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ABSTRACT 

There are four main parts in this thesis. 

The first part contains a proof of the following result. If 

G is a k-connected claw-free  free) free) graph of order n such 
that 

for any (k+1)-independent set I, then G contains a Hamilton 

cycle. 

The second part deals with C. Thomassen's conjecture that 

any longest cycle of a 3-connected graph has a chord. We'll show 

that the conjecture is true for a planar graph if it is cubic or 

624. We also show that if there is a minimum counterexample, 

then the subgraph outside of a chordless longest cycle is an 

independent set. 

The third part is concerned with bridges of longest cycles 

in 3-connected non-hamiltonian graphs. Let G be such a graph and 

let d(u)+d(v)2m 

for each pair of non-adjacent vertices u and v. Let the length 

of its longest cycle C be r. Then the length of any bridge of C 

is at most r-m+2. 

The final part presents a survey of results about longest 

directed cycles in digraphs. Since their proofs have been 

published elsewhere, they are omitted here. 
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PART A 

INTRODUCTION 



The subject of paths and cycles in graphs is fundamental to 

the study of graph theory. It is no surprise that there is .a 

vast literature on the topic. Besides the thousands of papers 

dealing with the subject, there have been two conferences 

devoted to cycles in graphs, a book on cycles in graphs [ 2 ]  has 

recently appeared and a book on Euler tours by H. ~leischner is 

forthcoming. 

This thesis is concerned with cycles in graphs and directed 

cycles in digraphs. There are four sections but there is a 

unifying theme of looking at problems dealing with longest 

cycles in graphs. Of course, the longest cycle of a graph can be 

a Hamilton cycle, that is, a cycle containing every vertex of 

the graph. Some natural questions to ask are whether or not a 

given graph has a Hamilton cycle, whether or not the graphs in a 

family all have a Hamilton cycle, and what kinds of conditions 

must be imposed on a given family of graphs in order to 

guarantee that thay all have a Hamilton cycle. 

If a graph does not have a Hamilton cycle, there are several 

directions that one can take in the investigation of such 

graphs. For example, what kinds of conditions can be imposed in 

order to guarantee that a graph does not have a Hamilton cycle? 

Another approach is to investigate properties of the longest 

cycles in non-hamiltonian graphs. This is the approach taken in 

this thesis. 



One of the types of conditions that have been imposed on 

graphs to guarantee a Hamilton cycle have involved degrees of 

vertices. There are several classical results in this direction. 

A recent theorem of Mathews and Sumner [12] involves the minimum 

degree of the graph and the structural property that the graph 

has no induced KI,3 subgraph. The latter condition simply says 

that no neighborhood of a vertex can have an independent set of 

size three. Their result is generalized in Part B of the thesis. 

C. Thomassen has recently conjectured [2, p4661 that every 

longest cycle in a 3-connected graph has a chord. In Part C, it 

is proved to be true for a planar graph G if either G is cubic 

or 6(G)24. It is also shown that the subgraph outside sf a 

chordless longest cycle in a minimum counterexample to the 

general conjecture must be an independent set. These results 

make the question more interesting for the class of 3-connected 

planar graphs. 

Thomassen's conjecture in the previous part is saying that 

longest cycles in a 3-connected graph must have short bridges 

because a chord of a cycle is the shortest bridge a cycle can 

have. In Part D, we take the opposite viewpoint by asking how 

long might a bridge of a longest cycle in a 3-connected graph 

be. The theorem of Part D is given for non-hamiltonian graphs 

because the question is not interesting if the graph has a 

Hamilton cycle. The theorem establishes an upper bound on the 

length of a bridge. 



The basic terminology and notation of this thesis may be 

found in [ 5 ] .  



PART B 

HAMILTON CYCLES IN CLAW-FREE GRAPHS 



A graph is called claw-free if G has no induced K1,3 

subgraph. Mathews and Sumner [ 121 showed that i f  G is a claw-free 

2-connected graph of order n with minimum degree 6 such that 36211-2, then G 

contains a Hamilton cycle. In this chapter, we will give a result 

about Hamilton cycles in k-connected claw-free graph which 

generalizes the Mathews-Sumner Theorem. 

THEOREM 1.1. 

Let G be 2 k-connected claw-free qraph of order n such - - - 
that - 

for any (k+l)-independent set I. Then G contains a - - - 
Hamilton cycle. 

Bondy [ 6 1 conjectured that i f  G is a k -connected graph of order n 

such that 

for any (k+l )-independent set I of GI then the subgraph outside any longest 

cycle contains no path of length k-1 . The theorem in this chapter 
implies the conjecture in the case of claw-free graphs. 

In this chapter, let 

~~(v)=Euev(D) I (v,u)eE(G)), 
where D is a subgraph of G. If V(D)=V(G), we simply write N(v) 

instead of ND(v). If C-x l . . . ~ r ~ l  is a cycle, xiCxj denotes the 

interval xi~i+~...xj-~xj of C and xjCxi denotes the interval 

XjXj-1 .. .Xi+lXi of C. 



PROOF OF THE THEOREM. 

Let G=(v,E) be a graph satisfying the conditions given in 

the theorem. Let C=v l...vrvl be a longest cycle of G. Assume 

that C is not a Hamilton cycle. Let B be a component of G\v(C). 

By k-connectivityI there are h edges joining B and C, h2k. 

~otice that h21NC(x)l for any xeV(B). Let these edges be 

{(xitvji) li=lt ... ,hl, where xieV(B) and vjieV(C), for i= l I  ... .h 
and 15jl<j2< ... <jhir. Let xiBxj denote a path of B joining xi 

as big as possible. The pair ( W ~ , W ~ + ~ )  is 

wl) for all 

I. Let's define some special sets on C by the following - 
algorithm. 

ALG(v~~). 

1. W,. . .wr+v -1Cvjpt 
j fi 

S,+-0, 

go to 2; 

2. If there is an integer i such that wiIwi+leN(~l)l choose i 

called the 

insertion pair for wl. 

sfi+-spu~w1 I t  

WWrW2...WiWlWi+l...Wrr 

go to 3; 

3. Repeat 2 until either wi+lBN( - 
already; 

If w l ~ S f i l  then Sfi-SpU{wlI; 

go to 4; 

4. Stop. 



Let 

Use this Mg(vj for each p=l,. ..,h obtaining S1, .... Sh. 
Cc 

and - 
for t=2,.. .,h - 

if iicj. - 

Proof. 

From ~lg(vj ) it is obvious that Sp is an interval on C for 
Lr 

p=l,...,h . Now vjh+S1, because otherwise, during the processing 
of A1g(vjl), we would have a path wl...wr with W ~ = V  and 

jh 
wr=vjl Then the cycle wl ... wrxhBxlwl would be longer than C. 
Hence, S1'Givjh+l ,...,vjl-1). The other conclusions are similar. 

111. Considering S1=i~jl-lr...l~ ~I-PI I 1 ,  there exists the 

least integer a1 such that the insertion pair for v; 
~ 5 - & 5  

is not 

contained in C\[Sl\1vjl-1 l...l~jl-alII. When Alg(vj,) stops, 

either wl has no insertion pair or wleS1 already (that is, 

W1=vjl-a 
has its insertion pair intersecting with 

I ~ j ~ - ~ - 1  , .  ...v kIs1 1 1 ) .  Both cases guarantee the existence of 

v jl-q* If al<lS1l, then Vjl-al is the first vertex whose 

insertion pair intersects ~ ~ j ~ - ~ ~ - l ~ . . . ~ ~  
jl-lsl i ) during the 

processing of Alg(vjl). Hence, - the insertion pair - for Vjl-al - is 

contained - in ~ v j l ~ a l ~ l , . . . , ~ j l - ~ ~ l ~ - l ) ,  when al<IslI. vjl-al 

has no insertion pair, when al=IS1l. -- 



Similarly, considering PSI... ..h, we will get vj 
cr-IUc(* 

The rest of the proof is going to show that 

1. 1=IxIvj1-aI - . j h  & an independent set, where XLB: 
and - 

2. B, N(vjl-al - 1, ..., N(vjh-ah)r Ivjll...l~jhI and 

~ ~ j ~ - ~ ~ ~ . ~ . ~ ~ j ~ - ~ ~ ~  disjoint sets. 

If we can do so, I will be the independent set contradicting the 

hypotheses of the theorem. 

IV. An operation defined & Alg(vj 1. -- P 

During the processing of Alg(vj 1, we produce an operation 
IL 

on some paths P=wl ... wp. Assume only one of {wl,wp] is in Sp 
(say,  wl) and let (wi,wi+l] be the insertion pair for wl. Define 

z~(P)=w~...w~w~w~+~...w~. 

(If wpeSp1 Zp(p)=w l...WiWpWi+lm..Wp-l.) 

We can define the operation Zp on some paths P=w 1...wp with 

respect to Sp. Here, Zp(p) - is well-defined only when 

I I W ~ , W ~ ] ~ S ~ ~ = ~  -- and the insertion pair -- for the vertex -- in this 

intersection exists. When Zp is operatinq - on P I  the endvertex wl 

(or - w ) will be moved into its insertion pair. And z!(P) denotes P -- -- 
the compositions of the operation Zp on P (repeated 0 times). 

V. ---- We claim that (vjplVjp-Ut ) $ E ( G )  - and ap>l for p=l ,..., h. 

Without loss of generality, consider p=1. Let 

~ 1 . .  .wr=z~1-' (PI where W1=Vj,-al , wr=vj 1 . Assume that 
(W~,W~)'E(G). Then wl...wrwl is also a longest cycle. Now 



~xlrwlrwr-~)t~(wr) and G being claw-free imply that 

(wl1wr-1)eE(G). So (wr-l,wr) is the insertion pair for wl which 

the insertion pair for wl is not contained in contradicts that 

V(C)\(V~~-~~-~,* 

(wl1wr)=(vjl~ vj 

that al>l always 

-tvjl-Is11 1 .  Hence, we must have that 

1-"1 
)$E(G). Incidentally the same proof shows 

holds. 

