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ABSTRACT 

This project consists of analyses and model fittings for two 

different studies. Both studies arose out of M.Sc. research by 

graduate biology students. 

In the first data set, the object was to determine whether 

or not an association exists between nesting colony size (or any 

other covariates) and rates at which food is carried to chicks. 

"Best k subsets" regression was used with a standard normal 

theory model. In addition a loglinear model was investigated for 

comparison. 

In the second data set, the object was to determine how the 

proportion of deciduous trees bearing an active nest might be 

associated with characteristics of that tree, and how the . 

explanatory variables in such a model may be ranked in 

importance. Linear logistic regression was pursued using BMDPLR 
c. 

and GLIM. 
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PART A 

MODELLING THE FEEDING RATES OF PIGEON GUILLEMOT CHICKS 
I 



CHAPTER 1 
... 

THE PROBLEM 

Simon Emms, graduate student in the Dept. of Biological 

Sciences, presented data collected over two summers which 

dealt with the feeding of Pigeon Guillemot chicks by parent 

birds. The data was collected on Mitlenatch Island (near 

Campbell River, B.C.) and the Pigeon Guillemot is a sea bird 

species, so the diet of the chicks was one of fish. In a 2 

hour period the number of fish delivered to chicks in a 

given nest by the parents was observed & the lengths of the 

fish estimated. 

It was of interest to know if-the feeding rate was 

influenced by the size of colony in which the observed nest 

was. This colony size is expressed in total number of nests 

in the colony. The interest in colony size arose out of the 

'Information Centre Hypothesis', that is, the proposition 

that colony members can learn of the location of good 

feeding sites by following successful foragers, and can 

thereby increase their own foraging success. This effect 

would be greater in larger colonies. 

Also of interest was whether or not any of the other 

measured variables exerted any influence on the feedrate. 

The measured variables contained both qualitative and 

quantitative effects. 



The results of the analysis are to be applied to the 

population of Pigeon Guillemot birds in general. As.it 

turned out, a final model (to be identified as the 'curr'ent 
, . .  

best model' in Chapter 3) was obtained, but it did not 

contain colony size. Insofar as the sample data can be 

regarded as a random sample and representative of the 

population, this suggests that colony size is not associated 

with chick feeding rate. 

Feeding rate does, however, seem to be positively 

associated with the number of chicks in the nest. For 

example, if the number of chicks is increased from 1 to 2, 

the model predicts that feeding rate should increase by 

0.243 fish per hour. In addition feeding rate seems to be 

associated with both age of chicks and time of day in a 

changing pattern: in the case of chick age, feeding rate 

increases from some initial value at time of hatching until 

the chick is 27 days old, after which the feeding rate 

decreases. In contrast, the association with time of day is 

concave upward, i.e. feeding rate decreases from some 

initial value at dawn, reaches a minimum at 1330H, and then 

increases until dusk. Of course this does not suggest that 

Pigeon Guillemots continually feed their chicks while there 

is daylight, this is merely an o.bservation in the trend in 

feeding rate averaged over all birds in the sample. The 

details of this aspect of the analysis can be found in 

Section 5.2. 



Model building was the primary goal of the analysis, but 

a detailed inference was done in the case of difference in 

feeding rates between dawn and 1330H, the point of minimum 

feeding rate with respect to time of day as fitted by the 

model. Such inference is based on the validity of regarding 

the sample data as a representative and random sample from 

the target population of Pigeon Guillemot birds in general. 

It turned out that a 95% confidence interval for this 

difference in feeding rates between dawn at, say, 0530H and 

1330H had a lower bound of 0.229 fish per hour (ignoring 

effects due to age) and an upper bound of 0.579 fish per 

hour. Details can be found in Section 5.4. 

The client report found in Chapters 1-5 and the 

technical supplements in Chapters 6-10 with Chapter 6 

providing a technical supplement for Chapter.l contents, and 

SO on. 



CHAPTER 2 

THE DATA 

Simon permitted copies of his 1984 and 1985 data files. 

A portion each of these files is shown in Tables 1  and 2 

respectively, where there is one record for each 

observation. The record format is as follows. 

Variable 

Date 

'Colony Identification Number 

Number of Nests Observed in the 
Colony 

Colony Size 

Tidal State Code 

Time of Day 

~ccept/Reject Code 

Nest Identification Number 

Number of Chicks in Nest 

Age of Chicks 

Number of Fish Delivered--Species 
Type 1 

Total Length of Fish 
Delivered--Species Type 1  

Number of Fish Delivered--Species 
Type 2 

Total Length of Fish 
Delivered--Species Type 2 

Number of Fish Delivered--Species 
Type 3 

Column Range 

1-4 

6-7 

1 0 - 1  1  



Table 1: Portion of 1984 Raw Data 

. * . .  o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o  

3 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  . . . . . .  
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o  

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c o o o i o o o o o o o o o o o o o  





Total Length of Fish 
DeLivered--Species Type 3 

Number of Fish Delivered-.-Species 
Type 4 

Total Length of Fish 
Delivered--Species Type 4 

Number of Fish Delivered--Species 
Type 5 

Total Length of Fish 
Delivered--Species Type 5 

Number of Fish Delivered--Species 
Type 6 

Total Length of Fish 
Delivered--Species Type 6 

Number of Fish Delivered--Species 
Type 7 

Total Length of Fish 
Delivered--Species Type 7 

Number of ~ i s h  Delivered--Species 104-1 06 
Type 8 

Total Length of Fish 108-112 
Delivered--Species Type 8 

Number of Fish Delivered--Species 113-115 
Type 9 

Total Length of Fish 
Delivered--Species Type 9 

The column ranges were not provided but were obtained by 

using the MTS file editor to add some column counting 

numbers to the end of the files. Once the column ranges were 

found, these numbers were removed. 

Each of the variables selected for the data analysis is 

described below in more detail. These variable names will be 



capitalized hereafter. 

A) Response Variable, FEEDRATE 

FEEDRATE itself does not appear in the data files, but 

was computed as a function of number of fish delivered for 

species types 1 through 9 (variables 

(11),(13),(15),(17),(19), (21),(23),(25),(27)) as follows: 

TOTFSH FEEDRATEZ(~.O hours) 

where 
9 

number of fish delivered TOTFSH= 5) ( from species type i 
i=1 

Feedrate is thus expressed in units of total number of fish 

delivered per hour. 

It should be noted that - 1 .  is used as a missing value 

code in the data files. If such a code were encountered for 

the number-of fish for any of the 9 species types, FEEDRATE 

would be not calculated, since it would be erroneous to 

include - 1 .  in the TOTFSH sum. Furthermore that record was 

excluded from further analysis. This record selection was 

accomplished by a FORTRAN pre-processor program, to be 

discussed later. 

Of course, FEEDRATE could have been defined in other 

ways. For example any measure of feeding rate should 

probably account for differing lengths of fish. This is 

important in considering the question of, say, if one chick 

receives 2 fish, each of which was 5.0cm in length, and 



another chick received 1 fish which was 10.0cm in length, 

did the 2 chicks receive the same amount of food? Using only 

the number of fish in a FEEDRATE definition may not tell the 

whole story. Perhaps one should consider fish-mass per hour, 

where fish-mass could be measured by proxy as total fish 

volume, which in turn could be measured by proxy as the sum 

of the cubes of the lengths of all fish delivered. 

Unfortunately the fish length measurements recorded 

contain more inaccuracies than do fish counts. First of all, 

it will be noticed from Tables 1 and 2 that for species 

where more than one fish was delivered, only one fish length 

is recorded, and this is the sum of the total lengths of the 

fish. Lengths of individual fish were not available from the 

files, but Simon stated that they were available elsewhere. 

Secondly, fish length was first estimated in units of bill 

length, that is, how may times larger did the fish appear to 

be than the parent bird's bill. Fish count, however, is 

easier to obtain accurately than fish length. Thirdly, not 

all birds have the same bill length, so this makes length 

measurement even more unreliable than fish count. 

To use length in any definition of FEEDRATE would thus 

expand that variable's measurement error and variability. It 

was therefore decided not to use fish length in any 

definition of FEEDRATE. 



Finally there are a number of cases where FEEDRATE is 

0.0, that is, no fish were delivered during the observed 2 

hour period. Such observations are to be retained for 

analysis since they contribute information (especially since 

time of day will be considered as an explanatory variable), 

but they may cause problems if transformations of the 

response variable are to be considered. 

B) Description of Candidate Explanatory Variables 

Each variable to be considered in the analysis is given 

below along with its position in the original files (Tables 

1 and 2) as displayed earlier. 

~.1)Date (columns 1-4) 

This is expressed as 

M.DD 
(month) (day) 

1984 observations have a starting date of 7.15 ( 1  5 july 

1 9 8 4 ) ~  and those of 1985 started on 7.20 (20 July 1985). The a 

difference in starting dates between years is intentional, 

since dates of first observation were chosen to be first day 

of actual feeding. This usually took place 3-4 days after 

hatching, and eggs certainly cannot be expected to hatch on 

the same day of each year. 

For the purpose of analysis, this variable was recoded 

as follows: 



Recoded 
Value 

(Day) 1 
(Day) 2 

1984 
v Observatlon Date 

1985 
7 

Observatlon Date 

and so on. This variable will be referred to hereafter as 

DATE. 

B.2)Colony Size (col. 14-15) 

This is simply an integer showing the total number of 

nests in the colony, and will be referred to hereafter as 

COLSZE. 

B.3)Tidal State (col. 17-18) 

The three levels of tide were coded: 

(Tide)= 1, if low tide 
2, if midtide 
3, if high tide 

In addition, 2 design variables were created: 

TIDEH= 1 ,  if high tide 
0, otherwise 

TIDEM= 1 ,  i f  midtide 
0, otherwise 

according to the recommendations on page 703 of Ref.(ll). 

The reason for their creation is that many of the programs 

in the BMDP computer software package (whose regression 

routines will be utilized in the next chapter) do not 
> 

generate design variables needed for qualitative or factor 

level type variables, such as tide, and design variables are 

necessary to replace qualitative variables in regression 

models, which will be used in the analysis. In general a 



- 

qualitative variable posessing k levels will require (k-1) 

design variables (see Sec. 10.1 of ~ef.(ll)). 

TIDEH and TIDEM will be therefore used through most of 

the analysis, although some use will also be made of the 

original variable, to be referred to hereafter as TIDE. 

~ . 4 ) ~ i m e  of Day (co1.20-24) 

This is coded as a 24-hour military style clock time, 

and gives the starting time of the 2 hour observation period 

to the nearest half-hour. As there are 48 half-hours in a 

day, the new variable TIME will be the following recoding: 

Original Time Recoded as TIME 

Although there is duplication in the first and last rows 

of the above table, this is not a point of concern since all 

observations were understandably done during daylight 

(0500-2100H approx.) 

B.5)Number of Chicks in Nest ( c o l .  34-36) 



This is an integer showing total number of chicks in the 

nest. As it turns out, this number is either 1 or 2, and 

will be referred to hereafter as NUMCHK. A missing value 

code of - 1  is also used, however. Any record containing such 

a code was rejected from further analysis. 

B.6)~ge of Chick (col. 38-40) 

This is the age in days of the 1 or 2 chicks in the 

nest. Again - 1  is used to record a missing value. For the 

case of 2 chicks in the nest, these chicks were taken to be 

born on the same day. This value will be referred to 

hereafter as AGECHK. 

The variables of interest having been identified, each 

of the original data files was then subjected to its own 

FORTRAN pre-processor program, the purposes of which were 

to: 

(a) calculate TOTFSH (save FEEDRATE for statistical 
software) 

(b) perform re-coding previously indicated for DATE, TIME, 
and creation of extra TIDE variables: TIDEH and TIDEM 

(c) flag records containing missing data codes for any fish 
counts or for either NUMCHK or AGECHK, and put the first 
reason encountered for such action into a 'reject 
message' file (records thus flagged are to be kept out 
of further analysis) 

(dl put all acceptable records (those not in (c) above) into 
a new file containing variables selected for analysis 
and a coded tag to identify it 

The tag referred to in (dl above has a 4-digit format: the 

first digit indicates the year of the data (4 for 1984 data 

file, 5 for. 1985 data file) and the remaining 3 digits give 



the actual line number for the record from its original data 

file. Thus a tag of 4097 means that the record is number 97 

in the 1984 data file. 

In addition the values to total length of fish delivered 

(summed over all species types) and average length of fish 

were calculated for possible later use. This use did not 

materialize. 

Table 3 shows a portion of the file EMMSFDRTI, which 

contained the records taken from the 1984 data file along 

with their recoded values. The values are given in the 

order: 

Identif ication Tag 
Average Fish Length 
TOTFSH 
Total Fish Length 
DATE 
COLS ZE 
TIDE 
TI DEH 
TIDEM 
TI ME 
NUMCHK 
AGECHK 

Table 4 shows a portion of the file EMMSREJECTI which 

contained rejection messages for records kept out of 

EMMSFDRTI. Similarly, Table 5 shows a protion fo the file 

EMMSFDRT2, which contained the acceptable records from the 

1985 data file, and Table 6 shows a portion of the file 

EMMSREJECT2 which contained the rejection messages for 

records kept out of EMMSFDRT2. The FORTRAN programs which 

performed these tasks are shown in the Technical Supplement 
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Table 4 :  Portion of EMMSREJECTI 

RECORD 

RECORD 

RECORD 

RECORD 

RECORO 

RECORO 

RECORD 

RECORD 

RECORD 

RECORD 

RECORD 

RECORD 

RECORD 

RECORD 

RECOZD 

RECORD 

RECORD 

RECORD 

RECORD 

RECORO 

RECORD 

RECORD 

RECORD 

RECORD 

1 .  R E J E C T E D  FOR MISSING VALUE CODE 
- 1 .  r @ R  CHK 

3 .  RElJECTED FOR MISSING VALUE CODE 
- 1 .  FOR CHK 

6 .  R E J E C T E D  FOR MISSING VALUE CODE 
- 1 .  F@R CHK 

7 .  R E J E C T E D  FOR MISSING VALUE CODE 
- 1 .  FOR CHK 

3 .  R E J E C T E D  FOR MISSING VALUE CODE 
- 1 .  FOR CHK 

1 0 .  R E J E C T E D  FOR MISSING VALUE CODE 
- 1 .  FOR CHK 

1 1 .  R E J E C T E D  FOR MISSING VALUE CODE 
- 1 .  FOR CHK 

1 2 .  R E J E C T E D  FOR MISSING VALUE CODE 
- 1  FOR CHK 

1 7 .  R E J E C T E D  FOR MISSING VALUE COOE 
- 1 .  FOR CHK 

1 8 .  R E J E C T E D  FOR MISSING VALUE CODE 
- 1 .  FOR CHK 

1 9 .  R E J E C T E D  FOR MISSING VALUE CODE 
- 1 .  FOR CHK 

2 0 .  R E J E C T E D  FOR MISSING V A L U E  CODE 
- 1 .  FOR CHK 

2 3 .  R E J E C T E D  FOR MISSING VALUE CODE 
- 1 .  FOR CHK 

2 4 .  R E J E C T E D  FOR MISSING VALUE CODE 
- 1 .  FDR CHK 

2 6 .  R E J E C T E D  FOR MISSING V A L U E  CODE 
- 1 .  FOR CHK 

2 7 .  REJECTED FOR MISSING VALUE CODE 
- 1 .  FOR CHK 

2 8 .  REJECTED FOR MISSING VALUE CODE 
- 1 .  FOR CHK 

2 9 .  R E J E C T E D  FOR MISSING VALUE CODE 
- 1 .  FOR CHK 

3 3 .  REJECTED FOR MISSING VALUE CODE 
- 1 .  FOR CHK 

3 4 .  REJECTEO FOR MISSING VALUE CODE 

- 1 .  FOR CHK 

3 6 .  REJECTED FOR MISSING V A L U E  CODE 
- 1 .  FOR CHK 

3 8 .  REJECTEO FOR MISSING V A L U E  COOE 
- 1 .  FOR CHK 

3 9 . .  REJECTED FOR MISSING V A L U E  CODE 
- 1 .  FOR CHK 

4 0 .  REJECTED FOR MISSING VALUE COOE 
- 1 .  FOR CHK 



Table 5: Portion of EMMSFDRT2 



Table 6: Portion of EMMSREJECT2 

R E C O R D  

R E C O R D  

R E C O R D  

R E C O R D  

R E C O R D  

R E C O R O  

R E C C R D  

R E C O R O  

R E C O R D  

R E C O R O  

R E C O R D  

R E C O R O  

R E C O R D  

R E C O R O  

R E C O R D  

R E C O R O  

R E C O R D  

R E C O R D  

R E C O R O  

R E C O R O  

R E C O R O  

R E C O R D  

R E C O R D  

R E C O R O  

R E J E C T E D  F O R  MISSING V A L U E  C O D E  
- 1 .  F O R  C H K  

R E J E C T E D  F O R  MISSING V A L U E  C O D E  
- 1 .  F O R  C H K  

R E J E C T E D  F O R  MISSING V A L U E  C O D E  
- 1 .  F O R  C H K  

R E J E C T E O  F O R  MISSING V A L U E  COOE 
- 1 .  F O R  C H K  

R E J E C T E D  F O R  MISSING V A L U E  C O D E  
- 1 .  F O R  C H K  

R E J E C T E D  F O R  MISSING V A L U E  COOE 
- 1 .  F O R  C H K  

R E J E C T E O  F O R  MISSING V A L U E  C O D E  
- 1 .  F O R  C H K  

R E J E C T E D  F O R  MISSING V A L U E  C O D E  
- 1 .  F O R  C H K  

R E J E C T E O  F O R  MISSING V A L U E  CODE 
- 1 .  F O R  C H K  

R E J E C T E D  F O R  MISSING V A L U E  C O D E  
- 7 .  F O R  C H K  

R E J E C T E D  F O R  MISSING V A L U E  C D O E  
- 1  : F O R  C H K  

R E J E C T E O  F O R  MISSING V A L U E  C O D E  
- 1 .  F O R  C H K  

R E J E C T E D  
- 1 .  F O R  

R E J E C T E D  
- 1 .  F O R  

R E J E C T E D  
- 1 .  F O R  

R E J E C T E D  
- 1 .  F O R  

R E J E C T E D  
- 1 .  F O R  

R E J E C T E D  
- 1 .  F O R  

R E J E C T E O  
- 1 .  F O R  

F O R  
C H K  

F O R  
C H K  

F O R  
C H K  

F O R  
C H K  

F O R  
C H K  

F O R  
C H K  

F O R  
C H K  

MISSING V A L U E  C D D E  

MISSING V A L U E  C O D E  

MISSING V A L U E  C D D E  

MISSING V A L U E  COOE 

MISSING V A L U E  C O D E  

MISSING V A L U E  COCE 

MISSING V A L U E  COCE 

40.  R E J E C T E O  F O R  MISSING V A L U E  C O D E  

- 1 .  F O R  C H K  

4 4 .  R E J E C T E D  F O R  MISSING V A L U E  C O D E  
- 1 .  F O R  C H K  

4 5 .  R E J E C T E D  F O R  MISSING V A L U E  C O D E  
- 1 .  F O R  C H K  

50 .  R E J E C T E D  F O R  MISSING V A L U E  C O D E  
- 1  . F O R  C H K  

5 2 .  R E J E C T E D  F O R  MISSING V A L U E  C O D E  
- 1 .  F O R  C H K  



for this chapter (found in Chapter 7 ) .  

Finally, using the MTS file editor, these two files were 

put together as one file, known as EMMSFDRT. With all the 

necessary data editing performed the data (as in the 

EMMSFDRT file) was now ready for analysis. 



CHAPTER 3 

FIRST ANALYSIS--FIND BEST MAIN EFFECTS MODEL 

As a first attempt to explain the different values of 

Y=FEEDRATE, a multiple linear regression model is first 

attempted: 

y=p0+p X +p X +*-+p X +' 1 1  2 2  P P  

where p is the number of explanatory variables to be 

included, and thus p+l regression coefficients (including 

the intercept term pol must be estimated. e is a random 

error component having a normal distribution with mean 0 and 

variance 0 2 .  An individual x. could represent a single 
J 

explanatory variable in first order (e.9. X~=TIME), a higher 

order power of that variable 

cross-product of 2 or more variables (e.9. 

x~=(TIME)(AGECHK)), or a more complex function of 1 or more 

variables. The qualifier 'linear' means only that the model 

is linear in the regression coefficients ~ O f ~ l f . . . , ~ p f  not 

necessarily in the explanatory variables themselves. 

If an x. represents a function of a single explanatory 
J 

variable, it is called a 'main effect' of that function. If 

an x represents a function of 2 or more explanatory 
J 

variables in such a way that it can be written as the 

product of 2 or more main effects previously described (e.g. 

x4=x x ) ,  it is called an 'interaction' between these main 2 3 

effects. Only main effects will be considered in this 



section. Interactions are considered in chapter 4 for model 

fit improvement. 

There is a total sample size of n=524 observations left 

after the data editing described in the previous chapter, so 

one can use a subscript to identify each observation & its 

corresponding explanatory variables: 

where i  ranges from 1 to n, and the r i  will have the 

additional assumption of no correlation amongst themselves. 

In general, the fl represent unknown parameters, so suitable 
J 

estimates, b .  will be sought to produce a 'fitted' model: 
J 

which give a fitting error of 

known'as residual i which is defined to be the discrepancy 

between observation i and the corresponding outcome fitted 

by the model. 

Next a set of x .  must be selected. To aid in this task, 
J 

the BMDP program P6D (Ref. 4, Section 10.2) was used to 

produce scatter plots of TOTFSH against various variables 

and some higher order powers in order to get a visual 

appraisal of any trends or associations. TOTFSH was selected 

over FEEDRATE because TOTFSH takes on integer values. These 

plots are shown in Figures 1.a through 1.p 



Fiqure 1.a: TOTFSH vs. DATE 



Figure l.b: TOTFSH vs.  COLSZE 

. + I 1 1 1 + 1 1 1 1 + 1 l 1 1 + 1 1 1 1 + 1 1 1 1 + ! 1 1 1 + 1 1 1 > + 1 1 1 1 +  



Figure 1.c: TOTFSH vs.  TIDE 



Fiqure 1.d: TOTFSH vs.  TIDEH 



F i g u r e  1.e: TOTFSH vs.  TIDEM 



Fiqure l.f: TOTFSH vs. NUMCHK 



Fiqure 1.g: TOTFSH vs.  AGECHK 



Fiqure l.h: TOTFSH vs .  TIME 



Figure 1.i: TOTFSH vs. SQDATE 



F i q u r e  1 . j :  TOTFSH v s .  SQTIME 

. + , , , , + , , , , + 1 , 1 , + 1 1 1 1 + 1 1 1 1 + 1 1 1 1 + 1 1 1 > + 1 ~ ~  I +  .o . I- 



Figure 1.k: TOTFSH vs. SQAGE 



Figure 1.1: TOTFSH vs .  SQCOL 



Figure 1.m: TOTFSH vs.  SQNUM 
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Fiqure  1.0: TIME vs .  TIDE 
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Figure 1.p: COLSZE vs.  NUMCHK 



One can spot the discrete nature of TOTFSH instantly by 

noticing in the plots that the points spread themselves out 

on horizontal parallel lines located at integer values of 

the TOTFSH axis. In these plots a ,'l' is used to indicate a 

single point, & higher numbers are used to show how many 

points are occupying the same location (or at least so 

nearly so as to be indistinguishable on the chosen scale). 

Furthermore an 'A' represents 10 points, B represents 1 1  

points, and so on up to 'Z' which represents 35 points. 

Finally, a ' * '  is used for 36 or more points. 

The plots of Figures 1.a-1.1 can be divided into 3 

groups. The first group consists of ~igures 1.a-l.h, the 

second of Figures 1.j-l.m, and the third of Figures 1.n-1.p. 

In their first group, TOTFSH is plotted against 

candidate variables DATE, COLSZE, TIDE, TIDEH, TIDEM, . 

NUMCHK, TIME, and AGECHK. The purpose of these plots is to 

inspect whether or not the explanatory variable is 

associated with the response (TOTFSH), and if so, then in 

what sort of way (linear, quadratic, logarithmic, and so 

on). For the quantitative variables, there seems to be no 

strong suggestion of any trend which could not be reasonably 

approximated by a curve which is quadratic in the 

explanatory variable (that is, by a half or whole parabola) 

over the given range of that variable. As for the solitary 

qualitative variable TIDE, the design variables should be 

sufficient to explain any effects on FEEDRATE. The purpose 



of doing plots of TOTFSH against TIDEH and TIDEM as well as 

was to derive possible further information from the TOTFSH 

versus TIDE graph in the case that only one tide level is 

associated with the response and no others. In fact one of 

the advantages of converting a quantitative variable into a 

qualitative or factor one is that associations with the 

response variable can be investigated without specifying the 

nature of how the response variable may depend on the 

explanatory variable (e.9. linearly, quadratically and so 

on) (Ref. ( 1 1 )  page 5 1 8 ) ,  although some information is lost 

in the conversion. 

The second plot group consists of TOTFSH against squares 

of the quantitative variables. The purpose here is to see if 

any further information can be obtained on how these 

variables may be associated with TOTFSH. The variance 

(spread) in the data, however, is so wide that it seems 

unlikely that any further enlightenment can be obtained. 

Undoubtedly this wide variance will lead to problems with 

model fit later on. 

The third group of plots do not involve TOTFSH at all. 

Their purpose is to explore possible correlations between 

pairs of explanatory variables. Such correlations qre called 

multicollinearities and they are responsible for how the 

importance of a variable in predicting the response 

variable's outcome may change as further explanatory 

variables are added/dropped from the model. selection of 



pairs for these plots was done on the basis of prior 

suspicions about what variables may affect each other. One 

can see from these plots, for example, a high correlation 

between AGECHK and DATE, which is not surprising. Each 

variable is still to be considered as a separate candidate 

for the model since AGECHK may affect FEEDRATE through the 

demand for fish, and seasonal effects of fish migration 

(recorded through DATE) may affect FEEDRATE through the 

supply of fish. 

Having now decided to use design variables for TIDE and 

to allow both linear and quadratic terms in the remaining 

quantitative variables in the model, attention could now be 

turned to model searching. Figure 2 shows some highlights of 

an attempt at finding a 'best' model using a best k subsets 

regression program, P9R, from BMDP (Section 13.3 of 

Ref.(4)). In the complete output (too voluminous for 

inclusion) the various subsets of explanatory variables are 

shown for models containing 1 variable up to the model which 

contains all of them. Here, 'best' is defined as maximal 

value of the quantity: 

~2~1-SSterror) 
SStt or al) 

- - SStre~ressi on) 
SStt or al) 

familiar from standard regression texts, such as Ref.(ll). 

SStt otal) depends only on observed feedrate values & will 

remain constant for all models, whereas SSterror) will 





change with each model since it depends on which variables 

are in the model. 

Note that the variable 

SQNUM=(NUMCHK)~ 

has not been included in the list of explanatory variables. 

The reason is that since NUMCHK has a limited range of only 

2 values ( 1  or 2 chicks in nest), one can write: 

I =~(NUMCHK -I( SQNUM) 
2 2 

Such linear dependencies are not acceptable. This would not 

occur if NUMCHK could vary over a wider range. 

It should be pointed out that adding more variables 

simply because they deliver a higher R2 is unwise since 

adding more explanatory variables to a model will never 

decrease R2, and in fact usually increases it (Ref.(ll) pg. 

,422). There must be a trade-off between maximizing R2 and 

keeping the model as simple as possible, that is, by 

limiting the number of variables in the final model (Ref.(S) 

pg. 294). A helpful pictorial aid in this regard is an 

R2-plot which plots R2 against the number of regression 

coefficients, (p+l), for a set of proposed models. Such a 

plot is shown in Figure 3, based on R2-values for various 

models collected in Table 7. These models were obtained from 

various P9R and GLIM runs (the next chapter and the 

Technical Supplement will discuss the use of GLIM). Paths 

are drawn in Figure 3 to connect up successively nested 



Figure 3: R2-plot 
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Table 7: Collected Models 

none 
4 
4 .9  
4 .9 .3  
4 .9 .3 .6  
4 .9 .3 .6 .  10 
4 .9 .3 ,6 ,10 ,5  
4 .9 .3 .6 .10 .5 .2  
4 ,9 ,3 ,6 .10 ,5 .2 .7  
4 . 9 . 3 . 6 . 1 0 . 5 . 2 . 7 , l  
4 . 9 .3 .6 .10 .5 ,2 ,7 ,1 ,8  
5  
5 . 8  
5 .8 .10  
5 ,8 ,10 ,2  
5 .8 .10 .2 .1  
5.8.10.2.1.3 
5 .8 ,10 .2 ,1 .3 ,9  
5 .8 .10 .2 .1 .3 .9 .7  
5 .8 ,10 .2 .1 .3 ,9 ,7 ,4  
4 .1 .7  
6 . 4 . 1 . 7  
6 ,4 ,1 ,10 .7  
2 . 6 , 4 . 1 . 1 0 , 7  
5 , 6 . 4 , 1 . 1 0 , 7  
2 ,5 .6 ,4 ,  1.10.7 
2 .5 ,6 .4 ,1 .10 ,7 ,8  . 
2 . 5 .6 .4 .1 .10 .9 .7 .8  

%gm + 
numchk+ 
sqda t e+ 
da te  + 
t ime + 
sq t i me+ 
t i d e  + 
co 1 sze+ 
sqage + 
agechk+ 
sqco 1 

%gm+t i d e  + 

sqcol + 

sq t  i me+ 
co 1 sze+ 
agechk+ 
date + 
sqda t e+ 
sqage + 
numchk 

C I 
Number R**2 

o f  
Regression 
C o e f f i c i e n t s  
Requ i red .  
P 

C23456789012345678901234567890123456789012345678901234567890123456789012 
2 3  4  5  6  7  

Explanatory  Var iab les  Used (see l abe l  index be low) '  

t o r v  Var i a b l e  
. . . . . . . . . . . . . . . . . . . .  

agechk 
co 1 sze 

da te  
numchk 

t i d e  
t ime 

w a g e  
sqco l 
sqda t e 
sq t  i me 



models (that is, any model in a path has all the explanatory 

variables of the model to the left of it, plus an extra 

one). One can look on the optimal model building process as 

finding the path of quickest ascent. Having found such a 

path, one can stop before the end when one finds a subset of 

explanatory variables which still deliver an R2-value 

sufficiently close to the maximum available (bbtained when 

all available variables are inside the model). 

A certain amount of arbitrary choice on the part of the 

analyst is called for in this kind of data search analysis. 

It was decided that the following set of 5 variables gave a 

relatively high R2 while still keeping the model simple: 

AGECHK,SQAGE,NUMCHK, TIME,SQTIME. From Figure 2 ,  one can see 

that this is the "best" (in the R~ sense) 5 variable model, 

and one can read off the calculated regression coefficients 

to propose the model: 

where: 

f=fitted/predicted (not observed) FEEDRATE 

x =NUMCHK 

x 2 =AGECHK 

x3=TIME 

X,=SQAGE=(AGECHK)~=X; 

X,=SQTIME=(TIME)~=X~ 

This model has 



which is not impressive. Consider 

which is a measure of the total spread/variation in the 

response variable Y, where 

is the sample mean. Consider also 

which is a measure of total lack of fit ( n = 5 2 4  observations 

in each of the formulas) for a particualr model. Recall that 

for any model 

so that R 2  is a measure of what proportion of the spread in 

FEEDRATE is explained by a particular model. Thus the model 

given previously explains 12.32% of this spread, so chance 

variation alone must cause the remaining 87.68%. Using all 

1 1  explanatory variables does little to improve the 

situa;ion for then 

from Figure 2. The 1.77% improvement comes with a cost of 

adding 6 more explanatory variables to the model. 



Nonetheless this 5-variable model shall be referred to 

hereafter as the 'current best model'. In the next chapter, 

means of improving this model (increasing R2 without adding 

too many new variables) will be explored. 

First some other aspects of this current best model need 

to be checked. These are the various plots which may give an 

indication of why the fit is so poor, and what could be done 

about it. Another P9R run was done, but on the current best 

model alone, in order to generate the plots. The results are 

shown in Figures 4.a-4.p. It will be noticed that the main 

emphasis in these plots is on the residuals, e i .  

The first plot, Figure 4.a, shows one of the most 

important plots for assessing a model's overall fit: 

residuals against fitted,values, Fi. P9R labels this latter 
quantity 'PREDICTD'. Now if a model does fit the data well, 

such a plot should show a (nearly) horizontal band of 

constant width containing the points ( ~ e f .  (61, pg. 314). 

The plot shown here seems tricky to interpret, but one can 

gain some insight into what the plot is trying to convey by 

considering the second plot: residuals versus observed 

values, Y i ,  that is, the FEEDRATE values. This plot is in 

Figure 4.b. 

In this plot vertical line segments will be noticed. 

These reflect the discrete nature of the horizontal-axis 

variable, Y. As was explained earlier, Y is one-half of 



Figure 4.a: Residual vs. Fitted 



Figure 4.b: Residual vs. Observed 
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Figure 4.i: ~esidual vs. DATE 



Figure 4 . j :  Residual vs.  TIDE 
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Figure 4 .k :  Reisudal vs. TIDEH 





Figure 4.m: Residual vs. SQCOL 
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Figure 4.0: Histogram of Standardized Residuals 

HISTOGRAM OF STANDARDIZED (STUDENTIZED) RESIDUALS 
EACH BIN OF THE HISTOGRAM IS LABELED kITH ITS LOWER LIMIT 
NOTE THAT IF THE COUNT FOR A E I N  EiCEEDS 100. ONLY 
100 ASTERISKS WILL BE PRINTED 
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Figure 4.p: Normal Prob. Plot for Stand. Residuals 
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TOTFSH, and TOTFSH must be a non-negative integer, so 

Y-FEEDRATE must be a non-negative integer multiple of 

one-half. These parallel line segments in turn suggest a 

nonhorizontal and positively sloped band which contains 

them, which also suggests a strong positive correlation 

between Y and e. In fact, according to Ref. (5), pg.147, 

this correlation should be: 

Furthermore, it can be shown that parallel vertical line 

segments pointing south to north in the e versus Y plot 

become parallel line segments pointing from southeast to 

northwest in the e versus ? plot (Ref. ( 8 )  pg. 216). For 

example, of the slanted parallel line segments suggested in 

Figure 4.a, the bottom most one is simply the line segment 

which corresponds to y-0 from Figure 4.b where it appears as 

the left most vertical line segment. Note also in Figure 4.a 

that no points appear below this bottom most slanted line 

segment. This is unavoidable because the data must satisfy 

y20 (that is, negative values of FEEDRATE are not possible 

here). 

