- National Library
of Canada

i

du Canada
Canadian: Theseé Service

Ottawa, Canada
K1A ON4

" CANADIAN THESES

NOTICE

The quality of this microfiche is heavily dependent upon the
quality of the orugmal thesis submitted for microfilming. Every

effort has been made to ensure the hlghest quality of reproduc-

tion- possnble . ‘.

+ el

If pages are missing, contact the university which granted the
degree. .

- Some pages may have indistinct print especially if the original

@wera typed with a poor typewriter ribbon or |f the univer- -

sity senf'us an inferior photocopy

r

Previously ’éopyrighted materials (journal articles, published
.tests, etc.) are not filmed.

Reproduction in full or in pafrt of this film is governed by theﬂ

Canadian Copyright-Act, R.S.C. 1970, c. C-30.

THIS DISSERTATION
.HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL~339(r.86/06)

—

Bibliothéque naiionale

Services des théses canadiennes - , S T

AVIS

La qualité de cette microfi chn dépenc grandement dela qualité ™

" de la thése soumise au miciaiiimage. Nous-avons tout fait pour

assurer une qualité supérieure de reproduction.
- \\

S'il manque des vages, veuijletoommljniquér avec l'univer-

sité qui a conféré le grade.

La -qualité d'impression de certaines pages peut laisser &
- désirer; surtout si les pages originales ont été dactylographiées
a l'aide d'un ruban usé ou si I'université nogs a fait parvemr
une photocopie de qualité inférieure. ~ .

Les documents qui font déja I'objet d'un droit d'auteur (articles
de revue, examens publiés, etc.) ne sont pas microfilmés.

" La reproguction, méme partielie, de ce microfiim est soumise

A la Loi canadienne sur le droit d*auteur, SRC 1970, c. C-30.

LA THESE AETE
MICROFILMEE TELLE QUE
NOUS L'AVONS REGUE . -

-~ Canadd

RIS N »~ . ‘)
// L . » i

—~ | ,
‘" EVALUATION OF SOME DISTRIBUTED FUNCTION ARCHITECTURES FOR ARRAY
| PROCESSING DATA MANIPULATION * -
- - -~ . ;j
R | -
by

PR
, .

- - 1 T : o

: -John Jonas Gudaitis

B. Sc., Uhiversity of Missouri zt Rolla, 1975.

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF -~
- THE REQUiREMENTS FOR THE DEGREE OF |
MASTER:OF SCIENCE
in the Departmerit
of

Computing Science

.

C Y) L. N A . .)
. Ajfﬁi~);§9 John Jonas Gudaitis 1985 B B

SIMON FR5SER UNIVERSITY e
July, 1985 o~ ' . .
' All rights reserved. This work may Tot bBe~\

reproduced in whole or in part, by photocopy \
or other means, without permission of the authog.

-
“

.neither .

iy
o

Permission has been gyganted
to the National Library o
Canada to micrgﬁ)&ﬁr
thesis and to 1&énd: or sel
copies of the film.
' \

) T
The author (copyright owner&\
has reserved other
publication rights, and
the thesis nor
extensive extracts from it
may be printed or otherwise

reproduced without
written

T » ~ ISBN

his/her
permission.

L'autorisation a &té@& Ebcordée
nationale.
microfilmer
cette "the&se et de préter' ou.

a2 la Biblioth&que
du <Canada de .

de vendre des exemplalres du
film.

L'auteur
d'auteur) se
autres droits de publication;

ni la th&se ni de 1longs
extraits de <celle~-ci ne
doivent @tre 1mpr1més ou

autrement-reproduits sans son

autogxisation @&crite.

6-315-3¢711-0

(titulaire du droit:
ré&serve les-

- ,APPROVAL

- Name: John Gudaitis ‘ g

Degree: Master of Science.

Title of thesis: Evaluation of Some Distributed Function
Architectures for Array Processing Data

Man1pu1at10n

Examinihg Committee:

Chairperson: ‘Thomas K. Poiker

Richard F. Hobson
Senior Supervisor

Brian V. Funt

Louisg J. Hafer

‘Hassan K. Reghbati

External Examiner

Assistant Professor

Department of Computing Science
" Simon Fraser University

Date Approved: 3 duly 1985

ii s

P N . . ¥ {‘ . J
. ’ o) . /
i

PARTIAL COPYRIGHT LICENSE

| hereby grant Td Simon f?aser»Unlvérslfy ;he right fdrlend'j/
my fhe5|s, proJect orgaxTended essay (the title of which’/s_shown below)
to users of the Simon ‘Fraser University Library, and to make partial or
single copies only for such users or in‘response to a reQUesf from the.
. library of any other university, or other eduéafldnal lns%ifuflon, on -
~its own behalf or for ome ot Tts users. | further agrée that permissionn
for multiple c0p¥}ﬁg of this work for QCho1ar|y purposes may be granted
by me or The_Ded% of .Graduate Studies. It is understood that copying
or publlqaf}og,of this work-for financial gain shall not be allowed

without my written permission. ~~ | ,

Title of THésus/PrOJecT/ExTended Essay

EM# Sm ,QM Fﬂ-zg&a_

\

Author:
(signature)

dohn To nas Cudarts

(name)

Aoyt |2, 1785

(date) -

-

~and a SUN workstation.

ABSTRACT
Parallelism has been used‘extensively'in‘supercomputer
systems to improve performance but has had limited application

in m1crocomputers. A structured ‘architecture machlne (SAM) was

designed for use as a hlgh performance engineering workstation.

It has a distributed function architecture that allows modular

‘extensibility to increase performance. SAM uses indirect

high-level language executionkto give‘gcod performance while

prov1d1ng the user fr1end1y interface associated with
interpretive systems This thesms 1nvest1gates data manlﬁulafion
strategy for SAM architectures through simulated execut;ou/of
array processing benchmarks. Attached slave processors~pro§ided
the simplest method fcr cptimizing system performance.
Maintaining good firmware structure without per formance
degradation regquires assistance*from special hardware to support
control constructs and device interfacing. Performance of

benchmark execution on SAM is more than an order of magnitude.

better than execution of compiled C versions running on a VAX750

iii

TABLE OF CONTENTS |
Approval,..;..;...,.;.;1..‘,....;..............ii
Abstract5..........,}.....f........};.;..};..;iii
List of Tibles‘:.L;.:.;....;.;....;....................;......vi
List'bf'Figuresi;....;...;...;.................,....vii
1. INTRODUCTIONf............;}..;..............................1
. 1 ngh Level Language SUppOrtceecceeecscscncasl

1.2.1 Increasing Performance of Instruction Set
Execution‘l.....'...........I....l..‘..l.

~

6
Y l",'rjl 1.3\\’Structured Architecture'.‘..'..ll........."'.'..g

1.4 OverView Of TheSiS'........i..‘..._.......ll'11
/,

1.4.1 Thesis Goals ® & /’\ l...l.....-.11

...\‘II....:./'...
1-402‘ MethOds l..‘l'.l...‘.‘...'l.l.I.vll.'..ill'l..12

1.4.3 Organization of Thesiscovvvvvernneesal3

N

1'4'4Assumptibns '.-..Il."‘..l..l............Il.l137

2. SYSTEM MODELS AND EXPECTED PERFORMANCE ,...cce0e0ssesosossesslbd

2.1 Ber]cl.‘ln]arks-'.'.......I'.’.l..l.l'.l..‘000000000000'0_16l

2.2 System 1 Performancecceoeoeeeeeeesacssscssasaell

2.3 System 2 Performance 41

2.4 System 3 PerfOrmanceeeeeeeecesssocascsosnsees23

3. SAM 005 o.!o....0.'..o‘o.lo0..-‘....0‘.000000200.....'..0.....25»

3.1 system 1 .'..."...................‘.........'......28
3.1.1 Microprogram Structureceeeeesececss..28
3.1 .2 Memory streaming .'....‘. *® & o o ¢ 0 & 0 ..»'... e & & ..33

3.1.3 Analysis of results ...I....................38

iv

1.2 Instruction Set Performanceff\\'

/,r N
R

4

3,2 System 2 ..

3.2.1 System

[

o]
&

.......................l........'...I..42

\performance ;........‘...‘.....’V......és

3.2.2 Analysis ' .

3.3 System 3'.ooooao.oo.ocoooogo‘pc:o---coooooo‘o-o.ooqso

3.4 Gloésqry of SAMjr Microprogramming Terms53

4. SAM1¢0 e o 00 0 00 0 00

4.1 System 1

4.2 SyStem 2

4.2.1 SFU interfacing ..

- 4.3 Potential Arithmetic Processors

: \
4.4 System3 oooooc-o.»-.‘o‘o>

Ll

4.5 Summary of Performance

4.6 Space -;?ime Tradeoffs_.

4.7 Glossary of SAMjr Microprogramming, Terms

5. SUMMARY 'AND CONCLUSIONS v evevecennceoeeass

5.1 Scalar vs Vector Processing ..

5.2 Comparison of SAM .5 and SaM 1.0.

5.3 Cbmparison with other systems

C......"‘.........ISG

.....67
ic

o,..-..nol,.lool\braoeg

4.3.1 Multiple APU Algorithms cecesnns

. e . a0 .
. CEE I Y LI I)
------- L) .

5.4 Memory Streaming ..ceeeeccescconcoas e scenone vesessd2

5.5 Separate Arithmetic,Procéssors

5.6 Firmware structure

5.7 Dynamic size data ...

5.8 Conclusicns

5.8.1 Future Research

s

-

Bibliography .veecee.

* oo

Y

j
.-nooo,ﬁoo-
. [. [

* o .l. ‘.97
-
e & 9 0 102

3

By . ’ RN
L1 ST' F TABLES: : o \/ :
{ N

TABLE 7 o o . 'PAGE
4 —‘1‘. SAM’}1 Performance;..l..‘....'......’............. 80 '
5 - .1 Benchmark Performance COMPAariSOnceeocessscecsssss 90

B - /_\J .
5 - 2 FRI for Selected Computer SyStemsSc.csiveeeesscsoses 91

A —
x - -

vi

v

i |

FIGURE

: .

NN

w w

w

1
1

2

10
11

12

13

" LIST OF FIGURES '

PAGE

Instruction execution ,.....cccveieieineriiiiiiiiinnes 7
Algorithms for Matrix MUltiply seeeeecessocsnsaceccees 17
Minimal SAM System;.;...,............:;...:;;..f. 18
System 2 - AUXillary SFUS ...vvevecscsorosssociscssess 20
Overlapping data fetch with action Cerereereeeeenaaass 21
Effect of Buffering on Timing t...;................... 22
System 3: Independent APUccetenvneenncennnnene. 24
SAMjr-Schematic‘,;........;..,.:.........;;........... 257
Micros MK16 SChemMatiC +veeseeseecennenncnsonnssosneeee 25
DMU inStruction eXECULION .ueeeeee.eeseaseeenenannases 28

General Vector Control Microprogram and Support
Functions ...Il.l‘.l.I..QI....-.I'l.li.l.l'.llll...... 30

Size Specific Dyadic Vector control Microprogram,.ﬂ.,. 32
Dyadic Vector Loop with Memory Streaming A VI

Size Specific Dot Product Control Microprogram -
u51ng Algori‘thm (a) l.l.l...l......‘,I............. 36

‘Size~Spécific Dot Product Control Microprogram

using Algorithm (b) ..l.....l.'.......C..-.....I.l. 37
Workload Distribution of Vector Add P
Workload Distribution of Benchmark 2cceeceeeeeess 40

System 2 Configurations;.......;..... 43

Size Specific Vector Multiply Microprogram 44

Overlapped Vector Multiply Microprogram for
Structure (a)ll......I...I...Q........l.‘47

es
-

vii \

W W W

o>

N T N

S

14

=

,/
o

SYStem3ArCh1tectU1'e oooooooo/odfw/’./o’zio-ooo.oo.oooo..o 51

15 General Vector actron Mlcroprogqam for System 3 .vue.. 51

16 Overlapped Vector act;on Mlcroprogram - ¥4

1

2

10

11

- 12

13

SJ16~M1croarch1tecture ..;........,....LLi...........; 57
. j

S \ e

New SAMjr Architecture ceceessessiecssisssastiasaseaeeass 59
SJ16 Vector'Confrol/Loop for 16 bit ﬁatafzﬂa.........u
Dot Product Microprégram,......................f
Spec1a1 Matrlx Multlply Microprogrameceeceecoess
Decode Flrmware Structure;....L...... 65
Spec1a{ﬂYect/f Integer Add Microprogrameceeeeee.. 66

Multlple fast chip control,...:.; 72

Multlple slow chip CONETOL veruenveoennennonasnsanenss 13

APU weltek Chlp Set Control ...;........'...l.........l 74.

DMU and APU timing dlagram for vector inner o
product ® & 6 & 0 O & 0 &6 0 5 5 06 06 & 0 O 0 PO s S O O 0 0o N OSSOSO BT S BB P 75

DMU control code for 16 bit vector dyadic actions

USing Case .-.-....0.0..0'0'....1’.‘-.,...-.-ooooorlouoo 76

R 7
= /

SAM system hierarchyciieiieiiieiiiaiennneas. 79

Functional Distribution of Benchmark 1 using
Scalar Processing ...l.l‘l..........;;...l....l.... 87

Comparison of SAM 0.5 and SAM 1.0 coveeieseeenenssas.. B8

A

viii

14

——

Ccmerer1
k) . &)

E

INTRODUCTION

This thesis e?plores some aspects of the perfgtmance of a
VSEructured architecture machine developéd for the interpretation
'o;ihigh-level languages (HLL). It is hoped that the results will
help dispel some myths associated with interpretive HLL computer
syétems and thus allow such systems to become more popular. This
thesis will examine some‘strategieé to improve-data manipulationrl
performance, borrowing ideas used in supercomputer systems ana
applying them to-a microcomputer system. A brief introduction to
past efforts in these areas foilo&s.>Section 1.1‘review;.efforts
in HLL snppgrt>\IQe}performance‘of instruction séts is then .
discusse§/{n‘secti;ﬁ1.2. Section 1.3 discussés the use ofk

structu?ed architecture to design cost effective systems.

Finally, an overview of the thesis is given in section 1.4.
I '

» T~

1.1 High-Pevel ﬁénguage Support
. —“'“/ .
HLL shpport has been a subject of investigation ever since
’the days of the first computer, with many researchers attempting

to reduce the semantic gap between high-level language concepts‘

'x\and the underlying computer architecture that actually supports’

these concepts. Reviews of this research can be found in [12] -

r

W

~ v

andr[72] Chu[13] categorized computer systﬁms architecture

'waccording to the- proximitygof theAHLL seen- by thgéuser toethe

& +

machine language actually executed w
‘Type ‘1, von Neumann, is used in moetrcommercial computer
systems. It is characterized by a low level register- or1ented
1nstruction set, generally requiring a complex«compilat;on B
process to convert a HLL program into mach;neﬁianguage code.
Complex 1nstruction sets 5uch as that of the VAX- 11[21] provide
some instructions orieﬁxed toward HLLs but are too 11m1ted to
have much effect on reduction»of the semantic gap. This type of
architecture hae heen criticized by Backué&ﬁ] and Chu and
Abrams{16] for"- contributing to the so called "software" cr151s
They believe thac the tedious design - edrt - compile - load —‘

t

run - deb process 1owers programmer productivity. Efficiency
consideraf%iis hage influenced the design.of HLLs to be
supported by compilation. Very high level languages (VHLLs),
such as APLY Lisp, Prolog,'NIAL thatJFUpport program velopment

at a high level of data abstraction,raYE'usually interpreted by

software on this type of architecture. Th1s extra layer of

=

software causes the perceived inefficiency of language

interpretation. =,

‘Type 2 architectures raise thevlegel of the'machine
language by éupporting interpretation ®f syntax-oriented
intermediate code. While this redgcesfthe semantic gap, it does
not reduce the necessity for large subroutine libraries or

improve the software development process.=Borroughs B5500 is an

vexampie of this architecturefsupportinggalgol.

'Type 3;arohitectures are the indirect execution type
exemplifiedby;the Symbol system [64].'The main improvements
over type 2 are a hardware translator and an improvement inAy
proximity for the intermediate polish string language.

. Type 4 is the direct execution architectﬁre studied by,ChU,>
Bioom and others. There is no intermediate language -so
therefore no semantic gap.-All .user software and system programs

are. written %in the HLL. ' “g

\v‘

Dietzel and Patterson [20] have suggested a High-level
language computer system as a possibility for a more:productive‘

environment for software development: Their definition conhcerns
only the interface presented t?’the user, Sso that type one
systems are. included ‘if the operating system insulates the user
“from the lower layers of software, This could .include ROM based“
BASIC microcomputer sysﬁems.‘Although this concept can be

SUpported with compilation, an interpretive high-level language

system offers benefits especially for VHLLSs.
Lo .

1.2 Instruction Set Performance
' The iustruction set selected (userarchitecturei‘affects'

the software development process, but performance also

determines user acceptance. The user architecture must allow

efficient implementation. Compilation may not achieve this goal

- for applicationsrwhere'source code is changed frequently. .

¢ L

Flynn_and Hoevei [31] have péinted ;ut-the inefficiencies
of the coﬁpilation'approach on conventional machines. fhey-
derived a directly executable language (DEL)‘that reduced the “‘.¥7>
semantic gap and therebylfed?ced.the size of the interqédiate |
code. This should impfove~perfbrmance~by-reducing the;number of
instruction fetches, exécutes, and)meméry refqrencés. Their DEL
featured a tranéformationally complete instruction.sef which |
they felt would simplify compi}ation. They also showea 5ow to
design an efficient system to interpret arDEi.'Whilé:their |
research showed significanghimprovement over other comﬁléx
instruction sets, other methods have produced better run time
performance. Reduced insfruction set compu#ers (RISCs), for
examplé, seem to give better‘éerformance, at least:.for some
HLLs[74]. | |

Somé recently designed compute} systemsAuse statistigal
methods for instruction set design [36,75,68). The most
frequently used operations in a HLL are given a corresponding
machine instruction. Instruction set usage obeys the 20-80 fule b
[97], so only a small subset~o§ a language needs to be‘
implemented efficiently to get good performance. Actually, the
main factors in scalar block-st:ucﬁured HLL performance have‘
been found to be proceduré,call and variable binding[57l76].

Thus the fast overlapped register banks og RISC méy be largely
responsible for its.good performance(35]. | . ——

Thurber[89] notes a lack of support for HLL data structures

in computer architectures. An example of data structure support

-

*

is vector processing. One-approach to préviding support for
~arithmetic operéfidns on afrajs has been to uéé vectorizing
compilers ruhning on supercompute}s. While this hag had some :
Succegs in improving performance, it fdrées users ¢o ﬁfite more
complex‘loﬁ level code. Such'a progrémmiﬁg envirgy ment';equires
control coding at a level léwer than that ofrthé machine
hardware and has'beenvshown‘to provide less than full .
‘pefforman:e [22]. Language’extenéions are more useful bUt<
usualiy limited in the data mapipﬁlations allowéd. It has been
notéd that supercgmputer development has'spawnedanovel'high
performance,hardware but has not contributed ¢ advances in

software . [19]. Hardware improvements will be more effectlve when
they are transparent ‘to the user. VHLLs with full. support for
‘vector proce551ng should offF; a better environment forkprogram
development and an ppportuni%y for performance improvement
through language directed design. —

Chu [14,15] promotes the advantages of a direct executlon
compute;, espec1a11y 1ts conCeptual simplicity. This
architecture has been criticized fpr poor performance\[44,57].
Hardware interpretation can ?Qgr%ve this problem, but thié
architecture still suffers fro }edundant syntax’an§lysis, which
adds unneceséary hardware costs to the system. With énough
hardware support, such a system may b? qompetitive with other e
methods in run time performance. HoWevér; indireqt execution c;n;
provide a user interface imdistinguishahle from direct execution

but with lesser hardware requ{temenfs and reduced redundant

processing. Hobson[40] has extended the ﬁEL approach to
interpreted languages; He has derived a directly interpretabie
languaﬁg (DIL) with a one, to one correspondence to source ~
operatlons that permlts recovery of the source. Thus only one

copy of a program need be maintained with obvious benefits when

programs are modified.

1.2.1 Increasing Performance of Instruction Set Execution
 While the instruction set puts limitsign pecﬁorn nce,
actpal performance is‘dependent on implementaEion\etrategies;
" Speed increases due to .technology advancescafe limited so
further performance enhancement must come from changes in system
a;chltecture. This sectlon examines some methods that have been
used to reduce instruction_execution time. - =
éonsider'the interpretation of a typical HLL(jnstruction as
Shown in figure 1-1., It ccneists of{a4sequence of}p:imitive
actions which accomplisn the required task. For scalar
instructions the éentire secuence is repeated for each
instruction. Compiled coqe dces not require‘steps'zvand 3 since
"verification can usually be done by.a compiler for strongly
typed languages. For vector instructions the last three actions
need to be repeated for each elenent of the vector. Therefore
increasing performance of a scalar machine involves all phases

of instruction execution, while vector machine performance may

be enhanced by reducing the execution time of the loop section,

especially for. long véxsqfs.

