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Using the- etch-and-ad& CRCW PRAM mbdtl, parallel algorithms are designed in this 

thesis for general weighted' and unweightsd two-matroid intersection problems, and for two 

special two-matroid intersection problems: the bipartite <matching problem (both weighted and , 
unweighted), and the directed spanning tree problem. All of these parallel .algorithms achieve 

b 

perfect speed up with respect to the corresponding sequential algorithms. Fast algorithms but 
- - 

-- - - withou-ect speed up a~aTsoTes~gned.  - , a 

TWO new parallel write operations. "write-max" and "write-min", are introduced. Using 

r . these new operations, the time complexities of some of the a1gorit::ms mentioned above can be 

improved by an O(1og n )  factor. where n i s  the number of bsments in the matroids. Implemen- 

tation of these operations is shown to be simpler than Fetch-and-Add. Also, a generalization of 

the CRCW and Fetch-and-Add a C W  PRAM mddels is suggested which gives rise to a more 
, 

powerful mohel. We call this the "concurrent critical section model". It can be shown that 

simulation of this model by a CREW PRAM model has time and space complexities of O(T1ogn) 

and O(Mn1ogn) respectively, where n is the number of processors. and T and M are the time 

m d  number of variables involved ,in the critical section. These are the same time and space 

complexities as the simulation of the Fetch-and-Add CRCW PRAM model by the CREW PRAM 

model. We believe that 'the write-max and the write-min operations and the concurrent criti- 
- - , . 

cal section model will be very useful for designing parallel algorithms for other difficht ?rub- 

lerns. 
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,- A Conventional sequential computing systems are approaching intrinsic physical limitations - 
+ m 

f i  

--- , ori their com,puting speed. One way to achieve higher speeds in computing systems is parallel- 
I 

ism. With the advent of monolithic VLSI t&hnology, the production of low-cost single chip- 
h 

-- 
I 

'Gocessors is possible and we can build parallel computers consisting of thousands of such pro- - . 
J 

cessors. As Zakharov remarks in his paper [Za-841: 

"Looking into .the future, it seems that we are in fact in a transition phase from purely 

sequential systems and that parallelism will become a standard feature of most computer sys- 
1 

terns in the future at the processor level." 

Parallel processing is a very promising trend and we may expect the next generation of 

computers to be pa;allel computers which m a y  bring atx,ut,a revolb?ion in practically every 

aspect of computer science. - 
+ 

However, no one knows how to build a parallel cornput& in the best possible way. Thlre 

are many alternatives on how we can connect the processors and memories, and on what kinds 

of cpeiations we allow for parallel processing. To make reasonable decisions on these ques- 

tions, we have to look a t  the possible effects of these choices on the design of algorithms. In this 

thesis, a model which consists of multiple processors and shared memory is used because it is :, 

suitable for algorithms with complex data flows. The thesis aims a t  designing parallel algo- 

rithms for the two-matroid intersection problems using this parallel model. 

Three objectives are achieved: 4 - 
( 1 )  The first objective is to understand more.about the the power of parallelism in computer 

p~ocessing. Befbre we can justify thk introduction of parallel computers. we must find out 
s .  

how far  we can parallelize the s o m o n  of problems of interest. 

There are two kinds of measures of the performance of parallel algorithms. The,first is the 

\ 
measure of speed-up of the parallel algorithm over an efficient sequential algorithm. If T,, 

- 
rer  . W l r  

-a 
.J 



* Ts 
is the parallel time and T, is the sequential time. then the @-up ratio. R, , is -. If x 

TP 

processdrs are used in the parallel processing, then a perfect speed-up is achieved if x equals 
. . 

O(R, 1. Equivalently, we may define the time-processor product as Tp t ix~es x, and a perfect 
c- 

speed-up is achieted if the time-processor product is equal to O(Ts 1. 
8 - 

is the pa*<allel time itself. A parallel algorithm which runs in loga- 
. 

rithmic time or sub-li&r time using a polynomial numbe; of processors is usually con: 

sidered to be a very fast algorithm and will well justify the use of parallelism. It is gen- 

erally believed that some problems in P cannot be solved in log-time in par~llel .  \where P is . 

the class of problems solvable in polyrlomial time sequentially. .It has been proved in [Go- 

781 that if a problem is log-space complete for P,, and if it can be solved in log-time in - 

parallel. then all problems in P can be solved in log-time in parallel. Hence we can prove 

that a problem is unlikely to be solvable in logarithmic time by proving that it is "log-space' 

complete" for P. 

In order to challenge the power of parallelism, the two-matroid intersection problems are 

choseri. So far, parallel algorithms have been designed predominantly for simple problems 
' 

or for problems with regular data structures. Two-matroid intersection problems are in 

one sen& q m e  of the hardest combinational problems that can be solved by polyno~lrial 
- - 

time algorithms [Ps-821. The single-matroid problems have an;efficierit parallel algorithm 

which runs in log-time (chap& 3). The tbree-matroid intersection prdblerns a r e  NP- 

complete. The two-matroid intersection problems can be solved in polynomial time but the - 

sequential algorithms for these problems have complex structures and apparent sequential 
e 

natures. It is not known whetLq the two-matroid problems can be solved in sub-linear 

time. 

The two-matroid problems can be viewed as linear programming problems. In'fact, one of 

the fastest known sequential algorithms is based on .lin&r programming techniques [ ~ a -  

'76].[PS-82]. In [DLR-791. linear progrhming problems have been shown to be log-space - - 



iX 

hard for P. Also. the fastest sequential @gorithm for the .bipartite matching problem. 

which is a special case of the two-matroid problems, is based on a trahsformation into a 
> pi 

max-flow problem [Ta-821. The mar-flow prob&n has been shown to be log-space complete 

for P in [GSS-821. These are indications tha t  the two-matroid intersectibn problems are 
* 

difficult to solve in patallel efficiently although this does not rule out the possibility that it 
v 

can be done. . d 

% 

0 $ h 
C The results of this thesis show that perfect speed-up can be achieved for the two-matroid 

i n t e r s e c w  r . Fast algorithms which run in almost linear time are.derived for the 

general problems. A sub-linear time .algorithm is'derived for the unwe'ighted matching 
/ 

problem. Although it still remains to be shown whether sub-linear time can be achieved ' 

/ 

for the gmeral problems, the results of the thesis demonstrate the power of parallel pro- 
' *  

. 

c es/. mg and the appropriateness qf the chosen model. - 
I 

(2) The second objective is to obtain some general stritegies for deriving parallel algorithms . 

which can be used for other ,problems. There are at  least three techniques which are appli- 
- 

cable to most of the problcms in this thesis. 

The first one is "recursive doubling" [FW-781. With this technique. we increase the size of 

search or temporary solutioq set by double a t  each iteration. so that a logarithmic time 
i -.?A 

complexity can be achieved. This technique arises itl many places in this thesis and we . .\ 

' 1 ,  

believe that it  is useful in the design of parallel algorithms in general. - 

r' 

The second technique is ,a parallel breadth-first search which solves the shortest-paths 
I 

problem in logarithmic time. It is used & all. the fast algorithms in t K i  thesis. - 

The third technique is to apply "Brent's   he or em" to decrease the number of processors 

used without increasing t h e  parallel time. This method is adopted from [SVI-821. It is 



applied in all problems in this thesis to achieve perfect speed-up. It  should also be useful 
' 

for other parallel algorithms. 
* 

( 3 )  The third objective is to observe the impact on parallel algorithms of the parallel model. 

Since the chosen problems are very dem.anding of the model of parallelism, they have actuL 

ally led to the introduction of two new operations for the model. Also. they have 

indirectly led to the suggestion of a more powerful medel, the nconcurrent critibal section 

model", which could be very useful for parallel algorithm design for other difficult prob- 

lems. 

1.2. Definitions and Examples 

In the following, definitions and examples of matroid problems are given. Matroids are 

special subset systems where subset systkms are defined as follows: 
1 

Uefinitiop 1.1 A d s e t  system (independewe system, hereditary sel system). S = ( E  .I ) is a 
i. 
finite set E and a collection 1 of subsets of E such that 

,- 
/ 1.1.2 If X E I and Y G X then Y E I (hereditary property of independence) 

FOT every subset system. we can define a related problem as folfows: 

2 

Definition 1.2 A combinatorial optimization problem assuciated with 

w ( e  ) 2 0 for each e € E ,  find an e l e m e ~ o f  I with largest weight. 

1 

, - 
The following are two examples of combinatorial optimizationgroblems 

8 

r 

S is: given a weight 

associated with subset 
'I 

systems: 



,- Example 1.1 Given a graph G = (V E )  wiih non-negative edge weights. find i k t z x i l l ~ ~ n ~  weigh 
/ 

/-- 
1 

' 

spanning forest of G . E  is the ground set (i.e.. the finite set of Definition 1.1 ) and I is the 

a collection of cycle-free subsets of E .  

Example 1.2 Given a digraph D = ( N  A ) with non-negative arc weights. fipYQubset B S A . 

of largest weight such that no. two arcs of B have the same head. 

It can be proved that these two optimization problems are both solved by the well known . ' 

, . 
. <- greedy algorithm. ,. , . 

qlgorithm 1.1 : Greedy Algorithm 

( S  = ( E  .I) is a subset system. S will be the solution.) 

while A Z 0 $ 

choose element e E A 'with largest weight 

A + A  - { e l  

i f , X  U { e )  € 1  then X + X  U { e l *  

The two given examples are in fact examples of optimization problems based on matroids. In 

general any Subset system whose optimization problems can be solbed by the greedy algorithm 

is a'matroid. Thus, m r o i d  can be defined a!gorithmically as follows (see [PS-821 pg. 285). 

Definition '13  Let M = ( E  ,I) be a subset system. - M is a m r o i d  if the greedy algorithm 

correctly solves any instance of the combinatorial optimization problem associated with 

M .  

Matroid is among the very few mathematical structures which have this interesting rela- - 
tionship with algorithms. We may a1 atroii: by adding a third axiom to the 

1 



- definition of subset system. 

Definition 1A A mafroid M = ( E  .I) is a structure in which E is a finite set of elements and I is 

r-' 
a familf of subsets of E such that 

1.4.1 @ € I  

1.4.2 If X E:J and Y !Z X then Y € I a 

1.4.3 If U ,V €1 with I U I = I V I + 1 then there exists 'an x E U - V such that 

It can be verified that the independence systems in the'two examples above both satisfy condi- 

tion 1.4.3 in Definition 1.4 and are therefore matroids. In fact, they are examples of two 

different types of matroids, namely graphic matroids and partition matroids. We shall see 

more of these matroids in later chapters. * 

i 

Definition 15 Let E be the set of edges of a graph and let I he the collection'& cycle-free sub- 
/' 

1 

sets of E . Then (E  .I) 1s a graphic matroid or cycle e r o i d  of. a graph. , 
3 

&fineion 1.6 Let E be a finite set of objects, let II be a partition of E into 

\ B , .B ,. . . . . B , , :  a n d  let d l.d *. . . . , dm .be positive integers. Then (E  1) is a p r t i t w n  -- - \ , i 

m r o i d  w d e  I f r X  !Z E . I X nLB1 I < d l  ; 1 6 i 6 rn ). (In this thesis, we will 
/ - . 

assume the special case of d l  = 1. 1 6 i .6 m unless otherwise specified.) 

The follou.ing.terminology will be used widely i n h i s .  

Let A1 = ( E  J)  b5 a-matroid. 



1.7.1 Subsets in I are called independent sets. All ether subsets of E are dependenr'sets. 
-- 

1.7.2 ' A  base of M is a maximal independent subset of E .  
L 

1.7.3 A circuit of M is a minimal dependent subset of E .  

1.7.4 The rank function, p. of M is defined as follows : if = A  is any subset of E .  then 

pA = max{ I X I : X G A . X E I). (1.e.. the rank of A k the cardinality of a maximal 

independent subset of A .) The rank of ?k denoted pM , is the rank of E . 

1.7.5 A span of A !Z E is a maximal superset S of A satisfying pS = pA . 

b * 

'. Next we shall introduce the rnatroid intersection prob1e.m~. Note that there is only one 

version of the single-matroid problems. namely to find a maximum weight independent set. 

The maximum weight independent set will also be of maxiw~lm cardinality. However. this is 

not true for the intersection of two or  =ore matroids. Hence. we have two versions of these 

problems. h e  concerns the search for a maximum weight intersection. the other concems the 

search for a maximum cardinality intersectioh. 
1 

Definition 1.8 Let E be a finite set, w : E +R+ amonnegative weighting function on E and let - 
MI =(E .I, ) 1 < i  6 n  be n matroids over E .  The maximum weigk 2 t r o i d  infkrsection 

n 

diem is the problem of findl4g a set I E n I, of maximum weight. The special case of * , .-' 
I =1 

the maximum weight matroid intersxtion problem when w (e  )=l f o ~  all e E E is known 

as the maximum cardinality matroid intersection problem. I 

t Th' thesis will focus on two-matroid intersection problems. Parallel algorithms will be 
.. 

designed for the general problems and also for two special cases, the bipartite matching prob- 

lems and *the directed sparining tree problems. 

Example 1.9 : Bipartite Matching Problems. 
I 

Let G=(X.Y.E) be a bipartite graph, so that X and Y are two d i s ~ i n t  sets of vertices and E- 



is a set of edges in XXY. A subsit I G  i is called a matching for G if no two edges & I are 

incident to the same vertex. The cardinality bipartite matching problem is to find a match- 

ing of G of maximum cardinality. We formulate this problem as a maximum cardinality 

matroid intersection problem as follows. Let X = { x  ,. . . . J, ) and Y ={4' ,. . . . ,ym ), ahd 
\ 

let n, " { ( x ,  ,y ) E E l y  E Y} fof 1 d i  d n  and T j  = { ( x  ,yj  ) E E l x  E X) for Id j < m .  Then 
' 

the n, 's ( respectively the rJ 's ) partition E into blocks such that any two edges of E are 

in the same block iff they are incident to the same vertex in X ( respectively Y ). Let M ,  

= ( E .  I, ) and CE. IP ) be the partition matroids determined by the partitions of E 

induced by the ll, 's and the TJ 's respectively. Hence a set I G E is in I, iff no two edges 

in I are incident to the same vertex in X. Similarly 1 E I2 iff nd two edges in I are' 
B 

incident to the same vertex in Y. Thus I, n12 is exactly the set of matchings of G and sova 

solution to the bipartite matching problem is given by a set I E I, fll,'of maximum cardi- 

nality. 
\ 

The weigked bipartite matching problem is defined similarly except that each of the edges 

in E has a weight and the problem is to find a matching of G of maximum weight. The 

corresponding matroid problem will be the weighted two-matroid intersection problem 

for matroids M ,  and M ,. 

. 

Example 1.10 : Directed Spanning Tree Problem 

- 
Let G-(V.A) be a weighted directed graph with a distinguished vertex v of indegree 0. 

We wish to find a maximum weight spanning tree of G rooted at v .  ~ e t % , = ( ~ l , )  be the 

graphic rnatroid of G. where we agree to ignore the direction of the arcs. Thlls I E I, iff i 

is a set of edges which contains no cycle. Let V=(v ,, . - . ,v, } and let (v,  .vj ) denote an arc 

from v,  to vJ . Then the sets II, = { ( v  .vi ) E A lv E V ) :  1 < i  d n  partition A into disjoint 

subsets. Let M ,=(A&) be the pmtitwn matroid over A induced by the IIi 's. A set I E I, 

only if no two arcs enter the same vertex. Thus I, n12 is the set of all subgraphs of G 

which are directed forests. A spanning tree is a subset I E I, nI, such that III=n -1. 



The three-matroid intersection problems are 

Hamilton Cycle problem [GJ-791. We do not expect 

NP-complete. An example is the Directed 

these problems t-o be solved efficiently even 

on parallel mmputers. Approximation algorithms will 'be needed to solve them efficiently 

within some error range. 

Example 1.1 1 Directc 3 Hamilton Cycle 
' v 

Let G=(V.A) be a directed graph. We wish to find a directed Hamilton cycle In G. T h ~ s  prob- 
1 

lern can be realized as a maximum cardinality problem for the intersection of three rnatroids. 
'I 

. 
Let n =IVI and create a new directed graph G1=(V'.A') where 

V1=VU{vn+,)-  and A1={(v,.vj).EA 116i6n.26j~n}~{(v,.1:,+,)lt<i<n.(v,.o~)tAI 

Let M ,=(A1.I,) be the graphic m r o i d  of G'. Let Il, = ( ( v  .v, ) E A ' I v  E V') and 
I 

r, ={(v, . v )  E A'Iv E VJ) ' for  16i 6 n  +1. Then the sets II, ( respectively r, ) partition A' into 

blocks such that  arcs in different blocks enter (respectively leave) different vertices of G'. I.et 
' 

M2=(A1.I2). M 3 = ( A 1 J 3 )  be the partition rnatroids over A' corresponding to the partitions 

induced by the IIi 's and the T i  's respectively. Then a subset I G A' is in I , n I, fl I ,  iff it is 

cycle free (so it is in I , ) ,  i t  does not contain two  arcs going into the same veitex ( so it is in I 2  ) 

and it d o ~ s ~ n o t  contain two arcs going out of the same */ertex ( so it is in I3 1. In particular a 

subset I E 1, fl12n1, of maximum csr&nality li!=n ;s a path from v , to v,, + l .  By finzing 

such,an I we may then easily cmstrucf' the desired Hamilton cycle by replacing the edge 

(vi .vn +,) E I by (v, .v , ) .  

13. Previous Work 

A survey of paral!el algorithm design can [Vi-831. Algorithms and data 

structures developed to solve graph problems on of parallel computers are sur- 

veyed in [QD-841. In relation to the matroid problems, a parallel greedy algorithm has been 

designed i [Co 8.21. Different versions of pdrallel algorithms for the minimum spanning tree 0. 



problem, which is a single matroid problem, have been designed. and we shall give a review a t  

the end of chapter 3. The unweighted matching problem can be transformed into the max-flow 

problem, which has a parallel ~lgori thm [sV-821. Dekel and Sahni [DS-821 have developed an 

algorithm based on a SIMD (Single instruction stream multiple data stream).model to find the 
f' 

maximum cardinality matching of a convex bipartite graph. A bipartite graph is convex if there C 
is iin ordering of the-vertices X = { x  ..... x Ix I ) and F={y ,.y ,,.... y ,, , )  such thgt for all tri- , 

plets i . j .k with i < j < k . (x, .y, ) EE and (x, ,yk ) E E implies (x ,  .yj ) EE . The 'algorithm in 

2 $~-821 takes O(1og n ) time using O(n ) processors. where n is the number of Vertices. 

The all-pairs and singlesource shortest-paths problems arc subproblems of the two- 

matroid intersection problem and the bipartite matching problem respectively. Parallel algo- 

rithms have been designed to solve the shortest-paths probrem on different models. A list of 

these algorithms is given near the end of chapter 5. 

- 
There exist polynomial time sequential algorithms for all the problems in this thesis. For 

the cardinality and weighted two-matroid intersection prgblems. there are algorithms [La- 

76].[PS-821 based on augmenting sequences (see ~ h a p t e r  4) and algorithms [~a-761 .  [ P S - ~ ~ I .  

[Fr-8 I ]  based on the primal-dual method of linear programming. The same holds for the bipar- . 

tite matching problems ([La-761 ~-?"3-82]). The dirkted spanning tree algorithm can be found in 

[la-76)'or [Ta-771: 

1.4. Overview 

In the next chapter, parallel models are examined and the model usid in this thesis is 

descrikd. In particular. two new operations, "write-max" and "write-min", are introduced. 

Also, a new model called $he "concu;rent critical section" model is proposed and shown to be a 

more powerful model than the existing ones. 

Chapter 3 contains both sequential and parallel greedy algorithms for the single-matroid 

problem and also lists the kt algorithms known for the minimum spanning tree problem. 



Chapter 4 describes the sequential 'algori?hms and'derives parallel algorithms for the general 

cardinality and weighted two-matroid intersection problems. Chapters 5 and 6 describe the 

sequential algorithms and derive parallel algorithms for the special 'cases of bipartite matching 

and directed spannin: tree problems respectively. Conclusions and open problims are given in 

Chapter 7. The resultsfrr,rn chapters 4.5. and 6 are summarized in the Appendix. 



2. PARALLEL MODELS 

Before designing a parallel algorithm, we must define the abstract model of parallel com- . 
putation which specifies the *design spaceM in which we work. There are many different parallel 

models of computation. We shall list some of them and justify the choice of model -in this 

thekis. 

2.1. Some Common Models 

In this thesis. y e  are concerned with parallel models consisting of a "tightly coupledM col- 

lection of parallel processors working together to solve a terminating computational problem. 

, , There are several criteria by which we can classify parallel models. 

(1 )  The number of processors may be fixed or unbounded. In this thesis, the4humber of proces- 

sors will be assumed to be polynomial in the number of inputs in the problems. 
L. - 

1 

(2) We may classify the models' according to the fiattern of processor and memory intercom- 

munication. Preparata and Vuilemin [PV-791 have distinguished two broad categories of 
I 

sucb parallel models. 

(i) Models based on a fixed co~ec t ion  network of processors 

Xhese  models assume that only graph theoretically adjacent processors can communi- - 
cate in a given step. Kung [Ku-821 has focused on the design of parallel algorithms 

that coriform well to "systolicn architectures which lay out well in two dimensions. 

these systolic systems ale examplQ of models based on a fixed connection network of 

processors. 

The Ultracomputer of S c h w a r ~  [Sc-801. mesh-connected processors such as llliac IV . 
and the cube-connected cycles of [PV-791 also belong to this category. 

The structure of this kind of model dictates t problem be' decomposed into 



identical subtasks whjch communicate among each other in some regular fashion. 
91 

Hence it is not suitable for problems with many data dependent decisions [NYU-831. 

(ii) Mcdels that are based on the'existence of global or shared memory 

Tee models in this category cwrist of processors which Kave access to a shared 

memory. Several models are defined which differ in whether or not they allow con- 

current read and write operations to  the shared memory. and. if allowed. how write 

'conflicts are resolved [BH-821. 
\ 

1 )  PRAC [LPV-811 - concurrent read and concurrent write ;re not allowed. 

2) CREW'PRAM [FW-781- concurrent read allowed . concurrent write not ailowed. 
. . 

3) CRCW PRAM - conc&rent read allowed, the allowance of concurrent writes can 

differ as follows: 

(i) in w u r r e n t  write is allowed only if all processors are trying to 

write the same thing. 

(ii) An arbitrary processor is allowed to write. 

(iii) General CRCW PKAM (Eo-781) - the lowest numbered processor is allowed 

to write. 

The model used in this thesis is a general CRCW PRAM. A proper definition of this model 

is given in the next section. , 

(3) In [QD-841. a distinction between SIMD (single instruction stream multiple data stream) 

and MIMD (multiple instruction stream multiple data stream) models is made. SIMD is 

taken to be synonymous with *processor array". 

(i) In a SIMD model. the processors may communicate with each other via a shared 

memory (SM).or some kind of network, such as a mesh-connected network (MC), a 

perfect shuffle network (PS), or a cubeconnected cycles network (CCC). For 
h 



\ 

example, in a SIMD-MC rnode1>tdprocessors are arranged in a q-dimensional lattice. 

and communication is allowed only between neighboring processors. Most supercom- 

puters of the current generation belong to this category. They are composed of vector 

pipelines which are multiple processors each executing the same instruction [st-801. 

For example, the ILLIAC IV computer belongs to the SIMD-MC category. It is an 

array processor compsed of 64 identical iproching elements. organized as an 8x8 

array. which synchronously execute the same instruction (possibly operating on 

different data). 

Although our algorithms are designed for the CRCW PRAM models. they also works 

for the SIMD models given the same kind of allowances ip memory access. 

(ii) The MIMD models may also differ in the processor intercommunication pattern. For 

example the MIMD-TC( for tightly coupled) model assumes that all processors work 

through a central switching mechanism to reach a global memory. Our chosen mule1 

belongs to this category. . 

The processors may be synchronous or asynchronous: Here we shall make the distinction 

between different types of synchronization. . 

If the processors or  RAM^ (random access machines) are "clock-synchronized". itdmeans 

that they are working under the control of a global clock. ~ 1 1  tightly coupled system: are 
. . 

clock-synchronized. 

2 

There is a second kind of synchronization: 

A "clock-synchronized' parallel model may be "asynchronous". It will be an MIMD-TC 

model according to the previous classification. This means that the processors are working 

ipdependently most of the time. They may be executing different instructions and there 

will be some points at which they have to be "synchronized". 



An example of. such a model is given in [SV-811: "There is a universal clock td the program 

Ghat ticks every time unit and each processor can perform one and only one elementary 

operation between two ticks. A starting time will be assigned to some of the instructions. , 

The execution of such an instruction must start exactly in the starting time assigned to it. 

