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ABSTRACT 

Given an undirected (directed) graph, we say G has a path 

decomposition if the edge-set (arc-set) E of G can be 

partitioned, into disjoint subsets E l ,  ... ,Er such that each 

of the subgraphs induced by Ei is a path. 

In this thesis, we will look at two path decomposition 

problems on complete graphs. 

P r o b l e m  I :  P a t h  n u m b e r  p r o b l e m  

G i v e n  a n y  c o m p l  e l  e  d i r e c t e d  g r a p h  G ,  w h a t  i s  

t h e  m i n i m u m  n u m b e r  o f  p a t h s  i n  a n y  p a t h  

d e c o m p o s i  t i  o n  o f  G? 

In other words, we are interested in the minimum value of r as 

described above; this value is called the p a t h  n u m b e r  of G .  

An expository account of results on path numbers of tournaments 

is given. In addition, a new result is given in which the path 

number of a Walecki tournament is determined. 

P r o b l e m  I I :  P a t h  a r b o r e a l  p r o b l e m  

G i v e n  a n y  c o m p l e t e  u n d i r e c t e d  g r a p h  K 
n' a n d  

a  s e q u e n c e  o f  n o t  u r a l  n u m b e r s  (ml, . . . , m r )  

s u c h  t h a t  m  I n - l  f o r  i = I ,  . .  . i  , r  a n d  
r 
C m .  - - n  

1 ( 2 ) . I s  t  h e r e  a  pa t  h  
i  = I  
d e c o m p o s i t i o n  o f  K s u c h  t h a t  Ei  c o n t a i n s  n  ' 

e x a c l l y  m  e d g e s  f o r  i = I ,  . . .  , r ?  i 

I • ’  the answer to this problem is yes for any sequence (mil ... - 
L n 

I mr ) such that mi 2 n-1 for i=l, ... ,r and Z m i  = (.2 ) ,  
i=l 



then we call G p a l h  a r b o r e a l .  An exposition of the present 

status of the attempt to prove that Kn is path arboreal is given 

as well as some original work that extends the results in the 

literature. 
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INTRODUCTION 

The topic of graph decompositions is probably one of the 

most widely considered topics in the field of graph theory. 

Hundreds and hundreds of papers and books have been published on 

different aspects of this problem. Chung and Graham [ 7 ]  give a 

survey on many decomposition problems - what has been done and 
what has yet to be done, together with a list of more than one 

hundred references. They also formulated the general graph 

decomposition problems as follows: 

Given a graph G and a family of graphs H, we 

say G has an H-decomposition if the edge-set 

E of G can be partitioned into disjoint 

subsets EIIEZI ... ,Er such that each of 

the subgraphs induced by Ei is isomorphic 

to a member of H. 

By allowing G and H to be directed, we get-the analogue for 

directed graphs. The more commonly known problems involve using 

families of complete graphs, cycles or paths for H. In this 

thesis, we will restrict ourselves to the latter case, that is, 

H consists of paths only. Furthermore, we are mostly interested 

in H-decompositions of complete simple graphs (directed or 

undirected), that is, complete graphs with neither self-adjacent 

vertices nor multiple edges. Henceforth the term "graph" refers 

to a simple graph unless otherwise specified and the term 



"digraph" refers to a simple directed graph. Other terminology 

that will be used quite frequently in this thesis includes 

"circuits" for cycles in digraphs and "paths" for simple paths 

(containing no cycles) in graphs or digraphs. The following 

notations and definitions will also be used here : 

NOTATION 0.1 : 

NOTATION 0.2 : 

NOTATION 0.3 : 

NOTATION 0.4 : 

NOTATION 0.5 : 

NOTATION 0.6 : 

NOTATION 0.7 : 

The set of vertices is always labeled by Zn = 

E O I I r  ... I n-TI. 

An arc going from vertex u to vertex v in a 

digraph is denoted by (u,v). 

An edge joining vertex u and vertex v in a graph 

is denoted by < u r n .  

The in-degree and out-degree of a vertex in a 

digraph is denoted by id(v) and od(v), 

respectively. 

Lx] denotes the largest integer smaller than or 

equal to x. 

rxl denotes the smallest integer larger than or 

equal to x. 

The directed path ~ ( x ~ ~ x ~ ) ~  ( x ~ ~ x ~ ) ~  ... I ( ~ n - , ,  
xn)] is briefly denoted by (xOIxII ... 'xn) 
and the undirected path ~ ~ x O I x 1 > , < x 1 , x 2 ~ ,  ... I 

< X ~ - ~ , X ~ > I  is similarly denoted by <xO,xII ... 
I Xn>' 



DEFINITION 0.1 : 

DEFINITION 0.2 : 

DEFINITION 0.3 : 

DEFINITION 0.4 : 

DEFINITION 0.5 : 

DEFINITION 0.6 : 

DEFINITION 0.7 : 

DEFINITION 0.8 : 

DEFI 

The 1 e n g t  h  of an arc (u,v) denoted by 1 (u,v) 

is defined as v-u (mod n) where n is the 

number of vertices in the digraph. 

The l e n g t h  of an edge <u,v> denoted by 

l<u,v> is defined as min {v-u,u-v) (mod n) 

where n is the number of vertices in the 

graph. 

For any two vertices u, v in a digraph, we 

say u d o m i n a t e s  v if (u,v) is an arc. 

The degree deg(v) of v in a digraph is 

defined as od(v)+id(v). 

For any vertex v in a digraph, we define 

M(V) to be max {id(v),od(v)l. 

An a s y m m e t r i c  d i g r a p h  is a digraph such that 

(v,w) is an arc implies (w,v) is not an arc. 

A t o u r n a m e n t  of order n, denoted by Tn, is 

a complete asymmetric simple digraph on n 

vertices. 

A r e g u l  a r  t o u r n a m e n t  , denoted by RTn, is a 

tournament such that for any vertex v in 

RTn, od(v)=id(v). 

A n e a r - r e g u i  a r  t o u r n a m e n t  , denoted by NTn, 

is a tournament such that for any vertex v 

in NTn, lod(v)-id(v)l=l. 



~t can be easily seen from the degrees that regular tournaments 

must have odd order and near-regular tournaments must have even 

order. 

Now, let us consider the directed analogue of the general 

problem with H being the family of all directed paths and G a 

digraph. Clearly, an H-decomposition exists since each arc by 

itself is a directed path. What we want to obtain here is the 

minimum size of such partitions, where the size of an 

H-decomposition is defined as the number of subsets E1,E2, ... 
rEr (as defined in the general decomposition problem) that the 

arc-set of G is decomposed into. In other words, it is the 

number r. This number is called the p a t h  number of G and that 

is why we call this problem the "path number problem". The idea 

of finding minimum path decompositions of simple graphs is due 

to Erdos [91 and The term "path number" was first introduced by 

Harary [ 1 1  1. 

DEFINITION 0.10 : The p a t h  number of a graph G I  denoted by 

pn(G), is the minimum number of 

edge-disjoint paths in G whose union is G. 

Replacing the words graph by digraph and edge by arc, we get the 

definition for path number of digraphs. 

DEFINITION 0.10': The p a t h  number of a digraph G, denoted by 



pn(G), is the 

paths in G wh 

minimum number of arc-disjoint 

ose union is G. 

The problem of determining the path numbers of digraphs was 

first attempted by Alspach and Pullman [2] in 1974. They 

established lower and upper bounds for path numbers of 

asymmetric digraphs and conjectured that the same upper bound 

holds for all digraphs. This conjecture was solved by O'Brien 

[16] in 1975. Later in 1976 [ 3 ] ,  Alspach, Pullman and Mason 

showed that pn(Tn) satisfies the inequality 

2 L(n+l)/2J 5 pn(Tn) 5 Ln /4J 

and they also showed which numbers in that interval are indeed 

path numbers of some tournaments. In Chapter 1 we will look at 

how the lower and upper bounds were derived, some properties for 

the path numbers of tournaments and compute the path number for 

some special tournaments. Also in Chapter 1 is a brief 

discussion of a conjecture which is closely related to the path 

number problem. It turns out that solving the path number 

problem for near-regular tournaments is equivalent to solving 

the following famous conjecture. 

CONJECTURE 1 (KELLY [15, p . 7 1 )  

The arc set of a regular tournament of odd 

order n can be decomposed into (n-1)/2 

arc-disjoint Hamilton circuits. 



This is the same as saying there exists a Cn-decomposition (that . - 
is H={Cnl) for every regular tournament of odd order n. We 

shall see later how the two problems relate to each other, and 

discuss some of the results on Conjecture 1.  Alspach [I] 

confirmed that Kelly's Conjecture holds for regular tournaments 

of odd order at most nine. We shall exhibit all these 

tournaments with corresponding decompositions. 

Having seen what happened in the directed case, we turn our 

attention to the undirected case. The path number'problem for 

undirected graphs was first examined by Lov6sz [13]. He showed 

that for any simple graph G with u odd vertices and g2l even 

vertices, pn(G) I u/2 + g - 1 .  This bound was later improved by 

Donald [8] to pn(G) I L3n/4J. As for complete graphs, the 

result is well known (see Stanton, Cowan and James [20]). For 

odd order complete graphs we have p n ( ~ ~ ~ + ~  ) = m+l whereas for 

the even case we have pn(K2,) = m. 'In Chapter 2 we shall look 

at a slightly different version of the path decomposition 

problem. Consider Kn, the undirected complete graph of order 

n, and let ml,m2, ... be positive integers such that tmr - 
L n m S - 1  for 1 . ,r and Z mi = ( ) .  If, given any such i i = 1  - 

sequence (m, rm2, ... m r  we can decompose Kn into 

edge-disjoint paths of lengths ml ,m2, ... ,mr, we call Kn p a t h  

a r b o r e a l .  The problem we are going to investigate was first 

asked by Slater [19]: Is Kn path arboreal for all positive n? 

If not, for which n is Kn path arboreal? Tarsi [21] also 

asked a similar question for multigraphs. He showed that for 



any integer X, n, if m = m2 - - ... = m 1 r- 1 and mr 5 mr-l 5 n-1 
r n and Z mi = A*( ) ,  then hK,, the complete graph with X edges 

i=1 2 

joining every pair of vertices, can be partitioned into paths of 

lengths mlfm2, ... ,mr. In this chapter, we shall look at some 
results on this problem for odd n. They will include how to 

partition Kn into edge-disjoint paths of lengths ml,m2, ... ,mr 
(i) if all mi 5 n-2 or (ii) if ml=m2= ... =mk=n-1 and there 

exists I - c 1 ,  ... ,r] such that k 5 Z mi< max{n-k-l,m+k). 
i €1 

The remaining cases ( i i i )  when mi 2 n-k for some i 2 k+l and 

(iv) for all even n are still open. 



CHAPTER 1 : PATH NUMBERS OF TOURNAMENTS 

This chapter is divided into three sections : Section I 

discusses the problem that is closely related to the path number 

problem, namely Kelly's Conjecture. We consider some of the 

known results on this problem and how these two problems are 

related. Section I1 is a list of all regular tournaments of 

orders 3, 5, 7 and 9. It is known that Kelly's Conjecture holds 

for all these tournaments. We will give a circuit decomposition 

for each one of them. Section I11 is a survey of results on the 

path numbers of tournaments. 