In addition, a non-horizontal positively sloped band 

will become an even more strongly sloped band. This time, 

however, the band has become so wide in Figure 4.a that the 

correlation between the axis variables almost vanishes. That 

is, while: 

r (e ,Y)=(,-R') 1'2=~.9364 



where r stands for correlation coefficient calculated from 

sample data alone, 
A 

. r ( e  ,Y )==O 

But ~ef.(5) states on pg. 148 that this is what should 

happen if the analysis proceeded correctly, which evidently 

it has. Exact equality with zero was prevented by 

accumulated round-off error. 

These two residual plots, however, still reveal no new 

information on the quality of modei fit. That the model does 

not fit the data well has already been indicated by the low 

RI-value of 0.1232. The reasons for a poor fit may be 

important missing variables (including cross-products or 

interactions), need for transformations which involve the 

response variable, need for change in 'additivity scale' 

(this is subtly different from the need for transformations, 

as will be shown in the next chapter), or any combinations 

of these. While some of the above actions will be discussed 

in the next chapter, the next 3 sets of plots should 

hopefully suggest some corrective action in the meantime. 

The next 5 plots (~igures 4.c-4.g) show residuals versus 

the various explanatory variables already in the current 

best model. The purpose of these plots is to look for 
> 

suggestions of any systematic dependency of a non-linear 

nature between the residuals and the values of the other 

variable in the plot. The presence of that other variable in 

the model as is eliminates any further linear relation. If 



- 

any such dependency is found, then the appropriate function 

of that variable (e.g. higher-order power, reciprocal, root, 

logarithm, or whatever) should be added to the list of 

candidate explanatory variables and the analysis restarted. 

As it is, no such further dependency seems to be strongly 

suggested. 
F 

The plot of residual against TIME is important for 

another reason as well. Such a plot is used to check the 

assumption of zero correlation between the random error 

terms, r i .  This plot appears as a band with no apparent 

upward or downward trend. Neither do any sort of 'cycle' 

effects seem present. On this basis, the assumption of 

uncorrelated e i  appears justifiable. 

The next 7 plots (Figures 4.h-4.n) show residuals versus 

the remaining candidate explanatory variables which did-not 

make it into the current best model. Ordinarily these plots 

would be checked for both linear and non-linear trends, but 

the P9R program has already checked formally (that is, 

analytically) for the linear trends, and still a 5-variable 

model was selected as the current best one. Thus only 

non-linear trends need be investigated, as for the 5 

previous plots. Again, however, no such trend appears to 

strongly suggest itself. 

The remaining 2 plots (Figures 4.0 and 4.p) deal with 

checking the assumption of a normal distribution with a mean 



cf zero for the random errors, ri.The residuals, e i  were 

first standardized 

before the plots were done. Figure 4.0 shows a histogrm 

which should look approximately like a shaded-in normal 

distribution density curve if the normality assumption is 

correct. Similarly, Figure 4.p shows a normal probability 

plot of the standardized residuals (as indicated by the I * '  

characters), which if the normality assumption is correct 

should lie on the line indicated by the slash ( ' / ' I  

characters. 

Having obtained the best possible model so far using no 

cross-products and modelling the response variable on a 

linear scale, the next chapter will investigate how to 

improve the poor fit in the current best model. 



CHAPTER 4 

SECOND ANALYSIS--IMPROVE FIT OF CURRENT BEST MODEL 

There is basically one aspect of the current best model 

that needs to be improved: R~ should be increased. This 

chapter sill investigate 3 methods of accomplishing this. 

Some methods will be used in combination. Other aspects of 

the current best model which were satisfactory will be 

re-checked to make sure they are not sacrificed. 

4.1 Method 1. Investiqate Interaction/Cross-Product Terms 

It should be pointed out that an interaction or 

cross-product term must use at least 2 explanatory variables 

which measure different quantities. For example, COLSZE and 

AGECHK would form a cross-product of 

whereas TIME and SQTIME would form a product of 

which would not be considered a cross-product or interaction 

. term. 

 numerating the possibilities then: 

AGECHK 
NUMCHK 
TIME 
TIDEH 
TIDEM 

COLSZE 



DATE 
SQAGE 
SQTIME 
SQCOL 
SQDATE 

AGECHK may form 9 cross-products with variables below it on 

the above list, since AGECHK and SQAGE do not form a true 

cross-product. NUMCHK may form 9 cross-products also with 

variables below it. The cross-product fo NUMCHK with AGECHK 

was already accounted for in the AGECHK count, so it must 

not be counted twice. Similarly TIME may form 7 

cross-products with-variables below it, TIDEH and TIDEM may 

form 6 each (a cross-product involving TIDEH and TIDEM would 

not make sense, especially since this product would always 

be zero), COLSZE may form 4, DATE and SQAGE may form 3 each, 

SQTIME may form 2, and SQCOL only 1. The total number of 

distinct cross-products.available is thus 50. Furthermore 

this is only the possible number of 2-variable 

cross-products. 3 and higher variable products have not yet 

been considered (nor will they be). 

Not all of the 50 possible 2-variable interactions 

counted are worth considering, however. In fact, only those 

which make some sort of 'biological sense' will be 

investigated. Ref.(ll) pg. 680 recommends selection of 

interactions be done by a subject area specialist. One could 

conceivably possess a data set'of such a highly pathological 

nature that no significant improvement of model fit occurs 

until a certain 3rd order interaction is included. If the 



choices of response variable and additivity scale are 

appropriate (refer to Methods 2 and 3 further on in this 

chap t e r ) ,  then this is more likely due to a q u i r k  of the 

sample data itself (the 'luck of t h e  draw',  a s  i t  were) and 

not due to the phenomena being modelled. Such i s  one of the  

pitfalls of 'data snooping' (to be described in more detail 

in the next chapter). Certainly it is permissible however to 

consider cross-products where one of t h e  variables does not 

already appear in the model as a main effect, although this 

is considered to be unusual since interaction effects are 

'typically smaller' than the main effects (Ref. ( 1 1 )  pg. 

681). 

To select which i n t e r a c t i o n  effects are worthy of 

investigation, the graphical techniques outlined in pages 

675-681 of Ref. ( 1 1 )  are h e l p f u l .  To illustrate, consider 

AGECHK and NUMCHK. The proposed graph in Figure 5 shows 

possibly negligible i n t e r a c t i o n  between these t w o  variables 

in fitting values of YtFEEDRATE. Absolutely no interaction 

would occur i f  the 2 curves were p e r f e c t l y  p a r a l l e l .  The 

decision on whether or not to include an interaction was 

thus based on this prior expectation of parallelism in 

curves separated by levels of some factor. 

In this way, interactions were a n t i c i p a t e d  between 

WMCHK with AGECHK, TIME with AGECHK (reflecting possible 

3ifferences in feeding schedules for older c h i c k s ) ,  COLSZE 

aith AGEC-HK, COLSZE .with NUMCHR (COLSZE reflecting a sense 



Figure 5: Proposed Graph to Visually Detect Interactions 



of competition for finite fish supply), and TIME with both 

TIDEH and TIDEM. Furthermore, if an interaction between 2 

variables was to be investigated, then interactions should 

also be attempted between any higher order terms of either 

variable as well. For example, not just TIME with AGECHK, 

but also SQTIME with AGECHK, TIME with SQAGE, and SQTIME 

with SQAGE should be considered. 

A P9R run was done with these interactions attempted 

along with all of the original candidate explanatory 

variables, not just the 5 in the current best model. As was 

pointed out earlier, the multicollinearity present in the 

data means that although, say, COLSZE was not important 

without any interactions present in the.mode1, it may become 

so after some are added. The naming of these interaction 

terms is shown in the source file for the run (Figure 2 2 )  

found in the Technical Supplement (Chapter 9). A portion of' 

the output is shown in Figure 6. The maximum attainable 

value available (R2=0.1927) is still low however, indicating 

that the model still does not give a good fit to the data, 

as far as explaining variation in Y goes. 

For a fitted value, ?, produced by a model, its 

estimated variance, s ( ? I ,  may also provide a useful 

criteria for choosing one model over another. If a model is 

to be valuable for estimating future mean outcomes (or 

predicting individual ones, although this requires a larger 

but .related prediction variance, see pg. 3 1 2  of Ref.(6)) , 
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Figure 6: P9R run with interactions 

ADJUSTED 
R-SQUARED 

0.133805 
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ADJUSTED 
R-SQUARED 

0. 148771 

15.11 VARIABLE COEFFICIENT T-STATISTIC 
19 tlal -0.000318200 -2.95 
23 nlal 0 .0367827 7.44 
24 nla2 -0.000844087 -6.23 
29 c2nl -0.00248804 -5.29 
30 c2al 0.000104966 4.92 

INTERCEPT 0.464412 

15.87 VARIABLE COEFFICIENT T-STATISTIC 
20 tla2 -0.00000934075 -2.81 
23 nlal 0.0333908 6. 15 
24 nIa2 -0.000721877 -4.46 
29 c2nl -0.00248880 -5.27 
30 c2al 0.000104571 4.89 

INTERCEPT 0.431570 

16.87 VARIABLE COEFFICIENT T-STATISTIC 
9 numchk 0.525350 7 75 
16 clnl -0.0486801 -6.24 
17 clal 0.00223674 5.71 
20 tla2 -0.0000326089 -4.22 
22 t2a2 0.4860595E-06 2 .40 

INTERCEPT 0.352840 

28.00 VARIABLE 
3 date 
4 colsze 
6 tideh 
7 tidem 
8 time 
9 numchk 
10 agechk 
1 1  sqtlme 
12 sqdate 
13 sqage 
14 sqcol 
16 clnl 
17 clal 
18 cla2 
19 tlal 
20 tla2 
21 t2al 
22 t2a2 
23 nlal 
24 nla2 
25 thtl 
26 tmt I 
27 tht2 
28 tmt2 
29 c2nl 
30 c2al 
31 c2a2 

INTERCEPT 

COEFFICIENT 
0.00462269 
-0.105629 
0.953796 
1.51885 

0.217280 
0.640454 
0.262125 

-0.00332563 
-0.000191422 
-0.00521267 
0.00869716 
-0.0162931 
0.0108142 

-0.0002 I6398 
-0.0193626 

0.000406640 
0.000363007 

,O. OOOOO79O996 
-0.00827323 

-0.0000502875 
-0.104348 
-0.1531 18 

0.00244927 
0.00347945 
-0.00202752 

-0.000655491 
0.0000145394 

-2.68740 

T-STATISTIC 
0.31 
-0.74 
0.65 
1.04 
1.21 
1.57 
1 .63 

- 1 .  19 
-0.48 
-1.60 
1.02 

-0.37 
0.90 
-0.89 
-1.62 
1.64 
1.53 

-1.59 
-0.25 
-0.07 
-0.84 
-1.22 
0.94 
1.31 

-0.79 
-0.94 
1.06 



then the best model would be the one which gives the 

narrowest confidence (or prediction) intervals. For a fixed 

confidence level, 100(1-a)%, the width of these intervals 

increases with increasing s2(?), so the model which gives 

the smallest s2(f) values is preferable. 

Figures 7.a through 7.c show portions of a GLIM run 

where the following 3 models were investigated: 

Figure 7.a: Current Best Model 
Figure 7.b: Model with All Explanatory Variables 

but No Interactions 
Figure 7.c: Model with All Explanatory Variables 

and All Interactions from Figure 6 

In each figure is shown fit results and a table of data for 

the first 50 observations. This table has numbered entries 

and each line displays the following data for a single 

observation: 

1 )  Observation Tag (as wag described in Chapter 2) 
2) Fitted Outcome Value, Y 
3) ~stimated Variance, s 2  (?) 

From these figures, it seems that the current best model 

offers fitted outcomes with smaller estimated variances than 

the model with all explanatory variables. Furthermore, 

adding interactions to this latter model further increases 

the s2(?) values. Thus the method of adding interactions was 

abandoned at this stage. 

Before leaving this method altogether, it should be 

pointed out that 3rd order interactions were not attempted 

because it was suspected that the situation would not 



Figure 7.a: Inspect s 2 ( ? )  for Current Best Model 
. . 

CYCLE DEVIANCE DF 
I 1 4 9 . 3  5 1 8  

ESTIMATE 
1  0 . 8 7 3 3  
2  0 . 5 4 4 9 E - 0 1  
3 0 . 2 4 3 1  
4  - 0 . 8 4 4 8 E - 0 1  
5  - 0 . 1 2 0 9 E - 0 2  
6  0 . 1 5 6 4 E - 0 2  

SCALE PARAMETER 

S . E .  
0 . 2 9 0 3  
0 . 1 3 9 0 E - 0 1  
0 . 5 0 1 8 E - 0 1  
0 . 2 0 3 3 E - 0 1  
0 . 2 7 9 6 E - 0 3  
0 . 4 0 5 2 E - 0 3  
TAKEN AS 

PARAMETER 
%GM 
AGEC 
NUMC 
T I M E  
SQAG 
SOT I 

0 . 2 8 8 2  



Figure 7.b: Inspect s 2 ( ? )  for Model with All Explanatory 
Variables but No Interactions 

CYCLE D E V I A N C E  
1  1 4 6 . 3  

E S T I M A T E  
1  1 . 5 0 0  
2  0 . 4 5 1 8 E - 0 1  
3  0 . 1 8 1 5  
4  - 0 . 1 0 9 0  
5  - 0 . 9 9 0 1 E - 0 3  
6 0 . 2 1 0 2 E - 0 2  
7  0 . 9 0 2 2 E - 0 2  
8  - 0 . 2 9 2 7 E - 0 1  
0 ZERO 
9 - 0 . 1 1 4 8  

1 0  - 0 . 1 5 1 4  
1 1  - 0 . 3 6 9 6 E - 0 3  
1 2  0 . 1 0 3 9 E - 0 2  

S . E .  
0 . 3 6 1 0  
0 . 1 7 G 7 E - 0 1  
C . 5 8 0 9 E - 0 1  
0 . 2 3 9 5 E - 0 3  
0 . 3 3 2 8 E - 0 3  
0 . 4 9 4 8 E - 0 3  
0 . 1 3 9 9 E - 0 1  
0 . 1 6 8 9 E - 0 1  

A L I A S E D  
0 . 6 6 0 0 E - 0 1  
0 . 8 0 2 4 E - 0 1  
0 . 3 7 7 4 E - 0 3  
0 . 9 1 9 0 E - 0 3  

SCALE PARAMETER T A K E N  AS 

PARAMETER 
%GM 
AGEC 
NUMC 
T I M E  
SOAG 
SOT I 
DATE 
COLS 
T I D E (  1  ) 
T I D E ( 2 )  
T I D E ( 3 )  
SODA 
SQCO 



Figure 7.b, continued 



Figure 7.c: Inspect r (?) for Model with All Explanatory 
variables and All ~nteractions from Fiqure 6 

CYCLE DEVIANCE D F 
1 137.5 496 

ESTIMATE S.E. PARAMETER 
I -2.687 2.388 %GM 
2 0.2621 0.1611 AGEC 
3 0.6405 0.4074 NUMC 
4 0.2173 0.1802 TIME 
5 -0.5213E-02 0.3258E-02 SQAG 
6 -0.4326E-02 0.3627E-02 SOTI 
7 0.4623E-02 0.1507E-01 DATE 
8 -0.1056 0.1436 COLS 
0 ZERO ALIASED TIDE( 1 )  
9 1.519 1.462 TIDE(2) 
10 0.9538 1.465 TIDE(3) 
1 1  -0.1914E-03 0.3997E-03 SODA 
12 0.8697E-02 0.851lE-02 SOCO 
13 -0.8273E-02 0.3302E-01 AINI 
14 -0.5029E-04 0.6928E-03 A2N1 
15 -0.1936E-01 0.1197E-01 AITI 
16 0.3630E-03 0.2373E-03 AITZ 
17 0.4066E-03 0.2480E-03 A2T1 
18 -0.7910E-05 0.4986E-05 A2T2 
19 -0.1629E-01 0.4401E-01 CINI 
20 -0.2028E-02 0.258lE-02 C2N1 
21 0.1081E-01 0.1197E-01 CIA1 
22 -0.2164E-03 0.2437E-03 CIA2 
23 -0.6555E-03 0.6941E-03 C2A1 
24 0.1454E-04 0.1369E-04 C2A2 
0 ZERO ALIASED TIME.TIDE(1) 
25 -0.1531 0.1252 TIME.TIDE(2) 
26 -0.1043 0.1245 TIME.TIDE(3) 
0 ZERO ALIASED SQfI.TIDE(1) 
27 0.3479E-02 0.2649E-02 SQTI.TIDE(2) 
28 0.2449E-02 0.2601E-02 SQTI.TIDE(3) 
SCALE PARAMETER TAKEN AS 0.2771 



Fiqure 7.c, continued 



improve much. If it did, then this may be an indication that 

Methods 2 or 3 are a better approach. As for 4th and higher 

order interactions, they are usually found in practice to be 

small or non-existent (~ef. ( 1 1 )  pg. 809). 

It is interesting to note, however, that the best 5 

variable model in this run has only one main effect and 4 

interactions. Again, this may suggest that a linear additive 

model on the original FEEDRATE scale may not be the best 

choice. Methods 2 and 3 will investigate some alternatives. 

4.2 Method 2. Transform Response Variable 

The multiple regression model presented at the start of 

Chapter 3 now has its response variable transformed before 

' the model is fitted: 

g(Y)=/30+/31xI+/32X2+...CP X + €  
P P  

where g is some function chosen to show a scale where the 

linear additivity of explanatory varibles and random error 

are more suitable. The subscript i which tags individual 

observations is not shown for simplicity, but is implied. 

This method is more commonly applied to data to make it 

look more like a random sample from a normal distribution. 

The problem with a regression model is that it is the error 

terms, c i ,  which should benefit from the transformation, 

since these are assumed to be normally distributed with a 

common mean 0 and common variance 0 2 .  The g ( Y i ) ,  however are 



then normally distributed with different means. since the 

x . .  vary from one observation to the next. It would thus be 
11 

pointless to attempt to transform the Yi so that they look 

like a sample from a single normal population (Ref. (IS)), 

which can only have one mean. 

Method 3 offers an even better alternative for the 

regression model. Nonetheless a logarithmic transformation 

was attempted since Ref. (5) pg. 221 suggests that it might 

have been the better way to proceed after the plots of 

Figure 1. The case of Yi=O, however, causes a problem since 

the transformation 

g(Y)=I n(Y) 

is not defined there. Ref. ( 1 4 )  pg. 77 advises to replace 

sudh I'-values with a value less than one-half the available 

- accuracy. The Yi are derived from counts, however, so 

instead the advice of Ref. (6) pg. 161 was followed whereby 

a constant (chosen albeit arbitrarily) of 0.1 was added 

beforehand: 

g(Y)=ln(Y+O. 1 )  
i 

A P9R run was done on these transformed values, the results 

of which are highlighted in Figure 8. No interactions were 

attempted. 

As it turned out the best 5 variable model of Figure 8 

uses the same 5 explanatory variables as in the current best 

model, but now AZ has fallen to 0.1149. Furthermore, when 

all 1 1  explanatory variables are used in a model, the normal . 



Fiqure 8: P9R run on log-transformed observations 

SUBSETS WITH 5 VARIABLES ........................... 
ADJUSTED 

R-SQUARED R-SQUARED C P 

0 . 1 1 0 8 0 0  0 . 1 0 2 2 1 7  11 .17  VARIABLE COEFFICIENT T-STATISTIC 
time -0. 130817 - 3 . 5 9  
numchk 0 . 3 8 1 6 5 5  4 . 2 4  
agechk 0 . 0 9 0 6 1 0 1  3 . 6 3  
sqt 1 me 0 . 0 0 2 3 7 4 3  1 3 . 2 7  
wage -0.0020789o - 4 .  14 

INTERCEPT - 0 . 3 2 4 4 5 3  

0 . 0 9 6 3 5 2  0 . 0 8 7 6 2 9  1 9 . 6 7  VARIABLE COEFFICIENT T-STATISTIC 
t t demed -0 .136514  - 1 . 4 9  
time - 0 . 0 1 5 7 7 8 1  - 2 . 7 3  
numchk 0 . 3 7 6 5 8 6  4 . 1 5  
agechk 0 . 0 8 3 4 1 9 1  3 . 3 1  
wage -0.00195473 - 3 . 8 6  

INTERCEPT - 1 . 4 1 9 7 3  

0 . 0 9 5 1 5 3  0 . 0 8 6 4 1 9  2 0 . 3 7  VARIABLE COEFFICIENT T-STATISTIC 
co 1 sze - 0 . 0 1 0 9 6 2 7  - 1 . 2 3  
ttme - 0 . 0 1 3 2 1 6 2  - 2 . 4 1  
numchk 0 . 3 3 8 4 0  1 3 . 5 1  
agechk 0 . 0 8 7 7 1 5 8  3 . 4 9  
sqags -0 .00204993  -4  . 0 4  

INTERCEPT - 1 , 4 4 3 6 8  

0 . 0 9 4 2 9 1  0 . 0 8 5 5 4 9  2 0 . 8 8  VARIABLE COEFFICIENT T-STATISTIC 
t lme - 0 . 0 1 3 2 5 8 2  - 2 . 4 1  
numchk - 0 . 3 5 0 3 9 9  3 . 6 9  
agechk 0 . 0 8 8 6 5  1 1 3 . 5 1  
wage - 0 . 0 0 2 0 6 1 0 2  - 4 . 0 4  
S ~ C O  1 -0 .000436799  - 1  .O1 

INTERCEPT - 1 . 5 2 1 0 7  

ADJUSTED 
R-SQUARED R-SQUARED CP 

0 . 1 2 9 7 7 9  0 . 1 1 1 0 8 2  1 2 . 0 0  VARIABLE 
date 
col sze 
t idehi 
t i demed 
tlme 
numchk 
agechk 
sqt lme 
sqdate 
wage 
sqco 1 

IKTERCEPT 

SUBSETS WITH 1 1  VARIABLES ........................... 

COEFFICIENT 
0 . 0 0 5 9 1 5 4 6  
-0 .0369024  

- 0 . 3 8 7 4 6 8  
-0 .282428  
-0 .190823  

0 . 3 0 4 7 8 8  
0 . 0 8 0 8 5 4 5  

0 . 0 0 3 6 7 6 5 3  
.O. 000199972  
- 0 . 0 0 1 8 8 9 6 9  

0 . 0 0 1 3 0 4 8 4  
0 . 9 0 6 1 5 6  

.. . 

T-STATISTIC 
0 . 2 4  

- 1 . 2 2  
- 2 . 6 9  
- 2 . 3 9  
- 4 . 4 4  

2 . 9 3  
2 . 6 4  
4 .  14 

- 0 . 3 0  
- 3 . 1 7  

0 . 8 9  



probability plot of standardized residuals (not included 

here) showed a stronger deviation from normality than was 

the case back in Figure 2. 

In Figure 9, P9R output is shown for another attempted 

transformation: 

This transformation was selected on the basis of a remark on 

pg. 161 of Ref. (6) that square root transformations tend to 

make count-type data more 'normal-looking'. The situation 

with R2 and the normal probability plot (not shown) had 

improved over the previous transformation, but overall the 

situation still seems to be better with untransformed Y i .  

Another problem caused by both of the above 

transformations could be seen in the histograms of 

standardized residuals (not shown here). Bimodality is -very 

strongly suggested, and this situation should be avoided 

because of its unknown implications. 

Although Method 2 has proved unfruitful, it will make 

and interesting comparison with the next attempt at R~ 

improvement. 

4.3 Method 3. Chanqe Additivity Scale 

For the original multiple regression model proposed: 

+ f l  X + f l  X + * * * + f l  X + E  Y=Po 1 1 2 2 P P  



Figure 9: P9R run on root-transfromed observations 

R-SQUARED 

0. 117785 

ADJUSTED 
R-SQUARED 

SUBSETS WITH 5 VARIABLES ........................... 

VARIABLE 
time 
numchk 
agechk 
sqt tme 
sqage 

INTERCEPT 

VARIABLE 
t t demed 
time 
numchk 
agechk 
sqage 

INTERCEPT 

VARIABLE 
co 1 sze 
r ?me 
numchk 
agechk 
sqage 

INTERCEPT 

VARIABLE 
t ime 
numchk 
agechk 
wage 
sqco 1 

INTERCEPT 

COEFFICIENT 
-0.0601809 

0.175063 
0.0409328 

0 .OOlO9775 
-0.000932062 

0.837470 

COEFFICIENT 
-0.0602573 

-0.00693580 
0.172764 

0.0376648 
-0.000875506 

0.327617 

COEFFICIENT 
-0.00505068 
-0.00580858 

0. 155130 
0.039592 1 

-0.000918582 
0 .319768 

COEFFICIENT 
-0.00582593 

O.l6O9O5 
O.O4OOOO9 

-0.000923118 
-0.000197421 

0 .28356 1 

T-STATISTIC 
-3 .79  

4 . 4 7  
3 . 7 8  
3 . 4 7  

-4.27 

T-STATISTIC 
-1 .51  
-2 .76  
4 .37  
3.4.6 

- 3 .98  

T-STATISTIC 
-1 .31  
-2 .43  

3 .69  
3 . 6 2  

-4 .  16 

T-STATISTIC 
-2 .44  

3 . 8 9  
3 . 6 4  

-4 .16  
- 1 . 0 5  

SUBSETS WITH 11 VARIABLES ........................... 
ADJUSTED 

R-SQUARED R-SQUARED C P 

0 .136593 0.118043 12 .00  VARIABLE 
date 
co 1 sze 
t idehi 
t t demed 
t ime 
numchk 
agechk 
sqt ime 
sqdate 
wage 
sqcol 

INTERCEPT 

COEFFICIENT 
0.00358991 
-0.0179204 

-0.159851 
- O . I l 7 5 1 2  

-0.0851073 
O . l 3 7 3 l 5  

O.O3597OO 
0.00163977 

-0.000134536 
-0.000828373 
0.000631767 

1 .372O7 

T-STATISTIC 
0 . 3 3  

-1.36 
-2.56 
-2.28 
-4.56 

3 . 0 3  
2 . 7 0  
4 . 2 5  

-0 .46  
-3 .19  
0 . 9 9  



it will be noticed that the only random component is r. The 

sum: 

may be regarded as the systematic (nonrandom) component of 

the current model. Thus: 

for observation i .  The additivity of the explanatory 

variable effects is on the same scale as 1 and hence Y as 

well. Suppose instead the situation were altered so that 

additivity of explanatory variable effects no longer took 

place on the same scale as 1 ,  but a function of it: 

but now 

For example, if 

then 

~ = e q = e x p ( q )  

= e x p ( p  + p  x  + p  x + e 0 . + p  x ) 0  I 1  2 2  P P  

Thus : 

Y = e x p [ B  + P  x + P 2 x 2 + * * * + P  x )+r 0  I 1  P P  

Back in Method 2, one of the attempted transformations was 

l n ( Y + O . l ) = ~ o + ~ I x I + ~  x 
2.2 *+?P*P+r 

or equivalently 

Y = e ~ p [ ~ ~ + ~ ~ x ~ + ~ ~ x ~ + * . . + P  x +r)-0.1 
P P  

Ignoring the 0.1 subtraction, the difference between these 

two methods is that in Method 2, the 'linear predictor' 



- 

+ p  x + p  x + * * * + p  x " ' P o  I I 2 2 P P  

and the random error, E ,  must be kept together as a sum 

before any transformations take place, whereas this is no 

longer necessary in Method 3. Also in Method 3, it is still 

possible to decompose the original observations into a sum 

of systematic and random components: 

Yi =pi + e  i 

which is more intuitively appealing. Method 3 achieves the 

flexibility of Method 2 by using a transformation on the 

systematic component alone, rather than on the observations, 

to obtain a linear predictor in the explanatory variables: 

g(e)=q=Po+PIxI+P2x2+."+P x 
P P  

This framework is known as a Generalized Linear Model, and 

the special case of 

g(~)=l n(p) 

known as the log-linear model will be pursued here. . 

Recall that FEEDRATE was calculated from total fish 

delivery counts, TOTFSH. According to pg. 127 of Ref. (81, 

the log-linear model is often suitable for count data. Thus 

TOTFSH will be used as a response variable rather than 

FEEDRATE, so now Y=TOTFSH. For the log-linear model the 

ideal distribution for the ri  is no longer the normal one, 

but the Poisson, or quasi-Poisson in the case of 

over-dispersed data (that is, data with a wider spread than 

a Poisson distribution can accomodate). 



The .technique for fitting the log-linear model to the 

sample data in order to produce estimates of the P .  uses a 
J 

different approach than the normal-theory multiple 

regression of Chapter 3. As a result there is no longer any 

R' or even SS(t ot al) or SS(error) terms to work with. 

Instead one works with a more general goodness of fit 

measure known as the deviance, which will replace SS(error). 

Also one considers a kind of generalized R2: 

RZ,,-Dtcurrent model) 
g D(nul1 model) 

where D(nul1 model) is the deviance for a model which 

contains no explanatory variables (hence the term 'null'), 

but only a constant term, D o ,  playing the role of an overall 

grand average or mean. This quantity will replace SS(tota1). 

D(current model) refers to the deviance of the current model 

being considered. It behaves like SS(error) in the sense 

that if any other variable is added to the model, then it 

cannot increase. Thus R 2  cannot decrease. It turns out that 
g 

for normal theory multiple regressions (such as in Chapter 

3 1 ,  RZ and R 2  are the same. This is because under such 
g 

conditions: 

D(nu1 l model )=SS(t ot al) 

D(current model)=SS(error) 

The Technical Supplement provides more details (see Chapter 

9). 



GLIM is the computer software package that does the work 

on Generalized Linear Models. Figure 10 displays a portions 

of the GLIM run used on the TOTFSH outcomes. I t  should be 

noted that GLIM generates its own design variables, so that 

TIDE was used in the input, rather than TIDEH and TIDEM. In 

fact one notices the similarity: 

TIDE(2)=TIDEM 

TIDE ( 3 ) =TIDEH 

TIDE(I) is shown on the GLIM output as always having the 

pre-set value of zero, since although TIDE has 3 levels, 

o n l y  2 design variables are needed. 

One a l s o  notes from t h e  ou tpu t :  

D ( n u l 1  model)=580.f 

and for the fullest possible model without interactions: 

so that: 

But for the corresponding full model from Figure 2: 

so it seems as  though this model will be a poor fit too. 

Also a s  part of the GLIM run, though not shown here, the 

interactions from Method 1 were attempted as improvements to 

the fit of the full model. When all of them were inserted, 

the result was: . 



Fiqure 10: Loq-Linear Modelling with GLIM 

CYCLE D E V I A N C E  D F  
4 5 8 0 . 2  5 2 3  

E S T I M A T E  S . E .  PARAMETER 
1 0 . 2 9 9 5  0 . 3 9 6 1 E - 0 1  %GM 

SCALE PARAMETER TAKEN AS 1 . 1 0 9  

CYCLE D E V I A N C E  D F  
4 5 0 9 . 9  5 1 2  

E S T I M A T E  S . E .  PARAMETER 
1 1 . 1 9 0  0 . 5 7 1 9  %GM 
2 0 . 2 5 4 2  0 . 9 1 0 9 E - 0 1  NUMC 
3 - 0 . 7 1 7 5 E - 0 3  0 . 6 2 2 7 E - 0 3  SQDA 
4 0 . 2 0 4 6 E - 0 1  0 . 2 2 1 6 E - 0 1  DATE 
5 - 0 . 1 4 6 2  0 . 3 6 2 9 E - 0 1  T I M E  
6 0 . 2 8 3 4 E - 0 2  0 . 7 5 4 4 E - 0 3  S Q T I  
0 ZERD A L I A S E D  T I D E (  1 ) 
7 - 0 . 1 5 5 3  0 . 1 0 5 1  T I D E ( 2 )  
8 - 0 . 1 9 6 5  0. 1 2 6 7  T I D E ( 3 )  
9 - 0 . 3 8 4 8 E - 0 1  0 . 2 6 1 9 E - 0 1  CDLS 

1 0  - 0 . 1 6 4 2 E - 0 2  0 . 5 9 0 9 E - 0 3  SQAG 
1 1  0 . 7 2 4 0 E - 0 1  0 . 2 9 2 4 E - 0 1  AGEC 
1 2  0 . 1 3 4 1 E - 0 2  0 . 1 2 8 8 E - 0 2  SQCO 

SCALE PARAMETER TAKEN AS 0 . 9 9 5 9  



R2=0. 1649 
g 

which is no better than the analogous situation in the 

normal theory attempts in Method 1 .  

A comparison of residual sum of squares, that is, 

SS(error1 from Chapter 3, is also worthwhile. In Figure 1l.a 

is shown a portion of a GLIM run on the current best model 

with a separate calculation of SS(error) given below the fit 

results. This quantity was calculted as described in Chapter 

3, and to 4 significant figures comes out to be 149.3, which 

is equal to the deviance of that model. But as has already 

been pointed out, this is what should happen for normal 

theory models. In Figure 1l.b is shown another protion of 

the GLIM run where the same 5 explanatory variables are 

used, but now in a log-linear model. As is shown below the 

fit results, a SS(error1 value of 596.8 is computed. In both 

cases the SS(error) is a measure of the spread in the 

discrepancy between fitted and observed outcome values 

(FEEDRATE for the normal theory model, TOTFSH for the 

log-linear model). Since a smaller SS(error) value is to be 

preferred, the log-linear model was therefore not pursued 

any further. 

Overall it looks as though none of the methods of this 

chapter have produced a result which would make modification 

of the current best model worthwhile. 



