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ABSTRACT 

parallelism has been used extensively in' supercomputer 

systems to improve performance but has had limited application 

in microcomputers.~ A structured architecture machine (SAM) was 
designed for use as a high performance engineering workstation. 

It ,has a distributed function architecture that allows modular 

exten~ibility to increase performance. SAM uses indirect 

high-level language execution to give good performance while 

providing the user,friendly interface associated with 
\ 

interpretive systems. This thesis investigates data mani$ul?dion 
\-/ a 

strategy for SAM architectures through simulated execution of 

array processing benchmarks. Attached slave processors provided 

the simplest method for optimizing system performance. 

Maintaining good firmware structure without performance 

degradation requires assistance from special hardware to support 

control constructs and device interfacing. Performance of 

benchmark execution on SAM is more than an order of magnitud'e 

better than execution of compiled C versions running on a VAX750 

and a SUN workstation. 
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INTRODUCTION 

This thesis explores me aspects of the performance of a 

structured architecture machine developed for the interpretation -- 
of high-level languages (HLL) .  It is hoped that the results will 

help dispel 

systems and 

thesis will 

some myths associated ,with interpretive HLL comppter 

thus allow such systems to become more popular.   his 

examine some strategies to improve data manipulation 

performance, borrowing ideas used in supercomputer systems and 

applying them toea microcomputer system. A brief introduction to 
I 

past efforts in these areas follows. Section 1.1 revliews,efforts . 

in HLL suppq~he,performance of instruction sets is then . 
,' -. 

discusseb'in secti& 1.2. Section 1.3 discuss&s the use of 

structuted architecture to design cost effective systems. 
, 

1 -/ 

Finally,\ an overview of theNthesis is given in section 1.4. 
I 

1.1 High-Level Language Support 
7-J 

HLL support has been'a subject of,investigation ever since 

1 the days of the first computer. with many researchers attempting 
/-\ 

to reduce the semantic gap between high-level language concepts 
- 

,and the underlying computer architecture that actually supports 

these concepts. Reviews of this research can be found in [12] 

1 



' F  '5 
and [72]. Chu[ 131 categorized computer syst%s architecture *=- - 

acdording to the proximity'of tlreALL s e a  by t 
b + 

machine language actually executed. tu - 

- ~ y p e - 1 ,  vonrNeumann, is used in most commercial computer 

systems. It is characterized by a low level -. register-oriented 

instruction set, generally requiring a complexa compi1at;ion 

process to corivert a HLL program into mach;ine&$anguage We code. 
/--- 

Cbmplex instruction sets Such as that of the VAX-11[21] provide .' 
\ 

some instructions orie-&d towakd HLLs but are too, limite'd to 
w 

have .much effect on reduction of the semantic gap.  his type of 
architecture has been criticized by Backuvsk4] and Chu and 

Abrams[16] for'contributing to the so called 'softwareLcrisisn. 
. +  

They believe thak the tedious design - ed?t - compile - load - 
run - deb rocess lowers programmer productivity. Efficiency 

I 

consideratibns h a e  influenced the desigsof HLLs to be 
J 

supported by compilation. Very high level languages (VHLLS), 
K 

such as APL, Lisp, prolog, NIAL that pupport progrirn&lopment 
.-J 

at a high level of data abstraction,,a&-usually 72 -; _:_ interpreted by 
*- 

software on this type of architecture. This extra layer of - 
f 

software causes the perceived inefficiency of language 
9 

interpretation. = 

- ~ ~ ~ e  2 architectures raise the leeel of the machine 

language by supporting interpretation bf syntax-oriented 

intermediate code'. While this reduces' the semantic gap, it does 

- not reduce the neceqsity for large sugroutine libraries or 
e& 

improve the software development process;~Borroughs B5500 is an 
M 

- % 

' -. - -- '. 
; 2 



example of this architecture supporting- algol. 

Type 3 architectures are the indirect execution type 
<I 

exemplified by 'the Symbol system [ 6 4 ] .  The main improvements 
- - 

i 
over type 2 are a hardware translator and an improvement in 

proximity for the intermediate polish string language. 

, Type 4 is the dkrect execution architecture studied by Chu, 

Bloom, and others. There is no intermediate language8so 

+ therefore no semantic gap..All,us.er software and system programs 

are, written 9 the HLL. 
Dietzt.1 and patterson. [ 20 1 have suggested a High-level 

language computer system as a possibility for a more productive 

environment for software development. Their definition cohcerns 

only'the interface presented tff the user, so that type one 
r 

systems ar.e. included if the operating system insulates the user 
r f-7 a 

from the lower layers of software. This could+include ROM based 
* 

BASIC microcomputer spfiems. Although this concept can be 

supported with compilation, an interpretive high-level language 

system offers benefits especially for VHLLs. 
%i* 

1.2 Instruction Set Performance 
t 

a The illstruction set selected (user architecture) affects 

the software development process, but performance also 

determines user acceptance. The user architecture must allow 

efficient implementation. Compilation may not achieve this goal 

for applications where source code is changed frequently. 



i - , 

Flynn and Hoevel [ 3 1 ]  have pointed out-the inefficiencies 

of the compilation approach on conventional machines.  he^ 
derived a directly executable 'language (DELI that redueed the 

semantic gap and thereby+educed-the size of the intermediate 

code. This should improve performance by reducing the number of 

instruction fetches*, executes, and memory references. Their DEL 

featured a transformationally comple$e instruction set which 

they felt would simplify compilation. They also showed Low to 
- 

design an efficient system to interpret a DEL. While,their 

research showed significant. improvement over other com$lex 
f 

instruction sets, other methods have produced better run time 

performance. Reduced instruction set computers (RISCs), for 

example, seem to give better performance, at leastffor some 

HLLS[~~]. 

m Some recently designed computer systems use statisticaql 

methods for 'instruction set design [36,75,68]. The most 

frequently used operations in a HLL are given a corresponding 

machine instruction. Instruction set usage obeys the 20-80 rule 

[ 9 7 ] ,  so only a small subset -of a language needs to be 

implemented efficiently to get good performance. Actually, the 

main factors in scalar block-structured HLL performance have 

been found to be procedure call and variable binding[57,76]. 
- 

Thus the fast overlapped register banks of RISC may be largely 

responsible for its.good performance[35]. 

Thurber[89] notes a lack of support for HLL data structures 

in computer architectures. An example of data structure support 



is vector processing. One approach to providing support for 

arithmetic operations on arrays has been to use vectorizing - d 
C 

compilers running on supercomputers. While this h 

success in improving performance, it forces users 

complex low level code. such .a programmirig envir ment requires + 
control codlng at a level lower than that of the machine ' 

hardware and has been shown 'to provide less than full 

performance [22]. Language extensions are'more useful but 

usually limited in the data manipulations allowead. It has been 

noted that supercomputer development has spawned novel high 

perforrnance,hardware but has not contributed a' advances in 

software [19]. Hardware improvements will be more effective when 

they are transparent 'to the user. VHLLs with full support for 

vector processing should offer a better 
I '  

environment for program 

development and an ppportuniky for performance improvement 

through language directed design. 

Chu [14,15] promotes the advantages of a direct execution ' 

computer, especially- its ~on&~tual simplicity. This , 

architecture has been criticized for' poor .[44,57]. 

Hardware interpretation can I pr ve this problem, but thi; $ 
architecture st ill suffers f roh redundant syntax 'analysis, which - 
adds unnecessary hardware hosts to the system. With enough 
hardware support, such a system may be competitive with other 

c - :- \ 
methods in run time performance. However, indirect execution can, 

provide a user interface $ndistinguisha$Le from direct execution 

but with lesser hardware requirement's and reduced redundant 



processing. ~obson[40] has extended the' DEL approach to 
' 
interpreted languages. He has derived a directly interpretable 

l a n g u y S  (DIL) with a one. to orie correspondence to source L 

operations that permits recovery of the source. Thus only one 

copy of a program need be maintained with obvious benefits when 

programs are modified. 

1.2.1 Increasing Performance of Instruction S e t  Exec 

? f a  

vA 
While the instruction set puts limits on 

actual perfbrmance is dependent on imp1ementation"strategies. 
I . 

! 

' Speed increases due to .technology advances are limited so 
-% 

further performance enhancement must come from changes in system 

aqchitecture. This section examines some methods that have been 
L 

used to reduce instruction execution time. - 

Consider the interpretation of a typical HLL jnstruction as i 
shown in figure 1 - 1 .  It consists I of,a sequence of primitive 

act ions which accomplish the required task. For Scalar 
k7 

instructions the entire sequence is repeated for each 

instruction. Compiled code does not require steps 2 and 3 since1 

verification can usually be done by a compiler for strongly 

typed languages. For vector instructions the last three actions 

need to be repeated for each element of'the vector. Therefore 

increasing performance of a scalar machine involves all phases 

of instruction execution, while vector machine performance may 

be enhanced by reducing -- the - - execution - time of the loop section, 



especially for. long vehrs. 
', 

r" * d  Instruction pipe in1 g'has been used to improve performance 
' /  

of ma-inframe computer,~stems for scalar instruct ion sets. To - 
, \ 

> 

i 
achieve higher perforntqncq, some .later phases of an instruction 

can be overlapped with the early phases of the next instruction. 
* 

To accomplish this requires some extra hardware resources. In 

conventional high performance vdm Neumann machines, centrally , 

controlled instruction and data manipulation units are used to 
? - 

allow concurrent execution of phases [7]. This requires complex 

control features handle scheduling and data dependency 

problems,[48]. Statistic-s on HLL i.nstruction,usage indicate that P 
such methods ,may not significantly impcove scalar performance, 

since subroutine calls predominate in performance determination. 

Branches and a scarcity of funcfional instructions further 
L 

* 

SCALAR VECTOR 
fetch and decode fetch and decode 

I 
verify operand(s1 syntax 

I .  

I 
verify operand(s9 syntax 

I - 
I 

verify semantics - , .  verify semantics 
I 1 4 - - - - - - - - - -  , t 

fetch' operand fetch operand I 
C 

I 

I I I 
I 

action \ action I 
I 

store results 
/ I I I 

store results I 
I 

Figure 1-1. tion execution sequence. 
* 



reduce the performance potential of scalar overlapped con, utors. 
b a' 

~ultiple pr6cessing units have bqen used to increase\ 
b 

,' 

performance [ 2 4 ,  25, 661. Using n processors has potentiil for n 

fold speedup. In practice, multiple homogenous processor systems 

suffer from scheduling overhead and memory access contention. 

Some of these systems exhibit breakover point behavior where 

addition of a processor can actually decrease system performance 

[88]. Memory and processor communication requires complex bus , 
i 

interconnections 1551. It is also difficult to express some -- 

problems in a form that can be used on such a systr7. 

~hurbe,r[89] suggests using a functionally dfstributed 
- 

architecture to overcome these problems. A pipeline is an 

example of this architecture. A multiprocessor distributed 

function architecture (DFA) can achieve overlapped performance ' 

without complex central control, The Symbol computer system 
f 

mentioned earlier is an eximple of this type of architecture 

designed for a single HLL. The Symbol system offered improved a performance b cause of its modular multiprocessor architecture 

which allows overlapped operation of the translation and 

execution processes. Unlike the-homogenous multiple processor 

architecture, this system consists of heterogenous processors 

each designed to performaspecific functions. With appropriate 

functional partioning and interface;;' the design of each module 
/ 

is independent of the others. 

. 
I .In a typical overlapped computer, dedicated hardware 

modules can be used to achieve good performance since machine 



. 
7.- 

instruction execution is very regular.. The greaker diversity in 
b 

high-level language instructions makes the control problem for 
3 - I' 

- overlapping more bi f f icult . The problem - i61w-ther complicated 

in languages allowing vector operations since vector length 

determines the ratios for phase execution times.,A distributed 

function. computer can compensate for timing variablity by the 

use of queues between processors to absorb variation in . I 

I 

workload. Use of queues can also increase performance. This has 

been shown in a scalar Cray 1 type architecture[81] and a data . 
flow machine model [52]. 

a .  3 Structured Architecture 
I 

While the cost of hardware components has dropped rapidlk, 

the design phase of system development has become increasingly 

costly. Structured architecture attempts to reduce the 

complexity of co 4 uter system design by borrowing some of the 
7 

principles from structured programming. ~odulari ty is 

' just as important in computer system design as in software 

designdarnas [73] .suggests that system decomposition be based 
. 

on module independence. DFA architectures satisfy his criteria I 

since each module is designed for a particular class of 

functions. Encapsulation of related functions also can meet the 

VLSI constraint of minimizing chip pin count. Conventional 

computer systems do not distinguish tbetween control computation 

and data manipulation. A resource may be shared between a 

control operation.and a data manipulation. This can lead to 



L 
extra interaction between independent processes because of 

L- 

possible' contention for the resource. ~ h < ? F ~ & r c e s  must also 

be designed to accommodate both types of processing. An example 

is a multiplier used both for ar indexing and a user 

specified multiplication of some 

The size and complexity of current microprogramming 

projects require new methods for firmware development. This has 

given rise to a new field 'of study - firmware eqgineering. User 
microprogramming and large systemmicroprogramming have led to a 

need to u w a d e  microprogramming techniques. In particular. the 

horizontal microprogramming used in supercomputers is only 
i 

- 
appropriate for static architectures. 

0 

A structured architect-yre machine (SAM) [ 3 8 ]  has been 

designed with a modular extensible architecture for indireht 

high-level language interpretation. The aim is to develop a 

single user workstation that will offer performance comparable 

to the usual execution of compiled code, with enhanced 

performance for array manipulation and special engineering 
+ 

applications. ~icro~ro~rarnmin~ is used for control rather than 

hardware because of its greater flexibility. This is especially 

important for an experimental system undergoing frequent 

modifications. Language independent features can later be 
4 

( 

, supported by hardware to improve performance. Seldom used 

language features can be implemented in .a subset of the HLL with 

very little performance penalty. 



The SAM project differs from Flynn and Hoevel's work in 

several respects. It is aimed at interpretation of DILs rather 

than compiled DELs. SAM uses a la&uage directed architecture 

rather than microprogrammifig of an unbiased host microenqine; 

Functional task part ioninq results in separate modules 

environmental control, prcgram manasement, and' data 

for 

manipulation. This allows parallel ,exkcution of the different 

stages of instruction execution. 

1.4 Overview of Thesis 

1.4.1 Thesis Goals / 

, 

This thesis evaluates the performance of some system 

designs during the data manipulation phase of, DIL -- 

interpretation. Struttured architecture design is used to derive 

a system suitable for DIG interpretation. Hobson [ 4 2 ]  has 

already studied improvements in the <etch-decodeland 

. verification stages of execution, introducing a hardware operand 

verification unit (OW) to reduce semantic verification time. 

This study concentrates on improvement of the later stages of . 

-instruction execution. *In extending the SAM architecture, . 

arithmetic units are added to provide overlapped operation. 

Execution time is not the onlyhfactor in measuring 

performance. Program development time, compile time, and debug 

time reduce performance, especially for programs with a low 

number of production runs. Interpretive systems perform bett'br 



t 

' in these respects but such measures are difficult to quantify, 
I 

so this thesis measures execut-ioh-+i'me-perfor-mbnce,-Even-for------ 

this aspect, the results show that a - p r o p e t L y k d a i g e - - - - - -  

interpretive system offers performance comparable to the usual 

execution of compiled code. 

