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The Matrix Controlled Rounding (MR) problem is the problem of rounding all,reaplﬁ

number entries of a given matrix. all row and zolumn totals, and the grand total. 1o integer *

¢

multiples of ‘a positive base B subject to some constraints. In many applicat‘i-ons the matrices
may be symmetric. and it would be desirable to ensure that the rounded matrices are also sym-
metric. This motivates another class of the Controlled Roundlng problem called the Graph

7, heoreuc Controlled Rounding (GR) problem, which is S the problem of rounding all edge weights~

of a g:ven graph., We show that the MR problem as studled m\gCE82] isa spec1a1 case of our-

GR problem in the sense that it is hnearly equwalent to the GR problem restrlcted 10 b:partlte
graphs We also prove the exxstence of roundings of various klnds for dlﬁ‘erent types of graphs -
These results are useful for, solvmg a stronger version of the Matrix Controlled Rounding prob—

lem. namely the problem of a symmetric rounding of a symmetric matrix.

The prev1ously known algornthm for the MR problem appeals 1o the algorlthms for the

Capacrtated Transportatlon.problem which are hot guaranteed to run in polynomlal time. In

this thesis we present two algarithms of time complexxt_‘,g 0 (IEF”2 where £ is the number of

edges in the graph. They solve not only the MR problem. but'also the GR problem for diﬁeren-t"

.types of graphs. The solutions are obtained by solving a.certa‘in Degree Constrained Snbgraph

T - -

and a certain Euler Tour pro‘blem on undirected gi‘aphs.

R4
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- ~  INTRODUCTION . . .

" The Matrix Controlled Rounding (abbreviated MR) problem is the problem of Vr'orundinga]]

real number entries of a given tabular array (or matrix), all row and column totals, and the™

g}and total, to integer multiples of ‘a positive integer base B subject 1o the following con-
: \ : ;

Straints: ) : e 4

1.‘1 Each entry (or total} in the mainx is rounded to~an ad;acem mtcger multiple of B.i.e. an.

entry (or total) a-is rounded 1o either B(( = B"Hl) or B(LF‘J) ‘ L

1.2 The sum of the rounded values along afx}-' row (respectively column) of the matrix is

equal 1o the rounded value of the corresponding row (respectively column) total entry -

- / 1.3 . The total sﬁm of ail rounded values is equal to tvhe‘rounded value of the total sum of all
vaiues in the-vmatrix. A ‘ _ : - \ |
Matrix Controlled Rounding has-several applications. For example, one may use it to uni-

formize the data values in a matrix for analysis or to reduce thze unnecess;xz;y"ﬁne numerical

details to a desirable level. It can even be used to control statistical disclosure in ‘tabular

represematidn of frequency count data. Small magnitude frequency count data may reflect a -

" small, perhaps identifiable subset of respondent populauon Lnder some circumstancés this

3

may resuh in dxsclosure of data obtained urzder pled,( of confidentiality. Thus the data
re}egser may want to m_odify these frequency counts so that Ihey become impr .
must be rcareful to do so without imroduéing unriece%ary disru rtio'n- to the rélﬁlionships
between data items such as the addiiive structﬁré of i The Matrix Coptrolled

* Rounding problem with the additipnal constraint 1}131 imegei mu]tiples of the base B must be™,

b -

3
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,roundéd to themselves is said to be O-restricted. It has important application.in the area of sur-

-

' .

Leﬁ' design. especiaily in‘!{electidnlof‘ sampling units [Er8v1].

There are someéwwus simple rbundmg methods. One is to convennonallv round the
. -

entnes 10 the fixed mtegexf base. e. g to round a data value ato B(L +O S_D Anothﬁr isto

?

Y

,i'ound the dam entries randomly. ngever these 1w methods often ,_failrto satisf y the additive. -

stl'ucturg'of the totals (consu:aintsrl .2 and 1.3). In 1979, Causey déveloped an heuristic round-

ing procedure which worked sizisfactorily ina large percemage of cases but has begn‘shown 1o

fail the constraints 1.2 and 1.3 in some parucular exampl% [Ca791 Then the problem was-

.1nvm1Lm by Cox and Emst in 1982 They have shown that a rounding solution. satisfying

constraints 1.1, 1.2 and 13 always exists >by modelmg the problem as a Capac’nated Transpor-

}

tation problem, and also developed some algorithms which dei;qued on Transportation prob-

-

lem algorithms [CE82). ¥

In many applications the matric&s are svmmetric. and it wo'uld be desirable to ensure that

—~ L

ghe rounded matrices are also svmmetrxc This_ motivates another class of comrol‘led roundmg
proh‘eﬁalled Graph Theoretic Cantrolled Rmmdmg (abbrevmted GR) problems whzch cannot

be solved by the algorithms developed bv Cox and Ernst. The G.raph Theorenc Controlled

Roundmg problem is the.problem of roundmg all edge weights of a g:ven graph, as well as ver-

C e,

tex Totals (sum of the weights of all edges incident at a vertex) and grand total (sum of the

weighls of all edges in the given graph), which satisfies-the following constraints:

1.4 The wexght of each edge (or total) in the graph is rounded 10 an ad}acent mteger mpl%ple\ :

p)

of the base B. i.e. 2 weight (\or total) wis rounded 10 either B(]_ _H—I) or B(L—))/

1.5 K The sum.of the rmmded ‘eights of the edges incident at any vertex is eéual to the -

ropnded value of the sum of the weights of all edges incident at the corresponding vertex.

Thesis

' < s N A —



1.6° Thé sum of all the'rounded weights is eqﬁl”iioiiheﬁrouynded value of the total weight of

\

. c
all edges in the graph.

The Directed Graph Theoretic Controlled Rounding (abbreviated DGR) problem can be defined
ilarly if the “given graph is directed” Instead of haviné a -verte_x total for each verLen. we

haveffvo veriex totals, one for the incoming edges and the other for tbe ?utgolng edges There-

-~ -~

f ore Constraints 1 5 wdl be replaced hv the followmg two constraints for DGR problems: - - oo

1.5a The sum of the rounded weights of the edges going into any vertex is equal to he rounded »* %K :
‘ ‘ ' ‘ ' A : - S
€ 5

value of the sum of lhe weights of all edg&s going into that vertex. o R

~ 1.5b Tue sum of the rounded weights of the edg&s going out from any vertex is equal to the & ,

rounded value of the sum of the welghts});{,all edg&s gomg out from that vertex.

z

problem an%problem srmpllﬁcauon are estab‘llshed -

The potation, formal statement of 3
“in Chapter 2. In Chapter 3 we wilf show that MR can be vxewed as a special fase of GR
namelv tl§\roundmg of bipartite graphs and. nge -some 1ns1ghts and known results of the‘

' existence of a solution. Chapter 4is concer_ned with the roundm@;‘of lundlrected graphs . - —

which is equivalem. 10 the rounding of” s'.vmmetric m?n.rices with the additional constraint that

&

the’ resultmg matrzces are also svmmetrlc The soluuon is obtained by solvxng a certam Degree :

4
Conslramed Subgraph (abbrevmted DCS) problem. and a certain Euler tour ‘problem for S
- e
: undirected graphs. Chapter 5 pr&sents some algorithms for solving the DCS problem, with : \
which the ‘GR problem can Be solved efficiently. ' \\
. N . q -

Thesis



DEFINITIONS AND TERMINOLOGY ~ .

=,

\As stated in .Chapter 1. the first constraint (constrair;t 1:1) of “tfhe Matgix Controlléd
Rounding problem requires that each entry in "thg matrix be rounded to an"adjacem: iﬁteger
xﬁultiple qf _thel base B. Some Dsiniplif ying assumpti<;n§ can be made immediatmwdingp. ‘
each 6f the entries il:l 'the matrix l;')yv B. an equivalent Controlled Rolinding Problem with gésé
B=1is obtained; Next, 4replaci;1g each internal entry ’X,-j by its fractional part. i.e. A=A and

ad‘justi_n‘g all the tctals accordingly, we have the condition 0€X;<1. An example is illustrated

in Fi;%'re 2.1. Thi} is also true in thé Graph Theoretic version. Therefore we may assume that

B=2 v § - B=l .
07 46 1 &1 [ a35 20 ! 235 ]
, |
| |
' [
I;
2
_::s_ k3 : 32 25 0.65 % 1Qo .
- - -——-— - -t =
32 53 | 85 | m 265 | 435
/ sy e ~ ey o T
. 035 L A
N _ I )

035  ats - 090

T

Obo 065 | a5 |

_ Figure 2.1 : Example of an MR problem

'y



~give a formal statement on the rounding problem.

the simptifyirrg conditions hold when considering a: Controlled Rounding prdblegx

Now we will introduce the terminology that is going to berused throughout this thesis and

) . o w -

LR

£y

7

with mXn internal entries A;;, where 0SX; <1, 1<iSm, 1€j<n, m row total entries A;,

whergl $i€<m, n column total entries'\ ,, where 1<j<n, and a grand total entry A . An MR

(a.B.%) is a function A which maps’ each internal entry A; of A 10 A; which is either O or 1,

t.

7.

o , o ’ ‘n ) .
row total entry A; to A, = 2 A,.. column total entry A, to’A, = J A, and the grand total

'j_=1'1 =1
m n ’ ‘ , L
entry A’ 1o A = ZZAU. satisfving the following constraints :
‘ i=1j=1 ,
2.1 ‘LAZ‘I s A'lji < a
2227 A, — A< 5 : b S -

22b A —AS< B

23 0 A -Ai<y ‘ o

" An SMR (a.By) (symmetric MR (a.8.y)) is an MR (a.8.y) of a symmetric matrix with the

-

additionai”constraint that the resulting matrix be svmmetric. If any of the parameters .3 or y

has an underbar, then the corresponding constraints would be non-sirict inequalities rather .

than strict inequalities. For example, an MR (a,B.y) is the function A that satisfies the follow-

ing constrainis :

24 A,—Ai<a

Thesis

A two dimensional tabular array A is an (m+1) X (n+1) array of real humber entries ’
. oo - . - N



// | | S o 6
) The MR (;,B:;,') problem asks for an MR (a.B.y) of a matrix A. Similarly, The SMR (a.B8.y)

2 <

problem asks for an SMR (a.By)of a syxﬁmetric matrix A.

.

A weighted undirected graph G is an undirected graph with vertex set V (where- WVi=n),

edge set E (where lEl=rﬁ) and a weight function )\:E*{w:0<.w<1}. An integer weight f;lnctioh«
AE-{0.1} is defme‘d‘to be a GR (a.B.y) of the graph G if it satisfies the f‘ol'low-in‘g conﬁrain;sA :

2.7 Ale) —Ale) < & Ve |

‘ 28 Alv) = A(v) < ﬁ VvEyV -

29 WE-AEB) < y ‘ )

-where A(v) (A(v) respectively) is the sum ¢ the weights A(e) (A(e) respectively)’

: 7
of all edges e incident with v,

.

and  A(E) (\(E) respectively) i sum-of the weights A(e) (A{e) respectively) -
of all edges e in the edge set E. |
For convenience, we define A(xv)=0 and A(xv)=0 if uv€E and u.v€V. A directed edge from

" vertex i o vertex Jj is denoted by (i.j) and an undirected edge joining vertices i and J is denoted

by ij. Let f:A— B be a function and S&A be a set. Then f(S) = }_ f(1).
, a€s "

A BGR (a.8.y) (Bipartite GR (a.B.y)) is a GR (a.B,y) on a bipartite graph G. If G is directed,

then 2 DGR (a.8.y) (Direcied GR (a.B.y)) can be defined similarly. Instead of having one con-

k

straint for the vertex totals. we would have 1wo constraints, one for the incoming edges and
the other for the outgoing edges. For example. constraint 2.8 would be replaced by the follow-"

:r;g two constraints for a DGR (a.8.y) of G :
2.8a Alv, ) =Alv,) < B8 TveV

28 AL —AlvL) <8 wvEV ' . L

Thsﬂé 2
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© where A(,) (A(vi,) respectively) is thé sum of the weight Ale) (A(e) respec-

tively) of all incoming edges e of the vertex v,
and  Alvp) (A(vo,) respectively) is the sum of the weight Ale) (Ale) respec-
iively) of all outgoing edges ¢ of the vertex v. ® 7

. N - \ )

A roundmg in which integers are always rounded 1o themselves is said to be 0—restr1cted

For example, MR(1,1.1) and GR(1.1.1) are O—restncted Given a graph G and a weight funcuon A_

A as in-Figure/Z.Za. a GR(1.1.1) is shown in Figure 2.2b. The edges that are missing in G can be

conceptually viewed as edges having weights 0 and the rounding toOorlis only done on the

edges that are presem. inG. Therefore the missing edges still have welghrs 0 after the roundmg\

is done. If O can be rounded to 1 then they should be present in the graph. ThlS amoums to

rounding in complete graphs whose edges may have weights 0. We will refer to this kind of — -

rour}didg as O-relaxed rounding. For ex_am;;le. MR('i.l,l ) and GR (1.1,1) are O-relaxed.

