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Abstract

Broadcasting is the process of information dissemination in a communication
network in which a message is routed from one special node, called the originator, to
every other node in the network. Receiving is the inverse process, that is, every
node has its own unique message that must be routed to a specified node called the
receiver. Polling combines both broadcasting and receiving for a specified node called
the polling station. The polling station broadcasts a query to every other node and

waits to receive a unique response from each of them.

Broadcasting is a well-studied problem, but polling and receiving have only
recently been considered. Polling has been investigated only in trees. In this thesis we
extend these results to more general graphs. Polling schemes for various classes of
graphs are designed and the polling time of an arbitrary polling station is determined.
For those graphs with an optimal polling scheme, the polling center is also
determined. For receiving, the known results are for trees and 2-connected graphs.
We present an optimalv receiving scheme for unicyclic graphs and the receiving time of
an arbitrary receiver is determined. We also present an O (IV%) algorithm to achieve
receiving with an arbitrary receiver for general graphs. The resulting receiving time

is no worse than 5/4 optimal.
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Chapter 1

Introduction

1.1. Definitions

Broadcasting is the process of information dissemination in a communication
network in which a message is routed from one special node, called the originator, to
every other node in the network. This is a one-fo-all information dissemination
-process. Receiving is the inverse process, that is, every node has its own unique
message that must be routed to a specified node called the receiver. Thus, it is an
all-to-one information dissemination process. Polling combines both broadcasting and
receiving for a specified node called the polling station. The polling station broadcasts
a query to every other node and waits to receive a unique response from each of

them.

A network is modelled by a simple, connected graph G=(V,E) with the vertices
coi‘responding to nodes and the edges corresponding to communication lines. We
assume that neither nodes nor lines will fail during the process. Within the network,
(1) only adjacent nodes can cdmmunicate. (2) each communication involves only two
nodes, and no node can be involved in more than» one communication at a time,
(3) responses can be accumulated at any internal node, but only one respohse can be

returned at a time, and (4) each communication requires one unit of time.

The receiving time of a node v (denoted R(G,v)) is the time required to



complete the receiving process - in graphvG if v is specified as the receiver. Similarly,
the polling time of node v (denoted P(G,v)) is the time required to complete polling
in graph G if v is the polling station. The receiving center is the set of nodes with

minimum receiving time. Siinilarly. the poiling center is the set’ of nodes with
minimum polling time. The polling time of a graph G (denoted KG)) is the

maximum polling time P(G,v) for any node v in V..

Given a node v in a tree T of n nodes, we define maxsubtree(v) to be the size
of the largest connected component in T-{v}. That is, if we consider T to be rooted at
v, maxsubtree(v) is the size of the largest subtree rooted at a child of v. Kang and
Ault [2] have shown that v is in the centroid of T if and only if maxsubtree(v) <
‘n/2. We define a rooted tree T to be a centroid tree if its root is in the centroid of

T.

1.2. Previous Results "in ‘Polh'ng and Receiving

Broadcasting is a well—studied problem [6], but polling and receiving have only
recently been consiciered (4], ‘[5]. So far, only a limited amount of research has been
done in polling and receiving. The existing results in polling deal with trees onlyi.
Cheston and Hedetniemi [4] have ‘derived a polling scheme for trees and determined
its time bound. They also presented an algorithm for finding the polling center of a

tree.

A second paper by Cheston and Hedetniemi [5] deals with the related problem
of receiving in trees and 2-connected graphs! The receiving center of a tree is
determined to be the centroid of the tree network. The receiving time for a node in
the centroid of any tree on n vertices is equél. to fhe minimum receiving time of any

receiver in any n vertex graph. Since every node of a 2-connected graph is a



centroid of some spanning tree of the graph. an algorithm is developed to construct
such a spanning tree for a given receiver. The tree receiving scheme can then be
applied to the spanning tree resulting in an optimal receiving scheme for the 2-
connected graph. Although the complexity of fietermining the receiving center of an
arbitrary graph is not known, the similar problem of determining the centroid of an
arbitrary graph is known to be NP-complete [5]-.“ 'Determining the receiving time of a

iven receiver in a general graph is an open problem. There is no known
g 1% pe P

characterization of the receiving center of a general graph.

1.3. Outline of work contained in the thesis

We present polling and receiving schemes for an arbitrary polling station and
receiver for various classes of graphs. We also determine the time bounds for these
schemes. For those graphs with an optimal polling or receiving scheme, we also

determine the polling center or the receiving center.

In Chapter” 2, we consider polling in some specific graphs other than trees:

simple cycles, complete graphs, complete k-partite graphs and 2-connected graphs.

In Chapter 3, we consider receiving in unicyclic graphs. An optimal scheme is

designed and the time is determined.

In. Chapter 4, based on the existing results for receiving in trees and 2-connected
graphs and the results from Chapter 3. we present an O (IVP) algorithm to achieve
receiving in general graphs. The performance of the resulting receiving time is no

worse than 5/4 optimal.

In Chapter 5, we summarize the results in both polling and receiving, and state

a few open problems.



Chapter 2
Polling in Specific Graphs

We begin by investigating polling in a few types of graphs. In Section 2.1, we
briefly review the work of Cheston and Hedetniemi [4]. In Section 2.2, we present
'some preliminary results. In Section 2.3, we present some optimal schemes for some
special graphs with polling station of degree 1. The goal is to determine types of
~ graph structures other than paths which can give the best possible polling time. In
Section 2.4, we investigate polling in complete k-partite graphs. An optimal scheme is
developed and the resulting polling time is determined. Finally in Section 2.5, we
investigate polling in 2-connecth graphs with the use of a known algorithm from [5],
which transforms a 2-connected. graph into a tree with the polling station being the
centroid. We then use the tree receiving scheme to determine ah upper bound on' the

polling time of the graph.

2.1. Brief Review of Previous Results |

An optimal scheme has been designed for polling in trees [4]. Since we will use
some terminology and results from [4] in this chﬁpter. we briefly review them here.
Figure 2-1 represents part of a polling scheme in a larger tree. The polling scheme
may have been generated by the algorithm of [4]. In this scheme, vertex u receives a
query/at time 1 and sends responses at times 3, 5, 7. 9 and 11. In the Figure, the
number to the left of a "slash” represents the time in which the parent node queries

its descendant node and the numbers to the right of the "slash” are the times in



which the descendant node returns a response to its parent node. Once u is informed
(receives the query), it can proceed to query its children and wait for responses. The
scheme shown uses the minimum possible time for polling iﬂ this subtree. Note that
u returns a re#ponse to -its parent every second period‘ after it has received the query.
In this case, we claim that no "delay” occurs. We say that a "delay” results
whenever vertex u cannot return a message to its parent every second period after u
has received the query. For example. one time unit of delay (one delay) is introduced

at vertex u at time 7 in the example of Figure 2-2 (a).

Gaps(S,u) is defined [4] to be the number of delays occurring in subtree S
rooted at u and ps(S,u) is defined [4] to be the polling time for subtree S rooted at
u. From the subtree polling scheme [4]. we can simplify the idea and yield- a. general
formula for Gaps(S.u) and for ps(S,u). This is illustrated by the following example.
Suppose that we are given a subtree S rooted at u with ISl = 5. We consider all

possible cases of the subtree polling scheme [4] in the following figures:



Figure 2-1: Subtree with no delay

(a)



(v) (c)

(d) ' (e)

Figure 2-2: Subtrees with 1 delay



@) | (b)

Figure 2-3: Subtrees with 2 delays

'/3, £.9,12,14

Figure 2-4: Subtree with 3 delays

Note that no delay occurs in Figure 2-1 and thus, Gaps(S,u) = O in this case.
In Figure 2-2. one delay occurs at time 9 in (b)., (c). (d) and at time 7 in (a), (e).
and Gaps(S,u) = 1 in this case. In Figure 2-3 two delays occur, at time 7 and 10,
and Gaps(S,u) = 2. Finally, in Figui‘e 2-4 three delays occur, at time 5, 8 and 11,

and Gaps(S,u) = 3. From this example, we can observe the following facts:



1. When S rooted at u is a path, no delay will occur.
2. When S rooted at u is a star, the maximum delay occurs.

3. In general, Gaps(S,u) = Max{degree(v)-2, v € S}

We must determine the time required for polling in subtree S if no delay

occurs. We observe that:

1. u must be queried by its parent.
2. u must query one of its children.
3. u must receive all ISl - 1 responses.

4. u must relay all ISI responses (including its own) to its parent.

As a result, 2ISH+1 time units are required. In general, the subtree polling time

of Subtree S at root 'u is:
ps(Su) = 28 + 1 + Gaps(Su)

This formula is equivalent to the formula in [4]. We can now determine the

polling time of a polling station s in tree T as follows [4]):
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P(T.s) = Max { degree(s) + ITI - 1, ps(S,u) + i }
where S is the subtree rooted at a child u
of s with maximum subtree polling time, and

i=1 if ps(Su) € ps(Rv) + 1 for
some subtree R # 8.

= 0 otherwise.

The first term of the above formula is simply the minimum time required for

the tree T if no delay occurs at any subtree rooted at a child of s.

The second term of the above formula tells us that if there is at least one
delay occurring in any subtree rooted at a child of s, then we need to determine both
"\the subtree S rooted at a child u of s with the largest subtree polling time and the
subtree R rooted at a child v of s with the second largest subtree polling time. If
ps(S.u) - ps(R.v) € 1, then ps(Su) = ps(R.v) or ps(S.u) = ps(R,v)+1. In either
case the term i = 1. Otherwise i = 0. If ps(S,u)+i is greater than the first term in

the formula, then P(T.s) = ps(Su)+i. Otherwise P(T.s) = degree(s)}+TH-1.

2.2. Preliminary Results

In this section, ‘'we present some simple results for graphs other than trees.

Lemma 2.15 For any connected n vertex g?aph G=(V.E) with n > 2
and a vertex s of degree one, P(G,s) 2 2n-1.

Proof: Let b be s’s only neighbour. Recall that each call can convéy
only one message (either a response or a qugry) and that each vertex can be
involved in at most one call per time unit. Since all messages to and from s

must pass through b, the vertex b forms a bottleneck. Consider the calls

involving b:
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1. b must receive the query from s.

2. b ‘'must make at least one call to inform the other members of the

query.
3. b must receive each of the n-2 otber pieces of information.

. 4. b must send n-1 pieces of information to s.

Thus, b must be involved in at least 1+1+(n-2)+(n-1) = 2n-1 calls,

and P(Gs) 2 2n-1. B

Lemma 2.2: Given a path P of length n-1 with vertices p;. p,.... P,

-

such that p, is adjacent to p,; for 1 € i < n. Let p, be the polling

station.

"2(k-1)+1 if nk < k-1
P(Pp,) =< 2(n-k)+1 if n-k > k-1
2(n-k)}+2 if n = 2k-1
Proof: This follows from the results on polling in trees [4]. B
Theorem 2.3: Given a connected graph G on n vertices and a vertex s

€ V,

ifn=1

0
HG)= {2 itn=2

PG.s) Z2n+l if n>2.
Proof: For n = 1, 2, the result is trivial. For n > 2, consider two

cases ©
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1. If vertex s of degree one is the polling station, then by Lemma 2.1,

P(Gs) 2 2n-1 2 n+l.

If vertex s of degree greater than one is the polling station, then

consider a polling scheme at s. At least one time unit must be used

to send the query to one of the neighbours of s. A further n-1 time

units are required for receiving the n-1 responses. Thus. P(Gs) 2 n.

However, consider two cases :

a.

s queries only one of its neighbours (vertex b).

If vertex b returns ifs own message at period two, then s will
reéeive no message and be idle at period three. Thus, P(G;s) 2
n+l. On the other ‘hand. if b sends the query to one of .its’
neighbours at time period two, then s is idle at period two.

Thus, P(G,s) 2 n+l.
s queries more than one of its neighbours.
In this case, at least two time periods are used for querying

from s in addition to the n-1 time periods required for receiving

responses, so P(G,s) 2 n+l.

