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Abstract 

Broadcasting is the process of information dissemination in a communication 

network in which a message is routed from one special node, called the origindor, to 

every other node in the network. Receiving is the inverse process, that is, every 

node has its own unique message that must be routed to a specified node called the 

receiver. Polling combines both broadcasting and receiving for a specified node called 

the polling station. The polling station broadcasts a query to every other node and 

waits to receive a unique response from each of them. 

Broadcasting is a well-studied problem, but polling and receiving have only 

recently been considered. Polling has been investigated only in trees. In this thesis we 

extend these results to more general graphs. Polling schemes for various classes of 

graphs are designed and the polling time of an arbitrary polling station is determined. 

For those graphs with an optimal polling scheme, the polling center is also 

determined. For receiving, the known results are for trees and Zconnected graphs. 

We present an optimal receiving scheme for unicyclic graphs and the receiving time of 

an arbitrary receiver is determined. We also present an O(lVI2) algorithm to achieve 

receiving with an arbitrary receiver for general graphs. The resulting receiving time 

is no worse than 5/4 optimal. 
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Chapter 1 

Introduction 

1.1. Definitions 

Broadcasting is the process of information dissemination in a communication 

network in which a message is routed from one special node. called the originator, to 

every other node in the network. This is a one-to-all information dissemination 

process. Receiving is the inverse process. that is, every node has its own unique 

message that must be routed to a specified node called the receiver. Thus, it is an 

all-tmne information dissemination process. Polling combines both broadcasting and 

receiving for a specified node Called polling station. The polling station broadcasts 

a query to every other node and waits to receive a unique response from each of 

them. 

A network is modelled by a simple, connected graph G=(V.E) with the vertices . 

corresponding to nodes and the edges corresponding to communication lines. We 

assume that neither nodes nor lines will fail during the process. Within the network. 

(1) only adjacent nodes can communicate. (2) each communication involves only two 

nodes, and no node can be involved in more than one communication at a time. 

(3) responses can be accumulated at any internal node. but only one response can be 

returned at a time, and (4) each communication requires one unit of time. 

The receiving time of a node v (denoted R(G,v)) is the time required to 



complete the receiving process in graph G if v is specified as the receiver. Similarly. 

the polling time of node v (denoted P(G,v)) is the time required to complete polling 

in graph G if v is the polling station. The receiving center is the set of nodes with 

minimum receiving time. Similarly, the polling center is the set of nodes with 

minimum polling time. The polling time of a graph G (denoted P(G)) is the 

maximum polling time P(G.v) for any node v in V. 

Given a node v in a tree T of n nodes, we define maxsubtree(v) to be the size 

of the largest connected component in T-{v). That is, if we consider T to be rooted at 

v, maxsubtree(v) is the size of the largest subtree rooted at a child of v. Kang and 

Ault [2] have shown that v is in the centroid of T if and only if maxsubtree(v) < 
n/2. We define a rooted tree T to be a centroid tree if its root is in the centroid of 

1.2 Previous Results Sn Polling and Receiving 

Broadcasting is a well-studied problem [6], but polling and receiving have only 

recently been considered [4]. [5]. So far, only a limited amount of research has been 

done in polling and receiving. The existing results in polling deal with trees only. 

Cheston and Hedetniemi [4] have derived a polling scheme for trees and determined 

its time bound. They also presented an algorithm for finding the polling center of a 

tree. 

A second paper by Cheston and Hedetniemi [5] deals with the related problem 

of receiving in trees and 2-connected graphs. The receiving center of a tree is 

determined to be the centroid of the tree network. The receiving time for a node in 

the centroid of any tree on n vertices is equal to the minimum receiving time of any 

receiver in any n vertex graph. Since every node of a 2-connected graph is a 



centroid of some spanning tree of the graph. an algorithm is developed to construct 

such a spanning tree for a given receiver. The tree receiving scheme can then be 

applied to the spanning tree resulting in an optimal receiving scheme for the 2- 

connected graph. Although the complexity of determining the receiving center of an 

arbitrary graph is not known, the similar problem of determining the centroid of an 
-- - 

arbitrary graph is known to be NP-complete [s). Determining the receiving time of a 

given receiver in a general graph is an open problem. There is no known 

characterization of the receiving center of a general graph. 

1.3. Outline of work contained in the thesis 

We present polling and receiving schemes for an arbitrary polling station and 

receiver for various classes of graphs. We also determine the time bounds for these 

schemes. For those graphs with an optimal polling or receiving scheme, we also 

determine the polling center or the i-eceiving center. 

In Chapter- 2, we consider polling in some specific graphs other than trees: 
... 

simple cycles. complete graphs, complete k-partite graphs and 2-connected graphs. 

In Chapter 3, we consider receiving in unicyclic graphs. An optimal scheme is 

designed and the time is determined. 

In Chapter 4, based on the existing results for receiving in trees and 2-connected 

graphs and the results from Chapter 3. we present an 0 (lVI2) algorithm to achieve 

receiving in general graphs. The performance of the resulting receiving time is no 

worse than 5/4 optimal. 

In Chapter 5, we summarize the results in both polling and receiving. and state 

a few open problems. 



Chapter 2 

Polling in Specific Graphs 

We begin by investigating polling in a few types of graphs. In Section 2.1, we 

briefly review the work of Cheston and Hedetniemi [4]. In Section 2.2, we present 

some preliminary results. In Section 2.3, we present some optimal schemes for some 

special graphs with polling station of degree 1. The goal is to determine types of 

graph structures other than paths which can give the best possible polling time. In 

Section 2.4, we investigate polling in complete k-partite graphs. An optimal scheme is 

developed and the resulting polling time is determined. Finally in Section 2.5, we 

investigate polling in 2-connected graphs with the use of a known algorithm from [5]. 

which transforms a 2-connected graph into a tree with the polling station being the 

centroid. We then use the tree receiving scheme to determine an upper bound on the 

polling time of the graph. 

2.1. Brief Review of Previous Results 

An optimal scheme has been designed for polling in trees [4]. Since we will use 

some terminology and results from [4] in this chapter. we briefly review them here. 

Figure 2-1 represents part of a polling scheme in a larger tree. The polling scheme 

may have been generated by the algorithm of [4]. In this scheme, vertex u receives a 

query at time 1 and sends responses at times 3, 5. 7. 9 and 11, In the Figure, the 

number to the left of a "slashn represents the time in which the parent node queries 

its descendant node and the numbers to the right of the "slash" are the times in 

4 



which the descendant node returns a response to its parent node. Once u is informed 

(receives the query). it can proceed to query its children and wait for responses. The 

scheme shown uses the minimum possible time for polling in this subtree. Note that 

u returns a response to its parent every second period after it has received the query. 

In this case. we claim that no "delay" occurs. We say that a "delay" results 

whenever vertex u cannot return a message to its parent every second period after u 

has received the query. For example, one time unit of delay (one delay) is introduced 

at vertex u at time 7 in the example of Figure 2-2 (a). 

Gaps(S,u) is defined [4] to be the number of delays occurring in subtree S 

rooted at u and ps(S,u) is defined [4] to be the polling time for subtree S rooted at 

u. From the subtree polling scheme [4], we can simplify the idea and yieM.. a. general 

formula for Gaps(S,u) and for ps(~.u). This is illustrated by the following example. 

Suppose that we are given a subtree S rooted at u with IS1 = 5. We consider all 

possible cases of the subtree polling scheme [4] in the following figures: 



Figure 2-1: Subtree with no delay 



(dl 

Figure 2-2: Subtrees with 1 delay 



Figure 2-3: Subtrees with 2 delays 

Figure 2-4: Subtree with 3, delays 

Note that no delay occurs in Figure 2-1 and thus, Gaps(S.u) = 0 in this case. 

In Figure 2-2. one delay occurs at time 9 in (b). (c). (d) and at time 7 in (a). (el. 

and Gaps(S.u) = 1 in this case. In Figure 2-3 two delays occur, at time 7 and 10. 

* and Gaps(S,u) = 2. Finally. in Figure 2-4 three delays occur. at time 5. 8 and 11. 

and Gaps(S.u) = 3. From this example. we can observe the following facts: 



1. When S rooted at u is a path. no delay will occur. 

2. When S rooted at u is a star. the maximum delay occurs. 

3. In general. Gaps(S.u) = ~ax{de~ree(v)-2. v E s). 

We must determine the time required for polling in subtree S if no delay 

occurs. We observe that: 

1. u must be queried by its parent. 

2. u must query one of its children. 

3. u must receive all IS1 - 1 responses. 

4. u must relay all IS1 responses (including its own) to its parent. 

As a result. 21Sl+l time units are required. In general. the subtree polling time 

of Subtree S at  root u is: 

This formula is equivalent to the formula in [4]. We can now determine the 

. polling time of a polling station s in tree T as follows [4]: 



p(T,s) = Max { degreek) + IT1 - 1, ps(~.u) + i ) 
where S is the subtree rooted at a child u 
of s with maximum subtree polling time, and 

i = l  if ps(S.u) < ps(R,v) + 1 for 
some subtree R f S. 

= 0 otherwise. 

The first term of the above formula is simply the minimum time required for 

the tree T if no delay occurs at any subtree rooted at  a child of s. 

The second term of the above formula tells us that if there is at  least one 

delay occurring in any subtree rooted at  a child of s. then we need to determine both 

the subtree S rooted at a child u of s with the largest subtree polling time and the 

subtree R rooted at a child v of s with the second largest subtree polling time. If 

ps(S.u) - PS(R.V) < 1, then ps(S,$ = p s ( ~ , v )  or ~s(S.u) = ps(R,v)+l. In either 

case the term i = 1. ~ the rwi ie  i = 0. If ps(S,u)+i is greater than the first term in 

the formula, then P(T.s) = ps(S.u)+i. Otherwise P(T.s) = degree(s)+lTI-1. 

2*2 Preliminary Results 

In this section. .we present some simple results for graphs other than trees. 

Lemma 2.1: For any connected n vertex graph G = (V.E) with n > 2 

and a vertex s of degree one. P(G.s) >/ 2n-1. 

Proof: Let b be s's only neighbour. Recall that each call can convey 

only one message (either a response or a query) and that each vertex can be 

involved in at  most one call per time unit. Since' all messages to and from s 

must pass through b, the vertex b forms a bottleneck. Consider the calls 

involving b: 



1. b must receive the query from s. 

2. b must make at least one call to inform the other members of the 

query. 

3. b must receive each of the n-2 other pieces of information. 

4. b must send n-1 pieces of information to s. 

Thus, b must be involved in at least l+l+(n-2)+(n-1) = 211-1 calls. 

and P(G.s) 3 2n-1. W 

Lemma 2.2: Given a path P, of length n-1 with vertices pl, pz. .., p, . - 
such that pi is adjacent to pi+i for 1 i < n. Let pk be the polling 

station. 

2(k-l)+l if n-k < k-1 
2(n-k)+l if n-k > k-1 
2(n-k)+2 if n = 2k-1 

Proof:  his. follows from the results on polling in trees 141. W 

Theorem 23: Given a connected graph G on n vertices and a vertex s 

E V. 

Proof: For n = 1. 2, the result is trivial. For n > 2. consider two 

cases : 



1. If vertex s of degree one is the polling station, then by Lemma 2.1. 

2. If vertex s of degree greater than one is the polling station, then 

consider a polling scheme at s. At least one time unit must be used 

to send the query to one of the neighbours of s. A further n-1 time 

units are required for receiving the n-1 responses. Thus. P(G,s) 2 n. 

However, consider two cases : 

a. s queries only one of its neighbours (vertex b). 

If vertex b returns its own message at period two, then s will 

receive no message and be idle at period three. Thus, P(G.s) 2 

n+l. On the 'other hand, if b sends the query to one of its 

neighbours at  time period two, then s is idle at period two. 

Thus, P(G.s) >/ n+l. 

b. s queries more than one of its neighbours. 

In this case. at least two time periods are used for querying 

from s in addition to the n-1 time periods required for receiving 

responses, so P(G,s) 2 n+l. 

Thus. P(G,s) >/ n+l for all s E V. 



Corollary 2k. Given a connected graph G on n vertices. 

Theorem 25: Given graph G on n vertices which contains a 

Hamiltonian circuit. P(G) = n+l. 

I 

Proof: Consider the Hamiltonian circuit C = <vl. v2, ..., vn>. 