&y

Figure 2.2 : Example of a GR problem

Thesis



Mostly we are-only interestga in rouhd_i_ngs in which all the parameters . and y are

%

equal 1o 1 or all the parameters @B and y are equal to 1, Thus, for simplicity, we will refer 1o

~ the roundings with a=f=y=1 as 0-restricted and the roundings with a=B=y=1 as O-relaxed.

“Now we mtroduce another problem called Degree Constrained Subgraph (abbrev1ated'

DCS) problem which can be recuced from Lhe GR problem Let G be a graph in which each"

vertex i has an associated integer called the prescribed degree pi). ADCSisa Spanning sub-

- graph of G in which each vertex has degree equavl to the prescribed degreé. The DCS problem

1

asks fora DCS of G.

Let us define the linear equivalence relation between two problems P; and P,. 'Su—ppo;ée

that @ is an algorithm that iransforms each instance /, of problem P; to an instance /5 of prob-

lem P,, and ®is an algorithm that transforms each solution S, of the instance / of P, 10 a

solution S, of the instance 7, of P; such that S, is a solution of Z,=®(Z,) if and oniy if

®'(S,)=S, is a solution of I;. If ® and I, are linear in the size 6{_11, S, is linear in the size Qf~12,:

and if @' and S, are linear in the size of S,. then we say that P, is linearly reducible to p,,

denoted by P—P, P, and P, are said to be hnea.rly equivalent, denoted by P;—P,, if P] -*}2 :

and Pa—*P]

Thesis




CHAPTER 3 . o

T GR ON DIRECTED GRAPHS o o

In this chapter we concentrate on the GR px“gt;iem for directed ’gfaphs. which playsian
important rolé ig the GR problems. We will first show the relationships between the problems B
MR, DGR (GR on dlrected graphs) and BGR (GR on\\parme graphs) Then we will discuss the

existence of a rounding for mh of the problems N -

3.1. Relation between MR and DGR

In Figure 3.1 we have twy examples—ef com_.rolléd rounding. one is MR(1.1.1) and the.,

- other is [t)GR(l.l.l). The reader may notice that there are some Similirities or correspondences

between them. |

0.5 0.7 0.9 ] 2.1

0.6° 0.1 05'1.2

1.1 08 14 ! 3.3

FM&I : Correspondence between MR and DGR , we

2
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.

Theorem 3.1 :;I‘he probleras MR(1.1,1) and DGR(1.1,1) are linearly equivalent. -

¥

Proof : ' . . . s

-

(1) The MR(1.1,1) problem is linearly reducible to the DGR(1,1.1) rprobl‘em:i |

Given a two dimensional mM . we cc;nstruct a directed graph 5;(\717.’) such that any

-

: founding DGR(1.1.1) of G will give a rounding MR(1,1,1) of 4 . B

Let A be an mXn matrix and Xij be the entry of A in row i and column j. Without loss of

- .

R

v < - : i . .
generality, we may assume mSn. Let G=(V.E) be a directed graph with vertex set

V={1.2.3. - - .n}, edge set E and weight function A which are defined as follows:

-

E={e=(i.j) | A,,.'> 0} AN ,

N:E—-{w:0<w<1} so that A(e)=\;; where e=(i.j)€E. - _)

*

Obviously the construction and the size of the DGR(1,1,1) instance are linear in the size of
the given MR(1,1,1) instance. Suppose we are given a DGR(1,1,1) A of G. The MR(1,1,1)
A of the matrix A is obtained as follows. the rounding o} the weight of the directed edge

*  joining vertex i-to vertex j of Ggives the corresponding rounding of the entry A;;. ie.,

Ale)  if e=(i,j)€E
0 otherwise

/

i

// Since 7\ is a DGR(1,1.1), it is easy 1o see that A will satisfy the constraints for being an
/ - MR(1.1,1) of A.

(2) The DGR(1.1.1) problem is linearly reducible to the MR(1,1,1) problem.

Given a directed graph G=(V.E) and a weight function X, we construct.a two dimensional

matrix A such that any rounding MR(1.1,1) of A will give a rounding DGR(1.1.1) of G.

Let V={1.2.3....n} and let

Thesis
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-

A(.j)be the weight of the directed edge from vertex i to vertex j in G.

Then A is a square matrix of dimension n. and the entry in row i and column J. denoted

by Ay is defined as follows:

//"""\"—\
[ AR if (i,j)€E / ' —_—
A= 0 _— Otherwise ' 7 : /e :

- /
Obviously the construction ar&}/u size of 1% R(1.1.1) instance are linear in the size of

the given DGR(1.1,1) instance. 'Sup‘pose we are given an MR(1.1.1) A of A. The
corresponding DGR(1.1,1) Aof Gis obtained as follows, the rounded entry 4A,~j in row i

and column j gives the corresponding rounded we‘i‘grht A(i,j) of the directed edge from ver; |
tex i to v‘ertexj in (% ie., ' N '

Ale) = A, where e=(i,jj. | \ .
‘is easy to see that A will sétisfy the con'strz;ints for beng a

e

Since\:f\ is an MR(1.1.1), it

DGR(1.1.1) of G.

Corollary 3.2 : The problems MR (1.1.1) and DGR (1.1,1) are linearly equivalent.
« , e .

- Proof : The proof is essentially the same as that of Theorem 3.'1'e;»;cept that the DGR (1,1,1)

instance is always a complete directed graph of \n vertices.

-

3.2.. Relatim} between DGR and BGR

As in many graph theoretic problem.';. Controll@d Rounding on directed Vgraphs is linearly

equivalent to that on*bipartite graphs. An example is shown in Figure 3.2.

Theorem 3.3 : The problems DGR(1,1,1) and BGR(1,1,1) are linearly equivalent.

Thesis . {



Proof :

Ve
e

(1) The DG'R(l,l,l/,)"j;roblem is linearly reducible to th‘g\BGR‘( 1.1,1) problem.

Given a directed‘graph §=(V.§) and a wejght function A, we construct a weighted bipar~
tite graph G= (XUY,E) such that any rounding BGR(1,11) of G will give a_rounding

DGR(l 1, 1) of G.

Let V={12.3....,n} and.let -

A(i.j) be the ‘we'ight of the directed edge from vertex i to vertex j inG. . A
Vs
Then G=(XUY.E) is the corresponding bipartite graph instance where X = { x,,./xz. s X }
, ¥z
and ¥ = { y,. y,. voer ¥n }. A vertex i of G corresponds to two vertices x; and y; of G . The
edge set E and weight funcuon )\ are deﬁned as follows: //
— ' 7

v, 1. )DEE} IR . ;o
)\ﬁ—*{w :0<w<1} sothat Ale)=A(&) whe‘ré e=x;y; and E={(zi//;j).
Clearlv the constructlon and the size of the BGR(1,1,1) 1&& are linear in the size of

the given DGR(1,1,1) instance. Suppose A is a BGR(1.1, 1) of G. Then the rounded weight

/

of the edge ]ommg vertices x; and y; will give the rounded weight of the dlrecLed edge

from vertex i to vertex j in G. Thus the rounding A/of G is obtamed as follows
. . e
Ty : , S -
— Alig) = A(x,-yj).». : / .

. | / _ ,
Since tﬁgounding,/& is a BGR(1:1,1), it is;ésy' to see that A will satisfy the constraints

for being a DGR(1.1.1) of G. /o
/

N // . .
(2) The BGR(1.1.1) problem is linearly /r’éducible to the DGR(1,1.1) problem.

;: /

"Given a bipariite graph G={XUY.E) and 2 weighr function A, we construct a weighted

directed graph G=(V.E) such that any rounding DGR(1,1.1) of G will give a' rounding

‘Thesis ‘ : , /L\ :



-

' ‘Figure 3.2: Corrwﬁondence between DGR and BGR -

4

BGR(1,1.1) of G.

Let X = {i Xy, Xg0 e X b Y =131 550 o y,,; } and let

a

X(x,-yj) be the weight of the edge joining yertices' x; and y; i.n G.

Then the weighted directed graph instance G of the DGR(1,1,1) problem is defined as fol-
lows: )

. V=1{1.2...n) where n = max(n,, np),

E={e=(ij) I xy€E} and

Thesis



—
H

Eaf{ w OM sothat XG j) )t(x,y,)
Clearly the construction and the size of the ﬁGR(l 1 1) instance are lmear in the size of
.~ the gve’n BGR(1,1,1) 1qsmnce. Suppose A is a DGR(l,‘l,l) of G. 'I'hen the rounded welght .
_ /cﬁine directed -edge -fr;)m vertex i to vertex j will give the corresponding rounded weigh£
N / of }he edge jbir_iing vertices x; and y; in G. Thus the roundhg Aof Gis obtained as fol-

- -

lows,

Mxy;) = AGLH).
" Since the rounding A is a DGR(1,1,1), it is easy to see that A will satisfy the constraints
for being a BGR(1,1,1) of G..

b

Corollary 3.4: j‘pe problems DGR (1,1,1) and BGR (1,1,1) are linearly equivalent.
p .

Proof : The proof is the same as that of Theorem 3.3 with all the instances being complete

graphs. ) P

relaxed. That is. some 0’s must be rounded to 0 and others may be roungdéd to either O or 1. In
IhlS case we can delete the edges that are O-restricted and treat t/h; problem as a GR (1,1,1)

Al
o

problem. As illustrated in Figure 3.3, the O-restricted edges/afe ‘dotted and the O-relaxed edges

are s011d Now we delete all the dotted edges and construct the blpartlte graph as in Flgure
7

//.//»/ 3.3b. Once we obtain a BGR (1,1,1) for the bipartite graph as in Figure 3.3c, we can get a DGR
- . . i . | °

(LLD to the directed graph. We see in Figure 3.3d that all the O-restricted edges are rounded

to O while some of the O-relaxed edges are rounded to 1.

.



Figure 3.3 : Examyle GR problem with some O-relaxed edges

3.3. Existence of a Roundi.ng '

~ Cox and Ernst bave shown that an MR(1.1.1) always exists by modeling the problem as a .

Capacnated Transportanon problem [CE82]. Recalling the linear equwalence relations shown in

° -,

Sections 3.1 and 3.2, since we know that an MR(I 1.1) always exists, a DGR(1.1,1) and a
BGR(I 1.1) always exist. So we have the followmg result for the Graph Theoretic Controiled

Rounding problem on directed graphs.

Theorem 3.5 : A DGR(1.1,1) always exists. - - - e
‘ _ f, PN

Thesis
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" An alternative direct (graph theoretic) proof will be given in Chapter 4 Q’ ter we have discussed -

the relation between the GR and :DCS-‘problems. . o s

‘In summary. Figure 3.4 depicts the linear equivalence relations of rounding problems. The
: ~

MR(1.1.1) problem is linearly equivalent. to the DGR(1,1,1) problem, which “is linearly

equivalent to the BGR(}.1.1) problz.m. The MR (1,1‘,1)_ .;;roblem is linea.rly équjvalent to the i

DGR (1,1.1) problem, which is linearly equ'ivalént to the BGR (1.1,1) problem. If we have an-

™

algorithm for solving the BGR(1.1,1) ,problem, the MR(1,1,1) and DGR(1.1.1) problems ‘can -

also be solved by essentially. the same algorithm. -

MR, L D BeRCLLD| 1 lvraLLb BaRe L, L, L)

Figure 3.4 : Linear equivalence relations of rounding problems

L

Thesis |
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‘CHAPTER 4

-

. .GR ON UNDIRECTED GRAPHS

- -
A

‘Before showing fhe existenc;;oi-a ’rbunding for the GR problem on undirgsted grapbs; we

»

e
discuss the relationship befween the problems SMR (Symmetric MR), DCS (Degree Constrained

-Subgraph) and GR on undirected graphs. SR

®

4.1. Relation between SMR and GR - T

We have seen in Chapter 3 that the MR(1,1,1) problemfi Iineax:ly equiv_alerit to the

" DGR(1,1,1) problem. The reader mayﬁsuspect that MR- is alsg related iolGR on undirectedﬁ

graphé and it is not difficult to find such a relation. A weight vundirecte'/d edge jbiniﬁg vertices

i and j in a graph can be viewed conceptually as two directed edges of the same weight in the

- -

graph, one from vertex i to vertex j , and the other from vertex j to vertex i, corresponding 1o

two entries A;; and Aj; of the same value in a matrix. However the correspondence is not the
same between.the loop at vertlex i and the diagonal entry A;; with positive value, because the

~weight of the loop contributes twice 10 the vertex sum while the Value of A;, contributes.only.

once 1o the row or column sum. An example is shown in Figure 4.1.