Figure ll.a: SS(error) for Normal Theory Model 

CYCLE D E V I A N C E  D  F 
1  1 7 0 . 3  5 2 3  

E S T I M A T E  S . E .  PARAMETER 
1  0 . 6 7 4 6  0 . 2 4 9 3 E - 0 1  %GM 

SCALE PARAMETER TAKEN AS 0 . 3 2 5 6  

CYCLE DE.VIANCE D  F 
1 1 4 9 . 3  5 1 8  

E S T I M A T E  S . E .  PARAMETER 
1  0 . 8 7 3 3  0 . 2 9 0 3  %GM 
2  0 . 2 4 3 1  0 . 5 0 1 8 E - 0 1  NUMC 

- 3  0 . 5 4 4 9 E - 0 1  0 . 1 3 9 0 E - 0 1  AGEC 
4  - 0 . 8 4 4 8 E - 0 1  0 . 2 0 3 3 E - 0 1  T I M E  
5  - 0 . 1 2 0 9 E - 0 2  0 . 2 7 9 6 E - 0 3  SQAG 
6 0 . 1 5 6 4 E - 0 2  0 . 4 0 5 2 E - 0 3  S Q T I  

SCALE PARAMETER TAKEN AS 0 . 2 8 8 2  



Fiqure ll.b: SS(error) for Log-Linear Model 

C Y C L E  D E V I A N C E  D F  
4  580.2 523 

E S T I M A T E  S . E .  PARAMETER 
1  0 . 2 9 9 5  0 . 3 9 6 1 E - 0 1  %GM 

SCALE PARAMETER T A K E N  AS 1 . 1 0 9  

C Y C L E  D E V I A N C E  D F  
4  5 1 7 . 9  5 1 8  

E S T I M A T E  S . E .  PARAMETER 
1  0 . 3 0 5 2  0 . 4 5 7 3  %GM 
2  0.3385 0 . 7 6 9 2 E - 0 1  NUMC 
3 0 . 9 3 9 2 E - 0 1  0 . 2 4 9 2 E - 0 1  AGEC 
4  - 0 . 1 1 3 2  0 . 3 0 6 1 E - 0 1  T I M E  
5  - 0 . 2 1 0 5 E - 0 2  0 . 5 1 3 4 E - 0 3  SQAG 
6 0 . 2 1 1 9 E - 0 2  0 . 6 1 8 4 E - 0 3  S O T 1  

S C A L E  PARAMETER T A K E N  A S  0.9999 



CHAPTER 5 

CONCLUDING REMARKS AND OBSERVATIONS 

The current best model of Chapter 3 is the final 

recommended model, suject to the following observations and 

remarks. 

5.1 Remarks on Current Best Model 

As has already been pointed out, this model suffers from 

lack of fit, as reflected by the low R2-value of 0.1232. 

This lack of fit may be caused by omission of an unmeasured 

variable from the study or perhaps a still as yet 

undiscovered 'miracle' interaction/higher-order power of 

explanatory variables already in the study. The cause may 

even be in the model itself. The methods attempted in - 

Chapter 4 did not seem to improve the situation sufficiently 

to justify their use over the current best model. 

This insistent poor fit problem basically seems to be 

that FEEDRATE and TOTFSH values have much variation in 

themselves that seems to have little to do with any of the 

explanatory variables. That is, r(Y,x.), the sample 
J 

correlation between FEEDRATE (Y)- and a given candidate 

explanatory variable, is somewhat low for all of the x. 
J 

tried so far, which have been basically 1st order, 2nd 

order, and cross-product functions of the available 



variables. This could be seen in the last row of the. 

correlation matrices obtained in the various P9R and GLIM 

runs, such as the one displayed in Figure 12, which came 

from the first P9R run, whose results were previously 

highlighted in Figure 2. The methods of Chapter 4 did little 

to increase these low correlations. 

Furthermore the residual plots for the current best 

model do not appear to suggest any strategy for improving 

the fit. It does appear, however, that negative residuals 

(overshooting of the Yi by the F i  tend to occur with the 

lower Yi-values and positive residuals with the higher 

Yi-values. Although this does not contradict the.requirement 

that: 

r ( ? , e ) = ~  

as was pointed out in Chapter 3, nonetheless ~ef.(S) pg. 157 

suggests that perhaps the major point of change from 

negative to positive residuals is caused by the change in- 

factor levels of some as yet unconsidered (i.e. unmeasured 

or unobserved) qualitative variable, which in turn is also 

correlated with FEEDRATE or fish supply. Perhaps this 

missing variable is a weather or climate factor (wet/dry, 

clear/overcast, and so on). 



Figure 12: Correlation Matrix from 1st P9R Run 
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5.2 Remarks on Best Model Search 

Suppose now that this current best model is being considered 

for acceptance. For any model obtained by some empirical 

search procedure, mention should be made of the 'data 

snooping' phenomenon, which arises naturally in: 

Stepwise Regression (~ef.(5) pg. 311-2, Ref.(l2) 
pg. 389) 

Discriminant Analysis (Ref.(6) pgs. 489, 518-9) 
Abuse of Factor Effect Estimation in ANOVA 

(Ref.(ll) pg. 574) 

and hence in any regression model search procedure (Ref.(ll) 

pg. 437). Basically what happens in data snooping is that 

one studies effects suggested by the data instead of first 

deciding on what specific effects are to be tested/studied 

before inspecting the sample data for these effects alone. 

In the specific context of the current best model, the 

former procedure (data snooping) was followed. The latter 

procedure would correspond to deciding beforehand what model 

to try out before analyzing the sample data in order both to 

estimate the necessary coefficients and other unknown 

parameters, and to test whether or not the data do indeed 

support the a priori proposed model. 

Both procedures do comprise valid statistical practice. 

But if one wished to perform the 'standard' F-test for 

regression: 

Ho: 81=82=*00=p = O  (i.e. Y=p0+e) 
P  

against 



HA: At least one of {01,B2,..., Op] is not zero. 

this test would only be valid if the latter procedure were 

followed, which was not the case. 

As will be seen later in Figure 13, the P9R run on the 

current best model provided an F-statistic of: 

F=14.56 

with 

n-p-1=518 

degrees of freedom for the denominator, and 

p=5 

degrees of freedom for the numerator. The associated 

significance level is: 

a=O. 0000 

to the available 4 decimal places. But when the former 

procedure (data snooping) is followed, the true distribution 

of the F-statistic under Ho and its associated significance 

levels are difficult to obt'ain (~ef.(5) pg. 311-2). This is 

one reason why F-statistics have been thus far avoided in 

the analysis. Another reason will be given in the Technical 

Supplement (Section 8.4). 

In a more general context of 'best subsets search' 

procedures for model building, an analyst will tend to 

prefer a model having a best fit according to some 

criterion, such as maxmizing R2 (and perhaps allowing for 

other, sometimes opposing, considerations such as minimizing 

the number of explanatory variables in the final model). It 



is thus possible for a model to fit a given set of sample 

data 'too well'. A fit may be best because it truly is, or 

simply because of sampling variability. It all depends on to 

what extent a given sample is truly representative of the 

population to which the model is to be applied. If the 

analyst selects a model by a data snooping procedure and 

further uses it to make predictions on outcomes for a new 

set of values for the explanatory variables already in the 

model, then a 'prediction bias' (~ef.(ll) pg. 437) is 

further committed. 

For any model obtained by data snooping, an advisable 

formal testing procedure might be to follow the example of 

discriminant analysis (Ref.(5) pg. 518-9) where a first 

sample (a 'training' sample) is taken and the f'inal model is 

then subjected to formal hypothesis testing (such as with 

F-statistics) but using data from an independent second 

sample (a 'validation' sample) for all statistical 

calculations. This procedure is also recommended on pg. 437 

of Ref.(ll). 

Incidentally, Simon's data set came naturally into 2 

mutually exclusive data files (Tables 1 and 2 showed 

portions). It was thought at first to use oqe file as the 
2 

training sample and the other as the validation sample. 

Unfortunately it turned out that the 1984 data file 

contained primarily colonies of size 10 nests or greater, 

whereas the 1985 data file contained mostly colonies of size 



5 nests or less. This idea of 2 samples was thus abandoned 

in case COLSZE became an important explanatory variable. 

5.3 Further Observations on the Current Best Model 

Suppose that given the previous remarks, this current 

best model is accepted as final for the data at hand. Some 

further observations of interest can be made on it alone. 

5. 3. 1 Significance of Regression Coefficients 

Figure 13 shows some further details from the P9R run on 

the current best model. This is the P9R run that produced 

the plots shown in Figures 4.a-4.p. It can be seen that all 

of the regression coefficients, b . ,  are highly statistically 
J 

significant. This is due to the low sample standard errors, 

s(b.), which in turn lead to high t-statistics: 
J 

b 
t = J 
J xbjr 

with their associated significance levels (~ef.(ll) pg. 

243) : 

a.=Pr{ lT(>t . IT-t (518)) 
J 1 

that is, a .  is the probability that T<-t . or T>t . given that 
J J J 

the random variable T has a t-distribution with n-p-1=518 

degrees of freedom. 

Consider for example the coefficient for NUMCHK: 

b1=0.243 



Fiqure 13: Further Results of P9R Run on Current Best Model 

STATISTICS FOR 'BEST' SUBSET - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
iQUdRED MULTIPLE CORRELATION 0 12320 
MULTIPLE CORRELATZDN 0.35699 
ADJUSTED SQUARED MULT CDRR. 0 11473 
RESIDUAL MEAN SOUARE 0.2882 15 
STANDARD ERROR OF EST. 0.536857 
F -STATISTIC 14 56 
NUMERATOR DEGREES OF FREEDOM 5 
DENOMINATOR DEGREES OF FREEDOM 5 18 
SIGNIFICANCE (TAIL PROB ) 0 0000 

CCNTR I - 
VARIABLE REGRESSION STANDARD STAND. T- 2TAIL TOL- BUTION 

NO. NAM E  COEFFICIENT ERROR COEF. STAT. SIG. ERANCE TO R-SO 

INTERCEPT 0.873322 0 290271 1 531 3.01 0.003 
9 nurnchk 0.2i13053 0.0501751 0.202 4.84 0.000 0.968776 0.03972 
10 agechk 0.0544920 0.0138984 0.847 3.92 0.000 0.036309 0.02602 
13 sqage -0.00120941 0 000279562 -0.935 -4.33 0.000 0.036203 0.03168 

B t i m e  -0.0644785 0.0203297 -1.152 -4.16 0.000 0.022026 0.02923 
t i  s q t  ime 0.00756383 0.030405223 1.079 3.86 0.000 0.022002 0.02521 

THE CONTRIBUTION TO R-SQUAPEO F O R  EACH VARIABLE IS THE AMOUNT 
B'r WHICh R-SQUARED WOULO EE REDUCED I F  THAT VARIABLE WE R E  
REMOVED FR O M  THE REGRESSION EOUATION. 

COVARIANCES OF THE ESTIMATES OF THE REGRESSION COEFFICfENTS 

numchk agechk sqage 
9 10 13 

s q t i m e  
1 1  

7urnchk 9 0.251764E-02 
agechk 10 -0.226674E-04 0 193'65E-03 
sqags 13 0 888675E-06 -0 381248E-05 0.781552E-07 
t > m e  8 -0.168059E-05 -0 126549E-04 0 2311:lE-06 Q 413297E-03 
s o t ~ m e  I 1  0 203122E-06 0.31000lE-06 -0 577500E-08 -0.814613E-05 O.164207E-06 



It represents the rate of change (in this case, increase, 
. .. 

since b l > O )  in predicted/fitted mean FEEDRATE per chick: 

Thus in comparing 2 nests of different numbers of chicks, 

but where time of day and age of chicks is same for both 

nests, then according to the current best model the nest 

which has more chicks could expect on average to receive 

0.243 more fish per hour for every chick that it has in 

excess of the other nest. Of course this is an estimate and 

as such is subject to random error as reflected in its 

standard error, s(bl), which is the square root of the 

estimated sample variance, s2(bl 1.  For this sample: 

s(b,)=0.0501761 

One could still say, however, with 9 5 %  probability of being 

correct, that the true (but unknown) rate of mean FEEDRATE 

increase per chick, P I ,  lies in the interval: 

( b , - t ( 5 1 8 ; 0 . 9 7 5 ) s ( b l ) , b l + t  (518;O.975)s(b1)) 

=(0.145,0.341) 

where t(v;r) represents the 1007% point of a r-distribution 

with v degrees of freedom. So b ,  is statistically 

significantly nonzero (at a 9 5 %  confidence level), since the 

interval does not contain zero. Whether or not any PI-value 

in this 9 5 %  confidence interval has a 'practical' 

significance over and above its 'statistical' significance 

is best left up to the subject matter expert to decide. 



5. 3. 2 Quadratic Effects in TIME and AGECHK 

If one takes the current best model and applies a 

'completion of the square' procedure, one can re-express it 

as: 

Thus for a group of nests at a given common time of day and 

all contining the same number of chicks, the average rate of 

number of fish delivered per hour, as a function of chick 

age, seems to follow a concave down parabola with vertex 

(and maximum value) located at 22.5 days. At least, this is 

the case over the observed range of chick ages. Thus it 

seems that FEEDRATE increases as the chick(s) gets older, 

reaches a maximum at an age of 22.5 days, and then decreases 

as the chick ages further. 

A similar observation can be made in regards to time of 

day. For a group of nests all containing the same number of 

chicks, and all chicks having a common age, the average rate 

of number of fish delivered per hour as a function of time 

of day seems to follow a concave up parabola having a vertex 

(and minimum value) at half-hour 27.0, or 1330H (1:30 P.M.), 

at least over the range of observed times. Thus it seems 

that FEEDRATE decreases from some initial value as the day 

wears on until 1:30 P.M. after which it begins to increase 

again. 



The fact that TIDE, COLSZE, and DATE are not in the 

model states that the given sample data suggest that the 

above observations do not seem to change with the state of 

the tide, vary with the number of nests in the colony, or 

even vary from one day to the next, at least over the 

available range of these variables. 

Two points should be emphasized here. First, this 

apparent relation should not be imposed outside the limits 

of observed chick age (which according to the 'data summary 

statistics' of the P9R runs, ranged from 6 to 44 days) or 

time of day (0530H to 1900H), or for any other variable for 

that matter. Such a procedure is called extrapolation and is 

best avoided. Second, the parabolas indicated in this 

current best model are symmetric about a vertical axis when 

FEEDRATE is plotted against AGECHK or TIME, which implies 

equal rates of increase and decrease on either side of this 

axis. If this is considered undesirable for theoretical 

(biological) reasons, a cubic term could be incorporated for 

more flexibility, or perhaps the explanatory variable should 

first be transformed, although ideally such transformations 

should have some kind of a priori justifiability. 

5.4 Further Investiqation in Predicted Time of Day 

Differences 



Consider the difference in estimated FEEDRATE between 

dawn and 1330H, the estimated vertex at which FEEDRATE, as a 

function of TIME, takes on a minimum value. If one accepts 

this 1330H value as exact and overlooks the fact that chicks 

in a given nest are 7 to 8 hours (at most 1/3 of a day) ' 

older at 1330H than at dawn, then one can estimate this 

difference and obtain a measurement of the accuracy of this 

estimate for a given nest on a single day. 

Using 

then : 

estimates 

the following notation: 

t -time at dawn in half-hours, e.g. dawn at 0530H 
D-would give a tD-value of 1 1  (cf. Chapter 2) 

-time at minimum FEEDRATE, taken to be 27 (i.e. 
"-1 33OH) 

jlD=fitted/predicted FEEDRATE for a given nest at 
' D 

jy=fitted/predicted FEEDRATE for same nest as in 
yD and on same day, but at 1" 

where E(YltD) refers to the true (but unknown) expected or 

mean FEEDRATE at time tD. Furthermore, ignoring the increase 

in AGECHK mentioned earlier, one can approximate fD-PW by: 

d=-0.0845(rD-tM)+0.00156(tD2-tM2) 

Taking 

t D = l  1 

that is, dawn at 0530H, gives: 



d=O.404 

So on average, the chicks in a given nest can expect to 

jointly receive approximately 0.404 fish per hour more at 

dawn than at 1330H. 

It can be further shown (see Technical Supplement, 

Chapter 10 for details) that this estimate has an 

approximate standard error of: 

~(d)s/8.014*10-~=8.952*10-~ 

so that a 95% confidence interval for d would be: 

(0.404-1.96(8.952*10-2),0.404+1.96(8.952*10-2)) 

=(0.229,0.579) 

If one did not overlook the AGECHK difference from t D  to t M ,  

then d would be a function of how old the chicks were at 

dawn. 



CHAPTER 6 

TECHNICAL SUPPLEMENT FOR CHAPTER 1 

A multiple regression model with indicator variables for 

qualitative effects came to mind immediately. As noted on 

pages 6-7 of ~ef.(l3), such a model, especially with 

polynomial terms, can serve as a suitable approximation over 

the given range of the data. 

It should be noted, however, that the data comes from an 

unplanned experiment (more specifically, an observation 

study) which means likely multicollinearity amongst 

explanatory variables in 1st order terms alone. Any 

regression done should be approached with some care since 

the random error component will represent some 'lurking' 

variables which were unmeasured and may be highly correlated 

with the variables which were measured. In an unplanned 

experiment, the regression analysis could more likely lead 

to some false results about which explanatory variables have 

a significant association and which ones do not than in a 

planned experiment. Ref.(3) gives more details on this 

important point. 



CHAPTER 7 

TECHNICAL SUPPLEMENT FOR CHAPTER 2 

Figure.14 shows the FORTRAN program PROCEMMSI which used 

the input file EMMSDATAI to produce the output files 

EMMSFDRTI and EMMSREJECTI. These 3 files have already been 

documented and partially displayed in Chapter 2. Figure 15 

shows the command source file RUNPROCEI which compiled and 

ran PROCEMMSI. This file is activated by submitting the MTS 

command: 

$SO RUNPROCEI 

Similarly Figure 16 shows the FORTRAN program PROCEMMS2 

which used the input file EMMSDATA2 to produce the output 

files EMMSFDRT2 and EMMSREJECT2. The corresponding command 

source file to compile and run this program would be very 

similar to the previous one and so is not shown. 

Both programs were written in standard FORTRAN-IV, even 

though FORTRAN-77 was available. Use was made, however, of 

an apparent MTS extension: standard FORTRAN supposedly 

imposes a maximum input field width of 80 columns (because 

of default treatment of input as 'data cards'), but the 

programs had no problem accessing all 121 columns in each 

file using the standard formatted READ and WRITE statements. 

Otherwise use could have been made of the file record 

splitting option of the 'correct' command of the MTS file 

editor in order to change each 121 column record into 2 



C PREPARE EMMSDATAI FOR ANY STATS PACKAGE 
C 
C UNIT 10 IS EMMSDATAI 
C UNIT 1 1  IS EMMSFDRTI 
C UNIT 12 IS EMMSREJECTI 
C 
C I 2 3 4 S 6 7 
C234567890123456789~123456789~t234~678901234567~~~2345678901234567B9012 

DIMENSION FISH(9).FLEN(9) 
RECNUM=O.O 

F C 
C BEGIN READING EMMSDATAl 
C INCREMENT RECORD COUNTER FOR EACH RECORD PROCESSED 
C PUT REJECTED RECORDS INTO REJECT FILE 
C 

10 TOTFSH=O. 0 
TOTLENwO.0 
FLAG=O 0 
READ (lO.lOl,ERR=998.END=999) DATE.COLSZE.T~DE.IHOUR.MIN,CHK. 

*AGECHK.(FISH(II).FLEN(I1),Il=I,9~ 
RECNUM=RECNUM+I.O 

L 

C TRANSFORM DATE FOR 1984 DATA 
C 

IF (DATE .GE. 8.0) GO TO 20 
DATEflOO*(DATE-7.0)-14.0 
GO TO 30 

20 D A T E = I O O * ( D A T E - 8 . 0 ) + 1 7 . 0  
C . 
C CREATE TIDE DESIGN VARIABLES 
C 

30 TIDEH=O.O 
TIDEM=O. 0 
fF (TIDE .EQ. 1.0) GO TO 50 
I F  (TIDE .EQ. 2.0) GO TO 40 
TIDEH=I .O 
GO TO 50 

40 TIDEM=I .0 
C 
C TRANSFORM TIME 
C 

50 TIME=FLOAT(IHO~JR)*~.O+FLOAT(MIN)/~~.~ 
C 
C CHECK CHK 
C 

IF (CHK . G E .  0.0) GO TO 60 
WRITE (12.202) RECNUM.CHK 
GO TO 10 

C 
C CHECK AGECHK 
C 

60 CONTINUE 
IF (AGECHK .GE. 0.0) GO TO 70 
WRITE 112.203) RECNUM,bGECHK 
GO TO 10 

C 
C COMPUTE TOTAL FISH COUNT A LENGTH, PROVIDED NO MISSING DATA PRESENT 
C I F  MISSING LENGTHS. DON'T SKIP RECORD 
C 

70 CONTINUE 
DO 55 12~1.9 
IF (FISH(I2) . G E .  0.0) GO TO 80 



Fiqure 1 4 ,  continued 

8 0  T O T F S H = T O T F S H + F I S H ( I 2 )  
I F  ( F L E N ( I 2 )  . L T .  0.0) F L A G z 1 . 0  
I F  ( F L A G  .EQ.  0 . 0 )  T O T L E N = T O T L E N + F L E N ( I 2 )  

5 5  CONTINUE 
GO TO 1 0 0  

90 W R I T E  ( 1 2 . 2 0 4 )  RECNUM,FISH(IBAO).IBAO 
GO TO 1 0  

C  
C  I F  WE GOT T H I S  FAR WITHOUT LOOPING BACK, THEN RECORO CONTAINS NO 
c MISSING DATA CODES (EXCEPT FOR FISH LENGTHS) 
C  CALCULATE AVGLEN. PUT M O D I F I E D  DATA I N  NEW F I L E  8 GO GET ANOTHER 
C RECORD 
C ADD 4 0 0 0  TO RECNUM I N  OROER TO CODE I T  AS B E I N G  FROM 1 9 8 4  DATA F I L E  
C  

1 0 0  AVGLEN=O.O 
IF (FLAG .EQ.  0 . 0 )  GO TO 110 
A V G L E N s - 1 . 0  
T O T L E N S - 1 . 0  
GO TO 1 2 0  

1 1 0  C O N T I N U E  
I F  ( T O T F S H  . G T .  0.0) AVGLEN=TOTLEN/TOTFSH 

1 2 0  R L A B E L = R E C N U M + 4 0 0 0 . 0  
W R I T E ( 1 1 . 2 0 1 )  RLABEL,AVGLEN.TOTFSH,TOTLEN,DATE,COLSZE,TIOE,TIOEH. 

*T IOEM,T IME,CHK,AGECHK 
GO TO 1 0  

9 9 8  W R I T E  ( 1 1 . 2 0 6 )  RECNUM 
999 W R I T E  ( 1 1 , 2 0 7 )  

W R I T E  ( 1 1 . 2 0 8 )  
WR'ITE ( 1 1 , 2 0 9 )  RECNUM 
STOP 

C 
C  FORMAT STATEMENTS 
C 
C  1  2  3  4  5  6  7  
C23456789012345678901234567890123456789012345678901234567890123456789012 

2 0 1  F O R M A T ( T 3 . F 6 . 0 ,  I X ,  F 1 0 . 6 . 2 (  I X . F E . 0 )  , 7 (  IX ,  ~ 3 . 0 1 ,  I X . F ~ . O )  
2 0 2  FORMAT( '  RECORD ' , F 5 . 0 , '  REJECTED FOR M I S S I N G  VALUE CODE'/TIS,  

f F 4 . 0 , '  FOR C H K f / )  
2 0 3  FORMAT( '  RECORD ' , F 5 . 0 , '  REJECTED FOR M I S S I N G  VALUE C O D E ' / T 1 5 .  

f F 4 . 0 , '  FOR A G E C H K 1 / )  
2 0 4  FORMAT( ' RECORO ' . F 5 . 0 ,  ' REJECTED FOR M I S S I N G  VALUE C O D E ' / T I ~ .  

* F 4 . 0 . '  FOR F I S H  ARRAY, P O S I T I O N  ' . I 2 / )  
2 0 6  FORMAT( '  * * * I N P U T  E R R O R * * * ' / '  I N  RECORD NUMBER ' , F 5 . 0 )  
2 0 7  ~0~~~~('C234567890123456789012345678901234567890123456789012345678 

* 9 0 1 2 3 4 5 6 7 8 9 0 1 2 ' / ' C ' , 8 X , ' 1 1 . 9 X . ' 2 ' , 9 X . ' 3 ' . 9 X . ' 4 ' , 9 X . ' 5 ' . 9 X , ' 6 ' . 9 X .  
* ' 7 ' )  

2 0 8  F O R M A T ( / T 4 . ' L A B E L ' . T 1 1 , ' A V G L E N ' . T 2 2 , ' T O T F S H ' , T 3 l , ' T O T L E N ' , T 3 8 ,  
*'DATE',T43.'COL'.3(1X.'TDE'),IX,'TIME'.T64,'X',T67.'AGECHK'/TS3, 
*'SIZE',T52,'HI',T55.'MEO'.T63.'CHK') 

2 0 9  F O R M A T ( / ' L A S T  RECORO READ: ' , F 6 . 0 )  
E  ND 



Figure 15: Source File RUNPROCE1 

$empty procemmsi.ob ok 
$run *ftn scards=procemmsl sprints-news spunch=procemmsl ob 
$empty emmsrsjectl ok 
$empty emmsfdrtl ok 
$run procemms1.ob lO=emmsdatal Il=emmsfdr:l 12=emmsrejectl 



Figure '16: FORTRAN Program PROCEMMS2 

C PREPARE EMMSDATAP FOR ANY STATS PACKAGE 
L 
C UNIT 10 IS EMMSDATAP 
C UNIT 1 1  IS EMMSFDRT2 
C UNIT 12 IS EMMSREJECTP 
C 
C 1 2 3 4 5 6 7 
C23456789012345678901234567890123456789012345678901234567890123~55789012 

DIMENSION FISH(9).FLEN(9) 
RECNUM=O.O 

C 
C BEGIN READING EMMSDATAP 
C INCREMENT RECORD COUNTER FOR EACH RECORD PROCESSED 
C PUT REJECTED RECORDS INTO REJECT FILE 
C 

10 TOTFSH=O.O 
TOTLENsO .O 
FLAG=O. 0 
READ ( 1 0 . 1 0 1 . E R R = 9 9 8 . E N D = 9 9 9 )  DATE.COLSZE.TIDE,IHOUR,MIN,CHK, 

*AGECHK,iFISH(II),FLEN(Il),IIrl.S) 
RECNUMsRECNUM+I.O 

L 
C TRANSFORM DATE FOR t985 DATA 

IF (DATE .GE. 8.0) GO TO 20 
DATE=IOO*(DATE-7.0)-19.0 
GO TO 30 

20 DATE=lOO*(DATE-8.0)+12.0 
C 
C CREATE TIDE DESIGN VARIABLES 
C 

30 TIDEH=O.O 
TIDEM=O.O 
IF (TIDE .EQ. 1.0) GO TO 50 
IF (TIDE .EQ. 2.0) GO TO 40 
TIDEHs1.0 
GO TO 50 

4 0  TIDEM=I.O 
C 
C TRANSFORM TIME 
C 

50 TIME=FLOAT(IHOUR)*2.O+FLOAT(MIN)/30.0 
C 
C CHECK CHK 
G 

IF (CHK .GE. 0.0) GO TO 6 0  
WRITE (12.202) RECNUM.CHK 
GO TO 10 

C 
C CHECK AGECHK 
C 

6 0  CONTINUE 
IF (AGECHK .GE. 0.0) GO TO 70 
WRITE (12,203) RECNUM.AGECHK 
GO TO 10 

C 
C COMPUTE TOTAL FISH COUNT & LENGTH. PROVIDED NO 
C IF MISSING LENGTHS. DON'T SKIP RECORD 

MISSING DATA PRESENT 

7 0  CONTINUE 
DO 55 1211.9 
IF (FISH(I2) .GE. 0.0) GO TO 8 0  
IBAD=I2 
GO TO 9 0  



Fiqure 16, continued 

I F  ( F L A G  . E O .  0.0) T O T L E N = T O T L E N + F L E N ( I 2 )  
CONTINUE 
GO TO 1 0 0  
W R I T E  ( 1 2 . 2 0 4 )  R E C N U M . F I S H ( I B A O ) . I B A D  
GO TO 1 0  

I F  WE GOT T H I S  FAR WITHOUT LOOPING BACK.  THEN RECORO 
M I S S I N G  DATA CODES (EXCEPT FOR F I S H  LENGTHS)  

CALCULATE AVGLEN. PUT M O O I F I E O  DATA I N  NEW F I L E  & GO 

ADD 

1 0 0  

1 1 0  

1 2 0  

RECORD 
5000 TO RECNUM I N  ORDER TO CODE I T  AS B E I N G  FROM 

AVGLEN=O.O 
I F  ( F L A G  .EO.  0.0) GO TO 1 1 0  
A V G L E N z - 1 . 0  
T O T L E N = - 1 . 0  
GO TO 1 2 0  
CONTINUE 
I F  ( T O T F S H  . G T .  0.0) AVGLEN=TOTLEN/TOTFSH 
R L A B E L = R E C N U M + 5 0 0 0 . 0  

CONTAINS NO 

GET ANOTHER 

1 9 8 5  DATA F I L E  

W R I T E ( 1 1 , 2 0 1 )  RLABEL,AVGLEN.TOTFSH.TOTLEN.DATE,COLSZE,T IOE,T IOEH,  
*T IDEM,T IME,CHK,AGECHK 

GO TO 1 0  
9 9 8  W R I T E  ( 1 1 . 2 0 6 )  RECNUM 
999 W R I T E  ( 1 1 , 2 0 7 )  

WRITE ( 1 1 . 2 0 8 )  
W R I T E  ( 1 1 , 2 0 9 )  RECNUM 
STOP 

FORMAT STATEMENTS 

C23456789012345678901234567890123456789012345678901234567890123456789012 
1 0 1  FORMAT(F4.2.T13,F4.1.F3.1,I2,I22T34.F3.O,T38,F3.O,T4l,9~~3.~,lX, 

' F 5 . 2 ) )  
2 0 1  F O R M A T ( T ~ . F ~ . ~ . ~ X . F ~ O . ~ , ~ ( ~ X , F ~ . O ) , ~ ( ~ X . F ~ . O ) ,  l ~ ~ F 4 . 0 )  
2 0 2  FORMAT( '  RECORO ' , F 5 . 0 , '  REJECTED FOR M I S S I N G  VALUE CODE'/TIS. 

* F 4 . 0 , '  FOR C H K J / )  
2 0 3  FORMAT( '  RECORO ' . F 5 . 0 , '  REJECTED FOR M I S S I N G  VALUE COOE1/T15 ,  

* F 4 . 0 , '  FOR A G E C H K f / )  
2 0 4  FORMAT( '  RECORD ' , F 5 . 0 , '  REJECTED FOR M I S S I N G  VALUE C O D E ' / T I ~ .  

* F 4 . 0 . '  FOR F I S H  ARRAY. P O S I T I O N  ' . I 2 / )  
2 0 6  FORMAT( '  * * * I N P U T  E R R O R * * * ' / '  I N  RECORO NUMBER ' . F 5 . 0 )  
2 0 7  F0~MAT('C234567890123456789012345678901234567890123456789012345678 

* 9 0 1 2 3 4 5 6 7 8 9 0 1 2 ' / ' C ' , 8 X , ' 1 ' , 9 X . ' 2 ' , 9 X . ' 3 ' , 9 X . ' 4 ' , 9 X , ' 5 ' , 9 X , ' 6 ' . 9 X .  
* ' T I  ) 

2 0 8  FORMAT(/T4.'LABEL'.T11,'AVGLEN'.T22,'TOTFSH'.T31,'TOTLEN',T38, 
*'DATE'.T~~.'COL'.~(~X.'TOE').~X.'TIME',T~~,'#',T~~,'AGECHK'/T~~. 
*'SIZE',T52,'HI'.T55.'MED',T63.'CHK') 

2 0 9  F O R M A T ( / ' L A S T  RECORO READ: ' . F 6 . 0 )  
E  NO 



- 

consecutive records of, say, 70 and 51 columns. 

It should be noted that since all the well-known 

statistical software packages at SFU (GLIM, BMDP, MINITAB, 

SPSS, MIDAS) are programmed in FORTRAN and use FORTRAN in 

some of their options (such as user-specified 1/0 formats), 

a working knowledge of standard FORTRAN would therefore be 

helpful to any statistics graduate student in the non-thesis 

option. Such a knowledge will be assumed for the duration of 

this and future Techinical Supplements. A reference such as 

Ref.(7) can be consulted on this basis. 

The necessary column specifications were obtained by 

using the MTS file editor to append column counter lines to 

the end of each EMMSDATA input file, as has already been 

described in Chapter 2. These lines were removed prior to 

the running of each program since the programs were des-igned 

to read to the end of each input file, and the column 

counter lines were not intended as input. 

As for the EMMSREJECT files, it was noticed that no 

record (observation) was rejected for having a missing value 

code (-1.) for any one of the 9 fish species type counts. Of 

course one would hope that this was because no such missing 

data did indeed occur, otherwise some TOTFSH calculations 

would be incorrect. To double check this, as is good 

programming practice, a copy of EMMSDATA2 was made and an 

extra record inserted with a value of - 1  for number of fish 



delivered of species type 1 .  When PROCEMMS2 was run, the 

extra record was rejected and put into the EMMSREJECT2 file 

with the appropriate message. As the only differences 

between the 2 PROCEMMS programs are the 1/0 file 

specifications, date transformations, and program generated 

labels, it could be assumed that PROCEMMSI would also treat 

such a record appropriately. Thus the original input files 

could be accepted as free from missing data for fish counts. 

Missing data for fish lengths however, would by 

themselves not cause a record to be rejected, since these 

quantities were not used in the analysis. Instead they would 

serve to set the average length value to - 1 .  A TOTFSH value 

of 0 caused this average to be set to 0.  Otherwise the 

average length (AVGLEN) was computed as: 

where TOTLEN is the sum-of the total lengths of fish summed 

over the 9 species types. Again this quantity was calculated 

for a possible future use, which did not materialize. 

The design variables TIDEH and TIDEM created by the 

PROCEMMS programs for the qulitative variable TIDE are of 

course not the only ones possible. But some design variables 

may present additional difficulties. As an example some 

analysts would prefer the following design variables: 

HITIDE = 1 ,  if TIDE=3 (high tide) 
0,  if TIDE=2 (midtide) 

- 1 ,  if TIDE=1 (low tide) 



In an all possible or best k subsets search or stepwise 

routine, it is possible that one of the two design variables 

is used in a final accepted model, but the other one is not. 

