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Abstract 

Diagrams have been known to be an important tool in 

problem-solving. The usefulness of diagrams comes from the 

fact that humans can extract information contained in a 

diagram, make changes to the diagram if necessary, and 

interpret the results. ROUTER is a problem-solving system 

implementation that uses a "see-and-compute" approach to 

solve routing problems that arise in hierarchical integrated 

circuit layout design. ROUTER'S components include a high 

level reasoner which knows about the routing constraints, a 

simulated parallel processing "retina" to "look at" its 

diagram, and a diagram which can be modified by the high 

level reasoner. Detailed algorithms and estimation on 

algorithm complexity are presented. The results of 

simulation runs seem to suggest that diagrammatic 

representation of information can be effectively utilized by 

a computer problem-solving system. 
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1. Introduction 

Diagrams have been known to be invaluable tools for many 

intellectual activities. Computer scientists use flow 

charts and hierarchical module diagrams for program 

documentation. Architects use diagrams extensively in all 

phases of a design. Students use pencil and paper in 

solving mathematical problems. The usefulness of diagrams 

comes from the fact that humans can extract information 

contained in a diagram, make changes to the diagram if 

necessary, and interpret the results. In other words, a 

diagram can be viewed as a simulation which is cheap to 

perform on a piece of paper. We can also say that diagrams 

are "idealizations" of complex real world situations. But 

can a computer use diagrams effectively to solve problems 

like humans can? If yes, then what kind of special 

equipment is needed for such a computer? This thesis will 

give some insight to these questions. 

1.1 Research Motivation - 
A problem that is non-trivial and can be presented 

naturally in the form of a diagram is needed and has been 

identified for this research project. This is the wire 

routing problem in hierarchical integrated circuit (IC) 

layout design. This problem is to electrically connect pins 

that belong to some rectangular blocks (the logical 

sub-circuitry of a complex system) according to a connection 



list specified by a circuit designer subject to certain 

design constraints. For a human designer, the routing 

problem is a very tedious task. Fortunately, automatic wire 

routers such as the Lee's (Lee (1961)) router have been 

developed to help the designer solve the routing problem. 

(Other types of routers will be discussed in the next 

chapter.) However, due to the sequential nature of Lee's 

algorithm, it is very likely to get stuck and it often needs 

help from the designer to guide it around obstructions. The 

designer usually has some tricks or intuition on how to move 

wires around to avoid blockages. It is the intuition that 

is often hard to capture and then incorporate into computer 

programs. 

The use of diagram and intuition by a computer system 

merge into a good Artificial Intelligence (AI) project. 

Some previous research work on the use of diagram and the 

application of A1 techniques to computer aided design (CAD) 

systems are worth mentioning and will be presented in the 

next section. 

1.2 Previous Research - 
Gelernter (1963) made use of diagrams in his classic 

geometry-theorem proving machine. The main use of diagrams 

is reflected in one of his heuristics "Reject as false any 

statement that is not valid in the diagram." By using 

diagrams to reject false hypotheses, the sear.ch space can be 



considerably limited. 

Sussman- and Stallman (1975) developed a circuit 

analysis program called EL which employed heuristic 

"inspection" methods to solve rather complex dc bias 

circuits. The heuristics "give EL the ability to explain 

any result in terms of its own qualitative reasoning 

processes. EL'S reasoning is based on the concept of a 

' local one-step deduction' augmented by various 

'teleological' principles and by the concept of a 

'macro-element'." Later Sussman and Stallman (1977) further 

extended their project. They designed and implemented a 

problem-solving language called Antecedent Reasoning System 

(ARS). They also developed two methods in their 

computer-aided circuit analysis system. "One is a method of 

electrical network analysis [they] call analysis & 

propagation - of constraints. The other is the technique of 

efficient combinatorial search by dependency-directed 

backtracking." Sussman (1977) himself outlined the problem 

of intelligent failure recovery in a problem-solver for 

electrical design. His solver was able to learn from the 

mistakes it made. Sussman's idea was that "many bugs are 

just manifestations of powerful startegies of creative 

thinking-- that creation and removal of bugs are necessary 

steps in the normal process of solving a complex problem." 

Sandini and Tagliasco (1980) proposed a retina-like 

structure for scene analysis. Their aim was "to demonstrate 

that intrinsic economy of a human retina-like structure, in 



terms of an optimum compromise among large visual field, 

acceptable resolution, and information reduction, in the 

scene analysis of man-oriented environments." They 

suggested that "the technology of solid-state video cameras 

and appropiate scanning procedures could allow the actual 

implementation of the proposed retina, especially in the 

field of industrial scene analysis." .. 
Chaikin (1981) suggested visual modes of processing by 

computers (he called them drawing machine) should be closely 

investigated. His "Drawing Machines" are "devices which 

utilize the spatial organization of information in a 

concrete, non-symbolic manner much like seeing or drawing." 

He described and proposed several kinds of drawing machines 

such as conformal mapping devices, magnetic bubble arrays, 

and a massively parallel processor. 

1.3 An extension to WHISPER -- - 

WHISPER, a problem-solving program which explored the 

role of diagrams in a computer, was implemented by Funt 

(1976, 1980). His system consisted of a High Level Reasoner 

(HLR) which had a limited knowledge of qualitative physics, 

and a simulated parellel processing "retina" to "observe" a 

diagram. The diagram in the sys.tem was simulated by a two 

dimensional array which could be modified by the HLR. The 

problem WHISPER was designed to solve was a stability 

problem-- given a diagram of a blocks world structure in two 



Figure 1 

A typical problem WHISPER can solve. (~dapted from Funt 

dimensions, WHISPER detected instabilities and generated a 

sequence of diagrams representing how the structure would 

collaspe (Figure 1). 

WHISPER can form the basis for a problem-solving 

computer model which makes use of diagrammatic reasoning. 

Therefore, it makes sense to further investigate WHISPER'S 

model on a different problem domain outside of the blocks 

world. In fact, the system (ROUTER) I have implemented is 

an extension to the above work. It uses WHISPER'S 

techniques to solve automatic wire routing problems. 

This thesis is organized as follows: First, the problem 

domain is formally described with a justification of its 

choice. Then an overview of the structure and organization 



of ROUTER will be presented. Finally, a discussion of the 

simulation of the system with a detailed presentation of 

algorithms and results will follow. 