Thus, P(Gs) 2 n+l for alls € V. W
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Corollary 2.4: Given a connected graph G on n vertices,

0 ifn =1
PG > < 2 ifn =2
n+1 ifn > 2

]

Theorem 2.5: Given graph G on n vertices which contains a

Hamiltonian circuit, P(G) = n+1.
Proof: Consider the Hamiltonian circuit

C=<v.v2.

1 . V>,

n

Without loss of generality, let v, be the polling station. The tree which

results from deleting the edge between Vin/2] and Vins21 can be polled in

n+l time units by using the tree polling algorithm of [4]. From Corollary

2.4, we know that P(G) 2 n+l. Thus, P(G) = n+l. B

Corollary 2.6: P(C ) = P(K) = n+l.

" Corollary 2.7: V is the polling center for any Hamiltonian graph.
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2.3. Optimal schemes for some polling stations of degree

one

From Lemma 2.1, we know that for any connected graph G with the polling -
station s of degree 1, P(Gs) > 2n-1. In this section, we present some graphs G
with a fixed polling station s with deg(s) = 1, where P(G.s) = '2n-1. The goal is to
find polling schemes for graphs other than paths with no delay for the given polling

- station.

From Lemma 2.2, we know that when the polling station s is the first node or

the last node of a path. s = p; or p,, then P(P ,p)) = P(P.p) = 2(n-1)+1 =

- 2n-1.

We now consider graphs consisting of paths and cycles with a fixed polling
station s with deg(s) = 1. Consider the graph G, as shown in Figure 2-5 with

polling station p,. We propose the following polling scheme :

1. p; queries p,,, at time i, 1 € i < k.
P, queries ¢; at time k.

¢; queries ¢, at time k+i, 1 € i < p.

2. ¢; returns a message to C,, at times k+i+l, k+i+3...k+i+2[(p-1)-iH1, 1 < i
< p
¢, returns its message to ¢, at time k+2p-1.

¢, returns a message to p, at times k+2, k+4,.., k+2p.

P;,; returns a message to p; at times i+2, i+4,.., 2k-i, 2k-i+2, 2k-i+4..., 2k~

i+2p.
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Figure 2-5: G,

Observe that Cp in G; can return a message to ¢; at any time from k+p to

k+2p-1, p > 2. Since c, returns a response to ¢; at times k+3, k+J..., and k+2p-3,

As a resplt. ¢, is busy receiving and returning responses from time k+p to time

k+2p-2 inclusive and returns its own message to ¢, at time k+2p-1.
Theorem 2.8: P(G,.p,) = 2n-1, where n > 3.

Proof: The number of vertices in G, is n = k+p. If k = 1, then ¢,
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returns the last response to p, at time 1+2p = 1 + 2(n-1) = 2n-1 in the
above polling scheme. By Lemma 2.1, P(G,.p;) 2> 2n-1, and therefore

P(G,.p,) = 2n-1.

If kx > 1, then p, returns the last response to p; at time 2k-1+2p
= 2(k+p)-1 = 2n-1. Again by Lemma 2.1, P(G,.p,) 2 2n-1, therefore

P(G,.p;) = 2n-1. ®

Next we propose a polling scheme for G, as shown in Figure 2-6 :

1. p; queries p,,, at time i. 1 € i < k.
Py queries ¢, at time k.
¢; queries ¢, at times k+j. 1 € j<p

<5 queries Lp(l) at time k+p.

Lp(i) queries Lp(i+1) at times k+p+i, 1 € i < q.

2. Lp(i+1) returns a message 1o Lp(i) at times k+p+i+2, k+p+i+d..., k+p+2q-i.

¢; returns a message to ¢, at times k+j+l, k+jt3..., k+j+2[(p-1)-j+1. 1 <

] <p
¢, returns a message to p, at times k+2, k+4,., k+2p, k+2p+2.... k+2p+2q.

p;,; Teturns a message to P, at times i+2, i+4..., 2k-i, 2k-i+2, 2k-i+4,.2k-
i+2p. 2k-i+2p+2, 2k-i+2p+d.... 2k-i+2p+2q.
Theorem 2.%: P(G,.p;) = 2n-1, for n > 4.

Proof: Here n = k+p+q. Note that if ¢ = O, then G, = G,. If
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E

(L)
L(2)

k=1, then ¢, returns the last response to p; at time k+2p+2q = 1 +
2(n-1) = 2n-1 from the above scheme. By Lemma 2.1, P(G,p,) 2 2n-1

and therefore P(G,.p,) = 2n-1.

If X > 1, for i=1 from the above scheme, p, returns the last
response to p, at time 2k-142p+2q = 2(k+p+q)-1 = 2n-1. Again, by

Lemma 2.1, P(G,.p;) 2 2n-1 and therefore P(G,.p;) = 2n-1. ®
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We can fnodify the scheme for G, to take care of a more general class of

graphs G, as shown in Figure 2-7. We propose the modified scheme for G, as

follows:

L,(ILJ)

"~ Lif2)
O\L‘_)(IL;J)

1. p; queries p,,, at time i, 1 € i < k.
Py queries c; at time k.

¢, queries ¢, ; at time k+i, 1 € i < p.
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If IL) > O, then c, queries Lp(l) at time k+p, and Lp(j) queries Lp(j-l;l)

~at time k+p+j, 1 S j < L.

. For each < in the cycle, 1 < j < p, < returns its response to €1 during
the second time period after it has been queried by i1 Then < receives
(if available) and returns next response to €1 (if the response is not the

last from c; 1) every second period.

. Let ¢; be the vertex with the largest i and i # p, with IL] > 0. After ¢,
has received the last response from all <5 i < j < p. it queries Li(l) at
next time period, say time t. Then ¢, continues to relay the last response
to ¢, at time t+1 and L(j) queries L(j+1) at time t+j. Each L,(j+1)
returns a response to Li(j) at times t+j+2, t+j+4.... and t+j+2(IL-j). and
Li(l) returns a response to ¢; at times t+2, t+4,...andv t+2IL). The vertex c;

then relays these responses at times t+3, t+5, .and 2+2ILH1.

. For each of the remaining vertices ¢; with L] > 0. if there is a delay
time at time t'. then c, queries L(1) at this time period. L,(j) queries
L.(j+1) at time t'.+j, 1 £ jv < IL]. The vertex c; continues to receive the
delayed responses from all ¢, and L., i < k < p, at time t'+1 and then
relays these responses (if availaﬁle) to c,, every second period. When
there are no more messages from all these c¢, and L,, the responses are

pulled from L; to continue the message relay.

Theorem 2.10: P(G,.p;) = 2n-1, for n > 3.
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Proof: With the scheme above, from time k+p+l on, there is at least.
one response waiting at ¢, to 'be returned to ¢, in case a delay occburs at c,.
The vertex c; defined in Sfep 3 causes at most a singlé delay. This delay is
propagated through vertices <5 i>3> 1.  Each such ¢; can make use of
this delay to qﬁery Lj(l) without causing an additional delay. Thus., only 1
delay will occur at ¢, and ¢ p can make up this delay by returning a
response. As a result, ¢, can receive a response from its déscendant vertices
and relay it to p, every second period. This .implies that p, can also return

a response to p, every second period and the last call is made at 2n-1. By

Lemma 2.1, P(Gy.p;) 2 2n-1. Thus, P(Gyp,) = 2n-1. &

Similarly, we can modify the scheme for G, for graphs such as G, as shown in

Figure 2-8. We propose the modified scheme for G, as follows:
1. p, queries p,,, at time i, 1 € i < k.
py queries c¢; at time k.

¢, queries ¢, , at time k+, 1 € i < p.

2. For each < in the cycle, 1 < j < p, ¢, returns its response to €1 during
the second period after it has been queried by i1 G ‘then receives a

response from c,

i1 and relays it to €1 (if the response is no.t the last

response from all ¢, j < k < p) every second period.

3. After Step 1, ¢, can return its response to ¢, at any time from k+p on.
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Figure 2-8: G,

Note that this response stands by to return to ¢, in case of delay
occurring at c,. If there is a cycle <cj, d,. dz,...,dq, > attached at 2

for 1 < j < p, then ¢ queries d; right after the response from Cp-1

arrives at ¢ say at time t. This causes ¢; one time delay to relay the

response to Cj1e and the delay may occur as early as right after < is
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queried by Corr that is, at time k+p. However, the delay can be filled by

the response standing by at Cpr

4. After d, is queried by c; at time t, ¢; continues to relay the response of
€y o ¢, at time t+l1.  Starting ffom time t+2, d; can return q-1
responses 1o C; every sc_:cond period if there is no other circle attached at
d; for 1 < j <gq. As in Step 3. dq’ can return a response to c; at any
time from t+q on and be ready to return the response in case ofv delay
occurring at d,. Thus if there is another cycle <d. e,. e,...e. d;>
attached at dj. as before, the delay caused by querying e, from dj can be

" filled by the response standing by at d,-

| 5. The same technique can be used for additional cycles as shown in G,.

Theorem 2.11: P(G,.p;) = 2n - 1, n > 3.

Proof: Without loss of generality, let <dj. € o v € dj> be the cycle
furthest from p,. The vertex dj can receive andv return a response to dj_1
every second period from all e, 1 € k € r As a result, ¢; can also
receive and return a response to ¢;, every second period from all its
descendant vertices. Similarly, ¢; can also receive and return a response to
p, every second period from all its descendant vertices. As Va result, p, can
receive and return a response to p, every second period from all its
descendant vertices. So p, returns the last response to p; at time 2n-1. By
Lemma 2.1, G, requires at least 2n-1 timé units. and thus the theorem

holds. W
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2.4. Polling in Complete k-partite Graphs .

From the results of Section 2.2, we have a lower bound on the polling time of
an arbitrary polling station s in general graphs. In this section, we develop polling

schemes for complete k-partite graphs using the results developed earlier.

- 2.4.1. Polling in Complete Bipartite Graphs
Theorem 2.12: Given a complete bipartite graph G on two sets of
vertices S; and §,, with IS;} < IS,l and IS;! + S| = n,
LISl =1,

2n—2 ifse€ S1
3n—4 otherwise

PG.s)= {

2. 1f 5] = 2,

n+l ifs€S,
KG.s)= {n+[(n—3)/2l otherwise

3.If 18} > 2, P(Gs) = n+l1 for all s € V.

 Proof: CASE 1: Consider the diagram as shown in Figure 2-9:

i) If v, is the polling station, then consider the number of calls it is

involved in:

1. v,, must spend n-1 time units to query every node in S,.

2. v;, must spend another n-1 time units to receive every response from

S,-
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Figure 2-9: A "star" network

“Thus P(G,v;;) 2 2n-2. With the tree polling scheme, the resulting

polling time is degree(v,,J#T-1 .= (n-1)+n-1 = 2n-2.

-

i) If V,; is the polling statiqn. then vertex v,; acts as a bottleneck
for the message transfers. Consider the number of calls in which v, is

involved :

1. v,, must be queried by s.
2. v,; must query the remaining n-2 nodes.
3. v,; must receive n-2 responses.

4. v;; must return all n-1 responses to s.



25

Thus, P(G.ss) 2 3n-4. With the tree polling scheme, the resulting
polling time is ps(S.vy, )+ = 2ISH+1+4Gap(S.v, )+ = 2ISi+1+(degree(v,,)-2)+i

= 381 = 3(n-1)-1 = 3n-4.

CASE 2: Consider the diagram as shown in Figure 2-10:

Figure 2-10: K

Let S; = { vy viph S5 = { vy vy, Va2

i) If s € S,. say s = v,,. consider the following polling scheme:

Queries are sent in the following manner :
(Time)
1 : v, queries v,

2 I vy, queries v,,
Vv, queries v,
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3 I vy, queries vy,
5 vy, queries vy,

6 : v, queries v,

v 12 queries VZ( n-2)

n-1

Responses are returned as follows :

(Time)
3t v, returns a response to vy,
4 @ v,, returns a response to V;;

vy, Feturns a response 10 Vy;
5 :v, returns a response 10 V;,
6 : v,; returns.a response 10 Vy;

7 : V24 returns a response to Vll

n-1 : vy, 4) Teturns a response to V;,
N Vyy 4y Teturns a response to vy,

n+l I Vv, oy Teturns 'g response 10 Vy;

This scheme polls the graph in n+1 time units. By Theorem 2.3,

P(G,s) = n+l.

ii) If s € S, say s = Vv,;, consider a spanffing tree as shown in

Figure 2-11, in which deg(v,;) = deg(v;,) or deg(v,,) = deglvy;) + 1.
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o ) el e

Figure 2-11: A special form >of centroid tree in which degree(vu)
= degree(v,,) or degree(v,,) = degree(v, )+1

The tree polling scheme [4] can be used to poll the spanning tree in

time n + l(n—3)/2|. Thus PEG.S) € n+ I(n—3)/2|.

