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Abstract 

Optimal Rectangle Covers for Convex Rectilinear Polygons 

Rectilinear Polygons have all their edges parallel to the x and y axes. The problem 

of finding a minimum cardinality set of rectilinearly oriented rectangles that cover the 

area of a rectilinear polygon has applications in image processing, pattern recognition 

and VLSI, and is of use in solving other problems in computational geometry. Such 

a set is called an optimal rectangle area cover (ORAC). Associated problems are those 

of finding an optimal rectangle corner cover (ORCC) or edge cover (OREC) of a 

rectilinear polygon. 

A rectilinear polygon is convex in the x (y)  direction if any horizontal (vertical) 

line drawn through the polygon intersects it no more than twice. A semi-convex 

polygon is convex in either the x or y direction. A convex rectilinear polygon is 

convex in both x and y directions. 

Five linear algorithms are presented. The first algorithm finds an ORCC for a 

convex rectilinear polygon. The remaining algorithms are adaptions of this first 

method. Algorithm E l  finds an OREC for a class of convex rectilinear polygons 

called irreducible. Algorithm E2 finds an edge cover within one rectangle of optimal 

for general polygons. Algorithms A1 and A2 find area covers within one rectangle of 

optimal for irreducible and general polygons. respectively. 



A method used in the ORCC algorithm finds a maximum matching in a bipartite 

graph with a rectilinearly convex adjacency matrix in O(IVI) time, providing the 

ranges of adjacency or the adjacency matrix is given. A similar method can be used 

to find maximum matchings in bipartite graphs whose adjacency matrices have the 

consecutive 1's property in O(IVl1oglVI) time providing the ranges of adjacency or the 

adjacency matrix is given. 
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Chapter 1 

An Introduction to the Problem 

1.1. Introduction 

We present five linear time algorithms for convex rectilinear polygons. The first 

finds a minimum cardinality set of rectangles that covers the corners of a convex 

rectilinear polygon. This set is termed an optimal rectangle corner cover (ORCC). 

The second algorithm. El. '  finds an optimal rectangle edge cover (OREC) for 

irreducible convex rectilinear polygons. Algorithm E2 finds an edge cover within one 

rectangle of optimal for general convex rectilinear polygons. 

Area cover algorithms A1 and A2 use the algorithm E l  which returns an OREC for 
C 

irreducible convex rectilinear polygons. This OREC is sometimes also an optimal 

rectangle area cover (ORAC). When it is not, an area cover may be obtained by 

adding one more rectangle. As the holes in an OREC may not be "necessary", the 

area cover obtained by adding a rectangle may not be optimal. Algorithms A1 and 

A2 find area covers within one rectangle of optimal for irreducible and general 

convex rectilinear polygons. respectively. 

A method used in the ORCC algorithm finds a maximum matching in a bipartite 

graph with a rectilinearly convex adjacency matrix in O(IVI) time. 



1.2. Motivation 

The problem of finding a minimum cardinality collection of rectangles that covers 

the corners, edges or area of a rectilinear region has applications in several areas. 

Photolithographic masking in the manufacture of integrated circuits may be 

accomplished by using a union of rectangles to create a rectilinear shape [CKSSIIlI. 

. The construction of letters and shapes on video displays may require similar 

techniques. [CKSS81] [FrK84] There are also applications in pattern recognition and in 

decomposition techniques for polygon computations. [ O R S ~ ~ ]  A similar problem, that 

of partitioning the interior of a polygonal region into basic shapes, has applications in 

image processing, architectural database and manipulation of VLSI artwork 

data [ A S A ~ ~ ] .  

1.3. Basic Definitions 

A polygon is described by its vertices, listed in anticlockwise order. We do not 

allow three consecutive vertices to be collinear. The vertices of a polygon are ' 

described by their x and y coordinates. All polygons are simple, that is two non- 

consecutive edges do not intersect. 

A polygon is rectilinear if all its edges are parallel to the x and y axes. In this 

paper, unless otherwise specified, all rectangles and polygons will be assumed to be 

rectilinear. 

A rectilinear polygon is convex in the x (y)  direction if any horizontal (vertical) 

line drawn through the polygon intersects it no more than twice. (Note: This 

precludes the possibility of the polygon having "holes" in it.) 



A semiconvex rectilinear polygon is convex in one of the two axes only, i-e. 

either the x or y direction. A semi-convex polygon may also be called vertically or 

horizontally convex. A convex rectilinear polygon is convex in both the x and y 

directions. In this paper, we consider only the problem of finding covers for convex 

rectilinear polygons. Unless otherwise stated, the term polygon will be taken to 

mean a convex rectilinear polygon. 

Non-convex rectilinear polygons may be simply connected (no holes) or multiply 

connected (with holed1. The various types of rectilinear polygons are illustrated in 

Figure 1-1. 

There are several other terms in common use that are used to describe rectilinearity. 

Derick Wood prefers the term isothetic [Woo85], and the expression iso-oriented also 

occurs in [LiP80]. Orthogonal is also used to describe geometry where all edges are 

aligned to two orthogonal axes. 

1.4. Covers 

We will consider only the problem of finding a set of rectilinear rectangles that 

constitute a cover of a convex rectilinear polygon in this thesis. It has been shown 

that, for a non-convex rectilinear polygon, non-rectilinear rectangles may occur in a 

ORAC [ O R O ~ ~ ]  (in fact non-rectangular shapes may also). Non-rectilinear rectangles 

will not appear in an optimal edge or corner cover. 

l ~ e r r n i n o l o ~ ~  from O'Rourke [OR0821 



Figure 1-1: Rectilinear Polygons 

(a) convex (b) semi-convex (c) non-convex simply-connected (d) non- 
convex multiply connected 



Rectangles used in a cover are not allowed to extend outside the polygon. Thus 

any set of rectangles we consider as a cover must be contained in the polygon they 

cover and be rectilinear. - 

A rectangle contained in a polygon may be expanded until its sides meet edges of 

the polygon. Such an expanded rectangle we call maximal. We will. assume that all 

rectangles used in a cover are maximal. 

1.4.1. Corner Covers 

A polygon's corner is a vertex of the polygon whose two adjacent edges form an 

interior angle of 90 degrees. We say a polygon's corner vertex is covered if there 

exists a rectangle in the cover with one of its corner vertices coincident with the 

polygon's corner vertex. 

To distinguish a non-corner vertex from a comer, we identify a vertex whose two 

adjacent edges form an interior angle of 270 degrees as a reflex vertex* 

A set of rectangles interior to the polygon is a corner cover of a polygon if eacb 

comer of the polygon coincides with a corner of some interior rectangle. The sides 

constituting the rectangle's corner may be of shorter length than the edges making up 

the polygon's comer. 



1.4.2. Edge Covers 

A polygon's edge is covered by a set of interior rectangles if every point on that 

edge is a point on at least one rectangle's side. 

A set of interior rectangles is an edge cover of a polygon if each edge of the 

polygon is covered by the set of rectangles. Clearly, an edge cover of a polygon is 

also a comer cover. However, a comer cover is not necessarily an edge cover (see 

Figure 1-2). 

Figure 1-2 A Corner Cover Not Covering All the Edges 

The shaded region is not covered by the two rectangles that cover the 
corners. 

1.4.3. Area Covers 

A polygon's interior region is covered by a set of interior rectangles if every point 

of the polygon is contained in a t  least one of the rectangles. In other words, the 

union of the rectangles is the polygon itself. Area covers are also known as 

rectangle covers. 



Clearly, an area cover of a polygon is also a corner and edge cover. However, an 

edge cover may not be an area cover (see Figure 1-3). 

Figure 1-3: -4 OREC That Is Not an Area Cover 

The shaded region is not covered by the four rectangles covering all the 
edges. 

1.5. The Problem Definition 

The problems to be considered for sets of rectilinearly oriented rectangles are then: L 

1. ORCC (Optimal Rectangle Corner Cover): Find a minimum cardinality 

set of rectangles that is a corner cover of a given rectilinear polygon. 

2. OREC (Optimal Rectangle Edge Cover): Find a minimum cardinality set 

of rectangles that is an edge cover of a given rectilinear polygon. 

3. ORAC (Optimal Rectangle Area Cover): Find a minimum cardinality set 

of rectangles that is an area cover of a given rectilinear polygon. 



These problems may be posed for convex, semi-convex or non-convex rectilinear 

polygons. They will often be referred to as simply ORCC. OREC and ORAC, as will 

a solution to one of these problems. This thesis will only consider the problems for 

convex rectilinear polygons. 

1.6. Reiteration of Basic Assumptions 

All polygons are simple. 

All polygons are rectilinear. 

All polygons are convex, unless otherwise stated. 

All rectangles are rectilinear. 

All rectangles used in a cover are completely contained by the polygon. 

a All rectangles used in a cover are maximal in each direction. 

1.7. A Survey of the Literature 

A general approach to the field of computational geometry is given in [~ha78],  and 

in [PrS85]. A recent article [ ~ e ~ 8 4 ]  provides a survey of current results for most 

problems in the field of computational geometry. Results in rectilinear computational 

geometry are given in [Sac841 and are surveyed in [Woo85]. Some rectilinear 

computational geometry problems are also considered in [U1184]. 



1.7.1. The Unit Square Model 

Several papers make use of the unit square model in describing rectilinear polygons. 

In this model, the plane is seen as an infinite grid of unit squares and a rectilinear 

polygon is a set of adjacent squares. 

There is a direct correspondence between this model and the rectilinearly oriented 

cartesian coordinate system we use. Any cartesian rectilinear polygon can be 

converted to a polygon of the unit square model as follows. Scan the polygon from 

left to right. Each time a new x coordinate appears, assign it the next available unit 

square coordinate in the x direction. Scan the polygon from bottom to top. Each 

time a new y coordinate appears. assign it the next available unit square coordinate in 

the y direction (Figure 1-4). 

Figure 1 - 4  Transformation from Cartesian to Unit Square Model 

It is easy to see that the optimal covers for both models will be the same, i-e. the 

rectangles will be constrained by the same sets of corners and edges in each case. 

(This might not be so if the cover set of rectangles were not rectilinearly oriented.) 



Because of this direct correspondence, we will make no distinction between models. 

1.7.2. Covering Polygons by Rectangles [CKSS81] 

This paper by Chaiken, Kleitman, Saks and Shearer took a primarily mathematical 

approach. An antirectangle in a polygon is defined to be a set of unit squares (we 

can use points in our model quite satisfactorily), no two of which are contained in 

any possible internal rectangle. 

They proved that if a rectilinear polygon is convex in both the x and y directions. 

then the minimum cardinality of a rectangle area cover equals the maximum 

cardinality of an antirectangle. Chvatal had originally conjectured that this was true 

in the general non-convex case. It  has been shown that this conjecture is not true. 

The polygon used in the unit square model is referred to as a board. The approach 

used in [ C K S S ~ ~ ]  involves reducing the board by removing areas covered by the 

rectangles that cover "tabs". Tabs are the extremal parts of a polygon (see section 2.1 

for a more rigorous definition). It is established that the maximal rectangles that 

cover tabs must be in any optimal cover. Once such allowable reductions have been 

done, the resulting polygon is called an irreducible board. One useful result they 

found is that if every optimal edge cover (OREC) of an irreducible board is not an 

area cover, then an ORAC can be obtained by adding one rectangle to some optimal 

edge cover. 

Their method of proof can be used to obtain a polynomial time algorithms for 

finding an optimal corner cover (ORCC), or area cover (ORAC) of a convex rectilinear 



polygon. or an optimal edge cover (OREC) of an irreducible convex polygon. The 

details were omitted in their paper. 

1.7.3. Minimum Convex Polygon Covers for Non-Rectilinear 

Polygons [OR0821 

O'Rourke showed the more general problem of finding a minimum covering set of 

convex polygons for multiply connected non-rectilinear polygons to be decidable in 

this 1982 paper. Although Masek had shown that the problem was NP-hard, thus 

establishing a lower bound, until this time no upper bound was known. 

Brute-force searching algorithms for minimum convex covers establish that the 

problem is decidable. O'Rourke considered several situations. 

Steiner points are points that are not vertices of a polygon. but that may be 

required as vertices of the convex pieces of a minimum cover. If Steiner points are 

not allowed as vertices of the covering set, then clearly a finite number of convex ' 

polygons can be generated and a searching algorithm is possible: of all such convex 

polygons, find the minimum cardinality subset that is a cover. If Steiner points are 

allowed, is it reasonable to assume that they must occur on intersections of extensions 

of edges? If so, there are again a finite number of convex polygons that can be 

generated. 

In a previous paper, O'Rourke established that under the edge extension restriction, 

searching for minimum covers can be accomplished by minimizing a Boolean 

expression, which is a known NP-complete problem. (This did not establish the 

problem as being NP-complete.) [ORo82al 



The author quotes Masek as having shown that finding a minimum rectangle cover 

of a multiply connected rectilinear polygon is NP-complete [ O R O ~ ~ ] .  This reference to 

Masek is from an unpublished manuscript [ ~ a s 7 9 ] .  