2. Problem Domain: Automatic Wire Routing 

The problem to be solved by ROUTER is a simplified version 

of the routing problem in hierarchical integrated circuit 

(IC) layouts. This problem is suitable for ROUTER because a 

diagram is one of the main tools used in solving such a 

problem. This chapter will start with a definition of the 

automatic wire routing problem. Then the commom methods of 

solving the problem will be reviewed. Following that will 

be a discussion of the choice of the problem. Finally, a 

simplified version of the routing problem that ROUTER faces 

will be described. 

2.1 Definition of Automatic Wire Routing - - 
Akers (1972) characterizes a wire routing problem as 

follows: "Given an interconnection diagram (or the 

information therefrom), and a circuit IC on which the 

elements in the diagram have been previously placed, lay out 

the necessary conductor paths on the IC to achieve the 

indicated electrical connections subject - to - the imposed 

constraints" (see Figure 2.) Obviously, the more 

constraints, the harder the problem. No conductor can have 

a width more than 25 mils; conductors cannot cross each 

other; feedthroughs(vias) and conductor turns should be 

minimized; a specified minimum spacing must be maintained 

between conductors-- all these are good examples of the 

various constraints that make the problem interestingly 



Figure 2 

Example of a routing problem. 



difficult. (Akers 1972) 

According to Preas and vancleemput (1979)~ hierarchical 

IC layout is the process of hierarchically decomposing the 

system function of highly complex chips into tractable 

module sizes. "The starting point for a layout is a set of 

components, represented by rectangular blocks of arbitrary 

size and shape and their interconnections. Their external 

connections or pins are at fixed positions around the 

peripheries of the blocks." The problem is to place and 

interconnect the blocks "in such a way that total area of 

the IC is minimal, subject to the constraint that the 

routing must be 100% completed." 

2.2 Common Approaches in Wire Routinq - -- 

Two common approaches are prevalent in attacking the 

routing problem-- sequential and global. Each of them has 

advantages and disadvantages. A sequential router uses 

Lee's algorithm (Lee 1961) to connect one path at a time. 

According to Heinisch (1981)~ simplicity and versatility are 

its advantages since various design rules can easily be 

accommodated. As pointed out by Dees et g.  (1981)~ 

however, the totally serial nature of Lee's approach usually 

causes a larger number of routing failures as the problem 

complexity increases. Nevertheless, continuing research (e. 

g. "A minimum-impact routing algorithm" by Supowit (1982)) 

has shown that there are ways to improve the performance of 



a sequential router. 

The second approach, a global or channel router, was 

first 'introduced by Hashimoto and Stevens (1971). According 

to Heinisch (1981)~ the channel router starts with the 

definition of a channel partition by splitting every layer 

into parallel channels and then goes through a series of 

processes-- channel assignment, channel routing and channel 

coupling. The major advantage of the channel approach is 

that "it splits the initial problem [into] a hierarchy of 

smaller size ones, which themselves are often reducible to 

combinatorial problems over a small set of data." As a 

result, higher routing completion may be achieved. In terms 

of drawbacks, the channel approach usually involves "more 

complex algorithms than sequential routing" and they "are 

more sensitive to device features." (Heinisch (1981)) 

2.3 Justification of the Problem Domain - -- 
Wire routing was chosen as the problem domain because 

( 1 )  routing is a real world problem (unlike the blocks world 

situation in WHISPER) complicated enough to gain much 

attention and continuing research effort; and (2) diagrams 

are one of the important tools available to human in solving 

routing problems. 

Many papers have been written on the subject of wire 

routing over more than two decades. One of the subproblems 

in wire routing is to break down an interconnection list 



into a wire list which defines singleLpin to single-pin 

connections. As noted by Akers (19721, depending on the 

constraints and the way wire list is generated, this 

subproblem is equivalent to well-known problems such as the 

Travailing Salesman Problem and the Rectilinear Steiner Tree 

Problem which are NP-complete. (~arey and Johnson 1977, 

1979).,This gives us some feeling about the complexity of the 

wire routing problem. 

A graphics package is an essential component in a 

circuit design system. It allows a circuit designer to 

enter a design through the monitor screen into the system. 

Without being able to see his design (say in the form of 

schematics), it will be very difficult for the designer to 

analyse his circuit. In this regard, the monitor screen 

serves as a diagram which is a vital tool in the design 

process. 

2.4 A Simplified Version of The Routinq Problem - -  -- 
Since ROUTER depends on a software simulation of 

parallel processing, the routing IC is limited to a 

two-layer 33 x 33 grid IC in order that the execution times 

be acceptable. Rectangular blocks of arbitrary size and 

shape with pins around their peripheries are assumed to be 

placed by a person, or by some placement algorithms such as 

the one by Preas and vancleemput (1979). 



The simplified routing problems that ROUTER will attack 

are subject to the following constraints: 

Conductors cannot cross one another. 

Total conductor length should be minimized. 

Vias should be minimized. 

There should be at least unit spacing between 

conductors. 

No conductor can have a width more than one unit. 

In reality, the width of a via is usually larger than 

the width of a conductor. However, for simplicity, they are 

assumed to be the same. The constrai.nt that routing must be 

100% completed is relaxed here since some essential rip-up 

and reroute techniques have not be incorporated into the 

project. (Dees and Karger (1982) have written an excellent 

survey on rip-up and reroute techniques.) Constraints 4 and 

5 can be dealt with quite easily by restricting wires to run 

on the grid lines. Figure 3 shows a typical kind of problem 

ROUTER is to solve. 



Figure 3 

A typical  problem ROUTER is to solve. ( a )  A problem. (b) A 

solution. 



3. Structure and'organization of ROUTER 

In this chapter, the structure and organization of ROUTER 

will be detailed. An overview of the system structure and 

its components will be described first. Then a detailed 

description of each component will be presented. 

3.1 Overview - 
Figure 4 shows an overview of the structure of ROUTER. 

It consists of three major components: the high level 

reasoner, the parallel processing retina, and the diagram. 

The high level reasoner is a traditional problem-solving 

program with the exception that it can direct a retina to 

"observe" a diagram and make changes to the diagram when 

necessary. The retina is responsible for extracting 

information from the diagram on which the wire routing 

problem will be represented. 

3.2 The High Level Reasoner -- 
The high-level reasoner (HLR) is the ' major 

problem-solving component which has knowledge of how to make 

connections and can accommodate the constraints imposed on 

the routing problem. The HLR consists of many specialists 

which can interpret features extracted from a diagram 

through the retina. Each specialist concerns a certain 

feature such as "whether a track is alright to be used" or 

"whether a wire will definitely block other unrouted nets." 



