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ABSTRACT

Chiral symmetry breaking in Quantum Chromodynamics (QCD) is studied
using a composite operator scheme developed by Cornwall, Jackiw and
Tomboulis (CJIT). A modified effective potential originally due to
Casalbuoni, De Curtis, Dominici and Gatto (CDDG) is used which is
equivalent to the conventional scheme in that it contains the same
physics as the original CJT formulation, but it is shown to be free of
defects in the CJIT effective potential.

It is shown here that the modified effective potential is bounded
below and is stable against fluctuations to the stationarity condition,
namely, the Schwinger Dyson equation. Furthermore, it is found that
only in asymptotically free field theories such as QCD, chiral symmetry
occurs for sufficiently large coupling constant.

Two approaches to studying chiral symmetry breaking are used. In
the first one, explicit chiral symmetry breaking is studied by analyzing
the Schwinger Dyson equation where the concept of constituent and
current quark mass is exploited to estimate the constituent masses of
the light quarks. The second approach is the Rayleigh-Ritz variational
scheme where the effective potential is minimized with respect to m (the
vacuum expectation value of the fermion bilinear) and the finite value
of m that minimizes the effective potential is estimated for various
values of the infrared cut-off parameter pc. For example, when

p /A = 1.3, the minimum occurs at m = 0.67A .. .
c

QCD
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CHAPTER 1

1.1 INTRODUCTION AND MOTIVATION

Quantum Chromodynamics (QCD) proposed as a theory of strong inter-

actions is based on three fundamental ideas [1].

1. That all hadrons (strongly interacting particles) are made up of
fundamental constituents called quarks which possess fractional
electric charge and are spin 1/2 Fermi fields.

2. The existence of a particular kind of quantum number called
"color". There are three kinds of color (Red Green Blue) and the
corresponding symmetry of nature is exact. With three colors also,
the statistics of the baryons come out right.

3. The symmetry tfansformation may be coordinate dependent, and the
derivatives are absorbed in gauge transformations of a set of
massless vector fields, the gluons. Yang and Mills [26] proposed

such a theory in another context in 1954.

2 and 3 differ from Quantum Electrodynamics (QED) only in one
point: three colors instead of one electric charge. However, this very
important di%ference is of crucial importance. Unlike U(1) transforma-
tions in QED, the SU(3) transformations do not commute with each other.
So gluons, unlike photons, are themselves charged. Because of the
non-Abelian nature of the QCD symmetry transformations and the demand
that this symmetry be exact, QCD exhibits confinement and asymptotic

freedom which are not there in QED.



The Fermi spin 1/2'fields (quarks) are represented by the Dirac
spinor fields qZ(x) (the four spinor components are implicit) where m
and o label internal degrees of freedom. The index m refers to flavor
and corresponds to observed degrees of freedom of existing hadrons. At
present five flavors are known and the sixth has been predicted. The
index a refers to the color degrees of freedom. It is assumed that
there are exactly three colors so that the statistics of the baryons
come out just right, other phenomenological support for fixing the
number of colors at three are found in [1]. QCD is diagonal in flavor
index, ie. the flavor index has no dynamical role. The weak interaction
current will éouple to flavor.

With the number of color fixed at three, the only candidates for a
simple Lie group of color are SU(3) and SO(3). With SO(3) the desired
property of asymptotic freedom is lost when the number of flavors
exceeds two, while for SU(3) we can have up to 16 flavors. Since six
flavors are already known, SU(3) is the only viable possibility for the
color group of QCD. Another negative point is that with SO(3), a di-
quark system could be a color singlet and such objects are not observed.

The main idéa in QCD is to make the SU,(3) symmetry a local,
rather than just a global symmetry. Global gauge invariagce implies the
existence of conserved currents. Local gauge invariance produces mass-
less vector gauge bosons, prescribes (or at least restricts) the form of
the interaction of gauge bosons with sources, and generates interactions

among the gauge bosons if the symmetry is non-Abelian.



The local SU;(3) gauge fields are the colored gluons, A (x),
a=12,...,8, which transform as an adjoint representation of SUs(3).
They do not carry flavor. The minimally locally gauge invariant

Lagrangian density implied by this SU,(3) symmetry is

Afl(x)

- m m 1 a cauv
iqa ¢aB qB Fw F

IR
(1.1)
a,B = 1,2,3; a=1,2,...,8; m=1,2,...,N.
where the covariant derivative is defined by
m . _ Y a U m

ﬁ;B qg = (saeau - 1gkaB Au/2)Y g (1.2)
and the gauge field strength tensor is

Fa = 3 A2 -3 A% 4 g 13PC AP pC | (1.3)

uv nv v Y
The ASB are SU(3) matrices satisfying

[22,aP] = 2173PCC | | (1.4)

and fabc are the structure constants of SUs(3). The second term in
(1.1) is the Yang-Mills Lagrangian for self-interacting SU,(3) non-
Abelian vector gauge fields. Equation (1.1) is invariant under the

local gauge transformations

A = RGN + UGOA (U +-gi-U(x)auu'1(x)
T(x) + U(x)q™(x) (1.5)
U(x) = exp(iea(x) %?)



where 6a(§) is the space-time dependent parameter of the local SU.(3)
gauge transformation U(x). (Matrix notation is used in 1.,5.)

For N-flavors, the flavor group is SU(N). That is, (q;,q yoony qZ)

2
a
for @ = 1,2,3 form the fundamental representations of SU(N). N = 3
gives the well known SU(3) hadronic spectrum, while N = 4 allows for the
charm flavor, though these flavor symmetries are broken in nature.
Since the Lagrangian density Jﬁ(x) describes massless quarks, it is
actually invariant under the larger chiral group

SU(N)xSU(N)xUg(1)xUA(1) with

Yo = %(1 £ vs5)q (1.6)

where Yg is defined in (2.6).

Ug(1) corresponds to baryon number conservation and UA(1) to
axial-baryon number conservation. The UA(1) symmetry is not observed
or probably does not exist in the first place. The chiral SU(N)xSU(N)
flavor symmetry is not exact in the real world. It is easily broken in
QCD by adding to Jfl(x) a quark mass term JCM thch is an SU:(3)
singlet but transforms like a member of the (N,N*)x(N*,N) representation

of the chiral group.

-m n
xM - annomqa

(1.7)

Hlllﬂ - 6ll!l'l Mn .
o (4]

m
MOn is the quark mass matrix. This is the only possible flavor breaking

term one can have without introducing new fields or losing renormaliz-



ability. The opigin of this flavor breaking term is in the weak and
electromagnetic interactions where the flavor index plays a &ynamical
role.

For a consistant quantum field theory involving non-Abelian vector
- gauge fields, we must add to the Lagrangian (Zl(x) + IM(X)) a gauge
fixing term Xg.f which ensures a proper quantization procedure, and a
Faddeev-Popov ghost term xgh which depends on how the gauge is fixed

and preserves unitarity. Therefore
Zoep = Lo+ Ly + Lot + Ly (1.8)

is the complete Lagrangian density for QCD.

The Lagrangian density (1.8) when used in naive perturbation theory
in the coupling constant g, seems to describe a world of interacting
quarks and colored giuons in which asymptotically free quarks and gluons
could exist. Since free quarks aﬁd colored gluons are not observed in
nature, the picture may not be a proper description of the world. In
addition, much of the low energy phenomenology of the hadronic spectrum
has been understood to a degree via PCAC (Partially Conserved Axial
Currents) and any viable strong interaction thoery should therefore
exhibit this feature. To understand the real hadronic world, QCD has to
undergo at least two phase transitions, so that the physical world
resulting from d(QCD is nonperturbative. The confinement phase
transition results in physical states that are color SU.(3) singlets
and are integrally charged. For a more qualitative treatment of

confinement see [1].



The second phase transition, and which will be of interest to us,
is the PCAC phase transition. While the confinement phase transition

involves the local color symmetry, PCAC phase transition involves the

global flavor chiral symmetry SU(N)xSU(N) for N flavors. Without the

quark mass term 2:M, the chiral symmetry of ;(QCD would imply that

each hadronic state has to be parity doubled. The nucleon, for example,
would have a partner of opposite parity. If this is not the case, then
the chiral SU(N)xSU(N) symmetry must be spontaneously broken to SU(N) in
the ground state so that the vacuum has no more left-right symmetry,
i.e., the vacuum is not yg invariant. Then the Goldstone theorem gives
us N2-1 pseudoscalar bosons. All hadronic stétes are representations of
just the vacuum SU(N) symmetry corresponding to the usual
supermultiplets. This PCAC phase accommodates existing phenomenology.
The pseudoscalars are the lightest hadrons and all hadrons form approxi-
mately SU(N) multiplets. The mass of the pseudoscalars and the lifting
of the SU(N) degeneracy is to be accounted for‘by including the quark
mass matrix. In the PCAC phase, the pion appears as a collective
excitation of a guark anti-éuark pair.

The major theoretical problem has been to show that QCD is in the
confinement and PCAC phases. Since these are purely non-perturbative
phenomena, field theoretic methods have been developed to study the
problems non-perturbatively, one of which is the effective potential

formalism for composite operators due to Cornwall, Jackiw and Tomboulis

[91.



In this thesis, I will be primarily concerned with the PCAC phase
transition, i.e., the breaking of chiral symmetry, and nothing else will
be said about confinement phase transifion.

Chiral symmetry breaking has been studied by many authors
[10,11,16] by analyzing an effective potential for chiral symmetry
breaking. However, in each case, the treatment has not been very
exhaustive. This has led to some results that are not very conclusive.
In Ref. [11] also, the authors did not use the effective potential in a
consistent way.

The motivation to study chiral symmetry breaking is to do a more
gelf-consistent and exhaustive analysis of dynamical chiral symmetry
breaking. We will use a modified effecive potential (which is a variant
of the Cornwall, Jackiw, Tomboulis (CJT) effective potential) due to
Casalbuoni, DeCurtis, Dominici and Gatto [11]. I now briefly review the
work that has been done so far, some of the results and state what more
is required to be done.

Since the formulation of the effective pofential for composite
operators by CJT in 1974, it has been used by many to study dynamical
symmetry breaking. Higashijima (1984) used the stationarity condition
of the CJT effective potential, namely, the Schwinger Dyson (SD) equa-
tion, convered it to a differential equation and solved it numerically
in the special case when all first and higher order derivatives of the
running coupling e(t) (e(t) = eo/t, t = en(p?/A?), py is the four
momentum and A is the QCD scale) with respect to t are set to zero. The

qualitative results showing explicit breaking of chiral symmetry were



quite good. For example, he found that for the infrared cutoff para-
meter t, < 0.88, chiral symmetry is broken spontanéously.

P. Castorina and So-Young Pi (1985) used a variational method in
the CJIT effective potential. They used as a variational ansatz the
“asymptotic solution of the SD equation for the generated mass, also
derived by D. Politzer (1976) using an operator product expansion, in
the CJT effective potential. This parameter (t.)-dependent ansatz
reduced the effective potential to just a function of an order parameter
m for various values of to. In their numerical study, they found that
a minimum exists and chiral symmetry is spontaneously broken for
pe < 1.5. The effective potential is bounded below. However, for
field theories without logarithmic behavior in the coupling and in the
generated mass, they found that for the coupling constant €4 < 2/3,

m = 0 was the global minimum indicating that chiral symmetry is not
broken and, for €3 > 2/3, chiral symmetry is broken spontaneously, but a
stable minimum does not exist. This is inconclusive since it has been
argued that chiral symmetry is broken only in aSymptotically free field
theories [2,17].

