
Byzantine Agreement and Network Failures

by

Franky S. Ling

B.C.S., University of Windsor, 1983

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Franky S. Ling 1986

SIMON FRASER UNIVERSITY

April 1986

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Approval

Name: Franky S. Ling

Degree: Master of Science

Title of Thesis: Byzantine Agreement and Network Failures

Examining Committee:

Chairman: Dr. Joseph Peters

Dr. Tiko Kameda
Senior Supervisor

Dr. in* Bhattacharya

u r . ~ r t h u r Lee Liestman

Dr. John Ellis
External Examiner
Department of Computer Science
University of Victoria

Date Approved

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Un ive rs i t y the r i g h t t o lend

my thes is , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f the Simon Fraser Un ive rs i t y L ib rary , and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any o ther un ive rs i t y , o r o ther educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l ga in sha l l not be al lowed

wi thout my w r i t t e n permission.

T i t l e o f Thes i s/Project/Extended Essay

Byzantine Agreement and Network Failures

Author :

* (s iwatu ' ie

Siu Ming Franky Ling

(name 1

16 Apr i l 1986

(da te)

Abstract

Achieving consistency is one of the important issues in distributed computing. In a

distributed environment, consistency comes in different forms, e.g.. processors must

take the same action at some specified time, different clocks should give

approximately the same value, processors have to agree on a critical value, etc.

Under the worst kind of failure behavior, this problem has been abstracted as the

Byzantine Agreement problem. A new Byzantine Agreement algorithm is presented

which uses fewer messages than other currently known algorithms under a certain

range of parameters and terminates in an optimal number of rounds of message

exchanges. Previous research dealt mainly with processor failures and treated

communication/link failures as a special case of processor failure. A necessary and

sufficient condition is presented for reaching agreement under simultaneous failure of

k processors and I links in terms of a graph property, namely, the connectivity

function of a graph. Byzantine failure is assumed, i.e.. no assumptions are made on

the behavior of a faulty component, and in particular, malicious actions taken by

faulty components to prevent nonfaulty processors from reaching agreement are taken

into account.

Connectivity function is valuable in recognizing the degree of tolerance of a

distributed system. Unfortunately, however, it is shown that computing the fixed-

pair connectivity function is, in general. NP-complete. Among several classes of

iii

graphs investigated, it is shown that the problem remains NP-complete for bipartite.

chordal, and split graphs; and is solvable in polynomial time for n-cubes, series-

parallel graphs, and other graphs with bounded vertex connectivity.

To my parents a d Aunt Siu Ching.

Acknowledgements

I wound like to express my sincere gratitude to my Senior Supervisor. Tiko

Kameda, for giving me his invaluable advice and guidance throughout the research and

his patience in proofreading my thesis.

I would also like to thank the committee members. Binay Bhattacharya. Arthur

Liestman. Joseph Peters, and External Examiner, John Ellis, for their proofreading of

my thesis and helpful comments and suggestions made. Some ideas in algorithm

SPConO, which is described in Chapter 5 , were suggested by Binay Bhattacharya.

Finally. I thank the School of Computing Science at Simon Fraser University for the

financial support given to me, and its staffs, especially Ethel Inglis, in giving me the

assistance needed.

Approval
Abstract
Acknowledgements
Table of Contents
List of Tables
List of Figures

Table of Contents

. .
11

,..
111

vi

vii

1. lntroduction
2. Byzantine Agreement

2.1. Introduction
2.2. Model and Definitions
2.3. Synchronous Systems
2.4. Asynchronous Systems
2.5. Network Failures

3. A Byzantine Agreement Algorithm
3. I. Introduction
3.2. Algorithm
3.3. Proof of Correctness
3.4. Complexity
3.5. Concluding Remarks

4. Network Failures
4.1. lntroduction
4.2. Protocol

5. The Connectivi ty Function
5.1. Introduction
5.2. Terminology and Definitions
5.3. Properties of Connectivity Function
5.4. Construction of Graphs with Given Connectivity Functions
5.5. NP-Completeness

5.5.1. Bipartite Graphs
5.5.2. Chordal and Split Graphs
5.5.3. Weighted version
5.5.4. Approximation

5.6. Polynomially Solvable Cases
5.6.1. Graphs with Bounded Vertex Connectivity

vii

5.6.2. Graphs n-cube Q,
5.6.3. Series-Parallel Graphs

5.7. A Path Problem
5.8. Summary

6. Conclusion
References

List of Tables

Table 5-1: Complexity of FPC and WFPC.

List of Figures

Figure 3-1: A scenario of algorithm GrByzO.
Figure 4-1: An Example of Unreliable Communication
Figure 5-1: Construction of W=(N,L)
Figure 5-2: A Suppression S = .- a -- b - c applied on G.

Chapter 1

Introduction

This thesis is concerned with the fault tolerance of a distributed system, in

particular, with Byzantine Agreement and communication failures.

In Chapter 2, we give a brief survey of the Byzantine Agreement problem, which

deals with the reaching of an agreement under the worst kind of failure behavior.

called Byzantine failure. In Chapter 3, a new Byzantine Agreement algorithm is

presented which uses a smaller number of messages than the currently known

algorithms for certain ranges of parameters.

In dealing with the Byzantine Agreement problem, most researchers assume that link

failure is a special case of processor failure; a link failure is considered as the failure

of one of the end processors of the link. In Chapter 4, we separate processor and

link failures and give neiessary and sufficient conditions for a system to tolerate t

processor and 2 link failures in reaching Byzantine Agreement. A protocol is

presented for a Byzantine Agreement to tolerate t processor and I link failures under

the sufficiency conditions. One of the necessary and sufficient conditions is stated in

terms of a graph property, the connectivity function.

In Chapter 5, we study the connectivity function, which defines the number of

vertices and edges whose removal disconnects a graph. It generalizes the concepts of

vertex and edge connectivity. Our interest is chiefly in the algorithmic complexity of

the problem. We show that the problem of computing the fixed-pair connectivity

function is, in general. NP-complete. Important properties of the connectivity function

are investigated and the connectivity functions for certain classes of graphs are

determined.

Chapter 6 contains a summary of the results in this thesis and states some open

problems.

Chapter 2

Byzantine Agreement

In a distributed system, various faults can occur, e.g.. faults caused by component

malfunctioning and faulty software, and communication error caused by noise in the

communication medium. A single fault happening at an unfortunate time could be

disastrous. Thus, one important design issue for a reliable system is how to keep a

system functioning properly in the presence of faults.

Many fault tolerant algorithms assume a benign form of failure, called the fail-stop

mode. In this mode, once a component fails, it immediately stops functioning and

does nothing else. In reality, however, some malicious form of failure can happen.

e.g.. a faulty component could behave illogically, and a '1' sent by a processor could

be interpreted as a '0' by a receiver due to noise in the communication medium.

Therefore, a system with a high degree of reliability must tolerate "malicious" faults.

Many fault tolerant algorithms do not work if "malicious" failures occur. In a

distributed, message passing environment, "malicious" faults have been formalized as

. the Byzantine failure, which makes no assumptions on the behavior of a faulty

component, e.g.. a faulty processor can send conflicting information to others, or

modify a message while it is relaying the message. Hence, algorithms that handle

4

Byzantine failures cannot depend on the behavior of a faulty component a t all. One

way of picturing a system with Byzantine failures is to imagine that there is a

demon, with the ability to control the faulty components, to prevent correct

processors from working properly. The faulty components, being undetected by

correct processors and controlled by the demon, send confusing messages to correct

processors.

One useful concept in handling Byzantine failures is that of Byzantine Agreement.

Byzantine Agreement is said to have been reached if all correct processors agree on

the same value. The value here may be quite general, including the description of an

action that should be taken by all correct processors. Some applications are: reliable

broadcast which requires that all correct receivers receive the same message: a commit

protocol in a distributed database which requires the result of a transaction that

involves data at different processors to be consistently installed (either all changes dl~e

to a transaction or nothing at all should be reflected in the database). The paper

[16] discusses applications of Byzantine Agreement in database system; and replicated

computing, in which several processors may be dedicated to compute the same

function on an input. and it is essential for all of them to obtain the same input.

A great deal of research has been done on the Byzantine Agreement problem and its

variants. The results obtained range from lower bounds to efficient algorithms. We

give in this chapter a brief description of some major results.

2.2. Model and Definitions

A system consists of a set P= {p1.p2. .Pn) of n processors and a communication

network which connects the processors. Processors communicate only by sending and

receiving messages through the network. Each processor is modeled by an infinite

state machine. Initially, each processor pi is in its initial state and has an initial

value vi E V, where V is a set of values. Note that processors' initial values may be

different. For simplicity, we assume that V = {0,1). The extension of V to an

arbitrary value set is straightforward, since any value can be encoded in binary

representation. A protocol defines the next state of each processor and the messages

to be sent, as a function of the current state and the messages received. A processor

is said to be correct if it follows the protocol correctly, and is faulty otherwise. At

the end of protocol execution, every correct processor decides on a value. A

Byzantine Agreement is said to have been reached if B1 and B2 below are satisfied:

B1. All correct processors decide on the same value.

B2. If all correct processors have the same initial value v , then all
correct processors decide on v .

>

A weak Byzantine agreement is said to have been reached when B1 above and B2'

below are satisfied:

B2'. If all processors are correct and their initial values are all equal to
v , then all processors decide on v.

A protocol is t-resilient if, for all executions of the protocol, it terminates in a

finite number of state transitions and guarantees that an agreement is reached despite

the presence of up to t faulty processors.

Failure Modes.

We list three commonly discussed failure modes:

Fail-stop: once a component fails, i t immediately stops functioning, i.e., it
neither sends nor receives any message during the rest of a protocol
execution.

Omission failure: the only faulty behavior is to omit to execute some step(s) of a
protocol.

Byzantine failure: no assumption is made on the behavior of faulty components, i-e..
they can act maliciously.

Network Assumptions

We first assume that every two processors are connected by a reliable bidirectional

communication link, i.e.. the underlying graph of the network is a complete graph and

iinks never faii. We wili discuss link failure and the structure of the network later.

A message may pass through several nodes of a network, we assume that the receiver

of a message can identify the immediate sender, i.e.. the last node which relay the

message.

2.3. Synchronous Systems

In a synchronous system, execution steps of processors are synchronized. This

requires that their local clocks be synchronized within some bound, processors'

response time be bounded, and there exists an a priori bound on message delay.

It is convenient to divide protocol execution into rounds. At the beginning of a

round, each processor sends messages to some processors, possibly to all including

itself. It then retrieves all messages that were sent to it in this round and performs

its computation.

Let t be an upper bound on the number of faulty processors with Byzantine failure

in a system. Pease, Shostak, and Lamport [20] proved that, with n processors, it is

impossible to reach Byzantine Agreement if n < 3t. If n 2 3t + 1, Byzantine

Agreement is always possible, which they proved by an algorithm for Byzantine

Agreement. Their algorithm terminates in t + 1 rounds and uses 0 (nt+') messages.

As the possibility of achieving Byzantine Agreement has been established, it is

desirable to seek efficient algorithms and lower bounds for the problem. Fischer and

Lynch 1131 showed that t + 1 is a lower bound on the number of rounds needed for

any t-resilient Byzantine Agreement protocol. Since there are algorithms that

terminate in t + 1 rounds [20] , this bound is tight. As for message complexity, Dolev

and Reischuk [l o] showed that (nt) messages are necessary for any t-resilient

Byzantine Agreement protocol. As mentioned above, the algorithm in [20] uses

O(ntC1) messages. heref fore, i t is impractical if t is large. since the number of

messages sent is probably too large. The most efficient known algorithm in terms of

message complexity, described in [9], uses a polynomial number of messages, with a

total of 0 (nt2iog t) bits, but it requires 2t+3 rounds, which is not optimal. Since

there exist algorithms that terminate in t + 1 rounds, and also algorithms that use a

polynomial number of messages, it would be interesting to know whether Byzantine

Agreement could be reached in t + 0 (1) rounds of message exchanges, while

8

exchanging a polynomial number of messages. This problem still remains open. It is

noted that the algorithm described in [l l] uses 0 (nt310gt) message bits and terminates

in t + 1 rounds, but the algorithm requires that a system have 2t2 + 3t + 5 processors.

which is large compared to 3t + 1.

An agreement is said to be simultaneous [5] (called immediate in [l l]) , if all correct

processors decide in the same round on a value satisfying the conditions of an

agreement. If we allow processors to make their decisions in different rounds, an

agreement is said to be eventual. Clearly, simultaneous agreement is at least as hard

as eventual agreement. In a protocol execution instance, there could be no faulty

processor, or on the average, the actual number of faulty processors f could be much

less than t. It is reasonable to inquire whether a t-resilient protocol can stop earlier

if f is less than t. This property is known as early-stopping in [l l] . It is shown in

[ll! that nin(,f+2, t+l! is a lower bound OE the mmber cf rounds fcr any eventua!

early-stopping t-resilient Byzantine Agreement protocol. Surprisingly, for simultaneous

agreement, the lower bound of t + 1 rounds still applies for early-stopping. It is

shown in [5] that t + 1 is also a lower bound on the number of rounds for early-

stopping simultaneous weak Byzantine Agreement protocol with just fail-stop mode of

failures. This means that no simultaneous-agreement t-resilient protocol can stop

earlier than t + 1 rounds even when there is no failure during protocol execution. By

using a polynomial number of messages, eventual agreement can be reached Ell] in

min(2f+5,2t+3) rounds when n = 3t + 1, and in min(f+2, t+ 1) rounds when

n 2 2t2 + 3t + 5.

