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ABSTRACT 

I n  t h i s  t h e s i s  we i n v e s t i g a t e  t h e  s t a b i l i z i n g  and d e s t a b i l i z i n g  

inf luence  and branching e f f e c t  o f  small  pe r tu rba t ion  on the  e q u i l i b r i a  

of a dynamical system of  th ree  non l inea r  autonomous ordinary d i f f e r e n t i a l  

equations of t h e  Kolmogorov-type with small  per turbat ion.  +rt i s  assumed 

t h a t  the  unperturbed system has a t  l e a s t  one simple o r  mul t ip le  e q u i l -  

ibrium i n  the  first octant  and t h a t  t h e  e q u i l i b r i a  of  the  per turbed 

sys tem o r i g i n a t i n g  from the  mu1 t i p  l e  equi l ibr ium of  the unperturbed sys tem 

a r e  simple. 

By using the  q u a l i t a t i v e  theory  and b i f u r c a t i o n  theory o f  d i f f e r e n t i a l  

equations,  t h e  na tu re  and s t a b i l i t y  of  t h e  simple e q u i l i b r i a  of  t h e  

unperturbed as wel l  as the  per turbed systems are examined i n  the  t h r e e  

diniensional phase space. In  order  t o  i l l u s t r a t e  t h e  theory,  t h e  q u a l i t a t i v e  

behaviors o f  the  e q u i l i b r i a  o f  some t h r e e  dimensional per turbed populat ion 

models~ a re  compared with those of  t h e  corresponding unperturbed models. 

We have shown t h a t ,  under the  inf luence  of  small  pe r tu rba t ion ,  

although the  nature  of the  hyperbolic e q u i l i b r i a  of the  Kolmogorov 

model may o r  may not change, the  s t a b i l i t y  o f  the  e q u i l i b r i a  remains the 

same, and both the  nature  and s t a b i l i t y  of  t h e  simple nonhyperbolic 

e q u i l i b r i a  change. We have a l s o  proved t h a t ,  i f  t h e  Jacobian of  the  

unperturbed terms o f  the  dynamical system i s  zero and t h a t  up t o  t h e  

second degree perturbed terms i s  d i f f e r e n t  from zero, then depending on 

t h e  rank of  the  Jacobian matr ix  o f  the  unperturbed terms, t h e  mul t ip le  

unperturbed equi l ibr ium b i f u r c a t e s  i n t o  a t  l e a s t  two o r  a t  most e i g h t  

branches of simple perturbed e q u i l i b r i a .  

( j  i i )  
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INTRODUCTION 

The mathematical inves t iga t ion  of a great  number of physical  and 

biological  problems leads na tura l ly  t o  the  so lu t ions  of  d i f f e r e n t i a l  

equatidns - ordinary o r  p a r t i a l ,  l i n e a r  o r  nonlinear,  autonomous o r  non- 

autonomous, In  t h i s  work we s h a l l  discuss problems t h a t  can be described 

by a dynamical system of three  ordinary nonlinear autonomous d i f f e r e n t i a l  

equations of  the  Kolmogorov-type. Dynamical systems corresponding t o  

physical  and b io log ica l  problems usual ly  contain a ce r t a in  number of 

parameters. Our work w i l l  involve only one small  pos i t ive  parameter 

representing per turbat ion i n  t he  dynami c a l  sys tern. 

The purpose of t h i s  t he s i s  i s  the  study o f  the  e f fec t  of small 

per turbat ions  on a nonlinear system of  th ree  species in te rac t ions  represented 

by the  th ree  diaensional perturbed Koimogorov msdei. Tne object  of the  

study is  t o  inves t iga te  t he  behavior of so lu t ions  involving changes and 

no changes i n  the  nature and s t a b i l i t y  of the  equil ibrium of the  Kolmogorov 

model i n  both the  cases when the  parameter does not  vary and i s  varied.  

This study i s  of mathematical s ignif icance and important f o r  various 

appl icat ions .  Three dimensional dynamical systems o f  the  Kolmogorov-type 

are  frequently used as examples i n  b i fu rca t ion  theory, chaos, invar ian t  

manifold theory, population dynamics, and some other  branches of modern 

applied mathematics . 

In  order t o  achieve our object ive ,  we s h a l l  derive the  c r i t e r i a  

f o r  t he  existence of simple e q u i l i b r i a  of the  th ree  dimensional perturbed 

KoPmogorov model corresponding t o  the  simple and multiple e q u i l i b r i a  of 



the  unperturbed model; study b i fu rca t ion  of mult iple unperturbed 

equil ibrium i n t o  simple perturbed e q u i l i b r i a ;  provide parameter conditions 

f o r  a l l  poss ible  types of simple e q u i l i b r i a ;  examine the  nature  and 

s t a b i l i t y  of t he  unperturbed as wel l  as  the  perturbed simple e q u i l i b r i a  

i n  t he  th ree  dimensional phase space; and compare t h e  qua l i t a t i ve  

- behaviors of the  e q u i l i b r i a  of t he  perturbed system with those of  t he  

unperturbed system. 



CHAPTER 1 

THE SURVEY AND.THE PROPOSAL 

In  t h i s  chapter I have done a survey of research works dealing 

with the qua l i t a t i ve  analyses of  two and three  dimensional Kolmogorov-type 

models with and without per turbat ion.  The important r e s u l t s  of these  

works have been summarized i n  b r i e f .  The l a s t  sec t ion  of t h i s  chapter 

contains the  proposal f o r  the  d i s s e r t a t i on .  

1.1 TWO DIMENSIONAL KOLMJGOROV MODEL 

In 1936, Kolmogorov [ 3 7 ]  proposed a system o f  two equations 

5 d/dt , as a model of predator-prey problems, where N1 and N I  a re  

t h e  number of prey and predator  populations, and F1 and F2 are  two 

given functions of N and N2 . Kolmogorov provided a s e t  of s u f f i c i e n t  
1 

conditions, global  i n  nature,  f o r  the  existence of  e i t h e r  a s t a b l e  e q u i l i -  

brium point  o r  a s t a b l e  limit cycle. 

Utz and Waltman [59] ,  and Waltman [60] examined the  p o s s i b i l i t i e s  of 

per iod ic  solut ions  i n  ce r t a in  less general  Kolmogorov-type models. Utz 

and Waltman [ 5 9 ]  considered 



t o  describe competition between two species ,  and by using the  s epa rab i l i t y  

of the phase plane equation, derived s u f f i c i e n t  conditions f o r  t he  e x i s t -  

ence of a limit cycle.. The question of boundedness w a s  considered and the  

conditions t ha t  populations a re  bounded away from zero were given. Using 

a b i fu rca t ion  theorem of K.O. Fr iedr ichs  [29], Waltman [601 derived 

s u f f i c i e n t  conditions f o r  the  existence of  per iod ic  so lu t ions  of  a system 

of d i f f e r e n t i a l  equations 

used t o  describe competition between two species ,  where a is a parameter. 

In  1967, Rescigno and Richardson [56 1 re- invest igated the  system 

(1.1) Besides Kolmogorovls conditions, they a l so  provided global  conditions 

which i n  one case simulated c m p e t i t i m  a i d  i n  snother case symbiosis, and 
- .  

analysed the  behaviors of the  so lu t ions  f o r  both these cases. I n  1972, 

Brauer [15], and May [43] re-examined (1.1). Brauer used the system t o  des- 

cr ibe  a predator-prey r e  la t ionship ,  and considered the  behavior of  so lu t ions  

near an equil ibrium point  and the  approximate locat ion of the nonl inear  

equil ibrium point .  He concluded t h a t  i t  might not be poss ible  t o  describe 

the  qua l i t a t i ve  nature  of the  equil ibrium poin t s  i n  more than two dimensions, 

but  it should be poss ible  t o  f ind  t h e  approximate locations of the  

equil ibrium poin t s  of the nonl inear  system (1.1) and t o  determine whether 

they a re  asymptotically s t ab l e .  On the  ba s i s  of the  r e s u l t s  t ha t  e s s e n t i a l l y  

a l l  models t h a t  have been proposed f o r  predator-prey systems are  shown t o  

possess e i t h e r  a s t a b l e  equil ibrium point  o r  a s t a b l e  limit cycle, May [44 ]  

noted t h a t  su.& a limit cycle provides a s a t i s f ac to ry  explanation f o r  those 



species communities i n  which populations are  observed t o  o s c i l l a t e  i n  a 

r a the r  reproducible per iod ic  manner. In  1974, Albrecht e t  a1  [l] in -  

ves t iga ted  the  qua l i t a t i ve  behavior of the  solut ions  of (1.1) and proved 

a theorem of Kolmogorov concerning predat  or-prey in te rac t ions  under 

s l i g h t l y  d i f f e r en t  hypotheses. 

The p r inc ip l e  of competitive exclusion s t a t e s  t h a t  two species  

competing f o r  t he  same resources cannot co-exist  s t ab ly  i n  the  same 

hab i t a t .  But i n  1972, from an experimental repor t ,  Ayala [9] showed t h a t  

two species  of f r u i t  f l y  do co-exist s t ab ly  i n  unqualif ied competition. 

On the  ba s i s  of t h i s  r e su l t ,  Brauer [ 161, i n  1974, concluded t h a t  t h e  

mathematical model with l i n e a r  growth r a t e  cannot f u l l y  describe a 

b io log ica l  system. He then proposed a Kolmogorov-type competition model 

with nonlinear growth r a t e s ,  and provided conditions f o r  t h e  existence 

o f  an asymptotically s t ab l e  equil ibrium so lu t ion .  

Following a suggestion of Samuelson 1581, Freedman [241, i n  

1975, examined a two dimensional Kolmogorov model with per turbat ion 

f o r  t h e  exis tence of a perturbed equil ibrium point  f o r  small pos i t ive  E . 
He inves t iga ted  t he  nature and s t a b i l i t y  of t h i s  equil ibrium point  both 

f o r  the  non-cr i t i ca l  and the  c r i t i c a l  cases.  He a l so  derived s u f f i c i e n t  

conditions f o r  t he  existence o f  per iod ic  so lu t ions .  Iri t he  same year  



Freedman and Waltman [26,27] considered a p a r t i c u l a r  form of (-1.51 des- 

c r ib ing  a predator-prey in te rac t ion  with per turbat ion,  and provided loca l  

conditions on t he  nonlinear functions guaranteeing the exis tence of 

per iod ic  so lu t ions  both i n  t he  cases of a perturbed equil ibrium point  

[26] and an unperturbed equil ibrium point  1271. G. Bojadziev and 

M. Bojadziev [12 1 have inves t iga ted  a p a r t i c u l a r  case of  t he  model (-1.5) 

from the  point  of view of control  and s t r u c t u r a l  s t a b i l i t y .  

In  1976, Bulmer [18] considered (1.1) and derived c r i t e r i a  t o  

formulate a general  predator-prey model, and discussed t he  conditions . 

f o r  t he  occurrence of l i m i t  cycles.  He a l s o  inves t iga ted  t h e  e f f e c t s  of 

random environmental f luc tua t ions  on a s t a b l e  equil ibrium and on a l i m i t  

cycle. In 1977, Rescigno 1541 discussed the  general  proper t ies  of a 

KO lmogorov- type mode 1 

describing a s i ng l e  species  N1 l i v ing  i n  a l imi ted environment i n  t h e  

presence of i t s  own po l lu tan t  
N2 . In  1978, Hastings 1321, re-studied 

t he  unperturbed two dimensional Kolmogorov model (1.1) and provided 

su f f i c i en t  conditions f o r  t he  global  s t a b i l i t y  of the equilibrium. In  

1981, But ler  and Freedman 1191 considered a Kolmogorov-type predator-prey 

system with per iod ic  coeff ic ients ,  i . e . ,  

with Fi(t+w,N N ) = F. (t,N ,N ) , i = 1'2, and provided conditions under 
1' 2 1 1 2  



which per iod ic  solut ions  e x i s t .  Then, they applied t he  r e s u l t s  t o  a 

predator-prey sys tem with per iod ic  carrying capacity. 

1.2 THREE DIMENSIONAL KOIMJGOROY MODEL 
- 

In  1968, Rescigno 1521 extended Kolmogoro~~ s model t o  th ree  

dimensions . He proposed a s e t  of t h r ee .  equations 

describing three  species l i v ing  i n  competition i n  t he  same environment. 

He analysed some o f  the  proper t ies  of the  system (1.8), and i n  p a r t i c u l a r ,  

he found t h a t ,  under ce r t a in  condit ions,  t h e  s i z e  of the  populations can 

o s c i l l a t e .  

In 1972, Rescigno and Jones 1551 used t h e  same model (1.8) and dis-  

cussed t h e  hypotheses and proper t i es  of a t h r ee  species  predator-prey 

chain. They a l so  gave geometrical i n t e rp re t a t i ons  of the  model (1.8). 

They showed t h a t  only the populations of  t he  first and second species  i n  

t he  chain must necessar i ly  o s c i l l a t e  around t he  point  of equil ibrium i f  

they do not come t o  t h e  equilibrium. The o ther  species  may o r  may not 

o s c i l l a t e .  

In 1977, Rescigno 1531 re-examined h i s  own model (1.8) and analysed 

t he  p roper t i es  o f  the  system describing two predators competing f o r  t he  

same prey. In  pa r t i cu l a r ,  he found t h a t ,  under ce r t a in  conditions, both 

predators can survive,  with o r  without osci lPat ions  i n  t he  prey popul- 

a t ions .  



In  1984, Freedman and Waltman 1281 s tud ied  the  unperturbed th ree  

dimensional Kolmogorov model (1.8) descr ibing a th ree  level  food web, 

two competing predators feeding on a s ing l e  prey, o r  a s ing le  predator  

feeding on two competing prey; and provided conditions under which a11 

th ree  populations p e r s i s t .  Boj adziev 1111 has .considered perturbed 

- models i n  R2 and R3 describing the  growth of  a s ing le  population. 

Hausrath (331 examined a p a r t i c u l a r  case o f  (1.8) representing a perturbed 

t h r ee  dimensional food chain and showed t h a t  t h e  qua l i t a t i ve  behavior of 

so lu t ions  of  an asymptotically s t a b l e  system remains the same under the  

influence of small perturbation.  

1 . 3  THE PROPOSAL 

Extending the  work of H. I.  Freedman [24 1, we propose a perturbed 

sys tern of  th ree  r imiinear  autonomous ordinary d i f f e r e n t i a l  equations of 

the KO lmogorov- type 

where E is  a small pos i t ive  parameter. For E = 0, the  perturbed 

system (1.9) reduces t o  the  unperturbed system 

By using the  qua l i t a t i ve  methods o f  ordinary d i f f e r e n t i a l  equations we 

analyse the  nature and s t a b i l i t y  of the  simple e q u i l i b r i a  of t he  un- 



perturbed system (1.10) as  well  as the  perturbed system (1.9) i n  the  

th ree  dimensional phase space. 

The model (1.9) and t he  ba s i c  assumptions a re  discussed i n  

Chapter 2 .  Some def in i t ions  and explanations of c e r t a in  concepts a re  

a l so  provided i n  t h i s  chapter. 

Chapter 3 contains a shor t  review of t h e  qua l i t a t i ve  theory and t he  

b i fu rca t ion  theory of ordinary d i f f e r e n t i a l  equations. 

In  Chapter 4, t h e  nature  and s t a b i l i t y  of a simple equil ibrium of  

the  nonlinear unperturbed model (1.10) a re  invest igated.  

In Chapter 5 ,  the  simple equil ibrium of t h e  perturbed system (1.9) 

o r ig ina t ing  from a simple equil ibrium of the  unperturbed system (1.10) i s  

analysed qua l i t a t i ve ly  i n  t he  phase space. The qua l i t a t i ve  behaviors of 

some p a r t i c u l a r  perturbed population mode 1s are  compared with those of 

the unperturbed models. 

Chapter 6 contains an analysis  of  b i fu rca t ion  of a mult iple un- 

perturbed equil ibrium i n t o  simple perturbed equ i l i b r i a .  The nature  and 

s t a b i l i t y  of the simple perturbed e q u i l i b r i a  a r e  examined. Two perturbed 

food chain models involving b i fu rca t ions  a r e  discussed. 



CHAPTER 2 

THE MODEL AND THE PRELIMINARIES 

In  t h i s  chapter we discuss the  model (1.9) and s t a t e  some bas i c  

assumptions and 

arugmen ts Ni 9 

explain  ce r t a in  

2 . 1  THE MODEL 

proper t ies  concerning the  functions Fi and t h e i r  

i = 1,2,3 , and E . Also, we give some def in i t ions  and 

concepts which are  used i n  t h i s  t he s i s .  

