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The Mptrix a30ntroW ROWLding (MR3 problem is the problem of rounding all real 
d 

number entries of a given matrix, all row and -,olumn totals. and the graqd total. to integer . 

multiples of'a positive b a s  B subject to sorne'constraints. In many applica?&s the matrices 

may be symmetric, and it would be desirable to ensure that the'rounded matrices are also sym- 

c metric. This motivates another class of the Controlled Rounding problem called the Grdph 

Theoretic Contrdled Rumding (GR) problem. which is the problem of rounding all edge weights- 

of a given graph., We show that the MR problem as studied in [CE82] is a special case of ou .~  
r \ 

GR problem in the sense that i t  is linearly equivalent td the GR problem restricted to bipartite 
- - 

graphs. We also prove the ex-mence of roundings of various kinds for differkt types of graphs. " 
\ 

These results are useful for, solving a stronger version of the Matrix Control'led Rounding prob- 
e 

lem, namely the problem of a rymmetrlc rounding of a symmetric matrix._ 

- 
The previously known algorithm for the MR problem appeals to the algorithms for the 

' I  

Capacitated Transportation,prublem which are Rot guaranteed t o  run in polynomial time. In 

this thesis we present two algorithms of t&e complexit .  0 where kjs the number of 

.. 
edges in tbe graph. They s d v e  not only the MR problem, but also the GR problem for different- 

+types of graphs. The solutions are obtained by solving a certain Degree Constrained Subgraph 
i 

_- 
fl - 

and a certain Euler Tour pr&lem on undirected graphs. 
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INTRODUCTION * 

- - 
I 

/' 
C .  - 

. a % - 
I 

The Morrix Contrdled R d i n g  (abbreviated MR) problem is the problem of rounding all 
- 

real number entries of a given tabular array for matrix), all row and column totals, and the'" 
a 

n 

grand total. to integer multiples of a positive integer base B subpcr to the following con- 
> 

1.1 Each entry (or total) in the matnx is round& t o y  adjacent integer mult~ple  of B. i.e. an 
- - , 

- 
n 

1.2 The sum of the rounded ~ a l u s  along any row (respettivdy column) of the matrix is 

equal to the rounded value of the corresponding row (respectively column ) total entry. 

4 f .3 The total sum of all rounded values is equaf ro the rounded value of rhe total sum of all 

values in the .matrix. L 

Matrix Controlled Rounding has several a~ l l ca t ions .  Fog example. one may use i t  to unr- 

formlze the data values m a matrix for analysis or to reduce the unnecessal;y'fine numerical 

Y details to a desirable level. 11 can even be used to control sratistical d~sclosure in tabular 

representation of frequency count data. Small magnitude frequency count '&ta may - reflect a 

-- & 

small.,pezhaps identifiable subset of respndent popuiation. Fnder some circumstances this 
I 

may result i n  disclosure of data obmned under of confiden~ialrty Thus rhe data 
1 

releaser may want to modify these frequency counts so th?t they 

must be -careful to do so without introducing the relationships 

krween data items such as the additive Coptrolled 

Rounding poblem with the additional constraint that integer multiples of the base R must be-% - B 



rounded to themselves is said to Ix 0-restricted. It  has important application.in the area of sur- 
# 

- ve4 dslgn.  especially injelection of sampling units (Er811. 

I 
. 

\. ., 
5' 

There are some obvious siinple rbunding methods. One is to conventionally round the 
i 

entries to the fixed mtegc~  base. e.g- to round a data value a to B ~ ~ + u . s J ) .  Anothe  is to * 
3 

? , * 

round the data entries randomly- However these two methods oftensfail to satisfy the additive - - 

structure of the totals (constraints 1.2 and 1.3). In 1979. Causey developed an heuristic round- . < 

ingprocedure which worked dtisfactotily in a large percentage of cases but has b q n  shown to 

fail the consrraints 1.2 and 1-3 in some particular examples ICa791. Then the problem was 
I , 

inves t iced  by Cox and Ernst in 1982. They have shown that a rounding solution satisfying 

constraints 1.1. 1.2 and 1.3 always exists by modeling the problem as a Capacitated ~ ranspbr -  
i - > 

tation problem, and also developed some algdrithms bhich debended on Transportation prob- 

lem algorithms [CE82]. 

f 
In many applications the matrices are symmetric. and it would be dairaMe to ensure that ( 

% C 

ihe rounded matrices are also symmetric. Thk&motivates another class of controlled rounding 

Graph Theoretic m r d k d  Rcnarding (abbreviated GR) problems which cannot 
. - 

be solved by the algorilhms developed by  Car and Ernst. e he Graph Theoretic Controlled 

Rounding problem is the-problem of rounding all edge weights of a given braph, as well as ver- 
,. 

tex ka l s  (sum of the weights of all edges incident at  a vertex) and grand total (sum bf the 
-- 

weights of all edges in the given graph), which &tidiesthe following constraints: 

1.4 The weight of each edge (or total)-in the ' p p h  is rounded to an adjacent integer m 

of the base B. i t .  a weight totali r is roundCd to either B ~ Z J ~ I )  o T B ( L . ~ J  . 
I B - - B  

., 3 1.5 ' The sum of the rounded ,eights of the edges incident a t  any vertex is e(ual to the 

r p n d e d  value of the sum of the weights df all edges incident a t  the corresponding uerlex. 



4 

1 
- -- I - - ---- - - -- L 

3 

P 

4 

----- 
1.6 The sum of all the- round* weights is equal to the rounded value of 

/ 

* 
- 

all edges in the graphr. ' . 
n 

The Directed Graph TZreot-etic Contrdled Rounding (abbreviated DGR) problem can be defined 

\ if the given graph is directed:' Instead of haviG -a vertex total for each w r u x .  we . : 
H .  - 

one for the incoming qdges and the other for the utgoing&es. There- 
/ .? , e 

be replaced by the following two constraints for DCR problems: , - - 

L LC-- 
/---- - 

1.5a The sum of the round> weights of the edges going into any vertex is 
4 

value of the sum of the weights of all edges going into that vertex. 

- 

1% TUe sum of the rounded weights of the edges going out from any vertex is equal to the 
%, 

rounded value of i he  sum of the all edges going out from that vertex. 
* .  , 

, . 
f 

'I 

r 
The potation, formal problem simplification are eswMlshed 

'in Chapter 2 .  In Chapter can be viewed as a special fase of* GR. 

namely th\rounding of b lpr t i te  graphs. and_give some insights and known results of the. - 4 
' existence of a solution, Chapter 4 ~s concerned with the roundin undirected graphs 

t whicb is equivalent to the rounding, of &mmetric mktrices with the additional constraint that 

- the'resulting matrice2 are also symmetric. The sdlution is obtained by solving a certain Zkgree i 
Constrained Sdgragh (abbreviated DCS) problem and a certain Euler tour problem for 

/ 

- 
r ' .  

undirected graphs. Chapter 5 presents ro&e algorithms for solving the DCS proble*. with \ L 

which the GR problem can &:solved efficiently. 

Thesis 



\As stated in Chapter 1, the fim constraint (constraint 1:l) of ihe  M a ~ i r  Cantrolled - 

Rou:tding problem requires that each entry' in the matrix be rounded to an adjacent integer 

multiple of the, base B. Some rimpfifyipg lnumptioni can be made immediate-viding - - 
I 

each of the entries in the matrix by . B. an equivalent Controlled Rohnding Problem wjth base 
3 

B=1 is obtained. Next. replacing each internal entry Xij by its fractional part. i.e. A,,-/-A$ J and 
. L 

adjusting dl the-tctak accordingly. we have the condition O < X i j < l .  An example is illustrated 
7 

in F i h e  2.1. ~ h %  is also true in th6 Graph Theoretic version. Therefore we may assuple that 

Figure 21 : Example of an MR problem 



- 

the sirnpWj-ing conditions hold when considering d Controlled Rounding problem. 

k 
Now we will introduce the  terminology that  is going to bewsed throughour thls thesls and 

-give a formal statement on the rounding p;oblem. 
1 > L 
*.. > ' k' 

-4 two  dimensional tabular array ,4 is an i m + l )  X (n+ 1 )  array of real Rumber entries . 

with mxn internal entries A,. where O<A,  < 1. I d i 6 m .  1 < j < n .  m row total entries A , .  
- 

where 1 < i 6 m .  n column total entries-A,. where 16 j 6 n .  and a grand total ent ry  A . An MR 
- . '  

(aJ3.y) is a function A which maps'each internal entry A,, of A to A, which is either 0 or 1. 

n 
I 

II  

row total entry A,' to A. = Z.I,.. column total entry A, to A, = ZA,,. e n d  the grand total 
, 1=1 

rn n 
2 

entry X to il = LZh,,. satisfying the following constraints : 
1=1~=1 

add~t~onai'cons~raint that the resulting m a t r n  be s! mmetrlc If any of the parameters o.B or y 

has an underbar, then the correspndlng constraints would 'be non-strm ~nequalltles rather 

than s t r ~ c r  ~nequalltles For example, an 5 f R  (a ,B,y)  1s the functlon A that satisfies the follow- -- 
i 

ing constraints : 



~ h e  MR (o,p:;/) problem asks for an MZ (cr.P.y) of a matrix A.  ~ i m i a r l ~ ,  The S M R  (u$.y) 
h 

problem asks for an SMR (cu,P.-y) of a symmetric matrix A.  

.i 

- 
A weighted undirekted graph G is an undirected graph with vertex set V (where IVI=n). 

edge set E (where 1El=mj and a weight function XE-+{w:O<w < 1).  U t e g e r  weight functioh 
- 

ASL{O.1  is defined to be a GR (u.8.y) of the graph G if it satisfies the following colqstraints : 

2.9 tAE! - A(E)I < y - 
where A(v) (A(v) respectively) the sum & the weights A(e) (A(e) respectively). 

< ? 
of all edges e incident with v. 

of all edges e in the edge set E. 

- 
For convenience, we define X(vv)=O and A(w)=O if u v ( E  and u.v€l7. A directed edge from - 
vertex i to vertex j is denoted by (i.j) and an undirected edge joining vertices i and j is denoted 

by ij Let f : A  -B be a function and SGA be a set. Then XS) = Zj7.t). 
OES " 

A BGR (or .8 .~)  (Bipartite GR (a.B.y)) is a GR (u$.y) on a bipartite graph G. If G is directed, 

ihen a D G R  (o1.8.~) (Directed GR (a.8.y)) can be defined similarly. Instead of having one con- 

strain1 for the vertex totals, w e  would have two constraints. one fo t  the incoming edges and 

~ h c  orher for the outgoing edges. For example. constraint 2.8 would be replaced by the follow-- 

:fig rwo constraints for a DGR (ar.8.7) of G : 



w - '  
where A(;,) (A(v,) respec&vely) is tha sum of the weight A90 o(e> respc- 

. f 

tively) of all incoming edges e of the vertex v. 
< ,  

L and A(v,) (A(v,) respectively) is the sum of the weight ~ ( e )  (Me) respec- 

tively) of all outgoing edges e of the vertex v. -$ 

A rounding in which integers are always rounded .to themselves is said to be 0-restricted. 