An authentication protocol enables a correct receiver to verify that a received message

is genuine and to identify the original sender of the message. This is accomplished

by adding to a message to be sent by a processor an unforgeable digital sigmture

[21]. Thus, by employing an authentication protocol, the behavior of a faulty

processor in relaying a message can be restricted to simply dropping the message. If

a faulty processor has modified a message, a correct receiver can verify that the relay

is faulty. But it is possible for faulty processors to collude and to send conflicting

information to others. By using authentication, algorithms exist that can tolerate an

arbitrary number of failures [20]. But even with authentication, the lower bound of

t + 1 rounds of message exchanges still applies [12]. A lower bound on the number

of digital signatures needed for any authenticated Byzantine Agreement protocol is

(nt) 1101. Unlike the unauthenticated case, where it is unknown whether Byzantine

Agreement can be reached in t + 0 (1) rounds using a polynomial number of messages

when n = 3t + 1, an authenticated t-resilient agreement protocol exists that terminates

in t + 1 rounds and exchanges 0 (n t) messages [12].

Although authenticated Byzantine Agreement algorithms are able to tolerate any

number of faults and are more efficient than their unauthenticated counterparts, an

authentication protocol incurs extra cost for an authenticated Byzantine Agreement

algorithm, and there is no known authentication protocol that is absolutely

unbreakable. For a system with no malicious act expected, a checksum scheme

probably can provide a good resilience to failures.

Most authenticated agreement algorithms are efficient, simple to implement, and easy

to comprehend. Srikanth and Toueg [22] devised a clever scheme that can transform

an authenticated agreement algorithm into an unauthenticated one. The method uses

two rounds of unauthenticated message exchanges to replace one round of

authenticated message exchange. Thus their method preserves the simplicity of an

authenticated algorithm in an unauthenticated one and still uses a polynomial number

of messages. For the transformed algorithms to work correctly, a system must have

3t + 1 processors: this is a requirement for any unauthenticated protocol.

2.4. Asynchronous Systems

In a synchronous system, we assumed that all processors execute a round of message

exchange at the same logical global time. There are many reasons for a system to

behave asynchronously. For example, a heavily loaded processor could respond

slowly, messages sent through a congested network could be delayed, and in datagram

service, messages are not guaranteed to be delivered in the order sent, if at aPi.

Fischer. Lynch, and Paterson [141 proved that, in a completely asynchronous system

(i.e.. processor response time is arbitrarily long, an a priori bound on message delay is

precluded, and messages may not be delivered in the order sent), no deterministic

agreement protocol can reach weak Byzantine Agreement in the presence of one fail-

stop mode failure. In a later paper [8]. Dolev. Dwork, and Stockmeyer extended the

above result. Still assuming fail-stop mode, they identified five critical system

parameters:

1. processors synchronous(F) or asynchronous(U),

2. communication synchronous(F) or asynchronous(U),

3. messa

11

.ge order synchronous(F) or asynchrc

4. broadcast transmission(F) or point-to-point transmission(U),

5. atomic receive/send(F) or separate receive and send(U).

In the above listing F means favorable while U means unfavorable. Broadcast

means that broadcasting takes place in bounded time. Atomic receive/send means that

the time for receiving, processing and sending of a message is bounded by a constant.

In total, there are 32 = Z5 cases as parameterized by the above 5 parameters. For n

processors, they identified four groups of cases where n-resilience (fail-stop mode) is

possible, but the weakening of any parameter from favorable to unfavorable is

sufficient to make t-resilience unachievable (t is either 1 or 2). These four "minimal"

groups are (they cover 17 out of 32 cases):

1. synchronous processors and synchronous communication,

2. synchronous processors and synchronous message order,

3. broadcast transmission and synchronous message order.

4. synchronous communication, broadcast transmission and atomic receive/send.

When Byzantine failure is considered. Case 1 can be solved; in fact, it is the

synchronous model assumed in most literature. The paper [I] describes an algorithm

to handle Byzantine failures in an asynchronous system (case 4: processor U and

communication F) by imposing a phase protocol (it generates artificial phases). No

Byzantine Agreement protocol has yet been found for case 2 or case 3.

2.5. Network Failures

In the preceding sections, we assumed that a network is completely connected and

communication is reliable. Actually, what a Byzantine Agreement protocol needs is a

way to guarantee that any two correct processors in a system can communicate

reliably and can identify the original sender of a received message if the sender is

correct. Dolev 161 showed that, in the presence of up to t faulty processors in a

system, a necessary and sufficient condition for this purpose is that the vertex

connectivity for the underlying graph of a network is 2t + 1. This result also holds

when the structure of the network is unknown to the processors [71.

When discussing communication link failures, most researchers assume that one of

the two end nodes of the faulty link is faulty. In Chapter 4 of this thesis, we

separate processor and link failures, and describe necessary and sufficient conditions

for a system to tolerate t faulty processors and I faulty links. The conditions are:

n 2 3t + 1 and the fixed-pair connectivity function f for every pair of distinct

processors s and t which participate in the protocol satisfy either (1)

f(G.s.t.2t) 2 21+1 or (2) f(G.s.t,a) > 21+1 and f(G,s.t,a+l) is undefined, where G is

the underlying graph of the network and a is any arbitrary positive integer. For a

definition of f , please see Chapter 5. Informally, the function defines the number of

vertices and edges that must be removed in separating two vertices s and t , e.g.. if

f(G.s.t.a) = b, we can separate s and t by removing a vertices and b edges from G.

Chapter

A Byzantine Agreement Algorithm

3.1. Introduction

Two important measures of the efficiency of a Byzantine Agreement algorithm are

the number of rounds of message exchanges needed and the amount of information

exchanged. The discussion in this chapter concentrates on unauthenticated algorithms.

Let n be the number of processors in a system and t be the maximum number of

faulty processors that an algorithm can tolerate. It is shown in [13] that t + 1 is a

lower bound on the number of rounds needed, and in [lo] that a (nt) is a lower

bound on the number of messages required by any Byzantine Agreement algorithm.

The first published Byzantine Agreement algorithm [20] runs in t + 1 rounds, and is

therefore optimal with respect to the number of rounds, but the algorithm needs to

exchange O h t + ') messages. The algorithm in [9] uses a polynomial number of bits,

0 (t310g t) , in the exchanged messages, but the number of rounds required in the worst

case is 2t + 3 , which is roughly twice the optimal. These algorithms work correctly

when n 3 3t + 1 . It has been an open problem whether Byzantine Agreement can be

made with a polynomial number of messages in less than 2t + 3 rounds. Another

interesting problem is to find the trade-off between the number of rounds and the

number of messages needed. One might expect that when a ,system has more correct

processors, the system would handle failures efficiently . The number of correct

13

processors in a system could well be added to the above trade-off factors. In fact.

the algorithm described in [111 uses 0 (nt310g t) message bits and runs in t + 1 rounds.

when the number of processors n = 2t2 + 3t + 5. Let t = d2+2d, where d is a positive

integer, and n = 9t -12d + 1 = 9t - &+ 13. We show in this chapter that

Byzantine Agreement can be reached in the presence of t processor failures in

d2 +3d + 4 = t + 6 + 3 rounds using a total of 0 (tJ;+'log t) message bits.

Currently known t-resilient Byzantine Agreement algorithms with n < 2t2+ 3t + 5 that

terminate in less than 2t + 3 rounds need to exchange O h t + ') messages. With a

slight modification, our algorithm can terminate in t + 1 rounds with a small increase

in message bits.

We give an informal description of our Byzantine Agreement algorithm before

presenting it. Our algorithm has two levels - upper level and lower level. Processors

are divided into disjni~lt grolqx each cf size 3dt-I. At the upper level, each groiip

behaves as a "processor" and executes a known Byzantine Agreement algorithm; we use

the algorithm in 1201. If each group has one processor, then our algorithm is

essentially the same as the algorithm in [20].

Depending on a parameter of our algorithm, a group can have more than one

processor. The first question to be answered is: How do two groups communicate?

We require that all correct processors in a group, say group g, first agree on what

"group message" to send and then all correct processors of group g send the same

"group message" to all processors in the system.

A processor, say p, outside group g will receive as many correct "group messagesw

from g as there are correct processors in group g. If the majority of processors in

group g are correct, then the majority of the messages that p receives are correct and

can be used as group g's "group message".

The lower level accomplishes the goal of reaching an agreement among correct

processors in a group on what "group message" to send by invoking a known

Byzantine Agreement algorithm; we also use the one in [20]. If a group has at most

d faulty processors, the goal can be achieved if and only if the group has at least

3d + 1 processors. This is why we call a group with 3d + 1 processors correct if its

has no more than d faulty processors; otherwise it is said to be faulty.

If our algorithm can handle at most h faulty groups, the maximum number of

t
faulty processors. t . our algorithm can handle must satisfy hTj 6 h (a group is

faulty if it has d+l or more faulty processors); otherwise t faulty processors may be

distributed among groups in such a way that more than h groups are faulty. Thus,

t 6 h(d + 1) + d .

The Byzantine Agreement algorithm of [20] terminates in t+ l rounds and exchanges

0 ((3t+l)t+1) messages, if n=3t+l. By splitting processing into two levels, the upper

level with 3h+l groups terminates in h+l upper level rounds and exchanges

0 ((3h+ 1)h+l) Ogroup messages", and each lower level agreement (among 3d+l

processors) embedded in each of the h+l upper level rounds terminates in d+l rounds

and exchanges 0 ((3d+lId+') messages. In the next section we present our algorithm

and in Section 3.4 we discuss complexity in more detail.

ure 3-0 gives an example of the algorithm to be presented.

h,d=l , and therefore there are four groups, each with four processors.

gl (correct group)

q g3 correct group

I

In this example

g2 (faulty group)

g4 (correct group)

faulty processor 0 correct processor

msg = message

Figure 3-1: A scenario of algorithm GrByzO.

3.2. Algorithm

Let h, d be positive integers. The algorithm we present in this section enables

Byzantine Agreement to be reached in the presence of up to hd + h + d processor

failures, provided that the system has (3h + 1)(3d + 1) processors. The algorithm

assumes the following: each processor can directly communicate with every other

processor reliably and the processors are divided into 3h + 1 disjoint groups, each with

3d + 1 processors. and each processor can recognize to which group any processor

belongs. A processor is said to be correct if it follows the algorithm; otherwise it is

faulty. A group is said to be correct if it has no more than d faulty processors;

otherwise it is faulty.

To present our algorithm, we first introduce the following notation.

P = set of all processors,
g, = group i.

G = { g , . - .g3h+l}. set of all groups.

P(gi) = set of all processors in group gi.

The following procedures will be called by algorithm GrByd):

Major i ty (X1 : if over half of the elements in the vector X = (x l .x2, ' ~ 3 d + l) '

where eachlxj is a set, are equal to some xi. 1 6 j 6 3d+l .

return x :
I'

otherwise return Nil.

Byz(P(g),d,v) : returns v';

Byz(P(g),d,v) is a Byzantine Agreement protocol that can tolerate up to d faulty

processors. where P(g) is the set of participating processors, and v is the initial value

of a processor in P(g) in upper level round 1. Note that each participating processor

may have different v , and v is a message set in later upper level rounds in algorithm

GrByzo. v' is the agreed "value" that satisfies the Byzantine Agreement conditions.

The algorithm we chose [20] can be applied to an arbitrary value set, i.e., v is not

restricted to (0.1). In upper level round 1, we assume that v is either 0 or 1. Each

processor p executes the following algorithm. Let g be the group to which p belongs.

Algorithm GrBydP, G, h , dl;
begin

upper level round 1: /* Agree on group g's initial value */

Let v be the initial value of p;
v' := Byz(P(g), d , v); /* v' is used as group g's initial value */
send message set {g:vl} to all processors including itself;

upper level round R+1, where 1 6 R 6 h:

f o r each group gj E G; /* get the message set from gj by applying Majorityo */

begin

Let q 1 , q 2 . . qki+l be the 3d+l processors in group gj,
and M where 1 6 i 6 3d+l , be the set of messages

%'
that p received from processor q i in upper level round R;

X : = (M .M : * * . M);
q1 42 q3d+l

GrM := Majority(X);
g j

/* if g. is correct, GrM is the message set ,from g. */
- 1 g~ 1

end ; i

/* Agree with all processors in P(g) on
the received message set from each group */

Perform the following 3h+l computations in parallel using d+l rounds:
begin

AgreedGrMg := Byz(P(g), d , GrM 1;
I gI

AgreedGrM := ~ y z (P (~) , d , GrM);
g2 g2

AgreedGrM :=Byz(P(g) ,d ,GrM 1;
g3h+I g3h+1

end;
send message set {g:m I m E AgreedGrM ,1 6 j 6 3h+ 1)

gi
to all processors including itself;

upper level round h+2: /* make decision in this round */

for each group gj E G ;

begin

Let ql q2 ' . . . , q3d+l be the 3d+l processors in group g j ,

and M , where 1 6 i 6 3d+l, be the set of messages
4i

that p received from processor qi in upper level round h+l;

X := (M , M : - - , M .) ;
q1 q2 q3d+l

GrM := Majority(X):
gi

end;

J

v' := value obtained by applying the algorithm in [20]
on the message set M*;

end.

