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ABSTRACT

~ There are four main parts in this thesis.

The first part contains a proof of the following result. If
G is a k-connected claw-free (K1;3—free) graph of order n such
that Z_d(v)2n-k.
vel
for any (k+1)-independent set I, then G contains a Hamilton

cycle.

The second part deals with C. Thomassen's conjecture that
any longest cycle of a 3-connected graph has a chord. We'll show
that the conjecture is true for a planar graph if it is cubic or
624. We also show that if there is a minimum counterexample,
then the subgraph outside of a chordless longest cycle is an

independent set.

The third part is concerned with bridges of longest cycles
in 3-connected non-hamiltonian graphs. Let G be such a graph and
let d(u)+d(v)z2m
for each pair of non-adjacent vertices u and v. Let the length
of its longest cycle C be r. Then the length of any bridge of C

is at most r-m+2,

The final part presents a survey of results about longest
directed cycles in digraphs. Since their proofs have been

published elsewhere, they are omitted here.
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PART A

INTRODUCTION



The subject of paths and cycles in graphs is fundamental to
the study of graph theory. It is no surprise that there is a
vast literature on the topic. Besides the thousands of papers
dealing with the subject, there have been two conferences
devoted to cycles in graphs, a book on cycles in graphs [2] has
recently appeared and a book on Euler tours by H. Fleischner is

forthcoming.

This thesis is concerned with cycles in graphs and directed
cycles in digraphs. There are four sections but there is a
unifying theme of looking at problems dealing with longest
cycles in graphs. Of course, the longest cycle of a graph can be
a Hamilton cycle, that is, a cycle containing every vertex of
the graph. Some natural questions to ask are whether or not a
given graph has a Hamilton cycle, whether or not the graphs in a
family all have a Hamilton cycle, and what kinds of conditions
must be imposed on a given family of graphs in order to

guarantee that thay all have a Hamilton cycle.

If a graph does not have a Hamilton cycle, there are several
directions that one can take in the invéstigation of such
graphs. For example, what kinds of conditions can be imposed in
order to guaréntee that a graph does not have a Hamilton cycle?
Another approach is to investigate properties of the longest
cycles in non-hamiltonian graphs. This is the approach taken in

this thesis.



Oné of the types of conditions that have been imposed on
graphs to guarantee a Hamilton cycle have involved degrees of
vertices. There are several classical results in this direction.
A recent theorem of Mathews and Sumner [12] involves the minimum
degree of the graph and the structural property that the graph
has no induced K; 3 subgraph. The latter conditioﬁ simply says
that no neighborhood of a vertex can have an independent set of

size three. Their result is generalized in Part B of the thesis.

C. Thomassen has recently conjectured [2, p466] that every
longest cycle in a 3-connected graph has a chord. In Part C, it
is proved to be true for a planar graph G if either G is cubic
or 6(G)=4. It is also shown that the subgraph outside of a
chordless longest cycle in a minimum counterexample to the
general conjecture must be an independent set. These results
make the question more interesting for the class of 3-connected

planar graphs.

Thomassen's conjecture in the previous part is saying that
longest cycles in a 3-connected graph must have short bridges
because a chord of a cycle is the shortést bridge a cycle can
have. In Part D, we take the opposite viewpoint by asking how
long might a bridge of a longest cycle in a 3-connected graph
be. The theorem of Part D is given for non-hamiltonian graphs
because the gquestion is not interesting if the graph has a
Hamilton cycle. The theorem establishes an upper bound on the

length of a bridge.



The basic terminology and notation of this thesis may be

found in [5].
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PART B

HAMILTON CYCLES IN CLAW-FREE GRAPHS



A graph is called claw-free if G has no induced Ky 3
subgraph. Mathews and Sumner [12] showed that if G is a claw-free
2-connected graph of order n with minimum degree & such that 362n-2, then G
contains a Hamilton cyc/le. In this chapter, we will give a result
about Hamilton cycles in k-connected claw-free graph which

generalizes the Mathews-Sumner Theorem,

THEOREM 1.1.

Let G be a k-connected claw-free graph of order n such

that
Z_d(v)2n-k,
vel

for any (k+1)-independent set I. Then G contains a

Hamilton cycle.

Bondy [6] conjectured that if G is a k-connected graph of order n
such that
Z d(v)2n+k(k-1)
vel
for any (k+1)-independent set 1 of G, then the subgraph outside any longest
cycle contains no path of length k-=1. The theorem in this chapter

implies the conjecture in the case of claw-free graphs.

In this chapter, let
Np(v)={uev(D) |(v,u)eE(G)},
where D is a subgraph of G. If V(D)=V(G), we simply write N(v)
instead of Np(v). If C=xy...xx; is a cycle, xjCxj denotes the
interval x:x;

i¥j+1+--Xj-1%5 of C and x4Cxj denotes the interval

XjX4-1...X341%; of C.



PROOF OF THE THEOREM.

Let G=(V,E) be a graph satisfying the conditions given in
the theorem. Let C=v;...v,.v; be a longest cycle of G. Assume

that C is not a Hamilton cycle. Let B be a component of G\V(C).

By k-connectivity, there are h edges joining B and C, h2k.
Notice that h2|Ng(x)| for any xeV(B). Let these edges be
{(x5,vs.) |]i=1,...,h}, where x;eV(B) and vs,kev(C), for i=1,...,h

31 Jl
and 1<j1<jz<...<jp<r. Let X Bx 4 denote a path of B joining xj

and X5

I. Let's define some special sets on C by the following
algorithm.
ALG(Vju).
1. w1...wr«—VjM_1CVju,
Su—9,
go to 2;
2. If there is an integer i such that wj,w;j+1€N(w;), choose i
as big as possible. The pair {w;,wj;;} is called the

insertion pair for wj.

Su«—SuU{w1},
WieoeWpe—Wo. o  WiW W igqee oWy,
go to 3;
3. Repeat 2 until either wj4+ #N(wy) for all wjeN(wy) or wieS,
already;
1f wy¢S,, then S S, Ufw };
go to 4;

4, Stop.



Use this Alg(Vju) for each u=1,...,h obtaining Sqy,...,Sh.

Let ' U Ne(v)=N;,
€ veSiC )=Nj

II. Proposition 1.

W_e_ have s1g{vjh+1,toolvj1_1},
c{va ' . =
st—{vjt—1+1,co.,vjt._1} ‘ or t 2'-..'h
and 5iNS5=0, if i3,
Proof.

From Alg(Vju) it is obvious that S, is an interval on C for
u=1,...,h. Now th¢S1, because otherwise, during the processing

of Alg(Vj1), we would have a path wy...w, with Wi=vyy and

‘ Wp=vi, . Then the cycle wy...wpyxyBxw; would be longer than C.

Hence, S1§{th+1,...,Vj1_1}. The other conclusions are similar.

II1I. Considering S1={Vj1_1,...,Vj1_|s1l}, there exists the

least integer a4y such that the insertion pair for Vi-e is not

contained in C\[S1\{Vj1_1,...,Vj1_a1}]. When Alg(Vj1) stops,
either wy has no insertion pair or wieS; already (that is,

W1=V

j1-a has its insertion pair intersecting with

{Vj1_a_1,...,Vj1_|s1l}). Both cases guarantee the existence of

Vii-ay- If a1{|S1|, then v is the first vertex whose

J17e
insertion pailr 1intersects {Vj1-a1-1""'vj1-ls1i} during the

processing of Alg(vj1). Hence, the insertion pair for Vii-a is

contained in {vj1_a1_1,...,vj1_|s1|_1}, when ay<[S;[. And Vii-ay

has no insertion pair, when «=|S;].




Similarly, considering u=1,...,h, we will get Vigmay,®

The rest of the proof is going to show that

n independent set, where x€B;

1. I={%,vj —q,reeerVip-op} i

and
2. B, N(Vj1_a1), cens N(th'“h)’ {Vj1,...,th} and

{Vj1_a1,...,th_ah} are disjoint sets.

If we can do so, I will be the independent set contradicting the

hypotheses of the theorem.

IV. An operation defined in Alg(Vju).

During the processing of Alg(Vju), we produce an operation
on some paths P=Wj...Wp. Assume only one of {w1,wp} is in §,
(say, wy) and let {w;,wj,q} be the insertion pair for w;. Define

Zu(P)=vp. . WiW Wit .. Wp.

We can define the operation Z, on some paths P=W{...¥p with

respect to S,. Here, Zu(P) is well-defined only when

|{w1,wp}ﬂsu|=1 and the insertion pair for the vertex in this

intersection exists. When Z, is operating on P, the endvertex wy

(or wp) will be moved into its insertion pair. And ZE(P) denotes

the compositions of the operation Z, on P (repeated g times).
V. We claim that (Vju'vju"“t)¢E(G) and «,>1 for u=1,...,h.

Without loss of generality, consider u=1. Let

w1...wr=Z?1_1(P) where Wwy=vj -q,, Wr=vj . Assume that

(wq,wy)€E(G). Then wy...w,w; is also a longest cycle. Now



{xq,wq,wr-1}EN(w,) and G being claw-free imply that
(wq,wp-1)€E(G). So (w._;,w,) is the insertion pair for w; which
contradicts that the insertion pair for w; is not contained in
VICN{vy, —g,~1r-2+1V5,-|s,|}- Hence, we must have that
(w1,wr)=(vj1, Vj1_a1)¢E(G). Incidentally the same proof shows

that «¢>1 always holds.

VI, Let us consider Ve, and v+ as an example. Let

a7y
P=Vj1_1CVj1, Q=Vj1_1Cijkax1Vj1Cij_1 (let g=|Q]}).

Proposition 2.

Let a<|S;|, and 2§(P)=w;...w,.

1. 29(P) is well-defined;

2. ij_1¢N(w1), and Viy-1r V3, are adjacent in z¢(P);

3. 29(Q) is well-defined; and

4. let z, z'eN(w;). Then z and z' are adjacent in z§(P) if and
only if z and z' are adjacent in z§(Q).

Proof.

(1) is true for all a«, 0<a<|S4]|.

