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ABSTRACT

This project consists of analyses and model fittings for two
different studies. Both studies arose out of M.Sc. research by

graduate biology students.

In the first data set, the object was to determine whether
or not an association exists between nesting colony size (or any
other covariates) and rates at which food is carried to chicks.
"Best k subsets" regression was used with a standard normal
theory model. In addition a loglinear model was investigated for

comparison.

In the second data set, the object was to determine how the
proportion of deciduous trees bearing an active nest might be
associated with characteristics of that tree, and how the
explanatory variables in such a model may be ranked in
importance. Linear logistic regression was pursued using BMDPLR

»®

and GLIM.
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PART A

MODELLING THE FEEDING RATES OF PIGEON GUILLEMOT CHICKS



CHAPTER 1

THE PROBLEM

Simon Emms, graduate student in the Dept. of Biological
Sciences, presented data collected over two summers which
dealt with the feeding of Pigeon Guillemot chicks by parent
birds. The data was collected on Mitlenatch Island (near
Campbell River, B.C.) and the Pigeon Guillemot is a sea bird
species,'so the diet of the chicks was one of fish. In a 2
hour period the number of fish delivered to chicks in a
given nest by the parents was observed & the lengths of the

fish estimated.

It was of interest to know if the feeding rate was
‘influenced by the size of colony in which the observed nest
was. This colony size is expressed in total number of nests
in the colony. The intereét in colony size arose ouf of the
'Information Centre Hypothesis', that is, the proposition
that colony members can learn of the location of good
feeding sites by following successful foragers, and can
thereby increase their own foraging success. This effect

would be greater in larger colonies.

Also of interest was whether or not any of the other
measured variables exerted any influence on the feedrate.
The measured variables contained both gualitative and

guantitative effects.



The results of the analysis are to be applied to the
population of Pigeon Guillemot birds in general. As it
turned out, a final model (to be identified as the 'current
best model' in Chapter 3) was obtained, but it did not
contain colony size. Insofar as the sample data can be
regarded as a random sample and representative of the
population, this suggests that colony size is not associated

with chick feeding rate.

Feeding rate does, however, seem to be positively
associated with the number of chicks in the nest. For
example, if the number of chicks is increased from 1 to 2,
the model predicts that feeding rate should increase by
0.243 fish per hour. In addition feeding rate seems to be
associated with both age of chicks and time of day in a
changing pattern: in the case of chick age, feeding rate
increases from some initial value at time of hatching until
‘the chick is 27 days old, after which the feeding rate
decreases. In contrast, the association with time of day is
concave upward, i.e. feeding rate decreases from some
initial value at dawn, reaches a minimum at 1330H, and then
increases until dusk. Of course this does not suggest that
Pigeon Guillemots continually feed their chicks while there
is daylight, this is merely an observation in the trend in
feeding rate averaged over all birds in the sample. The
details of this aspect of the analysis can be found in

Section 5.2.



Model building was the primary goal of the analysis, but
a detailed inference was done in the case of difference in
feeding rates betweén dawn and 1330H, the point of minimum
feeding rate with respect to time of day as fitted by the
model. Such inference is based on the validity of regarding
the sample data as a representative and random sample from
the target population of Pigeon Guillemot birds in general. .
It turned out that a 95% confidence interval for this
difference in feeding rates between dawn at, say, 0530H and
1330H had a lower bound of 0.229 fish per hour (ignoring

effects due to age) and an upper bound of 0.579 fish per

hour. Details can be found in Section 5.4.

The client report is found in Chapters 1-5 and the
technical supplements in Chapters 6-10 with Chapter 6
providing a technical supplement for Chapter.! contents, and

SO oOn.



CHAPTER 2

THE DATA

Simon permitted copies of his 1984 and 1985 data files.

A portion each of these files is shown in Tables 1 and 2

respectively, where there is one record for each

observation. The record format is as follows.

Variable

Date

‘Colony Identification Number

Number of Nests Observed in the
Colony

Colony Size

Tidal State Code

Time of Day

Accept/Reject Code

Nest Identification Number
Number of Chicks in Nest
Age of Chicks

Number of Fish Delivered--Species
Type 1

Total Length of Fish
Delivered--Species Type 1

Number of Fish Delivered--Species
Type 2

Total Length of Fish
Delivered--Species Type 2

Number of Fish Delivered--Species
Type 3

Column Range

1-4
6-7

10-11

14-15
17-18
20-24
26-27
29-31
34-36
38-40

41-43

45-49

50-52

54-58

59-61



Table 1: Portion of 1984 Raw Data
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Table 2: Portion of 1985 Raw Data
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(21)

(22)

(23)

(24)

(25)

(26)

using the MTS file editor to add some column counting

Total Length of Fish
Delivered--Species Type 3

Number of Fish Delivered--Species
Type 4

Total Length of Fish
Delivered--Species Type ¢

Number of Fish Delivered--Species
Type 5

Total Length of Fish
Delivered--Species Type 5

Number of Fish Delivered--Species
Type 6

Total Length of Fish
Delivered--Species Type 6

Number of Fish Delivered--Species
Type 7

Total Length of Fish
Delivered--Species Type 7

Number of Fish Delivered--Species
Type 8

Total Length of Fish
Delivered--Species Type 8

Number of Fish Delivered--Species
Type 9

Total Length of Fish
Delivered--Species Type 9

63-67

68-70

72-76

77-79

81-85

86-88

90-94

95-97

99-103

104-106

108-112

113-1158

117-121

The column ranges were not provided but were obtained by

numbers to the end of the files. Once the column ranges were

found,

these numbers were removed.

Each of the variables selected for the data analysis is

described below in more detail. These variable names will be



capitalized hereafter.

A) Response Variable, FEEDRATE

FEEDRATE itself does not appear in the data files, but
was computed as a function of number of fish delivered for
species types 1 through 9 (variables
(11),(13),(15),(17),(19), (21),(23),(25),(27)) as follows:

TOTFSH
FEEDRATE_Ti.O hours)

where
9
_ f; number of fish delivered
TOTFSH= from species type 1 :>
i=1

Feedrate is thus expressed in units of total number of fish

delivered per hour.

It should be noted that -1. is used as a missing value
code in the data files; I1f such a code were encountered for
the number of fish for any of the 9 species types, FEEDRATE
would be not calculated, since it would be erroneous to
include -1. in the TOTFSH sum. Furthermore that record was
excluded from further analysis. This record selection was
accomplished by a FORTRAN pre-processor program, to be

discussed later.

Of course, FEEDRATE could have been defined in other
ways. For example any measure of feeding rate should
probably account for differing lengths of fish. This is
important in considering the gquestion of, say, if one chick

receives 2 fish, each of which was 5.0cm in length, and



another chick received 1 fish which was 10.0cm in length,

did the 2 chicks receive the same amount of food? Using only

the number of fish in a FEEDRATE definition may not tell the
whole story. Perhaps one should consider fish-mass per hour,
where fish-mass could be measured by proxy as total fish

volume, which in turn could be measured by proxy as the sum

of the cubes of the lengths of all fish delivered.

Unfortunately the fish length measurements recorded
contain more inaccuracies than do fish counts, First of all,
it will be noticed from Tables 1 and 2 that for species
where more than one fish was delivered, only one fish length
is recorded, and this is the sum of the total lengths of the
fish., Lengths of individual fish were not available from the
files, but Simon stated that they were available elsewhere.
Secondly, fish length was first estimated in units of bill
length, that is, how may times larger did the fish éppear to
be than the parent bird's bill. Fish count, however, is
easier to obtain accurately than fish length. Thirdly, not
all birds have the same bill length, so this makes length

measurement even more unreliable than fish count.

To use length in any definition of FEEDRATE would thus
expand that variable's measurement error and variability. It
was therefore decided not to use fish length in any

definition of FEEDRATE.

10



Finally there are a number of cases where FEEDRATE is
0.0, that is, no fish were delivered during the observed 2
hour period. Such observations are to be retained for
analysié since they contribute information (especially since
time of day will be considered as an explanatory variable),
but they may cause problems if transformations of the
response variable are to be considered.

B) Description of Candidate Explanatory Variables

Each variable to be considered in the analysis is given
below along with its position in the original files (Tables
1 and 2) as displayed earlier,

B.1)Date (columns 1-4)

This is expressed as

M.DD
(month) (day)

1984 observations have a starting date of 7.15 (15 buly
1984), and those of 1985 started on 7.20 (20 July 1985). The
difference in starting dates between years is intentional,
since dates of first observation were chosen to be first day
of actual feeding. This usually took place 3-4 days after
hatching, and eggs certainly cannot be expected to hatch on

the same day of each year.

For the purpose of analysis, this variable was recoded

as follows:

11



Recoded | 1984 1985

Value Observation Date Observation Date
(Day) 1 7.15 7.20
(Day) 2 7.16 7.21

and so on. This variable will be referred to hereafter as
DATE.

B.2)Colony Size (col., 14-15)

This is simply an integer showing the total number of
nests in the colony, and will be referred to hereafter as
COLSZE.

B.3)Tidal State (col. 17-18)

The three levels of tide were coded:

(Tide)= 1, if low tide
2, if midtide
3, if high tide
In addition, 2 design variables were created:
TIDEH= 1, if high tide
0, otherwise

TIDEM= 1, if midtide
0, otherwise

according to the recommendations on page 703 of Ref.(11).
The reason for their creation is that'many of the programs
in the BMDP computer software package (whose regression
routines will be utilized in the next chapter) do not
generate design variables needed for gqualitative or factor
level type variables, such as tide, and design variables are

necessary to replace gualitative variables in regression

models, which will be used in the analysis. In general a

12



gqualitative variable posessing k levels will require (k-1)

design variables (See Sec. 10.1 of Ref.(11)).

TIDEH and TIDEM will be therefore used through most of
the analysié, although some use will also be made of the
original variable, to be referred to hereafter as TIDE.

B.4)Time of Day (col.20-24)

This is coded as a 24-hour military style clock time,
and gives the starting time of the 2 hour observation period
to the nearest half-hour. As there are 48 half-hours in a

day, the new variable TIME will be the_following recoding:

Original Time Recoded as TIME
0000 0
0030 1
0100 2
0130 3
2330 47
2400 48

Although there is duplication in the first and last rows
of the above table, this is not a point of concern since all
observations were understandably done duringAdaylight
(0500-2100H approx.)

B.5)Number of Chicks in Nest (col. 34-36)

13



This is an integer showing total number of chicks in the
nest. As it turns out, this number is either 1 or 2, and
will be referred to hereafter as NUMCHK. A missing value
code of -1 is also used, however. Any record containing such
a code was rejected from further analysis.

B.6)Age of Chick (col. 38-40)

This is the age in days of the ! or 2 chicks in the
nest. Again -1 is used to record a missing value. For the
case of 2 chicks in the nest, these chicks were taken to be
born on the same day. This value will be referred to

hereafter as AGECHK.

The variables of interest having been identified, each
of the original data files was then subjected to its own
FORTRAN pre-processor program, the purposes of which were
to: |

(a) calculate TOTFSH (save FEEDRATE for statistical
software)

(b) perform re-coding previously indicated for DATE, TIME,
and creation of extra TIDE variables: TIDEH and TIDEM

(c) flag records containing missing data codes for any fish
counts or for either NUMCHK or AGECHK, and put the first
reason encountered for such action into a 'reject
message' file (records thus flagged are to be kept out
of further analysis) -

(d) put all acceptable records (those not in (c) above) into
a new file containing variables selected for analysis
and a coded tag to identify it

The tag referred to in (d) above has a 4-digit format: the

first digit indicates the year of the data (4 for 1984 data

file, 5 for. 1985 data file) and the remaining 3 digits give

14



the actual line number for the record from its original data
file. Thus a tag of 4087 means that the record is number 87

in the 1984 data file.

In addition the values to total length of fish delivered
(summed over all species types) and average length of fish
were calculated for possible later use. This use did not

materialize.

Table 3 shows a portion of the file EMMSFDRT!, which
contained the records taken from the 1884 data file along
with their recoded values. The values are given in the
order:

Identification Tag

Average Fish Length

TOTF SH ‘

Total Fish Length

DATE

COLSZE

TIDE

TIDEH

TIDEM

TIME

NUMCHK

AGECHK
Table 4 shows a portion of the file EMMSREJECT! which
contained rejection messages for records kept out of
EMMSFDRT1. Similarly, Table 5 shows a protion fo the file
EMMSFDRT2, which contained the acceptable records from the
1985 data file, and Table 6 shows a portion of the file
EMMSREJECT2 which contained the rejection messages for
records kept out of EMMSFDRT2. The FORTRAN programs which

performed these tasks are shown in the Technical Supplement
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4002.
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4005 .
4008 .
4013.
4014 .
4018,
4016.
4021.
a0p22.
4025.
4030.
4031.
4032.
4035.
4037 .
4044 .
4045 .
4048 .
4049.
4052.
4053.
4054 .
4056 .
4060.
4062 .
4064 .
4066 .
4068.
4070.
4071.
4072.
4075.
4076 .
4077 .
4078.
4078.
4080.
4081.
4082.
4083.
4084.
4085 .
4086 .
4087 .
4088 .
4089.
4090.
4091.
4092.
4093.
4097.
4098 .
4099.
4102.
4107 .
a112.
4113,
4114 .
4115.
4116.
4117.
4118.
4119.
4120.
4121
4122.
4124 .
4125,
4126.
4127.
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Table 3:

Portion of EMMSFDRT!
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Table 4: Portion of EMMSREJECT1

RECORD 1. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 3. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 6. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 7. REJECTED FOR MISSING VALUE CODE
-1. FDR CHK

RECORD 3. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORO 10. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 11. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 12. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 17. REJECTED FOR MISSING VALUE COOE
~1. FOR CHK

RECORD 18. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 19. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 20. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 23. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 24. REJECTED FOR MISSING VALUE CODE
-1. FDR CHK

RECORD 26. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 27. REUJUECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 28. REJECTED FOR MISSING VALUE CODE
-1. FDR CHK

RECORD 29. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 33. REJECTED FOR MISSING VALUE CODE
-1{. FOR CHK

RECORO 34. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 36. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 38. REJECTED FOR MISSING VALUE CODE
-1. FOR CHK

RECORD 39. REJECTED FOR MISSING VALUE CODE
7 -1. FOR CHK

RECORD 40. REJECTED FOR MISSING VALUE CODE
~-1. FOR CHK
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Table 5:

Portion of EMMSFDRT?2
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Table

6: Portion of EMMSREJECT2

RECORD

RECORD

RECORD

RECORD

RECORD

RECORD

RECCRD

RECORD

RECORD

RECORD

RECORD

RECORD

RECORD

RECORD

RECORD

RECORD

RECORD

RECORD

RECORO

RECORD

RECORD

RECORD

RECORD

RECORD

[ 5]

87

89

94

98

100

102

115

119

121

123

126

128

131

133

138

140.

144 .

145,

150.

152.

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-1. FCR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-4. FOR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJECTED
-1. FOR

REJVECTED
-1. FOR

REJECTED
-1. FOR

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK

FOR
CHK
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MISSING VALUE CODE

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

CODE

CODE

CODE

COlE

CODE

CODE

CODE

CODE

CODE

CDDE

CODE

CDDE

CODE

CDDE

COO0E

C0ODE

CODE

CODE

CODE

CODE



for this chapter (found in Chapter 7).

Finally, using the MTS file editor, these two files were
put together as one file, known as EMMSFDRT. With all the
necessary data editing performed the data (as in the

EMMSFDRT file) was now ready for analysis.
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CHAPTER "3

FIRST ANALYSIS--FIND BEST MAIN EFFECTS MODEL

As a first attempt to explain the different values of
Y=FEEDRATE, a multiple linear regression model is first
attempted:

Y=ﬁo+31x1+32x2+...+3pxp+e
where p is the number of explanatory variables to be
included, and thus p+1! regression coefficients (including
the intercept term ﬁo) must be estimated. e€ is a random
error component having a normal distribution with mean 0 and
variance o?. An individual x; could represent a single
explanatory variable in first'order (e.g. x1=TIME), a higher
order power of that variable (e.g. x2=(TIME)Z), a
cross-product of 2 or more variables (e.g.
x3=(TIME)(AGECHK)), or a more complex function of 1 or more
variables. The gualifier 'linear' means only that the model
is linear in the regression coefficients BO,BI,...,BP, not

necessarily in the explanatory variables themselves.

If an xj represents a function of a single explanatory
variable, it 1is called é 'main effect' of that function. If
an xj represents a function of 2 or more explanatory
variables in such a way that it can be written as the
product of 2 or more main effects previously described (e.g.
x4=x2x3), it is called an 'interaction' between these main

effects. Only main effects will be considered in this
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section. Interactions are considered in chapter 4 for model

" fit improvement.

There is a total sample size of n=524 observations left
after the data editing described in the previous chapter, so
one can use a subscript to identify each observation & its
corresponding explanatory variables:

Yi=ﬁo+ﬁ]xi]+52xi2+...+ﬁpxip+ei
where i ranges from 1 to n, and the €; will have the
additional assumption of no correlation amongst themselves.
In general, the 6j/represent unknown parameters, so suitable
estimates, bj will be sought to produce a 'fitted' model:

~

Yi=bg*tb x; j*byx; )

which give a fitting error of

+.l.+b X.
pitp
| ei=Yi-Yi
known'as residual i which is defined to be the discrepancy
between observation { and the corresponding outcome fitted

by the model.

Next a se; of xj must 5e selected. To aid in this task,
the BMDP program P6D (Ref. 4, Section 10.2) was used to
produce scatter plots of TOTFSH against various variables
and some higher order powers in order to get a visual
appraisal of any trends or associations. TOTFSH was selected
over FEEDRATE because TOTFSH takes on integer values. These

plots are shown in Figures 1.a through 1.p
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Figqure 1.b: TOTFSH vs. COLSZE
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Figure 1.c: TOTFSH vs.

TIDE
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Figqure 1.d: TOTFSH vs. TIDEH .
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TIDEM
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Fiqure 1.f: TOTFSH vs. NUMCHK
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Figure 1.9: TOTFSH vs. AGECHK
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Figqure 1.h: TOTFSH vs. TIME
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Figure 1.i: TOTFSH vs. SQDATE
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: TOTFSH vs. SQTIME
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Figure 1.k: TOTFSH vs. SQAGE
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: TOTFSH vs. SQCOL
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Figure 1.m: TOTFSH vs. SQNUM
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Figure 1.n:

AGECHK vs.

DATE
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TIDE

TIME vs,
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COLSZE vs. NUMCHK
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One can spot the discrete nature qf TOTFSH instantly by
noticing in the plots that the points spread themselves out
on horizontal parallel lines located at integer values of
the TOTFSH axis. In these plots a '1' is used to indicate a
single point, & higher numbers are used to show how many
points are occupying the same location (or at least so
nearly so as to be indistinguishable on the chosen scale).
Furthermore an 'A' represents 10 points, '"B' represents 11
points, and so on up to 'Z' which represents 35 points.

Finally, a '*' is used for 36 or more points.

The plots of Figures 1.a-1.1 can be divided into 3
groups. The first group consists of Figures 1.a-1.h, the

second of Figures 1.j-1.m, and the third of Figures 1.n-1.p.

In their first group, TOTFSH is plotted against
candidate variables DATE, COLSZE, TIDE, TIDEH, }TIDEM,
NUMCHK, TIME, and AGECHK. The purpose of these plots is to
inspect whether or not the explanatory variable is
assbciated with the response (TOTFSH), and if so, then in
what sort of way (linear, quadratic, logarithmic, and so
on). For the quantitative variables, there seems to be no
strong suggestion of any trend which could not be reasonably
approximated by a curve which is quadratic in the
explanatory variable (that is, by a half or whole parabbla)
over the given range of that variable. As for the solitary
gualitative variable TIDE, the design variables should be

sufficient to explain any effects on FEEDRATE. The purpose
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of doing plots of TOTFSH against TIDEH and TIDEM as well as
wasnfo derive possible further information from the TOTFSH
versus TIDE graph in the case that only one tide level is
associated with the response and no others. In fact one of
the advantages of converting a guantitative variable into a
gualitative or factor one is that associations with the
response variable can be investigated without specifying the
nature of how the response variable may depend on the
explanatory variable (e.g. linearly, quadratically and so
on) (Ref. (11) page 518), although some information is lost

in the conversion.

The second plot group consists of TOTFSH against squares
of the quantitative variables. The purpose here is to see if
any further information can be obtained on how these
variables may be associated with TOTFSH. The variance
(spread) in the data, however, is so wide that it seems
unlikely that any further enlightenment can be obtained.
Undoubtedly this wide variance will lead to problems with

model fit later on.

The third group of plots do not involve TOTFSH at all.
Their purpose is to explore possible correlations between
pairs of explanatory variables. Such correlations gre called
multicollinearities and they are responsible for how the
import;nce of a variable in predicting the response
variable's outcome may change as further explanatory

variables are added/dropped from the model. Selection of
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pairs for these plots was done on the basis of prior
suspicions about what variables may affect each other. One
can see from these plots, for example, a high correlation
between AGECHK and DATE, which is not surprising. Each
variable is still to be considered as a separate candidate
for the model since AGECHK may affect FEEDRATE through the
demand for fish, and seasonal effects of fish migration

(recorded through DATE) may affect FEEDRATE through the

supply of fish.

Having now decided to use design variables for TIDE and
to allow both linear and quadratic terms in the remaining
quantitative variables in the model, attention could now be
" turned to model searching. Figure 2 shows some highlights of
an attempt at finding a 'best' model using a best k subsets
regression program, PY9R, from BMDP (Section 13.3 of
Ref.(4)). In the complete output (too voluminous for‘
inclusion) the various subsets of explanatory variables are
shown for models containing 1 variable up to the model which
contains all of them. Here, 'best' is defined as maximal
value of the quantity:

R2=1-SS(error)
SS(total)

_SS(regression)
SS(total)

familiar from standard regression texts, such as Ref.(11).
SS(total) depends only on observed feedrate values & will

remain constant for all models, whereas SS(error) will
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Figure 2: Hiqghlights of PSR run
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-4.33

T-STATISTIC
2.57
-3.98
4.56
3.72
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VARIABLES

T-STATISTIC
0.65
-1.73
-1.89
-1.74
-4 .55
3.12
2.65
4.25
-0.98
-2.98
1.27

ADJUSTED
R-SQUARED cp
0.114731 10.55 VARIABLE COEFFICIENT
time -0.084478%
numchk 0.243053
agechk 0.0544920
sqtime 0.00156383
sgage -0.00120941
INTERCEPT 0.873322
0.098883 18.90 VARIABLE COEFFICIENT
date 0.0286160
time -0.0818375
numchk 0.239917
sqgtime 0.00152468
sqdate -0.000977473
INTERCEPT 1.21852
SUBSETS WITH 11
ADJUSTED
R-SQUARED cp
0.122434 12.00 VARIABLE COEFFICIENT
date 0.00902205
colsze -0.0292729
tidehi -0.151389
tidemed -0.114825
time =0. 108875
numchk O.181468
agechk 0.0451773
sqtime 0.00210170
sqdate ~0.000369618
sgage -0.000990103
sqcol 0.00103880
INTERCEPT 1.50021
STATISTICS FOR ‘BEST’ SUBSET
MALLOWS’ CP 12.00
SQUARED MULTIPLE CORRELATION 0.14089
MULTIPLE CORRELATION 0.37535
ADJUSTED SQUARED MULT. CORR. 0.12243
RESIDUAL MEAN SQUARE 0.285708
STANDARD ERROR OF EST. . 0.534517
F-STATISTIC 7.63
INUMERATOR DEGREES OF FREEDOM 11
DENCOMINATOR DEGREES OF FREEDOM 512
SIGNIFICANCE (TAIL PROB.) 0.0000

42



change with each model since it depends on which variables

are in the model.

Note that the variable
SQNUM= (NUMCHK ) 2
has not been included in the list of explanatory variables.
The reason is that since NUMCHK has a limited range of only

2 values (1 or 2 chicks in nest), one can write:

1=%(NUMCHK)~%(SQNUM)

Such linear dependencies are not acceptable. This would not

occur if NUMCHK could vary over a wider range.

It should be pointed out that adding more variables
simply because they deliver a higher R? is unwise since
adding more explanatory variables to a model will never
decrease R?, and in fact usually increases it (Ref.(11) pg.
422). There must be a trade-off between maximizing R® and
keeping the model as simple as possible, that is, by
limiting the number of variables in the final model (Ref.(5)
pg. 294). A helpful pictorial aid in this regard is an
R2-plot which plots R? against the number of regression
coefficients, (p+1), for a set of proposed models. Such a
plot is shown in Figure 3, based on R*-values for various
models collected in Table 7. These models were obtained from
various P9R and GLIM runs (the next chapter and the
Technical Supplement will discuss the use of GLIM). Paths

are drawn in Figure 3 to connect up successively nested
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Table 7:

Collected Models

0.0000 n
.0528 4
.0658 4
.0769 4
.0840 4
. 1075 4
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. 1257 4
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models (that is, any model in a path has all the explanatory
variables of the model to the left of it, plus aﬁ"extra
one). One can look on the optimal model building prbcess as
finding the path of guickest ascent. Having found such a
path, one can stop before the end when one finds a subset of
explanatory variables which still deliver an R2%-value
sufficiently close to the maximum available (obtained when

all available variables are inside the model).

A certain amount of arbitrary choice on the part of the
analyst is called for in this kind of data search analysis.
It was decided that the following set of 5 variables gave a
relatively high R? while still keeping the model simple:
‘AGECHK , SQAGE ,NUMCHK, TIME,SQTIME. From Figure 2, one can see
that this is the "best" (in the R? sense) 5 variable model,
.and one can read off the calculated regression coefficients
to propose the model: |

¥=0.873+0.243x,+0.0545x,-0.0845x,-0.00121x,+0.00156x

where:
Y=fitted/predicted (not observed) FEEDRATE
x ; =NUMCHK
x  =AGECHK
x4=TIME
x s =SQAGE=(AGECHK) ?=x1
x5=SQTIME=(TIME) 2=x}
This model has

R?=0,1232
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which 1s not impressive. Consider

n
SS(tot a1)=Z(Yi -Y)?

i=1

which is a measure of the total spread/variation in the

response variable Y, where

3

7=1>vy
n
P=1

i

is the sample mean. Consider also

which is a measure of total lack of fit (n=524 observations
in each of the formulas) for a particualr model. Recall that
for any model \

0<SS(error)sSS(total)
so that R? is a measure of what proportion of the spread in
FEEDRATE is explained by a particular model. Thus the model
given previously explains 12.32% of this spread, so chance
variation alone must cause the remaining 87.68%. Using all
11 explanatory variables does little to improve the
situation for then

R%2=14.09%

from Figure 2. The 1.77% improvement comes with a cost of

adding 6 more explanatory variables to the model.
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Nonetheless this S5-variable model shall be referred to
hereafter as the 'current best model'. In the next chapter,
means of improving this model (increasing R? without adding

too many new variables) will be explored.

First some other aspects of this current best model need
to be checked. These are the various plots which may give an
indication of why the fit is so poor, and what could be done
about it. Another PY9R run was done, but on the current best
model alone, in order to generate the plots. The results are
shown in Figures 4.a-4.p. It will be noticed that the main

emphasis in these plots is on the residuals, €; -

The first plot, Figure 4.a, shows one of the most
important plots for assessing a model's overall fit:
residuals against fitted values, ?i' PO9R labels this latter
qguantity 'PREDICTD'. Now if a model does fit the data well,
such a plot should show a (nearly) horizontal band of
constant width containing the points (Ref. (6), pg. 314).
The plot shown here Sseems triéky to interpret, but one can
gain some insight into what the plot is trying to convey by
considering the second plot: residuals versus observed
values, Yi' that is, the FEEDRATE values. This plot is in

Figure 4.b.

In this plot vertical line segments will be noticed.
These reflect the discrete nature of the horizontal-axis

variable, Y. As was explained earlier, Y is one-half of
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Fiqure 4.b: Residual vs. Observed
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Figure 4.c: Residual vs. NUMCHK
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Figure 4.d: Residual vs.

AGECHK
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Fiqure 4.e: Residual vs. TIME
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Figure 4.f: Residual vs. SQAGE
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Figure 4.g: Residual vs.

SQTIME
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Figure 4.h: Residual vs. COLSZE
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Figure 4.i: Residual vs. DATE
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Figqure 4.j: Residual vs. TIDE
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Figure 4.k: Reisudal vs. TIDEH
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Figure 4.1: Residual vs. TIDEM
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Fiqure 4.m: Residual vs. SQCOL
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Fiqure 4.0: Histogram of Standardized Residuals

HISTOGRAM OF STANDARDIZED (STUDENTIZED) RESIDUALS

EACH BIN OF THE HISTOGRAM IS LABELED WITH ITS LOWER LIMIT.
NOTE THAT IF THE COUNT FOR A BIN EXCEEDS 100, ONLY

100 ASTERISKS WILL BE PRINTED.
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Figure 4.p: Normal Prob. Plot for Stand. Residuals
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TOTFSH, and TOTFSH must be a non-negative integer, so
Y=FEEDRATE must be a non-negative integer multiple of
one-half. These parallel line segments in turn suggest a
nonhorizontal and positively sloped band which contains
them, which also suggests a strong positive correlation
between Y and e. In fact, according to Ref. (5), pg.147,
this correlation should be:

(1-r2)"220. 9364

Furthermore, it can be shown that parallel vertical line
segments pointing south to north in the e versus Y plot
become parallel line segments pointing from southeast to
northwest in the e versus ¥ plot (Ref.(8) pg. 216). For
example, of the slanted parallel line segments suggested in
Figure 4.a, the bottom most one is simply the line segment
which corresponds to y=0 from Figure 4.b where it appears as
the left most vertical line segment. Note also in Figdre 4.a
that no points appear below this bottom most slanted line
segment. This is unavoidable because the data must satisfy
y20 (that is, negative values of FEEDRATE are not possible

here).

In addition, a non-horizontal positively sloped band
will become an even more strongly sloped band. This time,
however, the band has become so wide in Figure 4.a that the
correlation between the axis variables almost vanishes. That
is, while:

rle,¥)=(1-R?) "/ 220.9364
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where r stands for correlation coefficient calculated from
sample data alone,

“rle,¥)=0
But Ref.(5) states on pg. 148 that this is what should
happen if the analysis proceeded correctly, which evidently
it has. Exact equality with zero was prevented by

accumulated round-off error.

These twé residual plots, however, still reveal no new
information on the quality of model fit. That the model does
not fit the data well has already been indicated by the low
R2-value of 0.1232, The reasons for a poor fit may be
important missing variables (includinq cross-products or
interactions), need for transformations which involve the
response variable, need for change in 'additivity scale'
(this is subtly different from the need for transformations,
~as will be shown in the next chapter), or any combinations
of these. While some of the above actions will be discussed
in the next chapter, the next 3 sets of plots should

hopefully suggest some corrective action in the meantime.

The next 5 plots (Figures 4.c-4.g) show residuals versus
the various explanatory variabies already in the current
best model. The purpose of these plots is to look for
suggesgions of any systematic dependency of a non-linear
nature between the residuais and the values of the other

variable in the plot. The presence of that other variable in

the model as is eliminates any further linear relation. If
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any such dependency is found, then the appropriate function
of that variable (e.g. higher-order power, reciprocal, root,
logarithm, or whatever) should be aaded to the list of
candidate explanatory variables and the analysis restarted.
As it is, no such further dependency seems to be strongly

suggested.

o~

The plot of residual against TIME is important for
another reason as well. Such a plot is used to check the
assumption of zero correlation between the random error
terms, e, . This plot appears as a band with no apparent
upward or downward trend. Neither do any sort of 'cycle'
effects seem present. On this basis, the assumption of

‘uncorrelated e; appears justifiable. -

The next 7 plots (Figures 4.h-4.n) show residuals versus
the remaining candidate explanatory variables which did _not
make it into the current best model. Ordinarily these plots
would be checked for both linear and non-linear trends, but
the PI9R program has already checked formally (that is,
analytically) for the linear trends, and still a 5-variable
model was selected as the current best one. Thus only
non-linear trends need be investigated, as for the 5
previous plots. Again, however, no such trend appears to

strongly suggest itself.

