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ABSTRACT
Given an undirected (directed) graph, we say G has a path
decomposition if the edge-set (arc-set) E of G can be
partitioned, into disjoint subgets E1, .o 'Er such that each
of the subgraphs induced by E; is a path.
In this thesis, we will 1look at two path decomposition

problems on complete graphs.

Problem I: Path number problem

Given any complete directed graph G, what is

t he mi nimum number of paths in any path

decomposition of G?
In other words, we are interested in the minimum value of r as
described above; this value 1is called the path number of G.
An expository account of results on path numbers of tournaments
is given. In addition, a new result is given in which the path
number of a Walecki tournament is determined.

Problem II: Path arboreal problem

Given any complete undirected graph Kn’ and

a sequence of natural numbers (ml, - ,mr)

such t hat m; < n-1 for i=1, ... ,r and

g m. = (¢ o). Is there a path

i=1 ! 2

decomposition of K, , such that E; contains

exactly m; edges for i=1, ... ,r?
I1f the answer to this problem is yes for any sequence (m1, ‘e
,mr) such that m. £ n-1 for i=1, ... ,r and ; mi'= (.2 ),

i=1
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then we call

G

pat h arboreal.

An

exposition

of the present

status of the attempt to prove that K, is path arboreal is given

as well as some original work that extends the

literature.
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INTRODUCTION

The topic of graph decompositions is probably one of the
most widely considered topics in the field of graph theory.
Hundreds and hundreds of papers and books have been published on
different aspects of this problem. Chung and Graham [7] give a
survey on many decomposition problems — what has been done and
what has yet to be done, together with a list of more than one
hundred references. They also formulated ﬁhe general graph
decomposition problems as follows:

Given a graph G and a family of graphs H, we

say G has an H-decomposition if the edge-set

E of G can be partitioned into disjoint

subsets E1,E2, e 'Er such that each of

the subgraphs induced by E; is isomorphic

to a member of H.
By allowing G and H to be directed, we get-the analogue for
directed graphs. The more commonly known problems involve using
families of complete graphs, <c¢ycles or paths for H. 1In this
thesis, we will restrict ourselves to the latter case, that is,
H consists of paths only. Furthermore, we are mostly interested
in H-decompositions of complete simple graphs (directed or
undirected), that is, complete graphs with neither self-adjacent
vertices nor multiple edges. Henceforth the term "graph" refers

to a simple graph unless otherwise specified and the term




"digraph" refers to a simple directed graph. Other terminology
that will be used quite frequently in this thesis includes
"circuits"™ for <cycles in digraphs and "paths" for simple paths
(containing no cycles) in graphs or digraphs. The following

notations and definitions will also be used here :

NOTATION 0.1 : The set of vertices is always labeled by Z, =
{0,1, ... , n-1}.

NOTATION 0.2 : An arc going from vertex u to vertex v 1in a
digraph is denoted by (u,v).

NOTATION 0.3 : An edge joining vertex u and vertex v in a graph
is denoted by <u,v>.

NOTATION 0.4 : The in-degree and out-degree of a vertex in a
digraph is denoted by id(v) and od(v),
respectively.

NOTATION 0.5

|x| denotes the largest integer smaller than or
equal to x.

NOTATION 0.6 : [x] denotes the smallest integer larger than or

equal to x.

NOTATION 0.7 : The directed path {(XO’X1)' (x1,x2), ceoe ,(xn_1,
xn)} is briefly denoted by (XO'X1’ . ,xn)
and the undirected path {<x0,x1>,<x1,x2>, oo
<xn-1’xn>} is similarly denoted by <KgrXgp e

X_>,
' “n




DEFINITION

DEFINITION

DEFINITION

DEFINITION

DEFINITION

~

DEFINITION

DEFINITION

DEFINITION

DEFINITION

0.5

0.6

0.8

0.9

The lengt h of an arc (u,v) denoted by [/ (u,v)
is defined as v-u (mod n) where n 1is the
number of vertices in the digraph.

The lengthl of an edge <u,v> denoted by
[<u,v> is defined as min {v-u,u-v} (mod n)
where n is the number of vertices in the
graph. |

For any two vertices u, v in a digraph, we
say u domi nates v if (u,v) is an arc.

The degree deg(v) of v in a digraph is
defined as od(v)+id(v).

For any vertex v in a digraph, we define
u(v) to be max {id(v),od(v)}.

An asymmetric digraph is a digraph such that
(v,w) is an arc implies (w,v) is not an arc.
A tournament of order n, denoted by Tn’ is
a complete asymmetric simple digraph on n
vertices.

A regular tournament, denoted by RTn, is a
tournament such that for any vertex v in
RT , od(v)=id(v).

A near-regular tournament, denoted by NTn,
is a tournament such that for any vertex v

in NT_, |od(v)-id(v)|[=1.




It can be easily seen from the degrees that regular tournaments
must have odd order and near-regular tournaments must have even
order.

Now, let wus consider the‘directed analogue of the general
problem with H being the family of all directed paths and G a-
digraph. Clearly, an H-decomposition exists since each arc by
itself is a directed path. What we want to obtain here 1is the
minimum size of such partitions, where the size of an
H-decomposition is defined as the number of subsets E1,E

91 eens

,E (as defined in the general decomposition problem) that the

r
arc-set of G is decomposed into. In other words, it 1is the
number r. This number is called the path number of G and that
is why we call this problem the "path number problem". The idea
of finding minimum path decompositions of simple graphs is due

to Erddés [9] and The term "path number" was first introduced by

Harary [11].
DEFINITION 0,10 : The path number of a graph G, denoted by

pn(G), is the minimum number of

edge-disjoint paths in G whose union is G.

Replacing the words graph by digraph and edge by arc, we get the

definition for path number of digraphs.

DEFINITION 0.,10': The path number of a digraph G, denoted by




pn(G), is the minimum number of arc-disjoint

paths in G whose union is G.

The problem of determining the path numbers of digraphs was
first attempted by Alspach and Pullman [2] 1in 1974. They
established lower and upper bounds for path numbers of
asymmetric digraphs and conjectured that the same upper bound
holds for all digraphs. This conjecture was solved by O'Brien
[16] in 1975. Later in 1976 [3], Alspach, Pullman and Mason
showed that pn(T ) satisfies the inequality
L(n+1)/2] < pn(T ) < L“2/4J

and they also showed which numbers in that interval are indeed
path numbers of some tournaments. 1In Chapter 1 we will look at
how the lower and upper bounds were derived, some properties for
the path numbers of tournaments and compute the path number for
some special tournaments. Also in Chapter 1 is a brief
discussion of a conjecture which is closely related to the path
number problem. It turns out that solving the path number
problem for near-regular tournaments is equivalent to solving

the following famous conjecture.

CONJECTURE 1 (KELLY [15, p.7])

The arc set of a regular tournament of odd
order n can be decomposed into (n-1)/2

arc-disjoint Hamilton circuits.




This is the same ag.saying there exists a Cn-decomposition (that
is H={Cn}) for every regular tournament of odd order n. We
shall see later how the two problems relate to each other, and
discuss some of the results }on Conjecture 1, Alspach [1]
confirmed that Kelly's Conjecture holds for regular tournaments
of odd order at most nine. We shall exhibit all these
tournaments with corresponding decompositions.

Having seen what happened in the directed case, we turn our
attention to the undirected case. The path number problem for
undirected graphs was first examined by LovAdsz [13]. He showed
that for any simple graph G with u odd vertices and g21 even
vertices, pn(G) < u/2 + g - 1. This bound was later improved by
Donald [8] to pn(G) < |[3n/4]. As for complete graphs, the
result is well known (see Stanton, Cowan and James [20]). For

odd order complete graphs we have pn(K ) = m+1 whereas for

2m+1
the even case we have pn(KZm) = m. In Chapter 2 we shall look
at a slightly different version of the path decomposition

problem. Consider Koo the undirected complete graph of order

n, and let My My, ooe Mo ?e positive integers such that
m, < n- for i=1, ... ,r and i§1mi = ( 2 ). If, given any such
sequence (m1,m2, cen ,mr), we can decompose K, into
edge-disjoint paths of lengths m,,My, o.. ,M., we call Kn pat h

arboreal . The problem we are going to investigate was first
asked by Slater [19]: Is K, path arboreal for all positive n?
If not, for which n is K path arboreal? Tarsi [21] also
asked a similar question for multigraphs. He showed that for




any integer X\, n, if m =m, = ... =m_, and m.<m._, <
r

and z m, = A ( g ), then XKn, the complete graph with A edges
i=1
joining every pair of vertices, can be partitioned into paths of

n-1

lengths m,,My, «.. ,Mm_. In this chapter, we shall look at some
results on this problem for odd n. They will include how to
partition K, into edge-disjoint paths of lengths m,,My, ... ,M
(i) if all m; < n-2 or (ii) if m,=m,= ... =m =n-1 and there
exists 1 ¢ {k+1, ... ,r} such that k < Zms max{n-k-1,m+k}.
The remaining cases (iii) when m. 2 n-k %gi some i 2 k+1 and

(iv) for all even n are still open.



CHAPTER 1 : PATH NUMBERS OF TOURNAMENTS

This chapter 1is divided into three sections : Section I
discusses the problem that is closely related to the path number
problem, namely Kelly's Conjecture. We consider some of the
known results on this problem and how these two problems are
related. Section II is a list of all regular tournaments of
orders 3, 5, 7 and 9. It is known that Kelly's Conjecture holds
for all these tournaments. We will give a circuit decomposition
for each one of them. Section III is a survey of results on the

path numbers of tournaments.

Section I : Motivation

It is easy to see that every regular tournament of odd

order can be decomposed into arc-disjoint circuits since every
vertex has in-degree equal to out-degree. However, a further
restriction that all circuits have to be hamiltonian, proves to
be a much more difficult problem. P, Kelly conjectured this
decomposition problem in the early 1960's [15, p.7] and so far
little is known about this conjecture other than a few special
cases. One of these special cases is the construction of a
class of regular tournaments that satisfy Kelly's Conjecture.
One way to achieve this 1is by partitioning the edges of an

undirected complete graph into Hamilton cycles and then



orienting each of these cycles in one of two ways. The
following construction, known as "Walecki's construction", for
partitioning the edges of K, into Hamilton cycles was found by
Walecki and introduced by Lucas [14] in 1891. The proof given

here is due to Berge [5].

LEMMA 1.1.1 : Every complete graph Kn of order n=2m+1 can be
decomposed into m edge-disjoint Hamilton cycles.
PROOF : Let C0=<0,1,2,n—1,3,n—2, se. ,m,m+2,m+1,0> as shown
in Figure 1.1. This is clearly a Hamilton cycle. Now
define
Ci=<0,1+i,2+i,n-1+i,3+i, ces ,M+i,m+2+1,m+1+1i,0>
for 1i=1, ... ,m-1 modulo n-1 (notice that n—} is used
in place of 0 when performing modulo n-1 arithmetic).
Then all Ci's are again Hamilton cycles, because each
Ci is just a rotation of C0 about the vertex 0. To
show that they are pairwise edge-disjoint notice that

every <u,v> in C,, with u,v#0 has u+v=2 or 3 (mod

0’
n-1), so every edge <u,v> in C, with u,v#0 must have
utv=4 or 5 (mod n-1) and every edge <u,v> in C; with
u,v#0 must  have u+tv=2+21i or 3+2i (mod n-1).
Furthermore, for edges incident with 0 we have <0,i+1>

and <m+1+i,0> in Ci where 1=0, ... ,m-1, Hence every

edge <u,v> lies in exactly one cycle Ci'



6 3
—_ Co
-—— - C1
- . @ Cz
FIGURE 1.2
Figure 1.2 gives an example of Walecki's construction for

n=7. With this lemma, we can now construct a special class of
tournaments that obviously satisfy Kelly's conjecture by giving

an orientation to each of the cycles Ci arising in the proof

of Lemma 1.1.1,

10



DEFINITION

A Walécki tournament of order n=2m+1 is a
tournament whose vertices are labeled {0,1,
ee. ,n-1}, yhich has a symbol set S={so,sl,
. ,sm_1} such that sie{—1,+1}, and which
is obtained by orienting the complete
undirected graph of order n in the following
fashion. If s.=-1, then orient the ith
Walecki cycle C; so that C, is a circuit and
(i+1,0) is an arc. 1If s;=+1, then orient C;
so that (0,i+1) is an arc. The resulting
tournament 1is regular and 1is denoted by
LTn(S). For n=2m we construct LTn+1(S)
first and then remove vertex 0 and all its
incident arcs. This results in an

arc-disjoint union ©of Hamilton paths which

FIGURE 1.3

11



is a near-regular tournament of order 2m,

also denoted by LTn(S).

