National Library of Canada

Bibliotheque nationale du Canada

Canadian Theses Service Services des-theses canadiennes Ottawa, Canada \quad : K1A ON4

CANADIAN THESES
THĖSES CANADIENNES

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure'the highest quality ofreproduc- . tion possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 197. c. C-30.

AVIS

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'll manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un rubañ usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

Les documents qui font déja l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SFiC 1970, c. C-30.

1

> LA THĖSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS REÇUE

GRAPH THEORETIC CONTROLLED ROUNDING

```
by
```

Brenda Yuk-Ŷee Li
B.SC.. SIMON FRASER UNIVERSITY. 1983.

A THESIS SLBMITTED LV PARTIAL FULFILLMENT OF

Brenda Yuk-Yee Li 1986
 SIMON FRASER UNIVERSITY .

March, 1986.

[^0]Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyrignt owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed, or otherwise reproduced without his/her written permission.

L'autorisation a ete accordee a la Bibliothéque nationale du Canada de microfilmer cette thëse et de prêter ou de vendre des exemplaires du film。

L'auteur (titulaire du droit d'auteur) se réserve les autres dinoits de publication; ni la thése ni ae longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation ecrite..

APPROVAL

Name: Brenda Yuk-Yee Li

Degree: Master of Science

Title of Thesis: Graph Theoretic Controlled Rounding

Examining Committee :
Chairman: Dr. Lou Hafer
Senior Supervisor: Dr. Pavol Hell ${ }^{\prime}$

Dr. Tiko Kameda"

Dr. Arthur Lee Liestman

Date Approved: 13 March 1986

PART YAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Llbrary, and to make partial or single copies only for sych users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. 1 further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financlal galn shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay

Graph Theoretic Controlled Rounding

Author:

16 April 1986
(date)

ABSTRACT

The Matrix Controlled Rounding (MR) problem is the problem of rounding all real number entries of a given matrix, all row and solumn totals, and the grand total, to integer multiples of a positive base B subject to some constraints. In many applications the matrices may be symmetric, and it would be desirable to ensure that the rounded matrices are also symmetric. This motivates another class of the Controlled Rounding problem called the Graph Theoretic Controlled Rounding (GR) problem, which is the problem of rounding all edge weights of a given graph. We show that the MR problem as studied in [CE82] is a special case of our GR problem in the sense that it is linearly equivalent to the GR problem restricted to bipartite graphs. We also prove the existence of roundings of various kinds for different types of graphs. These results are useful for solving a ștronger version of the Matrix Controlled Rounding problem. namely the problem of a symmetric rounding of a symmetric matrix.

The previously known algorithm for the MR problem appeals to the algorithms for the Capacitated Transportation_problem which are not guaranteed to run in polynomial time. In this thesis we present two algarithms of time complexity $O\left(E E^{3 / 2}\right.$) where $E \in$ is the number of edges in the graph. They sulve not only the MR problem, but also the GR problem for different .types of graphs. The solutions are obtained by solving a certain Degree Constrained Subgraph and a certain Euler Tour problem on undirected graphs.

ACKNOWLEDGEMENTS

I wish to express my deepest thanks to my Senior Supervisor. Dr. Pavol Hell. for his-guidance and support throughout the work of this research. Also l would like to thank the members of my Supervisory Committee, Dr. Tiko Kameda and Dr. Art Liestman for their thoughtful and valuable comments, and in particular, the External Examiner, Dr. Kathy Heinrich, for her careful reading and corrections of the thesis. .

T TABLE OF CONTENTS

APPROVAL . \therefore ii
ABSTRACT iii
ACKNOWLEDGEMENTS iv
LIST OF FIGURES vii
Chapter 1 INTRODUCTION 1
Chapter 2 BEFINITIONS AND TERMINOLOGY 4
Chapter 3 GR ON DIRECTED GRAPHS 9
3.1. Relation between MR and $\widetilde{\mathrm{D} G R}$ 9
3.2. ${ }^{\circ}$ Relation between DGR and BGR 11
3.3. Existence of a Rounding 15
Chapter 4 GR ON UNDIRECTED GRAPHS 17
$\stackrel{\circ}{-}$
4.1. Relation between SMR and GR 17
4.2. Relation between GR and DCS 21
4.3. Existence of \mathfrak{a} Rounding for the BGR problem 28
4.4. Existence of a Rounding for the GR problem 31
4.5. Existence of a Rounding for the SMR problem 41
4.6. Some Important Examples Showing Our Bounds are Best Possible 42
Chapter 5 ALGORITHMS FOR THE DCS PROBLEM 46
5.1. DCS for Complete Graphs 46
5.1.1. Gale's Algorithm for Bipartite Graphs 46
5.1.2. Modification of Hakimi's Algorithm for Arbitrary Graphs 52
5.2. DCS for Bipartite Graphs 56
5.2.1. Maximum Network Flow Algorithm 57
5.2.2. Generalized Maximum Matching Algorithm 61
Chapter 6 CONCLUSIONS 69
REFERENCES 71

LIST OF FIGURES

Figure 2.1 : Example of an MR problem 4
Figure 2.2: Example of a GR problem 7
Figure 3.1 : Correspondence between MR and DGR 9
Figure 3.2 : Correspondence between DGR and BGR 13
Figure 3.3 : Example of a GR problem with some 0-relaxed edges 15
Figure 3.4 : Linear equivalence relations of rounding problems 16
Figure 4.1 : Correspondence between SMR and GR on undirected graphs 18
Figure 4.2 : Correspondence between GR and DCS on undirected graphs 22
Figure 4.3 : Correspondence between BGR and DCS on bipartite graphs 26
Figure 4.4 : Example of a rounding in general graphs 31
Figure 4.5 : Example of the Forbidden Configurations 36
Figure 4.6 : Example of a Graph G_{2} 38
Figure 4.7 : Example of a GR (1.1, $(n+1) / 2)$ 42
Figure 4.8 : Example of a GR (1.1. $(n+3) / 6)$ for Loopless Graphs 43
Figure 4.9 : Example of a GR ($1,2,1 / 2$) 44
Figure 4.10: Example of a GR (1,4/3.1/2) for Loopless Graphs 45
Figure 5.1: Existence of a graph in which vertex ν_{1} has a loop 53
Figure 5.2 : Existence of a graph in which v_{1} is adjacent to $v_{2}, \ldots, \nu_{\delta+1}$ 55
Figure 5.3 : Example of a bipartite graph and its corresponding network 58
Figure 5.4 : Replacing an are by multiple arcs to obtain a $0-1$ network

\qquad 60

CHAPTER 1

INTRODUCTION

The Matrix Controlled Rounding (abbreviated MR) problem is the problem of rounding all real number entries of a given tabular array (or matrix), all row and column totals, and the grand total, to integer multiples of a positive integer base B subject to the following constraints:
1.1 Each entry (or total) in the matrix is rounded to adjacent integer multiple of B. i.e. an entry (or total) a is rounded to either $B\left(-\frac{a}{B}-+1\right)$ or $\left.B\left(\frac{a}{B}\right\rfloor\right)$.
1.2 The sum of the rounded values along any row (respectively column) of the matrix is equal to the rounded value of the corresponding row (respectively column) total entry
1.3 The total sum of all rounded yalues is equal to the rounded value of the total sum of all values in the matrix.

Matrix Controlled Rounding has several applications. For example. one may use it to uniformize the data values in a matrix for analysis or to reduce the unnecessary fine numerical details to a desirable level. It can even be used to control statistical disclosure in tabular representation of frequency count data. Smalp magnitucie frequency count data may reflect a small, perhaps identifiable subset of respondent population. Under some circumstances this may result in disclosure of data obtained under pledges of confidentiality. Thus the data releaser may want to modify these frequency counts so that they become impreense. But he must be careful to do so without introducing unneciesary disruption to the relationships between data items such as the additive structure of talals [Fe75]. The Matrix Coptrolled Rounding problem with the additional constraint that integer multiples of the base B must be-
rounded to themselves is said to be 0-restricted. It has important application-in the area of survey design. especially in selection of sampling units [Er81].

There are some obvious simple rounding methods. One is to conventionally round the entries to the fixed integer base, e.g. to round a data value a to $B\left(\left[\frac{a}{B}+0.5\right]\right.$. Another is to round the data entries randomly. However these two methods of ten fail to satisfy the additive structure of the totals (constraints 1.2 and 1.3). In 1979, Causey developed an heuristic rounding procedure which worked sdisfactorily in a large percentage of cases but has been shown to fail the constraints 1.2 and 1.3 in some particular examples [Ca79]. Then the problem was investigated by Cox and Ernst in 1982. They have shown that a rounding solution satisfying constraints 1.1.1.2 and 1.3 always exists by modeling the problem as a Capacitated Transportation problem, and also developed some algorithms which depended on Transportation problem algorithms [CE82].

In many applications the matrices are symmetric, and it would be desirable to ensure that the rounded matrices are also symmetric. This motivates another class of controlled rounding problems Called Graph Theoretic Controlled Rounding (abbreviated GR) problems which cannot be solved by the algorithms developed by Cox and Ernst. The Graph Theoretic Controlled Rounding problem is the problem of rounding all edge weights of a given graph, as well as vertex totals (sum of the weights of all edges incident at a vertex) and grand total (sum of the weights of all edges in the given graph), which satisfies the following constraints:
1.4 The weight of each edge (or total) in the graph is rounded to an adjacent integer multiple of the base B i.e. a weight (or total) w is rounded to either $B\left(\frac{w}{B}+1\right)$ or $B\left(L \frac{w}{B} D\right)$.
1.5 The sum of the rounded aights of the edges incident at any vertex is equal to the rqunded value of the sum of the weights of all edges incident at the corresponding vertex.
1.6. The sum of all the rounded weights is equal to the rounded value of the total weight of all edges in the graph?

The Directed Graph Theoretic Controlled Rounding (abbreviated DGR) problem can be defined similarly if the given graph is directed. Instead of having a vertex total for each vertex, we have vortex totals, one for the incoming edges and the other for the outgoing edges. Therefore constraints 1.5 will be replaced by the following two constraints for DGR problems:
1.5a The sum of the rounded weights of the edges going into any vertex is equal to the rounded * value of the sum of the weights of all edges going into that vertex.
1.5 b Tue sum of the rounded weights of the edges going out from any vertex is equal to the rounded value of the sum of the weights gall edges going out from that vertex.
The notation, formal statement of the problems an problem simplification are established in Chapter 2. In Chapter 3, we will show that MR can be viewed as a special face of GR: namely the rounding of bipartite graphs, and give some insights and known results of the existence of a solution. Chapter 4 is concerned with the rounding problem of undirected graphs which is equivalent to the rounding of symmetric matrices with the additional constraint that the resulting matrices are also symmetric. The solution is obtained by solving a certain Degree Constrained Subgraph (abbreviated DCS) problem, and a certain Euler tour problem for undirected graphs. Chapter 5 presents some algorithms for solving the DCS problem, with which the GR problem can be solved efficiently.

CHAPTER 2

DEFINITIONS AND TERMINOLOGY

As stated in Chapter 1, the first constraint (constraint 1.1) of the Matrix Controlled Rou:tding problem requires that each entry in the matrix be rounded to an adjacent integer multiple of the base B. Some simplifying assumptions can be made immediately. By dividing. each of the entries in the matrix by B, an equivalent Controlled Rolinding Problem with base $B=1$ is obtained. Next. replacing each internal entry $\lambda_{i j}$ by its fractional part. i.e. $\lambda_{i j}\left\lfloor\lambda_{i j}\right\rfloor$ and adjusting all the tctals accordingly, we have the condition $0 \leqslant \lambda_{i j}<1$. An example is illustrated in Figtre 2.1. This is also true in the Graph Theoretic version. Therefore we may assume that

$$
\begin{aligned}
& B=2 \quad, \quad B=1 \\
& {\left[\begin{array}{cc:c}
0.7 & 4.0 & 4.7 \\
25 & 1.3 & 3.8 \\
\hdashline 3.2 & 5.3 & 8.5
\end{array}\right]} \\
& 0 \leqslant \lambda_{i j}<1 \quad\left[\begin{array}{cc:c}
0.35 & 0 & 0.35 \\
0.25 & 0.65 & 0.90 \\
\hdashline 0.60 & 0.65 & 1.25
\end{array}\right] .
\end{aligned}
$$

Figure 2.1 : Example of an MR problem
the simplifying conditions hold when considering a Controlled Rounding problem.
Now we will introduce the terminology that is going to be used throughout this thesis and agive a formal statement on the rounding problem.

A two dimensional tabular array A is an $(m+1) \times(n+1)$ array of real number entries. with $m \times n$ internal entries $\lambda_{i j}$, where $0 \leqslant \lambda_{i j}<1,1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$. m row total entries λ_{i}. where $1 \leqslant i \leqslant m, n$ column total entries λ_{j}, where $1 \leqslant j \leqslant n$, and a grand total entry λ. An MR (α, β, γ) is a function Λ which maps each internal entry $\lambda_{i j}$ of A to $\Lambda_{i j}$ which is either 0 or 1 . row total entry λ_{i} to $\Lambda_{i}=\sum_{j=1}^{n} \Lambda_{i}$, column total entry λ_{j} to $\Lambda_{j}=\sum_{i=1}^{n} \Lambda_{t j}$, and the grand total entry λ to $\Lambda=\sum_{i=1}^{m} \sum_{j=1}^{n} \Lambda_{i j}$, satisf ying the following constraints :
$2.1 \quad\left|\Lambda_{i j}-\lambda_{i j}\right|<\alpha$
$2.2 a^{\prime} \quad A_{i}-\lambda_{i}<\beta$
$2.2 \mathrm{~b} \quad \Lambda_{:}-\lambda_{j} \leftarrow \beta$
$2.3 \cdot A-\lambda<\gamma$
An $\operatorname{SMR}(\alpha, \beta, \gamma)$ (symmetric $\operatorname{MR}(\alpha, \beta, \gamma)$) is an $\operatorname{MR}(\alpha, \beta, \gamma)$ of a symmetric matris with the additional'constraint that the resulting matrix be symmetric. If any of the parameters α, β or γ has an underbar, then the corresponding constraints would be non-strict inequalities rather than strict inequalities. For example, an $\operatorname{MR}(\alpha, \underline{\beta}, \underline{\gamma})$ is the function A that satisfies the following constraints:
$2.4 \quad \Lambda_{i j}-\lambda_{i}<\alpha \quad \because$

$$
2.5 \mathrm{a} \quad \Lambda_{i}-\lambda_{i} \leqslant \beta
$$

$2.5 \mathrm{~b} \quad \Lambda_{2}-\lambda \leqslant \beta$
$2.6 \quad \Lambda \rightarrow \lambda \leqslant \gamma$

The MR (α, β, γ) problem asks for an MR (α, β, γ) of a matrix A. Similarly, The $\operatorname{SMR}(\alpha, \beta, \gamma)$ problem asks for an SMR (α, β, γ) of a symmetric matrix A.

A weighted undirected graph G is an undirected graph with vertex set V (where $|V|=n$), edge set E (where $|E|=m$) and a weight function $\lambda: E \rightarrow\{w: 0<w<1\}$. An integer weight function $\Lambda: E \rightarrow\{0.1\}$ is defined to be a $G R(\alpha, \beta, \gamma)$ of the graph G if it satisfies the following constraints:
$2.7 \quad|\Lambda(e)-\lambda(e)|<\alpha \quad \forall e$
$2.8 \quad|\Lambda(v)-\lambda(v)|<\beta \quad \forall v \in V$
$2.9 \quad|\Lambda(E)-\lambda(E)|<\gamma$
where $\Lambda(v)(\lambda(v)$ respectively $)$ (s the sum of the weights $\Lambda(e)(\lambda(e)$ respectively) of all edges e incident with v,
and $\Lambda(E)(\lambda(E)$ respectively $)$ is the sum of the weights $\Lambda(e)(\lambda(e)$ respectively $):$ of all edges e in the edge set E.

For convenience, we define $\lambda(\nu v)=0$ and $\Lambda(\nu v)=0$ if $u \nu \notin E$ and $u, v \in V$. A directed edge from vertex i to vertex j is denoted by (i, j) and an undirected edge joining vertices i and j is denoted by ij. Let $f: A \rightarrow B$ be a function and $S \subseteq A$ be a set. Then $f(S)=\sum_{o \in S} f(\tau)$.

A $\operatorname{BGR}(\alpha, \beta, \gamma)$ (Bipartite $\operatorname{GR}(\alpha, \beta, \gamma)$) is a $\operatorname{GR}(\alpha, \beta, \gamma)$ on a bipartite graph G. If G is directed, then a $\operatorname{DGR}(\alpha, \beta, \gamma)$ (Directed GR (α, β, γ)) can be defined similarly. Instead of having one constraint for the vertex totals, we would have two constraints, one for the incoming edges and the other for the outgoing edges. For example, constraint 2.8 would be replaced by the follow-: ing two constraints for a $\operatorname{DGR}(\alpha, \beta, \gamma)$ of G :

$$
\begin{array}{lll}
2.8 a & \Lambda\left(v_{i n}\right)-\lambda\left(y_{i n}\right)<\beta & \forall v \in V \\
2.8 b & \Lambda\left(v_{\text {su }}\right)-\lambda\left(v_{o u}\right)<\beta & \forall v \in V
\end{array}
$$

where $\Lambda\left(\dot{v}_{i n}\right)$ ($\lambda\left(v_{i n}\right)$ respectively) is the sum of the weight $\Lambda(e)(\lambda(e)$ respectively) of all incoming edges e of the vertex v.

1 and $\Lambda\left(v_{\text {out }}\right)\left(\lambda\left(v_{\text {out }}\right)\right.$ respectively $)$ is the sum of the weight $\Lambda(e)(\lambda(e)$ respectively) of all outgoing edges e of the vertex v.

