
A DIAGRAMMATIC REASONING APPROACH TO AUTOMATIC WIRE ROUTING

by

Arthur Lo

B.Sc., Simon Fraser University, 1982

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department

of

Computing Science

@ ArthurLo 1984

SIMON FRASER UNIVERSITY

April, 1984

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name: Arthur Lo

Degree: Idaster of Science

Title of thesis: A Diagrammatic Reasoning Approach to
Automatic Wire Routing

Examining Committee :

Chairperson: D r . Arthur L. Liestman

Dr . Brian V. Funt
Senior Supervisor

- - 7

b

D r . PJick J. Cercone

- .

Dr. Richard F. Hobson

D r . Gordon blcCalla
External Examiner

Date Approved :

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser University the r i g h t t o lend

my thes is , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f t he Simon Fraser Un ive rs i t y L ib rary , and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any o ther un ive rs i t y , o r o the r educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users, I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r t h e Dean o f Graduate Studies. I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work f o r f l n a n c l a l ga in s h a l l not be al lowed

wi thout my w r i t t e n permission.

T i t l e o f Thesis/Project/Extended Essay

Author: - . - -

(s ignature)

(name

(date)

Abstract

Diagrams have been known to be an important tool in

problem-solving. The usefulness of diagrams comes from the

fact that humans can extract information contained in a

diagram, make changes to the diagram if necessary, and

interpret the results. ROUTER is a problem-solving system

implementation that uses a "see-and-compute" approach to

solve routing problems that arise in hierarchical integrated

circuit layout design. ROUTER'S components include a high

level reasoner which knows about the routing constraints, a

simulated parallel processing "retina" to "look at" its

diagram, and a diagram which can be modified by the high

level reasoner. Detailed algorithms and estimation on

algorithm complexity are presented. The results of

simulation runs seem to suggest that diagrammatic

representation of information can be effectively utilized by

a computer problem-solving system.

Acknowledgements

I wish to express my many thanks to my thesis supervisor

Brian Funt for his invaluable guidance of my research and

his precious time spent in proofreading the thesis drafts.

I also wish to express my gratitude to Austine Chan, Stanley

Wong and Ed Bryant for their spiritual support during the

many hours I spent in the terminal room.

Table of Contents

Approval .. i i
Abstract ... iii
Acknowledegments .. iv

....................................... Table of Contents ;v
. List of Figures viii

1 . Introduction .. 1

1.1 Research Motivation 1

1.2 Previous Research 2

1.3 An extension to WHISPER 4

2 . Problem Domain: Automatic Wire Routing 7
2.1 Definition of Automatic Wire Routing 7
2.2 Common Approaches in Wire Routing 9