The tournament shown in Figure 1.3 1is an LT,(+1,-1,+1). A
second class of tournaments that satisfy Kelly's conjecture are

the circulant tournaments which can be defined as follows,

DEFINITION 1.1.2 ¢ A circulant tournament 1is a tournament of
odd order n, with vertices labeled {0,1, ...
,n-1}, and a symbol set S c¢ {1,2, ... ,n-1}
such that |S|=(n-1)/2 and for all i,jeS, we
have i+j#n. Then each vertex i dominates
vertex i+j (mod n) for every jeS. The
resulting tournament is a regular tournament

of order n and is denoted by CTn(S).

5 2
U ®@csss0 V l(u'v)=1
u e-——-e v /[ (u,v)=2
ue e u [/(u,v)=3
FIGURE 1.4

12



Figure 1.4 gives us a CT7(1,2,3). Unlike Walecki
tournaments, not every circulant tournament has been proven to
have the nice property that it 1is an arc-disjoint union of
Hamilton circuits. Instead we héve the following theorem.
THEOREM 1.1.2 : Every circulant tournament of prime order p23

can be  decomposed into’ (p-1)/2 Hamilton
circuits.
PROOF : Suppose p=2m+1 and CTp has symbol set S={so,s1, cee

, S _1} then (i,i+j) is an arc if and only if jeS. Let

m
Ci={(x'X+si) | x=0,1, ... ,p-1, sieS}. Clearly, there

are P arcs in C;. Each vertex x in Ci has

od(x)=id(x)=1 because (x,x+si) and (x-si,x) are both
in C;- Therefore, Ci is a union of vertex-disjoint
circuits. Suppose we have.(x,x+si, cee ,x+ksi) where
k<p and x+ks,=x (mod p); that s, ks.=0 (mod p).
Since k<p and S; <P, in order for ks, =0 (mod p) we must

have k=p. Hence Ci is a Hamilton <circuit:

furthermore, all Ci's are disjoint because all si‘s

are distinct. Thus {CO,C ,C 1} forms a

1 r
Hamilton circuit decomposition of CTp(S).

m-

Figure 1.4 also shows a decomposition of CT7(1,2,3) into
Hamilton <circuits. Apart from these two results, not much is

known about Kelly's Conjecture, although Haggkvist <claims to

13



have proven that for large enough n Kelly;s Conjecture is true.

A related theorem was obtained by Kotzig [12] in 1969.

THEOREM 1.1.3 : The arcs of every reqular tournament of order n
can be partitioned into (n-1)/2 sets of size n,
each of which 1is a vertex-disjoint union of

circuits.

This theorem can also be viewed as an immediate consequence of
Hall's theorem of 1935 [10]. Consider the following. Given any
regular tournament RT , construct a 5ipartite graph G with
bipartition (X,¥) where X=Y=V(RTn), the vertex set of RT . Then
for any ueX, veY¥, <u,v> is an edge in G if and only if (u,v) is
an arc in RT . Thus G is an (n-1)/2-reqular bipartite graph.
Now by a corollary of Hall's theorem (see Bondy and Murty [6,
p.73]1), G 1is 1-factorable and each 1-factor represents a union
of vertex-disjoint circuits in RT_. Thus RT can be decomposed
into (n-1)/2 wunions of vertex-disjoint circuits, each union
having n arcs.

Now let wus turn our attention back to Kelly's Conjecture.
In an effort to solve Kelly's Conjecture, the path number
problem on regqular tournaments was developed. To see the
connection between the two problems, we need the following

lemmas.

14



LEMMA

PROOF :

LEMMA

PROOF

1.1.4 ¢ 1f pn(NTn)=n/2 for even n, then every path in

the minimum partition is hamiltonian.
Each directed path has length at most n-1 and thus the
maximum number of afcs covered by n/2 paths is
(n-1)+n/2 = ( g ). I1f one of the n/2 paths in a
minimum path decomposition of NT, has length less than
n-1, then the total number of arcs covered is léss
than ( 2 ). Therefore, the path number equal to n/2
implies that every path in the minimal path partition

of NTn is hamiltonian.

1.1.5 : Every regular tournament can be obtained by

inserting a vertex into some near-regular
tournament and every near-regular tournament can
be obtained by removing one vertex from some

regular tournament.

By definition, a near-regular tournament 1is an
even-order tournament NT, =~ with |od(v)-id(v)|=1 for
all v. Let V' denote the set {v|VeNT2m and

od(v)-id(v)=+1} and V- denote the set {v|veNT and

2m
od(v)-id(v)=-1}, then the wunion of V* and V- is the
vertex-set of NT, . and their intersection 1is the
empty set. Since the sum of the out-degrees equals
the sum of the in-degrees in any tournament, we have

|v*|=|V-|{=m. Now 1introduce a vertex w, with an arc

15



joining w to every veV* and an arc joining to w from
every veV-.  This increases od(v) by 1 for every veV-
and id(wv) by 1 for every vev*. Also
od(W)=id(w)=lV‘|=|V'[¥m. Thus NT, U{w} is a regular

tournament, call it RT In other words, NT can

2m+1° 2m

be obtained from RT by deleting w.

2m+1
Similarly, given any regular tournament RT 417
2m+1\{W}'

\{w} has either

we can delete any one vertex w to form RT
Notice that every vertex v in RT, 41
od(v)-id(v)=1 or od(v)-id(v)=-1 because there is
exactly one arc Jjoining w to or from every v. Upon
the removal of w, the degree of v drops by 1 (either

in or out-degree). Thus RT \{w} is a near-regular

2m+1

tournament Nsz, which implies RT2m+1 can be
constructed by inserting w and all its adjacent arcs

1nto NTZm‘

Using these facts we <can now show that solving Kelly's
Conjecture 1is equivalent to solving the path number problem for
near-regular tournaments of even order. We shall state it as a

theorem.

THEOREM 1.1.6 : Kelly's Conjecture holds if and only if pn(NTn)
’ eguals n/2 for all even n.

PROOF : If pn(NTn)=n/2 for all even n, then givenlany regular



tournament RT

by Lemma 1.1.5, R can be

2m+ 1" Tom+1. .

constructed from some NT, by inserting one vertex w
and all its incident arcs. Also, by Lemma 1.1.4 the m
paths that partition ﬁhe arcs of NT, are hamiltonian.
Now let us define V* and V-, as in the proof of Lemma
1.1.5, for NT, and observe that in any path partition
of Nsz every vertex veV* must be the initial vertex
of at least one path and every vertex veV- must be the
terminal vertex of at least one path. In particular,
"if there are only m paths in the partition, then every
veV* 1s the initial vertex of exactly one path and
every veV- is the terminal vertex of exactly one path.
To each path in the minimal path partition, we assign
a pair of arcs {(u,w),(w,v)} where v, u are the
initial and terminal vertices of that path,
respectively. Since all initial and terminal vertices
are distinct, every arc adjacent to w belongs to
exactly one pair. Now each Hamilton path in the
minimal partition of NT,o together with its
corresponding pair of arcs forms a Hamilton circuit in
RT 41 e This gives us a Hamilton circuit decomposition
of RT2m+1.
Conversely, if every RT, can be decomposed into
(n-1)/2 Hamilton circuits, then given any near-regular
tournament Nsz, by Lemma 1.1.5, there exists a

regular tournament RT2m+1 such that the removal of a

17



vertex w and all its incident arcs yields NT,.- By

assumption RT can be decomposed into Hamilton

2m+1

circuits CO,C1, e ,C , and then removing w and all

m-1i
its incident arcs from these circuits we get m paths
CO\{(uo,w),(w,vo)}, C1\{(u1,w),(w,v1)}, eee v Coy
\{(um_1,w),(w,vm_1)} which form a partition of the arc

set of NT, . Hence pn(NTZm)=m.

This marks the beginning of the path number problem for
tournaments. Before we start investigating results on path
numbers, let us first examine some regular tournaments of small

orders. The following section is devoted to that purpose.

Section II : Some'regular tournaments

It is already known that Kelly's Conjecture holds for
tournaments of odd order through nine (unpublished work by B.
Alspach [1]). 1In this section we will see how these tournaments
can be decomposed into circuits and paths. But first we need a

little help in identifying small order tournaments.
DEFINITION 1.2.1 ¢ Let (u,v) be an arc of a tournament T,. Then

r(u,v) is defined to be the number of

3-circuits of T, containing (u,v).
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DEFINITION 1.2.2 : For each regular tournament RT of order
n=2m+1, we define a r-vector (a1, Byr wes
,am) where a, denotes the number of arcs
(u,v) in RTa with 7(u,v)=1.

DEFINITION 1.2.3 : The score vector of a tournament T, is the
ordered n-tuple (51, PYAREE ,sn) where
si=od(vi), and is called the score of vertex

V..
1

m
First of all, every r-vector must satisfy Z a. = ( ; )
i=1

since every arc must lie on at least one 3-circuit and no more

i

than m 3-circuits. This is because for every arc (u,v) in RTn,
the out-degree of v in RTn\{(u,v)} is m and the out-degree of u
in RTn\{(u,v)} is m-1. Furthermore, a result found by Kendall
and Babington (1940), Szele (1943) and Clark (1964) (see Moon

n

[15, p.9]) shows that there are exactly ( g ) - Z s;(s;=1)/2
i=1

3-circuits in a tournament of order n with score vector (s1,52,

eee  4+S_). For regular tournaments we have s -e. =S,

1752
=m=(n-1)/2, and thus the total number of 3-circuits in RT is

n

(3)- z (%),

i=1 m

which is equal to (n3-n)/24. We then have z iai=(n3—n)/8.
i=1

Since every isomorphism of a tournament preserves its

circuit-structure, 3-circuits are mapped onto 3-circuits and we

have the following lemma.
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LEMMA 1.2.1 : Let RTA and RT; be two regular tournaments of
order n=2m+1 with corresponding r-vectors (a;,

aé, e ,a&) and (a?, a%, ceo ,a&). If RTA and
RT; are isomorphic tournaments then

(a;,aé, . ,a&) = (a?,aa, .o ,a%).

This lemma gives us a quick way of identifying
non-isomorphic tournaments for the lower order cases. To
compute the rt-vector of a tournament Tn all we need is its

tournament matrix M defined as follows.

DEFINITION 1.2.4 ¢ The tournament matrix M of a tournament T

is an n by n 0-1 matrix such that

1 if A dominates vj

0 otherwise.

Then it can be easily seen that the (i,j)-entry of Mt (t is
any positive integer, and multiplication 1is performed using
Boolean arithmetic) is 1 if and only if there exists a directed
walk of length t from v, to Vs in T (see Moon [15, p.34]). We
can find r(vi,vj) by determining the (j,i)-entry in M2 (by
ordinary arithmetic). By collecting these numbers for all arcs,

we get the r1-vector for RTn' This would be a good tool for

identification of non-isomorphic tournaments if it had not been
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for the fact that as n increases we have more flexibility in
putting (n3~n)/24 3-circuits together and this ruins the
unigqueness of the r-vectors as we shall see in the order 8 cése.
There are two pairs of non;isomorphic regular tournament of
order 9 having the same r-vector. The regular tournaments in
Figures 1.13 and 1.22 both have r-vector (0,18,18,0), but the
first one contains three 3-circuits composed of arcs with 7
equal to 3, whereas the second one has six of this kind of
3-circuit. The regular tournaments in Figures 1.15 and 1.16
both have r-vector (3,15,15,3), but the first one contains three
3-circuits which are composed solely of arcs with 7 equal to 3,
whereas the second one has five of them. Nevertheless, we will

~

use this technique to identify tournaments of small order.

NOTATION 1.2.1 If a regular tournament can be decomposed
into arc-disjoint Hamilton circuits, then we
call it HC-decomposable and the
corresponding decomposition an

HC-decomposition.

There 1is one RT3, one RTS, three RT7's and fifteen RTg's.
Figures 1.5 to 1.24 form a list of all of them together with
their types (if known), HC-decompositions and r-vectors. The
number on each arc (u,v) is the value of r(u,v). A minimum path

decomposition can also be found by removing the underlined arc
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from each Hamilton circuit of the HC-decomposition. These arcs
together form a path, hence giving us a partition of the arc-set
of RT into (n+1)/2 paths. We will see why this is minimum in
Section III. |

Before we leave this section, we shall take a brief look at
another application of the r-vector. First, we need one more

definition.

DEFINITION 1.2.5 : A tournament Tn is doubl y~regular if for all
pairs of vertices, the numbers of vertices
dominated by both vertices of each pair are

the same.

A necessary condition for a tournament to be doubly-regular is
that it has to be regular as shown by Reid and Beineke [18].
They also characterized doubly-regular tournaments by the

following theorem.