Figure 4 

An overview of the structure of ROUTER. (~dapted from Funt 

( 1 9 8 0 ) . )  
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Note that the HLR is a domain dependent system. So each new 

problem domain will need a new HLR. 

3 . 2 . 1  Redrawing Mechanism 

Pencil, paper and eraser are readily available for 

people in their daily problem-solving activities. Likewise, 

the redrawing mechanism is available to the HLR in its 

problem-solving. The redrawing mechanism can make changes 

to the diagram under the control of the HLR. This allows 

ROUTER to perform experiments in an organized 

trial-and-error basis. 

3 . 3  The Retina -- 
ROUTER'S retina is roughly modelled after the human 

eye. It is - a collection of parallel processors simulated by 
software. Each identical processor has its own independent 

memory and input device called a receptor. ROUTER has two 

analogous properties to the human eye: 

1. The retina can move freely over a diagram and is able to 

fixate at any particular location. 

2 .  The retina has declining resolution from its centre to 

its periphery. 

Without fixation, ROUTER would not be able to examine a 

diagram in detail due to the declining resolution. Figure 5 

shows the geometrical arrangement of the retinal receptors. 

The central area is called the "fovea" and has the highest 



Figure 5 

The Retina 



resolution, while the remaining area is called the 

periphery. The retina is arranged in rings and wedges for 

easy addressing. Each receptor (bubble) represents a 

processor and the diameter of the smallest bubble equals the 

length (or width) of one pixel in the diagram. Each bubble 

can communicate with its neighbors and also with the retinal 

supervisor which broadcasts the procedures to be executed by 

the parallel processors. Such a simple communication 

network will help to ensure possible future hardware 

implementation. Note that the retinal supervisor is 

responsible for a certain amount of sequential processing. 

3.3.1 ROUTER'S retina vs. WHISPER'S - 
Note that the retina of ROUTER differs from that of 

WHISPER in that ROUTER has a fovea. Without the fovea, the 

very centra-l portion of the retina cannot be filled with 

bubbles that are getting smaller and smaller in size. 

(Eventually, these bubbles will have infinitely small size.) 

In other words, there will always be a central hole that 

cannot be filled by the very small bubbles. This 

singularity problem was not addressed in WHISPER. The fovea 

of ROUTER provides a solution to the problem. Instead of 

using bubbles that are decreasing in size to fill the 

central part, bubbles of unit diameter are used. ( ~ o t e  that 

the innermost peripheral bubbles also have unit diameter.) 

Despite the fact that the number of bubbles in a particular 

foveal ring is usually less than that in a peripheral ring, 



the structure of the fovea does not conflict with the wedge 

organization of the retina since each foveal bubble is 

logically assigned to one or more wedges. Therefore, 

scaling and rotation of an image on the retina are supported 

both on the fovea and the periphery. 

3.3.2 Other possible retinal topologies -- 
The present retinal topology is not the only possible 

one. The geometrical arrangement of a sunflower's seeds 

seems to be a good alternative. A similar structure is also 

observed in the central portion of a crysanthemum (see 

Figure 6). Interestingly, Weiman and Chaikin's (1977) 

logarithmic spiral grid for image processing and display is 

very similar to the flower's central part. Sandini and 

Tagliasco (1980) also have a retina-like structure similar 

to Weiman and Chaikin's (see Figure 7). However, these 

authors have not solved the singularity problem of a 

retina-like structure. 

3.3.3 The Perceptual Primitives -- 
Each perceptual primitive detects a particular domain 

independent feature in the diagram. The HLR asks the retina 

about a certain feature, and the retina uses the appropriate 

perceptual primitive to answer the question. In other 

words, the perceptual primitives are sequential/parallel 

algorithms chosen by the HLR for the retina to execute. 

Examples of perceptual primitives are: find the bubble 







closest to the retinal centre satisfying a given condition; 

scale the retinal image; rotate the retinal image; and find 

if there is a straight path between two points. The 

following procedure illustrates how to find a clear straight 

path between two points, say A and B. - 

The retina is first fixated on one of the points 

arbitrarily (say A )  , and then the retinal supervisor 

directs each retinal bubble to execute the following 

steps: 

Step 1 .  If the bubble value is empty then stop. 

Step 2. If the bubble is not on the same wedge as point 
B then stop. 

Step 3. If the bubble has ring number smaller than that 
of point B, then send a "NO" message to the 
retinal supervisor, 

Step 4. Stop. 

So if the retinal supervisor has not received a message 

after a certain time delay, then there is a clear straight 

path between points A and B. 

3 . 3 . 3 . 1  Retinal Scalinq 

It is extremely easy to scale the retinal image on the 

periphery by employing neighbourhood communication. For 

example, to expand the retinal image, each peripheral bubble 

simultaneously sends its value as a message to its outer 

wedge neighbour (Figure 8). In order to bring about the 

desired scaling, the message passing process has to be 

repeated sequentially. A proof of the scaling property of 



Figure 8 

Each bubble sends its value t o  its outer wedge neighbour. 



the periphery has been given by Funt (1976) .- Although 
scaling on the fovea is not as easy as on the periphery, it 

is not too difficult. Since each scaling step involves a 

constant scaling factor, what each foveal bubble has to do 

is to determine if it should pass its value to its logical 

wedge neighbour. More precisely, each foveal bubble must 

simultaneously..execute the following: 

1. Let D = the distance from the centre of the retina to 

the centre of the bubble. 

2. Let D = D x scaling factor. 

3. If D lies outside of the bubble's area, then pass its 

value as a message to its logical wedge neighbours. 

It turns out that after a few scaling steps, some 

foveal bubbles may receive a message and yet their values 

have not been passed. The resulting values of those bubbles 

will contain all colours currently covered by them. There 

is still one more complication. When scaling objects on the 

fovea, gaps will occur since some bubbles will have passed 

their values and yet have not received a message from their 

neighbours (~igure 9). The solution to this problem is to 

let each foveal bubble record the colour its inward or 

outward wedge neighbour is looking at. Then after the 

scaling, each appropiate foveal bubble can check and fill 

the gaps that should not be there. 



Figure 9 

Gaps occurred in the fovea as an object was enlarged. 



3.3.3.2 Retinal Rotation 

This is very similar to the retinal scaling. For the 

periphery, each bubble passes its values as a message to its 

clockwise ring neighbour or anticlockwise ring neighbour 

depending on the rotational direction. For the fovea, each 

bubble determines if it has to pass or not. Actually, 

retinal rotation is simpler than the retinal scaling since 

for each foveal ring, either all bubbles in that ring pass 

their values or none do. 