R. Casalbuoni, S. DeCurtis, D. Dominici and R. Gatto (1984, 1985)
derived the modified CJT effective potential (which we call Veppg)
which was found to be satisfactory because it gave the SD equation on
minimization. However, -they used this modified form inconsistently in
doing numerical computation. The form théy uéea in their numerical
study does not give the SD equation on minimization. They used a dif-

ferent variational scheme and claimed that direct comparisons, even for



a similar variational ansatz for the generated mass in both ch} and
Veppg are not easy to make. We will Qse Veppe in a consistent way
in the original CJT variational scheme ahd show that the comparison
using a similar ansétz is excellent. We will also show that with our
‘variational ansatz, the form they used in their numerical study gives
wrong results.

R. Haymaker and T. Matsuki (1986) solved the SD equation for the
general case where the first and higher order derivatives of e(t) are
not set to zero. They found the same qualitative results as Higashiji-
ma. However, in their own case, chiral symmetry is broken for values of
t, < 1.78 (This general case was also done by us independently in
early 1986.). Since they used theACJT effective potential to get the SD
equation, they studied, as a more complete treatment, the nature of the
chiral symmetry breaking solutions using Vegr. They found that using
the CIT effective potential, the chiral symmetry breaking solutions
correspond to saddle-point instabilities. We will take up this
stability question in the case of Veppg and shoﬁ that its solutions
are stable.

We will also do a numerical study of V for field theories with

CDDG
constant coupling and show that with Veppg chiral symmetry is not
broken. In other words, chiral symmetry breaking occurs only for
theories that exhibit asympotic freedom behavior such as QCD and this
seems to correspond to what is observed in the realm of strong inter-

actions. In summary, these are the things I will be studying in the

rest of this thesis.
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- In Chapter 2, I will discuss the notion of chiral symmetry in QCD-
.like theories. Then I review the effecﬁive pofential formalism for
doing a quantitative study of dynamical $ymmetry breaking.

In Chapter 3 the stationarity condition of the effective potential,
"namely the Schwinger Dyson (SD) integral equation, is derived. This is
converted into a nonlinear differential equation with boundary condi-
tions and its asymptotic solutions found. Two approaches to studying
chiral symmetry breaking are used. In the first one, the SD nonlinear
differential equation is analyzed. The concept of constituent and
current quark masses is used to study explicit chiral symmetry breaking
and to estimate the constituent quark masseé of the light quarks.

In Chapter 4, a second approach, namely spontaneous chiral symmetry
breaking, is used. Here the effective potential is analyzed directly
using a Rayleigh-Ritz variational method. The effective potential is
minimized with respect to m (the vacuum expectation value of the fermion
billinear) and the finite value of m that minimizes the effective
potential is estimated. Spontaneous chiral symmétry breaking is also
studied for theories with fixed. coupling constant.

In Chapter 5, stability of the symmetry breaking solutions due to
the effective potential Veppg is studied, i.e., whether the symmetry
breaking solutions correspond to stable or unstable points of the effec-
tive potential.

I end this thesis with a Conclusion followed by an Appendix.
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CHAPTER 2

2.1 CHIRAL SYMMETRIES IN QCD-LIKE THEORIES

Chiral symmetries are introduced as formal symmetries of the

‘massless Dirac Lagrangian.
X = Py
i - 0
a - = + .
po= 0, -1A), T = v

There is one obvious~symmetry, i.e. a transformation of the fields ¥, ¥

(2.1)

which leaves the Lagrangian pt invariant.

v o> e%y
(2.2)

The o is a real parameter. We substitute (2.2) into ((2.1) to have
L +» L = i(ie-ia)yu(au - igAu)(emq)) .
The a commutes with all the y-matrices giving
v _ T H _ 3 =
L' = e, -1 = X

We see that the transformations (2.2) have retained the original form of
Z. This corresponds to fermion number conservation. There is also

another symmetry

S
N | (2.3)

To obtain y we use the definition (2.1)

5
A

P
s> gre Y 40 (2.4)
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Now we must use the anti-commutation of y-matrices

{vs,¥'} = 0
so that
eY5Yll - Ylle-Ys

and (2.4) becomes

S
§os e

Substituting (2.4) and (2.3) into (2.1) for X gives

. .5 < .5
Lo X = 1™ "o -iga ) v .
Using {Ys,y"} = 0 finally gives
.= H . -iays iays
L' = iy (3“-1gAu)e (e ¥)
= 1w = 2.

Notice that with a mass term
- -~ 2i

mpy > mpe” 15y
2 mpy .

We see that the Lagrangian with a mass term is not yg invariant.

(2.4)

To understand these symmetries physically, we use the Weyl repre-

sentation of y-matrices

Q -
[20) [~}
I "
-<° /\
- ~- O
pie
1] O -
N
-
]
© aQ )
[ juic
§
Q o :
fude
N’ 1
.2 o
s
S’
-
(%]
(0]
N
O
'_5_‘ (=]
N’

where gi’'s are the Pauli spin matrices.

(2.6)
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In this representation the Dirac action becomes
= I
| vipy d*x

f iiy“(au-igAu)w d*x

=
i

[ (Y (i3g+gAq) - Y- (i3+gh)}y d*x 2.7)

where we have used the contraction or scalar product of four vectors
1 > >
A Bu = (AgBy - A-B) . (2.8)

Using (2.6) in (2.7) gives

po
[}

[ #*+{a- (p-gA) + I(13g+gAg)}¥ d*x (2.9)
where

p = -ib . (2.10)

Qur units are = ¢ = 1. H can be split apart, if ¢ is written in terms

of a two-component spinor as

YL
v = ( ) ) .11

YR

Inserting this in H gives

-0ea 0 ag 0 W
fwzm( )( )()d
0 ‘0'"‘5 0 dg *R

f t:[-zoz + Iao]¢L d*x + f ¢;[+§-3 + Iao]tR d*x (2.12)

po
il

b
"

where

(-2 4
H
ot
1
S
-

ag = 139 + gAg (2.13)
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The positive energy states of wR haQe,positive helicity and the
positive-energy states of wL have negative hélicity. wR and ¢L
describe, respectively, right- and left-hahded massless fermions. The
fermion numbers of wR and wL are (formally) separately conserved; this
is the origin of the extra symmetry.

The two pieces of (2.13) are not actually of a different form. We

can write wR as a second form of wL by applying charge conjugation
¥ 290 (2.14)
= O . .
L, R

We first perform an integration by parts of the second term of (2.12),

then use (2.14) and the i&entity
020,06, = -0 (2.15)

i

so that the second term can be rewritten as

[ #t{oe (p-gh)

+

I(13g+gAq) }¥p d*x

/ ?EZ{(-;)O(;+9K) + I(i@o-ng)}¢L2d“x‘

[ 9 {(C9)e(B-(-@)R) + T(i3g+(-g)Ag)}¥, ,d*x
L2 L2

(2.16)

which is just a ¢L2 action with the opposite sign of the charge g.
This construction can be readily generalized to non-Abelian gauge
theories. In the non-Abelian case the Lagrangian is built from the

covariant derivative

a, a
D, = 3, - igA (2.17)
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where 'a' runs over the generators of the gauge group and the matrices
tra represent these generators in the representation 'r' to which the
fermions are assigned. The matrices for complex conjugate representa-

tion are replaced by

) . (2.18)

This enables us to recast the action for wR as that of wL in the

representation r
IR [o- (p-gA) + I(id3g+gAg) J¥y d*x

= [ ¥, [(-0)=(p-gA(-t%)) + I(13g+ghg(-t*))]¥ , d*x  (2.19)

In this notation, the most general action coupling massless fermions to

gauge fields may be written compactly in the following form

b=
]

Np
> g:i ] #Eri [(<0)e (p-gAtr) + I(iao+ngtr)]¢Lri d*x
repr.r i= »

(2.20)

where r = 1,2,
Once H has been cast into this form, it is easy to read off the
global symmetries of this system. For each representation r, this

action is (formally) invariant under the general unitary transformation

i * Uij ¢Lrj . (2.21)
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Actually, one of these formal symmetries is illusory. A certain quantum
correction to this theory, the Adler-Bell-Jackiw anomaly [3,4]; spoils

the conservation of the overall charge current

311 = ): tLl‘i 3u #Lri o (2.22)
ri
(In terms of ¢L and ¢R, this is the axial-vector current.) This

symmetry is therefore broken. The full global symmetry of the theory

is, therefore,

G = [x U(nr)]lU(1) . (2.23)
r

G is the group of chiral symmetries of such a theory.

As an example, consider the case of the strong interactions, which
are described by a set of two almost massless Dirac fermions (quarks)
coupled in the triplet representation to an SU(3) gauge group. These
fermions may be written as left-handed fermions, two in the 3 and two in
the 3 representations of the colour SU(3). In the limit of zero quark

masses, the chiral symmetry of this theory is
G = SU@)xSU(2)xu(1) . (2.24)

There is considerable evidence that the full group G is a symmetry of
"the strong interactions; however, hadrons do not form multiplets classi-
fied by G, but only by SU(2)xU(1) (isospin x baryon number). A part of

G must then be spontaneously broken.
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There is a relatively simple intuitive argument which accounts for
tﬁis spontaneous breaking of chiral symmetry. It is dué in its original
form to Nambu and Jona-Lasino [5]. The gaﬁge coupling of SU(3) colour
is asymptotically free and becomes large at large distances. Let us
assume that it is arbitrarily strong; and think about the structure of
the vacuum state as the coupling g is raised from zero. Imagine that we
can integrate over the quantum fluctuations of the gauge field; then H

takes the form

H = Hd + Ho—d (2.25)

where Hy is diagonal in the number of quark-antiquark pairs and Hy-g
changes the number of such pairs. Hy_.q is of order 92 and is a small
perturbation when g is small. In this regime it makes sense to approxi-
mate H by Hy. Diagonalizing Hy yields a ground state close to the
free-field vacuum. Now,kslowly increase g. If the fermions have zero
mass and experience attractive interactions, Hq decreases as g
increases. H,.{4, of course, increases. At some value of g it becomes
appropriate to treat Hy_4q as the zeroth-order problem and Hq as a
perturbation. But Hy_4 changes the number of pairs, so its ground
state has an indefinite number of fermion pairs. We still expect the
ground state to be invariant under Lorentz transformations; hence these
pairs must have vacuum quantum numbers - zero total momentum and angular
momentum. The only pairs one can form from 3 and 3 left-handed (L-h)
and their (right-handed) antiparticles which satisfy this condition are

of the form



N

GP

Figure 2.1

and the corresponding pair of antifermions.

Wi
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N

Cle

Fermion bilinear with vacuum quantum numbers.

The pair shown in Figure

(2.1) carries a net charge under the transformations:

L3i

¥y -
L3i

(The indices i,j = 1,2 are isospin labels.)

The presence of an indefinite number of such pairs in the vacuum

breaks these symmetries.

