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‘Using the Fetch-and-Add CRCW PRAM model, parallel olgoriyhms are dosigned in this -
thesis for general weighte‘d‘ and urxw;i‘ghted two-matroid intersectiofq problems, and for two
special two-matroid intersection problems: the bipartite matching probien'i (both weighteo and
unweighted), and the directed spanning tree problem. ;All of these parallel \all.gorit.h'ms achieve

perfect speed up with respect to the corresponding sequential algorithms. Fast algorithms but

~without perfect speed up are also designed. - .

Two new parallel write operations, "\x;rite—max" and "write-min", are introduced. Using
these new operations, the time complexities 3f some of the algoriti:ms mentioned above can be
improved by an O(log n) f‘actor‘ where n s the number of :é‘iéments in the matroids. Implemen-
tation of these operauons is shown 1o be simpler. than Fetch-and-Add. Also, a generahzatnon of
the CRCW and Fetch-and- Add CRCW PRAM models is suggested Wthh gives rise to a more
powerful model. We call this the concurrent‘crmcal section model”. It can be shown that
simulation of this model by a CREW PRAM moool has time and spacé complexities of O(Tlogn)
and O(Mnlogn) respectively, where n is the number of processors and T and M are the time
and number of variables involved jin the crmcal section. These are the same time and space
complexities as the simulation of the Fetch-and-Adg CRCW PRAM model by the CREW PRAM
model. We believe that ‘the write-max and the write-min operations and the concurrent criti-

cal section mode] will be very useful for<designing parallel aléorithms for other difficult prot-

lems. .

W
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\1. INTRODUCTION R ~

i s ———

‘1.1. Motivation -

\

Conventional sequential computing systems are approhching intrinsic physical limitations

=

ori‘ their computing speed. One way to achieve higher speeds in cbmputing systexﬁs is parallel-

isip. With the advent of monolithic VLSI technology. the production of low-cost single chip _

N

: ‘-"“"i);bcessors is possible and we can build parallel computers consisting of thousands of such pro-

cessors: As Zakharov remarks in his paper [Za-84]: (

"Looking into .the future, it seems that we are in fact in a transition phase from purely
sequential systems and that parallelism will become a standard feature of most computer sys-

tems in the future at the processor level.”

Parallel processing is a very promising trend and we ihay expect the next generation of a

computers to be pa}allel computers which ‘may bring abeu}.:;g revoTution in practically every

aspect of computer science. T

However. no one knows how to build a parallel compﬁiér in the best possible way. There
are many alternatives on how we car; conneét the processors and memories, and on what kinds
of c’ﬁe/;ationé we allow fo},parallel processing. To make reasonéble decisions on these ques-
tions, we have to look at the possible effects of ttzese cﬁoices on the design of algorithms. In this
thesis, a model which consists of multiple processors and shared memory is used because it is
suitable for algorithms with complex data flows. VThe thesis aims at designing parallel algo-

rithms for the two-matroid intersection problems using this parallel model. .

Three objectives are achieved: ' .

(1) The first objective is 1o understand more about the the power of parallelism in computer
processing. Before we can justify the introduction of péfallel computers. we must find out

how far we can parallelize the solution of problems of interest.

There are two kinds of measures of the performance of parallel algorithms.:The first is the

measure of speed-up of the parallel algorithm over an efficient sequential algorithm. uwr,

—

wb
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is the parall_el time and T, is the sequential time, then the speed-up ratio, R, . is
’ p

: processors are used in the parallel processing, then a perfect speed-up is achieved if x equals
O(R, ). Equivalently. we may define the time—processor product as T, times x. and a perfect

speed-up is achieved if the time—processor product is equal to O(T D ” .

The second meaiure is thé parallel time itself. A parallel algorlthm which runs.in loga-
rithmic time or sub-linear time using a polynomial number of processors is usually con-
. sidered to be a very fast algorithm and’ will well justify the use of parallelism. It is gen-
era]]y believed that»someproblems in P cannot be solved in log-time in parullel, &vhere P is

the class of problems solvable in polynomial time sequentially. It has been proved in [Go-

78] that if a problem is log-space eomplete for P, and if it can be solved in log-time in

parallel, then all problems in P can be solved in log-time in parallel. Hence we canlprove

that a problem is u‘nlikely to be solvable in logarithmic time by proving that it is "log-space "

complete” for P.

In order to challenge the power of parallelism, tlle two-matroid intersection problems are
chosen. So far, parallel algorithms have been designed predominantly for simple problems

or for problems with regular data structures. Two-matroid intersection problems are in

one senSe spme of the hardest combinational problems that can be solved by polynoniial

time algorithms [PS-82]. The single-matroid problems have an efficierit parallel algorithm

which runs in log-time (chapter 3). The three-matroid intersection pro\blems are NP-

_complete The two-matroid intersection problems can be solved in polynomial time but the
sequential algorn.hms for these problems have complex structures and apparent sequential

=

‘natures. lt is not known whether the two-matrold problems can be solved in sub-lmear

time.

The two-matroid problems can be viewed as linear programming problems_. In fact, one of

the fastest known sequential algorithms is based on linéar programming techniques [La-

761.[PS-82]. In [DLR-79]. linear programmlng problems have been shown to be log—space//J
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hard for P. Also, the fastest sequential algorithm for the bipartite matching problem,

- problem. Although it still remains to be shown whether sub-linear time can be achieved -

(2)

can be done.

cessﬁg/ and the appropriateness of the chosen model. -

'

which is a special case of the two-matroid problems, is based on a transformation into a’

max-flow problem [Ta-82]. The max-flow probégﬁ has been shown to be log-space complete

for P in [GSS=82]. These are indications that the two-matroid intersection probiems are

’

difficult to solve in_paféllel ‘efﬁcie.ntl'y although this does not rule out the possibility that it

a 4 . f: .

s

The results of this thesis show that perfect speed-up can be achieved for the two-matroid

intersectioa probiefis. Fast algorithms which run in almost linear time are.'derive.d for the

general prgble;lgs,.,,,A sub-linear time algorithm is derived for the unweighted matching

o

for the geéneral_problems, the results of -the thesis demonstrate the power of parallel pro-

-

2
7

The second objective is to obtain some general strategies for deriving parallel algorithms

which can be used for other vproblems. There ate at least three techniques which are appli-

cable to most of the problems in this thesis.

v l ' .
The first one is "recursive doublmg [FW- 78] With this technique, we increase the size of

search or temporary solution set by double at each iteration, so that a logarlthmlc time

complexity can be achieved. This techmqu gglses in many places in this thesis and we

believe that it is useful in the design of parallel algorithms in general. -

o

e

The second technique is a parallel brepdth-ﬁrst search which solves the shortest-paths

problem in logarithmic time. It is used in all the fast algorithms in this thesis.

The thlrd techmque is to apply Brent s Theorem" to decrease the number of processors

e

used wuhout increasing ‘the parallel time. This method is adopted from [sv1-82]. It is

vest
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applied in all problems in this thesis to achieve perfect speed-up. It should also be useful

o

for other parallel algorithms.

x

Lo

(3) The third objective is to observe the impaci on parallel algorithms of the parallel model.

- Since the chosen problems are very demanding of the model of parallelism, they have actu=

ally led to the introduction of two new operations for the model. Also, they have
indirectly led to the suggestion of a more powérf ul medel, the "concurrent critibal section
model”, which could be very useful for parallel algorithm design for other difficult prob-

lems.

1.2. Definitions and Examples

In the following, definitions and examples of matroid problems are given. Matroids are

special subset systems where subset systems are defined as follows:
o

Definition 1.1 A subset system (independence system, hereditary set system)-S =(E 1) is a

finite set £ and a collection / of subsets of E such that 3

1.1.1 g€l

"112 If X €landY C X thenY €1  (hereditary property of independence) .

. ' .
For every subset system, we can define a related problem as follows:

;

Definition 1.2 A combinatorial optimization problem associated with S is: given a weight

w(e) 2 0foreache € E, find an elemeng\of I with largest weight.

>

The following are two %xamples of combinatorial optimization problems associated with subset

hd

sy;stems'.i



Example 1.1 Given a graph G = (V E) wnh non- negauve edge wexghts ﬁnd a max;mum wezght
spanning forest of G. E is the ground set (1 e.. the finite set of Definition 1. 1)andlis the

" collection of cycle-free subsets of E.

E
.

Example 1.2 Gi\)en a digraph D = (N .4 ) with non-negati‘ve arc weights. fipdapubset B & A

of largest welght such that no.two arcs of B have the same head.

oh
It can be proved that these two optlmlzallon problems are both solved by the well l\nown

greedy algorithm.

AN

Algorithm 1.1:Greedy Algorithm

=

(S =(E.I)is a subset system. X will be the solution.)

X - A < E
while A = O , '
choose elember'n e € A with laigest weight
A —A —le}

if X Ule}€I then X — X U e}

The two given examples are in fact examples of optxmlzatlon problems based on matroids. In

general any Subset sysiem whose oplimization prob]ems can be solved by the greedy algorithm -

is amatroid. Thus, matroid can be deﬁned algorithmically as follows (see [PS-82] pg. 285).

Definition 1.3 Let M = (E I) be a subset system. M is a matroid if the greedy algorithm
correctly solves any instance of the combinatorial optimization problem associated with
M. |
Matroid is among the very few mathematical structures which have this im.eres;ing rela-

tionship with algorithms. We may alstr

o matroid by adding a third axiom to the



- definition of subset system.

Definition 1.4 A matroid M = (E I) is a structure in which E is a finite set of elements and 1 is

a family of subsets of E such that S i

141 @€l

142 If X €édandY € X thenY €1I°

1.43 If UV €l with (U =1V | +1 then there exists an x €U —V such that

-

VU{x}elL

-

It can be verified that the independence systems in the two examples above both satisfy condi-
tion 1.4.3 in Definition 1.4 and are therefore matroids. In fact, they are examples of two

different types of matroids, namely graphic matroids and partitibn matroids. We shall see

more of these matroids in later chapters. »
i .

Definition 1.5 Let £ be the set of edges of a graph and let I be the collection™of cycle-free sub-

sets of E. Then (E 1) is a graphic matroid or cycle matroid of.a graph. N .

Definition 1.6 Let £ be a finite set of objects, let I be a partition of £ into mnt blocks ¥

B,B,. ..., B)v.and let d,d,, ..., d, -be positive integers. Then (E.I) is a partition

matroid where 1={X7X SE.|X MB, 1 $d,;1<i $m). (In this thesis, we will

assume the special case of d, =1, 1 € 'S m unless otherwise specified.)

-

The following.terminology will be used widely iiMis.

Definition 1.7 - ) L

.

~

Let M = (E ) bé a-matroid.

P
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1.7.1 Subsets in I are called independent ;‘ets. All-other \subsets of E are dependent 'sets.
'1.7.2 A base of M is a maximal independent subset of E.
1.7.3 A circuit of M is a minimal deper;dent subset of E.
1.7.4 The rank funyctionr. p. of M is defined as' follows - if -A is any subset of E . then
pPA =max{IX1:X CA X €I. (Le.. the rank of A" is the cardinality of a maximal
independent subset of A .) The rank of 24 denoted pM , is the rank of E.

1.7.5 A spanof A & E is a maximal superset S of A satisfying pS = pA.

*  Next we\shall introduce the matroid intersection proble,xﬁs. Note that there is only one
version of the singie—malroid problems, namely t‘c;xﬁnd a maximum weight independent set.
The maximum weight independent set will also be of maxim um cardinality. However. this is
not true for the intersection of two or more matroids. Hence. we have two versions of these
problems, one concerns the search for a maximum \*/eight intersection, the other concerns the
search for a maximum cardinality intersectioh.

Definition 1.8 Let £ be a finite set, w : E —R"a ‘nonnegative weighting function on £ and let

—

M,=(E X, )1<i €n be n matroids over E. The maximum weight matroid intérsection

n

groblem is the problem of finding a set / € ﬂ I, of maximum weight. The special case of

i=1
the maximum weight matroid interssction problem when w (e )=1 for all e € E is known
as the maximum cardinality matroid intersection problem. ‘

»

Thi_&hesis will focus on two-matroid intersection problems. Parallel algorithms will be

- designed for the general problems and also for two special cases, the ‘bipartite matching prob-

lems and.the directed spanning tree problems.

L

Example 1.9 : Bipartite Matching Problems.

Let G=(X,Y.E) be a bipartite graph, so that X and Y are two disjcint sets of vertices and E-



is a set of edges in XxY. A subset] © E?is called a matching for G if no two edges in I are
incident to the same vertex. The cardinality bipartite matching problem is to find a match-
ing Qf G of maximum cardinality. We forumulate this problem as a maximum'cardinali’ty
matroid intersection pr;)blem as follows. Let X ={x,. - .x,}and Y={y. --.y,} and
let I, ={(x;,.y ) € Ely €Y} for 1<i €n and T;={(x.y;) € Elx € X} for 1< <m. Then
the IT; 's ( ;'espectively the I'; 's ) partition E into blocks such-that any two edges of E are
in the same block iff they are incident to the same vertex in X ( respectively Y ). Let M,
=(E. 1, ) and N& (E. 1, ) be the partition matroids determined by the partitions of E
induced by the II;, 's and the I'; 's respectively. Hence aset & Eisin 11 iff no two edges 4
in l‘are incident to nthe samelvertex in X. Similarly 1 € I, iff n0 1two edges in 1 are’
- _incident to the same vertex in Y. Thus I,NI, is exactly the set of matching.s of G and sora
solution to the bipartite matching problem is given by a set I € I, NI, 'of maxiﬁum cardi-
nality. '
The weighted bipartite matchiné problem is’deﬁned similarly except that each of the edges
in E has a weight and the problem is to find a métching of G of maximum weight. The
corresponding matroid problem will be the weighted two-matroid intersection problem

for matroids M| and M ,.

Example 1.10 : Directed Spanning Tree Problem S l
Let G=(V.A) be a weighted directed graph with a distinguished vertex v of indegree 0.
We wish to find a maximum weight spanning tree of G rooted at v. Lei™M ,=(AI) be the
graphic matroid of G where we agree to ignore the direlacltion of the arcs. Thus1 € I, iff I
/is a set of edges which contains no cycle. Let V={v,,--- v, } and let (v; .v; ) denote an arc
from v, to v;. Then the sets I, ={(v,v;) € A|v € V}; 1<i Sn partition A into disjoint
- subsets. Let 1\\42=(A.12.) be the partition matroid over A induced By the II;’'s. Asetl€l,
only if no two arcs enter the same yértex. Thus I, NL, is the set of all subgraphs of G

which are directed forests. A spanning tree is a subset I € I, NI, such that lli=n —1.
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The three-matroid intersection. problems are NP-complete. An example is the Directed
Hamilton Cycle problem [GJ-79]. We do not ex‘pect these pi‘oﬁlems o be solvéd efficiently even '
on parallél oomputers.uAnproximation algorithms will be needed to solve them efficiently
within some error range.

-

Example 1.11 Directr1 Hamilton Cycle

Let G=(V,A) be a directed graph. We wish to find a directed Hamilton cycle in G. This prob-

lem can be realized as a maximun cardinality problem for the intersection of three matroids.

-

Let n =IV| and create a new directed graph G'=(V',A") where

V=V ULy, F and A'={(v; v, 0 €A 11 €0 2€ Sa UGy, v, )11SE S0 (v, v ) € 4)

Let M =(A'J,) be the graphic matroid of G. Let II, ={(v.v,) € A'lv €V} and
I.={(v;v)eAlv € V}for 1<i <n 41 Then the sets I, ( respectively I'; ) partition A’ into
b]bcké’ such that arcs‘ in different blocks enter (respectively leave) different vertices of (. l.et
M ,=(A'1,), M,=(A'1,;) be the partition matroids over A’ corresponding to the partitions
induced b&l the II, 's and the I';’s respectively. Then a subset | & A’ is in J N/,N/4 iff il is
éycle free (so it is in /,). it does not contain two arcs going into the same vertex ( so it isin /, )
and it does.not contain two arcs going out of the same vertex ( so it isin /3 ). In particular a
subset 1 € I1,NnI,N1I, of maximum carainality ii'=n is a path from v, to v, ,,. By finding
such ,an 1 we may then easily ccnstruc® the desired Hamiiton ;ycle by replacing the edge

(v; v, +1) €lby (v, .v)).

1.3. Previous Work

A sufvey of parallel algorithm design can be found in [Vi-83]. Algorithms and data
structures déveloped to solve graph problems on diffe§ént models of parallel computers are sur-
A

veyed in [QD-84]. In rei’ation to the matroid problems, a parallel greedy algorithm has been

designed in@&}]. Different versions of parallel algorithms for the minimum spanning Lree

[
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‘problem, which is a single matroid problem, have been—Adesigned‘. and we shall give a rgvliew at
the end of chapter 3. The ﬁnweighted matching problem c;m be transformed into the max-flow
problem, which has a parallel algorithﬁx [SV-82]). Dekel and Sahni [DS-82] have developed an
algp‘rithm based on a SIMD (Single instruction strean‘; multiple data stream)_model to ﬁnd the
maximum cardinality matching of a convex bipartite graph. A bipartite grathis convex if there
_ic an ordering of }.he‘vertiges X={x1,22,...,x 151} and Y ={y .y,.....y 3} such that for all tri-
plets i..j Jk with i <j <k, (x,.y;)€E and (x,.y, JEE implies (x, .y, JEE. The algorithm in

{DS-821 takes O(log’n ) time using O(n ) processors, where n is the number of vertices.

The all-pairs and single-source shortest-paths problems are sub-problems of the two-
matroid intersection problem and the bipartite matching problem respectively. Parallel algb—
rithms have been designed to solve the shortest-paths problem on different models. A list of

these élgorithms is given near the end of chapter 5.

-

There exist polynomial time sequential algorithms for all the problems in this thesis. For
the cardinality and weight;ed two-matroid intersection problems, there are aljorithms [La-
76].[PS-82] based on augmenung sequences (see ghapter 4) and algorithms [La-76], [PS 82]_
[Fr-81] based on the primal-dual method of linear programming. The same holds for the blpar—
tite matching problems (ILa-76] (PS-82]). The directed ‘spanning tree algorithm can be found in

[La-76] or [Ta-77):

1.4. VOvcrvicw

In the next chapter, parallel models are examined and the model used in this thesis is
descrihed. In particular, two new o;;erations. "write-max” and "write-min®, are introduced.
Also, a new model called the 'concufrent critical section” model is proposed and shown to be a
more powerful model than the existing ones.

Chapter 3 contains both sequential and parallel greedy algorithms for the single-matroid

problem and also lists the best algorithms known for the minimum spanning tree problem.
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Chapter 4 describes the sequentialr;algorithms and derives parallel algorithms for the genéral
cardinality and weighted two-matroid intersection problems. Chapters 5 and 6 desrcrib'eAihe
sequential algorithms and derive pa;allei algorithms for the special cases of bipartite matching
and directed spanning tree problems respectively. Conclusions and open proble'ms are given in-

' Chapter 7. The results from chapters 4.5. and 6 are summarized in the Appendix.

» Ca
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2. PARALLEL MODELS

Before d‘esignin'g a parallel algorithm. we must deﬁné the abstract model of parallel com-
putation which specifies the "design space” in which we work. There are many different parallel
models of qomputationv. We shall list some of them and justify the choice of model in this
théis.

2.1. Some Common Models

-

In this thesis, we are concerned with parallel models consisting of a "tightly coupled” col-
lection of parallel processors working together to solve a terminating computational problem.

There are several criteria by which we can classify parallel models.

(1) The number of processors may be fixed or unbounded. In this thesis, the'number of proces-

sors will be assumed to be polynomial in the number of inputs in the probleﬁls.

£

+

(2) We may classify the models according to the pattern of processor and memory intercom-

munication. Preparata and Vuilemin [PV-79] have distinguished two broad categories of

such parallel models. ) ' .

(i) Models based on a fixed connection network of processors

~These models assume that only graph theoretice'ﬂly adjacent processors can communi-
cate in a given step. Kung [Ku-82] has focused on the design of parallel algorithms
that conform well to "systolic” architectures which lay out well in two dimensions.

These systolic systems are examplé of models based on a fixed connection network of -

processors.

-

The Ultracomputer of Schwartz [Sc-80], mesh-connected processors such as Illiac IV ,

and the cube-connected cycles of [PV-79] also belong to this category.

The structure of this kind of model dictates tmﬂ,ﬁ problem be decomposed into

]
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identical subtasks whjch communicate among each other in some regular fashion. .

Hence it is not suitable for problems with many data dependent decisions [NYU—SS}.

(ii) Models that are based on the existence of global or shared memory

The models in this category consist of processors which Rave access to a shared
memory. Several models are defined which differ in whether or not they allow con-
current read and write operations to the shared memory. and, if allowed. how write:
)

\conﬂicts are resolved [BH-82].

1) PRAC [LPV-81] - concurrent read and conc;Jrrent write are not allowed.

2) CREW PRAM [FW-78] - concurrent read allowed . conﬁurrent write not ailowed.

3) CRCW PRAM - concurrent read allowed, the allowance of concurrent writeé can
differ As follows: o

(i) in MMcurrent wrlite ié Vallowe’d onl;l if ‘all processors are trying to

<

write the same thing.

(ii) An arbitrary processor is allowed to write. - i

(iii) General CRCW PKAM ([60—78]) - the lowest n‘unlqbered processor‘is allowed
to write.

The model used in this thesis is a general CRCW PRAM. A proper definition of this model

is given in the next section. ' )

(3) In [QD-84). a distinction between SIMD (single instruction stream multiple data stream)
“and MIMD (multiple instruction stream multiple data stream) models is made. SIMD is
taken to be synonymous with "processor array"”.

(i) In a SIMD model. the processors may communicate with each other via a shared
memory (SM) or some kind of network, such as a mesh-connecied network (MC), a

perfect shufle network (PS), or a cube-connected cycles network (CCC). For

LS
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N
,

example, in a SIMD-MC modef.\th{ processors are arranged in a g-dimensional 1attice,

~

aﬁd communication‘is allowed only between neighboring Pprocessors. Most supercom-
| puters of the current generation belong to this category. They are composed of vector
pipelines which are multiple processors ;:ach' executing the same instruction [St-80).
. For example, the ILLIAC IV computer belc;ngs to the SIMD-MC cétegory."lt‘ is ‘an
array processdr composed of 64 identical ‘proc‘éssing‘elements. organized as an 8x8
array, which synchronously execute the same instructAion (possibly operating on

different data).

Although our algorithms are designed for the CRCW PRAM models, they also works

for the SIMD models given the same kind of allowances in memory access.

(ii) The MIMD models may also differ in the processor intercommunication péttern. For
example the MIMD-TC( for tightly coupled) model assumes. ihat all processors work
through a central switching mechanism to reach a global memory. Our chosen mciel

belongs to this category.

(4) The processors may be synchronous or asynchronous: Here we shall make the distinction
between different types of synchronization.

~

~ If the processors or RAM's (random access machines) are "clock—s‘ynchronized", it-means
that they are working under the control of a globzil clock. All tightly. coupled system; are
clock-synchronized. -
There is a sccohvd kind of synchronization:
‘A "clock-synchronized” parallel model may be "asynchronous”. It will be an MIMD-TC -
mode] according to the previous classification. This means that the processors are working
independently most of che time. They may be executing different instructions and there

will be some points at which they have to be "synchronized”.
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An example of such a model is given in [SV-81]: “There is a universal clock to\.the progréﬁ
‘that ticks every time unit and each processor can perf orrﬁ ione and only one éiementary
"opération between two ticks. A starting timé will be aééigned to some of the inst.ruéiions.

The execution of such ;n instruction must start exactly in the §tarting timé assigned io it.