VI. - Let us consider Vjl-al and vjh-ah as an example. Let 
P=vjl-l Evjl 1 Q = v j l - l E v j h x h ~ x l ~ j l C ~ j h - l  (let q=lQI 1. 

Proposition 2. 

Let a<lS1 1 ,  and zy(p)=wl .. .wr. - - 
1. z~(P) is well-defined; - - 

3. z~(Q) is well-defined; and - - - 
4. let z, zle~(wl). Then z and z' are adjacent in z~(P) if and - - - - - -- 

only - if z - and z' are adjacent - in z~(Q). 

Proof. 

(1 )  is true for all a, Ola<lS1l. 

(2) will be proved by induction on a. If ( ~ ~ ~ - ~ ~ v j , - ~ ) e E ( G ) ,  

the cycle v ~ l - l ~ ~ j h ~ ~ B ~ l v ~ l C v ~ ~ ~ l - l  would be longer than C. 

So it is true for a=O. Assume that it is true for a<K. Since 

v K -  1 jh-1 ,vjh are adjacent in Z1 (PI, let ZT-l (p)=ul ... ur with 
vj~=uir Vjh-1=ui+1. Since Vjx-lIN(ul), the insertion pair for ul 

will not be ~vjh-lrvjXI=~~iIui+lI. Hence, Vjh-l,vjh are still 

adjacent in z;(P). If ~ j ~ - ~ e N ( w ~ ) ,  then the cycle 



w ~ z ~ ( P ) v ~ ~ x ~ B x ~ w ~ z ~ ( P ) v ~ ~ - ~ w ~  would be longer than C. 

By (21, the insertion pair for w1 is always contained in 

either {w~,...,w~) or where vjh-l=wi+1 and 

vj~'wi* 
Hence, 

zy(Q)=wl z ~ ( P ) ~ ~ ~ ~ B X ~ W ~ Z ; ( H ) W ~ + ~  

and z~(Q) is well-defined. Let z,z'cN(wl). If z,z' are adjacent 

in z~(P), (respectively, in z~(Q)), either z,zV e{wl,. . . ,wi), or 

z,z's{~~+~,...,w~~. Hence, z,z' are adjacent in z~(Q) 

(respectively, in z~(P)). 

VII. Recall that P=vjl-l PVjl and Q = v ~ ~ - ~ C V ~ ~ X ~ B X ~ V ~ ~ C V ~ ~ - ~  

(let q=IQI). 

Proposition - 3. 

1. If u<lS1 I and 8<IShl , then z ~ z ~ ( Q )  is well-defined. 
7 - - 
2. Let {Z Pl,..., 1 2 series of operations, where - - zps - 

PI, . . . ,  ~~E{l,hl. ZPSZpS-, Z I Q  & only dependent on 
number - of Z1 and the number of Zh. other words, any 

permutation - of Epl, ..., fisl --- would not make any difference - in 

ZPs.. . ZP1 (Q) 
3 .  Let zT(P)=wl. . .wr, Z~Z~(Q)=U~. . .uq v,vV eN(wl). Then v,v' - - 

are adjacent in z~(P) if and only if v,v' are adjacent - - -- - - 
zyzfca,. 

Proof. 

We use induction on a+P. When P=O, (1) and (3) are true by 

Proposition 2, and (2) is true because P=O. Symmetrically, the 



Proposition is true when a=O. 

Assume that (1 )  and (2) are true for a+p<K, (~22). Consider 

~ + P = K ,  a< 1 S1 I and P< I Shl . We only need to show z~z~(Q) is 

well-defined and 

Z1 ZxZy-' Zf-' (Q)= ZAZ1 z~-'z~-' (Q) . 
By the induction hypothesis, ZY-I zfml (Q) , Z~ZY-' zf-' (Q) and 

1 ZYZf-' (Q) are well-defined. Let ZY-' zR- (Q)=wl.. .wq=Q*, wl eSl 
and wqeSh, let {wa,wa+ll be the insertion pair for w1 and let 

{ W ~ , W ~ + ~ )  be the insertion pair for wq , all of which exist 

because Zh(Q*) and zl(Q*) are well-defined. If 

Assume that ( 3 )  is true for a+P<u (~22). Let us consider 

~ + P = K .  Let v , ~ ' e N ( v ~ ~ - ~ - ~ ) .  By the induction hypothesis, v,vl 

are adjacent in z~(P) if and only if v,vl are adjacent in 

ZYZ~-' (Q)=Y~. . .yq=Q**, (where y l  
=vj 1 -a-1 1. Suppose that v,vl are 

adjacent in z ~ z ~ - ~ ( Q ) .  The insertion pair for y in Q** is not 

Iv,v1 3. If SO, let { ~ ~ ~ ' ) = { y i ~ y i + ~  3 and then the cycle 

ylQ**yiyqQ**yi+lyl would be longer than C. Hence, v,vl are still 

adjacent in z~z~(Q). Conversely, suppose that v,vl are adjacent 

in z~z~(Q), but not in zyzf-'(Q)=Q**. Then ~ ~ e ~ v , v ' ~ C N ( y ~ )  which 

would give a cycle y1 ...yqyl longer than C. So v,vl must be 

adjacent in ZyZf-' (Q) . 



If 1, then the cycle ZY~-' (P)Vjl~lBXVjl-al would 

be longer than C. If (Vjl-allvjX-ah) eE(G), then the cycle 

zyl-'Z~h-' ( Q ) v ~ ~ - ~ ~ v ~  l-al would be longer than C. Hence, we have 

proved the first assertion suggested in 111. 

IX. We claim NlflSX=O and NXRSl=O. --- 

If not, let Vjl-ff-l~N(vjA-~-l)nSISNXnSll where a<lS1 I and 
P< lsxl. Then the cycle ~ ~ z f ( Q ) v ~ ~ - ~ - l v j  l-a-l would be longer 

than C. Hence, Vjl-al INX and v ~ ~ - ~ ~ I N ~  , which is a part of the 

second assertion of 111. 

By the choice of a,, it is obviously true when P=O. We 

proceed by induction on 0. Let Q*=Z~Z~-' (Q)=yl.. .yq. Since 

NXnS1=O (by 1x1, the insertion pair for y will not be contained q 

in i ~ ~ . . . . , y 1 ~ ~ 1 - ~ + 1 l ~  Hence, 

~ Y ~ ~ * * * ~ Y I s ~ I - ~ + I  )={W~,...,W Is1 ~-a+ll 
remains as an interval in z~z~(Q). 

XI. We claim N ( v ~ ~ - ~ ~  --- )flN(~j~-"~ I=@ which is a part of the 

second assertion of 111. 



Assume that wS€N(vj 1-,, ) f l N ( ~ j ~ - ~ ~  )nV(C). If (wl ,wq)eE(G), 

then the cycle wl...wqwl would be longer than C. If 

(w~,w,-~)~E(G) or (wl,wS+~)eE(G), the cycle w1QXws-lwqQ*wswl or 

wlQ*wswqQ*~s+l~l would be longer than C. If ( W ~ - ~ ~ W ~ + ~ ) ~ E ( G ) .  

the cycle wlQ*ws-~wS+~Qfwqwsw~ would be longer than C. 

Since G is claw-free, the only remaining cases are that 

(wllwS-l)e~(~) when s-l>l and (wqIws+l)eE(G) when s+l<q. Note 

that s-1=1 and s+l=q cannot hold simultaneously as this would 

imply 3=q21C1+1. If s-l>l, by Proposition 3, then the adjacent 

pair ws-1 ,wseN(wl) implies the existence of the insertion pair 

for wl in Z?~-'(P). By the choice of ul, 

jh-1sAl-11* 

If s-l>l and s+l<q, then 

wse(vjl-al-~ I * * - I V ~ ~ - I S ~  I-lInfvj,-,,-l ,. ..,vj,-ls, 1 - 1  1 
which contradicts Proposition 1. 

So without loss of generality, let s-l>l and s+l=q. By X I  



XII. We now wish to show that ( v ~ ~ ~ V ~ ~ - ~ ~  ------- )#E(G) and 

Ivjl-a1 ,. . . I~jh-ahInN(~jl-al I=@ 

Since (Vjh-l I~jh+l ,XXIEN(V~,, 1, G is claw-free and C is a 

longest cycle, note that ( V ~ ~ - ~ , V ~ ~ + ~ ) ~ E ( G ) .  Suppose 

(vjxrvjl-al )eE(G), let a be the least integer such that 

(~j~tvj~-~)€E(G). Then the insertion pair for vjl-,, is not 

IvjxIvjX+lI for 7=1,...,a-1. Hence, vjX and vjx+, are adjacent 

in ZY-l (p)=p*=wl.. .wr where w1.v j1-a and wr=v . Also, vjh and j 1 

"jX-1 are adjacent in P* by ~roposition 2. Let wi-l=vjh+lI 

Wi"vjv 
~i+~=vj,,-~. Then the cycle wlP*wi~lwi+lP*wrxlBxhwjwl 

would be longer than C. Therefore we conclude that vjX#~(vjl-al 1 

for h=2, ..., h and, by V, ~ j ~ # N ( v ~ ~ - , ~ ) .  

XIII. All results of V, IX, XI and XI1 hold if (1 ,h) is 

replaced by any pair Es,tlc{l, ..., h). 
Now we can establish the second assertion of 111: 

N(v jS-as )flN(vjt-,, ) # @  contradicts XI; 

N(v jS-as )flIvjl, ..., v jh I#@ contradicts XII: 

N(v jS-us )flIvjl-al , ...,v j h'ah I #@ contradicts IX; 

(vjl-alr***rvjh-ah flvjl,...,v jh I#@ contradicts 11: and 

v(B)flN(~j~-~~ ) # @  contradicts VIII. 

Hence, V(B), N ( v ~ ~ - ~ ~ ) ~  ..., N(vjh-ah)I ( ~ ~ ~ ~ . . . ~ v  jh 1 and 

[vj1-u1 I***IVjh-ah 1 are disjoint sets of v(G). 