(2) will be proved by induction on a. If (vj}\_1,vj1

1V4,-1 would be longer than C.

_1)€E(6),

the cycle Vj1_1Cijkax1Vj1Cij_

So it is true for a=0. Assume that it is true for a<k. Since
Vj,-1:Vj, are adjacent in 2% 1(p), let 2§ 1(P)=uj...up with
ViaTUir Vjy-1=uj+1. Since ij_1¢N(u1), the insertion pair for uj

will not be {vj,-q1,vj,}={uj,uj+q}. Hence, vy are still

A~ 1 Vi

adjacent in z{(P). If ij_1eN(w1), then the cycle

10



w1Zf(P)ijkax1wrZT(?)ij_1w1 would be longer than C.

By (2), the insertion pair for w;, is always contained in
either {wy,...,wi} or {wj4q,...,w,}, where Vj\-1=¥i+1 and
ij=wi. Hence,

Z?(Q)=w1Z?(P)wiXXBx1wrZ?(§)wi+1
and Z?(Q) is well-defined. Let z,z2'eN(w,). If z,2' are adjacent
in 2{(P), (respectively, in 2§(Q)), either z,z'e{w,,...,w;}, or

z,z"€{Wj4p,...,w }. Hence, z,2' are adjacent in z§(Q)

(respectively, in 2§(P)).

VII. Recall that P=Vj1_1CVj1 and Q=Vj1_1Cijkax1Vj1CVjX_1
(let g=|Q}).

Proposition 3.

1. If a<|Sy| and B<]|Sy|, then Z?ZR(Q) is well-defined.

2., Let {2

— — IJ.1"

"’Z“s} be a series of operations, where

B1,eeertgefl, A}, Zuszus-1“'zu1(Q) is only dependent on the

number of Z; and the number of Z,. In other words, any

permutation of {uy,...,ug} would not make any difference in

Zpge--2u,(Q).
3. Let z§(P)=wq...w, Z?ZR(Q)=U1...Uq and v,v'eN(w,). Then v,v'
are adjacent in 2§(P) if and only if v,v' are adjacent in

228 (0) .

Proof.

We use induction on a+B. When g=0, (1) and (3) are true by

Proposition 2, and (2) is true because f=0. Symmetrically, the

11



Proposition is true when a=0.

Assume that (1) and (2) are true for a+B<k, (k22). Consider

a+f=k, a<|Sq| and B<|Sy)|. We only need to show Z?ZQ(Q) is

well-defined and

212325 2§77 (Q)= 252297267 ().
By the induction hypothesis, Z?_1Z§_1(Q), zkz?“1z§"(Q) and
Z?Z§-1(Q) are well-defined. Let 27_1Z§_1(Q)=w1...wq=Q*, wieS,
and WqeSas let {wy,ws4+1} be the insertion pair for wq, and let
{wp,wp+1} be the insertion pair for Wq » all of which exist
because 23(Q*) and z,(Q*) are well-defined. If
{wa,wa+1}={wp,wps1}, we would get a cyle WiWa+1Q*wqwa0*wy longer
than C. So {wy,wy4q}#{wp,wpsq} and
Z1ZK(Q*)=ZAZ1(Q*)=w2...waw1wa+1...wbwqwb+1...wq_1 when a<b or
Z1ZA(Q*)=ZAZ1(Q*)=w2...wbwqwb+1...waw1wa+1...wq_1 when b<a

and therefore (1) and (2) follow.

Assume that (3) is true for a+B<k (k22). Let us consider
a+P=k. Let v,v'eN(vj1_a_1). By the induction hypothesis, v,v'
are adjacent in 29(P) if and only if v,v' are adjacent in
Z?Z§—1(Q)=Y1...yq=Q**, (where y1=vj1_a_1). Suppose that v,v' are
adjacent in Z?Z§_1(Q). The insertion pair for Yq in Q** is not
{v,v'}. If so, let fv,v'}={yi,yi+1} and then the cycle
y1Q**yiqu**yi+1y1 would be longer than C. Hence, v,v' are still
adjacent in Z?ZQ(Q). Conversely, suppose that v,v' are adjacent
in’Z$Z§(Q), but not in Z?Zg_](Q)=Q**. Then yqe{v,v'}SN(y1) which
would give a cycle Yi+--YqY1 longer than C. So v,v' must be

adjacent in Z?Z§_1(Q).

12



VIII. We claim BMNN(v4 )=¢ and (v

j1-a; ) ¢E(G)

Ji-aqrVin-ay

‘ aqi-1 . .
), then the cycle 2§ (P)vj1x1vaj1_m1 would

)eE(G), then the cycle

‘If xer‘lN(vjra1

be longer than C. If (Vj1-a1'vjk-ak

2?1—1Z%X_1(Q)ij—akvj1-a1 would be longer than C. Hence, we have

proved the first assertion suggested in III.

IX. We claim NyMNSy=@ and NyMNS;=0.

1f not, let vj _g-1eN(vy,_g-1)NS;EN NSy, where a<|S;| and

B<|Sy\

. Then the cycle Z?Zﬁ(Q)ij_ﬁ_1Vj1_a_1 would be longer

than C. Hence, & ¢Ny and v ¢N,, which is a part of the

172 IaTan

second assertion of III.

X. Let Z?ZQ(Q)=W1...wq, (a<a1-1, P<ap-1). Then we claim

{Vj1_a_1,Vj1_a_2,...,Vj1_|s1|_1} remains as an interval in

2928(Q) and

e T T e TR I RE

By the choice of ay, it is obviously true when B=0. We
proceed by induction on f§. Let Q*=Z?Z§_I(Q)=y1...yq. Since
N,NS.=@¢ (by IX), the insertion pair for Yq will not be contained
in {Y1r---rY|Sj|-a+1}- Hence,

{Y1r--'rY|S1I—a+1}={w1r'~'rwls1 |-—a+1}

remains as an interval in Z?ZQ(Q).

XI. We claim N(Vj1—a1)nN(ij—ak)=¢ which is a part of the

second assertion of III.

13



Let Q*=29171z§A"T(Q)=w¢...vq . By VIII,

N(V§, —q, )NIN(v4, -4, )NV(B)=0.

1f YEN(Vj1_a1)ﬂN(V' )S[V(G)\(CUB)], then

. AT
2?1—1Z%X_1(Q)ij_akYVj1_a1 would be a cycle longer than C.

Assume that wgeN(vj ., JNN(v§, 4 )NVIC). If (wq,ug)€eE(G),
then the cycle WieeoWgWy would be longer than C. If

(Wg,wg-1) €E(G) or (wq,wgs+q)€E(G), the cycle wQ*wg_jwgB*wgwy or
w1Q*wswq§*ws+1w1 would be longer than C, If (ws_1,ws+1)eE(G),

the cycle wiQ*wg-1wg41Q*wgwgwy would be longer than C.

Since G is claw-free, the only remaining cases are that
(wq,wg-1) €E(G) when s-1>1 and (wg,¥Wg+1)€E(G) when s+1<g. Note
that s-1=1 and s+1=g cannot hold simultaneously as this would
imply 3=g2|C|+1. If s-1>1, by Proposition 3, then the adjacent
pair wg-q,wgeN(wy) implies the existence of the insertion pair
for wqy in z?1=1(P). By the choice of «4,

{Ws_1,ws}g{Vj1_a1-1,...,Vj1_|s1 |_1}.
Similarly, if s+1<g, then
{ws+1'ws}g{vjx—ax-1""'ij-|5x|—1}'
If s-1>1 and s+1<qg, then
Wselvy —a =1reeerVi, - |8, |- 130V mag-1re e vy -5, |-1]

which contradicts Proposition 1.

So without loss of generality, let s-1>1 and s+1=q. By X,
Wyireeo wglSlvy g reeviVy s -1} implies that
> . . > 1
2_|Q\{VJ1_a1,...,vJ1_|s1|}|_|Q\S1|. It contradicts that

[O\S 12|y |+B]+|{vs,}]23.

14



XII. We now wish to show that (vs

}=¢

{v INN(vz

jimeqrecrVipmay J1-ey

Since {VJR 17 J>\.H,:{>\}<:N(Vj>\), G is claw-free and C is a

longest cycle, note that (vg 1erx+1)€E(G)- Suppose

In-
(V4yrVj,~a,)€E(G), let o« be the least integer such that

)€¢E(G). Then the insertion pair for vy~ is not

(v o

ixn'Vig-a

. a—1 —DX= =\ =Y .
in 27 (P)=P*=w;...w, where w;=vj _, and wy=vy . Also, vj,
V-1 are adjacent in P* by Proposition 2. Let Wi-1=Viy+1s

Jpr Wit1=Via-1- Then the cycle w P*w;_q wj 1 P*wxBxywjw,

Wi=V

would be longer than C. Therefore we conclude that ijeN(vJ1
for \=2,...,h and, by V, vy, ¢N(VJ1_a1)

XIII, All results of V, IX, XI and XII hold if {1,A} is

replaced by any pair {s,t}c{1,...,h}.

Now we can establish the second assertion of I1II:

N(vy ~ag )AN(vs )#@ contradicts XI;

Jt-ag
N(vj - )M {Vy r.0. V4, }#0 contradicts XII;

N(vJ - )ﬂ{vh_a1 cerVyp- ah}¢¢ contradicts IX;

{v- }ﬂ{vj1,...,vjh}¢¢ contradicts II; and

1—a1 '... 'vjh—ah

and Viy+1 are adjacent

and

V(B)ﬂN(vJ ~ag )#® contradicts VIII.
Hence, V(B), N(vj1_a1), ceey N(th‘ah)' {VJ1,...,th} and
{Vj1-a1""'vjh-ah} are disjoint sets of V(G).

If we let I ={Vj1_a }, then

1,.nn,vjh_ah
Z_ d(v) £ |V(G)\V(B)|-2h.
vel'

15
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Let I=I;U{x} for any xeV(B). Recall that |Nq(x)|<h by the
definition of h. Then
VZGIId(v):SVZGII'd(v)+(|V(B)\{x}|+h)

< n-h-1

< n-k-1.
Therefore any (k+1)-subset of I will have degree sum less than
n-k which contradicts the condition of the theorem. We conclude
that G has a Hamilton cycle.