Since the SAM project is aimed at development of a low cost 

high performance single user HLL system, implementation dethods 
* 

must be cost effective, Techniques used for performance 

Q 
- - - - - - -- - - - - - - - -- - --- - - - - 

- 
improvyent on. supercomputers may not be appropriate. For 

- 

'. 
\ b+' 

\ 
\ 

/' 
L - e - d m p i e ,  6 4  bit 'data buses are too costly unless this size of 

f - - 1 
> 

data is used •’re " uently. A goal of the SAM project is to find-- - - ? 
i 

ways to reduce dicroprogramming complexity. A multiprocessor /' 
sysP-h unit vertically microprogrammed, offers much more 

,'; 
$e$ibility than a central horizontally microprogrammed system. 
\ 
Statistical analysis can be used to select'instructions to be 

1 . 4 . 2  Methods ----  

The effect of architectural changes was measured by 

simulating benchmark execution. Microcode interpreters were 
I 

coded in microAPL [ 4 1 ] .  An architecture support package written 

in APL supports hardware modeling, Introduction of new 
- 

architectural features required modification to this package. A 
- -- - - - - -- - 

discrete event simulator was written to support similation of 

multiple processors. This was written in APL and has a structure 

almost identical to the system architecture. A top level module 



handles timing of transfers to the appropriate module at the 
,-- 

- next level. These n k & d s  (PMU, DmrAPU)-kheh-simulate------------ 

instruction execution in the corresponding physical modules. - -- 

During system 1 simulation, statistics were gathered on the 

amount of time spent in each phase of instruction execution. 

This information then guided task partioning for SAM extensions. 

Although this study concentrated on supporting vector 
\ 

i~twctions, benchmark performance using a scalar DEL was also 
- - L - - - - - - - - - - - -- - - - - - -- - - - -- - - 

determined for the simplest SAM system. A comparison with vector 
- 
performance,revealed that it was not worthwhile pursuing methods 
i 
4 
to enhance scala; data manipulation performance. - - - 

1 . 4 . 3  Organization of Thesis 
1 

The results of this study are .organized ,into 4 chapters. 

Chapter 2 introduces some data manipulation- strategies and 
r \  - 

exdm-iinesSper~rma~e limitation'& Two different 

microatchitectures are used for SAM building blocks. Chapters 3 

and 4 explore implement ions #of these strategies Psing the 

building blocks and their influence on SAM'S performance. 

Finally, chapter 5 summarizes the results and compares the 

performance of SAM to other machines. 
- 

1.4.4 Assumptions - - 

Execution of an ADEL type-instruction set[40] is assumed 

in this study for the vector HLL. No specific HLL is assumed 



since syntax details are handled by a program management unit 

oriented languages. In this study our concern is with execution 

of internal DIL code accessed by the data'manipulation u$it 

(DMU) after completion of verification. Only those instructi~ns 
- 

require6 for benchmark simulation are defined and implemented. 

A  numeric type with varying size for variables is-assumed. 

The size varies as needed to maintain precision. Many HLLs base 
- - - - - - - - - -- - - - - - - -- 

. type distinctions on arbitrary historic considerations. 

Furthermore, actual physical implementation of the type is 

system dependent - - for the same HLL. Variables are assumed-to be 

local to the current environment since binding of non local 
I 

variables is implementation and language dependent. Local 
P 

variables are accessed directly from the current data segment ' 

that was set up on entry to the current, environment. The operand 

syllable is used as a direct index into the current data 

se@ent. APL requires a siightly different b.inding method and an 

implementation on SAM will use hardware assist in variable 

binding [ 4 2 ] .  The above model was used for this study since the 

hardware design was not complete. 



P- 

C-" - 

CHAPTER 2 

In this chapter, some system architectures are presented and 

idealized performance limits for two benchmarks are derived by - 
considering the -number of parallel resources available along 

with the maximum data flow available in,* data paths of the- --- - -. 
system models. Real 'system implementatibns and performance will . 

be examined in chapters 3 an3 4. 1 
/' % - B 

Flynn and Hoevel used a nonfunctional ratio to measure 
' I  

instruction set inefficiency. However, thkir NF ratio suffers 

from-a favoritism for complex instruction sets and is not a good 

- - measure' of run t imej performance. performance estimates are 
? 

distorted since complex ins-tructions,,especially variable length 
--- - - -- - - - - -- - - - -- 

ones require 1ongE decode and execution times. This thesis uses 

a functional ratio of implementation (FRI) to.measure the 

proportion of time spent on functional calculation. FRI is 
I 

-3&fed - as'tbre ratio of ti spent in a functional calculation 

,divided by the total tim c spent, A ratio of one means that there 

is no overhead spent in moving data to where it is acted upon. 

This can occur in an associative processor or in a conventional 

processor with full overlap. FRI can be greater than one if 

multiple arithmetic units are used concurrently 

pipelined arithmetic unit is used. 



Three versions of SAM are considered in this thesis, a 

- -minimal functional syste~ and-2 others that expand Dm to 
/' 

," -- 

increase performance. 

- 2.1 Benchmarks 
/ Two primary benchmarks are used to compare the performance , 

of architectural modifications, Benchmark one is a simple 

addition or multiplication of two vectors of equal length. It is 
- - - - - - - - - - - 

expressed as a 5 syllable DIL instruction 

This and simple variations of it are the most frequently used 
t 

arithmetic i-nstructions in languages like APL and therefore 

important to system performance [8,9,18,40], -=+ a 

Bgnchmark two is matrix multiplication. Its DIL form U 

con $;P ists of 6 syllables 

F 
- -- -5. -- - - - - 

While not used frequently by average users, its long execution 
\. time and complex data accessing make it important to 

/ performance, especially in,an ngineering.workstation 

environment. We consider the standard brute force method, cf. 
, 

figure 2-l(a), and also a variation used in high performance 

v-ector machines, cf. figure 2-l(b). These algorithms multiply a 
t 

"1 by m matrii with a m by n matrix. Other methods such as 

' Strassen's [39,92] are not well suited to vector ok cache 

machines since data accesses are not sequential. 



for i=1 to 1 
for j=l to m 

C[i,jl=O 
far k=l to n 

C[i,j]=C[i,j] + A[i,kl * ~[k,jl 
(a) x 

c = o  
for i=l to 1 

-r, 
_ -  for k=l to n . 

for j=l to m d- i ,- . C 

c[i,j]=C[,i, j] + ~[i,k] P ~[k,j] 
$ (b) 

4 

- ~igure 2-1: Algorithms s~ for Matrix Muktiply. 

2;2 System 1 Performance % 

E 

' sy$tem 1, cf. figure 2-2, is a minimal 3 processor'$yst.em, - 
i #l-/ 

It conpsts of an environment control unit (ECU) for user 
I 

int&aht - ion, a management unit (PMU) to .handle 

instsuction sequencing, and a data manipulation unit (DMU) to . 

fetch and process data. A more detailed de_scripption of S M - ~ _ S _ ~  

availa6le in other publications [ 3 8 ] .  
A 

ECU accepts user input, translates HLL source input to a 

linear DIL form, and initdtes program execution when requested. 
B /' 

PMU fetches DIL coae from segmented memory, verifies operand ,</' 

. Lf 
syntax, and sends verified ;code to DMU. Some control constructs 

, 
can be handled entirely within Pm. DMU takes'D~-~~o~e-from the 

PMU - DMU jnterface, verifies operand semahtics, fetches Fr'and 
L- 

t' - - data from a~data segmented memocyr, performs specified actkns on . 

the $te,ynq returns results to segmented memory. 
C 

I F 
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Figure 2-2: Minimal SAM system. 

+ t  . TloopC %etch act ibG?%tbre 

This analysis is mainly concerned with vector loop 

performance. For arrays of reasonable length, setup time should 
1 "  

have minimal effect on performance. Consider the 
- - ----- - - 

the loop section of a typical diadic vector instduction. 

fetch left fetch right pe>fo&n action 1 store results 1 loopt 
operand I operand a 

t -> 
t - - 

Performance for one processor is determined by the sum of the - A 

times taken for each phase..:Run time loop cost is 

--Usually tlf = trf - - %etch and ideally there is no overhead, so 

- - 
Instruction time =. n-x Tloop 

+ tsetup* 



FRI = tact ion / (T loop +'  %etup / N). 
With a single processor, the only w.ay to improve FRI and 

f i  
increase system performance is to speed up memory transactions. 

- 
Now consider algorithm (a )  for matrix multiply in figure 

2-1, henceforth xalled algorithm I (a). Performance mainly 

depends on execution time of the inner loop. In the inner loop 

we need to fetch,sequential elements of A ,  fetch elements of B 

in column order, multiply them and add the result to a local 

running sum. Thus, for system 1 with no parallelism, inner loopp 
r 

cost, is 
1 

where sf is sequential fetch and nsf is nonsequential fetch. 

and 

FRI * tmU1 
+ tadd ' Tinnerloop' 

This is the dominant term for cost since it must be done 1 m n 

times. 

For algorithm 1b which calculates complete rows of the 

result, all accesses are sequential. This improves performance 
\ 

if. sequential accesses are faster than nonsequential acc'esses. 
t , 

The cost far the inner loop'becomes 
, 

Note that ~[i,k] is a constant that only needs to be loaded once 

at the-beginning of the loop. "mparing algorithm a with 
T! 

algorithm b and assumming that a sequential store ta4ee-t-he same 

time as a sequential fetch, we find that a is faster if 

sequential fetch = nonsequential fetch: they are equal Lf 



sequential fetch = 2 nonsequential'fetch; and b is faster if 

sequential fetch < 2 nonsequential fetch. 

A 

2.3 System 2 Performance 

In system 2, auxilkry special function units (SFU'S) are 

added on DMU's external BUS to assist with its processing load, 

cf. figure 2-3. In this study only arithmetic slave units are 

considered. These extra arithrfietic processors can be used to 
1 -  - 

L improve DMU.performance especially for complex actions such as 

multiply, divide, alld floating point operations.. ?ystem 
complexity is reduced if the processors also perform integer 

arithmetic. Performance cpn be further increased by concurrent 

executiop 'of DMU and slave processors. Ar i thmet i.c uni tsl can be 

>attached as either separate SFU's or a chip set can be attached 

as a single SFU with a shared data buffer. 
t. 

We now consi'der - overlapped performance for this system. +- - - 

A Performance with'out overlapping would be the same as in system 

- 4  DIL 1 
-(-+---I D M U  I 

Figure 2-3: DMU with Auxiliary SFUWs. 
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one but with decreased action time for multiply. Action time now 

includes time* to communicate action codes andfor synchronize SFU 
PS I - 

execution. 

At this point some aspects of the interface between units 
\ 

need to be considered since this affects the amount of overlap 
'1 

that can be achieved. Assume that SFUs are connected as slaves . 
to DMU with actions initiated by DMU. The algorithm for 

overlapped execution, cf . figure 2-4, uses a one stage software 
r 

pipeline [59] to support overlapped operation. 

fetch left operand 
fetch right operand 
'start action 

DO loop (vector length times) 
fetch left operand 
fetch right operand 
store previous result 
start action 

end 
store last result 

Figure 2 - 4 : Overlapping data fetch with action. 
- - - - - - - - - - - - - - - - - 

Operands are loaded, an laction initiated, and then new operands 
- 

are loaded while the action takes place. When available, the 

result is stored and a new action started. The operand registers 

be buffered or isolated so that new values can be loaded 
\ 

L1 

\ 
without affecting the current operation. If the output register 

is unbuffered the'result mugt be stored before a new action is * 

initiated and therefore the store and action phases cannot be 

Terlapped. Figure- 2-5(a) shows timing for the unbuffered output 

case and figure 2-5 (b) the buffered 'output case. 





of.another. If a single unit is used, 
i 

Tinnerloop = tsf + tnsf' tm,l, + tadd 1. 
Note that-the first iteration is net overlapped thus reducing 

performance. 
\ 

For algorithm 1b with memory accesses overlapped wi\tp 

actions the cost is 

- if different SFU'-s are used and --- 

Max{ tsf + tstore ' tmul + taddl (2-14) 
if a single SFU is used. 7 

9 

2 . 4  System 3 Performance L 

System 3 uses an independent arithmetic processing unit 

(APU), cf. figure 2-6, capable of chaining multiple actions. 

System 3 ideal perf b, ance for benchmark 1 is the same as system 

2 with complete bef-Eer-i-ng.- - - -  + 

For benchmark 2, cost of the inner loop for matrix multiply 

algorithm l(a) becomes 

In this case the first 2 iterations are not overlapped. 

Y 
For algorithm 1 (b), innerloop performance is 

t Max 1 2  tSIf 
+ %toref muit tadd 1 .  
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CHAPTER 3 

SAM 0 . 5  

The first version of SAM used a building block module based on a 
v 

Micros MK16 [ 7 1 ] ,  for PMU and DMU. Figure 3-1 shows a block 

diagram of this module. Important features are a data stack(~S), 
- - 

a. data  buffer(^^), and a segmented memory(S~) accessed through 

windows(~~O), or set of currently open segments. In addition a 

microprogram stack(MSTACK1 supports a microprogram call , .  
i 

r mechanism. Figure 3-2 shows details of the MK16 internal \ 
-I 

architecture. See glossary for definifions of other terms. It is 

essentially a two bus single accumulator microengine. Dyadic 

Figure 3-1: SAMjr schematic. 
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' C 
microoperations take 2 or 3 cycles depending on which source and 

destination registers are used. MK16 is controlled by a 32 bit 
i /- 

microword. Eight more bits were added trol external 

featdes via the control bus and to simplify microprogramming. 

These bits select the SFU's that will transmit or receive bus 

data. The least significant 4 bits select the SFU register to be ., 

used. This must b e i w g a m e  in both source and destination 

SFU's. Internal' and external microoperations proceed 
1 

- 

concurrently. SAM 0.5 design and simulation was-based on 

availability of a 4 MHz MK16 as promised by Micros Corporation. 
i- 

The SAMjr prototype used an LSI emulator.  he ., clock cycle was 
-- 

extended to 333 nsec, to accommodate external data flow. 
-- - _ _-----_ 

- The previous'chapter discussed theoretical performancq - 
/ - 
limits. We now consider implemention on a concrete systeh. We 

may not be able to achieve the theoretical performance b m s e  L 

of system objectives such as modular structure of firmware, the 
- - - - -- - - 

use of vertical microprogramming, and reasonable cost. A real 
- 

-- - - -1'mplementation must consider details such as special function . 
unit synchronization overhead and the detection of overflow from 

' an action. Supporting dynamic precision requires automatic 

recovery from output precision changes. An MK16 emulator was 

us-ed to obtain concrete results, introducing architectural 

changes to evaluate the effect on microprogram structure and 

performance. ~icroinstructions are'described using a set ~f 

mnemonics, which are descibed in a'glossary at the end of this 

chapter. These are executable APL functions describing data flow 



and side effects of an microoperation. During simulation, they 

are executed as a result* of microprogram execution. Timing 
a 

calculations were appended to microinstructions to c 
- 

time performance during simulation. 

EXTERNAL 
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1's COMPLEMENT F-~ ,-, 
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TRAP I 
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16 X 16 

SCRATCH 
- 

SECONDARY MICROINSTRUCTION 

NAN0 INSTRUCTION 

'% 

Figure 3-2: Micros MK16 Schematic. 