_Instruction p1per’é1ﬂg has been used to improve performance

/
of malnframe computer>5xstems for scalar 1nstruct10n sets. To

\

"achieve hlgher performance4 some later phases of an 1nstruct10n

can be overlapped with the early phases of the next instruction.

To accomplish this requires some extra hardware resources. In

. conventional high performance véon Neumann machines, centrally .

controlled instruction and data manipulation units are used to

=

allow concurrent execution of phases [7]. This requires complex
coatrol featuresﬁba\handle scheduling and data -dependency

problems [48]. Statistics on HLL instruction usage indicate that

¢
such methods may not significantly improve scalar performance,

since subroutine calls predominate in performance determination,

~——

Branches and a scarcity of functional instructions further

#

SCALAR T VECTOR

k‘fetch and decode fetch and decode
verify operand(s) syntax Qerify operand(sé syntax
verify semantics —_— verify semahtics
fetch operand ‘ fatchlzgs;;;é-———g
actTon ‘ \ altion i
' ' store results , : | Vstorelresults j

' | yrmmmmee

Figure 1-1, Inst:EFtion execution segquence.
') -

reduce the performance p?tentiél of scélar over lapped cém‘ute:s{
Multiple processing units have been used té increasé
‘performance [24, 25, 66]. Usiﬂg n processors has potehtiéi for n
fold speedup. In practice, multiple homogenous processor systems
suffer from scheduling overhead and memory access contention.
Some of these s&stems exhibit breakover point béhévior where
addition of a processor can actually decrease system pefformance

[88]. Memory and processor communication requires complex bus

interconnections [55]. It is also difficult to express some —

problems in a form that can bé‘used,dn such a systen.

Thurber[89] éuggests using a funétionally distributed
architecture to overcome these prbbiéms. A pipéline is én
exémple of this architecture. A multiprocessor aistributed
function architecture (DFA) can achie§erverlapped performanceV
without complex central control, The Symbol coﬁputer syétém
mentioned earlier is an exaﬁple'of this type of architecture
‘de51gned for a 51ngle HLL. The Symbol system offered improved
performance ;gcause of its modular mu1t1processor architecture
which allows overlapped operat{on of the translation and
execution processes. ﬁnlike the homogenous multiple‘processor
architecture, this system consists of heterogenous processors .
-each designed to perform°specific functions. With appropriate
functional partioning aﬁd interfaqégithe design of each module
is independent of the others.

‘In a typical overlapped computer, dedicated hardware

modules can be used to achieve good performance since machine

"
-~

«

instruction execution is very regular..The greater diversity in

high-level languade instructions mgkeSﬂthe control problem for
, ‘ B L

overlapping more difficult. The problem ;§é£uffher complicated

~

in languages allowing vector opegétions since vector length

determines the ratios for phase execufién times.-A distributed
function cémpﬁter can compensate for timing variablity by phe
use af_queues bétween processors to absorb variation‘inﬂ

workload. Use of queues can also increase performance. This has

been shown in a scalar Cray 1 type architecture[81] and a data -

-

flow machine model [52]. -

1.3 Structured Architecture

While the cost of hardware components has dropped fapidly,
the design phase of system éevelopment has become increasingly
costly. Structured architecture attempts to reduce the
complexity of computer system design by borrowing some of the
principles‘léafﬂgd from structured programming. Modularity is
" just as important in computer system desigﬁ as in software
design.~P§rnasu[73],sﬁggests that system decomposition be based
on module iﬁdependence. DFA architectures safisfy his criteria
since each module is designed for a particular class of
fuﬁctions. Encapsulation of re;ated functions also can meet the
VLSI constraint of minimizing chip pin countl Conventional -
computer systems do not distinguish .between control computation
and déta manipulation. A resource may be shafed between a

control operation and a data manipulation., This can lead to

«

extra interaction between independent processes bébause of
'possible contention fof—the resource. Eﬂ;?ga\regghrces must also
be désigned to accommodate botb types of proceséing. An example
is a multiplier used both for ar inde#ing and a user
specified multiplication of somenzzka;

The size and complexity of current microprogramming
projects require new methods for firmware development. This has
" given rise to a new field of study - firmware quineering; Usér
microprograhming and large system'microprogramming have led to a
need to ﬁggrade micrdﬁrogramming techniques. In éarticular, the
horizontal microprogramming uséd in supercoméuters is only

5

appropriate for static architectures. B

A structured architecture machine (SAM) [38] has been
designed with a modular extensible architécture for indirect
high-level language interpretation. The aim is to develop a -
single user workstation thgt will offer performance comparable ~
to the usual execution of compiled code, with enhanced
perférmance for array manipulation and special engihee;ing
applications..Microprogrammingwis used for control rather than
hardware.because of its greater flexibility. This is especially
importaht for an expgrimental sysﬁem undergoing frequen#
modifications. Langyage independent features can later be f//r*
supported by hardware to improve performénce. Seldom used

ladguage:features can be implemented in a subset of the HLL with

very little performance penalty.

10

The SAM ﬁrdject differs from Flynn and Hoevel's work in

several respects. It is aimed at interpretation of DILs rather

than compiled DELs. SAM uses a lad@hage directed'architectdre

- rather than microprogramming of an unbiased host microengine.

Functional task partioning results in separate modules for
environmental control, prcgram mauagemeﬁt, and data
manipulation. This allows parallel execution of the different

stages of instruction execution.

1.4 Overview of Thesis

1.4.1 Thesis Goals . | ;
This thesis evaluates the performance of some system

designs during the data manipulation phase of DIL

interpretation; Structured architecture design is used to dep{ve

a system suitable for DIL interpretation. Hobson [42] has

already studied improvements in the fetch-decode:and

verification stages of execution, introducing a hardware operand

verification unit (OVU) to reduce semantic verification time. -

This study concentrates on improvement of the later stages of
instruction execution. In extending the SAM architecture,
arithmetic units are added to provide overlapped operation.

Execution time is not the only factor in measuring

performance. Program development time, compile time, and debug

time reduce performance, especially‘fbr programs with a low

~

number of production runs. Interpretive systems perform better

7 11

- /‘“‘

"in these respects but suoh measufes are difficult to quahtify,
so this thesis measures execution time -performance. Even “for——
this aspect, the results shou,thateauproperlyides%gnedn_fes;Lﬁe;gif
inferpretiVe system offers performance comparable to the usual
execution of compiled code. } |

Since the SAM project is aimed at development of a low cost

high performance single user HLL system,‘implementation methods

7 must be cost effectlve.rTeopn;gges used for performance
g 1mproveﬁe;;\oﬁ\supercomputers may not be approprlate. "For "“;;}
_ﬁr—%exahple, 64 blt\data buses are too costly unless this size of
| data is used fre?uently. A goal of the SAM project is to find -
ways to reduoejﬁ&croprogrammlng complexlty A multzprocessor
-sysiEETNea”h unit vertically microprogrammed, offers much more
ﬁieglblllty than a central horizontally mlcroprogrammed system,

Statistical analysis can be used to select instructions to be

7dsupported directly.

1.4.2 Methods .-

fhe effect of architectural changes was measured by
simulating benchmark execu;ion. Microcode interp;eters were
coded in:microAPL [41]. An architecture support package wFitten

in APL supports hardware modeling. Introduction of new

multiple processors. This was written in APL and has a structure

almost identical to the system architecture. A top level module

12

handles timing of transfers to the appropriate module at the

next level. These Hzakfg§(PMU,’DMU,,APU)thensimulate
instruction‘execuﬁion in,the~corresponding,physiéal mddulesﬂrmm S
| During system 1 simulation, statistics weré gathered on the
amount of time spent in each phasé of instruction execution.
This informatioh then guided{task partioning for SAM extensions.
| Although this study concentrated on supporfihg vector

AN ,
- ~._ipstructions, benchmark performance g§ing a scalar DEL was also

determined for the siﬁpleét SAM system. A comparison with vector

performance revealed that it was hot vorthwhile pursuing methods

to enhance scalar data manipulation performance. - . R

»

1.4.3 Organization of Thesis
The results of this study are organized into 4 chapters.
Chapter 2 introduces some data manipulation strategies and

N~
erformance limitationS. Two different

~ examines pe
miCroarchitecéures are used for SAM building blocks. Chapters 3
andA4‘explore implemeqtibnsfof these strategies ﬁsing the
building blocks'aﬁd their influence on SAM's pefformance.‘
Finally, chapter 5 summarizes the results énd compares the

performance of SAM to other machines.

'1.4.4 Assumptions

Execution of an ADEL type:instruction set[40] is assumed

in this study for the vector HLL. No specific HLL is assumed

+

since syntax details are handled by a program management unit

(PMU), but APL and ADEL érg,gégd;égmtypigang;amples;Qigyecro:;;;;;

oriented languages. In this study our concern is with execution
of inte;ﬁal DIL code accessed by the datatmanigulation ﬁgit |
(DMU)Aafter completion of verification. Only those instructions
required for benchmark simulation areldefined and implemented:,

A numeric type with §arying size for variables is_assumed.

"The size varies as needed to maintain precision. Many HLLs base

type distinctions on arbitrary historic congiderations. ‘ T
FUrthermére,ractual physical implementation of the type is
systemVQeQeﬁdenpugggpthe same HLL. Variables are assumed to be
lécal to the current environment since binding of non local
variables is i@plementation and languagé,dependent. Local X
variables are accessed directly from fhe current data segment

that was set up on entry to the current environment. The operand

'syllable is used as a direct index into the current data

segment. APL requires a sfightly different bindihg method and an
implementation on SAM will use hardware assist in variable
bindihg [42]. The above model was used for this stUdy since the

hardware design was not complete.

14

CHAPTER 2

SYSTEM MODELS AND EXPECTED PERFORMANCE

In this chapter, some system architectureé are presented and
idealized performance~limi£s for two benchmarks é?e derived by
considerihg the;number of parallel resources available along
with fhe,maximam data flow available iq/the¥§§ta paths of~thefw-w¥

S

system models. Real system implementations and performance will

i

be examined in chapters 3 and 4. P \‘~&§
‘Flynn and Hoevel used a nonfunctioné} ratio to measure
. o
~instruction set inefficiency. However, thkér NF ratio suffers
from-a favoritism fog complex instruction sets and is not a good
measure of run time. performance. Pérfo:ménce estimates are

. . - . . . ¥
distorted since complex instructions,.especially variable length

ones require longer decode and execution times. This thesis uses
a functional ratio of implementation (FRI) toAmeasﬁre theli
proportion of time spent on,functional.calculétion. FRI is
~——defined as the ratio of ti spent in a functional\calculatioh

,divided by the total timé:izent. A ratio of one means thatAthere
is no overhead spent in moving data to where it is acted upon.
‘This can occur in an associative processor or in a conventional
processor Qith‘full overlap. FRI can be greater than one ifq

multiple arithmetic units are used concurrently or if a

pipelined arithmetic unit is used.

15

Three versions of SAM are considered in this.thesis, a
“minimal functional system and-2 others that expand DMU to

.-

“increase performance.
2.1 Benchmarks
Two primary benchmarks afe used to compare.the performance
of archifectural modifications. Benchmark one is a simple
addition or multiplication of two vectors of equal length. It is
expressed as a 5 syllable DIL instrﬁction S
DLR,D,L,R,OP. \
This and simple variations of it are the most frequently used
arithmetia instructions in languagas like APL and therefore
important to syatam performance [8,9,18,40]. ; - 8
Benchmark two is matrix multiplication. Its DIL form ¢

co%E{;fs of 6 syllables

'DOTDLR, D, L R, OPt, OP2

While not used frequently by average users, its long execution
‘time and complex data acce551ng make 1t\5mportant to
performance, espec1ally in an é/éinearing workstation
environment. We consider the standard brute force method, cf.
figure 2-1(a), and also a variation‘used in high berformance
vector machines, cf. figure 241(b); These algorithms multiply a
.1 by m matrix with a m by n matrix. Other methodsrsuch as
Strassen's [39,92] are not well suited to vector or cache

machines since data accesses are not segquential,

16

for i=1 to 1
for j=1 to m
cli,jl=0
for k=1 to n
- - Cli, J] cli,j] + A[1 k] * B[k J]
(a) ‘ 'y

for i=1 to 1

.. for k=1 to n

for j=1 to m -
- cli,jl=Ccli,j]l + aA[i,k] * B[k,]]

__Figure 2-1: Algerithms for Matrix Mkaiply.

;}2 System 1 Performance
- [J &

‘Syétem 1, cf. figure 2—2 is a minimal 3 processor eystemi‘*
It con§hsts of an env1ronment control unit (ECU) for use%

‘1nteract10n, a program management un1t (PMU) to handle

instruction sequenc1ng,'and a data man;pulatlon unit (DMU) to

fetch and process data. A more detailed description of SAM is
available in other publications [38].
ECU- accepts user input , translates HLL source input to a

linear DIL form, and initqgfes'program execution when requested:
. : s

e

PMU fetches DIL code from segmented memory, verifies operand {/

syntax, and sends verified code to DMU. Some contrgiﬂebdstructs

can be handled entirely within PMU. DMU takes DIL. code from the

%)

PMU - DMU 4interface, verifies operand semahtiCS, fetches;epe?and”
A

- data from a/éata segmented memory, performs specified acfﬁens on' -

the &atacla?d returns results to segmented memory.
3 / -

-
-

17

DEVICES >--4--- ECU -eeo-{ user | .

1

Figure.2—2:'Minimai SAM system.
This analysis is mainly concerned with vecfor loop
performance. For arféys of reasonable length, setup time should
have min{maiveffect onvperformance. Considef the gﬁecutionof
the loop secﬁion of a typical diadic vector instﬁuctién.
| fetch left|fetch fightfpg}fbrh,actionlstore resultsllbob}

operand | operand
t -> - -

Performance for one processor is determined by the sum of the -

times taken for each phase.-Run time loop cost is

_Tloop,= tlf'+ trf +‘tac:tion * tstc;re ¥ tovérhead (2-1)
» Usually tlf = trf = tfetch aqd 1dea;ly there 1s‘no overhead, so
Tloop= 2 tfetch * tactibg,iftstbre | (272)
Instruction time = n x T t , (2-3)

loop * setup’

18

FRI = t / N). (2

action /(T
wWith a single processor, the only way to 1mprove FRI and

loop ‘ setup

increase system performance is to speed up memory transactions.
Now‘cons1der algorithm (a) for matrlx multlply in flgure'
2;1, hencefortnxcalled algorithm 1(a). Performance mainly:
depends on execution time of the inner loop. In the inner'loop
we need to fetch\seouential elements of A, fetch elements of B
inrcolumn'order, multiply them and add the'result tova local

running sum. Thus, for system 1 with no parallelism, 1nner ‘loop

™

cost. is
, y |
T1nnerloop Fka+ tast ¥ Fmul f taad) _ (2-5) i
where sf ‘is sequentlal fetch and nsf is nonsequential fetch.
and
. M)
FRI = € tpn * add) / T1nnerloop | - | (2-6)

This is the domlnant term for cost since it must be done 1 m n

. ==

For algorlthm 1b whlch calculates complete rows of the
result all accesses are sequential This improves performance

\r

if. sequentlal accesses are faster than nonsequentlal accesses.

\

The cost for the inner loop' becomes

Tinnerloop - tsf tt Y tst * taaa T Pstore® . (2-7)

Note that A[i,k] is a constant that only needs to be loaded once

mul

~at the - beginning of the loop. Comparing algorithm a with

algorithm b and assumming that a sequential store takes-the same

time as a sequential fetch, we find that a is faster if

seqnential fetch = nonsequential fetch; they are equal if

~

19

sequential fetch 2 nonsequential‘fetch; and b is faster if

sequential fetch < 2 nonsequential fetch.

2.3 System‘z Performance
In sysﬁem 2, auxiliery special'functibn units (SFU's) are
added on DMU's external BUS to aésist with its'proéessiné load,
cf. figure 2-3. In this study only arithmetic siave-unité are
considered. These extra arithmetic processors can be used to
improve DMU‘perfdfmanhé espeCiaily for complex actiohsrsﬁéﬁ ;;i
hultiply; divide, and floating point,ope;aﬁionsx ystem
complexity isrred0ced if the processors also perform integer
arithmetic. Performance can be further increased by concurrent
execution 'of DMU and slave processors. Arithmetic units can be

.attached as either separate SFU's or a chip set can be attached

as a single SFU with a shared data buffer.

LN

We now consider overlapped per

Performance without overlapping‘would be the same as in system

e DIL
T DMU
PIPE

DATA SFU = | SFU
SM , , oL

Figure 2-3: DMU with Auxillary SFU''s.

20 -

~

one but with decreased action time for multiply. Action time now

includes time' to communicate action codes and/or synchronize SFU
\ , . s LTS AR

execution.
At this point some aspects of the interface between units

| “ T T

need to be considered since this affects the amount of' overlap

that can,bé achieVed. Assume that SFUs are connected as élaves

-

to DMU with actions initiated by DMU. The algorithm for

overlapped execution, cf. figure 2-4, uses a one stage software

3 . N

pipeline [59] to support overlapped operation.

fetch left operand
fetch rlght operand
'start action : .
DO loop (vector length t1mes)
fetch left operand
fetch right operand
store previous result
start action
end
store last result

Figure 2 - 4 : Overlapping data fetch with actlon.”:

Operands are loaded, an ‘action initiated; and then new operands
are loaded thle,the action takes place. When available, the
| resp1t4is stored and a new actionkstartea. The operand registers
—must be buffered_of isolateg so that new values can be loaded
withght affecting the current operation. If the output register
is unbuffered thé‘result must be stored before a new action is
vinitiatedrand therefore ﬁhexstore and actidn phasésvcannot be

.Jg§zerlapped.’Figure-2—5(a) shows timing for the unbuffered output

case and figure 2-5(b) the buffered output case.

21

|1f |rf | '‘action |str . set 1
lf |rf |... |action |str 7 set 2
1f |rf |.... |action |str|” " set 3
(a) -
|1f |rf | action str | set 1
- |1f.|rf |... |action str | ‘ set. 2.
L |1f |rf actlon str - set 3

; |1£ lrf action...set 4
(b) | ~ |
Figure 2-5: Effect of Buffering on Timing.

The loop time performance of case (a) for benchmark 1 is

; (: ; . e .
Tloop = MAX{ 2tfetch' taction} * tstore o ' (2-8)
and)

FRI = taction / (MAX{2 tfetchi;action} * tstore) /:}2‘9)

FRI cannot be 1 since the denominator above cannot be smaller

. B ‘ .
than t__iion * tstore

For case‘(b),

= MAX { 2t ¥ €. o, EL. o N P10

Tloop‘ fetch store’ action

Here FRI approaches 1 for longer actions

¥t

1f t i > 2 tfetch - “store”

action
Benchmark 1 was unaffected by the method used to attach

SFU's. Benchmark 2 will be affected since résults from one SFU

N

must be sent on the bus to another if actions are performed in
separate SFU's. For algorithm 1 (a), cost of the inner loop is

Max{ t_. + t t

sf
if addition and multiplication are done on separate units.

nsf * tbus ’ mul * taaa } (2-11)

Tbus
is the time required to move results from onebhnit.to the input

22

of -another. If a single unit is used,

innerloop - MaXl toe * Toger oy * tagg ! (2-12)

T

Note that the first iteration is nct overlapped thus reducing
performance. ,

For algorithm 1b with memory accesses overlapped wfmy

actions the cost is

Max{ 2 teg * tstore *tous ¢ tpul t tadd} (2-13)

if different SFU's are used and : L
Max{ 2 tsf * tstore ' tmul * tadd}' . (2-14)

if a single SFU is used. R | o

2.4 System 3 Performance _ ’
System 3 uses an independent arithmetic processing unit
(APU), cf. figure 2-6, capable of chaining multiple actions.

Systein 3 ideal per?§;mance for benchmark 1 is the same as system

2 with éomplete buffering:—
For benchmark 2, cost of the inner loop‘for matrix multiply

algorithm 1(a) becomes

Tinnerleop =
Max{ t_ e+ t e to 00 toggle (2-15)
In this case the first 2 iterations are noﬁ oVerlapped. |
“'For algorithm 1 (b),‘innerloop performance is
(2-16)

Max { 2 tsf * tstore’ tmul’ tadd }.

23

DIL ﬁ . aPU
| pMuU = |
0 » __MUL -3 ADD-

I
PIPE

|
) e = J

DATA
SM.

