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ABSTRACT

We investigate arithmetic progressions in sparse sets. We
further develop the theory of arithmetic progressions in M-lacunary
sequences. In particular, there is a finite constant KN ; Where
N = 3 , such that if A 1is a finite M-lacunary sequence and the
sum of the reciprocals of the elements of A 1is greater than or equal
to KN , them A contains N consecutive terms in arithmetic
progression. An investigation of arithmetic progressions in geometric
progressions {f(n)} = {cn} , where ¢ > 1 1is a real number and n 1is
a non-negative integer is made. The topological structure of the set
of all such c , where {c"} contains a 3-term arithmetic progression
is discussed. Arithmetic progressions in quadratics
{f(n)} = {an® + gn + v}, where o > 0 are also studied.

In particular, necessary and sufficient conditions for {(an + b)2} to
conﬁain a three term arithmetic proéression ére given for most cases of
a and b , where a >b =0 and (a,b) = 1. Some unsolved problems

are mentioned.
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INTRODUCTION

The purpose of this thesis is to examine arithmetic
progressions in sparse sets, that is, in sets which contain relatively

few elements in terms of density.

In Chapter 1, we discuss arithmetic progressions in M-lacunary
sequences. Brown and Freedman [1] have shown that, if A is an
M-lacunary sequence and the sum of the reciprocals of the elements of.
A diverges, then A contains arbitrary long consecutive arithmetic
progressions. We show that there is a finite constant KN , where
N = 3 , such that if A is a finite M-lacunary sequence and the sum
of the reciprocals of the elements of A 1is greater than or equal to
KN , then A contains N consecutive terms in arithmetic progression.
We also find the optimal KN for all N = 3 . We show that, we can
never force arbitrary long consecutive arithmetic progressions in an
M-lacunary sequence A just by requiring the sum of the reciprocals

of a € A to be large, but finite.

In Chapter 2, we investigate arithmetic progressions in
geometric progressions {f(n)} = {cn}, where C 1is a real number
greater than 1 and n is a non-negatiwve integer. Theorem 2.2 sho&s
that, {cn} cbntains 3-term arithmetic progression if and only if c¢ is

a root of a polynomial equation
-2 +1=0,

where a and b are positive integers such that b < a < 2b. We are

led to an investigation of the topological structure of the set, S ,



of all such ¢ , where ¢ > 1 and {c"} contains a 3-term arithmetic
progression. In Theorem 2.6 we show that, the set of all cluster points

1/t

of S is T={8:2=1 or £ =2 for some integer t = 1}.

In Chapter 3, we analyze arithmetic progressions in
. 2 .
quadratics {£f(n)} = {on“ + Bn + Y}, where o > 0. We
show that {f(n)} contains arithmetic progressions only if B/0 is a
rational. The problem then reduces to the essentially number theoretic
problem of finding arithmetic progressions among sets of sequences
{(an + b)z}, where integers a and b satisfy a>b =20, (a,b) = 1.

Iet
T={(a,pb): a and b are integers, a >b 20, (a,b) =1

and {(an + b)2} contains a primitive 3-term arithmetic progression}.
(Here "primitive"” means that the three terms of the arithmetic progression
are relatively prime.) Theorem 3.16 shows, when a is odd, that

€T 7 b b+a

if and only if b, 3 or —— is a quadratic residue mod a.

(a,b) >

. . n
For the case when a is even, we show that, if a = 2" ,

then (a,b) € T if and only if b is a quadratic residue mod a.

Other cases when a is even are discussed.



CHAPTER 1

CONSECUTIVE ARITHMETIC PROGRESSIONS

IN

M-LACUNARY SEQUENCES

First let us start this Chapter with the following definitions:

Definition l1.1l. An increasing sequence a., <a, <a, < ... of

1 2 3
i i = - > © >
natural numbers is called lacunary if dn an+l an as n ’
and called M-lacunary if, furthermore, dn = dn+l for all n .

Definition 1.2. We define a finite increasing sequence,

a; < a, < ... < a of natural numbers to be a finite M-lacunary seguence

: < = - = -
if dn = dn+l for n 1,2,...,k-2, where dn a1 ,an .

Brown and Freedman [1] have shown that, if A is an M-lacunary

sequence and z 1w , then A contains arbitrarily long consecutive
a€a

arithmetic progressions.

We ask whether or not there is a finite constant KN , where

N = 3, such that if A is a finite M-lacunary sequence and z i-z Ky *
a€a

Then A has N consecutive texrms in arithmetic progression.

We will show that KN exists and find its smallest value exactly for

o«
each N . To do this we define a sequence BN = (bi)i_l as follows:

First let us agree to use EF = (i,i,i,...,1i) where there are
N-terms as a notation. We define the difference sequence (dn) of the

seguence BN , where N 2 3, to be

N-2 _N-2 _N-2
174,082 N2y

(d) = (
n



B = (1,2,3,...,N~1,N+1,N+3,... ,N~1+2 (N-2) = 3N-5,3N-2,

3N+1,...,3N-5+3(N-2) = 6N-11,6N-7,6N-3,6N+1,...).

It is clear that BN is an M-lacunary sequence, and BN does not
contain N consecutive terms in arithmetic progression since (dn) does

not have N-1 consecutive equal terms.
Theorem 1.3. BN has convergent sum of reciprocals.

Proof. From the definition of the sequence BN , We can see

that
bl=l
b.=b. +d. =b. +1>1

2 1 1 1

>

z = >
Porn-2) Pyt H gy TPyt H2>1 42

> , _ o § :
b2+2(N—2) b1 + d]_ + d1+(N_.2) + d1+2 (N-2) bl +1+2+3>1+2+3

>
b2+k (N-2) ~ bl + d1 * d1+(_N--2) + d]_4.2 (N=-2) toe.. F d1+k (N-2)

bl+1+2+3+...+(k+1)

>1+2 + 3+ ... + (k+1)

Ge+l) Gee2)
2



and so on. It follows that

[e) 1 L 1
z —_ =1 + z o
i=1 P i=2 P
© (k+l) (N-2)-1 1
=1+ ) () =)
k=0 i=k (N-2) 2+i
S 1+ (N-2) ) b——l———
k=0 24k (N-2)
s 2
<1+ (2) ) i
k=0 (k+1) (k+2)
<1l + 2(N-2) z ———l—§-< ©
k=0 (k+1)

Thus the theorem is proved.

We calculated some Ky by computer. For N = 3,4,5, we found

that K, = 2.3734, X

3 = 2,8745, and K_ = 3.204.

4 5

N-1
Because KN > z $-+ ® as N > , we get KN > ® a N> |
i=1

Now we have the following important theorem.

Theorem 1.4. Let A be a finite M-lacunary sequence. If

z -i e KN » then A contains N consecutive terms in arithmetic progression.
-a€A

Before we give the proof of this theorem we need the following

lemma.



Lemma 1.5. ILet (d)= 22,282 3%2 ), N2 3, and let

(an) be an M-lacunary sequence (finite or infinite), with

t = a - a ’ such that ti > di for all i , then a, Z b, for

all i where bi is the i-th term in BN de fined above.

Proof of Lemma 1.5. By induction, first a, =21 =b_ .

Assume it is true for j (i.e., aj bt bj). Then

Therefore it is true for j + 1, and hence a, e bi for all i .