AND THE BASIC ASSUMPTIONS 

We study qua l i t a t i ve ly  a system o f  th ree  autonomous nonlinear 

ordinary d i f f e r e n t i a l  equations of the  form 

where ' f d/dt ,  and s , which represents  per turbat ion i n  the  system 

( 2 . l ) , i s  a small pos i t ive  parameter. The s e t  of evolution equations (2.1) 

i s  ca l led  the  three  dimensional perturbed Kolmogorov model o r  t h e  

pertwbed model. The unknown functions Ni(t) represent the  s i z e  of 

the  i t h  species,  axid t he  given nonl inear  functions of three  r e a l  

var iables  Fi(N , N  , N  ,E) represent the  s p e c i f i c  growth r a t e  o f  
1 2 3  

populations N. ( t ) ,  i = 1,2,3. We assume t h a t  the  r a t e  of increase  o r  
1 

decrease of the  populations does not  depend on time and t h a t  the  

populations are  s o  large as t o  be measurable with r e a l  numbers. We a l so  

assume tha t  the functions Fi are  defined and continuously d i f fe ren t iab le  



fo r  a l l  nonnegative values of N i = 1,2,3, such t ha t  so lu t ions  f o r  
i '  

in i t i a l -va lue  problems of (2.1) with E = 0 e x i s t .  Further, it i s  

supposed t ha t  there  e x i s t s  a t  l e a s t  one so lu t ion  No(t) of (2.1) f o r  

E = 0 i n  the  first octant .  We consider t h e  problem of what solut ions  

of (2.1) e x i s t  f o r  small pos i t i ve  values of  the  parameter E . In  doing 

so, we s h a l l  consider ' the solut ions  of (2.1) f o r  E # 0 which have 

i n i t i a l  conditions close t o  those of N ( t ) .  
0 - 

FOP E = 0 , t he  system (2.1) becomes 

which i s  ca l led  the  three d imns iona l  unperturbed Kolmogorov model o r  t h e  

unperturbed modet. ' The proper t i es  and assumptions which are  va l i d  f o r  

Ni and Fi , i = 1,2,3, of  the perturbedmodel (2.1) are  a l s o  t r ue  f o r  

Ni and Fi , i = 1,2,3, of the  unperturbed model (2.2). 

2.2 SOME CONCEPTS AND DEFINITIONS 

In  order t o  expla in  ce r t a in  concepts and s t a t e  

we consider the  following system of three  autonomous 

d i f f e r en t i a l  equations of the  Kolmogorov-type 

some def in i t ions  , 

nonlinear ordinary 

where fi , i = 1,2,3, a re  ana ly t ic  i n  a domain G of R' . A system of 

autonomous ordinary d i f f e r e n t i a l  equations i s  cal1ed.a dyn&caZ system. 



The system (2.3) is  ca l led  t he  th ree  dimensional dynamical system of the  

2.2.1 Phase Space and Phase P o r t r a i t  

The solut ions  of (2.3) can be represented by surfaces  i n  t he  

(Z , Z  , Z  )-space. This three  dimensional Euclidean space i s  c a l l ed  t h e  1 2 3  

phase space o r  t h e  t h r ee  dimensional s ta te  space. The so lu t ion  surface  

passing through a ce r t a in  i n i t i a l  point  i n  G i s  known as the i n t e g r a l  

surface  of (2.3). The phase space diagram represented by the  family of 

i n t e g r a l  surfaces  i s  ca l led  the  phase portrait  o r  topological  s t r uc tu r e  

of the  dynamical sys  tem (2.3) . 

2.2.2 Equilibrium Point 

In t he  theory of autonomous ordinary d i f f e r e n t i a l  e'quations, an 

important p a r t  i s  played by equil ibrium points .  The points  f o r  which a l l  

the r i g h t  hand s ides  o f  the  autonomous system o f  d i f f e r e n t i a l  equations 

equal zero a re  ca l l ed  equitibriwn points o r  equizibria. The equil ibrium 

points  are t r e a t e d  by t he  q u a l i t a t i v e  theory of d i f f e r e n t i a l  equations. 

They enable us t o  assess qua l i t a t i ve ly ,  under ce r t a in  conditions, the  

shape of the  i n t eg ra l  surfaces i n  the  neighborhood of t he  equil ibrium 

point .  

0 0 0 0  If Z (Z1yZ2yZ3) C G is  such t h a t  



then z0 i s  c a l l e d  an equilibbrim point o r  equilibrium of t h e  system 

(2.3) . The mu l t i p l i c i t y  of the equil ibrium point  is defined as the  

mu l t i p l i c i t y  of the  i n t e r s ec t i on  point  ZO of the  th ree  surfaces  i n  

(2.4). An equil ibrium point  o f  mu l t i p l i c i t y  one i s  ca l led  a simple 

equilibriwn and an equil ibrium point  of mu l t i p l i c i t y  g rea te r  than one 

i s  ca l led  a multiple equilibrium. 

The matr ix  

is ca l led  t he  Jarobian matrix of (2.4). If det jo # 0, the  system (2.4) 

has simple so lu t ions  and there fore  t he  equil ibrium z0 is ca l led  an 

isolated equilibrium o r  simple equil ibrium of  (2.3) . This means t h a t  

n 
there  e x i s t s  a neighborhood o f  Z" such t ha t  t he  only equil ibrium point  

of (2.3) i n  t h a t  neighborhood i s  ZO . On t he  o ther  hand, if det jo = 0, 

t he  system (2.4) has mult iple so lu t ions ,  and then ZO i s  ca l led  a 

degenerate eqzciZibrium o r  mult iple equil ibrium of (2.3) . This means 

0 
t ha t  the re  e x i s t s  more than one so lu t ion  of  (2.4) a t  Z . 

I f  a l l  the  eigenvalues of the matr ix  (2.5) have nonzero r e a l  p a r t s ,  

then t he  equil ibrium ZO is  ca l led  a hyperbolic equilibrium, while i f  

a t  l e a s t  one of  the  eigenvalues of  (2.5) has a zero r e a l  p a r t ,  then Z 0 

i s  ca l led  a nonhyperbo l i e  equilibrium. 

By the  n a t m  of an equilibrium we mean the  l oca l  phase p o r t r a i t  

o r  the  l oca l  topological  s t r uc tu r e  represented by t he  equil ibrium i n  

t he  phase space, and by the  character of an equilibrium we mean both the  



nature and the  s t a b i l i t y  o r  i n s t a b i l i t y  property of the concerned 

equil ibrium i n  t he  phase space. 

The equil ibrium points  of the  perturbed system ( 2 .  I ) ,  given by 

the  so lu t ions  of  
e 

are  ca l led  perturbed equil ibrium poin t s  o r  perturbed equilibria.  The 

e q u i l i b r i a  of the  unperturbed system ( 2 . 2 )  , obtained by solving the  
' 

system o f  equations 

slre known as unperturbed equii ibrium points  o r  mperturbed equizibria. 

Equilibrium points  represent ing the  r e s t  posi t ions  o f  the  species  

of a physical  system are  an important c l a s s  of  solut ions  of the associa ted 

system. These a re  a l so  re fe r red  t o  as equilibriwn solutions of  autonomous 

systems. The equil ibrium poin t s  of a l inear ized  system are  a l so  ca l l ed  

t r i v i a l  points  and hence t he  equil ibrium so lu t ion  of a l inear ized  system 

is known as the t ~ v i a i !  soZution. Bifurcating solutions are  equil ibrium 

so lu t ions  which form in t e r s ec t i ng  branches i n  a su i t ab l e  s t a t e  space. 

2 . 2 . 3  Linearization 

Linearization i s  an invar ian t  operation,  i . e . ,  an operation which 

is  independent of  the coordinate system. Therefore, studying a neighbor- 



hood of  an equil ibrium point  means studying how the  process evolves when 

i t s  i n i t i a l  conditions deviate s l i g h t l y  from t h e i r  equil ibrium values.  

To inves t iga te  a dynamical system i n  a neighborhood of an equ i l -  

ibrium ZO , i t  is na tura l  t o  make a Taylor s e r i e s  expansion o f  t he  

system i n  the  given neighborhood. The first term of the  Taylor s e r i e s  

is  l i n e a r ,  and t h e  process of dropping the  remaining terms i s  ca l l ed  

Zinearization. The l inear ized  system can be regarded as an example 

o f  a system with an equil ibrium z0 . On the  other  hand, i t  might be 

expected t h a t  t h e  behavior of  the  nonl inear  system i s  close t o  t h a t  of 

t he  l i n e a r  system, s ince  small quan t i t i e s  o f  higher order are  dropped 

i n  making the  l inear iza t ion .  O f  course, t he  problem of r e l a t i o n  between 

t he  so lu t ions  of t h e  o r ig ina l  system and those of t he  l inear ized  system 

requires  spec ia l  invest igat ion.  The l i nea r i za t i ons  commonly prac t iced  

a re  zpprcximsting devices t h z t  are good enough f o r  most purposes. There 

are ,  however, a l so  ce r t a in  cases i n  which l i n e a r  treatments may not be 

applicable a t  a1 1. 

2 . 2 . 4  Varia t ional  Matrix 

The matrix 

evaluated at  t he  equil ibrium ZO is  ca l l ed  the  variatibnal matrix f o r  

the  l inear ized  p a r t  of  (2.3) . The va r i a t i ona l  matrix f o r  higher degree 

terms of (2 .3 )  can s imi la r ly  be constructed by evaluat ing higher order  



p a r t i a l s  a t  ZO . The va r i a t i ona l  matrix of a dynamical system, i t s  

eigenvalues , and the  corresponding eigenvect ors p lay an important p a r t  

i n  t h e  inves t iga t ion  of the  topological  s t r uc tu r e  and s t a b i l i t y  of an 

equil ibrium of t he  associated system. The noncritical case of t h e  

system ( 2 . 3 )  corresponds t o  the  condition det A f 0 and ensures the  

existence of a simple equil ibrium fo r  ( 2 . 3 )  . On the  other  hand, t he  

c r i t i c a l  case o f  the  system (2.3) , corresponding t o  the  condition 

det A = 0, implies the existence of  a multiple equil ibrium f o r  t he  system 

( 2 . 3 ) .  

2 . 2 . 5  Jordan Canonical Form 

The Jordan canonical form of  a square matrix has a major ro l e  i n  

the  qua l i t a t i ve  analysis  of an equil ibrium o f  a dynamical system. The 

dimension of the solut ion space o f  a system i s  determined by the  number 

of l i nea r ly  independent eigenvectors o f  t he  va r i a t i ona l  matr ix  f o r  t h e  

l inear ized  pa r t  o f  t he  system. The d i rec t ion  of  the  so lu t ion  surfaces  

and t h e  nature o f  t he  t r a j e c t o r y  o f  a dynamical system depend respect ively  

on t h e  s igns  of t h e  eigenvalues and the  types of eigenvalues with the  

corresponding number of  l i nea r ly  independent eigenvect ors of the  va r i a t i ona l  

matrix of the  dynamical system. From the  Jordan canonical form o f  a matrix,  

one can e a s i l y  determine t he  types and s igns  of eigenvalues and the  

corresponding number of Linearly independent eigenvectors of the same matrix. 

Therefore, with the  a id  of  Jordan canonical form of  a va r i a t i ona l  matr ix  

of an unperturbed system, i t  is poss ible  t o  determine, r e l a t i v e l y  quickly 

and e a s i l y ,  the  nature  and s t a b i l i t y  of the  equil ibrium of the  unperturbed 



system. On the  otherhand, s inae  the. eigenvalues of a va r i a t i ona l  matr ix  

of  a perturbed system are ,  i n  general,  assumed t o  be d i s t i n c t ,  the  nature  

and s t a b i l i t y  of  an equil ibrium of a perturbed system caq be determined 

by t he  cha rac t e r i s t i c  equation of  the  va r i a t i ona l  matrix of the  perturbed 

system. Here we s h a l l  r e c a l l ,  without proof,  how the  Jordan canonical 

- form o f  a matr ix  can be constructed. 

The l inear ized  pa r t  of the  system (2.3) can be expressed i n  the  

matrix form 

where Z = (Z Z Z ) '  is  a 3 x 1 m a t r i x ,  T represents the  transpose 
1' 2 '  3 

o f  a matrix, and t h e  3 x 3 matrix A i s  given by (2.8).  I t  i s  known 

from l i n e a r  algebra t h a t  f o r  a 3 3 constant ( r e a l  o r  complex) 

matrix A, the re  always e x i s t s  a coordinate  transformation 

where W = (!V1,w2,~dT i s  a 3 x 1 matrix, and B is a ce r t a in  3 x 3 

nonsingular matr ix  whose columns are  t h e  eigenvectors of  the  matrix A . 
The transformation (2.10) reduces the  system (2.9) t o  the form 

- 1 W' = BZ'  = BAZ = BAB W = jlW, 

where the  matrix j defined by 



i s  ca l l ed  the  Jordmz canonicaZ f o m  of  t he  matrix A . The matrix j 

consis ts  of elementary block matrices whose main diagonal consis ts  o f  

one and t h e  same eigenvalue, while a11 of  the  elements of the  r i g h t  

adjacent diagonal are uni ty ,  and the  r e s t  of the  elements of the  block 

are zero. The number of  blocks of j l  depends on the  number o f  l i n e a r l y  

independent eigenvectors of  A corresponding t o  i t s  eigenvalues . Hence, 

t he  main diagonal elements of j a re  t he  eigenvalues of A , t h e  1 

elements of the  r i g h t  adjacent diagonal, depending on the  number of 

elementary blocks, may e i t h e r  be zero, o r  unity,  o r  a combination of 

zero and uni ty ,  and a l l  t he  remaining elements of  j a re  zero. 



CHAPTER 3 

TEMNIOUES OF OUALITATIYE ANALYSIS 

The methods of  d i f f e r e n t i a l  equations t h a t  have been used i n  t h i s  

t he s i s  t o  study the  qua l i t a t i ve  behavior of  th ree  dimensional dynamical 

systems o f  the  Kolmogorov-type are  presented i n  t h i s  chapter. More 

spec i f i c a l l y ,  t h i s  chapter contains a shor t  review of the  qua l i t a t i ve  

theory and b i fu rca t ion  theory o f  ordinary d i f f e r e n t i a l  equations. 

3.1 QUALITATIVE THEORY 

Basically,  most of the  physical  problems are nonlinear from the  

outset .  Although, we have some known methods f o r  solut ions  o f  most l i n e a r  

and some nonlinear systems of ordinary d i f f e r e n t i a l  equations, the re  are  

very few methods f o r  solut ions  f o r  more extensive c lasses  of nonl inear  

d i f f e r e n t i a l  equations. The so lu t ion  of nonl inear  d i f f e r e n t i a l  equations, 

i n  general,  involves the  so lu t ion  of nonlinear a lgebraic  - and sometimes 

nonalgebraic equations, which we a re  of ten unable t o  solve with accuracy. 

This,  of course, i s  very disappointing. However, it is  not necessary, i n  

most appl icat ions ,  t o  f i nd  t he  so lu t ions  of nonl inear  problems e x p l i c i t l y .  

Rather, we are  i n t e r e s t ed  i n  t h e  q u a l i t a t i v e  p roper t i es  of  the  nonl inear  

system concerning the following questions : (i) Do there  e x i s t  equil ibrium 

solut ions?  ( i i )  Are t he  so lu t ions  s t ab l e?  ( i i i )  I s  there  a per iod ic  

solut ion? Remarkably, we can of ten  give s a t i s f ac to ry  answers t o  these  

questions,  even though we cannot solve t h e  nonl inear  system e x p l i c i t l y  . 



20. 

Hence, we w i l l  be concerned with the  qua l i t a t i ve  theory of d i f f e r e n t i a l  

equations. 

Qual i ta t ive  theory of d i f f e r e n t i a l  equations o r ig ina tes  i n  the  

g ian t  developments due t o  pimaare' [48-501, Birkhoff I ,  and 

Liapunov [39-40 ] . The modern methods o f  qua l i t a t i ve  analysis  of 

d i f f e r e n t i a l  equations have a l so  t h e i r  o r ig ins  i n  the  works o f  Andronov 

and co-workers 12-61, Nemytskii and Stepanov [45 1 ,  and Coddington and 

Levinson [21]. Some recent works on qua l i t a t i ve  theory includes 

Arnold 17-81> Hirsch and Smale 1351, Lefschetz L381, Cronin 1221, Iooss 

and Joseph 1361, Chow and Hale 1201, and Guckenheimer and Holmes [30]. 

The qua l i t a t i ve  method i s  based on the  study of. the  representa t ion 

of the  solut ions  of  d i f f e r e n t i a l  equations i n  the  s t a t e  space, t h e i r  

s t a b i l i t i e s  and the  existence of per iod ic  so lu t ions .  The qua l i t a t i ve  

p roper t i es  o f  soiut ions  : topological  s t r uc tu r e ,  s t a b i l i t y  property,  
- 

and pe r iod i c i t y  y i e l d  a coherent and e s t h e t i c a l l y  pleas ing theory which 

has important appl icat ions  i n  physical  and l i f e  sciences.  

1 . 1  Topological Method 

The topological  method of phase p o r t r a i t  analysis  is  due t o  

~ o i n c a r 6 .  By t h i s  method the  solut ions  of d i f f e r e n t i a l  equations are  

sought not as e x p l i c i t  functions of time, but  as i n t e g r a l  curves/surfaces 

i n  a s t a t e  space. I t  is one of the  important means of inves t iga t ing  the  

various phenomena of  nonlinear o sc i l l a t i ons  . Considerable i n s igh t  i n t o  

the  qua l i t a t i ve  aspects of  the  so lu t ion ,  and some quant i t a t ive  

informations as well ,  can be obtained through a study of the  i n t e g r a l  



The topological  method i s  used t o  examine the  nature of the  phase 

p o r t r a i t  of  the e q u i l i b r i a  o f  a nonlinear dynamical system 

Z '  = AZ + h(Z), 

by making use of the  l inear ized  system 

T where Z = (11,Z2,Z3) i s  a 3 x 1 matrix, and A 

s t a n t  r e a l  valued matrix. Here t he  3 x 1 matrix 

represents the nonlinear terms o f  (3. 1) , and there  

and a r 0 , such t ha t  

is  a 3 x 3 con- 

e x i s t  numbers f3 > 1 

holds i n  a neighborhood of the  equil ibrium Z0 of (3.2). 