Without loss of generality, let vl be the polling station. The tree which 

results from deleting the edge between vbnl and V1d21+1 can be polled in 

n+l time units by using the tree polling algorithm 

2.4, we know that P(G) 3 n+l. Thus, P(G) = n+l. 

of [4]. From Corollary 

m 

Corollary 2.6: P(C,) 6 P(K,) = n+l. 

Corollary 2.7: V is the polling center for any Hamiltonian graph. 



2.3. Optimal schemes for some polling stations of degree 
one 

From Lemma 2.1, we know that for any connected graph G with the polling 

station s of degree 1. P(G.s) > 2n-1. In this section, we present some graphs G 

with a fixed polling station s with deg(s) = 1, where P(G.s) = '2n-1. The goal is to 

find polling schemes for graphs other than paths with no delay for the given polling 

station. 

From Lemma 2.2, we know that when the polling station s is the first node or 

the last node of a path, s = pl or p,. then P(pnSpl) = P(P,.p,) = 2(n-l)+l = 

2n-1. 

We now consider graphs consisting of paths and cycles with a fixed polling 

station s with deg(s) = 1. Consider the graph G1 as shown in Figure 2-5 with 

polling station pl. We propose the following polling scheme : 

1. pi queries pi+, at time i, 1 < i < k. 

pk queries cl a t  time k. 

ci queries ci+, at time k+i, 1 < i < p. 

2. ci returns a message to ci-l at times k+i+l, k+i+3 .... k+i+2[(p-l)-i]+l. 1 < i 

C returns its message to cl at time k+2p l .  
P 

cl returns a message to pk at times k+2, k+4,.., k+2p. 

returns a message to pi at times i+2, i+4, ... 2k-i. 2k-i+2, 2k-i+4. .., 2k- 



Figure 2-5: G1 

Observe that c in G1 can return a message to cl a t  any time from k+p to 
P 

k+2p-1, p > 2. Since c2 returns a response to cl at  times k+3, k+5. .... and k+2p-3. 

cl can return responses (including its own) to pk a t  times k+2, k+4, k+6 ..... k+2p-2. 

As a result. cl is busy receiving and returning responses from time k+p to time 

k+2p2 inclusive and returns its own message to cl a t  time k + 2 p l .  

Theorem 2.8: P(Gl,pl) = 2n-1. where n > 3. 

h f i  The number of vertices in G1 is n = k+p. If k = 1, then cl 
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returns the last response to pl at time 1+2p = 1 + 2(n-1) = 2n-1 in the 

above polling scheme. By Lemma 2.1, P(Gl,pl) 3 2n-1. and therefore 

P(Gl.pl) = 2n-1. 

If k > 1, then p2 returns the last response to pl at time 2k-1+2p 

= 2(k+p)-1 = 2n-1. Again by Lemma 2.1. P(Gl.pl) 3 2n-1. therefore 

P(Gl.pl) = 2n-1. 

Next we propose a polling scheme for Gt as shown in Figure 2-6 : 

1. pi queries p,, at time i. 1 < i < k. 

pk queries cl at time k. 

c. queries c ~ + ~  at times k+j. 1 - 6 j < p. 
J 

cp queries L (1) at time k+p. 
P 

Lp(i) queries Lp(i+l) at times k+pi .  1 6 i < q. 

2. Lp(i+l) returns a message to LP(i) at times k+p+i+2, k+p+i+4 .... k+p+2q-i. 

ci returns a message to c ~ - ~  at times k+j+l, k+j+3 .... k+j+2[(pl)-jl+l. 1 < 

cl returns a message to pk at times k+2, k+4, ... k+2p. k+2p+2 ..., k+2p+2q. 

pi+l returns a message to Pi at times i+2, i+4. ... 2k-i, 2k-i+2. 2k-i+4. ..2k- 

Theorem 2.9: P(G2,pl) = 2n-1. for n > 4. 

Proof: Here n = k+p+q. Note that if q = 0, then G2 = GI. If 



Figure 2-6: G2 

k = 1. then cl returns the last response to pl at  time k+2p+2q = 1 + 

2(n-1) = 2n-1 from the above scheme. By Lemma 2.1, P(G2,pl) > 2n-1 

and therefore P(G2.pl) = 2n-1. 

If k > 1. for i =  1 from the above scheme. p2 returns the last 

response to pl at  time 2k-l+2p+2q = 2(k+p+q)-1 = 2n-1. Again, by 

Lemma 2.1. P(G2.pl) > 2n-1 and therefore P(GZ.pl) = 2n-1. H 



We can modify the scheme for G2 to take care of a more general class of 

graphs G3 as shown in Figure 2-7. We propose the modified scheme for G3 as 

follows: 

Figure 2-7: G3 

1. pi queries pi+, at time i. 1 < i < k. 

pk queries cl at time k. 

ci queries ci+, at time k+i, 1 < i < p. 



If LJ > 0. then cp queries Lp(l) at  time k+p. and Lp(j) queries Lp(j+l) 

a t  time k + p j .  1 < j < ILJ. 

2. For each c. in the cycle. 1 < j < p. c. returns its response to cj-l during 
1 1 

the second time period after it has been queried by cj-l. Then c. receives 1 

(if available) and returns next raponse to cj-l (if the response is not the 

last from cjrl) every second period. 

3. Let ci be the vertex with the largest i and i # p, with lLil > 0. After ci 

has received the last response from all cj. i < j < p. it queries ~ $ 1 )  a t  

next time period, say time t. Then ci continues to relay the last response 

to c ~ - ~  at time t+ l  and Li(j) queries Li(j+l) a t  time t+j. Each ~ $ j + l )  

returns a response to ~ ~ ( j )  a t  hmes t+j+2. t+j+4 ,... and t+j+2(lLil-j), and 

Idi(l) returns a response to ci at  times t+2. t+4, ... and t+21Lil. The vertex ci 

then relays these responses at  times t+3, t+5, ..and 2+21LJ+l. 

4. For each of the remaining vertices ci with lLJ > 0. if there is a delay 

time a t  time t', then ci queries ~ $ 1 )  at  this time period. Li(j) queries 

Li(j+l) at  time tW+j. 1 < j < ILil. The vertex ci continues to receive the 

delayed responses from all ck and Lk, i < k < p, a t  time t'+l and then 

relays these responses (if available) to ci-l every second period. When 

there are no more messages from all these ck and Lk, the responses are 

pulled from Li to continue the message relay. 

Theorem 2.10: P(G3,pl) = 2n-1. for n > 3. 



Proof: With the scheme above. from time k + p l  on. there is at least 

one response waiting at cp to be returned to cl in case a delay occurs at c2. 

The vertex ci defined in Step 3 causes at  most a single delay. This delay is 

propagated through vertices cj. i > j > 1. Each such c. can make use of 
J 

this delay to query Li(1) without causing an additional delay. Thus, only 1 

delay will occur at c2 and cp can make up this delay by returning a 

response. As a result. cl can receive a response from its descendant vertices 

and relay it to pk every second period. This implies that p2 can also return 

a response to pl every second period and the last call is made at 2n-1. By 

Lemma 2.1. P(G3,pl) 2 2n-1. Thus. P(G3.pl) = 2n-1. . 
Similarly, we can modify the scheme for G1 for graphs such as G4 as shown in 

Figure 2-8. We propose the modified -scheme for G4 as follows: 

1. pi queries pi+, at time i. 1 < i < k. 

pk queries cl a t  time k. 

ci queries ci+, at time k+i. 1 4 i < p. 

2. For each c. in the cycle. 1 < j < p. c. returns its response to cj-, during 
J I 

the second period after it has been queried by cj-,. c. then receives a 
I 

response from cj+, and relays it to c. (if the response is not the last 1-1 

response from all ck, j < k < p) every second period. 

3. After Step 1, cp can return its response to cl at  any time from k+p on. 



Figure 2-8: G4 

Note that this response stands by to return to cl in case of delay 

occurring at c2. If there is a cycle <cj, dl. d2 ..... d . c.> attached at c. 
9 1  1 

for 1 < j < p. then cj queries dl right after the response from c ~ - ~  

arrives at c say at time t. This causes c. one time delay to relay the j* J 

response to cj-l. and the delay may occur as early as right after cp is 



queried by cpl. that is, at  time k+p. However, the delay can be filled by 

the response standing by at  cp. 

4. After dl is queried by ci at  time t. ci continues to relay the response of 

c to c ~ - ~  at  time t+l. Starting from time t+2. dl can return q-1 P-1 

responses to ci every second period if there is no other circle attached a t  

d j  for 1 < j < q. As in Step 3, d can return a response to ci at  any 
4 

time from t+q on and be ready to return the response in case of delay 

occurring at  dl. Thus if there is another cycle <dj. el. e2, ..., e 1' dj> 

attached at  d.. as before, the delay caused by querying el from dj  can be 
J 

filled by the response standing by at  dq. 

5. The same technique can be used 'for additional cycles as shown in G4. 

Theorem 2.11: P(G4,pl) = 2n - 1, n > 3. 

Proof: Without loss of generality. let <dj, el. ... . e,, dj> be the cycle 

furthest from pl. The vertex d. can receive and return a response to dj-l 
J 

every second period from all ek, 1 < k < r As a result, ci can also 

receive and return a response to ci-l every second period from all its 

descendant vertices. Similarly. cl can also receive and return a response to 

pk every second period from all its descendant vertices. As a result, p2 can 

receive and return a response to pl every second period from all its 

descendant vertices. So p2 returns the last response to pl at  time 2n-1. By 

Lemma 2.1. G4 requires at  least 2n-1 time units. and thus the theorem 

holds. W 



2.4. Polling in Complete k-partite Graphs 

From the results of Section 2.2. we have a lower bound on the polling time of 

an arbitrary polling station s in general graphs. In this section, we develop polling 

schemes for complete k-partite graphs using the results developed earlier. 

2.4.1. Polling in Complete Bipartite Graphs 

Theorem 2.12: Given a complete bipartite graph G on two sets of 

vertices S1 and S2, with Ell < IS2! and lSll + IS21 = n, 

2n-2 if s E S1 

n-4 otherwise 

n + l  i f sES1  

P(G's) = {n+((n-3)/2] otherwise 

3. If lSll > 2, P(G.s) = n+l for all s E V. 

Proof: CASE 1: Consider the diagram as shown in Figure 2-9: 

i) If vll is the polling station, then consider the number of calls it is 

involved in: 

1. vll must spend n-1 time units to query every node in S2- 

2. vll must spend another n-1 time units to receive every response from 
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Figure 2-9: A "star" network 

Thus P(G.vl1) 2n-2. With the tree polling scheme, the resulting 

polling time is degree(vll)+lTI-1 -= (n-l)+n-1 = 2n-2. 

ii) If v21 is the polling station, then vertex vll acts as a bottleneck 

for the message transfers. Consider the number of calls in which vll is 

involved : 

1. vll must be queried by s. 

2. vll must query the remaining n-2 nodes. 

3. vll must receive n-2 responses. 

4. vll must return all n-1 responses to s. 



Thus. P(G.s) 3 3n-4. With the tree polling scheme, the resulting 

polling time is ps(S,vll)+i = 21SI+1+Gap(~,vll)+i = 21~l+l+(degree(v~~)-2)+i 

= 31SI-1 = 3(n-1)-1 = 3n-4. 

CASE 2: Consider the diagram as shown in Figure 2-10: 

' S z  

Figure 2-10: K2,m, where m 3 2 

i) If s E S,. say s = vll. consider the following polling scheme: 

Queries are sent in the following manner : 

(Time) 

1 : vll queries v2, 

2 : vll queries v22 
v2, queries v12 



3 : v12 queries v23 

5 : v12 queries v24 

6 : v12 queries v~~ 

n-1 : v12 queries v ~ ( ~ - ~ )  

Responses are returned as follows : 

(Time) 

3 : v~~ returns a response to vll  

4 : v~~ returns a response to vll 
v12 returns a response to v~~ 

5 : v~~ returns a response to vll 

6 : v~~ r e t u m . a  response to vll  

7 : v~~ returns a response to vll 

: V2(n-4) returns a response to vll 

: V2(n-3) returns a response to vll 

n+1 : V Z ( ~ - ~ )  returns a response to vll 

4 

This scheme polls the graph in n+l time units. By Theorem 2.3. 

P(G.s) = n+l. 

ii) If s E S2. say s = vzl. consider a spanMng tree as shown in 

Figure 2-11, in which deg(vll) = deg(v12) or deg(v12) = deg(vll) + 1. 