In the case of TIDEH and TIDEM this presents no problem. If, 

say, TIDEH makes it into a final model but TIDEM does not, 

then it is because the data suggest that only a high tide 

(or some correlated 'lurking' variable which changes factor 

levels only at high tide--see Ref.(3)) has an association 

with FEEDRATE. If, however, HITIDE gets into a final model 

without MEDTIDE, then an equal interval scale of effects is 

implied: 

high tide: HITIDE= 'I increment of 1 I equalscaling midtide : HITIDE= O I  increment of , low tide : HITIDE=-1 

Now the gain/loss in having high tide over medium tide is 

equal to that of having medium tide over low tide, and hence 

one-half that of having high tide over low. tide. 

This is not a desirable situation, unless one has such 

prior information. A solution would be to force all design 

variables into the model for a particular factor when one of 

them is chosen. This is not necessary if the design 

variables are'chosen as in the case of TIDEH and TIDEM. 



A number 

the contents 

formulation: 

CHAPTER 8 

TECHNICAL SUPPLEMENT FOR CHAPTER 3 

of observations and developments may be made on 

of Chapter 3. 'In this chapter the usual matrix 

will be used, where: 

Y is a random vector in R" containing the n - 
response variables: 

r l  

Once these values are observed, Y is replaced by 

X is an n by (p+l) real matrix. The first column 
is all l's, and each of the remaining columns 
contains the n observations for each of the p 
explanatory variables. 

g is the vector of regression parameters in 
R(p+1) 

E is the random vector of stochastically - 
independent error terms and has the distribution 

That is, has an n-variate normal distribution. 

8.1 On the Stochastic Independence Assumption 

One of the assumptions that must be made is that the 

components of - Y, the random response vector, must be 



stochastically independent (or very nearly so). This 

assumption about FEEDRATE observations at first appears to 

be questionable since the fishers compete with one another 

over a finite supply of fish. In fact, depending on TIME and 

the season state (as reflected through DATE), the number of 

fishers could even exceed the number of fish. Such 

contemplation would imply covariance between feedrates for 

chicks belonging to the different fishers. Simon's 

assurance, however, was that the birds actually seem to fish 

from 'fishing territories' in which no other bird would 

invade or interfere. This territorial aspect of individual 

fishers and an assumption of random fish movement in the 

water suggests that to assume stochastic independence 

amongst FEEDRATE observations may be acceptable. 

8.2 On the Model Selection Criterion Used 

The criterion used for the best model in the P9R runs 

was the maximization of R Z ,  with attention being paid to the 

number of explanatory variables being inserted into the 

model. The Mallows' Cp-criterion, which is the default in 

P9R, could also have been used, although the conclusions 

might have been different. 

With this criterion, the relation: 

is supposed to be observable for the most part, the few 
. . .. 



exceptions being due to random variation. The actual 

criterion is to minimize C and still keep Cp as close to p P 

as possible (Ref.(ll) pg. 426, Ref.(6) pg. 316, Ref.(5) pg. 

300). 

A P9R run was done using this criterion (details not 

shown). The result was that the program chose a set of 8 

explanatory variables giving: 

Cp=9.52 

although a set of 9 explanatory variables with: 

Cp=9. 53 

would also have been anexcellent choice. The model selected 

by this criterion might still however be too large (Ref.(5), 

pg. 305). The residual plots also showed little improvement 

over those in Figures 4.a-4.p. The current best model of 

Chapter 3 still seems preferable despite having: 

. cp=1o.53 

although this is nonetheless the smallest Cp-value of all 

other 5-variable models. 

8.3 On the (non) Use of F-Statistics 

Throughout this report the use of F-statistics has been 
b 

de-emphasized. One reason was given in Chapter 5, another 

one is the following argument. 

Consider again the quantity: 



,SS(regr - e s s i  on) 
SSf t ot a l )  

. . .  

In the usual formal regression test, mentioned in Chapter 5: 

Ho: p 1 = p 2 = .  . . = p  -0 
P 

against 

HA: At least one of P .  is not zero (lsjsp) 
J 

the usual test statistic used is: 

( S S ( r e g r e s s i  on)) 

Under Ho, ~*-F(~,n-~-l). It follows that 

so that if R2 is 'small', then: 

will be 'large' and thus the quantity: 

will again be 'small'. But F* may still be significant for a 

sufficiently large factor of: 

so that a poor fitting model (low R2) may give significant 

F*-values, thus triggering the decision to reject Ho. 



The current best model shows this: 

SO 

F*= 14 .-56 

results. This was the F-statistic value found in the P9R run 

on the current best model alone. Looking up a table of 

F-distribution percentage points (with 5 degreees of freedom 

for the numerator, 518 degreees of freedom for the 

denominator), 

F=5.43 

is significant at a=0.001. 

Of course it should be realized that a model can give a 

high F-value, but still be of little use for predictive 

purposes if one wishes to use the model in that capacity 

(Ref.(S), pg. 129-30). Any model search technique should 
0 thus be used with caution and judgement in this regard. Used L 

mechanically the results could be misleading (Ref.(5), pg. 

300). This is particularly true in unplanned experiments 

such as Simon's (~ef.(5) pg. 295, Ref.(3)). 

8.4 An Extra Note on Outputs 

Although the outputs are not shown in their entirety, 

one omitted table that should be investigated after running 

a BMDP program is the 'Summary Statistics for Each Variable' 



in order to check for outlier or 'wild' values of any 

variable. As an example, a previous P9R run reported a value 

of 10 in that table under the column labelled 'Maximum 

Value', for a variable which was supposed to take on only 

values of 0 or 1. The reason for this particular 

misinterpretation was that in Simon's data files, all 

integer data values were supposed to have decimal points 

after them, but this particular '1' did not, and the FORTRAN 

format used when inputting the value interpreted the blank 

after it as a 0, thus changing 1 into 10. 

On the Non-use of Centred Explanatory Variables 

The current best model 

the quantitative variab 

contains some second order terms 

les, and is hence a polynomial 

multiple regression. For such variables, it is usually- 

recommended (Ref.(ll) pg. 300-1) to use a centre transformed 

variable : 

where: 

The purpose in doing this is to reduce multicollinearity 

caused by typically large values for the correlation between 

x . .  and its higher order terms 
1 J 



X = x ?  i k  [ j  

and so on. Such multicollinearity makes the computation of 

(x'x)-' difficult to control for round-off error. This of 

course makes the regression coefficient least squares 

estimates: 

~ = L s E ( ~ ) = ( x ~ x ) - ~ x ~ ~  - 
highly suspect with regards to accuracy. Some coefficients 

may even have the wronq siqn (~ef.(lO) pg. 287). 

This approach was not pursued at length, however, since 

the BMDP programs typically provide a 'tolerance' control 

for matrix inversion. P9R, in particular, carries out all 

computations in double precision. Furthermore, if the 

multicollinearity did cause problems in the X'X inversion, 

then this would show up as large estimated variances of the 

regression coefficient estimates, so that statistically 

significant coefficients would be hard to find (Ref.(ll) pg. 

318). This is because the estimated variances are the 

diagonal elements of: 

Cov (b)=(s2) (x'x)-' 

where 

,-SS(error) 
S - n-p- 1 

and if the X'X matrix were difficult to invert, these 

diagonal elements would typically be large. In the case of 

the current best model, all the regression coefficients have 

sufficiently small estimated variances so that a hypothesis 

test of the form: 



for a single j in (1,2, . . . , p l ,  would result in Ho being 

rejected at a 1% level of significance. 

8.6 On the Creation of the R2-plot 

The usefulness of an R2-plot is already well documented 

on pages 422-4 of Ref.(ll). The R2-plot shown in ~igure 3 

was constructed using R'-values for models found not only in 

Figure 2, but also from models using GLIM runs with two 

types of 'forward selection' procedures. Starting with an 

empty model, explanatory variables were added one-by-one on 

the basis of maximum R2 improvement (procedure 1 )  or minimum 

R2 improvement (procedure 2). Procedure 1 is analogous to 

maximum F improvement in the forward selection phase of 

stepwise regression (see pg. 430-6 of Ref. ( l l ) ,  for - 

example). The purpose of procedure 2 was purely one of 

contrast in order to see how much worse a model fit could be 

if the 'wrong' explanatory variables were selected. 

GLIM works with generalized linear models, the rudiments 

of which were indicated in Chapter 4, and are more 

thoroughly covered in Ref.(8). Briefly, instead of SS(error) 

as a goodness of fit measure, GLIM uses deviance, D,  defined 

as: 
5 

D=02S(g,c) 

where: 



G is the n by 1 vector of fitted values (that is, f=g) - 
for the current model being' entertained 

ii is the n by 1 vector of fitted values for the fullest - 
possible model, namely, when the number of regression 
coefficients, p+l, equals the number of observations, 
n. In such a case it can be shown that g=y,  the 
observations themselves. 

1 is the log-likelihood function. 

S is called the 'scaled deviance', because of the 
presence of the scale factor, 02, in the expression 
for D. 

It can be further shown that for the special case of the 

normal-theory multiple regression, namely: 

then for the null model ((p+l)=l; no regression coefficients 

except for constant term, P O ) :  

and for any current model with l<p+l<n: 

Thus one can calculate  values for a sequence of models of 

one's own choosing, which is easily implemented with GLIM's 

interactive atmosphere. One such program is shown in Figure 

17.a~ with the run results in Figure 17.b, where the 

selection is shown -for the first explanatory variable. One 

can see for exmaple: 



~ i q u r e  17.a: GLIM Command File which Generates Fiqure 17.b 

$EMPTY EOUTGLIMIB OK 
$RUN UNSP:GLIM I=EMMSFDRATE 2=EOUTGLIMIB 
SC 
SC G L I M  RUN ON F I L E  EMMSFDRATE TESTING OUT NORMAL THEORY MODEL 
SC 
$C . . . . . . . . . . . . . . . . . . . . . . . . . .  
SC * GET DATA & TRANSFORM 
$C . . . . . . . . . . . . . . . . . . . . . . . . . .  
SC 
$OUTPUT 2 1 3 2  
SUNITS 5 2 4  
SDATA LABEL TOTFSH DATE COLSZE T I D E  TIME NUMCHK AGECHK 
SFACTOR T I D E  3 
SFORMAT 
( 3 X .  F 5 . 0 ,  17X,  F 3 . 0 . 9 X . F 4 . 0 , 2 (  I X ,  F3 .O)  ,BX,2(  l X , F 3 . O ) ,  I X ,  F 4 . 0 )  
SDINPUT I 
$LOOK 1 1 5  LABEL TOTFSH DATE COLSZE T I D E  TIME NUMCHK AGECHK 
SCALC FEEDRATE=TOTFSH/2.0 
S C 
SC ADD QUADRATIC TERMS 
SC 
SCALC SQDATE=DATE*DATE: SQTIME=TIME*TIME:  SQAGE=AGECHK*AGECHK 
SCALC SQNUM=NUMCHK*NUMCHK: SQCOL=CDLSZE*COLSZE 
$ C 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

$C * SPECIFY MODEL TO BE ANALYZED 
SC ALLDW FOR OVER-DISPERSIDN 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C 
SYVAR FEEDRATE 
$ERROR N 
S L I N K  I 
$SCALE 0 
SC 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * NOW F I T  MODELS 
SC * F IRST  NULL MODEL * 
$C * T H E N A L L P O S S I B L E O N E  * 
SC ' VARIABLE MODELS * 
$C . . . . . . . . . . . . . . . . . . . . . . . . . .  
S C 
$ F I T  %GM 
SDISP  A 
$ F I T  DATE 
SDISP  A 
$ F I T  COLSZE 
SDISP  A 
S F I T  T I D E  
$D ISP  A 
$ F I T  T IME  
SDISP  A 
$ F I T  NUMCHK 
SDISP  A 
S F I T  AGECHK 
SDISP  A 
$ F I T  SQDATE 
SDISP  A 
$ F I T  SQTIME 
SDISP  A 
S F I T  SQAGE 
SDISP  A 
S F I T  SQNUM 
SDISP  A. 
$ F I T  SQCOL 
SDISP  A 
S C 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SC * NEXT PHASE OF FOWARD SELECTION TO BE FOUND I N  * 
SC * EMMSGLIM19 F I L E  
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SC 
$STOP 



Fiqure 17.b: GLIM Run on Normal-Theory Model 

CYCLE D E V I A N C E  D F  
1  1 7 0 . 3  5 2 3  

E S T I M A T E  S .  E .  PARAMETER 
1  0 . 6 7 4 6  0 . 2 4 9 3 E - 0 1  %GM 

SCALE PARAMETER TAKEN AS 0 . 3 2 5 6  

CYCLE D E V I A N C E  D F  
1  1 6 6 . 4  5 2 2  

E S T I M A T E  S . E .  PARAMETER 
1  0 . 8 4 2 6  0 . 5 4 1 3 E - 0 1  %GM 
2  - 0 . I O l O E - 0 1  0 . 2 8 9 6 E - 0 2  DATE 

SCALE PARAMETER T A K E N  AS 0 . 3 1 8 8  

CYCLE D E V I A N C E  D F  
1  1 6 8 . 7  5 2 2  

E S T I M A T E  S . E .  PARAMETER 
1  0 . 7 5 6 6  0 . 4 4 7 6 E - 0 1  %GM 
2  - 0 . 1 0 6 7 E - 0 1  0 . 4 8 4 9 E - 0 2  COLS 

SCALE PARAMETER TAKEN AS 0 . 3 2 3 2  

CYCLE D E V I A N C E  D F  
1  1 6 9 . 6  5 2  1  

CYCLE D E V I A N C E  
1  1 6 6 . 9  5 2 2  

E S T I M A T E  S . E .  PARAMETER 
I 0 . 7 9 8 0  0 . 4 5 0 7 E - 0 1  %GM 

E S T I M A T E  S . E .  PARAMETER 2  - 0 . 1 8 3 3 E - 0 3  0 . 5 6 0 2 E - 0 4  SQAG 
1  0 . 7 4 5 4  0 . 5 4 9 0 E - 0 1  %GM SCALE PARAMETER TAKEN AS 0 . 3 1 9 6  

2  - 0 . 8 5 8 5 E - 0 1  
3  - 0 . 9 2 4 6 E - 0 1  

SCALE PARAMETER 

- - 

o ZERO ALIASED TIDE( 1 )  
0 . 6 7 5 6 E - 0 1  T I D E ( 2 )  
0 . 6 7 7 8 E - 0 1  T I D E ( 3 )  

CYCLE D E V I A N C E  
1  1 6 7 . 9  

E S T I M A T E  
1  0 . 8 9 1 7  
2  - 0 . 8 6 8 5 E - 0 2  

SCALE PARAMETER 

CYCLE D E V I A N C E  
1  1 6 1 . 3  

E S T I M A T E  
1  0 . 3 0 4 3  
2  0 . 2 7 5 6  

SCALE PARAMETER 

CYCLE D E V I A N C E  
1  1 6 8 . 3  

E S T I M A T E  
1  0 . 8 4 2 9  
2  - 0 . 6 9 0 1 E - 0 2  

SCALE PARAMETER 

CYCLE D E V I A N C E  
1  1 6 4 . 7  

E S T I M A T E  
1  0 . 7 9 4 4  
2  - 0 . 3 4 2 8 E - 0 3  

SCALE PARAMETER 

CYCLE D E V I A N C E  
1  1 6 8 . 7  

E S T I M A T E  
1  0 . 7 6 9 6  
2  - 0 . 1 3 8 6 E - 0 3  

SCALE PARAMETER 

TAKEN AS 0 . 3 2 5 5  

S . E .  PARAMETER 
0 . 8 3 4 2 E - 0 1  %GM 
0 . 3 1 8 7 E - 0 2  T I M E  
TAKEN AS 0 . 3 2 1 6  

S . E .  PARAMETER 
0 . 7 2 8 7 E - 0 1  %GM 
0 . 5 1 1 4 E - 0 1  NUMC 
TAKEN AS 0.3090 

S . E .  PARAMETER 
0 . 7 2 6 7 E - 0 1  %GM 
0 . 2 8 0 1 E - 0 2  AGEC 
T A K E N  AS 0 . 3 2 2 4  

S . E .  PARAMETER 
0 . 3 7 6 5 E - 0 1  %GM 
0 . 8  1 7 3 E  - 0 4  SODA 
T A K E N  AS 0 . 3 1 5 6  

S . E .  PARAMETER 
0 . 5 0 1 9 E - 0 1  %GM 
0 . 6 3 6 6 E - 0 4  S Q T I  
TAKEN AS 0 . 3 2 3 3  

CYCLE O E V I A N C E  D F  
1  1 6 1  . 3  5 2 2  

E S T I M A T E  S . E .  PARAMETER 
1  0 . 4 8 8 1  0 . 4 2 2 8 E - 0 1  %GM 
2  0 . 9 1 8 7 E - 0 1  0 . 1 7 0 5 E - 0 1  SQNU 

SCALE PARAMETER TAKEN AS 0 . 3 0 9 0  

CYCLE D E V I A N C E  D F  
1  1 6 9 . 5  5 2 2  . 

E S T I M A T E  S . E .  PARAMETER 
1  0 . 7 0 6 0  0 . 3 2 1 7 E - 0 1  %GM 
2  - 0 . 3 6 8 6 E - 0 3  0 . 2 3 9 f E - 0 3  SQCO 

SCALE PARAMETER T A K E N  AS 0 . 3 2 4 7  



so that amongst all models containing only one of the given 

candidate main effects, the one containing TIDE (both design 

variables moved as a unit) showed the lowest R2 improvement: 

D(current model)=169.6=SS(error) 

and the one containing only NuMCHK showed the highest R2 

improvement: 

D(current model)=161.3 

R2 = l -  1 6 1  - 3 = ~ . ~ 5 2 8  
170.3 

Procedure 1 then takes the model with NUMCHK and tries out 

all the remaining effects (including SQNUM) in order to find 

the 2 effect model with the highest R2 improvement when 

NUMCHK is already in. Similarly procedure 2 tries out all 2 

effect models which contain TIDE. As it turned out, 

procedure 1 ended up with SQDATE being added to 'the NUMCHK 

model, and procedure 2 ended up with SQCOL being added to 

the TIDE model. 

One then ends up with 2 sequences of nested models along 

with their R2-values, which when plotted against p suggest 2 

R2 improvement paths, which were shown in ~igure 3. 

Procedure 2 is shown in the bottom path, but procedure 1 did 

not result in the top path. This is because the forward 

selection did not find the best possible model at all values 

of p .  This drawback is not unknown in stepwise regression 

(Ref.(ll) pg. 435, Ref.(6) pg. 317) and is due to the 



presence of multicollinearity in the data, since an 

explanatory variable's ability to decrease SS(er r or) when 

brought into the current model depends on what variables 

were already present in the model (Ref.(ll) pg. 271-282). In 

particular the forward R2 selection outlined in this section 

missed the current best model of Chapter 3, which can be 

found on the top path in Figure 3 above p=5, as can be 

confirmed from Table 7. 

8.7 On the Generation of the Outputs in Chapter 3 of the 

Client Report 

In Chapter 3 of the Client Report, Figures 1 through 4 

are introduced along with Ta.ble 8. The command source files 

which generated each of Figures 1.a-p through 4.a-p are 

shown in Figures 18 through 21. All are examples of BMDP 

command files. The details of using any BMDP program can be 

looked up in ~ef.(4). The layout of the '$run' command along 

with its input/ouput file specification is specific to the 

MTS system. Ref.(l) contains details on how to run the BMDP 

programs on the MTS system. 

In Figure 18 is the P6D program which generated the 

plots of Figures 1.a-p. The fact that there are 524 

observations was obtained by using the MTS '$list' command 

to output'the file EMMSFDRT, and then observing the line 

number of the last record of observations. It also shows an 



Figure 18: P6D Command File which Generated Fiqures l.a-2 

$empty eoutp6dl ok 
$run *bmdp sprint=eoutp6dl 7lemmsfdrate par=p6d 
/ problem title is 'EOUTP6Dl: plot TOTFSH against explanatory 

variables & do some scatter plots without totfsh'. 

/ plot 

/ plot 

/ plot 

/ plot 

/ end 

/ Input unit is 7. 
cases are 524. 
variables are 10. 
format is '(3x.f5.0,17x.f3.0.9x.f4.0.6(1~,f3.0), 

/ variable names are label.totfsh,date,co1szeetlde.tldehi,t 
time.numchk.agechk.Sqtimetlme.numchk.agechk.sqtime.sqdate.sqa9esqdate.sqage 
sqnum. 

add=5. 
label Is label. 

/ transform sqtime=time*tlme. 
sqdate=date*date. 
sqage=agechk*agechk. 
~ q ~ ~ l = ~ ~ l ~ z e * c ~ l s z e .  
sqnum=numchk*numchk. 
yvar Is totf sh. 
xvar are date,co\sze.t1de.numchkkagechk.tlme, 

tideh1.tldemed.sqdate. 
sqtime.sqage,sqcol.sqnum. 

cross. 
slze=l00.40. 
yvar Is agechk. 
xvar is date. 
size=100,40. 
yvar is tlme. 
xvar Is tlde. 
slze=100.40. 
yvar is colsze. 
xvar Is numchk. 
size=l00,40. 

lx.f4.0)'. 
I demed , . sqco 1 . 



Figure 19: P9R Command File which Generated Fiqure 2 

$empty eoutp91-6 ok 
$run *bmdp sprint=eoutp9r6 Pmemmsfdrate par=p9r 
/ problem 

/ input 

/ variable 

/ transform 

/ regress 

/ print 

/ plot 

/ end 

title is 'EOUTP9R6: Best (max R-square) 10 subsets 
regression--feedrate response, no interactions'. 

unit is 7. 
cases are 524. 
variables are 10. 
format is '(3x.a4.18x.f3.0,9x,f4.0,6(1x.f3.0),I~,f4.0)~. 
names are label,totfsh.date.colsze,tidehl,tidehi,tidemea, 

time.numchk.agechk.sqtimetlme.numchk.agechk.sqtlme.sqdate.sqage.ssqdateesqage.sqnum, 
sqco1,feedrate. 

add=6. 
label is label. 
sqtime=time*time. 
sqdate=date*date. 
sqage=agechk*agechk. 
sqnum=numchk*numchk. 
sqcol=colsze*colsze. 
feedrate=totfsh/2.0. 
dependent is feedrate. 
independent are date.colsze,tidehi.tidemed.tlme,nurnchk, 

agechk,sqtime,~qdate,sqage,sqcol. 
methodzrsq. 
number=lO. 
news. 
no shade. 
normal . 
yvar are predictd.residual.residual,residUa1,res1dual, 

residual,residual.residual,residual,residual, 
residual,residual.residual resldual.reslduel.resldual.reslduel.reslresidua1,residual. 

xvar are feedrate,predictd,feedrate.date,c~lsze,tide, 
tidehi,tidemed,time,numchk,agechkksqtime,sqdate. 
sqage.sqco1. 

size=ll5,50. 
hist. 



Figure 20: P6D Command File which Generated Figure 3 

$empty eoutpCid2 ok 
$ r l ~ n  +bmdp spr int,=eoutp6d2 7=zmlnsrpl t par=p6d 
// problem t i t l e  i s  'EOUTP6D2: R-sqaure p l o t  f o r  models w i thou t  

i n t e r a c t i o n s ' .  
/ inpu t  u n i t  i s  7 .  

cases a re  29. 
va r i ab l es  a re  2 .  
format i s  ' ( 2 x , f 2 . 0 , 3 x . f 6 . 4 ) ' .  

/ v a r i a b l e  names are p.Rsquare. 
/ P l o t  yvar i s  Rsquare. 

xvar i s  p .  
s ize=100.40.  
no S t a t i s t i c s .  
symbol-" '  
minimum a re  1 .0 .0 .  
maximum are  12.0.20.  



Fiqure 21: P9R Command File which Generated Figures 4.a-Q 

iernpty eeutp9r8 ok 
$ run  *brndp spr in t=eol l tp91-8 7=emmsfdrate par=p9r  
j problem 

/ i r p u t  

/ v a r i a b l e  

/ t r ans f  orrn 

/ regress 

/ p r i n t  

/ p l o t  

/ end 

t l t l e  1 s  ' E O U T P 9 R 8 :  no search, bu t  i n ves t i ga te  cur-ent  
"bes t "  mode l ' .  

u n i t  i s  7 .  
cases a re  524. 
va r i ab l es  a re  10. 
format i s  '~3~.a4.18x,f3.0.9x.f4.0.6(lx,f3.0),lx,f4.0)~ 
names a p e  labol.tctfsh.date.colsze,t~dehi.tidehi,tiderned. 

timo.nurnchk.agechk,sqtirne,sqdatf?,sqage,sqnurn, 
.?qco!. feedrate. 

add=F. 
labe l  i s  l a b e l .  
sqt ime=t ime*t ime.  
sqdate=date*date.  
sqage=agechk -agechk. 
sqnum=numchk 'numchk . 
sqco l=co lsze*co lsze .  
f eed ra te= to t f sh /2 .0 .  
dependent i s  f eed ra te .  
independent a re  numchk.agechk.sqage,time.sqtime 
met hod= none. 
news. 
no shade. 
mat r i ces  a re  c o r r . c r e g . r r e g .  
normal . 
yvar a re  predi,ctd,residual.resldua 

residual.residua1.residua 1 .  . 
residual.residual,residual.reSidual,resid~~~~ 

xvar a re  fsedrate.predictd.feedrate,date,cOl~ze.ti~~ 
tidehi.tidemed.time,numchk,age~hk~~qtime,sqdate. 
sqage.sqcc1 

s ize=100.40.  
h1St 



example of using the ' /  plot' paragraph more than once, 

where the reason behind doing so was the choice of a new 

vertical axis variable. 

Figure 19 shows the use of the P9R program with the 

specific request that the method of maximum R~ be used to 

find the best 10 subsets as p varies from 1 to 1 1 .  Some of 

the results were given in Figure 2. Another interesting 

feature shown there is the 'news' sentence in the ' /  plot' 

paragraph in order to get up-to-date information on the 

latest program modifications. This feautre is not mentioned 

in the BMDP manual ( ~ e f .  ( 4 ) ) .  

Figure 20 shows the use of the P6D program to generate 

the  plot, but using the file from Table 7 as input to 

produce the output in Figure 3. The table itself was written 

using the MTS file editor. 

Figure 21 shows another P9R run but this time not for 

any model searching (hence the 'method=none.' sentence in 

the ' /  regress' paragraph), but to take advantage of P9R's 

use of double precision arithmetic to obtain more accurate 

calcultions, and the program's plot facilities. The results 

of the latter were given in Figures 4.a-p. 



CHAPTER 9 

TECHNICAL SUPPLEMENT FOR CHAPTER 4 

In Chapter 4, 3 methods were presented to try to modify 

the current best model in order to yield a higher R2 without 

having to pay too high a penalty for doing so. There, 

computer run results of Figures 6 through 10 were 

introduced. The command source files which produced them 

will now be discussed along with other runs of interest. 

Computer Runs for Method 1 of Chapter 4 

Figure 22 shows a command source file similar to Figure 

18, except that now some interaction terms are defined and 

included as potential explanatory variables. The parameter 

'space=18000w' will be noticed in the '$runv command. The 

purpose of this is to increase the storage space required 

for the run. This will be explained in more detail in 

Chapter 7 of Part B where such a request plays a more 

predominant role. The results were partially shown in Figure 

5. 

The ' /  plot' paragraph shows some interesting features. 

Firstly, 'residual' is a system vector for this particular 

program and contains residuals from the model of best fit, 

which the program has selected. Secondly, residual as a 

vertical axis for plots must be respecified for as many 



Figure 22: P9R Command File which Generated Figure 6 

$empty -eoutp9r7 ok 
$run *bmdp sprint=-eoutp9r7 7=emmsfdrate par=p9r space=18000w 
/ problem title is 'EOUTP9R7: Best 10 subsets regression with 

feedrate response & important interactions'. 
/ input unit is 7. 

cases are 524. 
variables are 10. 
format is '(3x.a4.18x,f3.0.9x.f4.0,6(lx,f3.0).lx.f4.0)f. 

/ variable names are label.totfsh.date.colsze,tide,tideh,tidern, 
time,numchk,agechk.sqtime,sqdate,sqage,sqcol, 
feedrate.clnl.clal.cla2,tlal.tla2,t2al.t2a2, 
nlal,nla2,thtl.tmtl,tht2nlal,nla2.thtl.tmtl,tht2.tmt2,c2nl,c2al.trnt2,c2nl,c2al,c2a2. 

add=21 . 
label is label. 

/ transform sqtime=time*time. 
sqdateodate'date. 
sqage=agechk*agechk. 
sqcol=colsze*colsze. 
clnl=colsze*numchk. 
clal=colsze*agechk. 
cla2=colsze*sqage. 
c2al=sqcol*agechk. 
c2a2=sqcol*sqage. 
c2nl=sqcol*numchk. 
tlal=time*agechk. 
tla2=tlme*sqage. 
t2al=sqtime*agechk. 
tZa2=sqtime*sqage. 
nlal=numchk*agechk. 
nla2=numchk*sqage. 
thtl=tideh*time. 
tmtl=tidem*time. 
tht2=tideh*sqtime. 
tmt2=tidem*sqtime. 
feedrate=totfsh/2.0. 
dependent is feedrate. 
independent are date.colsze,tideh,tidern,tirneenumchk. 

agechk.sqtime.sqdate,sqage,sqcol,clnl. 
clal.cla2.tlal.tla2.t2al.t2a2.nlal.nla2. 

/ regress 

/ print 

/ plot 

t I 1 t l . t m t l . t h t 2 . t m t 2 ~ ~ 2 n 1 , ~ 2 a 1 , ~ 2 a 2 .  
methodlrsq. 
tolerance=0.00001. 
number-10. 
news. 
no shade. 
normal . 
yvar is residual,residua1.residual,residual1residua 

residual,residual,residual,residual,residua 
residual,residual,residual.residual,residua 
residual.residual,residual,residual,reSid~a 

1 ,  
1 ,  
1 .  
1 .  

residual,residual.resid~al.residual.resid~al, 
residual.residual,residual,residual.resid~al. 

xvar are predictd,feedrate.date,colsze,tide,tideh, 
tidem,time,numchk,agechktidem,time.numchk.agechk.sqtlme,sqdate,ssqt1me,~qdate,S~~~~, 
sqcol,clnl,clal,cla2,tlal,tla2sqcol,clnl,clal,cla2.tlal,tla2.t2al,t2a2t2al,t2a2, 
nla1,nla2,thtl,tmt1,tht2.tmt2.c2n1,C2a1,C2a2. 

size=115,50. 
hist. 

/ end 



plots as are desired. This contrasts with the P6D program 

which has a 'cross' option so that a common vertical axis 

need be specified only once. 

Figure 23 shows the GLIM command file which generated 

Figures 7.a through 7.c. It will be noted that use is made 

of the GLIM '$MACROf command. This command is used to 

specify user-defined routines which require more than one 

line of typed instructions and are to be executed at least 

twice. 

Another method of detecting important interactions was 

attempted along the lines of the graphical aids discussed in 

Chapter 4. First the necessary data had to be obtained. 

Figure 24 shows a P9R command file which requests a fit 

on the current best model of Chapter 3 and a file for saving 

both the supplied input data and the model fit results, 

including the residuals. This data was saved for plots with 

P6D runs which could not be done with the more limited plot 

facilities in P9R (for example, P6D can do case selection 

for plots through the 'group' sentence in a ' /  plot' 

paragraph whereas this is not possible in P ~ R ) .  The ' /  save' 

paragraph option was used to store the data in the file 

EP9RFILE and in the default unformatted binary layout.   his 

default can be overridden by specifying a 'format' sentence 

in the ' /  save' paragraph (~ef.(3) pg. 69). Nonetheless BMDP 

programs are able to read unformatted binary files, and so 



Figure 23: GLIM Command File which Generated Figures 7.a-c 

SEMPTY E O U T G L I M 4 0  OK 
$RUN U N S P : G L I M  1-EMMSFDRATE 2=EOUTGLIM4O 
$C 
$C G L I M  RUN ON F I L E  EMMSFDRATE T E S T I N G  OUT NORMAL THEORY MODEL 
3 c 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

$C GET DATA & TRANSFORM * 
$C . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C 
BOUTPUT 2 1 3 2  
B U N I T S  5 2 4  
$DATA L A B E L  TOTFSH DATE COLSZE T I D E  T I M E  NUMCHK AGECHK 
SFACTOR T I D E  3 
$FORMAT 
( 3 X . F 5 . 0 . 1 7 X . F 3 . 0 , 9 X , F 4 . 0 , 2 ( 1 X . F 3 . 0 ) . 8 X , 2 ~ 1 X , F 3 . 0 ~ , 1 X , F 4 . 0 ~  
$ D I N P U T  1 
$LOOK 1 1 5  L A B E L  TOTFSH DATE COLSZE T I D E  T I M E  NUMCHK AGECHK 
SCALC FEEDRATE=TOTFSH/P .O 
3 c 
f C  ADD QUADRATIC TERMS 
SC 
f C A L C  SQDATE=DATE*DATE: S Q T I M E = T I M E * T I M E :  SQAGE=AGECHK*AGECHK 
f C A L C  SQNUM=NUMCHK*NUMCHK: SQCOL=CDLSZE*COLSZE 
SC 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * S P E C I F Y  MODEL TO B E  ANALYZED * 
BC ALLOW FOR O V E R - D I S P E R S I O N  
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3 C 
BYVAR FEEDRATE 
$ERROR N 
B L I N K  I 
$SCALE 0 
3 C 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SC * SET UP I N P E C T  R O U T I N E  
$C . . . . . . . . . . . . . . . . . . . . . . . . . . .  
f C 
$MACRO I N S P E C T  $ D I S P  A 

$EXTRACT %VL 
$LOOK 1 5 0  L A B E L  %FV %VL 
BENDMAC 

3 C 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SC * NOW F I T  MODELS * 
$C F I R S T  N U L L  MODEL * 
$C * THEN CURRENT B E S T  MODEL 
$C * THEN F U L L  MODEL WITHOUT I N T E R A C T I O N S  
$C THEN F U L L  MODEL W I T H  I N T E R A C T I O N S  
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C 
$ F I T  %GM 
S D I S P  A 
$ F I T  AGECHK+NUMCHK+TIME+SQAGE+SQTIME 
$USE I N S P E C T  
$ F I T  +DATE+CDLSZE+TIDE+SQDATE+SQCOL 
$USE I N S P E C T  
s C 



Fiqure 23, continued 

$C CALCULATE APPROPRIATE CROSS-PRODUCTS 
$ c 
SCALC AINI=AGEC*NUMC: A2NI=SQAG*NUMC: AITI=AGEC*TIME: AlTZ=AGEC*SQTI 
$CALC A2TI=SQAG*TIME: A2T2=SQAG*SQTI: CINl=COLS*NUMC: CPNI=SQCO*NUMC 
$CALC CIAI=COLS*AGEC: CIA2=COLS*SQAG: C2AI=SQCO*AGEC: C2A2=SQCO*SQAG 
S c 
SC NOW GO AHEAD WITH MODEL WITH INTERACTIONS 
$C 
SFIT +A1N1+A2N1+A1T1+A1T2+A2T1+A2T2+C1N1+C2N1+CIAl+ClA2+C2Al+C2A2+ 

TIME.TIDE+SQTI TIDE 
$USE INSPECT 
SSTOP 



Figure 24: P9R Run t o  Save Data for  P6D Run 

/ problem 

/ Inpu t  

/ v a r i a b l e  

/ t ransform 

/ regress 

/ p r i n t  

/ save 

t i t l e  i s  'EOUTP9R9: re - run  of  cu r ren t  best model, but  
c rea te  data f i l e  f o r  P6D runs ' .  

u n i t  IS 7 .  
cases a re  524.  
va r i ab les  a re  10. 
format I s  '(3x.a4.18x,f3.0.9x,f4.0,6(lx,f3.0).lx.f4.0~1 
names a re  label,totfsh.date,co1sze,tide,t1dehi1t1demed, 

tlme.numchk.agechk.sqtlmetlme.numchk.agechk.sqtlme.sqdate,sqage,s~qdate,sqage,sqnum, 
sqco1,feedrate. 

add=6. 
labe l  I s  label-. 
sqt lme=tlme*t lme. 
sqdate=date*date. 
sqage=agechk*agechk. 
sqnum=numchk*numchk. 
sqcol=colsze*colsze.  
f eed ra te= to t f sh /2 .0 .  
dependent 1s feedrate.  
Independent a re  numchk.agechk.sqage,t1me,Sqtime. 
methodrnone. 
news. 
no shade. 
u n i t  I s  8 .  
new. 
code I s  emms. 