3.1 System 1 

3.1.1 Microprogram structure __- 
C 

One goal of this projyct was to examine how microprogram 
-- I 

structure affected performance, i.e. Can good modular design 
\ 

coexist with high performance? Figure 3-3 shows the instruction 

execution hierarchy. DIL code execution proceeds from 
- - -  

instruction fetch to format execution using a table driven EXEC, 

a variable procedure call mechanism. The format procedure 

performs verification, checks operand rank, and calls the 

I FORMAT - 1 
SetlJJP I Decode rank and data size 1 Scalar ' ' 1  Vector I 

I CALL 

EXEC 

Scalar 1 
Figure 3-3: ,DMO instruction execution. 



appropriate rank and data size spbcific fetch routines. For 

array operands,, operand sylables provide an index into an array 
- - 

descriptor, which gives rank, size, and array data location in 
- 

A 

- segmented memory. The action is EWC'd from within the vector 

control microprogram.-'Dyadic action routines were implemented 

with a standardized interface,. with arguments in  left] and 

 le right] and results returned in ~~[dest]. 

An objective in implementing the algorithms was to find a 
- - 

microprogram structure that is not costly in execution time. For 

vector algorithms, loop code is the most important element in 
e 

ri * 
determining, performance. The first efforts aimed at generality .f* - i 
to conserve microcode space. ~or$ider the first benchmark, a DLR 

vector instruction. The first attempt, cf. figure 3-4, will be 

used to illustrate microcoding with microAPL. This is a quite 

general microprogram that works for any of the defined numeric 

precisions and is modularized- with-no performance penaLLy wikh 

calls to Lfetch, Rfetch, and STORE routines which can be shared 

with other formats. Point to point data transfer is indicated by 

the left arrow, "+". AR and XR refer to A reg and X reg 

respectively in figure 3-2. DB is the external data buffer iLn 

figure 3-1. R refers to one of the 16 registers in the 

scratchpad in figure 3-2. 

Loop execution starts with fetches of left and right 

operands through CALLS to left operand fetch, LFETCH, and right 

operand fetch, RFETCH, subroutines. The status register, SR, is 
** 

loaded with an operand size tag to allow fetch subroutines to 



VLOOPG 
C DMU General vector control 
C  count] is loaded by calling-program 

LOOP : 
CALL 'LFETCH' A SR <-R[LTAG] 
CALL 'RFETCH' h SR <-RIRTAG] 
EXEC DB[OP] A SR<-R[TAG] 
->ERROR IF OVFL 
CALL 'DSTORE' A SR<-R[TAG] 
R[COUbJT]<-SNZ DECl R[COUNT] 

->LOOP IF -ZERO 
clear status and return 

ERROR: CALL 'RECOVER' "Data size overflow" 

LFETCH I 

C General left operand fetch - 

C Fetch opeqnd and leave in buffer DB[B,O.. .L3] 1 
C SR coptains left size tag on entry ! 

R[LINDX]<-1NC2 SRW R[LIND 1 '  "Memory addressw 
->O if 1~916 A DBILO]<-S[&PI "Memory data" 
R[LINDX]<-TNC~ SRW R[LINDX] - - 
->O if INT32 A DB[L~]<-s[woRD) 

ADD 
C Generic PMU add microprogram 

.->SHORT IF INT16 A AR <-DB[RO] 
->LONG IF INT32 A XR <-DB[R~] 

SHORT: AR <- SAR AR PLUS DB[LO] 
-N IF -OWL A DB[DO] <-AR ' 
->SKIP if -CARRY A DB[DI] <-D'O' 
DB[DI] <-Dt-1' 

- - - - - - - - - -- 

SKI P : AR < - R [ T A G ] ~  
->O A R[TAG] C- LSHIFT ARIO 

LONG:- AR <-SAR AR PLUS DB[LO] 
XR <-SAR XR PLUSC DB[LI] 
->COW IF OVFL A DB[DO] <-AR 

* ->0 ADB[DI] <-XR S 

f COW: CALL 'XOVER' "Convert to floating pointw 
-- 

+ r 4  
L 

Figure 3-4: General Vecto~ Control Microprogram and Support 
Functions. - C 

"Aw is used to separate microoperations within ah 
microinstruct ion. . < 

% 

determine data size. The ta@s were read from memory within the 

format routine. Within LFETCH, SRWkegment read word) sets up 

the segment window address and starts a memory cycle. R ~ I N D X ]  



/ 

is an ad&ress pointer used by DMU control micro&ograms. In the 
f 

next line, S[WORD] accesses the mempry data word. If LTAG size 
, 

bits were set to indicate 16 bit integers, then control returns 

to ~~~b+~therwiae, more dataY5wiJl .. be fetched. RFETCH is 
P r 

similar to LFETCH. The generic. operation syllable is then 

' EXEC'd. The action subroutine, in this example, ADD, then 

decodes and executes the specific action, setting condition 

flags when needed. In the ADD microprogram, overflow is set if 
, . * - - -  - 

the result size islarger than that of the operands. This 

condition is tested by the branch on OVFL in VLOOPG. If there* - -  
was no overflow, the result is.stored in memory by a DSTORE 

subroutine. This is similar to the fetch routines, except that 

sww(;egment write ,word) is used. Then a loop counter,  count 1. 

is decremented and the loop repeated if the counter is not equal 
I 

,to zero. This general microprogram takes 13 cycles + action time 

per loop for 16 bit data and - - - 19 crcles + action time for 3 2  bit 
- - -  -- - 7 

\ 

' data. Action time refers torthe number of cycles taken by the t 
> 

'action 'firmware m4icroprogrdm. Setup time in the format routine 
z - 2' 

required 2 6  cycles. An even moreigener4 microprogram combining 
/ 

/-A scalar and vector versions of a DLR format was yitten., but its 

performance was unacceptably slow since loop overhead was twit= 
1 

that of fipre 3-4. t 

I 

A different approach, cf . figure 3-5; uses further run time 
-. \ 

"compilationm to a specific DLR loop for each precision. Size 

specific data fetch is in now incorporated into the vector 

control loop. ~ h f s  requires slightly more microstore space, but 



improves performance. This technique yields an execution timerof 

8 cycles + action time per loop for 16 bit data and 14 cycles 

/' plus action time for 32 bit data. Thus we pay a penalty of up to . 
-50% for generality. Inefficiency in the general algorithm stems 

from the necessity in I"MK16 to' reload SR for each precision test. 
I=+' 

Freeing the status register also allows us to move the counter 

incrementation and gain a cycle, although-this only works if the 
-- 

action function does not sample the zero flag. 

Another possible s'olution with a minor change to the 

microarchitecture is to dedicatebfields in SR for left', right, 

destination tags and the arithmetic flags. This technique would 

result in a loop execution time of 8 cycles + action time. This 
> 

method requires a change to the microarchitecture to allow any 
Q 

bit in the SR to be tested. This method also has a problem in 

that SR may-not be able- to hold all precision tags < f  many data 
. . 

sizes are used. A separate bit is required for each precx-on, , 
- - - - - -- - - - - --- 

-- 

C DMU vector control loop for intl6 diadic action 
C R[CNT] is loaded by calling program 
LOOP : 
R[LINDX]<-INC2 SRW R[LINDX] 
PB[LO]<-S[WORD] P'"memory fetchN I', + 

R[RINDX]<-INC2 SRW R[RINDX] 
DB[RO]<-S[WORD] . 
EXEC R[OP] , 

R[DINDX]<-INC~ SWW R[DINDX] 
->ERROR IF OVFL P S[WORD]<-DB[DO] A R[CNT]<-SNZ DECl R[CNT] 
->LOOP IF -ZERO A "Continue loop if zero flag is not setw 
return 

ERROR: CALL ' RECOVER' 
return 

, B 

Figure 3-5: Size Specific Dyadic Vector control Microprogram. 'k 
*. : 



I 

since an IF microop is used to test data size. Sequential tests 
% 

are, needek to decode data size, but these were combined with 
- 

0 

( data fetches so they did not increase loop time. Initial loading 
'\ - 
of SR is slowed since tags must be shifted and combined with SR. 

 his increases setup timeAmless O W  hardware is used for this 

t 3 

It is nt at this stage .to weed out delays due to 

minor in the microarchitecture since apparent 
4 ( 

-- --- 

, . speedups from other architectural changes coufd simply be due to 

masking the effects of these idiosyncracies when each processor 

has less to do in an algorithm. Therefore fixed precision 
t 

routines are used for further study, a6d the problem of code 

compaction is left to be so-d when a.complete system is 

. . implemented. I 

/ 

It should bepossible*to speed up sequential memory 

accesses. The simulator was modified to meisure the advantag& 

of such a technique. Vector i-nstructions should execute faster 

since bus addrgss cycles are no -longer needed. Memory interface 
5 

ha'rdwar~can be 'designed to provide, 'data streaming capability. 

Stream buffers are provided between the data bus and memory.- 
6 .  

Data bus transfers proceed at 8 of 1.6 bits per. cycle, while 

transfers from memory to stream buffers use wider data paths. 

The memory system can use interleaving or the new nibble made 
I L 

chips to'support extra'bsndwidth. The width required depends on 



the ratio of memory cycle time to processor cycle time. Once 
t 1 

a 8 

started, a memory stream no longer requires bus address cycles. 

Pipelining in the memory interface hides address translation 

, time delays. A memory stream interface was designed and '. 

incorporated int6 SAM 1 and could'have been added to SAM 0.5 if 

desired. The code segment in figure 3-6 shows the use of \ 
streaming in a typical vector loop for a diadic action. 

Initialize counter 
Left stream address <- zero 
Right stream address <- zero 

. Dest stream address <- zero 
LOOP : 
 left] <- SSN left ? . . 

- ~B[right] <- SSN,rbht 
EXEC action 
inc count A dest SDN DB[result] 
->loop if count #0 

Figure 3-6: ~ ~ a d i C  Vector LOOP with  a ern or^ Streaming. 

Two new microoperations, SSN and SDN, support read and write 

streanhg respectively. Memory transactions take only one cycle 

if streams were previously initialized. Loop time is reduced to 

5 cycles + action time for 16 bit data and 8 cycles + action 

time for 32 bit data. 'I 

P \ 

Matrix multiplication should be faster using algor thm ( a )  
T a 

using normal memory fetching. Streaming should equalize the two 

algorithms, unless nonseqwnt ial &&as &it+ more thm 2 
* ,  

cycles, in which case algorithm (b) becomes faster. ' 



The standard interface for dyadic action routines caused 

some difficulty in implementing mptr,ix multiply. The addition 

routine leaves the accumulated sum in DB[D] but this register ' 

will be overwritten by the next multiply action. This means that . 

the sum must be saved elsewhere and restored within'each loop. 

 his was done, keeping the sum on the data stack, DS. This slows . i . 
'\ 
pe?ior,mance, but not significantly, since execution time is 

eominated by multiply time. The problem could be resolved-by 
8, 

- - - - - 

deflsing a special accumulate action that uses different 

registers-but this would not work for a general inne? product. 
1 i l  

For aigeneral Matrix Multiply which accepts any siz% da.ta, 
i 

loop ' 1 was 24 cycles plus action time for 16 bit data ahd 35 

cycles plus action time for 32 bit data. A size specific 
, 

version, cf. figure 3-7, was run resulting in an innerloop time 
- 

- - - -- --- - - 

I -  - t - 

of 13 cycl9 plus action time for 16 bit data and 21 cycles fdr 

32 bit data. Although nearly - twice -- as fast - - as - thegeneral - - -- -- 
- 

microprogram, this routine still has a lot of overhead, mostly 
\ 

due to movhg the running sum. from DB to DS and back. Supporting 

a combined multiply accumulate action solves the problem but 

only for the specific matrix multiply. This technique saves.6 

cycles for 16 bit data and 10 cycles for 32 bit data. Streaming 

reduced loop time by one cycle for 16 bit data and 3 cycles for 
I 

32 bit data. 



DOTA 1 6 
1 

C -DMU int 16 Dot Product control microprogram combutes 
€ inner prod of N by K matrix (A) with K by M matrix (B) 
C DB[OP] contains left action of dot 
C DB[OP~] contains right action 
C Initial values are loaded by format microprogram 
LOOP 1 : 
R[COLI <- RIM] 

LOOP2 : 
AR <-NEGATE R[COL] "R[COL] counts cols down from R[M]" 
AR C-R[M] PLUS AR 
AR <-LSHIFT ARIO "Convert to word offset" 
R[RINDX] <-R[RA] PLUS AR 
R[COUNT] <-R[KIA PUSH 

I NNERLOOP : - - 

R[LINDx]<-INC2 SRW R[LINDX] 
AR C-DEC1 R[M] A DB[LO]<-S[WORD] 
R[RINDX]<-INC2 SRW R[RINDX] 
AR <-LSHIFT AR,O A DB[RO]<-S[WORD] 
EXEC DB[OP2] A R\[RINDX] <-R[RINDX] PLUS AR 
->ERROR IF OVFL A AR <-DB[DO] 
DB[RO] <-AR 
AR c-DS[ RO] 
DB[LO] <-AR 
EXEC DB[OP] 
->ERROR2 IF OW'S A AR <-DB[DO] 
R[COUNTI <-SNZ DECl R[COUNT] 
->INNERLOOP IF -ZERO A DS[RO] C- AR 
R[DINDX] <-INC2 SWW R[DINDX] 
AR <-R[KI A POP A S[WORD] <-DB[DO~ --  

AR <-LSHI FTAR,O 
R[LINDXI <-R[LINDx] MINUS AR 
R[COL] <-SNZ DECl R[COL] 

-> LOOP2 IF -ZERO 
R[LCOUNT] <-SNZ DEC1 R[LCOUNT] 

-> LOOP1 IF -ZERO 
return 

ERROR: CALL 'RECOVER' "Mu1 errorw 
J&BROR2 : CALL ' RECOVER' ' "Add error" 
return -@ 

Et- 
Figure 3-7: Size Specific Dot Product ~of"h-01 Microprogram 

a using Algorithm (a).. 

In theory, algorithm 1(b) requires only two sequential 

memory fetches per loop, since ~[i,k] is constant within the 
1 

inner loop. However the standard action interface again causes 



problems. ~[i,k] cannot be held in DB[L] during the loop because 

it will be overwritten by the C value read in for the hddition 
I 

part. As in algorithm l(a) the constant may be moved to a 

temporary location and restored or a new accumulate action can 
* 

be defined. Again the data stack was used, cf. figure 3-8. 

DOTB 1 6 

intl6 Dot Product control microprogram computes 
er prod of N by K matrix ( A )  with K- by M matrix (B) 
PI contains left action of dot 
~ 2 1  contains right action - - 

ial values are loaded by farmat microprogram 
LOOP 1 : 

J 
R[COL] <- R[K] 
R[RINDX] <-R[RA] A PUSH d 

LOOP2 : 
R[LINDX]<-1NC2 SRW R[LINDX] 
R[COUNT] <-R[M] A DS[LO] <-S[WORD] 

INNERLOOP: 
DB[LO] <-DS[LO] 
R[RINDX]<-INC~ SRW R[RINDX] 
DB[RO]<-S[WORD] 
EXEC DB[OP~] 
->ERROR IF OVFL A AR <-DB[DO] 
DB[RO] <-AR 
SRW ~ 1 ~ 1 ~ ~ x 1  -- --- 

DB[LO] <-S[WORD] 
ZXEC DB[OP] 
->ERROR IF OVFL A R[COUNT] <-SNZ DEC1 R[COUNT] 
R[DINDX] <-INC2 SWW R[DINDX] 

->INNERLOOP IF -ZERO A S[WORD] <- DB[DO] 
AR <-R[M] 

d\ . 

AR <-LSHI FT AR, 0 
R[DINDX] <-R[DINDX] MINUS AR P 
R[COL] <- SNZ DECl R[COL] 

-> LOOP2 IF ?ZERO + 

R[LCOUNT] c-SNZ DEC1 R[LCOUNT] 
-> LOOP1 IF 'ZERO A R[DINDX] <-R[DINDx] PLUS AR 
return 7 

ERROR 1 : CALL ' ' RECOVER ' "Mult iplp oberflown 
ERROR2: CALL 'RECOVER' "Add overfloww 
return --- 

Figure '3-8: Size Specific Dot Product Control Microprogram 
using Algorithm (b). 