2.3 Justification of the Problem Domain 10

....... 2.4 A Simplified Version of The Routing Problem 11

3 . Structure and Organization of ROUTER 14

3.1 Overview .. 14

........................... 3.2 The High Level Reasoner 14

3.2.1 Redrawing Mechanism 16

3.3 The Retina .. 16

. 3.3.1 ROUTER'S retina vs WHISPER'S I 8

........... 3.3.2 Other possible retinal topologies 19

................... 3.3.3 The Perceptual Primitives 19

3.3.3.1 Retinal Scaling 22

3.3.3.2 Retinal Rotation 26

................ 3.3.4 ~mplementation of the Retina 26

3.4 The Mapping from Diagram to Retinz 28

4 . See and Compute 29

4.1 Methods ... 29

4.2 Grouping Similar Nets 29

............................ 4.2.1 Excuse Mechanism 32

4.2.2 Comparison 33

4.3 Route each set of similar nets 35

4.3.1 Preprocessor 35

4.3.1.1 How ROUTER makes use of likely paths 39

................... 4.3.1.2 Use of Similarity 39

................................ 4.3.2 Lee's Router 41

4.3.2.1 Using the retina to apply Lee's algorithm 42

....................... 4.3.2.2 Routing a Net 46

.................................... 4.3.3 Analysis 46

4.3.3.1 Definite blockages 48

4.3.3.2 Minimizing Vias and Wire Length 50

4.3.3.3 How does ROUTER rectify the defects . 50

4.4 Some Examples 54

4.5 Eye Movement Protocols 64

4.6 How colour can be applied to highlight areas of
interest .. 71

.................................... 4.7 Languages used 7 2

4.8 Complexity Analysis 7 2

4.8.1 Scaling 73

.................................... 4.8.2 Rotation 73

.................................. 4.8.3 Similarity 73

4.8.4 Preprocessing 74

4.8.5 Identifying Z wires 74

4.8.6 Lee's algorithm 75

4.8.7 Track-checker 75
5 . Conclusion ... 76

5.1 Future Research Direction 77
5.1.1 Construction of the parallel processing

retina 77
5.1.2 A Harder Problem 77

References ... 79

vii

List of Figures
Figure Page

1 . A typical problem WHISPER can solve 5
2 . Example of a routing problem 8

................ 3 . A typical problem ROUTER is to solve 13

4 . An overview of the structure of ROUTER 15
5 . The Retina .. 17

..................... 6 . The central portion of a flower 20

....... 7 . Sandini and Tagliasco's retina-like structure 21

..................................... 8 . ~etinal Scaling 23

.......................... 9 . Gaps occurred in the fovea 25

....... 10 . The logical to physical mapping of the retina 27

........ 1 1 . An overview of the flow of control of ROUTER 30

12 . A false match 34
......... 13 . Experimental results of the similarity test 36

................ 14 . Cases that ROUTER does not recognize 37

............ 15 . Likely paths are denoted by dotted lines 38

. ... 16 . Type Z wire 4

17 . Z wire can be moved 40
........................... 18 . How Lee's algorithm works 43

........................ 19 . Bubble missed an empty track 43

............................ 20 . Modified Lee's algorithm 47

21. Definite blockage 49
....................................... 22 . Type-1 defect 51

....................................... 23 . Type-2 defect 52

........................... 24 . A type-2 defect was foun2 55

.............................. 25 . Two Z wires were found 56

26 . Two Z wires were found 57

viii

. 27 A Z wire was found 59
....................... . 28 The finished IC for example 1 60

. 29 An ordinary Lee's router was blocked 61

. 30 The finished IC by Lee's router 62

. 31 A complete IC 63

. 32 A Z wire was found 65

. 33 A type-2 defect was found 66

. 34 A type-2 defect was found 67

. .. 35 Finished ICs 68

........... . 36 Eye movement of a linear scanning process 69

.......... . 37 Eye movement protocol (points of interest) 70

1. Introduction

Diagrams have been known to be invaluable tools for many

intellectual activities. Computer scientists use flow

charts and hierarchical module diagrams for program

documentation. Architects use diagrams extensively in all

phases of a design. Students use pencil and paper in

solving mathematical problems. The usefulness of diagrams

comes from the fact that humans can extract information

contained in a diagram, make changes to the diagram if

necessary, and interpret the results. In other words, a

diagram can be viewed as a simulation which is cheap to

perform on a piece of paper. We can also say that diagrams

are "idealizations" of complex real world situations. But

can a computer use diagrams effectively to solve problems

like humans can? If yes, then what kind of special

equipment is needed for such a computer? This thesis will

give some insight to these questions.

1.1 Research Motivation -
A problem that is non-trivial and can be presented

naturally in the form of a diagram is needed and has been

identified for this research project. This is the wire

routing problem in hierarchical integrated circuit (IC)

layout design. This problem is to electrically connect pins

that belong to some rectangular blocks (the logical

sub-circuitry of a complex system) according to a connection

list specified by a circuit designer subject to certain

design constraints. For a human designer, the routing

problem is a very tedious task. Fortunately, automatic wire

routers such as the Lee's (Lee (1961)) router have been

developed to help the designer solve the routing problem.

(Other types of routers will be discussed in the next

chapter.) However, due to the sequential nature of Lee's

algorithm, it is very likely to get stuck and it often needs

help from the designer to guide it around obstructions. The

designer usually has some tricks or intuition on how to move

wires around to avoid blockages. It is the intuition that

is often hard to capture and then incorporate into computer

programs.

The use of diagram and intuition by a computer system

merge into a good Artificial Intelligence (AI) project.

Some previous research work on the use of diagram and the

application of A1 techniques to computer aided design (CAD)

systems are worth mentioning and will be presented in the

next section.