A t  The subs t i t u t i on  Z = Ke , where K = (K K K ) T  i s  a 3 x 1 1' 2' 3 

constant matrix, i n t o  the  system (3.2) r e s u l t s  i n  the  c h a r a c t e r i s t i c  

equation 

where I i s  a 3 x 3 i d e n t i t y  matrix. From (-3.4) one may ca lcu la te  the  

eigenvalues and the  corresponding eigenvectors o f  A . 



According t o  the  p r inc ipa l  axes theorem of l i nea r  algebra, t he  

dimension of the solut ion space and thus the equil ibrium point  of  (3.2) 

depends on the  number of l i nea r ly  independent eigenvectors corresponding 

t o  the  eigenvalues o f  A . Hence, the  c l a s s i f i c a t i o n  of equil ibrium 

poin t s  of (3 .1) ,  under t he  condition ( 3 . 3 ) ,  i s  governed by the eigenvalues 

and the  corresponding eigenvectors of A . From Reyn [57J, we obta in  

the  following types o f  simple equil ibrium points  f o r  the  dynamical 

system ( 3 . 2 ) .  

( i )  If A has three d i s t i n c t  nonzero r e a l  eigenvalues hav ing .  

same s igns ,  then the  equil ibrium Z0 is ca l l ed  a th ree  branched node. 

. ( i i )  If A has three  d i s t i n c t  nonzero r e a l  eigenvalues with a t  

l e a s t  two o f  them having d i f f e r en t  s igns ,  then the  equil ibrium Z0 

is  ca l l ed  a saddle node. 

[iii! If A has three xcnzero real  with two equal eigenvaiues 

having same s igns ,  then the  equil ibrium i s  ca l led  a s t a r  node o r  

a two branched node when A has respect ively  three  or  two l i nea r ly  

independent eigenve c to rs  corresponding t o  i t s  eigenvalues . 

( iv)  I f  A has three  nonzero r e a l  with two equal eigenvalues 

having a t  l e a s t  two of them with d i f f e r en t  s igns ,  then t he  equil ibrium 

Z O  i s  ca l led  a saddle s t a r  o r  a two branched node when A has 

respect ively  three  o r  two l i nea r ly  independent eigenve c to rs  corresponding 

t o  i ts  eigenvalues. . 

(v) If A has three  nonzero repeated eigenvalues, then the  

0 equil ibrium Z i s  ca l led  a s t a r ,  an antisymmetric node s t a r ,  o r  a one 

branched node when A has respect ively  th ree ,  two, o r  one l inear ly  

independent eigenvector corresponding t o  i t s  eigenvalues . 



(vi)  I f  A has one nonzero r e a l  and two complex (with nonzero 

r e a l  pa r t s )  eigenvalues, and the  r e a l  eigenvalue and t he  r e a l  p a r t s  o f  

the  complex eigenvalues have the  same s igns ,  then the  equil ibrium z0 

is  ca l l ed  a node s p i r a l .  

( v i i )  If A has one nonzero r e a l  and two complex (with nonzero 

r e a l  pa r t s )  eigenvalues, and t he  r e a l  eigenvalue and the  r e a l  p a r t s  of 

the  complex eigenvalues have d i f f e r en t  s igns ,  then the  equil ibrium Z' 

i s  ca l l ed  a saddle s p i r a l .  

( v i i i )  I f  A has one nonzero r e a l  and two imaginary eigenvalues, 

then the  equil ibrium Z O  i s  ca l l ed  a cen te r  focus. 

I n  cases ( i )  - (v i i )  t he  nature  o f  the  e q u i l i b r i a  i s  the  same both 

f o r  t he  l inear ized  system (3.2) and the  corresponding nonlinear system 

( 3 . )  Results i n  case ( v i i i )  are  only va l i d  f o r  the  l inear ized  system 

(3.2). In case ( v i i i j  higher order terms of (3.1) may produce a node 

s p i r a l  o r  a saddle s p i r a l .  

3.1.2 S t a b i l i t y  Methods 

The s t a b i l i t y  theory was or ig ina ted  by Liapunov. The bas i c  i dea  

of  s t a b i l i t y  study is  t o  examine t h e  question:  under what conditions 

do ,equil ibrium so lu t ions  of a dynamical system approach o r  s t ay  close 

t o  a given equil ibrium so lu t ion?  Since the  b io log ica l  systems tend t o  

be qu i te  complicated, i t  i s  assumed t h a t  the  disturbances of the  system 

as described by the d i f f e r e n t i a l  equations a re  constantly occuring . 
This suggests t h a t  only those solutions.  o f  the  d i f f e r e n t i a l  equations 

which have s t rong  s t a b i l i t y  p roper t i es  are  b io log ica l ly  s i gn i f i c an t .  



More recent ly ,  i t  has been c l ea r  t h a t  i f  a b io log ica l  problem i s  

formulated i n  terms of a system of  ordinary d i f f e r e n t i a l  equations, t he  

s t a b i l i t y  theory must play an important r o l e  i n  the  study of t he  system. 

In order t o  study the  s t a b i l i t y  of an autonomous system, the  'Liapunov 

criterion'  f o r  s t a b i l i t y  by the  f i r s t  approximation i s  examined. The 

'naethod o f  f i r s t  approximationf i s  used t o  obtain r e s u l t s  concerning the  

s t a b i l i t y  of t he  t r i v i a l  so lu t ion  of the  nonl inear  system (3.1) by 

making use of the  l inear ized  system (3.2) under the  condition (3.3).  

Following Liapunov 1401, t h e  r e s u l t s  concerning the  s t a b i l i t y  and in -  

s t a b i l i t y  behaviors of  (3.1) and (3.2) a r e  characterized by the  following: 

( i )  If a l l  eigenvalues o f  A are  negative o r  have negative r e a l  

p a r t s ,  then the  t r i v i a l  so lu t ions  of  (3.2) as wel l  as (3.1) are 

asymptotically s t a b l e .  

( i i )  I f  at l e a s t  one eigenvalue of A i s  pos i t ive  o r  has a pos i t i ve  

r e a l  p a r t ,  then the  t r i v i a l  so lu t ions  of (3.2) as wel l  as (3.1) are  un- 

s t ab l e .  

( i i i )  If A has one pos i t ive  r e a l  and two imaginary eigenvalues, 

then the  t r i v i a l  so lu t ion  of (3.2) i s  neu t r a l l y  unstable and t h a t  of  

(3.1) is  unstable.. 

( iv)  If A has one negative r e a l  and two imaginary eigenvalues, 

then t he  t r i v i a l  so lu t ion  of (3.2) is  neu t r a l l y  s t ab l e .  I n  t h i s  case, 

the  higher order terms i n  (3.1) determines the  s t a b i l i t y  o r  i n s t a b i l i t y  

of the  t r i v i a l  so lu t ion  of (3.1). 

Hence, a necessary and s u f f i c i e n t  condition f o r  the  asymptotic 

s t a b i l i t y  of (3.2) and thus (3.1) i s  given by the  requirement t h a t  a l l  

-- the  roots  of (3.4) are negative o r  have negative r e a l  p a r t s .  Generally, 
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it i s  not easy t o  f i nd  a l l  the  roots  of (3.4).  One thus makes use of 

t h e  c r i t e r i a  which provide asse r t ions  about the  signs of  the  r e a l  p a r t s  

o f  the  roots o f  t h e  cha rac t e r i s t i c  equation 

of (3.4) without having t o  r e so r t  t o  an actual  so lu t ion  of the  above 

equation. The most important o f  these c r i t e r i a  i s  known as 'The Routh- 

Hurwitz criteriar (see Cronin [22], Page 157). According t o  these 

c r i t e r i a ,  a necessary and s u f f i c i e n t  condit ion assuring t ha t  a1 l roo ts  

of  the  cubic equation (3.5) have negative r e a l  p a r t s  is  given by 

a > 0, a3 > 0, and a a :: a 1 1 2  3 .  

3.2 BIFURCATION THEORY 

Dynamical systems describing physical  problems generally contain 

parameters. The word b i fu rca t ion  means forked and i s  used i n  a broad 

sense f o r  designating a l l  poss ible  qua l i t a t i ve  reorganizations of various 

objects  r e su l t i ng  from changing the parameters on which they depend. 

One of the  most important c lasses  of  dynamical systems comprises of those 

systems whose topological  s t r uc tu r e  i n  a given region does not  change 

under small modifications of  the  parameters. Pexioto 146-471 ca l l ed  

such systems as s t r u c t u r a l l y  s t a b l e  systems. If small  changes i n  the  

parameter lead t o  a change i n  t he  topological  s t r uc tu r e  of the dynamical 

system, then t h e  system is termed s t r u c t u r a l l y  unstable system. These 

changes i n  t h e  parameter values a r e  i a l l e d  b i fu rca t ion  values. 



A fundamental s t ep  towards modern b i fu rca t ion  theory i n  d i f f e r e n t i a l  

equations occured with the  def in i t ion  of s t r u c t u r a l  s t a b i l i t y  by 

Andronov and Pontryagin /5]  i n  1937 and t he  c l a s s i f i c a t i on  of s t r u c t u r a l l y  

s t a b l e  systems i n  t he  plane. With these concepts, Andronov and 

Leontovich [2] were able t o  make precise  def in i t ions  of types of b i -  . 

fu rca t ion  points .  These r e s u l t s  were applied extensively t o  t he  theory 

o f  nonlinear o sc i l l a t i ons  by Andronov, V i t t  and Khaikin [6],  and Andronov, 

Leont ovich, Gordon and Maier 13-41. 

There are  evident l imi ta t ions  as t o  how far one can proceed with 

a systematic b i fu rca t ion  theory. In  parameter regions consis t ing of  

s t r u c t u r a l l y  unstable sys terns, t he  de t a i l ed  changes i n  the  topological  

s t r uc tu r e  can be exceedingly complicated. We, the re fore ,  s h a l l  focus 

upon the  simp l e s t  b i fu rca t ion  of ind iv idua l  equil ibrium points  . The 

analysis  of such b i fu rca t ions  is generally perfoxzed by exwin ing  the  

vector  f i e l d  near  the  degenerate equil ibrium point .  

The imp l i c i t  function theorem i s  a ba s i c  mathematical t o o l  used 

i n  b i fu rca t ion  theory.  Since we w i l l  require  t h e  theorem f o r  our needs, 

and s ince  i t s  proof may be found i n  any book on b i fu rca t ion  theory 

(see ,e . g.,  1361) , a shor t  review of the  theorem w i l l  be given next.  

3.2.1 Impl ic i t  Function Theorem 

Consider t he  following sys tem of equations : 



where fi , i = 1,2,3, are continuously d i f f e r e n t i a b l e  i n  some open 

region of  the  (Z1 , Z 2 ,  Z3) -space. Assume t h a t  

and t h a t  t h e  Jacobian matr ix  

computed a t  t h e  point  (ZlO, ZZO ,Z30, c0) , has a nonzero determinant: 

de t  j2 # 0 . Then the re  e x i s t  a > 0 , B > 0 such t h a t  t h e  fol lowing 

a s s e r t i o n s  hold:  

( i )  There is a  unique continuous set of  functions Zi , i = 1,2,3,  

defined f o r  E~ - a < E < E~ + a s a t i s f y i n g  Z - < Z ( E ]  Z 
i 0  i i o  + B, 

i = 1,2,3, and - 

( i i )  Moreover, Zi ,  i = 1,2,3, a re  continuously d i f f e r e n t i a b l e  

f o r  eo - a < e < e O + a ,  and 

If fi , i = 1,2,3,  a re  a n a l y t i c  functions of  a l l  va r i ab les ,  then 

Zi(e), i = 1,2,3, a r e  a n a l y t i c  n e a r  E = c0 . 



I f  de t  j 2  = 0 f o r  c0 = 0, we have t o  so lve  t h e  non l inea r  

system (3.7) up t o  a  c e r t a i n  power o f  E i n  order  t o  ob ta in  t h e  

s o l u t i o n  of  the  per turbed system (3.7) . I n  our work, t h e  per turbed 

non l inea r  system i s  so lved  d i r e c t l y  according t o  t h e  rank of  
j2 

f o r  cO = 0 . We note  t h a t ,  i n  such cases ,  t h e  techniques o f  

Freedman [23], and Loud [41] can a l s o  be used. 



CHAPTER 4 

A SIMPLE E O U I L I B R I U M  OF THE UNPERTURBED 

THREE DIMENSIONAL KOLMOGOROV MODEL 

In  t h i s  chapter we consider t he  n a n c r i t i c a l  case of the  un- 

perturbed th ree  dimensional Kolmogorov model. Here we give t he  c r i t e r i a  

f o r  the  existence o f  a simple equil ibrium o f  the  unperturbed three  

dimensional Kolmogorov mode 1 i n  the  f i r s t  octant  and provide parameter 

conditions f o r  a1 1 possible types of  unperturbed simple equ i l i b r i a .  

Further, we determine the  Jordan canonical form f o r  t he  va r i a t i ona l  

matrix of  the l inear ized  pa r t  of t h i s  dynamical system and examine the  

nature and s t a b i l i t y  of the  simple unperturbed equil ibrium i n  t he  phase 

space. 

4.1 EXISTENCE OF A SIMPLE UNPERTURBED EQUILIBRIUM 

Since i n  the  nonc r i t i c a l  case, c e r t a in  fea tures  o f  the  t r a j e c t o r i e s  

of  a d i f f e r e n t i a l  system may be preserved under small  per turbat ion,  we 

study the  unperturbed th ree  dimensional Kolmogorov model 

We assume t h a t  the unperturbed system (4.1) has a t  l e a s t  one equ i l -  

0 0 0 0  ibrium point  E (M1,M2 ,M3), ca l l ed  t he  unperturbed equilibrium, i n  t he  

i n t e r i o r  of the  first octant .  This means t h a t  t he  system 



0 0 0 
has a t  l e a s t  one so lu t ion  (M1,M2,M3) such t h a t  

0 0 0 0 
Fi(M1>MZ,M3,0) = 0, Mi > 0 ,  i = 1,2,3. 

Let JO be the  matrix 

where 

and assume t h a t  

The assumption (4.6) corresponds t o  t h e  n o n c r i t i c a l  case o f  t h e  i m p l i c i t  

0 funct ion theorem o f  the  system (4.2) and ensures t h a t  E i s  a simple 

equi l ibr ium point  of  (4.1). i . e . ,  E O  i s  a po in t  of  i n t e r s e c t i o n  o f  

the  su r faces  (4.2) such t h a t  t h e  tangent  p lanes  t o  t h e  surfaces a t  t h e i r  

common po in t  e x i s t  and are  d i s t i n c t .  Moreover, by the  i m p l i c i t  funct ion 

0 
theorem, with (4.6) , t h e  equi l ibr ium E i s  i s o l a t e d ,  i .e . ,  t h e r e  e x i s t s  

0 
a neighborhood of EO containing no equi l ibr ium s t a t e s  o t h e r  than E 



In order t o  l i nea r i ze  the  nonlinear system (4.1),  we s e t  

Subs t i tu t ing  (4.7) i n t o  (4.1) and using the  Taylor s e r i e s  expansion f o r  

0 0 Fi(~i+~1,~2+~2,M3+X3,0), i = 1,2,3, we obta in  

where 8; represents the nonlinear pa r t  of (4.1) and is  given by 

and F ; ~  i s  given by (4.5) . 
j 

The va r i a t i ona l  matrix f o r  t he  l i n e a r  p a r t  of (4.8) a t  the  un- 

perturbed equil ibrium point  EO i s  

where 



Further, because of (4.3) and (4.6), we must have 
. - .  

The cha rac t e r i s t i c  equation f o r  (4.10) i s  

where 

The assumption (4.12) ensures t ha t  the  cubic equation (4.13) does not 

have any zero root .  The eigenvalues of  the  matrix (4.10) are obtained by 

solving the  c h a r a c t e r i s t i c  equation (4.13) and t he  eigenvectors 

corresponding t o  these  eigenvalues can a l s o  be determined. Moreover, 

the  roots  of  the  cha rac t e r i s t i c  equation (4.13) of t he  l inear ized  p a r t  

of the  unperturbed system (4.1) can be d i s t i n c t  o r  repeated. Hence, the  

va r i a t i ona l  matrix (4.10) f o r  t h e  l inear ized  p a r t  of the  unperturbed 

system (4.1) has d i s t i n c t  o r  repeated eigenvalues . While the  va r i a t i ona l  

matrix (4.10) has three  l i n e a r l y  independent eigenvectors corresponding 

t o  th ree  d i s t i n c t  eigenvalues, it may have one, two, o r  th ree  l i nea r ly  



independent eigenve c to rs  corresponding t o  t he  repeated eigenvalues . 
Therefore, the  na tu re  and s t a b i l i t y  o f  the  equil ibrium E O  o f  the  

unperturbed system (4.1) can be determined from the Jordan canonical form 

of the  va r i a t i ona l  matrix (4.10) . 