This si e specific version of algorithm b gives an t 
innerloop time f 12 cycles plus action time for 16 bit data. A '3 

3 4 .  

32 bit version ta es 21 cycles plus aqtion time. Streaming will 

reduce loop time by 2 cycles for 16 bit data and 4 cycles for 32 

bit data, but necessitates separate read and write destination 

st reams, I 

3.1.3 Analysis of resul ts  
- - -  

I During the simulation of system one, timings of the 

different phases of instruction- execut~i-here 4 determined. These 

results, cf. figure 3-9, give an estimate of the workload of the 
? L 

different processes which may? later be execut d!4 d Sy separa e f 
processors. These results point out the primary bottlene6ks in 

system performance. For vector addition, most of the time was 

spent in the setup and fetch phases. The dyadic scalar addition 
- - - - - - - 

- - -  

microprogram takes 3 cycles for 16 bit data and 6 cycles for 32 

bit data. For multiplication, the balance swings to the action 

phase because of the slowness of multiplication on M16. The 

multiplication microprogram takes 32 to 48 cycles for 16 bit 
i 

data and -200 cycles for 32 bit data. A VLSI functional .d 

multiplier equalizes addition and multiplication times so both 

cases will approximate the results from addition in systems 2 

and 3. 

In order to maximize system performance, processor 

workloads need to be balanced. All overhead is due to.fixed 
F 

setup time. This can be reduced with hardware support for the 



D M U 
with streaming 

Figure .3-9:~orkload Distribution of Vector Add> 

verification phase. A special operand verification unit (OW) is 

- being designed for this purpose[42]. Since memory fetch 

comprises the maJoe component of DMU executi-on time during --- 

vector loops, memory streaming can be used to reduce fetch time. 

With memory streaming, fetch plus store and action phases a t e  

nearly equal for addition, so introduction of an extra processor 

' could almost double performance if th&e operations are done in 

parallel. r 

While benchmark 2 execution time is dominated by multiply 

time, cf. figure 3-10, DMU overhead is significant even for the 

innerloop - 40% for the general version and 25% for' the size 
specific microprogram. For small arrays, outer ldops add even 

more overhead. If multiply time is reduced significantly by 



, ltrrlxtl 
P M U  D M U  

algorithm a 
D M U 

algorithm b 

Figure 3-1O:Workload Distribution of Benchmark 2 

Solid area of overhead, I # #  1 ,  indicates fixed setup time. 
Shaded area, ) / / I ,  indicates action time i f  multiply time = add 
time. 



.T 

using a hardware multiplier, DMU overhead becomes a system . 
bottleneck.lAn unexpected result of this study was that 

algorithm (b) was faster than algorithm (a) even without memory 
4 

streaming. From figure 3-10, it appears that this is due to the 
1 

higher t overhead of algorithm (a), which requires complex address 

calculations in both the inner and outer loops. 
- 

The results presented- in this section were ,parameterize-d 

into DMU loop time and action time. The results can be k e d  t,o 

determine maximum cycle times for an arithmetic unit so that the 
4EI 

system is not slowed. 



3.2 System 2 

In system 2, it is assumed that a combinational chip set is 

used to support actions. Support for vector action routines 
1 

requires changes to the DMU instruction hierarchy. When a format 

program finds from operand tags that a vector ac.tion is 
I 

required, it must determine if a specific vector action 

microprogram is available. In the SAM 0.5 simulation, a sjmple - -  

i 

local memory table lookup $s used. A more complete discussion is 
9 

given in section 4.2. Two variations of the DMU-SFU interface 

are considered to see how they affect structure and performance. 

They are ordered according to increasing SFU control complexity. 

In the simplest configuration, cf. figure 3-11 (a), linited 

cabability functional units are attached to the external data 

and control buses. To simplify the.figure these are shown as a .-- 

single bus.'J$ach , , unit contains its own data buffer and status . . 

register. s&% can have up to 16' registers selectable under 
\ 

b 

micropr ram control. Read or write of a selected register is "i 
enabled by the control bus. With this method only a simple' 

finite state machine is needed to control each of the functional 

units. If each unit perf.orms actions of varying precision, then 

a tag buffer (possibly part of IR) will be needed to control the 

unit. Otherwise a separate unit is needed for each action - 
# 

precision pair. DMU needs to know which unit is being loaded, 

thus requiring a specific vector loop for each action, 
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Figure 3-11: System 2 Configurations. 

BUS ' 

* '  . DI L 

In this configuration, DMU decodes the functi,onvcode and 

- 

1 

then uses appropriate functional units to perform the required 

-(7+ - 
PI PE 

action, cf. figure 3-12. Action can+ be started by sending an 

action code to a functional unit, e.g. DBA [ I R ]  <- 'addl6'. 

D 

M 

U 

Unfortunately, APL does not allpw assignment to or subscripting 

ADDER 

of a function, so equivalent code was used in the simulation, 
< . 

.. e . g . STARTADDER A BBAI R <- ' add 1 6 ' . 

r T 

Another method is to use a SFU control bit to indicate action 

L IR ID I T  I $  ! I  
' D B A  IR IR 

t 
I ---- 

D B M IR IR 

I I 
I I I 

I 

MULTI PLI ER 
I 
I -- 



I I 
C DMU vector control loop for intl6 diadic Multiply i 

C R[CNT] is loaded by calling program 
4 

-- 

LOOP : 
R[LINDx]<-1NC2 SRW R[LINDX] - 
DBM[LO]<-S[WORD] "memory fetchw L 
R[RINDX]<-INC~ SRW R[RINDX] I 

DBME ~631-s [WORD] 
DBM[~R] <- 'mull6' 
NOP 
R[DINDX]<-INC~ SWW R[DINDX] 
SR<-DBM[SR] 
+ERR IF O V ~ L  A S[WORD]<-DBM[DO] A R[cNT]<-SNZ DECl R[CNT] 
->LOOP IF -ZERO "Continue loop if zero flag is not setw 
return - - -- - 

ERR : CALL ' RECOVER ' 
return 

Figure 3-12: Size Specific Vector Multiply Microprogram. 
I 

I - 
- - 

k .  

-. _ i' 
start, e.g. DBAS [RO] <- SSN right. 

., 
This saves a bus cycle since the last data fetch can be combined 

with function start but may double the number of addresses 

needed for each functional unit if a conventional symmetric 
4 

L -  addressing conventionnisSus~i~~arn, equlvarmf code %as need-- 
r, I 

in the simulation, 
', 

e.g. STARTADDER A DBA[RO] <- SSN right. \ 
---* 

The interface microprograms presented so far depend on a 

knowledge of SFU action time. They can be made more hardware 
J 

independent by replacing the NOP's with the sequence , 

WAIT: SR<-DBM [SR] 
->WAIT IF BUSY 

In the second configuration shown in figure 3-11 Cb), the 
I 

functional units are on a separate bus with a common data buffer \ 

through which they communicate to the DMU data bus. A control 



register DBIR is loaded by DMU. This register then selects the. 

unit to perform the next action. Only one functional unit can be 
t 

active at any time unless combined actions such as an inner 
b ? 

L * 

product step are'dCfined and implementedh an arithmetic unit. 
* 

Since all dyadic primitives of a language may not be supported 

in hardware, DMU must either support a vector loop for each 
. -  

action as in the previous'case or exdcute the action syllable to 

determine if the action is supported. 

1 7 

i 

3.2.1 System 2 performance 
.k . 

We now look at DMU performance'assumming a fast 

combinational arith tic chip' set is available. t The question arhes of how best to use the slave. Even 

without attempting to overlap operations, performance is greatly 

improved for some functions supported by hardware. For example, * .  
the action part of the16bittmultip3y can be reducEd t o  1cycle 

using a combinational logic chip from an average of.16 x 2.5 
; P 

cycles using DMU firmware in system 1. Without overlap using the 

interface structure of figure 3-11 (a), a VADD16 or VMUL16 

microprogram takes 9 cycles plus action time - 1 per loop for 16' 

bit data and 15 cycLes plus action time - = l  for 32 bit data. 

Memory streaming reduces these times to .6 cycles plus action 

time for 16 bit data and 9 cycles plus acti~n time for 32 bit 

data. Performance increases are due to increased chip area that , 

can be dedicat & to speciiic functions. 



* - * 

To increase perf&mance further, we attempt to utilize the, 
- 

cycles when DMU is waiting for an arithmetic unit to finish by 

loading the ne&-operands, cf . figure 3- 13. Performance I 

\ 

increases are greatest when fetch-store time and function time 

are approximately equal. With buffered output we can also store 

the previous result while waiting for the action to compJete. 

Some extra hardware is required to support overlapping. First, 

the inputs must be double buffered since thc old inputs mist be 
- - 

available during the action phase. Therefore another set of 
J 

registers must be available to accept the new operands. This 

will usually be part of an arithmetic chip. Data must be.moved 

and latched before new data arrive. Since bus data'movement 

takes place in the first half of a clock cycle after SkU. control. - 
decoding, approximately 3/4 of a cycle or -250 nsec is*$vailable 

- 

to move the data'if streaming is used and 1 3/4 cycles without 
I 

- streaming. A simple output -- latch - - is - acceptable - - ifsthe - -- output - is \ 

d 

unloaded before a new action is started. However if we wish to 

overlap,output storage with actions a double set of output 
_ .  

registers is needed, since new results may be latched beyre the 

old outputs are unloaded. Some. arithmetic units have output 

latch built into the--chip. This, along with the dual port data 

buffer, D will suffice to support full overlapping. 
<J 

With .f@l overlap, the loop time for structure (a) is 
a 9- 

reduced to 9 cycles if aciion < 5 for 16 bit data and 15 cycles  
- - --  -- '. 

for action <I0 for 32 bit data. With streaming, the 

corresponding times are 6 cycles if - a-c3ion < 2 and 9 cycles for 
- 



VMUL 1*6 
- 

C D!& vector control loop for intl6 diadic Multiply 
, C R[CNT] is loaded by calling program 

DBM[LO]+SSN left 
D M[RO~<-SSEJ right , 

D [IR] <- 'mull6' 
LOO % 
DBM[LO]<-SSN left 
DBM[RO I<-SSN xi ht' 3 

* . 
WAIT-: SR<:DBM[SR , - 
: ->WAIT IF BUSY 
DBM[IR] <- 'mul-16' A R[~NT]<-SNZ DECl R[CNT] 

* A  ->ERROR IF O W L  A dest SDN DBM[DOI 
->LOOP IF -ZERO A "Continue h o p  i•’  zero f$ag is not set" 
WAIT 1 : SR<-DBM~SR] c - 

->WAIT1 IF BUSY 
->ERROR IF OWL A dest SDN DBM[DO I 

. return 
ERROR: CALL 'RECOVER' 
return 

Figure 3-q3:  Overlapped Vector Multiply Microprogram for 
'\ 

*\ 

- structure (a). 
'\-G 

- 

, <I 
a 

action <5 for 32 bit data. If BUSY is also checked, as .in figure 

3--13, an extra. cycle is required. 

For structure Tb~J-roop~~•’ormance with individual action- 

routines is the same as that of4 structure (a). If DMU EXEC'S the 
- 

action syllable, a general vector action microprogram can be 

used, in which case an extra cycle is needed. This saves 

microstore space and limits device specific actions to fewer 

I Matrix-multiply was implemented using algorithm (a). Size 

specific versions were used to reduce the loop overhead found in 

) the generic version in system 1 . Perf orrnance without overlapping 
iwsimilar to that on system 1, egcept tha ultiplication time Y 

-4 

is decreased. Dverlapped performance will be considered next. 



- 3  The use of slave action processors solved imple'mentation - 
problems for matrix multiply that occurred with a single 

c 
- 

processor DMU. With structure 3-ll(a) there was no register 
I 

contention since each unit has its own set of registers. There 
- - 

is still some overhead since results must be moved between 
1 

units. Innerloop time was 16 cycles for 16 bit data if add and 

multiply time were less than 1 1  cycles and 2 4  cycles for 3 2  bit 

data if actions < 19 cycles. 

Structure (6) is unable to support-averlapping of 

multiplication1 with addition. Register contention is also a 

problem, so DS was used to hold intermediate res~lts. Innerloop 

time for 16 bit data was 15 cycles if add time < 5 cycles and 

multiply time < 3 cycles. 

Matrix multiply using algorithm (b) was also implemented 
I 

using size specific microprograms. Structure (a) results in an 

innerloop time of 13 cycles -- -- for - - 16 - - - bit - - data --- and - - 22 - - - cycles - - - - --- for 32 
I 

bit data. .( 2 

9 

3 . 2 . 2  Analys- i  s 

System 2 is not much faster than system 1 for simple 

sctions. This is due synchronizat ison overhead, which requires 

2 or 3 cycles to initiate actions and copy SFU status to SR for 
- 

testing. This is a great amount of overhead for short vector 
t 

loops with simple actions and even more significant with memory 
\ 

streaming. A way to eliminate the o&ead'@ testin-g the APU 
/ 

flags in (b) is to implement specific J ', DMI =ontrol algorithms for 



t; each action as in structure ( a )  ahd-use knowledge of the APU 

performance to avoid tes-ting for busy by assumming that the 
t i 

results are available after a fixed time. However, this links 

DMU algorithms to APU hardware reducing independence. 

While slave processors relievgd register contention 

problems for matrix multiply, some overhead was still incurred. 

The 'SFU addressing convention caused the overhead of data 

transfers in structure 10 ( a )  to be greater than necessary, 

since indirect data movement was necessary if differently 

numbered device registers were selected. This overhead could be 

reduced if in~uts and outputs were addressed as separate SFUs. 

With structure (b),. there is a register contention problem 
L 

unless function control'includes the ability to use any register 

for input or output to any functional unit. Then different 

registers can be used for the'two functions.   his wouldGrequire 

a minimum of 4 i'nterface registers (DB) for-the benchmarks 
- - - - - - -- - - - -- 

investigated in this thesis. 



C 
#- -. 

3 . 3  System 3 
2 -  

System 2 (b) can be enhanced to provide a pipelined 

multiply accumulate ion, cf. figure 3-14. More complex 

control and extra ow chaining of arithmetic units. 
/ 

. DMU starts APU by loadibg an op&ation code in& the APU 
- - L3 

instruction register. then test the APU status register 

to determine if the resul d' are ready. APU should be able to 

perform all arith6etic primitives. otherwise, actioLns need to be 
e 

executed by DMUxor special.v(ector actions must be decoded during 

setup. For this study,. only ADD, MULI MULACC actions need be 
, 

defined in pipelined and nonpipelined versions. A 2 stage 

pipeline is used to support overlapped vector processing. 

Figure 3-14: System 3 Architecture. 



Performance of a general VLOOP16 microprogram, cf. figure 

3-15, is 10 cycles for actions less'than 2 cyclps and 12 cy.cles 

for actions of 3 or 4 cycles. The destination address cycle is 

overlapped with APU opekation. While this is adequate for short 

actions such as integer add (although there is little speedup 

over figure 3-5), there is very little overlap of DMU execution 

with APU action: An interesting observation of this microprogram 

is that performance can be optimized for short actions by adding 
-- 

NOP's before the statement labeled WAIT. For example, if a 16 

bit addition took 2 cycles, ad extra NOP before the.WAIT would 
i 

enable the loop to perform in 1 1  cycles instead of 13. 