Theorem 4.1 : The SMR (.8,2y) problem on symmetric matrices with all diagonal entries be-
ing Ois linearly equivalent 1o the GR (e.8.y) problem on loopless urid‘i’rected graphs.

» ¥

Proof @

(1) The SMR (a.B.2y) problem on symmetric matrices with all diagonal entries béingl 0 is

o

- o8 .
linearly reducible to the GR {a,B.y) problem on loopless undirected graphs.

17
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Figure 4.1 : Correspondence between SMR and GR on undirected graphs

Given a symmetric matrix A with all diagonal entries being 0. we construct a loopless

‘ undirected graph G=(V.E) such that any rounding GR (a.B.y) of G will produce a sym-

metric rounding SMR (a.8.2y) of A.

Let A be the given symmetric matrix of dimension n and let

A; be the entry of A in row ¢ and colump j.

- Then G=(V.E) is an undirected grafﬁ with vertex set V={12,3, -*- .n}. edge set E and

weight function Ag which are defined as follows :
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E={e=ijia;>0} .

Ao :E—{w:0<w<1} sothat Agle) = A, where e=ij€L

-

Clearly the construction and the size of the GR instance are linear in the size of the given -
SMR instance. Suppose A is a GR (a.B.y) of G. Then the symmetric réunding A of the'
matrix A is obtained as follows, the rounding of the weight of the edge joining vertices i

¥

and j gives the corresponding rounding of the entries Ay and A, ie.

, Ay i
A; =1 Asle) ifi<jande=ijeE
: 0 otherwise -

oY

The rounded row and column sums of A are equal'to the rounded vertex sums of G. and
\ ‘ ' : : '

the sum of all rounded values of A4 is equal to twice of tie sum of the rounded edgeg

weights of G. Since A¢ is a GR (@.B.y). it is easy 1o see thal the s_vmmetricifoundjng A

constructed above will satisfy the constraints for being-an SMR (a,B.Zx),

-

{2) ThevGR‘(a’.B,y) rroblem on loopless undirect’eé"’?grhaphsvis lineai'ly" reducible 1o the

SMR (a,B.2y) problem on symmetric matrices with all diagonal entries being O.

Given a loopless undirected graph G=(1".£) and a weight functjon Ag. wWe construct a sym-
metric matrix A with all diagonal entries being O such that anv svmmeiric rounding

SMR (e.B.2y) of 4 will give a rounding GR (a@.8.y) of G.

Ag(ij) be the weight of the edge joining vertices i and ; in G

Then A is a symmetric matrix of dimension n, and the entry in row i and column ;.

denoted by A, . is defined as follows :

»

Thesis



, Agle) . ife=ijeE o - ' -
A= o otherwise g :

Obviously the construction and the size of the SMR (a.B8.2%) instance are linear in the size

£y

-

of..the given GR (a.B.y}v insténce. Since G is loopless, all the 'diagonai entries of A4 are 0.
Suppose A is an S\IR (a.8.2y) of A. Then Lhe correspohdihg founding' Ag ?f the ,gra;;h G
is obtained as follows. Lhé value of the rounded entry f\;ij in row i and column j of A gives’
the rounded weight Ag{ij) of 1he edge joining vertices i and j ir; G.ie.,
AG(;}) = A, where e=ij.
L

‘The rounded vertex toials of G are equal to the rounded row sums and column sums of A,

»

and the sum of the rounded weights of G is equal to half of the sum of the rounded

~

values of A. Since A is an SMR (a,B,2y). it is easy 1p see that the rounding Ag con-

— » -

" siructed above will satisfy the constraints for being a GR (a.B.y) of the loopless

-

undirected graph G.

Theorem 4.2 : The SMR (2a,8.2y) problem on arbitrary symmetric matrices is ]inearlf/ reduci-
ble 1o the GR (ﬂa..B.'y) ‘probleAm on-arbitrary undirected graphs.

: - S ,
Proof : The prooi is similar 1o that of Theorem 4.1. However the weight of a loop contributes
twice 1o the veriex sum .while the value of a diagon’al entry contributes only once to the row
and column sum. VSo in order to make the row (or col'{lmn) sums equal fo the vertex sums, the
weight of ‘a.loop in the GR insmﬁce should be equ‘a’vi to half of the valge of the corresponaing
diagonal 'entry. Then a rounding GR (a,B.y) of the constructed graph G will give a symm.etric :

rounding of the corresponding matrix, in which the difference between the original and rounded

value of a diagonal entry mayv be close to 2y, and thus an SMR (2a,B8.2%).



" 4.2. Relation between GR and DCS

The hnear equlvale,ndgrelauons we have seen so far are all'on controlled roundmg prob—

lems. ‘Now we are going to show the relann between ‘the prob]ems GR and DC§ (Degree Con-

»

strained Subgraph)

W

3

Theorem 4.3 : The GR(1.1,1) problem is linearly reducible to thé DCS problem.

Proof : Given a graph G=(V.E) and a weight function A : E = { w: 0<w<1 }, we define a DCS
instance G'=(V".E) with weight function A" : £ —= { w : 0<w<1} and prescribed degrees p as

%

follows:
V=V Uzl (wherezgV)
E=Fwu{e=zvTveéV and A(v) is not integral}

®

UleszzIME)is not mtegral}

NOBEE | if e€E

Aie) = AT =ak) if e=zv and vEV
AE) —LALE) D if e=z:z

. 3

The prescribea aegree of each vertex is the sum of the Weighl‘of all ‘édges incident with thzu“

vertex (the weight of a loop contributes twice to the prescribed degree).| >

P =G v v e V) -

, = A0 + TALY)] T AG) =TAG)T , \
. \~\ ‘ .
Hz)=x(2) ' . ' . Se——
= 20E) —~ LAE) D + T AT = A ,
’ £ ’ .
=2ME) = 2LME + (ZTAMW D =2A(E) = ZTav)1=21ME) | s
v R LT :

Thesis



Clearly the construction and the sizé of G' are bounded linearly in ihe size of G as Vi=IVI+1 |
and IEVSIB+VI+1. Now we are going to describe an 5Igorithm for obtaining a- GR(1.1.,1) of G

when given a DCS of G'.
Given a DCS G=(V.E) of G'=(V'.E). the corrwpohding rounding A of G=(V.E) is obtaihed as

follows :

" Figure 4.2 : Correspondence between GR and DCS on undirected graphs

Thesis




!

A E—={0,1} :.vhere

et

1 ife€E

Ale) = 0- otherwise

e

. Obviously the construction is linear and it remains to show that A satisfies the conditions.ﬁ;{?f ’

being a GR(1,1,1).

(ia)

(b)

(c)

IA(e)—=A(e)l <1 Ye

Trivial.

AG-AGWI <1 V¥ vev

Let the degree of vin G be d(v).

Since G is a DCS. the degree of everv vertex is precisely the prescv/ bed degree ie.
d(v) =plv) = [A(v)]. In other words, the number of edges incident vqth vertex v in G is
[A(v)7]. Among these [ A(+v) ]edges. tgere miy be thé edge e;vz. Thus A(v) = [L)\(v)_}—l or

b

A(¥)'=A(v)7] depending on whether e is in 5,01\' hot. In case A(v) is an-integer. the edge e

1

does noi exist in G, so A(v) =] AG) ] = A(v).

Therefore iIA(v)—A(v) < 1.

IACE)—A(E) < 1

" Let the degree of the vertex = in G bed(z). - T

‘A

Let S, = { veVx Alv) = A(+) ]} and —

={veV:A(L) = D\(»)‘}—l ={veV:Alv) < A(W)}.
Since G is a DCS, d(z2) = p(z). and we have

d(z) = (X! x(v)‘l) 2L NE) ]

v

Thesis



Z MG+ (X D\(v)’l) 2LA(E)_I

\&S, o té"

I

T AW+ ( Z A(v)+1) — 2| ME)

S, .S,

o d <

= ZMV)+ ZA(V)+(21)—2LA(E)/<
v€51 ) . VES2 "’ESZ

= TAG) 45, — 2AE)]
vV
= 2A(E) — 2LA(E) | + [{veV : AL)<AW]]

vThe loop at< the vertex z contributes 2 1o the degree é';(z) if it is 1n the DCS G_ Recall that

. every vertex v has at most Ong edge incident witﬁ vertex z and_ its existence in 5 detel:f ,
mines whether A(v) is less t"ilar} A(v) or not. if 1he' loop is not;) G. then the degree E(z)
Jm‘uvst -come from all edges joining vert‘ex z and vertices of V only.. In other words, -
3 = HvEV:A(v)<,\(v)}l. el 2A(E)-2ME)) =0, whiex implies AE) =[A(B)L I
‘the loop is in G, then d(z) — 2.is the sum of all edges ]omlng vertex z to vertices of V in
G.In other words d(z)-2 = |l vEV A(v)<,\Cv)}‘ ie., 2A(E)=2| ME)] = 2. which implies
A(E)-L)\(E)_J =1or A(F) = L)\(E)_H-l. When A(E) is an mteger. the loop does not exist in .- ‘ ;

G'and so A(E) = [ ME) L
Therefore IA(E)-NE) < 1.

Hence the constructed rounding A is a GR(1.1,1) of G.

If the given graph G is bipartite, we would prefer the corresponding instance of DCS to be

-

____ bipartite oo (because bipartite DCS problems are easier to solve). This can be done by intrpdﬁc-

ing two vertices z, and z, instead of one vertex z in the graph G', and we have the following

Theorem.

Thesis

RS ~



. - - \\ - “’, .
Theorem 4.4 : The ,BGR(ll,l,l')‘problem iis linearly reducible to the DCS problem on bipartite

graphs.

I

Proof Given a bipartite graph G= (XUY.E) and a welght funcuon A E - {w:0<w<1}, we

define a blpar‘ute DCS igstance Cj’— (X'UY'.E) with weight function A': E' = {w O<w<1}

and prescribed degrees p as fgllows :
G =(XUY.E)
X =XU/lz} ‘(where z,EX)'
Y=Y U{z} (wherez ¢Y)
E=E v {e=z,y1y€Y and 'X(y) is not integral} . /

{
7

U {e=xz,i x€X and A(x) is not integral}

U {e=z,z, 1 ME) is not imegra,l} ’ - - —
. ’ ////
Ale) if e€E B 7,
MG AL, ifegzyand yeY - -

)\'(e) = ;—A(I)_}‘—A(I) if e:x:}_ and IE}/ o | ) |
AE)AE) | if e=z,z, / //// o

e
The prescribed degree of each vertex in G 1é the sum of the weight of all edges mcndem with
that vertex: ’ , /

POY=NG) Yo € XUY /
= D&(V)-’z ' f
z,) = A(zp) ‘ /

= \E) = LAE) J + Z'G_))%()')—P—A(y))

'

= ME) - A(E+ (Z Acvﬂ) A(E) —(Zr A - L)\(E)J

5 /f . —
e



| plz) = NGz,

L =A@ -G+ ZOGETRG) - B .

-A(E) L)\(E) 4+ (}_‘_r A(x)'D AE) -_(Zl’ A(x)“D L)\(E) X

-

rs

Clearly the construction and the size of G are bounded lmearly in the size of G as IV’I—-IV1+2

and [EISIE+IVi+1. Now we are going to describe an a}gorlthm for obtaining a BGR(l 1.1) of G

\yhen glven a DCS of G

Thesis



<

Given a DCS G = (XUF.E) of G’ = (X'UY'.E). the’corresponding rounding A of G=(XUY.E) is
. , . . N ] . : - . a» L R , “'

“constructed as follows :

W

3

=]
I

A:E—’;{Qii} - ) ~

_ T
. _ 1 if e€E
Ale) = 0 . otherwise

being a BGR(1,1.1). : ‘ e

¢

(a) Ale)-Ae)l <1 Ve

Trivial. ' .

(6)’ A=A <1 VYV vE XUy

(e)

The proof is the szame as that of Theorem 4.3.

AE)-AE) < 1
™ . .
Let the degree of vertex =, in"G_'beJ(-z,).

Let S; = {veY : A(y) = FAG) 7 and

| S, = {yeY : A(y) = rk(}‘)_fvll} ={veY : Aly) < A(¥)}.

. Since G isa DCS, d(z,) = p&j‘) and we have

d(z) = (A = LAE) ]
Y ’

= TG+ (EMGD = AE)]

- S %5,
)
= TAG) + (Tal)+D ~ [AE) ]
vE S, €5

= 2A+ AW+ (X D=L

)'E.S] '{52 _‘-‘652 4

Thesis

R

'/"Ob\'/iously the construction is linear and it remains to show tha

N

27

.

l
3

t A satisfies the conditions for
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- .
= (T AG)) + S LAE)]
¥y .