A rounding in which integers are always rounded to themselves is said to be 0 -restricted. For example, MR (1.1.1) and $\operatorname{GR}(1,1,1)$ are 0 -restricted. Given a graph G and a weight function λ as in Figure 2.2a. a GR (1.1.1) is shown in Figure 2.2b. The edges that are missing in G can be conceptually viewed as edges having weights 0 and the rounding to 0 or 1 is only done on the edges that are present in G. Therefore the missing edges still have weights 0 after the rounding is done. If 0 can be rounded to 1 , then they should be present in the graph. This amounts to rounding in complete graphs whose edges may have weights 0 . We will refer to this kind of rounding as 0 -relaxed rounding. For example, MR (1.1,1) and GR (1.1,1) are 0-relaxed.

(a)

(b)

Figure 2.2 : Example of a GR problem

Mostly we are only interested in roundings in which all the parameters α, β and γ are. equal to 1 or all the parameters $\underline{\alpha} \underline{\beta}$ and $\underline{\gamma}$ are equal to 1 . Thus, for simplicity, we will refer to the roundings with $\alpha=\beta=\gamma=1$ as 0 -restricted and the roundings with $\underline{\alpha}=\underline{\beta}=\underline{\gamma}=1$ as 0 -relaxed.

Now we introduce another problem called Degree Constrained Subgraph (abbreviated DCS) problem which can be recuced from the GR problem. Let G be a graph in which each vertex i has an associated integer called the prescribed degree $p(i)$. A DCS is a spanning subgraph of G in which each vertex has degree equal to the prescribed degree. The DCS problem asks for a DCS of G.

Let us define the linear equivalence relation between two problems P_{1} and P_{2}. Suppose that Φ is an algorithm that transforms each instance I_{1} of problem P_{1} to an instance I_{2} of problem P_{2}. and Φ^{1} is an algorithm that transforms each solution S_{2} of the instance I_{2} of P_{2} to a solution S_{1} of the instance I_{1} of P_{1} such that S_{2} is a solution of $I_{2}=\Phi\left(I_{1}\right)$ if and only if $\Phi^{\prime}\left(S_{2}\right)=S_{1}$ is a solution of I_{1}. If Φ and I_{2} are linear in the size of I_{1}, S_{2} is linear in the size of I_{2}, and if Φ^{\prime} and S_{1} are linear in the size of S_{2}, then we say that P_{1} is linearly reducible to P_{2}, denoted by $P_{1} \rightarrow P_{2} . P_{1}$ and P_{2} are said to be linearly equivalent, denoted by $P_{1} \mapsto P_{2}$, if $P_{1} \rightarrow P_{2}$ and $P_{2} \rightarrow P_{1}$.

CHAPTER 3

GR ON DIRECTED GRAPHS

- In this chapter we concentrate on the GR problem for directed graphs, which plays an important role in in problems. We will first show the relationships between the problems $M R, D G R$ (GR on directed graphs) and BGR (GR on bipartite graphs). Then we will discuss the existence of a rounding for each of the problems.

3.1. Relation between MR and DGR

In Figure 3.1 we have tw examples-of controlled rounding. one is $\operatorname{MR}(1,1.1)$ and the c_{a} other is $\$ G R(1.1 .1)$. The reader may notice that there are some similarities or correspondences between them.
$\left[\begin{array}{ccc:c}0.5 & 0.7 & 0.9 & 2.1 \\ 0.6 & 0.1 & 0.5 & \frac{1}{2} \\ \hdashline 1.1 & 0.8 & 1.4 & 3.3\end{array}\right]$

Figure 3.1: Correspondence between MR and DGR

Theorem 3.1 : The problems $\operatorname{MR}(1,1,1)$ and $\operatorname{DGR}(1,1,1)$ are linearly equivalent.

Proof :

(1) The $\operatorname{MR}(1,1,1)$ problem is linearly reducible to the $\operatorname{DGR}(1,1,1)$ problem.

Given a two dimensional matrix_A, we construct a directed graph $\vec{G}=(\bar{V}, \bar{E})$ such that any rounding $\operatorname{DGR}(1,1,1)$ of \bar{G} will give a rounding $\operatorname{MR}(1,1,1)$ of A.

- 3

Let A be an $m \times n$ matrix and $\lambda_{i j}$ be the entry of A in row i and column j. Without loss of genérality, we may assume $m \leqslant n$. Let $\bar{G}=(\bar{V}, \bar{E})$ be a directed graph with vertex set $\bar{V}=\{1,2,3, \cdots, n\}$, edge set \bar{E} and weight function $\bar{\lambda}$ which are defined as follows:
$\bar{E}=\left\{e=(i, j) \mid \lambda_{i j}>0\right\}$
$\bar{\lambda}: \bar{E} \rightarrow\{w: 0<w<1\}$ so that $\bar{\lambda}(e)=\lambda_{i j}$ where $e=(i, j) \in \bar{E}$.
Obviously the construction and the size of the $\operatorname{DGR}(1,1,1)$ instance are linear in the size of the given $\operatorname{MR}(1,1,1)$ instance. Suppose we are given a $\operatorname{DGR}(1,1,1) \bar{\Lambda}$ of \bar{G}. $\operatorname{The} \operatorname{MR}(1,1,1)$ Λ of the matrix A is obtained as follows the rounding of the weight of the directed edge joining vertex i.to vertex j of \bar{G} gives the corresponding rounding of the entry $\lambda_{i j}$, i.e.,

$$
\Lambda_{i j}= \begin{cases}\bar{\Lambda}(e) & \text { if } e=(i, j) \in \bar{E} \\ 0 & \text { otherwise }\end{cases}
$$

Since $\bar{\Lambda}$ is a $\operatorname{DGR}(1,1,1)$, it is easy to see that Λ will satisfy the constraints for being an $\operatorname{MR}(1,1,1)$ of A.
(2) The $\operatorname{DGR}(1,1,1)$ problem is linearly reducible to the $\operatorname{MR}(1,1,1)$ problem.

Given a directed graph $\bar{G}=(\bar{V}, \bar{E})$ and a weight function $\bar{\lambda}$, we construct.a two dimensional matrix A such that any rounding $\operatorname{MR}(1,1,1)$ of A will give a rounding $\operatorname{DGR}(1,1,1)$ of \bar{G}.

Let $\bar{V}=\{1,2,3, \ldots, n\}$ and let
$\bar{\lambda}(i, j)$ be the weight of the directed edge from vertex i to vertex j in \bar{G}.

Then A is a square matrix of dimension n, and the entry in row i and column j. denoted by $\lambda_{i j}$, is defined as follows:
$-\lambda_{i j}=\left\{\begin{array}{lr}\bar{\lambda}(i, j) & \text { if }(i, j) \in \bar{E} \\ 0 & \text { otherwise }\end{array}\right.$
Obviously the construction and the size of the MR(1.1.1) instance are linear in the size of the given $\operatorname{DGR}(1,1,1)$ instance. Suppose we are given an $\operatorname{MR}(1.1,1) \Lambda$ of A. The corresponding $\operatorname{DGR}(1,1,1) \bar{\Lambda}$ of \bar{G} is obtained as follows, the rounded entry $\Lambda_{i j}$ in row i and column j gives the corresponding rounded weight $\bar{\Lambda}(i, j)$ of the directed edge from vertex i to vertex j in $\stackrel{f}{G}$. i.e..
$\bar{\Lambda}(e)=\Lambda_{i j}$ where $e=(i, j)$.
Since $\widehat{\Lambda}$ is an $\operatorname{MR}(1,1,1)$, it is easy to see that $\bar{\Lambda}$ will satisfy the constraints for being a $\operatorname{DGR}(1,1,1)$ of \bar{G}.

Corollary 3.2 : The problems MR (1,1,1) and DGR (1,1,1) are linearly equivalent.

Proof : The proof is essentially the same as that of Theorem 3.1 except that the DGR ($1,1,1$) instance is always a complete directed graph of in vertices.

3.2. Relation between DGR and BGR

As in many graph theoretic problems, Controlled Rounding on directed graphs is linearly equivalent to that onfbipartite graphs. An example is shown in Figure 3.2.

Theorem 3.3 : The problems $\operatorname{DGR}(1,1,1)$ and $\operatorname{BGR}(1,1,1)$ are linearly equivalent.

Proof :

(1) The $\operatorname{DGR}(1,1,1)$ problem is linearly reducible to the $\operatorname{BGR}(1,1,1)$ problem.

Given a directed graph $\bar{G}=(\bar{V}, \bar{E})$ and a weight function $\bar{\lambda}$, we construct a weighted bipartite graph $G=(X \cup Y E)$ such that any rounding $\operatorname{BGR}(1,1,1)$ of G will give a rounding $\operatorname{DGR}(1,1,1)$ of \bar{G}.

Let $\bar{V}=\{1,2,3, \ldots, n\}$ and let

$$
\bar{\lambda}(i, j) \text { be the weight of the directed edge from vertex } i \text { to vertex } j \text { in } \bar{G} .
$$

Then $G=(X \cup Y, E)$ is the corresponding bipartite graph instance where $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. A vertex i of \bar{G} corresponds to two vertices \dot{x}_{i} and y_{i} of G. The edge set E and weight function λ are defined as follows:

$$
\begin{aligned}
& E=\left\{e=\not \chi_{i} y_{j} \mid(i, j) \in \bar{E}\right\} \\
& \lambda: E \subset\{w: 0<w<1\} \text { so that } \lambda(e)=\bar{\lambda}(\bar{e}) \text { where } e=x_{i} y_{j} \text { and } \bar{e}=(i, j) .
\end{aligned}
$$

Clearly the construction and the size of the $\operatorname{BGR}(1,1,1)$ instance are linear in the size of the given $\operatorname{DGR}(1,1,1)$ instance. Suppose Λ is a $\operatorname{BGR}(1.1,1)$ of G. Then the rounded weight of the edge joining vertices x_{i} and y_{j} will give the rounded weight of the directed edge from vertex i to vertex j in \bar{G}. Thus the rounding $\bar{\Lambda}$ of \bar{G} is obtained as follows,
$\bar{\Lambda}(i, j)=\Lambda\left(x_{i} y_{j}\right)$.
\because
Since therrounding, Λ is a $\operatorname{BGR}(1 ; 1,1)$, it is easy to see that $\bar{\Lambda}$ will satisfy the constraints for being a $\operatorname{DGR}(1,1,1)$ of \bar{G}.
(2) The $\operatorname{BGR}(1.1 .1)$ problem is linearly feducible to the $\operatorname{DGR}(1.1,1)$ problem.

Given a bipartite graph $G=(X \bigcup Y E)$ and a weight function λ. we construct a weighted directed graph $\bar{G}=(\bar{V} \cdot \bar{E})$ such that any rounding $\operatorname{DGR}(1,1,1)$ of \bar{G} will give a' rounding

Figure 3.2: Correspondence between DGR and BGR

$\operatorname{BGR}(1,1.1)$ of G.

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\} . Y=\left\{y_{1}, y_{2}, \ldots, y_{n_{2}}\right\}$ and let

$\bar{\lambda}\left(x_{i} y_{j}\right)$ be the weight of the edge joining vertices x_{i} and y_{j} in G.

Then the weighted directed graph instance \bar{G} of the $\operatorname{DGR}(1.1 .1)$ problem is defined as follows:

$$
\begin{aligned}
& \bar{V}=\{1,2, \ldots, n\} \text { where } n=\max \left(n_{1}, n_{2}\right), \\
& \bar{E}=\left\{e=(i, j) \mid x_{i} y_{j} \in E\right\} \text { and }
\end{aligned}
$$

Clearly the construction and the size of the $\operatorname{DER}(1,1,1)$ instance are linear in the size of the given $\operatorname{BGR}(1,1,1)$ instance. Suppose $\bar{\Lambda}$ is a $\operatorname{DGR}(1,1,1)$ of \bar{G}. Then the rounded weight of the directed edge from vertex i to vertex j will give the corresponding rounded weight of the edge joining vertices x_{i} and y_{j} in G. Thus the rounding Λ of G is obtained as follows,

$$
\Lambda\left(x_{i} y_{j}\right)=\bar{\Lambda}(i, j)
$$

Since the rounding $\bar{\Lambda}$ is a $\operatorname{DGR}(1,1,1)$, it is easy to see that Λ will satisfy the constraints for being a $\operatorname{BGR}(1,1.1)$ of G.

Corollary 3.4 : The problems $\operatorname{DGR}(1,1,1)$ and $\operatorname{BGR}(1,1,1)$ are linearly equivalent.

Proof : The proof is the same as that of Theorem 3.3 with all the instances being complete graphs.

In some applications we may want some edges to be 0 -restricted and others to be 0 relaxed. That is, some 0 's must be rounded to 0 and others may be rounded to either 0 or 1 . In this case we can delete the edges that are 0-restricted and treat the problem as a GR ($1,1,1$) problem. As illustrated in Figure 3.3, the 0-restricted edges, are dotted and the 0-relaxed edges are solid. Now we delete all the dotted edges and construct the bipartite graph as in Figure 3.3b. Once we obtain a BGR (1,1,1) for the bipartite graph as in Figure 3.3c, we can get a DGR $(1,1,1)$ to the directed graph. We see in Figure 3.3d that all the 0 -restricted edges are rounded to 0 while some of the 0 -relaxed edges are rounded to 1 .

Figure 3.3 : Example of GR problem with some 0-relaxed edges

3.3. Existence of a Rounding

Cox and Ernst have shown that an $M R(1,1,1)$ always exists by modeling the problem as a Capacitated Transportation problem [CE82]. Recalling the linear equivalence relations shown in Sections 3.1 and 3.2. since we know that an $M R(1,1,1)$ always exists. a $\operatorname{DGR}(1,1,1)$ and a ${ }^{\circ}$ BGR(1.1.1) always exist. So we have the following result for the Graph Theoretic Controlled Rounding problem on directed graphs.

Theorem 3.5: A DGR(1,1,1) always exists.

An alternative direct (graph theoretic) proof will be given in Chapter 4 after we have discussed the relation between the GR and DCS problems.

In summary. Figure 3.4 depicts the linear equivalence relations of rounding problems. The MR(1.1.1) problem is linearly equivalent to the $\operatorname{DGR}(1,1,1)$ problem, which is linearly equivalent to the $\operatorname{BGR}(1,1,1)$ problem. The $\operatorname{MR}(1,1,1)$ problem is linearly equivalent to the DGR ($1,1,1$ problem. which is linearly equivalent to the $\operatorname{BGR}(1,1,1)$ problem. If we have an algorithm for solving the $\operatorname{BGR}(1,1,1)$, problem, the $\operatorname{MR}(1,1,1)$ and $\operatorname{DGR}(1,1,1)$ problems can also be solved by essentially the same algorithm.

CHAPTER 4

0

GR ON UNDIRECTED GRAPHS

Before showing the existence of a rounding for the GR problem on undirected graphs. we discuss the relationship, between the problems SMR (Symmetric MR), DCS (Degree Constrained Subgraph) and GR on undirected graphs.

4.1. Relation between SMR and GR

We have seen in Chapter 3 that the $\operatorname{MR}(1,1,1)$ problem fis linearly equivalent to the DGR(1,1,1) problem. The reader may suspect that MR is alsp related to GR on undirected graphs and it is not difficult to find such a relation. A weighte of undirected edge joining vertičes i and j in a graph can be viewed conceptually as two directed edges of the same weight in the graph, one from vertex i to vertex j, and the other from vertex j to vertex i, corresponding to two entries $\lambda_{i j}$ and $\lambda_{j i}$ of the same value in a matrix. However the correspondence is not the same between the loop at vertex i and the diagonal entry $\lambda_{i i}$ with positive value. because the weight of the loop contributes twice to the vertex sum while the value of $\lambda_{i 1}$ contributes only once to the row or column sum. An example is shown in Figure 4.1.

Theorem 4.1: The SMR ($\alpha, \beta, 2 \gamma$) problem on symmetric matrices with all diagonal entries being 0 is linearly equivalent to the $\operatorname{GR}(\alpha, \beta, \gamma)$ problem on loopless undirected graphs.

Proof:

(1) The SMR ($\dot{\alpha}, \beta, 2 \gamma$) problem on symmetric matrices with all diagonal entries being 0 is linearly reducible to the $\mathrm{GR}(\alpha, \beta, \gamma)$ problem on loopless undirected graphs.
(a) $\left[\begin{array}{ccc}0 & 0 & 0.9 \\ 0 & 0 & 0.3 \\ 0 & 0.9 & 0.3 \\ 0\end{array}\right]$

$\stackrel{-}{\circ}$
(b)

$$
\left[\begin{array}{ccc}
0.3 & 0.9 & 0 \\
0.9 & 0 & 0.7 \\
0 & 0.7 & 0.4
\end{array}\right]
$$

Figure 4.1 : Correspondence between SMR and GR on undirected graphs

Given a symmetric matrix A with all diagonal entries being 0 . we construct a loopless undirected graph $G=(V E)$ such that any rounding $G R(\alpha, \beta, \gamma)$ of G will produce a symmetric rounding SMR ($\alpha, \beta, 2 \gamma$) of A.

Let A be the given symmetric matrix of dimension n and let
$\lambda_{i j}$ be the entry of A in row i and column j.