It is shown that the edge extension restriction for Steiner points is indeed a 

restrictiqn of the problem. as there exist polygons whose minimum covers require 

convex polygons that have vertices not in this category. This implies that no naive 

searching algorithm for minimum covers can exist, since the Steiner points cannot be 

restricted to a finite class. 

Decidability is shown using Tarski's decision procedure for geometry. 

1.7.4. Some NP-hard Polygon Decomposition Problems [ORS83] 

In this 1983 paper. O'Rourke and Supowit proved that the problems of decomposing 

a non-rectilinear polygon into convex, star-shaped or spiral subsets are NP-hard. They 

allow overlap (covers as opposed to ~artitioning) and the inclusion of holes (multiply 
L 

connected). 

NP-hardness is shown by polynomial transformation from 3SAT [GaJ79]. As it is 

not seen how to check a solution in polynomial time, this process shows that the 

problems are NP-hard. but not necessarily NP-complete. 



1.7.5. Minimum Generating Sets [FrK841 

This 1984 paper by Franzblau and Kleitman also uses the unit square model in 

approaching the rectilinear problem. They show an algorithm with 0(n2) behaviour 

for finding a minimum rectangle area cover (ORAC) for vertically convex polygons. 

The authors use a result attributed to Frank: for a vertically convex polygon, the 

only information one needs to construct a rectangle cover is the set of distinct 

horizontal intervals determined by the vertical sides of the rectangles. The rectangle 

cover is then the set of maximal rectangles in the polygon generated by the 

intervals [~rK84] .  

Figure 1-5: A Convex Polygon and Its Intervals 

The method generates a set S of all possible horizontal intervals in the polygon 

(Figure 1-5). 

Then a minimum cardinality set of intervals (the minimum generating set) which 



Figure 1-6: An o(&) Sized Cover 

If there are k/2 horizontal and k/2 vertical rectangles. their union has n 
edges. where n is 0(k2). Thus a covering is obtained with k rectangles. 

where k is o(&. A partition of this figure would require O(n) rectangles. 

generates S is found. Here generation means that each interval in S is the union of 

some generating intervals. We can see that a minimum generating set of intervals 

corresponds to a minimum rectangle cover in the polygon. This allows the problem 

tb  be reduced from a planar covering problem to a one dimensional interval covering 

problem. 

The algorithm to determine the minimum generating set has o h 2 )  worst-case 



complexity. where n is the number of intervals. The number of intervals a 

rectilinear polygon can generate is O(n) (actually less than or equal to n/2-1 in the 

convex or semi-convex cases - see Chapter 3). An implementation of this algorithm 

is described in the paper. 

Franzblau and Kleitman also mention the relationship of rectangle covering to 

partitioning. For rectilinear polygons. partitioning into rectangles can be done in 

~ ( n ~ ' ~ )  time [Oht82]. However, examples are known for which partitioning requires 

0(k2) rectangles, where covering can be done with k rectangles. (See Figure 1-6.) 

1.8. Summary of Known Results 

Table 1-1 of known problem complexities is taken from [ORS83], with the exception 

of the convex and semi-convex rectilinear cases, where [ F r ~ 8 4 ]  have shown an o h 2 )  

algorithm. The figures all refer to area covers. 



Class of Polygons Shape of Components Complexity 

multiply connected convex 
star-shaped 

spiral 

simply connected 

multiply connected 
rectilinear 

simp1 y connected 
rectilinear 

semi-convex rectilinear 

convex rectilinear 

all ? 

rectangular NP-complete 

rectangular ? 

rectangular 

rectangular 

- - - 

Table 1-1: Complexity of Area Covering Problems 



Chapter 2 

Basic Terminology and Covering Properties 

Before presenting the algorithms, we define a number of necessary terms. This 

thesis has an index which should aid in finding an individual definition quickly. In 

order to provide a unified view of the problem, we have tried to adopt or create 

terms which are intuitively obvious. 

Following an explanation of terminology. we show which rectangles must be in any 

optimal corner, edge and area cover for convex rectilinear polygons. 

2.1. Basic Terminology 

2.1.1. Extremal Edges, Tabs and Chains 

-4n extremal edge of a rectilinear polygon is one with both its endpoints extreme in 

either the x or y direction (see Figure 2-11. In a convex rectilinear polygon we must 

then have exactly four extremal edges, two parallel to the x axis and two parallel to 

the y axis. 

An extremal edge of a polygon must have both its endpoints being corners. If this 

were not so, the edge would not be extremal. Following the conventions of 

[ C K S S ~ ~ ]  we term this extremal edge with its two adjacent edges a tab. 



Figure 2-1: Extremal Edges 

Edges AB. CD. EF and GH are extremal edges. 

A convex (rectilinear) polygon can be seen as being composed of four or fewer 

distinct chains of comers and edges, bounded by the extremal edges of the polygon. 

The chain of edges from the (vertical) minimum x edge to the (horizontal) maximum 

y edge is the top left chain, denoted TL. Similarly, we may describe the remaining 
L 

chains as top right, bottom left and bottom right, denoted TR. BL and BR 

respectively, as seen in Figure 2-2. Each chain starts and ends at an extremal edge. 

If two extremal edges are adjacent in the polygon, the chain between them is 

composed of just one corner. 



Figure 2 -2  Chains 

2.1.2. Corner Types 

Corners with the same orientation are of common type. A pair of corners with 90 

degree difference in orientation we call of adjacent type. and a pair with 180 degree 

difference in orientation we term of opposite type. as in [CKSS81]. Clearly, in a 

convex polygon. corners of common type must be in the same chain, corners of 

adjacent type must be in adjoining chains, while corners of opposite type will be in L 

opposite chains. The various types of corner pairs are illustrated in Figure 2-3. 

Two corners of adjacent type we term collinear adjacent corners if they have the 

same x or y coordinates (Figure 2-4). 



Figure 2-3: Corner Types 

(a) Common. (b) Adjacent and (c) Opposite corner pairs. 

Figure 2-4 Collinear Adjacent Corners 



2.13. n-somes and Obscuring 

A 4-some is a group of four corners aligned so that they form the four corners of 

some rectangle. A set of three corners aligned so that they form three corners of 

some rectangle, and are not part of a 4-some, we call a 3-some. If the rectangle 

defined by a 4-some or 3-some has some other chain of edges passing through it, we 

call that 4-some or 3-some obscured. In a convex polygon. a 4-some cannot be 

obscured. 

We call a pair of collinear adjacent corners both of which are not part of a 4-some 

or an unobscured 3-some a CA2-some. 

A CA2-some's rectangle may be obscured in the sense that its maximal rectangle 

cannot cover the full extent of the edges of both corners. This is only of concern 

for edge and area covers. 

A pair of opposite corners that may define a legitimate (unobscured) rectangle in a 

cover we term an OPP2-some. 

A corner not being used with some other corners to define a rectangle in a cover is 

called a singleton. 

We will also refer to the rectangles defined by n-somes as 4-somes. 3-somes. CA2- 

somes, OPP2-somes and singletons when speaking of the rectangles to take for a 

particular cover. 



2.1.4. Quadrant, Range, Shadow & Scope 

The quadrant  of a corner is defined simply as the quadrant made by the infinite 

extension of its edges. The boundaries (edge extensions) are included in this region. 

The range of a corner is defined as the region created by the rectangle defined by 

its two edges. We do not include the boundary of this rectangle in the region 

defined when speaking of range intersections. 

Figure 2-5: The Range and Shadow of a Corner 

The shadow of a corner is defined as its quadrant translated to the opposite corner 

of the corner's range. The shadow includes its own boundaries. (See figure 2-5.) 

The scope of a comer is the list of corners it may legitimately pair with to create 

a rectangle as part of an OPP2-some in a particular kind of cover. 



In a corner cover, we are only concerned with covering corners, and thus the scope 

of a corner A is the list of all corners in the opposite chain whose vertices are in the 

quadrant of A, and whose rectangles made with A are not blocked by the other two 

chains. Figure 2-6 shows the scope of a corner for a corner cover. 

Figure 2-6: The Scope of a Corner in a Corner Cover 

The scope of corner .4 for a corner cover is all opposite corner vertices in 
the quadrant of A, and whose rectangles are unobscured. Here. A's scope is 
opposite corners 2 to 7. 

In an edge cover, the scope of a comer A is defined as being the list of corners of 

the opposite chain that A may form an OPP2-some with, such that the edges of both 

corners are covered by the rectangle. This will be the corners in the opposite chain 

whose vertices lie in the shadow of A, whose edges lie fully in the quadrant of A. 



and whose rectangles with A are not blocked. A corner whose range is intersected by 

the opposite chain cannot have any OPP2-somes, as no rectangle can cover both its 

edges. Figure 2-7 shows the scope of a corner in an edge cover. 

Figure 2-7: The Scope of a Corner in an Edge Cover 

Corner A's scope in an edge cover is opposite corners 4 to 7. 

A range intersection or RI occurs when a corner's range is intersected by the 

opposite chain. We shall use the term range intersection and its abbreviation RI 

interchangeably. We note that a corner whose range is intersected cannot have both 

its edges covered by the same rectangle, so its edges will have to be covered by more 

than one rectangle. We call this a multiple covering of a comer. This term is 

defined more exactly in Chapter 6 .  
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2.2. How Rectangles Cover Corners, Edges and Area 

2.2.1. Rectangle Expansion 

We assume that all rectangles in a cover are rectilinear and maximal in each 

direction. Thus. given convexity of the polygon being covered, a rectangle may be 

constrained from further growth by several possible combinations of edges and 

corners: 

1. Four edges. 

2. One corner and two or more edges 

3. Two collinear adjacent corners and an edge or two. 

4. Two opposite corners, and possibly one or two edges. 

5. Three corners, and possibly an edge. 

6. Four corners. 

Examples of these are illustrated in figure 2-8. 

A pair of corners of adjacent type must be a CA2-some if they are to "share" the 

same rectangle. (One example of this would be the rectangle expanding to fill a tab.) 

Similarly,' a rectangle may be defined by two corners of opposite type, provided this 



Figure 2-8: Examples of Convex Polygon Rectangle Constraint Types 



expanded rectangle is completely contained in the polygon. It is easy to see that if 

this expansion is blocked, it must be blocked by edges of the other two chains. 

We note that a rectangle constrained by an edge or a corner may not completely 

cover that edge or corner's edges. 

It is necessary to investigate the ways in which rectangles can cover corners, edges. 

and area. We assume that a CA2-some or a 3-some is not part of a 4-some, and 

that a CA2-some is not part of an unobscured 3-some. 

A 4-some (a rectangle that can cover four corners) must be in any optimal corner. 

edge or area cover of a convex rectilinear polygon. A maximal rectangle for any of 

the four corners will expand automatically to cover the other three corners [CKSS~I]. 

All vertices and edges of the four corners are covered by this rectangle. 

Any unobscured 3-some's rectangle must be in any minimum corner, edge or area 

cover, as the middle corner's maximal rectangle will expand to cover the other two 

corners anyway [ C K S S ~ ~ ] .  This rectangle will cover the middle corner, and the edges 

of at least one of the outer corners (there may be an edge extending past the 

rectangle on one side). In a corner cover: we consider all three corners covered. In 

an edge cover, an extending edge is not fully covered by the maximal rectangle. 

If the 3-some is obscured, its rectangle cannot be used, and it is ignored, which 



Figure 2-9: Obscured and C'nobscured 3-somes 

results in its being recognized as two adjoining CA2-somes. Their two rectangles L 

cover the corners and edges of the obscured 3-some. The 3-some may be obscured 

because i t  adjoins one or two other 3-somes. 

Where three 3-somes adjoin, as in figure 2-10, the outer two 3-some's rectangles are 

unobscured. These two rectangles cover all three corners of the obscured middle 3- 

some. 

Where two 3-somes only adjoin, only one of them can be unobscured. The 

unobscured 3-some's rectangle is taken for any cover, which covers two of the 



Figure 2-10: Adjoining 3-somes 

obscured 3-some's corners. The remaining uncovered corner C is collinearly adjacent 

to a covered corner A, and can only expand to that corner A, as their rectangle is 

blocked opposite C. If C is left unrecognized as part of a CA2-some. i t  can only be 

expanded to A as a singleton at the end of the algorithm. This also covers any part L 

of A's edge that extended past the unobscured 3-some's rectangle (see figure 2-10). 

Again, all corners and edges are covered optimally by taking unobscured 3-some's 

rectangles, and ignoring obscured 3-some's corners not covered by these rectangles. 