THEOREM 1.2.2 : The following statements are equivalent for any
non-transitive tournament of order n25:
i) T is doubly-regular
ii) Every arc of T, lies on the same number of
cyclic triples

iii) Every (n-2)-subtournament has the same score

vector

22



HC-decomposition:
(0,1,2,0)

//’C)\\\ r-vector:

1 1 (%)

i } . TYPE:CT, (1)
1

Isomorphic to:

FIGURE 1.5

HC-decomposition:
(0,1,2,3,4,0)
(0,2,4,1,3,0)

r-vector:
(5,5)

TYPE:CTs(1,2)

Isomorphic to:
CTg(1,3),CT:(4,2),
CTs(4,3),
LTs(+1,+1),LT(+1,-1),
LTs(-1,+1),LTs(=-1,-1).

FIGURE 1.6

/fj’ﬁ;%;\\ HC-decomposition:
(0,1,2,3,4,5,6,0)
1 1 L ’ ’ 1% ’ ’
¥ 332 (0,2,4,6,1,3,5,0)
(0,3,6,2,5,1,4,0)

r-vector:
(7,7,7)

TYPE:CT,(1,2,3)

Isomorphic to:
cr,(6,5,4),CT,(1,5,3),
cT,(6,2,4),CcT,(1,5,4),
CT,(6,2,3).

FIGURE 1.7
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HC-decomposition:
(0,1,2,4,5,6,3,0)
(0,2,3,4,6,1,5,0)
(0,4,1,3,5,2,6,0)

r-vector:
(0,21,0)

TYPE:CT,(1,2,4)

Isomorphic to:
CT7(6,5,3),LT7(+1I‘1I+1)I
LT,(-1,+1,-1).

FIGURE 1.8

HC-decomposition:
(0,1,2,6,3,5,4,0)
(0,2,3,1,4,6,5,0)
(0,3,4,2,5,1,6,0)

T—-vector:
(3,15,3)

TYPE:LT, (+1,+1,+1)

Isomorphic to:
LT7(—'+,+),LT7(-I—I+)’
LT7(—I-I-)ILT7(+'—I—)I
LT7(+,+,-).

FIGURE 1.9
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HC-decomposition:
(M!278I3I
(0,2,3,1,4,
(Or3riﬁrsr
(0,4,5,3,6,

7
8
1

2.7

T-vector:
(5,13,13,5)

TYPE:LTg(+1,+1,+1,+1)

Isomorphic to:
LTS(-r+r+r+)ILTS(-I_I'+I+)I
LT9(—I-I-I+)ILTS(_,_,_,_),
LT9(+I-I-!_)’LT9(+I+I—!—)!
LTg(+,+,+,-).

FIGURE 1.10

HC-decomposition:

(0,1,2,8,3,7,4,6,5,0)
(0,6,7,5,8,4,1,3,2*9)
(M’4'2r5r116'8r7r0)
(0,8,1,7,2,6,§¢§,4,0)

T-vector:
(1,21,9,5)

TYPE:LTo(+1,-1,+1,-1)

Isomorphic to: .
LT9(+r+r-r+)rLTs(-r+r+r_)r
LT9(+I_I+!+)!LTS(—I+I_I+)!
LTg(=,-,+,=) ,LTg(+,-,-,+),
LTS(—I+!_!-)'

FIGURE 1.11
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T-vector:
(9,9,9,9)

TYPE: CT,(1,2,3,4)

Isomorphic to:
CTq(1,2,6,5),CTy(1,7
CT,(8,7,6,5),CT,(8,7
CT,(8,2,6,4).

r3r5)r
r3r4)r

FIGURE 1.12

HC-decomposition:

(0,1,2,3,4,5,6,7,8,0)
(0,2,4,7,3,5,8,1,6,0)
(0,3,6,8,2,5,7,7,4,0)
(0,5,7,3,8,4,6,2,7,0)

T=vector:
(0,18,18,0)

TYPE: CT,(1,2,3,5)

Isomorphic to: :
CTo(1,2,6,4),CTs(1,7,6
CT,(8,7,6,4),CT,(8,7,3
CT,(8,2,3,4).

FIGURE 1.13
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HC-decomposition:
3 3 (01_1_&!3741517761810)
3 _3 ’ (07311'4171242!8'6!0)
3 . (0,4,2,6,1,8,3,7,5,0)
X (0,7,1,5,3,6,4,8,2,0)

r-vector:
(9,0,27,0)

TYPE: CT,(1,7,3,4)

Isomorphic to:
CTy(1,7,6,4),CTy(8,2,6,5),
CT9(8,2'3’5)'

FIGURE 1.14

HC-decomposition:
(0,1,2,3,4,5,7,6,8,0)
(0,2,6,4,8,3,7,1,5,0)
(0,3,5,8,2,7,4,1,6,0)
(0,7,8,1,3,6,5,2,4,0)

T-vector:
(3,15,15,3)

TYPE: UNKNOWN.

FIGURE 1.15
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HC-decomposition:

’

T-vector:
(3,15,15,3)

TYPE: UNKNOWN.

FIGURE 1.16

HC-decomposition:
3 3 (0,1,2,3,4,5,7,6,8,0)
) (0,2,%,1,7,8,3,6,5,0)
2 (0,3,5,1,6,4,8,2,7,0)
(0,6,2,5,8,1,3,7,4,0)

r-vector:
(4,12,18,2)

TYPE: UNKNOWN.

FIGURE 1.17
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HC-decomposition:
3 2 (01112;314'51 16181
, 7

7 0)
(0,2,6,5,8,1,3,7,4,0)
(0,3,6,4,8,2,5,1,7,0)
(0,6,1,4,2,7,8,3,5,0)

r-vector:
(2,15,18,1)

TYPE: UNKNOWN.

FIGURE 1.18

HC-decomposition:
3 2 1 (01_1_(_3'2!41517161810)
3 2 (0,5,2,1,7,8,3,6,4,0)
3 (0,6,2,7,4,8,1,5,3,0)
(0,7,3,4,1,6,5,8,2,0)
T-vector:

(1,16,19,0)

TYPE: UNKNOWN.

FIGURE 1.19
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HC-decomposition:

(0,1,3,2,5,7
.1
72'

~
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’

o

r-vector:
(1,17,17,1)

TYPE: UNKNOWN,

FIGURE 1.20

HC-decomposition:

r—vector:
(1,18,15,2)

TYPE: UNKNOWN,

FIGURE 1. 21
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(0,1,3

r

r—vector:

(0,18,18,0)

TYPE: UNKNOWN.

FIGURE 1.22

HC-~decomposition:
(0,1,3,2,4,5,

r—vector:

(0,20,14,2)

TYPE: UNKNOWN.

FIGURE 1. 23
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HC~decomposition:
2 1 (0,1,3,2,4,5,7

5,7,6,8,0)
(0,4,1,7,2,6,5,8,3,0)
(0,6,3,7,4,8,1,5,2,0)
(0,7,8,2,1,6,4,3,5,0)

T-vector:
(3,12,21,0)

TYPE: UNKNOWN,

FIGURE 1. 24

This theorem implies that a regular tournament 1is
doubly-regular if and only if there 1is exactly one non-zero
entry in its r-vector. For example, CT3(1) in Figure 1.5 and

CT7(1,2,4) in Figure 1.8 are such tournaments.

Section III : Results on Path Numbers of Tournaments

Recall that the path number of a digraph G, pn(G), is the
minimum number of arc-disjoint paths 1into which it can be
decomposed. We will 1investigate upper and lower bounds for
pn(G) (in particular, for tournaments) and compute the path

numbers for some special tournaments. First we need to define
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the following.

DEFINITION 1.3.1 : The excess x(v) of a vertex v in a digraph G
is defined as max{0,o0d(v)-id(v)}.
DEFINITION 1.3.2 : The excess X(G) of a digraph G is defined as

Z x(v).
veG

One observation here 1is that X(RTn) is 0 for any regular
tournament RT_ and X(NTn) is n/2 for any near-regular tournament
NT . Next, we define a special class of digraphs called

consistent digraphs.

DEFINITION 1.3.3 : A digraph is consistent if pn(G)=X(G).

Using this definition, we can rewrite Theorem 1.1.6 as
THEOREM 1.1.6 : Kelly's Conjecture holds if and only if NT_ is

consistent for all even n.

Another observation is that if G' is the digraph obtained by
reversing every arc in a digraph G, then we have the following

lemma.
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1.3.1 ¢ For any digraph G, pn(G)=pn(G') and X(G)=X(G').

Let P' be a minimum path partition of G'. Then each
path p'eP' gives rise to a unique path in G, simply by
reversing the orientétion of all arcs on the path.
Let P be the collection of these paths in G. Since
every arc in G is the reverse of some arc in G', and
every arc in G' 1is in exactiy one path of P', every
arc in G must be in exactly one path in P. Thus P
forms a path partition of G. Therefore,
pn(G)<|P|=|P'|=pn(G'). Conversely, we can reverse the
orientation of every path in any partition P of G to
get a path partition P' of G'. This gives us
pn(G')<pn(G) and hence pn(G)=pn(G'). On the other
hand, notice that

vEGodG(v)=v§GidG(V).
Let V" be the set of vertices v in G with x,(v)>0 and
V- be the set of vertices v in G with xG(v)=0. Then
we can rewrite the above equality as

z odG(v)-idG(v) = Z idG(v)-odG(v).

veV”* veV-

We know that L odG(v)-idG(v) = X(G). Also for every
veV”®

vevV*, xG.(v)=0 and for every veV-, xG,(v)ZO. Hence,

(v)

X(G'") z

veV-

XG,

Z od.,(v)=-id.,(v).
veV- G G
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This lemma implies that G is consistent if and only if G' |is

consistent. For tournaments, we have a special name for G'.

DEFINITION 1.3.4 : The complement of a tournament Tn , denoted

by T» is obtained by reversing the

orientation of every arc in T,-

An example is given in Figure 1.25. A tournament T, that is
isomorphic to its complement %n is said to be
sel f-complementary. The example given 1in Figure 1.25 is
self-complementary whereas the example given in Figure 1.26 is
not.

The first result on the bounds for path numbers of digraphs

is a theorem due to Alspach and Pullman [2].

THEOREM 1.3.2 : For any digraph G, pn(G)2X(G).
PROOF : Every vertex veG with x(v)>0 must be the initial

vertex of at least x(v) paths in any path partition of
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(a) Tg ’ (b) Tl

FIGURE 1.25

\

(a) T, (b) T,

FIGURE 1. 26

G. This 1is because every path wusing v as an
intermediate vertex uses up exactly one in-coming arc
and one out-going arc. Also every path that
originates at v uses up one out-going arc whereas
every path that terminates at v uses up one in-coming
arc. Thus there must be exactly od(v)-id(v) more
paths starting from v than terminating at v. This
implies that there are at least x(v) paths beginning
at v. Since every path in a path partition begins at
a uniqﬁe vertex, we must have at least Z x(v)=X(G)

veG
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paths in any path partition of G. Therefore,

pn(G)2X(G).

This theorem gives us an immediate 1lower bound for pn(G).
Notice that this allows us to quickly identify the path numbers
for some digraphs. For example, the T, in Figure 1.26(a) can
be decomposed into three paths as shown 1in Figure 1.27. Since
X(T4) is also three, we must have pn(T4) = X(T4) = 3,
Unfortunately, equality does not always hold. For instance, the
regular tournament of order 3, RT3 (see Figure 1.5), has
pn(RT3)=2 but X(RT3)=0. In fact, pn(RTn)>X(RTn) for all odd n,
since X(RT_)=0 and a path decomposition of size zero is
impossible for any non-empty graph. Regarding a sufficient
condition for equality to hold, Alspach and Pullman [2] gave the

following theorem,

THEOREM 1.3.3 : If G is an acircuitous digraph, then pn(G)=X(G).
PROOF Let G be any acircuitous digraph and P = {p1,p2, cee
,pr} be a minimum path partition of G with r equal to
pn(G). Suppose pn(G)>X(G). Then there must exist a
vertex veG such that the number of paths in P starting
at v is greater than x(v) as otherwise we would have
the total number of paths in P equal to X(G). Now
consider vertex v. Every path that begins at v |uses

up exactly one out-going arc and every path that
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FIGURE 1. 27

termin;tes at v uses up one in-coming arc. Since we
use up more than x(v)=od(v)-id(v) out-going arcs as
the 1initial arcs of some paths, we must use at least
one in-coming arc as the terminal arc of some path.
Suppose p; is one of the paths that begin at v and'pj
is one of the paths that terminate at v. Then (pi,pj)
forms a path because G 1is acircuitous. Hence
P\{pi,pj}U(pi,pj) forms a path partition of G with
size one less than that of P. This gives us a

contradiction and thus we must have pn(G)=X(G) for any

acircuitous digraph G.

