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Abstract 

Achieving consistency is one of the important issues in distributed computing. In a 

distributed environment, consistency comes in different forms, e.g.. processors must 

take the same action at some specified time, different clocks should give 

approximately the same value, processors have to agree on a critical value, etc. 

Under the worst kind of failure behavior, this problem has been abstracted as the 

Byzantine Agreement problem. A new Byzantine Agreement algorithm is presented 

which uses fewer messages than other currently known algorithms under a certain 

range of parameters and terminates in an optimal number of rounds of message 

exchanges. Previous research dealt mainly with processor failures and treated 

communication/link failures as a special case of processor failure. A necessary and 

sufficient condition is presented for reaching agreement under simultaneous failure of 

k processors and I links in terms of a graph property, namely, the connectivity 

function of a graph. Byzantine failure is assumed, i.e.. no assumptions are made on 

the behavior of a faulty component, and in particular, malicious actions taken by 

faulty components to prevent nonfaulty processors from reaching agreement are taken 

into account. 

Connectivity function is valuable in recognizing the degree of tolerance of a 

distributed system. Unfortunately, however, it is shown that computing the fixed- 

pair connectivity function is, in general. NP-complete. Among several classes of 

iii 



graphs investigated, it is shown that the problem remains NP-complete for bipartite. 

chordal, and split graphs; and is solvable in polynomial time for n-cubes, series- 

parallel graphs, and other graphs with bounded vertex connectivity. 
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Chapter 1 

Introduction 

This thesis is concerned with the fault tolerance of a distributed system, in 

particular, with Byzantine Agreement and communication failures. 

In Chapter 2, we give a brief survey of the Byzantine Agreement problem, which 

deals with the reaching of an agreement under the worst kind of failure behavior. 

called Byzantine failure. In Chapter 3,  a new Byzantine Agreement algorithm is 

presented which uses a smaller number of messages than the currently known 

algorithms for certain ranges of parameters. 

In dealing with the Byzantine Agreement problem, most researchers assume that link 

failure is a special case of processor failure; a link failure is considered as the failure 

of one of the end processors of the link. In Chapter 4, we separate processor and 

link failures and give neiessary and sufficient conditions for a system to tolerate t 

processor and 2 link failures in reaching Byzantine Agreement. A protocol is 

presented for a Byzantine Agreement to tolerate t processor and I link failures under 

the sufficiency conditions. One of the necessary and sufficient conditions is stated in 

terms of a graph property, the connectivity function. 

In Chapter 5, we study the connectivity function, which defines the number of 



vertices and edges whose removal disconnects a graph. It generalizes the concepts of 

vertex and edge connectivity. Our interest is chiefly in the algorithmic complexity of 

the problem. We show that the problem of computing the fixed-pair connectivity 

function is, in general. NP-complete. Important properties of the connectivity function 

are investigated and the connectivity functions for certain classes of graphs are 

determined. 

Chapter 6 contains a summary of the results in this thesis and states some open 

problems. 



Chapter 2 

Byzantine Agreement 

In a distributed system, various faults can occur, e.g.. faults caused by component 

malfunctioning and faulty software, and communication error caused by noise in the 

communication medium. A single fault happening at an unfortunate time could be 

disastrous. Thus, one important design issue for a reliable system is how to keep a 

system functioning properly in the presence of faults. 

Many fault tolerant algorithms assume a benign form of failure, called the fail-stop 

mode. In this mode, once a component fails, it immediately stops functioning and 

does nothing else. In reality, however, some malicious form of failure can happen. 

e.g.. a faulty component could behave illogically, and a '1' sent by a processor could 

be interpreted as a '0' by a receiver due to noise in the communication medium. 

Therefore, a system with a high degree of reliability must tolerate "malicious" faults. 

Many fault tolerant algorithms do not work if "malicious" failures occur. In a 

distributed, message passing environment, "malicious" faults have been formalized as 

. the Byzantine failure, which makes no assumptions on the behavior of a faulty 

component, e.g.. a faulty processor can send conflicting information to others, or 

modify a message while it is relaying the message. Hence, algorithms that handle 
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Byzantine failures cannot depend on the behavior of a faulty component a t  all. One 

way of picturing a system with Byzantine failures is to imagine that there is a 

demon, with the ability to control the faulty components, to prevent correct 

processors from working properly. The faulty components, being undetected by 

correct processors and controlled by the demon, send confusing messages to correct 

processors. 

One useful concept in handling Byzantine failures is that of Byzantine Agreement. 

Byzantine Agreement is said to have been reached if all correct processors agree on 

the same value. The value here may be quite general, including the description of an 

action that should be taken by all correct processors. Some applications are: reliable 

broadcast which requires that all correct receivers receive the same message: a commit 

protocol in a distributed database which requires the result of a transaction that 

involves data at different processors to be consistently installed (either all changes dl~e  

to a transaction or nothing at all should be reflected in the database). The paper 

[16] discusses applications of Byzantine Agreement in database system; and replicated 

computing, in which several processors may be dedicated to compute the same 

function on an input. and it is essential for all of them to obtain the same input. 

A great deal of research has been done on the Byzantine Agreement problem and its 

variants. The results obtained range from lower bounds to efficient algorithms. We 

give in this chapter a brief description of some major results. 



2.2. Model and Definitions 

A system consists of a set P= {p1.p2. .Pn) of n processors and a communication 

network which connects the processors. Processors communicate only by sending and 

receiving messages through the network. Each processor is modeled by an infinite 

state machine. Initially, each processor pi is in its initial state and has an initial 

value vi E V, where V is a set of values. Note that processors' initial values may be 

different. For simplicity, we assume that V =  {0,1). The extension of V to an 

arbitrary value set is straightforward, since any value can be encoded in binary 

representation. A protocol defines the next state of each processor and the messages 

to be sent, as a function of the current state and the messages received. A processor 

is said to be correct if it follows the protocol correctly, and is faulty otherwise. At 

the end of protocol execution, every correct processor decides on a value. A 

Byzantine Agreement is said to have been reached if B1 and B2 below are satisfied: 

B1. All correct processors decide on the same value. 

B2. If all correct processors have the same initial value v ,  then all 
correct processors decide on v .  

> 

A weak Byzantine agreement is said to have been reached when B1 above and B2' 

below are satisfied: 

B2'. If all processors are correct and their initial values are all equal to 
v ,  then all processors decide on v.  

A protocol is t-resilient if, for all executions of the protocol, it terminates in a 

finite number of state transitions and guarantees that an agreement is reached despite 

the presence of up to t faulty processors. 



Failure Modes. 

We list three commonly discussed failure modes: 

Fail-stop: once a component fails, i t  immediately stops functioning, i.e., it 
neither sends nor receives any message during the rest of a protocol 
execution. 

Omission failure: the only faulty behavior is to omit to execute some step(s) of a 
protocol. 

Byzantine failure: no assumption is made on the behavior of faulty components, i-e.. 
they can act maliciously. 

Network Assumptions 

We first assume that every two processors are connected by a reliable bidirectional 

communication link, i.e.. the underlying graph of the network is a complete graph and 

iinks never faii. We wili discuss link failure and the structure of the network later. 

A message may pass through several nodes of a network, we assume that the receiver 

of a message can identify the immediate sender, i.e.. the last node which relay the 

message. 

2.3. Synchronous Systems 

In a synchronous system, execution steps of processors are synchronized. This 

requires that their local clocks be synchronized within some bound, processors' 

response time be bounded, and there exists an a priori bound on message delay. 

It is convenient to divide protocol execution into rounds. At the beginning of a 



round, each processor sends messages to some processors, possibly to all including 

itself. It then retrieves all messages that were sent to it in this round and performs 

its computation. 

Let t be an upper bound on the number of faulty processors with Byzantine failure 

in a system. Pease, Shostak, and Lamport [20] proved that, with n processors, it is 

impossible to reach Byzantine Agreement if n < 3t. If n 2 3t + 1, Byzantine 

Agreement is always possible, which they proved by an algorithm for Byzantine 

Agreement. Their algorithm terminates in t + 1 rounds and uses 0 (nt+') messages. 

As the possibility of achieving Byzantine Agreement has been established, it is 

desirable to seek efficient algorithms and lower bounds for the problem. Fischer and 

Lynch 1131 showed that t + 1 is a lower bound on the number of rounds needed for 

any t-resilient Byzantine Agreement protocol. Since there are algorithms that 

terminate in t + 1 rounds [20] ,  this bound is tight. As for message complexity, Dolev 

and Reischuk [ l o ]  showed that (nt) messages are necessary for any t-resilient 

Byzantine Agreement protocol. As mentioned above, the algorithm in [20] uses 

O(ntC1)  messages.  heref fore, i t  is impractical if t is large. since the number of 

messages sent is probably too large. The most efficient known algorithm in terms of 

message complexity, described in [9], uses a polynomial number of messages, with a 

total of 0 (nt2iog t)  bits, but it requires 2t+3 rounds, which is not optimal. Since 

there exist algorithms that terminate in t + 1 rounds, and also algorithms that use a 

polynomial number of messages, it would be interesting to know whether Byzantine 

Agreement could be reached in t + 0 (1) rounds of message exchanges, while 
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exchanging a polynomial number of messages. This problem still remains open. It is 

noted that the algorithm described in [ l l ]  uses 0 (nt310gt) message bits and terminates 

in t + 1 rounds, but the algorithm requires that a system have 2t2 + 3t + 5 processors. 

which is large compared to 3t + 1. 

An agreement is said to be simultaneous [5] (called immediate in [ l l ] ) ,  if all correct 

processors decide in the same round on a value satisfying the conditions of an 

agreement. If we allow processors to make their decisions in different rounds, an 

agreement is said to be eventual. Clearly, simultaneous agreement is at least as hard 

as eventual agreement. In a protocol execution instance, there could be no faulty 

processor, or on the average, the actual number of faulty processors f could be much 

less than t. It is reasonable to inquire whether a t-resilient protocol can stop earlier 

if f is less than t. This property is known as early-stopping in [ l l ] .  It is shown in 

[ll! that nin(,f+2, t+l! is a lower bound OE the mmber cf rounds fcr any eventua! 

early-stopping t-resilient Byzantine Agreement protocol. Surprisingly, for simultaneous 

agreement, the lower bound of t + 1 rounds still applies for early-stopping. It is 

shown in [5] that t + 1 is also a lower bound on the number of rounds for early- 

stopping simultaneous weak Byzantine Agreement protocol with just fail-stop mode of 

failures. This means that no simultaneous-agreement t-resilient protocol can stop 

earlier than t + 1 rounds even when there is no failure during protocol execution. By 

using a polynomial number of messages, eventual agreement can be reached Ell] in 

min(2f+5,2t+3) rounds when n = 3t + 1, and in min(f+2, t+ 1) rounds when 

n 2 2t2 + 3t + 5. 



An authentication protocol enables a correct receiver to verify that a received message 

is genuine and to identify the original sender of the message. This is accomplished 

by adding to a message to be sent by a processor an unforgeable digital sigmture 

[21]. Thus, by employing an authentication protocol, the behavior of a faulty 

processor in relaying a message can be restricted to simply dropping the message. If 

a faulty processor has modified a message, a correct receiver can verify that the relay 

is faulty. But it is possible for faulty processors to collude and to send conflicting 

information to others. By using authentication, algorithms exist that can tolerate an 

arbitrary number of failures [20]. But even with authentication, the lower bound of 

t + 1 rounds of message exchanges still applies [12]. A lower bound on the number 

of digital signatures needed for any authenticated Byzantine Agreement protocol is 

(nt) 1101. Unlike the unauthenticated case, where it is unknown whether Byzantine 

Agreement can be reached in t + 0 (1) rounds using a polynomial number of messages 

when n = 3t + 1, an authenticated t-resilient agreement protocol exists that terminates 

in t + 1 rounds and exchanges 0 (n t )  messages [12]. 

Although authenticated Byzantine Agreement algorithms are able to tolerate any 

number of faults and are more efficient than their unauthenticated counterparts, an 

authentication protocol incurs extra cost for an authenticated Byzantine Agreement 

algorithm, and there is no known authentication protocol that is absolutely 

unbreakable. For a system with no malicious act expected, a checksum scheme 

probably can provide a good resilience to failures. 

Most authenticated agreement algorithms are efficient, simple to implement, and easy 



to comprehend. Srikanth and Toueg [22] devised a clever scheme that can transform 

an authenticated agreement algorithm into an unauthenticated one. The method uses 

two rounds of unauthenticated message exchanges to replace one round of 

authenticated message exchange. Thus their method preserves the simplicity of an 

authenticated algorithm in an unauthenticated one and still uses a polynomial number 

of messages. For the transformed algorithms to work correctly, a system must have 

3t + 1 processors: this is a requirement for any unauthenticated protocol. 