Section I : Motivation 

It is easy to see that every regular tournament of odd ' 

order can be decomposed into arc-disjoint circuits since every 

vertex has in-degree equal to out-degree. However, a further 

restriction that all circuits have to be hamiltonian, proves to 

be a much more difficult problem. P. Kelly conjectured this 

decomposition problem in the early 1960's [ 1 5 ,  p.71 and so far 

little is known about this conjecture other than a few special 

cases. One of these special cases is the construction of a 

class of regular tournaments that satisfy Kelly's Conjecture. 

One way to achieve this is by partitioning the edges of an 

undirected complete graph into Hamilton cycles and then 



orienting each of these cycles in one of two ways. The 

following construction, known as "Walecki's constructionw, for 

partitioning the edges of Kn into Hamilton cycles was found by 

Walecki and introduced by Lucas [14] in 1891. The proof given 

here is due to Berge [ 5 ] .  

LEMMA 

PROOF 

1. 1 . 1  : Every complete graph Kn of order n=2m+l can be 

decomposed into m edge-disjoint Hamilton cycles. 

: Let CO=<0,1,2,n-1,3,n-2, ... ,m,m+2,m+l,0> as shown 
in Figure 1.1. This is clearly a Hamilton cycle. Now 

define 

C.=<OIl+i,2+i,n-l+i,3+i, ... ,m+i,m+2+i,m+l+i,O> 
1 

for i = 1 ,  ... ,m-1 modulo n-1 (notice that n-1 is used 

in place of 0 when performing modulo n-1 arithmetic). 

Then all C i l s  are again Hamilton cycles, because each 

Ci is just a rotation of Co about the vertex 0. To 

show that they are pairwise edge-disjoint notice that 

every <u,v> in C with u,v#O has u+v:2 or 3 (mod 0 ' 
n - 1  so every edge <u,v> in C1 with u.v#O must have 

u+vz4 or 5 (mod n-1) and every edge <u.v> in Ci with 

u,v#O must have u+vz2+2i or 3+2i (mod n-1). 

Furthermore, for edges incident with 0 we have <O,i+l> 

and <m+l+i,O> in Ci where i=O, ... ,m-1. Hence every 

edge <u,v> lies in exactly one cycle Ci. 
m 



FIGURE 1. 1 

F I W R E  1 .  2 

Figure 1.2 gives an example of Walecki's construction for 

n=7. With this lemma, we can now construct a special class of 

tournaments that obviously satisfy Kelly's conjecture by giving 

an orientation to each of the cycles Ci arising in the proof 

of Lemma 1.1.1 .  



DEFINITION 1.1.1 : A Walecki tournament of order n=2m+l is a 

tournament whose vertices are labeled IO,l, 

... ,n-11, which has a symbol set S={sOfsl, 

=.. 1 such that sir{-l,+l), and which 

is obtained by orienting the complete 

undirected graph of order n in the following 

fashion. If s i = -  then orient the i th 

Walecki cycle Ci so that Ci is a circuit and 

(i+1,0) is an arc. If si=+l, then orient Ci 

so that (O,i+l) is an arc. The resulting 

tournament is regular and is denoted by 

LT~(S). For n=2m we construct LTn+l (S) 

first and then remove vertex 0 and all its 

incident arcs. This results in an 

arc-disjoint union 'of Hamilton paths which 

FIGURE 1 ,  3 



is a near-regular tournament of order 2m, 

also denoted by LTn(S). 

The tournament shown in Figure 1.3 is an LT7(+lI-1,+1). A 

second class of tournaments that satisfy Kelly's conjecture are 

the circulant tournaments which can be defined as follows. 

DEFINITION 1.1.2 : A ci r c u l  ant t o u r n a m e n t  is a tournament of 

odd order n, with vertices labeled {0,1, ... 
,n-11, and a symbol set S c {1,2, ... ,n-11 
such that I~I=(n-1)/2 and for all i,jeS, we 

have i+j#n. Then each vertex i dominates 

vertex i+j (mod n) for every j c S .  The 

resulting tournament is a regular tournament 

of order n and is denoted by CTn(S). 



Figure 1.4 gives us a CT7(1,2,3). Unlike Walecki 

tournaments, not every circulant tournament has been proven to 

have the nice property that it is an arc-disjoint union of 

~amilton circuits. Instead we have the following theorem. 

THEOREM 1.1.2 : Every circulant tournament of prime order p23 

can be decomposed into (p-1)/2 Hamilton 

circuits. 

PROOF : Suppose p=2m+l and CT has symbol set S={so,slI ... 
P 

'm- 1 1 then (i,i+j) is an arc if and only if jeS. Let 

Ci={(xIx+si) I x=O,l. ... .p-1, sieS1. Clearly, there 

are p arcs in Ci. Each vertex x in Ci has 

od(x)=id(x)=l because (xIx+si) and (x-si,x) are both 

in Ci. Therefore. Ci is a union of vertex-disjoint 

circuits. Suppose we have (x,x+si, ... ,x+ksi) where 
kSp and x+ksizx (mod p); that is, ksi:O (mod p). 

Since kSp and si<p. in order for ksi:O (mod p) we must 

have k=p. Hence Ci is a Hamilton circuit; 

furthermore. all Cils are disjoint because all s i t s  

are distinct. Thus {COICl, ... ~ c m - ~  1 forms a 

Hamilton circuit decomposition of CT (s). 
P 

Figure 1.4 also shows a decomposition of ~ ~ ~ ( 1 . 2 ~ 3 )  into 

Hamilton circuits. Apart from these two results, not much is 

known about Kelly's Conjecture, although Haggkvist claims to 



have proven that for large enough n Kelly's Conjecture is true. 

A related theorem was obtained by Kotzig [12] in 1969. 

THEOREM 1.1.3 : The arcs of every regular tournament of order n 

can be partitioned into (n-1)/2 sets of size n, 

each of which is a vertex-disjoint union of 

circuits. 

This theorem can also be viewed as an immediate consequence of 

Hall's theorem of 1935 [ l o ] .  Consider the following. Given any 

regular tournament RTn, construct a bipartite graph G with 

bipartition (X,Y) where X=Y=V(RT~), the vertex set of RTn. Then 

for any ueX, veY, <u,v> is an edge in G if and only if (u,v) is 

an arc in RTn. Thus G is an (n-1)/2-regular bipartite graph. 

Now by a corollary of Hall's theorem (see Bondy and Murty [6, 

p.73]), G is 1-factorable and each 1-factor represents a union 

of vertex-disjoint circuits in RTn. Thus RTncan be decomposed 

into (n-1)/2 unions of vertex-disjoint circuits, each union 

having n arcs. 

Now let us turn our attention back to Kelly's Conjecture. 

In an effort to solve Kelly's Conjecture, the path number 

problem on regular tournaments was developed. To see the 

connection between the two problems, we need the following 

lemmas. 



LEMMA 1.1.4 : If pn(NTn)=n/2 for even n, then every path in 

the minimum partition is hamiltonian. 

PROOF : Each directed path has length at most n-1 and thus the 

maximum number of arcs covered by n/2 paths is 

(n-l)-n/2 = ( 
n . If one of the n/2 paths in a 

minimum path decomposition of NTn has length less than 

n-1, then the total number of arcs covered is less 

n than ( ) .  Therefore, the path number equal to n/2 

implies that every path in the minimal path partition 

of NTn is hamiltonian. 

LEMMA 1.1.5 : Every regular tournament can be obtained by 

inserting a vertex into some near-regular 

tournament and every near-regular tournament can 

be obtained by removing one vertex from some 

regular tournament. 

PROOF : By definition, a near-regular tournament is an 

even-order tournament NT2, with lod(v)-id(v) 1.1 for 

all v. Let V+ denote the set { V ~ V L N T ~ ~  and 

od(v)-id(v)=+l) and V- denote the set ( v ~ v ~ N T ~ ~  and 

od(v)-id(v)=-l), then the union of V +  and V- is the 

vertex-set of NT2, and their intersection is the 

empty set. Since the sum of the out-degrees equals 

the sum of the in-degrees in any tournament, we have 

Jv+ l=Jv-l=m. Now introduce a vertex w, with an arc 



joining w to every veV+ and an arc joining to w from 

every veV-. This increases od(v) by 1 for every veV- 

and id(v) by 1 for every veV'. Also 

od(w)=id(w)=lv+l=lv-I=m. Thus NTZmU[w) is a regular 

tournament, call it RTZm+,. In other words, NT2, can 

be obtained from RT2m+l by deleting w. 

Similarly, given any regular tournament RT2m+ll 

we can delete any one vertex w to form RT2,+1 \[w). 

Notice that every vertex v in RT2m+1 \[w) has either 

od(v)-id(v)-1 or od(v)-id(v)=-1 because there is 

exactly one arc joining w to or from every v. Upon 

the removal of w, the degree of v drops by 1 (either 

in or out-degree). Thus RT2m+l \{w) is a near-regular 

tournament NT2m1 which implies RT2m+1 can be 

constructed by inserting w and all its adjacent arcs 

into NT2. 

m 

Using these facts we can now show that solving Kelly's 

Conjecture is equivalent to solving the path number problem for 

near-regular tournaments of even order. We shall state it as a 

theorem. 

THEOREM 1.1.6 : Kelly's Conjecture holds if and only if pn(N~,) 

equals n/2 for all even n. 

PROOF : If pn(N~,)=n/2 for all even n, then given any regular 



tournament RT2m+1, by Lemma 1.1.5, RTZm+,.. can be 

constructed from some NTZm by inserting one vertex w 

and all its incident arcs. Also, by Lemma 1.1.4 the m 

paths that partition the arcs of NT2, are hamiltonian. 

Now let us define V+ and V-, as in the proof of Lemma 

1.1.5, for NT2, and observe that in any path partition 

of NT2, every vertex veV' must be the initial vertex 

of at least one path and every vertex veV- must be the 

terminal vertex of at least one path. In particular, 

if there are only m paths in the partition, then every 

veV' is the initial vertex of exactly one path and 

every veV- is the terminal vertex of exactly one path. 

To each path in the minimal path partition, we assign 

initial and terminal vertices of that path, 

respectively. Since all initial and terminal vertices 

are distinct, every arc adjacent to w belongs to 

exactly one pair. Now each Hamilton path in the 

minimal partition of NT2. together with its 

corresponding pair of arcs forms a Hamilton circuit in 

RT2m+l. This gives us a Hamilton circuit decomposition 

RT2m+10 

Conversely, if every RTn can be decomposed into 

(n-1)/2 Hamilton circuits, then given any near-regular 

tournament NT2,, by Lemma 1.1.5, there exists a 

regular tournament RT2m+1 such that the removal of a 



vertex w and all its incident arcs yields NT2m. By 

assumption RT2m+l can be decomposed into Hamilton 

circuits COfC1, ... ,Cm-,, and then removing w and all 
its incident arcs from these circuits we get m paths 

Co\~(~O'~)'(w'~O)I. C1\Uul .W), (w.vl )I , ... , 'rn- 1 

\ (  ,w). )I which form a partition of the arc 

set of NT2m. Hence pn(NT2m)=m. 