This enables us to achieve synchroniza’tion'whenever necessary. \

In our model. the synchronization is deﬁpeq in a different way :at a ﬁoim‘of synchroniia-

ticn, each processor ilas to wait until all other précessors have arrived ét this point beforer

.o A 1

they can continue; with their processing. j

2.2. The General CRCW PRAM

~—,

;I‘he CRCW l-)RAM (concurrent-read concurrent-write’parallel>rand,om access machine)
model is a MIMD machine model. The folloWing de“ﬁnition vis adapted ‘from [Vi=83). We have
c>han‘ged:the w;)rd “synchronously” in the orig‘i,n’a_l_ Qeﬁniljon,into'"clock—synchronou«s]y" to dis-
tinguish between the two types of synchronization. |
Definition 2.1 : The geheral CRCW PRAM model has P RAM's ope.ratin.g “_clock—syr;ct};ronous]y' ‘

in parallel. ‘Each RAM is a standard uniprocessor rr;ode] haying its own large local
random-access memory and has instructions for typical arithmetic and boolean operalions
and for reading and writing its local memory. The RAM's also have access 1o a .(h?:ed
memory of size m. Each RAM has instructions for reading from and writing into the com-
mon memory. Several processors may readlsimu]taheously‘from the sanie memory loca-
tion. If mc.« than one processor attempts to write into the same location in the common
men;ory at the same time, the lowest nﬁmbered processor succeeds. The CREW PRAM
(concurr;:nt-read exc]usivé write PRAM) is similarly d;ﬁnted except that simultaneous

.

writes into the same location are not allowed.
The work of Cook and Dwork [CD-82] implies that a CRCW PRAM is more powerful

than a CREW. It is easy to see tbat any program that runs on the CREW PRAM model will

also run on the CRCW PRAM model within the same time and space bounds. A simulation of
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’,,/ the CRCW PRAM modelApy the CREW PRAM model will be given later and it will add'va loga~

t

rithmic factor to the time complexity.
2.3. The Fetch-and-Add PRAM Model
This is a modification of the CRCW PRAM. Let A'be a common ‘memordy addross{and let r
be the value of a local register of processor P. The Fetch-and-Add (F&A) instruction is defined
as follows : If. processor P performs a E&A(A.r) and no other processor performs at the‘;samAe
" time an instruction that relates to add'l‘_'ess A, then the contents of A are fransmitted to‘;;roces—
sor P and address A is assigned the vaEe- A+r. If several processors simhltaneously perform
F(?LA instructions that relate to A, the resﬁlt is defined to be the same 25 if these instructions
are pertformed serially. in some (unknown) order. The F&A PRAM is a CRCW PRAM phat

allows these F& A instructions.

2.4. The NYU-Ultracomputer

¥

The Fetch-and-Add model will be realized by the NYU-Ultracomputer. The I\TYU-
Ult-racom‘f)uter is a shared memory MIMD parallel ‘machine composed of thousands of auto-
nomous processing elements. It uses an enhanced message switching' network with the
Ageometry' of the Omega network of Lawrie [La-75] to implement efficiently thé étch-and-add '
sy;lcl;ronizatidn primitive. The Omega»networl; éonsists of NlogN 2x2 swi ' es and connects .
N processing eiements (PE's) to N memory modules. (MM’s). The MM'’s ar¢ standard off-the-
‘shelf memo-ry chips. The PE’s are slightly custom designed for the F&A oﬁeration. Each PE is
attached to the network via a proé&ssor network interfgm\‘(lA’Nl) and each MM irs;/a:téached via a
memo;'y network interface (MNI). Figure 1 gives a block diagram af the machine. Shared

¢

-~ memory access time in this machine has latency time that is logarithmic in N [NYU-83].

¢

Figure 2 shows an examﬁle of an omega network with N = 8. The small circleé on the left
are the PE’s and those on the.r;ght are the MM’s. Suppose a fetch-and-add( 001, 3 ) command is
made by processor 101 to reference memory module 001. the dotted line shows the path of this
reference thibugh the network. If a fetch-and-add( 001, 4) command is made by processor 111

and the two references meet at switch A, then the two references are combined at A and the
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instruction fetch-and-add( 001, 3+4 ) is passed through the remaining dotted path.. )

¥
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Fig 1. Block diagram for NYU Ultracomputer
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Fig 2. Omega-network(N = 8)
2.5. The write-max and write-min operations . .
. ~———

The Fetch-and-Add operation is one special case of a more general fetch-and-@ operation

which may be used as the sole primitive for accessing shared memory [NYU-83]). Let V be a
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~

. . - - \‘\M —'1 .
common memory address and e be the value of a local register of a processor. fetch-and-@( V.
e ) will fetch the value in V and replace it with @(V ) where @ is an associative and commuta-

tive function. (If @(a,b) = a + b then we have the fetch-and-add operation. )

-

In [NYU-83] the authors remark that the fetch-and-add operation has proved to be a
sufficient coordination primitive for all the highly concurrent algorithms developed to date.

However, during the design of parallel algorithms for matroid problems, two new operations

arise naturally and they prove to be very useful both conceptually and in terms
the time efficiency. These are the "write-max” and "write-mip® operations. These tWo opera-

tions are also special cases of the general fetch-and-@ per 10 hey are defined as follows :

_ Definition 2.2 1 processor P perf ormé\a\)i/rite-max( A.e ) and no other ;.)rocessor' performs ad
the same time an instruction that relaté‘s»to address A, then ;h'e value of e will be written
into A if and only if e is greater than the content of A. If k processorg P,.P,, ..., P, simul-
taneously perform instructions write-max(A.e,), write-max(Ale,).... write-max(A.e; )
respectively, tﬁen address A will be assigned the value of max{ e e, - -e,. C(A)} where

C(A) is the original content of A. No value is teturned tmprocessors.

write—min_(A.e )"is_defined in the same way except that the minimum among the values

e,€, e and C(A) is assigned to address A instead of the maximum.

o,
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Implementation of the New Operations

The implementation of fetch-§nti-add is described in [NYU-83] and -2 machine model with
an omega network is suggested. We shall assume the same framework in the implementation
‘of write-max or write-min. In fact, only very simple modifications to the machine will be
sufiicient. We shail only describe the implémenpation for write-max since write-min can be

similarly implemented.

To.implement write-max, the switches will be enhanced 1o permit the network to combine
write-max instructions with the sime efficiency as it combines loads and stores. We include
comparators in the switches and aiso.in the memory network interfaces (MNI's). When two

v

write-max’'s refelencing the same shared variable, say write-max(X.e) and Write_—max(X.f)

meet at a switch, the switch computes max{e.f} and transmits the combined request write-

max(X. max{e.f} ). When a write-max(X.e) request reaches the MNI associated with the MM .

containing X, the content of X and the transmitted e are sent to the MNI comparator. and the

greater value is stored'in X.

R

Since we aré not interested in gettin% a return value and the comparator is no more com-
plicated than an adder, we see that the write-max operation is no harder to implement than the

fetch-and-add operation.

Nextg&e must consider the ¢ombination of write-max with other operations referencing
the same location and formulate rules about the validity of such concurrent references.

(1) write-max and load (read) :
There is no conflict between these two; a combined request of fetch-and-write-max(X.e) is
transmitted which means' that C(X), the content of X, will be returned to the processor

doing the load and max(e.C(X)) will be written 1o X.

(2) write-max(X.e) and store(X.f) :
We may dé any one of the following:
(1) transmit the store command (assume it comes second)

(ii) transmit store(X, max{e.f}) (assume the write-max command comes second)

{
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(iii) make this combination illegal

(3) write-max and F&A : . ‘

There is conflict between these two instructions; there is no way to combine these two at a
switch to guarantee that ji preserve a serial order. For example, suppose we have a write-
max(X.a ) and A(X.,b) to be combined at a switch, and suppose the current content of

X is ¢. The following are all of the possible outcomes.

w

(i) If @ 2b +c¢ then the value of X will become a +b if the write-max comes first or a if

Jthe F&A comes first. To conform to some serial order of the instructions, we may

combine the two into a write(X, a +5 ) or a write(X.a ) instruction.

3

(i) If 5+c Zc Za then the value of X will become b +c independent of the whether the

write-max or the F&A comes first. Hence we should combine the two into a F& A(X.b)

instruction.

(iii) If b 4+c 2a 2c¢ then the result of X will be a +b if the write-max comes first, and

b+c if the F&A comes first. Hence we may combine the two into. either a

I3

write(X.a +b ) or a F&A(X b ).

N

We see that we can distinguish between ihese cases only if we know the value'c . However,
we have no knowledge about the content of X at the switch. If We mix up these cases, we
cannotl guardntee }.haL the result is equivalent to the resul't of some serial ordering of the
instructions. Hence, we have to make this combination illegal.

1

(4) write-max and write-min : There is a conflict between these two instructions, and we make

S

this combination illegal.

.

:

In fact, in the applications of write-max or write-min in the algorithms in this thesis. there is

no incidence of concurrency with the store or F&A instructions. With né loss of generality, we

~ B -

make all such concurrency illegal. which may also be a cleaner ciesign.
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Now we are ready to define the model that is used in this thesis. 7
Definition 2.3 : The write-max/write-min F&A PRAM model is a F&A PRAM whicﬁ allows the

write-max and write-min operations with the above rules for concurrent references.

2.6. The Concurrent Critical Section Model

In this section, we introduce a new parallel moéel gc’gl}ed the, "concurrent critical section
model”". None of thie, -algorithms' in later chapters use this V‘r\nrode], but we believe that the con-
current critica] secti.(;ri ‘model is sufficiently irnl‘er?sting to ::'j/ust,ify’ité:iinclgsipn here. We will
first state thé’mptivation for introducing tﬁis: modeI and ého\w why it is n;m\'e powerful than
other existing models. Then we will show that tflis model is n(; more complicated or difficult to -
simulate by the CREW PRAM model than the CRCW or F&A'CRCW PRAM models. To do

A

this we will first describe the sirﬁulalion of concurrent writes énd Fetch-and-add instructions
on a CREW PRAM model. Then we will describe the simulation of concurrent critical sections
on the CREW PRAM model and show that it has the same time and space complexities as the

first two simulations of concurrent writes and Fetch-and-add’s.

L]

We define a critical section to be a section of a parailel algorithm in which more than one
processor may be accessing one or rx;org commbwri_alg]/yya:t the same time, and the result of
these references must be the same as if 1}'1e critical sections for these processors are done in so;ne
seria]ﬂ order. When we sav that the general CRCV\% PRAM model allows co;xcurrem writes, we
are actu;illy saying that it takes O(1) time for several prdcéssors to execute a critical section

containing one concurrent write instruction.

However, if a critical section contains instructions referencing more than one variable,
then the general CRCW model will not be able 1o resolve it in constant time. For example. a

common critical section for checking a semaphore is
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Test-and-set(V)
{temp ~ V
V + true | .

return temp

All processors executing this critical section are competiiig for a certain semaphore V. Only one
processor can be allowed to get the semaphore. The value of V is initially false. In the critical
section a processor will read the value of V into a local variable temp, and then set the value of

V 1o true. Hence only one processor will receive the value of false in temp and it gets the sema-
phore. . . . ) .

The CRCW model cannot solve this problem in constant time although it can simulate it
in logarithmic time (as described in the next section). The fetch-and-add operation is intro-

duced 1o resolve critical sections like this. For example, the above critical section for checking a

~

semaphore can be replaced by a single instruction
fetch-and-add( V.1 ).

Assuming O is the initial value of V, the processor that gets a zero as a return value obtains the

semaphore.

§
Y

However, if the critical section is more complicated, some other operations may be needed.
For example if all processors are writing to a variable and we want the one that writes the
maximum value 1o ‘Succeed, then we need a "wfite—max" operation. Also, we may want to
 reference and modify more than one global vz;riable' in a critical section. To address this issue,,
we introduce.a model that assumes constant time to resolve critical sections in general. We call

this the "concurrent critical section” model.

"

Definition 2.4 : The concurrent critical section model has p RAM's (random access machines)

operating clock-synchronously in parallel. Each RAM has instructions for reading

v

from and writing into a common memory of size m. If several processors simultane-

ously execute critical sections which compete for access to some global variables, the
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result is the same as if these critical sections are performed serially in some (unk-
nown) order and the time required is the time for executing any one of- the critical

sections.

.

~
-

Lemma 2.5: The CRCW PRAM . the F&A PRAM. and the write-max/write-min F&A PRAM

(J models are special cases of the concurrent critical section model. :

»

A

Proof : Concurrent write is equivalent to a single instruction critical section:
{ write(X.e) }

The fetch-and-add(X.e) instruction is equivalent to the ¢ritical section

{read X
write(X ,e+C(X))
where C(X) is the content of X

The write-max(X.e) instruction is equivalent to the critical section

{if e > C(X) then
X«~e } '

The write-min(X.e) instruction is equivalent to the critical section

{if e < C(X) then ' . N
Xe~e } 7 ‘ \

D 4 | J
In the next three sections. we compare this new model with the CRCW PRAM and F&A

PRAM models. Since the CREW model is widely accepted as a realistic -m,ode], we will simulate

each of the three models using the CREW model. We shall <ee that all three simulations have

the same time and space bounds.

2.6.1. Simulating Concurrent Writes on the CREW PRAM Model

At any point that there are possible concurrent writes in a given algorithm, we synchron-
ize all processors and direct these writes to temporary locations. The simulation uses the recur-

sive doubling technique. Synchronization is necessary and every processor must be used.
~



_24-

Suppose there are m processors and there is'a concui‘;ent write to >16catio‘r'1' X.{ We create -
temperary variables T(i ) and M(i) fo:L each processor P,. Instead of writing 1o X, each '.P,-
writes to T(i ). Next, the processors are synchronﬁéd (the method of synihroniéatién \;/ill be
given later). Now,’every P, with i = 0 mod 2% checks T(i ) and T(i +1) and combines thera
according 10 Lvhe serial order of the CRCW model (e.g. the lo;vest numbered processor succeeds). .
The combined result is written to T(: ). | ‘ |
.The processors are synchrohized again. This time every P, with z_'—:Om,od 2" checks

T(; ) and T(i +2) and combines them into T(i ). In general, at the j-th synchronization, every

P, withi = Qmod 2’ checks T(i ), T(i +2’ ") and combines them into i (i ).

logzml times and the final combination of all writes is writ-

The above process is iterated

ten into X. - ‘ .

The method of synchronization is as follows: At the j-th synchronization, each P, with

i =0mod 2’ sets M(i )~j. At the next stage, a processor P, withi =0mod 2’*' will not
2 2 o

P i

proceed until M(i )=j and M(if2j\\_;)=j .

It is easyvto see that the simulation takes O(logm ) time and O(m ) memory space for each

concu/rlrem write.

2.6.2. Simulation of Concurrent F&A on the CREW PRAM We shall use O(/ ) memory
»

space and O(logm ) time to simulate the network of the I(Y'-:J—Ultracomputer. The technique is

similar to the previous simulation. Synchronization is dor;e in the same way. However, since

we have 10 remember soxﬁ,e temporary results at each level of the network, we have o create

temporary memory. locations for these levels as well. An m x logm array, T. is used where

T(i .j ) is used at the j-th synchronization by processor P, .

For example. if fetch-and-add{X.e) and fetch-and-add(X.f) arrive at T(a,j) and T(b.j) and are ‘



to be combined at the next level, then at T(a.j+1) the instruction will be fetch-and-add(X.e+f).
T(a,j) has a residual value of e and T(b.j) has a residual value of e+f.

After the final write into X, the previous value at X is returned through the T(i.j)'s as follows:
The value received at T(a.j). say Y, is added to e and Y+e ic returned to the previous level

to T(a,j-1) and T(a/2.,j-1). If Z is the value received at T(b.j). ther Z+e+{ is returned to.

the previous level.
i

'

»

It can be seen that at the i-th synchronization, only the T(i.j)’s for j = 0 ( mod 2' ) are used. T
" can be replaced by a complete balanced binary tree with m leaves. The number of nodes in the-

tree is 2m —1 and O(m ) memory space is reqﬁired.

x

3

2.6.3. Simulation of Critical Sectioﬁs on CREW PRAM Model This simulation will re%uire
O(T logm ) time and Q(Mm ) space, where m is the number of processors, T is the time, and M
is the number c;f variables involved in the critical section. ‘A generalization of the mechanism -
for simula‘tt;'\\ng F&A can be applied here. Instead of dealing With a single variable as in fetch-
and-add, we now deal with M 21 variables, V .V, - Vy . Hence each v;riable. V, involved
» in the critical segtion will be given a temporary m byA logm array T, . Synchronization is done
exa‘ctly as before. Now everything to be done in the critical section is done usingb the tem-
porary variables and. in O(7 logm ) time these critical sections are combined in some serial

order consistent with the definition of the model. As in the simulation of F&A, tKe arrays T,

can be replaced by binary trees of size 2m ~1. Hence the memory required is O(Mm ). '

From the above results, the proposed model is no harder to simulate with a CREW
- .

machine than the CRCW and F&A models. From an implementation point of view, the

a
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switches of the network of the NYU-Ultracomputer can be enhanced so that they can combine

™

critical sections. o -

Tﬁe new model is definitely at leas’, as powerfuljas the existing PRAI\"/IkrAnodels since {he
existing médels are special cases of the ne'w model. We expect this new model 1o be useful in
the désign of parallel algorithms both concep’ually and in terms of efficiency for difficult prob-
lems. It is also prac't.ical in ihe sense tha* implementation 1s easy. Whether the implementatién

cost is justified will depend on 1esults in the design of parallel algorithms for this model.'

&

2.7. Parallel’ATgorithms in this Thesis -

The parallel algorithms in this thesis are designéd for the write-max/write-min F&A
PRAM model (Definition 2.3)." (The concurrent critical section model is not used.) The algo-
rithms are written in a program-like fashion using common ke;fwords such as "for", "while”,
“if..then..else”", and so on. Most parts ofk the algorithms will be simultaneoﬁsly executed by
many processors. We shall give indices to the processors and call a processor 'P,-. " where i aﬁd i
are the indices. The indices may appeaf in the\sequon of the algorithm which P;; e;iecﬁtes The
sign "'«* means concurrent wmte Tbiz sign "«**' means concurrent write of possibly different

\.

values to a location.

Most of the time, the processors are working asynchrénously. At points where syncbroni-
zation is needed, a <synchronize> stafement*will app'e:-;r. This' means that eaéh processor must
wait at this point until all other processors have finished their work to this point. Th,en‘ all pro-
cessors can proceed. This synchronization can be done using the fetch-and-add instruction aslv
follows. ‘

Let p be tl.1e number of processors. Thrée global variables SYNC . S}.’NC1 and SYNC, are
used. Initially, SYNC,,. SYNC,, and SYNC, are 0. Each processor has a local variable i which

has initial value of 0. When a processor comes to a synchronization point, it performs a fetch-
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and-add( SYNC,;, 1 ) operation. If the return value is p. iken the processor changes
 SYNC (i 42) moa 3 to 0 and changes its local variable i to (i +1) mod 3. It then proceeds with its
. work. If the return value is not p. then the processor will keep reading. the value of, SYNC;’

until its value becomes p. It then changes its local variable i t0.(i +1) mod 3 and proceeds with

its work.
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3. GREEDY ALGORITHMS FOR Sﬁ;dI;E-MATROH‘) PROBLEMS

We mémioned in Chapter 1 that single-matroid problems can be solved by the gl"eed__y;
~ algorithm. In this chaptér, we describe a parallel greedy a}gorithm‘and list the best known

parallel algoritﬁms for the sp’eéialvcaselvf the minin;um.spanning tree problerﬁ.

. 3.1. The General Single-Matroid Problem P,

Before developing a paraIIeAI greedy algorithm, we should look at the serial algorithm described

in Chapter 1 more closely.

Algorithm 1.1: Greedy Independence Algorithm
(M =(E.l)is amatroid. X will be the solution.)

1. X 9 A «E

2. while A =@ :

3. choose element e € A with largest weight
4. A~ A —fe}

5.

if X Ule}€7 then X « X U {e}

If |1E| =m then the loop is executed O(m ) times. To implement line 3. E could be made into
a heap before entering the loop and line 3 would then be O(logm ).“\ Alternately, E could be
sorted before entering the loop and line 3 would be O(1). In. both cases, the total contribution .

is O(m logm ).

The greedy algorithm above is based on the independence axioms of Definition 1.4. The time to
test a subset for independence in line 5 will depend on the structure of M. In general. if ¢ (m)

is the time to test for independence in M, then the algorithm is O(m ¢ (m }) + O(sorting).
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The algorithm above appears 1o be inheréritly.\sequent‘ira.l:, ,ari element cannot be tesu;;i for i:glu—
_ sion in X (in liﬁe 5) untfl ‘mem’bershi‘p- m "X%Lﬁk;as béen tested for all elements with larger
. Weights. . H'owe\rlver, there are ways to find greedy solutic}ns_ using algorithms based on other_
- properties of matroids. The folloWing greedy aléorithm based on the rank f unétion' (Definition

1.7) leads naturally to a parallel greedy algorithm.

3.1.1. Greedy Rank Algorithm

Algorithm 3.1: Greedy Rank Algorithm _
(M =(E.I)isa weighted matroid with |E | =m. X will be the solution.)

1. X -0

2. Sort £ by non-increasing weight

3. fori «~1,....m

4. if plee,, ...,e;) > pleje, .., e;_;)then X «~ X Ule,}

If we let 7 (M) be the time necessary to compute the rank function of matroid M, the time
. T~

complexity of the loop at line 3 is O(m r (M )). Thus the total time complexity is O(m r (M ))
+ O(sorting). The difference in time compl‘exity between this algorithh and the Greedy

Independence Algorithm is the difference between the time for determining rank-and indepen-

dence and this depends upon the matroid given.

Note that our new algorithm, while fiot parallel, no longer appears to be inherently sequential.

We now consider a parallel greedy algorithm from [Co-83].

Algorithm 3.2 : Parallel Greedy Rank Algorithm [Co-83] _ .

.m processors P;, 1<i €m , execute the following code in parallel
(M =(E .I)is a weighted matroid with 1E | =m. X will be the solution.)

. X, -0

2. Sort E by non-increasing weight (so thatw(e,) 2 - - 2 wie,))
<Synchronize > ' ‘
3. ifple,,....e)>ple;. ... e, ) thepX, —1 (set X, =1ife €X)

<Synchronize>
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Using m processors, line 1 is O(1), and line 3 is ‘O(- (M )) The parallel sort of line 2 ‘requilres
O(logm ). time and O(m) processors using the method of [Le-84], so the total time is
O(r (M) +logm’). The time>processor product for this algorithm is O(m r (M) +m logm ), giv-

ing a-perf gct' speed-up.

The details of the rank computa-tions in line 3 will depend on the structure of M. For some
- types of matroids, ranks can be computed quickly in parallel. One way to compute ranks in

graphic matroids is based on che foHowing. <

-

'Fact 3.1 Let G =(V .E) be an undirected graph, and E' € E. Then pE'= (number of vertices

in G (E') Y — (number of connected components in G (E') ), where G (E*) is the subgraph

of € induced by E".

Let IV =n and IE| =m. The number of vertices in G (£') can be counted in O(1) parallel
time using max(n .m ) processors. ¥ is a vector of length max(n.m) and each processor™2; ,

1€i Smax(n .m ) executes the following code.

5

¥, —0
Y/ «*1landY, «* 1 where (j .k )=e, €EE'

(* The following counts the number of 1'sin Y : *)

COUNT «* 0

if Y; =1 then fetch-and-add( COUNT , 1) v -

e

The numﬁer of connected components in G (E ')‘ can be computed in O(logn ) parallel time with
n +2m processors using thé metfloa in [SV2-82]. The total ;inie for line 3 Qf the parallel
~ greedy rank algorithm for graphic matroids is théref_ ore O(lc;gn) using (r)(m2 +mn). précegsbrs
and the total for the entire éreedy algorithm is O“(lo'gn + logm) using O(m* +mn) prc;cessors.
The connec{ed components of a graph can be found in time O(m +n) using one procéssor and

depth-first search. So, a direct sequential implementation of 'this paralliel gfeedy algorithm

would have complexity O(m?+ mn). The parallel algorithm therefore has an overhead factor

\2
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of O(logm + logn ).
,“*7
. ‘.RJ} . ) .
Currently, the fastest known parallel algorithm for finding minimum (or maximum) weight

spanning\trees'in a graph is O(logn ) using m processors [AS-83]. . So. the pafallel greedy algo-
rithm above is not a very good algorithm for graphic matroids. This is probably because the

algm_-ithm was derived from an algorithm for arbitrary matroids. —

3.2. A Special Case : Minimum Spanning Trees

The minimum spanning tree problem is a special case of the graphic matroid problem.