2.4. Asynchronous Systems 

In a synchronous system, we assumed that all processors execute a round of message 

exchange at the same logical global time. There are many reasons for a system to 

behave asynchronously. For example, a heavily loaded processor could respond 

slowly, messages sent through a congested network could be delayed, and in datagram 

service, messages are not guaranteed to be delivered in the order sent, if at  aPi. 

Fischer. Lynch, and Paterson [141 proved that, in a completely asynchronous system 

(i.e.. processor response time is arbitrarily long, an a priori bound on message delay is 

precluded, and messages may not be delivered in the order sent), no deterministic 

agreement protocol can reach weak Byzantine Agreement in the presence of one fail- 

stop mode failure. In a later paper [8]. Dolev. Dwork, and Stockmeyer extended the 

above result. Still assuming fail-stop mode, they identified five critical system 

parameters: 

1. processors synchronous(F) or asynchronous(U), 

2. communication synchronous(F) or asynchronous(U), 



3. messa 
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.ge order synchronous(F) or asynchrc 

4. broadcast transmission(F) or point-to-point transmission(U), 

5. atomic receive/send(F) or separate receive and send(U). 

In the above listing F means favorable while U means unfavorable. Broadcast 

means that broadcasting takes place in bounded time. Atomic receive/send means that 

the time for receiving, processing and sending of a message is bounded by a constant. 

In total, there are 32 = Z5 cases as parameterized by the above 5 parameters. For n 

processors, they identified four groups of cases where n-resilience (fail-stop mode) is 

possible, but the weakening of any parameter from favorable to unfavorable is 

sufficient to make t-resilience unachievable ( t  is either 1 or 2). These four "minimal" 

groups are (they cover 17 out of 32 cases): 

1. synchronous processors and synchronous communication, 

2. synchronous processors and synchronous message order, 

3. broadcast transmission and synchronous message order. 

4. synchronous communication, broadcast transmission and atomic receive/send. 

When Byzantine failure is considered. Case 1 can be solved; in fact, it is the 

synchronous model assumed in most literature. The paper [I] describes an algorithm 

to handle Byzantine failures in an asynchronous system (case 4: processor U and 

communication F) by imposing a phase protocol (it generates artificial phases). No 

Byzantine Agreement protocol has yet been found for case 2 or case 3. 



2.5. Network Failures 

In the preceding sections, we assumed that a network is completely connected and 

communication is reliable. Actually, what a Byzantine Agreement protocol needs is a 

way to guarantee that any two correct processors in a system can communicate 

reliably and can identify the original sender of a received message if the sender is 

correct. Dolev 161 showed that, in the presence of up to t faulty processors in a 

system, a necessary and sufficient condition for this purpose is that the vertex 

connectivity for the underlying graph of a network is 2t + 1. This result also holds 

when the structure of the network is unknown to the processors [71. 

When discussing communication link failures, most researchers assume that one of 

the two end nodes of the faulty link is faulty. In Chapter 4 of this thesis, we 

separate processor and link failures, and describe necessary and sufficient conditions 

for a system to tolerate t faulty processors and I faulty links. The conditions are: 

n 2 3t + 1 and the fixed-pair connectivity function f for every pair of distinct 

processors s and t which participate in the protocol satisfy either ( 1 )  

f(G.s.t.2t) 2 21+1 or ( 2 )  f(G.s.t,a) > 21+1 and f(G,s.t,a+l) is undefined, where G is 

the underlying graph of the network and a is any arbitrary positive integer. For a 

definition of f ,  please see Chapter 5. Informally, the function defines the number of 

vertices and edges that must be removed in separating two vertices s and t ,  e.g.. if 

f(G.s.t.a) = b, we can separate s and t by removing a vertices and b edges from G. 



Chapter 

A Byzantine Agreement Algorithm 

3.1. Introduction 

Two important measures of the efficiency of a Byzantine Agreement algorithm are 

the number of rounds of message exchanges needed and the amount of information 

exchanged. The discussion in this chapter concentrates on unauthenticated algorithms. 

Let n be the number of processors in a system and t be the maximum number of 

faulty processors that an algorithm can tolerate. It is shown in [13] that t + 1 is a 

lower bound on the number of rounds needed, and in [lo] that a (nt) is a lower 

bound on the number of messages required by any Byzantine Agreement algorithm. 

The first published Byzantine Agreement algorithm [20] runs in t + 1 rounds, and is 

therefore optimal with respect to the number of rounds, but the algorithm needs to 

exchange O h t + ' )  messages. The algorithm in [9] uses a polynomial number of bits, 

0 (t310g t ) ,  in the exchanged messages, but the number of rounds required in the worst 

case is 2t + 3 ,  which is roughly twice the optimal. These algorithms work correctly 

when n 3 3t + 1 .  It has been an open problem whether Byzantine Agreement can be 

made with a polynomial number of messages in less than 2t + 3 rounds. Another 

interesting problem is to find the trade-off between the number of rounds and the 

number of messages needed. One might expect that when a ,system has more correct 

processors, the system would handle failures efficiently . The number of correct 

13 



processors in a system could well be added to the above trade-off factors. In fact. 

the algorithm described in [111 uses 0 (nt310g t )  message bits and runs in t + 1 rounds. 

when the number of processors n = 2t2 + 3t + 5. Let t = d2+2d, where d is a positive 

integer, and n = 9t -12d + 1 = 9t - &+ 13. We show in this chapter that 

Byzantine Agreement can be reached in the presence of t processor failures in 

d2 +3d + 4 = t + 6 + 3 rounds using a total of 0 (tJ;+'log t )  message bits. 

Currently known t-resilient Byzantine Agreement algorithms with n < 2t2+ 3t + 5 that 

terminate in less than 2t + 3 rounds need to exchange O h t + ' )  messages. With a 

slight modification, our algorithm can terminate in t + 1 rounds with a small increase 

in message bits. 

We give an informal description of our Byzantine Agreement algorithm before 

presenting it. Our algorithm has two levels - upper level and lower level. Processors 

are divided into disjni~lt grolqx each cf size 3dt-I. At the upper level, each groiip 

behaves as a "processor" and executes a known Byzantine Agreement algorithm; we use 

the algorithm in 1201. If each group has one processor, then our algorithm is 

essentially the same as the algorithm in [20]. 

Depending on a parameter of our algorithm, a group can have more than one 

processor. The first question to be answered is: How do two groups communicate? 

We require that all correct processors in a group, say group g, first agree on what 

"group message" to send and then all correct processors of group g send the same 

"group message" to all processors in the system. 

A processor, say p, outside group g will receive as many correct "group messagesw 



from g as there are correct processors in group g. If the majority of processors in 

group g are correct, then the majority of the messages that p receives are correct and 

can be used as group g's "group message". 

The lower level accomplishes the goal of reaching an agreement among correct 

processors in a group on what "group message" to send by invoking a known 

Byzantine Agreement algorithm; we also use the one in [20]. If a group has at  most 

d faulty processors, the goal can be achieved if and only if the group has at least 

3d + 1 processors. This is why we call a group with 3d + 1 processors correct if its 

has no more than d faulty processors; otherwise it is said to be faulty. 

If our algorithm can handle at most h faulty groups, the maximum number of 

t 
faulty processors. t .  our algorithm can handle must satisfy hTj 6 h (a group is 

faulty if it has d+l or more faulty processors); otherwise t faulty processors may be 

distributed among groups in such a way that more than h groups are faulty. Thus, 

t 6 h(d + 1) + d .  

The Byzantine Agreement algorithm of [20] terminates in t+ l  rounds and exchanges 

0 ((3t+l)t+1) messages, if n=3t+l. By splitting processing into two levels, the upper 

level with 3h+l groups terminates in h+l  upper level rounds and exchanges 

0 ((3h+ 1 )h+l) Ogroup messages", and each lower level agreement (among 3d+l 

processors) embedded in each of the h+l upper level rounds terminates in d+l  rounds 

and exchanges 0 ((3d+lId+') messages. In the next section we present our algorithm 

and in Section 3.4 we discuss complexity in more detail. 



ure 3-0 gives an example of the algorithm to be presented. 

h,d=l ,  and therefore there are four groups, each with four processors. 

gl (correct group) 

q g3 correct group 

I 

In this example 

g2 (faulty group) 

g4 (correct group) 

faulty processor 0 correct processor 

msg = message 

Figure 3-1: A scenario of algorithm GrByzO. 



3.2. Algorithm 

Let h,  d be positive integers. The algorithm we present in this section enables 

Byzantine Agreement to be reached in the presence of up to hd + h + d processor 

failures, provided that the system has (3h + 1)(3d + 1) processors. The algorithm 

assumes the following: each processor can directly communicate with every other 

processor reliably and the processors are divided into 3h + 1 disjoint groups, each with 

3d + 1 processors. and each processor can recognize to which group any processor 

belongs. A processor is said to be correct if it follows the algorithm; otherwise it is 

faulty. A group is said to be correct if it has no more than d faulty processors; 

otherwise it is faulty. 

To present our algorithm, we first introduce the following notation. 

P = set of all processors, 
g, = group i. 

G = { g , .  - .g3h+l}. set of all groups. 

P(gi )  = set of all processors in group gi. 

The following procedures will be called by algorithm GrByd): 

Major i ty (X1 : if over half of the elements in the vector X = ( x l  .x2, ' ~ 3 d + l ) '  

where eachlxj is a set, are equal to some xi. 1 6 j 6 3d+l .  

return x :  
I' 

otherwise return Nil. 

Byz(P(g),d,v)  : returns v'; 

Byz(P(g),d,v) is a Byzantine Agreement protocol that can tolerate up to d faulty 

processors. where P(g)  is the set of participating processors, and v is the initial value 

of a processor in P(g)  in upper level round 1. Note that each participating processor 



may have different v ,  and v is a message set in later upper level rounds in algorithm 

GrByzo. v' is the agreed "value" that satisfies the Byzantine Agreement conditions. 

The algorithm we chose [20] can be applied to an arbitrary value set, i.e., v is not 

restricted to (0.1). In upper level round 1, we assume that v is either 0 or 1. Each 

processor p executes the following algorithm. Let g be the group to which p belongs. 

Algorithm GrBydP, G, h ,  dl; 
begin 

upper level round 1: /* Agree on group g's initial value */ 

Let v be the initial value of p; 
v' := Byz(P(g), d ,  v); /* v' is used as group g's initial value */ 
send message set {g:vl} to all processors including itself; 

upper level round R+1, where 1 6 R 6 h: 

f o r  each group gj E G; /* get the message set from gj  by applying Majorityo */ 

begin 

Let q 1 , q 2 .  . qki+l be the 3d+l  processors in group gj, 
and M where 1 6 i 6 3d+l ,  be the set of messages 

%' 
that p received from processor q i  in upper level round R; 

X : = ( M  .M : * * . M  ); 
q1 42 q3d+l 

GrM := Majority(X); 
g j  

/* if g.  is correct, GrM is the message set ,from g. */ 
- 1 g~ 1 

end ; i 

/* Agree with all processors in P(g) on 
the received message set from each group */ 

Perform the following 3h+l computations in parallel using d+l  rounds: 
begin 

AgreedGrMg := Byz(P(g), d ,  GrM 1; 
I gI 

AgreedGrM := ~ y z ( P ( ~ ) ,  d ,  GrM ); 
g2 g2 

AgreedGrM :=Byz(P(g) ,d ,GrM 1; 
g3h+I g3h+1 

end; 
send message set {g:m I m E AgreedGrM ,1  6 j 6 3h+ 1) 

gi 
to all processors including itself; 



upper level round h+2: /* make decision in this round */ 

for each group gj E G ;  

begin 

Let ql q2 ' . . . , q3d+l be the 3d+l processors in group g j ,  

and M , where 1 6 i 6 3d+l,  be the set of messages 
4i 

that p received from processor qi in upper level round h+l; 

X := ( M  , M  : - - , M  . ) ;  
q1 q2 q3d+l 

GrM := Majority(X): 
gi 

end; 

J 

v' := value obtained by applying the algorithm in [20] 
on the message set M*; 

end. 

3.3. Proof of Correctness 

Let T be the set of correct processors and T be the set of correct groups. The 
g 

~ o u ?  2, E T e n d  the following lemma says that if all correct processors ir? rr correct g- 
g 

same set of messages in upper level round R, then every correct processor will 

compute the same set of messages in upper level round R + 1 by applying Majorityo 

to the set of messages received from all the processors in group gj in upper level 

round R. 

Lemma 1: Let gj be a correct group and suppose all correct processors of 
gj send message set M to all processors in P in upper level round R. Then 

each correct processor q E T obtains GrM = M by applying Majority(X1 in 
gj 

upper level round R + 1. 

Proof. Since there are at least 2d + 1 correct processors and a t  most d faulty 

processors in g j ,  any correct processor receives at  least 2d + 1 correct messages 

carrying M. 



