i

I+

National Library

of Canada du Canada

Canadian Theses Service

N

Ottawa, Canada
— K1A ON4

-
T

CANADIAN THESES

s

NOTICE

The quality of this microfiche is heavily dependent upoh the

_ quality of the original thesis submitted for microfilming. Every

effort has been made to ensure the highest quality of reproduc-
tion possible.

If pages are missing, contact the university which granted the
degree. ’

Some pages may have indistinct print especially if the originall

pages were typed with a poor typewriter ribbon or if the univer-
sity sent us an inferior photocopy.

Previou'sty copyrighted rhaterials (journal articles, publishe
tests, etc.) are not filmed. -

Reproduction in full or in part of.this film is governed by the
Canadian Copyright Act, R.S.C. 1970, c. C-30.

THIS DISSERTATION -
- HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL-333(r 85/08) % -

_Bibliothéque nationale.

‘Services des théses canadiennes ~

THESES CANAmENrJE»s_

AVIS
La qualite de.céne microfiche dépend grandement de la qualité

de la thése soumise au microfitmage. Nous avons tout fait pour
assurer une qualité supérieure de reproduction.

S'il mangue des pages, veuiliez communiquer avec l'univer-
sité qui a conféré le grade. '
<

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont ét¢ dactylographiées
a l'aide d’un ruban usé ou si 'université nous a fait parvenir
une photocopie de qualité inférieure.

Les documents qui font déja 'objet d'un droit d'auteur (articles

- de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, méme partielle, de ce microfilm est soumise
a la Loi canadienne sur le droit d'auteur, SRC 1970, ¢c. C-30.

=
o

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L’AVONS REGUE

© Canadi

| Unreétricted Gapping Grammars: |
Theory,Implementations, and Applications

o . - B} ‘ . N

VA
by

(Fred P. Popowich *

BSc, University nf Alberta, 1982

+

. THESIS SUBMITIEFD-IN PARTIAL FULFILLMENT OF
\ " THI REQUIRFMFNTS FOR THE DEGREE OF
' MASTER OF SCIENCE
in the Department |,

1

of é

Computing Science

© Fred P. Popowich 1985
SIMON FRASER UNIVERSITY
July 1985

All rights reserved. This thesis may not be
reproduced in whole or in part. by photocopy
or other means, without the permission of the author.

»

Permission has been granted
to . the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

ISBN

—3 la Biblioth&que

L'autorisation a &t& accordé&e
nationale
du Canada de migrofilmer
Cette thé&se et de préter ou
de vendre des exemplaires du
film. X

L'auteur
d'auteur) se

(titulaire du droit
ré&serve les

autres droits de publication;
©.ni la

th&@se ni de
extraits de celle-ci ne
doivent @tre imprim&s ou
autrement reproduits sans son
autorisation &crite. (7

longs

P

0-315-30849-4

siois.
1:21 "‘-}\4

ki

Approval -

5

Name: Fred P. Popowich

Degree- Master of Science

Title.gf Thesis: -'Unrestricted
Applications

Examining Committee:

Gapping Grammars: Theory. Implementations,

~

[l

Ch&irpersdﬁ: Hassan Reghbati -

\

and

- Nick Cercone ¢

ii

Senior Supervisor

. s > [
Veronica Dahl
Senior Supervisor
e s emam A

Robert Hadley

l—fé'vey Abramsé(.
External Examiner
Associate Professor
Department of Computer Science
University of British Columbia

,_‘j“.\'\j | o , 83

Date Approved

n

PART 1AL COPYRIGHT LICENSE

[

-l hereby gran+ to Simon Fraser Unlverslfy the rlghf to lend
my fhesus, proJecf or exTended essay (the title of whjch is shown be!ow)
to users of the Simon Fraser Universlfy Library, and to make parflal or
single copies only for such users or in response to a requesf from the
iibrary of any other unfverslfy, or other educational lnsflfufion on
its own behalt or for one of its users. | further agree that permnssion
for multiple copying of fhls work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying
or publication of this work for financial baln shall not be allowed.’

without my written permission.

Oy

Titie of Thesis/Project/Extended Essay

UNRE_STRILTQD GAPPNG GRAMMAPQ'-

’

"77450&2‘]HPLHEMEAJ'TA'”ON'SL AND APPUM T/ONS

" Author: \ X
(Sagnafure) ’

Fred PoPow:cH/Z

(name)

Zﬂém#/}ﬁ‘

! (dafe) ‘ : '

1

—

B

| \ ‘AbAs*trafc"c‘

Since Colmerauer’s introduction of hzetamorphdsis 'gra;n(nar;c (MGS).’ with their
associated type 0-like grammar rules, there. has been a 'desire‘ to allow mc;re generai
rulé formats in logic grammars. Gap' symbols were added .to the MG rule by
F. Pex:eiré. resulting m extraposition gramma,r-s’ (XGs). Gaps, which are referenced by
gap symbols. are sequences of zero or more 'l;lnspecified symi)ols which may be present
anywhere‘m a senience or in a sentential form. Ho§vever. XGs imposed restpic’ilons on

‘ - g
the position \of "gap symbols and on the contents of gaps. With the imrodiiction of

gupping grammars (GGs) by Dehl, these restri‘tions wérg removed but the rule was

still requue. . possess a nonterminal symbol as the first symbol on the“left hand

/ _ .
side. This restriction 1s removed with the ntroduction of unrestricted gapping

grammar.{ - FIGG. a 5% Implementation of ‘Gabpping Grammars, represents an

implementation of a large subset of anesfric;ed GGs which allows either bottom~up -

or top-down parsing of sentences. The system :provides more built-in control facilities

v .

than previous logic grammar implementations. This makes it easier for the user to

create efficiﬁcutable gramfnar rules and restrict "the applicability of certain

-

rules. FIGG can be used to examine the psefulnesé of. unrestricted GGs for describing

-

phenomena of natural languages: such as free word order, and partially free

word/constituent order. It can also be ubed as a programming language to implement

natural language systems which are based on grammars (or- metagrammars) that utilise

the gap concept, such as Gazdar's generalised phrase structure grammars.

v

i1

:y/

N

Ackndwledgement’s

®

I would like to thank Nick Cercone for his comments and suggestions. ~ His —

S
assistance with the orgamsauon of this work and his suggestions relating to literary

stvle were also 1nva,luable

A

Much of this thesis was inspired by research done by Veronica Dahl. Her
.fv ° -~

comments and questions were extremely helpful. :

I would also like to extend my gratitude to the referees who reviewed (Popowich,

1985a) and (Popowich, 1985b). since these papers were based on an early version of.

this work. Their suggestions and comments proved to be helpful in the revision of

sections 5.1 and 5.2. A

The Laboratory for Computer and Communications Research at Simon Fraser

University supplied the fac111t1es for the research descrlbed within this thesis, and for

the text processing of tﬁs manuscrlpt Ed Bryant was especially helpfu‘l in providing

technical support.

Finally, I would like to thank the Natural Sciences and Engineering Research Council
(NSERE) of Canada for support under Postgraduate Scholarship #800 during this
resezirc\h. This™work was also sppported under NSERC Operating Grant no. A4309

Y
and Inst\llatlon Gi‘ant no. SMI-74.

i

iv

a Table of Contents
’ N

Approval

Abstract

Acknowledgements

Table of Contents

List of Figures

List of Tables -
1. Introduction

1.1.
1.2.

Motivation
Gaps in Grammars

2. Logic Grammars

2.1,

22

2.3
4 4.

Definite Qlauée Grammars
Metamorphosis Grammars
F.xt;'aposiuon Grammars
Gapping Grammars

3. Unrestricted Gapping Grammars
4. FIGG

4.1.

4.2.

The Syntax of FIGG

4.1.1. The Grammar*

4.1.2. Control

4.1.3. System Commands - _
Implementation of FIGG

4.2.1. The Top-Down Parser
4.2.2. The Bottom-Up Parser

S. Applications of Unrestricted Gapping Grammars

5.1

52.

5.3.
5.4.

Use of Procedural Control

Description of Non-Fixed Word Order

5.2.1. Free Word Order --

5.2.2. Partially Free Word/Constituent Order
Implementation of GPSG Metarules
Summary -

6. Conclusions

/\j 10°
413
“ 16

18

23
28

31
31
32
37
40
40
47

54

54
.58

61
76
87

89

® ~ s
Appendix A. Sarhple Terminal Sessj - 9
Appendix B. Direct Procgssing, of ID/LP Grammars ' 96
B.1. ProGram \Specification and"Test Results ":i: . - ' 96
B.2. FIGG Specification and Test Results \ } - ‘ " 99
Appendix C. Direct Processing of GPSG Metarules o 102
C.1. ProGram GPSG Grammar : 102
. oo C.2 Unrestricted Gapping Grammar for GPSG Grammar , : 106
ppendix D. FIGG Source Code ‘ 110
References : 130
’ air -
- > Yi “
’ - ¢

Figure 2-1:

Figure 2-2:
Figure 2-3:

, Figure 2-4:

Figure 4-1:
Figure 4-2
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 5-1:

Figure 5-2:
Figure 5-3:

Figure 5«4:
Figure 5-5:

List of Figures

- 3

Parse Tree for a3b®c3 using a Definite Clause Grammar -
Derivation of adb3c? using a Metamor hosis Grammar

g P
Derxvanon of a3b3c3 using an Extra sition Grammar oy

g po . P
Derxvatxon“ of a3p3c3 using a Gapping Grammar - ° ‘ —

Nested Head Problem, ‘
Behaviour of Dorhinator in a Parse Tree - ,
Goal Tree for Top-Down Parse of a’b’c3

Goal Tree for Shift-Reduce Parse of a3b3c3
FIGG translation of an Unrestricted GG Rule
Permutation Tree

Parse using an 'unrestricted GG based on an ID/LP description
Processing of GPSG Meétarules :

Processing of Multiple GPSG Metarules
Derwatlon graph usmg an mterpreted GPSG metarule

a

vii T

112

13
18
20
29
34
42
50
53
64

78

- 79

81

L g

. ’ ‘ \:) 77{7;' ..) . \\\ X "
L.) '& ‘ . F:;,';.i \\
| List of Tables SR f_,J
, : L : | -/
. , .)\
Table 5-1: ~ Parse and total analysis times for a™pMcmd™ 56
Table 5-2: Parse and total analysis times for a™b"c” ST -
Table 5-3: Summary of results for parsing according to the latin, grammar 6 \
‘Table 5-4: Comparison -of FIGG and ProGram using -an- ID/LP grammar. 740
Table 5-5: Comparison of FIGG, SAUMER, and ProGram using GPSG’ 85 N
s
[f" _ -
3 N ._\\
-, B \ .
7
&7
\
. v .
7
~
viii

+ g - N : -
Ea) - L,

Chapter 1

Introduction

It is often 'desirable to capture generalisations about the syntactic strue:; of a -
language with concjse. high level grammar productions. These Irigh level descriptions
d can ofien decrease the number vo’f grammar’ rules required, arld may, in practice. resylt ‘;\
in more efficient pars;ng (Berwick and Weinberg, .1982') One method to provide'more ‘
general grammars is to mtroduce gap symbols, which refér to sequences of unspec1f1eAd\
" symbols called gaps. into the grammar rules. Unrestncted gappmg grammars
iricorporate gaps withira the grammar. The motivation for. the development. of
unrestricted gapriing grammars was derived. from the aevelopmenré of the SAUMER
,/ {s'ystem (Popowich. 1985c). aad from the study of gapping grammar“s (GGs) (Dahl and

L)

Abramson, 1984). . ' : o, ~

L

1.1. Motivation

SAUMER allows specifications of natural language grammars, which consrst of rules
and metarujes to be used to provide a semantic mteriaretauon of an mput sentence }
The two level grammar is based on the format used ;mthm generalLsed phrase
structure grammars (GPSGs) (Gazdar, 1981). From a set of base rules, the metarules
will generare.derived rules. Through repeamted operation of | the'_metarules o;'er the
base-and derived rules, a complete set of rules_ for a grammar can be generated‘.

'Consider the set of context-free rules shown in (1.1) which describe some active and

passive verb phrases.

N » ;_fi .
(1.1) - @ vp,, —> v, NP, PPy eg. gives the ball to”ME;:y
‘ (v) VPacy —> Ve DPgspr MPyec eg. gives Mary the ball - .]
(c) vpact'(—> V. NPy " eg: throwsv the ball_» A
(d) vppas —> aux, v, pp,,. eg. is given to Mary : s
(e) YPpas —> aux, v, np, .. eg. is given the ball.
(D) VPps —> aux, v. eg. is thrown

The same set of rules can also be represented by the first three rules (l.la—cu)‘alone.ﬂ
“along with the metarule R N L=
(1.2) '.'__1;>act -> v, np, X == VPpas > aux, v, X.

Any rule 1hat matches the left hand side (pattern) of the metarule will cause the

generation of a new rule as specified by the rxght hand side (templqte) The X m‘

(1.2) is a string variable (Thompson, 1982) that can match zero or more grammar
symbols. There are two approaches for the the use of (1.2) in conjunction with
(11a-c). The compiled approach, which is used by SAUMER, uses the metarule to

generate (1.1d-f), and then uses base rules along with the derived rules during

par”sing'.‘ The interpreted approach would involve the use of the base rules and (1.2)

during the parse without the generation of (f.ldzf). Although this would require
. £ '

parsing according to a non-context-free specification, it might be more efficient than

3

the compiled approach in some cases (Berwick and Weinberg, 1982). Perhaps the

conversion of the two level grammar into some other grammar, could result in a

concise specification for interpreted processing.

b
% «

One property of a SAUMER grammar, which was observed in grammars of* the
original GPSG theory, is, that a large number" of _rules are needed to describe

structures whose constituents may appear in many arrangements. Consider the
) -

English sentence
N

(1.3) The ball was thrown in the park to Fido by Marvin.

No matter what-order the three prepositional phrases following the verb are placed-in,

P

™

-

ausymactically valid sentence results.' The verb phrase in (1.3) can be described by

the context-free rule

(1.4) verb__phrase -->‘ verb, prep_phfaseloc. Prep_phrasedat, -prep_phrasléacc‘
where the abbreviations loc, dat and acc, correspom‘:l to the locative, daﬁve. and
accusative arguments of the verb respectively. To maintain this type 24“‘ structure and
describe the ‘other possible orders oet: the prepositional phrases woufd require five
additional context-free rules. If éontext—sensitive rules were allowed, the same result
hcould' be achieved with the introduction of rules for .switching the order.of these
phravses.‘ All six context-free rules can be described by a single 'immediéte dominance -
rule, along with a set of linear precedence relations (Gazdar and Pullum. 1982). An
immediate dominance ‘(ID) fule resembles a context—free rule, but it specifies only that
'th‘g symbol on tile left hand side of the rule immediately dominates (is thd parent
of) the symbols of the right side. The order of the right hand side symhols is‘
restricted by the linear precedence (LP) relations. A linear precedegce relaticn,
B, ‘< B]‘ is a transitive relation between two symbols of the grammar, B, and Bj.
.'Lhél states which symbol must precede the o'ther if they both appear in the righ
'hand side of a context-free rule. For our example, the ID rule

(1.5) - verb_phrase --> verb prep_phrase, ~ prep_phrase, , prep_phrase,

can describe the structure of the context-free rule, while the LP relations

(1.6) (a) verb < prep_phrase,
(b) verb < prep_phraseg,,
(b) verb < prep_phrase,

will require the verb to precede any prepositional phrase. The current generalised
phrase structure grammar theory {Gazdar and Pullum, .1982) uses this formalism to
describe the cortext-free rules of the grammar. Once again, there are two ways of

using these, grammars to parse sentences, The conversion of the ID/LP rules into

their corresponding context-free rules before parsing will be referred to as the

Sk

D

compiled approach to ID/LP rule processirig. There is also interest in the iriterpretedi

@

approach (Shieber. 1982) (Evans and Gazdar. 1984) which entails parsing according to

the ID/LP grammar, instead of using the context-free grammar. Perhaps the ID/LP

grammar can be used- within some grammatical formalism that will allow -interpreted-

processing.

The rules of gapping grammars allow -explicit reference to gaps between constituents.
Consequently. rules liké

(17) noun-phrase(obj). and, gap(G). noun-phrase(obj)

. S
--> [and]. gap(G). noun-phrase(obj) . O‘m .

«

can account for linguistic phenomena such as the deletion of the object in sentences
like ’

t1.8) John saw the train and Mary heard the train.

Applications of (1.7) to (1.8) will result in the following.sentence.

(1.9) John saw and Mary heard the train. ,

Gapping grammar rules can ‘also describe other phenomena like extraposition of

constituents, and totally free word erder’ (Dahl, 1984).

Since the string variables of GPSG metarules can be thought of as‘gaps' symbols,

and since the ID/LP grammars describe free word order subject to certain restrictions

»

(the LP relations), it was decided to use gapping grammars to investigate the

v

interpreted processing of metarules and ID/LP, specifications. Unfortunately, the
-implementations of gapping grammars (Dahl and Abramson,. 1984) were inadequate.
‘and the theory itself was slightly too restrictive, which lead to the formulation of

unrestrictpd gapping grammars and the development of a system to process them.

1.2. Gaps in Grammars

C

The notion of gaps is not new to formal grammar study: lingd ics; '
programming . lgnguages. It should not, however, be confused with“a’ l‘inguié
definition of gap which refers to the tfrace left by a moved constituent.
Transformational grammars (Radford, 1981) introduce a frace symbol, which is also
called a gap, that occupies the- position of a moved or deleted constituent. For
instance, the WH-movement transformation. (responsible for wh-questions), can be
applied to the question |

(1.10) John will give which book to Mary?

resulting in the following question containing a trace, _
(1.11) Which book will John give _ to Mary? 4

The trace differs from the gap discussed in this paper since it acts as a grammar

symbol which may be present in the sentence, rather.than a meta-symbol which

refers ta grammar symbols. '

Scattered context grammars (Greibach and Hopcroft, 1969) ‘use gaps in the description
of the derivations allowed by the grammar. The grammar rules, however., do not

explicitly use gap symbols. Productions are of the form

(1.12) (A vnAL) > (wyw)

1

v ER 4
where the A's represent nonterminal symbols, and the w’'s correspond to sequences of

terminals and nonterminals. Gaps are introduced by the rewrite relation
. .
(1.13) (XA xn,An.xn?]) => (%,.0,...X .0 X)

associated with each rule. The x's represent gaps of any number of terminals or

nonterminals present in a sentential form. A sentential form is defined recursively as

‘

a string consisting of the start symbol of the grammar,” and any" string. o, that can -

be obtlained from a sentential form, ¥. by the applicaiion of a grammar production,

. 6 .
\ B +
@ v °

==> . These grammars describe a set of languages which are a subset of context-

¥

sensitive languages. . -] .

The transformations of transformational grammars (TGs) (Radford. 1981) can be

viewed as rules containing gaps. For example, a transformation of NP-movement
which allows any noun phrase To be moved into.an empty NP position (subject to
certain restrictions) could be represented by the rules shown below.

(1.14) (a) NP, X, NP(e) --> NP(e); X. NP
(b) NP(e). X, NP --> NP, X, NP(e)

The gap is referenced by X. with NP(e) denoting any empty NP node. (1.14a)

describes movement to the right, while (1.14b) is required for movement to the left.

As was mentioned earlier, generalised phrase structure grammars (Gazdar, 1981)

(Gazdar and Pullum, 1982). which, like TGs, are used in linguistic studies. utilise the

B L

' gap concept within the metarules of the grammar.” The original GPSG framework

contains a context-free rule base and set of metarules which generated new context-
free rules from the} existingy‘ rules. Consequently, a string variable in a melaru‘le
references an unspecified region (or gap) within a context-free rule, The actual
metarule used to generate passive verb phrases resembles

(115) VP —> VNP X ==> VP -> vp“~xx(PP&},)

where X is a gap symbol.

§

Certain programming languages. which are based on patlern malching, also use gaps

in their specifications. In particular, SNOBOL (Griswold, Poage and Polonsky,
1971) possesses functions like SPAN., BREAX and REM for this purpose. The

SNOBOL code

ki

XY

-

T

trans °

(1.16) Rule VP '—>' 'V v 'NP° REM.x :S(Matched)

Matched OUTPUT = VP ~>" v x PP

passive) by

roughly corresponds to the metarule cited in (1.15). If the Rule matches the patte;'n,

-

the new passive rule is printed.

— T -

Gaps have been introduced into logic grammars, resulting in extraposition grammars
(Pereira, 1981) and gapping grammars (Dahl and Abramson, 1984), to express a more

general grammar rule that can be interpreted,"wit}i reasonable efficiency: by a

computer. The rules of these grammars are of the form

0

(1.17) nt, a —-> B A ' : .

’

where ns is a nonterminal symbol called the head,"and o and B may contain terminal

N

symbols. nonterminal symbols, 'procedure calls, and gap symbols. Extraposition
grammar rules also have restrictions on the position of gap symbols within the rules,
and on the contents of the gaps. Gaps may be relocated by the application of the

* rule. Additional details about logic grammars, and logic grammars with gaps, will be

presented in chapter two.

Unrestricted gapping grammars extend gapping grammars in one important aspect.

The adjective unrestricted refers to the removal of the requirement that the left hand.

side of all rules musi start with a nonterminal symbol. Consequently, the

unrestricted gapping grammar rules resémble
(1.18) o —> B

where o and B may once again contain terminals, nonterminals, gaps and procedure
4

s

calls in any order. The formal introduction of unrestricted gapping grammars appears

in chapter three.

Bl

Unfortunately. the use of gaps can result in less efficient computer processing of the

- 8 ’ . N 4 -

rules. Consequentlif. many applications of gap;)ing grammars ‘have not been \ékplored
except- from a theoretical point of view. One ‘method to® circumvent this effiz\ienc_y
problem is to add procedural control to the otherwise declarative grammar rules. (The”
cut f_af:ility of Prolog (Clocksin and Mellish, 1981) is an example of this pro}eedgra?lf”/
intgrvemion)‘. FIGG, a Flexiblg Implementation of Gapping Grammars, is intro‘dt?c%l; Pi\
chapter four as a programming language .that incorporates procedural control -to
provide an implementation of unrestricted gapping gran;mars. It i‘? assumed that the

reader is familiar with Prolog in the discussion of the FIGG implementation in chapter

four. ,

With the aid of this system, one can further examine the uses for unrestricted
gapping grammars, and can examine ‘the use of procedural control to obtain more
efficient computer proééssing of the grammar rules (chapter ‘five). The use of
unrestricted gapping grammars in the specification of natural language phenomena
appears to be the most interesting. Dahl has already ad;/c~>cated their use for

4

unbounded relocation of sentence comivonents and thus for describing free word order
in natural languages (Dahl, 1984). _Unti.l now however, little work has bee-n‘;ione
with respect to their use for partially fr;se word/constituent order. ‘ These grammars
can also be used to describe the metarule‘cb.mp'onen‘t of generalised phrase structure
. , . .
grammars. Thus FIGG might be used as a programm%ng‘ianguaée for' implementings
' systems based on these theories about natural language grammars. However, before
considering these applications in greater detail. it is appropriate to examiﬁe the history

of logic grammars leading to the formulation of unrestricted gapping gram and

the FIGG implementation.

w4
kxai

r
Chapter 2

| X Logic Grammars

0y

L

The use of logic in natural l;mguage analysis has for a long time bee;i a subject of
study for linguisis, vlogicians. and computer scientists (McCawley. 1981_). However, its
mse was usually restricted to the domain of knowledge representation. With the
inLroductioﬁ of logic grammars by Colmerauer (Colmerauer.A1978), logic programming
entered the domain of natural language grammars. Logic grammars differ from
conventional formal grammars since they possess t\ogi/cia"ms as grammar. symbols.
Cc;nsequently. derivations 'ac'cording 0 a ‘grammar may i;xvolve unification rather than
mere replacen;enl of grammar symbols. Throﬁgh the insertion of arbiti'ary predicates
into a grammar rule as pr'ocedu;evcalls, and through the use “of logic variables, a logic
grammar can often provide Jmore concise description for a language than is possible

using conventional formal grammars (Pereira, 1981) (Dahl, 1984).

The logic terms which act as the symbols of a logic grammar consist of a functor,

along with zero or more arguments. Each functor possesses an order, which

corresponds to the number of arguments, and is an element of some finite set F. .

The arguments, which are enclosed in parenthesis and sepa®ated by commas, may be

’

logic terms, or variables. B [F] is used to refe;?o' the set of logic terms that can be

-

constructed from F. H[F], which is also referred to as the Herbrand Universe,

represents the set of logic terms without variables. In this paper, elements of F will

¢

be represented by words starting with a lower case letter, or enclosed in single

quotes. Words which start with an upper case letter or an underscore, . will

]

9

fai

C 10 -
.‘ v P N .
_denote variables: A list, which is a logic term of the form 'Na, . a,..... (a,.nil)...)).

-

is usually represented as [o,.a,. ...:an]. Also, [td] is a shorthand for ''(¢.). During a

»

1 8

derivation according to the grammar, variables may be wiiﬁed' with other logic ternﬁs
(é}ocksin and Mellish, 1981). Logic grammars also tend to possess - facilities " for
handling procedure calls appearing within - the gratﬁmar. rules. Procedure calls are
often used to restrict of rule applicability. to introduce semantic components Vinto the

syntax of a.language, and to obtain more efficient parsing.

Although all logic grammars have the same computational power (recursive
enumerable). restrictions on the grammgr.rule format can make certain languages more
difficult to describe und;f one formalism than {Jnder another. e shall examine
several logic grammars vin order of increasing generality of rule/ format and observe

the change in the number and type of rules required to descripe the sample -context-

. sensitive language s ' -
v . k3

(2.1) L, = {a"v"c" | n > 0}

A
-

2.1. Definite Clause Grammars

Definite clause grammdrs (Pereira and Warren, 1980) possess rules that closely
resemble those of a context-free grammar in structure. Each production has a single

nonterminal on the left hand side of the production arrow, -->, with terminals,

nonterminals and procedure calls forming the right hand side. By convention,

terminal symbols are represented as lists, while procedure calls are enclosed in braces.

\

{1. Although these grammars reser?l’e‘xcontext—free gram‘mars, they derive their

.

recursive enumerable power from the addition of arguments to the symbols. and

obviously, from the arbitrary procedures that can be embedded within the rules.

Based on (Colmerauer, 1978) and (Pereira and Warren, 1980), a more formal, but

-

p_@?.g

F-2

11

not rigorous, definition which exclud"}es\procedure calls can be pfoi}ided. A definite
clause grammar, G, is a qu;dru’ple (VN.VT.Z,P) where V, is the set of nonterminal
symbols, {NCH [F V; is the set of terminal simbols, V,CR[F1! with
"VyNV, = ¢ I is the set of starting symbols; with ZCVy: and P is the set of
productions of the ferm: |
(2.2) nt > B, By ... B,
with nt € Vy. n20, and B,€V for 1€i<n where V = VNUVT.< ‘Ignoring

variable’ substitution, the language, L(G). associated with this grammar is defined by

(23) LG = {weV; I's —>" o for s€I)

In subsequent definitions, 'variable substitution will also be ignored. Details regardmg'

k3

it can be found in (Colmerauer, 1978). S represents the Kleene tlosure of a set S,

5 -
e

with S = U;’_‘;OS". -->" is the reflexive transitive closure of -—>.

2

One can provide a grammar for -the language L, by 'permitting each nonterminal to
have arguments which serve as counters. A set of DCG productions that cerrespond
to this language is given in (2.4).

(2.4) (a) start —> x(zero).
(6) x(A) —-> [a], x(s(A)).
(c) x(Stack) —> y(b, Stack). y(c. Stack) .
(d) y(T, s(Stack)) -->. [T]. y(T. Stack). ,
(&) y(T. s(zero)) --> [TI.)

Rule (b) is* used to produce/parse an_arbitrary number of a's with. A of ;t_(A)
representing the number of a’s that have been generated/parsed so:far.f Counting is
done by the successor functicn, s, with zere, s(zero), and s(s(zero)) representing 0. 1
and 2 respectively. Once n a's have been generated/parsed, rule (c) is \used to request

processing of n &'s and c's by rules (d) and (e). The first argument of the

L

™

1Usuallv the Herbrand universe is used in place of H [F] since variables do not gencra]ly appcar in
terminal symbols. :

12

nonterminal* y(T,S) statés whether &'s or c's are being processed, while the second

%

counts the number of characters that have yet to be generated/parsed. - Figure 2-1

shows the parse tree for the sentence a3b3 3 using these fules."‘

start .

_x(zero) , - —u
[al x(s(zero)) i %';
[a] X(S(S(iero))) '
;1 x(s(s(s(zero))))
y(b, S(S(S(zerO)))) - y(c, s(s(s(zero))))
[b] y(b, s(s(zero))) [c] y(c, s(s(zeto)))
[b] y(b, s(zero)) (c s(zero))

: [b] - [c]

Figure 2-1: Parse Tree for a’b’c? using a Definite Clause Grammar

¥ .
A top-down depth-first parser for DCG rules can be implemented easily in Prolog
by converting each rule.imo a definite clause (Pereira and Warren, 1980). A definite
clause P :-. Ql, Q; 'Qn can be translated as P is true if QI‘ and QZ and ... and Q,

are all true. Each nonterminal

(2.5) fla;.0y - a,)

is converted into a similar logic term with two adc;itiqnal arguments)
- (2.6) flag.a,, ... 0. X, X,) |

The additional arguments. which are called the jnc;)ming ,and outgoing phrases.
corrospond‘I to the phrase to be - Parsed. and the remainder of the phrase after
f(al‘.az;) ilas been parsed. \E}Jrases are ;'epresented ‘as lists. Any terminal

symbol, [term], is replaced by the connect clause

(2.7) o(X,. Word, X,)?

which .wil\l remove Word from the front of X,. énd leave X,. rThe definition of the
connect clause is shown belbw. |

(2.8) c([WordiX], Word, X)

So. (2.4b) could be translated -into the Prolog clause .

(2.9) x(A. _1._3) - o(_1 & _2). x(s(A), _2, _3). " /\

- s

2.2. Metamorphosis Grammars

-

Metamor phosis grammars (Colmerauer, 1978) were the first of the logic grammdrs.
AN % -

The rule format resembles that of the type-O grammars.of the Chomsky hierarchy.
)

Both the left and right hand sides of a rule can contain any combinatién of terminal

and nonterminal symbols.