16



PART C

LONGEST CYCLES AND THEIR CHORDS
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$1. INTRODUCTION

An edge e is called a chord of a cycle if e is not an edge

of the cycle and both endvertices of e are in the cycle.
Thomassen has conjectured [2, p.466] that any /ongest cycle of a
3-connected graph must have a chord. 1In th'is chapter, we shall show the
conjecture is true for cubic planar graphs and planar graphs
with minimum degfee at least four. The conjecture is also true

for claw-free graphs.

In addition, some structural results about minimum
counterexamples to Thomassen's conjecture will be given. A lower
bound on the length of longest cycles in the cyclically 4-edge
connected cubic planar graphs will be given. This slightly
improves the result obtained by Grﬁnbaum and Malkevitch [9] in

1976.

18



~ §2. TERMINOLOGY

Let G=(V,E) be a simple graph with V as the vertex set and E
as the edge set. Let C be a cycle of G and let B' be a component
of G\V(C). Let B be the union of B' and the edges joining B' and
C, that is, B=B'U[B',C]. A bridge'of C is either B or a chord of
C. The vertices of N(B')MV(C) and the endvertices of a chord are

called the attachment of the bridge, B is called a t-attachment

bridge if |N(B')MV(C)|=t, and a chord is a 2-attachment bridge.

A(B) denotes the set of attachment vertices of the bridge B and
V(B) denotes the set of vertices of the bridge B (excluding the

attachment vertices on C).

If U is a subset of V(G) and G\U is disconnected, then U is

called a vertex-cut of G. An i-vertex-cut is a vertex-cut

containing i vertices. If F is a subset of E(G) and G\F is
disconnected, then F is called an edge-cut of G. An i-edge-cut
of G is an edge-cut containing i edges. If F is an edge-cut and
one of the components of G\F is a singleton, then F is called a

trivial edge-cut. If F is an edge-cut and none of the components

of G\F is a tree, then F is called a cyclic edge-cut. A graph is

called cyclically 4-edge connected if any i-edge-cut of this

graph is not a cyclic edge-cut whenever i<3. By counting the

number of the edges, it is easy to show that when the minimum

t least three, a 3-edge-cut F is

degree of the graph G is

[
Hh

cyclic and only if F is non-trivial.
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$3. LEMMAS

TUTTE'S LEMMA. [16, Th.5.2.1.]

Let G be a planar graph, let e be an edge of G, let F

and F' be the two faces incident with e and let e' be an

edge on the boundary of F and édjacent with e. Then

there is a cycle C of G such that
(i) e, e'eE(C),

(ii) any bridge of C has at most three attachments,

and

(iii) any bridge of C intersecting with the boundary

of F or F' has at most two attachments.

LEMMA 1.

Let G be a cyclically 4-edge connected cubic planar

graph of order n (n24) and let e and e' be a pair of

()]
ot

adjacent edges. Then there is a cycle C in G such that

(i) e, e' € E(C),

(ii) all bridges of C are either a single vertex or

a chord,

(iii) C has at least two chords, and

{iv) |v(C)] 2 (3/4)n+1.
PROOF.
Let e, e' and e" be three distinct edges incident with the
vertex v. Let F be the face with e and e' on its boundary and
let F' be the face with e and e" on its boundary. Let

e=(v,x), e'=(v,y) and e"=(v,z).
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By Tﬁtte's Lemma, there is a cycle C such that each bridge
of C has at most three attachments and each bridge intersecting
with the boundary of F or F' has at most two attachments. Since
G is cyclically 4-edge connected and cubic, each three
attachment bridge is a single vertex and each two attachment

bridge is a chord.

Here e" must be a chord of C. Let é, f and £f' be the three
edges incident with vertex x. Two of them must be in C and
without loss of generality, let e,f € E(C). Now f' is on the
boundary of either F or F', so f' is a chord too. Thus C has at

least two chords.

Let a be the number of chords of C and let § be the number

of single vertex bridges of C. Then

B=|V(G)\V(C)| and 2«+38=|V(C)|.

Hence,
|v(C)| = 2a+38

2 4+3[|V(G)\V(C)|]

= 4+3n-3|V(C) |,
that is, 4|v(c)| 2 4+3n,
Therefore, [v(C)| 2 (3/4)n+1,

| nuBR

LEMMA 2.

Let G be a cyclically 4-edge connected cubic planar

graph of order n, and let e and e' be a pair of adjacent

edges of G. Then any longest cycle of G containing e and

e' must have at least two chords.
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PROOF.
Assume C is a longest cycle of G containing e and e', and
which has at most one chord. If the bridge B is not a chord of

C, then
|a(B)| < 3|V(B)].
Since G is cubic,
Z|a(B)| = |V(O)],
where the summation is over all bridges of C. Moreover,
Z|v(B)| = n-|V(C)]|.
Since C has at most one chord,
Z|A(B)| < 2+3Z|V(B)]|.
Hence,
jv(c)| = Z]A(B)]| < 2+3Z|V(B)| = 2+3(n~|V(C)])
which implies that
[v(c)|] £ (3/4)n+(1/2).
However, this contradicts Lemma 1 and we conclude that C has at

least two chords.

The graph in the following lemma need not be planar.

LEMMA 3.

If G is a minimum counterexample to Thomassen's

conjecture restricted to cubic planar graphs and C is a

chordless longest cycle of G, then

TNE(C) 0

for any non-trivial 3-edge-cut T of G.

PROOF.
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Let T be a non-trivial 3-edge-cut of G which separates V(G)
into two disjoint parts V, and V,. Here |V,|>1 and |V,|>1. If
TNE(C)=@, then C is contained in either G(V;) or G(V,). Without
loss of generality, let C be contained in G(V4) and G(V,) be
connected. Let

T={(xj,v§) |xj€Vy, yjeVyl.
Let w be a new vertex not in G. Let

G*=G(V)U{(x;,w) |(x;j,y;)eT}.

We claim that G* is a 3-connected graph. If G* is not

3-connected, assume that U* is a minimum vertex-cut of G¥%,
|U*|<2 and U* separates G* into two parts U' and U". If weU%*,
let weU' and then N(w)\U*GU'. In this case, U* would separate G
into two parts V,U[U'\w] and U" which contradicts G being
3-connected. Hence, assume that weU*. If {x,,x,,x3}\U*SU', then
N(w)NU"=@ and U*\w is also a vertex-cut of G* which contradicts
U* being minimum. So |{xy,x2,x3}NU" |21 and |{x,,x,,x3}NU"|21.
Assume that x€U' and xp€U"., Let U**=U*\{w}. Since w is a
cut-vertex of G*\U**, there is no path joining x; and x, in
G(V4{)\U**, Hence, there is no path joining x1 and x5 in
G\[U**U{y;}] and we would have a 2-vertex-cut U**U{y,} of G
which contradicts G being 3-connected. Therefore our claim holds

and G* is 3-connec€;d<

If C is a longest cycle in G*, C has a chord in G* because G
is a minimum counterexample. This chord is also a chord of C in

G because w¢V(C). So assume C is not a longest cycle in G*.
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Let C' be a longest cycle in G*, |C'|>|C|. Clearly, weV(C').
Let (xy,w) and (xp,w)eC'. Let P=y;...ys be a path in G(V;). Then
the cycle x4y Py;x,Cx, would be longer than C which is a
contradiction. Therefore TNE(C)#® must hold.
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§4. MAIN RESULTS

THEOREM 2.1.

Let G be a cubic 3-connected planar graph. Then any

longest cycle of G must have a chord.

PROOF.
The proof is by induction on |V(G)| with the induction
starting at |V(G)|=4 when G=K;. Let C be a longest cycle of G.

Assume that C has no chord.

By Lemma 2, G is not cyclically 4-edge connected, so G must
have some cyclic 3-edge-cut which is also a non-trivial
3-edge-cut. Choose a non-trivial 3-edge-cut {e,e',e"} of G such
that {e,e’',e"} separates V(G) into two parts V' and V" with |V"]

as small as possible.

Let e=(x,x'), e'=(y,y') and e"=(z,z'). Since G is
3-connected, x,y,z are distinct vertices in V' and x',y',z' are
distinct vertices in V". By Lemma 3, E(C)N{e,e',e"}#@. Without

loss of generality, let e,e'e€E(C).

Let G" =G(V")U{(w,x"), (w,y"), (w,z')}, where w is a new
vertex which was not in V(G). By the minimality of |V"|, G" is

cyclically 4-edge connected.

Let C" = [cNG(V")Ju{(w,x"),(w,y')}. Since C is a longest
cycle in G, C" is a longest cycle in G' containing (w,x') and
7
(w,y'). By Lemma 2, C" has at'least two chords. Since (w,z') may

be a chord of C", at least one of the chords of C" would also be
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a chord of C in G. This is a contradiction and establishes the
result,

THEOREM 2.2.

Let G be a 3-connected planar graph with minimum degree

at least four. Then any longest cycle of G must have a

chord.

PROOF.

Let C be a chordless longest cycle of G which satisfies the

hypotheses of the Theorem.

V* is called a separating vertex-cut with respect to C if v*

separates G into two parts V' and V" such that C intersects both
V' and V". And C is called separable if there is a separating

3-vertex-cut with respect to C.

I. If C is not separable.

Let e=(x,y) be an edge of C and F;, F, be two faces incident
with e. Since d(x)24, let (x,xj)=ej be the edge on the boundary
of F; and x;#y for i=1,2. There exists a cycle C' of G obtained
by Tutte's Lemma which contains e and e;. Now ey is a chord of

C' because G is 3-connected and e, is on a 2-attachment bridge.