= AE) ~LME)J + |yeY : A<

*lArr;ongitheSe J(zlx) édgés, there is at most 6ne,edge which is ricét incident with any vertex
in Y, namely tbé‘edge joining vertices z, and z,. Recalling from the construétion of,A that
Aly) is less than A(y) when the edge joining‘ver.tex y€Y and vertex z, is in the’DCS, G If
‘the edgei z,Z, is not in G. then the degree Z(z}x.) must cc;me from all edges joining vertex z,
'a‘ndbr vertices of Y. In other words d(z,) = |{y€Y : A(x)<A(»)}| which implies
ABANE)S=0 or AMB)=LAME)] I the e'dge zz; is in G, then
A(z)-1 = HyEY\:)ﬁ(y)<)\(;)}I “which implies AG)AAGE) =1 or A(E) = (AE)J+1.
When A(E) is an integer, the edge _Zxzy does not exist in the grapt? G', so in this cz;se
AE)AME) S =0 or A(E) = | A(E) ]

Therefore IA(E)-A(E) < 1.

Hence the rounding A constructed above is a BGR(1.1.1) of G.

4.3. Existence of a Rounding for the BGR problem -
- . . X ,\\A/L .

Before getting into the theorems, det us first giv“some notation that is used in this section.

s

Given a weighted graph G with vertex set V. If V; and V, are subsets of V. then
- )"

mg{V1.V,) denotes the numbexf of edges joining**veftices in V; with vertices in V; and

As(V1.V,) denotes the su% of the weights of all edges joining vertices in V; with vertices
‘ -
. \ ,
mn ‘72.
We know from Chapter 3 tha" the MR(1,1,1) problém is linearly equivalent 1o the
DGR(1.1,1) problem. which is linear'y equivalent to the BGR(1,1,1) problem. Since an
. P -

MR(1.1,1) is shown 1o exist in [CE82]. we also have'a theorem on the exiitence of a BGR(1,1,1).

. ' ' Thesis
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We give a different proof of this fact based on the following necessary and sixﬁicient condition

. for a|bipartite graph to have a DCS with prescribed degrees.

)

Theofrem 4.5 (L. Lovasz [Lo79) : A bipartite graph G=(XUY.E) has a DCS with prescribed de-

<

grees p if and only if : o .o ~ ' /

(1) p(X) = pl1)

2) p(X') PF) + mg(X.Y—Y)  forevery X'CXand Y'CY

Theorem 4.6 ¢ A RGR(1,1,1) always exists.

X
B -

Proof : ‘

Let ’ﬁ3=(XUY,E) be an arbitrary bipartite graph with weight function A\:E = {w : 0<w<1} for
whl’ch we seek a BGR(1, 1 1) and let G'=(X'UY".E) be the corresponding DCS instance with

preScrlbed degrees p deﬁned as follows ’
X' =X UTzl  (where z,€X) ’
=Y Uulz) (\x'herel':_\.e);)‘ o |
E=EU{:zylveland A(y) is not im‘eghral}
U { xz, 1 x€X and A(x) is not integral)

U { z,z, | A(E) is not integral

PVv)=A()] ¥y € XUY | ' &
) éz,) = (I D —LAE ]
F<Y / ._.\\
o - N
; pz) = (LI = LAE) ] N Yo
. X A

AL

Thesis
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_ ﬁy Theorem 4.4 a DCS with prescribed degrees p of the graph G' will givef‘a BGE(ilill)

of the bipastite graph G. So now instead of showing the existence of a BGR(1,1,1) for G, we

(1) pX)=p(¥)

*

Note that p(X) = p(X) + plz,) = TMAGT+ T MAG)T—LAE)]
. d ey ¥

AP =AY+ pz) = TN+ E M- LAE) )

' ¥y €X : .

Thus p(X') = (Y). : _ | : | <

. (2 X)) € p(Y") + me{X"Y'~Y") for every X"CX and Y"CY'

Let X"C X and Y"CY". . , , o /

Recalling from Theorem 4.4 that p{v) is the sum of the Weights of all edges incident with

3

v (for each v € X'UY"). we have 2 ;

A

PX) = Xl XY = A X" Y UY'=Y")

- Y = A XY) = as07 XTUX~X)

— ¥

)~ P = A X" Y=Y") = A (Y, X'=X")

SAAX" YY) € mp(X", Y'~Y")  (since A(e)<1).
Thus p(X") € p(Y") + me{X"Y"=Y") for every X"CX and Y"GY". -
Therefore a DCS always exists for G’ and hence a BGR(1,1,1) always exists for a bipartite

»

graph G. .



4.4.‘ istence of a Rounding férﬂ;esk problem .
’ know that a BGR(l.l.v\l) always exists forbipaxjtlsitébglk-a’phsv. but this islnot true for
general graphs as illustrate& in Figure 4.4. We can #ee-th; -rpunciing in Figure 4.4b or 4.4c is the
;best we can -’dé.and thus a bR(l,l.l) may not exist for an arbitrary graph. /
Given an arbitrary uqdirect;ed éraph G of n vertices;, and a weight f ﬁnctior{
AE- {w:i0<w< 1'};‘C we create a weighted bipaftite graph G:df 2n ‘ver"tiés. A vertex i vink G
correspond_slvtob two vertices x; and y; in G, and anbedge‘ ij oﬂf( weight A(ij) in G cgrresﬁondg to
'_ ‘two edges xy; and xjy.,- in G. both of weight ‘?\(ij). S\bince Gis blipalrt'ite. a BGR(l.l.l)»ilwas'S
exists. T.us we can 6btai1; the BGR(1,1.1) A of G and convert the 0—1 rounding AinG to a

[y

0—%—1 rounding A (i.e. a rounding with weights either 0.%. or 1) in G as follows.

o
Figure 4.4 : Example of a rounding in }r,n:}a] graphs

N

Thesis
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Let e be the edge .ij in G and e;, éz be the edges xiyj ahd‘xjy,- respectiveli inG.

.,'

K(e]) + K(ez)
_____2__._

Then Ale) =
Since iA(E)=K(E), 2ME)=X(E) and lK(E)—X(Bl < 1, the 0——1Tounding A will satisf y the
constraint IA(E)4-)\(‘E)I < %. letG: be a subgrapﬁ of G consisting éf ail the Y2—edges of G.
Ther;e is an ev;ep number of ‘vertices of odd degree in each of the connected (éo:lpo_nents of G-.
‘ F%Ne are going to éliminate these odd vertices in p'airs as follows. Find a trail (with repeated ver-
tices allowed) joining two vertices of odd degree in the componeﬁt and alternately add and sub-
tract 1/5 to the edges of the trail. If a vertex v has odd degree insG.. then A(v) is half-integral
and lies betwéeri LA(v) fand | A(v) 1. ie. AW) = A(v) 4%, and S0 must satisfy the constraint
AG) =AW < % After radémg» or subtracting Y2 to one of its incident edges. then
Aly) = I_X(v)_H—l or | A(+) ] and the .constraint l/((v) — A< 1 is satisfied: Sinvce the B:Adi‘
tion or subtraction of ¥ is arbitrary for the starting edge of ‘the trail, it is easy to see that the'

vertices of odd degree can all be eliminated in such a way that the following two constraints

are satisfied : \ . ‘ .

{4.1) AG) = AG < 1. VYvev

(4.2)  TIAE) = ME)i <12 |

If ACEYSAE) (6r A(E)>A(E)), then we will add (or subtract réspecti—velky)' % 10 the starting
l;,edge. Now the degree of every vertex v in G. is evea and thus every cér;n;cted cémponent of G.
~is Eulerian. if a component has an even number of édges. it can be eliminated (without affecting
| the vertex sum A(v) and total sum A(E)) by' alternately asgignmg 0 ;nd 1 to the edges of the ‘
| 'Euierian tour. Similarly all even length cycles can be eli.m'mated in the $amé way leaving G: é

union of odd cycles. Moreover, two odd cycles with ‘vany vertices in common can be decom-

posed into one or two even length closed trails which can also be eliminated. If they have only

one verteXx in common, then the union of the two cycles is certainly an even length closed trail.

.

Thesis
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If they have two vertices, say v; and v;, in common, then the union of the odd length paths

between v; and v, and the union of the even length paths between v, and v; of the two cycles are

> -

the two even length closed trails. Therefore we may assume that G. consists of vertek disjoint
. - J

El

odd cycles and the rounding A that we obtain from A sati'Sﬁes the constraints 4.1 and 4.2. In

: ‘ P : ‘
the proofs of the following Theorems we will show how to assign 0 and 1 to the edgesh the "

i

"‘ﬁ‘;

odd cycles to obtain diffe_rent roundings.

3

Theorem 4.7 : A GR (1,1,(n+1)/2) always exists for an arbitrary undirected graph of n ver-

tices.

’

Proof : Let G be the given arbitrary undirected graph of n vertices,
let G be the corresfronding bipértite graph of 2n vertices.
let A be a BGR(1.1.1) of G and

let A be a O—%—1 rounding of G satisfying constraints 4.1 and 4.2 such that G.. the subgraph -

of G consisting of all }2—edges. has the fewest possible edges.

o

Recall 1i1a1 G. consists of vertex disjoint odd cvcles. For each of.the‘odd.cyctlevs we allernately
assign 0 and 1 10 the edges in the following'way. the swrl.ing, edge of the cycle is assigned O
when the starting vertex v is rounded up. i.e. A(\’)>)\‘(v). and assigned 1 otherwise. It is easy
10 see that the constraint IA(v) — A(v)! £ 1 is satisfied for all vei»'. since we only decrease 1 10
Aly) if A(v)>)\(v) and increase 1 if A(V)ﬁ)\'(v) for the ;tarting vertex v of each.cycle. Now we
estimate the over>a11 change to the total sum A(E). For each of the odd cycles A(E) is increased

or decreased by %, thus the worst case will happen .when A(E) is either increased or decreased

for all the cycles. There are a1 most n vertex disjoint odd cycie§ possible (a loop is a cygle of

length 1). Therefore the overall chmée o A(E) is less than or equal to nx% = %

Thesis



Hence IA(E) — A(E) € + .721 =

‘Theorem 4.8 : A GR (1,1,(n+3)/6) always exists for an a;bijrary loopless undirected graph of

n vertices.

‘ o R . ' ’ ) o
Proof : From the proof oy heorem 4.7, we know that the difference between A(E) and A(E) is

less than or equal to %2 plus 2 times tlﬁe maximum number of vertex disjoint odd cycles possi-

ble in the graph G,. If loops are not allowed in the given graph', then G. can have n/3 cycles

(the smallest cycle has at least 3 vertices for loopiess graphs).

+
“

1 . n
4+ _ =
6

n+3
2 '

6

Hence IA(E) — A(E) €

. Theorem 4.9 : A GR (1.2,1/2) always exists for an arbitrary undirected graph.

oo~

Proof :Let G be the given arbitrary undirected graph of n vertices,

let G be the corresponding bipartite graph of 2n vertices, -

let A be a BGR(1.1.1) of G and .

let A be a 0—i2—1 ‘rounding of G satisfving constraints 4.1 and 4.2 such that G.. the subgraph

. of G consisting of all l,‘z:--ei:!ges, has the fewest possible edges. - - ' o

~ .

Recall that G- consists of vertex disjoint odd cvcles. for each of the cycles we alterﬁately assign
O and 1 to the edges-in such a \%/ay that the constr‘aint A(E) - A(E) € % is not vioiated. The
number of inzident edges assigned 1 is the same as that assigned O for every vertex of a cycle
except one. nanrely the starting vertex v of the cvcle. Then the vertex sum A(v) and total sum

A(E) will be increased (or decreased) by 1 and % respectivelgz depending on whether the

¢

Thesis

N

1



starting edge is assigned 1 (or 0). It is not difficult to see that the assignment can always be
“\3 . . - o ) - - \
made so that IACE) — M(E). £ %. If there is an even number of odd cycles, We can have the

same number with starting edges assigned 1 as there are those with starting edges assigned 0. If

x

the number of odd cycles is odd, then the starting edge of the last cycle is assigned 0 ‘when o

A(E)>A(E) and assigned 1 when A(E)SA(E). : o,

s

Since the 0—%—1 rounding of G satisfies the constraint IA(v) — A(v)} < 1 for all v€V, and only
the starting vertex of each odd cycle is increased or decreased by 1. Therefore the 0—1 round-
ing A we obtain will satisfy constraint.A(v) — A(v)l < 2 for all vEV. o

+
: 0

Theorem 4.10: A GR (1.4/3 .1/2) always exists for an arbitrary loopless undirected graph.