More formally, we have found that the ground

state |2> of H has the property that an operator which destroys a

fermion pair has a nonzero vacuum expectation value.
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Let us assume that |Q> gives pair annihilation operators the rather

simple expectation value

!n> = AS (2.27)
ij

I L
L3 L3j

(where A # 0), corresponding to equal condensation of pairs of each

isospin. This expression is preserved by the transformations

v > ey , v v e %y
L3i L3i L3i L3i

U U O R O T
L3i i L33 L3 L3j ji
This, however, is an SU(2)xU(1) group of unbroken symmetries which
corresponds precisely to isospin x baryon number. The remaining three
symmetry directions of (2.18) must be spontaneously broken symmetries.
Goldstone theorem requires that each must generate a«massless Goldstone
boson. The three w mesons have the right quantum numbers to be identi-
fied with these three bosons. (This may be checked by rewriting ng' as
i

¥,; then the symmetries (2.22) correspond to vector currents and the
R P

broken symmetries to axial currents.)
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2.2 THE EFFECTIVE POTENTIAL FORMALISM

To do a more quantitative computation.of chiral symmetry breaking,
one needs to know how to test whether the energy of the vacuum is
lowered if some fermion bilinear acquires a nonzero vacuum expectation
value (vev). If the quantity acquiring a nonzero vacuum expectation
value is a scalar field ¢, one has at one's disposal an object called
the effective potential [6,7]. This object is equal to the energy of
the vacuum under the constraint that the vev of ¢ has some definite
value ¢35 it can be computed straight-forwardly in perturbation theory
[8]. One need only compute this effective potential and minimize it
with respect to ¢, to determine the vacuum value of ¢.

" For chiral symmetry breaking (hereafter xSB) there is a similar
construction due to Cornwall, Jackiw and Tomboulis [{9]. To produce a
vev of a fermion bilinear operator, we must, in principle, turn on some
external field (analogous to a magnetic field orienting a potentially
ferromagnetic system), construct the ordered vacuum in the presence of
this field, and then see if the order in this vacuum survives when we
turn of f the field. -

Cornwall, Jackiw and Tomboulis (CJT) constructed the effective
action for Bose fields. }We will sketch a derivation of this for Fermi
.fields.

Consider an SU(N) gauge theory with massless fermions “in the funda-
mental representation. We introduce a bilocal source K(x,y) coupled to
the fermion bilinear $(x)¥(y) in the generating functional of the

theory. In Euclidean space the generating functional is
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e-W(J;ﬁ,K)

2(3,3,K) = (2.29)

where J(x), J(x) are the usual local sources coupled to the fields ¥(x)
and ¥ (x) respectively. W(J3,3,K) is the generating functional for

connected Green's functions.

2(3,3,K) = [DyDAUDC exp{-[I(¥,Ay,C)
+ [d*x I e(x) + [d*x $(x)I(x)
v [d*xd*y K (x,y) ¥(y) 1} (2.30)

where the functional measure Dy stands for the product of all the dy's,
for example, DY = dydy. Spinor and flavor indices have been suppressed
in (2.30). I(¥,A,,C) is the gauge theory action for gauge boson
fields Ay, ghost fields C and the massless Fermi fields y. The local
source terms for gauge fields and ghost fields have been omitted.

The effective action I'(9,S) is a double Legendre transform of

W(3,3,K).

§%¥;Y = ¢(x) ' (2.31a)

sW
§J3(x)

= ¢(x) (2.31b)

W -
EET;:;T- = [S(x,y) + @(x)@(y)] (2.31c)

‘where S(x,y) is the full fermion propagator. Then

r(e,s) = W3,3,K) - E-“31(";(-)-3()() - 3(x)

W _ W
sT(x) SK(x;¥)

K(x,y)

(2.32)

where integration with respect to x and y is understood.
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r(e,S) = W3,3,K) - [d*x (x)I(x) - [d*x T(x)o(x)

- [d*xd%y ¢ (x)K(x,y)5(y)

- [d*xd*y S(x,y)K(y,x) | (2.33)

It is easy to see that
%-%f—’ = -3(x) - 2[d* F(y) Ky,x) (2. 34a)
%"fy S3(x) - 2[d% K(x,y) oly) (2. 34b)
%—Ef—"’;:%))— = K(x,y) (2. 34c)

Since physical processes correspond to vanishing sources J, J and K,

equations (2.34) provide a derivation of the stationarity requirement.

sT By _ 3y _
J=0 J=0 K=0

r(o,S) is the generating functional in ¢ for two-particle irreducible
(2PI) Green's functions expressed in terms of the propagator S(x,y).
Tcar(9,S) (where CIT stands for Cornwall, Jackiw, Tomboulis), can be

expanded into the following formal series for vanishing values of Ay
and C [9].
Taqp(©,8) = I(o) + TrlnS (x,y) + TrSol(x-y)S(x,y)
+ Ty(¢,S) + Const. (2.36)
where integration over x and y is understood. Sp(x-y) is the free
fermion propagator given by the classical action I(¢). T,(¢,S5) is given

by all two-particle irreducible vacuum diagrams evaluated with S(x,y) as

the fermion propagator [27]. A graph is said to be two particle
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1rredu01ble if it does not become disconnected upon opening two llnes

From (2.34c) and (2.36) we have

r _ -1 - 8Ty
6—5. = K = -5 + So + ——‘65
or
_ -1 _ o7l _ 2
K = S So° - 33 (2.37)

Using equation (2.37) we can rearrange (2.36) as follows

Gr Gr
I'c:n-(cp,S) = I(¢) + Tr Ln(K + Sl + 35 >+ Tr<1-KS - 6_S_S>

+ Ty(¢,S) + Const.

_ Y I PO
= I(cp)+Tan[(So +3§_><1+{5° +-6—S—} K

+ Tr(1XKS) - Tr( 32

3 )S + I5(p,S) + Const.

., 8T, oT,
= I(¢) + Tr Ln(Sy~ + 5 ) Tr 65 S + Ip(¢,S)
+ Tr Ln(1 + {1KS}7'sK) - Tr KS + Const.

where we have used

6T -
-1 2 1
S0’ + 33 = (1XKS)S

from (2.37). Finally we have

S) = (,5) + Tr Ln(1 + [1KS1¥SK) - Tr KS (2.38)

Tegy(es Tepoe

where

6T ér,
= -1 2 -
CDDG(w’S) = I(e) + Tr Ln(%o * 35 > Tr (65 ) S + ry(e,9)

+ Const. (3.39)
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The effective action I'eppg was first introduced by Casalbuoni,
DeCurtis, Dominici and Gatto [10] hence the name I'cppg. The reason
for introducing Tcppg will be made clear later on after introducing
the corresponding effective potentials derived from the effective
actions T'cgr and Tceppg. Equation (2.36) with the constant properly

evaluated gives
Fogp(@,8) = I(0) + Tr LnSy!S + TrSpls + ry(e,S) - Tr1 . (2.40)

Equations (2.39) and (2.40) are the CDDG and CJT effective potential I
shall be using throughout the rest of this thesis.

It is an easy matter to derive the effective potential from the
effective action. The effective potential which is the generating
function for 2PI n-point functions at zero momentum is often computed.by
letting ¢(x) be a constant ¢ in the effection action. Since we are
interested in translation invariant solutions, we also iet S(x,y) be a
function only of the difference x-y. A generalization of the effective

potential may be defined by

r(e,s) V(o,S)[d*x . (2.41)

translation invariant

The series for V(¢,S) can be obtained from (2.40) by Fourier transform-

ing the propagators.

&

S(x-y) fd pelPOY) ()

S (x-y) = [d* pelP(X-Y) s (p)
1 = [d*xd*y &*(x-y)6" (y-x)

Soey) = Lo fdp 1O
w

(2.42)
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Equation (2.40) is written in full as

PCJT(¢,S) = I(p) + Iduxduy Tr Ln Sal(x-y)S(y-x)

+

fd xd" y Ir Sol(x-y)S(y-x)

+

Ty(0,S) - [d*xd*yTrs* (x-y)6*(y-x) . (2.43)
Substitute (2.42) into (2.43) to have

{-V(9,5) + Va(9,S) + U(p)}fd*x

(" N 3 in'
[d*xd*y d'p  d'p Tr e-lp(x"y)[LnSo'l(p)!f»(p')]e-lp (y-x)
@2x)* (2x)*

. : ' (y-
[d*xd*y (: :u ?Zp)“ Tr e-lp(*-y)[sal(p)S(p')-1]e-ip (y-x)
x x

+

--P-d p' Tr[S3t(p)S(p')-1]el PP )Y g4(p pr)
(2x)"

I
%

Iduy L% dup' Tr[Sal (p)S(p' )_1]ei(P’P' )y Gu(p—p' )
(2%)

+

[d*y (: : Tr nSgt(p)S(p)
x

[d*y -—P-—Tr[Sol(p)S(p) 1]
(2v)"*

+

and finally we have

Vog(9,8) = U(9) -f(2 tr en S31(p)S(p)
x)"

-—P- tr[Sg (p)S(p)-1]
(2v)"

and 1 6v2
CDDG(¢ S) = U(o) - [ ?;:f-tr in Sy (p) + 55

sV

2
- Tt 35 S+ V2 (¢,S) + Const. (2.45)
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where U(¢) is the classical potential and -V,(¢,S) is the sum of all 2PI
vacuum graphs. Notice that the trace is no longer functional but
applies to component degrees of freedom and V(¢,S) is a function of

and a functional of S(p).

The stationary requirement (2.35) becomes

8V (¢,S)
e - 0 (2.46)

8V(9,S) _
5s(p) = © (2.47)

Hence only (2.47) is a functional derivative. Also note that

v =V (2.48)
CJT|K=0 cons|K=0 .

Dropping the classical potential U(¢) from (2.44) and (2.45), we have

Vegr(S0,S) = “/i__Jl_ tr 2n S5t (p)S(p)
(20)"*

-—-Ji- tr [Sgl(p)S(p)-1]
(2x)"

+ Vy(¢,S) (2.49)

- sV,
CDDG(S° ,S) = f tr &n (Sq" (p) + 5
(2x)"*
8V,
- Tr S S + V,(¢,S) + Const. (2.50)

With equations (2.49) and (2.50) we end our sketch of the CJT formalism

for Fermi fields.
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We have said that V, is the sum of all 2PI vacuum diagrams. In the

two-loop approximation, the following diagrams contribute, where all

internal lines are exact propagators.

S(p) 5

(a) (b) (c)

Figure 2.2 Hartree-Fock approximation to two-loop effective
potential. The solid line is the full fermion
propagator S(p); the wavy line is the full gluon

propagator A.