3.3. Proof of Correctness

Let T be the set of correct processors and T be the set of correct groups. The
g

~ o u ? 2, E T e n d the following lemma says that if all correct processors ir? rr correct g-
g

same set of messages in upper level round R, then every correct processor will

compute the same set of messages in upper level round R + 1 by applying Majorityo

to the set of messages received from all the processors in group gj in upper level

round R.

Lemma 1: Let gj be a correct group and suppose all correct processors of
gj send message set M to all processors in P in upper level round R. Then

each correct processor q E T obtains GrM = M by applying Majority(X1 in
gj

upper level round R + 1.

Proof. Since there are at least 2d + 1 correct processors and a t most d faulty

processors in g j , any correct processor receives at least 2d + 1 correct messages

carrying M.

The next lemma asserts that a correct group (more precisely, all the correct

processors in a correct group; gb in Lemma 2 below) will send the same message set

to every processor in upper level round R + 1 (part (a)). In addition, if i t receives a

set of messages from a correct group in upper level round R, it will relay them

faithfully (part (b)).

Lemma 2: Let y be a string of names of groups, and 1 be the number
of names in y. For p E T , define u (g :y) = v, if and only if there is a

P b
message m =gb:y:v E GrM , where GrM is the message set that p computes

g b gb
by applying Majority(X1 in upper level round 1 + 2 (see upper level round
R + l in the above algorithm). Let p, q be any two correct processors and let

g, E Tg.

(a) uP(gb:gc:y) =uq(ga:gC:y) for any gc E G.

Proof.

(a) Since gb is a correct group, all correct processors in it agree on the same

message set before sending i t (see the step Byd) in G r ~ y z) . By Lemma 1 , every

correct processor gets the same message set from gb by applying MajorityO, therefore

(b) Now we consider the case where gc E T Since gc is a correct group, all correct
g'

processors in gc agree on y:v before sending gc:y:v, and, by Lemma 1 , every processor

- receives gc:y:v in upper level round 1+2. There are at most d faulty processors in

gb, therefore, by applying By& in upper level round 1+2, every correct processor in

gb agrees on gc:y:v. Since the value sent by the correct processors in a correct group

(e.g., gb) is the agreed value prefixed by the group's name, each correct processor p

obtains the message m = gb:g,:y:v from gb. 0

Before proving Theorem 4, we state the following sufficient conditions [20] for

achieving a Byzantine Agreement from a message set M* obtained after t + 1 rounds of

message exchanges in the presence of t faults.

C1. Every correct processor relays all the messages it received from
previous rounds to every processor, and the relayed messages are prefixed by
its name. It also sends the messages to itself for the purpose of recording
its history.

C2. If a processor is correct, it relays the message without modifying it.

C3. Every correct processor sends its initial value to every processor in the
first round.

C4. The total number of processors is at least 3t + 1 and the total number
of faulty processors is at most t.

In applying these conditions to groups of processors. C2 cannot be used. since the

message out of a faulty group may not be uniquely defined. Since a message sent by

a faulty processor is arbitrary, condition C2 can be replaced by C2' below.

C2'. If a processor is correct, it relays the messages from correct processors
without modifying it.

Lemma 3: Let the number of faulty processors be not more than
M + h + d. Algorithm GrByz(P, G, h, d) satisfies C1. C2'. C3, and C4 if we
replace "processor" by "groupw in C1, C2'. C3, and C4.

Proof. Since there are at most M + h + d faulty processors, and a group is faulty

if it has more than d faulty processors, there are at most h faulty groups and C4 is

satisfied. Let the agreed value v' obtained by executing Byzo in upper level round 1

for each group be the group's initial value. We prove by induction on the number R

of upper level rounds that C1. C2', and C3 are also satisfied. If R = 1. every correct

processor in a correct group g agrees on the same value v' before sending (g:vl) to all

processors. By Lemma 2, C1. C2', and C3 are satisfied. Assume the lemma is true

for R f R', where R ' 2 1. We now prove the case where R = R ' + 1. By Lemma

2, which says that a correct group sends the same message set to all processors and

relays message sets from correct groups faithfully received in upper level round R'.

thus C l and C2' are satisfied for upper level round R. And finally. C3 is satisfied

by upper level round 1 of the algorithm.

Theorem 4: Let the number of processors be (3h + 1)(3d + 1). If the
number of faulty processors is at most hd + h + d , then algorithm GrBydP,
G , h, d) guarantees Byzantine Agreement.

Froof. Since id' is obtained after h t l rounds of message exchanges by groups, and

by Lemma 3, algorithm GrByz(P, G, h, d) satisfies C1. C2', C3, and C4, and every

correct processor decides on the same value by applying the algorithm of [20] on M*.

therefore condition B1 of the Byzantine Agreement conditions is satisfied. Assume

that every correct processor has the same initial value v . Then by executing Byzo in

upper level round 1, the initial value of every correct group is v. Therefore, the

decision obtained from MX in upper level round d + 2 is also v , and condition B2 of

the Byzantine Agreement conditions is also satisfied. 0

3.4. Complexity

Theorem 5: Let h , d be positive integers. The number of rounds of
message exchanges performed by GrBydP, G, h , d) is (h + 1)(d + 2).

Proof. In upper level round R+1. 1 < R < h, 3h+l Byz()s are invoked. Each

Byz(P(g), d, M) runs in d + 1 rounds [20]. Since two Byzantine Agreement algorithms

Byz(P(g), d , GrM) and BYZ(P(~), d , GrM), where i f j , have no. interactions, they
gi gi

can run in parallel. Thus, the 3h+l Byz()s in an upper level round can run in d+l

rounds. When R = 0, only one Byzo is invoked, which needs d + 1 rounds. Adding

the round of sending " ~ ~ r e e d G r M " , each upper level round has d+2 rounds. There is

no sending and receiving in upper level round h + 2. Therefore, the total number of

Theorem 6: Let the number of processors be n = (3h+1)(3d + 1) and
hd + h + d be the upper bound on the number of faulty processors in P.
Algorithm GrByz(P, G, h , d) reaches Byzantine Agreement using
0 (d(3d+l)d+2(3h+l)210g d + (3d+l!d+2h(3h+l)h+1~ng h + d2h(3h+l)h+210g h)
message bits.

Proof. Consider the message bits sent by a correct processor p in upper level round

R+1, 1 R d h. p participates in 3h+l Byzos, and in each Byd), p sends

(3d+l)d+1 (1)

messages. Let msg be a message sent in a Byd) in upper level round R+l. msg

consists of two parts: the route part and the value part. The route part is a

sequence of processor names via which the message has been routed. The value part

is the message set GrM . for some gj E G. The route part of msg has at most d+l
g i

processor names in it. Now consider how many bits are needed to encode GrM .
gi

Each valid message in GrM has its route part consisting of R group names and the
gi

first group name in the route part must be gj. Thus. there are 0((3h+llR-')

messages in GrM . The value part of a message in GrM is either 0 or 1. Thus
gi gi

GrM can be encoded in
gj

0 ((3h+l)R-1~ log h)) bits

and msg can be encoded in

x = 0 ((3h+llR-'R log h + (d+l)log d)) bits. (3)

Therefore. by (1). in each ByzO in upper level round R, p sends 0(x(3d+l)~+') bits.

Since there are 3h+l BYZ()S, p sends

0 (~ (3 d + l) ~ + l (3 h + l)) bits.

Let M = {g :mlm E AgreedGrM . I d j d 3h+ 1) be the message set that p sends in the
g~

last round of upper level round R+1. The route part of a message in M consists of

R+l group names. The value part is either 0 or 1. M can be encoded in

y = 8 ((? ~ + I) ~ R log FL) bits. Since p sends M to ail processors, p sends

0 ((3h+l)(3d+l)y) bits in the round of sending M. In upper level round R+1,

including (4) p thus sends 0 (~ (3 d + l) ~ + l (3 h + l) + (3h+1)(3d+l)y)

= 0 ((3 h + 1) ~ (3 d + l) ~ + ' ~ log h + (d+1)(3d+l)d+1(3h+l)log d + (3d+1)(3h+l)~+' R log h)

bits.

Summing over all upper level rounds, the total number of message bits sent by p is

Since there are (3h+1)(3d+l) processors, the total number of message bits exchanged

by GrByz(P, G, h , d) is of

We can eliminate one round out of a total of d+2 rounds of message exchanges in

each upper level round, with a small increase in message bits. Thus GrByd) can

terminate in an optimal number of rounds. We prove this in the next theorem.

Theorem 7: Let the number of processors be n = (3h+1)(3d+l) and
M + h + d be the upper bound on the number of faulty processors.
Byzantine Agreement can be reached in hd + h + d + 1 rounds using
0 (d(3d+l)d+2(3h+1)310g d + (3d+l)d+2h(3h+l)h+210g h + d2h(3h+l)h+310g h)
message bits.

Proof. Each upper level round in algorithm GrByz(P, G, h , d) has d+2 rounds.

d+l rounds for the procedures Byzo to agree on the groups' messages received in a

previous upper level round, (or the initial value in upper level round I) , and an

extra round to send the agreed message set to all processors. We now show that this

extra round can be eliminated. The agreed value (AgreedGrM) agreed by a processor

in procedure Byzo is based on the messages it received in round d+l of the procedure

Byz(). If all correct processors in a correct group, say group g, send the message set

in round d + l of the procedure Byzo to all processors in P, instead of to only the

processors within group g, other correct processors (outside group g) can agree on the

same value (~ ~ r e e d ~ r M) as the correct processors do in group g. If group g is

faulty, it does not matter whether the extra round is in the algorithm or not, since

faulty groups can do anything. Since we have h+l upper level rounds engaged in

message exchanges, after the elimination of an extra round in each upper level round.

the total number of rounds is (h+l)(d+l) = hd + h + d + 1.

We now consider the extra message bits introduced in eliminating the extra round.

During the last round of Byd), instead of sending the message set to 3d+l processors

in the group to which it belongs, p now sends the message set to all (3h + 1)(3d + 1)

processors. Therefore, we increase the total number of message bits at most by a

factor of 3h+l. The total number of message bits is therefore of

0 (d(3d+l)d+2(3h+l)310g d + (3d+l)d+2h(3h+l)h+210g h + d2h(3h+l)h+3 log h). 0

The message complexity of algorithm GrByzO is a function of h and d. Let us

consider the values of h and d such that the message bits used by algorithm GrByzO

is minimized. Given t , the number of faulty processors we want to tolerate, in order

to get GrByzO to work correctly, h and d must satisfy the inequality:

t 6 h ~ d + h + d . (5)

For simplicity, let t =c2+ 2c. where c is an integer greater than 1. We claim that

when h = d = c the message bits used by GrByd) is very close to the minimum when

compared to other values of h 'and d under constraint (5) above.

To prove this claim, let 0 (m(h,d)) be the message complexity of GrByd), where

m o is a function of h and d. For simplicity we use an approximate formula

m(h.d) = (3d+l)d+2h(3h+l)h+2 (see Theorem 7). Since h and d must satisfy (51, let

' d =c-q, where q is a real number less than c. Since m() increases as h and d

increase, to get smaller message complexity, we want to get as smaller h as possible

under constraint (5) . therefore we can express h as c +q(c+l) / (c -q+l) and m(h.d) as

a function of q. We want to show that the message complexity increases as q

d m(q)
increases. This means that the first derivative - > 0 . This can be shown as

d q

follows:

(c+1123(h+2>
for 1 < q < c , because the term increases faster than the term

(c-~+1)~(3h+l)
3(d+2) 3(c-q+2) -- - as q increases in the interval 0 < q < c and when q=O the two terms 3d+l 3(c-q)+l

are equal.

The case for d =c+q can be treated similarly.

When h = d , we have the following corollary.

Corollary 7.1: Let the number of processors be n = (3d+1I2 and d2+ 2d
be the upper bound on the number of faulty processors. Byzantine
Agreement can be reached in d2+ 2d + 1 rounds using
0 (d (3d+l)d+610g d + d(3d+l)2d+410g d) message bits.

3.5. Concluding Remarks

We assume that n = (3h+1) (3d+l) processors are divided into (3 h + l) groups. This

can easily be arranged if all processor names are unique.