Figure 2-6: System 3 - Independent APU.

24N~

CHAPTER 3
SAM 0.5

The first vergioh of SAM used a buildiné block module based on a
‘Micros MK16 [71],lfor PMU and DMU. Figure 3-1 shows a block |
diagram of this module. Importanf features are a data étack(DS),

~a data buffer(DB), And a segméntéd memory (SM) accesséa:through.
windows (WDO), or set of currently open éégmehts. In addition;a

microprogram stack (MSTACK) supports a microprogram call

- N
i

mechanism.” Figure 3-2 shows details of the MK16 internal S

architecture. See glossafy for definitions of otherAterms. It is

‘essentially a two bus single accumulator microengine. Dyadic

W CONTROL
e e e R e S L |
t] 1]]
] 1]]]
. i i 1
MK-16 . '

+ SHARED SEG SHARED
MSTACK LOCAL | . PAGE |— SEGMENT
+ MEMORY TABLES| |MEMORY
CONTROL . :

> BATA T T
i

> ADDRESS Ly

L

Figure 3-1: SAMjr Schematic.

25

microoperations take 2 or 3 cycles depending on which source and

destination registers are used. MK16 is controlled by a 32 bit -

microword. Eight more bits were added dgM59§:;ol external

featufes via the control bus and to s1mp11fy m1croprogramm1ng
These bits select the SFU's that will transmlt or receive bus
data. The least significant 4 bits select the SFU register to be
used. This must bexthezgaﬁe in both source and destination
SFU's. Internal and external ﬁicroopefations proceed;
concurrently. SAM 0.5 design and simulation was-based on
'availability of a 4 MHz MK16 as promised by/Micros Corporation.
The SAMjr prototYpe used an LSI emulator; %hé clock cycle was
iextended to 333 nsec, to accommodate external data flow.

The prev1ous *chapter discussed theoretical performancg

—

11m1ts. We now consider 1mp1ement1on on a concrete system We
may not be able to ach1eve the theoretlcal performance because

of system object1ves such as modular structure of f1rmware, the

use of vertical microprogramming, and reasonable cost. A real

~implementation must consider details such as special function

-

unit synchronizatidn overhead and the detection of overflow from

- an action. Supporting dynamic precision requires automatic

recovery from output precisidn changes. An MK16 emulator was
used to obtain concrete results, introducing architectural
changes to evaluate the effect on microprogram structure and
performance. Microinstructions are described using a set of
mnemonics, which are descibed in a’'glossary at the end of this

chapter. These are executable APL functions describing data flow

26

‘and side effects of an microoperation. During simulation, they

are executed as a result of microprogram execution. Timing

calculations were appended to microinstructions to cal

time performance during simulation.

1's COMPLEMENT

CONSTANTS:

—1J R

0000
0010
SRPAT

EXTERNAL

BUS

|

o

IMUX

OoMuXx

1

INTERRUPT
TRAP

NEXT

ADDR
LOGIC

16 X 18

o

3

late run

y

]

A REG

{SHIFTER)]" {SHIFTER)

X REG

1 SCRATCH
' PAD

R

/.LPC

RAo-~ 7 —

MUX

L

DECODE

-~ PRIMARY MICROINSTRUCTION

—* NANO INSTRUCTION

~»- SECONDARY MICROINSTRUCTION

Figure 3-2: Micros MK16 Schematic.

27

3.1 System 1

3.1.1 Microprogram structure
&) .
~ One goal of this project was to examine how microprogram
—— , .
structure affected performance, i.e. Can good modular design

‘coexist with high performance? Figure 3-3 shows the instruction
execution hierarchy. DIL céde execution'proceedsqfrom
instruction fetch to format execution using‘a table dfiveh EXEC,
a vafiable procedure call mechanism. The format procedure .

performs verification, checks operand rank, and calls the

TFETCH
./ EXEC
FORMAT
Setup R
Decode rank and data size’ |
Scalar ™| * Vector
CALL o0
v
EXEC |. Generic Vector
Fetch-Execute-~-store ’
LOOP

' [// EXEC
-y

Scalar , .
Action

Figure 3-3: ,DMU instruction execution.

28

appropriate rank and data size specific fetch routines. For

array operandSy\oberand sylables provide an index into an array
descriptor, which gives rank, size, and array data location in
segmented memory. The écﬁion is\EXEC'd from within the vector
control ﬁicroprogram.”Dyadic action routines were impiemented

with a standardized interface, with arguments in DB[left] and

DB[right] and results returned in DB[dest].

An objective in implementing the algorithms was to find a

microprogram structure that is not costly in execution time. For
vector algorithms, loop code is the most important element in
determining performance. The firstﬁgfforfgfgimed at geﬁeralitf
tgmconserve microcode space. Cdgé&der the first benchmark, a DLR‘
vector instruction. The first attempt, cf. figure 3-4, will be

_used to illustrate microcoding with microAPL. This is a duite

general microprogram that works for any of the defined numeric

precisions and is mcdularizedwyithfno_per£ormance;penaltymwith
calls to Lfetch, Rfetch, and STORE routines which can be shared
with other formats. Point to point data transfer is indicated by
the left arrow, "<-". AR and XR refer to A reg and X reg
réspectively in figure 3-2, Dﬁ is the éxternal data buffer in
figure 3-1. R réfers to one of the 16 registers in the
scratchpad in figure 3-2.

Looﬁ execution starts with fetches of left and right
operands tbrough CALLs to left operand fetch, LFETCH, and right
operand fetch, RFETCH, subroutines. The status register, SR, is

oy

loaded with an operand size tag to allow fetch subroutines to

29 .

VLOOPG
C DMU General vector control
C Rlcount] is loaded by calling program
LOOP' : S - e
CALL 'LFETCH' A SR <-R[LTAG]
CALL 'RFETCH' A SR <—R[RTAG]
EXEC DB[OP] A SR<-R[TAG]
—>ERROR IF OVFL]
CALL 'DSTORE' A SR<-R[TAG]
'R[COUNT]<-~SNZ DEC1 R[COUNT]
'=>LOOP IF -~ZERO
clear status and return ' \
ERROR: CALL 'RECOVER' "Data size overflow"

LFETCH .
General left operand fetch f D
Fetch operand and leave in buffer DB[ﬁp...L3] 3
SR contains left size tag on entry \
R[LINDX]<-INC2 SRW R[LIND§BR "Memory address"
—>0 if INT16 A DB[LO]<-S| D] "Memory data" .
RILINDX]<=INC2 SRW R[LINDX] ,
—>0 if INT32 A DB[L1]<-S[WORD]

a0an

ADD
~C Generic DMU add microprogram
~>SHORT IF INT16 A AR <-DB[RO]
—>LONG IF INT32 A XR <-DB[R1]
SHORT: AR <— SAR AR PLUS DB[LO]
—>0 IF -~OVFL A DB[DO] <-AR
—>SKIP if ~CARRY A DB[D1] <—D 0'
DB[D1] <-D'-1'
SKIP: AR <—R[TAG] '
—>0 A R[TAG] <— LSHIFT AR,0
LONG: AR <—SAR AR PLUS DB[LO]
XR <—SAR XR PLUSC DB[L1]
—>CONV IF OVFL A DB[DO] <-AR
—>0 A DB[D1] <—XR P
CONV: CALL 'XOVER' ' "Convert to floating point"

L

o

' Fiqure 3- 4 General Vector Control Microprogram and Support

Functions. :

"A" is used to separate mlcrooperatlons within an
m1cro1nstruct10n. Ty :

determine data size. The tags were read from memory within the
format routine. Within LFETCH, SRW(segment read word) sets up

the segment window address and starts a memory cycle. R[LINDX]

30

/
is an address pointer used by DMU control,microﬁ&ograms. In the
next line, S[WORD] accesses the mempry data word. If LTAG size
bits were set to indicate‘16 bit iﬁtegers, then'control returns

to VLOORE,«Otherw1se, more data w1)l be fetched RFETCH is
similar to LFETCH. The generlc operatlon syllable is then . |
" EXEC'd. The action subroutlne, in this example, ADD, then
~decodes and executes‘the specific action; setting condition

flags when needed In the ADD m1croprogram overflow is set 1f

the result size is- larger than that of the operands. ThlS
condition is tested by the branch on OVFL in VLOOPG. If therew N
was no overflow, the result 1s stored in memory by a DSTORE

- subroutine. This is similar to the_fetch routlnes,'exceptrthat
SWW(segment write word) is used. Then a loop counter, R[coont],
is decremented and the loop repeated if the counter is not equal
to ze;o: This general microprogram takes 13 cycles +‘action time

per loop for 16 bit data and 19 cycles + action time for 32 bit

"data. Action time refers tofthe number of cycles taken by the

. :) y

"action firmware microprogram. Setup time in the format routine
) o },i “,‘; N '

required 26 cycles. An even more:general microprogram combining

‘scalar and vector versions of a DLR format was\hgitten} but its

performance was unacceptably slow since loop overhead was twice

Al

that of fagure 3-4,) : ,
A dlfferent approach, cf. figure 3-5’)uses further run time
compzlatlon“ to a specific DLR loop for eech precision., Slzev
specific data fetch is in now 1ncorporated into the vector
control loop. Thfs requires slightly more mioroStore space, but

\

improves performance. This techniqﬁe yields anhexecution time'qf
8\cycies + action time per loqp for 16 bit data and 14 CY¢1¢5,”L,”
plus action time for 32 bit data. Thus we pay a penaltyjof ap tc %’
~50% for generality Inefficiency in the general algorlthm stems)
from the necessity 1n‘MK16 to reload SR for each precision test.
Freelng the status reglster also allows us to move the counter
incrementation and ga1n a cycle, although ‘this only works if the
action. function does not sample the zero flag.

Another possible solution with a ‘minor change to the
microarchitecture is to dedicate ‘fields in SR for left, right,
destination tags and the arithmetic flags. This technique\WOuld
result in a;ioop execution time of 8 cycles + action time. This
method requires a change to.the’microarchitecture to allow any
bit in the SR to be tested. This method also has a problem in
that SR may{not be able to hold all precision tagstgf many‘data

sizes are used. A separate bit is required for each Pfe¢é?§9“r

VLOOP16

C DMU vector control loop for int16 diadic actlon'
C R[CNT] is loaded by calling program

LOOP:
- R[LINDX]<—INC2 SRW R[LINDX] e
DB[LO]<—S[WORD] A "memory fetch" T

R[RINDX]<—INC2 SRW R[RINDX]

DB[RO]<—S[WORD]

EXEC R[OP]

R[DINDX]<~INC2. sww R{DINDX]

—>ERROR IF OVFL A S[WORD]<-DB[DO] A R[CNT]<-SNZ DEC' R[CNT]
—>LOOP IF -ZERO A "Continue loop if zero flag is not set"
return

ERROR: CALL 'RECOVER'

return

&
\

Figure 3-5: SizerSpecific DyadiCVVector control Micrcprogram. \‘1
. A, B . . i k x

32

since an IF microop is used to test data size. Sequential tests
are, needed to decode datavsize, but these were combined with
data fetches so they d1d not 1ncrease loop time." In1t1al loadlng

of SR is slowed since tags must be sh1fted and comb1ned with SR.

This increases setup time’ unless OVU hardware is used for this

-function. o : . ‘
fiIt is important at this stage .to weed out delays due to

minor idiosyncsgf?es'in the mic:oarchitecture since apparent

speedups from other architectural changes could simply be due to

'masking»the effects of these idiosyncracies when each processor

has less to‘do in an algorithm. Thefefore;fixed precisidu

routines are used for'fu:ther study, aﬁd the problem of code

compaction is left to be solved when a complete system is

implemented.

-

3.1.2 Memory?streamtngf-”Wﬂ;’~*47~~
It should be possible to speed up sequentlal memory
‘accesses. The simulator was modified to measure the adVantaéEs'v
of such a technigue. Vector instructions,should_exeeute faster
since bus,éddnessvcthes are noklonger ueeded.‘Memory interface
hérduare\cah be*designed to prouidefdatastreaming capability.
Stream buffers,are pfbvidedﬂbetween the data bus and memory;*
‘Data bus transfers proceed at 8 or 16 bits;per,cycle;»while
transfers from‘memory‘td stteém buffe;s'use wider data paths.

The memory system can use interleaving or the new nibble mode

chips to support extra bandwidth. The width required depends on

33

ﬁhevratio of memory cycle time to proceésof cyéle time. Once
started, a memory stream no longer requires bus address cycles.
Pipelining in the mehory interface hides address franél&tibﬁfiﬁm
"time delays. A memory stream interface was désigned and .
incorporaﬁed intd SAM 1 and could’have been added to SAMO.SVif
desired. The éodé segment‘in figure 3-6 éhows the uée of =

streaming in a typical vector loop for a diadic action.

VLOOP16 | S

Initialize counter
Left stream address <- zero
Right stream address <— zero
"~ - Dest stream address <— zero
LOOP: - ' o
DB[left] <— SSN left -
- DB[right] <— SSN rfght
- EXEC action
inc count A dest SDN DB[result]
—>loop if count #0

Figure 3-6: Dyadié Vector Loop with Memory Streaming.

Two new microoperatibns,igéﬁrand SDN, support read and write
- streaming resbéctively. Memory tfénsactions take only one cycle
if stréams were previously initialized. Loop time is reduced to
5 cycles + action time for 16 bit data and 8 cycles + action
time for 32 bit data. .

A , , _
Matrix multiplication should be faster using a}gori}hm (a) -

t

using normal memory fétchiﬁg. Streaming should equalize the two
algorithms, unless‘nonsequential‘fgtches require more than 2

cycies, in which case algorithm (b) becomes faster.

34

The standard interface for dyadic action routines caused
some difficulty in implementing~matnixcmultiply.'The_additioh
‘routine leaves the accumulated sum,ln DB[D] but this registe%
will be overwritten by the next multiply,action. This means that
the sum must be saved elsewhere and restored within each loop.

/This was done, keeping the sum on the data stack, DS _This slows
\(‘
Performance, but not significantly, since execution t1me is

dom1nated by mult1ply time. The problem could be resolved by

\\
def1n1ng a spec1al accumulate action that uses d1fferent

~
-

reg1sters\Put this would not work for a general 1nner product.
For al general Matrix Mult1ply which accepts any 515% data,

T1nnerloop was 24 cycles plus action time for 16 b1t data ahd 35

cycles plus actlon time for 32 bit data. A size spec1f1c

version, cf. f1gure 3 7 was run result1ng in an innerloop time

—_—

o e

] of 13 cycles plus action t1me for 16 b1t data and 21 ctycles for

32 bit data. Although nearly twice as fast as the general

microproéram, this routine still has a lot of overhead, mostly
due to moving the runnlng sum from DB to DS and back. Support1ng
a combined multiply accumulate action solves the problem but

’ only,for;the‘spec1f1c matrix mult1ply.‘Th1s technigue saves.6
cycles for 16 bit data and 10 cycles for 32 bit data. Streaming
reduced loop time by one cycle for 16 bit data and 3 cycles for

32 bit data.-

-35

DOTA16

‘DMU int16 Dot Product control microprogram com&utes :
inner prod of N by K matrix (A) with K by M matrix (B)
DB[OP] contains left action of dot ,
DB[OP2] contains right action
Initial values are loaded by format mlcroprogram
LOOP1:
R[COL] <-— R[M]
LOOP2: ' A
AR <—NEGATE R[COL] "R[COL] counts cols down from R[M]"
AR <—R[M] PLUS AR - , ‘ v
AR <-LSHIFT AR,O "Convert to word offset"
R[RINDX] <~R[RA] PLUS AR
R{COUNT] <-R[K]A PUSH R '
INNERLOOP: : T
R[LINDX]<-INC2 SRW R[LINDX] -
AR <-DEC1 R[M] A DB[LO]<—S[WORD]
R[RINDX]<—INC2 SRW R[RINDX]
AR <-LSHIFT AR,0 A DB[RO]<—S[WORD]
EXEC DB[{OP2] A R[RINDX] <-R[RINDX] PLUS AR
—>ERROR IF OVFL A AR <—DB[D0]
DB[RO] <—AR
AR <-DS[RO]
“DB[LO] <—AR
EXEC DB[OP]
—>ERROR2 IF OVFL A AR <-DB[DO]
R[COUNT] <~SNZ DEC1 R[COUNT]
—>INNERLOOP IF -ZERO A DS[RO] <-— AR
R[{DINDX] <—INC2 SWW R[DINDX] o '
AR <—R[K] A POP A S[WORD] <-DB[DO] B N
AR <-LSHIFT AR,O0 «
R[LINDX] <-R[LINDX] MINUS AR
' R[COL] <— SNZ DEC1! ‘R[COL]
—> LOOP2 IF -ZERO
R[LCOUNT] <—SNZ DEC1 R[LCOUNT]
~> LOOP1 IF -ZERO

aOOO0nO0

return .

ERROR: CALL 'RECOVER' -~ "™Mul error”

JRBROR2: CALL 'RECOVER' "Add error" A
return » U o

Figure 3-7: Size Spec1f1c Dot Product Coﬁ?rol Mlcroprogram
. using Algorithm (a).

‘In theory, algorithm 1(b) requires only two sequential
—memory fetches per loop, since Ali,k] is constant within the

inner loop. However the standard action interface again causes

36

.

problems., A[i,k] cannot be held in DB[L] during the loop because
it will be overwritten by the C value read in for the addition

part. As in algorithm 1(a) the constant may be moved to a

temporary location and restored or a new accumulate action can

~be defined. Again the data stack was used, cf. figure 3-8.

 DOTB16

MU int16 Dot: Product control m1croprogram computes
inner prod of N by K matrix (A) with K-by M matrix (B).
[OP] contains left action of dot
{OP2] contains right action
Initial values are loaded by format m1croprogram
LOOP1:
R[COL] <- R[K]
R[RINDX] <~R[RA] A PUSH «
LOOP2: -
R[LINDX]<—INC2 SRW R[LINDX]
R[COUNT] <—R[M] A DS[LO] <—S[WORD]
INNERLOOP:
DB[LO] <-DS[LO]
R[RINDX]<—INC2 SRW R[RINDX]
DB[R0O]<—S[WORD]
EXEC DB[OP2]
—>ERROR IF OVFL A AR <-DB([DO0]
DB[RO] <-AR
SRW R[LINDX] S , o
DB[L0O] <—S[WORD] ‘
EXEC DB[OP] ‘
—>ERROR IF OVFL A R[COUNT] <—SNZ DEC1 R[COUNT] QUJ ,
R[DINDX] <~INC2 SWW R[DINDX] <
—>INNERLOOP IF -Z2ERO A S[WORD] <- DB[DO]
AR <-R[M] ,
AR <-LSHIFT AR,0 - .
R[DINDX] <-R[DINDX] MINUS AR > <«
R[COL] <~ SNz DEC1 R[COL]
-> LOOP2 IF ~Z2ERO.
R[LCOUNT] <—SNZ DEC! R[LCOUNT]
—> LOOP1 IF -ZERO A R[DINDX] <-R[DINDX] PLUS AR

return A
ERROR1: CALL RECOVER' - "Multiply overflow"
- ERROR2: CALL 'RECOVER' "Add overflow"
‘return __

Figure 3-8: Size Spec1f1c Dot Product Control M1croprogram
using Algorithm (b).

37

This size specific version of algorithm b gives an
~innerloop time\Qf 12 cycles plus action time for 16 bit data. A
32 bit version ta es 2i cycles plus agtion time. Streemlng will
reduce loop time by 2‘cycles for 16 bit data and 4 cycles for 32
bit data, but necessitates separate read and write destination

streams.