1.2 Previous Research -
Gelernter (1963) made use of diagrams in his classic

geometry-theorem proving machine. The main use of diagrams

is reflected in one of his heuristics "Reject as false any

statement that is not valid in the diagram." By using

diagrams to reject false hypotheses, the sear.ch space can be

considerably limited.

Sussman- and Stallman (1975) developed a circuit

analysis program called EL which employed heuristic

"inspection" methods to solve rather complex dc bias

circuits. The heuristics "give EL the ability to explain

any result in terms of its own qualitative reasoning

processes. EL'S reasoning is based on the concept of a

' local one-step deduction' augmented by various

'teleological' principles and by the concept of a

'macro-element'." Later Sussman and Stallman (1977) further

extended their project. They designed and implemented a

problem-solving language called Antecedent Reasoning System

(ARS). They also developed two methods in their

computer-aided circuit analysis system. "One is a method of

electrical network analysis [they] call analysis &

propagation - of constraints. The other is the technique of

efficient combinatorial search by dependency-directed

backtracking." Sussman (1977) himself outlined the problem

of intelligent failure recovery in a problem-solver for

electrical design. His solver was able to learn from the

mistakes it made. Sussman's idea was that "many bugs are

just manifestations of powerful startegies of creative

thinking-- that creation and removal of bugs are necessary

steps in the normal process of solving a complex problem."

Sandini and Tagliasco (1980) proposed a retina-like

structure for scene analysis. Their aim was "to demonstrate

that intrinsic economy of a human retina-like structure, in

terms of an optimum compromise among large visual field,

acceptable resolution, and information reduction, in the

scene analysis of man-oriented environments." They

suggested that "the technology of solid-state video cameras

and appropiate scanning procedures could allow the actual

implementation of the proposed retina, especially in the

field of industrial scene analysis." ..
Chaikin (1981) suggested visual modes of processing by

computers (he called them drawing machine) should be closely

investigated. His "Drawing Machines" are "devices which

utilize the spatial organization of information in a

concrete, non-symbolic manner much like seeing or drawing."

He described and proposed several kinds of drawing machines

such as conformal mapping devices, magnetic bubble arrays,

and a massively parallel processor.

1.3 An extension to WHISPER -- -

WHISPER, a problem-solving program which explored the

role of diagrams in a computer, was implemented by Funt

(1976, 1980). His system consisted of a High Level Reasoner

(HLR) which had a limited knowledge of qualitative physics,

and a simulated parellel processing "retina" to "observe" a

diagram. The diagram in the sys.tem was simulated by a two

dimensional array which could be modified by the HLR. The

problem WHISPER was designed to solve was a stability

problem-- given a diagram of a blocks world structure in two

Figure 1

A typical problem WHISPER can solve. (~dapted from Funt

dimensions, WHISPER detected instabilities and generated a

sequence of diagrams representing how the structure would

collaspe (Figure 1).

WHISPER can form the basis for a problem-solving

computer model which makes use of diagrammatic reasoning.

Therefore, it makes sense to further investigate WHISPER'S

model on a different problem domain outside of the blocks

world. In fact, the system (ROUTER) I have implemented is

an extension to the above work. It uses WHISPER'S

techniques to solve automatic wire routing problems.

This thesis is organized as follows: First, the problem

domain is formally described with a justification of its

choice. Then an overview of the structure and organization

of ROUTER will be presented. Finally, a discussion of the

simulation of the system with a detailed presentation of

algorithms and results will follow.

2. Problem Domain: Automatic Wire Routing

The problem to be solved by ROUTER is a simplified version

of the routing problem in hierarchical integrated circuit

(IC) layouts. This problem is suitable for ROUTER because a

diagram is one of the main tools used in solving such a

problem. This chapter will start with a definition of the

automatic wire routing problem. Then the commom methods of

solving the problem will be reviewed. Following that will

be a discussion of the choice of the problem. Finally, a

simplified version of the routing problem that ROUTER faces

will be described.