In a large network that spans a large geographical area, the message delay time is

longer and the communications cost is higher for a pair of widely separated nodes

than for a pair of close nodes. Another advantage of our algorithm is that by

grouping processors that are close to each other, two distant nodes that belong to

different groups need to communicate only once in an upper level round of our

algorithm. In contrast to other Agreement algorithms in which every pair of nodes

must communicate with each other in each of the t+l rounds, in our algorithm, with

h = d two processors in two different groups need only Jt+i rounds of message

exchanges.

Chapter 4

Network Failures

4.1. Introduction

In this chapter, we present a protocol for two nodes, u and v, of a network to

communicate reliably in the presence of up to t processor and 1 link Byzantine

failures. The protocol works under the condition that the fixed-pair connectivity

function f (for a definition of f , please see the next chapter) satisfies either (1)

f(G.u.v.2t) 2 21 + 1 or (2) f(G.u.v.a) 3 21 + 1 and f(G,u.v.a+l) is undefined, where G

is the underlying graph of the network and a is any positive integer. The second

case deals wiih ihe situation in which there are 2i+i direct i i n ~ s between u and v.

In that situation, if only up to 1 links are faulty, the correct message can be obtained

by a simple majority applied on the messages received from the 21+l direct links.

We will also prove that the above condition is a necessary condition for u and v to

communicate reliably iii the presence of up to t processor and 1 link Byzantine

failures.

Most previous research on Byzantine Agreement assumed that link failure is a

. special case of processor failure, and if link failure occurs, one of the two end nodes

of the faulty link is regarded as faulty. We separate processor and link failures

here. If a Byzantine Agreement algorithm can tolerate up to t processor failures

when no link failure occurs, then by using our protocol for communication. Byzantine

Agreement can be achieved in the presence of up to t processor and I link Byzantine

failures, provided the network satisfies the sufficient condition for reliable

communication. If two correct processors cannot communicate reliably, no agreement

can be achieved. By combining the necessary and sufficient condition for the reaching

of Byzantine Agreement in the presence of up to t processor failures without link

failure and the necessary and sufficient condition for reliable communication in the

presence of up to t processor and I link failures, a necessary and sufficient condition

for Byzantine Agreement under t processor and 1 link failures is obtained.

4.2. Protocol

If a network is not completely connected and the vertex connectivity of the

network is at least 2t + 1, a receiver can get a correct message from a correct sender.

even though there are up to t faulty processors in the neiwork, by executing the

protocol described in [7] (from now on we will refer to it as the SR protocol). The

function of the SR protocol is to achieve reliable communication among correct

processors. I t can be used in Byzantine Agreement protocols for communication when

the network is not completely connected.

The SR protocol works under the following assumptions:

A l . The processors are arranged in a network with the vertex
connectivity of the network at least 2t + 1. Each communication link
is bidirectional, i.e., message can be sent in both direction.

A2. Every processor knows the names of all the members of the network
and all names are unique.

A3. Processors communicate only by sending messages along links.

A4. Every processor can identify the neighbor from which it receives each
message.

A message includes the route through which it was delivered.

A correct processor relays a message only after it appends to the
message the name of the processor from which it received the
message, and a receiver upon receiving a message appends to the
message the name of the last relay.

A correct processor relays messages without either altering them or
eavesdropping on their values.

There exists an a priori upper bound on the delay in relaying a
message by a correct processor.

There exists an upper bound, t , on the number of faulty processors
in the system.

We prove that if A i and A9 are changed to Ai ' and A9' below, respectively, two

correct processors can communicate reliably in the presence of t processors and I link

Byzantine failures.

A l ' . The fixed-pair connectivity function f for every two nodes u and v
which participate in the protocol satisfies either (1)
f(G.u.v.2t) > 21+1 or (2) f(G.u,v.a) > 21+1 and f(G,u,v,a+l) is
undefined, where G is the underlying graph of the network and a is
any arbitrary positive integer.

A9'. There exist upper bounds, t , on the number of faulty processors and
I, on the number of faulty links in the system.

The SR protocol, modified as follows, will be called the MSR protocol.

The sending processor sends the message to all its neighbors, and every relay

processor broadcasts the message to all its neighbors, except the one from which the

message was received. in accordance with A6.

The receiving processor executes the following algorithm T (a constant, which is a

maximum message delay) units of time after the sender sent the message have

elapsed.

Algorithm: receive(~essagesReceived, value);

If there exists a set of nodes N ', IN'I = t , and a set of links E'. LE'I = 1.
such that all messages in MessagesReceived that did not pass through N ' U E'
contain the same value v , then Value + v:

else Value +- 0.

Lemma 1: Under assumptions Al' . A2-A8, and A9'. a receiver can get
the correct value sent from a correct sender by executing procedure receive().

Proof. A8 implies that all messages that pass through a route which has no faulty

processors or links will arrive within some fixed time interval T from the time the

sender sent the message.

A6 implies that if a message was routed through a route that has at least one

faulty processor or faulty link, the name of at least one faulty processor or faulty

link in the route will appear in the message.

- Under the assumptions, the existence of N' and E' such that the messages that did

not pass through N' and E' contain the correct value sent from the correct sender is

,clear. Let N ' be the set of faulty nodes and E' be the set of faulty links. Then

33

all messages that did not pass through N ' U E' are correct messages sent from the

correct sender.

Suppose v is the value sent by a correct sender and a receiver gets v' # v . But

this could only happen if all the routes for the messages which did not pass through

N ' U E' contained at least one faulty processor or link. Let N" be the set of faulty

processors and Z? be the set of faulty links. Then IN"I < t and IE"I < 1 by A9'.

Therefore, every message must go through N ' U E' U N" U E", and N ' U E' U N" U E"

separates the sender and the receiver. However, IN'I + IN"I < 2t and E'I + LE"I < 21
contradict Al'. O

By Lemma 1, Byzantine Agreement can be reached in the presence of up to t

processor and 1 link failures if A1' is satisfied. We now show that if A l ' is not

satisfied, then two correct processors cannot communicate reliably under t processor

and I link failures. This also implies that no Byzantine Agreement can be achieved.

Lemma 2: Let u, v be two correct processors (nodes) of a network.
Suppose that the fixed-pair connectivity function f does not satisfy (1)
f(G.u.v.2t) 2 2L + 1, and there does not exist a positive integer a such that
(2) f(G,u,v,a) 3 2L+1 and f(G,u,v.a+l) is undefined, where G is the
underlying graph o\f the network. Then u and v cannot communicate
reliably in the presence of t processor and I link Byzantine failures.

Proof. If neither (1) nor (2) is satisfied, then there exists a cut set of 2t nodes

and 21 links the removal of which separates u and v. Let the 2t nodes of the cut

set be {p l .p2 , .Pzt) and the 21 links in the cut set be {e lse2 . ,e2). Partition

the cut set into two sets A and B such that A = {pl .p2. .pt} U {e lse2 , - .el) and

B = (P ~ + ~ * P , + ~ . ' ' ' w ~ 2 t } U {el+l.el+29 ,ezl). Suppose node u sends the value x to v .

Figure 4-1: An Example of Unreliable Communication

Since there are t faulty nodes and I faulty lifiks in the system. the elemems in A

could all be faulty. In relaying x to v , all the elements in A change x to x'. Since

A and B are symmetric, and both could be faulty, v cannot identify which message

is correct.

Theorem 3: ~ ~ z a n t i n e Agreement is achievable in a synchronous system in
the presence of up to t processor and 1 link Byzantine failures if and only if
n 2 3t + 1 and the fixed-pair connectivity function f for every pair of
participating nodes u and v satisfies either (1) f(G.u.v.2t) 3 21 + 1 or (2)
f(G.u.v,a) 3 21 + 1 and f(G.u.v.a+l) is undefined.

Proof. This theorem follows from the fact that Byzantine Agreement can be

reached if and only if n 3 3t + 1 [20] in the absence of link failure and from the

'above two lemmas.

Chapter 5

The Connectivity Function

5.1. Introduction

One reliability measure of a network is its connectedness: That is, the number of

nodes, or links, or both, which must be removed from a network in disconnecting it.

The connectivity function represents, in addition to the removal of a nodes from a

network N, the number of links which must be removed from N to make N

disconnected. When a = 0, its value is the edge connectivity of N , and when a is the

vertex connectivity of N, its value is 0; thus, the connectivity function is a

generalization of the edge and vertex connectivities.

This chapter discusses the connectivity function and is organized as follows. In

Section 2, we introduce the graph-theoretic terminology and definitions needed in later

sections. In Section 3, we describe some properties of the connectivity function.

Section 4 deals with the problem of constructing graphs with given connectivity

functions. Although the vertex and edge connectivities can be determined in

polynomial time, it is proved in Section 5 that the problem of computing the fixed-

pair connectivity function is NP-complete for general graphs; in addition, it is proved

that the problem remains NP-complete for bipartite, chordal, and split graphs. In the

'weighted case, the problem remains NP-complete even for complete graphs. An

approximation problem for the connectivity function is also proved NP-hard. In

Section 6, we present polynomial time algorithms for determining the fixed-pair

connectivity function of certain graphs, including vertex-connectivity-bounded graphs.

certain "regularly structured" graphs, such as complete graphs and n - d e s , and series-

parallel graphs. In Section 7, we consider a path problem that is reiated to the

connectivity function.

5.2. Terminology and Definitions

A graph G = (V.E) consists of a finite non-empty vertex set V=V(G) and an edge

multi-set E=E(G). An edge of G is an unordered pair {u,v} of vertices such that

u,v E V and u f v . If e = {u.v} E E(G), we say, variously, that e joins u and v , u and

v are adjacent, e is incident on u and v , and u and v are incident with e. The degree

of a vertex v is the number of edges incident on v . Multiple edges are two or more

edges that j o i ~ the S ~ I P p81r ~f vertices. A graph is a mdti&rc#z if mu!tip!e edges

are allowed; otherwise it is simple.

Two simple graphs G = (V . E) and G'= (V ' . E 1) are isomorphic i f there is a one-to-

one mapping f from V onto V ' that preserves adjacency, i.e.. {u,v\ E E if and only

if {f(u),f(v)) E E'. A subdivision of an edge {u,v} of a graph G is an operation that

replaces {u,v) with a new vertex w and two edges. {u,w

homeomorphic if both can be obtained from the same

subdivisions.

and

graph

{w , v) . Two graphs are

by sequences of edge

Let G = (V. E) be a simple graph. A path p in G is a sequence of vertices

v1.v2. - .vk such that { v ~ . v ~ + ~) E E for i E { 1. .k-11. Vertices v l and vk are

called the ends of the path p. If u and v are the ends of a path, we call the path a

(u,v)-path. A path is simple if all its vertices are distinct. Two (u,v)-paths are

vertex disjoint if the two paths have no vertex in common except for u and v, and

are edge disjoint if the two paths have no edge in common. A path v1,v2. - .vk is

called a cycle if v1 = vk, k 3 2, and it has no repeated edges. A cycle is simple if

the vertices v1,v2. , v ~ - ~ are distinct. The length of a path or a cycle p is the

number of edges in p, i.e.. length(p) = k-1. We sometimes refer to the vertex set

V(p) = {vili E (1.2, k)) and the edge set E(p) = { {V,.V,,~ }ti E (1. .k-1)) of a path

or a cycle p.

A vertex v is reachble from another vertex u if there is a (u,v)-path. A graph G

is connected if every vertex is reachable from every other vertex in G, and is

disconnected if G has two vertices u and v such that v is not reachable from u. A

graph G'=(V1.E') is a subgraph of a graph G = (V , E) if V1CVar?dE'GE. A

component is a maximally connected subgraph. If G'= (V'. E') is a maximal subgraph

of G with vertex set V', i-e., E ' = {{u.v}lu,v E V',{u.v] E E); we say G' is a subgraph of

G induced by V'. For v E V.VICV and E'CE, we use G - v and G -V ' to denote

subgraphs of G induced by V - {v) and V- V', respectively, and G -E1denotes the

subgraph (V. E-E').

A set V' of vertices is a vertex cut set of a connected graph G = (V. E) if G - V' has

more than one component: in this case the removal of the vertex set V' is said to

disconnect G. The edge cut set E' of edges and the mixed cut set (A,B), where

A C.V or B CE, are defined similarly.

38

Let s and t be two distinct vertices of a graph G = (V.E). A vertex set V ' , where

s.t B V ' , is an (s, t) vertex cut set if the removal of V ' from G separates s and t . The

(s, t) edge cut set and the (s, t) mixed cut set (A,B), where s.t 6 A.A CV. and BCE, are

defined similarly.

The fixed-pair vertex connectivity for two nonadjacent vertices s and t of G, denoted

by u(G,s,t), is the smallest number of vertices, not including s and t , whose removal

separates s and t . The vertex connectivity of G, denoted by u(G), is the smallest

number of vertices whose removal disconnects G or results in a trivial graph (a single

vertex); clearly it is equal to min{lc(G.s.t)ls,t E V,{s,t} @El if G f Kn.