One can define a metamorphosis grammar, G, in a manner similar to a definite
clause grammar &% a quadruple (Vy» Vg, Z. P) where V. VT; and £ have their- usual

interpretations, and P is the set of productions of the form

N
'

b .

Zh is not actﬁally necessary to have a clause for each terminal symbol. Instead, “terminal symbols can
be incorporated into the arguments of the nonterminal symbols (Clocksin and Mellish, 1981). The addition
of the extra term results in easier readability and it corresponds to the translation produced by C-Prolog

(Pereira, 1984). 7 j s

*(210) a0y ., > BB, B,

-

@ +

with m >0, n2 0, a,€V for 1<i<m, and B;€V for-15j<n. - Once again, the
language, L(G), associated’ with thjs grammar is defined by

2117 L(G) = {weV, I s =->" o for s€ T}

Since DCGs are a subset of MGs, we could use the productions stated in (2:4) as
MG rules for the language Ll.r However. we can éliminate the need for arguments on
the nonterminals by taking advantage of the more general rule \forma‘t aliowed by
MGs. The following productions, which are adapted from (Aho and Ullman, 1972),

can be used to describe L,.

(2.12) (@) s -> [al. [bl. [c].

()" s —> [al, s. b, [c]. : - :
(© [l b—> b, [c] ’ 7 , (: »
(d) [bl b —-> [b],v,v bl) :

N 3
The first two productions are:-used to generate/parse equal quantities of a's, b's and

¢’s. Rule (c) is used to shift the b's to the 1éft, until they reach their final position

as determined by rule (d). A derivation of a’b3c® according to this grammar is

shown in Figure 2-2.

Colmerauef™also introduced the notion of normalised metamorphosis grammars, which

»

are a fgstricted form of MGs that can be converted into Prolog clauses in a siraight—

forward manner (Colmerauer, 1978). MGs in normal form have brodug:tipns of athe

form

(2.13) a, @, . .., o, —> B B,y - .., B, ‘ |

with m > 0, n = 0, o €Vy, a €V, for 2<i<m, and B, €V for 1<j<n The

symbol a; will be referred to as the head of the rule. Any MG may be converted
3

into normal form by following a simple procedure swhich may introduce Yextra

terminal and nonterminal symbols. The procedure, which is d@é;jbed in (Colmerauer,

1978), is summarised below. (Y

[c]

fa] [b] [C] .
” (A
b [¢] b [c]
I e
b} [b] b [c]
L
[b] [b] .

Figure 2-2: Derivation of a’b’c3 using a Metamorphosis Grammar

@I a, is a terminal symbol, replace it by the new nonterminal ‘"nt(al)" .

and add the production "nt(e;) --> «," to the grammar.

@®If «, (for i 22) is a nonterminal, replace it by the new terminal "te(a,)",
and add the production "o, --> te(a)" to the grammar.- ’ ‘

@ Finally, if Bj is a terminal symbol and if Bj is the head of some other
production, then replace it by 'nt(Bj)" and add the rule 'nt(Bj) -—> Bj" to

the grammar.

Normalised MGs may be transformed into Prolog clauses by a process similar to the
one performed on DCGs in order to obtain a top-down depth-first parser. Using the
notation introduced in the previous section, the rule (2.13) would result in the clause

213 (X foy o YD - B,(XX)). B, X,). B(X X)

¥

o — | -
- 16 %
The notation used in. (Colmerauer, 1978) differs slightly. According to (2.14), given
the goal of parsing an a,. first try to parse all of the B;/s. If this parse succeeds, <
.insert the terminals; o;'s, at the beginning of the outgoing phrase argument ,10 be

subsequently parsed by some-outstanding goal.

2.3. Extrapositiogl Grammars

Extraposition grammars (XGs) (Pereira, 1981) introduced the gap qohcept into the o
logic grammar domain. During a derivation, an XG rule allows one to reference gaps
¢
in the left hand side of the rule. and reposition’ them (in the same order) to the
right of all the constituents referenced 'in the right hand side‘g of the r\@ The)
contents of the gaps are also restricted to be nested (one téta]lycontainea in anoihér).
or hon-imex;secting. An XG rule can be connsidered as a ’‘rule gichema,r representing
A . . .

many MG rules-in a single rule, or it may be viewed as a context-sensitive rule, -

where the context need not be adjacent to- the symbol being rewritten.

z) :
v | ‘ o
An extraposition grammarcnay be defined as a quintuple (V. V5, v, L. P) where:
Vye V. and I have their usual interpretations, y is the gap symbol, with y €V: and
P is the set of productions of the form
(2.15) nt, a, y. o, ey e, > B, By, ---. B,
with nt€Vy, m n20, 0%Xi<m O0%jS$n and af.‘Bj € V" Now let

V' = VU{<,>}. The function f: V' — VUfail is defined as

(2.16) (a) flxw)=xflw) a for x€V, w€ V"
(b)) flx)=x for x €V
() A<w>)=flw) for w € V"
(d) flw)="fail L . otherwise

Define the rewrite relation, ==>, between elements of V" as
. >

(2.'17) Yo M Y1 ¥ o Ym % Ymad
==> vy, By By - B, <<e<¥1>Y3> Y > Vi

17

: >

for a production (2.15) if f(y) €V’ forall 1 €i<m, where y, € V'. The language
describéd by grammar-G can be described as
(2.18) L(G) = {flw) |'s ==>" w for s €L, w€ (V,U{<,>}))

==>" is the reflexive transitive closure of ==>.
N i

The extraposition grammar for L, shown in (2.19) does not require shifting rules

like €2.12¢).

(2.19) (a) . s —-> [al, bs, [c].
(b) s => [a]. s. b, [c].
(c) bs ..b --> [b], bs.
(d) bs .. b —> [b], [b]l

i

After rules (a) and (b) have, generated/parsed the required number of a’s, b's, and c's.

rule (c) is used to bring a distant b 1 its final location. Rule (d) is used to
B I '

. N
relocate the final 4. The l;g:c]esm "..\¢ used as the gap symbol, y. A derivation

of adb3c? according to (2.19% appears in Figure 2-3. Each ellipse that appears in this

figure represents the contents of a gap. According to the nesting constraint on gaps.

once symbols are-encased in an ellipse, they lose their individual identities. So

Ssubsequent rule applications must reference the entire eHipse.

-

. L

The implementation of extraposition grammars, which is described 'in detail- in
(Pereira. 1981), tr;nslates the grammar rules into definite clauses for execution by
Prolog. Whereas DCGs required the addition of two arguments to each nonterminal,
XGs need a total of four extra arguments. As with DCGs, ‘two arguments arev for
the incoming and owgoing phrase, while the other two ﬁre used in a similar manner
for the extrapositior. list. While Colmerauer's MG 'Lmlplementation required the °
grammars‘to be normalised by the user, it is done automatically in Pereira’s system.
When processing a rule, like (2.15), with a gap. all of the left hand side of the

3 «

production,- with the exception of nf, is inserted at the front of the extraposition list.

a -

- : N -«

-

*[c]

J
[b] bs &D [e]

[b]

Figure 2-3: Derivation of adble3 using an Extraposition Grammar

This differs from the MG rule p:éoessing,' where these symbols were put into- the
9 ‘

outgoing phrase list. Nonterminals and terminals n?ﬁsy-b@ﬁnder certain conditions,

be "read off" from this list, instead of from the input phfase.

2.4. Gapping Grammars

Gapping grammars (GGs), as introduced by (Dahl and Abramson, 1984), extended
the extraposition grammar rule by the removal of the restrictions on the locations of

the gaps in the rule, and by the elimination of the nesting constraint imposed on the
B

contents of a gap. Consequently, the GG rule has the general form

(220) nt, a =-> B : : “ :

~ where nr is a nonterminal symbol‘ (the head). and o and B may contain terminal

19

symbols, nonterminal symbols, procedure calls, and gap symbols which are

traditionally of the form gap(G,).

A more formal definition of a gapping grammar, G, which is based on a definition
appearing in (Dahl, 1984), defines it as a quintuple (V. V., T, E, P) where: Vne
V;. and I have their usual interpretations, I' is the set of gap symbols, with

I'NV = ¢:; and P is the set of productions of the form

-(221) nt, «y gap(G). a. ..., gap(G). o
-=> B, gap(G). B,. gap(G). B,
‘with nt € V. m. n 20, EUS i<m, 0<jsn, o8, € LA and
gap(G). gap(G') €T The rewrite relation between sentential forms: which are

elements ot V', may be defined as -
(222) ntoay, vy, o ¥y, @ ==> B, Yy By ¥, B,

for a production (2.21) where yi.'y'j € V. The language described by grammar G
can be described as |

(223) LG - {lweV I's =>" w for s€ L}

A valid gappin"g\gf'amfnar for L, which is equivalent to-the XG grammar (2.19)‘is

(224) (a) s -—> [a] bs. [c].
(b) s --> [a], s. b, [c].

(c) bs, gap(G). b --> [b]. bs, gap(G).

© (d) bs, gap(G). b --> [b]. [bl. gap(G).

However, due to the absence of a nesting restriction on the contents of a gap, this is
an ambigﬁous grammar. One derivation for a’b’c3, which differs from the one
fvresemed in Figure 2-3, is illustrated in Figure 2-4. Once again, an ellipse
corresponds to the contents of a gap. Notice' that individual symbols can be removed
from "an ellipse. So tﬁe capacity for more general rules may have unwanted side

effects, like the creation of ambiguity in a %?ammar.

/

20

fo] [b] @

Figure 2-4: Derivation of adb’c3 using a Gapping Grammar

+

The Prolog implementations of gapping grammars presented in (Dahl and Abramson,
1984) generally follow the methods used in the implementation of the oth;r logic
grammars described in this chapter. The rules are converted inu; definite clauses.
with each nonterminal acquiring two extra arguments for manipulation of the phrase
10 be parsed. The gap predicéte, gap(G), is-converted to a clause of the form-

(2.25) gap(G. X. X,) |

which is defined in Prolog as

. [WordlX,]. X,) - gap(Rest. X,. X,).

21

strings . of increasing length. Since the gap predicate is simply a variation of
. (. . :
concatenation, (2,25) is equivalent to

(2.27) appendf“(‘j, X, X))

which appends /42 to G and returns X, as the result.

There are actual]& two gapping grammar implementations presented in-(Dahl and
Abramson, 1984). The first implerﬁemation, which shall be referred to as GG1, is
extremely concise. but the Prolog clauses it produces ‘resﬁlt 1n‘1neff1c1ent parsing. To-
simplify the discussion that follows, we will ?efer to a GG rule lxke (2 21) where

a,. B, € V. Such a rule would be converted into the Prolog clause

(2.28) n(XY) - .
(@) By(X.Xy. gap(G) Xy X,). B(X,.X,). ... gap(G' . X, X5,). B(Xp, 1.2,
(b) aO(Y,Yp), gap(G,.Y,.Y). Yo, (Y,.Y,), ... gap(G .Y, ,.Y,). o (Y, 7).

where termfX,X,) would be replaced with c(XI,ter.m,Xz) for terminal symbols.
‘During the top-down parse of nt, in a manner similar to the MG parsing, the input
phrase is first checkea for a st;'ing satisfying (2.28a). Upon finding it. the parser
then places a new string, generated accbrding to (2.28b), at the front of the outgoing
phrase. The creation ‘of this new string can be inefficient since the variable Y in
(2.28) is usually free when nt(X,Y) is invoked as a goal. Excessive backtracking is
thus required when executing (2.28b) to find a Y that will leave Z. In fact, this can
lead -to cétastrophic results if some a«, equal to nt appears in (2.28b); since the second

call to nt will have both X and Y as free variables!

The second implementation. GG2. described in (Dahl and Abramson, 1984). permits
only a subset of the rules described by extraposition grammars. Not surprisingly.
this is a more efficient implementation than GG1. The rules accepted by this

implementation are of the form

(2.29) s, gap(G), [term] -—-> B, gap(G)

. | @ 22

“

Byt. modifying the definition of the gap predi,cat‘e though. it is possible to permit
intersecting gaps, and thus obtain_a more concise description for some languages‘ than
is possibIe with XGs. The implemeﬁtation is based on a ‘message passing sclieme‘ and
the assumption that the ‘term of ‘(2.29) is a marker which is introd{xced for control '
reasons, to be absorbed by the appearance.of fill in another rule. Details of this

implementation can be found in (Dahl and Abramson, 1984).

¢

It is possible to generalise the gapping grammar definition one step further. and
introduce a similar formalism that does not possess the restriction of a rule requiring
an initial nonterminal. This new logic grammar formalism will form the basis of the

N

FIGG system. ' o—

' .
7
)

{ ‘ h e

Chapter 3

Unrestricted .,, Gapping Gramma]:"s

Tine requirement of a nonterminal head in the production rule 6f | logic grammar
~ formalisms appears to be a product of ’ its need by the top-down d‘;pth-fifst parsers
described in the previous chapter. The introduction of unrestricted gépping grarﬁmar)s
-removes this restriction aﬂd provides a more general rule format which includes all
MG and‘GG rulgs. An um:estricted GG rule will consequently permit a.”fér\;\n’inald /‘\ |

: Ak ¥
symbol or even a gap as the first symbol on the left hand side of the rule.

An unrestricted gapping grammar is a quintuple (VN' Vi. T, E, P) where V. V.
I’ and I represent the same sets described in \the gapping grammar definition, and P
is the set of productions of the form:

(3.1) «, gap(G)). a;. . .-, gap(G,). o,
> B, gap(G' D¢ By gap(G)). B,

¥

with m. n 20, 0€i<m. 0<j<n, a.B, € V%, and gap(G)). gap(G') € T. Rules
where m or n are non-zero are-called gapping rules, since they contain at least one

gap. The rewrite relation between elements of \'A may be defined as

(3.2) % Yy @y e Yy @ ==> By ¥y By Y, B,

)

for a production (3.1) where YY) € V'. Once again, the language described by

grammar G is

(3.3) LG = {weV, Is==>"w for s€L)

With the removal of the nonterminal head restriction associated with gapping

.

23

24

grammars, unrestricted GGs can be used to describe some forms of left extraposition
more simply. To illustrate this point, let us examine the language L', described in)

‘(Joshi, 1983). This language is obtained from

(3.4) L, = {(ba)'c" 2 1)

-

by "dislocating some a’s to the ‘left." 'U'sing an unrestricted GG, this language can be
described by the following productions. . oo

(3.5) (a) s -—> [bl. a. s, [c] ‘ _
(b) s --> [bl. a, [c]. _
(¢) gap(G). a —-> [a]. gap(G).

Rules (a) and (b) correspond to L, the basis of the grammar, while (c) is used to
dislocate an a. (3;5c) can also be gsed to leave an a in its cux\-renrt location if the gap
is empty. The productions are designed 1o allow an a to be moved only once. ”]‘01
provide an equi’valent grammar using GG rules, without shifting b’s to Lhelright.

would require the replacement of (3.5¢), and minor modifications to the first two

-]

rules. One, possible set of productions is illustrated below.

(3.6) (a) s —-> b, a. s [c]
(b) s —> b, a. [c]
(¢) b, gap(G), a —-> [a]. b, gap(G).
(d) a, gap(G). a —> [al. a. gap(G). ‘ 'S
() a -—> [a] \ :
(f) b--> [bl

Since an a can be moved to the left of a b, or to the left of another a, or can
remain where it is. rules (c) and (d) are required. (3.6e-f) are needed since (3.6¢c-d):
cannot’shave a terminal. like [a] or [b]. as a head symbol. If one introduces the
nonterminal symbol, targét, into the grammar, the following gapping grammar rules
can be used to describe L', |

3.7 (a) s —> target. [b]. target. a. s. [c].
: (b) s —> target, [b], target, a. [c]. N
(¢) target. gap(G), a --> [a]. target, gap(G). :

(d) target --> €.

In (3.7). the nonterminal target represenjs a location where an a may be moved to,

25 :
>
while epsilon,‘e, corresponds to the empty string. Rule (3.7c) has the same use as

(3.5¢). Nonetheless, this gapping grammar requires one additional production, ‘and one

additional nonterminal than tHe unrestricted GG described in (3.5).’

&

s

- Along “with easier description of uﬁbounded left relocation of symbols, there is’
anotl;er ;)henomenon that “follows from the remO\;tal "of‘ the nonterminal head
restricfion. The definition of an unrestricted GG does ‘ot prohibit rules i'wembling
"€ > B". This festrict\ion was either impiicit or explicit in previous'lovgic gramma;'
for?na]isms. The‘ use of this type of production rﬁay be unclear, however it can be
used to grammatically characterise a vcertaﬁ:‘i" phenomenon Afound in some spoken
languages, specifically the introduction of words (syllables) like umm and ahh into
phrases.3 Consider the following~ sentence which could be "spoken by an absent

minded person on Chri‘stmas‘ Day. while trying to recall wh> gave whom which
presents. |

(3.8) ' Ahh, I gave umm, John, umm, a shirt.

A grammar that generates this sentence could include the productions "¢ —> [umm]",
and "é ——>‘ lahh]". This style of production could also be used to .introduce
nonterminal symbols (markers), like farget, into arbitrary locations.* With this in
mind, the productions illustrated in (3.7) could be restated as showﬁ in (3.9). ‘

’

(3.9 (@) s --> [b). a. s, [c].
() s -->[bl. a [c]
(c) target, gap(G). a —-> [al. gap(G).
(d) € --> target.

Any target’s introduced somewhere to the left of an a by (3.9d), can be replaced by

an a which is dislocated to the left according to (3.9c¢).

3Thc semantic properties of such productions are beyond the scope of this paper.

1966).

e

“These productions are retxﬁiscem of how markers’ are introduced within Markov algorithms (Korfhage,

{ .

ERa
oty N

-~ &

26

N

*

One other observation about the formal definition of unrestricted -GGs is the absence
of the resgriction "{gap(G)}= {gap(G'j)}". There is no requirement f;gthe same gap to

P

E . v
appear on both sides of the production. GGs did not require this restriction either,
. : ’]

“but this was not discussed ;n the px:evious literature. The effect of this propei'ty is
B

that an arbitrary number of unspecified terminals and nonterminals cou}d -be generated

or absorbed in the parsing or géneration process. Consider the case where "m <n" in

the definition of an unrestricted GG. One possible use for productions of this fofm.

which possess an extra gap symbol on the right hand side. may be for nonsense

sentences. Imagine the following phrase being uttered.

\
n

(3.10) He was so drunk last night, he said “coloured sleep pink elephams."q

The quote of the drunk man could be expresses by the rule "sentence --> gap(C)";.
A case where the left hand side of the rule contains an extra gap. m > n, is
'illustrated in rule (e) of a grammar for L,

(3.11) (@) s > x. vy, [b] a. s [c].
(b) s —-> x, vy, [b]l a, [c].
(¢) € --> target. .
(d) target. gap(G), a —> [a]. gap(G).
(e) x. gap(G), y --> [x] [yl '

L'; is ebtained from L,

(3.12) 4 L, = {(zyba)"" | n 2 1}

by dislocating some of the a's to the left, k;ut the a's are not allowed to be moved
‘between an x and a y. (3.11e) can be used to remove any target’s that are inserted
beiween x and y. However, for this grammar to generéte only L';. it would be -
necessary to insert some control mechanism to ensure that. (3.11e) is used only after
all nécessary applications of rules (é.lla-d) have beeﬁ performed. and to prevent the
gap of (3.11e) from containing other x's and y's. One other exam_pie illustrates one
gap on éach side of the rule where the two gaps are not identical.

(3.13) gap(G1) -—> gap(G2). {quote(G1,G2)}.

27

.~ The predicate quzie adds a quote symbol to :each symbol of G1, returning the quoted ”

symbols as G2. .Consgquently._ this rule will rewrite sentential forms likev,x y z as
x'y z'. A rule similar to (3.13) is described in section 5.2. Other uses for such

rules without the same gap appearing on both sides of the rule is a subject for

*©

further investigation.

To facilitdte furtiler s:t/udy of the uses for unrestricted gapping grammars, and toA
exam’ine.mechanisms for introducing procedural control to provide more efficiently
executable productions, the FIGG programming lan_gua;ge Qas developed. FIGG, a
Fléxible lmplementatibn of Gapping Grammars, is a Prolog programme that implememsv

a large subset of unrestricted gapping grammars.

Chapteréi
FIGG

-
~

FIG@ currently consists of a bottom-up shift-reduce parser and a top-down depth-\

firstfparser which can operate, independently, on a set of unrestricted GG rules. The
syfpfm also provides built-in control operators which allow the user to create

efficiently executable grammar rules. Due to the general form of the unrestricted GG

e

rule, FIGG can alse parse sentences using the rules of formalisms like extrdposition
grammars (the nesting constraint must be added). metamorphosis grammars, context-

_sensitive grammars and context-free grammars.

The implementations of logic grammars presented in chapter two illustrated clumsy

mechanisms for procedural. cantrol. Unless one resorted to arbitrary procedure calls,

the only options available for such control were rule order, the introduction of .~

marker sym&ls or the cut operation. Increased control facilities provided m\FTGG
N~

iﬂclude dominators, which are used to restrict the rules which can be applied to the
symbols introduced by another rule. Different forms of the Prolog cw facility are
available. While the ordinary cur (Clocksin.and Mellish, 1981) pi‘events backtracking
into goals before the cut in the current clause, the local cut prevents backtracking
within a specified region of the current clause. More details on these forms of
procedural control, along with a description of the syntax oi\Q?G, can be found in

the section 4.1. L .

The top-down depth-first backtrack parser incorporates these proced'uralA control

28

~

~
4

—

-~ "\/“"'

T

.

29

mechanisms -in a parser that is based on the GG1 parser described in chapter two. I

.also differs from its predecessor by allowing left recursion in its grammar rules.
: _ :

Rules are still required ‘to have a nonterminal as the head, so it is really only a

- gapping grammar processor. It is more efficient than GG1, but not quite as general.
Specifically, the parse illustrated in 4-1. which uses the set of productions specif“iedrin

(4.1), will not be found: This problem has been christened the nested head pr:dblem"

(41) (@) s->xy 2z .
(b) x. gap(G). z --> [x], gap(G) z.
(c) Y., z --> [y] ' o

54
1/
®.

L N

Figure 4-1: Nested' Head -Problem

v

To parse the sentence xy, (4 1c) must be applied to the y that 1s nested inside the

gap of (4.1b). With thke current 1mplementauon xy could be parsed by rewriting

¥
o

(4.1) in 4 form similar to

£y

(4.2) -(a) s —> begin, x, y. z
>—~ (b) begin, x, gap(G). z —-> begin, [x], gap(G). z. ,
(c) begin. gap(G), y. z > gap(G). [yl.

The nested head problem refers to the inability of the top down parser to parse
structures where the head symbol of one structure is -contained within a ga};. The

head symbol of a structure is .the head of the rule that correspon&ds 1o the structure.

This limitation is due to the parser's depth-first goal-directed control strategy.

Y

»

-

V' -

-) .30

’

The shift reduce parser differs from the top-dowm parser since it operates in-a

bottonf_—ﬁp fashion from the input sentence. According to (Aho and Uliman, 1972). a

shift reduce paréing algorithm consists of a shift ‘reduce fufiction and a reduce .

function. Using a left to right input scan, the shift reduce functior- will ‘either shift

&

the current input symbol onto the stack, call. the reduce function, succeed or]‘bil.

based on examination of the input and the stack. Using the same criteria, the reduce

~

function can replace the top n elements of the stack (B,8,..8,) by the symbol a if

-

the rule a —> B,B,-..B

. IS present.

) -
The shift reduce parser used with FIGq is a variation of this parser.. extended to
allow non—éomext—free rules and gaps. A :najor'difference includes the capacity for a
reduction to p;lace more than one syihbol on the stack, The ;educe function may also
- perform other reductions wa'hile placing -these Ami(ltiple syinbols on the stack. Also.

the input is scanned from right to left to mirror the’ top-down processing. This

allows some control structures to be interpreted the same way by both parsers.

Implementation details are discussed ip section 4.2. e

)

a

The bottom-up parser does not suffer from the same restrictions as the top-down
parser. As with many bottom-up parsei's. ?owever. e-productions, which are of the
form a —> €, can not be used by the parser. Here, a represents any combination of
terminals and nonterminals, and € corresponds to the emﬁty siring. Bottom-up cycles
may also cause problems during parsing. A bottom-up cycle is preser?t if a derivhtion
of the form awpf ==?' w is permitted by the grammar. . ‘Notice that the é—product.io.r

<

is a special case of this restriction.

J .

o

31

4.1. The Syntax of FIGG | :

These two parsers ‘form’ the basis for FIGG, which 'is written in Prolog (Clocksin
and Mellish, 1981). Since there are many similarities in. the syntax of FIGG and

Prolog, some knowledge of Prolog would be beneficial for lg_gérstanding the syntax of

P

FIGG, but it is not compuléory.‘ One can describe /HJL/GGx_;n\termé /gf'?the format

required for specifying the grammar, the control mechanisms pxjov'ided. and the system

A

kS
D

commands available.

" ' \
4.1.1. The Grammar . :
Currently, there can only be one grammar at a . time in the system. As is
traditional im#lqgic grammar syntax, terminal. symbois are _stated'-as lists. Gap
. - ,
S

symbols af?‘\-re’presemed as]ogi'c terms of the for;n gap(G). where the gap is

referenced by a wvariable, G, unique to the rule. Any other logic ierms~ denote

nonterminal symbols. Grammars progessed by the. bottom-up parser are allowed to

" have logic variables as grammar symbols. These variables can unify. with any

lnonterminal symbol during derivations. The empty string is represented b'y the

empty list, [].7 Productions are of the form o

(4.3) RuleNar;v.e : Rule. . ,

where Rule is an unrestricted GG rule, and RuleName is a logic term representing thgl

name of the rule. The Tule name is op-’tional. The colon separaii:ié ‘the rule and its

name appears if and only if there is a rule name. All rules, along with any other

command‘s. rﬁdst be terminated with a period. The start symbol, 0’(0’1,0'2, .. ,a'n),

. of the grammar is specified as

(4.4) starl_‘_symbol ole,.0, o,) / Success.

. Success specifies, in Prolog. what 1o do g/hen an input string is successfully parsgd

according to the grammar: ny 'f/ Success” is omiited. then a parse found message wAll
0

s

32

L
N
t

Jbe displayed for each successful pax;,sa:;‘ FIGG also allows the user 1o specify entire
classes of rules via rule schemata. iih’e‘;\sttgg}//uxe\of a schema is
(4.5) forall Var in [0‘1' o, ... aﬁ], Body

where Body is executed once for Var equal to each o, for all 1 <£i<n. Body may

contain a grammar rule, another schema, or any Prolog code.

4:1.2. Control o ~

-t

.) \
Perhaps the most primitive form. of control is rule order, since rules are examined

" sequentially for their applicability. The other control mechanisms provided in FIGG
include those of most other logic grammars implementations, (the cur, and arbitrary
procedur‘eAinsertiop). along with more sophisticated Ivariations of cur, vcontrol on the
size of the gap. and restrictions’v on applicability of rules (tehtoyugh dominators). When
using control mechanisms, it should be noted that the right hand side of the rule is
_execufed beforé the left hand \side. The top-down parser, however, executes the head
of the rule first, then processeé the right hand side and the rest of the left hand side

of the rule. Each side is processed fronk(left to right.

Procedures

Arbitrary procedures can be inserted- into the right and left sides of a rule by

enclosing the_procedural‘ predicates in braces, {}. The procedures may use variables

referenced in the terminal symbols, the nonterminals, the gaps. and in other

»
e TR

procedures.
Gaps

When the FIGG parser is processing a gap symbol, gap(G). it initially assumes an
empty gap and then attempts to parse the nexi symbol. If the parse fails, it will

eventually -backtrack to this gap and assume a gap containing one more symbol. In

.

this manner, the gap size keeps increasing L;ntil a successful parse is found, or until
all possibilities have been tried. A gap s’ymbol that is processed in this manner is
called an increasing gap. FIGG allows the user to override this default to obtain
decreasing gaps, which are initially assumed to contain the rest of the sentence, an;j
afe decreased in size during backtracking. A decreasing gap is specified as gap(-G).

with both gap(G) and éap(+,G) interpreted as an incréasing gap.

Until no‘w, the contents of the gaps have been unrestricted. This" \{ériety of gap is
known as an essential gap.5 There are also restricted gaps. .The symboilxs&\contained in
.the-gap a’re restricted to be elements of a Specified set. This set can be dwcr;%‘?aby .
a list of valid members, or by a list ‘of elements that are not in the‘vsﬂét. So,

~

: , s .
gap(/abc]G) specifies that the gap, G. can contain only a's, b's, and c’s, while

-

gap("[x,y,z],G) prevents the gap from containing an x, y, or z. More details about

-,
]

gap processing ctan be found in section (4.2).

Dominators

Dominators are used to specify which rule(s) may introduce a symbol that appears
on the left hand side of another rule. The notion ‘is derived from the concept of one
symbol immediately dominding (being the parent of) another in a parse tree,
Currently, dominators can only be used in conjunction with the botfdm—up parser.
For a symbol. sym. that appears on the left hand side of a rule. sym°dom #pecifies
that sym must be introduced by the rule ﬁamed dom. A dominator can not be used
with the empty string symbol, []. Behaviotlr of a dominator can be illustrated using ’

the following FIGG grammar.

SThis term s adapted from the notion of essential varigbles (Shieber et. al., 1983) in metarules.

v t; &
),- \ ¥

34 7

(4.6) (a) start_symbol s.

,) 1: s > [xly.
(¢) 20 s -—=>y. /
(d 3 y -->[bl —
(e) 4 y'1 --> [a]

. ~ —

The language recognised by this grammar is {;a. xb, b}. It is the dominator on (4.?6)/ (.
that permits this rule’s use only aftervrule 1 is used. Consequently, ‘the string cj 15

not included in the language as illustrated in Figure 4-2." Dominators can al/s[o be
specified for the symbols of the input sentence. This is achieved -with the com‘mand ©

(4.7) sentence dom (;X ’

where dom is once again the dominator.

