- 

Y 

' $ ~ O ~ ' ( R A , - X . _ S ~ , - ~ , - P )  :- 

- x =. . @  [ - f  I -a rgs ]  , I 

'$append1(-args, [-s0,-s], ,neworgs) , , 

- p = . .  [-f,RAi-newargs] . 

/* The pa rse r  */ 
J 

ma i n(Promp2) :- 

p romp t (0 ld .  Prompt) /* Save the  o l d  prompt */ 
, r e a d ; i n e ( L i n e )  

P 

, ( L i n e  = ' e n d - o f - f i l e ' ,  w r i t e l n ( ' e n d - o f - f i l e ' ) .  prompt(-,Old? 

: c a l l l ( p r o c e s s ( L i n e ) ) .  f a i l  

Process the give% sentence - 
p r o c e s s ( - l i n e )  :- - % 

s t a r t s y m ( ~ . ~ o d e ) '  /* de termine the  s t a r t  symbol */ 
w r i t e l n ( ' S t a r t  Symbol has no t  been d e f i n e d ' )  
f a i  I 

top-down -> 



' .  

k 

r+  i. 
S =.. [Hd 

, append(SL 

~ ~ ~ i l t ]  
'I 

i s t ,  [Sentence, [ ] ] .  NewSList) 
, News =. . [HA-(NewSLi s t ]  

& ; assertuz(reduce(X,X))  /* f a r  bo t tom up p a r s i n g  */ 
, NewS = sr(Sentence. [ (2) t -1)  

1 . ! 
, Time0 i s  cput ime / 

, l e x i c a l ( - l i n e ,  Sentence) 1 

, w r i t e ( ' S e n t e n c e :  ' ) .  w r i t e l i n e ( S e n t e n c e )  
, a b o l i s h ( n u m s ~ e d . l ) ,  assert(numseed(1)) /*  rese t  the  numseed */ 
. Qmel i s  cput ime "i 

, asse r t ( t ime(T ime1) )  
, ( ( one-parse -> News. processl(Code) i , /* one 'parse *y 

; f  i g ( ( o r a 1  I News, process l ICode) ) )  /* a  l l M r s e s  * A  
1 

; w r i t e l n ( ' A n a l y s i i 6 0 f  -. Sentence f a i l s ' )  

> '  
, a b o l i s h ( t i m e , l )  
, Time i s  cput ime - Time0 

, * r i t e ( ' T o t a l  ')/: w r i  te(Time);  w r - i t e l n ( '  set. ' )  
- )  , n l ,  I .  

r Atime i s  Time2 7 T I  : w r , i t e ( ' i n  1 .  w r i t e ( A t i m e ) .  w r i t e i n ( .  set:). 
I '  

processl,(Code) :- /* C a l l e d  a f t e r  a  success fu l  parse */ 
( no t  var(Code) -> Code ; wr i t eLJParse  found ' )  ) 
, w r i t e ( '  ' )  & , Time2 i s  cpu t ime  
, t  ims(T1) 
, r e t r a c t ( t i m e ( T 1 ) )  
, asse r t ( t ime(T ime2) )  + 

Look up the words i n  the  , l ex i con .  T h t d e f i n i t i o n  o f  " lookup"  i s  s u p p l i e d  

by 'e fecu t i on  o f  t he  " l e x i c o n "  FIGG command w i t h  no arguments. 

/ '. 
~\ * 

- 
F 

i c a l  ( [ - l w o r d l - r e s t ] ,  [-wordl-sentence]) :- 
look<p(-lword, -word) . ! 

. l e x i c a l ( _ r e s t ,  -sentence).  

3 /* ~ n d  now. we h k e  the  u t  i I i t y  r o u t  in* used,by FICG and SAWER. ' * /  
f 

r e t r a c t l ( X )  :- / *  r e t r a c t s  o n l y  one axiom */ , 

L1 . r e t r o c t ( X )  . ! .  