To see that this much time is required, note that v,;, and v,, act as
bottlenecks for all message transfers. Therefore we can consider the total

number of calls in which v,. and v,, are involved :

11

1. Both v, and v,, receive the query (one call each).

2. Each of the remaining n-3 vertices in Sz—{v21} must be queried by

either Vi1 OF Vi,

3. All n-3 responses must be returned to either v;; or v,,.
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- 4. v;; and v,, must return a total of n-1 responses to the polling

station Var-

Thus, a total of 2 + (n-3) + (n-3) + (n-1) = 3n-5 calls involving v, or

Vv,, are required for polling.

At best v,; and v,, are involved in [(3n-5)/2] and [(3n-5)/2] calls
‘ respectiVely. and thus, at least |(3n—5)/2] tinie: units Are required for polling.
However, one extra time unit isv required; When vy; and v,, are involved
in‘: the same number of calls (n odd)., they cannot make their last calls to

V,; simultaneously. They must finish in consecutive time units.

When the number of .calls'differs by one (n even), only one of v,
V4, can receive the duery at time 1. If v,, isbqueried first. then v,, must
kbe involved in l(3n—5)/2] “calls Begin,ning no earlier than time 2 and will
finish no -sooner than at time [(3n-5)/2]. In this event, as above, the two
final calls cannot occur simultaneously at time |(3n-5)/2|. but must be

completed in consecutive time units.
Thus, at least [(3n-5)/2l +1 = n + [(n-3)/2] time units are required.

CASE 3 : Let S| = j > 2 and IS,] = k > 2. Consider the

1

diagram as shown in Figure 2-12:

i) If s € S;. say s = v,,. then consider the following polling

scheme:
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S, S,

Figure 2-12 K,,, where k 2 j > 2

Queries are sent in the following manner:

(Time) v
1 : vy, queries Va1

2 ! vy, queries v,,
Vy1 Queries v,

1 M Vl(i-l) queries V2i
Va(i-1) queries vy,

(where 2 € i £ j)

j+l Vi queries VaGi+1)
H+3 Vi queries Va(j+2)

j+4 Vi queries Va(5+3)
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k+1 : vy queries vy

Responses are sent as follows:

(Times)

3.5,....25+1 : v,, Teturns a response to V;;

i+2,i+4,..2§-i+2 : Vy; Teturns a response 10 Vy(; )
V,; Teturns a response t0 Vi )
(where 2 € i £ j)

2j+2 _ : Va(j+1) TELUrns a response 10 vy,

2j+3 D Va(542) returns a response to Vv,

k+j#1 = n+l : v, returns a response 10 vy,

-

This polling scheme uses n+l1 time units which is optimal by Theorem

2.3.

ii) If s € S,. say s = v,;, consider the fol.lowing polling scheme:

Queries are sent as the following manner:
(Time)
1 : v, queries v,

2 : v, queries v,
Vvy; queries v,,

3 vy, queries v,,
V,, queries Vi,
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i Vl(i—i) queries V,,
Vz(i_l) querles Vli

(where 2 € i € j)

1 Vi queries Va(i+1)
H#3 Vi queries Va(j+2)
j+4 Vij queries Va(j+3)
k+1 : Vij queries v,y

Responses are sent as follows :

(Times)

3.5...2j+1 :"v,y returns a response 10 Vyy

i42,i+4.,..2j-i+2 D Vg returns a response tO Vi 1y
Vi returns a response t0 Vi 4)
(where 2 € i € j)

2j+1 F V(i) returns a response to vy,

2j+2 ' : v,, returns a response to Vy;
Vz(j +2) returns a response to vy,

2j+3 ‘ : v,y returns a response 10 Vy;
Va(j+3) returns a response to Vv,

k+j : v,, returns a response to vy,

v, Teturns a response to v,
Gf k is odd)
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or
Vj, Teturns a response to Vv,,

Vv, Teturns a response to vy,
(if k is even)

k+j+1 = n+l vy, Teturns a response to Vv,
(if k is even)

or

V12 returns a response t_.o V21
(if k is odd)

Again.‘ this polling scheme uses n+l time units which is optimal by

Theorem 2.3. N

From this Theorem, we know the polling time for each vertex in a complete

bipartite graph. The polling time' of the graph and the polling center are also known.

Corollary 2.13: For a complete bipartite graph G on two sets of

vertices S, and S, with ISl < IS,l and IS)| + IS,] = n,
3n-4 if 15, = 1

P(G) =1 n+(n-3)/2] if 15,1 = 2

n+1 if lSll > 2.

Corollary 2.14: The polling center of a complete bipartite graph Kp,n/1 is
Vounlessp = 1, m > 1orl =2 m 2 4 The polling center of K,

with m > 1 is the single vertex set-S,. The polling center of K, =~ with m

Z 4 is the 2 vertex set S,.
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2.4.2, Polling in Complete Tripartite Graphs

Consider a complete tripartite graph on three sets of vertices S, S, and §,,
with S, = {v,.. v, .. Vlj}' S, = {Vy. Vyye o vyt and S = {vy. va,. . Vgl
where j € k £ mand j+ k + m = n.

Lemma 2.15: Given a complete tripartite graph G on three sets of
vertices S;. S, and S;, with IS < S| & ISl If ISi=1, ) =1 and

IS;1 > 1, then the edge (v,,.v,;) can be deleted without increasing the

polling time.

Proof: If the edge (vu.v21) is deleted, then the resulting graph G =

G-(v,,.v,) is a complete bipartite graph in which §° =S, U S, and

S, = S§,;. If the polling station s is in §; U S,, the complete bipartite

graph. polling scheme can be used. The scheme uses only n+1 time units

which is optimal. Thus, the polling time is not increased by deleting the

edge. If the polling station s is in S,, then

1. We first show that the edge (vu, v21) need not be used for querying.
Without loss of generality, let v,, be the vertex beihg queried by the
polling station s at time one. At time two if v,; queries v,; through
(vu.v21). then only two vertices v, ‘vand v, are queried and s mﬁst .
remain idle during this time period. Thus, s could quer'y"vv21 directly
at time ‘2 with no resulting change to the poilihg time of the

algorithm, and therefore the edge (v;;. v,;) need not be used for

querying.
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2. We now show that the edge (vu. v21') need not be used for returning
responses. Without loss of generality, assume that v,, has a response

to return to the polling station s, then consider two cases :

a. If the polling station s is busy, then it must be communicating
with node v,;. Hence, v,, cannot send the reéponse through

(Vyy- Vy) to V,; at that time.

b. If the polling station s is not busy and v,; sends the response
to v,, through (vu. v21) instead of returning to s directly, then
the polling station s must be idle at this time period. This call

can be replaced by (v,,. s).

Thus the edge can be deleted without increasing the polling time. ®

Theorem 2.16: Given a complete tripartite graph G on three sets of

vertices S; , S, and S;. with IS/ < IS, < S, and I§;| + IS,| + IS5l = n.

nt[(n—3)/2] ifs €S, and IS1=1S,1=1, IS} > 1
n+l otherwise o

PG.s)={

Proof: There are four cases to consider :

Y

CASE 1 : If IS}l = IS)) = ISl = 1, then the graph G is a cycle, and

P(G) = n+1, and P(G.s) = n+1 for all s.

CASE 2 : If IS)l = IS,l = 1, and ISyl > 1, then by Lemma 2.15, th%
edge (v,;. v,;) can be deleted without increasing the polling time and thus

the graph G'(Vll'vzl) is equivalent to the ‘case of complete bipartite G in
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which §," = S, U S, and S," = S;. By Theorem 2.12, P(G's) = n+1 if s is

in 8" and P(G's) = n + I(n—3)/2] otherwise.

CASE 3 : If ISl = 1, IS] > 1 and IS > 1, we can convert the
graph G into a complete bipartite G' as follows. By removing all edges
between the vertices in S, and the vertices in §S,, we form a complete

bipartite graph on vertex sets §; U §, and §,.

If IS, =1IS;l =2, then IS; U S| = 3 and IS;l = 2. By Theorem 2.12
we know that using the complete bipartite graph scheme, P(G'.s) = n+l1 if s
€ S; and P(G's) = n + I(n—3)/2] = n+l (since n=5) if s € § U 8§,
Otherwise, IS, U S§,| > 2 and_ IS4 > 2 and by Theorem 2.12 uSing the

complete bipartite graph scheme, P(G',s) = n+1 for any polling station s.

v-

CASE 4 : ISll > 1, ISZI > 1 and IS3I > 1, then consider the

following cases :

1. If ISl = ISl = IS;l = 2, then it is easy to obtain a Hamiltonian cycle
H = <vi;. V5. V3. Vi3 Vo Viy V3> from G, and thus,

P(G,s) = n+l for all s.

2. If ISl 22,18 2 2 and IS]] > 2, we can convert the graph G into
a complete bipartite graph G’ as follows. We simply remove all
edges between the vertices in S, and vertices in §,. Note that IS; U

S,) > 2 and IS > 2. By Theorem 2.12, P(G's) = n+l for all s. W
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Again, from this Theorem, we know the polling time for each vertex in a
complete tripartite 'graph. The polling time of the graph and the polling. center are

also known.
Corollary 2.17: Given a complete tripartite graph G on three sets of
vertices S|, S, and S;, with IS;] < IS)) £ IS and IS;| +:IS)] + IS5l = n.
P(G) = n + [(n-3)/2].
Corollary 2.18: The polling center of a complete tripartite graph Kk’p’m
is V unless k = p=1and m 2> 4. The polling center for K, With m

2 4 consists of the two single vertex sets S, and S,.

2.4.3. Polling in Complete k-partite Graphs, k > 3

Theorem 2.19: Given a complete k-partite graph G = (V,E), k > 3, on
k sets of vertices, with IS,/ €°I5,] € ..< IS)and S| + IS,) + ... +

IS} = n. P(G;s) = n+1 for all s.

Proof: Consider the following cases :

LIf IS € 2,18 € 2, .., 8] € 2, a Hamiltonian cycle can be

obtained as follows :

a. If lSiI = 1 for.all i, then H = <Vy1e Vapr o Vir Vi> is a

Hamiltonian cycle.

b. Otherwise, let S; be the first set having 2 elements, 1 £ j €

k.

=k H = <vi Ve Vi Ve Ve o Vir Vi >

is a Hamiltonian cycle.
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If j=1, H= <vp, Ve = Vi1 Vi2 Yaenz = Vizr V>

is a Hamiltonian cycle.

If j # kand j # 1, then H = <v,p, vg 4y oo Viir Vk2e
Va-nzr -+ Vir Vg Voo e Vi Va2 is ‘a Hamiltonian

cycle.
By Corollary 2.6, P(G.s) = n+1 for all s.

2. If Is) > 2 for some i, 1< i € k. convert the graph G into a
~ complete bipartite graph G’ as follows. Choose a set S; such that S|
| > 2. Remove all edges between vgrtices in V-§,. So G’ contains two
vertex sets vSi‘ and | ,V'Si " with 5] > 2 and IV-§] > 2. By
Theorem 2.12, P(G’s) = n+1 for all s and thus, P(G;s) = n+1 for all
s. &

From this Theorezﬁ, we know the pol>1ing time for each vertex in a complete k-
partite graph, where k > 3. The polling time of the graph and the polling center are
also known.

Corollary 2.20: Given a complete k-partite graph G = (V.E), k > 3,
on k sets of vertices, with IS;| € IS) € .. € IS/ and IS + ISZI + .
+ IS, = n, P(G) =. n+1.