The remaining 2 plots (Figures 4.0 and 4.p) deal with

checking the assumption of a normal distribution with a mean
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¢f zero for the random errors, e[.,The residuals, e, were

first standardized

€.
(5557

before the plots were done., Figure 4.0 shows a histogrm
which should look approximately like a shaded-in normal
distribution density curve if the normality assumption is
correct. Similarly, Figure 4.p shows a normal probability
plot of the standardized residuals (as indicated by the '*'
characters), which if the normality assumption is correct
should lie on the line indicated by the slash ('/')

characters.

Having obtained the best possible model so far using no
cross-products and modelling the response variable on a
linear scale, the next chapter will investigate how to

improve the poor fit in the current best model.
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CHAPTER 4

SECOND ANALYSIS--IMPROVE FIT OF CURRENT BEST MODEL

Thére is basically one aspect of the current best model
that needs to be improved: R? should be increased. This
chapter sill investigate 3 methods of accomplishing this.
Some methods will be used in combination. Other aspects of
the current best model which were satisfaétory will be

re-checked to make sure they are not sacrificed.

4.1 Method 1. Investigate Interaction/Cross-Product Terms

It should be pointed out that an interaction or
cross;ﬁroduct term must use at least 2 explanatory variables
which measure different guantities. For example, COLSZE and
AGECHK would form a cross-product of

(COLSZE) (AGECHK)
whereas TIME and SQTIME would form a product of

TIME) (TIME) 2

(TIME) (SQTIME) = (
=(TIME)?

which would not be considered a cross-product or interaction

term.

Enumerating the possibilities then:

AGECHK

NUMCHK
TIME
TIDEH
TIDEM

COLSZE
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DATE

SQAGE

SQTIME

SQCOL

SQDATE
AGECHK may form S cross-products with variables below it on
tﬁe above list, since AGECHK and SQAGE do not form a true
cross-product. NUMCHK may form 9 cross-products also with
variables below it. The cross-product fo NUMCHK with AGECHK
was already accounted for in the AGECHK count, so it must
not be counted twice. Similarly TIME may form 7
cross-products with variables below it, TIDEH and TIDEM may
form 6 each (a cross-product involving TIDEH and TIDEM would
not make sense, especially since this product would always
be zero), COLSZE may form 4, DATE and SQAGE may form 3 each,
SQTIME may form 2, and SQCOL only 1. The total number of
distinct cross-préducts_available is thus 50. Furthérmore
this is only the possible number of 2-variable

cross-products. 3 and higher variable products have not yet

been considered (nor will they be).

Not all of the 50 possible 2-variable interactions
counted are worth considering, however. In fact, only those
which make some sort of 'biological sense' will be
investigated. Ref.(11) pg. 680 recommends selection of
interactions be done by a subject area specialist. One could
conceivably possess a data set of such a highly pathological
nature that no significant improvement of model fit occurs

until a certain 3rd order interaction is included. If the
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choices of response variable and additivity scale are
apprepriate (refer to Methods 2 and 3 further on in this
chapter}, then this is more likely due to a Quirk of the
sample daté itself (the 'luck of the draw', as it were) and
not due to the phenomena being modelled. Such is one of the
pitfalls of 'data sncoping’ (tp be described in more detail
in the next chapter). Certainly it is permissible however to
consider cross-products where one of the variables does not
already appear in the model as a main effect, although this
is ccnsidered@ to be unusual since interaction effects are
'typically smaller' than the main effects (Ref. (11) pg.
681).

To select which interaction effects are worthy of
investigation, the graphical techniques outlined in pages
€75-681 of Ref, (11) are helpful. To illustrate, consider
AGECHK and NUMCHK. The proposed graph in Figure 5 shows
possibly negligible interaction between these two variables
in fitting values of Y=FEEDRATE. Absolutely no interaction
would occur if the 2 curves were perfectly parallel. The
decision on whether or not t¢ include an interaction was
thus based on this prior expectation of parallelism in

curves separated by levels of some factor.

In this way, interactions were anticipated between
NUMCHR with AGECHK, TIME with AGECHK (reflecting possible
jifferences in feeding schedules for older chicks), COLSZE

#ith AGECGHK, COLSZE with NUMCHK (COLSZE reflecting a sense
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Figure 5: Proposed Graph to Visually Detect Interactions
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of competition for finite fish supply), ahd TIME with both
TIDEH and TIDEM. Furthermore, if an interaction between 2
variables was to be investigated, then interactions should
also be attempted between any higher order terms of either
variable as well, For example, not just TIME with AGECHK,
but also SQTIME with AGECHK, TIME with SQAGE, and SQTIME

with SQAGE should be considered.

A P9R run was done with these interactions attempted
along with all of the original candidate explanatory
variables, not just the 5 in the current best model. As was
pointed out earlier, the multicollinearity present in the
data means that although, say, COLSZE was not important
without any interactions present in the model, it may become
so after some are added. The naming of these interaction
terms is shown in the source file for the run (Figure 22)
found in the Technical Supplement (Chapter 9). A portién of
the output is shown in Figure 6. The maximum attainable
value available (R?=0.1927) is still low however, indicating
that the model still does not give a good fit to the data,

as far as explaining variation in Y goes.

For a fitted value, ?, produced by a model, its
estimated variance, sz(?z, may also provide a usefu}
criteria for choosing one model over another. If a model is
to be valuable for estimating future mean outcomes (or
predicting individual ones, although this requires a larger

but .related prediction variance, see pg. 312 of Ref.(6)) ,
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Fiqure 6: P9R run with interactions

SUBSETS WITH 5 VARIABLES

ADJUSTED
R-SQUARED R-SQUARED cp
0.142086 0.133805 15.11 VARIABLE COEFFICIENT T-STATISTIC
19 tiafd -0.000318200 -2.95%
23 n1ai 0.0367827 7.44
24 n1a2 -0.000844087 -6.23
29 c2ni -0.00248804 -5.29
30 c2at 0.000104866 4.92
INTERCEPT 0.464412
0.140845 0. 132552 15.87 VARIABLE COEFFICIENT T-STATISTIC
20 t1a2 -0.00000934075 -2.81
23 n1at ~ 0.0323908 6.15
24 nia2 -0.000721877 -4 46
29 c2ni -0.00248880 -5.27
30 c2a1 0.000104571 4 .89
INTERCEPT 0.431570
0.139212 0.130904 16.87 VARIABLE COEFFICIENT T-STATISTIC
9 numchk 0.525350 7.75
16 cini -0.0486801 -6.24
17 clad 0.00223674 5.71
20 tia2 -0.0000326089 -4.22
22 t2a2 0.48B60595E-06 2.40
INTERCEPT 0.352840
SUBSETS WITH 27 VARIABLES
ADJUSTED
R-SQUARED R-SQUARED cpP
0.18271s8 0.148771 28.00 VARIABLE COEFFICIENT T-STATISTIC
3 date 0.00462269 0.31
4 colsze -0.105629 -0.74
6 tideh 0.953796 0.65
7 tidem 1.51885 1.04
8 time 0.217280 1.21
9 numchk 0.640454 t.57
10 agechk 0.262125 1.63
t1 sgtime -0.00432563 -1.19
12 sqdate -0.000191422 -0.48
13 sgage -0.00521267 -1.60
14 sqgcol 0.00869716 1.02
16 cini -0.0162831 -0.37
17 clai 0.0108142 0.90
18 c1a2 -0.0002163%8 -0.89
19 t1aid -0.0193626 -1.62
20 t1a2 0.000406640 1.64
21 t2ai 0.000363007 1.53
22 t2a2 -0.00000790996 -1.59
23 n1ai -0.00827323 -0.25
24 n1a2 -0.0000502875 -0.07
25 tht1 -0.104348 -0.84
26 tmti -0.153118 -1.22
27 tht2 0.00244927 0.94
28 tmt2 0.00347945 1.31
29 c2n1 -0.00202752 -0.79
30 c2ai -0.000655491 -0.94
31 c2a2 0.0000145394 1.06
INTERCEPT -2.68740
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then the best model would be the one which gives the
narrovest confidence (or prediction) intervals. For a fixed
confidence level, 100(1-a)%, the width of these intervals
increases with increasing s2(¥), so the model which gives

the smallest s2(¥) values is preferable.

Figures 7.a through 7.c show portians of a GLIM run
where the following 3 models were investigated:
Figure 7.a: Current Best Model
Figure 7.b: Model with All Explanatory Variables
but No Interactions
Figure 7.c: Model with All Explanatory Variables
and All Interactions from Figure 6
In each figure is shown fit results and a table of data for
the first 50 observations. This table has numbered entries
and each line displays the following data for a single
observation:
1) Observation Tag (as was described in Chapter 2)
2) Fitted Outcome Value, Y
3) Estimated Variance, s2(Y)
From these figures, it seems that the current best model
offers fitted outcomes with smaller estimated variances than
the model with all explanatory variables. Furthermore,
adding interactions to this latter model further increases

the s2(¥) values. Thus the method of adding interactions was

abandoned at this stage.

Before leaving this method altogether, it should be
pointed out that 3rd order interactions were not attempted

because it was suspected that the situation would not
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Figure 7.a: Inspect s2?(Y) for Current Best Model

CYCLE DEVIANCE DF
1 149 .3 518
ESTIMATE S.E. PARAMETER
1 0.8733 0.2903 %GM
2 0.5449E-01 O0.1390E-01 AGEC
3 0.2431 0.5018E-01 NUMC
4 ~0.8448E-01 0.2033E-01 TIME
5 -0.1209E-02 ©0.2796E-03 SQAG
6 O.1564E-02 0.4082E-03 SQTI
SCALE PARAMETER TAKEN AS  0.2882
1 4002 . 0.6879 0.5651E-02
2 4004 . 0.5321 0.3116E-02
3 4005. 0.7751 0.3426E-02
4 4008. 0.33%58 0.9445E-02
5 4013. 0.6126 0.5783E-02
6 4014. 0.4568 0.3188E-02
7 4015. 0.6999 0.3580€E-02
8 4016 0.2805 0.9446E-02
9 4021. 0.8544 0.5443E-~02
10 4022. 0.6113 0.4796E-~02 .
11 4025 . 0.7871 0.7366E~02
12 4030. 0.41%50 0. 1046E-~01
13 4031. 0.9630 0.4462E~02
14 4032. 0.7199 0.4214E-02
15 4035 . 0.8157 0.6637E-02
16 4037. 0.5624 0.8816E-~02
17 4044 . 0.3542 0.7841E~02
18 4045, 0.5360 0.2720€E-02 )
19 4048. 0.7790 0.3042E-02
20 4049 0.6990 0.4778E-02
21 14052, 0.8786 0.5098E~02
22 4053. 0.7986 0.6552E-02
23 4054 . 0.4537 0.8949E-02
24 4056 . 0.6356 0.4452E-02
25 40860, 0.5406 0.2441E-02
26 4062. 0.3733 0.6512E-02
27 4064. 0.7836 0.2780E-02
28 4066 . 0.7109 O.4098E-02
29 4069. 0.6802 0.5248E-02
30 4070. 0.6174 0.6270E-02
34 4071. 0.9333 0.5924E-02
32 4072. 0.5229 0.8665E-02
33 4075 . 0.5882 0.1849E-02
34 4076. 0.3695 - 0.5200E-02
35 4077. 0.5758 0.1842E-02
36 4078. 0.7653 0.2577E-02
37 4079. 0.5029 0.2342€-02
38 4080. 0.8311 0.2407€-02
39 4081 . 0.3356 0.6300E-02
40 4082. 0.3695 0.5200€-02
41 4083. 0.6132 0.1810€-02
42 4084 . 0.8685 0.2481E-02
43 4085 . 0.3730 0.6019E-02
44 4086. 0.4069 0.4951E-02
45 4087. 0.8027 0.2565E-02
46 4088. 0.6256 0.1857€-02
47 4089. 0.5403 0.2225E-02
48 4090. 0.4069 0.4951E-02
49 4091 . 0.9850 0.2515E-02
50 4092. 0.7541 0.2170E-02
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Figure 7.b: Inspect s?(?) for Model with All Explanatory
Variables but No Interactions

CYCLE DEVIANCE ~- -~ DF
1 146.3 512
ESTIMATE S.E. PARAMETER
1 1.500 0.3610 %GM
2 0.4518E-O01 O.17C7E-O01 AGEC
3 0.1815 C.SB09E-01 NUMC
4 -0.1090 0.2395E-01 TIME
5 -0.9901E-03 0.3328E-03 SQAG
6 0.2102E-02 0.4948E-03 SQTI
7 0.9022E-02 ©.1399E-01 DATE
8 -0.2927E-01 ©.1689E-01 COLS
0 ZERO ALIASED TIDE(1)
9 -0.1148 0.6600E-01 TIDE(2)
10 -0.1814 0.8024E-01 TIDE(3)

11 -0.3696E-03 0.3774E-03 SQDA
12 0.1039E-02 0.%190E-03 SQCO
SCALE PARAMETER TAKEN AS 0.2857

1 4002. 0.5557 0.8418E-02
2 4004 . 0.4474 0.8395E-02
3 4005. 0.6288 0.8165E-02
4 4008 . 0.2832 0.1041E-01
5 4013. 0.5967 0.1026E-01
6 4014 . 0.4884 0.1027€E-01
7 4015, 0.6699 .0.9846E-02
8 4016. 0.3243 0. 1265E-01
9 4021. 0.7762 0.8730E-02
10 4022. 0.5948 0.8854E-02 N
11 4025. 0.7031 0.9078E-02
12 4030. 0.4306 0.1107E-01
13 4031, 0.8253 0.9990E-02
14 4032. 0.6438 0. 1009E-01
15 4035. 0.7521 0.1071E-01
16 4037. 0.5120 0.1181E-01
17 4044 0.3007 0.8690E-02
18 4045. 0.4529 0.7278E-02
19 4048 . 0.6344 0.7124E-02
20 4049, 0.5672 0.720%E-02
21 4052 0.8046 0.7702E-02
22 4053, 0.7374 0.7885E-02
23 4054 . 0.4709 0.9385E-02
24 4056 . 0.6231 0.7755E-02
25 4060. 0.4695 0.6480E-02
26 4062. 0.3291 0.7340E-02
27 4064, 0.6509 0.6163E-02
28 4066 . 0.5897 0.6088E-02
29 4069. 0.7069 0.7904E-02
30 4070. 0.6456 0.7506E-02
31 4071 . 0.8884 0.7701E-02
32 4072. 0.5666 0.9076E-02
33 407S. 0.5114 0.8775E-02
34 4076. 0.3238 0.5981E-02
35 4077. 0.4984 0.6209E-02
36 4078. 0.6338 0.5285E-02
37 4079. 0.43%8 0.4362€E-02
38 4080. 0.6910 0.7195E-02
3s 4081. 0.2955 0.7079E-02
40 4082. 0.3238 0.5981E-02
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Figure 7.b, continued
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Figure 7.c: Inspect s2(¥Y) for Model with All Explanatory
Variables and All Interactions from Figure 6

CYCLE DEVIANCE DF
1 137.5 496
ESTIMATE S.E. PARAMETER

1 -2.687 2.388 %GM

2 0.2621 0.1611 AGEC

3 0.6405 0.4074 NUMC

4 0.2173 0.1802 TIME

5 -0.5213€-02 0.3258E-02 SQAG

6 -0.4326E-02 0.3627E-02 SQTI

7 0.4623E-02 O.1S07E-O1 DATE

8 -0.1056 0.1436 coLs

0 ZERD ALIASED TIDE( 1)

9 1.519 1.462 TIDE(2)

10 0.9538 1.465 TIDE(3)

11 -0.1914E-03 ©0.3997E-03 SQDA

12 0.8B697E-02 0.8511E-02 SGCO

13 -0.8273E-02 0.3302E-01 A1Nt

14 -0.5029E-04 0.6928E-03 A2N{1 -

15 -0.1936E-01 O.1197E-01 A1TH

16 0.3630E-03 0.2373E-03 A1T2

17 0.4066E-03 0.2480E-03 A2TH

18 ~0.7910E-05 ©.4986E-05 A2T2

19 -0.1629E-01 0.4401E~01 CiNt
20 -0.2028E-02 0.2581E-02 C2N{
21 O.1084E-01 O.1197E-0% CH1A4
22 -0.2164E-03 0.2437E-03 C1A2
23 =0.6555€E-03 O0.6941E-03 C2A1
24 0.1454E-04 O.1369E-04 C2A2 )
0 ZERD ALIASED TIME .TIDE(1)
25 -0.1531 0.1252 TIME .TIDE(2)
26 -0.1043 0.1245 TIME.TIDE(3)
0 ZERO ALIASED SQTI.TIDE(1)

27 0.3479E-02 0©O.2649E-02 SOQTI.TIDE(2)
28 0.2449E-02 0.2601E-02 SQTI.TIDE(3)
SCALE PARAMETER TAKEN AS 0.2771

1 4002. 0.4733 0.2029E-01
2 4004 . 0.3770 0.1278E-01
3 4005 . 0.5452 0. 1320E-01
4 4008 . 0.1590 0.2516E-01
5 4013. 0.6117 0.2720E-01
6 4014 0.4836 0. 1586E-01
7 4015. 0.6519 0.1767E-01
8 4016. 0.3339 0.3099E-01
9. 4021. 0.8080 0. 1533E-01
10 4022. 0.6397 0.1421E-01
11 4025. 0.71586 0.2514E-01
12 4030. 0.367% 0.4031E-01
13 4031. 0.6392 0.1978E-01
14 4032. 0.4710 0.2012E-0O1t
15 4035. 0.4830 0.3092E-01
16 4037. 0.1623 0.4088E-~01
17 4044. 0.2066 0.2041E-0Ot
18 4045 . 0.3955 0.1076E-01
19 4048. 0.5542 O0.1119E-01
20 4049 . 0.4963 0.1618E-01
21 4052. 0.8356 0.1327E-01
22 4053. 0.7541 0.1977E-01
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Figqure 7.¢c, continued
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improve much. If it did, then this may be an indication that
Methods 2 or 3 are a better approach. As for 4th and higher
order interactions, they are usually found in practice to be

small or non-existent (Ref. (11) pg. 809).

It is interesting to note, however, that the best 5
variable model in this run has only one main effect and 4
interactions. Again, this may suggest that a linear additive
model on the original FEEDRATE scale may not be the best

choice. Methods 2 and 3 will investigate some alternatives.

4,2 Method 2. Transform Response Variable

The multiple regression model presented at the start of
Chapter 3 now has its response variable transformed before

the model is fitted:

g(Y)=50+31x1+52x2+...+ﬁpxp+e
where g is some function chosen to show a scale where the
linear additivity of explanatory varibles and random error

are more suitable. The subscript / which tags individual

observations is not shown for simplicity, but is implied.

This method is more commonly applied to data to make it
look more like a random sample from a normal distribution.
The problem with a fegression model 1is thét it is the error
terms, e, which should benefit from the transformation,
since these are assumed to be normally distributed with a
common mean 0 and common variance o%. The g(Y.), however are

i
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then normally distributed with different means. since the
xij vary from one observation to the next. It would thus be
pointless to attempt to transform the Y, so that they look
like a sample from a single normal population (Ref. (15)),

which can only have one mean.

Method 3 offers an even better alternative for the
regression model. Nonetheless a logarithmic transformation
was attempted since Ref. (5) pg. 221 suggests that it might
have been the better way to proceed after the plots of
Figure 1. The case of Yi=0’ however, causes a problem since
the transformation

g(Y)=ln(Y)

is not defined there. Ref. (14) pg. 77 advises to replace
such Y—values with a value less than one-half the available
accuracy. The Yi are derived from counts, however, so
instead the advice of Ref. (6) pg. 161 was followed wﬂereby
a constant (chosen albeit arbitrarily) of 0.1 was added
beforehand:

g(Y)=ln(yY+0.,1)
A PY9R run was done on these transformed values, the results
of which are highlighted in Figure 8. No interactions were

attempted.

As it turned out the best 5 variable model of Figure 8
uses the same 5 explanatory variables as in the current best
model, but now R? has fallen to 0.1149. Furthermore, when

all 11 explanatory variables are used in a model, the normal
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Figure 8: P9R run on log-transformed observations

SUBSETS WITH 5 VARIABLES

ADJUSTED
R~-SQUARED R-SQUARED CcP
0.110800 0.102217 11.17 VARIABLE COEFFICIENT T-STATISTIC
time -0.130817 -3.59
numchk 0.381655 4.24
agechk 0.0906101 3.63
sqtime 0.00237431 3.27
sqage -0.00207880 -4.14
INTERCEPT -0.324453
0.096352 0.087629 19.67 VARIABLE COEFFICIENT T-STATISTIC
t idemed -0.136514 -1.49
time -0.0157781 -2.73
numchk 0.376586 4.15
agechk 0.08341914 3.31
sgage -0.00195473 -3.86
INTERCEPT -1.41973
0.095153 0.086419 20.37 VARIABLE COEFFICIENT T-STATISTIC
colsze -0.0109627 -1.23
time -0.0132162 -2.44
numchk 0.338401 3.51
agechk 0.0877158 3.49
sqage -0.00204993 -4.04
INTERCEPT -1.44368
0.094291 0.085549 20.88 VARIABLE COEFFICIENT T-STATISTIC
time -0.0132582 -2.41
numchk - 0.350388 3.69
agechk 0.0886511 3.51
sqage -0.00206 102 -4.04
sqcol -0.000436798 -1.01
INTERCEPT -1.52107
SUBSETS WITH 11 VARIABLES
ADJUSTED
R-SQUARED R-SQUARED cP
0.129779 0.111082 12.00 VARIABLE COEFFICIENT T-STATISTIC
date 0.00591546 0.24
colsze -0.0369024 -1.22
tideht -0.387468 -2.69
t idemed -0.282428 -2.39
time -0. 190823 -4 .44
numchk 0.304788 2.93
agechk 0.0808545 2.64
sgtime 0.00367653 4.14
sqdate -0.000199972 -0.30
sgage -0.00188869 -3.17
sqgcol 0.00130484 0.89
INTERCEPT 0.906 156
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probability plot of standardized residuals (not included
here) showed a stronger deviation from normality than was

the case back in Figure 2.

In Figure 9, PSR output is shown for another attempted

transformation:
g (¥)=/¥

This transformation was selected on the basis of a remark on
pg. 161 of Ref. (6) that square root transformations tend to
make count-type data more 'normal-looking'. The situation
with R? and the normal probability plot (not shown) had
improved over the previous transformation, but overall the

situation still seems to be better with untransformed Yi.

Another problem caused by both of the above
transformations could be seen inAthe histograms of
standardized residuals (not shown here). Bimodality is .very
strongly suggested, and this situation should be avoided

because of its unknown implications.

Although Method 2 has proved unfruitful, it will make
and interesting comparison with the next attempt at R?

improvement.

4.3 Method 3. Change Additivity Scale

For the original multiple regression model proposed:

Y= + + +oo e+ +
60 BIXI B;xz ﬁpxp‘e
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Figure 9: P9R run on root-transfromed observations

ADJUSTED
R-SQUARED R-SQUARED cp
0.117785 0.109270 11.15
0.101192 0.092516 20.99
0.100209 0.091524 21.58
0.099174 0.080479 22.19
ADJUSTED
R-SQUARED R~SQUARED ce
0.136593 0.118043

SUBSETS WITH

5 VARIABLES

VARIABLE
time
numchk
agechk
sqtime

- sqage
INTERCEPT

VARIABLE
t idemed
time
numchk
agechk
sgage
INTERCEPT

VARIABLE
colsze
time
numchk
agechk
sqage

INTERCEPT

VARIABLE
time
numchk
agechk
sgage
sqcol

INTERCEPT

COEFFICIENT
~0.0601809
0.175063
0.0409328
0.0010877%
~0.000932062
0.837470

COEFFICIENT
-0.0602573
-0.00693580
0.172764
0.0376648
~0.000875506
0.327617

COEFFICIENT
-0.00505068
-0.00580858
0.155130
0.0395921
-0.000918582
0.318768

COEFFICIENT
-0.00582593
0. 160905
0.0400009
-0.000923118
-0.000197421
0.283561

SUBSETS WITH 11

12.00 VARIABLE

date
colsze
tideht
t idemed
time
numchk
agechk
sqQtime
sqdate
sqage
sqgcol
INTERCEPT
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COEFFICIENT
0.00358991
-0.0179204

-0.159851
~0.117512
-0.0851073
0.137315
0.0358700
0.00163977
~0.000134536
-0.000828373
0.000631767
1.37207

T-STATISTIC
-3.79
4.47
3.78
3.47
~-4.27

T-STATISTIC
-1.51
-2.76

4.37
3.44
-3.988

T-STATISTIC
-1.31
-2.43

3.69
3.62
~4.16

T-STATISTIC
-2.44
3.89
3.64
-4.16
~-1.05

VARIABLES

T-STATISTIC
0.33
-1.36
-2.56
-2.28
-4 .56
3.03
2.70
4.25
-0.46
-3.19
0.99



it will be noticed that the only random component is e. The

sum:
u=30+31x1+32x2+...+ﬁpxp
may be regarded as the systematic (nonrandom) component of
the current model. Thus:
Yi=uj*e;
for observation i. The additivity of the explanatory
variable effects is on the same scale as u and hence Y as
well. Suppose instead the situation were altered so that
additivity of explanatory variable effects no longer took
place on the same scale as u, but a function of it:
Y=u+e

but now
n:g(u)=60+61x1+62x2+...+6pxp
For example, if
glu)=ln(u)

then A

u:eﬂ:exp{n}

=exp{ﬁo+61x1+62x2+...+ﬁpxp}
Thus:

Y=exp{ﬁo+61x1+62x2+.--+ﬁpxp}+e

Back in Method 2, one of the attempted transformations was

1n(Y+O.1)=60+61x1+625 +eoo+f xp+e

2

or eqQuivalently
Y=exp{ﬁo+61x1+62x2+--.+ﬁpxp+e}—0.1

Ignoring the 0.1 subtraction, the difference between these

two methods is that in Method 2, the 'linear predictor'
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e s

n=50+61x1+52x2+...+5pxp
and the random error, e, must be kept together as a sum
béfore any transformations take place, whereas this is no
longer necessary in Method 3. Also in Method 3, it is still
possible to decompose the original observations into a sum
of systematic‘and random components:
Yi=u;*e;

which is more intuitively appealing. Method 3 achieves the
flexibility of Method 2 by using a transformation on the
systematic component alone, rather than on the observations,
to obtain a linear predictor in the explanatory variables:

g(u)=n=ﬁo+51x1+32x2+...+ﬁpxp
This framework is known as a Generalized Linear Model, and
the special case of

glw)=ln(u)

known as the log-linear model will be pursued here.

Recall that FEEDRATE was calculated from total fish
delivery counts, TOTFSH. According to pg. 127 of Ref. (8),
the log-linear model is often suitable for count data. Thus
TOTFSH will be used as a response variable rather than
FEEDRATE, so now Y=TOTFSH. For the log-linear model the
ideal distribution for the € is no longer the normal one,
but the Poisson, or guasi-Poisson in the case of
over-dispersed data (that is, data with a wider spread than

a Poisson distribution can accomodate).
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The .technique for fitting the log-linear model to the
sample data in order to produce estimates of the Bj uses a
different approach than the normal-theory multiple
regression of Chapter 3. As a result there is no longer any
R? or even SS(total) or SS(error) terms to work with.
Instead one works with a more general goodness of fit
measure known as the deviance, which will replace SS(error).
Also one considers a kind of generalized R?:

R2=1-D(current model)
g D(null model)

where D(null model!) is the deviance for a model which
contains no explanatory variables (hence the term 'null'),
but bnly a constant term, 60’ playing the role of an overall
grand average or mean. This quantity will replace SS(toral).
D(current model) refers to the deviance of the current model
being considered. It behaves like SS(error) in the sense
thét if any othef variable is added to the model, then it
cannot increase. Thus R; cannot decrease. It turns out that
for normal theory multiple regressions (such as in Chapter
3), R? and R; are the same. This is because under such
conditions:
D(null model )=S5S(total)

D(current model )=SS(error)

The Technical Supplement provides more details (see Chapter

9).
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GLIM is the computer software pgckage that does the work
on Generalized Linear Models. Figure 10 displays a portions
of the GLIM run used on the TOTFSH outcomes. It should be
noted that GLIM generates its own design variables, so that
TIDE was used in the input, rather than TIDEH and TIDEM. In
fact one notices the similarity:

TIDE(2)=TIDEM

TIDE(3)=TIDEK
TIDE(1) is shown on the GLIM output as always having the
pre-set value of zer¢, since although TIDE has 3 levels,

only 2 design variables are needed.

One also notes from the output:
D(null mode!)=580.2
and for the fullest possible model without interactions:

D(current model )=509.9

so that:
R2=1—509'9
& 580.2
=0,1212

But for the corresponding full model from Figure 2:
R2=R2=0.14O9

s¢ it seems as though this model will be a poor fit too.

Also as part of the GLIM run, though not shown here, the
interactions from Method 1 were attempted as improvements to
the fit of the full model. When all ¢of them were inserted,

the result was:
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Figure 10: Log-Linear Modelling with GLIM

CYCLE DEVIANCE DF
4 5$80.2 523
ESTIMATE S.E. PARAMETER
1 0.2995 D.3961E-01 %GM
SCALE PARAMETER TAKEN AS 1.109
CYCLE DEVIANCE DF
4 509.9 512
ESTIMATE S.E. PARAMETER
1 1.190 0.5719 %GM
2 0.2542 0.9109E-01 NUMC
3 -0.7175E-03 0.6227E-03 SQDA
4 0.2046E-01 0.2216E-0O1 DATE
5 -0.1462 0.3629E-01 TIME
6 0.2834E-02 0.7544E-03 SQTI
0 ZERD ALIASED TIDE(1)
7 -0.1553 0.1051 TIDE(2)
8 -0.1965 0.1267 TIDE(3)
9 -0.3848E-01 0.2619E-01 COLS
10 -0.1642E-02 O©O.5909E-03 SQAG
11 0.7240E-01 0.2924E-01 AGEC
12 0.1341E-02 ©.1288E-02 SQCO
SCALE PARAMETER TAKEN AS  0.9959
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R3=0.1649
g
which is no better than the analogous situation in the

normal theory attempts in Method 1.

A comparison of residual sum of squares, that is,
SS(error) from Chapter 3, is also worthwhile., In Figure 11.a
is shown a portion of a GLIM run on the current best model
with a separate calculation of SS(error) given below the fit
results. This quantity was calculted as described in Chapter
3, and to 4 significant figures comes out to be 149.3, which
is equal to the deviance of that model. But as has already
been pointed out, this is what should happen for normal
theory models. In Figure 11.b is shown another protion of
the GLIM run where the same 5 explanatory variables are
used, but now in a log-linear model. As is shown below the
fit results, a SS(error) value of 596.8 is computed. In both
cases the SS(error) is a measure of the spread in the
discrepancy between fitted and observed outcome values
(FEEDRATE for the normal theory model, TOTFSH for the
log-linear model). Since a smaller SS(error) value is to be
preferred, the log-linear model was therefore not pursued

any further.

Overall it looks as though none of the methods of this
chapter have produced a result which would make modification

of the current best model worthwhile.
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Figure 11.a: SS(error) for Normal Theory Model

CYCLE DEVIANCE DF
1 170.3 523
ESTIMATE S.E. PARAMETER
i1 0.6746 0.2493E-01 %GM
SCALE PARAMETER TAKEN AS 0.3256
CYCLE DEVIANCE DF
1 149.3 518
ESTIMATE S.E. PARAMETER
i 0.8733 0.2903 %GM
2 0.2431 O.5018E-01 NUMC
-3 0.5449E-01 O.1390E-01 AGEC
4 -0.8448E-01 0.2033E-01 TIME
5 -0.1208E-02 O0.2796E-03 SQAG
6 O0.1564E-02 0.4052E-03 SQTI
SCALE PARAMETER TAKEN AS 0.2882

1 149 2982160
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Figure 11.b: SS(error) for Log-Linear Model

CYCLE DEVIANCE DF
4 580.2 523
ESTIMATE S.E. PARAMETER
1 0.2995 0.3961E-01 %GM
SCALE PARAMETER TAKEN AS 1.109 i
CYCLE DEVIANCE DF
4 517.9 518
ESTIMATE S.E. PARAMETER
1 0.3052 0.4573 %GM
2 0.3385 0.7692E-01 NUMC
3 0.9382E-01 0.2492E-01 AGEC
4 -0.1132 0.3061E-01 TIME
5 -0.2105E-02 O0.5134E-03 SOAG
6 0.2119E-02 0.6184E-03 SQTI
SCALE PARAMETER TAKEN AS 0.9999

-

596 .764160
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CHAPTER 5

CONCLUDING REMARKS AND OBSERVATIONS
The current best model of Chapter 3 is the final
recommended model, suject to the following observations and

remarks.