/ end 



the default was used since the file's sole purpose was to 

provide input to a further P6D run. 

Figure 23 shows the P6D run which was used to try out a 

graphical detection of an interaction between AGECHK with 

NUMCHK using the different values of NUMCHK: 

single nest occupancy: NUMCHK-1 
double nest occupancy: NUMCHK=2 

The 3 graphs produced are shown in Figures 26.a through 

26.c. The asterisk ( ' * I )  is reserved for cases where both 

's' (single occupancy) and 'dl (double occupancy) are to 

occupy the same spot on the plot. 

The question of whether the separate plots for single or 

double nest occupancies are sufficiently parallel to suggest 

no interaction, however, is not easy to answer from the 

graphs shown. Nevertheless it does seem that the separation 

effect due to the different levels of NUMCHK is not very 

strong. Note that for ease of comparison between the 3 plots 

P6D used the same horizontal and vertical scales in all of 

them. This is because the scales are determined from all 

cases before the subcases are selected for actual plotting. 

The user can override this by specifying different scales 

with each plot request. In any case, 'formal' methods such 

as the P9R run would still be used to quantify graphical 

intuition. This graphical approach was not pursued further. 



Figure 25: P6D Command File which Generates Fiqures 26.a-c 

Bempty eoutp6d3 ok 
$run 'bmdp spr int=eoutp6d3 8 z e p 9 r f i l e  par=p6d 
/ problem t i t l e  i s  'EOUTP6D3: p l o t  o f  resu- l t s  from p9r8 run & 

search f o r  i n t e r a c t i o n s  w i t h  numchk' 
/ inpu t  u n i t  i s  8 .  

code i s  emms. 
/ v a r i a b l e  grouping i s  numchk. 
I' group codes(9) a re  1 . 2 .  

names(9) are s ing le .doub le .  
/ P l o t  yvar i s  feedrate.  

xvar i s  agechk. 
group i s  s i n g l e .  
group i s  double. 
groups are s ing le .doub le  
no s t a t j q t  i c s .  
s7ze i s  1 0 0 . 4 0 .  

/ end 



Fiqure 26.a: FEEDRATE against AGECHK for  NUMCHK=1 



Figure 26 .b:  FEEDRATE against AGECHK for NUMCHK=2 
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Fiqure 26.c: FEEDRATE aqainst AGECHK f o r  all_NUM_CHK values 

. + 1 1 1 1 1 1 1 + 1 1 1 1 1 1 1 + 1 1 1 1 1 1 1 + 1 1 1 1 : 1 1 + 1 1 1 1 ~ 1 1 +  

In 
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9.2 Computer Runs for Method 2 of Chapter 4 

Figure 27 shows the command source file of P9R commands 

which produced the model search for log-transformed FEEDRATE 

in Figure 8. Similarly Figure 28 shows the source file of 

P9R commands which did the search for square root 

transformed FEEDRATE in Figure 9. 

Computer Runs for Method 3 of Chapter 4 

Figure 29 shows the source file of commands from the 

GLIM statis.tica1 software package used to fit a null model, 

maximal model without interactions, and maximal model with 

interactions. The results were highlighted in Figure 10. 

As noted in Chapter 4, the generalized R' 'measure: 

R2,1- D(current model) 
g D(nul i model) 

seems to perform more poorly than the R 2  for the 

normal-theory multiple linear regression. Also as noted in 

Chapters 4 and 8 ,  for normal-theory regression: 

SS(error)=D(current model) 

SS(t ot a1 )=D(nul 1 model) 

and thus R2=R2 but in general this is not necessarily true. 
g 

In particular, for the log-linear model pursued in Method 3 

of Chapter 4, the scaled deviance, S(&,y), is given by: 



Fiqure 27: P9R Command File which Generated Figure 8 

/ problem 

/ inpu t  

/ v a r i a b l e  

/ t ransform 

/ regress 

/ p r i n t  

/ p l o t  

t i t l e  i s  'EOUTPSR3: l o g f d r t l  w i t h  o r i g i n a l  explanatory 
var iab les - -bes t  5  subsets regress ion:  
feedra te  t ransformed' .  

u n i t  i s  7 .  
cases a re  524. 
va r i ab les  a re  10. 
format i s  '(3x,a4,18x.f3.0.9x,f4.0,6(lx.f3.0).lx,f4.0)'. 
names a re  label,totfsh.date,colsze,tidehi.tidehl,tidemed, 

time.nurnchk.agechk.sqtimetime.numchk.agechk.sqtlme.sqdate.sqege.ssqdate.sqage,sqcol, 
feedra te ,  l o g f d r t l .  

add=6. 
labe l  i s  l a b e l .  
sqt i rne=t ime*t ime. 
sqdate=dateadate. 
sqage=agechk*agechk. 
sqcol=colsze*colsze.  
feedrate=tot fsh/Z.O.  
logfdrtl=ln(feedrate+0.1). 
dependent i s  l o g f d r t l .  
Independent a re  date,colsze,tidehi,tiderned,tirne,numchk. 

agechk,sqtirne,sqdate,sqa&,sqcol. 
method=rsq. 
news. 
no shade. 
normal . 
yvar a re  r e s i d u a l , r e s i d u a l .  
xvar a re  p r e d i c t d . l o g f d r t 1 .  
s ize=115,50. 
h i s t .  

/ end 



Fiqure 28: P9R Command File which Generated Fiqure 9 

/ problem 

/ Input  

/ v a r l a b l e  

/ transform 

/ regress 

/ p r l n t  

/ p l o t  

t i t l e  i s  'EOUTP9R10: s q r t f d r t  w i t h  o r l g l n a l  explanatory 
var lab les - -bes t  5  subsets regress lon:  
feedra te  transformed'.  

u n l t  I s  7 .  
cases a re  524. 
va r i ab les  a re  10. 
format i s  '(3x,a4.18x.f3.0,9x.f4.0,6(ix.f3.0),lx.f4.C~ 
names a re  label.totfsh,date.colszeetide,tidehl,tidemed. 

time.numchk,agechk.sqtlme,sqdateesqage,sqcol. 
f e e d r a t e . s q r t f d r t .  

add-6. 
label  I s  l a b e l .  
sqt ime=time*t ime. 
sqdate=dateadate. 
sqage=agechk*agechk. 
sqcol=colsze*colsze.  
feedra te= to t fsh /2 .0 .  
s q r t f d r t = s q r t ( f e e d r a t e ) .  
dependent i s  s q r t f d r t .  
independent a re  date,colsze,tidehi,tidemed,tirne,num~hk. 

agechk.sqtime,sqdate,sqage,sqcol. 
methodlrsq. 
news. 
no shade. 
normal . 
yvar a re  res ldua1 , res idua l .  
xvar a re  p r c d l c t d , s q r t f d r t .  
s i ze= l l 5 . 50 .  
h i s t .  

/ end 



Figure 29: GLIM Command ~ i l e  which Generated Fiqure 10 

$EMPTY - E O U T G L I M 3 7  OK 
$RUN U N S P : G L I M  I'EMMSFDRATE 2 = - E O U T G L I M 3 7  
f C  
$C G L I M  RUN ON F I L E  EMMSFDRATE T E S T I N G  OUT L O G - L I N E A R  MODEL 
$ C LOOK AT F U L L  MODEL FROM E O U T G L I M 1 6 ,  DO SOME P L O T S .  & 
SC IMPROVE F I T S  BY I N T E R A C T I O N S  
S C 
$C .......................... 

SC * GET DATA & TRANSFORM 
$C .......................... 

SC 
$OUTPUT 2 1 3 2  
S U N I T S  5 2 4  
SOATA L A B E L  TOTFSH OATE COLSZE T I D E  T I M E  NUMCHK AGECHK 
SFACTOR T I O E  3 
SFORMAT 
( 3 X , F 5 . 0 , 1 7 X , F 3 . 0 . 9 X . F 4 . 0 , 2 (  I X , F ~ . O )  , 8 ~ , 2 (  I X , F ~ . O ) ,  l ~ ~ F 4 . 0 )  
SOINPUT 1 
SLOOK 1 1 5  L A B E L  TOTFSH OATE COLSZE T I O E  T I M E  NUMCHK AGECHK 
S C 
SC ADD QUADRATIC TERMS 
SC 
$CALC SQOATE=OATE*DATE: S Q T I M E = T I M E * T I M E :  SQAGE=AGECHK*AGECHK 
SCALC SQNUM=NUMCHK'NUMCHK: SQCOL=COLSZE*COLSZE 
S C 
$C * * * f t * * * * * * * * f t * t t * * * * * * * * * * * * * * * *  

SC S P E C I F Y  MODEL TO B E  ANALYZED 
$C ALLOW FOR OVER-OISPERSI@N * 
$C t******t*t******t***t*t*****t*t*** 

S C 
SYVAR TOTFSH 
$ERROR P 
S L I N K  L 
$SCALE 0 
SC 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SC * SET UP OUTPUT R O U T I N E  
$C . . . . . . . . . . . . . . . . . . . . . . . . . . .  
S C 
BOUTPUT 2 1 1 5  5 0  
$MACRO SEERESULTS SDXSP A 

SCALC RESIO=TOTFSH-%FV 
SPLOT X F V  TOTFSH 
SPLOT R E S I O  %FV 
$PLOT R E S I D  TOTFSH 
SENDMAC 

S c 

TRY TO 

SC NOW F I T  MODELS 
SC * F I R S T  N U L L  MODEL & I T S  PLOTS * 
SC 9 THEN TRY SOME MODELS W I T H  I N T E R A C T I O N S  & T H E I R  PLOTS * 
$C ............................................................... 

S C 
S F I T  %GM 
S O I S P  A 
$ F I T  NUMCHK+SQOATE+OATE+TIME+SQTIME+TIOE+COLSZE+SQAGE+AGECHK+SQCOL 
$USE SEERESULTS 
$ c 



Fiqure 29, continued 

f C  CALCULATE APPROPRIATE CROSS-PRODUCTS 
S  c 
SCALC A I N I = A G E C * N U M C :  A2NI=SQAG*NUMC:  A I T I = A G E C * T I M E :  A I T 2 = A G E C * S O T I  
$CALC A 2 T I = S Q A G * T I M E :  A 2 T 2 = S Q A G * S Q T I :  C I N I = C O L S * N U M C :  C2Nl=SQCO*NUMC 
$CALC C I A I = C O L S * A G E C :  C I A 2 = C O L S * S Q A G :  C2AI=SQCO*AGEC:  C2A2=SQC08SQAG 
$ C 
$C NOW TRY THEM OUT 

NUMC+SQDA+DATE+TIME+SQTI+TIDE+COLS+SQAG+AGEC+SQCO+AlNl+A2Nl 
SEERESULTS 
NUMC+SQDA+DATE+TIME+SQTI+TIDE+COLS+SQAG+AGEC+SQCO+AlTl+AlT2+ 

A 2 T  1 + A 2 T 2  
SEERESULTS 
NUMC+SQD4+DATE+TIME+SQTI+TIDE+COLS+SQAG+AGEC+SQCO+ClAl+ClA2+ 

C2A 1+C2A2 
SEERESULTS 
NUMC+SQDA+DATE+TIME+SQTI+TIDE+COLS+SQAG+AGEC+SQCO+ClNl+C2Nl 
SEERESULTS 
NUMC+SQDA+OATE+TIME*TIDE+SQTI*TIDE+COLS+SQAG+AGEC+SQCO 
SEERESULTS 

NOW TRY FOR THE WHOLE T H I N G  

NUMC+SQDA+DATE+TIME*TIDE+SQTI*TIDE+COLS+SQAG+AGEC+SQCO+AlNl+A2Nl+ 
A1T1+A1T2+A2T1+A2T2+C1N1+C2N1+C1A1+C1A2+C2Al+C2A2 
SEERESULTS 



(Ref. (8) pg. 25). Unscaled deviance, D(curren2 model), is 

defined by: 

S(ij,y)= D(current model) 
o 

where oZ=l is used for a Poisson likelihood without 

over-dispersion. Clearly, then: 

D(current model)#SS(error) 

since: 

It should be pointed out that this time: 

where 

? = ~ b  - - 

Nonetheless, D(current model) is the goodness-of-fit measure 

which GLIM uses. 

It will be recalled, however, that SS(error) for the 

log-linear model exceeded that for the normal theory model 

when the same 5 explanatory variables (NUMCHK, AGECHK, TIME, 

SQAGE, SQTIME) were used.  his was shown in Figures ll.a and 

ll.b. The GLIM command file which generated these figures is 

shown in Figure 30. An important feature of this program is 

the calculation of SS(error) (stored in the scalar '%St) 

using the '%Cut function. This function is designed to give 

a result of the same size as its argument (here a vector of 

524 entries), but the assignment of this result to the 



Figure 30: GLIM Command File which Generated Figures ll.a-b 

$C G L I M  RUN ON F I L E  EMMSFDRATE T E S T I N G  OUT 
$ c  CURRENT B E S T  MODEL 
$ c  U S I N G  BOTH NORMAL THEORY 
$ C AND L O G - L I N E A R  REGRESSION MODELS 
$C 
$C .......................... 

$C * GET DATA & TRANSFORM * 
$C . . . . . . . . . . . . . . . . . . . . . . . . . .  
SC 
$OUTPUT 2 1 3 2  
S U N I T S  5 2 4  
$DATA L A B E L  TOTFSH DATE COLSZE T I D E  T I M E  NUMCHK AGECHK 
$FACTOR T I D E  3 
SFORMAT 
( 3 X , F 5 . 0 . 1 7 X , F 3 . 0 , 9 X , F 4 . 0 , 2 ( 1 X , F 3 . 0 ) . 8 X . 2 ( 1 X , F 3 . 0 ~ , 1 X , F 4 . 0 )  
$ D I N P U T  1 
$LOOK I 1 5  L A B E L  TOTFSH DATE COLSZE T I D E  T I M E  NUMCHK AGECHK 
$CALC FEEDRATE=TOTFSH/P .O 
$C 
SC ADD QUADRATIC TERMS 
SC 
SCALC SQDATE=DATE*DATE: S Q T I M E = T I M E * T I M E :  SQAGE=AGECHK*AGECHK 
SCALC SQNUM=NUMCHK*NUMCHK: SQCOL=COLSZE*COLSZE 
$C 
$C ********a************************** 

$C * SET UP MOOEL A N A L Y S I S  R O U T I N E  * 
$C * F I T  N U L L  MODEL * 
$C * F I T  CURRENT B E S T  MODEL * 
$C * AND CALCULATE R E S I D U A L  SUM OF 
$C SQUARES * 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$ C 
$MACRO F I T  $ F I T  %GM 

S D I S P  A 
$ F I T  NUMCHK+AGECHK+TIME+SQAGE+SQTIME 
$ACCURACY 9 
S D I S P  A 
$CALC RESID=%YV-%FV 
SCALC S Q R E S I D = R E S I D * R E S I D  
SCALC %S=%CU(SQRESID)  
$LOOK %S 
BENOMAC 

$C 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * NORMAL THEORY MODEL 
$C * S P E C I F Y  MODEL TO B E  ANALYZED * 
SC ALLOW FOR O V E R - D I S P E R S I O N  * 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$ c 
SYVAR FEEDRATE 
$ERROR N 
$ L I N K  I 
$SCALE 0 
$ c 
$C NDW GET MODEL F I T  RESULTS 



Figure 30, continued 

$ c 
$USE F I T  
$ C 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * LOG-L INEAR MODEL * 
$C * S P E C I F Y  MODEL TO BE ANALYZED * 
$C * ALLOW FOR O V E R - D I S P E R S I O N  
$C ............................ 

$ c 
SYVAR TOTFSH 
$ERROR P 

' B L I N K  L 
$SCALE 0 
$C 
$C NOW GET MODEL F I T  RESULTS 
$ C 
$USE F I T  
$STOP 



scalar ' % S 1  has the effect of ' % S '  taking on the last entry 

in that result vector. Consult Section 10.2 of Ref.(2) for 

details. 



CHAPTER 10 

TECHNICAL SUPPLEMENT FOR CHAPTER 5 

This discussion is concerned with the estimates and 

associated standard errors mentioned in Section 5.4. First, 

some extended notation is needed: 

At =t D-t M=t D-27 

At 2=t 6-t $=t 6-729 

aD=age of chicks at dawn (t ) D 
aM=age of chicks at t M  

Aa=aD-aM 

Aa2=a6-a$ 

so: 

=c1b - - 
where: 

bl=(bOIbl Ib2tb3f b4rb5) - 
Furthermore, d is a 'best' (minimum variance) linear 

unbiased estimator of: 

6=~(Ylt~)-~(Ylt~=27) 

by Gauss' Theorem (Ref.(6) pg. 301). 



Now : 

Suppose dawn o c c u r s  a t  0530H, t h a t  i s ,  

t D = l  1 

Then : 

1 =--b 3 2 -16b 3 3 4  - 1 b  paD-+) -6086~  

From t h e  c u r r e n t  b e s t  model: 

b'=(0.873,0.243,0.545,-0.0845,-0.00121,0.00156~ - 
s o  t h e  o n l y  unknown l e f t  i s  aD. Rather  than  e s t i m a t e  d 

s e p a r a t e l y  f o r  each  aD, suppose t h a t  Aa, be ing  0 t o  t h e  

n e a r e s t  whole day ,  can be ignored .  Then: 

dzk ' b  - - 
where 

k ' = ( O , O , O , A t  ,0,At 2 )  - 
=(O,O,O,-16,0,-608) 

S O  

dz-16(-0.0845)-608(0.00156) 

= O .  404 

Now i n  g e n e r a l ,  i f  : 

b = ( x l x ) - ' X ' Y  - - 



then, according to Ref.(6) pg. 300: 

E(kJ=L 

c o v  (b)=(xlx)-lo2 

so that: 

Y-N~(O.O~I~) - - 
gives: 

k N P +  1 (1, (x'xrl o2 ) 
provided that the matrix X was full rank (~ef.(l3) pg. 28), 

which was ensured in this analysis by removing all extrinsic 

and intrinsic aliasing (see Section 4.3 of Ref.(2)). 

Furthermore: 

k'b-N( k'b, k' (x'x)-'~o') - - - - 
c'b-N(c'g,cv (x'x)-'~o~) - - - 

(~ef.(l3) pg. 28). Thus a 95% confidence interval for k'e 

where z(7) represents the 1007% percentage point of a N(0,l) 

distribution. As usual, however, u2 is unavailable and must 

be estimated by s 2  where: 

,-SS(er r  o r )  
S - n-p- 1 

which will require a t-distribution with n-p-1 degreees of 

freeedom in the consequent confidence interval: 

(k' - - b-t (0.975;n-p-1 )sik' - (x'x)-'k, - 

where now t(y;v) represents the 100y8 percentage point of a 

t-distribution with v degrees of freedom. 



Now: 

where Ciiv(b) - is just the. sample dispersion or 

variance-covariance matrix for - b shown in Figure 10. Also, 
one can take advantage of the zeroes in - k to obtain the 
simplification: 

so the sample standard error of - k'b - is: 

But again, this is a standard error for k'b, not d=c'b, - 

which would be a function of a D .  

Note that the CSv(b) - matrix does not come with the P9R 

output by default but must be requested in the ' /  print' 

paragraph (see the corresponding command file, Figure 21). 

Note also that this would be one way to get a scaled (x'x)-' 

matrix for possible future calculation requirements (such as 

working-Hotelling confidence bands); the entries of CGv(b) - 
are just those of (x'x)-' multiplied by: 



which is just the residual mean square from Figure 4. 

Unforunately as can be seen from Figure 10 the entire 

Czv(b) - matrix is not given. The row and column for the 

constant term are missing, which explains why the matrix 

given there is 5 by 5 rather than 6 by 6 as it should be. As 

will be seen in Part B (Figure e 32), however, the full Czv(b) 

matrix may be obtained in a GLIM run, in this case on a 

normal theory regression model. 



PART B 

MODELLING ACTIVE NEST OCCURENCE IN DECIDUOUS TREES BY 

PRIMARY EXCAVATOR BIRD SPECIES 



CHAPTER 1 

THE PROBLEM 

Dagmar Gook, graduate student in the Dept. of Biological 

Sciences, presented data collected in a study of trees in 

the B.C. interior, near Kamloops. The site at which she 

studied forms part of what is known as the Interior 

~ouglas-fir ~iogeoclimatic Zone. Such zones are used by 

biologists to classify areas in which trees grow. A tree was 

examined for presence or absence of an active nest, that is, 

a nest which was excavated in the tree itself and was 

currently being inhabited. 

It was of interest to investigate whether the presence 

of such a nest in a tree (to be hereafter referred to as a 

'success') was associated with any of the other 

characteristics measured for that tree. Once such a set of 

associated characteristics could be found, a ranking of 

their relative 'importance' would then be of interest. The 

results of such a study would be valuable to forestry and 

wildlife managers who may wish to encourage or discourage 

such activity. 

The analysis was to be carried out specifically only for 

deciduous (non-evergreen) trees and for those species of 

birds who are 'primary excavators', that is, those birds who 

will dig their own nests and not use an already existing but 

vacant cavity. Those species will be identified in the next 



chapter. 

The results of this analysis are to be applied to the 

population of deciduous trees in all of the Interior 

~ouglas-fir Biogeoclamatic Zones found in B.C., which are 

basically restricted to the low altitude regions of the 

southern interior. As it turned out a final model (to be 

identified in Chapter 3) was obtained using stepwise 

logistic regression. This model used up all the explanatory 

variables with which it was provided. It also contains no 

interaction terms. The 2 quantitative variables, length and 

height of tree, were entered into the analysis in natural 

log (base ' e l )  scale. For the qualitative variables, strict 

0,l-coding was used, where the first level of any such 

variable forced all applicable design variables to 0. 

In logistic regres'sion, the quantity being modelled is 

not directly probability of -success, but is instead log odds 

of success. An increase in log odds, however, will lead to 

an increase in probability. In this sense, nesting was 

positively associated with height and diameter, so trees 

which were taller or thicker (or both) had a higher nesting 

rate than trees which were respectively shorter or thinner 

(or both). Similarly of the 3 tree species classes (aspen, 

birch, 'other'), aspen trees had higher nesting rates than 

birch, which in turn had higher rates than 'other' (all 

other quantities being equal). Nesting was further 

positively associated with fungal conks, scars, and broken 



tops. Also, dead trees showed higher rates than live ones 

having similar characteristics (other than live/dead 

status). Details are given in Chapter 3. 

As for the ranking of the variables in importance to the 

final model, it was proposed that the order of entry in the 

stepwise process would be the most useful to resource 

management personnel, but other rankings were also 

attempted. In all of them, presence or absence of fungal 

conks was clearly the most 'valuable' to the final model. 

Details are given in Chapter 4. 

Regarding the sample data as a representative random 

sample from the target population mentioned above, an 

example inference was done for an aspen tree in the sample, 

where the fitted log odds value was found to be: 

+=I  .5OO6 

with an estimated sample variance of: 

s2(+)=vir(+)=0.0566 

This value of + then leads to an estimated probability: 
c=0.8177 

which estimates the probability of success for all trees in 

the target population which have similar characteristics to 

the example one selected here. By using s2(5) as well, one 

could further obtain a prediction probability: 

pp=O. 8 176 

which predicts the probability of success for an individual 

tree within the population. This pp is of course subject to 



a higher degree of imprecision than S ,  which is why rp is 

closer to 0.5 than L .  A value of rp  would reflect a toss of 

a fair coin as a guess of success or failure for a single 

tree. Details are found in Chapter 5. 

The client report is found in Chapters 1-5 , and the 

technical supplements for each chapter in Chapters 6-9 of 

this part, with Chapter 6 providing the technical supplement 

for Chapter 2, and so on (no technical supplement was needed 

for Chapter 1 1 .  



CHAPTER 2 

THE DATA 

Dagmar permitted access to a data file which contained 

all of the characteristics measured on the trees along with 

a record of success (active nest present) or failure (no 

active nest). A portion of this file is shown in Table 8. 

For each observation (tree) in the file, there are 2 

consecutive records, the formats of which are as follows. 

Variable 
RECORD 1 

( 1 )  Nest Tree ~umber/~lot Number 

(2) Blank or Tree Number 

(3) Tree Species 

(4) Diameter of Tree 

(5) Height of Tree 

Column Range 

Tree Live or Dead Indicator 

Decay Type 1 Indicator 

Decay Type 2 Indicator 

Decay Type 3 Indicator 

Decay Type 4 Indicator 

~resence/~bsence of Active Nest 
(~uccess/~ailure) 

Live or Dead Wood in Tree around 
Nest Indicator 

Broken Top of Tree Indicator 



Table 8: Portion of Raw Data File 

8 1  2 4 . 0  12.95 L 37 43 44 U 1 N 
N T N  0 S 9 . 3 6 4 8 D  
A 3 9 . 5 2 4 . 5 7 L 3 7 3 9 4 3  U M H? 1H 
NT '3 0 S 15.29 48 
B 1 2 8 . 0  2 . 6 3 D 3 7 3 9  4 4 F  M ? 
NT B F 2 .12  48 D 
A 38 .3  18.43 L 37 43 U 1 RS 
NT S F 12.21 48 
A 4 0 . 6 2 3 . 2 5 L 3 7 3 9 4 3  U S ? 1H7 
NT P 0 P? 12.62 16 A 
A 38 .3  7 . 6 8  D 
NT P F 7 .  I0 4 0  D 
B I  24 .4  4 . 7 1  D 37 44 F 
N T F  0 F? 4 . 3 9 3 2 D 1  
B I  20 .5  8 .45  D 39 44 DM H7S 
NT Q 0 H? 8 . 2 1  40  D I 
B I  25 .0  11.93 L 37 39  43 44 I IS7 
NT N F 11 .21  24 D I 
B I  30 .3  13.73 D 37 39 44 I F  S 7 15 l ?  
NT 7F F 10.29 64  D 1 
B I  16 .3  6 . 7 0  D 37 4 4 F  D S 
NT B F? 5 .89  16 D 1 
B I  2 6 . 8  12.53 L 37  43 44 F DS ?S? I S  17 
NT N F 11.83 32 D 1 
B I  2 6 . 0  11.56 L 39 43 44 1 N? 
NT S F 9 . 1 9  32 D 
A 2 2 . 6  12.03 L 43 44 BS 
NT N ON N? 8 . 9 8  64  D 
A 3 2 . 2 1 7 . 7 0 L  3 9 4 3  4 S 
N T S  D S 8 . 2 0 4 8  
B I  2 0 . 0  9 . 3 0  D 37 43  44 F D S 
NT M 0 M? 5 .54  48 D I 
A 29 .2  16.35 L 37 43 I 
NT H F 9 . 1 1  24 
A 2 0 . 5  5 . 2 5 D 3 7 3 9  4 4 1  S 7 I ?  
NT M F 3 . 5 0  4 0  D I 
A 6 0 . 0  23 .42  L 37 43 I BLS H?P 5s  1P 
NT S F 13.44 8 
A 3 0 . 5 2 7 . 1 7 L 3 7  43 I D S 1s 
NT S F 9 .14  8 
A 35 .5  18 .81  L 37 43 I 25 lH? 
NT P F 9 . 6 1  4 0  
A 20 .1  20 .41  D 37 I D S 2s  
NT S F 9 . 1 0  32 D 
A 28.7 8 .86  D 39 44 BSL ??P 
N T N  F N? 5 . 3 9 1 6 D l  
A 2.0.9 12.32 L 4 3 S? 
N T B  O ? ?  11.39 8 
A 2 8 . 6 2 0 . 2 4 L 3 7  43 I 1 S? 
NT S F 8 . 6 1  32 
A 42 .4  22 .57  L 37 43  44 I S ? 3P IS? 
NT P F 7 . 7 9  8 
A 6 0 . 8 2 3 . 1 2 L 3 7  43 I 
NT S F 9 . 5 0  48 
A 2 8 . 1  5 .35  D 44 SOL ?NP 257 
NT 8 ? 4 . 3 9  4 0  D 1 
A 2 3 . 1  1 3 . 6 2 L 3 7  43 I I H7 
NT S F 4 .39  4 0  
B I  2 9 . 8  11 .32  L 37 39  43 44 U D S 
NT S F 9 .44  56  D 1 
B I  3 5 . 0  8 .55  L 37 39  43  44 UP 1B7 
NT B? F 7 . 8 3  64 D 1 
B I  30 .5  8 . 8 0  L 37 43 44 F 1 S 
NT S F 6 . 9 1  16 D 
A 27 .7  14.02 D 4 4 
NT S F 12.29 48 D 1 
B I  16 .2  3 .15  D 37 39 44 F 
NT B? 0 2 . 7 9  24 D 1 
A 4 4 . 0 2 1 . 1 6 L 3 7  43 I M ? 
N T F  0 P 1 1 . 5 9 4 8  A 
A 4 4 . 0 2 1 . 1 6 L 3 7  43 I M ? 
NT P 0 11 .59  48  A 

166 



Other data in the file was ignored for this analysis. 

The variables as given a b ~ v e  are now described in more 

detail. A jd will be used to denote a blank character. The 

names of the variables to be retained in the analysis will 

be capitalized hereafter. 

A) Response Variable, ACNEST (RECORD 2, column 9-10) 

This is the outcome (success/failure) variable. As found in 

the raw data file, it takes on the following values: 

NT: Nest Tree--active nest present 
jd : no active nest present 

In order to make these values readable by all anticipated 

statistical software, they were recoded as follows 

ACNEST= 1, if active nest present 
0, if no active nest present 

In the case of abandoned nests, which had been 

previously established by a primary excavator birdspecies, 

it was agreed to consider such a tree as a failure since the 

reason for the nest's abandoned state may be that the tree 

acquired a new characteristic which it did not have before 

the nest was established. This new characteristic may have 

led to the nest's abandonment. 

B) Description of Candidate Explanatory Variables 

B.1)Tree Species (RECORD 1 ,  col. 9-10) 

This quqlitative variable may take on the following 

codes: 
A -Aspen 
BI-Birch 
CT-Cottonwood 
W -Willow 



F -Douglas Fir 
S -Spruce 
PY-Ponderosa Pine 
J -Juniper 

Only the first 5 tree species were to be kept in the 

analysis since the remainig species were coniferous 

(evergreen). A blank line was used in the above list to 

separate visually the deciduous from the coniferous trees. 

For the species to be retained in the analysis, the 

following recoding was done: 

SPTREE= 1, for tree code A (aspen) 
2, for tree code BI (birch) 
3, otherwise (codes CT, W, D) 

B.2)Diameter of Tree (RECORD 1, col. 12-15) 

This is measured in centimetres, and will be hereafter 

referred to as DIAM. 

B.3)~eight of Tree (RECORD 1, co1.17-21) 

This is measured in metres, and will be hereafter 

referred to as HEIGHT. 

B.4)Decay Type 1 Indicator (RECORD 1, co1.25-26) 

This qualitative variable takes on the following codes: 

37: fungal conk present 
6 : no fungal conk 

For the analysis, this was recoded as: 

DI1= 1 ,  if fungal conk is present 
0, otherwise 

B.5)Decay Type 2 Indicator (RECORD 1 ,  col. 28-29) 



~liis qualitative variable takes on the following codes: 

39: scars present on tree 
M : no scars on tree 

For the analysis, this was recoded as: 

DI2= 1 ,  if scars present on tree 
0, otherwise 

~.6)~ecay Indicator Type 3 (RECORD 1, col. 31-32) 

This qualitative variable takes on the following codes: 

43: dead branches present 
M : no dead branches 

For the analysis, this was recoded as: 

DI3= 1, if dead branches present 
0, otherwise 

This variable did not appear on the data files, but at 

Dagmar's request was computed as a function of: 

Tree Live or Dead Indicator (RECORD 1, col. 23) 
Decay Type 4 ~ndicator (RECORD 1 ,  col. 34-35) 

The variable 'Tree Live or Dead Indicator' takes on the 

following values: 

L: tree is alive 
D: tree is dead 

and 'Decay Type 4 Indicator' may take on the following 

values: 

44: tree top either broken or dead 
M : tree top both intact and alive (full top) 

The variable 'Deadwood', to be herafter referred to as 

DWOOD, was then created as follows: 



Tree Live or Dead 
Indicator 

Decay Type 4 
Indicator DWOOD 

1 
2 

No Value 
2 

No value is assigned to DWOOD in the 3rd case above 

since 'D' and '6' is an illegal combination; a dead tree 

cannot have a live top. Thus: 

DWOOD= 1 ,  if tree is completely alive and has an 
intact top 

2, otherwise 

B.8)Broken Top (RECORD 2, co1.32) 

This qualitative variable is used to specifically detect 

cases of trees with broken tops, regardless of whether those 

trees are alive or not. It takes on the values: 

1: top of tree broken 
6: top of tree intact (not broken) 

For the analysis, this was recoded as: 

BKTOP= 1 ,  if top of tree is broken 
0, otherwise 

C) Further Case Selection Variable 

The raw data file contains cases of both primary and 

secondary bird species. The variable 'Bird Species' (RECORD 

2, col. 9-10) takes on the following values: 

S-yellow bellied sapsucker 
P-pileated woodpecker 
N-red breasted nuthatch 



F-northern flicker 
H-hairy woodpecker 
D-downy woodpecker 
?-one of the above, possibly H but definitely not 

S or P; unconfirmed in any case 
)&necessary code for trees with no active nest, 

hence no bird species to classify 

B-black capped chickadee 
G-golden eye 
K-American kestrel 
M-mountain chickadee 
Q-flying squirrel 
R-red squirrel 
T-tree swallow 
W-white breasted nuthatch 

The last 8 bird species in the above list are secondary 

excavators, and thus records containing such species were 

not to be included in the analysis. Again, a blank line was 

used to separate cases to be used in analysis from those 

which were to be rejected. For this analysis the remaining 

acceptable bird species were recoded: 

SPBIRD= 1 ,  for bird species code S 
2, for bird species code P 
3, for bird species code N 
4, for bird species code F 
5, for bird species code H 
6, for bird species code D 
7, for bird species code )d 
8, for bird species code ? 