This enables us to achieve synchroniza'tion whenever necessary. \ 

In our model. the synchronization is defined in a different way : at a poiot of synchronia- 

ticn, each processor has to wait until all other processors have arrived at this point before 
f 

they can continue with their processing. 
d 1 

2.2. The General CRCW PRAM 
-. 

The CRCW PRAM (concurrent-read concurrent-write parallel random access machine) 

model is a MIMD machine model. The following definition is adapted from [Vi-831. We have . 

changed the word ".synchronouslyn in the original definition into nclock-synchronously to dis- 

tinguish between the two types of synchronization. 

- ,  

Definition 2.1 : The general CRCW PRAM model has p RAM'S operating nclock-synchronouslf 

in parallel. Each RAM is a standard uniprocessor model having its own large local 

random-access memory and has instructions for typical arithmetic and bodean 

and for reading and writing its local memory. The RAM'S also have access 

memory of si& m. Each RAM has instructions for reading from and writing i t~to the com- 

mon memory. Several processors may read simultaneously from the memory loca- 

tion. If mc e than one processor attempts to write into the same location in the common 

memory at the same time, the lowest numbered processor succeeds. The CREW PRAM 
7 

(concurrent-read exclusive write PRAM) is similarly defined except that simultaneous 

writes into the same location are not allowed. 

The work of Cook and Dwork [CD-821 implies that a CRCW PRAM is more powerful 

than a CREW. It is easy to see thz: any program that runs on the CREW PRAM model will 

also run on the CRCW PRAM model within the same time and space bounds. A simulation of 



* 
2 the CRCW PRAM model py the CREW PRAM model will be given later and it will add a loga- 

rithmic factor fo the time complexity. C 

- . . 
2.3. The Fetch-and-Add PRAM Model 

i 

This is a modification of the CRCW PRAM. Let A& a common memory address and let r 

be the value of a local register of processor P. The Fetch-and-Add (F&A) instruction is defined 

as follows : If.pr&essor P performs a J?&A(A.r) and no other processor performs at the-eme r 
. 

time an instruction that relates to address A, then the contents of A are transmitted to proces- 
L 

sor P and address A is assigned the value A+r. If several processors simultaneously perform 

F&A instructions that relate to A, the result is defined to be the same as if these instructions 
'9 

are I;lrformed serially in some (unknown) order. The F&A PRAM is a CRCW PRAM 

- > 
al.lows these F&A instructions. - 
2.4. The NYU-Ultracomputer . 

+ 

The  etch-and-~dd model will be realized by the NYU-Ultracomputer. The NYU- 

ultracomputer is a shared memory MIMD parallel machine composed of thousands of auto- * 

nomous proce$sing elements. It uses an enhanced message switching network with the 

geometry of the Omega network of Lawrie [La-751 to implement efficiently 
- 

synchronization primitive. The Omega network consists of N logN 2x2 switfdes and connects 

N processing elements (PE's) to N memory modules (MM's). The MM's standard off-the- 
s 

shelf memory chips. The PE's are slightly custom designed for the F&A operation. Each PE is 

attached to the network via a processor network interfp,(PNI)  and each MM is attached via a 

memory network interface (MNI). Figure 1 gives a block diagram af the machine. Shared 
< 

- memory access time in this machine has latency time that is logarithmic in N [NYU-831. 

Figure 2 shows an ex~mple  of an omega network with N = 8. The small circles on the left 

are the PE's and those on th;right are the MMSs. Suppose a fetch-and-add( 001. 3 ) command is 

made by processor 101 to reference memory module 001. the dotted line shows thi path of this 

reference th&ugh the network. If a fetch-and-add( 001. 4) command is made by processor 111 

and t h e t w o  references rhcet at  switch A, then the two references are combined at A and the 



instruction .fetch-and-add( 001,3+4 ) is passed through the remaining dotted p t h . .  

_i 

& e . / 
1 

1 . 
' 0  - 0  0 

I 

CONNECTION NETWORK 

0 0 0  

. 

- 

Fig 1. Block diagram for NYU.Ultracomputer 

25. The write-max and write-min o p e r e  

The Fetch-and-Add operation is one speciali case of a more general fetch-and4 operation 

which may be used as the sole primitive for accessing shared memory [NYU-831. Let V be a 



. . 
common memory address and e be the value of a local register'of a processor. 

' 

e ) will fetch the value in V and replace it with 0(V,e) where 0 is an associative and commuta- 
b 

live function. ( If 0(a.b) = a + b then we have the fetch-and-add operation. ) 

L In [NYU-831 the authors remark that the let&-and-add operation has proved to be a 

sufiilent coordination primitive for all the highly concurrent algorithms developed to date. 

However, during the design of parallel algorithms for matroid problems, two 

1 arise naturally and they prove to be very useful both conceptually and in 

the time efficiency. These are the 'write-maxn and "w operations. These two opera- 
& \ "4, 

tions are also special cases of the general fetch-and'4 hey are defined as folhws : 

. * 
,. 

Definition 2.2 : 'If processor P performh,write-max( A a  ) and no other processor performs ab 
' '. 

the samk time an instruction that relates to address A, then thde value of e will be written 

into A' if and only if e is greater than the content of A. If k processors P,.P2. .... P, simul- 

taneously perfo,rm instructions write-max(A,el), write-max(A.e2) ,... write-max(A.el ) 

respectively, then address A will be assigrxd the value of mar{ e ,.e2. e, . C(A) ) where 

C(A) is tbe original content of A. No value isF'teturned t o a p x e s s o r s .  

write-min(A.e >+-defined in the same way except that the minimum among the values LV 

e , .e ,. . . . e, and C(A) is assigned to address A instead of the maximum. 



. - , Implementation of the New Operations 

The implementation of fe tch-h-add  is described in [ f i ~ ~ i - 8 3 ]  and -a machine model with 

an omega network is suggested. We shall assume the same framework .in the implementation ' 

,of write-max or write-min. In fact, only very simple modifications to the ,machine will be 

sufficient. We shall only describe the implementation fo i  write-max since write-min can be 

similarly implemented. 

To.implement write-max. the switches will be enhanced to' permit the network to combine 

writk-max instructions wjth the s~lme efficiency as it combines loads and stores. We include t 
i 

comparators in the switches and a i ; ~  in ?he memwy network interfaces (MNI's). When two 

4 write-max's refe#encing the same shared variable, say write-rnax(X.e) and write-max(X.f) 

meet a t  a switch, the switch computes rnax(e.f) and transmits the combined request write- 

max(X. max{e,f) ). When a write-max(X.e) request reaches the MNI associated with the MM 

containing X, the content of X and the transmitted e are sent to the MNI comparator. and the 

greater value is s t ~ r e d  'in X. 

Since we are not interested in gettin a return value and thecomparator is no more com- 
* k 

plicated than an adder, we see thax the write-max operation is, no harder to implement than the 

f etch-and-add operation. 

k Next, e must consider the qombination of write-max with other operations referencing 
I 

the same location and formulate rules about the validity of such concurrent references 

( 1 )  write-max and load (read) : 

There is no conflict between these two; a combined request of fetch-and-write-max(X.e) is 

transmitted which means that C(X), the content of X. will be returned to the processor 

doing the load and max(e,C(X)) will be written tg X. 

(2) write-max(X.e) and store(X,f) : 

We may dd any one of the following: 

(i) transmit the store command (assume it comes second) 

(ii) transmit store(X, max{e,f ) )  (assume the write-max command comes second) 

1 



(iii) make this combination illegal 

(3 )  write-max aqd F&A : 

There is conflict between these two instructions; there is no way to combine these two at a 

switch to guarantee t h a t 9  preserve a serial order. Foy example, suppose we have a write- 
\ 

max(Xn ) a n d & ~ ( ~ . b  ) to be combined at  a switch. and suppose the current content of 
p* 

X is c . The following are all of the possible outcomes. 

( i )  If a d b  +c then the value of X will become a +b if the write-max comes first or a if 
- 1 

,the F&A comes first. To conform to some serial order of the instructions, we may 

combine the two into a write(X, a +b ) or a write(X.a ) instruction. 
t 

If b +c >c B a  then the value of X will become b +c independent of the whether the 

write-max or the F&A comes first. Hence we should combine the two into a F&A(X.b) 

instruction. 

(iii) If b +c > a  a c  then the result of X will be a +b if the write-max comes first, and 

b +c if: the F&A comes first. Hence we may combine the two into either a 

write0i.a +b ) or a F&A(X.b 1. 

We see that we can distinguish between these cases only if we know the valuex . However. 

we have no knowlidge about the content of X at  the switch. If $e mix up these cases, we 

cannot guardntee that the result' is equivalent to the result of some serial ordering of the 

instructions. Hence. we have to make this combination illegal. 

(4 )  write-max and write-min 

this corn bination illegal. 

In fact, in the applications of 

, 

: There is a conflict between these two instructions, and we make 

write-max or write-min in the algoriyhms in this thesis. there is 
i ,  

no inc~dence of concurrency with the store or F&A instructions. With no loss of generality, we 
- .  

make all such concurrency illegal. which may also be a cleaner design. 



NO& we are ready to  define the model that  is'used in this thesis. 

Definition 2.3 : The write-max/write-min F&A PRAM model is a F&A PRAM which allows the 

write-max and write-min operations with the above rules for concurrent references. 

2.6. The Concurrent  Cr i t ica l  Section Model 

In this section, we introduce a ne* parallel model called the, "concurrent critical section 
. I 

model". None of the algorithms in later chapters use this model, but we believe that the con- 

I 

current critical section model is sufficiently interesting to justify i t~. ' inclus~on here. We w ~ l l  
, \ 

first state th imot ivat ion for introducing this model and show why it is mofe powekful than 

other existing models. Then we will show that this model is no more complicated or difficult to 

simulate by the CREW PRXM model than the CRCW or F&A CRCW PRAM models. To do 
h 

this we will first describe the simulation of concuireit writes and Fetch-and-add instructions 

on a CREW PRAM model. Then we will describe the simulation of concurrent critical sections 

on the CREW PRAM mo.del and show that  it has the same Gme and space complexities as the 
.,-. 

first two  simulations of concurrent writes and Fetch-and-add-s. 
d 

\ 
w e  define a critical section to be a section of a parallel tilgorithm in which more than one . 

processor may be accessing one or more c o r n m o w a t  the same time, and the result of 

these references must be the same as if the critical sections for these processors are done in some 

serial order. When we say that the general CKCW PRAM model allows concurrent writes. we 

are actually saying that it takes O(1) time for several processors to execute a critical section 

containingone concurrent write instruction. 

However. if ' a  critical section contains instructions referencing more than one variable. 

then the general CRCW model will not be able to resolve it in constant time. For example. a 

common critical section for checking a semaphore is 



-V + true 1 

return temp 

Ali processors executing this critical section are comp6;g for a certain semaphore V. Only one 

processor can be allowed to get the semaphore. The value of V is initially false. In the critical 

section a processor will read the value of V into a local variable temp, and then set the value of 

V to true. Hence only one processor will receive the value of false in temp and it gets the sema- 

phore. 

The CRCW inodel cannot solve this problem in constant time although it can simulate it 

in logarithmic time (as described in the next section). The fetch-and-add operation is intro- 

duced to resolve critical sections like this. For example, the above critkal section for checking a 

semaphore can be replaced by a single instruction 

Assuming 0 is the initial value of V. the processor that gets a zero as a return value obtains the 

semaphore. 

However. if '  the critical section is more complicated, some other operations may be needed. 

For example if all processors are writing to a variable and v e  want the one that writes the 

maximum' value to 'succeed, then we need a wwrite-max" operation. Also, we may want to 

reference and modify more than one global variable in a critical section. To address this issue,, 

-2 
we introduce a model that assumes constant time to resolve critical sections in general. We call 

this the "concurrent critical sectionw model. 
> * 

Definition 2 4  : The concurreM critical section model has p RAM'S (random access machines) 

operating clock-synchronously in parallel. Each RAM has instructions for reading 

from and writing into a common memory of size m. If several processors simultane- 

ously execute critical sections which compete for access to some global variables, the 



result is the same as if these critical sections are performed serially in some (unk- 

nown) order and the time required is the time for executing any one of- the critical 

sections. 

&emma 2 5 :  .The CRCW PRAM . the F&A PRAM. and the write-max/write-min F&4 PRAM 

4 models are special cases of the concurrent critical section model. 
4 

Proof : Concurrent write is equivalent to a single instruction critical section: 

{ write(X.e) 1 

The fetch-and-add(X.e) instruction is equivalent to the critical section 

1 read X 
write(X.e+C(X)) "1 

where C(X) is the content of X 

. v 

The write-max(X.e) instruction is equivalent to the critical section 

1 if e > C(X) then 
X - e  1 

The write-min(X.e) instruction is equivalent to the critical section 

{ if e < C ( S )  then \ 'i 

X . - e  1 \ 

In the next three sectibns. we compare this new model with the CRCW PRAM and F&A 

PRAM models. Since the CREW model is widely accepted as a' realistic model. we will simulate 

each of the three models using the CREW model. We shall see that all three simulations have 

the same time and space bounds. 
.. 

s 

-I- 

2.6.1. Simulating Concurrent Writes on the CREW PRAM Model 

At any point that there are possible concurrent writes in a given algorithm. we synchron- 

ize all processors and direct these writes to temporary locations. The sirnulatidn uses the recur- 

sive doubling technique. Synchronization is necessary and every processor must Se used. 
-? 



Suppose there are m processors and there is a con ent write'to location X. We create . 

t cmFrary  variables T( i )  and M(i ) for each processor P , .  hstead of writing to X,  each P, 

writes to T(i 1. Next, the processors are synchronized (the method of synchronization will be - 
fl 

given later). NOW .'every Pi with i 0 nwd 2* checks T(i ) and T(i + 1 ) and combines them 

according to the serial order of the CRCW model (e.g. the lowest numbered processor succeeds). 

The combined result is written to T(i 1. 

h .The processors are synchronized again. This time every Pi with i 0 nwd 2 checks 

T(i ) and T(i +2) and combines them into T(I ). In general, a t  the j-th synchronization, every , 

P, with i Q mod 2' checks T(i ), T(i + 2 j W 1 )  and combinks them into 'i!i 1. 

The above process is iterated l o g p  times and the final combination of all writes is writ- I I 
ten into X. 

i 

The method of synchronization is as follows: At the j -th synchronization. each PI with 

i 0 mod 2' sets M(i )+ j . At the next stage: a processor PI with i SO mod 2'+' will not 
4 

proceed until M(i )= j and ~(i+2' '[ ')= j , 
* 8 

It is easy to see that the simulation takes O(1ogm ) time and O(m ) memory space for each 
I 

concdrrent write. 

2.6.2. Simulation of Concurrent Fa on the CREW PILAM We shall use O(m) memory 
b / 

space and O(1ogm ) time to simulate the network of the NYU-Ultracomputer. The technique is 

similar to the previous simulation. Synchronization is done in the same way. However. since 

we have to remember som,e temporary results at  each level of the network, we have to create 

temporary memory. locations for these levels as well. An m x logm array. T. is used where 

T(i . j ) is used at the j -th synchronization by processor P i .  

For example. if fetch-and-add(S.e) and fetch-and-add(X.f) arrive at  T(a.j) and T(b.j) and are 



to be combined a t  the next level, then at T(a.j+l) the instruction will be fetch-and-add(X.e+f). 

T(a.j) has a residual value of e and T(b.j) has a residual value of e+f. 

After the final write into X, the previous value at  X is returned through the T(i.j)'s as follows:- 

The value received at T(a,j), say Y, is added to e and Y+e in returned to the previous level 

to T(a,j-1) and T(a/2.j-l). If Z is the value received at lT(b.~). the.' Z+e+f is returned to 

the previqus level. 
I 

It can be seen that at  the i-th ~ ~ n c h r o n i t i o n .  only the T(i.j)'s for j G 8 ( mud 2' ) are used. 'r 

can be replaced'by a complete balanced binary tree with m leaves. The number of nodes in the 

tree is 2m -1 and O(m ) memory space is required. 

2.6.3. Simulation of Critical Sections on CREW PRAM Model This simulation will require 
3 

O(T logm ) time and O(Mm ) space, where m is the number of processors. T is the time, and &I 

is the number of variables involved in the critical section. A generalization of the mechanism 

for simulating F&A can be applied here. Instead of dealing with a single variable as in fetch- 

and-add, we now deal with M > 1 variables. V,.V,. . . . V ,  . Hence each variable. V ,  involved 

in the critical se~t ion will be given a temporary m by logm array T, . Synchronization is done 

exactly as before. Now everything to be done in the critical section is done using the tem- 

porary variables and. in O(T logm ) time these critical sections are combined in some serial 

order consistent with the definition of the model. As in the si~mulation of F&A, t'tJ'e arrays 'l', 

can be replaced by b i ~ a r y  trees of size 2m -1. Hence the memory required is O(Mm 1. 

From the above results, the proposed inodel is no harder to simulate with a CRFW 
Y 

machine than the CRCW and F&A models. From an implementation point of view. the 
1 



switches of the network of the NYU-Ultracomputer can be enhanced so that they can combine 

-\ critical sections. *. . 
, . 

The new model is definitely a t  leas', as powerful as the existing PRAM models since the 

existing models are special cases of the new model. We expect this new model t~ be useful in 

the design of parallel algorithms both concepl.ually and in terms of efficiency for difficult prob- 

lems. It is also practical in the sense that, ~mplementation is easy. Whether the implementation 

cost is justified will depend on I esults in the design of parallel algorithms for this model. 

2.7. ~ a r a l l c l * ~ T ~ o r i t h m s  in th is  Thesis . 

The parallel algorithms in this thesis are designed for the write-max/write-min F&A 

PRAM model (Definition 2.3). (The concurrent critical section model is not used.) The algo- 

rithms are written in a program-like fashion using common keywords such as "forw. 'while". 

nif..then..else". and so on. Most parts of the algorithms will be simultaneously executed by 

many processors. We shall give indices to the processors and'call a processor "Pij ". where i and j , 

. . 
r-- - 

are the indices. The indices may a p w - l n  t h e N t i o n  01 the algorithm which Pij executes. The . 
sign '+*' means concurren;'cdte. ~d sign '+"' means concurrent write of possibly different '- 
values to a location. 

Most of the time, the processors are working asynchr6nously. At points where kyncbroni- 

zation is needed. a <synchronize> statementbwill appkar. This means thai  each processor must L 
Walt at this point until all other processors have finished their work to this point. Then all pro- 

cessors can proceed. This synchronization can be done using the fetch-and-add instruction as 

follows. 

Let p be the number of processors. Three global variables SYNC,. SYNC, and SYNC are 

used. Initially, SYNC,. SYNC and SYNC2 are 0. Each processor has a local variable i which 

has initial value of 0. When a processor comes to a synchronization point, it performs a fetch- 



and-add( SYNC,.  1 operation. If the return value is p, &=a the procesmr changes 

SYNC(,+2)mod to 0 and changes its local variable i to ( i  + l )  mod 3. It then proceeds with its 

. work. If the return value is not p. then the processor will keep reading the value of, SYNC,' 

until its value becomes p. It then changes its local variable i to (i + l )  mod 3 and proceeds with 

its work. 



We mentioned in Chapter 1 that single-matroid problems can be solved by the greedy 
-. - 

algorithm. In this chapter, we describe a parallel greedy algorithm and list the best known 

parallel algorithms for the spkcial casevf the minimum spanning tree problem. 

, 3.1. The General Single-Matroid Problem J 

Before developing a parallel greedy algorithm, we should look at the serial algorithm described 
1 

in Chapter 1 more closely. 

Algorithm 1.1 : Greedy Independence Algorithm 

(M = ( E  . I )  is a rnatroid. X will be the solution.) 

1. X +0 A + E  
2. while A Z 0 
3. choose element e E A with largest weight 
4. A + A  - ( e l  
5 .  if X U { e )  € 1  then X + X  U { e )  

If I E I = m then the loop is executed O(m ) times. To implement line 3. E could be made into 

a heap before entering the loop and line 3 would then be O(1ogrn ).\ Alternately. E could be 

sorted before entering the loop and line 3 would be O(1). In, both cases, the total contribution 

is O(m logm 1. 

The greedy algorithm above is based on the independence axiom of Definitioi 1.4. The time to 

test a subset for independence in line 5 will depend on the structure of M .  In general. if c (m ) 

is the time to test for independence in M , then the algorithm is O(m c (rn 1) + O(sorting). 



6 - 
The algorithm above appears to be inherently sequential: an element cannot be tested for inclu- 

- .-- 
< - 

sion in X (in line 5 )  until membership in X has been tested for all elements with larger 
- 

weights. However, there are ways to find greedy solutions using algorithms based on other 

properties of matroids. The following greedy algorithm based on the rank function (Definition 

1.7) leads naturally to a parallel greedy algorithm. 

3.1.1. Greedy Rank Algorithm 

Algorithm 3.1 : Greedy Rank Algorithm 

(M = ( E  .I ) is a weighted matroid with I E I * m . X will be the solution.) 

1. . X c O  
2. Sort E by non-increasing weight 
3. fori + 1 , .  . . ,m 
4. if p ( e , . e 2 , .  . . , e i >  > p ( e l . e 2 , .  :. , e i - , )  thenX W X  U { e , )  

If we let r (M ) be the time necessary to compute the rank' fuxiction of matroid M . the time 
7 

complexity of the loop a t  line 3 is O h  r (M )). Thus the total time complexity is O(m r (M )) 

+ Ohorting). The difference in time complexity between this algorithm and the Greedy 

Independence Algorithm is the difference betwekn the time for determining rank and indepen- 
A 

dence and this depends upon the matroid given. 

Note that our new algorithm, while hot parallel, no longer appears to be inherently sequential. 

We now consider a parallel greedy algorithm from [Co-831. 

Algorithm 3.2 : Parallel Greedy Rank Algorithxh [Co-831 

. m processors PI , 1 6 i  brn . execute the following code in parallel 
. (M = (E J ) is a weighted matroid with I E I = rn . X will be th~solu t lon  

I .  X, 4-0 

2. Sort E by non-increasing weight (so that w (e  ,) 2 - . . 3 w (em )) 

<Synchronize > 
3. i f & , , .  . .  , e , ) > p ( e l , . .  . , e , - , ) t  + 1 (set X, = 1 if el E X )  

<Synchronize > -h 



- 30 - 
\ 

Using m processors, line 1 is 0 (  1). and line 3 is 'O(r (M 1) The parallel sort of line 2 requires 

O( lqm ) time and a m )  using the method of [Le-841, so the total time is 

O(r (M ) + logm 1. The time-pucessor product for this algorithm is O(m r (M ) + m logm 1. giv- 

ing asperfect speed-up. 

The details of the rank computations in line 3 will depend on the structure of M .  For some 
. + 

types of matroids, ranks can be computed quickly in parallel. One way to compute ranks in 

graphic matroids is based on  he foHowing. 

Fact 3.1 Let G = (V  E ) be an' undirected graph. and E ' E E . Then pE ' = (number of vertices 

. in G (El) ' - (number of connected components in G ( E  I )  1. where G (E  ') is the subgraph 

of rl; induced .by E '. 

Let I V I = n and I E I = m . The number of vertices'in G (E '1 can be counted in O(1) parallel 

time using m a x h  m 1 processors. Y is a Gector of length ma& .m ) and each processd>~~, . 
1 6 i  6max(n m ) executes the following code. 

Y, + O '  
Y ; + *  1 andY, +* 1 w h e r e ( j A ) = e i  EE' 
(* The following counts the numbe' of 1's in Y : *) 
W U N T  +* 0 
if Y, = 1 then fetch-and-add( COUNT, 1 1 

The number of connected components in G ( E  ') can be computed in O(1ogn ) parallel time with 
1 

n + 2rn processors using the method in [SV2-821. The total t i d e  for lcne 3- of the parallel 

greedy rank algorithm for graphic matroids is therefore O(1ogn ) using O(m + mn ) pr6cesors 

and the tom1 for the entire greedy algorithm is O(1ogn + logm ) using O(m + mn ) processors. 

The connected components df a graph can be found in time O(m + n ) using one processor and 

depth-fint search. So. a direct sequential implementation of this  parallel gieedy algorithm 

would have complexity O(m * + rnn 1. The parallel algorithm therefore has an overhead factor 

'; 



of O(1ogm + logn 1. 
Q 

I- . 
d + 
. i 

..l 
Currently, the fastest knowr' parallel algorithm for finding minimum (or maximum) weight 

spanning trees'in a graph is O(1ogn ) using rn processors [AS-831. So. the parallel greedy algo- 
.x 

rithm above is not a very good algorithm for graphic matroids. This is probably beCause the 

algorithm was derived from an -algorithm for arbitrary matroids. . . 

3.2. A Special Case : Minimum Spanning Treek 
1 

The minimum spanning tree problem is auspecial case of the graphic matroid problem.' 

Parallel algdrithms have bee; designed for this problem for different models. The follo-wing is a + 

list of the best known algorithms ( n is the numb& of vertices, m is the number of edges. and 

p is the number of processors ): 

[AS-831 uses CRCW and m logn /p time with p bm processors and time-processor product 
of mlogn . , 

2 2 [CLC-821 uses CREY and n 2/p time with p <n  /log n processors and time-processor 'pro- 
duct of n 

3 

3 

--7 
[HV-841 uses CRCW and logn time with n processors and time-processor product of 

n logn 
[KR-841 uses CREW and 'rn logn /p time with p brn /logn processo& and time-processor 

product of m logn 

  ASS^^ (resp. CLC-82) derive a Minimum Spanning Forest algorithm (MSF) from a 
L, 

modification of the connectivity algorithm of [SW2-821 (resp. their connectivity algorithm). 