5.1 Remarks on Current Best Model

As has already been pointed out, this model suffers from
lack of fit, as reflected by the low R*-value of 0.1232.
This lack of fit may be caused by omission of an unmeasured
variable from the study or perhaps a still as yet
gndiscovered 'miracle’ interaction/higher-order power of
explanatory variables already in the study. The cause may
even be in the model itself. The methods attempted in
Chapter 4 did not seem to improve the situation sufficiently

to justify their use over the current best model.

This insistent poor fit problem basically seems to be
that FEEDRATE and TOTFSH values have much variation in
themselves that seems to have little to do with any of the
explanatory variables. That is, r(Y,xj), the sample
correlation between FEEDRATE (Y) and a given candidate
explanatory variable, is somewhat low for all of the xj
tried so far, which have been basically tst order, 2nd

order, and cross-product functions of the available
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variables. This could be seen in the last row of the
correlation matrices obtained in the various P9R and GLIM
runs, such as the one displayed in Figure 12, which came
from the first PY9R run, whose results were previously
highlighted in Figure 2. The methods of Chapter 4 did little

to increase these low correlations.

Furthermore the residual plots for the current best
model do not appear to suggest any strategy for improving
the fit. It does appear, however, that negative residuals
(overshooting of the Y; by the ?i) tend to occur with the
lower Y, -values and positive residuals with the higher
Y,-values. Although this does not contradict the. requirement
that:

r(¥,e)=0
as was pointed out in Chapter 3, nonetheless Ref.(5) pg. 157
suggests that perhaps the'major point of change from )
negative to positive residuals is caused by the change in
factor levels of some as yet unconsidered (i.e. unmeasured
or unobserved) gualitative variable, which in turn is also
correlated with FEEDRATE or fish supply. Perhaps this

missing variable is a weather or climate factor (wet/dry,

clear/overcast, and so on).
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Figure 12: Correlation Matrix from 1st PY9R Run
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5.2 Remarks on Best Model Search

Suppose now that this current best model is being considered
for acceptance. For any model obtained by some empirical
search procedure, mention should be made of the 'data
snooping' phenomenon, which arises naturally in:
Stepwise Regression (Ref.(5) pg. 311-2, Ref.(12)
pg. 389)
Discriminant Analysis (Ref.(6) pgs. 489, 518-9)
Abuse of Factor Effect Estimation in ANOVA
(Ref.(11) pg. 574)
and hence in any regression model search procedure (Ref.(11)
pg. 437). Basically what happens in data snooping is that
one studies effects suggested by the data instead of first

deciding on what specific effects are to be tested/studied

before inspecting the sample data for these effects alone.

In the specific context of the current best model, the
former procedure (data snooping) was followed. The latter
procedure would correspond to deciding beforehand what model
to try out before analyzing the sample data in order both to
estimate the necessary coefficients and other unknown
parameters, and to test whether or not the data do indeed

support the a priori proposed model,.

Both procedures do comprise valid statistical practice.
But if one wished to perform the 'standard' F-test for
regression:
Ho: 51=52=---=Bp=0 (i.e. Y=ﬁo+e)
against
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HA: At least one of {61,62,...,BP} is not zero.
" this test would only be valid if the latter procedure were

. followed, which was not the case.

As will be seen later in Figure 13, the PSR run on the

current best model provided an F-statistic of:

F=14.56
with

n-p-1=518
degrees of freedom for the denominator, and

p=5

degrees of freedom for the numerator. The associated
significance level is:

a=0.0000
to the available 4 decimal places. But when the former
procedure (data snooping) is followed, the true distribution
of the F-statistic under H, and its associated signifiéance
levels are difficult to obtain (Ref.(5) pg. 311-2). This is
one reason why F-statistics have been thus far avoided in
the analysis. Another reason will be given in the Technical

Supplement (Section B.4).

In a more general context of 'best subsets search'
procedures for model building, an analyst will tend to
prefer a model having a best fit according to some
criterion, such as maxmizing R? (and perhaps allowing for
other, sometimes opposing, considerations such as minimizing

the number of explanatory variables in the final model). It
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is thus possible for‘a model to fit a given set of sample
data 'too well', A fit may be best because it truly is, or
simply because of sampling variability. It all depends on to
what extent a given sample is truly representative of the
population to which the model is to be applied. If the
analyst selects a model by a data snooping procedure and
further uses it to make predictions on outcomes for a new
set of values for the explanatory variables already in the
model, then a 'prediction bias' (Ref.(11) pg. 437) is

further committed.

For any model obtained by data snooping, an advisable
formal testing procedure might be to follow the example of
discriminant analysis (Ref.(5) pg. 518-9) where a first
sample (a 'training' sample) is taken and the final model is
then subjected to formal hypothesis testing-(such as with
F-statistics) but using data from an independent second \
sample (a 'validation' sample) for all statistical
calculations. This procedure is alsc recommended on pg. 437

of Ref.(11).

Incidentally, Simon's data set came naturally into 2
mutually exclusive data files (Tables 1 and 2 showed
portions). It was thought at first to use one file as the
training sample and the other é; the validation sample.
.Unfortunately it turned out that the 1984 data file

contained primarily colonies of size 10 nests or greater,

whereas the 1985 data file contained mostly colonies of size

99



5 nests or less. This idea of 2 samples was thus abandoned

in case COLSZE became an important explanatory variable.

5.3 Further Observations on the Current Best Model

' Suppose that given the previous remarks, this current
best model is accepted as final for the data at hand. Some

further observations of interest can be made on it alone,.
5.3.1 Significance of Regression Coefficients

Figure 13 shows some further details from the PY9R run on
the current best model. This is the PSR run tha£ produced
the plots shown in Figures 4.a-4.p. It can be seen that all
of the regression coeffiéients, bj, are highly statistically
significant. This is due to the low sample standard errors,
s(bj), which in turn lead to high ¢-statistics:

t .= ’)
J s_(bjT
with their associated significance levels (Ref.(11) pg.
243):
aj=Pr{lT|>tj|T~t(518)}
that is, a; is the probability that T<—tj or T>tj given that
the random variable T has a t-distribution with n-p-1=518

degrees of freedom.

Consider for example the coefficient for NUMCHK:

b,=0.243
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"Fiqure 13: Further Results of PY9R Run on Current Best Model

STATISTICS FOR ‘BEST’ SUBRSET

SQUARED MULTIPLE CORRELATION 0. 12320
MULTIPLE CORRELATION Q.35C93
ADJUUSTED SQUARED MULT. CORR. 0.11473
RESIDUAL MEAN SQUARE ©.28821%
STANDARD ERROR OQF EST. 0.536857
F-STATISTIC 14 .56
NUMERATOR DFGREES OF FREEDOM 5
DENOMINATOR DEGREES GF FREEDOM 518
SIGNIFICANCE (TAIL PROB.) 0. 0000
VARIABLE REGRESSION STANDARD
NO . NAME COEFFICIENT ERRQOR
INTERCEPT 0.873322 0.28027+4
9 numchk 0.243053 0.0501761
10 agechk 0.0544920 0.0138984
13 sgage -0.00120941 0.000279562
8 time -0.0844785 0.0203297
t1 sqQtime 0.00156383 0.000405224

STAND. T~
COEF. STAT.
1.531 3.0t
0.202 4.84
©.847 3.92

-0.93%5 -4.23

-1.182 -4.1€
1.070 3.86

2TAIL
SIG.

.003

.000
.000
. 000
.000

[eNeNeRoNeNe/

THE CONTRIBUTION TO R-SQUARED FOR EACH VARIABLE IS THE AMOUNT
BY WHICH R-SQUARED WOULD EE REDUCED IF THAT VARTABLE WERE

REMOVED FROM THE REGRESSION

COVARIANCES OF THE ESTIMATES OF

EQUATION.

THE REGRESSION COEFFICIENTS

numchk agechnk
Q 10
numchk <] 0.251764E-02
agechk 10 -0.226674E-04 0. 183165E-03
sgage 13 0.888625€-06 -0.38124BE-Q5
time 8 -~-0.168058E-05 -0 1265492E-04
satime 11 0.203122E-06 0.310001E-06

10

0.7815%2E-07
0.231111E-06
-0.577500€-08

1

t ime

O.413297E-03
-0.814613E-C%

TOL-
ERANCE

.000 ©.968776
0.036208
0.036203
0.022026
0.022002

CCNTRI -
BUTION
TO R-SQ

0.039872
0.02602
0.031¢g8
0.02923
C.025214

sgtime
11

0.164207E-06



It represents the rate of change (in this case, increase,

~ since b,>0) in predicted/fitted mean FEEDRATE per chick:

oY =0.243
3 (NUMCHK

Thus in comparing 2 nests of different numbers of chicks,
but where time of day and age of chicks is same for both
nests, then according to the current best model the nest
which has more chicks could expect on average to receive
0.243 more fish per hour for every chick that it has in
excess of the other nest. Of course this is an estimate and
as such is subject to random error as reflected in its
standard error, s(b,;), which is the square root of the
estimated sample variance, s*(b,). For this sample:
s(b,)=0.0501761
One could still say, however, with 95% probability of being
correct, that the true (but unknown) rate of mean FEEDRATE
"increase per ghick, 51,‘lies in the interval:
(b,-t(518;0.975)s(b,),b,+1(518;0.975)s(b,))
=(0.145,0.341)
where r (v;vy) represents the 1004% point of a t~-distribution
with » degrees of freedom. So b, is statistically
significantly nonzero (at a 95% confidence level), since the
interval does not contain zero. Whether or not any f,-value
in this 95% confidence interval has a 'practical'
significance over and above its 'statistical' significance

is best left up to the subject matter expert to decide.
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5.3.2 Quadratic Effects in TIME and AGECHK

If one takes the current best model and appliés a
'completion of the square' procedure, one can re-express it
as: '

¥=0.346+0.243 (NUMCHK)-0.00121 (AGECHK-22.5)?

+0,00156(TIME~-27.0)?

Thus for a group of nests at a given common time of day and
all contining the same number of chicks, the average rate of
number of fish delivered per hour, as a function of chick
age, seems to follow a concave down parabola with vertex
(and maximum value) located at 22.5 days. At least, this is
the case over the observed range of chick ages. Thus it
seems that FEEDRATE increases as the chick(s) gets older,
reaches a maximum at an age of 22.5 days, and then decreases

as the chick ages further.

A similar observation can be made in regards tb time of
day. For a group of nests all containing the same number of
chicks, and all chicks haviﬁg a common age, the average rate
of number of fish delivered per hour as a function of time
of day seems to follow a concave up parabola having a vertex
(and minimum value) at half-hour 27.0, or 1330H (1:30 P.M.),
at least over the range of observed times. Thus it seems
that FEEDRATE decreases»from some initial value as the day
wears on until 1:30 P.M, after which it begins to increase

again,
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The fact that TIDE, COLSZE, and DATE are not in the
model states that the given sample data suggest that the
above observations do not seem to change with the state of
the tide, vary with the number of nests in the colony, or
even vary from one day to the next, at least over the

available range of these variables.

Two points should be emphasized here. First, this
apparent relation should not be imposed outside the limits
of observed chick age (which according to the 'data summary
statistics' of the P9R runs, ranged from 6 to 44 days) or
time of day (0530H to 1900H), or for any other variable for
that matter. Such a procedure is called extrapolation and is
best avoided. Second, the parabolas indicated in this
current best model are symmetric about a vertical axis when
FEEDRATE is plotted against AGECHK or TIME, which implies
equal rates of increase and decrease on either side of this
axis. If this is considered undesirable for theoretical
{biological) reasons, a cubic term could be incorporated for
more flexibility, or perhaps the explanatory variable should
first be transformed, although ideally such transformations

should have some kind of a priori justifiability.

5.4 Further Investigation in Predicted Time of Day

Differences
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Consider the difference in estimated FEEDRATE between
dawn and 1330H, the estimated vertex at which FEEDRATE, as a
function of TIME, takes on a minimum value. If one accepts
this 1330H value as exact and overlooks the fact that chicks
in a given nest are 7 to 8 hours (at most 1/3 of a day) -
older at 1330H than at dawn, then one can estimate this
difference and obtain a measurement of the accuracy of this

estimate for a given nest on a single day.

Using the following notation:

zD=time at dawn in half-hours, e.g. dawn at 0530H
would give a rp-value of 11 (cf. Chapter 2)

zM=time at minimum FEEDRATE, taken to be 27 (i.e.
1330H) '

}D=fitted/pfedicted FEEDRATE for a given nest at
t
D

}M=fitted/predicted FEEDRATE for same nest as in
%, and on same day, but at 1
D : M
then:
Yp~I
estimates

E(Y|tp)-E(Y]z,)
where E(Y|[t,) refers to the true (but unknown) expected or
mean FEEDRATE at time tpe Furthermore, ignoring the increase
in AGECHK mentioned earlier, one can approximate }D-}M by:

—— - 2., 2
d 0.0845(:D tM)+0.00156(tD t.,%)

M
Taking

tD=11
that is, dawn at 0530H, gives:
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d=0.404
So on average, the chicks in a given nest can expect to
jointly receive approximately 0.404 fish per hour more at

dawn than at 1330H.

It can be further shown (see Technical Supplement,
Chapter 10 for details) that this estimate has an

approximate standard error of:

s(d)=/8.014*10-9=8,952*10"2
so that a 95% confidence interval for d would be:
(0.404~1,96(B.952*10-2),0.404+1.96(8.952*10°2))
=(0.,229,0.579)
I1f one did not overlook the AGECHK difference from tp to t,,
then d would be a function of how old the chicks were at

dawn.
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CHAPTER 6

TECHNICAL SUPPLEMENT FOR CHAPTER 1

A multiple regression model with indicator variables for
gualitative effects came to mind immediately. As noted on
pages 6-7 of Ref.(13), such a model, especially with
polynomial terms, can serve as a suitable approximation over

the given range of the data.

It should be noted, however, that the data comes from an
unplanned experiment (more specifically, an observation
study) which means likely multicollinearity amongst
explanatory variables in 1st order terms alone. Any
regression done should be approached with some care since
the random error component will represent some 'lurking'
variables which were unmeasured and may be highly correlated
with the variables which were measured. In an unplanned\
experiment, the regression analysis could more likely lead
to some false results about which explanatory variables have
a significant association and which ones do not than in a
planned experiment. Ref.(3) gives more details on this

important point.
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CHAPTER 7

TECHNICAL SUPPLEMENT FOR CHAPTER 2

Figure 14 shows the FORTRAN program PROCEMMS1! which used
the input file EMMSDATA! to produce the output files
EMMSFDRT! and EMMSREJECT1. These 3 files have already been
documented and partially displayed in Chapter 2. Figure 15
shows the command source file RUNPROCE! which compiled and
ran PROCEMMS1. This file is activated by submitting the MTS
command:

$SO RUNPROCE!1
Similarly Fiqure 16 shows the FORTRAN program PROCEMMS2
which used the input file EMMSDATA2 to produce the output
files EMMSFDRT2 and EMMSREJECT2. The corresponding coﬁmand
éource file to compile and run this program would be very

similar to the previous one and so is not shown.

Both programs were written in standard FORTRAN-IV, even
though FORTRAN-77 was available. Use was made, however, of
an apparent MTS extension: standard FORTRAN supposedly
imposes a maximum input field width of 80 columns (because
of default treatment of input as 'data cards'), but the
programs haa no problem accessing all 121 columns in each
file using the standard formatted READ and WRITE statements.
Otherwise use could have been made of the file record
splitting option of the 'correct’' command of the MTS file

editor in order to change each 121 column record into 2
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Figure 14: FORTRAN Program_ PROCEMMS |

PREPARE EMMSDATA1 FOR ANY STATS PACKAGE

UNIT 10 IS EMMSDATA1
UNIT {1 IS EMMSFDRT1
UNIT 12 IS EMMSREJECT!

1 2 3 5 ] 7

4
€23456789012345678301234567890123456783012345678901234567890123456789012

DIMENSION FISH(9},FLEN(S)
RECNUM=0.0

BEGIN READING EMMSDATA1
INCREMENT RECORD COUNTER FOR EACH RECORD PROCESSED
PUT REJECTED RECORDS INTO REJECT FILE

10 TOTFSH=0.0
TOTLEN=0.0
FLAG=0.0
READ (10,101,ERR=998,END=999) DATE,COLSZE.TIDE,IHOUR, MIN,CHK,
*AGECHK , (FISH(I1),FLEN(I1),I1=1,8)
RECNUM=RECNUM+1.0C

TRANSFORM DATE FOR 1984 DATA

IF (DATE .GE. 8.0) GO TO 20
DATE=100*(DATE-7.0)~14.0
GO TO 30

20 DATE=100*(DATE-8.0)+17.0

CREATE TIDE DESIGN VARIABLES

30 TIDEH=0.0
TIDEM=0.0
1F (TIDE .EQ. 1.0) GO TO 50
IF (TIDE .EQ. 2.0) GO TO 40

TIDEH=1.0
GO TG S5C
40 TIDEM=1.0
TRANSFDRM TIME
SO TIME=FLOAT(IHOUR)*2.0+FLOAT(MIN)/30.0
CHECK CHK
IF (CHK .GE. 0.0) GO TO 60
WRITE {12,202) RECNUM,CHK
GO TO 10
CHEZK AGECHK
60 CONTINUE .
IF (AGECHK .GE. 0.0) GO TO 70
WRITE (12,203) RECNUM,AGECHK
GO TO 10
COMPUTE TOTAL FISH COUNT & LENGTH, PROVIDED NO MISSING DATA PRESENT
IF MISSING LENGTHS. DON’'T SKIP RECDRD

70 CONTINUE
Do s5 12=1,9
IF (FISH(I2) .GE. ©.0) GO TG 80
IBAD=12
GO TO 20
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O0O00000

0O0000

Figure 14, continued

80 TOTFSH=TOTFSH+FISH(12)

IF (FLEN(I2) .LT. 0.0) FLAG=1.0

IF (FLAG .EQ. 0.0) TOTLEN=TOTLEN+FLEN(I2)
55 CONTINUE

GO TO 100
90 WRITE (12,204) RECNUM,FISH(IBAD), IBAD

GO TO 10

IF WE GOT THIS FAR WITHOUT LOOPING BACK, THEN RECORD CONTAINS NO
MISSING DATA CODES (EXCEPT FOR FISH LENGTHS)

CALCULATE AVGLEN, PUT MODIFIED DATA IN NEW FILE & GO GET ANOTHER
RECORD

ADD 4000 TO RECNUM IN OROER TO CODE IT AS BEING FROM 1984 DATA FILE

100 AVGLEN=0.0
IF (FLAG .EQ. 0.0) GO TQ 110
AVGLEN=-1.0
TOTLEN=-1.0
GO TQO 120
110 CONTINUE
IF (TOTFSH .GT. 0.0) AVGLEN=TOTLEN/TOTFSH
120 RLABEL=RECNUM+4000.0
WRITE(11,201) RLABEL,AVGLEN,TOTFSH, TOTLEN,DATE,COLSZE,TIDE,TIDEH,
*TIDEM, TIME, CHK, AGECHK
GO TO 10
998 WRITE (11,206) RECNUM
999 WRITE (11,207)
WRITE (11,208)
WRITE (11,209) RECNUM
STOP

FORMAT STATEMENTS

1 2 3 4 5 6 7
23456789012345678901234567890123456789012345678901234567890123456789012

101 FORMAT(F4.2,T13,F4.1,F3.1,12,12,T34,F3.0,T38,F3.0,T41,9(F3.0, 1X,
*F5.2))

201 FORMAT(T3,F6.0,1X,F10.6,2(1X,F8.0),7(1X,F3.0),1X,F4.0)

202 FORMAT(’ RECORD ‘,F5.0,’ REJECTED FOR MISSING VALUE CODE'/Ti15,
*F4.0,’ FOR CHK'/)

203 FORMAT(’ RECORD ’,F5.0,‘ REJECTED FOR MISSING VALUE CODE’'/T15,
*F4.0,' FOR AGECHK’/)

204 FORMAT(’ RECORD ’,F5.0,’ REJECTED FOR MISSING VALUE CODE’/T1S,
*F4.0,' FOR FISH ARRAY, POSITION ’,I12/)

206 FORMAT(’ ***INPUT ERROR*=**’'/’ IN RECORD NUMBER ’,F5.0)

207 FORMAT('C234567890123456788012345678901234567880123456789012345678
*90123456789012/’'C’ ,8X, "1’ ,9X,"2,9%,’3’,9X,‘4’,9X,’5’,9X,'6",9X,
t'7l)

208 FORMAT(/T4, 'LABEL’,T11,’AVGLEN’,T22, 'TOTFSH’,T31, 'TOTLEN’,T38,
*'DATE’ ,T43,’COL’,3(1X,’TDE’),1X,'TIME’ ,T64, ' #’' ,T€7, ' AGECHK' /T43,
*'512E’,T52, ‘H1’, TS5, ‘MED’ ,T63, ‘CHK')

209 FORMAT(/’/LAST RECORD READ: ',F6.0)

END

110



Figure 15: Source File RUNPROCE1

$empty procemms?{.ob ok

$run *ftn scards=procemmsi sprint=z-news spunch=procemms1i.ob
sempty emmsrejecti ok

sempty emmsfdrti ok

$run procemmsi.ob 10=emmsdatat 11=emmsfdrtt 12=emmsrejectt
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Figure 16: FORTRAN Program PROCEMMSZ

PREPARE EMMSDATA2 FOR ANY STATS PACKAGE
UNIT 10 IS EMMSDATA2

UNIT 11 IS EMMSFDRT2

UNIT 12 IS EMMSREJECT2

1 2 3 4 S 6 7

C23456789012345678901234567890123456789012345678901234567890123455789012

anon OO0 [eNeKe] [oReXNe] OO0O0O00

[eNeKe]

[eNeNeNe]

DIMENSION FISH(9),FLEN(9)
RECNUM=0.0

BEGIN READING EMMSDATA2
INCREMENT RECORD COUNTER FOR EACH RECORD PROCESSED
PUT REJECTED RECORDS INTO REJECT FILE

10 TOTFSH=0.0
TOTLEN=0.O
FLAG=0.0
READ {(10,101,ERR=998,END=999) DATE,COLSZE,TIDFE, IHOUR,MIN, CHK,
*AGECHK, (FISH(I1),FLEN(I1),I1=1,9)
RECNUM=RECNUM+1 .0

TRANSFORM DATE FOR 1985 DATA

IF (DATE .GE. 8.0) GO TO 20
DATE=100*(DATE-7.0)-19.0
GO To 30

20 DATE=100*(DATE-8.0)+12.0

CREATE TIDE DESIGN VARIABLES

30 TIDEH=0.0
TIDEM=0.0
IF (TIDE .EQ. 1.0) GO TO SO
IF (TIDE .EQ. 2.0) GO TO 40
TIDEH=1.0 R
GO TO SO
40 TIDEM=1.0

TRANSFORM TIME
50 TIME=FLOAT(IHOUR)*2.0+FLOAT(MIN)/30.0
CHECK CHK

IF (CHK .GE. 0.0) GO TO 60
WRITE (12,202) RECNUM,CHK
GO TO0 10

CHECK AGECHK

60 CONTINUE
IF (AGECHK .GE. 0.0) GO TO 70
WRITE (12,203) RECNUM, AGECHK
GO TO 10

COMPUTE TOTAL FISH COUNT & LENGTH, PROVIDED NO MISSING DATA PRESENT
IF MISSING LENGTHS, DON’T SKIP RECORD

70 CONTINUE
DO 55 12=1,9
1F (FISH(I2) .GE. 0.0) GO TO 80
IBAD=12
G0 TO 90
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s NeNsNeNsNeNe!

c
C
c
c
c

'Figure 16, continued

80 TOTFSH=TOTFSH+FISH(I2)

IF (FLEN(I2) .LT. 0.0) FLAG=1.0

IF (FLAG .EQ. 0.0) TOTLEN=TOTLEN+FLEN(I2)
55 CONTINUE

GO TO 100
90 WRITE (12,204) RECNUM,FISH(IBAD),IBAD

GO TO 10

IF WE GOT THIS FAR WITHOUT LOOPING BACK, THEN RECORO CONTAINS NO
MISSING DATA CODES (EXCEPT FOR FISH LENGTHS)

CALCULATE AVGLEN, PUT MOOIFIED DATA IN NEW FILE & GO GET ANOTHER
RECORD

ADD SO00 TO RECNUM IN ORDER TO CODE IT AS BEING FROM 1985 DATA FILE

100 AVGLEN=0.0
IF (FLAG .EQ. 0.0) GO TO 110
AVGLEN=-1.0
TOTLEN=-1.0
GO TO 120
110 CONTINUE
IF (TOTFSH .GT. 0.0) AVGLEN=TOTLEN/TOTFSH
120 RLABEL=RECNUM+5000.0
WRITE(11,201) RLABEL,AVGLEN, TOTFSH, TOTLEN,DATE,COLSZE,TIDE, TIDEH,
*TIDEM, TIME, CHK, AGECHK
GO TO 10
998 WRITE (11,206) RECNUM
999 WRITE (11,207)
WRITE (11,208)
WRITE (11,209) RECNUM
STOP

FORMAT STATEMENTS

1 2 3 4 5 6 7
23456789012345678901234567890123456789012345678901234567890123456789012

101 FORMAT(F4.2,T13,F4.1,F3.1,12,12,T34,F3.0,T38,F3.0,T41,9(F3.0, 1X,
*f5.2)) -

201 FORMAT(T3,F6.0,1X,F10.6,2(1X,F8.0),7(1X,F3.0),1X,F4.0)

202 FORMAT(’ RECORD ' ,F5.0,‘ REJECTED FOR MISSING VALUE CODE‘/T15,
*F4.0,‘ FOR CHK'/)

203 FORMAT(’ RECORD ’,FS5.0,’ REJECTED FOR MISSING VALUE COOE’'/T15,
*F4.0,’ FOR AGECHK'/)

204 FORMAT(’ RECORD ' ,F5.0,’ REJECTED FOR MISSING VALUE CODE’/T15,
*F4.0,‘ FOR FISH ARRAY, POSITION ‘,12/)

206 FORMAT(’ =***INPUT ERROR***’/’ IN RECORD NUMBER ‘,F5.0)

207 FORMAT(’'C234567890123456789012345678901234567890123456789012345678
*90123456789012'/'C’ ,8X,’1’,9X,'2/,9X,’3/,9X,’4’ ,9X,'5’,9X, ‘6’ ,9X,
xr70)

208 FORMAT(/T4,'LABEL’,T11,’AVGLEN’,T22, ' TOTFSH’,T31, 'TOTLEN’,T38,
*'DATE’,T43,‘COL’,3(1X,'TDE’ ), 1X, 'TIME' ,T64,'#’,T67, ' AGECHK’ /T43,
*/SIZE’,T52,’'HI’, TS5, 'MED’ ,T63, ‘CHK’ )

209 FORMAT(/’LAST RECORD READ: ‘,F6.0)

END
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consecutive records of, say, 70 and 51 columns,

It should be noted that since all the well-known

- statistical software packages at SFU (GLIM, BMDP,'MINITAB,
SPSS, MIDAS) are programmed in FORTRAN and use FORTRAN in
some of their options (such as user-specified I1/0 formats),
a working knowledge of standard FORTRAN would therefore be
helpful to any statistics graduate student in the non-thesis
option. Such a knowledge will be assumed for the duration of
this and future Techinical Supplements. A reference such as

Ref.(7) can be consulted on this basis.

The necessary column specifications were obtained by
using the MTS file editor to append column counter lines to
the end of each EMMSDATA input file, as has already been
described in Chapter 2. These lines were rehoved prior to
the running of each program since the programs were designed
to read to the end of each input file, and the column

counter lines were not intended as input.

As for the EMMSREJECT files, it was noticed that no
record (observation) was rejected for having a missing value
code (-1.) for any one of the 9 fish species type counts. Of
‘course one would hope that this was because no such missing
data did indeed occur, otherwise some TOTFSH calculations
would be incorrect. To double check this, as is good
programming practice, a copy of EMMSDATAZ was made and an

extra record inserted with a value of -1 for number of fish
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delivered of species type 1. When PROCEMMS2 was run, the
extra record was rejected and put into the EMMSREJECT2 file
with the appropriate message. As the only differences |
between the 2 PROCEMMS programs are the I/0 file
specifications, date transformations, and program generated
labels, it could be assumed that PROCEMMS1 would also treat
such a record appropriately. Thus the original input files

could be accepted as free from missing data for fish counts.

Missing data for fish lengths however, would by
themselves not cause a record to be rejected, since these
quantities were not used in the analysis. Instead they would
serve to set the average length value to -1. A TOTFSH value
of 0 caused this average to be set to 0. Otherwise the
average length (AVGLEN) was computed as:

AVGLEN=IQTLEN

TOTFSH
where TOTLEN is the sum of the total lengths of fish summed
over the 9 species types. Again this gquantity was calculated

for a possible future use, which did not materialize.

The design variables TIDEH and TIDEM created by the
PROCEMMS programs for the qulitative variable TIDE are of
course not the only ones possible. But some design variables
may present additional difficulties. As an example some
analysts would prefer the following design variables:

HITIDE = 1, if TIDE=3 (high tide)

0, if TIDE=2 (midtide)
-1, if TIDE=1 (low tide)
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MEDTIDE= 0, if .TIDE=3
1, if TIDE=2
-1, if TIDE=1
In an all possible or best k subsets search or stepwise
routine, it is possible that one of the two design variables
is used in a final accepted model, but the other one is not.
In the case of TIDEH and TIDEM this presents no problem. If,
say, TIDEH makes it into a final model but TIDEM does not,
then it is because the data suggest that only a high tide
(or some correlated 'lurking' variable which changes factor
levels only at high tide--see Ref.(3)) has an association
with FEEDRATE. If, however, HITIDE gets into a final model
without MEDTIDE, then an equal interval scale of effects is
implied:
high tide: HITIDE= 1} increment of 1

midtide : HITIDE= 0} increment of 1

} equalscaling
low tide : HITIDE=-1 .

Now the gain/loss in having high tide over medium tide is
equal to that of having medium tide over low tide, and hence

one-half that of having high tide over low tide.

This is not a desirable situation, unless one has such
prior information. A solution would be to force all design
variables into the model for a particular factor when one of
them is chosen. This is not neceséary if the design

variables are chosen as in the case of TIDEH and TIDEM.
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CHAPTER 8

TECHNICAL SUPPLEMENT FOR CHAPTER 3

A number of observations and developments may be made on

the contents of Chapter 3. 'In this chapter the usual matrix

formulation:

will be used, where:

(1) Y is a random vector in R”" containing the n
response variables:

Y

1
T
Yn

Once these values are observed, Y is replaced by
Y-

(2) X is an n by (p+1) real matrix. The first column
is all 1's, and each of the remaining columns
contains the n observations for each of the p
explanatory variables.

(3) p is the vector of regression parameters in
R(p+1).

(4) € is the random vector of stochastically
independent error terms and has the distribution

£~Nn(g,021n)

That is, ¢ has an n-variate normal distribution.

8.1 On the Stochastic Independence Assumption

One of the assumptions that must be made is that the

components of ¥, the random response vector, must be
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stochastically independent (or very nearly so). This
assumption about FEEDRATE observations at first appears to
be guestionable since the fishers compete with one another
over a finite supply of fish. In fact, depending on TIME and
the season state (as reflected through DATE), the number of
fishers could even exceed the number of fish. Such
contemplation would imply covariance between feedrates for
chicks belonging to the different fishers. Simon's
assurance, however, was that the birds actually seem to fish
from 'fishing territories' in which no other bird would
invade or interfere. This territorial aspecf of individual
fishers and an assumption of random fish movement in the
water suggests that to assume stochastic independence

amongst FEEDRATE observations may be acceptable.