This marks the beginning of the path number problem for 

tournaments. Before we start investigating results on path 

numbers, let us first examine some regular tournaments of small 

orders. The following section is devoted to that purpose. 

Section I1 : Some regular tournaments 

It is already known that Kelly's Conjecture holds for 

tournaments of odd order through nine (unpublished work by B. 

Alspach [ I ] ) .  In this section we will see how these tournaments 

can be decomposed into circuits and paths. But first we need a 

little help in identifying small order tournaments. 

DEFINITION 1.2.1 : Let (u,v) be an arc of a tournament Tn. Then 

~ ( u , v )  is defined to be the number of 

3-circuits of Tn containing (u,v). 



DEFINITION 1.2.2 : For each regular tournament RTn of order 

n=2m+l, we define a r-vector (alI a2, ... 
,am) where ai denotes the number of arcs 

(u,v) in RTn with r(u,v)=i. 

DEFINITION 1.2.3 : The s c o r e  v e c t o r  of a tournament Tn is the 

ordered n-tuple (sl, s2, ... ,sn) where 

si=od(vi), and is called the s c o r e  of vertex 

m 
First of all, every r-vector must satisfy L ai = ( ) 

i = 1  - 

since every arc must lie on at least one 3-circuit and no more 

than m 3-circuits. This is because for every arc (u,v) in RT,, 

the out-degree of v in RTn\((u,v)l is m and the out-degree of u 

in RTn\{(u,v)l is m-1. Furthermore, a result found by Kendall 

and Babington (1940)~ Szele (1943) and Clark (1964) (see Moon 
n 

[15, p.91) shows that there are exactly ( ) - L si(si-1)/2 
i-1 

3-circuits in a tournament of order n with score vector (s1,s2, 

- ... ,sn). For regular tournaments we have s1=s2= ... -sn 
=m=(n-1)/2, and thus the total number of 3-circuits in RTn is 

n 
11 

( ; ) -  Z ( ; L  
i=1 m 

which is equal to (n3-n)/24. We then have Z ia:=(n3-n)/8. 
i=1 L 

Since every isomorphism of a tournament preserves its 

circuit-structure, 3-circuits are mapped onto 3-circuits and we 

have the following lemma. 



LEMMA 1.2.1 : Let RTA and RT: be two regular tournaments of 

order n=2m+l with corresponding r-vectors (a;, 

a;. ... ,a;) and (a;, a:, ... ,a,). If RTA and 

RTG are isomorphic tournaments then 

(airair ... ,a;) = (a;.a!j, ... ,a;). 

This lemma gives us a quick way of identifying 

non-isomorphic tournaments for the lower order cases. To 

compute the r-vector of a tournament Tn all we need is its 

tournament matrix M defined as follows. 

DEFINITION 1.2.4 : The tournament m a t r i x  M of a tournament Tn 

is an n by n 0-1 matrix such that 

1 if vi dominates v 
( M ) ~  =- j 

0 otherwise. 

Then it can be easily seen that the (i,j)-entry of M~ (t is 

any positive integer, and multiplication is performed using 

Boolean arithmetic) is 1 if and only if there exists a directed 

walk of length t from vi to v in Tn (see Moon 1 1 5 ,  p.34)). We 
j 

2 can find v i v  by determining the (j,i)-entry in M (by 
3 

ordinary arithmetic). By collecting these numbers for all arcs, 

we get the r-vector for RTn. This would be a good tool for 

identification of non-isomorphic tournaments if it had not been 



for the fact that as n increases we have more flexibility in 

putting (n3-n)/24 3-circuits together and this ruins the 

uniqueness of the 7-vectors as we shall see in the order 9 case. 

There are two pairs of non-isomorphic regular tournament of 

order 9 having the same 7-vector. The regular tournaments in 

Figures 1.13 and 1.22 both have 7-vector (0,18,18,0), but the 

first one contains three 3-circuits composed of arcs with 7 

equal to 3, whereas the second one has six of this kind of 

3-circuit. The regular tournaments in Figures 1.15 and 1.16 

both have r-vector (3,15,15,3), but the first one contains three 

3-circuits which are composed solely of arcs with 7 equal to 3, 

whereas the second one has five of them. Nevertheless, we will 

use this technique to identify tournaments of small order. 

NOTATION 1.2.1 : If a regular tournament can be decomposed 

into arc-disjoint Hamilton circuits, then we 

call it HC-decomposable and the 

corresponding decomposition an 

HC-decomposition. 

There is one RT3, one RT5, three RT,'s and fifteen RT9's. 

Figures 1.5 to 1.24 form a list of all of them together with 

their types (if known), HC-decompositions and 7-vectors. The 

number on each arc (u,v) is the value of T(u,v). A minimum path 

decomposition can also be found by removing the underlined arc 



from each Hamilton circuit of the HC-decomposition. These arcs 

together form a path, hence giving us a partition of the arc-set 

of RTn into (n+1)/2 paths. We will see why this is minimum in 

Section 111. 

Before we leave this section, we shall take a brief look at 

another application of the 7-vector. First, we need one more 

definition. 

DEFINITION 1.2.5 : A tournament Tn is d o u b l y - r e g u l a r  if for all 

pairs of vertices, the numbers of vertices 

dominated by both vertices of each pair are 

the same. 

A necessary condition for a tournament to be doubly-regular is 

that it has to be regular as shown by Reid and Beineke [18]. 

They also characterized doubly-regular tournaments by the 

following theorem. 

THEOREM 1.2.2 : The following statements are equivalent for any 

non-transitive tournament of order 1125: 

Tn is doubly-regular 

Every arc of Tn lies on the same number of 

cyclic triples 

Every (n-2)-subtournament has the same score 

vector 



Isomorphic to: 
C T ~ ( ~ ) , L T ~ ( + ~ ) , L T ~ ( - ~ ) .  

FIGURE 1. 5 

~somorphic to: 

FIGURE I. 6 

FIGURE I. 7 

2 3  



Isomorphic to: 
C ~ ~ ( 6 , 5 , 3 ) , ~ T ~ ( + 1 , - 1 ~ + 1 ) ,  
LT7(-11+11-1). 

Isomorphic to: 
LT7(-r+,+)rLT7(-r-r+)r 
LT7(-r-r-)rLT7(+r-r-)r 
LT7(+,+,-1. 
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Isomorghic to: 

FIGURE I. 1 0  

FIGURE I. I 1  



r-vector: 
(9,9,9,9) 

TYPE: CT9(1,2,3,4) 

Isomorphic to: 

F I W R E  1 .  1 2  

r-vector: 
(O,18,18,O) 

Isomorphic to: 

F I W R E  1 .  I 3  



r - v e c t o r  : 
(9,0,27,0) 

TYPE: C~,(1,7,3,4) 