'_3 1.3 Analysxs of results - , =
During the 51mulat10n of system one, timings of the

| different phases of 1nstruct10n“execut/9n5§ere determlned These
results, cf. tlgure 3-9, glve an estimate of the workload of the
different processes which may- later be executgd hy separafe
processors. These results point out the,pr1mary bottlenedks in
system'performence. For vector addition, most of the time was

spent in the setup and fetch phases. The dyadlc scalar add1t1on

microprogram takes 3 cycles for 16 bit data and 6 cycles for 32
b1t'datar For multiplication, the balance swings to the action
phase because of the slowness of‘multiplication on MK16. The
multlpllcatlon m1croprogram takes 32 to 48 cycles for 16 bit
data and ~200 cycles for 32 b1t data. A VLSI functional —
multiplier equalizes addition and multiplication times so both
cases will approxlmete the results from addition in systems 2
and 3. | |

In order toimaximize system performance, processor
workloads need to be‘balanced. All overhead is due to fixed

»
setup time. This can be reduced with hardware support for the

38

I
F .
E A _; A
T C o
0] C T ‘0 T
AY H I S v F I
E o} T E E 0
R $ié N 0 R T N S
H LR R H C T
E $EE) C | #Ed E E H TR 0
A $R4 LR X A . 1% 2] R
D v KBS e 44 D #8481 . |#4# " E
v #z# ::: #:# - $44 iid
#] | #4% | $ER f4# té4 44 H44
l#ﬁ##ﬂ] $44 $48 4% $44 #44 $44 $44 1844

PMU DMU DMU Lo+
g ' : with streaming

Figure 3-9:Workload Distribution of Vector AddE)

verlflcatlon phase. A special operand verlflcatlon unit (OVU) is.

belng designed for this purpose[42] Since memory fetch

comprises the ma}or,component~o£mDMU execution time during

yectdr loops, memoty streaming can be used to reduce fetch time.
With memory streaming,‘fetéh plus store and a¢tion phases are
nearly equal for addition, so intrbduction‘of an extra pro&essor
" could almost double performance if these operations are done 1in
parallel. | ‘ o :
While benchmark 2 execution time is dominated by muitiply
time,Acf. figure 3-10, DMU overhead 1is éignificant even for'the
innerloop - 40% ﬁdr the general'version'and 25% for the sizer
spec1f1c mlcroprogram For small arrays,.outer loops add even

more overhead. If multiply time is reduced significantly by

39

D,
A
A
[of
C 8
T
. T
1
I
“ 0
0
N (o}
v N
E
R ¢
H
E
A ‘
D ~
4 .
' v F F -
E E’ 3 E - A S
R T T 3
H (o .S C T
! E H 777 T _H 777 o}
A ik o /// R
D /// R /77 E
- /// E - ///
£t /77 tis ///
. |HHI| (3 1] 74l 141 ya74
PMU DMU DMU
algorithm a algorithm b

Figure 3-10:Workload Distribution of Benchmark 2
Solid area of overhead, |##|, indicates fixed setup time,

Shaded area, |//|, indicates action time if multiply time = add
time. '

40

o

using a hardyarermultiplier, DMU overhead becomes a system
bottleneck.”AN unexpected result of this study waé that
algorithm (b) was faster than algorithm (a) even without mémoEy
§treamin§: From figure 3-10, it appears that this is dué to the
higher overhead of algorithm (a), which requires cbmplex address
calculations in both the inner and oufer loops. |
| Thé resulté preéented‘in this section were parameterized
into DMU loop time and action time. The results can be used to

determine maximum Cycle times for an arithmetic unit so that the

system is not slowed.

41

3.2 System 2

'In system 2, it is assumed thaf a combinational chip set is
used to support actions.‘Support for vector action routines
requires changes to the DMU Enstruction hierarchy; When a format
program finds from operand tags that a vector action is
required, it‘must determine if a specific vector action
microproqfam is available. In the SAM 0.5 simulation, a simple
;-local memory table lookup is used. A more complete discussioh‘is :
given in section 4.2. Two variétibqs of the DMU-SFU intérfaée
are CSEQidered to see how fhey affect structure and perfofmahce.
They are orderéd according to increasing SFU control complexity.‘

In the simplest configuration, cf. figure 3-11 (a), limited
cabability functional units are attached td'the external data |
and cbntrol pyseé. To simplify the.figure these are‘shown as a
. single bus.lgach unit contains its own data buffer anéﬁéggiaghiiggii
register, st*Scan have up to 16‘registers,se1ectable under
microproqfa;'coétrol; Read or w;ite'of a selected register is
enabled by the control bus. With this method only a simple’
finite state machine is needed to control each of the functional
units. If each unit performs actions of varying precision, then;_

a tag buffer (possibly part of IR) will be needed to control the
unit. Otherwise a separate unit is needed for each action -
precision pair. DMU needs to know which unitkisubeing lﬁaded,

thus requiring a specific vector lOoprfor‘each action,

42 -

_ BUS
DIL <
S ¢
PIPE M L JR |D T | |1 L R |DIT |S |1
o "' DB A 'R IR DBM IRIR
U
| E 1 i
[} ‘ i
ADDER |---- MULTIPLIER |--
(A) \ j . ' : .
S M DBIR ——————-
S |- ~-1CONTROL!
e . DBSR —————— ‘
DIL ' .
g 0 - e | 1
PIPE | M [|L,R,D,T 1T) ‘
: ADDER MULTIPLIER
U .
>‘ T - T

(B)

Figure 3-11: System 2 Configurations.
i.e. VADD16, VADD32, VMUL16 ...

In this configurafion, DMU decodes the functioE‘Eode and
then uses appfopriate functional units to perform the required ‘
action,‘cf. figure 3-12. Action can, be started by sending an
action code to a functional unit, e.g. DBA [IR] <~ 'addi6’.
Unfortunately, APL does not allow assignment to or subscripting
of a function, so equivalent code was used in the simulation,

. .e.g. STARTADDER A DBAIR <- 'addié6',

Another method is to use a SFU control bit to indicate action

43 .

'VMUL16

C DMU vector control loop for 1nt16 diadic Multlply ‘
C R[CNT] is loaded by calling program -

LOOP: | e - N
R[LINDX]<~INC2 SRW R[LINDX] o ' L
DBM[LO]<~S[WORD] - "memory fetch" -

R[RINDX]<~INC2 SRW R[RINDX] \ ‘
DBM[R0OJ<~S[WORD] ’
- DBM[IR] <— 'mulié’
NOP
1 R[DINDX]<~INC2 SWW R[DINDX]
SR<—DBM[SR] .
—>ERR IF OVFL A S[WORD]<-DBM[DO] A R[CNT]<—SNZ DEC1 R[CNT]

->LOOP IF -ZERO "Continue loop if zero flag is not set"
return - ' - . S
ERR: CALL RECOVER'
return o : i .

" Figure 3-12: Size Specific Vector Multiply Microprogfam.

start, e.g. DBAS [ﬁo] <— SSN right,
This saves a bus cycle since the last data fetch can be combined
with function start but may double the number of addresses

needed for each functional unit if a conventional symmetric

' - -
addressing convention is used. Again, equivalent code was needed
in the simulation,

‘ : o ' N
e.g. STARTADDER A DBA[RO] <- SSN right. T .

ey =
-
X

The interface microprograms presented so far depend on a
knowledge of SFU actlon time. They can be made more hardware
independent by replac1ng the NOP's w1th the sequence - R

WAIT: SR<-DBM [SR]
. ~>WAIT IF BUSY , | | o

In the second configuration shown in figure 3-~11 (b), the § -
functional units are on a separate bus with a common data buffer
through which they communicate to the DMU data bus. A control

/

44

register DBIR is loeded by DMU. This register then selects the

un1t to perform the next actlon. Only one funct10na1 un1t can ber'w
active at any t1me unless combined actions such as an inner

product step areldéflned and 1mp1emented-rn an arithmetic un{tr'
Since all dfadic primitives.of a language may not be supported
‘inghardware, DMU must either support a vector loop for each

action as in the previous case or exédcute the action syllable to

determine if the action is supported.

3.2.1 System 2 performance

<

S | ‘ N\

We now look at‘DMU—performance'assummlng a fast
combinational arithmetic chip set is available.

The question arises of how best to use the slave.}Even
without attempting to overlap operations, performance is greatly

improved for some functions supported by hardware.onr example,

the action part Of”tHE‘TG‘bft*mUTtTpIY”CHn“bé'réd”ééﬁ“fb”1 cycle
‘ using a'combinational logie cnip from an average of71f X 2.5
cycles using DMU'firmware in system 1.;Without overiepﬁﬁging the.
interface structureVOf figure 3-11 (a), a VADD16 or VMUL 16
‘mlcroprogram takes 9 cycles plus action time - 1 per loop for 16°
b1t data and 15 cycles plus actlon time -.1 for 32 bit data.
Memory streaming reduces these times to 6 cycles plus action
time for 16 bit data and 9 cycles plus action time for 32 bit

data. Performance 1ncreases are due to increased ch1p area that

can be dedlcateh to speciiic functions.

45

* Y

#To increase perfdrmance further, we attempt to utilize the-

cycles when DMU is waiting for an arithmetic unit to finish by

loadiné %he néié“bperagds, cf. figure 3-13; Pérférmance
increases are greatest ;hén fetch—étorp time and func?ion time
are‘approximately equal. With buffered output we can also store
the previous-result while waiting for the action to compléte.'l
Some extra hardware 1is fequired to support overlapping. Fifét,;
the inputs must be double buffered sincéathcvold iﬁputs mdét be
~avai;9ble during the action phase. Therefore anbthe} set of
_fegisters must be available to accept the new opérands. This

will usually be part of an arithmetic éhip. Data must be-moyédAA
and latched before new'data arrivé. Since bus dataimovement

takes place in the first half of a clock cycle after Eﬁgagoﬁtrolﬂ
decoding, approximately 3/4 of a cycle or ~250 nseé ijavéilable
to move the:data'if stréaming is used and 1 3/4 cycles'without

streaming. A simple gggggﬁmlgggh%i§ acceptable if the output is <

¢

unloaded before a new action is started. However if we wish to
overlap ,output storage with actions a double set of output
‘gegisters 1s needed, since new results may be latbhed be fe the
old outputs;are uhloaded. Scome, arithmeticrunits have * output
latch built into the -chip. This, along with‘the dual'port'data
‘buffer, will suffice'to support full overlapping.

With full overlap, the loop timé for structure (a) is | -

reduced to 9'cycles if action <5 for 16 bit data and 15 cycles

\

for action <10 for 32'bi£(aé£§{“W1£ﬁ étféaming, the

corresponding times are 6 cycles if’gq;ién < 2 and 9 c¢ycles for *

46

VMUL16

C DMU vector control loop for int16 diadic Multlply 7
" C RI[CNT]) is loaded by calling program : :
' DBM[L0)<—-SSN left

3 M[R0OJ]<—SSN right
§M[IR]‘<— 'muli6’
LOO ’

DBM[LO]<-SSN left

DBM[R0O J<—SSN .right -
WAIT: SR<=DBM[SR :
: =>WAIT IF BUSY

DBM[IR] <~ 'mulié6' A R[CNT]<—SNZ DEC1 R[CNT]

—>ERROR. IF OVFL A dest SDN DBM[DO]

~->LOOP IF -~2ERO A "Continue loop if zero- f}ag is not set"
WAIT1: SR<-DBM[SR] ST s / e

->WAIT!1 IF BUSY

—>ERROR IF OVFL A dest: SDN' DBM[DO]

return
ERROR: CALL 'RECOVER'

return

Flgure 3 43 Overlapped Vector Multlply Microprogram for
\ . - structure (a).

action <5 for 32 bit'daﬁa. If BUSY is also checked, as -in figure

. 3-13, an extra cycle is requ1red

For structure (b) , loop performance w1th individual action
routines is the same as that onstructure (a). If DMU EXEC's the
action syllable, a general vector action microprogram can be
used, in which case an extra cycle is needed. This saves
microstore space and limits device specific actions to fewer
actien’microprograms; |

| Matrix‘@ultiply was implemented using algorithm (a). Size

specific verslons were used to reduce‘the loop overhead found in
the generic version in system 1.vPerfermance without overlappihg
is~simllar to that on system 1, except thag%multiplication time

is decreased. Overlapped performance will be. considered next.

——

47

The use of.slave action processors solved implementation
problems for matrix multiply that occurred w1th a single 777'
~processor DMU. With structure 3-11(a) there was no register
contention since each unit has 1ts own set of registers. There -

- is still some overhead 51nce results must be moved between
units.-Innerloop time was 16 cycles for 16 bit data if add and
multiply time were 1ess than 11 cycles and 24 cycles for 32 bit

data 1f'act1ons < 19 cycles.

Structure (b) is unable to supportfouerlapping ofirﬁ
multiplication'nith'addition. Register contention is also a
problem, so DS was used to hold intermediate re;ults. Innerloop
time for 16 bit data was 15 cycles if add time < 5 cycles and
multiply time < 3_cyc1es.

Matrix mu}tiply using algorithm (b) nas also'implemented

using size specific microprograms. Structure (a) results in an

innerloop time of 13 cycles for 16 bit dataﬁandﬂgé;cycles for 32

bit data. - : :

3.2.2 Analysis
' System 2 is not much faater than syatem'1 for simple
actions. This is due,torsynchronization overhead, which requires
2 or 3 cycies to initiate actions and copy SFU status to SR for
‘testing. This'is a great amount of oVerhead for short vector
loops with simple actions and even more significant with memory
streaming. A way to eliminate the oGg;head\of testing the APU
flags in (b) is to 1mplement spec1f1c DMU control algorithms for
~ e

[N

48 j
/

~

each action as in structure (a) and use knowledge of the APU

- performance to av01d test1ng for busy by assumming that the
‘iresultsnare available after a fixed time. However, thlS 11nks o
DMU algorithms to APU hardware reducing independence.

While slave processors relieved register contention
problems for,matrixlmultiply, some overhead nas still incurred.
The'SFU addressing convention caused the overhead of data
transfers in structure 10 (a) to be greater than necessary,
51nce indirect data movement was necessary 1£ dlfferently .
,numbered device reg1sters were selected.'Thls overhead could be
reduced,if inguts and outputs were addressed as separate SFUs.
With structure‘(b),;there.is'a register contention proolem
unless function control“includes the ability to use any register
for‘input or output to any functional unit.‘Tnen different
registers can be used for the two functions. This would“reQuire‘

a minimum of 4 interface registers (DB)ffor-the benchmarks

investigated in this thesis.

49 N

‘3Q3 System 3
System ‘2 (b) can be enhanced to provide a pipéiinéd

multiply accumulate cf. figure 3*14. More‘complex

control -and extra data path af%ow cha1n1ng of arithmetic units.

" DMU starts APU by loadl g an operation code into the APU

instruction register. It ¢ then test the. APU status’register

to determine if the resul ére‘ready. APU should be able to

perform all arithmetic primitives. Otherwise, actidns ﬁééd”fé”bé"““f
executed by DMU‘or éﬁecial;%éctor actions must be decoded during
sétup. For this study, only ADD, MUL, MULACC actions need be

defined in pipelined and'nonpipeiined versions. A 2lstage

pipeline is used to support overlapped vector processing.

(> e]
S‘M”u7___fDBlebﬁgi,CONTROL,AJ A
_______ I]
] | ;

DBSR | —======---
DI L : < ea)
D ' D /f
S PR o <
M] {' - { >
PIPE | ' L,R,D,T
U | | | MULTIPLIER | | _| ADDER | |

’ I

\ 4
Y

Figure 3—14:‘System 3 Architecture.

1

50

Performance of a general VLOOP16 m1croprogram, cf. figure
3-15, 1is 10 cycles for actlons less than 2 cycles and 12 cycles
for actions of 3 or 4 cycles. The destination'address cycle is
overlapped with APU operatlon. While thlS is adequate for short
actions such as integer add (although there is little speedup
over f1gure 3-5), there is very little overlap of DMU execution
with APU action. An interesting observatlon of this microprogram

1s that performance can be opt1m1zed for short actlons by add1ng

NOP's before the statement labeled WAIT. For example, if a 16
bit additiou took 2 cycles, ap extra NOP before the. WAIT would
euablerthe loop to perform in 11 cycles instead of 13.°
Overlapplng reduces loop time to 9 cycles for actions < 5.
Memory streamlng can reduce this to a 7 cycle loop with wait on

action >4, cf. flgure 3~-16.

VLOOP16

C DMU vector control loop for int16 diadic Actions
C RICNT] is loaded by calling program
LOOP: ‘ .
R[LINDX]<—INC2 SRW R[LINDX] ’ '
DB[LO]<—S[WORD]
R[RINDX]<—INC2 SRW R[RINDX]
DB[R0O]<~S[WORD] o
DB[IR] <~ R[op]
R[DINDX]<—INC2 SWW R[DINDX]
WAIT: SR<-DB[SR]
->WAIT IF BUSY
DB[IR] <- Rlop] A R[CNT)<-SNZ DEC1 R[CNT]
—>ERROR IF OVFL A S[WORD] <-DB[DO]
->LOOP IF -ZERO A "Continue loop if zero flag is not set"
return ~ .
ERROR: CALL 'RECOVER' ‘
return '

Figure 3-15: General Vector action Microprogram for System 3.

51

Innerloop time for matrix multiply u51ng algorlthm (a) was
11 cycles for 16 bit data if add and multlply times were less
than 8 cycles and 15 cycles for 32 bit data if action times are
less than 12. The reduced loop time resulted: from hardware'r
supéort of a combined multiply-accumulate action. Tﬁe ;unning
sum was held in the adder's output regisfér to avoid the |
regiéter contention encountéred in system 2 (b). The extra data

paths in system 3 eliminated operand movement overhead.

VLOOP16
C DMU vector control loop for int16 diadic Actions
C R[CNT] is loaded by calling program
DB[LO]<—SSN left .
DB[R0O]<~SSN right
DB[IR] <- R[op?
- LOOP:
DB[L0]<—SSN left
DB[RO]<—SSN right
WAIT: SR<~DB[SR]
~>WAIT IF BUSY
DB[IR] <— Rlop] A R[CNT]<—SNZ DEC! R[CNT]
~>ERROR IF OVFL A dest SDN DB[DO] ‘
—>LOOP IF -~ZERO A "Continue loop if zero flag is not set”

WAIT1: SR<-DB[SR] T
—>WAITI!1. IF BUSY .
—~>ERROR IF OVFL A dest SDN DB[DO]
return

ERROR: CALL 'RECOVER' -
return

/

Figure 3-16: Overlapped Vector action Migroprogram.

52

)
3.4 vlossary of SAer Microprogramming Terms
. : \

S

) AR is the A-register which is used as a pr1mary accumulator
in SAMjr. It mag be applied to the ALU B input. It can also be
shifted(rotated) left or right.

CALL is a mechanism for accessing microprogram subroutines. -
It must be the leftmost operation in a microstatement except for
a label. The m1croprogram operand name must be quoted Only
internal MK16 microoperations may be used in conjunctlon with

CALL.

CARRY is set by ALU operations which overflow or underflow
if an appropriate sample request is also 1ssued It is also set
by shift or rotate operat1ons.

D is used to specify decimal constants.

. DB is an external 16 element data buffer used to help
" standardize the passing of operands to microprograms. :

DEC1 decrements an ALU 1nput by one as it passes through
the ALU.

DEC2 decrements an ALU input by two. It also forces the
least significant bit to zero as a side effect.

DS is an external data stack for convenient and fast
context storing. The top 16 values may be indexed. When DS is
PUSHed or POPed, all 16 values are changed. DS 1s'currentlyfﬂt—~*—*
- words deep.

EXEC accomplishes microprogram address decodlng. The least
significant 8 bits on the data bus are used as a m1croprogram
index.

" INC1 increments its right argument by one.

.INC2 increments its right argument by two and forces the
least s1gn1f1cant bit of "the result to zero. This is usefull for.
1ncrement1ng word addresses. \

INT16 is a pseudonym for .carry. It is used for data size
tests. ¥

INT32 is a pseudonym for overflow.

LOCAL refers to a nonsegmented memory. It is word or byte
addressable. Local memory requests require exactly 2 precessor

i

53

cycles,'firstvan address and then a data cycle.‘k

LSHIFT operates on AR or the AR, XR pa1r. Shj
be 0, SIGN, VSIGN, or CARRY. If SIGN is the inp
performed : . .

/ft inputs may
,ta,rotate,isiw
y

NEG is one of the SR flags. It reflects the\sign of the ALU
output after any sample operation. '

NEGATE performs a 2's complement of the ALU~A input.

NOT performs a logical complement of any LU input.

" OVFL is one of the SR flags. It reflects arithmetic
overflow after a sample operat1on. AR must be ong of the
operands.

o PLUS performs diadic addition. E1ther AR or XR may be added
to the ALU-A input.. r

PLUSC is a variation)::>PLUS that adds the CARRY flag to
the sum. It is used for multiple precision arithmetic.

of the
from DS in the

POP causes the DS frame to be poped at the e
current m1cro1nstruct1on. A value can be access
same microinstruction.

PUSH selects a new DS frame providing 16.

ndexable
locations for general purpose use.) -

R denotes one of the 16 scratch pad reg1st rs. A spec1f1c

register is selected by subscripting, viz. R[X). o

RSHIFT shifts AR or the AR, XR pair one place to the right.
Shift input may be 0, SIGN,. VSIGN or CARRX. ,
S refers tlﬂthe currently selected window into segmented
memory. It is subscripted by BYTE or WORD.
e L
SAR samples the arithmetic flags, ZER(Q, NEG, CARRY, and
. OVFL . ' : !
- SDN is used to indicate a store to a/segmented memory
stream buffer. The left argument specifiés which buffer is to be
used. The rlght argument specifies the bus data source. —

- SIGN is a mnemonic that refers

o the 'most significant bit
of AR, AR[O]. |

SNZ samples only NEG and 2ERO flags. A conditional branch
on NOT CARRY may'be specified in the same microinstruction.