8.2 On the Model Selection Criterion Used

The criterion used for the best model in the PSR runs
was the maximization of R?, with attention being paid to the
number of explanatory variables being inserted into the
model. The Mallows' Cp—criterion, which is the default in
P9R, could also have been used, although the conclusions

might have been different.

With this criterion, the relation:
>
Cp-p

is supposed to be observable for the most part, the few
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exceptions being due to random variation. The actual
criterion is to minimize C, and still keep C, as close to p
as possible (Ref.(11) pg. 426, Ref.(6) pg. 316, Ref.(5) pg.
300).

A PO9R run was done using this criterion (details not
shown). The result was that the program chose a set of 8
explanatory variables giving:

Cp=9.52
although a set of 9 explanatory variables with:

Cp=9.53
would also have been anexcellent choice. The model selected
by this criterion might still however be too large (Ref.(5),
pg. 305). The residuallplots also showed little improvement
over those in Figures 4.a-4.p. The current best model of
Chapter 3 still seems preferable despite having:

Cp=10.53
although this is nonetheless the smallest Cp-value of all

other 5-variable models.

8.3 On the (non) Use of F-Statistics

Throughout this report the use of F-statistics has been
de-emphésized. One reason was given in Chapter 5, another

one is the following argument.

Consider again the quantity:

R2=1-SS(error)
S§S(total)
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SS(regression)
SS(total)

In the usual formal regression test, mentioned in Chapter 5:
Hos B =Bg=r-=8,=0
against
H,: At least one of 6j is not zero (15/<p)
the usual test statistic used is:
(SS(regresszon))

F*= SS(error)
np‘

F*~F(p,n—p-1). It follows that
F*= <U-1> !
)
P F—1

so that if R? is 'small', then:

Under Ho,

=B

will be 'large' and thus the guantity:

l

b
id

will again be 'small'. But F* may still be significant for a

sufficiently large factor of:

n—g-1
p

so that a poor fitting model (low R?) may give significant

F*-values, thus triggering the decision to reject Hg.
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The current best model shows this:
n=524
p=5
R?=0.1232
so
F*=14,56
results, This was the F-statistic value found in-the PSR run
on the current best model alone. Looking up a table of
F-distribution percentage points (with 5 degreees of freedom
for the numerator, 518 degreees of freedom for the
denominator),
F=5.43

is significant at «=0.001.

Of course it should be realized that a model can give a
high F-value, but still be of little use for predictive
purposes if one wishes to use the model in that capacity
(Ref.(5), pg. 129-30). Any model search technigue should
thus be used with caution and judgement in this regard. Used
mechanically the results could be misleading (Ref.(5), pg.
300). This is particularly true in unplanned experiments

such as Simon's (Ref.(5) pg. 295, Ref.(3)).

8.4 An Extra Note on Outputs

Although the outputs are not shown in their entirety,
one omitted table that should be investigated after running

a BMDP program is the 'Summary Statistics for Each Variable'
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in order to check for outlier or 'wild' values of any
variable., As an example, a previous P9R run reported a value
of 10 in that table under the column labelled 'Maximum
Value', for a variable which was supposed to take on only
values of 0 or 1. The reason for this particular
misinterpretation was that in Simon's data files, all
integer data values were supposed to have decimal points
after them, but this particular '1' did not, and the FORTRAN
format used when inputting the value interpreted the blank

after it as a 0, thus changing 1 into 10.

8.5 On the Non-use of Centred Explanatory Variables

The current best model contains some second order terms
in the Quantitative variables, and is hence a polynomial
multiple regression. For such variables, it is usually-
recommended (Ref.(11) pg. 300-1) to use a centre transformed

variable:

where:

The purpose in doing this is to reduce multicollinearity
caused by typically large values for the correlation between

xij and its higher order terms
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xik=x?j
and so on, Such multicellinearity makes the computation of
(2'%)”" difficult to control for round-off error. This of
course makes the regression coefficient least squares
estimates:
b=LSE(f)=(X'%) 'X'y
highly suspect with regards to accuracy. Some coefficients

may even have the wrong sign (Ref.(10) pg. 287).

This approach was not pursued at length, however, since
the BMDP programs typically provide a 'tolerance' control
for matrix inversion. P9R, in particular, carries out all
computations in double precision. Furthermore, if the
multicollinearity did cause problems in the X'X inversion,
then this would show up as large estimated variances of the
regression coefficient estimates, so that statistically
significant coefficients would be hard to find (Ref.(1{) pg.
318). This is because the estimated variances are the
diagonal elements of:

Cov(b)=(s2)(x'x)~"
where

,_ SS(error)
STE T

and if the X'X matrix were difficult to invert, these
diagonal elements would typically be large. In the case of
the current best model, all the regression coefficients have
sufficiently small estimated variances so that a hypothesis

test of the form:
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for a single j in {1,2,...,p}, would result in H, being

0
rejected at a 1% level of significance.

8.6 On the Creation of the R2-plot

The usefulness of an R?*-plot is already well documented
on pages 422-4 of Ref.(11), The R?-plot shown in Figure 3
was constructed using R%*-values for models found not only in
Figure 2, but also from models using GLIM runs with two
types of 'forward selection' procedures. Starting with an
empty model, expianatory variables were added one-by-one on
the basis of maximum R? improvement (procedure 1) or minimum
R? improvement (procedure 2). Procédure 1 is analogous to
maximum F improvement in the forward selection phase of
stepwise regression (see pg. 430-6 of Ref. (11), for
example). The purpose of procedure 2 was purely one of
contrast in order to see how much worse a model fit could be

if the 'wrong' explanatory variables were selected.

GLIM works with generalized linear models, the rudiments
of which were indicated in Chapter 4, and are more
thoroughly covered in Ref.(8). Briefly, instead of SS(error)
as a goodness of fit ﬁeasure, GLIM uses deviance, D, defined
as:

D=0¢?S(a,n)

where:
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S(a,m)=-2[1(f,0%;y)~1 (T, 02;y)]

=

is the n by 1 vector of fitted values (that is, §=pi)
for the current model being entertained

is the n by 1 vector of fitted values for the fullest
possible model, namely, when the number of regression
coefficients, p+1, eguals the number of observations,
n. In such a case it can be shown that =y, the
observations themselves.

=l

! is the log-likelihood function.
S is called the 'scaled deviance', because of the
presence of the scale factor, ¢%, in the expression
for D.
‘It can be further shown that for the special case of the
normal-fheory multiple regression, namely:
T=u+e
1=4=%f
e~N,(0,0%1,)
then for the null model ((p+1)=1; no regression coefficients
except for constant term, Bo):
D(null model )=5S(total)
and for any current model with 1<p+i<n:
" D(current model )=8S(error)
Thus one can calculate R?-values for a sequence of models of
one's own choosing, which is easiiy implemented with GLIM's
interactive atmosphere. One such program is shown in Figure
17.a, with the run results in Figure 17.b, where the b
selection is shown -for the first explanatory variable. One

can see for exmaple:

D(null mode! )=170.3=8S(total)
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Figure 17.a: GLIM Command File which Generates Figure 17.b

$EMPTY EOUTGLIM18 OK

$RUN UNSP:GLIM 1=EMMSFORATE 2=EQUTGLIMIi8

$C

$C GLIM RUN ON FILE EMMSFDRATE TESTING OUT NORMAL THEORY MODEL
$C

sc ko 3 Kok o sk ko 3 ok ok O 3k oK ok ok ok ok ok K ok ok

$C * GET DATA & TRANSFORM =

sc e ok o i 3 i ok o ko ok ok ok o ok dk ok ok ok ok ko

$C
$0UTPUT 2 132
$UNITS 524

$DATA LABEL TOTFSH DATE COLSZE TIDE TIME NUMCHK AGECHK
$FACTOR TIDE 3

$FORMAT
(3X,F5.0,17X,F3.0,9X,F4.0,2(1X,F3.0),8X,2(1X,F3.0),1X,F4.0)
$DINPUT 1

$LOOK 1 15 LABEL TOTFSH DATE COLSZE TIDE TIME NUMCHK AGECHK
$CALC FEEDRATE=TOTFSH/2.0

$C

$C  ADD QUADRATIC TERMS

$C

$CALC SQDATE=DATE*DATE: SQTIME=TIME*TIME: SQAGE=AGECHK*AGECHK
$CALC SQNUM=NUMCHK*NUMCHK: SQCOL=CDLSZE*COLSZE

:g o . oo ok ok ok ok k0K o ok ok ok ok i dk ok ok ol K o ok ok ok ok ok ok o ok ok ok

$C * SPECIFY MODEL TO BE ANALYZED =

$C » ALLDW FOR OVER-DISPERSIDN »

sc ok ko o ook 3 3k ek 3 ok ok ok ke di ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok

$C

$YVAR FEEDRATE ' -
$ERROR N

$LINK I

$SCALE O

$C

sc 3k 3k 3k 3k ok 3k 3k ko 3k dk ok ok ok ok 3k 3Kk ok ok ok ok ok ok ok ok ok ok ak k

$C * NOW FIT MODELS »

$C * FIRST NULL MODEL *

$C * THEN ALL POSSIBLE ONE *

$C » VARIABLE MODELS o= -
sc 3k 3k 3k 3k ok o3k ko 3k dk ok ok sk ok o ok 3K ok ok ok ok ok ok ok ok ok ok ok

$C

$FIT %GM

$DISP A

$FIT DATE

$DISP A

$FIT COLSZE

$DISP A

$FIT TIDE

$DISP A

$FIT TIME

$DISP A

$FIT NUMCHK

$DISP A

$FIT AGECHK

$DISP A

$FIT SQDATE

$DISP A

$FIT SQTIME

$DISP A -

$FIT SQAGE

$DISP A

$FIT SQNUM

$DISP A

$FIT SQCOL

$DISP A

$C

sc e ok ok ook ook ko ok ok ok ko ok sk ok ok sk ok o ok o ok ok K ok ok ook ok ke sk K ok ok ok ok ook ke o ok ke ok

$C * NEXT PHASE OF FOWARD SELECTION TO BE FOUND IN *

$C * EMMSGLIMI9 FILE

el e e T e e L e L R e Rl
$C

$STOP .
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Figure 17.b:

GLIM Run on Normal-Theory Model

CYCLE DEVIANCE DF
1 170.3 523
ESTIMATE S.E.
1 0.6746 0.2493E~01
SCALE PARAMETER TAKEN AS
CYCLE DEVIANCE DF
1 166 .4 522
ESTIMATE S.E.
1 0.8426 0.5413E-01
2 -0.1010E-01 0.2896E-02
SCALE PARAMETER TAKEN AS
CYCLE DEVIANCE DF
1 168.7 522
ESTIMATE S.E.
1 0.7566 0.4476E-01
2 -0.1067E-01 0.4849E-02
SCALE PARAMETER TAKEN AS
CYCLE DEVIANCE DF
1 169.6 521
ESTIMATE S.E.
1 0.7454 0.5480E-01
o} ZERO ALIASED
2 -0.8585E-01 0.6756E-01
3 -0.9246E-01 0.6778E-01
SCALE PARAMETER TAKEN AS
CYCLE DEVIANCE DF
1 167.9 522
ESTIMATE S.E.
1 0.8917 0.8342E-01
2 -0.8685E-02 0.318B7E-02
SCALE PARAMETER TAKEN AS
CYCLE DEVIANCE DF
1 161.3 522
ESTIMATE S.E.
1 0.3043 0.7287E-01
2 0.2756 0.5114E-01
SCALE PARAMETER TAKEN AS
CYCLE DEVIANCE DF
1 168.3 522
ESTIMATE S.E.
1 0.8429 0.7267E-01
2 -0.6901E-02 0.2801E-02
SCALE PARAMETER TAKEN AS
CYCLE DEVIANCE DF
1 164.7 522
ESTIMATE S.E.
1 0.7944 0.3765E-01
2 -0.3428E-03 0.8173E-04
SCALE PARAMETER TAKEN AS
CYCLE DEVIANCE DF
1 168.7 522
ESTIMATE S.E.
1 0.7696 0.5019E-01
2 -0.1386E-03 0.6366E-~04
SCALE PARAMETER TAKEN AS

PARAMETER
%GM
0.3256

PARAMETER

%GM

DATE
0.3188

PARAMETER

%GM

coLs
0.3232

PARAMETER
%GM
TIDE(1)
TIDE(2)
TIDE(3)

0.3255

PARAMETER

%GM

TIME
0.3216

PARAMETER

%GM

NUMC
0.3090

PARAMETER

%GM

AGEC
0.3224

PARAMETER

%GM

SQDA
0.3156

PARAMETER

%GM

SQTI
0.3233
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CYCLE DEVIANCE DF
1 166.9 522
ESTIMATE S.E.
1 0.7980 0.4507E-01
2 -0.1833E-03 0.5602E-04
SCALE PARAMETER TAKEN AS
CYCLE OEVIANCE DF
1 161.3 522
ESTIMATE S.E.
i 0.4881 0.4228E-01
2 0.9187E-01 O0.1705E-01
SCALE PARAMETER TAKEN AS
CYCLE DEVIANCE DF
1 169.5 522 <
ESTIMATE S.E.
1 0.7060 0.3217E-01

2 -0.3686E-03 0.2391E-03
SCALE PARAMETER TAKEN AS

PARAMETER

%GM

SOAG
0.3196

PARAMETER

%GM

SONU
0.3080

PARAMETER

%GM

soco
0.3247



so that amongst all models containing only one of the given

candidate main effects, the one containing TIDE (both design

variables moved as a unit) showed the lowest R? improvement:
D(current model )=169.6=SS(error)

169.6

21
RE=1-1553

=0.0041

and the one containing only NUMCHK showed the highest R?
improvement:
D(current model )=161.3

161.3

2 -
k=1 170.3

=0.0528

Procedure 1 then takes the model with NUMCHK and tries out
all the remaining effects (including SQNUM) in order to find
the 2 effect model_with the highest R? improvement when
NUMCHK is already iﬁ. Similarly procedure 2 tries out ail 2
effect models which contain TIDE. As it turned out,
procedure 1 ended up with SQDATE being added to the NUMCHK
model, and procedure 2 ended up with SQCOL being added to

the TIDE model.

One then ends up with 2 seguences of nested models along
with their R%*-values, which when plotted against p suggest 2
R?* improvement paths, which were shown in Figure 3. _
Procedure 2 is shown in the bottom path, but procedure 1 did
not result in the top path. This is because the forward
selection did not find the best possible model at all values
of p. This drawback is not unknown in stepwise regression

(Ref.(11) pg. 435, Ref.(6) pg. 317) and is due to the
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presence of mul;}collinearity in the data, since an
explanatory variable's ability to decrease SS(error) when
brought into the current model depends on what variables
were already present in the model (Ref.(11) pg. 271-282). In
particular the forward R? selection outlined in this section
missed the current best model of Chapter 3, which can be
found on the top path in Figure 3 above p=5; as can be

confirmed from Table 7.

8.7 On the Generation of the Qutputs in Chapter 3 of the

Client Report

In Chapter 3 of the Client Report, Figures 1 through 4
are introduced along with Table 8. The command source files
which generated each of Figures 1.a-p through 4.a-p are
shown in Figures 18 through 21. All are examples of BMDP
command files. The details of using any BMDP program can be
looked up in Ref.(4). The layout of the 'Srun' command along
with its input/ouput file specification is specific to the
MTS system. Ref.(1) contains detéils on how to run the BMDP

programs on the MTS system.

In Figure 18 is the P6D program which generated the
plots of Figures 1.a-p. The fact that there ‘are 524
observations was obtained by using the MTS 'slist' command
to output the file EMMSFDRT, and then observing the line

number of the last record of observations. It also shows an
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Figure 18: P6D Command File which Generated Figures 1.a-p

$empty eoutp6dt ok
$run *bmdp sprint=eoutpédi 7=emmsfdrate par=péd
/ problem title is ‘EQUTPED1: plot TOTFSH against explanatory
variables & do some scatter plots without totfsh'.
/ input unit is 7.
cases are 524.
variables are 10.
format is ‘'(3x,f5.0,17x,f3.0,9%x,f4.0,6(1x,f3.0).1x,f4.0)".

/ variable names are label,totfsh,date,colsze,tide,tidehi, tidemed,
time, numchk , agechk, sqtime, sqdate, sqage, sqcol,.
sqnum.

add=5.

label is label.
/ transform sqtime=time*time.
sqdate=date*date.
sgage=agechk*agechk .
sqcol=colsze*colsze.
sgnum=numchk*numchik .
/ plot yvar is totfsh.
xvar are date,colsze, tide,numchk,agechk,time,
tidehi, tidemed, sqdate,
sat ime, sqage, sqcol,sgnum.

cross.
s1z2e=100,40.
/ plot yvar is agechk. h

xvar is date.
size=100,40.

/ plot yvar is time.
xvar is tide.
size=100,40.

/ plot yvar is colsze.
xvar 1s numchk.
si1ze=100,40.

/ end
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Figure 19: PY9R Command File which Generated Figqure 2

$empty eoutp9re ok
$run *omdp sprint=eoutp9ré 7=emmsfdrate par=pSr

/ problem

/ input

/ variable

/ transform

/ regress

/ print

/ plot

/ end

title is ‘EOUTPORE: Best (max R-square) 10 subsets
regression--feedrate response, no interactions’.

unit is 7.

cases are 524.

variables are 10.

format is ‘(3x,a4,18x,f3.0.9%x,.f4.0,6(1%x,f3.0),1x,f4.0)’.

names are label,totfsh,date,colsze,tide, tidehi,tidemea,
time, numchk, agechk, sqtime, sqdate, sqage, sqnum,
sqcol, feedrate.

add=6.

label is label.

sqtime=time*time.

sqdate=date*date.

sqage=agechk*agechk .

sgnum=numchk *numchk .

sqcol=colsze*colsze.

feedratestotfsh/2.0.

dependent is feedrate.

independent are date,colsze,tidehi, tidemed, time, numchk,

agechk,sqt ime,sqdate, sqage, sqcol .

method=rsq.

number=10.

news.

no shade. .

normat .

yvar are predictd,residual,residual,residual,residual,
residual ,residual,residual,residual,residual,
residual ,residual,residual, residual ,residual,

xvar are feedrate,predictd, feedrate,date,colisze, tide,
tidehi, tidemed, t ime, numchk, agechk, sqtime, sqdate,
sqage,sqcol .

size=115,50.

hist.
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Figure 20: P6D Command File which Generated Fiqure 3

$empty eoutp6d2 ok
$run *bmdp sprint=eoutp6d2 7=emmsrplt par=péd
/ problem title is 'EQUTPGD2: R-sqaure plot for models without
interactions’.
/ input unit is 7.
cases are 29.
variables are 2.
format is ‘(2x,f2.0,3x,f6.4)".
/ variable names are p,Rsquare.
/ plot yvar is Rsguare.
xvar is p.
size=100,40.
no statistics.
symbol="'*"
minimum are 1,0.0.
maximum are 12,0.20.
/end
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Figure 21: PSR Command File which Generated Figqures 4.afp

iempty eocutp9r8 ok
$run *obmdp cprint=eoutp9r8 7=emmsfdrate par=p9r
/ problem title is 'EQUTP9RS8: no search, but investigate cur-ent
"best" model’ .
/ irput unit is 7.
cases are 524.
variables are 10.
format is ‘(3x,ad4,18x,f3.0.9%,f4.0.6(1%x,f3.0),1x,f4.0)".
/ variable names are lakel totfsh,date,colsze,tide, tidehi,tidemed,
’ time numchk L agechk,sqt ime, sqdate, sqage, sgnum,
3qcol, feedrate.
add=¢ .
label is label.
/ transform sqtime=time*time.
sqdate=date*date. ¢
sgage=agechk *agechk .
sgnum=numchk *numchk .
sqcol=colsze*colsze.
feedrate=totfsh/2.0.
/ regress dependent is feedrate.
independent are numchk,agechk,sgage,time,sqgtime.
method=none.

/ print news .
: noc shade.
matrices are corr,creg,rreg.
/ plot normal .

yvar are predictd.residual . residual,residual . residuartm,
residual,residual,residual,residual,residual.
residual,residual ,residual . residual, resigua’

xvar are feedrate.,predictd, feedrate,date,colsze.tice
tidehi, tidemed, time, numchk,agechk,sqtime, sagdate,
sqage.sqccl .

size=100,40.

hist.

/ end
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example of using the '/ plot' paragraph more than once,
where the reason behind doing so was the choice of a new

vertical axis variable.

Figure 19 shows the use of the PY9R program with the
specific request thatxthe method of maximum R? be used to
find the best 10 subsets as p varies from ! to 11. Some of
the results were given in Figure 2. Another interesting
feature shown there is the 'news' sentence in the '/ plot’
paragraph in order to get up-to-date information on the
latest program modifications. This feautre is not mentioned

in the BMDP manual (Ref.(4)).

Figure 20 shows the use of the P6D program to generate
the R2-plot, but using the file from Table 7 as input to
produce the output in Figure 3. The table itself was written

using the MTS file editor.

Figure 21 shows another PSR run but this time not for
any model searching (hence the 'method=none.' sentence in
the '/ regress' paragraph), but to take advantage of P9R's
use of double precision arithmetic to obtain more accurate
calcultions, and the program's plot facilities. The results

of the latter were given in Figures 4.a-p.
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CHAPTER 9

TECHNICAL SUPPLEMENT FOR CHAPTER 4

In Chapter 4, 3 methods were presented to try to modify
the current best model in order to yield a higher R? without
having to pay too high a penalty for doing so. There,
computer run results of Figures 6 through 10 were
introduced. The command source files which produced them

will now be discussed along with other runs of interest.

9.1 Computer Runs for Method 1 of Chapter 4

Figure 22 shows a command source file similar to Figure
18, except that now some interaction terms are defined and
included as potential explanatory variables. The parameter
'space=18000w' will be noticed in the 'Srun' command. The
purpose of this is to increase the storage space required
for the run. This will be explained in more detail in
Chapter 7 of Part B where such a request plays a more
predominant role. The results were partially shown in Figure

5.

The '/ plot' paragraph shows some interesting features.
Firstly, 'residual' is a system vector for this particular
program and contains residuals from the model of best fit,
which the program has selected. Secondly, residual as a

vertical axis for plots must be respecified for as many
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Figure 22: P9R Command File which Generated Figure 6

$empty -eoutp8Sr7 ok
$run *pmdp sprint=-eoutp8r7 7=emmsfdrate par=p3r space=18000w

/ problem

/ input

/ variable

/ transform

/ regress

/ print

/ plot

/ end

title is 'EOUTPO9R7: Best 10 subsets regression with
feedrate response & important interactions’.
unit is 7.
cases are 524.
variables are 10.
format is ‘(3x,a4,18x,f3.0,9%,f4.0,6(1%,f3.0),1x,f4.0)"’.
names are label, totfsh,date,colsze, tide, tideh, tidem,
time, numchk, agechk,sqtime, sqdate, sqage, sqgcol,
feedrate,cini,clai,cla2,t1al1,t1a2,t2at, t2a2,
niatl,n1a2,thti,tmt1,tht2, tmt2,c2n1,c2a1,c2a2.
add=21.
label is label.
sgtime=time*time.
sgdate=date*date.
sqgage=agechk*agechk .
sgcol=colsze*colsze.
cini=colsze*numchk.
clati=colsze*agechk.
cla2=colsze*sgage.
c2ai=sqcol*agechk.
c2a2=sqcol *sgage.
c2ni=sqcol*numchk .
tiai=time*agechk.
t1a2=time*sqgage.
t2a1=sqtime*agechk.
t2a2=sqtime*sqgage.
niai=numchk *agechk .
nia2=numchk*sqage.
thti=tideh*time.
tmti=tidem*time.
tht2=tideh*sgtime.
tmt2=tidem*sqtime.
feedrate=totfsh/2.0.
dependent is feedrate.
independent are date,colsze,tideh, tidem, time, numchk,
agechk,sqtime,sqgdate, sqgage, sqgcol,cini,
ciai,c1a2,t1a1,t1a2,t2a1,t2a2,n1a1,nt1az2,
thti,tmt1,tht2,tmt2,c2n1,c2a1,c2a2.
method=rsq.
tolerance=0.00001.
number=10.
news .
no shade.
normal.
yvar is residual,residual,residual,residual,residual,
residual,residual,residual,residual,residual,
residual,residual ,residual,residual,residual,
residual ,residual,residual,residual,residual,
residual,residual,residual,residual,residual,
residual,residual,residual,residual ,residual.
xvar are predictd, feedrate,date,colsze, tide, tideh,
tidem, time, numchk, agechk, sqtime,sqgdate, sqage,
sqcol,cini,clat,cla2,tl1al, t1a2, t2a1, t2a2,
ntat,nta2,thtt,tmt1,tht2,tmt2,c2n1,c2a1,c2a2.
size=115,50.
hist.
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plots as are desired. This contrasts with the P6D program
which has a 'cross' option so that a common vertical axis

need be specified only once.

Figure 23 shows the GLIM command file which generated
Figures 7.a through 7.c. It will be noted that use is made
of the GLIM 'SMACRO' command. This command is used to
specify user-defined routines which reguire more than one
line of typed instructions and are to be executed at least

twice,

Another method of detecting important interactions was
attempted along the lines of the graphical aids discussed in

Chapter 4. First the necessary data had to be obtained.

Figure 24 shows a P9R command file which reguests a fit
on the current best model of Chapter 3 and a file for saving
both the supplied input data and the model fit results,\
including the residuals. This data was saved for plots with
P6D runs which could not be done with the more limited plot
facilities in P9R (for example, P6D can do case selection
for plots through the 'group' sentence in a '/ plot'
paragraph whereas this is not possible in P9R). The '/ save'
paragraph option was used to store the data in the file
EPYRFILE and in the default unformatted binary layout. This
default can be overridden by specifying a 'format' sentence
in the '/ save' paragraph (Ref.(3) pg. 69). Nonetheless BMbP

programs are able to read unformatted binary files, and so
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Fiqure 23: GLIM Command File which Generated Figqures 7.a-c¢

$EMPTY EOUTGLIM40 OK

$RUN UNSP:GLIM {1=EMMSFDRATE 2=EOUTGLIM40

$C

$C GLIM RUN ON FILE EMMSFDRATE TESTING OUT NORMAL THEORY MODEL
$C

sc LA AR R R R R R R EREE R R R R RN R

$C * GET DATA & TRANSFORM =

sc LA R R R AR R RS SRR E R R BT

$C
$OUTPUT 2 132
S$UNITS 524

$DATA LABEL TOTFSH DATE COLSZE TIDE TIME NUMCHK AGECHK
$FACTOR TIDE 3

$FORMAT
(3X,F5.0,17X,F3.0,9X,F4.0,2(1X,F3.0),8X,2(1X,F3.0), 1X,F4.0)
$DINPUT 1

$LOOK 1 15 LABEL TOTFSH DATE COLSZE TIDE TIME NUMCHK AGECHK
$CALC FEEDRATE=TOTFSH/2.0

$C

$C  ADD QUADRATIC TERMS

5C :

$CALC SQDATE=DATE*DATE: SQTIME=TIME*TIME: SQAGE=AGECHK*AGECHK
$CALC SQNUM=NUMCHK*NUMCHK : SQCOL=COLSZE*COLSZE

$C

sc LA R R R R 2R R RRERRER R R 2R RESR R R 2R

.$C * SPECIFY MODEL TO BE ANALYZED *

$C * ALLOW FOR OVER-DISPERSION .

sc LA 22 2R 222 R R R RRRR R RRRRRERRRERERER R 31

$C

$YVAR FEEDRATE

$ERROR N

SLINK I

$SCALE © .
sC

sc ok ok o sk ko % o sk o ok e o e e e e e e o ek ok

$C * SET UP INPECT ROUTINE *

sc LA R R LR LR R SRR RS ERER R R 2 X

$C

$MACRO INSPECT $DISP A
$EXTRACT %VL
$LOOK 1 50 LABEL %FV %VL
$ENDMAC

$C

Lol A A A AL AR R Rl Sttt it it i iRttt

$C * NOW FIT MODELS -
$C © FIRST NULL MODEL *
$C * THEN CURRENT BEST MODEL e
$C * THEN FULL MODEL WITHOUT INTERACTIONS *
$C * THEN FULL MODEL WITH INTERACTIONS .
sc LA 22 RS R RE2 Rt RERRRRREZ 2R R R R 3 X
$C

$FIT %GM

$DISP A

$FIT AGECHK+NUMCHK+TIME+SQAGE+SQTIME
$USE INSPECT

$FIT +DATE+COLSZE+TIDE+SQDATE+SQCOL
$USE INSPECT

3C
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Figure 23, continued

$C CALCULATE APPROPRIATE CROSS-PRODUCTS

$C

$CALC AIN{I=AGEC*NUMC: A2N{1=SQAG*NUMC: A1T1=AGEC*TIME: A1T72=AGEC*SQTI

$CALC A2T 1=SQAG*TIME: A2T2=SQAG*SQTI: CIN1=COLS*NUMC: C2N1=SQCO*NUMC

$CALC C1A1=COLS*AGEC: C1A2=COLS*SQAG: C2A1=SQCO*AGEC: C2A2=SQCO*SQAG

$C

$C NOW GO AHEAD WITH MODEL WITH INTERACTIONS

$C

SFIT +AINI+ANT+AIT1+A1T2+A2T 1+A2T2+CINT1+C2N1+C1A1+C1A2+C2A1+C2A2+
TIME.TIDE+SQTI TIDE

$USE INSPECT

$STOP
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Figure 24: P9R Run to Save Data for P6D Run

$empty eoutp9r9 ok
$run *bmdp sprint=eoutp9r9 7=emmsfdrate 8=epSrfile par=pSr

/ problem

/ input

/ variable

/ transform

/ regress

/ print

/ save

/ end

title is 'EDUTPORS: re-run of current best model, but
create data file for P6D runs’.

unit is 7.

cases are 524.

variables are 10.

format is ’(3x,a4,18x,f3.0,9x,f4.0,6(1x,f3.0),1x,f4.0)’.

names are label,totfsh,date,colsze, tide,tidehi, tidemed,
t ime, numchk, agechk, sqtime, sqdate, sqage, sqnum,
sqcol, feedrate.

add=6.

label is label-

sgtime=time*time.

sqdate=date*date.

sgage=agechk*agechk.

sgnum=numchk*Numchk .

sqcol=colsze*colsze.

feedrate=totfsh/2.0.

dependent is feedrate.

independent are numchk,agechk,sgage,time,sgtime.

method=none.

news .

no shade.

unit is 8.

new. .

code is emms.
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the default was used since the file's sole purpose was to

provide input to a further P6D run.

Figure 25 shows the P6D run which was used to try out a
graphical detection of an interaction between AGECHK with
NUMCHK using the different values of NUMCHK:

single nest occupancy: NUMCHK=1
double nest occupancy: NUMCHK=2

The 3 graphs produced are shown in Figures 26.a through
26.c. The asterisk ('*') is reserved for cases where both
's' (single occupancy) and 'd' (double occupancy) are to

occupy the same spot on the plot.

The question of whether the separate plots for single or
double nest occupancies are sufficiently parallel to suggest
no interaction, however, is not easy to answer from the
graphs shown. Nevertheless it does seem that the separation
effect due to the different levels of NUMCHK is not verf
strong. Note that for ease of comparison between the 3 plots
P6D used the same horizontal and vertical scales in all of
them. This is because the scales are determined from all
cases before the subcases are selected for actual plotting.
The user can override this by specifying different scales
with each plot request. In any case, 'formal’' methods such
as the PO9R run would still be used to quantify graphical -

intuition. This graphical approach was not pursued further.
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Figqure 25: P6D Command File which Generates Figures 26.a-c

$empty eoutp6d3 ok

$run *bmdp sprint=eoutp6d3 8=epSrfile par=péd

/ problem title is 'EOUTP6D3: plot of results from p8r8 run &
search for interactions with numchk’ .