~Pa}rélle1 algdrithms have beeff designed for this problem for different models. The following is a ﬁ\'

list of the best known algorithms ( n is the number of vertices. m is the number of edges. and

p is the number of processors ):

[AS-83] uses CRCW and m logn /p time with p Sm processors and time-processor product

J . p p
of mlogn . ) - ' S

[CLC-82] uses CREW and n’/p time with p Sn’/log’n processors and lime-processor pro-. v
duct of n

[HV-84] uses CRCW and logn time with n® processors and time-processor product of
n’logn ’

[KR-84] uses CREW and mlogn/p time with p €m /logn processors and time——processor
product of m logn

PN

[AS-83] (resp. CLC-82) derive a Minimum Spanning Forest algorithm (MSF) from a
modification of the cdnnec‘tivity‘ algorithm of [SV2-82] (resp. their connectivity algorithm).
These MSF algorithms use the same time and number of processors as their respective connec-

»

livity algorithms. o , '

e
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4. TWO-MATROID INTERSECTION PROBLEMS
T"

4

In the previous chapter, we described algorithms.for computing a maximum weight
independent set of a single matroid. A maXimum weight solution is also of maximum cardinal-
ity. For the two-matroid intersection problems, the maximum weight set independent in both

matroids may not be of maximum cardinality. Hence, two problems can be defined for two-

e matroid intersections: - '

®

(1) Cardinality Two-matroid Intersection Problem : Given two matroids M, =(E]) and

M, = (E l1,) over the same set E. find a maximum cardinality intérsection 7 €L, NL,.

(2) Weighted Two-matroid Intersection Problem : Given two matroids M,=(EI) and

* “ . . ‘
M, = (E 1) over the same weighted set E, find a maximum weight intersection / €I,N1,.

-

In this chapter we shall deal with these two problems. In both cases, two versions of

il

S - parallel algorithms are derived. The first version achieves perfect ‘Speed—up-by\ applying Brent's |

\J : , ;o
- Theorem to reduce the number of processors. The,second version is a modification of the first
version and uses the recursive doubling technique and a logarithmic time breadth-first search.

~ The second version is faster but does not give perfect speed-up.- All of these parallel algorithms
are based on sequential algorithms from [La-76] which make use of augmenting path methods.
For each problem, we describe the éequential algorithm first and then introduce the two ver-

sions of parallel algorithms.

¥

+

o —— N

ks \ The sequential algorithm for the cardinality two-matroid intersection problem is based on

“auginenting sequences”. Let / be any intersection of the two matroids M, and M,. In the fol-

lowing, if e, is an element of E, then / +e; denotes the union’of / and {e;} and I —e; denotes



the set / - {e; }. These notations are used throughout the thesis.

L3

——

Now we can construct an augmenting sequence with respect to I as follows. The first element

e, of such a sequence is such that / +e, is independent in M . If 7 +e, is independent in M, as

well, the sequence is complete; / +e, will become the next intersection of size one greater than

= 11

j. Otherwise / +e, contains a unique circuit in M , and we choose e, to be an element-other
than e, in that circuit. /+e —e, isﬁrly independent in both M, and M,. Now we try to
find an element e, such that / +e l—e‘2+e3 is independent in M |, whereas / +¢ 3 is npot. Such an
element is in sp,(/)—sp,(I—e,), where sp, denotes span (Deﬁ>n‘ition 1.7) in M,. If
I +e,—e,te, is indepéndent inM,, we are done. Otherwise I+e 1—€ e ; contains a unique cir-
cuit in M, and we choose e , 10 be an element in that circuit, and so on.

In other words. the addition to / of the 1st, 3rd. 5th. ... elements preser(yes independence

in M |, but may create dependence in M,, whereas the removal of the 2nd. 4th. 61k, ... elements

: - N . !"‘
_restores independence in M ,. This strategy of adding and deleting elements in turm to and from

Lthe intersection / can be done for all possible cases until we arrive at an new intersection or we

4

exhaust the search. If we obtain a new intersection / +e-—e,+...+e, which has size one greater

than I, then the search is successful. / is augmented and we start the same Search again with
the new intersertion. In this way. the size of / will be increasing one at a time until it reaches

the maximum size. If we exhaust all possibilities and cannot find a bigger intersection, we can

stop and return the present intersection as a maximum cardinality intersection. The following

.

definitions for these terms are adapted from{La-76].

:

Definition 4.1.1 : Let / .be an intersection of two matroids M,=(£ 1), and M, =(E. L) Let
S =(e, e, ...e, ) beasequence of distinct elements

where e, € E—~/, fori odd

and e, €/, fori even .

Let S5, =(e, e, ...e; Jfori <
-~

e
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We say that S isan alte;'nating sequence with respect to [ if .
(DI +e,€1, ‘
(2) For alleveni, sp,(I ®S,) = sp,(1)
Hence I/ &S, € /
(3) Forallodd i > 1.sp,(I &S, )=sp (I +e,)

Hence I & S, € 1,

- If, in addition,
(4)ISI=sisoddand / S €L,
we‘say that S is an augmenting sequence with respect to /.

The following Theorems from [La-76], Chapter 8. prove the validity of the augmenting

sequence method described above.

Theorem 4.1.2 : If / is independent in matroid M and I +e is dependent, then / +e contains

exactly one circuit in M .

Theorem 4.1.3 : Let I,. 1,,, be intersections of M .M, with p. p+1 elements respectively.

Then there exists an augmenting sequence S C/, @/, ,, with respect to /,,.
f K a

-

A -

Theorem 4.1.4 : An intersection is of maximum cardinality if and only if it admits no aug-

menting sequence.

- Theorem 4.1.5 : For any intersection / there exists 2 maximum cardinality intersection /

such that

sp,(1)&Ssp (1)) ard sp(I)Ssp (L)
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In the augmenting m‘ethOd as described above. we have to cliéck the circuits that elements
form with the current intersection / in either matroid M, or M,. To represent the information
about these circuits and f‘acilitate\the search for an augmenting sequence, a directed bipartite
graph called the border graph (BG(I )) will be built with respect to /. The two sets of vertices
for tﬁe bipartite border graph willl correspond to the sets £—/ and /. Suppose 'e'lemeni e EE -7
forms a circuit with / in M 1- Then there will be arcs (e; .¢; ) going from every element e, €/ in

this circuit to ¢;. If element.e, €E—I forms a circuit with / in M ,. then there will be arcs

(e, €; ) going from e, to every element e; €/ in this circuit.

Now, there may exist verticés in the set £—/ which have no incoming arcs. These vertices
will be called sources. Similarly, there may exist vertices in the set £~/ which have ao out-

going arcs. These vertices will be called sinks. Define a source-sink path as a path in BG(/ )

which goes from a source‘to- a sink. We say that a source-sink path admits a shortcut if there
exists a shorter source-sink path thai goes from the same source to the same sink. It can be
shown that the<searchr for an augmenting sequence for / is equivalent to the search for a
source-sink path without shortcuts in BG‘(I ). A breadth-first search of BG(/) can be used to

find such a path.

¢

The following definitions and lemmas are from [La-76], Chapter 8.

Definition 4.1.6 : For a given intersection /, the border graph ( BG(/) ) is a directed bipartite

graph constructed as follows

N

(i) For each node e; € E —1 such that e, € sp (/) there is an arc (e, ., ) directed from

w e;, where Cim is the unique M ,~circuit in I +e,. e, & s5p,(J).

\

each e; € C,

then e; is a sour BG(/).

(ii) For each node e, € £ — ] such that e, € sp,(/) there is an arc (e, .¢, ) directed to each

e; € C,m — e, where C,m is the unique M ,—circuit in I +e,. If e, € sp,(I), then e,

is a sink in BG(/ ).
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Definition_4.1.7 : Suppose that S is a source-sink path in BG(Z) and S passes through nodes

€y€;....e,. The path is said to admit a shortcut if ‘there exist an arc (e, .e;) in BG(Z).

where 1<k €j2<s 2.

A

Lemma 4.1.8 : If S is a source-sink path in BG(/ ) which admits no shortcut, then § is an aug-

menting sequence with respect to /.

Lemma 4.1.9 : Let /.J be intersections such that |/ I+1=lJ |. There exists a source-sink path S
in BG(/) where S € 1@®J. |

-

The abeve ideas may become clearer with the help of an example:

Example: Let G, and G, be the graphs shown in figure 1. Each graph is constructed from the

set of arcs, which, for notational convenience, we denote E=={1,2,A3,4,5.t‘3,7}. Let M =(EI,) and
M ,=(EL,) be the graphic matroids associated with their respective graphs. I=}2.4,6} ‘is an
independent set in both matroids. Note that I is a maximal set in I, NI, but it is not a max-

imum.

Figure 1. The graphs G, (left) and G, (rigﬁi)
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spi(D = (2345670 spy (D = {1.2.3.4.5.6)
\ cV = 34 c? = {1246
cV = (456 c® = 34
c,V = {267 c? = {as6) .

- From this information we can create BG(I). To avoid cluttering the diagram we represent a

pair of arcs of the form (x .y ) and (y .x ) by a singlé line with no arrowheads.

Figure 2. . Border Graph for 1={2.4.6}

!

Note; that our original matroid elements ( the arcs in the grapbs G, and G, ) are now con-
s(idered as vertices in the border éraf;h. Vertex 1 is the only source; vert;ax 7 is the only
sink. |
{1,2,7} and {1,6.7} are two possible augmenting sequences. Although {1,2,3,4,.5,6,7} is a
source to sink path in BG(I). 16{1,2.3.4.5.6,7} = {1,3.5.7} which is not in I,. In particular,
(1.2,3.4.5.,6.7) is not an augmenting sequence. The reason the above set fails to ﬁroduce an
augmenting sequence is the existence of the arcs (1.4), (1,6) and (2.7) in BG(I). Each arc
. allows }va to take a shortcut in our path from the sburce_to the sink.

»

4.1.1. Sequential Algorithm

Given two matroids M,=(E 1) and M,=(E 1,). the following algorithm produces a set

I € I, N1, of maximum cardinality. In the algorithm, lines 2 to 17 are repeated for each
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augmentation. Each augmentation can be divided into 3 steps:

E]) Lines 3 to 5 build the border graph BG(/ ) where / is the intersection currently being aug-
mented. Line 5 marks all the sources with "+". We regard the matroid elements as vertices
in BG(/ ). _

(2) Lines 6 10 11 perform a breadth-first search of BG(J ). Line 9 checks if the element chosen is
a sink. If it is a sink, then a source-sink path is found.

(3) Lines 12 to 16 perform the augmentation by backtracking through the source-sink path. If

no source-sink path is found. then the current intersection is of maximum cardinality, and

the algorithm will stop.

~ Algorithm 4.1: Sequential Cardinality Algorithm [La-76]

1. 1 «~@, Q<o

2. while not done ' «

3. for éache; in E—I ,

4. Find Ci(l) and C,.(z) if they exist.

5. Add each vertex e; € E—sp (/) to Q with "+0" mark

6. while Q=@ and augmenting sequence not found

7. Remove first element e; from Q

8. if "+" mark then

9. | if 7 U{e;} €1, then augmenting sequence found

10. > else add each unmarked ¢; € C, 2 10 Q with "-i" mark

11. else add each unmarked e; such thate; € Cj(1 1o Q with "+i" mark
12 if augmenting sequence found then

13. backtrack from e; (found in line 9) to get augmenting sequence
14. add elements of sequence with "+" marks to / X
15. remove elements of sequence with "-" marks from /

16. Q < @ and remove marks from all elements

17. else done

The following w#lgorithm finds the circuit _Ci(j) in M; if it exists.

Find_ Circuits

Find the unique circuit C,"”’ in matroid M; contained in the set / U {e;} if such a circuit
exists. '

<y
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cD g
~_ if 7 U{e;} €I, then no circuit
~ else :
“~_ - foreache, €] . _
Cif 7 U{e;}-le, ) €1, then Y’ Y Ule, )

\

Time Analysis .

Let ¢ ;(m) and c,(m ) be the running times of th-e subroutines for independence testing in =
M, and M, respectively where m = lE‘ |

Letc(m) =max {c(m) c,(m) )

];et R, and R, be the ranks of the matroids M, and M, respectively. and let R = min {

R.R,)

Since no intersection can contain more than R elements, there can be no more than R augmenta-

tions in the algorithm. For each augmentation,‘we have the following steps:

(1) For each ¢, € E — I, we find the circuits C{_(l;' C,-(Z). This can ‘be done by testing the

independence of / +e,—e, for each e; € /. There will be O(R ) elements in / and O(m )

elements in £ —/. Therefore the time taken will be O( mRe (m ) ).

>

(2) During marking, there will be O(R ) elements with a "-* mark. for each such element e, we .

check every element e; € sp,(/) — 1 1o see if it forms an M -circuit that contains ¢;.
There will 'be O(m ) elements in sp,(/)—I. Hence there are O( mR ) checks for "-"
marked elements. Similarly, there will be O(m ) elements with a "+" mark. For each of '

. 2 ‘ . (2)
such element e;. we check every element ¢; in Ci( ). There are O(R) elements in C .

~ Hence there are O(mR) checks for "+" marked elements, We conclude that the marking

takes O( mR.) time.

(3) Backtracking takes O( R ) time.

Therefore, the overall running time is O( mR *c(m) ).
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Note that in [La-76]. the time complexity given for this algorithm is O(m°R +mR%c(m))

because it assumes that marking takes O(m°) timg, We have improved on this analysis in the

above.

{

4.1.2. Parallel Algorithm

In this sectic;n, we shall present a parallel algorithm to solve.the cardinality two-matroid
intérsec;.tioﬁ problem. The algori;t;m is deriveq from the sequential algorithm. For the time
being, we assume that the algorithm uses m? processors. In Section 4.4.3 we shall show how to
reduce the number of processors without increasing the time bound so that perfect speed-up can-
be achieved. |

In the parallel algorithm, m? processors, P,;. 1Si.j Sm will be used. one for each possi-
ble link in BG(/ ), the border graph for the current intersection /. The following variables are
used. |
LINK : (local variable) trae if (e;.e;) € BG (1) for 1<i,j Sm .

The following are global variables for 1< j <m.

1 : boolean vector indicating membership of elements in the current intersection.

I(i) is true iff ¢; is in the current intersection.

SOURCE; - : true if e; is a source in BG )

SINK, : true if e; is a sink in BG (/)

ACTIVE, s trueif e; is "active”

PARENTJ. 14 if e; is the parent of e; in forest "F" (it is null initially)
AUG : current node on source to sink path during backtracking

- (backtracking starts at a sink)

ENDSEARCH : true if the search for source-sink path is done

The terms “active” and "F" will be explained in the following.

e
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Steps 1 to 4 of the algorithm are executed once for each augmentation. Stei) 1 is to initialize
some variables and takes constani time. Step 2 builds BG(/ ). Processor P;; will set LINKU.
true if and only if it finds that an arc from e; to e; exists in BG(/ ). SOURCE, (SINK,» ) is set
true if and only if e; is a source (sink) in BG(Z ). The p;'oo,f of correctness in a later section will

-

show how this can be done in O(c (rn )) time. .

Step 3 will find a source-sink path with no sbbrtcul in BG(7 ) if it exists. This is done by
growing gifected trees with the sources ;15 the roots and the links in BG({ ) as the branches: We
shall call the forest of these treeé "F". We will see that each element has at most one pafem inF
while it may hz;ve many parents in BG(/ '). Since the border graph is traversed in a breadth-
first manner, the depth of this seérch is the length of the shortést source-sink path and this is

- no longer than' 2R . Each level of this search is done in parallel in constant time. so that a time

‘complexity of O(R ) results. \

S

e

The while loop in lines 4-8 of Step 3 will be>iteraled once for each level of the search. The
sources are the "active” nodes for the first iteration of the wh)ile loop. In each iteration, each
active node, e;, will examine all its sons. If a son e; has no assigned parent (PARENT; = null),
then, e; will Aavttempt to mai<e itself the parent of e; in F. There may be more than one active
node attempting to be the parent of the same node, éj . In our pgrallel model, one processor \;vill

succeed and'\it is not important which one sticceeds because any search path to ej' at this point’

will have the same lengfh. If e; is a sink, then a source-sink path is found. AUG is set 1o j.

L

and Step 3 is finished. If ¢; is not a sink, then it is activated at line 5. Except for the first itera-
tion, a node will be "active” if and only if it has been assigned a parent in the previous iteration.
All nodes e; activated in the previous iteration will be deactivated at line 8. Hence a node will

never be assigned a parent in F for a second time, and it will be active for at most one iteration.

If no source-sink pathks,xists, then the search will reach a point at which all nodes have

been activated. Since no node will be activated at the next iteration, ENDSEARCH will become

true and the search stops.

3

Step 4 performs the augmentation of /. At line 1, if AUG equals null. then no source-sink
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~

path was found in Step 3. This implies that t‘héicurrent I is of maximum cardinality and the
algoriihm halts. Otherwise; / is augmented by backtracking through the source-sink path
starting from the sink. AUG will be the current node in the path during the backtracking. Since

the path is at most 2R long, we do not lose any time eﬂiziency by backtracking element by ele-

P

ment.

In the following algorithm, the sign '—*’' means concurrent write, the sign "<**’ means
concurrent write of possibly different values to the same location.

Algorithm 4.2 : Parallel Cardinality Algorithm

Input : Two matroids M ,=(E I,) and M ,=(E L,).
Output : An intersection / in I; NI, of maximum cardinality.
- Each P,; :1<i.j $m executes the fdllowing code.
Let / be in the intersection of M, =(E,1,)and M, = (E.1,).
(1 can be @) '

Step 1 : (Initialization)- R \/
1. LI)VKU —false; ACTIVE; «<* false; PARENT; «<* null: AUG «* null
2. if e; ¢/ then . ‘ v
SOURCE, «* true ; SINK; «<* true
else : ,
SOURCE; «* false; . SINK; «* false

<synchronize>

Step 2 : (Build border graph BG (1))

1. -if e; €/ and ] +e; €1, and ] +e; —e, €I, then
:ﬂ,& LINK;; < true. SOURCE; «* false
2. - ife; €1 and ] +e, €1, and I +e¢; —¢; €I, then .
INK;, —true; SINK; <* false
<synchronize> ' '
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Step 3 : (Find source to sink path)

1. if SOURCE, and SINK, then
- Y AL +e (path is found)

<synchronize>

if path is found then go to Step 1
ENDSEARCH +* true.
if SOURCE; then
' PARENf'j —*0: ACTIVE; «* true: ENDSEARCH +<* false
4. while path not found and not ENDSEARCH '
<synchronize>
ENDSEARCH «* true
¢ 5. if LINK;;, and ACTIVE; and PARENT; =null then
ACTIVE, «<* false ' :
PARENT; «* i
-~ if SINK; then
AUG «* j (path found)
: _ else : ’
8. ACTIVE; —* true; ENDSEARCH +* false

s <synchronize>
end-while

wn

=N

Step 4 : (Augmentation)

1. if AUG = null then stop (/ has maximum cardinality)
2. while augmentation not done
3. if j =AUG andi = PARENT, then
4. if SOURCE, then L
w I «* 1 +e;, (augrentation is done)
else ' )
5. ife, €/ then] «* ] —e; else] «* I +e,
v AUG «* i ,
<synchronize>
end-while
go to Step 1 ¥

Proof pf Correctness

If we can prove that each iteration of the algorithm
(1) builds the border graph BG(Z ) for the current / and
(2) discovers a source-sink path with no shortcut in BG(/ ) whenever one exists,

then by Theorems 4.1.2, 4.1.3, 4.1.4, 4.1.5 and Lemmas 4.1.8, 4.1.9, the algorithm is correct.

»



(1) Line 1 in Step 2 checks the following for eache; € I :

[

(2)

If I+e; €1, and I +e; —e; €I, then e; is in the unique circuit Cj:(l) in I +e; . and the link
from e; to e, is established. This corresponds exactly to the first half of BG(Z ) (part (i) of

Definition 4.1.6). Similarly. line 2 in Step 2 constructs the second half of BG(Z ) (part (ii)

of Definition 4.1.6). - . . "g

‘We must also make sure that the sources and sinks are correctly marked. Durijg initiali-

zation, if e, € I it is both a sink and a source; otherwise both SOURCE; and SINK; are ini-
tialized to false. In line 1 of Step 2, for any e; . e; is marked not to be a source if and ,on’ly

]
if ¢, €sp,(/) and*e; € /. Therefore. e; is marked to be 2 source if and only if

J
e; € sp;(I). 4n line 2 of Step 2. for any e; ., e; is marked not to be a sink if and only if
e, €sp,(I)ande;, € I. Therefore e; is marked to be a sink if and only if e; € sp,(I).
The sequential algorithm performs a breadth-first search of the border grapt; from the

sources. This search will uncover a source-sink path with no shortcut whenever-one exists..

In fact, such a search will give a shortest source-sink path.

In Step 3, the algorithm starts from the sources and examines the descendents level by
level in parallel. The first time that an element is examined, it is marked by assigning a

PARENT number. An element will not be marked in more than one of the while loops.

Define. "possible trees” to be the fully ger-lerated‘ directed trees rooted from all the sources of -
BG(J). A breadth-first search will be incorrect in this algorithm only if some node for an

element at a higher level (further from a source) of the p_ossible trees is inserted while a .

‘node for the same element at a lower level (i.e. closer to a source) is not. The possible trees

are examined level by level by the while loop which b;egins at line 4. Since the while loop is -
synchronized; nodes at a higher level will not be exa?:nined until all nodes at lower levels
are searched. Hence the above violation of breadth-first order will never occur and Step 3 is
a breadth-first-search. Since the search at each level is done in pérallel. the outcome will be

S
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a randomly ordered search. In other words, a node may be marked Eiinultaneou_sly in the
same iteration of the while loop by more than one parent, and the parallel model that we
use ‘allows such concurrent writes with the result that one of them succeeds. This causes no '

problems since, in path retrieval. any one of these choices will lead 10 a Segrce-sink path-of

the same length. (I

~
Time Analysis

The symbols m , ¢c(m ). and R, are the same as in the time analysis of Algorithm 4.1.

(1) Steps 0 and 1 take constant time.

,(2) Step 2 requires O( ¢(m ) ) time to b’uila BG(J).

(3) Step 3 requires at most 2R iterations of the while loop.
Hence it takes O( R ) time. |

(4) Step 4 requires O( R ) tilne for backtracking.

There are at most R iterations of steps 1 to-4.
Therefore the overall running time is O( R (R +c (m))).

[

Remarks

It will be shown in section 4.4.3 that Step 4 can be speeded up by recursive doubling to
O(logR ) time. However, it i; more difficult to reduce Stér; 3 to the same efficiency. The algo-
rithm has a strong seq.uential nature because each iteration of the while loop depends on the
previous iterations ;when it examines PARENT() to check if a node has been previously marked.

We shall see in a later stage how to do Step 3 in O(logR ) time biit ;w“ith more processors.

The O( R ) factor due to the O( R ) augmentations is also difficult to reduce because each

z

augmentation depends on the previous augmentations. It may require an entirely different stra-

tegy than the existing sequential algorithms. We do not expect this to be easy to find.
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4.2, WEIGHTED TWO-MATROID INTERSECTION PROBLEM

The second problem to be considered in this chapter is the"weighted two-matroid intersec-
tion problem. Here, the elements in’\Lhe two matroids are weighted and we have to find a max-

imum weight set independent in both matroids. : -

-

The method for solving this problem is similar to the unweighted problem in that we also

*

+

proceed by computing intersections of successively greater sizes. These intersections also
increase in size by one each time. However, during each search for a larger intersection, we

must alsg make sure that the new intersection has maximum weight among all intersections of -

the sama size. - - . , )

is time we do not stop at an arbitrary source-sink path with no shortcut because it

may not give a new set with maximum weight among all possible source-sink paths. Instead.

an exhaustive search for all source-sink paths is made. To determine the weight of each new

intersection, we will record incremental wéights during the search. Suppose at a certain point of -

alternating sequence { e ;.e.e; - - -} is ‘

wi(e ;) - wile,) + wile,) ~ ...
T
where-wt(e; ) is the given Weight for element e; .
' . 1

—-——

- ~ . .
Hence. if a new imersect}'o/n is / +e ,—e,+e ;— - - - +e,, then the weight of this set is |
) . ~ \_/’I-/ . N -
(weight of 1) + wi(e ) - wi(e,) + wile;) - ... + wi(e,) L

which “is equal to the sum of weight of I and the incrememal‘g:ight of “the "‘augmenting

sequence {e e e; - e ). Tofind a new intersection of maximum weight, we have to find an

i

augmenting_sequggee of maximum incremental weight.