- O

@~ = =~ = 1ot allowed

. eif— . est—— R L L —
A

[a]

5
Figure 4-2: Behaviour of Dominator in a Parse Tree
Cuts

The behaviour of the cut symbol varies. depending on whether it is being processed -
by the top-down or' boittom-up parser." The parsers differ in that the top-down

parser manipulates lists of terminal symbols, while the shift reduce parser works with

sentential forms.

2

35

When the top-down parser is invoked, %he‘conventional' cut of Prolog, 1, prevents
backtracking to goals to the ieft of it in the ¢urrent clausé? Exﬁmine the following
grammar rule. |
(4.8) s —=> w.x Ly z
After a w ana én x have been successfully parsed, the cut is encguntered. Thén 4if y
is successfully parsed but z fails, a 'new parse will be tried for y. Sub)sequent
fa;lure of y will not cause new parseé for w or x to be attempted. Application of
this rule will fail, and the cut will prevent other rules possessing s 55 a head from

' <

being tried in lieu of (4.8).

The effect of the local cut,:(..)!, is to prevent backtracking within a specified
region.
(4.9) s > w, (x, y)!, z
For the rule illustrated in (4.9), the local cutb}revents backtracking into x and y once
.they have succeeded. So, if all of w, x, and y are successfully parsed according to
(4.9), failure to parse z will cause a new parse for w to be attempted. I} this new
parse is found, then x, y and z are tried. The local cut can be useful in co’njﬁnction

with the gap predicate as illustrated in (5.3). -

During bottom-up parsing., the right hand side of a rule is madtched against a
sentential form. A successfﬁl match results in the re}ﬂlacement of the matched i'egion
of the sentential form by the left hand side of the rule. Consequently, cuts — and
other control mechanisms — that appear in the l:ight hand of a rule affect the left to
right matching of the rule to a sentential form. Once the portion of a rule to the
left of a cut has matched a sentential form. a stibsequent failuré in the match

occurring to the right of the cut cannot force the match to the left of the cut to be

reattempted. A cut found in the left hand side of a rule, R, will prevent any

36
subsequent rule, R, from matching a region entirely 10 the right of the cut. That is.
the application of R' to the sentential form resulting from the application of R must
include at least one symbol to the left of the cut. 1f a rule, R, is entirely enclosed

in a cut, (R)!, then the decision to apply R to a sentential form cannot be revoked

once the rule has been successfully applied.

Left Recursion

Left recursive GG rules, liké
(410) nr. a <> na. B8
which&could not be processed by the logic grammar implementations discussed in
chapter two, can be processed by the FiGG implementation. This means that rules
resembling » >

(4.11) noun_phrase(NP.nom), gap(G). noun_ phrase(NP,acc)
--> noun_phrase(NP.nom). gap(G). pronoun(reflex.NPacc)

might be used to process natural language sentences like John wants to shoot himself. .
In (4.11). the arguments of the noun phrase and the reflexive pronoun represent the
parse tree, and the case. Additional arguments for concepts such as person. number

and gender could also be included.

While rules like (4.11) can be directly processed by the bottom-up parser, there are
two restrictions on left recursive rules which are required by the top-down parser.
First, there must be a nonterminal, B8,. in B (4.10) which does not unith nt,
that can be used to break the recursion. The first such nonrecursive nonterminal is
used automatically by the system to break tfle recursion. However, in cases where
there is mutual recursion between symbols, or when some other symbol is desired to
break the recursion (for efficiency '_reasons). the nonrécursive nonterminal can be

explicitly stated as shown below. : -

- 37
(4.12) nm.a—-> B, \nt, B

For example, consider a rule responsible for converting (4.13a) into the sentence

'(4.13b).

(4_.13)' (a) John wants John throws the ball.
(b) John wants to throw the ball.

Ignoring number agreement and verb agreement, this can be described by the following
. L4
rule, where to is used as the nonrecursive nonterminal.

(4.14) np(NP.nom). v(want)., np(NP,nom), v(V) \
--> to \ np(NP.nom), v(want), to, v(V). . .

The second restriction requires that when a nonrecursive nonterminal from a rule R
.appears in the left side of any rule, R, then unless it is the head it must also appear
on the right side of K. Moreover, both instances must be appended with @ followed
by a val"iable unique to the rule. The need for this restriction is described in the

discussion of the top-down parser in the next section. According-to these restrictions,

*

(4.111) could be rewritten as

(4.15) noun_phrase(NP,nom), verb(V)@V1, gap(G), noun_ phrase(NP,acc)
--> noun_phrase(NP,nom), verb(V)@V1, gap(G). pronoun(reflex.NP,acc)

with verb(V) added to the rule and used as the nonrecursive nonterminal.

A

4.1.3. System Commands

o {
FIGG commands are translated into Prolog for execution. If a command is entered
that is not a FIGG command. it will be passed to the Prolog processor for execution.

Consequently. most Prolog commands are also allowed by the -system. A sample

terminal session that illustrates the use of some commands is provided in. Appendix
A ' : S
4) \

Commands can be entered interactively, or they can be read from a series of files

by entering

38

(4.16)- l[file,, file,. file].

As with Prolog. these files may themselves consult other filg.6 T_hef file- name user is

reserved to represent the keyboard and terminal. Files that contain Pfc;log c&ie cAn
also be processed by the system. by using

(4.17) .prolog [file,. file,. file]

If the Prolog file's name is preceded by a minus sign. -. the file will be reconsultgd.

That is, Eye ‘exi-sting "definitions for all predicates defined in the file will be

eliminated and replaced by, the new definitions. Any Prolog file may be reconsulted.

even those used by the lexicon.

»

Currently, ther? can only be one grammar at a time in thg system. To remove .allh
rules associated with a grammar from the database, the clear command need only be
entered. This command also removeS any specified start symbols, and clears all
system flags to their default values. |

+ EY

A lexicon, which is written in Prolog, can be entered with the command

(4.18) lexicon [filei.\gilez. ... file]
The lexicon should supiply a definition for the predicate lo?kup(Stririg,Wprd). Given a
string corresponding to a word of the input sentence, lookup should return an atom
represer;ting thé word found in the lexicon, and should fail ott:erwise. So. if
Strzgng='loves'. then.lookup(String,Word) would result in Word=loves if Lloves were\ in

the lexicon. Entering the lexicon command with no arguments will disable any user

defined lexicon.

The parser can be called with
(4.19) _ parse, input file, output file ‘ X

_where the input and output files, file, and file respectively. are optional. Sentences.

Al

39

’

which are terminated with périods, will be read-and parsed until an end of file,
CTRL-D, is encountered. @~ When sentences are being read for parsing, the FIGG
command prefix, >, is replaced bby the prompt. 7. When parse mode is entergd, the
system will state whether the system will attempt to find all parses, or if it will
look for only a .single parse. Parsing can be suspended., to call the FIGG command
interpreter, by éntering ">" in place of a sentence. This facilitates the changing of
system flags (such as number of parses). The prefix is changed to "?>" at this time

to remind the user that parsing has been suspended. Parsing is coptinued until an

‘end of file is reached. If the same output file is reférenced in subsequent parse

commands, the output will be appended to the end of the file, preventing the

.previous output from being overwritten. An output file can be closed by entering

(4.20) - close file. -

The + and - commands are used to set and cléar the system flag whose name
follows the command. vThe oneparse flag specifies if one parse or‘i\ all parses will be
attempted. A Initially, this flag is not set. So to'r‘equest single parse mode, the
command +oneparsé must be entered. To return to all parses mode, -oneparse can be
entered. When the display flag is set., the Pljolog translation of any rules processed
by the system will be displayed. No rules Are added to the database when’ this flag
is set. This allows the user to examine the translation of the grammar without
modifying the database. Entering -display will return the system to generate mode.
By default, 'the bottom-up parser is used in the system. l_f the top-down pafser is to
be used. the topdown flag must be set before the grammar is read-into the system.
(4.21) +iopdown. ' .
Tt;e bottom-up parser is called by entering -topdown. “ This parser flag should not be

changed when there is an active grammar in the system. The flags command will

display the status of all flags.

40

‘

If the execution of the FIGG processor is aborted. due to an interrupt or an error,’

it may be re-invoked by entering the predica{,e.figg from Prolog.

4.2. Implementation of FIGG

FIGG is written in C-Prolog (Pereira, 1984). and runs in a UNIX® environment on a
VAX 750 and on a Motorola 68000 based SUN Workstation. The source code for the
system can be found in Appendix D. To describe the implementation, it is better to

restate the form of a unrestricted gapping grammar rule as

(4.—22) o, gap(G)). o;. .. ., gap(G)). «a,, ,
—-> B, gap(G)). B;. - . .. gap(G), B,
~with m, n20, 0<ism, 0<jsn, o. B, € VUV, Ulel and

gap(G)). gap(G'j) € TU{e}. (4.22) is equivalent to (3.1). - We can now examine how

: ‘ g ‘
unrestricted GG rules are processed by both.the top-down and bottom-up parsers.

%7~
4.2.1. The Top-Down Parser

s

The top—down parser used in FIGG is baseé on oﬁe of the GG implementations,
GG1, proposed in (Déhl and Abraﬁson. 1984). -For a nonrecursive rule such as
(4.22), processix;g proceeds in muc‘h the same manner as in GGI. The major
difference is that the translation into Prolog ‘will result in each nonterminal,
o, € {a.i}; being replaced by a pseudo-terminal, [te(e)] (Colmerauer, 1978). In
gapping grammar notation, this can be expréssed as | |

(423) a, gap(G,). [te(a))], .. ., gap(Gm). [te(am)] » '
—-> B, gap(G'D. B,. gap(G)). B, -

assiming all a to be nonterminals. This is part of the normalisation process, which

was described in chapter two (Colmerauer, 1978). Each pseudo-terminal is related to

1

its corresponding nonterminal through a normalisation rule resembling

- - R L]
6'I‘rz'u‘lern::lrln; of Bell Labs)

)

41

(424) a faa, a,) —> [te(cozn,‘(al.a2 an))]

[y

Pseudo-terminals and normalisation rules are generated automatic_ai»ly by the system.

The translation of (4.23) into Prolog proceeds in a manner similar to gapping

: grathgr processing. resulting in the clause

425)° aX¥)
(a) ﬂO(XX) gap(G’ KXo X B (X X5) gap(G Xon 2 Xon 1) B, (X,, 1.2). .
(b) gap(G,.Y, YD (Y, te(a)Y) wr 8ap(G Y, 5. Yo) (Y, te(a,).Z).

In (4.i5) we assume that none of the rule.symbols equals €. If some symbol equals
€. replace its translation by "X =X" where X and X' are the incofn‘in‘g ‘and outgoing
phrase arguments. if anyb of the ai's or Bj's are terminals, they are tfansldted as
c(X,ll,a.X) and;c(XZIIB X,;) respectively.” The productions specifigd in (2.24),
which are restated below, 7

(426) (a) s --> [a] bs. [c]
(b) s --> [al. s. b, [c]
(c) bs, gap(G), b --> [b), bs, gap(G).
(d) bs, gap(G). b --> [b], [b], gap(G).

can result in clauses similar to

(427) (a) s({1X.Y) :- <(X.a.X0). bs(_.X0,X1), c(X1,c.Y).
(b)) s1X.)Y) - c(X.a.X0). s(_.X0X1), b(_,X1,X2), c(X2cY)
(c) bs([].X.Y) - o(X,b.X0). bs(_.X0.X1), gap(G.X1,Z). gap(G.Y.Y0),
, c(YO0,te([1.b).2). :
(d) bs([].X.Y) :- ¢(X,b,X0),.c(X0,b,X1), gap(G.X1,Z), gap(G.Y.YO),
c(YO0.te([1.b).2). ‘
(e) b(_1.X.Y) :- c(X,te(_1,b).Y).

-

¢
The first argument of the translatlor&of nomermmal symbols (the recursive argumenl)
is used for processing left recursize rules. (4. 27e) is a mnormalisation rule Flgure .
4-3 illustrates the depth first goal tree for the 'top-down parse of tfe sentencc;.
aaabbbcce shown in Figure 2-4. The superscript associated with each nonterminil

node corresponds to the rule used from (4.27). ‘Since the recursive argument is not

required to parse this sentence, it is omitted ih Figure 4-3.

42

s(x.y)® N
X=~{a,a,a,bb,b.cc.c] ' - L
Y=[]

o(X.a,Y) s n)® fx e o(XcY)
X=[a,a,a,b,b,b,c.c.c] X=[a,a,bb,b.c.c.c] - ‘ X=[te(b),c} o, . X=le]
Y~[a.a,bbb.e.c.c] Y=[te(b).c] Yale] ‘ Y-l
l \ o
o(XaY) sxY)® b(X.Y)(® e(X.c.Y) (X 1e(b) X)
. _ h}
X=[a.a,b,b,bxc,c.c] X=[a,b,b,bc.cc] X=[te(b),c,te(b),c] X=[c,te(b).c] . Kafte(b).c]
Y=[a,b,b,b,ecc] Y={te(b),cte(b).c] * Y=[c,te(b),c] Y=[te(b),c} Y-[c)
-
(c) : - *o,
e(X.aY) bs(X.Y) e(X,eY) e(X,te(b)Y)
X-{a,b.bb.c.ccl X=[bbbeccc X=lete(b)cte(ble] Xelte(b)c.te(b)c] /
Y=[b,b,bc.c.c] Y=[c,t‘e(b),c,le(b),c] Y=[te(b)c,te(b)e} | . Y=fc.te(b).c]
. *
' \\ ’
o(X.b,Y) bs(X Y)Y gap(lcte(0)c]X.Y) gap(lete(b).e]X.Y) c(X.te(b).Y)
X<|b.b,be.cc] X=[b,b,c.c.c] ' Xelete(b),cc] X=[c,te(b) c.te(b)el X-.[le(b),c}
Y=[bbecc] Y=[c.te(b).c.c]) Y=lc] S Y={te(b).c] Y=[c}
y l \ - .
T e(X.bY) : ¢(X.b,Y) gap([c].X.Y) gap([c].X.Y) c(X.1e(b)Y)
X=[b,b.c.ec} - X={b,c.cc] X=[c,cc] X=[c,te(b),c.c] X=[te(b).c.c}
Y=[b.c.c.c] Y=fc,c.c] Y-[c,ci ‘ Y=[te(b).c,cl. Yafc.c]

Figure 4—3; - Goal @or Top—D;wn Parse of a’b’c? \
i
Cuts ‘and procedures that a‘tppear in the rules are inserted directly into the
translation. For\'example. the rule

(4.28) s —> x,\i y. {foo}.

would be translated as~——

43

(4.29) $([1.X.)Y) :- x(_.X.X0), !, y(_,Xo.Y). foo. 3

The local cuts are implemented using the calll predicate. A call to this predicate will
execute its single argument. and once this call succéeds. backtr‘acki,né into thé
‘argument will nét be allowed. |

(4.30) call1€X) :- call(X), ! : fail.

- '

To processj the various gap symbols, backtracking is used to Obtain the various gap
A - ' ‘
sizes. Since increasing gaps are initially assumed to contain no symbols, and are

subsequently increased in size. they can be implemented according to the following

-

»

rules.

(4.31) gap(+.[]) —> [l _
gap(+[WordG]) --> [Word], gap(+.G).

For a decreasi’n'g gap. the order of the rules is-reversed.

(4.32) gap(=[WordiG))' --> [Word]. gap(-.G).
gap(-.[]) -> [l '

The restricted gaps require an addition check to see>if the-Word in .the gap is an
element of the specified set. When a list of valid gap eleménts.‘/XlY /. is provided,
the rule used for the gap predicate is shown beiow.

(4.33) gap(XV1D —> [. ‘ o
gap([XIY][WordiG]) —> [Word], {element(Word,[XIY])}, gap([XIY].G).

Similarly. if an exclusion list is given. the definition is modified by the insertion of

the not operator.

(434) gap(TXYLD —> [,
gap(IXIYL[WordiG]) --> [Wordl, {not element(Word[XIY])}, gap(IXIY)G).

The gap predicates could also be defined more efficiently in terms of Prolog clauses,

instead of grammar rules. but the definitions would be less clear.

Left recursive rules. resembling (4.22) where ay=nr=4,,

- . T ' bk
é‘\; “ | ' # -) ‘) '
. v

, ///"F' T
. , A s
Y ' 44 7
S . , i J
(435) nz, gap(G)). @;.gap(G,). o _
—->, nt, gap(G)). B, ..., gap(G)). B,

‘are interpreted rather than converted into similar rulesfr”ythat are not left recursive. A
simple approach taken in (Popowich, 1985c) invol,vés skipping over the 'r'egiorlx
cor‘respondying to nt to look for the next symbql.. then eXan;ining the gap for a valid
nt. Extending this for (4.35) would result in something similar to |

— &
where B, is the nonrecursive nonterminal, ¢r(8) is the translation of the right side of

(4.36) nx(X.Y) - gap(G.X.Xy). B (XX, nt(GD. er(B). tr(a)

(4.35) with B, omitted and X' used as the argument for the initial incomAing phrase.
and r(a) is| thé translation of the left side of (4.35) with the head omitied. (4.36)
will not work however, since nt will be processed by the predicate nt(G.[]) without

the benefit of the context — that is, the rest of the string.

To process (4.35) the following translation is used

(4.37) | ne([l. X, Y) - | .
o (@) gap(Gap.[RIN].NewB, . X.X, ,). B,(B,.X,, ;.X,,).
— - (b) numgen(N), concaten(Gap.[te(NewB, .8,)IX,,].X". .

(c) nt(B).X"X',). gap(G'}.Xy.X,).)
(d) nonemptylist(B',), 8,(B,.X",, ;.X',,). element([RIN].B'),
‘ (e) gap(G' X, ,.X,). B,(B X, ,.72)

&

(f)‘ gap(G.Y,Y,). (Y te((le))Y,). gap(G,.Y, ,.Y,)
c(YZ‘m_1 e[l).2). '

» The string is first checked (4.37a) for a substring sa_tisf'ying the nonrecursive
nonterr‘ninal. B,. to determine "Lhe‘ applicability of the rule. Recal’l that.> by Qefa:xlt.
the nonrecursive noﬁte;minal is the first 8 that doeé not uhify with a,. If such a
subStringj is found. it is then ’feplaced by a pseudo—tv@-nal which is marked with a

number that corresponds to the rule (4.37b). This prevents the same string from

being used to break the recursion in subsequent applications of the ‘same rule. Then

45

the piodified string is processed according to the rule (4.37c-f), whiie forcing B, to

use the normalising rule to match with the pseudo-terminal marked by the current

‘-applicati\on of the rule (4.37d). The 5-ary gap pfedica}e in (4.37a) breaks the
recz(rsionb\)ffensuring that the current rule, R, will not succeed more than once for
the same gap. rTo /I:.eﬁ"p track of which rules have used \;/ilich symbols as
nonrecursive nonterminals, a recurs;’ve argument, which appears as the first argument,
is automatically generated for every nont‘er{ninal. It conp&ins a list of pairs, where
each pair is of the form' "[RIN]" with R and N integers unique to each rule, and each
application of a rule respectively. The appeararice of @Var following a nonte}minal
causes Var to be used as the recursive argument. Thus when @Var appears on both
sides of a rule the associated nonterminals will poséess the same recursive argument.
So. ihe restricti(;n memio‘ned~ in sectiona4.l.2l ensures that the recursive argument

associated with a symbol is not forgotten when a rule is épplied. The translation of

(4.15) is shown 1n (4.38)

(4.38) noun__phrase([] NP.nom,X,Y) :-
(a) gap(Gap.[1IN].NewRA,X,X1), verb(_,V,X1 X2)
(b) numgen(N), concaten(G,[te(NewRA,verb(V))IX2].NewX),
(c) noun_ phrase(__,NP.nom.NewX,NewX1),
(d) nonemptylist(V1), verb(V1,V . NewX1,NewX2), element([1N},V1).
(e) . gap(G.NewX2,X3), pronoun(_,reflex,NP.acc.X3.2),
(f) c(Y.te(V1,verb(V)).Y1), gap(G,Y1,Y2),

'Wte([],noun_phrase(NP.acc)).Z). o

Now let us examine the use of (4.38) for parsing the nominative noun phrase and the

A

anaphor in the sentence John mixes a drink for himself.

(4.39) noun_ phrase(_, Tree. TJohn,mixes.a.drink .for,himself]. Rest)

We start with the goal

where Tree .will be our parse tree for the noun phrase and Rest will be the

remainder of the sentence after the noun phrase has been found. (4.40) traces the

execution off (4.38) for the goal (4.39). 1In (4.40a). the indented lists before and after

»

-

46

each satisfied goal correspond to their values for X and Y respectively. The indénfed

~

lists of (4.40b) represent the value of Rest before and after the execution of each

clause.

(4.40) (a) = [John, mixes, a, drink. for, himself]
gap([John], [1IN]. [[1IN]], X, Y) ‘
’ [mixes, a. drink. for, himself]
verb([]. verb(mixes), X, Y)
[a. drink. for, himself]
numgen(2) ;
concaten([John], '[te([[12]].verb(verb(mixes)))X]. Y).
[John, te([[112]],verb(verb(mixes))), a. drink, for, himself]
noun_phrase([]. np(noun(profer.John)), nom, X, Y)
[te([[112]].verb(verb(mixes))). a. drink. for. himself]
nonemptylist([_al_b])
verb([[12][]]. verb(mixes). X, Y) /* _a=[112] and _b=[] ¥/
element([112], [[112]D ’ :
[a; drink. for, himself]
gap([a.drink.for], X, Y)

[himself] ~
pronoun([], reflex, np(noun(proper,John)), acc. X. Y)
0 o L
(b) "Rest

c(Rest, te([[112]].verb(verb(mixes))), Y1)
[te([[112]).verb(verb(mixes))) | Y1]
gap([a.drink for], Y1, Y2) A
[te([[112]].verb(verb(mixes))). a. drink. for | Y2]
c(Y2. te([].noun_ phrase(np(noun(proper,John)).acc)), [1).
[te([[112]].verb(verb(mixes))), a, drink, for, .
te([].noun__phrase(np(noun(proper.John)).acc))]

Récall that there was also a restriction in;‘pos‘ed on a nonrecursive nonferminal that
prohibited it from appearing on only the left side of a rule. unless it was the head
of the rule. To see why this restriction is necessary, consider the following rule
which could be used in conjunction with (4.15) to parse the sentence A drink is
mixed by John for himself.

(4.41) noun_ phrase(NPn,nom). verb(V), noun_phrase(NPa.acc) -->
noun_ phrase(NPa,nom), v(v(be).aux), v(V.pstprt), [by]. noun_ phrase(NPn,acc).

47

+~

To obtain the sentence, (4.41) must be applied after (4.15). However, (4.15) will fail
since the nonrecursive nonterminal, verd(V), requires mixes to be present in the

sentence. Mixes would be introduced later by the application of (4.41). » :

4.2.2. The Bottom-Up Parser

The bottom-up shift reduce parser used with FIGG is based on the prédicates
sr_'_parse(lnpuf,Stack,NewStack) a‘nd reduce(Stack NewStack). The arguments -of
sr_parse correspond to the input phrase, Input, the initial stack, Stack, and the stack
after the parse has been attempted, NewStack. -Sr_pdrfse will shift one input symbol
at a time onto the stack, and will let the reduce predicate perform zero or more
reductions on the stack symbols. Recall that the input is processed from right to
“left. The actual Prolog definition of this predicate is shown in (4.42).

(4.42) sr_parse(WordlRest), Stack, NewerStack) :-
sr__parse(Rest, Stack. NewStack), reduce([WordINewStack], NewerStack).

sr__parse(f], Stack, Stack).
The decision to perform a reduction is determined by tihe Prolog control strug:turé
according to the orde;' of Lhe,cléuses.‘ Reductions are attempted in an order that
‘corresponds to the order of the grammar rules. Initially, if a reduction is possible, it
will be performed. Backtracking to this decision will cause it to be revoked. The
parse of tﬁe entire sentence succeeds if the start symbol is the only symbol left on
the stack. For a sentence. Sentence, a parse is requested by thé top-level goal

(4.43) . sr_parse(Sentence.[].[s])

where s is the start symbol.

)

H this parser only had to process context-free rules of the form
(4.44) o --> B, B, .. B,

then each reduce predifdte could resemble

48 \

(4.45) reduce([B,.B,.....8,/X]. NewStack) :- reduce([aX),NewStack)..
" This 'would feplace the top n symbols of the stack that correspond to the right hand
side of (4.44)4>wi1h . and then attempt further reductions on the stick. The
predicate reducé(X,X) is used when no reduction takes place. | Since FIGG must also
processrcbmext—sensitive rules, more than one symbol must be added to the stack.
One might therefore be tempted to translate)
(4.46). a @y .oa —=> BB, .. B,
as follows. ‘ N - ’ : -

~a_ . where ¢ 1, during the next
- reduction application. Therefore, reductions after the addition of each :)‘: to the stack
must be allowed. To achieve this, the following translation of (4.46) is used.

:)

(4.48) reduce([Bl.BZ,...,BnIX].NéwStack) - sr_parse(la,.a,....a_].X NewStack).
The sr_parse predicate will add the new stack symbols. one by one, : and allow

reductions to take place. To simplify the translation procedure context-free rules are

also translated in this manner, although this results in less efficient parsing.

Until now, the translation of the gap symbols and ‘procedural control that may
appear in the rules has been ignored. Gaps and control that appear on the right hand

side will affect the pattern matching of the stack symbols. Placement of gaps and

control in the left side of the rule will influence the symbol ge;zeration of the new °

stack symbols. The patt?fn matching process‘occurs first as .specified by the left to
right processing of the right hand side of the rule. Afterwards., the symbol
generation is‘ done, also in a left to right fashioh. We shall now examine how ‘gap
symbo]é. cuts, procedures, and dominatérs are incorporated in the translation of the

rules into reduce predicates. . .

49

¥

To incorporate gap symbols intc these trz;nélations, the same definition of the gap
predicat'e as’ presented in the description of the top-down parser can be used. The
gap symbols that appear on the right hand side will contain stack symbols that. can

be inserted into the new stack by the gaps on the left side of rule. Consider the

N

following unrestricted gapp‘i&g grammar for L,.

(4.49) (a) s -> [al. [b]. [c].
(b) s -->[a). s. b, c]
(c) [b]. gap(-.G). b. c.>‘§j> [v]. [b), gap(-.G). [c].

According to the translation prlZcedure presented so far, this would result in the

generation of the clauses listed below,

(4.50) (a) reduce([[al.[b].[c)X].NewStack) :- sr__parse([s].X,NewStack).
(b) reduce([[a).s.b.c’X).NewStack) :- sr_parse([s).X.NewStack).
(¢) reduce([[b].[6]X0).NewStack) :- gap(-.G.XO0.[[c)X]), gap(-.G.YO.[b.cD.
sr__parse([[b]iY0),X NewStack). ' '

Figure 4-4 shows part of the goal tree for the parse of the sentence a3pic? using the

¢ clauses provided in (4.42) and (4.50). In this tree. reduce and sr_parse are

abbreviated as rd and sr respectively. This goal tree corresponds to the parse - shown

in Figure 2-4.

Procedures. which are included in "braces, can affect pattern matching and symbol
generation. They ére inserted directly into the definition of reduce for the rule.
However, with the addition of procedures. it is necessary to ensure that the correct
order of pattern matching, procéd,ure execution, and- symbol generation occurs.
Consider the following rule which is similar to (4.49¢9, but does not permit an empty
gap. |
(4.51) [bl. gap(-.G). b, ¢ > [b], [bl. gap(-.G), {G\==[]}, [c].

During the pattern match, the procedure call should be executed before the attempt to

[

match the /c/. This is done in the following translation. : .

50

sr(X.Y.2Z)
X={[a]fa].fal.lb]ibl.[blic]lc])lc]}
. Y=(]
. . Z=ls))
sr(X,Y.Z)/ \x,v)“"’
X=[fallalibl.lblIblicllc].lc]] X-llals,bell
. ' Y=[] Y-=[s]
Z=[s.bc]
s(XYZ) \m(x.v () se(X.Y.ZY
X=[lal.[b].Ib][bl[cLlc]lc]] X=[{a]s, 6% b.c) X-[s]
Y=[} - Y={s.b.c] Y~|]
, Z=[s.b.c.be]) Z-[s)
sr(X,Y.2) rd(X,Y)® sr(X.Y.Z)
X=[[bl.Ib].[bl.lc]lc]lc]] X=[[al{b]ic].bc.b.c] X<{s]
Yei] Y=fs,b.c.b.c) Y=[b,c]
Z=[[b]yf],b,c,b,c] - Z=[s.b,c] ~
sr(X.Y.2) se(X.Y.2))
X=[[bl,[b].[c][c]le]] X=|s]
Y=[] Y=[b.c.bc]

Z=[[b][c].b,c.[c]] Z=|s.b,c,bc]

si(X.Y.Z) rd(X,)
X=[lb][c].lc]lcN X=[{bl[bl.[c].b,c.lc]]
Y=[) Y=[[b)lc]lb.c.b.c]
Z-{{bl 1) e]] /
rd(X.v)© gap(G XY) gap(G.X.Y) si(X.Y.Z)
X=[[bl[bj.lc]lc]c]] G=llc].b.e] G-llc]b.c] X~[[bllclb.c.b.c]
Y=[[b][c].b,=[c]] X=[[c].b.clc]] X=[lc)b.cbc] Y-~(]
~ Y=({c]] . Y=([b.c} Z=[[bllclb.c.b.c)
gap(G,X.Y) 2ap(G,XY) sr(X,Y.Z)
G=[{c]] G=llc]) © X=[[bllc)b.]
X=[fe)lclic]] X=[{c]b.c] T Yallel)
Y=[lcLlc]} Y=[b.] Z=[[bllc],bc.lc])

Figure 4-4: Goal Tree for Shift-Reduce Parse of a’b3c?

(4.52) reduce([[b][b]X0].NewStack) :- gap(-.G.X0.X1), G\==[], X1=[[c]X],
gap(-,G.YO.[b,c]). sr_parse([[b)lYO].X ,NewStack).