Let I=I'U{X) for any xqv(B). Recall that I ~ ~ ( x ) l I h  by the 

definition of h. Then 

I n-k-1. 

Therefore any (k+l)-subset of I will have degree sum less than 

n-k which contradicts the condition of the theorem. We conclude 

that G has a Hamilton cycle. 



PART C 

LONGEST CYCLES AND THEIR CHORDS 



$1. INTRODUCTION 

An edge e is called chord - -  of a cycle if e is not an edge 

of the cycle and both endvertices of e are in the cycle. 

Thomassen has conjectured [ 2 ,  p.4661 that any longest cycle of a 

3-connected graph must have a chord. In this chapter, we shall show the 

conjecture is true for cubic planar graphs and planar graphs 

with minimum degree at least four. The conjecture is also true 

for claw-free graphs. 

In addition, some structural results about minimum 

counterexamples to Thomassen's conjecture will be given. A lower 

bound on the length of longest cycles in the cyclically 4-edge 

connected cubic planar graphs will be given. This slightly 

improves the result obtained by Grunbaum and Malkevitch [ 9 ]  in 

1976. 



f 2. TERMINOLOGY 

Let G=(V,E) be a simple graph with V as the vertex set and E 

as the edge set. Let C be a cycle of G and let B' be a component 

of G\V(C). Let B be the union of B' and the edges joining B' and 

C, that is, B=B'u[B',c]. A bridqe of C is either B or a chord of 

C. The vertices of N(B')~v(C) and the endvertices of a chord are 

called the attachment of the bridge, B is called a t-attachment 

bridge if IN(B')~~v(c)~=~, and a chord is a 2-attachment bridqe. 

A(B) denotes the set of attachment vertices of the bridge B and 

V(B) denotes the set of vertices of the bridge B (excluding the 

attachment vertices on C). 

If U is a subset of V(G) and G\U is disconnected, then U is 

called a vertex-cut of G. An i-vertex-cut is a vertex-cut 

containing i vertices. I•’ F is a subset of E(G) and G\F is 

disconnected, then F is called an edqe-cut of G. An i-edge-cut 

of G is an edge-cut containing i edges. If F is an edge-cut and 

one of the components of G\F is a singleton, then F is called a 

trivial edqe-cut. If F is an edge-cut and none of the components 

of G\F is a tree, then F is called a cyclic edqe-cut. A graph is 

called cyclically 4-edge connected if any i-edge-cut of this 

graph is not a cyclic edge-cut whenever i13. By counting the 

number of the edges, it is easy to show that when the minimum 

degree of -- the graph G is at least three, a 3-edqe-cut F -- 
cyclic if and only if F is non-trivial. -- - - 



$3. LEMMAS 

TUTTE'S LEMMA. [ 1 6 , Th .5.2.1. ] 

Let G be a planar graph, let e be an edge of G I  let F - - 7 -  - 
and F' be the two faces incident with e and let e' be an - ---- - -- -- 
edge -- on the boundary of F and adjacent with e. Then - - - - 
there is a cycle C of G such that -- 

(i) e, e'€E(C), - 
(ii) any bridge of C has at most three attachments, - - ---- 
and - 
(iii) any bridge - of C intersecting with the boundary -- 
of F or F' has at most two attachments. - - ---- 

LEMMA 1. 

Let G be a cyclically 4-edge connected cubic planar - - - 
graph of order n (n24) and let e and e' be a pair of -- -- - - - 
adiacent edges. Then there is a cycle C in G such t h a t  - - -- 

(i) el e' E E(C), - 
(ii) all bridqes of C are either a single vertex or -- - - - - 
a chord, - 

(iii) C has at least two chords, and ---- - 
(iv) IV(C)I 2 (3/4)n+l. 

PROOF. 

Let e l  e' and e" be three distinct edges incident with the 

vertex v .  Let F be the face with e and e' on its boundary and 

let F' be the face with e and e" on its boundary. Let 

e=(v,x), el=(v,y) and eW=(v,z). 



By Tutte's Lemma, there is a cycle C such that each bridge 

of C has at most three attachments and each bridge intersecting 

with the boundary of F or F' has at most two attachments. Since 

G is cyclically 4-edge connected and cubic, each three 

attachment bridge is a single vertex and each two attachment 

bridge is a chord. 

Here e" must be a chord of C. Let e, f and f '  be the three 

edges incident with vertex x. Two of them must be in C and 

without loss of generality, let elf e E(C). Now f '  is on the 

boundary of either F or F', so f' is a chord too. Thus C has at 

least two chords. 

Let a be the number of chords of C and let fl be the number 

of single vertex bridges of C. Then 

/3= lv(G)\V(C) 1 and 2a+3fl= IV(C) I .  
Hence, 

Iv(c) 1 = 2cu+3@ 

2 4+3[ IV(G)\V(C) I I 
= 4+3n-3 1V(C) 1 ,  

that is, 41V(C) I 2 4+3n. 
Therefore, Iv(C)I 2 (3/4)n+l. ... 
LEMMA 2. 

Let G be a cyclically 4-edge connected cubic planar - - - 
graph of order n, and let e and e' be a pair of adjacent -- -- - - - 
edges - of G. Then any longest cycle of G containing e - 
e' must have at least two chords. ----- 



PROOF. 

Assume C is a longest cycle of G containing e and e', and 

which has at most one chord. If the bridge B is not a chord of 

C, then 

IA(B) I 5 31V(B) I.  
Since G is cubic, 

CJA(B) I = Jv(c) 1 ,  
where the summation is over all bridges of C. Moreover, 

ZlV(B) I = n-lV(C) 1 .  
Since C has at most one chord, 

CIA(B)I 5 Z+~CIV(B)I. 

Hence, 

Iv(c) 1 = CIA(B) 1 I 2+3ClV(~) 1 = 2+3(n-)v(c))) 

which implies that 

IV(C)l 5 (3/4)n+(1/2). 

However, this contradicts Lemma 1 and we conclude that C has at 

least two chords. 

The graph in the following lemma need not be planar. 

LEMMA 3. 

If G is a minimum counterexample to Thomassen's - - - - 
conjecture restricted - to cubic planar graphs and C is a - - - 
chordless lonqest cycle - of G, then 

T~E(c)zQ) 

for any non-trivial 3-edqe-cut T of G. - - 
PROOF. 



Let T be a non-trivial 3-edge-cut of G which separates v(G) 

into two disjoint parts V1 and V2. Here I ~ ~ l > l  and Iv2(>1. If 

T~~E(c)=@, then C is contained in either G(vt) or G(v2). Without 

loss of generality, let C be contained in G(V1) and G(V2) be 

connected. Let 

We claim that G* - is - a 3-connected graph. If G* is not 
3-connected, assume that U* is a minimum vertex-cut of G*, 

)U*]r2 and U* separates G* into two parts U' and U". If w#U*, 

let weU' and then N(w)\U*GU'. In this case, U* would separate G 

into two parts V2U[U'\w] and U" which contradicts G being 

3-connected. Hence, assume that weU*. If (xl,x2,x3)\~*G~', then 

N(w)flU"=Q) and U*\w is also a vertex-cut of G* which contradicts 

U* being minimum. So I{~~rx2~~3)flU'121 and ~ { ~ ~ , x ~ ~ x ~ ) f l U " ~ ~ l .  

Assume that xleUT and x2~U". Let U**=U*\{W). Since w is a 

cut-vertex of G*\U**, there is no path joining xl and x2 in 

G(v~)\u**. Hence, there is no path joining xl and x2 in 

G\[u**U(~~)] and we would have a 2-vertex-cut u**u{yl) of G 

which contradicts G being 3-connected. Therefore our claim holds 

and G* is 3-connecdd 

If C is a longest cycle in G*, C has a chord in G* because G 

is a minimum counterexample. This chord is also a chord of C in 

G because w#V(C). So assume C is not a longest cycle in G*. 



Let C' be a longest cycle in G*, IC1l>lCI. Clearly, weV(CV). 

Let (xl,w) and (x2,w)eCV. Let P=yl ...y2 be a path in G(V2). Then 

the cycle xly1Py2x2Cxl would be longer than C which is a 

contradiction. Therefore TflE(~)#0 must hold. 



$4. MAIN RESULTS 

THEOREM 2.1. 

Let G be a cubic 3-connected planar graph. Then any - ---  - 
longest cycle - of G must --- have a chord. 

PROOF. 

The proof is by induction on )V(G)I with the induction 

starting at IV(G)I=4 when G=K4. Let C be a longest cycle of G. 

Assume that C has no chord. 

By Lemma 2, G is not cyclically 4-edge connected, so G must 

have some cyclic 3-edge-cut which is also a non-trivial 

3-edge-cut. Choose a non-trivial 3-edge-cut (e,e',eW) of G such 

that Ee,e',eW) separates V ( G )  into two parts V' and Vw with IvWI 

as small as possible. 

Let e=(x,x'), e'=(y,y') and eW=(z,z'). Since G is 

3-connected, x,y,z are distinct vertices in V' and x',y',z' are 

distinct vertices in V". By Lemma 3, ~(C)fl{e,e',e")fQ). Without 

loss of generality, let e,e'eE(C). 

Let G"=G(v")u{(w,x'), (wry'), (w,z')), where w is a new 

vertex which was not in V(G). By the rninimality of Jv"J, G" is 

cyclically 4-edge connected. 

Let C" = [c~G(v") ]u{(w,x' 1, (wry' 1 ) .  Since C is a longest 

cycle in G, C" is a longest cycle in G' containing (w,xl) and 
C 

(wryt). By Lemma 2, C" has ak'least two chords. Since (w,z') may 

be a chord of C", at least one of the chords of C" would also be 



a chord of C in G.  his is a contradiction and establishes the 

result. 

DDD 

THEOREM 2 2 .  

Let G be a 3-connected planar graph with minimum degree - - - 
at least four. Then longest cycle of G must have a ---- --- 
chord. 

PROOF. 

Let C be a chordless longest cycle of G which satisfies the 

hypotheses of the Theorem. 