These MSF algorithms use the same time and number of processors as their respective connec- 

tivity algorithms. 



4. TWO-MATROID LMTERSmON PROBLEMS 

e 

In the previous ch/apter, we described algorithms. for computing a maximum weight 

I - independent set of a sing{e.matroid. A mahimum weight solution is also of maximum cardinal- 
0 

ity. For the tw-o-matroid intersection problems, the maximum weight set independent in both 
b 

matroids may ;lot be of maximum cardinality. Hence. two problems cap bq defined for two- 

6 
matroid intersections: 

' - 4  -. 
(1) Cardinality Two-matroid Intersection Problem : Given two matioids M ,  = (E ,I1) and 

M, = (E .I,) over the sameset E, find a maximum cardinality intersection I €1, nI,. 

( 2 )  Weighted Two-matroid Intersection Problem : ~ i v e n  two matroids M I  = (<.Il) and 
\ 4 

M, = ( E  .I,) over the same weighted set E. find a maximum weight intersection I €1, n12., 

In this chapter we shall deal with these two problems. In both cases. two versions of 
\ ' . . 

parallel algorithms are derived. The first versior! achieves perfect speed-up.bfapplying Brent's 
% 

Theorem to reduce the number of processors. Themsecond version is a modification of the first 

version and uses the recursive doubling technique and a logarithmic time breadth-first search. 
# - 

The second version is faster but does not give perfect speed-up. All of these parallel algorithms 

are based on sequential algorithms from [~a-761 which make use of augmenting path methods. 

Fpr each problem, we describe the sequential algorithm first and then introduce the two ver- 

sions of parallel algorithms. 
i 

i 

4.1. CARDINALITY TWO-MATROID INTEP$ECTION PROBLEM 

\ The sequential algorithm for the cardinality two-matroid intersection problem is based on 

1: 
'augihenting sequenca". Let I be any intersection of the two matroids M , and MI. In the fol- 

lowing. if e,  is an element of E ,  then I +e, denotes the union'of I qnd {e , . }  and I--ei denotes 



- 
- 

the sprI - { e l  1. These notations are used through,out the thesis. 

-- 
Now w e  can construct an augmenting sequence with respect to I as follows. The first element 

e l  of such a sequence is such that I + e l  is independent in M If ! +e is independent in M 2  as 

well. the sequence is complete; I + e l  will become the next intersection of size one greater than 
I 

I .  Otherwise I + e l  contains a unique circuit in M 2  and we choose e ,  to be an element other 

than e l  in that  circuit. I +e ,-e, is ly  independent in both M i  and M I .  Now we try to 

find an element e ,  such that  I +e ,-e2+e3 is independent in M , .  whereas I +e is pot. Such an 

element is in s p l ( I  1 - s p l ( l - e , ) ,  where spl denotes span (Definition 1.7)  in M ,. If 

I +e l-e 2+e is independent in M  2 ,  we are &me. otherwise I +e ,-e ,+c , contains a unique cir- 

cuit in M  and we choose e ,  to be an  element in that  circuit, a n d  so on. 

In other words, the addition to  I of the 1st. 3rd. 5th. ... elements preserves independence 
- 

in M  , ,  but may create dependence in M , ,  whereas the removal of the 2nd. 4th. 6th. ... elements 
f - ,  

restores independence in M 2. This strategy of adding and deleting elements in turh  to and from 
3 

,the i~tersection I can be done for all possible cases until we arrive a t  an new intersection or we - 
exhaust 

than I. 

the skarch. If we obtain a new intersection I +e-l--e2+... +e, which 

then the search is successful. I is augmented and we start  the 

the new interser tion. In this way, the size of I will be increasing one at a time until it reaches 

the maximum size. If we exhaust all possibilities and cannot find a bigger intersection. we can 

stop and return the present intersection as a maximum cardinality intersection. The following 

definitions for  these terms are adapted ~ r o r n i ~ a - 7 6 1 -  

Dehition 4.1.1 : L& I .be an intersection of two matroids M ,  = ( E  . I,), and M ,  = ( E .  E2) Let 
C 

S = ( e ,, e 2 ,  .... e, ) be a sequence of distinct elements 

where el E E - I ,  for i odd 

and e l E I .  f o r i e v e n  



1 ,  We say that S is an alternating sequence with respect to I if 

( 1 1 1  + e l  €1, 

(2) For all even i, s p 2 ( I  8 S, ) = s p 2 ( I  ) 

Hence I 8 S, E I  

(3)  For all odd i > 1 .  s p  6 Si )=sp 1(1 +e 

Hence I $ S, E I, 

If, in addition. 

(4)  ISI=s isodd and I  8 S  E I , .  

we say that S is an augmenting sequence with respect to I .  

The following Theorems from [La-761. Chapter 8,  prove the validity of the augmenting 

sequence method described above. 

1 

Theorem 4.1.2 : If I is independent in matroid M and I +e is dependent, then I  +e contains 

exactly one circuit in M  . . 

Theorem 4.15 : Let I , .  I , , ,  be intersections of M l . M 2  with p ,  p  + 1  elements respectively. 
t 

Then there exists an augmenting sequence S CI, 63, +, with respect to 1, . 
i 

C 

L ,' 

Theorem 4.1.4 : An intersection is of maximum cardinality if and only if it admits no aug- 

menting sequence. 

Theorem 4.15 : For any intersection I  there exists a maximum cardinality intersection I,,, 

such that 



In the augmenting method as described above. we have to check the circuits that elements 

form with the current intersection I in either matroid M 1  or  M 2 .  To represent the information 
T 

about these circuits and iacilitate the search for an augmenting sequence. a directed bipartite 

graph called the border graph (BG(I  )) will be built with respect to I .  The two sets of vertices 

for the bipartite border graph will correspond to the,sets E -I and I .  Suppose element el EE -I 

forms a circuit with I in M ,. Then there will be arcs ( e ,  .e, ) going from every element e ,  E l  in 

this circuit to  e , .  If element+e,'EE-I forms a circuit with I in M Z .  then there will be arcs 

( e ,  .ej ) going from ek to every element e,  E I in this circuit. 

Now, there may exist vertices in the set E -I which have no incoming arcs. These vertices 

wi!l be called sources. Similarly, there may exist vertices in the set E -I which have no out- 
% - 

going arcs. These vertices will be called sinks. Define a source-sink path as a path itY BG(I 1' 

which goes from a source to  a sink. We say that a source-sink path admits a shor1.cut if there 

exists a shorter source-sink path thai  goes from the same source to the same sink. It can be 

shown that  the search for an augmenting sequence for I is equivalent to the search for a 

source-sink path without shortcuts in B G ( I ) .  A breadth-first search of BG(I ) can be used to 

find such a path. 

The following definitions and lemmas are from [~a-761. Chapter 8.  

Deiinition 4.1.6 : For a given intersection I , the border graph ( BG( I ) ) is a directed bipartite 

graph constructed as follows 

(i) For each node e ,  E E - I  such that e, E s p l ( I )  there is an arc ( e ,  .el ) directed from 
'l 

(1) . each e, E c,"' where C,  is the unique M ,-cirnril in I + el . If e,  $? rp , ( I  ). 

then el  is a 

t 

(ii) For each node e ,  E E - I such that e,  E s p z ( I )  there is an arc (el .e, ) directed to each 

( 2 )  . 
e ,  E c :~ '  - el where Cl is the unique M2-circuit in I +el . If el P ~ p ~ ( l ) ,  then el 

is a sink in BG( I 1. 



Definition- 4.1.7 : Suppose .that S is a source-sink path in BG(I) and S passes through nodes 

e ,.e2....,es. The path is said to admit a shortcut if there exist an arc (ek ,e , )  in BG(I). 

where l < k  < j - 2<s  -2. 

Lemma 4.1.8 : If S is a source-sink path in BG(I) which admits no shortcut, then S is an aug- 

menting sequence with respect to I .  

Lemma 4.1.9 : Let I .J be intersections such that l l I+l=I J I. There exists a source-sink path S 

in BGU) where S G I @J 

% 

The above ideas may become clearer with the help of an example: 

Example: Let G, and G, be the graphs shown in figure 1. Each graph is constructed from the 

I 
set of arcs, which, for notational convenience, we denote ~={1,2.3,4,5,6.7}. Let M l=(E.Il) and 

M2=(EJ2) be the graphic matroids associated with their respective graphs. I={2.4.6] :is an 

' independent set in both matroids. Note that I is a maximal set in I,flI, but it is not a max- 

imum. % 

Figure 1. The graphs G, (left) and G, (right) 



From this information we can create BG(1). To avoid cluttering the diagram we represent a s 

pair of arcs of the form ( x  .y ) and ( y  J,) by a single line with no arrowheads. 

Figure 2. Border Graph for I=(2.4.6] 

1 

Note that our original matroid elements ( the arcs in the grapbs G, and G2 ) are now con- 

sidered as vertices in the border graph. Vertex 1 is the only source; vertex 7 is the only 

sink. 

{ 1.2.7) and ( 1.6.7) are two possible augmenting sequences. Although 11.2.3.4.5.6.7) is a 

source to s@k path in BG(1). 1@{1.2.3.4.5.6.7) = ( l .3$.7) which is not in I,. In particular, , 
(1.2.3.4.5.6.7) is not an augmenting sequence. The reason the above set fails to produce an 

augmenting sequence is the existence of the arcs (1.4). (1.6) and (2.7) in BG(1). Each arc 

allows us to tdce a shortcut in our path from the source to the sink. 

4.1.1. Sequential Algorithm 
- ,. 

Given two matroids M l=(E .I1) and M 2 = ( E  1,). the following algorithm produces a set 

I E I, n I, of maximum cardinality. In the algorithm. lines 2 to 17 are repeated for each 



augmentation. Each ailgmen-tation can be divided into 3 steps: 

( 1 ) Lines 3 to 5 build the border graph BG(I ) where I is the intersection currently being aug- 

mented. Lme 5 marks all the sources with "+". We regard the matroid elements as vertices 

in BG(I 1. 

(2) Lines 6 to 11 perform a breadth-first search of BG(I 1. Line 9 checks if the element chosen is 

d sink. If it is a sink, then a source-sink path is found. 

(3 )  Lines 12 to 16 perform the augmentation by backtracking through the source-sink path. If 
- 

no source-sink path is found, then the current intersection is of maximum cardinality. and 

the algorithm will stop. , 

Algorithm 4.1 : Sequential Cardinality Algorithm [La-761 

I +0; Q + 0 ;  
while not done * 

for k c h  e, in E -I 
Find c,") and c,'~) if they exist. 

. 

Add each vertex el E E -sp 1(1 ) to Q with "+On mark 
while Qf 0 and augmenting sequence not found 

Remove first element el from Q , 
if *+* mark then 

if I U {el ) E I2 then augmentin se uence found 
-7 else add each unmarked e, E C!') :o Q with "-in mark 

e l s  add each unmarked e, such that e, E c,(') to Q with "+in mark 
if augmenting sequence found then 

backtrack from el (found in line 9 )  to get augmenting sequence 
add elements of sequence with "+" marks to I 

L 

remove elements of sequence with "-" marks from I 
Q + 0 and remove marks from all elements 

else done 

The following itlgorithm finds the circuit c," ' in Mi if it exists. 

Find the unique circuit c,"' in matroid M, contained in the set I U {ei ) if such a circuit 
exists. 



1.  C i ( j  ) .- g 
2.  e-, if I U {e, ) E I, then no circuit 
3. ' else 

. r .  

4. L, --- - for each e, E I -. 
5 .  if  I ~ { e ,  H e k  ) E I, then c," ' + c," )u{eA I 

Time Analysis 

Let c ,(m ) and c2(m ) be the running times of the subroutines for independence testing in - 

4 
M , and M respectively where m = I E I . 

L e t c ( m ) = m a x  { c l ( m ) , c 2 ( m ) )  

Let R ,  and R 2  be the ranks of the matroids M 1  and M 2  respectively, and let R - min { 

R1.R2  1 

Since no intersection can contain more than R elements, there can be no more than H augmenta- 

tions in the algorithm. For each augmentation, we have the following steps: 

(1 )  For each e, € E - I .  we find the circuits c(ll. c,(~'. This can be done by testing the 

independence of I +el -e, for each e, E I .  There will be O(R ) elements in I and O(m ) 

elements in E -I. Therefore the time taken will be O( mRc im 1. 

(2) During marking, there will be O(R ) elements with a *-* mark. For each such element e, we 

check every element e, E s p l ( I  ) - I to see if it forms an M ,-circuit that contains e, . 
* * 

There will-be O h )  elements in s p , ( I )  - I .  Hence there are O( mR ) checks for - 

marked elements. Similarly, there will be O(m ) eledents with a "+" mark. For each o f .  

such element e, . we check every element e, in c/*). There are O(R ) elements in c:". 

Hence there are O(mR ) checks for "+" marked elements., We conclude that the marking 

1 

takes 0( mR. ) time. . 

2 
(3) Backtracking takes O( R ) time. 

Therefore, the overall running time is 01 r n ~ ~ c ( r n )  1. 



Note that in [La-761. the time complexity given for this algorithm is 0 ( m 2 R  +mR2c (rn )) 

2 because it assumes that marking takes O(m ) tim% We have improved on this analysis in the 

above. 
4 

4.1.2. Parallel Algorithm 

In this section, we shall present a parallel algorithm to solve the cardinality two-matroid 

intersection problem. The algorithm is derived from the sequential algorithm. For the time 

2 
being, we assume that the algorithm uses m processors. In Section 4.4.3 we shall show how to 

reduce the number of processors without increasing the time bound so that perfect speed-up can 

be achieved. 

2 In the parallel algorithm, m processors, P i j  , 1 < i  . j < m  will be used. one for each possi- 

ble link in BG(I 1, the border graph for the current intersection I .  The following variables are 

used. 

LINK,, : (local variable) tr.Je if (e,  .el ) E BG ( I )  for 1 < i  . j <m . 

The following areglobal variable; for 1 < j <m . 

I : boolean vector indicating membership of elements in the current intersection. 

I (i ) is trne iff e, is in the current intersection. 

SOURCEJ : true if e, is a source in BG ( I  ) I 

SINK, : true if e, is a sink in BG ( I  ) 

ACTNE, : tfue if e j  is "active" 

PARENTj : i if e, is the parent of e,  in forest IF* (it is,null initially) 

A UG : current node on source to sink path during backtracking 

(backtracking starts at a sink) 

ENDSEARCH : true if the search for source-sink path is done 

The terms 'active' and "F" will be explained in the following. 



- 
Steps 1 to 4 of the algorithm are executed once for each augmen*tation. Step 1 is to initialize 

some variables and takes constant time. Step 2 builds BG(I 1. Processor PI, will set LINK,, 

true if and only if it finds that an arc from e, to e, exists in BG(I 1. SOURCE; (SINK, )'is set 

true if and only if ei is a source (sink) in BG(I 1. The proof of correctness in a later section will 
* 

show how this can be done in O(c (m )) time. 

Step 3 will find a source-sink path with no shortcut in BG(I ) if it exists. This is done by 

growing directed trees with the sources as the roots and the links in BG(,I) as the branches: We 

shall call the forest of these trees "J?. We will see that each element has at most one parent in 1: 
I 

while it may have many parents in BG(I ). Since the border graph is traversed in a breadth- 

first manner, the depth of this search is the length of the shortdst source-sink path and this is 

no longer than 2 R .  Each level of this search is done in parallel in constant time. so that a tlme 

'complexity of O(R ) results. , 
-, 

'" 

The while loop in lines 4-8 of Step 3 will be iterated once for each level of the search. The 

sources are the "activen nodes for the first iteration of the while loop. In each iteration, each 

active node, el , will examine all its sons. If a son e, has no assigned parent (PARENT, = null). 

then, e,  will attempt to make itself the parent of e, in F. There may be moie than one active - 

node attempting to be the parent of the same node, e, . In our parallel model. one processor will 

succeed and.it is not important which one succeeds because any search path to el' at this point 

will have the same length. If e,  is a sink. then a source-sink path is found. AUG is set to j . 
and Step 3 is finished. If e, is not a sink, then it is activated at line 5. Except for the first itera- 

tion, a node will be "active" if and only if it has been assigned a parent in the previous iteration. 

A11 nodes e, activated in the previous iteration will be deactivated at line 8. Hence a node will 

never be assigned a parent in F for a &ond time, and it will be active for at most one iteration. n i 
If no source-sink pa tby i s t s ,  then the search will reach a point at which all nodes have 

been activated. Since no node will be activated at the next iteration, ENDSEARCH will become , 

true the search stops. 

Step 4 performs the augmentation of I .  At line 1. if AUG equals null. then nb source-sink 



path was found in Step 3. This implies that ih;&rent I is of maximum cardinality and the 
-7. 

algorithpa halts. Otherwise; I is augmented by backtracking through the source-sink path 

starting from the sink. AUG will be the current node in the path during the backtracking Since 
* 

the path is at most 2R long, we do not lose any tim* efficiency by backtracking element by ele- 
' 

ment. 

In' the following algorithm, the sign '+* ' means concurrent write, the sign '+* ' means 
concurrent write of possibly different values to the same location. 

Algorithm 4.2 : Parallel Cardinality Algorithm 

Input : Two matroids M ,=(E .I1) and M2=(E 3,). 
Output : An intersection I  in 1, n12 of maximum cardinality. '. 

- Each PI, ; 1 < i . j < m executes the following code. . 
. - Let I be in the intersection of M , = (E  .I,] and M,= ( E  . I*). 

( I  can be 0) 

Step 1 : (Initialization) 
Q 

L I ~ K , ,  + false ; ACT- +* false ; PARENT, +-* null ; AUG +* null 1. 
2. if e, t?.I then 

SOURCE, +* true ; SINK, +* true 
else 

- 
SOURCE, t* false ; SINK, +* false 

< synchronize > 

Step 2 : (Build border graph BG ( I  1) 
1. if el €1 and I +el QI, and I +e, -el €1, then 

-4 
- LINK,, +- true ; SOURCE, +* false 

2.  if e E I and I +e, 41, and I +el -ej , E l 2  then 
 INK,^ + true ; SINK. +-* false 

< synchronize > 



Step 3 :(Find source to sink path) 

1. if SOURCEj and SINK, then 
I +* I + e j  (path is found) 

< synchronize > 
if path is found then go to Step 1 

2 .  ENDSEARCH +-* true. 
3 .  if SOURCE then 

P A R E N ~ ,  +* 0 : ACTNE, +* true : ENDSEARCH +* false 
4. while path not found and not ENDSEARCH 

< synchronize > 
ENDSEARCH -* true 

1 5.  if LINK,,  and ACTNE, and PARENT, = null then 
ACTWE, +* false 

6. PARENT, em i 
7. i f  SINK, then 

AUG +" j (path found) 
else 

8. ACTIVE, +* true.; ENDSEARCH +* false 

end-while 

Step 4 : ( ~ u ~ m e n t a t i o n )  

1. i f  AUG = null then stop ( I  has maximum cardinality) 
2. while augmentation not done 
3. if j = AUG and i =PARENTJ then 
4 .- if SOURCE, then 

', I +* I + el (augmentation is done) 
else 

5.  i f e ,  € I  thenl +* I - e ,  e&l  +* I + e l  
AUG +* i 

? 

I <synchronize > 
end-while 
go to Step 1 

Proof of Correctness 

If we can prove that edcb iteration of t4e algorithm 
i 

(1 ) builds the border BG(I ) for the current I and - 

(2) discovers a source-sink path with no shortcut in BG(/ ) whenever one exists. 
2 

then by Theorems 4.1.2, 4.1.3. 4.1.4. 4.1.5 and Lemmas 4.1.8. 4.1.9. the algorithm is correct. 



L 

(1) Line 1 in Step 2 checks the following for each ei E I : 

If 1 + e l ( t I ,  and I +e, -ei €Il, then e,  is in the unique circuit c:') in 1 +ej , and the link 

from el to e, is established. This corresponds exactly to the first half of BG(I) (part (i) of 

- Definition 4.1.6). Similarly. line 2 in Step 2 constructs the second half of BG(1) (part (ii) 

of Definition 4.1.6). 

i We mu& also make sure that the sources and sinks are correctly marked. Duri g initiali- 
; 

zation, if e, C I it is both a sink and a source; otherwise both SOURCE, and SINKi are ini- 

tialized to false. In line 1 of Step 2, for any e j  . e, is marked not to be a source if and ,only 
\ 

if e; E sp , ( I )  and "e, C I .  Therefore, e j  is marked to be a source if and only if 

e ,  t l  sp , ( I  1. dn line 2 o~f Step 2. for any e , ,  ei is marked not tb be a sink if and only if 

e,  E sp2( I  ) and el C I .  Therefore e,  is marked to be a sink if and only if e, C sp,(I). 
CI 

(2) The sequential algorithm performs a breadth-first search of the border from the 

sources. This search will uncover a source-sink path with no shortcut whenever-one exists. 

In fact, such a search will give a shortest source-sink path. 

111 Step, 3. the algbrithm starts from the sources and examines the descendents level by ( 
\ 

3 
level in parallel. The first time that an element is examined. it is marked by assigning a 

1 

PARENT number. An element will not be marked in more than one'of the while loops. 

Define."possible trees" to be the fully generated directed trees rooted from all the sources of 

BG(I 1. A breadth-first search will &e incorrect in this algorithm only if some node for an 
\ 

element at  a higher level (further from a source) of the possible trees is inserted while a 

node for the same element a t  a lower level (i.e. closer to a source) is not. The possible trees 

are examined level by level by the while loop which begins at  line 4. Since the while loop is 

synchronized, nodes a t  a higher level will not be examined until all nodes at  lower levels 

arc searched. Hence the above violation of breadth-first order will never occur and Step 3 is 
A 

a breadth-first-search. Since the search at each level is done in parallel, the outcome will be 



a randomly ordered search. In other words, a node may be marked &nultaneously in the 

same iteration of the while loop by more than one parent. and the parallel model that we 

use'allows such concurrent writes with the result that one of them succeeds. This causes no 

problems since, in path retrieval, any one of these choices will lead to a 

the same length. 

\ 

Time Analysis 
/ 

The symbols m . c (m ). and R , are the same as in the time analysis of Algorithm 4.1. 

( 1 )  Steps 0 and 1 take constant time. 
x 

(2) Step 2 requires O( c (m ) ) time to build BG(1). ' 

(3) Step 3 requires at  most 2R iterations of the while loop. 

Hence it takes O( R ) time. 
t 

(4) Step 4 requires O( R ) tiine for backtracking. 

There are at  most R iterations of steps 1 to 4. 

Therefore the overall runnmg time is O( R (R 9 c  (m ))I. 

Remarks 

It will be shown in section 4.4.3 that Step 4 can be speeded up by recursive doubling to 

O(1ogR ) time. However, it is more dimcult to reduce Step 3 to the silme emciency. The algo- 

rithm has a strong sequential nature because each iteratioh of the while loop depends on the 

previous iterations when it examines PARENT() to check if a node has been previously marked. 

We shall see in a later stage how to do Step 3 in O(1ogR ) time bu,t - ~ i t h  more processors. 

The O( R ) factor due to the 0 (  R ) augmentations is also difficult to reduce because eaih 

augmentation depends on the previous augmentations. It may require an entirely different stra- 

tegy than the existing sequential algorithms. We do not expect this to be easy to find. 



4.2. WEIGHTED TWO-MATROID INTEBSECTlON PROBLEM 

The second problem to be considered in this chapter is the weighted two-matroid intersec- 

tion problem H e the elements in' the two matroids are weighted and we have to find a max- 
-==i 

imum weight set independent in both matroids. 

The method for solving this problem is similar to the unweighted problem in that we also 

proceed by computing intersections of successively greater sizes. These intersections also 

increase in size by one each time. However. during each search.for a larger intersection. .we 

must als make sure that the new intersection has maximum weight among all intersections of i the sam size. 
< 

The gorithms in this section are. generalizations of the unweighted intersection ,algo- 

e previous section which were based on augmenting sequences and border graphs. 

- -- time w i  do not stop a t  an arbitrary source-sink path with no shortcut because it 

may not give a new set with maximum weight among all possible source-sink paths. Instead. 

an exhaustive search for,all  source-sink paths is made. To determine the weight of each new 

intersection. we will, record incrententd weighs during the search. Suppose a t  a certain point of ' 

r 

thq search. we have a temporary set I +e l-e2+e3-..... Then the incremental weight of the 

- 
alternating sequence { e l,e 2.e . . - } is 

/ 

where-wt(e, ) is the given uleight for element e, . 
I -- 

'~ \ 
/ Hence, if a ne& intersectjon is I +e ,-e,+e 3- . . . +e, , then the, weight of this set is ' 

.---'+- A 

(weight of I )  + wt(e ,) - wt(eZj  + wt(e3) - ... + wt(e, ) 
f 

I' 

whichxis equal to the sum of weight of I and the incremental of the'augmenting 

sequence {e ,,e ,,e ,, . . . e, 1. To find a new intersection of max~mum weight, we have to find an 
- -  ,- - 

--7 . augrnenkngsepucw of maximum incremental weight. 