‘54 e

SR is the 16 b1t satus register. The least significant 8
bits are the negative, zero, overflow, and carry flags.

SRW initiates a memory fetch cycle for the currently
selected segment., Its right argument spec1f1es the segment \
offset address. : L

- SSN spec1fles a data fetch from a segmen*ed memory stream
buffer. Its right argument specifies which stream is to be used.

.. SWW initiates a segmented memory store cycle. Its right
argument specifies the segment offset.

VSIGN refers to SIGN EXOR (AR[O] OR AR[1]). It is used as a
shifter input. :

e WDO is a widow reg1ster array used to store frequently .
referznced segments. WDO is currently limited to 8 values

accessed by subscripting.

—_—

—]
S

WDR Is\the windoe address register used to hold the

_ currently selected\segment address.
<
WORD functions to ietu/p/’/\aﬁbroplate index 1nto LOCAL or

S arrays. /)

. XR denotes the X-re Yster which is used as a secondary
accumulator. It may be applied to the ALU-B input. XR is also
" used in double prec151on shifts and rotates with AR.

ZERO is a status flag which represents the inclusive NOR of .

7e;;7§EU”og;Vpi;§ﬁefter a sample operation.

55

_ CHAPTER ¢ R

SAM 1.0

SAM has been revised to correct some deficiencies of MK16. In

this chapter, an implementation of SAM using a new

Amiéroprqcessor'chip is exglqred. In QdditioQLWthé suitability of
comhercial afithmeticfchips is examined. The new version, SAM
1.0 uses a microprocessor chip épecifically désignedas a
control processor,>§J16 [39], ct;'figuré 4-1. SJ16 incoréorafes

a 16 bit testable SR, a case statement, a separate count

register, and the ability to test external status signals in one.

cycle.}:ifie time has been reduced by limiting the data flow
possib in ohe“cycle.varrently implemented versions run at 4

to 5 MHz. Extra parallelism is present in this.chip. A 3 bus

datapéth allows dyadic microactions in one cyéle, althoﬁgh there
arg réstrictibns on the destination register. . | |
The architecture of SAMjr was also changed to reflect new
requirements, cf. figure 4-2. The general purpose data buffer
was removed since an iﬁcréased numbeé df intgrnal fegistéfs‘
allows them to be u§:d in place of DB. DB is now a specialized

set of registers in OVU and is not used in this chapter. The

data bus shown in this figure corresponds to the external SJBUS

in figure‘4-1.

56

DATA PATH

——— ————

DECODERS DECODER - O
CENERAL o XSHIFT COUNTER ,2€
REGISTERS ’

A‘\!P/ 1 R b J, L

ABUS

BBUS

cBus

) h ¢ h b T V
. ,_:\/Jr_ : o
STATUS KEG
1/0 . i N CARRY

REGISTER

MICRO-

- ‘ o -
STACK [+ TOS L TREC | ACER |1
l)
- - ' 3

CASE - INSTRUCTION
ADDRESS
MRC e
CALL NEXT
RETURN

~ _Figure 4-1: SJ16 Microarchitecture.

. SR ~ ZERO
1 of 16 SELECT OVFL
zC
MESSAGE :
SELECT i

" Memory streaming has been implementéd invthis\system.'A

stream is set up by loading a segment number to select a segment

and startiﬁg a memory-fetch.cycle.with a SRBkor SRW
microoﬁeration. After a one cfcié delay, data can be fetched
with SSN, which also initiates a new fetch cycle if the last
buffer data word is read. Address translation hardware is
pipelined to provide one cycle response. A write stream is

similar. Data is simply written into the buffer. Writethrough is

performed whenever the bufter becomes full; ']

57

A 48 bit microinstruction‘controls the datapath. Sixteen

blts ‘are now available to control SFU's via -the control bus, 8 —

each for source and destlnatlon units. It xS—new pess¢b&e—tomﬂ~~

specify different reglsters in source and destination. Up to 3
or 4 microoperations canwbe specified 1nrone m1cro1nstruct1on.
As in SAM b.S,‘micrsoperations are described by a set of
mnemonics, Some new terms arevCASE, which perforqs a 16 way
branch on the 4 least ‘significant bits of SJBUS, COUNT, which
tests aqé.increments:the 16 bit counter, SD (segment
destipéggén),lwhiCh'writes bys data into a WDO data buffér, SS
(segment seu:ce}, which reads a WDO data buffer onto.SJBGS, and

? /S

SWRITE to flush a write data buffer into memory.

r

58

. . o §J16 and <
- ' ‘ CONTROL . | ’
: o STORE
: A 4 _ ‘]
PAGE | —t——
SHIFT ¢ > DS
l i ‘>) .) b-____-j '8 4
R | WDO | OFFSET . | L puaL |,
, ' k —+3> PORT ANOTHER .
| MEMORY | pRroCESSOR
[’:ES, 5 c . ~
an— B —¥—
MUx' : N FPP
ST
T‘ P
A .
SAR H K &
3
\ 0
; SEGMENT
o - o F PAGE - -
: TABLES o,
,3 16 ¢
Y
Ve ATB
» ‘ - -
S l A -
' A § X .
SEGMENTED 1 MEMORY [|
MEMORY F—~31 BUFFER ,
] 2 \
A} - ————-

Figure‘4-2: New SAMjr Architecture.

(

58 ‘ -

4.1 System 1

The mlcroprogrém fragment 16 f1gure 4- 3”sh§;§ the loop
section of a size specific vector DLR m1croprogram gggiamo;er o
processor SJ16 system For compar1son with SAM 0.5, memory
'streamlng is not used. The SS microoperation initiates a memory

data transfer tqlSJBUwaithout‘startiﬁg a new/Eetch cycle. Loop

performance is 10 cycles plus action.time for 16 bit data, while
° { . - ’

a 32 bit version takes 19 c&cles + action tiﬁé:mThe igérgased
number of’cycles is reguired because memory accesses take 3

cycles instead of 2 as in MKI16. Th&s can be transparent to the
micropfogram; If a memory fetch is not complete when tﬁe datalis
reguested with a §S br SSN microoperat}on, a wait cycle 1is o~
'inserteg. With memory streaming,\onlyts cycles plus action time |
are reguired for 16 bit data and 7 cycles + action time for 32

bit data. Action time for 16 bit add is two cycles because the

VLOOP16

C DMU control loop for 16 bit diadic actions
C Counter is loaded by calling function
LOOP:
LEFT SRW R{LINDX] '
" RILINDX]<-R{LINDZX] PLUS D '2’
R{LO}<-SS left

RIGHT SRW R[RINDX] L
- R[RINDX]<-R[RINDX] PLUS D '2'
' R[R0O]<-SS right | 7
- OPS EXEC R[ACT] '

DEST SWW R[DINDX]
->BRROR IF OVFL A,R{nzunx]<-a[nznnx] PLUS D "2
->LOOP F -COUNT A DEST SD R[Do]
A SWRITE DEST
,ERROR YCALL VRECOVER

Figure 4-3: SJ16 ztor Control Loop for 16 bit Data.

60

destination register is not the same as a source register.

Multiply takes approximately 16 x 2 cycles using a new mulop —— ©
instruction unlessra'fast ﬁultiply trading space for speed is

used, This can be impleméntea using CASE to test 4 bits at once.
Memory transactions severly limit performance without memory
streaming; therefore further discusion will'assumé its presenée.‘

1

Benchmark 2 using algorithm 1(a) is set up as an outer .

- procedure to con;rql,thgrpg;grrz loops and a call to a vector
inner product roﬁtine to handle the inner loop, cf. figure 4-4.
This‘function is called directly if both operands are vectors.
This structure is not costly since a call can bepdcae in
parallei\with other microoperations and also because this inner ~
loop 1is primarily responsible for overall performance. As in SAM
0.5, the standard interface caused probiéms. Again DS was used
for temporary storage,'but introduced significant overhead; The
,ha:dﬂazeﬁaguntarAﬂasgnntﬁnsedginzglocp_counLinggsincemitfisguSedggggf
in the multiplf microprograﬁ. A size specific vector dot product
results iﬁ é loop time of iofcyclés plus action time for 16 bit
data and 15 éycles plus aciion time for 32 bit data.

Extra support for matrix multiply can be ihplemented with a
combined multiply accumulate action to reduce overhead. Extra
aecoding is also needed in the format routine to verify that the
op syllables are ™+" and "x". This results in a loop time of 6

cycles plus action time for 16 bit data, cf. figure 4-5, and 8

cycles plds action time for 32 bit,

!

61

. | 4 \
 DOTA16 | \\

C DMU control loop for 16 bit Matrix Dot Prbduct

C R{OP] contains first action of DOT Al o S T
C R[OP2] contains second action / -
DEST SWwW D'0’) "Start dest ream at 0 offset™
LOOP1: ‘

R[RCOUNT] <-RSHIFT 0,R[M] N\

LOOPZ‘

LEFT SRW R[LINDX] "Start left stream at é&rrent col of A"
R{COUNT1] <—-NOT RI[K] v ,
R[T} <-R[M] MINUS R[T]
R[RP}<—LSHIFT R{T},0 "R{RP] po;nts to current col of B"
CALL 'VDOTA16' A R[T] <-R[M] : N\
->ERROR IF OVFL A dest SDN R[DO]
R{RCOUNT] <=SF R[{RCOUNT} PLUS D'-1" S wr¥w~~ﬁ~
~>LOOP2 IF -ZBRO -
R{LCOUNT] <-SF R{LCOUNT] PLUS D'-1'
~->LOOPt IF -ZERO A R[T] <-LSHIFT R{K],0
return . . ;
ERROR: CALL'RECOVER' \ "Size ovegflow"

VDOTA16
DMU control for general 16 D1t vector dot product
left is a simple row vector
right is a col vector with step speqTXied RIT]
Starting address of right in R[RP]
LOOP: RIGHT SRW R[RP]

R[LO]<—COPY SSN left

R[RO]<—COPY SSN right

OPS EXEC R{OP2} — — —°

-> ERROR2 IF OVFL A R[LO] <—COPY DS[RQ}

R[RO] <~NOP R{DO]

OPS EXEC R[OP]

DS[{RO] <— COPY RIDO] "Save partial result”
~>ERROR! IF OVFL A R{COUNT?!'] <-SF R{COUNT!]} PLUS D'-1'
-> LOOP IF ZERO A R[RP] <-SF R[RP] PLUS R[T] |

return _ -
ERROR1: recover from actiont overflow
ERROR2: recover from action2 overflow

oNeNeNe!

Figure 4-4: Dot Product Microprogram.

e

MATMUL 16"

C DWU control loop for special 16 bit Matrix multiply
OP contains combined action code ‘ :
. DEST)SWW D'0' "Start dest stream at 0 eﬁfset"—ij e

LEFT SRW R[LINDX]) "Start left stream at current col of A"
R{COUNT1] <~NOT R{K] T .

" R[T] <—R[M] MINUS R{[T] '
R[RPJ<-LSHIFT R{T],0 "R[RP] p01nts to current col of B"
CALL 'VINPRD16' A R[T] <=R[M]

->ERROR IF OVFL A dest SDN R[DO]
RLRCOHNTl,<—SE4RLRCOUNT]AELUS D'-1' e
->LOOP2 IF -ZERO
R[LCOUNT] <-SF R[LCOUNT] PLUS D'-1"'
->LOOP1 IF -~ZERO A R[T] <-LSHIFT R[K],O0
return
ERROR: CALL' RECOVER' ’ . "S1ze overflow

VINPRD16 ’
. C Spec1al DMU control “for 16 bit. 1nnerproduct
C left is a simple row vector |
C right is a col vector with step specified by RT
C Starting address of right in R RP
LOOP: RIGHT SRW R[RP]
R{LO]<-COPY SSN left
R[R0]<-COPY SSN right
OPS EXEC R[OP] :
~ => ERROR IF OVFL A R{COUNT1] - <—<RLGOUN¥+%—PLUC B!
-> LOOP IF -~OVFL A R[RP] <- R[RP] PLUS R[T]
return
ERROR: CALL 'Recover’

Figure 4-5: Special Matrix Multiply Micréprogram,

"Algorithm b also has problemsﬁ;}th register contention, SO
DS was used to hold the current A[i,k] walue which is constant
for the inner loop. Innerloop time is 8 cycles plus action time

for 16 bit data and 13 cycles plus action for 32 bit.~

~
.

63

| , S
4.2 System 2

We geﬂ\look at system 2 using Sé16.fﬁnewfirmware.

structure is reguired to support.speciaﬁ function units if they

do not perform all dyadic scalar actioés. This was also true for
SAM 0.5 but detaili% discussion was deferred to this chapter
since SJ16 has better decoding capabilities. When DMU performed
all actions, the simple decode hiefarchy as used in SAM

0.5,system 1 was adequate. Even in this case supporting specific

vector actions would have improved performance. With the
.édditién of specialized slaves, a great amount of complexity was
introduced; First, in supporting vector actions, the fetch
routine has to know the sour;e of its data. Sincéreither operand
can be scalar or array type, four combinations need to be \
sﬁppoptea.‘This can be alleviated By changing the architecture

' 50 tgat scalars and vectors are accessed ideg;ically by th;\\\

-

firmware. Second, the data transfer destination now depends on

the specific action, so the fetch 'routine must know fhe action
code. In SAM 0.5, an external data buffer was used as a standard
intefface:between fetch and execdte modules. This was feasible
since an éxténded cycle time allowed‘external déta_manipulation
without berformanée penalty. With SJ16, internal data

manipulation is faster so performahce is better if data is
streamed directly to SJ16 registers. Also, since,hardxarewggggiyww,
streaming allows vector operand fetching in one cycle, sté:ingﬁ;gu
in intermediate buffers causes performance degradation. I} an {r

. /s
attached processor performs all data manipulations in-a@ -

¥

F{
64

category(ie. all scalar dyadic primitives), then interfacing is

simplified. However the earlyVSAM.systems,williggqublyxonlyﬂw,;; e

contain more primitive specialized processors. To cope with this
lack of symmetry, theffirmware structure was changed as’éhown inrl
figure 4-6. A.discussion of tpossible decoding mechanisms. is |

given in section 4.6. This st;ucture.necessitatés a large number

¥

of DMU action subroutines. This is necessary since hardware

support for scalars may be different. than for vectors. For
exéﬁplé,rif a Weiték féﬁé/és chipvéet [93]7i;7£;éd as a slavém
»floating point processor, flow through mode would be used’for
scaléfﬁprocessing, while pipeline que~could‘be used for
Qectors. This structure also allows specific fetch-action.
routines to speed up statistically £requent actions on SJ16.

Vector add loop time can be reduced by sacrificing structure and

FORMAT

[—setup data streams
-determine rank and
control mechanism

general special
vector A vector
control control _
and o
¥ Z/ | action)
_standard
scalar » N
. action

Figure 4-6:Decode Firmware Structure.

65

symmetry, and integrating addition with operand fetch, cf.

figu%e 4-7. The microprogram is small and simg;§;ggd~thus~doesi;~
nof/require rigid~stfuc:pring for easy understanding. The loop
time is 3 cycies £0x 36 bit‘integers, AJsimilar microptogtam

gives a loop time of 6 cycles for 32 bit integers. Thisvis the

limit for bus data movement so only increases in bus bandwidth

can improve performance. The cost is the requirement for

executable routines for vector versions of each dyadic action

for each precision.'This could have been dbne in system 1, but a
.one processor system may not have the m1crocode space resources
to allow this. |

VVDADD16

C DMU control loop for special vector 16 bit add
C Counter is loaded by calling functlon

LOOP:
. R[DO}<-SSN left .
->DONE IF COUNT A R[DO])<- R[DO] PLUS SSN rlght
-> LOOP IF ~OVFL A dest SDN R[DO]

CALL 'Recover' ,
DONE: dest SDN R{DO]

return

PR

Figure 4-7:'Special Vector Integer Add Microprogram.

66

4.2.1 §FU'intérfaciﬁg
~ In SAM 0.5, SFU interfacing sometimes resulted in 2 to 3
cycle overhead. In SAM 1,'memofy_st:eéming results in short .
vector loops, so‘overhead muét be reduced. A one bit message bus
is used to determine SFU sfatus. Only one condition can be

tested with this bus, but SFU status contains at least 2

conditions, overflow and busy. Testing for busy can be

eliminated by delaying the system clock if results are not ready

1

when requested. This 1is aiteady done for memory delays. All
other SFU conditions can.be combined into a single message that

can usually be tested in combination with another microop.

‘A four bit test bus was also considered for SFU status

determination but is unnecessary if the above techniques are

used. A new TCASE miéroop would be necéssary and microprogram

length would be greatly increased. There .is also a problem in

o

7iéé£efﬁiﬁiﬁéwﬁﬁé source for the test bus. .
We now consider each congiguration in detail. With a slave
attached as pér strucfﬁre (a) a straight forward implementation
.of VADD16 or VMUﬁlG without oveflap takes 6-cycles plus action
rtime while VADD32 or VMUL32 takes 9 cycles plus'actidn time. The
extra cycle over the one processor case is needed to bring in
fhe external status. The arrangement of microoperations allows

no parallelism since the conditional branches are adjacent.

~ Moving the loop check reduces- these times by a cycle.

67

- With simple overlap, loop performance.,is 5 cycles if action

< 2 for 16 bit operands and 7 cycles if action < 4 for 32 bit -+ -

operands. The greater resources of SJ16 allow us to attempt
further increases in loop performance. The ‘larger SJBUS control
space perhits multiplé addresses for functional units that allow
loading the last ope:épdrand~starting an action in oné cycle.

Use of these technigues and a rearrangement of microinstructions

-reduces the loop timerf the unoverlapped casetofggcyclesplus
action time giving a FRI of 1/4 for a typical‘one cyCle add. T
loop for 32 bit data is 6 cycles plhs'action time, .

Loop cycle time for the overlapped case is reduced to 3
A?ycles?if action < 2 for 16 bit data and 6 cycles if action s 4
for 32 bit data. FRf ranges from(1/3 to 2/3 depending on SFU
action time. With a simple output stage thelstart signal must be
buffered until the output is unloaded. With dopble-buffering,

full overlap can be achieved. T, is 3 cycles if action S 3

O 0
~

ko

ion £ 6 for 32 bit data

.

(ad

for 16 bit data and 6 cycles if ac
- giving FRI=1/3 to 1. The performance is the same for both th;'

simple 6utput énd'the'double buffered}bﬁtput cases for short
actions. =

Size specifie versions of métrix multiply algorithm (a)

were implémented. For structure (a), rinnerloop time was 7 Cycles
for 16 bit data if action time < 5‘ahd Ilicycles for 32 bit.da;a
if actionks 8. FRI ranges f:omrrzlto 1.4 dependipg bn the speed

of SFUs.

68

“ Sy

. . . S
4.3 Potential Arithmetic Processors]

Algoritﬁm {(b) has been greatly simplified through the use

of additional arithmetic units. With structure (a), the constant

J l,‘ P,
term A{I,K} can be Eigg/iﬁ\phe multipliers input buffer. Also,
the counter is now;évailablé\fbr loop counting. Innerloop time
with simple 6utpuf buffering fpr 16 bit data is 4 cycles if -
action time < 1,‘cycles and 6 9§cles for 32 bit data if action
time < 2 cyclesl\With doub;g/output buffering, complete overlap
. . — | /
is possible.) : \

—
“

L gm—

~

Now that some performance limits have been found for SAM,

the suitability of some commercial processors can be examined

with respect to required arithmetic unit performance.

. L .)
Texas instruments markets the TMS 3201Q with a Harvard

architecture and a high performance data path[86]. It offers a

two cyéle.36 bit integer multiply or pipelined multiply

accumulate. Eloéting point operations can be provided by

software. Eightysix cycles are required for 32 biﬁ floating

point addition and 43 cycles for 32 bit multiplication.
Unfortunaﬁely, the instruction set and chip I-0 interféce'limit
performance. Iéput and output feguire 2 cycles because of pin
sharing with instrucfion fetch. Testing for overflow regquires 2
cycles, further limiting performance. . ' , , o

Decoding of the action is QUite slow using normal call on

contents of aécumulator.‘Sevgn cycles are reguired to call and

return from;a subroutine specified by external data. This.can be

reduced éithéanrexternal IR usedrto ‘select the eurrent ™S -

action program. Thzs requ1:es 4 cycles, still much slower than.
SAM’s one cycle EXEC, and unacceptable for fast ﬂgalar actlons.
This ch1p may be more useful as an.independent. APUf“Lt can. be ‘

R
% >

programmed to execute vector operations, thus minimizing the
action decode overhead. TI has fntroduced a new product, TMS
3202b [87] which reduces some of these problems.,lt should bev
especxally useful for matrix multlply algorithm (b), since it
can have a large data memory.