Finally, all CA2-somes (a pair of collinear adjacent corners. both uncovered by 4- 

somes or unobscured 3-somes) must define a rectangle in any minimum corner, edge 

or area cover. (see Figure 2-11). The maximal rectangle defined by corners A and B 

is blocked at some level, say above A. Corner A's maximal rectangle can only expand 



to the blocking edge and corner B. Thus the rectangle defined by A and B must be 

in any ORCC. OREC or ORAC. 

However, in a comer cover. we consider both corners covered by such a rectangle. 

where in the edge cover algorithms presented we are concerned about the maximal 

rectangle fully covering the edges of both corners. 

Figure 2-11: Rectangle Covering a CA2-some 

The maximal rectangle defined by corners A and B is blocked at some 
level, say above A. Corner A's maximal rectangle can only expand to the 
blocking edge and corner B. Thus the rectangle defined by A and B must be 
in any ORCC, OREC or ORAC. 

2.2.5. Remaining Corners 

Now all remaining rectangles in any cover can only be defined by OPP2-somes or 

by singletons and some edges. 

A maximum independent set or MIS from all possible OPP2-somes is defined as a 

largest cardinality set of pairs of comers forming OPP2-somes such that no corner is 

in more than one pair. There may be more than one such set for a given list of 

possible OPP2-somes. 
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All that remains to complete an ORCC is find a MIS out of all possible OPP2- 

somes. Lastly we take the remaining singletons and allow their rectangles to expand 

to an available opposite corner or to some edges. 

To complete an edge cover, we need a more detailed analysis. This is presented in 

Chapter 5. 



Chapter 3 

Bounds on Cardinalities of Covers 

It is of interest to know the range of cardinalities of covering sets possible for 

various problems. The following results have been determined. 

3.1. Five Lemmas 

Let n-IVI-IEI. 

Lemma 1: In a rectilinear polygon. n must be even. 

Proof: If we remove all the horizontal edges, the disconnected vertical 

edges and all the vertices remain. The vertices must be in pairs, one pair for 

each vertical edge. Thus IVI must be even. C3 

Lemma 2: In a rectilinear polygon, the number of horizontal edges is 

equal to the number of vertical edges. 

Proof: In a tour of the polygon (or its multiply connected components). 

one must encounter alternately horizontal and vertical edges, and n is even. 

from Lemma 1. An alternate proof can be seen from Lemma 1. If we 

rotate the polygon by 90 degrees and remove the horizontal (formerly 

vertical) edges we have exactly one disconnected edge for each pair of 

vertices. Thus the number of vertical and horizontal edges must be the 

same. 0 



Lemma 3: In a simply-connected rectilinear polygon, the number of 

distinct horizontal or vertical intervals that can be generated is less than or 

equal to (n/2)-1. 

Proof: In a vertical (horizontal) scan, the first interval encountered is at a 

tab, and has two adjacent vertical (horizontal) edges. Each successive 

vertical (horizontal) edge encountered adds at  most one new interval (if two 

edges enter at  the same coordinate, only one new interval is created for the 

two of them). In the semi-convex or non-convex case, there may be more 

than one tab on a side, each requiring two vertical edges to start an 

interval, but possibly creating an interval when non-convex indentations end. 

As we have from lemma 2 that the number of horizontal or vertical edges = 

n/2, the result follows. 0 

Lemma 4: In a multiply-connected rectilinear polygon, the number of 

distinct horizontal or vertical intervals that can be generated is less than or 

equal to n/2+m-1, where m is the number of holes. 

Proof: For multiply connected polygons in a vertical (horizontal) scan, each 

interior component (hole) requires two vertical (horizontal) edges to begin 

with at its tab. This component creates at most two new intervals when it 

enters the scan, and one new interval for each successive vertical (horizontal) 

edge that enters the scan. as before. When this interior component leaves 

the scan however, one last interval is created. if the edges of the polygon 

that the interior component makes intervals with have changed during this 

scan. Thus, for each interior component with k vertical (horizontal) edges. 

we have at most k+l  intervals created (again, less per edge accounting-wise 

if other edges of the polygon enter the scan at the same coordinate). 



We note that if the hole itself is non-convex, the number of intervals that 

can be generated per edge is reduced. This gives an upper bound on the 

number of intervals in a multiply-connected non-convex polygon of n/2+m-1. 

where m is the number of interior components. 

Lemma 5: The number of corners in a simply-connected rectilinear 

polygon is always 4+((n-4)/2). 

Proof: If we tour the edges of the polygon anti-clockwise with the interior 

on our left-hand side, a left turn is a corner, and a right turn is a reflex 

vertex. As we tour the polygon and return to the starting point, there 

must be exactly four more corners than there are reflex vertices. 0 

3.2. Upper Bounds on Cardinalities of Minimum Covers 

As no more than (n/2)-1 horizontal or vertical intervals can be generated in a 

simply-connected rectilinear polygon. this number of rectangles must always be 

sufficient to cover the corners, edges or area of such a polygon. This is a tight ,. 

bound for all three kinds of covers, as the example of a square or rectangle shows. 

Lemma 4 shows that. for multiply-connected non-convex polygons. n/2+m-1 (where 

m is the number of holes) rectangles will always be sufficient. This too is a tight 

upper bound. as Fig. 3-1 shows. 



Figure 3-1: A Tight Upper Bound for the Multiply Connected Case 

Here, n=lO, and n/2+m-1-5, the minimum number of rectangles necessary 
to cover the area or edges of the polygon. A comer cover can be obtained 
with 3 rectangles. 

3.3. Lower Bounds on Cardinalities of Minimum Covers 

Analysis is based on the number of corners, denoted c. We know from Lemma 5 

that c=4+((n-41/21 in a convex polygon. 

For convex polygons, if every rectangle covers four corners (the best possible 

performance for any cover), then we require at  least id41 or l+ln-4/81 rectangles. 

This is a tight lower bound, as examples can be shown that give this performance. 

e.g. figure 3-2. 
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Figure 3-2 shows a tight lower bound for all three kinds of covers. 

Figure 3-2: A Tight Lower Bound for All Three Kinds of Cover 

Here, n=20, c=12, and lc/4]=3, the size of a minimum corner, edge or area 
cover. 

L 

In the case of a multiply connected non-convex polygon. o(& edges may be 

covered by each rectangle. This would give an o(&) cardinality cover. Figure 1-6 

shows a multiply-connected polygon with O(n) vertices with an edge or area cover of 

O( J;;) recrangles. 



Chapter 4 

A Linear ORCC Algorithm 

4.1. Finding an ORCC for a Convex Rectilinear Polygon 

Chapter 2 lists the rectangles that must be in any ORCC for convex rectilinear 

polygons. We only need to cover the remaining corners as economically as possible to 

obtain an ORCC. This leads to the following algorithm. 

4.1 .l. Algorithm Steps 

1. Find all 4-somes. List their rectangles, and mark their corners covered. 

2. Find all 3-somes not part of 4-somes. List the rectangles of all 

unobscured 3-somes, and mark their corners covered. 

3. Find all CA2-somes not part of 4-somes or unobscured 3-somes. List 

their rectangles. 

4. Find the set 'of all possible OPP2-somes (permissible opposite corner 

defined rectangles) among the corners left uncovered. 

5. Find a maximum independent set (MIS) of OPP2-somes. List their 

rectangles and mark their comers covered. 
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6. Find rectangle expansions for the remaining uncovered corners (singletons) 

and list them. 

4.1.2. Proof of Correctness 

We have shown that rectangles defined by 4-somes, remaining unobscured 3-somes 

and then by remaining CA2-somes must be in any ORCC. Of the corners remaining, 

we must show that our method gives a minimum cover. 

Finding a maximum cardinality independent set of OPP2-somes (pairings representing 

permissible rectangle expansions between opposite corners) does this. We find as 

many OPP2-somes as possible of the remaining uncovered corners that each cover two 

unique corners. The singletons then remaining we give their own maximal rectangle. 

Although it may expand to an opposite corner, that opposite corner has already been 

paired, or else we could have added one more pair to our MIS. 

4.2. A Linear Implementation of the ORCC Algorithm 

We assume that the convex rectilinear polygon P is described by the coordinates of 

its vertices, in anticlockwise order. We can find extremal edges and all corners (as 

opposed to reflex vertices) in linear time by a simple tour. This gives us the starting 

and ending points of the four chains. Let the four chains be identified A1 to A4 

and numbered as in figure 4-1. 

We represent the x-coordinate of a corner i in the chain Aj by ~j[i].x. and its y- 

coordinate by ~j[i] .y.  



-- -- 
Al LlJ ~4 r r_l 

chain Ai 

Figure 4-1: Chain and Corner Numbering for Algorithms 

The four chains are numbered A1 to A4, clockwise from the bottom left 
chain. We assume there are Ti corners in each chain Ai. Corners in a chain 
Ai are then numbered from 1 at  a tab to Ti at the other tab. as shown. 
Corners in the chains are numbered from top to bottom for convenience in 
algorithm notation. 



4.2.1. Finding n-soma in Linear Time 

We can find all 4-somes, unobscured 3-somes. CA2-somes and the ranges of possible 

OPP2-somes in linear time. The first step is to find all collinear adjacent pairs. We 

use the abbreviations CW and CCW for clockwise and counter-clockwise, respectively. 

We need to check the four pairings of adjoining chains, marking each corner in the 

CW-most chain with the number of any collinear adjacent neighbour to its CCW side. 

The corners are numbered as in figure 4-1. The following algorithm finds all 

collinear adjacent pairs between chains A1 and A2 in linear time. The collinear 

adjacent pairs are reported once each, with their corners in CCW order. 

To simplify the indexing of the corners in this algorithm, we assume that a simple 

linear tour has already found the four collinear adjacent pairs that are tabs. Thus 

the algorithm works between corners 2 and Ti-1 in each chain. 



beg in  CApairs 

/* example f o r  cha ins  A1 and A2 */ 
/* i n i t i a l i z e  */ 
i =2 
j=T2-1 

w h i l e  ( i  f T I  & j f 1) do 

i f  A l [ i ] . x  = AZ[ j ] .x  
then do 

l i s t  c o l l  inear  ad jacent  p a i r  j , i  
/* l i s t e d  i n  CCW order  */ 

/* s t o r e  the  b l o c k i n g  edge and increment */ 
CW b l o c k i n g  f o r  A l [  
i=i+l 
j=j-I 

end 

e l s e  i f  A l [ i ] . x  < A2[ 
/* s t o r e  the  b l o c k i n g  

then do 

] i s  A2[ 

1.. 
edge and 

j 1 . y  

increment */ 

CW b l o c k i n g  f o r  A l [ i ]  i s  ~ 2 [ j + l ] . y  
i=i+l 

enddo 
e l s e  j=j-1 

endwh i l e  

end CApai r s  

When all collinear adjacent pairs have been found, the 4-somes. 3-somes and CA2- 

C 

somes can be obtained. This can be done in one CCW sweep of the polygon, but the 

algorithms are written here separately for each set of n-somes (for clarity). Care 

must be taken to ensure that the CA2-somes and 3-somes contained in a 4-some or 

the CA2-somes in an unobscured 3-some are not listed. For this reason, a corner is 

tagged 4 or 3 when i t  has been found part of a 4-some or h o m e .  

For the notation of this algorithm, it is convenient to assume the corners are 

numbered in CCW sequence in an array C (perhaps starting at comer Al[l]). 

As the corners of collinear adjacent pairs are listed in CCW order, finding a 



collinear adjacent neighbour for a particular corner will produce a match to the CCW 

side of it only. A 3-some is then found by finding a corner that has a collinear 

adjacent neighbor (to its right CCW) which also has a collinear adjacent neighbor (to 

its right CCW again). Thus each CA2-some or 3-some is only listed once, with their 

corners in CCW order. 

One sweep of a particular chain looking for 4-somes will produce all foursomes, as 

a 4-some must have a corner in each chain. We know that all 4-somes in a convex 

polygon must be unobscured. Once these are found. and their corners tagged with a 

4. all 3-somes can be found. 

It is necessary to ensure that 3-somes are unobscured. otherwise they are ignored, 

and their comers are treated as two adjoining CA2-somes (except for edge covers in 

the adjoining 3-somes cases - see Chapter 2). Unobscured 3-somes have their 

rectangles placed in the cover set, and have their comers tagged with a 3. Finally, 

any collinear adjacent pairs both not tagged by the previous operations are listed as 

CA2-somes. 

As n-somes are found, their corners are marked covered. and the rectangle they 

define is put in the cover set. The following algorithms find the n-somes. 