/* 
< - 

append([AIB], C.. [AID])  :- a p p e h ( ~ ,  C,  D ) .  
opper13( [ 1, X. X I .  Y 



% 

P numgen(-n) :- /* genera te  a  unique number */ o 
numseed(,n) C- 

, ' re t  r a c t  (numseed(-n)) 
, -newnum i s  -n + 1  . t : a s s e r t  (numseed(-newnum)) . ! . 

i 

reverse([ -hd 1 - r e s t l ,  -tmp. - rev)  :- /* rev8rs.e a  s t r i n g  */ 
reve rse ( - res t ,  [-hdl-tmp]. - rev ) .  ' t, 

8 

* 
askyes :- /* Succeeds i f  a  word i s  en te red  t h a t  satparts w i t h  "y"  +/ 

readwd([-chi-] .-) . ! . . 
, -ch = 121. -4 

- - u c l e t t e r ( [ - c h ] )  :- ! , /* i s  i t p a n  u p p i r  cse l e t t i r  ;/ 
in teger ( -ch)  

, 65 =< -ch 

, -ch =< 90. 

. 9 addax(Rule) :- ! ,  o s s e r t ( R u l e ) ,  w r i t e ( 'New Axiom: ' ) ,  w r i t e l n ( R u 1 e ) .  - - 
e l e m e n t ( ~ a r . - )  : - v a r ( V a r ) ,  ! .  / *Succeed  i f a r g u m e n t . i s a v a r i a b l e + /  

element(-elem. [I) :- ! . f a i  I .  , /* i s  the argument an element o f  the  l i s t ?  */ 

element(-elem. [ -hd l - res t ] )  :- 

-elem = - h d  , ! 

e lement(-e lem.,- rest) .  I 

he suf  f  i x  f rom a  word a/ . 

dropsuf(N1-Suf, N l )  :- ! .  

dropsuf  (N1 , N1) :- ! . 

/* Are they  u n i f i a b l e  a f t e r  d ropp ing  m o d i f i e r s  */ 

u n i f  iable(Term1~. Term2) :- 

(Term1 = TermloORA ; ~ e r m l  = Termla) ,  ! 
, (Term2 = Term2aORA ; Term2 = ~ e r " 2 a ) ,  ! 
, Termla = . .  [ ~ d l ~ i s t l ]  
, Term20 = . .  [ H d l L i s t 2 ]  

I 

, u n i f - l i s t ( L i s t 1 ,  L i s t 2 ) .  J 



4 I u n i f  I  s t ( [ ] , [ ] )  :- I .  . 

[Hd2(Rest2])  :- 

a t  

1 

, Hdl  = Hd2 
* . u n i f - l i s t ( R e s t 1 ,  Rest2) .  . , 

- u n i f - l i s t ( [ - ( R e s t f ] ,  [- IRest21) :- ! ,  
un i f - l i s t (Rss t1 . .  R e ~ t 2 ) .  

.&2 

/* Asse r t s  t he  c lause  i fg  i t  does not  exDist a l ready .  (asse r tun  
. b 

i on)  */ 

assertuz((Head,+:- Body)) :- . ' < ,  

c lause(Head.Body). ! .  
C 

asser  G Z ( C  I ause)] .- x 

c l ause (C lause , t rue ) ,  ! .  
9 

'"4 

asser tuz(Clouse)  :- ! ,  
'3 i 

o s s e r t z l ( C l a u s e ) .  

Y 
a s s e r t y ( ( ~ e ~ d  :- Body)) .- 

a c lause(Head.Body). ! .  

a s s e r t r ( R u l e )  :- calc-mode -> n l ,  w r i t e l n i ~ u l e )  ; o s s e r t z l ( R u l e ) .  