The next lemma asserts that a correct group (more precisely, all the correct 

processors in a correct group; gb in Lemma 2 below) will send the same message set 

to every processor in upper level round R + 1  (part (a)). In addition, if i t  receives a 

set of messages from a correct group in upper level round R, it will relay them 

faithfully (part (b)). 

Lemma 2: Let y be a string of names of groups, and 1 be the number 
of names in y. For p E T ,  define u (g :y) = v, if and only if there is a 

P b 
message m =gb:y:v E GrM , where GrM is the message set that p computes 

g b gb 
by applying Majority(X1 in upper level round 1 + 2 (see upper level round 
R + l  in the above algorithm). Let p, q be any two correct processors and let 

g, E Tg. 

(a) uP(gb:gc:y) =uq(ga:gC:y) for any gc E G. 

Proof. 

(a) Since gb is a correct group, all correct processors in it agree on the same 

message set before sending i t  (see the step Byd)  in G r ~ y z ) .  By Lemma 1 ,  every 

correct processor gets the same message set from gb by applying MajorityO, therefore 

(b) Now we consider the case where gc E T Since gc is a correct group, all correct 
g' 

processors in gc agree on y:v before sending gc:y:v, and, by Lemma 1 ,  every processor 

- receives gc:y:v in upper level round 1+2. There are at  most d faulty processors in 

gb, therefore, by applying By& in upper level round 1+2, every correct processor in 

gb agrees on gc:y:v. Since the value sent by the correct processors in a correct group 



(e.g., gb) is the agreed value prefixed by the group's name, each correct processor p 

obtains the message m = gb:g,:y:v from gb. 0 

Before proving Theorem 4, we state the following sufficient conditions [20] for 

achieving a Byzantine Agreement from a message set M* obtained after t + 1 rounds of 

message exchanges in the presence of t faults. 

C1. Every correct processor relays all the messages it received from 
previous rounds to every processor, and the relayed messages are prefixed by 
its name. It also sends the messages to itself for the purpose of recording 
its history. 

C2. If a processor is correct, it relays the message without modifying it. 

C3. Every correct processor sends its initial value to every processor in the 
first round. 

C4. The total number of processors is at  least 3t + 1 and the total number 
of faulty processors is at  most t. 

In applying these conditions to groups of processors. C2 cannot be used. since the 

message out of a faulty group may not be uniquely defined. Since a message sent by 

a faulty processor is arbitrary, condition C2 can be replaced by C2' below. 

C2'. If a processor is correct, it relays the messages from correct processors 
without modifying it. 

Lemma 3: Let the number of faulty processors be not more than 
M + h + d. Algorithm GrByz(P, G, h, d )  satisfies C1. C2'. C3, and C4 if we 
replace "processor" by "groupw in C1, C2'. C3, and C4. 

Proof. Since there are at  most M + h + d faulty processors, and a group is faulty 

if it has more than d faulty processors, there are at  most h faulty groups and C4 is 



satisfied. Let the agreed value v' obtained by executing Byzo in upper level round 1 

for each group be the group's initial value. We prove by induction on the number R 

of upper level rounds that C1. C2', and C3 are also satisfied. If R = 1. every correct 

processor in a correct group g agrees on the same value v' before sending (g:vl) to all 

processors. By Lemma 2, C1. C2', and C3 are satisfied. Assume the lemma is true 

for R f R',  where R '  2 1. We now prove the case where R = R ' +  1. By Lemma 

2, which says that a correct group sends the same message set to all processors and 

relays message sets from correct groups faithfully received in upper level round R'.  

thus C l  and C2' are satisfied for upper level round R. And finally. C3 is satisfied 

by upper level round 1 of the algorithm. 

Theorem 4: Let the number of processors be (3h + 1)(3d + 1). If the 
number of faulty processors is at most hd + h + d ,  then algorithm GrBydP, 
G ,  h, d )  guarantees Byzantine Agreement. 

Froof. Since id' is obtained after h t l rounds of message exchanges by groups, and 

by Lemma 3, algorithm GrByz(P, G, h,  d )  satisfies C1. C2', C3, and C4, and every 

correct processor decides on the same value by applying the algorithm of [20] on M*. 

therefore condition B1 of the Byzantine Agreement conditions is satisfied. Assume 

that every correct processor has the same initial value v .  Then by executing Byzo in 

upper level round 1, the initial value of every correct group is v. Therefore, the 

decision obtained from MX in upper level round d + 2 is also v ,  and condition B2 of 

the Byzantine Agreement conditions is also satisfied. 0 



3.4. Complexity 

Theorem 5: Let h ,  d be positive integers. The number of rounds of 
message exchanges performed by GrBydP, G, h ,  d )  is (h + 1 )(d + 2). 

Proof. In upper level round R+1. 1 < R < h, 3h+l Byz()s are invoked. Each 

Byz(P(g), d, M) runs in d + 1 rounds [20]. Since two Byzantine Agreement algorithms 

Byz(P(g), d ,  GrM ) and BYZ(P(~),  d ,  GrM ), where i f j ,  have no. interactions, they 
gi gi 

can run in parallel. Thus, the 3h+l Byz()s in an upper level round can run in d+l 

rounds. When R = 0, only one Byzo is invoked, which needs d + 1 rounds. Adding 

the round of sending " ~ ~ r e e d G r M " ,  each upper level round has d+2 rounds. There is 

no sending and receiving in upper level round h + 2. Therefore, the total number of 

Theorem 6: Let the number of processors be n = (3h+1)(3d + 1) and 
hd + h + d be the upper bound on the number of faulty processors in P. 
Algorithm GrByz(P, G, h ,  d )  reaches Byzantine Agreement using 
0 (d(3d+l)d+2(3h+l)210g d + (3d+l!d+2h(3h+l)h+1~ng h + d2h(3h+l)h+210g h)  
message bits. 

Proof. Consider the message bits sent by a correct processor p in upper level round 

R+1, 1 R d h. p participates in 3h+l Byzos, and in each Byd),  p sends 

(3d+l)d+1 (1) 

messages. Let msg be a message sent in a Byd)  in upper level round R+l. msg 

consists of two parts: the route part and the value part. The route part is a 

sequence of processor names via which the message has been routed. The value part 

is the message set GrM . for some gj E G. The route part of msg has at most d+l  
g i 

processor names in it. Now consider how many bits are needed to encode GrM . 
gi 

Each valid message in GrM has its route part consisting of R group names and the 
gi 



first group name in the route part must be gj. Thus. there are 0((3h+llR-') 

messages in GrM . The value part of a message in GrM is either 0 or 1. Thus 
gi gi 

GrM can be encoded in 
gj 

0 ((3h+l )R-1~ log h)) bits 

and msg can be encoded in 

x = 0 ((3h+llR-'R log h + (d+l)log d))  bits. (3) 

Therefore. by (1). in each ByzO in upper level round R, p sends 0(x(3d+l)~+')  bits. 

Since there are 3h+l BYZ()S, p sends 

0 ( ~ ( 3 d + l ) ~ + l ( 3 h + l ) )  bits. 

Let M = {g :mlm E AgreedGrM . I  d j d 3h+ 1 ) be the message set that p sends in the 
g~ 

last round of upper level round R+1. The route part of a message in M consists of 

R+l group names. The value part is either 0 or 1. M can be encoded in 

y = 8 ( ( ? ~ + I ) ~ R  log FL) bits. Since p sends M to ail processors, p sends 

0 ((3h+l)(3d+l)y) bits in the round of sending M. In upper level round R+1, 

including (4) p thus sends 0 ( ~ ( 3 d + l ) ~ + l ( 3 h + l )  + (3h+1)(3d+l)y) 

= 0 ( ( 3 h + 1 ) ~ ( 3 d + l ) ~ + ' ~  log h + (d+1)(3d+l)d+1(3h+l)log d + (3d+1)(3h+l)~+' R log h)  

bits. 

Summing over all upper level rounds, the total number of message bits sent by p is 



Since there are (3h+1)(3d+l) processors, the total number of message bits exchanged 

by GrByz(P, G, h ,  d )  is of 

We can eliminate one round out of a total of d+2 rounds of message exchanges in 

each upper level round, with a small increase in message bits. Thus GrByd) can 

terminate in an optimal number of rounds. We prove this in the next theorem. 

Theorem 7: Let the number of processors be n = (3h+1)(3d+l) and 
M + h + d be the upper bound on the number of faulty processors. 
Byzantine Agreement can be reached in hd + h + d + 1 rounds using 
0 (d(3d+l)d+2(3h+1)310g d + (3d+l)d+2h(3h+l)h+210g h + d2h(3h+l)h+310g h) 
message bits. 

Proof. Each upper level round in algorithm GrByz(P, G, h ,  d )  has d+2 rounds. 

d+l rounds for the procedures Byzo to agree on the groups' messages received in a 

previous upper level round, (or the initial value in upper level round I ) ,  and an 

extra round to send the agreed message set to all processors. We now show that this 

extra round can be eliminated. The agreed value (AgreedGrM) agreed by a processor 

in procedure Byzo is based on the messages it received in round d+l of the procedure 

Byz(). If all correct processors in a correct group, say group g, send the message set 

in round d + l  of the procedure Byzo to all processors in P, instead of to only the 

processors within group g, other correct processors (outside group g) can agree on the 

same value ( ~ ~ r e e d ~ r M )  as the correct processors do in group g. If group g is 

faulty, it does not matter whether the extra round is in the algorithm or not, since 



faulty groups can do anything. Since we have h+l upper level rounds engaged in 

message exchanges, after the elimination of an extra round in each upper level round. 

the total number of rounds is (h+l)(d+l)  = hd + h + d + 1. 

We now consider the extra message bits introduced in eliminating the extra round. 

During the last round of Byd),  instead of sending the message set to 3d+l processors 

in the group to which it belongs, p now sends the message set to all (3h + 1)(3d + 1) 

processors. Therefore, we increase the total number of message bits at  most by a 

factor of 3h+l. The total number of message bits is therefore of 

0 (d(3d+l)d+2(3h+l)310g d + (3d+l)d+2h(3h+l)h+210g h + d2h(3h+l)h+3 log h). 0 

The message complexity of algorithm GrByzO is a function of h and d. Let us 

consider the values of h and d such that the message bits used by algorithm GrByzO 

is minimized. Given t ,  the number of faulty processors we want to tolerate, in order 

to get GrByzO to work correctly, h and d must satisfy the inequality: 

t 6 h ~ d  + h + d .  (5) 

For simplicity, let t =c2+ 2c. where c is an integer greater than 1. We claim that 

when h = d  = c the message bits used by GrByd) is very close to the minimum when 

compared to other values of h 'and d under constraint ( 5 )  above. 

To prove this claim, let 0 (m(h,d)) be the message complexity of GrByd), where 

m o  is a function of h and d. For simplicity we use an approximate formula 

m(h.d) = (3d+l)d+2h(3h+l)h+2 (see Theorem 7). Since h and d must satisfy (51, let 

' d =c-q,  where q is a real number less than c. Since m() increases as h and d 



increase, to get smaller message complexity, we want to get as smaller h as possible 

under constraint (5) .  therefore we can express h as c +q(c+l ) / (c -q+l )  and m(h.d) as 

a function of q. We want to show that the message complexity increases as q 

d m(q) 
increases. This means that the first derivative - > 0 .  This can be shown as 

d q 

follows: 

(c+1123(h+2> 
for 1 < q < c ,  because the term increases faster than the term 

(c-~+1)~(3h+l) 
3(d+2) 3(c-q+2) -- - as q increases in the interval 0 < q < c and when q=O the two terms 3d+l 3(c-q)+l 

are equal. 

The case for d =c+q  can be treated similarly. 

When h = d ,  we have the following corollary. 

Corollary 7.1: Let the number of processors be n = (3d+1I2 and d2+ 2d 
be the upper bound on the number of faulty processors. Byzantine 
Agreement can be reached in d2+ 2d + 1 rounds using 
0 (d (3d+l  )d+610g d + d(3d+l  )2d+410g d )  message bits. 

3.5. Concluding Remarks 

We assume that n = (3h+1) (3d+l )  processors are divided into ( 3 h + l )  groups. This 

can easily be arranged if all processor names are unique. 

In a large network that spans a large geographical area, the message delay time is 



longer and the communications cost is higher for a pair of widely separated nodes 

than for a pair of close nodes. Another advantage of our algorithm is that by 

grouping processors that are close to each other, two distant nodes that belong to 

different groups need to communicate only once in an upper level round of our 

algorithm. In contrast to other Agreement algorithms in which every pair of nodes 

must communicate with each other in each of the t+l rounds, in our algorithm, with 

h = d two processors in two different groups need only Jt+i rounds of message 

exchanges. 



Chapter 4 

Network Failures 

4.1. Introduction 

In this chapter, we present a protocol for two nodes, u and v, of a network to 

communicate reliably in the presence of up to t processor and 1 link Byzantine 

failures. The protocol works under the condition that the fixed-pair connectivity 

function f (for a definition of f ,  please see the next chapter) satisfies either (1) 

f(G.u.v.2t) 2 21 + 1 or (2) f(G.u.v.a) 3 21 + 1 and f(G,u.v.a+l) is undefined, where G 

is the underlying graph of the network and a is any positive integer. The second 

case deals wiih ihe situation in which there are 2i+i direct i i n ~ s  between u and v. 