/ input unit is 8.
code is emms.
/ variable grouping is numchk.
/ group codes(9) are 1,2.
names{(9) are single,double.
/ plot yvar is feedrate.

xvar is agechk.
group is single.
group is double.
groups are single,doublie.
o no statistics.
size is 100.40.
/ end
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Fiqure 26.a: FEEDRATE against AGECHK for NUMCHK=1

L S e L L 2 T T e L O S O T S T B (e U SO S S ST SR S S S S S SR S Y
w0
2]
2]
(] [/}
n 2]
w0
7] n w0
n (2] w0
4] ]
(2] (4]
n (4]
(] 1] w
(2] (4]
wn 1] 2]
4] 2]
5] (] w 7]
(7] w
(4] 4] 2]
wn 4] 7]
4] ['4] 4] %]
n ] (2] n
(4] w N
(2] 1] w0
5] %]
(4] 4] 7]
w w
w 2] 0w n -
w
%] wn
w (77} wn
"
(7]
n w
n
w n
w
7]
7]
e L e e e S e R 2 T T S T T T S S R N S SN |
o © - < o]
. . ~
™ o o -

22 26 30 34 38 42

i8

14

10

44

40

36

32

28

24

20

16

12

agechk



Figure 26.b: FEEDRATE against AGECHK for NUMCHK=2
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Figure 26.c: FEEDRATE against AGECHK for

all NUMCHK values

L I R T T T R T R S S T A R R |
R
+
-
+

12}
+ v
+
. T
+
. T
+

T

+
S

T
+ T
- Re] T
- >
. n 1]
-+
. T ]
+
T
+ 7]
7]
+ T
T
-+
+ T
. n
+
+
+
- | i 1 1 i [ ) ] I 1 1 + P t ¢ L 3 t
i -] -
o] ™~ ™

sd ds

*

*

s d

dsd s s d

*

v

s s

s d s

*

) +

O

.2éA-' 26- 30. 34 38 42

18

10'

14

6.

144

49

36

32

28

24

20

16

agechk



9.2 Computer Runs for Method 2 of Chapter 4

Figure 27 shows the command source file of PY9R commands
which produced the model search for log-transformed FEEDRATE
in Figure 8. Similarly Figure 28 shows the source file of
PSR commands which did the search for sguare root

transformed FEEDRATE in Figure 9,

9.3 Computer Runs for Method 3 of Chapter ¢

Figure 29 shows the source file of commands from the
GLIM statistical software package used to fit a null model,
maximal model without interactions, and maximal model with

interactions. The results were highlighted in Figure 10.

As noted in Chapter 4, the generalized R? measure:

D(current mode!l)
D(null model)

R2=1
4

seems to perform more poorly than the R? for the
normal-theory multiple linear regression. Also as noted in
Chapters 4 and 8, for normal-theory regression:
SS(error)=D(current model)
SS(total )=D(null model)
and thus R2=R; but in general this is not necessarily true.
In particular, for the log-linear model pursued in Method 3

of Chapter 4, the scaled deviance, S(ik,y), is given by:

n
S(g,z)=2z yl.ln(%i:)'(yi'ﬁi )

i=1
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Figure 27: P9R Command File which Generated Fiqure 8

$empty -eoutp9r3 ok
$run *omdp sprint=-eoutp9r3d 7=emmsfdrate par=p9r
/ problem title is 'EOUTPOR3: logfdrti with original explanatory
variables--best 5 subsets regression:
feedrate transformed’.
/ input unit is 7.
cases are 524,
variables are 10.
format is ‘(3x,a4,18x,f3.0,9%x,f4.0,6(1x,¥3.0),1x,f4.0)".
/ variable names are label,totfsh,date,colsze, tide, tidehi, tidemed,
time, numchk , agechk, sqt ime,sqdate, sqage, sqcol,
feedrate, logfdrti.
add=6.
label is label.
/ transform sqtime=time*time.
sqdate=date*date.
sqagesagechk*agechk.
sqcol=colsze*colsze.
feedrate=totfsh/2.0.
logfdrti=1n(feedrate+0.1).
/ regress dependent is logfdrti.
. independent are date,colsze, tidehi, tidemed, time, numchk,
agechk,sqtime, sqdate, sqage,sqcol.
method=rsq.

/ print news .
no shade. .
/ plot normal .

yvar are residual,residual.
xvar are predictd,logfdrti.
size=115,50.
hist.

/ end
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Fiqure 28: P9R Command File which Generated Figqure 9

$empty -eoutpSriQ0 ok
$run *omdp sprint=-eoutp9ri10 7=emmsfdrate par=pSr

/

/

probiem

input

variable

transform

regress

print

plot

end

title is 'EOUTPOR10: sartfdrt with originail explanatory
variables--best 5 subsets regression:
feedrate transformed’.

unit is 7.

cases are 524.

variables are 10.

format is ‘(3x,a4,18x,f3.0,9%,f4.0,6(1x,f3.0),1x,.f4.0})"

names are label,totfsh,date,colsze, tide, tidehi, tidemed,
time, numchk , agechk , sgt ime,sqdate, sqage, sqcol,
feedrate,sartfdrt.

add=6.

label is label.

sgtime~time*time.

sqdate=date*date.

sgage=agechk*agechk .

sqcol=colsze*colsze.

feedrate=totfsh/2.0.

sqrtfdrt=sqrt(feedrate).

dependent is sqrtfdrt.

independent are date,colsze, tidehi, tidemed, time, numchk,

agechk, sgtime, sqdate, sqage, sqacol.

method=rsq.

news.

no shade.

normal . .

yvar are residual,residual.

xvar are predictd,sqrtfdrt.

size=115,50.

hist.
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Fiqure 29: GLIM Command File which Generated Fiqure 10

$EMPTY -EOUTGLIM37? OK
$RUN UNSP:GLIM 1=EMMSFDRATE 2=-EOUTGLIM37?

3C

$C GLIM RUN ON FILE EMMSFDRATE TESTING OUT LOG-LINEAR MODEL

$C LOOK AT FULL MODEL FROM EOUTGLIM16, DO SOME PLOTS, & TRY TO
$C IMPROVE FITS BY INTERACTIONS

$C

$C e e T ke T ok o ok T o ok T 3k i e ek ok ok o e e ok K

$C * GET DATA & TRANSFORM *

$C oo o o o ke K o e oK Wk ok ko kK

$C
$0UTPUT 2 132
SUNITS 524

$DATA LABEL TOTFSH DATE CDLSZE TIDE TIME NUMCHK AGECHK
$FACTOR TIDE 3
$FDRMAT
(3x,F5.0,17X,F3.0,9X.F4.0,2(1X,F3.0),8X,2(1X,F3.0),1X,F4.0)
$DINPUT 1
$LOOK 1 15 LABEL TOTFSH DATE COLSZE TIDE TIME NUMCHK AGECHK
$C .
$C ADD QUADRATIC TERMS
$C
$CALC SQDATE=DATE*DATE: SQTIME=TIME*TIME: SQAGE=AGECHK=*AGECHK
$CALC SQNUM=NUMCHK*NUMCHK: SQCOL=COLSZE*COLSZE
$C
(YRR E R R L RS R R R R R S R R 2
$C * SPECIFY MODEL TO BE ANALYZED *
$C * ALLOW FOR OVER-DISPERSION *
(Yol L R RS R R R S I R R E R R R L L L]
$C
$YVAR TOTFSH
$ERROR P
$LINK L
$SCALE ©
$C .
PC **xxkxmrrrrmnnrdrhnnnnhhnkn -
$C * SET UP OUTPUT ROUTINE *
$C LA AR EE RS EEEEREEEEEEE R R 2]
$C
$0UTPUT -2 115 S0
$MACRO SEERESULTS $DISP A
$CALC RESID=TOTFSH-%FV
$PLOT %FV TOTFSH
$PLOT RESID %FV
$PLDT RESID TDTFSH

$ENDMAC
$C
$C IR E R E R REE SRR R R R R EEEREERE R EEEEREERERZER R R R R R R R R R R R R R R R R R R RER R N2
$C ®* NOW FIT MODELS .
$C * FIRST NULL MODEL & ITS PLOTS -
$C ® THEN TRY SOME MODELS WITH INTERACTIONS & THEIR PLOTS *
$C RS A EEEEEEE R RS SRS ERERE R R R LR Rt R s R Rt R R R R R R RS
$C
$FIT %GM
$DISP A

$FIT NUMCHK+SQDATE+DATE+TIME+SQTIME+TIDE+COLSZE+SQAGE+AGECHK+SQCOL
$USE SEERESULTS
$C
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Figure 29, continued

$C CALCULATE APPROPRIATE CROSS-PRODUCTS

$C

$CALC AIN1=AGEC*NUMC: A2N1=SQAG*NUMC: A1T1=AGEC*TIME: A1T2=AGEC*SQTI

$CALC

A2T1=SQAG*TIME: A2T2=SQAG*SQTI: CIN1=COLS*NUMC: C2N1=SQCO*NUMC

$CALC C1A1=COLS*AGEC: C1A2=COLS*SQAG: C2A1=SQCO*AGEC: C2A2=S5QCO*SQAG

$C

$C NOW TRY THEM OUT

$C

$FIT
$USE
$FIT

$USE
$FIT

$USE
$FIT
$USE
$FIT
$USE
$C
3$C
3$C
$FIT

$USE
$STOP

NUMC+SQDA+DATE+TIME+SQTI+TIDE+COLS+SQAG+AGEC+SQCO+AIN1+A2N1
SEERESULTS
NUMC+SQDA+DATE+TIME+SQTI+TIDE+COLS+SQAG+AGEC+SQCO+A1T1+A1T2+
A2T1+A2T2
SEERESULTS
NUMC+SQDA+DATE+TIME+SQTI+TIDE+COLS+SQAG+AGEC+SQCO+C1A1+Ci1A2+
C2A1+C2A2
SEERESULTS
NUMC+SQDA+DATE+TIME+SQTI+TIDE+COLS+SQAG+AGEC+SQCO+C1N1+C2N1
SEERESULTS
NUMC+SQDA+OATE+TIME*TIDE+SQTI*TIDE+COLS+SQAG+AGEC+SQCO
SEERESULTS

NOW TRY FOR THE WHOLE THING
NUMC+SQDA+DATE+TIME*TIDE+SQTI*TIDE+COLS+SQAG+AGEC+SQCO+AINTI+A2N1+

AITA1+AIT2+A2T1+A2T2+CIN1+C2N1+C1A1+C1A2+C2A1+C2A2
SEERESULTS
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(Ref.(8) pg. 25). Unscaled deviance, D(currenlAmodel), is
defined by:

D(current model)
02

S(u,y)=

where 0%2=1 is used for a Poisson likelihood without
over-dispersion., Clearly, then:
D(current model )#SS(error)
since:
SS(error)=e'e=(y-p)"'(y-i)
n
- - 2
-_E (yl. “i)
i =1

It should be pointed out that this time:

where
¥=xb

Nonetheless, D(current model) is the goodness-of-fit measure

which GLIM uses.

It will be recalled, however, that SS(error) for the
log-linear model exceeded that for the normal theory model
when the same 5 explanatory variables (NUMCHK, AGECHK, TIME,
SQAGE, SQTIME) were used. This was shown in Figures 11.a and
11.b. The GLIM command file which generated these figures is
shown in Figure 30. An important feature of this program is
the calculation of SS(error) (stored in the scalar '%S')
using the '%CU' function. This functién is designed to give
a result of the same size as its argument (here a vector of

524 entries), but the assignment of this result to the
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Figure 30: GLIM Command File which Generated Figures 11.a-b

$EMPTY EOUTGLIM32 OK
$RUN UNSP:GLIM {1=EMMSFDRATE 2=EOUTGLIM39

$C

$C GLIM RUN ON FILE EMMSFDRATE TESTING OUT
$C CURRENT BEST MODEL

$C USING BOTH NORMAL THEORY

$C AND LOG-LINEAR REGRESSION MODELS

$C

sc ko kkkk kR ko k kR Rk kK ok

$C * GET DATA & TRANSFORM *

sc 3 3k 3k 3k 3k 3k 3 a3k dodk ook ok o o 3k ok dkok ok ok ok ok

$C
$0UTPUT 2 132
$UNITS 524

$DATA LABEL TOTFSH DATE COLSZE TIDE TIME NUMCHK AGECHK
$FACTOR TIDE 3

$FORMAT
(3X,F5.0,17X,F3.0,9X,F4.0,2(1X,F3.0),8X,2(1X,F3.0),1X,F4.0)
$OINPUT 1

$LOOK 1 15 LABEL TOTFSH DATE COLSZE TIDE TIME NUMCHK AGECHK
$CALC FEEDRATE=TOTFSH/2.0

$C

$C ADD QUADRATIC TERMS

$C

$CALC SQDATE=DATE*DATE: SQTIME=TIME*TIME: SQAGE=AGECHK*AGECHK
$CALC SQONUM=NUMCHK*NUMCHK: SQCOL=COLSZE*COLSZE

$C

sc R R EEE S R SR RS R R R R R R R R R R R R R

$C * SET UP MODEL ANALYSIS ROUTINE * i
$C * FIT NULL MODEL *
$C * FIT CURRENT BEST MODEL *
$C * AND CALCULATE RESIDUAL SUM OF
$C ® SQUARES *
$C e 3 ok oo sk oo dk ook ok 3k o3k o o ok ok 3k o 3k ok ol o ok ofe o ok ok ok ok ok ok ke ok b
$C .
$MACRO FIT $FIT %GM -
$DISP A
$FIT NUMCHK+AGECHK+TIME+SQAGE+SQTIME
$ACCURACY 9
. $DISP A
$CALC RESID=%YV-%FV
$CALC SQRESID=RESID*RESID
$CALC %S=%CU(SQRESID)
$LOOK %S
$ENDMAC
$C
sc LR E R R R R R R R R REERERERRRER R R R R R ]
$C * NORMAL THEORY MODEL .
$C * SPECIFY MODEL TO BE ANALYZED =*
$C * ALLOW FOR OVER-DISPERSION *
sc 2R R E R R R R R R R R R R R R R R R R R
$C '
$YVAR FEEDRATE
$ERROR N
$SLINK I
$SCALE O
$C

$C NDW GET MODEL FIT RESULTS
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Fiqure 30, continued

$C

$USE FIT

$C

sc 2 RS FEEEEEERRSRRERRRRRR SRR R 02
$C * LOG-LINEAR MODEL .
$C * SPECIFY MODEL TO BE ANALYZED *
$C * ALLOW FOR OVER-DISPERSION -
sc LEEFEFE SRR R 22 RS RR R 2R R R R R R R R R
$C

$YVAR TOTFSH

$ERROR P

"SLINK L

$SCALE ©

$C

$C NOW GET MODEL FIT RESULTS

$C

$USE FIT

$STOP
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scalar '%S' has the effect of '%S' taking on the last entry
in that result vector. Consult Section 10.2 of Ref.(2) for

details.
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CHAPTER 10

TECHNICAL SUPPLEMENT FOR CHAPTER 5

This discussion is concerned with the estimates and

associated standard errors mentioned in Section 5.4.

some extended notation is needed:

At 2=t 2~1 2= 2-729

D"M"'D
ap=age of chicks at dawn (:

D

a,=age of chicks at ?

Aa=aD-aM

2_.,2_.2
Aa =ap aj,

SO:

- 24 2
Jp=bytb, (NUMCHK)+b2aD+b3£D+b aj*bgtf

2 2
M—b0+b (NUMCHK)+b2aM+b3 M+b4aM+b5zM

yD-yM=d
= 2 2
.-b Aa+b3Az+b4Aa +b5Az

=c'b

where:

(0,0,4a,Ar ,Aa%,At?)

b'=(b,,b,,b_,b,,b,,b.)

0’ ]’ 2’ 3’ 4’ 5
Furthermore, d is a 'best' (minimum variance)

unbiased estimator of:
6=E(Y|zD)-E(Y|zM=27)
by Gauss' Theorem (Ref.(6) pg. 301).
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Now:

2_,2-,2
Aa aD aM

=(aD-aM)(aD+aM)

=Aa(2aD+Aa)

Suppose dawn occurs at 0530H, that is,

tD=11

Then:

>
)
1
\
w|—

At =-16
At 2=-608

d=yp

=-%b2-16b3-%b4<2a0-%>-608b5
From the current best model:
9'=(0.873,0.243,0.545,-0.0845,—0.00121,0.00156)
so the only unknown left is ap-. Rather than estimate d\
separately for each ap, suppose that Aa, being 0 to the

nearest whole day, can be ignored. Then:

d~k'b
where
k'=(0,0,0,Ar,0,4r%)
=(0,0,0,-16,0,-608)
so

d~-16(-0.0845)-608(0.00156)
=0.404

Now in general, if:

b=(x'%)"'x'y
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then, according to Ref.(6) pg. 300:

E(b)=8

Cov(Q)=(X'X)_1a2
so that:

I-N (0,0%1 )
gives:
9~Np+1(§,(x'x)_1az)

provided that the matrix X was full rank (Ref.(13) pg. 28),
which was ensured in this analysis by removing all extrinsic

and intrinsic aliasing (see Section 4.3 of Ref.(2)).

Furthermore:

k'b~N(k'8,k'(X'X) ko?)

c'bN(c'g,c' (X'X) 7 'co?)
(Ref.(13) pg. 28). Thus a 95% confidence interval for k'g
would be:
(k'b-2(0.975)oyk' (X'X) 'k,k'b+z(0.975) ovk' (X'X) " 'R)

where z(y) represents the 100y% percentage point of a N(0,1)
distribution. As usual, however, o¢? is unavailable and must

be estimated by s5? where:

,_SS(error)
SR T = p1

which will require a t-distribution with n-p-1 degreees of
freeedom in the consequent confidence interval:
(k'b-t(0.975; n=p=1)sv/k' (X'X) " 'k,

E'Q+t(0.975;n-p-1)s/£'(x'x)_

%)

where now t (y;v) represents the 100y% percentage point of a

t-distribution with » degrees of freedom.
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Now:
52k (X'X)” 'k=k' (C5v(b) )k
where Cov(b) is just the. sample dispersion or
variance-covariance matrix for b shown in Figure 10, Also,
one can take advantage of the zeroes in k to obtain the
simplification:

k' (Cov(b))k

=(At At 2) <s2(b3) Cov (b ,bSD At)
C6v(b3,b5) sz(bS) Ar 2

=(-16,-608)/ 0.413297*10"-3 -0.814613*1o-f> (-16
<—0.814613*10‘5 0.164207*10-5/ \-608/

=8.014%*10-3

so the sample standard error of k'b is:

s(k'b)=y/s2k' (X'X) 'k
=/k' (C3v(b))k
=/8.014%10-3

=8.952*10"2
But again, this is a standard error for k'b, not d=c’'b,

which would be a function of ap-

Note that the Cov(b) matrix does not come with the PSR
output by default but must be requested in the '/ print'
paragraph (see the corresponding command file, Figure 21).
Note also that this would be one way to‘get a scaled (X'X)_1
matrix for possible future calculation requirements (such as
Working-Hotelling confidence bands); the entries of C&v(b)

are just those of (X'X)”! multiplied by:

2_ SS(error)

T -=0.288215

A
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which is just the residual mean square from Figure 4.

Unforunately as can be seen from Figure 10 the entire
Cov(b) matrix is not given. The row and column for the
constant term are missing, which explains why the matrix
given there is 5 by 5 rather than 6 by 6 as it should be. As
will be seen in Part B (Figure 32), however, the full Cov(b)
matrix may be obtained in a GLIM run, in this case on a

normal theory regression model.
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PART B
MODELLING ACTIVE NEST OCCURENCE IN DECIDUOUS TREES BY

PRIMARY EXCAVATOR BIRD SPECIES
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CHAPTER 1

THE PROBLEM

Dagmar Gook, graduate student in the Dept. of Biological
Sciences, presented data collected in a study of trees in
the B.C. interior, near Kamloops. The site at which she
studied forms part of what is known as the Interior
Douglas-fir Biogeoclimatic Zone. Such zones are used by
biologists to classify areas in which trees grow. A tree was
examined for presence or absence of an active nest, that is,
a nest which was excavated in the tree itself and was

currently being inhabited.

It was of interest to investigate whether the presence
of such a nest in a tree (to be hereafter referred to as a
'success') was associated with any of the other
characteristics measured for that tree. Once such a set of
associated characteristics could be found, a ranking of
their relative 'importance' would then be of interest. The
results of such a study would be valuable to forestry and
wildlife managers who may wish to encourage or discourage

such activity.

The analysis was to be carried out specifically only for
deciduous (non-evergreen) trees and for those species of
birds who are 'primary excavators', that is, those birds who
will dig their own nests and not use an already existing but

vacant cavity. Those species will be identified in the next
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chapter.

The results of this analysis are to be applied to the
population of deciduous trees in all of the Interior
Douglas-fir Biogeoclamatic Zones found in B.C., which are
basically restricted to the low altitude regions of the
southern interior. As it turned out a final model (to be
identified in Chapter 3) was obtained using stepwise
logistic regression, This model used up all the explanatory
variables with which it was provided. It also contains no
interaction terms.  The 2 quantitative variables, length and
height of tree, were entefed into the analysis in natural
log (base 'e') scale. For the qualitative variables, strict
0,1-coding was used, where the first level of any such

variable forced all applicable design variables to 0.

In logistic regression, the guantity being modelled is
not directly probability of success, but is instead log odds
of success. An increase in log odds, however, will lead to
an increase in probability. In this sense, nesting was
positively associated with height and diameter, so trees
which were taller or thicker (or both) had a higher nesting
rate than trees which were respectively shorter or thinner
(or both). Similarly of the 3 tree species classes (aspen,
birch, 'other'), aspen trees had higher nesting rates than
birch, which in turn had higher rates than 'other' (all
other quantities being equal). Nesting was further

positively associated with fungal conks, scars, and broken
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tops. Also, dead trees showed higher rates than live ones
having similar characteristics (other than live/dead

status). Details are given in Chapter 3.

As for the ranking of the variables in importance to the
final model, it was proposed that the order of entry in the
stepwise process would be the most useful to resource
management personnel, but other rankings were also
attempted. In all of them, presence or absence of fungal
conks was clearly the most 'valuable' to the final model.

Details are given in Chapter 4.

Regarding the sample data as a representative random
sample from the target population mentioned above, an
example inference was done for an aspen tree in the sample,
where the fitted log odds value was found to be:

7=1.5006
with an estimated sample variance of:

s2(f)=var(§)=0.0566

This value of 7 then leads to an estimated probability:

1=0.8177
which estimates the probability of success for all trees in
the target population which have similar characteristics to
the example one selected here. By using s2(%) as well, one
could further obtain a prediction probability:

uP=0.8176
which predicts the probability of success for an individual

tree within the population. This Hp is of course subject to
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a higher degree of imprecision than &, which is why Kp is
closer to 0.5 than u. A value of up would reflect a toss of
a fair coin as a guess of success or failure for a single

tree. Details are found in Chapter 5.

The client report is féund in Chapters 1-5 , and the
technical supplements for each chapter in Chapters 6-9 of
this part, with Chapter é providing the technical supplement
for Chapter 2, and so on (no technical supplement was needed

for Chapter 1).
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CHAPTER 2

THE DATA

Dagmar permitted access to a data file which contained
all of the characteristics measured on the trees along with
a record of success (active nest present) or failure (no
active nest). A portion of this file is shown in Table 8.
For each observation (tree) in the file, there are 2

consecutive records, the formats of which are as follows.

Variable ‘ Column Range
RECORD 1
(1) Nest Tree Number/Plot Number 1-3
(2) Blank or Tree Number 5-7
(3) Tree Species " 9-10
(4) Diameter of Tree 12-15
(5) Height of Tree 17-21
(6) Tree Live or Dead Indicator 23
(7) Decay Type | Indicator . © 25-26
(8) Decay Type 2 Indicator 28-29
(9) Decay Type 3 Indicator 31-32
(10) Decay Type 4 Indicator | 34-35
RECORD 2
(11) Presence/Absence of Active Nest 8-10
(Success/Failure)
(12) Birdspecies 12
(13) Live or Dead Wood in Tree around 30
Nest Indicator
(14) Broken Top of Tree Indicator 32
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Table 8: Portion

of Raw Data File

Bl
NT
A

NT
BI
NT
A

NT

24.

N
39
S

28.

B

38.

S

40.

p

38.

p

24.

F

20.

25.

12.95 L 37 a3
S 9.36 48 D

S 15.29 48
2.63 D 37 39

0
0
.5 24.57 L 37 39 43
0
0

F 2.12 48 D

3 18.43 L 37 43
F 12.21 48

6 23.25 L 37 39 43
0 P? 12.62 {6

3 7.68 D

F 7.10 40 D

4 4,71 D 37

0 F? 4.39 32 D 1
S 8.45 D 39

0 H? 8.21 40D 1
0 11.93 L 37 39 43
F 11.21 24 D 1
3 13.73 D 37 39

F 10.29 64 D |
3 6.70 0 37

F? 5.89 16 D 1
8 12.53 L 37 43
F 11.83 32 D
0

F

11.56 L 39 43

0 5.54 48 D 1
.2 16.35 L 37 43
F 9.11 24

.5 5.25 D 37 39

F 3.50 40 D 1
.0 23.42 L 37 43
F 13.44 8

.5 27.17 L 37 43
F 9.14 8

.6 18.81 L 37 43
F 9.61 40
.1.20.41 D 37

F 9.10 32 D
.7 8.86 D 39

F N? 5.39 16 D 1
.9 12,32 L 43
0?2 ? 11.39 8

.6 20.24 L 37 43
F 8.61 32

.4 22.57 L 37 43
F 7.79 8

.8 23.12 L 37 43
F 9.50 48

.1 5.35 D

? 4.39 40 D 1
.1 13.62 L 37 43
F 4.39 40

.8 11.32 L 37 39 43
F 9.44 56 D 1
.0 8.55 L 37 39 43
F 7.83 64 D 1
.5 8.80 L 37 43
F 6.91 16 D
.7 14.02 D

F 12.29 48 D 1
.2 3.15 D 37 39

0 2.79 24 D 1
.0 21.16 L 37 43
0O P 11.59 48

.0 21.16 L 37 43
0 11.59 48

166

44

44

44

44

44

44

a4

a4

a4

a4

a4
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44

A

A

u

IF

M H?

M bl

S ?

DM H2S

S ?

D S

DS ?2S?

BS

D S

S ?

BLS H?P

D S

D S

BSL ?7?P
s?

S ?

SOL ?NP

D S

M bl

M ?

iN
1H
1#S 1#S7?

1H?

1S?
1S 1?2 1#S?
1S 1?
i1N?

37

45

1?

5S 1P

1S 1472
2S 1H?

25

1S?

3P 1S?

257

1H?

i8?

1S

25

25
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Other data in the file was ignored for this analysis.
The variables as given above are now described in more
detail. A P will be used to denote a blank character. The
names of the variables to be retained in the analysis will
be capitalized hereafter.

A) Response Variable, ACNEST (RECORD 2, column 9-10)

This is the outcome (success/failure)'variable. As found in
the raw data file, it takes on the following values:

NT: Nest Tree--active nest present
B : no active nest present

In order to make these values readable by all anticipated
statistical software, they were recoded as follows
ACNEST= 1, if active nest present
0, if no active nest present

In the case of abandoned nests, which had been
previously established by a primary excavator birdspecies,
it was agreed to consider such a tree as a failure since the
reason for the nest's abandoned state may be that the tree
acquired a new characteristic which it did not have before
the nest was established. This new characteristic may have
led to the nest's abandonment.

B) Description of Candidate Explanatory Variables

B.1)Tree Species (RECORD 1, col. 9-10)

This qualitative variable may take on the following

codes:
A -Aspen
BI-Birch
CT-Cottonwood
W -Willow
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D =-Alder

F -Douglas Fir

S -Spruce
PY-Ponderosa Pine
J -Juniper

Only the first 5 tree species were to be kept in the
analysis since the remainig species were coniferous
(evergreen). A blank line was used in the above list to
separate visually the deciduous from the coniferous trees.
For the species to be retained in the analysis, the
following recoding was done:

SPTREE= 1, for tree code A (aspen)
2, for tree code BI (birch)
3, otherwise (codes CT, W, D)

B.2)Diameter of Tree (RECORD 1, col. 12-15)

This is measured in centimetres, and will be hereafter
referred to as DIAM.

B.3)Height of Tree (RECORD 1, col.17-21)

This is measured in metres, and will be hereafter
referred to as HEIGHT.

B.4)Decay Type 1 Indicator (RECORD 1, co0l.25-26)

This gualitative variable takes on the following codes:
7: fungal conk present

: no fungal conk
For the analysis, this was recoded as:

DI1= 1, if fungal conk is present
0, otherwise

B.5)Decay Type 2 Indicator (RECORD 1, col. 28-29)
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This qualitative variable takes on the following codes:
39: scars present on tree
B : no scars on tree
For the analysis, this was recoded as:

DI2= 1, if scars present on tree
0, otherwise

B.6)Decay Indicator Type 3 (RECORD 1, col. 31-32)

This qualitative variable takes on the following codes:

43: dead branches present
B : no dead branches

For the analysis, this was recoded as:

DI3= 1, if dead branches present
0, otherwvise

B.7)Deadwood

This variable did not appear on the data files, but at
Dagmar's reguest was computed as a function of:

Tree Live or Dead Indicator (RECORD 1, col. 23)
Decay Type 4 Indicator (RECORD 1, col. 34-35)

The variable 'Tree Live or Dead Indicator' takes on the
following values:

L: tree is alive
D: tree is dead

and 'Decay Type 4 Indicator' may take on the following

values:

: tree top either broken or dead
B : tree top both intact and alive (full top)

The variable 'Deadwood’', to be herafter referred to as

DWOOD, was then created as follows:
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Tree Live'or Dead Decay Type 4

Indicator Indicator DWOOD
L B : 1
L 44 2
D B No Value
D 44 2

No value 1s assigned to DWOOD in the 3rd case above
since 'D' and 'B' is an illegal combination; a dead tree
cannot have a live top. Thus:

DWOOD= 1, if tree is completely alive and has an

intact top
2, otherwise

B.8)Broken Top (RECORD 2, col.32)

This qualitative variable is used to specifically detect
cases of trees with broken tops, regardless of whether those
trees are alive or not. It takes on the values:

1: top of tree broken

B: top of tree intact (not broken)
For the analysis, this was recoded as:

BKTOP= 1, if top of tree is broken

0, otherwise

C) Further Case Selection Variable

The raw data file contains cases of both primary and
secondary bird species. The variable 'Bird Species' (RECORD
2, col. 9-10) takes on the following values:

S-yellow bellied sapsucker

P-pileated woodpecker
N-red breasted nuthatch
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F-northern flicker

‘H-hairy woodpecker

D-downy woodpecker

?-one of the above, possibly H but definitely not
S or P; unconfirmed in any case

B-necessary code for trees with no active nest,
hence no bird species to classify

B-black capped chickadee
G-golden eye

K-American Kkestrel
M-mountain chickadee
Q-flying squirrel

R-red squirrel

T-tree swallow

W-white breasted nuthatch

The last 8 bird species in the above list are secondary
excavators, and thus records containing such species were
not to be included in the analysis. Again, a blank line was
used to separate cases to be used in analysis from those
which were to be rejected. For this analysis the remaining
acceptable bird species were recoded:

SPBIRD= for bird species code
for bird species code
for bird species code
for bird species code
for bird species code
for bird species code

for bird species code
for bird species code

wvOoOxEr®mZowm

L R L T L T I

1
2
3
4
5
6
7
8

Once the variables of interest were identified, the raw

data file was edited by a FORTRAN program (shown in the

Technical Supplement) in order to:

(a) remove observations which contained unwanted cases of
SPTREE or SPBIRD

(b) remove duplicated records (since raw data file itself

was a merger of 2 previous files), which were all cases
of success after record 564 of the input file '
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(c) flag (but not remove) cases of '?' for SPBIRD so that
such cases may be confirmed

(d) create and assign values to new variable DWOOD

(e) perform all recodings indicated thus far, since not all
statistical software packages (e.g. BMDP) can accept
alphabetic input for variables other than labels

(f) put all acceptable cases (including flagged ones in (c)
above) into a new file containing variables selected for
analysis and a coded tag to identify it

The tag referred to in (f) above is the line number from the

raw data file in which a particular case began. Since every

case required 2 consecutive records of data, all the tags

are therefore odd numbers. This tag will be hereafter

referred to as RECNUM.