For exahple. MR(I .I .I) and GR(l.1.1) are 0-restricted. Given a p p b  G and a weight function -- 

A as in Figure 2.2a. a GR(1.1.1) is shown in Figure 2.2b. The edges that are missing in G can be 
4 

conceptually view'ed as edges having weights 0 and the rounding to 0 or 1 is only done on the' 
\ 

edges that are present in G. Therefore the mining edges still have weigh= 0 after the rounding 
- , * 

is done. If 0 CJlr be rounded to 1. then they should be pr&nt in the graph. This amounts to 

rounding in complete graphs whose edges may have weigh- 0: We will refer to this kind of - 

rounding as 0-relaxed rounding. For example. MR( 1.1.1) and GR (1.1.1) are 0-relaxed. - 

F i g ~ r e  2 2  : Example of a GR problem 
--F 

- - 
/ 

Thesis 



~ o s t l y  we are only interestcF-d in roundingsin which all the parameters a.0 andmy are 
+ 

equal to 1 or all the parameters 3.8 and y are equal to _1; Thus, for simplicity, we will refer to - - 

the roundings with a=B=y=l as @restricted and the roundirkgs with g = f l = y = l a s  &relaxed. - - 

-NO* w introduce another problem called Degree Constrained subgraph (abbreviated 

DCS) problem which can be reduced from the GR problem. Let G be a graph in which each 

vertex i has an associated integer called the prescribed degree p ( i )  A DCS is a spanning sub- 

graph of G in which each vertex has degree equal to the prescribed degree. The DCS problem 
, 

asks for a DCS of G .  

Let us define the linear equivalence relation between two problems Pl  and P2. Suppose 
- 

that (0 is ar: algorithm that transforms each instance I, of problem PI to an instance l2 of prob- 
rb 

lem P2. and Q an algorithm that transforms each solution S2 of the instance 12,0f P2 to a 

-- 
solution S, of the instance I I  of PI such that S2 is a solution of 12=@(11) if and only if -- 

- 
- 

* 
O1(S2)=Sl is a solution of I , .  If @ and I2 are linear in the size of ll. & is linear in the size oF12. 

and if (0' and S1 are lipear in the size of S2. then we say that P, is linearly reducible to P2, 

denoted by P1-+P2. P1 and P2 are said to be linearly equivalent, denoted by P I ~ P 2 ,  if 

and P2+P1. 

Thesis 



CHAPTER 3 

\ 

GR ON DIRECTED GRAPHS 

In this chapter we, concentrate on the GR problem for directed graphs, which plays an 

important role ip the GR problems We will first show the relationships between the problems 

MR. DGR (GR on directed graphs) and BGR (GR o bipartite graphs). Then we will discuss the 
\ 

2 \ "- 

existence of a rounding* for each of the problems. 
- 

3.1. Relation between MR and DGR 

In Figure 3.1 we have twe exampls-ef controlled rounding. one is MR(l.l.1) and the, 

other is @R(I.I.I). The reader may notice that &re are some similarities or correspondences 

between them. d 

F i i f  1 : Grrapondence between MR and DGR 

t 



/ 
i' 

- - - 

4 0 ~  
/ 

/ 

T $ e o d  3.1 : problems MR( 1 .I .I) and DGR(l.1.1) are linearly equivalent. 
- 

- ,  

Proof : 
/' 

* - 

( 1 )  The M_R(1.1.1) problem is line&ly reducible to the DGR(l.I.1) problem.- 
* 

Given a two dimensional m$KLLB . we c&ruct a directed graph &(VB such that any 
t 

rounding DGR(1.1 .I )  of G will give a rounding MR(1.1.1) of A . , .  

. ) . . 
J b - 

Let A be an mxn matrix and Xi, be the entry of A in row i and column j. Without loss of 
. . 

generality. we may assume m<n. Let &(va be a directed graph with vertex set 
v 

V=( 1.2.3, . - - n), edge set and weight functiqn X which are defined as follows: 

+ 
Obviously the construction and the Size of the DGR(1.1.1) instance are linear in the size of - 

the given MR(1.1.1) instance. Suppose we are given a DGR(l.1.1) of G. The MR(1.1.1) 
> 

d- 
A of the matrix A is obtained as follows the rounding of the weight of the directed edge 

Z joining vertex i-to vertex j of C g ~ v e s  the corresponding roun'dmg of the entry A,. i.e.. 

-i 

/ 

/ 

, I &e> if e=( i . j )€Z 
' 2  = 0 * 

otherwise 
/' 
/ 

I/ Since is a W R ( 1  .I . I ) .  it is easy to see that A will satisfy the constraints for being an 

-MR(l , l , l )  of A .  

(2) The MR( 1.1 .I,) problem is linearly reducible to the MR(1,l . l )  problem. I 

Given a directed graph &(vs) and a weight function i, we cdnstruct-a two dimensional 

matrix A such that any ;ounding MR(1 . l , l )  of A will give a rounding D b ~ ( l . l . 1 )  of 

Let p={ l .2 .3  .... n) and let 

Thesis 



- - - --- -- - 7- 

11 

- 

X(i.j)'be the weight of the directed edge from vertex i to vertex j in c. 
* 

Then A is a square m&x of dimension n, and the entry in row i and column j .  denoted 

by A,. is 'defined as follows: - 
/ 

1 
f 

/ 
Obviously the construction instance are linear in the size of 

the given DGR(1.1.1) instance. Suppose we are given an MR(1.1.1) A of A. The 
\ 1 

corresponding DGR(L.l.1) 5 of is obtained as follows, the- rounded entry A,, in rwv i 

and column j gives the correspofiding rounded weight &,j) of the directed edge from ver- 

L 
tex i to vertex j in G, i.e.. 

&e> = A,, where e 4 i . j ) .  , 

* D 

Sincev  is an >lR( 1.1 .I) ,  it is easy to see that will satisfy the constraints for being a 
-- 

DGR(1.1.1) of G. 

-. 

Corollary 3.2 : The problems A I R  (1 . l , l]  and DGR (1 , l , l )  are linearly equivalent. 

t 

Prmf : The proof &essentially the same as that of Thwrem 3:1 except t ha t  the L X i H  

J instance is always a complete directed graph of jn vertices. 

*) 7 
i 

3.2., Relation between DGR and 3GR - 

- ~ 

As in many graph theoretic problems, Controlled Rounding on directed graphs is linearly 

equivalent to that onpbip'artite graphs. An example is shown in Figwe 3.2. 

Theorern 3.3 : The problems DGR(1 ,I .I)  and BGR( 1.1 , I  are linearly e-quivakt. 

- 

Thesis ( 



(1 ) The DGR( 1 .I  .I) p;oblem is linearly reducible t; th&I30~( 1 .I -1) problem. 

- - - - 

\ 
Given a ,dire~ted '~ra@ &(vi?).and a we. h t  function h, we construct a weighted bipar- ' - J? 
tite graph G = ( X U Y E )  such that any rounding BGR(1,l:l) of G will give a rounding 

/ 

i P d ~ ( 1 . 1 . 1 )  of G, 
/ 

- 

/ , 
Let V={l.2,3. ...n) and let 

Y / 

-- 
4 

- 

Proof: 

/ 

h(i,j) be the weight of the direcrededge from vertei i to vertex j in.G ii 
i , 

/ 

- - ' 2 1  / 

' 4  
1 
t 

/ Then G = ( X U Y E )  is the correspondhg bipartite graph instance where X = ( x q  x2. .... xn ) 
/ 

\ 

and Y = y,. y2. .... J, 1. A vertex i of c corresponds to two vertices xi andy i  of G . The 
, 

/ 
/ 

edge set E and weigpt function X are defined as follows: / 

Clearly the construction end the size of the BGR(1 , I  , I )  i ce are linear in the size of 

the given ~GR(1 .1 .1 )  instance. Suppose A is a BGR(l.l,lYbf G. Then the rounded weight 
/ 

/ 

of the edge jdining vertices x ,  and y, will give the rounded weight of the directed edge 

from vertex i to .vertex j in G Thus the rounding df is obtained as follows. 
// 

is a KiR(I;l , l) ,  tp see that will satisfy the constraints 

for being a DGR(I.1.1) of G r 
/ 

/ 

The BGR(1 . l . l )  problem is linearly fducible to the DGR(I.l.1) problem. 
I 

I 
/ 

'Given s biparrite G=(XUYB) and a weight function A. we construct a weighted 

- . -  . , 

directed graph G=(v~?) such that any rounding DGR(l.1 . I )  of G will give a' round,kg 



* - 
Figure 3.2 : Correspondence between DGR and BGR 

Let X = { X I .  xz. --.. x,, 1. I' = { yl. yl, .... yn2 and let 

9 
i(xyi) be ihe weight of the edge pining vertices xi and yj in G. 

Then the weighted direqed graph m c e  5 of the DGR(1.1.1) problem is defined 

lows: 

= I 1.2. .... n 1 where .n = rnax(nl, TQ. 

i!? = 1 e 4 i . j )  I xy,EE f and 
w 

as fol- 



-- 
- -- / -- - f. - 

," 
/ 

LE-i w : o<&j so e a t  X(i 21 = ~ ( x y , )  
-- 

+ u 

. . 
Clearly the construction and the size of the Ih~(1.1.1) 

-- 
- . the given BGR(1.1 .I) instance. Suppose is a ~ ~ ~ ( 1 ; l . l )  of G. p e n  the rounded weight . 

/ , 
directed edge from vertex i to vertex j will give the corresponding rounded weight 

/,. of the edge joining vertices x,  and y, in G. Thus the rounding A of G is obtained as fbl- 
/' 

lows, . 

M x y , )  = &i,j). 

Since the rounding is a DGR(l.l.l), it is easy to see that A will satisfy the connraints 

for being a BGR,(1.1.1) o f s .  

Corollary 3.4 : The problems DGR (1.1 ,I) and BGR (1 ,I ,I) are linearly equivalent. - - 
+ '  h 

w Proof : The proof is the same as that of Theorem 3.3 with all the instances being complete , 

graphs. 

In some applications we may want some edges to be 0-rgtricted an thers to be O- r/ 
. relaxed. That is, some 0's must be rounded to 0 and others may be roun d to either 0 or 1. In 

?J-' 
this case we can delete the edges that are 0:restricted and treat the problem as a GR (l,l,l) 

0 /' % 

problem. As i l lustr~ted in Figure 3.3, the 0-restricted e d g e s ~ * d o t t e d i n d  the 0-relaxed etlges 

are solid. 5 o w  we delete all the dotted edges and construct the bipartite graph as in Figure 
/' 

, 3.3b. Once we obtain a BGR (1,l.l) for the bipartite graph as in Figure 3 . 3 ~ .  we can get a DGR 
, I 

to the directed graph. We see in Figure 3.3d that all the 0-restricted edges are rounded 

to 0 while some of the 0-relax'ed edges are rounded to 1. 

I 
I Thesis 
1 



Figure 3 3  : Exam problem with some 0-relaxed edges 

33. Existence of a Rounding 

Cox and Ernst have shown that an MR(1.1.1) always ex- by modeling the problem as a 

Capacieted Transportation problem [CES~]. Recalling the linear equivalence relations shown in - e  

!Sections 3.1 and 3.2. since we know that an MR(1.1.1) always exists. a ~ ~ ~ ( l . l . l ) - a n d - a  ' ", 

2 .  \ 

BGR(l.1.1) always exin. So we have the following result for the 'Graph Thmretic ~ o n t r o h e d  

Rounding problem 'on directed graphs. 