In that situation, if only up to 1 links are faulty, the correct message can be obtained 

by a simple majority applied on the messages received from the 21+l direct links. 

We will also prove that the above condition is a necessary condition for u and v to 

communicate reliably iii the presence of up to t processor and 1 link Byzantine 

failures. 

Most previous research on Byzantine Agreement assumed that link failure is a 

. special case of processor failure, and if link failure occurs, one of the two end nodes 

of the faulty link is regarded as faulty. We separate processor and link failures 

here. If a Byzantine Agreement algorithm can tolerate up to t processor failures 



when no link failure occurs, then by using our protocol for communication. Byzantine 

Agreement can be achieved in the presence of up to t processor and I link Byzantine 

failures, provided the network satisfies the sufficient condition for reliable 

communication. If two correct processors cannot communicate reliably, no agreement 

can be achieved. By combining the necessary and sufficient condition for the reaching 

of Byzantine Agreement in the presence of up to t processor failures without link 

failure and the necessary and sufficient condition for reliable communication in the 

presence of up to t processor and I link failures, a necessary and sufficient condition 

for Byzantine Agreement under t processor and 1 link failures is obtained. 

4.2. Protocol 

If a network is not completely connected and the vertex connectivity of the 

network is at  least 2t + 1, a receiver can get a correct message from a correct sender. 

even though there are up to t faulty processors in the neiwork, by executing the 

protocol described in [7] (from now on we will refer to it as the SR protocol). The 

function of the SR protocol is to achieve reliable communication among correct 

processors. I t  can be used in Byzantine Agreement protocols for communication when 

the network is not completely connected. 

The SR protocol works under the following assumptions: 

A l .  The processors are arranged in a network with the vertex 
connectivity of the network at least 2t + 1. Each communication link 
is bidirectional, i.e., message can be sent in both direction. 

A2. Every processor knows the names of all the members of the network 
and all names are unique. 



A3. Processors communicate only by sending messages along links. 

A4. Every processor can identify the neighbor from which it receives each 
message. 

A message includes the route through which it was delivered. 

A correct processor relays a message only after it appends to the 
message the name of the processor from which it received the 
message, and a receiver upon receiving a message appends to the 
message the name of the last relay. 

A correct processor relays messages without either altering them or 
eavesdropping on their values. 

There exists an a priori upper bound on the delay in relaying a 
message by a correct processor. 

There exists an upper bound, t ,  on the number of faulty processors 
in the system. 

We prove that if A i  and A9 are changed to Ai '  and A9' below, respectively, two 

correct processors can communicate reliably in the presence of t processors and I link 

Byzantine failures. 

A l ' .  The fixed-pair connectivity function f for every two nodes u and v 
which participate in the protocol satisfies either (1) 
f(G.u.v.2t) > 21+1 or ( 2 )  f(G.u,v.a) > 21+1  and f(G,u,v,a+l) is 
undefined, where G is the underlying graph of the network and a is 
any arbitrary positive integer. 

A9'. There exist upper bounds, t ,  on the number of faulty processors and 
I, on the number of faulty links in the system. 

The SR protocol, modified as follows, will be called the MSR protocol. 

The sending processor sends the message to all its neighbors, and every relay 



processor broadcasts the message to all its neighbors, except the one from which the 

message was received. in accordance with A6. 

The receiving processor executes the following algorithm T (a constant, which is a 

maximum message delay) units of time after the sender sent the message have 

elapsed. 

Algorithm: receive(~essagesReceived, value); 

If there exists a set of nodes N ', IN'I = t ,  and a set of links E'.  LE'I = 1. 
such that all messages in MessagesReceived that did not pass through N '  U E' 
contain the same value v ,  then Value + v: 

else Value +- 0. 

Lemma 1: Under assumptions Al' .  A2-A8, and A9'. a receiver can get 
the correct value sent from a correct sender by executing procedure receive(). 

Proof. A8 implies that all messages that pass through a route which has no faulty 

processors or links will arrive within some fixed time interval T from the time the 

sender sent the message. 

A6 implies that if a message was routed through a route that has at  least one 

faulty processor or faulty link, the name of at  least one faulty processor or faulty 

link in the route will appear in the message. 

- Under the assumptions, the existence of N' and E' such that the messages that did 

not pass through N'  and E' contain the correct value sent from the correct sender is 

,clear. Let N '  be the set of faulty nodes and E' be the set of faulty links. Then 
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all messages that did not pass through N '  U E' are correct messages sent from the 

correct sender. 

Suppose v is the value sent by a correct sender and a receiver gets v' # v .  But 

this could only happen if all the routes for the messages which did not pass through 

N '  U E' contained at least one faulty processor or link. Let N" be the set of faulty 

processors and Z? be the set of faulty links. Then IN"I < t and IE"I < 1 by A9'. 

Therefore, every message must go through N '  U E' U N" U E", and N '  U E' U N" U E" 

separates the sender and the receiver. However, IN'I + IN"I < 2t and E'I + LE"I < 21 
contradict Al'. O 

By Lemma 1, Byzantine Agreement can be reached in the presence of up to t 

processor and 1 link failures if A1' is satisfied. We now show that if A l '  is not 

satisfied, then two correct processors cannot communicate reliably under t processor 

and I link failures. This also implies that no Byzantine Agreement can be achieved. 

Lemma 2: Let u,  v be two correct processors (nodes) of a network. 
Suppose that the fixed-pair connectivity function f does not satisfy (1) 
f(G.u.v.2t) 2 2L + 1, and there does not exist a positive integer a such that 
( 2 )  f(G,u,v,a) 3 2L+1 and f(G,u,v.a+l) is undefined, where G is the 
underlying graph o\f the network. Then u and v cannot communicate 
reliably in the presence of t processor and I link Byzantine failures. 

Proof. If neither ( 1 )  nor (2) is satisfied, then there exists a cut set of 2t nodes 

and 21 links the removal of which separates u and v. Let the 2t nodes of the cut 

set be {p l .p2 ,  .Pzt) and the 21 links in the cut set be {e lse2 .  ,e2). Partition 

the cut set into two sets A and B such that A = {pl .p2.  .pt} U {e lse2 ,  - .el) and 

B = ( P ~ + ~ * P , + ~ .  ' ' ' w ~ 2 t }  U {el+l.el+29 ,ezl). Suppose node u sends the value x to v .  



Figure 4-1: An Example of Unreliable Communication 

Since there are t faulty nodes and I faulty lifiks in the system. the elemems in A 

could all be faulty. In relaying x to v ,  all the elements in A change x to x'. Since 

A and B are symmetric, and both could be faulty, v cannot identify which message 

is correct. 

Theorem 3: ~ ~ z a n t i n e  Agreement is achievable in a synchronous system in 
the presence of up to t processor and 1 link Byzantine failures if and only if 
n 2 3t + 1 and the fixed-pair connectivity function f for every pair of 
participating nodes u and v satisfies either (1) f(G.u.v.2t) 3 21 + 1 or ( 2 )  
f(G.u.v,a) 3 21 + 1 and f(G.u.v.a+l) is undefined. 

Proof. This theorem follows from the fact that Byzantine Agreement can be 

reached if and only if n 3 3t + 1 [20] in the absence of link failure and from the 

'above two lemmas. 



Chapter 5 

The Connectivity Function 

5.1. Introduction 

One reliability measure of a network is its connectedness: That is, the number of 

nodes, or links, or both, which must be removed from a network in disconnecting it. 

The connectivity function represents, in addition to the removal of a nodes from a 

network N, the number of links which must be removed from N to make N 

disconnected. When a = 0, its value is the edge connectivity of N ,  and when a is the 

vertex connectivity of N, its value is 0; thus, the connectivity function is a 

generalization of the edge and vertex connectivities. 

This chapter discusses the connectivity function and is organized as follows. In 

Section 2,  we introduce the graph-theoretic terminology and definitions needed in later 

sections. In Section 3,  we describe some properties of the connectivity function. 

Section 4 deals with the problem of constructing graphs with given connectivity 

functions. Although the vertex and edge connectivities can be determined in 

polynomial time, it is proved in Section 5 that the problem of computing the fixed- 

pair connectivity function is NP-complete for general graphs; in addition, it is proved 

that the problem remains NP-complete for bipartite, chordal, and split graphs. In the 

'weighted case, the problem remains NP-complete even for complete graphs. An 



approximation problem for the connectivity function is also proved NP-hard. In 

Section 6, we present polynomial time algorithms for determining the fixed-pair 

connectivity function of certain graphs, including vertex-connectivity-bounded graphs. 

certain "regularly structured" graphs, such as complete graphs and n - d e s ,  and series- 

parallel graphs. In Section 7, we consider a path problem that is reiated to the 

connectivity function. 

5.2. Terminology and Definitions 

A graph G = (V.E) consists of a finite non-empty vertex set V=V(G) and an edge 

multi-set E=E(G). An edge of G is an unordered pair {u,v}  of vertices such that 

u,v E V and u f v .  If e = {u.v} E E(G), we say, variously, that e joins u and v ,  u and 

v are adjacent, e is incident on u and v ,  and u and v are incident with e. The degree 

of a vertex v is the number of edges incident on v .  Multiple edges are two or more 

edges that j o i ~  the S ~ I P  p81r ~f vertices. A graph is a mdti&rc#z if mu!tip!e edges 

are allowed; otherwise it is simple. 

Two simple graphs G = (V .  E)  and G'= ( V ' . E 1 )  are isomorphic i f  there is a one-to- 

one mapping f from V onto V ' that preserves adjacency, i.e.. {u,v\ E E if and only 

if {f(u),f(v)) E E'. A subdivision of an edge {u,v} of a graph G is an operation that 

replaces {u,v)  with a new vertex w and two edges. {u,w 

homeomorphic if both can be obtained from the same 

subdivisions. 

and 

graph 

{w , v ) .  Two graphs are 

by sequences of edge 

Let G = (V. E) be a simple graph. A path p in G is a sequence of vertices 

v1.v2.  - .vk such that { v ~ . v ~ + ~ )  E E for i E { 1. .k-11. Vertices v l  and vk are 



called the ends of the path p. If u and v are the ends of a path, we call the path a 

(u,v)-path. A path is simple if all its vertices are distinct. Two (u,v)-paths are 

vertex disjoint if the two paths have no vertex in common except for u and v, and 

are edge disjoint if the two paths have no edge in common. A path v1,v2. - .vk is 

called a cycle if v1 = vk, k 3 2,  and it has no repeated edges. A cycle is simple if 

the vertices v1,v2. , v ~ - ~  are distinct. The length of a path or a cycle p is the 

number of edges in p, i.e.. length(p) = k-1. We sometimes refer to the vertex set 

V(p) = {vili E (1.2, k)) and the edge set E(p) = { {V,.V,,~ }ti E ( 1. .k-1)) of a path 

or a cycle p. 

A vertex v is reachble from another vertex u if there is a (u,v)-path. A graph G 

is connected if every vertex is reachable from every other vertex in G, and is 

disconnected if G has two vertices u and v such that v is not reachable from u. A 

graph G'=(V1.E') is a subgraph of a graph G = ( V , E )  if V1CVar?dE'GE. A 

component is a maximally connected subgraph. If G'= (V'. E') is a maximal subgraph 

of G with vertex set V', i-e., E ' =  {{u.v}lu,v E V',{u.v] E E); we say G' is a subgraph of 

G induced by V'. For v E V.VICV and E'CE,  we use G - v  and G -V '  to denote 

subgraphs of G induced by V -  {v) and V- V', respectively, and G -E1denotes the 

subgraph (V. E-E'). 

A set V' of vertices is a vertex cut set of a connected graph G = (V. E)  if G - V' has 

more than one component: in this case the removal of the vertex set V' is said to 

disconnect G. The edge cut set E' of edges and the mixed cut set (A,B),  where 

A C.V or B CE, are defined similarly. 
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Let s and t be two distinct vertices of a graph G = (V.E).  A vertex set V ' ,  where 

s.t B V ' ,  is an (s, t)  vertex cut set if the removal of V '  from G separates s and t .  The 

(s, t)  edge cut set and the (s, t)  mixed cut set (A,B),  where s.t 6 A.A CV.  and BCE, are 

defined similarly. 

The fixed-pair vertex connectivity for two nonadjacent vertices s and t of G,  denoted 

by u(G,s,t), is the smallest number of vertices, not including s and t ,  whose removal 

separates s and t .  The vertex connectivity of G, denoted by u(G), is the smallest 

number of vertices whose removal disconnects G or results in a trivial graph (a single 

vertex); clearly it is equal to min{lc(G.s.t)ls,t E V,{s,t} @El if G f Kn. 