Now we are going to prove the Theorem 1.4. Let

A= (a ,a,...,a.k) let ti=ai+l-ai,i=l,...,k-l. Assume A does

not have N consecutive terms in arithmetic progression, it follows that

- > - i = eoo k=N+
ai+N—l a; N-2 ai+l ai , i 1,2, Jk=N+1 ,

(i.e., tine2 > E 0 1= 1,2,... k-N+LL)

N-2 _N- -2
Let (4 ) = (1 2 '2 2,;? rees)a

We want to show that ti = di for all i =1,2,...,k-1. It is clear

that tj Z2l=4d4. ,3=12,...,N-2. Iet 1 > N-2 and assume tj = dj
J )

for j =1,2,...,i-1. Then

Y T2 Jem-2) T hieme2y) YT Yo (ne2) T

d -1+1=4d, .
i i

Therefore ti = di for 1 =1,2,...,k-r1. Then by Lemma 1.5 it

follows that



g Zb, for i=1,2,...,k .

k
1 1 1 o
Hence 2 Y = 2 b < 2 5 = K¢ which is a contradiction.

174 b€BN

Thus = a, - a, for so i and (a,,a, ee.,a, )
i me ll l+l’ 7

a5 N1~ qi+N-2 i+l 1+N-1

are N consecutive terms in arithmetic progression.

Corollary 1.6. If A = (ai) is an infinite M-lacunary

1 .
sequence, and z - > KN , then A has a consecutive N-term
a
€A
arithmetic progression.

Here is an example of a subset A of natural numbers such that
A does not contain any 3-term arithmetic progression at all (not

. . ' 1
necessarily consecutive) and where one gets z = > K

a€A 3

let A= (1,2,4,5,10,11,13,14,28,29,31,32,...). Then

1 7 ,
z ;ﬁi 2.54 > K, =2,3734, but A does not contain a 3-term arithmetic

a€a 3

progression. Hence the bound K3 works only for M-lacunaxy

sequences.

Remark 1l.7. The bound KN is optimal in the following sense.

For all € > 0 , there exists a finite M-lacunary sequence A
1 .
such that z 2 > KN - € and A does not have N consecutive terms
aca

in arithmetic progression. This follows from the fact that
. 1 n 1

z 5= KN implies that there exists n such that z S—-> KN - € .
bEBN A i=1 "i

So if we take a, = bi , 1 =1,2,...,n, then A is a finite M-lacunary



sequence, —>K_-€ and A does not have N consecutive terms
4 a N
a€a

in arithmetic progression.

We can never force arbitrarily long consecutive arithmetic

. . o 1
progressions in an M-lacunary sequence A just by requiring z a2 to

a€a
be large, but finite. This is shown in the next theorem.
Theorem 1.8. For all 0 < T < , there exists an M-lacunary

sequence A such that z i—> T , but A dJdoes not have arbitrary long
a€a ‘

consecutive arithmetic progressions.

[e o]
Proof. Let 0 < T <« be given. We know that z ;'= ® ,
i=1 *t
1
it follows that there exists  n such that 2» =>T., let
- i=1 *
2 3 )
a=(1,2,3,...,n,n ,n",...). Then A is an M-lacunary sequence and
% %=> T . But, since n]+2 - nJ+l > n3+l - n:j for all j , n>1, A
atA

does not have arbitrary long consecutive arithmetic progressions.

However, Brown and Freedman [1] have shown that if A is
an M-lacunary sequence and z %= © , then A has arbitrary long
a€a

consecutive arithmetic progressions.

Erdos' famous conjecture states that if A is a subset of

natural numbers and z — = , then A contains arbitrary long
a€a

arithmetic progressions. The proof (or disproof) of this is, at present,

. . 1
out of sight. In fact, it has not even been proved that z e @
af€a

implies that A has a 3-term arithmetic progression.



CHAPTER 2

ARITHMETIC PROGRESSIONS

IN

GEOMETRIC PROGRESSIONS

In this Chapter, we want to study three term arithmetic
. \ n
progressions in the set of values of an exponential function {fm} = {c},
where ¢ 1is a real number greater than 1 and n is a non-negative

integer.

Lemma 2.1. Let ¢ =2 . Then {f(n)} = {cn} has no three

terms in arithmetic progression.

Proof. 1ILet c = 2 be fixed. Suppose {c'} has a three term
arithmetic progression. It follows that there exist non-negative integers

n, <n. <n such that

1 <2 3
S T B S |
c -¢ =¢ -c ’
or
n,-n n,-n
c S 2¢c 21 +1=0.
L = - = - .
et a n3 n1 and b n, nl Then
d-2"+1=0, (1)
where a and b are positive integers and b < a . Now, since

a>b+l and ¢ = 2 . Then



10.

and so

c - 2cb +1>0 .

. . . s n . . .
This is a contradiction. Hence {c } has no three terms in arithmetic

progression.

Now, we state and prove the following important theorem which
shows a necessary and sufficient condition for = {f(n)} to have three

terms in arithmetic progression.

Theorem 2.2. Let c > 1 . Then {f(n)} = {c"} has three terms
in arithmetic progression if and only if ¢ is a root of a polynomial

equation

g(x) = x2 - 2xb +1=0
where a and b are positive integers and b < a < 2b .

Proof. Suppose {cn} has a three term arithmetic progression.
By virtue of Lemma 2.1, {c'} has no three terms in arithmetic
progression for ¢ Z 2 . It follows that we can assume ¢ satisfies
l1 <c<2, As in the proof of Lemma 2.1, we can arrive at (l). Hence
¢ 1is a root of the polynomial equation g(x) :vO. To complete the
proof of the "only if" part, we only need to show that a <2b . To do

this look at

g'(x) = ax -l 2b. = x (ax~ ~ - 2b), (2)



11.

and g'(1) ; a-2b. If a=2b, then (2) shows that g'(x) >0 for

i < x <2 andso g(x) is increasing on the interval (1,2). But

g(l) = 0. Hence g(x) >0 for all x € (1,2), whence g(x) has no
root in (1,2), a contradiction. Thﬁs, for ¢ to exist such that g(c) =0

and ¢ € (1,2), we need to have a < 2b .

Now, conversely, let ¢ > 1 and suppose that

where a and b are positive integers and b < a < 2b . Let

= = = < <
n, o, n, b, n, a . Then n n, n, and
n n n
C3-'2C2+Cl=o
or
- R e !
c - c =c  =-c .
S T
Hence ¢ 7, ¢ , c ‘are three terms in arithmetic progression. (That
b

is, 1, c, ¢ are three terms in arithmetic progression. Note that
k  b+k +k . . . ' .
c, cC ' ¢ are also in arithmetic progression for all k = 0).

This proves the theorem completely.

In the polynomial g(x) = x> - Zﬁb + 1 , it is impossible,
when b =1, to find an integer a such that b < a < 2b . Hence

we may assume that 1 <b < a <2b .

Example 1. et a=3,b =2, we will find ¢ , 1 < ¢ <2

2 , . . .
such that 1, c, c3 are in arithmetic progression. To do this, let



12.

3
f(x) = x - 2x2 + 1 .

Since 1 is a root of f(x) = 0, we can factor f(x) and get

f(x) = (x—l)(x2—x—l).

We need only to find the roots of x2 - x - 1= 0 . These roots are

+
X = l~§—12i-. But since 1 < ¢ <2 , it follows that c = l_%_lgi..
+ ¢v¥5,2 1 5.3

Therefore 1, (E—E—JCj) , (-—%;lc:) are in arithmetic progression.
To check that:

(1+/5_)2_l'_3+/'5__1_1+/5_

2 . ) )

and

1 +/5 3 1+v5.2 1 +v/52,1+¢/5 3+vV5 ,-1 + V5. 1+7/5
(-—3———0 - (——3———0 = 5 ) ( 5 - 1) = > ( 5 ) = 5 .

This seems to be the simplest example of a geometric progression {cn}

which contains a three term arithmetic progression.