The tree polling scheme [4J can be used to poll the spanning tree in 

To see that this much time is required. note that vll and v12 act as 

bottlenecks for all message transfers. Therefore we can consider the total 

number of calls in which vll and v12 are involved : 

Figure 2-11: A special form of centroid tree in which degree(vll) 
= degree(v12) or degree(v12) = degree(vl )+l 

1. Both vll  and v12 receive the query (one call each). 

2. Each of the remaining n-3 vertices in s ~ - { v ~ ~ )  must be queried by 

either vll or v12. 

3. All n-3 responses must be returned to either vll or v12. 



28 

4. vll and v12 must return a total of n-1 responses to the polling 

station v21. 

Thus, a total of 2 + (11-31 + (n-3) + (n-1) = 3n-5 calls involving vll or 

v12 are required for polling. 

At best vll and v12 are involved in I(3n-5)/2) and I(3n-5)/2] calls 

respectively, and thus. at least I(3n-51/21 time units are required for polling. 

However. one extra time unit is required. When vll and v12 are involved 

in' the same number of calls (n odd), they cannot make their last calls to 

vZ1 simultaneously. They must finish in consecutive time units. 

When the number of calls differs by one (n even). only one of vll. 

vI2 can receive the query at  time 1. If vll is queried first. then v12 must 

be involved in I(3n-51/21 'calls beginning no earlier than time 2 and will 

finish no sooner than at time I(3n-5)/2). In this event, as above, the two 

final calls cannot occur simultaneously at time ((3n-51/21. but must be 

completed in consecutive time units. 

Thus, at least K3n-5)/21 + 1 = n + l(n-3)/21 time units are required. 

CASE 3 : Let IS1l = j > 2 and IS21 = k > 2. Consider the 
, 

diagram as shown in Figure 2-12: 

i) If s E S1, say s = vl l. then consider the following polling 

scheme: 



Figure 2-12 KjFk, where k 3 j > 2 

Queries are sent in the following manner: 

(Time) 
1 : vll queriks v21 

2 : vll queries v~~ 
v21 queries v12 

(where 2 < i < j ) 

j+l : vlj queries v2(j+l) 

j+3 : vlj queries v2(j,2) 

j+4 : vlj queries v ~ ( ~ + ~ )  
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k+l  : vlj queries vzk 

Responses are sent as follows: 

(Times) 

3.5 ..... 2j+l : vZ1 returns a response to vll 

i+2,i+4,..2j-i+2 : vli returns a response to v ~ ( ~ - ~ )  
vzi returns a response to vl(i-l) 

(where 2 < i < j ) 

: v~(j+l) returns a response to vll 

: v ~ ( ~ + ~ )  returns a response to vll  

= n+l : vZk returns a response to vll 

This polling scheme uses n+l time units which is optimal by Theorem 

2.3. 

ii) If s E S2, say s = vzl. consider the following polling scheme: 

Queries are sent as the following manner: 

(Time) 

1 : vzl queries vll 

2 : vzl queries vlz 
vll queries vz2 

3 : v12 queries vZ3 
vZ2 queries v13 



(where 2 < i < j ) 

vlj queries v2(j+l) 

v queries v2(j+2) 
lj 

vl j queries v2(j+3) 

k+l : vlj queries v2k 

Responses are sent as follows : 

3.5 ... 2j+1 :-vll returns a response to V2] 

i+2,i+4..,2j-i+2 : v~~ returns a response to v ~ ( ~ - ~ )  

vli returns a response to VZ(~-~) 

(where 2 d i < j ) 

: v2(j+1> returns a response to v12 

: v12 returns a response to vzl 

v2(j+2> returns a response to vll 

: vll returns a response to VZl 

v2( j+3> returns a response to V12 

: vll returns a response to V21 

v~~ returns a response to v12 
(if k is odd) 



v12 returns a response to vzl 

vZB returns a response to vll 
(if k is even) 

k+j+l = n+l : vll returns a response to vzl 

(if k is even) 

v12 returns a response to v21 

(if k is odd) 

Again, this polling scheme uses n+l time units which is optimal by 

Theorem 2.3. . 
From this Theorem, we know .the polling time for each vertex in a complete 

bipartite graph. The polling tim'e of the graph and the polling center are also known. 

Corollary 2.13: For a complete bipartite graph G on two sets of 

Corollary 2.14: The polling center of a complete bipartite graph Kp,, is 

V unless p = 1, m > 1 or 1 = 2. m k 4. The polling center of K1,, 

with m > 1 is the single vertex set S1. The polling center of K2,, with m 

k 4 is the 2 vertex set S1. 



2.4.2. Polling in Complete Tripartite Graphs 

Consider a complete tripartite graph on three sets of vertices S1, S2 and S,. 

with S1 = Ivll. v12. ... vlj). s2 - { v ~ ~ .  v ~ ~ .  --. vZkl and S, = { ~ ~ ~ n  v32. ... v , ~ ) .  

where j 6 k 6 m and j + k + m = n. 

Lemma 2.15 Given a complete tripartite graph G on three sets of 

vertices S1. S2 and S,, with lSll 6 lS21 6 IS3]. If lSll = 1, lS21 = 1 and 

IS31 > 1. then the edge (vll.vzl) can be deleted without increasing the 

polling time. 
I 

hf: If the edge (vll,v21) is deleted, then the resulting graph G' = 

G - ( v ~ ~ . v ~ ~ )  is a complete bipartite graph in which S1' = S1 U S2 and 

S2' = S,. If the polling station s is in S1 U S2, the complete bipartite 

graph- polling scheme can be used. The scheme uses only n+l time units 

which is optimal. Thus, the polling time is not increased by deleting the 

edge. If the polling station s is in S3, then 

1. We first show that the edge (vll. v ~ ~ )  need not be used for querying. 

Without loss of generality, let vll be the vertex being queried by the 

polling station s a t  time one. At time two if vll queries vzl through 

( v ~ ~ . v ~ ~ ) .  then only two vertices vll and v21 are queried and s must 

remain idle during this time period. Thus, s could query v2, directly 

a t  time 2 with no resulting change to the polling time of the 

algorithm, and therefore the edge (vll. v ~ ~ )  need not be used for 

querying. 



2. We now show that the edge (vll. vzl) need not be used for returning 

responses. Without loss of generality. assume that vll has a response 

to return to the polling station s, then consider two cases : 

a. If the polling station s is busy, then it must be communicating 

with node vzl. Hence, vll cannot send the r b n s e  through 

(vll. vzl) to vzl at that time. 

b. If the polling station s is not busy and vll sends the response 

to vzl through (vll, vzl) instead of returning to s directly, then 

the polling station s must be idle at this time period. This call 

can be replaced by (vll, s). 

Thus the edge can bc deleted without increasing the polling time. . 
Theorem 2.16: Given a complete tripartite graph G on three sets of 

vertices S1 . S2 and S3, with lSll d IS21 4 IS3! and lSll + IS21 + IS31 = n. 

P(G,s) = (n+l(n-31/21 if s E S3. d Ell = = 1. $1 > 1 
n+ 1 otherwise 

Proof: There are four cases to consider : 

CASE 1 : If lSll = lS21 = lS31 = 1. then the graph G is a cycle, and 

P(G) = n+l, and P(G,s) = n+l for all s. 

CASE 2 : If ISII = lS21 = 1, and lS31 > 1. then by Lemma 2.15. the 
d 

edge (vll, vzl) can be deleted without increasing the polling time and thus 

the graph G-(vll,vzl) is equivalent to the case of complete bipartite G' in 



which S1' = S1 U S2 and S2' - S3. By Theorem 2.12. P(Gm,s) = n+l if s is 

in S1* and P(G',s) = n + l(n-31/21 otherwise. 

CASE 3 : If lSll = 1, lS21 > 1 and B31 > 1, we can convert the 

graph G into a complete bipartite G' as follows. By removing all edges 

between the vertices in Sl and the vertices in S2, we form a complete 

bipartite graph on vertex sets Sl U S2 and S3. 

If lS21 = lS31 = 2. then IS1 U S21 = 3 and IS31 = 2. By Theorem 2.12 

we know that using the complete bipartite graph scheme. PCG'.s) = n+l if s 

E S3 and P(G'.s) = n + l(n-3)/2) = n+l (since n J )  if s E S1 U S2. 

Otherwise. IS1 U S21 > 2 and IS31 > 2 and by Theorem 2.12 using the 

complete bipartite graph scheme. P(G',s) = n+l for any polling station s. 

CASE 4 : If lSll > 1, lS21 > 1 and IS31 > 1, then consider the 

following cases : 

1. If lSll = lS21 - IS31 = 2. then it is easy to obtain a Hamiltonian cycle 

H = <vll. V21. ~ 3 1 ,  v12. v ~ ~ .  v ~ ~ .  vl l> from G, and thus. 

P(G,s) = n+l for all s. 

2. If lSll 3 2. lS21 3 2 and lS31 > 2. we can convert the graph G into 

a complete bipartite graph G' as follows. We simply remove all 

edges between the vertices in S1 and vertices in S2. Note that IS1 U 

S21 > 2 and IS31 > 2. By Theorem 2.12, P(G's) = n+l for all s. . 



complete tripartite graph. The polling time of the graph and the polling center 

also known. 

Corollary 217: Given a complete tripartite graph G on three sets of 

vertices S1. S2 and S3, with lSll d IS21 d IS31 and Ell + .IS21 + lS31 = n. 

P(G) = n + I(n-31/21. 

Corollary 2.18: The polling center of a complete tripartite graph Kk p m  , , 

is V unless k = p = 1 and m 3 4. The polling center for K1 with m . , 
3 4 consists of the two single vertex sets S1 and ST 

2.4.3. Polling in Complete k-partite Graphs, k > 3 

Theorem 2.19: Given a complete k-partite graph G = (V.E). k > 3. on 

k sets of vertices, with lSll 6 - IS21 d .... d lSJ and lSll + IS4 + ... + 

lSkl - n. P(G.s) = n+l for all s. 

Proof: Consider the following cases : 

1. If lSll d 2. lS21 d 2. .... lSkl < 2, a Hamiltonian cycle can be 

obtained as follows : 

a. If 811 - 1 for all i, then H = <vll. vZ1, .... vkl. vll > is a 

Hamiltonian cycle. 

b. Otherwise, let S. be the first set having 2 elements. 1 d j d 
J 

k. 

are 

Again, from this Theorem. we know the polling time for each vertex in a 

" 



If j = 1. H = <vkl. v ( ~ - ~ ) ~ .  .... vll. Vk2s v ( ~ - ~ ) ~ .  .... vI2, vkl> 

is a Hamiltonian cycle. 

If j * k and j * 1. then H = <vkl. v ( ~ - ~ ) ~ ,  .... vjl, vk2. 

V(k-1)2s Vj t*  V(j-l)ls V(j-t)ls .... vll. vkl> is a Hamiltonian 

cycle. 

By Corollary 2.6. P(G,s) = n+l for all s. 

2. If lSil > 2 for some i. 1 < i < k, convert the graph G into a 

complete bipartite graph G' as follows. Choose a set Si such that lSil 

> 2. Remove all edges between vertices in V-Si. SO G' contains two 

vertex sets Si and, V-Si with lSil > 2 and IV-S,I > 2. By 

Theorem 2.12, P(GS.s) = n+l for all s and thus. P(G,s) = n+l for all 

s. 

From this Theorem, we know the polling time for each vertex in a complete k- 

partite graph. where k > 3. The polling time of the graph and the polling center are 

also known. 

Corollary 2.20: Given a complete k-partite graph G = (V.E), k > 3. 

on k sets of vertices, with lSll < lS21 < .. < lSkl and lSll + lS21 + .. 

+ lSkl = n. P(G) = n+l. 

Corollary 2.21: The polling center of a complete k-partite graph with 

k > 3 is V. 



25. Polling in 2connected Graphs 

There is an O(IVl+lEl) algorithm E5] to obtain a centroid tree in a 2-connected 

graph. We propose to use the algorithm on a 2-connected graph and then to apply the 

tree polling algorithm [4] on the resulting tree. The resulting polling scheme will give 

us an upper bound on the polling time P(G.s). 

Theorem 2.22: Given a 2-connected graph on n vertices, and any 

polling station s in G. 

n+ln/21-1 if n is odd 
P(G2) ' I3n/2 otherwise 

Proof: Consider the tree resulting from the centroid tree algorithm [5]. 

