PERTURBATIONS AND BIFURCATIONS IN

THE THREE DIMENSIONAL KOLMOGOROV MODEL

Muhammad Abdus Sattar

B.Sc. (Honours), University of Rajshahi, 1965
M.Sc., University of Dacca, Bangladesh, 1966

M.S., University of Windsor, Canada, 1982

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
in the Department
of

Mathematics and Statistics

@ Muhammad Abdus Sattar, 1986
SIMON FRASER UNIVERSITY

Augus't 1986

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy
or other means, without permission of the author.



- Name:

Degree:

Title of Thesis:

APPROVAL

Muhammad Abdus Sattar
Doctor of Philosophy
Perturbations and Bifurcations in the Three

Dimensional Kolmogorov Model.

Examining Committee:

Chairman: Dr. A.R. Freedman

br. €.N. Bojadziev
Senior Supervisor

Dr. M. Singh

Dr. D.L. Sharma

Dr. G.A’C. Graham

Dr. H.I. Freedman
External Examiner
Professor :
Department of Mathematics
University of Alberta
Edmonton, Alberta

Date Approved: August 26, 1986

(ii)



PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend
my thesis, project or extended essay (the title of which is shown below)
to users of the Simon fraser University Library, and to make partial or
single copies only for such users or in response to a request from the
library of any other university, or other educational institutlion, on
its own behalf or for one of Its users. | further agree that permlission
for multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying
or publication of this work for financial gain shall not be allowed

without my written permission.

Title of Thesis/Project/Extended Essay
PURTURBAOTIONS SND BIFVRCHTIONS

Aufhor:

v—— > . |

{signature)

Mk orpincecd Sl Sndtar

(name)

Sopt sz, sofs

{date)




ABSTRACT

In this thesis we investigate the stabilizing and destabilizing
influence and branching effect of small perturbation on the equilibria
of a dynamical system of three nonlinear autonomous ordinary differential
equations of the Kolmogorov-type with small perturbation. .1t is assumed
that the unpérturbed system has at least one simple or multiple equil-
ibrium in the first octant and that the equilibria of the perturbed
system originating from the multiple equilibrium of the unperturbed system

are simple.

By using the qualitative theory and bifurcation theory of differential
equations, the nature and stability of the simple equilibria of the
unpeftﬁrbed as well as the perturbed systems are examined in the thrée
dimensional phase space. In order to illustrate the theory, the qualitative
behaviors of the equilibria of some three dimensional perturbed population

models are compared with those of the corresponding unperturbed models.

We have shown that, under the influence of small perturbation,
although the nature of the hyperbolic equilibria of the Kolmogorov
model may or may not change, the stability of the equilibria remains the
same, and both the nature ;nd stability of the simple nonhyperbolic
equilibria change. We have also proved that, if the Jacobian of the
unperturbed terms of the dynamical system is zero and that up to the
second degree perturbed terms is different from zero, then depending on
the rank of the Jacobian matrii of the unperturbed terms, the multiple
unperturbed equilibrium bifurcates into af least two or at most eight
branches of simple perturbed equilibria.
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INTRODUCTION

The mathematical investigation of a great number of physical and
biological problems leads naturally to the solutions of differential
equatidns - ordinary or partial, linear or nonlinear, autonomous or non-
autonomous, In this work we shall discuss problems that can be described
by a dynamical system of three ordinary nonlinear autonomous’differential
equations of the Kolmogorov-type. Dynamical systems corresponding to
physical and biological problems usually contain a certain number of
parameters. Our work will involve only one small positive parameter

representing perturbation in the dynamical system.

The purpose of this thesis is the study of the effect of small
perturbations on a ﬁonlinear system of three species interactions represented
by the three dimensional perturbed Kolmogorov model. The object of the
study is to investigate the behavior of solutions involving changes and
no changes in the nature and stability of the equilibrium of the Kolmogorov
model in both the cases when the parameter does not &ary and is varied.

This study is of mathematical significance and important for various
applications. Three dimensional dynamical systems of the Kolmogorov-type
‘are frequently used as examples in bifurcation theory, chaos, invariant
manifold theory, population dynamics, and some other branches of modern

applied mathematics.

In order to achieve our objective, we shall derive the criteria
for the existence of simple equilibria of the three dimensional perturbed

Kolmogorov model corresponding to the simple and multiple equilibria of



the unpertufbed model; study bifurcation of multiple unperturbed
equilibrium into simple perturbed equilibria; provide parameter conditions
for all possible types of simple eduilibria; examine the nature and
stability of the unperturbed as well as the perturbed simple equilibria
in the three dimensional phase space; and compare the qualitative
behaviors of the equilibria of the perturbed system with those of the

unperturbed system.



CHAPTER 1

THE SURVEY AND THE PROPOSAL

In this chapter I have done a survey of research works dealing
with the qualitative analyses of two and three dimensional Kolmogorov-type
models with and without perturbation. The important results of these
works have been summarized in brief. The last section of this chapter

contains the proposal for the dissertation.

1.1 TWO DIMENSIONAL KOLMOGOROV MODEL

In 1936, Kolmogorov [37] proposed a system of two equations

Ni = NiFi(Nl,Nz), i 1,2, (1.1

d/dt, as a model of predator-prey problems, where Nl and N, are

the number of prey and predator populations, -and Fl and F2 are two

given functions of Nl and N2 . Kolmogorov provided a set of sufficient
conditions, global in nature, for the existence of either a stable equili-

brium point or a stable limit cycle.

Utz and Waltman [59], and Waltman [60) examined the possibilities of
periodic solutions in certain 1ess general Kolmogorov-type models. Utz

and Waltman [59] considered

1 t
N1 = NlFl(Nz), N2 = NZFZ(NI) s (1.2)



to describe competition between two species, and by using the separability
of the phase plane equation, derived sufficient conditions for the exist-
ence of a limit cycle. The question of boundedness was considered and the
conditions that populations are bounded away from zero were given. Using
a bifurcation theorem of K.O. Friedrichs [29], Waltman [60] derived
sufficient conditions for the existence of periodic solutions of a system

of differential equations

! = ! =
N1 aNlFl(Nl,NZ), N2 NZFZ(Nl,NZ), (1.3)

used to describe competition between two species, where o 1is a parameter.

' in 1967, ﬁescigno and Richardson [56] re-investigated the system

(1.1). Besides Kolmogorov's conditions, they also provided global conditions
‘which in one case simulated competition and in another case symbiosis, and
analysé&ﬂthe behaviors of the solutions for both these cases. In 1972,
Brauer [15], and May [43] re-examined (1.1). Brauer used the system to des-
cribe a predator-prey relationship, and considered the behavior of solutions
near an equilibrium point and the approximate location of the nonlinear
equilibrium point. He concluded that it might not be possible to describe
the qualitative nature of the equilibrium points in more than two dimensions,
but it should be possible to find the approximate locations of the
equilibriumvpoints of the nonlinear system (1.1) and to determine whether
they are asymptotically stable. ‘On the basis of the results that essentially
all models that have been proposed for predator-prey systems are shown to
possess either a stable equilibrium point or a stable limit cycle, May [44]

noted that such a limit cycle provides a satisfactory explanation for those



species communities in which populations are observed to oscillate in a
rather reproducible periodic manner. 1In 1974, Albrecht et al [1] in-
vestigated the qualitative behavior of the solutions of (1.1) and proved
a theorem of Kolmogorov concerning prédator—prey interactions under

slightly different hypotheses.

The principle of competitive exclusion states that two species
competing for the same resources cannot co-exist stably in the same
habitat. But in 1972, from an experimental report, Ayala [9] showed that
two species of fruit fly do co-exist stably in unqualified competition.
On the basis of this result, Brauer [16], in 1974, concluded that the
mathematical model with linear growth rate cannot fully describe a

biological system. He then proposed a Kolmogorov-type competition model
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with nonlinear growth rates, and provided conditions for the existence

of an asymptotically stable equilibrium solution.

Following a suggestion of Samuelson [58], Freedman [24], in

1975, examined a two dimensional Kolmogorov model with perturbation
N. = N,F, (N.,N i = 1,2 1.5
i—ii 1:2:8): 1= 1,4, (')

for the existence of a perturbed equilibrium point for small positive ¢ .
He investigated the nature and stability of this equilibrium point both
for the non-critical and the critical cases. He also derived sufficient

conditions for the existence of periodic solutions. In the same year



Freedman and Waltman [26,27] considered a particular form of (1.5) des-
criﬂiﬁg a predator-prey interaction with perturbation, and provided local
conditions on the nonlinear functions guaranteeing the existence of
periodic solutions both in the cases‘of a perturbed equilibrium point
[26] and an unperturbed equilibrium point [27]. G. Bojadziev and

M. Bojadziev [12] have investigated a pafticular case of the model (1.5)

from the point of view of control and structural stability.

In 1976, Bulmer [18] considered (1.1) and derived criteria to
formulate a general predator-prey model, and discussed the conditions’
for the occurrence of limit cycles. He also investigated the effects of
random environmental fluctuations on a stable equilibrium and on a limit
cycle. In 1977, Rescigno [54] discussed the general properties of a
vKolmogorov-type model

1
N1 = NlFl(Nl,NZ), N2 = FZ(NI’NZ)’ (1.6)

describing a single species N, 1living in a limited environment in the

1
presence of its own pollutant Ny . In 1978, Hastings [32], re-studied
the unperturbed two dimensional Kolmogorov model (1.1) and provided
sufficient conditions for the global stability of the equilibrium. In

1981, Butler and Freedman [19] considered a Kolmogorov-type predator-prey

system with periodic coefficients, i.e.,

1,2, (1.7)

1]
N.1 = NiFi(t,Nl,Nz), i

with Fi(t+w,N1,N2) = Fi(t,Nl,Nz), i = 1,2, and provided conditions under



which periodic solutions exist. Then, they applied the results to a
predator-prey system with periodic éarrying capacity.
1.2  THREE DIMENSIONAL KOLMOGOROV MODEL

In 1968, Rescigno [52] extended Kolmogoroy's model to three

dimensions. He proposed a set of three equations

1 .
Ni = NiFi(Nl’NZ’NS)’ i 1,2,3, (1.8)
describing three species living in competition in the same environment.

He analysed some of the properties of the system (1.8), and in particular,
he found that, under certain conditions, the size of the populations can

oscillate.

In 1972, Rescigno and Jones [55] used the same modél (1.8) and dis;
cussed the hypothéses and properties of a three species predator-prey
chain. They also gave geometrical interpretations of the model (1.8).
They showed that only the populations of the first and second species in
the chain must necessarily oscillate around the point of equilibrium if
they do not come to the equilibrium. The other species may or may not

oscillate.

In 1977, Rescigno [53] re-examined his own model (1.8) and analysed
the properties of the system describing two predators competing for the
same prey. In particular, he found that, under certain conditions, both
predators can survive, with or without oscillations in the prey popul-

ations.



In 1984,’Freedman and Waltman [28] studied the unperturbed three
dimensional Kolmogorov model (1.8) describing a three level food web,
two competing predators feeding on a single prey, or a single predator
feeding on two competing prey; and provided conditions under which all
three populations persist. Bojadziev [11] has .considered perturbed
models in R2 and R3 describing the growth of a single population.
HausratH [33] examined a particular case of (1.8) representing a perturbed
three dimensional food chain and showed that the qualitative behavior of
solutions of an asymptotically stable system remains the same under the’

influence of small perturbation.

1.3 THE PROPOSAL

Extending the work of H.I. Freedman [24], we propose a perturbed
system of three nonlinear autonomous ordinary differential equations of

the Kolmogorov-type

1]

\ .
N, = N;F, (N[LN, N e), i=1,2,3, (1.9)

where € is a small positive parameter. For € = 0, the perturbed

system (1.9) reduces to the unperturbed system

1 .
Ni = NiFi(Nl,NZ,NS,O), i 1,2,3. (1.10)

By using the qualitative methods of ordinary differential equations we

analyse the nature and stability of the simple equilibria of the um-



perturbed system (1.10) as well as the perturbed system (1.9) in the

three dimensional phase space.

The model (1.9) and the basic assumptions are discussed in
Chapter 2. Some definitions and explanations of certain concepts are

also provided in this chapter.

Chapter 3 contains a short review of the qualitative theory and the

bifurcation theory of ordinary differential equations.

In Chapter 4, the nature and stability of a simple equilibrium of

the nonlinear unperturbed model (1.10) are investigated.

In Chapter 5, the simple equilibrium of the perturbed system (1.9)
originating from a simple equilibrium of the unperturbed system (1.10) is
analysed qualitatively in the phase space. The qualitative behaviors of
some particular perturbed population models are comparéd with those of

the unperturbed models.

Chapter 6 contains an analysis of bifurcation of a multiple umn-
perturbed equilibrium into simple perturbed equilibria. The nature and
stability of the simple perturbed equilibria are examined. Two perturbed

food chain models involving bifurcations are discussed.
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CHAPTER 2

THE MODEL AND THE PRELIMINARIES

In this chapter we discuss the model (1.9) and state some basic
assumptions and properties concerning the functions Fi and their
arugments Ni , 1 =1,2,3,and € . Also, we give some definitions and

explain certain concepts which are used in this thesis.

2.1 THE MODEL AND THE BASIC ASSUMPTIONS

We study qualitatively a system of three autonomous nonlinear

ordinary differential equations of the form

N; = N;F. (N;,Ny,Ng,e), i=1,2,3, (2.1)

d/dt, and € , which represents perturbation in the system

1]

where !
(2.1),is a small positive parameter. The set of evolution equations (2.1)
is called thé three dimensional perturbed Kolmogorov model or the
perturbed model. The unknown functions Ni(t) represent the size of

the ith species, and the given nonlinear functions of three real
variables Fi(Nl’NZ’N3’€) represent the specific growth rate of
populations Ni(t), i=1,2,3. We assume that the rate of increase or
decrease of the populations does not depend on time and that the
populations are so large as to be measurable with real numbers. We also

assume that the functions F.1 are defined and continuously differentiable



11.

for all nonnegative values of Ni , 1 =1,2,3, such that solutions for
initial-value problems of (2.1) with € = 0 exist. Further, it is
supposed that there exists at least one solution No(t) of (2.1) for
€ =0 in the first octant. We éonsider the problem of what solutions .
of (2.1) exist for small pbsitive values of the parameter € . In doing
so, we shall consider the solutions of (2.1) for € # 0 which have

initial conditions close to those of No(t)°

n

For € =0 , the system (2.1) becomes

1,2,3, (2.2)

=z
n

[
i}

e

NiFi(Nl’NZ,NS’O)’

which is called the three dimensional unperturbed Kolmogorov model or the
unperturbed model. The properties and assumptions which are valid for

N. and F, , i=1,2,3, of the perturbed model (2.1) are also true for

zZ
8
[« %
i
[ 5
[
]

1,2,3, of the unperturbed model (2.2).

2.2 SOME CONCEPTS AND DEFINITIONS

In order to explain certain concepts and state some definitions,
we consider the following system of three autonomous nonlinear ordinary
differential equations of the Kolmogorov-type
i=12,3 ' (2.3)

14
2; = 2;5(20,25.29),

where fi » 1 =1,2,3, are analytic in a domain G of R3 . A system of

autonomous ordinary differential equations is called-a dynamical system.
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The system (2.3) is called the three dimensional dynamical system of the

Kolmogorov-type.