Example 2. Let a =4, b = 3, f(x) = x4 - 2x3 + 1. Since
1l is a root of the polynomial equation £(x) = 0 , we factor and get
f(x) = (x—l)(x3 - x2 -x-1) =0 . We need only to solwve
x3 - x2 - X =-1=0. We follow the method for solving cubics as out-
lined in [2, page 17]. Then we have ao = al = a2 = -1 , where

3 + 2 + + = 0
b4 a,x a,x a, = '



13.

21 .1 2 __1_1_ 4

173% "9 %2 TT3ITg 5.

_ S S 1 19
r 6(ala2 3ao) 57 a5 —'g(l + 3) + 55 = 57
3, 2. _ 64 36l 207

4 T T~ 7939 7739 T 720 .

So there is one real root and a pair of complex conjugate roots. Now

[r + (@ + )13 (19%__ V297,1/3 _ %-(19 + /297y /3

5, =
s, = [r - ¢ + 213 (19——;—7—— ¥297,1/3 _ %(19 - /a3 .

a
; 1 1/3
So the real root ¢ = Sl + 32 - 7% = %{19 + v297) /3 + (19 - ¥297) / + 1]

=1,839286755. Thus, 1, (1.839286755)3, (,1.839286755)4 are in arithmetic
progression with a difference approximately equal to 5.2226252.,‘

It is amazing that this ¢ appears to be the second simplest

1+ /5
such solution (after the simplest ¢ = T ) which we have found.
Define

S ={c: 1 <c <2 and {cn} has a 3-term arithmetic progression}e

Theorem 2. 3. et € =2 ,t=2,3,4,... . Then ¢ f S .

Before we give the proof of Theorem 2.3. We introduce the

following fact from algebra [3, see page 320].

Lemma 2.4. If € = 2l/t, t > 1 is an integer , then
2 3 t-1 . . the fi .
l,e,e ,& ,...,€ are linearly independent over e field of rational
[ is. i 2. rr, et t o -
numbers. That is, if ro + rlE + r2€ coe -1 . ri is



14.

ti then r. = = = = = ., Or again € i
;a ional number, 0 rl r2 .. rt-l o, g ’ is

not a root of any polynomial with rational coefficient of degree less than

t since x -2 is clearly the irreducible polynomial for € over the rationals. ]

Proof of Theorem 2.3. Suppose, on the contrary, that € € s ,
1/t

where € = 2 for some t . Then by Theorem 2.2 we have

e ~268°+1=0

where a and b are integers and 1 <b < a < 2b . That is, we have

(zl/t)a _ 2(21/t)b +1=0.

let ©  as gty 0 Sr<t

o
i
W
ol
.i
K
(@]

Then we have

(zl/t)qt+r l/t)q't+r'

- 2(2

1/tyr _ ,q'+l 1/t x

2q(2 + 1

. (2)

I
o
m

'+
Since r <t , r' <t, then by Lemma 2.4, we hawve 29 = o9 L =1=0

a contradiction. Hence € f S .



15.

Let £ b(x) = ® -2+ 1, 1 <b <a<2b . Then for

r

there corresponds a unigque ¢ in S such

each polynomial fa ab

b
that

( ) =0 .

f
a,b ca,b

But since we have only countably many such polynomials (because I x I
is countable), it follows that we have only countably many c, b's
1

in S . Hence S is a countable set. It will follow from Theorem 2.6

below that S 1is infinite.

Lemma 2.5. TLet f£(x) = x> -2x° +1, 1<b<ac<2b

and f(c) =0 , whexre 1 <c <2 . Then

A 1
1< R)aP o ?P
a
Proof. f'(x) = axa_l - 2be'l = xb-l[axa_b - 2b]. It follows
. 1
that £'(x) = 0, when x = (%féa—b . Now f'(l) =a=-2b<0, £(1) =0,
1
. . 2 _ .
£(2) = 2% - 2b+l +1>0, f'(x) <0 for 1==x< (:§0a b , and
1
2b, a~-b
£f'(x) >0 for (2:) < x =2 . These facts allow us to graph f(x)

as in Figure 1.

Since f(c) =0, £(1) = 0, it is clear that

1
1< (3P ..
a
.
a-b

Next, we want to show that ¢ <2 R Since



16.

1 a b
£2%7P) = 2%P 5 5P
b
=2%P b2l +1=1>0.
1
Then ¢ < 2a—b .
y ﬂ‘

(0,1)
(0,0) (1,0)

R
gg a-b 2b. a-b

(=) () ))
a a

Figure 1

Theorem 2.6. Iet T = {£: £ =1 or & = Zl/t for some

integer t = 1}. Then T = the set of all cluster points of § .

Proof. ILet €& be a cluster point of § . Then

-> =
c, b € (ca b # ¢ for all n ), fn(ca b ) 0, where
n’"n n’'"n n’"n
% bn
f(x) =x -2x 7 +1,1<b <a <2b . It follows that a and b
n n n n n n
are unbounded (since otherwise there are only finitely many . b ).
’

Hence we may assume that a > " (and therefore bn +> ),



17.
By virtue of Lemma 2.5, we have

1 1
2bn an--bn a -b
1< (—) < c <2 B
a a
n n n

So two cases follow.

Case 1. If a - bn is arbitrarily large, then the ¢
1
ah—bn
come arbitrarily close to 1 (since 2 is arbitrarily close to 1)

a ,b
n'"n

and so € = 1.

Case 2. If a -b is bounded, say a_ - b_ =t (infinitely
—_— n n n n

often). Then

2b 2a_=-2t
1/t 1/t 2t. 1/t
(o GV o 2y
a a
n n n
. . . 1/t . .
is arbitrarily close to 2 since a > ® _, But c, p 18 such
n'"n
2b
that (——201/t <c < 21/t . So we have that some ¢ come
a ,b a ,b
n n'"n : . n'n
arbitrarily close to Zl/t and so . b - Zl/t . Hence € = Zl/t .
n'"n

Thus the set of all cluster points of S is contained in T .

Now, we want to show that T is contained in the set of all

; ; . 1/t
cluster points of S . That is, if € =1 or € =2 / for some
integer t = 1, then we show that there exists . b in S such that
n'"n
a. b
c, b - € . To do this, let fn(x) =x ™ o2y 1, where
n'"n

l1<b <a <2b .
. n n n



18.

(1) Iet € =1 and let bn =n and a = 2n - 1. It follows that

for each n = 2, there exists ¢ b in S , and by Lemma 2.5, we
a8 °n
have
1 1
2b a -bn a_-b
1< (= <c <2 .
a a ,b
n n'"n
That is,
L 1
2n .n-1 n-1
< < <
< G ca b °? ’
n’"n

which implies that . b >1 as n > ® |

(ii)_ Iet € = Zl/t , £ 21 and let bn =n , an =n +t . It follows
that for each n = t+l, there exists . » in s . By lemma 2.5,
n’"n
we have
1 1
2b a -b a -b
1< (D) o< o¢ <2 "
a ,b
n n' n
That is,
1< (BE o <2t | 1st<n
n+t a ,b
n’' " n
which implies that . b - Zl/t as n >,
. nln

Corollary 2.7. The set S is nowhere dense in (1,2).




Proof. If S 1is dense in some interval, then every point
of this interval is a cluster point of S . 1In particular S would
have an uncountable number of cluster points. Theorem 2.6 shows that

S has only countably many cluster points.

Unfortunately, we have not been able to solwve the problem of
four-term arithmetic progressions in the geometric progression {c"} .
It is unlikely that any exist for any ¢ . 1If {cn} contains a four-

,n such

term arithmetic progression, then there are integers n Ny ,n 4

1 3

that

in an arithmetic progression. It follows that ¢ is a root of both

the polynomials

2 -2 +1=0

] )
2 28 +1=0,
= - = - ' = - Hh! = -
where a n3 nl, b n2 nl, a n4 n2, b n3 n2 . One
shows that a > a' , b > b' and in fact b' = a~b. But even with these

facts we cannot prowve that the two eguations do not have a simultaneous

solution in the interval (1,2).