Then $G=(V, E)$ is an undirected graph with vertex set $V=\{1,2,3, \therefore \Omega\}$, edge set E and weight function λ_{G} which are defined as follows:

$$
\begin{aligned}
& E=\left\{e=i j \mid \lambda_{i j}>0\right\} \\
& \lambda_{G}: E \rightarrow\{w: 0<w<1\} \text { so that } \lambda_{G}(e)=\lambda_{i j} \text { where } e=i j \in E
\end{aligned}
$$

Clearly the construction and the size of the $G R$ instance are linear in the size of the given SMR instance. Suppose Λ_{G} is a $\operatorname{GR}(\alpha, \beta, \gamma)$ of G. Then the symmetric rounding Λ of the ${ }^{*}$ matrix A is obtained as follows, the rounding of the weight of the edge joining vertices i and j gives the corresponding rounding of the entries $\lambda_{i j}$ and $\lambda_{j .}$. i.e.

$$
\Lambda_{i j}= \begin{cases}\Lambda_{j 1} & \text { if } i>j \\ \Lambda_{G}(e) & \text { if } i<j \text { and } e=i j \in E \\ 0 & \text { otherwise }\end{cases}
$$

The rounded row and column sums of A are equal to the rounded vertex sums of G. and the sum of all rounded values of A is equal to twice of tie sum of the rounded edge weights of G. Since Λ_{C} is a $\operatorname{GR}(\alpha, \beta, \gamma)$, it is easy to see that the symmetric, founding Λ. constructed above will satisfy the constraints for being an SMR ($\alpha, \beta .2 \gamma)$.
(2) The GR (α, β, γ) problem on loopless undirecte graphs is linearly reducible to the $\operatorname{SMR}(\alpha, \beta, 2 \gamma)$ problem on symmetric matrices with all diagonal entries being 0.

Given a loopless undirected graph $G=(1, E)$ and a weight function $\lambda_{\mathcal{G}}$. We construcit a symmetric matrix A with all diagonal entries being 0 such that any symmeiric rounding $\operatorname{SMR}(\alpha, \beta, 2 \gamma)$ of A will give a rounding $\operatorname{GR}(\alpha, \beta, \gamma)$ of G

Let $V=\{1.2, \ldots, n\}$ and let
$\lambda_{G}(i j)$ be the weight of the edge joining vertices i and j in G.

Then A is a symmetric matrix of dimension n, and the entry in row i and column j. denoted by λ_{i}. is denfed as follows:

$$
\lambda_{i j}= \begin{cases}\lambda_{G}(e) & \text { if } e=i j \in E \\ 0 & \text { otherwise }\end{cases}
$$

Obviously the construction and the size of the $\operatorname{SMR}(\alpha, \beta, 2 \gamma)$ instance are linear in the size of the given $G R(\alpha, \beta, \gamma)$ instance. Since G is loopless, all the diagonal entries of A are 0 . Suppose Λ is an $\operatorname{SMR}(\alpha, \beta, 2 \gamma)$ of A. Then the corresponding rounding Λ_{G} of the graph G is obtained as follows, the value of the rounded entry $\Lambda_{i j}$ in row i and column j of A gives the rounded weight $A(i j)$ of the edge joining vertices i and j in G, i.e.,

$$
\Lambda_{G}(e)=\Lambda_{i j} \text { where } e=i j
$$

The rounded vertex totals of G are equal to the rounded row sums and column sums of A. and the sum of the rounded weights of G is equal to half of the sum of the rounded values of A. Since Λ is an $\operatorname{SMR}(\alpha, \beta, 2 \gamma)$, it is easy to see that the rounding Λ_{G} constructed above will satisfy the constraints for being a $\operatorname{GR}(\alpha, \beta, \gamma)$ of the loopless undirected graph G.

Theorem 4.2: The SMR ($2 \alpha, \beta, 2 \gamma$) problem on arbitrary symmetric matrices is linearly reducible to the GR (α, β, γ) froblem on arbitrary undirected graphs.

Proof : The prooi is similar to that of Theorem 4.1. However the weight of a loop contributes twice to the vertex sum while the value of a diagonal entry contributes only once to the row and column sum. So in order to make the row (or column) sums equal to the vertex sums, the weight of a loop in the GR instance should be equal to half of the value of the corresponding diagonal entry. Then a rounding $\operatorname{GR}(\alpha, \beta, \gamma)$ of the constructed graph G will give a symmetric rounding of the corresponding matrix, in which the difference between the original and rounded value of a diagonal entry may be close to 2γ, and thus an $\operatorname{SMR}(2 \alpha, \beta, 2 \gamma)$.

4.2. Relation between GR and DCS

The linear equivalencerelations we have seen so far are all' on controlled rounding. problems. Now we are going to show the relation between the problems GR and DCS (Degree Constrained Subgraph).

Theorem 4.3: The GR(1.1,1) problem is linearly reducible to the DCS problem.

Proof : Given a graph $G=(V, E)$ and a weight function $\lambda: E \rightarrow\{w: 0<w<1\}$. we define a DCS instance $G^{\prime}=\left(V^{\prime} E^{\prime}\right)$ with weight function $\lambda^{\prime}: E \rightarrow\{w: 0<w<1\}$ and prescribed degrees p as follows:

$$
\begin{aligned}
& V^{n}=V \cup\{z\}^{*} \quad(\text { Where } \approx £ V) \\
& E=E \uplus\{e=z \bar{v} T \bar{v} \in V \text { and } \lambda(\cdot) \text { is not integral }\} \\
& \cup\{e=z z \mid \lambda(E) \text { is not integral }\} \text {. } \\
& \lambda^{\prime}(e)=\left\{\begin{array}{c}
\lambda(e) \\
\Gamma \lambda(v)]-\lambda(v) \\
\lambda(E)-[\lambda(E)
\end{array}\right. \\
& \text { if } e \in E \\
& \text { if } e=z v \text { and } v \in V \\
& \text { if } e=z=
\end{aligned}
$$

The prescribed degree of each vertex is the sum of the weight of alledges incident with that vertex (the weight of a loop contributes twice to the prescribed degree).

$$
\begin{aligned}
p(v) & =\lambda^{\prime}(v) \quad \forall v \in-\{z\} \\
& =\lambda(v)+\lceil\lambda(v)\rceil-\lambda(v)=-\lambda(v) \\
p(z) & =\lambda^{\prime}(z) \\
& \left.=2(\lambda(E)-\lfloor\lambda(E)])+\sum_{v \in:}\{\lambda(v)\rceil-\lambda(v)\right\} \\
& =2 \lambda(E)-2\left[\lambda(E)-\left(\sum_{v \in:}\lceil\lambda(v)\rceil\right)-2 \lambda(E)=\sum_{v \in T}\lceil\lambda(v)\rceil-2\lfloor\lambda(E)]\right.
\end{aligned}
$$

Clearly the construction and the size of G^{i} are bounded linearly in the size of G as $|V|=|V|+1$ and $|E| \leqslant|E|+|V|+1$. Now we are going to describe an algorithm for obtaining a $\operatorname{GR}(1,1,1)$ of G when given a DCS of G^{\prime}.

Given a $D C S \bar{G}=(\bar{V}, \bar{E})$ of $G^{\prime}=(V E)$, the corresponding rounding Λ of $G=(V E)$, is obtained as follows:

1
Figure 4.2 : Correspondence between GR and DCS on undirected graphs

$$
\begin{aligned}
& \Lambda: E \rightarrow\{0,1\} \text { where } \\
& \Lambda(e)= \begin{cases}1 & \text { if } e \in \bar{E} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Obviously the construction is linear and it remains to show that Λ satisfies the conditions fof being a $\operatorname{GR}(1,1,1)$.
(a) $|\Lambda(e)-\lambda(e)|<1 . \quad \forall e$

Trivial.
(b) $|\Lambda(v)-\lambda(v)|<1 \quad \forall v \in V$

Let the degree of v in \bar{G} be $\bar{d}(v)$.
Since \bar{G} is a DCS; the degree of every vertex is precisely the prescribed degree. i.e.
$\bar{d}(v)=p(v)=\lceil\lambda(v)\rceil$. In other words, the number of edges incident with vertex v in \bar{G} is
$\lceil\lambda(v)\rceil$. Among these $\lceil\lambda(v)\rceil$ edges, there máy be the edge $e=v z$. Thus $\Lambda(v)=\lceil\lambda(v)\rceil-1$ or $\Lambda(v)=\lceil\lambda(v)\rceil$ depending on whether e is in \bar{G} or not. In case $\lambda(v)$ is an-integer. the edge e does not exist in G^{\prime}. so $\Lambda(v)=\lceil\lambda(v)\rceil=\lambda(v)$.

Therefore $\Lambda(v)-\lambda(v)<1$.
(c) $\mid \Lambda(E)-\lambda(E)<1$

Let the degree of the vertex z in \bar{G} be $\bar{d}(z)$

Let $S_{1}=\{v \in V: \Lambda(v)=\lceil\lambda(v)\rceil\}$ and

$$
S_{2}=\{v \in V: \Lambda(v)=\lceil\lambda(v)\rceil-1\}=\{v \in V: \Lambda(v)<\lambda(v)\} .
$$

Since \bar{G} is a $\operatorname{DCS}, \bar{d}(z)=p(z)$, and we have

$$
\left.\left.\bar{d}(z)=\left(\sum_{u \in i} \lambda(v)\right\rceil\right)-2 _\lambda(E)\right\rfloor
$$

$$
\begin{aligned}
& =\sum_{v \in S_{1}}\lceil\lambda(v)\rceil+\left(\sum_{v \in \rho_{2}}\lceil\lambda(v)\rceil\right)-2\lfloor\lambda(E)\rfloor \\
& =\sum_{v \in S_{1}} \Lambda(v)+\left(\sum_{v \in S_{2}} \Lambda(v)+1\right)-2\lfloor\lambda(E)\rfloor \\
& =\sum_{v \in S_{1}} \Lambda(v)+\sum_{v \in S_{2}} \Lambda(v)+\left(\sum_{v \in S_{2}} 1\right)-2\lfloor\lambda(E) \downarrow \\
& =\sum_{v \in V} \Lambda(v)+\left|S_{2}\right|-2\lfloor\lambda(E)\rfloor \\
& =2 \Lambda(E)-2\lfloor\lambda(E)\rfloor+|\{v \in V: \Lambda(v)<\lambda(v)\}|
\end{aligned}
$$

The loop at the vertex z contributes 2 to the degree $\bar{d}(z)$ if it is in the DCS \bar{G}. Recall that every vertex v has at most one edge incident with vertex z and its existence in \bar{G} determines whether $\Lambda(v)$ is less than $\lambda(v)$ or not. If the loop is not in \bar{G}, then the degree $\bar{d}(z)$ must come from all edges joining vertex z and vertices of V only. In other words. $\bar{d}(\dot{z})=\| \nu \in V: \Lambda(v)<\lambda(v)| |$, i.e., $2 \Lambda(E)-2\lfloor\lambda(E)\rfloor=0$, whic. implies $\Lambda(E)=\lfloor\lambda(E)\rfloor$. If the loop is in \bar{G}, then $\bar{d}(z)-2$, is the sum of all edges joining vertex z to vertices of V in \bar{G}. In other words, $\bar{d}(z)-2=|\{\nu \in V: \Lambda(v)<\lambda(v)\}|$. i.e., $2 \Lambda(E)-2\lfloor\lambda(E)\rfloor=2$, which implies $\Lambda(E)\lfloor\lambda(E)\rfloor \mp 1$ or $\Lambda(E)=\lfloor\lambda(E)\rfloor+1$. When $\lambda(E)$ is an integer. the loop does not exist in G^{\prime} and so $\Lambda(E)=\lfloor\lambda(E)\rfloor$.

Therefore $|A(E)-\lambda(E)|<1$.

Hence the constructed rounding Λ is a $\operatorname{GR}(1,1,1)$ of G.

If the given graph G is bipartite, we would prefer the corresponding instance of DCS to be bipartite too (because bipartite DCS problems are easier to solve). This can be done by introducing two vertices z_{x} and z_{y} instead of one vertex z in the graph G^{\prime}, and we have the following Theorem.

Theorem 4.4 : The $\operatorname{BGR}(1,1,1)$ problem is linearly reducible to the DCS problem on bipartite graphs.

Proof : Given a bipartite graph $G=(X \cup Y, E)$ and a weight function $\lambda: E \rightarrow\{w: 0<w<1\}$. we define a bipartite DCS ihstance $G^{\prime}=\left(X^{\prime} \cup Y^{\prime}, E\right)$ with weight function $\lambda^{\prime}: E \rightarrow\{w: 0<w<1\}$ and prescribed degrees p as flllows:

$$
\begin{aligned}
& G^{\prime}=\left(X^{\prime} \cup Y^{\prime}, E^{\prime}\right) \\
& X^{\prime}= X \cup\left\{z_{x}\right\} \quad\left(\text { where } z_{x} \notin X\right) \\
& Y^{\prime}= Y \cup\left\{z_{y}\right\} \quad\left(\text { where } z_{y} \notin Y\right) \\
& E= E \cup\left\{e=z_{x} y \mid y \in Y \text { and } \lambda(y) \text { is not integral }\right\} \\
& \cup\left\{e=x z_{y} ; x \in X \text { and } \lambda(x) \text { is not integral }\right\} \\
& \cup\left\{e=z_{x} z_{y} \mid \lambda(E) \text { is not integral }\right\} \\
& \lambda^{\prime}(e)= \begin{cases}\lambda(e) & \text { if } e \in E \\
\Gamma \lambda(y) 下-\lambda(y), & \text { if } e=z_{x} y \text { and } y \in Y \\
\Gamma \lambda(x) 下-\lambda(x) & \text { if } e=x z_{y} \text { and } x \in X \\
\lambda(E)-\lfloor\lambda(E) \backslash & \text { if } e=z_{x} z_{y}\end{cases}
\end{aligned}
$$

The prescribed degree of each vertex in G the sum of the weight of all edges incident with that vertex.

$$
\begin{aligned}
p(v) & =\lambda^{\prime}(v) \quad \forall v \in X \cup Y \\
& =\lceil\lambda(v)\rceil \\
p\left(z_{x}\right) & =\lambda^{\prime}\left(z_{x}\right) \\
& \left.=\lambda(E)-\lfloor\lambda(E)\rfloor+\sum_{x=Y}(\Gamma \lambda(y)\rceil-\lambda(y)\right) \\
& =\lambda(E)-\lfloor\lambda(E)\rfloor+\left(\sum_{F^{\prime}}\lceil\lambda(y)\rceil\right)-\lambda(E)=\left(\sum_{\notin Y}\lceil\lambda(y)\rceil\right)-\lfloor\lambda(E)\rfloor
\end{aligned}
$$

$$
\begin{aligned}
p\left(z_{y}\right) & =\lambda^{\prime}\left(z_{y}\right) \\
& =\lambda(E)-\lfloor\lambda(E)\rfloor+\sum_{x \in X}(\lceil\lambda(x)\rceil-\lambda(x)) \\
& =\lambda(E)-\lfloor\lambda(E)\rfloor+\left(\sum_{x \in X}\lceil\lambda(x)\rceil\right)-\lambda(E)=\left(\sum_{x \in X}\lceil\lambda(x)\rceil\right)-\lfloor\lambda(E)\rfloor
\end{aligned}
$$

\dot{C} learly the construction and the size of G^{\prime} are bounded linearly in the size of G as $|V|=|V|+2$ and $|E| \leqslant|E|+|V|+1$. Now we are going to describe an algorithm for obtaining a $\operatorname{BGR}(1,1,1)$ of G When given a DCS of G^{\prime}.

Figure 4.3 : Correspondence between BGR and DCS on bipartitefraphs

Given a DCS $\bar{G}=(\bar{X} \cup \bar{Y}, \bar{E})$ of $G^{\prime}=\left(X^{\prime} \cup Y^{\prime}, E\right)$, the corresponding rounding Λ of $G=(X \cup Y E)$ is constructed as follows :

$$
\begin{array}{ll}
\Lambda: E \rightarrow\{0,1\} & \rangle \\
A(e)= \begin{cases}1 & \text { if } e \in \bar{E} \\
0 & \text { otherwise }\end{cases}
\end{array}
$$

Obviously the construction is linear and it remains to show that satisfies the conditions for being a $\operatorname{BGR}(1,1,1)$.
(a) $|\Lambda(e)-\lambda(e)|<1 \quad \forall e$

Trivial.
(b) $\mid \Lambda(v)-\lambda(v)<1 \quad \forall v \in X \cup Y$

The proof is the same as that of Theorem 4.3.
(c) $|\Lambda(E)-\lambda(E)|<1$

Let the degree of vertex z_{x} in \bar{G} be $\bar{d}\left(z_{x}\right)$.
Let $S_{1}=\{y \in Y: \Lambda(y)=\lceil\lambda(y)\rceil$ and

$$
S_{2}=\left\{y \in Y^{\prime}: \Lambda(y)=\lceil\lambda(y)-1\}=\left\{y \in Y^{\prime}: \Lambda(y)<\lambda(y)\right\} .\right.
$$

- Since \bar{G} is a DCS, $\bar{d}\left(z_{x}\right)=p\left({ }_{\mathrm{F}}^{\mathrm{x}}\right.$), and we have

$$
\begin{aligned}
\bar{d}\left(z_{x}\right) & =\left(\sum_{y \in Y}\lceil\lambda(y)\rceil\right)-\lfloor\lambda(E)\rfloor \\
& =\sum_{y \in S_{1}}\lceil\lambda(y)\rceil+\left(\sum_{v \in S_{2}}\lceil\lambda(y)\rceil\right)-\lfloor\lambda(E)\rfloor \\
& =\sum_{y \in S_{1}} \Lambda(y)+\left(\sum_{\forall \in S_{2}} \(y)+1\right)-\lfloor\lambda(E)\rfloor \\
& =\sum_{y \in S_{1}} \Lambda(y)+\sum_{x \in s_{2}} \Lambda(y)+\left(\sum_{y} 1\right)-\lfloor\lambda(E)\rfloor
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left(\sum_{y \in Y} \Lambda(y)\right)^{\prime}+\mid S_{2} \dagger\right\rfloor\lfloor\lambda(E)\rfloor \\
& \left.=\Lambda(E)-\lfloor\lambda(E)\rfloor^{\prime}+| | y \in Y: \Lambda(y)<\lambda(y)\right\} \mid
\end{aligned}
$$

Among these $\bar{d}\left(z_{x}\right)$ edges, there is at most one, edge which is not incident with any vertex in Y, namely the edge joining vertices z_{x} and z_{y}. Recalling from the construction of. Λ that $\Lambda(y)$ is less than $\lambda(y)$ when the edge joining vertex $y \in Y$ and vertex z_{x} is in the DCS \bar{G}. If the edge $z_{x} z_{y}$ is not in \bar{G}, then the degree $\bar{d}\left(z_{x}\right)$ must come from all edges joining vertex z_{x} and vertices of Y. In other words $\left.\bar{d}\left(z_{x}\right)=\| y \in Y: \Lambda(y)<\lambda(y)\right\} \mid$ which implies $\Lambda(E)-\lfloor\lambda(E)\rfloor=0 \quad$ or $\quad \Lambda(E)=\lfloor\lambda(E)\rfloor$. If the edge $z_{x} z_{\dot{y}}$ is in \bar{G}. then $\left.\bar{d}\left(z_{x}\right)-1=\| y \in Y:(y)<\lambda(y)\right\}$ which implies $\Lambda(E)-\lfloor\lambda(E)\rfloor=1$ or $\Lambda(E)=\lfloor\lambda(E)\rfloor+1$. When $\lambda(E)$ is an integer, the edge $z_{x} z_{y}$ does not exist in the graph G^{\prime}. so in this case $\Lambda(E)-\lfloor\lambda(E)\rfloor=0$ or $\Lambda(E)=\lfloor\lambda(E)\rfloor$.