Both the cases which were to be removed (excluded from
the analysis) and those which were flagged in (c) above (but
kept in the analysis) had their reasons for being singled
out put jnto_a 'reject’ file. Table 9 shows a portion of the
file GOOKNESTS, which contained the edited records which
were to be kept in the analysis. The data values are given
in the order:

RECNUM
ACNEST
SPTREE
HEIGHT
DIAM
DI1
DI2
DI3
DWOOD
BKTOP
SPBIRD
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Table 9: Portion of GOOKNEST5S

1.0 1. 2. 12.85 24.00 1. 0. 1. 2. 0. 3.
3.0 1. 1. 24.57 39.50 1. 1. 1. {. O. 1.
7.0 1. 1. 18.43 38.30 1. O. 1. 1. 0. 1{.
9.0 1. 1. 23.25 40.60 1. 1. 1. 1. 0. 2.
11.0 1. 1. 7.68 38.30 0. 0. 0. 2. 0. 2.
13.0 1. 2. 4.71 24.40 1. 0. O. 2. 1. 4.
17.0 1. 2. 11.93 25.00 1. 1. 1. 2. 1. 3.
19.0 t+. 2. 13.73 30.30 1. 1. O. 2. 1. 8.
23.0 1. 2. 12.53 26.80 1. O. 1. 2. 1. 3.
25.0 1. 2. 11.56 26.00 0. 1. 1. 2. O. 1.
27.0 1. 1. 12.03 22.60 O. O. 1. 2. 0. 3.
29.0 1. 1. 17.70 32.20 0. 1. 1. 1. 0. 1.
33.0 t. 1. 16.35 29.20 1. O. 1. 1. O. 5.
37.0 1. 1. 23.42 60.00 1. O. 1. {. O. 1.
39.0 1. 1. 27.17 30.50 {. O. 1. 1. O. 1.
4t1.0 1. . 18.81 35.50 1. O. 1. 1. O. 2.
43.0 1. t. 20.41 20.10 1. 0. 0. 2. O. {.
45.0 1. 1. 8.86 28.70 0. 1. 0. 2. 1. 3.
49.0 1. 1. 20.24 28.60 1. O. 1. 1. O. 1.
51.0 1. 1. 22.57 42.40 1. 0. {. 2. 0. 2.
53.0 1. 1. 23.12 60.80 1. O. . 1. O. 1.
57.0 1. 1. 13.62 23.10 1. O. 1. 1. O. {.
59.0 1. 2. 11.32 29.80 1. 1. 1. 2. 1. 1,
63.0 1. 2. 8.80 30.50 1. O. {. 2. 0. 1.
65.0 1. 1. 14.02 27.70 0. O. 0. 2. 1. {.
69.0 1. 1. 21.16 44.00 1. O. 1. 1. 0. 4.
71.0 1. 1. 21.16 44.00 1. O. 1. 1. 0. 2.
73.0 1. 1. 25.79 44.00 0. 1. 4. 1. O. 2.
79.0 1. 1. 24.91 36.10 1. 1. 1. 1. 0. 1.
81.0 1. 1. 20.64 34.00 0. 1. 1. 1. O. 1.
83.0 1. 1. 21.91 22.70 1. 1. O. 2. {. 8.
85.0 1. 1. 24.96 42.80 1. 1. {. 1. O. 1.
87.0 1. 1. 6.06 17.40 0. 1. 1. 2. O. 5.
89.0 1. 1. 14.29 27.90 1. O. 1. 1. O. f.
91.0 1. 1. 8.78 30.00 0. O. 1. 2. 1. (.
93.0 1. 1. 21.16 44.00 1. 0. 1. 1. O. 1.
99.0 1. 1. 19.84 59.30 1. 0. 1. 2. O. (.
103.0 1. 1. 23.40 53.40 1. 0. 1. 1. 0. 2.
105.0 1. 1. 16.90 25.20 1. 1. {. 2. 0. 1.
107.0 1. 1. 9.18 27.00 0. 1. 0. 2. {. 3.
109.0 1. 2. 13.50 40.50 1. O. {. 2. O. 1.
111.0 1. 1. 21.76 38.30 1. 1. 1. 1. O. .
113.0 1. 1. 20.84 37.90 0. 1. 1. 1. 0. 8.
115.0 1. 1. 21.81 24.60 1. O. 1. 1. O. 1.
117.0 4. 1. 14.44 36.00 1. O. 1. 1. O. f{.
119.0 1. 1. 22.14 37.90 1. 0. 1. 1. O. 2.
1249.0 1. 2. 5.28 18.80 1. O. 1. 2. 1. 3.
123.0 1. 1. 14,25 37.10 0. O. 1. 1. O. 1.
125.0 1. 3. 10.65 31.40 1. 0. 1. 2. {. 6.
127.0 1. 3. 7.28 21.70 1. 1. 1. 2. 1. 3.
131.0 1. 1. 17.63 26.60 1. 1. 1. 1. O. 1.
133.0 1. 1. 24.25 27.700. 1. 1. 1. O. 1.
135.0 1. 1. 25.80 44.60 0. 1. 1. 1. O. 2.
137.0 1. 1. 15.62 30.50 1. 1. 1. 1. O. 1.
139.0 1. 1. 17.26 34.70 0. 1. 1. {1, O. 1.
141.0 1. 1. 20.32 38.90 0. 1. 1. {. O. 1.
143.0 1. 2. 9.42 33.800. 1. 1. 2. 1. 3.
145.0 1. 1. 21.00 36.10 0. O. 1. 1. O. 1.
1470 1. 1. 19.65 34.80 1. O. 1. 1. 0. 1.
151.0 1. 1. 16.00 26.30 1. 0. 1. 1. O. 8.
153.0 1. 1. 16.52 34.80 1. 0. 1. 1. O. 1,
155.0 1. 2. 3.69 20.50 1. O. 1. 2. 1. 4.
157.0 1. 2. 8.09 27.50 1, 0. O. 2. {. {.
159.0 1. 1. 21.47 24.30 1. 0. 0. 1. O. 1.
164.0 1. 1. 5.81 39.10 1. 1. 0. 2. 1. 1.
163.0 1. 1. 21.89 34.00 1., 0. 1. 1. O. 1.
165.0 1. 1. 20.09 25.70 0. 1. 1. 1. O. 8.
167.0 1. 1. 16.86 24.40 1. 1. 1. 1. O. 1.
169.0 1. 1. 21.82 34.10 1. 1. 1. 1. O. 1.
171.0 1. 1. 22.68 39.00 1. O. 1. 1. O. 1.
173.0 1. 1. 11.58 48.70 0. 0. 0. 2. 1. 4.



Table 10 shows a portion of the file GOOKREJECT5 which
contains both the reasons why certain cases were kept out of
GOOOKNESTS (and hence further analysis) and the messages
concerning the flagged observations mentioned earlier. Out
of 1275 observations in the original raw data file, 1124
were put into GOOKNESTS5 (including the 10 flagged for the
'?' value for SPBIRD) and the remaining 151 rejected from

further analysis.

Having performed the needed file editing, the remaining

data (as in the GOOKNESTS5 file) was now ready for analysis.
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RECORD

RECORD

RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD

RECORD

RECORD

RECORD

RECORD

RECORD

RECORD

RECORD
RECORD
RECORD

RECORD

Table 10: Portion of GOOKREJECTS5

5.0 CDNTAINS SECONDARY EXCAVATOR
15.0 CDNTAINS SECONDARY EXCAVATOR
***CHECK RECORD 19.0 ***

FOR BIRD SPECIES ?
RECORD NOT SKIPPED

21.0 CONTAINS SECONDARY EXCAVATOR
31.0 CONTAINS SECONDARY EXCAVATOR
35.0 CONTAINS SECONDARY EXCAVATOR
47 .0 CONTAINS SECONDARY EXCAVATOR
55.0 CONTAINS SECONDARY EXCAVATOR
61.0 CONTAINS SECONDARY EXCAVATOR
67 .0 CONTAINS SECDNDARY EXCAVATOR
75.0 CONTAINS éECONDARY EXCAVATOR
77.0 CONTAINS SECONDARY EXCAVATOR
95.0 CONTAINS SECONDARY EXCAVATOR
97.0 CONTAINS SECONDARY EXCAVATOR
101.0 CONTAINS SECONDARY EXCAVATOR
***CHECK RECORD 113.0 **x

FOR BIRD SPECIES ?
RECORD NOT SKIPPED

129.0 CONTAINS SECONDARY EXCAVATOR
149.0 CONTAINS SECDNDARY EXCAVATOR
***CHECK RECORD 151.0 **x*
FOR BIRD SPECIES ?
RECORD NOT SKIPPED
***CHECK RECORD 165.0 *=*x*
FOR BIRD SPECIES ?
RECORD NOT SKIPPED
175.0 CONTAINS SECONDARY EXCAVATOR
***CHECK RECORD 181.0 ***
FOR BIRD SPECIES ?
RECORD NOT SKIPPED
185.0 CONTAINS SECONDARY EXCAVATOR

213.0 CONTAINS SECONDARY EXCAVATOR

***CHECK RECORD 217 .0 *=*x*

FOR BIRD SPECIES ?

RECORD NOT SKIPPED
223.0 CONTAINS SECONDARY EXCAVATOR
227 .0 CONTAINS SECONDARY EXCAVATOR
2292.0 CONTAINS SECONDARY EXCAYATOR

237 .0 CONTAINS SECONDARY EXCAVATDR
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CHAPTER 3

FIRST ANALYSIS--FIND INFLUENTIAL VARIABLES

This study gave binary responses (1-success, 0-failure)
so logistic regression was considered appropriate. Letting:

Deciduous tree i has active nest wit

wp=Probi orimary bird species

that is, M is the probability of a success for tree i, a

linear model was used to explain the 'log odds':

o
ni=g(ui)=ln =0

for O<u;<1. g is known as a 'link' function because it will

'link' the linear regression model:
= + X + X + o0 0+ X +e

with the original quantity of interest, u.

Also, in order to control data spread, HEIGHT and DIAM
were logarithmically transformed using the natural logarithm
(base e¢) befor being included in the linear model. This

transformation was saved for the logistic regression program

The stepwise logistic regression program, PLR, from the
BMDP software library was used (Ref. (4), Section 14.5). A
protion of the final results is shown in Figure 31. It will
be noticed that the variable DI3 was left out of the
analysis. Dagmar requested this since she later believed the
variable to be 'biologically unsound', that' is, not worthy
of inclusion. This reqguest was granted since earlier

analyses (not shown here) indicated that it was a variable
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Fiqure 31: Results of PLR Run on GOOKNEST5 Data

TERM
sptree

dii

di2
dwood

bk top
Inheight
iindiam
CONSTANT

STANDARD

COEFFICIENT

(1)
(2) -

0.93930

(o]

COVARIANCE MATRIX OF COEFFICIENTS

sptre(1)
sptre(1) 0.13905
sptre(2) 0.04935
dif -0.03761
di2 -0.01484
dwood -0.01827
pktop -0.04355
1nheight -0.00438
Indiam 0.01098
CONSTANT -0.01064
bk top
sptre(1)
sptre(2)
dii
di2
dwood
bk top 0.17681
“‘\diam '002414
CONSTANT -0.09419

sptre(2)

0.82897
-0.02440
-0.01429
~0.01082
-0.04328
~0.00608
-0.02309

0.10471

Inheight

0.098400
-0.04951
-0.11007

2.9036
3.0541
3.7217
1.1396

1.32561
.51375
1.7341
10.039

O00000O0O0

di1

.06105
.01254
.00988
.00993
.00477
.01006
.07489

[eXoReNoNoNoNo)

Indiam

0.19326
-0.52416
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ERROR

.3729
.9105
.2471
.2226
.3280
.4205%
. 3066
.4396
1.481

-7.787
-3.354
15.06
5.121
2.864
3.151
1.676
3.945
-6.779

di2

0.04953
0.00271
0.00669
0.00191

-0.00674
-0.00725

CONSTANT

2.19295

COEFF/S.E.

dwood

<0.10760
-0.060%58
0.02017
0.01372
-0.12929



of little importance anyway.

The final model from the PLR run is as follows:
7=-10.039-2.9036[SPTREE(1) ]-3.0541[SPTREE(2) ]
+0.51375[/ n(HEIGHT) ]+1.7341[/ n(DIAM)]

+3.7217[DI1]+1.1396[(DI2]+0,.9390[DWOOD] +1.3251[BKTOP]

where:

(1)

(2)

(3)

(4)

7 1s the fitted log odds value. One could obtain a
fitted probability by then using the inverse of the link
function:

=g (R)=(14e” )7
but one may wish to use alternative methods to getting a
u value from n (see Chapter 5).

The subscript i which tags individual observations or
cases has been left off of the above fitted model (and
the equation given in note (1) above) for simplicity,
but is understood to be present on % and all explanatory
variables.

New design variables for SPTREE were created by PLR as
follows:

SPTREE(1)= 1, if tree is birch (SPTREE=2)
0, otherwise

SPTREE(2)= 1, if tree is not aspen or birch (SPTREE=3)
0, otherwise

The effect of aspen trees (SPTREE=1) is already absorbed
in the constant term, -10.039. These design variables
were created because SPTREE is a qQualitative variable
with more than 2 possible factor levels. In general, a
gualitative variable possessing k possible factor levels
will give rise to k-1 design variables (Ref. (11)
Section 10.1).

The explanatory variable DWOOD was recoded as follows:

DWOOD= 1, if tree top dead or broken, or entire tree
0, ??airee fully alive with intact top

This was done because PLR run was done with the

0,1-coding option.
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(5) All other explanatory variables (HEIGHT, DIAM, DI!, DI2,

BKTOP) are as previously discussed in Chapter 2.

Thus for a single deciduous tree one can observe values
for all the explanatory variables shown in the model and
then calculate a fitted value, 7%, for the log odds of
finding a success. One can then use this fitted value as an
estimate of the mean of the distribution of the log odds
value for all future trees that have the same values for the
explanatory variables (at least as far as measurement
accuracy will allow for HEIGHT and DIAM). This use of % will
be hereafter referred to as '% as estimate'. Alternatively
one could use the fitted log odds value as a prediction of
the log odds value just for an individual tree, given the
values of the explanatory variables for that tree. This is a
different use of # and will be hereafter referred to as '#
as prediction'. In this analysis, however, each use will
produce a different 'fitted' u (probability of success).
This will be discussed later in Chapter 5, and in more

detail in the Technical Supplement, Section 9.2.

As a further interpretation of the final fitted model,
one could view it as a fitting for aspen trees:
7=-10.039+0.51375[/ n(HEIGHT) ]+1.7341(! n(DIAM) ]
with further penalties/awards as follows:
Deduct 2.9036 if tree is not aspen, but birch
3.0541 if tree is not aspen or birch,but some other

kind of deciduous tree

Add 3.7217 if fungal conks are present
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1.1396 if scars are present

0.9393 if tree is dead or has dead/broken top

1.3251 if tree has broken top but is still alive
(Note that the above 0.9393 will still be
added too.)

The model obtained from the PLR run was confirmed by use
of another software package, GLIM (Ref. (2)), the output of
which is highlighted in Figure 32. Here different design
variables for SPTREE:

SPTR(i )= 1, if SPTREE=i
0, otherwise

The GLIM run also provided data with which to construct some
interesting plots with the P6D program from BMDP (Ref. (4)

Section 10.2).

Figures 33.a through 33.d, for example, shows plots of
fitted log odds against /n(DIAM) for all 3 values of SPTREE
according to the following scheme:

'a' denotes 1 or more overlapping points for aspeﬁ
trees (SPTREE=1)

'b' denotes 1 or more overlapping points for birch
trees (SPTREE=2)

'o' denotes 1 or more overlapping points for 'other'
deciduous trees, that is, trees not aspen or birch
(SPTREE=3)

'*' denotes 1 or more overlapping points for different
species of tree

The first three plots, Figures 33.a-c, are done for each
SPTREE value separately. The last plot, Figure 33.d, is done

for all SPTREE values. One can see definite clustering

tendencies for aspen and birch trees in different areas of
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(CO)VARIANCE MATRIX

VONANLEWN =

Fiqure 32: Results of GLIM Run to Confirm those of PLR Run

2.157
-1.4686E-02 O.
0.1024 4.
-0.5156 1.
-0.1086 -3.
-7.1567E-02 -3.
~6.4204E-03 -1.
~0.1267 -1.
-9.1189E-02 -4.

1

SCALED

CYCLE DEVIANCE

4

1

1174.

ESTIMATE
-1.288

DF
1123

S.E.
0.7228E-01

SCALE PARAMETER TAKEN AS

SCALED

CYCLE DEVIANCE

1352
6911E~02
1514E-02
9941E-03
5880E-02
4214E-02
7474E-02
2195E-02
2

5

597 .1

ESTIMATE
-10.04
ZERO
-2.902
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1.734
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ZERO
3.721
ZERO
1.139
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0.9389
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1.325

0.8061
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3
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4
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5
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Fiqure 33.c: % agqainst [/ n(DIAM) for Other Deciduous Trees
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the 4th plot. Furthermore these clusters seem to be taking
place about parallel lines which go up as [/ n(DIAM)
increases. This suggests a lack of interaction between
SPTREE and [/ n(DIAM), so in the final model there would be

little additional benefit for adding such an interaction,

These plots were later broken down by DI1 level. Figures
34.a through 34.d show the plots of Figures 33.a-d but now
only for those trees for which DI1=0 (no fungal conks).
Similarly, Figures 35.a through 35.d has the same plots but
now only for those trees for whom DI1=1 (fungal conks
present). It is interesting to note that for each value of
SPTREE, the presence or absence of fungal conks separates
the clusters in the plots of Figures 33.a-d into lower’
portions in Figures 34.a-d and upper portions in Figures
35.a-d. This suggest that the separation effects due to
SPTREE and DI1 as estimated in the PLR run are strond indeed

(more on this in the next chapter).

In regards to the earlier remark about no visual
evidence of interaction between SPTREE and /n(DIAM), some
other interactions were attempted in GLIM runs to see if
their presence could significantly improve model fit. None
of the 3 possible 2-way interactions between SPTREE, DI1,
and [/ n(DIAM) could do go (the details are not shown). The
search for significant interactions was restricted at first
to these 3 variables on the basis that they seemed to offer

the strongest associations with the log odds, n (see next
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Figure

34.c: 7 against [/ n(DIAM) for Other Deciduous Trees

without Fungal Conks
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Figure

35.b: 7% against ! n(DIAM) for Birch Trees with Fungal
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Figure

35.c:

7 against !/ n(DIAM) for Other Deciduous Trees with
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chapter for a discussion). As no significant interactions
were found at this stage, further searching was abandoned.
In any case interaction effects are 'typically smaller' than
main effects (Ref. (11) pg. 681), at least so long as the

model chosen is the correct one.
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CHAPTER ¢4
SECOND ANALYSIS--POSSIBLE RANKINGS FOR EXPLANATORY VARIABLES

IN FINAL MODEL

The PLR run of Figure 31 used up all 7 expalanatory
variables with which it was supplied. Note that SPTREE is
-counted here as one explanatory variable although both PLR
and GLIM later split it up into 2 design variables. Dagmar
next requested a ranking of these variables into which one
was most 'important' to the final model, which came next in

"importance', and so on.

Unfortunately, no unique ranking scheme is possible
because of nonzero correlations amongst the explanatory
variables. For example if 2 variable, say X, and X,, are
highly correlated, then the order of their entry into a
model becomes important. If X, enters the model first, then
no significant impfovement in model fit may result in adding
X, when such correlation is present, since most of X,;'s
ability to explain variation in the response variable is
already accounted for in X,;. Hence X, gets left out. But if
X, enters the model ahead of X,, then X, may end up getting
left out. One is then faced with the problem of ranking the
variables in 'importance' to the final model. This would not
happen if X, and X, were uncorrelated, or very nearly so at
leaét. This problem is known as multicollinearity (Ref.(11)

Chapter 8).
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Nonetheless of the distinct possible rankings which may

present themselves, the following 3 are offered.

4.1 Order of Selection by PLR Run

The stepwise regression program starts off with an empty
model (no explanatory variables, just a constant term to
represent an overall average), and uses approximate
F-to-enter values to search for the variable which offers
the largest improvemenﬁ over the empty model. Provided that
the p-value associated with that F-to-enter value is
sufficiently small, that variable then gets inserted into
the model. DI1 was entered in the first step, since it

offered the best improvement over an empty model.

Once DI1 was in the model, ! n(DIAM) offered the best
improvement over a model containing only DI1. Similarly in
step 3, of the remaining candidate explanatory variables,
SPTREE (through its associated 2 design variables) offered
the best model fit improvement over a model which contained
only DI1 and DIAM. Both of its design variables were entered

at once, which is one of PLR's defaults.

This order of entry is summarized in Figure 36, and is
probably most useful for management purposes. The reasoning
is that if a deciduoug tree is to be assessed for its
probability of success, then if one intends to 'measure'’

only one explanatory variable, that variable. should be DI1,
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Model

Figure 36: Explanatory Variables Order of Entry into Final PLR
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since DI1 is the variable which gives the best possible
1-variable model. If one is willing to look at a second
variable, then one should include [/ n(DIAM) as well, since
[ n(DIAM) offers the best improvement over a model which

contains only DI,

A couple of important points should be noted here.
First, the discussion so far does not say that one may not
obtain / n(DIAM) chronologically until after the value of DI
is obtained. It does say that if one wishes to observe 2
variables (in whatever order) and one of those variables is
to be DI1, then /n(DIAM) is the best possible choice for the
other variable, since the best fitting 2-variable model in
which DI1' is included contains [/ n(DIAM) as well. Second,
although inclusion of /n(DIAM) offers the best improvement
over a model which has only DI1, this does not mean that DI1
and / n(DIAM) form the best possible 2-variable model\from
all those possible with the given set of candidate
explanatory variables. The determination of such a best
possible 2-variable model is part of an 'all possible' or
'best k' subsets regression, which are distinct from
stepwise procedures. Neither of these other procedures,

however, was available in a package for logistic regression.

Continuing in the present discussion, if one similarly
required a 3-variable model where DI1 and !/ n(DIAM) were to
be used, then SPTREE offered the best improvement and so

should be included as the 3rd ‘variable'. Note that when a
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tree's species is observed, both of the design variables
SPTREE(1) and SPTREE(2) are assigned values, which is why

they are counted as one 'variable'.

Figures 37 througﬁ 39 show what these 1, 2, and
3-variable models would be. From the appropriate table
following 'Step Number 1' in Figure 37:

n=-2.4036+3.400(DI1)

is the best possible 1-variable model. From the analogous
table in 'Step Number 2' in Figure 38:

#==10.360+2.3688(/ n(DIAM) ]+3.3893(DI 1]
is the best possible 2-variable model when DI1 is to be
included. Again, from the analogous table in 'Step Number 3'
in Figure 38:

#=-7.8700+3.5907[/ n(DIAM) }+1.7707[DI1]

-1.8599[SPTREE( 1) ]-2.2692[SPTREE(2) ]

is the best possible 3-'variable' model of all those\those
which must include DI1 and / n(DIAM), and so on. Further

steps are not shown.

One notes that as the number of variables increases,
both the constant term and the coefficients for the common
explanatory variables. change from one model to the next. For
example, in moving from the 2-variable to 3-'variable'
model, the constant changed from -10.360 té -7.8700, and the
- coefficient for [/ n(DIAM) changed from 2.3688 to 3.5907. In
general the constant term will change from one model to the

next in any stepwise regression process, but the
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Figure 37: Step 1 Selection of PLR Run

STEF NUMBER 1 dif
LOG LIKELIHOOD = -388.416
IMPROVEMENT CHI~SQUARE (2*(LN{MLR) ) = 394 . 387
GOODNESS OF FIT CHI-SQ (2*0*LN(O/E)) = 776.046
GOODNESS OF FIT CHI-SQ ( C.C.BROWN ) = 0.0
STANDARD
TERM COEFFICIENT ERROR
di1 3.4000 0.1816
CONSTANT -2.4036 0.1214
CORRELATION MATRIX OF COEFFICIENTS
dif CONSTANT
dii 1.000
CONSTANT -0.633 1.000
_COVARIANCE MATRIX OF COEFFICIENTS
di1 CONSTANT
di1 0.03671
CONSTANT ~-0.01473 0.01473
STATISTICS TO ENTER OR REMOVE TERMS
APPROX. APPROX .
TERM F T0 D.F. D.F. F 70
ENTER REMOVE
sptree 46.21 2 1120
di1 314.62
di2 30.45 1 1121
dwood Q.87 1 1121
bk top Q.66 1 1121
Inheight 11.38 1 1121
Indiam 57.61 1 1121
CONSTANT IS IN
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D.F.
D.F.
D.F.

1
1113
0

COEFF/S.E.

17.75

-19.

D.F.

1

80

D.F.

1121

P-VALUE=
P-VALUE=
P~-VALUE=

Q000000

P-VALUE

. 0000
.0000
.0000
.3514
.4182
.0008
.0000

0.000
1.000
1.000

MAY NOT BE
REMOVED .



Figure 38: Step 2 Selection of PLR Run

STEP NUMBER 2 1ndiam IS ENTERED

LOG LIKELIHOOD -362.393

IMPROVEMENT CHI-SQUARE (2*(LN(MLR) ) = 54.044 D.F.= .4 P-VALUE= 0.000
GOODNESS OF FIT CHI-SQ (2*0*LN(O/E)) = 722.061 O0O.F.=1t112 P-VALUE= 1.000
GOODNESS OF FIT CHI-SQ ( D. HOSMER ) = 10.683 D.F.= 8 P-VALUE= 0.220
GOODNESS OF FIT CHI-SQ ( C.C.BRDWN ) = 0.961 D.F.= 2 P-VALUE= 0.618
STANDARD
TERM COEFFICIENT ERROR COEFF/S.E.
dif 3.4393 0.2033 16.92
indiam 2.3688 0.3323 7.128
CONSTANT ~10.360 1.153 -8.988
CORRELATION MATRIX OF COEFFICIENTS
dif Indiam CONSTANT
dif 1.000
Indiam 0.222 1.000
CONSTANT -0.287 -0.994 1.000
COVARIANCE MATRIX OF COEFFICIENTS
dii Indiam CONSTANT

dii 0.04134
Tndiam 0.01501t 0.11044
CONSTANT -0.067286 -0.38079 1.32840
STATISTICS TO ENTER OR REMOVE TERMS

APPROX . APPROX .

TERM F TO D.F. D.F. F TO D.F. D.F.

ENTER REMOVE P-VALUE
sptree 31.15 2 1119 0.0000
dit 293.65 1 1120 0.0000
di2 22.62 t 1120 0.0000
dwood 7.63 1 1120 0.0058
bk top 4.57 1 1120 0.0327
Tnheight C.00 1 1120 0.9781
Tndiam 52.14 1 1120 0.0000
CDNSTANT IS IN MAY NOT BE

REMOVED.

202




T

Figure 39: Step 3 Selection of PLR Run

STEP NUMBER 3 sptree
LOG LIKELIHOOD = -330.935
IMPROVEMENT CHI-SQUARE (2*(LN(MLR) ) = 62.917
GOODNESS OF FIT CHI-SQ (2*0*LN(O/E)) = 659.093
GOODNESS OF FIT CHI-SQ ( D. HOSMER ) = 3.053
GOODNESS OF FIT CHI-SQ ( C.C.BROWN ) = 2.933
STANOARD
TERM COEFFICIENT ERROR
sptree (1) -1.8599 0.2821
(2) -2.2692 0.7980
dii 3.5807 0.2271
Indiam 1.7707 0.3720
CONSTANT -7.8700 1.289
CORRELATION MATRIX OF COEFFICIENTS
sptre(1) sptre(2) dii indiam
sptre(1) 1.000
sptre(2) 0.051 1.000
difi -0.308 -0.048 1.000
Indiam 0.224 -0.085 0.114 1.000
CONSTANT -0.242 0.074 -0. 161 -0.995
COVARIANCE MATRIX OF COEFFICIENTS
sptre(1) sptre(2) dii
sptre(1) 0.07958
sptre(2) 0.01155 0.63682
dii ~-0.01971 -0.00864 0.0%5159
1ndiam 0.02346 -0.02531 0.00962
CONSTANT -0.08803 0.07616 -0.04700
STATISTICS TO ENTER OR REMOVE TERMS
APPROX . APPROX .
TERM F TO D.F. D.F F TO
ENTER REMOVE
sptree 29.64
dii 297.70
di2 32.05 1 1118
dwood 35.69 1 1118
bk top 38 .45 1 1118
Inheight 7.40 1 1118
indiam 26 .99
CONSTANT IS IN
203

IS ENTERED

(= Nw Role)
MMM

now un
-
-
N

NOON

COEFF/S.E.
-6.593
-2.844

15.81

4.760
-6.107

CONSTANT

1.000

Indiam

0.13836
-0.47694

1117
1118

- N

i 11148

P-VALUE= 0.000
P-VALUE= 1.000
P-VALUE= 0.931
P-VALUE= 0.231%
CONSTANT
1.66072
P-VALUE
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0.0000
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0.0066
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coefficients for a given explanatory variable should remain
the same in all models when the variables are uncorrelated.
As noted earlier, however, the given set of explanatory
variables were correlated amongst themselves, so the
coefficients will change from one model to the next larger
one. Simple examples of this phenomenon are easily found,
such as in Chapter 8 of Ref.(11). Most distressing is the

case when the coefficients change sign.

4.2 All Possible t-Variable Models

Referring back to Figure 36 again, one notes the column
labelled 'Improvement Chi-Sguare'. The value given in that
column for an individual variable is a measure of
improvement in model fit once that variable is included. The
PLR run does not show all the possible improvement
chi-square values for 'Step Number 0' where all possible
t-variable models are considered, so another GLIM run was

performed, the results of which are shown in Figure 40.

Along with each model fitted, a guantity called 'scaled
deviance' is computed. It is the drop in scaled deviance in
going from one modei to another which gives the improvement
chi-sqguare values. One can see in Figure 40 that the empty
model (no explanatory variables, just a constant term
labelled '%GM' by GLIM) has a scaled deviance of 1174, The

model with DIt as the only variable gives a scaled deviance
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Figure 40: GLIM Run of All Possible 1-Variable Models

SCALED
CYCLE DEVIANCE DF
4 1174. 1123
ESTIMATE S.E.
1 -1.288 0.7228E-01
SCALE PARAMETER TAKEN AS
SCALED
CYCLE DEVIANCE DF
4 1057. 1121
ESTIMATE S.E.
1 -0.7580 0.8280E-01
o) ZERO ALIASED
2 -1.859 0.2125
3 -2.285 0.7240
SCALE PARAMETER TAKEN AS
SCALED
CYCLE DEVIANCE DF
4 1085. 1122
ESTIMATE S.E.
i -8.580 0.8707
2 2.181 0.2559
SCALE PARAMETER TAKEN AS
SCALED
CYCLE DEVIANCE OF
4 1169. 1122
ESTIMATE S.E.
1 =-2.303 0.4831
2 0.3702 0.1727
SCALE PARAMETER TAKEN AS
SCALED
CYCLE DEVIANCE DF
4 779.0 1122
ESTIMATE S.E.
1 =-2.404 0.1214
o) ZERO ALIASED
2 3.407 0.19156
SCALE PARAMETER TAKEN AS
SCALED
CYCLE DEVIANCE DF
4 1137. 1122
ESTIMATE S.E.
1 -1.622 0.9665E-01
o) ZERO ALIASED
2 0.9158 0.1492

SCALE PARAMETER TAKEN AS
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PARAMETER
%GM
1.000

PARAMETER
%GM
SPTR(1)
SPTR(2)
SPTR(3)
1.000

PARAMETER
%GM

LND1
1.000

PARAMETER
%GM

LNHE
1.000

PARAMETER
%GM
DI1(1)
DI1(2)
1.000

PARAMETER
%GM

DI2(1)
DI2(2)
1.000



Figure 40, continued

SCALED
CYCLE DEVIANCE DF
4 1161. 1122
ESTIMATE S.E. PARAMETER
1 -1.447 0.8746E-01 %GM
0 ZERO ALIASED DWOO( 1)
2 0.5701 0.15785 owoo(2)
SCALE PARAMETER TAKEN AS 1.000
SCALEO
CYCLE OEVIANCE OF
4 1161. 1122
ESTIMATE S.E. PARAMETER
it -1.397 0.8025E-01 %GM
0 ZERO ALIASED BKTO( 1)
2 0.8935 - 0.1903 BKTO(2)
SCALE PARAMETER TAKEN AS 1.000

206



of 779.0 .which means a drop of 395 in the scaled deviance.
Indeed this is the chi-square improvment value given to DI1
‘back in 'Step Number 1' of Figure 31, given the available
accuracy. A ranking of the explanatory variables on the
basis of their chi-square improvement over the empty model
is then possible:
DI 1
SPTREE
[ n(DIAM)
DI2
DWOOD
BKTOP
[ n(HEIGHT)
The calculations are summarized in the Technical Supplement,

Chapter 8.