This 1is, however, not a necessary condition as we have
already seen in the previous example where pn(T4)=X(T4) but T,
has circuits. In fact, this theorem has very little use in

determining the path number of tournaments because for each n
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there is only one tournament of order n that 1is acircuitous.
This 1is a consequence of the following theorem given in Moon's

book [15].

DEFINITION 1.3.5 : A tournament is transitive 1if, whenever u
dominates v and v dominates w, then u

dominates w. It is denoted by TT, -

THEOREM 1.3.4 : The following statements are equivalent:
i) T, is transitive
ii) Vertices of T, can be labeled {v1,v

o1 e ,vn}

such that vertex vy dominates vertex v. if and
only if 1i<j
iii) T, has score vector (0,1, «ee. ,N-1)

iv) The score vector of T, satisfies the equation

22
Z sy =n-(n-1)-(n-2)/6
v) Tn contains né_;ircuits
vi) T, contains exactly (k21) paths of length k if
1<k<n-1
vii) T, contains exactly ( i ) transitive

subtournaments Tk' if 1<k<n
viii) Each principal submatrix of the dominance matrix
(that is tournament matrix) M contains a row and

column of zeros
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Nevertheless, Theorem 1.3.3 does give us an easy way of
calculating the path number for acircuitous digraphs, and hence
the path number of transitive tournaments TT, which we will
evaluate later in this section.

Next, we will 1look at upper bounds for path numbers of
digraphs. Recall that our digraphs have no multiple arcs nor
self-adjacent vertices, so the maximum number of arcs in any
digraph G is n-«(n-1), assuming that G has order n, and this
gives us an obvious upper bound on path numbers. A better bound
can be obtained by considering a digraph G as the union of two
asymmetric digraphs of the same order since every pair of
vertices has at most two arcs connecting them. This is because
for asymmetric digraphs we have the following theorems, proved

by Alspach and Pullman [2].

THEOREM 1.3.5 : If v is any vertex of an arbitrary digraph G
then pn(G)<pn(G\v)+u(v).
PROOF : Let t be the number of digons (a digon is a pair of
arcs (u,w) and (w,u)) incident with v.
(i) If t=1 and od(v)=id(v)=1, then u(v)=1. Let
(v,w) and (w,v) be the arcs incident with v.
Now suppose P is an minimum path decomposition
of G\v and p 1is a path in P that begins at,
terminates at or passes through w. If p begins
at w, then we can partition the arcs in G into

P\pU{((v,w),p),(w,v)} giving us a path partition

40



of size |[P|+1 or pn(G\v)+u(v). If p terminates
at w, then we can partition the arcs in G into
P\pU{(p,(Q,v)),(v,w)}. This is again of size
pn(G\v)+u(v). Finally, if p wuses w as an
intermediate vertex, then w divides p 1into two
parts Pyr Py where P, is the part from the
beginning of p to w, and P, is the rest of p.
Then P\pU{(p1,(w,v)),((v,w),pz)} forms a path
partition of G with size pn(G\v)+u(v).

(ii) Otherwise, we can partition all the arcs in G\v
(using P)into pn(G\v) paths and partition the
arcs incident with v into min{od(v),id(v)} paths
of length twé and

max{od(v),id(v)} - min{od(v),id(v)}
paths of 1length 1. This gives wus a path
partition of G with
pn(G\v) + min{od(v),id(v)} + max{od(v),id(v)}
- min{od(v),id(v)}
paths. This implies pn(G) 1is again at most
pn(G\v)+u(v),
Therefore, for any digraph G we have

pn(G)<pn(G\v)+u(v).

Using this theorem and Lemma 1.3.1 they calculated the following

41



bound.

THEOREM 1.3.6 : For any asymmetric digraph G, pn(G)SLn2/4J.

PROOF

First notice that
|_n/2J2 if n is odd,
L(n-1)2/4] =-

Ln/2J2—Ln/2J if n is even,
and

Ln/2j2+Ln/2J if n is odd,
Ln2//4J =—

|_n/2J2 if n is even.

Therefore, Ln2/4j = L(n-1)2/4j + |n/2].

Now we shall prove this theorem by induction on
n. It is easy to check that for n<3, pn(G) < Ln2/4j.
Suppose it 1is also true for any asymmetric digraph G
of order up to n-1. Now consider an asymmetric
digraph G of order n. By the induction hypothesis

pn(G\v) < L(n-1)2/4J for any veG, and by Theorem 1.3.5

we have
pn(G) =< pn(G\v) + u(v)
< L(n=1)2/a]+ u(v).
I1f u(v) < [n/2] for some v in G, then we would have

IA

pn(6) < [(n-1)2/4] + [n/2]
In/4]

and we are finished. Assume u(v) > [n/2] for all v
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in G. This implies that |od(v)-id(v)| 2 2 for all
v. In other words, for every v we either have xG(v)>0
or xG,(v)>0 (see page 33 for the definition of G').
Using this fact, we caﬁ assume that there are at least
[n/2] vertices v with x(v)>0. Since otherwise, we can
apply Lemma 1.3.1! and consider G' instead. Let u be
one such vertex. Then wé must have od(u) > |[n/2].
Since there are at least rh/z] vertices v with x(v)>0,
there are at most |n/2]| vertices v with x(v)=0. Thus
if we let W= { w | u dominates w and x(w)>0}, then
|[W|] 2 od(u) - |n/2]. Now let us construct a path
decomposition of G as follows. Let P be a minimum
path partition of G\u. For each weW, we remove a path
p, from P, where p, is a path with w as its initial
vertex, and form the path ((u,w),pw). This path must
exist because x(w)22 and so xG\u(w)Zz (see proof of
Theorem 1.3.2). Let P' be the collection of these |W|
paths and P" be the set of P, that are removed from P.
Now we have at most |n/2] out-going arcs and [n/2]
in-coming arcs incident to u that we have to take care
of. These arcs can be partitioned into
min{od(u)-|wW|,id(u)} paths of length 2 and
max{od(u)-|wW]|,id(u)}-min{od(u)-|W]|,id(u)} paths of
length 1. Let P° be this set of paths, clearly
|P°|< |n/2]. Therefore (P\P")UP'UP° forms a path

partition of G with cardinality
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pn(G\u) - |W| + |W| + max{od(u)-|W|,id(u)}
which is less than or equal to pn(G\u) + [n/2]. Hence

pn(G) < pn(G\u) + |n/2],

< L(n-1)2/4] + |n/2],
= [n%/4].
Therefore, by induction, pn(G) < Ln2/4j for any

asymmetric digraph G.

This together with Theorem 1.3.2 implies that for any asymmetric
digraph G, X(G) < pn(G) < Ln2/4J and consequently for any
digraph G we have X(G) < pn(G) < 2-Ln2/4j. In (2], Alspach and
Pullman conjectured that we «can in fact do better than this,
They conjectured that the same upper bound for asymmetric
digraphs will work for any digraph. This was later verified by
O'Brien [16]. As for tournaments, we can 1improve our lower
bound slightly to max{|[(n+1)/2],X(T )}, as shown by Alspach,

Pullman and Mason [3].

THEOREM 1.3.7 : For any tournament T , pn(T ) 2 [(n+1)/2].

PROOF : The total number of arcs in any T is n-(n-1)/2 and
the maximum number in each path in any path partition
is (n=1). Thus the minimum number of paths needed to
cover every arc in T, is n/2. Since pn(Tn) is an

integer, we must have pn(Tn) 2 [(n+1)/2].
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This combines with Theorem 1.3.2 and Theorem 1.3.6 to give us

the result.

COROLLARY 1.3.8 : For any tournament Tn'

max{[(n+1)/2],%(T )} < pn(T ) < [n?/4].

They also examined which integers are possible path numbers for

tournaments and came up with the following results [3].

THEOREM 1.3.9 : For any positive integer n,
i) if n is even, then there exists a tournament Tn
with pn(Tn)=k for every ke[n/2,n2/4], and
ii) if n is odd, then there exists a tournament T,
with pn(Tn)=k for
a) every ke[(n+1)/2,n-2], and

b) every even ke[n-1,n2/4].

The only case not covered in Theorem 1.3.9 is when both n and k

are odd with ke[n-1,n2/4] and they conjectured the following.

CONJECTURE 2 :

There 1is no odd order tournament Tn with

pn(Tn) € [n-1,n2/4] and pn(Tn) odd.
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Their results show that |(n+1)/2] is the best possible lower
bound and an/éj is the best possible upper bound for path
numbers of tournaments. At the end of this section we shall
look at some of the tournamentsvthat give us these bounds. Now
we turn our attention to the <construction of some consistent
tournaments. Since we can get one tournament from any other
tournament of the same order by reversing the orientation of
some arcs, all we need to know is what happens to the path
number of a digraph when an arc is reversed. From this we can
determine the path number of an arbitrary tournament by
successively reversing the arcs of some consistent tournament.
This sounds 1like a good 1idea but it is not always easy to
implement. The following result is due to Alspach, Pullman and

Mason [3].

THEOREM 1.3.10 Suppose G is a consistent digraph and (v,w)
is an arc of G with od(v)-id(v)<0 and
od(w)-id(w)20. If H is the digraph obtained
from G by reversing (v,w), then H is
consistent and pn(H)=pn(G)+2.

PROOF : First notice that odG(v)—idG(v)SO implies xG(v)=0 and
odG(w)-idG(w)ZO implies xG(w)=odG(w)-idG(w). Since H
is obtained from G by reversing (v,w), the degrees of
any vertices other than v and w remain unchanged.
Therefore, we have

X(H) = I x4(u)

ueH
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(w) + z x.,(u)

= x.,(v) + x
H ueH\{v,w} H

H

(w) + z x.(u)

= x,.(v) + x
H : ueG\{v,w} G

H
Furthermore, by reversing (v,w), the out-degree of v
and in-degree of w decreased by 1! and the in-degree of

v and out-degree of w increased by 1, that is

xy(v) = max{0,0d, (v)-id, (v)}
= max{0, (od,(v)-1)-(id (v)+1)}
= max{0,0d,(v)-id,(v)-2}
=0
xy(w) = max{0,0d,(w)-id, (w)}
= max{0, (od,(w)+1)-(id,(w)-1)}

= max{O,odG(w)—idG(w)+2}

= xG(W)+2.
Hence,
X(H) = x.(v) + x.(w) + 2 + z x.(u)
G G ueG\{v,w} G
= X(G)+2.

To construct a path partition of H, take any minimum
path partition P of G. Let peP be the path that
covers the arc (v,w), then the removal of (v,w) splits
p into two parts Pir Py where P, is the path from the
start of p to v and P, is the path from w to the end
of p. Then P'= (P\p)U{p1,(w,v),p2} forms a path
partition of H with |P|+2 paths. Thus

pn(H) £ pn(G)+2 because P is minimum
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but pn(G)+2 X(G)+2 because G is consistent

X(H)=-2+2

X(H).
This implies H is consistent; that is, pn(H) = X(H) =

X(G)+2 = pn(G)+2.

What still remains to be wunderstood 1is the case where
od(v)-id(v)>0 or od(w)-id(w)<0, which I believe would be a
-relatively harder problem, since the solution to this problem
gives us an indication of what would happen to path numbers when
excess decreases. As we all know, regular and near-regular
tournaments have the smallest excess among all tournaments.
Therefore any knowledge about how decreases in excess affect
path numbers would be a big step towards solving the path number
problem for regular tournaments and hence Kelly's Conjecture.
This concludes our discussion of arc-reversal.

Another possible direction to proceed is circuit-reversal,
in particular, 3-circuits. This is because of a consequence of
Ryser's result on 0-1 matrices (see Reid and Beineke [18,p.197])
implies that any tournament can be transformed into any other
tournament with the same score vector by successively reversing
3-circuits. But so far, little progress has been made in this
direction.

Next, we will look at yet another way of approaching the

path number problem, namely, to build up consistent tournaments
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recursively. The following theorem suggests a way to construct
consistent tournaments from smaller consistent tournaments.
This theorem 1is derived from Theorem 1.3.5 which stated that
pn(G)<pn(G\v)+u(v), and so if there exists a veG such that

X(G)=pn(G\v)+u(v), then we must have pn(G)=X(G).

NOTATION 1.3.1 : For any tournament T , denote by {V‘(Tn),
V'(Tn)} a bipartition of the vertex set
V(Tn) of T, » such that every veV*(Tn) has

x{(v)20 and every VeV'(Tn) has x(v)=0,.