Proof : Let G=(V.E) be a weighted loopless graph with weight function A.

From Theorem 4.8, we know that a rounding that isalisﬁes the cbnstrai_ni A(v) ~ AW < 4/3
for all veV al@ays exists. We let A be such a rounding which gives the minimum value of
AE}— AE) If =22 € A(E)=N(E) € %, then we are done since VA is indeed a GR (1.4/3.172).
Sc we assume that A(E)—A(E) < —iz (for the other case where A(E)—=A(E) > Y2 the proof is

. Ta
similar).

S

For any such rounding A we can partition the vertices of G into three sets :
(1) Vv ={veVIAGW)=-A(v) 2 1/3}
(2) YV ={veVi-2/3 € A(W)-A(v) < 1/3}

(3) V7 ={veViA(v)-A(v) < =2/3}

According 1o our assumptions, the configurations (a)..(b)-and (c) of Figure 4.5 in which the

edges having rounded weights 1 and O are denoted as double ana single edges respectively are

impossible. Indeed. in any of the three cases the roles of the double and single edges can be

Thesis
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’ \
Figure 4.5 : Example of the Forbidden Configurations

interchanged producing another rounding that still satisfies the constraint IAW)-A(v)l < 4/3 for

all v€V and increases A(E) by 1, which contradiets the minimality of IA(E)-A(E)L.

An alternating cycle (relative to the rounding A) is an odd cycle

Thesis
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with one vertex, say v;, in V™, and all other vertices in V*, and such that the edges e;.e3.....¢,

have rounded weights O and ihe edges e;.e,.....e,—) have rouhdeg weights 1.

We will assume that A, in addition to all previous e¢onstraints, also maximizes the number of

vertices that belong to alternating cycles. Then the configurations (b’) and (b™) of Figure 4.5

are also impossible. Otherwise we can irﬁ.eréhange the roles of all the double and single edges in

case (b"") and those betwzen vertex u and vertex v, in case (b") to produce another rounding’

that still satisfies all the previous constraints and has more vertices belong to aliernating cycles.
Now we are going to partition the graph G into three subgraphs G;.G, and G as follows.

(1) Gy=(V,.E,) where -

Vv, = {v 1 v belongs to some alternating cycle of G}
E,={uwe€Eluyv € \/l}

It is easy 1o see that in G, no vertex v in V* belongs to two alternating cyvcles which have

x.y€V™ where x#y because of the forbidden case (a) in Figure 4.5. Thus the alternating

cyvcles are all vertex disjoint except at the vertices belonging to V7. Consider any con-

nected component of G;: it contains exactly one vertex in V'~ and at least two vertices in

Vv If we sum up Alv)=A{v) for all vertices in each component, then the sum is non-

negative.

Therefore A(V;) 2 MV _

7

(2) G, =(V,.E) .
The vertices m—Gg consist of levels L; where

Ly={viv € (V-UV—) =V}

Thesis
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Figure 4.6 : Example of a Graph G,

E{: { e=uv €E| UXEL,'. VEVl ULouLIU v ULi—l and A(e)=0} i = 0,2.4, -

Ef ={e=uv €Elu€L;, v€V,UL,ULU - -- UL, and Ale)=1} i=135,---
. ~ ' v ' \\\
\ .

Loy = {vifor some u, w€E} \}\

Let i = min {i | L,,,=@}.
and let V2 = LoULIU e ULil.

Ey=EUE'U -- - UE". : | : o,

Note that there are no edgs e=uv with v.v€L; This follows from the absence of the

conﬁgurauons (a). (b). (v"). (b and (c) of Fxgure 4.5. Also as in Figure 4.6, all vertices

Thesis
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in V,—L, belong to V¥, so the sum of A(v)—A(v) for*all vertices v on odd levels,

Loy = LiUL;ULsU - - - is non-negative.

Thus A(Lyy;) 2 ML z4)- | : . ‘ J,’A

(3) G3y=(V;3,E3) where
V,=V—=V,—V,and

Ey={e=uv €Eiuy € V)

The sum of A(v)—A(v) of all vertices v in G5 is non-negative, i.e. A(V;) 2 X(V3), since

-
they alldelong to V™

Since A(X’I)Z)\(i’l), AL . 32M(L..;) and A(V3)2A(V;), the sum
S= A(Vl) + 2A(Lw_4) + .‘A&(V3) - A(‘.l) - 2)\(Lc-dd) - A.("V3)
is non-negaiive. If we can show that 2(A(E)-A(E)) = A(V)—A(iV) 2 S, then A(E)=A(E) 2 Oor

A(E) 2 A(E), which contradicts ous ‘assumption that A(E)=A(E; < —%. Now to show that

2(A(E)-A(E)) 2 S. we will shox” that Ale)—A(e) for every double {or single) edge e is counted

al most (al leastl. respectivejl i twice in the sum S : ‘ .

Consider an edgee = uv € E.

Casel: e € EF\UE,UE,

It is obvious that Ale)—A(e)-is coimted' exaclly twice in AV =AYy or
A(V3)=A(V3) if e belongs to E; or E; respectively. As we have observed. no edge of
£, joins‘two vertices on the same level and thus every edge ‘in E, is incident with’ one
veriex in the odd levels and one vertex in the even levels. Therefore Ale)—A(E) is

counted exactly twice in 2(A(L . —A(L 4, )) w00 if e 'belongs 1o Ey.°

+

"Thesis
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Case2: e € E,UE,UE; and both uv belong to V.
- If A(e)'= 1, then the edge e cannot join two vertices of L.,/ by an earlier comment.

Thug e is incident with at most one vertex belonging to the odd levels and therefore

. Ale)=(e) is counted at most twice in Z(A(LMJ)—A(Léd)). » /
// _— ‘

- if Ale) =0, then as in the case where A(e)=1, e/is incident with at 1 ne vertex
. . i . // -

| of L4 and therefore A(e)—A(e) is counted at l/east twice in ZLAQIéJFA(Lwd)).

7
/
/

Case3: e € EJUE,UE, u€V,and veV,

ez

s
.

Since e is incident with one vertex m V; and another in V5 Ale)—A(e) is counted

=

-~ k once in -A{V)—A(V,) and once m A(V,)-—X(V_,,) and therefore twice in the sum
AVD+AVD-AVI-AVS). -

Case4: e € E\UE,UE;, u€V,and veV, UV,

- If Ale) = 1. then the vertex u does not belong 10 L, because of the forbidden cases
(a) and (b) in Figure 4.5 and the definition of G,. Thus the edge e is incident with
one vertex in the even levels and another in V; or ¥; and therefore Ale)-A(e) is

counted only once in the sum S.

- If Ale) =0, 4ben as in the case where Ale)=1, the edge e is incident with one vertex

in L, and another in 1, or Vi Thus Ale)—Ale) is counted twice in

2(ALL . —ML,)} and once in A(VD+A(V)=A(V)=MV;) and therefore three |

ki

times in the sum S.

In all of the above cases, Ale)—Ale) is counted al most twice for a double edge e (with rounded

weight 1) and at- Teax ‘twice for a single edge e-(with rounded weight 0) in the sum S. Thus we

have ——

Thesis



T

Hence a GR (1,4/3.1/2) always ex:sis for a loopless undirected graph.

//'/// /, . ) .l ‘ . v T o V . 41

2(A(E)-")\(E)s)\?= AV

> AVY) + 28(Log0) + AWVs) = A(V)) = ML) = N(V)) 2 0

which contradicts our assumption that A(E)—A(E)<—¥%, and therefore A(E)—)\(E)él —1,

4.5, Existence of a‘'Rounding for the SMR problem e
Recall from Section 4.1 the linear reducibility of the SMR;/f;rob‘lems to the GR problems. ’

Thus the existence of a synimepfic rounding for the SMR p,r/bblems can be derived from the

existence of a rounding for the GR problems on undirected Céﬂr'aphs.

¢

Corollary 4.11: An SMR (2,1.2+1) always exists for an arbitrary symmetric matrix of dimen-

’

sion n.

Corollary 4.12 : An SMR (1,1.(r+3)73) alwayvs exists for a svmmeltric matrix of dimension n

with all diagonail enlries being 0.

5

Corollary 4.13 : An SMR (2.2.1) always exists for an arbitrary syfametri¢ matrix of dimen-

{
3

sion n.

Corollary 4.14 : An SMR '(1,4?3,_1_) always exists for a symmetric matrix of dimension n with

all didgonal entries being 0.

PR : . Thesis
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45(. Some Important _xamples Showmg Our Bonnds are Best Possible -

e ',, A GR(I 1 1)\ay not ‘exist for an arbxtrary graph yet a G]ﬁ ag (n.+1)/2) and a GR

(1.2, 1/2) aIWays exist. In thlS section we will glve some examples sAowmg that the bounds in

i
4

the constraints for CR (1 (n+1)/2) GR (1 1,(n+3)/6). GR (12. 1/_21) and GR (1 4/3, 1/2) are

‘ best' possxble in the followmg sense. For an arbitrary €>0 there ezpst. exampls so that any '

roundmg A which satisfies the constraints IA(e)—A(e)I <1 and tAkv)—)\(v)I 1 W1H have -

lA(E)-—A(E)l asymptoncally close to (n+3)/6 f%pl& connected graphs and asymptoucally

? ~

close to (n+1)72 for arbitrary connected graphs. There also exist examplos so that any round—
| ing which satisfies the constraints A(e)-A(e} <1 and W(E}-AE) € 1/2 will have ‘

//max [A(v)-)\(v)l = 4/3—6 for loopless connected gmphs and max lA(v)—)\(v)l 2—e for arbi~
/,/

trary 4onnected graphs

%

For the graph given in Figure 4.7a, )\(E)"k/Z and )\(v)- l—e or ke If we choose ke<1. .

then A(v)=0 or 1 for all vertices v. Thus the rounded welghts of the loops can only be 0 for '

otherwise A(v) would be equal to 2 for‘ the loop at vertex v.»/Note that the rounding typlﬁed in

(b)

Figure 4.7 : Example of a GR (1,1,(rn+1)/2)

Thesis .
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Fighire 4.7b is then best possible and it has A(E)=1 ‘
Therefore LA(E)-A(E) = ;—'1 = -’:2———1——‘1 =‘£;—3-- v { v
| T s S22 T

-

For the Ioopless graph given in Eigure~4.8a;,X(E)=(3/2)k-‘-ke and A(v)=1—€ or ke. If we

e \

choose ke<1, then A(t) can only be.0 or 1 for all vertxces v. Thus at least two edges of each

R

k k 2=n f__2=n—13

. B LK ke > K .
The: efore ACE) )\(E) 1—ke > 5 T T

A
. ]
/
ya

Now we can/ see that the bounds in the constraints for a GR (11.(n+1)/2). and 2 GR _

T

(1.1, (n+3)/6) are txght in the sense thaf there exist exampl&s ‘o onnected graphs achxevmg our

K€
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bounds asymptotically.

“ qu the graph‘ given in Figure 4.9a, M(E)=k—(ke/3) and )\(v)=2"—'e or k€/3’."If we choose
ke>3/2, th‘eh AME)<k—1/2. Thus in '4 any réunding "which  satisfies the constraiﬁ£
A(E)-AENS1/2, v'.'c have J{(Ejsk—l and hence there must exists a Branch with roimdeﬁ
\}.'eights 0 on all edges. in other words, there must exists a loop at-a vertex v with round:ed L
‘_weigvht 0 as in Figure 4.9b. Thus the difference between A(v) and )\(v‘) is 2—€, Therefore for an
a;bitrary e“.wé can construct a graph- with k'loops as shown where k>3/(2€) %o that in every

rounding which satisfies the above constraint, we get that for some vertex v IA(v)—-A(W)! is as Q

e T ~—
—— .

close to 2 as we want. - P , o A\;
.

The example given in Figure 4.1Qa»sh'ows that for an arbitrary €, we can construct a loop-

less graph with k> 1/(2€) so that mazl}\(v)—)s(v)l will be as close to 4/3 as we want.

-~

Figure 4.9 : Example of a GR (1.2.1/2)

Thesis Q-f\



Figure 4.10 : Example of a GR (1.4/3,1/2) for Loopless Graphs

Again.the bounds in the constraints for a GR (1.2,1/2) and a GR (1.4/3.1/2) are tight in
the sense that there exis} examples of connected graphs achi'eving'these bounds. -

Thesis
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' CHAPTER 5
ALGORITHMS FOR THE DCS PROBLEM
-~ We have seen that all of the GR problems can be evéntually reduced 10 the DCS problem

for bipartite graphs.' In this chapter we discuss the algorithm:s for finding a DCS with

prescribed degrees for bipartite graphs only. However if the graph is complete (bipﬁrtite or

not), we have simpler linear algorithms: \,,,,.}\
: Lol

5.1. DCS for Complete Graphs - | | ]
If the given graph is complete. lhen ﬁnding a DCSis equi\;'alem to joining the vertices by

edges so that the prescribed degrees are metl. There are known algorithms for doing this on

bipartite graphs and on arbitrary graphs without loops. We will modify the latter one to allow

for loops.