Therefore $\mid \Lambda(E)-\lambda(E)<1$.
Hence the rounding Λ constructed above is a $\operatorname{BGR}(1,1,1)$ of G.

4.3. Existence of a Rounding for the BGR problem

Before getting into the theorems, det us first giveme notation that is used in this section.
Given a weighted graph G with vertex set V. If V_{1} and V_{2} are subsets of V. then $m_{G}\left(V_{1}, V_{2}\right)$ denotes the number of edges joining vertices in V_{1} with vertices in V_{2} and $\lambda_{G}\left(V_{1}, V_{2}\right)$ denotes the sum of the weights of all edges joining vertices in V_{1} with vertices in V_{2}.

We know from Chapter 3 tha: the $\operatorname{MR}(1,1,1)$ probiem is linearly equivalent to the $\operatorname{DGR}(1.1,1)$ problem, which is linearly equivalent to the $\operatorname{BGR}(1,1,1)$ problem. Since an $\operatorname{MR}(1,1,1)$ is shown to exist in [CE82] we also have' a theorem on the existence of a $\operatorname{BGR}(1,1,1)$.

We give a different proof of this fact based on the following necessary and sufficient condition for a bipartite graph to have a DCS with prescribed degrees.

Theorem 4.5 (L. Lovász [Lo79]) : A bipartite graph $G=(X \cup Y, E)$ has a DCS with prescribed degree p if and only if :
(1) $\cdot p(X)=p(Y)$
(2) $p\left(X^{\prime}\right) \leqslant p\left(Y^{\prime}\right)+m_{G}\left(X^{\prime}, Y-Y^{\prime}\right) \quad$ for every $X^{\prime} \subseteq X^{\prime}$ and $Y \subseteq Y$

Theorem 4.6 : $\operatorname{A} \operatorname{RGR}(1,1,1)$ always exists.

Proof:

Let $G=(X \cup Y, E)$ be an arbitrary bipartite graph with weight function $\lambda: E \rightarrow\{w: 0<w<1\}$ for which we seek a $\operatorname{BGR}(1,1,1)$, and let $G^{\prime}=\left(X^{\prime} \cup Y^{\prime}, E\right)$ be the corresponding DCS instance with prescribed degrees p defined as follows:

$$
\quad p\left(z_{\forall}\right)=\left(\sum_{x \in X}\lceil\lambda(x)\rceil\right)-\lfloor\lambda(E)\rfloor
$$

$$
\begin{aligned}
& X^{\prime}=X \cup\left\{z_{\lambda}\right\} \quad \text { (where } z_{\lambda} \notin X \text {) } \\
& y^{\prime}=y^{\prime} U^{\prime}\left\{z_{y}\right\} \quad\left(\text { where } z_{y} \& Y\right) \\
& E=E \cup\left\{z_{x} y \mid y \in Y \text { and } \lambda(y) \text { is not integral }\right\} \\
& U\left\{x z_{y} \mid x \in X \text { and } \lambda(x) \text { is not integral }\right\} \\
& \cup\left\{z_{x} z_{y} \mid \lambda(E) \text { is not integral }\right\} \\
& p(v)=\lceil\lambda(v)\rceil \quad \forall v \in X \cup Y \\
& { }^{\prime} \mathbf{p}^{\left(z_{x}\right)}=\left(\sum_{y \in Y}\lceil\lambda(y)\rceil\right)-\lfloor\lambda(E)\rfloor
\end{aligned}
$$

By Theorem 4.4 a DCS with prescribed degrees p of the graph G will give a $\operatorname{BGR}(1,1,1)$ of the bipartite graph G. So now instead of showing the existence of a $\operatorname{BGR}(1,1,1)$ for G, we will show/the existence of a DCS for G, i.e. we show that the conditions of Theorem 4.5 are met.
(1)

(1) $p\left(X^{\prime}\right)=p\left(Y^{\prime}\right)$

$$
\left.\begin{array}{rl}
\text { Note that } p\left(X^{\prime}\right) & =p(X)+p\left(z_{x}\right)
\end{array}=\sum_{x \in X}\lceil\lambda(x)\rceil+\sum_{y \in Y}\lceil\lambda(y)\rceil-\lfloor\lambda(E)\rfloor\right]
$$

Thus $p\left(X^{\prime}\right)=p\left(Y^{\prime}\right)$.

- (2) $p\left(X^{\prime \prime}\right) \leqslant p\left(Y^{\prime \prime}\right)+m_{\sigma^{\prime}}\left(X^{\prime \prime}, Y^{\prime}-Y^{\prime \prime}\right) \quad$ for every $X^{\prime \prime} \subseteq X^{\prime}$ and $Y^{\prime \prime} \subseteq Y^{\prime}$

Let $X^{\prime \prime} \subseteq X^{\prime}$ and $Y^{\prime \prime} \subseteq Y^{\prime}$.

Recalling from Theorem 4.4 that $p(v)$ is the sum of the weights of all edges incident with $\nu\left(\right.$ for each $\left.v \in X^{\prime} \cup Y^{\prime}\right)$, we have

$$
p\left(X^{\prime \prime}\right)=\lambda_{C^{\prime}}\left(X^{\prime \prime},{ }^{\llcorner } Y^{\prime}\right)=\lambda_{G^{\prime}}\left(X^{\prime \prime}, Y^{\prime \prime} \cup Y^{\prime \prime}-Y^{\prime \prime}\right)
$$

$$
p\left(Y^{\prime \prime}\right)=\lambda_{G^{\prime}}\left(Y^{\prime \prime}, X^{\prime}\right)=\lambda_{G}\left(Y^{\prime \prime}, X^{\prime \prime} \cup X^{\prime}-X^{\prime \prime}\right)
$$

-

$\mathcal{S}^{\prime\left(X^{\prime \prime}\right)-p\left(Y^{\prime \prime}\right)=\lambda_{G^{\prime}}\left(X^{\prime \prime}, Y^{\prime \prime}-Y^{\prime \prime}\right)-\lambda_{G}\left(Y^{\prime \prime}, X^{\prime}-X^{\prime \prime}\right), ~\left(X^{\prime \prime}\right)}$

$$
\leqslant \lambda_{G^{\prime}}\left(X^{\prime \prime}, Y^{\prime \prime}-Y^{\prime \prime}\right) \leqslant m_{G^{\prime}}\left(X^{\prime}, Y^{\prime}-Y^{\prime \prime}\right) \quad(\text { since } \lambda(e)<1) .
$$

Thus $p\left(X^{\prime \prime}\right) \leqslant p\left(Y^{\prime \prime}\right)+m_{G}\left(X^{\prime \prime}, Y^{\prime \prime}-Y^{\prime \prime}\right) \quad$ for every $X^{\prime \prime} \subseteq X^{\prime}$ and $Y^{\prime \prime} \subseteq Y^{\prime}$.
Therefore a DCS always exists for G^{\prime} and hence a $\operatorname{BGR}(1,1,1)$ always exists for a bipartite graph G

4.4. Existence of a Rounding for the GR problem

We know that a BGR(1.1.1) always exists for bipartite graphs. but this is not true for general graphs as illustrated in Figure 4.4. We can see the rounding in Figure 4.4b or 4.4 c is the best we can do. and thus a $\operatorname{GR}(1,1,1)$ may not exist for an arbitrary graph.

Given an arbitrary undirected graph G of n vertices, and a weight function $\lambda \cdot E \rightarrow\{w: 0<w<1\}$, we create a weighted bipartite graph $\bar{G}_{\text {of }} 2 n$ vertices. A vertex i in G corresponds to two vertices x_{i} and y_{i} in \bar{G}, and an edge $i j$ of weight $\lambda(i j)$ in G corresponds ta two edges $x_{i} y_{j}$ and $x_{j} y_{i}$ in \bar{G}. both of weight $\lambda(i j)$. Since \bar{G} is bipartite. a $\operatorname{BGR}(1,1,1)$ always exists. Tuus we can obtain the $\operatorname{BGR}(1,1,1) \bar{\Lambda}$ of \bar{G} and convert the $0-1$ rounding $\bar{\Lambda}$ in \bar{G} to a $0-1 / 2-1$ rounding Λ (i.e. a rounding with weights either $0.1 / 2$. or 1) in G as follows.

(a)

(c)

Figure 4.4 : Example of a rounding in general graphs

Let e be the edge $i j$ in G and e_{1}, \dot{e}_{2} be the edges $x_{i} y_{j}$ and $x_{j} y_{i}$ respectively in \bar{G}.

Then $\Lambda(e)=\frac{\bar{\Lambda}\left(e_{1}\right)+\bar{\Lambda}\left(e_{2}\right)}{2}$.
Since $2 \Lambda(E)=\bar{\Lambda}(\bar{E}), 2 \lambda(E)=\bar{\lambda}(\bar{E})$ and $|\bar{\Lambda}(\bar{E})-\bar{\lambda}(\bar{E})|<1$, the $0-1 / 2-1$ rounding Λ will satisfy the constraint $|\Lambda(E)-\lambda(E)|<1 / 2$. Let $G *$ be a subgraph of G consisting of all the $1 / 2$-edges of G. There is an even number of vertices of odd degree in each of the connected components of G_{*}. We are going to eliminate these odd vertices in pairs as follows. Find a trail. (with repeated vertices allowed) joining two vertices of odi degree in the component and alternately add and subtract $1 / 2$ to the edges of the trail. If a vertex v has odd degree in ${ }^{*} G_{*}$, then $\Lambda(v)$ is half-integral and lies between $\lfloor\lambda(v)\rfloor$ and $\lfloor\lambda(v)\rfloor+1$, i.e. $\Lambda(v)=\lfloor\lambda(v)\rfloor+1 / 2$, and so must satisfy the constraint $|\Lambda(v)-\lambda(v)|<1 / 2$. After adding or subtracting $1 / 2$ to one of its incident edges, then $\Lambda(v)=\lfloor\lambda(v)\rfloor+1$ or $\lfloor\lambda(v)\rfloor^{*}$ and the constraint $\left\lfloor\grave{\Lambda}(v)-\left.\lambda(v)\right|^{*}<1\right.$ is satisfied: Since the addition or subtraction of $1 / 2$ is arbitrary for the starting edge of the trail, it is easy to see that the vertices of odd degree can all be eliminated in such a way that the following two constraints are satisfied :

$$
\begin{align*}
& |\Lambda(v)-\lambda(v)|<1 \quad \forall v \in V \tag{4.1}\\
& |\Lambda(E)-\lambda(E)| \leqslant 1 / 2 \tag{4.2}
\end{align*}
$$

If $\Lambda(E) \leqslant \lambda(E)$ (or $\Lambda(E)>\lambda(E)$), then we will add (or subtract respectively) $1 / 210$ the starting edge. Now the degree of every vertex v in G. is even and thus every connected component of G. is Eulerian. If a component has an even number of edges, it can be eliminated (without affecting the vertex sum $\Lambda(v)$ and total sum $\Lambda(E))$ by alternately assigning 0 and 1 to the edges of the Eulerian tour. Similarly all even length cycles can be eliminated in the same way leaving $G: a$ union of odd cycles. Moreover, two odd cycles with any vertices in common can be decomposed into one or two even length closed trails which can also be eliminated. If they have only one vertex in common, then the union of the two cycles is certainly an even length closed trail.

If they have two vertices, say v_{i} and v_{j}, in common, then the union of the odd length paths between v_{i} and v_{j} and the union of the even length paths between v_{i} and v_{j} of the two cycles are the two even length closed trails. Therefore we may assume that G. consists of vertex disjoint odd cycles and the rounding Λ that we obtain from $\bar{\Lambda}$ satisfies the constraints 4.1 and 42 . In the proofs of the following Theorems we will show how to assign 0 and 1 to the edges of the odd cycles to obtain different roundings.

Theorem 4.7: A GR (1.1 (n+1)/2) always exists for an arbitrary undirected graph of n vertices.

Proof : Let G be the given arbitrary undirected graph of n vertices,
let \bar{G} be the corresponding bipartite graph of $2 n$ vertices.
let $\bar{\Lambda}$ be a $\operatorname{BGR}(1,1,1)$ of \bar{G} and
let Λ be a $0-1 / 2-1$ rounding of G satisfying constraints 4.1 and 4.2 such that G., the subgraph of G consisting of all. 12 -edges. has the fewest possible edges.

Recall that G. consists of vertex disjoint odd cycles. For each of the odd cycles we alternately assign 0 and 1 to the edges in the following way. the starting edge of the cycle is assigned () when the starting vertex v is rounded up, i.e. $\Lambda(v)>\lambda(v)$, and assigned 1 otherwise. it is easy to see that the constraint $\mathrm{L}(v)-\lambda(v) \leqslant 1$ is satisfied for all $v \in V$. since we only decrease 1 to $\Lambda(v)$ if $\Lambda(v)>\lambda(v)$ and increase 1 if $\Lambda(v) \leqslant \lambda(v)$ for the starting vertex v of each cycle. Now we estimate the overall change to the total sum $\Lambda(E)$. For each of the odd cycles $\Lambda(E)$ is increased or decreased by $1 / 2$, thus the worst case will happen when $\Lambda(E)$ is either increased or decreased for all the cycles. There are at most n vertex disjoint odd cycies possible (a loop is a cycle of length 1). Therefore the overall change to $\Lambda(E)$ is less than or equal to $n \times \frac{1}{2}=\frac{n}{2}$.

Hence $\left|\Lambda^{\prime}(E)-\Lambda(E)\right| \leqslant \frac{1}{2}+\frac{n}{2}=\frac{n+1}{2}$.
 n vertices.

Proof : From the proof of Theorem 4.7. we know that the difference between $\Lambda(E)$ and $\lambda(E)$ is less than or equal to $1 / 2$ plus $1 / 2$ times the maximum number of vertex disjoint odd cycles possible in the graph G_{1}. If loops are not allowed in the given graph, then G, can have $n / 3$ cycles (the smallest cycle has at least 3 vertices for loopless graphs).

Hence $|\Lambda(E)-\lambda(E)| \leqslant \frac{1}{2}+\frac{n}{6}=\frac{n+3}{6}$.

Theorem 4.9: A GR (1.2.1/2) always exists for an arbitrary undirected graph.

Proof: Let G be the given arbitrary undirected graph of n vertices.
let \bar{G} be the corresponding bipartite graph of $2 n$ vertices.
let \bar{A} be a $\operatorname{BGR}(1.1 .1)$ of \bar{G} and
let A be a $0-1 / 2-1$ rounding of G satisfying constraints 4.1 and 4.2 such that G_{1}, the subgraph of G consisting of all $1 / 2$-edges, has the fewest possible edges.

Recall that G. consists of vertex disjoint odd cycles. For each of the cycles we alternately assign 0 and 1 to the edges in such a way that the constraint $\Lambda \Lambda(E)-\lambda(E) \leqslant 1 / 2$ is not violated. The number of i .aident edges assigned 1 is the same as that assigned 0 for every vertex of a cycle except one, namely the starting vertex v of the cycle. Then the vertex sum $\Lambda(v)$ and total sum $A(E)$ will be increased (or decreased) by 1 and $2 / 2$ respectively depending on whether the
starting edge is assigned 1 (or 0). It is not difficult to see that the assignment can always be made so that $\Lambda(E)-\lambda(E) \leqslant 1 / 2$. If there is an even number of odd cycles. We can have the same number with starting edges assigned 1 as, there are those with starting edges assigned 0 . If the number of odd cycles is odd, then the starting edge of the last cycle is assigned 0 when $\Lambda(E)>\lambda(E)$ and assigned 1 when $\Lambda(E) \leqslant \lambda(E)$.

Since the $0-1 / 2-1$ rounding of G satisfies the constraint $l \Lambda(v)-\lambda(v)<1$ for all $v \in V$, and only the starting vertex of each odd cycle is increased or decreased by 1 . Therefore the $1-1$ rounding Λ we obtain will satisfy constraint $|\Lambda(v)-\lambda(v)|<2$ for all $v \in V$.

Theorem 4.10: A GR (1.4/3,1/2) always exists for an arbitrary loopless undirected graph.

Proof : Let $G=(V, E)$ be a weighted loopless graph with weight function λ.

From Theorem 4.8, we know that a rounding that satisfies the constraint $|\Lambda(v)-\lambda(v)|<4 / 3$ for all $v \in V$ always exists. We let A be such a rounding which gives the minimum value of $\operatorname{LA}(E)-\lambda(E)$. If $-1 / 2 \leqslant \Lambda(E)-\lambda(E) \leqslant 1 / 2$, then we are done since Λ is indeed a $\mathrm{GR}(1,4 / 3.1 / 2)$ So we assume thai $A(E)-\lambda(E)<-12$ (for the other case where $\Lambda(E)-\lambda(E)>1 / 2$ the proof is similar).