Since each bridge B of C' has at most three attachments,
A(B) is a 3-vertex-cut of G if B is not a chord. Hence,
V(B)MV(C)=@ because C is not separable. Then V(B) is contained
in some bridges of C which implies that V(G)\V(C') is a subset

of V(G)\V(C) and V(C) is a subset of V(C'){?Now |v(c)|=]v(Cc')|
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becausevC is a longest cycle of G. Let
E'=E(G{(V(C)))=E(G(V(C'))). Each edge of E' must either lie on C
(respectively, C') or a chord of C (respectively, C'). Hence,
the number of chords of C and C' is |E'|-|V(C)|=|E'|~|V(C')]| and
the existence of chords of C' guarantees the existence of chords
of C. But the edge e;=(x,x5) being a chord of C' would

contradict C being chordless.

II. Assume that C is separable.

Choose a separable 3-vertex-cut V* with respect to C such
that V* separates G into V' and V" with V" as small as possible.
Since C must pass through two vertices of V* to enter V" from
V', the parts of C in G(V'UV*) and G(V"UV*) are paths. Let
CNG(V'UV*)=P'=x,..y and CNG(V"UV*)=P"=y...x. Obviously, x,yev*,
Let V*={x,y,z}. We construct a new graph G* according to the
following two cases:

a) If z¢Vv(P'), let w be a new vertex not in G and
G* = G(V"UV*)U{(w,x),(w,y),(w,z)}.
b) If zev(P'), let w=z and
G* = G(V"UV*) UL (w, %), (w,9)} .
Let C*=P"U{(w,x),(w,y)}.

Here C* is a longest cycle of G* containing (w,x) and (w,y).

Let Fy and Fy be two faces incident with (x,w). There is a
cycle C° of G* obtained by Tutte's Lemma which contains (w,x)
and (w,y). Each bridge of C° has at most three attachments by

Tutte's Lemma.
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i. Notice that the minimum degree of G is at least four,
|v"|22. Since V" is minimum, |N(v)MNV"|22 for any veV*. Let
(x,x;) be the edge lying on the boundary of F; and (x,x;)#(x,w)
for i=1,2. Obviously, (x,x4),(x,x3)€E(G) and {xy,x,}EV(G). By
Tutte's Lemma, (x,xj) either lies on C° or is a chord of C°.

Hence, {x,x1,x2}SV(C°) and one of them must be a chord of C°.

ii. Assume V(C°)\{x,y,z,w}=#0.

First of all, we claim that each non-chord bridge B of C°

must be contained in some bridge of C*. Suppose V(B)NV(C*)#¢ for

some bridge B of C°.

ii-a, Case 1. w¢A(B) or w=z,
If w¢A(B), then z¢V(B) because weV(C°). If w=z, then w=z¢V(B).
Hence, x,y,z¢V(B) and V' adjacent only with {x,y,z} in G will
imply that A(B) is a vertex-cut which separates G into V(B) and
V(G)\[A(B)UV(B)]. Since V(C°)\{x,y,z,w}#@, V(B) would be a
proper subset of V". However, V(B) intersects with C which

contradicts the choice of V*¥ with V" minimum.

ii-p. Case 2. weA(B) and w#z.
Since {x,y,w}SV(C°®) and weA(B), zeV(B) and (w,z)e[V(B),A(B)]. By
Tutte's Lemma, B is a 2-attachment bridge because (w,z) lies on
the boundary of F; or Fp. Since d(z)23 in G*, V(B)\{z}#0. Let
A(B)={w,u}. Then U*={z,u} is a vertex-cut of G* because d(w)=3
and weA(B). U* would separate G* into U"=V(B)\{z} and
U'=[V(G*)\(V(B)UA(B))]u{w}. Since {x,y,z,w}SU'UU* , V' only

adjacent with V*={x,y,z} would imply that V' and U" are
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disconnected in G\U*. Hence, U* is a 2-vertex-cut separating G

into U" and V'UU'\{w} which contradicts G being 3-connected.

Now we conclude our claim in all cases. By the same argument we
applied in I, V(C*)&v(C°). Moreover, V(C°)=V(C*) because C°
contains (x,w) and (y,w) and C* is a longest cycle of G*
containing (x,w) and (y,w). Hence, the number of chords of C* is
equal to the number of chords of C°. By i,

{x,x9,x2}€V(C°)=V(C*) and one of {(x,x7),(x,x5)} is a chord of
C* which is also a chord of C in G. This contradicts C being

chordless, and therefore V(C°)\{x,y,z,w}#0@ is impossible.

iii. Assume V(C°)\{x,y,z,w}=0.

By i, {xq,x2}c{y,z}SVv(G)NV(C°)\{x}. If (x,y)eE(G), then
(x,y) would be a chord of C because V(C)NV"#@ and P, is a path
of length at least two. But y¢{xy,x3} would imply that z=x;=x5
and (x,z) is a multiple edge of G. This contradicts G being
simple. Again this is a contradiction, and the proof of the
theorem is complete.

RER

THEOREM 2.3.

Let G be a cyclically 4-edge connected cubic planar

graph of order n. Then a longest cycle of G must be of

length at least (3/4)n+1, and must have two chords.

This theorem improves the result Griinbaum and Malkevitch [9]
given in 1976 which states that the length of a longest cycle in

a cyclically 4-edge connected cubic planar graph of order n is
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at least (3/4)n.

The proof of the preceding theorem follows directly from

Lemmas 1 and 2.

THEOREM 2.4.
If G is a 3-connected claw-free graph, then a longest
cycle of G has a chord.

PROOF

The proof is a simple corollary of Lemma 1 in [12]. For the

completeness of this chapter, we will give the proof.

Let C=vy...v.vy be a longest cycle of G, If C is a Hamilton
cycle, all edges not in C are chords of C. So assume that there
is a vertex uev(G)\vV(C) and ueN(vy). Since {u,v,.,vy}EN(v,) and G
is claw-free, one of (u,vy), (u,vy) and (v.,v,) must be in E(G).
If (u,vy) or (u,vy)eE(G), C would not be a longest cycle. Thus,
the chord (vgp,v,)€E(G).

L X F |

THEOREM 2.5,

f G is a minimum counterexample to Thomassen's

———

conjecture and C is a chordless longest cycle of G, then

G\V(C) is an independent set.

PROOF.
Suppose that B is a bridge of C and |V(B)|22. Let
A(B)={xy,...,x.} be the set of attachment vertices of B and
G'=G(V\V(B))U{(xj,w) |x;jeA(B)}

where w is a new vertex not contained in G.
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We claim that G' is 3-connected. Assume that G' has a
2-vertex-cut U* which separates G' into two parts U' and U". If
wegU*, let weU', Then A(B)\U*=N(w)\U*ESU' and U* would be a
2-vertex-cut of G which separates G into two parts U" and
[U'\w]UV(B). So we assume that weU*. Then U*\w would be a
cut-vertex of G(V\V(B)). Notice that G(V\V(B)) is a union of
cycle C and all its bridges except for B. Since each of these
bridges has at least three attachments, G(V\V(B)) must be
2-connected which contradicts G(V\V(B)) having a cut-vertex.

Therefore G' cannot have a 2-vertex-cut and our claim holds.

Since G is minimum and G' is smaller than G, any longest
cycle of G' must have a chord. Hence, C is not a longest cycle
in G'. Let C' be a longest cycle in G'. C' is longer than C and
must contain w. Let C'=xj¥xj...xj and x;Bxj be a path of B,
where x;,xjeA(B). Then the cycle xjBxj...x; would be longer than
C in G, that is a contradiction. Therefore each bridge of this
chordless cycle C is a single vertex.

EER
THEOREM 2.6.

A minimum counterexample to Thomassen's conjecture

contains no triangles, that is, its girth is at least

four.
PROOF.

Suppose G is a minimum counterexample to Thomassen's
conjecture and G contains a triangle {x,y,z}. Let C be a

chordless longest cycle of G. By Theorem 2.5, at least two of
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{x,y,z} are in v(C). Without loss of generality, let x,yeV(C).
Then (x,y) is a chord of C if (x,y)¢E(C). Hence, (x,y)eE(C). It
follows that zeV(C) because, otherwise, the cycle xzyCx would be
longer than C. Now, x,y and zeV(C). Similar to the argument for
(x,y), we must have that (y,z), (z,x)eE(C). Then C=xyzx. But C
can be extended to be longer because G is 3-connected. This

contradicts C being a longest cycle and the result follows.
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PART D

BRIDGES OF LONGEST CYCLES
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§1 INTRODUCTION

Some graphs contain Hamilton cycles and some do not. How
long is a longest cycle in non-hamiltonian graphs? What can be
said about the structure of the subgraph outside a longest
cycle? These are two problems amohg many interestihg similar
problems. Nash-Williams [13] and Bondy [6], [7] have found some
structural results about the subgraph outside a longest cycle.
It is obvious that the length of a longest cycle and the
structure of the subgraph outside a longest cycle are not
independent. This chapter will establish a result which gives a

relation between the lengths of a longest cycle and its bridges.

DEFINITIONS.

Let C be a subgraph of G. Recall that a bridge of C is either a
component of G\V(C) together with its attachments on C or a
chord of C. A C-path is a path of G such that only its
endvertices are on C, If B is a bridge of C, let P be a longest

C-path contained in B. Then the length of the bridge B is
defined as the length of P.

THEOREM 3.1.

Let G be a 3-connected non-hamiltonian graph and
d(x)+d(y) 2 m

for each pair of non-adjacent vertices x and y. Let the

length of any longest cycle C be r. Then the length of

any bridge of C is at most r-m+2.
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In other words, let C be a longest cycle of G and let p be
the length of the longest bridge of C. Then the length of C is
at least m+p-2. Hence, the shorter a longest cycle is, the

shorter the bridges of the cycle are.