The fixed-pair edge connectivity between two vertices s and t of G, denoted by 

A(G,s,t), is the minimum number. of edges whose removal separates s and t .  The 

edge connectivity of G, denoted by A(G), is the minimum number of edges whose 

removal disconnects G;  it is equal to min(X(G.s.t)ls,t E V.s Z t ) .  

The fixed-pair connectivity function for two vertices s and t of G,  denoted by 

f(G.s.t,a), equals b if there exists some set of a vertices and b edges whose removal 

separates s and t and there is no set of a - 1 vertices and b edges or of a vertices 

and b - 1  edges with this property. Similarly, we define the global connectivity 

function F(G,a): F(G.a) = b if there exists some set of a vertices and b edges whose 

removal disconnects G and there is no set of a - 1 vertices and b edges or of a 

vertices and b - 1 edges with this property. 

Since F(G.0) = A(G) and F(G.u(G)) = 0 by definition, the connectivity function 

generalizes the concepts of edge and vertex connectivities. 
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Throughout this thesis we discuss only the connectivity functions of connected 

graphs. For convenience, from here on, until and unless otherwise stated, a graph, a 

path, and a cycle means a simple graph, a simple path, and a simple cycle, 

respectively. 

5.3. Properties of Connectivity Function 

In this section, we consider a graph G = ( V ,  E) containing two distinguished vertices 

s and t .  

Lemma 1: Let G V = G - V ,  a be a positive integer, and b be a nonnegative 

integer. If f ( ~ , . s . t , a )  >/ b for all v E V-{s . t }  such that v f s.t then 

f(G,s,t.a) > b. 

Proof. It is clear that f(G.s.t.a) 2 b. Suppose f(G.s. ta)  = b and let (A,B) with 

IAl=a and IBI=b be a mixed cut-set which separates s and t in G .  Then for some 

v E A. (A-(v).B) also separates s and t of Gv, but IA-(v}l=a-1 and IBI=b imply that 

f(Gv.s.t.a-1) = b, contradicting the assumption. 0 

Let G = (V, E )  be a multigraph. We define a graph operation edge contraction, 

denoted by eclG,u.v), where u and v are in G and are adjacent, as follows: ec(G.u,v) 

identifies u and v with all edges and adjacency preserved except for the edges between 

u and v, which are removed. 

Note that the edge contraction operation is different from the elementary contraction 

operation which also removes the resulting duplicate edges, if any. The following 

lemma concerns the connectivity function of a graph after an edge contraction 

operation. 



Lemma 2: Let v be a vertex adjacent to s such that v f t ,  and let 
G'=ec(G.s,v). If there exists a mixed cut-set (A ,B)  that separates s and t in 
G', then (A,B)  also separates s and t in G. 

Proof. If the lemma were not true, then after deleting (A,B)  from G,  there would 

be a path P from s to t in G - A  - B. Whether v is on P or not. P or ec(P.s.v) is 

also a path from s to t in G-A-B, a contradiction. 

The above lemma implies that if f(G'.s.t,a) = b' and f(G,s.t,a) = b, then b' 3 b. 

Theorem 3: f(G.s.t.a) 3 b if and only if condition 1 below holds and there 
exists a vertex v adjacent to s ,  where v f t ,  satisfying conditions 2 and 3. 

2 .  f(G'.s.t.a) 3 b, where G'=ec(G.s.v), or there is no mixed cut-set of 
a-1 vertices and b edges or of a vertices and b-1 edges that separates 
s and t of G'. 

3. Let X* be the set of all nonempty subsets of E', where E' is the set 

of all edges that are incident on both s and t .  For each X E x*, 
f(Gn,s.t,a) 3 b - IXI, where G" = G - X .  

Proof. The necessity is implied by a definition of connectivity function and Lemma 

2 .  We now prove, the sufficiency. If the theorem were not true, then there would 

exist a mixed cut set (A ,B) ,  such that IAl = a  and IBI < b -  1, without violating the 

three conditions. By condition 3,  no edge in B is incident to both s and v. There 

are two cases to consider: either v is in A or not. If v is in A,  then (A-v.B) 

separates s and t in G,, contradicting condition 1. If v is not in A ,  we claim that 

(A,B)  would also separate s and t in G', a contradiction to condition 2. Since v is 

adjacent to s and edge { s , v )  is not in B, so (A,B)  separates s and v from t in G, and 

therefore it separates s from t in G'. 0 



5.4. Construction of Graphs with Given Connectivity 

Functions 

Let a be a positive integer. It is shown in [3] that every decreasing function from 

(0.1, . . . ,a) into the non-negative integers such that F(a) = 0 is the connectivity 

function for some graph, but the construction of such a graph requires a large 

number of vertices. 

In the case of a fixed number n of vertices. F(j)=l means that every vertex must 

G+l) G+l) 
be of degree at least j+l, and so the number of edges rn > [-f7. If m = [-$7 for 

some positive integer j, then a graph G = ( V .  E)  with K(G) = j + 1 = 12m/nl. IVI = n, and 

IEl = m  can be constructed [4] and this implies that F( j )  > 1 for G'. 

Let S be a sequence of ordered pairs (i .F(i))  where i and F f i )  are non-negative 

integers such that F f i )  is a strictly decreasing function of i. Take a pair (i1,F(i')! in 

S such that i'+F(il) is maximum, and let a = i n +  F(il). Construct a graph G = (V. E) 

with its global connectivity function F' satisfying F'(G,il) = F(G.2). Since 

K(G'-V' )  2 a - IV'I for any subset V ' C V ,  therefore, we have F Y j )  > a - j. On the 

other hand, by the definition of the vertex connectivity, j+ F( j )  6 a holds. It 

follows that F Y j )  2 F ( j )  for each pair ( j .F(j))  in S. 

As shown in the next section, the evaluation of a fixed-pair connectivity function is. 

in general. NP-hard. Therefore, given an arbitrary graph G containing vertices s, t 

and a pair (i.j) of positive integers, the problem of constructing a graph G' from G 

such that f(G'.s.t,i)= j by adding the minimum number of edges to G is also 

NP-hard. 



Here we show that computing a fixed-pair connectivity function is, in general, 

NP-hard. We pose this problem as a decision problem as follows: 

Fixed-pair Connectivity Function, FPC. 

INSTANCE: Graph G = (V.E), s,t E V, an integer a. 0 < a < IVI-2, and positive 

integer b. 

QUESTION: Does there exist a subset V'CV with s.t BV1andlV'l=a, such that 

X(G - C",s,t) < b, i.e.. the edge connectivity between s and t in G -  V'  is less than or 

equal to b? 

We first prove the NP-completeness of a similar problem, MMF, viz.. finding the 

minimum maximum flow over all subnetworks induced by deleting a nodes from a 

network. 

Min-Max Flow of Subnetworks, MMF. 

INSTANCE: Network W with node set N and link set L, s.t E N ,  and positive 

integers a and b. 

QUESTION: Does there exist a set of nodes N ' C N  with IN 'I = a, and s.t B N ' such 

that, when the nodes in N '  are removed from W, the flow from s to t is at  most b? 

Theorem 4: MMF is NP-complete. 

Proof. Since a maximum flow of a network can be found in polynomial time for 

each choice of N' ,  this problem is in NP. 



To complete the proof, we now show that the "minimum cut into equal-sized 

subsets" problem, which is known to be NP-complete [15], is polynomially reducible 

to MMF. 

Minimum Cut into Equal-Sized Subsets, MCE. 

INSTANCE: Graph G =(V.E), two distinguished vertices s.t E V, and a positive 

integer M. 

QUESTION: Is there a partition V =  PI U P2, Pl n P2=0, such that IP11=IP21. 

s E P1.t E P2, and I{{u.v} E E l u  E P l , v  E P2}l < M? 

Theorem 5: MCE a MMF. 

Proof. Let G = (V, E) and M be an instance of MCE, where V={vl ...., ~ ~ - ~ . s . t } ,  and 

without loss of generality let n = IVI be even. 

Transformation: 

Network W = ( N .  L)  

N = {s'. t') U V U C, 
where C = {cl ,..., c,-~}. 

L = u { {s'.sl. {t.t'JJ 
u {{s'.ciJ 1 0  < i < n-11 

U {{ci.vi} 10 < i < n-l} 
u {{vi.tl} I 0 < i < n-11 

u {{ci.tn} I 0 < i < n-1). 

with capacities of the links as follows: 



cap(e) = 1 for e E E, 
cap(e) = n2 + 4n for e = {s i ,c i) .  

cap(e> = 2n for e = {ci.vi} or {s .s l} .  

cap(e) = n for e = {vi,tt} or {tl . t) .  

cap(e) = n2 for e = {ci.ti}. 

Figure 5-1: Construction of W=fN,L ) 

Since we add only n nodes in constructing W from graph G ,  and the capacity for 

each link is of 0 ( n 2 ) ,  the transformation is polynomial. 

Suppose in a given instance of MCE. M. M' 6 M, the vertex set V is partitioned 

- into two equal-sized disjoint sets V I  and V2, where V1 = {s ,v l .  - ,vh) h =:- 1 .  and 
2 

V2 = V - V 1 .  Define a cut is the set of edges that has one end in V1 and the other 

end in V2. The size of a cut is the number of edges in the cut. We can then 

construct a flow from s' to- t' of a t  most b units after deleting a = 2 -  1 nodes in W. 
2 



Let N r = { c n ,  2 , . . . ~  n-2 1 ,  and P l = C - N I U V I U { s ' )  and P 2 = V 2 U { t ' )  be a partition 

of the vertices of W-N'. 

After removing N '  from W ,  the edge cut separating VJ from V2 has size M'. 

Similarly the edge cuts which separate V I  from t', and C-N' from t' have sizes 

(n/2-1 )n and (n/2-1 In2, respectively. 

Therefore, the size of any edge cut separating PI from P2 and so the flow from s' 

to t' is at  most M' + (2-l)n + (2-l)n2 < b by the max-flow-min-cut-theorem. 
2 2 

Suppose there is a min-max flow of b' units from s' to t' in W - N ' ,  where b' < b 

We claim that N'CC. This is obvious because deleting any ci will delete at  least 

n2 units o i  flow, whiie deleting any other node not in C will renave at most n 

units of flow. 

Let A"= i ~ ~ , ~ , ~ , .  ... "p~(n-2) ) ,  where p is a permutation on {n/2,n/2+1, . . ,n-2). 

From the construction of W, if the flow is maximum, the links (ci.tl). (vi.tl). 

ci B N ' ,  can all have flow equal to their capacities 

(sl.ci) are sufficiently high. 

But the total flow from ci 6?N' to t'. ci 6?N1, is 

since the capacities of the edges 

then ("l)n2 and the total flow 
2 

from vi to t', ci 6? N' .  is ("l)n2. Therefore, the remaining M' units of flow. 
2 

M' = b' - (n/2-1)n - (n/2-l)n2 6 M. must come from V2 = {vi 1 ci E N '1. Since V2 is 



adjacent only to V, = V -  V2 and t', and again because of the sufficiently large 

capacities of (s8,ci) and (c i ,v i ) ,  the flows in the edges ( v . , ~ . ) ,  where ci B N '  and 
1 I 

cj E N' ,  are equal to their capacities. Therefore, the edges between V I  and V2 are 

part of a cut in W - N '  and are also a cut of size at  most M in the instance of 

MCE. 

Intuitively, deleting ci from W implies that we put vertex v i  of graph G (an 

instance of MCE) into P2. For simplicity the links in the construction of W are 

undirected. Since an undirected link {u.v] is equivalent to two directed links (u,v) 

and (v ,u)  in network flow problems, our results hold also for the directed case. 

Theorem 6: The FPC problem is NP-complete. 

Proof. To show that the problem is in NP, we nondeterministically delete a 

vertices and compare the edge connectivity of the resulting graph with b. Since the 

edge connectivity can be found in polynomial time, this nondeterministic algorithm has 

polynomial time complexity. 

We now prove that it is NP-hard by transforming MMF to the fixed-pair 

connectivity function problem. 

Transformation: 

We transform the network W=(N,L) of an instance of MMF into a graph G = (V.E) .  

where V =  N. For each link e8= {u.v} in L with cap(e8) = c ,  introduce c edges between 

u and v in G. To avoid multiple edges, insert a vertex in the middle of each edge 
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thus introduced. Since the instances of MMF, which were derived from MCE, have 

edge capacity of 0 (n2), therefore the transformation is polynomial. 

Since both the edge connectivity and the maximum flow are equal to the minimum 

cut, the NP-hardness of the FPC follows. 

5.5.1. Bipartite Graphs 

A graph G = ( V ,  E)  is bipartite if its vertex set V can be partitioned into two sets U 

and W such that every edge of G has one end in U and the other end in W, or. 

equivalently, G is bipartite if every cycle of G has even length [171. 