As stated*below (Theorem 4.2.4), the incremental weights for consecutive augmentations

are non-in¢reasing. Hence, if we find an augmentation that gives a non-positive incremental:
S - — -
_ vl
— '
— ’ /\m\ —\ ) =

—



weight, we know thet the present intersection has maximum weight and the problem is solved.

‘The following definitions ard theorems are from [La-76).

Definition 4.2.1 : Given an intersection /, and a set S GE, the ingremental weight of S is
A(S) = weight of { $=I-f - weightof {S [} 7}

Clearly, vv_veight of {I &S} =weightof {/}+ A(S)

Definition 4.2.2 : An intersection / is p-maximalbif /1= p and I is of maximum weight among

intersections containing p elenients.

' Theorem 4.2.3 : Let I be a pmaximal intersection and S be a maximum incremental weight
soufce-sink path in BG(Z ). Then S is a maximum weight augmenting sequence

and I ®S is (p+1)}maximal.

» . ‘
gorem 4.2.4:Let /,_,. I, . and I, be intersections which-are (p—1)-.p-. and (p +1)- maxi-

mal respectively. Then
w (IP ) — W(]h—l) 2 W(]p+1) —w(l).

where w (1, ) is the weight of /;.

1

y

Example. X,={e, e, is a 2-maximal intersection for the graphic matroids M, and M,
below.

An example will help to illustrate these ideas. - o



BG(X,)is:

source E-X
2

There are two augmenting sequences S,={e e es} and S,={e,e,eje esl.
X,®S,=le e,est with A(S;)=1 and X,®S,=le e es} with A(S,)=2. Thus the
maximum weight augmenting sequence is S, and X ; = {e .e .2 ).

4.2.1. Sequential Algorithm

The following sequential algorithm from [La-76] solves the we;ghted two-matroid inter-
section p,roblem ‘using the above method. Lines 3 to 28 £nd an augmentation and they are
repeated until the pro.blem is solved. Each augmentation censists of three parts:

.(1) vines 5 to'9 build the border graph BG(Z) for the current intéxzsec:iion 1. The sources are
- marked with "+".
(2) Lines 10 10 25 perform a bréadth—ﬁrsl search of BG(/) to obtain a maximvm incremental

‘weight source-sink path. Line 13 checks for a sink.

(3) Lines 26 and 27 perform augmentation of / by backtracking thrbu_gh the source-sink path
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- found in part 2. If the incremental weight is non-positive. then the current intersection has

‘maximum weight and the algorithm will stop.

7

T

Algorithm 4.3 : Sequential Weighted Algcrithm [La-76]

1. I~¢

2. queue is empty ) ; . *
3. while not done

4. A(S) «~ -c0
5. For eache, € E — 1 o
6. Find C( ) and Cm 1f they exist
7. Ale;) « -o0 -
8. Add each source node e; € E —sp,(I) to queue with "+0" mark
9. and set A(e;) — w;
10. while queue not empty
11. Remove first element e; from queue
12. . If "+" mark then
13. If ] +e; €1, then
14. if A(e;) > A(S) then v
15. | AG) — Ale,) - '
16. o S i
17. Else -~ ' '
18. ' Add each e C( )where Ale;) < Ale;) - w,
to queue wn.h "-i" mark
19. Ale;) — Ale;) - w;
20. If another e; ex1sts in the queue remove it from queue
Else
21. Add eache; such that e, EC(I)and Ale;) +w; > A(ej) ¢
. ' to queue with "+i" mark and update
22. Ale; ) « Ale, )+w,
- 23. 7 If another e; exxsts in the queue remove it from queue
end-while '
24.  If A(S) > O then ' "
' Bacif.t?ck from e, to get augmenting sequence : <
Add élements with "+" marks to I
: Delete elements with "-" marks from 1
235. " Remove all marks and empty queue
Else
26. Done ( if A(S) = -co then I has maximum cardinality)

Time analysis
(1) M takes O(mRc (m )) time 1o compute C; " and C® foralle, € E —1.
(2) Each of the O(m ) elements in E—/ may receive O(R ) marks from its parents in BG(/) and

}
each marking requires O(R ) time. Each of the O(R) elements in ] may receive O(R ) marks
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7

and each marking réquires O(m ) time. Therefore the marking takes O(mR?) time.

K

(3) Backtracking requires O(R ) time.
There can be at most R augmentations. Hence the overall running time is O(mR>+mR%c (m))

In [L.a-76], the time complexity given for this algorithm is O(m 2R%+mR%c (m)) because it
claims that the labeling procedure consumes O(m°R) time per augmentation. In the above, we

have improved on this analysis.

4.2.2. Parallel Algorithm

In this section, we present a parallel algorithm for the weighted' two-métrbid intersection‘
problem which has been derived from the sequential .algorithm above. Again, we assume that
m? Processors aré used for the time being and show how to reduce this number in a later sec-
tion to achieve perfect speed-up

The parallel algorithm for the weighted matroid intersectiqn problem is similar to the
pafal]e] algorithm for theicafdir:;%-ity problem. We use m® processors P;; \‘Jvhere i.j=12.m.
(m is the number of elements in the matroids.) Each processor handles a possible link in the

border graph: The following variables are used.

The following are local variables:

" WEIGHT (i) :given weight for element e;.

WT,

1

. the weight contributed by element e; to the incremental
weight of a source-sink path throughe;.

LINK,; : (1ocal v&riable‘ true if (e; .e; )EBG(J ).
The following are global variables.

SOURCE, :trueif e; isa source in BG(7).
SINK; :trueife; isasink in BG(/ ). ' }

ACTIVE, :trueife; is "active". ,
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PARENTj 1§ if e; is parent of ¢; in "F".

A.

13

:'greatest incremental weight among all paths from a sourcetoe;. -
A, : weight of the augmenting sequence.’

ENDSEARCH : true if the search for _source-sink path is done.

AUG : current node on source-sink path during backtracking.

The terms "active” and "F" are explained in the following.

Steps 1 to 4 of the algorithm are executed once for each augmentation. Step 1 initializes
variables and takes constant time. Steb 2 builds BG(/ ) in the same way as in Algorithm 4.27./
St:ep 3 will find a source-sink path with the greatest incremental weight if it exists. This path
will correspond t.c; 'a maximum weight augme‘nting sequence. Step 3 is a breadth-first search of
BG(/ ) starting from the sources. The search will build a forest. F. of trees with the sources as
the roots and links in BG(/ ) as the branches. Each element has at most one parent in F while it
can have many parents in BG(/). The depth of this search is the length of the maximum
weight augmenting sequence and this is no longer than 2R. Each level of this search is done in

parallel and a time complexity of O(R ) results.

The while loop in lines 3-8 of Step 3 will be iterated once for each level of the search..
Before the first iteration, each element e; is assigned a local weight WT',. WT; is the given

weight WEIGHT (j) if e; €] and —WEIGHT () if e; €1 . All sources are assigned a parent-of 0

and they are the "active" elements in the first iteration of the while loop.

For each element ¢;, a variable A; will record the greatest incremental weight among all ‘
‘ paths from the sources to e; that have been searched so far. At line 4 in the while loop. eaéh
active node ¢; will generate all its sons in BG(/ ). Each son, e, , will check whether 4, +WT' is
greater than the current Aj. There can be more than one active parent e; generdting e; and the
maximum 4; +WT'; is recorded in 4; using the \'Lyrite-max instruction. The corresponding e,

becomes the parent of e; in F. (i.e., PARENT ; —i )

If e; is a sink then we have a source-sink path which is a potential augmenting sequence.

The write-max at line 7 will retain only the source-sink path with the maximum incremental
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weight. The sink of the chosen path will be entered into :AUG. If e; is not a sink then it is
activated at-lire 8. The search will continue until all pathé from the sources are exhausted.
Except for the first iteration. a node will be "active” if and only if it is not a sink and it has
been assigned a "new;' parent in F in t‘he previous iteration. Note that an element may be
assignéd a different parent during each iteration. All nodes e; activated in the previous iteration
will be deactivated at line 6. However, the noc.:le' can be activated age'n at line 8 in the same -

L4

iteration. Hence, a node may be activated in more than one iteration of the search.
Step 4 performs the augmentation of / by backtracking in the same way as Algorithm
4.2. 1t will first check the value of A, . If it is non-positive then / is a solution and the algo-

rithm stops.

Algorithm 4.4': Parallel Weighted Algorithm

Let I be any I/ l-maximal intersection of M ;. M ,.

( I can be @ initially. )
Each P;;. 1<i.j €m executes the following codes

Step 1: (* Initialization *) o L ‘
1. LINK;; « false; ACTIVE; «* false; PARENT; <* null; AUG «* null
LINK; < true. A, «* -oo ‘
2. SOURCE; «<*1tirue; SINK; «<*true
ife; €] then ‘

SOURCE; «* false : SINK; «*(false
Step 2 : (* Building Border Graph BG(I) *)

1. ife, €/ and/+e; €I, and1+e—e € I, then ] S
LINK;, ~ truer; SOURCE, «—* falsc ]
2. + ife; €1 and ] +e, ¢12and1+e —e; € I, then .

LINK;; — true; SINK; —* false

Step 3: (* search for source-sink path *)

1. if i ¢/ then WI', «* WEIGHT (j) else WI';, «* —WE]GHT(])
' <synchronize>

ENDSEARCH +«* true
2. if SOURCE; then v

A, = WT,;: ACTIVE, —* true; ENDSEARCH + false
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3. while not ENDSEARCH
<synchronize> . ,
v ENDSEARCH +«* true
4. if ACTIVI: and LINK;, then
5. wrlte-max( A, A + W7, )
<synchronize>
‘ ACTIVE; «* false
6. if A, =A; + WT'; then PARENT; «**i
7. if SINK; then
# wrlte—max(A A, )
. <synchromze> :
if A, =4, then AUG «** j
8. .  else
ENDSEARCH «—* false; ACTIVE; «* true
<synchronize > .
end-while T~

Step 4 : (* augmentation *) i

1. if A, = -co then’

1 is both maximum cardinality and maximum weight, STOP
else - :
if A, < 0then/ isof maximum weight, STOP

_if SOURCE . then I « I + e, -

else
2. while augmentation not done
3. if i = PARENT, and j = AUG then
‘ if SOURCE, then I «*I +e, (* augmentation is done*)
else '
if e, €/ then I+<—*/—e; else ] —*I+e,
AUG «~*
<synchronize >

end-while
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Proof of Correctness

Theorems 4.2.3 and 4.2.4 give us the following algorithm for the weighted matroid intersec-

tion problem:

Start with any p -maximal intersection /
Repeat the following until done :
. Build border graph BG(/) |
and find a maximum incremeital weight
source-sink path § in BG(/ ).
If S has positive incremental weight then
I ~1®S elsedone. .

We want to show that this is what the paralle! élgorithm does.

*

(1) Step 2 is the same as in the cardinality algorithm and we have proved that it builds BG(/)

correctly.

4

(2) Next we prove that Step‘3 will find a source-sink path with maximal incremental weight in
BG(7). Step 3 is a breadth-first St;.arch of all trees in BG(7 ) with roots at the sources. The
search keeps track of the temporary incremental weight A; of an optimal path to each node
e | from a source. If thefe are several paths coming to the same node e, , only the path‘ with
the maximum A, value can lead to the final maximum incremental weight path. Therefore,
we need to prove that the algorithm will retain only this path for possible backiracking.

This is done in the while loop of Step 3.

A node e; is activated if it is not a sink and it is assigned a new parent. ¢; will examine
each of its sons e; to see if A; would increase if e; became the parent of ¢; in F. If 4; can
be increased. then A; is updated and PARENT; becomes i . This means that e; is parent of

e; in F, and. during backfracking. node e; will point toe; .

Since the search is parallel at each level, there can be several parent nodes attempting to

activate node e; simultaneously. The write-max instruction at line 5 ensures that each of

these parent nodes gets a chance to activate e;. A parent in BG(/) giving the maximum A,

A
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value will succeed and become the parent of e; in F.

_Similarly. there can be mofe than one source-sink péth with an incremental weight greater
than the curreni vaiue of A;. The write-max ir:\;truction at line 7 ensures that the path
with maximum A value becomes the augmenting sequence. |

.
(3) By Theorem 4.2.4, the incremental weights for consecutive augmentatiéns in this algorithm
| are decreasing. Therefore, when we reach an augmenting sequence with non-positive incre-
-mental we;ght, we know that all the following augmentations will give decreasing weights,

so the existing intersection is maximum weight. Hence, Step 4 correctly stops the computa-

tion when it discovers a non-positive A, . O

Time Analysis:

(1) Steps 0 and 1 take constant time.
. (2) Step 2 takes O(c (m )) time to build the border graph BG(/ ).
(3) In Step 3, the while loop will be repeated O(R ) times. Each iteration takes constant time,

so the total time for S‘tep 3is O(R).

(4) Backtracking in Step 4 takes O(R ) time.

There will be at most R iterations of steps 1 to 4. Therefore. the overall running time of

the algorithm is O(R(R+c(m)) ).
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4.3. REDUCING THE NUMBER OF PROCESSORS

‘The parallel algorithms for solving the two-matroid intersection problem described in the.
previous two sections require m’ processors. It can be seen that much of the time, many of tﬁe
processors are idle. For éxample. when building the border graph, only those processors P;; for
which (e, €E—/ and e, €l )or (e €/ and e; EE~/ ) can do useful work. This is because
E—1I and I are the two vertex sets in the bipartite graph BG(/). Also, when searching for a
source-sink path in BG(1), only processors P;; for which e; is active at this instant and e; is a
son of e, in BG(/ ) will be used. If e, 3 then there can be at most O(R) such active elements. If
e; €E—I then there can be at most O(R) sons for e;. In both cases, there will be O(m (m —R ))

processors idle. The existence of idle processors is also f ound in the other steps.

Withall this waste in processing power, we cﬁnnot expect perfect speed-up. Fort{Jnately'
this can be improved by using Brent's.Theorem [SV1;82]. This theorem says that if the total -
number of elemenf.ary operations (operations that takes O(1) time using one processor) that all -
the processors together will perform is x, and if the parallel timé (depth) requireg is d , then
we can implement the algorithm with x /d processors ‘with the same depth d ‘ if wel\know how
many elementary oﬁeratic;ns there will be at each instant and we know how to distribute them
to the x /;1 processc;rs. So. if the number of 6perai.ions x is the same as for the sequential algo-
rithm, then the time-processor product will be equal to x, the sequential time, and a perfect
speed-up will resullt. Since the parallel matroid intersection algorifhms are doing the same
things as the sequem.ial algorithms, we would expect that the numbér of operations are the
same too. In fact. we find th:at this is true, and a perfect speed-up is possible for these algo-
rithms. A similar applicati‘on of Brent’s Theorem can be found in {SV1-82] in which a parallel
max-flow algorithm is designed. Brent's Theorem is stated as follows:

Theorem 4.3.1 : (Brent) Any synchronized parallel algorithm of depth d that consists of a
total of x elementary operat.ions'can be implemented by p processors within a depth of

2

+ d . (Elementary operations take O(1) time). -



-57-

Our va,,lgorithms can be synchronized at each instruction sp that Brent's Theorem can be
applied. To apply this theorem, we need to solve two implementation provblemsi:
(1) Determine the number of operations to be performed at each time instant.

(2) Assign the processors to their jobs.

These problems will be solved in section 4.3.3. Let us assume for now that they can be
solved. To determine the optimal number of processors p, we must first determine x, the
number of elementary operations in the algorithm. The analysis for the unweighted and

weighted intersection algorithms are given in the next two sections.

4.3.1. The Cardinality Algorithm ]
. A » ’ ‘ .
Let us consider the number of elementary operations'in each step of the parallel algorithm.
'(i‘) In Step 1, the initialization needs O(mR ) elementary operations sinc; this is the number of -
possible links in the border graph to be initialized.

(2) Step 2 builds the border graph by ‘determining the links in it. It will perform independénce
tests for the O(m ) elements in E —/ . Each element ¢, is tested O(R ) times for each possible
link of ¢, to /. Fach test requires O(c (m)) time which we can take to be O(c (m)) ele-
mentary operations. Therefore there will be O(mRc (m )) elementary operations in Step 2.

(3) Sltep 3 computes a shortest source-sink path. Each of the m elements may be activated at
most once. There are O(m ) elements in the.set E—1I. and each of these elemernts will eg(am-
ine O(R ) sons when it is active. There are O(R ) elements in the set /., and each of these
elements will reference O(m ) sgns when it is active. Therefore the total number of efe-

mentary operations in Step 3 is O(mR ).

(4) Step 4 is backtracking which requires O(R ) operations.

. Since stej:is 2, 3 and 4 will be repeated O(R ) times, (there are. O(R ) augmentations), the total
number of elementary operations for the entire algorithm is O(mR 2c (m)):

The depth 4 , or time requirement of the algerithm, has been found 1o be O(R? + Rc (m)).
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Applying Brgni's Theorem gives the following result:

Theorem 4.3.2 :Algorithmr 4.2 can bemmed using p .processors within a depth of

O (mR%(m))
p

+ O (R (R+(w)).

The minimum number of processors to maintain the previous depth of O(R (R +c(m))is
min( mc (m), Rm ). This gives a time-processor product of O(mR %c(m)) which. is the

" same as the time of the sequential algorithm, so a perfect speed-up is achieved.

4.3.2. The Weighted Algorithm

+

Let us consider the number of elementary operations in each step of Algorithm 4.4. Steps
0.1, 2 and 4 are the same as in the cardinality algorithm. The only difference is in Step 3. Each
of the m elements may be activated at most once in each of the O(R ) iterations of the while

F

loop at line 3 to 8. When an element is,activated. it will examine each of its sons in the border

- graph. There will be O(R.) elements in the set / and each of these elements will have O(m )

e

sons. There will be O(m ) elements in the set E—I, each of which has O(R ) sons. Therefore
the total number of elementary operation for Step 3 is O(mR”). The number of elementary

operations for each step is as follgws: ' /

Steps 0 and 1 ....0O(mR )

Step 2....c....... O(mRc(m)) ‘
Step 3..cooeuee. O(mR?)
Step 4............ O(R)

Since steps 2. 3 and 4 will be repeated O(R ) times, the total number of elementary opera-
tions in this algorithm is O(mR’c (m ) + mR>).

The time complexity, or depth. d, of the algorithm is O(R® + Re (m)). Hence we-l the
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, following results:
x =O0(mR%c{m) +mR?) ‘ .- ‘ » o
d =O(R? + Rc(m))

Applying Brent's Theorem in this case. we must choose p 2mR 1o retain the depth d.

These results are summarized in the following theorem:

Theorem 4.3.3 : Algorithm 4.4 can be implemented using mR processors within a depth of
~O(R*+Rc(m)). The resulting time-processor product is O(mR’c(m ) + mR ™) which is
equal to the time complexity of the sequential algorithm. Therefore, we have a perfect

speed up.

- 4.3.3. Processor Assignment

In the above discussion, when we apply Brent's Theorem. we have assumed that there is
some way to assign the processors to their jobs in constant ;ime. The method is shown-below.

We need the following variables to keep track of the job indices.

[ -

Icount : the number of elements in the current independent set / 3

Iset [1..Jcount ) : Iset [i ] will be the i -th element in /

index of e; : réverse pointer of e; to Iset

soncount, . the number of sons of e; in BG(/)

son;[1..soncount, ] : the sons of e; in BG(/)

actcount : the number of active nodes at the current level of the,brezi‘dth-ﬁrst search for’
source-sink path

act [1..actcount ] : act [i ] is the i -th active node

The following extra work is done for job assignment.

3
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B ¢ : e ]
In Step 4, when we augment /, we do the following . \)

ada one to Icount

k «Icount " . ’ , - . .
,

If e, is added to /. then also set Iset [k }—e; and (index of e )~k

If € is deleted from 7, then also set k « Zindex of €; )7

s

 So. Iset [1..Jcount ] will contain all elements in the augmented / and

(index of e; €1 ) will be the index of e; in the array Isef .

This ensures that-in Step 2, when building BG, we know that 2.m.Icount jobs are to be done

(the joos for all possible links i) ) \
where
i
; =1,2,..m  and
j = Iset[1], Iset [2], - -- Iset [Icount
“or
i. = Iset [1], Iset [2], - - Iset{Icount] and
j=12.m , o ) -

The k -th job will then be responsible for link {i ,j} where
if & < m (Jcount.) then

k

m

i:

ca =k modm ; j = Iset[a]

else

a =k —m(lcount)

a

0-
]

Icount
; S

i =Iset[b]./j-=a mod Icount
%

Assigning the p processors 1o these jobs is now straight forward.

-
o
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In Step 2. when building BG(J j. Qe do the following bookkeeping: -
:soncour'z.t,- «1
if LINK,, then
k « fetch-and-add( soncount 1)
“son;[k] « j!

soncount; « soncount; -1

Hence .son,. [1..soncount, ] will contain all sons ofe, in BG(/). This will help us to‘distribute the
iobs in Step 3. Let us consider the cardi;mality algorithm. In Step 3, in the while loop. all active
elements will generate their sons. The following extra work is done at the very 'beginning;of the
loop to facilitate job assignment : |
actcount +« 1
if ACTIVE, then .
k « fetch-and-add( actcoz;nz 1)

act[k] < i

actcount .« actcount -1

So, act [1..chzc01;m] will contain all the active elements for the search at this level. Therefore.
the »while loop should examine the followiﬁg links ij which link the active elements to their
sons:

i =actlk] fork = 1.2.... actcount

j = son, lél forg = 1.2.... soncount,
Since each element can be activated al most once, and there are al most m elements (in £—/)
each having at most /count sons (in 7). and at iﬁost']goﬁnt elements (in /) having at most m

his iteration is m.fcount .

sons (in E—/ ), the maximum number of jo

Next we apply- @.t's Theorem on p 3 alone. We shall show how job assignment can be

done and determine the number of processors needed to maintain the depth of this stép. Note
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that at each level of the breadth-first search of B§(/ ), either all nodes are in /, or all nodes are
in E—1, and these two types of level alternate. S pose we.divide the m.Jcount jobs in the fol-
lowing way. At the Jevels where the active elements are in /, we assign m jobs for each of

these O(Jcount ) active elements. The k -th job is thus assigned for link i j where

1

k
— |, b=k modm
m

a:

i=actla]; j=son,[b]
At the levels where the active elements are in £—/, we assign Jcount jobs for each of these

O(m ) active elements. The k -th job is thus assigned for link i j where

a=

: b=k mod Icount
ITcount

i=actla]. j=son[b]

Recall that the depth of Step 3 is O(R ), and O(Jecount ) equals O(R). If we apply Brent's

Theorem for Step 3. we have O(mR ) operations with depth O(R ). Therefore we can use p -pro-

O(mR) +O(R).

p

cessors within a depth of

’

To maintain the depth, we must choose p 2 m. In fact we have chosen p to be

min(mR .mc (m )) (see analysis of Algorithm 4.2) and hence the job assignment problem for the

A

whole algorithm is solved.