V* is called a separatinq vertex-cut - with respect to C if V* - 
separates G into two parts V' and V" such that C intersects both 

V' and V". And C is called separable if there is a separating 

3-vertex-cut with respect to C. 

I. If C is not separable. -- -- 

Let e=(x,y) be an edge of C and F1, F2 be two faces incident 

with e. Since d(x)24, let (x,xi)=ei be the edge on the boundary 

of Fi and xi#y for i=1,2. There exists a cycle C' of G obtained 

by Tutte's Lemma which contains e and el. Now e2 is a chord of 

C' because G is 3-connected and e2 is on a 2-attachment bridge. 

Since each bridge B of C' has at most three attachments, 

A(B) is a 3-vertex-cut of G if B is not a chord. Hence, 

v(B)~v(C)=@ because C is not separable. Then V(B) is contained 

in some bridges of C which implies that v(G)\v(c') is a subset 

of v(G)\v(C) and V(C) is a subset of v(c') {VOW Iv(c)I=Iv(c')I 



because C is a longest cycle of G. Let 

E'=E(G:V(C)))=E(G(V(C'))). Each edge of E' must either lie on C 

(respectively, C') or a chord of C (respectively, C'). Hence, 

the number of chords of C and C' is IE'I-Iv(c)I=IE'I-Iv(C')I and 

the existence of chords of C' guarantees the existence of chords 

of C. But the edge e*=(x,x*) being a chord of C' would 

contradict C being chordless. 

11. Assume that C is separable. - - - 
Choose a separable 3-vertex-cut V* with respect to C such 

that V* separates G into V' and V" with V" as small as possible. 

Since C must pass through two vertices of V* to enter V" from 

V', the parts of C in G(v'UV*) and G(VWUV*) are paths. Let 

c~G(v'uv*)=P'=x.. .y and c~G(v"uv*)=P"=~. . .x. Obviously, x,yeV*. 
Let V*=(x,y,zl. We construct a new graph G* according to the 

following two cases: 

a) If zeV(~'), let w be a new vertex not in G and 

G * = G ( v ~ u v * ) u E ( w , x ) , ( w , ~ ) , ( w , z ) ~ .  

b) If zeV(P'), let w=z and 

G*=G(v~~uv*)u~(w,x),(w,~)~. 

Let C*=P"U((w,x),(w,y)l. 

Here C* is a longest cycle of G* containing (w,x) and (wry). 

Let F 1  and F2 be two faces incident with (x,w). There is a 

cycle CO of G* obtained by Tutte's Lemma which contains (w,x) 

and (w,y). Each bridge of CO has at most three attachments by 

Tutte's Lemma. 



i. Notice that the minimum degree of G is at least four, - 
IvW 122. Since V" is minimum, IN(v)flv"122 for any veV*. Let 

(x,xi) be the edge lying on the boundary of Fi and (x,xi)#(x,w) 

for i=1,2. Obviously. (x.xl),(x,x2)e~(G) and {x1,x2)N(G). By 

Tutte's Lemma, (x,xi) either lies on CO or is a chord of CO. 

Hence, {x,xl,x~)E~(CO) and one of them must be a chord of cO. 

ii. Assume ~(~~)\~x,y,z,w)#@. - 

~ i r s t  of all, we claim that - each non-chord bridge B of C0 - 
must be contained in some bridge of C*. Suppose v(B)nv(c*)#@ for -- - 
some bridge B of CO. 

ii-a. Case 1, w#A(B) or w=z. 
I•’ WPA(B), then z+V(B) because weV(CO). If w=z, then w=z@V(B). 

Hence, x,y,z#V(B) and V' adjacent only with {x,y,z) in G will 

imply that A(B) is a vertex-cut which separates G into v(B) and 

v(G)\CA(B)UV(B)I. Since V(CO)\~x,y,z,w)&, V(B) would be a 

proper subset of V". However, V(B) intersects with C which 

contradicts the choice of V* with V" minimum. 

ii-0. Case 2. W~A(B) and w#z. -- - 
Since ix,y,wlc,V(CO) and weA(B), zeV(B) and (w,z)E[v(B),A(B)]. By 

Tutte's Lemma, B is a 2-attachment bridge because (w,z) lies on 

the boundary of F1 or F2. Since d(z)23 in G*, v(B)\{z)#@. Let 

A(B)={w,u). Then u*=iz,u) is a vertex-cut of G* because d(w)=3 

and W~A(B). U* would separate G* into U1'=V(B)\{z) and 

u'=[v(G*)\(v(B)uA(B))~u~~~. Since ix,y,z,w)GU'~~* , V' only 

adjacent with V*={X,Y,Z) would imply that V' and U" are 



disconnected in G\U*. Hence, U* is a 2-vertex-cut separating G 

into Uw and v'uu'\(w) which contradicts G being 3-connected. 

Now we conclude our claim in all cases. By the same argument we 

applied in I, V(C*)EV(C0). Moreover, V(CO)=v(c*) because CO 

contains (x,w) and (y,w) and C* is a longest cycle of G* 

containing (x,w) and (y,w). Hence, the number of chords of C* is 

equal to the number of chords of CO. By i, 

(X,X~,X~)EV(C~)=V(C*) and one of ~(x,xl),(x,x2)) is a chord of 

C* which is also a chord of C in G. This contradicts C being 

chordless, and therefore ~(C~)\ix,y,z,w)#@ is impossible. 

By i, ixl ,x2)CIyrz3CV(G)nV(C0)\Exf. If (x,y) E E ( G ) ,  then 

(x,y) would be a chord of C because V(C)flV1'#@ and P2 is a path 

of length at least two. But y8ixl,x2) would imply that z=xl=x* 

and (x,z) is a multiple edge of G. This contradicts G being 

simple.  gain this is a contradiction, and the proof of the 

theorem is complete. 

THEOREM 2.3. 

Let G be a cyclically 4-edge connected cubic planar - - - 
graph of order n. Then g longest cycle of G must be of -- - -- 
len th at least (3/4)n+l, and must have two chords. L-- 

This theorem improves the result Grunbaum and Malkevitch [9] 

given in 1976 which states that the length of a longest cycle in 

a cyclically 4-edge connected cubic planar graph of order n is 



at least (3/4)n. 

The proof of the preceding theorem follows directly from 

Lemmas 1 and 2. 

THEOREM 2.4. 

If G is a 3-connected claw-free graph, then a lonqest - - - - -  
cycle of G has a chord. - - -  

PROOF 

The proof is a simple corollary of Lemma 1 in [12]. For the 

completeness of this chapter, we will give the proof. 

Let C=v ,...vrv1 be a longest cycle of G. If C is a Hamilton 

cycle, all edges not in C are chords of C. So assume that there 

is a vertex UEV(G)\V(C) and ueN(vl). Since Iu,vrlv2)~~(vl) and G 

is claw-free, one of (u,v~), (u,v~) and (vr1v2) must be in E(G). 

If (u,vr) or (u,v2)eE(G), C would not be a longest cycle. Thus, 

the chord (v2,vr)e~(G). 

m.. 

THEOREM 2.5. 

If G is a minimum counterexample to Thomassen's 
7 - - - 
conjecture and C is a chordless longest cycle of GI then - - - 
G\v(C) -- is an independent set. - 

PROOF. 

Suppose that B is a bridge of C and Iv(~)122. Let 

. A(~)={x~,...,x~) be the set of attachment vertices of B and 

G1=G(v\v(B) )u{ (xifw) IxjeA(B)) 

where w is a new vertex not contained in G. 



We claim that G' is 3-connected. Assume that G' has a 

2-vertex-cut U* which separates G' into two parts U' and U". If 

wN*, let weU'. Then A(B)\u*=N(w)\U*QU' and U* would be a 

2-vertex-cut of G which separates G into two parts U1' and 

[Uv\w]UV(B). So we assume that weu*. Then U*\W would be a 

cut-vertex of G(v\v(B)). ~otice that G(v\v(B)) is a union of 

cycle C and all its bridges except for B. Since each of these 

bridges has at least three attachments, G(V\V(B)) must be 

2-connected which contradicts G(v\V(B)) having a cut-vertex. 

Therefore G' cannot have a 2-vertex-cut and our claim holds. 

Since G is minimum and G' is smaller than GI any longest 

cycle of G' must have a chord. Hence, C is not a longest cycle 

in G1. Let C' be a longest cycle in G'. C' is longer than C and 

must contain W. Let C ' = X ~ W X ~  ... xi and xiBxj be a path of B, 
where xi,xjeA(~). Then the cycle xiBxj...xi would be longer than 

C in GI that is a contradiction. Therefore each bridge of this 

chordless cycle C is a single vertex. 

THEOREM 2.6. 

A minimum counterexample to Thomassen's conjecture - - 
contains - no triangles, that is, its girth --- is at least 

four. 

PROOF. 

Suppose G is a minimum counterexample to Thomassen's 

conjecture and G contains a triangle {x,y,z). Let C be a 

chordless longest cycle of G. By Theorem 2.5, at least two of 



[x,y,zl are in V(C). Without loss of generality, let x,yeV(C). 

Then (x,y) is a chord of C if (x,y)lE(C). Hence, (x,y)e~(C). It 

follows that zeV(C) because, otherwise, the cycle xzyCx would be 

longer than C. Now, x,y and zeV(C). Similar to the argument for 

(x,y), we must have that (y,z), (z,x)eE(C). Then C=xyzx. But C 

can be extended to be longer because G is 3-connected. This 

contradicts C being a longest cycle and the result follows. 

m.. 



PART D 

BRIDGES OF LONGEST CYCLES 



Some graphs contain Hamilton cycles and some do not. How 

long is a longest cycle in non-hamiltonian graphs? What can be 

said about the structure of the subgraph outside a longest 

cycle? These are two problems among many interesting similar 

problems. Nash-Williams [13] and Bondy [6], [ 7 ]  have found some 

structural results about the subgraph outside a longest cycle. 

It is obvious that the length of a longest cycle and the 

structure of the subgraph outside a longest cycle are not 

independent. This chapter will establish a result which gives a 

relation between the lengths of a longest cycle and its bridges. 