For any such rounding Λ we can partition the vertices of G into three sets:
(1) $V^{+}=\left\{v \in V^{\prime} \mid \Lambda(v)-\lambda(v) \geqslant 1 / 3\right\}$
(2) $V_{s}^{-}=\{v \in V \mid-2 / 3 \leqslant \Lambda(v)-\lambda(v)<1 / 3\}$
(3) $v-\{v \in V+\Lambda(v)-\lambda(v)<-2 / 3\}$

According to our assumptions, the configurations (a)..(b) and (c) of Figure 4.5 in which the edges having rounded weights 1 and 0 are denoted as double and single edges respectively are impossible. Indeed, in any of the three cases the roles of the double and single edges can be
(a) $u, v \in v^{-} u v^{--}$

(b) $u, v \in V^{-} \cup v^{--}$

(6) $u \in v^{-} \cup v^{--}, v_{1}, v_{2}, \cdots v_{k} \in v^{+}$

(b") $u \in V^{\prime \prime} \because^{\prime-}, v_{1}, v_{2}, \cdots v_{k} \in V^{+}$

(c) $u \in v^{--}$

Figure 4.5 : Example of the Forbidden Configurations
interchanged producing another rounding that still satisfies the constraint $|\Lambda(v)-\lambda(v)|<4 / 3$ for all $\nu \in V$ and increases $\Lambda(E)$ by 1 , which contradiets the minimality of $\Lambda(E)-\lambda(E)$.

An alternating cycle (relative to the rounding Λ) is an odd cycle

$$
v_{1}-e_{1}-v_{2}-e_{2}-\cdots-v_{k}-e_{k}-v_{1}
$$

with one vertex, say ν_{1}, in V^{-}, and all other vertices in V^{+}, and such that the edges $\boldsymbol{e}_{1}, e_{3} \ldots, \boldsymbol{e}_{d}$ have rounded weights 0 and the edges $e_{2}, e_{4}, \ldots, e_{k-1}$ have rounded weights 1 .

We will assume that Λ, in addition to all previous constraints, also maximizes the number of vertices that belong to alternating cycles. Then the configurations ($b^{\prime \prime}$) and ($b^{\prime \prime}$) of Figure 4.5 are also impossible. Otherwise we can interchange the roles of all the double and single edges in case ($b^{\prime *}$) and those betw'een vertex u and vertex v_{1} in case (b^{\prime}) to produce another rounding that still satisfies all the previous constraints and has more vertices belong to alternating cycles.

Now we are going to partition the graph G into three subgraphs G_{1}, G_{2} and G_{3} as follows.
(1) $G_{1}=\left(V_{1}, E_{1}\right)$ where
$V_{1}=\{v \mid v$ belongs to some alternating cycle of $G\}$
$E_{1}=\left\{u v \in E \mid u, v \in \overrightarrow{V_{1}}\right\}$

It is easy to see that in G_{1} no vertex v in V^{+}belongs to two alternating cycles which have $x . y \in V^{-}$where $x \neq y$ because of the forbidden case (a) in Figure 4.5. Thus the alternating cycles are all vertex disjoint except at the vertices belonging to 1^{-2}. Consider any connected component of G_{1} : it contains exactly one vertex in V^{-}and at least two vertices in V^{+}. If we sum up $A(v)-\lambda(v)$ for all vertices in each component. then the sum is nonnegative.

Therefore $\Lambda\left(V_{1}\right) \geqslant \lambda\left(V_{1}\right)$.
(2) $\quad G_{2}=\left(V_{2}, E_{2}\right)$

The vertices in G_{2} consist of levels L_{i} where
$L_{0}=\left\{v: v \in(V-\cup V)-V_{1}\right\}$

Figure 4.6: Example of a Graph G_{2}

$$
\begin{aligned}
& E^{i}=\left\{e=u v \in E \mid u \in L_{i}, v \in V_{1} \cup L_{0} \cup L_{1} \cup \cdots \cup L_{i-1} \text { and } \Lambda(e)=0\right\} \quad i=0,2,4, \cdots \\
& E^{T}=\left\{e=u \nu \in E \mid u \in L_{i}, \nu \boxminus V_{1} \cup L_{0} \cup L_{1} \cup \cdots \cup L_{i-1} \text { and } \Lambda(e)=1\right\} \quad i=1,3.5, \cdots \\
& L_{i+1}^{\prime}=\left\{v \mid \text { for some } u, u v \in E^{i}\right\}
\end{aligned}
$$

Let $i=\min \left\{i \mid L_{i+1}=\varnothing\right\}$.
and let $V_{2}=L_{0} \cup L_{1} \cup \cdots \cup L_{i}$,

$$
E_{2}^{\prime}=E^{\circ} \cup E^{1} \cup \cdots \cup E^{2} .
$$

Note that there are no edges $e=u v$ with $u, v \in L_{i}$. This follows from the absence of the configurations (a), (b). (b"). (b") and (c) of Figure 4.5. Also as in Figure 4.6, all vertices
in $V_{2}-L_{0}$ belong to V^{+}, so the sum of $\Lambda(v)-\lambda(v)$ for all vertices v on odd levels. $L_{o d d}=L_{1} \cup L_{3} \cup L_{5} \cup \cdots$ is non-negative.

Thus $\Lambda\left(L_{i d d}\right) \geqslant \lambda\left(L_{c d d}\right)$.
(3) $G_{3}=\left(V_{3}, E_{3}\right)$ where

$$
\begin{aligned}
& V_{3}=V-V_{1}-V_{2} \text { and } \\
& E_{3}=\left\{e=u v \in E \mid u, v \in V_{3}\right\}
\end{aligned}
$$

The sum of $\Lambda(v)-\lambda(v)$ of all vertices v in G_{3} is non-negative. i.e: $\Lambda\left(V_{3}\right) \geqslant \lambda\left(V_{3}\right)$. since they all belong to V^{-}

Since $\Lambda\left(V_{1}\right) \geqslant \lambda\left(V_{1}\right), \Lambda\left(L_{\text {cati }}\right) \geqslant \lambda\left(L_{\text {odid }}\right)$ and $\Lambda\left(V_{3}\right) \geqslant \lambda\left(V_{3}\right)$, the sum

$$
S=\Lambda\left(V_{1}\right)+2 \Lambda\left(L_{a d z}\right)+\Lambda\left(F_{3}\right)-\lambda\left(V_{1}\right)-2 \lambda\left(L_{c d d}\right)-\lambda\left(V_{3}\right)
$$

is non-negaiive. If we can show that $2(\Lambda(E)-\lambda(E))=\Lambda(V)-\lambda(V) \geqslant S$, then $\Lambda(E)-\lambda(E) \geqslant 0$ or $\Lambda(E) \geqslant \lambda(E)$, which contradicts ouf assumption that $\Lambda(E)-\lambda(E<-1 / 2$. Now to show that $2(A(E)-\lambda(E)) \geqslant S$, we will shoy that $A(e)-\lambda(e)$ for every double (or single) edge e is counted at most (at least, respectivelf twite in the sum S

Consider an edge $e=u \in E$
Case 1: $\quad e \in E_{1} \cup E_{2} \cup E_{3}$

It is obvious that $\Lambda(e)-\lambda(e) \cdot$ is counted exactly twice in $\Lambda\left(V_{1}\right)-\lambda\left(V_{?}\right)$ or $\Lambda\left(V_{3}\right)-\lambda\left(V_{3}\right)$ if e belongs to E_{1} or E_{3} respectively. As we have observed. no edge of E_{2} joins two vertices on the same level and thus every edge in E_{2} is incident with one vertex in the odd levels and one vertex in the even levels. Therefore $\Lambda(e)-\lambda(E)$ is counted exactly twice in $2\left(\Lambda\left(L_{c \alpha}\right)-\lambda\left(L_{i \alpha d}\right)\right)$ too if e belongs to E_{2}.

Case 2: e\& $E_{1} \cup \dot{E}_{2} \cup E_{3}$ and both u, v belong to V_{2}.

- If $\Lambda(e)=1$, then the edge e cannot join two vertices of $L_{\text {od }}$ by an earlier comment. Thufe e is incident with at most one vertex belonging to the odd levels and therefore
e $\Lambda(e) \lambda(e)$ is counted at most twice in $2\left(\Lambda\left(L_{\text {odd }}\right)-\lambda\left(L_{\text {odd }}\right)\right)$.
If $\Lambda(e)=0$, then as in the case where $\Lambda(e)=1, e / 1$ incident with at least one vertex of $L_{o d d}$ and therefore $\Lambda(e)-\lambda(e)$ is counted at least twice in $2\left(\Lambda\left(L_{o d d}\right)-\lambda\left(L_{o d d}\right)\right)$.

Case 3: e\& $E_{1} \cup E_{2} \cup E_{3}, u \in V_{1}$ and $v \in V_{3}$

Since e is incident with one vertex in V_{1} and another in $V_{3}, \Lambda(e)-\lambda(e)$ is counted once in $\Lambda\left(V_{1}\right)-\lambda\left(V_{1}\right)$ and once in $\Lambda\left(V_{3}\right)-\lambda\left(V_{3}\right)$ and therefore twice in the sum $\Lambda\left(V_{1}\right)+\Lambda\left(V_{3}\right)-\lambda\left(V_{1}\right)-\lambda\left(V_{3}\right)$.

Case 4: $e \in E_{1} \cup E_{2} \cup E_{3}, u \in V_{2}$ and $v \in V_{1} \cup V_{3}$
If $\Lambda(e)=1$, then the vertex u does not belong to $L_{\text {ada }}$ because of the forbidden cases (a) and (b) in Figure 4.5 and the definition of G_{2}. Thus the edge e is incident with one vertex in the even levels and another in V_{1} or V_{3} and therefore $\Lambda(e)-\lambda(e)$ is counted only once in the sum S.

If $\Lambda(e)=0$, then as in the case where $\Lambda(e)=1$, the edge e is incident with one vertex in L_{∞} and another in b_{1} or V_{3}. Thus $\Lambda(e)-\lambda(e)$ is counted twice in $2\left(\Lambda\left(L_{\text {cod }}\right)-\lambda\left(L_{o d i}\right)\right)$ and once in $A^{\prime}\left(V_{1}\right)+\Lambda\left(V_{3}\right)-\lambda\left(V_{1}\right)-\lambda\left(V_{3}\right)$ and therefore three times in the sum S.

In all of the above cases, $\Lambda(e)-\lambda(e)$ is counted at most twice for a double edge e (with rounded weight 1) and at teast twice for a single edge e (with rounded weight 0) in the sum S. Thus we bave

$$
2(\Lambda(E)-\lambda(E))=\Lambda(V)-\lambda(V)
$$

$$
\geqslant \Lambda\left(V_{1}\right)+2 \Lambda\left(L_{o d d}\right)+\Lambda\left(V_{3}\right)-\lambda\left(V_{1}\right)-2 \lambda\left(L_{o d d}\right)-\lambda\left(V_{3}\right) \geqslant 0
$$

which contradicts our assumption that $\Lambda(E)-\lambda(E)<-1 / 2$, and therefore $\Lambda(E)-\lambda(E) \geqslant-1 / 2$.

Hence a GR (1,4/3,1/2) always exists for a loopless undirected graph.
4.5. Existence of a ${ }^{\star}$ Rounding for the SMR problem

Recall from Section 4.1 the linear reducibility of the SMR problems to the GR problems. Thus the exişence of a symmetric rounding for the SMR problems can be derived from the existence of a rounding for the GR problems on undirected graphs.

Corollary 4.11 : An SMR ($2,1 n+1$) always exists for an arbitrary symmetric matrix of dimension n.

Corollary 4.12: An SMR (1.1 $(n+3) 3)$ always exists for a symmetric matrix of dimension n with all diagonal entries being 0 .

Corollary 4.13: An SMR (2,2.1) always exists for an arbitrary symmetric matrix of dimension n

$$
\begin{equation*}
1 \tag{i}
\end{equation*}
$$

Corollary 4.14 : An SMR (1.43,1) always exists for a symmetric matrix of dimension n with all diagonal entries being 0 .

4.6. Some Important Examples Showing Our Bounds are Best Possible

A $\operatorname{GR}(1,1,1)$ ray not exist for an arbitrary graph. yet a $G R(1,1(n+1) / 2)$ and a $G R$ (i, 2,1/2) always exist. In this section we will give some examples showing that the bounds in the constraints for $\operatorname{CR}(1: 1,(n+1) / 2), \operatorname{GR}(1,1,(n+3) / 6) . \operatorname{GR}(1,2,1 / 2)$ and $\operatorname{GR}(1,4 / 3,1 / 2)$ are best Fonssible in the following sense. For an arbitrary $\epsilon>0$. there exist examples so that any rounding Λ which satisfies the constraints $|\Lambda(e)-\lambda(e)|<1$ and $\bar{\Lambda}(v)-\lambda(v) \mid \leqslant 1$ will have u $(E)-\lambda(E)$ asymptotically close to $(n+3) / 6$ for ppless connected graphs, and asymptotically close to $(n+1) / 2$ for arbitrary connected graphs. There also exist examples so that any rounding which satisfies the constraints $\lfloor\Lambda(e)-\lambda(e) \mid<1$ and $\backslash \Lambda(E)-\lambda(E) \mid \leqslant 1 / 2$ will have $\max |\Lambda(v)-\lambda(v)|=4 / 3-\epsilon$ for loopless connected graphs, and $\max |\Lambda(v)-\lambda(v)|=2-\epsilon$ for arbitrary connected graphs.

For the graph given in Figure 4.7a, $\lambda(E)=k / 2$ and $\lambda(v)=1-\epsilon$ or $k \epsilon$. If we choose $k \in<1$. then $\Lambda(v)=0$ or 1 for all vertices v. Thus the rounded weights of the loops can only be 0 for otherwise $\Lambda(v)$ would be equal to 2 for the loop at vertex v. Note that the rounding typified in

Figure 4.7 : Example of a GR (1.1, $(n+1) / 2)$

Figtre 4.7 b is then best possible and it has $\Lambda(E)=1$.

Therefore $|\Lambda(E)-\lambda(E)|=\frac{k}{2}-1=\frac{n-1}{2}-1=\frac{n-3}{2}$.

For the loopless graph given in Figure-4.8a: $\lambda(E)=(3 / 2) k-k \epsilon$ and $\lambda(\nu)=1-\epsilon$ or $k \epsilon$. If we choose $k \epsilon<1$, then $\Lambda(v)$ can only be 0 or 1 for all vertices v. Thus at least two edges of each triangle have to be rounded to 0 ." The roundig typified in Figure 4.8 b is then best possible as we try to maximize $\Lambda(E)$ and it has $\Lambda(E)=k / 1$.

The-efore $|\Lambda(E)-\lambda(E)|=\frac{k}{2}-1-k \epsilon>\frac{k}{2}-2=\frac{n-1}{6}-2=\frac{n-13}{6}$.
Now we can see that the bounds in the constraints for a GR (1.1. $(n+1) / 2)$, and a GR (1.1. $(n+3) / 6$) are tight in the sense that there exist examples of connected graphs achieving our

Figure $4 . \dot{8}$: Example of a $\operatorname{GR}(1.1(n+3) / 6)$ for Loopless Graphs
bounds asymptotically.

For the graph given in Figure 4.9a. $\lambda(E)=k-(k \epsilon / 3)$ and $\lambda(v)=2-\epsilon$ or $k \epsilon / 3$. If we choose $k \epsilon>3 / 2$, then $\lambda(E)<k-1 / 2$. Thus in any rounding which satisfies the constraint $|\Lambda(E)-\lambda(E)| \leqslant 1 / 2$, we have $\Lambda(E) \leqslant k-1$ and hence there must exists a branch with rounded weights 0 on all edges. In other words, there must exists a loop at a vertex v with rounded weight 0 as in Figure 4.9b. Thus the difference between $\Lambda(v)$ and $\lambda(v)$ is $2-\epsilon$. Therefore for an arbitrary ϵ, we can construct a graph with k loops as shown where $k>3 /(2 \epsilon)$ so that in every rounding which satisfies the above constraint. we get that for some vertex $v|\Lambda(v)-\lambda(v)|$ is as close to 2 as we want.

The example given in Figure 4.10a shows that for an arbitrary ϵ, we can construct a loopless graph with $k>1 /(2 \epsilon)$ so that $\max (\Lambda(v)-\lambda(v)$ will be as close to $4 / 3$ as we want.

Figure 4.9 : Example of a GR (1.2.1/2)

Figure 4.10 : Example of a GR (1.4/3.1/2) for Loopless Graphs

Again the bounds in the constraints for a GR (1,2.1/2) and a GR (1.4/3.1/2) are tight in the sense that there exiş examples of connected graphs achieving these bounds.

CHAPTER 5

ALGORITHMS FOR THE DCS PROBLEM

We have seen that all of the GR problems can be eventually reduced to the DCS problem for bipartite graphis. In this chapter we discuss the algorithms for finding a DCS with prescribed degrees for bipartite graphs only. However if the graph is complete (bipartite or not), we have simpler linear algorithms.

5.1. DCS for Complete Graphs

If the given graph is complete then finding a DCS is equivalent to joining the vertices by edges so that the prescribed degrees are met. There are known algorithms for doing this on bipartite graphs and on arbitrary graphs without loops. We will modify the latter one to allow for loops.