4.2 JORDAN CANON1 CAL FORM OF THE VARIATIONAL MATRIX 

In order t o  f i nd  the  Jordan canonical form of  the  var ia t iona l  

matrix (4. l o ) ,  we use t he  transformation 

where P is a c e r t a i n  , 3  x 3 nonsingular  matr ix  whose columns a r e  t h e  

1 eigenvectors of  the  matrix ho , and U =  (.u,~,w) and X =  (x1,x2,x3)1, 

T represent ing t he  transpose of  a mtrix, are 3 1 matrices. ?lie 

subs t i t u t i on  of (4.15) i n t o  (4.8) y i e ld s  t he  transformed system 

-0 -0 -0 T 
where AO i s  given by (4.10) and E O  = (E ,E ,E ) i s  a 3 x 1 matrix. 

1 2 3  
-1 The matrix 5' = Ph0P is the Jordan canonical form of  the  matrix A0 . 

The transformation (4.15) is equivalent  t o  a r o t a t i on  and s t r e t c h  o f  axes 

and does not  a f f e c t  the  character  of  the  equi l ibr ium po in t s .  Moreover, 

P A ~ P - ' ,  which represents  the  Jacobian matr ix  f o r  t h e  l i n e a r  p a r t  of  t he  

transformed system (4.16), i s  a l s o  the  Jacobian matrix of the  l i n e a r  

p a r t  of  t he  o r i g ina l  system (4.8). Further,  s ince  ]no  I # 0 , A' must 

be equivalent  t o  one o f  the  following forms: 



where XI,  X 2 ,  and h3 a r e  t he  r e a l  eigenvalues of the  matrix (4.10) 

and Xo and wo are  the  r e a l  and imaginary p a r t s  respect ively  of t he  

complex eigenvalues of (4.10). Here Ar3? O O and have 'c3' Ai3 '  *23' 

th ree  l i nea r l y  independent eigenvectors corresponding t o  the three  

d i s t i n c t  nonzero r e a l  eigenvalues, one nonzero r e a l  and two complex 

eigenvalues with nonzero r e a l  po in t s ,  one nonzero r e a l  and two imaginary 

eigenvalues , t h r e e  nonzero r e a l  with two equal  eigenvalues , and th ree  

0 repeated nonzero r e a l  eigenvalues respec t ive ly ;  A:2 and A12 

have two l i nea r l y  independent eigenve c to rs  corresponding t o  the 

three  nonzero r e a l  with two equal eigenvalues and th ree  repeated 



0 
nonzero r e a l  eigenvalues respect ively  ; and A l l  has one l i nea r l y  

independent eigenvector corresponding t o  the  three  repeated nonzero 

r e a l  eigenvalues of  t he  va r i a t i ona l  matr ix  (4.10) , 

4.3 NATURE AND STABILITY OF THE UNPERTURBED EQUILIBRIUM 

The nature and s t a b i l i t y  o f  the  equi l ibr ium EO o f  (4.1) is 

determined by the  types and s igns  o f  the  eigenvalues of  (4.10) and t he  

number of  l i n e a r l y  independent eigenvectors corresponding t o  these  

eigenvalues. The nature of the eigenvalues of (4.10) depends on the  

values 

where P1, P2,  and P3 a re  given by (4.14) ; and the  number of l i nea r l y  

independent eigenve c to rs  corresponding t o  the eigenvalues of (4.10) a r e  

given by the  Jordan canonical forms (4.17). 

The eigenvalues of (4.10) are  the  nonzero so lu t ions  o f  the  

c h a r a c t e r i s t i c  equation (4.13). The cubic equation (4.13) has th ree  

d i s t i n c t  roots  (with nonzero r e a l  p a r t s )  when DO # 0 , a t  l e a s t  two 

equal roots  when Do = 0, and two imaginary roots  when Do > 0 and 

H o = O .  

I n  [ 5 7 ] ,  Reyn presented a de t a i l ed  c l a s s i f i c a t i o n  of the  equi l ibr ium 

po in t s  o f  a th ree  dimensional l i n e a r  d i f f e r e n t i a l  system. We s h a l l  use 

some of h i s  r e s u l t s  i n  our work. 

+ .a 



We now provide parameter conditions f o r  a l l  poss ible  types o f  

eigenvalues of (4.10) and combining each s e t  of these  eigenvalues 

with the  corresponding Jordan canonical form we s t a t e  the nature  and 

s t a b i l i t y  o f  the  equil ibrium E O  o f  the  dynamical system (4.1). 

CASE A. 

If Do # 0, then the  va r i a t i ona l  matrix (4.10) has th ree  d i s t i n c t  

eigenvalues with nonzero r e a l  p a r t s .  

Sub-Case A($). 

I f  Do < 0 , then the  va r i a t i ona l  matrix (4.10) has three  d i s t i n c t  

nonzero r e a l  eigenvalues XI ,  X2,  and X3 and has the  Jordan canonical 

0 form Ar3 

(1) If P1 > 0,  Pg > 0,  and Ho > 0 ,  then Xi < 0 , i = 1,2,3; 

and E0 i s  an asymptotical ly s t a b l e  three branched node (Fig .  1) . 
(2) If P3 < 0 and Ho > 0 , then XI > 0, X2 < 0, and X < 0; 3 

and E0 i s  a th ree  branched saddle node with s t a b l e  two 

branched plane node (Fig.  2).. 

(3) I f  P3 > 0 and Ho < 0 , then h1 < 0,  X2 > 0, and X > 0; 3 

and EO is  a t h e e  branched saddle node with unstable two 

branched plane node. 

(4) I f  - P 1 < O ,  P 3 < 0 ,  and H o < O ,  then h. > 0, i = 1 , 2 , 3 ;  
1 

and E0 i s  an unstable th ree  branched node. 

Sub-case A ( i i ) .  

I f  Do > 0 and Ho # 0, then t he  va r i a t i ona l  matrix (4.10) has 

one nonzero r e a l  and two complex (with nonzero r e a l  pa r t s )  eigenvalues X 1 

and ho + i w  and has the  canonical form A 0 
0 c3 ' 



(5) If P1 > 0,  P j  > 0, and Ho > 0 ,  then h1 < 0 and Xo < 0; 

and E0 is  an asymptotical ly s t a b l e  node s p i r a l  (Fig.  3). More 

s p e c i f i c a l l y ,  E0 i s  an asymptotical ly s t a b l e  (a) b lun t  

s p i r a l  when Xl > X (b) conical  s p i r a l  when 0 ' = ho ' 

and (c) pointed  s p i r a l  when X1 < ho . 
(6) If P3 < 0 and Ho > 0 , then X > 0 and X < 0 ; 1 0 

and EO i s  a saddle s p i r a l  with s t a b l e  plane focus (F ig .  4 ) .  

(7) I f  P3 > 0 and Ho < 0 , then h1 < 0 and ho > 0 ; 

and E0 is  a saddle s p i r a l  with unstable plane focus.  

(8) If P1 < 0, P3 < 0, and Ho < 0, then h1 > 0 and A > 0; 0 

and EO is  an unstable node s p i r a l .  More s p e c i f i c a l l y ,  E0 

is  an unstable (a) b lun t  s p i r a l  when h > Xo, (b) conical  1 

s p i r a l  when X = h and (c) pointed  s p i r a l  when Al ,< ho . 1 0' 

- .  

If Do = 0,  then the  v a r i a t i o n a l  matrix (4.10) has a t  l e a s t  two 

equal eigenvalues . 

Sub-Case B (i) . 
If QO # 0, then the  v a r i a t i o n a l  ma t r ix  (4.10) has th ree  r e a l  

with two equal  eigenvalues X I ,  X 2 ,  and X2 and has e i t h e r  t h e  Jordan 

0 0 canonical  form AZ3 o r  . 

(9) If  P1 > 0,  P3 > 0, and Ho > O ,  then X. < 0,  i = 1,2; 
1 

0 and E i s  asymptotical ly s t a b l e .  E O  corresponding t o  

0 
AZ3 represents  e i t h e r  a pointed  s t a r  node when X1 > X2 o r  

a b lun t  s t a r  node when h1 < h and E0 corresponding t o  2 



0 
A Z 2  

represents  e i t h e r  a wide two branched node when X1 > X2 

o r  a s l ender  two branched node when Xl < X2 . 
* 0 If P 3 < 0  and Ho > O ,  then X 1 > O  and X < 0 ;  and E 2 

0 corresponding t o  AZ3 and represents  a saddle star with 

s t a b l e  plane s t a r  and a two branched saddle node with s t a b l e  

one branched plane node respec t ive ly .  

If P3 > 0 and Ho < 0, then X 0 and X2 > 0; and E 0 1 
O and ~ 0 2 ~  represents  a saddle s t a r  with corresponding t o  A Z 3  

unstable plane s t a r  and a two branched saddle node with un- 

s t a b l e  one branched plane node respec t ive ly  (Figs.  9-10). 

If p1 < 0, P3 < 0, and Ho < 0, then hi > 0, i = 1,2; and 

E O  i s  unstable  . E O  corresponding t o  AZ3  O represents  

e i t h e r  a pointed  s t a r  node when Xl > h2 o r  a b lun t  s t a r  

0 node when X1 < X2; and E corresponding t o  A' represents  22 

e i t h e r  a wide two branched node when X1 > X o r  a s l e n d e r  2 

two branched node when X1 < X2 (Figs.  5-8).  

Sub- Case B l i i )  . 
If Qo = Ro = 0,  then  t h e  v a r i a t i o n a l  matr ix  (4.10) has t h r e e  

repeated r e a l  eigenvalues X1, hl, and X1 and has one of t h e  Jordan 

canonical  forms 0 0 
1113, A12 9 O r  

0 
All a 

0 (13) If P1 > 0, P3 > 0, and Ho > 0, then X < 0; and E is 
1 

asymptotical ly s t a b l e .  E O  corresponding t o  A13, 0 Al2.  0 and 

0 
Al l  

represents  a t h r e e  dimensional s t a r ,  an antisymmetric 

node s t a r ,  and a one branched node respec t ive ly .  



(14) I f  P 1 < O ,  P 3 < 0 ,  and H o < O ,  then X > O ;  and E0 i s  
1 

unstable.  E0 corresponding t o  0 0 
0 

O13, A L?j and *ll 

represents  a th ree  dimensional s t a r ,  an antisymmetric 

node s t a r ,  and a one branched node respect ively  (Fig.  11-13). 

CASE C. 

If Do > 0 and Ho = 0, then the  va r i a t i ona l  matrix (4.10) has 

one r e a l  and two imaginary eigenvalues X1 and +iy, and has the  Jordan 

0 canonical form Ai3 . 

(15) If P1 > 0 and P3 > 0, then X < 0; and E0 is  a neu t r a l l y  1 

s t a b l e  convergent cen te r  focus . 
(16) If P1 < 0 and P3 < 0, then X1 > 0; and E O  is  a n e u t r a l l y  

unstable divergent cen te r  focus (Fig.  14). 

In order t o  give a more re f ined  c l a s s i f i c a t i o n  of t he  hyperbolic 

and simple nonhyperbolic equi l ibr ium po in t s  of  a dynamical system, w e  

introduce the  following def in i t ions  : 

DEFINITION 1 

The hyperbolic e q u i l i b r i a  o f  a dynamical system corresponding t o  

th ree  d i s t i n c t  eigenvalues with nonzero r e a l  p a r t s  o f  the  va r i a t i ona l  

matrix f o r  t h e  l inear ized  system are  c a l l ed  A- type  equilibria.  

DEFINTION 2 

The hyperbolic e q u i l i b r i a  of a dynamical system corresponding t o  

th ree  nonzero r e a l  with a t  l e a s t  two repeated eigenvalues of the  

va r i a t i ona l  matrix f o r  t he  l i nea r i z ed  system a r e  ca l l ed  B - @ W  equizibria.  



DEFINITION 3 

The simple nonhyperbolic e q u i l i b r i a  of a dynamical system 

corresponding t o  one nonzero r e a l  and two imaginary eigenvalues of t he  

var ia t iona l  matrix f o r  t h e  l inear ized  sys tern are  ca l led  C-type equi libria. 

We now define the  following s e t s :  

and assume t h a t  Fi (N N N ,0) , i = 1,2,3, be such t ha t  the  hypotheses 1, 2' 3 

of (h) , ha= 1,2, .  . . ,16, hold. 
> 

Using the  r e s u l t s  i n  Cases A, B ,  and C ,  t h e  Definit ions 1, 2, and 

3, and (4.19) , we have es tab l i shed  the  following theorem. 

THEOREM 1. 

A-type and B-type equilibria of the unperturbed three dimensional 

KoZmogorov model satSs&ing the conditions stated i n  Cases A and B are 

always hyperbolic and C-type equilibria of the same model satisfying 

the conditions i n  Case C are always nonhyperbolic. The equilibrium E 
0 

i s  asymptotically stable if ih) € S3, unstable i f  (hl € Sz3 neutrally 

stable if fh)  € Sp and neutrally unstable i f  (h)  € S4 . 



Remarks: The nature and s t a b i l i t y  o r  i n s t a b i l i t y  property of t he  

e q u i l i b r i a  i n  Cases A and B a r e  v a l i d  f o r  both the  l i n e a r  and t h e  

corresponding nonlinear systems, while t h a t  i n  Case C are va l i d  only 

f o r  the  l inear ized  p a r t  of  the  nonl inear  system. In  order t o  examine 

t he  nature  and s t a b i l i t y  o f  the  e q u i l i b r i a  of the  nonl inear  system i n  

Case C, t h e  e f f e c t  o f  nonlinear terms must be taken i n t o  account. In 

Case C, t h e  higher  order terms of (4.8) may generate tin asymptotically 

s t ab l e  o r  unstable node s p i r a l  o r  a saddle s p i r a l .  

We record t h e  following references f o r  t he  f igures  quoted i n  . 

t h i s  chapter.  (i) Figures 1-2: Arnold 171, ( i i )  Figures 3,4, 

and 14: Reissig e t  a1 1511, and ( i i i )  Figures 5-13: Reyn [57]. 



CHAPTER 5 

PERTURBATIONS OF A SIMPLE EQUILIBRIUM OF THE THREE 

DIMENSIONAL KOLMOGOROV MODE L 

I n  t h i s  chapter we consider t h e  nonc r i t i c a l  case of the  perturbed 

three  dimensional Kolmogorov model corresponding t o  the  nonc r i t i c a l  case 

of t he  unperturbed model and derive the  cha rac t e r i s t i c  equation of the  

va r i a t i ona l  matrix f o r  the  l inear ized  system of the  perturbed model. . 

Further, we examine t he  nature  and s t a b i l i t y  of  the  perturbed equil ibrium 

emanating from a simple unperturbed equil ibrium i n  t he  th ree  dimensional 

phase space and compare t h e  qua l i t a t i ve  behaviors o f  some perturbed equ i l -  

i b r i a  wi th  those of the  unperturbed equ i l i b r i a .  

5 .1  EXISTENCE OF A SIMPLE PERTURBED EQUILIBRIUM 

In order t o  e s t ab l i sh  a re la t ionsh ip  between the  topological  

s t r uc tu r e  and s t a b i l i t y  of an t l r e r t u r b e d  and a perturbed simple equ i l -  

ibrium, we now study the  nonc r i t i c a l  case of the  perturbed three  

dimensional Kolmogorov mode 1 

corresponding t o  the  nonc r i t i c a l  case of t he  unperturbed model (4.1) , 

where E is a small  pos i t ive  parameter. For E = 0, (5.11 reduces 

0 0 0 0  
t o  t he  system (4.1) which has a simple equil ibrium E (M1,M2,M3 i n  



the  f i r s t  oc tant  provided t h a t  t h e  condit ions (4.3) and (4;6) a re  

s a t i s f i e d .  For E # 0 t h e  e q u i l i b r i a  of t h e  per turbed system (5.1) 

are  obtained by so lv ing  the  system of  equations 

sub jec t  t o  the  condit ions (4.3) and (4.6). By the  i m p l i c i t  funct ion 

theorem, with (4.6), t h e  perturbed system (5.1) has a unique s o l u t i o n  

0 
M;(E) i n  t h e  neighbourhood of  t h e  s o l u t i o n  Mi o f  the  unpemurbed system 

0 (4.1) ,  such t h a t  M;(o) = Mi , i = 1,2,3,  and 

* 
Let JO be the  matrix 

whe r e  

0 * 0 
such t h a t  FiN (0) = FiN The assumption (4.6) guarantees t h a t  

j  j  

* 
I J ~ I  = det  J~(M;,M;,M~) # 0, 

which corresponds t o  the  n o n c r i t i c a l  case f o r  t h e  perturbed system (5.3) .  .* - 



Hence , the perturbed model (5.1) has a simple equil ibrium E*(M;,M~,M;), 

c a l l ed  t h e  simple perturbed equilibrium, which f o r  E = 0 moves t o  the 

simple unperturbed equil ibrium E0 of (4.1) 

I n  order t o  f i nd  the  so lu t ion  of (5.3) , we seek M; (E) i n  terms 

0 
of power s e r i e s  of E i n  the  neighbourhood of Mi i n  t he  form 

Since E is  small, i n  general,  i t  is  s u f f i c i e n t  t o  evaluate m. 
1 '  

i = 1,2,3. Subs t i tu t ing  (5.7) i n t o  (5.3),  expanding 

i n  Taylor s e r i e s ,  and equal iz ing the  coef f ic ien t  of E t o  zero, we 

obtain the  following l i nea r  system f o r  mi , i = 1,2,3: 

where FiN O i s  given by (4.5), and 
j 

The system o f  equations (5.8) is a s e t  of th ree  l i n e a r  non- 

homogeneous equations whose Jacobian (5.6) i s  d i f f e r en t  from zero. Such 

a system, by Cramer's ru le ,  has a unique so lu t ion  given by 



where A j i  is  the  cofactor of t he  element F i n  the  matrix 
jNi pPNj], i ,  = 3 ,  and B is  given by (4.10). 