First the 4-somes are found and reported. The corners involved are tagged so that 

CA2-somes or 3-somes contained in 4-somes will not be reported. We use CA- 

neighbor as an abbreviation for collinear adjacent neighbor. We assume the collinear 

adjacent pairs are in a list, ordered by the first corner in the pair. The array C 



keeps track of the n-somes corners are assigned to. Initially, it is set to zero for all 

corners. 

beg i 

/ i 
-0 

f o r  

n find4-somes 

n i t i a l i z e  a r r a y  */ 
/* no co rne rs  assigned n-somes */ 

w = 1 t o  number-of-corners- in- f i rst -chain 
/* a l l  4-somes a re  found by end o f  f i r s t  c h a i n  */ 

i f  w has CA-neighbor x 
then i f  x has CA-neighbor y 

then i f  y has CA-neighbor z 
then i f  z has CA-neighbor w 

then do 
C[wl .C[x l  . c r y 1  ,C[zl-4 
l i s t  esome w,x.y,z 

end 

endf o r  

end find4-somas 

Now 3-somes not contained in 4-somes are found. If they are unobscured, they are 

reported and their corners tagged. 

beg in  find3-somes 

f o r  w = 1 t o  number-of-corners 

i f  C[w] f 4 /* i f  no t  p a r t  o f  &some */ 
then i f  w has CA-neighbor x 

then i f  x has CA-neighbor y 
then i f  unobscured[w.x.y] 

d 0 

l i s t  3-30me w,x,y 
C[wl ,C[x l  ,C[yl=3 

enddo 

endf o r  

end find3-somes 

Finally collinear adjacent pairs of uncovered corners that are not contained in 4- 

somes or unobscured 3-somes are found and reported as CA2-somes. 



begin  findCA2somes 

f o r  w = 1 t o  number-of-corners 

i f  C[w] = 0 /* i f  corner  not  ye t  tagged */ 
then i f  w has CA-neighbor x 

i f  C[x] = 0 then l i s t  CA2-some w,x 

endf o r  

end findCA2-somes 

This is the function for checking whether a 3-some is obscured. It is written for 

checking 3-soma starting in chain A l .  

begin  unobscured[a,b,c] 

/* assuming corner  a i n  A t ,  b i n  A4 and c i n  A3. c l e a r l y  */ 
/* t h i s  implementat ion i s  c h a i n  dependent. */ 
/* x & y coo rd ina tes  represented by A l [a ] . x  t Al [a ] .y  */ 

i f  ~ l [ a ] . x  > A2[1].x 
then r e t u r n [ ~ E S ]  /* obscu r ing  cannot occur */ 

/* check b l o c k i n g  t o  see i f  r e c t a n g l e  unobscured */ 
e l s e  i f  CW b l o c k i n g  f o r  A l [ a ]  < A3EcI.y r e t u r n [ ~ O ]  

e l s e  return[YES] 

end unobscured 

4.2.2. Complexity of n-some Algorithms 

The algorithm to find all collinear adjacent pairs of corners has been shown to have 

a linear implementation. The algorithms to find 4-somes. 3-somes and CA2-somes are 

also linear, given the list of collinear adjacencies. Can we find whether any of the 

3-somes are obscured in O h )  total time? 

The answer is yes, as the CW blocking edges have been stored during the CApairs 

algorithm. If the 3-some is obscured, the CW blocking edge for its CW-most corner 

will intersect the 3-some's rectangle. A check of this blocking edge with the CCW- 



most corner's coordinates will show whether the 3-some is unobscured or not. As the 

information is already stored, total time for all 3-somes is linear. 

4.2.3. Ranges of Possible OPP2-somes 

It is necessary to check both pairs of opposing chains against each other to list all 

possible OPP2-somes (opposite pairings of corners), as pairings can occur in both 

opposing sets of chains. Only corners uncovered by n-somes are of interest, but if 

the range of possible pairings is calculated, covered corners can be deleted easily later 

on. A single pair of opposite chains can be checked and all possible pairings between 

them can be found in linear time, even though 0(n2) pairings may exist. 

In a convex rectilinear polygon, if a corner may define an unobscured rectangle with 

two opposite corners, i t  must also be able to define unobscured rectangles with all 

opposite comers between them. Thus we only need to record the range of possible 

pairings of each corner of one chain against its opposing chain. This gives all possible 

OPP2-somes between the two opposing chains. 

Chains and corners are numbered as in figure 4-1. 

Starting at the top of chain A l ,  we observe that if blocking occurs from the 

adjacent chain. A2, its result diminishes as we move farther away from it. 

Similarly, if blocking occurs from the chain A4, its result increases as we move 

towards it. Figure 4-2 illustrates this situation. 

Thus the beginning of the scopes for consecutive corners of A1 will be non- 



Figure 4-2: Blocking Effects on Scopes for Chain A1 

Corner A1[2] can define legitimate rectangles with opposite corners ~ 3 [ 3 ]  
to A3[6], while the scope of corner ~ 1 [ 6 ]  is from ~ 3 [ 1 ]  to ~3141,  in a 
corner cover. 

increasing in terms of the vertex numbers of A3 while there is blocking from A2, 

then be non-decreasing, i.e. it is a unimodal function. Also, the ends of the scopes 

for consecutive comers of A1 may be unblocked at first, and be non-decreasing, then 

become blocked by A4, becoming non-increasing. Thus the ends of scopes too are 

unimodal. 

We can find the starting point for an initial corner's range of acceptable pairings on 

the opposing chain in a simple linear sequential search. Successive corner's scopes 



depend on blocking. For chain A l ,  if blocking by chain A2 occurs, scope starting 

points for successive corners will be non-increasing until the blocking ends for some 

corner in A l .  Then the starting points of scope for successive corners in A1 will be 

non-decreasing. The behaviour is unimodal. The behaviour of the ending points of 

the scopes behaves similarly. 

By keeping track of the previous corner's scope, we are taking at most two tours of 

the vertices on the opposing chain while finding all possible OPP2-somes for the 

corners on the first chain. This gives a linear time algorithm. 

The algorithm for finding the ranges of OPP2-some pairing between two opposing 

chains is as follows. For illustration, we write the algorithm for chains A1 and A3. 

beg in  OPP2algorithm 

f o r  k  = 2  t o  TI -1  /* f o r  a l l  non-tab corners  */ 

i f  A l [ k ] . x  < A2E l l . x  
then do 

/* i f  b l o c k i n g  occurs */ 

f i n d  an m such t h a t  
A2[m-l1.x > A l [ k ] . x  > ~ 2 [ m ] . x  /* f i n d  b l o c k i n g  corner  */ 

/* A2[m].y i s  b l o c k i n g  a l t i t u d e  */ 
i f  A2[m].y > ~ 3 [ T 3 ] . y  /* i f  A3 e x i s t s  a t  t h i s  l e v e l  */ 
then do 

/* f i n d  where the  b l o c k i n g  a l t i t u d e  h i t s  A3 */ 
f i n d  an i such t h a t  
A3 [ i - l 1 . y  > AZ[m].y > A3 [ i ] . y  
range-s tar t [k ]  = ~ 3 [ i ]  

end 

e l s e  range-s tar t [k ]  = N I L  
/* a l l  A3 above b l o c k i n g  a l t i t u d e  */ 

end 

e l s e  do /* i f  no b l o c k i n g  */ 
f i n d  an i such t h a t  
~ 3 [ i - l 1 . x  < ~ l [ k ] . x  < ~ 3 E i l . x  
range-s tar t [k ]  = A 3 [ i ]  

end 

/* now f i n d  t h e  end o f  t he  range f o r  A l [ k ]  */ 

i f  ~ l [ k ] . ~  < ~ 4 [ l ] . y  /* h o r i z o n t a l  b l o c k i n g  occurs */ 



then do 
f i n d  an m such t h a t  
A4[m].y > A l [ k ] . y  > A4[m+l].y /* f i n d  b l o c k i n g  corner  */ 

/* A4[m].x i s  now v e r t i c a l  b l o c k i n g  l i n e  */ 

i f  A4Ernl.x > A3[1] .x /* i f  A3 e x i s t s  here */ 
then do 

f i n d  an i such t h a t  
A3 [ i ] . x  < A4lrnl.x < A 3 [ i + l ] . x  
range-end[k] = A 3 [ i ]  

end 
e l s e  range-end[k] = N I L  

end 

e l s e  do /* i f  no h o r i z o n t a l  b l o c k i n g  */ 
f i n d  an i such t h a t  
A 3 [ i ] . y  > A l [ k ] . y  > A3 [ i+ l ] . y  
range-end[k] = A 3 [ i ]  

end 
end 

/* Now e l i m i n a t e  imposs ib le  ;anges */ 

i f  ( r ange -s ta r t [ k ]  = N I L  
I range-end[k] = N I L  
I r a n g e - s t a r t [ k ]  > range-end[k]) 

t hen  do 
range-s tar t [k ]  = N I L  
range-end[k] = N IL  

end 

endf o r  

end OPPPalgorithm 

A mirror-image version of this algorithm will compute any OPP2-somes between 

chains A2 and A4. A linear implementation of this algorithm simply makes use of 

the fact the the changes in values of i and m are unimodal. During finding the 

beginnings of ranges. the values of m must be non-increasing as vertical blocking 

decreases. The values of i must be non-increasing as vertical blocking decreases, then 

must be non-decreasing. If we save the previous values of i and m the subsequent 

values are easily found in linear total time. In effect, no comer is visited more than 

twice. 



The singletons that remain can each be given a maximal rectangle in total linear 

time. by expanding them in CCW order. They may either be expanded to an unused 

OPP2-some, if any exist, or to the CW blocking edges found in the CApairs 

algorithm. 

4.3. Finding the Maximum Cardinality Independent Set 

A maximum cardinality independent set (MIS) out of all possible OPP2-somes can 

be found in linear time. As there may be OPP2-somes between both pairs of opposite 

chains, this procedure may have to be carried out for each pair. 

4.3.1. A 0,l  Matrix Model of the Problem 

. This problem of finding a MIS of OPP2-somes (where none of the OPP2-somes share 

a corner) can be modelled in the following way. Assume n uncovered corners 

remain. k in one chain. and n-k in the opposite chain. We number the uncovered 

corners of the first chain from 1 to k. The uncovered corners of the opposite chain 
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are given numbers from k+l  to n. All possible OPP2-somes that could be formed 

between the two chains may now be represented in a k by n-k 0.1 OPP2-some 

matrix. A 1 in the i'th row, j'th column signifies that corner i may form an OPP2- 

some with corner j. All other entries are zeros. Figure 4-3 shows a polygon and its 

OPP2-some matrix after tabs have been taken. 



Figure 4-3: A Polygon and Its OPP2-some Matrix 

The 0.1 matrix shows possible OPP2-some pairings between chains A1 and 
A3. For clarity, the corners are numbered simply and the tabs are not 
included. 



4.3.2. Properties of the Matrix 

We note some useful properties of the matrix. First, all 1's in a row or column 

must be contiguous (when contiguity is in one direction only, this is also known as 

the consecutive 1's property). This is because, in a convex polygon, if a corner may 

make an OPP2-some with two separate corners A and B in the opposite chain, it must 

also be able to form OPP2-somes with all corners between A and B. Secondly, this 

contiguity property means that the 1's in the matrix form a rectilinearly convex 

shape. 

We call such a 0.1 matrix a convex matrix. This provides the key to our linear 

algorithm. 

A 0.1 matrix where the 1's are contiguous in the horizontal direction only we term 

a horizontally convex matrix, or a matrix with the consecutive 1's property. 

4.33. Redefining the Problem 

The OPP2-some MIS problem may now be redefined as: given a convex 0.1 matrix 

-M. find a maximum cardinality set of 1's such that no two 1's share any row or 

column. Each 1 selected then represents an OPP2-some that covers two unique 

corners. 



4.3.4. The Cautious Method 

The Cautious Method described here will find a maximum cardinality independent 

set S of 1's (where no two of the 1's in S share the same row or column) in a 0.1 

matrix M with the consecutive 1's property. We call this a maximum independent 

set or MIS in M. 

This algorithm works for any matrix with the consecutive 1's property, however, a 

linear implementation is possible for the convex OPP2-some matrix described, which 

has 1's contiguous both horizontally and vertically. 

Given the k by n-k 0.1 OPP2-some matrix M, and an initially empty set S. do the 

following: 

begin cautious-method 

f o r  j = 1 t o  n-k /* f o r  each column */ 

f i n d  the  set  of 1 ' s  i n  column j 

f i n d  the  f i r s t  row i  among these 
w i t h  the  l eas t  number of 1 ' s  to  
the r i g h t  of M i j  

remove row i from the  m a t r i x  

end fo r  

end caut iouslnethod 

Now the set S is a MIS of OPP2-somes in M. 

In effect, at each step we take the possible match with the least future choice. As 

the range of choices for all corners is always contiguous, we always leave ourselves 

the most future choice for matches. 
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A linear implementation of the Cautious Method for convex OPP2-some matrices is 

described later in this chapter. 

4.3.5. Optirnality of the Cautious Method 

Theorem 1: The Cautious Method is optimal for horizontally convex 

,matrices. 

Proof: By contradiction. Given such a matrix M and a maximum 

independent set A obtained by the Cautious Method, we show that there 

cannot exist a larger cardinality independent set B. 