3.3.4 Implementation -- of the Retina 

The retina is simulated by a two-dimensional array. 

Figure 10 shows the logical-to-physical mapping of the 

retina. Each element of the array represents a bubble which 

has a name of the form Pw-r - - where - w denotes the wedge number 
and - r denotes the ring number. For example, P8-15 is the 

name of the bubble with wedge number 8 and ring number 15. 

Each bubble has a 16-bit value representing the current 

contents of the bubble. Each bit represents a colour, so 

each retinal bubble is capable of distinguishing 16 

different colours. The- primary advantage of this encoding 

scheme is that it saves memory space and also allows the 

retina to be filled quickly. 



Figure 10 

The logical to physical mapping of the retina. 



3.4 The Mappinq from Diaqram to Retina -- - - 
The diagram of the IC is simulated by a 70 x 70 array. 

The mapping from the array diagram to the retina can be 

visualized as overlaying the retina on top of the diagram 

and filling the bubbles accordingly. The grid lines of the 

routing IC will-fall on the even numbered rows and columns. 

The width of a pixel in the array diagram is assumed to be 

one unit. 



4 .  See and Compute 

In the previous chapter, I described the overall structure 

of ROUTER. Now it is time to present the algorithms used to 

solve the routing problem. 
- 

4.1 Methods - 

A flowchart is given in Figure 1 1  showing an overview 

of the flow of control of the system. First, ROUTER reads 

the sizes of each of the rectangular functional blocks and 

their positions on the two-layer IC. Then it reads an 

interconnection list which specifies a set of electrical 

connections or nets. Boxes 2 and 3 represent the most 

important parts of the system and they will be detailed in 

the sections to follow. 

4 .2  Groupinq Similar Nets 

It is interesting to note that many of the nets on a 

routing IC are similar. Given a set of similar nets, can a 

person use it to facilitate routing? It seems that if he 

could route a net from that set, then the rest of nets could 

also be routed "like" the first one. But could ROUTER do it 

too? This will be investigated after the section where the 

actual routing algorithms will be detailed. Let us first 

describe how ROUTER groups similar nets. 

First, all nets with the same number of pins are 

grouped together. Then for each group, the following is 
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Figure  1 1  

An overview of t h e  flow of c o n t r o l  of ROUTER. 



executed: 

1. For all possible pairs of nets (denoted by net-A and 

net-B) 

a. if net-A and net-B pass both a preliminary - test and 

a similarity - test 

DO 

1 )  Put them into the same set. 

2) Record the scaling and rotational information. 

The preliminary test calculates the relative distances 

of pins to the centre of gravity of the nets. 

How well ROUTER can apply similarity in routing depends 

on many factors. One is the accuracy of the similarity 

test. However, similarity is quite subjective and a 

completely accurate similarity test is, if not impossible, 

very difficult to find. Nevertheless, a similarity test 

based on the location of pins, the block that each pin 

belongs to, and the obstructions within the net has been 

developed. Given net-A and net-B with their centres of 

gravity, the similarity test can be loosely described as 

follows: 

1. The retinal supervisor directs the retina to fixate at 

the centre of gravity of net-A. Note that the area of 

interest will be specially coloured so that the retina 

will not be confused during this phase. 

2. Each bubble in the retina remembers what it has seen. 

3. The retina is fixated at the centre of gravity of net-B. 

4. A scaling factor is calculated. 



5. The retinal image is scaled. 

6. F o r n = O t o 3  

DO 

a. Rotate the retinal image by 90 degrees in the 

clockwise direction 

b. For each bubble 

DO 

1 )  Compare the colour a bubble is looking at to the 

colour in its memory cells. (use the Excuse 

2) Report match or no match to the retinal 

supervisor. 

7. The retinal supervisor finds the best fit. (~est fit 

will be defined later.) 

8. If no best fit, return no and stop. 

9. The scale and rotation amounts are returned. 

10. Stop. 

4.2.1 Excuse Mechanism 

It is rarely the case that two nets have exactly the 

same configuration. In other words, the colour seen by a 

bubble seldom matches the colour it is currently looking at. 

Thus we need a mechanism-- the excuse mechanism-- which 

allows us to match things that are close together. The 

excuse mechanism works as follows: 



If a bubble is looking at something green, say, and its 

memory cell records something red, then the bubble asks 

its immediate neighbours if they have red recorded in 

their memory cells. If there is at least one such 

neighbour, a match is found. 

4.2.2 Comparison 

The comparison phase is based on three factors: 

pin-locations, blocks that pins belong to, and obstructions 

within the net. Note that in order to avoid false matches 

as illustrated in Figure 12, we have to compare net-A to 

net-B and then net-B to net-A. This is analogous to the 

definition of set equality: 

if Set A is a subset of Set B and if Set B is a subset 

of Set A, then Set A equals Set B. 

The following definitions are necessary for 

understanding how the best fit is found. 

Definitions 

Let 

tl be the average percentage of match of 

pin-locations, 

t2 be the average percentage of match of the 

blocks that associate with the pins, and 

t 3 be the average percentage of match of 

obstructions within the nets. 

Two nets will pass the similarity test if 



Figure 12 

A false match will occur if net-A is compared to net-B, but 
net-B is not also compared to net-A. 



tl > 0.8 and t2 > 0.7 and t3 > 0.6 

The best fit is defined as the highest score computed from 
the sum of tl, t2 and t3. The parameters in the similarity 

decision function may not be the best ones. An example is 
I 

shown in Figure 13 where net-1 and net-2 are recognized as- 

similar. There are, however, some cases where two nets are 

similar and yet are not recognized as such by ROUTER. (see 

Figure 14) 

4.3 Route each set of similar nets ----- 
After similar nets have been grouped together, ROUTER 

routes each set of similar nets one at a time. Routing nets 

with the largest number of pins first seems to be a 

reasonable choice. This routing phase is the central part 

of the system. It contains a preprocessor, two Lee's 

routers, and an analysis phase. The preprocessor makes use 

of likely paths and similarities between nets. The two 

Lee's routers are responsible for wire connections. The 

analysis phase is an optimization phase. 

4.3.1 Preprocessor 

Given a net to be routed, the preprocessor draws the 

likely paths of the net on the IC (See Figure 1 5 ) .  The 

reason those paths are called likely paths is that when a 

net is routed, a lot of wires are likely to fall on these 

paths. The idea here is to move wires that lie on the 



Figure 13 

Experimental results of the similarity test. 