, a b o l i s h ( r e f e r e n c e s . 1 )  . -  
, asse r t z (Ru le ,Re f )  
, a s s e r t ( r e f e r e n c e s ( [ ~ d f ) ~ e f  s ] ) ) .  P \ 

c o l l l ( X )  :- X, ! .  
1 

/* * C 

conve r t  f rom the case mask n o t a t i o n  o f  the  AAA SAUMER l e x i c o n  t o  t h e  
"ncin". "acc" ,  o r  - .  

caseconver t  ([N,A.-] , nom) :- 

v a r ( ~ ) ,  atom(A) . ! . 



f- 

caseconve r t ( [N ,~ , -1 ,  -) :- 4, ' > 
var(A),  var(N),  ! .  d 

- a  
a -  

/* A u x i l i a r y  p r e d i c a t e s  *"/ B a- 

c o m b i n e ( t r ~ e , - ~ . - ~ )  :- ! 
combi ne(-p, t  rue ,-p) :- ! 

combine(-p,-q,(-p , -q))  

' $ f l a t c o n j l ( - a  . -a) :- var(-a) . ! .  

' $ f l a t c o n j ' ( ( - a  . -b).-c) :- ! . 
' $ f c l  ' (-a,-c,-r) , 
' $ f  l a t c o n j  ' ( -b,- r ) .  \a i 

< 6 

' $ f  l a t c o n j * ( - a , - a ) .  4 

And now a  c o l l e c t i o n  o f  vario.us I/O;outines. 
i - - 
We f i r s t  de f i ne '  the  i npu t  r o u t i n e s .  Reodwd ge ts  every  c h a r a c t e r  
up t o  the next  s p e c i a l  c h a r a c t e r  and p u t s  i t  i n t o  t he  f i r s t  a r g .  
The break c h a r a c t e r  i s  p u t  i n t o  the  2nd argument. Readwdl i s  a 

t o p  the  r e c u r s i o n .  Read l i ne  forms a  l i s t  o f  a l  l the  wdrds 1 

t  u n t i l  a  p e r i o d  i s  seen. Each word i s  ma in ta ined  as a  l i s t .  
i s  u s e d  some some morpho log ica l  a n a l y s i s  r o u t i n e s  

. . around f rom the  SAUMER system. 

*/ 

readwd(-x, - l a s t )  , :- repeat ,  get@(-ch),  readwdt(-ch, - x . - l as t ) .  

, readwdl(-1. [I. -1) . . - r e a d ( ' e n d - o f - f i l e ' ) ,  ! .  

symbo l ( l 0 ) .  
symbol (32). 

i 

/* new l i ne */ 
/* space */ 



symbol (33).  
symbol(44). 
symq_O1(46). 
symbol(62). 

, . 
8 

r s a d l  ine( - l  ine)?$- 

/* exc lamat ion  mark */ 
/* comma b /  
/* p e r i o d  */ 
/ > the "F igg  command" symbol */ ' 

readwd(-word, - 1  a s t )  . 
, read l i ne l ( -wo rd ,  - 1  ine.  - las t - ) .  

8 

/* t o  a l l o w  p e r i o d s  a f t e r  i n i t i a l s  */ 
.J- 

I* t o  c a l l  F i g g  command processor  ( w i t h  a  n i c e  p i e f i x )  */ 

r e a d l i n e l ( [ ] .  Res t .  62) :- ! I .  

get0(10)  
, f i g g 1 ( ' ? >  ' ) .  ! 2 
, read l i ne (Res t ) .  

7- ., 

r 

.. ,* .;'? . * .' 
1 .  /* end o f  ' f  i l e  */ 

C 

r e a d l i n e l ( [ ] ,  ' e n d - o f - f i l e ' .  -1) :- 

r e a d l i n e l ( [ ] ,  [I, 46)- : -  ge t0(10) ,  
r ead t i ne l ( -wo rd ,  [-word]. 46) :- ge 

/* i gno re  b lanks  */ 

! .  . /* end o f  sentence */ 
t 0 (10 ) ,  ! .  

9 
r e a d l i n e l ( [ ] .  - r e s t ,  -) :- r e a d l i n e ( - r e s t )  . ! .  

read l  i n e l  (-word, [ -word l - res t ] .  -) :- read l  me(-rest) . ! . , 

and f o r  w r i t i n g  ou t  a  1 i s t . . w i t h  b b lank  b e f o r e  each word. we have. 

ne ( [ -wo rd l - res t l )  :- w r i t e ( '  I ) .  w r i  te(-word), w r i  t e l  ine(-re 'st )  i t e l  

i t e l  

For w r i t i n g  out  t r e e s  */ 

w r i  t e t ree (N . [ J )  :- ! 

w r i  te t ree(N,Term)  :- 

Term = . .  [ H d l L i s t ]  
, l i s t - o f - a t o m s ( L i s t ) ,  ! 