Let us define a matrix X to be contained in a matrix Y in regard to a 

column j iff for every line of 1's to the right of column j in X, we can 

assign a line of 1's of equal or larger length in Y. 

Given sets A and B, we proceed across the matrix M column by column. 

At some column, the entry taken for A must differ from that taken for 

B. Let this column be r. the row taken for A be p and the row taken for 

B be q .  

As we take a row for A that has the least number of 1's to the right of 

Mij for any row j where M..=l, we know that Mqr cannot have less 1's to 
'1 

the right of it than Mpr. Two possibilities remain: Mq, h& the same 

number of ones to its right, or it has more. If it has the same number, the 

matrix M' obtained by removing the row q from M is contained in the 

matrix M" obtained by removing row p from M. The resulting matrices after 



the appropriate rows have been removed have rows with exactly the same 

size. only with different row ordering. 

If Mq, has more 1's to its right than Mpr, then the matrix M' that 

remains after row q is removed differs from the matrix M" with row p 

removed, in one respect. M' has the row p but not q, and M" has the row 

q but not p. The row q we removed from the matrix to form M' had 

more 1's to the right of column r than did the row p we removed to form 

M". As row p had less 1's to its right. M' has rows with the same number 

of 1's to the right of column r as does M", except for one row, where Mu 

has more. The matrix M' representing choices left for pairing is always 

contained in the matrix M" representing choices made by the Cautious 

Method. 

At each column where set A differs from set B, we find the same result. 

The successive matrices representing choices remaining for choosing set 

members for B are always contained in the matrices representing choices still 

available for A. Thus being able to choose more set members for B after set 

A has been chosen is a contradiction. 

This shows there can never be a larger independent set member choosable 

by any other method of selection. 



4.3.6. A Linear Implementation of the Cautious Method 

A linear implementation of the cautious method is possible for convex OPP2-some 

matrices. where the 1's in the matrix are contiguous in both horizontal and vertical 

directions. We require the ranges of the 1's in each row of the matrix. or the 

matrix itself. 

Given the adjacency matrix, the ranges can be obtained in linear time by a tour of 

the rectilinearly convex set of outer 1's in the matrix. 

Any operations on a matrix are not going to result in a linear algorithm, so we 

store only 'the ranges of possible paixings for a particular chain. Each row of the 

matrix is represented in a doubly linked list by an entry containing the numbers of 

the first and last columns containing 1's in that row. We call these numbers the 

range start and the range end. 

We use the following data structures. 

-4 doubly linked list L containing the range start and range end of 1's for 

each row of M. This can easily be built in linear time, as we find the 

ranges of OPP2-somes possible between two chains. 

An array A of pointers to nodes in L, numbered such that the i'th pointer 

points to the node representing the i'th row of M. This can be added as 

the list is built. 



Pointers TOP and BOTTOM pointing to the topmost and bottom-most 

rows containing 1's in column j. Initially, the pointers TOP and BOTTOM 

are set to the topmost and bottom-most rows containing 1's in column 1. 

The algorithm makes use of the rectilinear convexity property of the matrix. Given 

the topmost and bottom-most 1's in a column, there must be contiguous 1's between 

them, and a minimum number of 1's to the right of that column for any of the 

rows must be in the topmost or bottom-most row. (Otherwise, the 1's in the matrix 

would not be rectilinearly convex.) The minimum range to the right of the column 

may be common to several rows, but one of those must be the row pointed to by 

TOP or BOTTOM. 

Let RE[TOP] and RE[BOTTOM] represent the range ends of the rows pointed to by 

TOP and BOTTOM respectively. Entries to the MIS will be a row-column pair. 

where the row number is stored in TOP or BOTTOM, and the column number in the 

current value of j. 

For the convex OPP2-some matrix M. with m rows and n columns: 



begin MISfind 

for j = 1 to n do 

update TOP and BOTTOM for column j 

i f  TOP f NULL then do 

i f  RE[TOP] > RE[BOTTOM] 
then do 

odd B0TTOM.j to MIS 
remove BOTTOM -> row from linked list 

end do 
else do 

odd TOP, j to MIS 
remove TOP -> row from linked list 

end do 

enddo /* for then do */ 

endf or 

end MISfind 

It is easy to see that this implementation is linear in the number of rows and 

columns in the matrix. Removing a row can be done in constant time through the 

array A of pointers to each row's representation. TOP and BOTTOM are updated in 

total linear time over the whole algorithm by simple linear search of neighbours. 

Clearly the cardinality of the MIS cannot be greater than the smaller of m and n. 

If m is greater (more rows than columns), the algorithm terminates when j = n. If 

n is greater. after the m'th row is removed from the linked list L, TOP will return 

NULL as the linked list of rows will be empty, and no further independent pairs 

will be reported. 



4.3.7. Applications of the Cautious Method to Bipartite Matching 

This maximum independent set problem in a convex 0.1 matrix is the same as 

finding a maximum matching in the bipartite graph represented by the matrix. 

Maximum matchings in bipartite graphs can be found in ~ ( f i l ~ l )  time as shown in 

[ H O K ~ ~ ] .  In the convex OPP2-some graph, IEl may be 0(lv12) giving 0(n5") 

performance. 

However, given the contiguity of the non-zero entries (1's) in a convex or 

horizontally convex matrix. the bipartite graph obtained from such a matrix is not an 

arbitrary bipartite graph. When the 1's are contiguous in the horizontal direction 

only, we have a bipartite graph where all edges from the vertex set V1 (representing 

the rows) go to a set of consecutive nodes in the other vertex set. V2 (representing 

the columns). In order to preserve notation, we term such a bipartite graph 

horizontally convex. where its adjacency matrix forms a horizontally convex matrix. 

C 

A rectilinearly convex matrix yields an even more restricted form of bipartite graph. 

We call the resulting bipartite graph convex. Let V 1  and V2 be the two sets of 

vertices in the convex bipartite graph G. Such a graph has edges from V1 to 

consecutive vertices in V2, and vice versa. Further, the beginnings and endings of the 

ranges of adjacency for the vertices in V1 and V2 are unimodal as we move from 

vertex to vertex along a vertex set. 

This leads to the following theorem. 

Theorem 2: The linear implementation of the Cautious Method finds a 



maximum matching in a convex bipartite graph in time linear in the number 

of vertices in the graph, given the ranges of adjacency for the rows or 

columns, or the adjacency matrix. 

For the horizontally convex matrix and bipartite graph, a simple brute-force 

algorithm finds a maximum matching in 0(lv12) time. For each column, a sequential 

search finds a row containing a 1 with the least number of 1's remaining to the right 

of that column. However, using sorting of the range ends and beginnings, an O(IVI 

log IVI) implementation is possible. 

Theorem 3: An O(IVI log IVI) algorithm exists to find a maximum matching 

in a bipartite graph whose adjacency matrix has the consecutive 1's property. 

given the ranges of adjacency in the consecutive 1's rows (or columns), or 

the adjacency matrix. 



Chapter 5 

Edge Covering Algorithms 

5.1. A Look 

A corner cover 

at Edge Covering Problems 

may not cover all of each edge, and so the ORCC algorithm for 

corner covers will not necessarily produce an edge cover. In the ORCC algorithm, a 

rectangle only has to cover the vertex of a corner. 

An edge cover algorithm may be constructed using the essential ideas of the ORCC 

algorithm, if it is possible to think in terms of covering corners rather than edges. 

In this method, we think of covering both edges of a corner simultaneously by some 

rectangle, and can then deal with n-somes and singletons as before. Some terms have 
L 

to be redefined, and n-somes are taken for a cover under slightly different rules. 

We remove n-somes that must be in any OREC, and find the most economical cover 

of the remaining edges by pairing as many uncovered corners as possible in OPP2- 

somes. Here, in an OPP2-some both edges of each corner must be fully covered by 

the ensuing maximal rectangle. 

This would provide an optimal edge cover only if we may disregard the covering of 

one edge of a corner by one rectangle, and the other edge by a different rectangle, 

where no one rectangle fully covers both edges of the comer (multiple coverings). 

We may do this in an irreducible polygon [CKSS81], but not in the general case, as 

there are polygons for whom every OREC as such a configuration. 
6ti 



Two linear algorithms are presented. Algorithm E l  provides an OREC for a class 

of polygons called irreducible. This algorithm is used later in finding an area cover. 

Algorithm E2 finds an OREC for general polygons whose necessary multiple covers 

are always part of an obscured 3-some or of a CA2-some with an extending edge. 

Some more terminology must be introduced before dealing with edge covers. 

5.1.1. Partial and Multiple Covering 

We say that a corner is multiply covered if its two edges are covered by a 

combination of rectangles, where no one rectangle in the cover fully covers both edges 

by itself. 

We say that a rectangle partially covers a comer if it does not cover all of both 

edges of the corner. We may also speak of a rectangle partially covering a particular 

edge. 

5.1.2. Necessary Multiple Coverings 

We will call a multiple covering of a corner A necessary when no OREC for the 

polygon exists that contains a rectangle fully covering both edges of A. Range 

intersections always result in necessary multiple coverings. A RI and a non-RI 

necessary multiple cover of a corner are shown in figure 5-1, where every OREC for 

the polygons must have corner A multiply covered as shown. 

Figure 5-2 shows an example of an unnecessary non-RI multiple covering of a 

corner. with an alternate solution. Both are OREC's. 



Figure 5-1: A RI and a Non-RI Necessary Multiple Covering 

Figure 5-2: An Unnecessary Multiple Covering 

The OREC on the left shows corner A multiply covered, which leaves a 
hole. The cover on the right is also an OREC, and has no hole. 



5.13. Necessary Multiple Covers in an OREC 

Figure 5-1 shows that some polygons may require multiple covering of a corner in 

every possible OREC. There is currently no known algorithm for finding and 

identifying all such corners. If such an algorithm existed, we could adapt the ORCC 

algorithm to find an OREC by first dealing with such corners before or during taking 

n-somes, and finally using the Cautious Method for pairing OPP2-somes, as in the 

ORCC algorithm. 

There are two kinds of multiple coverings in OREC's, those caused by RI's 

(described in Chapter 2). and non-RI ones. However. Algorithm El  (for irreducible 

polygons) does not have to consider non-RI multiple covers, and it will be shown 

that no range intersections can occur in an irreducible polygon. 

Necessary multiple coverings are always either the result of RI's or they create a 

hole in the OREC. Any multiple covering of a corner in a RI-free polygon must 
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leave a hole. as shown in figure 5-3. If a corner A's range is not intersected, and no 

one rectangle covers both edges, then there must exist some region in the range of A 

not covered by any rectangle. Thus no non-RI multiple covering will occur in an 

area cover. 

In Algorithm E l ,  we consider the OREC problem only for a class of polygons called 

irreducible described in [ c K S S ~ ~ ]  which have been shown not to have non-RI 

multiple coverings in their OREC's. Work on finding non-RI multiple coverings is 

shown in more detail in the section on Algorithm E2. 



Figure 5-3: Yon-RI Multiple Covering Leaves a Hole 

We assume corners C to E are paired with corners to either side of corner 
-4. Any of C. D or E could fully cover both edges of A. 

5.2. Irreducible Polygons 

An irreducible polygon is obtained from a general reducible one by two types of 

operation involving extremal edges or "tabs", tab reduction and partial tab reduction. 

When no further such operations are possible, the polygon is irreducible. 



5.2.1. Tab Reduction 

Given the rectangle R associated with an extremal edge, if its side opposite the 

extremal edge lies entirely on another edge of the polygon, then tab reduction may be 

performed. 

This is done by removing all the area of the rectangle R from the polygon, as 

shown in fig 5-4. 

Figure 5-4: Tab Reduction 

5.2.2. Partial Tab Reduction 

Partial tab reduction may be performed when two conditions hold. 

1. The polygon has no tab reductions possible. 

2. An extension of the tab rectangle does not intersect any points of the tab 

rectangle to its right CCW (see f ig 5-51. 



Partial tab reduction is performed by removing the shaded area as shown in the 

figure. 

I ' a 

t ab  'Ti" 0. 

.*' , m 

Figure 5-5: Partial Tab Reduction 

The right tab must not intersect an extension of the bottom tab. The 
shaded area is removed in a partial tab reduction. 

Now it is simple to prove the following theorem. 

Theorem 1: No range intersections can occur in an irreducible polygon. 

Proof: By contradiction. We refer to the conditions for irreducibility. If 

comer A's range is intersected (see figure 5-61 then either the bottom tab 

cannot see the left tab, and the polygon is reducible. or else edge AB is the 

bottom tab, and there is a full tab reduction possible for the right tab. 

Thus, if A's corner has a range intersection. A cannot be in an irreducible 

polygon. 0 



Figure 5-6: If A Has a RI, the Polygon is Reducible 

We now present Algorithm E l  for irreducible, RI-free polygons. 