5.71.1. Gale’s Algorithm for Bipartite Graphs

Let G'=(X'UY' L) be @ DCS instance with prescribed aegrees p. which correspoﬁds to a
complete Weighled bipartite graph G = (X UY .E) with weight function A. Recall thét‘
X =XU{z)=1{x; x3. ... X, z,}‘. ,
Y=Y U {z,} = {y1. ¥20 oo 3mr 25h
E=EU{e=zyiveEY and A(y) is not inu‘zéral}

U {e=xz, 1x€X and A(x) is not integral}

U{e=zz 1 ME) is not integral},

46
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A =M Y rexuy,

Xz = (STAG)D = LA 2ad

¥t

Pz = (IMED-AE L B
XX

" We are going to find a subgraph G of G’ such thati thé"above degree constraints ére
satisfied. Let A be the adja'cency-matri# of the su;ta'graph G of dimension (’m+l)x(n+lk)‘ and. o
A(i,}) be the'entry of A in row ivand column j. We assume that

A A B > Mx,) and AGy) 2 AG2) 2 o0 2AG,)
The-izh rdW‘of A corresponds to t‘hé'vertex x,—,'\a.;here i=1,2,.m, ihe (m+1)st row of A
corresponds to the veftex .. the’jth column of A corresponéis 10 the vertex y, where
j=12...n, aﬁd>the (n+1)st’column of A corresponds to the vértex z,. First we fill oﬁt the -

entries of the last row and column of 4 as follows:
i

A(m+1n+1)=0

: =1 ’
VA(i,n+‘1) = P(X,‘) - (_ Zx(xg )_, - ;ZA(XA);)

=1 £=1

Alm+1,ji= piv.i— Zm = i/\ )
: =1 2 =]

~

Before defining the other entries of A, we make some observations: -

L

: . :_1— ) i
C.=L TAGI =LAl for j=12...n.
k=]

=1

Since La_+1 b € _a+b_ £ _a_#+_b +1, each R, is either | A(x;)for L A(x,) +1 and each C,
is either _A(y;)or LALy ) +1. If Alx)) is integral. then R=l A(x) I=A(x,). Similarly if

A(y;) is integral. then C.=A(y.).

Thesis
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i

(2) Since p(x )--rk(x )1 for i=1 2 ..m and p(yj)'f—k(yjﬂ for j“l 2 .n, each entry in the

last row and column of A is either O orl:

(3) Since TR = 5L EAGOI~LTAG)D =LA for 1<5%m and
. =l k=1 k=1

=1 i=]

icj =AZI:(L£VM_Y,‘)J - L-Eh(yj)j)t Lih(}y)J for 1<¢<n,
=1 - j=1 : =1 j=1

we have 3R, = LZh(x) =A@ =LIAG)]= 3,

N I-] i=1 - j=1 j=1 N

(4) For k<l - N

X

| EAG) - LZ/\(x)J>|/\(xk)J+’Z/\(x)J sz(xu o ;
=1 - iFl o

’= !_A(x‘)_j > L.\(x,)_j
S 1= C
=LA+ LMD )= LEA )]
i=1 =1

21T A =L TA)— 1
, =1 - : ) . .

'1‘hu~s R, 2 R—1. and similarly C; 2 C.—1. -

Now ¥ remains 10 fill out the internal entries A(L .j) where i=1.2,.. T and j=1.2,. ,n ThlS
1S equwalem to finding an mXxn O-l matrix with row sums R; and column sums C;. Accordmg

to D. Gale [Ga57]. such a matrix exists if and only if for any J&{1,2....n}

(%) Ic f; in{ V. R, } ’

Thesis
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Theorem 5.1 : There exists an mXn 0-1 matrix with row sums and column sums‘d’eﬁned as fol-
lows:

i i1 T
Ri=L ZAx)]=L X Ax)] fori=12,..m and
k=1 k=1 ) « .

i - j=1 "~ - |
G, =LEAG)I-LTAG)) for j=12mm.
k=1 : k=1

Al

Proof : We will prove first that (*) is true for any J of the form J={1.2....t}, and then for any
JCi12,.0).

o

Suppose that;(‘;) is false for some J={1.2,....z}, ie.

I - m .
2.C;, 2 1+ Xmin(z.R).
=1 =1

Then R,>t for some i, for otherwise
Iz n Ll . n m
2R =3C 2 3C. 21+ YXmin(t.R) =1+ ) R, which is a contradiction.
=1 . =1 J=1 i=1 =1 :

Let s be the largest subscript such that R,>t and by Observation (4) R, 2 R—1 for

z=].?.,..,5—1.‘i.e. R S —1cr R 2 rfori=12..,s—1. Thus

[ |

2C. 21+ tmin'{:.]{’:} =1-= Zz +
i =1 J=1

. . ) . <.
LR ‘ |

3

= 3¢ + S(R=F AU
=1

J=1 =1

Thesis
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. 2 JC + LR st
. Jj=1 i=1

m 5 R
Z1+st+ L R+ )R ~s ‘ .
. i=s+1 i=1
21+ )R (contradiction) ¢

=]

£,

Therefore (*) is true for any J of the form J={12.....t}.

Suppose (*) is false for some JS{1.2....n}. We assume that 7 is the first one in lexicographic

order among all the subsets of {1.2,..n} for which (*) fails. Also let J contain 1,2.....z (possi-

bly #=0) but not u+1, JG{1.2....utv+w}, U'=utw and utv+wel.

Let C, 4. ..=x. Then by Observation (4) C,yZ2x—1. If C,1,2x, and we consider the subset

J' = J={ut+v+w}U{u+1} that appears before J in the lexicographic order, we have
2C=2C +Cuy—Cupin 2°XC, 2 1+ Y min{ULR})
e €7 €1 =l
which contradicts our _assumptionsﬂ Therefore C.+1=x—1 and by a similar argument C;=x—1
for u+l < j<utv+w and j€J. If we consider the subset J' = J—{j}Ulu+1} for

;€ J=112....u} ka1 appears tefore J in the lexicographic order, then since u+1 < j € utv+w,

again by Observation (4) x—12C.—1and C,2x—1, ie. x—1€C,€x. If C;=x—1, then

- ZC‘ = ZC. - C + Cu-] .

IS0 €7

=)C, 21+ imin{fﬂl} _
Fa i

which again contradicts our assumptions. Therefore C;=x for j € /—{1,2,...u}.

Le: P, denotes the number of ¢ such that R, 2k and let =3 C.. Then ;2 P,2P;2 - - - and we

J=1

1

have verified that U = ‘ZC_) £ ¥ zin(uR).

4

1

Thesis
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m ,
" ThusU € Y min(w.R) = Pi4+P,+ --- 4P,
i=1

s

2.C; > Y min{ U, R; }. and we have

j€7 i=1

Since (*) fails for the subset J, i.e.

‘ Cj=i1Cj+ Z C‘,=U+w;c

jE7 i= j€T—112. i

> me{Lﬁ;R,} =P1 +P2+ +Pu+w

©oi=1

2U+P+ - +P,, 2ZU+wP,

T

~

Thus U4+wx > U+wP,., which impliesx > P, .or P, € x—1.

Now we consider the subset J ={172,. .. uu~+1.. . u+v+w).

g 23 3 w ’ TR 2
' C = C.:=2C. + C,=U+ wx + v(x—1)+
i P B 7 '
S =1 c=1 j=x=] '

m
< Zmin{w%}'«’»w R}

i=1
=P +FP+ - +P_ +P .+ -+ Pu,,.‘,fk
S P +P o+ + P viamD
< U+ wx + vifx—ﬁ {contradiction)
Hence (*) is true for any J&{/.2...n} and the proof is complete.

Thesis

—

o



Corollary 5.2 : There exists a subgraph of G’ with prescribed degrees defined as follows: |
pv) =T A(v)] vV vEXUY

Kz = (S = LAE) ]
yE Y .

2z,) = (T ~LAE)!
XX

Now we apply Gale's algorithm [Ga57] to find a 0-1 matrix with prescribed row sums R; and

column sums C,. :

A}
-

ALGORITHM A (Gale’s Algorithm for complete bipartite graphs)

Foreachj=1,2,..n,

a

. - i~1
A(i,j) = 1 for aset of C; rows { whose values of R; — 2 A(i.k) are largest and
£=1

A(i.j) = 0 for all other i.

Thesis -



N\

v : ’ SR 53 |
Theorem 5.3 : There exists a graph with degrees py 2 po 2 -+ Z p, > 0if and only if there
. exists one with degrees p;'. p3', ..., p," where '
R fori =23...5+1
Pi = p fori = 8+2.6+3...n y

8=p, if p;<2 and 6=p,—2 otherwise. - o
s

,
, /

Proof : Suppose there exists a graph with degrees p; 2 p, 2 .+ 2 p, > 0.

Note that the theorem is trivially true if p; <2.

) Let v; be the vertex with degree p,, We claim that there exists a graph G with degree sequence

p = (py. po. .... B,) in which the vertex v, has a loop if p;22. Suppose not. Then v; must be

adjacent to p; 22 vertices in { v,, v, ..., v, } and ali these p; vertices are adjacent to each other.

For otherwise if any two of them, say v; and v,, are not adjacent. Figure 5.1a shows that we can

. Figure 5.1: Exis:ence of a graph in which vertex v, has 2 loop

i

N

RN

~
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delete the edges vyv, a;ld viv,, but add vy, and viv: to obtain a graph. with the\ s&nﬁe degreé
sequence and a loop at vertex v,.- Furthermore, all of the p, verti;es except at most one must
have loops. Figure 5.1b shows that i.f two of them. say v, and v,, do hot haye loops, then we
can delete the ;:dges Viv,. ViV, and v v, but .addrthe loops ﬁlvl, v%"p and‘»\‘iqvq. ThlS again is a
contradiction. _;'Since p122. thereis laAt least one vertex. say v,, amohg all the vertices adjacent

to v;, which has a loop and is adjacent to all the other adjacent vertices of v,. Thus

p, = p1+2 > p;. which contradicts our assumption that p;-is the largest in the sequence p.

“Now let us choose G 1o be a‘ realization of p in which v, has a loop if (p;22)and also v, is
adjacent 1o as many verlices in § = {i’z.v3,...,§5+i} as’ possible. Sui)pose v, is not adjacent to ‘one
\;ertex, say v,, where 2<i<8+1. Then v; must be adjacent to a vertex v, where 8+2<;<n. If
v, does not have a 1E)op or if boih bf‘vl and v; have loops, there mustjexist a veriex v, adjacent
10 v, bui not 1o v, since p.2 p.. As shown in Figure 5.2a, we can delhet,e the edges v;v; and v,v;
but add vlv; and v;v,. If v; has a loop but not v,. then depending on whether vertice$ v; ahd v;
are adjacent or'not.'_we can delete the edges v;v, and v;v; but add v,v; and_vi,vvj,/or delete the
edges v;v, and v,v; but add vyv; c;.nd vv; (Fig 5.2b, Fig 5.2¢). In each of these cases, we obtain a_
graph with the same degree sequence and v; adjacent 1o more vertices in {v;.vy....vpay . Thc;re~
fore we have a graph G with degrees p, 2 p, 2 -+ 2 p, > 0in which vertex v, has a loép if
’ v §

p122 and is adjacent 1o all vertices v....u;.,;. Removing v,. we oblain a graph with degrees

-

Conversely. su\ppose there is a graph with degrees p,', .... p,". We can then add the vertex v;

irivially io obtain a graph with degrees p;. py. ... P,

—— -

Thesis
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C ‘ V‘_Q

—

The following is 2 moedification of Hakimi's Algorithm [Ha62], which copﬁuucrs a graph with
degreesp12p2?'.-'?p,,>0: -

-

—

| ;
ALGORITHM B (Modification of Hakimi's Algorithm for complete grapks with loops allowed)

>

Let v(p;) be the veriex of degree p; where i=12....n and

k be the number of non-negative terms in the sequence p.

STEPO: k+=n: wWp)«—i.
~

Thesis
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STEP 1:

STEP 2 :

L

IF k=0 THEN a DCS has been constructed;: GOTO $TEP 2.

IF p,>k+1 THEN a DCS d;}oes not exist; GOTO S’IZEP 2.

IF p;22 THEN { create a loop at vertex v(p,) :_~/p1 -p2}
: | o | o ‘

P ]

For j=2 TO p+1 DO | | /
i e / .