For the weighted problem. since each element can be activated at most R times, the arguments
are similar o the above except that we shall have O(mR?) operations with depth O(R ) in Step

3. So we can choose p 2 mR . In fact, we have chosen p = mR ( see analysis of Algorithm 4.4)

and therefore, the assignment problem is again solved.
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4.4. FAST ALGORITHMS USING MORE PROCESSORS

In the previous sections, we have derived parallel algorithms for the two-matroid prob-
lems which achieve perfect speed-up. This means that we can utilize the available processor
power within a constant factor. However, sometimes we want 1o solve a problem as fast as pos-
sible even if we need to use more processors and cannol achie~ve a perfect speed-up. We must
still use a polynoniia’l numbef of processors. It is unrealistic to speak of exponential amounts of
time, processor, or n;e'mory':esources. Mcreover, if. we use an exponential number of proces-_
sors. all combinatorial problems can be solved easily by trying all possible combinations, and

7

we do not need to design algorithms. ’ ’ /

In this section, we shall derive faster algorithms for both the cardinality and weighted
two-matroid intersection problems. Perfect speed-up.is forfeited but the time complexities are
reducedto almost linear time. The fast algorithms are derived from the previous parallel algo-
rithms by improving the speed of steps 3 and 4. We can do Stép 3. the search for source-sink
paias, in O( logR ) time using m’ proceséors. Step 4, the backtracking. can be done in O(logR )
time using m? processors. The resulting complexity for the cardinality algorithm i-sj

O(R (logR +c (m ))) time using O(m 3/logm ) processor. The overall corﬁplexity for the weighted

algorithm becomes O(R (logR +c (m ))) time using O(m >) processors.

4.4.1. Cardinality Two-Matroid Intersection ' . T
Algorithm 4.2 is designed to solve the cardinality fwé—matroid intersection problem. We

have séen that steps 0, 1, and 2 of”A]gorithm 4.2 require O(c (m )) time. Steps 3 and 4 requires

O(R ) time each. We shall show how to reduce the time for ‘Step 4 in . later section. Here we

show how to do Step 3 in logarithmic time.

Step 3. wkich is the search for a source-sink path, is a breadth-first search of the border
graph BG(7). This can be done in logarithmic time as follows. Initially, we build O(m) trees,
one for each elemente; in E. The tree 7, for e; will have-e, as its root (at level 0) and all the

sons of e, in BG(Z) at level 1. Hence, each tree will have O{(R ) leaves. In the second stage, we
D
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examine each leaf e; at level 1 of each tree and hook the tree with e ; -as the root to this leaf. -
Hence, the trees now have leaves at level 2. In the third stage, we examine each leave e, at level
2 of each tree and hook the tree 7, with e, as the root to this leaf. In general, at the g-th stage,

the trees will have a height of 27 and leaves at the 27 -th level are examined. This process is

continued until some tree contains a source-sink path.

Note that in the above trees, each node will represent an element in the matroids (ie., a
node in the border graph BG(/)). Let us define the "full tree” for a tree T; at the g-th stage to

_be the tree that would result if, at each of the earlier siages (stages 1 to g-1), the whole tree 7

e -

- g

for each leaf e, is"hooked to 7. In a full tree, there calﬁ be many nodes representing the same
element in the matroid. However, in the breadth-first sléaggh we want at most one node at a
lowest possible level (closest to the root) to be retained for ez;:l‘liélement. Hence. when we link
atree 7; to a leaf of 7;, we may not add the wﬁole tree 7"1. . We check-every node in T; to see
if the element it represents exists in 7', .- Also. since the hooking of trees at the leaves is done in
parallel, we check if some other tree is adding a node for the same element at another leaf of

T,. We do not add a node if another node is or will be in the tree T, at a lower level (closer to

the root).. Hence, each element has at most one node in a tree and the size of any tree will not

exceed m .

-

We see that the heights of the trees will be doubled at each stage. It can be shown that

the maximum height of these trees is O(R ), so there will be O(logR ) stages.

.

Variables used in the algorithm:

LINK, (local variable) true if an arc from i to j exists in BG(Z ).

The followings are global variables.
SOURCE, : true if e; isa source in BG(J).
SINK, - :trueif e, is a sink in BG(/ ).

T . tree with element e; at the root.

1

AUGT ' the tree which contains the augmenting path.



AUG : the sink in the augmenting path.‘1

: [
/ . - .
Each element e; €E may appear at most at ghe node in 7. If ¢, isin 7, then it aas

(1) PARENT( ./ ) = index-nuffiber of its parent in T ; and

(2) LEVEL(: .j ) = thest€vel number of e; in 7. ( The root has level number 0.)
If e, is not in 7; then PARENT( . )=null and LEVEL(i . j )=co. )

The tree T, also has two variables:
SINK(T; ) is the index of the sir:k at lowest level of T,
SINKLEVEL(T;) is the level number of SINK(7;)

If T; does not contain a sink, then SINK(7;) = #tull and SINKLEVEL(7;) = c0.~

In the initialization for Step 3, we first check for possible single—e]erﬁent source-sink paths
at line 2. If there is no such path then we build a tree 7; with root =i foreach element ¢, . So.
element e; is at level 0. Then we add each son, e; of e; to level oner of T, with PARENT (i .j)
set to be i at line 5. If one of the sons. say e is a sink. then SINK(T;) \;vill be j.

SINKLEVEL(T,) is 1. and T; will become inactive. LPN

The g-th iteration of the algorithm corresponds to the g-th stage of the tree search. In the

- at level LEVEL(i ,j )=27 is examined. Each node in

q-th iteration, for each tree 7', , each leaf e,

T; will try to add itself to 7. If several nodes representing the same element e, are attempting
this simultaneously. then the write-min at line 10 will choose the one at the lowest level. The
parent node of e, will be assigned accordingly. Note that the variables PARENT and LEVEL

/l .
are the only variables that store the structures of the trees. Th/e’refope. there will be no distinc-
e

tion between two nodes in a full tree which are at the same level having the same parent.

—~—

Now if one of the trees. 7;. added to 7; contains a sink, then SINK(7’,) will be set equal

to this sink. SINKLEVEL(T; ) will become SINKLEVEL(T )+2% . If more than one of the newly
hooked trees contain a sink, then the sink at the lowest levei, say SINK(7} ) is chosen by the

write-min at line 12 to become SINK(T, ).
,\/v"\_/

-~ i \



If the root of T, is a source and SINK(7,) is not null, then we have found a source-sink
path. It is possible that more than one such path is found during the same iteration. The write-
min at lme 14 ensures that the shortest’ path w1ll become the augmemmg path. AUGT will

1

remember the chosen tree T; and AUG remembers the sink element SINK(T;) in this tree.

These will be used in Step 4 when we augment / by bacxtrack;ng.

Algorithm 4.5 : Fast Cardinality Algorithm

Steps 0.1,2 are same as A]gorithm 4.2.
Step 4 will be shown in section 4.4.3.

Step 3 now consists of the following :

Processor P;;, does the following steps.
Initialization: - , .
1. for each element e, €EE.
2. 1fSOURCE and SINK; then] «* 1+{e } (path is found)
' <synchronize>
if ‘path is found then go to Step 1 ‘
3. (* tree T; is built withroot =i *)
PARENT( i) «* 0 LEVEL( i) «<*0:
4. - for each element e; €E other than e;
5. if LINK;; then
, PARENT( ,j)e«*i. LEVEL(G.j) «*1
6. if SINK; then :
SINK(T,) «* j; SINKLEVEL(T,) «* 1
7, becomes inactive (* it will not grow any more *)
<synchronize> <
7. if no element exists at level 2 (e; is a sink)

then 7; becomes inactive
<synchronize> A
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q+-1
Repeat the followmg until DONE:
q-th iteration :

q < q+l
8. for each active T
9. for each element ej at level LEVEL(L j =27

(* T, is examined *)
10. for each e, inT,;

write-min( LEVEL(G .k ). LEVEL(G ,j)+27 )
. <synchronize>
11. if LEVEL(Gi & ) = LEVEL(i.j) + 27 then
‘ : PARENT( & ) «** PARENT(; .k )
(* T, is attached to T,
‘ - ‘ which grows twice as high *)
12. if SINK(T', ) # null then
' tree T, becomes inactive
wrlte—mm(SINl\LEVFL(T ). SINKLEVEL(T, )+ 2)
- <synchronize>’
13. : if SINKLFVEL(T ) = SINKLEVEL(T, ) then
SINK(T; ) «** SINK(T, )

14. if SOURCE,; and SINK(7;) # null then

DONE «* true

write-min( SL, SINKLEVEL(T;) ) ' ‘

- <synchronize>

15. - ~ if SL = SINKLEVEL(T, ) then AUGT «*i_

< synchronize >
16. if AUGT =i then AUG +~* SINK(T )
17. if no element appears at level 2° ! then

‘ T, becomes inactive
<synchronize>

4.4.2. Weighted Two-Matroid Intersection

Algorithm 4.4. has been designed to solve the weighted two-matroid intersection problem.
Steps 0.1,2 of Algorithm 4.4 require O(c (m )) time. Steps 3 and 4 require O(R ) time each. In a
later section we shall show how to speed up Step 4. Now we explain how to do Step 3 in loga-

rithmic time.

Step 3 of the weighted algorithm, which searches for source-sink paths, is again a
‘breadth-first search of the border graph BG(/). It can be done in logarithmic time by a method -

similar to Algorithm 4.5. The details are as follows.
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Initially, a tree 7; ic built for each elemente; in E. The tree for e; will l;ave e; at its root
(level 0) and the sons of e; in BG(/) as t‘he leaves at level 1. In the next stage, each leaf e; at
lfvel 1 of each tree is examined and the tree 7; rooted at e; will be hooked onto this leaf. The
height of the trees becomes 2. In the third stage, each leaf e, at level 2 of each tree is examined
and the tree rooted at e, is hooked onto this leaf. In general, at the q;th stage, the trees will

3

have a height of 27 and the leaves at the 27 -th level are examined. This is repeated until the

search is over.
Here we need a variable A(i.j J to store the greatest incremental weight among all paths

from element e; to element e; which have been searched so far. These A values are attached to
. { : :

1

the nodes in the trees. In the full trees of this algorithm, there can also be many nodes
- representing the same element in the matroid. In the breadth-first search, we want 1o retain in

T, at most one node for each element e; . This must be a node with the greatest A(i.j) value.

1

Hence, when we hook a tree 7; to a iecaf of T‘- , We may nth add all the nodes in 7, to T;.
We must check e(/ery node in 7'; to see if the element it represents exists in T;. Also we check-
if some other tree is adding a node for the same element at another leaf of T;. We do not add a |
node n, if another node n, representing the same element e; is or will be in tree T; at,this
stage, and n'l has a greater A(i,j) value than n,. Hence there will at most one node in 7; for
each element and the size of any t'ree will not exceed m . The height of the trees is doubled at

. each stage. It can be shown that the maximum' height of these trees is O(R ), so there will

"O(logR ) stages.

) )
The following variables are used in the algorithm:

L

WEIGHT (i ) : (local variable) given weight for element ¢, .

LINK;, : (local variable) true if link frome; to e, exists in BG(/).
The followings are global variables. |
SOURCE, : true if e, is a source.

SINK; - trueif e is a sink.
A
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T; : tree with e; as its root.

AUGT . the tree that contains the augmenting path.

AUG : thesink in the augmenting path.

AL - . . . . h ~
#s  the incremental weight of the augmenting path.

If e; isin 7; thene; will have the following variable values:

(1) PARENT(i , f ) = parent index of ¢, in 7| \ -
(2) LEVEL(i ,j ) = level number of e; inT,

(3) AGi,j) = temporary incremental weight of path frome; toe,

If ; is not in 7; then P(i,j)=null and A(i ,j )=-c0.

Tree T'; also has two variables:

(1) SINK(T; ) = the sink with greatest A(i ,j ) among all sinks
inT;.

(2) SINKLEVEL(T; ) = the level of SINK(T, ).

(3) A, (T;) = incremental weight from i to SINK(T}).

If T, does ndt contain a sink then SINK(7',) is null, SINKLEVEL(7; ) is o0, and A, (T} ) -
is -oo.

In the initialization for Step 3, we build a tree T; for each element e; with root =i. So,
element Me,» is at level 0. A(i.) is evaluated and if e; is a sink then A, (T,) is AG i) and
SINK(7,) is i. Then each son, e;, of e; in BG(/) is added to level one of 7, with
PARENT (i .j) set to be i at line 5. A(i.j) values are evaluated at line 6. If one of fhe sons,
say e, . is a sink then SINK(7,) will be j, A, (7;) is A(i.j). and SINKLEVEL(Z, ) is 1. 1f more
than one sink exists for T., the write-max at line 7 will pick the sink with the greatest A(i./)

value.

K]

The g-th iteration in the algorithm corresponds to the g-th stage of the tree search For
- each tree 7, each leaf e, at level LEVEL(:.j) = 27 is examined. Each node in 7', will try to

add itself to T;. If several nodes representing the same element e, are atitempting this
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L~

simultaneously, then the write-max at line 8 will pick the node with the greatest A(i .k ) value.

.

If more than one node representing e, at different levels of 7'; has the same greatest A(i k)

value, than the one at the lowest level (closest 1o the root) is chosen by the write-min at line 9.

@

If some of the newly added nodes of T; are sinks, then the sink €; with maximum A(i,j)

value is chosen by the write-max in line 11 and A (7;) becomes A(i.j). The sink with this

maximum A value at the lowest level:is chosen by the write-min at line 12. SINKLEVEL(Z;)
and SINK(7; ) are assigned accordingly at line 13.

If t'he root of tree 7'; is a source and it contains a sink, then a source-sink path has‘been
found.'If more than one such path is found during the same iteration, then the one giving a
rﬁaximum incremental weight of A (7,) is chosen by the w’rite-m'ax at‘ line 14. The tree with
the shortest SOU]'CC‘Sil"lk path with this A, (T;) value is chosen by the write-min at line 15 as

AUGT and AUG is the sink in this path.

For the Weighted algorithm, we must exhaust all source-sink paths to determine the one

with maximum incremental weight. A tree will remain active until no element exists at the

2°*! Jevel.
Algorithm 4.6 : Fast Weighted Algorithm

‘Steps 0.1, and 2 are the same as Algorithm 4.4. »
‘Step 4 will be shown in section 4.4.3.

Step 3 now consists of the following iterations: -
Processors F;;; will execute the following code.
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Initialization :
1. for each element ¢; €E

2. build 7; withi as its root:
. PARENT( ,i ) «*0; LEVEL(G . ) «*0
if i €/ then A(i ,i ) —* -WEIGHT(i) else A(i .i ) «* WEIGHT()
3. if SINK, then - ‘
' LA (T,)~* AG i); SINK(T,) «*i: SINKLEVEL(T,) «*0
4, for each element e, e - ‘
if LINK;; then L
-PARENT(i.j) «* i; LEVEL(G,j) «* 1

3 if j € then A ,j) —* WEIGHT (i )-WEIGHT (j)
| else AG .j) —* WEIGHT (j)=WEIGHT )
6. ife; is a sink and AG .j) > A_(T,) then
write-max( A, (7, )A(L j) )
<synchronize>

if A,(7i)=AG .j) then -
SINK(7,) «* j: SINKLEVEL(T,) —*

1f no element appears at level 2 then 7, is inactive

>

q -1
repeat the following until DONE
g-th iteration -
q-q+1 |
7. for each active T}
for each e; at level LEVELG ,j) =27
T, is examined *)

8. for each e inT,
write-max(AG .k ), AG.j) + A(j k)
<synchronize>
9. ) if AG k)= AG,j)+ A(j .k ) then
: write-min( LEVEL( &k ), LEVELG .j) + 27)
4 <synchronize>
10. ~if LEVEL(G &k ) = LEVEL(G ,j) + 27 then
©  PARENT( k) «** PARENT( j Jc )
11. if SINK(7; ) # null then . )
wrlte-max(A (7). A (T;)+AG.j))
<synchronize> :
12. - ifA(T))=A,(T;) them .
write-min( SINKLEVEL(T; ) SINKLEVEL(T )+2%)
<synchronize> ,
13. if SINKLEVEL(T; ) = SINKLEVEL(T; ) + 2¢ then
© SINK(T;) «** SINK(T; )
14. if i is a source and SINK(7; ) = null then
write-max( A, A (T,)) ¢
<synchronize>
15. if A, =A(T, ) then write-inin( SL, SINKLEVEL(T;) ) i
<synchronize>
16. if SL = SINKLEVEL(7; ) then AUGT «*T;.
<synchronize>
17. if AUGT =i then AUG + SINK(7})

. . 1
if no element exists at level 27 ' then
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T'; becomes inactive

if there is no active tree then DONE is true.

The following lemmas are related to Step 3 of both algorithms 4.5 and 4.6.

Lemma 4.4.1 : A node in T; will not be added to a tree 7; unless all of its ancestors in T, are

added to T'; .

. “
two nodes for the same element can exist at the same level

1

Proof : Firét let us assume that no
in the‘ full tree for each tree 7';. For the cardinality problem, if a node. n . for element
x has an ancestor node, n,. for element a which is not added, then another node. n,.
for element a ex{sts.at a lower 71éve1 than n ;. Then either a node n; for element x is
inserted into 7, as a descendent of n, or a hode n , for x appears at a lower level than

n ;. In the first case n; is at a lower level than n, and in the second case, n, is at a

lower level than n, and hence n, will not be added.

For the weighted problem, if’ a node n, for element x has an ancestor node n, for ele-
ment a which is not added to 7, then another node n, for a appears else where with a
greater A, value than node n . Then either a node n ; for x is inserted into 7; as a des-

cendent of n, or a node n, for x appears still elsewhere with a greater A; than n,.

Then n, or n4 has greater A, value than node n, in the first or second case respec-

tively. ' :
In the above arguments, if nodes n, and n, are at the same level in the full tree of 7,
then we can assume that either one of the nodes is inserted into I'; because all we
recognize in building the tree are the parent element identities and the level number or
A value. Hence there is no distinction between whether element x is added as a descen-

dent of n, or n,. With this reasoning, we can say that the lemma holds also for cases

with nodes for the same element at the same level 0.

Lemma 4.4.2": At the q-th iteration, no new nodes can be added as‘descendents to leaves at

[} -
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“ levels lower (closer to the root) than level 27 .

»

Proof : At the q-thv iteration, if a leaf appeérs at a level lower than 27 , this means that either ity
represenfs a sink, or its descendent vnode'.“x, has been checked and could not be addgd to.
the tree. In' the first case, there\sxists -no descendent of th'e) leaf. In the sécémd caée. py
Lemma 4.4.1, no new nodes can jbe attached as descendents of this _lqaf because ?qthe»
ancestor x is missing. [ | :

Lemma 4.4.3 : A tree which has no node at the 27 *'-th level after the g-th iteration will not |

acquire new nodes during later iterations even if it remains active.

: . . 1 : ‘
Proof : Since leaves exist only at levels lower than 27*! no new nodes can be added as descen--

dents of any leaf at the ¢ +1-th iteration by Lemma 4.4.2. 0]

Lemma 4.4.4 : The algorithms are correct.

v

. Proof : At any stage of the algorithm, if more than one node exists for the same elerr}em. i‘n Lhe
full tree for a tree T at thisftage ("full tree” is deﬁned in Section 4.4.1), then, in the

_cardinality algorithm, onlf one node at the lowest level (closest to the root) is
retained. For the weighted algorithm, only one node with the maximum incremental
weight is retained. By Lemma 4.4.2 the algorithms coi‘recﬂy consider only leaves at
the 27 level at the g-th iteration. By Lemma 4.4.3, it is correct to deactivate trees ai
the g-th stage if they have no leaf at the 27 ! level . So, Step 3 in either algorithm is a
breadth-ﬁ;st search of the border graph.0] |

t

Lemma 4.4.5 : There will be at most log R iterations.

Proof : If a source-sink path exists in BG(/ ), then the maximum height of the trees before a
source-sink path is discovered in the cardinality algorithm or all source-sink paths are

searched for the weighted algorithm will be 2R . If no source-sink path exists in

4
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BG(/). then the maximum helght of the tree will also be 2R beﬁxe all trees become
inactive because a path ‘with no repeated node can have length at most 2K . Since the
j  height of these trees has increased exponentially from the original beight of one, the

' number of iterations will be O(log ). O

\ 3

7
. o

Theorex‘h 4.4.6 : The search for a source-sink path can be done in O(log R) time using‘m3 pro-

/o
! cessors. -

Proof The correctness of the algorithms is proved in Lemma 4.4.4. At the O-th iteratioh of
e A

both algorlthms we -can assign a processor to each of thém possﬂ)le lmks in each of
“the m trees. Hence- m’ processors are required for this iteration. A" the g-th (g>0)

Jdteration of both algorithms. we can assign processor PE;; to handle each active tr.

T;. each element e; at level 2/ of 7. ctive

; ind each ¢, in 7';. There are m possil
e 4

trees, each tree has less than ible leaves at level 27 and each tree has m- possible

3 . S ‘
elements, so m "~ processors will be needed. _ . \

Each iteration of both algorithms requires constant time. From Lemma 4.4.5, there are '
O(log R ) iteratians, so the time complexity is O(log & ). O
S

Theorem 4.4.7 : For the cardinality problem, the'search for a source-sink path can be done in

o

O/log R ) time using m v/ logR processors.

Proof : For the}: Cbemallty algornhm the requ1red number_ of processors as stated in Theorem

4.4.6 can reduced by using Bﬁn s Theorem. In this algorlthm, each node can |

. become a leaf at the 2q level for at most one ¢ value‘becéuse it cannot be added twice
to-a tree. Hence the total number of leaves at the 2q{ level for all g is no-rfiore than m .
f- . , N :

+  Sinice each such leaf requires O(m } operations when a tree is linked to it. and-there are

w_ m trees in total. thc:number of elementary operations is 0o(m*). Applying Brent's
- N . - . o . . i ’
Theorem. we need ms/logR processors to achieve the same time bound. 1o apply

Brent's Theor%m. we have to solve the problem of job assignment for the processors.
’ N

LT ’ Yoo
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\
We can Ae{ermine which elements are at the 27 level in constant time:

k=0

7

if LEVEL (i .j)=2" then fetch-and-add(k .1)
LEAF{k)—j ; TREE[k]~i
NUMBER — 7 —LEAVES —k

where LEAF and TREE are arrays of size m .

Then jobs (m —1)k to mk are assigned to hooking tree I, to tree 7', at the ¢ -th stage

for k.=1,2,.. NUMBER —OF —LEAVES where

i =TREE[k ]and j = LEAF[k]

4.4.3. Backt;acking by Recursive Doubling

We will backtrack at every node simultaneoﬁsly to form pieces of paths that may be part
of the gugmenting sequence. Each element e, will be the head of such a broken backward path.
These paths will grow exponentially 10 a maximum length of min(m 2R ). Array B will
. represent the paths: ;

B(i ,j) is the j-th element inlll%gackward path headed by ¢;. .

B(i ,0) is ¢ itself.

Each processor #;; withi.j=12...m does the following:
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Step 4 : (* augmentation *)

1. if SOURCE, then PARENT (AUGT i) « 0 : . .
2. B(i ,0) « i:B(i.1) — PARENT (AUGT i) t
g~ -1 ; ? 7
3. while not DONE L
L. g < g+l
4. if i=AUG and B(i,2% )=0 then DONE
' else

— PARENT (AUGT .B(i 2%))

1

if 1 <j < 27 then B(i. 27 +j) B(p, i)
<synchroni2e> ,
end-while

5. if i=AUG and j < 2¢ then
k ~B(i.j)
ife €/ then] — I —e, else ] — I +e,

i . . . 2
Lemma 4.4.8 : Step 4 requires O(log R ) time using m~ processors.