0 

For E = 0 , the  equil ibrium E*  of the  perturbed system (5.1) 

tu rns  t o  the  equil ibrium E0 of t he  unperturbed system (4.1), and f o r  

E # 0 , t he  equil ibrium EO moves t o  the  equil ibrium E *  . Thus, we 

say t h a t  the  simple unperturbed equil ibrium E O  generates the  simple 

perturbed equil ibrium E* . 

Hence,we can s t a t e  the  following theorem concerning the  existence 

of an equil ibrium f o r  the perturbed system. 

THEOREM 2 

i n  the neighbourhood o f  a simple equilibrium EO of the unperturbed 

system (4.1) t hem  exis ts  a unique simple equilibrium E* o f  the 

perturbed system (5.1) for suf f icient  Zy smaZZ positive E . 

5.2 NATURE AND STABILITY OF THE PERTURBED EQUILIBRIUM 

The nature  and s t a b i l i t y  of the  equil ibrium E* of t he  perturbed 

system (5.1) are determined by the  c h a r a c t e r i s t i c  equation of the  

va r i a t i ona l  matrix f o r  t h e  l inear ized  p a r t  of (5.1) . To f i n d  the 

ya r i a t i ona l  matrix f o r  the  l i n e a r  p a r t  of  t he  perturbed model, first 

we l i n e a r i z e  the  nonlinear system (5.1) . In  order t o  l inear ize  t he  

perturbed sys tem (5.1) , we use t he  transformation 



0 * 
such t h a t  M ~ ( o )  = Mi and Xi(0) = Xi , i = 1,2,3. S u b s t i t u t i n g  (5.11) 

i n t o  (5.1) and using t h e  Taylor s e r i e s  expansion f o r  

we obta in  

where I?;(&) represents  t h e  non l inea r  p a r t  of (5.1) and is  given by 

0 * 0 * 
and FiN (E) i s  given by (5.5) . Further,  E?(E)  and FiN (E) a r e .  

j 
1 B 

such t h a t  

- 0 
8 2 ~ 0 )  = Ei i = 1,2 ,3 ,  

and 

0 * 0 
FiN (0) = FiN , i , j  = P,2,3, 

j j  

- 0 
where Ei and FiN O a re  given by (4.9) and (4.5) r espec t ive ly .  

1 



The var ia tona l  matrix f o r  the  l i n e a r  p a r t  o f  (5.12) a t  t h e  

perturbed equ i l ib r iwn  point  is 

* 
such t h a t  AO(0) = A. , where mo is given by (4.11) , and 

l j  

with 

and 

The assumption (4.12) ensures t h a t  

I A ; ~  = det  A;(M;,<,M~) # 0 , 

and (5.18) corresponds t o  the  n o n c r i t i c a l  case of the  perturbed model 

(5 s 1) 0 

The c h a r a c t e r i s t i c  equation of  (5.15), up t o  t h e  order  of & , i s  



where Ply P2, and P3 are  given by (4.14), and 

- 
'I3 - - 

The cor implies t ha t  t he  c h a r a c t e r i s t i c  equation (5.19) 

does not  have any zero root .  Further, t he  roots  of the  cha rac t e r i s t i c  

equation f o r  a perturbed system are ,  i n  general ,  assumed t o  be d i s t i n c t .  

Hence , the  va r i a t i ona l  matrix (5.15) of the  perturbed model (5.1) has 

th ree  d i s t i n c t  eigenvalues and thus three  l i nea r ly  independent eigen- 

vectors corresponding t o  these eigenvalues. Therefore, the  nature  and 

s t a b i l i t y  of  the  perturbed equil ibrium E *  can be determined by the  

types and s igns  of  roots of the  cha rac t e r i s t i c  equation (5.19) of the 

perturbed sys tern (5.1) . Further, f o r  E = 0 ,  t he  equation (5.19) 

reduces t o  the  equabion (4.13), and f o r  E Z 0, the  equation (4.13) 

produces (5.19) . Thus, we say t h a t  t he  c h a r a c t e r i s t i c  equation (4.13) 

of the  unperturbed system (4.1) generates the  cha rac t e r i s t i c  equation 



(5.19) of the  perturbed system ( 5 , l ) .  Therefore, the  roots  of (4.13) 

generates the roots  of  (5.19) . 

Dist inct  roots o f  t he  cha rac t e r i s t i c  equation (4.13) of t he  

unperturbed system can generate only d i s t i n c t  roots of the  c h a r a c t e r i s t i c  

equation (5.19) of the  perturbed system. However, i n  general ,  repeated 

roots  o f  (4.13) generate d i s t i n c t  roo t s  of (5.19), and imaginary roots  

of (4.13) generate complex roots  of (5.19) . To f a c i l i t a t e  t h e  study of 

these cases we introduce the  following nota t ions .  

where pi and qi , i = 1,2,3, are  given by (4.14) and (5.20). Also, 

we use some small yalues pi (E) , i = 1,2,3, such t ha t  pi (0) = 0. 

These small  values may vary but  p1 # y2 # p3. 

We now provide parameter conditions f o r  a l l  poss ible  types of 

d i s t i n c t  roots o f  the  cha rac t e r i s t i c  equation (5.19) and examine t he  

character  ( i . e . ,  the nature of  the  phase p o r t r a i t  a d  t he  s t a b i l i t y  

o r  the  i n s t a b i l i t y  property) of t he  perturbed equil ibrium E* 

corresponding t o  these roots .  



CASE A1 

Three d i s t i n c t  r e a l  roots  hi , i = 1,2,3, of (4.13), s a t i s f y i n g  

Do < 0 , can generate only th ree  d i s t i n c t  r e a l  roots  A. + 1-1 
1 i '  

i = 1,2,3, of  (5.19). In t h i s  case t h e  per turbed equi l ibr ium E* has 

0 exac t ly  t h e  same charac te r  as the  unperturbed equi l ibr ium E i n  

Sub-Case A ( i l .  

CASE A, 

One- r e a l  and two complex roo t s  X1 and ho "iw lo # 0 , o f ,  
0 ' 

(4.13), s a t i s f y i n g  D > 0 and H # 0,  can generate only one r e a l  and 0 0 

two complex roo t s  
Al + 

and X o + p 2 + i ( w O + p 3 )  of (5.19). I n  

t h i s  case t h e  perturbed equi l ibr ium E* has exac t ly  the  same charac te r  

as the  unperturbed equi l ibr ium EO i n  Sub-Case A ( i i l .  

Hence,-from the  r e s u l t s  i n  Cases A, A and %, and the  Def in i t ion  1, 
1' 

we have t h e  following theorem. 

THEOREM 3 

A-type equi l ibr ia  of  the zozperturbed system (4 .1)  generate A-type 

equiZibAa of the pel..tw?bed system ( 5 . 2 1 ,  i . e . ,  nodes, saddle. nodes, 

node s p i r a k ,  m d  saddZe spirals  o f  (4 .1)  generate corresponding 

equ i l ibKa  of (5.1) with the same n a t m  m d  s t a b i l i t y  or  i n s t a b i l i t y  

property. 

CASE B1 

Double roo t s  hl,  h2 ,  and X2 of (4.13) s a t i s f y i n g  Do = 0 and 
.- - 

QO # 0 can generate:  



(a) Dis t inct  roots hl + U1. A2 + y2, and X3 + p3 of (5.19) 

0 if Dg* < 0 . Then E* has similar character  as E i n  

Sub-case A ( i l .  

(b) Complex roots  A1 + p1 and A2 + i p 2  of (5.19) i f  D; > 0. 

Then E *  has s imi l a r  character  as E0 i n  Sub-case A ( i i l .  

Note. If DO* = 0 ,  double roots  of  (4.13), depending on higher  

order terms of E neglected i n  (5.19) , may o r  may not generate double 

* 
roots of (5.19) i f  Qo # 0 .  We do not consider t h i s  case. 

CASE B, 

* 
I f  QO = Ro = 0 . then Do = 0 .  In t h i s  case t he  nature of  the  

roots  of (5.19) depends on ~ g *  and 

* 
where Q; and Ro are given by (5.2 1) . Hence, under t he  conditions 

QO = Ro = 0,  t he  t r i p l e  roots  A1, X I ,  and hl of (4.13) can generate: 

(a) Three d i s t i n c t  r e a l  roo t s  + X 1 + U 2 9  and A 1 + U  3 

of  (5.19) if D;* = 0 ,  ~ g *  < 0 . Then E* has s imi l a r  

character  as E0 i n  1 and 4 of Sub-Case A l i l .  

(b) One r e a l  and two complex roots X1 + y1 and A 2 i of 

(5.19) , i f  $* # 0 o r  D;* = O ,  Q ; > O .  Then E * has 

s imi l a r  character  as E0 i n  5(b) and 8(b) o f  Sub-case A i i i ) .  

flote. Tr ip le  roots  of (4.13), depending on higher order terms o f  E 

neglected i n  (5.19), may o r  may not generate double roots  of. (5.19) i f  



* 
Q; # 0 o r  t r i p l e  roo t s  o f  (5.19) if ~ g *  = Ro = 0 . We do not  

.. . . 

consider these  cases.  

Taking i n t o  considera t ion t h e  Cases A, B ,  B1, and B2 and the  

Def in i t ions  1 and 2 ,  we e s t a b l i s h  the  fol lowing theorem. 

THEOREM 4 

A B-type equilibriwn o f  the unperturbed system (4 .1 )  generates m 

A-type equiZibriwn o f  the perturbed system (5.11 i f  D; # 0; 
*- * * * * * 

Do = 0, Do # 0; or Do = Do = 0, ~ g *  # 0 . Three dimensimal stars, 

node stars, a n t i s y m t r i c  node stars, two branched nodes, and one 

branched nodes of (4 .1 )  generate ei ther three branched nodes or node 

sp i rak  of (5 .1 ) ;  and saddZe stars m d  two branched saddle nodes of (4 .1)  

generate saddle nodes or saddle sp i rak  of (5.1). The stabi Z i t y  or in- 
* 

s tabi l i ty  property of EO md E i s  the s m .  

CASE C1 

Under the  condit ions Do > 0 and Ho = 0 ,  one r e a l  and two 

imaginary roots  X1 and 2 i o of  (4.13) can generate one r e a l  and 
0 

two complex roo t s  I1 + P1 and p2 k i ( o o  + of  (5.19) i f  H; # 0 .  

The charac te r  of  E* is  s t a t e d  below: 

(a) If P1 > 0 ,  P3 > 0 ,  and H; > 0 ,  then h1 < 0 and P2 < 0; 

and E* i s  an asymptotical ly s t a b l e  b lunt  s p i r a l .  

* 
(b) If p 3 < 0  and H o > O ,  then X > 0 and y2 < 0; and E* 1 

i s  a saddle s p i r a l  with s t a b l e  plane focus.  



If P > 0  and ~ g *  < 0 ,  then X I <  0 and p2 > 0; and E* 3 

is  a saddle s p i r a l  with unstable plane focus. 

If p1 < 0 ,  p3 c 0 ,  and H; < 0, then X1 > 0  and v2 > 0; 

and E *  i s  an unstable blunt s p i r a l .  

Hence,the nonhyperbolic equil ibrium E0 may change i ts s t a b i l i t y  

property under small perturbation.  This occurs when hl < 0  . Then a 

neu t r a l l y  s t ab l e  EO of t he  unperturbed system (4.1) generates an 

* 
asymptotically s t a b l e  E* i f  11 < O  and a n u n s t a b l e  E  if p 2 >  0 

2 

of  the  perturbed system (5.1). 

Note. If H: = 0 ,  imaginary m o t s  of  (4.13), depending on higher  

order terms of E neglected i n  (5.19) , may o r  may not  generate imaginary 

roots of (5.19). We do not consider t h i s  case. 

On t h e  ba s i s  of the  r e s u l t s  i n  Cases C and C , ,  and the  Defini t ion 3, 
I 

we derive the  following' theorem. 

THEOREM 5 

A C-type equilibrium of the unperturbed system (4.1) generates an 

A-type equi l i b r i m  of the perturbed system (5.11 i f  H; # 0 . The 
* 

s tabi l i ty  or ins tabi l i ty  property of EO and E are not the same. A 

convergent center focus of (4.1) generates an asymptotically stab Ze 

node spiral or a saddle spiral of (5.11 and a divergent center focus 

of (4.1) generates an unstable node spiral or a saddk spiral of (5.1). 



5 . 3  QUALITATIVE STUDIES OF THREE PERTURBED LOTKA-VOLTERRA MODELS 

In order t o  i l l u s t r a t e  some of  the  r e s u l t s  obtained i n  Theorems 3, 

4, and 5, we now discuss the  following spec i a l  cases of the  general  

model (5.1).  

Example I .  To i l l u s t r a t e  a r e s u l t  of Theorem 3, the  following 

three  dimensional perturbed food chain model, s tud ied  by Hausrath [ 331, 

i s  considered. 

The system (5.23) models a r e a l  s i t u a t i o n  t h a t  occurred during t h i s  

centu'ky i n  I s l e  Royale National Park (210 square mile i s l and  i n  Lake 

Superior) .  Here N1 i s  the  food supply f o r  a moose population N2 , 

and N3 i s  a  wolf population which preys on t he  moose N 2  ; ai j  a r e  

pos i t ive  coef f ic ien t s  and &NiFi a re  per turbat ions ,  i = 1,2,3, 

j = 0 , .  . . ,4. Hausrath shows t ha t  (5.23) f o r  E = 0 has the  equil ibrium 

point  E ~ ( M ~ , M ~ , M ~ ) ,  where 



The c h a r a c t e r i s t i c  equation of the  v a r i a t i o n a l  n a t r i x  of  (5.23) f o r  

E = 0 i s  (4.13) where 

- 
p1 - 

Use of  the  

0 Q 0 0 0 0 0 0  = a  a a M M M  a33M2' P2 = a23a32M1M2 + a12a21M1M3' '3 12 21 33 1 2 3 

Routh-Hurwi t z  c r i t e r i o n  

gives t h a t  t h e  c h a r a c t e r i s t i c  equation has  a l l  roo t s  with negative r e a l  

p a r t s  which i n d i c a t e s  t h a t  the  equi l ibr ium E' i s  asymptotical ly s t a b l e .  

Further,  Hausrath proves s e v e r a l  t h e  orems concerning the r e  l a t ionsh ip  

between the  unperturbed and perturbed sys  tems of  (5.23) . Par t  of  these  

r e s u l t s ,  namely the  pe r s i s t ance  of the  s t a b l e  equi l ibr ium E' can be 

obtained a s  a p a r t i c u l a r  case of  Theorem 2. Really, s ince  E0 i s  

hyperbol ic  equi l ibr ium which is asymptotical ly s t a b l e ,  t h e  same is 

v a l i d  f o r  t h e  equi l ibr ium E *  of  the  per turbed system (5.23). To 

f i n d  the  nature  of E0 and hence E* , one has  t o  s tudy t h e  values 

Do, Q09 and Ro given by (4.18) and make use o f  Theorems 3 and 4. 

Exanp3k 2. To i l l u s t r a t e  the  i n t e r e s t i n g  Case B2(b) we consider 

t h e  per turbed model 



I n  the  unperturbed system o f  (5.24), the  i n t e r ac t i on  between the- 

species  N1 and N2 i s  competitive, between N1 and N3 i s  mutual- 

i s t i c ,  and between N2 and N3 i s  predator-prey. The per tu rba t iona l  

terms i n  (5.24), with f ac to r  E << 1 , change s l i g h t l y  the  unperturbed 

system i n  the  following way. The coef f ic ien t s  with f a c t o r  E ind ica te  

a weaker type of i n t e r ac t i on  between populations 
Ni 

and N which 
j 

contributes l i t t l e  t o  the growth r a t e  of Ni , i, j = 1,2,3, of the 

unperturbed system o f  (5.24) . 

0 The unperturbed equil ibrium of  (5.24) i s  E (1,2,2) and the  

corresponding perturbed equilibrium, up t o  the  order of E , i s  

E ( l  + 2 ~ / 3 ,  2 - fi &/6, 2 + ( 2 / 3  + f i / 6 ) ~ ) .  The va r i a t i ona l  matrix 

(5.15) f o r  the  perturbed syst-em (5.24) becomes 

such t ha t  the  condition (5.18) i s  s a t i s f i e d .  

The cha rac t e r i s t i c  equation (5.19) of the  var ia t iona l  matrix (5.15) 

f o r  (5.24) i s  

comparing (5.25) with (5.19) we have 



and hence from (4.18) , (5.21) , and (5.22) we obta in  

* * * 
D 0 = D o = D o  = Q o = R o = O ,  Qi -16. 

We note  t h a t  t h e  v a r i a t i o n a l  matrix (4.10) f o r  t h e  unperturbed system 

(5.24 with E = 0) has one l i n e a r l y  independent eigenvector (-1,1,1) 

corresponding t o  the  t r i p l e  eigenvalue -2 and thus  has the  Jordan 

0 
canonical form All given by (4.17) . 