With a specified centroid node s in a 2-connected graph G. the centroid tree 

algorithm produces a tree with two disjoint subtrees. S1 rooted at s and S2 

rooted at t (a neighbour of s), which span G. Furthermore. lSll = ln/21 and 

lS21 = ln/2j. The centroid tree T is then formed by joining the two subtrees 

with the edge (s.t) as shown in Figure 2-13. 

We can use the tree polling scheme of [4] on the resulting tree T. The 

time used by the resulting polling scheme is: 

P(T.s) = ~ax(degree(s)+l~l-l. ps(~.u)+i} 

where S is the subtree rooted at a child u of s 
with the maximum subtree polling time. and 

i = 1 if ps(S.u) < ps(R.v)+l for 
some subtree R Z S. 

= 0 otherwise. 



Figure 2-13: A centroid tree in which lSll = Id21 and 1S21 = ln/2] 

Note that the first term of the formula is maximized when degreek) is 

maximized. In Figure 2-13. the maximum occurs when degreek) = and 

T is of the form as shown in Figure 2-14. In this case, the first term of 

the formula is equal to In121 + n-1. 

Figure 2-14: A form of trees of Figure 2-13 with degree(s) being maximized 

Now consider the second term of the formula. ps(~.u)+i. We will 
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maximize this term for Figure 2-13. It easy to see that one of the subtrees 

of s is S2 rooted at t with subtree polling time ps(S2.t) = 2B21+1 + 

Gaps(S2.t). So ps(S2.t) is maximized when ~ a ~ s ( ~ ~ . t )  is maximized. This 

maximum occurs when S2 is a "star" at  t. In this case, Gaps(S2.t> = 

degree(t)-2 = IS21-2 and ps(S2.t) = 31S21-1 = 3n/2 -1. Note that there is no 

other subtree rooted at a child of s with subtree polling time greater than 

ps(S2.t). The second largest subtree R rooted at a child v of s must be in 

S1. If ps(R.v) = ps(S2.t), the tree T must be of the form as shown in Figure 

2-15. 

Figure 2-15: A form of trees of Figure 2-13 in which Idegree(t)-degree(s9)I < 1 

If this is the case. the term ps(S.u)+i is maximized. The value is 

ps(S,u)+i = ps(S2.t)+l = (3*ln/2]-l)+l = 3*ln/2]. 

As a result, the maximum possible value for P(Ts) is: 



Note that 2*ln/21-1 > 2*ln/2] if n is odd because ln/21 = (n+1)/2 and ln/2] 

= (n-1)/2 if n is odd. Thus, the maximum possible value of P(T.s) is 

n+ln/2]-1 if n is odd. If n is even, =n/2 and = n/2, and 2*ln/21-1 

< 2*ln/21. Thus, the maximum possible value of P(T,s) is 3n/2 if n is 

even. . 



Chapter 3 

Receiving in Unicyclic Graphs 

In this chapter. we study an information dissemination process called receiving. 

As before, a network is modelled by a graph G = (V.E) with vertices corresponding 

to nodes and edges corresponding to communication lines. In [5] ,  receiving is 

investigated for trees and 2-connected graphs. No result is known for separable 

graphs that are not trees. Separable graphs are graphs that can be decomposed into 

biconnected components (blocks). In this chapter. we consider receiving in a particular 

class of separable graphs called unicyclic graphs. Unicyclic graphs are graphs that 

have exactly one cycle. 

We define Weight(v) of an articulation point v with respect to the receiver r 

as follows. When v is removed from a graph G = (V.E), along with its incident 

edges, the resulting graph consists of several components. Let R be the vertex set of 

the component containing r. Weight(v) = IVI-IRI. We define weight(v) of a non- 

articulation point v to be 1, and use d(v,r) to denote the distance from vertex v to 

r. that is, the smallest number of edges in any path from v to r in G. A sequence of 

time periods 2k. 2(k+l). .... 2(k+j) is said to have even time pari ty  while the 

sequence 2k+l, 2(k+l)+l. .... 2(k+j)+l is said to have odd time parity. Recall that 

R(G,v) denotes the receiving time of node v in graph G. 

The following results will be useful in proving results in later sections and in 

Chapter 4. 



Lemma 3.1: Given a simple connected graph G on n vertices, if the 

receiver r is of degree one, then R(G.r) 2 2n-3. 

Proof: Consider any receiving scheme at the vertex b which is the only 

neighbour of the receiver r. Vertex b requires n-2 time units to receive all 

n-2 messages in addition to another n-1 time units to relay all n-1 messages 

to r. Thus, a total of 2n-3 time units required and R(G.r) 2 2n-3. . 
Lemma 3.2 Given a graph G=(V.E). If vertex v is an articulation 

point with Weight(v) with respect to r ,  then R(G.r) 2 2*Weight(v) 

+ d(v.r)-2. 

Proof: Consider the calls made by v in any receiving scheme. Since v 

is an articulation point, when v is removed along with all incident edges, the 

resulting graph consists of' several components. Let R be the vertex set 

containing r and V-R-{v) be another vertex set. Note that v must receive IV- 

R-{v)l = Weight(v)-1 messages from V-R-{v), and relay a total of Weight(v) 

messages to r. Thus, it requires a total of 2*Weight(v)-1 time units. The 

last message is sent out by v no earlier than time 2*Weight(v)-1 and reaches 

r no earlier than d(v,r)-1 time units later. Thus, the last message is received 

by r no earlier than at time 2*weight(v)-1 + d(v.r)-1. It follows that R(G,r) 



3.1. Rooted Unicyclic Graphs 

In this section, we consider receiving in a unicyclic graph with the receiver on 

the cycle. We define a rooted unicyclic graph Gu(r) to be a unicyclic graph with a 

distinguished vertex r on the cycle. Let this distinguished vertex be the receiver. 

Given a rooted unicyclic graph Gu(r) with the cycle of length k+l, we label the 

cycle vertices (in order) vo. vl.... vk with vo = r. For each vi, let Tv. be tree 
1 

consisting of vi and those non-cycle vertices forming a tree rooted at  vi. Also let 

Short-Path denote the path from vi to r of length d(vi.r) and Long-Path denote the 

other path from vi to r which has length 2 d(vi.r). 

Lemma 3.3: Given a rooted unicyclic graph G,(r), the messages from 

the vertices in Tv. for some i f 0 can be received by r in 21Tv.I 
1 1 

+ d(vi.r)-2 time units and cannot be received faster. Thus. R(G,(r),r) 2 

Proof: The proof is similar to that of Lemma 3.2. Consider the calls 

made by vi in any receiving scheme. vi requires ITv!-1 time units to receive 
1 

all messages from T,.--(V~J and requires ITV! time units to relay all messages 
1 1 

from Tv. to either vi-l or Thus, vi requires a total of 21Tv.I-1 time 
1 1 

units to finish all message transfers for T,.. The last message from Tv. is 
1 1 

sent out from vi no earlier than time 21Tv.l-1 and reaches r no earlier than 
1 

d(vi.r)-1 time units later. This requires a minimum of 21Tv.I + d(vi.r)-2 
1 

time units. It then follows that R(Gu(r.vi).r) 2 21Tv! + d(vi.r)-2. 
1 

Lemma 3.4: A rooted unicyclic graph Gu(r) can have at most one 

subtree Tv. for some i f 0 such that 21Tv! + d(vi,r)-2 > n-1. 
1 1 



Proof: By way of contradiction, assume that there exist two distinct 

vertices vi. v. such that 21Tv! + d(vi.r)-2 > n-1 and 21Tv.l + d(vj.r)-2 > 
J I J 

n-1. From these inequalities. 

Since there are k+l cycle vertices. If two such subtrees exist, then 

n 3 IT,.I + IT,! + (k+l) - 2 
1 J 

Since k+l 3 2*d(vi.r) and k+l 3 2*d(vj.r). then k+l 3 

n 3 IT,! + IT, I + d(vi.r) + d(vj.r) - 2 
I j 

> [n-d(vi.r)+ l]/Z + [n-d(vj.r)+1]/2 + d(vi.r) 

+ d(vj.r) -2 

2n > 2n + d(vi.r) + d(vj.r) -2 

Since i # 0, d(vit).  d(vj,r) 3 1. This cannot happen. So, by 

contradiction, only one such subtree can exist. I 

To find the receiving time of a given rooted unicyclic graph, we proceed as 

follows. If such a graph G,(r) admits a spanning tree rooted at r with r being in 

the centroid of the tree, we simply construct the spanning tree with centroid vertex r 

and apply the tree receiving scheme [5] to it. If the subtree T rooted at r. 
,o 

consisting of r and those non-cycle vertices, is of size IT I 3 ln/21, then we 
,o 



construct an arbitrary spanning tree and apply the tree receiving scheme to it. Note 

that if IT I = ln/2/. a centroid tree can be produced. If G,(r) contains a subtree S 
vo 

rooted at  v consisting of non-cycle vertices and cycle vertex v, where v is adjacent to 

r, such that IS > (n/2], then we construct a spanning tree by deleting the edge (v.w). 

where both v and w are cycle vertex and w # r. The tree receiving scheme is then 

applied to it. Otherwise the unicyclic graph has the following properties : 

1. There is no spanning tree with centroid r. 

2. The subtree T rooted at r is of size IT I < - [(n-11/21. 
vo vo 

3. There does not exist a subtree S rooted at  a child u of r. consisting of 

non-cycle vertices (except that u can be a cycle vertex), with IS1 > (n/2] = 

We define this particular class of rooted unicyclic graphs to be rooted 

unbalanced unicyclic graphs. 

3.2. Rooted Unbalanced Unicyclic Graphs 

Given a rooted unbalanced unicyclic graph with the cycle of lefigth k+l, we 

label the cycle vertices (in order) vo, vl.... vk with vo = r. For each vi, let Tv. be 
1 

the tree consisting of vi and those non-cycle vertices forming a tree rooted at vi. Also 

let 



We choose a vertex vi such that IA) > l(n-1)/2] and lBil > Fn-1)/21. Let 

Gu(r,vi) denote this particular graph with root r and the chosen vertex vi. Note that 

Short-Path is contained in Ai and Long-Path is contained in B,. Note that i f 0 

because if i = 0, then A. = Bo = T and IT I > kn-1)/2]. violating property (2) in 
vo vo 

the previous section. Also note that i f 1 and i f k because of property (3) in 

the previous section. This implies that d(vi.r) is always > 1 in ~, , (r .v~).  

Furthermore, such a vi always exists in a rooted unbalanced unicyclic graph because 

of properties (1). (2) and (3) in the previous section. Since a rooted unbalanced 

unicyclic graph is a rooted unicyclic graph. Lemmas 3.3 and 3.4 hold for rooted 

unbalanced unicyclic graphs. 

3.3. Description of the scheme for Gu(r,vi) 

The general strategy is to send roughly half of the messages to r in each 

direction along the path. In particular. we need to send each message in Tv to v. and 
j J  

then to r by the path from v. to r which does not include vi. This strategy is 
J 

followed except for the particular subtree Tv.. 
I 

We know that in Gu(r.vi), lA) > kn-1)/2] and lB) > kn-11/21. Instead of 

sending all of the messages in Tv. along Short-Path or Long-Path. we split the 
1 

messages from Tv. into two sets. The first set is sent along Long-Path and the 
1 

second is sent along Short-Path. 



The scheme essentially allows the messages in T,- rooted at vi to get out from 
I 

vi to Long-Path or Short-Path as soon as possible. The scheme consists of two 

phases. In phase 1. vi relays the messages from Tv. by way of Long-Path to r with 
1 

the highest priority. That is, the messages from Tv. are relayed through the cycle 
I 

while messages from some other subtree T may have to wait. Meanwhile. for each 
Vk 

cycle vertex u in Short-Path, if no message is available from its neighbour cycle 

vertex w. where d(w.r) > d(u.r), then messages from T, are continuously relayed by 

way of Short-Path to r. In phase 2, vi switches. sending the remaining messages in 

Tv. to Short-Path. Meanwhile, for each cycle vertex u in Long-Path, if no message 
1 

is available from its neighbour cycle vertex w, where d(w.r) > d(u.r), then messages 

from T, are continuously relayed along Long-Path to r. The time for switching from 

phase 1 to phase 2 can be determined from the given G,(r.vi). 