We use the Hartree-Fock approximation to the effective potential
where only one gluon exchange is taken into account. We therefore
‘consider diagram (a) Fig. (2.2) with the full gluon propagator A(p-k)
fepléc;d by the free one D(p-k) and the full vertex replaced by the bare
vertex. This Hartree-Fock approximation which replaces the complete

vertex by the free vertex forces us to use the Landau gauge [9]. This
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is because in spontaneously broken theories, this vertex has a Goldstone
pole, which certainly is not in the bare vertex. The approximation
therefore makes sense only in the Landéu gauge, since then the Goldstone
pole is annihilated in all vacuum graphs. This makes the SD equation
finite and no renormalization is needed. Chiral symmetry breaking has
also been studied in Coulomb's gauge [28,29], here the SD equation has
to be renormalized. -

S(p) is the full fermion propagator given by

st = Sol(p) - M(p)
(2.51)
S = -%#
In Landau gauge the gluon propagator is
1 / PuPv
D (p) = —(q - > (2.52)
uv p2 \uv p2
0 4
vid(s,,s) = -%f“ P f IR tr 1 35(p)r PsIDLY (p-k)
(2')'4 (2')4 u v a
where A
T = ‘ .
u gYu (2.54)

is the bare vertex. The unrenormalized coupling constant is g.
However, in a non-Abelian gauge theory like QCD, the coupling constant
renormalization is essential, since it insures that phenomena which
happen only in the regime of strong coupling do indeed occur at some

scale [17]. We replace g by g(p?,k?). Using the property that

A

2V, = Tr (_6-5—)5 (2.55)
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we can write (2.50) as

6V
cmG(SO ,S) = ’/‘-(—2;-? tr n So + '6—5—— - VZ(SO’S) + Const.
(2.56)
Let

= = -1 (2.57)

Veppe = f(TL tr 2n(S3*(p) - (p))

x)*
+ 3 CN) f f r{S(p)y, Sy, 0™ (p-k) g% (p2,k?)
@n*J @n*

+ Const., (2.58)

where we have carried out the trace in the group space to give. C¢(N),
the quadratic Casimir invariant, which for all SU(N) representations is

given by

C.(N) = (N2-1) /2N (2.59)

Substituting S from (2.51) and performing the remaining trace over

spinor and flavor indices gives

Veppe(S0sS) = -2, (—Z-P-zn(p + 32(p))
=)

M(p) d*k 2 .2y M(k) 1
+ 2 3¢ _(N)g? (p?,k2)
-/ )" p2M3(p) f ot f k2m2(k) (p-k)?2

+ Const. (2.60)

where n¢ is the number of flavors.
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Assuming spherical symmetry and, letting ) and M be functions of

the invariant Euclidean four momentum squared, gives

Veppe = 2 —LG(p D))
(2%)"
2 4 2
¥ oon _/ 4 zM(g f > ku xf(N)gz(pz’kz) zn('; )z 1 2
2r) M2(p2) Y (2x) kM (k“) (p-k)
+ Const. (2.61)

g2(p2,k2) is the coupling constant of the theory which we shall talk
about in detail in subsequent chapters. Following Higashijima [12,13]

we adopt the following form for the running coupling constant:
@ (p%,k%) = g?(p®e(p2k?) + g>(k?)a(k2-p?) (2.62)

where e(pz) is a unit step function defined as

1, p2>0

2

a(p°) = { 2 } (2.63)
0, p° <Ko

Equation (2.61) can be written in a compact form as

4 .
i%%i_'vCDDG = - fd“p £n(p2 + Xz(pz))
2
E (pz) PR k242 (k2) (p-k)?
+ Const. (2.64)
where
. i XN 252 2y (2.65)

pyk (2...)‘*
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and
(2n)* ™ < Hz(pz)) . Hz(pz)
v = - fd'p tn{1 + —=)+ 2 [d'p ———
an CJt p2 ‘ p2+H2(p2)
_ fd“p M(Ez) fd"k A M(kz) 1

(2.66)

Equations (2.64) and (2.66) are the Euclidean space CDDG and CJT effec-
tive potentials, respectively, which I will be using throughout this
thesis.

From (2.57) and (2.53) we have

§Vy 2 4 M(K?) 1 .
= = (p ) = - fd'k A : (2.67)
55(p) 2_ I PsK 12 .M2(k2) (p-k)2

The reason for introducing the effective potential Veppg will now be
explained.

We have seen from (2.48) that

A =V (2.48)
cr IK:O CDDe IK:O
and we shall show also that
- SVear _ SVeooc (2.68)
$ K=0 85 K=0

implying that these potentials contain the same information regarding
chiral symmetry breaking solutions. However, some of the unpleasant

features of the effective potential in the form given by CJT will be

shown to be absent in the form given by CDDG.
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CHAPTER 3

3.1 THE SCHWINGER-DYSON EQUATION

The SD equation results from réquiring the efféctive potential to
. be stationary against variations of M. We saw in Chapter 2 that the
stationarity requirement has direct physical consequences which we now
identify with the SD integral equation. The solution of this equation
furnishes us with one way of studying chiral symmetry breaking.

While the bulk of the original results of this thesis is contained
in Chapters & and 5, most of the work in this chapter was done
independently by the author, although recently similar conclusions have
been arrived at by Haymaker and Matsuki. B

Taking the first functional derivative of (2.64) with respect to M

gives
@x)* v _ d/hu 25(p%) 7 (p?)
' 2y P =52, 2 2
2ng SM(q°) p-+)°(p°) M(q*)
2 u2;.2 ‘ ' 2 2 2
+2fd"p p-M°(p®) d"kAk M(k“) §(q°-p?)
(p2 M2 (p2))? Pr% k2M2(k2)  (p-k)2
(3.1)

Recall from (2.67) that

2
16%) = [d'%kA Mk )2 L (2.67)
Pk 1 2m2(k?)  (p-k)?
which gives on taking the first functional derivative
Z 2 2 M2(L2 2 .2

§M(q?) PoK | (k2M2(k2))2 | (p-k)2
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Before continuing I will write down a few of the formulae we will be

using for quick reference.

fd"k—l-——f(kz,pz) = .Zj' k2dk? £(xZ,p2)W(p2,Kk2) (3.3)
(p-k) o

fdk—L—) f(x2,p%)6(s?k2) = »2s2W(p2,s®)f(s2,p?) (3.4)
(p-k)?

[ d'p [ d k—P—- £(k?,p2)6(s2-p?) = [ d*ka?s? ——E-— f(kz,sz)

3c_(N) 2,2 2,.2
W(pz,sz) = f . (g (g ) e(pz-sz) + ﬂ_ig_l 6(52-p29 (3.6)
(2w) p s

Formula (3.3) has been derived by carrying out the angular integrations.
Note that three angles are involved.

Substituting (3.2) into (3.1) and using (3.4) and (3.5) gives

A
(20)% &V = 2n2¢? _q*-¥%(d%) fd"k q,k M(k?)

2n, sM(q?) (q2+42(g%))? «rmz k2:M2(x2)

2
- Zizfdl’p ._.Z(%)_z._ W(pz q2) 2 __2-_(j._2_2 (3.7)
p2+)Y2 (p%) (q%2M2(q2))

We immediately see that

sV
sM(q?)

implies

M(x?) 1

(3.8)
K 1 2.M2(k2)  (p-k)?2

I1? = Mp?) = [d% A
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Eq. (3.8) is the desired SD equation. This is a nqnlinear integral
equation. | |

Notice that the same SD equation is obtained [14] by minimizing
Vegr Equation (2.66). Thus both VcJT and Veppg give the SD
" equation when minimized. To this point in our understanding of the
effective potentials, using any of them is a matter of choice.

If we had used in (2.64) M(pz) instead of Z(pz) in the Log, the

first functional derivative with respect to M would give

2 2
(2n)” &V — = - [ d* iM(:z) )2 s(q2-p?)
2n. &M(q”) pHM< (p©)
. 2 d% p2-M?(p?) & A M(k?)  &(q>-p?)
(p2+M2(p2))2 p,k k2+M2(k2) (p-k)z

(3.9)

and one can not get the SD equation by requiring §V/8M to be zero.
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3.2 SOLUTIONS OF THE SD EQUATION

We have seen that the SD integral equation is highly nonlinear and
would be difficult to solve analytically. However, we can éhange this
into a nonlinear differential equation with appropriate boundary
conditions and then find its solution numerically.

' 2
M(p2) = [ d*k A M(k) 1 ) | (3.8)
I Pk 1 2.M2(k2)  (p-k)?

Using (3.3) gives

® 3C,(N) /2. 2 2.2
M(p?) = nzj K2dk? [ (9—(F’—-)- o(p2k2) + -L(_'z‘-—) e(kz-pz))
o k

(2x)* p2

M(k? )
k242 (k2)

Getting rid of the step functions explicitly gives

3n2C_(N) 2 p’ 2
M(p?) = LA i 59 f a2z —H0E)

(2x)* p? 0 14 M2 (k2)
K2
2 20,2
. j“" o2 Ce(N) g7 (k%) M(k2)
p? @n* K ()
+ kz
X 3
M) = £ J" oy M) +J“ dy S MGy
X 0 1+n2;z) x Y 1+M2§z)
(3.10)

where
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32C, (N)
e(x) = ———— gz(x) y X = pz, y = K2 . (3.11)

(2x)*
At this point we are interested in the form of the running coupling con-
_stant. We get this from the renormalization group. The aim of renor-
malization group is to describe how the dynamics of a system evolves as
one changes the scale of the phenomena being observed. One develops
methods of constructing an effective Hamiltonian which describes the
system at distances which are either much larger or much smaller than
the characteristic physical length scale. Thus the renormalization
group is a group of transformations of the effective Hamiltonian as the
scale length is changed.

For an asymptotically free gauge theory, the running coupling

2

constant obtained from renormalization group analysis for large p

(short distance) is [17]

2
Plx) = —OF 1 . (3.12)

11N-2n n(x/A2)

Eq. (3.12) can be substituted into (3.11) to obtain

9Ce(N)
e(x) = — sy €9 = it A (3.13)
n(x/2?) 11N-2n .
Define
t = n(x/A?) (3.14)

We see that the behavior of the coupling constant leads to confinement

for small p2, i.e., the coupling can become arbitrarily large for small
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‘pz. Since it has been argued [15] that the confinement mechanism does
not influence chirai symmetry breaking, we adopt a nonconfining QCD

coupling (see Fig. 3.1).

€9
tc+t t Z_O
e(t) = (3.15)
€9
E—- t i 0
c

The A is a QCD scale parameter and t, is the infrared cut off.

0.4

0.3 1

@w 0.24

0.1+

0.0

i |
-2 0 2 4
| t

Figure 3.1 Nonconfining QCD coupling.

N ~
0o

10



- 38 -

Returning to equation (3.10) and letting

M(x) = “x C(x) | . (3.16)

we have

/x o(x) = &) jex dy sy Cly) . jom dy =) sy Cly)
X

X [+] 1+ CZ(Y) b4 1+ CZ(y)
(3.17)
Then using (3.14)
t = tn(x/A?)
s = taly/A) (3.18)
dy = A%2e3ds
substitute (3.18) into (3.17) to have.
t
c(t) = 8(t)e3t!2 ,{ ds e35/2  _ C(i)
-® 1+ C°(s)
. ot f ds &52 c(s) —C(s) 5.19)

t 1+ Cz(s)

We now convert (3.19) to a differential equation with boundary condi-
tions. We first multiply across by et/2 and then take the derivative

with respect to t.

%—F [etlz C( _t)]

t
[‘g"f <e(t)e">J J ds e5/2 ¢(s) —C(s)
- 1 + C%(s)

(e(t)e-e)(eBtlz e(t) ——9—(‘-—’——>
: 1+ C2(v)

et/Z e(t) C(t)

1+ Ci(t)

+
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N . L t )
%E-[étlz C(ti] = [gf < (t)e-t>] j~ ds e3$l2 e(s) —Cs)

— 1+ C%(s)
(3.20)
) which gives
d t/2
t —[e"" C(v)]
f ds 32 e(s) —C8)L_ ot - . (3.21)
- 1+ C%(s) EE'[S(t)e- ]

Taking the derivative of (3.20) and using (3.21) gives straightforwardly

C(e) + 28(8) + 2 C(b) - (E‘—”—:e—“i) (—1-C(t) . é(t))

t(t)-e(t) ] \°
- (E(t) - e(t)) _C) . (3.22)
1 + C2(v)

The dot above any letter stands for derivative with respect to t. Next we
find the boundary conditions.