2.2.1 Phase Space and Phase Portrait

The solutions of (2.3) can be represented by surfaces in the
(21,22,23)-space. This three dimensional Euclidean space is called the
phase space or the three dimensional state space. The solution surface
passing through a certain initial point in G is known as the integral
surface of (2.3). The phase space diagram represented by the family of
integral surfaces is called the phase portrait or topological structure

of the dynamical system (2.3).

2.2.2 Equilibrium Point

In the theory of autonomous ordinary differential equations, an
important part is played by equilibrium points. The points for which all
the right hand sides of the autonomous system of differential equations
equal zeTo are called equilibriun points or eduilibrﬁa. The equilibrium
points are treated by the qualitative theory of differential equations.
They enable us to assess qualitatively, under certain conditions, the
shape of the integral surfaces in the neighborhood of the equilibrium
point.

£ 2%(23,20,29) € G is such that

0.0 .0, _ . J
£.(2,,2,5,25) =0, i=1,2,3, (2.4)
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then z° is called an equi librium point or equilibrium of the system
(2.3). The multiplicity of the equilibrium point is defined as the
multiplicity of the intersection point ZO of the three surfaces in
(2.4). An equilibrium point of multiplicity one is called a simple

equilibrium and an equilibrium poiﬁt of multiplicity greater than one

is called a multiple equilibrium.

The matrix

g = ;—j (2),29,29] » 1,5 = 1,2,5, (2.5)
is called the Jacobian matrix of (2.4). 1If det.jO # 0, the system (2.4)
has simple solutions and therefore the equilibrium ZO is called an
isolated equilibrium or simple equilibrium of (2.3). 'This means that
there exists a neighborhood of Z0 such that the only equilibrium point
of (2.3) in that neighborhood is z® . On the other hand, if det i = 0,
the system (2.4) has multiple solutions, and then Z0 is called a
degenerate equilibrium or multiple equilibrium of (2.3). This means

that there exists more than one solution of (2.4) at ZO .

If all the eigenvalues of the matrix (2.5) have nonzero real parts,
then the equilibrium 70 is called a hyperbolic equilibrium, while if
at least one of the eigenvalues of (2.5) has a zero real part, then ZO

is called a nonhyperbolic equilibrium.

By the nature of an equilibrium we mean the local phase portrait
or the local topological structure represented by the equilibrium in

the phase space, and by the character of an equilibrium we mean both the
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nature and the stability or instability property of the concerned

equilibrium in the phase space.

The equilibrium points of the perturbed system (2.1), given by

the solutions of
Fi(Nl’NZ’NS’e) =0, i=1,2,3, (2.6).

are called perturbed equilibrium points or perturbed equilibria. The
equilibria of the unperturbed system (2.2), obtained by solving the

system of equations
Fi(Nl,NZ,NS,O) = O, 1= 1,2’3’ (»2‘7)

are known as unperturbed equilibrium points or wnperturbed equilibria.

Equilibrium points representing the rest positions of the species
of a physical system are an important class of solutions of the associated
system. These are also referred to as equilibrium solutions of autonomous
systems. The equilibrium points of a linearized system are also called
trivial points and hence the equilibrium solution of a linearized system
is known as the trivial solution. Bifurcating solutions are equilibrium

solutions which form intersecting branches in a suitable state space.

2.2.53 Linearization

Linearization is an invariant operation, i.e., an operation which

is independent of the coordinate system. Therefore, studying a neighbor-
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hood of an equilibrium point means studying how the process evolves when

its initial conditions deviate slightly from their equilibrium values.

To investigate a dynamical system in a neighborhood of an equil-
ibrium- Z0 , i1t is natural to make a Taylor series expansion of the
system in the giveh neighborhood. The first term of the Taylor series
is linear, and the process of dropping the remaining terms is called
linearization. The linearized system can be regarded as an example
of a system with an equilibrium Z° . On the other hand, it might be -
expected that the behavior of the nonlinear system is close to that of
the linear system, since small quantities of higher order are dropped
in making the linearization. Of course, the problem of relation between
the solutions of the original system and those}of the linearized system
requires special investigation. The linearizations commonly practiced
are approximating devices that are good enough for most purposes. There
are, however, also certain cases in which linear treatments may not be

applicable at all.

2.2.4 Variational Matrix

The matrix

A 0.0 .0
A= Zl SZ_J' (Zl,ZZ’ZS) ) 1,] = 1,2,3, (2-8)

evaluated at the equilibrium 2% is called the variational matrix for
the linearized part of (2.3). The variational matrix for higher degree

terms of (2.3) can similarly be constructed by evaluating higher order
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partials at ZO . The variational matrix of a dynamical system, its
eigenvalues, and the corresponding eigenvectors play an important part

in the investigation of the topologigal structure and stability of an
equilibrium of the associated system. The noneritical case of the
system (2.3) corresponds to the condition det A # 0 and ensures the
existence of a simple equilibrium for (2.3). On the other hand, the
eritical case of the system (2.3), corresponding to the condition

det A = 0, implies the existence of a multiple equilibrium for the system

(2.3).

2.2.5 Jordan Canonical Form

The Jordan canonical form of a square matrix has a major role in
the qualitative analysis of an equilibrium of a dynamical system. The
dimension of the solution space of a system is determined by the number
of linearly independent eigenvectors of the variational matrix for the
linearized part of the system. The direction of the solution surfaces
and the nature of the trajectory of a dynamical system depend Trespectively
on the signs of the eigenvalues and the types of eigenvalues with the
corrgsponding number of linearly independent eigenvectors of the variational
matrix of the dynamical system. From the Jordan canonical form of a matrix,
one can easily determine the types and signs of eigenvalues and the
corresponding number of linearly independent eigenvectors of the same matrix.
Therefore, with the aid of Jordan canonical form of a variational matrix
of an unperturbed system, it is possible to determine, relatively quickly

and easily, the nature and stability of the equilibrium of the unperturbed
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system. On th_é otherhand, since the. eigenvalues of a variational matrix
of é perturbed system are, in general, assumed to be distinct, the nature
and stability of an equilibrium of a perturbed system can be determined
by the characteristic equation of the variational .matrix of the perturbed
system. Here we shall recall, without proof, how the Jordan canonical

form of a matrix can be constructed.

The linearized part of the system (2.3) can be expressed in the

matrix form

Z =AZ, (2.9)
where Z = (.21,22,23)T is a 3x1 mati‘ix, T repi‘esents the transpose
of a matrix, and the 3 X 3 matrix A is given by (2.8). It is known

from linear algebra that for a 3 ¥ 3 constant (real or complex)

matrix A, there always exists a coordinate transformation

W=BZ , (2.10)
where W = (wl,wz,wz)T is a 3 %1 matrix, and B is a certain 3 X 3
nonsingular matrix whose columns are the eigenvectors of the matrix A .
The transformation (2.10) reduces the system (2.9) to the form

W' = BZ' = BAZ = BAB W =

i W, (2.11)

where the matrix jl , defined by



18.

= BAB™ " , (2.12)

is called the Jordan canonical form of the matrix A . The matrix iq
consists of elementary block matrices whose main diagonal consists of

one and the same eigenvalue, while all of the elements of the right
adjacent diagonal are unity, and the rest of the elements of the block
are zero. The number of blocks of j1 depends on the number of linearly
independent eigenvectors of A corresponding to its eigenvalues. Hence,
the main diagonal elements of j1 are the eigenvalues of A , the
elements of the right adjacent diagonal, depending on the number of
elementary blocks, may either be zero, or unity, or a combination of

zero and unity, and all the remaining elements of j1 are zero.
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CHAPTER 3~

TECHNIQUES OF QUALITATIVE ANALYSIS

The methods of differential equations that haﬁe been used in this
thesis to study the qualitative behavior of three dimensional dynamical
systems of the Kolmogorov-type are presented in this chapter. More
specifically, this chapter contains a short review of the qualitative

theory and bifurcation theory of ordinary differential equations.

3.1 QUALITATIVE THEORY

Easically, most of the physical problems are nonlinear from the
outset. Although, we have some known methods for solutions of most linear
‘and some nonlinear systems of ordinary differential equations, there are
very few methods for solutions for more extensive classes of nonlinear
differential equations. The solution of nonlinear differential equations,
in generél, involves the solution of nonlinear algebraic - and sometimes
nonalgebraic equations, which we are often unable to solve with accuracy.
This, of course, is very disappointing. However, it is not necessary, in
most applications, to find the solutions of nonlinear problems explicitly.
Rather, we are interested in the qualitative properties of the nonlinear
system concerning the following questions: (i) Do there exist equilibrium
solutions? (ii) Are the solutions stable? (iii) Is there a periodic
solution? Remarkably, we can often give satisfactory answers to these

questions, even though we cannot solve the nonlinear system explicitly.
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Hence, we will be concerned with the qualitative theory of differential

equations.

Qualitative theory of differential equations originates in the
giant developments due to Pioncaré [48-50], Birkhoff [10], and
Liapuﬂov [39-40]. The modern methods of qualitative analysis of
differential equations have also their origins in the works of Andronov
and co-workers [2-6], Nemytskii and Stepanov [45], and Coddington and
Levinson [21]. Some recent works on qualitative theory includes
Arnold [7-8], Hirsch and Smale [35], Lefschetz [38], Cronin [22], Iooss

and Joseph [36], Chow and Hale [20], and Guckenheimer and Holmes [30].

The qualitati&e method is based on the study of the representation
of the solutions of differential equations in the state space, their
stabilities and the existence of periodic solutions. The qualitative
properties of solutions: topological structure, stab%lity property,
and periodicity yield a coherent and esthetically pleésing theory whiéh

has important applications in physical and life sciences.

3.1.1 Topological Method

The topological method of phase portrait analysis is due to
Poincaré. By this method the solutions of differential equations are
sought not as explicit functions of time, but as integral curves/surfaces
in a state space. It is one of the important means of investigating the
various phenomena of nonlinear osci11§£ions. Considerable insight into
the qualitative aspects of the solution, and some quantitative
informations as well, can be obtained through a study of the integral

curves/surfaces.
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The topological method is used to examine the nature of the phase

portrait of the equilibria of a nonlinear dynamical system
Z' = AZ + h(D), ’ ‘ (3.1)
by making use of the linearized system

z' AZ

, (3.2)

where Z = (Zl’ZZ’ZS)T is a 3 x%Xx1 matrix, and A is a 3 %X 3 con-
stant real valued matrix. Here the 3 X 1 matrix h = (hl’hZ’hs)T
represents the nonlinear terms of (3.1), and there exist numbers B > 1

and o = 0 , such that
lh(z)| = OL]zlB , (3.3)

holds in a neighborhood of the equilibrium ZO of (3.2).

The substitution Z = Ke'T, where K = (_Kl,KZ,KS)T isa 3 x1
constant matrix, into the system (3.2) results in the characteristic

equation
det(A - AI) =0 , (3.4

where I is a 3 x 3 identity matrix. From (3.4) one may calculate the

eigenvalues and the corresponding eigenvectors of A .
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According to the principal axes theorem of linear algebra, the
dimension of the‘solution space and thus the equilibrium point of (3.2)
depends on the number of linearly independent eigenvectors corresponding
to the eigenvalues of A . Hence,tﬁe classification of equilibrium
points of (3.1), under the condition (3.3), is goverhed by the eigenvalues
and the corresponding eigenvectors of A . From Reyn [57], we obtain
the following types of simple equilibrium points for the dynamical

system (3.2).

(1) If A has three distinct nonzero real eigenvalues having-
same signs, then the equilibrium Z0 is called a three branched node.
(ii) If A has three distinct nonzero real eigenvalues with at
least two of them having different signs, then the equilibrium Z0
is called a saddle node.

(iii) If A has three nonzero real with two equal eigenvalues
having same signs, then the equilibrium Z0 is called a star node or
a two branched node when A has respectively three or two linearly
independent eigenvectors corresponding to its eigenvalues.

(iv) If A has three nonzero real with two equal eigenvalues
having at least two of them with different signs, then the equilibrium
Z0 is called a saddle star or a two branched node when A has
respectively three or two linearly independent eigenvectors corresponding
to its eigenvalues.

(v) If A has three noniero repeafed eigenvalues, then the
equilibrium Z0 is called a star, an antisymmetric node star, or a one
branched node when A has respectively three, two, 6r one linearly

independent eigenvector corresponding to its eigenvalues.
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(vi) If A has one nonzero real and two complex (with nonzero
real parts) eigenvalues, and the real eigenvalue and the real parts of
the complex eigenvalues have the same signs, then the equilibrium Z0
is called a node spiral. |

(vii) If A has one nonzero real and two complex (with nonzero
real parts) eigenvalues, and the real eigenvalue and the real parts of
the complex eigenvalues have different signs, then the equilibrium ZO
is called a saddle spiral.

(viii) If A has one nonzero real and two imaginary eigenvalues,

0

then the equilibrium 2Z 'is called a center focus.

In cases (i) - (vii) the nature of the equilibria is the same both
for the linearized system (3.2) and the corresponding noniinear system
(3.1). Results in case (viii) are only valid for the linearized system
(3.2). In case (viii) higher order terms of (3.1) may produce a node

spiral or a saddle spiral.

3.1.2 Stability Methods

The stability theory was originated by Liapunov. The basic idea
of stability étudy is to examine the question: under what conditions
do equilibrium solutions of a dynamical system approach or stay close
to a given equilibrium solution? Since the biological systems tend to
be quite complicated, it is assumed that the disturbances of the system
as described by the differential equations are constantly occuring.
This suggests that only those solutions of the differential equations

which have strong stability properties are biologically significant.
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More recentiy, it has been clear that if a biological problem is
formulated in terms of a system of ordinary differential equations, the
stability theory must play an important role in the study of the system.
In order to study the stability of an autonomous system, the 'Tiapunov
eriterion’ for stability by the first approximation is examined. The
‘method of first approximation' is used to obtain results concerning the
stability of the trivial solution of the nonlinear system (3.1) by
making use of the linearized system (3.2) under the condition (3.3).
Following Liapunov [40], the results concerning the stability and in-

stability behaviors of (3.1) and (3.2) are characterized by the following:

(i) 1If all eigenvalues of A are negative or have negative real
parts, then the trivial solutions of (3.2) as well as (3.1)are
asymptotically stable.

(ii) If at least one eigenvalue of A is positive or has a positive
real part, then the trivial solutions of (3.2) as well as (3.1) are un-
stable.

(iii) If A has one positive real and two imaginary eigenvalues,
then the trivial solution of (3.2) is neutraily unstable and that of
(3.1) is unstable. |

(iv) If A has one negative real and two imaginary eigenvalues,
then the trivial solution of (3.2) is neutrally stable. In this case,
the higher order terms in (3.1) determines the stability or instability

of the trivial solution of (3.1).