We can form a bipartite graph from a graph G by doubling the length of every 

cycle of G, for example, by replacing each edge of G with a path of length two. 

Intuitively, such expansion will preserve the value of the fixed-pair vertex 

connectivity, the fixed-pair edge connectivity, and the fixed-pair connectivity function 

as well. We formalize these ideas in the proof of the next theorem. 

Theorem 7: The fixed-pair connectivity function problem, FPC, is 
NP-complete for bipartite graphs. 

Proof. It is easy to show that FPC belongs to NP: Nondeterministically remove a 

vertices and determine the edge connectivity of the resulting graph. We now show 

that any instance of FPC for a general graph can be transformed into an instance of 

. FPC for a bipartite graph. Let G = ( V .  6). two distinguished vertices s and t, and 

two nonnegative integers a and b be an instance of FPC. We transform G into a 

bipartite graph G' = (V ' ,  E')  such that f(G,s.t,a) = f(G'.s.t.a). Since an edge joining s 



and t must be in any (s,t) mixed cut set, we can assume without lost of generality 

that no edge is incident with both s and t. More formally, define G' as follows: 

G' = (V'. E'). 
v l = v u  v.  
V' = {wele E El, 
E' = {{u.we}.{we.v}le = {u.vl E El. 

Clearly, the transformation is polynomial. Each e E E' has one end in V and the 

other end in V", hence G' is bipartite. It is also easy to see that 

P = ~ . v ( l ) . v ( 2 ) : . * , v ( k ) . t  is a path of G if and only if 

= ~ ~ ~ { s , v ~ l ~ } ~ ~ ~ ~ ~ ~ ~ { v ~ l ~ , v ~ 2 ~ } ~  . . . . ~ ~ ( ~ ) , ~ . t  is a path of G'. We call P' the expanded 

version of P. Let (A,B) be an (s,t) mixed cut set of G and B be the set of edges 

formed from B by replacing each edge e = {u.v} E B with either {u.we) or {we.vf, but 

not both. We thus have IBI= IBI. If an (s,t)-path P of G contains some element of 

A or B. then the expanded version of P in G' contains some element of A or B. 

Therefore, (A.B) is an (s,t) mixed cut set of G' with IBl=IBI. It follows that 

f(G.s.t,a) 2 f(G.s.t.a). To prove f(G,s.t,a) < f(G'.s.t.a), let (Af.B) be an (s,t) mixed 

cut set of G', and P be an (s,t)-path of G such that P' is the expanded version of P. 

If P' contains some u E V or w(U,v) E V ' ,  then P must also contain u or both u and v ,  

respectively. So let A be a vertex set formed from A' by replacing each vertex 

b(U,vJ E V '  f7 A' with u if u Z sJ, and B be an edge set formed from B by replacing 

each edge {w,.v} E E '  with e. Then. (A,B) is clearly an (s,t) mixed cut set of G with 

IAl < IA'I and IBI < IBI, and this completes the proof. 



5.5.2. Chordal and Split Graphs 

A graph is chordal if for every cycle of length greater than three there is a chord. 

where a chord is an edge joining two non-consecutive vertices of the cycle. A graph 

is a split graph if both it and its complement are chordal. Split graphs form a 

proper subclass of chordal graphs. 

We show here that FPC is NP-complete for the split graphs. 

Theorem 8: The f ixed-pair connectivity function problem. FPC, is 
NP-complete for 'split graphs which are also edge graphs. 

Proof. It is easy to show that FPC belongs to . NP. Let G = (V.  E), two 

distinguished vertices s and t ,  and two nonnegative integers a and b be an instance of 

FPC. We transform G = (V.  E) into a split graph G'= (V ' .  E ' )  which is also an edge 

graph such that f(G.s,t,a) d b if and only if f(G1.s.t,a) d n3 b + n2, where n = IVI. 

We triangulate G by adding n3 - 1 copies of a path of length two to each adjacent 

pair of vertices of G and an edge to each non-adjacent pair of distinct vertices of G. 

Intuitively, the n3- 1 copies of a path added to each adjacent pair of vertices of G 

increase the capacity of an edge of G so much that the subsequently added edge to 

each non-adjacent pair of G with capacity one is negligible with respect to the amount 

of flow it can flow. More formally G' is defined as ' follows: 

G' = (V'. E ' )  
v l = v u  v ,  
V" = { w , ~ I ~  E E. 1 d i < n3J. 

E t = E U E ,  UE,. 
El = {{u.v} l u.v E V, u f v.  {u.v) 6? El 



It is clear that the transformation is polynomial. First we show f(G.s.t.a) d b if 

and only if f(G'.s.t.a) < n3b + n2. It is easy to see that s , v l ,  - - ,vk.t is a path of 

G if and only if PI={ s . v l , * - .  .vk.t, S . W ~ ~ , ~ ~ ) , ~ , V ~ .  ' . . 
~ , w ~ ~ , ~ ~ ) , ~ . v 1 ,  p v k v w { ~ k , t ) , 2 s t 9  . . . S'W{s,vl~,n 3 -1 , v l ,  . is a set of 

paths of G'-I?. Since lrl < n2 and f(G'-I?,s,t.a) = n3 f ( ~ , s . t , a ) ,  we get 

f(G'.s.t.a) < n3b + n2. To prove f(G.s,t.a) 6 b, let (A ,B)  be a minimal (s , t )  mixed 

cut set of G' with MI= a and IBI d n3b + n2. Similar to the NP-completeness proof 

for bipartite graph, by removing BnE"' from the mixed cut set (A,B),  where 

IBnI?I < n2, we get f(G.s.t,a) d b. 

Finally, we prove by contradiction that G' is a split graph. Let C be a chordless 

cycle of G' with length greater than three. In G', the vertex set V forms a clique 

and V" is an independent set. Therefore. C has at most two vertices from V and has 

at least two vertices from V". Let v E v n V ( C )  and a.b E V(C)  be adjacent to v .  

Since v E V", its adjacent vertices are all in V; but a,b E V implies that there is a 

chord {a,b} in C, a contradiction, hence G' is chordal. Similarly, it is easy to see that 

the complement of G'. c', with L' being an independent sel and \'" being a clique, is 

also chordal. It follows that G' is split. 0 

5.5.3. Weighted version 

In the definition of the connectivity function, we assumed the edges of a graph had 

equal weight. In some instances, for example, the problem of separating two nodes of 

a network with minimum cost, it is useful to allow edges to have different weights. 

This consideration gives rise to the weighted version of the connectivity function. 



We now prove that the weighted version is NP-complete even for complete graphs. 

Let 6 = (V ,E)  be a graph and w be a mapping from E into N. The weighted fixed- 

pair connectivity function and the corresponding decision problem are defined as 

follows: 

Given a graph 6 =  ( V , E )  with two distinguished vertices s.t E V and edge 
weight w: E + N ,  the weighted fixed-pair connectivity function wf(G,s f ,a) 
equals b if there exists an ( s , t )  mixed cut set ( V ' Z ' )  with IVII=a and 

ze E E ,  w ( e ) = b  and there is no ( s , t )  mixed cut set (VJ?)' with IVI=a-1 

and Ce w(e) = b. or with IV'I = a and ze E" w(e) < b. 

Weighted Fixed-Pair Connectivity Function Problem, WFPC. 

INSTANCE: Graph G = (V,  E)  with two distinguished vertices s and t ,  a function 

w: E -+ N, and two nonnegative integers a and b. 

QUESTION: Does there exist a subset V ' C  V with s.t V'  and IV ' I  = a, such that 

there is an ( s , t )  edge cut set E' in G - V '  with Ce -, w(e) < b? 

Theorem 9: The weighted fixed-pair connectivity function problem, 
WFPC, is NP-complete for complete graphs. 

Proof. Based on the same argument as in the NP-completeness proof of FPC, we 

have W F K  E NP. Let G =  (V.E) ,  two distinguished vertices s and t ,  and two 

nonnegative integers a and b be an instance of FPC. We transform G into a weighted 

complete graph 6' = (V ' .E1)  such that f(G,s.t.a) 6 b if and only if 

wf(G',s.t.a) < n3 b + n2, where n = IM. Define G' as follows: 

G' = (V' ,  E').  
V '  = v, 



n3 if e E E. 
W ( e )  = { 1 otherwise. 

Clearly, the transformation is polynomial. It is straightforward to verify that G' is 

complete and f(G,s.t.a) < b if and only if wf(G',s.t.a) 6 n3 b + n2. 

Several classes of graphs contain the complete graphs as members; we list some of 

them in the following corollary. 

Corollary 9.1: The weighted fixed-pair connectivity function problem. 
WFPC, is NP-complete for edge graphs, interval graphs, strongly chordal 
graphs, and cographs. 

5.5.4. Approximation 

Since the evaluation of the fixed-pair connectivity function is NP-hard as shown in 

Theorem 6, looking for an optimal cut set is, in general, computationally intractable. 

We might want to know if there exists a polynomial approximation algorithm that 

can find a vertex set CCV-{s.t}  of size a such that IX(G--C.s.t)- f(G.s,t.a)l < k .  

where k is a ?xed positive integer. We show here that finding such an approximate 

solution is as difficult as finding an optimal solution. 

Theorem 10: Let G = (V .  E) be an arbitrary graph containing vertices s and 
t ,  and let a ,  k be an arbitrary pair of nonnegative integers. If P Z NP. 
then no polynomial-time algorithm A can find a vertex set C, with ICI = a .  
such that IX(G--C.s.t) - f(G.s.t.a)l < k.  

Proof. For a given graph G = ( V . E ) ,  let f(G.s.t.a)=b and C be the solution 

computed by A. First transform G = (V .  E) into G' = (V ' .  E')  as follows. Intuitively, 

we replace each original edge with k edges and place a new vertex in the middle of 

each new edge. 



E' = ~ b . ~ ~ ~ , ~ } , ~ } .  { W { ~ , ~ } , ~ . V I  I 1 6 i 6 k .  {u.v} E E}.  

The graph G' is clearly bipartite and since the capacity of each edge is a multiple of 

k ,  by a proof analogous to that for Theorem 7, it is easy to show that 

fiG'.s.t.a) = kb. Now let C, where ICI = a,  be the solution obtained by applying A to 

G'. If CCV. then X(G'-C.s.t) is a multiple of k ,  so let X(G'-C,s.t) = k j  for some 

positive integer j. We have Ikj-f(G'.s.t.a)l < k ,  i.e.. Ikj-kbl < k ;  this implies that 

k j =  kb and, therefore. C is an optimal solution for G as well. If CCV, let v' E C-V 

and replace v' with one of its adjacent vertices which are in V. Let C '  be the set C 

with every vertex not in V replaced by a vertex in V as above. It is clear that 

X(G-C '.s.t) 6 A(G-C,s.t) from the transformation. and therefore C '  is also an 

optimal solution for both G and G'. 

5.6. Polynomially Solvable Cases 

Presented in ,;his section are certain classes of graphs, the connectivity functions of 

which can be computed in polynomial time. The following Theorem will be 

frequently referred to in later sections. 

Theorem 11: [Meqer's Theorem] The minimum number of edges (vertices) 
separating two (nonadjacent) vertices s and t is the maximum number of 
edge (vertex) disjoint (s,t) paths. 

There are well known polynomial time algorithms for computing the edge 

connectivity and vertex connectivity, which are special cases of the connectivity 

function. Many efficient fixed-pair edge connectivity and fixed-pair vertex 



connectivity algorithms employ some maximum network flow algorithms to find the 

maximum number of disjoint paths connecting two vertices. For the edge and vertex 

connectivities, a common approach is to take the minimum value of the fixed-pair 

connectivities over a set of vertex pairs. With this approach, higher efficiency is 

normally achieved by minimizing the number of calls to a maximum flow algorithm 

that computes a fixed-pair connectivity. 

By virtue of the strictly decreasing property of the connectivity function, we have 

the following lemma. 

Lemma 12: Let G = (V .  E)  be a graph with two distinguished vertices 
s.t E V .  If the weighted fixed-pair connectivity function wf(G.s.t.0) = ~ ( G , s . t ) ,  
then wf(G.s.t.a) = u(G.s.t) - a  for all a such that 0 < a 6 u(G,s.t). 

Proof. By definition, wf(G.s.t.u(G,s.t)) = O and wf(G.s.t.a-1) > wf(G.s.t.a) for all a .  

0 < a d u(G.sf) .  It follows that wf(G,s.t.a) = u(G.s.t) - a ,  where 0 < a d dG.s . t ) .  

Corollary 12.1: If A(G.s.t) = u(G,s.t), then f(G.s.t.a) = u(G.s.t) - a  for all a,  
0 6 a d K ( G . S : ~ ) .  Similarly, if A(G) =u(G) ,  then F(G,a) = T - a  for all a,  
O 6 a 6 u(G).  