Therefore,  t h e  unperturbed equi l ibr ium E O  i s  an asymptotical ly 

s t a b l e  one branched node rsee (13) of Sub-Case B ( i i ) ]  which is  a B-type 

equil ibrium; and the  per turbed equi l ibr ium E *  i s  an asymptotical ly s t a b l e  

conlcal  s p i r a l  [ see  (b) of Case B2 along with 5(b) o f  Sub-case A l i i i ]  which 

i s  an A-type equil ibrium. This r e s u l t  i s  i n  conformity with Theorem 4. 

ExampZe 3. I n  order t o  show. t h a t  a nonhyperbolic equi l ibr ium o f  

the  unperturbed system generates a hyperbol ic  equi l ibr ium of the  per turbed 

system (Theorem 5 ) ,  we propose the  fol lowing perturbed model i n  R~ . 



The unperturbed system of (5.26) describes a th ree- leve l  food 
. . .  

chain model, where 
N1 

i s  the  lowest t roph ic  l eve l  population o r  prey, 

N2 i s  t he  middle t roph ic  l eve l  population o r  first predator,  and N3 

is  the  highest  t roph ic  l eve l  population o r  second predator .  The small 

per turbat ional  terms i n  (5.26) has the same meaning as those i n  (5.24) . 

The unperturbed and perturbed equil ibrium points  of (5.26) are  

~ ~ ( l , l , l / )  and E*(l + SE, 1 - 7 ~ ,  1/fi + 3&) respect ively .  The 

va r i a t i ona l  matrix (5.15) f o r  t he  system (5.26) i s  

such t ha t  the  condit ion (5.18) i s  s a t i s f i e d .  The cha rac t e r i s t i c  equation 

f o r  t h e  above matrix,up t o  t he  order E ,  i s  

Comparing (5.27) with (5.19) we obta in  

p l = l ,  p 2 = p 3 = 2 ,  q 1 = 9 ,  q 2 = - 9 7 ,  q 3 = 2 0 .  

Using these values i n  (4.18) and (5.21) , we f ind  t ha t  



Do = 0.53, Ho = 0, and ~ g *  = -99 . 

Thus, f o r  E = 0, we are i n  Case C, and f o r  E # 0 i n  Case C The 1' 

unperturbed equil ibrium EO of  (5.26) i s  a convergent centre focus 

[see (15) of Case C] which is  a simple nonhyperbolic equil ibrium and 

t he  perturbed equil ibrium E* of (5.26) i s  a saddle s p i r a l  with 

unstable plane focus Isee (c) of  Case cl] which i s  an A-type equilibrium. 

This r e s u l t  i s  i n  agreement with Theorem 5. 



CHAPTER 6 

BIFURCATIONS OF A MULTIPLE E Q U I L I B R I U M  OF 

THE THREE DIMENS I ONAL KO LMOGOROV MODEL 

In  t h i s  chapter we consider the  nonc r i t i c a l  case of the  perturbed 

three  dimensional Kolmogorov model corresponding t o  the  c r i t i c a l  . case of 

the  unperturbed model and derive c r i t e r i a  f o r  t he  exis tence of simple 

e q u i l i b r i a  f o r  the  perturbed model. We study the  b i fu rca t ion  of a 
' 

multiple unperturbed equil ibrium i n t o  simple perturbed e q u i l i b r i a  and 

examine the  nature  and s t a b i l i t y  o f  the  perturbed e q u i l i b r i a  i n  the  th ree  

dimensional phase space. In  the  l a s t  sec t ion ,  b i fu rca t ions  of the  

mult iple unperturbed e q u i l i b r i a  of two ce r t a in  population models are  

i i ivss t igated and the  qua i i t a t i ve  behaviors o f  the  corresponding simple 

perturbed e q u i l i b r i a  are  examined. 

6 .1  EXISTENCE OF A MULTIPLE EQUILIBRIUM 

In  order t o  inves t iga te  the  b i fu rca t ion  of a mult iple equil ibrium 

of the  unperturbed th ree  dimensional Kolmogorov model i n t o  simple 

equ i l i b r i a ,  we consider the  nonc r i t i c a l  case of the perturbed th ree  

dimens i ona l  KO lmogorov mode 1 

where E i s  a small pos i t ive  parameter, corresponding t o  the  c r i t i c a l  

case of the  unperturbed 'model 



we assume tha t  t h e  unperturbed system (6.2) has a t  l e a s t  one equil ibrium 

0 0 0 0  point  F (N , N  , N  ) ,  ca l led  t he  unperturbed equilibrium, i n  the  i n t e r i o r  1 2 3  

of  the  first octant .  This means t h a t  the  system 

0 0 0  has at  l e a s t  one so lu t ion  (N1,N2,N3), such t h a t  

Let J be the  matrix 

where 

and assume t h a t  

0  0  0  I J I  = det J(N1,N2,N3) = 0  . (6 7) 

The assumption (6.7) corresponds t o  the  c r i t i c a l  case f o r  t he  system 

(6.3) and ensures t ha t  FO is  a mult iple equ i l i b r i un  o f  (6.2) , 



62, 

i .e . , F0 i s  a point  of i n t e r s ec t i on  of the  surfaces  (6.3) such t h a t  

the  tangent planes t o  the  surfaces  a t  t h e i r  common po in t  e x i s t  and a re  

coincident. To f i n d  the  equil ibrium of (6.1) f o r  E + 0, we have t o  

solve the  system of equations 

subject  t o  t he  conditions (6.4) and (6 .7 ) .  Under t he  condition ( 6 . 7 ) ,  

the  system (6.8) may o r  may not have r e a l  solut ions .  For our problem 

we assume tha t  the  perturbed 

neighborhood of the  so lu t ion  

system (6.8) has a so lu t ion  N:(E) i n  the  

O 
of the unperturbed sys tem (6.3) , 

Ni 
0 

such t h a t  Nf(0) = Ni , and 

To f ind  the  so lu t ion  of (6.9), we seek N ~ ( E )  i n  t e r m  of power s e r i e s  

of E i n  t he  neighborhood of  N! i n  the  form 

where n. and ti , i = 1,2,3, a re  real number. 
a 

Let J* be the  matrix 



where 

and assume t h a t  

[J*I = de t  J *  # 0 . 

The assumption (6.13) corresponds t o  the nonc r i t i c a l  case of t he  imp l i c i t  

function theorem f o r  t h e  system (6.9) and ensures t h a t  (6.8) has simple 

so lu t ions .  Hence, t h e  perturbed model (6.1) has simple e q u i l i b r i a  

F*(N;,N;,N;,E), ca l l ed  t h e  perturbed equ i l i b r i a .  For E = 0, the 

e q u i l i b r i a  F* of the  perturbed system (6.1) re turns  t o  the  equil ibrium 

F0 of the  unperturbed system (6 -2) . Thus, under the  influence o f  small 

per turbat ion the  multiple equil ibrium F0 of (6.2) s a t i s fy ing  (6.7) 

generates simple e q u i l i b r i a  F* of (6.1) provided the  condition 

(6.13) is  f u l f i l  led. 



6.2 BIFURCATION OF A MULTIPLE EQUILIBRIUM 

In order t o  study b i fu rca t ions  of a mul t ip le  equil ibrium FO 

i n t o  simple e q u i l i b r i a  F* . we have t o  solve the system of  equations 
C 

(6.9) subject  t o  t h e  condition (6.7) and (6.13). Subs t i tu t ing  (6.10) 

i n t o  (6.9) , expanding 

i n  Taylor s e r i e s ,  we obtain 

2 where higher  order terms of  the  O(E ) are  neglected. Here F 
i N ,  a re  

J 
given by (6.6) , and 



2 2 
a F i  o o o  

= -  (N A ,N 90) 9 F~~~ - - -  a F i  o o o  
F i ~ . ~  a N . &  1 2 3 2 ( N l Y N 2  ,N3'0) 9 

J J a& 

and it i s  assumed tha t  a t  l e a s t  one of the  second p a r t i a l  der ivat ives  

If a l l  of FiN.N , i , j , k  = 1,2,3,  a r e  zero, then we s h a l l  have t o  use 
J k  

the  higher order  terms neglected i n  (6.14) t o  resolve the problem. We 

do not consider t h i s  case. By the  imp l i c i t  function theorem with 

(6.12) the  so lu t ions  of the system (6.14) are  simple. Further, the  

system of equations (6.14) i s  a s e t  of th ree  quadrat ic  equations i n  

th ree  unknowns, such a system may have one o r  more e n t i r e  surfaces of 

so lu t ions ,  o r  it may have two t o  e igh t  r e a l  solut ions;  or  no r e a l  

solut ions .  I f  the  system (6.14) does not  have r e a l  so lu t ions ,  no r e a l  

values f o r  ni,  i = 1,2,3, e x i s t ,  and so  a so lu t ion  of the type sought 

i n  (6.13) does not e x i s t .  If the  system (6.14) has a mult iple roo t ,  

higher order terms neglected i n  (6.14) a re  required t o  resolve the 

s i t u a t i o n ,  s o  we do not handle the  case. For simple e q u i l i b r i a  of t he  

type sought i n  (6.13), we are  i n t e r e s t ed  only i n  the simple r e a l  roots  



The cases o f  branching w i l l  occur i f  the  conditions (6.7) , (6.12), 

and (6.16) are s a t i s f i e d .  The condition (6 .7) ,  i . e . ,  det  J = 0 

requires t h a t  t h e  rank of the  Jacobian matrix J given by (6.5) be two, 

one, o r  zero. We w i l l  discuss each of these  cases separate ly .  

CASE I .  Jacobian Matrix J has Rank 2. 

In t h i s  case we assume t h a t  the rank o f  the matrix J given by 

(6.5) is  two. This means t ha t  a t  l e a s t  one of the  second order minors 

of  J is  d i f f e r en t  from zero. We assume f o r  def ini teness  tha t  

Then from the second and t h i r d  equations of  (6.14) we f i nd  th-at n2 and 

n3 are  the  so lu t ions  of 

From the reduced system (6.18), the  so lu t ions  f o r  n2 and ng as 

functions of  n are given by 1 

where A are  t he  cofactors of the  elements F , i = 1,2?3,  , i n  

J and 



Subs t i tu t ing  (6.19) i n t o  the  first equation of (6.14) , t h e  so lu t ion  f o r  

nl is  given by the  following quadrat ic  equation: 

where 



with 

and, because of (6.16) ,it i s  assumed t h a t  

The condit ion a = 0 requires  h igher  order  terms neglected i n  (6.14) 11 

t o  resolve  t he  case, and we do not  t r e a t  i t .  Equation (6.21) i s  a 

quadrat ic  equation i n  one var iab le  and we need only simple r e a l  so lu t ions  

of (6.21) . The so lu t ion  o f  (6.21) depends upon whether a10 = 0 
o r  

a10 2 .0 . 

Sub-Case IA. 

F i r s t  we consider t h a t  

Here t he  perturbed e q u i l i b r i a  (6.13) have the  forms 

- 2  
N; = Ni + a E t O(E ),  li i = 1,2,3, 



where a is a s o l u t i o n  of  the  quadra t i c  equation 11 .. 

and 

1 a = -  
l j  A,, (Ao + Aljall) , j = 2,3, 

provided t h a t  

a2 - 4 a  a > o .  12 11 13 

Under the  condit ion (6.28), t h e  quadra t i c  equation (6.27) has two 

simple nonzero real roots i f  a f 0 er one zem zizd one nonzero 
13 

r e a l  roots  i f  a = 0, a12 
13 # 0.  Thus, i f  t h e  condit ions (6.17) , 

(6.24), (6.25) , and (6.28) a re  s a t i s f i e d ,  t h e r e  w i l l  be two branches 

o f  simple per turbed equi l ibr ium p o i n t s  o f  the  form (6.26) i f  a13 # 0 ; 

o r  two branches of  simple equi l ibr ium po in t s ,  one of  them of the  

form (6.26) and the  o the r  coinciding with the  unperturbed equi l ibr ium 

0 0 0  
(N1YN2,N3) if a13 - - O ,  a12 # (I . 

Sub-Case IB. 

We now assume t h a t  



In t h i s  subcase the  e q u i l i b r i a  of  the  perturbed system (6.1) have 

the  forms 

where 

such t ha t  

Thus, under the  hypotheses of (6.17) , (6.24), (6.29), and (6.31) , t h e  

nul t iple  unperturbed equil ibrium FO b i fu rcares  i n t o  two branches of 

simple perturbed e q u i l i b r i a  of  t he  form (6.30) f o r  su f f i c i en t l y  small  

pos i t ive  E . 

CASE 11. JacobCan matrix J has Rank I .  

In  . t h i s  case we assume t h a t  t he  rank of  t he  matrix J given by 

(6.5) i s  one. This means t h a t  a t  l e a s t  one of the  elements of J i s  

nonzero. We suppose fo r  def ini teness  t ha t  

Then from the t h i r d  equation of (6.14) we can f i nd  n as functions of 3 

n and n2 i n  the  form 1 



Subs t i tu t ing  (6.33) i n t o  the  f i r s t  and second equations of  (6.14) , we 

f ind t ha t  t he  so lu t ions  f o r  nl and n2 a re  given by 

where 



The condit ion (6.16) requires  t h a t  a t  l e a s t  one of  

If a l l  of  bij  = 0, i, j = 2 h igher  o rder  terms neglected i n  (6 .14) 

a re  needed t o  analyse the  s i t u a t i o n ,  we do not  t r e a t  i t .  The system 

(6.34) is  a system o f  two quadra t i c  equations i n  two unknowns. Such a 

system may have one o r  more e n t i r e  curves o f  so lu t ions  ; o r  i t  may have 

two t o  four s e a l  so lu t ions ;  o r  no r e a l  so lu t ions .  I t  may be r e c a l l e d  

t h a t  we need only simple r e a l  roo t s  o f  (6.34) . The s o l u t i o n  of (6.34) 

depends on biO , i = 1,2. Thus, we have two p o s s i b i l i t i e s :  e i t h e r  

biO = 0 o r  a t  l e a s t  one of  biO # 0, i = 1,2. 



Sub- Case I I A  . 

F i r s t  we consider t ha t  

Then from (6.34) , (6.33) , and (6.13) , t h e  e q u i l i b r i a  o f  the  perturbed 

system (6.1) have t he  forms 

where (a2 aZ2) i s  a r e a l  root of 

and 

such t ha t  the  Jacobian matrix 



of (6.39) i s  nonsingular ,  i . e. , 

bZ1l + 0 . 

Under the  condit ion (6.40), t h e  system of equations (6.39) may have two 

to- four  simple nonzero r e a l  so lu t ions  o r  one zero and one t o  t h r e e  non- 

zero r e a l  so lu t ions .  Thus, under t h e  hypotheses (6.32) , (6.36) , (6.37) , 

and (6.40), the re  w i l l  be two t o  four branches of simple perturbed 

equil ibrium po in t s ,  e i t h e r  a l l  of them of t h e  form (6.38) o r  one of them 

coinciding with the  unperturbed equi l ibr ium and t h e  r e s t  of t h e  form 

(6.38) . 

Here i t  i s  supposed t h a t  a t  l e a s t  one of  b10 and bZ0 i s  not  

equal  t o  zero. Hence, t h i s  subcase has t h r e e  p o s s i b i l i t i e s :  e i t h e r  

b10 # 0, bZ0 # 0; o r  b10 # 0,  bZ0 = 0 ; o r  b10 = 0,  bZ0 # 0 . Now 

we consider t h a t  

Then from (6.34) , (6.33) , and (6.13) , t h e  e q u i l i b r i a  of t h e  per turbed 

system (6.1) have t h e  forms 

where ((B21.B22) is  a r e a l  s o l u t i o n  of  



and 

provided t h a t  t h e  Jacobian matrix 

of (6.43) is  nonsingular ,  i .e. ,  

We observe t h a t  (-B21,-f322) is a l s o  a s o l u t i o n  o f  (6.43). Under t h e  

condi t ion  (6.44) , t h e  system o f  equations (6.43) has e i t h e r  two o r  f o u r  

simple nonzero r e a l  so lu t ions .  Hence, i f  t h e  hypotheses (6.32) , (6.36) , 

(6.41) , and (6.44) a re  s a t i s f i e d ,  t h e r e  w i l l  be e i t h e r  two o r  f o u r  

branches o f  per turbed e q u i l i b r i a  of t h e  form (6.42) . 

Exactly similar analyses as above a r e  v a l i d  f o r  t h e  o t h e r  two 

p o s s i b i l i t i e s  b10 # 0, bZ0 = 0; and b10 = 0,  bZ0 # 0 o f  t h i s  

sub- case. 



.. . . CASE 111. JacobCan matrix J has Rank 0. 

In  t h i s  case i t  i s  assumed tha t  t he  rank of  the matrix J given 

by (6.5) i s  zero, i . e . ,  

where FiN are given by (6.6) . Then from (6.14) , we f i n d  t h a t  nl,  n2, 
j 

and n3 are  t he  so lu t ions  of  

The system (6.46) i s  a s e t  of  three  quadrat ic  equations i n  th ree  unknowns. 

Such a system may have one o r  more e n t i r e  surfaces  of solut ions;  o r  it 

may have two t o  e igh t  r e a l  solut ions;  o r  no r e a l  solut ions .  We r e c a l l  

t h a t  we are  i n t e r e s t ed  i n  t he  simple r e a l  so lu t ions  of (6.46). The 

so lu t ion  of  (6.46) depends on FiE , i = 1,2,3. There are  two poss ible  

cases: e i t h e r  a l l  of the numbers FiE, i = 1,2,3 ,  vanish o r  a t  l e a s t  

one of them does not vanish. 