Hence, a necessary and sufficient condition for the asymptotic
stability of (3.2) and thus (3.1) is given by the requirement that all

the roots of (3.4) are negative or have negative real parts. Generally,
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it is not easy to find all the roots of (3.4). One thus makes use of
the criteria which provide assertions about the signs of the real parts

of the roots of the characteristic equation

3 2 _
AT+ ajr o+ a + a; =0 (3.5)
of (3.4) without having to resort to an actual solution of the above
equation. The most important of these criteria is known as 'The Routh-
Hurwits criteria’ (sée Cronin [22], Page 157). According to these
criteria, a necessary and sufficient condition assuring that all roots

of the cubic equation (3.5) have negative real parts is given by

>0, and a,a, > a, . : (3.6)

>
3, >0, a 1%2 3

1 3

3.2 BIFURCATION THEORY

Dynamical systems describing physical problems generally contain
parameters. The word bifurcation means forked and is used in a broad
sense for designating all possible qualitative reorganizations of various
objects resulting from changing the parameters on which they depend.

One of the most important classes of dynamical systems comprises of those
systems whose topological structure in a given region does not change
under small modifications of the parameters. Pexioto [46-47] called
such systems as structurally stable systems. If small changes in the
parameter lead to a change in the topological structure of the dynamical
system, then the system is termed structurally unstable system. These

changes in the parameter values are éalled bifurcation values.
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A fundamental step towards modern bifurcation theory in differential
equations occured with the definition of structural stability by
Andronov and Pontryagin [5] in 1937 and the classification of structurally
stable systems in the plane. With fhese concepts, Andronov and
Leontovich [2] were able to make precise definitions of types of bi-
furcation points. These results were applied extensively to the theory
of nonlinear oscillations by Andronov,vVitt and Khaikin [6], and Andronov,

Leontovich, Gordon and Maier [3-4].

There are evident limitations as to how far one can proceed with
a systematic bifurcation theory. In parameter regions consisting of
structurally unstable systems, the detailed changes in the topological
structure can be exceedingly complicated. We, therefore, shall focus
upon the simplest bifurcation of individual equilibrium points. The
analysis of such bifurcations is generally performed by examining the

vector field near the degenerate equilibrium point.

The implicit function theorem is a basic mathematical tool used
in bifurcation theory. Since we will require the theorem for our needs,
and since its proof may be found in any book on bifurcation theoxy

(see,e.g., [36]), a short review of the theorem will be given next.

3.2.1 Implicit Function Theorem

Consider the following system of equations:

fi(zlﬁzzszsﬁe) = O, 1 = 1,2,3, (3”7)
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where fi , 1 =1,2,3, are continuously differentiable in some open

region of the (Zl,Zz,Zs)-space. Assume that

= 0, i=1,2,3, (3.8)

£ (Z10220:23028g)
and that the Jacobian matrix
afi
32 = a—z_' > 1:] = 1’2,3’ (3'9)
]

computed at the point (210,220,230,80), has a nonzero determinant:
det jz # 0 . Then there exist o > 0 , 8 > 0 such that the following

assertions hold:

(i) There is a unique continuous set of functions Zi , 1 =1,2,3,

i : ; V< ;
defined for €y = @ <€ < gy + a satisfying ZiO - B <Z.(e) <Z.4+B,

i=1,2,3, and -

fi(Zl(s),Zz(s),Zs(ﬁ),s) =0, i=1,2,3. (3.10)

(ii) Moreover, Zi’ i=1,2,3, are continuously differentiable

for g~ @ <e<egta, and
E ]
-— (Z,(¢),Z,(e),Z,(¢) ,¢€)
' _ _Les 71 2 3 .
[Zi(”] SR AONAORAOI N (3.11)

If fi , 1 =1,2,3, are analytic functions of all variables, then

Zi(s), i=1,2,3, are analytic near ¢ = £y
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If det j2 =0 for &, =0, we have to solve the nonlinear

0
system (3.7) up to a certain power of € in order to obtain the
solution of the perturbed system (3.7). 1In our work, the perturbed
nonlinear system is solved directly according to the rank of j2

for €9 = 0 . We note that, in such cases, the techniques of

Freedman [23], and Loud [41] can also be used.
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CHAPTER 4

A SIMPLE EQUILIBRIUM OF THE UNPERTURBED

THREE DIMENSIONAL KOLMOGOROV MODEL

In this chapter we consider the noncritical case of the un-
perturbed three dimensional Kolmogorov model. Here we give the criteria
for the existence of a simple equilibrium of the unperturbed three
dimensional Kolmogorov model in the first octant and provide parameter
conditions for all possible types of unperturbed simple equilibria.
Further, we determine the Jordan canonical form for the variational
matrix of the linearized part of this dynamical system and examine the
nature and stability of the simple unperturbed equilibrium in the phase

space.

4.1 EXISTENCE OF A SIMPLE UNPERTURBED EQUILIBRIUM

Since in the noncritical case, certain features of the trajectories
of a differential system may be preserved under small perturbation, we

study the unperturbed three dimensional Kolmogorov model

1,2,3. (4.1)

t .
N; = N;F; (N},N, N5, 00, i

We assume that the unperturbed system (4.1) has at least one equil-
ibrium point E0 (M?,Mg,Mg), called the unperturbed equilibrium, in the

interior of the first octant. This means that the systenm
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Fi(Nl’NZ’NS’O) =0, i=12,3, (4.2)

has at least one solution (M?,Mg,Mg)_ such that

0.0.0
F (Ml’Mz’MS’O) =0, Mg >0, i=1,2,3. (4.3)
Let JO be the matrix
0.0.0 0 . -
JO(M]_’MZ’M3) = FlNJ ) 1’3 = 1,2,3, (4'4)
where
oF.
o _ i 0.0.0 s
FiNj = a\]—- (Ml,Mz,MS,O), 1,] = },2,3, (4.5)
and assume that
_ 0.0.0
IJOI = det Jy(M;,M,,Mz) #0 . _ . (4.6)

The assumption (4.6) corresponds to the noncritical case of the implicit
function theorem of the system (4.2) and ensures that EO is a simple
equilibrium point of (4.1), i.e., EO is a point of intersection of

the surfaces (4.2) such that the tangent planes to the surfaces at their
common point exist and are distiﬁct. Moreover, by the implicit function
theorem, with (4.6), the equilibrium EO is isolated, i.e., there exists

a neighborhood of EO containing no equilibrium states-other than EO .
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In order to linearize the nonlinear system (4.1), we set

N, = M, + X., i=1,2,3. (4.7)

Substituting (4.7) into (4.1) and using the Taylor series expansion for

0 0 0 . .
Fi(M1+X1,M2+X2,M3+X3,O), i=1,2,3, we obtain
3
v OO -0 .
X; = (551 : 1NJ)x + ., i=1,2,3, (4.8)

where Eg represents the nonlinear part of (4.1) and is given by

-0 -0
E. = Ei(xl,xz,x (M +X, )F (Ml l,M +x2 M +Xs
3
- R ax, i=1,2,3, (4.9)
s 1°1N.” "1
i=1 J

and FgN is given by (4.5).
j

The variational matrix for the linear part of (4.8) at the un-

perturbed equilibrium point EO is

0.0.0, _ 10 ..
AOCMl’MZ’MB) = [%ii}, i,j = 1,2,3, (4.10)
where
aF.
o _ .0 0.,0.0 .o
mij = M1 aNJ (Ml’MZ’M3’O)’ i,j = 1,2,3. (4.11)
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Further, because of (4.3) and (4.6), we must have
_ 0.0.0
|8g] = det A (M],M,,M) # 0 . _ , (4.12)

The characteristic equation for (4.10) is

Xs + plkz + pzk *py =0, (4.13)
where
P17 - 23 nj;
i=1
P, =1 igl jglcmgim?j -miml),  i#, (4.14)
P3 ﬁ-—ndet AO 5

The assumption (4.12) ensures that the cubic equation (4.13) does not
have any zero root. The eigenvalues of the matrix (4.10) are obtained by
solving the characteristic equation (4.13) and the eigenvectors
corresponding to these eigenvalues can also be determined. Moreover,

the roots of the characteristic equation (4.13) of the linearized part

of the unperturbed system (4.1) can be distinct or repeated. Hence, the
variational matrix (4.10) for thé linearized part of the unperturbed
system (4.1) has distinct or repeated eigenvalues. While the variational
matrix (4.10) has three linearly independent eigenvectors corresponding

to three distinct eigenvalues, it may have one, two, or three linearly
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independent eigenvectors corresponding to the repeated eigenvalues.
Therefore, the nature and stability of the equilibrium EO of the

unperturbed system (4.1) can be determined from the Jordan canonical form

of the variational matrix (4.10).

4.2  JORDAN CANONICAL FORM OF THE VARIATIONAL MATRIX

In order to find the Jordan canonical form of the variational

matrix (4.10), we use the transformation
U= PX (4.15)

where P 1is a certain '3 X 3 nonsingular matrix whose columns are the
eigenvectors of the matrix AO , and U = (u,v,w)T and X = (Xl’XZ’XS)T’
T representing the transpose of a matrix, are 3 X 1 matrices. The

substitution of (4.15) into (4.8) yields the transformed system ’

u' = (PAOP"l)U + PEC (P Lu,p v, Pl , (4.16)
. . -0 -0 -0 =0,T . .
where AO is given by (4.10) and E~ = (El’EZ’ES) is a 3 x 1 matrix.

O .

The matrix A" = PAOP'l

is the Jordan canonical form of the matrix AO .

The transformation (4.15) is equivalent to a rotation and stretch of axes

and does not affect the character of the equilibrium points. Moreover,

PAOP—l, which represents the Jacobian matrix for the linear part of the

transformed system (4.16), is also the Jacobian matrix of the linear

part of the original system (4.8). Further, since ]AO] #0, A% must

be equivalent to one of the following forms:
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e — — —-1
Kl 0 0 Kl 0 0
0 0 _ .
A5 = 0 Kz 0 R 8.3 = 0 K0+1m0 0 ,
0 0 A 0 0 A -iw
A 3 . B 07|
xl 0 0 Xl 0 0
0 . 0 _
;=10 i, R A,z = 0 Kz 0 ,
0 0 -iwo 0 0 Kz
(4.17)
B ™, 0 0]
1 1
0 0 _
Ayy = 0 kz 1 s A< 0 Kl 0|,
0 0 A 0 0 A
Kl 0 0 Kl 1 0
0 0 _ X
8, = 0 Kl 1 811 0 1 1 ,
0 0 A 0 0 A
u 1 n 1]
where Kl’ Kz, and KS are the real eigenvalues of the matrix (4.10)
and ko and w, are the real and imaginary parts respectively of the

. 0 0 0 0 0
complex eigenvalues of (4.10). Here ArS’ Acs, Ais’ A23’ and Al3

three linearly independent eigenvectors corresponding to the three

have

distinct nonzero real eigenvalues, one nonzero real and two complex
eigenvalues with nonzero real points, one nonzero real and two imaginary

eigenvalues, three nonzero real with two equal eigenvalues, and three

0
22

have two linearly.independent eigenvectors corresponding to the

repeated nonzero real eigenvalues respectively; A and Agz

three nonzero real with two equal eigenvalues and three repeated
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0
11

independent eigenvector corresponding to the three repeated nonzero

nonzero real eigenvalues respectively; and A has one linearly

real eigenvalues of the variational matrix (4.10).

4.3 NATURE AND STABILITY OF THE UNPERTURBED EQUILIBRIUM

The nature and stability of the equilibrium EO of (4.1) is
determined by the types and signs of the eigenvalues of (4.10) and the
number of linearly independent eigenvectors corresponding to these

eigenvalues. The nature of the eigenvalues of (4.10) depends on the

values
21 1,23 1.2 3 1 2
Do =27 P =3P ) *3(z7 P -3 PP+ P9,
(4.18)
- _ 1, 2 _ 1 .3
Hp = PPy =P Q=Pp-3P , Ry=Py-77PF ",
where Pl’ P2, and P3 are given by (4.14); and the number of linearly

independent eigenvectors corresponding to the eigenvalues of (4.10) are
given by the Jordan canonical forms (4.17).

The eigenvalues of (4.10) are the nonzero solutions of the
characteristic equation (4.13). The cubic equation (4.13) has three
distinct roots (with nonzero real parts) when D0 # 0 , at least two
equal roots when D0 = 0, and two imaginary roots when D0 >0 and

In [57], Reyn presented a‘detailed classificatién of the equilibrium
points of a three dimensional linear differential system. We shall use

some of his results in our work.
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We now provide parameter conditions for all possible types of
eigenvalues of (4.10) and combining each set of these eigenvalues
with the corresponding Jordan canonical form we state the nature and

stability of the equilibrium EO of the dynamical system (4.1).

CASE A.
If D0 # 0, then the variational matrix (4.10) has three distinct

eigenvalues with nonzero real parts.

Sub-Case A(1).

If Dy < 0 , then the variational matrix (4.10) has three distinct

nonzero real eigenvalues A XZ’ and Xs and has the Jordan canonical

1,
0
form Ar3 .
(1y If P1 >0, P3 > 0, and HO > 0, then Ki <0,1=1,2,3;

and EO

(2) If P_,<0 and H, >0, then A

3 0 2 3
0

and E is a three branched saddle node with stable two

>0, \, <0, and A\, < 0;

1

branched plane node (Fig. 2).

(3) 1If P,>0 and H, <0 , then X

3 0 1 2
0

and E is a three branched saddle node with unstable two

<0, A, >0, and Ay > 05

branched plane node.
(4) If P, <0, P

1
and EO

< 0, and H, < 0, then Xi >0,1=1,2,3;

3 0

is an unstable three branched node.

Sub-Case A(11).

If D, >0 and H0 # 0, then the variational matrix (4.10) has

0

one nonzero real and two complex (with nonzero real parts) eigenvalues A

and A, * iw, and has the canonical form AO .
0 0 c3

is an asymptotically stable three branched node (Fig.

1

=

p—
°
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(5) If P1 >0, P3 >0, and HO > 0, then Xl < 0 and XO < 0;

and EO is an asymptotically stable node spiral (Fig. 3). More
specifically, EO is an asymptotically stable (a) blunt

spiral when Xl > XO’ (b) conical spiral when Xl = XO s

and (c) pointed spiral when Xl < XO .

(6) 1If P3 < 0 and HO >0 , then Kl >0 and XO <0 ;

and E° is a saddle spiral with stable plane focus(Fig. 4).

(7) If P3 >0 and HO <0, then Xl <0 and XO >0 ;

and E0 is a saddle spiral with unstable plane focus.

(8) If P, <0, P;<0, and Hy <0, then A\ >0 and Ay > 0;

1 3 0 0

and EO is an unstable node spiral. More specifically, E0

" is an unstable (a) blunt spiral when A, > XO’ (b) conical

1
spiral when Kl = KO, and (c) pointed spiral when X1.< XO .

If D0 = 0, then the variational matrix (4.10) has at least two

equal eigenvalues.

Sub-Case B(1).

If Q0 # 0, then the va:iétional matrix (4.10) has three real

with two equal eigenvalues A KZ, and KZ and has either the Jordan

1’
canonical form AO or AO
23 22 -
(9 1If P1 >0, P3 > 0, and HO > 0, then Xi <0,1i-=1,2;

and E0 is asymptotically stable. EO corresponding to
Ags represents either a pointed star node when Kl > KZ or

a blunt star node when A < XZ; and E0 corresponding to

1
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0
Y

or a slender two branched node when Xl < Xz .

represents either a wide two branched node when 'Kl > Xz

(10) If P, <0 and Hy >0, then X >0 and X, < 0; and g0

3 0
0 0
23 and Ay,

stable plane star and a two branched saddle node with stable

corresponding to A represents a saddle star with

one branched plane node respectively.