The fixed-pair edge connectivity between two vertices s and t of G, denoted by

A(G,s,t), is the minimum number. of edges whose removal separates s and t . The

edge connectivity of G, denoted by A(G), is the minimum number of edges whose

removal disconnects G; it is equal to min(X(G.s.t)ls,t E V.s Z t) .

The fixed-pair connectivity function for two vertices s and t of G, denoted by

f(G.s.t,a), equals b if there exists some set of a vertices and b edges whose removal

separates s and t and there is no set of a - 1 vertices and b edges or of a vertices

and b - 1 edges with this property. Similarly, we define the global connectivity

function F(G,a): F(G.a) = b if there exists some set of a vertices and b edges whose

removal disconnects G and there is no set of a - 1 vertices and b edges or of a

vertices and b - 1 edges with this property.

Since F(G.0) = A(G) and F(G.u(G)) = 0 by definition, the connectivity function

generalizes the concepts of edge and vertex connectivities.

3 9

Throughout this thesis we discuss only the connectivity functions of connected

graphs. For convenience, from here on, until and unless otherwise stated, a graph, a

path, and a cycle means a simple graph, a simple path, and a simple cycle,

respectively.

5.3. Properties of Connectivity Function

In this section, we consider a graph G = (V , E) containing two distinguished vertices

s and t .

Lemma 1: Let G V = G - V , a be a positive integer, and b be a nonnegative

integer. If f (~ , . s . t , a) >/ b for all v E V-{s . t } such that v f s.t then

f(G,s,t.a) > b.

Proof. It is clear that f(G.s.t.a) 2 b. Suppose f(G.s. ta) = b and let (A,B) with

IAl=a and IBI=b be a mixed cut-set which separates s and t in G . Then for some

v E A. (A-(v).B) also separates s and t of Gv, but IA-(v}l=a-1 and IBI=b imply that

f(Gv.s.t.a-1) = b, contradicting the assumption. 0

Let G = (V, E) be a multigraph. We define a graph operation edge contraction,

denoted by eclG,u.v), where u and v are in G and are adjacent, as follows: ec(G.u,v)

identifies u and v with all edges and adjacency preserved except for the edges between

u and v, which are removed.

Note that the edge contraction operation is different from the elementary contraction

operation which also removes the resulting duplicate edges, if any. The following

lemma concerns the connectivity function of a graph after an edge contraction

operation.

Lemma 2: Let v be a vertex adjacent to s such that v f t , and let
G'=ec(G.s,v). If there exists a mixed cut-set (A ,B) that separates s and t in
G', then (A,B) also separates s and t in G.

Proof. If the lemma were not true, then after deleting (A,B) from G, there would

be a path P from s to t in G - A - B. Whether v is on P or not. P or ec(P.s.v) is

also a path from s to t in G-A-B, a contradiction.

The above lemma implies that if f(G'.s.t,a) = b' and f(G,s.t,a) = b, then b' 3 b.

Theorem 3: f(G.s.t.a) 3 b if and only if condition 1 below holds and there
exists a vertex v adjacent to s , where v f t , satisfying conditions 2 and 3.

2 . f(G'.s.t.a) 3 b, where G'=ec(G.s.v), or there is no mixed cut-set of
a-1 vertices and b edges or of a vertices and b-1 edges that separates
s and t of G'.

3. Let X* be the set of all nonempty subsets of E', where E' is the set

of all edges that are incident on both s and t . For each X E x*,
f(Gn,s.t,a) 3 b - IXI, where G" = G - X .

Proof. The necessity is implied by a definition of connectivity function and Lemma

2 . We now prove, the sufficiency. If the theorem were not true, then there would

exist a mixed cut set (A ,B) , such that IAl = a and IBI < b - 1, without violating the

three conditions. By condition 3, no edge in B is incident to both s and v. There

are two cases to consider: either v is in A or not. If v is in A, then (A-v.B)

separates s and t in G,, contradicting condition 1. If v is not in A , we claim that

(A,B) would also separate s and t in G', a contradiction to condition 2. Since v is

adjacent to s and edge { s , v) is not in B, so (A,B) separates s and v from t in G, and

therefore it separates s from t in G'. 0

5.4. Construction of Graphs with Given Connectivity

Functions

Let a be a positive integer. It is shown in [3] that every decreasing function from

(0.1, . . . ,a) into the non-negative integers such that F(a) = 0 is the connectivity

function for some graph, but the construction of such a graph requires a large

number of vertices.

In the case of a fixed number n of vertices. F(j)=l means that every vertex must

G+l) G+l)
be of degree at least j+l, and so the number of edges rn > [-f7. If m = [-$7 for

some positive integer j, then a graph G = (V . E) with K(G) = j + 1 = 12m/nl. IVI = n, and

IEl = m can be constructed [4] and this implies that F(j) > 1 for G'.

Let S be a sequence of ordered pairs (i .F(i)) where i and F f i) are non-negative

integers such that F f i) is a strictly decreasing function of i. Take a pair (i1,F(i')! in

S such that i'+F(il) is maximum, and let a = i n + F(il). Construct a graph G = (V. E)

with its global connectivity function F' satisfying F'(G,il) = F(G.2). Since

K(G'-V') 2 a - IV'I for any subset V ' C V , therefore, we have F Y j) > a - j. On the

other hand, by the definition of the vertex connectivity, j+ F(j) 6 a holds. It

follows that F Y j) 2 F (j) for each pair (j .F(j)) in S.

As shown in the next section, the evaluation of a fixed-pair connectivity function is.

in general. NP-hard. Therefore, given an arbitrary graph G containing vertices s, t

and a pair (i.j) of positive integers, the problem of constructing a graph G' from G

such that f(G'.s.t,i)= j by adding the minimum number of edges to G is also

NP-hard.

Here we show that computing a fixed-pair connectivity function is, in general,

NP-hard. We pose this problem as a decision problem as follows:

Fixed-pair Connectivity Function, FPC.

INSTANCE: Graph G = (V.E), s,t E V, an integer a. 0 < a < IVI-2, and positive

integer b.

QUESTION: Does there exist a subset V'CV with s.t BV1andlV'l=a, such that

X(G - C",s,t) < b, i.e.. the edge connectivity between s and t in G - V' is less than or

equal to b?

We first prove the NP-completeness of a similar problem, MMF, viz.. finding the

minimum maximum flow over all subnetworks induced by deleting a nodes from a

network.

Min-Max Flow of Subnetworks, MMF.

INSTANCE: Network W with node set N and link set L, s.t E N , and positive

integers a and b.

QUESTION: Does there exist a set of nodes N ' C N with IN 'I = a, and s.t B N ' such

that, when the nodes in N ' are removed from W, the flow from s to t is at most b?

Theorem 4: MMF is NP-complete.

Proof. Since a maximum flow of a network can be found in polynomial time for

each choice of N' , this problem is in NP.

To complete the proof, we now show that the "minimum cut into equal-sized

subsets" problem, which is known to be NP-complete [15], is polynomially reducible

to MMF.

Minimum Cut into Equal-Sized Subsets, MCE.

INSTANCE: Graph G =(V.E), two distinguished vertices s.t E V, and a positive

integer M.

QUESTION: Is there a partition V = PI U P2, Pl n P2=0, such that IP11=IP21.

s E P1.t E P2, and I{{u.v} E E l u E P l , v E P2}l < M?

Theorem 5: MCE a MMF.

Proof. Let G = (V, E) and M be an instance of MCE, where V={vl, ~ ~ - ~ . s . t } , and

without loss of generality let n = IVI be even.

Transformation:

Network W = (N . L)

N = {s'. t') U V U C,
where C = {cl ,..., c,-~}.

L = u { {s'.sl. {t.t'JJ
u {{s'.ciJ 1 0 < i < n-11

U {{ci.vi} 10 < i < n-l}
u {{vi.tl} I 0 < i < n-11

u {{ci.tn} I 0 < i < n-1).

with capacities of the links as follows:

cap(e) = 1 for e E E,
cap(e) = n2 + 4n for e = {s i ,c i) .

cap(e> = 2n for e = {ci.vi} or {s .s l} .

cap(e) = n for e = {vi,tt} or {tl . t) .

cap(e) = n2 for e = {ci.ti}.

Figure 5-1: Construction of W=fN,L)

Since we add only n nodes in constructing W from graph G , and the capacity for

each link is of 0 (n 2) , the transformation is polynomial.

Suppose in a given instance of MCE. M. M' 6 M, the vertex set V is partitioned

- into two equal-sized disjoint sets V I and V2, where V1 = {s ,v l . - ,vh) h =:- 1 . and
2

V2 = V - V 1 . Define a cut is the set of edges that has one end in V1 and the other

end in V2. The size of a cut is the number of edges in the cut. We can then

construct a flow from s' to- t' of a t most b units after deleting a = 2 - 1 nodes in W.
2

Let N r = { c n , 2 , . . . ~ n-2 1 , and P l = C - N I U V I U { s ') and P 2 = V 2 U { t ') be a partition

of the vertices of W-N'.

After removing N ' from W , the edge cut separating VJ from V2 has size M'.

Similarly the edge cuts which separate V I from t', and C-N' from t' have sizes

(n/2-1)n and (n/2-1 In2, respectively.

Therefore, the size of any edge cut separating PI from P2 and so the flow from s'

to t' is at most M' + (2-l)n + (2-l)n2 < b by the max-flow-min-cut-theorem.
2 2

Suppose there is a min-max flow of b' units from s' to t' in W - N ' , where b' < b

We claim that N'CC. This is obvious because deleting any ci will delete at least

n2 units o i flow, whiie deleting any other node not in C will renave at most n

units of flow.

Let A"= i ~ ~ , ~ , ~ , "p~(n-2)) , where p is a permutation on {n/2,n/2+1, . . ,n-2).

From the construction of W, if the flow is maximum, the links (ci.tl). (vi.tl).

ci B N ' , can all have flow equal to their capacities

(sl.ci) are sufficiently high.

But the total flow from ci 6?N' to t'. ci 6?N1, is

since the capacities of the edges

then ("l)n2 and the total flow
2

from vi to t', ci 6? N' . is ("l)n2. Therefore, the remaining M' units of flow.
2

M' = b' - (n/2-1)n - (n/2-l)n2 6 M. must come from V2 = {vi 1 ci E N '1. Since V2 is

adjacent only to V, = V - V2 and t', and again because of the sufficiently large

capacities of (s8,ci) and (c i ,v i) , the flows in the edges (v . , ~ .) , where ci B N ' and
1 I

cj E N' , are equal to their capacities. Therefore, the edges between V I and V2 are

part of a cut in W - N ' and are also a cut of size at most M in the instance of

MCE.

Intuitively, deleting ci from W implies that we put vertex v i of graph G (an

instance of MCE) into P2. For simplicity the links in the construction of W are

undirected. Since an undirected link {u.v] is equivalent to two directed links (u,v)

and (v ,u) in network flow problems, our results hold also for the directed case.

Theorem 6: The FPC problem is NP-complete.

Proof. To show that the problem is in NP, we nondeterministically delete a

vertices and compare the edge connectivity of the resulting graph with b. Since the

edge connectivity can be found in polynomial time, this nondeterministic algorithm has

polynomial time complexity.

We now prove that it is NP-hard by transforming MMF to the fixed-pair

connectivity function problem.

Transformation:

We transform the network W=(N,L) of an instance of MMF into a graph G = (V.E) .

where V = N. For each link e8= {u.v} in L with cap(e8) = c , introduce c edges between

u and v in G. To avoid multiple edges, insert a vertex in the middle of each edge

4 7

thus introduced. Since the instances of MMF, which were derived from MCE, have

edge capacity of 0 (n2), therefore the transformation is polynomial.

Since both the edge connectivity and the maximum flow are equal to the minimum

cut, the NP-hardness of the FPC follows.

5.5.1. Bipartite Graphs

A graph G = (V , E) is bipartite if its vertex set V can be partitioned into two sets U

and W such that every edge of G has one end in U and the other end in W, or.

equivalently, G is bipartite if every cycle of G has even length [171.

We can form a bipartite graph from a graph G by doubling the length of every

cycle of G, for example, by replacing each edge of G with a path of length two.

Intuitively, such expansion will preserve the value of the fixed-pair vertex

connectivity, the fixed-pair edge connectivity, and the fixed-pair connectivity function

as well. We formalize these ideas in the proof of the next theorem.

Theorem 7: The fixed-pair connectivity function problem, FPC, is
NP-complete for bipartite graphs.

Proof. It is easy to show that FPC belongs to NP: Nondeterministically remove a

vertices and determine the edge connectivity of the resulting graph. We now show

that any instance of FPC for a general graph can be transformed into an instance of

. FPC for a bipartite graph. Let G = (V . 6). two distinguished vertices s and t, and

two nonnegative integers a and b be an instance of FPC. We transform G into a

bipartite graph G' = (V ' , E') such that f(G,s.t,a) = f(G'.s.t.a). Since an edge joining s

and t must be in any (s,t) mixed cut set, we can assume without lost of generality

that no edge is incident with both s and t. More formally, define G' as follows:

G' = (V'. E').
v l = v u v.
V' = {wele E El,
E' = {{u.we}.{we.v}le = {u.vl E El.