Hewlett Packdrd has designed a CMOS chip set capable of
pipelined 3 cycle 32 bit floeting point operations and 6 cycle
64 bit operations [37]. It also ellows integer operations, It is
used in the HP A700 computer but unfortunately not offered for

sale separately. Using this hardware, a 4 MHz SAM system would

yield full perﬁermance with equal bus and action times.

Weitek markets very high performance chips for floating
point opeérations, WTL 1064/65 and 1164/65 [93,94]. They have a
pipeline mode that allows vector proceessing at up to 5 or 10
MFlops, well above current SJBUS capability. They have a flow
thrdugh mode that is well suited to DMU fetch»capability. -

Other coprocessor ehips are ayvailable with reduced
performance, i.e. Intel 8087, National 16081, Motorcla -68881., .
These allow much,Betzer performance than SJ16 microprograms for

floating\point arithmetic, but are often designed to interface

with specific processors.‘?or example, Intel's 8087 duplicates

70

some, of the master functions. It is wired in parallel with the

master, duplicating bus interface and decode circdisry. Both — -

processors detect an 8087 instruction. The maste! then allows

. the 8087 to cont;%l the bus and fetch ppefanas. Although the

8087 has functionally separate bus and arithmetic control, fetch
and actions do not proceed concurrently. since bus control is

busy following the progress of the master. This chip offers

floating'pointA?ddﬁtimg of 14 microsécoﬁdgﬂq;wzo cycles aE 5'MHz
and multiply E?ﬁes of 19 microseconds for 5ingle~precision’and
27 microseconds for double.vThis is much faster than SAMi
microcode but the interface causes iheffecient usage of the
chips processing power. Fried [32] reports only 15% efficiency
using this chip in an IBM PC system for a simple floating point
add. The rest of the time is spént loading operands, storing |

results, and synchronizing the processors; Of these, the

Natlonal 16081 floating pbint unit is the fastest and most

flexible.
4.3.1 Multiple APU Algorithms, A) —_
Multiple arithmetic chips can'be used to increase N

performance and relieve defzczenczes in chip desmgn. Although

some commercial arithmetic chips are available ﬁhat are fast and

permit p1pe11n1ng, many others are slow or unablé*to receive new

operands durlng an action. For Chlps with performance equal to.
da;gﬁfetch time but which do not permit loadlng=hgw operands

during an action, alternation between two such chips allows

~

<

r

overlapped operation of fetch with action, cf: figure 4 - 8. The

' vector add control mlcroprogram gives a result every 3 cycles 1f7fré

~the chip can perform the action within 3§cycles.

VADD16 . | | DR

DBA1[LO)<-SSN left " “4,6} o '
->done IF count A startaddert A1[RO)<-SSN right
Loop: DBA2{L0]<-SSN left .
->done2 IF count A startadder2 A DBA2[RO])<- SSN right
+ ->error! if adderlerror A dest SDN DBA1[D0]
DBA1[LO])<-SSN left :
->done IF count A startadderl A DBAI[Rle:SSN rxghtfmmﬁ74,~
->Loop if -adder2error A dest SDN DBAZ[DO].
check adder2 status and retover from error
errort: check adder! status and recgver from error
Done: store remaining results and exit
Done2: store results and exit

Figure 4-8: Multiple fasSt chip control.

With slower Chips,vmultiple units can be used to keep up to
bus transfer rate, cf., figure 4-8. Thls microprogram for vector

addition u51ng threeSZlow adders gives a 2 fold speedup. If add

tlme is 6 cycles, then 2 other adders can be serviced wHile
waiting for results. In general, we can fill in the time waiting
ror'an'action to*complete with servicing of other units. With
gnough chips,‘acrion throughput can be maae equal to bus
transfer rate. For a given action delay, Tdel’
1+CEILING{ T3el / (3 x data size)} units are needed:

72

~,
S -
Y

VADD16 *~—.

S

' DBA1[L0]<~S>N left

->done IF count A startadder1 A DBA1[R0]< SSN rlght

DBA2[L0]<-SSN left
->done2 IF count A startadder2 A DBAZ[ROIk ~-SSN right
DBA3[L0]x-SSN left

;ijSN right

~->done3 IF count A startadder3 A DBA3[RO]
DO

Loop: ->error! if adderierror A dest SDN DB
DBA1[L0]<-SSN left ,
->done IF count A startaddert! A DBA1[R0]<-SSN right
-->error2 if adder2error A dest SDN DBA2[DO]
DBA2[L0]<-SSN left

->done2 IF count A startadder2 A DBA2[RO]<- SSN rlght S

->Loop if -adder3error A dest SDN DBA3[DO] -
-~ check adder3 status and recover from error
errori1: check addert status and recover from error
error2: check adderz status and recover from error
Done: store remaining results and exit
Done2: store results and exit
Done3: store results and exit

Figure 4-9{ Muf?iple slow chip control.

»

«

4.4 System 3

~ System 3 is 1llustrated using a Weltek ch1p set, " cf. figure

4-10. The ch1p set is connected to a two port 1nterface reglster

buffer (ABUF). The chlps are connected in parallel -on 2 input
buses and an outpgt bus. APU control enables 1nputs/outputs 1n
the chlps. Bus control is not shown.zIt is connected to the

control ‘bus and:respopds ‘when APU is selected as a source or

destxnatlonqrxt enables “input/output fkgg ABUF reglsters and

produces the’ start'51gnal Action codes are loaded,lntooAPUIR '

andrope;ands are loaded,lnto ABUF[L_RJ A start,s,lgnalT

generated by the bus control interface;, initiates actlons. APU

‘control then codﬁletes the actxon without further DMU

R I o k : ' :

N, o713

B

’

start = === mmemes- e '
______________] 1
! CONTROL |--—=—-—remem—m—c—- e {)
________ 1 4]
1 | .
APUIR . mmemmmme—aeC i - R
S _ | . 3
J |APUSR R A)
B | |
U —
S | | | {
R 4l B! WTL | > >~ B! WTL | R
S 32 i b : ¥
16 o1t 1064 ! E%w st 1065. 1 D-
AR O A - o l Y ° i :
A = A | H ‘ 1 A -
b | : ,,
o}
> et T\
32 ‘
D — < - .

Figure 4-10:APU Weitek Chip Set Control.

intervention.

For the benchmarks in this study, APU needs only a limited

' instruction set. ADD, MUL, MULACC ADDOUT, MULOUT, CONVERT

‘instructions are defined for each szze.

~

Timing for DMU and.APU is shown in figure 4-1i for vector
igner perucr. APU runs at twice the clock rate of SAMjr. DMU
loads the last operand and 1n1t1ates APU start. APU then decodes
the action transfers the operards and starts the required
action.: In this example, operatlon tlme can last up to 4 1/2

5 [

cvcles or 900 nanoseconds, much longer than the 360 nanoseconds

;

required for a WTL1064 to complete a 32 bit/multiply. "Latch"

fd

74

- DMU ' - APU

SRﬁ addreés
SSN left

" SSN left

SSN right _ o L
UNLOAD 1064/5
start SSN right _ latch

Sloop _ _ _ . LOAD AB 1064/5

SRW address _ ‘ o ' | :?

1

I

1

I

‘ |

SSN left .
: ;

]

1

i

_ i T op
i
o SSN left _ P i B
! .
I
. - ! ~
SSN right .l !
1 B
| -
_ | UNLOAD 1064/5
I
.) i
start SSN right _|_ latch |
. A ,
| .
loop _ _ _ _ |_ 4 LOAD AB 1064/5

Figure 4-11: DMU and APU timing diagram for vector inner product

shows where £he bus input is latched into ABUF. The load and

€

75

. The result is aocumulated in the WTL1065 output reg1ster,andﬁg_4;;””

unload commands contol internal gatiné in the WTL 1064/57chips.

}stored when control returns to the calllng routine..

- With the interface desctibed above, innetloop time is 5 Q@
‘ cycles'for single precision floating point'data, A similar |
ihteger unit giues a innerloop time of 3 cycles if actions
compléte in 3 cycles for 16 bit data. Innerloop time for 32 bit

data';as 5 cycles if action < 5. Benchmark tlmes will be the : ,
":LKZ ‘ A ; R - L. . . : - _ B e ,i,fi,_.,
same as System 2. ' . -

A s1mple extension to system 3 enables h1d1ng of APU

1 4

hardware complexlty Replacement of the input- output data buffer

with s1mple f1fos allows the case instruction to be used to .

:Jdecouple DMU aud}APU aigorithms, cf. figure 4-12, PMU vector

action code is aimplified. Cont;ol complexity has not been
VLOOP16 |

->'COND' CASE APUSR - o
COND0000: '"Load new operands and store result”
APUIN<-SSN left
APUIN<-SSN right
—>DONE IF COUNT A dest SDN APUOUT
->'COND' CASE APUSR
COND00O1: "Load new operands"
d APUIN<-SSN left
APUIN<-SSN right A inc R[@lffcnt]
->DONE IF COUNT :
-> COND' CASE APUSR
CONDO(10: "store result”
->DONE IF COUNT A dest SDN APUOUT A dec R{diffcnt]
->'COND' CASE APUSR _ ‘
COND0O011: "wait one*cycle” S T
->'COND' CASE APUSR .
CONDO1xx: "Determine error and recover” o A —
DONE:ctore diffcnt results and ‘exit

Figure 4-12: DMU control code for 16 bit vector dyadic actlons
using case

76

N\,

AN

eleminated, but transferring it to APU creates a better

. ' . : , .
functional system distribution and improves module independence.
. R \\\\\ . , ’ V . °
DMU delivers all data to the input-g and stores results from the .

-output—q‘when\aYailable. The case instruction examines APU

status to determfne the appropriate process. Only input full,

output empty, and errpr(overflow) need to be tested. APU

. AN » o i ‘ :
architecture is now transparent to DMU code. If allowed by the

o~

| hardware, p1pe11ned operat1on proceeds w1thout ‘using normal

hardware spec1f1c software p1pel1n1ng Because queue "length and
data latency are unknown, DMU muatAkeep track of the number of
data sets in process. Thie is accomplished by‘keeping track of ;
the difference between fetches and’ storef in R[DIFFCNT]. Upon
loop complet1on this register contalns the number of results
that still need to be stored. Loop time for a 16 bit vector loop

is 4 cycxes 1f action t1me is .4, This could be reduced to 3

cycles 1f a test bus and a TCASE microop were 1mp1emented For

32 bit data, vector loop time is 7 cycles 1f\@ct1on~t1me < 7.
CASE can also be used for uector innerproduct control,
resulting in a‘4rcycle 1oop;for 16 bit data and 7 cycles.for 32
bit data. However, control can be simplified"sincejonlyra single

process needsrto be handled. If FIFO full and AbUderrors are

combined into one message, the fetch loop'can be controlled with
an IF, reducing loop time by a cycle. Thispassumes—that.APU:is~'~~Wf
execut1ng a combined mult1ply accumulate aetaon—andrho}dxng e‘f;ma**

results until the end of the loop.

.77

Further perfofmance gains are possibﬁekif‘APU qontains
internal data memory. If the memory is logiggllz_gggigggg;gg;;;;7 -
FIFO, and results are au£oma;icallystored there, store cycles
*‘can be saved in vector control loops for those formats that
" leave results on the stack, |
i.e.»SLR,,SLS, SSR

, and fetch cycles will be saved in formats that reuse results,

‘i.e. DLS, DSR, SLS, SSR, RSR, LLS, S§SS.

SLS is Ehe most frequently used ADEL format, so this technique
should iﬁprove system performance. DMU code for matrix multiply
algofithm (b) is simplified since only one process needs to be
conﬁrolled at a time. A simple IF test for FIFO FULL can be used
in place of CASE for the memory fetch loop,‘and overflow |

“detection can be deferred until the end of the vector action.

Segmented memory allocation for results can also be deferred

until after this check. This saves an extra allocation when
ovefflow‘does occur. A one cycle innerloop for matrix multiply
algbfifhm (b)‘pah be devised if APU uses a pipelined multiplief~.
and adder. The data memory must be large enbugh to‘hdld a
complete row vector of 64 bit precision, or if a smaller memory

is used,'a méthod of‘autohatic overflow into‘segmentéd memory is
heedéd. |

With thisaindeﬁbndence, APU architecture can be modified

transparently to DMU algorlthms, i. e. queue length,or,numbeLAQL

funct1onal units cah be changed or multiple SFU's can be added

to match ‘bus performance. Figure 4-13 shows how this arrangement

78

~

extends the system hierarchy.

. - 1 ECTU

L)

SFU's

Figure 4-13: SAM system hierarchy.

79

4.5 Summar} o£ Performance

i

¥

Table'4¥% summarizes SAM 1 performance. System 2 with - - -
suitable slavé pro;eSSOrs gives optimum performance for
benchma;k 1, double that of system 1 even for simple actions,
System 2 results assume use of integer arithmetic units that can

keep up'to'bus data movement and allow full overlap. System 3

performance is best for benchmark 2 because of its action
B . » .) \\‘»/,l’! . .
, pipelining. Benchmark 1 perforimance is broken into a fixed setup

time and a per element time. For benchmark 2, only the total
. ‘ “ .

time is given for a 2 by 4 with a 4 byv2vm§tgix.

o

. TABLE 4 - 1: SAM 1 Performance (cycles)
SAaM - SAM SAM |
1-1 ' 1-2 - 1-3
VADD 1inti16 40 + 6N 42 + 3N 42 + 3N
int32 42 + 11N 44 + 6N 44 + 6N
. UMUL int16 40 + 40N 42 + 3N 42 + 3N
int32 42 + 200N 44 + 6N . 44 + 6N
MATMUL int16 863 191 168
(A) int32 2265 303 210
special
inkl6 784 ‘
BN N) ’ o
F1£32 215 *w
MATMUL int16 = 829 171

(B} int32 2188 236 | »

. *w Weltek chip set was used.

80

,, T
4.6 Space -~ Time Tradeoffs 7 Y

—~—_ A= -
We have seen that execut1on time performance is 1mproved by

supporting specific action routines in DMU, There are however
~ .some implementation costs associated with this support. Problems
stem from the extra decoding,necessary to find the specific
action'rootine and the amooht of microstore needed for the extra

T

v i | ‘
acticn microprograms. We now discuss some decoding»strategies

———

“and the cost associated Wlth ‘each. Two mechanisms for handllng
this were examined One method is to 1ntroduce a class category
into the decode hierarchy. Since data type and size is unknownﬂy
by PMU, class information must be generated by the‘format B
routine or. GVU from operand tag 1nformatlon and the actlon byte.
- Action op code can be dynamically modified by appendlng a fleld

(which could be wasteful of encodlng_space) or by table lookup. «

The format routine could do the table lookup instead, using IF)

or CASE but this would increase setup time.-

Class can specify the device which performs ahvaction. This
saves microstore space if a device can perform multiple actions.
A variation is to let class distinguish between standard and
special actions. This permits;axdifierent action EXEC table to
be used for special actions. The extra decode time decreases
performance slightly'for‘scalars and Short.vector .

Another alternative is to defer.the operand fetch until the

action routine and let the action routine fetch operands since.

the destination will then be known.

81

&

The problem with thesetstrategies is that a large number of

»

action routines will be needed. Generic actions may be decoded -

into versions for. each of the var1ous argument type combinations
and data sizes. i.e. 4 combinations of scalar and vectors and 4

data 51zes. This is 2 b1ts for each field, 1eav1ng 4 b1ts for

action spec1f1cat10n. So, using a 51ngle EXEC for decodlng, only

16 generlc actions can be supported if S1mp1e symmetrlc f1e1ds

are used Languages such as APL have more than 16 deflned

primitives but less frequently u§%d_pr1m1t1ves can be composed
from the 16 most common. APL actions are unsymmetric in that not
all data types a:e Jalid;for all actions, The 8 bit attion code
could be more fully utilized to support more actioqs. More_thah
16 primitives can be dir;ctly supported by using diffetent EXEC
tables after the action class is determinad. |

So far problems with mixed data sizas_have notkbeen

considered. For 16 bit actions, both operands are 16 bit,

existing-microprograms will work. For 32 bit actionéf’one'
operand could be 16 bits. This can be tested with the IF
.microoperat;on if SR is-preloaded with 1eft’and right sizé tdgs.
This compliéates the microprogram, but does not degrade’
performahce._Altérnatively, mixed actions can be supported with
a cost of extra decode time and extra cantroi store. Perfogmance
may be increased for some actlons. ie. A 16 x 32 bit multiply

should bevapproxzmately tw1ce as fast as a 32,x 32 bit multlply

on system 1.

82

L
4.7 Glz;sﬁry of SAMjr Microprogramming Terms

®, L - . [

CALL is a mechanism for accessing microprogram subroutines.

CALL is monadic and must therefore be the leftmost operation in-
a microstatement, except for a label.

: CARRY is one of the SJ16 status flags. It is set by ALU
operations wh1ch propagate beyond bit 0 if flag sampl1ng is
‘enabled (SF). ,

COUNT causes the COUNTER to be incremented and the zero
count flag to be sampled. COUNT returns the current ZC flag
value for conditional branch1ng Conditional branch1ng is not -

- mandatory. e S — ———

- COUNTER is a SJ16 hardware COUNTER which acts like a '
special register. It may be loaded with any value. COUNTER may
be incremented in parallel with any other operations in SJ16 or
SAMjr. Since the state of the zero count, ZC, flag may be
uncertain, it is recommended that the counter be counted once
after being loaded and pr1or to entering a count loop. This
prevents a spurious loop exit. ’

D is a monadic function which converts a decimal string
into 1nternal form. It is intended for use with microinstruction

l1teralsw

DEC (decrement) requires the 1mpl1c1t use of a register
which normally contains -1 called R[DEC]. Therefore R[A] may be
decremented—andfrestored—in—R{Ai —but—a BBUS source may only be
- decremented and stored in the T-register, R[T]. Another way to
decrement is to add ‘or subtract a literal from the ABUS value.

DS, DSPOP, DSPUSH control the data stack which may be used for
convenient and fast context storing. The top 8 values of DS may
be indexed like R. When DS is pushed (DSPUSH) or poped (DSPOP) ,
all 8 values are changeds

& ,

EXEC is used to decode microprogram addresses. The least
significant 8 bits on the data bus are used as part of the entry
polnt address. The exec name table name (left argument of -EXEC)
is used to help make up the rest of the entry point address.
Exec name tables can be entered 1nto the microcode data base for
use by the linker.

INC (Increment) assumes the ava1lab111ty of a register
which contains 1, R{INC]. Increment may also be accomplished by
adding or subtract1ng a literal from the ABUS source. See DEC.

-

LOCAL applies to nonsegmented memory references. Local -
memory is word addressable only. Local memory requests are
initiated by one of the memory gualifiers: LR, LW (with L
underscored). Local memory requxre5~exactly—zﬁprocessorAcycies—~wrf
to complete. Read is an address cycle, then a data cycle. Write
is a data cycle, then an address cycle. Local memory is not - — -
required for a SAMjr configuration but dual port ‘memory has a ‘
local memory interface. . :

LSHIFT moves ALU output left one bit: replac1ng the least
significant bit with shift bit (SB) or NOT SB., !

MESSAGE is a flag vhich shows the inclusive ORxof all other
messages Or interrupts. It can be tested to avoid systemat cally
testing all other messages. .

MINUS, ex. ALUA MINUS ALUB, %erforms ordlnary subtractlon.
MINUSC is subtract w1th borrow from the previous operatlon.

-~ NEG is a SR- flag.,NEG reflects ALU 51gn output after any
sample operatlon.. _) , :
NOT is d monadic 1's complement functlon wh1ch may be -

applied to any ALU BBUS 1nput. ' .

OVFL is the Arlthmetlc overflow flag which may be set after ‘
a sample operatlon. . "

PLUS performs Diadid-ad@ition;

PLUSC is ALUA+ALUB+CARRY, .

R refers to the general purpose register array. Registers
are denoted by a subscripted'reference to the R array, viz.
R[X]. R contains 25 general reglsters, 4 restricted access
reglsters, ‘and 3 special purpose reglsters.

REG is a compiler: pseudooperatlon which serves as a
variable declaration. No function is performed by REG in an ASP.
Any variable defined in a REG statement may be declared as local
in the function header S0 as to av01d prollferatlng global

" names.'

RSHIFT like LSHIFT, appiles to the ALU output. Shift bit
(SB) replaces the most*51gn1f1cant bit of the result wh1ch is
shifted right by one bit.

SAR refers to the segment address registers which hold
Window (segment) address offsets. SAR is a 4 by 32 bit array.
See WDO.

SB, the shift bit is updated whenever a 1 bit ALU shift
functlon is ‘executed. SB is useful for multiple prec1S1on ~
shifting and for complex arithmetic functions like multiply and
divide. SB is kept in the,statusereglster for optional testing.