THEQREM 1.3.11 Let Tn be a ‘tournament of order n. If there
exists a vertex VeV(Tn) such that
i) Tn\v is consistent and
ii) for some bipartition {V‘(Tn\v),V'(Tn\v)} of Tn\v
we have v dominates every UeV'(Tn\v) and either
S=¢ or [V (T _\v)[2|R],
where R={u]ueV‘(Tn\v), u dominates v}
and S={u|ueV‘(Tn\v), v dominates u},
then T, is consistent.
PROOF : Let us write V* and V- instead of V‘(Tn\v) and
V'(Tn\v). We have two cases to consider.
(a) If S=¢, then we have the situation shown in
Figure 1.28. The excess of T, is

(T ) = X(Tn\v) + |v*| + max{0,|V-|-|V*|}
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(b)

FIGURE 1.28

= X(T \v) + max{|V*|,|V-]|}.
But since
u(v) = max {od(v),id(v)} = max {|V*],|V-]|},
by Theorem 1.3.5,

pn(T ) < pn(T \v) + u(v)

X(T \v) + max{|V*],|V-|]}

X(Tn).

Thus Tn is consistent,

If S#¢, then we must have |V-|2|R| by assumption
and we have the situation shown in Figure 1.29.
We can assume that all ueS have x(u)>0, since
otherwise we could consider the partition
{v+*\u,V-Uul. Now since Tn\v is consistent,
every ueS must be the initial vertex of some
paths in the minimum path partition of Tn\v. We

can then concatenate every arc (v,u), where ueS,
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sl /r:5) o

V+

By Lemma 1.3.1,

FIGURE 1.29

to Qne of these paths originating from u. The
rest of Ehe arcs incident with v can then be
partitioned into max{|R|,|V-|}=|V-| paths of
length at most two. This forms a path partition

of Tn and we have

IA

pn(T_) pn(T \v) + |V-|

R(T \v) + |V-]

X(T \V)+|R[-[S[+(|V-[+]|S|-|R])

(T ).

Hence Tn is consistent.

we obtain the dual to this theorem.
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THEOREM 1.3.11": Let T, be a tournament of order n. 1If there
exists a vertex veV(Tn) such that

i) Tn\v is consistent and

ii) for some bipartition {V*(Tn\v),V'(Tn\v)} of Tn\v
we have v dominated by every ueV*(Tn\v) and
either S=¢ or [V'(T \v)|2|R],
where R={UIUeV‘(Tn\v), u dominated by v}
and S={u|ueV‘(Tn\v), v dominated by u},

then Tn is consistent.

Using these two theorems, we can construct consistent
tournaments by adding a receiver (a vertex with out-degree
zero), a transmitter (a vertex with in-degree zero) or a vertex
as described in (ii) of Theorems 1.3.11 and 1.3.11', For

example, given the tournament T, in Figure 1.30(a) (which 'is

4
consistent), we can construct two non-isomorphic consistent
tournaments Tg; and Tg' of order 5 as shown in Figures 1.30(b)
and (c).

Finally, we will look at the path numbers for some special
tournaments —— transitive tournaments, Walecki tournaments and
circulant tournaments., We start with the transitive tournament
since it is the easiest one to determine. We need only Theorems

1.3.3 and 1.3.4. We have the following result due to Alspach

and Pullman [2].
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(a) T, (b) Tg (c) 'r5'

FIGURE 1. 30

THEOREM 1.3.12 : The path number of a transitive tournament

PROOF

TT, of order n is Ln2/4j.
From Theorem 1.3.4, we know that TTn is acircuitous
and by Theorem 1.3.3, any acircuitous digraph G has
pn(G)=X(G) and thus pa(TT )=X(TT ). To find the
excess of TT,, we look at Theorem 1.3.4 again. It
tells us that the score vector of TT is (0,1,2, ...

,n=1). Therefore, for i=0,1, ... ,[n/2]-1, we have

od(i) = s; < [n/2]-1
and so id(i) = n-1-o0d(i)
2 n - |[n/2]
= [n/2].
Hence od(i)-id(i) < O
and x(i) = 0.

on the other hand, for i=|n/2}, ... ,n-1

od(i) = s; 2 |n/2]
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and id(i) = n-1-0d(1)
<n - |n/2] -1
= [n/2] - 1
so od(i)-id(i) 2 0.
Hence x(i) = od(i)-id(1)
= i-(n-1-1)
= 2i-n+1,

Now we can compute X(TT_ ) obtaining

n-1

X(TTn)= Z x(i)
i=0
n/2|-1 n-1
= L ZJ x(i) + z x(1i)
i=0 i=|n/2]
n-1
=0 + z (2i-n+1)
i=|n/2]
n-1 n-1
= 2 i - z (n-1)

. z 1
i=|[n/2] i=|n/2]

2:{n-(n-1)/2-|n/2]-(|n/2]=1)/2} - [n/2]-(n-1)
n-(n-1) - |n/2]% + [n/2] - [n/2]-(n-1)
(n-1)-(n-[n/2]) - [n/2]2% + |n/2]

(n-1)+|n/2] - |n/2J% + [n/2]

n-|n/2] - [n/2]2

In/2]+(n-|n/2])

[n/2] - [n/2]

In2/4].
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Therefore,

pn(TT, ) = X(TT ) = Ln2/4J.

Iﬁ fact, it is not hard to construct a path decomposition of the
arc-set of TT_ of size Ln2/4J. First we label the vertices
{0,1,2, ... ,n-1} as in Theorem 1.3.4(ii). Let P, be the set of
all arcs in TT, with length i. Clearly, the P.'s partition the
arc-set of TT, into n-1 disjoint sets. Now let pij be the
subset of P, such that (u,v)epij if u=j (mod i), where i=t1, ...

,n=1 and j=0, ... ,i-1., Then the set of all P 's partition the

J
arc-set of TT,. Our claim is that each non-empty pij is a path

in TT, and there are altogether Ln2/4J of them, thus giving a
path decomposition of TT, with Ln2/4J paths.

To see that each non-empty pij

that pij is empty if and only if j+i>n-1. Now for each

non-empty p;

forms a path, first notice

5 suppose j<j+i< ... <j+kis<n-1 are all the numbers

in {0,1, ... ,n-1} congruent to j modulo i. Then Pij =
{(3,3+1),(3+1,(3+1)+1), ...  ,(3+(k-1)i,j+ki)}. Note that
although j+ki is congruent to j modulo i, (j+ki,(j+ki)+i) is not

in pij' Therefore, pij is the path (j,j+i, ... ,j+ki). Next, we

will count the number of non-empty p . Let n, denote the

]
ij S i
number of non-empty pij's in P., where j=0, ... ,i-1 and recall
that pij is empty if and only if i+j>n-1 or j>n-1-i, so we must

have
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o
]

min{i,n-1-1i+1}

min{i,n-1}.

In other words,
[ i when 1 < i < |n/2]

n-i when |n/2}+1 < 1 < n-1,

Thus the total number of non-empty pij's

n-1
= I n,
i=1 ?
n/2 n-1
= . ZJ i+ z (n-1)
i=1 i=|n/2]+1
[n/2] [n/2]-1
= z i+ z i
i=1 i=1

= |n/2]-([n/2]+1)/2 + [n/2]-([n/2]-1)/2
= {|[n/2]:(|n/2]+1) + [n/2]-([n/2]-1)}/2
= {{n/2]+[n/2] + [n/2]-|n/2]}/2

= [n/2]-[n/2]

= [n%/4).

This shows wus that TT  can be decomposed into Ln2/4J
arc-disjoint paths.

Notice that pn(TTn) coincides with the upper bound of path
numbers of tournaments. We will now look at tournaments that

give us the lower bound. Walecki tournaments are examples.
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LEMMA 1,3.13 : Every Walecki tournament of even order n has

path number n/2.

Lemma 1.3.13 follows by construction whereas for odd order
Walecki tournaments it is considerably more complicated. Recall

that every Walecki tournament LTn(SO’s1’ e« +Sp_,) of order

m

1, LI Y

n=2m+1 is an arc-disjoint union of Hamilton circuits {CO,C

,C }. Now let P=(x0,x1, .o ,xm) be the directed walk

m-1

constructed by taking an arc (x.,

: xi+1)eci’ So if X, is chosen,

then the rest of the xi's are uniqguely determined. Our goal is

to select X in such a way that all xi's in P .are distinct

hence giving us a path which, together with the m Hamilton

paths, Ci\(xi,x ), form a path decomposition of LTn(so,s1, .o

i+1

, S ). This decomposition has size m+1 or (n+1)/2 and by

m=1
Theorem 1.3.7 it is minimum. To achieve this we need a few

lemmas. The first lemma is the result of rotating LTn(so,s1,

groees ,sm_1) counter-

clockwise, we will get LTn(s1, Sor e 1 Sp_qy -so) and if we

ees ,S ). If we rotate LTn(so, s

m-1
rotate it clockwise we will get LTn(-sm_1, Sgr Sqr eee s sm-2)'
The second 1lemma 1is a special property relating arcs from
consecutive Walecki <c¢ircuits. For the next two lemmas and the
following theorem, let us denote the number of negative sj's in
the set {so, Sy oo ,si_1}, i=1, ..; M, by k. and the total

number of negative sj s in {so, cee ,sm_1} by k, clearly k=km.
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1.3.14 : For every Walecki tournament,

LTn(so,s1, ees ,S ).

m=1

where n=2m+1, we have

LTn(so,s1, eee 48 4 )=LT (s,,s

2’ oo . ,sm_1,_so)

=LTn(-sm_1,so, ces ,sm_z).

m

Define two permutations on the set of vertices {0,1,

«.. ,n-1} of LTn(so,s1, -+« Sy _,) as follows,

m
o*=(0)(1 2 3 ... n-1)

and 0 =(0)(n=1 n-2 ... 1).
We shall show that o¢* is a domination preserving map

mapping LTn(SO's1' «es ,S ) to LTn(-s

m-175S07 -

,sm_z), and o- is a domination preserving map mapping

m-1

LTn(so,s1, .o ,sm_1) to LTn(s1,sz, .o ,sm_1,-so).

For each Walecki tournament LTn(to,t

1, L) ’

t -1), we denote the jth Walecki cycle (undirected) by
h

.t
Cj—1 and the j

to tj-1) by tj-1cj—1' Then for i=0, ... ,m-2,

o’(siCi)=sio’(Ci)

Walecki circuit (oriented according

=sio*(<0,1+i,2+i,n-1+i, eee ,M+2+1i,m+1+1i,0>)
=si<0,2+i,3+i,1+i, vee ,M*+3+1,m+2+i,0>

=5;Ci 41

which is exactly the (i+2)nd Walecki circuit of
LTn(—sm_1,so, cee ,sm_z), that is, o¢* preserves the
orientation of each arc 1in siCi. As for i=m-1, we have

o* (s _,Co_)=s__ 0" (C__.)

m-=1"m=1 m m-1

=s__,0°(<0,m,m*1,m~1, ... ,n-2,1,n=1,0>)
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=sm_]§0,m+1,m+2,m, ee. ,N=-1,2,1,0>

=-sm_1<0,1,2,n-1, eve ,m,m+2,m+1,0>

which is exactly the first Walecki «circuit of
LTn(_sm-1’SO’ .o ,sm_z). Again, o* preserves the

orientation of each arc in Sp-1C

1Cp-1+ Thus LTn(s

0’51’

eee ,58 s

m=17507 *** m_2).

Similarly, we can use o~ to show that LTn(so,s1,

n-1) is isomorphic to LT (-s

+++ +Sp_,) is isomorphic to LT (s,,S5, ... ’sm—1’_50)

by showing

o'(siCi)=siCi_1 for i=1, ... ,m-1,

and o'(sOC0)=—50Cm_1. Thus ¢~ is also a domlpatlon

preserving map of the vertices. Hence LTn(so;s1, .o

,sm_1) is isomorphic to LTn(s1,sz, .o ,sm_1,-so).

With this lemma, we can now assume that Sg=Sp-1="1 since

1 ’

otherwise we can just rotate the sequence (50,51, ee. ,S ) as

m-1i

in Lemma 1.3.14 until we get "+1" for So and S - Thus k1=0 and

1 .

k_=k k. Recall that /(x,y), the length of the arc (x,y), is

m m-1"

defined as y-x modulo n, but for Walecki tournaments we will use

modulo n-1 instead.

LEMMA 1.3.15 : For n=2m+1, if (x,y)ec.1 c LTn(so,s1, cee 48

and 3</(x,y)<2m-1, then (y,z)eCi+1,

z=x+2+ 0V o e

where
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i+1 1+2 i+1 i+2

(1) S;=+1, S;,,=*1 (ii) S;=*+1, 8, ,,="1

1+1 i+2 i+1 i+2

FIGURE 1.31

PROOF : Let us look at two consecutive Walecki circuits in an
LTn(so,s1, cee ,sm_1). We have the four cases as
shown in Figure 1,31, From these four cases, we
derived the following table which gives us the desired

results:
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s; | Si+ [(x,y) even | I/ (x,y) odd F1=(k; 5=k |

(i) +1 +1 z=x+3 Z=x+1 1
(1i) +1 -1 Z=x+2 Z=x+2 0
(iii) -1 +1 Z=x+2 Z=x+2 0
(iv) -1 -1 Z=X+3 Z=x+1 1
Since these are all the cases, we have the desired
result that
[ (x,y)
z=x+2+(=1)" " Fr ¥ ok, vk ]
| ]
Using these lemmas, we can now show that odd order Walecki

tournaments, LTn(so,s1, ees ,S

m-1)’ where n=2m+1 have path

number (n+1)/2 or m+1 as mentioned earlier.