Clearly, the transformation is polynomial. Each e E E' has one end in V and the

other end in V", hence G' is bipartite. It is also easy to see that

P = ~ . v (l) . v (2) : . * , v (k) . t is a path of G if and only if

= ~ ~ ~ { s , v ~ l ~ } ~ ~ ~ ~ ~ ~ ~ { v ~ l ~ , v ~ 2 ~ } ~ ~ ~ (~) , ~ . t is a path of G'. We call P' the expanded

version of P. Let (A,B) be an (s,t) mixed cut set of G and B be the set of edges

formed from B by replacing each edge e = {u.v} E B with either {u.we) or {we.vf, but

not both. We thus have IBI= IBI. If an (s,t)-path P of G contains some element of

A or B. then the expanded version of P in G' contains some element of A or B.

Therefore, (A.B) is an (s,t) mixed cut set of G' with IBl=IBI. It follows that

f(G.s.t,a) 2 f(G.s.t.a). To prove f(G,s.t,a) < f(G'.s.t.a), let (Af.B) be an (s,t) mixed

cut set of G', and P be an (s,t)-path of G such that P' is the expanded version of P.

If P' contains some u E V or w(U,v) E V ' , then P must also contain u or both u and v ,

respectively. So let A be a vertex set formed from A' by replacing each vertex

b(U,vJ E V ' f7 A' with u if u Z sJ, and B be an edge set formed from B by replacing

each edge {w,.v} E E ' with e. Then. (A,B) is clearly an (s,t) mixed cut set of G with

IAl < IA'I and IBI < IBI, and this completes the proof.

5.5.2. Chordal and Split Graphs

A graph is chordal if for every cycle of length greater than three there is a chord.

where a chord is an edge joining two non-consecutive vertices of the cycle. A graph

is a split graph if both it and its complement are chordal. Split graphs form a

proper subclass of chordal graphs.

We show here that FPC is NP-complete for the split graphs.

Theorem 8: The f ixed-pair connectivity function problem. FPC, is
NP-complete for 'split graphs which are also edge graphs.

Proof. It is easy to show that FPC belongs to . NP. Let G = (V. E), two

distinguished vertices s and t , and two nonnegative integers a and b be an instance of

FPC. We transform G = (V. E) into a split graph G'= (V ' . E ') which is also an edge

graph such that f(G.s,t,a) d b if and only if f(G1.s.t,a) d n3 b + n2, where n = IVI.

We triangulate G by adding n3 - 1 copies of a path of length two to each adjacent

pair of vertices of G and an edge to each non-adjacent pair of distinct vertices of G.

Intuitively, the n3- 1 copies of a path added to each adjacent pair of vertices of G

increase the capacity of an edge of G so much that the subsequently added edge to

each non-adjacent pair of G with capacity one is negligible with respect to the amount

of flow it can flow. More formally G' is defined as ' follows:

G' = (V'. E ')
v l = v u v ,
V" = { w , ~ I ~ E E. 1 d i < n3J.

E t = E U E , UE,.
El = {{u.v} l u.v E V, u f v. {u.v) 6? El

It is clear that the transformation is polynomial. First we show f(G.s.t.a) d b if

and only if f(G'.s.t.a) < n3b + n2. It is easy to see that s , v l , - - ,vk.t is a path of

G if and only if PI={ s . v l , * - . .vk.t, S . W ~ ~ , ~ ~) , ~ , V ~ . ' . .
~ , w ~ ~ , ~ ~) , ~ . v 1 , p v k v w { ~ k , t) , 2 s t 9 . . . S'W{s,vl~,n 3 -1 , v l , . is a set of

paths of G'-I?. Since lrl < n2 and f(G'-I?,s,t.a) = n3 f (~ , s . t , a) , we get

f(G'.s.t.a) < n3b + n2. To prove f(G.s,t.a) 6 b, let (A ,B) be a minimal (s , t) mixed

cut set of G' with MI= a and IBI d n3b + n2. Similar to the NP-completeness proof

for bipartite graph, by removing BnE"' from the mixed cut set (A,B), where

IBnI?I < n2, we get f(G.s.t,a) d b.

Finally, we prove by contradiction that G' is a split graph. Let C be a chordless

cycle of G' with length greater than three. In G', the vertex set V forms a clique

and V" is an independent set. Therefore. C has at most two vertices from V and has

at least two vertices from V". Let v E v n V (C) and a.b E V(C) be adjacent to v .

Since v E V", its adjacent vertices are all in V; but a,b E V implies that there is a

chord {a,b} in C, a contradiction, hence G' is chordal. Similarly, it is easy to see that

the complement of G'. c', with L' being an independent sel and \'" being a clique, is

also chordal. It follows that G' is split. 0

5.5.3. Weighted version

In the definition of the connectivity function, we assumed the edges of a graph had

equal weight. In some instances, for example, the problem of separating two nodes of

a network with minimum cost, it is useful to allow edges to have different weights.

This consideration gives rise to the weighted version of the connectivity function.

We now prove that the weighted version is NP-complete even for complete graphs.

Let 6 = (V ,E) be a graph and w be a mapping from E into N. The weighted fixed-

pair connectivity function and the corresponding decision problem are defined as

follows:

Given a graph 6 = (V , E) with two distinguished vertices s.t E V and edge
weight w: E + N , the weighted fixed-pair connectivity function wf(G,s f ,a)
equals b if there exists an (s , t) mixed cut set (V ' Z ') with IVII=a and

ze E E , w (e) = b and there is no (s , t) mixed cut set (VJ?)' with IVI=a-1

and Ce w(e) = b. or with IV'I = a and ze E" w(e) < b.

Weighted Fixed-Pair Connectivity Function Problem, WFPC.

INSTANCE: Graph G = (V, E) with two distinguished vertices s and t , a function

w: E -+ N, and two nonnegative integers a and b.

QUESTION: Does there exist a subset V ' C V with s.t V' and IV ' I = a, such that

there is an (s , t) edge cut set E' in G - V ' with Ce -, w(e) < b?

Theorem 9: The weighted fixed-pair connectivity function problem,
WFPC, is NP-complete for complete graphs.

Proof. Based on the same argument as in the NP-completeness proof of FPC, we

have W F K E NP. Let G = (V.E) , two distinguished vertices s and t , and two

nonnegative integers a and b be an instance of FPC. We transform G into a weighted

complete graph 6' = (V ' .E1) such that f(G,s.t.a) 6 b if and only if

wf(G',s.t.a) < n3 b + n2, where n = IM. Define G' as follows:

G' = (V' , E').
V ' = v,

n3 if e E E.
W (e) = { 1 otherwise.

Clearly, the transformation is polynomial. It is straightforward to verify that G' is

complete and f(G,s.t.a) < b if and only if wf(G',s.t.a) 6 n3 b + n2.

Several classes of graphs contain the complete graphs as members; we list some of

them in the following corollary.

Corollary 9.1: The weighted fixed-pair connectivity function problem.
WFPC, is NP-complete for edge graphs, interval graphs, strongly chordal
graphs, and cographs.

5.5.4. Approximation

Since the evaluation of the fixed-pair connectivity function is NP-hard as shown in

Theorem 6, looking for an optimal cut set is, in general, computationally intractable.

We might want to know if there exists a polynomial approximation algorithm that

can find a vertex set CCV-{s.t} of size a such that IX(G--C.s.t)- f(G.s,t.a)l < k .

where k is a ?xed positive integer. We show here that finding such an approximate

solution is as difficult as finding an optimal solution.

Theorem 10: Let G = (V . E) be an arbitrary graph containing vertices s and
t , and let a , k be an arbitrary pair of nonnegative integers. If P Z NP.
then no polynomial-time algorithm A can find a vertex set C, with ICI = a .
such that IX(G--C.s.t) - f(G.s.t.a)l < k.

Proof. For a given graph G = (V . E) , let f(G.s.t.a)=b and C be the solution

computed by A. First transform G = (V . E) into G' = (V ' . E') as follows. Intuitively,

we replace each original edge with k edges and place a new vertex in the middle of

each new edge.

E' = ~ b . ~ ~ ~ , ~ } , ~ } . { W { ~ , ~ } , ~ . V I I 1 6 i 6 k . {u.v} E E}.

The graph G' is clearly bipartite and since the capacity of each edge is a multiple of

k , by a proof analogous to that for Theorem 7, it is easy to show that

fiG'.s.t.a) = kb. Now let C, where ICI = a, be the solution obtained by applying A to

G'. If CCV. then X(G'-C.s.t) is a multiple of k , so let X(G'-C,s.t) = k j for some

positive integer j. We have Ikj-f(G'.s.t.a)l < k , i.e.. Ikj-kbl < k ; this implies that

k j = kb and, therefore. C is an optimal solution for G as well. If CCV, let v' E C-V

and replace v' with one of its adjacent vertices which are in V. Let C ' be the set C

with every vertex not in V replaced by a vertex in V as above. It is clear that

X(G-C '.s.t) 6 A(G-C,s.t) from the transformation. and therefore C ' is also an

optimal solution for both G and G'.

5.6. Polynomially Solvable Cases

Presented in ,;his section are certain classes of graphs, the connectivity functions of

which can be computed in polynomial time. The following Theorem will be

frequently referred to in later sections.

Theorem 11: [Meqer's Theorem] The minimum number of edges (vertices)
separating two (nonadjacent) vertices s and t is the maximum number of
edge (vertex) disjoint (s,t) paths.

There are well known polynomial time algorithms for computing the edge

connectivity and vertex connectivity, which are special cases of the connectivity

function. Many efficient fixed-pair edge connectivity and fixed-pair vertex

connectivity algorithms employ some maximum network flow algorithms to find the

maximum number of disjoint paths connecting two vertices. For the edge and vertex

connectivities, a common approach is to take the minimum value of the fixed-pair

connectivities over a set of vertex pairs. With this approach, higher efficiency is

normally achieved by minimizing the number of calls to a maximum flow algorithm

that computes a fixed-pair connectivity.

By virtue of the strictly decreasing property of the connectivity function, we have

the following lemma.

Lemma 12: Let G = (V . E) be a graph with two distinguished vertices
s.t E V . If the weighted fixed-pair connectivity function wf(G.s.t.0) = ~ (G , s . t) ,
then wf(G.s.t.a) = u(G.s.t) - a for all a such that 0 < a 6 u(G,s.t).

Proof. By definition, wf(G.s.t.u(G,s.t)) = O and wf(G.s.t.a-1) > wf(G.s.t.a) for all a .

0 < a d u(G.sf) . It follows that wf(G,s.t.a) = u(G.s.t) - a , where 0 < a d dG.s . t) .

Corollary 12.1: If A(G.s.t) = u(G,s.t), then f(G.s.t.a) = u(G.s.t) - a for all a,
0 6 a d K (G . S : ~) . Similarly, if A(G) =u(G) , then F(G,a) = T - a for all a,
O 6 a 6 u(G).

Lemma 12 and its corollary are useful in recognizing the connectivity function for

graphs with certain "regular structures". Take a complete graph G = K , with n

vertices, for example. Its vertex connectivity U(G) = A (G) =n-1, and thus the global

. connectivity function is obtained immediately by Corollary 12.1 . As every pair of

distinct vertices of a complete graph are adjacent. u(G.s,t) is undefined. Since every

(s , t) mixed cut set must include the edge { s , t) , this edge can be taken out from G

before applying Corollary 12.1. We thus obtain

X(G - ({ s . t } } . s . t) = u(G - { { s , t) } . s , t) = n-2 and f (~ - {{s . t) } .s , t ,a) = n - 2 -a for all a.

0 < a < n-2. After edge { s , t } is restored to G - { { s . t) } , we get f (~ , s . t . a) = n-1-a

for all a. 0 < a < n-2. In contrast with the result here, the weighted fixed-pair

connectivity function problem is NP-complete for class of complete graphs as shown

in Theorem 9.

5.6.1. Graphs with Bounded Vertex Connectivity

Let G = (V . E) be a graph with two distinguished vertices s.t E V , having the fixed-

pair connectivity function satisfying f(G.s.t,a) = b for a pair of integers a, b. Let

(A B) be an (s , t) mixed cut set for G with IAl = a and IBI = b. As

f(G,s,t .a) = minv.,v{~(G-V'.s.t)ls.t B Vr.IV'I = a) , one way to calculate f(Gs.t.a) is to

systematically check X(G1.s.t) for every induced subgraphs G' of G with a fewer

vertices and with s,i E C7(G'). If ~(G.s.t) is boiinded by a c~iistairt 8, theri /f(G.s.ta)

is undefined for a > k. Therefore, for any a, in calculating ffG,s,t,a), the number of

n
such G' whose edge connectivity we need to check is bounded by (*). where n=IVI.

The following lemma immediately follows.

Lemma 13: Let G = (V . E) be a graph with two distinguished vertices
s,t E V , the weighted fixed-pair connectivity function wf(G.s.t,a) is computable
in polynomial time for graphs whose u(G.s,t) is bounded by a constant.