0

(11) 1If P3 >0 and H, <0, then X, <0 and KZ >0; and E

0 1

0
and A22

unstable plane star and a two branched saddle node with un-

corresponding to AO represents a saddle star with

23

stable one branched plane node respectively (Figs. 9-10).

(12) 1If P; <0, P3 <0, and H, < 0, then Xi >0, 1=1,2; and

0

EO is unstable . EO corresponding to AgS represents
either a pointed star node when Xl > XZ or a blunt star

node when A, < kz; and EO corresponding to Agz represents

1

either a wide.two branched node when X, > Kz or a slender

1

two branched node when A\, < kz (Figs. 5-8).

1

Sub-Case B(ii).

If Q0 = RO = 0, then the variational matrix (4.10) has three

repeated real eigenvalues A Kl’ and Kl and has one of the Jordan

1’
. 0 0 0
canonical forms A13’ A12’ or All .
(13) 1f P, >0, P, >0, and Hy > 0, then X, <0; and 80 is

asymptotically stable. EO corresponding to Ags, A22’ and
Agl represents a three dimensional star, an antisymmetric

node star, and a one branched node respectively.
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(14 If P <0, P, <0, and Hy <0, then A > 0; and 80 is
0 . 0 0 0
unstable. E~ corresponding to B3 AlZ’ and All

represents a three dimensional star, an antisymmetric

node star, and a one branched node respectively (Fig. 11-13).

CASE C.
If DO >0 and HO = 0, then the variational matrix (4.10) has

one real and two imaginary eigenvalues Kl and tiwo and has the Jordan

. 0
canonical form Ai3 .

(15) If P. >0 and P, > 0, then A, < 0; and EO is a neutrally

1 3

stable convergent center focus.

1

(16) If P, <0 and P, <0, then XA, > 0; and EO is a neutrally

1 3 1
unstable divergent center focus (Fig. 14).
In order to give a more refined classification of the hyperbolic
and simple nonhyperbolic equilibrium points of a dynamical system, we

introduce the following definitions:

DEFINITION 1

The hyperbolic equilibria of a dynamical system corresponding to
three distinct eigenvalues with nonzero real parts of the variational

matrix for the linearized system are called A-type equilibria.

DEFINTION 2

The hyperbolic equilibria of a dynamical system corresponding to
three nonzero real with at least two repeated eigenvalues of the

variational matrix for the linearized system are called B-type equilibria.
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DEFINITION 3

The simple nonhyperbolic equilibria of a dynamical system
corresponding to one nonzero real and two imaginary eigenvalues of the

variational matrix for the linearized system are called C-type equilibria.

We now define the following sets:

n
1]

ERGHONONE

{(2),(3),(4),06),(7N,(8,(10),(11),(12), (.14j b (4.19)

n
L[}

0,
1]

5= (9L 5, = {(16)}

and assume that Fi(Nl’NZ’Ns’O)’ i =1,2,3, be such that the hypotheses
of (h), h.=1,2,...,16, hold.
Using the results in Cases A, B, and C, the Definitions 1, 2, and

3, and (4.19), we have established the following theorem.

THEOREM 1.

A-type and B-type equilibria of the wnperturbed three dimensional
Ko lmogorov model sattsfying the conditions stated in Cases A and B are
always hyperbolic and C-type equilibria of the same model satisfying
the conditions in Case C are aways nonhyperbolic. The equilibrium ok
18 asymptotically stable tf (h) € S,, unstable if (h) € Sys neutrally

stable if (h) € S, and neutrally unstable 71f (h) € Sy -

3.9
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Remarks: The nature and stability or instability property of the
equilibria in Cases A and B are valid for both the linear and the
corresponding nonlinear systems, while that in Case C are valid only
for the linearized part of the nonlinear system. In ordér to examine
the nature andbstability of the equilibria of the nonlinear system in
Case C, the effect of nonlinear terms must be taken into account. In
Case C, the higher order terms of (4.8) may generate an asymptotically

stable or unstable node spiral or a saddle spiral.

We record the following references for the figures quoted in
this chapter. (i) Figures 1-2: Arnold [7], (ii) Figures 3,4,

and 14: Reissig et al [51], and (iii) Figures 5-13: Reyn [57].
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CHAPTER 5

PERTURBATIONS OF A SIMPLE‘EQUILIBRIUM OF THE THREE

DIMENSIONAL KOLMOGOROV MODEL

In this chapter we consider the noncritical case of the perturbed
three dimensional Kolmogorov model corresponding to the noncritical case
of the unperturbed model and derive the characteristic equation of the
variational matrix for the linearized system of the perturbed model.
Further, we examine the nature and stability of the perturbed equilibrium
emanating from a simple unperturbed equilibrium in the three dimensional
phase space and compafe the qualitative behaviors of some pertﬁ}bed equil-

ibria with those of the unmperturbed equilibria.

5.1 EXISTENCE OF A SIMPLE PERTURBED EQUILIBRIUM

In order to establish a relationship between the topological
structure and stability of an unperturbed and a perturbed simple equil-
ibrium, we now study the noncritical case of the perturbed three
dimensional Koimogorov mode 1

Nl = NlFl(Nl’NZ’NZ)’E)’ i=1,2,3, (5.1)

correspbnding to the noncritical case of the unperturbed model (4.1),

where ¢ is a small positive parameter. For e = 0, (5.1) reduces

0.0 .00
(

to the system (4.1) which has a simplebequilibrium E Ml’MZ’Ms) in
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the first octant provided that the conditions (4.3) and (4:6) are
satisfied. For € # 0 the equilibria of the perturbed system (5.1)

are obtained by solving the system of equations
Fi(Nl’NZ’NS’E) =0, i=1,2,3, (5.2)
subject to the conditions (4.3) and (4.6). By the implicit function

theorem, with (4.6), the perturbed system (5.1) has a unique solution

M;(s) in the neighbourhood of the solution Mg of the unperturbed system

(4.1), such that M}(0) = M(i) , i=1,2,3, and

s ' . . o
1,M2’M3:€) = 0, 1= 1,2,3- (5.3)

Let J; be the matrix

* * +* * _ 0* s e
JO(M].’MZ’Ms) - Fle(€) ) 1,J - 132,3, (5'4)
where
FO*()-E(M**M* i,j =1,2,3 5.5
1NJ € - aN 1,M2, 3,8): 1,J = 3%~y ( . )
0* 0 .
such that FiN 0 = FiN The assumption (4.6) guarantees that
j j '
* * ook % %
|31 = det Jo(M,M;, M) # 0, (5.6)

which corresponds to the noncritical case for the perturbed system (5.3}.
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Hence ,the pefturbed model (5.1) has a simple equilibrium E*(MI,M;,Mg),
called the simple perturbed equilibrium, which for € = 0 moves to the

simple wperturbed equilibrium EC of (4.1).

In order to find the solution of (5.3), we seek M;(e) in terms

of power series of € in the neighbourhood of Mg in the form
Mie) = M0+ em, + €2, 4 ..., i=1,2,3. (5.7)
i i i i

Since € 1is small, in general, it is sufficient to evaluate m

i=1,2,3. Substituting (5.7) into (5.3), expanding

e
[}

0 0 - w0
Fi(Ml +em, M2 + em,, M, + €m,, £),

2) 3 1)2’3’

in Taylor series, and equalizing the coefficient of € to zero, we

obtain the following linear system for m, i=1,2,3:

3
0 .
jilnﬁFiNj + Fi€ =0, i= 1,2,;, (5.8)

where FgN is given by (4.5), and
j

oF.
= L ol 0,0,

Fie = 3¢ 1272273 = 1,2,3. (5.9)

(SN

The system of equations (5.8) is a set of three linear non-
homogeneous equations whose Jacobian (5.6) is different from zero. Such

a system, by Cramer's rule, has a unique solution given by
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3
mo= - 3 A

i=1,2,3 _(5.10)
i |80 j=1 g g

.. F.
jije

where Aji is the cofactor of the element FjN

in the matrix
i .
[%QNL]’ i,j =1,2,3, and AO is given by (4.10).

For € = 0 , the equilibrium E¥ of the perturbed system (5.1)
turns to the equilibrium EO of the unperturbed system (4.1), and for
e # 0, the equilibrium E’ moves to the equilibrium E* . Thus, we

say that the simple unperturbed equilibrium EO generates the simple

perturbed equilibrium E* .

Hence,we can state the following theorem concerning the existence

of an equiiibrium for the perturbed system.

THEOREM 2

In the neighbourhood of a simple equilibrium EO of the wnperturbed
system (4.1) there exists a unique simple equilibrium E* of the

perturbed system (5.1) for sufficiently small positive € .

5.2 NATURE AND STABILITY OF THE PERTURBED EQUILIBRIUM

The nature and stability of the equilibrium E* of the perturbed
system (5.1) are determined by the characteristic equation of the
variational matrix for the linearized part of (5.1). To find the
variational matrix for the linear part of the perturbed model, first
we linearize the nonlinear system (5.1). In order to linearize the

perturbed system (5.1), we use the transformation



* * ‘ .
N, = M) ¢ X (), i=1,2,3,

*
such that M°(0) = M and X.(0) = X, , i = 1,2,3.
1 1 1 . 1

into (5.1) and using the Taylor series expansion for

* * * PR
Fi (M) + Xp My + X5, Mg+ Xg, 8), 1=

we obtain

3 * * -k
XI'(e) = [ (e) jil F?Njce)]xi +Ei(), i
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(5.11)

Substituting (5.11)

(5.12)

where E;(e) represents the nonlinear part of (5.1) and is given by

=% * *

He o

-

O* *

i

M, + x;, e) - [M*(e) I F
1 121 j

3
*
3
J=

0

and FiN
]

such that

and

* * * * )
() = BY(X[,5,X5,e) = [M{(e) + X[ (e)IF, (a] + + X5,

g (1%, i=1,2,3,

. .
(€) is given by (5.5). Further, Ej(e) and F *

are.

(5.14)
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The variatonal matrix for the linear part of (5.12) at the

perturbed equilibrium point is

*=****=0‘* s 3 = :
Ao(e) AO(Ml’MZ’MS) [%ij + emii], i,j 1,2,3, (5.15)

-

such that AS(O) = A where mgj is given by (4.11), and

O >
*‘Mofg o N S i,j = 1,2,3 (5.16)
M T N0~ BINGN iN.e” T MTiN,e el T 49 .
with
2 )
o F.
0 _ i 0.0.0 co. o
l::]_N_N =~ O9N.aN (MI’MZ,Ms’O)’ 1,J,k =1,2,3,
Jk ik
and (5.17)
2
a F.
0 _ i 0.0.0 —
F]_NJQ = aNja€ (Ml’MZ’MS’O)’ 1,] = 1,2,3.
The assumption (4.12) ensures that
R * _ * -* * *

and (5.18) corresponds to the noncritical case of the perturbed model

(5.1).

The characteristic equation of (5.15), up to the order of € , is
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A3+ tp s eq A% + (P, + €q)A + (P, + €q,) = 0 (5.19)
17 2 * B4 3% ®3 ’ :

where P P2, and P, are given by (4.14), and

1’ 3
3 *
q, = - L m. ,
1 i=1 ii
33 3 . X .
qa, = = I I [5m. (m, . + ) -m .m..], 1i#j#%k, (5.20)
2 i=1 j=1 k=1 2731 Vi) Tk ijji
m . m. @ m,., m.m n' . m¥. m*
11 ™12 M3 11 M2 M3 11 ™2 ™13
= - oo * -
Az = = | My Mpp M3 M1 Myp M3 Myp Mpp My3
* * * ]
Mz1 M3 M3 Mgy M3y M3z Mz1 Mzp M3z

The condition (5.18) implies that the characteristic equation (5.19)
does not have any zérd root. Further, the roots of the characteristic
equation for a perturbed system are, in general, assumed to be distinct.
Hence,the variational matrix (5.15) of the perturbed model (5.1) has
three distinct eigenvalues énd thus three liﬁearly independent eigen-
vectors corresponding to these eigenvalues. Therefore, the nature and
stability of the perturbed equilibrium E" can be determined by the
types and signs of roots of the characteristic equation (5.19) of the
perturbed system (5.1). Further, for ¢ = 0, the equation (5.19)
reduces to the equation (4.13), and for € # 0, the equation (4.13)
produces (5.19). Thus, we say that the characteristic equation (4.13)

of the unperturbed system (4.1) generates the characteristic equation
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(5.19) of the perturbed system (5.1). Therefore, the roots of (4.13)

generates the roots of (5.19).

Distinct roots of the characteristic equation (4.13) of the
unperturbed system can generate only distinct roots of the characteristic
equation (5.19) of the perturbed system. However, in general, repeated
roots of (4.13) generate distinct roots of (5.19), and imaginary roots
of (4.13) generate complex roots of (5.19). To facilitate the study of
these cases we introduce the following notations.

Dy = %-(pz - %-pi)Zqu - %-plqll

1 2 3 2 2
* 18 PPy - g P1 - P (P1ay * Pya; - 3 P9 - g s
(5.21)

q3,

o2 e L2
Q = - 3P 19 0o = 93 - § P19 -

-

1,2,3, are given by (4.14) and (5.20). Also,

1]

where p; and q; » 1
we use some small values pi(s), i=1,2,3, such that pi(O) = 0.

These small values may vary but Mg # H, # Hs.

We now provide parameter conditions for all possible types of
distinct roots of the characteristic equation (5.19) and examine the
character (i.e., the nature of the phase portrait and the stability
or the instability property) of the perturbed equilibrium E*

corresponding to these roots.
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CASE A

Three distinct real roots Xi , 1 =1,2,3, of (4.13), satisfying
DO < 0 , can generate only three distinct real roots Xi MR
i=1,2,3, of (5.19). In this case the perturbed equilibrium E' has

exactly the same character as the unperturbed equilibrium EO in

Sub~Case A(Z)..

CASE A2

One real and two complex roots X, and Ao * iwy, Ay # 0, of-

1
(4.13), satisfying D0 >0 and HO # 0, can generate only ore real and
two complegrroots Xl iy and AO Uy 1(@0 + “3) of (5.19). 1In

this case the perturbed equilibrium E* has exactly the same character

as the unperturbed equilibrium 0 in Sub-Case A(ii).

Hence, from the results in Cases A, Al, and A2, and the Definition 1,

we have the following theorem.

THEOREM 3

A-type equilibria of the wnperturbed éystem (4.1) generate A-type
equilibria of the perturbed system (5.1), i.e., nodes, saddle nodes,
node spirals, and saddle spirals of (4.1) genevate corresponding
equilibria of (5.1) with the same nature and stability or instability

property.

CASE B1

of (4.13) satisfying D, = 0 and

Double foots A o

1,_A2, and A

2

QO # 0 can generate:



51.

(a) Distinct roots Al * Uy, Az * Uy, and AS * B of (5.19)

if DS <0 . Then E* has similar character as EO in

Sub-Case A(%).

(b) Complex roots Al * and Az + iuz of (5.19) if Dg > 0.

0

Then E* has similar character as E in Sub~Case A(i1).

Note. 1If DS = 0, double roots of (4.13), depending on higher

order terms of € neglected in (5.19), may or may not generate double

roots of (5.19) if QS # 0. We do not consider this case.