B 

Theorem 3 5  : A DG~(1.1.1) always exists. - . 

r 

Thesis 



- - - -  -- - 

An alrernatik direct (graph tbe~retic) '~roof will dc given in 
A - - A  - -- 

the relation between the GR and DCS problems. % 

@ 

I 

--% 

,In summary. Figufe 3.4 depicts the linear kquivalence relations of rounding problems. The 
\ A 

3 1 

- MR(1.1.1) problem is firsearly equivalent, to the ~ ~ ~ R ( I . I , I )  problem. which -is linearly 

equivalent to the BGR(.$.l.l) p r o b l k ~  The MR ~ ' p * b l u n  is line& equivalent to the 

&R (1 .I .I) problem. which is lhehrly q&valent ro the BGR (1 .I ,1) problem. If we have an - 

-6 

algorithm for solving the BGR(l.l.1) .problem, the MR(l.l.1) and DGR(I.I .I) problems can 

also be solved by'essentially. thesame algorithm. 



S R  ON UNDIRECTED GRAPHS 

- 

P 

Before showing the e x i s t e n ~ ~ ' r o u n d i n g  for the GR problem on undiwted  graphs. we 
* 

, % - .'+fy 

discuss the relationshipJdween the problems S M R  (Symmetric MR). - DCS (Degree Constrained 
3 . "0 

Subgraph) and GR on undirected graphs. 
* 

$ 

B 

4.1. Relation between SMR and GR 

- - 
We have seen in Chapter 3 that the to the 

DGR(1.1.1) problem. The reader 
P 

graphs and it is not difficult to find 

f and j in a graph can be viewed conceptually as two directed edges of the same'weight in the 

graph, one from' vertex i to vertex j . and the other from vertex j' to vertex i, corresponding to 
, - 

two entries A,, and A,, of the same value in a matrix. However the correspondence is not the 
I 

same htween.the loop at vertex i and the diagonal entry A,, with positive value. because t h e  

weight of the loop contributes twice to the vertex - sum while the value of A,, contributes,only 

once to the row or column sum. -4n example is shown in Figure 4.1. 

, Theorem 4.1 : The S M R  (cr$2y)  problem on symmetric matrices 'with all diagonal entries be- 

ing O is linearly quivalenr to  the GR ( a $ . y )  problem on lwpless undkcrect~d graphs. 

-- 

h 5 

h f  : 

(1) The S M R  (&$.2y) problem on symmetric matrices with all diagonal mtr& being O 6 



Figure 4.1 : Correspondence between SMR and GR on undirected graphs 

Given a symmetric matrix A with all diagonal.entr& being 0, we construct a loopless 

undirectd graph G = ( V S )  such that any rounding GR (rr.p.y) of G will produce a sym- 
(I 

metric rounding SMR ( o ~ 3 . 2 ~ )  of A. 
@ 

Let A be the given symmevic matrix of dimension n and let 

T. 

X i j  be the entry of A in row i and columf j .  

, Then G=(V.E) is an undirected g-5 with veriex set V=(12.3. - - d. edge wt E and 

weight function & which are defined as follows : 



& :E--r  { w : O < w < l  I so that  h G ( e ) =  A ,  wheree=i j€E  

Clearly the construction and the size of the GR instance are linear in the size of the given 

SlMR instance. Suppose & is a GR (a./3,)1) of G. Then the symmetric rounding A of the" 

matrix A is obtained as follows, the rounding of the weight of the edge joining vertices i 
F 

and j gives the  cor respndmg rounding of the entries A,  and A,:. i.e. 

\ 
the sum of all rounded values of ,4 is equal to twice of the sum of the rounded edgr; 

A ,  = 
1 

weights of G.  Since is a GR ( Q . ~ . ) I ) ,  it is easy to  see that  t h e  symmetric- ounding A 

4 1 if i > j  
. , 

& ( e l  if i < j  and e = i j E E  

0 ahemise 

constructed above will satisfy the constraints for being a n  S3IR (a./3.2$. 
s 

-?, - 
The rounded row and column sums of A are equal to the rounded vertex sums of G. and 

- 
. (2 )  The GR (a.B.y) ~ r a b l e m  on loopless u n d i r e ~ t e @ ~ r a ~ h s  is linearly reducible to the 

i - 
S\IR l a .8 .2y )  problem m symmetric matrices with all diagonal entries being 0. 

Given a loopless undireczei! graph G=( \ 'L )  and a weight function AG.  h e  construct a sym-  

, 
metric matrix A with all diagonal entries bein4 0 such that any symrne~ric rounding 

SMR (a.j3,2.y) of -4 will gwe a rounding GR (a./3,)1> of G 

. ~ 

- ,- 
r i  Let b' = 1. 2 .  .... n 1 and ler - 

b ( i j )  be the w e ~ g h t  of the edge joining vertices i and j in G. 

Then A is a symmetric marrix of dimension n, and the entry in row i and column j. 

dettoted b y  A, , IS defined as  follows : 

Thesis 



Obviously the construction and the size of the SMR ( f f .8.2y) instance are linear in the size , 

of t h e  given GR (a.B.7) instance. Since G is lwp lea ,  all the diagonal entries of A are 0. . 

Suppose A is an S M R  (ol.B.2y) of A. Then the corresponding rounding 1G, of the gra*hb 

IS obtained as follows, Lhe value of the rounded entry A, in row i and column j of A gives 

t h e  rounded weight = U i j )  of rhe edge pining vertices i and j in G, i.e., 

I' 

The rbunded veittx torak of G are equal to the rounded row sums and column sums of A.  
I 

and the'sum of the rounded weights of G is equal to half of the sum of the rounded 
% 

values of A .  Smce A IS an SlIR (cr,8.2y), it is easy tp see that the rounding & con- 
- 3 

structcd above will satisfy the constramts for being a GR (a .B.y)  of the loopless 

undirected graph G.  * 

Theorem 4.2 : The SMR (2a,/3.2y) problem on arbitrary symmetric matrices is iinearli reduci- 

ble to the GR (cY.~.?!  problem onarbitrary undirected graphs. 

3 -  I 

Proof : The prooi is s~milar  to that of Theorem 4.1. However the weight of a loop contributes 

tu lce  to the vertex sum u hile the value of a diagonal entry contributes only once to the row - 
- and column sum. So ~n order lo make the row (or column) sums equal to the vertex sums. the 

P 
weight of a  loo^ In the GR instance should be equal to half of the value of the corresponding 

dlagonal entry. Then a roundmg GR ( a . @ . y )  of the construckd graph G will give a symmetric 

rounding of the corresponding matrix, ii which the difference between the original and rounded 

balue of a diagonal entry may be close to 2 7 .  and thus an SMR (2a.B.2y). 

Thesis 



4.2 Relation between GR and. IXS 
-- 

- The linear equivalqrckrelations we have seen so far  are all.on controlled round~ng,prob- 
+ y. 

lems. Now we are going to show the relation between the problems GR and DCS (Degree Con- . 
strained Subgraph). 

Theorem 4 3  : The GR(l.l,l) problem is linearly reducible to t h i ' ~ ~ ~  problem. 

Prmf : Given a g a p h  G=(I IE)  and a weight function A : E - { w : O<w < 1 I .  we define a DCS . 
instance GI=( CnP) with weight function A' : E - ' I  r : 0 < w < 1 1 and prescribed degrees p as 

follows: 

1" = V U { z )  ' (vlhere = € V )  

E = E bl 1 e=zaT;€ \ '  and A(\*) IS not mtegral] 

U 1 e=zz I A(E) is not integral) 

The degree of each vertel is the sum of the welght of al l  $dges incident wlth tha t  



* - 
Clearly the mrmruction and the size of G' are bounded linearly in the size of G as IVl=IVI+l 

and E16LEI+IVl+l. Now we are going to describe an algorithm for obtaining a GR(1.1.1) of G 

when given a DCS of G'. 

Given a DCS &(7E) of G1=(VB) .  the corresponding 

follows : 
I- 

rounding A of G=(VE),  is obtained as 

1 

' F& 4.2 : Correrpondence between GR and DCS on undirected graphs 



I 1 i f e ~ g  
- A(e) = 0 %  otherwise 

Obviously the construction is linear and it remains to show that A satisfies the conditions 

being a GR(1.1.1). 

.I 

Let the degree of v in G be &v). 

Since G is a DCS. the degree of every vertex is precisely the presc I/  bed degree. i.e. 

&v)  = p(v)  = cX(v)?. In other- words, the number of edges incident wiih vertex v in G is 
1 

r A ( v ) l .  Among these r X ( v ) l  edges. there may the edge e=vz .  Thus A ( v )  = f A ( v ) ~ l  or 

- \ >  
\ 

A ( v )  = r h ( v ) l  depending on whether e is in G or hot. In case X(v) is anqinteger, the edge e 

Therefore iA(x~b-X(~~) < 1. 

( 1  lA(E)-A(E)l < 1 

,&. ---" 
Ler the degree of the vertex z in G be dr(z) . '"r 

Thesis - 



The loop a t  the yertgx z tontr ibutk 2 to the degree &z) if it is in the DCS c. Recall that 

every vertex v has at  mast one edge incident with vertex z andr its existence jn 5 deter- 
* .- 

mines whether A(v)  is lm than A(v) or not. If the loop is not in c, then the degree &T(r) 

m'ust -come from all edges joining vertex r and vertices of V only. In other ,words, 

. 1 

the loop is in then &z) - 2,is the sum of all edges joining vertex r to vertick of V in 

G In other words. &)-2 = J{VEV : ~ ( v ) < A ( v ) } ( .  i.e.. 2A(E)-2LA(E)J = 2. which implies t 

' I  
h(E)--LA(E)J 7 1 or h ( E )  = LA(E)&l. When A(E) is an integer. the loop does not exist in 

' 

dG' and so A(E) =, LA(E) J. 

Therefore L$(E)-A(E)I < 1. 

Hence the constructed rounding A is a GR( 1 .I . I )  of G .  
- 

P 

. 

if the given graph G is bipartite. we would prefer the corresponding instance of DCS to be 

-- bipar~ite too (because bipartite DCS problems are easier to solve). This can be done by introduc- 

ing two vertices r,  and i, m e a d  of one vertex z in the graph G', and we have the following 

Theorem. 

Thesis 



L ,- 
heorem 4.4 : The ,BGR(l.l.l.)'problem is linearly reducible to the DCS problem on bipartite 

graphs. 

. 1 
Proof : Given a bipartite graph G = (XU YE) and a weight function A : E -. { w : 0 < w < 1 1, we 

define a bipartite DCS i (=Cur.,??) with weight function A' : E + {w : O <  w < 1 )  . 

and prescribed degrees p 

G' = ( X  UY', E )  

x = X U {z,) (where z, CX) 

Y = Y U {z,} (where z, eY) 

E = E U { e = z j  I yEY and A(4') is not integral] , ,' 
i i 

U { e=xi, ; x E X  and A(x) is not integral} 
, / , 

U e=z,z> I A(E) is not integral) / ," 
/' 

/ i  
The prescribed degree of each vertex in Gd id the sum of the weight of all edges incident with / 
that vertex.. 



I 
= ACE) - LA(E)J + ( C~A(X)D - ME) = ( Erx(x)D - LA(E)J 

I A X  AX' 
" . . 

Clearly the construction and the size of G' are bounded linearly in the size of G as IVI=IV1+2 I 
1 and EIQLE1+IVI+l. Now we are going to describe an algorithm for obtaining a BGR(1.1.1) of G 
I 

yhen given a of G'. 