Some examples will show that this theorem is the best
possible result. The condition of 3-connectivity cannot be
reduced, for example, 3K *+K,; is a 2-connected graph which is
constructed by joining all vertices of three vertex disjoint
K¢'s to two new vertices x and y. This graph contains a longest
cycle of length 2t+2 with a bridge of length t+1, but m=2t+2.
The inequality of the theorem cannot be reduced, either. One
example is the complete bipartite graph Kt t+1 which is
3-connected (if t23) and contains a longest cycle of length 2t
with a bridge of length 2, but m=2t. Another example is 4K +K3
which is also 3-connected and contains a longest cycle of length

3t+3 with a bridge of length t+1, but m=2t+4,

This theorem also generalizes the result found by Linial
[11] for 3-connected graphs.
LINIAL’S THEOREM

Let G be a 2-connected graph, and

d(x)+d(y) 2 m

for each pair of non-adjacent vertices x and y. Then G

contains either a Hamilton cycle or a cycle of length at

least m.
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$2 TERMINOLOGY

Let C=v4y...v,vy. The path VivVitqesoVi-1Y3 will be denoted by
viCvy and the path ViVi-q...Vj4+qv4§ will be denoted by viCvy

where v.,, is taken to be Vi

If P=uy...unp is a path and T is a subset of its vertices,
let
Th'={uy+1€P |ugeTNP}, and Tp'={uy_ €P |ugeTMP}.

Sometimes we simply write T*! if no confusion will occur.

Let D be a subgraph of G and aeV(D). Let w(a,D) denote any
vertex b which is the endvertex of a longest path in
V(G)\[V(D)\{a}] starting at a. Note that if a is not adjacent to
any vertex outside D, then w(a,D)=a. For example, if P=a...b is
a longest path in G\[V(D)\{a}] with one specified endvertex a,

then we can choose b as w(a,D).

Let h(a,D) =|N(b)N[G\(D\a)]| where b=w(a,D). Note that if
h(a,D)=0, then w(a,D)=a and a is an isolated vertex in

G\[V(D)\{a}].

Let
M(a,D) = {vev(D)\a |there is a D-path joining a and v

with length at least h(a,D)+1}.

Let
N(a,D)={vev(D)\a |there is a D-path joining a and v}.
Obviously, M(a,D)&N(a,D). Note that if h(a,D)=0, then N(a)&V(D)

and, hence, M(a,D)=N(a,D)=N(a).
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By a***c denote a D-path a...c of D, where a,ceV(D). Note
that a single edge in D is also a D-path according to the

definition in §1, because the two endvertices are in D.
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§$3. LEMMAS

LEMMA 1 (Fournier & Fraisse [8]).

Let D be a subgraph of a 2-connected G with |V(D) |22,

and P=x...y be a longest path in G\[D\{x}] starting at

x. Then there is a D-path starting at x that contains y

and all its neighbours in G\V(D).

In other words, if G is 2-connected and D is any subgraph of
G satisfying |V(D)|22 and aeV(D), then M(a,D)#@.

LEMMA 2,

—
Hh

is 3-connected, then |M(a,D) |22 for any subgraph D

G
G

&

with |V(D)|23 and aev(D).

PROOF.
By Lemma 1, there is beM(a,D). Since G\{b} is 2-connected, by
Lemma 1 we have |M(a,D\b)|21.

LEMMA 3.

Let P=xq...xt be a path and let y,z¢V(P). If

Np(y)NNg'(z) = @,
then 4

|NI(Y)I+|NI(Z)| < |I!+1

for any interval I=xi...xj§P.
PROOF.
Since N1 (y)NNi'(z) =@ and |Ny(z)| < |NFT(z)|+1,
|T] 2 [Np(y) [+|N1(2) | 2 |Np(y) [+|Ng (2) |-1.
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§4. PROOF OF THE THEOREM

Let C=vy...v,v; be a longest cycle of G and p be the length
of a longest bridge of C. We assume that r<m+p-3 and will prove

the theorem by contradiction.

In this part, we will obtain some general propositions which

will be used frequently during the proof.

Let B=v,***y, be a longest C-path. Note that it contains p-1

vertices not in C.

For the sake of convenience, denote w(v;,C), h(vi,C),
M(v;,C) and N(v;,C) by w(i), h(i), M(i) and N(i), respectively,

for i=1,2,...,r.

Since p is the length of a longest bridge of C, by Lemma 1,

we must have that

h(i)<p-1, for any i. @.1)
And
d(w(i))<h(i)+|M(i)], for any i. 42)
PROPOSITION 1.
We have
MDDV —p(i)ree - Visn(i)}=0, for any i.
PROOF. |

Otherwise, let vjeM(i) and i-h(i)<j<i-1. Then vj***v;Cvj

would be a cycle longer than C. A similar argument works if
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i+1<j<i+h(i).
EER
PROPOSITION 2.
We have
t2p and r-tzp.
PROOF.
If t<p-1, the cycle v Bv{Cv, is longer than C. A similar
contradiction arises when r-t<p.
EEB
PROPOSITION 3.
We have
m2p+3,
PROOF.
If m<p+2, then r<m+p-3<2p-1. It then follows that either
t<p-1 or r-t<p-1, both of which contradict Proposition 2.

DEFINITION.

The pair (i,j) is called a summable pair on C if vi and vy are
not joined by a C-path (which implies that (w(i),w(j))¢E(G) )
and either M(i)NM*1(§)=@ or M(j)NM*'(i)=0 on any interval of

C\{vi,vsl.

During the proof, the basic method will be to get a summable
pair (i,j) and to check the sum of d(w(i)) and d(w(j)). So we
need some propositions about summable pairs and the sums of the
appropriate degrees.

PROPOSITION 4.
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The pairs (1,t+1) and (t-1,r-1) are summable.

PROOF.

Obviously, v1¢N(t+1). Otherwise, the cycle v CviBv Cvi4q***v,

would be longer than C.

Moreover,
M(1)NMTT (t+1)=0 in {vg,...,vg}
and M(t+1)NMY T (1) =0 in {Vps,ee.,vel.

Otherwise, without loss of generality, let vieM(1H7M+1(t+1),
2<i<t+1. Then the cycle v{Cvj_1***v, 4Cv Bv,Cv;***v, would be

longer than C,.

The pair (t-1,r-1) is symmetric to (1,t+1),

aEE
PROPOSITION 5.
Let {J, |uel} be a collection of pairwise
vertex-disjoint intervals of C\{vj,v3}, (i,j) be a

summable pair on C, and M(i)uM(j)& gIJu. Let
u

I'={uel| M(i)NJ,#6 and M(3)NJI, %0}
and J=C\[(ugIJu)U{vi,Vj}].
Then
}J) <h(i)+h(j)+p-5+|1"|
<h(i)+h(j)+p-5+|1].
PROOF.
Since w(i) and w(j) are non-adjacent, m<d(w(i))+d(w(j)) by
the hypotheses of Theorem 3.1. By (4.2), it follows that
m<h(i)+h(3)+|M(1i)[+|M(J) |

=h(i)+h(§)+ z [3,NM01) [+]a,NM(I)[]
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<h(i)+h(j)+ Z_ +1]1+ Z
(i)+h(3) “GI,[IJuI ] " | 3,1 (by Lemma 3)

eI\I'

=h(i)+h{(j)+] U_J,|+|T’
(i)+h(3j) I“GI ul ]
Since r<m+p-3 and |J|+| U Jyl=r-2,

IJI p-5+h(i)+h(j)+|1"].

The following proposition is the main result of this
section. It is a very important part of the proof df the
theorem.

PROPOSITION 6.
‘We have
M(1)S{Vea 1, Ve, V2uh(1)re-rVt},
M(t=1)S{ve, vy, eee,Vem2-h(t-1) 'Vt Vi+11
M(t+1)S{Vi—1,Ve,Ve+2+h(t+1)reesVr} and
M(r-1)S{ve, e e, Vee2-h(r-1)Vr,V1}.

That is, M(1) does not intersect with {visq.,...,v

and so on.

PROOF.
Without loss of generality, we may consider M(t+1) and assume

that M(t+1)N{vy,...,v¢-2}#0. Choose vy to be the vertex in this

intersection with k as big as possible.

I. Case 1: M(t+1)M{vy,...,Vi4p(1)}=0.

i. We claim that if 2+h(1)<1<3<t it is impossible that

— — —— —— — — ——

vieM(t+1) and Vj€N(1).
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Prove this claim by contradiction, so let
vieM(t+1) and v;eN(1)

and choose j-i as small as possible.

Since the cycle v1Cvi***vt+1CvertCVj***v1 is not longer
than C, {Vi4+1,...,v4-1} must contain at least p-1+h(t+1)
vertices. This follows because the C-path vi***v,,q contains at
least h(t+1) vertices not in C and v, Bvy contains p-1 vertices

not in C.

Let

31=1V04n(1)r--=rvi}, Jo={vj,...,v¢} and Jz={visp,..., v},
Here,

M(1)UM(t+1)EJ1UJ,UJ3 and 1I={1,2,3}.
Let
I={vore e/ VI+h(1) 1Vid1reees Vi1l
when h(1)>0, or
J={Vi+1,...,Vj_1}

when h(1)=0, which contains at least h(1)+h(t+1)+p-1 vertices.

This is a contradiction of Proposition 5.

ii. By (i) and the assumption of Case 1, vi_,¢N(1). Hence,

w(1) and w(t-1) are a pair of non-adjacent vertices.

We shall consider this pair of vertices. First of all, we

wish to show that (1,t-1) is a summable pair on C.

Assume that v;eM(1)NM*1(t-1). If t<i<r, then the cycle

ViCvi_1***v;_CvyBv, Cvij***v, would be longer than C. If 2<is<t-2,
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then i<k by (i). The fact that the cycle
ViCV i ¥**vy _(viBv . Cvi,***v Cvi***v, is not longer than C
implies that
J={Vk+1,...,vt_2}

must contain at least p-1+h(1)+h(t-1)+h(t+1) vertices and J does
not intersect with M(1) or M(t+1) by the choice of k. Consider
the summable pair (1,t+1). Let

J1={vy,cee vk}, Jo={vi_q,v¢} and Jz={viin, ..., v, 1.
Here,

M(1)UM(t+1) €3,UJUId3, I={1,2,3}

which leads to a contradiction of Proposition 5. Thus (1,t-1) is

a summable pair.

iii., If 1<i<j<t-1, then it is impossible that

vijeM(t-1) and vieM(1).

We prove this claim by contradiction. Choose j-i as small as
possible. (The proof of this claim is quite similar to parts of

ii-)

By (i), j<k and by the choice of k,
J={vi+1, woer Vel 1 VRt s meee, V2]
will not intersect with M(1) and M(t+1). Since the cycle
ViCVi*¥*¥*vy VBV Cvp ¥ **vyCvy***vy is not longer than C, J must

contain at least p-1+h(1)+h(t-1)+h(t+1) vertices.