, n l ,  tob(N),  w r i t e (Te rm) .  



w r i  t e t r e e ( N , T e r  :- 

Term =..  (Hd$ist]  
, n l ,  tab(N)  
, w r i t e ( H d ) ,  w r i t e ( ' ( ' )  
, NewN i s  N+4 
, w r i  t e t r e e ( N e w N , L i s t )  
, n l ,  tab(N) .  w r i t e ( ' ) ' )  

w r i t e l n ( X )  :- w r i t e ( X )  . nl. /* A handy c r i t t e r  */  . 



Ci 
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terminals." The modified system is used for some preliminary experimentation 
with the description of Polish syntax. 

a 
Clocksin. W.F. and Mellish. C.S. Programming in  Prolog. Berlin-Heidelberg- 

SemT0rk:Springer-Verlag. 4981.  w 
1 

-4 ,thorough description of Prolog. complete with a tutorial, and .numerous 
examples and exercises. There is one entire chapter devoted to "using grammar 
rulesu. 

9 
Coimerauer. .4. 3letamorphosis Grammars. In L. Bolc (Ed.), Natural Language. 

Communication with ~o&ters ,  springer Verlag . Berlin, 1978. 

The author provides a formal introduction of metamorphosis grammars, along 
with a short introduction to Prolog. He supplies a method for using nornalised 

- metamorphqsis grammars to parse or synthesize sentences. A compiler and a 
conversation system which use metamorphosis' grammars are also described. 
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Dahl. V. CurreM Trends in Logic Grammars. Technical Report TR-83-2, Department 
of Computing Science, Simon Fraser University, 1983. 

This survey of some logic grammar formalisms inspired the format of chapt 3 two .of Popowich's MSc. thesis. After a short introduction t o  logic grammars, 
the different formalisms aie described and compyed. 

-. 
Dahl. V. - More On Gapping Grammars. Proceedings of the International Conference on 

Fifth Generation Computer Systems. institute " for New Generation Compute,r 
Technology, Tokyo. 1984. 

. \  

This second paper on Gapping Grammars continues where the earlier paper left . . 

off. It describes applications of these grammars in both formal language and 
liilguistic domains. In particular, their use for describing coordination, free word 
order, and right extraposition is examined. 

.., F 
Dahl. V. personal communication. Dept. of Computing Science. Simon Fraser 

University. 1985. 1 

Dahl. V. and Abramson, H. On Gapping Grammars. Proceedings of the Second . 
International Joint Conference on Logic. University of Uppsala. Sweden. 1 984. 

This paper introduces gapping grammars and provides the motivation fot .  their 
development. Two implementations are discussed, one which is general but 
inefficient, and another which is more efficient but less general. 

Evans. R .  apd Gazdar. \G. The ProGram- Manual. Cognitive Science Programme. 
Lniversity of Sussex. 1984. 

A reference mafiual for the ProGram system, which is a grammar development 
# ";- system based on generalised phrase structure grammars. 

, i,.* Gandar. G. Phrase Structure Grammar. In P .  ~acobson and G.K. Pullurn (Ed.). The 1 

Nature of Syntactic Representation, D.Reide1, Dortrecht. 198 1. 
.. v 

The first work to describe what are now called generali~ed phrase structure 
, . grammars. He proposes a varianr of context-free grammars for use in the 

-t& 

description of natural language. Phrase structure rules are used as "node 
' admissibility conditions't on well formed trees. Properties o f  these grarnmafs 

include: complex (structured) grammar symbols, metarules which operate or, 
- -. 
' rules yielding new rules, and a semantic rule associated with each phrase 

structure rule. 