CASE B2

If Q0 = R.0 = 0 , then DS = 0. In this case the nature of the

roots of (5.19) depends on QS and

% 2
P,y | (5.22)

(N

where QS and RS are given by (5.21). Hence, under the conditions

Q0 = R0 = 0, the triple roots Al, Al’ and Al of (4.13) can generate:

{(a) Three distinct real Toots Al * By xl * Uy, and Al * Uy

* %

0
character as E0 in 1 and 4 of Sub-Case A(Z).

of (5.19) if D, =0, Q<0 . Then E* has similar

(b) One real and two complex roots Al + My and Al * ipz of

(5.19) if D # 0 or DS* =0, Qy >0 . Then E* has

similar character as EO in 5(b) and 8(b) of Sub-Case A(iz).

Note. Triple roots of (4.13),depending on higher order terms of ¢

neglected in (5.19), may or may not generate double roots of (5.19) if
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QS #0 or triple roots of (5.19) if QS = RS = 0 . We do not

consider these cases.

Taking into consideration the Cases A, B, Bl’ and B-2 and the

Definitions 1 and 2, we establish the following theorem.

THEOREM 4

A B-type equilibrium of the wzpertﬁrbed system (4.1) generates an
A-type equilibrium of the perturbed system (5.1) if D; #0;

Dg’= 0, D;* #0; or p¥=p**

) ) =0, Q; # 0 . Three dimensional stars,

node stars, antisymmetric node stars, two branched nodes, and one
branched nodes of (4.1) generate either three branched nodes or node
spirals of (5.1); and saddle stars and two branched saddle nodes of (4.1)
generate saddle nodes or saddle spirals of (5.1). The stability or in-

stability property of E’O and E is the same.

CASE C1
Under the conditions D0 >0 and HO = 0, one real and two
imaginary roots A; and o ia)o of (4.13) can generate one real and

two complex roots A and U, i (’(UO + U of (5.19) if H; # 0.

17 ¥ 3)

The character of E* is stated below:

() If p; >0, p; >0, and Hy >0, then X, <0 and H, < 0;

1
and E* is an asympt‘otically stable blunt spiral.
(b) 1If p3<0 and H6>O, then )\1>Oand p2<0; and E*

is a saddle spiral with stable plane focus.
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(¢ 1If P3 > 0 and Hg < 0, then Kl< 0 and By > 0; and E*

is a saddle spiral with unstable plane focus.

*

0

and E° is an unstable blunt spiral.

(d) If P; <0, P < 0, and H, < 0, then Axl > 0, and By > 0;

Hence,the nonhyperbolic equilibxrium EO may change its stability
property under small perturbation. This occurs when }\1 < 0 . Then a
neutrally stable EO of the unperturbed system (4.1) generates an
asymptotically stable E~ if Hy <0 and an unstable E= if Hy > 0
of the perturbed system (5.1).

*

Note. 1If HO

= 0, imaginary roots of (4.13), depending on higher
order terms of ¢ negiécted in (5.19), may or may not generate imaginary

roots of (5.19). We do not consider this case.

On the basis of the results in Cases G and Cl’ and the Definition 3,

we derive the following theorem.

THEOREM 5

4 C-type 'equilibmlum of the mpertimbe.d system (4.1) generates an
A-type equilibrium of the perturbed system (5.1) if H; #0 . The '
stability or instability property of £ and E* are not the same. A
convergent center focus of (4.1) generates an asymptotically stable
node spiral or a saddle spiral of (5.1) and a divergent center focus

of (4.1) generates an unstable node spiral or a saddle spiral of (5.1).
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5.3 QUALITATIVE STUDIES OF THREE PERTURBED LOTKA-VOLTERRA MODELS

In order to illustrate some of the results obtained in Theorems 3,

4, and 5, we now discuss the following special cases of the general

model (5.1).

Example 1. To illustrate a result of Theorem 3, the following
three dimensional perturbed food chain model, studied by Hausrath [33],

is considered.

Lz
L]

1 = Nplajg - appNy + eF (NLNp N T,

z
1

2 = Npl-ayp + 2y Np - 2, Ny + eFy (N, N, N (5.23)

[}

Ng = Nglagy + ag Ny - ag Ny + eFg(N) NN ]

The system (5.23) models a real situation that occurred during this
century in Isle Royale National Park (210 square mile island in Lake
Superior). Here N1 is the food supply for a moose population N

and N3 is a wolf population which preys on the moose N

2 3’
20 33
positive coefficients and €N.F., are perturbations, i = 1,2,3,

i'i ,

j=0,...,4. Hausrath shows that (5.23) for € = 0 has the equilibrium

. 0,0 0.0
point E (Ml,Mz,MS), where
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The characteristic equation of the variational matrix of (5.23) for

e =0 1is (4.13) where

_ 0 _ 0.0 0.0 _ 0.0.0
Pp = 233Mys Py = 3y335MM, + a8, MMy, pyo= a8, 8, MMM, .
Use of the Routh-Hurwitz criterion
a a a a a
10923%32 10932, 2
p, >0,p, >0, H =p.p, ~p; = ———— (8, + —) >0,
1 3 0 1F2 3 2,855 30 ag,

gives that the characteristic equation has all roots with negative real
parts which indicates that the equilibrium EO is asymptotically stable.
Further, Hausrath proves several theorems concerning the relationship
between the unperturbed and perturbed systems of (5.23). Part of these
results, namely the persistance of the stable equilibrium EO can be
obtained as a particular case of Theorem 2. Really, since EO is
hyperbolic equilibrium which is asymptotically stable, the same is

valid for the equilibrium E* of the perturbed system (5.23). To

find the nature of EO and hence E~ , one Has to study the values

DO, QO’ and RO given by (4.18) and make use of Theorems 3 and 4.

Example 2. To illustrate the interesting Case B,(b) we consider

the perturbed model

- v 1 /2

Np = Nql2 - 2Np - N+ Ny v e(z - FONgT

Ny = N{5 - N, - N, - N, + o }

2 = N{5 - Nj =N, - Ny + ze N}, (5.24)
b /3 ,

Ny = Ngl-1+ N + N, - Ny +e =N} .
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In the unperturbed system of (5.24), the interaction between the-
species N1 and N, is competitive, between N1 and N, is mutual-

istic, and between N2 and N3 is predator-prey. The perturbational
terms in (5.24), with factor e << 1', change slightly the unperturbed
system in the following way. The coefficients with factor & indicate
a weaker type of interaction between populations Ny and Nj which

contributes little to the growth rate of Ni , 1,j = 1,2,3, of the
unperturbed system of (5.24).

The unperturbed equilibrium of (5.24) is EO(1,2,2) and the
corresponding perturbed equilibrium, up to the order of € , is
E(1 + 2¢/3, 2 - V2 €/6, 2 + (2/3 + ¥Y2/6)e). The variational matrix

(5.15) for the perturbed systeﬁ (5.24) becomes

- 4- 2 /3 |
- 2 - g€ -1- z € 1+ (1 - —Bae
8 V2 V2 V2
-2 + (3'+_-BJ€ -2+ < € - 2 + < € 5
2 V2, 2 1 | 2 V2
2+(—3—+-——6—)€ 2+(—3-+72)€ -2—(—3-+—-6—)€
R -

such that the condition .(5.18) is satisfied.

The characteristic equation (5.19) of the variational matrix (5.15)

for (5.24) is

A3+ 6+ 26)2% + [12 + (8 + VD)elr+ [8 + (8 + 2/2)e] = 0 (5.25)

comparing (5.25) with (5.19) we have
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P, =6, Py =12, py =8, q =2, q2=s+/'2', q3=8+2/5

and hence from (4.18), (5.21), and (5.22) we obtain

We note that the variational matrix (4.10) for the unperturbed system
(5.24 with € = 0) has one linearly independent eigenvector (-1,1,1)
corresponding to the triple eigenvalue -2 and thus has the Jordan

canonical form Agl given by (4.17).

Therefore, the unperturbed equilibrium EO is an asymptotically
stable one branched node [see (13) of Sub—Cdse B(ZZ)] which is a B-type
equilibrium; and the-pefturbed equilibrium E¥ is an asymptotically stable
coﬁical spiral [see (b) of Case B, along‘with 5(b) of Sub-Case A(i7)] which

is an A-type equilibrium. This result is in conformity with Theorem 4.

Example 3. In order to show. that a nonhyperbolic equilibrium of

the unperturbed system generates a hyperbolic equilibrium of the perturbed

system (Theorem 5), we propose the following perturbed model in R3 .

=z
1]

N1(7 - 4N1 - 3N2 - €N2) s

t - : _
Ny = N[-3 + 3N, + N, - /EN3 + e(2N V3 D1 (5.26)

' - -
N3 = Ng(-5 + 3N, + 2/§N3 + 3€N2)
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The unperturbed system of (5.26) describes a three-level food
chain model, where N1 is the lowest trophic level population or prey,

N, is the middle trophic level population or first predator, and N3
is the highest trophic level population or second predator. The small

perturbational terms in (5.26) has the same meaning as those in (5.24).

The unperturbed and perturbed equilibrium points of (5.26) are
Eo(l,l,l//33 and E*(1 + 5, 1 - 7e, 1/¥/3 + 3/3c) respectively. The

variational matrix (5.15) for the system (5.26) is

- 4 - 20 - 3 - 16¢ 0

3 - 19¢ 1 - 7¢ - V3 + 6/3| ,
0 V3 + 10V3¢ 2 + 18

L ’ .

such that the condition (5.18) is satisfied. The characteristic equation

for the above matrix,up to the order ¢, is
3 2
AT+ (1 + 9e)A° + (2 - 97e)) + (2 + 20e) =0 . (5.27)
Comparing (_5.27) with (5.19) we obtain
pl = ]_, PZ = P3 = 2, ql = 9, qz = _97, q.:3 =20 .

Using these values in (4.18) and (5.21), we find that
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*
0.53, H.0 = 0, and H0 = -99 .

(=]
1

Thus, for € = 0, we are in Case C, and for € # 0 in Case C,. The

1
unperturbed equilibrium Eo of (5.26) 1is a convergent centre focus
[see (15) of Case C] which is a simple nonhyperbolic equilibrium and
the perturbed equilibrium E* of (5.26) is a saddle spiral with

unstable plane focus [see (c) of Case ClJ which is an A-type equilibrium.

This result is in agreement with Theorem 5.
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CHAPTER 6

BIFURCATIONS OF A MULTIPLE EQUILIBRIUM OF

THE THREE DIMENSIONAL KOLMOGOROV MODEL

In this chapter we consider the noncritical case of the perturbed
three dimensional Kolmogorov model corresponding to the critical.case of
the unperturbed model and derive criteria for the existence of simple
equilibria for the perturbed model. We study the bifurcation of a
multiple unperturbed equilibrium into simple perturbed equilibria and
examine the nature and stability of the perturbed equil?bria in the three
dimensional phase space. In the last section, bifurcétions of the
multiple unperturbed equilibria of two certain population models are
investigated and the qualitative behaviors of the corresponding simple

perturbed equilibria are examined.

6.1 EXISTENCE OF A MULTIPLE EQUILIBRIUM

In order to investigate the bifurcation of a multiple equilibrium
of the unperturbed three dimensional Kolmogorov model into simple
equilibria, we consider the noncritical case of the perturbed three

dimensional Kolmogorov model

Ni = NiFi(Nl,NZ,N3,€), i=1,2,3, (6.1)

‘where € is a small positive parameter, corresponding to the critical

case of the unperturbed model
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Ni = NiFi(Nl’NZ’NS’O)’ i=1,2,3. (6.2)

we assume that the unperturbed system (6.2) has at least one equilibrium

. 0,0.0.0
point F (Nl’NZ’NS

of the first octant. This means that the system

), called the unperturbed equilibrium, in the interior

1,2,3, (6.3)

[N
1]

F; (N],N,,N;,0) = 0,

2’

has at least one solution (N?,Ng,Ng), such that

0.0.0

0 .
Fi(Nl’NZ’NS’O) =0, Ni >0, i=1,2,3. (6.4
Let J be the matrix
0.0 .0, _ 1" Co.
J(lestNs) - l_FiN"j, 1,] = 1’2’3’ (6'5)
J
where
oF.
_ i 0.0 .0 .
FiN. = W (Nl’NZ,NS’O)’ 1= 1’2’3’ (6°6)
J J
and assume that
_ 0.0 .0, _
[J] = det J(NJ,N5,NZ) = 0 . (6.7)

The assumption (6.7) corresponds to the critical case for the system

(6.3) and ensures that F0 is a multiple equilibrium of (6.2),
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i.e., FO is a point of intersection of the surfaces (6.3) such that
the tangent planes to the surfaces at their common point exist and are
coincident. To find the equilibrium of (6.1) for € # 0, we have to

solve the system of equations
Fi(Nl,NZ,NS,e) = 0) i = 1)2)33 ‘ (6'8)

subject to the conditions (6.4) and (6.7). Under the condition (6.7),
the system (6.8) may or may not have real solutions. For our problem
we assume that the perturbed system (6.8) has a solution N;(g) in the

neighborhood of the solution Ng of the unperturbed system (6.3),

0

such that N;(O) = N; , and

Fi(N;,N;,Ng,e) =0, i=1,2,3. (6.9)

To find the solution of (6.9), we seek N;(g) in terms of power series

of € 1in the neighborhood of Ng in the form
N¥(e) = N0 + en, + et + i=1,2,3 (6.10)
iv i i i PEeT o

where n, and ti ;1 =1,2,3, are real number.

*

let J be the matrix

J*(Ng + enl,Ng + €n2,Ng +eng,e) = [ 1, 1,5 = 1,2,3, (6.11)
j
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where

dF; 3 3°F.

* 0.0 i 0.0 .0
FiN_ SN (Nl,Nz,Ns,O) +¢e{ I nk SN SN Uql,Nz,Ns,O)
j j k= A

azFi 0 0

aNJae(Nl’ 55N ,0)}, i,j = 1,2,3, (6.12)
and assume that

[J*| = det J* # 0 . (6.13)

The assumption (6.13) corresponds to the noncritical case of the implicit
function theorem for the system (6.9) and ensures that (6.8) has simple

solutions. Hence, the perturbed model (6.1) has simple equilibria
F*(NI,N;,N;,S), called the perturbed equilibria. For € = 0, the

equilibria F* of the perturbed system (6.1) returns to the equilibrium

F0 of the unperturbed system (6.2). Thus, under the influence of small

perturbation the multiple equilibrium F° of (6.2) satisfying (6.7)
generates simple equilibria F* of (6.1) provided the condition

(6.13) is fulfilled.