SD, SS, SRB, SRW, SWB, SWW, SSN, SDN, SWRITE are segment . -
memory control m1crooperatlon§ Segmented memory references are
initiated by one of the quallflers- SRB, SRW, SWB, SWW .
(segment-read-byte, segment-wrlte byte, etc.) placed to the \
left of the address value in a microAPL expression. Memory data
cycles use one of: SD, SS, SDN, or SSN (segment destlnatlon,
segment destination-next; etc.)

SF (sample arithmetic flags) can be used anytime that new
values for ZERO, NEG, CARRY, and OVFL flags atg required. New
values are not avallable for testing until t follow1ng cycle.
The flags are defined as follows:

NEG contains ALU result bit 0 (the sign bit)

ZERO indicates that all ALU result bits were 0

CARRY indicates that an arithmetic carry or borrow occured in
bit position 0. i

OVFL indicates that a 2's complement overflow occured

SR is the SJ16 satus register. State information can be .
‘manually loaded into the status register or 1mp11c1tly loaded by
sampling flags. Sample flags (SF) causes CARRY, OVFL, NEG, and
-ZERO to be updated for testing in the next m1cro1nstruct1on{
COUNT causes the zero count flag (ZC) to be sampled. Shift
operations update the shift bit (SB). .

WDO refers to the WDO register array used to store
"frequently referenced segment addresses (window values). WDO is
limited to 4 values accessed by subscripting.

XOR, ex. ALUA EXCLUSIVE-OR ALUB, is a standard dyadic logic
function. ‘

zc (zerocount) is set when COUNTER is incremented .to zero.
In tight loop action the counter normally exits with the value
1. ‘ l

ZERO is a status flag which represents the 1ncluszve NOR of all

ALU-OUT bits after any sample operation. It is set if all bits
are zero.

85

s s

- CHAPTER 5 - T e e

SUMMARY AND CONCLUSIONS

-

This chapter. summarizes results and compares performance of the

‘architectures examlned.in chapters 2, 3, and 4. First, some
/
results on scalarﬁDEL proce551ng are presented and compared to

_vector proce551ng.\Next performance of SAM 0. 5 1s compared to

that of SAM 1. Then, SAM performance is compared?to~that_of a
popular workstation and two miniCOnputersg;Aithough only one of -
these supports vector procesSing,hthe others represent the Cchief
market(competition for a sytem such as SAM. Next, the 1mpact of-

the techniques used in this thesis 1s discussed. F1nally, the

-

the51s conclu51ons are presented and future research d1rect10ns

are indicated. '

& . 4

5.1 Scalar vs,Vector'processing

Benchmarks:were coded as scalar algorithms and simulated
SAM 0.5 results were obtained for a FORTRAN type DEL. For i6;bit
data,usinc a scalar algorithm, vector add requires 20 + ;10ﬁ |
cycles and vector multiply takes approxinately'zo + 163N‘c§cles,
Matrlx multlply for 16 bit data required 6634 DMU cycles:and .
1401 PMU cycles. EMU time is just for lnszructlon,fetch,and B

decode. Verification was not modeled. Performance of scalar

processzng‘zs 5 to 10 t1mes slower than that of vector

86

' processing. Software complexity and memory requirements are also

higher for scalar processiog3—sgreamingrforther~behefigs vector -

processing, increasing the performance ratio of vector to scalar

. ' - - [3
processing. With additional processors, vector processing is

st111 faster. ‘Although extra processors can help speedup some

types of scalar proce551ng, 1t is not ~easy to make use of

-~

R N —t — S
e e b e e e — —

techn1ques SUohvas errlapped operat1on.

VECTOR

»

MULTIPLY

500 - .
VECTOR [
ADD ;
400 | _ 2 N S
X
c
" ,
. 300 . o T
“ %
o 1
- 0 0
w _ o]
: v x. v .
200 - F, F N
’ E c S E ;]
E - E
ER R T T R 10 T
I T T "
T H 1) H "y)
100 | leeees : c c Il
TI1L) E ,) R E T R
pRELH - H © H '
geee| | A N E A e E | .
2121 ' O P
IIILL D T D e 1 '
0 | - laaras 4] [avd] 1 | [fee] -
PMU DMU DMU

Flgure 5-1: Functional Distribution of Benchmark - using =~ =~

Scalar Proce551ng

-

£

é\From figure 5-1, it cahxpe seen that the functional distribution

N

87

I o ——

of the scalar version shows little promise for significant

speedup with‘simplermepppd§. ¥p1§§pl¥m;§@e,yillwbewreducedrwithlﬂfﬁmw

a combinational multiplier chip, but further improvements are

limited. Even if data manipulation Eimeris reduced, PMU Elme‘
will become a’botileneck, |
,5.2’Compéri§on of SAM .5 and SAM‘1.0;‘> - o M L
’Fighre 5-2 compares benchmark performance on some SAM 0.5‘;
2.0]|-
IS \ ‘ . | ’ ’\Vadds = 4
1.5 o special n
7
1.0~ e A
172 —
S
b - : —e
0.5(— .
|~ vada . —*"
— Y)
vadd '
vmul , -
0.0 sys 1 Sys 2 sys 3 sys 1 " sys 2 sys 3
SAM 0.5 SAM 1
Fiéﬁf§'5f2 : Comparison of SKMWdf54§ﬁﬁ‘SKM’T.0”"" T
88

/J

and SAM 1.0 systems uslng size spec1f1c 16 b1t 1nteger

lm1croprograms The best results- ﬁrom eaeh—systemAare—ased~for—4——~ﬁ
comparlson. System 2 data assumes thataar1thmet;o UH%QS— IO
completed within the t1me requ1red to fetch nev data. Th1s 1s

. reasonableS1nce'm§ﬁ%:§amge£c1al chips are avallable that%can
meel this requirenent. Perf rmance is expressed as ﬁiliions of

'"'?"op;zationsper'secona(MOPS). One can see from the slopes of the

‘lines going@fromﬁsystegrl to system 2, that SAM 1 tates better -

advantage of slave capabilities; It is also faster due to
N . V ~ - - N ‘

decreased cycle time.

!

/
- ,‘ -

Y

.. 5.3 Comparison with other«systems
/> '
&

Benchmarks were also run on some other computer systems ‘to
compare performance. ;L add1t10n, t1m1ngs for some benchmarks
were obtalned from man facturers literature [37]. Table 5-1

o~

~—‘:;/L;shows the~performance—of*SAMurunnIng*at SMHz*compared*WIth‘that—‘“—

of some popular super mini computers and workstations. SAM

outperforms much more costly systems by one to two orders of h\\\

~
~

magnmtude, To be fa1r, VAX and SUN systems include memory h

management and memory protection features not supported on SAM,

'On the other hand; the scalar.C benchmarks do not include
yerification of vector operand<cpmpatibility or checks for data
size overflow. Thus, if there is a chance that integer benchmark

results will overflow, the.result should be declared as float,

—— »

in which case the compiler will include extra conversion code.

Matrix multiply results were for 2 by 4 and 4 by 2 arrays.

83

N\

- TABLE 5 = 13 Benchmark Performance Comparlson.

complled m1crocode

(usec)

SUN " HP

- ——————— ———————— —— —————— ———— - S e s S FE W R WSS SED G MM Gh W S WIS SN BT s B G G W W G W S e

SAM— — VAX
microcode complled
’ C
“Vector : ‘ /
Add 1inti16 9+, 75N
int32 9+1.5N 6+19,5N
Vector _
innerproduct
int16 -~ 9+.8N
int32 9+IN
- £1t32 9}1N,4_mmﬁf60i28N
" flte64 9+1., 60+35N
. MATmul
‘ int16 :
int32 42 640
fit32 43 620
flte4 55 790

o 14.3+3.5N
\%g;

. 50+62N .. 18.5+5.75N
504137N 18.5+6.5N
1070
1230
2430

SAM results are for system 3.

SAM floating point results use WTL 1064/65 chlps.

Relative performance of SAM will increase for larger arrays

:::j?tifﬂce*ftKﬁd:Stattnp;tImH:ﬁIit:helIESSéﬁigﬁificaﬁf:'Tf—SJBUS were44444
increased to 5?\b1ts, SAM performance for 64 bit data would

approximate fhat'given for 32 bit data. This would provide a

/fa?rer comparison with VAX. Using the familiar floating point

operations per seipndeigLOPS) performance rat1ngs u51ng 32 bit

vector innerproduct are 2,

SUN, and HP respectively.

While SAM's good performance is partly due totne}

' state-of-the-art Weitek ehips, a system~conf&guration~that

‘permlts full performance is also 1mportant

™

.07,

90

.03,

.35 FLOPS for SAM, VAX\

- 34 4
ThlS conf1guratlon

of SAM has closely matched DMU - APU requirements resulting in

~

e

b

almost opt&mal use of resoures. The Weltek ch1ps are not used in

P1p611ne mode Slnce SJBUS cannot devaer data fast enough— e

‘Comparlsoquf FRI, cf\ytable 5- 2 glves an 1ndlcat10n of how

; well the systems make use of functional unlts. Using the HP fpp'

hardware, “SAM loop time is 2 1/2 to 4 times faster than the HP.
A700 computer. FRI = 1 with this hardware, a threefold

 improvement in resource usage. Streaming, pipelining, and an

1mproved SFU interface account for thlS speedup. Matrix multiply

performance could be 1mproved f1vefold to a one cycle innerloop

using algorithm 2, local memory to hold intermediate results,

and a 32 bit SJBUS capacity. This is a topic for furthef'study B

" since the average use statistics cannot justify this extra cost.

However it 'shows a high performance p0551b111ty for special

purpose systems requ1r1ng a h1gh percentage of such processing.

SAM VAX SUN HP L
Vector Add . '
int32 .33 . | .21
Vector
innerproduct : s ' : ,
fl1t32 - 1.4 .5 o1 .3
MATmul .
£1t32 .7 .35 .08
Ve e
A
{ - .
N '

91

5.4 Memory Streaming

w
I .
- : Y

\ -

Memory stféahingﬁpurqu gut'tg;be an,important”technique"'”

for improJ%ng performance of vector pg@gg;sigglmlgﬁﬁmproves

performance due to decreased memory cycles and also enhances

system perférmadce by eqﬁalizing the processor workload. In -

system one withoutlstreaming, data fetch required two cycles
which tied up jpboth register and bus resources. SJ16 address

translation overhead can be avoided but the address cycle cannot

'usually be combined with another microoperation. StreamingifreeS'

up the bus address cycle and the translation time of wvirtual

memory systems. 7 o ‘ , - o

An on chip cache could perform almost as well but would

rd

need a larger data bus or block move capability to maintain

performance. Cache 5ystems require much more hardware support

- and increase minor cycle time due to address comparison

) overhead.'Streaming can perform better than a cache system for

vector algorithms since its performance comes from implicit

firmware knowlédée of data addressing and not from assumptions
based on statisfical‘sampling.“

Supercomputers use memory streams but in a more limited

way. Data streams are usually of a limited length (ie. 64 items

~on Cray 1). Performance depené%ﬂon a high degree of memory

1

interleaving with corresponding high bus bandwidth :equ&rgmgg;§ﬁi

and is affected by data location. Streaming has not been used in

microcomputers and could replace instruction bufferindlwith

simpler hardware. Its use would speed up access to scalar data

.-

92

that are larger than bus width ifvdata<5re in memorj.

'Streaming,can‘be,imple entedhto;reduce;soﬁé;;;;_;ﬂ’e"'"
m‘icrdpro,grem‘ming complexity. No checks for memory ready are o
needed if»a~memory controiler inserts clock wait states until‘
data is rea y- The microprogrammer);orlonger has to worry about

'memoryrtimingf- ie. does not need:to insert NOPs or wait loops;

Microprograms are shorter and more readablen Matrix muftipiy is *

simplified 51nce address polnters are not 1ncremented during
data fetch and therefore do not need to be reset to initial

values when reentering loops.

5.5 Separate Arithmetic ProcesSors" ' f,

While the use of slave ar1thmet1c units or ar1thmet1c
proce551ng units will not speed up the executlon of simple
actions, the1rfusefgreatly improves performance of those complex

actlons supported by hardware. Whlle statlstlcally not as

frequent as some simple actlons, these actlons are 1mportant
because of their” logg functional times. The extra chip area

allows hardware shpport. Multiplication, division,‘and\floatiog.
point actions can be 5upported with available{chips.,Dynamic
frequency data can be used to select those actions thet should
be supported by slaves.rﬁeing separate arithmetic units makes it
possible to overlap fetch-store with execute operations.

It was shown in chapters 3 ano 4 thatusingslaveScan-ik
eliminete the register contention problem for benchmark 2.
Simple control as in figure 3-11 (a) led to increased overhead

-

93

s

duefto extra bus cycles for DMU control'of slaves. The

additional control hardvare and data paths of system'3 reduced -

 bus traffic\and'improved performance for*mﬁitipie“actionsthhe”*”

~performance units, while overcoming ‘commercial chip design B :

extra paths'allowed definition of special multiply-accummulate
actions that increased performance by reduc1ng overhead from
data movement. This solves only the problems specific to matrix

multiply but will not work for a general dot product unless APU

mcontrolwsupportsmall;possiblemactions+eQfucourse;fthisﬁspeciaLgefegf

actlon must be decoded at some step in program translatlon or
executlon. On SAM there is a ch01ce as to where this is done.
Bufferxng of- 1npvt and ontput allows overlapped operatlon. ThlS
is most effectlve for longer actlons.

Pipelined functlonal units offer optimum performance

although SJBUS may not'be/gble to supply operands faét~enough to

" ‘keep up to some available high performance units. Equivalent

performance on vectors can be obtained with multiple lower Kt

shortcomlngs. Iin- thlS case, internal double buffering is not /
needed so avallable scalar or1ented unlts can be used. | ~
5.6 Firmware structure

Various firmware struoturing schemes were used. Current
quantitative measures of software complexity are crude, andrnoermr¥ﬂ
readily applied to mieroprogramminge Some }mportaﬂt %ae%ors for————

good design are modularity and module 1ndependence. With

" structured firmware, all hardware specific code is conta1ned in

94

Sy

changes necessitate recompilation of much of the system

orne small module;-Making changes is. relatively easy, requiring

only a new module and a modification to-an EXEC- table. In

standard horlzontally m1croprogrammed systems, 51mple hardware

P

firmware. It was found that hardware support can help maintain

good firmware structure along with good -performance. Without
hardware support module independence causes reduced performance

1ncrea51ng executlon and ma1ntenance costs. Full suppgrt of all

_ S e I

actions allows good functlonal partlonlng of control}< thus
simplifying DMU algorxthms.‘ptherwlse, more complex firmware

structure is needed _ . ’

It is useful to 1ncorporate generality into the algorlthms
to decrease microstore requlrements. Generic algorlthms work for
many cases, thus reduclng the number of m1croprograms needed, |
but were found to have a large execution cost unless special
hardware control methods were used. BetterAperformance was

achieved by specific modules for each action -and data size. It

is open to question whether. one complex general module is better
than several simpler modules. |

In System 2, lack of symetry introduced m1croprogram

T ’””“mplex1ty. Testing for special cases caused performance

degradatlon. Overhead due to the DMU-APU interface and

synchronlzatlon method became more cr1t1cal as the workload

became equal in the two un1ts.,System 3 exten51ons can correct

these problems with extra hardware, mak1ng SFU’ 1nternal
structure transparent to DMU flrmware. This allows good

Pl

95

| performance while reducing firmware complexity.

‘special floating point hardware is used, action cost will be

5.7 Dynamxc size data . R L ,,,,f S
In,;pls study, dynamically vary1ng data sizes were

supported We now examine the benef1ts and costs of th1s scheme.

Use of dynam1c size results in large sav1ngs in data memory .

requ1rements and execution time,. Some 1nterpret1ve systems use a .

fixed S1ze for data to accommodate the'largest data. From

stat1st1cal studies we can approx1mate the extra performanée
cost of such a, system. The well known Gibson mix [26], based on
IBM<;Q90;ﬁse{’~tlon frequenc1es, uses an approx1mately equal
mix of fixed and float1ng point ar1thmet1c 1nstruct10ns.

However, it may be biased in two ways.’COntrol 1ntegers may

* increase the use‘of integer arithmetic. It is also biased toward

floating point since some languages gonvert‘to'float if an

P

expre551on has any-floats. Also, in conventional typed

languages, a user must use floating point type if there is any
chance ¢f a variable’s contents becoming larger than can be held
in an integer. IBM 360 studies [49] show that integer arithmetic
occurs with twice the frequency of floatlng point. Even u51ng
the Gibson m1x ratios, DMU fetch and store cost using a flxed ,

size will be double that of a dynamic_size system. Unless

even greater.- o

The cost of supporting dynamic size is increased complexity

in the ‘interpreter to detect overflow and decode generic
‘ 1

96

performance estimates for $AM. The results of this t

—~

)

-

actions. This reeults in a need;forwmany size and action'

specific microprogramsresultinginiaﬁ:%;creasedmierostore“
reQHirementrtormain;ain high'performanee: This study did not
examine the cost\of'overflqwfrecovery as'no data on'oVerflow |
frequency were available. AQailabieMgtatistics indicate that
overflow should be infrequent. Hennessy et al. [36] report that

95% of constants are less than 255. It is also reported in [18]

that 75 to 90 % of constants had absolute values < 8. If

variable Values are also usually small integers,:tnen the -

results of data manlpulatlons should st111 be 1ntegers. Actual

results have to wait until a complete system is runnlng to- grve

—

statlstlcal.data and memory management cost.

1

5.8 Conclusions

—~

The main motivation for this study was to p£33r- some
esis show

that a SAM architecture is effective for array data .
1

manipulation. Use of simple slave arithmetic units gaye

perfotma : t was ultimately limited by bus daya movement
. * - /

‘requirements for benchmarg_l\ané’improveo begohmérk 2

et . x - N
performance by/a factor of 4 to 7. Sygfem 3, w1th a more complex
APU can maintain performance for benchmark 1 and improve
benchmark 2 performance by 50 %. , A o L

Most commercial arlthmetlc,unlts were found to h ve design

drawbacks for use in an interpretive HLLCS. Addition of-extra

control logi¢ and use of multiple units can overcome these

—

97

~drawbacks. : = c\

= - sy

orders of magnltude. It also outperfo%ms some systems wltp
A S
vector support by a factor of 2 to §5, whlle prov1d1ng the extra

functions required for dynamlcally typed 1nterpret1ve systems.
The results of this study are sllghtly optimistic since

‘some detalls such as memory allo;atlon ana overflow recovery

vere not modeled. Final evabuatlon must await implementation of

a complete system to derive needed statlstlcal data. e
This the51s explored trade-offs in m1croprogram structure.

Generallty in actlon routlnes was costly in terms of run time

but saved m1crostore space. A general interface was also costlyi

to run time performance, espec1ally when separate action

procesors wvere added. Size and action sq?Zific routines were

needed to give maximum performance. This necessitates a very

large number of small routines, especially for a language such

L3

as APL. Although SAM has a large microstore space, a system

A .
N 1

implementor may have to make compromises between these
approaches. Statistical information cau be used to select the

optimized instruction set to be directly supported. A structureﬁ

.m1croprogram development approach need not be. detrimental to run

time performance on’ SAM 1f;supported by the microarchitecture.

Structured microprogrammimg tools were found useful for .

microprogram development,k in an evolving environment, Thus,higher

level microprogramming‘oriented architectures analagous to

language-directed architectures[may offer benefits to firmware

[

: . >) %
engineeri%ﬁ% » S

5.8.1 Future Research B

“|

Some ideas for i:§%§asing performance were not pursﬁed due
to éime limitations. They may yield geod results if researchedr
‘further. A short discussios%pf these ideas foliqws.
There are many possible choices for an &htefnal exeéutable .
"""f”*~form; In-fact;- PMU—and~DMU do~not—need~tofexecute—the‘same~——f~—4%fﬁf
DEL/DIL form. Indeed it may be beneficial for DMU to execute a 7
form that has been split’into a fetch—action and a stone phase.
This reduces the number of microprograms needed since many = (§
formats differ'only in the destination specification
‘e.g. DLR SLR RLR all become SLR.
Results are stored in a separate seément and then pointers are
adjusted. The 3 operator syllable DEL forg was important for
f—ﬂf———seaiarsﬁtefEeduee—feduﬂdant—vaf%abie—brndfng—and—mrnrm%ze—the———————
- size of-the(1ntermedlate-code% However, in SAM, PMU performs
variable binding and caﬁ pass pointers to DMU. DMU‘benefits from
reduced complexity and a rg%uced'number of table ertries fer
formats which may allow space for more spec1al actions. All
fetch-action formats leave results on a stack. The store format
then moves results to the destination or mereiy.changes the
“destination descriptor. If an APU'subsysfem"with'localgmemorieS* ****** -
~is used results can be;teftﬁin thE“f&nﬁb1mmmnyswhfchﬂﬁnrimrgﬁggfg—*
considered top of stack. It may be possible tbzstart
\

1nterpret1ng the next -format wh11e ‘the last action completes

‘

99
S

L3

perhaps'aIIOWing overlapped processing of scalar DELs.