Overlapping reduces loop time to.9 cycles for acti'ons ,< 5. 

Memory streaming can reduce this to a 7 cycle loop with wait on 

action > 4 ,  cf. figure 3-16. 

VLOOP 1 6 

C DMU vector controlloop fTintl6 diadic ~ctions 
C R[CNT] is loaded by calling program 
LOOP : f 
R[LINDX]<-INC~ SRW R[LINDX] 
DB[LO]<-S[WORD] 
R[RINDX]<-INC~ SRW R[RINDX] 
DB[RO]<-S[WORD] 
DB[IR] <- R[OP] 
R[DINDX]<-INC~ SWW R[DINDX] 
WAIT: SR<-DB[SR] 
->WAIT IF BUSY 
DB[IR] <- ~ [ o p ]  A R[CNT]<-SNZ DECl R[CNT] 
->ERROR IF O W L  A S[WORD] <-DB[DO] 
->LOOP IF -ZERO A "Continue loop if zero flag is not setw 
return 

ERROR: CALL 'RECOVER' ( 

return 

Figure 3-45: General Vector action Microprogram for System 9. 



Innerloop time for matrix multiply using algorithm ( a )  was. 

1 1  cycles for 16 bit data if add and multiply times were less 

than 8 cycles and 15 cycles for 32 bit data if action times are 

less than 12. The reduced loop time resultedbfrom hardware' 

support of ,a combined multiply-accumulate action. The running 

sum .was held in the adder's output register to avoid the 

register contention encountered in system 2 (b). The extra data 

paths in system 3 eliminated operand movement overhead. 
- -  - -  

VLOOP 1 6 
- I  

C DMU vector control loop for intl6 diadic Actions 
C R[CNT] is loaded by calling program 

DB[LO]<-SFN left 
DB[RO]<-SSN ri ht 7 DB[IR] <- R [ O ~  

LOOP : 
DB[LO]<-SSN left , 

DB[RO]<-SSN right 
WAIT: SR<-DB[SR] 
->WAIT IF BUSY 
DB[IR] <- R[OP] A R[CNT]<-SNZ DECl R[CNT] 
->ERROR 1F.OVFL A dest SDN DB[DO] Z 

->LOOP IF -ZERO A "continue loop if zero flag is not setw 
- - WAIT 1 : SR< DB rS~T--pppppp - k 

->WAIT1 IF BUSY 
->ERROR IF OVFL A dest SDN DB[DO] 
return 

ERROR: CALL 'RECOVER' 
return 

/ 

Figure 3-16: Overlapped Vector action Microprogram. 



3 . 4  Glossary of SAMjr Microprogramming Terms 

1 2  

AR is the A-register which is used as a primary accumuiator 
in SAMj r . 

It ""7 be applied to the ALU B input. It can also be shifted(rotated left or right. e 

CALL is a mechanism for accessing microprogram subroutines. + 

It must be the leftmost operation in a microstatement except for 
a label. The microprogram operand name must be quoted. Only 
internal MK16 microoperations may be used in conjunction with 
CALL. 7 

CARRY is set by ALU operatiofis which overflow or underflow 
if an appropriate sample request is also issued. It is also set - - 

by shift ot rotate operations. 

D is used to specify decimal constants. 

DB is an external 16 element data buffer used to help 
standardize the passing of operands to microprograms. 

DECl decrements an ALU input by one as it passes through 
the ALU. 

DEC2 decrements an ALU input by two. It also forces the 
least significant bit to zero as a side effect. 

DS is an external data stack for convenient and fast 
storing. The top 16 values may be indexed.,When DS is 

PUSH& or POPed , alg+66v&ues--are change&. DS i s cur~errt-IyVK--- 
- words deep. 

I EXEC accomplishes microprogram address decoding. The least 
significant 8 bits on the data bus are used as a microprogram 
index. 

- INC1 in~rements its right argument by one. 

.INC2 increments its right argument by two and forces the 
least significant bit ofuthe result to zero. This is useful1 for$ 
incrementing word addresses. , 

INTI6 is a pseudonym for-carry. It is used for data size 
tests. % 

INT32 is a pseudonym for overflow. , 
I 

LOCAL refers to a nonsegmented memory. It is word or byte 
addressable. Local memory requests require exactly 2 processor 
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SR is the 16 bit satus register. The least significant 8 
bits are the negative, zero, overflow, and carry flags. 

- - 

SRW initiates a memory fetch cycle for the- current-ly---- - 
selected segment, Its right argument specifies the segment 
offset address.' - 

SSN specifies a data fetch from a segmented memory stream 
buffer. Its right argument specifies which stream is to be used. . 

SWW initiates a segmented memory store cycle. Its right A 

argument specifies the segment offset. 

VSIGN refers to SIGN'EXOR (AR[O] OR AR[ 11). It is used as a 
shifter input. 

- - - - - - - - - - - 

?-- WDO is a widow register array used to storefrequently. 
referenced segments. WDO is currently Limitea to 8 values 
accessed by subscripting. 

1' - 
L 

\ WDR is Q e  windoe address register used to hold the 
currently seleC'tm3-segment address. - 

\ 
WORD functions to retur 6&ag$propiate index into LOCAL or 

S a~~.ays. 7 
/ I 

I / 

XR denotes the X-re i/ster which is used as a secondary 
acc>htr'eor. I t  may be afplied to the ALU-B inpht. XR is also 
used in double precision shifts and rotates with AR. \ 

ZERO is a status flag which represents the inclusive NOR of 
all - ALU - out - - bits -- after a sample - operation. -- -- - - 



SAM 1.0 

SAM has been revised to corrkct some deficiencies of MK16. In 

this chapter, an implementation of S&M using a new 

microprocessor chip is explored. - In addition, - -- the - suitability - -- - - -- - - - of - , 

commercial arithmetic-chips is examined. The new version, SAM 

1.0 uses a microprocessor chip specifically designeg as a 
+P 

control processor, . ~ ~ 1 6  [391, c-f. figure 4-1. SJ16 incorporates 

a 16 bit testable SR, a case statement, a separate count 

register, and the ability to test external status signals in one. 

cycle. Cype time.has been reduced by limiting the data flow 

possibEdin one cycle. Cu,rrently implemented versions run at 4 

to 5 MHz. Extra parallelism is present - in -- thcs,chin. ,--r A 3bus 
-- 

datapath allows dyadic microactions in one cycle, although there 

are restrictions on the destination register. a 

The architecture of SAMjr was also changed to reflect new 

requirements, cf. figure 4-2. The general purpose data buffer 

was removed since an increased number of internal register's 

allows them to be used in place of DB. DB is now a specialized 

set of registers in O W  and is not used in thi's chapter. The - 

data bus shown in this figure corresponds to the external s.lRrrs - 

in figure 4-,I. 



- - 

Figure 4-1: SJ16 ~icroarchitecture. 
- -- 

' Memory streaming has been implemented in this system. A 

stream is set up by loading a segment number to select a segment 

and starting a memory fetch cycle ,with a SRB or SRW 

microoperation. After a one c i c l e  delay, data can be fetched 

with SSN, which also initiates a new fetch cycle if t'he last 

buffer data word is read. Address translation hardware is 

pi--lined to provide one cycle response. A write stream is . 
similar. Data is simply written into the buffer. Writethrough is 

performed whenever the buffer becomes full, 
- 



A 48 bit microinstruction controls the datapath. Sixteen 
r 

bits are now available to control SFU' s wia kkecont~&busTB------ 

each for source and destination units, It i s  ~ew-pe~s-i-b1~* - -  -- - 

/ 

specify different registers in source and destination. Up to 3 - 
or 4 microoperations ca6 be specified in one microinstruct ion. 

AS in SAM 0.5, microoperations are described by a set  of 

mnemonics. Some new terms are CASE, which performs a 16 way 

branch on the 4 least 'sign-if icant bits of SJBUS,cO3N~,which-~i 

b 
-- . 

tests an increments the 16 bit counter, SD (segment 

destilrdt-!?tm), which writes bus data into a wDO data buffqr, SS 

(segment source), which reads a WDO data buffer onto SJBUS, and 

SWRITE to flush a write Bata buffer into memory. 

7 f i  
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Figure 4-2: N e w  SAMjr Architecture. 



The mickoprogram fragment in figure 4-3 shows the loop 
* 

-- - -- - - - 

section of a size s&cific vector DLR microprogram for a one 

processor SJ16 system. For comparison with SAM 0.5, memory 

streaming is not used. The SS microoperation initiates a memory 
# 

data transfer to SJBUS without starting a cycle. Loop 
4 

performance is 10 cycles plus action time fdr 16 bit data, while 
( 

- - - - -- - - 

a 32 b?t version takes 19 cyc les  + action time. The increased 

number of cycles is required because memory accesses take 3 
I 

cycles instead of 2 as in MK16. This can be transparent to the 

microprogram. If a memory fetch Is not complete when the data is 

requested with a SS gr SSN microoperation, a wait cycle is P L -  
inserted. with memory streaming, only 5 cycles plus action time 

B 

are required for 16 bit data and 7 cycles + action time for 32  
t 

, bit data. Action time for 16 bit add is two cycles because the 

% 

C D-MU control loop for 16 bit diadic actions 
C Counter is loaded by calling function 

LOOP : 
LEFT SRW RfLINDx] 
R~LINDX]<-R[LINDX] PLUS D '2' 
R[Lo]<-ss left 
RIGHT SRW R~RINDX] IC 

..- R[R~NDX]<-R~RINDX] PLUS D ' 2 '  
R[RO]<-SS right d q  

.- UPS EXEC R ~ A C T J  
DEST SWW R~DINDX] 
-SRROR IF OWL d R~DIHDX]<-R[DMDX] PLUS D ' 2 '  

->LOOP -COUNT A DEST SD R ~ D O I  

-T A . ERROR: CAL 

Figure 4-3: SJI6 r Control Loop for 16 bit Data. - 



destinatjon register is not the same as a source register. 
, 

Multiply takes approximately 16 x 2 cycles  u s i q - a  new--mulop-- 

instruction unless a fast multiply trading s p c e  for s p e d  is 

used, This can be implemented using CASE to test 4 bits at once. 

Memory transactions severly limit performance without memory 

streaging; therefore further discusion will assume its presence. 
B 

Benchmark 2 using algorithm lfa) is set up as an outer 
C- procedure to control the outer 2 loops and a call  to a vector 

inner product routine to handle the inner loop, cf. figure 4-4. 
5 

This function is called directly if both operands are vectors. 

parallel with other microoperations and also because this inner\* 

loop is primarily responsible for overall performance. As in SAM 

0.5, the standard interface caused problems. Again DS was used 

for temporary storage, but introduced significant overhead. The 

hardwarccounter 4 ~ a ~ u s e d h r l ~ c ~ u n l t i P t g  sinceitis& 
I 

in the multiply microprogram. A size speciSfic vector dot product 

results in a loop time of 10 cycles plus action time for I6 bit 

data and 15 cycles plus action time f o r  32 bit, data. 
f 

Extra support for matrix multiply can be implemented with a. 

combined multiply accumulate action to reduce overhead. Extra 

decoding is also needed in the format routine to verify that the 
- 

op s y i i a b f e s  are *+" and "x". This results i n  a Imp time of 6 

cycles plus actiun time fur 76 b i t  aata, cf. figore 4-5,  and 8 

cycles plus action time for 32 bit. 
5 



\ 
DOTA 1 6 \ 

C DMU cont ro l  loop f o r  16 b i t  Matrix Dot ~rhducg 
f 

- - - - - -- - - - 7 - -  

C RfOpf contains first action of DOT 
C ~ f 0 ~ 2 3  contains second act ion  
DEST SWW DTO' -Start dest dream a t  0 of f se tw 

- -- 

L O ~ :  
R ~ R C O ~ M T ]  <-RSHZFT O , R [ M ]  
LOOP2 : \ - 

LEFT SRW R[LIM)X] "Start l e f t  stream at cirrent col of A n  
R [ COUNT 1 ] <--NOT R [ K f 
R[T] C - R ~ M ~  MINUS R ~ T ]  

CALL 'VDOTA16' A RET] C-R[M] 

'i 
R[RP]<-LSHIFT R ~ T ] , O  "R[RP] points to cu r r e  t col of 8" 

->ERROR IF OVFL A dest SDN RfDO] 
~f X ~ T ]  <-SF ~f ~~~ PLUS DI- t  

1 
- - - - -- - - - 

->LOOP2 IF -ZERO / R ~ L C O W ]  <-SF R~LCOUNT] PLUS D ' - I '  
->LOOP1 I F  -ZERO A R[T] <-LSHIFT REKI,O d 

return + 

ERROR: CALL'RECOVER' "siie oveif low" 
t 

c *  

VBQTA16 
DMU control for general 16 a i t  vector dot pro uct 
left is a simple row vector 
right is a col vector with step spe@ied 

LOOP: RIGHT SRW R[RP] 

J T l  
Starting address of right in R[RP] \+! 

R[LO]<-COPY SSN l e f t  
\ 

R[RO]<-COPY SSN right 
UPS ~ x ~ c - - R f o p ~ I -  -- - - p-pp-pp 

-> ERROR2 IF OVFL A R[LO] <-COPY DS[RQ] 
R [ R D ]  <-NOP FtfDO! 
~ P S  EXEC R f  OF] 
D S ~ R U ~  <- COPY RFDO] "Save p a r t i a l  resul t  * 
->ERROR1 IF OVFL A RfCOUNTl] <-SF R[COUNTt] PLUS Dt-1' 

-> LOOP IF ZERO A 3fRPj <-Sf R[RP] PLUS R[T] 
r e t u r n  

BRROR?: recover from action1 overflow 
ERROR2: recover from action2 uverflow 

Figure 4 - 4 :  Dot Product ~icroprogram. 







- 
category(ie. all scalar dyadic primitives), then interfacing is 

simplified, However the early SAM-systems will -- probably - - - only - -- - - - 

contain more primitive specialized processprs. To cope with this 
- 

lack of symmetry, the firmware structure waS changed as shown in 

*figure 4-6. A discussion ~f~possible decoding mechanisms. is 

given in section 4.6. This structure necessitates a large number 
I 

of flMU action subroutines. This is necessary since hardware 

support for scalars may be different than for vectors, For 

example, if a Wcitek tO64/65 chip set f933 is used as a slave 

floating point processur, flow through-mode would be used for - 
'C 

scalar processing, while pipeline mode could be used for 

vectors. This structure also allows specific fetch-action 

routines to speed up statistically frequent actions on SJ16. 

vector add 3oop timejcan be reduced by sacrificing structure and 
, 

Figure 4-6:Decode Firmware Structure. '* 
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symetry, and integrating addition with operand fetch, cf. 

f ig&e 4-7. The microprogram is small and simple and thus does 
/ 

not require rigid structuring for easy understanding. The loop 

C 
- - - -  

time is 3 cycles fo 6 bit integers. A similar microprogram 

gives a loop time of 6 cycles for ,32 bit integers. This is the 

limit for bus data movement so only increases in bus bandwiath 

can improve performance, The cqst is the requirement for I 

executable routines for vector versions of each dyadic action -. 
- - - - - - - - -- - - - 

for each precision. This could have been done in system 1 ,  but a _  - 
.one processor system may not have the microcode space resources 

to allow this. 