The scheme essentially partitions the n-1 messages into two sets, S1 and S2. If 

S1 is the set from which r receives at  odd time periods, then S2 is the set from 

which r receives a t  even time periods and vice versa. Note that when Ell = l(n-1)/2] 

and lS21 = l(n-l)/2J or vice versa. it is easily verified that ~(G,(r.v~).r) = n-1. which 

is the best possible time. However, whether r receives messages from S1 at odd or 

even time periods is not arbitrary but depends on the parities of the lengths of 

Short-Path and LoncPath. Since vi gets the messages out of Tv every odd time 
i 

period beginning at time 1, then during the switching process from phase 1 to phase 

2. it is desirable to arrange the time parities of Short-Path and Long-Path such that 

both Ci+l and Ci-l request a message from vi at odd time periods if possible. 

. Otherwise one time unit of delay may be introduced. 

In the scheme. we let S1 - Ai-X and S2 5 X U Bi-Tv. U T -{rJ, where X 
I v~ 

is the set of messages in Tv. that vi sends to r by way of Long-Path. Therefore. 
1 



every message in S1 must travel through Short-Path to get to r. Every message in 

S2 other than those in T -{r} must travel through Long-Path to get to r. 
vo 

By analyzing the cases, we can determine that if Short-Path is of even length 

and LongPath is of odd length, the first message should be received at time 1 from 

LongPath. In all other cases. the first message should be received at time 1 from 

Shor tpa th .  

Note that if r receives messages from S, at odd time periods beginning at time 

1, then the goal of the scheme is to try to make Ell = kn-1)/2] and lS21 = [(n-1)/21. 

In this case, we would like to send kn-1)/2] - Bi-Tv- U T -{r}l messages from TV. 
1 vo I 

along Long-Path. On the other hand, if r receives messages from S2 at odd time 

periods beginning at time 1, then the goal of the scheme is to try to make lS21 = 

I(n-1)/2] and lSll = [(n-1)/21. In this case. we would like to send [(n-1)/2] - IBi-TV. U 
1 

T 4rJI messages from Tv. alofig Long-Path. In particular, if Short-Path is of even 
vo 1 

length and LongPath is of odd length, r starts to receive messages from S2 beginning 

at  time 1 and we would like to send kn-1)/21 - Bi-Tv. U T +}I messages from TV. 
1 vo 1 

along Long-Path. Otherwise, r starts to receive messages from S1 beginning at time 1 

and we would like to send kn-1)/2) - IBi-Tv- U T -(r}I messages from Tv. along 
1 vo 1 

Long-Path. 

Thus, if enough messages can be sent to from Tv. along LongPath. then lSll = 
1 

kn-l)/2] and IS21 = I(n-1)/21 or vice versa. and r a n  receive the last message at time 

n-1. However, this is not always the case. since we must also ensure that messages 

continually arrive at r on both of the paths. We must determine the 'latest time' by 

which vi must send the first message in Tv. to Short-Path in order to avoid causing 
1 

any idle time at r. This time can be determined as the following example shows : 



If r starts receiving from S1 a t  odd time periods. then the messages in Ai-T,. 
1 

can keep r busy at all odd time periods up to time 21Ai-T .C1 in S1. At time 
V~ 

21Ai-T 1+1, r must receive the first message from T,, Thus, vi must send the first 
vi I 

message to Shor tPa th  d(vi.r) time units earlier in order to avoid causing idle time at 

r. Thus, at  time 21Ai-Tvkl-d(vi,r). vi must send the first message to ShortPath.  
1 

Since vi requires 2 time units to relay- a message from one vertex to another. vi can 

advance IAi-T,.I - [d(vi.r)-ll/2 messages to LongPath during phase 1. Thus. by 
1 

analyzing the cases. we can determine that if both paths are of even length, vi can 

advance IAi-T,! - [[d(vi.r)-lV21 messages to LongPath during phase 1. In all other 
I 

cases. vi can advance IAi-T,I - I[d(vi.r)-11/21 messages to LongPath during phase 1. 
I 

1x1 can now be determined. We will send as many messages as possible along 

Long-Path provided that no idle time is introduced a t  r. Thus. 

1. If both paths are of Fven - length. IXI = Min (IA~-T,! - I[d(vi.r)-1]/2I. 
1 

l(n-1)/21 - 

2. If Short-Path is of even length and LonpPath is of odd length. 1x1 = 

Min (!Ai-T,.I - I[d(vi.r>l]/2], l(n-1)/21 - (lBi-T,! + IT -{r)l)) 
1 I vo 

3. In the two remaining cases. 1x1 = Min (IA~-T,! - I[d(vi,r)-l]/2]. l(n-1)/2] 
I 

- (lBi-Tv.l + IT -{r}l)}. 
1 vo 



Receiving Scheme fo r  G,,(r,vi) 

Each non-cycle vertex sends a message toward the cycle unless its parent is 

sending to or receiving from another vertex. 

1. If Short-Path is of even length and LoncPath is of odd length, then 1x1 

= Min {lAi-TV.l - I[d(vi.r)-11/21. [(n-1)/21 - (IBi-T,! + IT -{r)l)) 
1 I ,o 

In phase 1 : 

a. r receives messages from Short-Path at even time periods starting at 

time 2 and from LoncPath at  odd time periods starting at time 1. 

b. vi starts sending a message by way of LoncPath to r at time .- 1 

and subsequently sends a message at every odd period until IXI 

messages have been sent out. Each of these messages is relayed by 

way of LonnPath to r with the highest priority. That is. the 

messages from T,. are relayed through LonnPath while messages 
1 

from some other subtree T, may have to wait. 
k 

c. For each cycle vertex u in Shor tpa th ,  if no message is available 

from its neighbour cycle vertex w, where d(w.r) > d(u.r), then it 

relays a message from T, along Short-Path to r. 

In phase 2 : 

a. At time 21Xl+l vi switches, relaying the rest of the messages in T,. 
1 

to Short-Path every odd period. Each of these messages is then 



relayed by way of Short-Path to r with the lowest priority. That 

is. messages from some subtree Tv are relayed through Short-Path 
k 

while the messages from TV. may have to wait. 
I 

b. For each cycle vertex u in Long-Path, if no message is available 

from its neighbour cycle vertex w, where d(w.r) > d(u,r), then it 

relays a message from T, along Long-Path to r. 

c. After all messages from X U Bi-Tv. (in S2) are received by r at 
1 

time t' and if IT -(r)I > 0. messages from Tv -{r) will be seceived 
v~ 0 

by r every second period starting at time t'+2 until t' + 

Figure 3-11 and Figure 3-2 are examples to illustrate how the scheme 

works in case 1. The first example (Figure 3-11 shows a case in which it 

is possible to balance the sizes of S1 and S2. In the second example (Figure 

3-21. it is necessary to forward messages along Short-Path beginning at 

time 5 in order to keep messages arriving at r via Short-Path. Thus, we 

are not able to balance the sizes of S1 and S2. 



Figure 3-1: An example in which the sizes of S1 and S2 can be balanced, 

and R(G,(r,v2).r) = n-1 

Figure 3-2 An example in which the sizes of S1 and S2 cannot be 
balanced, and R(G,(r.v2).r) - 21T I + d(v2.r) -2 

v2 



2. If Short-Path is of odd length and LonnPath is of even length, then IXI 

In phase 1 : 

a. r receives messages from Shor tpa th  at  odd time periods starting at 

time 1 and receives messages from LongPath at even time periods 

starting at time 2. 

b. same as phase l(b) in Case 1 

c. same as phase l(c) in Case 1 

In phase 2 : 

Same as phase 2 in Case 1. 

3. If Short-Path is of odd length and LoncPath  is of odd length, then IXI = 

Min (IA~-T,.I - l[d(vi.r)-1]/2]. [(n-l)/2] - (IBi-Tv.I + ITV -(rJl)l 
I I 0 

In phase 1 : 

a. r receives messages from Short-Path at  odd time periods starting at 

time 1 and receives messages from LoncPath  at even time periods 

starting at time 2. 



b. vi receives a message from Tv.-{vi} at time 1 and starts sending a 
1 

message by way of L o n e a t h  to r at time 2 and subsequently 

sends a message at every even period until at time 2KI. Each of 

these messages is relayed along Long-Path to r with the highest 

priority. That is, the messages from Tv are relayed through 
i 

Long-Path while messages from some other subtree T may have to 
Vk 

wait. 

c. For each cycle vertex u in Short-Path, if no message is available 

from its neighbour cycle vertex w. where d(w.r) > d(u.r), then it 

relays a message from T, along Shor tpa th  to r. 

phase 2 : 

a. At time 21Xl+l vi sends its own message by way of Short-Path if 

the neighbour cycle vertex on Short-Path is ready to accept one. If 

so, all messages in T,.-{v~} are deferred by 1 time unit so that vi is 
1 

able to receive and send the next message every second period in the 

other 'time parity. Each message received by vi from TV;{vi} is then 
1 

relayed by way of Short-Path to r with the lowest priority. That 

is, messages from some subtree T are relayed through Short-Path 
'k 

while the messages from Tv. may have to wait. 
1 

b. For each cycle vertex u in L o n e a t h .  if no message is available 

from its neighbour cycle vertex w. where d(w.r) > d(u.r). then it 

relays a message from T, by way of L o n e a t h  to r. 



c. After all messages from X U Bi-T,. (in S1) are received by r at  
1 

time t' and if IT -MI > 0. then messages from T -{r) will be 
vo 

received by r every second period starting a t  time t'+2 until t' 

+ 21T -{r)I. 
vo 

4. If Short-Path is of even length and LoncPath  is of even length. then 1x1 

= Min {/Ai-Tv.l - I[d(vi.r)-11/21, kn-1)/21 - (IBi-T 
1 

In phase 1 : 

a. r receives messages from Short-Path a t  odd time periods starting a t  

time 1 and receives messages from LoncPath  at even time periods 

starting a t  time 2. 

b. vi starts sending a message by way of LoncPath to r at  time 1 

and then next message every odd period until IXI messages have been 

sent out. Each of these messages is relayed by way of LoncPath  to 

r with the highest priority. That is, the messages from T are 
'i 

relayed through LoncPath  while messages from some other subtree 

T may have to wait. 
Vk 

c. For each cycle vertex u in Short-Path, if no message is available 

from its neighbour cycle vertex w, where d(w.r) > d(u.r), then it 

relays a message from T, along Short-Path to r. 



In phase 2: 

a. If 1x1 - IAi-T,! - I[d(v,.r>-13/21 < l(n-1)/2] - (IBi-TV.l + IT, -{dl). 
1 1 0 

then at time 21Xk2 or else at time 21Xl+l, vi switches sending the 

rest of the messages in T,. by way of Short-Path to r every second 
1 

period. Each of these messages is then relayed along'short-Path to 

r with the lowest priority. That is, messages from some subtree T, 
k 

are relayed through Short-Path while the messages from T,. may 
1 

have to wait. 

b. For each cycle vertex u in Long-Path. if no message is available 

from its neighbour cycle vertex w, where d(w.r) > d(u.r), then it 

relays a message from T, Long-Path to r. 

c. After all messages from X U Bi-Tv- (in S2) are received by r at  
1 

time t' and if IT -{r)l > 0, then messages from T -{r) will be 
v~ v~ 

received by r every second period starting at time t'+2 until 

d. If IXI - lAi-Tv! - l[d(vi,r)-11/21 < I(n-1)/2] - [IBi-T,! + IT, -{r)l] and 
1 1 0 

IShort-Pathl = ILong-Pathl, then the last message from T,. is sent by 
1 

way ob Long-Path to r. 



58 

Lemma 33: In Case 1 of the above scheme, r receives a message from 

S1 at even time periods and from S2 at odd time periods. 

Proof: In phase 1 Step (a), r receives the first message from 

Short-Path (S1) at time 2 and the first message from Long-Path (S2) at 

time 1. Thus. the lemma holds for Step (a). For Step (b). 'r can receive a 

message from Long-Path every odd period because in addition to the vertices 

on the Long-Path. vi keeps providing messages to Long-Path continuously 

without any delay. For Step (c), it is easily verified that r can receive a 

message from the Short-Path every even period because messages from the 

subtree vertices are continuously sent along Short-Path without any delay. 