6.2  BIFURCATION OF A MULTIPLE EQUILIBRIUM

In order to study bifurcations of a multiple equilibrium F

0

64.

into simple equilibria F* , we have to solve the system of equations

(6.9) subject to the condition (6.7) and (6.13).

into (6.9), expanding

+€2t

Fi(N1+enl

1

»

N,+€en +€2t

2

in Taylor series, we obtain

E. n.n, +
1N1N3 13

where higher order terms of the 0(52) are neglected. Here FiN
: j

given by (6.6), and

F

iN

2

n,n., +
N3 273

3

2

+-lF

2

F

2> N3t

1 |
in s * Fie * 3 iy N1

. +
1€EE

. n
1Nle 1

-~

€n3

2
11

F. n.n
1N1N2 12

+ F. ' n, +
1N2€ 2

+€2t3,e), i=1,2,3,

+

i = 1)2)3)

Substituting (6.10)

(6.14)

are
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' 2
SF, 3°F,
9% 0 0.0 ) i 0.0.0
Fie = 32 (NNpsN3, 00, Foy v = syan (N1oN20N3.0),
jk ik
(6.15)
2 2
3°F, 3°F,
i 0.0 .0 9% F 0 0.0
FiNJ.e = aNjae(Nl’NZ’NS’O)’ Fiee = 2 (N;5N5,N5,0),

3

i,3,k = 1,2,3,
and it is assumed that at least one of the second partial derivatives

FiNij #0, i,j,k = 1,2,3, (6.16)

If all of FiN N ;ri;j;k = 1,2,3, are zero, then we shall havé to use
ik -

the higher order terms neglected in (6.14) to resolve the problem. We
do not consider this case. By the implicit function theorem with
(6.12) the solutions of the system (6.14) are simple. Further, the
system of equations (6.14) is a set of three quadratic equations in
three unknowns, such a system may have one or more entire surfaces of
solutions, or it may have two to eight real solutions; or no real
solutions. If the system (6.14) does not have real solutions, no real
values for n., i=1,2,3, exist, and so a solution of the type sought
in (6.13) does not exist. If the system (6.14) has a multiple root,
higher order terms neglééted in (6.14) are required to reéolve the
situation, so we do not handle the case. For simple equilibria of the
type sought in (6.13), we are interested only in the simple real roots

of (6.14).
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The cases of branching will occur if the conditions (6.7), (6.12),
and (6.16) are satisfied. The condition (6.7), i.e., det J = 0
requires that the rank of the Jacobian matrix J given by (6.5) be two,

one, or zero. We will discuss each of these cases separately.

CASE I. Jacobian Matrix J has Rank 2.

In this case we assume that the rank of the matrix J given by
(6.5) is two. This means that at least one of the second order minors

of J 1is different from zero. We assume for definiteness that

2N 2N

70 . (6.17)

3N 3N

Then from the second and third equations of (6.14) we find that n, and

n3 are the solutions of

2 7 5N Fse " FnPp» J=23. (6.18)
9 1
From the reduced system (6.18), the solutions for n, and ng as

functions of n, are given by

1

24 .
nj = _A—H (Aljnl + Aoj)s J = 2339 (6°19)

where Ali are the cofactors of the elements FlN , 1 =1,2,3, in
i

J and
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2e 2N 2¢e 2N

Byy = - » Byg = ) (6.20)

3e 3N ‘ 3e 3N

Substituting (6.19) into the first equation of (6.14), the solution for

n, is given by the following quadratic equation:
310 * e(all 1t apnyt als) =0 (6.21)
where
319 = (AOZFINZ + A03F1N3 ! le)All ’
a5y = %'RllAil * %’RzzAiz + 3 RssAfs Ri2811812

* Ryghy Bz + Ryzhiobyq s

315 = Ryplgalyp + Razbpzhys + Riphgodyy

(6.22)

+ R, A LA+ (A

13703711 3 03 12 A02A13)

2
* RypByp * Rypbyghyp + Rysbygbyg s

1 2 1

313 = 5 Ryylgy + 7 Reg 03 * Rysloolos *

2
Ro2802811 * Rosloslin * Roalyg »
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with

3
Ri5 = Kil A1 FKNiN.’ e E 1,2,3,
3 .
Ro; = T Apq Feu oo i=1,2,3, (6.23)
. K=1 i
3
R = I A F ,
04 K=1 K1 "Kee

and, because of (6.16),it is assumed that

a 0. (6.24)

11 ?

The condition a., = 0 requires higher order terms neglected in (6.14)

11
to resolve the case, and we do not treat it. Equation (6.21) is a
quadratic equation in one variable and we need only simple real solutions
of (6.21). The solution of (6.21) depends upon whether ajg = 0 or

a1, #0 .

Sub-Case IA.

First we consider that

a;, =0 . (6.25)

Here the perturbed equilibria (6.13) have the forms

1,2,3, (6.26)

2 ,
Ni = Ni * 0 .€ 0(e™), i
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where o1 is a solution of the quadratic equation
a az + a,,0,, + a,, =20 : ‘ (6.27)
11711 12711 13 ? ‘
and
o =.._]'.._(A ) j = 2,3
]-J A OJ ljll’ J = 459,
11
provided that
2
a ., - 4a..a.., > 0 . (6.28)

12 11713

Under the condition (6.28), the quadratic equation (6.27) has two

simple nonzero real roots if 2,2 # 0 or one zero and one nonzero
real roots if a5 = 0, a;, # 0. Thus, if the conditions (6.17),

(6.24), (6.25), and (6.28) are satisfied, there will be two branches
of simple perturbed equilibrium points of the form‘(6.26) if aiz #0 ;
or two branches of simple equilibrium points, one of them of the ‘

form (6.26) and the other coinciding with the unperturbed équilibrium

ooo. _
if a,, =0, al, 0 .

(N} Np.N5) 13

Sub-Case IB.

We now assume that

a0 # 0. " (6.29)
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In this subcase the equilibria of the perturbed system (6.1) have

the forms
N =N, + B..c%+ 0(e),  i-=1,2,3 ' (6.30)
i— i 1i ] 2& s~y .
where
-a L AL
By; = i(\a10\ - i=1,2,3,
11/ 11
such that
210211 <0 . . (6.31)

Thus, under the hypotheses of (6.17), (6.24), (6.29),and (6.31), the
multiple unperturbed equilibrium FO bifurcates into two branches of
simple perturbed equilibria of the form (6.30) for sufficiently small

positive € .

CASE 11. Jacobian matrix J has Rank 1.

In this case we assume that the rank of the matrix J given by
(6.5) is one. This means that at least one of the elements of J is

nonzero. We suppose for definiteness that

FSN3 #0 . (6.32)

Then from the third equation of (6.14) we can find n, as functions of

nl and n2 in the form



71.

(6.33)

Substituting (6.33) into the first and second equations of (6.14), we

find that the solutions for n; and n, are given by

2 2
bjo * €(byymy * byony *+ by0yny + cyy0y
*con, + ciS) =0, i=1,2, (6.34)
where
b.. = F, F. - F.._ F__ ,
i0 3N3 i€ 1N3 3e
2
) ) FiN3N3F3N
bi5 = G EiynFan, Y7 TF Fin.n, Fan,)
T 3 oNs j 3
F F2 F F
e A 1 NNy 3N ) 3NN, SNJD
iNSZ TINN, T T2 T Fay ’
1] N N3
3
FiN3N3F3N1F3N2
b.. = (F, F.. - F. F.. - F. F,  + )
i3 INN, TN T OTANGNG TN, TN NS BN, F3N3
F F F F F F.._ F
. o N NG N, NN IN . 3NN 3N, SNZ)
iN 3N.N,  F - F 2 ’
3 12 N, 3N, Fax

3




72.

iN3N3 3N. 3¢
c.. = (F... F - F, F, - F.. F + )
ij 1Nj€ SN:5 | 1NJ.N3 3e. 1N3€ 3Nj F3N3
FannFae  FaneFan.  Fawn. Fan.Fae
- F... (F. _ i3 _ 3 i, 33775 )
iN3 3N.e F3N FSN F2 : ?
J 3 3 N ‘
3
2
F. F
c = (.]-'.F F - F F +}__.11_\I_3_£3_i€_)
i3 2 “iee 3N iN.e 3 = 2 F
3 3 3N3
F F F F2
1 3N,e" 3¢ EVSN 3e
“Fy F,  -—— s L 2
1N:5 2 " 3ee F3N 2 F2 ?
3 3N
3
i,j = 1,2 . (6.35)
The condition (6.16) requires that at least one of
b.lj #0, i,j=1,2 . (6.36)

If all of bij = 0, i,j = 1,2, higher order terms neglected in (6.14)
are needed to analyse the situation, we do not treat it. The system
(6.34) is a system of two quadratic equations in two unknowns. Such a
system may have one or more entire curves of solutions; or it may have
two to four real solutions; or no real solutions. It may be recalled
that we need only simple real roots of (6.34). Tﬁe solution of (6.34)
depends on biO » 1 =1,2. Thus, we have two possibilities: either

biO = 0 or at least one of biO £0,1=1,2.
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Sub-Case IIA.

First we consider that

b.n =0, i=1,2. (6.37)

Then from (6.34), (6.33), and (6.13), the equilibria of the perturbed

system (6.1) have the forms

Ne = N0+ a.e + 0(ed) i=1,2,3 (6.38)
i i 2i ’ 22 :
where (OL21,OL22) is a real root of
b.OL2 + b OL2 +b., 0,0, + C.,0U,, *+
jl1721 j2722 j37217°22 1721
Cio%2 * %3 =0 J =12, (6.39)
and
Oy = = 1 (F,, 0 , + F .. ¢, + F_, )
23 F 3N, 21 3N, 22 3’
SN':5 1 2

such that the Jacobian matrix

[ —-—

Zby0py * Dyglyy * S byglyy F 2byy0yy + Sy
Byy =

_fb21“21 * Dygligg t Gy Doglng + Zbyo0h, + Cyy
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of (6.39) is nonsingular, i.e.,

rA21| #0 . | (6.40)

Under the condition (6.40), the system of equations (6.39) may have two
to four simple nonzero real solutions or one zero and one to three non-
zero real solutions. Thus, under the hypotheses (6.32), (6.36), (6.37),

and (6.40), there will be two to four branches of simple perturbed
equilibrium points, either all of them of the form (6.38) or one of them
coinciding with the unperturbed equilibrium and the rest of the form

(6.38).

Sub-Case IIB.

Here it is supposed that at least one of blO and b is not

20

equal to zero. Hence, this subcase has three possibilities: either

b10 #0, b20 # 0; or b10 #0, b20 =0 ; or b10 =0, b20 #0 . Now

we consider that

biO £0, i 1,2. (6.41)

Then from (6.34), (6.33), and (6.13), the equilibria of the perturbed

system (6.1) have the forms
NY =N s g et e i = 1,2,3 6.42
i - i 2i€ (,e), 1= it g | ( ° )

whéTe (821,822) is a real solution of
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2 2 ) . ,
biiByy * bioBy, * bigByiByy + by =0, = L2 (6.43)
and
Ba3="F . (Fay Byp * Fay Bpp)
3N, 1 2
provided that the Jacobian matrix
2b;1Ba1 * PygByy  BysBay * 2058,
Byy =
2by1By1 * bazBay  byzByy + 20558,
- -
of (6.43) is nonsingular, i.e.,
la,,1 # 0. (6.44)

We observe that (-621,—822) is also a solution of (6.43). Under the
condition (6.44), the system of equations (6.43) has either two or four
simple nonzero real solutions. Hence, if the hypotheses (6.32), (6.36),
(6.41), and (6.44) are satisfied, there will be either two or four

branches of perturbed equilibria of the form (6.42).
Exactly similar analyses as above are valid for the other two
possibilities b10 £0, b20 = 0; and b10 =0, b20 # 0 of this

sub-case.
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CASE II1I. Jacobian matriz J has BRank 0.

In this case it is assumed that the rank of the matrix J given

by (6.5) is zero, i.e.,

F.. =0, i,j=1,2,3, (6.45)

where FiN are given by (6.6). Then from (6.14), we find that n,, 0,
j

and n3 are the solutions of

2 2 2

1 1 1
F. + (5 F. n, + x F, n, + = F. n, +
i€ 2 1N1N1 1 2 1N2N2 2 2 1N3N3 3
E. n.n, + F. n,n, + F. n,n, + F. n, +
1N1N2 172 1N1N3 13 1N2N3 2°3 1N1€ 1
1 . .
FiN2€n2 + Fingn3 + E'Fiee) = 0, i=1,2,3. (6.46)

- The system (6.46) is a set of three quadratic equations in three unknowns.
Such a system may have one or more entire surfaces of solutions; or it
may have two to eight real solutions; or no reél solutions. We recall
that we are interested in the simple real solutions of (6.46). The
solution of (6.46) depends on Fie’ i=1,2,3. There are two possible
cases: eilther all of the numbers F, , i = 1,2,3, vanish or at least

1€

one of them does not vanish.

- Sub-Case IIIA.

Throughout this subcase we assume that
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=0, i=12,3, (6.47)

where Fi€ is given by (6.15). Then the perturbed equilibria have

the forms
* _ 0 2 .
Ni = Ni * g€+ 0(e™), i=1,2,3, (6.48)
where (a31’a32’a33) is a real root of
1 2 1 2 1 2
= F. o + = F. o + = F. a +
2 1N1N1 31 2 1N2N2 32 2 1N3N3 33
F. O, QO + F. O, O + F. L0 +
1N1N2 31732 1N1N3 31733 1N2N3 32733
1 .
— =0 i = 1 6 AQ)
Fine¥1 * Fin, %32 * Fin, %33 * 7 Fige = 0 t=1,2,3, (6.49)
1 2e 3e
such that the Jacobian matrix
{j 3
A, = r F..-., o, + F. 1, i,j = 1,2,3,
31 k=1 1NjNk §k 1Nj€]
of (6.49) is nonsingular, i.e.,
lag,l # 0, (6.50)

where FiN N and E, are given by (6.15). Under the condition

j 'k
(6.50), the system of equations (6.49) has two to eight simple

N.€
J

real solutions and either all the solutions are nonzero or one of them
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is a zero solution. Hence,in this sub-case there will be two

to eight branches of equilibrium points originating from (N?,Ng,Ng)

for sufficiently small positive € , and either none or one of them

will coincide with (NJ,NJ,N3).

Sub-Case IIIB.

We now assume that at least one of Fie , 1 =1,2,3,1is different

from zero. Hence,we have three possibilities: (i) all three of

Fie #0, 1 1,2,3; (ii) two of Fie # 0 and the rest one of

Fi€ =0, 1i=1,2,3; and (iii) one of Fie # 0 and the rest two of
FiE =0, i=1,2,3.

First, let us consider that

Fi o # 0, i=1,2,3. » (6.51)

In this case the perturbed equilibria have the forms

_ 0 5 .
Ni - Nl + 8318 + O‘(E), 1= 1:2:3: (6-52)

where (831,832,833) is a real root of

2 1 2 1
F, B + = F. 8 + 5 F
1N1N1 31 2 1N2N2 32 2

2

Baz *

1
2 1N3N3

F, BzyB-, + F. B.iBzz *+ F. BB
1N1N2 31732 1N1N3 31733 1N2N3 32733

+F,_=0, i=1,2,3, (6.53)
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provided that the Jacobian matrix

3
A =[ X E. B ], i)J = 1,2’3’
327 | gop NN UK

is nonsingular, i.e.,
IA32[ #0 . / (6.54)

We note that (-831,-§32,-833) is also a solution of (6.53). Under ?he
condition (6.54), the system of equations (6.53) has two, four, six, or
eight simple nonzero real solutions. Thus, in this sub-case there will
be two, four, six, or eight branches of perturbed equilibrium points of

of form (6.52).

Exactly similar analyses as above are valid for the other two

possibilities of this subcase.