But consider the summable pair (1,t+1). Let
J1={V2,...,Vi}, J2={leﬁ"lvk}'

J3={vi_q,ve} and Jg={viso, ...,V 1.
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Here, I={1,2,3,4} and 1'€{1,2,4} because M(1)MNJ3=@ by (i) and

(ii). This leads to a contradiction of Proposition 5.

iv., If t<i<j<r, then it is impossible that

vieM(1) and vyeM(t-1).

We prove this claim by contradiction. Choose j-i as small as

possible. Then
J={Vi+1,...,Vj_1}
would not intersect with M(1) and M(t-1). Since the cycle
V{CVi- 1 *¥*¥*v CvBviCvi***v, is not longer than C, J must contain
at least p-1+h(1)+h(t-1) vertices. Now consider the summable
pair (1,t-1). Let
J1={vo,eee,ve-2}, Jp=tvg,e..,vil} and Jd3={vy,...,v,}.

Here, I={1,2,3} and again it leads to a contradiction of

Proposition 5.

v. By (iii) and (iv), there are integers a and b such that

M(1)g{vbl-"-lvrlvzl .b.,va}\{vr+1—h(1),ooo,v1+h(1)},
M(t-1)E{Va,nnn'Vt_z,vt,-‘-,Vb}\{vt_1_h(t—1),ooolvt-_1+h(t—1)}.
We now have enough information to get the final contradiction

for this case.

Choose i and j such that t<i<j<r, vjeM(t-1)U{v.},
VjeM(1)U{Vr}, and j-i is as small as possible. Obviously, i<b<j.
Since the cycle v Cvi_ ***v;CvyBv, Cvy***v, is not longer than C,

[{vitrseeesvy—q | 21+ ([vy***vg|-2)+ (|ve_ ¥¥**vy{-2).
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a). If VjeM(1) and v;eM(t-1), let
J={VitqreeesVi-1l.
Then |J|2p-1+h(1)+h(t-1). If we let
J1={vo,eee, Vi), Jo={v¢,...,vyl,
J3={vj,...,v¢} and I1={1,2,3},

we again contradict Proposition 5.

B). If vieM(t-1) and v5eM(1), that is, vj=vy, then
M(t=-1)S{vp,Va,eee,Vi-2-h(t-1)1}.

(By Lemma 2, [M(t-1)|22 which implies that t-2-h(t-1)2a.)
Let

J={Ve1-h(t=1)ree V-2, VEreeerVioq}
when h(t-1)>0, or

J={Vt,...,Vj_1}
when h(t-1)=0. Note that |J|2p+h(1)+h(t-1) because
[ {vesqseee,vi-1}[2p-1+R (1), If
J1={v2,ee e, Ve-2-h(t-1)}, J2={v5,...,v,} and 1={1,2},

we again contradict Proposition 5.

Via a symmetric argument, a contradiction follows for

vieM(t-1) and v#M(1).

7). So we consider v;¢M(t-1) and VjﬂM(1), that is, vj=v{ and
vVy=vp. Let
J=K1 UK2UK3
where Ki={va, .., visn(1)}

when h(1)>0 or the empty set when h(1)=0,

Rp={Ve—q-n(t-1)r+-+rV-2}
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when h(t-1)>0 or the empty set when h(t-1)=0 and
Ka={visq,eee, Vel
By Proposition 2, |J|2p-1+h(1)+h(t-1). Since |M(1)]|22 and
IM(t-1)|22, 2+h(1)<ast-2-h(t-1). Letting
J1={V24+n(1)res+rVt-2-h(t-1)}, JI2={vi} and Jz={v,}

with 1={1,2,3}, we again contradict Proposition 5.
The first case of Proposition 6 has now been proved.

I1. Case 2: M(t+1)N{vy, ..., vish(1)}=0.

Let vj be a vertex of this intersection.

i. Since the cycle vjCvyBv,.Cvi,1***v; is not longer than C,
izh(t+1)+p. By (4.1), h(1)<p-1. So p21+h(1) 21i2h(t+1)+p

implies that h(t+1)=0, h(1)=p~1 and vi=vqiip(q)eM(t+1).

ii., Since Case 1 of Proposition 6 has been solved, we have a
symmetric result for M(1) which is
MO {vesq, 000, vp-23=0 if MON{VEsq, oo, Ver1-h(t+1)}=0.
By (i), h(t+1)=0 and we have that
{Vit1r oo Vi1 =h(g+1)3={Visq}
with which M(1) does not intersect. Hence,

MO N {visq,eee,Vp-21=0,

iii. Since h(1)=p-121 and v, .¢M(1), MOI)N{Vosp(1)ree., Ve 1#0

because |M{1)}|22 and by Proposition 1.

Since vijeM(t+1)N{vy,...,vi4h(1)} and

M1)N{vo4+n(1)r-+«,v}#@, there are integers k and j, with j-k as
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small aé possible, such that 2<k<j<t, vjeM(1) and vpeM(t+1). Let
J={Vk+1,...,Vj_1}
with which neither M(1) nor M(t+1) intersects or else j-k could
be chosen smaller. Since the cycle v1Cvk***vt+1CvertCVj***v1 is
not longer than C, J contains at least p—1+h(1)+h(t+1) vertices.
On the other hand, letting
J1=1va,eee,vil}, Jo={vy,...,ve} and J3={viso,...,ve},
M(1)UM(t+1) €J4UJUJ3. With I={1,2,3}, Proposition 5 is
contradicted and the proof of Proposition 6 is complete.
nEn
PROPOSITION 7.
We have
M(1)N{vy, .o, ved#08, M(t-1)N{ve, vy, we.,vi_0120,
M(t+1)N{vis,.0.,vp}#0 and M(r-1)N{vy, ..., vp-2120.
PROOF.

Without loss of generality, we consider M(1). If h(1)=0,
voeM(1). If h(1)21, v ¢M(1). Since M(1)E{vye_q,vr,v2,...,V¢}, by
the previous proposition, and |[M(1)}|22, M(1)N{vy,...,v }#0.

EEE
PROPOSITION 8,
We have
t>3 and r-t23.
PROOF.

If t<2, p=2 and t=2 by Proposition 2. By Proposition 6,
M(1)E{vp 1, vV, eee,ved=lvpe_q,vp,vo} and va=vi,,eM(1). Since
Vi=veoq, M(1)=M(t-1)ES{vy, ...,V 2, V¢, Vs 3={v,vo,v3} and

Ve-1#M(t-1)=M(1). So M(1)={v,,vy} because |M(1)]|22. Now h(1)=0,

48



otherwise, v,,vo¢M(1). But then v; is a vertex of degree two
which contradicts the 3-connectivity of the graph. Thus, t=3 and
by symmetry r-tz3.

Now we can get into the main part of the theorem's proof.
First, we define a Y-bridge of a longest cycle C.
DEFINITION.
If D is a bridge of C and vertices vy, vir, vigr of C are
distinct attachments of D such that there are two C-paths
vp***vey and vp***v. e of length p contained in D, then D is

called a Y-bridge of C.

We shall consider two cases in the proof, namely, with a

Y-bridge (Part B) and without a Y-bridge (Part C).
PART B. CASE ONE. C has a Y—bridge.

Propositions 5 and 6 will be the keys to the proof in this

case.

Let B'=v ***y,: and B"=v,.***y,.n be two C-paths of length p
contained in a Y-bridge of C, t">t'. Obviously, t"=t'+2. The
index t in all propositions of Part A can be replaced by both t'

and t".
I. We claim t"-t'<p-2, that is, 1<|{viryq,...,Venoq}|Sp-3.

Let us consider the summable pair (r-1,t'-1). Let

Ki={ver—q-n(gr=1)r---rvgr-2}
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when h(t;-1)>0 or the empty set when h(t'-1)=0,
R2={Vr—1-h(r-1)r+e=rVr-2}
when h(r-1)>0 or the empty set when h(r-1)=0, and
K3={vtv+2,...,vtn_1}
when t"2t'+3 or the empty set when t"=t'+2, Let
J = K{UKpUK3.
By (4.1) and Proposition 2, r-t"2p2h(r-1)+1 implies that
r-1-h(r-1) 2 t"., Hence, J contains no coincident vertices. Let
Jy={ve, oo ver-2-n(t -1 1,
Jo={ver,vereql and Ja={ven, oo,V (p-1) s
By Proposition 7, M(t'-1)M{vy,vq,.c.,Veroo h(t'-1)}#0 and
t'-2-h(t'-1)20,

When t'-2-h(t'-1)21, {v,,vy}EJy. Hence, by Proposition 6,
M(r-1)&J1UJ3 and M(t'-1)&J,Ud,,

1={1,2,3} and I'S{1}.

When t'-2-h(t'-1)=0, v, is the single vertex in
M(t'-1)N{vy,...,v¢' -2} by Proposition 7. If
Vi=Viroq-h(t'-1)€M(r-1), then v Cvi'_***v . Bvi1Cv,._1***v,; would
be a cycle longer than C. Hence, v1¢M(r—15. So we still have
that M(r-1)&JqUJ3, M(t'-1)&J1UJ>,

I={1,2,3} and 1'c{1}.
By Proposition 5, |
Ky |+|Ro|+|R3| = |J] < h(r-1)+h(t'-1)+p-5+|I"].
Since |Ky|=h(t'+1), |Kz|=h(r-1) and |K3|=t"-t'-2,

t"-t'-2=|K3|<p-4.
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I11. We claim v,y and vy, are not joined by a C-path.

Otherwise, the cycle v Cviryq***v._,CvinB"v, would be longer
than C because |{virip,...,vgn_1}|<p-4. Hence,

(w(r-1),w(t'+1))¢E(G).
III. We claim (r-1,t'+1) is summable.

By Proposition 6 and II, we only need to consider the

intervals {vgr42,...,vp-2} and {vp,v }.