In phase 2. for Step (a). X is the set of messages that vi sends by 

way of Long-Path to r and thus, during time 1 and time 21x1-1, vi is busy 

sending out the 1x1 messages. IXI is chosen such that no idle time will occur 

at r for the switching process from phase 1 to phase 2 on both Short-Path 

and Long-Path. From time 1 to 21x1-1, vi is busy sending messages by way 

of LoncPath to r without relaying a message to Short-Path. However, by 

time 21Xl+l. vi must relay a message from T,. to Short-Path and be able to 
1 

relay a message to the Short-Path every second period in order to avoid 

causing any idle time at r. Step (a) has done all these and been able to 

maintain the time parities in both paths started in phase 1 without any 

delay. Thus, the lemma holds for this step. For Step (b). as before, it is 

easily verified that r can receive a message from Long-Path every odd 

period because whenever a cycle vertex u on Long-Path runs out of 
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messages from its neighbour cycle vertex w, where d(w.r) > d(u.r). 

+ messages from T,, are continuously relayed along Long-Path without any 

delay. For Step (c). it is easy to see that r receives a message from T -{r) 
vo 

every second period followed with the same time parity as Long-Path does. 

Since no delay occurs in the scheme, r receives a message from S1 at  

even time periods and from S2 at odd time periods. . 
L e m  3.6: In Case 2 and 3 of the scheme. r receives a message from 

S1 at odd time periods and from S2 at even time periods. 

Proof: The proof for Case 2 is similar to that of the previous lemma, 

except that we have a different time parity for S1 and S2' 

The proof for Case 3 : + In phase 1 Step (a). r receives the first 

message from Short-Path (sl) at time 1 and receives the first message from 

Long-Path (S2) at time 2. Thus, the lemma holds for this step. For Step 

(b), vi receives a message from one of its subtrees at time 1 and starts 

sending a message by way of Long-Path to r at time 2 and subsequently 

sends a message at every even period to Long-Path. Since r starts receiving 

from Long-Path at time 2. r can receive all these messages from vi at even 

time periods without any delay. For Step (c). same as the previous lemma, r 

can receive a message from Short-Path every odd period because messages 

from the subtree vertices are continuously sent along the Short-Path without 

any delay. 

In phase 2 Step (a). we choose IXI so that vi sends IXI messages by 



way of Long-Path to r without causing any delay before vi starts sending 

messages to Short-Path. Since vi starts sending the first message to 

Long-Path at time 2. vi sends the last message to Long-Path at time 21x1. 

We know that vi must relay a message to Short-Path no later than at time 

2lXl+1 in order to avoid any delay. Because there is a message waiting at vi 

since time 1, at time 21Xl+l vi can send this message and the rest of the 

messages in T,. by way of Short-Path to r in the subsequent odd periods. 
I 

Thus the switching process from phase 1 to phase 2 causes no delay on 

either Short-Path or Long-Path and is able to maintain the time parities in 

both paths started in phase 1. 

For Step (b) and Step (c), similar arguments can be found in the 

previous lemma. As a result.. no delay occurs in the scheme and r can 

receive a message from Si at odd time periods and receives a message from 

S2 at even time periods. W 

Lemma 3.2 In Case 4 of the scheme. if IAi-Tv.l - l[d(vi.r)-ly2] < 
1 

l(n-1)/2] - (IBi-Tv-I + -(dl) ) and IShort-Pathl < ILong-Pathl. then one 
1 

time unit of delay will occur a t  vi. Otherwise, no delay will occur. 

Proof: If IXI - I(n-1)/2] - (Bil + IT -(r)l) 6 lAi-T,! - I[d(vi.r)-11/21, 
v~ 1 

then we can send as many messages to Long-Path as necessary to balance 

the sizes of Si and S2 and can still ensure that messages continually arrive 
L 

a t  r on both of the paths. Therefore. no delay will occur during the 

switching process from phase 1 to phase 2. No other step will cause a 1 

time unit delay as shown in the previous lemmas. Thus, it is true in this 

case. 



6 1 

Otherwise. we cannot balance the sizes of S1 and St since we must 

ensure that messages are continually relayed to r via Shortpath. In this 

case, at time 21X1-1 vi sends the last message to Long-Path. At time 21x1 and 

21Xl+l, vi requests a total of 2 messages from its subtrees and accumulates 

an extra message. At time 2lXl+2 vi switches. sending messages in Tv- by 
I 

way of Short-Path to r every even period but still maintains an extra 

message. If IShort-Path1 . < ILong-Pathl, then the accumulated message will 

be sent by way of Short-Path to r. Note that the accumulated message at 

vi cannot be sent to Short-Path until time 21Xk2(ITv.-XI) = 21Tv.I. Thus, a 
1 I 

1 time unit delay will occur at vi in this case. However, if IShort-Pathl = 

ILong-Pathl. the accumulated message at vi will be sent by way of 

Long-Path to r. This can be done right after vi sends the second last 

message in Tv- to Short-Path. -that is, at time 21Xk2(ITv.-XI)-1 = 21Tv.I-1. 
I I I 

Thus, no delay will occur at vi in this case. W 

Now we can determine the resulting receiving times with the above lemmas 

when the scheme for Gu(r.vi) is applied. 

Theorem 3.8: From the receiving scheme above. the receiver r can 

receive all n-1 messages in Gu(r.vi) in the following times: 

1. When Short-Path is of even length and Long-Path is of odd length. 

and if IXI = [(n-1)/2]- (IB~-T,! + IT -{dl)) < IArTv.I - I[d(vi.r)-l]/2], 
I vo I 

then R(G,,(~.V~)) < n-1. Otherwise. R(Gu(r.vi)) < 21Tv! + d(vi.r) -2. 
1 

2. When Short-Path is of odd length and Long-Path is of even length. 



62 

and if 1x1 = l(n-1)/21- (IBi-T,! + IT d I A A !  - IKd(vi.r)-ll/21. 
1 1 

then R(G,(r.vi)) d n-1. Otherwise, R(G,(r.vi)) d 21Tv! + d(vi.r) -2. 
1 

3. When Short-Path is of odd length and Long-Path is of odd length. 

and if 1x1 = I(n-l)/2h (IBi-Tv! + ITv -{r)l)) d Mi-Tv! - I[d(vi.r)-1]/2). 
1 0 I 

then R(G,(r.vi)) d ri-1. Otherwise, R(G,(r.vi)) d 21Tv! + d(vi.r) -2. 
I 

4. When Short-Path is of even length and Long-Path is of even length. 

and if 1x1 = l(n-1)/2]- (IBi-Tv! + IT -{r)l)) d IAi-Tv! - l[d(vi.r)-11/21. 
1 vo 1 

then R(G,(r.vi)) d n-1. Otherwise. 

a. If short-Pathl = Long-Pathl. then R G r v i ) )  d 21Tv I 
i 

+ d(vi.r) -2. 

b. Otherwise. R(G,(r,vi)) d 21Tv! + d(vi.r) -1. 
1 

Proof: 

1. When Short-Path is of even length and Long-Path is of odd length. 

then by Lemma 3.5, we know that r can receive a message from S, 

at even time periods and from S2 at odd time periods. If 1x1 = 

- 2  - I - T  + IT I d IAi-Tv! - bd(vi.r)-l]/2]. then we 
1 vo I 

can balance the sizes of S1 and S2 so that tSzl = lBi-Tv! + IT -(r)l 
1 vo 

+ 1x1 = [(n-1)/21 and Ell = kn-1)/2]. Thus. R(G,(r.vi).r) d n-1. 

Otherwise. the node vi starts sending out 1x1 messages by way of 
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Long-Path to r at time 1 every second period. By time 21x1-1, the 

last message of X is relayed to Long-Path by vi. At time 21x1, vi 

receives a message from T,. and relays it by way of Short-Path to r 
1 

at time 21Xl+l. From then on. vi relays the remaining messages in T,. 
1 

to Short-Path every second period with no delay. and the last 

message received by r is the last message from TV;X by way of 
I 

Short-Path. Thus. at time 2Kl+l + 2(ITV--~C1) = 21T,!-1. the last 
1 1 

message from Tv- is sent out to Short-Path by vi. So by time 21Tv.I-1 
1 1 

+ d(vi.r)-1 = 2fTv! + d(vi,r)-2. the last message is received by r. 
I 

2. When Short-Path is of odd length and Long-Path is of even length, 

then by Lemma 3.6, we know that r receives a message from S1 at 

odd time periods and- from 'S2 at even time periods. Similarly, If 1x1 = 

[(n-11/21 - (IB~-T,! + IT -{r)l)) d lAi-Tv! - I[d(vi,r)-11/21. then we 
1 vo 1 

can balance the sizes of Sl and S2 so that E2l = IBi-T,! + IT -{r)l 
1 vo 

+ IXI = kn-l)/2l and lSll = Kn-1)/21. Thus ~(G,(r.v~).r) d n-1. 

Otherwise. the node vi starts sending out 1x1 messages by way of 

Long-Path to r at time 1 every second period. By time 21x1-1, the 

last message of X is relayed to Long-Path by vi. At time 21x1, vi 

receives a message from T,. and relays it by way of Shortpath to r 
1 

at  time 21Xl+l. From then on. vi relays the remaining messages in T,. 
1 

to Short-Path every second period with no delay. and the last 

message received by r is the last message from T,:X by way of 
1 



Short-Path. Thus, at time 2lXl+l + 2(ITvTXI-1) = 21Tv!-1, the last 
1 1 

message from T,. is sent out to Short-Path by vi. So by time 21Tv.I-1 
1 1 

+ d(vi.r)-1 = 21Tv! + d(vi.r)-2, the last message is received by r. 
1 

3. When Short-Path is of odd length and LonaPath is of odd length. 

then by Lemma 3.6, we know that r receives a message from S1 at 

odd time periods and from S2 at even time periods. Similarly, If IXI = 

I(n-11/21 - (IBi-T ! + IT -{r)l)) d IAi-Tv! - I[d(vi.r)-11/21. then we 
v~ vo . I 

can balance the sizes of S1 and S2 so that lSzl = IBi-T,! + IT -{dl 
1 vo 

+ IXI - l(n-11/21 and Ell = kn-1)/2]. Thus R(G,(r.vi).r) d n-1. 

Otherwise, the node vi receives a message from Tv-{vi) at time 1 and 
i 

then starts relaying 1x1 messages to LonaPath at time 2. Note that vi 

has now accumulated an extra message other than its own. By time 

21x1, the last message of X is relayed to LonaPath by vi and at time 

2lXl+l. vi will relay the accumulated message to Short-Path. From 

then on, vi relays the remaining messages in T,. to Short-Path every 
1 

second period with no delay. and the last message received by r is 

the last message from T,--X by way of Shortpath. Thus, at time 
1 

21Xl+l + 2(ITv.-XI-1) = 21TV.C1, the last message from T,. is relayed 
1 1 1 

to Short-Path by vi. So by time 21Tv!-1 + d(vi.r)-1 - 21Tv.I 
1 I 

+ d(vi.r)-2, the last message is received by r. 

4. When Short-Path is of even length and LonaPath is of even length. 



and if IXI = kn-11/21 - B - T ~  + IT -(r)I)) d IAi-T I 
I v~ vi 

- I[d(vi.r)-11/21. then we can balance the sizes of S1 and S2 so that 

S21 = Bi-Tv.l + IT -(r)l + 1x1 = l(n-1)/2] and ISII = En-1)/21. By 
I vo 

Lemma 3.7, r receives a message from S1 at odd time periods and 

from S2 at even time periods. Thus. R(G,(r.vi).r) d n-1. 

Otherwise. if IShort-Pathl = ILong-Pathl. then by time 21Xk2, vi sends 

the remaining IT,.I-IXI messages by way of Short-Path to r every 
I 

second period with no delay. Thus. by time 21X1+2 + 2(ITv.I-1x1-2) = 
I 

21Tv.I-2, vi sends the second last message in Tv. to Short-Path. At 
1 I 

time 21Tv.I-1. vi sends the last message. which was accumulated at vi 
1 

at  time 21Xl+l, by way of Long-Path to r. Since Bhort-Pathl = 

ILong-Pathl = d(vi.r). in this case, by the time 2q.I-1 + d(vi,r)-1 = 
I 

21Tv.I + d(vi.r) -2, the last message is received by r. Thus, 
I 

R(G,(r,vi),r) d 21Tv! + d(vi.r) -2. 
1 

If IShort-Pathl < ILong-Pathl, then by time 2[X1+2, vi sends the 

remaining IT 14x1 messages in Tv. by way of Short-Path to r every 
vi 1 

second period with no delay. The last message received by r is the 

last message of the Tv.-X messages sent by way of Short-Path. Thus. 
I 

at time 21X1+2 + 2(M;.I-1x1-1) = 21Tv!. the last message is relayed to 
I 1 

Short-Path by vi. So by time 21Tv! + d(vi.r) -1. the last message is 
I 

received by r. Thus. R(G,(r.vi).r) d 21Tv! + d v r  - 1  . 
I 



Theorem 3.9: The receiving time for G,(r.vi) using the above scheme is 

optimal. 