Corollary 2.21: The polling cenier of a complete k-partite gréph with

k > 3is V.
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2.5. Polling in 2-connected Graphs

There is an O (IVI+E) algorithm [5] to obtain a centroid tree in a 2-connected
graph. We propose to use the algorithm on a 2-connected graph irid then to apply the
tree polling algorithm [4] on the resulting tree. The resulting polling scheme will give
us an upper bound on the polling time P(G.s). |

Theorem 2.22: Given a 2-connected graph on n vertices, and any

polling station s in G,

n+fn/2l-1 ifn is odd
3n/2 otherwise

P(G.s) S {
Proof: Consider the tree resulting from the centroid tree algorithm [5].
With a specified centroid node s in a 2-connected graph G, the centroid tree
algorithm produces a tree _.\\"ith two disjoi;lt' subtrees, §; rooted at s and S,
rooted at t (a neighbour of s), which span G. Furthermore, IS,| = [n/2] and

IS,l = ln/2]. The centroid tree T is then formed by joining the two subtrees

with the edge (s,t) as shown in Figure 2-13.

We can use the tree polling scheme of [4] on the resulting tree T. The'

time used.by the resulting polling scheme is:

P(T.s) = Max{degree(s)+T1, ps(S.u)+i}

where S is the subtree rooted at a child u of s
with the maximum subtree polling time, and
i=1if ps(Su) < ps(R.v)+1 for
some subtree R # S.
= 0 otherwise.
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AA L

Figure 2-13: A centroid tree in which IS;! = [n/2] and IS,| = |n/2]

Note that the first term of the formula is maximized when degree(s) is
maximized. In Figure 2-13, the maximum occurs when degree(s) = ln/2] and
T is of the form as shown in Figure 2-14. In this case, the first term of

the formula is equal to [n/2] + n-1.

Figure 2-14: A form of trees of Figure 2-13 with degree(s) being maximized

Now consider the second term of the formula, ps(S.u)+i. We will
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maximize this term for Figure 2-13. It easy to see that one of the subtrees
of s is §, rooted at t with subtree polling time f)s(Sz.t) = 2I5,+1 +
Gaps(S,.t). So ps(S,.t) is maximized when vGaps(S'z,‘t) is maximized. This
maximum occurs when S, is a “star” at t. In this case, Gﬁps(Sz.t) =
degree(t)-2 = IS,-2 and ps(S,.t) = 3IS,-1 = 3n/2 -1. Note that there is no
otherv subtree rooted at a child of s with subtree polling ‘time greater than
ps(Sz,t). The second largést subtree R rooted at a child v. of s must be in
S;- If ps(R.v) = ps(S,.1). the free T must be of the form as shown in Figure

2-15.

Figure 2-15: A form of trees of Figure 2-13 in which Idegree(t)-degree(s’)} < 1

If this is the case, the term ps(S,ul+i is maximized. The value is

ps(S.u)+i = ps(S,.tH+1 = (3*n/2]-1)+1 = 3%n/2].

As a result, the maximum possible value for P(T.s) is:

P(Ts) = Max{ln/2|+n—1. 3*|n/2}}
= Max{2%n/2]+|n/2}-1, 3*n/2|}.
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Note that 2*jn/2}-1 > 2#n/2| if n is odd because |n/2] = (n+1)/2 and |n/2|
= (n-1)/2 if n is odd. Thus, the maximum possible value of P(T.s) is
n+|n/2}-1 if n is odd. If n is even, |n/2] =n/2 and [n/2] = n/2, and 2*n/2}-1
< 2¥n/2}. Thus, the maximum possible value of P(T.s) is 3ﬁ/2 if n is

even. H



Chapter 3

Receiving in Unicyclic Graphs

In this chapter, we study an informaticn dissemination process called receiving.
- As before, a network is modelled by a graph G = ‘(V,E) with vertices corresponding
to nodes and edges corresponding to communication lines. In [5], receiving is
investigated for trees and 2-connected graphs. No result is known for separable
graphs that are not trees. Separable graphs are graphs that can be decomposed into
biconnected components (blocks). In this chapter, we consider receiving in a particular
class of separable graphs called unicyclic graphs. Unicyclic graphs are graphs that

have exactly one cycle.

We define Weight(v) of an articulation point v with respect to the receiver r
as follows. When v is removed from a graph G. = (V.E). along with its incident
edges, the resulting graph consists of several components. Let R be the vertex set of
the component containing r. Weight(v) = IVIHRL We define Weight(v) of a non-
articulation point v to be 1, and use d(v,r) to dehote the distance from vertex v to
r, that is, the smallest number of cdge§ in any path from v tor in G. A éequence of
time periods 2k, 2(k+1). ... 2(k+j) is said to have even time parity while the
sequence 2k+1, 2(k+1)+1, ..., 2(k+j)+1 is said to have odd time parity. Recall that

R(G,v) denotes the receiving time of node v in graph G.

The following results will be useful in proving results in later sections and in

Chapter 4.

42
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Lemma 3.1: Given a simple connected graph G on n vertices, if the
receiver r is of degree ‘})ne. then R(G.r) 2 2n-3.
. Proof: Consider any receiving scheme at the vertex b which is the only
neighbour of the receiver r. Vértex b requires n-2 time units to.receive gll
‘n-2 messages in addition to another n-1 time units to relay all n-1 messages

to r. Thus, a total of 2n-3 time units required and R(G,r) 2 2n-3. ®H

Lemma 3.2: G“i.ven a graph G=(V.E). If vertex v is an articulation
point with Weight(v) with respect to r, then R(Gr) 2 2*Weight(v)
+ d(v,r)-2.

Proof: Consider the calls made by v in any receiving scheme. Since v
is an articulation point, when v is removed along with all incident edges, the
resulting graph consists (;f several components. Let R be the vertex set
containing r and V-R-{v} be another vertex set. Note that v must receive V-
R-{v}l = Weight(v)-1 ﬁessages from.V-R—{v}. and relay a total of Weight(v)
messages to r. Thus, it requires a total of 2*Weight(v)-1 time units. The
last message is sent out by v no earlier than time 2*¥Weight(v)-1 and reaches
r no earlier than d(v.r)-1 time units later. Thus, the last message is received

by r no earlier than at time 2*Weight(v)-1 + d(v.r)-1. It follows that R(G.r)

2 2*Weight(v) + d(v.r)-2. ®
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3.1. Rooted Unicyclic Graphs

In this section, we consider receiving in a unicyclic graph with the receiver on
the cycle. We define a rooted umicyclic graph G (r) to be a unicyclic graph with a

distinguished vertex r on the cycle. Let this distinguished vertex be the receiver.

Given a rooted unicyclic graph G (r) with the cycle of length k+1, we label the

cycle vertices (in order) Vor Vi Vi With vy = r. For each v, let T, be tree
1 . :

consisting of v; and those non-cycle vertices forming a tree rooted at v, Also let
Short_Path denote the path from v; to r of length d(v,r) and Long Path denote the

other path from v; to r which has length 2 d(v,r).

Lemma 3.3: Given a rooted unicyclic graph Gu(r), the messages from

the vertices in T, for some i # O can be received by r in 2IT |
1 1

+ d(v;r)-2 time units and cannot be received faster. Thus, R(G (r)r) 2

v

2ITvil + d(v,r) -2.
Proof: The proof is similar to that of Lemma 3.2. Consider the calls

made by v; in any receiving scheme. v, requires IT_I-1 time units to receive
i .

all messages from Tvi-{vi} and requires ITvil time units to relay all messages
from Tvi to either v;,; or v;,. Thus, v, requires a total .of 2ITviI—1 time

units to finish all message transfers for T,. The last message from T, is
i 1

sent out from v, no earlier than time 2I‘Tv_l—1 and reaches r no earlier than
1

d(v,r)-1 time units later. This requires a minimum of 2T | + d(v,r)-2
1

time units. It then follows that R(Gu(r.vi).r) 2 2T,| + d(v,r)-2. =
i i

Lemma 3.4: A rooted unicyclic graph Gu(r) can have at most one

subtree T, for some i # 0 such that 2IT | + d(v,r)-2 > n-1.
} 1
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Proof: By way of contradiction, assume that there exist two distinct

vertices v;, v such that 2IT | + d(v,r)-2 > n-1 and 2IT | + d(vj.r)—2 >
i )

n-1. From these inequalities, .

IT,1 > [n—d(vi.r)+1]/2. and

1
IT,1 > [n-d(vyr}+1)/2
J

Since there are k+1 cycle vertices. If two such subtrees exist, then

n 2 T, +IT, |+ (k+1) -2
1 )

Since k+1 2 2*d(vpr) and k+1 2 2*d(vj,r). then k+1 2

d(vi,r)+d(vj,r) .

n 2 lTI+ITl+d(vr)+d(vr)-2

- > [n—d(v r)+1]/2 + [n—d(v r)+1]/2 + d(v,r)
+ d(v r) -2

2n > 2n + d(vpr) + d(vj.r) -2

==> 2 > d(v;r) + d(v;r).

Since i # 0, d(v,r), d(vj,r) 2 1. This cannot happen. So, by

contradiction, only one such subtree can exist. H

To find the receiving time of a given rooted unicyclic graph, we proceed as
follows. If such a graph G (r) admits a spanning tree rooted at r with r being in

the centroid of the tree, we simply construct the spanning tree with centroid vertex r

and apply the tree .receiving scheme [5] to it. If the subtree T"o. rooted at T,

consisting of r and those non-cycle vertices, is of size IT_ | [n/2|. then we
0
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construct an arbitrary spanning tree and apply the tree receiving scheme to it. Note
that if lTvol = |n/2}. a centroid tree can be produced. If G, (r) contains a subtree S
footed at v consisting of non-cycle vertices and cycle vertex v, where v is adjacent to
r, such that ISI > ln/2]. then we construct a spanning tree by deleting the edge (v,w),
where both v and w are cycle vertex and w # r. The tree receiving scheme is then

applied to it. Otherwise the unicyclic graph has the following properties :

1. There is no spanning tree with centroid r.
2. The subtree T"o rooted at r is of size lTvol < |n2] = [(n-1)72].

3. There does not exist a subtree S rooted at a child u of r, consisting of
non—cycle vertices (except that u can be a cycle vertex), with IS > ln/2] =

I( n-1)/ 2].

We define this particular class of rooted unicyclic graphs to be rooted

unbalanced unicyclic graphs.

3.2. Rooted Unbalanced Unicyclic Graphs

Given a rooted unbalanced unicyclic graph with the cycle of length k+1, we

label the cycle vertices (in order) vé, Vi Vi ‘with vo = r. For each v;, let Tvi be

the tree consisting of v, and those non-cycle vertices forming a tree rooted at v;. Also

let

ifi € k-i+l,i = O

'rvl V] 'rv2 u.u Tvl
A = T, ’ ifi =20
T, UT, U.UT, ifi > k-i+l,i = 0

i i+1 Yk
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T, UT, U.UT,  ifi> kili=0

B. = T ifi =0
T, UT U.UT, if i € k-itl,i # 0

We choose a vertex v, such that 1A} > [(n-1)/2] and B} > [(n-1)72).  Let
Gu(r.vi) denote this particular graph with root r and the chosen 'vertex v;- Note that
Short__Path is contained in Ai and Long Path is contained in Bi' Note that i = 0
because if i = O.. then Aj = B, = Tvo and ITVOI > [(n-1)/2], violating property (2) in
the previous section. Also note that i # 1 and i # k because of property (3) in
the previous section. This implies that d(v,r) is always > 1 in G,(r.v)).
Furthermore, ‘such a v; always exists in a rooted unbalanced unicyclic graph because
. of properties (1), (2) and (3) in the previous section. Since a rooted unbalanced
unicyclic graph is a rooted unicyclic graph, Lemmas 3.3 and 3.4 hold for rooted

unbalanced unicyclic graphs.