5.3. Algorithm El: an OREC for Irreducible Polygons 

In an irreducible polygon. there are no range intersections. We note that in a non- 

RI multiple cover there is always a full or partial tab reduction possible. Thus there 

will also be no non-RI multiple covers. We look at the n-some that must be in an 

OREC for irreducible polygons. 



5.3.1. 4-soma 

Due to convexity, a foursome must be unobscured. The rectangle defined by a 4- 

some must be in any optimal cover. as a maximal rectangle expanded from any of 

the corner vertices expands to cover all four corners and their edges. 

The rectangle defined by a 3-some may be obscured, even in an irreducible polygon. 

We have two cases, the obscured and the unobscured. 

The unobscured 3-some's rectangle must be in the cover, as any maximal rectangle 

covering the middle corner's edges can only expand to cover the other two corner's 

vertices, and the portions of their edges that lie along the rectangle. 

Figure 5-7: An Unobscured 3-some with an Extending Edge 

- 

One edge may extend beyond the rectangle in a 3-some. as in Figure 5-7. An 



extending edge in this polygon means that the left tab has a full tab reduction 

against the extending edge. In an irreducible polygon, the extending edge cannot 

occur. 

Obscured 3-somes may be part of connected 3-somes, as shown in figure 2-10. If 

the 3-some is obscured by the remaining chain, as in Figure 5-8 we note that the 

obscuring chain must cross the 3-some's rectangle at some points X and Y. 

Figure 5-8: Covering an Obscured 3-some 

The rectangles covering corners B and C can only expand to A in one direction, and 

to X and Y in the other. (given convexity) and must be in the minimum edge cover. 

Several cases are possible. The 3-some may be part of a connected sequence of two 



or three adjoining 3-somes, or it may be isolated. If three connecting 3-somes occur, 

the middle obscured one is fully covered by the unobscured rectangles of the outer 

two 3-somes. 

If only two 3-somes are connected, one is obscured and one is unobscured (refer to 

figure 2-10). The unobscured rectangle is taken, and the one remaining uncovered 

corner of the obscured 3-some is not tagged with a 3. This means it will be left as 

a singleton (it cannot pair as any OPP2-some) and can only be expanded to the 

obscured 3-some's central corner. All edges are optimally covered in this way. 

If the obscured 3-some is isolated, it must be covered by two maximal rectangles. 

This is done by ignoring the 3-some which results in its being listed as two 

(adjoining) CA2-somes. Corner A must be fully covered by each of the CA2-some 

rectangles in an irreducible polygon. (otherwise a tab may fully reduce against A. and 

the polygon is reducible). 

We see that the ORCC algorithms suffice to find all the necessary rectangles to edge 

cover 3-somes in irreducible polygons. 

5.3.3. Col l inear  Adjacent  2-somes 

We saw in Chapter 2 that every CA2-some defines a rectangle that must be in any 

ORCC. OREC or ORAC. Now a corner's edge cannot extend past the CA2-some's 

rectangle in an irreducible polygon. or a tab may fully reduce against the extending 

edge. Thus the edges of both corners are fully covered. Again, the ORCC algorithms 

suffice in irreducible polygons. 



The ORCC algorithm for finding OPP2-somes must be slightly modified for edge 

covers. The scope of a corner is defined differently, as a rectangle must cover all 

edges of both corners in an OPP2-some for edge covers (see Chapter 2). The change 

is slight, and the algorithm can still be performed in linear time. 

5.3.5. Algorithm El 

We have now seen all the rectangles that must be in any OREC for a given 

irreducible convex polygon. 4-somes. 3-somes and CA2-somes are found and covered 

with variations of the ORCC algorithms. Then all that remains is OPP2-somes and 

singletons. An application of the Cautious Method from the linear ORCC algorithm 

will provide the most efficient rectangle cover of the remaining edges. 

1. Find and cover 4-somes, unobscured 3-somes and CA2-somes. Expand 

these rectangles and mark the appropriate corners covered. 

2. Find the set of all possible OPP2-somes among the still uncovered corners. 

3. Find a maximum independent set (MIS) among the OPP2-somes. List these 

rectangles and mark the corners covered. 

4. Expand the remaining uncovered singletons. 



53.6. Optimality of Algorithm E l  

The 4-somes, unobscured 3-somes and CA2-somes must be covered as described in 

every OREC for irreducible polygons. The remaining corners can only be covered as 

part of an OPP2-some, or as singletons. The Cautious Method gives the largest 

number of independent OPP2-somes possible, and every remaining singleton can be 

covered with one maximal rectangle as they cannot have range intersections. Thus. as 

in the ORCC algorithm, we obtain a most economical cover for the remaining corners. 

5.3.7. Complexity of Algorithm E l  

Finding all 4-somes. unobscured 3-somes and CA2-somes is linear. We use the 

procedures described in the linear ORCC algorithm. The algorithm for finding OPP2- 

somes has only to be slightly modified for the OREC problem. For an OREC, the 

scope of a corner is calculated differently (see Chapter 2). The Cautious Method 

may be applied as in the ORCC, giving a MIS of OPP2-somes in linear time. 

Expanding singletons may also be done in one tour of the polygon in linear time. 

The total time is linear. 

5.4. Algorithm E2: A Stronger Result 

A stronger result may yet be obtained. In a general, reducible polygon, range 

intersections may occur, and non-RI necessary multiple covering may occur for certain 

corners. . Range, intersection regions must always be covered by a certain set of 

rectangles. RI's and these rectangles may be found in linear time. 

Non-RI multiple coverings come in six configurations. Five of the six possible 



configurations occur as part of obscured 3-somes and of CA2-somes with extending 

edges. They may also be found and handled in linear time during the algorithm. 

There is at  present no known algorithm to find the sixth configuration. which we call 

an OPP3-some multiple covering. These terms are explained later in the chapter. 

First we look at range intersections. 

5.4.1. Range Intersections in OREC's 

When a corner A's range is intersected by some portion of the opposite chain, then 

A's two edges cannot be covered by a single rectangle. If A's range is intersected by 

some portion of the opposite chain Aj, then an optimal edge or area cover of the 

region in the range of A must be the rectangles defined between A and all opposite 

corners in Aj whose vertices and edges lie fully within A's range (they can expand 

nowhere else), plus a rectangle along any edges crossing A's range. The rectangles 

along edges crossing A's range may or may not meet another corner (see Figure 5-9). 

Rectangles expanding to a corner B whose edge crosses the range of corner A may 

only partially cover B's other edge (see figure 5-10). In this case the range of B is  

then also intersected by an edge of corner A and some part of the continuing chain. 

In fact, several RI's may be strung together (see Figure 5-11). 

Eventually these linking RI's must end with a corner fully covered by the last 

rectangle. We can cover the whole succession of linking RI's as we encounter each 

one, noting that where two range intersections of opposite type join we must be 

careful not to list the same rectangle twice. 



Figure 5-9: Range Intersection Edge and Area Covering 

Corners in A's range can only expand to A. Edges crossing A's range also 
require a rectangle expanded from A in order to cover the outer part of A's 
edges. These rectangles do not necessarily meet another corner at the end of 
their expansion. 

5.4.2. Decomposing into RI-free Components 

Knowing the rectangles that must be in any optimal edge or area cover of a range 

intersection part of a polygon, we can cover these areas first. The covering of RI's 

and linking RI's decomposes the polygon into RI-free components left to be covered. 

The general edge covering problem is then reduced to finding the rectangles needed 



Figure 5-10: Two Adjoining Range Intersections 

Corner A is range intersected by corners B.C.D and E. If the corner B's 
other edge is only partially covered, then B is also range intersected by A. 

to cover range-intersection regions, then finding an OREC for the remaining RI-free 
' 

uncovered components. Figure 5-12 shows the decomposition of a polygon into R1- 

free components whose OREC's may be combined with the RI's edge cover to form an 

OREC for the entire polygon. 



Figure 5-11: Several Connecting Range Intersections 

5.43. Finding and Covering RI's in Linear Time 

-411 RI ' s  In a convex rectilinear polygon may be found and covered in linear time. 

We assume the chain and corner numbering is as shown in figure 4-1. A corner's 

range can only be intersected by a corner of the opposite chain. 

Lemma 2: If a range intersection is found between a pair of opposing 

chains, no range intersection may occur between the other two chains. 

Proof: If a range intersection occurs betwen two chains, the other two 

chains must reside on different sides of the found RI, and thus cannot 

intersect each other's range. 0 



Figure 5-12: RI Decomposition 

Lemma 2 shows that it is only necessary to check the second pair of chains for 

range intersections if none have been found between the first pair. 

For a pair of opposing chains, say A1 and A3, sweep along both chains 

simultaneously from- left to right. One sweep will find RI's of A l .  A second sweep 

will find RI's of A3. The second sweep is modified so that adjoining RI's do not 

result in the same rectangle being listed twice. 



It is easy to find range intersections of all four tabs in linear time, so they are 

taken care of first. Thus the corners looked at  will be numbered from 2 to Ti-1. 

The following algorithm is written in terms of A1 and A3, looking for RI's of Al .  

Figure 5-13: Index Numbering in the RIfind Algorithm 

Figure 5-13 illustrates the numbering involved in the search. 

begin  R I f i n d  

i=2 / *  s t a r t  a t  f i r s t  corner o f  t e r  tab  */ 
j=1 /* s t a r t  where o t h e r  c h a i n  begins  */ 

do w h i i e ( i  < T1 k j < 1 3 )  / *  f o r  the  corners  i n  c h a i n  A1 */ 

i f  ~ 3 [ j ] . x  < A l [ i + l ] . x  
then  do 

i f  ~ 3 [ j + l ] . y  < A l [ i - l 1 . y  
r e p o r t  range i n t e r s e c t i o n  
o f  corner  A l [ i ]  by A 3 [ j ]  

j = j + l  
end do 
e l s e  i = i + l  

endwh i l e  

end R I f  i n d  
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5.4.4. Finding Non-R1 Multiple Coverings in an OREC 

Figure 5-14: Constraints on a Non-RI Multiple Covering 

In a given convex rectilinear polygon with a non-RI necessary multiple covering of 

corner A for any OREC, the following constraints must occur (see Figure 5-14): 

A must have one edge fully covered by some maximal rectangle R1, and 

the other edge fully covered by some other maximal rectangle R2. 



As neither R1 nor R2 fully covers A by itself, the range of A extends 

beyond (R1 L: R2). 

Both R1 and R2 must be bounded at their extremal ends by some edge, 

and be bounded on their sides away from A's edges by some edge. As 

R1 and R2 are maximal, we require an edge of the polygon to occur on 

each of the lines IJ. JK. LM and MN. (These edges may extend past the 

lines, but not into A's range.) Let X and Y be the closest points to A of 

the edges along JK and LM respectively. 

As the polygon is convex, and there is no RI of A, we see that there 

must always be at least one corner 0 in the shadow of A that could be 

paired with A as an OPP2-some to cover fully the edges of both corners. 

If corner A is multiply covered in a particular edge cover, then every 

such corner 0 must have been paired instead with some other comer on 

either side of A ,  or be multlplq covered itself from both sides of A as in 

figure 5-1. where both A and B are necessary multiple covered. If 0 was 

a singleton, it could have been expanded to A, fully covering it in some 

OREC, and this would not have been a necessary multiple cover of A. 

At least one of I and J must be a corner. as must at  least one of M and N. There 

are six basic configurations possible. Figure 5-15 illustrates them. 



Figure 5-15: The Six Basic Multiple Covering Configurations 



5.4.5. Handling the six configurations 

Five of the six configurations are recognizable as involving 3-somes and CA2-somes. 

and may be optimally covered during the n-some finding algorithms in a manner that 

permits multiple covering of the corner. It is necessary to find if 3-somes adjoin 

each other before dealing with them. This only takes one extra pass of the 

algorithm. 

If I and I% are corners. IAN is an obscured 3-some (configurations 1 to 3). In 

configurations 2.3 and 4 there are other 3-somes involved. Configuration 5 has a 

CA2-some with an extending edge. The configurations are dealt with as follows: 

Configuration 1: The 3-some is a simple obscured 3-some. The 3-some is dealt 

with when found to be obscured. as if it were two adjoining CA2-somes. All three 

corners are marked covered by the two rectangles thus defined. This allows the 

possible multiple covering of the middle corner. 

Configuration 2: Appears as two connected 3-somes. When two or three connected 

3-somes are found during the 3-some finding algorithm, all corners in the unobscured 

3-somes are marked covered, and the un obscured 3-some corners are labelled with a 

3 so that they will not be processed later as CA2-somes. In the case here of two 

connected 3-somes, the unobscured one (JIA) will have an extended edge. We solve 

this by taking the CA2-some rectangle defined with the yet uncovered corner N of 

the obscured 3-some at this time, and labeling this corner with a 3 so that it doesn't 

get made part of a CA2-some later. 