Once the variables of interest were identified, the raw 

data file was edited by a FORTRAN program (shown in the 

Technical Supplement) in order to: 

(a-) remove observations which contained unwanted cases of 
SPTREE or SPBIRD 

(b) remove duplicated records (since raw data file itself 
was a merger of 2 previous files), which were all cases 
of success after record 564 of the input file 



(c) flag (but not remove) cases of I ? '  for SPBIRD so that 
such cases may be confirmed 

(d) create and assign values to new variable DWOOD 

(el perform all recodings indicated thus far, since not all 
statistical software packages (e.g. BMDP) can accept 
alphabetic input for variables other than labels 

(f) put all acceptable cases (including flagged ones in (c) 
above) into a new file containing variables selected for 
analysis and a coded tag to identify it 

The tag referred to in (f) above is the line number from the 

raw data file in which a particular case began. Since every 

case required 2 consecutive records of data, all the tags 

are therefore odd numbers. This tag will be hereafter 

referred to as RECNUM. 

Both the cases which were to be removed (excluded from 

the analysis) and those which were flagged in (c) above (but 

kept in the analysis). had their reasons for being singled 

out put -into a 'reject' file. Table 9 shows a portion of the 

file GOOKNESTS, which contained the edited records which 

were to be kept in the analysis. The data values are given 

in the order: 

RECNUM 
ACNEST 
SPTREE 
HE I GHT 
DIAM 
DI 1 
DI 2 
DI 3 
DWOOD 
BKTOP 
SPBI RD 



Table 9: Portion of GOOKNEST5 



Table 10 shows a portion of the file GOOKREJECT5 which 

contains both the reasons why certain cases were kept out of 

GOOOKNEST5 (and hence further analysis) and the messages 

concerning the flagged observations mentioned earlier. Out 

of 1275 observations in the original raw data file, 1124 

were put into GOOKNEST5 (including the 10 flagged for the 

' ? '  value for SPBIRD) and the remaining 151 rejected from 

further analysis. 

Having performed the needed file editing, the remaining 

data (as in the GOOKNEST5 file) was now ready for analysis. 



Table 10: Portion of GOOKREJECT5 

RECORD 5 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  R 

RECORD 1 5 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  Q 

***CHECK RECORD 1 9 . 0  * * *  
FOR B I R O  S P E C I E S  ? 
RECORO NOT S K I P P E D  

RECORD 2 1 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  B 

RECORD 3 1 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  M 

RECORD 3 5 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  M 

RECORD 4 7 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  B 

RECORD 5 5 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  B 

RECORD 6 1 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  B 

RECORD 67.0 C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  R 

RECORD 7 5 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  R 

RECORD 7 7 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  Q 

RECORD 9 5 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  B 

RECORD 97 .0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  Q 

RECORD 1 0 1 . 0  CONTALNS SECONOARY EXCAVATOR B I R D  -SPECIES K 

***CHECK RECORD 1 1 3 . 0  * * *  
FOR B I R D  S P E C I E S  ? 
RECORD NOT SKIPPED 

RECORD 1 2 9 . 0  C O N T A I N S  SECONOARY EXCAVATOR B I R O  S P E C I E S  6. 

RECORO 1 4 9 . 0  C O N T A I N S  SECONDARY E X C A ~ A T O R  B I R O  S P E C I E S  M 

***CHECK RECORD 1 5 1 . 0  * **  
FOR B I R D  S P E C I E S  ? 
RECORD NOT S K I P P E D  

***CHECK RECORD 1 6 5 . 0  * * *  
FOR B I R D  S P E C I E S  ? 
RECORD NOT S K I P P E D  

RECORD 1 7 5 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  B 

***CHECK RECORD 1 8 1 . 0  ***  
FOR B I R O  S P E C I E S  ? 
RECORD NOT S K I P P E D  

RECORD 1 8 5 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  Q 

RECORD 2 1 3 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  T 

***CHECK RECORD 2 1 7 . 0  * * *  
FOR B I R D  S P E C I E S  ? 
RECORO NOT S K I P P E D  

RECORD 2 2 3 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  K 

RECORD 2 2 7 . 0  C O N T A I N S  SECONOARY EXCAVATOR B I R O  S P E C I E S  W 

RECORD 2 2 9 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  SPECLES M 

RECORD 2 3 7 . 0  C O N T A I N S  SECONDARY EXCAVATOR B I R D  S P E C I E S  T 
.. - 
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CHAPTER 3 

FIRST ANALYSIS--FIND INFLUENTIAL VARIABLES 

This study gave binary responses (1-success, 0-failure) 

so logistic regression was considered appropriate. ~etting: 

Deciduous tree i has active nest wit 
pi=Prob primary bird species 

L J 
that is, pi is the probability of a success for tree i, a 

linear model was used to explain the 'log odds': 

for O<pi<l. g is known as a 'link' function because it will 

'link' the linear regression model: 

with the original quantity of interest, 1. 

Also, in order to control data spread, HEIGHT and DIAM 

were logarithmically transformed using the natural logarithm 

(base e )  befor being included in the linear model. This y. 

transformation was saved for the logistic regression program 

The stepwise logistic regression program, PLR, from the 

BMDP software library was used (~ef. (41, Section 14.5). A 

protion of the final results is shown in ~igure 31. It will 

be noticed that the variable D13 was left out of the 

analysis. Dagmar requested this since she later believed the 

variable to be 'biologically unsound', that is, not worthy 

of inclusion. This request was granted since earlier 

analyses (not shown here) indicated that it was a variable 



Fiqure 31: Results of PLR Run on GOOKNESTS Data 

TERM 

dl 1 
dl2 
dwood 
bktop 
lnhelght 
llndlam 
CONSTANT 

COEFF IC IENT  

COVARIANCE MATRIX OF COEFFICIENTS ................................. 

sptre( I) 
sptre(2) 
di I 
di2 
dwood 
bktop 
1 nhe 1 ght 
lndlam 
CONSTANT 

STANDARD 
ERROR 

dwood 

bktop lnheight lndiam 
CONSTANT 

dwood 
bktop 0.17681 
lnhelght 0.05833 

0.09400 
-0.02414 -0.0495 1 0.19326 1 ndiam 
-0.09419 -0.1 1007 -0.52416 

2.19295 
CONSTANT 



of little importance anyway. 

The final model from the PLR run is as follows: 

where: 

(1) 6 is the fitted log odds value. One could obtain a 
fitted probability by then using the inverse of the link 
function: 

but one may wish to use alternative methods to getting a 
P value from q (see Chapter 5). 

( 2 )  The subscript i which tags individual observations or 
cases has been left off of the above fitted model (and 
the equation given in note ( 1 )  above) for simplicity, 
but is understood to be present on and all'explanatory 
variables. 

( 3 )  New design variables for SPTREE were created by PLR as 
follows: 

SPTREE(~)= 1, if tree is birch (SPTREE=2) . 
0, otherwise 

SPTREE(~)= 1 ,  if tree is not aspen or birch (SPTREE=3) 
0, otherwise 

The effect of aspen trees (SPTREE=l) is already absorbed 
in the constant term, -10.039. These.design variables 
were created because SPTREE is a qualitative variable 
with more than 2 possible factor levels. In general, a 
qualitative variable possessing k possible factor levels 
will give rise to k-1 design variables (Ref. (11) 
Section 10.1). 

( 4 )  The explanatory variable DWOOD was recoded as follows: 

DWOOD= 1, if tree top dead or broken, or entire tree 
dead 

0, if tree fully alive with intact top 

This was done because PLR run was done with the 
0,l-coding option. 



(5) All other explanatory variables (HEIGHT, DIAM, DI1, DI2, 
BKTOP) are as previously discussed in Chapter 2. 

Thus for a single deciduous tree one can observe values 

for all the explanatory variables shown in the model and 

then calculate a fitted value, q, for the log odds of 

finding a success. One can then use this fitted value as an 

estimate of the mean of the distribution of the log odds 

value for all future trees that have the same values for the 

explanatory variables (at least as far as measurement 

accuracy will allow for HEIGHT and DIAM). This use of 6 will 

be hereafter referred to as 'q as estimate'. Alternatively 

one could use the fitted log odds value as a prediction of 

the log odds value just for an individual tree, given the 

values of the explanatory variables for that tree. This is a 

different use of q and will be hereafter referred to as 'q 

as prediction'. In this analysis, however, each use will 

produce a different 'fitted' p (probability of success). 

This will be discussed later in Chapter 5, and in more 

detail in the Technical Supplement, Section 9.2. 

As a further interpretation of the final fitted model, 

one could view it as a fitting for aspen trees: 

~ = - 1 0 . 0 3 9 + 0 . 5 1 3 7 5 [ 1 n ( ~ ~ 1 ~ ~ ~ ) ] + 1 . 7 3 4 1 [ l n ( ~ 1 ~ ~ ) ]  

with further penalties/awards as follows: 

Deduct 2.9036 if tree is not aspen, but birch 
3.0541 if tree is not aspen or birch,but some other 

kind of decidubus tree 

Add - 3.7217 if fungal conks are present 



1.1396 if scars are present 
0.9393 if tree is dead or has dead/broken top 
1.3251 if tree has broken top but is still alive 

( ~ o t e  that the above 0.9393 will still be 
added too.) 

The model obtained from the PLR run was confirmed by use 

of another software package, GLIM (Ref. (2)), the output of 

which is highlighted in Figure 32. Here different design 

variables for SPTREE: 

SPTR(i ) =  1 ,  if SPTREE=i 
0, otherwise 

The GLIM run also provided data with which to construct some 

interesting plots with the P6D program from BMDP (Ref. ( 4 )  

Section 10.2). 

Figures 33.a through 33.d, for example, shows plots of 

fitted log odds against I~(DIAM) for all 3 values of SPTREE 

according to the following scheme: 

'a' denotes 1 or more overlapping points for aspen 
trees (SPTREE=~) 

'b' denotes 1 or more overlapping points for birch 
trees (SPTREE=2) 

'0' denotes 1 or more overlapping points for 'other' 
deciduous trees, that is, trees not aspen or birch 
(SPTREE=~) 

' * '  denotes 1 or more overlapping points for different 
species of tree 

The first three plots, Figures 33.a-c, are done for each 

SPTREE value separatel'y. The last plot, Figure 33.d, is done 

for all SPTREE values. One can see definite clustering 

tendencies for aspen and birch trees in different areas of 



Figure 32: Results of GLIM Run to Confirm those of PLR Run 

SCALED 
CYCLE DEVIANCE D F 

4 1 1 7 4 .  1 1 2 3  

E S T I M A T E  S . E .  
1 - 1 . 2 8 8  0 . 7 2 2 8 E - 0 1  

SCALE PARAMETER TAKEN AS 

SCALED 
CYCLE DEVIANCE D F 

5 5 9 7 . 1  1 1  1 5  

E S T I M A T E  S . E .  
1 - 1 0 . 0 4  1 . 4 6 9  
0 ZERO A L I A S E D  
2 - 2 . 9 0 2  0 . 3 6 7 6  
3 - 3 . 0 5 3  0 . 8 9 7 9  
4 1 . 7 3 4  0 . 4 3 6 5  
5 0 . 5 1 3 6  0 . 3 0 5 1  
0 ZERO A L I A S E D  
6 3 . 7 2 1  0 . 2 4 4 5  
0 ZERO A L I A S E D  
7 1 . 1 3 9  0 . 2 2 1  1 
0 ZERO A L I A S E D  
8 0 . 9 3 8 9  0 . 3 2 6 0  
0 ZERO A L I A S E D  
9 1 . 3 2 5  0 . 4 1 8 0  

SCALE PARAMETER TAKEN AS 

PARAMETER 
%GM 
1 . 000 

PARAMETER 
%GM 
SPTR( 1 ) 
SPTR( 2 ) 
S P T R ( 3 )  
LND I 
LNHE 
D I I ( 1 )  
D I  l ( 2 )  
D I 2 (  1 )  
D I 2 ( 2 )  
DWOO( 1 ) 
DWOO(2) 
BKTO( 1 ) 
B K T O ( 2 )  
1 . 000 



Figure'33.a: $ against ~ ~ ( D I A M )  for Aspen Trees 
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Figure 33.b: q aqainst ~ ~ ( D I A M )  for  Birch Trees 



Figure 33.c: 6 against ln(D1~M) for Other Deciduous Trees 
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the 4th plot. Furthermore these clusters seem to be taking 

place about parallel lines which go up as ~ ~ ( D I A M )  

increases. This suggests a lack of interaction between 

SPTREE and ln(DIAM), so in the final model there would be 

little additional benefit for adding such an interaction. 

These plots were later broken down by DI1 level. Figures 

34.a through 34.d show the plots of Figures 33.a-d but now 

only for those trees for which DI1=O (no fungal conks). 

Similarly, Figures 35.a through 35.d has the same plots but 

now only for those trees for whom DI1=1 (fungal conks 

present). It is interesting to note that for each value of 

SPTREE, the presence or absence of fungal conks separates 

the clusters in the plots of Figures 33.a-d into lower' 

portions in Figures 34.a-d and upper portions in Figures 

35.a-d. This suggest that the separation effects due to 

SPTREE and DI1 as estimated in the PLR run are strong indeed 

(more on this in the next chapter). 

In regards to the earlier remark about no visual 

evidence of interaction between SPTREE and ln(DIAM), some 

other interactions were attempted in GLIM runs to see if 

their presence could significantly improve model fit. None 

of the 3 possible 2-way interactions between SPTREE, DI1, 

and ln(D1AM) could do so (the details are not shown). The 

search for significant interactions was restricted at first 

to these 3 variables on the basis that they seemed to.offer 

the strongest associations with the log odds, q (see next 



Figure 34.a: 5 against ~ ~ ( D I A M )  for Aspen Trees without Fungal 
Conks 
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Fiqure 34.b: 6 against In(D1AM) for Birch Trees without Fungal 
Conks 



Figure 34.c: 5 against In(D1AM) for Other Deciduous Trees 
without Fungal Conks 



Figure 34.d: 5 against ln(D1AM) for All Deciduous Trees without 
Fungal Conks 
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Figure 35.b: f i  against fn(D1AM) for Birch Trees with Fungal 
Conks 

. . l l l + l l l ~ + l l l l + l l l l + l l l l + l l l l + l l l l + t l l l + l l ~  



Fiqure 35.c:  ;fj against ln(D1A~) for Other Deciduous Trees with 
Fungal Conks 



Fiqure 35.d: jj aqainst ~ ~ ( D I A M )  for All Deciduous Trees with 
Fungal Conks 



chapter for a discus-sion). As no significant interactions 

were found at this stage, further searching was abandoned. 

In any case interaction effects are 'typically smaller' than 

main effects (Ref. ( 1 1 )  pg. 6 8 1 1 ,  at least so long as the 

model chosen is the correct one. 



CHAPTER 4 

SECOND ANALYSIS--POSSIBLE RANKINGS FOR EXPLANATORY VARIABLES 

IN FINAL MODEL 

The PLR run of Figure 31 used up all 7 expalanatory 

variables with which it was supplied. Note that SPTREE is 

counted here as one explanatory variable although both PLR 

and GLIM later split it up into 2 design variables. Dagmar 

next requested a ranking of these variables into which one 

was most 'important' to the final model, which came next in 

'importance', and so on. 

Unfortunately, no unique ranking scheme is possible 

because of nonzero correlations amongst the explanatory 

variables. For example if 2 variable, say X, and X2, are 

highly correlated, then the order of their entry into a 

model becomes important. If X I  enters the model first, then 

no significant improvement in model fit may result in adding .a 

X2 when such correlation is present, since most of X2's 

ability to explain variation in the response variable is 

already accounted for in XI. Hence X2 gets left out. But if 

X2 enters the model ahead of X I ,  then X, may end up getting 

left out. One is then faced with the problem of ranking the 

variables in 'importance' to the final model. This would not 

happen if X I  and X2 were uncorrelated, or very nearly so at 

least. This problem is known as multicollinearity (Ref.(ll) 

Chapter 8). 



Nonetheless of the distinct possible rankings which may 

present themselves, the following 3 are offered. 

4.1 Order of Selection by PLR Run 

The stepwise regression program starts off with an empty 

model (no explanatory variables, just a constant term to 

represent an overall average), and uses approximate 

F-to-enter values to search for the variable which offers 

the largest improvement over the empty model. Provided that 

the p-value associated with that F-to-enter value is 

sufficiently small, that variable then gets inserted into 

the model. DII was entered in the first step, since it 

offered the best improvement over an empty model. 

Once DII was in the model, In(D1AM) offered the best 

improvement over a model containing only DII. Similarly in 

step 3, of the remaining candidate explanatory variables, 

SPTREE (through its associated 2 design variables) offered 

the best model fit improvement over a model which contained 

only DII and DIAM. Both of its design variables were entered 

at once, which is one of PLR's defaults. 

This order of entry is summarized in Figure 36, and is 

probably most useful for management purposes. The reasoning 

is that if a deciduous tree is to be assessed for its 

probability of success, then i f  one intends to 'measure' 

only one explanatory variable, that variable.should be DII, 
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since DI1 is the variable which gives the best possible 

1-variable model. If one is willing to look at a second 

variable, then one should include ln(D1AM) as well, since 

ln(D1AM) offers the best improvement over a model which 

contains only DI1. 

A couple of important points should be noted here. 

First, the discussion so far does - not say that one may not 

obtain ln(D1AM) chronologically until after the value of DI1 

is obtained. It does say that if one wishes to observe 2 

variables (in whatever order) and one of those variables is 

to be DI1, then ln(D1AM) is the best possible choice for the 

other variable, since the best fitting 2-variable model in 

which DI1 is included contains ln(D1AM) as well. Second, 

although inclusion of ln(D1A~) offers the best improvement 

over a model which has only DI1, this does not mean that DI1 

and ~ ~ ( D I A M )  form the best possible 2-variable model from 

all those possible with the given set of candidate 

explanatory variables. The determination of such a best 

possible 2-variable model is part of an 'all possible' or 

'best k' subsets regression, which are distinct from 

stepwise procedures. Neither of these other procedures, 

however, was available in a package for logistic regression. 

Continuing in the present discussion, if one similarly 

required a 3-variable model where DI1 and 1 ~(DIAM) were to 

be used, then SPTREE offered the best improvement and so 

should be included as the 3rd 'variable'. Note that when a 



tree's species is observed, both of the design variables 

SPTREE(1) and SPTREE(~) are assigned values, which is why 

they are counted as one 'variable'. 

Figures 37 through 39 show what these 1, 2, and 

3-variable models would be. From the appropriate table 

following 'Step Number 1' in Figure 37: 

is the best possible 1-variable model. From the analogous 

table in 'Step Number 2' in Figure 38: 

is the best possible 2-variable model when DI1 is to be 

included. Again, from the analogous table in 'Step Number 3' 

in Figure 39: 

?=-7.8700+3.5907[ln(~1~~)]+1.7707[~11] 

-1.8599[SPTREE( 1 ) ] - 2 . . 2 6 9 2 [ ~ ~ ~ ~ ~ ~ ( 2 )  1 

is the best possible 3-'variable' model of all those those 

which must include DI1 and ~ ~ ( D I A M ) ,  and so on. Further 

steps are not shown. 

One notes that as the number of variables increases, 

both the constant term and the coefficients for the common 

explanatory variables- change from one model to the next. For 

example, in moving from the 2-variable to 3-'variable' 

model, the constant changed from -10.360 to -7.8700, and the 

coefficient for In(D1AM) changed from 2.3688 to 3.5907. In 

general the constant term will change from one model to the 

next in any stepwise regression process, but the. 



Fiqure 37: Step 1 Selection of PLR Run 

S T E P  NUMBER 1 --------------- dl I I S  ENTERED 

LOG L I K E L I H O O D  = - 3 8 9 . 4 1 6  
IMPROVEMENT CHI -SQUARE ( P L ( L N ( M L R )  ) = 3 9 4 . 3 8 7  O . F . =  1 P-VALUE. 0 . 0 0 0  
GOODNESS OF F I T  C H I - S O  ( 2 * O L L N ( O / E ) )  = 7 7 6 . 0 4 6  O . F . = 1 1 1 3  P-VALUE. 1 . 0 0 0  
GOODNESS OF F I T  C H I - S O  ( C .C .BROWN ) = 0 . 0  O . F . =  0 P-VALUE= 1 . 0 0 0  

TERM 

di 1 
CONSTANT 

STANDARD 
C O E F F I C I E N T  ERROR COEFF/S .E .  

C O R R E L A T I O N  M A T R I X  OF C O E F F I C I E N T S  .................................. 

di I CONSTANT 

di 1 1 . 000 
CONSTANT -0.633 1 .000 

.COVARIANCE M A T R I X  OF C O E F F I C I E N T S  ................................. 

dl I CONSTANT 

dl 1 0 . 0 3 6 7 1  
CONSTANT - 0 . 0 1 4 7 3  0 . 0 1 4 7 3  

S T A T I S T I C S  TO ENTER OR REMOVE TERMS ................................... 
APPROX. APPROX. 

TERM F TO O . F .  O . F .  F TO O . F .  O . F .  
ENTER REMOVE P-VALUE 

sptree 
dl I 
di2 
dwood 
bktop 
lnheight 
lndiam 
PONSTANT 

0.0000 
1 1 1 2 1  0.0000 

0.0000 . 
0 . 3 5 1 4  
0 . 4  I 8 2  
0 . 0 0 0 8  
0.0000 

MAY NOT B E  
REMOVED. 



Figure 38: Step 2 Selection of PLR Run 

S T E P  NUMBER 2 --------------- I ndiam I S  ENTERED 

LOG L I K E L I H O O D  = - 3 6 2 . 3 9 3  
IMPROVEMENT CHI -SQUARE ( 2 * ( L N ( M L R )  ) = 5 4 . 0 4 4  D . F . =  .I P-VALUE= 0 . 0 0 0  
GOODNESS OF F I T  C H I - S Q  ( 2 * O * L N ( O / E ) )  = 7 2 2 . 0 6 1  O . F . = 1 1 1 2  P-VALUE= 1 . 0 0 0  
GOODNESS OF F I T  C H I - S Q  ( D .  HOSMER ) = 1 0 . 6 8 3  D . F . =  8 P -VALUE= 0 . 2 2 0  
GOODNESS OF F I T  C H I - S Q  ( C .C .BRDWN ) = 0 . 9 6 1  D . F . =  2 P -VALUE= 0 . 6 1 8  

TERM 

di I 
lndiam 
CONSTANT 

STANDARD 
C O E F F I C I E N T  ERROR COEFF/S .  E 

C O R R E L A T I O N  M A T R I X  OF C O E F F I C I E N T S  .................................. 

dl I I ndi am CONSTANT 

di 1 1 . 0 0 0  
lndiam 0 . 2 2 2  1 . 0 0 0  
CONSTANT - 0 . 2 8 7  - 0 . 9 9 4  1 ,000 

COVARIANCE M A T R I X  OF C O E F F I C I E N T S  ................................. 

dl 1 I ndiam CONSTANT 

di 1 0 . 0 4 1 3 4  
lndiam 0 . 0 1 5 0 1  0.  1 1 0 4 4  
CONSTANT - 0 . 0 6 7 2 6  - 0 . 3 8 0 7 9  1 . 3 2 8 4 0  

S T A T I S T I C S  TO ENTER OR REMOVE TERMS ................................... 
APPROX. APPROX. 

TERM F TO D . F .  D . F .  F TO D . F .  D . F .  
ENTER REMOVE P-VALUE 

sptree 
dl I 
di2 
dwood 
bktop 
1 nhe i ght 
1 ndl am 
CONSTANT 

0.0000 
1 1 1 2 0  0.0000 

0 .moo 
0 . 0 0 5 8  
0 . 0 3 2 7  
0 . 9 7 8 1  

I 1 1 2 0  0.0000 
MAY NOT BE 

REMOVED. 



Fiqure 39: Step 3 Selection of PLR Run 

S T E P  NUMBER 3 spt ree --------------- 

LOG L I K E L I H O O D  
IMPROVEMENT CHI -SQUARE ( 2 * ( L N ( M L R )  ) 
GOODNESS OF F I T  C H I - S O  ( 2 * 0 * L N ( O / E ) )  
GOODNESS OF F I T  C H I - S O  ( 0 .  HOSMER ) 
GOODNESS OF F I T  C H I - S O  ( C.C.BROWN ) 

TERM C O E F F I C I E N T  

sptree 

d l  1 
l n d t a m  
CONSTANT 

s p t r e ( 1 )  s p t r e ( 2 )  d i l  

s p t r e (  I ) 1 .OOO 
s p t r e ( 2 )  0 . 0 5 1  ,000 
d i  1 - 0 . 3 0 8  - 0 . 0 4 8  1 .m 
l n d i a m  0 . 2 2 4  - 0 . 0 8 5  0 . 1 1 4  
CONSTANT - 0 . 2 4 2  0 . 0 7 4  - 0 . 1 6 1  

I S  ENTERED 

- 3 3 0 . 9 3 5  
6 2 . 9 1 7  D . F . =  2 P -VALUE-  0.000 

6 5 9 . 0 9 3  D . F . = l l l O  P-VALUE. 1 . 0 0 0  
3 . 0 5 3  D . F . =  8 P -VALUE-  0 . 9 3 1  
2 . 9 3 3  D . F . =  2 P -VALUE= 0 . 2 3 1  

ANOARO 
ERROR 

2 8 2  1 
7 9 8 0  
2 2 7  1 
3 7 2 0  

1 n d i a m  CONSTANT 

s p t r e (  1 ) 0 . 0 7 9 5 9  
s p t r e ( 2 )  0 . 0 1  1 5 5  0 . 6 3 6 8 2  
d l  1 - 0 . 0 1 9 7  1 - 0 . 0 0 8 6 4  0 . 0 5 1 5 9  
l n d l a m  0 . 0 2 3 4 6  - 0 . 0 2 5 3  1 0 . 0 0 9 6 2  
CONSTANT - 0 . 0 8 8 0 3  0 . 0 7 6 1 6  - 0 . 0 4 7 0 0  

S T A T I S T I C S  TO ENTER OR REMOVE TERMS ................................... 
APPROX. APPROX 

TERM F TO D . F .  D . F .  F TO 
ENTER REMOVE 

sptree 
d l  I 
d l  2 
d w o o d  
bktop 
1 nhe t ght 
l n d t a m  
CONSTANT 

l n d l a m  CONSTANT 

D . F .  0 . F  
P-VALUE 

1 1 1 7  0.0000 
1 1 1 8  0.0000 

0.0000 
0.0000 
0.0000 
0 . 0 0 6 6  

1 1 1 8  0.0000 
MAY NOT BE 

REMOVED. 



coefficients for a given explanatory variable should remain 

the same in all models when the variables are uncorrelated. 

As noted earlier, however, the given set of explanatory 

variables were correlated amongst themselves, so the 

coefficients will change from one model to the next larger 

one. Simple examples of this phenomenon are easily found, 

such as in Chapter 8 of Ref.(ll). Most distressing is the 

case when the coefficients change sign. 

All Possible 1 -Variable Models 

Referring back to Figure 36 again, one notes the column 

labelled 'Improvement Chi-square'. The value given in that 

column for an individual variable is a measure of 

improvement in model fit once that variable is included. The 

PLR run does not show all the possible improvement - 
chi-square values for 'Step Number 0 '  where all possible 

1-variable models are considered, so another GLIM run was 

performed, the results of which are shown in Figure 40. 

Along with each model fitted, a quantity called 'scaled 

deviance' is computed. It is the drop in scaled deviance in 

going from one model to another which gives the improvement 

chi-square values. dne can see in Figure 40 that the empty 

model (no explanatory variables, just a constant term 

labelled '%GM1 by GLIM) has a scaled deviance of 1174. The 

model with DII as the only variable gives a scaled deviance 



Fiqure 40: GLIM Run of All Possible 1-Variable Models 

SCALED 
CYCLE DEVIANCE DF 

4 1 1 7 4 .  1 1 2 3  

ESTIMATE S . E .  
1 - 1 . 2 8 8  0 . 7 2 2 8 E - 0 1  

SCALE PARAMETER TAKEN AS 

SCALED 
CYCLE DEVIANCE DF 

4 1 0 5 7 .  1 1 2 1  

ESTIMATE S . E .  
1 - 0 . 7 5 9 0  0 . 8 2 8 0 E - 0 1  
0 ZERO A L I A S E D  
2 - 1 . 8 5 9  0 . 2 1 2 5  
3 - 2 . 2 8 5  0 . 7 2 4 0  

SCALE PARAMETER TAKEN AS 

SCALED 
CYCLE DEVIANCE DF 

4 1 0 9 5 .  1 1 2 2  

ESTIMATE S . E .  
1 - 8 . 5 8 0  0 . 8 7 0 7  
2 2 . 1 8 1  0 . 2 5 5 9  

SCALE PARAMETER TAKEN AS 

SCALED 
CYCLE DEVIANCE D F 

4 1 1 6 9 .  1 1 2 2  

ESTIMATE S . E .  
1 - 2 . 3 0 3  0 . 4 8 3 1  
2 0 . 3 7 0 2  0.  1 7 2 7  

SCALE PARAMETER TAKEN AS 

SCALED 
CYCLE DEVIANCE D F 

4 7 7 9 . 0  1 1 2 2  

ESTIMATE S . E .  
1 - 2 . 4 0 4  0 . 1 2 1 4  
0 ZERO A L I A S E D  
2 3 . 4 0 7  0 . 1 9 1 5  

SCALE PARAMETER TAKEN AS 

SCALED 
CYCLE DEVIANCE DF 

4 1 1 3 7 .  1 1 2 2  

ESTIMATE S . E .  
1 - 1 . 6 2 2  0 . 9 6 6 5 E - 0 1  

0 ZERO A L I A S E D  
2 0 . 9 1 5 8  0.  1 4 9 2  

PARAMETER 
%GM 
1 .000 

PARAMETER 
%GM 
SPTR( 1 )  
S P T R ( 2 )  
S P T R ( 3 )  
1 .ooo 

PARAMETER 
%GM 
L N D I  
1 ,000 

PARAMETER 
%GM 
LNHE 
1 .ooo 

PARAMETER 
%GM 
D I I ( 1 )  
D I  l ( 2 )  
1 . 0 0 0  

PARAMETER 
%GM J 

D I 2 (  1 ) 
D I 2 ( 2 )  

SCALE PARAMETER TAKEN AS 1 . 0 0 0  



Fiqure 40, continued 

SCALED 
CYCLE D E V I A N C E  D F 

4  1 1 6 1 .  1 1 2 2  

E S T I M A T E  S . E .  
1  - 1 . 4 4 7  0 . 8 7 4 6 E - 0 1  
0 ZERO A L I A S E D  
2  0 . 5 7 0 1  0.  1 5 7 5  

SCALE PARAMETER TAKEN AS 

SCALED 
CYCLE D E V I A N C E  D F 

4  1 1 6 1 .  1 1 2 2  

E S T I M A T E  S . E .  
1  - 1 . 3 9 7  0 . 8 0 2 5 E - 0 1  
0 ZERO A L I A S E D  
2  0.6935 0. 1 9 0 3  

SCALE PARAMETER TAKEN AS 

PARAMETER 
XGM 
OWDO( I ) 
DWOO(2)  
1 . 0 0 0  

PARAMETER 
%GM 
BKTO(  1 )  
BKTD(  2 )  
1  .cQo 



of 779.0.which means a drop of 395 in the scaled deviance. 

Indeed this is the chi-square improvment value given to DI1 

back in 'Step Number 1' of Figure 31, given the available 

accuracy. A ranking of the explanatory variables on the 

basis of their chi-square improvement over the empty model 

is then possible: 

DI 1 
SPTREE 

I ~(DIAM) 
DI 2 

DWOOD 
BKTOP 

I n(HE1GHT) 

The calculations are summarized in the Technical Supplement, 

Chapter 8. 

Note that the order of SPTREE. and ln(~1AM) has been 

changed over the previous ranking, and BKTOP has been 

displaced to a place of lesser importance. It is interesting 

to note that if a.ranking is done on the basis of 

improvement chi-squares achieved in the stepwise model 

building shown back in Figure 31, one gets: 

DI 1 
SPTREE 

I ~(DIAM) 
BKTOP 
DI 2 
DWOOD 

I n(HE1GHT) 

so that BKTOP becomes more important again. Thus one sees 

that while BKTOP is the most important variable to improve 

the 3-variable model in the stepwise process, it is almost 

the least important variable for improving an empty model. 



Again this change in importance is due to multicollinearity. 
. ,. 

Nonetheless, DII still manages to be the most important 

variable in these particular ranking schemes. 