C DMU control loop for special vector 16 bit add 
C Counter is loaded by calling function 

LOOP : . 
, R[DO]<-SSN left 

->DONE IF COUNT A R [ D o ] < - R [ D O I  PLUS SSN tight 
- > L O O P I F - O V F L A d e s t S D N R [ D O ]  . 
CALL 'Recover' 

D6NE: ae s t - S D N p ~ f  D7IP-  
-- -- ppp -- 

return 

Figure 4 - 7 : ~  Special Vector Integer Add Microprogram. 
t 



4 . 2 . 1  SFU interfacing 

In SAM 0.5, SFU interfacing sometimes resulted in 2 to 3 

cycle overhead. In SAM 1 ,  memory streaming results in short 

vector loops, so overhead must be reduced. A one' bit message bus 

is used to determine SFU status. Only one condition can be 

tested with this bus, hut SFU status contains at least.2 

conditions, overflow and busy. Testing for busy can be 
- - - - - - - - - - 

eliminated by delaying the system clock if results are not ready 
1 

when requested. This is already done for memory delays. All 

other SfU conditions can.be combined into a single message that 

can usually be tested in combination with another microop. 

A four bit test bus was also considered for SFU status 
, 

determination but is unnecessary if the above techniques are 

used. A new TCASE microop would be necessary and microprogram 
1 

3 length would be greatJy increased. There .is also a problem in 
- - - -- - --- L 

determin-ing the source for the test bus. 

We now consider each configuration in detail. With a slave 

attached as per structure (a) a straight forward implementation , 

of VADD16 or VMULl6 without overlap takes 6 -cycles plus action 

time while VADD32 or VMUL32 takes 9 cycles plu's action time. The 
, 

extra cycle over the -one processor case is needed to bring in 

l - the external status. The arrangement of microoperations allows 

no parallelism since the conditional branches are adjacent. 

Moving the loop check reduceslthese times by a cycle. 



\ With simple overlap, loop performance,is 5 cycles if action 

s 2 f oL 16 bit operands arid 7 cycles 'if action 5 Qfor 32 bit = 

operands. The greater resources of ' ~ 3 1 6  allow us to attempt 

further increases in loop performance. The4arger SJBUS control 
I 

space permits multiple addresses for funrtional units that allow 

loading the last operqnd and-starting an action in one cycle. 
-1 

rt 

Use of these techniques and a rearrangement of microinstructions 

reduces the loop time of the unoverlapped case t cycles plus 
- - - - - - 

action time giving a FRI of 114 for a typical on cle add. T 

loop fo; 3 2  bit data is 6 cycles plus action tiple. . 
Loop cycle time tor the overlapped case is reduced to 3 

t' 
. cycles. if action S 2 for 16 bit data and 6 cycles if. action L 4 L 

> Y 

f o r  3 2  bit data. FRI ranges f r o m ( l / 3  to 2 / 3  depending on SFU 

action time. With a simple output stage the start signal must be 

buffered until the output is unloaded, With double buffering, 4 .  

full overlap can be achieved. T_ 
- pppp-p 

is 3 cycles if action S 3 .  l o€)p - - -  - 

f o r  16 bit data and 6 cycles if actio-n 5 6 for 32 bit data 
T 

giving\P~~=1/3 to 1 .  The is the same for both the' 
a 

simple output and the .double buffered output cases for short 

act ions. .' 

Size specific versions of matrix multiply algorithm ( a )  

wkre implemented. For structure (a),tinnerloop time was 7 cycles 

f o r  16 bit data action and c y c l e s  for 32 bit 



~lgoritha fb) has been greatly simplified through the use 
-. 

of additional arithmetic uhits, With structure la), the constant - . - -  - - - - - - -- - - - -- 

term A(I ,K) can be kept &\the multipliers input buffer. Also, 
/ >  

the counter is nowjavailablex,+for loop counting. Innerloop time 
L 

? with simple outpi buffering for 16 bit data is 4 cycles if 
,/ 

* 

action time S 1,'cycles and 6 &cles for 32 bit data if action 
/ 

/ >' time S 2 cycles; With doubly output buffering,, complete overlap 
-\--- 

is possible. b 
2 

'J \, 4 .3  Potential Arithmetic Processors 

Now that some performance limits have been found for SAM,  

the suitability of some commercial processors can be examined 

with respect to required arithmetic unit performance. 

Tepas instruments markets the TMS 32010, 6 t h  a Harvard 
I 

architiecture and a high performance datq-p8thf86]. It offers a 
- -- -- -- - - - - 

two cycle 16 bit integer multiply or p i p w d  multiply 

accumulate. Floating point operations can be provided by 

software. Eightysix cycles are required for 32 bit floating 

point addition and 43 cycles for 32 bit multiplication. 

Unfortunately, the instruction set and chip 1-0 interface-limit 
I 

performance. Input and output require 2 cycles because of pin 

sharing with instruction fetch. Testing for overflow requires 2 

cycles, further limiting performance. 

Decoding of the action is quite slow usi~g normal call on 

contents of accumulator, %Seven cycles are required to call and 



return from - a subroutine specified by externa1,data. ThiS?can be 

reduced with &external IR used to select the -- current -- - - -- - THS - - - - -- - - - - - 

action program. This requiyes 4 cycles, still much slower than - - 

SAM'S one cycle EXEC, and unacceptable for fast s$alar actions, 
. * 

This chip may be more useful as an.independent APU.: , .&~ can be 
*Lu - 

t 

programmed to execute vector operations, thus minimizing the 

action decode overhead. TI has introduced a new product, TMS 

- 32020 fB73, which reduces some of these problems, It should be 
- - - - -- - - - -- -- - - - 

especialiy useful for matrix multiply algorithm (b),. since it 
7, + 

can haveia large data memory. 

Hewlett Packdrd has designed a 'CMOS chip set capable of 
pipelined 3 cycle 32 bit floating point operations and 6 cycle 

64 bit operations 1371. It also allows integer operations. It is 

used in the HP A700 computer but unfortunately not offered for 

sale separately. Using this ha~dware, p 4 MHz SAM system would 

yield full performance -- with equal bus and action times. 
-- - - - - --- - - - - - - - - - 

Weitek markets very high performance chips for floating 

point oprations, F L  t 064 f65  and t164/'65 f 9 3 , 9 4 ] .  They have a 

pipeline mode that allows vector proceessing at up to 5 or 

MFlops, well above current SJBUS capability. They have a flow 

through mode that is well suited to DMU fetch capability. - 

Other coprocessor chips are qvailable with reduced 

performance, i.e, Intel 8087, ~ational 16081, Motorcla - 6 8 ~ 8  1 ,  

floating point arithmetic, but are often designed to interface 

with specific processors. For example, Intel's 8Wt duplicates 



= O m 7  

f the Gster functions. It is wired in parallel with the 

master, duplicating bus interface and 

processors detect an 808-7 instruction. , 
I the 8087 to contspl the bus and fetch operands. Although the 

8087 has functionally separate bus and arithmetic control, fetch 

and actions do not proceed concurrently. since bus control is 

b k y  following the progress of the master. This chip offers 

floating point gdd time of 14 microseconds or 70 cycles at 5 MHz 
- - - - -- - -- - - - - - - - --- -. 

and multiply times of 19 microseconds for single-precision and 

27 microseconds for double. This is much faster than SAM 

microc~de but the interface causes ineffecient usage of the 

chips processing power. Fried f321 reports only 15% efficiency 

using this chip in an IBM PC system for a simple floating point 

add. The rest of the time is spent loading operands, storing 

results, and synchronizing the processors. Of these, the 

flexible . 

- 
4.3.1 Multiple APU Algorithms, - --. 

I 

Multiple arithmetic chips canPbe used to increase \i 

performance and relieve deficiencies in chip design. Although 
'a i 

some commercial arithmetic chips are available ;$at are fast and 
- - 

permit pipelining, many others are slow or unabl$to receive new 

operands during an action. For chips with perfor-knce equal to 
. . '.;" 

daie, fetch time but which do not permit loading'-h-ew operands . 

duri6g an act ion ,  alternation between two such chips allows 
F - r .t 



t 

overlapped operation of fetch with action, cf. figure 4 - 8; The 

' vector add control microprogram gives a result every 3 cycles - if - * 
-- - -- - - - -- - -- 

the chip can perform the action within 3bkcles. 

VADD 1 6 , 
\ 

DBAI [LO]<-SSN lert 
- 

->done IF count A startaddel AI[RO];-SSN right 
LOOP: DBAZ[LO]~-SSN left - 

->done2 IF count A startadder2 A DBA~[RO]<-SSN right 
->error1 if adderlerror A dest SDN DBA~[DO] 
DBA~[LO]<-SSN left 
->done-IF count A-slarltadderl A D B A I [ R Q ~ S S N L ~ ~ - ~ ~ ~ - - -  
->Loop if ~adder2error A *st SDN DBAZ[DO], 
check adder2 status an3 reover from error 

error 1 
Done : 
Do-fnSk 

: check adder1 ,status and recgver from error 
store remaining results and exit t 

store results and exit 

Figure 4-8: Multiple fast chip control. 

With slower chips, multiple units can be used to keep up to 

bus transfer rate, cf. figure 4-9. This microprogram for vector 

addition using three low adders gives a 2 fold speedup. If add 
- -- - - - - 

time is 6 cycles, then 2 other adders can be serviced~wHile 

waiting for results. In general, we can fill in the time waiting \ 
I 

for an action to complete with servicing of other units, With 

enough chips, action throughput can be made equal to bus . 

transfer rate. For a given action delay, Idel, 

I+CEILING~ T~~~ / (3 x'data size)] units are needed; - 
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\ 

Figure 4-1O:APU Weitek Chip Set Control. 
\ 

intervention. 
- 

For the benchmarks in this study, APU needs only a limited 

instruction set. ADD, MUL, MULACC, ADDOUT, MULOUT, CONVERT 

instructions are defined for each size. 

Timing for DMU and,APU is shown in figure 4-11 for vector 

inner product. APU runs at twice the clock rate of SAMjr. DMU 
1 

loads the last operand and initiates APU start. APU then decodes 

the action transfers the operands and starts the required 

action.: In this example, operation time can last up to 4 1/2 
+ - -- 

&cles or 900 nanoseconds, much longer than the 360 nanoseconds 
,- 

required for a WTL1064 to complete a.32 bit multiply. "Latch" 
r 

> 
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SSN l g f t  

I - 
I 
I 
I + 
I 
I 

b - 1  1 .  L 
I 
I SSN r i g h t  I 1 -' I 
1 
I 
I UNLOAD 1064/5 
I 
I 

s t a r t  SSN r i g h t  - 1 -  l a t c h  I 

I- - I .  

loop - - - -  C 

/ 
7 

. - 1  
- 

LOAD AB 1064/5 

Figure 4-1 I: 13MU and APU timing diagram for 'vector inner p f d u c t  

shows where t h e  bus input is la tched i n t o  A B W .  The load and 



unload commands contol internal gating in the WTL 1064/5 chips. 

The result is accumulated in the WTLlO65 outp= rsgistrr and---- I- 

stored when control returns to the calling routine, - - -- 

c *  

With the interface described above, innerloop time is 5 

cycles 'for single precision floating point data. A similar 

integer unit gives a innerloop time of 3 cycles if actions 

complete in 3 cycles for'16 bit data. Innerloop time for 32 bit 

data+was 5 cycles if action S 5. Benchmark 1 times will be the 
r r  

- - -- -- - ----. - 

-h 

same as System 2. 

A simple extension to system 3 enables hiding of APU 
1 

hardware complexity. Replacement of the input-output data buffer 

with simple fifos allows the case instruction to be used tm . 

-decouple DMU and APU algorithms, cf. figure 4-12. DMU vector 
b 

action code is simplified. Cont.rsl complexity has not been - 

VLOOP 1 6 

->'COND' CASE APUSR , - - 

~ 0 ~ ~ 0 0 0 0 :  Load new operands and store result" 
APUIN<-SSN left 
APUIN<-SSN right , 
->DONE IF COUNT A dest SDN APUOUT 
->'COND' CASE APUSR 

d 
COND0001: -Load new operandsn r - APUIN<-SSN left 

APUIN<-SSN right A inc ~[Giffcnt] 
->DONE IF COUNT 
->'COND' CASE APUSR 

CONDOPIO: "store resultn 
->DONE IF COUNT A dest SDN APUOUT A dec ~[diffcnt] . ->'COND' CASE APUSR 

CONDOOll: "wait on&cyclew 
t 

- 

->'COND' CASE APUSR 
COblDOlxx: " D e t e r m i n e  error and re.cqvezn - 

D0rf~:store diffcnt results and exit 

I 

Figure 4-12: DM3 control code for 16 bit vector dyadic actions 
using case 



\ .-, 

- 

elemi ated, but transferring it to APU create$ a better \ 
functio;;kl system distribution and ~improves.mc?dule independence.-- 

\ 

DMU delivers all dati to the input-q and stores results from-the + 

\ 

output-q when 'available. The case instruct ion examines APU 
\ 

status to determine the appropriate process. Only input full, 

output empty, and error(overf1ow) need to be tested. APU 
\ 

architecture is now transparent to DMU code. If allowed by the 
,. \ 

hardware, pipelined operation proceeds without using normal 
- - - 

-- - -- 

hardware speci kic so•’ tware pipelining. queue ' length -and 

data latency are unknown, DMU must keep track of the numben of 

data sets in process. This is accomplished by keeping track of , 
the difference between fetches and store in R[DIFFCNT]. Upon 

\ r 
loop completion this register cdtains the number of results 

* f P 
t 

that still need to be'stored. Loop time for a 16 bit vector loop 

is-4 cycies if action time is S . 4 .  This could be reducid to 3 I 

cycles if a test - bus and a TCASE micro* were implemented. For 
- 

32 bit data, vector loop time is 7 cycles if action-time S 7. 

CASE can also be used for vector innerproduct control, 

resulting in a 4 cycle loop for 16,bit data and 7 cycles for 32 

bit data. However, control can be simplified since only a single - '  

process needs to be handled. If FIFO full and APU errors are 

combine* into one message, the fetch loop can be controlled with 

an IF, reducing loop time by a cycle. Chis assumes that APU is 

executing a combined multiply aswwulat-e a f k i o ~  w& kefdig 
4 

results until the end of the loop. . 



F 

Further performance gains are possible if APU contains 

internal data memory. If the memory is logically designed as 

FIFO, and results are automatically stored there, - -  -- stort?cycles 
- - 

%an be saved in vector control loops for those fqrmats that 

leave results on the stack, 

i.e. SLR, SLS, SSR 

, and fetch cycles will be saved in formats that reuse results, 

i.e. DLS, DSR, SLS, SSR, RSR, LLS, SSS. 
-- - 

- - -  - -  

SLS is the most frequently used ADEL format, so this technique 

should improve system performance. DMU code for matrix multiply 

algorithm (b) is simplified since only one process needs to he . 

- controlled at a time. A simple IF test for FIFO FULL can be used 

in place of CASE for the memory fetch loop, an? overflow 
C 

. detection can be deferred until the end of the vector action. 

Segmented memory allocation •’or Zesults can also be deferred 

until after this check. This saves an e.xtra allocation when 
- - -- -- 

overflow does occur. A one cycle innerloop for matrix multiply 
4 algorithm (b) can be devised if APU uses a pipelined mliltipliet-. 

and adder. The data memory must be large enough to hold a 

romplete row vector of 64 bit precision, or if a smaller memory 
t 

is used, a method of automatic overflow into. segmented memory is 

needed. 

. With this independence, APU architecture can be modified -- 

9 \ 

transparently to DMU algorithms, i.e. queue length ar number-af -- 
.@- 

functional un'its cah be changed or multiple SFU' s can be added 

to match bus performance. Figure 4 3 3  shows how this arrangement 

\ 

78 
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extends the system hierarchy. 
Z 

i 

Figure 4-13: SAM system hierarchy. 