- 
Given a DCS G = (%JFB of G' = (X U T E ) .  the'corresponding rounding A of G = ( X U Y E )  is 

. 
constructed as follows : 

)obviously the construction is linear and it remains to show that A s a t w e s  the conditions for 
* Qk 

being a BGR(1.1;l). * 

(a) iA(e>-A(e>l < 1 Ve 

The proof is the\=me as thgt of Theorem 4.3.  
L 

(c) h(E)-X(E)I < 1 
1 

Let the degree of v&tex 2, in G be &(=,). 

a Since G is a DCS, &z(;,) = . and we have 



%Among these &z,) edges. there is at  most one.edge which is not incident with any vertex 

in Y, namely the edge joining vertices z, and z,. Recalling from the construction of A that 

A(y) is l& than A(y) when the edge joining vertex yEY and vertex z, in t h e D e  G. If . 

the edge z,z, is not %I then the degree &,) must come from all edges joining vertex z, 

and vertices of Y. In other words nz,) = EY : A(Y) <>(~))l which implies 

h(E)+A(E)J = 0 or A(E) = LA(E)J. If the  edge z is in , then 

&,)-I = lyEY\A((y) < which .implies ME)dA(E)J  = I or ME) = LA(E)~+I. 

When A(E) is an integer. the edge z,z, does not exist in the graph G'. so in this case 

A(E)+A(,E)J = 0 or M E )  = LA(E)l. 
JS, 

Therefore M(E)-A(E)I < 1. 

Hence the rounding A constructed above is a BGR(1.1.1) of G .  

4.3. Existence of a Rounding for the ?3GR problem ' 

v- \ 
Before getting into the theorems. ,let us first givaLsome notation that is used in this section. 

.I 

Glven a weighted graph G with vertex set V.  If V1 and V2 are subsets of V, then 
a " 

# /  

' %11r1.Y2) denovs the numbei of edges joiningve;tices in V ,  with vertices in V2 and 

d J  4(V1.V2) denotes t$c N of the weights of all edges joining vertices in V 1  with vertices 

7 
4 

in Vz. C 
4 - 

* _  

We know from Chapter 3 that, the ~ ~ ( 1 ; l . l )  probiem is linearly equivalent io the 

DGR(l.l.1) problem. which is linearly equivalent to the BGR(l.l.1) problem. Since an 
PP 

M R ~ I  :I . I )  is shown to exist in [CEBZ], wc also havd'a theorem on the e-nce of a BGR(l.I.1). 
4 



' - - 
B 

4 

2 9 
- - 

We give a different proof of this fact based on the. following necessary and &fficienr condition 

for a bipartite graph to have a DCS with degrees. 

Thecfem 4 5  (L. L o v k  [Lol9D : A bipartite graph G=(XUYE)  has a DCS with prescribed de- 

grees p if and only if : 

bet / ~ = ( x u Y E )  be an arb:trary bipartite graph with weight function A 2  - {w : O<w< 1) for 
I 

I w h i ~ h  we seek a BGR(l.1.1). and ler G 1 = ( X U Y E )  be the corresponding DCS instance.with 

pre$cribed degrees p defined as follows: - 

E = E U ZJ I ~ € 1 -  and A(?) is not integral) 

U ( xr ,  I x € X  and Xtx) is not inGgral] , 

U I z j J  I X(E) is no; integral} 

. *' 

Thesis 



- - 

By Theorem 4.4 a DCS with prescribed degrees p of the graph G' will give a ~~21.1 ,I) 

of the bipa tite graph G. So now instead of showing the existence of a BGR(l.l.l) for G, w e  3 
will show he existence of a DCS for G'. i-e. we show that the conditions of Theorem 4.5 are /i 

-1 

Let X ' G X  and Y ' G Y .  

Recalling from Theorem 4.4 that p(v)  is the sum of the weights of all edges incident with 
1 

r1 (for each v E X UY), we have 
f / 

p( X ' )  = hG,( X1.'Y') = AG( X". Y" U1"-Y") 

I"') = b . ( X " .  1-'-Jn') - A G . ( y J ,  x-X') 

6 &.(X1. 1"-1"') ,< m&Y, Y-Y') (since h(e)  < I). 

Therefore a DCS always exists for G' and hence a BGR(1.1.1) always exists for a bipartite 

\ 

d 

-4 

Thesis 



d% know that a BGR(l.l.1) always exists for bipartite graphs. but this is not true for 
> 

. gsneral graphs as illustrated in Figure 4.4. We can see therounding in Figure 4.4b or 4 . 4 ~  is the 

best we can do. and thus a GR(1.1.1) may not exist for an arbitrary graph. 

Given an arbitrary undirected graph G of n vertices, and a weight function 

XZ - (w : 0<w<1): we create a weighted bipartite graph G-of 2n vertices. A vertex i in G 
- 

corresponds to two vertices xi and yi in g, and an edge i j  of weight A(ij) in C cgrresponds ta 

two e d g e  x,y, and xjyi in e. both of weight X(ij). since G k bipartite. a BGR(l.1.1) always 

ex*. Tdus we can obtain the BGR(l.1.1) of and convert the 0--1 roundi.ng in G to a' 

0-45-1 rounding A h e .  a rounding with weigh& eithei 0,s. or 1) in G as follows. 
I /  

4 e- h, 

\ 
/ 

Pigum 4.4 : Example of a rounding in graphs , 

Thesis 



Ler e be the edge i j  in G and e l .  e j  be the edges x y j  and xjyi respectively in G. 

Then A(e) = 
A(e,> t X(e,> 

constraint IA(E)-A(E)I < 'h. Let G* be a subgraph of G consisting of all the %-edges of G. 
- 

There is an even number of sertices of odd degree in &ch of the connected components of G*. 
- 
e** 

We are going to eliminate These odd vertices in pairs as follows. Find a trail (with repeated ver- 

tices allowed) joining two vertices of odd degree in the component and alternately add and sub- 
s 

tract 'h to the edges of the trail. If a vektex v has odd degree in G*, then A(v) is half-integral 

and lies between LA(v)J and L ~ ( v ) j + l .  i.e. A(v) = LA(v)J+lh, and so must satisfy the constraint 

h ( v )  - X(v)i < %. After adding or subtracting Ih to one of i ts incident edges. then 

A(v1 = LA(v)J+l or LA(\.)].' and the constraint &v) - A(v)le< 1 is satisfied. Since the dddi- 

tion or subtraction of 'h is arbitrary for the starting edge of 'the trail, it is easy to see that the , 

I 

vertices of odd degree can all be eliminated in such a x a y  that the following two constraints 

I f  A(EXA(E)  (6r A(E)>h(E)I ,  then we will add (or subtract respectively) lh".o the starting 
- - 

.edge. Now the degree of every vertex v in GI is eve2 and thus every connected component of G* 

is Euler~an. :f a component has an even number of edges. it can be eliminated (without affecting 

the vertex sum A(v) and total sum A(E)) by alternately assigning 0 and 1 to the edges of the 
- 

. Euierian tour. Similarly all even length cycles can be eliminated in the y m e  way'leaving G* a 
ez 

union of odd cycles. Moreover, two odd cycles with any vertices in common can be decom- 

posed into one or  two even lengfh closed trails which can also be eliminated. If they have only 

one vertex in common. then the union of the two cycles is certainly an even length closed trail. 

Thesis 



I 
I 

* 

If they have two vertices, say v ,  and v,.  in common. then the union of the odd length paths 

between v,  and v, and the union of the even length paths between v, and v, of the two cycles are 
- # 

* 
the two even length c l o d  trails. Therefore we may assume that G. consists of v e r t h  disjoint 

'T 
odd cycles and the rounding A th i t  we obtain.from sat$dies the constraints 4.1 and 4 2 .  In 

b 
the proofs of the following Theorems we will show how to assign 0 and 1 to the edges 

. o.dd cycles to obtain different roundings. 

+ - 
< u 

Theorem 4.7 : A GR ( l .&(n+1) /2 )  always exists for an arbitrary undirected graph of n ver- 
3 

Proof : Let G be the given arbitrary undirected graph of n vertices. 

let G be !he corresponding bipartite graph of 2n vertices. 

let 1? be a ~ ~ ~ ( 1 . 1 . 1 )  of Gand I 

let A & a O-lh--l' rounding of G sa tdy ing  constraints 4.1 and 4.2 such that G.. the subgraph . 
*. 

of G consisting of all l2-edges. has the f e u . m  possible edges. 

a Recall that G. consisrs of vertex dlsjoint odd.cycles. For each of the odd cycles we allerna~ely 

assign 0 and I to the edges in the followmg*way. the starting edge of the cycle is assigned 0 

c - when the starting vertex I, is rounced up, i.e. n(a2) > A(t7) .  and assigned 1 otherwise. it is easy 

to see that the constrain't kl (v)  - A(\.) 6 1 is satisfied for all vE \ ' .  since we only decrease 1 to 
\ 

i"ifv) if A(v)>X(v) and increase 1 if ~ ( v ) d A ( v )  for the starting vertex v of each cycle. Now we 

s t ima ie  the overall change to the total sum A(E). For each of the odd cycles A(E) is increased 

or decreased by %,.thus the. worst case will happen when A(E) is either incrkawd or decreased 

for  all the cycles. There are at most n vertex disjoint odd cyc ie  pessible (a loop is a cy e of k' 



1 n - n + l  Hence LGE) - A(E)I 6 - + - - 
2 2 

-. 
2 $ - - 

\ 

Theorem 4.8 : A GR (1 J,(n+3)/6) always exists for an arbitrary loopless undirected graph of 

1 '  

n vertices. , 

Proof : +om the proof of heorem 4.7. we know that the difference between 1 1 0  and X(E) is - 
I P 

L.-- 

less than or equal to 'h plus Si times ti& maximum number of vertex disjoint odd cycles popi- 
- .  

ble in the graph G:. If loops are not allowed in the given graph. then G* can have n/3 cycles 

the smallest cycle has at  least 3 vertices for loopie& graphs). 

1 n n+3 Hence lA(E) - X(E)I 6 - + - = - 
2 6 6 .  

Theorem 4.9 : A GR (1.2.1/2) always exists for an arbitrary undirected graph. - 

., -. 

Proof : Let G be the given arbitrary undirected graph of n vertices, 

~ b 

let (7 be the  coirespondmg bipartite graph of 2n vertices. . 

let h be a @-H-1 rounding of G satisfying constraints 4:1 and 4.2 such that G.. the subgraph 
- 

* 

, of C; conslstlng of all ?+edges, has  the fewest possible edges. - ,  

Recall that G- consists of vertex disjoint odd cycles. For each of the cycles we alternately assign 

0 and 1 to the edges in such a way that the constraint W(E)  - A(E)I < 'h is npt violated. The 
4 

number of ixident edges amgned 1 is the same as that assigned 0 for every vertex of a cycle 
\ 

except one. namely the starting vertex v of the cycle.   hen the vertex sum A(v) and total sum 

A ( E )  will be increased (or decreased) by 1 and ii. reqxtivel;  depending on whether the 

Tha i s  
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starting edqe 1s assigned 1 (or 0). It is not difficult to see that the assignment can always be 
\ 

made so thai  lA(E) - A(E)I 6 K If there is  an even number of odd cycles. We can have the 

same number with starting edges assigned 1 as there are thbse with starting edges assigned 0. If 

the number of odd cycles is odd, then the starting edge of the last cycle is asslgned 0 when 
f 

A(E) > A(E) and assigned 1 when A(E)<A(E). i 

Since the 0-'h-1 rounding of G satisfies the constraint h ( v )  - A(v)l C 1 for  all vEV, and only 

the  starting vertex of each odd cycle is increased or decreased by 1. Therefore the 0 -1  round- 

ing A w e  obtain will satisfy constraint.h(v) - A(v)l < 2 for all vE V. 
u 

\ 

4 

Theorem 4.10 : -4 GR (1.4/3.1./2) always exists for  an arbitrary loopless undirected graph. - 

Proof : Let S=(VE) be a weighted Ioopless graph with weight function A. 