~ s o m o r p h i c  t o :  
~~~(1,7,6,4),CT~(8,2,6,5), 
~ ~ , ( 8 , 2 , 3 , 5 ) .  
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r - v e c t o r :  
(3,15,15,3) 

TYPE: UNKNOWN. 

FIGURE I .  15 



TYPE : UNKNOWN. 

TYPE: UNKNOWN. 



TYPE: UNKNOWN. 
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TYPE: UNKNOWN. 

F I W R E  1 .  19  



TYPE: UNKNOWN. 

FIGURE 1. 20 

r-vector : 
(1 , l8,l~,2) 

TYPE: UNKNOWN. 

FIGURE 1. 2 1  



TYPE: UNKNOWN. 

FIGURE I .  2 2  

TYPE: UNKNOWN. 



TYPE : UNKNOWN. 

FIGURE 1. 2 4  

This theorem implies that a regular tournament is 

doubly-regular if and only if there is exactly one non-zero 

entry in its r-vector. For example, CT3(1) in Figure 1.5 and 

C~~(1,2,4) in Figure 1.8 are such tournaments. 

Section I 1 1  : Results on Path Numbers of Tournaments 

Recall that the path number of a digraph G I  pn(G), is the 

minimum number of arc-disjoint paths into which it can be 

decomposed. We will investigate upper and lower bounds for 

pn(G) (in particular, for tournaments) and compute the path 

numbers for some special tournaments. First we need to define 



the following. 

DEFINITION 1 .3 .1  : The e x c e s s  x(v) of a vertex v in a digraph G 

is defined as max{O,od(v)-id(v)). 

DEFINITION 1 . 3 . 2  : The e x c e s s  x(G) of a digraph G is defined as 

One observation here is that x(RTn) is 0 for any regular 

tournament RTn and X(NTn) is n/2 for any near-regular tournament 

NTn. Next, we define a special class of digraphs called 

consistent digraphs. 

DEFINITION 1 . 3 . 3  : A digraph is c o n s i s t e n t  if ~~(G)=x(G). 

Using this definition, we can rewrite Theorem 1 . 1 . 6  as 

THEOREM 1 . 1 . 6  : Kelly's Conjecture holds if and only if NTn is 

consistent for all even n. 

Another observation is that if G' is the digraph obtained by 

reversing every arc in a digraph GI then we have the following 

lemma. 



LEMMA 1.3.1 : For any digraph G, pn(G)=pn(G1) and x(G)=x(G1). 

PROOF : Let P' be a minimum path partition of G'. Then each 

path p'eP' gives rise to a unique path in G, simply by 

reversing the orientation of all arcs on the path. 

Let P be the collection of these paths in G. Since 

every arc in G is the reverse of some arc in G', and 

every arc in G' is in exactly one path of P', every 

arc in G must be in exactly one path in P. Thus P 

forms a path partition of G. Therefore, 

pn(G)rlPI=IP1I=pn(G'). Conversely, we can reverse the 

orientation of every path in any partition P of G to 

get a path partition P' of G'. This gives us 

pn(G1)5pn(G) and hence pn(G)=pn(G1). On the other 

hand, notice that 

Let V+ be the set of vertices v in G with xG(v)>O and 

V- be the set of vertices v in G with xG(v)=O. Then 

we can rewrite the above equality as 

We know that Z odG(v)-idG(v) = x(G). Also for every 
v eV+ 

veV+, x (v)=O and for every veV-, x (~120. Hence, G' G' 



This lemma implies that G is consistent if and only if G' is 

consistent. For tournaments, we have a special name for G'. 

DEFINITION 1.3.4 : The compiement of a tournament Tn , denoted 
- 

by Tn, is obtained by reversing the 

orientation of every arc in Tn. 

An example is given in Figure 1.25. A tournament Tn that is 
- 

isomorphic to its complement Tn is said to be 

s e l  f-compl ement ary. The example given in Figure 1.25 is 

self-complementary whereas the example given in Figure 1.26 is 

not. 

The first result on the bounds for path numbers of digraphs 

is a theorem due to Alspach and Pullman 121.  

THEOREM 1.3.2 : For any digraph G I  P~(G)~X(G). 

PROOF : Every vertex veG with x(v)>O must be the initial 

vertex of at least x(v) paths in any path partition of 



FIGURE 1 .  2 5  

G. This is because every path using v as an 

intermediate vertex uses up exactly one in-coming arc 

and one out-going arc. Also every path that 

originates at v uses up one out-going arc whereas 

every path that terminates at v uses up one in-coming 

arc. Thus there must be exactly od(v)-id(v) more 

paths starting from v than terminating at v. This 

implies that there are at least x(v) paths beginning 

at v. Since every path in a path partition begins at 

a unique vertex, we must have at least C x(v)=x(G) 
v cG 



paths in any path partition of G. . Therefore, 

pn(G)>X(G). 

This theorem gives us an immediate lower bound for pn(G). 

Notice that this allows us to quickly identify the path numbers 

for some digraphs. For example, the T4 in Figure 1.26(a) can 

be decomposed into three paths as shown in Figure 1.27. Since 

x(T4) is also three, we must have p n ( ~ ~ )  = x(T~) = 3. 

Unfortunately, equality does not always hold. For instance, the 

regular tournament of order 3, RT3 (see Figure 1.5), has 

pn(RT3)=2 but X(RT3)=0. In fact, pn(RTn)>X(RTn) for all odd n, 

since x(RTn)=O and a path decomposition of size zero is 

impossible for any non-empty graph. Regarding a sufficient 

condition for equality to hold, Alspach and Pullman [2] gave the 

following theorem. 

THEOREM 1.3.3 : I f  G is an acircuitous digraph, then ~~(G)=x(G). 

PROOF : Let G be any acircuitous digraph and P = {plIpZI ... 
p be a minimum path partition of G with r equal to 

pn(G). Suppose ~~(G)>x(G). Then there must exist a 

vertex veG such that the number of paths in P starting 

at v is greater than x(v) as otherwise we would have 

the total number of paths in P equal to X(G). Now 

consider vertex v. Every path that begins at v uses 

up exactly one out-going arc and every path that 



FIGURE 1 .  27 

terminates at v uses up one in-coming arc. Since 

use up more than x(v)=od(v)-id(v) out-going arcs as 

the initial arcs of some paths, we must use at least 

one in-coming arc as the terminal arc of some path. 

Suppose pi is one of the paths that begin at v and p 
j 

is one of the paths that terminate at v. Then (pi,pj) 

forms a path because G is acircuitous. Hence 

~\{p.,p.)~(p~,p.) forms a path partition of G with 
1 I 3 

size one less than that of P. This gives us a 

contradiction and thus we must have ~~(G)=x(G) for any 

acircuitous digraph G. 

This is, however, not a necessary condition as we have 

already seen in the previous example where P~(T~)=x(T~) but T4 

has circuits. In fact, this theorem has very little use in 

determining the path number of tournaments because for each n 



there is only one tournament of order n that is acircuitous. 

This is a consequence of the following theorem given in Moon's 

book [151. 

DEFINITION 1.3.5 : A tournament is transitive if, whenever u 

dominates v and v dominates w, then u 

dominates w. It is denoted by TTn. 

THEOREM 1 . 3 . 4  : The following statements are equivalent: 

i Tn is transitive 

ii) Vertices of Tn can be labeled {v1 ,v2, . . . ,vn] 

such that vertex v dominates vertex v if and i j 

only if i<j 

iii) Tn has score vector (0.1, ... ,n-1) 
iv) The score vector of Tn satisfies the equation 

n 
Z sf = n*(n-l)*(n-2)/6 

i= 1 
v T contains no circuits n 

n vi) Tn contains exactly (k+l) paths of length k if 

vii) Tn contains exactly transitive 

subtournaments Tk, if 1 Sk5n 

viii) Each principal submatrix of the dominance matrix 

(that is tournament matrix) M contains a row and 

column of zeros 



Nevertheless, Theorem 1.3.3 does give us an easy way of 

calculating the path number for acircuitous digraphs, and hence 

the path number of transitive tournaments TTn which we will 

evaluate later in this section. 

Next, we will look at upper bounds for path numbers of 

digraphs. Recall that our digraphs have no multiple arcs nor 

self-adjacent vertices, so the maximum number of arcs in any 

digraph G is n-(n-11, assuming that G has order n, and this 

gives us an obvious upper bound on path numbers. A better bound 

can be obtained by considering a digraph G as the union of two 

asymmetric digraphs of the same order since every pair of 

vertices has at most two arcs connecting them. This is because 

for asymmetric digraphs we have the following theorems, proved 

by Alspach and Pullman [ 2 ] .  

THEOREM 1.3.5 : If v is any vertex of an arbitrary digraph G 

then pn(~)<pn(G\v)+~(v). 

PROOF : Let t be the number of digons ( a  d i g o n  is a pair of 

arcs (u,w) and (w,u)) incident with v. 

(i) If t=l and od(v)=id(v)=l, then ~(v)=l. Let 

(v,w) and (w,v) be the arcs incident with v. 

Now suppose P is an minimum path decomposition 

of G\v and p is a path in P that begins at, 

terminates at or passes through w. If p begins 

at w, then we can partition the arcs in G into 

P\~uE((v,w),~),(w,v)) giving us a path partition 



of size (PI+1 or pn(G\v)+p(v). If p terminates 

at w, then we can partition the arcs in G into 

P\pU((p,(w,v)),(v,w)), This is again of size 

pn(~\v)+p(v). Finally, if p uses w as an 

intermediate vertex, then w divides p into two 

parts p l ,  p2 where p, is the part from the 

beginning of p to w. and p2 is the rest of p.  

Then P\pUl(pl,(w,v)),((v,w),p2)l forms a path 

partition of G with size pn(G\v)+p(v). 

Otherwise, we can partition all the arcs in G\v 

(using Plinto pn(G\v) paths and partition the 

arcs incident with v into min(od(v),id(v)) paths 

of length two and 

max(od(v),id(v)l - min~od(v),id(v)) 

paths of length 1 .  This gives us a path 

partition of G with 

pn(~\v) + rnin{od(v),id(v)l + max{od(v),id(v)) 

- min(od(v),id(v)] 
paths. This implies pn(G) is again at most 

pn(G\v)+~(v). 

Therefore, for any digraph G we have 

pn(G)lpn(G\v)+p(v). 

Using this theorem and Lemma 1.3.1 they calculated the following 





in G. This implies that lod(v)-id(v)l 2 2 for all 

v. In other words, for every v we either have xG(v)>O 

or xG,(v)>O (see page 33 for the definition of G'). 

Using this fact, we can assume that there are at least 

rn/21 vertices v with x(v)>O. Since otherwise, we can 

apply Lemma 1.3.1 and consider G' instead. Let u be 

one such vertex. Then we must have od(u) > 11-1/21. 

Since there are at least rn/21 vertices v with x(v)>O, 