Lemma 12 and its corollary are useful in recognizing the connectivity function for 

graphs with certain "regular structures". Take a complete graph G = K ,  with n 

vertices, for example. Its vertex connectivity U(G) = A ( G )  =n-1,  and thus the global 

. connectivity function is obtained immediately by Corollary 12.1 . As every pair of 

distinct vertices of a complete graph are adjacent. u(G.s,t) is undefined. Since every 

( s , t )  mixed cut set must include the edge { s , t ) ,  this edge can be taken out from G 



before applying Corollary 12.1. We thus obtain 

X(G - ( { s . t } } . s . t )  = u(G - { { s , t ) } . s , t )  = n-2 and f ( ~  - {{s . t ) } .s , t ,a)  = n - 2 -a for all a.  

0 < a < n-2. After edge { s , t }  is restored to G - { { s . t ) } ,  we get f ( ~ , s . t . a )  = n-1-a 

for all a. 0 < a < n-2. In contrast with the result here, the weighted fixed-pair 

connectivity function problem is NP-complete for class of complete graphs as shown 

in Theorem 9. 

5.6.1. Graphs with Bounded Vertex Connectivity 

Let G = (V .  E) be a graph with two distinguished vertices s.t E V ,  having the fixed- 

pair connectivity function satisfying f(G.s.t,a) = b for a pair of integers a,  b. Let 

( A B )  be an ( s , t )  mixed cut set for G with IAl = a  and IBI = b. As 

f(G,s,t .a) = minv.,v{~(G-V'.s.t)ls.t B Vr.IV'I = a ) ,  one way to calculate f(Gs.t.a) is to 

systematically check X(G1.s.t) for every induced subgraphs G' of G with a fewer 

vertices and with s,i E C7(G'). If ~(G.s.t) is boiinded by a c~iistairt 8,  theri /f(G.s.ta) 

is undefined for a > k. Therefore, for any a, in calculating ffG,s,t,a), the number of 

n 
such G' whose edge connectivity we need to check is bounded by (*). where n=IVI. 

The following lemma immediately follows. 

Lemma 13: Let G = ( V .  E) be a graph with two distinguished vertices 
s,t E V ,  the weighted fixed-pair connectivity function wf(G.s.t,a) is computable 
in polynomial time for graphs whose u(G.s,t) is bounded by a constant. 

Corollary 13.1: The weighted fixed-pair connectivity function is 
computable in polynomial time for grid graphs, wheel graphs, and degree 
bounded graphs. 

As every planar graph G = (V.  E) with IV1 3 4 has at least four vertices of degree 

not exceeding five (Cor. 11.1  (e) in [17]) .  we have u(G) < 5. Therefore the global 



56 

connectivity function F(G.a) is undefined for all integers a satisfying a 3 j for some 

integer j < 5. The weighted or unweighted global connectivity function for a planar 

graph can thus be computed in polynomial time even by an exhaustive search. 

5.6.2. Graphs n-cube Qn 

For a positive integer n,  the n-cube. denoted by Q,, is a graph consisting of 2, 

vertices, each of which is labelled V , V ~ - ~ . . . V ~ ,  where vi  E (0.1). Two vertices of Q, are 

adjacent if and only if their labels differ in exactly one digit. 

Theorem 14: For all positive integers n, the vertex connectivity, u(Q,). 
of the n-cube Q,, is equal to n. 

Proof. Since each vertex of Q, has exactly rz neighbors. d Q , )  < n holds. We 

prove d Q n )  3 n by induction on n. the dimension of the n-cube. 

-4s Ql =K2 by definition, so u(Ql)  = 1, and the theorem is true for n = 1. 

Assuming the theorem is true for all n < r for some r 3 1, we consider the case 

where n =r+l. 

Let n = r  + 1. We assume u(Q,) < n and derive a contradiction. 

If d Q , )  < n,  then there is vertex cut set V' with IV'I=n-1. After V' is removed 

from Q,, Q, - V'has more than one component. Assume Q, - V' has x 2 2 

components, and let SIPS2. - .S, be the components of Q,-V'. We claim that 

x = 2  and if u = a n .  - *  .al E S1 and v = b , ,  .bl E S2, then ak Z bk for all k. 

1 d k < n. To prove the above claim consider any two distinct components Si and 

S,. We first prove that the first digit an of any vertex u = a n ,  ,al E S1 must be 



different from the first digit bn of any vertex v = b,, .bl E S2. Assume to the 

contrary that an = bn = 0. The case where an = bn = 1 can be treated similarly. Let 

9 consists of all the vertices of Qn with their first digits equal to 0. Observe that 

the subgraph induced by 9 is isomorphic to Qn-l. We note the following: 

(i) The cut set V' must have at least n -  1 vertices with their first digits equal 

to 0. Otherwise. let U ' =  V' fl p, where IU'I < n-1. For each k .  

1 6 k 6 x .  let be the vertices of Sk belonging to . Then 

= 0 U f U U'. Furthermore, Si and S. are separate in the graph 
I 

Qn -U' .  But then U', with IU'I < n -  1 ,  separates u E f from v € 4 in the 
J 

graph induced by 9. which is a Qn-l, a contradiction to the induction 

hypothesis u(Qn-,) = n-1. 

(ii) The cut set V' must include at least one vertex with the first digit equal 

to I. By the induction hypothesis, there are n - i vertex disjoint paths 

from ,al to l.bn-l. ,bl such that all vertices in the paths 

have their first digits equal to 1. Since u is adjacent to 1 .an-, , ,al and 

v is adjacent to l,bn-l, - .bl, V' is not a vertex cut set unless it has a t  

least one vertex with the first digit equals to 1. 

From (i) and (ii) above. it follows that IV'I 2 n ,  a contradiction to our original 

assumption, thus we must conclude an f b,. Since the above argument is valid for 

- any at, 1 6 k 6 n ,  it follows that ak Z bk for all k, 1 6 k 6 n, and there can be 

only 2 components in Qn - V'. i-e.. x = 2. 

For a vertex u of Qn, there is only one vertex in Q, with its ith digit different 



from the ith digit of u for all i, 1 6 i < n. Therefore, the number of vertices in 

Si, where i = 1.2, is one. But then the equality lSll + IS,] + IV'I = IV(Q,)I does not hold. - 
since ISII + IS21 + IV'I = n + 1, whereas IV(Qn)l = 2,. a contradiction. Thus the theorem 

follows. 17 

Corollary 14.1. For all positive integers n, the edge connectivity X(Q,). 

the fixed-pair vertex connectivity ~(Q,.s.t) for two non-adjacent vertices s, t 

of Q,, and the fixed-pair edge connectivity X(Qn.u.v) for any two distinct 

vertices u, v of Qn are all equal to n. 

Proof. Since the vertex connectivity of an n-cube cannot exceed the edge 

connectivity, the fixed-pair vertex connectivity, and the fixed-pair edge connectivity of 

the n-cube, and since each vertex of an n-cube has exactly n neighbors, none of the 

above connectivities can exceed n. 17 

Since K(Q,) = X(Q,). and K(Q,,u,v) = A(Qn.u.v) for two non-adjacent vertices u and v 

of Q,, the value of the global and fixed-pair connectivity functions for an n-cube can 

be computed by Lemma 12. 

5.6.3. Series-Parallel Graphs 

Two distinct edges of a graph are said to be in series if they are incident on the 

same vertex ("middle vertex") of degree two and are parallel if they join the same 

pair of distinct vertices. 

A series-parallel multigraph is defined recursively as follows: 

A graph consisting of two vertices joined by an edge is series-parallel. G 
is series-parallel if a graph obtained from G by replacing a pair of series 
edges together with the middle vertex or a pair of parallel edges of G by an 
edge is series-parallel. 0 



A series-parallel simple graph is defined as a series-parallel multigraph without 

multiple edges between any pair of vertices. 

We now define the class of graphs that are "suppressible to an edge". We follow 

the definitions in [18]: for a characterization, please see [18]. 

Let G = (V.  E)  be a simple graph. A vertex v E V is suppressible if v has degree 2. 

If v is suppressible, an elementary suppression - v applied to G results in a graph as 

follows: G -- v = ( V - v . E  U {u.w}) ,  where u and w are the two vertices adjacent to v ;  

to keep the graph simple, edge {u,w} is only added if u and w are not already 

adjacent. A suppression S of G is a sequence of elementary suppressions. The result 

of applying S to G is denoted by S(G). In this case we say G is suppressible to 

S(G). A total suppression of G is a suppression of G that cannot be extended. 

It is obvious that if a simple graph is series-parallel, then the graph is suppressible 

to an edge, and vice versa. We introduce suppressible graphs merely for the purpose 

of proving the correctness of some algorithms. From here on, the terms series-parallel 

graph and graph that is suppressible to an edge will be used interchangeably. 

The algorithm we present next computes the weighted fixed pair ' connectivity 

function wf(G.s.t.a) for a graph G which is suppressible to edge { s , t } .  Since an edge 

joining s and t must be in any ( s , t )  mixed cut set, we can assume without loss of 

generality that the input graph G has no edge joining s and t .  

The following procedures will be called by SPConFnO: 



G-a 

Figure 5-2: A Suppression S = -. a -- b -. c applied on G .  

CornpnendG! : retull-n!Cj c); 
Finds all the components in graph G, and returns the number, c, 

and the set C = {GI.G2. .G,}, of all components of G. 

MaxFlodG, w, s, t) : return(f.flow): 
Finds the maximum flow f from s to t and the corresponding flow 
pattern. w is a weight function from edge set of G into N. flow 
is a flow function on the edge set of graph G, i.e.. flow(e) gives 
the amount of flow that passes through edge e in the computed 
maximum flow pattern. 
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Procedure SPConFn(G, s, t, a): 

INPUT: Graph G = (V. E)  with two distinguished vertices s.t E V. 
a weight function w from E into N, and an integer a E N. 

OUTPUT: wffG, s, t ,  a). 

begin 

step 1: 

step 2: 
step 3: 

step 4: 

We now 

/* Find all the components in graph G - {s,t) 
by calling Component() */ 

(Comp, c) := Component(~{s,t}): 
(maxflow, flow) := MaxFlow(G, w, s ,  t); 
f o r  i E (1, .c) 

mflow(G,) := Ze E; flow(e). 

where Ei is the set of all edges {s, v )  such that v E V(Gi); 

Let c' be the number of components Gi such that mflow(Gi)>O: 
if a > c' then  

return (Message:"wf(G,s,t ,a) is undefined because a > K(G ,s.t 
else 
'* This is to block as much flow as possible by removing a vertices. 

The remaining flow will be blocked by removing a minimum weight 
edge cut set. */ 
begin 

select "a" largest mflow()*s, and 
let mflow(l), mflow(2). .... mflow(a) 
be the "a" largest mflow()'s: 

return(b':=maxf low - ZL1 mf low(Gi)) 

end 
end. 

prove the correctness of algorithm SPConFnO. Let ci be the subgraph of 

G induced by vertex set V(Gi) U {s.t} and I = { 1. .cl). Assume without loss of 

generality that 

mflow(G1) 3 mflow(G2) 2 * 3 mflow(Gc.) > 0 



Fact 1. Let S be a suppression of a graph G, and u, v, where u f v, be 
vertices of both G and S(G). There is a ( ~ , v ) - ~ a t h  in G if and only if there 
is a (u,v)-path in S(G). 

Lemma 15: Let s and t be two distinguished vertices of a simple graph 
G and G be suppressible to an edge {s,t}. Then for any two vertex-disjoint 
(s,t)-paths P and Q of G, there is no path R,  disjoint from P and Q, such 
that R connects a vertex in V(P)-{s.t} with a vertex in v(Q)-{s.t}. 

Proof. Let u E V(P)-{s.t}, v E V(Q>-{S,~}, and suppose there is a path 

u,w1.w2, ' ,wi.v connecting u and v, such that (v(P) U V(Q)) f l  {w1.w2. * .wi} =0. 

Since G is suppressible to {s,t}, let S be a suppression such that S(G) is edge {s,t}, 

and S' and S" be subsequences of S such that S=S'-- US". Without loss of 

generality, assume - u precedes - v in S. Since s.t.u,v E V(S'(G)). by Fact 1, there 

are two (s,t)-paths. (s.al. .u, . .al.t). (s.bl, ,v. .b,,t). and a (u,v)-path 

(u.w;. .w;,v) in S'(G), and these three paths are clearly vertex-disjoint, except at  s 

and t. Thus, u has degree at least three in S'(G), and s'(G) is not suppressible by 

- US", a contradiction to the assumption that G is suppressible by S. 

Fact 2. For all i,j E ( 1 .  .c} such that i f j. G, and Gj are disjoint. 

Proof. GL and G ,  are two different components. O 

Fact 3. Each (s,t)-path is in exactly one ci. 

Proof. Let P be any (s,t)-path. Then it contains one vertex in some Gi. Since the 

vertices of P are connected, therefore. P is in ci, and by Fact 2. P cannot be in two 

different ti's. 