From Theorem 4.8. we know that  a rounding that  Satisfies the constraint lA(vj  - ~ ( v ) l  < 4/3 

for  all v E E '  al\h;ays exists. We let -3 be such a rounding which gives the minimum value of 

L\(E)- A(E)[ If --'a < A(E)-x(E) 6 '2, then we are done smce A is indeed a GR (1.4/3.1/23 - - 

Sc u e  assume thar .liEj-A(Ll < -:.2 ( for  the other casq where A(E)-A 

similar). 

1. 

For any such roundink A we can Fartitlon the vertices of G into three sets : 

According to our assumptions, the configurations (a!..(b)- and (c) of Figure 4.5 in which the 

edges  having rounded weights 1 and O are denoted as  double ana single edges respectively are 

irnpossible.+lndeed, in any cf the three cases the roles of the doub,le and single edges can be 

Thesis 
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Figure 4 5  : Example of the Forbidden Condgurations 

inttrdmqed prQducing another muading that still satislies the constraint fhCv>~(v)I < 443 for 

all v f  V and increases A(E) by 1, which contradiets the minimality of lA(EbA(E)I. 
, 

An alternating cycle (relative to the rounding A) is an odd cycle 



with one vertex. say v l ,  in 1'-, and all other vertices in V', and such that the edges else3, .... e, 

have rounded weights 0 and the edges e2.e ,..... e,-, haye rounded weights 1. 

We will assume that A, in addition to all previous constraints, also maximizes the number of' 

vertices that belong to altepating cycles. Then the configurations (b') and (b") of Figure d.5 

are also impossible. Otherwise we can interchange the roles of all the double and single edges in 

case (b") and those b e t a x n  vertex u and vertix v, in case (b') to produce another rounding 

that st-ill satisfies all the previous constraints and has more vertices belong to alternating cycles. * +-. 

Now we are going to partition the graph G into three subgraphs G1.G2 and G3 as follows. 

V, = {v I v  belongs td some alternating cycle of G )  

It is easy to s e  that in GI no vertex in V+ belongs to two alternating cycles which have 

x . ~ E i ' -  where xf because of the forbidden case (a) in Figure 4.5. Thus the alternating 

ci-cies are all L errex dlsjoinr escept ar the L errices belonging to 1'-. Consider any con- 

netted component of G i :  11 contains esact1)- one vertes in \'- and at least two vertices In 

* If we sum up A f v ) - X ( ~ - f  for all kertices in each component. then the sum is non- 

negative. 

Therefore A(Vl) 3 h(V1). 

The vertices m-& consist of levels Li where 

L,, = {v i v E (. V- U E-'-) - 



Figure 4.6 : Example of a Graph G2 

L,+l = { v I for some u. w € P }  

Let i* = min { i  I Li+,=O). 

and let V2 = LOULI U . - - U L:. 

E*= EOUEfU . - U F ~ .  
.b 

Note that there ak no edges e = w  with u.vELi. This follows from the absence of the 

mnbguratiors (a). (b). (b'). (b") and (c) of Figure 4 5 .  Also as in Figure 4.6, all vertices 

Thesis 



'/ 
, / 

in \+Lo belmg to IT+. so the sum of A(v)-A(v) foreall vertices 1- on odd levels, 

Lodd = Ll U L3 U Ls U - . - is non-negative. 

V3 = V -  V ,  - 15 and 

The sum of A(v)-Xfv) of all vertices v in G3 is non-negative, i.e: Aft',) 2 X(V3). since 
- '+= 

they allbelong to 1'' 

/' 

h n s i d e r  an  edge e = ux. E E 

It is obv~ous that A(e)--Afe)- is counted exactly twice in A(5'l)--A(k'1) or 

A(I-,)-A(1',) if e belongs to El or E,-respectively. .As we have observed. no edge of 

E? joins two vertices en the same leve! and thus every edge in E2 is incident with one 

vertex In the odd ie:.els and one ~ e r t c x  In the even levels. Therefore AlehAft.,') is 

counted exactlq- twice m 2(A(L,, l-A(Ldd)) loo if e belongs to E2 ' 
,- 



C 

Case 2 : 

- 

Case I : 

e f El U E ~ U E ~  and both u.v belong to V,. , 
B 

If A(e) = 1. then the edge e cannot join two vertices of Ldj'by an earlier comment. 
/' 

/ 
is incident with a t  most one vertex belonging to the odd levels and therefore 

4 
/ 

e )  is counted at ~ o s t  twice in 

0, then as in the case where 
-- 

of L,, and therefore A(e&A(e) IS 

/ 

e 6? ElUE2UE3, U E C ' ~  and vEV3 
I 

/ 

, 
/ , 

Since e is incident with one vertex ih V1 and another in \j. ~(e ) -X(e )  is counted 
C 

once in -A(V1)-h(L',) and once in A(V3)-A(V3) and therefore twice in the sum 

~~v,)+~(v,>-x(r~~)-x(v,>. 

If h ( e )  = 1. then the vertex u does not belong to Ld, because of the forbidden casks 

(a) and fb) in Figure 4.5 and the debi t ion of G2.  Thus the edge e is incident with 

one vertex in the even levels .and another In V, or 1*3 and therefore A(e)-h(e) is 

counted only once in the sum 5. 

If A(e) = 0,)hen as in the case where A(e)=l.  the edge e is incident a-it 'h one vertex 

In L,, and ansther In or \'3. Thus A(e)--h(e; is counted twice In 

2 - J  1 and once in + A ~ - A ) - A V  and therefore three , 

t imes in the sum 5. 

In a l l  of the abcve cases. A[e>-A(e) is counted a t  most t w k e  for a double edge o (with rounded 
. - -  
weight 1) and 4tiGk "twice for a single edge e . (with  rounded weight 0 )  in the sum S. n u s  we 

I /- 



, 

which contradictS our assumption that A(E)-X(E) <-45, and therefore A(,??)-A(&-%. 
- 8  

Hence a GR (1,4/3.1/2) always exsrs for  a looplm undirected graph. - 

I / 

45, Existence of aLRmding for the S M R  problem 
'+ 

Recall from Section 4.1 the linear reducibility of the SMR, ko5lernr ro the GR 
' 

Thus the existence of a symmetric rounding for the SMR pioblems Carl be derived from the 

existence of a rounding for the GR problems on undirected '&aphs. 
< 

Corollary 4.11 : An SMR (2,1~2+1) always exists for an arbitrary symmetric matrix of dimen- 

sion n. 

COrollar~4;12 : .An S l I R  ( l . l , (r ,+3: 3 )  alua>.s exlsts for a s).mmetrlc matrix of dimension n - 

w ~ t h  ali diagonai entries king V. 

/ 
Corollary 4-13 : .An SSIR (2.2.L) always exisls for an arbitrary syhmetrr? matrix of d~men-  

sion n. 

& r o w  4.14 : An SM? ': 1,4'3.1_) always ex& for a symmetric matrix of dimension n with 

ail d idpna l  entries being 0. 

Thesis 



. w a  and a GR 

( i . 2 . 1 ~ )  always exist. In this section we will give some examples sdowing that the bounds in ' - .A 

I 

the constraints for G R  (l%(n+1)/2), GR (lJ,(n+3)/6). GR (12.1Td) m d  GR 11.4/3,1/2) are 
'1 - 

q C I best plrsible in the following swc. For an arbitrary e>O.. there eqist examples so that any, 
I 

rounding A which sat ides  the constraints M(e)--Me> < 1 and hkv)-~(v)l < 1 will have * 

/ 
I 

NE)-UE)I asymptotically close to (n+3)/6 p l e s  connected graphs. and a&npthically 
$ 

close to (n+l)/2 for arbitrary connected graphs. There also mist examples so that any round- 
/' 

ing which satkfies the constraints &(e)--A(e)l < 1 and ~A(E)--x@)I 6 l/2 will have 

/' 

/ m a x  a(v)-X(v)l = 4/3-6 for loopless c o m s t e d  graphs. and mar lA(v)-Mv)l = 2--E for arbi- . 
/ 

trary connected graphs. 

\ 

L For the graph given in Figure 4.7a. A(E)=k/2 and x(v)= 1 - e  or RE.  I f  we choose k ~ < l .  

then A(v)=O or 1 for all vertices v. Thus the rounded weights of the loops can only be 0 for 

otherwise A(v)  would be eqkl to 2 for the loop a t  vertex v .  Note that the rounding typified in 
- 

Figure 4.7 : Example of a GR (l&(n+l)L2) 
/ 



d 
- Fig'tre 4.7b is then best possibIe and it has A(E)=l.' 

1 k n-1 n-3 I 
J 

I 
Therefore h(E)--A@)! = --I = --I = -. I 

2 2 2 ,-L, I 

For the loopless graph given in Figurr4.8a. A ( E ) = ( ~ / ~ ) & E  and h(v)=l--E or ks. 1f' we -- -_ - 1  . 
choose k ~ <  1, then A(v) c m  only he 0 or 1 for aU vertices v.  Tpus at least two edges of each . 

4 

. />< b -. 
triangle have to  be rounded ro 0. The round typified in Figure 4.8b is then best possible as 

r ,  

we try. to maximize A(E) and it has A(E)=k 

Now we cay'see that the bounds in the constraints for a GR ( l ,~ . (n+1)62) .  and a GR 

Figure 46 : e p l e  of a GR (l&(n+3)/6) for Locplm Graphs 



bounds asymptotically. 

For the graph given in Figure 4.9a. A(E)=k-(k~/3)  and A(v)=2--E or ke/3 .  If b e  choose 

k r > 3 / 2 ,  then A(E)<k-1/2. Thus in ! any  rounding which satisfies the constraint , 

L A ( E ) - - A ( E ) I < ~ / ~ ,  we have A(E)<~-I  and hence there must exists a branch with rounded 

weights 0 on all edges. In other words. there must exists a loop at.a vertex v with rounded * 9 

T 
~ weight Cf as in Figure 4.9b. Thus the difference between A(v) and A(v) is 2-E, 

d 
J arbitrary E .  we can construct a graph with k'loops as shown where k > 3 / ( 2 ~ )  so that in every 

, rounding which satisfies the above constraint. we get that for some vertex v lA(v)-A(v)l is as 8\ 

close to 2 as we want. 
rC 

r 

The example give0 in Figure 4.16a shows that for an arbitrary E. we can construct a loop- 

* 
less graph with k > 1/(26) so that rnaxlh(v)--A(v)l will be'as close to 4 / 3  as we want. -- 

,/ 

Figun 4.9 : Example of a GR (12.1/2) - 



Figure 4.10 : Example of a GR (1 .W.l/2) for Loopless Graphs - 

AgainLthe bounds in the constraints f& a GR (13.1/2) and a GR (1.4/3.1/2) are tight in - - 
the sense that there exqt examples of c o ~ e c t e d  graphs achieving8these bounds. 



CHAPTER 5' 

ALGORITHMS FOR THE DCS PROBLEM 

' We have seen that all of the GR problems can be eventually reduced to the DCS problem 
I .  

for bipartite graphs. In thrs chapter we discuss the algorithm; for findirig a DCS with 

prescribed degrees for bipartite graphs only. However if the graph is comglete (bipartite or 

not). we have simpler linear algorithms. 
- - 
-- 

'4 

5.1. DCS for Complete Graphs 

If the given graph is c o m p k t a e n  finding a DCS is equivalent to joining the vertices by 

edges so that the prescribed degrees are met. There are known algorithms for doing this on 

bipartite graphs and on arbitrary graphs without loops. We will modify the latter one to allow 

for loops. 