Corollary 13.1: The weighted fixed-pair connectivity function is
computable in polynomial time for grid graphs, wheel graphs, and degree
bounded graphs.

As every planar graph G = (V. E) with IV1 3 4 has at least four vertices of degree

not exceeding five (Cor. 11.1 (e) in [17]) . we have u(G) < 5. Therefore the global

56

connectivity function F(G.a) is undefined for all integers a satisfying a 3 j for some

integer j < 5. The weighted or unweighted global connectivity function for a planar

graph can thus be computed in polynomial time even by an exhaustive search.

5.6.2. Graphs n-cube Qn

For a positive integer n, the n-cube. denoted by Q,, is a graph consisting of 2,

vertices, each of which is labelled V , V ~ - ~ . . . V ~ , where vi E (0.1). Two vertices of Q, are

adjacent if and only if their labels differ in exactly one digit.

Theorem 14: For all positive integers n, the vertex connectivity, u(Q,).
of the n-cube Q,, is equal to n.

Proof. Since each vertex of Q, has exactly rz neighbors. d Q ,) < n holds. We

prove d Q n) 3 n by induction on n. the dimension of the n-cube.

-4s Ql =K2 by definition, so u(Ql) = 1, and the theorem is true for n = 1.

Assuming the theorem is true for all n < r for some r 3 1, we consider the case

where n =r+l.

Let n = r + 1. We assume u(Q,) < n and derive a contradiction.

If d Q ,) < n, then there is vertex cut set V' with IV'I=n-1. After V' is removed

from Q,, Q, - V'has more than one component. Assume Q, - V' has x 2 2

components, and let SIPS2. - .S, be the components of Q,-V'. We claim that

x = 2 and if u = a n . - * .al E S1 and v = b , , .bl E S2, then ak Z bk for all k.

1 d k < n. To prove the above claim consider any two distinct components Si and

S,. We first prove that the first digit an of any vertex u = a n , ,al E S1 must be

different from the first digit bn of any vertex v = b,, .bl E S2. Assume to the

contrary that an = bn = 0. The case where an = bn = 1 can be treated similarly. Let

9 consists of all the vertices of Qn with their first digits equal to 0. Observe that

the subgraph induced by 9 is isomorphic to Qn-l. We note the following:

(i) The cut set V' must have at least n - 1 vertices with their first digits equal

to 0. Otherwise. let U ' = V' fl p, where IU'I < n-1. For each k .

1 6 k 6 x . let be the vertices of Sk belonging to . Then

= 0 U f U U'. Furthermore, Si and S. are separate in the graph
I

Qn -U' . But then U', with IU'I < n - 1 , separates u E f from v € 4 in the
J

graph induced by 9. which is a Qn-l, a contradiction to the induction

hypothesis u(Qn-,) = n-1.

(ii) The cut set V' must include at least one vertex with the first digit equal

to I. By the induction hypothesis, there are n - i vertex disjoint paths

from ,al to l.bn-l. ,bl such that all vertices in the paths

have their first digits equal to 1. Since u is adjacent to 1 .an-, , ,al and

v is adjacent to l,bn-l, - .bl, V' is not a vertex cut set unless it has a t

least one vertex with the first digit equals to 1.

From (i) and (ii) above. it follows that IV'I 2 n , a contradiction to our original

assumption, thus we must conclude an f b,. Since the above argument is valid for

- any at, 1 6 k 6 n , it follows that ak Z bk for all k, 1 6 k 6 n, and there can be

only 2 components in Qn - V'. i-e.. x = 2.

For a vertex u of Qn, there is only one vertex in Q, with its ith digit different

from the ith digit of u for all i, 1 6 i < n. Therefore, the number of vertices in

Si, where i = 1.2, is one. But then the equality lSll + IS,] + IV'I = IV(Q,)I does not hold. -
since ISII + IS21 + IV'I = n + 1, whereas IV(Qn)l = 2,. a contradiction. Thus the theorem

follows. 17

Corollary 14.1. For all positive integers n, the edge connectivity X(Q,).

the fixed-pair vertex connectivity ~(Q,.s.t) for two non-adjacent vertices s, t

of Q,, and the fixed-pair edge connectivity X(Qn.u.v) for any two distinct

vertices u, v of Qn are all equal to n.

Proof. Since the vertex connectivity of an n-cube cannot exceed the edge

connectivity, the fixed-pair vertex connectivity, and the fixed-pair edge connectivity of

the n-cube, and since each vertex of an n-cube has exactly n neighbors, none of the

above connectivities can exceed n. 17

Since K(Q,) = X(Q,). and K(Q,,u,v) = A(Qn.u.v) for two non-adjacent vertices u and v

of Q,, the value of the global and fixed-pair connectivity functions for an n-cube can

be computed by Lemma 12.

5.6.3. Series-Parallel Graphs

Two distinct edges of a graph are said to be in series if they are incident on the

same vertex ("middle vertex") of degree two and are parallel if they join the same

pair of distinct vertices.

A series-parallel multigraph is defined recursively as follows:

A graph consisting of two vertices joined by an edge is series-parallel. G
is series-parallel if a graph obtained from G by replacing a pair of series
edges together with the middle vertex or a pair of parallel edges of G by an
edge is series-parallel. 0

A series-parallel simple graph is defined as a series-parallel multigraph without

multiple edges between any pair of vertices.

We now define the class of graphs that are "suppressible to an edge". We follow

the definitions in [18]: for a characterization, please see [18].

Let G = (V. E) be a simple graph. A vertex v E V is suppressible if v has degree 2.

If v is suppressible, an elementary suppression - v applied to G results in a graph as

follows: G -- v = (V - v . E U {u.w}) , where u and w are the two vertices adjacent to v ;

to keep the graph simple, edge {u,w} is only added if u and w are not already

adjacent. A suppression S of G is a sequence of elementary suppressions. The result

of applying S to G is denoted by S(G). In this case we say G is suppressible to

S(G). A total suppression of G is a suppression of G that cannot be extended.

It is obvious that if a simple graph is series-parallel, then the graph is suppressible

to an edge, and vice versa. We introduce suppressible graphs merely for the purpose

of proving the correctness of some algorithms. From here on, the terms series-parallel

graph and graph that is suppressible to an edge will be used interchangeably.

The algorithm we present next computes the weighted fixed pair ' connectivity

function wf(G.s.t.a) for a graph G which is suppressible to edge { s , t } . Since an edge

joining s and t must be in any (s , t) mixed cut set, we can assume without loss of

generality that the input graph G has no edge joining s and t .

The following procedures will be called by SPConFnO:

G-a

Figure 5-2: A Suppression S = -. a -- b -. c applied on G .

CornpnendG! : retull-n!Cj c);
Finds all the components in graph G, and returns the number, c,

and the set C = {GI.G2. .G,}, of all components of G.

MaxFlodG, w, s, t) : return(f.flow):
Finds the maximum flow f from s to t and the corresponding flow
pattern. w is a weight function from edge set of G into N. flow
is a flow function on the edge set of graph G, i.e.. flow(e) gives
the amount of flow that passes through edge e in the computed
maximum flow pattern.

6 1

Procedure SPConFn(G, s, t, a):

INPUT: Graph G = (V. E) with two distinguished vertices s.t E V.
a weight function w from E into N, and an integer a E N.

OUTPUT: wffG, s, t , a).

begin

step 1:

step 2:
step 3:

step 4:

We now

/* Find all the components in graph G - {s,t)
by calling Component() */

(Comp, c) := Component(~{s,t}):
(maxflow, flow) := MaxFlow(G, w, s , t);
f o r i E (1, .c)

mflow(G,) := Ze E; flow(e).

where Ei is the set of all edges {s, v) such that v E V(Gi);

Let c' be the number of components Gi such that mflow(Gi)>O:
if a > c' then

return (Message:"wf(G,s,t ,a) is undefined because a > K(G ,s.t
else
'* This is to block as much flow as possible by removing a vertices.

The remaining flow will be blocked by removing a minimum weight
edge cut set. */
begin

select "a" largest mflow()*s, and
let mflow(l), mflow(2). mflow(a)
be the "a" largest mflow()'s:

return(b':=maxf low - ZL1 mf low(Gi))

end
end.

prove the correctness of algorithm SPConFnO. Let ci be the subgraph of

G induced by vertex set V(Gi) U {s.t} and I = { 1. .cl). Assume without loss of

generality that

mflow(G1) 3 mflow(G2) 2 * 3 mflow(Gc.) > 0

Fact 1. Let S be a suppression of a graph G, and u, v, where u f v, be
vertices of both G and S(G). There is a (~ , v) - ~ a t h in G if and only if there
is a (u,v)-path in S(G).

Lemma 15: Let s and t be two distinguished vertices of a simple graph
G and G be suppressible to an edge {s,t}. Then for any two vertex-disjoint
(s,t)-paths P and Q of G, there is no path R, disjoint from P and Q, such
that R connects a vertex in V(P)-{s.t} with a vertex in v(Q)-{s.t}.

Proof. Let u E V(P)-{s.t}, v E V(Q>-{S,~}, and suppose there is a path

u,w1.w2, ' ,wi.v connecting u and v, such that (v(P) U V(Q)) f l {w1.w2. * .wi} =0.

Since G is suppressible to {s,t}, let S be a suppression such that S(G) is edge {s,t},

and S' and S" be subsequences of S such that S=S'-- US". Without loss of

generality, assume - u precedes - v in S. Since s.t.u,v E V(S'(G)). by Fact 1, there

are two (s,t)-paths. (s.al. .u, . .al.t). (s.bl, ,v. .b,,t). and a (u,v)-path

(u.w;. .w;,v) in S'(G), and these three paths are clearly vertex-disjoint, except at s

and t. Thus, u has degree at least three in S'(G), and s'(G) is not suppressible by

- US", a contradiction to the assumption that G is suppressible by S.

Fact 2. For all i,j E (1 . .c} such that i f j. G, and Gj are disjoint.

Proof. GL and G , are two different components. O

Fact 3. Each (s,t)-path is in exactly one ci.

Proof. Let P be any (s,t)-path. Then it contains one vertex in some Gi. Since the

vertices of P are connected, therefore. P is in ci, and by Fact 2. P cannot be in two

different ti's.

Fact 4. For each i E I, the vertex connectivity ~ (c ~ , s , t) is at most one.

Proof. If ~ (C ~ . s . t) > 1 for some i, there are two vertex disjoint (s,t)-paths p, q in

Since we assume that s and t are not adjacent, there is one vertex in V(g) and

one vertex in V (q) both of which belong to Gi. By Lemma 15, p and q will be

separated by removing s and t from ci, a contradiction that Gi is a component of

G-{s.t).

Theorem 16: Given valid arguments, G, s , t , a, algorithm SPConFno
correctly computes wffG,s,t,a).

Proof. Let b' be the value returned by SPConFnO. The proof consists of two

parts:

1. wf(G.s.t,a) 6 b'.

We need to prove that there is a vertex set V'EV(G)- {s,t) with IV1l=a and an

edge set E' with ioial weight 8 such that the removal of V' and E' from G

disconnects s from t. From Fact 3, any (s,t)-~ath P is in cl for some i E I. If

I 6 i 6 a , then by Fact 4, there exists a vertex set V'. IVII=a, such that P must pass

through some v E V ' . If a < i < c', on the other hand. P must pass through some

minimum weight edge cut set EiCE(G). where ze E; flow(e) = mflow(Gi), by the

Maximum-Flow Minimum-Cut Theorem. By removing V ' and {e E E;l a < i < c') from G,

all paths from s to t are disconnected.

. . 2. wf(G,s.t.a) 2 b'.

Let (V",.l?) be any (s,t) mixed cut set with IV"I=a. By Fact 4 there exists a vertex

v E V(Gi) such that any (~$1-path of ci must pass through v. Therefore, we can

assume that V" f l V(Gi) < 1 for all i E I. Then, since mflow(G1) 3 mflow(G,)

. . mflow(Ga), the maximum flow F from s to t after removing V" from G

satisfies

a

F = maxflow - Z m f l ~ w (G ~ (~)) a maxflow - Z mflow(Gi) = b'
v"n v (G ~) = ~ i= 1

. and by the Maximum-Flow MinimumCut Theorem. we have Ce E,,w(e) 2 F 3 b'.

Theorem 17: Algorithm SpConFn() for an input graph G = (V. E), where
IVl = n, runs in time 0 (n logn).

Proof. First note that the series-parallel graphs are a sub-class of planar graphs.

and therefore 1El is of 0 (n). Step 1 finds the components of G-{s,t], and can be done

in O(IEl) = 0 (n) by using the depth-first search. Step 2 computes a maximum flow

from s to t for graph G; for (s, t)-planar graphs, i.e., graphs that can be drawn in

the plane with no edges crossing each other such that vertices s and t are on the

same face, a maximum flow from s to t can be found in O (n logn) [19]. Since if a

graph is suppresible to edge {s, t) , it is also (s, t)-planar. Step 2 is of 0 (n log n).