Note that the order of SPTREE and !/ n(DIAM) has been
changed over the previous ranking, and BKTOP has been
displaced to a place of lesser importance. It is interesting
to note that if a ‘ranking is done on the basis of
improvement chi-squares achieved in the stepwise model
building shown back in Figure 31, one gets:

DI
SPTREE
[ n(DIAM)
BKTOP
DI2
DWOOD
[ n(HEIGHT)
so that BKTOP becomes more important again. Thus one sees
that while BKTOP is the most important variable to improve

the 3-variable model in the stepwise process, it is almost

the least important variable for improving an empty model.
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Again this change in importance is due to multicollinearity.

Nonetheless, DI1 still manages to be the most important

variable in these particular ranking schemes.

4.3 All Possible One-Less-Than-All Variable Models

If one now starts with the final model, which has a
scaled deviance of 597.1 according to Figure 32, and tries
out all possible 1-variable omissions, one can then rank the
explanatory variables acqording to how much fit is lost when
that variable is left out of the final model. The GLIM run
to produce these fits is shown in Figure 41, One can see
there that if DI1 is left out of the PLR final model, then
the scaled deviance increases from 597.1 to 939.3. Thus if
DI1 was the last variable to be added to the model,\it would
have given a chi-square improvement of 939.3-5987.1=342.2.
One could also look at this as a chi-sguare 'deprovement' if

DI1 were singled out from omission from the PLR final model.

On this basis one can rank the explanatory variables as
to how much loss in fit is encountered if that variable were
singled out for omission from the PLR final model:

DI1
SPTREE
DI2
I n(DIAM)
BKTOP
DWOOD
! n(HEIGHT)
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Figure 41: GLIM Run of All Possible 1-Variable Omissions from

] PLR Final Model
SCALED
CYCLE DEVIANCE DF
4 €92.7 1117
ESTIMATE S.E. PARAMETER
" 1 -11.88 1.284 %GM
2 2.137 0.3903 LNDI
0 ZERO ALIASED DI{(1)
3 3.442 0.2099 DI1(2)
0 2ERO ALIASED DI12(1)
4 0.9274 0.2037 DI2(2)
5 0.6108 0.3048 LNHE
o] Z2ERO ALIASED DWOO( 1)
6 0.6871 0.3065 DwWwoOo(2)
0 ZERO ALIASED BKTO(1)
7 0.3901 0.3943 BKTO(2)
SCALE PARAMETER TAKEN AS 1.000
SCALED
CYCLE DEVIANCE DF
5 613.3 1116
ESTIMATE S.E. PARAMETER
1, -5.537 0.8784 %GM
0 2ERO ALIASED SPTR(1)
2 -3.081 0.3635 SPTR(2)
3 -2.957 0.9535 SPTR(3)
0 ZERO ALIASED DIY(1)
4 3.744 0.2423 DI1(2)
0 ZERO ALIASED DI2(1)
5 1.234 0.2194 DI2(2) .
6 0.9984 © 0.2873 LNHE
0 Z2EROD ALIASED DWOO( 1)
7 0.8387 0.3202 DWOO0(2)
0 ZERO ALIASED BKTO( 1)
8 1.602 0.4123 BKTO(2)
SCALE PARAMETER TAKEN AS 1.000
SCALED
CYCLE DEVIANCE DF
4 939.3 1116
ESTIMATE S.E. PARAMETER
1 -8.508 1.108 %GM
o) ZERO ALIASED SPTR(1)
2 -1.901 0.2435 SPTR(2)
3 -2.95% 0.7331 SPTR(3)
4 1.76€8 0.3313 LNDI
0 Z2EROD ALIASED DI2(1)
5 0.8832 0.1663 DI12(2)
6 0.4077 0.2552 LNHE
0 ZERO ALIASED owoo( 1)
7 0.7302 0.2574 DWOOD(2)
0 Z2ERD ALIASED BKTO( 1)
8 1.129 0.3498 BKTO(2)
SCALE PARAMETER TAKEN AS 1.000
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Figqure 41, continued

SCALED
CYCLE DEVIANCE DF
5 624.3 1116
ESTIMATE S.E. PARAMETER
1 -10.24 1.4419 %GM
o] ZERO ALIASED SPTR(1)
2 -2.687 0.3530 SPTR(2)
3 -2.877 0.8691 SPTR(3)
4 1.941 0.4252 LNDI
o] ZERO ALIASED DI(1)
5 3.625 0.2354 DI1(2)
6 0.4989 0.2995 LNHE
o] ZERO ALIASED pwoo (1)
7 0.9118 0.3197 pwoo(2)
o] ZERO ALIASED BKTD( 1)
8 1.245 0.4029 BKTO(2)
SCALE PARAMETER TAKEN AS 1.000
SCALED
CYCLE DEVIANCE DF
5 600.0 1116
ESTIMATE S.E. PARAMETER
1 -9.481% 1.422 %GM
o] ZERO ALIASED SPTR(1)
2 -2.888 0.3642 SPTR(2)
3 -3.036 0.8903 SPTR(3)
4 2.015 0.4047 LNDI
o] ZERO ALIASED DI(1)
5 3.710 0.2438 DI(2)
o] ZERO ALIASED DI2(1)
6 1.134 0.2203 DI2(2)
o] ZERO ALIASED DWoOo( 1)
7 0.82714 0.3180 DWOO0(2)
o] ZERO ALIASED BKTO(1)
8 1.005 0.3696 BKTO(2)
SCALE PARAMETER TAKEN AS 1.000
- SCALED
CYCLE DEVIANCE DF
5 605.0 1116
ESTIMATE S.E. PARAMETER
1 -9.083 1.408 %GM
o] ZERO ALIASED SPTR(1)
2 -2.792 0.3607 SPTR(2)
3 -3.002 0.8990 SPTR(3)
4 1.639 0.4315 LNDI
o] ZERO ALIASED DI(1)
5 3.691 0.2416 DI(2)
o] ZERO ALIASED DI2(1)
6 1.131 0.2202 DI12(2)
7 0.3546 0.2998 LNHE
o] ZERO ALIASED BKTO(1)
8 1.90% 0.3797 BKTO(2)
SCALE PARAMETER TAKEN AS 1.000
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Fiqure 41, continued

SCALED
CYCLE DEVIANCE DF
5 607 .4 1116
ESTIMATE S.E. PARAMETER
1t =-9.478 1.436 7%-.GM
o} ZERO ALIASED SPTR( 1)
2 -2.607 0.3449 SPTR(2)
3 -2.795 0.8529 SPTR(3)
4 1.948 0.4266 LNDI
o} ZERO ALIASED DIt(t)
5 3.694 0.2418 DI1(2)
0 ZERO ALIASED DI2(1)
6 1.116 0.2184 DI2(2)
7 0.77358-01 0.2672 LNHE
0 ZERO ALIASED DWOO (1)
8 1.373 0.2857 DWOoO(2)
SCALE PARAMETER TAKEN AS 1.000
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This differs from the ranking of the variables on the basis
of improvement over the empty model in that the orders of
DI2 and ! n(DIAM) are reversed, as are the orders of BKTOP
and DWOOD. Thus in omitting a variable from the PLR final
model (perhaps because management is Qilling to observe 6
but not 7 varaibles for a given tree in order to cut back
labour costs), the omission of /n(HEIGHT) would cause the
least loss in fit, and the omission of DI1 would cause the
greatest loss in fit (and hence predictive power). Note that
the order reversal of DI2 and /n(DIAM) in this and the
previous ranking means that while /n(DIAM) is more important
than DI2 in improving the fit over an empty model, the
omission of DI2 from the PLR final model would cause a
larger loss of model fit than would the omission of

[ n(DIAM). Correlation between values of DI2 and DIAM (such
as if, perhaps, thicker trees tend to have scars while
thinner ones do not) and hence ! n(DIAM) account for this
order reversal. Once again, however, DI1 is still the most

highly ranked explanatory variable.

4.4 Concluding Remarks on Ranking

The ranking schemes of the previous 3 sections confirm
that there is no unigue ranking possible among the
explanatory variables, due to the presence of
multicollinearity. Any ranking, however, should be selected

on the basis of the usefulness of its interpretation to
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those who would use it. Possibly the ranking scheme most
useful to management would be that given in the first

section, as has already been suggested there.
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CHAPTER 5
USE OF PLR FINAL MODEL FOR ESTIMATION/PREDICTION OF

PROBABILITIES

One of the intended uses of this model is for forest
management or conservation workers who will want to know
which factors they may control to encourage or discourage
the population of primary excavator bird species through the
availability of 'desirable' nest locations. Thus it will be
useful to convert a fitted log odds value, 7, along with an
estimated variance, s?%(%), into a fitted value of the
probability, u, that a given tree or population of trees

will have a success,

Rather than directly use the inverse of the link
function, g, as was indicated in Chapter 3, a recent paper
by Meester and Eaves (Ref.(9)) shows how to convert 7 and

s2(%) into a predicted probability, u, for a single tree.

P
This paper has been reproduced in its entirety in Appendix

A. For example, for observation 3 in the GOOKNESTS file,
(records 7 and 8 in the original GOOKADD raw data file)
which is an aspen tree:

SPTREE( 1)=0

SPTREE(2)=0

I n(HEIGHT)=2.914

I n(DIAM)=3.645

DI1=1 (fungal conks)

D12=0 (no scars) '

DWOOD=0 (tree fully live and has intact top)
BKTOP=0 (intact top)
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one can easily find from the PLR final model:

7=1.5006
and after a more involved éomputation (Technical Supplement,
Chapter 9), one obtains:

s2(%)=0.0566

from which the table given in Ref.(9) gives:

uP=O.8176
using the closest available values of 'm=1.5,v=0' from that
table. So this particular aspen tree which has

2.914

HEIGHT=¢ =18,43 metres

and

DIAM=e3'645=38.28 centimetres
has a predicted probability of 0.8176 of having a success.
This is the 'H as prediction' described in Chapter 3, which

may prove more useful than '% as estimate’.

It is interesting to compare this predicted probability,
Bp. with the corresponding estimated-mean‘probability:
i=¢ '(1.5006)=0.8177
The difference is small, but in general one will find that

Kp is 'pulled' closer to 0.5 than 4. This would be more

dramatically demonstrated if s2(%) were higher.

Consider instead observation 304 from the GOOKNESTS5 file
(records 709 and 710 from the original GOOKADD raw data
file). For this observation it turns out that:

7=-5.1703

s2(9)=1.1477
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Now whereas:

=g '(-5.1703)=0.0056508

(here i<0.5 because 7<0), it turns out from the table in

Ref.(9) (Appendix A), with '|m|=5.0,v=1":
uP=1-0.9892=0.0108

If it turned out that s2(%)<0.5, then 'v=0' would be used in

the table look-up to produce:

uP=1-0.9933=0.0067
which is closer to @. In either case, the Kp is pulled

closer toward 0.5 than is &, but this pull is more dramatic

for a larger s%(%).

This pulling of a fitted u closer to one-half in
switching from & to Hp reflects the greater caution taken in
predicting a probability for a single tree than for
estimating a mean probability for a population of trees
which have similar values of SPTREE, HEIGHT, DIAM, Di1, and
so on. This is described in more detail in the technical
supplement, but is analogous to the situation in normal
theory multiple linear regression where for a fitted
response value, ¥, a 100(1-a)% prediction interval is wider
than a 100(1-a)% confidence interval (Ref. (6) pg. 312). In
that situation, the worst scenario would be one where the
prediction interval becomes too wide to be useful. In the
present situation of predicting probabilities, the worst
scenario would be one where Hp becomes 0.5, which states

that for the given tree, one has no further information for
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predicting success or failure other than by tossing a fair
coin. One can further see from the table in Appendix A that
as s?(%) increases, up is pulled closer to 0.5. This too

makes intuitive sense.

I1f one wishes to encourage the population of primary
excavator birds, one would make a decision rule of
cultivating trees suqh that, say, uP>0.5, or higher. kp can
be increased above 0.5 by increasing 7 above 0, although any
change to %, done through the explanatory variables, will

also change s2(3).

A useful item for field workers would be a series of
tables showing Kp values for all possible combinations of
the gualitative explanatory variables (SPTREE, DIt, DI2,
DWOOD, BKTOP) and for pre-selected values of HEIGHT and

DIAM.
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CHAPTER 6

TECHNICAL SUPPLEMENT FOR CHAPTER 2

For Chapter 2 there is little to add except to show the
FORTRAN program (Figure 42) that was used to convert the raw
data file into the file of data ready for analysis
(GOOKNESTS5), with rejected or flagged cases docmented in a
separate reject file (GOOKREJECTS5). Portions of these 3
files have already been shown in Tables 8-10 respectively.
The commands to compile and run this program are not shown
but would be similar to those shown in the Technical

Supplement to the analysis of Simon Emms' data (PART A).

One feature of the program worth noting is the
instruction to remove all trees having 'success' after line
564 in the original raw data file. The reason for doing'so
was that this data file itself was a concatenation of\2
other files, the first of which contained only successes,
and was 564 lines long. The second file contained both
successes and failures. Although this second file did not
contain all the successes of the first file, Dagmar said
that those which were contained were duplications of
observations from the first file, and thus had to be

omitted. -
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Figure 42: FORTRAN Program Used to Edit Dagmar's Raw Data File

PROGRAM TO PROCESS GOOKADD FILE INTO FILE READY FOR STAT PACKAGE INPUT

C

C

C UNIT 10 = GOOKADD

C UNIT 11 = GOOKNESTS

C UNIT 12 = GOOKREJECTS
C
C
C

1 2 3 4 5 6 7
23456789012345678901234567890123456789012345678901234567890123456789012
DIMENSION VTREES(S),VTLD(2),VPORA(2),VBIRDS(15)

DATA VTREES /’A’,’BI’,’CT’,’W’,’'D’/
DATA VTLD /'L’,‘'D’/

DATA VPORA /‘ ‘ 'NT‘/
DATA VBIRDS /‘S’,‘P’,'N’,‘F’ ,'H’ ‘D’,* ' ,'B’,'G’,'K’,’M",’Q','R",
* T W/
RECNUM=-1.0
c
C READ IN DATA
c
10 READ (10, 101,ERR=998,END=999) TREESP,DIAM,HEIGHT,TLD,DI{,DI2,DI3,
*DI4,PORA,BIRDSP,BKTOP
RECNUM=RECNUM+2.0
c
C REJECT NESTED TREES AFTER LINE 564 OF INPUT
c
IF (RECNUM .LE. 563.0) GO TO 20
IF (PORA .NE. VPORA(2)) GO TO 20
WRITE (12,202) RECNUM,PORA
GO TO 10
c
C NDW REJECT CONIFEROUS TREES
c
20 DO 55 I1=1,5
IF (TREESP .EQ. VTREES(I1)) GO TO 30
55 CONTINUE _
WRITE (12,203) RECNUM, TREESP
GO TD 10
c N
C BEGIN TRANSFORMATIONS...... START WITH TREE SPECIES
C .
30 CONTINUE
IF (TREESP .EQ. VTREES(1)) GO TO 40
IF (TREESP .EQ. VTREES(2)) GO TD 50
SPTREE=3.0
GO TO 60
40 SPTREE=1.0
GO TO 60
50 SPTREE=2.0
c
C TRANSFORM DI1,DI2,DI3
c
60 DI{=DI1/37.0
DI2=DI2/39.0
DI3=DI3/43.0
c
C CREATE DWOOD VARIABLE
c

DWOOD=2.0
IF (TLD .EQ. VTLD(1)) GO TO 70
IF (TLD .NE. VTLD(2)) GO TO 80
GO TD 90

70 CDNTINUE
IF (DI4 .EQ. 0.0) DWOOD=1.0
G0 TO 90

80 WRITE (12,204) RECNUM,TLD
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GO T0

Fiqure 42, continued

10

90 CONTINUE

TRANSFORM PORA

100

IF (PO
ACNEST
GO 7O

CONTIN
IF (PO

GO TO

RA .NE. VPORA(2)) GO TO 100

=1.0
110
UE

RA .EQ. VPORA(1)) GO TD 120
WRITE (12,205) RECNUM,PORA

10

120 ACNEST=0.0

TRANSFORM BIRDSPECIES

110 SPBIRO=8.0

65

75

00 65
IF (BI
SPBIRD
GO TO
CONTIN
DO 75
IF ( B
CONTIN

12=1.7

RDSP .NE. VBIRDS(IS)) GO TO €5

=12

140

uc
13=8, 15

IRDSP .EQ. VBIRDS(I3)) GO TO 130

UE

WRITE (12,206) RECNUM,BIRDSP

PROBABLY

GO 7O

7?2/ SPECIES, BUT CARRY ON WITH REST OF RECORD ANYWAY & JUST
FLAG IT FOR CONFIRMATION

140

130 WRITE (12,207) RECNUM,BIROSP

GO TO

10

TRANSFORMATIONS ALL DONE

RECORD DATA & GO GET ANOTHER RECORD

140 WRITE (11,201) RECNUM,ACNEST,SPTREE ,HEIGHT,DIAM,DI{1,DI2,DI3,

998

299

*DWOO0D,
GO TO
WRITE
GO TO
WRITE
SToP

BKTOP, SPBIRD

10

(12,208) RECNUM
10

(12,208) RECNUM

FORMAT STATEMENTS

1

2

3 4 5 6 7

23456789012345678801234567880123456789012345678901234567890123456789012
101 FORMAT (T9,A2,T12.F4.1,T17,F5.2,T23,A1,4(1X,F2.0)/T9,A2,T12,A1,

201
202
203
204
205
206

*T32,F1

.0)

FORMAT (T3,F8.1,%X,F2.0,1X,F2.0,1X,F5.2,1X,F6.2,6(1X,F2.0)})
(/T3,’IN RECORD ’,F8.1,‘' (AFTER 564.0), PORA IS ’,A2)

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

*CIES '

(/T3, 'RECORD
(/T3, 'RECORD
(/T3, ’RECORD

,F8.1,’ DELETED BECAUSE OF TREE SPECIES ‘,A2)
L,F8.1,’ CONTAINS ILLEGAL TLD = ‘,A4)
L,F8.1,’ CONTAINS ILLEGAL PORA = ‘,A2)

(/T10,’***CHECK RECORD ’,F8.1,’ **%‘/T{0,’FOR BIRD SPECIES
*’ A1/T10, 'RECORD NOT SKIPPED’)
207 FORMAT (/T3,'RECORD '

JAT)

,F8.1,’ CONTAINS SECONDARY EXCAVATOR BIRD SPE

208 FORMAT (/T10,’***ERROR IN DATA INPUT--RECORD ’,F8.1,’ *=x')
209 FORMAT (//T5,‘ALL DONE'//‘LAST 2 RECORDS READ IN BEGAN WITH RECORD

* NUMBE
END

R *,F8.1)
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CHAPTER 7

TECHNICAL SUPPLEMENT FOR CHAPTER 3
A number of observations and developments may be made on
the contents of Chapter 3. Basically they all have to do

with the production of the outputs in Figures 31-35.

7.1 On the Production of the PLR Run in Fiqure 31

Figure 31, as well as Figures 36-39, contain a portion
of the PLR run carried out by the command source file in

Figure 43. There are 3 aspects particularly worthy of note.

Firstly, the 'space' modifier will be noted in the
"srun' command. This reguests that extra storage be made
available for the PLR run. The default value is 15000 words,
which was not enough forlthe run shown. This ability to
request extra storage is a nice feature of BMDP. This
particular method of doing so, however, is not that found in
the BMDP manual (Ref.(4), Appendix’B.1), but is that
described on page 24 of Ref.(15 since it is an extension of

the operating system, MTS.

Secondly, PLR offers 3 choices of design variables
(Ref.(4) pg. 339). The strict 0,t-coding was chosen
('dvar=part.' sentence in the '/ regress' paragraph) where
the first level of a factor (e.g. SPTREE=1) sets all

applicable ‘design variables to 0.
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Figure 43: PLR Command File which Generated Figure 31

$empty goutplrd ok
$run *bmdp 7=gooknestS sprint=goutplird par=zpir space=18000w

/ problem

/ input

/ variable

/ transform

/ group

/ regress

/ print

V plot
/ end

title is ‘GOUTPLR4: logistic regression (no interactions)
on data in file GOOKNESTS, method is ACE’.

variables are 11.

format is ‘(4x.a4,2x,2(1x,f2,0),1x,f5.2, 1x,
f6.2,6(1x,f2.0))".

unit is 7.

cases are {1124,

names are recnum,acnest,sptree,height,diam,dit,di2,
di3,dwood,bktop,spbird, Inheight, Indiam.

add=2.

label is recnum.

Inheight=1n(height).

Indiam=1n(diam).

codes(2)=1,0.

names(2)=nest, ’

codes(3)=1,2,3.

names(3)=aspen,birch, ‘'other deciduous’.

codes(6)=1,0.

names(6)=conks, ’

codes(7)=1,0.

names(7)=scars, ’

codes(8)=1,0.

names(8)='dead brn’,’'full brn’.

codes(9)=1,2.

names(98)=full, ‘not full’.

codes(10)=1,0.

names( 10)='bad top’,’'gd top’.

codes(11)=1,2,3.4,5,6,7,8.

names(11)=s,p,n,f,h,d, ‘no nest’,other.

dependent=acnest.

interval=1nheight,ndiam.

categorical=sptree,dit,di2,dwood,bktop.

dvar=part.

cmove=2,

case=15.

sort=none.

hist.

plot.

cova.

corr.,

news .

size is 100,50.

’

’

’
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Thirdly, the results are shown for the default ACE
(Asymptotic Covariance Estimate) method rather than for the
MLR (Maximum Likelihood Ratio) method which the manual
states is the more 'reliable' of the two (Ref.(4) pg. 339).
The MLR run results are not shown, but both methods did
produce the same coefficient estimates and
variance-covariance matrix for those estimates to the
reported accuracy of 5 significant figures for the
coefficients and 5 decimal places for the matrix entries.
But the MLR method did not appear to perform the variable
selection at each step of the stepwise process as the manual
says that both it and the ACE method should (Ref.(4) pg.
339). Since the final model results are the same anyway,
only the ACE method results are shown, in order to reduce
confusion. The ACE method does work the way it should,
namely by entry by smallest p-values, and not by largest
F-statistics, since design variables for a given multi-level
factor are to be entered as a group. Thus the degrees of
freedom associated with the F-statistic may be different
from those associated with other variables. One can see this

in Figures 37-39.

7.2 -0n the GLIM Run which Produced Figure 37

In Figure 44 is shown the source file which produced the
first GLIM run, part of which was shown in Figure 32. There

are 4 features of special interest:’
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Figure 44: GLIM Command File which Generated Fiqure 32

$EMPTY GOUTGLIM{ OK
$EMPTY GOOKPLOT{ OK
$RUN UNSP:GLIM 1=GOOKNEST5 2=GOUTGLIM1 3=GOOKPLOT 1

$C

$C GLIM RUN ON FILE GOOKNESTS TESTING OUT LOGISTIC LINK ON BINARY
$C RESPONSES

$C

sc EE R R E R EEEEEEE S EEE RS EEE LS

$C * GET DATA & TRANSFORM *
sc ¢ e de e e g ke e ok o de die e ok e de oie ok ok de e e ok ok ok

$C

$OUTPUT 2 132

SUNITS 1124

$DATA RECNUM ACNEST SPTREE LNHEIGHT LNDIAM DI{1 DI2 DI3 DWOOD BKTOP
$FACTOR SPTREE 3 DI1 2 DI2 2 DI3 2 DWOOD 2 BKTOP 2

$FORMAT

(2x,F8.1,2(1X,F2.0),1X,F5.2,1X,F6.2,5(1X,F2.0))

$DINPUT 1

$LOOK 1 15 RECNUM ACNEST SPTREE LNHEIGHT LNDIAM DI1 DI2 DI3 DWOOD BKTOP
$C

$C LOG TRANSFORM LNHEIGHT & LNDIAM

$C SHIFT ALL QUALITATIVE VARIABLES UP BY 1 BECAUSE GLIM

$C CAN’T HANDLE FACOTR LEVELS OF O

$C

$CALC LNHEIGHT=%LOG(LNHEIGHT): LNDIAM=%LOG(LNDIAM): N=1: DI1=DI1+1
$CALC DI2=DI2+1: BKTOP=BKTOP+1
$C

sc e e A g ok deodke A dk e deodkode 3 e de o deodke o ke o de 3 o ke e dle ok o ke ok ok e ok

$C * SPECIFY MODEL TO BE ANALYZED *
ol T T
$C

$YVAR ACNEST

$ERROR B N

‘$LINK G

$C

sc e e e A g ok deodke A dk e ek de s e ek de ok e ok e s e ok ek e ok e ok ok de e e ok e ok de ok o ke e e

$C * FIT MODEL RECOMMENDED IN GOUTPLR4 ' *
ol
$C

$FIT %GM

$DISP A

$FIT SPTREE+LNDIAM+LNHEIGHT+DI 1+DI2+DWOOD+BKTOP
$DISP A

$DISP V

$C

sc dkkkkkdkkkkk ok kokk ok kokkk ke kk ko k ke ko ke ke ke ko ko ko

$C * GET FITTED VALUES, S.E.’S, & PUT INTO GOOKPLOT1 FILE *
PO Hkkkkkkkkk kdkkkdkkokdodkok ook kK ok ko ok ok ke ok ok ok ok ok ok ok ke ok ok ok ok ok ok o K kKK K
$C

$EXTRACT %VL

$OUTPUT 3 132

$ACCURACY 9

$LOOK RECNUM %LP %VL LNDIAM SPTREE DI1 BKTOP

$STOP .
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Firstly, each input record (as shown in Table 9)
represents one observation or trial, and not the number of
successes in a set of more than one trials. The data set is
thus 'ungrouped' (Ref.(2) pg. 73) and hence 'N=1' is used in
the 'S$SCALC' command. Incidentally, the PLR run also gave the
information that the 1124 observations could be assembled
into 1115 different groups (that is, 1115 distinct patterns
in the explanatory variables. Rather than assemble these
groups for the GLIM run, the data was left in its ungrouped

state.

Secondly, it will be noticed in Figure 44 that through
'$CALC' commands, Qualitative variables which had codings of
0 or 1 (DI1, DI2, BKTOP have these) are rescaled to have
codings of 1 or 2 respectively; like DWOOD already has. This
is'necessary because GLIM will not process inputted factor
levels (qgualitative variable values) of 0. SPTREE, which has
levels of 1, 2, and 3 for aspen, birch, and other deciduous
trees respectively, could thus be inputted in as is. Once
these variables were inputted, GLIM set up the necessary
design variables in the same way that PLR set up its design
variables through the 'dvar=part.' option mentioned earlier,
These qualitative variables were identified to GLIM as
factors along with their numbers of possible levels through

the 'S$FACTOR' command, as can be seen in the figure.

Thirdly, for the vector of estimated coefficients, E, a

dispersion or variance-covariance matrix, Cov(B) was
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estimated. The matrix of estimates differs in PLR (Figure
31) and GLIM (Figure 32) where it will be noticed that the
corresponding entries agree to only 1 or 2 significant
figures. One must further be careful when comparing these 2
matrices, since PLR and GLIM order the
rows/columnsdifferently. This dilemma will be encountered

again in Section 9.1,

Fourthly, # and s2(%), which are computed by GLIM for
each observation in the given sample data and stored in the
'system vectors' %LP and %VL respectively, were requested to
be put along with other data values of interest into another
file (identified near the top of Figure 44 as GOOKPLOT1)
according to the last 4 lines of Figure 44. This file, a
portion of which is shown in Table 11, contains data which
was used in the plots mentioned in Chapter 3, but not

directly from GOOKPLOTI1.

The data values, as they appear in Table 11, were not
yet ready for inputting into the P6D program of BMDP. The
reason is that GLIM uses exponential notation for all
numbers less than 0.10 in absolute value. BMDP uses FORTRAN
formats (unless free format is chosen) and only 'F' or 'Il'
formats are available for numeric input. 'G' or 'E' formats,
which can handle exponential notation are not available in
BMDP. Rather than take chances with free format, the file
was subjected to a FORTRAN 'clean-up' program, as shown in

Figure 45, to convert the exponential notation back into
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Portion of Data File GOOKPLOT1

Table 11:
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Fiqure 45:

FORTRAN 'Clean-Up' Program for File GOOKPLOTI

PREPARE GOOKPLOT{1 TO BMDP6D PLOTS

C
C
C UNIT 10
C UNIT 14
C 1
€23456789012
N=0
10 READ (
*BKTQOP
N=N+1
WRITE
GO TO
998 WRITE
GO TO
999 WRITE
WRITE
STOP
101 FORMAT
201 FORMAT
202 FORMAT
203 FORMAT
*KNESTS
204 FORMAT

GOOKPLOT{
GPLOTDAT 1

Hon

2 3 4 5 6 - 7
345678901234567890123456789012345678901234567890123456789012

10, 101,ERR=998,END=999) RECNUM,YLP,VL ,DIAMLG,SPTREE,DI1,

(11,201) RECNUM,YLP,VL,DIAMLG,SPTREE,DI1,BKTOP
10

(11,202) N

10

(11,203) N,RECNUM

(11,204)

(T10,F5.0,T24,2G17.9,T58,F13.8,7X,F2.0,2(15%X,F2.0))
(T6,F5.0,1X,F14.9,1X,F14.9,1X,F14.8,3(1X,F2.0))

(’ ***ERROR AFTER RECORD ’,I4,’ IN INPUT**x*x‘)

(/ >>>ALL DONE<<<‘/’ LAST RECORD WAS NUMBER ‘,14,/’ FOR GOO
FILE RECORD NUMBER ’,F5.0)
(/C23456789012345678901234567890123456789012345678901234567

*890123456789012’/'C’ ,8X,"1/,9%X,"2’,9X,“3/,9X,'4’ ,9X,’'5’,9X,’6’,9X,

*171)
END
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fixed decimal, as shown in the 'cleaned up' file, GPLOTDATI,

a portion of which is shown in Table 12.

At the same time the program was used to remove
superfluous 0's from the (unneeded) fractional parts of
numbers which were intended to be integers (GLIM treats
integers as it does real numbers in general) and to line .up
all the decimal points. This latter task was not necessary
because when a number is inputted to a FORTRAN program
(including the software packages used), a user-keyed decimal
point will override where an input 'F' format indicates it
should be found (Ref.(7) pg. 24). The alignment, however,
comes naturally with 'F' format on output data. This is not

true necessarily with 'G' format, which is evidently what

GLIM used.

7.3 On the Production of the Plots in Figures 33-35

The plots in Figures 33.a-d, 34.a-d, and 35.a-d were

produced by the command source files shown in Figures 46,
47,’and 48 respectively. In Figures 47 and 48 note should be
made of the usage of the 'use' variable for case selection
in the '/ transform' paragraph. This feature is described on
page 55 of Ref.(4) and is distinct from the 'use=' sentence
in a '/ variable' paragraph as described on page 42 of the
same reference. The 'use' variable is a BMDP supplied

variable and as such does not need to be included in a
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Table 12: Portion of 'Cleaned Up' Data File,

GPLOTDATI

=1,
2.
1.
2.

-1.

-0
1
1
0

-3
-2.
-1

Qa =200 =22 O0ONN=20O 2220

t

2 QOQONa2a2a 20 =2NOONNWaDONNE =N

o
NO =

[} LU I |
O =20 aNN = =

1
O=+N s aabO

453381538
842117310
501585007
861376762
730066299

.6196473980
.039158821
.444676399
.045539372
.954569817

414083018

.40158081 1
.96976 1550
.402898788
.306131363
.380450249
.375171661
.306982517
.043387413
.720917702
.419240952
.469663918
.316697121
.236289024
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Figure 46: P6D Command File which Generated Fiqures 33.a-d

$empty goutp6di ok
$run *bmdp sprint=goutpedl 7=gplotdat! par=p6d
/ problem title is 'GOOKP6D1: plot ACNEST vs. DIAM: group by
sptree, all DI{1’.
/ input unit is 7.
cases are 1124.
variables are 7.
format is ‘(5x,f5.0,2(1x,f14.9),1x,f14.8,3(1x,f2.0))"’.
/ variable names are recnum,lp,vl,lgdiam,sptree,dii,bktop.
label is recnum.
grouping is sptree.