19.
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CHAPTER 3

ARTTHMETIC PROGRESSIONS IN QUADRATICS

In this Chapter we want to consider 3-term arithmetic

progressions among quadratics.

Definition 3.1. The integers x,y,z are said to be a

pythagorean triple if x,y,z, satisfy the equation
X +y =2 . (1)

Remark 3.2. Suppose x,y,z is such a triple and (x,y,z) = d.
If we put x = dxl, y = dyl, z = dzl, we see that % .¥102, is also a
pythagorean triple and (xl,yl,zl) = 1. On the other hand if x,y,z is

any solution of (1) and k is any integer, then kx,ky,kz is also a

solution. Thus, any solution of (1) may be used to find a solution

X,v,2 such that (x,y,2) = 1, and conversely, a solution x,y,z with
(x,v,2) = 1 may be used to generate a family of solutions.

Definition 3.3. A pythagorean triple x,y,z such that
x,y,2) =1 is called a primitive pythagorean triple.

To find all solutions of (1), the above remark indicates that,
it suffices to find all primitive solutions of (1). We confine our

~attention to the cases x>0,y >0, z > 0.

Lemma 3.4. If Xx,y,2 is a primitive positive solution of

(1), then (x,y) = (x,2) = (y,z) = 1.
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Proof. To show that (x,y) = 1, suppose a prime p divides
2, 2
both x and y . Then p Ix ’ p2|y2, it follows that p2[x2 + y2 .

2 2
So p |z and hence p[z, a contradiction. Therefore (x,y) = 1.

The arguments are similar to show that (x,z) = (y,z) = 1.

Lemma 3.5. If x,v,2 is a primitive positive solution of
' (1). Then X,y have opposite parity (one of the x and y is even and

the other is odd).

Proof. By virtue of Lemma 3.4, both x and y cannot be
even. To show that both x and y cannot be odd, assume that both x
2 _ 2 _ N
and y are odd. Then x =1 (mod 4) and y =1 (mod 4). So that

= 2 (mod 4) which is impossible since every square is congruent

ES
+
~
1

to either 0 or 1 (mod 4). Thus x and y have opposite parity.

Theorem 3.6. Assume x is even and y 1is odd. Then the

positive primitive solutions of (1) are

where r,s are integers such that 0 <r <s , (r,s) =1 and r and s

are of opposite parity.
Proof. See Gioia [4, page 121].

Corollary 3.7. There are infinitely many positive primitive

'solutions of (1).

2 2
Proof. If y and 2z are given, then r ,s and consequently

r,s are uniquely determined. So that different values of x,y and z
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corresponds to different values of r and s . Also, since there are
infinitely many such values, then (1) has infinitely many positive

primitive solutions.

5 ;
Define I = {i2: =1,2,3,...}. We will consider 3-term

i
. . . . 2
arithmetic progressions in I .

We call a 3-term arithmetic progression a,b,c primitive if (a,b,c) = 1.

2.2 ;
Lemma 3.8. If a ,b ,c2 is a primitive 3-term arithmetic

progression in I~ . Then (a,b) = (b,c) = (a,c) = 1.

Proof. We have a2 + c2 = 2b2 and (a2,b2,c2) = 1, where

0 <a<b<e, ab,c are integers. To show that (a,b) = 1, suppose
\ 2 2
a prime p divides both a and b . Then pla P plb . It follows
2 2 2 2 s
that pi2b and p|2b - a . Hence pIc , a contradiction. By a

similax.argument we can show that (b,c) = 1.

Next, to show that (a,c) = 1, suppose a prime p divides both a and
¢ . Then p|a2, plc2 . Hence pla2 + c2 . So that p 2b2 . It follows
that either plb2 , a contradiction, or p = 2 which implies that both

2 2 . . .
a and c are even. Hence 4|a + c2 . So 4{2b  which implies that

2 . <
2lb ; again, a contradiction.

Theorem 3.9. x,y,z is a primitive pythagorean triple if and

only if (x—y)2, 22, (x+y)2 is a primitive 3-term arithmetic progression

s 2
in I .

Proof. Suppose X,y,z 1is a primitive pythegorean triple.

Then x2 + y2 = 22 . But
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' 2 2
(x—y)2 + (x+y).2 = X - 2Xy +y2 + x + 2xy +y2

2(x2 + y2).

2z

fl

2 2 2 .
Hence (x-y)™, 27, (x+y) is a 3-term arithmetic progression. To show

2 and (x+y)2.

it is primitive suppose a prime p divides (Ax-y)z, z
Then plx—y, p|x+y. It follows that p|2x, p|2y . Hence either p = 2
or plx, p]y . Since, by Lemma 3.4, (x,y) =1, we have p = 2. So
2!x+y which implies that x and y hawve same parity which contradicts
‘Lemma 3.5.

2 2.2
Conversely, suppose that (x-y)~, 22, (x+y") is a primitive

3-term arithmetic progression. Then

(x-y)2 + (x4y)2 = 222 .

But,
(x-y)2 + (x+y)2 = x2 - 2xy + y2 + x2 + 2xy + y2
= 2(x4)° .
Hence x2 + y2 = 22 , whence X,y,z 1is a pythagorean triple. To show

that x,y,2 is a primitive pythagorean triple, suppose that a prime p

‘divides x,y and z . Then p|x -y, p|x+y which contradicts Iemma 3.8.

Example 3. Given x =4, y = 3, It follows, when z =5 ,

C . 2
that (x,y,2) " is a primitiwve pythagorean triple. (x-y)* =1, 22 = 25,
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2 ’ ‘
{x+y) = 49. But since 1 + 49 = 2,25, (1,25,49) = 1. Then

2 N . , .
1, 5,7 is a primitive 3-term arithmetic progression.

2

Example 4. Given (7)7, (13)2, (17)2 a primitive 3-term

arithmetic progression. To find x,y,z2 put z = 13, %~y = 7,
2 2 2 2
xty = 17. It follows that x =12, y = 5. So x +y = (12)7 + (5)" =
2 2
= (13)" =2z . Also (12,5,13) = 1. Therefore 12, 5, 13 1is a

primitive pythegorean triple.

Corollary 3.7 says that there are infinitely many positive
primitive pythagorean triples. It yields by Theorem 3.9 that there are
P C s . . . . 2
infinitely many primitive 3-term arithmetic progressions in I .

‘Moreover, since a primitiwve pythagorean triple x,y,2 can generate a
family of pythagorean triples,say kx,ky,kz , where k 1is a positive
) 2 2 2,2 2 2, . '
integer. It follows that k (x~-y)°, k (27), k (x+y) is a family of

o o
3-term arithmetic progression generated by (x—y)z, 27, (x+y)” .

' 2
Theorem 3.10. a2,b ,c2 is a primitive 3-term arithmetic

progression with O < a <b < c if and only if the following are

satisfied

a=2xvy, b=z, c=zxty , (2)

2
where x = max{2rs, 52 - r}, y = min{2rs, 52 - rz}, zZ = r2 + 52 ’

r and s are integers such that 0 <r <s , (r,s) =1 and r and

s are of opposite parity.