Proof : The algorithm de;11ands thal-Pi; be used where i, j ¥1,2,...m . Hence m”’ processors are
required. The \thm grows the arrays B from an initial length of 1 to a maximum
length of O(R ) whikh is the length of an augmenting sequence. TRe growth is expon'énf
tial. so O(log R ) itégations of Step 4.1 are needed. Each iteration requires constant time

and a time complexfty of O(log R') is thus achieved. O

»Now, if we substitute the time complexities stated in Theorem 4.4.7 and Lemma 4.4.8 into
the complexities of Steps 2 and 4 respectively in the time analysis for Algorithm 4.2, we get the

following result:

Theorem 4.4.9 : The cardinality two-matroid intersection problem can be solved in
O(R (logR +c (m ))) time using O(m */logR') processors. . ' .
Similarly,.if we substitute the time complexities stated in Theorem 4.4.6 and Lemma 4.4.8

into the co lgexmes of Steps 2 and 4 respectively in the time analysis for Algornthm 4.4, we

get the followm& ult:
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Theorem 4.4.10 : The weighted two-matroid iritersection problem can be solved in

O(R (logR +¢ {m))) time using O(m *) processors.

lpiy
4

Analysis

- i

In the above algorithms, the time complexities are improved but more process\‘o_l\'s are used.
In fact, the time-processor product will be greater than the sequential time. We cannd‘i\ reduce
the number of processors and maintain O(logR ) time because the number of elementary opera-

e

tions in the algorithm is greater than the sequential time.

.For the unweighted algorithm (Algorithm 4.5),. the number of elementary operations for
Step 3 is O(m*). The total number of elementary operations is O(m *R+mR’c(m)). This is
greater than the sequential time (;f O(mR’c (7;1 )). By Brent's Theorem, since the depth is
O(R logR +Rc (m)), and assuming ¢ (m )<logR. O(m>/logR) processors have to be used 1o

maintain the depth.

«

F'or Step 3 of"the weighted algorithm,(Algorithm 4.6). at each iteration, for each eTemenl.
O(m) tregs will be exaﬁained and each iree has d(m ) nodes: Hence. in this step. the number of
elementary operations is‘EO(m3logR ). The iotal number of elementary operations for the entire
algorithm will be O(m’RlogR +mR’c (m)) and this is greater than the sequential time of
O(mR’c(m)). By Brenl's Theorem, since the depth is O(R1ogR +Rc(m)). and assuming

c(m) < logR . O(m?) processors have 1o be used to maintain the depth.

- 4.5. The case with the original F&A CRCW model

In the original fetch-and-add PRAM model. write-max and write-min are not allowed.

9 w0

and we have shown that simulation of these instructions will take O(log m ) time if m is the

number of simultaneous write-max or write-min operations to the same location. The time

bounds for some of the algorithms presented in this chapter will be different if the original

A
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model is used.

Algorithm 4.2 for cardinality matroid intersection is not affected since no write-max or

write-min. is used. Algorithm 4.4 for weighted matroid intersection uses the write-max

a

instruction when searching for source-sink paths. Hence, the time requir}gmem of this step

%

becomes O(R logm ) instead of O(R ) since there may be O(m ) simultaneous write-max's to the
. L]

same location, and the time complexity for Algorithm 4.4 becomes O(R *logm + Rc (m)).

There will be O(mR’c(m )+mR’logm) elementary operations in_this algorithm. It can be’

shown that Brent's Theorem can be applied and hence we can use ‘mR. processors to simulate the

algorithm within the same time bound.

The fast algorithms are also affected. Algorithm 4.5 for cardinality matroid interséction
uses write-min in Step 3. Algorithm 4.6 for weighted matroid intersection uses write-max in

Step 3. Both algorithms wiil now have a time complexity of O(R ( logR logm + ;(m ))). The

' ™
number of elementary operations in these algorithms tecomes

O(m R logR logm + r!zR 2c(m)). Assuming c(m) € (logR logm ). m*> processors have to be

used to maintain the depth.
' v
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5. BIPARTITE MATCHING PROBLEMS

In this chap/tner, we will derive parallel algorithms for the special case of bipartite match-
ing problenis. These problems are defined in example 1.9. Since we have derived parallel algo-
x;ithms for the general two-matroid intersection problems, we would like to see how well they

@A

perform on the matching pf'oblems. This is done in the next section. 11 will be shown that the -
performance is not very good compared to the sequential times of the best known matching
algorithms. This suggests that we could achieve better results by taking advantage of the spe-

cial featuresiof matching problems when designing parallel algorithms.

~

In the second section we design parallel algorithms based on one of the fastest known
sequential bipa‘riite matching algorithms. The cardinality bipartite matching problem will be
transformed into a max-flow prob;em on a unit network. We have chosen Dinic's Algo;'ithm to
solve the max-flow problem. The transformation is shown and Dinic's Algorithm \;\/ill be
&;cribed. A parallel algorithm which achieves perfect speed-up over Dinic's?'Algorithm has
been designed in [SV1-82]. We will describe ‘the parallel max-ﬂo;av algorithm in [SV1—82] *nd
show how 'to modify it to give simpler ‘and better 'results. The simplified algorithm achieves

perfect speed-up.

The weighted oipartite matching problem is solved by transforming it into the myin-€ost
flow /‘problem. The sequential algorithm for the min-cost flow problem is based on the aug-
menting path method in which each augmentation consists of solving a shbrtest—paths roblem.
Tl?é'shortest—paths problem is solved using an efficient sequential algorithm due to Dijkstra. A
parallel algorithm based on these sequential algorithms is then developed. Applying Brent's

Theorem for this parallél algorithm gives a perfect speed-up.

Finélly, we can solve the shortest-paths problem using a technique similar to;thz'n used to-
search for a source-sink path in the border graph of the two-matroid problems. We ‘will show
how 1o build the shortest-path tree in logarithmic time in parallel. This results in a fast péral~

rlel weighted ‘bipartite matching algorithm. This fast algorithm can be used to solve the cardi-

nality matching problem in sug-linear parallel time.



. -80-

5.1. Applying the General Algorithms -

This section will show how we can use the general two-matroid algorithms in the previ-

A

ous chapter to solve both the unweighted (cardinality) and weighted bipartite matching prob-

lems. Step 2, which builds the current border graph, in parallel algorithms 4.2 and 4.4 requires

2

some modification.

Let us state the definition of bipartite matching problem again (see Example 1.9). Let -

G=[xyYy .E] be a given/bipartite graph, where X and Y are two disjoint sets of vertices, and E

L

is a set of arcs {i.jl i‘n which ¢ EX and j €Y. The bnparute matchmg problems will be special

cases of the 2-matroid intersection problems in. _Wthh the two mat'\nds M ,=(E I,) and

M ,=(E 1,) are partition matroids. A set / CF is in I; iff no two arcs in / are incident to the

same vertex 1in X . Similarly 7 €1, iff notw/oucs/in I are incident to the same vertex inY . The -

arcs of the bipartite graph G are the elements of the matroids, and a matching of the graph is
an intersection of the matroids. .

If two arcs have a common vertex in X then they form a c‘ircu‘it in the matroid M,. If
two arcs have a common vertex in Y, then they foﬁn a circuit in matroid M ,. In the follow-
iné. we assume that we have information about Vthe adjacencies between all pairs of arcs and
their common vertices in G. The variable ADJX; will be the number of arcs in the current
intersection / adjacent to arc j with the Common vertex in X . ADJY; will be the number of
arcs in 1 adjacent to arc j with the common vertex in Y. If an arc j in £—/ has adjacent a.{//
in 7 at both endpoints of it, the:] ADJX; and ADJY; will both be positive, and the arc can be
neither a source nor a sink in the border graph BG(Z ). If it has adjacent arcs in / at one or none

of the endpoints, then it will be both a source and a sink. oo

5



Step 2 : (* building a border graph *) S,
Processors P;; ., 1 <i,j Sm, perform the following in parallel.
1. ADJX; «* 0; ADJY, «<*0O
if arc; €/ and arc; is adjacent'to arc; with common vertex v €X then
LINK;; < true '

El

2. fetch-and-add( ADJX; . 1)
3. of arc; €] and arc; is adjacent to arc; with common vertex v €} then
4. - LINK;; < true
5. fetch-and-add( ADJY; . 1)
<synchronize>
6. if ADJX, 2 1 and ADJY, 2 1then

SOURCE; «* false; SINK, «* false
else * _ .
SOURCE; «*true; SINK, «*1rue

: . . . 2 ’
The above step can be done in constant time with m~ processors.

For the cardinality bipartite mz;tching problem. more modification is needed to achieve a
better time éomplexity. In [HK-73], it ‘is proved that for a sub-optimal intersection /. there
may 'bek more than one shortest vertex-disjoint augmenting path, Va;md if we augment / by these
paths simultaneously. then the total number of augmentations required is O("\/—ﬁ—' ). Hence, to
solQé this problem more efficiently, steps 3 and 4 of Algorithm 4.2 must also be mod(iﬁed S0
that all source-sink paths of 1hé shortest length are found instead of just one. A boolean array
AUG [1..m ] is used so that if element e, is a sink in one of the shortest source-sink paths. then '

AUG [i ] is marked true, otherwise it is false. To make paths distinct, we restrict each parent

node to have only one son. This is done by marking a new variable SON; 10 be J if e, becomes

1

the parent of elemente; .
w

ALGORITHM 5.1 : (* unweighted matching *)

Same as Algorithm 4.2 except for the following modifications: -

Step 2 is modified as mentioned above
Lines 4 1o 8 of Step 3 are modified as follows:

;s .

/
-

N _
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4. while path not found and not ENDSEARCH
ENDSEARCH +«* true
5. if LINK;, and ACTIVE; and PARENT, =null then
: <synchronize>
ACTIVE; «* false
SON; «% j
<synchronize>
if SON; = j then
PARENT —1
if SINK, then AUG [j] « true (path found)
else
8. 4 ACTIVE; « true; ENDSEARCH «* false -
<synchronize>
end-while

N

Also, line 3 in Step 4 is modified as:

3. if AUG [j]and i =PARENT, then

=

If the faster Algorithm 4.5 is used instead of Algorit'hm 4.2, we do not have to worry about

distinguishing the paths because they will be in different trees. We simply use a boolean array

-

AUGT[1..m ] in which AUGT [i ] is true iff tree I"; contains a shortest source-sink path.

ALGORITHM 5.2 : (* fast unweighted matching *)

Same as Algorithm 4.5 except for the following:
Stgp 2 is modified as mentioned above.,
Line 15 of Step 3 is modified as follows:

15.  if SL = SINKLEVEL(Z;) then AUGT[i] «~* true

The backtracking by recursivesdoubling can be done with similar modification.

. o

The weighted matching algorithms are as follows:

ALGORITHM 5.3 : (* weighted matching *)

=

Same as Algorithm 4.4 except that Step 2 is modified as mentioned above..

LY

a
-
.%5



-83-

ALGORITHM 5.4 ; (* faster weighted matching *) ,

Same as Algorithm 4.6 except that Step 2°is modified as mentioned-above.

E

I
§
, S
Time Analysis -
The next four results follow from the time analysis of the general'algorithms; Note that

c(m) is constant because we take constant time to build the border graphs. Also. O(R) is

taken to be O(n ) because we can have,at most n /2 arcs in the final matching.

Theorem S5.1.1 : Algorithm 5.1 finds a maximum cardinality matching for a bipartite graph

with m arcs’and n vertices in O(¥n n ) time using m processors.

Theorem 5.1.2 : Algorithm 5.2 finds a maximum cardinality matching for a bipartite graph

with m arcs and n vertices in O(¥n logn ) time using m ~/logn processors.

Theorem 5.1.3 : Algorithm 5.3 finds ¢ maximum weighted matching for a bipartite graph of m
arcs and n verticés in O(n ?) time using mR processors.

Theorem 5.1.4 : Algorithm 5.4 finds a maximum weighted matching for a bipartite graph with

N

— . : 3
m arcs and n vertices in O(n logn ) time using m~ processors.

.

From the above analysis, we see ‘.iat the time-processor products of all these algorithms
are greater than the sequential time of the best known matching algorithms. The reason is that

the special features of the matching problem are not exploited. To achieve better results we

will use the fastest known sequential algorithms for these problems.
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5.2. ALGORITHMS WITH PERFECT SPEED-UP
5.2.1. Unweighted Bipartite Matching

The unweighted bipartite matching problem can be transformed into the integral max-
imum flow problem. ln fact, the fastest sequential algoritlim for l;nweighted bipartite match-
ing known is based on this transformation [Ta-83]). A parallel algorithm has been desiéned in
[SV1-82] using a different parallel model for the general integral maximum flow problem. First
we will *defme the flow problem, list some properties of network flows, and describe the sequen- -
tial algorithm in [Ta-83]. Then we show how to maké use of the simplicity of the transformed
problem‘ and our parallel model to derive a parallel algorithm which is both simpler and faster
than the algorithm in [SV1-82].

| g J

Basics of Network Flow

The following definitions use the termir;ology of [SV1-82].

Definition 5.2.1: A directed flow netwo;'k,N =<G .5 .t ,.c) is a quadruple, where
(1) G = (V .E) is a directed graph; | O
(2) s and ¢ are distinct vertices called the source and the sink respectivelil:

(3) c:E = R™ assigns a non-negative capacity cap (e ) to each e € E.

A directed flow network is a 0-1 network ( unit network ) if cap(e) = 1foralle € E.

Definition 5.2.2: Let u — v denote a directed arc from u to v.
A function f :E — R" is a flow if it satisfies:

(1) The capacity rule;

"f(e)<caple) foralle € E

(2) The conservation rule:
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IN(f v)=0UT(f v) fo'r'allv €V —{st}

€

Where o

IN(f wv)= 2 f (u-v)isthe total flow entering v,
u—vEe€E ’

OUT(f wv)= ) [ (v—u)isthe total flow emanating from v.
v—u€FE .

The flow value | f | is OUT(/ .5 ) - IN(J .5).

Definition 5.2.3: A flow [ isa m:aximum flow if I f 121f"1 for any other flow f'. A flow
f saturates an arc e if f (e) = cap(e). A flow [ is a maximal flow (a blocking flow) if

every directed path from s to¢ contains at least one saturated arc.

-

Definition 5.2.4 : The residual graph R for a flow f is the graph with vertex set V., sourc?s.
sink ¢, and an al:-c [v.w] of capacity res(v.w) =cap(v.w) -~ f (v .w) for evefy arc

- [v ,w‘]‘r € E such that cap(vw)>.f(vw), and an arc [v.w] of " capacity
res(v.w) = f (ww) for every arc [w.,v] € E such that f (w.v ) > 0. An augmenting

path for f isa path p from s tot in R.

Definition 5.2.5 : Let R be the residual‘graph for a flow f . The level of a veriex v is the

» .

length of the shortest path from s to v in R. The level graph L for f is the subgraph of '

R containing only the vertices reachable from s and only the arcs [v.w] such that’
. : . ‘ %

level(w)=level(v) + 1.
' ' >

5.2.1.1. Transformation into Max-Flow Problem

I8

b4
The Unweighted bipartite matching problem can be trans{ ed inte the integral maximum

flow pfoblem in the following way.
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Lét G =[X .Y .E] be the given undirected graph with vertex set V=X U Y ‘such that
each arc in E has one end in X and the other in Y. .We shall den;)te a typical arc.by
' {7; y }b where x €X.,y €Y. Let s and ¢ be two new vertices. Construct a.grapI; G
with ver‘tex stV J {sth source s . sink £, and capacity one arcs Is x1ly £ and [x.y]
for every {x.y} € E. G is a unit network. A matching‘for G of size |F | ::an be
derived from an integral flow f for G’ by taking the set of ‘arcs {x .x} such that [x .y]

has flow one, Hence we can find a maximum cardinality matching for G by sclving an

integral maximum flow problem on G'.

Dinic’s Algorithm

An integral maximum flow can be found using Dinic’s Algorithm.

Dinic's Algorithm starts with a zero flow and repeat the following step until # is not in the

Y

{e/vel graph for the current flow.
BLOCKING STEP (Dinic). Find a blocking ﬂov&(_’\ixl the level graph for the curzent flow
/. Replace f by the flow f o+ !,'/ defined by

(f +f/)vw)=fGw)+ [ (v.w)

[ e ("
Theorem 5.2.6 : On a unit network, Dinic’s Algorithm halts after at most A}vn —2 | blocking

steps.

»

Proof : [Ta-83], Pg 102, Theorem 8.5.

- +
-~

Theorem 5.2.7 : On @ unit network, Dinic's Algorithm finds a blocking flow in O(m) time and a

T maximum flow in O(Vr m ) time.

Proof : [Ta-83]. Pg 104, Theorem 8.8.

[e)

.
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In [SV1-82] an O(n’logn ) parallel maximum flow algorithm is desx;,ned for the general 2/

5.2.1.2. Parallel Max-Flow Algorithms |

_network problem using m/n processors and a CRCW PRAM model that allows concurrent

writes only if the processors attempt to write the same value.

The algorithm in [SV1-82] is a parallel version o} Karzanov's Algorithm [Ka-74] which
improves on Dinic’'s Algorithm. The basic idea of the algorithm is quite simple. The algo“rit‘hm
consists of blocking steps. Each blocking step is divided into pulses. In the first pulse the source
s from it. At the beginning of each of the successive puloes there will be a set of balan.ced ver-
tices ( for which IN(f ,v) = OUT(f .v) ). and a set of unbalanced vertices satisfying IN(f \ )
> OUT(f .v). The balanced vertices remain idle during the pulse while the unbalanced ver-
tices try to push forward as much of the excess flow as possible. If they cannot éliminate _all‘
[ the excess flow this v?ay. they return the rest backward. Returning the flow backwnrd is done

in a "last in first out" order. _

"It is stated in [SV1-82] that a maximum matching in awrtite,graph can be found by -

their algorithm within a depth of O(nl'slogn )‘time using m/n processors. The algorithn1 can,

"in fact, be simplified for the unit network using our parallel model.

Parallel Max-Flow Algorithm for Unit Networks
| ;

. L]
Due to the simplicity of the unit network, we can eliminate many of the complex struc-
-~ {ures used in the algorithm in [SV1-82]. In the following algorithm, Step 0O is for initialization.
Step 1 and Step 2 together form a pulsé. Step 1 will try to push the flows forward. while Step 2

will return backwards the flows which cannot be pushed through in Step 1.

The number of sons. NUMBER_OF _SONS (z ), of each node, i, in the network is Assumed
to be known These sons are assumed to be in an array SON(L .j) for
1< j SNUMBER_OF_SONS(i). In SLep 1. each unbalanced node has an incoming flow (unit

flow) and po outgoing flow. Each unbalanged node will try to push the flow to one of its sons.

b
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If this son already has a flow or more than one parent is lrymg to push a flow to it, then n will

return lhe ﬂoWs back 1o all but one of these parents in Step 2: Lach parem ‘will try each son in

1

“turn’using the index ordering until either it successi {ully pushes its flow forward. or it is unsuc--

pessful with all its sons and .has (o return the flow backwards. \ '
‘ DaLa Structures used: '

NUMBER_OF _SONS (i ) — the number of sons of vertex i

SON\&\} ) -- the jih son of e, in the level graph

INDEX =~ -- pointer o SON (i .j v for local vertex i (local variable)
BALANCED, --1rue if and.only if vertexi is balanced “
PARENT,. — the vertex from which there is a flow to e, '

TERM (i) -~ true if there is a flow from vertex i to sink ¢ .

Algorithm 5.5: Parallel Algorithm for Finding a Blockmg Flow on a Unit Network

Input : a level graph for the current flow, :
each node i has sons SON (i .j) where 1 SNUMBER OF _SONS (i ).

Output : a blocking flow in the level graph.

Processors P; for i=1,2....n will perform the following steps.

Step O : (* Initialization *) : .

INDEX <« O ; PARENT, «~ null . SoL

BALANCED, « true; TERM (i) « false o ' .t

if'i < NUMBER_OF_SONS (s ) then ,
 PARENTgx(, .« 5 : BALANCEDy ., ,; — false

N

=

- Step 1 : (* push *) . : . -

4. : if not BALANCED, then ;
v INDEX «~ INDEX + 1 ) -
5. if SON (i JNDEX ) =1t then
) TERM (i) «~ true ;.  BALANCED, «- true
- . else ’ -
6. if PARENT on (, snpey) = null them PARENT gon( xprx) <7 1
< synchronize> ) ‘ ‘ '
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%
Step 2: (* return ") _
7 if not BALANCED, then )
5. if PARENT gopetrinpzx, = i then
) | BALANCED, + true
- (* node i has succesyully pushed its ﬂow forward *) .
else - ,

if INDEX 2 NUMBER_OF _SONS (i) then
(* it has tried. all of its sons *)

9. ’ : j + PARENT,
10 . ' if j = 5 then BALANCED,; « false
1. o . o PARENT, « null; BALANCED, < true
' ve? ' (* node i has returned the flow back toits parent *)
12. Go'to Step 1 if there are any active nodes (i.e., unbalanced vertices).

When the algorithm terminates. the following arcs will have a flow of one:
( PARENT,.i) foralli, where PARENT, # null;
(i.2) if TERM (i ) is true.

Proof of Correctness
We have 1o show that Algorithm 5.5 does what the algorithm in {SV2-82] does for unit

networks.

In the "push” stz{ge of a pulse, the unbalanced vertices should push forward as much
excess flow as possible. This is done in Stép 1 of Algorithm 5.5. Here, each unbalanced vertex i
will try to push all its excess flow (which always has value one) forward to its next son,
SON (i INDEX). at line 5. If this son is the sink ¢ ., then we mark 7ERM (i ) to be true and i
becomes balanced. :

In the "return” stags. if an unbalanced vertex cannot eliminate its excess flow, theh it
should return the rest backward. This is done in Step 2. Here a vertex is not balanced 'if and
only if it has pushed some flow to one of its sons, j. and the son is not tbewsi‘nk. There may be
more than one parent pushing its low towards this son. Only one will succeed in becoming
PARENT ., the parent of j in the blocking flow. At line 8, we tdentify the successful parent i,
and mark i as balanced. If an unsuccessful parent { has no more sons that it can try pushing
_its flow; then the flow is returned to PARENT Then i becomes balanced and PARENT

becomes unbalanced. O

Time Analysis

~

- . - I \‘
Algorithm 5.5 Nis a specH] case of the algorithm in [SV2-82] for which the following .-
. \"\

*theorem holds:

Theorem 5.2.8 : The algorithm terminates after at most 2n pulses.



Proof : [§V2-82]. Theorem 7.1._ | |

Theorem 5.2.9 :
(1) The unweighted blparute matching prob]em can be solved in O(n Va ) time using m /n
_processors. :
’ N e niVn »
(2) The unweighted bipartite matching problem can bé solved in O( ~) time using p
o - | Y }
processors where p £ —.
o Z

’ P -

Proof : Algorithm 5.5 is a simplified version of the algo;ilhm in [SV2-82] and the szme argu-
ments for reducing the number of processgrs ébld. Hence. the algorithra requires m/n
processors. By Theorem 5.2.6 there will be o(vn ) blocking steps anc by Theorem 5.2.8
there will be at most 2n puises. Since each pulse of Algorithm 5.5 takes coﬁstant time.

: : L
we conclude that the cardinality problem can be solvad in O(n vn ) time using m /n_pro-

-

Cessors:

The total number of elemenLary operations in each pu.se is O(n ) since at most n nodes

N

can be unbalanced. By Theorem 5.2.8, lhere will be at most 2n pulses in each blockmg
step, and by Theorem 5.2.6, there will be O(vVn ) blocking steps. Therefore, the totat

number of elementary operations is O(n Vn ). Applying Brent's Theorem gives part (2)-

of Theorem 5.2.9. O

—_—

T~
The time-processor product for this parallel unweighted bipartite matching algorithm is

t
O(¥n m ). Since this is the same as the sequential time for Dinic’s Algorithm on a unit network.

a perfect speed-up is achieved.
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5.2.2. WEIGHTED BIPARTITE MATCHING

«

In this section, we present a parallel algorithm for the weighted bipartite matching p}ob—
lem \;vhich achieves perfect speed-u . This algorithm is based on a transformatiop of the
. matching Ap‘roblem into the minimum-cost flow problem. Fhe sequential algqrithm for the
‘minimum-cost flow Froblem us‘es an augmemi;mg pé'th method in which'each augm.enpation con-
sists of solving a shortest-paths problem. We will first describe the problem tran;fof-rxlation

-and the sequential algoxl-ithm from [Ta-83], and t'hen'presem the parallel algorithms.