From Equation (3.21) we have

£ = Jﬂ ds e e(s) —mm—ro

e [e(t) - e(b)] - 1 + C%(s)
- t

Lim e3tl2[C(t) . %C(t)] - limt+, € €9 J‘ ds e3s/2€(s) C(s)

tre (bst )? brt t) e 1+¢2(s)
1im  &t/2 [:_t*‘;‘] ce) = 0 . (3.23)

-

3t/2

To get the second boundary condition we multiply (3.19) across by-grET—

and take the first derivative to have
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d [ t/2 C(t)- -
de L e(ti — = j‘ ds esl2 e(s) _C(s) (3.24)
d e t 1 + C3(s)
dt [eltf]
which gives
i, e/ (%E . %) ce) = 0 (3.25)

Because of the way we have defined e(t) (Equation (3.15)), Equation

<
(3.22) separates into three regions (t §=0).

€9 o .
1. t<o0 €=r,€=€=0
c
Then (3.22) becomes

€9 c(t)

C(t) + 28(t) +%C(t) s - 0 (3.26)
c 14+ C%(v)
2. t>0
(t) L,
€ - 1t+tc$ = Ao
® -£
et) = —— = -\%
(t+tc)
o - 2¢
€(t) = 0 - = 2x3eo
(t+tc)
where
L (3.27)

t+t
c
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Equation (3.22) becomes

- (2+324222) %*%" + 22
C(t) +——W—C(t) + a0 c(t)
+ go A1) —CEB) 4 (3.28)
1 + C3(¢v)
3. Att=0

Here the derivative of e(t) is discontinuous which makes C(t)

discontinuous too.

The discontinuity is calculated [Appendix A] to give at t = 0

. 1\ c(0)
&0+ = (1 + K) bo-y + > - _ (3.29)

To be able to do numerical calculations we need to know the behavior of
the solution of (3.22) as t + - =, In this region corresponding to
large distances or small momentum transfer (p2 + 0), the quarks are
bound very strongly together to form hadrons because the coupling is
large. The quark mass here M(0) is called the constituent mass. On the
other hand, at small distances or large momentum transfer, the quarks
are free states. In this region the quark mass m_ is called current

R
quark mass and it is independent of the renormalization point. The

“asymptotic solutions are:
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1. t+ - , we solve (3.26) to have

MiO) ,-t12 (3.30)
C(t) =
E>-= MKO) o-3t/2 (3.31)

Note that (3.31) in this region is excluded because the boundary (3.23)
forces us to choose the solution (3.30). The solution must also satisfy
C(t) (het/2) = M(t) + constant (t + - =) which gives the constituent

quark mass.

2. t + + = , there are two acceptable solutions because both satisfy
boundary condition (3.25) as t + + », In this region we solve (3.28).

We do this by assuming a solution of the form

-8t .«

clt) = At (3.32)
C(t) = -BC(t) +{-C(t) (3.33)
&e) = -s[-sc +C] - -‘:—z-c + ¢ [-8C +.£ €] (3.3%)

Since we are interested in the solutions as t + + =, we neglect all

terms having quadratic or higher powers of t in the denominator and

&) = +32c--2%‘lc ] (3.35)

t>r =

Recall from (3.28) that

(1) + 2+43a+222)¢ + (-;:l + 75; A+ 12)c + g9 AM140)2 C = 0 (3.36)
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where we have dropped C2(t) in the denominator of the last term of

(3.28). Note that

1

A s Tt
C

1 ‘ '
T’m T - (3.37)

" Substituting (3.32), (3.33), (3.35) and (3.37) into (3.36) and neglect-

ing quadratic or higher powers of t in the denominator gives

(82 - 28 +-%>C +-%-(82-28a+2a—38 + %-+ gg) = 0 . (3.38)

We thus have two equations

B2-28+3 = 0 (3.39)
20-B(2a+3-8) +‘%-+ €g = 0 . (3.40)

From Equation (3.39) we have
1 3
R

and using (3.40) gives for

B = % ’ & = =€
(3.41)
g = -3-. ¢ = go~-1
2 0
Since
c(t) = Ae Bt ®
A e"3t/2 t€o~1 (3-42)
c(r) =
t+ + o :R; e-t/Z t-co (3.43)

A

It is easy to verify that (3.42) and (3.43) satisfy the boundary condi-
tion (3.25). ’
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We will now try to understand the meaning of mo

ficients of (3.43) and (3.42) respectively in a more physical way.

and A, the coef-

In the light of the transformation (3.16), i.e.

Me) = 4 e e

(3.16)
we see that (3.43), which dominates as t » =, becomes
m
M(t) = A et/2 Iﬂ_e-tIZ tto
-€ 1 €0
= t 0 = e (3."4)
R "R [zn(pzlAz)}

M(t) gets a correction which is purely logarithmic and is a consequence

of asymptotic freedom. So as t » = (in the ultraviolet region) mR is

the current quark mass when quarks are free states. Thus the solution

(3.43) will be used in the numerical study of the SD nonlinear differen-
tial equation itself to study explicit chiral symmetry breaking.
However, the actual mechanism of mass generation happens at lower

momentum transfer and so it is necessary for M to have more than just

logarithmic dependence. At this lower momentum transfer region (known

as the infrared region) we use (3.42)

3 1-¢
M(t) = A e2 ae3t/2 eom1 | AfA)| 1 |0 (3.s5)
p2 / | 2n(p2/a2)

The correction to M now has (1/p?) dependence. This is in agreement

with the result of the operator product expansion obtained by

D. Politzer.
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The coefficient A plays the role of an order parameter which deter-
mines the phase transition from a chiral symmetric phase to a spontane-
ously broken phase. "A" will be identified with the vacuum expectation
value of the fermion billinear. The solution (3.42) will be used as a
" variational ansatz in the effective potential to study dynamical chiral
symmetry breaking. The effective potential will be expressed as a
function of A to give explicit phase transition curves.

Equation (3.42) is known in the literature as Regular Solution

while (3.43) is known as Irregular Solution.

From the preceeding discussion, we see that there emerge in a
natural way, two approaches for studying chiral symmetry breaking.
Explicit xSB involves using the SD differential and the irregular solu-
tion to study dynamical chiral symmetry breaking. This has been used,
for example, by Higashijima. Spontaneous xSB involves.using a varia-
tional scheme to study spontaneous xSB. Here one uses the effective
potential and the regular solution as a variational ansatz. This has
been used, for example, by Castorina and Pi.

In the next section I will deal with explicit chiral breaking and
leave spontaneous xSB to Chapter 4 where most of the original work has

been done.
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3.3 EXPLICIT CHIRAL SYMMETRY BREAKING

We have seen in Section (3.2) that the SD differential equation has
two solutions - the regular solution and the irreqgular solution. The
irregular solution dominates as t + ». One can therefore use the
irregular solution to study xSB. One simply gets the numerical data of
the SD differential equation and matches this with the irregular
solution. In this way a relationship between the constituent quark mass
M(0) and the current quark mass mR(M(0)), is obtained graphically.

These curves provide a way of seeing how chiral symmetry is broken
explicitly. Explicit xSB was first used by Higashijima [13].

We write down the SD differential equation again derived in Section

(3.2)-
For t <0
. . €
R~ T (3.26)
c 142
at t=20
. 1 - 1 _ .
C(0+) = {1+ re C(0-) + EE_-C(O) (3.29)
e c
and
for t >0
3.5 2
. 2 + =2+
Ao S R S Erertar) £ - 0 . (3.28)
1+ 1+

14C2
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The asymptotic solutions we will need are

M(0) e-t/Z

c(t) = = (3.30)
t+ -

c(t) = ;B- e.t/2 t %0 (irregular solution) . (3.43)
t> + o

To solve the SD éduation numerically, the boundary condition (3.30) is
used as t * - », say t = -20, with M(0)/A given as'input, integrate to
t = 0, impose the discontinuity condition (3.29) and then integrate to t
+ + », The numerical data are the values of C(t) for each value of t.
Then for t > 0, we divide C(t) by [exp(-t/2)]t%0 to get-;ﬂ (M(0)).

The éxpression -;B (M(0)) is a single-valued odd function of M(0).
The curves for M(0)/A vs-;ﬂ (M(0)) are obtained for various values of
the parameter tp, see Fig. (3.2).

The curves in Figure 3.2 show a nontrivial'relationship between the
constituent quark mass and the current quark mass for each value of
t

c*

RESULTS

From Figure 3.2 we see that for the parameter ty < 1.6, the
constituent quark mass M(0) clearly remains nonvanishing in the chiral -
limit mp = 0; that is, chiral symmetry is broken spontaneously. For

tc > 1.6, the constituent quark mass vanishes in the chiral limit

mR = 0, indicating chiral symmetry is not broken.
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Figure 3.2. Dependence of constituent quark mass M(0) on the current

quark mass mp for three colors and three flavors.

So for ts < 1.6, the attractive one gluon exchange between quarks
and antiquarks (qq) causes the perturbative vacuum to decay by spontane-

ous creation of qa pairs. This indicates that the true vacuum must be a
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condensate of such pairs. The symmetry breaking can be explained [13]
by observing that for t; < 1.6, the critical value determined by the

coupling constant €(tg) = g4/te = 0.3, ﬁhe coupling may become strong
enough to bind quark antiquark into a bound state. Since a bound state
“of massless particles is necessarily a tachyon in nonconfining theories
like the one we are using, the chiral-symmetric vacuum becomes unstable.
To cure this instability, the quark acquires a dynamical mass M(0) and
the bound state becomes a massless Nambu-Goldstone boson. On the other
hand, for tgs > 1.6, ie. e(tg) < 0.3, the attractive force between qa

is not strong enough to make a bound state. Therefore, the chiral-
symmetric vacuum is stable and the quark remains massless in this case.

Other interesting features we can read from Figure 3.2 are esti-
mates of the constituent masses of the light quarks for various values
of te < 1.6 given a typical QCD scale A of a few hundred MeV. We take
the case when t, = 0.4. Here my is about 5 MeV. We find M(0) =
386 MeV for A = 400 MeV. However, the constituent quark mass M(0)
crucially depends on the choice of infrared cut.off tee

The dependence of M(0) on the infrared cut off parameter t; in
the exact chiral limit my = 0 is plotted. See Figure 3.3.

Observe that if we take the confining force to correspond to a
coupling constant e(tg) > 1, it may suggest that since the xSB corres-
ponds to €(tg) > 0.3, the confining force is not necessary for xSB.

For e(tc) > 1, gluon condensation effects may not set in. These gluon

condensation effects may affect the detailed structure of the quark

condensate, but as we have seen, are not directly responsible for chiral

symmetry breaking.
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1.2
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0.8~
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0.2

Figure 3.3 Dependence of constituent quark mass M(0) on tc

when the chiral limit is'exaét, ie. mp = 0.
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CHAPTER &

4.1 SPONTANEOUS CHIRAL SYMMETRY BREAKING: A VARIATIONAL SCHEME

In the last chapter we were primarily concerned with anélyzing thé
stationarity condition of the effective potentials - the SD equation, to
understand chiral symmetry breaking. We saw that minimizing Vggr or
Veppg gave the SD equation and we did not have to worry about the
difference between the two.