Proof. Suppose a2,b2,c2 is a primitive 3-texrm arithmetic

progression. Then
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2 2 2
a +c¢c =2b
2.2 2 . .
where (a",b ,c) =1, 0<a<b<c and a,b,c are integers. Since
2 2 . 2 2
a +c is even, it follows that a',c and hence a,c. have same
+ c—~ ! . .
parity. EEE-= X, E%E'= y are both integers. This yields that

x-y = a, xty =c¢, 0 <y <x. But

2 ) 2
a2+ = k)2 4 ) = 2(P4y) = 267 .

let 2z =V x2+y2 , then =z

2 2 i e . . . .
(Xry)z, z , (x+y) is a primitive 3-term arithmetic progression in

i

b . Therefore we have that

Hence, by virtue of Theorem 3.2, x,y,z 1is a primitive pythagorean

triple. So Theorem 3.6 implies, (since x > y), that

2 2

2 2 : 2 2
x = max{2rs, s - r'} , y = min{2rs, s” - r } , Z2=s +r |,

where r,s are integers, 0 <r<g , (r,s) =1 and r,s are of

opposite parity. Thus conditions (2) are satisfied.

Conversely, suppose we have (2) and we wish to show that

2.2 2, e . . . .
a ,b ,c is a primitive 3-term arithmetic progression. Since

2 2 2
0 <r<s . It follows 2rs >0, s -r >0, r2+s > 0 and hence

x>0,y >0, 2>0. We claim that x # y. To see this assume,

: 2
on the contrary, that x =y or equivalently assume 52 - r = 2sr

which implies that (s-—r)2 = 2r2. It follows that §i£-= /2 an

irrational, a contradiction. Hence x >y > 0 . From Theorem 3.6,

it yields that x,y,2 1is a primitive pythagorean triple

2 2

2 .
(i.e., x +y =2z , (x,y,2) = 1). Therefore, by virtue of Theorem
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2 2 2 e ey . .
3.9, (x-y)7, z7, (xt+y) is a primitive 3-term arithmetic progression.
2 2 s . . .
Thus, a?,b ,C is a primitive 3-term arithmetic progression. The

proof of the theorem is complete.

. 2
Define f(n) = (n+t)”, where n = -t is an integer

and t 1is a fixed real number.

Theorem 3.11. If t is an irrational number, then {f(n)}

has no 3-term arithmetic progression.

Proof. Suppose, on contrary, that {f(n)} has a 3-term

arithmetic progression. Then, for nl < n, < n, we have

(nl+t)2 + (n+t)? = 2(n.+t)2

3 2
or
2 2 2 2 2 2
ny + 2nlt +t + n, + 213t f_t = 2(n2 + 2n2t + t7),
so
2 2 2
-2 = - - .
ny + ng n, t(4n2 2nl 2n3) (3)
We claim that 4n, - 2n, - 2n_ # 0 . To prove this, suppose that
2 1 3 P pD
4n2 - 2n1 - 2n3 = 0 . It follows that nl + n, = 2n2 . So that
nl,n2,n3 is a 3~-term arithmetic progression. Hence n, = nl+d,
n, = n1+2d, where d 1is a positive integer. Again, it follows from
2 2 2
(3) that n, +ng - 2n2 = 0 . Therefore we have

2 2 2
ny + (_nl+2d) 2 (nl+d)

or
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2 2 2 2 )
+ =
n, + n, + 4nld + 44 2nl + 4nld + 24

2

which implies that 2 = 1 . This absurdity implies that
4n, = 2n, - 2n3 #0 .

2 1

Hence we can write

a rational number. This contradiction completes the proof.

Corollary 3.12. If {f(n)} has a 3-term arithmetic

progression. Then t 1is a rational number.

Theorem 3.13. Let t = —,where a, b are integers, a # 0 .

plo

et f(n) = m+t)?, gln) = (antb)’. Then £(n)), £n)), £n,) is a
3-term arithmetic progression with -t < nl < n, < n, if and only if
g(nl), g(nz), g(n3) is the same.

Proof. W& consider the increasing part of f and g only. Hence let

g(nl), g(n2), g(n3) be a 3-term arithmetic progression with

/

..b ’
— =n, <n, <n., .- Then we have
a

2 2 2
(anl+b) + (an3+b) = 2(an2+b)

or

2
a2(n +13)2 + a (n +13)2 = 2a2(n +E)2
1l a 3 a 2 a
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which implies that

(nl+t)2 + (n3+t)2 = 2(n2+t.)_2 .

Hence f(nl), f(n2) , f(n3) is a 3-term arithmetic progression.

By a similar argument we can prove the converse.

Theorem 3.14. Iet h(n) = om2 + Bfn + Yy where q,B,Y are

reals, a4 >0 . Let f(n) = (n+t).2 where t = B/2a . Then

h(,nl) . h(n2) . h(n3) is a 3-term arithmetic progression with

-8 < . . .
—_ < <
5q S By Sn, <ng if and only if f(nl),, f(n2) ' f(n3) is the same.

Proof. Suppose h.(nl) < h(n2), < h(n3) is a 3-term arithmetic

progression with B <n <n, <n_. Then we have
5o 1 %2 T 03

2 2 2
(an; + Bny +Y) + (o, + Bng + y) = 2(on, + Bn, + )

(0(.n2

2 2
1t Bnl) + (,Ol.n3 + Bn3) = 2(_0Ln2 + an.)

2
(nl+(B/OL)nl) + (n§+(,8/u)n3) = 2(n§+(5/0t)n2)
(03 +(@/am) + (B/207) + (m+(B/om, + (B/200%) = 2(n2+(B/am, + (B/20),

(n, + 8/20% + (n  + 8/200° = 2(n, + B/20)°
and finally

(n, + )2 + (ny +©)% = 2(n, + £)2



29,

which implies that f(nl). < f(nz) < f(n3) is a 3-term arithmetic
progression.

By reversing the above steps we can prove the converse.

Corollary 3.15. If {h(n)} has a 3-term arithmetic

progression, then (/0 is a rational.

Proof. The proof follows from 3.14 and 3.12.

We will éonsider functions of the form

h(n) = an> + Bn + Y, (4)

where d,B,Y are reals, o >0 and n is non-negative integer.

suppose 1h(n)} has a 3-term arithmetic progression h(_nl). < h(nz) < h;(n3).,

0 Lo 5?; _ u.l ~ 2 3 -

f(nl) < f(nz) < f(n3) is a 3-term arithmetic progression, where

It follows, by virtue of Theorem 3.14, that

2
f(n) = (n+t) and t =f/20 . But t is a rational, say t = whe re

oo

a and b are integers and a > 0 . Then Theorem 3.13 implies that
g(nl)., g(nz) ' g(n3) is a 3-term arithmetic progression, where

2
g(n) = (an + b)". That is, we have

2 ' 2 2
(anl + b)) + (an3 + b)" = 2(,an2 +b)" .
- By the division algorithm we can write b = ak + b', where k and b’

are integers and 0 =Db' < a . Hence, by substitution

(an' + b')° + (an}, + b')% = 2(an! +b')2 , (5)

1
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where 0 = k' < a and ni = ni +k, i=12,3.

Moreover, if (a,b') = 4> 1, then a = ald, B! = bld and (al,bl) =1

and so (5) becomes

2 , 2 2 Lo 02 2 . 2
= +
d (_alnl + bl) + d (aln3 + bl) 2d (_aln2 bl)

which implies that {(aln + bl)z} has a 3-term arithmetic progression.

Note that, the converse of these arguments are also valid.
Hence we can conclude that, to study 3-term arithmetic proéressions
in the quadratics in (4), it suffices to study 3-term arithmetic
progressions in {(an + b)2}, where a and b are integers, 0 =hb < a
and (a,b) = 1. We will consider primitive 3-term arithmetic progressions

in {(an + )2} .

We define T={(a,p): a and b are integers, a > b = 0,
2 e s . .
(a,b) = 1 and {(an + b)“} contains a primitive 3-term arithmetic

progression}.

It is clear that (1,0) € T ' sinée‘ 12 contains infiniteiy
many primitive 3-term arithmetic progressions. Hence to study whether
or not (a,b) € T , we need only to study the cases where a >b >0 ,
(a,b) = 1. PFirst we study the case when a is an odd number, and we

have the following long theoremn.