3.3. Description of the scheme for G/(r,v)

The general strategy is to send roughly half of the messages to r in each

direction along the path. In particular, we need to send each message in T, to v; and
]

then to r by the path from v; to r which does not include v, This strategy is

followed except for the particular subtree T, .
1

We know that in G (r.v). 1A} > [(n-1)72] and B} > [(n-1)72]. Instead of

sending all of the messages iﬁ T, along Short_Path or Long_Path, we split the
1 . .

messages from T, into two sets. The first set is sent along Long Path and the

~second is sent along Short_Path.
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rooted at v; to get out from

The scheme essentially allows the messages in T,
: i

v; to Long Path or Short_Path as ‘soon as possible. The scheme consists of two
plllases.‘ In phase 1, v, reldys the messages from Tv:i by way of Long Path to r with
the highest priority. That is, the messages from Tvi are relayed through the cycle
while messages from some other subtree Tvk may have to wait. ‘Meanwhile, for each
cycle vertex u in Short_Path, if no message is available froxﬁ its neighbour cycle
vertex. w, where d(w,r) > d(u.r), then messages from T, are continuously relayed by
way of Short_Path to r. In phase 2, v; switches, sending the remaining messages in

T, to Short_Path. Meanwhile, for each cycle vertex u in Long_Path, if no message
. 1

is available from its neighbour cycle vertex w, where d(w,r) > d(ur), then messages
from T, are continuously relayed along Long_Path to r. The time for switching from

phase 1 to phase 2 can be determined from the given G (r,v).

The scheme essentially partitions the n-1 messages into two sets, S, and S,. If
S, is the set from which r receives at odd time periods, then S, is the set from
which r receives at even time periods and vice versa. Note that when IS, = [(n-1)72)
and IS,l = |(n-1)/2] or vice versa, it is easily verified that R(G (r.v;).r) = n-1, which
is the best possible time. However, whether r receives messages from S, at odd or
even time periods is not. arbitrary but depends on the parities of the lengths ‘of

Short_Path and Long Path. Since v; gets the messages out of T,

every odd time
i .

period beginning at time 1, then during the switching process from phase 1 to phase
2, it is desirable to arrange the time parities of Short_Path and Long Path such that
both C, , and C,, request a message from v, at odd time periods if possible.

Otherwise one time unit of delay may be introduced.

In the scheme, we let S, = A-X and S, =X U B-T. U T_ -{r}, where X
1 i 2 ' ity Yo :

is the set of messages in T, that v. sends to r by way of Long_Path. Therefore,
g v; i | y way 4
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every message in Svl must travel through Short;_Path to get to r. Every message in

S, other than those in Tvo—{r} must travel through Long_Path to get to r.

By analyzing the cases, we can determine that if Short_Path is of even length ’
and Long_Path is of odd length, the first message should be received at time 1 from
Long Path. In all other cases, the first message should be received at time 1 from

Short_ Path.

Note that if r receives messages from S; at odd time periods beginning at time
1, then the goal of the scheme is to try to make Sl = [(n-1)/2] and IS,} = |(n-1)/2].
In this case, we would like to send |(n-1)/2] - lBi'Tvi U Tvo-{r}l messages from Tvi
along Long_Path. On the other hand, if r receives messages from S, at odd time
periods beginning at time 1, then the goal of the scheme is to try to make IS,| =
[(n-1)/2] and 18,1 = |(n-1)/2]. In this case. we would like to send [(n-1)/2] - B-T, U
Tvo-{r}l messages from T"i alohg I_:ong___Path. In particular, if Short_Path is of even
length and Long_Path is of odd length, r starts to receive messages from S, beginning
at time 1 and we would like to send [(n-1)/2] - Bi"Tvi U Tvo—{;}l messages from T"i
along Long Path. Otherwise, r starts to receive messages from S; beginning at time 1
and we would like to send l(n—l)/2| - 'Bi'Tvi U Tvo-'{r}l messages from T"i along

Long_ Path.

Thus, if enough messages can be sent to from T"i along Long Path, then IS} =
[(n-1)/72] and 1S,| = |(n-1)/2] or vice versa. and r can receive the last message at time
n-1. However, this is not always the case, since we must also ensure that messages
continually arrive at r on both of the pnfhs. We must determine the ‘latest time by
which v; must send the first message in T, to Short_Path in order to avoid causing

l - -
any idle time at r. This time can be determined as the following example shows :
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| If r starts ’receiving from S, at odd -time periods, then the messages in Ai-Tvi
can keep r busy at all odd time periods up to time ZIAi—Tvil—l in §;. At time
2'Ai'TviI+1' r must receive the first message from Tvi. Thus, v; must send the first
message to Short_Path d(vi.r) time units earlier Ain order to avoid causing idle time at
r. Thus, at time 2|Ai—Tvil+1—d(vi.r). vib must send the first mes.sage to Short_Path.
Since v; requires 2 time units to relay a message from one veriex to another, v; can
advance lAi—TviI - [d(v,.r)-1)2 mességes to Long_Path during phase 1. Thus, by
analyzing the cases, we can determine that if both paths are of even length, v; can

advance IAi-Tvil - [[d(v,r)-1)/2] messages to Long Path during phase 1. In all other

cases, v; can advance IAi—Tvil - lldCv,x)-1)72] messages 10 Long_Path during phase 1.
XI can now be determined. We will send as many messages as possible along
Long_Path provided that no idle time is introduced at r. Thus,

1. If both paths are of even - length, IXI = Min {IAT I - [[d(vi.r)—I]/2],
. 1

[(n-1)72] - (B-T, ! + T, -{riD}

2. If Short_Path is of even length and Long Path is of odd length, IXI =

Min {IA-T, ] - [[d(v;n-112]. [(0-1)/2] - (BT, ) + T, -tiD}

3. In the two remaining cases, IXI = Min fA-T. | - Jld(v.r)-1)2]. [(n-1)/2
g 1 vi 1

- (BT, | + IT, e}
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Receiving Scheme for G (r,v,)

Each non-cycle vertex sends a message toward the cycle unless its parent is

sending to or receiving from another vertex.

1. If Short_Path is of even length and Long_ Path is of odd length, then IXI

= Min {IA-T, | - [[d(v.r)-1)/2]. [(n-1)/2] - (BT, + lTvo—{r}l)}

In phase 1 :

a. r receives messages from Short_Path at even time periods starting at

time 2 and from Long_Path at odd time periods starting at time 1.

b. v; starts sending a message by way of Long Path to r at time 1
and subsequently sepdé a message at every odd period until IXI
messages have been sent out. Each of these messages is relayed by
way of Long Path to r with the highest priority. That is, the
meésages from T, are relayed through Long Path while messages

from some other subtree T, may have to wait.
k

c. For each cycle vertex u in Short_Path. if no message is available
from its neighbour cycle vertex w, where d(w.,r) > d(u.r). then it
relays a message from T along Short_Path to r.

In phase 2 :

a. At time 2IXH1 v; switches, relaying the rest of the messages in T
i 1

to Short_Path every odd period. Each of these messages is then
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relayed by way of Short_Path to r with the lowest priority. That
is, messages from some subtree T"k are relayed fhrough Short__Path

while the messages from T, may have to wait.
i ‘

b. For each cycle vertex u in Long_Path, if no message is available
from its neighbour cycle vertex w, where d(w,r) > d(ur), then it

relays a méssage from T, along Long Path to r.

c. After all messages from X U B-T, (in S,) are received by r at
1
time t' and if lTvo—{r}l > 0, messages from Tvo—{r} will be Teceived

by r every second period starting at time t'+2 until t" + 2lTvo-{r}I.

.-

Figure 3-1 and Figure. 3-2 are examples to illustrate how the scheme
works in case 1. The first example (Figure 3-1) shows a case in which it
is possible to balance the sizes of S; and S,. In‘the second example (Figure
3-2), it is necessary to forward messages along Short_Path beginning at
time 5 in order to keep messages arriving at r via Short_Path. Thus, we

‘are not able to balance the sizes of S1 and SZ'
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Figure 3-1: An example in which the sizes of S, and S, can be balanced,
and R(G (r.v,)r) = n-1

Figuré'3-2: An example in which the sizes of S, and S, cannot be
balanced, and R(G (r.v,).r) = 2IT "2' + d(v,r) -2
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2. If Short_Path is of odd length and Long_Path is of even length, then IXI

= Min {lAiQTv_l - [[d(v,.r)-1)2]. |(n-1)72] - (BT, + lTvo—{r}I)}.

In phase 1 :

a. r receives messages from Short_Path at odd time periods starting at
time 1 and receives messages from Long_Path at even time periods

starting at time 2.
b. same as phase 1(b) in Case 1

c. same as phase 1(c) in Case 1

In phase 2 :
Same as phase 2 in Case 1.

3. If Short_Path is of odd length and Long Path is of odd length, then IXI =

Min {IA-T, | - [[d(v,x)-1)2]. |(n-1)/2] - (BT, | + 'rrvO—{r}l)}

In phase 1 :

a. r receives messages from Short_Path at odd time periods starting at
time 1 and receives messages from Long Path at even time periods

starting at time 2.
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b. v, receives a message from -Tvi-{vi} at time 1 and starts sending a
message by way of LQng__Path to r at time 2 and subsequently
sends a message at évery even period until at time 2/Xl. Each of
fhese messages is relayed along Long_Path to r with the highest
priority. That is, the messages from Tvi are relayed throuéh

Long_Path while messages from some other subtree Tvk may have to

wait.

c. For each cycle vertex u in Short_Path, if no message is available
from its neighbour cycle vertex w, where d(w.r) > d(ur), then it

relays a message from T, along Short_Path to r.

phase 2 :

a. At time 2IXl+1 v, sends its own message by way of Short_Path if
the neighbour cycle vertex on Short_Path is ready to accept one. If
so, all messages in Tvi-{vi} are deferred by 1 time unit so that v, is
able to receive and sefxd the next message evéry second period in the
other timie parity. Each message received by \ from Tvi—{vi} is then
relayed by way of Short_Path to'r with the lowest priority. That
isf messages from some subtree Tvk are relayed through Short_Pﬁth

while the messages from T, may have to wait.
. i

- b. For each cycle vertex u in Long_Path, if no message is available
from its neighbour cycle vertex w, where d(w,r) > d(u,r), then it

relays a message from T, by way of Long_Path to .r.
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After all messages from X U B-T, (in Sz) are received by r at
. ’ i

time t° and if I'I‘vo-{r}l > 0. then messages from Tvo-{r} will be

received by r every second period starting at time t'+2 until t’

+ 2!Tv0—{r}|.

4. If Short_Path is of even length and Long_ Path is of even length, then IXI

= Min (AT, ! - fldtv;0-112], [0-172] - (BAT, ) + T, ~rID)

In phase 1 :

a.

r receives messages from Short_Path at odd time periods starting at
time 1 and receives messages from Long_Path at even time periods

starting at time 2.

v; starts sending a message by way of Long Path to r at time 1

and then next message every odd period until IX| messages have been

sent out. Each of these messages is relayed by way of Long_Path to

r with the highest priority. That is, the messages from T, are
. 1
relayed through Long_Path while messages from some other subtree

Tvk may have to wait.

For each cycle vertex u in Short_Path, if no message is available

from its neighbour cycle vertex w, where d(w,r) > d(u.,r). then it

- relays a message from T, along Short_Path to r.
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In phase 2:

a. If Xl = IA/TI- flatv,0)-112] < [(n-1)72] - (B-T,| + ITvo4{r}I).
then at time 2/XH2 or else at time 2XH1, v, switches sending the
rest of the messages in T, by way of Short_Path to r every second

1
period. " Each of these messages is then relayed alon'g’Short_Path to
r with the lowest priority. That is, messages from some subtree Tvk
are relayed through Short_Path while the messages from T, may

1

have to wait.

b. For each cycle vertex u in Long Path, if no message is available
from its neighbour cycle vertex w, where d(w,r) > d(u.r), then it

relays a message from T, Long Path to r.

c. After all messages from X U B-T, (in S,) are received by r at
1

time t' and if lTvo—{r}I > 0, then messages from Tvo—{r} will be

received by r every second period starting at time t'+2 until

t42IT, ~{rh.

d. 1f Xl = AT} - ldtv,)-112] < |(n-1)72] - [lBi;Tvil + IT, -{r}] and
IShort_ Pathl = [Long_Pathl, then the last message from T, is sent by
1 .

way of. Long Path to r.
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Lemma 3.5: In Case 1 of the above scheme, r receives a message from

S, at even time periods and from S, at odd time periods.