5

Minimum-Cost Flow

Definition 5.2.10 : Let G be a network such that eac;h arc {(v.w) has ¢ cost per unit flow,
‘cosl'\z (v.w), in addition to a capacity. Assume that for each arc (w.v) in Es;;?»'
cost (v.w)= —éosz (wv). The cost of a flow  f is

cost (f )=, (. .)»oc0st (v.w)f (v.w). A flow is minimum cost if among all flows of

the same va]ue‘ it has minimum cost. The minim'um—gbsi flow problem is that of finding a

1

maximum flow of minimum cost.

Definition 5.2.11 : The cost of a path is the sum of its arc costs. The residual graph R for a flow

[ is defined as in Déﬁni;ion 5.2.4 with the extension that cost (v .w) is the same in R

as in G.

5.2.2.1. Transformation into Minigﬁm-Cost Flow

The weighted bipartite matching problem can be transformed into the minimy cost

integral flow problem. The transformation is similar o the transformation of the unweighted
bipartite matching problem into the integral network flow problem.
Let G =[X.Y .E] be the given undirected graph each of whose arcs has a real-valued weight,

denoted by weight (v.w ), and with a vertex set V=X |J ¥ such that every arc in £ has one

end in X and the other in }'. We shall denote-a typical'arc by {x .y} wherex € X andy €Y.



3

@

Let s and ¢ be two new vertices. Construct a graph G' with vertex set V U {s .t }. source s .
sink ¢, and capacity-one arcs [s .x ] of cost zero for all x € X; [y.r] of cost zero for every

y €Y :and [x.y]of cost = -weight(x,y) for every {x.y} €E. The graph G' is a unit network.

t

(i.e., ali capacities are 1.)

The following diagram is an example of such a transformatior. <
Example :
'
! 5
4 5
given bipartit: graph % transformed network

with weights

A matching on G of size If ! and weight = ~cost(f ) can be derived from an integral flow f
. ' P
on G’ by taking the set of arcs {x .y} such that [x.y] has flow one. A minimum cost flow will

correspond to a maximum weight matching. Hence we can solve the matching problem on G by

solving the flow problem on G'.

5.2.2.2. Sequential Algorithm for Min-Cost Flow .

Let us look at the theorems that are the basis for an efficient sequential ?orithm for

sdlving the minimum cost flow problem.

Theorem 5.2.10:If f is %ginimum—cost flow, then any flow obtained ffom f by augmenting
&

along an augmenting path (see Definition 5.2.4) of minimum cost is also a

minimum-cost flow. *

Proof : [Ta-83}, pg 109, Theorem 8.12. , N

v
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Lemma 5.2.11 : If minimum cost augmentation is used, then successive augmenting paths have :

-t ) ) non-decreasihg cost. - ) a ‘

Proof : [Ta-83], pg 110, Lemma 8.4.

Algorithm 5.6 : Sqquénti#l Min-Cost ﬁow Algorithm:

The following sequential algorithm is from [Ta-83]. Chapter 8. From Theo:ém 5.2.10, if>
G has no negatiye cost cycles, then we can find a ﬁ}inimum cost flow of a given capacity by the
augmenting path method, if-we always augment along a mini{mum cost paih. Starting with the
zero flow, this method produces a set;qen;_g of 2t "most n/2 minimur'n cosi flows of‘increasing
value ( wheren = IV | and m = IEF} lérom Lemma 5\".‘2.131,’ if we swp the augmenting algo¥
rithm just after the lﬁst augmentation along a path of negative c:ost. we will have a minimum

cost low among all flows.

We can compute successive minimum cost augmenting paths by finding a shortest-path

-

tree rooted at s for the residual graph R (see Definition 5.2.4), where the length of an arc i

defined to be its initial cost. We use the path in the tree from s to! as our augmenting path.

/Due to the simplicity of the ini.tia‘lv. graph, the first path is simply the or@ wwith the
mii;imum cost arc e €E and the z;rcs joining e to s and t. ‘To apply Dijkstra’s Algorithr: for
.the second and succéssive augmentations, we must Lave non-negati{ze lengths in the resigiua]
graph. EQmonds and Karp [EK—72]‘ have shown how to achieve thi—s by transformir;g the
" lengths after each augmentation:
length(v.w ) < length(v .w ) + dist(v ) ] disvt(w )
where dist(x ) is the length of a shortest path from's to x. The new arc lengths mggg-/ <,

negative.

The first augmentation is O{m ). Dijkstra’s Algorithm is O(n 10g,,,,,, y¢ ) and there are at

most n /2 augmentations. Therefore, the total time complexity is O{nm log("2+m Yt )

The following diagram shows the augmenting steps for the example in section 5.i.2.1.



- *Residual graphs with

Steps Shortest-path trees with 7
’ transformed lengths -

augmenting paths

2) -

(3)

corresponding maximum
- weight matching
(weight=4+5+5=14)

" resultant min-cost flow
(cost=-4-5-5=-14)
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Dijkstra’s Algorifhm for Shortest-Path Tree Rooted at s

Starting with the root s, we build a‘s‘xortest-path tree T arc by arc as follows. We say v bord-

ers TifveT but some arc is incident to both v and T. A d-heap is useq to store the vertlces

T bﬁ'ﬁe—rﬁlgﬁl A d-hedapis’ a—compfere—d—ary trercommngvneﬁtenrpermdemnge&1n—heapf”*r”

order: if x and p(x) are a node and its parent, respectively, then the key of the item in p(x) is no
“greater than the key of the item in x. The key of a vertex v in the heap is the length of the.

minimum ‘length arc mcxdent tov and T. 'I:st arc. is stored with v in the heap. -

5

, NS ' N
The following step is repeated until all arcs have been considered:

-

Selection step: .

~ .
&

(1) Delete the minimum arc from the d-heap (deletemin) and include it in T. This adds a

g new vertex v to T.

- - x . -

¥2) Examine each arc [v .w ] incident trolv :
(i) if w )is notin T and w is not in the d-heap, we insert it into the heap.
Gi)ifw €T butrit is in the d-heap with a corresponding arc e of greater value than
length[v ,w ]. we replace e by [v .w ], modify the key to lengt'h[v“.w] and sift-up to

maintain the heap structure.

The running time of each augmentation is thu.s bdominated by the heap operations:
O(rn —1) deletemin : O( (n—1)d log, n ) time |

O(n—=1) insert : O( (n—1)log,n ) time

O(m —n +1) sift-up: Of (m —n +1)1ogd n] time

m
2+ —
n

‘Ifd= , then the total running time is O(m log,,,,/, 1 )

~



*5.2.2.3. Parallel Algorithm - ' SN

M

¢

The parallel algorithm for the weighted bipartite matching problem is similar to the sequential

SN S

Step O :

’ Step1:
Step 2 :
Step 3 :
Step 4 :
Step 5:

s

algorithm described above. It is divided into the followingISteps:

initialization ‘

transform bipartite graph into network ' v%n

find the first augmenting path : ’ N
k3

build the residual graph R
find shortest path from source to sink in R

obtain the augmenting path and check its weight

Steps 3 to 5 are repeated until the augmenting path has non-positive weight.

Data Structures for the Parallel Algorithm
WEIGHT (i .j) : is the given weight of arc(i . ) if it exists in the ongmal bipartite graph:

3

and zero otherwxse

LENGTH (i .j ) :-WEIGHT (i .j) in the first network graph;

>=0if arc(i.j ) exists in the current residual graph;

-co otherwise.
(LENGTH (i ,j) is updated each time a new residual graph is formed.)

Note that LENGTH (i .j) as used in the shortest-paths procedure is equivalent to cost (i .j) in
the minimum-cost network at each augmentation. The shortest 'path is equivalent to a

minimum-cost path.
MIN (i) : is the minimum of LENGTH (i .j) for all arcs (1 j) in th? ‘tesidual graph.
M@G): j 1f'LENGTH(z,j)equals MIN (i ).

PARENT (w)

. is the parent node of node w in the current shortest-path tree T.

A(i.j): 1if arc(i,j) is in the augmenting path;
O otherwise. iy A : o

i

DIST (w): is the shortest distance from s to w in the current shortest-path tree T. .
(Each time a new node v is included in T. and arc(v ,w ) exists. we checks if ™
DIST (v) + LENGTH (v ,w ) is shorter than DIST (w ). and update DIST (w) 1f it

is.) .

MATCHING (i ,j) :1if arc(i,j) is in maximum matching;

0 otherwise. ,
(It is updated after each shortest-path tree is found by backtracking from

t to s in the tree.)

~



The following is a descripiion of each step of the algorithm :

(1) In Step 1, the matching graph G =[X .Y .E'] is transformed into a flow network. A source
node O and sink node n+1 are created and directed arcs [0.i], [j.n+1] and [i.j] are included -
for each arc {i.j} in the ofiginﬂal graph where i € X and j € Y. The length ( equals cost ) of

the arc [i.j] will be the negative of its weight. Also, the minimum length of all arcs emerg-

ing from each vertex i is found and stored in MIN (i).

(2) In Step 2. the first augmenting path or minimum cost flow is found by looking for the arc
with the minimum non-zero length. This will be tﬁe minimum of MIN (i) for all vertices
1. The augmenting path is a temporary m"a;ching and is recorded in the variables MATCH-
ING and A. The shortest distances from node O to each other vertex i are computed anc{\\/\
stored in DIST (i°). :

V:

(3) In_Step 3. the residual graph for the current flow is constructed. If a directed arc [i.j] is in
‘the flow (which is equivalent to the augmenting path), then arc [i.j] is deleted by setting
LENGTH(L’_‘:j) to oo, and arc [ji] is added with length zero. For other arcs [i.j],

LENGTH (i .j) is modified to LENGTH (i ,j )+DIST (i )=DIST ().

(4) In Step 4. a minimum cost flow of the residual graph is obtained by solving theshortest-

paths problem of the graph. This is a simplified version of Dijkstra’s Algorithm. Here, a

X,

vertex is marked if and only if i: borders the temporary ':ree T being built and a vertex is
chosen if and only if it is includ;eciiwirlﬂ - The marked vertex i with the shortest DISf is
chosen at line 5 to be included in T. Line 3 will x;lark the new vertices which border T
after the addition of i. The DIST value and parent of such vertices are updated accordingly

at line 4.

52(5) Step 5 is a simple backtracking from node n+1 through the parents P to the source node 9.

The variables MATCHING and A are updated. Also, the weight of this augmenting path is

o



~ cessor is sufficient for Step 5.
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calculated in a variable W7 . If it is non-positive. then the problern is solved and the algo-
rithm stops.

Algorithm 5.7 : Parallel Weighted Matching Algorithni :

- Input : A bipartite graph with n vertices and m arcs. Each arc (i j) has a given weight

WEIGHT (i ).
Output : A maximum Wweight matching of G is returned in MATCHING
In the following, processors P; for i=1,2,...n will perform steps O to 4 m parallel. A qmgle pro-

Sép 0 : (* initialization *) i .
1 DIST (i) « +o0;  PARENT (i) « null
2. for j =01won
AG.j =0
MATCHING (i .j) < 0
M kS
Step 1 : (* transformation into network flow *) v'ﬂ%ﬂ
1, MIN =*0; MIN(i) <0 e
&
2. for j =1ton
if WEIGHT (i ,j) > O then (* arc(i,j) exists. @
3. *  LENGTH (i .j) « -WEIGHT (i ,})
LENGTH (0.i) « LENGTH (j n+1)‘-0 ' .
4. if LENGTH (i ,j) < MIN (i) then : . / .
MIN (i) — LENGTH (i ,j): M)~ j
(* the minimum arc will be the first augmenting path *)
else - .
S LENGTH (i .j) « LENGTH (0.i) «— LENGTH(j n+1) « -eo g
Step 2 : (* find first augmenting path *) %f’:}
1. write-min( MIN , MIN (i) )
= <synchronize> \
2. if MIN =MIN (i ) then ’ PR
x «*§ ' -
<synchronize> o _
3. if x =i then N
MATCHING (i M(L))"‘A(L M(l.))‘-l g

AW~ AMGE))n+1) ~ 1
(* determine DIST (i ) *)

DIST (i) « oo
<synchronize>
4. for j =1ton do
5. ~— = if LENGTH (i j);t—oothen :
- if LENGTH (i ,j) < DIST (j) then DIST () « LENGTH (i .j)
6.  DIST (i)« 0; DIST (n+1) « MIN

5
-

N

7
(e



Step 3 : (* build residual graph *)
1. for j=1ton \ : -

2. . ifA(G,j)=1then
~ LENGTH(L])*——oo LENGTH (j i)« 0 //
3. else
) if LENGTH (i.j) > Othen
' LENGTH (i ,j) « LENGTH (i j)+DIST(z)—DIST(j)

Step 4 : (* find shortest-path tree from s to t *) .

1. DIST (i) «~ oo
j ~*0: DIST(0) «* 0
2. while n +1 is not chosen do
j is chosen
3. if ¢ is not chosen and LENGTH (j i) 2 0then’
mark ¢
4. if DIST('j) + LENGTH (j i) < DIST (i ) then
4 DIST (i) « DIST (j) + LENGTH (j i)
- Y= PARENT ()« j
N X —X oo
<synchronize> ‘ ‘ ' .
5. if i is marked then wrlte-mm( x ,DIST(i)) o
- <synchronize> “
6. if x = DIST (i) then
unmarki ; j <—% i
7. <synchronize> -
- end-while R
Step 5 : (* augmentation *) -
1. k «*1;WT «*0
(* retrieve path by backtrackmg *)
2. j e+l ' : .
3. while j. > 0do . .
« A (PARENT (j),j) «* 1; v
4. if MATCHING ( PARENT (j).j ) then
MATCHING ( PARENT.(j.);j ) «* false
WT «* WT — WEIGHT ( PARENT (j).j ) i
5. else ' . 7 C
c MATCHING ( PARENT (j).j ) «*true = : C?
_ WT —* WI' + WEIGHT ( PARENT (j).j )~ : ,
6. ] «* PARENT (j)
" <synchronize> w
end-while N ’
7. if WT' < 0 then DONE —* true g

Repeat steps 3 to 5 until DONE.

%oof of Correctness
~ .

It is not difficult to see that:Steps 0.1,2.3 and 5 of Algorithm 5.7 are equivalent to the

w

' N

:



- 100 -

corresponding stéi;s in the sequential Algorithm 5.6.

Step 4 builds the shortest-path tree. First, line 1 of Step"4 assigns variable j to be the source s .

In the 'f?llowing iterations, all sons-of j are mar

d, so the set of marked vertices, V. is the set

of vertices bordering T where T is the tree we are buildifig. The shortest distance from source

s 1o each son is calculated at line 4. The marked vertex with minimum distance {rom s is

identified by lines 5 and 6. This vertex is then chosen as.the next value of j. Hence, Step 4 is

equivalent to i)ijkstrafs Algorithm and it builds the shortest-path tree. O

Analysis ’

. ( o mn’ ,
Theorem 5.2.12 : The weighted bipartite matching problem can be solved in O(—) time using

Proof :

" "write-min" operation.

»

P

- i

.m .
P (£ —) processors on .the F& A PRAM parallel model with the addition of the

n

The time required for each step of the algorithm’is O(n ). Since the maximum size of

the matching is O(n ) and the size of the temporary matchings increases by one after

each augmentation, the number of augmentations required is O(n ). That is , there are

O(n ) iterations of steps 3 to 5. Hence, the whole process takes o(n?) ‘ti'me. The -

number of elementary operations for steps 1 to 4 is O(m ), and for Step 5 is O(n ). So.

the total number of elementary opertiﬁons is O(nm ). The problem of assigning pi'qces—

t

sors to the jobs can be solved easily since at steps O to 4 of the algorithm, there are x-

jobs - one for each of the vertices adjacent to a certain vertex j. At Step 5 there will be

only one job at each instant. Hence, the assignment of p £ n processors to these jobs is

straightforward. By Brent's The&rém, we can use p processors to implement the algo-

\

mn ., m - - ,
rithm in time O(—=—) if p € —. Therefore. we can use m /n_processors to execute the
p n: . .

algorithm with the same time complexity. [

v
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EN

Theorem 5.2.13 : without the "write—_min" operation, .Algorithm 5.7 solves the problem in

' O(rizlogn ) time using m /n . processors.

Proof : We have shown that simulation of the write-min operation requires O(logn ) time_on
the general PRAM machine. So, the time for Step 4 is O(n logn ) and overall time is
dO(n"'logn ). The number of elementary operations for Step '4 also increases to

O(m logn ) giving a total of O(nm logn ). Hence, m/n processors are again needed to

-

maintain the time complexity. O : s

.—5.’3. Fast Algorithms for the Bipartite Métching Prol;l¢ms

As with thé general two—matrorid intersection ‘problems, the biparti‘te ma;cﬁfng'problems
can be solved by faster algorithms which use more processors. For the cardinality bipartite
matching problen;. 4 sub-linear time bound is achieved. In this section \Qe desoribe these fast
‘algorithms. The _keys to these algorithms are the technique of recursive doubling and a loga-

rithmic time shortest-paths algorithm.

v

Algorithm 5.8 : Fast Weighted Bipartite Matching Algorithm ?ﬁ

In Algorithm 5.7 for the weighted bipartite matching problem, steps 0.1.2, and 3 can be done in

- : }
O(1) time using n~ processors. This is because the "for j =1 ton" or"j =0 ton" loops at

lines 2. 2, 4. and 1 in steps 0. 1 .2, and 3 regpectively can be done concurréntly by assigning n

‘processors. P,\.P,,.- -+ P € tonodeil(ie.one processor for each time through the loop). Back-
aracking in Step 5 can be done in 0(logn) time by recursive doubling (see Section 4.4.3). We

show how 0 do Step 4 in logarithmic timé using the technique developed for Algorithms 4.5

and 4.6 1o search for source-sink paths in the border graph.
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~

Step 4 : (* find shortest-path tree *)

~ Each vertex i in the residual graph has a tree T; which will grow exponentially 1o a maximum

height of O(n ). Each vertex j may appear at most at one node i 7. If ver;ex’j-doeu: appear.

then PARENT(L .j ) will be the verlex.number of its parent node, LFVI:L (L .J ) will be its level
A

number, and DIST (i.j) will be the shortest distance known so far from verts xgﬁz Wy i in the

residual graph. If j is not in 7; then PARENT(i,j ) is null ; LEVEL(i.j) is -co and’

SRR

DIST (i ,j) is oo.

Step 4 now consists of the following iterations to be done by processors P €i,jk €n,in’

parallel. =~ -
Initialization :
1. for each vertex ¢ in the graph
(* build 7', *) :
2. . ( PARENT(L i)e*0; LEVEL (ii)=*0:DIST(ii)«<*0
3 - for each vertex j & i .
“if LENGTH (i ,j) 20.then (*j is son of i*) A
PARENT (i ,j) «* i ; LEVEL (i j) el
DIST (i .j) «* LENGTH (i ]) B
g -1
The following is repeated until DONE
g-th iteration : &
4. g —g+1 '
5. for each tree 7,
6. - for each node j at level LEVEL (i .j)=27 . . e
for each node k in T,
write-min( DIST (i & ) . DIST (i } )+DIST (j .k ))
< synchronize>
7. ’ if DIST (i &k )=DIST (i .j )+DIST(} k ) then

PARENT (i k) «** PARENT (j k)
<synchroniz&>
DONE «* true
<synchronize>

8. if PARENT(0.k ) # null then
DONE «* false .

1
§

" — o / } *
/' / . i
Tme Anal;qls ) g
Theorem 5.3.1 " Algorithm 5.8 sol%the weighted b:parme matching problem in O(n logn )

lee usmg n Processors.

‘}:r-‘[
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Proof : Steps 0.1,2.3 of the algorithm can be done in O(1) time using n? processors. Step 4 can
be done in O(log n ) time using n’ processors as described above. Step 5 can be done in
O(log n) time using n’ processcrs by recursive doubling (section 4.4.3). There will be

O(n ) augmentations which implies O(n ) iterations of steps 3 to 5. Hence, the overall

complexity of the algorithm is O(n logn ) time using n > processors. 1

Algorithm 5.9 : Fast Unweighted Matching‘Algorithm

The unweighted matching problem can be transformed into the weighted matching prob-

iem by giving each arc a unit weight. Then Algorithm 5.8 can be modified to solve the

-

. unweighted problem.

Theorem 5.3.2 : The unweighted bipartite matching problem can be solved in o(vVn logr. ) time

. 3
using n “/logn processors.

’

Prgof : We can tr;msform an unweighted bipartite matchihg problem into a weighted bipar'ti:t‘e
matching problem by giving each arc; a unit weight. Each’ augmentation in the

* transformed weighted algorithm will be comparable t0a blocking step in Dinic’s Algo-
rithm! \The solution to the shortest-paths problem will contain a maximal set of aug-
menting.paths.’ This set of patﬁs gives the maximum incremental weight and is
equivalent to tt;é set of augmenting paths resulting from a blocking step. By Theorem

5.2.6. there will be O(vn ) block;ng steps for Dinic's Algorithm. Therefore we can also

say that there will be O(vVn ) aug-menting steps for the transformed weighted .algo—
riLhm.’ The time required for each augmenting step is O(logn ). When solving the
shortest-paths problem, each elerﬂent in a tree T, can be a leaf at level 2° for only one

1

¢ - Since each such\leaf requires O(n ) operations when a tree is linked to it, and there

are n trees in total, the number of elementary operations is o(n*). By Brent’s Theorem,
3 M ‘ . . . ) .
n"/logn processors are suffici plement the algorithm within the same time
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bound. Hence we conclude that the unweighted bipartite matching problem can be

solved in O(¥n logr ) time using n : processors. (J

Reiﬁarks : .

Note that we have essentially derived a parallel algorithm for solving the minimum cost

flow problem in general. However, it is shown in [Ta-83] that an algorithm based on minimum
cqsl. augmentations will. require O(lf ) augmentations, where /‘ is the value of the minimum
cost flow. The complexity of the parallel‘algorithm will therefore be O(If | log n ) which is not
- strongly polynomial. An algornhm for this problern is strongly polynomlal if the time complex-

ity is polynomlal in the number of nodes and is independgny/of both costs and capdcmes We

expect a shongly polynomlal parallel algorithm to be found n lhe finure for the general

|

1

minimum cost flow problem. ‘ y
Ly ' . }\\-/1

5.3.1. About the Shortest-Path Problems

The shortest-paths problem is cancerned with a directed network in which arcs may have
positive, zero or negative lengths, as long as there are no negative length_cycles. Parallel algo-

. rithms for two kinds of shortest-path problems are reported below. The two problems are:

»

(1) The single—sourc}\ﬁblem - Finding the shortest path from a specified vertex to all other

vertices in a network ,

(2) The all-pairs problem - Finding the shortest path between every pair of vertices in a net-
work.
Some reported work on parallel shortest-paths algorithms includes [Ar-75]. [De-80],
[DPL-80], [Ku-82], [MD—S]],' [Pr-83), [Qu-83] and [Yo0-83): The following table list some of the

results of ‘Lhis work.
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Table. Parallel All-Pairs Shortest-Paths Algorithms

‘Reference Model Complexity Processors
[LK-72] Systolic array _ o(n) n?
[Ar-75] MIMD-TC - . -

[Sa-77] SIMD-SM-R O(log’n ) n>/logn

[De-80] MIMD-TC Oo(n /Zp +pn ) p<<n
[De-81] SIMD-PS, SIMD-CC ) O(log'n n’ '
[Ku-82] SIMD-SM-RW O(logn ) n*

In this thesis. parallel procedures that solve these shortest-paths problems can be derived
as special cases of the main algorithms. '

The single-source problem is a sub-problem of the \?/eighted bipartite matching problem
which is solved by Algornhms 5.7 a.nd 5.8. In the cardinality two-matroid intersection algo-
rithms ( Algorithms 4.2 and 4.5 ) glven in the previous chapter, the sub- problem of finding a
shor;est source-sink path’ in\ BG(7 ) is a generalization of an all-pairs shortest-paths p}bblem:
the lengths of the directed arcs in BG(/) are taken to be one, and only the shortest paths from
the sources to the sinks are significant. Similarly, in the weighted two-mét;oid intersection
algorithms ( Algorithxﬁs 4.4 and 4.6 ), the sub-problem of ﬁnding a maximum weight source-
sink"pa‘trh in BG(J )-is aléo:aff all-pairs shortest-paths problem. The length of each directed arc
in {he graph in the all-pairs problem is the negative of the augmenting weight of the arc in the

border graph.