This translation and (4.50c) are very similar except for the appearance of the
procedure call and an extra variable, X1, in (4.52). The extra variable is required 1o

defer the match of the [c/ until after the execution of "G\=={]".
2,

51

When a cut appears on the right ‘hand side of a rule, it is interpreted in exactly

the same manner as a procédure call. In fact, enclosing the cut im braces will result

in an identical translation as a dare cut. The cut prevents backtracking into regions

before the cut during the pattefﬁ matchi_ng“ i)hase. The "Ieft hand side may contain a
single cut, but this cﬁt behaves differen'tly than the .conventional cut. In the
translation, the symbols to theﬂle‘ft of thel cut are placed into the Inpwt argument of
sr_reduce. with the symbols to the right of the cut placed directly onto the stack.
Thus, a l;ule with a cut at the right end of the left hand side is equivalent to a
similar rule without ﬁle cut. This use of the cut prevents any reductionp attempts
until after the first symbol to the left of the cut has been pfaced onto the stack.
Consider the following rule which results from modification of (4.4‘9‘c).

(4.53) [b]. & gap(-.G). b. ¢ —> [b]; & [b]. gap(-G). [cl.

The translation method for cuts would result in a clause similar to

(4.54) reduce([[bIX0],NewStack) - !, X0=[[bIX1], gap(~.G.X1[[c)X]). gap(-.G.Y.[b.cIX),

sr_parse([[b]].Y.NewStack). e

e

Loc;ai cuts are oncé again implemented with the calll predicate. . So, the translation
of
(4.55) [o]. 1. gap(~.G). b. ¢ > [b]. 1, [b). (gap(-G). [cDL.
“would result in the following Prolog code.

(4.56) reduce([[bJX0].NewStack) :- !, XO=[[bIX1]. call1(gap(-.G.X0.[[cIXD),
gap(~.G.Y [b.cX]), sr_parse([[b]].Y.NewStack).

There is a special case of the local cut in which the entire rule is enclosed in the
cut. |
(4.57) ([bl. 1. gap(-.G). b, ¢ —-> [b]. [b]. gap(-.G), [cD.
While cuts within a rule affect the pattern matching and symbol generation, this local

cut prevents backtracking once the rule has successfully reduced the stack. -

-

AN

52

(4.58) reduce([[b] [b)IX0].NewStack) :- gap(-GXO [[C]lX]) gap(G.Y [b.cX]).
i‘\ st__patse([[b]].Y.NewStack),

This also prevénts any subreductions done by sr__parse in (4.58) “from being
reattempted. \}

The dominators work in conja?lction with the rule name. For veach grammir
symboi, x, the stack symbol is actually of the form x Name. When a dominator 1s
specified for a rule symbol, it\ becomes the »Name of the stack symboi. Each symbol
‘ of the\right side of the rul€, y, is iranslated into yARtﬂ&Name where RuleName is the
name of the rule. If the rule_;:l,o\es not have a name, the system gives it a unique
name. ThL;S the specification of a dominator during the symbol generation stage, will
result in a staék symbol that \;/ill match only the specified rule during subseqﬁent
pattern l‘ métching stages. Since‘ dominators can' also be specified for gaps, a
redefinition of the gap. predicate is required. The gapD’ predicate is similar to gap
except that it possesses an extra argument (the first argumér}t) whiclrl is used for the
rulename. This argument is the Name. of eaéh symbol contained in the gap. The -
name $undef is reserved to signify that no dominator was specified for a gap whfcy}:

is on the left hand side of the rule.. So, consider the following efficient grammar.

(4.59) . (a) s --> [a]. [v] [c]). ‘ -
(b) s --> [a], s. b, c.
(¢) ([bl. !, gap(-~.G). b, ¢ —> [b] [bl. gap(G, [eh. T

Since no rule names are specified, the system will generate them. Assuming that
(4.59a-c) are named 1, 2, and 3 respectively, reduce clauses similar to the following

would be generated.

(4.60) (a) reduce([[a]"1,[b]"1.[c]"11X].NewStack) :- sr_parse([s"D1].X.NewStack).
(b) reduce([[a]"2,572,b"2.c"2IX],NewStack) :- sr_parse([s"D1].X ,NewStack).

(¢c) reduce([[b]"3.[b]"31X0].NewStack) :- gapD(3.-.G.X0.[[c"3]}XD,
gap(‘Sundef’-,G,Y.[b"D1,c"D2IX]), sr_ parse({[[b"D3]].Y.NewStack), !

> -
The actual translation produced by the system differs slightly but is equivalent to

- 53 s,

(4.60). This discrepancy arises from ‘the desire for a concise translation procedure,
which can be found in Appendix D. .The actual translation of (4.59) produced by
FIGG is shown in Figure 4-5.

reduce([[a] $name1,[b]"$name1,[c] $namell_36]._29) :-

_39=_36.) >

sr_parse([s”_37],_39,_29),

true. .
reduce([[a] $name2 s"$name2,b"$name2.c"$name2|_36),_29) :-

_39-_36, ;

sr_parse([s"_37]._39,_29), (

true. ’)

reduce([[b]"$name3 [b] $name3|_36].,_29) :-
gapD($name3,-,__43,_36.[[c]"$name3|_37]).
< 38=1I. : ’
gapD(Sundef ,-,_43,_44,[b"_39,c"_40_37]), -

sr__parse([[b]"_411_38],_44,_29),

ol
) .

)

Figure 4-5: FIGG translation of an Unrestricted GG Rule

Chapter 5

Apphcatlons of
Unrestricted Gapping Grammars

Uﬁre%tricted gapping grammars, as implemented in FIGG, can be considered as a
programming language, and can be used to parse sentences according to a grammatical
specificétion. Few studies have been done to examinelthe applicability of gapping
grammars as- a progtamming tool, since the earlier ixﬁplémentations were either
inefficient or proceésed too small of a Subsé; of these grammars. As a programming
language, the recursive enumerable power of unrestricted gapp‘ing grammars is a

benefit, not a hindrance. We will first examine the use of procedural control with

unrestricted gapping grammars. Then, FIGG will be used to examine the use of

unrestricted gapping grammars in describing free and partially free word order

languages, and in implementing the metarules of generalised phrase structure

&

grammars.

5.1. Use of Procedural Control

Procedural control can be introduced into the productions of the grammar to restrict
the language described, or to improve parsing efficiency. In this section, we shall use

N

iliar formal languages to examine the use of the wvarious control

a selection of

mechanisms.

iz

Since initial results suggest that the determination of what goes into the gap to be

54

55 -

e

one of the major problems (the gap determination_problem, (Dahl, 1984)), procedural

4

control can help determine the contents of a‘gap. Consider- the context sensitive

-

language. L, = {a™b"™d” | mn 20} A set of productions (Dahl, 1984) of a
R - ' a
grammar, G,, that describes this language is provided in (5.1).

(5.1) (a) s --> as, bs, cs, ds.

' (b) as. gap(G). cs —-> [al, as, gap(G), [c]. cs.
(¢) s, gap(G). ds —> [bl. bs, gap(G). {d]. ds.
(d) as. gap(G). cs —> [al, gap(G), [c].
(e) bs, gap(G). ds —> [bl, gap(G), [d].’

Behaviour of. FIéG with this grammar and with strings of incre;sing lehgth is
summarised in Table 5-1. Times are in CPU seconds for a SUN Workst;ltion running
C-Prolog (Pereira, 1984) under UNIX. The first number represents -the time required
for a successful parse, and the second number includes .the time spent looking for all
other possible parses. The results expose a severe parsin‘g problem for G; with
increasing sentence length. However, closer examination of (5.1) illustrates that the
ga;;s should result in the ith a ma;éhing the ith ¢, and similarly for the b's and d's.
If a decreasing ‘gap is used in the productions. then the first successfulﬂ gap followed
by a ¢ (or d. depending on the rule) will result in the 'correct matching. - A cut can
‘then prevent the other alternatives from being tried. Thus, G] is obtained by
modifying (5.1b-e) as shown in (5.2). resulting in much improved performance as
iilustrated in Table 5-1.

(52) (b)) as. gap(-.G). cs —-> [al, as, gap(-.G). [c]. !, cs.
(c) as, gap(-.G). cs —> [al], gap(-.G), [c], .
(d)- bs, gap(-.G). ds —> [b], bs, gap(-,G), id], \. ds.
(e) bs. gap(~.G). ds —> [b], gap(~.G). [d]. *.

While G, and G are processed by the top-down parser. G] in Table 5-1 represents a
grammar equivalent to G"1 that is processed by the bottom-up parser. The

productions of 'G‘l' are provided in (5.3).
|

Ve

e T

-

—

(5:3) (a) s —> as, bs, cs, ds.

(b) - (as, !, gap(-.G), cs —> [a]. as. (gap(-.G), [c]!. cs).

(c) (as, 1. gap(-~.G), es —-> [al. gap(-.G). [c]). “

(@) (bs.). gap(-.G). ds —> [b. bs. (gap(-.G). [d]. gs)!.

(e) (bs, !, gap(-.G). ds —> [b], gap(-.G). [d]. \\{\ (™S
. , N

In this case, the bottom-up processing takes about two and a half ti}pes longer than

[
4

top-down parsing. - ,
: Ve ™~ -
,’f 71 ;’/
Table 5-1: Parse and total analysis tifies_for a™bT¢™d™
T~ - =~ N
grammar ma=1 . m=5 m=18 + m=15 ' =20 m=25 m=30
G, | e.1 1.4 9.8 32.
| ©.2 6.3 85. 420.
r __ \
G, | o1 8.5 . —1.6 3.2 5.4 8.4 12.
] 0.2 0.7 1.9 3.6 6.0 9.9 13.
\ ‘
G, | o2 1.4 4.0 8.2 4. 22. . 30.
| 0.3 1.5 ___ 4.3 : 8.7 15. 22. 31.

Now consider the productions that describe the language L, = {a"b"c" | n > 0}.

(5.4) (a) s —> [a]. bs, [c].
(b) s -—-> [al, s, b, [c]
(c) Baygap(G)..b —> [bl. bs, gap(G).

(d) bs --> [b].
W
Unfortunately, a gapping grammer containing these productions would be ambiguous.

ar

It should be noted that these productions, would not form an ambiguous extraposition

. A
grammar. The ambiguity can be removed through modification of (5.4b-c), as shdwn
. _ ,

in (5.5), resulting in a new gapping grammar G.

(5.5) (b). s --> [a]. s. b, ¢.

(c) bsgap(G)bc—->[b]bS“§(G)|l 1

An unambiguous unrestricted gapping grammar. G}, Wthh has one less production and

one less nonterminal symbol than G"2 can also be provided for this language.

) 57
~(5.6) (@) s —> [a]. [b] [c]

(b) s> [a] s b,.c. - ' .

(c) ([b) . gap(-G). b. ¢ > [b]. [b]. gap(-G), [c] . s

The parse times for various sentences, wﬁ«&ge\RG'2 and G are processed by the top-

down and bottom-up parsers respe:tively. are summarised in Table 5-2. This time,

the bottom-up parser is slower by a constant multiple of three. Further deve‘lopment:

on this Prolog parser may improve its efficiency.

Table 5-2: Parse and total analysis times for a”’b™c™
Y C > © ¢

grammar =1 m=5 ~mE10 m=15 m=20 m=25 ‘m=30°
7 .
¢, | e.1 e / -7 . 1.3 2.3 3.5 5.0
| e.1 . T ve.s 1.7 2.7 4.0 5.7 -
1 - . T~
G5 | e.1 1.7 . 3.7 6.5 1. 15.
| 8.1 e 4.5 7.9 12. 18.

)

Thus, the.‘ results illusu<e that the introduction of some limited procedural cgrrxtrolr
can be done ‘S‘imply‘ with very beneficial réeults. Without its infroduction, the
procéssing time may be intolerable in some cases. Ity will not always be possible
_ though, to intrdduce simple restrictions on gaps and parsing.; The effect of a control
mecha,ni‘sm is also very' dep'endeﬁf on the grammar itself. As illustrated in the

examples. the same operator — the cut — can result in more efficient parsing, or can

restrict the language described by the grammar. The determination of which control

-

to use, and how to use it, is the responsibility of the person’ who contructs the

Y
~—~—"grammar. Obviously, more study of procedural control is required.

2

g - ‘ 58

H

5.2. Description of Non-Fixed Word Order

LY

One of the benefits that has been cited for gapping grammars .is the e#se with |
which they can dé;cribe lanrguag’es with free 'wofd order (Da;hl; 1984). ~ MGs.
augmented with a capacity for jﬂoatiﬁg terminals: have aalso been used in an attempt
to grammatically captﬁre partially free word order '(Bién‘et.all.. 1980). Flua_zing
terminals, as opposed ‘to the con'ventional,anchorea' Terminal symbols, are introduced
into the MG rule. They den(;te symbols that méy be found in a sentenéé ahywhere ‘
to the right of the position specified in the rule. However.,arbitrary relocation of
nonte;-minal symbols in not permitted. @ While this method Ssuccessfully describeQ
_ totally free word ord;er, it can not adéquately capture ;'eslrictions on symbolA
relocation of a partially free word order language in a concise form. We shall
éxamine the uée of "FIGG for processing totally fre¢ word order and partiallyy free
8 .
wor\d order languages by provid;ng unrestricted gappiné grammaré that describe the

o’
languages. : s ‘

S

“' 5.2.1. Free Word Order _ - m . s

Dahl proposed the ﬁse of GGs for describing totally free word ordér (Dahl, 1984).
As with' ﬂoatir;é terminals, the unrestricted relocation of a‘ symbol - is ;)btalined by)
‘rs’hift’ing symbols to the right.

(5.7) sym, gap(G) -—-> gap(G),;ym. ‘ {

A symbeol, s.yrh,“jnsv shifted to the left by shifting of all sglmbqls between sym_and its
new location to the right. Since GG rules can not start witl; a gap symbol, direct
specifigation of left shiftin‘g is not possible.k However, it could be described using an
unrestricted gapping grammar rule of the form |

(5.8) gap(G). sym —~> sym. gap(G).

59 , : .

Latin verse is an example of a language that allows an arbitrary rearrangement of

words. Since FIGG has been shown to have trouble parsing sentences of increasing
. .

length, the grammar shown in (5.9), which is an.extension of one found in (Dahl,

11984). waS examinéd to. determine if FIGG encountered’ a similar problem with it.

This grammar does not include restrictions on person/number agreement. The last

four rules of (5.9) give the languagel its free word order property. Table 5-3

symmarises the reSults obtained using the top-down pafser on the sentences shown in .

- ;!
(5.10).
(5.9) start_symbo! sentence(Tree) / (write('Parse Tree:’}, writetree(Tree))
sentence(s(NP,VP)) ’ ‘ —> noun_phrase(NP,nom), verb_phrdase(VP).

ki

verb_phrase(vp(ABL,DAT,ACC.V))«——> prep_phrose(ABL),'ﬁgun_phrose(DAT,dat).v

n?un_phrose(ACC,acc), verb(V,acc_dat). :
verb_phraose(vp(DAT,ACC,V)) —> noun_phrase(DAT,dat),
noun_phrase(ACC,acc), verb(V,acc_dat).
verb_phrase(vp(ACC,V)) —_> noun_phroﬁe(ACC,acc), verb(V,trans).
verb_phrase(vp(V)) . —> verb(V,intrgns).
nbun_phrose(np(N).Case) i —> noun(N,Case,Gender).
noun_phrase(np(N,ADJS),Case) —> noun(N,Case,Gender),

adjectives(ADJS,Case,Gender).
{

prep_Bhrase(pp{PREP,ABL)) —> prep(PREP), noun_phrase(ABL,abl).

adjectives(ADJ,Case,Gender) —> adjective(ADJ,Case.Genaer).
adjectives(adjs(ADJ,ADJS),Case,Gender) —> adjective(ADJ,Case,Gender),
adjectives(ADJS,Case,Gender). . .

npun(n(Wordj,Casé,Gender), gap(G) —> gap(G), [Word],
fdict(noun(Case.Gendey) ,Word)}.

odjective(adj(Word),Case,Gende), ng(p) —> gap(G), [word],
fdict(adjective(Case,Gender) ,Word)}.

verb(v(Word),Type), gap(G) —> gap(G), [Word], idict(verb(Type),Word)i.

’ prep(prep(Word)), gap(G) —> gap(Q). [Wo;d]. idict(prep,Word)}.

1

@

(5.10) (a) vir est.

(b) puella puerum amat.

(¢) “puella bona puerum amat.

(d) puella bona puerum parvum amat. \

(e) puer bonus puellae parvae florem dat.

(f) puer bonus puellae parvae florem rubrum dat.

(g) vir bonus vetus puellae parvae florem. rubrum dat.

(h) vir bonus in agro puellae florem rubrum dat.

(i) vir bonus in agro puellae parvae florem rubrum dat.

(j7 vir bonus in agro rubro puellae parvae florem rubrum dat.

Table 5-3: Summary of results for parsing according to the latin grammar

sentence length borse time tota! time parse time . total time
(words) (sec) . (sec) reverse (sgé) reverse (sec)

I

(a) | 2 0.2 8.5 0.3 0.5
I

(b) | 3 0.3 0.7 0.3 0.7

I

(¢) " | 4 .8 1.2 0.9 1.2

STy . | N

(d) | 5 1.2 1.8 1.3 ' 1.8
| ‘ .

(e) T 6 2.1 3.2 2.2 31
| ')

(f) I ., 7 3.1 4.7 3.5 4.8
l «

(9) | 8 8.0 12. 8.4 12
| 2.3 - 2.3
I

(h) | 8 3.5 6.3 4.0 6.4
! .

(i) | 9 5.9 9.9 6.4 9.9
l .

<. (j) | 10 9.6 14. 10. ‘ 14.
~ .

‘

The results illustrate satisfactory behaviour Wwith increasing sentence length. The

exponential growth is still present, but not to the degree observed with the rylé

illustrated in (5.1). One may even be tempted to improve the efficiency by placing a
. ; .
cut, !, at the end of the last four clauses to prevent backtracking. But, it is worth

noting that when a sentence contains two adjectives which modify the same noun, the ,

r

introduction of the cut would prevent both parses from being found. (5.10g), which

Ty - ’ ~

61

is shown below along with its translation, is an example of a sentence with this

l

property.

(5.11) (a) vir bonus vetus puellae parvae florem rubrum dat.
(b) the good old man gives the small girl the red flower.

5.2.2. Partially-Free Word/Constituent Order

While totally free word order may be ve;'y easy to describe with GGS,' most mnatural
languages possess some restrictions on the location*df the phrasal constituents. The
immediate dominance/ linear precedence format-for grammar rules, which”is used with
generalised phrase stru.cture.gx;ammars (Gazdar and Pullum. 1982), allows a concise »
description of a potentially very large set of context-free rules vthat describe the

-allowed constituent. order.

Recall that an immediate dominance (ID) rule resembles a -context-free rule, but it
specifies only that the symbol on the left hand side of the rule immediately

L
dominates (is the parent of) the symbols of the right side. The order of the right

hand ‘Si|de symbols is not restricted t;y this rule. Instead, it is restricted by the
linear precefience (LP) relations. A linear precedence relation, B, < Bj, is a transitive
Pre]afioxi between two symbols of the grammar, .Bi z;nd B, that states which symbol
must precede the other if they both appear in the right hand side of a context-free
rule. Not all context-free grammars can be described..using the ID/LP fqrmat. For

example, if the symbol sym precedes another symbol sym; in-one context-free rﬁlg,

the reverse order can not appear in any context-free rule.

Although ID/L%gélations are intended to represent a collection of context-free rules,

~

(which will be referred to as base rules), they can be interpreted by a collection of

urfrestricted gapping grammar rules that contain procedural control. The miethod for

N
il

62 ’
converting an ID/LP specification into a unrestricted GG will be called the ID/LP -

UGG conversion procedure. Let us first consider how to convert a singlé ID rule /;0
Vi
~) /

(5.12) rt —=-> B, B, .- . B, - B e
into a FIGG specification according to the LP restrictions. ,//
‘ . ya

o

We will assume that each ﬁ[_ 1s unigue. . An ID rule where each ﬁl is ﬁ:ﬁ/{que will

B

be called nonambiguous. let B = UT_ {8} .If B,=B; and i <. then T.hx’.s ambiéuous

ID rule can be converted to a nonambiguous ID rule by the following thq‘}ée steps.

‘® Replace Bj by ‘a new symbol B} which is unique to the rule. i

® Introduce the linear precedence pélation B, < ﬁ;.

a

4

® Add the rule B} —-> B} to the grammar.

From the »nonambiguous ID rule, construct one context-free rule that does not
violate the LP restrictions. (This is trivial if we assume thai the order of the
symbols on the right hand side of the ID rule does not vioiéte the LP restrictions.)
(5:13) nt —> B,. B, . . . B,

Given this context—freé rule, we can obtain all other permutations of the B/s that are
~allowed by the LP restrictions by introducing a gapping rule similar to

(5.14) gap(G). B, —> B, gap(G)

along with the following restrictions.

(5.15) (a) Each symbol. B, can be relocated at most one time per derivation.

(b) For each symbol, g, contained in the gap. G. the LP restriction
g < B, must not be present. : _

The first restriction ensures that the procedure will terminate, while the second

prevents violation of the LP restrictions.

v

Let us examine one methodvj_gr\i:i)rporating the first restriction into the grammar.

e

RN

v63

Given an ID ru(le (5.12); create a context-free rule that does not violate any LP
relatio’ns where each symbol, B, on the right hand side ;)f (5.12) will be replaced by
the non;erminal B/

(5.16) nt —-> By, B, . .. B,

let B = U:’=1{B‘i}. The quote mearis that the symbol can be moved, whereas

unquoted symbols cannot be moved. To incorporate the restrictions of (5.15), (5.14)

[

can be rewritten as

(517) gap(G). B/ > B,. gap(G). {no_LPs(G.8,)}.

Restriction (5.15b) is incorporated in (5.17) by the predicate no_LPs(x,y). where x is |
a list (x=[xlx2...x‘n]). This predicate succeeds when none of the LP relatiors x, < y,
x, <y x, <y are pfesént. This rule can be thought of as a rule schema
for the many context-sensitive rules that would be required to shift the symbol to
the left. . What would tal’ie several rule applications of context-sensitive rules can be

achieved by the applfca;ion of a single unrestricted GG rule. For an ID rule R,

(5.12), the set Py will refer to the two productions, (5.16) and (5.17), required to

~ describe the set of base rules. RR.' constructable from R and the LP relations.

Given a base rule, Ry, a uniqué leftmos£ derivati'on’ ;an be obtained, using Pp. which
is equivalent to the application of Ry, The definition of leftmost derivation, which is
based on one found. in (Hopcroft and Ullrf;an. 1979), is that a rule is applied to the
leftmost nonterminal of a sememial‘ form. With respect to (5.17). this means that
the leftmost quéted symbol is shifted according to the rule. By defix;ition. the
grammar will be unambiguous if and ongy if the leftmost derivation for each
sentential form permitted by the ‘grammar is ﬁriique. For example, all possible
lefimost deriyatior;s of the unresiricted GG based on the ID ruie

(518) s --> abec

with no LP restrictions are provided in the permutation tree illustrated in Figure 5-1.

T

A permutation tree for an ID rule (5.12) possesses sentential forms as nodes with
'B‘lB'z...B'n' as the root node. ’Nodes which contain no quoted symbols are terminal
nodes. The root node will be considered a level 0 node. while a descendant of a node

will have a level number which is

- 64

ey

has a descendant, w, iff Yy ==> w using rule (5.17). . -_

abc .
gap=(]
abc ,,
gap=ﬂ/ \gapn[a]
e N
a b K o ., bac
| o . VA RN
gap=/sapl=ibl gap=(a.b] \ gap=4ap-[al gap=[b.al
PR TR 201 N

?

abc acb cab bac bca c ba

Figure 5-1: Permutation Tree

Lemma 1: All sentential forms of a permutation tree are of the form X)X
with Ixj =i and X, =B, ,...B, where i is the level of the node, B\B,-.-B,, is

the ‘root node, with x; € B’ and X; € B

s

: : »
Proof: The root node. B,B,...B;. which is on level zero is of the required-

form since X, =€ and Xy = B}B,..B,. (€ denotes the empty string). Assume

. » 2 *
that a senteptial form of level i, vwp, o, (where v.0, €B. w;€B", and

4
hwl=i) is of this form, and B ;= B, ,B;,,--B,- Application of (5.17) o
{ -

)

7

x| represents the length of the siring x.

one greater than that of its parent. A node. .

4

65 -

. :
this sentential form yields the new sentential form i/Btwa which will be

on level i+1. Ivl.BH wl=i+l, and ! B.s,--B,- By induction, we can

conclude that this is a operty of all hodes.

Corollary 1: No sentential form can appear on two different levels of a

permutation tree.

Corollary 2: For any node. w, of a permutation tree corresponding to a
rule, R, lol=n, where n is the number of symbols on tﬁé\{\ig/l‘;n hand side of

R.

Lemma 2: For any node, BIBZ...BiBi+l...Bn. of a permutation tree, where
B, €B when 1<j<i and B, €B' when i+1 < j< n, each B; is \unquoted
 unique. t is. f(Bj)=f(Bk) if and*only if j=k, where, the function
f: BUB' — B is defined as follows.

(519) fl)=x if x*'€PB
f(x) = x otherwise.

Proof: From our assumption that the ID rule is nonambiguous, the
unquoted uniqueness property holds for the root of the permutation tree.
By straight forward induction on the level of the node, it can be shown to

be true for all nodes of the tree.

Theorem 1: The unr&stricteﬂ gapping grammar Gg = (V&,VT.I' .L.P) associated
with R, where Vy = BU{nt}, V. = B, I'={gap(G)}, S = {nt}, and P=P,

is not ambiguous.

-

Proof: Assume that there are two leftmost derivations for some sentential
form. Then, Y, ==> o and ¥, ==> w, where ¥, =y, If ¢, =nt, then o
must equal B&B'Z...B;t. which would in turn imply ¥, =nt=4y,, résulting in a

7
P . N . *
contradiction. Similarly, a contradiction also arises if ¥, =nt. For the other

- 66

p)
cases, let the level of w be i. From corollary 1 'and from the definition of

level, we'knm;v that both tlll t;nd ¢12 are of level i-1. From lemma 1, lelv
¥, =v,0,80 and ¥, =v,0,8w where V,.V,.0,.0, €B. and oweEBRB.
Application of (5.17) to ¥, and "#2 yields

- (520) w=vBw,0'=v,80,0

Since each B, is unquoted unique (lemn}a 2). this implies v, =v;‘§"ad- W, = w,.

SN,
7o . : .
Consequently, ¢, =y, whidh contradicts our assumption. Therefore Gy is
! -

\

/
not ambiguous.

Lemma 3: When no LP relations are present. the jth- level of the

permutation tree will contain j' nodes, where 0 € j € n.

’Proof: The root of the tree, is the only node of level zerc; by definition.
Assume that there are i! nodes on level i. From lemma 1, each of these
' nodes will resemble viwiB'in'. where vi,wiEB', o €B", and luiwil=i.
Application of rule (5.17) to this sentenfial form will result in i+l
descendants corresponding to the i+1 different possibilities for the contents of
the gap. w; Since .each node of level i will have i+l descendants, this

implies that there wi}l be (i+1)! nodes on level i+1. By induction, any level

J of the tree contains ;! nodes.

Lemma 4: When no LP relations are present, nt =§>' w if and only if the.
. R

base rule nt --> w is in Ry, where w € B

Proof: When no LP relations are present, there are n! unique context-free

rules in Ry corresponding to the n! different permutations of the n symbols.
. | =

B, on the right hand side of the ID rule. R. From lemma 2 and corollary

2, we can conclude that the terminal nodes of the permutation tree are also

permutations of the elements of B. Also. from lemma 1. they will be on

67

level n of the permutation tree. Since there is a unique leftmost d~erivati~on
{theorem 1)‘for‘each'term.inal'node. all n! terminal pgdes (lemma 3) will be
distinct permutations f’f the elements of B. So if nz —> @ is in Rg. the .
- derivation " s -
(521) rt ==> B\f,..B, =>

will be allowed in Gp. If nz =‘§R>'V w, then since @ is a permutation qf the

symbols of B, it will correspond to the valid base rule nz —-> .

Lemma 5: The presence of the no_LPs predicate in (5.17) disallows those
derivations, and onl&f those derivations according to Gy that would result in
a sentential form that is not allowed by the LP relations. (If a syml?ol, B;
precedes another symbol, B8 G in a senteﬁtial form, vthe sentential fprm violates

A

an LP relation if the restriction f(ﬁj) < ‘f(ﬁi) is present. The function f is

defined in (5.19)).

Proof: The initial sentential form of the permutation tree does not violate
any LP restrictions. Given a sentential form, wwfe', that does not violate

o

any LP restrictions, assume that the application of (5.17) results in vh o',
- which does\ violate an LP :restriction, where v,w € B, o € B". ‘But the only
symbols whose relative positions havﬁ: changed are the B, aﬁd tt;e symbols in
. However. the procedural restriction of-(5.17) prevents these symbols
fron; v.iolating the LP restrictions. Therefore vBww' does not viola/tel:.any

restrictions. From this contradiction, we know that rule application can- not

violate any LP relations. So the presence of an LP relation disallows invalid

.

sentential forms.

Now, let vwlBszﬁ'lm', be a valid sentential form, and let B, < B, be an

LP relation (v.0,0, € B, and ' € B"). Application of (5.17) could not result

¥

68

in vBw, B, 0,0 since this would violate the LP relation. A sentential form
which does "not violate this LP restriction not is derivable from uﬁimrﬁkméw‘

since it, would require shifting B, to the left. However, B, can not be

kS

moved by (5.17) since it is not quoted.

Theorem 2: There is a derivation nt =§>' @ if and only if the base rule .
R

nt --> o is allowed by the ID rule R and the LP relations. where w € B".

Proof: This result follows directly from lemma 4 and lemma 5.

To adapt the ID/LP conversion procedure for use with FIGG, (5.17) is replaced by

thelfollowing bottom-up FIGG rule.
(522) gap(G), X' --> X, {ﬁnquoied(X)}. !, gap(G). {no_LPs(G.X)}.

The reverse-quote, ', is used in place of the quote, ', due to restrictions associated

with the implementation. Since variables are allowed in bottom-up FIGG rules, we

~

do not need a gapping rule for each symbdl.} X. The cut, !, is used to obtain the

leftmost derivation, while the predicate unguoted is required to prevent a cycle during
h¢

bottom-up parsing.