Fact 4. For each i E I, the vertex connectivity ~ ( c ~ , s , t )  is at  most one. 



Proof. If ~ ( C ~ . s . t )  > 1 for some i, there are two vertex disjoint (s,t)-paths p, q in 

Since we assume that s and t are not adjacent, there is one vertex in V(g) and 

one vertex in V ( q )  both of which belong to Gi. By Lemma 15, p and q will be 

separated by removing s and t from ci, a contradiction that Gi is a component of 

G-{s.t). 

Theorem 16: Given valid arguments, G, s ,  t ,  a,  algorithm SPConFno 
correctly computes wffG,s,t,a). 

Proof. Let b' be the value returned by SPConFnO. The proof consists of two 

parts: 

1. wf(G.s.t,a) 6 b'. 

We need to prove that there is a vertex set V'EV(G)- {s,t) with IV1l=a and an 

edge set E' with ioial weight 8 such that the removal of V'  and E' from G 

disconnects s from t. From Fact 3, any (s,t)-~ath P is in cl for some i E I. If 

I 6 i 6 a ,  then by Fact 4, there exists a vertex set V'. IVII=a, such that P must pass 

through some v E V ' .  If a < i < c', on the other hand. P must pass through some 

minimum weight edge cut set EiCE(G). where ze E; flow(e) = mflow(Gi), by the 

Maximum-Flow Minimum-Cut Theorem. By removing V ' and {e E E;l a < i < c') from G, 

all paths from s to t are disconnected. 

. . 2. wf(G,s.t.a) 2 b'. 

Let (V",.l?) be any (s,t) mixed cut set with IV"I=a. By Fact 4 there exists a vertex 

v E V(Gi) such that any (~$1-path of ci must pass through v. Therefore, we can 



assume that V" f l  V(Gi) < 1 for all i E I. Then, since mflow(G1) 3 mflow(G,) 

. . mflow(Ga), the maximum flow F from s to t after removing V" from G 

satisfies 

a 

F = maxflow - Z m f l ~ w ( G ~ ( ~ ) )  a maxflow - Z mflow(Gi) = b' 
v"n v ( G ~ ) = ~  i= 1 

. and by the Maximum-Flow MinimumCut Theorem. we have Ce E,,w(e) 2 F 3 b'. 

Theorem 17: Algorithm SpConFn() for an input graph G = (V. E), where 
IVl = n, runs in time 0 (n logn). 

Proof. First note that the series-parallel graphs are a sub-class of planar graphs. 

and therefore 1El is of 0 (n). Step 1 finds the components of G-{s,t], and can be done 

in O(IEl) = 0 (n) by using the depth-first search. Step 2 computes a maximum flow 

from s to t for graph G; for (s, t)-planar graphs, i.e., graphs that can be drawn in 

the plane with no edges crossing each other such that vertices s and t are on the 

same face, a maximum flow from s to t can be found in O ( n  logn) [19]. Since if a 

graph is suppresible to edge {s, t ) ,  it is also (s, t)-planar. Step 2 is of 0 (n log n). 

Step 3 checks each edge incident on s to determine whether the other end of the edge 

is in GI and performs the summation; thus step 3 is of O(IEl)=O(n). Step 4 finds 

the "a" largest mflow()'s, which can be done in O(n)  [2]. Therefore, the time 

complexity of algorithm SPConFnO is of 0 (n log n). 0 

Algorithm SPConFno evaluates the weighted fixed-pair connectivity function 

wf(G,s,t,a) for a graph G that is suppressible to edge {s,t]. Next, we consider 

wffG,s,t,a) for G that is not suppressible to edge {s,t} but is suppressible to another 

edge {s'.tf}. We state some results in [ la ]  which are relevant to Lemma 20 that 

follows. 



Lemma 18: For any two total suppressions S and S' of G. s(G) andS1(G) 
are isomorphic. 

Lemma 19: If G is suppressible to an edge, then there is no subgraph 
homeomorphic to K,, the complete graph on four vertices. 

Lemma 20: Let G=(VJ) be a graph with two distinguished vertices 
s,t E V.  Suppose G is not suppressible to edge {s,t}, but is suppressible to an 
edge e f {s.t}, and, in addition, every vertex u E V is on some (s,t)-path. 
Then, we have the following. 

a) If there are two vertex disjoint (~$1-paths P and Q in G. 
where IV(P)I 3 3 and IV(Q)l k 3, such that u E V(P)-{s.t} and 
v E V(Q)-{s.t}, then there exists a (u,v)-path R such that 
V(R) - {u.v) is disjoint from V(P) and V(Q). 

b) Either wf(G.s.f.2) = 0  or wf(G.s.t.2) is undefined. 

Proof 

a) We prove by induction on the number of vertices. Assertion a) is clearly true 

for lV1 6 4. Assume it is true for IVl 6 k, for some k k 4. We now prove that it is 

also true for IVI = k+l. Since G is suppressible to an edge and G has at least 5 

vertices, some vertex v E V is suppressible. If v f s.t ,  then G - v is not suppressible 

to { s , t ) ,  and by the induction hypothesis, the lemma is true. There are two possible 

remaining cases: 

Case 1. Either s or t ,  and not both, is suppressible. 

Assume without loss of generality that s is the only suppressible vertex, and let 

vertices b and c be adjacent to s. If b and c are not adjacent to each other, then b 

and c have the same degree in G -s  as in G and so do all other vertices, and. 



therefore. G - s is non-suppressible. But G - s has at  least 4 vertices and obviously 

is not an edge; thus b and c must be adjacent to each other. Since there are two 

vertex disjoint (s,t)-paths P and Q, one must pass through b and the other through c. 

Paths P, Q have length greater than one, and thus b.c f t. but the path R=(b.c) 

connects P and Q. 

Case 2. Both s and t are suppressible. 

Assume vertices b and c are adjacent to s, and vertices d and e are adjacent to t. 

If b and c or d and e are adjacent to each other, Assertion a) immediately follows as 

in case 1. If not, the degrees of b, c, d, e and all other vertices in G -- s - t  remain 

the same as in G, so G - s -- t is non-suppressible. But G -- s - t has at least three 

vertices, i.e., it is not an edge, a contradiction to our assumption that G is 

suppressible to an edge. 

b) If Assertion b) was not true, then there would be three vertex disjoint 

(s.t)-paths. Let P and Q be two vertex disjoint (s,t)-paths with length greater than 

one. From a), there would be a (u,v)-path R, with u E v(P)-{s,t), v E v(Q)-{s,t}, such 

that V(R) - {u.v) is disjoint from V(P) and V(Q). But then G would have a subgraph 

homeomorphic to K4, a contradiction to Lemma 19. 

Notice that a vertex which is not on any (s,t)-path does not affect the connectivities 

d s f ) ,  X(s,t) or ffG,s,t,a). To evaluate any type of connectivity between s and t, we 

can therefore assume without loss of generality that, every vertex is on some 

(s,t)-path. If a graph is suppressible to edge {s,t), we apply algorithm SPConFnO. If 



a graph is suppressible to an edge e ,  but not to {s,t}. Lemma 20 tells us that 

flG,s,t,a) is only defined for a 6 2. In this case, even an exhaustive algorithm 

would run in polynomial time. 

By Theorem 16, algorithm s~ConFn( )  is applicable to series-parallel simple graphs. 

Consider a series-parallel multigraph. Let S be a set of multiple edges joining two 

vertices u and v.  Observe that if any e E S is in a minimal cut set, then so are all 

e E S. Thus, we treat the multiple edges joining u and v as one edge {u,v} with edge 

weight equal to E'I. Let G' be the graph thus obtained from a given graph G. It is 

easy to see that f(G.s.t.a) = wf(C7,s.t.a). To apply the method for simple graphs to 

multigraphs, we first replace multiple edges {u,v} by a single edge with weight 

w({u.v}), representing the number of edges joming u and v .  We then solve the 

weighted version of the connectivity function. 

5.7. A Path Problem 

Let G = (V. E) be a graph with two distinguished vertices s,t E V, V'GV. E'CE. and 

F' be a set of (3.t)-paths. An (s.t)-path p is said to be a (\"E1)-avoiding path if no 

vertex of p is in V '  and no edge of p is in E'. Define a predicate Q on P as 

follows: Q(P, (V', E')) = True if and only if P contains a (V'. El)-avoiding path. 

Given that the fixed-pair connectivity function f(G.s,t.a) > b, where a ,  b are 

positive integers, the question is: For a given positive integer k, does G have a set P 

of (s,t)-paths with IA < k, such that P contains a (V1.E')-avoiding path for all 

V' C V-{s,t} and E '  C E with IV'I < a and E'I 6 b? Furthermore, what is the 

minimum value of k such that the above question has the affirmative answer for all 

graphs G with f(G.s.t,a) > b? 



We have not been able to answer these questions; nevertheless, we have the 

following lemma, which relates Q on a graph G with Q on subgraphs of G. 

Lemma 21: Let G = (V, E)  be a graph with two distinguished vertices 
s.t E V, a ,  b be positive integers, and Pv be a set of (~$1-paths in G-v, 

where v E V-{s.t}. If, for each v E V-{s.t}, Q(PT,.(V'B1)) =True for all 

V' C V-{s,t,v} and E' C E-{e E E l e  is incident onv} with IV'I < a-1 and 
E'I 4 b, then for the path set P =  YE v-(s,tl P , we have Q(P. (V1,~ ' ) )=True  

for all V' C V-{s.t} and E' C E with IV'I = a  and IE'I = b. 

Proof. We prove by contradiction. Let V" C V-{s.t] and E"' C E with IV"I = a and 

1E"'I = b such that P contains no (V",Z?)-avoiding path. For any v E V", the path set Pv 

has no path containing v. Therefore, Q(P,(V"P)) = False implies that 

Q(PJV"-~VJJ")) = False. Since IV"-{v)l= a-1, we have a contradiction. 

5.8. Summary 

Table 5-0 gives a summary of the complexities of computing the fixed-pair 

connectivity function, FPC, and the weighted fixed-pair connectivity function, WFPC. 

for the graphs we have studied in this chapter. NPC means NP-complete. P means 

11711 polynomially solvable. means the problem 1s still unsolved, n is the number of 

vertices, m is the number of edges. and k is a positive constant. 



Class of Graphs FPC WFPC 

Bipartite 
Chordal 
Split 
Edge 
Strongly chordal 
Interval 
Cograph 
Complete 
Vertex connectivity 

bounded by k 
n-cube 
Series-parallel 
Approximation 

A(G-V1.s.t) - OPT < k 

NPC 
NPC 
NPC 
7 

O (nk+'m Log n) 
P 

0 (n log n)  

NPC 
NPC 
NPC 
NPC 
NPC 
NPC 
NPC 
NPC 

O (nk+'m Log n) 
? 

0 (n log n)  

Table 5-1: Complexity of FPC and WFPC. 



Chapter 6 

Conclusion 

We have presented a new (d2+2d)-resilient Byzantine Agreement protocol which 

terminates in the minimum number of rounds of message exchanges and uses 

0 ((3d)2d+6) messages, when the number of processors n 2 9d2 + 6d+l. Other 

currently known t-resilient agreement protocols that terminate in t + 1 rounds need to 

exchange O(nt+') messages when n < t2+ 3t + 5. To compare those protocols against 

our protocol, let d2+ 2d = t .  For large d ,  we have d - and d - &3. 

Therefore, in terms of t and n, the number of messages required in our protocol is 

to communicate with each 

also rllows two distant processors in two different groups 

other in about -& rounds of message exchanges, in contrast 

td some other protocols which require every pair of processors to communicate in each 

of the t+l rounds. 

To investigate the resilience of network to failures, we have introduced a measure 

that is more precise than considering a link failure as the failure of one of the link's 

end nodes. For example, if a network with 3t+I processors is completely connected. 

the fixed-pair connectivity function for every two distinct nodes u and v satisfies 

f(G.u.v.2t) = t ;  thus it provides us with the information that the network can tolerate 

t processor and t/2-1 link failures. By considering a link failure as a processor 

failure, the total 
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number of processor and link failures cannot exceed t. 

One drawback of our protocol for reliable communication, which is described in 

Chapter 4, is that the number of messages it uses is exponential in the number of 

nodes of the network. If the network is large, it is quite inefficient. An open 

problem is thus to find an efficient (in terms of the number of messages used) 

protocol to tolerate t processor and I link failures. 

As an open problem we have stated the path problem in Chapter 5. It seems that 

in order to find an efficient protocol to handle t processor and I link failures under 

the minimal sufficient condition, the path problem must be solved first. We 

conjecture that the answer to the path problem is k =(a + 1) (b  + 1). 

If the conjecture is true, then there is hope for finding an efficient protocol that 

tolerates up to t processor and I link failures. Otherwise, if k is exponential in the 

number of vertices of a graph, it is unlikely that there exists an efficient protocol 

that can tolerate up to t processor and I link failures under the minimal sufficient 

condition in a general setting. 
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