5.1.1. Gale's Algorithm for Bipartite Graphs

Let $G^{\prime}=\left(X^{\prime} \cup I^{\prime \prime} \cdot E\right)$ be a DCS instance with prescribed degrees p. which corresponds to a compleṭe weighted bipartite graph $G=(X \cup Y E)$ with weight function λ. Recall that

$$
\begin{aligned}
& X^{\prime}=X \cup\left\{z_{\lambda}\right\}=\left\{x_{1}, x_{2}, \ldots, x_{m}, z_{x}\right\}, \\
& Y^{n}=Y \cup\left\{z_{y}\right\}=\left\{y_{1}, y_{2}, \ldots, y_{n}, z_{y}\right\}, \\
& E=E \cup\left\{e=z_{x} y ; y \in Y \text { and } \lambda(y) \text { is not integral }\right\} \\
& \cup\left\{e=x z_{y} \mid x \in X \text { and } \lambda(x) \text { is not integral }\right\} \\
& \cup\left\{e=z_{x} z_{y} \mid \lambda(E) \text { is not integral }\right\},
\end{aligned}
$$

$$
\begin{aligned}
p(v) & =\lceil\lambda(v)\rceil \quad \forall v \in X \cup Y \\
p\left(z_{x}\right) & =\left(\sum_{y \in Y}\lceil\lambda(y)\rceil\right)-\lfloor\lambda(E)\rfloor \text { and } \\
p\left(z_{y}\right) & =\left(\sum_{x \in X}\lceil\lambda(x)\rceil\right)-\lambda \lambda(E) \vdots .
\end{aligned}
$$

We are going to find a subgraph \bar{G} of G^{\prime} such that the above degree - constraints are satisfied. Let A be the adjacency matrix of the subgraph \bar{G} of dimension $(m+1) \times(n+1)$ and $A(i, j)$ be the entry of A in row i and column j. We assume that

$$
\lambda\left(x_{1}\right) \geqslant \lambda\left(x_{2}\right) \geqslant \cdots \geqslant \lambda\left(x_{m}\right) \text { and } \lambda\left(y_{1}\right) \geqslant \lambda\left(y_{2}\right) \geqslant \ldots \geqslant \lambda\left(y_{n}\right)
$$

The ith row of A correrponds to the vertex x_{i}, where $i=1,2, \ldots, m$, the $(m+1) s t$ row of A corresponds to the vertex z_{x}. the j th column of A corresponds to the vertex y, where $j=1.2 \ldots n$, and the $(n+1) s t$ column of A corresponds to the vertex z_{y}. First we fill out the entries of the last row and column of A as follows:

$$
\begin{aligned}
& A(m+1, n+1)=0 \\
& A(i, n+1)=p\left(x_{i}\right)-\left(\sum_{i=1}^{n} \lambda\left(x_{k}\right)-\sum_{i=1}^{i-1} \lambda\left(x_{k}\right)\right) \\
& \left.A(m+1, j)=p(y)-\sum_{i=1} \lambda(x)-\sum_{i=1}^{-1} \lambda y_{k}\right)
\end{aligned}
$$

Before defining the other entries of. A, we make some observations:
(1) Let $R_{:}=\sum_{i=1}^{i} \lambda\left(x_{i}\right)--\sum_{i=1}^{-1} \lambda\left(x_{i}\right)-$ for $i=1,2 \ldots . . m$ and

$$
\left.C_{i}=\sum_{k=1} \lambda\left(y_{k}\right)-\sum_{k=1}^{-1} \lambda\left(y_{k}\right)\right] \text { for } j=1.2 \ldots, n \text {. }
$$

Since $\left\lfloor a+b \leqslant a+b \leqslant a+b+1\right.$, each R_{i} is either $\left\lfloor\lambda\left(x_{i}\right)\right\rfloor$ or $\left\lfloor\lambda\left(x_{i}\right)\right\rfloor+1$ and each C, is either $\left.\lambda\left(y_{j}\right)\right\rfloor$ or $\lambda\left(y_{j}\right)+1$. If $\lambda\left(x_{i}\right)$ is integral, then $R_{i}\left\lfloor\left\lfloor\lambda\left(x_{i}\right)\right\rfloor=\lambda\left(x_{i}\right)\right.$. Similarly if $\lambda\left(y_{j}\right)$ is integral, then $C_{i}=\lambda\left(y_{j}\right)$.
(2) Since $p\left(x_{i}\right)=\left\lceil\lambda\left(x_{i}\right)\right\rceil$ for $i=1,2, \ldots, m$ and $p\left(y_{j}\right)=\left\lceil\lambda\left(y_{j}\right)\right\rceil$ for $j=1,2, \ldots, n$, each entry in the last row and column of A is either $\dot{0}$ or 1 .
(3) Since $\sum_{i=1}^{5} R_{i}=\sum_{i=1}^{5}\left(\left\lfloor\sum_{k=1}^{i} \lambda\left(x_{k}\right)\right\rfloor-\left\lfloor\sum_{k=1}^{i-1} \lambda\left(x_{k}\right)\right\rfloor\right)=\left\lfloor\sum_{i=1}^{s} \lambda\left(x_{i}\right)\right\rfloor$ for $1 \leqslant s \leqslant m$ and $\sum_{j=1}^{\dot{C}} C_{j}=\sum_{j=1}^{i}\left(\left\lfloor\sum_{k=1}^{j} \lambda\left(y_{j}\right)\right\rfloor-\left\lfloor\sum_{k=1}^{i-1} \lambda\left(y_{j}\right)\right\rfloor\right)=\left\lfloor\sum_{j=1}^{t} \lambda\left(y_{j}\right)\right\rfloor$ for $1 \leqslant t \leqslant n$.
we have $\sum_{i=1}^{m} R_{i}=\left\lfloor\sum_{i=1}^{m} \lambda\left(x_{i}\right)\right\rfloor=\lfloor\lambda(E)\rfloor=\left\lfloor\sum_{j=1}^{n} \lambda\left(y_{j}\right)\right\rfloor=\sum_{j=1}^{n} C_{j}$.
(4) For $k<l$

$$
\begin{aligned}
\left\lfloor\sum_{i=1}^{k} \lambda\left(x_{i}\right)\right\rfloor-\left\lfloor\sum_{i=1}^{k-1} \lambda\left(x_{i}\right)\right\rfloor & \geqslant\left\lfloor\lambda\left(x_{k}\right)\right\rfloor+\left\lfloor\sum_{i=1}^{k-1} \lambda\left(x_{i}\right)\right\rfloor-\left\lfloor\sum_{i=1}^{k-1} \lambda\left(x_{i}\right)\right\rfloor \\
& =\left\lfloor\lambda\left(x_{k}\right)\right\rfloor \geqslant\left\lfloor\lambda\left(x_{l}\right)\right\rfloor \\
& =\left\lfloor\lambda\left(x_{l}\right)\right\rfloor+\left\lfloor\sum_{i=1}^{l-1} \lambda\left(x_{i}\right)\right\rfloor-\left\lfloor\sum_{i=1}^{k-1} \lambda\left(x_{i}\right)\right\rfloor \\
& \geqslant\left\lfloor\sum_{i=1}^{n} \lambda\left(x_{i}\right)\right\rfloor-\left[\sum_{i=1}^{i-1} \lambda\left(x_{i}\right)\right\rfloor-1
\end{aligned}
$$

Thus $R_{i} \geqslant R_{i}-1$. and similarly $C_{i} \geqslant C_{i}-1$.
Now it remains to fill out the internal entries $A(i, j)$ where $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$. This is equivalent to finding an $m \times n \quad 0-1$ matrix with row sums R_{i} and column sums C_{j}. According to D. Gale [Ga57], such a matrix exists if and only if for any $J \subseteq\{1,2, \ldots, n\}$
(*)

$$
\sum_{j_{i}} C_{i} \leqslant \sum_{i=1}^{m} \min \left\{U_{i}, R_{i}\right\}
$$

Theorem 5.1: There exists an $m \times n 0-1$ matrix with row sums and column sums defined as follows:

$$
\begin{aligned}
& R_{i}=\left\lfloor\sum_{k=1}^{i} \lambda\left(x_{k}\right)\right\rfloor-\left\lfloor\sum_{k=1}^{i-1} \lambda\left(x_{k}\right)\right\rfloor \quad \text { for } i=1,2, \ldots, m \text { and } \\
& C_{j}=\left\lfloor\sum_{k=1}^{+} \lambda\left(y_{j}\right)\right\rfloor-\left\lfloor\sum_{k=1}^{j-1} \lambda\left(y_{j}\right)\right\rfloor \quad \text { for } j=1,2, \ldots, n .
\end{aligned}
$$

Proof : We will prove first that (*) is true for any J of the form $J=\{1,2 \ldots, t\}$, and then for any $J \subseteq\{1,2, \ldots, n\}$.

Suppose that (*) is false for some $J=\{1,2, \ldots, \lambda\}$, ie.

$$
\sum_{i=1}^{i} C_{j} \geqslant 1+\sum_{i=1}^{m} \min \left(t \cdot R_{i}\right)
$$

Then $R_{i}>t$ for some i. for otherwise
:

$$
\sum_{i=1}^{m} R_{i}=\sum_{j=1}^{n} C_{j} \geqslant \sum_{i=1}^{\infty} C_{i} \geqslant 1+\sum_{i=1}^{m} \min \left(t \cdot R_{i}\right)=1+\sum_{i=1}^{m} R_{i}, \text { which is a contradiction. }
$$

Let s be the largest subscript such that $R_{s}>t$ and by Observation (4) $R_{1} \geqslant R_{s}-1$ for $i=1,2 \ldots, s-1$. ie. $R>t-1$ or $R \geqslant t$ for $i=1,2 \ldots, s-1$. Thus

$$
\begin{aligned}
& \sum_{i=1} C_{i} \geqslant 1+\sum_{i=1}^{\prime \prime} \min \left(t \cdot R_{i}\right)=1+\sum_{i=1}^{n} t+\sum_{:=i-1}^{n} R \\
& =1+s t+\sum_{i=s+1}^{\sum_{i}^{2}} R \\
& \sum_{i=1}^{n} R_{i}=\sum_{j=1}^{n} C_{j} \geqslant \sum_{j=1}^{r} C_{i}+\sum_{i=1}^{s} \sum_{i=-1}^{n} A(i . j) \\
& =\sum_{j=1}^{\dot{C}} C_{j}+\sum_{i=1}^{\dot{L}}\left(R_{i}-\sum_{j=1}^{\sum} A(i, j)\right) \\
& \geqslant \sum_{i=1}^{\infty} C_{i}+\sum_{i=1}^{5}(R-i)
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant \sum_{i=1}^{m} C_{i}+\sum_{i=1}^{s} R_{i}-s t \\
& \geqslant 1+s t+\sum_{i=s+1}^{m} R_{i}+\sum_{i=1}^{s} R_{i}-s t \\
& \geqslant 1+\sum_{i=1}^{m} R_{i} \quad \text { (contradiction) }
\end{aligned}
$$

Therefore (*) is true for any J of the form $J=\{1,2, \ldots, t\}$.

Suppose (*) is false for some $J \subseteq\{1,2, \ldots, n\}$. We assume that I is the first one in lexicographic order among all the subsets of $\{1,2, \ldots, n\}$ for which (*) fails. Also let J contain $1,2, \ldots, u$ (possibly $u=0$) but not $u+1, J \subseteq\{1,2 \ldots, u+v+w\}$. $\cup J=u+w$ and $u+v+w \in J$.

Let $C_{u+r+w}=x$. Then by Observation (4) $C_{u+1} \geqslant x-1$. If $C_{u+1} \geqslant x$, and we consider the subset $J=J-\{u+v+w\} \cup\{u+1\}$ that appears before J in the lexicographic order, we have

$$
\sum_{j \in J_{j}} C_{j}=\sum_{j \in j} C_{j}+C_{k+1}-C_{u+i+\cdots} \geqslant \sum_{j \in j} C_{j} \geqslant 1+\sum_{i=1}^{m} \min \left\{|J|, R_{i}\right\}
$$

which contradicts our assumptions. Therefore $C_{u+1}=x-1$ and by a similar argument $C_{j}=x-1$ for $u+1<j<u+v+w$ and $j \in J$. If we consider the subset $f=J-\{j \mid \cup\{u+1\}$ for * $j \in J-\{1.2, \ldots, u\}$ that appears before J in the lexicographic order, then since $u+1<j \leqslant u+v+w$, again by Observation (4) $x-1 \geqslant C_{j}-1$ and $C_{j} \geqslant x-1$, i.e. $x-1 \leqslant C_{j} \leqslant x$. If $C_{j}=x-1$, then

$$
\begin{aligned}
\sum_{k \in} C_{i} & =\sum_{k \in j} C_{i}-C_{i}+C_{k-1} \\
& =\sum_{k \in!} C_{k} \geqslant 1+\sum_{i=1}^{\pi} \min \left\{J R_{i}\right\}
\end{aligned}
$$

Which again contradicts our assumptions. Therefore $C_{j}=x$ for $j \in f-\{1,2, \ldots, u\}$.

Le: P_{i} denotes the number of i such that $R_{i} \geqslant k$ and let $U=\sum_{i=1}^{u} C_{j}$. Then $P_{1} \geqslant P_{2} \geqslant P_{3} \geqslant \cdots$ and we. have reeified that $l=\sum_{i=1}^{n} C_{i} \leqslant \sum_{i=1} \min \left(u R_{i}\right)$.

Thus $U \leqslant \sum_{i=1}^{m} \min \left(u, R_{i}\right)=P_{1}+P_{2}+\cdots+P_{u}$.

Since (*) fails for the subset J. i.e. $\sum_{j E_{j}} C_{j}>\sum_{i=1}^{m} \min \left\{\backslash J, R_{i}\right\}$, and we have

$$
\begin{aligned}
\sum_{j \in J} C_{j} & =\sum_{j=1}^{u} C_{j}+\sum_{j \in J-i L 2, \ldots u i} C_{i}=U+w x \\
& >\sum_{i=1}^{m} \min \left\{W T, R_{i}\right\}=P_{1}+P_{2}+\cdots+P_{u+w} \\
& \geqslant U+P_{u+1}+\cdots+P_{u+w} \geqslant U+w P_{u+w}
\end{aligned}
$$

Thus $U+w x>U+w P_{u+w}$ which implies $x>P_{u+k}$ or $P_{u+w} \leqslant x-1$.

Now we consider the subset $J^{*}=\{1,2, \ldots, u, u+1, \ldots, u+\nu+w\}$.

$$
\begin{aligned}
\sum_{j=t} C_{j} & =\sum_{i=1}^{u+i+*} C_{i}=\sum_{i=1}^{\infty} C_{i}+\sum_{j=k+1}^{u+k+\infty} C_{j}=U+w x+v(x-1) \\
& \leqslant \sum_{i=1}^{m} \min \left\{u+v+w R_{i}\right\} \\
& =P_{1}+P_{2}+\cdots+P_{n}+P_{i+\cdots}+\cdots+P_{u+i+n} \\
& \leqslant P_{1}+P_{2}+\cdots+P_{n}+w(x-1) \\
& <E+w x+v x-1 \quad \text { (contradiction) }
\end{aligned}
$$

Hence (*) is true for any $J \subseteq\{1.2 \ldots n\}$ and the proof is complete.

Corollary 5.2 : There exists a subgraph of G with prescribed degrees defined as follows:

$$
\begin{aligned}
& p(v)=\lceil\lambda(v)\rceil \quad \forall v \in X \cup Y \\
& p\left(z_{x}\right)=\left(\sum_{x=}\lceil\lambda(y)\rceil\right)-\lfloor\lambda(E)\rfloor \\
& p\left(z_{y}\right)=\left(\sum_{x \in X}\lceil\lambda(x)\rceil\right)-\lfloor\lambda(E)\rfloor
\end{aligned}
$$

Now we apply Gale's algorithm [Ga57] to find a $0-1$ matrix with prescribed row sums R_{i} and column sums C_{j}.

ALGORITHMA (Gale's Algorithm for complete bipartite graphs)

For each $j=1,2, \ldots, n$,
$A(i, j)=1$ for a set of C_{j} rows i whose values of $R_{i}-\sum_{k=1}^{j-1} A(i, k)$ are largest and
$A(i . j)=0$ for all other i.

5.1.2. Modification of Hakimi's Algorithm for Arbitrary Graphs

A sequence $p=\left(p_{1}, p_{2}, \cdots, p_{r}\right)$ where $p_{1} \geqslant p_{F} \geqslant \cdots \geqslant p_{r}>0$ is cafled realizable if there exists a graph G with degree sequence. p. Before presenting the linear algorithm that produces the graph G when given a realizable sequence p, we first prove the following Theorem which constitutes the basic step of our algorithm.

Theorem 5.3: There exists a graph with degrees $p_{1} \geqslant p_{2} \geqslant \cdots \geqslant p_{n}>0$ if and only if there exists one with degrees $p_{2}{ }^{\prime}, p_{3}{ }^{\prime}, \ldots, p_{n}{ }^{\prime}$ where

$$
\begin{aligned}
& p_{i}^{\prime}= \begin{cases}p_{i}=1 & \text { for } i=2,3, \ldots . \delta+1 \\
p_{i} & \text { for } i=\delta+2, \delta+3, \ldots, \Omega\end{cases} \\
& \delta=p_{1} \text { if } p_{1}<2 \text { and } \delta=p_{1}-2 \text { otherwise. }
\end{aligned}
$$

Proof : Suppose there exists a graph with degrees $p_{1} \geqslant p_{2} \geqslant \ldots \geqslant p_{n}>0$.

Note that the theorem is trivially true if $p_{1}<2$.

Let v_{i} be the vertex with degree p_{i}. We claim that there exists a graph G with degree sequence $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ in which the vertex v_{1} has a loop if $p_{1} \geqslant 2$. Suppose not. Then v_{1} must be adjacent to $p_{1} \geqslant 2$ vertices in $\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}$ and all these p_{1} vertices are adjacent to each other. For otherwise if any two of them, say ν_{s} and v_{r}, are not adjacent. Figure 5.1 a shows that we can

Figure 5.1 : Exis ence of a graph in which vertex v_{1} has a loop
\qquad
delete the edges $v_{1} v_{s}$ and $v_{1} v_{r}$, but add $v_{s} v_{1}$, and $v_{1} v_{1}$ to obtain a graph with the same degree sequence and a loop at vertex ν_{1}. Furthermore, all of the p_{1} vertices except at most one must have loops. Figure 5.1 b shows that if two of them, say v_{p} and v_{q}, do not have loops, then we can delete the edges $v_{1} v_{F}, v_{1} v_{q}$ and $v_{F} v_{q}$. but add the loops $v_{1} v_{1}, v_{F} v_{F}$ and $v_{q} v_{q}$. This again is a contradiction. Since $p_{1} \geqslant 2$, there is at least one vertex, say v_{r}, among all the vertices adjacent to v_{1}, which has a loop and is adjacent to all the other adjacent vertices of v_{1}. Thus $p_{r}=p_{1}+2>p_{1}$, which contradicts our assumption that p_{1} is the largest in the sequence p.