As statedtbelow (~heo~em~'4.2.4) .  the increqental weights for consecutive augmentations 
'i 

are non-increasing. Hence, if we find an augmentation that gives a non-positive incremental 
,-'I 



weight, we know that the present intersection has maximum weight and the problem is sylved. 

The following defifiitions amttheorems are from [La-761. 

C 
. , 

Debition 4.2.1 : Given an intersection I .  and a set S S E .  the iryrernencal weighr of S is 
.' 

A ( S )  = weight of {>-J'$ - weight of i S n I ) 

Clearly, 'weight of {I 63's } = weight of { I  1 + A(S ) 

Definition 4.2.2 : An intersection I is pmaximal if II I = p and I is of maximum weight among - 
intersections containing p elements. 

meorem 4.23 : Let I be a .pnaximal intersection and S be a maximum incremental weight 

soui-ce-sink path in BG(I ). Then S is a maximum weight augmenting sequence 

and I fB S is (ptl bmaxid. 

rem 4.2.4 : Let Ip -,, Ip . and 1, +, be intersections which ,are -1 1- ,P  -. and ( p  + 1)- maxi- 

mal respectively. Then 

w ( I p  > - w ( I , - , >  2 wcr , . , )  - w ( I p  1. 

where w ( I i  ) is the weight of I,'. 

An example will help to il1.ustrate these ideas. 

eaniple. X 2  = { e , . e , )  is a 2-maximal* intersection for the graphic matroids M ,  and /M2 
below. 



There are two augmenting sequences S ,  = {e ,,e4;e 5 )  and S 2  = { e  ,.e 2.e 3,e 4.e 5 ) .  
X 2 W l  = {e ,,e2,e5) with A(S,) = 1 and X@S2 = {e ,.e ,,e5} with A(s,) = 2. Thus the 
maximum weight augmenting sequence is S 2  and X = {e l.e ,.e 5 ) .  

4.2.1. Sequential Algorithm 

The following sequential algorithm from [~a-761 solves the weighted two-matroid inter- 

section problem using 'the above method. Lines 3 to 28 Ezd an augmentation and they are 

repeated until the problem is solved. Each augmentation consists of th& parts: 

~ ; n e s  5 to 9 build the border graph BG(I ) for the current intersection I .  The sources are 

marked with "+". 

Lines 10 to 25 perform a breadth-first search of BG(I) to obtain a maximvm incremental 

,weight source-sink p t h .  Line 13 checks for a sink. 

Lines 26 and 27 perform augmentation of I by backtracking thrbugh the source-sink path 



found in part 2.  If the incremental weight is non-positive. then the current intersectih has 

.maximum weight and the algorithm will stop. 
I 

5 

Algorithm 4.3 : Sequential Weighted Algcrithm [La-761 

1. I t +  
2.  queue is empty 
3. while not done 

A(S)  + -00 - 
For each e, E E - I 

if they exist Find c!') and c," ' - 

A(e, ) + -= 
Add each source node el E E - sp '(1 ) to queue with *+on mark 
and set A(e, ) + w, 

while queue not empty 
Remove first element e, from queue 
If "+* mark then 

If I + e, E I2 then 
if A(ei ) > A(S ) then 

A(3 ) + A(e, 
S + i  

Else 
Add each eJ E  where A(e, ) < A(e, ) - w, 

to queue with "-in mark 
A(e, + A(e, ) - w, 
Lf another el exists in the queue remove it from queue 

Else 
Add each eJ such that e, E c and A ) + > ~ ( e ,  ) f 

to queue with "+in mark and update 
A(eJ A(e, + w, 
If another e, exists in the queue remove it from queue 

end-while 
If A(S) > 0 then 

~ a c k t r  ck from e, to get augmenting sequence 
Add e f ements with a+m marks to I 
Delete elements with "-" marks from A 

Remove all marks and enp ty  queue 
Else 

Done ( if A(S ) = -oo then I has maximum cardinality) 

Time analysis 

(1) L taka O(rnRc (rn )) time to compute c!" and c!*) for a11 e, € E - I . 

(2) Each of the O(m ) elements in E -I may receive O(R ) marks from its parents in BG(I ) and 
\ 

each sark ing  requires O(R ) time. Each of the O(R ) elements in I may receive O(R ) marks 



9 

and each marking rCquirs O(m time. Therefore the marking t a k a  ~ ( r n ~ ' )  time. 

(3)  Backtracking requires O(R ) time. 

3 
There can be at  most R augmentations. Hence the overall running time is O(mR +mR2c-(m 1) 

In [La-761, the time complexity given for this algorithm is 0 ( m  ' R  ' + m ~  ' c  ( m  )) because it 

2 
claims that the labeling procedure consumes O(m R ) time per augmentation. In the above, we - 

have improved on this analysis. 

4.2.2. Parallel Algorithm 

In this section. we present a parallel algorithm for the weighted two-matroid intersection 

problem which has been derived from the sequential \algorithm above. Again. we assume that 

2 
m processcrrs are used for the time being and show how to reduce this number in a later sec- - 

tiqn to achieve perfect speed-up 

The ,parallel algorithm for the 
, 

\? 
parallel algorithm for the cardind-ity 

weighted matroid intersection problem is similar to the 

2 
problem. We use m processors Pi, where i . j = 1.2, ... rn . 

(m is the number of elements in the matroids.) Each processor handles a possible link in the 
"+ 

border graph. The following variables are usecf. 

The following are local variables: 

' WEIGHT (i ) : given weight for element ei . 

WT, : the weight contributed by element ei to the incremental 

weight of a source-sink path through ei . 

LINK, ,  : (local tf ue if (ei  .e, ) E BG(I 1. 

The following are global variables. 

SUiIRCE, : true if e j  is a source in BG(I 1. 

SINK, : true if e, is a sink in %(I 1. 

ACTII'E, : true if e j  is *activew. 



PARENTj : i if ei is parent of e j  in "F". 

A : greatest incremental weight among all paths from a source to el . 

A, : weight of the augmenting sequence.' 

ENDSEARCH : true if the search for ,source-sink.path is done. 

A-UG : current node on source-sink path during backtracking. 

The terms "active" and "F" are explained in the following. 

Steps 1 to 4 of the algorithm are executed once for each augmentation. Step 1 initializes 

variables and takes constant time. step 2 builds BG(I) in the same way as in Algorithm 4.2. 

Step 3 will find a source-sink path with the greatest incremental weight if it exists. This path 

will correspond to 'a maximum weight augmenting sequence. Step 3 is a breadth-first search of , 

BG(I ) starting from the sources. The search will build a forest. F. of trees with the 'sources as 

the roots and links i n ' ~ ~ i l )  as the branches. Each element has at most one parent in F while it 

can have many parents in BG(I ). The depth of this search is the ,length of the maximum 

weight augmenling sequence and this is no longer than 2 R .  Each level of this search is done in 

parallel and a time complexity of O(R ) results. 

The while loop in lines 3-8 of Step 3 will be iterated once for each level of the search.. 

Before the first iteration. each element e j  is assigned a local weight WT, . WT, is the given 

weight WEIGHT ( j  ) if e j  e I  and -WEIGHT ( j  ) if e,  €1.  A11 sources are assigned a parent-of 0 

and they are the "active" elements in the first iteration of the while loop. 

For each element e i .  a variable Ai will record the greatest incremental weight among all 

paths from the sources to el that have been searched so far. At line 4 in, the while,loop. each 

active node el will generate all its sons in BG(I). Each son, e,  , will check whether A, +WT, is 

greater than the current A j . There can be more than one active parent el generating e,  and the 

maximum A, +WT, is recorded in A, using the write-max instruction. The corresponding e, 

becomes the parent of e, in F. (i.e., PARENT, t i  ) 

If e j  is a sink then we have a s o u r e s i n k  path which is a potential a~~menting'sequence. 

The write-max at line 7 will retain only the source-sink path with the maximum ineremental 



weight. The sink of the,chosenpath wiff be eaered into AUG . If e j  is not a sink then it. is 
- 

activated a t  - h e  '8. The search will continue until all paths from the sources are exhausted; 

Except for the first iteration. a node will be "activen if and only if it is not a sink and it has 

been assigned a *newu parent in F in the previous iteration. Note that an element may be 

assigned a different parent during each iteration. All nodes e, activated in the previous iteration 

will be deactivated at line 6. However, the node can be activated agek at line 8 in the same 
P 

iteration. Hence. a node may be activated in more than one iteration of the search. 

Step 4 performs the augmentation of I by backtracking in the 'same way as Algorithm 

4.2. It will first check the value of A,. If it is non-positive then I is a solution and the algo- 

rithm stops. 

Algorithm 4.4": Parallel Weighted Algorithm 

Let I be any V I-maximal intersection of M , . M ,. 
( I can be 0 initially. ) 
Each Pi, . 1 <i . j <rn executes the following codes 

Step 1 : (* Initialization *) 
I ,  

1 .  LINK,,  +- false; ACTIVE, +-* false; PARENT, +* null; AUG +* null 
LINKii +,true; A, +-* -00 

3 .  SOURCE. t* true; SIKK, +* true 
i f e j  E i t h e n  

SOURCEj +-*false; SINK, +*false 

Step 2 : (* Building Border Graph BG(I ) *) 

1 .  i f e ,  E I andI+e ,  Q I ,  L d i + e . - e i  E I ,  then 
LINK,, + truer; S O I / R C ~ ,  +* falst 

2. a i f e ,  E I andI+e i  Q I ,andI+e,-e ,  E 12then 
LINK,, +* true; SINK,  c* false 

Step 3: (*  search for source-sink path *) 

1. if i 4 1  then WT, +* WEIGHT(/ ' )  else WT, +-* -WEIGHT( j )  
< synchronize > 
ENDSEARCH +* true 

2. i f  SOURCEj then cI 

A, , + WT, ; ACTNE,  +* true; ENDSEARCH +- false 



3. while not ENDSEARCH 
<synchronize > 

ENDSEARCH +-* true 
4. if ACTNE, and LINK,,  then 
5 .  write-max( A, . A, + WT, 

<synchronize > 
ACTNE, +* false 

6. if A, = A, + WT,  then PARENT, +** i 

7. if SINK, then 
4 write-max(A, . A, ) 

<synchronize > 
if A, = A, then AUG +** j 

8.  else * 

ENDSEARCH +* false; ACTIVE, +* true 
<synchronize > 

end-while .__ . 

step 4 : (* augmentation *) I 

1.  if A, = -00 then 
I is both maximum cardinality and maximum weight, STOP 

else 
if A, < 0 then I is of maximum weight. STOP 

if SOURCEAuG then I I + e,,, , 

else 
2. while augmentation not done 
3. if i = PA RENT, and j = AUG then 

if SOURCE, then I +*I +e, (* augmentat& is done *) 
else 

if e, E I then I +*I -el else I +*I +e, 
AUG +-*i 

<synchronize > 
end-while 

I 



Proof of Correctness 

Theorems, 4.2.3 and 4.2.4 give us the following algorithm for the weighted matroid intersec- 

tion problem: 

Start with any p -maximal intersection I 
Repeat the following until done : 

, Build border graph BG(I ) 1 
and find a maximum incMe.lra1 weight 
source-sink path S in BG(I ). 
If S has positive incremental weight thzn 
I / $ S  elsedone. 

, 

We want to show that this is what the parallel algorithm does. 
, 

(1) Step 2 is the same as in the cardinality algorithm and we have proved that it builds BG(I ) 

(2) Next we prove that Step 3 will find a source-sink path with maximal incremental weight in 

R$(I 1. Step 3 is a breadth-first search of all trees in BG(1) with roots at  the sources. The 

search keeps track of the temporary incremental weight A, of an optimal path to each node 

el  from a source. If there are several paths coming to the same node el , only the path with 

the maximum A, value can lead to the final maximum incremental weight path. Therefore. 

we ntxd to prove that the rrlgorithm will retain only this path for possible backtracking. 

This is done in the while loop of Step 3. 

A node el is activated if it is not a sink and it is assigned a new parent. el will examine , 

each of its sons e,  to see if A, would increase if e ,  became the parent of e ,  in F. If A, can - 

be increased, then A, is updated and PARENT, becomes i . This means that e, is parent of 

e ,  in F. and. during backtracking, node e j  will point to ei . 

Since the search is parallel a t  each level. there can be several parent nodes attempting to 

activate node e j  simultaneously. The write-max instruction at line 5 ensures that each of 
- 

these parent nodes gets a chsnce,to activate ei  . A parent in BG(I) giving the maximum Aj . 
1 



value will succeed and become the parent of e j  in F. . 

Similarly, there can be more than one source-sink path with an incremental weight greater 
L 

than the current value of A , .  The write-max instruction at line 7 ensures that the path 

with maximum A, value becomes the augmenting sequence. 

I 

(3) By Theorem 4.2.4, the incremental weights for consecutive augmentations in this algorithm 

are decreasing.  heref fore, when we reach an augmenting sequknce with non-positive incre- 
" 

mental weight, we know that all the following augmentations will give decreasing weights. 

so the existing intersection is maximum weight. Hence, Step 4 correctly stops the computa- 

tion when it discovers a non-positive A , .  0 

Time Analysis : 

(1 )  Steps 0 and 1 take constant time. 

, (2) Step 2 takes O(c (m 1) time to build the border graph BG(I 1. 

(3) In Step 3, the while loop will be repeated O(R ) times. Each iteration takes constant time. 

so the total time for step 3 is O(R ). 

(4) Backtracking in Step 4 takes O(R ) time. 

There will be a t  most R iterations of steps 1 to 4. Therefore, the overall running time of 

the algorithm is O(R (R +c (m )) ). 



43. REDUCING THE NUMBER OF PROCESSQRS 

'The parallel algorithms for solving the two-matroid intersection problem described in the 

previous two sections require m L  processors. It can be seen that much of the time. many of the + 

. processors are idle. For example, when building the border graph, only those processors Pi j  for 

which ( el EE-I and e,  € I  ) or ( e, €I and e, EE-I -1 can do useful wark. This is because 

E-I and I are the two vertex sets in the bipartite graph BG(I 1. Also, when searching for a 

source-sink path in BG(1). only processws Pij for which e,  is active at  this instant and e, is a 

son of el in BG(I ) will be used. If el €I  then there can be at most O(R) such active elements. If 

el EE -I then there tan be a t  most O(R) sons for ei . In both cases, there will be O(m (m -R 1) 

processors idle. The existence of idle processors is also found in the other steps. 

With {all this waste in processing power, we cannot expect perfect speed-up. Fortunately 

this can be improvecj by using Brent's Theorem [SVl-821. This theorem says that if the total 

number of elementary operations (operations that takes' O(1) time using one processor) that all 

the processors together will perform is x , and if the parallel time (depth) require is d , then P 
we can implement the algorithm with x /d prasessors with the same depth d if w now how !! 
many elementary operations there will be a t  each instant and we know how to distribute them 

to the x /d processors. So. if the number of operaiions x is the same as for the sequential algo- 

rithm, then the time-processor product will be equal to x ,  the sequential time, and a perfect 
-r 

speed-up will result. Since the parallel matrojd intersection algorithms are doing the same 

things as the sequential algorithms, we would expect that the number of operations are 'the 

same too. In fact, we find tLst this is true, and a perfect speed-up is possible for these algo- 

rithms. A similar application of Brent's Theorem ,can be found in [SVI-821 in. which a parallel 

max-flow algorithm is designed. Brent's Theorem is stated as follows: 

Theorem 43.1 : (Brent) Any synchronized parallel algorithm of depth d that consists of a 

total of x elementary operations can be implemented by p processors within a depth of 

I: I + d . (Elementary operations take 0( 1) time). 



Our ~ lgo r i thms  can be synchrdnized a t  each instruction sp that Brent's Theorem can be 

applied. To apply this theorem. we need to solve two implementation problems : 

(1) Determine the number of operations to be performed at each time instant. 
9 

( 2 )  Assign the processors to the& jobs. 

These problems will be solved in section 4.3.3. Let us assume for now that they can be 

solved. To determine the optimal number of processors p ,  we m w t  first determine x,  the 

number of elementary operations in the algorithm. The anal>sis for the unweighted and 

weighted intersection algorithms ai-e given in the next two sections. 

4.3.1. The Cardinality Algorithm - 

b'- 

Let us consider the number of elementary operations in each step of the parallel algorithm. 
, 

I 

(1) In Step 1, the initialization needs O(mR ) elementary operations since this is the number of 

possible links in the border graph to be initialized. 

( 2 )  Step 2 builds the border graph by'determining the links in it. It will perform independence 

tesfs for the O(m ) elements in E - I .  Each element ei is tested O ( R )  times for each possible 
' 

link of e, to I. Each test requires O(c ( m  )) time which we ran take to be O(c ( m  1) ele- 

mentary operations. Therefore there will be O(mRc ( m  )) elementary operations in Step 2. 

(3) Step 3 computes a shortest source-sink path. Each of the m elements may be activated at 

most once. There are O(m ) elements in the set E - I .  and each of these elements will exam- ' . 

ine O(R ) sons when it is active. There are O(R ) elements in the set I.. and each of these 

elements will reference O ( m )  sQns when it is aqtive. Therefare the total number of efe- . 

mentary operations in Step 3 is O(mR ). 

(4) Step 4 is backtracking which requires O ( R  ) operations. 

, Since steps 2 ,  3 and 4 will be repeated O ( R  ) times. (there are, O ( R  ) augmentations). the tota! 

2 
number of elementary operations for the entire algorithm is O(mR,  c ( m  1): 

The depth d . or time requirement of the algorithm. has been found to be O(R* + Rc ( m  1). 



Applying Brent's Theorem gives the following result: 

Theorem 4.3.2 :.Algorithm 4.2 can be nted using p processors within a depth of 

The minimum number of processors to maintain the previous depth of O(R (R,+c ( m  ))is 

min( mc (rn ). Rm . This gives a time-processor product of ~ ( r n ~ ~ c  (rn 1) which is the 

same as the time of the sequential algorithm. so  a perfect speed-up is achieved. 

4.3.2. The Weighted Algorithm 

Let us consider the number of elementary operations in each step of Algorithm 4.4. Steps 

0. 1. 2 and 4 are the same as  in the cardinality algorithm. The only difference is in Step 3. Each 

of the m elements may be activated at most once in each of the O(R ) iterations of the while 
1' 

loop at line 3 to 8. When an element is,activated. it will examine each of its sons in the  border^ 

graph. There 'will be O(R.)  elements in the set I and each of these elements will have O(m ) 
* 

D 

sons. There will be O(m ) elements in the set E-I , each'of which h k  O(R ) sons. Therefore 

the total number of elementary operation for Step 3 is 0(mR2) .  The number of elementary 

operations for each step is as folbws: 

. 
Steps 0 and 1 .... O(mR ) 

Step 2 ............ O(mRc ( m  )) 

2 ............ Step 3 0(mR ) 

...... .... Step 4 - O(R 

Since steps 2 .  3 and 4 will be repeated O(R ) times, the total number of elementary opera- 

tiqns in this algorithm is 0(mR2c ( m  ) + mR 3). 

The time complexity. or depth, d , of the algorithm is O(R* + Rc (m 1). Hence w .=+-ye 



,. 

, following results: 

Applying Brent's Theorem in this case. we must choose p >mR to retain the depth d . 

These results are summarized in the following theorem: 

Theorem 4.3.3 : Algorithm 4.4 can be implemented using mR processors within a depth of 

O(R 2 + ~ c  ( m  )). The resulting time-processor product is O ( ~ R  2c (m ) + mR '1 w h i ~ h  is 
- .  

equal to the time complexity of the sequential algorithm. Therefore, we have a perfect 

speed up. 
i 

4.3.3. Processor Assignment 

In the above discussion, when we apply Brent's Theorem. we have assumed that there is 
* i 

some way to assign the processors to their jobs in constant time. The method is shown-WOW. - 
We need the following variables to keep track of the job indices. 

the number of elements in the current independent set I 
'b 

Iset [l..Icount I': Iset [i ] will be the i -th eleinent in I 

index of e,  : reverse pointer of ei to Iset 

somount, : the number of sons of e, in BG(I ) 

son, [ I  ..soncount, ] : the sons of ei in BG(I ) 

~ctcount : the number of active nodes at  the current level of the,breadth-first search for ' 

I 
source-sink path 

act [l..actcounl] : act [i ] is the i--th active node 
. . 

The following extra work is done for job assignment. 



' \  

+ 

d I .. 
In Step 4, when we augment I ,  we do the following 

add one to Icowtt * 

I f  ej  is added to I .  then also set Iset [k I t e ,  and (index of e j )+k , ' 

If e, is deleted from I .  then also set k + {index of e, ) ~ 

. . 
So. Iset [l..lcount ] will contain all elements in the augmented'l' --. and 

9 

f i  ' 
(index of e, €I ) will be the index of e, in the array Iset . 

This ensures ?hat in Step 2, when building BG, we know that 2.m.1mk jobs are to be done 

( the  jojs for all possible links i j ) 
4 

where 

6ir 
.. i = 1.2 .... m and 

O r '  ' 

, i = Iset [I], Iset [ 2 ] ,  . . . Iset [Icmnt ] and 

The k -th job will then be responsible for link {i . j } where 

if k < m (lcount .) then 

+ i = l ; l  : a = k mod m : j = Iset [a ] 

else 

a = k  -m(Icount)  

i = Iret [b  ] 2'5- a mod Icmmt . .  

i 

-4signing th'e p processors to these jobs is now straight forward. 

- 
-% 



_f 

P /*' 
,' 

,/ - 
In Step 2 .  when building BG(I 1, we do the following bookkeeping: - 

soncount, + 1 
a .. 

if LINK,, then 

soncount, + soncounti ,- 1 .'d 
I 

Hence son, [l..soncount, ] will contain all sons of e ,  in RG(I 1. This will help us toddistributs the 
,& 

jobs in Step 3. Let us consider the cardinality algorithm. In Step 3,  in the while loop. all active 

elements will generate their sons. The following extra work is done at the very beginnineof the 

loop to facilitate job assignment : 
? 

actcount + 1 

if ACTIVE, then , 

k + fetch-and-add( actcount .I ) 

act [k I +- i 

actcount ++ actcount - 1 

So, act [l..actcount ] will contain all the active elements for the search at this level. Therefore. 

the while loop should examine the fallowing links i j which link the active elements to their 

sons: 

i = act [k ] for k = 1.2 ,... actcount - 
j = s ~ n ~ [ , ~  fo rq  = 1.2 .... soncount, 

a 
Since each element can be activated at most once, and there are at most m elements (in FI-I ) 

each having at most lcount sons (in I ) .  and at ?ipst'I$ounf elements ( in  I ) having at most ?;A 

sons (in E-I 1. the maximum number of j iteration is rn.Icount 

Neat we apply G t ' s  Theorem on alone. We shall show how job assignment can be 

done and determine b e  number of processors needed to maintain the depth of this step. Note - 



i that at  each level of the breadth-first search of ( I  ), either all nodes are in I ,  or all nodes are 

in E - I ,  and these two types of level alternate. S pose we divide the m.Icount jobs in the f d -  
sJ 

lowing way. At the levels where the active elements are in I ,  we assign m jobs for each of 

these O(/count ) active elements. The k -th job is thus assigned for link i j where 

At the levels where the 'active elements are in E -I. we assign Icount jobs for each of these 

O(m ) active elements. The k -th' job is thus assigned for link i j where 

. , 

h 

Recall that the depth of Step 3 is O(R). and O(Icount ) equals O(R 1. If we apply Brent's 

Theorem for Step 3. we have O(mR ) operations with depth O(R 1. Therefore we can use p ,pro- 

0 (mR ) 
ctssors within a depth of I l+o(R 1. 

To maintain the depth, we must choose p m .  In fact we have chosen p to be 

min(mR ~ n c  (m 1) (see analysis of Algorithm 4.2) and hence the job assignment problem for the 

whole algorithm is solved. 
I 

For the weighted problem, since each element can be activated at most R times, the arguments 

are similar LO the above except that we shall have ~ ( r n ~ ~ )  operations with de2th O(R ) in Step 

3.  So we can choose p 2 mR . In fact, we have chosen p = mR ( see analysis of Algorithm 4.4) 

and therefore, the assignment problem is qgain solved. 



- 63 - 

4.4. FAST ALGORITHMS USING MORE PROCE&ORS 

In the p~ev ious  sections, we have derived parallel algorithms for tbe two-matroid prob- 

lems which achieve perfect speed-up. This means that we can utilize the available processor 

power within a constant factor. However. sometimes we want to  solve a problem as fast as pas- 

sible even if .we need to use more processors and cannot achieve a perfect speed-up. We must 

still use a polynomial number of processors. It is unrealistjc to speak of exponential amounts of 

time, processor. or memory ;esources. Mcreover. if. we use an exponential number of pro&-- 

sors, all cornbinatorial problems can be solved easily by trying all possible combinations. and 

we do not need to design algorithms. -.- 

In this section, we shall derive faster algorithms for both the cardinality and weighted 

two-matroid intersection problems. Perfect speed-up .is forfeited but the time complexities are 

reducekto almost linear time. The fast algorithms arederived from the previous parallel algo- 

rithms by improving the speed of steps 3 and 4. We can do s tep  3, the search for source-sink 

3 
patns, in O( logR ) time using m processors. Step 4. the backtracking. can. be done in O( logR ) 

2 
time using m processors. The resulting complexity for the cardinality algorithm is 

. - 
O(R (logR +c ( m  ))) time using O(m 3/logm ) processor. The overall complexity for the weighted 

algorithm becomes O(R (lagR +c (m ))) time hsing 0 (m 3, piocessors. 