Configuration 3: Is covered under configuration 2. When three connecting 3-somes 

are found. the two rectangles are listed, and all corners involved are marked covered. 

This allows the possible multiple covering of A. 

Configuration 4: This appears as a single unobscured 3-some with an extending 

edge. If we perturb the extending edge very slightly, at the point where it would be 

intersected by the 3-some's rectangle, and create a new corner, the rest of this edge 

gets covered, and corner A is allowed to be multiply covered. Thus, whenever we 

find a single 3-some with an extending edge we allow the extending edge to be 

perhaps multiply covered. 

Configuration 5: This is a CA2-some with an extending edge. As in configuration 

4, if the extending edge is perturbed slightly at  the point where it leaves the 

rectangle. the edge gets fully covered later, and corner A may be multiply covered. 

Figure 5-16 illustrates perturbation for both configurations 4 and 5. 

Configuration 6: This is the configuration we call an OPP3-some multiple covering. 

No efficient algorithm is known which can find an OREC for a polygon that must 

have this kind of necessary multiply covered corner in its OREC, aside from the 

obvious brute-force method. 



Figure 5-16: Perturbation for Configurations 4 and 5 

5.4.6. Algorithm E2: for General Convex Rectilinear Polygons 

For general. reducible polygons then, an edge cover may be obtained which is 

optimal for all polygons except those which have configuration 6 multiple coverings 

of corners in every OREC. 

The algorithm steps are as follows: 

1. Find and cover all range intersection regions of the polygon. Mark the 

appropriate corners covered. 

2. Find and cover all 4-somes. 



3. Find all 3-somes in the polygon. Find all connected 3-somes among these, 

and deal with them as described in the list of configurations for necessary 

multiple coverings. 

4. Cover remaining unobscured 3-somes, perturbing extended edges to create 

new corners. allowing multiple covering to occur. 

5. Find all remaining untagged CA2-somes. Among these, find those with 

extending edges. Perturb these edges to create new corners, allowing 

multiple covering to occur. List the rectangles and mark the appropriate 

corners covered. 

6. Find the set of all possible OPP2-somes among the uncovered corners 

remaining. 

7. Find a MIS among these with the Cautious Method. as in the ORCC 

algorithm. List these rectangles and mark the corners covered. 

8. Expand the remaining singletons' rectangles and list them. 

9. Remove the pr turbed corners, allowing their rectangles to expand fully, 

either fully or partially covering the corners they meet. 



5.4.7. Cardinality of Necessary Multiple Covers 1 
i. 

Given that necessary multiple covers may occur in an optimal edge cover. it is 

useful to know how many can occur. In particular, as we cannot recognize the 

OPP3-some configuration, we need to know how many we may miss in Algorithm E2, 

and thus how far from optimal the edge cover obtained might be. 

Figure 5-17: -4n Edge Cover with O(n) Cinnecessary Holes 

If an OPP3-some configuration of a multiple cover of a corner A occurs in every 

OREC for a given polygon. certain conditions must be observed. Figure 5-18 shows 

that, for corner A to be necessary multiple covered in an OREC, blocking of the 

OPP2-some rectangles defined by J and P and by M and R must occur as shown, or 

else an alternate OREC exists in which A is not multiply covered. 

An unnecessary OPP3-some, where blocking does not occur as shown, is illustrated 



Figure 5-18: Conditions for a Necessary OPP3-some Multiple Cover 



Figure 5-19: An Unnecessary OPP3-some in an OREC 
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in figure 5-19. If corners J and P are not blocked from forming an OPP2-some, then 

we may pair J with P, and 0 with A to obtain an OREC with no holes. Then the 

multiple cover is not necessary. 

Theorem 3: No more than two necessary OPP3-some multiple coverings of 

corners can occur in an OREC. Further, if two occur, the two multiply 

covered corners must be opposite each other, and both be fully edge 

coverable by the legitimate (unobscured) OPP2-some rectangle they define. 

Proof: To prove this theorem. we must show the following: 

1. Two OPP3-some necessary multiple covered corners may occur in an 

OREC. 

2. Two OPP3-some necessary multiple covered corners cannot occur in 

the same chain. 

3. Two OPP3-some necessary multiple covered corners cannot occur in 

adjacent chains. 

4. Two OPP3-some necessary multiple covered corners cannot occur in 

the opposite chains unless these corners are coverable by one rectangle. 

We prove property 1 by example. Figure 5-20 shows an OREC with two 

OPP3-some necessary multiple covered corners. These two corners may be 

both fully covered by one OPP2-some rectangle. 



Figure 5-20: An OREC with Two OPP3-some Necessary Multiple Covers 

Property 2 is shown by the fact that blocking must occur at both ends of 

the chain containing the necessary multiple covered corner. If corner A is 

multiply covered by opposite corners J and M. and corner A' in the same 

chain as A is also multiply covered by opposite corners J' and M', we note 

that the blocking required for the covers to be necessary cannot exist. 

Property 3 is shown by the fact that a necessary multiply covered corner 

always has OPP2-somes possible with the opposite chain. It is easy to see 

that both sets of opposite chains cannot define unobscured OPP2-somes in the 

configuration required for a necessary multiple cover to exist in an OREC. 



Finally, property 4 is shown by the fact that if two opposite necessary 

multiple covered corners are not coverable by a single OPP2-some rectangle. 

the the corners' vertices are not in each others' shadows, and the blocking 

requirements for the multiple covers to be necessary cannot be met. If the 

two vertices are in each others' shadows, they define a legitimate unobscured 

OPP2-some rectangle which fully covers the edges of both corners.0 

This proof leads immediately to a stronger result, as the arguments used all apply 

to multiply covered corners of any configuration. The argument for property 2 needs 

a little reworking as J and M may not be corners in the general case. However. 

blocking must occur from the other two chains in the region shown, and cannot occur 

as required for two corners in the same chain to be necessary multiply covered. 

Theorem 4: No more than two necessary multiply covered corners can 

occur in an OREC for a convex rectilinear polygon. and if two occur, their 

multiply covered corners must be opposite each other and be edge coverable 

by the unobscured OPP2-some rectangle they define. 

Corollary: Any scheme that finds an OREC for a convex rectilinear polygon. 

ignoring necessary multiply covered corners, is at most one rectangle from optimal. 



5.4.8. Optirnality of Algorithm E2 

Range intersection regions must be covered as described. The 4-somes, 3-somes and 

CA2-somes must also be covered as described. The Cautious Method finds the most 

economical cover of the remaining corners, except where an OPP3-some necessary 

multiple covering of some corner was in every OREC. The algorithm is then only 

optimal for polygons in which this situation does not occur. 

We have shown that only one or two OPP3-somes can occur in a polygon, and if 

two occur, the multiply covered corners must be opposite each other, and must both 

be coverable by the OPP2-some rectangle they define. Thus our algorithm is 

guaranteed to be within one rectangle of optimal for general, reducible polygons. 

5.4.9. Complexity of Algorithm E2 

Range intersection finding and covering has been shown to have a linear 

implementation. Finding and dealing with n-somes is performed with modified 
C 

versions of the Algorithm E l  programs. Finding connected 3-somes requires a look- 

ahead, but is still linear, as is the covering of them required. The number of new 

corners created by extended edges is linear. Finding OPP2-somes and using the 

Cautious Method as in Algorithm E l  is linear. Total time is therefore linear. 



Chapter 6 

Area Cover Algorithms 

6.1. A Look at Area Cover Problems 

An edge cover is not necessarily an area cover, so Algorithms E l  and E2 will not 

always produce ORAC's or even non-optimal area covers. Algorithm E2 found edge 

covers for general reducible polygons that may have necessary multiply covered 

corners in their OREC's. As non-RI multiply covered corners always create holes in 

the edge cover, we confine our attentions to Algorithm El  and irreducible polygons. 

If we are to adapt Algorithm E l  to find an area cover. we must be able to find 

and cover the hole or holes that may occur in an optimal edge cover. If the OREC 
L 

has no holes. it is also an ORAC. 

6.1.1. Holes in OREC's of Irreducible Polygons 

We have seen that an OREC for a convex rectilinear polygon may have a hole in it. 

In fact, an OREC may have O h )  holes (see figure 6-11. 

We define necessary holes as holes in a region where some holes must occur in any 

OREC for that particular polygon. We note that variations of the holes may exist. 

The hole boundaries may be variable among several OREC's, and the number of holes 

in the region might be different, but for holes to be necessary, any OREC for that 



Figure 6-1: An OREC in an Irreducible Polygon with O h )  Holes 

polygon will have a hole or holes in a certain region. Figure 6-2 shows two versions 

of a necessary hole in an irreducible polygon. 

To convert an OREC with necessary or unnecessary holes to an area cover, we will 

need to find and cover these holes with extra rectangles. It is shown in [CKSSSl] 

that, for some optimal edge cover, one rectangle will always cover all the holes. 

We use in our area cover algorithms an important result of Chaiken et. al. 

Lemma 1: An edge cover by maximal rectangles in an irreducible convex 



Figure 6-2: 2 Different Holes in OREC's 

polygon can only have holes in the area between the four tab rectangles 

[CKSSS 11. 

We call this region between the four tab rectangles the hole region. If this region 

is non-existent. there can be no holes. 

A hole in an OREC may not be rectangular. It must be bounded on all sides by 

maximal rectangles. Given the convexity of the rectilinear polygon, we can show that 

only certain configurations of corners and edges of the polygon can exist. Figure 6-3 

shows the constraints placed by convexity around a hole region. 

These constraints mean that  in a convex rectilinear polygon necessary holes must 



Figure 6-3: Hole Region Constraints in a Convex Irreducible Polygon 

The maximal tab rectangles Rl .R2 ,R3  and R 4  surround the hole region. 
As they are maximal. edges of the polygon must appear along some portion 
of each of their edges. These constraints are shown by numbered lines. 
The rectangles may not be expanded exactly as shown. 

occur in a variation of one of two configurations. These two configurations we call 

Type 1 and Type 2. They are illustrated in figure 6-4. 

Type 1 necessary holes: Type 1 holes are the result of blocking a t  both ends of 



Figure 6-4: Examples of Type 1 and Type 2 Hole Configurations 

the polygon, forcing two criss-crossed sets of rectangles to meet in the middle of the , 

polygon forming a hole. 

Type 2 necessary holes: In type 2 holes no OPP2-some rectangles can occur. Type 

2 holes cannot occur in irreducible polygons. as there are always full  tab reductions 

possible in this configuration. 



6.2. Algorithm Al: an Area Cover for Irreducible 

Polygons 

An area cover for an irreducible polygon may be constructed from an OREC 

(provided by Algorithm El).  If the OREC has no holes in it, it must also be an 

ORAC. 

If it does have holes, we must find this out, and add a maximal rectangle covering 

the hole region. This area cover may be optimal, or it may be one rectangle more 

than optimal if the holes in the OREC were not necessary holes. 

A simpler algorithm: A simpler version of this algorithm would be to just add a 

maximal rectangle to cover the hole region, if this region exists. Clearly, we can 

check this in constant time. This avoids the task of finding holes and is still 

guaranteed within one rectangle of optimal. However, when the OREC is already an 

ORAC, an additional unnecessary rectangle is added to the cover. Finding out 
L 

whether holes exist enables the algorithm to return an optimal area cover in more 

cases. 

We can further minimize the chance of there being holes by expanding the 

singletons in the OREC at this time. not when the OREC is obtained. They may be 

expanded in the direction that covers the largest possible part of the hole region. 

Figure 6-5 shows the regions that are of interest when expanding singletons and 

looking for holes. 



Figure 6-5: Corner Regions of Importance for Type 1 Holes 

A mirror-image of this figure is also pssible. Algorithms in the text are 
described in terms of this configuration. Any holes must occur in the hole 
region ABCD. Any singleton in regions 1 or 2 can cover the entire hole 
region. 



6.2.1. Finding Holes 

We assume the configuration illustrated for the purposes of this algorithm 

description. A mirror image configuration is also possible. Assuming the hole region 

exists, a search for holes in the OREC must be done. First we can see if the hole 

region can be reduced by expanding singletons properly. We note that if a singleton 

can affect the hole region it can be expanded so that its rectangle fully crosses the 

hole region. If some singleton is in region 1 or 2 (refer to figure 6-51 it can be 

expanded to cover the entire hole region. In this case. the OREC is now an ORAC. 

and the hole finding algorithm may terminate. 

If the singletons do not fully cover the hole region, we may still have succeeded in 

reducing it. This reduction can be done in total linear time 

We can also find rectangles in the OREC that cross the entire reduced hole region. 

and do a further reduction in total linear time in one tour of the polygon, knowing 
C 

the rectangles assigned to each corner. If these reductions have removed the hole, the 

algorithm terminates, and returns an OREC that is an OR.4C. 

We now find out how the remaining rectangles cover this possibly reduced hole 

region. 