there are at most Ln/2J vertices v with x(v)=O. Thus 

if we let W = { w I u dominates w and x(w)>O), then 

I w I  2 od(u) - Ln/2]. Now let us construct a path 

decomposition of G as follows. Let P be a minimum 

path partition of G\u. For each weW, we remove a path 

pw from P, where pw is a path with w as its initial 

vertex, and form the path ((u,w),pw). This path must 

exist because x(w)22 and so x (w)22 (see proof of G\u 
Theorem 1.3.2). Let P' be the collection of these I w I  
paths and Pw be the set of pw that are removed from P. 

Now we have at most Ln/2J out-going arcs and Ln/2] 

in-coming arcs incident to u that we have to take care 

of. These arcs can be partitioned into 

min{od(u)- 

max{od(u)- 

length 1. 

paths of length 2 and 

wl,id(u))-min{od(u)-IWl,id(u)) paths of 

Let Po be this set of paths, clearly 

IP015 Ln/2J. Therefore (P\PW)uP'uP0 forms a path 

partition of G with cardinality 



which is less than or equal to pn(G\u) + Ln/2J. Hence 

= ~n'/4~ . 
Therefore, by induction. pn(G) 1n2/4J for any 

asymmetric digraph G. 

This together with Theorem 1.3.2 implies that for any asymmetric 

digraph GI X(G) I pn(G) I 1n2/4J and consequently for any 
2 digraph G we have X(G) I pn(G) I 29Ln /4J. In [2], Alspach and 

Pullman conjectured that we can in fact do better than this. 

They conjectured that the same upper bound for asymmetric 

digraphs will work for any digraph. This was later verified by 

O'Brien 1161.  As for tournaments, we can improve our lower 

bound slightly to max{L(n+l)/2J,~(~~)), as shown by Alspach, 

Pullman and Mason [ 3 ] .  

THEOREM 1.3.7 : For any tournament Tn, pn(~,) t L(n+l)/2J. 

PROOF : The total number of arcs in any Tn is n0(n-1)/2 and 

the maximum number in each path in any path partition 

is n - 1 .  Thus the minimum number of paths needed to 

cover every arc in Tn is n/2. Since pn(Tn) is an 

integer, we must have pn(~,) 2 L(n+l)/2J. 



This combines with Theorem 1.3.2 and Theorem 1.3.6 to give us 

the result. 

COROLLARY 1.3.8 : For any tournament Tnf 

2 maxi L(n+1)/2J ,x(T,)) r pn(Tn) 5 Ln /4J. 

They also examined which integers are possible path numbers for 

tournaments and came up with the following results [3]. 

THEOREM 1.3.9 : For any positive integer n, 

i) if n is even, then there exists a tournament Tn 
2 with pn(Tn)=k for every ke[n/2,n /41, and 

ii) if n is odd, then there exists a tournament Tn 

with pn(Tn)=k for 

a) every ke[(n+1)/2,n-21, and 

2 b) every even ke[n-1,n /4]. 

The only case not covered in Theorem 1.3.9 is when both n and k 

2 are odd with ke[n-l,n /4] and they conjectured the following. 

CONJECTURE 2 : 

There is no odd order tournament Tn with 

2 pn(Tn) c [n-1.n /41 and pn(Tn) odd. 



Their results show that L(n+1)/2] is the best possible lower 
. 

bound and [n2/4~ is the best possible upper bound for path 

numbers of tournaments. At the end of this section we shall 

look at some of the tournaments that give us these bounds. Now 

we turn our attention to the construction of some consistent 

tournaments. Since we can get one tournament from any other 

tournament of the same order by reversing the orientation of 

some arcs, all we need to know is what happens to the path 

number of a digraph when an arc is reversed. From this we can 

determine the path number of an arbitrary tournament by 

successively reversing the arcs of some consistent tournament. 

This sounds like a good idea but it is not always easy to 

implement. The following result is due to Alspach, Pullman and 

Mason [ 3 ] .  

THEOREM 1.3.10 : 

PROOF: First 

Suppose G is a consistent digraph and (v,w) 
I is an arc of G with od(v)-id(vIl0 and i 

od(w)-id(w)20. If H is the digraph obtained 
I 

I 

from G by reversing (v,w), then H is 
I 
I 

I 
I 

consistent and pn(~)=pn(G)+2. 

notice that odG(v)-idG(v)SO implies xG(v)=O and 

odG(w)-idG(w)20 implies xG(w)=odG(w)-idG(w). Since H 

is obtained from G by reversing (v,w), the degrees of 

any vertices other than v and w remain unchanged. 

Therefore, we have 

X(H) = Z xH(u) 
u eH 



Furthermore, by reversing (v,w), the out-degree of v 

and in-degree of w decreased by 1 and the in-degree of 

v and out-degree of w increased by 1 ,  that is 

xH(v) = max~O,odH(~)-idH(~)l 

= maxiO,(odG(v)-1)-(idG(v)+l)] 

= max{O,odG(v)-idG(v)-21 

= 0 

xH(w) = max~OIodH(w)-idH(w)] 

= maxiO,(od,(w)+1)-(idG(w)-~)] 

= max{O,odG(w)-idG(w)+21 

= XG(W)+2. 

Hence, 

= X(G)+2. 

To construct a path partition of HI take any minimum 

path partition P of G. Let pep be the path that 

covers the arc (v,w), then the removal of (v,w) splits 

p into two parts pl, p2 where pl is the path from the 

start of p to v and p2 is the path from w to the end 

of p. Then P'= (P\p)U~pl,(w,v),p2] forms a path 

partition of H with IP1+2 paths. Thus 

pn(H) I pn(G)+2' because P is minimum 



because G is consistent but pn(G)+2 = x(G)+2 

= x(H)-2+2 

= x(H). 

This implies H is consistent; that is, pn(H) = X(H) = 

x(G)+2 = pn(G)+2. 

What still remains to be understood is the case where 

od(v)-id(v)>O or od(w)-id(w)<O, which I believe would be a 

.relatively harder problem, since the solution to this problem 

gives us an indication of what would happen to path numbers when 

excess decreases. As we all know, regular and near-regular 

tournaments have the smallest excess among all tournaments. 

Therefore any knowledge about how decreases in excess affect 

path numbers would be a big step towards solving the path number 

problem for regular tournaments and hence Kelly's Conjecture. 

This concludes our discussion of arc-reversal. 

Another possible direction to proceed is circuit-reversal, 

in particular, 3-circuits. This is because of a consequence of 

Ryser's result on 0-1 matrices (see Reid and Beineke [18,p.197]) 

implies that any tournament can be transformed into any other 

tournament with the same score vector by successively reversing 

3-circuits. But so far, little progress has been made in this 

direction. 

Next, we will look at yet another way of approaching the 

path number problem, namely, to build up consistent tournaments 



recursively. The following theorem suggests a way to construct 

consistent tournaments from smaller consistent tournaments. 

This theorem is derived from Theorem 1.3.5 which stated that 

pn(~)lpn(G\v)+w(v), and so if there exists a veG such that 

x(~)=pn(~\v)+p(v), then we must have ~~(G)=x(G). 

NOTATION 1.3.1 : For any tournament Tn, denote by {V+(Tn). 

v-(T~)) a bipartition of the vertex set 

V(Tn) of Tn. such that every veV+(Tn) has 

x(v)2O and every vev-(Tn) has x(v)=O. 

THEOREM 1 .3 .11  : Let Tn be a tournament of order n. If there 

exists a vertex veV(Tn) such that 

i Tn\v is consistent and 

ii) for some bipartition {v+(T~\v),v-(T n \v)] of T n \v 

we have v dominates every ueV-(Tn\v) and either 

S=o or [V-(Tn\v)(>IRI. 

where ~={ulueV+(T~\v), u dominates v) 

and S={ulurV+(Tn\v), v dominates u], 

then Tn is consistent. 

PROOF : Let us write V+ and V- instead of V+(T,\v) and 

v-(Tn\v). We have two cases to consider. 

( a )  If S=$, then we have the situation shown in 

Figure 1.28. The excess of Tn is 



= X(Tn\v) + maxl I v +  1, lV- 1 I. 
Eut since 

M(V) = max lod(v) ,id(v)I = max ( Iv' 1 ,  I v - I ) ,  
by Theorem 1.3.5, 

pn(Tn) pn(Tn\v) + ~ t v )  

= X(Tn\v) + max{lv+l,lv-lI 

= X(Tn). 

Thus Tn is consistent. 

(b) If S # Q I  then we must have I v - I ~ I R I  by assumption 

and we have the situation shown in Figure 1.29. 

We can assume that all u e S  have x(u)>O, since 

otherwise we could consider the partition 

{v+\u,v-UU]. Now since T,\V is consistent, 

every ueS must be the initial vertex of some 

paths in the minimum path partition of T,\V We 

can then concatenate every arc (v,u), where ueS, 
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to one of these paths originating from u. The 

rest of the arcs incident with v can then be 

partitioned into max(lRI,IV-l)=IV-l paths of 

length at most two. This forms a path partition 

of Tn and we have 

pn(Tn) S pn(Tn\v) + IV-I 

= x(T,\v) + I v - I  
= x(~,\v)+l~I-lsl+(lv-I+lsl-I~p 

= X(Tn). 

Hence Tn is consistent. 

By Lemma 1.3.1, we obtain the dual to this theorem. 



THEOREM 1.3.11': Let Tn be a tournament of order n. If there 

exists a vertex VEV(T,) such that 

i) Tn\v is consistent and 

ii) for some bipartition {v+(T~\v),v-(T~\v)] of Tn\v 

we have v dominated by every usV+(Tn\v) and 

either S=m or IV+(Tn\v)ltlRI, 

where R={U~U~V-(T~\V), u dominated by v) 

and S = { u ~ u c ~ - ( T ~ \ v ) , ~ d ~ m i n a t e d b y u ] ,  

then Tn is consistent. 

Using these two theorems, we can construct consistent 

tournaments by adding a r e c e i v e r  (a vertex with out-degree 

zero), a t r a n s m i t t e r  (a vertex with in-degree zero) or a vertex 

as described in (ii) of Theorems 1.3.11 and 1.3.11'. For 

example, given the tournament T4 in Figure 1.30(a) (which is 

consistent), we can construct two non-isomorphic consistent 

tournaments T5 and T5' of order 5 as shown in Figures 1.30(b) 

and (c). 

Finally, we will look at the path numbers for some special 

tournaments - transitive tournaments, Walecki tournaments and 
circulant tournaments. We start with the transitive tournament 

since it is the easiest one to determine. We need only Theorems 

1.3.3 and 1.3.4. We have the following result due to Alspach 

and Pullman [ 2 1 .  



THEOREM 1.3.12 : The path number of a transitive tournament 
2 

TTn of order n is Ln /4J. 

PROOF : From Theorem 1.3.4, we know that TTn is acircuitous 

and by Theorem 1.3.3, any acircuitous digraph G has 

pn(G)=x(G) and thus ~~(TT,)=x(TT,). To find the 

excess of TTn, we look at Theorem 1.3.4 again. It 

tells us that the score vector of TTn is ( 0 ,1 ,2 ,  ... 
n - .  Therefore, for i=O,1, ... ,Ln/2]-1, we have 

od(i) = si 5 Ln/2J-I 

and so id(i) = n-1-od(i) 

Hence od(i)-id(i) < 0 