-. 

4:4:1. carci.&ality Two-Matroid Intersection - _  

Algorithm 4.2 is designed to solve the cardinality two-matroid intersection problem. We 

have seen that steps 0, 1, and 2 o f ' ~ 1 ~ o r i t h m  4.2 require O(c (m )) time. Steps 3 and 4 requires 

O ( R )  time each. We shall show how to reduce the time for Step 4 in . later section. Here we 
- -  - 

show how to do Step 3 in logarithmic time. 
' 

Step 3, which is the search for a source-sink path, is a breadth-first search of the border 

graph BG(1).  his can be done in logarithmic time as follows. Initially, we build O(m) trees. 

one for each element'e, in E .  The tree TI for e, will have-e, as its .root (at level Oj and all the 

s o u  of e, in BG(I) a t  level 1. Hence. each tree will have O(R ) leaves. In the second stage. we 
: 2J 



examine each leaf e, a t  level 1 of each tree and h w k  the tr& with e,  as the root to this leaf. 

Hence, the trees now have leaves at  level 2. In the third stage, we examine each leave el. a t  level 

2 of each tree and hook the tree T, with e, as the root to this leaf. In general, a t  the q-th stage. 

the trees will have a height of 2' and leaves at the 2'-th level are examined. This process is 

continued until some tree contains a source-sink path. 

Note that in the a b v e  trees, each node will represent an element in the matroids (i.e.. a 

node in the border graph BG(1)). Let us define the',"fuU tree" for a tree T, at the q-th stage to 

be the tree that would result if, at each of the earlier stages (stages 1 to q-1). the whole tree T, 
,' --- . --- 

for each leaf e, is'hooked to T I .  In a full tree, there can be many nodes representing the same 
1 

element in the matroid. Hawever, in the breadth-first q c h ,  we want at  most one node a t  a - -. 
lowest possible level (closest to the root) to be retained for each element. Hence, when we link 

a tree TJ to a leaf of TI , we may not add the whole tree T, . We check-every node in TJ to see 

if the element it represents exists in Ti .?Also. since the hooking of trees a t  the leaves is done in 

parallel, we check if some other tree is adding a node for the same element at  another leaf of 
t 

T, . We do not add a node if another node is or will be in the tree TI a$ a l o w r  level (closer to 

the root).. Hence, each element has at  most one node in a tree and the'Size of any tree will not 
- 

4 

exceed m . 

, We see that the heights of the trees will be doubled at each stage. It can be shown that 

the maximum height of these trees is O(R 1, so there will be O(1ogR ) stages. 

Variables used in the algorithm: 

LINK,, : (local variable) true if an' arc from i to j exists in BG(I 1. 
+ 

The followings are global variables. 

SOURCE; : true if e, iqa source in BG(I 1. 

SINK, ; : true if e, is a sink in BG(I 1. 

T, : tree with element e, at  the root. 

AUGT : the tree which contains the augmenting path. 



i 
s 

AUG : the sink in the augmenting path. 
I 

1 
Each element ej  EE may appear at  most at qfie node in T, . If e, is in T, then it aas 

(1) PARENT(i . j ) = i n v m b e i o f  its parent in TI ; and 

(2) LEVEL(i . j ) = thesbvel number of e, in T, . ( The root has level number 0.) 

- 
If e, is not in TI then PAREhT(i , j )=null and LEVEL(i . j )=oo. 

The tree Ti 2lso has two variables: 

SENK(Ti ) is the index of the sink at lowest level of TI 

SINKLEVEL(Tj ) is the level number of SINK(T, ) 

If Ti does not contain a sink. then SINK(Ti ) = fiull and SINKLEVEL(T, ) = oo.- 

In the initialization for Step 3, we first check for possible single-element source-sink paths 

at  line 2. If there is no such path then we build a tree Ti with root = i foreach element e,  . So. 

element el is at level 0. Then we add each son, e j  of ei to level one of T, with PARENT(i . j ) 

set to be i at line 5. If one of the sons, say e, is a sink. then SINK(T,) will be j .  

SINKLEVEL(T, ) is 1. and TI will become inactive. i 

The q-th iteration of the algorithm corresponds to the q-th stage of the tree search. In the 

q-th iteration, for each tree T, , each leaf e, at  level LEVEL(i . j )=Zq is examined. Each node in 

Tj will t ry  to add itself to TI . If several nodes representing the same element e, are attempting 

tais simultane_ously. then the write-min at line 10 will choose the one at the lowest level. The 

parent node of e, will be assigned accordingly. Note that the variables PARENT and LEVEL .-- 
/ 

are the only variables that store the structures of the trees. Thyefore, there will be nu distinc- 
/ 

I 

tion between two nodes in a full tree which are at the same ltvel having the same parent. 
- 

Now if one of the trees. T, . added to T, contains a sink. then SINK(T, ) will be set equal 

1 to this sink. SINKLEVEL(T, ) will become SINKLEVEL(T, )-:-2'. If more than one of the newly 

hooked trees contain a 

wi i temin  at line 12 to 

sink.-then the sink at the lowest levei. say SINK(T, ) is chosen by the 



If the root of Ti is a source and SINK(T, ) is not null, then we have found a source-sink 

path. I t  is possible that more than one such path is found during the same iteration. The write- 

m q  at line 14 ensures that the shortest' path will become the augmenting path. AUGT will 
. . 

remember the chosen tree T, and AUG remembers the sink element SINK(Ti) in this tree. 

These will be used in Step 4 when we augment I by backtracking. 

Algorithm $5 : Fast Cardihality Algorithm 

Steps 0.1.2 are same as Algorithm 4.2. 
Step 4 will be shown in section 4.4.3. 

Step 3 now consists of the following : 
Processor Pij ,  does the following steps. 

Initialization: - 
1. f h  each element e, EE . 
2. if SOURCE, apd SINK, then I +* I +{el } (path is found) 

<synchronize > 
if path is found then go to Step 1 

3. (* tree T, is built with root = i *) 
PARENT(i .i ) +* 0 ; LEVEL(i ,i ) +* 0; 

k 
4. for each element e, EE other than el 
5. if LINK,, then 

PARENT(i . j ) +* i ; LE\ EL(i , j ) +* 1 
6. if SINK, then 

SINK(T,) +* j ;  SINKLEVEL(T, +* 1 
T, becomes inactive (* it wiU not grow any more *) 

<synchronize > 
7. if no element exists at  level 2 (el is a sink) 

then T, becomes inactive 
< synchronize > --g 



q ' -1 
Repeat the following until DONE: 
q-th iteration : 

9 ' q+l  
8. for each active TI 
9. for each element e, at  level LEVEL(i . j )=2' 

(* T, is examined *) 
10. for each e, in T, 

w r i t e - m i d  LEVEL(i .k 1. LEVEL(i . j )+2q ) 
<synchronize > 

11.  if LEVEL(i ,k ) = LEVEL(i . j ) + 2' then 
PARENT(i ,k ) +** PARENT( j .k ) 
(* T, is attached to T, . 

.v which grows twice a s  high *) 

12. if STNK(T, ) Z null then 
tree TI becomes inactive 

write-min(SINKLEVEL(T, ). SINKLEVEL(T, ) + 2' ) 
< synchronize > ' 

13. if' SINKLEVEL(T~ ) = SINI;LEVEL(T, ) t h e n  
SINK(T, +** SINli(T, ) 

14. if' SOURCE, and SINK(T, ) f null then 
DONE +* true 
write-mid SL, SINKLEVEL(T, ) ) 

<synchronize > 
15. if' SL = SINKLEVEL(T, ) then AUGT +* i 

<synchronize > 
16. if AUGT = i then AUG +* SINK(T, ) 
17.  if no element appears at level 2q+1 then 

TI becomes inactive 
< synchronize > 

4.4.2. Weighted  Two-Matroid Intersection 

Algorithm 4.4. has been designed to solve the weighted two-matroid intersection problem. 

Steps 0.1.2 of Algorithm 4.4 require O(c (m )) time. Steps 3 and 4 require O(R ) time each. In a 

later section we shall show how to speed up Step 4. Now we explain how to do Step 3 in loga- 

rithmic time. 

Step 3 of the weighted algorithm, which 

breadth-first search of the border graph BG(I 1. It 

searches for source-sink paths, is again a 

can be done in logarithmic time by a method 

similar to Algorithm 4.5. The details are as folk~ws. 



Initially, a tree Ti i.; built for each element ei in E.  The tree for ei will have ei at its root 

(level 0) and the sons of ei in  BG(I)  as the leaves at  level 1. In the next stage, each leaf e j  a t  

level 1 of each tree is examined and the tree T j  rooted at e j  will be hooked onto this leaf. The 

height of the trees becomes 2. In the third stage, each leaf e, at level 2 of each tree is examined 
0 

and the tree rooted at e, is hooked onto this leaf. In general, at the q-th stage, the trees will 
1 

have a height of 29 and the leaves at  the 2'-th level are examined. This is repeated until the 

search is over. 

. Here we need a variable A(i , j ) to store the greatest incremental w&ht among all piths 

. from element e, to element e,  which have been searched so far. These A values are attached to 
i 

the nodes in the .trees. In the full trees of this algorithm, there can also be many nodes 

representing the same element in the matroid. In the breadth-first search. we want to retain in 

T, at most one node for each element e, . This must be a node with the greatest A( i  . j ) value. 

Hence. when we hook a tree Tj to a leaf of T, , we may not add all the nodes in T, to T,  . 

We must check every node in T j  to see' if the element it represents exists in T i .  Also we check 

if some other tree is adding a node for the same element at another leaf of Ti. We do not add a 

node n o  if another node n, representing the same element e j  is or will be in tree Ti at,this 

stage. and n , has a greater A(i  . j ) value than no. Hence there will at  most one node in Ti for 

each element and the size of any tree will not exceed m . The height of the trees is doubled at 

each stage. It can be shown that the maximum'height of these trees is O(R ), so there will 

' O(1ogR ) stages. 

I 

The following variables are used in the algorithm: 

WEIGHT ( i  ) : (local variable) given weight for element ei . 

LINKii : (local variable) true if link from ei to e, exists in BG(I 1. 

The followings are global variables. 

SOURCEi : true if ei is a source. 

SINK, .: true if ei is a sink. 
9 



Ti : tree with e, as its root. 

AUGT : the tree that contains the augmenting path. 
C 

AUG : the sink in the augmenting path. 

Af , : the incremental weight of the augmenting path. 

If e, is in T ,  then e j  will have the following variable values: 

(I) PARENT(i ,j ) = parent index of e, in T ,  

( 2 )  LEVEL(i . j ) = level number of e,  in Ti 

( 3 )  A(i . j ) = temporary incremental weight of path from e, to e,  

If e j  is not in T,  then P( i  . j )=null and A(i . j )=-me 

Tree Ti also has two variables: 

(1) SINK(T, ) = the sink with greatest 4 ( i  . j ) among all sinks 

in TL . 

( 2 )  SINKLEVEL(T, ) = the level of SINK(Ti ). 

( 3 )  A, ( T ,  ) = incremental weight from i to SINK(Ti ). 

If Ti does nbt contain a sink then SINK(T, ) is null. SINKLEVEL(T, ) is w, and A, (Ti ) . 

In the initialization for Step 3, we build a tree Ti for each element e, with root = i .  So. 

element el is at  level 0. A(i .i ) is evaluated and if el is a sink then A, (Ti  ) is A(i .i ) and 

SINK(T, ) is i .  Then each son, e, , of e, in BG(I )  is added to level one of T ,  with 

PARENT (i , j ) set to be i a t  line 5. A(i . j ) values are evaluated at line 6. If one of the sons, 

say e, , is a sink then SINK(T, ) will be j . A, ( T i )  is A(i . j ), and SINKLEVEL(T, ) is 1, If more 

than one sink exists for T, , the write-max a t  line 7 will pick the sink with the greatest A(i . j )  

value. 

The q-th iteration in the algorithm corresponds to the q-th stage of the tree search For 

each tree T i ,  each leaf e, a t  level LEVEL(i . j )  - 2q is examined. Each node in T, will try to 

add itself to T i .  I f  severs1 nodes representing the same element ek are attempting this 



simultaneously, then the write-max a t  line 8 will pick the node with the greatest A(i R ) value. 

If more than one node representing el a t  different levels of Ti has the same greatest A(i R ) 

value. than the one a t  the lowest level (closest to the-,root) is chosen by the write-min at line 9. 

If some of the newly added nbdes of Ti are sinks, then the sink ej with maximum A(i . j )  . 
value is chosen by the write-max in line 11 and A, (Ti ) becomes A(i . j ) .  The sink with this 

maximum A value a t  the lowest levelcis chosen by the write-min at line 12. SINKLEVEL(Ti ) 

and SINK(T, ) are assigned accordingly at  line 13. 

If the root of tree Ti is a source'and it contains a sink, then a source-sink path has been 

found:lf more than one such path is found during the same iteration, then the one giving a 

maximum incremental weight of A, (Ti ) is chosen by the write-max at line 14. The tree with 
1 

the shortest source-sink path with this A,(Ti) value is chosen by the-write-min at line 15 as 

AUGT and AUG is the sink in this path. 

, 
For the weighted algorithm, we must exhaust all source-sink paths to determine the one . 

e 

with maximum incremental weight. A tree will remain active until no element exists at  the 

29 +' level. 

Algorithm 4.6 : Fast Weighted Algorithm 

Steps 0.1. and 2 are the same as Algorithm 4.4. 
'Step 4 will be shown in section 4.4.3. 

Step 3 now consists of the following iterations: 
Processors Fi j ,  will execute the following code. 



Init ial ization : 
1 .  for each element e, EE 
2. build TI with i as its root: 

PARENT(i ,i ) +* 0: LEVEL(i .i ) +* 0 
if i €1 then A(i ,i ) +* -WEIGHT(i) else A(i ,i ) +* WEIGHT(i) 

3. if SINK, t h e n  - 
A T ) * A i ; SINK(T, ) +-* i : SINKLEVEL(T, ) +* 0 

4. for each element e, f ei 
if LINK,, then 

PARENT(i . j ) +* i ; LEVEL(i , j ) +* 1 
5 .  if j €1 t h e n A ( i . j )  +* WEIGHr(i 1-WE/GHT(j) 

else A(i . j ) +* WEIGHT ( j )-WEIGHT (i ) 
I 

, 6.  if e, is a sink and ~ ( i  . j ) > A, (TI ) t h en  4 

w r i t e - m a d  A, (T, ).A(i , j ) ) 
< synch;onize > 

if A, (Ti )=A(i . j ) t h en  - 
SINK(T, a +-* j ; SINKLEVEL(T, +* 1 

if no element appears at  level 2 then T, is inactive 
, 

q ' -1 
repeat the following until DONE 
q-th i tera t ion : 
q t q + l  
7. f o r  each active TI 

for each e, at  level  LEVEL(^ . j ) = 29 
(* T, is examined *) 

8. f o r  each e, in TJ 
write-max(A(i .k 1. A(i . j ) + A( j .k 1) 

<synchronize > 
' 9. if A(i .k ) = A(i , j ) + A( j .k ) t h e n  

w r i t e - m i d  LEVEL(i .k 1, LEVEL(i , j ) + 2' ) 
<synchronize > 

10. , if LEVEL(i k ) =  LEVEL(^ . j ) + 2' t h e n  
 PARENT(^ .k ) +** PARENT( j A ) 

if SINK(T, ) Z null then 11. 
write-max(A, (T,  1. A, ITJ )+A(i . j ) ) ." 

< synchronize > 
12. if A, (T, )=A, (T, ) then 

w r i t e - m i d  SINKLEVEL(T, 1. SINKLEVEL(T, ) + 2" ) 
<synchronize > , 

13. if SINKLEVEL(T, ) = SINKLEVEL(T, ) + 2' t h e n  
SINK(T, ) +** SINK(T, ) 

14. if i is a source and SINK(T, ) f null then 
write-max( A,, . A, (TI ) . 

4 

< synchronize > 
15. if A,, =A, (T, ) t h e n  wri te-min(  SL. SINKLEVEL(T, ) ) 

<synchronize > 
16. if SL = SINKLEVEL(T, ) then AUGT +** TI 

<synchronize > 
17. if AUGT = i then AUG +- SINK(TI ) 

if no element exists at level 2' +' then 



TI becomes inactive 

if there is no active tree then DONE is true. 

-- -- - ' . 
\ ,  

-- . -- 
-7 

The following lemmas are related to Step 3 of both algorithms 4.5 and 4.6. " 

Lemma 4A.1 : A node in T, wiil not be added to a tree Ti unless all of k s  ancestors in T, are 

added to T, . 

Proof : 
4 & 

First let us assume that' no two nodes for the same element'can exist at  the ,same leI%l 

in the full tree for each,tree Ti .  For the cardinality problem, if a node. no, for element 

x has an ancestor node, n ,. for elemeflt a which is not added, then another node, n,. 

for element a exists. at  a lower level than n ,. Then either a node n., for element x is - 

inserted into T, as a descendent of n, or a hode n, for x appears a t  lower level than 

n ,. In the first case n, is a t  a lower level than n o  and in the second case, n, is a t  a 

lower level than no and hence no will not be added. 

For the weighted problem, if, a node no for element x has an ancestor node n for ele- 

ment a which is not added to TI , then another node n, for a appears else where with a 

greater A,, value than node n Then either a node n, for x is inserted into Ti as a des- 

cendent of n, or a node n, for x appears still elsewhere with a greater A, than n,. 

Then n or n, has greater A, value than node n o  in the first or second case respec- 

tively. 

In the above arguments, if nodes n , and n, are at  the same level in the full  tree of Ti .  

then we can assume that either one of the nodes is inserted into TI because all we 

recognize in building the tree are the parent element identities and the level number or 

A value. Hence there is no distinction between whether element x is added as a descen- 

dent of n , or n ,. With this reasoning, we can say that the lemma holds also for cims 

with nodes for the same element at  the same level 0. 

&mma 44.2': At t4e q-th iteration. no new nodes can be added a s h n d e n t s  to leaves at  



levels lower (closer to the root) than level 29. 

Proof : At the q-th iteration, if a leaf appears a t  a level lower than 2' . this means that either it 

represen& a sink, or its descendent n0de.x. has been checked and could not be added to 
b 

the tree. In the first case, there yiists .no descendent of the leaf. In the second case. by 
-/ 

Lemma 4.4.1, no new nodes can be attached as descendents of this leaf because the : 

* =. ancestor x is missing. 
3 -  . 

i '  

Lemma 4.4.3 ; A tree which has no node at the 2q+'-th level after the q-th iteration will ndt * 

. . .  
accluire new nodes during later iterations ecen if it remains active. / r 

Proof : Since leaves exist only at  levels lower than 2'+', no 

dents of any leaf a t  the q +I-th iteration by Lemma 

Lemma 4.4.4 : The algorithms are correct. 

new nodes can be added as descen- t 

4.4.2. 0 

Proof : At any stage of the algorithm. if more than one node exists for the same element in the 

full  tree for a tree T at th age ("full tree" is defined in Section 4.4.11, then, in the 

cardinality algorithm, on1 e node at the lowest level (closest to the root) is 

retained. For the weighted algorithm, only one node with the maximum incremental 

weight is retained. By Lemma 4.4.2 the algorithms correctly consider only leaves at 

' t  

the 2' level at  the q-th iteration. By Lemma 4.4.3. it is correct to deactivate trees at 

the q-th stage if they have no leaf at  the 2"' level . So, Step 3 in either algorithm is a 

breadth-first search of the border graph.0 

t 

Lemma 4.45 : There will be at most log R iterations. 

hoof : If a source-sink path exists in BG(I ), then the maximum height of the trees before a 

source-sink path is discovered in the cardinality algorithm or all source-sink paths are 

searched for the weighted algorithm will be 2R.  If no source-sink path exists in 



L 

BG(/ 1, then the maximum'height of the tree will also be 2R e all Trees become , 

!, inactive because a path with no repeated nodecan have length a t  h o s t  2R.  Since the 
\ 

j height of these trees has increased exponentially from the original height of one, ,the , 

! '  ' number of iterations will be O(log R 1. 
1 

i 
i 

3 ~heoreh  4.4.6 : The search for a source-sink path can be done in O(1og R ) time using m pro- 
/ .  
' cessors. 

,' 

ProQf : The correctness of the algorithms is proved ib Lemma 4.4.4. At the 0-th iteratioh ~f 
4' 

both algorithms, wesan  assign a processor to each of t hdm possible links in each of 

2 - the m trees. Hence m processors are required for this iteration. A* the q-th (q>O) 
t /-- 

.iteration of both algorithms. we can assign processor PE:,, to handle each 

T, . each element eJ at level Y/o;;-:?d each e, in Ti . There are m 

trees, each tree has less than b i b ;  leaves at level 2' and each tree has m! pdssible 

3 - . .  
elem-ents. so m processors will be 

Each iteration' of both algorithms requires constant time. From Lemma 4.4.5, there are ' 

Theorem 4.4.7 : For the cardinality problem, t'he'search f7r a source-sink path can be done in 

3 
@log R ) time using m AogR processors. 

Proof : For the a dinality algorithm. the required number.of pro~essors as s a t ed  in Theorem 

, " ,, 4.4.6 can reduced by &ang t '  s Theorem. In this algorithm, each node c i~a  

become a l&f at  the 29 !eve1 for at most one q value beciuse it cannot be ad?&itxice 
1 ,' '. 

i 
t0.a tree. Hence the total nknber of leaves at  the 2' level fdr all q is w h o r e  tkdn m . 

I ,  f , - f' 
9 Sirice each sucb l q f  requires O(m ) operations when a tree is linked to it. and-rthere are 

A 

m trees in total, thcdnumber of elementary oprations ,is .0(m '). ~ ~ p l ~ i n g '  Brent's - 
Theorem. we ne& rnJ/logJ! *roc-m to achieve the same time bound. Ib a2ply 

> 

Brent's Theorem, we have to solve the problem of job assignment for the processors. a' 



\ 

W e  can $ermine which elements are a t  the 2' level in constant time: 

if LEVEL (i . j )=2q then fetch-and-add(k . I  ) 

LEAF [k ]+  j ; TREE [k ] t i  
4 

a 6 

NUMBER J,r'-LEAVES +k 

w h e ~ e  LEAF and TREE'are arrays qf size m . 

Then jobs (m -1)k to mk are assigned to hooking tree T, to tree T, at the q - th stage 

for  k,=1.2 ... NUMBER --OF -LEAVES wheres 

4.4.3. Backtracking by Recursive Doubling 
, . 

We will backtrack a t  every node s i m u i t ~ e o u s l y  to form pieces of paths that may be part 

of the pgment ing sequence. Each element e ,  will be the head of such a broken backward path. 

These paths will grow exponentially tr, a maximum length of m k ( m  .2R ). Array B will 

, repr,esent lhe  paths: 

I > .  

B(;, j ) is the j -th element path headed by e,  . 

Bfi ,O) is i itself. 

Each processor Pi, with i . j =I 2:...rn does the following: 



Step 4 : (* augmentation *) 
1. if SOURCE, then PARENT (AUGT .i ) + 0 
2. B(i .O) + i ; B(i . I  ) + PARENT (AUGT .i ) , 

q + -1 

3. while not DONE 
q + * q + 1  

4. if I=AUG and B(i.2' )=O then DOME' 
else 

+ PARENT (PUGT .B ( i  .2' 1) 
if 1 6 d 2d then ~ ( i .  2' +$ + B( j ) 

<synchronize > I 

end-while 
'4 

5 .  if i=AUG and j < 2' then * 
k + B( i . j )  'I 

if e, € I  then I + I - e, else I + I + e, 

2 
Lemma 4.4.8 : Step 4 requires O(lcg R ) time using m processors. 

2 
Proof : The algorithm demands that PI, be used where i . j =1,2 ....m . Hence m processors are 

required. The thm grows the arrays B from an initial length of 1 to a maximum 

1 length of O(R ) wh' h is the length of an augmenting sequence. Tlk growth is eaponk- ' 

tial, st? OO(1og R ) it ations of Step 4.1' are needed. Each iteration requires constant time , 

and a time complex ty  of O(log R ) is thus achieved. 