Figure 14 

Cases that ROUTER does not recognize as similar. 



Figure 15 

Likely paths are denoted by dotted lines. 



likely paths to empty tracks such that the total length of 

each wire and its number of vias does not increase. One 

type, the "Z" wire, has been identified that can be moved in 

two directions without increasing its length or number of 

vias as shown in Figure 16. Other types of wires can also 

be moved without penalty but have not been included in this 

thesis as shown in Figure 17. 

4.3.1.1 How ROUTER makes use of likely paths - --- 
Having drawn the likely paths, the retina fixates at 

the centre of the diagram. It detects all segments of wires 

that are lying on the likely paths. Then ROUTER finds all 

the Z wires and moves them aside if possible. 

4.3.1.2 -- Use of Similarity 

After moving aside type Z wires, a net is ready to be 

routed. ROUTER first checks if this net is similar to any 

other nets that have been routed. For example, if net-B is , 

the net under consideration and net-A is a routed net that 

is similar to net-B, then ROUTER will execute the following: 

1. The retinal supervisor directs the retina to fixate at 

the centre of gravity of net-A and record the solution 

of net-A. (i. e. the wires of net-A) 

2. Apply the necessary scaling and rotation to the retinal 

content. (~hese parameters are readily available since 

net-B stored this informaticn when it was compared to 

net-A in the phase of Grouping Similar ~ets.) 

3.  Move the retina to the centre of gravity of net-B. 



Figure 16 

Type Z wire. 

Figure 17 

Wire - ab can be moved in the direction indicated without 

penalty. 



4. For each bubble 

DO: 

a. If a bubble records a part of the solution THEN 

- use a special colour to colour the area that it is 

looking at 

5. Stop. 

Note that if a bubble is 3 units in diameter, then it 

will paint the area it is over with a circle of 3 + "BLUR" 

units in diameter. "BLUR" was set to 4  in the program. 

This is necessary since there are some little gaps between 

bubbles. If those gaps are not filled, then they may affect 

the Lee's routers which will be presented in the next 

section. The claim here is that the specially coloured area 

will very likely contain a solution to the net we want 

routed. But what about a net that is not similar to any 

other or is the first one from a group to be routed? In 

this case, the easiest solution is to let Lee's router . 
search the entire IC o r ,  a suitably large rectangle that 

contains the net to be routed. Another solution may be to 

use the algorithm by Rubin ( 1 9 7 4 ) .  

4.3.2 Lee's Router 

Lee's algorithm ( ~ e e  1961)  is a well-known method of 

finding the shortest path between two points in a maze. 

Given two points say A and B on a 2-0  grid IC, Lee's 

algorithm can be briefly described as follows: 

1. Initialize each grid point to zero. 



2. Pick a point, say A ,  label it as 1. 

3. Let n = 2. 

4. For each grid point n-1, label its neighbours, if 

possible, as n. 

5. Increment ri. 

6. If B is now labelled, then stop. 

7. If the whole IC has not been traversed, goto 4. 

8. Stop. 

Figure 18 shows how Lee's router works. When point B 

finally gets a label, in this case 4, the algorithm stops. 

Finding the shortest path simply requires tracing back from 

point B to point A. 

4.3.2.1 Usinq the retina to apply Lee's algorithm - - 
An effort has been made to implement Lee's algorithm on 

the parallel processing retina. The first approach was to 

fixate the retina. on, say pin A and then use the retina's 

communication links to broadcast the labels until a label 

reaches the bubble representing pin B. However, this method 

has two problems. First, bubbles in the periphery do not 

have the resolution to distinguish i f  the areas they -are 

looking at can be labelled. For instance, consider Figure 

19 in which a big bubble is over two tracks. One of them is 

occupied and the other is free. This bubble, however, will 

not see the empty track. Second, the grid of the IC does 

not correspond to the positions of the bubbles in the 

retina. 



Figure 18 

An example showing how Lee's algorithm works. 

doer  AD^ 
see 
f rack 

~ i g u r e  19 

This bubble could not see the empty track. 



Rather tLan fixating at one of the pins, a second 

approach was to move the retina midway between the two pins. 

This method, however, still suffers from the same problems; 

Since the peripheral bubbles have rather poor resolution, 

they are deactivated during the labelling process. Since 

the foveal bubbles' diameter equals the width of a grid 

line, when the retina fixates on a grid point, some foveal 

bubbles will fall on each grid line of the IC. The foveal 

bubbles that fall on the grid lines will be marked as 

special bubbles called the Lee's bubbles. The neighbouring 

Lee's bubbles will then be called the Lee's neighbours. The 

Retinal Lee's Algorithm can be loosely described as follows: 

1. Initialize a labelling array to zero. 

2. Use a "special colour" to mark one pin. (say pin A) 

3. The element of the labelling array that corresponds to 

the location of pin A is labelled as 1. 

4. Let n = 2. 

5. Move the retina to the area such that the fovea is able 

to see the special colour. 

6. If the retina sees no special colour, goto 9. 

7. For all foveal bubbles that see the special colour 

DO 

a. For all its Lee's neighbours (at most 4) 

1 )  if one sees an area which is OK to be labelled, 

send its name to the retinal supervisor. 

b. If at least one Lee's neighbour says OK 

DO 



8. 

9 .  

10. 

The 

1 )  Label the grid point as n. 

2) Erase the special colour in the area covered by 

this foveal bubble from the IC. 

Got0 5. 

Since the retinal supervisor has all the names of the 

bubbles that say OK, colour those areas on the IC with 

the special colour and increment n. 

Repeat step 5. 

termination criteria are: ( 1 )  if a bubble labels pin B, 

then stop. (2) if no more of the special colour exists on 

the IC, stop.  his is the case when there is no path 

between the two pins.) 

Note that the periphery is primarily responsible for 

performing Step 5. In the current implementation, the 

position of the farthest bubble away from the retinal centre 

that sees the special colour will be the location for the 

next fixation. Only. about 8 foveal bubbles will actually 

label the IC in each fixation. 

One advantage of this algorithm is that it can make use 

of the property of similar nets. As mentioned in a previous 

section, a certain area of a net will be coloured so that 

the retina can concentrate on that area of interest. This 

approach could significantly reduce the search space often 

traversed by the ordinary Lee's algorithm. 