If vieM' 1 (r-1)NM(t'+1), t'+2<i<r-2. (Note that v;_qeM(r-1)
implies i-12t" by Proposition 6). Then the cycle
VeCvp g *¥**y; Cv_ ***v; _,CviwB"v, would be longer than C because

of I.

If vyeM™1(t'+1)NM(r-1), then the cycle
Vep—1***v Cvi 1B 'vp***y, v 1CVv,_y would be longer than C. Finally,

vpeeMTI(t'+1) by II.

IV, If t"<i<j<r-1, it is impossible that

vieM(t'+1) and vjeM(r-1).

Otherwise, choose j-i as small as possible. Since the cycle
VrCVtv+1***VjCVr_1***ViEthB"Vr is not longer than C,
{vi+1,...,Vj_1}U[{vtv+1,...,vtn_1}\{vtv+1}] must contain at
least p-1+h(t'+1)+h(r-1) vertices. By I, {Vi+1,...,Vj_1}
contains at least h(t'+1)+h(r-1)+3 vertices. Let

J1={Vr,V1}, J2={Vt'—1,Vt'},

I3={verazsees,vil, Jg=lvy, .o veonl,
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(note, by Proposition 8, J¢MJy=0),
J={va,ee e, ver-2, Vit 00, v4-1} and 1={1,2,3,4}.
From above
[J] 2 (£'=3)+[h(t"+1)+h(r-1)+3]
and by Proposition 2,
|J] 2 p+h(t'+1)+h(r-1).

This contradicts Proposition 5.

V. By IV and Propositions 6 and 7, there is an integer k

such that
t'+2+h(t'+1) < k < r-2-h(r-1)
with M(t"+1)G{vero 1, Ve, Verao4h(t'+1) r-»+,Vk} and
M(r=1)S{Vg,eees,Vpr—2-h(r-1),Vr,V1}.
Let
Jy={ve,vil, Jp={viroq,verd,
J3={Ver424n(t'+1) e o Ve-2-h(r-1)}
where 1={1,2,3,} and 1'¢{3}.
Let
J=K;UK,UK3
where Ki={vy, ..., veron},

Ro={vera2s ooVt aqan(er+1)}
when h(t'+1)>0 or the empty set when h(t'+1)=0, and
R3={Vr-1-h(r-1) s+ wwrvp-2}
when h(r-1)>0 or the empty set when h(r-1)=0. Here,
[J] = (£'-3)+h(t"+1)+h(r-1)
2 p-3+h(t'+1)+h(r-1)

which contradicts Proposition 5.
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Case One now has been solved.

PART C. CASE TWO. C has no Y-bridge.
Let B=v uj...up-qVy be a longest C-path of C.

1. Since G is 3-connected, G\{vp,v¢} is still connected. Let
®={q |there is a (BUC)-path P=ug...vq' joining B and C
in G\{vp,v¢l}l.
Obviously, ®%{2,...,p-2}. Otherwise, there would be a Y-bridge
of C.

II. In the proof of the previous case, we paid more
attention to the cycle C. In the proof of this case, we will pay

more attention to the bridge B.

For the sake of convenience, denote w(uj;,BUC), h(u;,BUC) and
M(u;,BUC)NV(B) by wij, hj and Mj, respectively. Here, we have
that

d(wi) < hj+dc(wi)+|M; |

by Lemma 1.

III. SUBCASE 1. Assume there is a g in ¢ such that

dc(w1)+dc(Wq+1)S3 or dc(wp-1)+dc(wq-1)$3-

Without loss of generality, let ge® and dc(w1)+dc(wq+1)ﬁ3.

And let P=vgr***yug be a (BUC)-path joining ug and vgr (g'#r, t).

The pair of vertices W1 Wgeq have some properties similar to

a "summable pair" on B which was considered in Case one. This
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similarlity will be considered and exploited in this subcase.

i. We claim that there is no (BUC)-path joining vg' and uj.
Otherwise. either the C-path Vq'***uyBup-1v, would be longer

than B or C would have a Y-bridge..

We claim that there is no (BUC)-path joining u; and Ug+1 -
Otherwise, the (BUC)-path u1***uq+1 would not intersect with P,
and then either the C-path quPuq§u1***uq+1Bup_1vr would be

longer than B or C would have a Y-bridge. Hence, wji and Wq+1 are

a pair of non-adjacent vertices.

We claim that ug and ug+q is not joined by a (BUC)-path of

length at least 2. Otherwise, B would not be a longest C-path.

Hence, if ujeN(u;,BUC) and ujeN(ug,BUC), then the three

(BUC)-paths uj***u,, Uj***uq+1 and P are internally disjoint.

ii. We claim M1ﬂMal1=¢ in {uz,...,uq}. Otherwise, let uj be
a vertex in this intersection. By i,
quPuqﬁui***u1Bui_1***uq+1Bup_1vt is a Cfpath. This path is
either longer than B or else there is a Y-bridge of C both of

which are contradictions.

Similarly, Mq+1ﬂMT1=¢ in {uq+2,...,up_1}. Now we can use

Lemma 3 on M; and Mg4,.

iii, Let's get a general inequality similar to Proposition 5

for M, and M

M UM u

c U J
q+i pel
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where {J, |uel}l is a collection of pairwise-disjoint
subintervals of {uz,...,uq} or {uq+2,...,up_1}. By Lemma 3,

IMiNT, |+ Mg+ N, < 3,0+
for any uel. So

+|M <z + .

|Mq [+ [Mg+1| ,,61"3"' |1

Let ‘
J = [{uz,.o-IUq}U{Uq-{-z,ooo,Up—"}]\[uLeJIJu]-

We have that

My |+ Mgaq | < p-3-]3[+|1].
Hence, by Proposition 3,

p+*+3 < m

A

d(W] )+d(wq+1)

A

h1+hq+1+dc(W1)+dC(Wq+1)+|M1|+|Mq+1|
h1+hq+1+3+(p-3—|J|+|I|),

A

that is,

3] < hythgeq-3+]1]. | 4

W
.’

-

This inequality will be used frequently in this subcase.

iv. If 2<i<j<qg, it is impossible that

uj €Mg+q and ujeMy.

If not, choose j-i as small as possible. By i,
quPquUj***u1Bui***uq+1Bup_1vt is a C-path and is either longer
than B or produces a Y-bridge if

J={Ui+1,...,Uj_1}
contains fewer than hy+hy,+1 vertices. Hence, let

Ji={uz,...,uj}, Jz={uy,...,uql and J3={ugsp,...,up-1}
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with I={11213}

which leads to a contradiction of (4.3) of iii.

v. If g+2<i<j<p-1, it is impossible that

If not, choose j-i as small as possible. As in the previous
cases, quPuqﬁul***uiﬁuq+1***UjBup_1vt is a C-path. This path is
either longer than B or C has a Y-bridge unless

J={Ujs+1,e00,u5-1}
contains at least h1+hq+1+1 vertices. Hence, letting
Ji={ug,...,ugl, Jo={ug+2,...,ui}, JI3={uy,...,up-1}
and 1={1,2,3},

we contradict (4.3) of iii.

vi. By iv and v, there are integers a and b such that,
2fas<qg, Q+2<b<p-1,
M1§{u2,...,ua,ub,...,uP_1}
and Mg+1S{ug,«..,upl.
Because the maximum length of a C-path is p, we must have that
M1§{u2,...,ua,ub,...,up_1}\{u1,...,u1+h1}

and Mq+1§{ua,...,ub}\{uq+1—hq+1,---ruq+1+hq+1}°

vii. We claim Mi#§ and Mg+ #0.

If hy=0, upeMy. If hy21, CrM(uy,BUC)E{v} since B is a
longest C-path and C has no Y-bridges. So |M;|21 because

[M(uy,BUC) |22 by Lemma 2.
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If Mg4+1=0, then M(ug+y,BUC) contains at least two vertices
of C. Let
i=min{u2g+2| uueM1}
when M1ﬂ{uq+2,...,up_1}¢¢, or
i=min{u| uueM1}

when MiM{ugs, ..., up-1}=0.

When i2g+2, let vseM(uq+1,BUC)\{vt}. Since the C-path
vs***uq+1§u1***uiBup_1vt is not longer than B,
J=V(BI\[{uy,«.. ,ugs1IU{uj, cee,upq1]
must contain at least hg4+q+hy vertices. Letting
Jy={ug, ..o yugl, Jp={uj, ..., up_q}
and I={1,2}

we contradict (4.3) of iii.

When i<q, let vseM(uq+1,BUC)\{vr}. Since the C-path

vg***uq, Buj***y v, is not longer than B,
J={u2,-o-,ui._1IUQ+2,000,UP_1}
must contain at least hj+hgsy vertices. (Note that 122 because
M,#0.) Letting |
J‘|={Ui,.-.,Uq} and I={1},

we again contradict (4.3) of iii.
viii. Suppose that M1ﬂ{u2,...,uq}¢¢.

If Mq+1ﬂ{u2,...,uq}¢¢, let

J={U1,...,U1+h1,uq+1_h ,...,uq+1}\{u1,uq+1}

g+l
which contains hy+hgs; vertices. (By vi, 1+h;<a<q+1-hgy

because both M; and Mgsq are not empty in {up,...,ug}.) Let
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J1={u2+h1 ,--o,Uq—hq+1}’ J2={Uq+2,.-.,Up—1}
and ' 1={1,2}.

Since MjUMg+1®J1MJy, we have a contradiction of (4.3) of iii.

1f Mq+1ﬂ{u2,...,uq}=¢, then by v and vi, My and Mgy would

not intersect with {uq+1,...,uq+1+hq+1} and
Mq+1‘-:-‘[1-1q+2+hq_,_.I ,---,Up—1}-
(Note that Mg4+1#@ implies that p-12g+2+hg4q.) Let
J={u1,...,u1+h1,uq+1,...,uq+1+hq+1}\{u1,uq+1},

J1={u2+h1’-uu’Uq}, J2={Uq+2+h ,oo-,Up—1}

g+1
and 1={1,2}.

Here, M{UMg+(&J1UJ, from which follows a contradiction of (4.3)

of iii.