3

Until now, only the processing of single ID rules -has been examined. To process all
the ID rules according to the ID/LP-UGG conversion procedure we must combine the

productions from ehch grammar, Gp . that corresponds to an ID rule, R. ,Tl'le Gp's
, - ; i

- will be called subgrammars. Also, we must restrict (5.17) to shift a symbol only

-

over a region that corresponds to the sentential form from the permutation tree of
the subgrammar. This scope restriction prevents intgfférence_with the sentential forms

of other subgrammars. We will also include an independence ?estriction stating that

[

once a production of a subgrammar is applied to a sentential form) only productions
v . ,J‘

from that subgrammar can be used unless all symbols of the/,éém.ential‘ ‘form are

e

-(J

- e © 69

symbols from the ID/LP grammar. In other words, the permutation of the"symbols‘

of the rlght hand side of an ID rule must be completed before the processing of ,the

R

next ID rule is started-

For a base grammar G; = (V. Vy. . P). we can provide an equivalent

unrestricted gapping grammar G' =/,‘ (V. V'N r, P‘) obtamed from the JB7I?R
%

description spec1f1cauon accordmg to .the ID/LP—UGG conversion procedure . Let
¢ . N
~ 7 A
P=UPg,. and VN = VNQ ’{x'lxﬁ Vy). The means for including the scope remrictignr,/// \,_\ »
! ' ¢ ‘ -
and independence restriction wiﬂ be presented after the following theorems. L;j’f" . ‘

Theorem 3: .Given an ;IID/LP specification which corresponds to & base
/
grammar, Gg, and an umtestrlcted gapping grammar, G', obtained accordmg to

the ID/LP—UGG conveps10n procedure then for any string w € (V uv)

o

G> waandonlyTO'—G) w, where o € L.

=

Proof: Given a sequence of m rule applications which derive @ using Gy.

>

(523) O 5> w, =—=> ... > ©
Rl 1 R2 Rm’

-

where w, € (V'NUVT)' and R, € P, the following .derivation is possible in G’

using the subgrammars, Gp which correspond to each rule application in
! 4

(5.23) (theorem 2).

(524) o 7=> o, ==> ... zg=>"0w
G K o Foing
R1 R2 ' Rm o

Given a derivation according to G' that derives ., the independence

restriction requires any such derivation to resemble (5.24). For W, =V xv,,
where v,.v, € (VyUV.) and x € VNUVp. the scope restriction requires

W, 1 = VXY, where x € (VNUVT)'. According to theorem 2, the rule

x --> X is in the base grammar, From this, we can conclude that the

1

derivation (5.23) is allowed by Gp.

. / //‘e.
’*-'—_;L% -
7 O) R “‘\';; .

Theorem 4:.G is ambiguous if and only if G' is ambiguous.

Proof: The only if case is trivial. To prove the if case. let us re-examine
(5.24). Theorem 1 states that each GR' is nonambiguous. Therefore, if G' is
oo i " .

ambiguous then it must be due to two derivations with a different order of

subgrammar application.

(525) o #=> o, =>" | e m=> W ' s -
GRI 1 GR2 GR -]
0'——>'w’—='...~—>w)
G, “1 Ty g

This would imply that the followmg two derivations would be allowed by

, - |
Gy : -

(526) a i——> (l)l R-2—> P i-—> w

O'ﬁ.‘-> (l)l R—.—z'

To incorporate the scope restrlcuon we can introduce nonterminal symbols (markersk‘/\-/

mk, to delimit the symbols on the rlght hand side of ID rule. The addition of the

e

linear precedence relation mk < X for all symbols X will prevent any symbols from
being . reposmoned 0utsxde of these delimiters by (5.22). To ensure that the processing

e
of “one base rule is completed' before another base rule is attempted, (5.22) can be

b : \.

modified ‘as follows. o .
(527) . gap(G), I, X' ~> X", 1, gap(G)! {no_LPs(GX)}. - -)
Now, after a quoted symbol has been moved it will be double quoled. and it will .

not be allowed to move again. To complete the processing of the base rule, the

symbols, which must all be double quoted. that appear between the markers will

T

have the double quotes removed by the following rule.
(5.28) mk, gap(-.G1), mk ~=<>gap(-.G), {double_quote(G.G1)} .

This rule will also remove the mérkers. Considerlthe following ID/LP grammar.

] . 7\
N /) 71 d |
(529) (@ s —>np vp =
() vp —> v pp(with) pp(in) , - -
(c) np —> [John’] . //’—’ . ‘ .

(d) np —> [‘Mary’] o o

(e) " np —> [LepdonT

(f) v, -=>Tlives]

(g)~ pp(with) --> [with] np

(h) pp(in) --> [in] np

(i) np < vp

ST At) v < opp(L).

(k) [Word] < X. /* for any category X */

This grammar can be translated into the following unrestricted gapping grammar, G,.

-(5.30) - (@) r(1): s —> mk, np‘. vp*, mk, fid_rule}.
() r(2): vp —> mk, v, pp(with)*, pp(in)‘, mk, §id_rule}.
(¢) r(3): -np —> mk, ['John']", mk, .ﬁd_rule}.
(d) r(4): np —5> mk, ['Mary’)‘, mk, §id_rule}.
(e) r(5): np —> mk, ['London’]", mk., fid_rule}.
— (¢) r(6): v —>mk, [lives]', mk, fid_rule}.
(‘ \“_ (g) r(7): pp(with) —> ml:. [with]*, np*, mk, §id_ruie}.
~ () e(8): pp(in) —> mk, [in]*, np*, mk, fid_rule}.
(i) tp(np.vp). '
() tplv.ep(L)).
(k) 1p([Word],X) :~ notlist(X).

(1) 1p(mk,). .
- (m) gap(G), !, X' —> xX"'*, 1, gap(G), §{no_LPs(G,X)}.
(n) mk'r(), gap(-,G1), mkhr(_) —_> {iqter_rul-ei. gap(~.G), ;

{6\=[]. double_quote(G,G1)}.
Since this grammar must be g'rocessed by a bottom-up parser, some additional control
was added to prevent cycles and obtain more efficient parsing. The procedures
id_rule and i(ztgr:__)rule ensure that (5.30n) can not be used aga‘jr{ until\a correspondir;g
id__rule is -used. -

(5.31) inter_rule :- not inrule, !. (assert(inrule) ; abolish(inrule,0). fail).
id_rule :- abolish(inrule,0) ; assert(inrule) , fail.

The dominators. “r(X). of (5.30n) also improve parsing efficiency by requiring both
markers 1o be symbols from the right hand side of a rule named r(X), for some X.

. -~) .
All quotes are removed from the symbols before linear precedence relations are

checked. For any two symbols. B, and B, the clause _lp(ﬁi,Bj) is present if the

relatioﬁ Bi<Bj holds. ‘ 7 g

7
For each ID rule one unl:estricted GG rule is require%. and for each ILP relation ?
single cléus’e is required. Note that the use of logic variables in LP relations allows
‘LP séhemata_. répresgnting classes of relétions. to be specified as seen in (5.&}0]). ()nly“
two extra rules, (5.30m) 'an.d (5.3dn). and gné new LP schema, (5.301), are required
in the conversién process. “So the conversion is;iinear with» resl:;ect to the numt;er of
rules. »This conversion also approximately “triples the numb;:r of grammar symbols."
' The parse -of the sentence John lives in London with Mary which uses G, is ‘shown in
Figure 5-2.

£
The parse was obtained in 3.3 seconds on a Motorola 68000 based SUN Workstation

running C-Proxlog in ’eg UNIX environment. Total processing timé.'which,includes time
spent lpoking for other parses, was 103 seconds. No other parses were found. The
no_LPs predicate \;vase modified, to irr’;prove ‘efficienC)‘I. so that i.t?would fail if it
found two symbols -(between markers) that were vnot both from .»the same ID ruvle.
As it stands. once ihé parser finds a gap &that results in the violation of an~kP
relatiein, ;t still tries larger gaps to see if they might not violate this restrict@
The;'efore, the gap predicate used in (5.30;11) can be modified . to incorporate the
no_LPs tesy. Also, ID rules that have a single symbol on the right ﬁand side do not

-

require any permutation of this lone symbol. With these modifications, the parse time
J - ¢ ' q‘g

was only 1.7 seconds. and the total processing time was reduced toh 67 seconds.

The ProGram system '(Evans and Gazdar, 1984) also uses ID/LP specifications
without. converting them into their corresponding éonlteng\fyee gramrﬁars. It
preprocesses ID/LP grammars into a n.;eral form which ‘is,, trh’en used for parsing.. This
system, hc;wéver, was designed as a grammar dwelon system, so efficiency was not
a major consideration. Using é grammar similar~-to (5.29), the ProGram grammar
development system (Evans and G;azdarx, 1984) required 16 seconds to parse thé same

sentence with a total processing time of 49 seconds.
¢

T

//sx
ap"e [] vy X
;‘p:n ; -vp:n ;
. | L
i

. np
;-m/[] [mk kw/\;/ pp<m§
. S L
[John]” i; | v’ il\ pe(in)” pp(with)”’
1] |

I
[John] v

/) | / A
.m?/[l tmk mie™] [in{ uMmk [][wn{] [“hp’
[lives]” i] : [in]” il np'h’:'h [with]” i] il

i] M i
- | T -
L. [1ives] [in] [wnh]
L/London] l/
[London] - [Mary]
" ; [London] [Mary]

‘w«

Figure 5-2:° Parse using an unrestrlcted GG based on an ID/LP descrlptlon

For a more thorough comparison of these two systems, consider the following ID/LP

~

grammar which is adapted from (42) of (Gazdar and Pullum, 1982). \

K.
74
(5.32) s -> np vp. . np < vp
: ¥p —> V. p < np
vp -——> VvV np. v < s . ..
vp —-> V S ‘
vp --> V np pp. n —> [n]. B .
v‘p —~> VvV nps. v —> [v]. C C
np —-> n. ‘p > [pl '
pp —> p -np..)

ProGram and FIGG were compared on the following collection of valid sentences of

varying, lengths.

(5.33)
(a) nwv. () nvnpn (m) ny nvnyv.
(b) nvn (h) nvpnn ~ (n) nvnnnyv.
() nnv () nnvopn () nvnannvn
(d nvnwv. () nnpnwv (p) nvnvnn
() nvnvn (k) npnvn (nnvnvn
(f) nvnnv. (1)) npnnwv. (r) nnvnnv

Note that sentences (5.33e-f) and (5.330) are ambiguous. The GPSG used by ProGram
and the unresiricted’ gapping grammar used by FIGG are provided in Appendix

B. Mgdification of (5.32) be increasing or decreasing the number of LP relations did

not greatly affect the parse times of either syste §. Table 5-4 summarises the averz{ge)

time for finding the first parse, Isf, and the average total processing time, total, for

each system according to sentence length, m.

Table 5-4: Comparison of FIGG and ProGram using an ID/LP grammar.

m=2 m=3 . m=4 1 m=5 m=B
F1G6 15t | 0.3 3.7 2.4 40. 470.
. total] 1.9 14, ¢ 90. 330. 2700.
l .
ProGram 18t - | 3.1 16. - 12, 42. 200.
totai] 12. 35. 110. : 160. . 980 .

Firstly, one should notice that neither system is efficient at processing ID/LP

'*gra'i:nmars. They both exhibit exponential growth of processing time. Althougﬁ the

»

75
FIGG system is markedly superior to ProGram in obtaining the first pérse of shorter
sentences, its growth of CPU time as a function of sentence length is greater than

ProGram's. To .illustrate why FIGG does not efficiently execute the unrestricted

gapping grammar, consider the ‘application of (5.30n) to) some sentential form. The

.bottom-up . parser will -enclose arbitrary substrings within the markers, and it may

take a great deal of procéssing before the system determines that the contents of gap
does not cor’respond to the right Hand side of some ID rulé.’ When viewed from the '
top down, it is impossible to obtain a sentential form' in which the contents of the>
markers does not corregpond to a permutation of the right hand sideyof a rulé. One

3

may be tempted to introduce more procedural knowledge to rule out these sentential
t . . .

!\

our desire for an interpreted approach. A possible solution would require the

forms earlier, 'but addition of this large amount of compiled knowledge is contrary to-

development of a unrestricted gapping grammar parser that can parse the grammar
produced by the ID/LP-UGG convérsion procedure in a:top—down manner. Currently,

- b
such a parser does not exist. Another solution might entail rewriting the shifting

+

rule. (5.27). as -
(5.34) X', gap(G), -.%) gab(G), X", {no__LPsl(X,G)}:

for use by“;;?the current top-down parser. Instead of shEing symbols to the left,
(5.34) would shift a symbol to the rightai long as the LP relations were fiot
violated, as determined by no_LPsl. Unfortunately, this would réquire a rightmokt

. .h»'\‘ . "
derivation, which fthe parser would be unable to obtain due to the nested head

problem — which results from its depth-first parsing sirategy.
. ~

-

.a . 76 -

5.3. Implementation of GPSG Metarules

; . C W
Unrestricted gapping grammars may be used. to describe the grammars and
1

metagrammars of linguistic theories which possess the gap conc“ept. This should not

.

be confused with a claim that unrestricted gapping grammars constitute a\lnguisLic

theory. They merély provide the medium for expressing the :‘theory. - Although FIGG
‘may not supply the most efficient implerhentation. it can be used to process

generalised phrase structure grammars.

As was mentioned_in chapter one, there are two approaches to metarule processing
for use in "a parser. The compiled approach uses the metarules to generate all possible.

context-free rules before the actual parsing begins. When using this method. care
LY

must be taken to ensure that the generation process terminates (Shieber et. al.. 1983).

The inzerpreted approach avoids generating all possible rules by using the metarule

2

during parsing. However, the use of metarules in this manner may result in a
grammar Wwith more than context-free power (Shieber et. al., 1983) (Gazdar and

Pullum, '1982). Unrestricted gapping grammars can\%e used to describe “an interpreted

approach for 'processing metarules that operate on context-free rules.®

- ’ 3

%

The notation used in the GPSG references differs from the conventions used in this

paper. The context-free rules of GPSG shatl be presented here in the familiar

notation .
(5.35) nt —> Bl. 52,.. - B’n
€i€n

. . < . . .
where n¢ is a nonterminal, and Bi is a terminal or nonterminal for 1%

A

“
-

8According to the description of generalised phrase structure grammars provided in (Gazdar, 1981), the
metarules of the grammar operate on the context-free rules of the grammar to produce more context-free
rules. The revised theory {Gazdar and Pullum, 1982) uses an ID/LP grammar to describe the context frec
rule hase, with the metarules operating on the ID relations to produce new ID rules.

~ o | o

77

Regular expressions, optional 4components. and other such ab iatory devices which
may appear in the right hand side of GPSG rules will be ignored in ihis discussion.
Also, features and sem'éntics will be fgnored for the moment, with an outling of how
they might be incorporatéd presented later. Metarules are of the férm

(5.36) nt —-> B,. By, . . . B, => nr' > B B, ... ‘Bn‘

where a context-free rule bn the left side of the metarule arrow, — , is called the
pattern, and the rule on the right hand side is the templape.‘ In (5.36), any B;
(1<€i<m)or B (1 jSn) can be av gap symbol (string varia?le). A gap contained
in the pattern can correspond to a region of zero or more symbols in a ‘rule_ that
matches tile patitern. The metarule may also contain variables. A variable ‘that’

appears in the pattern may match any symbol. If a gap or a variable appears on one

‘

side of the metarule. it must also appear on the other side.

In order to describe how the metarules can be translated into unrestricted GGs, Tkt

s examine‘the following metarule. ‘
A

(531) nt —> B ==> ny —> B

In (5.37), nt and nZ; can be nonterminal symbols or Qariables. B and Bl may

contain terminals, nonterminals, variables, and gaps. Now consider the top down

processing of the virtual rule s
(5.38) nty > B
that results from the successful application of (5.37) to some base rule, Rb.9

(5.39) ‘nt' —-> B

*>

To obtain a derivation equivalent to the application of the virtual rule, we start with

nt. and apply_the context-free rule. Rll.,

Notice that if neither nt nor n, are variables, then nr=nt and ney =nil. Similarly, if no gaps or

variables arc present in B and Bl, then 8=48 and Bl =B"1.

78

(5.40) nt; —->| <, nt >, _ 7 . S
which is derived from the metarule, (5.37). The nonterminals "< and "> " of .

(5.40) are scope markers unique to this derivation. Affer’appliéation‘ of (5.40) to nt},

-

. R, can be applied to n#' to obtain g'. If g matches B in the pattern of the metarule,

then we are allowed to replace it with the sequence descrlbed by B, in lhe templale

To achleve this operatlon the followlng unrestricted gapping rule, R ', is introduced. . &
1.

(541) < B > v"'> B] ‘- ,' v b 3

This rule also removes the scope markers which ensure that B matches all of ﬁ The

sentential form that results from the, appllcauon of (5. 41) CMnd o 8. -

which is the riggt hand side of the virtual rule. Procedural control must be added

" 3

_to ensure that the contents of scope markers, before the application o (5.41).

A - -
derived. from the application of a single rule to the contents of these markers after

the application of (5.40). If this proceddx;dl control were not included, the method .

y

would process metarules of. the form : - .

(s. 42) nt —>" B '_—_=> nt, __>.rBl

This entire process is 111ustrated in Flgure 5-3. Th‘é nodes of this graph are sentegmdl

n W

forms. The dashed arrow corresponds o the application of the virtual rule, while -
/ A
the solid arrows represent the path actually taken to process the rule. :

N
s . . I

Figure 5-3: Processing of GPSG Metarules

+

N £

This method can also be used to handle multiple application of metarules. Figure

79 ¢ .
]

5-4 illustrates the wuse of n. not necessarily distinct, metarules. Instead of having a

. base rule operate

instead.

<
n

< n> >
1) 1

and >, a virtual "rule is used

’

TN
within the scope markers, < n

kY
@

nt" ﬁ: -.’._--‘%----p \ﬁn |
- " »
R"II Rr" -
* §
< nt' > e —————e < B >
n n-1 n n’ n-l n
; ;oo ,
R, R,
n-1 n-1<

.

R

n

«Tl ' \
< <, B> >

Figure 5-4: Processing of MultiQ GPSG Metarules

A consequence of this method of metarule processing is” that the resulting language is

not necessarily context-free. Restrictions like finite closure (Thompson, 1982), could

be imposed ‘upon this process. by the. addition of some procedures, to prevent this

+ ' -~ v -
side-effect. Under finite closure,” each metarule can only_-be -appliéd one in the

derivation of a rule. _ e

To illustrate the use of this process, consider the following base grammar.

-
e

-
. v

s

] J 80\

(5.43) 1 s(decl) --> np(subj). vp(Voice).
npl: np(Case) —> det. noun(Case,-pn).

. np2: np(Case) —-> noun(Case.+pn). - :

' vp: vplactive) —> v(trans.active). np(cbj). pp(to). e
ppl: pp(by) —-> [byl. np(obj).
pp2: pp(to) --> [to]. np(obj). : . ‘ .

.

To permit passive and inverted sentences. the following two metarules can be used.

—> vV --> aux v

(5.44) . (a) VPactive trans npobj X => vppassive pastpart Xippby'

(b) vp > aux X == Siny "> aux NPy X

These metarules can be incorporated into the FIGG specification for the grammar by

adding the following four rules.

(5.45) (a) vp(passive) —> mk(X), vp(active), mk(X).

inumgen(xii. mk(X), v(frans.active)AD. np(obj) D, gop(G)‘AD. mk (X)
—> aux(be), v(trans,pstprt), gap(G), pp(by). Co

(b) s(inv) —> mk(X), vp(Voice), mk(X).

fnumgen(X)}, mk(X).voux(Type)AD. gap(G)'D, mk(X)
—> aux(Type), np(subj), gap(G).

numgen(X) generates a unique number associated with each application of the rule.
The scope markers, represented as mk(X), use this .unique number to allow multiple

applications of the”same rule, Notice that the dominators. "D, in (5.45) will provide
the necessary control on the contents of scope markers to ensure.that only one rule

’

application has been done. Figure 5-5 illustrates the derivation required to parse the
sentence Is the ball given to John by Mary. The addition of extra arguments to the

grammar symbols and markers can result in the construction of the actual context-

»

_— "
free parse tree. This parse was obtained in 1.1 seconds. But the total processing ’

time of 43 seconds is not at all encouraging considering the small size of the

grammar. Once again, the system can be made more efficient with procedural control.

~

First notice that the use of markers to ensure the application of a single .base rule

is not ‘fooléroof. This is illustrated in the contrived grammar in (5.46). -

mk(1)

v(trns) np{obj)

l
| - . 1
aux};c) @t) ' . pr(by)
- ~ ‘

1
aux(be np(subj) v(trns,pstprt) pp(to0) : pp(by
/\ e

lis] © det noun (given] [to] nplobj) (by] pplob))

\\ [the] [ball] proper__noun // proper_noun
ra -

[’Jonhn’] .

(‘Mary’]

Figure 5-5: Derivation graph using an interpreted GPSG metarule
(546) (a) s> a.

(b) a -—>_ b. ’ p [

@b —-> [c] ‘ '

(d) s-—-> b s —> [d]. .) | K'
The metarule, (5.46d). should not generate any ‘new context-free rules, but the
[y J’!’\‘\‘\\ . |
unrestricted GG (5.47) which corresponds to this grammar will recognise d as a valid

.. Ve N
; . _\

sentence. ' . \
. e

82

(5.47) (a)

s —> a,.
(b) o —>b.
(c) b —> [e].
(d) s —> mk(X), s, mk(X). . N
(e) fnumgen(X)}, lﬁk(X), b'Dom, mk(X) —> [d].

by the bottom-up parser, thé:

Also, notice that once we process one of the R_
- 4

diagram from Figure 5-4 illustrates that the next rule must be R. or a base rule.
‘ ' s

Then, after a single base rule has been processed. the next n rules must be one of the -

-1

R,., where 7n corresponds to the number of R. used. This restriction can be
{ i : . -

incorporated by introducing the procedure lAs into all the R;’s. rhs intd the R, s, and.

i {

rule into all the base rules. These predicates., which are defined in (5.48), maintain a

stack for the numbe;' of rhs’'s and lhs's executed.

(5.48) virtual([1.[D).
rhs - virtual([]._), !, (virtual_push(right) : virtual_pop(right), fail).
lhs - virtual({_I_L[]). !, (virtual_pop(left) : virtual_push(left), fail).
rule :- virtual([1.[]), . - ‘

R rule :- virtual([]._). !. (virtual_swap(left) : virtual_swap(right), fail). -

The predicates virtual__push. virtual _pop. and virtual__swap modify the arguments of
the virtual(Left Right) predicate that is stored in the database. Right is a list wﬁose
length corresponds to the number of times rhs has been executed. Execuiion of rule
moves this list into Left. Subsequent execﬁtion of lhs will decrement the numbgr
‘stored in Left. Notice ;hat the 'definition,; in (5.48) proQide the required restr\ictions

_on the order of execution of -all Rr"s, R,’s. and base rules.’ - S
, . i i) .

. . .
- -

Until now, we have used essential gaps. within our GPSG metarule translations.
Consequently,} the parser has allowed the gap to contain any nonterminals or
terminals. This is actuaily too general for our needs. The formal .definition_ of
metarule$ used by Thompson.in his GPSG metarule parser (Thompson, 1982) includes -
a range for his string variables (which . correspond 16 our gaps). This range can be

specified with the use of the restricted gap predicate. The gapping rules of (5.45)

-

can be replaced by the following.

/

7
7

/

83

(5.49) (a) ~inumgen(X)}.. mk(X), v(trans,active)D, np(obj)’D,- gap(G) D, mk(X) '
' —> aux(be), v(trans,pstprt), gap([np(_).pp(_).vpPinf].G). pp(by)- k

(b) jnumgen(X)}, mk(X), aux(Type) D, gop(G)AD, mk(X)

—> aux(Type), np(subj), gap([vp(_).v(.,.).np(_).ppP(_).vpinf],G). ' -
\) In (5.49a), the gap may contain np's, pp’s. and vpinfs. Since the sentence inversion .
metarule may be applied to a rule created by the pdssivisation metarule,, its gap may -

contain any the previously mentioned categories in addition to vp's and v's.

“The efficiency can also be improved by restructuring the grammar. It is possible to
construct the grammar so that rules created by the passivisation metarule do not have

to be operated on by the sentence inversion metarule. The two metarules of (5.44)

can be restated as follows.

(5.50) . (a) VPactive "™~ Virans NPobj X ==> VPpastpart -2 Vpastpart X PPyy
(b) vp --> aux vp, ==> s __ —> aux s,

inv

7

The verb phrase described by the template of (5.50a) must be used in. conjunctic{fl*~~~:x§,__,,\

with the rule

(5.51)

-—-> auxt?e vppastpart

vppassive
to obtain passive verb phrases. (5.50b) generates inverted sentences by changing vp,
into a sentence, s;,. and transferring all »Qf‘ the verb f;)hrase features tp‘ this new
' »symbol. ") . /[/

With these procedural control mechanisms and grammar modificatioﬁs. a largeI:
graminar‘ was developed to gxamine the behaviour of FIGG.‘ This grammar, which
appears in Appendix C, uses a foor z;rgu;nent on the nonterminal ‘symbols to capturé
tHe slash categories of GPSG. - It can describe a va'rieiy of active and passive
sentences, including inverted sentences, questions, topicalised sentences, and sentences

containing relative clauses. Siice €-productions (eg. nz —> €) cannot be processed by

the bottom-up parser, the grammar was modified to remove these rules by the

%M

84

L

addition of extra rules. Although this removal was done manually, it can be done -

~ e
automatically by standard e-production removal. techniques (Hopcro llman, |
1979). This system was tested on a series of eight sentences, shown below.

(5.52) (a) John takes cmpt101 {
(b) does John take cmpt101
(¢) John wants to take cmpt101 L
(d) does John want Jo take cmptl01
(e) John is loved by Mary .
(f) does John want to be loved by Mary
(g) is the ball g'iven»t‘o John by Mary - /’” T~
(k) does John want to see the house fly : / ; 7
The parse of sentences (5.52b,d.e.h) requires one virtua \lrule “{hlle the par,se of
* e ,
e T ’
(5.52f.g) requnres two virtual rules. All of the sen‘j.enceq are uLambnguous excepk
e o)
(5.52h) which has two different readings. The parse 1\.1 es obtmj\ed with FIGG are
) L\\—/
shown in Table 5-5. They are compared with those obtameq by ProGram with a
similar . grammar, which is also shown in Appendix C, a‘nc] Vwith the results rom
SAUMER which uses the grammar of the Automated Academic Advisor (Popowich.*k\x,,\\

/a’ . 7 \
B . 3

1985d). Once agairi, for a given sentence and system, the times_provided correspond
to the time for the first parse and the total processing time ‘(in seconds). Also, recall
that the ProGram system uses ID/LP grammars, which contributes to its inefficient j
parsing. Words thSt have multiple lexical entries, such as.fly, also lead to inefficienfk
parsir;g by ‘the ProGram parser. ~ For this reason, the inverted auxxllary is was not
included in its lexxcon Wthh explains why the system could not parse (5 52g).

W
" The results from this teble show a very disappointing performance by FIGG or1{ this . \
larger grammar. Part of the reason for this performance is the shear inefficiency of
the parser. FIGG in Table 5-5 sufimarises the performance of FIGG using the same
grammar without the metarules. ;When the metarules are added. the efficiency drop is p
considerable, but it <is ‘not as bad as suggested by the examination of the grarnmar

with ‘metarule results alone. Also, the procedural control predicates lhs. rhs, and rule

e

i _) 85
4 ! = , .
. e e — T
Table 5-5: = Comparison of FIGG, SAUMER, and ProGram using GPSG
(o))y T (e) @ ey (9) (h)
FIGE. | 0.5 1.4 2.4 7.0 13.__-206. 3. 340.
| 49 13. 40, 130. 87. 1500. 1000. 2200.
SAUMER | - 1.0 3.6 2.0 5.4 4.4. 9.7 12. 12.
| 6.5 6.0 11. 0. 1. 15. 23. 27.
ProGram | 22, © 29, 36. 44, 38. 61. _ 200.
| 100. S 150. 420. 500. 900. 3700. 8400, 5900.
| | | " .
_ FIGG, | e.5 — 2.3, — - — J— —_
I | 3.7 8.9 8. . 89. . 6.1 110. 119. 1500,

result in an extra overhead associated with each rule application. The restrictions on

‘the gaps improve the performance dramatically however. - Without these restrictions,’

the amount of time required to parse even a very short sentence -would be

I

i
prohibitive. ~Another factor that was. not a problem with our grammar but could be:

’

. L I S T S
in other applications is ambiguity introduced into the grammar by the translation of

the metagrammar into an unrestrictég GG. If a derived rule can be generatéd/" two
: \ : ¢

—

ways by the metagrammar, FIGG w!illl find a parse for each way the virtual rule can

ot

be processed. More studryr of the” introduction of ambiguity by the translation process
is required. .

This discussion has concentrated on the translation of -the rules and metarules into

unrestricted GGs but has neglected many of the other components of GPSG grammars.

(

Information, such as valueé for feaj;ures or semantid\ interpretations, can be passed
.from one side of va virtual 'rule to the other bSI mea\r\is\of eit;a arguménts on the
nonterminal symbols and markers. For example. if the context-free -,parse tree is
desired for a derivation, it can, be contained in an extra argument of the grammar

symbols. In the following rule, the first argument of ‘a symbol is a list that

86 .

describes the tree which possesses the S};mbol as its root.1¢

(5.53) vpllvp(active),V.NP,PPlactive) --> v(V.trans.active), np(NP.obj). pp(PP.t0).
Now. the two rules associated with the passive metarule (5.50a), could be of the

following form.) ‘ . -

(5.54) (a) vﬁ([vp(pstprt)|Li'st],pstprt,\) —_—> mk(j)_(.List). vp(__'.-.octi;/oL), mk(:'l_—)g.

i (b) {§numgen(X)}, mk(X,List), v(_,trans,active) D, np(_,obj) D,
gop(_.+.6) D, 'mk(X)
- v(V.trons.pstpr?), -gap(Tree,+,G), pp(PPy),

fjoin([V,Tree,PP],List)}.
The information is passed from the right hand side of the virtual rule to the left by

~means of the List argument of the first marker. To capture the structured categories
. >) :

of GPSGs, an approach like that taken in ProGram could be used. The grammar

¥

L]
-

symbols could be replaced by the structures similar to I

(5.55) node([cat.[bar,2].[head.[major.+n.-v]]]) ' <

This strycture corresponds to a noun phrase in conventional GPSG grammars.. Other

-features €ould be included in this single list, or added into extra ,argumen{s of the

A‘ / - N . -
node. Various procedures would have to be supplied to manipulate the features.

assign defaults, and rule out various feature combinations.
.