Remarks: We observe that the system (6.1) can be written in the

form

1 .
Ni = @i(Nl,Nz,NS,O) + Ewi(Nl,Nz,Nz,e), i 1,2,3, (6.1a)

where the terms v, are independent of € and wi involve € . It is

assumed that
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ra'w
i, 0 .0.0 _
det L:éﬁ;-(Nl,Nz,Ns,O) = 0 , and
(6.1b)
réw oY
i 0.0 .0 i..0.,0.0 .o
det aT'(Nl:stNsso) + € aT(Nl’NZ’NS’E) # 0 s 1,) = 1’2,3,
0.0 .0 .0 . eaeq .
where F (Nl’NZ’NS) is an equilibrium of the unperturbed system of

(6.1a) and thus (6.1). The conditions (6.1b) are in consistent with
(6.7) and (6.12) and guarantee that the unperturbed equilibrium FO is
a multiple equilibrium while the equilibria of the perturbed system

(6.1a) originating from FO are simple. Furthermore, we note that

if wi(Ng,Ng,Ng,e) =0, 1i=1,2,3, then F is also an equilibrium
of the perturbed system (6.1a) while if at least one of

wi(Ng,Ng,Ng,e) #0, i =1,2,3, then FO is not an equilibrium of (6.1a).

Thus, we have the following remarks.

Remark 1. If (6.la) satisfies (6.1b) and all of

wi(Ng,Ng,Ng,s) =0, 1i=1,2,3, then one of the perturbed equilibria

of (6.1a) coincides with F0 and the rest of the perturbed equilibria

exist in the neighborhood of F0 .

Remark 2. If (6.la) fulfills (6.1b) and not all of

wi(Ng,Ng,Ng,e) #0, i = 1,2,3, then all the perturbed equilibria of

(6.1a) exist in the neighborhood of FO .

Taking into consideration the results in Cases I, II, and III,

and the Remarks 1 and 2, we have established the following theorem.
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THEOREM 6

If the rank of the Jacobian matrix of the wnperturbed three
dimensional Kolmogorov model is n = 2, 1l,or 0, and the conditions
(6.12) and (6.16) are satisfied, theﬁ the multiple equilibrium of the
unperturbed model bifurcafes into at least 2 or at most 2”'1,.«; simple
equilibria of the corresponding perturbed model, where m =1 for
n=2,m=2 for n=171, and m=3, for n =0 . Further, either
all the perturbed equilibria exist in the neighborhood of the un-
perturbed equilibrium or one of the perturbed equilibria coincides
with the unperturbed equilibrium and the rest of the perturbed

equilibria exist in the neighborhood of the unperturbed equilibrium.

6.3 NATURE AND STABILITY OF THE PERTURBED EQUILIBRIA

The nature and stability of the equilibria F* of the perturbed
system (6.1) depends on the variational matrix of (6.1). To find the
variational matrix of (6.1), we linearize the perturbed system (6.1) by

using the trans formations

* * .
Nl - Nl(s) + Yi(E), 1= 132,3, (6~55)

0

such that N;(_O) = Ni » 1= 1,2,3. Substituting (6.55) into (6.1) and

using Taylor series expansion for

NY + Y NI + Y;,e), i=1,2,3,

* *
Fi(Np + Yp,N) + Y5 ,N4

we obtain
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N MW

Fiy (@Y. (e) + F(e), 1i=1,2,3  (6.56)

Y;'CE) = [N (e) R,

j
where ?;(8) represents the higher order terms of € involving the
nonlinear terms of (6.1), and is given by

* _._* % * % _ * * *
F;(e) = Fi(yl,Y ,Y3,€) = [Ni(e) + Yi(e)]Fi(Nl+Y

*

LNZHYE NEY Y )

1’72 7223 7%
INT(e) g Fro(e)1Y'( i =1,2,3 (6.57
= iE ] ]‘.N."' ia): 1 = 1,4,9, -)
j=1 J
and
* aFi* * *
Foy (8) = 55~ (N LN, N 208D, 1,j = 1,2,3,
J J
with
* .
FiN.(O) FiN. , i,j = 1,2,3,
J J
where FiN. is given by (6.6).
J

The variational matrix of (6.56) at the perturbed equilibrium

point, up to the order of ¢ , is

=

-

.
H

A*(e) = |n.. + en: 1,2,3 (6.58
—1J 1J’ LER S °)

such that
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A*(0) = A = [nij], i, = 1,2,3, | (6.59)
where
n =Oa(NOONOO) i, = 1,2,3 (6.60)
ij 1 2’ 3’ > ,J 3 3 3 A
N
and

i,j = 1,2,3. (6.61)

1}

3
0
n,. =N,( Z nF, + F. ) +n.F._,
ij i k=1nk 1Nij 1Nj€ i 1Nj

The partial derivatives of Fi in (6.61) are given by (6.15). The

assumptions (6.12) and (6.7) guarantee that
|a*(e)| #0 and [A]l =0, | (6.62)

which ensures that we are dealing with the noncritical case of the
perturbed model (6.1) corresponding to the critical case of the un-

perturbed model (6.2).

The characteristic equation of (6.58), up to the order of ¢ ,

is

3 2
AT+ (rl + esl)l + (r2+€sz)x +es, =0, (6.63)

where
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3
r, =- X n..,
1 i=1 ii
;3 3 .
T, =5 X . (n..n,. - ), i#ij,
2 2 i=1 j=1 11733 ij ji
and -
3 '
s;=- I nj, (6.64)
. 11
i=1
3 3 3 1 * %* *
s,= L L ZIlzn..(n..+n_.)-n..n..], i#3j#%k,
2 i=1 j=1 k=1 27ii Y55 kk ij ji
* * *
Ny Mo M3 By M2 M3 N1 P12 M3
- _ - * * * _ .
53 % 7 |y Bpp Bo3 N1 Mo Moz N1 Moo Moz
* * %
Nzp N3y a3 Nz) N3y N33 Nz Mgy Nig

It is assumed that Sz #0. If Sz = 0, then higher order terms of ¢
neglected in (6.63) are required to resolve the situation. We do not

consider this case. For & = 0, the equation (6.63) reduces to

AT+ AT T A =0, (6.65)

which is the characteristic equation of (6.59). Equation (6.65) has
at least one zero root. The number of zero roots of (6.65) depends on
the rank of the variational matrix A given by (6.59). The cubic
equation (6.65) has one, two, or three zero roots provided the rank of
A is two, one, or zero respectively. The condition (6.62) ensures

that the characteristic equation (6.63) does not have any zero root.
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Moreover, the roots of the characteristic equation of a perturbed system
are, in general, assumed to be distinct. Hence, the variational matrix
of the perturbed model (6.1) has three distinct eigenvalues and thus
three linearly independent eigenvectors corresponding to these eigen-
values. Therefore, the nature and stability of the perturbed equil-
ibria F* can be determined by the types and signs of roots of the

characteristic equation (6.63) of the perturbed system (6.1). Further,

for € = 0, the equation (6.63) reduces to (6.65), and we say that the
characteristic equation (6.65) of the unperturbed system (6.2) generates
the characteristic equation (6.63) of the perturbed system (6.1).

Therefore, the roots of (6.65) generate the roots of (6.63).

Distinct roots of the chracteristic equation (6.65) of the un-
perturbed system (6.2) can generate only distinct roots of the
characteristic equation (6.63) of the perturbed system (6.1). However,
in general, repeated roots of (6.65) generate distinct roots of (6.63)
and imaginary roots of (6.65) generate complex roots of (6.63). To
facilitate the study of these cases we introduce the following

notations:

1 2
= 708 T2

w]
{

2
(4r2 - rl), H = TiT,s

1 1 2.2 2
D =g (r, -31) (5, - 315

Sy - 353) , (6.66)

+

QL-(r T, - 2 rs)(r S, + TS -2 T
18 ~"172 .9 71 172 271 3
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where T, and sj , 1i=1,2, j =1,2,3, are given by (6.64). Also,

we use some small values vi(e), i=1,2,3, such that vi(O) = 0. These

small values may vary but vy # Vs, # Vs
We now provide parameter conditions for all possible types of
distinct roots of the characteristic equation (6.63) and examine the
character (i.e., the nature of the phase portrait and the stability
or instability property) of the perturbed equilibria corresponding to

these roots. We discuss all possible cases according to the rank of A

given by (6.59).

CASE o . Vartational Matyix A has Rank 2 .

In this case equation (6.65) has one zero root. Thus, we have four
possibilities: one zero and two distinct real roots, one zero and two
complex {(with nonzero real parts) roots, one zero and two repeated real

roots, and one zero and two imaginary roots.

Sub-Case TR One Zero and Two Distinct Real Roots.

One zero and two distinct real roots 0 and Ei, i=2,3, 0f
(6.65) satisfying D < 0 , can generate only three distinct real roots _

RE 52 * Vs and Ez.+ Vg of (6.63). The perturbed equilibrium F
has the following character.

(i) If r, >0, s

1 >0, and H> 0, then v, <0 and

3 1

Ei <0, 1i=2,3, and F* is an asymptotically stable three

branched node.



(i)

(iii)

(iv)

Sub-Case O

If
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S; <0 and H > 0 , then v, > 0 and
Ei <0, 1i=2,3; and F* 1is a three branched saddle node
with stable two branched plane node.
If S <0 and H<O, then vl < 0 and gi >0,
i=2,3; and F* is a three branched saddle node with
unstable two branched plane node.
If T <0, Sz <0, and H < 0, then vl >0 and Ei >0,
i=2,3; and F* is an unstable three branched node.

+ One Zero

and Two Complex Roots.

One zero and two complex roots O and £ * in, § # 0 of (6.65)

satisfying D > 0 and T # 0, can generate only one real and two

compleXx roots

\Y

1 and

g + v, X i(n + v3)

.equilibrium F* has the following character.

(v

(vi)

(vii)

(viii)

Sub-Case ag '

If T >0,
and F* is
If s3 <0

is a saddle

If >

3 0

s
is a saddle
If rl
and F*

<0,

is

One Zéro

s, >0, and H > 0, then Vv

3 1

of (6.63).

The perturbed -

<0 and £ < 0 ;

an asymptotically stable pointed spiral.

and H > 0, then vI

>0 and & <0 ;

and F*

spiral with stable plane focus.

and H < 0, then Vi

<0 and &£ > 0 ; and

*

F

spiral with unstable plane focus.

s, <0, and H < 0, then v

3

an unstable pointed spiral.

1

and Two Repeated Real Roots.

>0 and £ > 0 ;

One zero and two repeated real roots O, 62, and 52 of (6.65)

satisfying D = 0, r1 # 0, and ‘rz # 0 can generate:



(a)

(b)
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Three distinct real roots Vys 52 * Vs and 52 * V., of

(6.63) if D* <0 . Then F* has similar character as

F* in Sub-Case a, .

One real and two complex roots v and &, £ iv) of (6.63)
if D*> 0 . Then F* has similar character as F  in

Sub-Case Ay -

Note. Double nonzero roots of (6.65), depending on higher order

terms of

€ neglected in (6.63),may or may not generate double non-zero

roots of (6.63) if D" = 0. We do not treat it.

Sub-Case %y - One Zero and Two Imaginary Roots.

One zero and two imaginary roots O and * in of (6.65) satisfying

D>0 and r, =0 generate one real and two complex roots v, and

1 1

v, % i(n+ v,) of (6.63) if H* # 0. The character of F* is stated below:

(ix)

(x)

(xi)

(xii)

If s, >0, s, >0, and H* > 0, then v, <0, 1i=12; and

1 3
*
F is an asymptotically stable blunt spiral when vy > Vs
and pointed spiral when vy <V,
If s, <0 and H*> 0, then v, >0 and v, < 0; and F'

3 1 2
is a saddle spiral with stable plane focus.

If s, >0 and H* < 0, then v; <0 and v, >0 ; and F*

is a saddle spiral with unstable plane focus.

If 1 3
*

F is an unstable blunt spiral when Vi >V, and pointed

<0, s, <0, and H* < 0, then v, >0, i =1,2; and

spiral when Vi <V, .
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Note. If H* = 0, imaginary roots of (6.65),depending on higher
order terms of & neglected in (6.63), may or may not generate imaginary

roots of (6.63). We do not consider this case.

CASE B . TVariational Matrixz A has rank 1 .

In this case equation (6.65) has two zero roots. Hence, we have

only one possibility: one nonzero real and two zero roots.

One nonzero real and two zero roots £&., 0, and 0 of (6.65)

l)

satisfying T #0 and r, = 0 can generate:

(c) Three distinct nonzero real roots El + Vl’ v2, and vs of

(6.63) if D" <0 . Then F* has similar character as F°

is replaced by s.

in Sub-@ase:xl provided r o » H by

2
*
HY, 62 by Vs and 53 by vz .

(d) One nonzero real and two complex roots with nonzero real

parts El + Vl and v, £ iv if p*>0 and H” #0 .

2 3

Then F* has similar character as ' in (vi) and (vii)

of Sub-Case ag provided H 1is replaced by HY , Vi by El’

and & by v Also, F* has the following character:

5

(xiii) If r >0, s,>0, and H* > 0, then £, <0 and v, <0
and F* is an asymptotically stable blunt spiral.

(xiv) 1If T <0, Sy < O,‘ and H” < 0, then El >0 and v, > 0;

2
and F* is an unstable blunt spiral. '
Note. Double zero roots of (6.65),depending on higher order terms
of € neglected in (6.63),may or may not generate double nonzero real roots

of (6.63) provided D* = 0 and Q* # 0. We do not treat this possibility.
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CASE v .- Variational Matrixz A has Rank 0 .

In this case equation (6.65) has three zero roots. This occurs

*

when T, =T, 6 =0 . We observe that r, = r = 0 implies D = D" = 0.

1 2 1 2
Hence, three zero roots of (6.65) can generate only one nonzero real
and two complex (with nonzero real parts) roots Vi and v, * ivs of

(6.63). Here the equilibrium F* has the following character:

(xv) 1If Sg < 0, then vl >0 and v, < 0; and F* is a saddle

spiral with stable plane focus.

(xvi) 1If s, >0, then v, <0 and v, > 0; and F* is a
3 1 2

saddle spiral with unstable plane focus.

Note. Triple zero roots of (6.65), depending on higher order terms
of € neglected in (6.63), may or may not generate nonzero double roots
of (6.63) if Q* # 0, or nonzero triple roots of (6.63) if Q* = R* = 0.
We do not consider these cases. Further, we observe. that triple zero

roots can not generate three distinct nonzero real roots.

On the basis of the results obtained in Cases a, B, and vy , we

establish the following theorem.

THEOREM 7

Multiple equilibria of the wnperturbed system (6.2), for small
positive € , generate A-type hyperbolic equilibria of the perturbed
system (6.1) either automatically or provided D* # 0 and/or B #0 .

Under the influence of small perturbation, the nature bf the multiple
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unperturbed equilibrium always changes, while the stability property

changes only if r, > 0 or r, = 0, s

> 0; and S5 o .

> 0; ry > 0 or r, = 0,

59
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CHAPTER 7

EXAMPLES AND NUMERI CAL SOLUTIONS

In this chapter we present two examples and numerical solutions

of one of the examples.
7.1  QUALITATIVE BEHAVIORS OF TWO PERTURBED FOOD-CHAIN MODELS

In this section we give two examples of population models involving

bifurcations which are special cases of the general model (6.1).