Since true parallel processing is not possible on the 

VAX-11/750, and the Retinal Lee's Algorithm was originally 

implemented in LISP, it took roughly three minutes of 



elasped time to route a single wire. It has been estimated 

that the number of fixations ROUTER has to make is of the 

order of k ** 3 (i.e. k to the power of 3) where k is the 
length of the wire to be connected. For these reasons, a 

Lee's algorithm that does not use the retina has been used 

in testing the system. However, this algorithm can also 

make use of the property of similar nets by only searching 

the smallest rectangular area of the IC that contains the 

special colour. 

4.3.2.2 Routing a Net - -  
The Lee's algorithm we have just described can only 

route two pins at a time. However, what is needed is a 

router that can route nets with more than two pins. It 

turns out that it is relatively easy to modify Lee's 

algorithm to do just that as was suggested by Akers ( 1972 ) .  

The idea is to first route any two pins. Then in a second 

pass of the Lee's router, the whole area under the routed 

wire will be labelled as 1. The labelling process 

broadcasts the labels until one of the unconnected pins of 

that net is labelled. This process is illustrated in Figure 

20. 

4.3.3 Analysis 

After a wire has been laid out, control is passed to 

the analysis phase. This phase is responsible for detecting 

definite blockages, and minimizing vias and wire lengths. 



Figure 20 

Using modified Lee's algorithm to route a net with three 

pins. 



4.3.3.1 Definite blockages 

One of the biggest problems with a sequential router is 

that wires already laid out may block other unrouted nets. 

Consider Figure 21a; net 2 makes it impossible to reach pin 

3. One solution is to put in an imaginary obstruction as in 

Figure 21b, and then reroute 2. ROUTER detects definite 

blockages with a specialist called 

definite-blockaqe-detector. Given the pins of a net and the 

location of a via, the definite-blockage-detector performs 

the following: 

1. Fixate the fovea on the via. 

2. If one or more of p0-2, p4-2, p8-2 and p12-2 sees a pin 

that does not belong to the net under consideration 

a. Return definite blockage found. 

b. Stop. 

3. Return no definite blockage found. 

4. Stop. 

If definite blockages are found, then imaginary 

obstructions are put in their places and the wires are 

rerouted. Note that removing definite blockages does not 

guarantee the routability of other unrouted nets. What 

ROUTER has achieved here is that it can recognize obvious 

blockages. Preventing blockages remains an area for further 

research. (Supowit 1982) 



Figure 21 

( a )  Pin 3 is definitely blocked. (b) Imaginary obstruction 
placed by ROUTER and net-2 rerouted. 



4.3.3.2 Minimizing Vias and Wire Length --- 
In routing a net, there are many situations where vias 

and wire length can be minimized. Consider Figure 22a, the 

solid path wxyz is routed first, and the dotted path mn is - 
then connected to path wxyz. But if the segment xy can be 

moved downward as in Figure 22b, the total length of the net 

will be decreased. This situation is termed a type-1 

defect. As in the earlier case, path wxyz is a Z wire. 

A type-? defect is illustrated in Figure 23. In this 

case, by moving the Z wire as shown in Figure 23b, not only 

could we save one via, but we could also shorten the net and 

thereby free a track for other nets. 

4.3.3.3 How does ROUTER rectify the defects - 

Let us again consider Figure 21. First of all, when a 

wire has been routed to the net it belongs to, the last 

segment (here only one segment namely mn) of that wire and 

the point of contact are registered. Then ROUTER finds the 

segment xy that is perpendicular to - mn. From then on, 

ROUTER determines whether is actually part of a Z wire. 

In this case, it is. ROUTER then determines the defect 

type Note that the retina was not used in the 

determination of the Z wire even though it is theoretically 

possible. Rather, the retina is used to check if the newly 

moved wire is still within the routing constraints. Two 

specialists-- track-checker and definite-blockage-detector- 

are responsible for the checking. Since 



Figure 22 

Type-1 defect. (a) wxyz is a Z wire. (blwxyz moved 

downward. 



Figure 23 

Typey2 defect. (a) wxyz is a Z wire. (blwxyz moved left. 



definite-blockage-detector has been described previously, 

only track-checker will be elaborated here. 

If we want to check if a track is free, it is first 

specially coloured. Then the retinal supervisor directs the 

retina to fixate at one of the two ends of that track. 

Since the retina also knows the orientation of the track, 

the procedure to check a track is: 

1. For each bubble 

DO 

a. If the bubble is over a special colour 

DO 

1 )  If it sees an obstruction colour or a via colour 

that does not belong to the current net 

DO 

a) If it is a foveal bubble THEN 

Return its position on the IC and the 

message "track not OK" 

ELSE 

Send an ALARM to the retinal supervisor 

2) If it sees a route colour 

a) Send "saw route colour" to supervisor 

2. Supervisor checks if there is a message saying "track 

not ok" 

a. Return "track not ok" and Stop. 

3. If all bubbles that saw the special colour sent the 

message "saw route colour" 

a. Return "track not ok" and Stop. 



4. If there is an alarm from the periphery 

DO 

a. Move the retina to that location 

b. Got0 1, 

5. Return "track ok" and Stop. 

Although two types of defects-have been identified and 

can be handled by ROUTER, I suspect more defect types 

actually exist. 

4.4 Some Examples -- 
The first example ROUTER worked on was taken from 

Ciesielski and Kinnen (1982). There were ten nets to be 

connected. Nets 5 and 8 each had three pins and the rest of 

nets each had only two pins. Considering Figure 24a, a type 

2 defect was discovered when net 5 was connected. However, 

it could not be resolved. Nets 8, 1, 2, 3 ,  were routed 

without any problem. When net 4 was preprocessed, wires 

from nets 5 and 2 were found lying on the likely paths of 

net 4. This is illustrated in Figure 25a and was resolved 

as in Figure 25b. After net 6 had been routed successfully, 

wires from nets 1 and 2 were found lying on the likely paths 

of net 7 (see Figure 26a). Those wires were moved as 

illustrated in Figure 26b. Note if net 1 (or net 6) was not 

moved, then net 7 could not be connected. Besides, the 

length of net 7 was also shortened. 



Figure 24 

A type 2 defect was found but could not be resolved. wxyz is 
a Z wire. Wire xy should be moved downward but is block by 



Figure 25 

Two Z wires were found when net 4 was preprocessed. Wire bc 
moves down 3 tracks and wire xy moves down 1 track. The 
tracks previously occupied by wires bc and xy are now free. 
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Figure 26 

Two Z wires were found when net 7 was preprocessed. Wire bc 
moves right 3 tracks and wire xy moves left 1 track. 