Now let us choose G to be a realization of p in which v_{1} has a loop if $\left(p_{1} \geqslant 2\right)$ and also v_{1} is adjacent to as many vertices in $S=\left\{v_{2}, v_{3}, \ldots, v_{b+1}\right\}$ as possible. Suppose v_{1} is not adjacent to one vertex, say v_{1}, where $2 \leqslant i \leqslant \delta+1$. Then v_{1} must be adjacent to a vertex v_{j} where $\delta+2 \leqslant j \leqslant n$. If v_{i} does not have a loop or if both of v_{i} and v_{j} have loops, there must exist a vertex v_{i} adjacent to $v_{\text {, }}$ but not to v_{j}, since $p_{i} \geqslant P_{P_{\text {. }}}$. As shown in Figure 5.2 a , we can delete the edges $v_{1} v_{j}$ and $v_{i} v_{k}$ but add $v_{1} v_{i}$ and $v_{j} v_{k}$. If v_{i} has a loop but not v_{j}. then depending on whether vertices v_{i} and v_{j} are adjacent or not, we can delete the edges $v_{1} v_{j}$ and $v_{i} v_{j}$ but add $v_{1} v_{i}$ and $v_{j} v_{j}$, or delete the edges $v_{1} v_{j}$ and $v_{i} v_{i}$ but add $v_{1} v_{i}$ and $v_{i} v_{j}$ (Fig 5.2b. Fig 5.2c). In each of these cases, we obtain a graph with the same degree sequence and v_{1} adjacent to more vertices in $\left\{v_{2}, v_{3}, \ldots, v_{\delta+1}\right\}$. Therefore we have a graph G with degrees $p_{1} \geqslant p_{2} \geqslant \cdots \geqslant p_{r}>0$ in which vertex v_{1} has a loodp if $p_{1} \geqslant 2$ and is adjacent to all vertices $v_{2} \ldots . . v_{i+1}$. Removing v_{1}, we obtain a graph with degrees $P_{2}{ }^{\prime}, \ldots . . P_{n}{ }^{\prime}$.

Conversely. suppose there is a graph with degrees $p_{2}{ }^{\prime}, \ldots, p_{r}{ }^{\prime}$. We can then add the vertex v_{1} trivially to obtain a graph with degres $p_{1}, p_{2}, \ldots, p_{n}$.

Figure 5.2 : Existence of a graph in which ν_{1} is adjacent to $v_{2} \ldots, v_{\delta+1}$

The following is a modification of Hakimi's Algorithm [Ha62]. which constructs a graph with degrees $p_{1} \geqslant p_{2} \geqslant \cdots \geqslant p_{n}>0$.

ALGORITHM B (Modification of Hakimis Algorithm for complete grapks with loops allowed)

Let $v\left(p_{i}\right)$ be the vertex of degree p_{i} where $i=1,2, \ldots, \pi$ and
k be the number of non-negative terms in the sequence p.

STEP 0: $k-n ; \quad v\left(p_{i}\right)-i$.

STEP 1: IF $k=0$ THEN a DCS has been constructed; GOTO STEP 2.

\{create an edge between vertices $v\left(p_{1}\right)$ and $v\left(p_{j}\right) ; \quad p_{j} \leftarrow p_{j}-1$ \}

$$
p_{1} \leftarrow 0 .
$$

Reorder the updated sequence \dot{p} and the correspondigg vertices $v\left(p_{i}\right) \ldots . . v\left(p_{k}\right)$ so that p is non-increasing: update k.

GOTO STEP 1.
STEP 2: HALT.

Corollary 5.4 : ALGORITHM B finds a graph of n vertices with degree sequence $p=\left(p_{1}, p_{2}, \ldots . F_{n}\right)$ if $p_{1} \geqslant p_{2} \geqslant \cdots \geqslant p_{r}>0$ and p is realizable, and reports the non-existence if p is not realizable.

5.2. DCS for Bipartite Graphs

There are a number of ways to solve the DCS problem for bipartite graphs. Here we present two algorithms: one uses the maximum network flow algorithm of Dinic [Di70] and the other generalizes the maximum cardinality matching algorithm of Hopcroft and Karp [HK73]. Both of them run in $O\left(E^{3 / 2}\right)$ time where $[E$ is the number of edges in the bipartite graph. As a matter of fact the latter one will perform better in general for its time complexity is indeed $O(\sqrt{P} E)$ where P is the sum of the prescribed degrees of all vertices / These two algorithms are
substantial improvements over the previously known algorithm for the MR problem which is not guaranteed to run in polynomial time.

5.2.1. Maximum Network Flow Algorithm

A network is a directed graph $N=(V, A)$ with two distinguished vertices, a source s and a sink t, and a positive capacity $c(x, y)$ associated with every $\operatorname{arc}(x, y) \in A$ (for convenience we will abbreviate $c((x, y))$ by $c(x, y)$ for the $\operatorname{arc}(x, y) \in A)$. A flow in a network N is a function $f: A \rightarrow R$ which satisfies the following conditions:
(1) For every $v \in V-\{s, t\}$. $\sum_{\alpha \in \omega_{g n}(v)} f(a)=\sum_{\varepsilon \in \omega_{\text {gut }}(v)} f(a)$, where $\omega_{i n}(v)$ and $\phi_{o u t}(v)$ are the sets of arcs in A entering and emanating from vertex v respectively.
(2) For every arc $(v, w) \in A .0 \leqslant f(v, w) \leqslant c(v, w)$.

The value of the flow f. denoted by $|f|$, is the flow out of the source vertex s, namely $\sum_{(s, v)_{A}} f(s, v)$. The maximum flow problem asks for a flow f in N that maximizes If.

Given a bipartite graph $G=(X \cup Y E)$ with prescribed degrees $p(v)$ on all vertices $v \in X \cup Y$. Then $N(G)=(V, A)$ is a network constructed as follows:

$$
\begin{aligned}
& V=\{s, t\} \cup X \cup \bar{y} \\
& A=\{(s, x): x \in X\} \cup\{(y, t) ; y \in I\} \cup\{(x, y) ; x y \in E\} \text { and } \\
& c(a)= \begin{cases}1 & \text { if } a=(x, y) \in A, x \in X \text { and } y \in Y \\
p(x) & \text { if } a=(s, x) \in A \text { and } x \in X \\
p(y) & \text { if } a=(y, t) \in A \text { and } y \in Y\end{cases}
\end{aligned}
$$

L

For example. consider the "bipartite graph G shown in Figure 5.3a. Its corresponding network $N(G)$ is shown in Figure '5.3b.

(b)

Figure 5.3 : Example of a bipartite graph and its corresponding netwprk

Lemma 5.5 : The bipartite graph G has a subgraph whose vertices have degrees equal to the prescribed degrees if and only if the corresponding network $N(G)$ has an integral flow of value $P / 2$. where P is the sum of the prescribed degrees of all vertices in G.

Proof \{ Let $p(v)$ be the prescribed degree of vertex v in G.
Suppose $\vec{G})=(X \cup Y \cdot \bar{E})$ is a subgraph of G whose vertices have degrees equal to the prescribed degrees.

Let f be an integral flow of the network $N(G)$ defined as follows:

$$
\begin{aligned}
& f(s, x)=p(x) \text { for } 2 l l \text { arcs }(s, x) \in A \text { and } x \in X, \\
& f(y, x)=p(y) \text { for }=1 l \text { arcs }(y, t) \in A \text { and } y \in Y, \\
& f(x, y)=1 \text { for all arcs }(x, y) \in A, x y \in \bar{E}, x \in X \text { and } y \in Y \text { and } \\
& f(x, y)=0 \text { for all arcs }(x, y) \in A, x y \bar{E}, x \in X \text { and } y \in Y .
\end{aligned}
$$

The value of the flow f is the sum of the fiow out of the source s, which is equal to $\sum_{(s, x){ }_{A}} f(s, x)=p(X)=p(Y)=P / 2$.

Suppose $N(G)$ has an integral flow f of value $P / 2$.

Consider the subgraph $\bar{G}=(X \cup Y, \widehat{E})$ where

$$
\bar{E}=\{x y \mid(x, y) \in \ddot{A}, x \in X, y \in Y \text { and } f(x, y)=1\}
$$

*Since the flow f has value $P / 2=p(X)=p(Y)$, the amount of flow o: all the arcs emanating from the source s and entering the $\sin ' t$ is equal to'the capacities. The degree of every vertex $x \in X$ is then equal to $\sum_{(x, y) \in A} f(x, y)=f(s, x)=p(x)$. Similarly, the degree of every vertex $y \in Y$ is equal to $\sum_{(x, y) \in A} f(x, y)=f(y, t)=p(y)$. Therefore the vertices in the subgraph \bar{G} have degrees equal to the prescribed degrees.

- The proof indicates how the network flow solution can yield a DCS solution. Now we apply the maximum flow algorithm of DINIC [Di70] to find a DCS of a bipartite graph G with prescribed degrees. Since all capacities are integers, Dinic's algorithm will produce an intègral maximum flow.

ALGORITHM C (Extension of Dinic's Algorithm for Bipartite Graphs)

STEP 0: Construct the network $\lambda^{\prime}(G)$ forresponding to the bipartite graph G.
STEP 1: Find a maximum fiow f of $N(G)$ by Dinic's Algorithm.
STEP 2: IF $\mid f=P / 2$. THEN construct the DCS \bar{G} from the flow f. OTHERWISE a DCS does not exist.

STEP 3: HALT.

The construction of the network $N(G)$ takes $O(E E)$ time where $|E|$ is the number of edges in the bipartite graph G. The construction of the DCS $\dot{\bar{G}}$ from the flow f of value $P / 2$ also takes $O(|E|)$ time. In order to get the complexity for the entire algorithm, we need to find out how much time STEP 1 takes to find a maximum flow f of $N(G)$. In general Dinic s algorithm
tuns in $O\left(\left|V^{2}\right| E \mid\right)$ time where $I V$ and $\mathbb{E I}$ are the number of vertices and edges of the network respectively. However if the network is of special type. the time complexity may be improved. A 0-1 network is a network in which the capacity of all the arcs is one. Our network $N(G)$ constructed from G is very similar to a $0-1$ network except that the capacities of the arcs emanating from s and entering t may not be all one. Fortunately. we can replace each of those arcs of capacity greater than one by a number of arcs of capacity one to obtain a 0-1 network and yet the maximum flows on both networks are the same. This is shown in Figure 5.4, where the arc $a=(\nu, w)$ of capacity $k>1$ has been replaced by k arcs of capacity 1 from vertex v to vertex w. Clearly the newly constructed network. denoted by $N^{\prime}(G)=\left(V^{\prime} A^{\prime}\right)$. is a 0-1 network where $\left|V^{\prime}\right|=\mid V$ and $\left|A^{\prime}\right|=|A|+P-|X \cup Y|$. It is not difficult to see that the values of the maximum flows in the networks $N(G)$ and $N^{\prime}(G)$ are the same. Moreover, any flow in $N^{\prime}(G)$ corresponds* to a flow in $N(G)$ of the same value. Thus we may work on the 0-1 network $N^{\prime}(G)$ instead of $N(G)$ to find the maximum flow of value $P / 2$: This can be done by Dinic's algorithm in $O\left(\left.A^{\prime}\right|^{3 / 2}\right)$ for the 0-1 network $N^{\prime}(G)$. Since $\left|A^{\prime}\right| \mp|A|+P-|X \cup Y|=|E|+P=O(|E|)$, an execution of STEP 1 of ALGORITHM C takes $O\left(E E^{3 / 2}\right)$ time. Hence the entire algorithm is of time complexity $O\left(E E^{3 / 2}\right)$.

Figure 5.4 : Replacing an arc by multiple arcs to obtain a 0-1 network

5.2.2. Generalized Maximum Matching Algorithm

Let $G=(X \cup Y, E)$ be a bipartite graph having vertex set $X \cup Y$ and edge set E. A set $M \subseteq E$ is called a matching if no vertex $v \in X \cup Y$ is incident with more than one edge in M. A perfect matching M has every vertex incident with exactly one edge of M. In other words. a perfect matching is the edge set of a DCS of G with all the prescribed degrees equal to one. In this section we are going to generalize the maximum matching algorithm of Hopcroft and Karp [HK73] to solve the DCS problem with prescribed degrees $p(v)$ on all vertices v in the bipartite graph G.

Let M be a p-subgraph of G, i.e., a subgraph of G in which all vertices have degrees less than or equal to the prescribed degrees. A maximum p-subgraph is one that has the maximum number of edges. A simple path $Q=\left(v_{1}, v_{2}, \ldots, v_{2 k-1}, v_{2 k}\right)$ in G is an augmenting path relative to M if the end vertices v_{1} and $\dot{v}_{2 k}$ have degrees less than the prescribed degrees $p\left(v_{1}\right)$ and $p\left(v_{2 k}\right)$, all intermediate vertices $v_{2}, \ldots, v_{2 k-1}$ have degrees equal to the prescribed degrees $p\left(v_{2}\right), \ldots . p\left(v_{2 k-1}\right)$. and the edges are alternatively in $E-M$ and in M with starting edge in $E-M$.

When there is, no ambiguity, we let Q denote the set of edges in the augmenting path as well as the path itself and let M denote the set of edges in the p-subgraph as well as the subgraph itself: If S and T^{\prime} are sets, then $S \oplus T$ denotes the symmetric difference of S and $T, S-T$ denotes the set of elements in S which are not in T. and iS denotes the number of elements in S if S is finite. If M and N are graphs. then $M \oplus N$ denotes the symmetric difference of the sets of edges of M and $N, M-N$ denotes the set of edges in M which are not in N, and $\mid M$ denotes the \therefore number of edges in the graph M. An augmentation of M along the augmenting path Q is , - achieved by taking the symmetric difference of the edge sets of M and Q. Clearly $M \oplus Q$ is also a F-subgraph and $|M \theta Q|=M+1$.

Theorem 5.6 : Let M and N be p-subgraphs of G. If $|M|=m,|N|=n$ and $n>m$, then $M \oplus N$ contains at least $n-m$ edge disjoint augmenting paths relative to M.

Proof : Consider the graph $(M \oplus N)^{\text {sep }}$ formed by replicating each vertex $v \in M \oplus N p(v)$ times. Let v be a vertex in $M \oplus N$. let $v_{1}, v_{2}, \ldots, v_{p(v)}$ be the replicated vertices arising from v in $(M \oplus N)^{\text {sep }}$, and let v have. r edges from $M-N$ and s edges from $N-M$. Then the incidence of the $r+s$ edges with vertices $v_{1}, v_{2}, \ldots, v_{p(v)}^{*}$ is defined as follows.' Each of the vertices $v_{1}, v_{2}, \ldots, v_{r}$ is incident with one of the r edges from $M-N$ and each of the vertices $v_{1}, v_{2}, \ldots, v_{s}$ is incident with one of the s edges from $N-M$. Thus each vertex in $(M \oplus N)$ sep is incident with at most one edge from $N-M$ and at most one edge from $M-N$. Hence each connected component of $(M \oplus N)^{\text {sep }}$ is either
(1) an isolated vertex,
(2) a cycle of even length with edges alternatively in $M-N$ and in $N-M$. or
(3) a path whose edges are alternatively in $M-N$ and in $N-M$.

In any of the connected components, the number of edges belonging to N is either one more than one less than or equal to, the number of edges belonging to M. A component has one more edge belonging to N than to M it and only if it is an alternating path with starting and ending edges in $N-M$. There are, at least $n-m$ of these components since $|N-M-M-N|=|N|-M=n-m$. Hence there exist at least $n-m$ vertex disjoint "alternating" paths, $Q_{1}^{r e p} \cdot Q_{2}^{\text {ref }} \ldots . . Q_{n-m}^{\text {res }}$, in ($\left.M \oplus N\right)^{\text {rez }}$ with starting and ending edges in $N-M$. Consider an end vertex of any of these paths; it is incident with one edge in $N-M$. By the definition of $(M \oplus N)^{\text {ref }}$. the corresponding vertex. say v, in $M \oplus N$ must be incident with more edges in $N-M$ than in $M-N$. In other words, the degree of the vertex v in the p-subgraph N is more than that: in the p-subgraph M. But the vertices in both M and N have degrees less than or equal to the prescribed degrees. so the degree of the end vertex v in M must be lessithan the prescribed
degree.