In this chapter we analyze the effective potential itself and since
the two are slightly structurally different we must pay particular
attention to possible differences between them.

Our aim here, as was stated at the end of Chapter 1, is to do a
selfconsistent computation with Veppg using a Rayleigh-Ritz variation-
al method. Though a different variational scheme was used [11] to do
computations with Veppg, their schemé was shown in the:previous chapter
to be not selfconsistent, ie., the form of Veppg they used will not give
the SD equation on minimization. This will alsq demonstrate how a
Rayleigh-Ritz scheme is successful in studying spontaneous xSB with
Veppg which they (CDDG) had claimed was not the case. Castorina and
Pi have also used the Raleigh-Ritz scheme to study spontaneous xSB with
Vegt which we will also review here for comparison. And lastly, we will
also study the behavior of the effective potential; for theories in which
the coupling constant does not run. We find a significant result. Chiral
symmetry remains exact in such theories. This is understandable since
without a running coupling constant there is no dimensionful parameter to
set the scale of symmetry breaking. The study of SD equation yields

information about the effective potential at the stationary point.
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We start with equation (2.64).

ox )t
ii%%—'vCDDG = - [ d* tn(p? + 32 (p?))

2 2
+.)/;4P _Mp7) d*K A K M(: )2 1 7 * const.
pZ+M2(p?) P2X k22 (k?) (p-k)
(2.64)
We now evaluate V with a specific parameter dependent ansatz for M(pz)
and vary these parameters. The regular solution of the SD equation
" readily lends itself to an ansatz. Remembering that M(pz) =p C(pz),

substitute (3.42), the regqular solution for C(p?) to obtain

3 2\ €p-1
M(p2) = Ap (i) m(P-_> ’ (4.1a)
: p2 > 4 p A2 7

This is consistent with the solution obtained by D. Politzer [21] using
operator product expansion.

For continuity purposes, we use the following ansatz which is also
used by Castorina and Pi in their study of spontaneous x5SB with the carT

effective potential.

m for pzs_p



For gz(pz)

@ (p®)

where

22 (p?)

We first simplify (2.64) into a manageable form.
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(the coupling), we use our nonconfining form

= a Xz(pz)
(4.2)
4852

TIN-2n

1 p? < pcz
n (p_°_>
AZ

2 2
T 2P,

2
P
n (Az)

Using the definition

of J(p?) (2.67), we rewrite (2.64) as

(g::) -f d*p n(p2+J2(p?)) + [ d" —-—(B——— Y(p?) + const.
f p?+M2(p?)
(4.4)
Then using (3.3) and (3.6) gives
3C _(N) 2 X ® 2
Y(x) = f g (x) f ydy +S 9----(4":-?-ydy My) . (4.5)
1622 X o o y y+M2(y)
Define
M(x) = mB(x), (4.6)
Substituting (4.6) and (4.2‘) into (4.5) we find,
3C _(N) 2 x ®
J(x) = —F a...[" (x) § ydy +f A(y)dy| =B (4.7)
160 x o x y+m282(y)
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Substituting (4.7) into (4.4), one finds

7 o

4 2 ©
(27) V = —12 dx x &n (1 +Z_’((_x_)_)- 12j dx x &nx

2n -

f Jo o
(= mB (x)
+ w2 dx x —-—-:——-— 3(x) + const.
Jo x+m2B (x)

and finally we have

2 @ 2
-:.LV -j dx x &n (1+Z-%)
o

+

J dx x — B 1(x) (4.8)
o x+m2B2(x)

An irrelevant constant has been subtracted in (4.8). Using the defini-

tion of )(x) given by (4.7) we find
2 ® 3C.(N)a\?

v [Taem 51 (_L_) w x

"¢ o 1652

2 - X L 2
([—-—-A (x) j ydy +J‘ Az(y)dy:I. —Bly) }

x o X y+m2B2(y)
’ (xf(n) a ‘\’w dx x B(x) ( A2 (x) Jx ydy

1602 o x+m2B? (x) x o

f Az(y)dy] x B(; ) 4.9)
x y+m2BZ(y)

Then we make the following change of variables

+

+

y = A%y
(4.10)
X = Azx'
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and defining

m
T b
(&.11)
3Cf(N)
a = €9
16n2
We rewrite (4.9) as follows
2 o0 o0
8 vV _ _ j xdx ¢n F(x) + eo°b2j xdx G(x) (4.12)
Re A“ o o
where
2,052 [/,2 © 2
F(x) = (1 . 20 [(* (x) Jx ydy +J Az(y)dy> _Bly)
_ X X o X  y+b2BZ(y)
(4.13)
G(x) = B(x) I‘(A (x) ( ydy + ( Az(y)dy> —9—(!—2—-]
x+b?B2(x) Lx X -Jo J X y+b282(y)J
(4.14)

and we have replaced x' by x since it is a dummy index.
To start the numerical computation on (4.12) we make one more

change of variable

« = Jo0-t (4.16)

then (4.12) becomes

2 10 \
%E'L _ y ¢ 0-t) (eebzc("’tt) - m:(l‘—’%t-) ] (t.17)
£ A" 0 3
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Going through the same steps, the corresponding expression for Vegr is

2 V (f1o
8x caT (10-t) 2 (1o-c> (1o-c) 10-t
P - . -Eob G ——— - znl-l — ] Zy [ dt
0n, & P ( T t t

(4+.18)
“where
2
H(x) = (1 +%—-Bz(x)) (4.19)
2 Bz(x)
Y(x) = bp* —m——— (&4.20)
x+b2B2(x)

and G(x) is (4.14). Egs. (4.17) and (4.18) are the equations we solve
numerically.

There are integration ‘packages in the NAG library for solving one-
and multi-dimensional integrals. Our integrals are too complicated to
simply use the package for double integration. We have instead used a
double precision one-dimensional recursive application, which is always
recommended to check the accuracy of the other methods.

With (4.1) and (4.3) as ansatz for B(x) and gz(x) respectively, we
find that our effective potential V/A* is a function of m/A (=b) for
various values of the parameter pg/A (x = p2/A2). m is the renormali-
zation-point-independent vacuum expectation value <O’$¢|O> and plays the

role of an order parameter (as magnetization for a ferromagnetic

system).
From both equations (4.17) and (4.18) we see that M(pz) =0 is
always a solution corresponding to exact chiral symmetry (mg = 0). If

chiral symmetry is broken spontaneously, M(pz) no longer vanishes iden-

tically but is dynamically generated, the behaviour of which is given by

the regular solution.
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RESULTS

With Veppg, we find that for SUC(3)_ with three flavors (nf. = 3),
dynamical symmetry breaking occurs when pc/A < 1.7. For pC/A = 1.3,

a stable minimum occurs at m/A = 0.67. See Fig. (4.1).

0.01

0.00

-
<
Qo .
m b 4
> ~0.01- P, /A=1.o
~ .
%
-0.02 -
-Q.03 ] ] T T
0 1 2 A 3 4
m/A
Figure 4.1 Effective potential VCDDG for pc/A = 1.3, N = 3, ne = 3
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For pc/A = 1.687,~a stable minimum occurs at m/A = 0.05.

See Fig. (4.2).

T
o
oy 10.0
8.0
6.0-
-«
<
o
X 4.0- ,
~N
=
0
2.0-
0.0 ez ——-
—2.0 ] I |
: 0.00 0.05 0.10 0.15 0.20

m/A

Figure 4.2 Effective potential V for pc/A = 1.687, N = 3, n_ = 3.

CDDG f
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For po/A = 2, a stable minimum occurs at m/A = 0. In fact, for

all po/A > 1.7, m = 0 is always the global minimum. See Fig. (4.3);

b

| ®)]

= 10.0
8.0

«  6.0-

S

>

&

00 4.0
2.0+
0.0

0.00 0.10

Figure 4.3 Effective potential VCDDG for pc/A =2, N= 3, ne = 3.
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Using Vegr we refer the reader to the work done by Castorina and
Pi [16]. However, we show here the case for po/A = 1.3 in Fig. (4.4).

A stable minimum occurs at m/A = 0.55.
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0.00-

P
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\ -0.01‘*
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Figure 4.4 Effective potential V for pc/A = 1.3, N
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With Vcgr, dynamical symmetry breaking occurs when pc/A < 1.5,

while with VCDDG’

Before going further, we would like to comment on the successful

dynamical symmetry breaking occurs when pC/A <1.7.
comparisons using the same ansatz for both Vcar and Veppg. The

"qualitative results are the same and both are seen to be bounded below.

Casalbuoni, DeCurtis, Dominici and Gatto [11] had claimed that direct

0.1

0.0

-0.1-

-0.2

-0.34

8m*V/30A*

-004 7

""0.6 T ! !
0 0.5 1 1.5

m/A

b -

Figure 4.5 The effective potential when the solution of the SD equation

M(pz) is used for Z(pz) in the ﬂ,g(So1 + J(p)) term of VCDDG'

This case is for pc/A = 1.3, N =3 and ne = 3.
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comparisons, even for similar ansatz, are not easy to make. They
substituted the sblution of the SD equation M(p2) for Z(pz) into the

n (1 + ﬁ(—zﬁ) term in the effective poténtial and directly used their
ansatz for M(p?). Note that their Z(pz) is equivalent to M(p?) we are
"using here. We have shown that this form does not yield the SD equation
on minimization. Fig. (4.7) shows this form in the original CJT varia-
tion principle we are using.

The effective potential shows a maximum and is unbounded below. A
related effective potential is that which replaces all Z(pz) by M(p2),
ie., the effective potential for every value of m which is a solution of
the SD equation.

Note that at the stationary point

M(k?) 1
(%) = M(p?) = [ d*k A . (3.8)
Pok 12, M2(k2)  (pk)2
Substitute this into (2.64) and (2.66) to have

(2n)* - 4 Mz(pz)) - u M2(p?)

v = -»fdpln(1+———+fdp—-————— (4.21)
an CDDG p? p2+H2(p2)
@) < | 4 Mz(pz)) v M2(p?)

v =-fdp£n(1+——-—+fdp (4.22)
2ng CIt pz pzmz(pz)

Equations (4.21) and (4.22) are exactly the same. Fig. (4.8) shows V for
pe/h = 1.3, N =3, nf = 3. Notice that V is unbounded below. How-
ever, this does not rﬁean ‘there is an instability, V does not determine

the minimum. Minimization is carried out on V which is bounded below

and V is the value of V at the stationary point.
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Figure 4.6 Ef fective potential V for p /A = 1.3, N =3, n, = 3.
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4.2 SPONTANEOUS CHIRAL SYMMETRY BREAKING IN FIELD THEORIES WITH FIXED
COUPLING CONSTANT ‘ v

So far, we have seen that asymptotically free field theories allow
chiral symmetry breaking. The deeper question 15: ‘is it only in asymp-
totically free field theories that xSB occurs? In Chapter 3, end of
Section 3.1, we saw that the logarithmic dependence of g2(p?) and M(p?)
are features of asymptotic freedom as determined by the renormalization
group. We therefore suppress this logarithmic dependency in gz(pz) and
in M(p?) and carry out the numerical calculation again to see whether

chiral symmetry is still broken or not.