Proof: In phase 1 Step (a). r receives the first message from
Short_Path (S,) at time 2 and the first message from Long_Péth (S,) at
time 1. Thus, the lemma holds for Step (a). For Step (b).'r can‘ receive a
message from Long Path every odd period because ifl addition to the vertjces
on the Long Path, v, keeps providing messages t§ Long_fath continuously
without any delay. For Step (c), it is easily verified that r can receive a
message from the Short_Path every even period because messages from the

subtree vertices are continuously sent along Short_Path without any delay.

In phase 2, for Step (a). X is fhe set of messages that v, sends by
way of Long_Path to r and thus, during ;ime 1 and time 2IXI-1, v, is busy
sending out the IXI messagesl Xl is chosen such that no idie time will occur
at. r for the switching process from phase 1 to phase 2 on both Short_Path
and Long_Path. From time 1 to 2iXI-1, v, is busy seﬁding messages by way
of Long Path to r without relaying a message to Short_Path. However, by
time 2IXK+1, v; must relay a message from Tvi to Short_Path and be able to
relay a message to the Short_Path every second period in order to avoid
causing any idle time at r. Step (a) has done all tﬁese and been able to
maintain the time parities in both paths started in phase 1 without any
delay. Thus, the lemma holds for this step. For Step (b), as before, it is

easily verified that r can receive a message from Long_ Path every odd

period because whenever a cycle vertex u on Long Path runs out of



59

messages from its neighbour cycle vertex w, where d(w.r) > d(u.r).
messages from T, are continuously relayed along LonLPath without any
delay. For Step (c). it is easy to see that r receives a message from Tvo—{r}

every second period followed with the same time parity as Long_Path does.

Since no delay occurs in the scheme, r receives a message from S, at
even time periods and from S, at odd time periods. ®
Lemma 3.6: In Case 2 and 3 of the scheme, r receives a message from .

S, at odd time periods and from S, at even time periods.

Proof: The proof for Case 2 is similar to that of the previous lemma,

except that we have a different time parity for §; and §,.

The proof for Case 3 : In phase 1 Step (a). r receives the first
message from Short_Path ESI) at time 1 and receives the i_'irst message from
Long Path (Sz) ‘at time 2. Thus, the lemma holds for this step. For Step
(v). v; receives a message from one of its subtrees at time 1 and starts
sendiag a message by way of Long__i’ath tovi' at time 2 and subsequently
sends a message at every even period to Long_Path. Since r starts receiving
from Long Path at time 2, r can receive all these messages from v, at even
time periods without any delay. For Step (c). same as the previous lemma, r
can receive a message from Short_Path every odd period because messages

from the subtree vertices are continuously sent along the Short Path without

any delay.

In phase 2 Step (a). we choose IX| so that v; sends IXi messages by
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way of Long Path to r without causing any delay before v; starts sending
messages to Short_Path. Since v, starts - sending the first message to
Long_Path at time 2, v; sends the last message to Long_Pafh at time 2IXI
We know that v; must relay a message to Short_Path no later than at time
2IXl+1 in order to avoid-any delay. Because there is a message waiting at ‘Vi
since time 1, at time 2[XH1 v; can send this message and the rest of the
messages in Tvi by way of Short_Path to r in the ‘svubseqﬁent odd periods.-
‘Thus the switching process from phase 1 to phase 2 causes no-delay on
either Short_Path or Long_Path and is able to maintain the time parities in

both paths started in phase 1.

For Step (b) and Step (c). similar arguments can be found in the
previous lemma. As a result. no delay occurs in the scheme and r can

receive a message from S; at odd time periods and receives a message from

S, at even time periods. W

Lemma 3.7: In Case 4 of the scheme, if IA/T,!- [[d(v,)-112] <
[(n-1)72] - (B-T,! +IT, -{r}) ) and IShort_Path! < [Long Pathl. then one
time unit of delay will occur at v,. Otherwise, no delay will occur.

Proof: If IXI = |[(n-1)/2] - (B) + T, ) < AT - [ldtvn)-11/2],
then we can send as many messages to Long_Path as necessary to balance
the sizes of S; and S, and can still ensure that messages continually arrivé
at r on both of the paths. Therefore, no delay willga occur during the
switching process from phaSe 1 to phase 2. No other step will cause a 1

time unit delay as shown in the previous lemmas. Thus, it is true in this

case.
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Otberwise, we cannot balance the sizes of S, and S, since we must
ensure that messages are con{inually relayed to r via Shorf_Path. In this
case, at time 2[Xl-1 v, sends the last message to Long_Path. At time 2IX| and
2IXH1, v; requests a total of 2 messages from its subtrees and accumulates
an extra message. At time 2_IXI+2 v; switches, sending messages in Tvi ﬁy
way of Short_Path to r every even period but still maintains an extra
message. If IShort_Pathl-< [Long_Pathl, then the accuniuléted message will
be sent by way of Short_Pafh to r. Note that the accumulated messagé at
v; cannot be sent to Short_Path until time 2[Xl+2(lTvi~Xl) = 21Tvil. Thus, a
1 time unit delay will occur at v; in this case. However, if IShort_ Pathl =
ILong_Pathl, the accumulated message at v; will be sent by way of
Long_Path to r. This can be done right after v; sends the second last
message in T, to Short_Path, ’th@t is, at time ZD(HZ(ITvi-XI)-l = 2]Tvil—1.

1

Thus, no delay will occur at v; in this case. B

Now we can determine the resulting receiving times with the above lemmas

when the scheme for G (r.v,) is applied.
Theorem 3.8:0 From the receiving scheme above, the receiver r can

receive all n-1 messages in Gu(r.vi) in the following times:

1. When Short_Path is of even length and Long_Path is of odd length,
and if X1 = [(n-1)/2]- (BT, | + IT, ~{eID} < AT, - [ldCv,1)-1172],

then R(G (r.v})) € n-1. Otherwise, R(G,(r.v)) € 2T | + d(vi,r) -2,
1

2. When Short_Path is of odd length and Lorig_Path is of even length,
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and if IXI = [(n-1)/2}- (B-T,) + T, -} < AT, - [ld(v,.r)-11/2].

then R(G,(r.v,)) € n-1. Otherwise, R(G,(r.v))) € 2T 1 + d(v,r) -2.
1

. When Short_Path is of odd length and Long_Path is of odd length,
and if IXI = [(n-1)/2}- (B;T,) + T, D} < AT, ) - [ld(v,.r)-1)/2],

then R(G(r.v,)) € n-1. Otherwise, R(G (r.v))) € 2T, | + d(v,r) -2.
i .

. When Short_Path is of even length and Long_Path is of even length,
and if IXI = |(n-1)/2}- (lBi-Tvil + ITvo-{r}l)} < AT, - [[aCv,r)-1)2].

then R(Gu(r.vi)) < n-1. Otherwise,

~a. If IShort_Pathl = ILong Pathl, then R(G/(rv)) < 2T,|
1
+ d(vi,r) —2.
b. Otherwise, R(G (r.v,)) € 2T | + d(v,r) -1.
' 1

Proof:

. When Short_Path is of even' length and Long_Path is of odd length,
then by Lemma 3.5, we know that r can receive a message from S,
at even time periods and from S, at odd time periods. If IXI =
[(n-1)72] - (B;T, ) + T, D} < IA-T,) - [[d(v,r)-1)/2]. then we
can balance the sizes of S, and S, so that IS,! = 'Bi"Tvi' + I'I‘vo;(r}l

+ IXI = [(n-1)/2] and 1S} = |(n-1)/2]. Thus. R(G(r.v)).r) € n-1.

Otherwise, the node v, starts sending out IX| messages by way of
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Long_Path to r at time 1 every second period. By time 2IXI-1, the
last message of X is relayed to Long Path by v, At time 2IXl, v,
receives a message from T"i and relays it by way of Short_Path to r
at time 2/XH1. From then on, v; relays the remaining messages in T"i
to Short_Path every second period with no delay, and the last
message received by r is the lasi; . message from Tvi-X by way of
Short_Path. Thus, at time 2Xi1 + 2(T, X+1) = 2T, H. the last

message from T, is sent out to Short_Path by v;. So by time 2T |1
1 1

4 d(v.r)-1 = 2T, | + d(v,r)-2. the last message is received by r.
1

. When Short_Path is of odd length and Long Path is of even length,
then by Lemma 3.6, we know that r receives a message from §; at
odd time periods and from S, at even time periods. Similarly, If XI =
[(n-1)72} - (B/T,1 + 1T, -riD} < AT, - [[d(v,r)-1}/2}. then we
can balance the sizes of S; and S, so that S| = Bi’Tvil + lTvo—{r}I

+ Xl = [(n—l)/2] and ISl = [(n-l)/2]. Thus R(Gu(r,vi),r) < n-1.

Otherwise, the node v, starts sending out IX| messages by way of
Long_Path to r at time 1 every second period. By time 2IXI-1, the
last message of X is relayed to Long Path by v,. At time 2IXi v,
receives a message from T"i and relays it by way of Short_Path to r
at time ‘2IXI+1. From then on, v; relays the remaining messages in T"i

to Short_Path every second period with no delay. and the last

message received by r is the last message from T -X by way of
1
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Short__Pa'th. Thus, at time 2XH1 + 2(I’I‘vi—XI—1) = grrvil-1. the last
message from Tvi is sent out to Short_Path by v, So by time 2lTvil-1
+ d(v,r)-1 = 2lTvil + d(v,r)-2, the last message is received by r.

3. Whep Short_Path is of odd length and Long Path is of odd length.v
then by Lemma 3.6. we know that r receives a message from S, at
odd time periods and from S, at even time periods. Similarly, If IXI =
[(n-1)72] - (IBi—Tvil + ITvo-{r}l)} < IAi—T‘;iI - lld(v;r)-1)/2. then we
can balance the sizes of S, and S, so that IS, = IBi'Tvi! + lTvo-{r}I

+ IXI = |(n-1)/2} and 8, = [(n-1)/2]. Thus R(G (r.v).r) € n-1.

Otherwise, the node v, receives a message from Tvi—{vi} at time 1 and
then starts relaying IX! messages to Long Path at time 2. Note that v;
has now accumulated an extra message other than its own. By time
2iX], the last message of X is relayed to Ldng__Patix by v; and at time
2IXH+1, v, will relay the accumulated message to Short_Path. From
then on, v; relays tl;e remaining messages in T“,i to Short_Path every
second period with no delay, and the last message received by r is
the last message from Tvi—X by way of Short_Path. Thus, at time
2IXH1 + 2(|Tvi-Xl-1) = 2ITviI-1. the last message from Tvi is ;elayed

to Short_Path by v, So by time 2T -1 + d(v,r)-1 = 2IT |
1 . . 1

+ d(v,r)-2, the last message is received by r.

4. When Short_Path is of even length and Long_ Path is of even length,
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and if XI = |-1)2] - (BT,] + T, -0} < AT,

1 1
- [[d(v;.r)-1)72]. then we can balance the sizes of S, and S, so that
Syl = BT | + T, -{r + X! = |(9-1)/2] and IS,| = [(n-1)/2]. By

Lemma 3.7, r receives a message from S, at odd time periods and

from S, at even time periods. Thus, R(G (r.v)).r) € n-1.

Otherwise, if IShort_Pathl = [Long_Pathl, then by time 2IXH2, v, sends
the remaining [T HX! messages by way of Short_Path to r every
1
second period with no delay. Thus, by time 2Xk2 + 2(T HXI-2) =
1

2ITv_I—2,~ v; sends the second last message in T fo Short__Path. At
1 1

time 2iT 11, v; sends the last message, which was accumulated at v;
1

at time 2Xlk+1, by way of Long_Path to r. Since IShort_Pathl

ILong_Pathl = d(v,r), in this case, by the time 2T _F1 + d(v,r)-1
. : i
2IT,} + d(v,r) -2, the last message is received by r.  Thus,
1

R(Gu(r.vi).r) < 2iT, | + d(vi.r) -2.
1

If IShort_Path! < ILong_Pathl, then by time 2[XH2, Vi sends the
remaining lTvil—IXI messages in Tvi by way of Short_Path to r every
second period with no delay. The last message received by r is the
last message of the Tvi;X messages sent by way of Short_Path. Thus,
at .time 2IX+2 + 2(ITvil—le—1) = 2lTvil. the last message is relayed to

Short_Path by v. So by time 2T | + d(v,r) -1, the last message is
1

received by r. Thus, R(G (r,v,)r) € 2T | + d(vyr) -1. =
1
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Theorem 3.9: The receiving time for Gu(r.vi) using the above scheme is
optimal. |

Proof: The node r must receive all n-1 messages and thus, R(G (r.v)).r)
Z n-1. Thus, for those cases where we have shown that R(Gu(r.vi).r) <

n-1, the scheme is optimal.