Now we claim that the vertex disjoint alternating paths. $Q_{1}^{s e p}, Q_{2}^{s e f} \ldots, Q_{n}^{s e f}$. in $(M \oplus N)^{\text {ser }}$ correspond to paths $Q_{1}, Q_{2}, \ldots, Q_{r-m}$ in $M \Theta N$ which are edge disjoint. and such that each Q, contains an augmenting path relative to M. Let Q_{i} be the path in $M \oplus N$ consisting of all the edges of the alternating path $Q_{i}^{s e f}$. Then all the paths $Q_{1}, Q_{2}, \ldots, Q_{n-m}$ are edge disjoint. This follows from the fact that every edge in $M \oplus N$ appears exactly once in $(M \oplus N)^{\text {ref }}$. It remains to show that each Q_{i} contains an augmenting path relative to M. Since $Q_{i}^{\text {rep }}$ has odd length. $Q_{\text {}}$ is an odd length trail (possibly self intersecting). But $M \oplus N \subseteq G$ is bipartite, so Q_{i} contains an odd length simple subpath $Q_{i}{ }^{\prime}$ which is evidently also alternating and has the same set of vertices. Recall that the end vertices of the paths Q, have degrees (in M) less than the prescribed degrees. If all of the intermediate veratices of Q^{\prime} have degrees (in M) equal to the prescribed degrees. then Q^{\prime} ' is in fact an augmenting path relative to M. Otherwise by parity. we can always find an odd length subpath in Q_{i} so that the end vertices have degrees (in M) less than the prescribed degrees. Repeatedly, we must find a subpath whose end vertices have degrees (in M) less than the prescribed degrees and all the intermediate vertices have degrees (in M) equal to the frescribed degrees, and thus an augmenting path relative to M. Hence $M \oplus N$ contains at least $r-m$ edge disjoint augmenting paths relative to M

The following Theorems and Corollaries are similar to [HK73].

Corollary 5.7 : M is a maximum F subgraph if and only if there is no augmenting path rela-tive to M.

Corollary 5.8 : Let M be a p-subgraph. Suppose $|M|=m$. and suppose that the number of edges in a maximum p-subgraph is $n, n>m$. Then there exists an augmenting. path relative to M of length $\leqslant 2\left[\frac{m}{n-m}\right\rfloor+1$.

Proof : Let N be a maximum p-subgraph. Then by Theorem 5.6. $M \oplus N$ contains $n-m$ edge disjoint augmenting paths relative to M. Altogether these contain at most m edges' from M, so one of them must contain at most $\left\lfloor\frac{m}{n-m}\right\rfloor$ edges from M, and hence at most $2\left\lfloor\frac{m}{n-m}\right\rfloor+1$ edges together

Let M be a p-subgraph. The augmenting path Q is called shortest relative to M if the length of Q is the shortest among all the augmenting paths relative to M.

Corollary 5.9 : Let M be a p-subgraph, Q a shortest augmenting path relative to M, and Q^{\prime} an augmenting path relative to $M \Theta Q$. Then $Q^{\prime} \geqslant \geqslant Q^{\prime}+2 \bigcup \cap Q^{\prime}$.

Proof : Let $N=M \oplus Q \oplus Q^{\prime}$. Then N is a $p \neq$ subgraph and $|N|=\mid M+2$, so by Theorem 5.6, $M \oplus N$ contains iwo edgeffisjomt augmenting paths relative to M : call them Q_{1} and Q_{2}. Since $M \oplus N=Q \oplus Q$ and $M \oplus N \geqslant Q_{1}+Q_{2} \cdot Q \oplus Q^{\prime} \geqslant Q_{1}+Q_{2}!$. But $Q_{1} \geqslant Q$ and $Q_{2} \geqslant Q$, since $Q \mid$ is a shortest augmenting path. So $Q \oplus Q^{\prime} \geqslant Q_{1}+Q_{2} \geqslant|Q|+Q \mid=2 Q$, and also we have the identuy $Q \oplus Q^{\prime}=Q+Q^{\prime \prime}-2 Q \cap Q^{\prime}$. Hence

$$
Q^{\prime}\left|=Q Q^{\prime}-Q Q^{\prime}+2 Q \cap Q^{\prime} \geqslant 2 Q-Q^{\prime}+2 Q \cap Q^{\prime}\right|=Q Q+2 Q \cap Q^{\prime} .
$$

Now ve apply the following scheme of computation : starting with a p-subgraph $M_{0}=\varnothing$. compute a sequence $M_{6}, M_{1}, M_{2}, \ldots, \dot{M}_{i}, \ldots$, where Q_{i} is a shortest augmenting path relative to M_{1}, and $M_{i+1}=M_{i} \oplus Q_{\text {. }}$.

Corollary $5.10: Q_{i} \mid \leqslant Q_{i+1}$.

Corollary 5.11 : For all i and j such that $Q_{i}=Q_{j} l, Q_{i}$ and \mathcal{Q}_{j} are edge disjoint.

Proof : Suppose that $Q_{i}=Q_{j}, i<j$, and Q_{i} and Q_{j} are not edge disjoint. Then there must exist k and $l, i \leqslant k<l \leqslant j$, so that Q_{k} and Q_{l} are not edge disjoint, and for each $m . k<m<l . Q_{m}$ is edge disjoint from Q_{k} and Q_{i}. Then Q_{l} is an augmenting path relative to $M_{k} \oplus Q_{k}$. so $Q, \geqslant Q_{k} l+2 Q_{k} \cap Q_{l} l$. But $Q_{i}=Q_{k}$; so $Q_{k} \cap Q_{l}=0$, which is a contradiction.

Theorem 5.12: Let n be the number of edges in a maximum p-subgraph. The number of distinct integers in the sequence

$$
Q_{0}, Q_{1}, \cdots, Q_{0}, \cdots \text { is less than or equal to } 2[\sqrt{n}]+2 \text {. }
$$

Proof : Let $m=\lfloor n-\sqrt{n}\rfloor$. and let M_{m} be thé p-subgraph with m edges. Then by Corollary $5 . x$.

$$
\begin{aligned}
Q & \leqslant 2 \frac{\lfloor n-\sqrt{n}}{n-n-\sqrt{n}}+1=2 \frac{n-\sqrt{n}}{-\sqrt{n}}+1 \\
& =2 \frac{n}{\sqrt{n}}-\frac{\sqrt{n}}{-\sqrt{n}}+: \leqslant 2 \frac{n}{-\sqrt{n}}+1 \\
& \leqslant 2 \sqrt{n}+1
\end{aligned}
$$

Thus for each $i<m-Q$: is one of the $[\sqrt{n}\rfloor+1$ positive odd integers less than or equal \ldots 2 $\sqrt{n}+1$. Also $\left.Q_{m+1}\right\rfloor, \ldots, Q_{n}$ contribute at most $n-m=n-\lfloor n-\sqrt{n}\rfloor=\lceil\sqrt{n}\rceil$ distinct integers. hence the total number of distinct integers is less than or equal to $\lfloor\sqrt{n}\rfloor+1+[\sqrt{n}\rceil \leqslant 2\rfloor \sqrt{n}\rfloor+2$.

In view of Corollaries 5.10 and 5.11 and Theorem 5.12, the computation of the sequence $M_{0}, M_{1}, \ldots, M_{1}, \cdots$ breaks into at most $2\lfloor\sqrt{n}\rfloor+2$ phases, and within each all the augmenting paths found are edge disjoint and of the same length. Since these paths may fail to be vertex disjoint, an augmenting path relative to the p-subgraph with which the phase is begun need not be one of the augmenting paths within the phase. So we have to be cautious when we are going to find all the augmenting paths of the same length within a phase at the time the phase is begun. The following is an alternative way of describing the computation of a maximum p-subgraph, and hence a DCS.

ALGORITHM D (Generalization of Hopcroft and Karp's Algorithm for Bipartite Graphs)

STEP 0: $\quad M \leftharpoondown \varnothing$.

STEP 1: Let $l(M)$ be the length of a shortest augmenting path relative to M.

Find a maximal set of paths $\left\{Q_{1}^{M}, Q_{2}^{M}, \ldots, Q_{k}^{M}\right\}$ with the properties that
(1a) For each i, Q_{i}^{M} is an augmenting path relative to M such that
$M \oplus Q_{1}^{M} \oplus \cdots \oplus Q_{i}^{M} \oplus \therefore Q_{k}^{M}$ is a $p-$ subgraph and $\left|Q_{i}^{M}\right|=l(M)$.
(1b) The $Q_{:}^{1:}$ are edge disjoint.
IF no such paths exist. THEN GOTO STEP 3.

STEP 2: $\quad M \leftharpoondown M \oplus Q_{1}^{U /} \oplus Q_{2}^{U} \oplus \cdots \oplus Q_{k}^{32} ; \quad$ GOTQ STEP 1.
STEP 3: IF $\mid M=P / 2$. THEN M is a DCS. OTHERWISE a DCS does not exist.

STEP 4: HALT.

Corollary 5.13: If the number of edges in a marinum p-subgraph is n, then ALGORITHM D constructs a maximum $p-$ subgraph within $2[\sqrt{n}\rfloor+2$ executions of STEP 1.

Corollary 5.14 : ALGORITHM D constructs a DCS with prescribed degrees within $2|\sqrt{P / 2}|+2$ executions of STEP 1 if one exist, where P is the sum of the prescribed degrees of all vertices.

Let M be a p-subgraph of the bipartite graph $G=(X \cup Y E), p(v)$ be the prescribed degree of vertex $v \in X \cup Y$, and let $d(v)$ be the degree of vertex v in M. Let $X_{<}=\{x \mid d(x)<p(x)$ and $x \in X\}$ and $X_{=}=\{x \mid d(x)=p(x)$ and $x \in X\}$. The sets $Y_{<}$and $Y=$ are defined similarly. We discuss the efficient implementation of STEP 1 of ALGORITHM D in which a maximal set of augmenting paths satisfying properties (1a) and (1b) is found. First we assign directions to the edges of the graph so that the augmenting paths become directed paths. This is done by directing each edge in $E-M$ from a vertex in X to a vertex in Y, and each edge in M from a vertex in Y to a vertex in X. The resulting graph is described as follows:

$$
\begin{aligned}
& G_{M}=\left(V_{M}, E_{M}\right), \text { where } \\
& V_{M}=X \cup Y \text { and } \\
& E_{M}=\{(x, y) \mid x y \in E-M, x \in X \text { and } y \in Y\} \cup\{(y, x) \mid x y \in M, x \in X \text { and } y \in Y\} .
\end{aligned}
$$

Next we extract a subgraph G^{\prime} of G_{A} in which the directed paths with starting vertex in $X_{<}$. ending vertex in $Y_{<}$and all intermediate vertices in $X_{=} U Y^{\circ}$ correspond one-to-one to the shorlest augmenting paths relative to M. This is done as follows.

Let $L_{0}=X_{<}$and let

$$
\begin{aligned}
& E_{i}=\left\{(u, v) \mid(u, v) \in E_{M}, u \in L_{i}, \text { and } \cdot \in L_{0} \cup L_{1} \cup \cup \cup \cup L_{i}\right\} \text { for } i=0,1,2,3 \ldots \\
& L_{i+1}=\left\{v \mid \text { for some } u,(u, v) \in E_{i}\right\} \text { for } i=0,1,2,3 \ldots
\end{aligned}
$$

Then $G_{M}^{\prime}=\left(V_{M} E_{M}\right)$ where

$$
\begin{aligned}
& V_{M}^{\prime}=L_{0} \cup L_{1} \cup \cdots \cup\left(L_{i} \cap Y_{<}\right) \text {and } \\
& E_{M}=E_{0} \cup E_{1} \cup \cdots \cup E_{i^{*}-2} \cup\left\{(u, v) \mid(u, v) \in E_{i-1}, u \in L_{i=1}^{*} \text { and } v \in Y_{<}\right\} .
\end{aligned}
$$

All directed paths in G_{M} from a vertex in $X_{<}$to a vertex in Y_{\ll} are the shortest augmenting paths relative to the p-subgraph M. However for every vertex $x \in X_{<}$there are only at most $p(x)-d(x)$ of them that start at vertex x and need to be augmented. Also for every vertex $y \in Y_{<}$there are only at most $p(y)-d(y)$ of them that end at vertex y and need to be augmented. Therefore we adjoin io G_{M}^{\prime} two new vertices s and $t, p(x)-d(x)$ edges from s to every vertex x in $X_{<}$, and $p(y)-d(y)$ edges to t from every vertex y in $Y_{<}$. A maximal set of edge disjoint directed paths from s to t in G_{M}^{\prime} is then a maximal set of edge disjoint augmenting paths $\left\{Q_{1}^{M}, Q_{2}^{M} \cdot \cdots, Q_{k}^{M}\right\}$ so that $M \oplus Q_{1}^{M} \oplus Q_{2}^{M} \oplus \cdots \oplus Q_{k}^{M}$ is still $a_{2} p-$ subgraph of G. The mechanism for finding a maximal set of edge disjoint directed paths from s to t in G_{M}^{\prime} is straightforward depth first search, which takes O (number of edges in $\left.G_{M}^{\prime}\right)=O\left(E_{M}^{\prime} \mid+P\right)=O(|E|+P)=O(|E|)$ time. Hence the execution of STEP 1 of ALGORITHM D runs in time $O(|E|)$ and the entire algorithm . has time complexity $O(\sqrt{P}|E|)$ or $O\left(|E|^{3 / 2}\right)$.

CHAPTER 6

CONCLUSIONS

The MR problem was previously studied by Cox and Ernst in 1982. They showed that an MR(1,1,1) always exists by modeling the problem as a Capacitated Transportation problem. The algorithm for obtaining an MR(1.1,1) appeals to the algorithrs for solving the Capacitated Transportation problem which are not guaranteed to run in polynomial time. Ins this thesis.we investigate the GR problem which is more general than the MR problem as we have shown that the MR problem is linearly equivalent to the GR problem on a special type of graphs. namely the bipartite graphs. An alternative (graph theoretic) proof on the existence of a GR(1,1.1) for bipartite graphs is given. Yet a GR(1.1.1) may not exist for arbitrary graphs. Fớrtunately with the constraints being relaxed, a $\operatorname{GR}(1,2,1 / 2)$ and a $\operatorname{GR}(1,1,(n+1) / 2)$ always exist for an arbitrary undirected graph of n vertices: a $\operatorname{GR}(1,4 / 3,1 / 2)$ and a $\operatorname{GR}(1,1,(n+3) / 6)$ always exist for a loopless undirected graph of n vertices. The bounds in the constraints for these roundings are indeed tight in the sense that there are examples of connected graphs achieving cur bounds asymptotically. We have constructed examples in which any rounding Λ that satisfies the constraints $L \Lambda(e)-\lambda(e)<1$ and $\Lambda(v)-\lambda(v) \leqslant 1$ will hare $\Lambda \Lambda(E)-\lambda(E)$ asymptoticalyy close to $(\mathrm{n}+1) / 2$ for an arbitrary undirected graph, and asymptotically close io $(\mathrm{n}+3) / 6$ for a loopless undirected graph. For an arbitrary $\epsilon>0$, there are examples in which any rounding Λ that satisfies the constraints $\Lambda(e)-\lambda(e) \mid<1$ and. $|\Lambda(E)-\lambda(E)| \leqslant 1 / 2$ will have $\max \mid \Lambda(v)-\lambda(v)=2-\epsilon$ for an arbitrary undirected graph. and max $|\Lambda(\dot{v})-\lambda(v)|=4 / 3-\epsilon$ for a loopless undirected graph.

The different roundings for the GR problem can be obtained by solving a certain DCS and a certain Euler Tour problem on undirected graphs. We have presented two algorithms for
solving the DCS problem: one is the extended Maximum Network Flow algorithm of Dinic, and the other is the generalized Maximưm Cardinality Matching algorithm of Hopcroft and Karp. Both of them have time complexity $O\left(\left.E\right|^{3 / 2}\right)$ in the worse case analysis where $E E$ is the number of edges in the graph. In general the latter one will perform better as it runs in $O(\sqrt{P}|E|)$ time where P is the sum of the prescribed degrees of all vertices in the graph. This is a substantial improvement over the previously known algorithm developed by Cox and Ernst [CE82] which may have exponential behavior. If the graphs are complete, i.e., if the rounding problems are 0 -relaxed. then we have simpler linear algorithms.

From our results on the existence of a rounding for undirected graphs, the existence of a symmetric rounding for symmetric, matrices is derived. An $\operatorname{SMR}(2,2,1)$ and an $\operatorname{SMR}(2,1, n+1)$ always exist for an arbitrary symmetric matrix of dimension n; an $\operatorname{SMR}(1,4 / 3,1)$ and an $\operatorname{SMR}(1,1,(n+3) / 3)$ always exist for a symmetric matrix of dimension n with all diagonal entries being 0 . These roundings can also be obtained by our algorithms for the GR problem.

REFERENCES

[BM76] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, The MacMilv lan Press Ltd., 1976.
[Ca79] B. Causey, Approaches to Statistical Disclosure, Proceedings of the Social Statistics Section - American Statistical Association; Washington. DC. 1979. pp.306-309.
[CE82] L.H. Cox and L.R. Ernst. Controlled Rounding, INFUR, vol. 20, No. 4, 1982. pp.423-432.
[Di70] E.A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in a Network with Power Estimation, Soviet Math. Dok1. vol. 11.1970, pp.1277-1280.
[Er81] L.R. Ernst. A Constructive Solution for Two-Dimensional Controlled Selection Problems. Proceedings of the Survey Research Methods Section - American Statistical Association, Washington, DC. 1981, pp.61-64.
[Ev79] S. Even, Graph Algorithms, Computer Science Press, Inc., 1979.
[Fe75] I. Fellegi, Controlled Random Rounding, Statistics Canada, Survey Methodology. vol. 1:1975, pp.123-135.
[Ga57] D. Gale. A Theorem on Flows in Networks. Pacific J. Math.. vol. 7. 1957. pp.1073-1082.
[Ha62] S.L. Hakimi, On Realizability of a Set of Iniegers as Degrees of the Vertices of a Linear Graph', J. Soc. Indust. Appl. Math., vol. 10, No. 3. 1962. pp.496-506.
[HK 73] J.E. Hopcroft and R.M. Karp, An $n^{5.2}$ Algorithm for Maximum Malching in Bipartite Graphs, SLAM J. Computing, vol. 2, No. 4, 1973, pp.225-231. .
[Lo79] L. Lovász, Combinatorial Problems" and Exercises, North-Holland Publishing Company, Amstercam. New York, Oxford, 1979.
[PS82] C.H. Papadimitriou and K. Steiglitz, Combinaturial Opimization : Algorithms and Complexity; Prentice-Hall. Englewood Cliffs, NJ, 1982.

[^0]: All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means. without permission of the author.