DEFINITIONS. 

Let C be a subgraph of G. Recall that a bridge of C is either a 

component of G\V(C) together with its attachments on C or a 

chord of C. A C-path is a path of G such that only its 

endvertices are on C. If B is a bridge of C, let P be a longest 

C-path contained in B. Then the lenqth of the bridge B is - -- - 
defined as the lenqth of P. -- - 

THEOREM 3.1. 

Let G be a 3-connected non-hamiltonian graph and - - - - 
d(x)+d(y) 2 m 

for each pair of non-adjacent vertices x and y. Let the -- - - -- 
length of lonqest cycle C be r. Then the lenqth of - - -- 
any bridge of C is at most r-m+2. - --- 



In other words, let C be a longest cycle of G and let p be 

the length of the longest bridge of C. Then the length of C is 

at least m+p-2. Hence, the shorter a longest cycle is, the 

shorter the bridges of the cycle are. 

Some examples will show that this theorem is the best 

possible result. The condition of 3-connectivity cannot be 

reduced, for example, 3Kt+K2 is a 2-connected graph which is 

constructed by joining all vertices of three vertex disjoint 

Kt's to two new vertices x and y. This graph contains a longest 

cycle of length 2t+2 with a bridge of length t+l, but m=2t+2. 

The inequality of the theorem cannot be reduced, either. One 

example is the complete bipartite graph Kt,t+l which is 

3-connected (if t23) and contains a longest cycle of length 2t 

with a bridge of length 2, but m=2t. Another example is 4Kt+K3 

which is also 3-connected and contains a longest cycle of length 

3t+3 with a bridge of length t+l, but m=2t+4. 

This theorem also generalizes the result found by Linial 

[ 1 1 ]  for 3-connected graphs. 

LINIAL'S THEOREM 

Let G be a 2-connected qraph, and - - - - 
d(x)+d(y) r m 

for each pair of non-adjacent vertices x and y. Then G -- - - 
contains either 2 Hamilton cycle or a cycle of length at - - - - 
least m. 



$2 TERMINOLOGY 

Let C=v l...vrvl. The path vi~i+~...vj-~vj will be denoted by 

viCvj and the path Vivi-1...vj+lvj will be denoted by viCvj 

where vr+, is taken to be vl. 

If P=ul ... uh is a path and T is a subset of its vertices, 
let 

T ~ ~ = ( U ~ + ~  €P lukeTfl~), and T ~ l = { u ~ - ~  ep lukeTnp1. 

Sometimes we simply write T + ~  if no confusion will occur. 

Let D be a subgraph of G and aeV(D). Let w(a,D) denote any 

vertex b which is the endvertex of a longest path in 

v(~)\[v(D)\{aIl starting at a. Note that if a is not adjacent to 

any vertex outside D, then w(a,D)=a. For example, if P=a...b is 

a longest path in G\[v(D)\(~)] with one specified endvertex a, 

then we can choose b as w(a,D). 

Let h(a,D) = IN(b)fl [G\(D\a) ] I  where b=w(a,D). Note that if 

h(a,D)=O, then w(a,D)=a and a is an isolated vertex in 

G\[v(D)\Ea) I. 

Let 

M(~,D) = (vfv(D)\a ]there is a D-path joining a and v 

with length at least h(a,D)+1). 

Let 

N(a,D)=(vW(D)\a Ithere is a D-path joining a and v). 

Obviously, M(~,D) GN(~,D). Note that if h(a,D)=O, then ~ ( a )  GV(D) 

and, hence, M(aID)=N(a,D)=~(a). 



By a***c denote a D-path a...c of D, where a,ce~(D). Note 

that a single edge in D is also a D-path according to the 

definition in $1,  because the two endvertices are in D. 



$3. LEMMAS 

LEMMA 1 (Fournier & Fraisse [8]). 

Let D be a subqraph of a 2-connected G with IV(D1122, - - - - 
and P=x. ..y be a lonqest path in G\[D\{x)] startinq at - - - 

Then there is a D-path startinq at x that contains y X*---- - - 
and all its neiqhbours in G\v(D). --- - 

In other words 

G satisfying IV(D) 

LEMMA 2. 

, if G is 2-connected and D is any subgraph of 
122 and aeV(D), then M(~,D)#@. 

If G is 3-connected, then I M ( ~ , D )  122 for any subqraph D - - - 
of G with IV(D)l23 and aeV(D). - 

PROOF. 

By Lemma 1, there is beM(a,~). Since G\{b) is 2-connected, by 

Lemma 1 we have IM(aID\b)l2l. 

.P. 

LEMMA 3. 

Let P=xl ... xt be 2 path and let y,zqv(P). If - -- - 

N ~ ( ~ ) ~ N $ '  (z) = P),  

then 

INI(y) I+INI(z) I 5 111+1 

for q interval I=xi ... xjCP. - 

PROOF. 



$4. PROOF OF THE THEOREM 

Let C=v l...vrvl be a longest cycle of G and p be the length 

of a longest bridge of C. We assume that rlm+p-3 and will prove 

the theorem by contradiction. 

In this part, we will obtain some general propositions which 

will be used frequently during the proof. 

Let B=vr***vt be a longest C-path. Note that it contains p-1 

vertices not in C. 

For the sake of convenience, denote w(vi,~), h(vi1c), 

M(vi1C) and N(vi1C) by w(i), h(i), ~ ( i )  and N(i), respectively, 

for i=1,2,...,r. 

Since p is the length of a longest bridge of C, by Lemma 1, 

we must have that 

h(i)~p-1 , for any i. - (4.1 ) 

And 
7 

d(w(i))Sh(i)+l~(i)l, 

PROPOSITION 1. 

We have -- 
M(i)nfv i-h(i)l...lvi+h(i)]=@l 

. PROOF. 

for any i. - 

for any i. - 

Otherwise, let vjeM(i) and i-h(i)<j<i-l. Then vjx**viCvj 

would be a cycle longer than C. A similar argument works if 



PROPOSITION 2. 

We have -- 
t 2p and - r-tkp. 

PROOF. 

If tlp-1, the cycle vrBvtCvr is longer than C. A similar 

contradiction arises when r-t<p. 

PROPOSITION 3. 

We have -- 

PROOF. 

If mlp+2, then rIm+p-312p-1. It then follows that either 

tSp-1 or r-tsp-1, both of which contradict Proposition 2. 

Dm. 

DEFINITION. 

The pair (i,j) is called a summable pair on C if vi and vj are 

not joined by a C-path (which implies that (w(i),w(j))~~(G) ) 

and either M(i)fl~+~(j)=@ or M(j)n~+l (i)=@ on any interval of 

C\(vi,vjI* 

During the proof, the basic method will be to get a summable 

pair (i,j) and to check the sum of d(w(i)) and d(w(j)). So we 

. need some propositions about summable pairs and the sums of the 

appropriate degrees. 

PROPOSITION 4. 



The pairs (l,t+l) and (t-1,r-1) are summable. - - - 
PROOF. 

Obviously, vlf~(t+l). Otherwise, the cycle vlCvt~v,Cvt+l***vl 

would be longer than C. 

Moreover, 

M(I )il~'' (t+i )=8 in E V  2,...,~tI 
and M(t+l )I ~ M + '  (1 )=8 in ( V ~ + ~ , . . - ~ V ~ I .  

Otherwise, without loss of generality, let vi €M( 1 )n~+l (t+l), 
2Si<t+l. Then the cycle v ~ C V ~ - ~ * * * V ~ + ~ C V ~ B V ~ C V ~ * * * V ~  would be 

longer than C. 

The pair (t-1,r-1) is symmetric to (l,t+l). 

PROPOSITION 5. 

Let {Jp Ipe11 be a collection of pairwise - - - - 
vertex-disjoint intervals - of C\{~i;v-]~ ( i , j )  be a 

J - - 
summable pair - on C, - and M(i)UM(j)E U Jp. Let 

~ ( € 1  
- 

I1=ipeI ( M(i)nJ,+@ - and M(j)flJ,#@] 

and - J=C\[( U Jp)UEvi,vjI]. 
~ € 1  

Then - 
I J ~  ~h(i)+h(j)+p-S+I~lI 

Sh(i)+h(j)+p-5+11 I. 
PROOF. 

Since w(i) and w(j) are non-adjacent, mrd(w(i))+d(w(j)) by 

the hypotheses of Theorem 3.1. By (4.21, it follows that 

m S  h(i)+h(j)+lM(i) l+lM(j) 1 
= h(i)+h(j)+ Z [ J ~ I ~ M ( ~ )  l+lJ,nM(j) I ]  

~ c f  I 



~h(i)+h(j)+Z v[IJI,l+ll+ Z ,IJpl 
~ € 1  I,eI\I 

= h(i)+h(j)+l U Jpl+lI' 1 .  
~ ( € 1  

Since rSm+p-3 and 151+1 U JI,I-r-2, 
I, e I 

I J I  ~p-5+h(i)+h(j)+l1'1. 

(by Lemma 3 )  

The following proposition is the main result of this 

section. It is a very important part of the proof of the 

theorem. 

PROPOSITION 6. 

i. We claim that if 2+h(l)<i<jlt, it impossible that ----- 
vieM(t+l) - and vje~(l). 



Prove this claim by contradiction, so let 

vieM(t+l) and vjrN(1) 

and choose j-i  as small as possible. 

Since the cycle v ~ C V ~ * * * V ~ + ~ C V ~ B V ~ S V ~ * * * V ~  is not longer 

than C, i~i+~,...~vj-1I must contain at least p-l+h(t+l) 

vertices. This follows because the C-path vik**v t+l contains at 

least h(t+l) vertices not in C and vrBvt contains p-1 vertices 

not in C. 

Let 

J = i v 2 ~ - * - 1 v l + h ( 1 ) t v i + 1 r * * - r v j - 1 I  

when h(1)>0, or 

J = { v ~ + ~  1 . .  . IVj-1 I 
when h(l)=O, which contains at least h(l)+h(t+l)+p-1 vertices. 