Theorem 3.16. Let a be an odd number, b be an integer

such that a >b >0, (a,b) = 1. Then (a,b) €T if and only if

b+a

b, g- or > is a quadratic residue modulo a .
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Proof. Suppose (,a,b‘)v € T . From the definition of T ,
there exist integers 0 =< ny < n, < n, such that (,anl + b)2,

2 2, NP . . ,
(_an2 + b)), (,an3 + b) is a primitive 3-term arithmetic progression.

By virtue of Theorem 3.10, we have
an, + b =x -y

an, + b (6)

1
N

an_ + b XxX+y,

2 2 . 2 2
where x = max{2rs, s* - r"}, y = min{2rs, s* - "}, z = 52 + r2 ,

r and s are integers such that s >r >0, (r,s) =1 and r and:

s are of opposite parity. Equations(6) mean that

X - vy = b(mod a)

z = b(mod a)
X +y = b(med a).
It follows that
2x = 2b(mod a)
z = b(mod a)

2y = 0(mod a)



since (a,2) = 1, then

X = b(mod a)

= b(mod a)

N
h

= 0(mod a).

=
"

Now we have two cases:

Case 1. x = 52 - r2, y = 2rs, 2z = s2
In this case (7) becomes
52 - r2 = b(mod a)
52 + r2 = b(mod a)
2rs = 0(mod a)
which implies that
2 _
2s” = 2b(mod a)
2 _
2r” Z 0(mod a)
2rs = 0(mod a) .
. . 2 _
Again, since (a,2) =1, s° =Z b(mod a), and hence
~ residue mod a .
Case 2. x =2rs, y = 52 - r2, z = s2

(7) becomes

b

32.

(7

is a quadratic

In this case



2rs = b(mod a)

52 + r2 = b(mod a)
2 2 !
s* - ¥ = 0(mod a)

which implies that

2rs = b(mod a)

b(mod a)

I

2r

2s b(mod a) .

Again, since (a,2) = 1. It follows that, if b is even, then, e.g.,

2 _b b . . X .
r = Eimod a), and hence 5 is a guadratic residue mod a. If b is
odd, then we get r2 = E%E (mod a), and hence E%E is a guadratic

residue mod a. This completes the proof in the forward direction.

Conversely, let a be an odd number, b be an integer such

that a>b >0, (a,b) = 1.

(1) Suppose b is a quadratic residue modulo a . Then

. ' s . 2 _
there exists a positive integer t such that t = b(mod a). Let

2 2

t b(mod a). So that r is odd and

I
1

r =a, s =t + ka, then s
s is even when t and k have the same parity. We show (r,s) =1,
Suppose not: let p be a prime such that p|r, p|s, It follows that
pla and p|t. But, a[t2 - b. Hence p|t2 - b, whence p|b , a

contradiction since (a,b) = 1. Next,

33.



52 - r2 = (t + ka)2 - a2
2 2
=t~ + 2kat + (k2 - 1l)a ,
2rs = 2a(t + ka)

2at + 2ka2 .

2 2
It is clear that for k = 3, we have s - r > 2rs.

Hence,

for k = 3

and k and t having the same parity, we have s > r > 0, (r,s) = 1,

. . 2 2
r and s are of opposite parity, s - r > 2rs and

34,

52 = b(mod a)
r2 = 0 (mod a)
2rs = O(mod a) ,
which implies that
52 - r2 = b(mod a)
52 + r2 = b(mod a)
2rs = 0(mod a) .
et x = 52 - r2 , ¥y =2rs , z = 52 + r2 . Then x,y,2 1is a primirtive

pythagrean triple and

X = b(mod a)
z Z b(mod a)
y = 0(mod a).



35,

Tt follows that
X -y = blmod a)
z = b(mod a)

X + vy = b(mod a)

That is,

X+y=an_+Db ,

2
where clearly O = n, < n, < n, . By virtue of Theorem 3.10, (x-y) ,
2 2 ) A 2 2 2 s
z , (x+y) and hence (.anl+b) , (an2+b) ' (.an3+b) is a primitive

RN

3-term arithmetic progression. Thus (a,b) € T .

. b . . ,
(ii) Suppose 5 is a quadratic residue modulo a (where, of

course, b is even). Then there exists a positive integer t such that

2 _b
t :E(mod a). Let r=t +ka, s =t + (k+l)a=1r+a. Then s >r > 0,

2 _ 2
r and s are of opposite parity and s = r

rs E5’-(mod a). We
show (r,s) = 1. Suppose not: ILet p be a prime such that plr and

. 2 b 2
p!s. It follows pla and so p|t . But, since alt -5 then plt —-123-

~which implies p|b , a contradiction since (a,b) = 1. Hence (r,s) = 1.

Next,



2(t + ka)(t + (k- + l)a)

2rs =
= 2t2 + 4kat + 2at + 2k2a2 + 2ka2
52 - r2 = (t + (k + 1)a)2 - (£t + ka)2

2at + 2ka2 + a2 .

14

2 2
It is clearly, for k = 1, that 2rs >s - r . Thus, for k Z 1, we

have s > r > 0 , (r,s)

2

2
2rs > 52 - r , and s

2rs = b{mod a)
r2 + 52 = b{mod a)
2
52 - r = Q0{mod a) .

2 2 2
et x = 2rs, y = 52 -r ,2=r +s . Then x,y,2

pythagorean triple, and

X = b(mod a)
z = b(mod a)
y = 0(mod a)

which implies, as before, that

Xx -y =an, + b
z = an2.+ b
X+y=an_, +b

1, r and s are of opposite parity,

r T rs = lzl(mod a). It follows that

is a primitive

36.
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. 2 2 2
where, again, 0O = ny < n, < n, . Hence (x-y) , 2, (x+y)~, and so

2 2, . . . ,
+b) ", (an_+b) is a primitive 3-term arithmetic

(2
(an_+b) ", (_an2 3

1

progression. Whence (a,b) € T .

e . atb , . .
(iii) Finally, suppose 5 is a quadratic residue modulo a (where,

of course, b 1is odd). Then there exists a positive integer t such

(mod a). Let r=t +ka, s=t + (k + 1la=1x+a. It

is clearly, as in (ii) above, that for k¥ 21 we have s >r >0 ,

2 2
{(r,s) =1, r and s are of opposite parity, 2rs > s - r and

2 2 2 _ath
-2

s  Zxr Zxrs =t mod a). Which implies that

2rs = b + a = b{mod a)
2 _ _ .

2 = b + a = b(mod a)
2 _ .

2s" Zb + a = b(mod a).

It follows, as in (ii), that

. 2 2 A
where O =n, <n_ <n_, . Hence (xvy), 22, (x+y) , and so (an +b)2,

1 2 3 1

2 2 e . . .
(,an2+b) . (.an3+b) is a primitive 3-term arithmetic progression.

Thus (a,b) € T . The proof of the Theorenm is complete.
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Now, we study the case when a is even. We have not been

able to solve the problem completely in this case as we did for a odd.

Theorem 3.17. Let a be‘even and b Dbe an integer such
that a >b >0, (a,b) = 1. If b is a quadratic residue modulo a ,

then (a,b) € T .

Proof. Since b is a gquadratic residue mod a , then there
exists a positive integer t such that t2 Z b(mod a). But b is odd.
It follows that t2 and hence t 1is odd. Let r=a, s=t + ka.
Then r 1is even and s is odd.. We show (r,s) = 1. Suppose not:
let a prime p divide both r and s . Then p|a and pit .

But alt2 - b, it follows that p t2 - b and hence plb, a contradiction

since (a,b) = 1. Next,
2 2 2
s - r = (t+ka)l” —a =t" + 2kat + (k2 - 1)_a2 ’
2
2rs = 2a(t + ka) = 2at + 2ka .