5.Y. 1. Gale's Algorithm f o r  Bipartite Graphs 

1-el G' = ( X ' U 1 : E  1 be a DCS ~nsrance a.ith prescribed degrees p.  which corresponds to a 

complete weighted biparti~e graph. G = ( X U Y E )  with weight function A Recall that 

E = E U f e=ra i vEY and X(y) is not integral} 



we are going to find a wbgraph G of G' such that the above degr&3onbtraints are 

satisfied. Let A be the adgcency matrix of the subgraph G of dimension ( , m + l ) ~ ( n + l ?  and , 

A ( i , j )  tx tthe'entry of A in row i and column j. We assume that  

The ith row of A cone.;ponds t o  the 've r tes  x, ,  where i=1,2 ,... m, the (m+l)sl  row of A 

8 

corresponds to the vertex z, .  the jrh column of A corresponds to the vertex y,. where 

j=1.2 .... n, and the (n+l)st ,column of -4 corresponds to the vertex z,. First we fill out the 

entries of the last r o a  and cofumr! of A as follows: 

-. *- :  . =1 

&fore definmg the other enrrles of -4, we make some observations. 

- 

Since kaJ+ib- 6 -a+b- 6 _ a i + _ b i + l ,  each R, is either LA(x,> 1 o r  LA(x,) J+ 1 and each C, /c 
e 

1s either L A ( ~ , ) i  or  LA!? 1-61 If A ! x , )  s integral, then R,=LA(x,)_~=A(x,). similarly if  
' 

C 

A(%) is integral. then C..=~(3,j. 

C 

Thesis 



h e  pfx,)=rhfx,)? for i=1.2 ... :m and p(y,)=f~(~,)f for j=1,-2. ...a, each 

last row and column of A is either 0 or 1.' 

ic ,  = t(i h f y , ) ~  - L ~ X ( ~ , ) J )  = ~ i ~ ( y , )  J for 1 6 t b n .  

entry in the 

For k<l , U 

---- - 

- --- , hou H remains to fill out the Internal entries A(i . j )  where i=1.2 .... ,m and j=1.2 ...n This 

is e q u ~ v a l e n ~  to finding an mxn 0-1 matrix with row sums R, and column sums C,. According 

to D. Gale f ~ a 5 7 ] .  such a matrix exists if and only if for any ~G11.2 ,... n) 

- 
Thesis 
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I 

Theorem 5.1 : There exiss  an mXn 0-1 matrix with row sums and column sums defined as fol- 

lows: 

Proof : We will prove first that' (*) is true for any J of the form J=(1.2 ...$I. and then for any 

Suppose that ( i )  is false for some J={l .2  .... J ) ,  i.e. 
0 

Then R: > t for some I. for  otherwise 

rr IT rn 

Z R ,  = ec, b LC 1 + &nin(rR:)  = 1 + ZR,. which is a contradiction. 
:=I - 1=1 !=I i=1 1=1 

Let s be the largest subscrtpr such that R,>t and by Obsenation (4 )  R,_> R,-1 for 

i = 1 2  ,... 3 - 1 .  1.e R > r-l or R >/ r for ; = I 2  ..... 5-1. Thus 



3 1 + ER, (contradiction) 

Therefore f*) i s t ruefor  any J o f  the form J = { l : 2  .... 1). ' 
L 

Suppose (*) is false for some 1G (1.2 .... n}. R e  assume that I is the first one" in lexicographic 

order among all the subsets of f 1 .Z. . . .nf  for which (*f fails. -41~0 let J contak 1.2 ..... u (possi- 

bly u=O) but not u + l ,  J C l l . 2  ...., u+v+w}. iTt=u+w and u+v+wEI. 
L 

k t  C,+,,,=x. Then by Observation (4) C,+ lax - l .  If C U + , 2 x .  and we consider the subset 

J' = j-ju+v+wl U i u + l )  that appears before I  in the lexicographic order, we have 
L 

vhich contradicts our assumptions. Therefore Cu+,=x-1 and by a similar argument CJ=x-1 

* for  u + l  < j < u+v+* and jEJ If we consider the subset P = J - ( j )  U { u + l i  for 
- - 

: E 1-1 1 2 .  ..u/ t h a ~  appears kf;re J m the lexicograph~c &der, then smce u+ l  < j < u+r+w. 

4 '  1-1 ,C - 1  and C . > X - 1 ,  l.e. x-1 ( C 6 x  I i  CJ=x-1.  then again by Ubse?vation 



rn 
Thus U d zrnin(u,Ri> = Pl+P2+ . . . +P,. 

Since (*) fails for thb s u k t  J .  i.e. ZC, > x m i n {  Ul. R. 1. and we have 
j E ;  r=l 

Thus LT+wx >* U+wPu+. which implies x > P,,, or P,,. 4 x-1. 

Now we consider the wbset r=f 1.2 ,..., u,u+l, ... u+v+w} 
./ 

Hence {*)  IS true for  any JG i 1.2 .  . n 1 and the proof is complere. 



Corollary 5.2 : There exists a subgraph of C' with prescribed degrees defined as follows: 

Sow we apply Gale's algorithm IGa571 to find a 0-1 matrix with prescribed row sums Ri and 

column sums C,. 

1 

ALGORITHM -4 (Gale's Algorithm for complete bipartite graphs) 

For each j = 1, 2, .... n, 
3 

/ j-1 

A ( i , j )  = 1 for  a set of C, rows i whose values of R, - x A ( i k )  are largest and 
1-=I 

A(i . j )  = 0 for all other i. 
b 

5.1.2. Modiiication of Hakimi's Algorithm for Arbi ary Graphs f 
.A sequence p = ( p l .  F?. , p, ; where pl 2 p 2 . . . >/ p, > 0 is called realizable if / 

there cxlsls a graph G with degree sequence p &fore presenting the l~near  algorithm that pro- 
/ 

d u c a  the graph G when gwen a realvable prove the following Theorem 

which constitutes the basic step of our algor~thm. 
t 

Thesis - 



Theorem 53  : There exists a graph with degrees p, 2 pl 2 - - . 3 p, > 0 if and only if these 

exists one with degiees pzl.-p3'. .... p,' where 

-- 
Pi-  I f x  i = 2 3  ,.... 6+1 

for i = 6+2.6+3- .... n / 

/ 

, 
6 = p ,  if p1 < 2 and 6=pl-2 otherwise. 

- _  
* / '  ' 

Proof : Suppose there exists a graph with degrees pl p2 3 . -. . 2 pn > 0. 

Xote that the theorem is trivially true if pl <2. 

~ e t  v,  be the vertex with d- pi. We claim that there exists a graph G with degree sequence 

p = ( p l ,  ~ 2 .  .... pn) in which the vertex v1 has a loop if p1 k2. Suppose not. Then vl must be 
- 

adjacent to p 1 > 2  vertices in v,, v,, :... v, ) and ali these pl vertices are adjacent to each other. 

For otherwise if any two of them, say v, and v,. are not adjacent. Figure 5.la shows that we can 

Figure 5.1 : Eiism& of a graph in which vertex vl  hzs a loop 



delete the edges v,v, and vlv,. p-11 add v,.r; and vlvl to obtain a graph with the m e  degree 

sequence and a loop at vertex vl.. Furthermore, all of the pl vertices except at  most one must 

have loops. Figure 5 . lb  shows that if two of them. say vp and v,. do not have loops, then we C 

can delete the edges vlt>. vlvS' and v,vq. but add the loops vlvl ,  v,\> and vqv9 This again is a 

contradiction. .since p 1 3 2 ,  there is at  least one vertex, say v,, among all the vertices adjacent C 

to v,, which has a loop and is adjacent to all the other adjacent vertices of v,.  Thus 

p, = p1+2 > p l ,  which contradicts our assumption that pl-is the largest in the sequence p. 

-Now let us choose G to be a realization of p in which vl has a loop if (p122>and also vl is 
i 

adjacent to as many vettices in S = ( V ~ . V ~ , . . . , V ~ ~ }  as possible. Suppose vl is not adjacent to one 

vertex, say v,, wliere 26i66+1. Then v3 must be adjacent to a vertex v, where 6 + 2 6  j 6 n .  If 
1 

v ,  does not have - - a lboF or if both of v, and v, have loops. there must exist a vertex v, adjacent 

t o  v: but not to v; since p , > / p . .  ;is shown in Figure 5.2a. we can delete the edges vlvj and v,vi 

but add .rrlv, and v,v,. If v, has a Imp but not v,, then dependmg on whether vertic& v, and v, 

are adjacent or not. :we can delete the edges vlv, and v,v, but add vlv, and v , ~ ) ,  or deletethe 

edges v,v, and v,v, but add v,r,, znd v,r; (Fig 52b ,  Fig 5 . 2 ~ ) .  In each of t h e  cases, we obtain a ,  

g r a ~ h  wl?h  the same degree sequence and 1-1 adjacent to more vertices in {v2,v 3. . . . .vh,  There- 

fs re  %.? haie a graph G with d q r w  pl  > p2 3 . - . > p, > O in which vertex vl  has a lodp if . - 0 

p l  2 2  and is adjacenr to a]': t . e r : x s  :.q.....r.i-l. Rem~ving v l .  we obtain a graph with degrees 

Conversely. suppse  there IS a graph with degrees f i t ,  .... p,'. We can then add the vertex v ,  

r 
~ i l ~ l a l i y  to obta~n a graph w?th degrees p*. f i .  ,... p,,. - 



F i w e  5 2  : Exismxe of a graph in which v l  is adjacent 15 v2.....v5+ 

The following is a rhodification of. Hakiml's Algori- fHa621. which co.nstructs a graph with 

-ALGORTH?cl 3 (Jlodifi.cation of Hak3ni.s Algorithm for complete graph with loops aflowed) 

Let v ( p ; )  be the verwx of degree pi where i=12,,..n and 

R be at number of non-negative rtrms in t h e  stqumce p. 



I i STEP 1 : IF kzO THEN a DCS has been copstructeci; GOT0 , TEP 2. 
" 

I b 

IF p, >k+l  THES a DCS does not exist: GOT0 S ~ P  2. 

I 

IF pi 3 2  THEN i create a hoop at vertex v ( p l )  ; 
' I  

For j=2 TO p,+l DO , i k 
1 

, I 

1 

Reorder the updated sequence p and the ~ ( p ~ ) . . . . . v ( ~ ~ )  so that 
. 

p is non-increasing: update K .  k 

GOT0 STEP 1. 

STEP 2 : HALT. 

Corollary 5.4 : ALGORITHY B hds- a graph of n vertices wlth degree sequence 
' 

1 -  

p = (pl. p2. . . pnf  if pj p2 2 - - - > pr > 0 and p is realizable. and reports the non-existence 

~i p 1s nor realizable. 

5.2. DCS for Bipartite Graphs 

There are 4 number of ways 10 solve the DCS problem for bipartite graphs. Here we ' 

p r q n t  two algorithms: one uws the &urn network Boy algdrirhm i f  Dink Di701 and the 

QL&F genera@es the maximum cardmality matching algorithm of Hopcroft and Karp fHK731. 

Both of them run in 0(!E3?) time where L?? is the number of edges in the bipartite graph. -4s a 

matrer of facr rhe latter one uiH p r f d r m  k t m  in gerieral for its time fomplexi$y is indeed 

O( f i  !Ej where P n the nrm of $he prescribed degrees of all vertices 

Thesis 



substantial improvements over the previously known algorithm for the MR prob1em"which is .s 

not guaranteed toLrun in polynomial time. 