There was no problem with net 9. However, when net 10 

was preprocessed, a Z wire from net 5 was found as in ~igure 

27a. It was moved aside as in Figure 27b. The finished IC 

is shown in Figure 28. The total wire length was 612 units 

and the total number of vias used was 32. 

It is interesting to see how an ordinary Lee's 

algorithm will solve the problem presented in this example. 

Note the routing order was maintained for comparison. Lee's 

router had no trouble routing nets 5, 8, 1, 2, 3, 4 and 6. 

However, it could not connect net 7 since it was blocked by 

net 1 and net 6. (~igure 29.) After manually moving net 1 

aside, the router managed to finish routing the IC with a 

total wire length of 624 units and a consumption of 38 vias. 

(See Figure 30.) 

The second example is taken from The Giant Book of - -- 

~lectronics Projects by the editors of 73 magazine (1982) 

page 141. Although this is actually a part of the component 

layout of a display IC circuit, it helps demonstrate 

ROUTER'S capability of handling similar nets. Of the 18 

nets to be routed, ROUTER found four groups of similar nets. 

They are grouped as follows: 7 and 14; 1, 2, 8, and 9; 3, 4, 

10, and 11; 5, 6, 12 and 13. First, net 7 was routed 

followed by its similar net 14 according to the solution of 

net 7. Second, net 1 was routed followed by its similar 

nets 2, 8, and 9 according to the solution of net 1 .  The 

rest of the nets were routed in the same fashion. A 

completed IC is illustrated in ~igure 31. 
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Figure 27 

A Z wire was found when net 10 was preprocessed. Wire bc 
will move up 3 tracks. 



Figure 28 

The finished IC for example 1. 



Figure 29 

An ordinary Lee's router was blocked when routing net 7. 



Figure 30 

The finished IC produced by an ordinary Lee's router after 
manual intervention. 



Figure 31 

A completed IC. 

In this example, a lot of exactly similar (identical) 

nets were found and if their solutions could be duplicated 

exactly, a lot of computational effort would be saved. 

Another point to note in this example is that there are 

actually two identical groups of components (1C6, IC12 and 

IC18; IC5, IC11 and IC17). If ROUTER could recognize them, 

then the solution to the first group would also be a 

solution to the second one. 

The last example ROUTER worked on was the one 

illustrated in Figure 3a. This example shows the kind of 

complexity ROUTER can handle. There were eight nets to be 

routed. Nets 7 and 8 had the most pins (5), and nets 1, 2, 

3, 4 and 5 each had four pins. Net 6 had only three pins. 



Of all these nets, only nets 4 and 5 passed the preliminary 

test. However, they failed the similarity test. After net 

7 was routed, net 8 was-preprocessed. ROUTER found that a Z 

wire from net 7 was on a likely path (~igure 32a). That 

wire was moved as illustrated in Figure 32b. Then net 8 was 

routed and followed by net 1. In routing net 2 (~igure 

33a), a type 2 defect was found and was resolved as in 

Figure 33b. Nothing of particular interest happened when 

net 3 was routed. When routing net 4, a type 2 defect was 

found. (See Figure 34a.) However, this defect could not be 

resolved. The finished IC is shown in Figure 35a. The 

total wire length was 680 units and the total number of vias 

used was 53. A finished IC produced by an ordinary Lee's 

algorithm is illustrated in Figure 35b for comparison. 

(Note that the routing order is the same in both cases.) In 

this case, the total wire length was 692 units and the total 

number of vias was 55. 

4.5 Eye Movement Protocols - 
It is an interesting experience to study how the retina 

focuses on the different parts of the diagram in order to 

solve a problem. In many instances, ROUTER has to determine 

if laying a wire on a track will violate the routing 

constraints. As illustrated in Figure 36, point 2 is 

supposed to connect to point 2'. Assume that the retina is 

first fixated at point A. Since the retina does not see any 



Figure 32 

A Z wire was found when net 8 was preprocessed. 
moved down 1 track. 

Wire bc 



.- 

Figure 33 

A type 2 defect was found when net 2 was routed. abcd is a Z 
wire. The dotted wire which joined the Z wire abcd made it 
a type-2 defect. 



Figure 34 

A type 2 defec t  was found when net 4 was routed. Wire bc 
should move down 4 t rack.  B u t  i t  could not s ince  i t  was 
blocked by rectangle I V .  abcd i s  the Z wire when wire ef i s  
joined t o  it. 



Figure 35 

Finished ICs. ( a )  By ROUTER. (b) By ordinary Lee's 

algorithm 



Figure 36 

Eye movement of a linear scanning process 

constraint violations, ROUTER asks the periphery if any 

violations occur. With its limited resolution, bubble Pw-r 

detects a possible violation-- the tentative wire may cross 

a via. Upon receiving the alarm, ROUTER directs the retina 

to fixate at point B so that the fovea can decide if the 

alarm should be honoured. Of course the tentative wire does 

not cross the via and the fovea can also tell that via 1' 

does not pose any problem. This process repeats until 

either no alarm is generated (which means the tentative wire 

does not violate the routing constraint) or wire 2-2' should 

not be laid. 

Another example is illustrated in Figure 37. This time 

ROUTER is to find all the vias that lie on the likely paths. 



Figure 37 

Eye movement protocol of the process of picking points of 

interest 

Assume the retina is first fixated at point A where the 

fovea detects no violation. Then ROUTER asks the periphery 

if any violations occur. In this case, four peripheral 

bubbles detect vias near the likely paths. The position of 

the bubble that is closest to the fovea becomes the next 

fixation point. ROUTER finds that vias 1 and 1' both lie on 

the likely paths. Two bubbles in the periphery have 

detected possible via candidates and the retina is moved to 

focus on point C. This time the fovea can see that vias 2 

and 2' do not lie on the likely paths. 

The advantage of the two processes is that there is no 

need to search each cell in sequence in order to pick up 

points of interest. This advantage is more prominent in the 



second example where a few fixations can replace a search 

through the whole area. 

The eye movements in the first example seem to be 

analogous to the scanning process of a human being while the 

second example appears to be similar to the process of 

picking points of interest. 

4.6 How colour can be applied to hiqhlight areas of interest 
-7 -- - -- 

There are many situations where special colours are 

needed in order to facilitate problem solving. For example, 

ROUTER may want to know if a specific track is free. The 

first thing ROUTER does is to paint some colour on that 

track in order to highlight it. But the time taken to 

sequentially paint each pixel on that track is equivalent to 

sequentially checking if each section of the track is free. 