Thus, for k =2 3, we have s >r >0, (r,s) =1, r and s are

2 2
of opposite parity, s - r > 2rs and

s” = t2 = b(meod a)

= 0(mod al)

K
i

0(mod a).

2rs

which implies that



Let x=s5 -r,
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- r2 = b.{(mod a)
2 _ .
+ r = b{mod a)
2rs = O(mod a).
2 2 . e e
y=2rs, z=s +r . Then x,v,2 is a primitive

pythagorean triple. It follows, as before, that

»
+
L]
]
5
+
o

for some 0 = nl

2
(an.+b)", (an
i 2

progression. Thus

Theorem

2
+b)

2 2
<n, <n_ . Hence (x—y)z, z , (xty)~ and whence

2 3

2 s . .
. (an3+b) is a primitive 3-term arithmetic

(a,b) € T .

3.18. Let a be even such that is odd. ILet b

be such that a >

quadratic residue

Proof.
exists a positive

r=+%t +k %-, s

]

opposite parity since

1Y)

NP

2b + a
4

. b +
b>0 and (ab) = 1. If —

module a , then (a,b) €T .

+ . .
Since éia is a quadratic residue mod a , then there
2 _
integer t such that t° = 2%:a (mod a). Let
a a
t + (k + 1)5'= r+s. Then r and s are of
% is odd. We want to show that (r,s) = 1.

Suppose, on the contrary, that a prime p divides both r and s .

Then p is an odd prime since r and s are of opposite parity and
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- 2 .

pls—r (that is, p|gﬁ. Hence p{a and plt . But a|t - 2%:a . it
2 2b+ ' 2b. . .

follows that plt - 4a. and so p| ‘:a which implies that pj2b+a.

Because pla and p is an odd prime, then p|b a contradiction since

(a,b) = 1. Next,
2rs = 2(t + kD[t + k+)F]
=2t2+2kat+at +k2§+k§;—,
2 - 2% = [t + (k+l).-§-]2 - (t +k %)2

a2 a2
T *tT

at + k

It is clear, for k = 1, that we have s > r >0, (x,s) =1, 2rs > 52 - r

and r and s are of opposite parity.

2 2 2 2 . s e
let x=2rs,y=s -r, z=s +r . Then Xx,y,z is a primitive

. . 2 2
pythagorean triple. Hence by virtue of Theorem 3.10,(x-y) , z, (x+y)2
is a primitive 3-term arithmetic progressioh. To complete the proof,

we need only to show that

X-yZ2z Zx+y =b(mod a).

(i) X-y=2rs -s +r

a a a2 a, 2
2(t + k 5—) (t + (k+1)5) - (t + (k+l)5). + (t + k-2—)

2
2 2 a a
2 + 2 + = - =
t tka k 5 a n
2

2
2t° - %f (mod a).



But, since t =

x-y-5b+g‘—-—ia4—5b+-24(l—--2-")_(moda),.

Since g‘- is odd, then 1 —-% is even. Hence x —y = b(mod a).
2 2
(ii) z=5s +r
2 2
= {t + (k+l)_g-). + (t + k%)
2 2 a2
=2t° +2tka+ta+ k- 2a+k>a+ =
2 2 4
, 2
= 2t2 + -Z— {(mod a).
2 _ 2b+
But, again, since t = b4a (mod a). It follows that
a a2 a a
Z:b+5'+—4—-:b+§'(l+5') (moda).
Since -;— is odd, then 1 +% is even. Hence 2z = b(mod a).
2 2
(iii) X+y=2rs +s ~-r
a a a,?2 a,z2
=2(t + kD (t + k+1)) + (£ + (k+1)3)° - (£ + k3)
. 2 2 2 2
2
= 2¢? +2tka+2ta+k—z‘—a+ka2 +%=
2
2
= 2t7 + %— (mod a).
But t = 22*2 (504 a). It follows that

4

2

X+y =b + +%—Eb+§-(_l+g—)(moda).,

TP

41.
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Since

]

. a ..
is odd, then 1 + 3 1is even. Hence x +y b (mod a),

Nlm

which completes the proof.

Example 5. Iet a=6. Then b =1 or 5 . The set of

quadratic residues (mod 6) is
o = {1,3,4} .

If b =1, since 1 € Q , then there exists t , say t =1, such that
t2 = 1(mod 6). Let r=a=6,s =t +ka=1+ 3.6 =19 (here, k = 3).

Then

which implies that x - y = 97, x + y = 553. Hence

.+ 97
6nl 1

I
%
i
<
I

én_ + 1 =2 = 397

6n3 + 1=x+y =553.

92 and

Whence n_, =16, n_ =66, n
(972 + (553)% = 315218 = 2(397)° .

' 2 2
It follows that (97)2, (397)7, (553) is a primitive 3-term arithmetic
: 2
progression in {(6n+1)7} .

If b =5, since 22+a = 2'Z+6 = 4 € Q , then there exists t ,

say t = 2, such that t2 = 4 (mod 6). Let
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r=t+kZ =2+13=5,
a
s=t+ (kS =2+2.3=38

(here, k

1). Then

X=2rs =80, y=8 - =39, z=8 +r 89

which implies that x-y 41, =x+y = 119. Hence

én. + 5 41

I
"
)
<
]

én. + 5 = z = 89

én_ + 5 x+ty = 119 .

L}

2 2
Whence n, = 6, n, = 14, n, = 19 . Thus, (41) , (89) , (119)2 is a

2
primitive 3-term arithmetic progression in {(6n+5)°}.

Example 6. Let a = 22. Then b is one of 1,3,5,7,9,13,15,

17,19,21. The set of quadratic residues (mod 22) is

o= {1,3,4,5,9,11,12,14,15,16,20}.

For b =1,3,5,9,15, we have b € 9 and so (a,b) € T .
+
For b = 7,13,17,19,21, we have 2b422 € 0 and again (a,b) € T .
For example, if b = 3 , there exists t , say t =5, such
that t2 = 3(mod 22). Let r=a =22, s =t +ka=5+ 3.22 =71

(here, k 3). Then

]



2 2 2

x =82 - 1> = (71)° - 22)% = 4557
y = 2rs = 2.22.71 = 3124

2 =52+ 1= (712 + 22)% = 5525

which implies that =x-y = 1433 and x+y = 7681l. Hence

22n. + 3

x-y = 1433

22n, + 3 5525

]
N
It

7681 .

fi

22n_ + 3 = x+y

Thus, nl = 65, n, = 251, n, = 349 and

(1433)% + 7681)% = 61051250 = 2(5525)°

2.13 + 22

If b = 13, since 2

= 12 € Q , then there exists

2_.
say t = 10, such that t = 12(mod 22). Let

a
+ k >

2
It
(a3

=10 + 1.11 = 21 ,

0]
]

t + (k+l)§'= 10 + 2.11 = 32 ,

(here, k = 1). Then

R = 2ys = 2.21.32 = 1344
2 2 2

y=s -1 = (32)% - 21)% = 583
2 2 2 e

z=5 4+ r = (32)7 + (21.)_2 = 1465

44.
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which implies that x-y = 761 and x+y = 1927. Hence

22nl + 13 = x-y = 761
22n2 + 13 =z = 1465
22n3 + 13 = x+y = 1927 .

Thus, n., = 34, n

66, n, = 87 and

(761)2 + (_1927)2 = 4292450 = 2(_1465)2

ILemma 3.19. Let a be even such that %- is odd. Then the

set of quadratic residues mod 57 1is contained in the set of quadratic

residues mod a .

a

> - Then there

Proof. Let g be a quadratic residue mod
. sy . 2 _ a
exists a positive integer t such that t = g{mod 50,

2
i.e., t =g +k %— for some integer k .