5.2.1. Maxim- Network Flow Algorithm 
C 

A network is a directed graph N = ( V A )  with two distinguished vertices, a sobrce s and a 

sink t ,  and a ps j t ive  capacity c(x.y)  Aociated with every arc ( x . y ) € A  (for convenience we 9 
<will a.bbreviate c ( ( x y ) )  by c(x.y) for the arc ( x . y ) € A ) .  A flow in a network N is a function 

~ : A - + R  which.satiqfies the followkig conditions: 7 - .  

in A entering and emanating frcm vertex v rTctivkly. ' 

( 2 )  For every arc (v ,w)EA,  0 < f(17.w) < c(v.w).  

The value of the flow f ,  denoted. by I f l ,  is the flow out of the source vertex 5, namely 

f(s.v). The m-um flow problem ask for a flow f in N that maximizes.lfl. 
(s,%*.< 

2 
i 

Given Q bipartite graph G = ( X U Y J )  with prescribed degrees p(v) on all. vertices V E X U ~ . . ~  

Then A'(G) = (\'A) is a network constructed as fdllows: 
+ 0 

/ 

J 

For example. consider the bipartite graph G  shownqin Figure 5.3a. Its co r r sp~nd ing  nitwork 

' N G )  is shown in Figure 3.3b. 
3 

Thesis 



Figure 5 3  : Example of a bipartite graph and its corresponding netw rk 9 ,  

Lemma 5 5  : The bipmtite graph G has a subgraph whose vertices have degrees equal to the 

prescribed degrees if and only if the corresponding network N(G) has an integral fldw of value 

P is the sum of the prescribed degrees of all vertices ih G. , 

+ \ -  
p(v) be the prescribed degree of vertex v in G. 

1 
Suppose G!,= ( X U Y ~  is a subgraph of G whose vertices hive degrees equal to the prescribed 

> .  

. i -  

degrees. 

Let f be an'integral flow of the network N(G) defined as follows: 

ffsx) = Ax)  for ell arcs ( S ~ ) E A  and xEX, 
1 

= 1 for all arcs (x.y)€A. xyfE, xxEXand yEY and , 
,-J 1' 

flx.y) = O for all arcs (x.y)EA. ry&?? =EX and y EY. ' e , - 2-- 

The value of the flow f is the sum of the flow out of the source s. which is equal to 



Suppose N ( G )  has an integral flow f of value P/2.  

Consider the subgraph 'G = ( X U Y ~  where - 

Z 
Since the flow f has value P/2 = p!X) = p(Y), the amount of flow o:i ail t$e arcs emanating 

b 

from the source s and entering the sin? t is equal to'the capacities. The degree of every verlex 
- - - -  

xf X is tben equal to f(x,y) = f(s,x) = ~ ( X I .  ~ i m i l a r l ~ ,  the degree of every vertex y E l '  is 
$ (xsF.4 

equal to f(x,y) = f(y.t) = p(y) .  Therefore the vertices in the subgraph G have -degrees 
( x . y ) E A  

- 

equzl to the prescribed degrees. 

4 b 

The proof indicates how the network flow solution can yield a DCS solution. Now we , 

, apply th'e maxinrum flow algorithm of DINIC [ D C ~ O ]  to find p DCS of a- bipartite graph G with 

prescribed degrees. Since all capacities are integ&s, Dinic's algorithm wil i  produce an integral 
I 

. , 
maximum flow. 

- 

ALGORITHM C (Extension of Dinic's Algorithm for Bipartite Graphs) 

I " 

STEP 0. Construct the networl, h'(G )mrrespondlng to the blpartlte graph G .  
t .  

r .  

STEP 1:  Find a maximum flow f of N ( G )  by Dinic's Algorithm. - b  

STEP 2: IF Ifl = P/2,  THEN construct the DCS G from the flow f .  OTHERWISE a I X X  does 
4' 

not exist. - - 

> 

STEP 3: HALT. . 

The construction of the network N(G) takes OIH) tjme wherg 1El is the n u d m  of edges 

in the bipartite graph G. The construction of tbe DCS 6 from t k  flow f of value PI2 also 

takes O(LE1) time, In order to get the complexity for the entire algorithm. we need to find out 

haw much time STEP 1 taka to finka maximum flow f of N(G). In general Dinices algo~lthm 



-- -- - - - 

runs in o(IV?LE~) time whke  IM and @ are the number of vertices and edges of the networjc . 

< 
respectively. However if the network 6 of special type. the tune complexity may be improved. 

A 0-1 network is a nkwork in which the capacity of a11 the arcs is one. Our network N(G) 

consuucted from G is-very s i m k  to a 0-1 network except that the capacities of the arcs 
.) 

emanating from s and entering t may not be aH one. Fortunately. we can replace each of those 

arcs of capacity greater than one by a number of arcs of capacity one to obtain a O:1 network 

and yet the maximum fiows on b t h  networks are the sdme. This is shown in Figure 5.4, where 

the arc P=(Y.H-) of capacity k > 1  has been replaced by k arks of capacity 1 from vertex v t i  

vertex w. Clearlx the newly constructed network. denoted%-- N(G)  = (VA'). is a 0-1 network 

where IVI' = lV1 and M'I = IAl+P--IXUH. It is no? dif6cult to see that the values sf ?he maximum 

flows in the netwdrks N(G) and N ( G )  are the same. Moreover. any flow in N(G) corresponds~ 1 

to a flow in N(G)  of the same valu;. Thus we may work on the 0-1 network N(G) &ead of 

N ( G )  to find the maximum flow of value P / 2  This can be done by D&icSs algorithm in 0(lA'1312) . 

for the 0-1 network W(G). Since MI T MI+P--IXUYl= lEl+P = O(LE1). an execution of STEP 1 
* .  B 

of ALGORITHM C taka O(Wn) lime. Hence the m h e  algorithm is of rime complexity 

o(m39. 

Figure 5.3 : Rephikg ai arc by multiple arcs to obtain a &I network 

Thesis 



0 

'i 

* 5.2.2. Generalized Maximum Matching Algorithm 

Let G = ( X U Y E )  be a bipartite graph having vertex set XU17 and edge set E. A set M S E j s  

called a matching if no vertex vEXUY is incident with more than one edge in M. A perfect 

matching M has every vertex incident with egc t ly  one edge of M. In other words. a perfect 

matching is the edge set cf a DCS of G with all the prescribed degrees equal to one. In this sec- 

tion-we are going to generalize the maximum matching algorithm of Hopcroft and Karp [ H ~ 7 3 ]  

to solve the DCS problem with prescribed degrees p(v )  on all vertices v in the bipartite graph G.  

Let M be a psubgraph of G ,  i.e., a subgraph of G in which all vertices have degrees less 

than or equal to the prescribed degrees. A maximum p-subgraph is one that has the maximum 

number of edges. A simple path Q = (v, .  v2. .... vu-i. v2,)  in G is an augmenting path relative 

a 
to M if the end vertices v, and v~ have degrees less than the prescribed degrees p ( v , )  and 

all intermqdiate vertices v,. ..-. v2:-l have degrees equal to the prescribed degrees 

" P(v2). -.-. P ( v ~ ~ - ~ ) .  and the edges are alternatively in E ~ M  and in M with starting edge i n - E M .  
. 7  '. 

When there is no ambiguity, we let Q denote the set oi. edges in the augmenting path as 

. well a s  the F;ath ltself and iet M denote l h e  set of edges in the p-subgraph as well as the sub- 

rraph itself.  - I f  S and .T are sets. then S@T denotes the synlmerrlc difference of S and 7'. 5-7' 
.A 

denotes the ser of element In S u h ~ h  are not In T. and iS denoler the number of elements In S 

i f  S is> finite. If Af a d '_%- are graphs. then hmh' denotes the symmetric difference of the se~s of 
1 

s r .  

edges of M and A-. M-A' denotes the set of edges in M u~hlch are not In N .  and IMI denotes the 

;'number of edgbs in t h l  graph^ M -b- augmentation of N along the augmenting path Q is 

achieved by t,ak~ng the symmetric diffe?&e of the edge sets of M and Q. Clearly M(DQ is also a 
- 



Theorem 5.6 : Let M and N p-subgraphs of G .  If M=m. IN=n and &>m, then MtBN con- 

tains at least n-m edg? disjoint augmenting paths relative to M .  

/' A 

Proof : Consider the graph CMBNW formed by replicating each vertex vEM@N p(v) times.' 

Let v be a vertex in M 8 N .  let vl, v2.  .-.. vp(vi be the replicated vertices arising from v in 

( M @ N P ,  and let v have r edges from M-N and s edges from N-M. Then the incidence of the 
w 

r+s edges with vertices v,, v,, .... v;;(,.) is defined as follows. Each of the vertices v,. v2, .... v, is 

incident with one of the r edges from M-N and each of the vertices v l .  v2;  .... V, is incident with 

one of the s edges from A'-M. Thus each vertex-in (MtBN)S'p is incident with at  most one edge 

from N-M and at most one edge from M-A7. Hence each connected 'compofient of (M@N)IQP is 

either 

(1 ) an isolated vertex, 

(2) a cycle of even length with edges alternatively in M-N and in N-M, or 

( 3 )  a path whose edges are alternatively in M-N and in N-M. 

In any of the conn ,~ ted  comppents. the number of edges belonging to N is either one more 

2 than. one less than. or equal to, the number of edges belonging to M. A component has one 

more edge belonging to .V than to .V it and o n 1  ~f it is an alternating path with starting and 

e n d q  edges In hl-M There are at leas1 n-m of these components since 
I * 

lit'-AT - W-Nl = IA'! - IM = n-m Hence there e x m  at least n-m vertex disjoint "alternatingM 

paths, QT". w. ... e L m .  In (.V@N)Fbi with Starting and ending edges in N-M. Consider an end 
\ 

vertex of any of these paths; it is incident with, one edge in N-M. By the definition of 

~ M C B L ~ ~ ~ .  tfie correspanding vertex. say v.  in M@A1 must be incident with more edges in N-M 

. than in M-A'. In other words, the degree of the vertex v in the psubgraph N is more than that. 

in the . subgraph M. But the vertices in both M and N have degrees less than or equal to the 

prescribed degres. so the degree of the end vertex v in M must k lessf-than the prescribed 

Thesis 
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degree. 

Now we claim that  the vertex disjoint alternating paths. a j ' p .  @F: ... Elrn. in (M(BNYtf  

correspond to paths Ql, Q,, . . . ,Q,, in M@N which are edge disjoint. and sucsh'that each Q, 

contains an augmenting path relative m-74. Let Q, be the path in MtBN consisting of all the . 
edges of the alternating path E F .  Then all the paths Q1, Q2. .... a-m are edge disjoint. This 

" follows f rom the  fact that  every edge in Mt%N appears exactly once in ( M # N P  I t  remains to 

%how that  each Q, contains an augmenting path relative to  M. Since EP h, odd length. Q, is an 

odd length trail (possibly self i;tersetting). But M@N G G is bipartite, SO Q, contains an odd 

length simple subparh h,' uThich is evidently also alternating and has the same set of vertices. 