This is a contradiction of Proposition 5. 

ii. By (i) and the assumption of Case 1, V~-~BN(~). Hence, - 
w(1) w(t-1) - -  are a pair Of non-adjacent vertices. 

We shall consider this pair of vertices. First of all, we 

wish to show that (1,t-1) - is - a summable pair on C. - 

Assume that vi€M(l )flM+l (t-1). If tiiir, then the cycle 

v ~ C V ~ - ~ * * * V ~ - ~ S V ~ B V ~ C V ~ * * * V ~  would be longer than C. If 21iIt-2, 



then ilk by (i), The fact that the cycle 

v ~ C V ~ - ~ * * * V ~ - ~ V ~ B V ~ & J ~ + ~ * * * V ~ C V ~ * * * V ~  is not longer than C 

implies that 

J'~vk+lr*..rvt-21 

must contain at least p-l+h(l)+h(t-l)+h(t+1) vertices and J does 

not intersect with M(1) or M(t+l) by the choice of k. Consider 

the summable pair (l,t+l). Let 

J1"Ev2I**. ,vk), J2=i~t-1 ,vt) and J3=ivt+21.. . ,vr3. 
Here, 

M ( ~ ) u M ( ~ + ~ ) G J ~ u J ~ u J ~ ,  1=(1,2,3) 

which leads to a contradiction of Proposition 5. Thus (1,t-1) is 

a summable pair. 

iii. If Ili<jlt-1, then it is impossible that -- --- - 
vieM(t-1) - and vjeM(l). 

We prove this claim by contradiction. Choose j-i as small as 

possible. (The proof of this claim is quite similar to parts of 

ii.) 

By (i), jlk and by the choice of k, 

J = I V ~ + ~  1 rvj-1 1vk+1 I rvtt21 

will not intersect with M(1) and M(t+l). Since the cycle 

v l C v i * * * ~ t - l ~ t ~ v r ~ v t + l * * * v k ~ v j * * * v l  is not longer than C. J must 

contain at least p-l+h(l)+h(t-l)+h(t+1) vertices. 



Here, 1={1,2,3,43 and 1'G{1,2,4) because M(l)nJ3=Q) by (i) and 

(ii). This leads to a contradiction of Proposition 5. 

iv. If tSi<jlr, then it is impossible that -- --- 
vie~(~) - and vj€M(t-1). 

We prove this claim by contradiction. Choose j-i as small as 

possible. Then 

J={vi+1 I .  . IVj-1 I 
would not intersect with ~ ( 1 )  and M(t-1). Since the cycle 

vlCvt-l***~jCvrBvtCvi***vl is not longer than C, J must contain 

at least p-l+h(l)+h(t-1) vertices. Now consider the summable 

pair (1,t-1). Let 

J1={v2,. . rvt-2) 1 J2={vt1.. . ,vi) and J ~ = { V ~ ,  . . . ,vr]. 
Here, I={1,2,3) and again it leads to a contradiction of 

Proposition 5. 

v. By (iii) and (iv), there are integers a and b such that - 
21aIt-2, tsblr, 

M( 1 )  E{v~, ,VrlV2t ~ v ~ I \ E v ~ + ~ - ~ ( ~ )  I * * *  rVl+h(l)) I 

~ ( t - 1 ) ~ { ~ ~ ~ ~ . ~ ~ v t - 2 r ~ t ~ * * * ~ ~ ~ I \ ~ ~ ~ - ~ - ~ ( ~ - 1 ) 1 * * * ~ ~ t - 1 + h ( t - 1 ) ' *  

We now have enough information to get the final contradiction 

for this case. 

Choose i and j such that tSi<jlr, vie~(t-l)~{v~], 

vjeM(l)U{vrI, and j-i is as small as possible. Obviously, iiblj. 

Since the cycle v ~ C v t - l * * * v i ~ v t ~ v r ~ v j * * * v l  is not longer than C, 

I { v ~ + ~ ~ . . . ~ V ~ - ~ I I  ~ p - 1 + ( I ~ ~ * * * ~ j I - 2 ) + ( I ~ ~ - ~ * * * ~ i 1 - 2 ) .  



a). I f  vjrM(l) and vieM(t-l), let 

J = { v ~ + ~  1 . .  . IVj-1 I .  

Then IJ(2p-l+h(l)+h(t-1). I f  we let 

Via a symmetric argument, a contradiction follows for 

virM(t-1) and vjfM(1). 

7 ) .  SO we consider vilM(t-1) and vjlM(1II that is, vi=vt and 

V j=Vr. Let 



when h(t-l)>O or the empty set when h(t-l)=O and 

K3=(vt+lr**-rvr-lI. 

By Proposition 2, IJ/Zp-l+h(l)+h(t-1). Since (M(l)(22 and 

IM(t-1)122, 2+h(l)~a~t-2-h(t-l). Letting 

J ~ = { V ~ + ~ ( ~ ) ,  ...,vt-2-h(t-l))r J2={vtI and J3={vrI 

with 1={1,2,3), we again contradict Proposition 5. 

The first case of ~roposition 6 has now been proved. 

Let vi be a vertex of this intersection. 

i. Since the cycle v ~ C V ~ B V ~ C V ~ + ~ * * * V ~  is not longer than C, - 
i>h(t+l)+p. By (4.1)~ h(1)Sp-1. So p 2  l+h(l) 2i2h(t+i)+p 

implies that h(t+l)=O, h(l)=p-1 and vi=~~+h(~)eM(t+l). 

ii. Since Case 1 of proposition 6 has been solved, we have a - 
symmetric result for M(1) which is 

M(I)~{V~+~,...,V~-~~=@ if ~ ( l ) n ~ v ~ + ~ ~ . . ~ ~ v t + l - h ( t + 1 ) l = @ .  

By (i), h(t+l)=O and we have that 

{vt+1 I rvt+l-h(t+l ) I = ~ v ~ + ~  3 

with which ~ ( 1 )  does not intersect. Hence, 

M(l)n~vt+,,...,Vr-~l=@. 

Since vieM(t+l)n~vll...,~l+h(1)~ and 

~(l)n{v~+~(~),...,vt]#@, there are integers k and j, with j-k as 



small as possible, such that 2Sk<jSt, vjcM(l) and vkcM(t+l). Let 

J = { V ~ + ~  1 . .  . rvj-11 
with which neither ~ ( 1 )  nor M(t+l) intersects or else j-k could 

be chosen smaller. Since the cycle v l C v k * * * v t + l ~ v r ~ v t ~ v j * * * v l  is 

not longer than G, J contains at least p-l+h(l)+h(t+l) vertices. 

On the other hand, letting 

contradicted and the proof of Proposition 6 is complete. ... 
PROPOSITION 7. 

We have -- 
~ ( 1  ) f l I ~ ~ ~ .  . . ,vtIf@, ~(t-1 )nIvrrvl I ..rvt-21#@l 

~(t+l)fl{v~+~,...,v~)#Q) and ~(r-l)n{~~,...,V~-2)~@. 

PROOF. 

Without loss of generality, we consider ~ ( 1 ) .  If h(l)=0, 

v~~M(I). If h(l121, vr$M(l). Since M(1)E~~~-l,v~,v2,~..,vt)r by 

the previous proposition, and (M(1)122, M(1)n$v2,...,vt)f@. 

PROPOSITION 8. 



otherwise, vr,v2#M(1). But then vl is a vertex of degree two 

which contradicts the 3-connectivity of the graph. Thus, t23 and 

by symmetry r-t23. 

Now we can get into the main part of the theorem's proof. 

First, we define a Y-bridge of a longest cycle C. 

DEFINITION. 

If D is a bridge of C and vertices vr, vtv, vtw of C are 

distinct attachments of D such that there are two C-paths 

vr***vt1 and vr***vtn of length p contained in D, then D is 

called a Y-bridge of C. 

We shall consider two cases in the proof, namely, with a 

Y-bridge (Part B) and without a Y-bridge (Part C). 

PART B. CASE ONE. C has a Y-bridge. - -  

Propositions 5 and 6 will be the keys to the proof in this 

case. 

Let B1=vr***vt1 and B1'=vr***vt~ be two C-paths of length p 

contained in a Y-bridge of C, tw>tl. Obviously, tW2t'+2. The 

index t in all propositions of Part A can be replaced by both t' 

and t". 

I. We claim t"-tlsp-2, that is, 1 ~ / ( ~ ~ r + ~ , . . . , ~ t ~ - 1 ~ p - 3 *  --- 

Let us consider the summable pair (r-l,tl-1). Let 

~ ~ = ~ v ~ ' - ~ - ~ ( ~ l - l )  r e . .  rvtt-2) 



when h(t'-l)>O or the empty set when h(t'-l)=O, 

~ ~ ' ( v ~ - ~ - ~ ( ~ - l )  r * rVr-21 

when h(r-l)>O or the empty set when h(r-1)=O, and 

K3=(~t'+21.. . ,vtli- 1) 
when tW2t'+3 or the empty set when tW=t'+2. Let 

J = K1UK2UK3. 

By (4.1) and Proposition 2, r-t" lp2h(r-l)+l implies that 

r-1-h(r-1) 2t". Hence, J contains no coincident vertices. Let 

When t'-2-h(t'-1)21, { V ~ ~ V ~ ) G J ~ .  Hence, by Proposition 6, 

M ( ~ - ~ ) G J ~ U J ~  and M ( ~ ' - ~ ) E J ~ u J ~ ,  

1=(1,2,3) and 1'Sil). 

When t'-2-h(t'-l)=0, vr is the single vertex in 

~(t'-l)n{v~,...,vt~-2) by Proposition 7. If 

vl=vt'-l-h(t'-l)  EM(^-I), then v l C v t ~ ~ l * * * v r B v t ~ C v r - l * * * ~ l  would 

be a cycle longer than C. Hence, vlqM(r-1). So we still have 

that M ( ~ - ~ ) C J ~ U J ~ ,  M(t'-l)GJ1~J2, 

1=(1,2,31 and I'G(l1. 