Although -the method provided for converting GPSG grammars into unrestricted GGs

\

is very straightforward. the resulting grammars can r;ol.,durrent’ly be used efficiently

by FIGG. A top-down parser ‘may provide M ficient processing of - these
grammars. but the current top-down parser can not prf)qe_ss these grammars due to

~

2 - 1

the nested head problem — which was discussed in chapter four. Upon examination

of the derivation tree in Figure 5-5, one notices that the v(trns,pstprt). pplto). and

pplby) are nested in a gap and are edch a head symbol of a rule.

lO[s,[1'1p,[n,John]],[Vp,[v,runs.]]] denotes a parse tree for John runs. g

\a

AE

87

.

ﬁr"—:rl}prestricted gapping grammars provide more concise grammatical descriptions than

)

previous . logic grammar formalisms for many languages due to the more general rule ’

format al]lowed. However, with such a'generalv rule format, caution must be taken to
P : - . . .

.
-

ensure that the grammar is restricted. by some .form of control, to ‘*desqribe the

‘required language. ° Control facilities provided in FIGG permit refined contfol

. ¢
mechanisms without detracting from the high degree of descriptiveness present in ‘the

“grammar rules. These control facilities can be used feither to restrict the language

~described by the grammar. or to obtain more efficient parsing. The bottom-up parses

® .

of FIGG can process grammars obtained by ID/LP-UGG conversion procedure. and can
also process those grammars obtained by the translation of GPSG-like rules and.

metarules into unrestricted GGs. Although this parser is far from efficient, il can

process these grammars while the current top-down parser can not. - The HVLP-UGG .

a .

conversion procedure is a simple (linear) ‘-melh_(')dv for translating ID/LP relatfons into a

directly executable logic grammar ‘which does not introduce ambiguity intd the

grammar. Unlike the -approaches taken in (Shieber, 1982, Evans and Gazdar, 1984).

the ID/LP-UGG conversion procedure is not an algorithm for direct ‘processing of’
ID/LP - grammars, but rather a ‘method for converting these grammars into ‘another

grammar that can be directly executed. Consequently, V,Ihebefficiency of ID/LP

- =4

grammai',processing is affected by the -efficiency of the unrestricted gapping grammar ,

interpreter, (as well as by the structure .of the grammar). ‘Simi]a"rly.k the :simp]e

procedure for translating GPSGs into -un}estricted gapping gr;r\ﬂmars is not in itsell an’

algorithnﬁ‘ ‘for direct processing of * metarules. Whiiéx tk;is approach to methavrule'

processing is not feasible to use with the current irr’.x‘plementation, future pﬁrsers of
A : . . .‘

unrestricted gapping grammars should produce more reasonable results. The

s :

development of a less restrictive top-down parser would remove the need for much of

<
)

Y]

88

‘

the procedural control that was required for the bottom-up parsing of grammars
produced by .the ID/LP-UGG conversion procedure, and could lead to more efficient

interpreted processing of GPSG metarules, and ID/LP grammars.

N

Chapter 6 "_
Conclusions " "

. ' { ‘ v
- Unrestricted gapping grammars, an extension of the gapping grammar formalism

promote high-level descriptions for grammatical specifications of languages. 'f’hey
N ' / : .

include grammars such as XGs, MGs, and the conventional grammars of the Chomsky

‘hierarchy. Unrestricted GGs facilitate easier description of unbounded left symbol

movement subject to constraints inserted directly “into the grammar rule. This "type

°

of movement is useful to describe ID/LP grammars, which permit relocation of

consti*uents subject to constraints.!l In th# thesis, a simple procedure for conversion
< : . '
of an ID/LP grammar into a unrestricted GG has "been introduced. GPSG metarules,

3

. : , i
which can contain gap symbols. can be expressed in terms of a gapping grammar as

illustrated in this work. But the conversion-of a complete GPSG,—/{;IO an equivalent
. : B B . 3

unrestricted GG requires further study. Other linguistic theories: which use* the gap

N !

concept — such as transformational gramma}_:*r\mght also be déscr{bed in terms of

. / ,
. - - T <. \ e S~ ’
GGs or unrestrh GGs. (Salm—Dl}le(, forthcoming) is c\urrejﬁtly.exammmg\}‘he use .

,

.

trarisformational grammars. ~ The FIGG implementation of unrestricted GGs should

"

/ . ry ..
of unrestricted GG f\&\ tbjy\ription of some Lo‘r/n;s/of movement ~allowed in-
. ~ 2

prove to be a useful tool for exploriﬁg'these relationships.

Results obtained with FIGG illustrate that procedural control can succeséfully be

=

AN . Yy
i

+ * ?

“Extraposmon does not adequately describe this movemeftl since it suggests the unbounded movement of

a single constituent. . . .

% R : .
89 - ;

,/\
5

‘

! 90

3

°

used 1o restrict the language described, by the g%mmar. and to obtain more_ efficient

t

N -

rule processing. However, the definition of unrestrictedv GGs does not predefine a set
bof control mechanisms. FIGG - introduces a selection of mec},hanis;ns‘ to control the
parse, but these features tdre implengentation dependent. Some of ‘thg control
operators, such as the cut: b;have difl;erently under the-different parsers, while other

forms of control, such as gap control, behave essentially the same. ‘The control

mechanisms supplied in FIGG_ﬁgksufficient for the applications presented in this

work, 'and‘wiyll prqbably be useful for f;tu?e'applicatibns. " Greater conE’rol on rule
se;lection is onerfeaq,lre that could be beneficial . in many applications. Thjs could
eliminate the' need for the procedures added during ‘LI{e ID/LP-UGG ' conversion
procedure (inter_rule and id_rule),. and for those fequirfaq by the ‘]riGG representation

of a GPSG (rhs, lhs and rule). Rules could be divided into classes according to their

] 1 B

.names. Then a metagrammar could control rule application by requirir&g rules from

one class to be atiempted before rules from another class could be used. Future

N .
experimgniation may suggest the addition of other features to the system. * Perhaps
| I ‘,
some of these mechanisms might be motivated from a more theoretical point of view,

resulting in the construction of a "minimally adequate set" of features (Dahl, 1985).

Nonetheless, the decision of which control mechanism t6 use, and how to use it, rests
0 d ~

with the person -whe constructs the grammar. \M\

. \
Even with the wse of procedural control, FIGG can not process GPSG grammars as
' 4

efficiently as SAUMER. and even the ProGram system. éa_n outperform "'FIGG with
h A

. \ B
- respect to processing ID/LP grammars. The -inefficiency of FIGG i8, its greatest

wiakness., An (efficient grammar processor could result in efficient ig\terpréted: :
Ming of ID/LP or GPSG grammars. Further development of FIGG should include

optimisation of some of the code. Frequently used routines, such as gap and the rule

-iranslation routines. could be altered from the concise descriptions presented in this

q .

91 | , -

7

thesis into:.a more efficent. but less readable, format. Parallel gap processing could :

also lead to implementation efficiencies (Dahl and Abramson, 1984). ~The bottom-up

shift reduce parser of FIGG is an essentially complete prg,éesso'r ‘of unrestricted GGs.

> N

Howe%\fzg’_r. this parser's major limitation is its inability to process grammars which

permit botfyﬁom—up cycles unless procedural cor/nrol is inserted into the rules’to prevent
' B * . / I :
the cvcles. /Recall that this means that derivations of the -form awf ==>" ‘'are not

allowed. Since epsilon productions, nt --> €, are often convenient to use in .many
. 3)) - E) N . -

£

pY

grammars, FIGG might be modified to automatically normalise grammars containing

these productions into equivalent grammars that do not. Although the top-down

parser is more efficient than its bottom-up counterpart, it is only a GG parser. In
- k

W

this thesis, the lop-df)wn‘ parser was shown to be a reasonably efficent processor of a
totally _free word order grammar. But it can not prbcess grammars produced by the
ID/LP-UGG conversion procedure, nor can it use the gapping grammars produced from
, v) Ty . . ¢ 7
L - .
GPSG metarules. Both of these inadequacies are due to the nested head problem.
Left recursive rules can ‘be processed by this parser. but the grammar must often be

modified due to the complicated restrictions imposed on the format of these rules.

Nonetheless, the developmeﬁl' of the top-down parser solved some of the problems

s

associated witp the GG1 implementation, and resulted in a parser 1ihat can operate
efficiently on a subset of unrestricted GGs. It is apparent that further research into

more efficient and complete unrestricted GG parsers is required.

-

Finally. the applications of GGs and unrestricted GGs have-thus far been limited to
sentence parsing. Research into the wuse of these grammars for sentence generation

would also be appropriate.

I

g

o

Appendix A S

Sample Terminal Session '
' ' . r
This is a“ sample terminal session on a SUN Workstation ‘using the latin grammar.
po% figg
C-Prolog ve{ajon 1.5 . _

S’lcc 2.3 : , B
. R _ o i ‘
> /% Let us first see how the system transiates some ruies s/ s
> . ') 1
> +display
Display mode 5

. > s(dec!) —> np(Agr1), vp(Agr2), fagree(Agr1,Agr2)}. 4
reduce([np(_17)"1 vp(_21) 1] 121),_76) :—) ‘ :
agreeg 17._2{2,_121=_192,_78=_1923sr_porse([s(dec|)A_106]._78._76) true
> +topdown: i’* ' .
Top-Down Parser - N .)
> s(dec’l) —> np(Agr1). vp(Agr2), fagree(Agr1,Agr2)}. . .
s([].deél.,&1,_82):—np(_119,_17._81,_112),vp(_149,_2j,_112,_82),oéree(_17,_21)

> - ° : N 3
> /%« Now let us read in a grammar +/ 7/ o Cf
> —display. o . .
Generate mode i] : ‘
> [grammar]. \‘\"” . g

;) _ .

FIGG: grammar consulted 4136 bytes 2.68333 seconds?/z
> start_symbol sentence(Tree) / (write(’Parse Tree'),Writetree(B,Trge)).
> parse. ' B B . . »
Parse Mode: All Parses (: . .- /7“,
"? vir est. \

Sentence: vir est. .

Total ©.0833333 sec. v . +

7> ‘ f

?> /+ . Oops, forgot to read in some Prolog_clauses that we need s/
7?)) ‘

R
?> prolog [plog].
plog consulted 1992 bytes 1 sec.
> D ‘
~ i

4

? vir est.
Sentence: wvir est.

" Parse Tree

Pl Y

s(
np{

n{vir) .

)
vp(

v(est)
)

) in ©.283333 sec.
T?tol ©0.483334 sec.

? vir bonus vetus pueliam amat.
Sentence: vir bonus vetus puellam omut;

Parse Tree

s(

np(
n(vir)
adjs(

. adj(bonus)

. " adj(vetus)
)£

) ;

vp(
np (

° n(pueliam)
) ,
v(amat)

) .

)y in 1.93333 sec.
Parse Tree

s(:
hp?‘
s n(vir)
¢ adjs(S
adj(vetus
® adj(bonus).
)
) .
~p(
np(-
n [1 am)
)
vfamat)

)

") in ©.699997 sec.

‘Total 3.11667 sec.

-

7>,

?> +oneparse.
One parse mode
> D

93

G

kY

ig
? e ”é\
? vir bonus vetus puellam amat. Y
Sentence: vir h?nus;yetua puellam amat.
'Parse Tree . .
o - o 7 =R
np(’
n(vir)
adjs(.
adj(bonus)
adj(vetus)

) ‘ . :
vp(C
< np(a kfj
> n(pueilam))
o v(omat) —
) o
) in 1.86666 sec. -
Total 1.91667 sec.) = : “

4wy

~ .

D

VAR

> /% Now lets try-other parser s/
o> ' o

> cleas o .

> flags.

Bottom—Up Parser

Parse Mode: All Parses ‘

Generate Mode !

> ‘ .

> [grammari]. /* The start symbol is define¥ in this file s/

FIGG: graommar1 consulted 346§ bytes 2.3 seconds.
> .
>
> +oneparse.
One parse mode

*-.> parse.

""Parse Mode: One Parse . ,
? vir est.” ,

~ Sentence: vir ‘est.

Parse Tree: ’)
s(L
np(
n(vir)
)
vp(
v(est)
)

) in ©.399994 sec.
Totat ©.483343 sec.

7

- - H
- AL,
I Y 1
7
~ &
.

? D '
>D

poZ%

i
{

A
<

o

» .
i
» ? =
v - .
* 2 j
& (,
-~ o
B
’

.

A

i 4

v
by
.

[’FIGG execution halted] E " T
" he , |

[Prolog execution holafed;\]\\\ :
™.

e

e&/ - . ’
‘ o 5+ s .
. ‘ =8,
\\\\\ N > ‘W‘
/ by 5

. L)
. .
i o - i
)\7‘ //
Tx
’
—
q
Y
) 5
4
! a
\
) ! '
- I
. . /
N <)
-~
~ N T -
. .
.
.
~
A\
. —
.

Direct Pro{:essing of ID/LP Grammars

B.1." ProGram Specification and Test Results

Pi:'onam Specification

The following is a Adescription of thew generalised phrase structure grammar that is
equivalent to the ID/LP grammar specified in (5.37). This specification is processed

by the ProGram system. o

/* Specify the feature syntax «/ -

syncat .roct.

feature [root, cat].

feature [cat, bar, head].
-feature [bar, f§lexical, 1, 2}]. ‘ -
feature [head, major].

feature [major, §v, n, pi].

. .
/% Define some abbreviations for certain feature comb™ations ./

atias(v(N), [roofn[cat,[bor,N],[hqod,[mojdr,v]]]] 3.
olias(n(N), [root,[cat,[bar,N],[head,[major,n]]1]).
atias(p(N), [root,[cat,[bar,N},[head,[major,p]]]]). O
alias(h(N), [root,[cat,[bar,N],[head,[major]]]]).
alias(@, lexical).

atias("h, h(iexical)).

e

/+ The ID ruiles s/

s: v(2) —> n(2).h(1). . . -
vp: v(1) —> h. ’ ”
vp: v(1) —> h,n(2). . and '
vp: v(1) —> h,v(2). . ‘
vp: v(1) —> h,n(2),n(2).
vp: v(1) —> h,n{2),p(2).
vp: v(1) —> h,n(2),v(2).
np: n(2) —> h.
h,n(2).

pp: p(2) —>

.97

./t.Lexicol rules s/ . ‘“;v - ~

np(n): n(@) —> n. . - . o . F
w(v): v(@) —>— v. _ . e .
pp(p): p(@) —>— p. - - ; - i .

/% linear precedence relations s/ . "

n(2) << v(1). . 2 .
v(Q) << v(2). .
p(@) << n(2). . . | e

/* prohibit cotegories with unspecitted major or bar level #/

AN
rac(bar, []. not(unspac)). ! ('
rac(major, [], not(unspec)). '
: . T
Test Results ; o .
The parse times for the individual sentences shown in (5.38), along with” the total
-processing times are given below. / '
Sentence: n v . ' " _ —-
1st- Parse: 3.13334 sec. . .
Total %,11.5339 sec. : '
: (
Sentence: n v n.
1st Pdrse: 11.95 sec. - - o . y
Total: 35.7176 sec. ii:L
Sentence: n n v. ' T N
1st Parse: 20.25 sec. ‘ * -
Total: 33.8001 sec. v ,
Sentence: n v n v.
1st Parse: 11.95 sec. . _ :] .
Total: 108.234 sec.
. .
s) . A
"Sentence: nv n v n. v -
1st Parse: 22.0833 sec. / B
Total: 310.1 sec. ST : -
. 5 '
Sentence: n v n n v. -
1st Parse: 22.6834 sec.
Total: » 303.25 sec. .
Sentence: n v n p n. , .
1st Parse: 23.4333 sec. =

Total: 118.3 sec.

Sentence: n v p n n.

1st Parse:

Total

Sentence: r

1st Parse:
Total:

Sentence:

" 1st Parse:

Total:

Sentence:
1st Parse:
Total:

Sentence:
1st Parse:
Total:

Sentence:
1st Parse:

Total:

Sentence-

-1st Parse: -

Total:

Sentence:
1st Parse:
Total:
Sentence:
1st Parse:

Total=«

Sentencd:‘

1st Parse:

Total:

Sentence: n n
]st_Parse:§§

To§ol:

3

v

p

n

17.4334 sec4§

91.8502 sec.

p n.
32.35 sec.
112.067 sec.

N V.

68.0333 sec.
97.5344 sec.

v Nn.

#67.45 sec.

124.667 sec.
nv. .

89.35 sec.

C117.7€2 sec.

v

vonov. 3
70.3666 sec.
909.933 sec.

nnwv.
158.683 sec.
691.183 sec.

nvon. .
288.233 sec.
851.817 sec.

vonn
87.86é€ sec.
927.083 sec.

nvn
218.433 sec.
19017.5 sec.

nnNnyv
396.683 sec.
984.317 “sec.

[

98

it

1 99
iy .

B.2. FIGG Specification and Test Results,

4

\,-
E 4 o s ‘
d clauses. are used by FIGG to process those sentences allowed

‘The FIGG Specif icatioﬁ \®

The following rules an

by the grammar in (5.37).
‘ op(700; yf, *): /* Define the reverse quote »/

starf;symbol s.

1 B B -
/* The ID rules =/ } . . -

r(1): s —> mk, np‘, vp', mk, fid_ruiép. ’
r(2): vp —> v, {inter_rule, id_rule}. L ‘)
r(3): vp —> mk, v', np', mk, fid_rule}. « -
r(4):. vp —> mk, v*, s*, mk, {id_rule}. -
r(5): vp —> mk, v', np‘', pp', mk, fid_rule}.
r(6): vp —> mk, v, np*, s'.\mk, Jid_rule}. K
r(7): np —> n, §{inter_rule, id_rule}.
r(8): pp —> mk, p‘, np‘, mk, iid_rufe}L
S r{lex): X . —> [X], finter_ruie, id_rule}. y .

/+ The two extra gapping rules s/
9ap(G), 1. X* —> Xt *, 1, gap(ip(X).G).

mk r(_),. gap(G1).,-mk r(_) ~—> f}inter_ruie}, gob([X,Y[Z]).
fdouble_quote([X,Y}Z],G1)}. -

“prof er]. / following i d by C=Pxolog.. not by FIGG
prolog Fuser] i /+ The following is processed by Cvggg%gi not by ./
7/~ The lineorrprecedpnce relations tf

Ip(np.vp).

tp(p.np). _

Ip(v,s).) ‘ N

Ip(mk,_). o ' .

/* Pairs of symbols which may both appear on the right hand side of some rule s/
. N
pair(X,X). ' ,
pair(np,vp). ‘ , .
pair(p,np).
pair{v,np).
pair(v,s).)
pair(v,pp)- . s , y// .
pair{np,pp). ’ ,
pair{np,s).

~a

s

100 - :

/* And the definitions of the proce;ures o/
no_LPs([],X) := I.
no_LPs([Hd }Rest], X) :-

“(pair(Hd,X) ; pair(X,Hd)), !

, not Ip(Ha, X)

, no_LPs(Rest,X).

no_LP(X*,Y) = not Ip(X.Y) 1. (pair(Y.X) ; pair(X,Y)). !.

double_quote([].[]). -
double_quote([Hd|Rest],[(Hd*)" [NewRest]) :-

double_quote(Rest NewRest). - =~
inter_rule :~ not inrule, !, (assert(inrule) ; abolish(inrule,®), fail).

7

id_rule :— abolish(inrule,@) } ossert(inrulej ; fail.

The. Test Results

The actual output produced by FIGG while parsing the sentences (5.38) is shown
below. ' .
Sentence: n v

Parse found in ©.283333 sec.
Total 1.93334 sec.

E

Sehtence: n v n. P
Parse found in 1.95 sec. ‘
Totat 13.7333 sec.

Sentence: n n v.- N
Parse found in 5.46666 sec. ,
Total 14.0167 sec.

Sentence: n v n v.
Parse found in 2.18335 sec.
Total '90.2667 sec.

Sentence: n v n v n.

Parse found in 6.73328 sec.
Parse found in 57.9501 sec.
Total 503.4 sec.

Sentence: n v nonv.

Parse found in 6.3667 sec.
“Parse found in 170.9 sec.

Total 488.55 sec. - i

Sentence: n v n p n.
Parse found in 6.08398
Total 264.617 sec.

S;ntence: nvpnNnnn.
Parse found in 5.06738
Total 266.617 sec.

‘Sentence: nnv pn.
Parse found in 12.8672
Total 274.117 sec .
Sen{énce: nnpnv.
Parse found in 125.383

Total 257.867 sec.

Sentence: n p n v n.
Parse found in 55.4844
Total 283.117 sec.

"Sentence: n ponon v.
Parse found in 123.4867
Total 284.251 sec.

Sentence: n v onvon v.
Parse found in 64.1166
Total 2967.95 sec.

Sentence: n v nnonv.
Parse found in 922.418
Tota! 2546.57 sec.

Sentence: n v nn v on.
Parse found in 327.016
Porse found in 173.137
Total 2591.35 sec.

Sentence: N v n v nn.
Parse found in 150.816
Total 2530.4 sec.

Sentence: n n v onvn.
Parse found in 378.813
Total 2765.94 rgec.

Sentence: N nvonnv.
Parse found in 978.617
*Total 2649.29 sec.

end-of—~file

101

secC.

secC.

sec.

sec.

sec.

secC.

secC.

sec.

sec.
secC.

sec.

sec.

sec.

0

102

- Appqndix C

Direct Processing of GPSG Metarules

C.1. PfoGram GPSG Grammar - 3

.

& ¥

/* This grommar was adapted from a ProGraom Demonstration Grammar (Evans and
Gazdar, 1984) '

/% Features

syncat root.

feature
feature
feature
feature
feature
feature
feature
feature
* feature
feature
feature
boolean
boolean

\

o/ . 5

[root, cat, foot, conj].

[cat, bar, head].

[bar, flexical, 1, 2}].

[head, major, minor].

[major, §v, n, a, p, conj, relt].

[p. . iby. to, in, on, with}].

[minor, agr, fcase, vformi].

[agr. {singuiar; plurali].

[vform, ffinite,passive,base,infinitive}, auxiliary, inverted].
[cose. f§nominative, possessive}]. ’
[foot, cat].

cuxilggry.

invertied.

/* Aliases — aliases let you write v(2) to mean a basic verbal category of
bar level 2 (similariy for other bar ievels, aond for nouns, odjectives and

prepositions) s/ \\\\, -
- —
alias(v(N), [root,[cat,[bar,N],[head,[major,v]]]]). 7
altias(n(N), [root,[cat,[bar,N],[head,[major,n]]]]).
alias(a(N), [root,[cat,[bar,N],[head,[major,all]]). !
atias(p(N), [root,[cat,[bar,N],[head,[major.p]]1]]). ~o___. .

' atlias(v(N,M), [root,.[cat,[bar,N],[head,[major,v],[minor|M]]]]).
alias(n(N,M), [root,[cat,[bar,N],[head,[major,n],[minor{M]]]]).
akias(a(N,M), [root,[cat,[bar,N],[head,[major,a],[minoriM]]]]).
atias(h(N), [root.[cat,[bor.N],[head,[major]]]]). -
alias(p(N,P),[root,[cat,[bar ,N],[head,[major,[p.P]]1]]).
aliaos(@, lexical).
aiias(h, h(texical)).

103

[agr.singular]).

alias(x/Y, Z) :~]
normfeat (X,XN),normfeat(Y,YN),

pathfor(foot , YN, '~"),

alias(sing,
alias(plur, [agr,pluratl).
alias(nom, [case,nominative]).
alias(acec, ~case). .
afias(hloux, [vform, finite, +auxiliary, —inverted]).
atias(inv, [vform, finite, +auxiliary,+inverted]).
alias{ fin, [vform, finite, —auxiliary, —inverted]).
alias(bse, [vform, base, —inverted])’ s
alias(bsel, [vform, base, +auxiliary, ~inverted]).
alias(bse2, [vform, base, —ouxiliary, ~inverted]).
alias(.¥nf, [vform, infinitive, —auxiliary, —inverted]).
alias(poss, [vform, passive, —auxiliary, —inverted])
— . —
* /% an alias for siash categories */ N

pothfor(qgiLyN,YCot),
pathfor(foot,XN,[[cat|YCat]]), .
protect(XN).

Z =

-

/% The Immediate Dominance Ruies s/

s: v(2) —> N2,H1 'where N2 is n(2,[nom]),

vp_1: v(1)
vp_2: v(1)
vp_3: v(1)
vp_3: v(1)

CH1 is h(1),
N2 controls H1. -

%

—> h. R
—> h,n(2). :

—> h,n(2),n(2). R
—> h,n(2),p(2,to0). »

vp_4: v(1,[aux]) —> h,v(1,[bse]).
vp_5: v(1,[aux]) —> h,v(1,[pass]).
vp_6: v(1,[bsel]) —> h,v(1,[pass]).
vp_7: v(1) —> h,n(2).v(1,[inf]).
vp_8: v(1) —> h,v(1,[inf]).

vp_9: v(1,[inf]) —> h,v(1,{bse]).
vp_B: v(1) —> h,v(2,[bse2]).

np_1: n(2)
np_2: n(2)
.nb_1: n({)
nb_2: n(1)
ap_1: a(1)

—_—>,

—_>

—> DET,H1

h.

—> h.
—> a(1).h(1).

h.

pp: p(2) —> h,n(2):

where DET is a(®),
H1 is h(1),
H1 controis DET.
/

~

w

/ , ; 104

/-'p{epoaiiiohal phrase topicalisation rute s/ ;

.

top: v(2) —> C1, h(2)/c2)
where M is [major,p], -

C1 is [root,[cat,[bar,2],[head,M]]],

C2 is [root,[cut,[bar,2],[head,M]]].

/% The Metaruies s/

/* passive: =/

pass: (V1 —> ... , n(2) where VP1 is v(1))

==>

(VP2 —> ... , opt(p(2,by)) where VP2 is v(1,[pass]),
VP1 matches VP2).

/* aux inversion s/

inv: (VP1 —> h,VP2 where VP1 is v(1,[oux]),VP2 is v(1))

==> >

S1 motcres VP1,
S2 matches VP2).

/* the simplest slosh termination meto-iyie */

stmi: (c1 —>-c2, where C1 is [root],
C2 is [root,[cat,[bar,2],
[head, [minor ,~case}]]])
=> . .
C1/C2 —> ...

7+ Linear Precedence Relations s/

/* Any lexical category precedes a non—iexical s/

[root,[cat,[bar,texical]]] << { [root,[cat,[bar,1}]],

/ \

/* o feQ straightforword precedences s/

p(@) << n(2) << v(1).

a(1) << n(1) << p(2). .) e
n(2) << p(2,to0).

/* siosh categories always iast s/

[root,~foot] << [root,[foot,cat]].

[root,[cat,[bar,2]]1] .

.

-

eI

(S1 —> h,52 where S1 is v(2,[inv]), S2 is v(2),

a

=

v

L - 105
“\

L

/» Feature Co—efficient Defaults s/

- L
. . kS .
/* just. three fcd’s, giving defaults for the minor features. Specifying FOOT
in the exclusion {ist forces the defaults onto the real! minors, not the

slashed category (if any) minors s/

/* feature excl lexical phrasal 7 B
s/ ‘) , ’
fcd(case, [foot], free, acc).)

fcd(inverted, [foot], —inverted, free).

fcd(auxitiary, [foot], -—auxiliary, free).]

/» Feature Co-occurrence Restrictions s/
1 i)

/* +v —> ~case »/

fer(maé:r, [foot]. v, <

miher, [foot], not(case)).

/* +v —> ~case in slashed categories too s/

fer(foot, [y, [foot,[coy.[heod.[mojor,v]]j]. o

foot, [1. not([foot,[cat,[head, [minor,case]]]])).
/* +inv —> +aux =/
fer(inverted, [foot], +inverted,

vform, [foot], " [vform, finite, +auxiliary]).

s 4_)
[. Prohibit categories.with unspecified major or bar level s/
| .
rac(bar, [foot], not(unspec)).
rac(major, [foot], not(unspec)).
N

/* The lexicon s/

' /
vp_1(sf): v(®,[sing,fin]) —>— runs,flies.)%th
vp_1(bs): v(e,[bse])‘ "—>— run, fly.

vp_2(sf): v(e,[sing;fin]) —>— loves, takes, sees.

vp_2(bb):/v(e,[bse]) ->— " take, love, see. ~
vp_2(ps): v(@,[pass]) - Ioved,takagi;een.
vp_3(sf): v(e,[sing,fin]) ->— gives.
vp_3(bs): & (e, [bse]) —->— give.
vp_3(ps):/ v(0, Fpass]) ->— given.

|

vp_4(sf)éAv(e,[sing,inv]) ->— does.
vp_4(pfj: v(@,[plur,inv]) =>— do. -

N

vp_5(sf): v(@,[sing,aux]) —>— is.
vp 6(bs): v(@,[bsel]) ->— be.

vp_7(sf): v(@,[sing,fin]) —>— expeffs.

vp_7(bs): v(e,[bse]) —->— expect.
vb_7(bsz: v(e,[pass]) ~>— expected. -
’ " ‘ \\ N
vp_8(sf): v(@,[sing,fin]) ~>— wonts.
vp_8(bs): v(@,[bse]) ->— want. j
vp_8(ps): v(e,[pass]) —>— wanted- v - - o

vp_9(in): v(®,[i) —>— to.

(0,[sing,fin]),—>— sees.

vp_B(s
vp_B : v(o,[bse]) > see.. o ,
vp_B(ps): v(@,[pass]) —>— seen. i

np_2(prop_nom): n(@,[sing,nom]) ->— john,mathie1.
np_2(prop_acc): n(@,[sing.acc]) —->— mary,marvin,cmpt1@1.

nb_1(s_acc): n(@,[sing,occ]) —>— boll,gar!,fly.

nb_1(s_nom): n(@,[sing,nom]) —>— book,boy,house.
np_1(sdet): a(®.[sing]) ->— the.
ap_1: a(@) ->— big.littie, house.

pp(by): p(@,by) > by.’
pp(to): p(@,to) —> to. .