Recall that  the end vertices of the paths Q; have degrees (in M) less thari the  res scribed degre& 

If all of the intermediate verdices of Q.' have degrees (in M) equal to the prescribed degrees. 

then Q.' is in fact an augmenting path relative to M. Otherwise by parity. we can always find 

- an odd length subpath in Q,' so -that the end vertices have degrees ( ~ n  M) less than the . 
prescribed degrees. R e m e d l y ,  we must find a subpath whose end vertices ha& degrees (in M )  % u  

/ 
J' 

less than the prescribed degrees and ail the intermediate vertices have degrees (in M) equal to 

I ~ E  yrescrlbet! degees. an3 rhus an augmenting p t h  r e l a ~ ~ v e  to M Hence M@:V contams a t  
. - 

ieast r,-m edze d~sjoin .~  augmenrlng paths relative to .V 

The fol low~ng ~ h e o r e n k  and Corollaries are similar to [Hk73]. 

Cosollary 5.7 : M is a maximum p u b g r a p h  if and only ~f there is no a u g r n e n t q  path r e l h  

tive to M. 
r 

Thesis 



Corollary 5.8 : Let M be a psubgraph .  Suppose Ihji=rn, and ~ p p o s e  $hat the number of edges 

in a maximum psubgraph s n,  n>m. Then there exists an a~gment ing~path  relative to M of 

m 
length d 2[ -4fl. 

n-m 

Proof : Let N be a maximum p-subgraph. Then by Theorem 5.6. M@A7 contains n-rn edge dis- 
e 

joint augmenting paths relarive to M. Altogether the& contain at most m edgdfrom M, so one 

, m m 
. of them must contain at most i-_] edges-from M, and hence at most X-hl edges 

n-m - 12-m 

together. 
t 

Let M be a .p-subgraph. The augmenting path Q is called shortest relative to M if the 

length of Q is the shortest among all the augmenting paths relative to M. 

Corollary 5.9 : Let M be a rnubgraph:~ a shortest augmenting path relative to M, and P. an 

augmenting path reIative to M 8 Q .  Then lQ'1 3 I(ZI + 2lQnQ'l. , 

Proof : Let N ' =  MtPQ8Q'. Then N is a m b g r a p h  and WI = lM+2, so by Theorem 5.6, M 8 N  

contains two edgeMsIoml augrnentmg paths relatwe to  M :  call them Q, and Q2. Since 

Now \le apply the following scheme of computation : starting with a p subgraph  Mo=O, 

codpute a sequence M,,M,,  MI .... M ~ ,  .... where Q, is a sl~ortest augmenting ' p a 9  relative to  



Corollary 5.11 : For all i and j such that  Qil=lQjl, Q, and GI are edge dsjoint .  

. Prcmf : Suppose that Q, !q j i ,  i < j. and Q, and Qj are not edge disjoint. Then there must exist k 

and I ,  i < k < Z < j ,  so that  QL and Ql are not edge disjoint, and for..each m. k < m < l .  Q, is edge 
u 

disjoint f rom QL and Q,. Then QI is an augmenting path relative to M L 8 Q l .  so 

Q,: 2 lQL1+2r(2k nQJ. But ie,=QL,, so b& nQ1 =0. which is a contradiction. 

Theorem 5.12 : Let n tx the number of edges in a maximum p u b g r a p h .  The number of d ~ s -  
- 

tinct integers in the sequence .- 
- D  

I&!. IQI1. . . &I,:. . . . is less than or  equal to 2:&~+2 

Probf : Let rn = ~ n - & j .  and let W, be rh; p s u b g r a p h  with rn edges. Then by Corollary S h . ,  

Thus  for each iirn-!Q,i 'is one of the ~ 6 ~ 1  posi~ive odd integers less than or q u a i  L., 

xhj+l. ~ l b o  M+,i. .... Q,i contribute a t  most n-m = n ~ n - &  j = d ~ n i n c t  inlegerr. 

hence the total number of d i s t ina  integers is less than or equal to 



& view of Corollaries 5.10 and 5.1 1 and Theoreh 5.12, the computation of the sequence 

M,. MT, .., M,. - - . breaks inio a t  most 2~ &J+I phases. and within each all the augmenting 

paths found are edge disjoint and of the same length. Since these paths may fail LO be vertex 

disjoint. an augmenting path relative to the p-subgraph with which the phase is begun need not 
A .  

be one of the augmen&ng paths within the phase. So we have to be cautious when we are going 
-- 

to find all the augrnentiltp paths of the same length within a phase a t  the time the phase is 
- 

begun. The following is an alternative way of describing the computation of a maximum . 

p-subgraph, and hence a DCS. , 
> 

ALGORITHM D (Generalization of Hopcroft and Karp's Algorithm for Bipartite Graphs) 

STEP 1: Let l(M) be the length of a shortest augmenting path relative to M. 

Fmd a maximal set d paths {&'. 0;'. .... &?*) with the properties that 

( l a )  For each i. @' is an augmenting path relative to M such that 

-- ( 1 bd The Q" are edge disjolnr, 

IF no-such paths exist,THES GOT0 STEP 3. 

' STEP 2 :  

STEP 3: 

STEP 4: 

IF M=P(2. THEN M is a DCS. OTHERWISE a DCS does not exist. 

Corollary 5.13 : If the number of edges in a ~?=-kum v b g r a p h  ij- n, then ALGORITHM"D 

constructs a maximum p-subgraph within 2~&&2 executions of STEP 1. 
, 
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Corollary 5.14 : ALGORITHlf D constructs a DCS with prescribed degrees within 21 =st2 
i 

d 
executions of STEP 1 if one exist, where P is the sum of the prescribed degrees of all vertices. v 

1 

- 
Let M be a p-subgraph of the bipartite graph G = ( X U Y E ) .  p(v) be the prescribed degree a 

- 

of vertex vEXUY. and let d ( v )  be the degree of vertex v i,n M. ' k t  X ,  = ( x  I d ( r )  c p ( x )  and 
- 

X E  X) and X= = {x I d (x)=p(x)  and X E X ) .  The sets Y ,  and j'= are defined mmilarly .- We discuss 

the efficient implementation of STEP 1 of ALGORITHM-D in which a maximal set of augment- ' 
/ 

ing paths satisfying properties ( la )  and ( lb )  is found. First we assign directions td the edges of 

the graph so that the augmenting paths become directed paths. This is done by directing each 
I 

edge in E-M from a X to a vertex in 1'. and each edge in M from a vertex in Y to a 

vertex in X. The is described a s  follows: 

D 

= XUJ' and 

X&xt we extract a subgraph G'.y of Gar in which the directed paths with starting vertex in X , .  ' 

ending vertex in I. ,  and all intermediate vertices in A'=Ul-, correspond one-to-one to the shor- 

<- test augmenting paths relative to hl This is done as follows. . 
Let LC, = X, and let 

E, = { ( u . v ) I ( u , v ) ~ E , , ~ ,  u E L , , a n d * Q L o U L I U ' . . .  U L , )  for i=0.1.2.3 .... 

L,+l = fv l for some u.  (u .v )€E, ]  fcr i = 0,1.2.3 .... 

L e t i a =  min { i l  

Thesis 



All directed paths in G'.+? from a vertex in X, to a vertex in Y, are the shortest augment- 

ing paths relative to the p-mbgraph M. However for every vertex x E X ,  there are only at 

most Ax)-d(x) of them that stiln at  vertex .x and need to be augmented. Also for every vertex 
J 

Y EY< there are only at most p ( ~ ) - d ( y )  gf them that end a t  vertex J and need to be augmented. , 

Therefore we adjoin to GIhf two new vertices s and t. p(x)--d(x) edges from s to every vertex x 

in X,, and p(y)-d(y) edges to t Irom every vertex g in Y,. A maximal set of edge disjoint 
,* 

directed paths from s to t in GILbf is then a maximal set of edge disjoint augmenting paths 

{Pi" @'. -... so that M@QY@&"@ . . - @@' &ill & p-subgraph of G. The mechanism for 

finding a maximal set of edge disjoint directed paths from s to t in G',,I is straightforward depth 
, 

first search, which takes O(number of edges, in GIM) = O(L??J+P) = O(IEI+P) = O(LE1) time. -- 

- \ i . 
Hewe the execution of STEP l\pf -4LGORITKZI.D runs in time O(lEl) and the entire algorithm . 

has time cornplexiry O( fi 1Ei) or o ( I E ~ ~ ~ * ) .  
I 
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CONCLUSIONS - - 

I 
% .. 

I 

The MR problem was previously studied by Cox and Ernst in 1982. They showed that an 

MR(1,l.l) always exists by modeling -tEe problem as a Capacitated .Transportation problem. ; 
I 

~ h e a l ~ o r i t h m  for obtaikng an MR(1.1.1) appeals to the a l g o r i t h ~ s  for solving the Capacitated 

Transportation problem which are not guaranteed to run in polytlomia: 'time. Ir; this thesmwe 
I 

investigate the GR problem which is more general than the MR problem as we have shown that 

the -MR problem is linearly equivalent to the GR problem on a special type of graphs, namely 

the bipartite graphs. An alternative (graph theoretic) proof on the existehce of a GR(1.1.1) for 
' 

bipartite graphs is given. Yer a GRf 1.1.1) may nbt exist for arbitrary graphs.  t tun at el^ with,' 

the corstraints being relaxed. a GR(12.1/2)  and a GR( l l (n+ l ) /Z )  alura)s exist 'for an arbir '5. - $ 

trary undirected graph of n vertices; a GR(1,4/3.1/2) and a GR(l,l.(n+3)/6) always exist for a - 
L 

loopless undlrec~ed g ~ a p h  of n vertices. The h u n d s  in the constraints for these roundings are 
- - + 

indeed tight m the sense lnat there are esamples of connyted graphs achieving c$r bountis 
I 

ns~.mptotlcall~ R e  have constructed examples in which an? roundmg A that satisfies the con- 
, 

- - 

Int1)./2 for an arbitrary undirected graph, nnd asymptotically close to (n+3)/6 for a 1ooples.s 

undirected graph. For an arbitrary E > O .  there are examples in which any rounding A that 

Ir / satisfies the cbnstraints e - e l  < 1 and E E  < 2 will. have 

max Nv)-A(v)l = 2--E for an arbitrary undirected graph, and max h(vkA(v) l  = 413--E for a x 
- 

loopless undirected graph. 
C 

The different roundings for the GR problem can be obtained by solving a certain-DCS and . 

a certain Euler Tour problem on undirected graphs. We have 'presented two algorithms for , 



' solving the DCS problem; one is the extended Maximum Network Flow algorithm of Dinic, and 

the other is -the generalized Maximdm Cardinality Matching algorithm of Hopcroft and Karp. 
, 

Both of them have time complexity 0 (lE13'2) in the worse case analysis where 1El iC the number k 
of edges in the graph. In general the latter one will perform better as i t  ru& in 0 (fi 1El) time - 
where P is the sum,oi the prescribed degrees of all vertices in th; graph. This is a,qbqantial' 

'C /' 

improvement over the previously known algorithm developed by Cox and Ernst [CE82] which 

may have exponential behavior. If -the graphs are complete, i.e., if the rounding problems are 

0-relaxed. then we have simpler linear algorithms. 
. , 7 ? 

&om our results on the existence of a rounding'for &directed graphs, the existence of a . 

symmetric rounding for symmetric matrices is derived. An SMR(2.2,1) and an SMR(2,ln+1) 

always exist for an arbitrary symmetric matrix of dimension n: an SMR(1,4/3,lJ and an 

C SMR(l,l-(n+3)/3) always exist for a symmetric matrix of dimension n with all diagonal 

entries bang 0. These roundings can also be obtained by our algorithms for the GR problem. ' 
'4 

Thesis 
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