N

{create an edge between vertices v(p;) and v(p;); pi—p—1}

P (.

Reorder the updated seifuence_ p and the cérrespon&vertices v(p;)
. ’ ’ i ‘ '

p is non-increasing: update .-
: ;

GOTO STEP 1.

HALT. - .

56

..... v(p,) so that

Corollary 5.4 : ALGORITHM B finds. a graph of n vertices with degree _sequence

p=lpi e p)ifp 2P 2

if pis not realizable.

5.2. DCS for Bipartite Graphs

2

<3

- 2 p, > O and p is realizable, and reports the non-existence

There are a2 number of wavs to solve the DCS problem for bipartite graphs. Here we

present two algorithms; one uses the maximum network flow algorithm of Dinic [Di70] and the

other generalizes the maximum cardinality matching algorithm of Hopcroft and Karp [HK73).

Both of them run in O(LE3?) time where £ is the number of edges in the bipartite graph. Asa -

matter of fact the latter one will perform better in gereral for its time complexity is indeed

(VP E) where P is the sum of tne prescribed degrees of all verticas&l‘h&se two algorithms are

Thesis
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substantial improvements o\/ef the prqviously known algo;ithm for the MR problem*which is

‘not guaranteed to run in polynomial time. R .

5.2.1. Maximum Network Flow Algorithm

*

A network is a directed graph N=(V,A) with two distinguished vertices, a source s and a
sink ¢, and a positive capacity c(x.y) absociated with every arc (x,y)€A (for convenience we
will abbreviate c((x,y))‘by c(x,y) for the arc (x,y)€A). A flow in a network N is a function

f:i{l-*R which satisfies the following conditions: -

(1) Forevery veV—{sz}, ¥} flad= Z fle), where w;,(v) and/(/w,(v) are the sets of arcs
‘ ’ a€ w,(v) € Wy (V) . : ‘

in A entering and emanating frcm vertex v r&pectiyé:ly. ’
(2) Forevery arc (vw)€A, 0 € fly,w) € clv.w).

The value of the flow f. denoted. by Ifl, is the flow out of the source vertex s, namely

2, f(s.v). The maximum flow problem asks for a flow f in N that maximizes Ifl. ,
(sv)A .
,‘,

Given a bipartite graph G=(XUY E) with prescribed degrees p{v) on all. vertices vEXUY".

Then N(G) = {V.A) is a network constructed as follows:

" o
V=i{sttUXUY,
A={(sx) xeXt U{(ye) veYt U {(x.y)ixv€E} and .
— ' 7 ’ i . . (’O
11 if a=(x,y)€A.x€X and yE€Y { .
ela) =1 p(x) ~if a=(s.x)€A and x€X S ﬂ : .

¥  if a=(y1)€4 and y€Y ,

g

For example, consider the ‘bipartite graph G shown_in Figure 5.3a. Its corresponding network

N(G) is shown in Figure 5.3b. - _ '

]

Thesis

L
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TS , | |
Figure 5.3 : Example of a bipartite graph and its corresponding netwd)r‘k .

Lemma 5.5 : The bipartite graph G has a subgraph whose vertices have degrees equal to the
prescribed degrees if and orﬂy if the corresponding network N(G) has an integral flow of value

P/2. wiere.P is the sum of the prescribed degrees of all vertices in G.
Proof 3 Let p(v) be the prescribed degree of vertex v in G.

Suppose Gy= (XUY.E) is a subgraph of G whose vertices have degrees equal to the prescribed
degrees.
» ) . .

Let f be an'integral fiow of the network N(G) defined as follows: .
fls.x) = plx) for 2l ares (s.x)€A and x€X, : R K

f(y2) = p(y) for =11 arcs (y.£)€A and y€Y, _ .

flx.y) =1 for all ares (x,y)€A. xy€E, x€X and y€Y and . jA o ,
Ax.y) =0 for all ares (x,y)€A, xy€E, x€X and y€Y. v : R
The value of the flow [ is the sum o;fv the fiow out of the source s, which is equal to

T flsx) = fX) = KY) = P2

{sxXA ' ‘

X
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.

STEP 1. Find a maximum flow fof N(G) by Dinic’s Algorithm. .,

Suppose N(G) has an integral flow f of value P/2.

Consider the subgraph G = (XUY.E) where R

= {xy | (x.y)€A. x€X, yEY and flxy)=1}. 7

*Since the flow f has value P/2 = p(X) = p(Y), ihe amount of flow ot all the arcs emanating
from the source s and entering the sini ¢ is equal to’ the capacmes ‘The degree of every ver;ex '

x€X is then equal to ) flx y) flsx) = plx). Slmllarly the degree of every vertex yeY is

(xy)¥A

3

equal to 2}, flx.y) =f(y,t) = p(y). Therefore the vertices in the subgraph C_f have -degrees
’ (xyEA . , ' :

equel to the prescribed. degrees.

4

, The proof indicatés how the network flow solution can yield a DCS solution. Now we

apply the maximum flow algorithm of DINIC [Di70] to find a2 DCS of a bipartite graph G with

prescribed degrees. Since all capacities are integers, Dinic’s algorithm will produce an intégral

maximum flow.

st

ALGORITHM C (Extension of Dinic’s Algorithm for Bipartite Graphs) ‘

STEP 0:  Construct the network N(G) corresponding to the bipartite graph G.

>

- STEP 2: IF il = P/2, THEN construct the DCS G from the flow f. OTHER-WISE a I)C‘b does

not exist. : - - . ' — , -

STEP 3: HALT. B | I L

The construction of the network N(G) takes O(LE) time where £ is the number of edges

in the bipartite graph G. The construction of the DCS G from the flow fof value_P/ZK also

takes O(IE]) time. In order to get the complexity for the entire algorithm, we need to find out

how much time STEP 1 takes to find a maximum flow f of N(G). In general Dinic’s algorithm

H “
> : -
¢ .
R o . i

Thesis
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‘where V=

funs in O(IVEEY) time wheére V] and Ll are the number of vertices and edges of the network

. . . A , —"
respectively. However if the network is of special type. the time complexity may be improved.
A 0-1 network is a ne‘tworl.c in which the capacity of all the arcs is one. Our network N(G)

consr,ructed from G 1s very similar to a 0-1 network. except that the capacmes of the arcs

o

emanating from s and entering ¢ may not be all one. Fortunately we can replace each of those

- arcs of capacity greater than one by a number of arcs of Vcapacity one 1o obt.ain a0-1 network

°

and yet the maximum flows on both networks are the same. This is shown in Figure 5.4, where
the arc a=(v.w) of capaciiy k>1 has been replaced by k arcs of bcapacity 1 from vertex v to

vertex w. Clearly the newly constructed network., denoted by N'(G) = (V'.A"). is a 0-1 network

flows in the networks N(G) and N'(G) are the same. Moreover, any flow in N'(G) corresponds-
1o a flow in N(G) of the same value. Thus we may work on the 0-1 network N'(G) instead of *

- N(G) to find the maximum flow of vafue P/2: This can be done by Dinic’s algorithm in O(4"*"2)

for the O-1 network iV'(G) Since 147 = AHP—IXUYl = B+P = O(lEl) an execution of STEP 1
5.

of ALGORITHM C takas O(LEPR) time.  Hence the enure.a.lgonfhm is of time complexity

-

owEry. ‘ | | ' -

Figure 5.4 : Replacing an arc by multiple arcs to obtain a 0-1 network

R hd
"1 4

Thesis

IV and 4 = LAH-P—X UYL It is not difficult to see that the values of the maximum ‘
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. 5.2.2. Generalized Maximum Matching Algorithm
~ Let G=(XUY E) be a bipartite graiah having vertex set XUY and edge séL E. A sei MQE s
called a matching if no vertex v€XUY is incident with more than one edge in }M. A berfeél
matching M has every vertex ix;ciaent with exactly on; edge of M. In other words. a perfect
matching is the edge set of a DCS of G with all the prescribed de’gyrees equal to oné. In this sec- o
lion"we are going to gen;aralize the maximum inatching algorithm of Hopcroft and i(arp [HK73]

to solve the DCS problem with prescribed degrees p(v) on all vertices v in the bibartite graph G.

Let M be a p-subgraph of G, i.e., a subgraph of G in which all verticesrhave Aegrew less
than or eqﬁal to the prescribed degrées. A maximu.m' p—subgraph is one that has thé maXximum
number of eagés. A simple path Q = (vy, va. ..., vy, vzg,) in G is an augmenting path relative
to M ifA the end vertices v; and Va have,;:iegre&é less than the brescrii)ed deg;\ées p(v;) and
"p(xfgg'),l' all intermediate vertices v,. ..., Vo, have degrees equal to the prescribed degrees

°

plvs), p(vzé-l). and the edges are alternatively in E=M and in M with starting edge in £~M.

When there is.no ambiguity. w‘e let 0 der;ofe fhe 's‘él of. edges in thve»aug’menting path as

" well as thef’p'alh itself and lét M denote the set of edges in the p-subgraph as well as the sub-
ér:ap‘n itself. *]f»S and 7 are s2ts. then S®7 denotes ihé symmﬁric difference of S and 7. S—=7
denotes the set of elements in S which are not m 7. and iSi denotes the numl-Jer of elements in §
SNY is‘ﬁr;ite. H A and L"\' are graphg. then MON denotes the symmetric difference of the sets of
edges-of M and N, Af;z\’ denotes the set of edges in A which are not in N énd | M dexl'xotesr'th'e

. number. of edgés in the g‘rapﬁ M. An augmentation of M along the augmenting path Q 1\
. achiev-ed by taking the symmetric difference of the edge sets of M ané ‘Q. Clear]yr M&Q 15 also a

p-subgraph and IM@Q! = IMi+1. \

N

: T



Theorem 5.6 : Let M and N be p-subgraphs of G. }f IMi=m, iNI=n and n>m, then M@®N con-

lains at least n—m edge disjoint augmenting paths relative to M.

Proof : Consider the graph (MONY* formed by replicating each vertex vEMON p{v) times."
Let v be a vertex in M&N, let v, vy, . Vp(,) be the teplicated vertices af-ising fr‘om v in
(M@N)’“”; and let v have r gdgas from M—N and s edgas from N~M. Then the incidence of the .
r+s edges with vertices vy. va. ... V5, is defined 'as}ollo.ws.‘ Each of the ver‘tices V1. V2, v, is
inciaeht ;x/ith one of the r edges from M—N and each of the vertices v, Vz.; ... ¥ is Incident with
one of the s edges from N—M. Thus each vertex-in (MONY is incidem with at most one edge

from N—M and at most one edge from M—N. Hence each connected :compohem of (MQN)"”’ is
either ;

(1) an isolated vertex,

(2) acycle of even length with edges/;lter,natiizely in M—N and in N—M, or

(3) a path whose edges are alternativély in M%N and in N—M.

In any of the connected compgnents, the number of edges belonging 1o N is either one mofe
tharia,,one less than. or equal to. the number of edges belénging to M. A component has one
more{edg‘e belonging to A than to M ii and oniy if it is an alternating path with starting and
ending edges in N—-M. Tﬁhere are at least n—m of these componenis | since

IN=M — IM=Ni =N — M = n—m. Hence there exist.at least n—m vertex disjoint "alternating"

paths. 97, 057, ... 0%, in (MON )y withstart'mg and ending edges in N—M. Consider an end

.vertex of any of these paths; it is incident with, one edge in N—M. By the deﬁmuon of
(MGN)"P the correspondmg vertex, say v, in MGN must be incident with more edges in N—M
than in M——N In other words the degree of the vertex v in the p-subgraph N is more than that
in the p-subgraph M. But the vertices in both M and N have degrees less than or equal 10 the

prescribed degrees. so the degree of the end vertex v in M must be less<than the prescribed

- Thesis



degree.

Now we claim that the vertex disjoint alternating paths. 57, Q5. Q8F,.. in (M@N)y<r
correspond 1o paths 01.05....,Q, -, in MBN which are edge disjoint. and such that each @,
contains an augmenting path relative v . Let Q, be the path in M@®N consisting of all the

-

edges of the alternating path Qf¥. Then all the paths Q). (5. ... Q,_, aré edge disjoint. This

follows from the fact that every edge in M@N appears exactly once in (M@NY*. It remains 10

show that each Q; contains an augmenting path relative to M. Since Q% tras Qdd length, O, is an
odd llength trail (possibly self intersecting). But M@N S G is bipartite, so Q; contains an odd
length simple subpath Q,' which is evidently aiso alternating and has the same set of vertices.
Recall that the end vertices of the paths Q have degrees (in M) less than the prescribed degrees.
If all of the intermediate verzicas of Q' have degrees (in M) equal to the prescribed degrees,
then Q. is in fact an augmentmg path relative 10 M. Otherwise by parity. we can always find
an odd length subpath in QI so "that the end vertices have degrees (in M) less than the
prescribed degrees. Repeai\edh we must find a subpath whose end vertices have degreas (in M)
less than the prescribed degrees and all the intermediate vertices have degrees (in M) equal to
the prescribed degrees. and thus an augmenting path relative to M. Hence MQ:'\.' contains at
jeast n.—m edge disjoint augmentung paths relative 10 M.
3

The following Theorems and Corollaries are similar to [HK73].