*Now, if we substitute the time coftlplexities stated in Theorem 4.4.7 and Lemma 4.4.8 into 

the complexities of Steps 2 and 4 respectively in the time analysis for Algorithm 4.2, we get the 

following result: 

1 

Theorem 4.4.9 : The cardinality two-matroid intersection problem can be solved in 

O ( R  (logR +c (m ))I time using ~ ( r n  3110g~v) processors. , I 

Similarly. if we sukt i tu te  the time complexities stated in Theorem 4.4.6 and Lemma 4.4.8 

- into the coy of 

get the followihgi ~ u l t :  
a 

Steps 2 and 4 respectively in the time analysis for Algorithm 4.4. we 



\ 

Theorem 4.4.10 : The weighted two-matroid intersection, problem can be. solved in 

O(R (logR +c (m 1)) time using O(m 9 processors. '\ 

\ 

\ 

Analysis  3 -  , 

In the above algorithms. the time complexities are improved but more processors are used. 

In fact, the timeprocessor product will be greater than the sequential time. We cannot reduce 

the number of processors and maintain O(1ogR ) time because the number of elementary o p r a -  
/' 

Lions in the algorithm is greater than the sequential time. 

For the unweighted algorithm (Algorithm 4.5). the number of elementary operations for , 

3 
Step 3 is O(m 1. The total number of elementary operations is 0 ( r n 3 ~  +mR2c (m )). This is 

I 

greater than the sequential t i n e  of 0(mR2c (m )). By Brent's Theorem. since the depth 'is 

O(R logR +Rc (m 1). and assuking c (m )<logR , 0(m3/logR ) processors have Lo be used to 

maintain the depth. , 

9 

For Step 3 of the weighted algorithm,(Algorithm 4.6). at  each iteration. for each element. 

O(m ) tree8 will be examined and each tree has O(m ) nodes: Hence, in this step. the number of 

' 3 
elementary operations is-O(rn logR ). The total numb& of elementary operations for the entire 

3 algorithm will be O(m R logR + m ~ ' c  (m )) and this is grkater than the sequential Lime of 
-, 

~ ( m ~ ~ c  (m 1). By Brent's Theorem, since the depth is O(R logR +Rc (m )), and assuming 

c (m ) < logR , O(m 3, processors have to  be used to maintain the depth. 

I - 
- 45. The case with the original F&A CRCW model 

In the original fetch-and-add PRAM model. write-max atrd write-min are not allowed. 
r 

and we have shown that  simulation of these instructions will take O(1og m ) time if m is the 

number of siraultaneous write-max or  write-min operations to the same location. The time 

bdundr for some of theTalgorithms presented in this chapter will be different if tbe original 



model is used. 

Algorithm 4.2 for cardinality matroid intersection is not affected since no write-max or 

write-min. is used. Algorithm 4.4 for weighted matroid intersection uses the writk-max 

instruction when searching for source-sink paths. Hence, the time requirement of this step 
& 3 

becomes O(R logm ) instead of O(R ) since there may be O(m ) simultaneous write-max's to the % 

h 

same location, and the time complexity for Algorithm 4.4 becomes ~ ( ~ ~ l o ~ n  +, Rc (m 1). 
, 

There will be O(mR 2c (m )+mR 'logm ) elementary opgrations 'in - this algorithm. *It  can be . 
shown that Brent's Theorem can be applied and hence we can use mR' processors to simulate the 

algorithm within the same time bound. 

+ The fast algorithms are also affected. Algorithm 4.5 for cardinality matroid interdctioc 

uses write-min in Step 3. Algorithm 4.6 for weighted xnitroid intersection uses write-max in 

* Step 3. Both algorithms will now have a time complexity of O(R ( logR logm + c (m 1)). The 

,/ number 
'-4 

of elementary operations in these algorithms tecomes 
1 

\ 2 O ( ~ ' R  log8 logm + mR c (m 1). Assuming c (4 ) < (logR logm 1. m 3  processors have to be 

used to maintain the depth. 
+ 



5. BIPARTITE MATCHING PROBLEMS 

I 
1; ;his chapter, we will derive parallel algorkhms for the special case of bipartite match- . 

./- 
ing problems. These problems are defined in example l .9.  Since we have derived parallel algo- 

qithms for the general two-matroid intersection problems. we would like to see how well they 
d 

perform on the matching p;oblems. This is done in the next section. It will be shown that the 

performance is not very good compared to the sequential times of the best know"n matching 

algorithms. This suggests that  we could achieve better reSults.by taking advantage of the spe- 

cial featuresiof matching '~ob1ems when designing parallel algorithms. 
-, I 

In the second section we design parallel algorithms based on one of the fastest known 

sequential bipartite matching algorithms. The cardinality bipartite matching problem will be 
4 

transformed into a max-flow problem on a unit network. We have chosen 5inic's Algorithm to 

solve the max-flow problem. The transformation is show3 and Dinic's' Algorithm will be 

9 r i b e d .  A parallel algorithm which achieves perfect sped-up  over Dinic's Algorithm has 
b 

been designed in [SVI-821. We will describe ,the parallel max-flow algorithm in [ ~ ~ 1 - 8 2 ]  . - ~ d  

A ?how how t o  modify it to give simplkr %and betterwresults. The simplified algorithm achieves 

perfectspeed-up. . 

The weighted bipartite matching problem is solved by transforming it into the 

flow problem. The sequential algorithm for the min-cost flow problem is based on 

menting path method in which each augmentation consists of solving a shortest-paths 

% 
The shortest-paths problem is solved using an efficient sequential algorithm due to Dijkstra. A 

a parallel algorithm based on these sequential algorithms is then develqed.  Applying Brent's 

Theorem for  this parallel algorithm gives a perfect speed-up. 

Finally, we can solve the shortest-paths problem using a technique similar to that used to 

search for a source-sink path in the border graph of the two-matroid problems. We Will show 

how to  build the shortest-path tree in logarithmic time in parallel. This results in a fast paral- 9- 

lel weighted bipartite matching algorithm. This fast algorithm can be used to solve the cardi- 

nality matching problem in sub-linear parallel time. 
d 



5.1. Applying the General Algorithms - 

This section wiM show how we can use the general two-matroid algorithms in the preci- 

ous chapter to solve both the unweighted (cardinality) and weighted bipartite matching prob- 

lems. Step 2, whic6 builds the current ,border graph, in parallel algorithms 4.2 and 4.4 requires 

some modification. 

Let us state the definition 

G =[X Y E ] be a given/ bipartite 
'At-J 

is a set of arcs {i,j]*-rn which i EX and j EY. The bipartite matching problems will be special 

I 

t 

of bipartite matching problem again (see Example 1.9). Let 

graph. where X and Y are two disjoint sets of vertices, and E . 
# 

cases of the 2-matroid intersection problems in _which the two matrjlds Ml=(E.I l )  and 
- 

M 2 4 E  .I,) are partition matroids. A set I GE is in I, iff no two arcs in I are incident to the 

same vertex in X . Similarly I €I2 iff no n I are incident to the same vertex in Y .  The 

arcs of the bipartite graph G are the elements of the matroids. and a matching of the graph is 

an intersection of the matroids. , 

If two arcs have a common vertex in X then they form a circuit in the matroid M ,. If 
s .  

two arcs have a common vertex in Y .  then they for= a circuit in matroid M 2 .  In the follow- 

ing, we assume that we have information about the adjacencies between all pairs of arcs and 

their common vertices in G . The variable ADJX, will be the number of arcs in the current 

intersection I adjacent to arc j with the fommon vertex in X. AD% will be the number of 
f . 

arcs in I adjacent to arc j with thecommon vertex in Y .  If an arc j in E-I has adjacent 

in I at both endpoints of it, then ADJX, and ADJY, will both be positive, and the arc can be 
C 

neither a source nor a sink in the border graph BG(I 1. If it has adjacent arcs in I at one or none 

of the endpoints, then it will be both a socrce and a sink. r t 

a 
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L A  

Step 2 : (* building a border graph *) * 
a Processors P,, , 16i. j d m  . perform the following in parallel. 

+I.  ADJX, +* 0 :  ADJY, t* 0 
if arc, E 1 and arc, is adjacent to arc, with common vertex v EX then 

LINK,, + true 
2. fetch-and-add( A DJX, . 1 ) 
3. i f  arc, E I  and arc, is adjacent to arc, with common vertex v E l '  then 
4. LINK,, + true 
5. fetch-and-add( A DJY, . 1 ) 

< synchronize > 
6. if ADJX, 3 1 and ADJY, 2 1 then 

SOURCE, +* false; SINK, +* false 
else 

SOURCE, +* true; SINK, +* true 

2 
The above step can be done in constant time with rn procekors. 

For the cardinality bipartite matching problem. more modification is needed to achieve n 

better time complexity. In [HK-731. it is proved that for a sub-optimal intersection I ,  there 

may be more than one shortest vertex-disjoint augmenting path. and if we augment I by these 

p%ths simultaneously. then the total number of augmentations required is o(& 1. Hence. to 

9 

solve this problem more efficiently, steps 3 and 4 of Algorithm 4.2 must also be modified so 

that all source-sink paths of the shortest length are found instead of just one. A boolean array 

AUG [l..m 1 is used so that if element e, is a sink in on? of the shortest source-sink paths. then 

AUG [i ] is marked true, otherwise it is false. To make paths distinct, we restrict each, parent 

node to have only one son. This is done by marking a new variable SON, to be j if e, becomes 
B 

the parent of element e, . * 

L 
ALGORITHM 5.1 : (*  unweighted mat=hing *) 

Same +s Algorithm 4.2 except for the following modifications: - . 

Step 2 is modified as mentioned above 
Lines 4 to 8 of Step 3 are modified as follows: 



while path not found and not ENDSEARCH 
ENDSEARCH +* true 
if LINK,, and ACTNE, and PARENT, =null then 
<synchronize > 

ACTIVE, +* false 
.WN, cw j 

<synchronize > 
if SON, = j then 

6 .  PARENT, + i 
7 .  if SINK, then AUG [ j ] + true (path found) 

else 
'8.  ACTNE, + true; ENDSEARCH +* false - 

<synchronize > 
end-while 

klso, line 3 in Step 4 is modified as: 

3. if AUG [ j ] and i =PARENT, then 
,- 

If the faster Algorithm 4.5 is used instead of Algorithm 4.2, we do not have to worry about 

distinguishjng the paths because they will be in different trees. We simaly use a boolean array . 
AUGT [ I  ..m 1 in which AUGT [i ] is true iff tree Ti contains a shortest source-sink path. 

ALG~RITHM 5.2 : ( *  fast unweighted matching *) 

Same as Algorithm 4.5 except for the following: 

Sttp 2 is modified as mentioned above., 
"\ 

~ i n e  15 of Step 3 is modified as follow< 

15. if SL - SINKLEVEL(T, ) then AUG?' [i ] +* true 

The backtracking by recursives,doubling can be done with s im~lar  modification. 
t 

The weighted matching algorithms are as follows: 

ALGORITHM 5.3 : (* weighted matching *) 
v 

..- 2 
Same as Algorithm 4.4 except that Step 2 is modified as mentioned above., 



ALGORITHM 5.4 : (* faster weighted matching *) 

Same'as Algorithm 4.6 except that Step 2 %  modified as mentioned,above. 

" * \  

i 
Time Analysis 

The next four results follo?v from the time analysis of the general algorithms. Note that 

c (m ) is con&ant because we take constant time to build the border graphs. Also. O ( R )  is 

taken to be O(n ) because we can have,at most n /2 arcs in the final matching. 

Theorem 5.1.1 : Algorithm 5.1 finds a maximum cardinality matching for a bipartite graph 

with marcs'and vertices in 0 ( 6 n  ) time using m processors. 

Theorem 5.1.2 : Algorithm 5.2 finds a maximum cardinality matching fo; a bipartite graph .! 

3 with rn arcs and n vertices in 0(6 logn ) time using m llogn processors. 

Theorem 5.1.3 : Algorithm 5.3 finds s maximum weighted matching for a bipartite graph of m 

2 arcs and n vertices in O h  ) time using mR processors. 

Theorem 5.1.4 : Algorithm 5.4 finds a maximum weighted matching for a bipartite 1;raph with 

3 
m arcs and n vertices in O h  logn ) time using m processors. 

From the above analysis, we see k a t  the time-processor products of all these algorithms 

are greater than the sequential time of the best known matching algorithms. The reason is that 
R- 

the special features of the matching problem are not exploited. To achieve better results we 

will use the fastest known sequential algorithms for these problems. 



5.2. ALGORITHMS WITH PEBFECT SPEEDUP 

5.2.1. Unweighted Bipartite &ttching 

The unweighted bipartite matching problem can be transformed into the integral max- 

imum flow problem. In fact, the fastest sequentipl algorithm for unweighted bipartite match- 

ing known is based on this transformation [Ta-831. A parallel algorithm has been designed in 

[SVl-821 using a different parallel model for the general integral maximum flow problem. First 

we will define the flow problem, list some properties of network flows, and describe the sequen- 
$ 

tial algorithm in [Ta-831. Then we show how to make use of the simplicity of the transformed 
4 

problem and our parallel model to derive a parallel algorithm which is both simpler and faster 
1 

than the algorithm in [sVI-821. 
u 

' P 

Basics of Network Flow 

The following definitions use the terminology of [sVI-821. 

Definition 5.2.1 : A directed flow network N =(G .s .t .c ) is a quadruple. where 

(1 ) G = ( V  E ) is a directed graph: + 

(2)  s and t are distinct vertices called the source and the sink respectively; 

(3) c 2 -) R +  assigns a non-negative capacity cap (e ) to each e E E.  

A directed flow network is a 0-I network ( unit network ) if cap (e ) = 1 for all e E E. 

Definition 5.2.2 : Let u + v denote a directed arc from u to v. 

A function f S + R +  is a flow if i t  satisfies: 

( 1 ) The capacity rulei 

f (e G cap (e  ) for all e E E 

( 2 )  The conservation rule: 



IN( f .v = OUT( f ,v ) for all v E V.' -  { s  .t ) 

Where 

IN( f ,v ) = f (u - + v  )is the total flow entering v. 

u  - v E E  

OUT( f .v ) = f ( v  +u )is the total flow emanating from v. 
v - u E E  

The flow value l f I is OUT( f .s ) - IN( f .s ). 

Definition 5.2.3 : A flow f is a rncximum flow if I f I 3 I f '  I for any other flow f ' . A flow 

f saturates an arc e if f (e ) = cap (e 1. A flow f is a maximal flow (a blocking f low) i i  

every directed path from s to t contains at lease one saturated arc. 

1, 
Definition 5.2.4 : The residual graph R for a flow f is the graph with vertex set V . sourc%s. 

sink t , and an arc [v .w 1 of capacity res (v .w ) = cap (v .w ) - f ( v  .w ) for every arc 

[v .w'] E E such that cap ( v  .w ) >. f (v  ,w ), and an arc [v .w ] of ' capacity 

res ( v  .w ) = f (W :v ) fdr every arc [w ,v ] E E such that f ( w  .v ) > 0. An augmenting 

" p a t h f o r f  i s a p a t h p f r o m s t o r  inR. 

Definition 3.25 : Let R be the residual'graph for a flow f . The level of a vertex v is the . 
length of the shortest path from s to v in R. The level graph L for f is the subgraph of 

R containing only the vertices reachable from s and only the arcs [v .w 1 such tha t '  
% 

b e !  ( w )  = level (v + 1. 

~ ~ 2 . 1 . 1 .  Transformation into Max-Flow Problem 

4 
The Unweighted bipartite, matching problem can the integral maximum 

flow problem in the following way. 



Let G =[X .Y E ]  be the given undirected graph with vertex se( %'=X u Y such that 

each arc in E has one end in X and the other in Y .  We shall denote a typical arc by 

{ x  g } where x E X . y E Y . Let s and t be two new vertices. Construct a'graph G' 

with vertexset V U {s .t 1, source s . sink t , and capacity one arcs is x 3 ].and [ x  ,y 1 
'bj t 

for every (x .y } E E .  G' is a unit network. A matching for G of size IF I can be 

derived from an integral flow f for G' by taking the set of arcs {x .K) such that [x ,y 1 

has flow one! Hence we can find a maximum cardinality matching for G by solving an 

integral maximum flow problem on G ' .  

Dinic's Alg~irithm 

An integral maximum flow can be found using Dinic's Algorithm. 

Dinic's Algorithmitarts with a zero flow and repeat the following step uatil t is not in the 

level graph for the current flow. 
V 

BLOCKING STEP (Dinic). Find a blocking Bow in the 'level graph for the curlent flow t, 
f .  Replace f by the flow f +J/ '  defined by 

, C r 
Theorem 5.2.6 : Oa a unit network. ~ i n i c ' s  Algorithm halts after a t  mos I blocking 

steps. 

Proof : [Ta-831, Pg 102. Theorem 8.5. 

C - -..- - 
Theorem 5.2.7 : on-d  unit network. Dinic's Algorithm finds a blocking flow in O(m) time and a - -  _ 

C 
- 

-q--< . .\ maxlmulq 8ow in 0 ( 6 m  time. 

h-oof : [Ta-831. Pg 104. Theorem 8.8. - --- \ 

L, 



5.2.1.2. Parallel Max-Flow Algorithms 

in [SVI-821 an 0(n2logn ) parallel maximum flow algorithm is designed for the general 

network problem using m/n processors and a CRCW PRAM model that allows concurrent 

writes only if the processors attempt to write the same value. 

The algorithm in [SVI-821 is a parallel version of Karzanov's Algorithm [ ~ a - 7 4 1  which 

improves on Dinic's Algorithm. The basic idea of the algorithm is quite simple. The algokithm 

consists of blocking steps. Each blocking step is divided into pulses. In the first pulse the source 

s f r ~ m  it. At the beginning of each of the successive pulses there will be a set of balanced ver- 

tices ( for which IN( f .v ) = OUT( f ,v ) ). and a set of unbalanced vertices satisf yihg IN(  f .\I ) 

> OUT( f .v ). The balanced vertices remain idle during the pulse while the unbalanced ver- 

tices t ry  to push forward as much of the excess flow as possible. If they cannot eliminate all - t 

/ the excess flow this way, they return the rest backward. Returnirlg the flow backward IS done 
. 

in a "last in first out" order. 
I 

It is stated in [SVl-821 that a maximum matching in a artite,graph can be found by - &4 '\ 
their algorithm within a depth of O(n ""ogn ) t ime  using m/n proc3xqo.r~. The algorithm can. 

in fact. be simplified for the unit network using our parallel model. 

Parallel Max-Flow Algorithm f o r  Unit  Networks 

Due to the simplichy of the unit network. we can eliminate many of the compl;x struc- 

, k -  iures used in the algorithm in [SVl-821. In the following algorithm, step 0 is for initiali~ation. 

Step 1 and Step 2 together form a pulse. Step 1 will t ry  to push the flows forward, while Step 2 

will return backwards rhi  flows which cannot be pushed through in Step 1. 

The number of sons. NUMBER-OF-SONS (i 1, of each node, i . in the network IS assumed 

to be known. These sons are assumed to be in an array S N ( i . j )  f o r  

I < j < NUMBER-OF-SONS (i ). In Step 1. each unbalanced node has an incoming flow (unit 
- 

flow) and po outgoing 0ow. Each unbalan~ed node will try to push the flow to one of i t s  sons. 



If this son already has a flow or more than one parent is trying to push a flow to i t ,  then it will 
< 8 1 . . 

return the flows back to all but one of these parents in Step 2. Each parent will t ry each son In - 

turn  usmg the  index ordering untd either ~t successfully pushes 11s flow forward. or ~t 1s unsuc-7 

cessful with all its sons and has Q return the flow backwards. , 
- 

* 

Data Structures used: 

NIIMBER-OF-SONS ( i  ) - the number of sons of vertex i 
 SON^,^ ) -- the jth son of e , i n  the level graph 
INDEX ' ' -- pointer to SON (i . j J  for local vertex i (local variable) 
BALANCED, -- true if and,only if vertex i is balanced 
P.4 RENT, - the vertex from which there is a flow to  el 
TERM ( i )  -- true if there is a flow from vertex i to sink 1 

% 

Algorithm 5 5  : Parallel Algonthrn for ~ t n d ; n ~  a Bl'ockmg Flow on a ' ~ ~ n l t  N e t w o ~  h 

Input : a level graph for the current flow. --* 

each node i has sons ,SON (i . j ) where 1 < j < NlfMBER 
Output : a blocking flow in the level graph. 

Processors P; for i=1.2; ... n' will perform the following steps. 

Step 0 : (* Initializafion * )  . 
1. INDEX + 0 ; PARENT, + null . 

2. . , BALANCED, + t r u e ;  T E R M ( i ) + f a l s e  
3 .  i f  I < NUMBER-OFSONS (s ) then 
a PARENT,,,v (, , , + s ; BALANCED,,( ,  , , + false 

I 

Step 1 : ( *  push *) 
. 

4. if not BALANCED, then 
INDEX + INDEX + 1 / 

5 .  if' SON ( i  ,INDEX ) = t then 
TERM ( i  ) + true ; . BALANCED, *- true 

- else 



(L 
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Step 2 ( * ref  urn * 
7' if not BALANCED, then 
h if PARENTwtIINDEET , = i then 

BA LANcED,  + t rue 
(* rwde i has succes & pshpd  its flow forward *) f a e 

else I 

if INDEX 2 NUMBER-OF-SONS ( i  ) then 
4 

(* it has tried all  fits sons *) 

9 j + PARENT, 
10. /if j # s then BALANCED, +- false 
1 1 .  , 0 P A E N T ,  + null ; BALANCED, + t rue 

"6' (7 node i has returned the flow back to its parent *) 
12. Go to Step 1 ~f there are any actlve nodes (i.e.. unbalanced vertices). 

When the algor~thm terrnlnates. the following arcs will have a flow of one: 
( PARENT, . i ) for all I ,  where PARENT, fi null; 
( i . t ) if TERM ( i  ),is true. . 

.+ Proof of Correctness 

We have to show tha3 Algorithm 5.5  do& what the algorithm in .[sV2-821 does for unit 

networks. 

In the "push" stage of a pulse. the unbalanced vertices should push forward a9 much 
' 

excess flow as possible. This is done in stkp 1 of ~ l ~ o r i t h m  5.5.  Here, each unbalanced vertex i 
will t ry  to push all its excess flow (which always has value one) forward to  its next son. 

14, 

SON ( i  .INDEX 1, a t  line 5 .  If this son is the sink t ., then we mark TERM ( i  ) to  6e t rue and i 

becomes balanced. 
' .  / 

in the "return" stag if an unbalanced vertex cannot eliminate its excess flow, then i t  a. 
should return the rest backward. This is done in Step 2. Here a vertex is not balanced i f  and 

- only if 11 has pushed some flow to one of its sons, j, and the son is not the sink. There may be *. 
more than one parent pushing ~ t s  flow towards this son. Only one will succeed in becoming 

PARENT, . the parent of j in the blocking flow. At  line 8 ,  we kientify the successful parent i . 
and mark i as balanced. If an unsuccessful parent i has no more sons that  i t  can t r y  pushing 
~ts flow. then the flow IS returned to PARENT,.  Then i becomes balanced and PARENT, - - - ,. =. 
becomes unbalanced. 

Time Analysis 
- 1  

i 

1 +, 
Algorithm 5.5 'is a s ase of the algorithm in [sv~-821 for which the *followi~&. ' 

w 
' theorem polds: 

Theorem 5.2.8 : The algorithm terminales after a t  most 2n pulses. 



Proof : [QV~-SZ].  Theorem 7.1.- 

Theorem 5.2.9 : 

Proof : 

  he unweighted bipartite matching problem can be solved in O h  6 ) time using rn /n 
<proc&sors. 

n2&' 
The unweighted bipartite matchlng problem can be solved in O(-- ) time using p I 

m 
processors where p < -. 

n L 
Algorithm 5.5 is a simplified version of the - algorithm in [SV2-821 and the seme argu- 

ments for reducing the number of processom fiold. Hence. the alqorithn requires m /n 

processors. By Theorem 5.2.6 there will be o(& ) blocking steps and by Theorem 5.2.6 

there will be a t  most 2n pulses. Since each" pulse of Algorithm 5.5 takes constant time. 

we conclude that the cardinality problem can be solvnd in O(n & ) time usmgrm /n  pro- 

cessors? 

The total number of elementary operations in each puke  is O h  ) since at most n nodes 

can be unbalanced. By Theorem 5.2.8,  there will be at most 2n pulSes in each blocking 

step, and by Theorem 5.2.6, there will be o(&) blocking steps. Therefore, !he total , 

number of elementary operations is O ( n 2 6  ). Applying Brent's Theorem gives part ( 2 )  

of Theorem 5.2.9. 0 

-1 

The time-.processor product for this parallel unweighted bipartite matching algorithm is 

0 ( 6 m  ). Since this is ;he same as the sepllential time'for Dinic's Algorithm on a unit network. 
-. 

a perfect speed-up is achieved. 



.. , 
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5.2.2. WEIGHTED BIPARTITE MATCHING 

In this section, we present a parallel algorithm for the weighted bipartite matching pro& 

lem which Achieves perfect .speed-$. This algorithm is based on a transformation of the 

a 
. matching problem into the minimum-cost flow problem. The sequentid algorithm for the . 

I 

minimum-co.cflow ~roblem uses an augmenting path method in which each augmentation con- 

sists of solving a shortest-paths problem. We will fifst describe the problem transformation 

and the sequential algorithm from [~a-831,  and then present the parallel algorithms. 