By Proposition 5, 

+ K I+IK31 = I J ~  I h(r-l)+h(tt-l)+p-5+111 1.  IK11 1 2 

Since IK1l=h(tt+l), IK21=h(r-l) and IK31=t"-t'-2, 

t"-t'-2=IK311p-4. 



11. We claim @ vt'+, are not joined b~ a C-path. --- -- - 

Otherwise, the cycle vrCvt~+,***vr-l~vtwB"vr would be longer 

than C because II~~v+~,...,vtt~-1) 1Sp-4. Hence, 

(w(r-1) ,w(t'+l) )aE(G). 

111. We claim (r-l,tl+l) is summable. -- - 

By Proposition 6 and 11, we only need to consider the 

intervals { v ~ ~ + ~ , . . . , v ~ - ~ I  and {vrIv1]. 

If vieM+l (r-1 )flM(tf+l). tV+2iiIr-2. (~ote that vi-leM(r-1) 

implies i-l2t" by Proposition 6). Then the cycle 

vrCvt'+l***viCvr-l***vi-lC~tl~B"~r would be longer than C because 

of I. 

If vl eM+' (t'+l )flM(r-l). then the cycle 

vr-l***~lCvt'B1vr***~t'+lCvr-l would be longer than C. Finally, 

vrfM+'(tl+l) by 11. 

IV. If tqSi<jlr-1, it is impossible that -- 
vjeM(t'+l) - and v ~ E M ( ~ - 1 ) .  

Otherwise, choose j-i as small as possible. Since the cycle 

vrCvt~+l***vjCvr-l***viCvt~~~''vr is not longer than C, 

{ ~ i + ~ ,  ...,vj-lI~[~v~l+~ , .. .,vt11-1 I\fvtv+ 1 must contain at 

least p-l+h(tl+l)+h(r-1) vertices. By I, fvi+l,...,vj-l I 

. contains at least h(tl+l)+h(r-1)+3 vertices. Let 

J1={vrrvlIr J2=I~~'-~rv~'Ir 

J ~ = { v ~ ' + ~ ~ . .  ..viIl J4=Ivjr... 1Vr-211 



(note, by Proposition 8 ,  J1flJ2=@), 

J={v 2,... ,vt~-2,vi+l I ... ,vj-1] and I=~1,2,3,4I. 
From above 

I J J  2 (tl-3)+[h(t1+l)+h(r-1)+3] 

and by Proposition 2, 

I J J  1 p+h(tl+l)+h(r-1). 

This contradicts Proposition 5. 

K3=E~r-l-h(r-l ) 1 .  rVr-21 

when h(r-1)>0 or the empty set when h(r-1)=O. Here, 

I J I  = (tl-3)+h(t1+l)+h(r-1) 

2p-3+h(t1+l)+h(r-1) 

which contradicts Proposition 5. 



Case One now has been solved. 

PART C. CASE TWO. C has no Y-bridqe. 

Let B=vru ,... up-lvt be a longest C-path of C. 
I. Since G is 3-connected, G\{vrlvt] is still connected. Let - 

@ =  {q lthere is a (BUC)-path P=u q...vqt joining B and C 

in G\Iv~,v~II. 

Obviously, @EE2, ...,p- 2 ) .  Otherwise, there would be a Y-bridge 

of C. 

11. In the proof of the previous case, we paid more - 
attention to the cycle C. In the proof of this case, we will pay 

more attention to the bridge B. 

For the sake of convenience, denote w(u~,BuC), h(ui,~~C) and 

M(u~,BUC)~V(B) by wi, hi and My: respectively* Here, we have 

that 

d(wi) 5 hi+dC(~i)+l~i 1 
by Lemma 1. 

111. SUBCASE 1. Assume there is a q in @ such that - - - - - - -- 
dC(wl )+dC(wq+1 1'3 - or dC(wp-, )+dC(wq-l 153. 

Without loss of generality, let qcO and dC(wl)+dC(wq+l)S3. 

And let P=vqt***uq be a (BUC)-path joining uq and vqv q r  t). 

The pair of vertices wl,wq+l have some properties similar to 

a "summable pair" on B which was considered in Case one. This 



similarlity will be considered and exploited in this subcase. 

i. We claim that there is no (BUC)-path joining vqt and ul. - 
Otherwise. either the C-path vql***ulBup-lvr would be longer 

than B or C would have a Y-bridge. 

We claim that there is no (BuC)-path joining ul and uq+l. 

Otherwise, the (BuC)-path ul***uq+l would not intersect with PI 

and then either the C-path vq~~uqlul***uq+lBup-l~r would be 

longer than B or C would have a Y-bridge. Hence, wl and wq+l 

a pair of non-adjacent vertices. - - 

We claim that uq and uq+l is not joined by a (BUCI-path of 

length at least 2. Otherwise, B would not be a longest C-path. 

Hence, if uieN(ul,~UC) ujeN(uq,BUC), -- then the three 

(BuC)-paths ui***ul1 uj***uq+1 and P - are internally disjoint. 

ii. We claim M~~M;!~=@ & {u2,. . . ,uq). Otherwise, let Ui be --- 
a vertex in this intersection. By i, 

v 1Pu B u ~ * * * u ~ B u ~ - ~ * * * u ~ + ~ B u ~ - ~ v ~  is a C-path. This path is 9 q 

either longer than B or else there is a Y-bridge of C both of 

which are contradictions. 

Similarly, Mq+lnM1 - in {U~+~,...,U~-~) NOW we can use 

Lemma 3 on MI and Mq+l. 

iii. Let's get a general inequality similar to ~roposition 5 

for M1 and Mq+l. Let 



where J 1 ~ e 1 )  is a collection of pairwise-disjoint 

subintervals of (u2, ..., uq) or ~uq+2,...,up-~l. BY Lemma 3. 

I J I  I bl+h +:-3+111= q 

This inequality will be used frequently in this subcase. 

iv. If 2li<jlq, it is impossible that -- -- - 
uiEMq+l and ujeM1. 

If not, choose j-i as small as possible. By i, 

vqtPu Bu * * * u ~ B u ~ * * * u ~ + ~ B u ~ ~ ~ ~ ~  is a C-path and is either longer s j 

than B or produces a Y-bridge if 

J={U~+~,...,U~-~I 

contains fewer than hl+hq+l+l vertices. Hence, let 

J ~ = ~ u ~ , . . . , u ~ ~ ,  J~={u~,...,u~) and J3=f~q+21...r~p-1~ 



with 1={1,2,3) 

which leads to a contradiction of (4.3) of iii. 

v, If q+2li<jlp-1, it is impossible that -- -- 
u.eM + and ujeM1. 3 41- 

If not, choose j-i as small as possible. As in the previous 

cases, v q ~ ~ u q ~ u l * * * u i ~ u q + l * * * u j B u p ~ l v t  is a C-path.  his path is 

either longer than B or C has a Y-bridge unless 

J={~i+~..-.~uj-lI 

contains at least hl+hq+l+l vertices. Hence, letting 

and 

vii. We claim Ml#@ and Mq+l#@. - -- - 

If hl=O, u2'M1. If h121, CflM(ull~~C)G(vt) since B is a 

. longest C-path and C has no Y-bridges. So 1~~121 because 

IM(ul,BUC)122 by Lemma 2. 



I•’ Mq+l=@r then M(U~+~,BUC) contains at least two vertices 

of C. Let 

i = min{ptq+21 uptM1) 

when Mln~uq+2.....up-~If@, or 

i=min{pl upeM1] 

when M1n~uq+2,...lup-1~=0. 

When itq+2, let vse~(uq+l ,BUC)\~V~]. Since the C-path 

V ~ * * * ~ ~ + ~ B U ~ * * * U ~ B U ~ - ~ V ~  is not longer than B, 

J=v(B)\[ lul 1 . . luq+l IUiui r ,up-1 I I 
must contain at least hq+l+hl vertices. Letting 

and 

we contradict (4.3) of iii. 

When iiq, let V~~M(U~+~~BUC)\{V~]. Since the C-path 

vs***uq+lBui***ulvr is not  longer t h a n  5, 

J={u 2 1 ~ ~ ~ l ~ i - ~ l ~ q + ~ ~ ~ ~ ~ l ~ p - ~ I  

must contain at least hl+hq+l vertices. (Note that it2 because 

MI#@.) Letting 

J1={~il...l~qI and I={l), 

we again contradict (4.3) of iii. 

viii. Suppose that ~ ~ n ~ u ~ , . . ~ . u ~ ~ ~ @ .  

because both MI and Mq+l are not empty in {u2, ..., ~ ~ 1 . 1  Let 



Since M1UMq+lCJlflJ2, we have a contradiction of (4.3) of iii. 

If Mq+lfl~u21...,uq)=0, then by v and vi, M1 and Mq+l would 

not intersect with ~ U ~ + ~ , . . . , U ~ + ~ + ~ ~ + ~ ~  and 

C{uq+~+h~+~ I ,up-1)- 

(Note that Mq+l#O implies that p-12q+2+hq+l.) Let 

J ' ~ u l ~ * * - ~ u l + h l ~ u q + l ~ * * * ~ u q + l + h q + l  l\hl luq+l 1 I 

J1'{u2+h1 I ruqI r J2={~q+2+hq+l I * *  rUp-1 1 
and 1={1,21. 

Here, M1UMq+lCJ1UJ2 from which follows a contradiction of (4.3) 

of iii. 

So we will assume that ~~n{u~,...,u~)=O, that is, 

6 { ~ ~ + ~ ~ .  . . lup-l 1 .  

ix. Let - 
i=min{p lupe~q+l] and j=max{p I u ~ ~ M ~ ~ .  

Recall that Ml#Q, %+I#@ by vii. By vi and viii, 

M1UMq+1E{ui,..e.ujI. 

When ilq, let 

J ~ = I u ~ ~  - 0 .  ruqIt J2=I~q+2t . IujI 
and 1={1,21. 