Sub- Case IIIA . 
Throughout t h i s  subcase we assume t h a t  



where FiE i s  given by (6.15) . Then the  perturbed e q u i l i b r i a  have 

the  forms 
6 

a ) i s  a r e a l  root  of where (a319a32> 33 

1 ' a + F, .  F... a + FiNZE 32 + - F  
11\ E 51 '33  2 - i e ~  = 0, i = 1 ,2 ,3 ,  (6.49) 

" 1 3E 

such t ha t  t he  Jacobian matrix 

of (6.49) i s  nonsingular, i . e . ,  

where FiN and F i ~ . e  a re  given by (6.15) . Under t he  condition 
j k J 

(6.50), t he  system o f  equations (6.49) has two t o  e igh t  simple 

r e a l  so1utions and e i t h e r  a l l  t h e  so lu t ions  a re  nonzero o r  one of them 



i s  a  zero so lu t ion .  Hence,in t h i s  sub-case the re  w i l l  be two 

0  0  0  t o  e i gh t  branches of equil ibrium po in t s  o r i g ina t i ng  from (N N N ) 1' 2' 3  

f o r  s u f f i c i e n t l y  small  pos i t i ve  E , and e i t h e r  none o r  one of them 

0  0 0  w i l l  coincide with (N1,N2,N3). 

Sub-Case IIIB. 

We now assume t h a t  a t  l e a s t  one of F  , i = 1,2,3 , i s  d i f f e r en t  i e  

from zero. Hence,we have th ree  p o s s i b i l i t i e s :  ( i )  a l l  bhree o f  

Fie # 0, i = 1,2,3; ( i i )  two of Fie # 0  and t he  r e s t  one of 

Fie = 0, i = 1,2,3; and ( i i i )  one of F  # O  a n d t h e  r e s t  two of i e  
Fie = 0, i = 1,2,3. 

F i r s t ,  l e t  us consider t h a t  

In t h i s  case t he  perturbed e q u i l i b r i a  have t he  forms 

where (B31 'B32yB33) i s  a  r e a l  root  o f  



provided t h a t  t h e  Jacobian matr ix  

is  nonsingular ,  i . e . ,  

We note t h a t  (-f331,-p32,-$33) i s  a l s o  a s o l u t i o n  of  (6.53). Under t h e  

condit ion (6.54)'  t h e  system of equations (6.53) has two, four ,  s i x ,  o r  

e i g h t  simple nonzero r e a l  so lu t ions .  Thus, i n  t h i s  sub-case the re  w i l l  

be two, four ,  s i x ,  o r  e igh t  branches of perturbed equil ibrium po in t s  of 

of form (6.52). 

Exactly s i m i l a r  analyses as  above a re  v a l i d  f o r  the  o the r  two 

p o s s i b i l i t i e s  of  t h i s  subcase. 

Remarks: We observe t h a t  t h e  system (6.1) can be w r i t t e n  i n  the  

form 

where the  terms qi a re  independent of E and Qi involve E . I t  i s  

- assumed t h a t  



(6. lb) 

0 0 0 0  where F (N , N  , N  ) i s  an equi l ibr ium of  t h e  unperturbed system of 1 2 3  

(6. l a )  and thus (6.1) . The condit ions (6 .  lb)  a re  i n  consis  t e n t  with 

(6.7) and (6.12) and guarantee t h a t  t h e  unperturbed equi l ibr ium F0 i s  

a mul t ip le  equi l ibr ium while the  e q u i l i b r i a  of  t h e  perturbed system 

(6. la )  o r i g i n a t i n g  from FO are  simple. Furthermore, we note t h a t  ' 

0 0 0  
if $i(N1,N2,N3,~) = 0, i = 1,2,3, then F0 i s  a l s o  an equi l ibr ium 

o f  the  per turbed sys  tern (6. l a )  while i f  at l e a s t  one of 

0 0 0  
IVi(N , N  , N  ,E) # 0, i = 1,2,3, then F0 is  not  an equil ibrium of  (6 .  l a ) .  1 2 3  

Thus, we have the  following remarks. 

* .  

Remark I .  If (6. l a )  s a t i s f i e s  (6. lb) and a l l  of  

0 0 0  
Qi(N , N  , N  ,E) = 0 , i = 1,2,3, then one of t h e  p e r t u r b e d e q u i l i b r i a  1 2 3  

of (6 . la)  coincides with FO and t h e  r e s t  o f  t h e  per turbed e q u i l i b r i a  

0 e x i s t  i n  the  neighborhood of  F 

Remark 2. If ( 6 .  l a )  f u l  f i  11s (6. lb)  and not  a l l  of 

0 0 0  Jli(N1,N2,N3,~) # 0,  i = 1 ,2 ,3 ,  then a l l  t h e  per turbed e q u i l i b r i a  of  

0 
( 6 , l a )  e x i s t  i n  t h e  neighborhood of F . 

Taking i n t o  considera t ion the  r e s u l t s  i n  Cases I ,  11, and 111, 

and the  Remarks 1 and 2, we have e s t a b l i s h e d  the  following theorem. 



THEOREM 6 

I f  the rank of the Jacobian matrix o f  the unperturbed three 

dimensional Kolmogorov model i s  n = 2 ,  1,or 0 ,  and the conditions 

(6.12) and (6.16) are sa t i s f i ed ,  then the multiple equilibriwn of the 

unperturbed model bifurcates i n t o  a t  leas t  2 or a t  most Zm simple 

equi l ibria of the corresponding perturbed model, where m = 1 for 

n = 2 ,  m = 2 for n = I ,  and m = 3, for n = 0 . Further, e i ther  

a l l  the perturbed equi l ibria e x i s t  i n  the neighborhood of the un- 

perturbed equilibrium or one of the perturbed equi l ibria coincides . 

with the unperturbed equilibrium and the r e s t  of the perturbed 

equ<libria e x i s t  i n  the neighborhood of the unperturbed equilibrium. 

6.3 NATURE AND STABILITY OF THE PERTURBED EQUILIBRIA 

* 
The nature  and s t a b i l i t y  of the  e q u i l i b r i a  F of the  perturbed 

system (6.1) depends on the  va r i a t i ona l  matrix of  (6.1). To f i nd  t he  

var ia t iona l  matrix o f  (6. I ) ,  we l i nea r i ze  the perturbed system (6.1) by 

using the  transformations 

0 such t h a t  ~f (0) = Ni , i = 1,2,3. Subs t i tu t ing  (6.55) i n t o  (6.1) and 

using Taylor s e r i e s  expansion f o r  

we obta in  



where P?(E)  represents  the  higher  order terms of E involving the 
1 

nonlinear terms of (6. I ) ,  and i s  given by 

and 

with 

where FiN i s  given by (6.6) . 
j 

The va r i a t i ona l  matrix o f  (6 .56) at t he  perturbed equil ibrium 

point ,  up t o  the order o f  E , is  

such t h a t  



where 

and 

The p a r t i a l  der ivat ives  of Fi i n  (6.61) are  given by (6.15) . The 

assumptions (6.12) and (6.7) guarantee t h a t  

which ensures t ha t  we a re  dealing with the  nonc r i t i c a l  case of the  

perturbed model (6.1) corresponding t o  the  c r i t i c a l  case of the un- 

perturbed model (6.2) . 

The c h a r a c t e r i s t i c  equation of (6.58), up t o  t he  order of E , 

is 

where 



It  i s  assumed t h a t  s3 # 0. If s3 = 0, then higher  order terms of E 

neglected i n  (6.63) are required t o  resolve the  s i t ua t i on .  We do not  

consider t h i s  case. For E = 0, t h e  equation (6.63) reduces t o  

which is the  c h a r a c t e r i s t i c  equation of (6.59). Equation (6.65) has 

a t  l e a s t  one zero root .  The number o f  zero roots  of  (6.65) depends on 

t he  rank of the  va r i a t i ona l  matrix A given by (6.59) . The cubi c 

equation (6.65) has one, two, o r  three  zero roots  provided t he  rank of 

A i s  two, one, o r  zero respect ively .  The condition (6.62) ensures 

t ha t  the  cha rac t e r i s t i c  equation (6.63) does not have any zero root.  



Moreover, t he  roots  of the c h a r a c t e r i s t i c  equation of a perturbed system 

are ,  i n  general ,  assumed t o  be d i s t i n c t .  Hence, the  va r i a t i ona l  matrix 

of the  perturbed model (6.1) has three  d i s t i n c t  eigenvalues and thus 

three  l i nea r ly  independent eigenvectors corresponding t o  these  eigen- 

values. Therefore, t he  nature and s t a b i l i t y  of  the  perturbed equ i l -  

i b r i a  F* can be determined by the types and s igns  of roots  of  the  

character is  t i c  equation (6.63) of the  perturbed sys tem (6.1) . Further, 

f o r  E = 0, t he  equation (6.63) reduces t o  (6.65) , and we say t ha t  the 

c h a r a c t e r i s t i c  equation (6.65) of the  unperturbed system (6.2) generates 

the  c h a r a c t e r i s t i c  equation (6.63) of t h e  perturbed system (6.1) . 
Therefore, the  roots  of (6.65) generate t h e  roots  of (6.63). 

Dis t inct  roots  of  the  c h r a c t e r i s t i c  equation (6.65) of the  un- 

perturbed system (6.2) can generate only d i s t i n c t  roots  of the 

c h a r a c t e r i s t i c  q u a t i o n  @.63j of  the  perturbed system (6. i) . However, 

i n  general ,  repeated roots  of  (6.65) generate d i s t i n c t  roots  o f  (6.63) 

and imaginary roots  of (6.65) generate complex roots of (6.63) . To 

f a c i l i t a t e  the  study of  these cases we introduce the  following 

nota t ions  : 



where r and s , i = 1,2, j = 1 ,2 ,3 ,  a r e  given by (6.64). Also, 
i j 

we use some small  values vi(c) , i = 1,2,3,  such t h a t  vi (0) = 0.  These 

small  values may vary but  vl # v2 # v3 . 

We now provide parameter condit ions f o r  a l l  poss ib le  types of  

d i s t i n c t  roots  of the  c h a r a c t e r i s t i c  equation (6.63) and examine the 

character  ( i . e . ,  t h e  nature  o f  the phase p o r t r a i t  and t he  s t a b i l i t y  

o r  i n s t a b i l i t y  property) o f  the  perturbed e q u i l i b r i a  corresponding t o  

these  roo t s .  We discuss a l l  poss ible  cases according t o  the rank o f  A 

given by (6.5 9) . 

CASE a . VariationaZ Matrix A has R m k  2 . 
In  t h i s  case equation (6.65) has one zero root .  Thus, we have four  

p o s s i b i l i t i e s :  one zero and two d i s t i n c t  r e a l  roo t s ,  one zero and two 

coniplex (with nonzero real p a r t s j  roo t s ,  one zero and two repeated r e a l  

roo t s ,  and one zero and two imaginary roo t s .  

Sub-Case al : One Zero and Two Dis t inc t  Real Roots. 

One zero and two d i s t i n c t  r e a l  roo t s  0 and Ei ,  i = 2 , 3 ,  of 

(6.65) s a t i s f y i n g  D < 0 , can generate only th ree  d i s t i n c t  r e a l  roots  

v l ,  E2 + v2,  and E3. + v3 of (6.63). The perturbed equil ibrium F* 

has t he  following character .  

( i )  I f  rl > 0,  s > 0 ,  and H > 0 ,  then v1 < 0 and 3 

Ei < 0' i = 2,3; and F* i s  an asymptotical ly s t a b l e  th ree  

branched node. 



( i i )  If s3 < 0 and H > 0 , then vl > 0 and 

' i < 0,  i = 2,3; and F* i s  a th ree  branched saddle node 

with s t a b l e  two branched plane node. 

( i i i )  I f  s < O  and H < O , t h e n  v < O  and 5 > 0 ,  
3 1 i 

i = 2,3; and F* i s  a th ree  branched saddle node with 

unstable two branched plane node. 

( iv)  If r1 < 0,  s3  < 0, and H < 0,  then v1 > 0 and Ei > 0 , 

i = 2,3; and F* i s  an unstable three  branched node. 

Sub-case 012 : One Zero and Two Complex Roots. 

One zero and two complex roots  0 and 5 2 i n ,  5 # 0 of (6.65) 

s a t i s f y i n g  D > 0 and r # 0,  can generate only one r e a l  and two 1 

camplex roots  v and 5 + v2 ;t i ( q  + v3) of  (6.63). The p e r t u r b e d .  
1 

* 
equil ibrium F has the  following character .  

- .  

(v) If r1 > 0,  s > 0,  and H > 0,  then v1 < 0 and 5 < 0 ; 3 

and F* i s  an asymptotical ly s t a b l e  pointed s p i r a l .  

(v i )  IE s3 < 0 and H > 0,  then v1 > 0 and 5 < 0 ; and F* 

i s  a saddle s p i r a l  with s t a b l e  plane focus. 

( v i i )  If s 3 >  0 and H < 0,then v1 < 0 and E >  0 ; and F* 

i s  a saddle s p i r a l  with unstable plane focus. 

( v i i i )  I f  r1 < 0, s < 0, and H < 0,  then vl > 0 and 5 > 0 ; 3 

and F* is  an unstable pointed s p i r a l .  

Sub-case as : One Zero and Two Repeated Real Roots. 

One zero and two repeated r e a l  roo t s  0 ,  C 2 ,  and E2 of (6.65) 
.. - 

s a t i s f y i n g  D = 0 ,  rl # 0, and r # 0 can generate:  2 



(a) Three d i s t i n c t  r e a l  roots  v l ,  E2 + v 2 ,  and c2 + v o f  3 

(6.63) i f  D* < 0 . Then F* has s i m i l a r  charac te r  as  

(b) One r e a l  and two complex roo t s  v and C2 t i v 2  of (6.63) 1 

i f  D* > 0 . Then F* has s i m i l a r  character  as  F* i n  

Nota. Double nonzero roo t s  of  (6.65), depending on higher  order  

terms of E neglected  i n  (6.63) ,may o r  may not  generate double non-zero 

roo t s  of  (6.63) if D* = 0. We do not  t r e a t  it. 

Sub-Case 014 . One Zero and Two Imaginary Roots. 

One zero and two imaginary roo t s  0 and t i n  o f  (6.65) s a t i s f y i n g  

D > 0 and rl = 0 generate one r e a l  and two complex roo t s  v and 1 

v2 t i ( n  + v3) of (6.63) i f  H* # 0. The charac te r  of  F* i s  s t a t e d  below: 

( ix)  I f  s > 0,  s 3 >  0 ,  and H* > 0, then v < 0, i = 1,2; and 
1 i 

* 
F is  an asymptotical ly s t a b l e  b lun t  s p i r a l  when v1 > v2 

and pointed  s p i r a l  when vl  < v 
2 *  

(x) I f  s3 < 0 and H* > 0,  then vl  > 0 and v2 < 0; and F* 

i s  a saddle  s p i r a l  with s t a b l e  plane focus.  

(x i )  I f  s3 > 0 and H* < 0, then v1 < 0 and v2 > 0 ; and F* 

i s  a saddle s p i r a l  with uns table  plane focus. 

( x i i )  I f  s1 < 0, s < 0 ,  and H* < 0,  then v > 0, i = 1,2; and 3 i 

F* i s  an unstable b lunt  s p i r a l  when vl  > v2 and pointed  

s p i r a l  when v l  < v2 . 



Note. If H* = 0 ,  imaginary roots  o f  (6.65), depending on higher  

order terms of E neglected i n  (6.63), may o r  may not generate imaginary 

roots  of  (6.63) . We do not consider t h i s  case. 

CASE 8 . VariationaZ Matrix A has rank I . 

I n  t h i s  case equation (6.65) has two zero roo t s .  Hence, we have 

only one p o s s i b i l i t y :  one nonzero r e a l  and two zero roo t s .  

One nonzero r e a l  and two zero roots  El ,  0 ,  and 0 of (6.65) 

s a t i s f y i n g  rl # 0 and r2 = 0 can generate: 

(.c) Three d i s t i n c t  nonzero r e a l  roots  E l  + V1, V 2 ,  and v3 of 

(6.63) i f  D* < 0 . Then F* has s im i l a r  character  as F* 

i n  Sub-case z provided r2 is  replaced by s , H by 
1 

* 
F! c2 by v a d  F by v 2 ' '3 3 ' 

(.d) One nonzero r e a l  and two complex roo t s  with nonzero r e a l  

p a r t s  + v1 and v2 t i v  i f  D* > 0 and H* # 0 . 3 
* 

Then  as s imi l a r  character  as F i n  (v i )  and ( v i i )  

of Sub-case ag provided H i s  replaced by H* , vl by El ,  

and 5 by v2 . Also, F* has the following character :  

( x i i i )  If r1 > 0, s > 0, and H* > 0, then < 0 and v2 < 0; 3 

and F* i s  an asymptotical ly s t a b l e  b lunt  s p i r a l .  

(xiv) If r p 0 ,  s < 0 ,  and H * < O ,  then E 1 > O  and v > O ;  3 2 

and F* i s  an unstable b lunt  s p i r a l .  

Note. Double zero roots  o f  (6.65), depending on higher  order  terms 

of E neglected i n  (6.63),may o r  may no t  generate double nonzero r e a l  roo t s  

o f  (6.63) provided D* = 0 and Q* # 0. We do n o t  t r e a t  t h i s  p o s s i b i l i t y .  