THEOREM 1.3.16 : For any Walecki tournament of order n=2m+1,

PROOF :

LTn(so,s1, .o ,sm_1), Wwe can remove an arc

(x.,x

{ ) from each Walecki circuit Ci such

i+1
that P=(x0,x1, . ,xm) forms a path.

Let a = [(m-1)/2] ~ k where k and k;'s are defined in

the discussion immediately preceding Lemma 1.3.14.

Let

Xo: = Xg * 23 (-1)ma*t ¢

23 Ik

25
for j=0, ... ,[(m=-1)/27,
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and
x2j+1 = X5 * (23+1) + 2-[(m-1) /2]

+ (=)™ ([(m-1)/2]-3-k+kys, ) + p(m,a),

23+
for j=0, ... ,[(m-1)/2],

: 1 if m is even and a is odd,
where p(m,a) = -[

0 otherwise.
The claim 1is that with an appropriate choice of X
such that (xo,x1)eC0, then (xi,xi+1)eCi for i=1, ...
,m-1 and P=(x0,x1, . ,xm) forms a path. To prove

this claim, we need to prove the following:

i) There exists an Xq such that (xo,x1)eC0
. _ _ A1) _
i1) x5, = x; + 2+ (-1) <[ 1=k ¥k |
where 1(1)=l(xi,xi+1),
iii) 3Sl(xi,xi+1)52m—1, i=0, ... ,m-1, and m25

iv) All x.'s are distinct
By lemma 1.3.15, (i), (ii) and (iii) imply that
(xi,xi+1)eCi for i=0, ... ,m-1 and (iv) implies P is

indeed a path.

Proof of (i) : Finding X, amounts to finding an arc in

C0 with length l(xo,x1). Since C0 contains exactly
one arc of each length from 1 to n-2, and (iii) 3 <
l(xo,x]) £ 2m-1, then there must exist an arc (u,v)eC0

such that l(u,v)=l(x0,x]). Thus we can set xg=u.
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Proof of (ii) : We know that

Xoo = 2 + (-1)ma*1 (g k. .)

X29+27%25 25+2% %25

for j=0, ... ,[(m-1)/2]-1,

and
_ _ _qyma+1 . _ _
X24+437%2941 = 2 7 (71 (1+k25437R2540)

for j=0, ... ,[(m-1)/2]-1.

This implies
_ —pyma+ti+i

- for i=0, ... ,m-2.

To prove (ii) now, it suffices to show that

i) =_[ ma+1+i (mod 2) if 1-ki+2+ki>0

ma+i (mod 2) if 1-ki+2+ki<0.
We do not need to check the case where 1-ki+2+ki=0,
since xi+2=xi+2 when 1—ki+2+ki=0 regardless of the

values of m, a and 1i.
Now,
A23) = 2.[(m-1)/2] + 1
+ (-1)ma”-(I'(m-1)/2'|-2j-k+k2j+1+k2j) + p(m,a)
= 2.[(m=1)/2] + 1

+
p)ma

+ (- ' (a-29+k. . +k

23 ) + p(m,a)

23j+1
whereas
A23+1) = 1 - 2[(m=-1)/2]
. (_1)ma+1.(2j+1+k-k2j+1—k2j+2—r(m-1)/2]) - p(m,a)
=1 - 2:.[(m=1)/2]
)ma+

1 .
+ (-1 «(25+1 k2j+1 k2j+2 a) - p(m,a).

Recall that ki denotes the number of negative 1's in
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the sequence {sy,s,, ... ,s;_;} so that 0<(k, ,-k.)<2.

2

Also A(i) denotes l(xi,x ). Consider the following

i1+1
two cases:

(a) If 1-k +ki>0’ then ki+2-ki=0 so we must have

i+2
ki=ki+1=ki+2' Hence,
A (23) = 1+a+p(m,a) (mod 2)
= 1+ma (mod 2)
= ma+1+2j (mod 2), and
A(2j+1) = 1+(1-a)+p(m,a) (mod 2)

= a+p(m,a) (mod 2)

= ma (mod 2)

= ma+1+(2j+1) (mod 2).
Therefore, A(i) = ma+1+i (mod 2).

(b) If +ki<0' then ki+2-ki=2 and we must have

1=ki42

ki+2=ki+1+1=ki+2. Hence,

A(273) = 1+(1+a)+p(m,a) (mod 2)
= a+p(m,a) (mod 2)
= ma (mod 2)
= ma+2j (mod 2), and
A(2j+1) = 1+a+p(m,a) (mod 2)

ma+(2j+1) (mod 2).
Therefore, A(i) = ma+i (mod 2).

Now (a) and (b) imply that
_yma+1+i _ (M),

_ _ayA(d) Ly
and thus x;,, = x; + 2+ (-1) BRI TP I §

+ki|
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Proof of (

iii) : Let k0=0 and

Since f,k

8f=f+k—kf-kf+1,

2 ke, .k

f=0, ... ,m-1,.

, we have SfZO. To show that Sf is

£

bounded above by m—1,sﬁppose k<m-f-1. Then

8¢

Otherwise,

S¢

because ¢

= f+k-k_-k < f+m-f-1—kf-k < m-1.

f TE+1 f+1
if k=m-f-1+c where c>0, then
= f+k-ke-kg,
< f+(m-f-1+c)~c=(c+1)

is the least number of negative one's that

must appear in the first f s;'s and thus k 2 c and

£2

kf+12c+1, so that 5f < m-c-2 £ m-1,
Therefore,
[(m=1)/2]-m+1 < [(m=1)/2]-8; < [(m-1)/2]
-L(m=1)/2] < [(m=1)/2]-8; < [(m-1)/2].
Now,
l(xzj,x2j+1) = 2.[(m=1)/2] + 1
+ (-1)ma+1-(r(m—1)/2'|-2j-k+k2j+1+k2j)+p(m,a)
= 2.[(m=-1)/2] + 1
# O™ ([(n=1)/2]-8,5) + o(m,a)
and
l(x2j+1,x2j+2) =1 - 2.[(m-1)/2] - p(m,a)
£ (=TT (251 0kk 0 k5~ [(0m1)/2])
=1 - 2-[(m=1)/2]
+ (_1)ma+1,(82j+1-r(m-1)/2]) - p(m,a).
We have

2:[(m=1)/2] + 1 - [(m=-1)/2] + p(m,a)
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< 2.[(m=-1)/2] + 1 + [(m=1)/2] + p(m,a)
or
r(m-1)/2] + 1 + p(m,a)
< Ifxzj,x
< 3:-[(m=-1)/2] + 1 + p(m,a)

which implies 3 < l(xzj,x2j+]) < 2m-1 when m25,
As for 1(x2j+1,x2j+2), we have
1 = 2-[(m-1)/2] - p(m,a) - [(m-1)/2]
< 1(x2j+1,x2j+2)
<1 - 2.[(m=-1)/2] - p(m,a) + [(m=-1)/2]

or

1 = 3.[(m=-1)/2] - p(m,a)

< l(x2j+1,x2j+2)
<1 - [(m-1)/2] - p(m,a).
In other words,
2m + 1 = 3+[(m=1)/2] - p(m,a)
< 1(x2j+1,x2j+2)

<2m+ 1 - [(m-1)/2] - p(m,a)

which in turn implies 3 < /(x ) £ 2m-1 when

25+17%25+2

) £ 2m-1 for m25.

m25. Thus we have 3 < 1(xi,xi+1 _

Proof of (iv) : To show that all xi's are distinct, it
suffices to show that xo,xz, oo ’xzfm—1/2]' X, Xq,
‘e ’XZLm-1/2j+1 forms an increasing sequence and the
difference between x

2|m-1/2]+1 and x, is less than or
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equal to 2m-1. From the proof of (ii), we have

X X. = 2 + (-1)ma+1+1-(1-k

i+2 %4 i+2
+Kk, |
1

+ki).

Since 0 < kisp~k; = 2, we have [1-k,

IA

+2 and

1 < X4 % < 3. Furthermore,
X, = x5+ 2-[(m-1)/2] + 1
+ -0 (T(m=1)/2]-k) + p(m,a),
and

x2[m—1/2] = x5 * 2-[(m-1)/2]
+ (-0 (T(m=1)/2] -k

xg + 2+ [(m=1)/2]
+ (-0™([(m-1)/2]-k).

2rm—1/27)

Therefore, x1-x2rm_1/21 =1+ p(m,a),
that 1is, 1 < x1—x2rm_1/21 £ 2. So we have

Xor X2 e rXaIm-1/2] ¥rr X3r e ¥ me1/2] 41
an increasing sequence. Finally, we will 1look at

x2Lm-1/2J+1 which satisfies

x2Lm—1/2J+1= Xg * 2.-[(m=1)/2] + 2- | (m-1)/2] +1
_1)ma+1.([(m—1)/2]-L(m—1)/2J-k+k) + p(m,a)

-+

—

Xg * 2:(m=-1) + 1
+ (-0)™ " u(T(m-1) /2] [(m=1)/2]) + p(m,a)

x0+2-(m—1)+1 if m is odd
{x0+2-(m-1)+1-1+p(m,a) if m is even

< x0+2m—1,

that is , x - %, < 2m-1,

2|m-1/2]+1

ThUS XgiXar eov vXpfmeq/2] 7% 10X30 +ov X po1 2]+ 2TC
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all distinct. This finishes the proof of (iv).

As mentioned before, (i), (ii) and (iii) imply that

(xi,x )eCi for i=0, ... ,m-1 and (iv) implies that

i+1
P=(x0,x1, cen ,xm) is a path, for any m25. For m<5,
we have n=3, 5, 7 and 9 for which we have already seen
in Section II that we can in fact remove a single arc
from each Hamilton circuit to form a path. This

completes our proof of Theorem 1.3.16.

For example, consider LT21(+1,+1,—1,-1,—1,-1,+1,—1,—1,+1). We
have n=21, m=10, |(m-1)/2] = 4, [(m-1)/2] = 5 and k=6. To find
P, we have to determine the value of Xg-. As described 1in the
proof of (i), finding X4 is equivalent to finding an arc
(u,v)eC0 which has length l(xo,x1). From the proof of (ii) we
get ;
Hxg,x,) = 2:T(m=1)/2] + 1 + (-0)™" " ([(m-1)/2]-k) + p(m,a)

so for LT21(+1,+1,-1,-1,—1,-1;+1,—1,-1,+1) we must have

10 + 1 - (5 -6) + 1

l(xo,x1)
= 13.
The only arc in Cp with length 13 is (15,8), so Xp=15, x,=8.
Hence we get x2=16, x4=19, x6=2, x8=4, x10=6, x3=10, x5=11,
x,=13 and Xg=14. This path is illustrated in Figure 1.3.2.

Now we have shown that we can remove an arc from every

Walecki circuit to form a path and obtain a path decomposition
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of size (n+1)/2 for LTn(s “ee ,sm_1) where n=2m+1. Since

OIS1I
Theorem 1.3.7 shows that this is indeed the lower bound for the
path number of any tournament, we must have

0rSqs +e+ #Sgp_y)) = (n+1)/2,

We shall state this as a corollary.

pn(LTn(s

COROLLARY 1.3.17 : For every Walecki tournament LTn(so,s1, ces

+Sp-1) With n=2m+1,

pn(LTn(so,s1, oo ,sm_1)) = (n+1)/2.
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Having seen the above result, a natural guestion to ask 1is the
following: 1Is it true that if Kelly's Conjecture holds, then we
can just remove one arc from each Hamilton circuit 1in an
HC-decomposition and form a path? (This qQuestion was raised by
B. Alspach.) 1If this is true, then we would have Kelly's
Conjecture 1implying that every regqular tournament of odd order
has path number (n+1)/2. The answer to this guestion 1is no,
because of the following example. Consider CT11(1,3,4,5,9). It

"has an HC-decomposition:

as described in Theorem 1.1.2., Each circuit is composed of arcs
of a fixed 1length, so no matter which arc we choose from a
circuit, we must have the total length of the path equal to the
sum of the elements 1in the symbol set. The tournament
CT11(1,3,4,5,9) has symbol set {1,3,4,5,9} and its sum is 22
which is divisible by 11. Thus the arcs removed from the
circuits cannot possibly form a path. However, there does exist
another HC-decomposition of CT11(1,3,4,5,9) such that we can

remove one arc from each circuit to get a singie path. The

following is one such decomposition:

(0,1,2,3,4,5,6,7,8,9,10,0)
(0,3,1,4,2,5,9,7,10,8,6,0)
(0,4,9,1,5,8,2,6,10,3,7,0)
(0,5,3,6,9,2,7,1,10,4,8,0)
(0,9,3,8,1,6,4,7,5,10,2,0)

with (1,2,5,8,0,9) being the path formed.
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The last type of tournament that we are going to discuss
here is circulant tournaments of prime order p23 with symbol set
{1,2, ... ,p-1/2}. We have already seen in Theorem 1.1.2 that
such tournaments are HC—decomposéble. Here we will show that
the above procedure of removing one arc from each circuit to
form a path also applies to some HC-decomposition of c¢irculant

tournaments of prime order.