All Possible One-Less-Than-All Variable Models 

If one now starts with the final model, which has a 

scaled deviance of 597.1 according to Figure 32, and tries 

out all possible 1-variable omissions, one can then rank the 

explanatory variables according to how much fit is lost when 

that variable is left out of the final model. The GLIM run 

to produce these fits is shown in Figure 41. One can see 

there that if DI1 is left out of the PLR final model, then 

the scaled deviance increases from 597.1 to 939.3. Thus if 

DI1 was the last variable to be added to the model, it would 

have given a chi-square improvement of 939.3-597.1=342.2. 

One could also look at this as a chi-square 'deprovement' if 

DI1 were singled out from omission from the PLR final model. 

On this basis one can rank the explanatory variables as 

to how much loss in fit is encountered Lf that variable were 

singled out for omission from the PLR final model: 

DI 1 
S PTREE 
DI 2 

1 ~(DIAM) 
BKTOP 
DWOOD 

1  HEIGHT) 



Figure 41: GLIM Run of All Possible 1-Variable Omissions from 
PLR Final Model 

SCALED 
CYCLE DEVIANCE 

4 6 9 2 . 7  

ESTIMATE 
- 1 1 . 8 8  

2 . 1 3 7  
ZERO 

3 . 4 4 2  
ZERO 

0 . 9 2 7 4  
0 . 6 1 0 8  

ZERO 
0 . 6 8 7 1  

ZERO 
0 . 3 9 0 1  

DF 
1117 

S.E. 
1 .284 

0 . 3 9 0 3  
ALIASED 

0 . 2 0 9 9  
ALIASED 

0 . 2 0 3 7  
0 . 3 0 4 8  

ALIASED 
0 . 3 0 6 5  

ALIASED 
0 . 3 9 4 3  - - 

SCALE PARAMETER TAKEN AS 

SCALED 
CYCLE DEVIANCE 

5 6 1 3 . 3  

ESTIMATE 
1 - 5 . 5 3 7  
0 ZERO 
2 - 3 . 0 8 1  
3 - 2 . 9 5 7  
0 ZERO 
4 3 . 7 4 4  
0 ZERO 
5 1.234 
6 0 . 9 9 8 4  
0 ZERO 
7 0.. 8387  
0 ZERO 
8 1 . 6 0 2  

0 F 
1 1  16 

S. E. 
0 .8784  

ALIASED 
0 . 3 6 3 5  
0 . 9 5 3 5  

ALIASED 
0 . 2 4 2 3  

ALIASED 
0 . 2 1 9 4  
0 . 2 8 7 3  

ALIASED 
0 . 3 2 0 2  

ALIASED 
0 . 4 1 2 3  

SCALE PARAMETER TAKEN AS 

SCALED 
CYCLE DEVIANCE OF 

4 9 3 9 . 3  1 1  16 

ESTIMATE 
- 8 . 5 0 8  

ZERO 
- 1 . 9 0 1  
- 2 . 9 5 5  

7.768 
ZERO 

0 . 8 8 3 2  
0 . 4 0 7 7  

ZERO 
0 . 7 3 0 2  

ZERO 

S.E. 
1 . 1 0 8  

ALIASED 
0 . 2 4 3 5  
0 . 7 3 3 1  
0 . 3 3 1 3  

ALIASED 
0. I 6 6 3  
0 . 2 5 5 2  

ALIASED 
0 . 2 5 7 4  

ALIASED 

8 1 . 1 2 9  0 . 3 4 9 8  
SCALE PARAMETER TAKEN AS 

PARAMETER 
%GM 
LND I 
D I I ( 1 )  
D I l ( 2 )  
D I 2 (  1 )  
D I 2 ( 2 )  
LNHE 
OWDO( I ) 
owoo(  2 ) 
BKTO( 1 ) 
BKTO( 2 )  
1 . 0 0 0  

PARAMETER 
%GM 
SPTR( 1 ) 
SPTR( 2 )  
SPTR(3) 
D I l ( 1 )  
D I l ( 2 )  
D I 2 (  1 )  
D I 2 ( 2 )  
LNHE 
owOD( 1 ) 
OWDO( 2 ) 
BKTO( 1 ) 
BKTO(P)  
1 . 000 

PARAMETER 
%GM 
SPTR( 1 ) 
SPTR( 2 ) 
SPTR(3) 
LND I 
D I 2 (  1 )  
D I 2 ( 2 )  
LNHE 
OWOO( I )  
owoo( 2 ) 
BKTO( 1 ) 

BKT0( 2) 
1 . 000 



Figure 41, continued 

SCALED 
CYCLE DEVIANCE DF 

5 624.3 1116 

ESTIMATE S. E. 
1  -10.24 1.441 
0 ZERO ALIASED 
2 -2.687 0.3530 
3  -2 .877 0.8691 
4  1.941 0.4252 
0 ZERO ALIASED 
5 3.625 0.2354 
6  0 .4989 0.2995 
0  ZERO ALIASED 
7 0.9118 0.3197 
0 ZERO ALIASED 
8 1.245 0.4029 

SCALE PARAMETER TAKEN AS 

SCALED 
CYCLE DEVIANCE D F 

5  600.0  11 16 

ESTIMATE S. E. 
1  -9.481 1.422 
0  ZERO ALIASED 
2 -2 .888 0.3642 
3  -3.036 0.8903 
4  2.015 0.4047 
0 ZERO ALIASED 
5 3.710 0.2438 
0  ZERO ALIASED 
6 1.134 0.2203 
0  ZERO ALIASED 
7 0 .8271 0.3180 
0  ZERO ALIASED 
8 1.005 0.3696 

SCALE PARAMETER TAKEN AS 

SCALED 
CYCLE DEVIANCE D F 

5  605.0  11 16 

ESTIMATE S. E. 
1  -9 .083 1  ,408 
0  ZERO ALIASED 
2 -2.792 0.3607 
3  -3.002 0.8990 
4  1.639 0.4315 
0 ZERO ALIASED 
5 3.691 0.2416 
0 ZERO ALIASED 
6 1.131 0.2202 
7  0.3546 0.2998 
0 ZERO ALIASED 
8 1.905 0.3797 

SCALE PARAMETER TAKEN AS 

PARAMETER 
%GM 
SPTR( 1  ) 
SPTR(2) 
SPTR(3) 
LND I 
D I l ( 1 )  
D I  l ( 2 )  
LNHE 
DW00( 1 ) 
DWOO(2) 
BKTD( 1  ) 
BKTO( 2  ) 
1.000 

PARAMETER 
%GM 
SPTR( 1) 
SPTR(2) 
SPTR(3) 
LND I 
D I l ( 1 )  
D I l ( 2 )  
D I2 (  1) 
D I Z ( 2 )  
DWOO( 1 ) 
owoo(2) 
BKTO( 1  ) 
BKTO ( 2  ) 
1  .000 

PARAMETER 
%GM 
SPTR( 1  ) 
SPTR( 2 )  
SPTR(3) 
LND I 
D I l ( 1 )  
D I l ( 2 )  
D I2 (  1) 
D I Z ( 2 )  
LNHE 
BKTO( 1  ) 
BKTO(2) 
1  . 000 



Figure 41, continued 

SCALED 
CYCLE DEVIANCE DF 

5 6 0 7 . 4  1 1 1 6  

ESTIMATE S . E .  
1  - 9 . 4 7 8  1 . 4 3 6  
0 ZERO A L I A S E D  
2  - 2 . 6 0 7  0 . 3 4 4 9  
3 - 2 . 7 9 5  0 . 8 5 2 9  
4  1 . 9 4 8  0 . 4 2 6 6  
0 ZERO A L I A S E D  
5  3 . 6 9 4  0 . 2 4 1 9  
0 ZERO A L I A S E D  
6  1 . 1 1 6  0 . 2 1 8 4  
7  0 . 7 7 3 5 E - 0 1  0 . 2 6 7 2  
0 ZERO A L I A S E D  
8 1 . 3 7 3  0 . 2 8 5 7  

SCALE PARAMETER TAKEN AS 

PARAMETER 
XGM 
SPTR( 1 )  
S P T R ( 2 )  
SPTR( 3 )  
LND I 
D I I ( 1 )  
D I i ( 2 )  
D I 2 (  1 )  
D I 2 ( 2 )  
LNHE 
ow00 (. 1  ) 
DWOO(2) 
1  ,000 



This differs from the ranking of the variables on the basis 

of improvement over the empty model in that the orders of 

D12 and ln(D1AM) are reversed, as are the orders of BKTOP 

and DWOOD. Thus in omitting a variable from the PLR final 

model (perhaps because management is willing to observe 6 

but not 7 varaibles for a given tree in order to cut back 

labour costs), the omission of  HEIGHT) would cause the 

least loss in fit, and the omission of DI1 would cause the 

greatest loss in fit (and hence predictive power). Note that 

the order reversal of D12 and ~ ~ ( D I A M )  in this and the 

previous ranking means that while ln(D1AM) is more important 

than D12 in improving the fit over an empty model, the 

omission of D12 from the PLR final model would cause a 

larger loss of model fit than would the omission of 

ln(D1AM). Correlation between values of D12 and DIAM (such 

as if, perhaps, thicker trees tend to have scars while 

thinner ones 'do not) and hence 1 n(D1AM) account for this 

order reversal. Once again, however, DI1 is still the most 

highly ranked explanatory variable. 

4.4 Concludinq Remarks on Rankinq 

The ranking schemes of the previous 3 sections confirm 

that there is no unique ranking possible among the 

explanatory variables, due to the presence of 

multicollinearity. Any ranking, however, should be selected 

on the basis of the usefulness of its interpretation to 

L . . 



t h o s e  who would use i t .  Possibly t h e  ranking scheme most 

u s e f u l  t o  management would be t h a t  given i n  t h e  f i r s t  

s e c t i o n ,  a s  has already been suggested t h e r e .  



CHAPTER 5 

USE OF PLR FINAL MODEL FOR ESTIMATION/PREDICTION OF 

PROBABILITIES 

One of the intended uses of this model is for forest 

management or conservation workers who will want to know 

which factors they may control to encourage or discourage 

the population of primary excavator bird species through the 

availability of 'desirable' nest locations. Thus it will be 

useful to convert a fitted log odds value, $, along with an 

estimated variance, s2($), into a fitted value of the 

probability, 1, that a given tree or population of trees 

will have a success. 

Rather than directly use the inverse of the link 

function, g, as was indicated in Chapter 3, a recent paper 

by Meester and Eaves (Ref. (9) shows how to convert 5 and 

s2($) into a predicted probability, kp for a single tree. 

This paper has been reproduced in its entirety in Appendix 

A. For example, for observation 3 in the GOOKNEST5 file, 

(records 7 and 8 in the original GOOKADD raw data file) 

which is an aspen tree: 

SPTREE(I)=O 
SPTREE(2)=0 
ln(HEIGHT)=2.914 
l n(DIAMle3.645 
DI1=1 (fungal conks) 
DI2=0 (no scars) 
DWOOD=O (tree fully live and has intact top) 
BKTOP=O (intact top) 



one can easily find from the PLR final model: 

t=1 .SO06 
and after a more involved computation (~echnical Supplement, 

Chapter 9), one obtains: 

s2(G)=0.0566 

from which the table given in Ref.(9) gives: 

rrp=0.8176 

using the closest available values of 'm=1.5,~=0' from that 

table. So this particular aspen tree which has 

HEIGHT=e 2*914=~8.43 metres 

and 

DIAM=e 3*645=38. 28 centimetres 

has a predicted probability of 0.8176 of having a success. 

This is the '6 as prediction' described in Chapter 3, which 

may prove more useful than '6 as. estimate'. 

It is interesting to compare this predicted probability, 

r r ~  with the corresponding estimated-mean probability: 
- 1 

C=g (1.5006)=0.8177 

The difference is small, but in general one will find that 

rrp is 'pulled' closer to 0.5 than C. This would be more 

dramatically demonstrated if s2(t) were higher. 

Consider instead observation 304 from the GOOKNEST5 file 

(records 709 and 710 from the original GOOKADD raw data 

file). For this observation it turns out that: 

t=-5.1703 

s2(t)=1. 1477 



Now whereas: 

- 1 ;=g (-5.1703)=0.0056508 

(here E<0.5 because 5<O), it turns out from the table in 

Ref.(9) (Appendix A), with 'Iml=5.O1v=1': 

e~ =1-0.9892=0.0108 

If it turned out that s2(5)<0.5, then 'v=Of would be used in 

the table look-up to produce: 

e~ 51-0.9933=0.0067 

which is closer to E. In either case, the e p  is pulled 

closer toward 0.5 than is E, but this pull is more dramatic 

for a larger s2(5). 

This pulling of a fitted e  closer to one-half in 

switching from G to e p  reflects the greater caution taken in 

predicting a probability for a single tree than for 

estimating a mean probability for a population of trees 

which have similar values of SPTREE, HEIGHT, DIAM, DI1, and 

so on. This is described in more detail in the technical 

supplement, but is analogous to the situation in normal 

theory multiple linear regression where for a fitted 

response value, $, a 100(1-a)% prediction interval is wider 

than a 100(1-a)% confidence interval (Ref. (6) pg. 312). In 

that situation, the worst scenario would be one where the 

prediction interval becomes too wide to be useful. In the 

present situation of predicting probabilities, the worst 

scenario would be one where e p  becomes 0.5, which states 

that for the given tree, one has no further information for 



predicting success or failure other than by tossing a fair 

coin. One can further see from the table in Appendix A that 

as s 2  (i) increases, ep is pulled closer to 0:5. This too 

makes intuitive sense. 

If one wishes to encourage the population of primary 

excavator birds, one would make a decision rule of 

cultivating trees such that, say, rp>0.5, or higher. up can 

be increased above 0.5 by increasing 6 above 0, although any 

change to 5, done through the explanatory variables, will 

also change s2($). 

A useful item for field workers would be a series of 

tables showing up values for all possible combinations of 

the qualitative explanatory variables (SPTREE, DI1, D I 2 ,  

DWOOD, BKTOP) and for pre-selected values of HEIGHT and 

DIAM. 



CHAPTER 6 

TECHNICAL SUPPLEMENT FOR CHAPTER 2 

For Chapter 2 there is little to add except to show the 

FORTRAN program (Figure 42) that was used to convert the raw 

data file into the file of data ready for analysis 

(GOOKNEST~), with rejected or flagged cases docmented in a 

separate reject file (GOOKREJECT~). Portions of these 3 

files have already been shown in Tables 8-10 respectively. 

The commands to compile and run this program are not shown 

but would be similar to those shown in the Technical 

Supplement to the analysis of Simon Emms' data (PART A). 

One feature of the program worth noting is the 

instruction to remove all trees having 'success"after line 

564 in the original raw data file. The reason fo'r doing so 

was that this data file itself was a concatenation of 2 

other files, the first of which contained only successes, 

and was 564 lines long. The second file contained both 

successes and failures. Although this second file did not 

contain all the successes of the first file, Dagmar said 

that those which were contained were duplications of 

observations from the f'irst file, and thus had to be 

omitted. d 



Figure 42: FORTRAN Proqram Used to ~ d i t  Dagmar's Raw Data File 

C PROGRAM TO PROCESS GOOKAOO F I L E  I N T O  F I L E  READY FOR STAT PACKAGE I N P U T  
C 
C U N I T  1 0  = GOOKADD 
C U N I T  1 1  = GOOKNESTS 
C U N I T  1 2  = GOOKREJECTS 
C 
C 1 2 3 4 5 6 7 
C23456789012345678901234567890123456789012345678901234567890123456789012 

O I M E N S I O N  V T R E E S ( S ) . V T L D ( 2 ) . V P O R A ( 2 ) . V B I R D S ( I S )  
DATA VTREES / ' A ' . ' B I ' . ' C T ' , ' W ' . ' D ' /  
DATA V T L D  / ' L 1 , ' D ' /  
DATA VPORA / '  ' , ' N T 1 /  
DATA V B I R D S  / ' S ' . ' P ' . ' N ' , ' F f , ' H ' , ' D ' , '  ','B'.'G'.'K'.'M'.'Q','R', 

* ' T I ,  ' W ' /  
RECNUM=-1 .0  

C 
C READ I N  DATA 
C 

1 0  READ ( l O . l O l . E R R = 9 9 8 , E N D = 9 9 9 )  TREESP.DIAM,HEIGHT.TLD.DIl.DI2.D13. 
* D I 4 , P O R A , B I R D S P , B K T O P  

RECNUM=RECNUM+2.0 
C 
C R E J E C T  NESTED TREES AFTER L I N E  5 6 4  OF I N P U T  
C 

I F  (RECNUM . L E .  5 6 3 . 0 )  GO TO 2 0  
I F  (PORA . N E .  V P O R A ( 2 ) )  GO TO 2 0  
W R I T E  ( 1 2 . 2 0 2 )  RECNUM,PORA 
GO TO 1 0  

NOW REJECT CONIFEROUS TREES 

2 0  DO 5 5  I 1 = 1 , 5  
I F  ( T R E E S P  .EQ.  V T R E E S ( I 1 ) )  GO TO 3 0  

5 5  CONTINUE 
W R I T E  ( 1 2 , 2 0 3 )  RECNUM~TREESP 
GO TO 1 0  

B E G I N  TRANSFORMATIONS . . . . . .  START W I T H  TREE S P E C i E S  

3 0  CONTINUE 
I F  ( T R E E S P  . E Q .  V T R E E S ( 1 ) )  GO TO 4 0  
I F  ( T R E E S P  . E Q .  V T R E E S ( 2 ) )  GO TO 5 0  
S P T R E E s 3 . 0  
GO TO 6 0  

4 0  S P T R E E s l  . O  
GO TO 6 0  

5 0  S P T R E E = 2 . 0  

TRANSFORM D I 1 . 0 1 2 , 0 1 3  

CREATE DWOOO V A R I A B L E  

DWOOD-2 . O  
I F  ( T L D  . E Q .  V T L D ( 1 ) )  GO TO 70 

I F  ( T L D  . N E .  v T L o ( 2 ) )  GO TO 8 0  
GO TO 90 

70 CONTINUE 
I F  ( D I 4  .EQ.  0 . 0 )  DWOOD=1.0 
GO TO 90 

8 0  WRITE ( 1 2 , 2 0 4 )  RECNUM.TLD 



Figure 42, continued 

GO TO 1 0  
90 CONTINUE 

C 
C TRANSFORM PORA 
C 

I F  (PORA . N E .  v p O R A ( 2 ) )  GO TO 1 0 0  
A C N E S T - 1 . 0  
GO TO 1 1 0  

1 0 0  CONTINUE 
I F  (PORA .EQ.  V P O R A ( I ) )  GO TO 1 2 0  
WRITE ( 1 2 . 2 0 5 )  RECNUM.PORA 
GO TO 1 0  

1 2 0  ACNEST=O.O 
C 
C TRANSFORM B I R D S P E C I E S  
C 

1 1 0  S P B I R O = 8 . O  
00 6 5  I 2 = 1 . 7  
I F  ( B I R O S P  . N E .  V B I R O S ( I S ) )  GO TO 6 5  
S P B I R O = I 2  
GO TO 1 4 0  

6 5  CONTINUC 
DO 7 5  1 3 = 8 . 1 5  
I F  ( B I R O S P  . E Q .  v B I R O S ( I 3 ) )  GO TO 1 3 0  

7 5  CONTINUE 
WRITE ( 1 2 . 2 0 6 )  RECNUM.BIROSP 

C 
C PROBABLY ' ? '  S P E C I E S .  BUT CARRY ON W I T H  REST OF RECORD ANYWAY & J lJST 
C F L A G  I T  FOR C O N F I R M A T I O N  

GO TO 1 4 0  
1 3 0  W R I T E  ( 1 2 , 2 0 7 )  RECNUM,BIROSP 

GO TO 1 0  
C 
C TRANSFORMATIONS A L L  DONE . . . . . .  RECORD OATA & GO GET ANOTHER RECORD 
C 

1 4 0  WRITE ( 1 1 . 2 0 1 )  RECNUM.ACNEST,SPTREE,HEIGHT,DIAM,DII.DI2.D13, 
. *DWOOD.BKTOP.SPBIRD 

GO TO 1 0  
9 9 8  WRITE ( 1 2 , 2 0 8 )  RECNUM 

GO TO 1 0  
999 W R I T E  ( 1 2 . 2 0 9 )  RECNUM 

STOP 
C 
C FORMAT STATEMENTS 
C 
C 1 2 3 4 5 6 7 
~23456789012345678901234567890123456789012345678901234567890123456789012 

1 0 1  FORMAT ( T 9 . A 2 . T 1 2 . F 4 .  I , T 1 7 , F 5 . 2 . ~ 2 3 . ~ 1 , 4 (  1 ~ . ~ 2 . 0 ) / ~ 9 . ~ 2 , ~ 1 2 , ~ 1 ,  
' T 3 2 , F l . O )  

2 0 1  FORMAT ( T 3 , F 8 . 1 , 1 X , F 2 . 0 . 1 X , F 2 . 0 , 1 X X ~ 5 . 2 ~ ' ~ 6 . 2 , 6 ( ~ ~ ~ ~ ~ . ~ ) )  
2 0 2  FORMAT ( / T B , ' I N  RECORD ' , F 8 . 1 . '  ( A F T E R  5 6 4 . 0 ) .  PORA I S  ' . A 2 1  

2 0 3  FORMAT ( /TB . 'RECORD ' , F B . I . '  DELETED BECAUSE OF TREE S P E C I E S  ' . A 2 1  
2 0 4  FORMAT ( /TB . 'RECORO ' , F 8 . 1 . '  CONTAINS I L L E G A L  T L D  = ' , A l )  
2 0 5  FORMAT ( /TB , 'RECORD ' , F B . I , '  CONTAINS I L L E G A L  PORA = ' , A 2 1  
2 0 6  FORMAT ( / T l O , ' * * * C H E C K  RECORO ' , F 8 . 1 . '  * * * ' / T l O . ' F O R  B I R D  S P E C I E S  

* ' . A I / T I O , ' R E C O R D  NOT S K I P P E D ' )  
2 0 7  FORMAT ( / T B . ' R E C o R D  ' , F B . I . '  C O N T A I N S  SECONDARY EXCAVATOR B I R D  SPE 

* C I E S  ' , A l )  
2 0 8  FORMAT ( / T I O , " * * E R R O R  I N  OATA INPUT--RECORD ' , F 8 . 1 . '  ***'I 
2 0 9  FORMAT ( / / T ~ . ' A L L  D O N E ' / / ' L A S T  2 RECORDS READ I N  BEGAN W I T H  RECORD 

* NUMBER I . F a . 1 )  
END 



CHAPTER 7 
. . 

TECHNICAL SUPPLEMENT FOR CHAPTER 3 

A number of observations and developments may be made on 

the contents of Chapter 3. Basically they all have to do 

with the production of the outputs in Figures 31-35. 

7.1 On the Production of the PLR Run in Figure 31 

Figure 31, as well as Figures 36-39, contain a portion 

of the PLR run carried out by the command source file in 

Figure 43. There are 3 aspects particularly worthy of note. 

Firstly, the 'space' modifier will be noted in the 

'$runf command. This requests that extra storage be made 

available for the PLR run. The default value is 15000 words, 

which was not enough for the run shown. This ability to 

request extra storage is a nice feature of BMDP. This 

particular method of doing so, however, is not that found in 

the BMDP manual (Ref.(4), Appendix B.l), but is that 

described on page 24 of Ref.(l) since it is an extension of 

the operating system, MTS. 

t 
Secondly, PLR offers 3 choices of design variables 

(Ref.(4) pg. 339). The strict 0,l-coding was chosen 

('dvar=part.' sentence in the ' /  regress' paragraph) where 

the first level of a factor (e.5. SPTREE=~) sets all 

applicable design variables to 0. 



Fiqure 43: PLR Command File which Generated Figure 31 

$empty goutplr4 ok 
$run *bmdp 7=gooknest5 sprint=goutplr4 parrplr space=18000w 

title is 'GOUTPLR4: logistic regression (no interactions) / problem 

/ input 

/ vartable 

/ transform 

/ group 

/ regress 

I/ plot 
'/ end 

on data in fiie GOOKNESTS. method is ACE'. 
variable? are 1 1 .  
format is '(4x.a4.2x.2(lx.f2.0).lx,f5.2.1x. 

f6.2.6(lx,f2.0))'. 
unit is 7. 
cases are 1124. 
names are recnum.acnest.sptree,heighttdlam,di1,di2, 

di3.dwood.bktop,spbirddlnheight,1ndiam. 
add=2. 
label is recnum. 
Inheight=ln(height). 
Indiam=ln(diam). 
codes(2)=1 .O. 
names(2)=nest,' ' .  
codes(3)=1,2,3. 
names(5)=aspen,birch. 'other deciduous'. 
codes(6)rl .O. 
names(6)=conks.' ' .  
codes(7)=1.0. 
names(7)=scars.' ', 
codes(8)=1.0. 
names(8)r1dead brnl.'full brn'. 
codes(9)=1.2. 
names(9)=full.'not full'. 
codes(lO)=l,O. 
names(lO)='bad topl,'gd top'. - 

codes(ll)=1.2.3.4,5,66778. 
names( l l )=s .p ,n . f .h .d . 'no  nest'.other. 
dependent-acnest. 
interval=lnhelght,lndiam. 
categor~lca1=sptree,d i1 ,d12,dwood,bktop.  
dvarlpart. 
cmove-2. 
case-15. 
sort=none. 
hlst. 
plot. 
cova . 
corr . 
news. 
size Is 100.50 



Thirdly, the results are shown for the default ACE 

(Asymptotic Covariance Estimate) method rather than for the 

MLR (Maximum Likelihood ~atio) method which the manual 

states is the more 'reliable' of the two (Ref.(4) pg. 339). 

The MLR run results are not shown, but both methods did 

produce the same coefficient estimates and 

variance-covariance matrix for those estimates to the 

reported accuracy of 5 significant figures for the 

coefficients and 5 decimal places for the matrix entries. 

But the MLR method did not appear to perform the variable 

selection at each step of the stepwise process as the manual 

says that both it and the ACE method should (~ef.(4) pg. 

339). Since the final model results are the same anyway, 

only the ACE method results are shown, in order to reduce 

confusion. The ACE method does work the way it should, 

namely by entry by smallest P-values, and not by largest 

F-statistics, since design variables for a given multi-level 

factor are to be entered as a group. Thus the degrees of 

freedom associated with the F-statistic may be different 

from those associated with other variables. One can see this 

in ~igures 37-39. 

7.2 On the GLIM Run which Produced Fiqure 37 

In Figure 44 is shown the sour.ce file which produced the 

first GLIM run, part of which was shown in Figure 32. There 

are 4 features of special interest; 



Fiqure 44: GLIM Command File which Generated Fiqure 32 

$EMPTY GOUTGLIMI OK 
$EMPTY GOOKPLOTI OK 
$RUN UNSP:GLIM l=GOOKNEST5 2=GOUTGLIMl 3=GOOKPLOT1 
$C 
$C G L I M  RUN ON F I L E  GOOKNEST5 TEST ING OUT L O G I S T I C  L I N K  ON BINARY 

C RESPONSES 
C 

$C . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * GET DATA & TRANSFORM * 
$C . . . . . . . . . . . . . . . . . . . . . . . . .  
$C 
$OUTPUT 2 1 3 2  
$UNITS  1 1 2 4  
$DATA RECNUM ACNEST SPTREE LNHEIGHT LNDIAM D I 1  D 1 2  D 1 3  DWOOD BKTOP 
$FACTOR SPTREE 3 D I 1  2 D 1 2  2 D 1 3  2 DWOOD 2 BKTOP 2 
$FORMAT 
(2X,F8.1,2(1X,F2.O),rX,F5.2,IX,F6.2.5(1X,F2.0)) 
$DINPUT 1 
$LOOK 1 1 5  RECNUM ACNEST SPTREE LNHEIGHT LNDIAM D I 1  D 1 2  D 1 3  DWOOD BKTOP 
$C 
$C LOG TRANSFORM LNHEIGHT & LNDIAM 

C S H I F T  A L L  Q U A L I T A T I V E  VARIABLES UP BY 1 BECAUSE G L I M  
C CAN'T  HANDLE FACOTR LEVELS OF 0 
c 

$CALC LNHEIGHT=%LOG(LNHEIGHT): LNDIAM=%LOG(LNDIAM):  N = l :  D I I = D I I + I  
$CALC D I 2 = D I 2 + 1 :  BKTOP=BKTOP+I 
$C 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * SPECIFY  MODEL TO BE ANALYZED * 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C 
$YVAR ACNEST 
$ERROR B N 

- $ L I N K  G 
$C 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * F I T  MODEL RECOMMENDED I N  GOUTPLR4 * .  
$C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * a * *  

$C 
$ F I T  %GM 
$ D I S P  A 
$ F I T  SPTREE+LNDIAM+LNHEIGHT+DI1+DI2+DWOOD+BKTOP 
$ D I S P  A 
$ D I S P  V 
$C 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * GET F I T T E D  VALUES, S . E . ' S .  & PUT I N T O  GOOKPLOTI F I L E  t 

$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C 
$EXTRACT %VL 
$OUTPUT 3 1 3 2  
$ACCURACY 9 
$LOOK RECNUM %LP %VL LNDIAM SPTREE D I 1  BKTOP 
$STOP 



Firstly, each input record (as shown in Table 9) 

represents one observation or trial, and not the number of 

successes in a set of more than one trials. The data set is 

thus 'ungrouped' (Ref.(2) pg. 73) and hence 'N=ll is used in 

the 'SCALC' command. Incidentally, the PLR run also gave the 

information that the 1124 observations could be assembled 

into 1115 different groups (that is, 1115 distinct patterns 

in the explanatory variables. Rather than assemble these 

groups for the GLIM run, the data was left in its ungrouped 

state. 

Secondly, it will be noticed in Figure 44 that through 

'SCALC' commands, qualitative variables which had codings of 

0 or 1 (D11, DI2, BKTOP have these) are rescaled to have 

codings of 1 or 2 respectively, like DWOOD already has. This 

is 'necessary because GLIM will not process inputted factor 

levels (qualitative variable values) of 0. SPTREE, which has 

levels of 1, 2, and 3 for aspen, birch, and other deciduous . 
trees respectively, could thus be inputted in as is. Once 

these variables were inputted", GLIM set up the necessary 

design variables in the same way that PLR set up its design 

variables through the 'dvar=part.' option mentioned earlier. 

These qualitative variables were identified to GLIM as 

factors along with their numbers of possible levels through 

the '$FACTOR1 command, as can be seen in the figure. 

A 

Thirdly, for the vector of estimated coefficients, e ,  a 
dispersion or variance-covariance matrix, czv (1) was 



estimated. The matrix of estimates differs in PLR (Figure 

31) and GLIM (Figure 32) where it will be noticed that the 

corresponding entries agree to only 1 or 2 significant 

figures. One must further be careful when comparing these 2 

matrices, since PLR and GLIM order the 

rows/columnsdifferently. This dilemma will be encountered 

again in Section 9.1. 

Fourthly, 6 and s2(6), which are computed by GLIM for 

each observation in the given sample data and stored in the 

'system vectors' %LP and %VL respectively, were requested to 

be put along with other data values of interest into another 

file (identified near the top of Figure 44 as GOOKPLOT~) 

according to the last 4 lines of Figure 44. This file, a 

portion of which is shown in Table 1 1 ,  contains data which 

was used in the plots mentioned in Chapter 3, but not 

directly from GOOKPLOTI. 

The data values, as they appear in Table 1 1 ,  were not 

yet ready for inputting into the P6D program of BMDP. The 

reason is that GLIM uses exponential notation for all 

numbers less than 0.10 in absolute value. BMDP uses FORTRAN 

formats (unless free format is chosen) and only 'F' or 'I' 

formats are available for numeric input. 'G' or 'E' formats, 

which can handle exponential notation are not available in 

BMDP. Rather than take chanc'es with free format, the file 

was subjected to a FORTRAN 'clean-up' program, as shown in 

Figure 45, to convert the exponential notation back into 





Fiqure 45: FORTRAN 'Clean-Up' Program for File GOOKPLOTI 

C PREPARE GOOKPLOTI TO BMDP6D PLOTS 
C 
C U N I T  1 0  = GOOKPLOTI 
C U N I T  1 1  = GPLOTDATI 
" 
C 1 2 3 4 5 - 6 7 
C234567890123456789012345678901234567890123456789012345678901234567890i2 

N=O 
1 0  READ (10.10l.ERR=998.END=999) R E C N U M , Y L P , V L , D I A M L G , S P T R E E . D I I ,  

*BKTOP 
N=N+ I 
WRITE ( 1 1 . 2 0 1 )  RECNUM.YLP,VL.DIAMLG,SPTREE.DII1BKTOP 
GO TO 1 0  

998 WRITE ( 1 1 . 2 0 2 )  N 
GO TO 1 0  

999 WRITE ( 1 1 . 2 0 3 )  N.RECNUM 
WRITE ( 1 1 . 2 0 4 )  
STOP 

1 0 1  FORMAT (T10.F5.O.T24,2G17.9.T58,.Fl3.8.7X,F2.0.2(15~,F2.0)) 
2 0 1  FORMAT ( T 6 . F 5 . 0 , 1 X . F 1 4 . 9 . 1 X . F 1 4 . 9 , 1 X . ~ 1 4 . 8 , 3 ( 1 X , F 2 . 0 ) )  
2 0 2  FORMAT ( '  ***ERROR AFTER RECORD ' . I 4 , '  I N  INPUT** * ' )  
2 0 3  FORMAT ( '  >>>ALL DONE<<<'/' LAST RECORD WAS NUMBER ' . 1 4 . / '  FOR GOO 

*KNESTS F I L E  RECORD NUMBER ' , F 5 . 0 )  
2 0 4  FORMAT ('C23456789012345678901234567890123456789012345678901234567 

* 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 ' / ' C ' , 8 X X ' 1 ' , 9 X , ' 2 ' . 9 X . ' 3 ' . 9 X . ' 4 ' . 9 X . ' 5 ' , 9 X , ' 6 ' . 9 X ,  
* ' 7 '  ) 

END 



fixed decimal, as shown in the 'cleaned up' file, GPLOTDATI, 

a portion of which is shown in Table 12. 

At the same time the program was used to remove 

superfluous 0's from the (unneeded) fractional parts of 

numbers which were intended to be integers (GLIM treats 

integers as it does real numbers in general) and to line up 

all the decimal points. This latter task was not necessary 

because when a number is inputted to a FORTRAN program 

(including the software packages used), a user-keyed decimal 

point will override where an input 'F' format indicates it 

should be found (~ef.(7) pg. 24). The alignment, however, 

comes naturally with 'F' format on output data. This is not 

true necessarily with 'G' format, which is evidently what 

GLIM used. 