From the results in this thesis, we are able to solve the all-pairs shortest-paths problem in
O(logn ) time using n’ processors using our model. This is the same as the fastest known paral-
lel time and the time-processor product is smaller by-a factor of logn . 'This is because of the

"write-min"/"write-max" operations which seem to be very useful in weighted problems.

Now we will show that the fast pro@ures for the shortest-paths problems in Algorithms
4.5 and 4.6 are equivalent to "the repeated plus-min method” used by manyA parallel shortest-
paths algorithms. The following is a description from {QD-84] of the repeated plus-min multi-

e

plication method used to solve the all-pairs problem in parallel. s

Given an n-vertex weighted graph G, the goal is to produce an nxn matrix A such that g, j
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is the length of the shortest path frdm i to j in G. Let a;; denote the length of the shortest
) L
path from ¢ to j with at most & intermediate vertices. Since there are no negatlive weight

cycles in G, a;; =q;.

i a,;=0, for all i, 1<i €, and for all distinct i and j. a,; is the weight of

. S : . 0 . ' .
the arc from i to j: if no such arc exists, then g;= oo. It is not hard to show that

k= minlaX P4at?
a;; =min@;,, +a,,;

}. Hence, A" may be computed from A,O.by repeated plus-min multiplica-

tion. The fast matrix multiplication algorithms devised by Dekel et al [DNS-81] for the SIMD-
[ ol

CC and SIMD-PS models (see section 2.1) can solve this problem in O(logn ) time using n* pro-

CEessors.

»

In our algorithms (Algorithm: 4.5, 4.6 and 5.8), a tree 7', for elemagz, at the g -th stage

. . % . .

corresponds to row i in matrix A" . That is, a node for element e, in T, at the ¢ -th stage
ok

corresponds to a;;

; in the repeated plus-min method.

¥

(’\
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6. DIRECTED SPANNING TREES

The Directed Spanning Tree (DST) problem (see Example 1.10) is defined as follows:

‘Given : an aré-weighted directed graph G =(V .A ) br

with a distinguished root node with in-degree zero
Find :a maximum weight spanning tree directed from the root node

This is a two matroid intersection problem with the following two matroids:
- :

(1) grapiiic matroid of G.

{2) partitioh matroid in which sets of arcé. no two of which are directed into ‘jhe éame node, are
independent. |
‘We can apply the gerferal weighted two-matroid intersection algorithms to solve this

problefn. Howuever, when we build the border graph for this problem, we have to look for the

circuits in each of the two matroids. For the partition matroid, each pair of arcs going into the
same node is a circuit and this is easy to find. For the graphic matroid. the cycles in the graph
are the circuits and the gearch for circuits is not as easy. Morcover, we have a sequential
directea s}panning tree algorithm which runs much more efficiently than the general sequential
matroid algorithm. We have der. -ed a parallel algorithm which achieves perfect speed-up with,
respect to this efficient algorithm. We will not show the use of the genefal parallel algorithm
because it will be‘ inferior to this special parallel algorithm. In the followipg. we describe the

ES

sequential directed spanning tree algorithm followed by. the parallei version of it.

3

\

€.1 Sequential Algorithm

A particularly simple and elegant procedure has been devised by Edmonds [Ed-68] for
this special case of weighted matroid intersection. The algorithm has two phases. In the first
phase, cycles are replaced one at a time by "pseudo-nodes”. In the second phase, pseudo-nodes

are expanded in the reverse order.
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Algorithm 6.1 : Sequential DST Algorithm
- (G is a digraph and w is a weight function orlfthe edges of G .)
(Phase 1 : contract vycles) ° )

1. repeat until done
2. Use greedy algorithm for the partition matroid (i.e. choose maximum welght arc
entering each node) - -

3. if*there are-no ¢ycles then done
else , ,

4. Replace nodes on each cycle<by a pseudo-node. Remove all self-loops.
Repiace arcs .0 or from nodes on the gycle by arcs to or from the pseudo-node.

5. _ Replace weights on arcs entering the pseudo-noade as follows : if (i.;j) is
replaced by (i .k ), where & is a pseudo-node and i is not in the cycle replaced
by k., ther set w, =w;, —(weight of the unique arc of the cycle into

j )+ (minimum weight of an arc on the cycle).

" (Phase 2 : Expand pseudo-nodes and choose tree edges)

6. Choose arcs from Zhe final contraction of the primal algorlthm
7. repeat until done :
8. . Expand a pseudo-node. Choose all arcs except the single arc on the cycle that

will cause two arcs to enter a single node or pseudo-node.

Example

We illustrate this algorithm on an example :

]

In the first iteration of phase 1, we choose arcs e;.eq.e,€5 and ey after applying the
gfeedy algorithm on the partition matroid. So, as es.e-. and eg form a cycle, we coalesce
the corresponding nodes to form a pseudo-node (3,4.5) and change the weights on the arcs

as given by the algorithm.
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In the second iteration we again apply the greedy algorithm on the partition matroid
which forces us to choose e e, and e4. Ase, and e, form a cycle on node 2 and pseudo-

node (3,4,5), we coalesce these nodes to form the pseudo-node (2,3.4,5) and change the

wgights on the arcs. T%e result is the following graph.

Now. in the third iteration, we choose arcs e; and e, Since there are no more cycles,

phase 1 is finished and e, and e, are chosen to be in the spanning tree (in line 8). The

situation is as follows.

Q} LI, . Wy X %.(:)

In phase 2, we first expand the pseudo-node (2.3,4.5) and remove the edge e as both edges

e, and e, enter node 2 and e is in the cycle. Arc e, is added to the solution. Now, we

expand the pseudo-node (3.4.5) and we get:

N



As e; and e, both enter node 3, we remove e, which is in the cycle and add e and e to

the solution. The algorithm ends now and the total weight of the tree so formed is 43.
The correctness proof of the algorithm can be found in the original paper by [Ed-68]. [Ka-71]
also proved correctness using a more elegant technique. [Ta-77] presented an efficient imple-

. : ot . . . 2y, -
mentation for this algorithm which runs in O(min{m logn .n"}) time. , -

~

N 7

Algorithm 6.1 finds a maximum weight spanning tree, but ..e maximum -weight intersection

may be a forest. Minor modifications to the algorithm to get a maximum weight intersection

are described irt [La-76], Ch. 8.

6.2 Parallel Algorithm

The pérallel algorithm closely follows the sequential algorithm. The following data struc-

tures are used in the parallel algorithm :

A(j.i): -1if thereis an edge from j toi in the given graph:
k if there is an edge from j to i but{ is a pseudo-node and k is the sub-node in
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this pseudo-node to which the edge was f‘or'merly directed; '
0 otherwise. ] ‘

WEIGHT (j,i):
the weight.of the edge from j toi if it exists; ‘ ey
—co otherwise. ' -

EDGE—-ID(ji):
the id of the edge from j to i if it exists;
O otherwise. '

PARENT, : j if arc (j.i ) is the heaviest (of maximum weight) incoming arc for node i ;
null if no such arc exists.

PSNODE : the index of the current pseudo-node .
PSN: used to mark a certain node in a cycle.

PS(i.j) . true if node J is part of pseudo-node i ;
false otherwise.

MINWT : the weight of the smallest weight edge in the current cycle.

X(Gi): 1if an arc (i .j ) has been selected-for output where j is inside an pseudo-node and ¢
is not (this,implies that the edge coming into j in the cycle will be discarded on

expansion); .
0 otherwise.

The parallel algorithm consists of 3 phases:
(1) Step O initializes the adjacency matrix A, the weights, the edge-id's. and other variables.
Step 1 applies the greedy algorithm to the partition matroid, choosing the maximum weight

arc (i.j) eflterin'g each node j. Node i is marked as the parent of j.

3

(2) hterations of Step 2 will continue contracting cycles into pseudo-nodes until all cyclessare
removed. The search for cycles is done in parallel in lines 2 to 5. Each node will search
throggh its descendents one by one. I(' one of the descendents points backi to the original
node, then a cycle has been found. If a cyclev is found th.en the nodes inside this cycle wiil
ke contracted into a pseudo-node, x. Thé PS(x.i) value for each such node i will is marked
true. These nodes become "inactive” and the pseudo-node becomes "active”. Only active
r;ods will be consider;d during the search for cycles. Lines 9 to 11 will consider the arcs

going from nodes inside the pséudo—node to nodes outside. If more than one such arc is

directed to the same node y outside, then only the one with greatest weight will be retained
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as the arc directed from the pseudo-node to node y. The related variables of A, EDGE —-ID ,

e

. WEIGHT and'PARE'NT are updated. Lines 12 to 15 will conéider the arcs going into the

nodes inside the pseudo-node from nodes oulside. The weights of thege incoming arcs are.

inodified in line 12 in the same way as in Step 5 of the sequential algorithm. If more than

one such arc comes from the same outside node z, then the one with greatest weight wili’be

*

retained as the arc directed into the pseudo-node from node z. The corresponding variables

‘are updated. Finally, the incoming arc with greatest weight to the pseudo-node is chosen at

lines 14 and 15 by using "write-max". PARENT of the pseudo-node is thus determined.

(3) After all cycles are removed, Step 3 will expand the pseudo-nodes in the reverse order of

their formation. The matrix PS is used to identify the nodes inside the pseudo-nodes. Note
that a node is active in line 6 only if it is a node in the pseudo-node which was expanded in
the previous expansion and marked active at line 8. The edges coming inlo these active

nodes are output at line Z

Algorithm 6.2 : The Parallel DST Algorithm

Each processor P, for 1<i €£2n will perform the followmg steps.

Step 0 : (* initialization *)

AR sl e

WT «* -o0 ; PSNODE «* n _

for all incoming edges (j i ) with weight w and edge id = g
“A(ji)e—-1; WEIGHT(ji)+—w: EDGE-ID(j.i)«~q

X(@)~0;PSN(i)«~0: PARENT,. —null

PS(n+i,j) « false for j =1 2,...n

mark node i active .

For j =1ton doStep1

!
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Step 1 : (* find heaviest anommg arcs *)

1. write-max ( WI' . WEIGHT (i .j) )

2. < synchronize>

3. if WI' = WEIGHT (i ,j) then PARENT, «*i
1 ,

WT + -c0

‘Repeat Step 2 ;umil no cycle is found

Step 2 (* contraction of cycle *)

1. if i = 1 then PSNODE « PSNODE +1
(* detect cycle *)
2. if i is active then
j — PARENT;;
3. while ; # nulland j # i do
j < PARENT; ;
4. if j = null then (*'cycle is found *)
5. . -BSN «*| -
<synchronize> -

6. If no cycle is found go to Step 4
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(* collect nodes in cycle *) . ‘ : ; -
7. if PSN =i then
' PS (PSNODE ,i) « true
mark node i as inactive ; mark PSNODE active
j < PARENT; -
: MINWT «— WEIGHT (PARENT, i )
8. . while j = PSN do
<synchronize>
) J «* PARENT,
v q__lfMINWT > WEI}EI??(/ i) then MINWT « WEIGHT (j.i)
mark node j as inactive . :
PS(PSNODE, j) « true

T
- .

%
(* consider edges from pseudo-node *)
9. if A(j.i)=0then

10. i WEIGHT (j i) > WEIGHT (PSNODE .i ) then
| EDGE —ID (PSNODE i) « EDGE—ID (j i)

| , WEIGHT (PSNODE . i ) — WEIGHT (j i)

1. PARENT, — PSNODE (

(* modify weights of arcs to PSNODE *)
12. if A(i.j) # Othen
‘ . : WE]GHT (i.j) ~ WEIGHT (i.j) - WEIGHT (PARENT: i)
' + MINWT
13. if WEIGHT (i .j ) > WEIGHT (i PSNODE ) then

WEIGHT (i PSNODE ) « WEIGHT (i .j)
EDGE —ID (i PSNODE ) — EDGE—ID (i .j)
A (i PSNODE) « j

<synchronize>
14. write-max( W7, WEIGHT (i ,PSNODE ) )
<synchronize>
15. if WEIGHT (i PSNODE ) = WT then PARENT psnopr < * i
. C WT -~
end-while : -

Repeat Step 3 until PSNODE =n

Step 3 : (* expansion and out put *)

1. if i = 1 then PSNODE < PSNODE -1
X@)«<o0 .
if PSNODE = n then stop
< synchronize>
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2. ~if i = PSNODE then
) if PARENT poyopy # null “then
j ~ ACPARENT psnopr PSNODE )
(* Jj is the node in cycle PSNODE to which the edge
from PARENT psyop is directed ) .

3. mark X(j) < 1
4. S output edge EDGE —ID ( PARENTPSNODE PSNODE )
5. ‘mark PSNODE inactive
. <synchronige >

6. if node i is active then
7. if X (i) =0 then

output edge EDGE ~ID( PARENT, i )

mark ¢ inactive n

< synchromze > \ . &
8. if PS( PSNODE .i ) then K
mark node i active
/\\

Proof of Correctness o 1

The correctness of the sequential algorithm has been proved in [CL-65] and [Ed-67). We will

prove that the parallel algorithm does ihe same things as the sequential aléorithm.
4 ‘ e - : - -

(1) Step 1 chooseswthe heaviest arc directed int6 each node.

(2) While there exnsts some E—\ﬁe in the graph Step @ will contract the cycle a replaoe it with |
a pseudo -node. Welghts of arcs(i.j) dirgeved from tside into the pseudo-node are

modiﬁed.

There can be more than one arc going intc a pseudo-node and with the write-max mstruc—

tion at line 4, only the maximum wexghted arc. is chosen.

- (3) Step 3 will keep expanding the pseudo-nodes in the opposite grder to which they were
formed until all pseudo~nodes are expanded Durmg expansion, there is a unique arc [ j L]
of the cycle whose entry would cause two arcs to be directed mto the same’ node i and this

arc should be discarded. At line 3, X (j) is marked so that arc [j.i ] will not be output at
] v > AL ( |

line7. O -

v

i
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Ta

Time Analysis for the DST Algorithm °

.

Step O takes ‘O(n) for initialization

Step 1 takes O(1) time and it is repeated O(n ) times for a total of O(n ).

‘Step 2 is the c%raction of cycles. We do not know in advance how man;v.n,odes there will be
in a cycle and how‘ many cycles there will Be. However, the total time required is p;‘oportional
to the total n,umber',oif nodeslinvolved irl all the chcles. ;I‘his is O(n/) becausé we know that a
‘node will be contracted at‘mo’st in one cycle. i

Step 3 is the expansion of pseuldo—nodes., Siep 3 itself takes constant time but it will be iterated
g times where g is the number of pseudc-nodes. We know that q = O(nj and therefore the -
time for expansion is O(n ).

From above, the overall time complexity is O(n ).
' - - —

Since the depth is O(n ) and 2n LPTOCEssoTs are ﬁsed, I.‘heELime—processobr product for 'Algori“thm
6.2 is O(n?). Recall that the sequential time is d(miﬁ{m logn tnz}).v If the given graph is dense

so that m *= O(n°), then we have a perfect speed-up. We have now proved the followin
pe pe p A g

theorem:

Theorem 6.1: The directed spanning tree problem can be solved in O(n ) time using O(n ) pro-

cessors, where n is the number of vertices.

It can be shown that the number of elementary operations for Algorithm 6.2 is O(n”) and

that Brent's Theorem can be applied to get the following result.
2

. 7 n? o
Theorem 6.2: The directed spanning tree problem can be solved in O{—) time using’p proces-
: P :

sors where p $n.

If write-max is not used;.then steps 1.and 2 will both require O(n 2logrL ) operations and

e AN

O(n logn ) time. The overall-time will be O(n logn ) and O(n ) processors must be used 10 main-

tain this depth.
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7. CONCLUSIONS

7

In this thesis. parallel algorithms have been designed for two-matroid interséctionr prob-
lems. We have desigﬁed baraﬂel algox"ithms for both the general problems and two special casés
. the bipartite matching problems andsthe directed spanning tree probiem. Ff)r all of these prob-
lems, parallel algorithm;_ ‘w}:mh achieve perfect speed-up o{/er the fastest known séquential
algorithms have{,‘been designed. Another set of fast algorithms achieves almost linear time for
the general problems. For the two special caS'eS, we have designed parallel algorithms that per-

form better than the general algorithms by exploiting special features of the problems. How-

ever, the general algorithms are useful in that they provide upper bounds on time and processor

complexity. ‘ -

The parallel algorithms in this thesis were designed by choosing the most efficient sequen-
tial algorithms and making them parallel. Unfortunately. so;ne parts of the sequéntial algo-
. rithms for the rvo—rpatroid illLersecLi.onrproblems are difficult to parallelize. Th; construction
of the border graphs is the easiest part to do in parallel. Back;racking by recursive doubling
réquires lookahead concepts. At first it rﬁay seem that a breadth-first search of a border graph
for a source-sink path is sequential in ~ature. ’fhis is because each level of the search depends
on the p\revious levels, and the whole search tree is exponential in size. By examinating proper-
ties of the problem, we see that the searches are, in fact. solving shortest-path tree.proble s. A.
logarithmic time algorithm for thisgsﬁ,éaréh is derived in which the heights of the temporgry
search trees are re&ﬁrsively double‘é, while the number of nodes in a search-tree never exc ’ds
- m . the number of elem‘ehts in the matroid. ‘This algorithm can be seen as a graph-based version
of the repeated plus-min multiplication method as given in [Des81] and [QD-84]. l

However, the outer layers of the algorithms, which do augmentations, are still seqflemial.
Each augmentation depends on the previous augmentation, and, unlike the breadth first search
in which the whole search tree is implicitly embefided in the border graph, no i;;(\)rmation

about future augmentations (i.e., the future border graphs) can be deduced explicitly or impli-

citly. We do not know if augmentations can be done in parallel, but it looks like a very

~
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difficult problem.

There are two possible directions for further research on parallel matroid intersection
problems. The first is to keep looking for more efficient parallel algorithms. If the au_.s;menta~
tions can be d.one' in parallel, then logarithmic or sublinear time parallel algorithms fo.: thé
two-matroid intersecEidn problems should result. One possible starting point is to look at
sequential algorithms other ‘thén those used in this thesis. Although we have chosen the faslesi
and simplest sequential algorithms, and believe that the other algorithms will nol.give better
_ resuﬁsf’ the‘ possibility has not been ruled out. Also, there may be entirely new strategies that

E3 . )
have not yet been discovered for solving the problems in parallel.

The second direction is to try to prove that some 1wo-matrhid intersection problem is
. log-space com.plete for P. If this could be prO\;'ed. ther; it woul}i b‘e‘very unlikely that the prob-
lem can be solved in logarithmic time, alth,ough‘ it does not rule out the possibility of olhér
sub-linear time complexities such as O(¥n ) time. It has been proved [GSS-82] that the max-
flow problem is log-space complete for P, and the max-flow problem is closely relaied to the
matching problem. Hence, we may get some irisight from this proof to prove similar results for

the matching problem. This kind of proof is actually a special case of the more genéral prob)eg}; -

-~

of deriving lower bounds for problems in a parallel dnvironment. Deriving lower bounds on_

. parallel computation is currently an active research area.

There are other topics in.this thesis which would be interesting to investigate further. For

- example, we have used the independence oracle and the (circuil oracle in the general rrizﬁroid‘
algorithms. It wéu]d be interesting to see how these oracles behave for special cases of two-
matroid intersection pro,lblem's. In order words, how efficiently we can determine independence
or cikcuits in specia] matroids? . |

Another question is how the algorithms in this thesis perform on other parallel models,

and, convefsely. how existing parallel algorithms perform using our proposed models.

The work in this thesis shows that we are at a'sLage where parallel algorithm design

depends on the parallel models, but also gives feedback on possible modifications of the models.

*



-119-

-~

We have proposed modifications to the fetch-and-add CRCW PRAM with the addition oi the

"write-max" and "write-min" operations. These two operations are very useful in problems

where weights are involved. In particular, there have been some investigations of how tc £nd

the maximum of a set of numbers in parallel ( e.g. [§\ﬁ/j81]. [Va-75] ). and our new operations
suggest -a new point of view. We have also ‘i;t,roduceé\-g new par;;illel model called the
concurrent-critical section model based on the design ci parallel'}}ggr\i“thﬁs in this thesis. There
are iﬁany possible ways to design a parallel maéhine and the measuré of how good a fnachine
nféa;lﬁ\is should be how well it can be used to solve problems. Research in this area will ﬁrovide
guidance Kfor the design of real parallel machines in the future. In particular, it would be

interesting to know whether it is cost-justifiable to build a machine based on the concurrent-

critical section model, and hence achieve O(logn ) time for resoﬁ;g critical sections.

, e
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APPENDIX : RESULTS

In the following, let m be the-number of elements in the n:atroids. R €m be the minimum of

the ranks of the two matroids, ¢ 1(m ) and ¢ 2(m ) be the time complexity for testing dependency in

the matroids, and c(m) be max( ¢ 1(mn ), c2(m ) ). p is the number of ‘processors used. The sequen-
tial times are for the fastest known sequential algorithms. The sequential algorithms for problems

(1) and (2) are from [La-~76] but the time analysis is improved in this thesis.

(1) The Cardinality Two-Matroid Intersection Problem:

Sequential time [La-76] = O(mR °c (n: ))

-

Parallel time:

(i) O(R (logR +c(m))) if p 2 m>/logR and using "write-min";

(ii) O(R (R +c(m))) if p 2 min( mc(m).mR ) and not using "write-max"/"write-min";
~_mR%(m) " " .
(iii) O(————) if p € min( mc (m ),mR ) and not using "write-max"/"write-min”
p
] :

(2) The Weighted Two-Matroid Intersection Problem:
Sequential time [La-76] = O(mR%c (m )+mR™>)

- Parallel time:

(i) O(R (iogR +c(m))) if p 2. m" dnd using "write-max” and "write-min";
(ii) O(R (R +c(m))) if p 2 mR and using "write-max";
(iii) O(R*logm +Rc (m))  if p 2'mR and not using "write-max"/"write-min";
mR%c (m )+mR’> ..o "
(iv) O( ) if p € mR and using "write-max";
4
mR2: (m )+mR *logm : . - .
(v) O ) if p £ mR and not using "write-max"/"write-min

p

.

In the following, let m be the number of arcs and n be the number of vertices in the given graph.

(3) The Unweighted Bipartite Matching Problem:

y
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Sequential time [HK-73] = O(¥Vnm )
farallel time: -

(i) O(Vr logn) if p 2 n’/logn and using "write-max";

m .

(ii) O(nVn ) if p 2 — and not using "write-max";
n
nZJ’T m L] . H /i . s . N
- (i) O ) if p € — and not using "write-max"/"write-min
' P n

A

(4) The Weighted Bipartite Matching Problem:

Seguential time [Ta-83] = O(nm log,,,, ;. n )
: {

Parallel time: \s
(i) O(nlogn) ifp 2n° anq/.lsing "write-max" and "write-min";
.. 2 ‘ . m . " . sn
(i) O(n ") if p 2 — and using "write-min";
,/n
2 L m ,
(iii) Mn"logn )  if p 2 — and not using "write-max"/"write-min";
n
a mn _ - m- . .
(iv) O(—) if p < — and using "write -min"; 3
p no '
' ‘ mn logn m o .o : .
(iv) O(————) if p € —’and not using "write-max"/"write-min";

P n

x

(5) Directed Spanning Tree:
Sequential time [Ta-77] = O(min{m logn .n%})

ParaHel time:

i) Oln) if p 2 n and using "write-max";

(ii) On logn) ifzp%n? n and not using "write-max"/"write-min";

2

.n' 3
(iii) O(—) if p € n and using "write-max";
’ P
2
* n ]ogn s e L ’ " /N “
Gv) O( ) if p % n and not using "write-max"/"write-min

P
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