THEOREM 1.3.18 : Every circulant tournament of prime order
p23 with symbol set {1,2, ... ,(p-1)/2} has
path number (p+1)/2.

PROOF : From Theorem 1.1.2 we know that CTp can be partitioned

into arc-disjoint circuits CO,C1, e ,C(p__3)/2 where
C, contains all arcs with length i+1,

Let (vi,v )eCi. Then the claim is that (vo,v1,

i+
cee GV ) forms a directed path. To show this,
(p-1)/2 i+3
it is sufficient to show that I k is not congruent to
k=1
0 modulo p. First, let us look at this sum:

+ J
Tk = Lk + (§+1)-i
=i k=0

i (

j+1)/2 + (g+1) -1

(§+1)-(j/2 +i).

We know that 1i,j<(p-1)/2, so that 1s(j+1),(j/2+i)<p
which implies (j+1) and (j/2+i) are both relatively
prime to p. Thus p does not divide

lzjk = (j+i)-(j3/2+1)

k=i
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and so all vi‘s must be distinct and (vO, Vir o ees
'V(p-1)/2) is a path. Together with CO\(VO'V1)' oo
'C(p—3)/2\(v(p-3)/2'V(p—1)/2) we have a path partition
of CTp(1,2, vee 4(p-1)/2) of size (p+1)/2 and by

Theorem 1.3.7, pn(CTp) = (p+1)/2.

Having seen Theorems 1.3.16 and 1.3.17, one would start to
wonder if all regular tournaments of odd order n have path
number (n+1)/2. This was conjectured by Alspach, Pullman and

Mason [3].

CONJECTURE 3 :

Every regular tournament RTn of odd order n

has pn(RTn) = (n+1)/2.

On the other hand, for even order near-regular tournaments wve
have already seen that every Walecki tournament of even order
has path number n/2 and from Theorem 1.1.2 that every circulant
tournament of prime order satisfies Kelly's Conjecture. Thus,
by removing one vertex and all its incident arcs, as described
in Lemma 1.1.5, we obtain an even order near-regular tournament
NT__, which 1s an arc-disjoint union of (n-1)/2 Hamilton paths
and therefore has path number (n-1)/2 (again by Theorem 1.3.7).

This leads us to believe that every even order near-regular
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tournament NTn has path number n/2. By combining the odd and

even cases, we get the following conjecture.

CONJECTURE 4 :

Every regular or near-regular tournament of

order n has path number [(n+1)/2].

Another 1interesting question concerning all even order

tournaments was raised by O'Brien [17].

CONJECTURE 5 :

~

Every even order tournament is consistent.

The last two conjectures actually imply Kelly's Conjecture, so
they are believed to be very hard problems, whereas Conjecture 3
should be slightly easier (relatively speaking), but apart from

the results discussed here little is known,

73



CHAPTER 2 : PATH DECOMPOSITIONS OF COMPLETE UNDIRECTED

GRAPHS

As mentioned in the introduction, the solution to the path
number problem for complete graphs is a well known result (see
Stanton, Cowan and James [20]). 1In this chapter, we will simply
state this result and move on to a slightly different
decomposition problem. First, let us look at the undirected

analogue of Theorem 1.3.7.

LEMMA 2.1.1 : For any complete graph K. of order n,

pn(Kn) 2 | (n+1)/2].

PROOF : There are n-(n-1)/2 edges in K., and the longest path
in any path decomposition is of length less than or
equal to n-1. Thus the least number of paths needed
to cover all edges of kn is n/2. But pn(Kn) must be
an integer. Therefore, we must have pn(K ) 2 [n/2] or

pn(K ) 2 [(n+1)/2].

From Lemma 1.3.13 and Corollary 1.3.17, we know that every
Walecki tournament of order n has path number |[(n+1)/2]. So, by
removing the orientation on every arc in any minimum path
decomposition of LT, , we get a path decomposition for K-
This implies that there exists a path decomposition of size
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[(n+1)/2] of K for all n. Hence by Lemma 2.1.1, for any
complete graph K  of order n we have pn(K ) = [(n+1)/2] for all

n. We shall state this result as a theorem.

THEOREM 2.1.2 : For every complete graph K, pn(Kn)=L(n+1)/2J.

Since the path number problem is completely solved, we turn our
attention to a slightly different version of a path
decomposition problem. In this new problem, we are more
concerned with the existence of a certain path partition than

the size of the partition.

CONJECTURE 6 :

The complete graph Ko can be decomposed

into paths of lengths m, My, «.. ,M if and

only if 1 £ m, < n-1 for i=1, ... ,r
r
_ n
and 'z mi - ( 2 )o

1=1

This is what we referred to as "the path arboreal problem" in
the introduction. The term "path arboreal" 1is due to Slater
[19]. It is not hard to see that 1 < m, < n-1 for i=1, ... ,r

r

and z m, = ( 2 ) are necessary conditions, however the
i=1

sufficiency part is not as obvious. This problem is also stated

by Tarsi in [21]. He formulated the general problem as follows.
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CONJECTURE 7

Let M={m1,m2, cen ,mr} be a sequence of

natural numbers which satisfies miSn—1 for

r

1€i<r and I m, = A ; ). Then there
i=1

exists a sequence of paths Py /Py, .. ,P. of

lengths M, Moy oeo M. such that every edge
of Kn belongs to exactly A of them. Such a

sequence of paths is called a PM[x,n].

He also proved the following results based on techniques using

Walecki's construction (see Lemma 1.1.1).

THEOREM 2.1.3 : Let n be odd or A even, and M={m1,m2, .o ,mr} a

sequence of natural numbers with
r

1<m.<n-3 and Z = Ao (
,n

n
i : my 2 X
1.

Then there exists a PM[

Now we return to the path arboreal problem. As we can see, it
is just a special case of Conjecture 7 with A=1 and as Theorem
2.1.3 suggests, if n is odd and all the mi's are less than or
equal to n-3, then we are done. What remains to be shown are
the cases when (i) some m,2n-2 for odd n, and (ii) n 1is even.
For case (i), we can improve Theorem 2.1.3 to m,<n-2 as shown in

Lemma 2.1.4, while Lemmas 2.1.5, 2.1.6 and 2.1.7 show wus some
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partial results when we actually have some m, > n-2, that 1is,

m;=n-1. As for case (ii), 1little 1is . known. We begin by

improving the result stated in Theorem 2.1.3.

LEMMA 2.1.4 : Given n=2m+1, and natural numbers m,,Mmy, ...

m. such that miSn-z for i=1, ... ,r and
r
Zm = ( 2 ), then K, can be decomposed into
i=1

paths P1, Pz, «+. ,P_ of lengths m,,My, «.. ,M

r r’
respectively.

PROOF : Recall from Lemma 1.1.1 that for n=2m+1, Kn can be
partitioned into m Hamilton cycles {CO,C1, .. ,Cm_1}
such that

Ci = <0,i+1,i+2,i+n-1,1i+3, ... ,i+m,i+m+2,i+m+1,0>
Then E=<C0,C1, ees ,C > forms an eulerian tour of

"“m-1

Kn' Now suppose d is the length of the shortest cycle

on this tour. If the given mi's are all less than 4,

then we can just remove the first m, edges in E to

form P, and the next m, edges in E\P1 to form P, and

so on, Since d>mi, for i=1, ... ,r, P,,P , P

2, o o o

_ n . .
m, = ( 5 ) which 1is

r
are all paths. Furthermore,

nmMn -~

the total number of edges1 in E, therefore we have
decomposed the edge-set of K, into P1,P2, eee 4P such
that each P, is a path. To find the value of 4,
consider two consecutive Ci's (as depicted in Figure

2.1). We can see that every walk that starts at

vertex i+m+2, i+m+3, ... ,i+n-1,i+1 (the top row in
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i+1  i+n-1 i+n- i+n- i+n-x i+n- i+m+3 i+m+2

(x-2) (x-1) (x+1)
. /N
N
R . . . |
1+x 1+x+1 1+x+2 1+x+3 1+m 1+m+1
- — - - — - — — —
T Ci+1

FIGURE 2.1

Figure 2.1) in C, covers n-i (in the case of i+1, it
is n) distinct vertices, namely i+n-x, ... ,i+m+2 and
i+x+2, ... ,i+m+1,0 by edges of Ci and i+1, i+n-1, ...
,i+n-(x-2) and 0, i+2, ... ,i+x+1 by edges of Civyr
before encountering the first repeated vertex, that
is, i+x+2, This is illustrated in Figure 2.2 (note
that, modulo n-1 arithmetic is used with n-1 replacing
0). Thus every walk of length at most n-2 that starts
at vertex i+j, m+2<j<n, in C; is a path. On the other
hand, every walk fhat starts at vertex 0,i+2,i+3, ...
,i+m+1 (the bottom row) in C, covers n-2 (in the case
of 0 and i+2, it is n and n-1, respectively) distinct
vertices as shown in Figure 2.3. Thus every walk of
length at most n-3 that starts at vertex i+j, 2<j<m+1,
in Ci is a path. From the above observations, we can

see that d=n-2. For those mi=n—2=d, we have a way to

avoid choosing m, edges which are cyclic. The first
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i+1  1+n-1 i+n- i+n- i+n-x i+n- i+m+3 1+m+2
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\ s e 0 Q\
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i+3 i+x  i+x+1 i+x+2 1+x+3 i+m i+m+1
FIGURE 2.2
i+1  i+n-1 i+n- i+n- i+n-x i+n- i+m+3 i+m+2
(x=-2) (x-1) (x+1)

~
~N

T— 1+2

hd =~
\ L N B ]
— — Dy .
1+3 i+x 1+x+1 i+x+2 i+x+3 1+m i+m+1

FIGURE 2.3

observation guarantees that if we begin choosing edges
for P, at vertex i+j, m+2<j<n, along Cs» then the next
ml=n—2 edges will form a path. Hence, given miSn—Z,

for i=1, ... ,r, we rearrange the mi's so that m,=m,=

1 772

.o =mk=n—2 and mi<n-2 for i=k+1, ... ,r. We can then
remove the first m, edges on the tour for P1, the next
m, edges for P, and so on, since 1§1m = 2
edges on the eulerian tour will belong to some Pi‘

\

Each Pi is a path because Pk+1, . o ,Pr are all of

), all

size less than n-2 which equals 4. Also, P1, . ,Pk

are all of size n-2 and except for P, which starts at
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0 they all start at vertex m+2(i-1) = (i-2)+(m+i) of

Ci o for i=2, ... ,k. So by the above observation

they are simple paths. Therefore, PirPor vnn P, are

the required paths. This finishes the proof of the
theorem. One last note. There are at most m+1 mi's
with value n-2, thus that 1last (n-2)-path Py will

start at vertex (k-2)+(m+k) of C where 0 < k-2 <

k-2
m~1 and 2 £ k £ m+1 so m+2 £ m+k £ 2m+1,

Now suppose we have some mi=n-1, we can relabel {m1,m ,m_}

o7 v r

such that m,2m,z .- 2m, with m,=m,= ... =m =n-1. Then by

pulling out one edge from each of the first k Walecki cycles and

attaching it to Crn- we get the following lemma.

1 14
LEMMA 2.1.5 : Given n=2m*1, and {m ,m,, “es ym_} as described
in Lemma 2.1.4. If m,=m,= ... =mk=n-1 and m.
<n-2k+1 for 1i=k+1, ... ,r, then Kn can be
decomposed into edge disjoint paths Piv Pyr  een

,P_. of lengths m, My, oo M. respectively.

r
PROOF : First we construct the eulerian tour E as in the proof
of Lemma 2.1.4. Then we remove the first k Walecki
cycles to gef E'=E\{C0, .o ’Ck-1}' Now we can delete
an edge from each of the k Hamilton cycles removed.