Cdrollary 5.7 : M is a maximum p—subgraph if and only if there is rio adgmenting path rela=~

1ive to M. ,

Thesis
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Corollary 58 :1Let M be aip—subgraph.‘Supp'ose M=m; and sﬁppose that ti)é number of edges

in 2 maximum p—subgraph is n, n>m. Then there exists an augmenting.path relative to M of

length € 2| 41,
T n-m

Proof : Let N be a maximum p—subgraph. Then by Theorem 5.6. MON contains n—m edge dis-

joint augmenting paths relative to M. Altogether these contain at most m edges from M, so one

. of them must conlain al most I | edges-from M, and hence-at most 2| —— |+1 edges
n—m - n—m !

together.
H

Let M be a.p—subgraph. The .augmenting path Q is called shortest relative to M if the

length of Q is the shortest among all the augmenting paths relative to M.

-

S—

Corollary 5.9:Let M be a p—subgraph,(Q a shortest augmenting path relative 1o M, and Q' an

augmenting path relative to M&Q. Then IQ' 2 10! + 20NQ'I. o

Proof : Let N = M&Q®('. Then N is‘a p;rsubgraph and IM = IM'+2, so by 'fheorem 5.6, MGN
contlamns two edge/tﬁ;joml augmenting paths relative to M: call them @, and Q2 Sihce
MeN = 000 and MON 2 Q,+i0-. iQﬁ?Q’; 2 10,1+10,l. But 0,210} and 0,12 10, since 0l is a
shortest augmerﬁing patﬁ. So“Q@Q"i 20, 40> 2 10 + 10! = 20 and also we inave the iden-
1y IQ@Q1 =10  + Q1 — 2I0NQ". Hence |

Q' =1080" -0+ 20N0 2 20~ 10+ leﬂQ'l = IQI + 2IQhQ'1.

Now vse apply ihé following scheme of computation : starting with a p—subgraph 7M0=@,
compute a sequence M. M. A, Ml ..., Where ); is a shortest augmenting ‘pat.}} ‘relaiivé to

M. and M., = M@0,

Thesis



' Corollary 5.10: 10/ < 1Q..1i.

kS

Corollary 5.11: For all i and j such that iQ/=IQ)l, Q, and O, are edge di8joint.

Proof : Suppose that IQ/=10;i, i<j. and Q; and Q; are not edge disjoint. Then there must exist k

and I, i<k<I<j, so that Q; and Q; are not edge disjoint, and for.each m. k<m <l.Qp is edge

disjoint {from QLI, and @, Then Q; is an augmenting path relative to M,@Q,.. so

Q) 2 1044210, NQJ. But i0;=i0, so I0; NQ,;=0, which is a contradiction.

Theorem 5.12: Let n be the number of edges in a maximum p—subgraph. The number of dis-

1inct integers in the sequence . C o

-

IQOL.LQ,!. R ﬁQ -+ is less than or equal to 2{\/;_J+2.

\

Proof : Let m = Ln—Vn_|. and let M,, be thé p—subgraph with m edges. Then by Corollary 5.5."

[ : __[' "'
oi<y el syt
n—-in—\/n , v

n —\/;— < 5 n

Thus for each i<m._.IQ/ \is one of the L\ﬁi_jfl positive odd integers less‘rthan oOr equal i.

hence the total number of distinct integers is less than or equal 1o

I Val+1+TVn €2 Vni42.

. Thesis

20 Va_+1. Also Qa1 - 10, contribute at most n=m = n{ n—vn | = Vn7 distinct integers.
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'r'ln view of Corollari;as 5.10 and 5“.111 and Tineorem 75.12! ihe. cbmpl‘lta;ion of \trheis;;criurenc’e '
My My, ..M, - - breaks into at most 2| Vn_+2 phases, and within each all ‘the‘ auéfnehting
péths found ‘are edge disjoint and of the same 1ength: Since 1he;e 'patbs ‘n,)ay fail 10 be véﬁex
disjoint, an augmeri‘ting pathr\elaiive 1o the p—subgraph with whicl; the phase is begun n‘eed' not
be one of the augmenfing pafhs within the pﬁhase; -So we h_avé to be cautiousi when‘wg are géing
to find all t.heva‘lugmeniing f:aths of the same length wifhin a phase‘ at tfme time the phése is
begt‘m.‘ The,f oll;owing isran alternative wggr of déscribing the comput,atioh of a maximum

p—subgraph, and hence a DCS. ’ - I A

Il

ALGORITHM D (Generalization of Hopcroft and Karp's Algorithm for Bipartite Graphs)

x

STEPO: M~ @. o T Lo

STEP 1:  Let (M) be the length of a shortest augmenting path relative to M. -

Find a maximal set of paths {Q}. 04’ ..., C}'} with the properties that -

(1a) For each i, Q¥ is an augmenting path relative to M such _that ,

vMéOQﬁ”@ = GQ;FfQ 7+~ OM is a p—subgraph and Q¥ = I(M).
- - (1 b) The Q‘:‘." are edge disjoint,
IF no such paths exist, THEN GOTO STEP 3.
STEP2: M« MeQYeQYe - - 60, GOTQSTEP 1.
STEP 3: I% M=PZ2., THEN M is a DCS. OTHERWISE a DCS does not exist.

STEP 4: HALT.

" Corollary 5.13 : If the number of edges in a mz¥ium p—subgraph is n, then ALGORITHM'!D

constructs.a méximum p—subgréph within ZLJ;_HZ executions of STEP 1.

Thesis
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Corolléry 5.14 : ALGORITHM D constructs a DCS with prescribed degrees within 2| VP/2 |42

k)

executions of STEP 1 if one exist, where P is the sum of the prescribed aegrees of all vertices.

<

Let M be a p—subgraph of the blpar‘ute graph G=(XUY.E). p(v) be the prescrlbed degree )
| of vertex vEXUY and let d(v) be the degree of vertex v in M. Let = {x ld(x)(p(x) and
x€ X} and X= = {x id(x)=p(x) and x€X}. The sets ¥ . and Y- are defined simiiar]y.‘ We discuss
t‘he eﬂicien“t implementation of STEP 1 of ALGORITHM'D ;'m wh:lc_,ﬁa‘maximal set of augment- "
ing paths satisfying properties (1a) and (1b) is found. First we aséign directions to the édges of
‘ the .graph so- that the aqgmenting paths become directed paths. ,This ié done by dii‘gcting each
edge in £~M from a vertex i X 10 a verlex in Y.‘ and each edge in M from a verlex. inY toa
i

veriex in X. The resulting’graph is\d%cribec.i as follows:
Gy = (VaEy;) -where ! B | ' : :
Vy = XUY. and '
Ey = {{xy)l xyeE-M, xEX and‘yE)"} U {(yx)txy€eM, x€X and yeY}.

Next we extract a subgraph‘(}".\, of G, in which the directed paths with stérting vertex in X,

ending vertex in }'. and all intermediate vertices in X_UY_ correspond one-10-one 10 thie shor-

test augmenting paths relative 1o M. This is done as follows.
Let L, = X and let
El = {(U,V) | (U,V)eEA!, UELK', and * eLouLl U\ R UL,) for = 0.1.2.3....’7

Ly, ={v! for some u, (u.v)éE,—} fori=0,1,2.3....

Leti = min {i |}

Then G,.’U = (V‘.\,;.EM) where

Thesis



V= LULU - - U(L.NY ) and

Epy=E,UEU " UE,_ U{(uv)l(uv)EEa uELa 1andvEY ).

All directed paths in G, from a vertex in X < to ;x vertex in Y. are the shortest augment-
ing paths relative to Athe' p—subgraph M. .How‘ever for évery vertex x€X_ there are only at
most p(x)—-d(x) of them that stdrt at vertes x and need to be augmented. Also for every vertex
yE) < there are only at most ply)—d(y) of them that end at vertex ¥ and need to be augmem.ed
Therefore we adjoin 10 G'ss two new vertices 5 and ¢, p(x)—d(x) edges from s to every vertex x
in'X., and p(y)—d(y) edges to r from every /\rlerr.ex y in Y<.- A maximal set of edge disjoint

b  directed ‘paths from s to ¢t in G’y 15 then a maximai s‘gt of -gdgg disjoint augmenting paths
| {o¥. o¥. ... Q{”} so that MeQYeoie - - QQ{” is still a, p—subgraph of G. The mechanism for
finding a maximal set-of edge disjoint directed paths from s to ¢ in G'y; is straightforward depih
first search, which takes O(number of edges in G'yy) = O(Epi+P) = O(E+P) = O(IED time.
Hence the execution of aTEP\l\\of ALGORITHM D runs in time O(LE]) and the entire algorithm |,

‘has time complexity O(VP IE) or O(E®?),

Thesis



'CHAPTER 6
- - CONCLUSIONS

-

~

The MR problem was previously studied by Cox and Ernst in 1982. They showed Lh%u an

MR(1,1,1) always exists by modeling the problem as a Capacitated Transportation problem.
The algorithin for obtaining an MR(1.1,1) appeals to the algorithm s for solving the Capacitated
Transportation pfoblem which are not guaranteed;‘to run in poly'xxdmia} time. In this Lhéns‘we,

investigate the GR problem which is more general than the MR problem as we have shown that

the MR problem is linearly equivalvent to the GR problem on a special type of graphs, namely.
the bipaﬂite graphs. An alternative (graph theoretic) proéf on thekexistehce of a GR(1,1.1) for 3’ )

bipartite graphs is given. Yet a GR(1.1.1) may not exist for arbitrary. graphs. F?jrtﬁnately with‘/“

lhe constraints being relaxed, a GR(1.2,1/2) and a GR(1.1.(n+1)/2) always exist Tor an arbi/i

. . —_— § /
trary undirected graph of n vertices; a GR(1.4/ 3,1/2) and a GR(1,1.(n+3)/6) always exist for;“‘fi;
loopless undirecied gxaph of n vertices. The bounds in the constraints for these rouqdihgs are

~ indeed mhl in the sense lhal there-are e\amples of conn§1ed gmphq achlevmg cur bounds

as»mplotxcallx We have constructed examples in which am. roundmg A that sausﬁes the con-

(

* straints A(e)—A(e) < 1 and A(¥)=A(+) € 1 will have ACE)~A(E) awmp‘fmwaﬁv close 10
(n+1)/2 for an arbii?ar_v und‘irécted graph, and ’asymptotically close 1o (r3+3)/6 for a loopless
; undirected graph. For an arbitréry €>0, there are examples in which any roundiﬁg A 1hat
satisfies  the cbnstfaim.s [A(e)—A(e)l <1 and IAE-NMENS 12  will have

max Av)-A(v) = 2—¢ for an arb:trary undirected graph and max lA(v)-A(v) 4/3—¢ for a

loopless undu'ected graph

-

The different roundmgs for the GR problem can be obtamed by solvmg a certain. DCS and .

a certain Euler Tour problem on undirected graphs.” We have presented two algorithms- for

s

A
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f

solvmg the DCS problem one is the enended Maxlmum Network Flow algorithm of Dinic, and,

the other is the generallzed \’Iax1m1fm Cardmalny Matchmg algorlthm of Hopcroft and Karp

- {

Both of them have time complexny O (IEP72) in the worse case analysis where |E] is the number

of adges in the grapb. In general the_latter one will perform better as it runs in O ( VP IR) time

N

‘where P is the sum-of the prescrlbed degrees of alQl verliees in the graph. This is a s&bstantial‘

unprovemem ‘over the prevrously known a]gorlthm developed by Cox and Ernst [CE82] WblCh
may have exponermal behavior. If the graphs are ‘complete, ie., if Lhe roundmg problems are

O-relaxed. then we have simpler linear algorithms.

| ' N S S
sFrom our results on the existence of a rounding for u\‘directed graphs, the existence of a

————

symmetric rounding for symmetric matrices is derived. An SMR(2,2,1) and an SMR(2,1,n+1)
always exist for an arbitrary symmetric matrix of dimension‘niﬁn SMR(174/3_1_) and an
SMR(1.1 (n+3)/3) alwavs exist for a symmetr;c matrix of dxmensxon n with all dlagonal

entries bemg 0. These roundmgs can also be obtamed by our algorlthms for the GR problem ’

“
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