By Lemma 3.3, R(G (r.v)r) 2 2l'l‘vil + d(v,r) -2 which also implies
the scheme is optimal for those cases in which we have shown R(G (r,v).r)
< 2lTvil + d(v,r) -2. ‘As for the case in Case 4 in which we have shown
R(G (r.v)ir) < 2|Tvil + d(v,r) -1, we will show that this is also optimal.
By Lemma 3.3 again, R(G (r,v).r) 2 2lTvil + d(v,.r)-2. To show that one
extra‘ time unit is requiréd in this case when both Short_Path and

Long_Path are of even length and IShort_Pathi < I|Long Pathl, consider the

following cases:

1. If v; sends all messages in T, by way of Short_Path to r, then
. 1
R(G(r.v)r) is at least 2IT, U A-T I-1 > 2|T§_l + [d(v;r)-1]-1
’ 1 1 1

since 2IA-T | > d(v,r)-1. Thus, R(G(r.v)).r) > 2IT, | + d(v,r)-1.
1 1

2. Similarly, if v; sends all messages in T, by way of Long_ Path to I,
o1

R(G,(rv)r) 2 2T, 1 + d(v,r)-1.

3. Now, if v; sends part of the ‘messages in Tvi by way of Long_Path
to r and the remaining by way of Short_Path to r, then let us

consider the time parity at v; and the time parities in Short_Path and
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ang_Path. Note that if v; relays some message in Tvi to one path at -
each odd time period. these messages will reach r in éven time periods
from both Short_Path and Long_Path. This cannot happen
simultaheously. because r has to receive a message from Short;__Path in‘
odd time periods and a message from Long_Path in even time periods
or vice versa. So one time unit of delay is unavoidable in this case

and thus, R(Gu(r.vi).r) 2 2T,] + dlv,r) -1
1

Thus, in this case the time is also optimal. W

- 3.4. Receiving in Unicyclic Graphs
Given the tree receiving scheme [5] and rooted unbalanced unicyclic receiving
scheme from the previous section, we now consider a unicyclic. graph G, = (V.E).
Theorem 3.10: Given a unicyclic graph G, on n vertices and a
specified receiver r,
1.If r is not on cycle, then R(G,.r) = R(Tr) = Max ({n-1,
2*maxsubtree(v)-1} for any spanning tree T rooted at r, where
maxsubtree(v) is the size of a maximum subtree rooted at a child v

of r.

2. If r is on cycle and a centroid vertex of some spanning tree T, then

R(G,.r) = R(T.x) = n-1. 7

3. If r is on cycle and not a centroid vertex of any spanning tree but
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adjacent to a vertex v with Weight(v) > |n/2]. then R(G,r) =

2*Weight(v) -1.

. Otherwise, R(Gu.r) = R(G,(r.v)).r), where i Z 2.

Proof: These times are optimal and can be achieved because:

.If r is a non-cycle vertex.i then every neighbour of r is an
articulation point. Consider the components. obtained by deleting r.
All of the messages from each particular component must arrive at r
through a single neighbour of r. Thus, any receiving scheme performs
no better than the tree receiving scheme [5] on some spanning tree T

rooted at r from Gﬁ' and R(G_.r) = R(T.r) is optimal.

. If r is a cycle vertex and a centroid tree T rooted at r is constructed,

then the tree receiving scheme [5] is applied. Thus, R(G,r) = R(T.r)

= n-1 which is the best possible time. Hence, this is optimal.

. If r is a cycle vertex and adjacent to a neighbour cycle vertex v of r
-with the subtree S, rpoted ai v, consisting of v and those non-cycle
vertices, such that S | 2 ln/2], then a spanning tree T rooted at T is
constructed by deleting the edge (u,v), where u is a cycle vertex and
u = r. Note that if IT,| = |n/2]. T is a tree’ with centroid r and
R(G,,r) = R(T.r) = n-1 which is Ao:ptimal. Otherwise with the tree
receiving scheihe [5]. R(G,.r) = R(T.r) = Z*Weight(v) -1 =28 -1. By
Lemma 3.3, R(G(r)r) 2> 25! + d(vyr) 2 = 251 -1 (since

d(v,r)=1). "Thus, the receiving time is optimal.
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If r is a cycle vertex and adjacent to a neighbour non-cycle vertex v
of r such that the subtree §, rooted at v with IS | > In/2], then an
arbitrary spanning tree T rooted at r is constructed. With the tree
réceiving scheme [5], R(T.x) = 2IS | -1 = 2*Weight(v) -1. By Lemma
3.2, R(G,r) 2 2*Weight(v) + d(v.r) -2 = 2*Weight(v) -1 (since
d(v.r)=1). Thus, R(G,.r) = R(T,r) is optimal.

4. Otherwise, the rooted unbalanced unicyclic receiying scheme is used.
From the results of the previous section, the resulting receiving time

for a rooted unbalanced unicyclic graph is optimal. W

3.4.1. Time Complexity Analysis

Weight(v) can be determined in O(lE]) time for all peints v in the component
containing r. To obtain a spanning tree from G, takes O(E) time. The tree
‘receiving algorithm [S] takes O(IVi2) time as does the rooted unbalanced unicyclic

receiving scheme. Thus an optimal receiving scheme for any unicyclic graph can be

determined in O (V) time.



Chapter 4

Receiving in General Graphs

Optimal receiving'scheﬁes are known for 2-connected (non-separable) graphs and
for trees [5]. An optimal receiving scheme for unicyclic graphs has been presented in
the previous chapter. However, no optimal schéme is known for other separable
~ graphs. In this section, we present a reéeiving scheme for separable graphs with

receiving time no worse than 5/4 optimal.

4.1. Description of the algorithm for Separable Graphs

We are given a separable'_gra’ph G. If G is a tree, we can-use the optimal tree
receiving algorithm [5]. Otherwis;a. we preprocess the graph G and obtain : (i) the set
of articulation points A [1], (ii) the set of biconnected components B [1] and (i) the
size of each biconnected component. We can then determine Weight(v) of each

articulation point v with respect to r.
Consider an articulation point v # r in a block containing r. We transform
the separable graph G into either a tree or rooted unicyclic graph as follows:

1. If r is not an articulation point, then:

If the block containing r has only 2 vertices, then we can simply
construct a spanning tree T rooted at r and use the tree 'receiving

algorithm [5]. Otherwise:

70
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If the block containing r has an articulation point v:

(i) . If d(v.r)=1 and Weight(v) 2 }(n-1)/2]. then construct a tree T
by connecting all vertices outside the block at v.as one subtree and
the rest of vertices as another subtree at r and then join the@
together by the edée (r.v). Use the tree receiving algorithm [5] on
the centroid tree T. Note that if Weight(v) = l(n—l)/2] or [(n-1)72].

T is a centroid tree.

(i) If d(vor) > 1 and Weight(v) 2 |(n-1)/2]. then construct a
rooted unbalanced unicyclic graph G (r,v;) from G, where d(v,r) =
dlvt) > 1, and use the rooted unbalanced unicyclic receiving
scheme.  To illustrate’ how to obtain such a rooted unbalanced
unicyclic graph, consider Figure 4-1.  Let Weight(v)) = Bl

Weight(v,) = IB,l. and Weight(v,) = B, + By + IBJl + IB;| -3.

Figure 4-1: An example of separable graphs in which r is not an
articulation point
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Consider the block B,. Find Short_Path from v; to r of length
d(v.r) and then Long. Path from v; to r of length 2 d(v.r). Join
the remaining vertices in the block to the cycle except at v, -

forming a unicyclic graph as in Figure 4-2.

Figure 4-2: The resulting component of B; from Figure 4-1

The vertices of the other blocks can be connected to the cycle by
choosing an arbitrary spanning tree of each of these blocks. The final
rooted unbalanced unicyclic graph. G (r.v,). where d(v.r) = d(vsr) >

1, is of the form as shown in Figure 4-3 :

If the block containing r has no such an articulation point v such
that Weight(v) 2 [(n-1)/2|. then we can direct each edge of the
block so that the block becomes a directed acyclic graph (dag) with

one source (s) and one sink (1), where s is adjacent to t in the
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Figure 4-3: The resulting graph from Figure 4-1 after conversion

original block but the edge (s.t) has been removed in the dag [5].

Order the vertices §=v1; V,. - Vu=t by topological sort. Split the

dag into two trees T, = {s=v,, v,, ... vm} and T, = {v_ ;. Vp.ge -

v,=t}. so that Weight(T)) = £Weight(vi) 2 |n/2] and Weight(T)

= g Weight(v)) < |n/2]. T;;e’ vertices of the other blocks can then
= '

be connected to T, or T, by choosing an arbitrary spanning tree of

each of these blocks.

If Weight(T,) = |n/2]. then Weight(T,) = |n/2]. We construct a
centroid tree by joir;ing T, and T, with the s-t edge, and then use
the optimal tree receiving scheme [5]. If Weight(T,) > [n/2] . we
construct a rooted unicyclic graph by joining the two trees with the
s-t edge in conjunction with another edge (v,,.v;). where m < j <

X, and use the receiving scheme for unicyclic graphs from Chapter 3.
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If r is an articulation point, then:.

a.  Consider the graph resulting from the removal of r and its incident
edges. If there is a component C in this graph such that ICl >
|n72}. converf G into a spanning tree T if there is only aksingle edge
from r to the component C. If thex:e are multiple edges from r to C,
convert G into G; with the following operations: (1) .obtain a gubtree
Ty from‘ G-C, (2) obtain a subgraph G' from C U {r} U f{all
incident edges from C into r} by using Step 1;1 and 1b, and (3) G;
= G U T,. Note that G, may end up with a tree or a rooted
unbalanced unicyclic graph G(r.v,) for some d(v,r) > 1, with T

< |(n-1)72). To illustrate how it works, consider Figure 4-4.

Figure 4-4: An example of separable graphs in which r is an articulationv point
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Suppose that C = B, U B, U B, - {r} and I > In/2| . then we
span B, U B, U B; U B, as the subtree T, rooted at r. If By is a
single edge, then G’ is another sp%mning tree T,” rooted at r from Bs
U By UB; and G, = Ty’ U T;" is a tree. We then use the tree
receiving scheme [5] on G;. On the other hand, if B; is not a single
edge, we work on C U {r} U {all incident edges from C into r} as
to obtain a subgraph G’ by using step la and 1b. Then G =Ty, U
G. If G, is a tree then use the tree receiving scheme [5].
Otherwise, use the rooted unbalanced unicyclic receiving scheme from

Chapter 3 on G,.

b. If there is no such component C, then we can simply construct an

arbitrary centroid tree and use the optimal tree receiving scheme [5].

4.1.1. Proof of correctness of the algorithm

The algorithm converts a given separable graph G into either a tree or a rooted
unicyclic graph. Thus, the proof of the correctness for the algorithm is mainly to

show that all of the conversions are valid.

1. Initially, the algorithm checks to see whether G is a tree. If G is a tree,

no conversion is involved.

2. If the separable graph G is not a tree, the algorithm converts G into either

a tree or a rooted unicyclic graph in Step 1(a), 1(b). 2(a) and 2(b).

a. For Step 1, consider r £ A. If the block containing r has only 2
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vertices, then r has only a single edge connecting it to V-{r}. In
this case, the algorithm obtains a spanning tree T with root r from

G. This conversion from G into T is valid.

If the block containing r has more than 2 vertices,.then it is 2-

connected, i.e. every two vertices in the block lie in a common cycle.