It is possible for some rectangles to pass through the hole region. splitting it. These 

we check last. 

We first find rectangles that intersect the left or top edges of the reduced hole 



Figure 6-6: The Possibly Reduced Hole Region 

A mirror-image of this figure is another possible configuration. 
Algorithms in the text are described in terms of this configuration. 

region, but do not split the region. The reduced hole region is illustrated in figure 

6-6. This is done in one sweep of the two opposing chains. 



To sort by ascending y-values of the bottom edges of these rectangles, we note that 

the rectangles defined by a corner in chain A1 are already in this sorted order. The 

only other non-splitting rectangles that can cross the top or left edges and not be 

defined by a corner in A1 must be CA2-somes between A2 and A3. These are easily 

found in the cover, and it is seen that their expansion downwards must end against 

an edge of A l ,  as A4 is to the right of all corners in A2. 

These rectangles are assigned to the corners in A1 whose edges they expand against. 

This puts them in sorted order by y-values with the other rectangles. A similar 

method can be used to sort the rectangles that cross the bottom or right of the hole 

region and do not split it. 

We then find the zig-zag line their union makes across the hole region in linear 

time. Taking one rectangle a t  a time, we use a stack to store successive rectangles 

that increase the hole area covered. We take rectangles in descending order of their 

bottom edge y-coordinates. Each rectangle will then cross the left edge at the same 
' 

or a lower point than the previous rectangle. If its right edge is to the right of or 

the same as the top rectangle on the stack, we remove the top rectangle from the 

stack. When we find a rectangle on the stack with a right edge to the right of the 

new rectangle (or an empty stack) we add the new rectangle to the stack. We call 

this the top-left path in this configuration. 

We then do a similar procedure for rectangles crossing the bottom or right edges of 

the reduced hole region. and not splitting it. This is called the bottom-right path in 

this configuration. 



Figure 6-7: Updating the Top-left Zig-zag Path 

In this configuration, rectangles in the cover cannot cross both the top and right 

edges or both the bottom and left edges of the hole region as they would have to be 

defined by corners from the chains A2 and A4. These chains cannot share a 

rectangle, as they are completely out of each other's scope, being completely blocked 

by A1 and A3. 

We now have two  (possibly empty) zig-zag paths across the hole region. We can 

run along the two  of them in tandem. If the top-left zig-zag path is below the 

bottom-right path all the way across the hole region. the hole region is covered. If 



there are still holes, places where the top-left path is above the bottom-right path. we 

store them in a linked list as we traverse the hole region. This can be done in linear 

time. 

All that remains to be checked are the splitters. rectangles with two edges crossing 

the top and bottom or left and right edges of the reduced hole region. As these 

must be defined by corners from the two opposite chains A1 and A3. they are easily 

found in sorted order by traversing the chains. These we can easily check against the 

linked list of remaining holes in linear time, as they are already in sorted order by 

x-value in the two chains. 

The resulting implementation of a hole finding algorithm is then linear. 

6.2.2. Algorithm A1 

To obtain an area cover for an irreducible polygon the following steps are 

performed: 

1. Find an OREC for the polygon, using algorithm E l .  

2. See if the hole region enclosed by the four tab rectangles is empty. If it 

is, the OREC is also an ORAC for the polygon. 

3. If the hole region is non-empty, find out if any holes exist in the hole 

region, expanding singletons in the most advantageous manner. 

4. If holes do not exist, the OREC is an ORAC. 



5 .  If holes do exist, add one maximal rectangle to cover the hole region. The 

OREC plus this rectangle is an area cover. 

6.2.3. Optimality of Algorithm A1 

Algorithm E l  provides an OREC. Lemma 1 shows that any holes in an OREC 

must be in the hole region. If no holes exist. the OREC is an ORAC. If holes do 

exist, we cannot be certain from Algorithm E l  that they are necessary, i.e. that some 

other equal cardinality OREC isn't holeless. Thus the area cover obtained by adding 

a rectangle to the hole region can only be guaranteed to be within one rectangle of 

optimal. 

6.2.4. Complexity of Algorithm A1 

The Algorithm E l  used to find an OREC is linear. Finding whether the hole region 

exists or not can be done in linear time. The hole-finding algorithm has been shown 

to have a linear implementation. Finally, adding one maximal rectangle, to complete 

an area cover if required, can be done in constant time. Algorithm A1 is linear. 

6.3. Algorithm A2: an Area Cover for General Polygons 

-Another important result of Chaiken, Kleitman, Saks and Shearer is used here. 

Lemma 2: An optimal area cover for a reducible polygon may be obtained 

by reducing the polygon, using the tab rectangles defined at each reduction. 

and adding them to an optimal area cover of the irreducible polygon finally 

obtained [CKSS~ 11. 
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6.3.1. Full and Partial Tab Reduction Configurations 

Tab reduction is described in Chapter 5 .  The tab reduction algorithms can collapse 

the polygon completely. For example. a rectangular polygon gets one full tab 

reduction and then disappears. Some tab reductions may also collapse part of a 

polygon into a line (as in full tab configuration 6 ) .  In this case. there are always 

other tab reductions that may be performed first, leaving a rectangle for the final 

reduction. 

The key to a linear implementation of full and partial tab reductions is the fact 

that, after each tab reduction. the new tab is adjacent to where the old one was. 

Figure 6-8 shows some possible configurations for full tab reduction, and the 

resulting reduced polygons. Figure 6-9 does the same for partial tab reductions. 

6.3.2. Linear Tab Reduction Algorithms 

Chaiken. Kleitman. Saks and Shearer speak of shrinking the polygon each time a tab 

reduction is done. An straightforward implementation of this would entail changing 

the coordinates of approximately half of the corners at each reduction step. This 

would take O( nf)  time. 

An inspection of the new polygon boundaries in the region of a tab reduction (see 

figures 6-8, 6-9 and 6-10) shows that the topological changes are local only. We 

propose instead. a restructuring of the local area only, which can be done in constant 

time for each configuration. This is illustrated in figure 6-11 for a full and a 

partial tab reduction. 



Figure 6-8: Some Full Tab Reduction Configurations 



Figure 6-9: Some Partial Tab Reduction Configurations 



Figure 6-10: Some More Partial Tab Reduction Configurations 

The bottom configuration cannot occur, as there would be a full tab 
reduction possible. 

Two problems remain, for the imljlementation to be linear. Finding the new tabs 

and checking whether the new tab rectangles intersect each other (necessary to know 

for partial tab reductions) must be done in total linear time. Secondly, finding where 

the new tab rectangles intersect the other side of the polygon must be done in total 

linear time (necessary to determine the kind of reduction possible). 



Figure 6-11: Global and Local Tab Reduction Changes 

Global (2) and local (3)  restructuring are shown for  both full  (left) and 
partial (right) tab reductions. 



We can find all of these things for the first time in linear time. When a full  or 

partial tab reduction is performed, the new tab is always adjacent to where the old 

one was. Each new tab will then be easy to find in constant time after a reduction 

has occurred. The new tab rectangle will intersect the other side of the polygon at 

an edge either at the same place or left or right of the original intersection. 

Each new intersection will then occur to the left of or to the right of previous 

intersections. Thus, again, we have total linear performance, as the search for 

intersecting edges broadens out and never turns back inwards. ,411 we need to do is 

to keep track of previous leftmost and rightmost intersection edges. 

Knowing where the new tab rectangle intersects the other side of the polygon, we 

can update whether the tabs intersect each other in constant time at each reduction. 

Thus an irreducible polygon can be obtained from a reducible polygon in linear 

time. If the polygon disappears during reduction, the rectangles defined during the b 

process constitute an ORAC for the reducible polygon. by Lemma 2 .  

6.3.3. Algorithm A2 

An area cover for general reducible polygons may be obtained by the following 

steps. 

1. Perform full and partial tab reductions on the polygon until either an 

irreducible polygon is obtained, or a final full tab reduction causes the 

polygon to disappear. If the polygon disappears, the rectangles defined 

during tab reduction operations constitute an ORAC. 
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2. If an irreducible polygon is obtained, find an area cover for this polygon 

using Algorithm A l .  

3. Combine this area cover with the rectangles defined during reduction steps 

for an area cover of the whole polygon. 

6.3.4. Optimality of Algorithm A2 " 

If the polygon disappeared during reduction. then by Lemma 2 the rectangles 

removed constituted an ORAC for the original polygon. 

If an irreducible polygon was obtained after reduction. then optimality depends on 

the area cover for this irreducible polygon returned by Algorithm A l .  If an ORAC 

was returned. the resulting area cover is also an ORAC. If a not necessarily optimal 

area cover was returned, the combined cover is also not necessarily optimal. It is 

however, guaranteed within one rectangle of optimal. 

6.3.5. Complexity of Algorithm A2 

We have shown that full and partial tab reduction operations can be done in linear 

time. Algorithm A1 has been shown to be linear. Algorithm A2 is then linear. 



Chapter 7 

Conclusions 

7.1. General Properties of Covers 

We have shown that bsomes. unobscured 3-somes and CA2-somes generate 

rectangles that must be in any ORCC. OREC or ORAC. 

The bounds on cardinalities of optimal covers were analysed in Chapter 2 and 

several basic properties of rectilinear polygons were shown. 

7.2. The Corner Cover Algorithm 

A linear algorithm has been presented that obtains an optimal rectangle corner cover 

for a convex rectilinear polygon. e 

Part of the algorithm entails finding a maximum independent set in the convex 

OPP2-some matrix. It is shown that the Cautious Method finds a maximum 

independent set in a matrix with the consecutive 1's property. A linear 

implementation of the Cautious Method is shown to find a MIS in the convex OPP2- 

some matrix (which has the consecutive 1's property in both axes). 

It is also shown that this implementation can be used to find a maximum matching 

in any bipartite graph with a rectilinearly convex adjacency graph, in time linear in 



the number of vertices in the graph, given the adjacency matrix or the ranges of 

adjacency . 

The use of a sorting algorithm implies an O(IVl loglVI) algorithmn for bipartite 

graphs with the consecutive 1's property in their adjacency matrix, given the ranges 

of adjacency or the matrix itself. 

7.3. Edge Cover Algorithms 

For edge and area covers, we have shown that range intersection regions have a 

unique covering. It is shown that no range intersections can occur in an irreducible 

polygon. 

Two linear algorithms are presented for edge covers. Algorithm E l  finds an 

optimal edge cover of an irreducible convex rectilinear polygon. Algorithm E2 finds 

an edge cover of a general (reducible) convex rectilinear polygon that is guaranteed 

within one rectangle of optimality. 

7.4. .Area Cover Algorithms 

Multiple covering of corners is seen to always create a hole in the cover. We show 

there are six configurations of multiple covers that may be required in an OREC, and 

that we can allow five of them to occur in our algorithm. 

Two linear algorithms are presented. Algorithm A1 finds an area cover of an 

irreducible convex rectilinear polygon that is within one rectangle of optimal. This 

algorithm uses a linear time hole-finding algorithm to cover any holes in an OREC 

for an irreducible polygon returned by Algorithm E l .  



Algorithm A2 finds an area cover of a general reducible convex rectilinear polygon 

that is also guaranteed within one rectangle of optimal. This algorithm uses a linear 

implementation of tab reductions to obtain an irreducible polygon. It then uses 

Algorithm A1 to find an area cover of the irreducible polygon, which it combines 

with the rectangles defined during tab reductions to create an area cover of the whole 

polygon. 

7.5. Open Problems 

Several important open problems remain. Solving the first problem would provide 

the means for finding an OREC for any convex rectilinear polygon in linear time. 

Solving the second problem would enable the area cover algorithms to obtain optimal 

rectangle area covers for all convex rectilinear polygons in linear time. 

1. Find any non-RI necessary multiple covers in an OREC for a general 

convex polygon in O h )  time and report them. 

2. Find the best possible MIS and singleton expansion in an OREC for an 

irreducible polygon so that if an OREC that is also an ORAC exists, the 

algorithm finds it in O(n) time. 

3. Extend these results where possible to finding an ORCC. OREC or ORAC 

for a semi-convex polygon in sub-quadratic time. 

Much initial work has been done on the first two problems, but the desired results 

have not yet been obtained. 



7.6. Conjectures 

Two properties have begun to appear most likely during this research, but have not 

yet been proven. These conjectures are presented as questions suitable for further 

investigation. 

1. If there is a single range intersection, no necessary holes will occur in an 

OREC for convex rectilinear polygons. 

2. If there are OPP2-some pairings possible from both sets of opposite chains. 

there can be no necessary holes in the OREC for a convex rectilinear 

polygon. 

7.7. Summary 

The rectangle cover problems considered in this thesis are considerably more difficult 

than they appeared at first. The methods used here for convex rectilinear polygons 

rely very much on the convexity of the polygons. They do not appear to be easily ' 

generalized to solutions for semi-convex and non-convex polygons. 
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