Step 3 checks each edge incident on s to determine whether the other end of the edge

is in GI and performs the summation; thus step 3 is of O(IEl)=O(n). Step 4 finds

the "a" largest mflow()'s, which can be done in O(n) [2]. Therefore, the time

complexity of algorithm SPConFnO is of 0 (n log n). 0

Algorithm SPConFno evaluates the weighted fixed-pair connectivity function

wf(G,s,t,a) for a graph G that is suppressible to edge {s,t]. Next, we consider

wffG,s,t,a) for G that is not suppressible to edge {s,t} but is suppressible to another

edge {s'.tf}. We state some results in [la] which are relevant to Lemma 20 that

follows.

Lemma 18: For any two total suppressions S and S' of G. s(G) andS1(G)
are isomorphic.

Lemma 19: If G is suppressible to an edge, then there is no subgraph
homeomorphic to K,, the complete graph on four vertices.

Lemma 20: Let G=(VJ) be a graph with two distinguished vertices
s,t E V. Suppose G is not suppressible to edge {s,t}, but is suppressible to an
edge e f {s.t}, and, in addition, every vertex u E V is on some (s,t)-path.
Then, we have the following.

a) If there are two vertex disjoint (~$1-paths P and Q in G.
where IV(P)I 3 3 and IV(Q)l k 3, such that u E V(P)-{s.t} and
v E V(Q)-{s.t}, then there exists a (u,v)-path R such that
V(R) - {u.v) is disjoint from V(P) and V(Q).

b) Either wf(G.s.f.2) = 0 or wf(G.s.t.2) is undefined.

Proof

a) We prove by induction on the number of vertices. Assertion a) is clearly true

for lV1 6 4. Assume it is true for IVl 6 k, for some k k 4. We now prove that it is

also true for IVI = k+l. Since G is suppressible to an edge and G has at least 5

vertices, some vertex v E V is suppressible. If v f s.t , then G - v is not suppressible

to { s , t) , and by the induction hypothesis, the lemma is true. There are two possible

remaining cases:

Case 1. Either s or t , and not both, is suppressible.

Assume without loss of generality that s is the only suppressible vertex, and let

vertices b and c be adjacent to s. If b and c are not adjacent to each other, then b

and c have the same degree in G -s as in G and so do all other vertices, and.

therefore. G - s is non-suppressible. But G - s has at least 4 vertices and obviously

is not an edge; thus b and c must be adjacent to each other. Since there are two

vertex disjoint (s,t)-paths P and Q, one must pass through b and the other through c.

Paths P, Q have length greater than one, and thus b.c f t. but the path R=(b.c)

connects P and Q.

Case 2. Both s and t are suppressible.

Assume vertices b and c are adjacent to s, and vertices d and e are adjacent to t.

If b and c or d and e are adjacent to each other, Assertion a) immediately follows as

in case 1. If not, the degrees of b, c, d, e and all other vertices in G -- s - t remain

the same as in G, so G - s -- t is non-suppressible. But G -- s - t has at least three

vertices, i.e., it is not an edge, a contradiction to our assumption that G is

suppressible to an edge.

b) If Assertion b) was not true, then there would be three vertex disjoint

(s.t)-paths. Let P and Q be two vertex disjoint (s,t)-paths with length greater than

one. From a), there would be a (u,v)-path R, with u E v(P)-{s,t), v E v(Q)-{s,t}, such

that V(R) - {u.v) is disjoint from V(P) and V(Q). But then G would have a subgraph

homeomorphic to K4, a contradiction to Lemma 19.

Notice that a vertex which is not on any (s,t)-path does not affect the connectivities

d s f) , X(s,t) or ffG,s,t,a). To evaluate any type of connectivity between s and t, we

can therefore assume without loss of generality that, every vertex is on some

(s,t)-path. If a graph is suppressible to edge {s,t), we apply algorithm SPConFnO. If

a graph is suppressible to an edge e , but not to {s,t}. Lemma 20 tells us that

flG,s,t,a) is only defined for a 6 2. In this case, even an exhaustive algorithm

would run in polynomial time.

By Theorem 16, algorithm s~ConFn() is applicable to series-parallel simple graphs.

Consider a series-parallel multigraph. Let S be a set of multiple edges joining two

vertices u and v. Observe that if any e E S is in a minimal cut set, then so are all

e E S. Thus, we treat the multiple edges joining u and v as one edge {u,v} with edge

weight equal to E'I. Let G' be the graph thus obtained from a given graph G. It is

easy to see that f(G.s.t.a) = wf(C7,s.t.a). To apply the method for simple graphs to

multigraphs, we first replace multiple edges {u,v} by a single edge with weight

w({u.v}), representing the number of edges joming u and v . We then solve the

weighted version of the connectivity function.

5.7. A Path Problem

Let G = (V. E) be a graph with two distinguished vertices s,t E V, V'GV. E'CE. and

F' be a set of (3.t)-paths. An (s.t)-path p is said to be a (\"E1)-avoiding path if no

vertex of p is in V ' and no edge of p is in E'. Define a predicate Q on P as

follows: Q(P, (V', E')) = True if and only if P contains a (V'. El)-avoiding path.

Given that the fixed-pair connectivity function f(G.s,t.a) > b, where a , b are

positive integers, the question is: For a given positive integer k, does G have a set P

of (s,t)-paths with IA < k, such that P contains a (V1.E')-avoiding path for all

V' C V-{s,t} and E ' C E with IV'I < a and E'I 6 b? Furthermore, what is the

minimum value of k such that the above question has the affirmative answer for all

graphs G with f(G.s.t,a) > b?

We have not been able to answer these questions; nevertheless, we have the

following lemma, which relates Q on a graph G with Q on subgraphs of G.

Lemma 21: Let G = (V, E) be a graph with two distinguished vertices
s.t E V, a , b be positive integers, and Pv be a set of (~$1-paths in G-v,

where v E V-{s.t}. If, for each v E V-{s.t}, Q(PT,.(V'B1)) =True for all

V' C V-{s,t,v} and E' C E-{e E E l e is incident onv} with IV'I < a-1 and
E'I 4 b, then for the path set P = YE v-(s,tl P , we have Q(P. (V1,~ '))=True

for all V' C V-{s.t} and E' C E with IV'I = a and IE'I = b.

Proof. We prove by contradiction. Let V" C V-{s.t] and E"' C E with IV"I = a and

1E"'I = b such that P contains no (V",Z?)-avoiding path. For any v E V", the path set Pv

has no path containing v. Therefore, Q(P,(V"P)) = False implies that

Q(PJV"-~VJJ")) = False. Since IV"-{v)l= a-1, we have a contradiction.

5.8. Summary

Table 5-0 gives a summary of the complexities of computing the fixed-pair

connectivity function, FPC, and the weighted fixed-pair connectivity function, WFPC.

for the graphs we have studied in this chapter. NPC means NP-complete. P means

11711 polynomially solvable. means the problem 1s still unsolved, n is the number of

vertices, m is the number of edges. and k is a positive constant.

Class of Graphs FPC WFPC

Bipartite
Chordal
Split
Edge
Strongly chordal
Interval
Cograph
Complete
Vertex connectivity

bounded by k
n-cube
Series-parallel
Approximation

A(G-V1.s.t) - OPT < k

NPC
NPC
NPC
7

O (nk+'m Log n)
P

0 (n log n)

NPC
NPC
NPC
NPC
NPC
NPC
NPC
NPC

O (nk+'m Log n)
?

0 (n log n)

Table 5-1: Complexity of FPC and WFPC.

Chapter 6

Conclusion

We have presented a new (d2+2d)-resilient Byzantine Agreement protocol which

terminates in the minimum number of rounds of message exchanges and uses

0 ((3d)2d+6) messages, when the number of processors n 2 9d2 + 6d+l. Other

currently known t-resilient agreement protocols that terminate in t + 1 rounds need to

exchange O(nt+') messages when n < t2+ 3t + 5. To compare those protocols against

our protocol, let d2+ 2d = t . For large d , we have d - and d - &3.

Therefore, in terms of t and n, the number of messages required in our protocol is

to communicate with each

also rllows two distant processors in two different groups

other in about -& rounds of message exchanges, in contrast

td some other protocols which require every pair of processors to communicate in each

of the t+l rounds.

To investigate the resilience of network to failures, we have introduced a measure

that is more precise than considering a link failure as the failure of one of the link's

end nodes. For example, if a network with 3t+I processors is completely connected.

the fixed-pair connectivity function for every two distinct nodes u and v satisfies

f(G.u.v.2t) = t ; thus it provides us with the information that the network can tolerate

t processor and t/2-1 link failures. By considering a link failure as a processor

failure, the total

71

number of processor and link failures cannot exceed t.

One drawback of our protocol for reliable communication, which is described in

Chapter 4, is that the number of messages it uses is exponential in the number of

nodes of the network. If the network is large, it is quite inefficient. An open

problem is thus to find an efficient (in terms of the number of messages used)

protocol to tolerate t processor and I link failures.

As an open problem we have stated the path problem in Chapter 5. It seems that

in order to find an efficient protocol to handle t processor and I link failures under

the minimal sufficient condition, the path problem must be solved first. We

conjecture that the answer to the path problem is k =(a + 1) (b + 1).

If the conjecture is true, then there is hope for finding an efficient protocol that

tolerates up to t processor and I link failures. Otherwise, if k is exponential in the

number of vertices of a graph, it is unlikely that there exists an efficient protocol

that can tolerate up to t processor and I link failures under the minimal sufficient

condition in a general setting.

References

Attiya, C.. Dolev, D. and Gil, J.
Asynchronous Byzantine Consensus.
Proc. 3rd ACM Symp. on PODC . 1984.

Aho. A.. Hopcroft. J.. and Ullman J.
The Design and Analysis of Computer Algorithms.
Addison-Wesley Publishing Co.. 1974.

Beineke. L. W.. and Harary. F..
The Connectivity Function of a Graph.
Mathmatika 14 :pp.197-202, 1967.

Boesch. F.. Harary, F., and Kabell. J..
Graphs as Models of Communication Network Vulnerability: Connectivity and

Persistence.
Networks, Vol.12 :pp.57-63, 1981.

Coan. B. and Dwork C.
Simultaneity is Harder than Agreement.
R o c . 5th Symposium on Reliability in Distributed Software and Database Systems .

1986.

Dolev. D.
The Byzantine Generals Strike Again.
J. Algorithms , 1982.

Dolev. D.
Unanimity in an Unknown and Unreliable Environment.
Proc. 22nd Annual IEEE Symp. on Foundations of Computer Science :pp.159-168,

1981.

Dolev, D.. Dwork, C., and Stockmeyer. L..
On the Minimal Synchronism Needed for Distributed Consensus.
Proc. 24th Symp. on Foundations of Computer Science , 1983.

Dolev. D.. Fischer, M.J.. Fowler. R.. Lynch. N.A. and Strong. H.R.
Efficient Byzantine Agreement without Authentication.
Information and Control 3 . 1983.

73

Dolev, D. and Reischuk. R.
Bounds on Information Exchange for Byzantine Agreement.
J. ACM . 1985.

Dolev. D.. Reischuk. R. and Strong, H.R.
Eventual is Earlier than Immediate.
Proc. 23rd IEEE Symp. on Foundations of Computer Science :pp.196-203. 1982.

Dolev, D. and Strong. H.R. /I
authenticated Algorithms for Byzantine Agreement.
SIAM J. Computing 12 . 1983.

Fischer. M. and Lynch. N.
A Lower Bound for the Time to Assure Interactive Consistency.
Info. F'roc. Lett. 14, 4 . 1982.

Fischer, M., Lynch. N.A. and Paterson. M.
Impossibility of Distributed Consensus with One Faulty Process.
J. ACM , 1985.

Garey. M. R., and Johnson. D. S.
Some Simplified NP-complete Graph Problems.
Theoretical Computer Science 1 :pp.237-267. 1976.

Garcia-Molina, H., Pittelli. F.. and Davidson. S.
Applications of Byzantine Agreement in Database Systems.
ACM Transcctiotrs on Database Systems, Vol.11, No.1 . 1986.

Harary, F.
Graph Theory.
Addison-Wesley . 1972.

Harary. F., Krarup. J., and Schwenk, A.
Graphs Suppressible to an Edge.
Canad. Math. Bull. Vol. 15(2) :201-204. 1972.

Itai, A. and Shiloach. Y.
Maximum Flow in Planar Networks.
S l A M J. on Computing, Vol.8 :pp.135-150, 1979.

Pease, M., Shostak, R. and Lamport. L.
Reaching Agreement in the Presence of Faults.
J. ACM 27 :pp.228-234. 1980.

Rivest. R.L.. Shamir. A. and Adleman. L.
A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.
Communications of the ACM :pp.120-126, 1978.

[22] Srikath. T. K. and Toueg. S.
Simulating Authenticated Broadcasts to Derive Simple Fault-Tolerant Algorithms.
Tech. Rep. 84-623, Dept. of Computer Sci., Cornell Univ. . 1984.