7.3 On the Production of the Plots in Figures 33-35 

The plots in Figures 33.a-d, 34.a-d, and 35.a-d were 

produced by the command source files shown in Figures 46, 

47, and 48 respectively. ~n Figures 47 and 48 note should be 

made of the usage of the 'use' variable for case selection 

in the ' /  transform' paragraph. This feature is described on 

page 55 of Ref.(4) and is distinct from the 'use=' sentence 

in a ' /  variable' paragraph as described on page 42 of the 

same reference. The 'use' variable is a BMDP supplied 

variable and as such does not need to be included in a 



Table 12: Portion of 'Cleaned Up' Data File; GPLOTDATl 



Figure 46: P6D Command File which Generated Figures 33.a-d 

$empty goutp6dl  ok 
$run  *bmdp spr int=gocrtpGdl 7 = g p l o t d a t l  par=p6d 
/ problem t i t l e  i s  'GOOKPGDI: p l o t  ACNEST v s .  DIAM: group by 

sp t r ee .  a l l  D I I ' .  
/ i npu t  u n i t  i s  7 .  

cases a re  1 124. 
v a r i a b l e s  a r e  7 .  
format  i s  '(5x,f5.0.2(lx,fl4.9).lx.f14.8.3(lx.f2.0)J' 

/ v a r i a b l e  names a r e  recnum.lp.vl,lgdiarn,sptreeedil.bktop. 
l a b e l  i s  recnum. 
g roup ing  i s  s p t r e e .  

. group codes(5 ) -1 .2 .3 .  
names(5) a r e  aspen ,b i r ch .o the r .  

,; p l o t  yvar  i s  l p .  
xvar i s  lgd iam.  
group i s  asDen. 
group i s  b i r c h .  
group i s  o t h e r .  
groups a r e  aspen .b i r ch .o the r .  
s ize=100.40.  
no s t a t i s t i c s .  

.' end 



Fiqure 47: P6D Command File which Generated Figures 34.a-d 

Bempty goutp6d2 ok 
$ run  *bmdp spri t i t=goutpGd2 7 = g p l o t d a t l  par=p6d 
/, problem 

/ i npu t  

/ v a r i a b l e  

i t rans fo rm 
i group 

/ end 

t i t l e  i s  'GOUTP6D2: p l o t  ACNEST vs .  DIAM: group by 
SPTREE, no fungal  conks ' .  

u n i t  i s  7 .  
cases a re  1124. 
v a r i a b l e s  a re  7.  
format i s  ' ( 5 x , f 5 . 0 , 2 ( l x , f 1 4 . 9 ) . l x , f l 4 . 8 . 3 ( l x , f 2 . 0 J )  
names a re  recnurn.lp.vl,lgdiam.sptree.dil,bktop. 
l abe l  i s  recnum. 
g roup ing  i s  sp t ree .  
u s e = d i l  eq 1. 
codes(5)=1.2.3.  
names(5) a re  aspen.b i rch .o ther .  
yvat- i s  1p. 
xvar i s  lgdiam. 
group i s  aspen. 
group i s  b i r c h .  
group i s  o t h e r .  
groups a re  aspen.b i rch .o ther .  
s ize=100.40.  
no s t a t i s t i c s .  



Fiqure 48: P6D Command File which Generated Figures 35.a-d 

$empty goutp6d3 ok 
$ r u n  *bmdp spr in t=gou tp6d3  7 = g p l o t d a t l  par=p6d 

t i t l e  i s  'GOUTP6D3: p l o t  ACNEST v s .  DIAM: group b) / problem 

/ i npu t  

/ v a r i a b l e  

/ t r ans fo rm  
/ group 

/ p l o t  

SPTREE, fungal  conks p r e s e n t ' .  
u n i t  i s  7 .  
cases a r e  1124. 
v a r i a b l e s  a r e  7 .  
format i s  '(5x.f5.0.2(1x,f14.9).1~,f14~8.3(1x.f2.0~~'. 
names a r e  recnum.lp.vl.lgdiam,sptreeedi1,bktop. 
l abe l  i s  recnum. 
g roup ing  i s  s p t r e s .  
u s e = d i l  eq 2 .  
codes(5 )=1 .2 .3 .  
names(5) a r e  aspen .b i r ch .o the r .  
yvar  i s  l p .  
xvar i s  lgdiam. 
group i s  aspen. 
group i s  b i r c h .  
group i s  o t h e r .  
groups a re  aspen ,b i rch ,o ther  
s ize=100.40. 
no s t a t i s t i c s .  

/ end 



'add=' sentence in the ' /  variable' paragraph. The manual 

(Ref.(4)) neglects to point this out 



CHAPTER 8 

TECHNICAL SUPPLEMENT FOR CHAPTER 4 

A number of observations and developments may be made on 

the contents of Chpater 4. 

On the Production of Outputs in Figures 40 and 41 

Figures 40 and 41 both showed outputs of GLIM runs, 

which were produced by the command source files in Figures 

49 and 50. One can see that these source files are very 

similar to that of Figure 44 except for the actual model fit 

requests and the fact that no new data file gets created. 

The calculations for drops in scaled deviance are 

straight forwrard. Using the notation of Section 5.4 in 

Ref. (21, let model 0 refer to the null model (no explanatory 

variables), model m refer to the maximal (PLR final) model . 
presented in Chapter 3, and model f refer to the 'full' 

model, which would have 1124 coefficients (one for each 

observation in the analysis). Then for Figure 40: 

Explanatory Variable S(0,i ) 
i Added to Model 0 S(i ,f ) =S( 0 ,f) -S( i ,f 

1 SPTREE 
2 I n(D1AM) 
3  HEIGHT) 
4 DI 1 
5 D12 
6 DWOOD 
7 BKTOP 



Figure 49: GLIM Command File which Generated Figure 40 

$EMPTY GOUTGLIM3 OK 
$RUN U N S P : G L I M  l=GOOKNEST5 2=GOUTGLIM3 
$C 
$C G L I M  RUN ON F I L E  GOOKNESTS T E S T I N G  OUT L O G I S T I C  L I N K  ON BINARY 
3 c RESPONSES 
$C 
$C . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * GET DATA & TRANSFORM * 
$C . . . . . . . . . . . . . . . . . . . . . . . . .  
$C 
$OUTPUT 2 1 3 2  
$ U N I T S  1 1 2 4  
$DATA RECNUM ACNEST SPTREE LNHEIGHT L N O I A M  0 1 1  0 1 2  0 1 3  DWOOD BKTOP 
$FACTOR SPTREE 3 0 1 1  2 0 1 2  2 013 2 OWOOD 2 BKTOP 2 
$FORMAT 
( 2 X , F 8 . 1 , 2 ( 1 X . F 2 . 0 ) . 1 X , F 5 . 2 . 1 X . F 6 . 2 , 5 ( 1 X , F 2 . 0 ) )  
$ D I N P U T  1 
$LOOK 1 1 5  RECNUM ACNEST SPTREE LNHEIGHT L N D I A M  0 1 1  0 1 2  013 DWOOD BKTOP 
$CALC LNHEIGHT=%LOG(LNHEIGHT): LNDIAM=%LOG(LNDIAM):  N = l :  D I l = D I l + I  
$CALC D I 2 = D I 2 + 1 :  BKTOP=BKTOP+I 
$C 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * S P E C I F Y  MODEL TO B E  ANALYZED * 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C 
BYVAR ACNEST 
$ERROR B N 
B L I N K  G 
3 c 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * F I T  S I N G L E - V A R I A B L E  MODELS & N U L L  MODEL * 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3 c 
$ F I T  XGM 
$ D I S P  A 
$ F I T  SPTREE 
$ D I S P  A 
$ F I T  L N O I A M  
B D I S P  A 

' $ F I T  LNHEIGHT 
$ D I S P  A 
$ F I T  0 1 1  
$ O I S P  A 
$ F I T  0 1 2  
$ D I S P  A 
$ F I T  DWOOD 
$ O I S P  A 
$ F I T  BKTOP 
$ D I S P  A 
SSTOP 



Figure 50: GLIM Command File which Generated Figure 41 

$EMPTY GOUTGLIM4 OK 
$RUN UNSP:GL IM  I=GOOKNEST5 2=GOUTGLIM4 
$ C 
$C G L I M  RUN ON F I L E  GOOKNESTS TESTING OUT L O G I S T I C  L I N K  ON BINARY 
$ c  RESPONSES 
$C 
$C . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * GET DATA & TRANSFORM * 
$C . . . . . . . . . . . . . . . . . . . . . . . . .  
$C 
$OUTPUT 2 1 3 2  
$ U N I T S  1 1 2 4  
$DATA RECNUM ACNEST SPTREE LNHEIGHT LNDIAM D I 1  D I 2  D 1 3  DWOOD BKTOP 
$FACTOR SPTREE 3 D I 1  2 D I 2  2 D 1 3  2 DWOOD 2 BKTOP 2 , 
$FORMAT 
( 2 X . F 8 . 1 . 2 ( 1 X . F 2 . 0 ) . 1 X , F 5 . 2 , 1 X . F 6 . 2 . 5 ( 1 X . F 2 . 0 ) ~  
$DINPUT 1 
$LOOK 1 1 5  RECNUM ACNEST SPTREE LNHEIGHT LNDIAM D I 1  D I 2  D 1 3  DWOOD BKTOP 
SCALC LNHEIGHT=%LOG(LNHEIGHT): LNDIAM=%LOG(LNDIAM):  N = l :  D I I = D I l + I  
BCALC D I 2 = D I 2 + 1 :  BKTOP=BKTOP+I 
$C 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * SPECIFY MODEL TO BE ANALYZED * 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3 C 
BYVAR ACNEST 
$ERROR B N 
$ L I N K  G 
$C 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * FROM GOUTPLR4 OUTPUT & GOUTGLIMI .  TRY ALL  POSSIBLE * 
$C * MODELS WHICH HAVE A SINGLE VARIABLE MISS ING.  * 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C 
$ F I T  LNDIAM+DI1+DI2+LNHEIGHT+DWOOD+BKTOP 
$ D I S P  A 
$ F I T  SPTREE+D11+012+LNHEIGHT+DWOOD+BKTOP 
$ D I S P  A 
$ F I T  SPTREE+LNDIAM+DI2+LNHEIGHT+DWOOD+BKTOP 
$ D I S P  A 
$ F I T  SPTREE+LNDIAM+DII+LNHEIGHT+DWOOD+BKTOP 
B D I S P  A 
$ F I T  SPTREE+LNDIAM+DI1+DI2+0WOOD+BKTOP 
B D I S P  A 
$ F I T  SPTREE+LNDIAM+DII+OI2+LNHEIGHT+BKTOP 
B D I S P  A 
$ F I T  SPTREE+LNOIAM+DI1+OI2+LNHEIGHT+DWOOD 
$ D I S P  A 
$STOP 



where S(O,f)=1174. 

Similarly, for Figure 41: 

Explanatory Variable 
i Removed from Model m 

1 SPTREE 
2 1 ~(DIAM) 
3 1  HEIGHT) 
4 DI 1 
5 D12 
6 DWOOD 
7 BKTOP 

where S(m,f)=597.1. 

From these values the rankings for the last 2 schemes in 

Chapter 4 may be confirmed. 

On Comparinq Figure 36 Entries with GLIM Equivalent 

Figure 51.a shows the command source file for a GLIM run 

which requests a sequence of model fits identical to that of . 
the PLR run, which was summarized in Figure 36. The 

corresponding GLIM ouput is shown in Figure 51.b. A table of 

successive fit results for Figure 51.b similar to those for 

Figures 40 and 41 in the previous section is now given: 

Improvement over 
Previous Model: 

Step Explanatory Variable S(i-1 , i )  
i Added to Previous Step S(i ,f =S(i-1 ,f)-S(i ,f) 

0 %GM(Empty Model) 
1 DI 1 
2 1 ~(DIAM) 
3 SPTREE 
4 BKTOP 
5 D12 



Fiqure 51.a: GLIM Command File which Generates Fiqure 51.b 

$EMPTY GOUTGLIMS OK 
$RUN UNSP:GL IM  l=GOOKNESTS ~=GOOTGLIMS 
S C 
,$C G L I M  RUN ON F I L E  GOOKNESTS TEST ING OUT L O G I S T I C  L I N K  ON BINARY 
*b C RESPONSES 
$C 
$C . . . . . . . . . . . . . . . . . . . . . . . . .  
SC * GET DATA & TRANSFORM * 
$C . . . . . . . . . . . . . . . . . . . . . . . . .  
$C 
$OUTPUT 2 1 3 2  
$UNITS  1 1 2 4  
$DATA RECNUM ACNEST SPTREE LNHEIGHT LNOIAM 0 1 1  0 1 2  013 OW000 BKTOP 
SFACTOR SPTREE 3 0 1 1  2 0 1 2  2 0 1 3  2 OW000 2 BKTOP 2 
$FORMAT 
( 2 X , F 6 . 1 . 2 ( 1 X . F 2 . 0 ) . 1 X . F 5 . 2 , 1 X , F 6 . 2 . 5 ( 1 X . F 2 , 0 ) )  
SOINPUT 1 
$LOOK 1 1 5  RECNUM ACNEST SPTREE LNHEIGHT LNOIAM 0 1 1  0 1 2  0 1 3  OW000 BKTOP 
$ c 
$C LOG TRANSFORM LNHEIGHT & LNOIAM 
$C S H I F T  A L L  Q U A L I T A T I V E  VARIABLES UP BY 1 BECAUSE G L I M  
$C CAN'T  HANDLE FACOTR LEVELS OF 0 
$ c 
$CALC LNHEIGHT=%LOG(LNHEIGHT): LNOIAM=%LOG(LNOIAM):  N = 1 :  0 1 1 = 0 1 1 + 1  
SCALC O I 2 = 0 1 2 + 1 :  BKTOP=BKTOP+I 
$C 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * SPECIFY MOOEL TO BE ANALYZED * 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$ c 
$YVAR ACNEST 
$ERROR B N 
S L I N K  G 
$ c 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C * F I T  NESTED MODELS I N  ORDER SUGGESTED I N  GOUTPLR4 * 
$C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
$C 
$ F I T  %GM 
$ O I S P  A 
$ F I T  0 1 1  
S O I S P  A 
$ F I T  01 l+LNOIAM 
$OISP  A 
$ F I T  OI I+LNOIAM+SPTREE 
SOISP  A 
$ F I T  OII+LNOIAM+SPTREE+BKTOP 
OOISP A 
O F I T  OI1+LNOIAM+SPTREE+BKTOP+OI2 
SOISP A 
S F I T  OI1+LNOIAM+SPTREE+BKTOP+OI2+OWOOO 
SOISP A 
S F I T  OI1+LNOIAM+SPTREE+BKTOP+OI2+OWOOO+LNHEIGHT 
OOISP A 
$STOP 



Fiqure 51.b: GLIM Model Fits to Match PLR Sequence in Fiqure 36 

SCALED 
CYCLE DEVIANCE D F 

4 1 1 7 4 .  1 1 2 3  

ESTIMATE S . E .  PARAMETER 
1 - 1 . 2 8 8  0 . 7 2 2 8 E - 0 1  %GM 

SCALE PARAMETER TAKEN AS 

SCALED 
CYCLE DEVIANCE D F 

4 7 7 9 . 0  1 1 2 2  

ESTIMATE S . E .  
1 - 2 . 4 0 4  0 . 1 2 1 4  
0 ZERO AL IASED 
2 3 . 4 0 7  0 . 1 9 1 5  

SCALE PARAMETER TAKEN AS 

SCALED 
CYCLE DEVIANCE DF 

4 7 2 5 . 0  1 1 2 1  

ESTIMATE S.E.  
1 - 1 0 . 3 6  1 . 1 4 7  
0 ZERO AL IASED 
2 3 . 4 3 9  0 . 2 0 2 6  
3 2 . 3 6 9  0 . 3 3 1 0  

SCALE PARAMETER TAKEN AS 

SCALED 
CYCLE DEVIANCE ' DF 

5 6 6 2  .O 1 1 1 9  

ESTIMATE S . E .  
1 - 7 . 8 7 0  1 . 2 8 8  
0 . ZERO AL IASED 
2 3 . 5 9 1  0 . 2 2 7 0  
3 1 . 7 7 1  0 . 3 7 1 8  
0 ZERO AL IASED 
4 - 1 . 8 6 0  0 . 2 8  19 
5 - 2 . 2 7 2  0 . 7 9 7 6  

SCALE PARAMETER TAKEN AS 

SCALED 
CYCLE DEVIANCE DF 

5 6 3 3 . 3  1 1  1 8  

ESTIMATE S . E .  
1 - 8 . 9 7 3  . 1 . 3 4 6  
0 ZERO AL IASED 
2 3 . 5 9 4  0 . 2 3 2 6  
3 2 . 0 4 1  0 . 3 8 5 9  
0 ZERO AL-IASED 
4 - 2 . 5 7 2  0 . 3 4 1 7  
5 - 2 . 7 8 4  0 . 8 6 1 6  
0 ZERO AL IASED 
6 1 . 5 2 5  0 . 2 8 2 0  

SCALE PARAMETER TAKEN AS 

PARAMETER 
XGM 
D I l ( 1 )  
D I l ( 2 )  
1 . 000 

PARAMETER 
%GM 
D I I ( 1 )  
D I I ( 2 )  
LND I 
1 .ooo 

PARAMETER 
%GM 
D I l ( 1 )  
D I l ( 2 )  
LND I 
SPTR( 1 ) 
SPTR(2 )  
S P T R ( 3 )  
1 . om 

PARAMETER 
%GM 
D I l ( 1 )  
D I l ( 2 )  
LND I 
SPTR( 1 ) 
SPTR ( 2 )  
SPTR ( 3  ) 
BKTO( 1 ) 
B K T O ( 2 )  
1 .ooo 



Fiqure 51.b, continued 

SCALED 
CYCLE D E V I A N C E  D F  

5 6 0 6 . 5  1 1  1 7  

E S T I M A T E  S . E .  
1 - 8 . 7 5 9  1 . 3 7 7  
0 ZERO A L I A S E D  
2 3 . 6 8 5  0 . 2 4 1 2  
3 1 . 8 4 8  0 . 3 9 5 3  
0 ZERO A L I A S E D  
4 - 2 . 7 8 7  0.3580 
5 -2.992 0 . 8 9 4 7  
0 ZERO A L I A S E D  
6 1 . 6 2 1  0 . 2 9 3 1  
0 ZERO A L I A S E D  
7 1 . 1 2 5  0 . 2 1 9 7  

SCALE PARAMETER T A K E N  A S  

SCALED 
CYCLE D E V I A N C E  D F  

5 6 0 0 . 0  1 1 1 6  

E S T I M A T E  S . E .  
1 - 9 . 4 8 1  I . 4 2 2  
0 ZERO A L I A S E D  
2 3 . 7 1 0  0 . 2 4 3 8  
3 2 . 0 1 5  0 . 4 0 4 7  
0 ZERO A L I A S E D  
4 - 2 . 8 8 8  0 . 3 6 4 2  
5 - 3 . 0 3 6  0 . 8 9 0 3  
0 ZERO A L I A S E D  
6 . 1.005 0 . 3 6 9 6  
0 ZERO A L I A S E D  
7 1 . 1 3 4  0 . 2 2 0 3  
0 ZERO A L I A S E D  
8 0 . 8 2 7 1  0 . 3 1 8 0  

SCALE PARAMETER T A K E N  AS 

SCALED 
CYCLE D E V I A N C E  D F 

5 5 9 7 . 1  1 1 1 5  

E S T I M A T E  S . E .  
1 ' - 1 0 . 0 4  1 . 4 6 9  
0 ZERO A L I A S E D  
2 3 . 7 2 1  0 . 2 4 4 5  
3 1 . 7 3 4  0 . 4 3 6 5  
0 ZERO A L I A S E D  
4 - 2 . 9 0 2  0 . 3 6 7 6  
5 - 3 . 0 5 3  0 . 8 9 7 9  
0 ZERO A L I A S E D  
6 1 . 3 2 5  0 . 4 1 8 0  
0 ZERO A L I A S E D  
7 1 . 1 3 9  0 . 2 2 1 1  
0 ZERO A L I A S E D  
8 0.9389 0 . 3 2 6 0  

' 9 0 . 5 1 3 6  0 . 3 0 5 1  
SCALE PARAMETER T A K E N  A S  

PARAMETER 
%GM 
D I I ( 1 )  
D I l ( 2 )  
L N D I  
SPTR(  1 )  
S P T R ( 2 )  
S P T R ( 3 )  
BKTO(  1 ) 
B K T O ( 2 )  
D I 2 (  1 )  
D I 2 ( 2 )  
1  . 000 

PARAMETER 
%GM 
D I I ( 1 )  
D I l ( 2 )  
L N D I  
SPTR(  1 )  
SPTR(P )  
SPTR ( 3 ) 
B K T O (  1 ) 
B K T O ( 2 )  
D I 2 (  1 )  
D I 2 ( 2 )  
DWOO( I) 
DWOO(2 ) 
1 . o m  

PARAMETER 
%GM 
D I I ( 1 )  
D I l ( 2 )  
L N D I  
SPTR(  1 )  
SPTR(  2 ) 
S P T R ( 3 )  
BKTO(  1 ) 
BKTO(  2 ) 
D I 2 (  1 ) 
D I 2 ( 2  ) 
DWOO( I ) 
DWOO( 2 1 
LNHE 
1 . 0 0 0  



6 DWOOD 
7 1n(HEIGHT) 

Comparing these entries with those of Figure 36, it will 

be noticed that the improvement S(i-1 ,i ) is very nearly the 

same as the improvement x 2  score for the same expalanatory 

variable, and also that the S(i,f) differs from the 

goodness-of-fit x 2  score by about 3 for the same explanatory 

variable. These are worthy of further consideration. 

First of all, the 2 'improvement' scores should be 

exactly the same, with accumulated round-off errors and 

differences in the efficiencies of the respective numerical 

algorithms accounting for any discrepancies. The reason for 

the equality is that i f ,  say, model i is nested in model j 

then the GLIM improvement measure is, according to Section 

where Li is the likelihood function evaluated for the 

parameter estimates for model i ,  and L. the likelihood 
J 

function evaluated for parameter estimates for model j. 

~ccording to page 683 of Ref.(4), this is also how PLR 

computes its improvement x 2  score. 

The goodness-of-fit measures, however, seem to be 

computed differently. GLIM uses a deviance formula (Ref.(8) 

pg. 25) but PLR does not reveal how its goodness-of-fit is 

computed, although the manual (Ref.(4)) hints on page 333 



that the usual Pearson statistic for cell frequency counts 

is used. Certainly the observation that the two 

goodness-of-fit measures seem to.differ always by 3 is of 

interest. 



CHAPTER 9 

TECHNICAL SUPPLEMENT FOR CHAPTER 5 

On the contents of Chapter 5, the following observations 

and developments may be made. 

9.1 On the Estimation of Future Log-Odds and their Variances 

The linear predictor, in this analysis, occurs on the 

log-odds scale: 

+p +p +...+p x =xve "=Po 1 1 2 2 P P -  

and the vector of estimated coefficients is 3, estimated 
either by PLR or GLIM. For a future tree and its associated 

vector of explanatory variable values, xo, one can estimate 
the corresponding log odds: 

+x 
-0 

and its associated variance: 

s 2  (ij)=xo'~Bv(i)xo 

Now the exact variance would be: 

Vnr(ij)=x ' C O V ( ~ ) ~ ~  -0 

where cov (3) is the true dispersion or variance-covariance 
matrix of . But this itself must usually be estimated from 

the sample data by CBv (3). 
A 

Computing the inner product ij=xO1e and the quadratic 
form ~ovCZv(~)zo can easily be done with the MINITAB 

software package (Ref.(l2)) as is shown in Figures 52.a and 



52.b, where Figure 52.a shows the source file to produce the 

run, and ~igure 52.b shows the input vector xu, and output 
results for the run. The actual input vector was originally 

. . . -  

stored in another file which is not reproduced here since 

its contents already appear in Figure 52.b. The following 

features of Figure 52.a will be noticed. 

Firstly, the Cav(l) matrix used is that from the PLR 

run, not from the GLIM run, since PLR does the computation 

in double precision, whereas the precision used in GLIM is 

not revealed in the manual. In addition the PLR program is 

specialized for logistic regression where GLIM is designed 

for greater generality, so it was felt that the PLR results 

were more reliable. It was noted earlier, in Section 7.2, 

that there are some differences between PLR and GLIM in the 

final reported results for both i and ccv (i). 

Secondly, the I C ~  vector mustbe in the format: 

x = SPTREE(I) 
-O SPTREE(2) 

1 n(HE1GHT) 
1 n(D1AM) 
DI 1 
DI 2 
DWOOD 
BKTOP 
1 . o  

A 

where the ' 1 . O f  is for the constant term, Po, in the i 
vector. This order is imposed because of the row/column 

order of i and CCV(~) from the PLR output. 



Fiqure 52.a: MINITAB Command File which Generates Figure 52.b 

$empty gookmtbout ok 
$ run  *m in i t ab  spr in t=gookmtbout  
noecho 
# 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# s e t  up  vec to r  o f  r eg ress ion  c o e f f i c i e n t s  # 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# 
s e t  c l  
-2.9036 -3.0541 0.51375 1.7341 3.7217 1.1396 0.93930 1.3251 -10.039 
name c l  ' c o e f f '  
# 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# s e t  up column vec to r s  f o r  d i s p e r s i o n  m a t r i x  # 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# 
se t  c2 
0.13905 0.04935 -0.00438 0.01098 -0.03761 -0.01484 -0.01827 -0.04355 
-0.01064 
s e t  c3 
0.04935 0.82897 -0.00608 -0.02309 -0.02440 -0.01429 -0.01082 -0.04328 
0.10470 
s e t  c4 
-0.00438 -0.00608 0.09400 -0.04952 0.00477 0.00191 0.02017 0.05833 
-0.11007 
s e t  c5 
0.01098 -0.02309 -0.04952 0.19326 0.01006 -0.00674 0.01372 -0.02414 
-0.52416 
s e t  c6  
-0.03761 -0.02440 0.00477 0.01006 0.06105 0.01254 0.00988 0.00993 
-0.07489 
s e t  c7 
-0.01484 -0.01429 0.00191 -0.00674 0.01254 0.04953 0.00271 0.00669 
-0.00725 
se t  c8 
-0.01827 -0.01082 0.02017 0.01372 0.00988 0.00271 0.10760 -0.06058 
-0.12929 
se t  c9  
-0.04355 -0.04328 0.05833 -0.02414 0.00993 0.00669 -0.06058 0.17681 
-0.094 19 
,set c10 
-0.01064 0.10470 -0.11007 -0.52416 -0.07489 -0.00725 -0.12929 -0.09419 
2.19295 
copy c2-c10 t o  m l  
echo 
# 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# here  i s  vec to r  o f  c o e f f i c i e n t s  from GOUTPLR4 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# 
noecho 
p r i n t  ' c o e f f '  
echo 
# 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# here  i s  sample d i s p e r s i o n  m a t r i x  f o r  above vec to r  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# 
noecho 
p r i n t  m i  
# 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ge t  an e s t i m a t i o n  vec to r  # 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # # # # # # # # # # # # # # # #  



Fiqure 52.a,  continued 

# 
noecho 
read 'gookmtbin' cll 
echo 
# 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# For the following input vector # 
# # # # # # # A # # # # # # # # # # # # # # # # # # # # # # # # # # # #  
# 
noecho 
print cll 
# 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# find estimated future mean of linear predictor & 
# corresponding estimated variance # 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# 
trans cll put m2 
echo 
# 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# this is estimated future mean linear predictor 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# 

noecho 
mult m2 'coeff' put kl 
mult m2 ml put m3 
echo 
# 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# & qere is estimated variance # 
# # # # # # # # # # # # # # # # # A # # # # # # # # # # # # # # # #  
# 
noecho 
mult m3 cll put k2 
stop 



Figure 52.b: MINITAB Run to Find Estimated Log-Odds and its 
~ssociated Variance 

MTB > # 
MTB > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MTB > # here Is vector of coefficients from GOUTPLR4 # 
MTB > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MTB > # 
coef f 

-2.9036 -3.0541 05137 1.7341 3.7217 1.1396 0.9393 1.3251 
- 10.0390 

MTB > # 
MTB > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MTB > # here ts sample dtsperston matrtx for above vector # 
MTB > ##########################I############################ 
MTB > # 
M A T R I X  M I  

9 ROWS READ 
MTB > # 
MTB > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MTB > # For the following Input vector # 
MTB > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MTB > # 
C11 
0.000 0.000 2.914 3.645 1.000 0.000 0.000 0.000 1.000 

MTB > # 
MTB > # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # R # ~ # ~ ~ # # # #  
MTB > # this is estimated future mean linear predictor # 
MTB > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MTB > # 

ANSWER = 1 . 5006 
MTB > # 
MTB > .................................. 
MTB > # & here is estimated variance # 
MTB > .................................. 
MTB > # 

ANSWER = 0.0566 

***  M I N I T A B  ***  S T A T I S T I C S  DEPT * PENN STATE U N I V .  * RELEASE 82.1 * 
STORAGE USED 624 STO'RAGE AVAILABLE 26 1744 



9.2 On Estimating and Predicting D 

From the link function of Chapter 3: 

and its associated inverse: 

one could then produce a fitted probability G from the 

fitted log-odds, 6, thus: 

and this would be the '6 as estimate' case, mentioned in 

Chapter 3, that is, G estimates the mean probability D of 

success for the population of all deciduous trees of same 

species, height, diameter, and values of DI1, DI2, DWOOD, 

and BKTOP. Whether this estimate is unbiased for  or not is 
unsure, as is the question of unbiasedness of 6 for q. 

The question of unbiasedness, however, is not important 

when using 6 to produce a prediction, D~ for 1. The table in 

Ref.(9) mentioned earlier provides values of p p  given 6 and 

s2(G). It is suggested that a prediction of D for individual 

trees rather than a population estimate will be more useful 

to a field worker since prediction takes both 6 and s2(6) 

into account, whereas the estimate, G, is a function only of 



Otherwise one could have the following scenario. Suppose 

for two vectors of explanatory variable values, 51 and 5 2 :  

5 1 # 5 2  

but 

;iit=;iiz 

where 

A 

qi =qi ' 3  
for i=1,2. Then: 

iZ1=;2 

But if: 

s2(;ii,)~s2(;ii,) 

then the corresponding f i p  values will also be different. In 

fact, the qi vector having the higher sz(;iii) will give a 

f i ~  
-value closer to 0.5 (so long as their ti are equal). 

f i ~  

is thus in this sense, 'safer' than ii as a fitted value for 
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ABSTRACT 

A t a b l e  o f  e x p e c t e d  s u c c e s s  r a t e s  under  n o r m a l l y  

d i s t r i b u t e d  s u c c e s s  l o g i t ,  used i n  c o n j u n c t i o n  w i t h  logis t ic  

r e g r e s s i o n  a n a l y s i s ,  e n a b l e s  e a s y  c a l c u l a t i o n  o f  e x p e c t e d  win 

f o r  b e t t i n g  on s u c c e s s  o f  a  f u t u r e  d ichotomous t r i a l .  

We wish to c a l c u l a t e  a  p r e d i c t i v e  p r o b a b i l i t y  o f  s u c c e s s  L. 

under  s p e c i f i e d  v a l u e s  a l ,  a2, ..., a  o f  k i n d e p e n d e n t  v a r -  
k  

i a b l e s  which might  i n f l u e n c e  s u c c e s s  p r o b a b i l i t y .  For example  

i n  t h e  s i m p l e  l i n e a r  l o g i s t i c  r e g r e s s i o n  case, k-2, a  = 1  and  
1 

a  is t h e  s p e c i f i e d  v a l u e  o f  t h e  i n d e p e n d e n t  v a r i a b l e .  
2  

The p a s t  i n f o r m a t i o n  upon which w e  may b a s e  t h e  c a l c u l a t i o n  

c o n s i s t s  o f  an o b s e r v e d  sequence  o f  n  s u c c e s s e s  and f a i l u r e s ,  

e a c h  having o c c u r r e d  under a known set  o f  v a l u e s  o f  t h e  

independen t  v a r i a b l e s .  S t a n d a r d  l o g i s t i c  r e g r e s s i o n  (Cox, 1970)  

f i t s  t h e  model: 



Success logi t = x ! B i = 1 , 2 ,  ... , n  
1 

where the row vector x' represents the independent variable 
i 

values associated w i t h  observation i. This f i t t i n g  produces a 
1 A 

M.L.E. B and an estimated covariance matrix E for 0. 

It  is conceptually convenient (but otherwise unnecessary) t o  

interpret  t h i s  i n  the Bayesian framework, as producing a normal 

approximation to  the posterior Lebesgue density of 0 ,  as  - 
A A 

p-variate w i t h  posterior mean 0 and covariance C .  T h i s  idea 

is discussed i n  DeGroot (l97O), Chapter 10. The posterior 

distribution of the success l o g i t ,  0 ,  given a = ( a l r .  f a  ) ' may 
k 

therefore be taken as univariate approximately normal w i t h  mean 
1 2 A 

m = a'B and variance s = alCa, which are easi ly calculated 

from the outputs of standard programs such as GLIM or BMD 

PLR. Since it is generally reasonable t o  assume that subsequent 

success/failure is conditionally independent of past data given 

0,  it follows readily tha t  for a similar future Bernoulli t r i a l ,  

~ rob[success~da ta l  [ l  + exp (-0 ) ] - I f  (0 ( m ,  s I d 0  
0 

2 
where f is the normal density w i t h  mean m and variance s . 

With the view of f a c i l i t a t i n g  calculation of success . 
probability on a future t r i a l ,  values of t h i s  integral are given 

i n  table I. Note that as  s increases, the integral shrinks 

from I l+exp (-m) ]  toward 0.5. Also only values for m > 0 

a re  given. If m < 0 then enter the table a t  ( m i  ' and use 

1-(value from the table for  rob [success ldata] ) . 
The production of t h i s  integral  is analogous to  the 

calculation of the predictive mean and standard error for a 

single future numerical observation associated w i t h  a c l a s s ica l  

regression model, since these two figures are the location and 

scale parameters of the predictive t-distribution. The amount 

of uncertainty of the l o g i s t i c  prediction is reflected in the 

amount of pulling toward 0.5 of the f i t t e d  success probability. 
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