~ i n i m ~ - € o s t  Flow 

Definition 5.2.10 : Let G be a network such  that each arc (v ,w ) has 2 cost per unit flow, 

r * - coit ( v  .w ), in addition to a capacity. Assume that for ear h arc ( w  .v ) in E .-r 
Y 

f 
i' 

cost ( v  .w ) = -cost ( w  .v ). The cost of a flow , is 

cost ( f  ) = Z, ,*. ,,ocost (v ,w ) f (V .W 1. A flow is minimum cost if among all flows of 

the same value it has minimum cost. The minimum-cost flow problem is that of finding a 

maximum flow of minimum cost. j 

Definition 5.2.11 : The cost of a path is ?he sum of its arc costs. The residual graph R for a flow 

t 1 is defined as in Definition 5.2.4 with the extension that cost (v  .w ) i s  the same in R 

5.2.2.1. Transformation into Mi.' urn* Flow "t 
J 

' / 

The wei,@ted bipartite matching problem can be transformed into the 

integral flow problem. The transformation is similar tb the transformation of 

bipartite matching problem into the integral network flow problem. 

Let G = [ X  .Y E 1 be the given undirected graph each of whose arcs has a real-valued weight. 

denoted by weigh& ( v  .w 1. and with a vertex set V =X U Y such that every arc in E has one 

end in X and the other in I T .  ' w e  shall denote-a typica1:arc by { x  .y 1 where x E X and y E Y .  



Let s and t he two new "ertices. Construct a graph GI with vertex set V U (s  r ). source 3 .  

sink t , ,  and capacity-one arcs [s .x 1 of cost zero for all x E X ; [y .t 1 of cost zero for every 

y E Y : and [ x  .y ] of cost = - ~ e i g f i . i t ( x , ~ )  for every { x  .y EE.  The graph G' is a unit network. 

I - (i.e.. all capacities are 1.) 

, 
The fo l l~wing  diagram is an example of such a tvansformatio~i. 

Example : 

given bipartit: graph 
with weights 

transformed network 
\ 

A matching on G of slze I f  1 and weight = -cost( f ) can be derived from an integral flow f 
k 

on G' by taking the set of arcs { x  .y ) such that [ x  .y 1 has flow one. A minimum cost flow will - - 
correspond to a maximum weight +matching. Hence we can solve the matching problem on (; by 

solving the flow problem on G' . 

5.2.2.2. Sequential Algorithm for Min- Flow 

Let us look a t  the theorems t.hat are the basis for an efficient sequential 
. * 

sdlving the minimum zost flow problem. 

\ 

Theorem 5.2.10 : If f is winimum-cost  flow. then any flow obtained ffom f by augmenting 
bQ 

along an augmenting path (see Definition 5.2.4) of minimum cost is afso a 

minirnum-cost flow. 1 

Proof : [~a-831. pg 109. Thebrem 8.12. 't 

. $ 
1 



Lemma 5.2.1 1 : If minimum cost augmentation is used, then successhe augmenting paths have 
'---l. 

- 
non-decreasing cost. 

- 4 

Proof : [Ta-831. pg 110. Lemma 8.4. 

- - -- - - - -- - - - - 

Algorithm 5.6 : Sequential Min- Flow AIgorithm 

d 

The following sequential algorithm is from [Ta-831. Chapter 8. From Theoiem 5.2.10. if 

G has no negatiye cost cyclgs, then we can find a minimum cost flow of a given capacity by the 

augmenting path method, if-we always augment along a minimum cost path. Starting with the 

zero flow, this method produces a sequence of ?,t most n 12 minimum cost flows of increasing 
, 4 

value ( where n = I V I and m = I E A?% From Lemma i2.11, if we s u p  the augmenting algo- 

rithm just after the last augmentation along a path of negative cost. we will have a minimum ' 

cost flow among all flows. 

We can compute successive minimum cost augmenting paths by finding a shortest-path 
* 

tr& rooted at s far the residual graph R (see Definition 5.2.4). where the length of an arc i? 

defined to be its initial cclst. We use the path in the tree from s to t as  our augmenting path. 
------- 

Due to the sinlplicity of the initial graph, the first path is simply the one wi th  the 

minimum cost arc e EE and the arcs joining e to s and t . To apply Dijkstra's ALgorithrz far 

the second and successive bugmentations. we must Lave non-negative lengths in the residual 

graph. Edmonds and Karp [EK-721, have shown how to achieve this by transforming the 
\ 

r- 

lengths after each augmentation: . 
'- 

l ength(~  .w ) + l eng th (~  .w ) + d i d ~  ) - dist(w ) 

where dist(x ) is the length of a shortest path from's  to x .  The new arc lengths a q n o n -  / 
/- 

-ul 

negative. 

The firw augmentation is O(m ). Dijkstra's Algorithm is O(m log(,+, ,, )n ) and there are at 

most n /2 augmentations. Therefore, the total time complexity is O h  in )n 1. 

fhe following diagram shows the augmenting steps for the example in section 5.2.2.1. , 



steps ShortestLpath trees with a - '~esidual graphs with 
augmenting paths transformed lengths - - 

' resultant m i n w  flow 
corresponding maximum 

3 weight rnatc.bing 
( weigbt-4+5+%14) 



d 

Dijkstra's Algorithm for Shortest-Path Tree Room at s 

4 
~ t i i r i i n ~  with the root s, we build a shortest-path tree T arc by arc as follows. We say v bard- 

e n  T if v e T but some arc is incident to both v and T. A d-heap is use4 to store the vertices 
\ 

-- - 

h r d e r i n i .  -A xGhe;ipis acoqfe tnd-a~  y t r e r c o r r t a i r r i n g - r m e i t e n r ~ r r g & i ~ p p  -r - 
C 

order: if x and p(x) are a node and its parent. respectively, then the key of the item in p(x) is no 
.J 

A gieater thah the key of the item in x. The key of a vertex v in the heap is the length of the 
I '-3 

minimumbength arc incident to v and T. T d s arc is stofid with v in the heap. 
4 .  

'Y 
The following Step is repeated until all arcs have been considered: 

-- 
- Selection step:. 

' 
(1) Delete the minimum arc from the d-heap (deleternin) and include it in T. This adds a 

, - 
- - new vertex v to T. 

v) Examine each arc [v .w ] incident to v . 
* 

. .. 
(i) if w is not i n  T and w is not in the d-heap, we insert it into the heap. 

( i i )  if w !i? T but it is in the d-heap with a corresponding arc e of greater value than 

length[v .w 1, we replace e by [v .w 1, modify the key to length[v ,w 1 and sift-up to 
I 

maintain the heap structure. 

The running time of each augmentation is thus dominated by the heap operations: 

O h  -1 ) deleternin : O( (n -1 )d log, n ) time 

O(n -1) insert : O( (n -l)logd n 1 time 

O(m -n + I )  sift-up : O[ (m -n +l)log, n ] time 

If' d = 12 + 1 1, then fbe total running time is M m  l ~ g ~ + ~ ~ ~  n ) 
/ 



\ 

5.2.23. Parallel Algorithm - 
", 

The parallel algorithm for the weighted bipartite matching problem is 'similar to the sequential 
- 

-I_- - - 

algorithm described above. It is divided into the following steps: 

Step 0 : initiajization 
Step 1 : transform bipartite graph into network II 

?;. 

Step 2 : find the first augmenting path \ 

Step 3 : build the residual graph R % 

Step 4 : find shortest path from source to sink in R -- 
Step 5 : obtain the augmenting path and chxk  its weight 

Steps 3 to 5 are repeated until the augmenting path has non-positive weight. 

Data Structures for the Parallel Algorithm 

WEIGHT (i . j ) : is the given weight of arc(i . j ) if it exists in the original bipartite graph; 
- 

and zero otherwise. 

LENGTH (i  , j ) : -WEIGHT (i  . j ) in the first network graph: 
> = 0 if arc(i . j ) exists in the current residual graph: 

-m otherwise. 

(LENGTH (i , j ) is updated edch time a new residual graph is formed.) 

Note that LENGTH ( 4 .  j ) as used in the shortest-paths procedure is equivalent to cost ( i  . j ) in 
the minimum-cost network at  each augmentation. The shortest path is equ~valent to a 

minimum-cost path'. 

MIN (i ) : is the minimum of LENGTH (i . j ) for all arcs (i.j) in th?%esidual graph. 

M (i ) : j if LENGTH (i , j ) equals MIN (i 1. 
PARENT (w ) : is the parent node of node w .in the current shortest-path tree T. 

A ( i  . j ) : 1 if arc(i , j ) is in the augmenting path: 

0 otherwise. 

DIST (w : is the shortest distance from s to w in the current shortest-path tree T. --. -- 

(Each time a new node v is included in T. and a r c ! ~  .w ) exists. we checks if "' 

DIST (V  ) + LENGTH ( V  .w ) is shorter than DIST (w ), and uydate DIST (w  ) if it 

is. 

MATCHING (i , j ) : 1 if arc(i . j ) is in maximum matching: 

0 otherwise. 

(It is updated after each shortest-path tree is found by backtracking from 
t to s in the tree.) 

v '. 



- 

The following is a descridtion of each step of the algorithm : . 

(1 )  In Step 1 ,  the matching graph G =[X .Y E.1 is transformed into a flow network. A source 
0 

node 0 and sink node n c l  are created and directed arcs [0.i]. [j.n+l] and [i,j] are included 

for each arc {i,j] in the original graph where i E X and j E Y. The length ( equals cost ) of 

the arc [i,j] will be the negative of its weight. Also, the minimum length of all arcs emerg- 

' ing from each vertex i is found and stored in MIN ( i  ). 

( 2 )  In Step 2 .  the first augmenting path or minimum cost flow is found by looking for the arc 

with the minimum non-zero length. This will be the minimum of M I N ( i  ) for all vertices 

. i. The augmenting path is a temporary rnaEhing and is recorded in the variables MATCH- 

ING and A . Theshortest distances from node 0 to each other vertex i  are computed an 

stored in DIST ( i  ). 

(3 )  InLtep 3 .  the residbal graph for the current flow is constructed. If a directed a rc  [i.j] is in - -  
the flow (which is equivalent to the augmenting path), then arc [i.j] is deleted by setting 

---. 

LENGTH ( i  . j )  to ro, and arc [j,i] is added with length zero. For other arcs [i.j]. 

LENGTH ( i  . j  ) is modified to LENGTH ( i  . j  )+DIST (i )-DIST ( j  1. 

( 4 )  In Step 4, a minimum cost flow of the residual graph is obtained by solving thecshortest- 

paths problem of the graph. This is a simplified version of Dijkstra's Algorithm. Here. a 
m 

%P 

vertex is marked if and only if it borders the temporary tree T being built and a vertex is 
& 

chosen if and only if it is included in T. The garked  vertex i with the shortest DIST is 
-- - - 

chosen at line 5 to be included in T. Line 3 will mark the new vertices which border T 

after the addition of i. The DIST value and parent of such vertices are updated accordingly 

at line 4. \- 

L'(5) Step 5 is a simple backtracking from node n+l through the parents P to the source node 4). 

The variables MATCHING and A are updated. Also, the weight of this augmenting path is , 



calculated in s variable WT. If it is non-positive. then the ik solved and the _algo- 
rithm stops. 

Algorithm 5.7 : Parallel Weighted Matching Algorithm : 
- . - -  

4 4  

Input : A bipartite graph with n vertices and m arcs. Each arc ( i  . j )  has a given weight /C 
WEIGHT ( i  . j 1. 

Output A maximum weight matching of G is returned in MATCHING . 
In the following, processors P, for i=1.2 ,... n will perform steps 0 to 4 in parallel. A slngle pro- 
cessor is sufficient for Step 5. 

0 : (* initialization ') 
 PARENT(^)+- null 

2 .  for j = 0 to n 
A ( i  , j )  + 0 
MATCHING ( i  . j ) + 0 

4 
- 3  

Step 1 : (* trmsformation into network flow *) .Q 

1, MIX +* 0 ;  MIN ( i  ) +- 0 2% 
P' 
d' 

2. for j = 1 t o n  
if WEIGHT(i , j ) > 0 then (* arcfi , j)  exists;q- 

3- - LENGTH(i.j)+-wEIGHT(i.j.) , 

LENGTH (0.i ) + LENGTH ( j ,n + 1 ) + 0 / 4. if LENGTH (i , j ) < MIN (i ) then 
~ r h r ( i ) +   LENGTH(^,^); M ( i )  + j 
(* the minimum arc win be the first augmenting path *) 

, - else 
5. L E N G T H ( i . j )  + LENGTH(O.~)+LENGTH(~J~+~)+-~O 

's G 

<synchronize > 
' if MIN =MIN ( i  ) then - .  

x +* i 
<synchronize > - 

if x = i then 
MATCHING ( i  .M ( i  )) +- A ( i  ,M ( i  )) + 1 

', 
\ 

A (0.i ) + A (M ( i  1.n +1) 1 - 
(* determine DIST ( i  ) *) 
DIST(i3) + w 
< synchronize > 
for j = 1 t o  n do - - -  if L E N G T ~ ( ~  , j ) # -0b then 

i f L E N G T H ( i  , j )  < D I R ( j )  then D I S T ( j )  +  LENGTH(^ , j )  
D I ~ T ( ~ ) ' + o ; D I s T ( ~ + ~ ) + M I N  



Step 3 : (* build residual graph *) 
1. for j - 1 t o n  \ d - 
2. if  A ( i , j ) =  1 then 

LENGTH (i . j ) + -00 ; LENGTH ( j .i ) +- 0 - ,  
3. else 

if LENGTH (i . j ) > 0 then 

/C 
1 LENGTH ( i  . j ) +- LENGTH ( i  . j ) + DIST (i ) - DIST ( j  ) 

Step 4 : (* find shortest-path tree from s to t *) 
1 .  DIST ( i  + 00 

j -* 0 ; DIST ( 0 )  +* 0 
2 .  while n + I  is not chosen do 

j is chosen 
3. if i is not chosen and LENGTH ( j .i ) 0 then ' 

< synchronize > 
5 .  if i is marked then write-mid x , DIST (i ) ) 

< synchronize > 
6. if x = DIST ( i  ) then 

unmark i ; j 2-** 2 
7. <synchronize > 

end-whilq 

Step 5 : (* augmentation *) 
1.  k + * l ; W T - * 0  

(* retrieve path by backtracking *) 
2. j +* n + l  

. 
3. while j > Q do 

A  PARENT(^),^) +* 1; - 
4. if MATCHING ( PARENT ( j 1. j ) then 

MATCHINc ( P,4RENT.( j,);j ) +* false - ,  

W T  -* WT - WEIGHT( PARENT( j ) . j  ) 
5.  else 

MATCHING ( PARENT ( j  1. j ) t *  true 
W +* WT + WEIGHT( PARENT( i ) . j  )- 

, 6 .  ;' +* PARENT( j )  
' < synchronize > I + 

8 
end-while 

7. if WT < 0 then D O N E  +* true 
1 
J 

Repeat steps 3 to 5 until DONE. 

It is not difFikult to see th&hLSteps 0.12.3 and 5 of Algorithm 5.7 are equivalent to  the 



a 
corresponding steps in the sequential Algorithm 5.6. 

Step 4 builds the shortest-path tree. First. line 1 of Step'4 assigns variable j to be the source s . 

In the Tllowing iterations. all s o n m r  e set of marked vertices. V. is the set 

of vertices bordering T y h e r e  T is the tree we are buildif$. The shortest distance f,rom source 

s to each. son is calculated at line 4. The marked vertex with minimum distance from s is 

identified by lines 5 and 6. This veftex is then chosen as the next va1u.e of j . Hence, Step 4 is 

equivalent to Dijkstra's Algorithm and it builds the shortest-path tree. 0 

Analysis 

mn t 

Theorem 5.2.12 : The weighted bipartite matching problem can be solved in O(-) time using 
P 2 

\ 

m 
p (<*-) processors on -the F&A PRAM paralie1 model with the addition of the 

/ - - -- n  

"write-min" operation. 

: The time required for each step of the algorithm* is O h  1. Since the maximum size br 

the matching is O ( n )  and the size of the temporary matchings increases by one after 

each augmentation, the number of augmentations required is O h  1. That is . there are 

2 O ( n )  iterations of steps 3 to 5. Hence, the whole process takes O h  ) time. The 

number of elementary operations for stips 1 to 4 is O(m ), and for Step 5 is O(n 1. So. 

the total number of elementary operations is O h m  ). The problem of assigning proces- 
I '  

sors to the jobs can be solved easily-since a t  steps 0 to 4 of the algorithm. there are x - 
jobs - one for each of the vertices adjacent to a certain vertex j. At Step 5 there will be 

only one job a t  each instant. Hence, the assignment of p < n processors to these jobs is 
. 

straightforward. By Brent's ~ h & r e m .  we can use p processors to implement the algo- 

mn m 
rithm in t i n e  O(-) if p 6 --. Therefore, we can use m  ln  processors to execute the 

P ,  n  

algorithm with the same tiate complexity. 



Theorem 5.2.13 : without the "write-min" operation. .Algorithm 5.7 solves the problem in 

o(; "ogn .) tlme using m /n processors. 
% 

Proof : We have shown that simulation of the write-min operation requires O(1ogn ) time-on 

the general PRAM machine. So, the time for Step 4 is O(n logn ) and overall time is 

2 
.O(n logn ): The number of elementary operations for Step ' 4  also increases to 

O(m logn ) giving a total of O h m  logn 1. Hence, m  /n processors are again needed to - 
v 

maintain the time complexity. 16 

/< 3 
~5.3. Fast Algorithms for  the Bipartite Matching Problems - - 

As with the general two-matroid intersection 'problems, the bipartite matchrng problems 
1 

can be solved by faster algorithms which use more processors. For the cardinality bipartite 

matching problem. A sub-linear time bound is achieved. In this secbion we de$c.ribe these fast 

algorithms. The keys to these algorithms are the technique of recursive doubling and a loga- 
- 

rithmic time s60rtest-~aths algorithm. .. 
. a 

Algorithm 5.8 : Fast Weighted ~ i p h i t e  Matching Algorithm '+ 
In -4lgorithm 5.7 for the weighted bipartite matching problem, steps 0.1.2, and 3 can be done in 

! 

0( 1 ) tlme using n ' processors. This is because the "for j = 1 to n " or " j = 0 to n " loops at 

lines 2. 2. 4,  and 1 in steps 0. 1 .2, and 3 rqpectively can be done concurrently by assigning n 

\processors. P, . . . P E to node i ( i.e., one processor for each time through the loop). Back- 

lrracklng in Step 5 can be done in O(1ogn ) time by recursive doubling (see s t i o n  4.4.3). We 
,' 

d 

show how io do Step 4 in logarithmic t i e  using the teghnique developed for Algorithms 4.5 

and 4.6 to search for source-sih paths in the border graph. 
, 

> 



Step 4 : (* find shortest-path tree *) 

2 

Each vertex i in the residual graph has a tree T; which will grow exponentially to a maximum 

height of O(n 1. Each vertex j may appear a t  most at one node in T,  . If vertex j -does appear. 

then PARENT ( i  . j ) will be the vertexaumber of its parent node. LEVEL ( i  . j ) will be its level - 
2% 

number, and DIST( i .  j )  will be the shortest distance known so fa? from vertex&Ed/ In the 
.--- 

residual p a p h .  If j is not in T, then PA RENT ( i  , j 1 is null ; LhI'EL ( i  . j IS -a) and 
%-- 

D I S T ( i . j )  i s m .  . 
r 

Step 4 now consists of the foll s to be' done by processors i',,, . l < i  . J .k < n  . ~n 

parallel. 

Initialization : 
1. f o r  each vertex i in the graph 

(* build T,' *) . 
2.  PARENT ( i  .i ) +* 0 : LEVEL ( i  .i )+* 0 ; DIST ( i  ,i ) +* 0 
3. f o r  each vertex j # i 

if LENGTH(i  . j )  20 , t hen  (*j is son of i*) 
PARENT(i  , j  ) +* i ; LEVEL ( i  , j )  +* l ; .- 
DIST ( i  , j ) +* LENGTH ( i  , j - )  - - 

q '-1 
The following is repeated until DONE 
q-th i teration : k 
4. 9 + 9 + l  
5.  f o r  each tree T ,  
6. f o r  each node j a t  level LEVEL ( i  . j )=2' f 

f o r  each node k in T,  
write-min( DlST ( i  ,k ) . DIST ( i  . J )+DIST ( j  .k 1) 

< 
<synchronize > ' ** 

7. if DlST (i .k )=DIST ( i  . j )+RiST ( j  k ) t h e n  
PARENT ( i  ,k ) +" PARENT ( j .k ) 

< synchroniz > c DONE +* t rue 
<synchronize > - 

8. if PAR-ENT(0.k ) f null t h e n  
PONE +* f.alse -. # 

Theorem 53.1 :' Algorithm 5.8 weighted bipartite matching problem In O h  logn ) 

3 
t i 9 e  usmg n processors. 



2 Proof : Steps 0.1.2.3 of the algorithm can be done in O(1) time using n processors. Step 4 can 
-- 

be done in ()(log n ) time using n processors as described above. Step 5 can be done in 

' 2  
O(log n) time using n processcrs by recursive doubling (section 4.4.3). There will be 

O(n 1 augmentations which implies O h  ) iterations of steps 3 to 5. Hence, the overalJ 

3 
complexity of the algorithm is O(n logn ) time using n processors. 

Algorithm 5.9 : Fast Unweighted Matching Algorithm 

The unweighted matching problem can be transformed into the weighted matching prob- 

iem by giving each arc a unit weight. Then Algorithm 5.8 can be modified to  solve the 
- 

unweighted problem. 

Theore'm 5.3.2, : The unweighted-bipartite matching problem can be solved in o(& logn ) time 

3 
using n llogn processors. 

P 
Proof : We can transform an unweighted bipartite matching problem into a weighted bipartite 

matching problem by giving each arc a uhit weight. Each'' augmentation in' the 

transformed weighted algorithm will be comparable to  a blocking step in Dinic's Algo- 

rithm: The solution to the shortest-paths problem will contain a maximal set of aug- 

menting.paths. This set of paths gives the maximum incremental weight and is 

equivalent to the set of augmenting paths resulting from a blocking step. By Theorem 

5.2 .6 ,  there will be 0(6 ) blocking s tepsfor  Dinic's Algorithm. Therefore we can also 

say t h a ~  there will be o(&) augmenting steps for the transformed weighted algo- 

rirhm. 'The time required for each augmenting step is O(logn 1. When solving the 

shortest-paths problem, each element in a tree Ti can be a leaf a t  level 2' for only one 

q . Since each suc leaf requires O(n ) operations when a tree is linked to i t ,  and there 

3 are n trees in is O(n 1. By Brent's Theorem. 

3 
n / l o p  processors within the same time 



bound. Hence we conclude that the umeighted bipartite matching problem can be , 

solved in o(& logn ) time using n processors. 0 

Note that w e  have essentially derived a parallel algorithm for solving the minimum cost 
-- 

flow problem in general. However, it is shown in [Ta-831 that an algorithm based on minimum 

cost augmentations will. require O(If I) augmentations, where is the value of the minimum 

- cost flow. The complexity of the parallelCalgorithm will therefore be ( ) ( I f  I log rr ) which is not 

strongly polynonzid. An aSlgorithm for this problem is strongly polynomial if the time complex- . 
o/ ity is polynomial in the number of nodes and is independ n of both d s t s  and capacities. We ' 

- = = & .  

expect a strongly polynomial parallel algorithm to be found n the f$ure for the general 
1 

minimum cost o w  problem. 

53.1. About the Shortest-Path Problems 

The shortest-paths problem is concerned with a directed network in which arcs may have 

positive, zero or negative lengths, as long as there are no negative length_cycles. Parallel algo- 

rithms for two kinds of shortest-path problems are reported below. The two problems are: 

b 

(1) The single-sourc - Finding the shortest path from a specified vertex to all other 

vertices in a network] 

(2) The all-pairs problem - Finding the shortest path between every pair of vertices in a net- 

work. 

Some reported work on parallel shortest-paths algorithms includes [ ~ r - 7 5 1 .  [ ~ e - 8 0 ] .  

[DPL-801. [Ku-821, [MD-811. [~r-831. [QU-831 and [YO-83); The following tabre list some of the 

results of this work. 



Table. Parallel All-Pairs Shortest-Paths Algorithms 
. , 

Reference Model C!omplexity Processors 

Systolic array O(n > 
MIMD-TC - 
SIMD-SM-R 0(loH2n ) 
MIMD-TC O h  9 +pn 
SIMD-PS. SIMD-CC O(log .n ) 
SIMD-SM-R W O(1ogn ) 

In this thesis. parallel procedures that solve these shortest-paths problems can be derived . 

as special cases of the main algorithms. 

w 
The single-source problem is a sub-problem of the weighted bipartite matching problem 

which is solved by Algorithms 5.7 aad 5.8. In the cardinality two-matroid intersection algo- 
i 

rithms ( Algorithms 4.2 and 4.5 ) given in the previous chapter. the sub-problem of finding a . 
shortest source-sink p a t + k  BG(I) is a gerieralization of an all-pairs shortest-paths dfoblem: 

the lengths of the directed arcs in BG(I ) are taken to be one, and only the shortest paths from 

the sources to the sinks are significant. Similarly, in the weighted two-matroid intersection 

algorithms ( Algorithms 4.4 and 4.6 ), the s ~ b - ~ r o 6 l e m  of finding a maximum weight source- 

sink path in BG(i )-is also a; all-pairs shortest-paths problem. The length of each directed arc 
.. - 
in the graph in'the all-pairs problem is the negative of the augmenting weight of .the arc in the 

border graph. 