So we will assume that M1ﬂ{u2,...,uq}=¢, that is,

M1g{Uq+2,---’uP_1}-

ix. Let
i=min{u |u,eMg,1} and j=max{u |uyeMy}.
Recall that M{#@, Mg+1#@ by vii. By vi and viii,

M‘|UMq+‘|g{Ui,...,Uj}.

When i<q, let
J1={ui,...,uq}, J2={uq+2,-.-,Uj}
and 1={1,2}.
Since the C-path vpui***ujBug+q***ujBugPvy' is not longer than B
and C has no Y-bridge,
3= V(BI\[J1UI5U{uy, ugeq}]

must contain at least hy+hgs+y+1 vertices. This again contradicts
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(4.3) of iii.

When i2g+2, then Mq+1ﬂ{u2,...,uq}=¢:and iZq+2+hq+1‘so that

J1={Uq+2+h I"‘Iuj}!

+1
contains all vertices of M, anquq+1. Since the C-path
vru1***uj§uq§qu is not longer than B and C has no Y-bridge,
{uz,...,uq,Uj+1,...,up_1} must contain at least hy+1 wvertices.
Hence, J= V(B)\[J1U{u1,uq+1}] contains at least h 1*hgsq*1
vertices. We again contradict (4.3) of iii.

This completes the proof of Subcase 1.

IV. SUBCASE 2. We may assume

de(wy)+dc(wgs )24 and de(wp_q)+dc(wg-1)24, for any qged.

i. In order to avoid a ¥Y-bridge,

v(C)NM(u;,BUC) ={vy,v,} and V(C)ﬂM(u BUC) E{v¢, v, 1.

p-1r
Hence,

dc(wq), dclwp-q)=2,
and therefore, dc(wq+1) and dc(wq_1)22

for any qged.

ii. If hy21, then M(u4,BUC) €V(B)U{vy} in order to avoid a
C-path of length greater than p joining v, and vy. So dc(wq)<1.
But we can choose g as the greatest element of ®. Then

M(ug+1,BUCINIV(CI\{v,,vi}]1=0,
and hence, dc(wg+q)<2. Thus, dc(wq)+dc(wgsq)<3 which contradicts

the hypotheses of Subcase 2.
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So we conclude that hy=0 and symmetrically, that hp—1=0"

iii, Choose g as the greatest element in & . Since g+1¢%,
M(uy,BUC)NV(C) = M(ug+q,BUCINV(C) = {vp,vil.
Let vgreN(ug,BUC) such that qg'#r,t. Since B is a longest C-path,

ug***vgqr and ug4+1***v, are disjoint (BUC)-paths.

iv. We claim (uj,up-4)¢E(G). Otherwise, the C-path

Vr***uq+1Bup-fu1Buq***Vq' either is longer than B or has the

same length as B and C would have a Y-bridge.

Y_-_ Since h1=hp._1=0, NB(U1)=M1 and NB(UP_1‘)=MP_1. We have
that

M, ﬂM5.1_1 [ {Uz.,...,up_z} = 0
If not, let uj be in this set. If i#g+1, then without loss Of
generality assume i<qg. The C-path
Ve***ugy 1 Bup- Ui -1 BujujBug***vyr either is lopger than B or
there is a Y-bridge of C. If i=qg+1, then the C-path
VtUp-1Bug+ uiBug***vyr either is longer than B or there is a

Y-bridge of C.

vi. By iv and v, The pair of vertices Uq,Up-1 behaves

similar to a "summable pair" on B. We have that

m < d(uq)+d(up-1)
< delug)+dc(up- g )+ My [+[Mp_q |
< 4+(|{up,e.. up-2}[+1) (by lemma 3)
= p+2

which contradicts Proposition 3.
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This completes the proof of the theorem.
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PART E

SOME RESULTS ABOUT DIRECTED GRAPHS
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In addition to the preceding work done on undirected graphs,
I have obtained some results about directed graphs. Most of them
have been published already and thus will be surveyed here. The

proofs will not be included.

An oriented graph is a directed graph in which each pair of
vertices is joined by at most one arc. Let k be the minimum
indegree and outdegree of the oriented graph. B.Jackson [10; 2,
p465] conjectured that the /length of a longest directed cycle in an oriented
graph is.at least 2k+1., He was able to prove that an oriented graph
contains a directed path of length 2k+1. This result can be improved as
follows.

THEOREM 4.1 [22].

Let D be an oriénted graph in which the indegree and the

outdegree is at least k for each vertex. Then D contains

either a directed cycle of length 2k+1 or a directed

path of length 2k+2.

B.Jackson [10] showed that if D is an oriented graph of order 2k+2,
k22, then D contains a directed Hamilton cycle. The following improves the
latter result.
THEOREM 42  [24].

1f D is

n oriented graph of order 2k+3, where k is the

minimum indegree and outdegree and k=3, then D contains

a directed Hamilton cycle.

The main part of the following theorem is a the corollary of
Theorem 4.2, but the nice structure of tournaments allows a

simpler proof and a better lower bound on the degrees.
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THEOREM 4.3 [20].

A reqular tournament of order at least 5 contains two

arc-disjoint directed Hamilton cycles,

B.Jackson [10] also showed that if D /s a bipartite oriented graph of
order at most 4Kk, then D contains a directed Hamilton cycle. The following
theorem removes the constraint on the order of the graphs.
THEOREM 4.4 [21].

If D is an bipartite oriented graph with the indegree

and the outdegree at least k for each vertex, then D

contains either a directed cycle of length at least 4k

or a directed path of length 4k+1.

An oriented graph D=(V,A) is called a multipartite tournament if

V(D) is a union of disjoint parts Vy,...,Vy and each part V; is
an independent set of D with exactly one arc joining each pair
of vertices from different parts of V(D). C.Thomassen [4, 17]
conjectured that an oriented graph of order at most 3k contains a directed
Hamilton cycle. Although some counterexamples to this conjecture
have been found [4, p9], it still may be true if the graph is
tripartite. It is easy to see that a tripartite oriented graph
of order at most 3k is a regular tripartite tournament.
Furthermove, it is possible that every regular multipartite
tournament contains a directed Hamilton cycle. B.Jackson's
theorem about bipartite oriented graphs actually deals with
regular bipartite tournaments, because 4k is the lower bound on
the order of the bipartite oriented graphs. The result I
obfained about the multipartite tournament is the following.

THEOREM 4.5 [27].
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A regular multipartite tournament of order n contains a

directed cycle of length at least n-1.

The following result is an immediate consequence.
COROLLARY 45 [27].

A regqular multipartite tournament contains a directed

Hamilton path.

For the general directed graphs, Nash-Williams [14; 3, p201]
showed that if D is a directed graph of order n with minimum indegree and
outdegree at least n/2, then D contains a directed Hamilton cycle. He also
conjectured that such a directed graph conmtains two arc-disjoint directed
Hamilton cycles. Nincak [15] found a counterexample of order 6, but
this conjecture is still open for n27. I obtained the following
results on this problem,

THEOREM 4.6  [23].

I1f D is a directed graph of order n in which the

indegree and the outdegree of every vertex is at least

n/2 and n29, then D contains two arc-disjoint directed

cycles. One is a directed Hamilton cycle and the other

is of length at least n-i.

The following result is almost a corollary of Theorem 4.6, but
it has a better lower bound.
THEOREM 4.7 [25].

f D is a directed graph of order n in which the

indegree and the outdegree of every vertex is at least

n/2 and n25, then D contains an arc-disjoint pair

consisting of a directed Hamilton cycle and a directed
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Hamilton path.

The directed graph D is said to have the arc-pancyclic
property if each arc of D is contained in directed cycles of
lengths h, h=3,...,|V(D)|. The arc-pancyclic property of
tournaments was a quite interesting problem. Since Alspach [1]
obfained the first result for regular tournaments, many
different families of tournaments have been studied by
mathematicians. Suggested by Y.Zhu [28], a necessary and
sufficient condition for this property ih tournaments has been
found.

THEOREM 4.8  [19].

If each arc of the tournament D is contained in a

directed cycle of length 3, then D has the arc-pancyclic

property unless D belongs to one of two certain families

of tournaments.

The structure of these two families of tournaments has been
described in [19]. Although these exceptions exist, we still can
obtain the following result.

COROLLARY 438 [19].

If each arc of the tournament D is contained in a

directed cycle of length three, then except for at most

one arc of D, every arc is contained in directed cycles

of lengths h, h=3,...,|V(D)

All these properties about the existence of directed Hamilton
cycles, being pan-cyclic, vertex-pancyclic or arc-pancyclic in

tournaments can be determined in polynomial time. Surprisingly,
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the complexity of the determination of the property of whether
or not a tournament is arc-hamiltonian is still unknown. The
preceding property seems "easier" than the arc-pancyclic
property. (A tournament is arc-hamiltonian if each arc lies in a

directed Hamilton cycle.)

A tournament D is said to be domination orientable if there
is a labeling of its vertices such that v; dominates
Vi+1:Vi+2s -4+ Virod(v;) for every vjev(D), modulo |V(D)|. A
result about a property similar to the pan-path-connectivity
property has been obtained for this class of tournaments.
THEOREM 49 [26].

If D is a domination orientable tournament, then D

contains directed paths of each length p,

p=5,...,|V(D)|-1, from vertex x to vertex y for any pair

of vertices x and y in V(D), except for one pair of

vertices at most.
Alspach conjectured that among all tournaments, domination
orientable tournaments are those which contain the maximum
number of directed Hamilton cycles. Using.Theorem 4.9, we can
get a recursive_method for counting the number of directed
Hamilton cycles in domination orientable tournaments which will
yield the following result.
THEOREM 4.10 [26].

If D is a domination orientable tournament of order n

with every indegree and outdegqree at least §, then D
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contains h(D) directed Hamilton cycles, where

J3(2n"6) if 622,

h(p) > <17(2n"8) if 823,
140(20711) if 524.
\

In the original paper, the lower bound fomula of h(D) in terms
of & and n looks quite complicated. Here, Theorem 4.10 is only

simplified corollary of it.
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