In Step 1(a), if there exists an articulation point v such that
Weight(v) > |(n-1)/2|. then the algorithm obtains a spanning tree
from G if v is a neighbour of r, and converts G into a rooted
unicyclic graph G (r.v,) with d(v,r) > 1 and ITviI = Weight(v)
otherwise. A rooted unbalanced unicyclic graph is obtained from G
by finding the first path of length d(v.r) and the second path of
length 2 d(v,r) from the vertex v to the receiver r. These two
paths can always be found because the block containing both v and
r is a 2-connected component. The next step is to join thé

remaining vertices in this block to the cycle except at vertex v.

In ‘Step 1(b), if the block does not have such an articulation
point v, then the algorithm converts the block into a directed acyclic
graph (dag), with -<:)ne source (s} and one sink (t), where t is
adjacent to s in the original block but the edge (s.t) has been
removed in the dag [5]. Order the vertices s=v,. v,, ..., vy=t in the

dag by topological sort [1). Split the dag into two trees T, = {s=v,.
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. vy} and T, = {v v vk%t} so that Weight(T) =

m+1’ m+2"°"*

V2
. -

iWeight(vi) 2 [n/2] and Weight(T)) = Z,Weight(vi) < 2)
I;' Weight(T,) = [n/2]| and Weight(T,) = [n/2]. then the algorithm
constructs a centroid tree by adding the (s.t) edge from T, to T,
This is the procedure used to find a centroid tree from a 2-connected
graph in [5]. However, if Weight(T) > [n/2].v t‘hen‘ the algorithm
forms a rooted unicyclic graph by adding two edgesA from T, to T,
namely the (s.t) edge and the (v, vj) edge, where m < j € k
Note that the (vm,vj) edge, where m < j < k, always exists in the
dag. This can be proved as follows : The vertex v is of degree

at least 2 and the dag has only 1 source (s) and 1 sink (t).

i. If all incident edg»es of v in the dag are incoming edges, then
Vn * tis a-sink. This cannot happen.

ii. If all incident edges of v_ in the dag are outgoing edges, then
Vn * s is a source. This cannot happen.

Thus, the (v¥n.vj) edge, where m < j < k, always exists in the

dag. As a result, all conversions in Step 1(b) are valid.

For Step 2. we are considering r. € A. In Steps 2(a) and 2(b). G is
converted to either a spanning tree or a rooted unicyclic graph as in

Steps 1a and 1b. Hence, all conversions in step 2 are valid as well.
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4.2. Algorithm Performance Analysis

If G is a tree, then the tree receiving algorithm [5] achieves the optimal time.

Therefore we will look at all possible cases of non-tree G and analyze them.

In Step 1 : we are considering the cases in which r £ A.

1. If the block containing r has only 2 vertices, then r is of degree 1 and
has only a single edge connecting it to V-{r}. >The algoritilm converts the
graph G into a spanning tree T rodted at r and use the tree receiving
scheme [5] with R(T,r) = 2n-3. By Lemma 3.1, R(Gr) 2 2n-3. Thus

the conversion yields the optimal receiving time.

2. If the block containing r has more than 2 vertices:
In Step 1(a), the block containing r has an articulation point v. (i) If
d(v,r) = 1 and Weight(v) 2 |(n-1)/2]. then the algorithm constructs a
tree T from G. Note that if Weight(v) = |(n-1)/2] or [(n-1)/2]. T is a
centroid tree. With the tree receiving scheme [5] on T, R(G.r) = R(T.,r) =
n-1 which is optimal. If Weight(v) > [(n-1)/2]. T is a tree’ with subtree
S rooted at # child v of r such that ISl = Weight(v). With the tree
receiving scheme [5] on T. R(Tr) = 2IMaxsubtree(v)l -1 = 2*Weight(v) -1.
By Lemma 3.2, R(G.r) ? 2*Weight(v) + d(v,r) -2 = 2*Weight(v) -1

(since d(v.r)=1). Thus, R(G,r) = R(T.r) = 2*¥Weight(v) -1 is optimal.

(i) If dlvir) > 1 and Weight(v) 2 [(n-1)/2). then the algorithm
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constructs a rooted unbalanced unicyclic graph G, (r.v;) with d(v,r) =
dlv,r) > 1 and ITviI = Weight(v). Observe that lTvii 2 2, dlv,r) 2 2
in G/(rv,). By Lemma 32, we know that R(Gr) 2 2*Weight(v)
+ d(v.r) -2 = 2lTvil + d(vpr) -2. Sé R(G.r) requires at least 2ITviI
+ d(v,r) -2 time units. Since R(G,(r.v,).r) from Section 3.3 is no mofe
than 2lTvil + d(v,r) -1, the resulting time from the scheme. obtained by

the algorithm is at most greater than the optimal time by 1. In ratio, the

performance is :
[2lTvi| + d(v,r) -1]/[2!Tvil + d(v,r) -2] optimal

< 5/4 optimal, for IT,1 2 2, d(v,r) 2 2.
l .

In Step 1(b). when lTsl‘= [n72] and IT) = [n/2]. then we construct a
centroid tree T and use the tree receiving scheme [5] with R(T.r) = n-1.
Thus, we have an optimal conversion. Otherwise. observe that there is no
articulation point v with Weight(v) 2 I(ﬁ-l)/2] ., and therefore each
articulation point v must be of Weight(v) < [(n-1)/2]. In this. case, the
algorithm constructs a rooted unbalanced unicyclic graph Gu(r.vi) with T

1

< I(n—l)/2] for some v -

'R(Gu(r,vi),r) from Section 3.3 is no more than 2IT | + d(vi.r) -1 <
1

2*|(n-1)72| + d(v,r) -1.
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Since ITviI = |[(n-1)/2], the rerﬁaining [(n-1)72] + 1 vertices may all
contribute to constructing both paths. Note that [(n-1)/2] € [(n+1)/2}. So
[(n-1)72] + 1 < |(n+1)/2] + 1 = [(n+3)/2).  Therefore, d(v,r) in this
particular G (r.v;) can be no more than |(n+3)/2)/2 = [(n+3)/4]. and

2¥|(n-1)/72] + d(v,r) -1
< 2¥(n-1)/2] + [(n+3)/4] -1
€ n2 + (n+3)/4

Since [(n+3)/4] 2 1. n 2 1. As a result, R(G,(r.v)).r) is less than n-2
-+ (n+3)/4 and R(G.r) requires at least n-1 time units.  Hence, the

resulting time is:

< [n-2 + (n+3)/4)/(n-1) optimal, for n 2 1

(5n-5)/(4n-4) optimal

5/4 optimal, for n 2 1.

In Step 2. we are considering the remaining cases in which r € A. For Step

2(a), if there is a component C resulting from the removal of r and its incident edges

in the graph, then:

1. If there is only a single edge (v.r) joining r to component C, then the
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algorithm converts G to a spanning tree T. The tree receiving scheme
[5] yields R(T.r) = 2ICi-1 because the maximum subtree S rooted at a
child v of r is formed from C and 8! = ICl > In/2]. By Lemma 3.2,
R(G.r) 2 2%¥Weight(v) + d(v.r) -2 = 2IS| -1 (since d(v.r)=1). Thus R(G,)

= R(T.,r) = 2SI -1 = 2ICl -1 is optimal.

i. If there are at least 2 edges joining r to the componeht C. then the
algoritfim constructs G; ‘with the following operations: (1) construﬁt
spanning tree T, from G-C such that IT;1 < ln/2]. (2) construct G* from
C U {r} U {all incident edges from r into C} by using Step la and 1b.
Note that if G’ is a tree, G must be either a centroid tree or a tree T
with R(T.r) = R(G,r) as analyzed in Step 1. If G is a rooted unbalanced
unicyclic graph G (r.v), t'h.en d(v,r) > 1 and lTvil < |(n-1)/2] as in Step
1. (3) G, = Ty U G. The analysis is then the same as for Step 1.
That is, if G’ is a tree, then G; is also a tree and R(G.r) = R(Gr) is
optimal. On the other hand, if "G’ is a rooted unbalanced unicyclic graph
G (r.v) with d(v,r) > 1 and Fl‘vil < [(n-1)/2]. then G; is also a rooted
unbalanced unicyclic graph G, (r.v;) for the same v, with d(v,r) > 1 and
T "i' < |(a-1)/2]. By the same analysis as Step 1(b), the performance of
the resulting receiving time from the scheme obtained by the algorithm is

no worse than 5/4 optimal.

For Step 2(b): Since there does not exist a component C when r is removed,

along with all incident edges, such that ICI > ln/2]. this implies that no matter how
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we obtain a spanning tree T rooted at r, there is no chance for the spanning tree T
to have a subtree S rooted at va child of r such that ISl > |n/2). In this case, the
algorithm always constructs a centroid tree T and uses the tree receiving scheme
[5] with R(Gr) = R(T.r) = n-1 which is the minimum possible time. Thus the

conversion is optimal.

As a result of all the conversions in the algorithm, the resulting receiving time

is no worse than 5/4 optimal.

4.2.1. Time Complexity Analysis

Preprocessing requires O (IVI+lF1) time to determine the set of articulation points
and the set of biconnected components [1], and O(IV]) time to determine the size of

each component.

Obtaining a spanning tree’ T with root r from G takes O (lE) time and the tree

receiving algorithm takes O (Vi) time [5].

Besides these, other conversions that need to be considered are :

1. (i) Finding a shortest path from an articulation' point v to r, where
Weight(v) 2 |(n-1)/2] takes O(IV1?) time with Dijkstra’s Algorithm [3].
(ii) Similarly, finding the second path from v to r also takes O(IVI?) time.
(i) For those vertices attached to v such that Weight(v) 2 |(n-1)72].
forming a subtree with .these vertices attached to v takes O(IV) time.
>(iv) For the remaining vertices in the block, finding subtrees attached to
the cycle except at v takes O(IV1) time. Thus, this conversion requires

O (V%) time to obtain a rooted unbalanced unicyclic graph.
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2. (i) Directing each edge of the bloék so that the block becomes a "directed
acyclic graph” (dag) with one source (s) and one sink (t) takes 0 (VI+IE)
time [5]. (ii) Ordering the dag with topological sort takes O (IVI+E) time

[1]. (i) Splitting the dag into two subtrees T, and T, takes O (V1) time.
(iv) Joining the two subtrees with (s.t) edge takes O(1) time. Therefore,
if T, = ln/2| and T, = ln/2l. then these steps construct a centroid tree in
O (VI+1E) time. The tree receiving algorithm [5] requires O(V?) time. If
T, > ln/2| and T, < ln/2]. it constructs a rooted unbalanced unicyclic
graph as follows: in addition to step (i) to (iv), join another edge from
the vertex with the highest topological order in T, to any vertex in T,.
This step takes O(1) time. The rooted unbalanced unicyclic scheme

requires O (IV12) time.

Thus, the algorithm requires O(IV®) time to develop a receiving scheme for any

separable graph G.



Chapter §

Summai'y

An optimal polling scheme for trees was previously known [4]. Optimal polling
schemes for Hamiltonian graphs and complete k-partite graphs have been designed and
the polling time of an arbitrary polling station in these graphs determined. For 2-
connected graphs, a knowq algorithm [5] is used to obtain a centroid tree. The tree
polling scheme can be appiied to the resulting tree. The resulting polling time is no
more than n+[n/2]—1 if n is odd and 3n/2 otherwise. It is not true that the polling
time of every 2-connected graph is n+l. K, (m > 3)is a 2—coﬁnected graph that
requires more than n+1 time units for polling. It is an open question whether the

polling time of every 3-connected graph is n+l. To determine the polling time of an

arbitrary graph remains open.

Optimal receiving schemes for trees and 2-connected graphs were previously
known [5]. An optimal receiving scheme has been designed for unicyclic graphs and
the receiving time of an arbitrary receiver determined. For general _graphs, we have
presented an O(IVIZ) algofithm to develop a receiviné scheme. ’i‘he résulting receiving
time has been shown to be no worse than 5/4 optimal. Finding an optimal receiving

scheme for general graphs remains open.
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