Example 1. In order to illustrate a result of Theorem 6 in which
one of the perturbed equilibria coincides with the unperturbed equil-

ibrium, we consider the following perturbed three dimensional simple food

chain.
N' = N.I1 + N° - 2N.N. + €(Ny - N,) 1,
AU | 1 12 N
N' = N,[-1 + 2NN, - 2NN, + €(2N, - Ng) ] (7.1)
2 2 ' 12 27273 71 37
'_ -— -
Ny = N3[ 1+N, + e (2N, NS)].
In this three species food chain, N3 eats N2, and N2 eats Nl; and

hence N1 is the prey, N2 the first predator, and N the second
predator. The perturbation terms, i.e., the coefficients of € , with
€ << 1, indicate weaker types of interactions between the populations
Ni and Nj , and contribute little to the growth rate of Ni’

i,j = 1,2,3, of the unperturbed system of (7.1).
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The unperturbed system of (7.1) has a double equilibrium
FO(1,1,2). We observe that all the perturbational terms in (7.1)
vanish at the unperturbed equilibrium point (1,1,2). The perturbed

equilibria of (7.1) are F*1(1,1,2) and F'2(1 - e, 1, 1-de).

The variational matrices for the perturbed system (7.1) at the

equilibrium points F*l and F*? are respectively

-
€ -2-¢ 0 - -2+3 0
* * T .
A 1 _ 2+42¢ 0 --21-—&: and A 2. 2+2¢  2¢ --;—-e . (7.2)
0 2+4e -2¢ L 0 2 - 2¢€
-

We observe that the conditions (6.7), (6.12), and (6.16) are fulfilled.
The variational matrix for the unperturbed system of (7.1) has rank
two thus we are in Case I. Further, the system (7.1) satisfies
the conditions (6.24), (6.25), and (6.28), and the Remark 1 of Section
6.2. Hence, the result that the multiple unperturbed equilibrium FO
bifurcates into two simple perturbed equilibria F'l and F*2 , and
one of the perturbed equilibria, here F*l, coincides with the

unperturbed equilibrium FO is in agreement with Theorem 6.

* *
The characteristic equations for A 1 and A 2 of (7.2), wup to

the order of € , are respectively
~3 2 '
AT+ edT # (5 + 10e)A + 7 = 0 (7.3)

and
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A3 e ex? # 5N+ 9 =0 . (7.4)

Comparing (7.3) with (6.63) we find that

Using these values in (6.66) we obtain
D= 125/127, H =0, H = -2,

and thus we are in (xi) of Sub-Case oy - Hence, the perturbed equilibrium
* ' '
F'1 is a saddle spiral with unstable plane focus. Comparing {7.4)

with (6.63) we have

Then from (6.66) we obtain
D= 125/27, H=0, H = -4,

and thus we are in (xi) of Sub-Case a, . Here the perturbed equilibrium

*
F 2 is a saddle spiral with unstable plane focus. These results are in

complete agreement with Theorem 7.
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Example 2. To illustrate a case of Theorem 6 where all the
perturbed equilibria exist in thebneighborhood of the multiple un-

perturbed equilibrium, we study the following perturbed population model

Vo 2

N1 = Nl[l + N1 - 2N1N2 + €(4Nl - 6N2),

Ly _ 1.2 1

Ny = Np[-1+ 2NN, - SNON, + €N} - >N 1, (7.5)
1

Nz = NS[—l + N, + eNZ].

The model (7.5) has the same interpretation as the model (7.1). Further,
the unﬁerturbed pért of (7.5) is the same as that of (7.1), and thﬁé
has the double equilibrium Fo(l,l,Z). We note that the perturbational
terms associated with the first and the third equations do not vanish
at the u%éerturbed equilibrium point (1,1,2). The perturbed equilibria
of (7.5) are F 1(1-(3+/e, l-g, 2-(12+4/3)e)  and
F2(1-(3-/3)e, l-e, 2-(12-47%¢).
The variational matrices for the perturbed system (7.5) at the

* * ~
equilibrium points F 1 and F 2 are respectively

- v .
-2V3e  -2+(6+4V/3)e 0 \'2/373 -2+(6-4/3)e 0
* o
Ao | 2o (8+2/e)¢e -%+e and A*? = 12.3¢ (8-2/B) ¢ -%+a . (7.6)
LO 2-(10+4V3)e 0 Lo 2-(10-4/3)e 0

We note that the conditions (6.7), (6.12), and (6.16) are fulfilled

and we are in Case I. The system (7.5) also satisfies the conditions
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(6.24), (6.25), and (6.28), and the Remark 2 of Section 6.2. Hence,
the result that F° bifurcates into F*l and F*2 ; and F'l and

F*2 exist in the neighborhood of F0 is consistent with Theorem 6.

*
The characteristic equations for A*l and A 2 of (7.6), up

to the order of € , are respectively

A3 - 8e)n? + {5 - (25 + 10/F)elr + 2VFe = 0 , (7.7
and

A° - (se)A2.+ {5 - (25 - 10/B)ehr - 2/% = 0 . (7.8)
.Compai'ing (7.7) with (6.63) we find that

r1=0, r2¥5, 51=~—8, 52=-25— 10v3, 53=2/3.

Using these values in (6.66) we have

*

D=125/27 , H=0, H*= -40-2/3,

~and thus we are in (xi) of Sub-Case o Hence, the perturbed equil-

4
ibrium F*l is a saddle spiral with unstable plane focus.

Comparing (7.8) with (6.63) we get

r =0, r,=5, s =-8s5,= -25+10V3, s, = -2/3.
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Substituting these values in (6.66) we obtain

*

D = 125/27, H =0, H = -40 + 2V/3,

and thus we are in-(xii) of Sub-Case o, . The cubic equation has

4
one real and two complex roots, where the real part of the complex root

*
is greater than the real root. Hence, the perturbed equilibrium F 2
is an unstable pointed spiral. The above results are in agreement with

Theorem 7,

7.2  NUMERICAL SOLUTIONS OF A PERTURBED FOOD CHAIN

In this section we present various numerical solutions of the
system of ordinary differential equations (7.5) for different values
of e . Each value of € 1is treated in a separate case. In each
case the system of equations (7.5) has been integrated for various
times. These computer solutions are presented as a guide to the
analysis and as some measure of verification of the results obtained in

Example 2 of Section 7.1.

Many different runs using variety of initial values are made. We
note that for arbitrary selected initial conditions in the vicinity of
the double equilibrium FO(J,l,Z), the behavior of solutions of (7.5)
for different values of € remains identical. By using a computer we

find the solutions of (7.5) for ¢

0, .05, .10, and .15 with the

initial values N;(0) = 1.0, N,(0) = 1.1, and N-(0) = 2.1 within the
time range 0 to 10 which is divided into 50 equal intervals; and

then draw the diagrams for these solutions.
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Table 1 (see Page 110 ) represents the solutions for the system
of equations (7.5)when € = 0. Here we find that all three populations
oscillate in the neighborhood of the equilibrium FO . Figure 15
represents the diagram for Table 1. In this case the oibit is so

near to a closed curve that on Figure 15 it looks like closed.

Tables 2, 3, and 4 (see Pages 111, and 112) represent the
solutions for the system (7.5) when ¢ =‘.05, .10, and .15 respectively.
From these tables we notice that as the value of the small parameter €
increases, the populations N2 and N3 exhibit increased oscillations
while the population N1 goes away from FO . Figures 16, 17, and 18
which portray the g;aphs for Tables 2, 3, and 4 respectively represent

unstable pointed spirals. These figures exhibit that the solutions for

N, and N, are almost periodic while N

2 3 spirals away from FO

1
On comparison, it is found that the behavior of the solutions

obtained numericallyvis consistent with the behavior of the solution

obtained qualitatively close to the equilibrium F*2 (which is an

unstable pointed spiral) of Example 2 in Section 7.1.
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CONCLUSION

In this thesis we have considered a system of three autonomous
nonlinear ordinary differential equations of the Kolmogorov-type in-
volving small perturbation. Sufficient conditions for the existence
of simple perturbed equilibria in the neighborhood of the simple and
multiple unperturbed equilibria of the three dimensional Kolmogorov
model have been derived. The nature and stability of the simple un-
perturbed as well as the perturbed equilibria have been investigated .
qualitatively in the three dimensional phase space. We have also
examinea the bifurcations of a multiple unperturbed equilibrium into
simple perturbed equilibria. In order to illustrate the theory, the
qualitative behaviors of the equilibria of some unperturbed three
dimensional population models have been compared to those of the
perturbed models. It has been shown that small perturbation has an
stabilizing or a destabilizing influence in the noncritical case and

a branching effect in the critical case.

A model in population dynamics, like many physical and engineering
models, represents an idealization and simplification of a real
situation. Besides, it involves parameters which cannot be measured
exactly. All this gives greater credibility to models with certain
qualitative properties that do not change under the influence of small
perturbations. One such important property (perhaps the most important)

is the hyperbolic nature of an equilibrium point.

According to Theorems 2-4 it is enough to establish that the un-

perturbed system (4.1) has a hyperbolic equilibrium EO . It will
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persist under the influence of small perturbations. Hence,we do not
need to study the nature of the equilibrium E* of the perturbed
system (5.1). Example 1 in Section 5.3 (Hausrath [33]) is an excellent
illustration in support of the usefullness of Theorem 3. Further, in
Theorem 5, conditions have been presented under which a simple non-
hyperbolic equilibrium EO of the unperturbed model generates a hyper-
bolic equilibrium E* of the pexrturbed model. EO and - E* may or may
not have the same stability or instability property. This theorem has
not only mathematical interest, its physical and biological inter-
pretation is that a system having a nonhyperbolic equilibrium is too

fragile and its relevance as a suitable model of a real situation may be

questioned.

Theorem 6 gives the criteria for the existence of simple equil-
ibria F* of the perturbed system (6.1) in the neighborhood of a
multiple equilibrium FO of the unperturbed system (6.2). The multiple
equilibrium FO is always unstable and does not persist under small
perturbation. Hence,we need to examine the.nature and stability of
the perturbed equilibria F* . 1In Theorem it has been shown that
the number of simple perturbed equilibria F* depends on the number
of multiplicity of the unperturbed equilibrium FO and either all
the perturbed equilibria exist in the neighborhood of the unperturbed
equilibrium or one of the perturbed equilibria coincides with the un-
perturbe& equilibrium and the fest lie in the neighborhood of the
unperturbed equilibrium. Sufficient conditions under which a multiple

equilibrium of the unperturbed system generates A-type simple equilibria
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of the perturbed system and under which the stability property of the

multiple equilibrium changes are presented in Theorem 8.

A nonlinear study of the perturbed three dimensional Kolmogorov
model reveals the existence of asymptotically stable equilibrium
solutions along with unstable equilibrium solutions and bifurcation
solutions. Biologically, the result is interesting as a description
of the complexities that nonlinearities can introduce even into the
simplest equations of population dynamics. Mathematically, the model
illustrates some arbitrary dynamical behaviors for three dimensional g

nonlinear systems.

The present work allows further investigations. One immediate
extension of the work is the study of the existence and bifurcation
of periodic solutions in the three dimensional Kolmogorov ﬁodel with
small perturbation. Further, we note that we have investigated the
‘time-independent three dimensional Kolmogorov model with small
perturbation. Hence, a parallel problem dealing with the qualitative
analysis of the time-dependent three dimensional Kolmogorov model
with or without perturbation can be explored. The solution of the

problem is expected to be more complicated than that presented here.

Some sections of the work presented in this thesis have been

summarized in journal articles [13-14].
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1.14990
1.02928
0.93104
0.87399
0.85439
0.86528
0.90234
0.96431
1.05214
1.16706
1.30393
1.42861
1.43800
1.25067
1.02074
0.88083
0.82109
0.81287
0.84117
0.90129
0.99562
1.13349
1.33333
1.61952
1.92265
1.63740
1.06434
0.84763
0.78657
0.79281
0.84229
0.93257
1.07539

. 1.30542

1.72740
2.84600
1.87237
0.93259
0.83547

N,
1.10000
1.06641
1.01045
0.94966
0.89536
0.85351
0.82757
0.82072
0.83741

0.88399

0.96625
1.07708
1.17454

©1.19898

1.14331
1.05015
0.95606
0.87693
0.81741
0.77890
0.76358
0.77715
0.83237
0.95309
1.15838
1.35722
1.35689

1.20596

1.04174
0.91004
0.81326
0.74639
0.70638
0.69503
0.72343
0.82716
1.12135
1.71012
1.66688
1.28370
1.01774
0.84905
0.73946
0.66920
0.63077
0.62768
0.68766
0.99387
3.52938
1.49180
1.01073

Table 2

N3

2.10000
2.1597
2.19958
2.21232
2.19809
2.16185
2.11103
2.05418
2.00074
1.96144
1.94900
1.97703
2.05203
2.15898
2.26293
2.33319
2.35776
2,.33930
2.28737
2.21363
2.13007
2.04898

- 1.98466

"1.99750

2.13418
2.33282
2.50259
2.59329
2.60444
2.55384
2.46176
2.34656

©2.22453

2.11193
2.03094
2.02971
2.23485
2.64978
2.95379
3.07284
3.05664
2.95440
2.80279
2.62890
2.45461
2.30347
2.22923
3.00021
3.90261
4.12229

111.



t

Ny

EPS= 0.10000

0.0

0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00
4.20
4.40

1IFAIL=2

t

EPS= 0.15000

0.0

0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80

IFAIL=2

1.00000
0.91872
0.86741
0.84826
0.85851
0.89629
0.96233
1.06016
1.19494
1.36527
1.52262
1.48142
1.16762
0.90544

0.78265

0.74315
0.75373
0.80337
0.89415
1.04180
1.29094
1.79444
3.87917

Ny

1.00000
0.89531
0.82933
0.80386
0.81457
0.86002
0.94465
1.08209
1.30392
1.68097
2.25290
1.54241
0.82887
0.66492
0.63260
0.65856
0.73078
0.86129
1.09840
1.64820

N,

1.10000
1.05824

*0.98526

0.90670
0.83725
0.78336
0.74841
0.73644
0.75586
0.82565
0.98545
1.26499
1.45288
1.32576
1.10472
0.92276
0.79045
0.69693
0.63378
0.59828
0.59662
0.66279
1.12347

Table 3

N2

1.10000
1.04983
0.96022
0.86556

0.78328

0.71958
0.67725
0.66086
0.68367
0.79050
1.19208
2.16062
1.56869

-1.08023

0.81688
0.65744
0.55308
0.48367
0.44244
0.43765

Table 4

N3

2.10000

2.18188 -

2.23732
2.25539
2.23650
2.18773
2.11908
2.04181
1.96854
1.91565
1.91005
1.99980

12.21998

2.47785
2.64999
2.70907
2.67578
2.57857
2.44270

'2.28898

2.13567
2.00437
1.95936

N3

2.10000
2.20410
2.27469
2.29718
2.27272
2.21095
2.12468
2.02775
1.93588
1.87307
1.90588
2.31409
2.94474
3.24951
3.29988
3.19651
3.00557
2.77077
2.52208
2.28262
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