Gazdar. G. and Pullum. G.K. Generalized Phrase Structure Grammar: A Theoretical 
Synopsis. Technical Report, Indiana University Linguistics Club, Rloomington~ 
Indiana. August 1982. 

This paper provides a more detailed description of generalised phrase structure 
grammars than was provided in the earlier paper. Immediate dominance/ linear 
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precedence ,rules are3 introduced into the formalism, with the metarules now 
o$erating on these rules instead of on phrase structure rules. The slash 

< categories of the earlier paper are replaced through the introduction of a "foot" 
- 

feature into the cohplex grammar symbols. The semantic component of - - grammar r d e s  is not discussed. 

Greibach. S. and Hopcroft. J. Scattered Context Grammars. Joy-nd of Computer hnd 
System Sciences. 1969. 3. 233-247. > 

The authors formally introduce "scattered context .grammarsn and show that the 
'. languages descr'ibed by these grammars are a subset of context senkitive 

languages. Their motivation for bintyoducing these grammars was to eliminate 
the need 'for semantically useless nonterminal symbols whose only purpose was 

. , 
to "[transmit] information between widely separated parts of a sentence". 

b 
e 

Griswold. R.E.. Poage, J.F. and ~ o l o n s k ~ . ~  I.P. The SNOBOL4 Pro@amrning Language. 
Prentice-Halj Inc.. Englewoods Cliffs. NJ. 1971. I 

k - L ' . 

This book describes the -. syntax of the programming langiage ~"NOBOL, and gives i 
numerous examples of SNOBOL programs. 3 

Hopcroft. I.E. and Ullman. J.D. Introdzxtion to 
Compulation. Addison-Wesley Publisher Co. - Ltd.. 1979. - 

w 
The flrst part of this book provides a good formal intioduction to the languages 
of the Chomsky hierarchy. In particular, its definitions of grammars and their 
associated languages, and the.description of "ambiguous" grammars were useful. 

*hi. A.K. Factoring Recursion and Dependencies: An Aspect of Tree Adjoining 
Grammars ( T A G S )  and a Comparison of Some Formal Properties of TAGS,  GPSGs, 
PLGs and LPGs, ' pages 7-15. Proceedings of the 21th Annual ~ e e i i n ~  .of the 
Association for Computational ~i&uistics,  June, 1983. 

The first part of the paper describes tree adjoining grammars, outlines their 
I .  

I i a ~ a c i t y  s o  describe the "usual transformational relations". and illustrates their 

capability to describe various dependencies present in natural language. Then, 
the grammar forpalisms mentioned in the title are compared based on whether 
or not they are powerful enough to describe some selected 'languages that exhibit 
various "patterns of dependencies". \ 

a, 

Korfhage. R.R. Logic and Algorithms. John Wiley & Sons. Inc., 1966. - 

-4 secti6n of this book gives ,a formal definition of a hlarkov algorithm. 
Several examples of these rule based algqrithms that operate on strings are 
provided. 

- 1lcCawley. J.D. Everything that linguists have always wSurted JO know & logic but 
were ashamed to ask. The University of Chicago Press. 1981. - 



- 
An entertaining, but thorough. introduction to various logic formalisms, along 
with a look a t  their applications to linguistics. 

B 

Pereira. F.C.N. Extraposition Grammars. American Journal of Compurational 
; Linguistics. 1981. 7f4). 243-256. , 

, 
The author introduces a logic grammar formalism called extrapsition grammars 
as an extension of definite clause grammars. These grammars are shown to 
provide concise descriptions for left extraposition of sentential constituents. A , 

processor of these grammars is als6 provided. 

Pereira. F.C.N.(ed). C-Prolog User's M a n d .  Technical Report. SRI Internatio,nal. 
Menlo Park, California. 1984. 

h i s  manual describes variant of Prolog in which FlGG is written. 
- \ Pereira. F.C.N. and Warren, D.H.D. Definite Clause Grammars for Lapnguage Analysis. 

Artificial Intelligence. 1980. 13.  231 -278. 

This paper provides a detailed description of definite clause grammars. The  
authors argue that these gna&nars can be Gsed for efficient analysis of 
language. A comparison between definite clause grammars and augmented 
transition networks is also included. 