Recall that

€g
2
()
9cf(N)

11N-2nf

e(p?) =

I(N-1) N=n_ = 3.

€o {AN-2n )N £

So without the logarithmic dependence, the coupling e(pz) is a constant

€gs ie.

;- (without logarithmic dependence) .

ep?) = ¢ =
We now vary the value of €5 and see what happens to the effective poten-
tials.

We start with Veppe. Figures (4.7) and (4.8) show the cases when
gg = 0.01/9 and gy = 8/9. We find that m = 0 is always the global

minimum. We find, in general, that for any value of g; used, m = 0

remains the global minimum. This shows that with the modified effective
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potential Veppg chiral symmetry is never broken for non-asymptotically
free field theories. This paint is wofth noting because it emphasizes
the importance of logarithmic correctiohs in asymptotically free field
theories and seems to further justify the claim that only in asymptoti-
" cally free gauge theories chiral symmetry breaking occurs at reasonable

momentum scales.

2 g0

%

6.0~
<
8 p,/A=1.3
. 4.0+ £,=8/9
é?> o
[
00
2.0
0.0- T T 1
0.0 0.2 0.4 0.6 0.8

m/A

Figure 4.7 Effective potential Veppg for field theories with a

I
-—
w
=z
t
=]
H
w

fixed coupling constant: pc/A

80 = 8/9.
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If we replace Z(pz) by M(pz) in the zn(Sg1 + 3 (p)) term in VcDDG,
we obtain the same result. However, this has no physical significance
since the corresponding expression with‘logarithmickbehavior is not an

effective potential for xSB.

T
o
T 10.0

8.0-
< 6.0- /A=1.3
o Po/EEE
g £,=0.01/9
&
o 4-0-

2.0-

0.0 . . .

0.0 0.2 0.4 0.6 0.8

m/A
Figure 4.8 Effective potential Veppg for field theories with a
fixed coupling constant: pc/A = 1.3, N = ne = 3,

g = 0.01/9.




- 67 -

With Vegr for field theories with a coupling constant that does
not run, see Figures (4.9’ and (4.10), we find that for g5 < 2/3, m =0
is a stable minimum, indicating no chirai symmetry breaking. For g4 >
2/3, dynamical symmetry breaking occurs but a stable minimum does not

exist; the effective potential decreases monotonically as m increases

0 -
-5 -
f< -10 -
3
> —15 p,/A=1.3
°¥: 2,=8/9
® -20-
-25 -
=30 = T ! -
0.0 0.2 0.4 0.6 0.8

m/A

Figure 4.9 Effective potential Vpjr for field theories with a

fixed coupling constant: pc/A = 1.3, N = ne = 3,

50 = 8/9.
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from zero and is unbounded from below. This feature is not very pleas-

ing, since we know that only in asymptotically free field theories

chiral symmetry is broken. This is the first caution in using Vegt

because in both asymptotically free field theories and non-asymptotical-

"ly free field theories, chiral symmetry is broken except that in the one

case, namely non-asymptotically free field theories, a stable minimum

does not exist.

.
0.00 0.05

Figure 4.10 Effective potential Vot for field theories with a

fixed coupling constant:

eg = 0.01/9.
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A
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1
0.15

= 1.3, N

|
0.20
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REMARKS : The critical coupling e(ty) for chiral symmetry breaking
obtained by using the two approaches - éxplicit and spontaneous xSB - is

in good agreement. Recall

€9

E(tc) = T

c
for explicit xSB e(1.6) = 0.3
for spontaneous xSB €(1.06) = 0.4

In summary, we have in this chapter shown the effectiveness of
using a Raleigh-Ritz variational method in doing straightforward compu-
tatiens with any selfconsistent effective potential for chiral symmetry
breaking. We have also shown that with the modified effective potential
Veppe applied to theories where the coupling constant does not run,
there is no evidence for chiral symmetry breaking. While this result
has been speculated upon in the literature in the past, our calculations
demonstrate it using the effective potential scheme in a satisfactory
manner. As remarked earlier, this result is consistent, since in such
theories there is no dimensionful parameter to set the scale of chiral

symmetry breaking.
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CHAPTER 5

5.1 STABILITY OF CHIRAL SYMMETRY BREAKING SOLUTIONS

It was observed by R.W. Haymaker and J. Perez-Mercader [18] that
the chiral symmetry breaking solutions correspond to saddle-point
‘instabilities when the CJT effective potential is used. This was
formerly proved by Haymaker and Matsuki in 1986 [14]. Instability here
means that under small arbitrary variations, the symmetry breaking
solutions diverge from the stationary point. This feature can be seen
when one expands the effective potential about the stationary point.
The symmetry breaking solution is M(x) and an expansion of V about this

is as follows

(" v '
V[M+6M]\ = V[M] + 50 m&ﬁ(x)dx

1 (° s2v
+ -ijo dxdy SM(y) WGH(X) . (5.1)

The stationarity conditions 8V/8M(x) = O sets to zero the second term on

the right hand side giving

' 1 (~ §2v
VIM+sM] = VIM] + 5 go dxdy SM(y) L ILE SM(x) . (5.2)
Now the problem reduces to finding the eigenvalues of the second func-
tional derivative of V, because the second term can be positive,
negative or zero depending on the eigenvalues of the second functional
derivative. We call this term on the right hand side the expectation

value of the second functional derivative. If the expectation value is
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positive, then the symmetry breaking solutions are ;table. If the
expectation value is negative, the $ymmetry bfeaking solutions are
unstable. The expectation value can aiso be zero but we do not consider
this case here.

Any viable effective potential for xSB must exhibit this stability
requirement. In this chapter we study the stability of xSB solutions
using CDDG effective potential [25].

We start by taking the second functional derivative of Veppg

w.r.t M(p?). Recall equation (3.7).

(gx)“ NV | 22 _a2M@?) ~/ﬁduk Ak M(K2
Ne  sM(q?) (q2+M3(q2))2 (k)% KZM2(k2)
2 : 2 a2¢. .2
- 212fd'*p 1) w(pz,qz)qzj_‘i_(ﬂ_l_. (3.7)
p2+22(.02) (qz_'_MZ(qZ))Z

Now we take the second functional derivative

@2x)* 82y _ ) 7 q2 -M? (qz) N
te?n.  M(q?)sM(S?) sM(S2) (q2+M2(q2))?

‘)(;“k Aq k M(k2)
(q-k)%2  KZ+M2(x?)

) fd.,p 1% W(p2,q?) [ 8 (qz q?-M%(q?)
2 v2, 2 ’ 2 2.42¢.2\12
P +)°(p?) EM(S%) (q*+M%(q%))
. ¢ ?-M2(q?) 5 \/fhuk gk M(k2)
(q2+#%(q?))? | eM(s?) (qk)2 K2M2(k2)

o [—s fd..p___zgﬁ)__ vol.)| @ LMD
sM(S2) p2+32 (p?) - (q%#M2(q?))?

(5.3)
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Since we need the solution at ) = M, the first two terms cancel and we

have
2 §2v - o2 qz—Mz(q?) [j/;uk Ag,k "
Mt sM(q?)sM(S?) (q2M%(q?))? (q-k)?
K2-M202) ) 5242y
, (kM2 (k) )2
2 2 42,2 2

_fd'p : 2, 2222(p : 2)w(p2’q2)q2 ;1-'2' (3#)2 Gﬂpz)

pP2+120%) (%1262 (q2M2(q%))2 aM(s?)

(5.4)

Making use of equations (2.2) to (2.6) gives

1-M2(52) /52

' 82V - o2 1-Mz(q2)/q2 w(q2,5%)
"¢ sM(q%)sM(S?) (14M2(q2)/q?)2 (14M2(52)/52)2
2 2 2,2 2
- ot /dpz 1-"2((12)/4122 %(q2,p?) 1-22(p2)/p22 x
(14M<(q°)/q°) (1+1“(p*) /p*)
1-M (s2)/s?
w(p?,s?)
T (1M (sY)/s?)?
and setting | = M gives (in operator language)
, |
L Y - n(g®)[Wa?,s?) - B(a?,s)]D(s?) (5.5)
N sM(q2)sM(s?)
where |
2 2
D(q?) = 1‘"25‘2)/“52 (5.6)
(1#M°(q“)/q°)
B(a?,s?) = «° [dp? W(qZ,p?)D(p?IW(p?,s%) . (5.7)
Letting q2 = X, $? = Y, p2 = z, gives
N = D(x)[W(x,y) - B(x,y)]D(y) (5.8)
A SHOOSMyy - DOLWLGy) - BUx,y) Bly )

f
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Then using the identity
W(x,y)D(y) = %2 [ dz &(z-y)W(x,z)D(z) (5.9)

we rewrite (5.5) as

A = D(x)[[dz 8(z-y)W(x,z)D(z) - [dz W(x,z)D(z)W(z,y)D(y)]
= [dz D(x)W(x,z)D(z)[8(z-y)-W(z,y)D(y)] (5.10)
2
. &V X (5.11)
tznf SM(x) 8M(y)

An expansion of the effective potential about a stationary point gives

(5.2)

~ 1 (~ §2v
V[M+5M] b V[M] + EJ‘O dxdy 6M(y) m GM(X) . (5.2)

Using matrix notation and (5.11) in (5.2) gives

vne
VIM+M] = VIM] + —— &M (DWD-DWDWD)&M
“ne
VIM+sM] = VIM] + —— &M [DWD(I-WD)]sM (5.12)

where the superscript T on 8M stands for transpose of matrix. The

reduced eigenvalue problem

(I-\VD)q;i = Aiqpi (5.13)

has been shown by Haymaker and Matsuki [14] to give correct stability

information.
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Equation (5.13) expressed in terms of t variables using (2.15) and

¥(x) = 7x ¢(x) ' (5.14)
gives
» t
#(t) - e(t)e /2 f ds e>*/2 D(s)¢(s)
- e""/2 JA ds e(s) eS/2 D(s)¢(s) = Are(t) (5.15)
t
where A here stands for eigenvalue, and
2
D(t) = —= (&) (5.16)
(14¢%(t))?

1
C(x) has its usual meaning (C(x) = — M(x)). Equation (5.15) is con-
/X
verted into a differential equation and then solved for the possible
eigenvalues.

The orthogonality condition for eigenfunctions is calculated as

follows: using (5.13)

[dy[8(x-y) - W(x,y)D(y)]#m(y) Xm¢m(x) (5.17)

[dx[8 (x-y) - W(y,x)D(x)]¢n(x)

ann(X) “ (5.18)

Multiply (5.17) by ¥p(x)D(x)W(x,y)D(y) and integrate over x; multiply

(5.18) by ¥u(y)D(y)W(y,x)D(x) and integrate over y to have

[ dxdy #n(g)D(x)W(x,y)D(y)[6(x—y)—W(x,y)D(y)]¢m(y)

= A [dxdy i.n(x)n(x)W(x,y)n(y)q,m(y) (5.19a)

[ dxdy wm(y)D(y)W(y,x)D(x)[6(x—y)-W(y,x)D(x)]¢n(x)
= xnfdxdy wm(y)D(y)W(y,x)D(x)wn(x) (5.19b)



- 75 -

Subtract (5.19) from (5.18) to get

(xm-xn) [ dxdy ¥ (D)W, YIB(Y) b (y) = O

[ dxdy wn(x)D(x)W(x,y)D(y)wm(y) = Gmn (5.20)

(5.20) is the orthogonality integral for eigenfunctions.