and x(i> = 0. 

On the other hand, for i=Ln/2J, ... ,n-i 
od(i) = si 2 Ln/2J 



and id(i) = n-1-od(i) 

Hence x(i) = od(i)-id(i) 

Now we can compute X(TTn) obtaining 



Therefore, 

In fact, it is not hard to construct a path decomposition of the 

arc-set of TTn of size ln2/4~. First we label the vertices 

{0,1,2, ... ,n-11 as in Theorem 1.3.4(ii). Let Pi be the set of 

all arcs in TTn with length i. Clearly, the Pi's partition the 

arc-set of TTn into n-1 disjoint sets. Now let pij be the 

subset of Pi such that (u,v)epij if uzj (mod i), where i=l, ... 
,n-1 and j=O, ... ,i-1. Then the set of all pij1s partition the 

arc-set of TTn. Our claim is that each non-empty pij is a path 

2 in TTn and there are altogether Ln /41 of them, thus giving a 

2 path decomposition of TTn with Ln /4J paths. 

TO see that each non-empty pij forms a path, first notice 

that pij is empty if and only if j+i>n-1. Now for each 

non-empty pijI suppose j<j+i< ... <j+kiSn-1 are all the numbers 
in {0,1, ... - 1  congruent to j modulo i.  hen pij - - 
{(j,j+i),(j+i,(j+i)+i), ... ,(j+(k-l)i,j+ki)l. Note that 

although j+ki is congruent to j modulo i, (j+ki,(j+ki)+i) is not 

in p Therefore, pij is the path (j,j+i, ... ,j+ki). Next, we ij* 

will count the number of non-empty pij1s. Let ni denote the 

number of non-empty pij1s in Pi, where j=O, ... ,i-1 and recall 
that pij is empty if and only if i+j>n-1 or j>n-1-i, so we must 

have 



n = minCi,n-1-i+l) i 

= min{i,n-i). 

In other words, 

i when 1 S i 5 Ln/2J 
n i =- [  

n-i when Ln/2J+l S i S n-1. 

Thus the total number of non-empty pij's 

 his shows us that TTn can be decomposed into Ln2/4~ 

arc-disjoint paths. 

Notice that pn(~~,) coincides with the upper bound of path 

numbers of tournaments. We will now look at tournaments that 

give us the lower bound. Walecki tournaments are examples. 



LEMMA 1.3.13 : Every Walecki tournament of even order n has 

path number n/2. 

Lemma 1.3.13 follows by construction whereas for odd order 

Walecki tournaments it is considerably more complicated. Recall 

that every Walecki tournament LT,(sO,sl, ... fSm-1 ) of order 
n=2m+l is an arc-disjoint union of Hamilton circuits {COfCl, ... 
fCm-ll. Now let P=(xo,xlf ... ,xm) be the directed walk 

constructed by taking an arc ( X ~ , X ~ + ~  )rCi So if xo is chosen, 

then the rest of the xi's are uniquely determined. Our goal is 

to select x0 in such a way that all xi's in P are distinct 

hence giving us a path which, together with the m Hamilton 

paths, C ~ \ ( X ~ , X ~ + ~ ) ,  form a path decomposition of LTn(sO,slr ... 
'm- 1 . This decomposition has size m+l or (n+t)/2 and by 

Theorem 1.3.7 it is minimum. To achieve this we need a few 

lemmas. The first lemma is the result of rotating LTn(sO,sl~ 

. . . , Sm- 1 ) If we rotate LTn(sO, s l ,  . . . ,sm-, ) counter- 

clockwise, we will get L T ~ ( S ~ .  s2, ... , s ~ - ~ ,  -so) and if we 

rotate it clockwise we will get LTn(-~m-l, so, s l ,  ... , s ~ - ~ )  

The second lemma is a special property relating arcs from 

consecutive Walecki circuits. For the next two lemmas and the 

following theorem, let us denote the number of negative s 's in 
j 

the set s o  s . s i f  i=l, ... .m, by ki and the total 

number of negative s 's in {so, ... ,sm-, 
j 

1 by k, clearly k=km. 



LEMMA 1.3.14 : For every Walecki tournament, 

L T ~ ( S ~ , S ~ .  ... . s ~ - ~ ) .  
where n=2m+l, we have 

LTn(sO,sl, ... , S ~ - ~ ) = L T ~ ( ~ ~ , S ~ ,  ... , S ~ - ~ , - S ~ )  
=LT~(-S,-~ , so, ... sm- 2 ) 

PROOF : Define two permutations on the set of vertices {0,1, 

... ,n-1) of L T n ( ~ O f ~ l I  ... 'm- 1 as follows, 

o+=(0)(1 2 3 ... n-1) 
and a-=(O)(n-1 n-2 ... 1). 

We shall show that o+ is a domination preserving map 

mapping LTn(sO,sl, ... . s ~ - ~ )  to LTn(-~m-l, so, ... 
and u- is a domination preserving map mapping 

LTn(sO,sl. ... to LTn(sl .s2, ... ,s,-~ ,-so). 

For each Walecki tournament LTn(tO,tlI ... , 
tm-l)I we denote the jth Walecki cycle (undirected) by 

'j-1 and the jth Walecki circuit (oriented according 

to tj-,) by tj-,Cj-,. Then for i=O, ... ,m-2, 
o+(siCi)=siu+(ci) 

=s.u+(<Ofl+i,2+i,n-l+i, ... ,m+2+ifm+l+i,0>) 
1 

=s.<0,2+if3+i,l+i, ... ,m+3+iIm+2+i,0> 
1 

=s C i i+t 
which is exactly the (i+2)nd Walecki circuit of 

L T ~ ( - S ~ - ~ , S ~ ,  ... that is, o +  preserves the 

orientation of each arc in sici. As for i=m-1, we have 

u+(sm-lCm-l )=sm-lu+(Cm-l 

- -~~-~u+(<O,m,m+l,m-l, ... ,n-2,1,n-lf0~) 



-- - Sm-lC~ 
which is exactly the first Walecki circuit of 

L T ~ ( - S ~ ~ ~ , S ~ .  ... "m-2 . Again, o +  preserves the 

orientation of each arc in Thus LTn(sO,sl, 

.- .  ) is isomorphic to LT,(-S~-~,S~. ... Ism-2). 
Similarly, we can use o- to show that LTn(sOIsl, 

-. ) is isomorphic to LTn(s1,s2, ... , S ~ - ~ , - S ~ )  

by showing 

O-(S.C.)=S~C~-~ 1 1  for i=l, ... ,m-1, 
and u- (s C =-sOCm- . 0 0 Thus u- is also a domination 

preserving map of the vertices. Hence LTn(sO;sl, ... 
'm- 1 ) is isomorphic to LTn(s1,s2. ... ,sm-l,-so). 

With this lemma, we can now assume that S ~ = S ~ - ~ = + ~ ,  since 

otherwise we can just rotate the sequence (sOIs1, ... , s ~ - ~  1 as 

in Lemma 1.3.14 until we get "+Iw for so and s,-~. Thus k l = O  and 

km'km- l =k. Recall that 1 (x,y), the length of the arc (x,y), is 

defined as y-x modulo n, but for Walecki tournaments we will use 

modulo n-1 instead. 

LEMMA 1.3.15 : For n=2m+l, if (x,y)eCi c LTn(sOIsl, ... 'm- 1 ) 

and 3Sl (xIy)S2m-1, then ( y , ~ ) e C ~ + ~ ,  where 



PROOF : Let us look at two consecutive Walecki circuits in an 

L T ~ ( S ~ , S ~ ,  * * .  f ~ m - l  1. We have the four cases as 

shown in Figure 1.31. From these four cases, we 

derived the following table which gives us the desired 

results: 



Since these are all the cases, we have the desired 

.result that 

l(x.y) odd 

using these lemmas, we can now show that odd order Walecki 

tournaments, LTn(sOIs1, ... where n=2m+l have path 

number (n+1)/2 or m+l as mentioned earlier. 

ll-(ki+2-ki)l 

THEOREM 1.3.16 : For any Walecki tournament of order n=2m+l, 

LTn(sO,sl, ... .sm-,), we can remove an arc 

(xiIxitl) from each Walecki circuit Ci such 

that P=(xo,xl, ... .xm) forms a path. 
PROOF : Let a = r(m-1)/21 - k where k and ki's are defined in 

the discussion immediately preceding Lemma 1.3.14. 

Let 

for j=O, ... ,[(m-1)/21, 



and 

X 2j+l = xo + (2j+l) + 2*r(m-1)/21 
+ ( - ~ ) * ~ + l  ( [(m-1 1/21 -j-k+k2j+l ) + p(m,a), 

for j=O, ... ,L(m-1)/2JI 

1 if m is even and a is odd, 
where p(m,a) = - [  0 otherwise. 

The claim is that with an appropriate choice of xo 

such that ( X ~ , X ~ ) C C ~ ,  then ( ~ ~ , x ~ + ~ ) e C ~  for i=l, ... 
,m-1 and P=(x ,x 0 1' 

... ,xm) forms a path. To prove 

this claim, we need to prove the following: 

There exists an xo such that ( ~ ~ , x ~ ) e C ~  

X i+2 = x  + 2 + ( - 1 )  i h(i)- 1 l-kit2+ki 1 
where h(i)=l (xi ,xi+, ) ,  

351 (xi ,xicl )52m-1, i=O, ... ,m-1, and m25 
All xi's are distinct 

By lemma 1.3.15, (i), (ii) and (iii) imply that 

(xiIxicl )cCi for i=O, ... ,m-1 and (iv) implies P is 
indeed a path. 

Proof of (i) : Finding xo amounts to finding an arc in 

Co with length l(xo,xl). Since Co contains exactly 

one arc of each length from 1 to n-2, and (iii) 3 5 

I (x ,x I 2m-1, then there must exist an arc (u,v)EC 0 1 0 

such that I (u,v)=l (xo,xl). Thus we can set xo=u. 

62 



Proof of (ii) : We know that 

~ ~ ~ + ~ - x ~ ~  = 2 + ( - 1 )  ma+ 1 * ( 1 -k2 j+2+k ) 
2j 

for j=O, ... , [(m-1 )/21-1 , 
and 

for j=O, ... ,L(m-1)/2J-I. 
This implies 

for i=O, ... ,m-2. 
To prove (ii) now, it suffices to show that 

ma+l+i (mod 2) if l-ki+2+k.>0 
~ ( i )  ,-[ 1 

ma+i (mod 2) if l-ki+2+k.<0. 
1 

We do not need to check the case where l-ki+2+ki=0, 

since x ~ + ~ = x .  +2 
1 

when 1-kit2+ki=0 regardless of the 

values of m, a and i. 

X(2j) = 2*r(m-1)/21 + 1 

+ (-1pa+l - ( r ( m - 1 ) / 2 1 - 2 j - k + k ~ ~ + ~ + k  ) + p(m,a) 
2j 

= 2*r(m-1)/21 + 1 

+ (a-2j+k2j+k2j+, + p(m,a) 

whereas 

X(2j+l) = 1 - 2r(m-1)/21 
+ (-1)rna+l 0(2j+l+k-k~~+~ - 

k2 j+2 -r(rn-~ 1/21 1 - ,o(m,a) 
= 1 - 2. [(m-1)/21 

+ (-1) 
ma+ 1 0 ( 2 j + l - k ~ ~ + ~ - k ~ ~ + ~ - a )  - p(m,a). 

Recall that ki denotes the number of negative 1's in 



the sequence ~ s O , s 1 ,  ... , s ~ - ~ ]  so that 0<(ki+2-k.)<2. 1 

Also X(i) denotes ~ ( X ~ , X ~ + ~ ) .  Consider the following 

two cases: 

+k.>O, then kic2 (a) If 1-ki+2 -ki=O so we must have 

ki=k =kic2. Hence, i+l 

X(2j) l+a+p(m,a) (mod 2 )  

= l+ma (mod 2) - 

= ma+l+2j (mod 2), and - 

X(2j+l) z l+(l-a)+p(m,a) (mod 2) 

= a+p(m,a) (mod 2) - 

= ma (mod 2) - - ma+l+(2j+t) (mod 2). - 

Therefore, X(i) ma+l+i (mod 2). 

(b) If l-ki+2+k.<0, then kic2-ki=2 and we must have 
1 

ki+2=k +1=k i+t i+2. Hence, 

X(2j) = l+(l+a)+p(m,a) (mod 2) - 
= - a+p(m,a) (mod 2) 
= ma (mod 2) - 

= - ma+2j (mod 2), and 

X(2j+l) : l+a+p(m,a) (mod 2) 

= - ma+(2j+l) (mod 2). 
Therefore, X ( i )  2 ma+i (mod 2). 

Now (a) and (b) imply that 

and thus = x + 2 + ( - 1 )  X(i) 
i I l-ki+2+ki 



Proof of (iii) : Let kO=O and 

Gf=f+k-k -k f •’+ I '  • ’ = O r  ... ,m-1. 
Since f,k 2 k f+l fkf' we have 6•’20. To show that 6f is 

bounded above by m-1,suppose kSm-f-1. Then 

6f = f+k-k•’-l~•’+~ I f+m-f-1-k f -k f+l I m-1. 

Otherwise, if k=m-f-l+c where c>O, then 

because c is the least number of negative one's that 

must appear in the first f s i ls and thus kf2 c and 

kf+l 2c+l, so that 6f 5 m-c-2 S m-1 . 
Therefore, 

and 

We have 



which implies 3 I I ( x  2jlx2j+1 ) I 2m-1 when m25. 

In other words, 

which in turn implies 3 I I ( x ~ ~ + ~  "2j+2 ) I 2m-1 when 

) I 2m-1 for m25. m25. Thus we have 3 5 i ( ~ ~ , x ~ + ~  . 

Proof of (iv) : To show that all xi's are distinct, it 

suffices to show that x ~ , x ~ ~  ... f~2rm-1,21f x1,x3, 

. . . '*2~m-1/2~+1 forms an increasing sequence and the 

difference between x21m-1,2J+1 and xo is less than or 