/ group codes(5)=1,2,3.
names(5) are aspen,birch,other.
/ plot yvar is 1p.

xvar is lgdiam.
group is aspen.
group is birch.
group is other.
groups are aspen,birch.,other.
size=100,40.
no statistics.
/ end
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Figure 47: P6D Command File which Generated Fiqures 34.a-d

$empty goutp6d2 ok
$run *bmdp sprint=goutp6d2 7=gplotdatt par=péd
/ procblem title is 'GOUTPED2: plot ACNEST vs. DIAM: group by
' SPTREE, no fungal conks’.
/ input unit is 7.
cases are 1124.
variables are 7.
format is '(5x,f5.0,2(1x,f14.9),1x,f14.8,3(1x,f2.0))"’.
/ variable names are recnum,lip,vl,lgdiam,sptree,dit,bktop.
label is recnum.
grouping is sptree.
/ transform use=dit eq 1.

/ group codes(5)=1,2.3.
names{5) are aspen,birch,other.
/ pltot yvar is 1p.

xvar is lgdiam.

group is aspen.

group is birch.

group is other.

groups are aspen,birch,other.
size=100, 40.

no statistics.

/ end .
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Fiqure 48: P6D Command File which Generated Fiqures 35.a-d

$empty goutp6d3d ok
$run *bmdp sprint=goutp6d3 7=gplotdati par=p6d
/ problem title is 'GOUTP6D3: plot ACNEST vs. DIAM: group by
SPTREE, fungal conks present’. :
/ input unit is 7.
cases are 1124,
variables are 7.
format is ‘(5x,f5.0,2(1x,f14.9),1x,f14.8,3(1x,f2.0))".
/ variable names are recnum,lp,vl,lgdiam,sptree.dii,bktop.
label is recnum.
grouping is sptree.
/ transform use=dil eq 2.

/ group codes(5)=1,2,3.
names(5) are aspen,birch,other.
/ plot yvar is 1p.

xvar is lgdiam.
group is aspen.
group is birch.
group is other.
groups are aspen,birch,other.
size=100,40.
no statistics.
/ end
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'add=' sentence in the '/ variable' paragraph. The manual

(Ref.(4)) neglects to point this out
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CHAPTER 8

TECHNICAL SUPPLEMENT FOR CHAPTER 4

A number of observations and developments may be made on

the contents of Chpater 4.

8.1 On the Production of Qutputs in Figures 40 and 41

Figures 40 and 41 both showed outputs of GLIM runs,
which were produced by the command source files in Figures
49 and 50. One can see that these source files are very
similar to that of Figure 44 except for the actual model fit

requests and the fact that no new data file gets created.

The calculations for drops in scaled deviance are
straight forwrard. Using the notation of Section 5.4 in
Ref.(2), let model 0 refer to the null model (no explanatory
variables), model m refer to the maximal (PLR final) model
presented in Chapter 3, and model f refer to the 'full’
model, which would have 1124 coefficients (one for each

observation in the analysis). Then for Figure 40:

Explanatory Variable S(0,i)
i Added to Model 0 S(i,f) =S(0,/)-S(i,f)
1 SPTREE 1057 117
2 [ n(DIAM) 1095 79
3 [ n(HEIGHT) 1169 5
4 DIl 779.0 395
5 DIZ2 : 1137 37
6 DWOOD 1161 13
7 BKTOP 1161 13-
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Fiqure 49: GLIM Command File which Generated Fiqure 40

$EMPTY GOUTGLIM3 OK
$RUN UNSP:GLIM 1=GOOKNESTS 2=GOUTGLIM3

$C

$C GLIM RUN ON FILE GOOKNESTS TESTING OUT LOGISTIC LINK ON BINARY
$C RESPONSES ’

$C

sc LA R RS R RS R R RS SRR R ]

$C * GET DATA & TRANSFORM =*

sc LR R R R R R R R R RS R R R ]

$C

$OUTPUT 2 132

$UNITS 1124

$DATA RECNUM ACNEST SPTREE LNHEIGHT LNDIAM DI{1 DI2 DI3 DWOOD BKTOP
$FACTOR SPTREE 3 DI1 2 DI2 2 DI3 2 DWOOD 2 BKTOP 2

$FORMAT

(2x,F8.1,2(1X,F2.0),1X,F5.2,1X,F6.2,5(1X,F2.0))

$DINPUT 1

$LOOK {1 15 RECNUM ACNEST SPTREE LNHEIGHT LNDIAM DI{ DI2 DI3 DWOOD BKTOP
$CALC LNHEIGHT=%LOG(LNHEIGHT): LNDIAM=%LOG(LNDIAM): N=1: DI{=DT1{+1
$CALC DI2=DI2+1: BKTOP=BKTOP+1

$C

sc LER R R R R E RS SRR R ER AR R R SRR R R b R R R LR )

$C * SPECIFY MODEL TO BE ANALYZED *
R T T R
$C

$YVAR ACNEST

$ERROR B N

$LINK G

$C

sc ****************ttt****i**********i*****?*i*t***

$C * FIT SINGLE-VARIABLE MODELS & NULL MODEL *
GO oo o R R R K R K R R KRR K K K K o
$C

SFIT %GM

$DISP A

$FIT SPTREE R
$DISP A

$FIT LNDIAM

$0ISP A

"$FIT LNHEIGHT

$DISP A

$FIT DIt

$0ISP A

$FIT DI2

$DISP A

$FIT DWOOD

$0ISP A

$FIT BKTOP

$DISP A

$STOP
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Figure 50: GLIM Command File which Generated Figure 41

$EMPTY GOUTGLIM4 OK
$RUN UNSP:GLIM 1=GOOKNESTS5 2=GOUTGLIM4

$C

$C GLIM RUN ON FILE GOOKNESTS TESTING OUT LOGISTIC LINK ON BINARY
$C RESPONSES

$C

$C EE R EEEEEEEEEEEEE SRR RS S

$C * GET DATA & TRANSFORM =*

$C EEEEEEREEEEEEEEEEE SRR R Y]

$C

$OUTPUT 2 132

$UNITS 1124

$DATA RECNUM ACNEST SPTREE LNHEIGHT LNDIAM DI1 DI2 DI3 DWOOD BKTOP
$FACTOR SPTREE 3 DI1 2 DI2 2 DI3 2 DWOOD 2 BKTOP 2

$FORMAT

(2x,F8.1,2(1X,F2.0),1X,F5.2,1X,F6.2,5(1X,F2.0))

$DINPUT 1 .

$LOOK 1 15 RECNUM ACNEST SPTREE LNHEIGHT LNDIAM DI1 DI2 DI3 DWOOD BKTOP
$CALC LNHEIGHT=%LOG(LNHEIGHT): LNDIAM=%LOG(LNDIAM): N=1: DI1=DI1+1
$CALC DI2=DI2+1: BKTOP=BKTOP+1

$C

$C EEEREREEEEEE SRS RS EE R R R R SRR R R R R R R R R RS

$C * SPECIFY MODEL TO BE ANALYZED *

PC ***xdud ek bk hhhdhrrakk ko kk ke H ko *

$C

$YVAR ACNEST

$ERROR B N

$LINK G

$C

PC **dkkdh kM kk ko khk ko k ko k kR k kR kR kR Rk Rk Rk Rk

$C * FROM GOUTPLR4 OUTPUT & GOUTGLIM{, TRY ALL POSSIBLE *

$C * MODELS WHICH HAVE A SINGLE VARIABLE MISSING. *
PO H A AR A AR MR AR E R AR AR AR AR RN RN MR R A AR AR AR AR RN Ak
$C :

$FIT LNDIAM+DI 1+DI2+LNHEIGHT+DWOOD+BKTOP

$DISP A .
$FIT SPTREE+DI 1+0I2+LNHEIGHT+DWOOD+BKTOP

$DISP A

$FIT SPTREE+LNDIAM+DI2+LNHEIGHT+DWOOD+BKTOP

$DISP A

$FIT SPTREE+LNDIAM+DI 1+LNHEIGHT+DWOOD+BKTOP

3DISP A

$FIT SPTREE+LNDIAM+D]I 1+DI2+0WO0OD+BKTOP

3DISP A

$FIT SPTREE+LNDIAM+DI{1+0I2+LNHEIGHT+BKTOP

$DISP A

$FIT SPTREE+LNOIAM+DI 1+012+LNHEIGHT+DW0O0OD

$DISP A

$STOP
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where S(0,f)=1174.

Similarly, for Figure 41:

Explanatory Variable S(i,m)
i Removed from Model m SCi,f) =S(i ,f)-S(m,[)
1 SPTREE 692.7 95.6
2 ! n(DIAM) 613.3 16.2
3 ! n(HEIGHT) 600.0 2.9
4 DI1 939.3 342.2
5 DI2 624.3 27.2
6 DWOOD 605.0 7.9
7 BKTOP 607.4 10.3

where S(m,f)=597.1.

From these values the rankings for the last 2 schemes in

Chapter 4 may be confirmed.

8.2 On Comparing Figure 36 Entries with GLIM Equivalent

Figure 51.a shows the command source file for a GLIM run
which reguests a sequence of model fits identical to that of
the PLR run, which was summarized in Figure 36. The
corresponding GLIM ouput is shown in Figure 51.b. A table of
successive fit results for Figure 51.b similar to those for
Figures 40 and 41 in the previous section is now given:

Improvement over
Previous Model:

Step Explanatory Variable S(i=1,i)
i Added to Previous Step SCi,f) =S(i=1,/)=-8Ci,f)
0 %GM(Empty Model) 1174 ---
1 DI 779.0 395
2 [ n(DIAM) 725.0 54.0
3 SPTREE 662.0 63.0
4 BKTOP 633.3 28.7
5 DI2 606.5 26.8
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Fiqure S1.a: GLIM Command File which Generates Figure 51.b

$EMPTY GOUTGLIMS OK
$RUN UNSP:GLIM {=GOOKNESTS 2=GOUTGLIMS

$C

$C GLIM RUN ON FILE GOOKNESTS TESTING OUT LOGISTIC LINK ON BINARY
3C RESPONSES

$C

sc e e e ok e e e ol e ok ook ok kR Ok ok K Ok K KOk

$C * GET DATA & TRANSFORM *

sc akc de ok e de ok dke e ke ok i ik ok kK Rk Rk K Ok Ok ok

$C

$OUTPUT 2 132 :

SUNITS 1124

$DATA RECNUM ACNEST SPTREE LNHEIGHT LNDIAM DI{ DI2 DI3 DWOOD BKTGP
$FACTOR SPTREE 3 DI1 2 DI2 2 DI3 2 DWOOD 2 BKTOP 2

$FORMAT

(2x,F8.1,2(1X,F2.0),1X,F5.2,1X,F6.2,5(1X,F2.0))

$DINPUT 1

$LOOK 1 15 RECNUM ACNEST SPTREE LNHEIGHT LNDIAM DI1 DI2 DI3 DWOOD BKTOP
$C

$C LOG TRANSFORM LNHEIGHT & LNOIAM

$C SHIFT ALL QUALITATIVE VARIABLES UP BY {1 BECAUSE GLIM

$C CAN’T HANDLE FACOTR LEVELS OF ©

$C

$CALC LNHEIGHT=%LOG(LNHEIGHT): LNDIAM=%LOG(LNDIAM): N=1: DI{1=DI{1+1
$CALC DI2=DI2+1: BKTOP=BKTOP+1
$C

sc e de e ke e ke e e e ok e ok ok ok ok ke ok ke ke Ok kK kR R RO i I Kk R ikl ke kR kK Ok

$C * SPECIFY MODEL TO BE ANALYZED *
sc ok ke 3 ke e ke ok e ol e ok i i ok e ke kol e i ok ke i okl ki ke ke ke ok ko kR K ke K ok K
$C

$YVAR ACNEST

$ERROR B N

$LINK G

$C

sc ok e de ke s i ke ok ke ok ok e ke ok e 3 ke ok ok dle ke e ke ok ok e dle ke ok s 3 Ok ok ke e ke ok e ke e ke e e e i ke ke ke e e ol ke ik e ke ke ke ke ke ok Ok kR ROk

$C * FIT NESTED MODELS IN DORDER SUGGESTED IN GOUTPLR4 *
sc ****#tt#*t#**tt#tt*t****t**#***********#*t#*t***t*##*t***t****i*#*n
$C

$FIT %GM

$DISP A

$FIT DIV

$DISP A

$FIT DI{+LNDIAM

$DISP A

$FIT DI1+LNDIAM+SPTREE

$DISP A

$FIT DI1+LNDIAM+SPTREE+BKTOP

$DISP A

$FIT DI1+LNDIAM+SPTREE+BKTOP+DI2

$DISP A »

$FIT DI{+LNDIAM+SPTREE+BKTOP+DI2+DW000

3DISP A

$FIT DI1+LNOIAM+SPTREE+BKTOP+0I2+DWOO0+LNHEIGHT

$OISP A

$STOP
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Figure 51.b: GLIM Model Fits to Match PLR Sequence in Figure 36

SCALED
CYCLE DEVIANCE DF
4 1174. 1123
ESTIMATE S.E. PARAMETER
1 -1.288 0.7228E-01 %GM
SCALE PARAMETER TAKEN AS 1.000
SCALED
CYCLE DEVIANCE DF
4 779.0 1122
ESTIMATE S.E. PARAMETER
1 -2.404 0.1214 %GM
0 ZERO ALIASED DI1(1)
2 3.407 0.1915 DI1(2)
SCALE PARAMETER TAKEN AS 1.000
SCALED
CYCLE DEVIANCE DF
4 725.0 1121
ESTIMATE S.E. PARAMETER
1 -10.36 1.147 %GM
0 ZERO ALIASED DI1(1)
2 3.439 0.2026 DI1(2)
3 2.369 0.3310 LNDI
SCALE PARAMETER TAKEN AS 1.000
SCALED
CYCLE DEVIANCE ° DF
5 662.0 1119
ESTIMATE S.E. PARAMETER
1 -7.870 1.288 ° %GM
0 ZERO ALIASED DIY(1)
2 3.591 0.2270 DI1(2)
3 1.771 0.3718 LNDI
0 ZERO ALIASED SPTR(1)
- 4 -1.860 0.2819 SPTR(2)
5 -2.272 0.7976 SPTR(3)
SCALE PARAMETER TAKEN AS 1.000
SCALED
CYCLE DEVIANCE DF
5 633.3 1118
ESTIMATE S.E. PARAMETER
1 -8.973 . 1.346 %GM
0 ZERO ALTASED DI1(1)
2 3.594 0.2326 DI{1(2)
3 2.041 0.3859 LNDI
0o ‘ZERO ALTASED SPTR(1)
4 -2.572 0.3417 SPTR(2)
5 -2.784 0.8616 SPTR(3)
0o ZERO ALIASED BKTO(1)
6 1.525 0.2820 BKTO(2)
SCALE PARAMETER TAKEN AS 1.000
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Figure 51.b, continued
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5
1
o}
2
3
o}
4

5
o}
6
o}
7
o}
8
g
C

SCALED
DEVIANCE
606.5

ESTIMATE
-8.759
ZERO
3.685
1.848
ZERO
-2.787
-2.992
ZERO
1.621
ZERO
1.125

SCALED
DEVIANCE
600.0

ESTIMATE
~9.481
ZERO
3.710
2.015
ZERO
-2.888
-3.036
ZERO
1.005
ZERO
1.134
ZERO
0.8271

SCALED
DEVIANCE
587.1

ESTIMATE

"-10.04

ZERO
3.721
1.734

ZERO

-2.802
~-3.053

ZERO
1.325

ZERQ
1.139

ZERO

0.9389
0.5136

DF
1117

S.E.
1.377
ALIASED
0.2412
0.3953
ALIASED
0.3580
0.8947
ALIASED
0.2931
ALIASED
0.2197

ALE PARAMETER TAKEN AS

DF
1116

S.E.
1.422
ALIASED
0.2438
0.4047
ALIASED
0.3642
0.8903
ALIASED
0.3696
ALIASED
0.2203
ALIASED
0.3180

ALE PARAMETER TAKEN AS

DF
1115

S.E.
1.468
ALIASED
0.2445
0.4365
ALIASED
0.3676
0.8879
ALIASED
0.4180
ALIASED
0.2211
ALIASED
0.3260
0.3051

ALE PARAMETER TAKEN AS
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PARAMETER
%GM
DI1(1)
DI1(2)
LNDI
SPTR(1)
SPTR(2)
SPTR(3)
BKTO(1)
BKTO(2)
DI2(1)
DI2(2)
1.000

PARAMETER
%GM
DI1(1)
DI1(2)
LNDI
SPTR(1)
SPTR(2)
SPTR(3)
BKTO(1)
BKTO(2)
DI2(1)
DI2(2)
Dwoo(1)
DwoOo(2)
1.000

PARAMETER

SPTR(1)
SPTR(2)
SPTR(3)
BKTQ(1)
BKTQ(2)
DI2(1)
DI2(2)
DwWQo(1)
DwWoOo(2)
LNHE
1.000



6 DWOOD 600.0
7 [ n(HEIGHT) 597.1

N O
(Vo I3 ;]

Comparing these entries with those of Figure 36, it will
be noticed that the improvement S(i-1,i) is very nearly the
same as the improvement x2? score for the same expalanatory
variable, and also that the S(i,f) differs from the
goodness-of~fit x? score by about 3 for the same explanatory

variable. These are worthy of further consideration.

First of all, the 2 'improvement' scores should be
exactly the same, with accumulated round-off errors and
differences in the efficiencies of the respeétive numerical
algorithms accounting for any discrepancies. The reason for
the equality is that if, say, model i is nested in model j
then the GLIM improvement measure is, according to Section

5.2 of Ref.(2):

S(i ,j)=-21n<%i_>
J
where L; is the likelihood function evaluated for the
parameter estimates for model i, and Lj the likelihood
function evaluated for parameter estimates for model ;.
According to page 683 of Ref.(4), this is also how PLR

computes its improvement x? score.

The goodness-of-fit measures, however, seem to be
computed differently. GLIM uses a deviance formula (Ref.(8)
pPg. 25) but PLR does not reveal how its goodness-of-fit is

computed, although the manual (Ref.(4)) hints on page 333
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that the usual Pearson statistic for cell frequency counts’
is used. Certainly the observation that the two

goodness-of-fit measures seem to differ always by 3 is of

interest.
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CHAPTER 9

TECHNICAL SUPPLEMENT FOR CHAPTER 5

On the contents of Chapter 5, the following observations

and developments may be made.

9.1 On the Estimation of Future Log-0Odds and their Variances

The linear predictor, in this analysis, occurs on the
log-odds scale:
n=30+31x1+32x2+...+3Pxp=£'ﬁ
and the vector of estimated coefficients is ﬁ, estimated
either by PLR or GLIM. For a future tree and its associated
vector of explanatory variable values, X,» one can estimate

the corresponding log odds:

n=x,"8
and its associated variance:
2*=|*A
s2(R)=x,"Cov(plx,
Now the exact variance would be:
Var(f)=x,"Cov(g)x,
where Cov(B) is the true dispersion or variance-covariance

matrix of f. But this itself must usually be estimated from

the sample data by C3v(j).

~

Computing the inner product ﬁ=§0'ﬁ and the quadratic
form 50'c3v<§)£0 can easily be done with the MINITAB

software package (Ref.(12)) as is shown in Figures 52.a and
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52.b, where Figure 52.a shows the source file to produce the

run, and Figure 52.b shows the input vector x,, and output

0!
results for the run. The actual input vector was originally
stored in another file which is not reproduced here since
its contents already appear in Figure 52.b. The following

features of Figure 52.a will be noticed.

Firstly, the Cév(f) matrix used is that from the PLR
run, not from the GLIM run, since PLR does the computation
in double precision, whereas the precision used in GLIM is
not revealed in the manual. In addition the PLR program is
specialized for logistic regression where GLIM is designed
for greater generality, so it was felt that the PLR results
were more reliable. It was noted earlier, in Section 7.2,
that there are some differences between PLR and GLIM in the

final reported results for both § and Cév(B).

Secondly, the X, vector must be in the format:

0
X,= SPTREE(1)
SPTREE (2)
! n(HEIGHT)
! n(DIAM)
DI1
DI2
DWOOD
BKTOP
1.0

~

where the '1.0' is for the constant term, BO’ in the 8
vector. This order is imposed because of the row/column

order of B and Cév(§) from the PLR output.
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Figure 52.a: MINITAB Command File which Generates Figure 52.b

$empty gookmtbout ok

$run *minitab sprint=gookmtbout

noecho

#

HENWNAHRHNANAIRRAIRIRIRIRA AR

# set up vector of regression coefficients #

(LA TRy N R Y N NNy N F Ny ryyyyrryrryrryry)

#

set ci

~2.9036 -3.0541 0.51375 1.7341 3.7217 1.1396 0.93930 1.3251 -10.039
name c1 ‘coeff’

#

HENRNRERBARIHRRRRRBERIRNRI IR RIANRNEREANANAN

# set up column vectors for dispersion matrix #
HUNHNRNRANIRANURRRRNRHARIRRR RN

P .

set c2

0.13905 0.04935 ~0.00438 0.01098 -0.03761 -0.01484 -0.01827 -0.04355
-0.01064

set c3

0.04935 0.82897 -0.00608 -0.02309 -0.02440 -0.01429 -0.01082 -0.04328
0.10470

set c4

-0.00438 -0.00608 0.09400 -0.04952 0.00477 0.00191 0.02017 0.05833
-0.11007

set c5

0.01098 -0.02309 ~0.04952 0.19326 0.01006 -0.00674 0.01372 -0.02414
-0.52416

set c6

-0.03761 -0.02440 0.00477 0.01006 0.06105 0.01254 0.00988 0.00993
-0.07489"°

set c7

-0.01484 -0.01429 0.00191 -0.00674 0.01254 0.04953 0.00271 0.00669
-0.00725

set c8

-0.01827 ~-0.01082 0.02017 0.01372 0.00988 0.00271 0.10760 -0.©6058
-0.12929 .

set ¢9 B
-0.04355 -0.04328 0.05833 -0.02414 0.00993 0.00669 -0.06058 O.17681
-0.09419

set c10

-0.01064 0.10470 -0.11007 -0.52416 -0.07489 -0.00725 -0.12929 -0.09419
2.19295

copy c2-c10 to mi

echo

# .
HHNRARRRRAIRANNINRRRRRIEIIRRRURIRRAN AR RN

# here is vector of coefficients from GOUTPLR4 #
HHNHHANANAAAERIRRURRIRRIRR U NRRHA R

#

noecho

print ‘coeff’

echo

N .
HUNBBURINNHRUARRUINIIHHBURBERERARRIHHHRRRRARAAARRA AR

# here is sample dispersion matrix for above vector #
HHHBHERENBHNIAN IR THEI AN IR AN AN

L4

noecho

print m1

#

##############################

# get an estimation vector #

HAHANNRBHRBRAHERI AR ERN ISR
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Figure 52.a, continued

#

noecho

read ‘gookmtbin’ cii

echo

#

HHHHHHHHHRRERR AR H

# For the following input vector #

HHHHHHHHRH BRI RN

#

noecho

print ci11

#

HHHHHHRUHEUR BRI BRI A
# find estimated future mean of linear predictor & #
# corresponding estimated variance #
HHHHHUHHHHBHEHBEBAHURRRIN BN U
#

trans ci1 put m2

echo

#

HUHRHERRHRN RN RR RGN

# this is estimated future mean 1inear predictor #
HUHHBHERERHHBRR RN

#

noecho

mult m2 ‘coeff’ put ki

mult m2 mi put m3

echo

#

HHRHHEUREEHBHHEREHI BRI HRIY

# & here is estimated variance #
HHHHHEHHHHBRHHHRHHRNHHERRHRERRNINY

#

noecho

mult m3 cii1 put k2

§top
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Figure 52.b: MINITAB Run to Find Estimated Log-0dds and its

Associlated Variance

MTB > #
MTB > HUNHIHHHHERIHEEEEEE BRI
MTB > # here is vector of coefficients from GOUTPLR4 #
MTB > HHHHUHRHHERHENIHEHBBEEBHEEARRRERRR RN
MTB > #
coeff
-2.9036 -3.0541 0.5137 1.7341 3.7217 1.1396 0.9393
-10.0390
MTB > #
MTB > HHHHUHHRTEERHERBUERH BRI BRI
MTB > # here is sample dispersion matrix for above vector #
MTB > HHHHUHEHAEURIEERANEHBERIIABINRRRG RN BINREA RN
MTB > #
MATRIX M{
0.13905 0.04935 -0.00438 0.01098 -0.03761 -0.01484 -0.01827 -0.04355
0.04935 0.82897 -0.00608 -0.02309 -0.02440 -0.01429 -0.01082 -0.04328
-0.00438 -0.00608 0.09400 -0.04952 0.00477 0©0.00191 0.02017 0.05833
0.01098 -0.02309 -0.04952 0.19326 0.01006 -0.00674 0.01372 -0.02414
-0.03761 -0.02440 0.00477 0.01006 0.06105 0.01254 0.00988 0.00993
-0.01484 -0.01429 0.00191 -0.00674 0.01254 0.04953 0.00271 0.00669
-0.01827 -0.01082 0.02017 0.01372 0.00988 0.00271 0.10760 -0.06058
-0.04355 -0.04328 0.05833 -0.02414 0.00993 0.00669 -0.06058 0.17681
-0.01064 0.10470 -0.11007 -0.52416 -0.07489 -0.00725 -0.12929 -0.09419
~0.01064
0.10470
-0.11007
-0.52416
-0.07489
-0.00725
-0.12929
-0.09419
2.19295 )
9 ROWS READ
MTB > #
MTB > HHHHNINIHEHEINSRE RN NIRI IR BEERRY
MTB > # For the following input vector #
MTB > HHNNABNHHHBUNRIRIIBIBERRBEANERRINIH
MTB > #
c11
0.000 0.000 2.914 3.645 1.000 0.000 0.000 0.000 1.000
MTB > #
MTB > WHNUHENIHHEHARBENEIRRRHRRIIHRAII NI ANERARERYRENAA Y
MTB > # this is estimated future mean 1inear predictor #
MTB > HHHNNBHHNGHIREHBEYRRINIEIRARERYNERHIUNIRY IR EHRHY
MTB > #
ANSWER = 1.5006
MTB > #
MTB > HHNINHRBYRBENNENAENRAIHIRIREEAA
MTB > # & here is estimated variance #
MTB > HHUHHRNBIHIHEIINBBLRANENIII A AAAN
MTB > #
ANSWER = 0.0566

*%% MINITAB *** STATISTICS DEPT * PENN STATE UNIV. * RELEASE 82.1 *
STORAGE USED 624 STORAGE AVAILABLE 261744
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9.2 On Estimating and Predicting u

From the link function of Chapter 3:

1)

and its associated inverse:
u=Prob{Success}=gf1(n)
-n -1
=(1+e ")
one could then produce a fitted probability u from the

fitted log-odds, %, thus:

f=(14e" M7

and this would be the '#% as estimate' case, mentioned in
Chapter 3, that is, & estimates the mean probability u of
success for the population of all deciduous trees of same
species, height, diameter, and values of DI1, DI2, DWOOD,
and BKTOP. Whether this estimate is unbiased for u or not is

unsure, as is the question of unbiasedness of 7 for 7.

The question of unbiasedness, however,ris not important
when using % to produce a pfediction, up for u. The table in
Ref.(9) mentioned earlier provides values of up given # and
s?2(n). It is suggested that a prediction of u for individual
trees rather than a population estimate will be more useful
to a field worker since prediction takes both # and s2(7)
into account, whereas the estimate, i, is a function only of

-~

e
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Otherwise one could have the following scenario. Suppose

for two vectors of explanatory variable values, x; and x,:

X1%X,
but

n1=12
where

ﬁl=§i'é
for i=1,2. Then:

By=it,

But if:

s2(R,)#s2(92)
then the corresponding Mp values will also be different. In
fact, the x; vector having the higher s2(%;) will give a
ﬁp-value closer to 0.5 (so long as their ﬁi are equal). Hp
is thus in this sense, 'safer' than i as a fitted value for

(798
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APPENDIX A

A TABLE OF
PREDICTIVE SUCCESS PROBABILITIES
FOR LOGISTIC REGRESSION

S. G. Meester and D. Eaves
Simon Fraser University
Burnaby, B.C.

Canada

Key Words and Phrases: dichotomous data; logistic regression;
predictive probability.

ABSTRACT

A table of expected success rates under normally
distributed success logit, used in conjunction with logistic
regression analysis, enables easy calculation of expected win

for betting on success of a future dichotomous trial.

INTRODUCTION

We wish to calculate a predictive probability of success
under specified values ayr Agreeey ak of k independent var-
iables which might influence success probability. For example
in the simple linear logistic regression case, k=2, a, = 1 and

1

a2 is the specified value of the independen: variable.

The past information upon which we may base the calculation
consists of an observed sequence of n successes and failures,
each having occurred under a known set of values of the

independent variables. Standard logistic regression (Cox, 1970)

fits the model:
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Success logit = x;B i=1,2,...4n

where the row vector x{ represents the independent variable
values associated with observation i. . This fitting produces a
M.L.E. B and an estimated covariance matrix E for 8.

It is conceptually convenient (but otherwise unnecessary) to
interpret this in the Bayesian framework, as producing a normal
approximation to the posterior Lebesgue density of B, as
p-variate with posterior mean E and covariance E. This idea
is discussed in DeGroot (1970), Chapter 10. The posterior
distribution of the success logit, 8, given a = (al,...,ak)' may
therefore be taken as univariate approximately normal with mean
m = a'a and variance 52 = a'Ea, which are easily calculated
from the outputs of standard programs such as GLIM or BMD
PLR. Since it is generally reasonable to assume that subsequent
success/failure is conditionally independent of past data given
8, it follows readily that for a similar future Bernoulli trial,

Prob[success|datal = [ [1 + exp(-e)]-1f(e m,s)ds
C]
where f is the normal density with mean m and variance sz.

With the view of facilitating calculation of success
probability on a future trial, values of this integral are given
in table I. Note that as s increases, the integral shrinks
from [1+exp(—m)]-1 toward 0.5. Also only values for m > 0

are given. If m < 0 then enter the table at ,ml " and use

1=-(value from the table for Prob[successldata]).

The production of this integral is analngous to the
calculation of the predictive mean and standard error for a
single future numerical observation associated with a classical
regression model, since these two figures are the location and
scale parameters of the predictive t-distribution. The amount
of uncertainty of the logistic prediction is reflected in the

amount of pulling toward 0.5 of the fitted success probability.
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TABLE I
VARIANCE

MEAN 0 1 2 5 10 15 20 40
0.1 .5250 «5206 .5181 .5141 .5110 .5094 .5083 ,5061
0.2 .5498 .5412 .5363 .5282 ,5220 .5187 «5166 .5121
0.4 .5987 «5820 .5722 .5563 .5440 .5374 «5331 .5243
0.6 .6457 .6218 ,6075 .5841 .5659 5560 .5496 .5364
0.8 .6900 .6601 ,6419 .6114 .5876 «5745 «5660 .5484
1.0 .7311 .6967 .6751 .6383 .6089 .5928 .5823 ,5604
1.5 .8176 .7785 .7513 ,7020 .6608 «6376 .6223 .5902
2.0 .8808 .8445 .8161 .7599 .7097 .6806 .6611 ,6195
2.5 .9241 .8946 .8684 .8109 .7550 .7213 .6982 ,6481
3.0 .9526 .9307 .9086 .8544 .7962 .7593 «7334 .6759
4.0 .9820 «9719 ,9594 .9193 .8649 .8259 .7969 .7285
5.0 .9933 .9892 ,9834 .9590 .9156 .8794. .8503 .7765
6.0 .9975 .9960 .9935 .9807 .9503 . 9200 .8934 .8192
8.0 .9997 .9994 ,9991 .,9965 .9855 .9692 .9514 .8881
10.0 .9999 .9999 ,9999 .9995 .9966 9901 .9808 .9358
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