In particular, <m+1+(k=-1),0> from C and

k=1’

<m+2+i,m+1+i> from Ci for i=0, ... ,k-2. This gives
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us k Hamilton pathé which we call P], P2, .o ’Pk'
Then we attach the deleted edges, which form the path
P=<0,m+k,m+k-1, ,,. ,m+1>, to the end of E' to form
E"=<E',P>. E" 1is avtrail that uses up the remaining
edges. We‘have already seen in the proof of Lemma
2.1.4 that we <can now remove edges from E" to form
paths of lengths Mpiqr Mpyor «oo (M. aS long as each
m, is less than or equal to n-2, However, this
procedure fails when one of the Pi's, say Pj’ requires
edges from E' and P. This is because the shortest
cycle in <C__.,P> is of length 2-(m-k)+2 (see Figure
2.4) or simply n-2k+1. So in order to avoid this
cycle, we need to have miSn-Zk for i=k+1, ... ,r.

Then we can just remove the first m edges of E" for

k+1

Pk+1’ ghe next My 42 edges for Pk+2 and so on,
Since z m, = ( 2 ), every edge in E is in exactly
i=1

one Pi’ and P1, P2, . ,Pr are the required paths.

In fact, we can state this result in a slightly stronger manner.
Observe that the longest path that we can fit into the end of E"
(that 1is, <Cm_1,P>) and uses up all of P is of length 2.(m=-k)+k
or n-k-1 because every walk that begins at vertex i, ism-k or

i2m+k+1, in Co- is a path (see Figure 2.4). The shortest such

1
path 1is of length k because P has k edges in it. Therefore, if
we can find m. or a sum of mi's with its wvalue between k and
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m m-1 m-k+2 m~k+1 m-k m-k-1 2 1

m+k-1 m+k m+k+1 m+k+2 n-2 n-1

FIGURE 2.4

n-k-1, then we can rearrange the mj's so that the above

mentioned m. or mi's appears at the end of the sequence.
Because this m. or mi's is the last and it must cover edges in
Cm-1 and all of P, by the above observation this Pi or Pi's must
form é path or paths. This guarantees that all Pj's are paths.

Lemma 2.1.5 can then be improved as follows.

LEMMA 2.1.6 : Given n=2m+1, if m,=m,= ... =mk=n—1, miSn—2 for
i=k+1, ... ,r and there exists I ¢ {k+1, ... ,r}
such that Z m, satisfies k s Z mis n-k-1, then

iel iel
K, can be decomposed into edge-disjoint paths P,

, P2, ee. ,P of lengths m, My, oo M

r r

respectively.

Another way to improve the above result is to use a different
choice of edges from the first k Walecki cycles. This is shown

in the next lemma. Recall from the proof of Lemma 2.1.5 that if
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k=m

then

cycles,

the remaining edges, one from each of the m Walecki

form the path P. So we only need to consider the case

where k<m in the following lemma.

LEMMA 2.1.7 : Let n=2m+1 and m > k 2 m/2. If m,=m,= ... =m,

PROOF

1 72
=n-1, miSn-z for i=k+1, ... ,r and there exists
I ¢ {k+1, ... ,r} such that k < Z m:< m+k, then
iel
K, can be decomposed into edge-disjoint paths P,

, P2' ee. ,P of lengths m,,My, oo M

r r’

respectively.
As in the proof of Lemma 2.1.5, we <construct the
eulerian tour E of K, and then remove the first k
Walecki cycles to form the Hamilton paths P}, Pz, eee
’Pk‘ But this time we will choose a different set of
edges from these cycles. Let s=Z m. , then our goal
is to find a path of length s wéséh will use up the k
edges deleted from the k Walecki cycles and possibly

some edges from the end of C By doing so, the

m-1°
remaining portion of the tour can be used to form the
rest fo the Pi's, since the corresponding mi's are
less than or equal to n-2, and the trail starts at the
beginning of Cp-

Let t=s-k. Since k<s<m+k, we have 0<t<m. In
fact, we can assume t>0, since otherwise, we can just

follow the proof of Lemma 2.1.5 to get P, and P would

be the required path. We can also assume that m23,
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b)

c)

or 2 the answer is obvious. We have three

If t 1is even, then 2<t<m which 1implies
Ost/2-15m/2;1sk—1. We first remove
<i+1,i+2> from Ci for i=t/2-1, ... ,k-1.
Then if t/2-121, we remove <(t/2-2)+m+1,0>

from C and furthermore if t/2-1>1, then

t/2-2
we remove <i+m+2,i+m+1> from Ci for i=0, ...
,£/2-3. These k edges together with the
last t edges of C__, form a path (as
depicted in Figure 2.5(a)). One point that
needs to be verified 1in this case is
m+t/2-1<2m+1-t/2=n-t/2, but this follows
from the fact that t<m<m+2.

I1f t is odd and m-(t+1)/2>k-1, then we begin
by removing <i+m+2,i+m+1> from C; for 1i=0,
... ,k-2 and then <(k-1)+m+1,0> from Crot-
Again these k edges together with the last t
edges of C__, form a path (see Figure
2.5(b)). Here we need to verify that
m+k<2m+1-(t+1)/2=n-(t+1)/2, But this
follows from the assumption that
m-(t+1)/2>k-1.

Finally, if t is odd and m-(t+1)/2sk-1, then
we choose <i+m+2,i+m+1> from Ci for i=0, ...
,m-(t+1)/2-1 and also <0,1+(k-1)> from Croy-
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r- -~ -~ - - -" - - - -" - - - - - -7 =77 777
k k=1 m=(t+1)/2+2 m-(t+1)/2+1 (t=1)/2 2 1
‘-‘-'——.— PR —_——  — —O .
— — —8— — — e e
m+1 m+2 2m-(t+1)/2 n-(t+1)/2 n-2 n-1

(c)

FIGURE 2.5

Now 1if m-(t+1)/2<k-1, then we delete
<i+1,1i+2> from C; for i=m-(t+1)/2, ... ,k-2.
These k edges will form a path with the last
t edges from Cm_1. To show that, we need to
verify that m+1-(t+1)/2>(t-1)/2, this
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follows from t<m<m+1.(see Figure 2.5(c)).

These three lemmas together teli us that for any k, 1<ksm, such
that m,=m,= ... =m,=n-1, and miSn—Z for i=k+1, ... ,r, if there
exists I ¢ {k+1, ... ,r} satisfying k = Z m, < max{m+k,n-k-1},
then we can partition Kn into paths of i;;gths LI PO ,mr;
respectively. Unfortunately, there are examples that violate

these conditions. For example, n=21, k=4, r=11 and {m1,m2, oo

,mr} = {20, 20, 20, 20, 19, 19, 19, 19, 18, 18, 18} where 202mi

1
221-4-1=16 for all i and L m, = ( 2; ).
i=1

As mentioned earlier, not much 1is known about the even

-~

order case. The only result was stated by Tarsi [21].

M i = = = < <n-
LEMMA 2.1.8 : For ezen n, if my=my= ... =m__, adn m.<m__,<n-1
with Z m, = ( 2 ), then we can partition K,

i=1

into paths of lengths m, ,m,, .o (M

respectively.

The path arboreal problem on the whole is still very much open.

Little has been done other than the few results stated here.
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APPENDIX A : GLOSSARY OF SYMBOLS

u union

€ an element of

c proper subéet

[ subset

\ set-theoretic difference

[x] least integer 2 x

Lx] largest integer < x

|S| cardinality of set S

= congruent

id(v) in-degree ...... Ceeesssesssnenna ceersneess 2
od(v) out-degree ....eeeeesnee teecssessasenssanss 2
[ (u,v) length of the arc (uU,v) ..ciieieeneennnaas 3
l<u,v> length of the edge <u,v> R
deg(v) degrée o A
‘u(v) max{id(v),0d(v)} tiiiiierennreneanenssnnne 3
pn(G) path number 0f G ...ieerneersnnecsocenesns &
x(v) excess Of V iciieiieinnnneennnnnn B K
X(G) excess O0f G .veeeeeeeeeeenecnennocnneessss 33
M tournament MAtCiX ...veieeeeescecoscanns .. 20
o Walecki cycle/circuit ..iieevveienenceesnes 9
T, tournament of order n ....ciieie000cecenes 3
in complement 0f T = seeeeeeeesoesoeenaeanss 35
RTn regular tournament of order n ........c... 3
NTn near-regular tournament of order n ....... 3
LT, Walecki tournament of order n ....vc000es 11
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CT

TT

r(u,v)
p(m,a)

A(i)

\'A (Tn)

V'(Tn)

circulant tournament of order n .........

transitive tournament of order n ........

T=VeCEOr it eececcancascss

SCOLEe VECLEOL .tivsnssssssssssssssssscssssns

HC-decomposition

doubly regular ...ccceeecens

Hxg x4,

¢ e ¢ 5 0 00 00 0800 000900
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39
19
19
21
22
18
62
62
65
15
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49
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APPENDIX B : LIST OF CONJECTURES AND THEOREMS

CONJECTURE 1 (KELLY) 4veveveseceeoenscscsososeososaasocsnscosnecnene D
CONJECTURE 2 +oeeeeeeecesonesosenessosssessennsesascnsssansass &5
CONJECTURE 3 tiverneeonnsocnenonnen A &7
CONJECTURE 4 +veveereneeansoneotonannencness et ecerescsenesas 12
CONJECTURE 5 tveereerececensoneennnnan O A
CONJECTURE 6 teveeeeooseoosessseasonsesesesesssocenansaannoees 15
CONJECTURE 7 4ot eeeoeoceooseseseasansnssssnesssassasnsssences 16

LEMMA
LEMMA
LEMMA
LEMMA
LEMMA
LEMMA
LEMMA
LEMMA
LEMMA
LEMMA
LEMMA
LEMMA
LEMMA
LEMMA

® 2 9 00 06 0 2 ¢ 9 0 F OO0 S 0SBSOS LSOO S se 0 20
® 6 8 2 0 0 0 @ 0 0 0 F S L E 0 QG000 0L L e et E L O L e 34

® 8 6 60 0 0 0 0 0 0 0% 6060 0+ 20 T 0GOS LSO s 0 57

e W

© 2 0 00 2 5 ¢ 2 0 09 S L L LS L O SO O LG e o0 59

© 8 ¢ ¢ 00 0 000 00 00 000 000080 ® o0 0 00 ® e s 0 0000 r 000 000 00 58

OAdOVUI B = — — — = = Ol —
L]
*
.
.
.
L]
.
L]
.
L]
.
.
.
L]
L]
L]
L]
L]
.
.
~
-

® 0 0 0 0 0 0 0 00 00 0 0 0 00 GG S OO0 0L S0 000 B SS9 0000 83

s s e 2 2 WW W WA — =

® oo 0 0 000 00 © © 2 2 0.0 0 00 5 0 0 0 0 685 08 000 0L0 00 L e o0 a0 . 86

COROLLARY 1.3.8 .iieeieeeeenseoccccncasnans cesetssesecrsnesesss 45
COROLLARY1.3.17 ® 8 8 9 ¢ 0 © 0 B 8 P S OO S O S SO O SO O SO SO O eSS SO S OSSO e 69

THEOREM ceeeses 13

THEOREM 1.1, cessean seecsescts sttt o B K
THEOREM 1.1.6 tieececescesasossoscsessssnsosssosassassossessnsass 16
THEOREM 1.2.2 .t eveeesescsosssesocsasansnsosossssscnsssnsoeses 22
THEOREM 1.3.2 .tiiteresccscsossoesesassesnssaassoscacsnsassnaas 3D
THEOREM 1.3.3 ittt eeeescesesossoscseassoososssasnsosssnencsaanss 37
THEOREM 1.3. Gt eececert st sesns s cee s cecesesecesssssanaesess 39
THEOREM P 11
THEOREM e .-

THEOREM
THEOREM
THEOREM
THEOREM
THEOREM
THEOREM
THEOREM
THEOREM
THEOREM
THEOREM

®© @ 0 0 0 0 0 0 0 2 * 0 0P P P PO PO 0 G SO LS 03 S SO S sS0ES L0 e 44

®© 8 ¢ 2 0 0 0 0 0 0 F 00 000 0B O 0L EP OO L0 L S OO L0 R0 e 45
0ooo.oo..oooooooooooonuoo.o.o.ooooooooo.oooo.uo 46

TR I R I I I I I S B B S B I B R R R B I R A A R R R I I I I A B A A 49

. 1
. 1'onooou.ouooooootooooooooooooooooouooo'.ooouaon 52

2.ooo..ooo..0000..0Ol.l.000.....000.00..'.....Q 53

6loooouoooooooo.o-uounuoooo.ooou-o.oon-ooo.oo.o 61
8oooooooooooooo.oon.ooulnoo.o.on-onoo.oonn..ooo 71

® ® 0 0 0 0 0 0 0 02 00 S 0O DS S P GO L0 S LS E O 00 L L0000 75

S, 2, WWWWWWWWWWWwWwWwN — — —
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