equal to 2m-1. From the proof of (ii), we have 

Since 0 5 ki+2-ki 5 2, we have ll-ki+2 +kil l 1 and 

1 I x ~ + ~ - x  I 3. Furthermore, i 

X 1  = X~ 
+ 2- r(m-1)/21 + 1 

+ ( - 1 )  
ma+ 1 * (  r(m-1)/21-k) + p(m,a), 

and 

Therefore, x -x 1 2 rm-1/21 = 1 + p(m,a), 

that is, 1 l x  I -'2 rm- 1 /21 I 2. So we have 

'0' '2' * * *  rX2rm-1/21r '1, '3, * * *  tX2~m-1/2j+1 

an increasing sequence. Finally, we will look at 

X2im-1/2]+1 which sat is•’ ies 

= xO + 2*(m-1) + 1 

+ ( - 1 )  
ma+ 1 

( r(m-1)/21- L(m-1)/2] + p(m,a) 

xo+2*(m-1)+1 if m is odd - - 
'x0+2* (m-1 )+I-l+p(m,a) if m is even 

I x0+2m-1, 

that is , x 2 Lm-1/21 + I  - xO 12m-1. 

Thus XOtX2t * * *  .X2rm-1/21 ,X31 - -  tX2~m-1/21+1 are 



all distinct. This finishes the proof of (iv). 

As mentioned before, (i), (ii) and (iii) imply that 

( ~ ~ , x ~ + ~ ) e C ~  for i=O, ... ,m-1 and (iv) implies that 
P = ( X ~ , X ~ ,  ... ,xm) is a path, for any m25. For m<5, 

we have n=3, 5, 7 and 9 for which we have already seen 

in Section I 1  that we can in fact remove' a single arc 

from each Hamilton circuit to form a path. This 

completes our proof of Theorem 1.3.16. 

For example, consider LT21+l,+lI-lI-11-lI-11+l,-l,-l,+l. We 

have n=21, m=10, L(m-1)/2] = 4, [(m-11/21 = 5 and k=6.' To find 

P I  we have to determine the value of xo. As described in the 

proof of (i), finding xo is equivalent to finding an arc 

( u , v ) c ~ ~  which has length ~ ( x ~ , x ~ ) .  From the proof of (ii) we 

so for LT21(+11+1,-11-l,-lI-11+lI-11-11+1) we must have 

l(x x ) = 1 0 + 1 - ( 5 - 6 ) + 1  0' 1 

= 13. 

The only arc in Co with length 13 is (15.8)~ so x0=15, x1=8. 

Hence we get x2=16, x4=19, x6=2, x8=4, x =6, x3=10, x5=ll, 10 

x7=13 and xg=14. This path is illustrated in Figure 1.3.2. 

NOW we have shown that we can remove an arc from every 

Walecki circuit to form a path and obtain a path decomposition 
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of size (n+l)/2 for LT,(S~,S~, ... ,smm1 where n=2m+l. Since 

Theorem 1.3.7 shows that this is indeed the lower bound for the 

path number of any tournament, we must have 

P ~ ( L T ~ ( s ~ ~ s ~ ~  g e e  Ism-l 1 )  = (n+1)/2. 

We shall state this as a corollary. 

COROLLARY 1.3.17 : For every Walecki tournament LTn(sOIs1, ... 
'rn- 1 with n=2m+l, 

P ~ ( L T ~ ( s ~ ~ s ~  I Ism-1 ) )  = (n+1)/2. 



Having seen the above result, a natural question to ask is the 

following: Is it true that if Kelly's Conjecture holds, then we 

can just remove one arc from each Hamilton circuit in an 

HC-decomposition and form a path? (This question was raised by 

B. Alspach.) If this is true, then we would have ~elly's 

Conjecture implying that every regular tournament of odd order 

has path number (n+1)/2. The answer to this question is no, 

because of the following example. Consider CT11(1,3,41519). It 

has an HC-decomposition: 

as described in Theorem 1 .1 .2. Each circuit' is composed of arcs 

of a fixed length, so no matter which arc we choose from a 

circuit, we must have the total length of the path equal to the 

sum of the elements in the symbol set. The tournament 

C~,,(1,3,4,5,9) has symbol set (1,3,4,5.9~ and its sum is 22 

which is divisible by 1 1 .  Thus the arcs removed from the 

circuits cannot possibly form a path. However, there does exist 

another HC-decomposition of CT11(1,3,4.5,9) such that we can 

remove one arc from each circuit to get a singie path. The 

following is one such decomposition: 

with (1,2,5,8,0,9) being the path formed. 



The last type of tournament that we are going to discuss 

here is circulant tournaments of prime order p23 with symbol set 

2 ... p - 1 2  We have already seen in Theorem 1.1.2 that 

such tournaments are HC-decomposable. Here we will show that 

the above procedure of removing one arc from each circuit to 

form a path also applies to some HC-decomposition of circulant 

tournaments of prime order. 

THEOREM 1.3.18 : Every circulant tournament of prime order 

p23 with symbol set {1,2, ... ,(p-11/21 has 

path number (p+1)/2. 

PROOF : From Theorem 1.1.2 we know that CT can be partitioned P 
into arc-disjoint circuits C O f C l 1  ..= fC(p-3)/2 where 

Ci contains all arcs with length i+l. 

Let ( ~ ~ ~ v ~ + ~ ) e C ~ .  Then the claim is that (vO,vl, 

. . . fv(p-l )/2 ) forms a directed path. To show this, 
i+j 

it is sufficient to show that C k is not congruent to 
k=i 

0 modulo p. First, let us look at this sum: 

We know that i,j<(p-1)/2, so that ll(j+l),(j/2+i)<p 

which implies (j+l) and (j/2+i) are both relatively 

prime to p. Thus p does not divide 
i+j 

Z k = (j+i)=(j/2+i) 
k=i 



and so all vi's must be distinct and (vo, v 1, * * .  

qP-! )/2 ) is a path. Together with Co\(vo,vl), ... 
rC(p-3)/2''v(p-3)/2rv(P-1 )/2 ) we have a path partition 

of CT ( 1 ~ 2 ,  ... p - 2  of size (p+1)/2 and by 
P 

Theorem 1.3.7, p n ( ~ ~  ) = (p+1)/2. 
P 

Having seen Theorems 1.3.16 and 1.3.17, one would start to 

wonder if all regular tournaments of odd order n have path 

number (n+1)/2. This was conjectured by Alspach, Pullman and 

Mason [3]. 

CONJECTURE 3 : 

Every regular tournament RTn of odd order n 

has pn(~T,) = (n+1)/2. 

On the other hand, for even order near-regular tournaments we 

have already seen that every Walecki tournament of even order 

has path number n/2 and from Theorem 1.1.2 that every circulant 

tournament of prime order satisfies Kelly's Conjecture. Thus, 

by removing one vertex and all its incident arcs, as described 

in Lemma 1.1.5, we obtain an even order near-regular tournament 

NTn- I which is an arc-disjoint union of (n-1)/2 Hamilton paths 

and therefore has path number (n-1)/2 (again by Theorem 1.3.7). 

This leads us to believe that every even order near-regular 



tournament NTn has path number n/2. By combining the odd and 

even cases, we get the following conjecture. 

CONJECTURE 4 : 

Every regular or near-regular tournament of 

order n has path number L(n+l)/2J . 

Another interesting question concerning all even order 

tournaments was raised by O'Brien [ 1 7 ] .  

CONJECTURE 5 : 

Every even order tournament is consistent. 

The last two conjectures actually imply Kelly's Conjecture, so 

they are believed to be very hard problems, whereas Conjecture 3 

should be slightly easier (relatively speaking), but apart from 

the results discussed here little is known. 



CHAPTER 2 : PATH DECOMPOSITIONS OF COMPLETE UNDIRECTED 

GRAPHS 

As mentioned in the introduction, the solution to the path 

number problem for complete graphs is a well known result (see 

Stanton, Cowan and James [20]). In this chapter, we will simply 

state this result and move on to a slightly different 

decomposition problem. First, let us look at the undirected 

analogue of Theorem 1.3.7. 

LEMMA 2.1.1 : For any complete graph Kn of order n, 

pn(Kn) 2 L(n+l)/2]. 

PROOF : There are n-(n-1)/2 edges in Kn, and the longest path 

in any path decomposition is of length less than or 

equal to n-1. Thus the least number of paths needed 

to cover all edges of Kn is n/2. But pn(K,) must be 

an integer. Therefore, we must have pn(Kn) 2 rn/21 or 

pn(Kn) 2 L(n+1)/2]. 

rn 

From Lemma 1.3.13 and Corollary 1.3.17, we know that every 

Walecki tournament of order n has path number L(n+1)/2]. SO, by 

removing the orientation on every arc in any minimum path 

decomposition of LTn, we get a path decomposition for Kn. 

This implies that there exists a path decomposition of size 



L(n+l)/2J of Kn for all n. Hence by Lemma 2.1.1, for any 

complete graph Kn of order n we have pn(~,) = L(n+1)/2J for all 

n. We shall state this result as a theorem. 

THEOREM 2.1.2 : For every complete graph Kn, pn(Kn)=L(n+l)/2J. 

Since the path number problem is completely solved, we turn our 

attention to a slightly different version of a path 

decomposition problem. In this new problem, we are more 

concerned with the existence of a certain path partition than 

the size of the partition. 

CONJECTURE 6 : 

The complete graph Kn can be decomposed 

into paths of lengths ml,m2, ... ,mr if and 
onlyif 1 i mi Sn-1 for i=l, ... ,r - 

L n and Z mi = ( ) .  
i=1 

This is what we referred to as "the path arboreal problem" in 

the introduction. The term "path arboreal" is due to Slater 

[191. It is not hard to see that 1 5 mi S n-1 for i=l, ... ,r 
r 

and Z mi = ( 
n 
2 ) are necessary conditions, however the 

i=1 
sufficiency part is not as obvious. This problem is also stated 

by Tarsi in [21]. He formulated the general problem as follows. 



CONJECTURE 7 : 

L e t ~ = { m ~ , m ~ ,  ... ,mr] be a sequence of 

natural numbers which satisfies miSn-1 for 
r 

15i5r and Z mi = A*( n 2 ) -  Then there 
i=1 

exists a sequence of paths P1,PZ. ... ,Pr of 
lengths ml,m2, ... ,mr such that every edge 

of Kn belongs to exactly X of them. Such a 

sequence of paths is called a ~ ~ [ X , n l .  

He also proved the following results based on techniques using 

~alecki's construction (see Lemma 1.1.1). 

THEOREM 2.1.3 : Let n be odd or X even, and M={ml,m2, ... ,mr] a 
sequence of natural numbers with 

r 
llmiln-3 and Z m .  n 

1 
= he( ) .  

i=1 
Then there exists a pM[X,nI. 

NOW we return to the path arboreal problem. As we can see, it 

is just a special case of Conjecture 7 with X=1 and as Theorem 

2.1.3 suggests, if n is odd and all the mi's are less than or 

equal to n-3, then we are done. What remains to be shown are 

the cases when (i) some mi2n-2 for odd n, and (ii) n is even. 

For case ( i ) ,  we can improve Theorem 2.1.3 to mi5n-2 as shown in 

Lemma 2.1.4, while Lemmas 2.1.5, 2.1.6 and 2.1.7 show us some 



partial results when we actually have some mi > n-2, that is, 

mi=n-1 . As for case (ii), little is known. We begin by 

improving the result stated in Theorem 2.1.3. 

LEMMA 2.1.4 : Given n=2m+l, and natural numbers ml,m2, ... 
~m such that miln-2 for 1 . r and 
rr 
A n Z mi = ( 1 ,  then Kn can be decomposed into 