From the results in this thesis, we are able to solve the all-pairs shortest-paths problem in 

3 
O(1ogn ) time using n processors using our model. This is the same as the fastest known paral- 

lel time and the time-processor product is smaller by.a factor of logn . This is because of the 

"write-minn/nwrite-max" operations which seem to be very useful in weighted problems. 

Now we will show that the fast procedures for the shortest-paths problems in Algorithms 

4.5 and 4.6 are equivalent to "the repeated plus-min methodn used by many parallel shortest- 

A, paths algorithms. The following is a description from [QD-841 of the repeated plus-min multi- 

plication method used to solve the all-pairs problem in parallel. %- 

Given an n-vertex weighted graph G. the goal is to produce an nxn matrix A such that aij  



is the length of the &ortest path frbm i to j in G .  Let .: denote the length of the shortest 
> 

path from i to j with a t  most k intermediate vertices. Since there are no negative weight 

n 0 
cycles in G ,  aij  =aij .  a,; =O. for a11 i . 14i bi . and for all distinct i and j . a,, is the weight 01 

0 
the arc from i to j: if no such arc exists, then a i j =  00. It is not hard to show that 

k P 12 A. 12 0 
ni, =min{ai,,, +a,, ). Hence. A n  may be computed from A by repeated plus-min multipliua- 

tion. The fast matrix multiplication algorithms devised by Dekel et a1 [DNS-811 for the SIMD- 

3 3 CC and SIMD-PS models (see section 2.1) can solve this problem in O(1ogn ) time using n pro- 

cessors. 

" In our algorithms (Algorithms 4.5. 4.6 and 5.8). a tree T, at the q -th stage 

1 
corresponds to row i in matrix A . That is, a node for element e, in T, at  the y -th stage 

corresponds to ah  in the repeated plus-min method. 



6. DlRECDD SPANNING TREES 

The Directed Spanning Trte (DST) problem (see Example 1.10) is defined as follows: 

Given : an arc-weighted directed graph G =(V A ) br 

with a distinguished root node with in-degree zero 

Firld : a naximum weight spanning tree directed from the root node 

This is a two matroid intersection problem with the following two matroids: 
I 

( 1) graphic matroid of G. 

( 2 )  partition matroid in which sets of arcs, no two of which are directed into $he same node, are 

independent. 

We can apply the gerferal weighted two-matroid intersection algorithms to solve this . 

problem. However. when we build the border graph for this problem, we have to look for the 

circuits in each of the two matroids. For the partition matroid, each pair of arcs going into the 

same node is a circuit and this is easy to find. For the graphic matroid, the cycles in the graph 

are the circuits and the search for circuits is not as easy. Moreover, we have a sequential 

directed spanning tree algorithm which runs much more efficiently than the general sequential 

matroid algorithm. We have derl ;ed a parallel algorithm which achieves perfect speed-up with, 

respect to this efficient algorithm. We will noi  show the use of the general parallel algorithm 

because it will be inferior to this special parallel algorithm. In the following, we describe the 
A 

sequential directed spanning tree algorithm folL\wed by the parallel version of it. 
r 

6.1 Sequegtial Algorithm 

A particularly simple and elegant procedure has been devised by Edmonds [Edd8].for 

this special case of weighted matroid intersection. The algorithm has two phases. In the first 

.phase, cycles are replaced one a t  a time by "pseudo-nodes". In the second phase, pseudo-nodes 

are expanded in the reverse order. 



-108- Ss4 

1 . 
+ 

Algorithm 6.1 : Sequential DST Algorithm 

(G is a digraph and w is a weight function on the edges of G .) 
! - 4 (Phase 1 : contract cycies) 

1. repeat until done 
2. Use greedy algorithm for the partition matroid (i.e. choose maximum weight arc 

entering each node) ,.- 

3. if'therz are no cycles then done 
else 

4. Replace nodes on each cycle+y a pseudo-node. Remove all self-loops. 
, Replace arcs .o or from nodes on thevycle by arcs to or from the pseudo-node. 

Replace weights on arcs entering the pseudo-node as follows : if ( i  . j ) is 
replaced by (i R ), where k is a pseudo-node and i is not in the cycle replaced 
by k , ther set w,, = w,, ,-(weight of the ~ n i q u e  arc of the cycle into 
j ) + (minimum weight of an arc on the cycle). 

. (Phase 2 : Expand pseudo-nodes and choose tree edges) 

6. Choose arcs from the final contraction of the primal algorithm. 
7.  repeat until done 
8. Expand a pseudo-node. Choose all arcs except the single arc on the cycle that 

will cause two arcs to enter a single node or pseudo-node. 

Example 

We illustrate this algorithm on an example : 

In the fir'kt iteration of phase 1 ,  we choose arcs e 5,e,,e ,,e 8. and e, after applying the 

g;eedy algorithm on the partition matroid. So, as e5,e7. and e 8  form a cycle, we coalesce 

the corresponding nodes to form a pseudo-node (3.4.5) and change the weights on the arcs 

as given by the algorithm. 



In the second iteration we dgain apply the greedy algorithm on the matroid 

which forces us to choose e , ,e,  and e ,. As e ,  and e 6 form a cycle on node 2 and pseudo- 
4 

node (3.4.51, we coalesce these nodes to form the pseudo-node (2.3.4.5) and change the 

weights on the arcs. e r b u l t  is the following graph. 3 

Now, in the third iteration, we choose arcs e ,  and e,. Since there are no more cycles. 

phase 1 is finished and e ,  and e 9  are chosen to be in the spanning tree (in line 8). The 

. situation is as follows. 
PI 

In phase 2, we first, expand the pseudo-node (2.3.4.5) and remove the edge e 6 as both edges 

o , and e ,  enrer node 2 and e ,  is in the cyr!e. Arc e , is added to the solution. Now. we 

expand the pseudo-node (3.4.5) and we get: 



As e ,  and e ,  both knter node 3. we remove e ,  which is in the cycle and add e ,  and e 8  to 

the solution. The algorithm ends now and the total weight of the tree so formed is 43. 

The correctness proof of the algorithm can be found in the original paper by [Ed-681. [Ka-711 

also proved correctness using a more elegant technique. [Ta-771 presented an efficient imple- 

2 mentation for this algorithm yhich runs in O(min{m l o p  . n 1) time. 

Algorithm 6.1 finds a maximum weight spanning Lree, but L.re maximum-weight intersection - 
may be a forest. Minor modifications to the algorithm to get a maximum weight intersection 

are described irf [~a-761. Ch. 8. 

F 

6.2 Parallel Algorithm 

The parallel algorithm closely follows the sequential algorithm. The following data struc- 

tures are used in the parallel algorithm : 
0 

A j . : -1 if there is an edgefrom j to i in the given graph; 
k if there is an edge from j to i but i is a pseudo-node and k is the sub-node in 



this pseudo-node to which the edge was formerly directed; 
0 otherwise. 

W E r G H r ( j , i ) :  

the weight of the edge from j to i if it exists; 

-oo otherwise. 

EDGE-ZD(j , i ) :  
the id of the edge from j to i if it exists; 

0 otherwise. , 

PARENT, : j if arc ( j  ,i ) is the heaviest (of maximum weight) incoming arc for node i ; 

null if no such arc exists. 

PSNODE : the index of the current pseudo-node . 

PSN : used to mark a certain node in a cycle. 

PS (i  , j ) : true if node j is part of pseudo-node i : 
false otherwise. 

MINWT : the weight of the smallest weight edge in the current cycle. 

X ( j ) : 1 if an arc (i  . j ) has been selected~for output where j is inside an pseudo-node and i 

is not (thislimplies that the edge coming into j in the cycle will be discarded on 

expansion): 
0 otherwise: I 

The parallel algorithm consists of 3 phases: 

Step 0 initializes the adjacency matrix A, the weights, the edge-id's. and other variables. 

Step 1 applies the greedy algorithm to the partition matroid, choosing the maximum weight 

arc (i.j) entering each node j. Node i is marked as the parent of j. 

3 

Iterations of Step 2 will continue contracting cycles into pseudo-nodes until all cycles are 
I 

removed. The search for cycles is done in parallel in lines 2 to 5. Each node will search 

through its descendents one by one. I one of the descendents points back to the original e 
node. then a cycle has been found. If a cycle is found then the nodes inside this cycle will 

k,.e contracted into a pseudo-node, x. The PS(x.i) value for each such node i will is marked 

Lrue- These nodes become "inactive" and the pseudo-node becomes "active". Only active 

nodes will be considered during the sea'rch for cycles. Lines 9 to 11 will consider the arcs 
5 

going from nodes inside the pseudo-node to nodes outside. If more than one such arc is 

directed to the same node y outside. then only the one with greatest weight will be retained 



, 

as the arc directed from the pseudo-node to node y. The related variables of A.  EDGE -ID . 1 
WEIGHT andrPARENT are updated. Lines 12 to 15 will consider the arcs going into the 

I nodes inside the pseudo-node from nodes odside. The weights of th incoming arcs are 

inodified in line 12 in the same way as in Step 5 of the sequential algorithm. If more ttian 
3 

one such arc comes from the same outside node z, then the one with greatest weight will'be 
i 

retained as the arc directed into the pseudo-node from node z. The corresponding variables 

are updated. Finally. ',he incoming arc with greatest weight to the pseudo-node is chosen at 

lines 14 and 15 by using "write-max". PARENT of the pseudo-node is thus determined. 

After all cycles are removed. Step 3 will e x ~ n d  the pseudo-nodes in the reverse order o f  

their formation. The matrix PS is used to identify the nodes inside the pseudo-nodes. Note 

that a node is active in line 6 only if it is a node in the pseudo-node which was expanded in 

the previous expansion and marked active at line 8. The edges coming into these active 

nodes are output at  line 7. 

Algorithm 6.2 : The Parallel DST Algorithm 

Each processor Pi for 1 6 i  6 2 n  will perform the following steps. 

Step 0 : (* initialization *) 
PSNODE +* n 1 .  WT. t* -m ; 

2 .  for all incoming edges ( j  ,i ) with weight w a d e d g e  id = q' 
3 .  ' A ( j . i ) + - - 1 ;  W E I G H T ( j , i ) + w :  E D G E - I D ( j . i ) + ' q  
4 .  x ( ~ ) + o : P S N ( ~ ) + O ;  PARENT, =nu l l  
5 .  PS (n,+i , j )  + false for j = 1.2 .... n 
6 .  mark node i active 

For j = 1 to n do Step 1 



Step 1 : (* frnd heaviest incoming arcs *) 
write-max I WT WEIGHT (i  . j ) ) 1. 

2 .  <synchronize > 
3. if 'NT = WEIGHT ( i  . j ) then PARENT, +* i 
4. WT + -00 

Repeat Step 2 until no cycle is found 

Step 2 : (* :ontraction of cycle *) 
1 .  if i = 1 then PSNODE + PSNODE + 1 

(* detect cycle *) 
2. if i is active then 

j + PARENT, ; 
3. while j f null and j f i do 

j + PARENT, : 
4. if j f null then (*'cycle is found *) 
5 .  RSN c* i 

<synchronize > 

6 .  If no cycle is found go to Step 4 



( * collect nodes in cycle *) 
if PSN = i t h e n  

PS (PSNODE , i ) +- true 
mark node i as inactive ; mark PSNODE active 

%- 

j +PARENT; *_ 
4 

MINWT +- WEIGHT (PA RENT, .i ) 
while  j Z PSN d o  
<synchronize > 

j +-* PARENT, 
- - --i MiN WT > W E I ~  ( j ,i ) then  MIN WT +- WEIGHT ( j .i ) 

mark node j as inactive 

'% 
PS(PSNODE, j )  +- true - 

( * conAder edges from' pseud(~ttode *) 
i f : A ( j . i )  # Othen 

if WEIGHT ( j ,i ) > WEIGHT (PSNODE .i ) t hen  
E K E  -ID (PSNODE .i ) + EDGE -ID ( j .i ) 
WEIGHT (PSNODE , i ) +- WEIGHT ( j .i ) 

PARENT, +- PSNODE 

(* modify weighs of arcs to PSNODE. *) 
i f A ( i . j ) # O t h e n  

WEIGHT ( i  . j ) + WEIGHT ( i  , j ) - WEIGHT  PARENT^ .i ) 
+ MdNWT 

if WEIGHT ( i  . j ) > WEIGHT ( i  .PSNODE ) t h e n  
WEIGHT ( i  .PSNODE ) +- WEIGHT (i . j ) 
EDGE -ID ( i  .PSNODE ) +- EDGE --ID (i . j ) 
A ( i  .PSNODE +- j 

<synchronize > 
write-=( WT . WEIGaT ( i  PSNODE ) ) 

<synchronize > 
if WEIGHT (i PSNODE ) = WT then  PARENTBNoDE +* i 
WT + w 

end-while 
- 

Repeat Step 3 until PSNODE m 

Step 3 : (* expansion and out@ *) 
1. if i = 1 t h e n  PSNODE + PSNODE - 1 

X ( i ) + O  
if PSNODE = n t h e n  stop 
< synchronize > 



if i = PSNODE then w 
% PARENTPSNoDE * null then 

j + A ( PARENT,,,,, ,PSNODE ) 
(* j is the node in cycle PSNODE to which the edge 
from PARENTPSNoDE is directed *) 
m a r k X ( j ) + l  . 
output edge EDGE -ID ( PARENTPSNoDE. PSNODE ) 

&ark PSNODE inactive 
< syrtchroniie > 

if node i is active then 
if X( i  = 0 then 

output edge EDGE -ID ( PARENT, ,i ) 
mark i inactive 

< ~ynchronize >- 
if PS ( PSNODE . i j then 

mark node i active 

# 

Proof of Correctness Cr 7 
. - 

The correctness of the sequential algori9m has been proved in [ ~ ~ - 6 5 ]  and [Ed-671. We will 

prove thaL the parallel algorithm does ;he same things as the sequential algorithm. 

( 1 ) Step 1 chooses,the heaviest arc directed int6 each node. 

(2) While there exists some c-e in the graph. Step will contract the t 
a pseudo-node. Weights of ,arc& . from i d  n o  the pseudo-node are 

modified. 

C 4 

There can. be more than one arc going into a pseudo-node and with the write-max instruc- 

tion at line 4. only the maximum weighted arc. is chosen. 

Step 3 will keep expanding the pseudo-nodes in the opposite prder to which they were 

formed until all pseudo-nodes are expanded. .During expansion, there is a unique arc [ j .i 1 . 
of the cycle,whose entry would cause two arcs to be directed into the same'node i and this 

arc should be discarded. At line 3. X (  j )  is marked so that arc [ j .i 1 will not be output at 
\ 

line 7. O - 
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Time Analysis for the DST Algorithm 

Step 0 tpkes O(n ) for initialization 

Step 1 takes O(1) time and it is repeated O(Q ) times for a total of O h  1. 

action of cycles. We do not know in advance how many nodes there will be - 
in a cycle and how many cycles there will be. However. the total t ~ m e  requrred is proportional 

t 

% X 
to the total number of nodes involved in all tht. cycles. This is  O(n ) because we know that a 

C 

*node will be contracted at most in one cycle. 

Step 3 is the expansion of pseudo-nodes. Step 3 itself takes constant time but it will be iterated 

q times where q is the number of pseudc-nodes. We know that q = O(n ) and therefore the 

, time for expansion is O(n 1. 
- 

From above, the overall time complexity is O(n 1. 
- - % /' 

Since the depth is O(n ) and 2n ,processors are used, the time-processor product for Algorithm 

2 6.2 is O h  ). Recall that the sequential time is O(min{rn logn .n2}). If the given graph is dense 
' 

. . 

2 
so that m '= O h  1, then we have a perfect speed-up. We have now proved the following 

theorem: 

Theorem 6.1: The directed spanning tree problem can be solved in O h  ) time using O h  ) pro- . 

cessors, whe& n is the number of vertices. 

It can be shown that the number of elementary operations for .4lgorithm 6.2 1s 0(n2) and 

that Brent's Theorem can be applied to  get the following result. 

2 
n 

Theorem 6.2: The directed spanning tree problem can be solved in O( -) time using ' p  proces- 
P 

sors where p < n  . 

2 
If write-max is l lot  used;\,then steps 1 and 2 will both require O h  logn ) operations and 

4 - i -, '\ \ 
O h  logn ) time. The o v e r a l l z k  will be >en logn ) and O(n ) processors must be used to main- 

tain this depth. 
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7. CONCLUSIONS 

In this thesis. parallel algorithms _have been designed for two-matroid intersection prob- 
1 

lems. We have designed paranel algorithms for both the general problems and two special cases 

; the bipartite matching problems and the directed spanning tree problem. For all of these prob- 
4 - 

+ 

lems, parallel algorithms, which achieve perfect speed-up over the fastest known sequentiai 

algorithms have, been desiqned. Another set of fast algorithms achieves almost linear time for 

the general problems. For the two special cases, we have designed parallel algorithms that per- 

farm better than the general algorithms by exploiting special features of the p r o b l b s .  How- 

ever. the general algorithms are useful in that they provide upper bounds on time and processor 

The parallel algorithms in this thesis were designed by choosing the most efficient sequen- 

tial algorithms and making them parallel. Unfortunately, some parts of the sequential algo- 
i* 

rlthms for the o-matroid illtersection problems are difficult to parallelize. The construction P " +  
of the' border graphs is the easiest part to do in parallel. Backtracking by recursive doubling 

requires lookahead concepts. At first it may seem that a breadth-first search of a border graph 

for 'a source-sink path is sequential in :ature. This is because each level of the search depends 

L 
on the previous levels. and the whole search tree is exponential in size. By examinating proper- 

ties of the problem, we see that the searches are. in fact, solving shortest-path tree proble s. A 4 
logarithmic time-algorithm for this &arch is derived in which the heights of the tempo - 
search trees are recurswely doubled, while the number of nodes in a search.tree never 

m . the number of elements in the matroid. *This algorithm can be seen as a graph-based version 

of the repeated plus-min multiplication method as given in [&l] and [QD-841. 
1 

However. the outer layers of the algorithms, which do augmentations, are still seq;ential. 

Each augmentation depends on the previous augmentation. and, unlike the breadth first search 
"er?, 

in which the whole search tree is implicitly embedded in the border graph, no information 

about future augmentations (i.e., the future border graphs) can be deduced explicitly or impli- 
. - 

citly. We do not know if augmentations can be done in parallel, but it looks like a very 
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difficult problem. 

There are two possible directions for further research on parallel matroid intersection 

problems. The first is to keep looking for more efficient parallel algorithms. I f  the augmentct- 

tions can be done in parallel, then logarithmic-or sublinear time parallel algorithms fa: t i h e '  

two-matroid intersection problems should result. One possible starting point is to look at 

sequential algorithms other than those used in this thesis. Although we have chosen the fastest 

and simplest sequential algorithms. and believe that the other algorithms will not give better 
r)i 

resuf:, the possibility has not been ruled out. Also, there may be entirely new strategies that 
9 

have not yet been discovered for salving the problems in parallel. 

The second direction is to t r y  to prove that some two-matr intersecti~m problem is 
-. 

, log-space complete for P. If this could be proved. then it would unlike1 y that the prob- 

lem can be bolved in logarithmic time, although' i t  does not rule out the possibility of other 

sub-linear time complexiiies such as o(&) time. It has been proved [Gss-821 that the max- 

flow problem is log-space complete for P. and the max-flow problem is closely related to the 

matching problem. Hence, we may get some insight from this proof to prove similar results for 
, 

the matching problem. This kind of proof is actually a special case of the more gen&,al problem - s 

/ 
-- 

/ - - 
of deriving lower bounds for problems in a parallel dnvironment. Deriving lower bounds on 

parallel computation is currently an active research area. 

There are other topics inxhis thesis which would be interesting to investigate further. I'ur 
-- 

example, we have used the independence oracle and the circuit oracle in the general matroid' 

algorithms. It would be interesting to see how these oracles behave for special cases of two- 

matroid intersection problems. In order words. how efficiently we can determine independence 

or c i ~ c u i t s  in special matroids? 

Another question is how the algorithms in this thesis perform on other parallel models. 

and. conversely. how existing parallel algorithms perform using our propose@ models. 

The work in this thesis shows that we are a t  a stage where parallel algorithm design 

depends on the parallel models, but also gives feedback on possible modifications of the models. 



We have proposed modifications to the fetch-and-add CRCW PRAM with the addition of t.he 

"write-max" and "write-min" operations. These two operations are very useful in problems 

where weights are involved. In particular. there have been some investigations of how ?s %d 

the maximum of a set of numbers in parallel ( e.g. [SV-811. [~a -751  1, and our new operations 
T .  , , 

suggest -a new point of view. We have also introduced'.a new parallel model called the 

concurrent-critical section model based on the design r,; parallel w i t h m s  in this thesis. There 

are &anany possible ways to design a parallel machine and the measure of how good a machine - 
f idef ' i s  $hould be how well it can be used to solve problems. Research in this area will provide 

1 

guidance fqr the design of real parallel machines in the future. In particular, it would be 

interesting to know whether it is cost-justifiable to build a machine based on the concurrent- 

critical section model, and hence achieve O(logn ) time for r e s o G g  critical sections. . . 



APPENDIX : RESU&TS 

In the followink, let m be thenumber  of elements in the matroids. R <m be the minimum pf " 

the ranks of the two matroids, c l ( m  ) and c 2(m ) be the time complexity for testing dependency in 
the matroids, and c(m) be max( c l ( m  1, c 2(m ) 1. p is the number o f~procesors  used. The seyuen- ' 
tial times are for the fastest known sequential algorithms. The sequential algorithms for problems 
(1 )  and (2) are from [ ~ a - 7 6 1  but the time analysis is improved in this thesis. 

(1 ) The Cardinality Two-Matroid Intersection Problem: 

Sequential time [ ~ a - 7 6 ] =  uimR2c (n; )) 

Parallel time: d 

3 
(i> O(R (logR +c (m 1)) if p 3 m llogR and using "write-min"; 

(ii) O(R (R +c (m 1)) if p 3 min( mcjm )mR ) and not using "write-max0/"write-min"; 

m ~ ' c  (m ) 
(iii) O(- ) 

\ 
if p 6 m i d  mc (m ).mR ) and not using "write-maxn/"write-min" 

P -. .?*, -. 
J 

(2) The Weighted Two-Matroid Intersection Problem: 

Sequential time [ ~ a - 7 6 1  = O ( ~ R  2c (m ) + m ~ ~ )  

Parallel t h e :  

(i) O(R (IogR +c (m 1)) if p 3, h3 And using "write-max" and "write-min"; 

(ii) O(R (R +c (m 1)) if p 3 mR and using "write-max"; 

(iii) O(R 210gm +Rc (m )) if p 3 +mR and not using "write&ax"/"write-min": 

m~ ' C  (m ) + m ~  
(iv) O( ) if p < mR and using b i t e - m a x " ;  

mR 2t. (m )+mR 310gm 
(v) a ) if p < mR and not using "write-max"/"write'minW 

In the following, let m be the number of arcs and n be tbe number of vertices in the given graph. 

(3 )  The Unweighted Bipartite Matching Problem: 



w Sequkntial time [HI(-731 = 0 ( 6 m  ) 

i 0 1 ) if p 2 n 3/logn and using "write-max": 

m 
(ii) O(n 6) if p 2 - and not using "write-maxe: 

n 

n *Jn m 
(iii) - .) if p 6 - and not usingnwrite-maxW/"write-min" 

(4 )  The Weighted B i w i t e  Matching Problem: 

Sequential time [Ta-83]= O h m  n ) 
\ , 

Parallel time: \ &  

(i) O(n logn ) if p 3 n and sing "write-max" and "write-min": P 
m 

(ii) 0 ( n 2 )  if p - and using "write-min": 
In 

/ m 
(iii) ~ ( n  210gn ) if p a - and not using nwrite-max"/"wri~e-minH: 

n 

mn m 
(iv) O(-1 if p d - and using "write -minn; 

P n 

M logn m 
(iv) O( ) if p 6 -'and not using "write-max"/"write-min": 

P fr 

. 
( 5  Directed Spanning Tree: 

Sequential time [Ta-771 = O(min{m logn .n '1) 

ParaHel time: - 
(i) O(n ) if p -3 n and using "write-maxn; 

f ii) O(n fogn ) if'p 3 n and not using "write-maxm/"write-min*; 
-6' = 

.n - c 

(iii) O(-) if p d n and using "write-max"; 
' P 

/ if p -c n and not- using "writemax"/"write-min" 
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