2
(i) If k is even, say k = 2k, then t° =gq + k, and so

2 _ . . .
t° = g (mod a). Hence g is quadratic residue mod a .

(ii) If k is odd, then let t. =t + g- . Then

1
2 a, 2 2 a2 a a2 aa
= 2 = — = = == 3= = a
t] {(t + 2) tT o+ ta + q+k >+ ta+ 7 g + (k + 2)2 g {mod a)
since k + = is even. Hence g is a quadratic residue mod a .

2
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Theorem 3.20. Let a Dbe even such that is odd. Iet b

a
2
be such that a >b >0, (a,b) = 1. If (a,b) €T , then b or

b

N

+
2b +
5 = 2b 2 2 is a quadratic residue mod a .

Proof. Let (a,b) € T . Then there exist 0 =n,  <n < n

1 2 3
2 2 2 R
such that (anl + b), (.an2 + b)), (an3 + b) is a primitive 3-term
. . . . 2 .
arithmetic progression in I . By virtue of Theorem 3.10, we have

an, + b = x-y, an, +b =2z, an

1 2 + b =x+ty ,

3

. 2 2 2
min{2rs,s —r2}, zZ=s+4r ,s>r >0,

2 2
where x = max{2rs,s -r }, vy

(r,s) =1 and r and s are of opposite parity. Hence

X~y = 2 = X+y = b(mod a).

It follows that

0 (mod a).

2x = 2b(mod a), 2z = b(mod a), 2y

We consider two cases:

2 2
X +r, y=2rs, 2=s +1r . It

Case I. x

follows that

2 2 2
Z 2b(mod a), 52 + r

b (mod a).

N

)
}
R

-
h
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: 2 _ . . . -
Hence 4s = 4b(mod a) which implies that 52 Z b (mod %9 and so b is

. . a ; .
a quadratic residue mod 7~ . By Lemma 3.19 b is a quadratic residue

2
mod a .
Case 1I. x = 2rs, y = 52 - r2, z = 52 + r2 . It
follows that
2 2. _ 2 _
2(s”" - r') Z0(mod a), s + r2 = b(mod a).

2
Hence 452 = 2b(mod a) which implies that 2s b (mod gﬁ and so

: a
b + =
2 _ 2 _ 2 . 2b +
s = =2 ta (wod &)  since b, 2 are odd. Hence 2b *a
2 4 2 2 a
. . . . 2b. +
is a quadratic residue mod g-. By virtue of Lemma 3.19, ——:rii'

is a gquadratic residue mod a .

Theorem 3.21. let a= 2" , h =24 . Let b be such that

a>b>0, (a,b) =1. Then (a,b) €T if and only if b 1is a

quadratic residue mod a .

Proof. If b is a quadratic residue mod a , then, by the

Theorem 3.17, (a,b) € T .

Suppose (a,b) € T . Then (anl+b)2, (an2+b)2, (an3+b).2 is

a primitive 3-term arithmetic progression for some 0 = n, <n, < ny .

By virtue of Theorem 3.10, we have
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an. + b = x~y

8
+
o
I
N

ot (8)

an, + b = x+y

2 2 2 2
where x = max{2rs, s -r }, vy = min{2rs, s"™=r }, z=s8" +1r ,

s >r >0, (r,s) =1 and r and s are of opposite parity. Equations

(8) mean that =x-y = 2z = z+y = b(mod a). It follows that

2% = 2b(mod a)
zZ = b(mod a)
2y = O0(mod a) .

We consider two cases:

2 2
Case I. 2rs >s -r . Then x=2rs, y=s -1,
z =15 + r2 . Hence we have 4rs = 2b(mod a) which means that
al4rs = 2b. That is, 2n-l 2rs - b which is impossible since 2rs - b

is odd and nvZ 4 . Hence we must have:

2 2
Case II. s - r >2rs. Then x=s -r , y = 2rs,

zZz=s5 +r . It follows that

2(s” - r") = 2b(mod a)<
52 + r2 = b(mod a)
4rs = O(mod a).
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Since one of the r and s is even, say r even, then it follows,

- 2 (n—
0(mod a), that 2" 2|r . Hence 2 tn 2)lr2

from 4rs . Whence, since

2
2(n-2) = n, 2n]r . Therefore r2 Z O(mod a). Thus, 52 = b(mod a)

and b is a quadratic residue modulo a . Similarly if s is even.

Theorem 3.22. Let a be even such that g is even, let

b be such that a>b >0 , (a,b) = 1. If b = 3(mod 4), then (a,b) ¢ T.

Proof. Suppose, on the contrary, that (a,b) € T . Then

2 2 . R . . .
+b) , (an_+b) is a primitive 3-term arithmetic progression

(an.+b)2, (an 5

1 2

for some nl, n n, . It follows from Theorem 3.10 that

2" 73

= — + . = =
anl + b x-v, an2 b z, an, + b xty ,

. , 2 2 ]
where, in particular, z =s + r and r and s are of opposite

parity. Since 4|a, it follows that =z = b(mod 4) and so

b(mod 4). Since r and s are of opposite parity,

n
La}
1

Z 1(mod 4). Hence b = l(mod 4) a contradiction since

n
+
a}
1

b = 3(mod 4).

Example 7. let a=4, Then b=1 or 3. 8Since 1 1is

a quadratic residue mod 4, then, by Theorem 3.17, (4,1) € T . Since

w
]

= 3(mod 4), then, by Theorem3.22, (4,3) ¢ 7T .

Example 8. ILet a = 8. Then b is one of 1,3,5,7. The

set of quadratic residue (mod 8) is .

Q = {0,1,4} .



If b=1, then b € 9 . Hence, by Theorem 3.17, (8,1) € T . 1If

3{(mod 4). Hence, by Theorem 3.22,

b=3 or 7, then b

(8,3) § T and (8,7) § T .

Finally, b = 5. ©None of our theorems handle this case. However, we

can prove (8,5) § T as follows:

Assume (8,5) € T . BAs in the proof of Theorem 3.20

we can get
2% = 2.5 Z 2(mod 8), 2z = S5(mod 8), 2y = 0(mod 8).

We have to consider two cases:

2 2
Case I. x=2rs, y=8 -y, 2= 52 + r2 . This
case implies that 8|4rs - 2 , i.e., 4|2rs - 1 which is impossible
since 2rs - 1 1is odd.
2
Case II. x =8 - r2 , Yy =2¥s, zZ = 52 + r2 . It

follows that

2 2, - 2 2 _
2(s" - r') Z2(mod 8), s° + r = 5(mod 8), 4rs = O(mod 8).

2 2 _
From s + r = 5(mod 8), we have either

2 _
s° Z 1(mod 8) and r2 Z 4(mod 8)

or

50.



2 . 2
S = 4(mod 8) and x 1l(mod 8).

. 2 2, _
But, since 2(s” - r ) = 2(mod 8), then we must have

2

5 .
s = 1l(mod 8) and r 4 (mod 8) .

{1

This means that s £ 1,3,5 or 7 (mod 8) and r = 2 or 6 (mod 8).

It follows that 2rs = 4(mod 8). Hence

1 (mod 8).

i

52 - r2 - 2rs = 1-4-4

]

X-y

Therefore, there is no n such that x-y = 8n + 5. Thus (8,5) ¢ T.

Finally, we remark that we are told by Professor Tom Brown
from Dr. R. Graham of Bell Labs , there are no 4-term arithmetic

2 .
progressions in I (although. we have nevexr been shown a proof.)

51.

2
This implies that £(n) = on” +Bn +7vy , for o > 0 , does not contain

any 4-term arithmetic progression.
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