Proof: The node r must receive all n-1 messages and thus. ~(G,(r.v~).r) 

2 n-1. Thus. for those cases where we have shown that R(G,(r.vi).r) < 
n-1. the scheme is optimal. 

By Lemma 3.3. ~(G,(r.v~).r) 2 21Tv! + d(vi.r) -2 which also implies 
I 

the scheme is optimal for those cases in which we have shown ~(G,(r.v~).r) 

< 21TV.I + d(vi.r) -2. As for the case in Case 4 in which we have shown 
1 

R(G,(r.vi).r) < 21Tv.I + d(vi.r) -1. we will show that this is also optimal. 
1 

By Lemma 3.3 again. R(GU(r,vi).r) 2 21Tv! + d(vi.r)-2. To show that one 
1 

extra time unit is required in this case when both Short-Path and 

Long-Path are of even length and !Short-Pathl < ILong-Pathl, consider the 

f 0110 wing cases: 

1. If vi sends all messages in TV. by way of Short-Path to r,  then 
I 

R(G,(r.vi).r) is at least 21Tv- U Ai-T I -1 > 21Tv! + [d(vi.r)-11-1 
1 

v- 
1 

since 21Ai-Tv.l > d(vi.r)-1. Thus. R(G,(r.vi).r) 2 21Tv.I + d(vi.r)-1. 
1 1 

2. Similarly. if vi sends all messages in Tv. by way of Long-Path to r. 
I 

R(GU(r.vi),r) 2 21Tv! + d(vi.r)-1. 
1 

3. Now. if vi sends part of the messages in Tv. by way of Long-Path 
1 

to r and the remaining by way of Short-Path to r, then let us 

consider the time parity at vi and the time parities in Shortpath and 
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Long-Path. Note that if vi relays some message in T,. to one path at  
1 

each odd time period. these messages will reach r in even time periods 

from both Short-Path and Long-Path. This cannot happen 

simultaneously because r has to receive a message from Short-Path in 

odd time periods and a message from Long-Path in even time periods 

or vice versa. So one time unit of delay is unavoidable in this case 

and thus. R(G,(r.vi),r) > 2lT,! + d(vi.r) -1. 
1 

Thus. in this case the time is also optimal. 

3.4. Receiving in Unicyclic Graphs 

Given the tree receiving scheme [5]  and rooted unbalanced unicyclic receiving 

scheme from the previous section. we now consider a unicyclic graph G, = (V.E). 

* - 
Theorem 3.10: Given a unicyclic graph G, on n vertices and a 

specified receiver r. 

1. If r is not on cycle. then R G r  = R(T.r) = Max {n-1. 

2*maxsubtree(v)-1) for any spanning tree T rooted at r. where 

maxsubtree(v) is the size of a maximum subtree rooted at a child v 

2. If r is on cycle and a centroid vertex of some spanning tree T. then 

R(G,.r) = R(T.r) = n-1. 

3. If r is on cycle and not a centroid vertex of any spanning tree but 



adjacent to a vertex v with Weight(v) > ln/2]. then R(G,.~) = 

2*Weight(v) -1. 

4. Otherwise. R(G,,r) = R(GU(r,vi),r). where i 2 2. 

Proof: These times are optimal and can be achieved because: 

1. If r is a non-cycle vertex, then every neighbour of r is an 

articulation point. Consider the components obtained by deleting r. 

All of the messages from each particular component must arrive at r 

through a single neighbour of r. Thus, any receiving scheme performs 

no better than the tree receiving scheme [5] on some spanning tree T 

rooted at r from G,, and R(G,.r) = R(T.~) is optimal. 

2. If r is a cycle vertei ,and a centroid tree T rooted at r is constructed. 

then the tree receiving scheme [5] is applied. Thus. R(G,.~) = R(T.~) 

= n-1 which is the best possible time. Hence. this is optimal. 

3. If r is a cycle vertex and adjacent to a neighbour cycle vertex v of r 

with the subtree S, rooted at v, consisting of v and those non-cycle 

vertices. such that IS,I 2 ln/2], then a spanning tree T rooted at r is 

constructed by deleting the edge (u.v), where u is a cycle vertex and 

u # r. Note that if IT,I = ln/2j. T is a tree with centroid r and 

R(G,,r) - R(T.r) = n-1 which is optimal. Otherwise with the tree 

receiving scheme [5]. R(G,,r) - R(T,r) = 2*weight(v) -1 = 21SvI -1. By 

Lemma 3.3. R(G,(r).r) 3 2154 + d(vi.r) -2 = 21SvI -1 (since 

1 

d(vi.r)=l). 'Thus, the receiving time is optimal. 
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If r is a cycle vertex and adjacent to a neighbour non-cycle vertex v 

of r such that the subtree S, rooted at  v with IS,! > ln/2], then an 

arbitrary spanning tree T rooted at  r is constructed. With the tree 

receiving scheme [5] .  R(T.r) = 21SvI -1 = 2*weight(v) -1. By Lemma 

3.2. R(G,.r) 3 2*Weight(v) + d(v,r) -2 = 2*Weight(v) -1 (since 

d(v.r)=l). Thus. R(G,.r) = R(T.r) is optimal. 

4. Otherwise, the rooted unbalanced unicyclic receiving scheme is used. 

From the results of the previous section, the resulting receiving time 

for a rooted unbalanced unicyclic graph is optimal. 

3.4.1. Time Complexity Analysis 

Weight(v) can be determined in O(lE1) time for all points v in the component 

containing r. To obtain a spanning tree from G, takes O(lE1) time. The tree 

receiving algorithm [5 ]  takes 0(1V12) time as does the rooted unbalanced unicyclic 

receiving scheme. Thus an optimal receiving scheme for any unicyclic graph can be 

determined in 0 (lV12) time. 



Chapter 4 

Receiving in General Graphs 

Optimal receiving schemes are known for Zconnected (non-separable) graphs and 

for trees [5]. An optimal receiving scheme for unicyclic graphs has been presented in 

the previous chapter. However, no optimal scheme is known for other separable 

graphs. In this section, we present a receiving scheme for separable graphs with 

receiving time no worse than 5/4 optimal. 

4.1. Description of the algorithm for Separable Graphs 

We are given a separable graph G. If G is a tree. we can .use the optimal tree 

receiving algorithm [5]. Otherwise. we preprocess the graph G and obtain : (i) the set 

of articulation points A [I]. (ii) the set of biconnected components B [I] and (iii) the 

size of each biconnected component. We can then determine Weight(v) of each 

articulation point v with respect to r. 

Consider ari articulation point v f r in a block containing r. We transform 

the separable graph G into either a tree or rooted unicyclic graph as follows: 

1. If r is not an articulation point, then: 

If the block containing r has only 2 vertices, then we can simply 

construct a spanning tree T rooted at r and use the tree receiving 

algorithm [5]. Otherwise: 



a. If the block containing r has an articulation point v: 

(i) If d(v.r)=l and Weight(v) k t(n-1)/2), then construct a tree T 

by connecting all vertices outside the block at v as one subtree and 

the rest of vertices as another subtree at r and then join them 

together by the edge (r.v). Use the tree receiving algorithm [5] on 

the centroid tree T. Note that if Weight(v) = l(n-1)/2] or [(n-1)/21, 

T is a centroid tree. 

(ii) If d(v.r) > 1 and Weight(v) k l(n-1)/21, then construct a 

rooted unbalanced unicyclic graph G,(r.vi) from G, where d(vi.r) = 

d(v.r) > 1, and use the rooted unbalanced unicyclic receiving 

scheme. To illustrate* how to obtain such a rooted unbalanced 

unicyclic graph. consider Figure 4-1. Let weight(vl) = lBll . 
Weight(v2) = IB21, and weight(v3) = IB,I + IB,I + IB51 + lB,I -3. 

Figure 4-1: An example of separable graphs in which r is not an 
articulation point 
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Consider the block B3. Find Short-Path from v3 to r of length 

d(v,r) and then L o n ~ P a t h  from v3 to r of length 2 d(v.r). Join 

the remaining vertices in the block to the cycle except at v3 - 

forming a unicyclic graph as in Figure 4-2. 

Figure 4-2: The resulting component of B3 from Figure 4-1 

The vertices of the other blocks can be connected to the cycle by 

choosing an arbitrary spanning tree of each of these b1ocks. The final 

rooted unbalanced unicyclic graph. Gu(r,vi). where d(vi.r) = d(v3,r) > 

1. is of the form as shown in Figure 4-3 : 

b. If the block containing r has no such an articulation point v such 

that Weight(v) 2 Kn-l)/2j. then we can direct each edge of the 

block so that the block becomes a directed acyclic graph (dag) with 

one source (s) and one sink (t), where s is adjacent to t in the 



Figure 4-3: The resulting graph from Figure 4-1 after conversion 

original block but the edge (s.t) has been removed in the dag [S]. 

Order the vertices s=vl; v2. .... vk=t by topological sort. Split the 

dag into two trees T, = {s=vl. v2, .... v,) and T, = {v,+~, v,+~. .... 

vyt). so that ~ e i ~ h t ( ~ , )  = 2 weight(v,) 3 b/2l and weight(T,) 
i=l 

= 2 Weight(vi) < ln/21. The vertices of the other blocks can then 
c=t 

be connected to T, or Tt by choosing an arbitrary spanning tree of 

each of these blocks. 

If weight(TS) = ln/21, then  weight(^,) = ln/2j. We construct a 

centroid tree by joining T, and Tt with the s-t edge, and then use 

the optimal tree receiving scheme [S]. If Weight(Ts) > b/21 . we 

construct a rooted unicyclic graph by joining the two trees with the 

S-t edge in conjunction with another edge (v .v.). where m < j < 
m J  

* 
k, and use the receiving scheme for unicyclic graphs from Chapter 3. 



If r is an articulation point, then: 

a. Consider the graph resulting from the removal of r and its incident 

edges. If there is a component C in this graph such that ICI > 

ln/2], convert G into a spanning tree T if there is only a single edge 

from r to the component C. If there are multiple edges from r to C. 

convert G into Gf with the following operations: (1) obtain a subtree 

To' from G-C. (2) obtain a subgraph G' from C U {r) U {all 

incident edges from C into r )  by using Step l a  and lb. and (3) Gf 

= G' U To'. Note that Gf may end up with a tree or a rooted 

unbalanced unicyclic graph G,(r.vi) for some d(vi.r) > 1. with T,. 
1 

< I n - 1 2  To illustrate how it works, consider Figure 4-4. 

Figure 4-4: An example of separable graphs in which r is an articulation point 
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Suppose that C = B6 U BS U B7 - (r)  and tCl > ln/2] . then we 

span B1 U B2 U B3 U B4 as the subtree T i  rooted at r. If Bs is a 

single edge, then G' is another spanning tree TI' rooted at r from Bs 

U B6 U B7 and Gf - To' U TI' is a tree. We then use the tree 

receiving scheme [5] on Gr On the other hand, if Bs is not a single 

edge, we work on C U {r) U {all incident edges from C into r)  as 

to obtain a subgraph G' by using step l a  and lb. Then Gf = To' U 

G'. If Gf is a tree then use the tree receiving scheme [5]. 

Otherwise. use the rooted unbalanced unicyclic receiving scheme from 

Chapter 3 on Gr 

b. If there is no such component C, then we can simply construct an 

arbitrary centroid tTee and use the optimal tree receiving scheme [5]. 

4.1.1. Proof of correctness of the algorithm 

The algorithm converts a given separable graph G into either a tree or a rooted 

unicyclic graph. Thus. the proof of the correctness for the algorithm is mainly to 

show that all of the conversions are valid. 

1. Initially, the algorithm checks to see whether G is a tree. If G is a tree. 

no conversion is involved.. 

2. If the separable graph G is not a tree, the algorithm converts G into either 

a tree or a rooted unicyclic graph in Step l(a). l(b). 2(a) and 2(b). 

a. For Step 1. consider r L A. If the block containing r has only 2 



vertices, then r has only a single edge connecting it to V-{r). In 

this case, the algorithm obtains a spanning tree T with root r from 

G. This conversion from G into T is valid. 

If the block containing r has more than 2 vertices, then it is 2- 

connected. i.e. every two vertices in the block lie in a common cycle. 