So it seems that colouring the diagram may be a waste of 

time. However, there is another way to colour a diagram by 

using the parallel processing retina. This is how it works: 

The retinal supervisor broadcasts the area (by means of 

range) where it should be highlighted. Since each bubble 

can calculate its current location on the diagram, it will 

also be able to test if it is actually looking at the area 

specified by the supervisor. Therefore, those bubbles that 

are looking at the area of interest will mark in their 

memory cells the special colour assigned by the retinal 

supervisor for highlighting purposes. Remember, all the 



calculations needed here are done in parallel. This method 

of "seeing things1' is much faster than sequentially painting 

each pixel of interest. 

4.7 Lanquages used - 
The languages used in ROUTER'S implementation were 

FRANZ LISP and C. In the early phases of the project, FRANZ 

LISP was mainly used because of its interactive environment. 

As the project progressed, more and more functions were 

written in C. Although programs written in FRANZ LISP can 

be compiled, they are still inefficient compared to the same 

versions written in C. In particular, programs that were 

executed by the retina were mostly written in C for 

efficiency. 

4.8 Complexity Analysis - 
The task of estimating the complexity of ROUTER'S 

algorithms is complicated by the amount of pins and blocks a 

chip has. So only rough estimates will be given in this 

section. For the purpose of analysis, one addition is 

assumed to consume one unit u of cpu time. One 

multiplication/division takes IOU. Time taken to pass one 

byte of information from one to ones neighbour is assumed to 

be m mits. Also we will assume the retina has a fixed 

number of rings r and a 

is assumed to have the 

fixed.number of wedges w. The fovea 

same structure as the periphery. 



Fixation will take f'units to 

4.8.1 Scalinq 

On average, messages w 

complete. 

ill need to be passed r/2 t 

for a scaling. Therefore, the cost for scaling is 

mr/2 u 

imes 

4.8.2 Rotation 

Most rotations of the retinal image are by 90 degrees. 

Then the cost for rotation is 

mw/4 u 

4.8.3 Similarity 

Two fixations are required for a similarity test (2f). 

To find a scaling factor we need approximately 2p additions 

( p  stands for the number of pins in a net) and 3 divisions: 

2p + 30 u 

One scaling process is needed (mr/2). Three 90 degree 

rotations are required (3*(mw/4)). Assuming each bubble 

will only compare to its previous memory content and to its 

8 nearest neighbours' contents, then the cost for comparison 

in parallel is 

where c units of time is taken for each comparison. Now if 

20% out of rw bubbles report a match, then the cost of 

passing messages to the retinal supervisor is 



rw * 0.2m u 
The retinal supervisor also needs time to calculate a score 

which takes 

rw * 0.2 u 

Therefore, the approximate cost of comparing net-a to net-b 

is 

2f + 2p + 30 + mr/2 + 3mw/4 + 4(9c + 0.2rw(l+m)) 

Note that all the terms here can be regarded as constants 

except 2p. Therefore, the operation of similarity test is 

linear in the number of pins in the net. 

4.8.4 Preprocessing 

Let v be the number of vias already placed on a chip. 

So in the worst case, we need v fixations to discover if 

they lie on the likely paths of a net. However, using the 

method of picking points of interest, only a small 

percentage of vias will be picked up as if they are near the , 

likely paths. Assuming on the average only 20% of vias are 

close to the likely paths, then the cost would become 0 . 2 ~  

u. if those vias cluster together, then additional saving 

will be achieved since one fixation may pick up a few of 

those vias. 

4.8.5 Identifyinq - -  Z wires 

The retina could theoretically be used to identify Z 

wires. However, for simplicity, ROUTER uses .a very simple 

method to recognize Z wires. 



4.8.6 Lee's alqorithm -- 
The complexity analysis of Lee's algorithm and some of 

its variations can be found in Rubin's paper (Rubin (i974)). 

4.8.7 Track-checker 

As can be seen in the section on "Eye Movement 

Protocol," there is no need to sequentially search each 

pixel to see if it is already occupied. The number of 

fixations needed depends on the number of wires that cross 

the track and the number of vias that are near it. If the 

track of interest is k units long, then in the worst case, 

we need k/R fixations in order to scan the track. (R 

denotes the radius of the fovea.) Of course, the best case 

would be just one fixation. 



5 .  Conclusion 

ROUTER'S success in problem solving depends on its abilities 

in extracting and interpreting information from diagrams. 

In particular, information that is visually obvious such as 

similarity, the Z wires, and the two defect types has been 

exploited. This thesis has shown that visually represented 

information is a suitable interface for a computeg system 

equipped with a retina-like input device and some kind of 

redrawing mechanism. 

The redrawing mechanism of the HLR is one of the 

important aspects of ROUTER that makes hypothesis testing 

possible. It allows wires to be drawn and later erased from 

the diagram. Without this capability, it would be very 

difficult to move wires around. The redrawing mechanism is 

analogous to human use of pencil, eraser and paper. 

ROUTER'S fovea has provided a solution to the 

singularity problem on the retina-like structure devices. 

It allows the whole retina (fovea and periphery) to work in 

unison. Scaling and rotation can be done by simply passing 

information between neighbours. The periphery can work as a 

global detector while the fovea can resolve any ambiguities 

that exist. 



5.1 Future Research Direction - 

5.1.1 Construction -- of the parallel processing retina 

The ultimate research effort is to build a prototype of 

the parallel processing retina. But before such a prototype 

can be built, many hardware design problems must first be 

worked out. In particular, problems concerning the actual 

representation of the diagram and the mechanism of filling 

the retina must be solved. Yet to be determined is the 

optimum number of bubbles needed in the retina. Problems 

concerning communication protocols and the message passing 

mechanism between the processors also need to be worked out 

in great detail. 

5.1.2 A Harder Problem -- 
It is not uncommon to see an automatic wire router get 

stuck and request help from a person. Usually, that person 

will look at the layout diagram representing the current 

state of the routing phase and will tell the router how to 

get around the problem. To use ROUTER to automate this 

phase successfully may prove to be a real challenge. 

ROUTER is still at its infancy in solving automatic 

wire routing problems. To build a robust wire routing 

system based on ROUTER, we need to incorporate rip-up and 

reroute techniques, and be able to route wires on less 

congested areas. Nonetheless, ROUTER has demonstrated that 

a computer can use diagrams effectively in solving a 



non-trivial problem, and that WHISPER'S model is a 

particularly good approach to diagrammatic representation of 

information. 
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