i=l 
paths PI, P2. ... ,Pr of lengths ml,m2, ... ,mrI 
respectively. 

PROOF : Recall from Lemma 1.1.1 that for n=2m+l, Kn can be 

partitioned into m Hamilton cycles (CO,C1, ... ,Cm-l) 
such that 

Then E=<CO,C1, ... ICm-l > forms an eulerian tour of 

Kn. Now suppose d is the length of the shortest cycle 

on this tour. If the given mi's are all less than d, 

then we can just remove the first ml edges in E to 

form PI and the next m2 edges in E\P1 to form P2 and 

so on. Since d>mi, for i=l, ... ,r, PI,P2, ... ,Pr - 
are all paths. Furthermore, ; mi = ( ; ) which is 

i=1 
the total number of edges in E, therefore we have 

decomposed the edge-set of Kn into P1.P2, ... ,Pr such 
that each Pi is a path. To find the value of d, 

consider two consecutive Cils (as depicted in Figure 

2.1). We can see that every walk that starts at 

vertex i+m+2, i+m+3, ... ,i+n-l,i+l (the top row in 



Figure 2.1) in Ci covers n-1 (in the case of i+l, it 

is n) distinct vertices, namely i+n-x, ... ,i+m+2 and 

i+x+2, ... ,i+m+l,O by edges of Ci and i+l, i+n-1, ... 
,i+n-(x-2) and 0, i+2, ... ,i+x+l by edges of Ci+l, 

before encountering the first repeated vertex, that 

is, i+x+2. This is illustrated in Figure 2.2 (note 

that, modulo n-1 arithmetic is used with n-1 replacing 

0). Thus every walk of length at most n-2 that starts 

at vertex i+j, m+2SjSn, in Ci is a path. On the other 

hand, every walk that starts at vertex OIi+2,i+3, ... 
,i+m+l (the bottom row) in Ci covers n-2 (in the case 

of 0 and i+2, it is n and n-1, respectively) distinct 

vertices as shown in Figure 2.3. Thus every walk of 

length at most n-3 that starts at vertex i+j, 21jIm+l, 

in Ci is a path. From the above observations, we can 

see that d=n-2. For those mi=n-2=d, we have a way to 

avoid choosing mi edges which are cyclic. The first 



FIGURE 2 .  2 

FIGURE 2.  3 

observation guarantees that if we begin choosing edges 

for P1 at vertex i+j, m+2SjSn, along Ci, then the next ' 

ml=n-2 edges will form a path. Hence, given m.Sn-2, 
1 

for i = l f  ... ,r, we rearrange the mi's so that ml=m2= 

... =mk=n-2 and mi<"-2 for i=k+l, ... ,r. We can then 

remove the first ml edges on the tour for PI, the next 
r 

m2 edges for P2 and so on, since Z mi = 
n 

( ),all 
i= 1 

edges on the eulerian tour will belong to some Pi. 
\ 

Each Pi is a path because Pk+l, ... ,Pr are all of 
size less than n-2 which equals d. Also. PI, ... ,Pk 

are all of size n-2 and except for PI which starts at 



0 they all start at vertex m+2(i-1) = (i-2)+(m+i) of 

'i-2 for i=2, ... ,k. So by the above observation 

they are simple paths. Therefore, P1,P2, ... ,Pr are 
the required paths.  his finishes the proof of the 

theorem. One last note. There are at most m+l mi's 

with value n-2, thus that last (n-2)-path Pk will 

start at vertex (k-2)+(m+k) of Ck-p where 0 I k-2 I 

m-1 and 2 I k I m+l so m+2 I m+k I2m+l. 

B 

Now suppose we have some mi=n-1, we can relabel {m,,m2, ... ,mrJ 
2- ... 2mr such that m12m > with ml=m2= ... =mk=n-1. Then by 

pulling out one edge from each of the first k Walecki cycles and 

attaching it to Cm-l, we get the following lemma. 

LEMMA 2.1.5 : Given n=2m+l, and {ml,m2, . . I .  ,mr] as described 

in Lemma 2.1.4. If ml=m2= ... =mk=n-1 and m. 
1 

cn-2k+l for i=k+l, ... ,r, then Kn can be 

decomposed into edge disjoint paths P I ,  P2, ... 
,Pr of lengths mllm2, ... ,mr respectively. 

PROOF : First we construct the eulerian tour E as in the proof 

of Lemma 2.1.4. Then we remove the first k Walecki 

cycles to get E'=E\{c~, ... ,Ck-ll. Now we can delete 
an edge from each of the k Hamilton cycles removed. 

In particular, <m+l+(k-l),O> from Ck-l, and 

<m+2+irm+l+i> from Ci for i=O, ... ,k-2. This gives 



us k Hamilton paths which we call P l ,  P2, ... ,Pk. 

Then we attach the deleted edges, which form the path 

P=<O,m+k,m+k-1, ... ,m+l>, to the end of E' to form 

EW=<E',P>. En is a trail that uses up the remaining 

edges. We have already seen in the proof of Lemma 

2.1.4 that we can now remove edges from En to form 

paths of lengths mk+,, mk+21 ... ,mr as long as each 

m is less than or equal to n-2. However, this i 

procedure fails when one of the Pi's, say P requires 
j 

edges from E' and P. This is because the shortest 

cycle in <Cm-,,P> is of length 2*(m-k)+2 (see Figure 

2.4) or simply n-2k+l. So in order to avoid this 

cycle, we need to have miln-2k for i=k+l, ... ,r. 

Then we can just remove the first mk+, edges of En for 

Pk+l ' the next mk+2 edges for Pk+2 and so on. 
* 
A 

Since n Z mi = ( 1,  every edge in E is in exactly 
i=1 

one P. and P I ,  P2, ... ,Pr are the required paths. 
1 ' 

In fact, we can state this result in a slightly stronger manner. 

Observe that the longest path that we can fit into the end of E" 

(that is, ,P>) and uses up all of P is of length 2.(m-k)+k 

or n-k-1 because every walk that begins at vertex i ,  ism-k or 

i2m+k+1, in Cm-l is a path (see Figure 2.4). The shortest such 

path is of length k because P has k edges in it. Therefore, if 

we can find mi or a sum of mi's with its value between k and 



m m- 1 m-k+2 m-k+l m-k m-k-1 2 1 

n-k-1, then we can rearrange the m 's so that the above 
j 

mentioned mi or m.'s appears at the end of the sequence. 
1 

Because this mi or mi's is the last and it must cover edges in 

'm-1 , 
and all of P, by the above observation this Pi or Pi's must 

form a path or paths. This guarantees that all P 's are paths. 
j 

Lemma 2.1.5 can then be improved as follows. 

LEMMA 2.1.6 : Given n=2m+lI if ml=m2= ... =mk=n-1, mi5n-2 for 
i=k+l, ... ,r and there exists I c {k+l, ... ,r) 
such that Z mi satisfies k 5 Z mi< n-k-1, then 

i €1 i €1 
Kn can be decomposed into edge-disjoint paths PI 

I P21 . . a  ,Pr of lengths ml,m21 ... mr 

respectively. 

Another way to improve the above result is to use a different 

choice of edges from the first k Walecki cycles. This is shown 

in the next lemma. Recall from the proof of Lemma 2.1.5 that if 



k=m then the remaining edges, one from each of the m Walecki 

cycles, form the path P. So we only need to consider the case 

where k<m in the following lemma. 

LEMMA 2.1.7 : Let n=2m+l and m > k 2 m/2. If ml=m2= ... =mk 
=n-I, mi<"-2 for i=k+l, ... ,r and there exists 

I - c {k+l, ... ,r) such that k 5 Z mi< m+k, then 
i €1 

Kn can be decomposed into edge-disjoint paths PI 

, P2, ... ,Pr of lengths m,,m2, ... ,m,, 

respectively. 

PROOF : As in the proof of Lemma 2.1.5, we construct the 

eulerian tour E of Kn and then remove the first k 

Walecki cycles to form the Hamilton paths P,, P2, ... 
,Pk. But this time we will choose a different set of 

edges from these cycles. Let s= Z mi, then our goal 
i €1 

is to find a path of length s which will use up the k 

edges deleted from the k Walecki cycles and possibly 

some edges from the end of Cm-l. By doing so, the 

remaining portion of the tour can be used to form the 

rest fo the Pi's, since the corresponding mi's are 

less than or equal to n-2, and the trail starts at the 

beginning of Ck. 

Let t=s-k. Since klslm+k, we have Oltlm. In 

fact, we can assume t>O, since otherwise, we can just 

follow the proof of Lemma 2.1.5 to get PI and P would 

be the required path. We can also assume that m23, 



for m=l or 2 the answer is obvious. We have three 

cases: 

a) If t is even, then 21tIm which implies 

O~t/2-l<m/2-l<k-l. We first remove 

<i+lli+2> from Ci for i=t/2-1, ... ,k-I. 

Then if t/2-121, we remove <(t/2-2)+m+1,0> 

from Ct,/2-2 and furthermore if t/2-1>1, then 

we remove <i+m+2,i+m+l> from Ci for i=O, ... 
,t/2-3. These k edges together with the 

last t edges of Cm-l form a path (as 

depicted in Figure 2.5(a)). One point that 

needs to be verified in this case is 

m+t/2-1<2m+l-t/2=n-t/2, but this follows 

from the fact that tIm<m+2. 

b) If t is odd and m-(t+l)/2>k-1, then we begin 

by removing <i+m+2,i+m+l> from C for i=O, i 

... ,k-2 and then <(k-l)+m+l,O> from Ck-,. 

Again these k edges together with the last t 

edges of Cm-l form a path (see Figure 

2.5(b)). Here we need to verify that 

m+k<2m+l-(t+1)/2=n-(t+1)/2. But this 

follows from the assumption that 

c) Finally, if t is odd and m-(t+l)/2Sk-1, then 

we choose <i+m+2,i+m+l> from Ci for i=O, ... 
,m-(t+1)/2-1 and also <O.l+(k-I)> from Ck-,. 



(a) 

Now if m-(t+l)/2<k-1, then we delete 

ci+lIi+2> from C i  for i=m-(t+l)/2, ... ,k-2. 
These k edges will form a path with the last 

t edges from Cm-l. TO show that, we need to 

verify that m+l-(t+1)/2>(t-1)/2, this 



follows from tSm<m+l.(see ~igure 2.5(c)). 

m 

These three lemmas together tell us that for any k, ISkSm, such 

that ml=m2= ... =mk=n-1, and mi<"-2 for i=k+l, ... ,r, if there 
exists I k +  . r satisfying k I C m. S max{m+k,n-k-11, 

i e I  1 

then we can partition Kn into paths of lengths ml,m2, ... ,mr, 
respectively. Unfortunately, there are examples that violate 

these conditions. For example, n=21, k=4, r=ll and {ml,m2, ... 

221-4-1.16 for all i and Z mi = ( 'A 1.  
i= 1 

AS mentioned earlier, not much is known about the even 

order case. The only result was stated by Tarsi 1211 .  

LEMMA 2.1.8 : For even n, if ml=m2= ... =m adn mrSmr-l<"-l - r-1 
i n with thenwe can partition Kn 

i=1 1 

into paths of lengths m, ,m2, ... rmr 

respectively. 

The path arboreal problem on the whole is still very much open. 

Little has been done other than the few results stated here. 
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regular tournament of order n ............ 3 

....... near-regular tournament of order n 3 

........... Walecki tournament of order n 1 1  



......... circulant tournament of order n 12 

........ transitive tournament of order n 39 

................................ 7-vector 19 

............................ score vector 19 

.......................... doubly regular 22 
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