C.2. Unrestricted Gapping Grammar for GPSG Grammar

stort_symbol s(Type}_,_,nil).

/* For sentences, the first argument stotes if it's inverted, the second
stotes what form of the finite verb it contains, or if it's the infinitive,
post participle, etc. The third argument states if its active or possive,
while the laost argument is for the “foot feature". In our case, it's "nil"
for non-slash cotegories, and the "missing" constituent for siash categories.
o/

s: s(-inv,Agr,Voice,Foot) —> np(A,subj,WH,nil), vp(Agr,Voice,Foot)

: , jogree(A,Agr), rule}.
pp_top: s{INV,Agr,Voice,nil) —> pp(to,nil), s(INV,Agr,vVoice,pp(to,nil)), frule}.
. .

s_a: s(-inv,Agr,Voice,np(A,subj ,WH,nil)) —> vp(Agr,Voice,Foot), frulet. .
np_top: s(-inv,Agr,Voice,nii) —> np(A,obj,+wh,nil),

s{+inv,Agr,Voice,np(A obj ,WH,nil))

. ,‘ﬁrulef. ;

L3

-

107

/* For noun phrases, the first argument is for agreement, the second for case,
the thnrd is +wh for "wh®” noun phrases (lnke “what"), and the last orgument—
|s once’ again for slash categorles »/

(- .
np_1?___np(Agr,Cose,WH.nil) —_> det(WH), np1.(Agr,Caose,-wh,—pn), frule}.

np_2: np(sg3,Case,WH,nil) —> noun(Agr,Case ,WH,PN), {PN \== -pn}, {rulej.

np_reli: np(Agr Casel,WH,nil) —> np(Agr,Casel,WH,nil), reipro(Agr,Case)

‘ R} , s(dec!, np(Agr Case,-wh,nil)), fruie}.

npi_1: npi(Agr,Case,—wh,—pn) —> noun(Agr,Case,-wh,—pn), f{rule}.
np1_2: npt(Agr,Case,—wh,—pn) —> adjp, noun(Agr,Case,~wh,—pn), frule}.

- * [
adjp: adjp —> adj, frulet. i) —— o ,

Es

/* Verb phrases have arguments for agreement, voice, and siash categories. o/

-

vp_1: vp(Agr.,active,nil) —> v(4flgr,intrans,dctive), frule}.

vp_2: . vp(Agriactive,nil) —> v(_,Agr,trans,active), np(_,obj,WH,nil), frule}.

vp_3: vp(Agr,active,nil) —> v(_,Agr,trans,active), np(_,obj,WH,nil),
np(_,obj,WH,nii), {rule}. '

wp_4: vp(Agr,active,Foot) —> v(_,Agr, trans, actlve) vp_inf(Voice, Foot) frulet.

vp_5: vp(Agr,active,Foot) —> v(see, Agr, trons active), s(—inv,bse, actfive,Foot),

~frule}. . . A -

vp_pp: vp(Agr,active,nil) —> v(_,Agr,trans,active), np(_,obj ,WH,nil),
pp(to,nil), frule}. 7

Vp_A: vp(Agr,active,Foot) —> v(_,Agr,trans,active), np(_,obj ., WH,nil),
vp_inf(Voice,Foot), {ruile}.) '

vp_B: vp(Agr,active,Foot) —> aux{do,Agr), vp(bse,active,Foot), {frule}.

vp_C: vp(Agr,passive,Foot)—> aux{be,Agr), vp(pass,passive,Foot), frule}.

{
vp_2a: vp(Agr,active,np(_,obj WH,nil)h —> v(_.Agr,trans,active), fruiet.
vp_3a: vp(Agr,active.np(_,obj.WH,ni])) —> v(_,Agr,trans,active),
np(_.obj ,WH,nil), §rule}. '
vp_Aa: - vp(Agr,active,np(_,obj,WH,nil)) —> v(_,Agr,trons,active),
. vp_inf(Voice,nil), {rule}.
vp_ppa: vp(Agr,active,np(_.obj.WH,nil)) —> v(_,Agr.trans,active), pp(to.nil),
fruletl. ‘ :
vp_pdb: vp(Agr,octive,np(_,obj.WH.niI)) —> v(_,Agr,trans,active), np(_,obj,WH,nil)
- pp(to,np(_,obj,WH,nil)), frutef.
vp_ppc: vp(Agr,active,pp(to,nit)) —> v(_,Agr trans,active), np(_,obj , WH,nil),
frule}.

'

vp_inf(Voice,Foot) —> [to], vp(bse,Voice,Foot), {ruie}.
1 .) . . ®
ppt: pp(to,nil) —> [to], np(_.,obj,WH,nit), frule}.
pp2: pp(by,nit) —> [by], np(_,obj ,WH,nit), frule}. _ .
ppla: pp(to,np(_,obj,—wh,nil)) —> [to], §rute}." “

s

pp2a: pp(by,np(_,obj,-wh,nfﬂ)) —> [by]. frule}.
/* The lexical fgles »/

v(expect.sg3,trans,active) —> [expects], frulei.
v(expect,bse;trans,active) —> [expect], frule}.

108

v(expect,trans, pstprt) —> [expected], fruie}.

v(fly,3g3,intrans,aoctive) —> [flies], frule}.
v(fly,>se,intrans,active) —> [fiy], frule}. _

v(give,sg3,trans,active) —> [gives], {rule}. 1
v(give,bse, trans,active) —> [give], frule}. -
v(give,trans,pstprt) —> [given], frule}.

B

v(love,sg3, trans,active) —> [ioves], {rule}.
v(love,bse, trans,active) —-> [love], §rule}.
v(love,trans,pstprt) —> [loved], frule}.

v(run,sg3,intrans,active) —> [Puns], f§rule}.
v(run,bse,intrans,active) —> [run], frule}.

‘ A
v(see,sg3,trans,active) —> [sees], frule}.

v(see,bse,trans,active) —> [see], fruie}.
v(see,trans,pstprt) —> [seen], frule}.

v(take,sg3.trans,active)
v(take,bse, trans,active)
v{(take,trans,pstprt) —>

v(want,sg3,trans,active)
v(want.bse,trans,active)
v(want, trans,pstprt) —>

—> [takes], frulet.

—> [take], {rule}.
[taken], frule}.

—> [wants], iru(e}.
—> [want], f§ruiet}.
[wanted], frute}.

oux(be,sg3) —> [is], frule}.
aux(be,bse) —> [be], fruie}.

aux(do,sg3) —> Tdoes], iru;eif

det(~wh) —> Tthe], fruie}.

det(+wh) —> [what], §rute}. =
det(+wh) —> [which], fruldPr

noun(sg3,_,-wh,—pn)
noun(sg3,_,~wh,—pn)
noun(sg3,_,-wh,—pn)
noun(sg3,_,~wh,+pn}
noun(sg3,_.,~wh,-pn)
noun(sg3,_,~wh,—pn)
noun(sgd, _.~wh,-pn)
foun(sg3,_.~wh,+pn)
noun(sg3,_,—wh,+pn)
noun(sgld,_,~wh,+pn)
noun(sg3,_,-wh,+pn)
noun(_,_,+wh,_) —>

—> [baii], frulet.
—> [book], §ruletl.
—>"[bay]. frule}.
—> [cmpt1@1], §rule}
—> [fiy], §fuie}.
—> [girl], f{rulet.
—> [house], fruiet.
—> [*Jdohn], frute}.

—> [math1e1], frule}.
—> ['Marvin’], irtﬁﬂ.

—> ['Mary’], frutle}.
[what], §ruie}.

noun(_,subj.+wh,_) —> [who], §frule}.’

noun{_,obj.+wh,_) —> [whom]. {fruie}.

adj —> [big]l frulel.

=

~y

_53 i © 109 :) ‘

adj —> [house], frulei.
adj —> [littte], frulet.

v
relpro(sgd,.) ~> [that], frulei. .
relpro(_,subj) —> [who], §frule}. ‘
- relpro(_,obj) —> [whom], frule}. !
/* octlve—ppssxve metarules s/ ~

“vp(pass, possuve Foot) —> mk(X), vpéAgr active,Foet), mk(X) §Lhst.

g

mk(X)

—5 v(_.trans.pstprt), frst. gap([np(_._._,_).pp(_._).vpinf(_.)16

3

inumgen(x)i mk(X) v(_,Agr trans,active) D, np(_,obj ,WH, nll)ADA gap(G) D,
e

fnumgen(X)}, mk(X), v(_,Agr,trans,active) D, np(_.obj,WH,ni1) D, ahp(ds:g%kﬁ

i

mk(X) n
—> v(_,trans,pstprt), {rhs}, gap([np(_._._._).pp(_._). vplnf(_._) fﬁﬁ.

/+ sentence inversion metarule s/ '

, 4 .
s(+inv,sg3,Voige,Foot) —> mk(X), vp(Agr,Voice,Foot), mk(X), {ihs}.

fnumgen(X)}, mk(X), aux(Fype,Agr) D, vﬁ(A,V,Foot)AD. mk(X)
—> aux(Type,Agr), s(-inv,A,V,Foot), {rhs}.

/% And read in some Prolog definitions that we need */
\ R

prolog [user].
- »

virtuat ([],[]). 4)

pp(by.nil).

rhs :— virtual([],_), !, (virtual_push(right) ; virtuol_pop(rfght), fail).

lhs = virtual ([_1_].[0). ', (virtuol_pop(lefﬁ)lj virtual_push(ieft), fail).
rule - :— virtual ([].[]). !.) ‘
rule :—‘vvrtual([] _) = (virtual_swap(left) ; virtual_swap(right), fail).

virtual_push(left) = virtual(X,[]). aholish(vi:fcax\gl.

assert{virtual([x{x],.[])).!
virtual_push(right) := virtualt([],X). abolish(virtual,2),
»assert(virtual ([].[x]X])).!

-

"

virtua!_pop(left) - vurtuol([xlx] []) abotish(virtual,h2),

assert(virtual(X,[])).!
virtual_pop(right) :-— vnrtual([],[xl%]), abolish(virtual,2),

assert(virtual ([].Xx)).!
virtual_swap(feft) :— virtuat([],x), obolish(virtuat,k2), ossert(vir%yol(x.[])), t.
virtual_swop(right) :— virtual(X,[])., abolish(virtual,2), assert(vir ual([1,x)), .
agree(_,_). /+ We aren’t worrying about person nqﬁber agreement right now =/

a
A~ ’ -
e ?

/*

during 1984 and 1985.

 FIGG 2.3

110 “

Appendix D
FIGG Source Code .

parser developed by Veronica Dahl.
developed in parailiel with those of SAUMER.

Copyright ¢ , Fred Popowich,
ﬁurposes provided that the author and the Laboratory for Computer and
Communications Research at Simon Fraser University are appropriately

acknow!edged.

./

1985.

Developed by Fred Popgwich at Simon Fraser University, Burnaby B.C.,
It was originally based on a Gapping Grammar

The system commands for FIGG were

FIGG can be used for non—commercial

P

Laboratory for Computer and Communications Research
Simon Fraser University

Burnaby, B.C.

Pl

CANADA V5A 1S6

£
¥

7

/% The operctors used by FIGG s/

N

op(118e,
op(1170,
op(1150,
op(1101,
op(1050,

op(99@,
op(97@,

op (800,
op(800,
op(8e0,
op(80e,
op(8ee,
op(8eo,
op(800,

“op(B00,

op (800,
op (&89,

op(75@,

fx, calc).
xfx,, —>).
xfx, \).
xfy, ++).
xfx, :).

fx, forall).

xfx, in).

fx, start_symbol)
fx, lexicon).

fx, prolog).
fx, marpher).
fx, input).
fx, output).
fx, close).
xf, #).

xfx, 0).

f}d ~).

xfx, t).

/*

/*
‘/.
/*

/*
s

/*
/e

obsolete — replaced by the "dispiay” fiag ¢/

for left recursion removal specification s/
parallel OR s/ . .
to separate the rule name .from the ruie s/

some meta—control constructs s/ /
b

to specify the grammar’s start symbol-s/
to specify the lexicon files s/

to specify prolog files s/

to specify the morpher files s/ !
to specify the parse input file s/

to specify the parse output file s/

to fiush and close a file s/

obsolete o/

/% for recursive arguments, top—down parser s/
/# NOT prefix for abbreviatory gaps s/

/*

to specify‘the dominating rule number s/

111
:~ op(400, xf, (1)). /* denotes local cut s/
:— op(800Q, fx, <<). /* used in AAA ‘lexicen for SAUMER s/
= op(997, xfy, &%). \
:— op(996, xfy, Imda).
. /+ Definition of parallel-OR s/ — .
1+ 2 = 1, (L2 ; true). 3
=+ 2 -2,)
/* ’ -
. The FIGG Command Interpreter
This fil rocesses all top level input to FIGG. N
«/ ‘ R .
figg := ni , writeIln('FIGG 2.3") , nl, !, nofileerrors, figg1(’'> ').
A] ' -
/= - |
To allow us to read input from other files, the filenames can be entered
as‘a list. ' .
»/ ’
. ..)) 1
figg([]) = t.,
figg([Hd|Rest]) =t , _ .
(seeing(0id) DT
., see(Hd) /* open input file s/
. Space® is heapused ;
, Time® is cputime - N
. figg1(C) ‘ /
, seen .

, see(0ld) .

, Space is heapused — Spaceg

, Time is cputime ~ Time® - -

, write(’FIGG: '), write(Hd), write(’ consulted '), write(Space)
, write(bytes '), write(T.ime), writetn(’ gfconds.') -

i

; write('Unable to open ’), ,writein(Hd) -

)
, figg(Rest), !.

figg(_body) :~ I, /* the main control procedure =/
contro!(_body, _bodyt) , ! : .
, (_bodyt ; writeln(’'FAIL")),-!. Yo a

figgt(Prompt) :—
prompt(0id, Prompt) ™ N
, repeat ' *
, read(X)
, (X = *end_of_file’

e
VAR

112

R prompt(_,ROId) LT
, (Prompt == '> ' => (nl, writeln('[FIGG execution halted]*), halt) ; nl)

; figg(X), fail

. : .) o
—_— e
references(L]). ‘T——\\‘\7{ Pointers to Prolog rules generated from DCG rules s/ j
/* The FIGG commands =/ | - oo ",/
. {‘ } \\// .
control (- display, (abolish(caic_mode,®), writein('Generate mode’))) :~ J
k ‘ |

control(+ display, (assert(calc_mode), writeln(*Display mode”))) :—= .

control(~ oneparse, (abolish(one_parse,@), writeln(’All parses mode’))) tt>)\\
-_— g N A\ "
. % ‘

control(+ oneparse, (assert(one_parse), writeln('One parse mode’))) :— |.

control (- topdown, (abolish(top_down,®), writein(’'Bottomup Parser*))) :— !.

contro} (+ topdown, (assert(top_down), writein(’Top—Down Parser’))) :— !.

controi(flags, (parser,prsmode,calcmode)) :— !. /% Display the flags */

/* 1s°a dominator set for the input sentence.s/

contro!l(sentencetVar, abol.ish(s_dom,1)),:- var(Var), |. » .
controi(sentencefDominotor, (abotish(s_dom,1), ossert(s_dom(Dominotqr)))) -1,
control(clear,(
" references(References) . -
abolish(top_down,®), aboiish(references,1), dbolish(s;ort?&m,Z)
abol ish(reduce,3), abolish(s_dom,1), oleish(onq_porse,O) ‘
. abolish(calc_mode,0@), assert(references([]))
control((forall Ref in Referendes, erase(Ref)), Code), Code)) :— t. |

P
>

/e ' : L —
The “parse" command. If any arguments are given, open the appropriate
input and output files. They will remain opened until explicitiy closed

\ ./ ; 7 . , =™

-~

control(parse, (prsmode,main(’? *))) :- !. yer”

control ((parse,Args), (prsmode, seeing{See), telling(Tell), éode, main(’? '),
see(See), teli(Telt))) :=t, ‘
control(Args.Code).
. 4 P
control((input Fite), ((see(File) ; writeln('Unable to open input file’):cfoif),

1)) = 1.

A
control((output File), ((teti(File) ; writeln(’Unable to open output file'), fail),

.y , _
1)) -1 o

~

\

TNy

. N .

conirol((close;File), ((telt(File), told ; writeln('Unable to access tile’), tail),

1)) = 1. 7

¥

/* For top down parser, call td_convert s/

-

control((calc Rule), (td_convert(Rule,Rulel), writeln(Rulel))) :— top_down .
L 5 ¢ — .
controi ((A —> B), (td_convert((A —> B),Ruiel),assertr(Rulel))) :~ top_down,!.
/" ' _—
For. bottom up (shift reduce) parser, invoke the "sr_trans" routine .

‘to process rules, or to display processed rules.
/ -
control((calec Rule), (sr_trons(Rule,Ruiel) , writeln(Rulel))) =2

controi(Rule!, (sr_trans(Ruief,Ruiel), assertr(Rulel))) :— .

control ((A —> B).»{ﬁr;}rqns((A —> B),Rufe1). ossertr(Rdle1))) = 1.

a

/* And the vorious other commands 74

ccntrolgy/brolog Files), Files) :— l,)Files=[|_]‘

control(texicon, (abolish(lookup,2), hﬁéfrt((lookup(X.Y) = NOMO(Y;X))))) ;— b

controi((lexicon Files), (abolish(lookup,2), Files)) - !, Fifes=[A|;].
cohtrol((morpher Files), Files) i~ 1, Files=[_[_]. - -

. v ' :
contro!((start_symbol S / Sem), assert(startsym(S,Sem))) :— I. —~

o) ' . Ve
control ((start_symbol! S), assert(startsym(S,_))) :— I. .
{.
.) \ _

/% And finqlly,\for rule schemata we have... ¢/

B ¢

l controt{((forall _x in [M|N], _body), loop(_x, [M|N], _bodyl)) :- I,

confrol(_body, _body1).
control((forail _p , _body), {_p ., calli(_bodyi) , faii ;. .true)) -:-
nonvar(_p) , ! - ;
, control(_body, _body1).

toop(X, []. Body) :- ' - .
Ioop(f, [Y|Rest], Bédy) -1, N

(X=Y, call1(Body), fail
; loop(X, Rest, Body)).

114 *

/e And we aliso allow the following #rolog syntax ./

controi((.a ., _b), (_a1l , _b1)) :— !, control(_a, _al), control(_b, _b1).
control((_a ; _b). (_a? ; _b1)) = I, control(_a, _al), control(_b, _b1).’
controi(not _a, not _al) :—= !, control(_a, _al).

controt(t, 1) := 1.

control(_a, _a) = !.
parser :— |,
top_sdown —> writeln(’'Top—Down Parser’) ; writeln('Bottom—Up Parser’).

prsmode :- !, .
write('Parse Mode: ') . :
one_parse -> writeln(’One Parse’) ; writeln('All Parses’).
calcmode :— !,
calc_mode ~> writeln('Display Mode’') ; writeln('Generate Mode’).

/e i
The Prolog code for the Shift—-Reduce Parser for FIGG. (Bottom—Up)
Convert all rules into "reduce(Stack,NewStack)" clauses.

¥or non—context—free rules, we treat them os transformations on the input.
I¥ they put the new information on the stack, rather than into the "input",
other applicable rules would not get a chance to apply, since the addition
of more than one.symbol to the stack may prevent their use. An equivalent

solution would be to "reduce" aftersadding each new “stack symbol".

(By putting it into the input though, we let "parse" worry about this adding .

of symbols, one at a time. The rule:

s, x —> [o],rx ' J ‘

would be transiated as:

~

. : _) -
reduce([[a].x|Stack]}, NewStack) :— sr_parse([s,x], Stack, NewStack).

Atthough this is not the most efficient, it provides a ;
more symmetric translation algorithm possible since ALL rules will be
transiated into clauses of this form.

If the left hand side contains a cut symbol, then a!! symbols tq\i;a right of
the cut wil) be added to the stack, while the others wiil be return through

the Newlnput argument to be added to the stack one by one. The rule:
s, t, !, x, y —> [a], x

D
would be transliated as:

v

o

115

, reduce([[a],x|Stack], NewStack) :~ sr_parse([s,t], [x.y|Stack], NewStack).

-

For context—free rules of the form:

s ——>v[o], s.

‘the foilowing clause wili resuit. .

1

reduce([[a].s|Stack], NewStack) :— sr_parse([s], Stack, NewStack)
74 ’ ,’ ’

/* Preprocess for rules contained in a cut s/

sr_trans((Rule)!, NewRule) :— !,
sr_trans(!, Rule, NewRule).

sr_trans(Rule, NewRule) :-—
sr_trans(true, Rule, NewRule).

a

sr_trans(Cut, (Lhs—>Rhs), (reduce(RhsStack,NewStack) :— Code)):-
rulename(Lhs, Lhs?, RuleName) :

Ihs(Lhs1, Forlnput, ForStack)

sr_trans(’'$undef’, ForStack, LhsStack, StackBase, StackCode)
sr_trans('$undef’, Forlnput, Input, [], InputCode)
sr_trans(RuleNgme, Rhs, RhsStack, StackBage, RhsCode)
combine(InputCode, StackCode, LhsCode)

combine(RhsCode, LhsCode, RhslLhsCode) -

combine(RhsLhsCode, sr_parse(Input,LhsStack,NewStack), NewCode)
*$flatconj’ ((NewCode,Cut), Code).

V4

,/* 1f a Rule Name is provided, wuse it !i! Otherwise, generate one =/

rulename(A, A, RuieName) :— var(A), !' namegen(RuleName).
rulename((RuleName:Lhs), Lhs, RuleName) :— !.

rulename(Lhs, Lh's, RuleName) :— !, namegen(RuleName). .
ncmeéen(Ru|eNome) - A
name (*$name’ ,X)
, numgen(Suffix)
, name(Suffix,Y)
"$append’ (X,Y,2) - ;
nome(RuﬂeNc?e.Z). i,

/*
If there is a cut in the left hand side of a rule, then the stuff before
it is Forlnput and the stuff to the right is FforStack. If there is no cut,

! then everything is Forlnput.

tt

H

116

ths(Lhs, Forlnput, ForStack)

o/ .
ihs(var, Va\, ftruet) :— var(var), 1.

lhe((!,Code), jtrue}, Code) :— !.

-~

ihs((A,B), (A,hest), ForStack) :— I, Ihs(B, Rest, ForStack).
lhs(!, ftrue}, {truep) :— I.
Ihs(A, A, ftrue}).

PO \

f’ " sr_trans(RuleName, FIGG_Rule, Stack, StackBase, Code)

~ For a FIGG rule, modify the stock appropriately and return any Prolog code
to be axecuted at that point in the rule. The RuleName yill be undefined
“$undef’ for the left hand side of the FIGG rule
*/

/* For variabies in the rules s/

ar_trans(*$undef’, X, [XtDom|R], R, true) :— var(X), !.

sr_trans(’$undef’', XtDom, [XtDom|[R]), R, true) :— var(X), !. .

sr_trans(Name, X, [XtNome|R], R, true) :— var(X), 1!.
/
sr_trans(RuleNo, (X,Y), L, R, New) :— |,
sr_trans(RuleNo, X, L, L1, NewX) '
, sr_trans(RuleNo, Y, L1, R, NewY)
, combine(NewX,NewY,New) .
. ‘)

sr_trans(_, jtrue}, L, R, (L=R)) = !. /% Special Case »/
sr_trans(_, {Code}, L, R, (Code, L=R)) :— 1I. /» We want to execute the code

before matching the rest of
the rule /-

sr_trans(_, !, L, R,~(!, L=R)) :— 1.

sr_trans(No, (Expr)l.sL, R, cati1(Newkxpr)) := !, /+ Local Cut s/
sr_trans(No, Expr, L, R, NewExpr).

/* For gaps on the left ond on the right sides of rules. «/

sr_trans(’$undef’', GaptBom, L, R, NewGap) :— ¢
Gap =.. [gaplArgs], ! '
. '$append’ (Args, [L,R], NewArgs) ,
NewGap ="~ [gapD,Dom|NewArgs]. /* use gapD, which inserts the ruieno s/
sr_trans(No, Gap, t, R..NQWGOP) - ’
Gap =.. [gap]Args], ! ‘
. “$append’(Args, [L.R]. NewArgs) .

I

H

117
, NewGap =.. [gqpD.No|NewArgs].

/* For terminal symbols appearing on the léft hand side of rules... «/

sr_trans(’$undef’, [Term]tDom, [[Term]tDom|R], R, true) :— .

sr_trans(’$undef’, [Term], [[Term]tDom|R]., R, true) :— I. oL

'sr_trons('$undef’, [], R, R, true) :- !.

/-

/* ... and on the right s/
3

sr_trans(No, [Term], [[Term]JtNo|R], R, true) :— 1.

/¢ For nonterminals on the ieft hand side... */

sr_trans('$undef’, NonTermtDom, [NopTermtDom|R], R, true) :— !.
sr_trans('$undef’, NonTerm, [NonTermtDom|R], R, true) :— !.

/* ... and for right hand sides «/
sr_trans{(No, NonTerm, [NonTerm}NolR], R, true) :— . (i
/
And the revised gap predicaté, with dominators. If a rule numbér is

i

provided, use it as the dominator for all the elements in the gap.

There are five different definitions of gap.

gap(+,6) = increasing gap
gap(-,6) = decreausing gap
~ gap(tp(X),G) == ensures that the linear precedence relation g < X
is not present forall g in G.
gap(List,G) = ensures that the gap contains only elements of List

(abbreviatory gop)
gap(~Exc!,G) == ensures that the DOES NOT contain el:ments of Excl

-/

gapD(No,Gap) —> gapD(No,+,Gap).

~

2 9opD(_. 1p(X).[1) —> []-

9apD(_.+.[1) —> []. - ')
gopD(_, [_1_].[]) —> []. (/

gopd(_.~[_I_1.11) —> [1. L,

gapD(No, [X]Y].[Word|Rest]) —> !, §No \== '$undef’ —-> Dom=No; true},
[WordtDom], .
felement (Word,[X]Y])$., gapD{No,[X{Y].Rest).

gapD(No,~[X}Y].[Word|Rest])—> !, §No \= '$undef’ —> Dom=No; ‘truei,
[WordtDom], !, -
fnot element(Word,[X|Y])t, gaopD(No.~[X|Y] ,Rest).

e

118

gapD(No, ip(X),[Word|Rest]) —> !, §No \== '$undef’' —> Dom=No; truef,
. [WordtDom], , '
? §no_LP(Word,X)}, gapD(No, Ip(X),Rest).

gapD(No,Sign,[Word|Rest]) —> §No \= ‘$undef’ —> Dom=No; truel,
: [WordtDom], gapD(No,Sign,Rest).

“

gaopD(_,—-.[1)—>[]. .
/* And now the actual parser s/
sr(Input, Fino{Stock) i—

prepare(lnput,Inputl)
, sr_parse(Input1, [], FinaiStack).

sr_parse([Word|Rest], Stack, NewerStack) :- S ——
sr_parse(Rest; Stack, NewStack) e T
. reduce([Word|NewStack], NewerStack).

[}

sr_parse([], Stack, g‘ock) -1

/* If o rule was specified to dominate the input, then use its number »/

prepare(Phrase, NewPhrase) :— .
s_dom(Dom), prepare(Dom, Phrase, NewPhrase)
; prepare(’$undef’', Phrase, NewPhrase).

prepare(’$undef’, [X|Rest],[[X]1_|NewRest]) :—~ !, prepare('$undef’ Rest, NewRest).
prepare(Dom, [X|Rest],[[X]*Dom|NewRest]) :~ !, prepare(Dom,Rest, NewRest).
prepare(_,[].[]). :

/* For processing a gapping grammar for top down parsing. »/

td_convert((A,B —> C),Clouse) :- I, .

rec_arg([].A,ARA, A1), /% remove the “recursive argument s/
td_convert1(A1,(c_nonterm—>C),CClause), /*» check for ieft recursion s/
clauseparts(CClaouse,CHead,CBody),

CHead=..[c_nonterm,CRA,X,Z],

pseudo_te(B,B1), ' /* contruct tist of pseudo—terminals s/ °
expand_term1((b_nonterm—>B1),BCtause),

clauseparts(BClaouse,BHead,BBody),

BHead=. .[b_nonterm,BRA,Y,Z],

Al=. . [Pred]Args], -

"$append’ (Args,[X,Y],NewArgs),

NewA=..[Pred,ARA|NewArgs],

"$and’ (CBody,BBody ,Body), / AR

formciause(NewA,Body,Clause), -
norm_rule(3,NewA). /* generate a "normalising rule" if necessary s/

/% for processing rules with a single non—terminal on the ieft */

119 . ‘

td_convert((A—>B).Clause) :-
td_convert1(A, (A—>B),Clouse),
clauseparts(Clouse,Head,Body),
norm_rule(3,Heod). :

/* For processing left recursion »/

td_converti(Lhs, (A —> B,C),Clause) :-

_unifiaoble(Lhs,B), !, . ., /* we do have left recursion s/
findclause(C,First,NewC,N1), /* find o clouse to evaluate first «/
not unifiaoble(Lhs,First), !, /+ moke sure it's ok s/
td_convert2((A—>B,NewC) ,First,N1,Clause).) g

/+ if the user specifies the symbol first checked during left recursion */
, /6’\\ . \ ' ~
td_convert1(LHs,(A —> First\B),Clause) :— |,)
not unifioble(Lhs,First),
findclause(B,First,NewB,N1), /* find it in\rhe rhs. of the rule s/

. td_convert2((A—>NewB) ,First,N1,Clause).
- >

/* . o .
- generate a unique pseudo—termina! nome, (N), for this rulie. Then, prevent
® this pseudo—terminal from being used when we are looking for "First". -
(notice use 'of 3 argument "gap" predicate). N1 is unique to for each call

of the rule.

74
td_convert2((A—>B),First,N1,Clause) :-

numgen(N),

expand_term1((x_nonterm —> gap(G,[N[N1]),List), First), XClouse),
clouseparts(XCtiause, XHead, XBody), '

XHead =.. [x_nonterm,XRA,X1,X2], .

/»

If we do find "First", we put it into o pseudo terminal which wi!l be found
loter. It is marked and won’t be found in o subsequent Ieft recursion

reaovol attempt.