CASE y . Variational Matrix A has Rank 0 . 
e .. 

I n  t h i s  case equation (6.65) has th ree  zero  roo t s .  This occurs 

when r = r  = O .  We observe t h a t  r = r  = O  implies D = D * = ~ .  
1 2 1 2  

Hence, th ree  zero roots  o f  (6.65) can generate only one nonzero r e a l  

- and two complex (with nonzero r e a l  pa r t s )  roots  v and v2 t i v  of  1 3 

(6.63) . Here t h e  equil ibrium F* has the  following character :  

* 
(xv) I f  s 3 <  0, then v l >  0 and v < 0 ;  and F is  a s a d d l e  2 

s p i r a l  with s t a b l e  plane focus.  

(xvi) If s3 > 0,  then v1 < 0 and v2 > 0; and F* i s  a 

saddle s p i r a l  with unstable plane focus. 

Note. Tr ip l e  zero roo t s  of  (6.65), depending on higher  order  terms 

of  E neglected i n  (6.63) , may o r  may not  generate nonzero double roots  

of  (6.63) i f  Q* # 0,  or nonzero t r i p l e  roots  of  (6.63) i f  Q* = R* = 0. 

We do not  consider these  cases. Further,  we observe t h a t  t r i p l e  zero  

roo t s  can no t  generate three  d i s t i n c t  nonzero r e a l  roots .  

On the  ba s i s  of  the  r e s u l t s  obtained i n  Cases a, 8 ,  and y , we 

e s t ab l i sh  the following theorem. 

Multiple equi l ibria o f  the unperturbed system ( 6 . 2 ) ,  for small 

posit ive E . generate A-type hyperbolic equi l ibria of the perturbed 

system (6 .1)  e i ther  automatically o r  provided D* # 0 and/or H* # 0 . 
Under the influence o f  small perturbation, the nature o f  the multiple 



unperturbed equi Zibriwn always changes 

91. 

whi Ze the  s t a b i  Zi ty  property 

changes only i f  r > 0 o r  r = 0, s  > 0; r > 0 or  r = 0, 
1 1 1 2 2 

s Z >  0; and s 3 >  0 .  



CHAPTER 7 

EXAMPLES AND NUMERICAL SOLUI'IDNS 

In t h i s  chapter we present two examples and numerical so lu t ions  

of one of the  examples. 

7.1 QUALITATIVE BEHAVIORS OF TWO PERTURBED FOOD- CHAIN MODELS 

In  t h i s  sec t ion  we give two examples o f  population models involving 

b i fu rca t ions  which are spec i a l  cases of the general m d e l  (6.1) . 

~ x a m p k  1. In order t o  i l l u s t r a t e  a r e s u l t  of Theorem 6 i n  which 

one o f  the perturbed e q u i l i b r i a  coincides with the  unperturbed equ i l -  

ibrium, we consider the  f o l  lowing perturbed three  dimensional simple food 

chain. 

I n  t h i s  th ree  species food chain, N3 e a t s  N2,  and N2 e a t s  N1 ; and 

hence N1 i s  the prey, N2 the  first predator ,  and N3 the second 

predator.  The per tarbat ion terms, i . e . ,  the  coef f ic ien t s  of E , with 

E << 1 , ind ica te  weaker types of i n t e r ac t i ons  between the  populations 

Ni and N , and contribute l i t t l e  t o  the  growth r a t e  of Ni, 
j 

i , j  = 1,2,3  , o f  the  unperturbed system of (7.1).  



The unperturbed system o f  (7.1) has a double equil ibrium 

~ ~ ( 1 , 1 , 2 ) .  We observe t h a t  a l l  the  per tu rba t iona l  terms i n  (7.1) 

vanish a t  the  unperturbed equil ibrium point  (1,1,2) . The perturbed 

e q u i l i b r i a  of (7.1) a re  ~ * ~ ( 1 , 1 , 2 )  and ~*'(1 - E ?  1, 1 - 4 ~ ) .  

The va r i a t i ona l  matrices f o r  t he  perturbed system ( 7 -  1) a t  t he  

equil ibrium points  F * ~  and F * ~  a r e  respect ively  

We observe t h a t  t he  conditions (6.7) , (6.12) , and (6.16) are f u l f i l l e d .  

The va r i a t i ona l  matr ix  f o r  the  unperturbed system of (7.1) has rank 

two thus we a re  i n  Case I. Further,  the  system (7.1) s a t i s f i e s  

the conditions (6.24) , (6.25) , and (6.28) , and the  Remark 1 of Section 

6.2. Hence, the  r e s u l t  t h a t  the  mult iple unperturbed equil ibrium F0 

b i fu rca tes  i n t o  two simple perturbed e q u i l i b r i a  F*' and F * ~  , and 

one of  the perturbed equ i l i b r i a ,  here F * ~ ,  coincides with the  

unperturbed equil ibrium F0 is  i n  agreement with Theorem 6.  

The c h a r a c t e r i s t i c  equations f o r  A*' and A*' of (7.2),  up t o  

the  order of c , a r e  respect ively  

and 



3 2 + E X  + 5 X + g & = O .  

Comparing (7.3)  with (6 .63)  we f ind  t h a t  

Using these values i n  (6 .66)  we obtain  

and thus we are  i n  (xi) of Sub-Case a4 . Hence, t h e  perturbed equil ibrium 

F*' i s  a saddle s p i r a l  with unstable plane focus. Comparing (7.4) 

with (6.63). we have 

Then from (6 .66)  we obtain 

* 
D = 125/27, H = 0, H = -4 , 

and thus we are  i n  (xi) of Sub-Case a4 . Here the  perturbed equil ibrium 

F*' i s  a saddle s p i r a l  with unstable plane focus. These r e s u l t s  are i n  

complete agreement with Theorem 7, 



ExampZe 2. To i l l u s t r a t e  a case of  Theorem 6 where a l l  the  

perturbed e q u i l i b r i a  e x i s t  i n  the  neighborhood of the  mult iple un- 

perturbed equi l i b  rim, we study the following perturbed population model 

me 

the  

has 

model (7-5) has the  same in t e rp re t a t i on  as t he  model (7.1) . Further, 

unperturbed p a r t  of (7.5) is  the  same as t ha t  of (7.1) , and thus 

the double equil ibrium ~ ' (1 ,1 ,2 )  . We note t h a t  t he  per tu rba t iona l  . 

term zssociated with the  f i r s t  and t h e  t h i r d  equations do not vanish 
- .  

a t  the  unperturbed equil ibrium poin t  (1,1,2) . The perturbed e q u i l i b r i a  

of (7.5) are ~*'(1-(3+1/5)~,  1-E, 2-(12+4&)~)  and 

~ * ~ ( 1 - ( 3 - 6 ) & ,  1-E, 2 - ( 1 2 - 4 a ) ~ ) .  

The va r i a t i ona l  matrices f o r  t he  perturbed system ( 7 . 5 )  a t  t he  

equil ibrium poin t s  F*' and F** are  respec t ive ly  

We note t ha t  t h e  conditions (6.7),  (6.12) , and (6.16) are  f u l f i l l e d  

and we are i n  Case I .  The system (7,s)  a l s o  s a t i s f i e s  t he  conditions 

~- - 



(6.24), (6.25), and (6.28), and the  Remark 2 of Section 6.2. Hence, 

t h e  r e s u l t  t h a t  F0 b i fu rca tes  i n t o  F*l and F * ~  ; and F * ~  and 

F * ~  e x i s t  i n  the  neighborhood of F0 is  consis tent  with Theorem 6 .  

The c h a r a c t e r i s t i c  equations f o r  A * ~  and of (7.6) ,  up 

t o  the order of E , a r e  respect ively  

and 

Comparing (7.7) with (6.6 3) we f i n d  t h a t  

r = 0, r = 5 ,  s = -8, s2 = -25 - 1 0 6 ,  s3 = 2 f i .  
1 2 1 

Using these  values i n  (6.66) we have 

and thus we are i n  (x i )  of  Sub-Case u4 . Hence, the  perturbed equ i l -  

ibrium F * ~  is  a saddle s p i r a l  with unstable plane focus. 

Comparing (-7.8) with (6.63) we get  



S u b s t i t u t i n g  these  values i n  (6.66) we o b t a i n  
. .. 

and thus we a re  i n  ( x i i )  of  Sub-Case ci4 . The cubic equation has 

one r e a l  and two complex roo t s ,  where the  r e a l  p a r t  of t h e  complex root  

is g r e a t e r  than t h e  r e a l  m o t .  Hence, t h e  per turbed equi l ibr ium F * ~  

i s  an unstable  pointed  s p i r a l .  The above r e s u l t s  are i n  agreement with 

Theorem 7. 

7.2 NUMERICAL SOLUTIONS OF A PERTURBED FOOD CHAIN 

In  t h i s  s e c t i o n  we present  various numerical so lu t ions  of the 

system of ordinary d i f f e r e n t i a l  equations (7.5) f o r  d i f f e r e n t  values 

of E . Each value of  E is  t r e a t e d  i n  a  separa te  case. In each 

case the  system of equations ( 1 . 5 )  has been i n t e g r a t e d  f o r  various . 

times. These computer so lu t ions  a r e  presented as a guide t o  t h e  

ana lys i s  and as some measure of y e r i f i c a t i o n  of the  r e s u l t s  obtained i n  

Example 2  of Section 7 . 1 .  

Many d i f f e r e n t  runs using v a r i e t y  of i n i t i a l  values a re  made. We 

note t h a t  f o r  a r b i t r a r y  s e l e c t e d  i n i t i a l  condit ions i n  t h e  ~ i c i n i t y  of 

0  the  double equi l ibr ium F (1,1,2) ,  the  behavior of so lu t ions  o f  (7.5) 

f o r  d i f f e r e n t  values of E remains i d e n t i c a l .  By using a  computer we 

f i n d  the  so lu t ions  of  (7.5). f o r  E = 0 ,  -05,  -10,  and .15 with the 

i n i t i a l  values N1(0) = 1.0,  N2(0) = 1.1, and N3(0) = 2.1 wi th in  the  

time range 0  t o  10 which i s  divided i n t o  50 equal  i n t e r v a l s ;  and 

then draw the  diagrams f o r  these  s o l u t i o n s .  



Table 1 (see Page 110 ) represents the  solut ions  fo r  the  system 

of equations (7.5)when E = 0. Here we f i n d  t h a t  a l l  three  populations 

o s c i l l a t e  i n  t h e  neighborhood of the equil ibrium FO . Figure 15 

represents the  diagram f o r  Table 1. I n  t h i s  case the o r b i t  is s o  

near  t o  a closed curve t h a t  on Figure 15 it  looks l i k e  closed. 

Tables 2, 3, and 4 (see Pages 111, and 112) represent the  

solut ions  f o r  t h e  system (7.5) when E = . 05 , . l o ,  and . 15 respect ively .  

From these t ab l e s  we not ice  t h a t  as the  value of  t he  small parameter E 

increases,  t he  populations N2 and N3 exh ib i t  increased o sc i l l a t i ons  

while the  population N1 goes away from FO . Figures 16, 17, and 18 

which por t ray the  graphs f o r  Tables 2, 3, and 4 respect ively  represent 

unstable pointed s p i r a l s .  These f igures  exh ib i t  t ha t  the  solut ions  f o r  

N2 and N3 are  almost per iod ic  while N1 s p i r a l s  away from F' . 
On comparison, i t  i s  found t h a t  the  behavior of the  solut ions  

obtained numerically is  consis tent  with the behavior of the  so lu t ion  

obtained qua l i t a t i ve ly  close t o  the  equil ibrium F*' (yhich i s  an 

unstable pointed s p i r a l )  of Example 2 i n  Section 7.1. 



CONCLUSION 

In t h i s  t he s i s  we have considered a system o f  three  autonomous 

nonlinear ordinary d i f f e r e n t i a l  equations of  the  Kolmogorov- type in -  

volving small per turbat ion.  Su f f i c i en t  conditions f o r  the  existence 

of simple perturbed e q u i l i b r i a  i n  the  neighborhood of the  simple and 

multiple unperturbed e q u i l i b r i a  of the  t h r ee  dimensional Kolmogorov 

model have been derived. The nature and s t a b i l i t y  of the  simple un- 

perturbed as well  as the perturbed e q u i l i b r i a  have been inves t iga ted  

qua l i t a t i ve ly  i n  the  three  dimensional phase space. We have a l so  

examined the  b i fu rca t ions  of  a mult iple unperturbed equil ibrium i n t o  

simple perturbed equ i l i b r i a .  I n  order t o  i l l u s t r a t e  the  theory, the  

qua l i t a t i ve  behaviors of the  e q u i l i b r i a  of some unperturbed three  

dimensional population models have been compared t o  those of the  

perturbed models. I t  has been shown t h a t  small per turbat ion has an 

s t a b i l i z i n g  o r  a des tab i l i z ing  influence i n  the nonc r i t i c a l  case and 

a' branching e f f e c t  i n  the  c r i t i c a l  case. 

A model i n  population dynamics, l i k e  many physical  and engineering 

models, represents an i dea l i z a t i on  and s impl i f i ca t ion  of a r e a l  

s i t ua t i on .  Besides, i t  involves parameters which cannot be measured 

exact ly .  A l l  t h i s  gives g r ea t e r  c r e d i b i l i t y  t o  models with ce r t a in  

q u a l i t a t i v e  p roper t i es  t h a t  do not change under the influence of small  

per turbat ions .  One such important property (perhaps the  most important) 

is  the  hyperbolic nature  of an equil ibrium poin t .  

According t o  Theorems 2-4 i t  is enough t o  e s t ab l i sh  t h a t  the  un- 

perturbed system (4.1) has a hyperbolic equil ibrium E O  . I t  w i l l  



p e r s i s t  under t he  influence of small  per turbat ions .  Hence, we do not 

need t o  study the  nature of the equil ibrium E* of the  perturbed 

system (5.1). Example 1 i n  Section 5 .3  (Hausrath [33]) i s  an exce l len t  

i l l u s t r a t i o n  i n  support of  the  useful lness  of Theorem 3. Further, i n  

Theorem 5, conditions have been presented under which a simple non- 

hyperbolic equil ibrium E0 o f  the  unperturbed model generates a hyper- 

b o l i c  equil ibrium E* of  t he  perturbed model. E0 and E* may o r  may 

not have the  same s t a b i l i t y  o r  i n s t a b i l i t y  property.  This theorem has 

not only mathematical i n t e r e s t ,  i t s  physical  and b io log ica l  i n t e r -  

p re ta t ion  i s  t h a t  a system having a nonhyperbolic equil ibrium i s  too 

f r a g i l e  and i t s  relevance as a su i t ab l e  model of  a r e a l  s i t u a t i o n  may be 

questioned. 

Theorem 6 gives the c r i t e r i a  f o r  t he  exis tence of simple equ i l -  

i b r i a  F* of  the  perturbed system (6. i j  i n  the  neighborhood of a 

multiple equil ibrium F0 of t he  unperturbed system (6.2) . The multiple 

equil ibrium F0 is always unstable and does not  p e r s i s t  under small 

per turbat ion.  Hence,we need t o  examine the  nature and s t a b i l i t y  of 

the  perturbed e q u i l i b r i a  F* . I n  Theorem it has been shown t h a t  

the  number of simple perturbed e q u i l i b r i a  F* depends on the  number 

of mu l t i p l i c i t y  of the  unperturbed equi l ibr ium FO and e i t h e r  a l l  

t he  perturbed e q u i l i b r i a  e x i s t  i n  the  neighborhood of the  unperturbed 

equil ibrium o r  one of the perturbed e q u i l i b r i a  coincides with 

perturbed equil ibrium and the  r e s t  l i e  i n  the  neighborhood of 

unperturbed equilibrium. Su f f i c i en t  conditions under which a 

equil ibrium of the  unperturbed system generates A-type simple 

the un- 

the  

mult iple 

e q u i l i b r i a  



of the perturbed system and under which the  s t a b i l i t y  property of  t he  

multiple equil ibrium changes are  presented i n  Theorem 8. 

A nonlinear study of the perturbed three  dimensional Kolmogorov 

model reveals the  existence of asymptotically s t ab l e  equil ibrium 

solut ions  along with unstable equil ibrium so lu t ions  and b i fu rca t ion  

solut ions .  Biologically,  the  r e s u l t  i s  i n t e r e s t i n g  as a descr ipt ion 

of the complexities t ha t  non l inear i t i es  can introduce even i n t o  the  

simplest  equations of population dynamics. Mathematically, the  model 

i l l u s t r a t e s  some a rb i t r a ry  dynamical behaviors f o r  three  dimensional 

nonlinear sys terns. 

The present  work allows fu r the r  inves t iga t ions  . One immediate 

extension of the  work i s  the study of  t he  existence and bifurcat ion 

of per iod ic  solut ions  i n  the  th ree  dimensional Kolmogorov model with 

small per turbat ion.  Further, we note t h a t  we have invest igated the  - .  

'time-independent three  dimensional Kolmogorov mode 1 with small 

per turbat ion.  Hence, a p a r a l l e l  problem dealing with the qua l i t a t i ve  

analysis  of  the  time-dependent th ree  dimensional Kolmogorov model 

with o r  without per turbat ion can be explored. The so lu t ion  of the  

problem is  expected t o  be more complicated than t h a t  presented here.  

Some sec t ions  of the  work presented i n  t h i s  t he s i s  have been 

summarized i n  journal  a r t i c l e s  [13-141. 
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