Using (5.15) and (5.20) Haymaker and Matsuki found eigenvalues
which are classified into two parts depending on the regions only in
which the eigenvalues oscillate - infrared or ultraviolet region. The
point which separates them is given by a vanishing point of the function

D(x). The eigenvalues are tabulated as follows.

TABLE (5.1)

Mmber of Modes A (Infrared Region)

e o 8 e N O
N
(=]
v

Number of Nodes A, (Ultraviolet Region)

. °

O = N
ee

~

[+

(Cf. Haymaker and Matsuki [14].)
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Notice that eigenvalues with peaks in the infré:ed region are greater
than unity, and those with peaks in Ehe ultraviolet region are less than
unity. The spectrum of eigenvalues aone is for the paramefer tc = 0.3.

With the table above, we now go ahead and calculate the expectation
" value of the 2nd functional derivative of Veppg w.r.t M.

Expanding §M(x) as

SM(x) = a ¥ (x) . (5.21)
n n
We recall that the second term on the r.h.s. of equation (5.2) is

2
11 axdy sm(y) m—‘;-)‘ng sM(x) (5.22)

Eq. (5.22) is the expectation value of the curvature matrix which we
have said may be negative, positive or zero depending on the eigenvalues
of the 2nd functional derivative of Vcppg already given in Table

(5.1). The expectation value A is

X = [ dxdy sM(y) A SM(x) ‘ (5.23)
T o= =% [ dxdy 6 M(y) =S GM(x) (5.24)
- 'Z“f . Y) sM(y) sM(x) :

where we have used (5.11). Again using (5.8) and (5.21) in (5.24) gives

KX = [ dxdydz } a ¢-(x)[D(x)W(x,z)(G(Z-y)-W(Z,y)D(y))]an¢n(y)

m,n

Use (5.17) to have

A = [ dxdz min a tm(x)D(x)\V(x,z)D(z)anbn(Z)an
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and finally, using (5.20) the orthogonality condition, we find

=3 a2a (5.25)
n

The analogous expression for X using Vegr is [14]

Rogr = J dxdy mzn a ¢m(x)o(x)[a(x-y)-W(x,y)D(y)]anwn(y)
(5.26)
using (5.17) to have
AN = [dx amwm(x) D(x)wn(x)anxn (5.27)

m,n

Before using the orthogonality condition (5.20), notice from (5.26) and

(5.27) that

[ dxdy amtm(x) D(x)[6(x—y)-W(x,y)D(y)]anwn(y)
= A [ dx a ¥ (x)D(x)a ¥ (x)
giving
[ ax ¥ _(x) D(x)[1-xn]¢n(x) = [ dxdy ¥_(x) D(x)W(x,y)D(y) ¥ (¥)

[ dx #m(x) D(x)wn(x) = 'T%:; [ dxdy #m(x) D(x)W(x,y)D(y) wn(y)

[ dx ¥ () DY () = 756 - (5.28)
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~Then, substituting (5.28) into (5.27), we find

Iy =) a? — (5.29)
n

Expressed in this way, X and XbJT are obviously different from each

other in the following ways.

1. In the infrared region (Table 5.1) all eigenvalues are larger than
unity. X is positive while AggT is negative, implying that with
VegT the symmetry breaking solutions are unstable saddle points.

X is positive and hence the symmetry breaking solutions are stable.

2. In the ultraviolet region all eigenvalues aré less than unity (Table
5.1). Here both & and Re3T are positive and hence the solutions
are stable.
We emphasize here that it is in the infrared region that one looks
for chiral symmetry breaking and therefore‘the saddle point insta-
bility associated with Vegjr makes it not quite satisfactory as an

effective potential for dynamical chiral symmetry breaking.

A new effective potential which includes auxiliary fields has been

formulated by F. Cooper, T. Matsuki and R. Haymaker [19], which is

bounded below and gives stable chiral symmetry breaking solutions.
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CHAPTER 6

CONCLUSIONS

In this work, we have exhaustively studied chiral symmetry breaking
in QCD like theories.

The study was motivated in the introduction by observing that any
viable theory of the strdng interactions must undergo at least two phase
transitions so that the physical world resulting from the QCD Lagrangian
is non-perturbqtive. The phases are the confinement and PCAC phases.
The PCAC phase transition is associated with xSB and most of the low
energy phenomenology of the hadronic spectrum has been understood to a
degree through PCAC.

The effective pqtential for composite operators due to Cornwall,
Jackiw and Tomboulis was used. However, since the original form of the
effective potential due to CJIT has been shown to give unstable xSB solu-
tions, we have used the modified form of Vpg7 due to CDDG. We have
shown [25] that Veppg gives chiral symmetry breaking solutions which
are stable, the proof of which forms the contents of Chapter 5.

In Chapter %, we used Veppg self-consistently in the Raleigh-Ritz
scheme to study spontaneous xSB. Here a solution which tends to the:
regular solution of the SD equation in the asymptotic¢ limit was used as
a variational ansatz in Veppg. The vacuum expectation value of the
fermion billinear was estimated. This treatment also highlighted the
success of using a Raleigh-Ritz scheme in studying spontaneous xSB with

Vepbgs contrary to the claim by CDDG that this was not possible.
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We also studied, in éhapter 4, spontaneous xSB for field theories
with a fixed coupling constant using Veppg. While it has been shown
by Castorina and Pi that with Vcgrt chirél symmetry is broken spontane-
ously for values of the constant coupling constant e(tc) > 2/3, we found
" that for all values of e(t;) the minimum of Veppg occurs at m = 0,
indicating chiral symmetry is not broken. This feature is consistent
with the claim that only asymptotically free field theories allow ¥xSB
and, emphasizes the importance of logarithmic behavior (which is the
hallmark of asymptotic freedom) in dynamical xSB.

In Chapter 3, we studied explicit xSB in a very general way using
the irregular soiution of the SD equation; this agrees with recent work
by Haymaker and Matsuki. The concept of constituent quark mass and
current quark mass was exploited to estimate the constituent quark
masses of the light quarks. The value of the critical coupling e(t.)
for phase trénsition to take place, ie., from the chiral-symmetric phase
to the spontaneously-broken phase, agrees very well in both schemes -
explicit xSB and the variational approach. |

And finally, an Appendix is included for calculating the discon-
tinuity condition encountered in solving the SD nonlinear differential

equation.
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APPENDIX A

Given the coupling constant in the form we have used it

t+t th
C
E(t) = (A01)
€0
T t_(_O
C

one finds that e(t) is continuous at t = O but the derivative e(t) is
not, which makes the second derivative e(t) a delta function. As a
consequence C(t) has the same property.

We rewrite (A.1) as

]

Eo e ’ .
— 0(-t) + a(t) (A.2)

e(t) = g trt
C C
© 80
e(t) = - a(t) (A.3)
(t+t )2
C
oo 280 €g
e(t) = ———o(t) - s(t) , (A.4)
(t+t )’ (t+t,)?

where we have used the fact that the derivative of a step function is a
delta function. 8(t) is the step function whose integral representation

is

=1 t>0} 1 [ e-in(t)
o(t) = = lim = j‘ - ) . (A.5)
0 <0 §+0 ( 2xi . w+id

To calculate the discontinuity of C(t), we integrate the differential

equation from (0-8) to (0+8) where 8§ is a small positive number and
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then let § go to zero.

045 0+6 e -
Lim dt[E()+28(1) + 2 C(B)] - Lim g (EL=E®)
§>0-0-6 &0 0-8 e(t)-e(t)

048 |
x (-;-c(mé(t)) = lim I dt<é(t)-s(t))_£_(£L
§+0 / 0-5 1+¢2(t)
(A.5)

We do term by term integration of (A.5).

0+5 .
lim dt &(t) = 1lim  [8(0+8)-£(0-8)] = [&(0+)-¢(0-)]
§+07 0-6 50
(A.6)
0+5
Lim J dt &(t) = lim  [C(0+6)-C(0-8)] = ©
§+0J 0-§ &0

because C(0+) = C(0-), ie. C(t) is continuous.

046

1im J dt C(t) = O
§+0Y 0-6

because C(t) is analytic. The third term of (A.5) becomes

045
-1lim j - dt (-E(t)+6(t)) L£© .
5+0J 0-6 1+C2(¢t)

Split the integration region into two to have

0 .
= -lim dt i—“ + So_ o(t) £®) + 0(8)
5+0J 0-5 t 2

048
-lim def—0 . 20 a)) - 4 o)
14¢2%(¢)
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where we have used (A.2) and (A.3). Then use the definition of the unit

step function 8(t) to give

0 € 0+6 € B - c(t
= 1lim f dt .E_"_._E_;_P_)_ + y dt (t+(t): + 9 2\ (2) >0
§+0 0-6 ¢ 14C4(t) 0 ¢ (t+t )}1+c (t)

The second term of (A.5) becomes

0+ /.. .
-lim (e_(ti-_e_(zl) (%C(t) + é(t))

§+0Y 0-6§ e(t)-e(t)
0+8 "
= =1lim dt _.___8_(_!5_)___ (% C(t) + é(t9 + 0(8)
§+0Y 0-§ e(t)-e(t)
04§ ° '
+ lim f ac =) (% c(e) +é(t)) + 08) .
5+0Y 0-§ e(t)-e(t)

€9

s(t)
046 (t+t )2 1 \
= + lim S dt € (-Z-C(t) +é(t)> + 0(8)
§+0 J 0-§ e(t)-e(t) .
280
045 o (e )? 1
- lim j dt —— (2 c(t) +é(t)) + 0(8)
§0 7 0 -
(l:+t:c)2 t:+t:c
048 (t+t )3 1
+ lim j dt = c 5 (2- C(t) + (‘.(tj>+ 0(s)
0 J 0 -

(t+tc)2 Gt
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The last two terms vanish because of the analyticity of C(t) and ¢(t) in
that integration range. The first term integrates out easily because of

the delta function giving

€9 1
tcz £(0)-€(0)

(% c(0) + 6(0)) . (A.7)

We are left with only (A.6) and (A.7) from integration of (A.5) viz.

o . €9 1 1 .
C(0+) - C(0-) = - [é-C(O) + C(O{] . (A.8)

tcz £(0)-€(0)

But 6(0) is not continuous because £(t) is discontinuous and we must

define these as

£ = y[EOn 420 = -1 2 (A.9)
(t+tc)2
&0) = %[é(on + 60)] . | (A.10)
Substitute (A.10) into (A.B) to have
&0+) - &0-) = - 2 1 [C(0) + &(0+) + &(0-)]
- 2t 2 €(0)-<(0)
C

é(0+)[Zti::(O)—Ztie(Oheo] - €(0-)[2t2e(0)-2t2¢(0)-¢q] + £,C(0) = O

(A.11)

Finally substitute (A.9) into (A.11) (ie. €(0)) to have
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C(0+) - C(0-) [1-+ 1} 1 c0) = o

t T2t

C C
C = 1] &0-) + 5—c(0) A.12)
C(0+) = + tc ~) + Ztc (A.

This is the discontinuity condition.
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