+/

expand_term1((r_nonterm—>B),RightClause),
claouseparts(RightClause,RightHead,RightBody),

RightHead =.. [r_nonterm,RRA ,Newlnput,R2],

Body = (XBody,numgen(N1),'$append’ (G,[te(List ,First)[X2]) ,Newlnput),RightBody),
rec_arg([],A,ARA A1), '

Al=. . [Pred|Args],

"$append’ (Args, [X1,R2],NewArgs),

NewA=. . [Pred,ARA|NewArgs],

formclquse(NewA.BodySCIouse). !, R

td_convert1(_,Dcg,Clause) :— !, expaond_termi(Dcg,Ciause)..
clauseparts((Head:-Body),Head,Body) :~ !.
clauseparts(Heod,Head, true).

120

L}

formclouse(Head, true,Head) :— |. .
Y formclause(Head,Body,(Head :~ Body)). -

gap(Gap) —> gap(+,Gap).

gop(+. [—>11. |
gap(+.[Word|Rest])—>[Word].gap(+,Rest).

gap(~,[Word|Rest])-—~>[Word],gap(—,Rest).
gap(~.[1)—>[].
/ * - ‘

This gap pfedicote succeeds unless the 2nd a}gumentAis an “element1" of the

List of o "te" pseudo—terminal that is the first element following the gap.
If, o legal pseudo—terminal follows the gap, augment the "invalid number

e fist" (3rd argument) with our new "N". Otherwise, merely return o list
consisting of N. .
. ./ o ’//4L
gap([]J.N._)—>[te(List,_)], felement1(N,List)}. !, §fail}. ' .

gap([].N.L)—>gap1(N,L).
9°P([w°'d|R53t]:N-L)——>[Word],gop(Rest,N,L).

gap1(N, [Nlest] [te(Llst A)[x]. [fe(Llst AYIXD)

gap1(N,[N].X,X) : S .

/e /
eiement1 succeeds if the head of the first argument is the head of some
element in the list (2nd arg) '

s/ .) .
- N T‘/
element1(*,[])a:— 1, fail. * ’
(3 . Ji
element1([Xx{X1], [[YI_]IRest]) -X=Y, ! ; element1([X|X;], Rest).

T /* convert any nonterminals into pseudo—terminais, with the exception ,
of gops.‘Generote new axioms if necessary. s/

pseudo_te((X.Y), (NewX.NewY)) :— !, a
pseudo_te1(X, NewX), ~
pseudo_te(Y, NewY).

pseudo_te(X, .Newx) :— 1!, - //f
pseudo_te1(X, NewX).

ﬁseudo_te1([X|Y]. [xi¥])
ot pseudo_te1(gap(G). gop(G))

. Ppseudo_tel(gap(Sign,G), gap(Sign,G))
k] i '
/* determine if a recursive argument was given s/

PN

T~

o
121
pseudo_tel (X0R4, [Newx]) :- !, *
NewX =.. [te,RA,X], .
norm_rule(®,X). ‘f‘n : , x

]

(o]

bééudo_te1(x, [Newx]) :~ 1,
NewX =.. [te,[].X]. >
norm_rule(@,X).

/%> for the spécified non terminol, add a, rule to the appropriate pseudo .

"nonterminal if it doesn't olneody exist. N will be three if the last
two "parsing arguments”, and "“recursion argument", have already
been added. Otherwise, it will be ©

o/
« * -
norm_rule(N,X) :— |,

functor(X,F,Arity),

A2 is Arity — N, ‘

listien(A2,List), , .

F1 =.. [F]List], R

Term =.. [te.RA,F1], /+ te(RA,F1) 1st arg is for left recursion removal s/
*$append’ ([F,RA|List],[S@,51].Newx1), '

NewX =.. NewX1, ’

assertu((NewX :— c(S@,Term,S1))) .

Iistlen(@.[])/:— ',

listlen(N,[_|Rest]) :— t, Nt is N — 1, Iistlen(N1, Rest).

/e , . :
the args correspond to the initial body, the found qfouse. the new body,
and the unique integer ossoqioted with this application of the rule.

o/
F

findclouse((gap(G),Rest), Found, (gap(G),NewRest), N1) =1,
findclause(Rest,Found,NewRest ,N1). ,

findc!ause((gap(Sign,G),Rest), Found, (gap(Sign,G),NewRest), N1) - I,
findclause(Rest,Found,NewRest ,N1). -°

findclouse(([X]Y].Rest), Found, ([X|Y].NewRest), N1) :— !,

findclause(Rest,Found,NewRest ,N1). '

findclause((§X},Rest), Found, (§X},NewRest) & N1) :— t,

findclause(Rest,Found,NewRest N1).

/ ‘
For the term that is selected, modify the rule” to force the .
“Term —> te(_,Term)" rule.to be used. (it's the only one that has a non-
empty list as its first orgument). Also, ensure that we match the correct
pseudo—terminal. (that’s why we need the "Nt1")

g

2

‘findciause((TermORA,Rest), Term, ({RAz[_I_]f,,TefmoRA, ieiemeqt([_|N1],RA)§,

’

122

Rest), N1).
. f;ndclouse((Term.Rest), Term, (iRA%[_I_j}, Te;mORA, ielement([_lNl].RA)}. Rest),.
N1) - o

‘not Term=(_0_).

> -

findclouse((Term{Rest). Found, (Term,NewRest), N1) :— I, .
findclouse(Rest,Found,NewRest ,N1). : - .

R B} =

findclause(gap(G), Term, _. _) := !, fail. . - _ !

éindclouse(gop(Sign,C), Term, _, _) = !, fail. ' 5 AN

. -) . w5

findcfause([_1_3, Term, _,) =}, fail. . :

findclause(TermoRA, Term, (§RA=[_[|_]1§, TermoRA, ielement([_lNl],RA)Ej,4“4':- 1.

findclause(Term, Term, ({RA=[_|_1}. TermoRA" fetemeﬁt([_lNl],RA)E), N1) = !,
not Term=(_0_). S e ;]
/e ; AN

This section of code is used to process the ruies for use by the top—
down parser.. For context—free rules only please...

Adapted from PLOG:DCGS@UBCG_MTS, and from Clochson and Mellish
»/ : '
expand_term1({Lhs —> Rhs), (_p :— _q)) - ‘
*$dcglhs (Lhs,_=@,_s,_p) , !, s .
- '$decgrhs’ (Rhs,_s@,_s,_ql1) , !,
"$flotconj (_qt,_q) , !.
"$dcgihs’ (NT,_s0,_s,_p) :—
nonvar(NT) , .
rec_org([].NT,X,NewNT) , /* if there is a recursive argument =/
*$tag’ (X,NewNT, 9@, _s, p). 5
R .
/* determine the correct recursive argument «/
rec_arg(_., NT, _, NT} :— var(NT) , !.
¥
rec_arg{_, NT @ RA, RA, NT) :—}.

rec_arg(RA, NT, RA, NT) := !

'$dcgrhs’ ((X1 , X2)!,_s@,_s,calil(_p)) :— !, /+ and the now right hand side =/
*$dcgrhe’(X1,_s@,_s1,_pl1) , ’ /
*$dcgrhs’ (X2,_s1,_s,_p2) , s

"$and’ (_p1..p2._p).

*$degrhs’ ((X1 , X2),_8®,_s,_p) = ! , l
"$degrhs’ (X1,_s0,_s1,_p1) ,
*$dcgrhs’ (X2,_s1,_s,_p2) ,
"$and’ (_p1._p2,_p)-

- S

'$gcgrhs'(C:%J Poox2),.89,_s,(_p1 ; _p2)) =1 ,
*$decgor’ (_x1,_s@,_s,_pl1) .

*$dcgor’ (_x2,_s0,_s,7p2).) ’ 1;%

"$degrhs’(§_pt ._s,_ s, _p) = I.

'%dcgrhs’(!._s._s.!) =1,

*$dcgrhs’ (_ts,_s@,_s,true) :— -
*$istist’(_ts) , ! ,

*$append’ (_ts,_s,_s0).

*$decgrhs: (_x,_s0,_s,_p) = !,

.._j'

. rec_arg(_,_x,RA,X),
*$tag’ (RA,X,_s0,_s,_p).
'$dcgor’ (_x,_s@,_s,_p) :—
"$dcgrhs’ (_x,_s@a,_s, _pa) ,
'$dcgor1’(_s,_s@,_s@a,_p,_pa). .
*$dcgor1’(_s._s0,_s@a,_p,_pa) :— .
. var(_s@a) , _sa \== _s , ! , _s@=_s08a , _p=_pa.
*$dcgor1’'(_s,_=0,_s00,_p,_pa) :~ .
-p = ((_s® = _s@0),_pa).
“/s special case for the gap predicate +/
*$tog’ (RA,_x,_s@,_s,_p) :-

_x =.. [gop]|_args] ., !, ~
*$oppend’ (_args, [_x@,_s], _newargs) ,

) > _p =.. [gap|_newarys] . :
g}i "$tag’(RA, _x,_s@,_5,_p) = - ‘ o
_x =..#[_f)_args]
*$append’ (_args, [_s@,_s], _newargs) ,
_p.=.. [_f,RA{_newargs] .

/* The parser s/ v

- t

main(Prompt) :— - .
prompt(0Old, Prompt) /* Save the old prompt =/
, readiine(Line) i
(line = "end_of_file', writeln('end-of-file’), prompt(_,0id}
calli(process(Line)), fail

.). (f
/* ' Process the giveh sentence - ./
process(_line) :— - .
s .
((startsym(S.Code)” /+ determine the start symbol s/
; writeln('Start Symbo! has not been defined’) ‘
. , fail

)

, (top_down ->

L1 Y

124

-t ’

S =.. [Hd|SLidt]

append(SList, [Sentence,[]], NewSList)
NewS =.. [Hd,_|NewSList]
assertuz(reduce(X,X)) > /+ for bottom up parsing s/

NewS = sr(Sentence.[Q})?_])

, Time@ is cputime '))
lexical(_line, Sertence) <
write('Sentence: '), writeline(Sentence)
, abolish(numseed,1), assert(numseed(1))
Jimel is cputime

, assert(time(Time1))

/+ reset the numseed s/
-

j . /* one ‘parse Y

. ((one_parse -> NewS, processi(Code)
; figg((forall NewS, processifCode))) /¢ all prses s/
)
: writeln('AnqusiBﬁof Sentence fails’) .
)
, abolish(time,1)
, Time is cputime — Time® i : //)
, write('Total ')f write(Time), writein(’ sec.’)
<), ni, t.
processi(Code) :— , /* Called after a successful parse s/
(not var(Code) —> Code ; write(:Parse found *)) .
, write(® ") 9 ,
, Time2 is tputime ’ 5 ' !
, time(T1) ’
, retract(time(T1)) .
, assert(time(Time2)) .
ﬂ/f\, Atime is Time2 — T1
7 , wrjte(’in *). write(Atime), writein(’ §ec.')v '
/[
Look up the words in the lexicon. The_definition of "lookup" is supplied
by execution of the "iexicon'" FIGG commaond with no arguments.
~/ A ‘
~ [L

fexical ([_Iword|_rest], [_word|_sentence]) :-
lookup(_tword, _word) , !
iexical(_rest, _sentence).

fexical ([]. [1).

<':“S‘ N
/* And now we ;%VE the utility routin#s used by FIGG and SAUMER. s/ f

retractti(X) :- /-_retroétS'only one axiom s/

retract(x) , !.
: -
T

append([A|B], C,-[A|D]) :- oppeﬂd(B, c, D).
append([], X, X).

numseea{7).

-

’ , 125 , ' &,
numgen(_n) - /* genarate a unique number e/ N)
numsee&(_n) . “
, ‘retract(numseed(_n))
, _newnum is _n + 1)) T
; assert(numseed{_newnum)) , !. iy ,

reverse([_hd|_rest], _tmp, _rev) :- /* reverse a string s/ -

reverse(_rest, [_hd|_tmp]. _rev). , .

reverse([], _rev, _rev).

v A4

- readwd([_ch|_],_) ., ! -
, _ch = 121. T i’ -
. t
skel(Term) :—) .
nonvar(Term) , functor(Term, _, N) , N > @.

askyes :— N /* Succeeds if a word [s entered that sgprts with "y" »/ ,

0

»
-

ucletter([_ch]) :— !, /% is it an upper cse IettJr s/
integer(_ch)
, 65 =< _ch
, ¢h =< 90.

-

2 addax(Rule) :— !, assert(Rule), write('New Axiom: '), write!n(Rule).

element(Var,_) :— var(Var), !. /* 'Succeed if argument. is d variable ./
c ' \

element(_elem, []) :— ! , fail. /e is the argument an element of the list? s/

element(_elem, [_hd|_rest]) :—.°
—elem = _hd , ! .
; element(_elem,'_rest).
/% dr he suffix from a word s/
~ dropsuf(N1-Suf, N1) = .
dropsuf (N1, N1) .:— . N -) : o
islist&[]) =1 . - ' ﬂ "
islist([_]_]) - !.
/* Are they unificble after dropping modifiers »/
unifiable(Termt, Term2) :-—
(Term1 = Term1o®ORA ; Termt
, (Term2 = Term2a@RA ; Term2
, Termia =.. [Hd|{List1]

, Term2a =.. [Hd|List2]
, unii;yist(List1. List2).

Termia),! -
Term2a), !

126 /

. [Hd2|Rest2]) :- . ’

, atom(Hd2), ! : , ’]
, Hd1 = Hd2) ~
, unif_list(Rest1, Rest2).
unif_Tist([_|Rest]], [_|Rest2]) :~ 1, -
unif_list(Rest1; Rest2). : .y .
/% Asserts the clouse if; it does not estt already. (assertunion) s/
-) - » ’ - .

~ . ’

psserfuz((HeodL:- Body)) :— - ,
clause(Head,Body), !.

assertwz(Clause); :— \ ' ,
clouse(Clouse, true), !. . . , .
‘ R e : o > “
assertuz(Clause) := |, S \ ,
assertz1(Clause).) . \z

ossef?ﬁ((Hegd :~ Body)) :- 1 » N "
clouse(Head ,Body), !.

ossertu(Clause) :— , .
clouse(Claouse,true), !.
< ’ x ’ : #
assertu(Clouse) :— !, _]
_asserta(Clause). &

. . - N '
aossertr(Rule) :— calc_mode —> ni, writetn(Rule) ; assertz1(Ruie).
assertz1(Rule). :— 1, ’

references(Refs)
. abolish(references,1) ' : .
, assertz(Rule,Ref) . : ‘
., assert(references([Ref|Refs])). i %

call1(X) = X, .

./‘ . .

convert from -the case mask notation of the AAA SAUMER Jexicon to the

“nom“, "OCC“, or _. ’
[N.x._] => nom; fx,A,_] ==> acc: {[N,A,_] => _.

s/

coseconvert(lN,A,_], nom) :—
var(N), atom(A), !.

caseconvert([N,A,_], acc) - . - .
var(A), atom(N), !.) :
. »

4
/
«
.
| N

¢

127 L

ccseconve?t([N,A,_], Z) - "
var(A), var(N), !. - :P?k

/* Auxiliory predicates s/ . el

'$ond'(true,_p,ip) -1, . i b N
*$and"(_p,true,_p) :— !. . :
"$and* (.p._q.(op . -9)).

combine(true,_p,_p) :~ !. ‘ N
combine(_p,true,_p) :— I. '
Combine(—pv_QI(_p , _q))'

*$flatconj’'(_a , _a) :— var(_a) , !.
*$ftatconj’((_a , _b),_c) = 1 ,
*$fc1’(_a,_c,_r)
*$flatconj’(_b,_r). \%-t\«
"$filatconj’(_a,_a). ‘

» '
#

*$fc1’(_a,(_a ., _r)._r) :- ;o:?éo)', ',
*$fc1’((La ., _B)._c,_r) =¥ , :
’$fc1‘(_o,_c._r1)

*$fc1(_b, _r).

$fc1 (_a, (o,_r) ry. .)
*$islist’ ([]) i~ i
*$islist’ ([_xl_y]) P . [1,;-\‘
*$append’ ([_al_b),_c.[_ ol d]) '$oppend‘(_b,§c._d). -
"$append” ([],_x._x). ‘

.) IR
iAnd now a ;ollection of:voriou3'I/O routines.

. f\\

We first define the input routines. Readwd gets every character

up to the next special character and puts it into the first arg.
The break character is put into the 2nd argument. Readwdl is e
to stop the recursion. Readline forms a list of al! the words

inpdt until o period is seen. Each word is maintained as a list,
since this fofmat is used some some morphological analysis routines
that are flqgg?ng around from the SAUMER system.

@

+/

readwd(_x, _last) . i— repeat, get@(_ch), readwdi(_ch, _x,_
readwdi(-1, [], -1) T—- read(’end_of_file’), 1. -
readwdi(_ch, {], _ch) - . symbol(Tch) S

readwd1(_ch, [_ch|_x]. _last) - reoqwd(_}, _lost) . 1.

symbol(1@). ﬂ /+ newline =/

symbol(32). /+ space =/

W

last).

-

J28-
symboi(Jﬁ). " /% exclamation mark s/
symboi (44). . . /* comma ¥/
symbo!l (46). : - /% period »/
symbo | (62). T /% > “the "Figg command” symbol =/ ‘

'y
reodline(_line){i—

readwd(_word, _last) '

read!inel{_word, _line, _last).

/* to allow periods after initiais s/
_,cf-‘

readiinel(_word, [_word|_rest], 46) :-
ucletter(_word)

readiine(_rest) , !. L w*\\

/* to coll Figg command processor (with a nice pfefix) s/

readiinel([], Rest, 62) = b,
get@(10) .
. figg1("?> '), ! bd ‘ v

’

, readiine(Rest).

SR

readline1(f]. rend_of _file’, 1) = 1. /+ end of.fil;-f) i
readlinel([], []., 46)-:- getod(10), !. o . \/a end of sentence »/
readlinel(_word, [_word], 46) :— geto(10), !. -
/* ignore'blonk; »/
. %
readiinel([], _rest, _) :— readline{_rest) , !.
reodline1(_;ord, [_word|_rest], _) := readline(_rest) , !.

. .

RV
/* oad for writing out o list, . with a blank before each word, we have ... »/
writeline([_word|_rest]) :- write('), writ;(_word), writeling(_reét).
writeline([]) :— write('."), ni. . L /)b
'/- For w?iting out trees s/
writet?ee(N.Vor) :—'vo;(Vcr), !, tab(N), write(Var). i
writetree(N,[Hd|Rest]) :—'!; writetree(N,Hd), writetree(N,Rest).

writetree(N,[]) := 1.

writetree(N,Term) :-
Term =.. [Hd|List]
, list_of_atoms(List), !
. nl, tab(N), write(Term).

o

129

writetree(N,Terq% t—
Term =.. [Hd|Wist]

, nl, tab(N)
. write(Hd), write(’ (') ’
, NewN is N+4

, writetree(NewN,List)

, nt, tab(N), write(')').

list_of_atoms([]) :~ -

tist_of_atoms([Hd|Rest]) :— !, atom(Hd), list_of _atoms(Rest).
' writein(X) :— write(X) , ni. /* A handy critter =/
P

-~

f')

. x

I B .
. ~

e
» References o \ :

Aho, A.V. and Ullman, J.D. The Theory of Parsing, Translation and Compiling, Volume
I: Parsing. Englewood Cliffs, N.J.:Prentice Hall Inc., 1972.

Although this book describes a large variety of parsing' methods, it was

- -~ referenced- for its detailed (and formal) description of a shift-reduce parser for

context-free’ languages.

Berwick, R.C. and We{nberg. AS. Parsing Efficiency. Computational Complexity, and
the Evaluation of Grammatical Theories. Linguistic Inquiry, Spring 1982, 13(2),
165-191. S Y

v

The authors argue that inefficiency is not a necessary consequence of non-
context-free language parsing. ' They mention that grammar size can shrink with
more powerful formalisms, and that the parsing efficiency depends on the
grammatical format. There are numerous arguments from the cognitive and
biological .points of view. ‘ c ‘)

tu

Bien. J.S., Laus-Maczynska, K. and Szpakowicz, S. Parsing Free Word Order
Languages in Prolog, pages 346-349. COLING 80, Proceedings of the 8th

Internatipnal Conference on Computational Linguistics, 1980. Also appears in

J.S. Bien (Ed.). Papers in Computational Linguistics I, Institute of Informatics,

. , :University of Wagw. ' '

Modifications to metamorphosis grammars are described which allow “floating
terminals." The modified system is used for some preliminary experimentation
with the description of Polish syntax.

™

Clocksin, W.F. and Mellish, C.S. Programming in Prolog. Berlin-Heidelberg-
NewYork:Springer-Verlag, ¢981. — ;

:] -
A thorough description of Prolog. complete with a tutorial, and -numerous
examples and exercises. There is one entire chapter devoted to "using grammar

rules”.
2

Colmerauer, A. Metamorphosis Grammars. In L. Bolc (Ed.). Natural Language
Communication with Computers, Springer Verlag, Berlin, 1978. ‘

The author provides a formal introduction of metamorphosis grammars, along

with a short introduction to Prolog. He supplies a method for using normalised
— metamorphosis grammars to parse Or synthesize sentences. A compiler and a

conversation system which use metamorphosis' grammars are also described.

130

~

’

h N
131 \ o~

Dahl, V. Current Trends in LogicuGramma‘rs: Technical Report TR-83-2, Depaftmenl

of Computing Science, Simon Fraser University, 1983.

This survey of some logic grammar formalisms inspired the format of chapt \
two of Popowich’'s M.Sc. thesis. After a short introduction to logic grammars,
the different formalisms are described and compared.

Dahl, V.- More On Gapping Grammars. Proceedings of the International Conference on
Fifth Generation Computer Systems, Institute "for New Generation Computer
Technology, Tokyo. 1984.

MY I
This second paper on Gapping Grammars continues where the earlier paper left
off. It describes applications of these grammars in both formal language and
linguistic domains. In particular, their use for describing coordination, free word
order, and right extraposition is examined.
v - |
Dahl, V. personal communication. Dept. of Computing Science, Simon Fraser
University, 1985.

Dahl, V. and Abramson, H. On Gapping Grammars. Proceedings of the Second
International Joint Conference on Logic, University of Uppsala, Sweden, 1984.

This paper introduces .gapping grammars and provides the motivation fot, their
development. Two implementations are discussed, one which is general but
inefficient, and another which is more efficient but less general. ‘

Evans., R. apd Gazdar,"G. The ProGram Manual. Cognitive Science Programme,
University of Sussex. 1984. .

A reference manual for the ProGram system, which is a grammar development
¥ system based on. generalised phrase structure grammars.

!"‘ig,'vp“ Gazdar. G. Phrase Structure Grammar. In P. Jacobson and G.K. Pullum (Ed.). The

Nature of Syntactic Representation, D.Reidel, Dortrecht, 1981.

The first work 1o describe what are now called generalised ‘phrase structure
grammars. He proposes a variant of context-free grammars for use in the
description of natural language. Phrase structure rules are used as "node

' admissibility conditions” on well formed trees. Properties of these grammars

include: complex (structured) grammar symbols, metarules which operate on

~ rules yielding new rules., and a semantic rule associated with each phrase
s Structure rule.

Gazdar., G. and Pullum. G.K. Generalized Phrase Strucwré Grammar: A Theoretical
Synopsis. Technical Report. Indiana University Linguistics Club, Bloomington
Indiana, August 1982.

-

This paper provides a more detailed description of generalised phrase structure
grammars than was provided in the earlier paper. Immediate dominance/ linear

132

precedence , rules are» introduced into the formalism, with the metarules now

operating on these rules instead of on phrase structure rules. The slash
categories of the earlier paper are replaced through the introduction of a "foot"
feature into the complex grammar symbols - The semantic component of

grammar rutes is not discussed.

Greibach. S. and Hopcroft, J. Scat.tered' Context Grammars. Joyrnal of Computer and

Systen Sciences. 1969, 3, 233-247.

The authors formally introduce "scattered context grammars' and show that the
languages described by these grammars are & subset of context sensitive
languages. Their motivation for *introducing these grammars was to eliminate
the need for semantically useless nonterminal symbols whose onlv purposedwas
to "[transmit] information between widely separated parts of a sentence

Griswold. R.E., Poage, J.F. and Polonsky, 1.P. The SNOBOL4 Programmmg Language

Prentice—Hall Inc.. Englewoods Cliffs, NJ, 1971.

This book describes the syntax of the programming language SNOBOL and gives
numerous examples of SNOBOL programs.

Hopcroft, J.E. and Ullman, J.D. Introduction to Automaza%Thepry, Languages and

Ngshi,

Computation. Addison-Wesley Publisher Co. Ltd., 1979.

The first part of this book provides a good formal introduction to the languages
of the Chomsky hierarchy. In particular, its definitions of grammars and their
associated languages. and the.description of "ambiguous” grammars were useful.

AK. Factoring Recursion and Dependencies: An Aspect of Tree Adjoining
Grammars (TAGs) and a Comparison of Some Formal Properties of TAGs, GPSGs,
PLGs and LPGs. pages 7-15. Proceedings of the 21th Annual Meeting of the
Association for Computational Linguistics, June, 1983.

The first part of the paper describes tree adjoining grammars, outlines their
Capacity 1o describe the "usual transformational relations". and illustrates their
capability to describe various dependencies present in natural language. Then,
the grammar formalisms mentioned in the title are compared based on whether
or not they are powerful enough to describe some selected languages that exhibit
various "patterns of dependencies”. ‘ \

Korfhage, R.R. Logic and Algorithms. John‘Wiley & Sons, Inc., 1966.

A section of this book gives .a formal definition of a Markov algorithm.
Several examples of these rule based algorithms that operate on strings are

provided.

McCawley. J.D. Everything that linguists have always wanted fo know about logic but

were ashamed to ask. The University of Chicago Press. 1981.

~

133

An entertaining, but thorough, introduction to various logic formalisms, along
with a look at their applications to linguistics. -

. 4
Pereira, F.C.N. Extraposition’ Grammars. American Journal of Computational
-+ Linguistics, 1981, 7(4), 243-256. ‘

v

~The author introduces a logic grammar formalism called extrapositicn grammars
as an extension of definite clause grammars. These grammars are shown to
provide concise descriptions for left extraposition of sentential constituents. A
processor of these grammars is also provided. ‘ .

Pereira, F.CN.(ed). C-Prolog User's Manual. Technical Report. SRI International.
' Menlo Park, California, 1984.

This manual describes variant of Prolog in which FIGG is written.

- \
Pereira, F.C.N. and Warren, D.H.D. Definite Clause Grammars for Larguage Analysig‘
Artificial Intelligence, 1980, 13, 231-278.

This paper provides a detailed description of definite clause grammars. The -
authors argue that these gna(mmars can be used for efficient analysis of
language. A comparison between definite clause grammars and augmented
transition networks is also included.

Pop(;wich, F. Unrestricted Gapping Grammars. Proceedings .of the Ninth International
Joint Conference on Artificial Intelligence, 1985. :)

Unrestricted gapping grammars are introduced, along with the FIGG
implementation. The wuse of procedural contr both to improve parsingw
efficiency and to restrict the language decribed bngrammar is advocated, and
is supported by test results.

5,

Popewich, F. Unrestricted Gapping Grammars for ID/LP Gr;zmmars. .Proceedings of
Theoretical Approaches” to Natural Languagée.lnderstanding, Dalhousie .University.
Halifax Canada, 1985.) '

After providing a short introduction to unrestricted gapping grammars and FIGG,
this paper describes the ID/LP-UGG conversion procedure. Some empirical
results are also given.

[y

Popowich, F. SAUMER: Sentence Analysis Using MEtaRules. Proceedings of the 2nd
Meeting of the FEuropean Chapter of the . Association for Computational
Linguistics, March, 1985. '

This work describes the SAUMER system, which is based on the early (1981)
GPSG formalism. An outline of the syntax of the SAUMER Specification
Language is provided, along with details about the -implementation, and results
from some applications of the §ystem.

Popowich, F. The SA_UMER User's Manual. Technical Report TR-85-3 and LCCR
4/ TR-85-4, Departmgnt of Computing Science, Simon Fraser University, 1985.

134

»

This manual describes how to use and SAUMER system, and provides\ some
ampl?g{ammars

- Press. 1981.

Radford, A. Transformational Syritax. Cambridge Universh)

This book is an easily understandable int?lcjiuction td the Chomsky’s Extended
Standard Theory of transformational grammar—<=="N includes details about

Government and Binding. . ‘ .

=S]

Saint-Dizier, P. Long Distance Dependency Constraints in Gapping Grammars. INRIA
Research Report, LR.I.S.A. — Uriversite de Rennes, forthcoming.

Shieber, S.M. " Direct Parsing of ID/LP Grammars. draft, 1982.

. The author describes a modification arly’s algorithm which permits direct
° Jparsing of ID/LP grammars without thei} conversion into their corresponding
context-free grammar. A proof of correctness is supplled along with an

argument that the time complexn.y of the algorithm is o(n3)..

Shieber. S.M., Stucky.-S.U., Uszkoreit, H. and Robmson. J1.J. Formal Constramts on -
Metarules, pages 22-27. Proceedir}gs of the 21th Annual Meeting of the
Association for Computational Linguistics, June, 1983. o N

The authors outline.some methods for constraining metarules to make t};éfr/ use
with phrase structure grammars oriputationally safe” They show the
weaknesses of certain constraint methods. and suggest some directions in . which
"the ultimate solution” may lie.

" Stabler, E.P. (Jr). Detern'u'nist‘ic and Bottom-Up Parsing in Prolog, pages 383-386.
Proceedings of the American Association for Artificial Intelligence. August, 1983.

Part of this short paper. disqusses a simple Prolog implemehtation of a -shift
reduce parser for context-free \languages. This parser inspired the development
of the shift reduce parser oof FIGG.

Thompson H. Handling Metarules in a Parser for GPSG . Technical Report D}{I Np
175, Department of Artificial Intelligence, Umversn.y of Edmburgh 1982.

Based on the early (1981) description of ‘GPSG. The apthor proposes a method

for making the application of metarules "computationally safe” and argues .that
/ the grammar should be "expanded” before any parsing i§ attempted. Also
provided is a. method for expanding the grammar. ‘

\;‘? i

’\J N
w LW

7
e