In Step l(a). if there exists an articulation point v such that 

Weight(v) > l(n-1)/2]. then the algorithm obtains a spanning tree 

from G if v is a neighbour of r. and converts G into a rooted 

unicyclic graph G,(r.vi) with d(v.r) > 1 and IT,.I = Weight(v) 
1 

otherwise. A rooted unbalanced unicyclic graph is obtained from G 

by finding the first path of length d(v.r) and the second path of 

length 2 d(v,r) from the vertex v to the receiver r. These two 

paths can always be found because the block containing both v and 

r is a 2-connected component. The next step is to join the 

remaining vertices in this block to the cycle except at vertex v. 

In Step l(b), if the block does not have such an articulation 

point v, then the algorithm converts the block into a directed acyclic 

graph (dag), with one source (s) and one sink (t), where t is 

adjacent to s in the original block but the edge k t )  has been 

removed in the dag [S]. Order the vertices s=vl. vZ. ..., vk=t in the 

dag by topological sort [I]. Split the dag into two trees T, = (s=vl. 



v2,... v,) and Tt = { v ~ + ~ .  v,+~,.., vk=t) SO that  weight(^,) = 
m- 2 Weight(vi) a b/2] and Weight(T,) = 2 Weight(vi) < ln/2]. 

i-I i= I 

If Weight(T,) = In/2] and Weight(Tt) = ln/2]. then the algorithm 

constructs a centroid tree by adding the (s.t) edge from T, to Tt. 

This is the procedure used to find a centroid tree from a 2-connected 

graph in [J]. However. if Weight(T,) > In/2]. then the algorithm 

forms a rooted unicyclic graph by adding two edges from T, to Tt. 

namely the (s.t) edge and the (v,. v.) edge. where m < j < k. 
1 

Note that the (v .v.) edge. where m < j < k. always exists in the 
m l  

dag. This can be proved as follows : The vertex v, is of degree 

at least 2 and the dag has only 1 source (s) and 1 sink (t). 

i. If all incident edges of vm in the dag are incoming edges, then 

v, f t is a 'sink. This cannot happen. 

ii. If all incident edges of v, in the dag are outgoing edges. then 

v, f s is a source. This cannot happen. 

Thus, the (vm,vj) edge. where m < j 6 k. always exists in the 

dag. As a result. all conversions in Step l(b) are valid. 

b. For Step 2. we are considering r E A. In Steps 2(a) and 2(b). G is 

converted to either a spanning tree or a rooted unicyclic graph as in 

Steps l a  and lb. Hence, all conversions in step 2 are valid as well. 



4.2. Algorithm Performance Analysis 

If G is a tree, then the tree receiving algorithm [5] achieves the optimal time. 

Therefore we will look a t  all possible cases of non-tree G and analyze them. 

In Step 1 : we are considering the cases in which r I A. , 

1. If the block containing r has only 2 vertices, then r is of degree 1 and 

has only a single edge connecting it to V-{r}. The algorithm converts the 

graph G into a spanning tree T rooted a t  r and use the tree receiving 

scheme [5] with R(T.r) = 2n-3. By Lemma 3.1, R(G.~) k 2n-3. Thus 

the conversion yields the optimal receiving time. 

2. If the block containing r has more than 2 vertices: 

In Step l(a), the block containing r has an articulation point v. (i) If 

d(v,r) = 1 and Weight(v) k kn-l)/2j, then the algorithm constructs a 

tree T from G. Note that if weight(v) = l(n-1)/2] or kn-1)/21. T is a 

centroid tree. With the tree receiving scheme [5] on T, R(G.r) = R(T.r) = 

n-1 which is optimal. If Weight(v) > [(n-1)/21, T is a tree. with subtree 

S rooted at a child v of r such that IS1 = Weight(v). With the tree 

receiving scheme [5] on T, R(T.r) = 2lMaxsubtree(v)i -1 = 2*Weight(v) -1. 

By Lemma 3.2. R(G.r) k 2*weight(v) + d(v.r) -2 = 2*Weight(v) -1 

(since d(v.r)=l). Thus. R(G.r) = R(T.r) = 2*Weight(v) -1 is optimal. 

(ii) If d(v,r) > 1 and Weight(v) 3 [(n-1)/2]. then the algorithm 



constructs a rooted unbalanced unicyclic graph Gu(r,vi) with d(vi,r> = 

d(v,r) > 1 and IT,! = WeigJdv). Observe that IT,! 3 2. d(vi.r) 3 2 
1 I 

in Gu(r.vi). By Lemma 3.2, we know that R(G.r) 3 2*Weight(v) 

+ d(v.r) -2 = 21Tv! + d(vi,r) -2. So R(G.r) requires at least 21Tv.I 
1 1 

+ d(vi.r) -2 time units. Since R(Gu(r,vi).r) from Section 3.3 is no more 

than 21Tv.I + d(vi.r) -1. the resulting time from the scheme obtained by 
1 

the algorithm is at  most greater than the optimal time by 1. In ratio, the 

performance is : 

[21Tv.I + d(vi.r) -1]/[2lT,,! + d(vi,r) -21 optimal 
I 1 

< 514 optimal. for ITv! 3 2. d(vi.r) 2 2. 
1 

In Step l(b), when ITJ-= and IT4 = ln/2], then we construct a 

centroid tree T and use the tree receiving scheme [5] with R(T.r) = n-1. 

Thus, we have an optimal conversion. Otherwise. observe that there is no 

articulation point v with Weight(v) 3 l(n-1)/2] , and therefore each 

articulation point v must be of Weight(v) < l(n-1)/2]. In this case, the 

algorithm constructs a rooted unbalanced unicyclic graph Gu(r.vi) with T,. 
1 

< l(n-1)/2] for some vi. - 

R(Gu(r.vi),r) from Section 3.3 is no more than 21Tv! + d(vi.r) -1 < 
1 
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Since IT,.t - kn-l)/2J, the remaining kn-l)/2l + 1 vertices may all 
1 

contribute to constructing both paths. Note that kn-1)/2) < kn+1)/2]. So 

kn-1)/21 + 1 < l(n+1)/2] + 1 = kn+3)/2]. Therefore. d(vi.r) in this 

particular G,(r,vi) can be no more than kn+3)/2]/2 = l(n+3)/4J. and 

2*[(n-1)/2] + d(vi,r) -1 

Since kn+3)/4] > 1. n > 1. As a result. R(Gu(r,vi).r) is less than n-2 

+ (n+3)/4 and R(G.r) requires at least n-1 time units. Hence, the 

resulting time is: 

< [n-2 + (n+3)/4]/(n-1) optimal, for n > 1 

= (5x1-5)/(4n-4) optimal 

= 5/4 optimal. for n > 1. 

In Step 2, we are considering the remaining cases in which r E A. For Step 

. 2(a), if there is a component C resulting from the removal of r and its incident edges 

in the graph, then: 

1. If there is only a single edge (v.r) joining r to component C, then the 



algorithm converts G to a spanning tree T. The tree receiving scheme 

[5] yields R(T,r) = 21CI-1 because the maximum subtree S rooted at a 

child v of r is formed from C and 61 = Kl > ln/2]. By Lemma 3.2, 

R(G.r) > 2*Weight(v) + d(v.r) -2 = 21SI -1 (since d(v.r)=l). Thus R(G.r) 

- R(T.r) = 21SI -1 = 21CI -1 is optimal. 

2. If there are at  least 2 edges joining r to the component C, then the 

algorithm constructs Gf with the following operations: (1) construct 

spanning tree To' from G-C such that ITOsI < ln/2]. (2) construct G' from 

C U {r} U {all incident edges from r into C} by using Step l a  and lb. 

Note that if G' is a tree. G' must be either a centroid tree or a tree T 

with R(T.r) = R(G.r) as analyzed in Step 1. If G' is a rooted unbalanced 

unicyclic graph G,(r.vi), then *d(vi.r) > 1 and IT,! < [(n-1)/2] as in Step 
1 

1. (3) Gf = To' U G'. The analysis is then the same as for Step 1. 

That is, if G' is a tree, then Gf is also a tree and R(G.r) = R(Gf.r) is 

optimal. On the other hand, if G' is a rooted unbalanced unicyclic graph 

G,(r,vi) with d(vi.r) > 1 and IT,! < l(n-1)/21. then Of is also a rooted 
1 

unbalanced unicyclic graph G,(r.vi) for the same vi. with d(vi.r) > 1 and 

I < I n - 1 2  By the same analysis as Step l(b). the performance of 
I 

the resulting receiving time from the scheme obtained by the algorithm is 

no worse than 514 optimal. 

For Step 2(b): Since there does not exist a component C when r is removed. 

along with all incident edges. such that K=l > ln/2]. this implies that no matter how 
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we obtain a spanning tree T rooted at r. there is no chance for the spanning tree T 

to have a subtree S rooted at a child of r such that IS1 > ln/2J. In this case, the 

algorithm always constructs a centroid tree T and uses the tree receiving scheme 

[5] with R(G.r) = R(T.r) = n-1 which is the minimum possible time. Thus the 

conversion is optimal. 

As a result of all the conversions in the algorithm. the resulting receiving time 

is no worse than 5/4 optimal. 

4.2.1. Time Complexity Analysis 

Preprocessing requires O(IVI+IE1) time to determine the set of articulation points 

and the set of biconnected components [I], and O(IVI) time to determine the size of 

each component. 

Obtaining a spanning tree T with root r from G takes O(IE1) time and the tree 

receiving algorithm takes 0 (1VI2) time [5]. 

Besides these. other conversions that need to be considered are : 

1. (i) Finding a shortest path from an articulation point v to r ,  where 

Weight(v) l(n-1)/2J takes 0 (1V12) time with Dijkstra's Algorithm 131. 

(ii) Similarly. finding the second path from v to r also takes 0(lV12) time. 

(iii) For those vertices attached to v such that Weight(v) 2 l(n-l)/2J. 

forming a subtree with these vertices attached to v takes O(IVI) time. 

(iv) For the remaining vertices in the block, finding subtrees attached to 

the cycle except a t  v takes O(IVI) time. Thus, this conversion requires 

0 (lV12) time to obtain a rooted unbalanced unicyclic graph. 



2. (i) Directing each edge of the block so that the block becomes a "directed 

acyclic graph" (dag) with one source (s) and one sink (t) takes O(IVl+IE1) 

time [5]. (ii) Ordering the dag with topological sort takes 0 (IVl+IE1) time 

[I]. (iii) Splitting the dag into two subtrees T, and Tt takes 0 (IVl) time. 

(iv) Joining the two subtrees with (s.t) edge takes O(1) time. Therefore. 

if T, = Id21 and Tt = In/2], then these steps construct a centroid tree in 

0 (IVl+IE1) time. The tree receiving algorithm [5] requires 0 (lV12) time. If 

T, > /n/21 and Tt < ln/21, it constructs a rooted unbalanced unicyclic 

graph as follows: in addition to step (i) to (iv). join another edge from 

the vertex with the highest topological order in T, to any vertex in Tt. 

This step takes 0 (1) time. The rooted unbalanced unicyclic scheme 

requires 0 (lV12) time. 

Thus. the algorithm requires 0(1V12) time to develop a receiving scheme for any 

separable graph G. 



Chapter 5 

Summary 

An optimal polling scheme for trees was previously known 141. Optimal polling 

schemes for Hamiltonian graphs and complete k-partite graphs have been designed and 

the polling time of an arbitrary polling station in these graphs determined. For 2- 

connected graphs, a known, algorithm 151 is used to obtain a centroid tree. The tree 

polling scheme can be applied to the resulting tree. The resulting polling time is no 

more than n+ln/21-1 if n is odd and 3n/2 otherwise. It is not true that the polling 

time of every 2-connected graph is n+l. K2,, (m > 3) is a 2-connected graph that 

requires more than n+l time units for polling. It is an open question whether the 

polling time of every 3-connected graph is n+l. To determine the polling time of an 

arbitrary graph remains open. 

Optimal receiving schemes for trees and 2-connected graphs were previously 

known 151. An optimal receiving scheme has been designed for unicyclic graphs and 

the receiving time of an arbitrary receiver determined. For general graphs, we have 

presented an O(lVI2) algorithm to develop a receiving scheme. The resulting receiving 

time has been shown to be no. worse than 5/4 optimal. Finding an optimal receiving 

scheme for general graphs remains open. 
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