Since the C-path v,u~***ujBuq+l***ui~u$vq~ is not longer than B 

and C has no Y-bridge, 

J = V(B)\[J1UJ2U{u1 ,uq+1 1 I 
must contain at least hl+hq+l+l vertices. This again contradicts 



When itq+2, then Mq+ln{u2,...,uqI=P) and i2q+2+hq+l so that 

J1={uq+2+hq+l 1 - 1ujI 1 

contains all vertices of M1 and Mq+l. Since the C-path 

vrul***uj8uq~vq~ is not longer than B and C has no Y-bridge, 

~u2,...,uq,uj+~,...,up-1) must contain at least hl+l vertices. 

Hence, J=V(B)\[J~U{U~,U~+~]] contains at least hl+hq+,+l 

vertices. We again contradict (4.3) of iii. 

This completes - the proof - of Subcase 1. 

IV. SUBCASE 2. We may assume - -- 

i. In order to avoid a Y-bridge, - 

Hence, 

dc(wl), dC(wp-1)52, 

and therefore, dC(wq+l) and dC(wq-1)r2 

for any qe9. 

ii. If h121, then M(U~,BUC)EV(B)U{V~I in order to avoid a - 
C-path of length greater than p joining vr and vt. So dC(wl)ll. 

But we can choose q as the greatest element of 9. Then 

and hence, dC(wq+l 152. Thus, dC(wl)+dC(wq+l 153 which contradicts 

the hypotheses of Subcase 2. 



So we conclude that hl=O and symmetrically, that hp-l=O. 

iii, Choose q as the greatest element in . Since q+lB@, - 
M(ul ,BUC) flV(C) = M(uq+, ,~uc)flV(C) = (vr .vtl 

Let vq1r~(uq,BuC) such that ql#r,t. since B is a longest C-Patht 

uq***vqt and uq+lf**vr are disjoint (BuCI-paths. 

iv. we claim (U~,U~-~)$E(G). Otherwise, the C-path --- 
v r * * * ~ q + l B ~ p - l ~ l B ~ q * * * ~ q t  either is longer than B or has the 

same length as B and C would have a Y-bridge. 

v. since hl=hp-l=O, NB(ul)=M1 and NB(~p-l)=Mp-l. We have - 
that 

Ml f l ~ i l ~  fl (U 2,...,~p-21 = 0 

If not, let Ui be in this set. If i#q+l , then without loss of 

generality assume irq. The C-path 

v ~ * * * u ~ + ~ B u ~ - ~ U ~ - ~ B U ~ U ~ B U ~ * * * V ~ ~  either is longer than B or 

there is a Y-bridge of C. If i=q+1, then the C-path 

vtup-18uq+lulBuq***vqi either is longer than B or there is a 

Y-bridge of C. 

vi. By iv and v, The pair of vertices ul,up-1 behaves - 
similar to a "summable pair" on B. We have that 

m 5 d(ul)+d(up-1) 

5 dC(~l)+dC(~p-l)+IMII+IMp-, 1 
5 4+(({u2, ..., Up-2)(+1) 
= p+2 

which contradicts Proposition 3. 

(by lemma 3 )  



This completes - the proof of the theorem. 



PART E 

SOME RESULTS ABOUT DIRECTED GRAPHS 



In addition to the preceding work done on undirected graphs, 

I have obtained some results about directed graphs. Most of them 

have been published already and thus will be surveyed here. The 

proofs will not be included. 

An oriented graph is a directed graph in which each pair of 

vertices is joined by at most one arc, Let k be the minimum 

indegree and outdegree of the oriented graph. BeJackson [lo; 2, 

p46 5 1 conjectured that the length of a longest directed cycle in  an oriented 

graph is at least 2 k+ 1 . He was able to prove that an oriented graph 

contains a directed path of length 2k+l. b his result can be improved as 

follows. 

THEOREM 4.1 1 2 2 ] . 
Let D be an oriented graph which the indegree and the - -- 
outdegree -- is at least k -- for each vertex. Then D contains - 
either a directed cycle of lenqth 2k+l or a directed - - - -  
path of length 2k+2. - 

B.Jackson [ 101 showed that i f  D is an oriented graph of order 2k+2, 

k22, then D contains a directed Hamilton cycle. The following improves the 

latter result. 

THEOREM 4.2 [ 2 4 ] . 
oriented graph order where k is the -- 

minimum indegree - and outdeqree and k23, then D contains - - 
a directed Hamilton cycle. - 

The main part of the following theorem is a the corollary of 

Theorem 4.2, but the nice structure of tournaments allows a 

simpler proof and a better lower bound on the degrees. 



THEOREM 4.3 [ 20 ] . 
A reqular tournament of order at least 5 contains two - 7 - 
arc-disjoint directed Hamilton cycles. 

B . Jackson [ 1 0 ] a1 so showed that i f  D is a bipartite oriented graph of 

order at most 4k, then D contains a directed Hamilton cycle. The following 

theorem removes the constraint on the order of the graphs. 

THEOREM 4.4 [ 2 1 ] . 
If D is an bipartite oriented graph with the indeqree - 7- -- 
and the outdeqree at least k for each vertex, then D -- -- - 
contains either a directed cycle of length at least 4k - 

or 2 directed path of length 4k+l. - - 
An oriented graph D=(v,A) is called a multipartite tournament if 

V(D) is a union of disjoint parts V1, ..., Vt and each part Vi is 
an independent set of D with exactly one arc joining each pair 

of vertices from different parts of V(D). C.Thomassen 14, 171 

conjectured that an oriented _oraph of order at most 3 k contains 3 directed 

Hamilton cycle. Although some counterexamples to this conjecture 

have been found [4, p91, it still may be true if the graph is 

tripartite. It is easy to see that a tripartite oriented graph 

of order at most 3k is a regular tripartite tournament. 

Furthermove, it is possible that every regular multipartite 

tournament contains a directed Hamilton cycle. B.Jacksonls 

theorem about bipartite oriented graphs actually deals with 

regular bipartite tournaments, because 4k is the lower bound on 

the order of the bipartite oriented graphs. The result I 

obtained about the multipartite tournament is the following. 

THEOREM 4.5 [ 27 ] . 



A regular multipartite tournament of order n contains 2 - -- 
directed cycle of length at least n-1. 

7 

The following result is an immediate consequence. 

COROLLARY 4.5 [ 27 ] . 
A reqular multipartite tournament contains a directed - - 

Hamilton path. 

For the general directed graphs, Nash-Williams [14; 3, ~2011 

showed that i f  D is a directed graph of order n with minimum indegree and 

outdegree at least n/2, then D contains a directed Hamilton cycle. He also 

con j ec t ur ed that such a directed graph contains two arc-disjoint directed 

Hamilton cycles. Nincak [ 151 found a counterexample of order 6, but 

this conjecture is still open for 1127. I obtained the following 

results on this problem. 

THEOREM 4.6 [ 23 ] . 
If D is directed graph Of Order n & which the 
7 - 
indegree and the outdeqree of every vertex is at least 

n/2 - and 1129, then D contains - two arc-disjoint directed 

cycles. 2 directed Hamilton cycle --- and the other 

is of length at least n-1. -- -- 
The following result is almost a corollary of Theorem 4.6, but 

it has a better lower bound. 

THEOREM 4.7 [ 2 5 ] . 
I f  D is 2 directed graph of order n in which the - --- 
indeqree and the outdeqree of every vertex is at least 
n/2 n25, then D contains an arc-disjoint pair 
consistinq of 2 directed Hamilton cycle - -  and a directed 



Hamilton path. 

The directed graph D is said to have the arc-pancyclic 

property if each arc of D is contained in directed cycles of 

lengths h, h=3, ...,I V(D)I. The arc-pancyclic property of 

tournaments was a quite interesting problem. Since Alspach [I] 

obtained the first result for regular tournaments, many 

different families of tournaments have been studied by 

mathematicians. Suggested by Y.Zhu [28], a necessary and 

sufficient condition for this property in tournaments has been 

found. 

THEOREM 4.8 [ 1 9 1 . 
If each arc of the tournament D is contained 5 ----- - 
directed cycle of length 3, - then D -- has the arc-pancyclic 

property unless D belongs ---- to one of two certain families 

of tournaments. -- 
The structure of these two families of tournaments has been 

described in [19]. Although these exceptions exist, we still can 

obtain the following result. 

COROLLARY 4.8 [ 19 1 . 
If each arc of the tournament D is contained in 5 ----- - 
directed cycle of length three, - then except for at most --- 
one arc of D, every arc is contained in directed cycles --- -- - 
of lengths h, h=3, ...,I V(D)I. - 

All these properties about the existence of directed Hamilton 

cycles, being pan-cyclic, vertex-pancyclic or arc-pancyclic in 

tournaments can be determined in polynomial time. Surprisingly, 



the complexity of the determination of the property of whether 

or not a tournament is arc-hamiltonian is still unknown. The 

preceding property seems "easierw than the arc-pancyclic 

property. (A tournament is arc-hamiltonian if each arc lies in a 

directed ~amilton cycle.) 

A tournament D is said to be domination orientable if there 

is a labeling of its vertices such that Vi dominates 

vi+l1vi+21***1vi+od(v~) for every v~~v(D), modulo Iv(D)I. A 

result about a property similar to the pan-path-connectivity 

property has been obtained for this class of tournaments. 

THEOREM 4.9 [ 26 ] . 
If D is a domination orientable tournament, then D - - - 
contains directed paths Of each length p, 

p=51...,1V(D)I-11 from vertex x - to vertex y for any pair 

of vertices x and y in V(D), except for one pair of - - - 7- 

vertices at most. 

Alspach conjectured that among all tournaments, domination 

orientable tournaments are those which contain the maximum 

number of directed Hamilton cycles. Using Theorem 4.9, we can 

get a recursive method for counting the number of directed 

Hamilton cycles in domination orientable tournaments which will 

yield the following result. 

THEOREM 4.10 [26]. 

If D is a domination orientable tournament of order n - - - 
with every indegree - and outdeqree at least 6, then D -- 



contains h(D) directed Hamilton cycles, where 

In the original paper, the lower bound fomula of h ( ~ )  in terms 

of 6 and n looks quite complicated. Here, Theorem 4.10 is only a 

simplified corollary of it. 
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