' ,In'thiszstudy,,the*largest;data,item determined the size .

"tag of an 'array,., O,,th,e,,r,, mg,t,hOds similar to those used for sparse

~,
arrays could decrease memory requ1rements, decrease bus traffic,
and lower the cost of overflow recove:y. If only a few elements
:of an array are of a.larger size, a bit vector can be used to

'identify these. A~modification to the APU interface was

,suggested u51ng a simple FIFO as a data buffer. This can be used

.ﬁ

to hide APU hardware from DMU firmware thus enhanc1ng module
vindependence andzredncing DMU;firmware complexity'

//ﬁzgpport of tagged data.VIn system 2 and 3, SFUs. could be g1ven
h

e size tags of their operands. Then, for mixed data sizes,
they. could 51gn,extend the,smaller. DMU would only need to
' transfer data from‘memory to SFUs. This could be even simplier

Af the memory 1nterface was aware: of size tags. Then DMU need

only initiate bus transfers which could proceed with no further
,l‘intervention from DMU. Reduction 1n,data transfers could be
realized if the.memory interface and SFUs recognized data which
were merely sign eXtended beyond the low order word. Then only
the lom:order:word'need bertransferred and sign extended at the
bus destinationf“ | r\?

'The'SAM architectpre could be extended with a separate

store processor. A;EEQUSQ,WETQEX contention and dataﬂdependencyh

problems will hinder implementation, such a system could improve

]

', benchmark 1 oerformanceyby up to 50% over system 2 or 3 and

100

enqblevpipefﬁned‘5calar processing. A better‘method of modelingr

memory contention is needed for Simuiation7e£’this¥sy5teh}’W’7‘

This
execution
table and
number of

is one of

thesis has implicatiohs for the design of anrindireet—~

language. If max1mum performance is requ1red EXEC

#»

microstore requ1rements may put restrictions on the

pr1m1txve ‘actions that can ‘be directly supported APL

the most d1ff1cult hlgh level languages to support

because 1t has a largeﬁggmber of primitives., However, many of .

these are seldom used and may,be!supported as special fuctions
written in ADIL. Another iteration i¢ needed in the ADIL design
to determine whlch formats nd pr%mitives are needed.'some
-unused format table space ould‘then’be ueed for direct support

of actions.

S \

101

@

B1BLIOGRAPHY

-

1. Agrawala, Ashok K.,.and Tomlinson G. Rauscher, Foundations
- of Microprogramming, Academlc Press, Inc., New York,

1976.
2. Aho, A. V., and J. D. Ullman, Principles of Compiler Des1gn,
' Addison-Wesley, Reading, Mass., 1977.

3. Alexander, Peter, "Array Processor Design Concepts",
Computer Design, (December .1981), pp. 163-172.

Procedjre for the Translation of High-Level Languages

4. Allan, Stephen J, and Oldehoeft, Arthur E., "A Flow Analysis .-

-to a-Data Flow Language"; IEEE-Transactions—on
~ Computers C-29, 9 (Sep -1980), pp. 826-831.,

5. Andrews, Michael, Principles. of Firmware Englneerlng in '
M1croprogram Control, Computer Sc1ence Press, Inc.,

Potomac, Maryland 1980 . o | -

6. Backus, John,~"Can Programming be Liberated from the von
.Neumann Style? A F\pctional Style and Its Algebra of
Programs", CACM 21,{8 (August 1978), pp. 613 - 641,

7. Baer, Jean Loupe, Computek Systems Architecture, Computer
Science Press, Inc., Potomac, Maryland, 1980

8. Bingham, H.W., "Content Analysis of APL Defined Functions"
APL 1975 Conference ProCeedings (Pisa, Italy, June

9. Blngham H.W. and K.T. Carv1n,7"Dynam c Usage of APL
Primitive Functions", APL 1976 Conference Proceedings
(Ottawa, Canada, Sept.r1976) ACM, New York, 1976, pp.
83-86. , - .

10. Bloom, Howard M., "Conceptual Design of a Direct High-Level

Language Processor”, in High-level Lanquage Computer
Architecture, Y. Chu (ed)., Academic Press, Inc., New
York, 1975. pp. 187-242. - ,

11. Burkle, H.J., A. Frick, and C. Schlier, "High Level Language
\ Oriented Hardware and the Post - von Neumann Era"
Proceedings of 5th Annual Symposium on Computer
Arch1tecture, 1978, PP 60 65

12 Carlson, Carl R., "A Survey of High- Level Language Compugmr

Architecture™, in High-level d&anquage Computer
Architecture, Y Chu (ed.), Academ;c Press, Inc., New
York, 1975. pp. 31-62.

3,, r 102 ' |
\ . f(

LY

13,

14,
5.
16.
17.
18.
}9,
20.

21,

22,

23,
24,

25,

26.

Chu, Yaohan, "Concepts of High-level Language Computer
Architecture®, in High-level Lanquage Computer
Architecture, Y. Chu (ed.), Academic Press, Inc., New--
York, 1975. R Va SR

Chu, Yaohan, PArchitecture of a Hardware\Data*IﬁféprEter“,
IEEE Transactlons on Computers, c- Zﬁ, 2 (Feb. 1979)

Chu, YaohanTr“Dlrect Executlon Computer De51gn , Computer
‘Science Technical Report, University of Maryland, TR
931, (August 1980). L

Chu, Yaohan, and Marc Abrams, "Low-level and High-level
Computer Architectures", TR 1101 (September 1981). ,

B Universitywof,Maryland,” — S e

Cohen;yJacques, "Computer Assisted Mlcroanaly51s of

Programs”", CACM 25, 10 (October 1982), pp. 724 - 733.

Cook, R. and N Donde, "An Experiment to Improve Operand
‘ Addressing”, Symposium on Arch1tectural—8uppo t for
Programming Languages and Opewetlngh51§tems, ACM 1982

, pp. 87-91, ‘ .

e

Dennis, J.B., etal., "Research Directions 1n‘Computer
Architecture”, in Research Directions in Software
Technology, ed. Peter Wagner, Pp.. 514 556.

Dietzel, D.R., and D.A. Paiterson, "Retrospective on
. High-Level Language Computer Architecture",
___Proceedings Seventh Annual International Symposium-on
. Computer Architecture, May 6-8 , 1980, pp. 97-104.

Digital Equipment Corp., VAX-11 Arch1te¢ture Hangbook
Digital Eguipment gpprﬁxlon, Mayﬁigg,/mé 1979,

Dongarra, Jack J., and S. 1senstat "Squee21ng the Most Out
of an Algorithm in Cray Fortran , ACM Transactgﬂps on
Mathematical Softwa e, 10, 3 (September 1984),
221-230 .

Doran, R. W., Computer Architecture: A St uctured Approach,

Academic Press, Inc., New York, 79.

A

Enslow, Philip H. (ea}) Multlprocessors and Parallel
Processing, John W1ley & Sons, New.York, 1§-1.

Evans, David J.(ed.), Parallel Proce&éfa sttems, Cambrldge

University Prese Cambridge, 1982
Falrlough Dennis, “A&Un1que Mlcroprocessor Instruction
Set", IEEE Mr\ro 2,2 (May 1982) pp. 8-18.
* . /; /'—‘\ /‘.
7 703 o

L//

27,
28.

29,
30.
31,
32,
33,

34.

35,

36.

39.

40.

/-

Feilmeier, M. (ed.), Parallel Computers-Parallel
Mathemat1cs, North Holland Publlshlng Co., Amsterdam,
1977,) o o -

Flynn, M. J., "The Interpret1ve Interface' Resources and
Program Representation in Computer Organ1zat1on 1n
High Sgg ed Computer and Algorithm Organization,
Academic Press, Inc., New York, 1977, pp. 41-69.

Flynn, M. J., "Directions and Issues in Architecture and

Language”, IEEE Computer 13, 10 (Oct 1980), pp. 5-22.

Flynn, M.J., N.R. Harris, and D.P. McCarthy,'M1crocomputer
System Design, Lecture Notes in Computer Sc1ence 126,

Spr er- Verlag, New York 1982

Flynn, Michael J., and Lee W.\Hoevel, "Execution
Architecture: The DELtran Experiment", :IEEE
Transactions on Computers C-32, 2 (February 1983), pp.
156 - 174. '

Fr1ed Stephen S., "Evaluating 8087 Performance on the IBM
PC", Byte 9,9 , pp. 197 - 208 :

Hammer, Michael and Gregory Ruth, "Automat1ng the Software
Development Process", in Research Directions in
Software Technology, ed. Peter Wagner,)

Hayes, John P., Computer Architecture and Organization, -
'McGraw-Hill Book Co., New York, 1978

-

—

Heath; - Jfbrrﬂ"Re-evaluationfof thefRISC I",~Sigarch—12
(March 1984), 3 - 10.

Hennessy, J. etal., "Hardware/Software Tradeoffs for
Increased Performgnce”, Symposium on Architectural
Support for Prograwming Languages and Operating
Systems, ACM 1982, pp. 2 - 11,

Hewlett Packard, HP1000 A700 Processor De51gn and Common

Spec1f1cat1on.

. Hobson, R. F., "Structured Machine Design: An Ongoing

' . Experiment", Proceedings of 8th Annual Symposium on
Computer Architecture, (May 1981), , pp. 37-55.

Hobson, R.F., "A Synopsis of the SJ16 Controller Ch1p » SFU

(1981).

Hobson, R.F., "A Directly Executable Encoding for APL", ACM
Transactions on Programming Languages and Systems, 6,
3, (July 1984), pp. 314-332.

41,

42,
43,

44,

45,

46.

47.

48.

49.

50.,

.51.

52.

Hobson, R.F., P. Hannon, and- J. Thornburg,7“M1croprogramm1ng
with APL Syntax". Proceedings of the 14th Annual
Microprogramming Conference, (October 1981),

131—139 NG

Hobson, R. F., John Gudaitis, and Jonathoanhornburg7 A New
B Machlne Model for High- Level Language Interpretatlon
SFU, (1985) ‘ '

Hoevel, L. W., "Ideal Directly executed Languages: An .
Analytical Argument for emulation” IEEE\I%%DSactlons -
on Computersx23 8 (Aug. 1974) pp 759-7 o

Hoevel, L. W., "DELTRAN: A Case Study in a FORTRAN DEL",

presented to International Workshop On High-Level
Language Computer Arch1tecture,,Fort Laurerdale, (May

1980).

Hoffmann, .Werner, "Implemehtation and Evaluation of Vertical
Algorithms on a Microprogrammable Computer"”, in
-Parallel Computers-Parallel Mathematics, M. Felimeler
(ed), North-Holland Publishing Co., pp. 79-82. :

Hordgltz, Ellis and Sartaj Sahni, Fupdamentals of Compute
Al or1thms, Computer Sc1ence\Press, Inc., Potomac,
Maryland 1978.

Hwang, Kai, Shun-Piao Su, and Lignel M, Ni, "Vector Computer
Architecture and Processiffg Technlques in Advances in
Computers, Vol. 20, Marshall C. Yovits (ed.} , pp.
115-197 ' '

‘Ibbett, Roland N., The Architecture of High Performance

Computers, The MacMillan Press, Ltd, London, 1982.

Iliffe, J. K., "Microsystems Support for High Level
' Languages”, International Workshop on High-level
Language Computer Architecture (1980) Fort Lauderdale,
"Florida. : ,

Iliffe, J.K., Advanced Computer Design, Prentlce Hall, Inc.,
Englewood Cliffs, New Jersey, 1982.

‘Ishikawa, Chiaki, Ken Sakamura, and Mamora Maekawa

- Adaptation and Personalization of VLSI-Based Computer
Architecture”, Micro 14 ,(1981) , pp. 51 - 61.

Jaffe, "The Use of Queues in the Paralfe; Data Flow B

Evaluation of IF-THEN-WHILE Programs", MIT/LCS/TM- 104
‘Massachusetts Institute of Technology, 1978.

105 .

53.
- 54.
55.
56.

57.

58.

- 59.

60.
61.
6‘A2.
63.
64.

65.

Johnson, J. B.["The Contour Model of Block Structured
- Processes”, Sigplan Notices 6, 2 (February 1971), pp
55 - 82. S R

Kartashev, S.I., and S.P. Kartashev, "A Multicomputer System
w1th Dynamic Architecture”, IEEE Transactions on '
‘Computers,VC‘ZB 10, (October 1979), pp. 704-720.

Kartashev, Svetlana P., and Steven I. Kartashev (Ed.),
Designing and Programming Modern Computers and Systems
: Vol. 1., Prentice-Hall, Inc., Englewood Cliffs, New
. Jersey, 1982, .

Kavi, Krishna, etal., "HLL Architectures: Pitfalls and
Predilections", Proceedings of 9th- Annual'Symposxum on————
Computer Architecture, (1982), pp. 18-23.

Klingman, Edwin E., Microprocessor Systems Design, Vol. 11I., —
Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1982. ' - . ‘

Kogge, Peter M., "The Microprogramming of Pipelined
Processors”, Proceedings of 4th Annual Symposium on
Computer Architecture, 1977, pp. 63-69.

Kogge, Peter M., The Architecture of Pipelined Computers,
McGraw-Hill Book Co., New York, 1981,

1

Kuck, David J., "Parallel Processing of Ordinary Programs",
in High Speed Computer and Algorithm Organization, pp
119-179,

L]

Kuck, David J., "The Burroughs Scientific Processor (BSP)",
IEEE Trans. on Computers C-31, 5 (May 1982) , pp.
363-376. ~ :

Kung; H.T., "Why Systolic Architectures", IEEE Computer,
(January 1982), pp. 37-46.

Laliotis, T.A., "Architecture of the SYMBOL Computer | '
System”, in Advances in Computer Arch1tecture ed. Y.
Chu, pp. 110 - 187. ~

Lawson, Harold W., etal., targe Scale Integration:
Technoloqy, Applications, and Impacts, North-Holland
Publ1sh1ng Co., Amsterdam, 1979, . *

‘Lord, Norman W., etal., Advanced Computers, Ann Arbor

Science Publishers, Ann Arbor, Michigan, 1983.

&

106

66.

67.
68.
69.

70.

71.

72.

73.
74.
- 75.
76.

77.

78.

Lorin, Harold, Parallellsm in Hardware and Software: Real
and’ Apparent Corcurrency, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1972.7eree, e e

Lunde, A., "Emp1r1cal Evaluation of Some Features;qfawar,,,
Instruction Set Processor Archltectures CACM .20, 3 -
(March 1977), 143-153. o

McDan1el G., "An Analysis of a Mesa Instruct1on Set U51ng
Dynamlc Instruction Frequencies", Symposium on
Architectural Support for Programming Languages and
Operating Systems, ACM 1982, pp. 167 - 176.

_Maejlma, H., etal., “The -VLSI Control Structure of a CMOS

M1crocomputer IEEE Micro , (December 83), pp. 9-16.

Mead Carver and Lynn Conway, Introduction to VLSI Systemsf
: Addlson-Wesley Publishing Co., Readlng, Mass., 19

M1cros 5ystems Corp., MK-16 Computer System Manual 1978.-

Myers, Glenford J., Advances in Computer Architecture (2nd
‘ed.), John Wiley & Sons, New York, 1982. -

Parnas, David L., "On the Criteria to be used 1:\pecomp051ng
' Systems into Modules", CACM 15, 12 (December.. 1972)
pp. 1053-1058. . 4

Patter;;ﬁé David A., and Carlo H. Sequ1n, "kISC I: A Reduced
Instruction Set VLSI Computer", Proceedings of 8th
Annual Symp051um on Computer Archltecture, (May 1981),

“pPp. 443-458.,

Patterson, David A., and Carlo H. Sequin, "A VLSI RISC",
IEEE Computer 15, 9 (September 1982), pp. 8-21.

De Prycker, Martin, "A Performance Comparison of Three
Contemporary 16-bit Microprocessors”, I1EEE Micro
(April 1983), pp. 26-.

Roblnet, Bernard J., "Architectural Design of an APL
"Processor", 'in High-level Lanquage Computer
Archltegtyre, Y. Chu (ed.), Academic Press, Inc., New
York, 1975. , pp. 243-268. ‘

Saal, Harry J., and Zvi Weiss, "Some Properties of APL
Programs”, APL 1975 Conference Proceedings (Pisa, =

. Italy, June 1975), pp. 292 - 297.
-
1}
107

79.

—-_ 80.

81.

82,

83.

84.

85.

86.
87.

88.

89.

90.

Saunders, Steven E., "Compiling Customized Executable :
Representations and Interpreters", CMU-CS-79-127, June
1979, Computer Science Department, Carneg1e—MeIon D
Un1vers1ty. - , N

Singhania, A.K., and Berra, P.B., "Associative: rocessor
Application to Change Detection", in Paraljel . !
Computers-Parallel Mathematics, M. Feilmei K- (ed)
North-Holland Publ1sh1ng Co. , pp. 247-256} \

\

Smith, James E., "Decoupled Access/Execute Computer !
Architectures”, Proceedings of 9th Annual § m¢os1um on
Computer Arch1tecture, (1982) pp. 112- 119/ .

Stevenson, David, ,1Earallel Computers in the 19605,,mlnﬁ,,mm4t;;
Tools for Improved Computing in the 80's, ed. Paul A.
Willls, Seventeenth Annual Technical Sympos1um,

National Bureau of Standards.

Taki, k., Kaneda,,Y., and Maekawa, S., "The Experimental
Lisp Machine", IJCAI-79 Proceedings of the Sixth
International Jo1nt Conference on Art1f1c1a1
Intelligence (1979), PP 865-867.

Tanenbaum, A. S., Impl1cat10ns of Structured Programm1ng
for Machine Arch1tecture CACM 21, 3 (March 1978), pp
237-246. . .

Tartar, John, "Multiprocessor Hardware: An Architectural
Overview", Proceedings of 1980 ACM Annual Conference,

_ pp. 518-526. o , :

Texas Instruments, Inc., "Floating-Point Arithmetic with the
TMS 32010", 1984. | -

Texas Instruments, Inc., "TMS 32020 D1g1tal S1gnal
- Processor, Product Descr1pt1on 1985.

Thurber, Kenneth J., Large Scale Computer Architecture =
Parallel and Associative Processors, Haydon Book
‘it Company, Inc., 1976.

Thurber, Kenneth J. and Peter C. Patton, Data Structures and
Computer Architecture, Lex1ngton Books, D.C. Heath and
Co., Lexington, Mass., 1977. . o - e

Tokoro Mario, and Takashi Tak;zukaT "Oon theASemantle '~Wﬂwéé—=—@
Structure of Information", Proceedings of 9th Annual
Symposium on Computer. Arch1tecture, (1982), pp.

211-217, . :

108

N . N N
- 91. Treleaven, Ph1l1p C., "VLSI Processor Archltectures , IEEE
: Computer (June 1982) PP 33 - 45 e e
92 Wallach Y. "Alternatlng Sequential - ParSQlel Processing",
' Lecture Notes in Computer Science 127,
Spr1nger-Verlag ‘ :

93. Welte%\Corp., WTL 1064/1065 High Speed 64bit IEEE Floatlng
Point Multiply/ALU , Weitek Corporatlon, Sunnyvaie,
Ca. 1984,

94, Weitek Corp., WTL 1164/1165 High Speed 64bit IEEE Floating
Point Multiply/ALU , Weitek Corporation, Sunnyvale,

g85. Weltzman, Cay, Dlstrlbuted M1cro/M1n1computer Systems,
Prentice-Hall, Inc., Englewood Cliffs, New Jerse
1980. /

;‘ 96. wlchmann, Heide, "Algorithms for Vertical Processin in
Parallel Computers-Parallel Mathematics, M. FeilmeX

(ed), North-Holland Publishing Co., pp. 75-77.

97. Wiecek, C.A., "A Case séngg of VAX-11 Instruction Set Usage
for Compiler Execution", Symposium on Architeqtural
Support for Programming Languages and Operatiﬁg\
Systems, ACM 1982, pp. 177 - 184,

987~W1edmann, Clark, "AiPerformance Comparison between an APL
- Interpreter and Compiler", APL 83 Conference
oo Proceedings, pp. 211=217.

99, Williams, Rhon, "A Multiprocessing System for the Ditect
Execution of LISP", Fourth Workshop on Computer
‘Architecture for Non numeric Processing ,Sigmod vol
X, no. 1, (August 1978) pp 35-41,

109 -