4 .5  summa& of Perf bmance 

Table. 4-i summarizes SAM 1 performance. System 2 with 

suitable slave processors gives optimum performance for 

benchmark 1 ,  double that of system 1 even for simple actions. 

System 2 results assume use of integer arithmetic units that can 

keep up to bus data movement and allow full overlap. System 3 

performance is best for benchmark -- 2 because of' C its - action - -- - - -- 

I 

1 

pipelining. Benchmark 1 perforwance is broken into a fixed setup 

time and a per element time. For benchmark 2, only the total 

time is given for a 2 by 4 with a 4 by 2 *t.rix. 
P 

TABLE 4 - 1: SAM 1 Performance (cycles) 

MATMUL intl6 863 191 168 
( A )  int32 2265 303 210 

special 
in41 6 

r\ 

784 

flt3 
* 

215 *w 
\ 

MATMUL intl6 829 131 
(Bl int32 2188 236 A 

1 
f - 

, *w Weitek chip set was used.. 
- -- 



4.6  Space - Time Tradeoffs 
- - -  - - -  

. . 
-/ 

We have seen that execution time performance is improved by 
u 

supporting specific action routines in DMU. There are however 

.some implementation costs associated with this support. Problems 

stem from the extra decoding necessary to find the specific- 

action routine and the amount of microstore needed for the exera . 
act ion microprograms. We now discuss some decoding strategies 

- -- - - - - - -- 

, and the cost. associated with each. Two mechinisms for handling 

this were examined. One method is to introduce a class category 
D 

e 
into the decode hierarchy. Since data type and size is unknown 

tl- - 

by PMU, class information must be generated by the format 

routine or O W  from bperand tag information and the action byte. 

Action - op code can be dynamically modified by appending a field 

(which could be wasteful of encoding space) or by table lookup. .w 

4 

The format routine could do the table lookup instead, using IF 
- - - - - -- -- 

-- -- - 

or CASE but this would increase setup time.. 

Class can specify the device which performs an action. This 

saves microstore space if a device can perform multiple actions. 

A variation is to let class distinguish between standard and 

special actions. This permits a.different action EXEC table to 
r' 

be used for special actions. The extra decode time decreases 
( 

, performance slightly for scalars and short vect 
- 

Another alternative is to defer the operan tch until the 

$ 
- -- 

action routine and et the action routine fetch operands since 

the destination will then be known. 



The problem with these strategies is that a large number of , 

action routines will be needed. Generic actions may be &c@kdb:: 

into versions for.each of the various argument type combinations' 

arid data sizes. i.e. 4 combinations 'of scalar and ve&ors and*4 

data sizes. This is 2 bits for each fiela, leaving 4 bits for 

action specification. So, using a single EXEC for decoding, only 

16 generic actions can be supported if simple ~symrnetric fields 

are used.'Languages such as APL have more than 16 defined 
. - - - - - - -- -- - 

' primitives but less frequently us%d primitive's can be composed 

from the 16 most common. APL actions.are unsymmetric in that not 
I 

all data types are valid for all actions. The 8 bit action code 

could be mqre fully utilized to support more actions. More than 
s 

16 primitives can be directly supported by using different EXEC 

tables after the action class is determined. 

So far problems with mixed data sizes have not been' 

considered. For - - 16 bit actions, - - both -- operands - - - - are 16 bit, so -- - 

existing microprograms will work. For 32 bit action&, one' - 
operand could be 16 bits. This can be tested with the IF 

> 

microoperation if SR is-preloaded with left and right size tdgs. 

This complicates the microprogram, but does not degrade 

performance. ~lt&nativel~, mixed actions can be supported with 
4 

a cost , of extra decode time and extra control store. Performance 

may 5e increased for some actions. ie. A 16 x 32 bit multiply 

should be approximately twice as fast as a 32 x 32 h i t  m u l t i p l ~  - - 

on system 1. 



ry of SAMjr Microprogramming Terms 
I 

CALL is a mechanism for accessing microprogram subroutines. 
CALL is monadic and must therefore be the leftmost 'operation in 
a microstatement, except for a label, 

. CARRY is one of the SJ16 status flags. It is set by ALU 
operations which propagate beyond bit 0 if flag sampling is 
enabled (SF). 

COUNT causes the COUNTER to be increfiented and the zero 
count flag to be sampled. COUNT returns the current ZC flag 
value for conditional branching. Conditional branching is not - 
mandatory. - - - - - -- - -- 

COUNTER is a SJ16 hardware COUNTER which acts like a 
special register. It may be'loaded with any value. COUNTER may 
be incremented in parallel with any other operations in SJ16 or 
SAMjr. Since the state of the zero count, ZC, flag may be 
uncertain, it is recommende6 that the counter be counted once 
after being loaded and prior to entering a count loop. This 
prevents a spurious loop exit. 

D is a monadic function which converts a decimal string 
into internal form. It is inte'nsed for use with microinstruction 
 literal^.^ 

DEC (decrement) requires the implicit use of a register 
which normally contains -1 called R[DEC]. Therefore R[A] may be 
h r - r n e n  t-eda n d-restereiri nit[+]--bu t-a-~%~S-sour c e  ~ m l y - b e -  
decremented and stored in the T-register, R[T]. Another way to 
decrement is to adator subtract a literal from the ABUS value. 

DS, DSPOP, DSPUSH control the data stack which may be used for 
convenient and fast context storing. The top 8 values of DS may 
be indexed like R. When DS is pushed (DSPUSH) or poped (DSPOP), 
all 8 vaAues are changed, 

B 
a.  

EXEC is used td decode microprogram addresses. The least 
significant 8 bits on the data bus are used as part of the entry 
point address. The exec name table name (left argument of -EXEC) 
is used to help make up the rest of the entry point address. 
Exec name tabl=s can be entered into the microcode data base for 
use by the- linker. 

. INC (Increment) assumes the-availability of a register 
which contains 1, R~INC]. Increment may also be accomplished by 
adding or subtracting a literal from the ABUS source. See DEC. 



LOCAL applies to nonsegmented memory. refarencc3. Loral - 

memory is word addressable only. Local memory requests ere 
initiated b one of the memory qualifiers: LR, LW ( with L 
underscored7, Local memory requires tract l y2 - -p~eccs+or- -c~ye l~s - -  -- 

to complete. Read is an address cycle, then a date bycle. Write 
is a data cycle, then an address cycle. Lofa) mernsy k not- - 

required for a SAMjr configuration but dual port memory has a 
local memory interface. , 

LSHIFT moves ALU output left one bit replacing the least 
significant bit with shift bit (SB) or NOT SB., P 

MESSAGE is a flag which sht~ws the inclusive OR of all other 
messages or interrupts. It ran be tested to avoid systematically 
testing all other messages. 

- - - - - - - - - - - - - - - 

MINUS, ex. ALUA MINUS ALUB, erf orms ordi-nary subtraction. 
F 'P 

MINUSC is subtract with borrow from the previous operation, 

NEG is a SR-flag.cNEG refledts ALU sign.output after any 
sample operation. 

B 
, NOT is il monadic l's'complement function which may be- 

applied to any ALU BBUS input. 
d 

O W L  isthe Arithmetic overflow flag which may be set after 
a sample operation. 

PLUS performs ~iadic' add:i t ian. 
t T 

R refers to the general purpose register array. Registers 
are denoted by a subscripted reference to the R array, viz. 

A R[x]. R contains 25 general registers, 4 restricted access 
registers, and 3 special purpose registers. 

REG is a com~iler.+pseudooperation which serves as a 
variable declaration. No function is performed by REG in an ASP. 
Any variable defined in a REG statement may be declared a? local 
in the function header so as to avoid pr401iferating globdl 

- names .' 
- 

RSHIFT like LSHIFT, applies to the ALU outpue. Shift bit 
(SB) replaces the mostsignificant bit of the result which is 
shifted right by one bit. - 

L < -- - 

SAR refers to the segment address registers which hold 
Window (segment) address offsets. SAR is a 4 by 32 bit array. 
See wqO. * 



' SB, the shift bit isuwated w h e n e v e T a i 3 i t  ALU shift 
function is executed. SB_is useful for multiple precision + 

shifting and for complex arithmetic funqtions like multiply and 
divide. SB is kept in the status regist-er f or-opt iona-1-t+st-i;ng.- -1 

SD, SS, SRB, SBES, SW, Sn, SSH, SDN, SMRLTE aresegment 
memory control microoperation!%. Segmented memory references are 
initiated by one of the qualifiers: SRB, SRW, SWB, SWW - 
(segment-read-byte, segment-write-byte, etc.), placed to the 

I left of the address value in a microAPL expression, Memory data 
cycles use one of: SD, SS, SDN, or SSN (segment-destinatioh, 
segment-destination-next; etc.). 

SF (sample arithmetic flags) can be used anytime that new 
values for ZERO, KEG, CARRY, and OVFL flags required. New 
values are not available for testing until- ollowinq cycle. 
~ h e f  lags are definedpas-fdllows: 
NEG contains ALU result bit 0 (the sign bit) 
ZERO indicates that all ALU result bits were, 
CARRY indicates that an arithmetic carry or borrow occured in 
bit pbsition 0. 
O W L  indicates that a 2's complement direr•’ low occ&ed. 

SRkis the SJ16 $atus register. State inforrnatipn can b;' 'r 

manually loaded into the status register or implicitly loaded by 
sampling flags. Sample flags (SF) causes CARRY, O W L ,  NEG, and 
ZERO to be updated for testing in the next microinstruction. 
COUNT causes the zero count flag (ZC) to be sampl'ed. Shift 
operations update the shift bit (SB). 

WDO refers to the WM> register array used to store 
f r_e_g_nt ltEpre fpeecenncCedsegme n Laddresse s Iwhdowp ~allies)~.klDOis 
limited to 4 values accessed by subscripting. 

XOR, ex. ALUA EXCLUSIVE-OR ALUB, is a standard dyadic logic 
function. 

ZC (zerocoun't) is set when COUNTER is incremented to zero. 
In tight loop action the counter normally exits with the value 

- 
1 1 .  t 

. ZERO is a status flag which represents the inclusive NOR of all 
ALU-OUT bits after any sample operation. It  is set if all bits 
are zero. 

6 



- - ,  

SUMMARY AND CONCLUSIONS 

This chapter, summarizes results and compares performance of the 

architectures exam$ned.in chaptqrs 2, 3, and 4. First, some 
I -1 

results on scplar 'DEL processing are presented and compared to - . - --- -- - - - - - --- -- - 

! 
vector processing>,Next, performance of SAM 0.5 is compared to 

, 

that of SAM 1. Then, SAM performance is cornparepto that of a 

popular workstation and two minicompufers. Although only one 0J 

these supports vector pro.cessing, the others represent the chief 

marketf competition for a sytem such as SAM, Next, the impact of 

the techniques used in this thesis is discussed. Finally, the 
1 

t 

thesis c~nclusions are presented and future research directions 
* 

are indicated. 
f 

5 - -- - 

1 I 

5 . 1  Scalar vs Vector Processing 

~enchmarks were coded as scalar algorithms and' simulated 

SAM 0.5 results were obtained for a FORTRAN type DEL. For 16.bit 

data using a scalar algorithm, vector add requires 20 + llON 

cycles and vector multiply takes approximately 20 + 163N cycles. 

Matrix multiply for 16 bit data required 6634 DMU cycles-and - -- 

@ 
1401 PMU cycles. PMU time is just for ,+nstructim fPtrrhinstr'hnd --- 

- decode. Verification was not modeled. Performance of scalar 

pr~essing4s 5 to 10 times slower than that of vector . 



I processing. Software coqplexity and memory requirements are also 

higher - for scalar processing-. Streaming - - further - - -  benefits a- &ctor -- 

processing, increasing the performance -- ratio - of vector - to -- -- scal*qr -- -- 

t 

processing. With additional processors, vector'processing is 

still faster. Although extra processors can help speedup some 
9. 

types of scalar processing, it!is not easy to make use of , 

V E C T O R  

M U L T I P L Y  

V E C T O R  

A D D  

.P M U  D M U  

\ 

Figure 5-1: Functional Distribution of. Benchmark-,J using - 

Scalar Processing. 
+ - * - - 

A From figure 5-1, it cah be seen that the functional distribution 'i 
\ 



- - - -  - -- 

of the scalar version shows little promise f'br significant 

speedup with simple methods. Multiply time will be reduced with - - -  

- -  - A - -  - - -- - - - - -- 

a combinational multiplier chip, but further improvements are 
- - - - - - - - - 

limited. Even i f  data manipulation time is reduced, PMU time 

will become a bottleneck. 

, _  * - 1 -- - - - -  - - >  -- --- - - - - - -  - - - - - - - - - C - 

5.2 Comparison of SAM . 5  and SAM 1.0. 
*' 

- 

Figure 5-2 compares benchmark performance on some SAM 0.5 

sys 1 sys 2 sys 3 
C 

SAM 0.5 

sys 1 sys 2 sys 3 



- - - - -- - - - - - - - - -- <-@ -- - 

and SAM 1.0 systems using size spec,ific 16 bit integer 
*. 

--- - - 

microprograms. The best resulks fr-om-cadrsystemarettsed--for--- 

compar i son .' System 2 datq assumes that ar i t h m e ~ c  - u a h  - - - - 

~ompleted~within the time required to fetch new data. This is 

reasonable since- -cia1 an chips are available that,can 
i 

m e e  this requirement-. ~erfdrmance is expressed as millions of 
- - 

op&&ionKper secbnd ( M O W .  One can see from the slobes of tho 

advantage of slave capabilities'; It is also faster due to 
b 4 

decreased cycle time. 
I 

i. 
5.3 Comparison with other.systems 

- >  b 
4 /' Benchma'rks were'ilso run on some other computer systems 'to 

compare performance. 1h addition, timings for some benchmarks 

were obtained from man literature [ 3 7 ] .  Table 5-1 
e 

A * 
of some popular super mini computers and workstations. SAM 

\ outperforms much more costly systems by one to two orders of 
\, J 

-\ 
\ 

magnitude. To be fair, VAX and SUN systems include memory 

management and memory protection features not supported on SAM. 

On the other hand, the scalar-C benchmarks do not include 

verification of vector operand compatibility or checks for data 
' s 

* 
size overflow. Thus, if there is a chance that integer 5enchmark 

> 

results will overf low, tk.result should he declared as float, 
- - 

-2- 
a 

- . in which case the compiler will include ex<ra conversion code. 

Matrix multiply results were for 2 by 4 and 4 by 2 arrays. 



,= TABLE 5 - ': Benchmark Performance Comparison. (usec) 
ut 

microcode compiled compiled mgcrbcode 
C - - - -A - - - - - - - - - -  .. -------------------------------------------------------------- 

Vector P 
Add intl6 9+. 75N 

int32 9+1. 5N 6+19.5N 14 .:3+3.5N 

Vector > 
- 

innerproduct 
k; 

int 16 9+. 8N * 

irlt32 9+1N 
t flt32 9_+ IN - -- - 60_+28N - 50-+62K - - < -  - 1  8,5-+-5.75K~--- 

flt64 9+1,4N 60+35N 50+137N 18.5+6.5N 
%- 

- MATmul 
int 16 
int32 42 640 1070 
fit32 43 ' 620 1230 
flt64 55 L790 2430 , 

SAM results are for systeni 3. 
SAM floating point results use W L  1064/65 chips. 