1 

Popowich. F. Unrestricted Gapping Grammars. Proceedings of the Ninth International 
Joint Conference on Artificial Intelligence. 1985, 

Unrestricted gapping grammars are introduced, along with the FlGG 
4 

implementation. The use of procedural contr both to improve parsing 
efficiency and to restrict the language decribed b grammar is advocated. and 
is supported by test ~ e s u l t s .  

3 
- 

> '. 
Popwich.  F. Unres(rickd Gapping Grammars for ID/LP Grammars. ,Proceedings of 

Theoretical Approaches' to Natural ~ a d ~ u a ~ k & n d e r s t a n d i n ~ ,  Dalhousie University. 
~ a l i f  Ax Canada. 1985. 

~ f t e r  providing a short introduction to unrestricted gapping grammars and FIGG. 
this paper describes the ID/LP-UGG conversion procedure. Some empirical 
results are also given. 

, 
Pop$urich. F. S-4UMER: Semence Analysis Using MEtaRules. Proceedings of the 2nd 

Meeting of the European Chapter of the . Association for Computational 
Linguistics. hlarch. 1985. 

This work describes the .SAC'MER system, which is based on the early (1981) 
GPSG formalism. An outline of the syntax of the SAUMER Specification 
Language is provided, along with details about the .implementatibn, aod results 
from some applications of the system. 

d 

e Popowich. F. ,The SAUMER User's M a n d .  Technical Report TR-85-3 and LCCR 

I 
TR-85-4, ~ e ~ a r t ~ ~ t  qf Computing Science, Simon Fraser University, 1985. 

I 
L P 



This manual describes how to use and SAUMER system, and provides some 
sample%mmars, 

Radford, A. Transfornational Syr i tq .  Cambridge Wniver \ 

This book is an easily understandable int duction t the Chomsky's Extended - 

&mar+=--% includes details about' standard Theory of trahsformational gra 
Government and Binding. 4 

\ --- 
Saint-Dizier. P. Long Distance Dependency Constraints ' in Gapping Grammars.. INRIA ' 

Research Report, I.R.I.S.A. - Uriiversite de Reqnes, forthcoming. 
li 

r 
Shieber, S.M. - Direct Parsing of ID/LP Grammars. draft.  1982. 

The author describes a modification arly's algorithm which permits direct 
b a r s i n g  of ID/LP grammars without conversion into their corresponding 

.i context-free grammar. A prodf is supplied, along with an 
argument'that the time complexity of the algorithm is 0(n3).. . d 

Sh~eber. S.M.. Stucky . , S.U., Uszkoreit. H. and Robinson. J.J. Forniq.2 Constraipts on 
Merarules, pages 22-27. Proceedings of the 21th Annual Meeting 'of the 

C 

Z Associat~on for: ~ o ~ p u t a t i o n a l  ~ i n ~ u i i t i c s .  June, 1,983. 
/ 

The authors outlrne some methods for constraining m e t a r ~ l e s  to make t& use 
with phrase structure' grammdr,  putatio at ion ally safe" They show the 
weaknesses of certaln constramt method;. and suggest some directions In which 
"the ultimate solution" 'may lie 

' Stabler, E.P. (Jr). ~eterminis t ic  an$ ~ o t t o r n ~ ~  Parsing in Prolog, pages 383-386. 
Proceedings of the American Association for Artificial Intelligence. Augbst. 1983 .  

Part of this short' paper, a simple Prolog implementation of a -shift 
redyce parser for This parser inspired the development 
of the shifrt reduce 

'% B 
Thompspn. H. Handling M e l a d e s  in a Parser for GPSG. Technical Report D.A.I.' Np. l 

175.' Department of Artificial Intelligence. university of Ebinburgh. 1 9 8 2  

Based on the early (1981) descrhtion of . GPSG. f h e  apthor proposes a method 
for making the application of metarules "computationally safe" and argues that 
the grammar should be "expanded" before any parsing is attempted. 'Also 
provided is a,  method for expanding the grammar. ! 