Relative performance of SAM will increase for larger arrays 
4 

increased to 31'.bits, SAM performance for 64 bit data would 

approximate that given for 32 bit data. This would provide a 

p r e r  comparison with VAX. Using the familiar floating point 
I 

operations per sec FLOPS), performance ratings using 32 bit ' F \ 

vector innerproduct are 2, .07, -03, -35 FLOPS for SAM, VAX\ 

SUN, and HP respectively. 1 

While S M ' s  good performance is partly due to the i - - - -  - -  

, - J' 

' state-of-the-art Weitek ehips, a sysfe~~co~+ig~atAmtk& 
- - - - ' - -  5 C, 

.permir:s.full performance is also important. This configuration 
3 

of SAM has closely matched DMU - APU requirements resulting in 
+_  - 

\ 



almost optkmal use of resoures. The Weitek chips ere not used in 

pipeline mode since SJBUS cannot - - deliver data fast enough.- ---- - 

- 

: 9. 

Comparison - of FRI , c h  table 5-2, gives - -  an - indicet -- ion. of how -- 
well the systems make use'of functional units. Using the HP fpp 

hardware;SAM loop time is 2 1/2 to 4 times faster than the HP- 
-i 

A 7 0 0  computer. FRI = 1 with this hardware, a threefold 
-LL 

improvement in resource usage. Streaming, pipelining, and an 

improved SFU interface account for this speedup. Matrix multiply 
- - -- --- - - - - - - - - - -- - - -  - - - - - -- - -- - 

performance could be improved fivefold to a one cycle innerloop 

using algorithm 2, local memory to hold intermediate results, , 

and a 32 bit SJBUS capacity. This - is a - topic for further study 
- 

- 

since the average use statistics cannot justify this extra cost. 

However it ,shows a high performance possibility for special 

purpose systems requiring, a high percentage of such processing. 
* 

. TABLE 5 - 2: FRI for Selected Computer Systems 

Vector Add 
int32 .33 -21 

Vector 
innerproduct w 

flt32- 1.4 ' .5 .I .3 



I 

i 

5 . 4  

for 

Memory stre-ing 

Memory streaming turned out to be an important technique 

improang performance of vector processing. - - 
- -  - I -- t improves - -- - - - - 

performance due to decreased memory cycles and also e'nhances 

system performance by equalizing the processor workload. In 
-% 

system one without streaming, data f tch required two cycles 

P 0 
which tied up register and bus resources. SJ16 address 

translation overhead can be--avoided but the address cycle cannot 
- - - - -- - - - - - - - - ppp pp -- - - -- 

usually be combined with another microoperation. Streaming frees 

up the bus address cycle and the translation time of virtual 

memory systems. -- - 

~n on chip cache could perform almost as well but would 
* 

need a larger data bus or block move capability to maintain 

performance. Cache systems require much more hardware support 

and increase minor cycle - time due to address comparison 

' overhead. Streami'ng can perform better than a cache system for 

vector algorithms since its perfornance comes from implicit 

firmware knowledge of data addressing and not from assumptiow 

based on statistkal  sampling.^ 

Supercomputers use memory streams but' in a more limited 

way. Data streams are usually of a 'limited length (ie. 64,  items 
* - - 

on Cray 1 ) .  Performance depends on a high degree of memory 
* 

interleaving with corresponding high bus bandwidth requirements 
- - 

and is affected by data location. Streaming has not been used in 
- - -- 

microcomputers a-nd could replace instruction bufferim"with 

simpler hardware. Its use would speed up access to scalar data 



that are larger than bus wi th if data are in memory. 
I 

S-t reaming can be imple d ente& t o  reducesome-- -- - -=--- 
microprogramming complexity. No checks- fox_mem~~~readyarc---- - -  

needed if a memory controller inserts clock wait states until 
\ 

b 
7 

data is rea y. The microprogrammer no ldnger has to worry about 

memory timing - ie. does not need to insert NOPs or wait loops. 
Microprograms are shorter and more readau. Matri'x muftiply is * 

simplified since address pointers are not incremented during 
- - - - - - - - -- 

data fetch' and therefore do'not need to be reset to initial 

values when reentering loops. 

5.5 Separate A r i t b e t i c  Processors 'r I 

While the use of slave arithmetic' units or arithmetic 

processing units will not speed up the execution of simple . 

actions, their we-greatly improves performance of 

actions supported by hardware. While statistically 
- - -- -- 

frequent as some simple actions, these' actions are 

those complex 

not as 

important 

because of their- long functional times. The'extra chip area 
- 

7 

allows hardware support. Multiplication, division, and floating 
I 

point acti~ns can be supported with available.chips. Dynamic 

frequency data can be uied to select, those actions that should 
>- 

be supported by slaves. Using separate arithmetic units makes it a 

possible to overlap fetch-store with execute operations. 

It was shown in chapters 3 and 4 that using - slaves - - can - - -- 

eliminate the register contention' problem for benchmark 2. 

Simple control as in figure 3-11 (a) led to increased overhead 



i- , .  

du; to extra bus cycles for DMU control of 'slaves. The 
- - 

additional controz hardwa-re and &ata w t ~ h ~ - o f r y ~ t - e m m 3 - - ~ - d ~ ~ e - d - - L - -  

bus traffictand improved performance for-rnuttipk -actiorrs,-Th~ --7 

extra paths allowed definition of special mult iply-accummulate 

act ions that increased performance by reducing overhead from 

data movement. This solves only the problems specific to matrix . 

multiply but will not work for a general dot product unless APU - 

- - control supports allpssiblk actions . Qf -courlcs~-this-specia1-- 

action must be decoded at some step in program translation or 

execution. On SAM, there,is a choice as to.where this is done. 

Buffering of- input a&d output allows overlapped operat ion. This 

is most effective for longer actions. 
Y 

pipelined functional units offer optimum performance 

although SJBUS may not be able to supply operands fast enough to ,. P '2 

I keep up to some available high performance units. Equivalent 
OI 

i 
*: 

- -  -pe r3 0rman1=~e~onvec t -clan-beab_taine&_withMiado~c /- 

performance units, while overcoming~commercial chip design I 

\ 

\ shortcomings. In this case, internal double buffering is not I 

1 
/ 

needed so available scalar oriented units can be used. . - 1 

5,6 Firmware structure 

Various firmware structuring schemes were used. Current 

quantitative measures of software complexity are crude, and not -- 

redilg applied k e  ~tiereprcqr6ng.  Some iatpe~titfft & e k e ~ ~  W-- 

good design &re modularity and module independence. With 

structured firmware, all hardware smcific code is contained in 



- * 

7- - 
- 

orie small module.34aking changes is relatively easy, requiring 

only a new module - and - a modification to an EXEC table. In 
- - -- - - - - - 

standard horizontally micropkogrammed . systems, - -  - -  - simple hardware 
- -A - - -- 

changes necessitate recompilation of much of the system - 
firmware. It was found that hardware support can help maintain 

good firmware structure along with good-performance. Without 

hardware support, module independence causes reduced performance 

increasing execution and maintenance costs. Full su 
- - - - -  - - - - - - - -- - 

actions allows good functional partioning of 
'4' 

simplifying +DMU algor'ithm+s. Othe,rwise, more complex firmware 

structure is needed. 
- - - -- 

It is useful to incorporate genera4ity into the algorithms 

to decrease microstore requirements. Generic algorithms work for 

many cases, thus reducing the number of microprograms needed, 

but were found to have a large execution cost unless special 

hardware control methods were used. Better performance was 
- - - - - - - - - -- A-L - 

ppp---p-p 

achieved by specific modules for each action , and data size. It 

is open to question whether one complex general module is better 

than several simpler modules. 

In system 2, lack of symetry introducsd microprogram 

/ " ~ l e x i t y .  Testing for specie1 cases caused performance 

degradation. Overhead due to the DMU-APU interface and 

synchronization method became more critical as the workload 
- - 

became equal in the two units. System 3 extensions can correct 
- - - - 

these problems with extra hardware, making -SFU,' internal 
-. 
structure transparent to DMU firmware. This allows good 



performance while reducing firmware complexity. 
- 

- -- - - -- - -- - - - -- 

5.7 nynamic size data 1 - 

I n s i s  study, dynamically varying data sizes were 

supported. We now examine the be~efits and costs of this sa&me. 

Use of dynamic size results in larg'e savings in data memor; 
% 

requirements and execution time. Some interpretive systehs use a 
'L fixed size for data to accommodate the largest Cats. From 

- - -  - - -  - - -- --- 

"s$atistical studies we can approximate the extra perf~rrnan~e 
1- 

, cost of such a, system. The well known Gibson mix [26], based on 
< 

IBM ?Q90 j+rst&t ion frequencies, uses an approximakely equal - - 

- #  -5; ,.-* 
&. 

mix of fixed and floating.point aritmetic \r instructions. 

However, it may be biased in two ways. Control integers may 

increase the use'of integer arithmetic. It is also biased towerd 

floating point since some languages convert to float if  an - -k 4 

expression has any-floats. Also, in conkentional typed 

languages, a uSeTmustp-use - floating point type if there is any 
0 

chance cf a variable's conten'ts becoming larger than can be held 

in an integer. IBM 360 studies [49] show that integer arithmetic 

occurs with twice the frequency of floating point. Even using 

. the Gibson mix ratios, DMU fetch and store cost using a fixed 

size will be double that of a dynamic size system. Unless 
a 

,special floating point hardware is used, action cost will be 

even greater. " 

The cost of supporting dynamic size. is increased complexity 

in the4nterpreter to detect overflow and decode.generi6 
< 



actions. This results in a need-for many size and action 
I 

I fl- 

spec i f ic microprograms- result i-rtg-isl &-,i-ncreased~m&-mierostort--- 

examine the cost .of -bverflqw recovery as no dafa on overflow 
--- -* 

frequency were available, Available statistics indicate that 

overflow should be infrequent. Hennessy et.al. [36] report that 
I * - 

95% of constants are less than 255. It is also reported in 1181 

that 75 to 90 % of constants had absolute values < 8. If - - -- - -- -- - +- 

variable values are also usually small integers, then the - 

results of data manipulations should still be integers. - Actual 
- - - 

-. 
results have tb wait until a complete systemDis running to-give 

a - 
statistical.data and memory management cost. 

L 

5.8 Conclusions 

that a SAM architecture is effective for array data 
i 

manipulation. Use of simple, slave arithmetic units ga e / 
t was ultimately 1 jmited by bus d a 6  movement 

/ 

perf requirements O!ma\ for ben y v e d  beyhdrk 2 

/ 
performance byra factor of 4 to 7. sy&h 3, with a more complex 

APU can maintain for benchmark 

benchmark 2 performance by 50 %. 

M o s t  commercial arithmeticits were 

1 and improve 

faund to have desiqn 

drawbacks for use in an interpretive HLLCS. Addition of-extra 

control'logic and use of multiple units can overcome these 



SAM outperformed some scalar competitors by one t~'~two- 
- - - - \ -  - 

- bL- -- - 
\ \i 

orders of magnitude. It also outperfdrms some systems with / - - - L- - - - - - 

-3 

rector support by a factor of 2 to'5, while providing'the extra 

functions required for dynamically typed interpretive systems. 

The results of this study are slightly optimistic since 
r 2 

some detaiJs such as memory allocation ~n3Lo,verflow recovery 

were not modeled. Final eval-ation must await implementation of 
- - - - - -- - - -- - - - - - - - -- - - - - - - - - - - 

a complete system to derive needed statistical data. 

  his thesis explored trade-offs in microprogram structure. 

Generality in action routines was costly in terms of run time 
- - 

but saved microstore space. A general interface was also costly 

to run 

proces 

time performance, especially eparate action 

ors were added.' Size and routines4were 

nee3ed to give maximum performance. This necessitates a very 
1 

large number of small routines, especially for a language such 

as APL. Although SAM has a large-microstore space, a system 
- * 3- 

implementor may have to make cbmpromises between these 

approaches. Statistical information can be used to select the 

optimized instruction set to be directly supported. A structured 
- - 

/ 

microprogram development approach need not be detrimental - - to run 

time performance  SAM if supported by the microarchitecture. 
/ 

Structured hic~oprogramming tools were found useful for 
- - -  ---- 

microprogram development,in an evolving environment, Thus,higher 
-- - -- - - - -- 

level microprogramming oriented architectures analagms-to 

language-directed architectures may offer benefits to firmware 
r 



engineeri 

5.8.1 FutureResearch 

Some ideas for in%asing performance were not pursued due 

to f ime limitations. They may yield good results if researched 
. - >  

' %  
further. A short discussion -of these ideas iollows. 

There are many possible choices for an internal executable . 
- form. In-fact, -and--Dm-do--notneed--t~exeeutetBesame-- 

DEL/DIL- form. Indeed it may be beneficial for DMU to execute a 

form that has been split into a fetch-action and a stor3 phase. 
I 

This reduces the KGEkr &•’ microprograms needed since many 

formats differ only in the destination specification 

e.g. DLR SLR RLR all become SLR. 

Results are stored in a separate segment and then pointers are 

adjusted. The 3 operator syllable DEL for was important for 
b 

size of .the intermediate code.. However, in SAM, PMU performs 

variable binding and can pass pointers to DMU. DMU benefits from 
u 

reduced complexity and a rkduced number of table entries for 

formats which may allow space for more special actions. All 

fetch-action formats leave results on a stack. The store format 
L 

then moves results to the destination or merely changes the 

destination descriptor. If an APU subsystem wkth localhnemoties 
". 

is used -results can be'keft irr the  localmem~ry whish can- 

considered top of staci. It may be possible tdstart 
\ - 

int2rpreting the next-format while the la.st action completes 



> 

4 

perhaps allowing overlapped processihg of scalar DELs. 

1n this study, the largest data item &et_termin=d~the_s_i_ze , -  1 

tag of an array. Other methods similar to those used for sparse- 
\ 

arrays could decrease memory requitements, decrease bus traffic, 

and lower the cost of overflow recovery. If only a few elements 

of an array are of a larger size, a bit vector can be used to 

identify these.- A modification to the APU interface was 

to hide APU hardware from DMU firmware thus enhancing module 
-= \ 

independence and reducirig DMU. firmware complexity. 

- The - general algorithms could be sim~lified through-hardware 
port of tagged data. In system 2 and 3, SFUs could be given 

he size tags, of their operands. Then, for mixed data sizes, 

they could sign extend the smaller. DMU would only need to 
\ 

transfer data from memory to SFUs. This could be even simplier 

.if the membry interface was aware of size tags. Then D M '  need 

only initiate bus transfers which could proceed with no further - 
intervention from DMU. Reduction in data transfers could be 

realized if the memory interlace and SFUs recognized data which 
\ 

were merely sign extended beyond the low order word. Then only 

the low order word need be transferred and sign extended at the 

bus destination, 
'+ 

The SAM architecture could be extended with a separate 
- 

store processor. Although memory contention and data dependency 
18 + 

L p  -- - -- - - - -- - - 

! 
prob1e.m~ will hinder implementation, such a system could improve 

0 

benchmark 1 performance by up to 50% over system 2 or 3 and 



enable pipelined scalar processing. A better metHod of modeling - 
memory contention is needed for simu1aki;sn of kh-is-+yst-em,--- - 

~his thesis has implications for the design &- an i-n&rtct -- -- 

execution language. If maximum performance is required, EXEC 
4 

table and microstore requirements may put restrictions on ;he 

number of'primitive actions that canmbe directly supported. APL 
E? 

is one of the most difficult high level languages to support 

because it has a - - of primitives. - However, - -- - - many'of - - pp- . 

these are, seldom used and may be supported as special fuctions 

written in ADIL. Another iteraeion i& needed in the ADIL design 

to determine 'which formatshnd primitives are needed. Some 

unused format 

of actions. 

table space>ould then' be used for ,direct support 
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