2.1 Definition of Automatic Wire Routing - -
Akers (1972) characterizes a wire routing problem as

follows: "Given an interconnection diagram (or the

information therefrom), and a circuit IC on which the

elements in the diagram have been previously placed, lay out

the necessary conductor paths on the IC to achieve the

indicated electrical connections subject - to - the imposed

constraints" (see Figure 2.) Obviously, the more

constraints, the harder the problem. No conductor can have

a width more than 25 mils; conductors cannot cross each

other; feedthroughs(vias) and conductor turns should be

minimized; a specified minimum spacing must be maintained

between conductors-- all these are good examples of the

various constraints that make the problem interestingly

Figure 2

Example of a routing problem.

difficult. (Akers 1972)

According to Preas and vancleemput (1979)~ hierarchical

IC layout is the process of hierarchically decomposing the

system function of highly complex chips into tractable

module sizes. "The starting point for a layout is a set of

components, represented by rectangular blocks of arbitrary

size and shape and their interconnections. Their external

connections or pins are at fixed positions around the

peripheries of the blocks." The problem is to place and

interconnect the blocks "in such a way that total area of

the IC is minimal, subject to the constraint that the

routing must be 100% completed."

2.2 Common Approaches in Wire Routinq - --

Two common approaches are prevalent in attacking the

routing problem-- sequential and global. Each of them has

advantages and disadvantages. A sequential router uses

Lee's algorithm (Lee 1961) to connect one path at a time.

According to Heinisch (1981)~ simplicity and versatility are

its advantages since various design rules can easily be

accommodated. As pointed out by Dees et g. (1981)~

however, the totally serial nature of Lee's approach usually

causes a larger number of routing failures as the problem

complexity increases. Nevertheless, continuing research (e.

g. "A minimum-impact routing algorithm" by Supowit (1982))

has shown that there are ways to improve the performance of

a sequential router.

The second approach, a global or channel router, was

first 'introduced by Hashimoto and Stevens (1971). According

to Heinisch (1981)~ the channel router starts with the

definition of a channel partition by splitting every layer

into parallel channels and then goes through a series of

processes-- channel assignment, channel routing and channel

coupling. The major advantage of the channel approach is

that "it splits the initial problem [into] a hierarchy of

smaller size ones, which themselves are often reducible to

combinatorial problems over a small set of data." As a

result, higher routing completion may be achieved. In terms

of drawbacks, the channel approach usually involves "more

complex algorithms than sequential routing" and they "are

more sensitive to device features." (Heinisch (1981))

2.3 Justification of the Problem Domain - --
Wire routing was chosen as the problem domain because

(1) routing is a real world problem (unlike the blocks world

situation in WHISPER) complicated enough to gain much

attention and continuing research effort; and (2) diagrams

are one of the important tools available to human in solving

routing problems.

Many papers have been written on the subject of wire

routing over more than two decades. One of the subproblems

in wire routing is to break down an interconnection list

into a wire list which defines singleLpin to single-pin

connections. As noted by Akers (19721, depending on the

constraints and the way wire list is generated, this

subproblem is equivalent to well-known problems such as the

Travailing Salesman Problem and the Rectilinear Steiner Tree

Problem which are NP-complete. (~arey and Johnson 1977,

1979).,This gives us some feeling about the complexity of the

wire routing problem.

A graphics package is an essential component in a

circuit design system. It allows a circuit designer to

enter a design through the monitor screen into the system.

Without being able to see his design (say in the form of

schematics), it will be very difficult for the designer to

analyse his circuit. In this regard, the monitor screen

serves as a diagram which is a vital tool in the design

process.

2.4 A Simplified Version of The Routinq Problem - - --
Since ROUTER depends on a software simulation of

parallel processing, the routing IC is limited to a

two-layer 33 x 33 grid IC in order that the execution times

be acceptable. Rectangular blocks of arbitrary size and

shape with pins around their peripheries are assumed to be

placed by a person, or by some placement algorithms such as

the one by Preas and vancleemput (1979).

The simplified routing problems that ROUTER will attack

are subject to the following constraints:

Conductors cannot cross one another.

Total conductor length should be minimized.

Vias should be minimized.

There should be at least unit spacing between

conductors.

No conductor can have a width more than one unit.

In reality, the width of a via is usually larger than

the width of a conductor. However, for simplicity, they are

assumed to be the same. The constrai.nt that routing must be

100% completed is relaxed here since some essential rip-up

and reroute techniques have not be incorporated into the

project. (Dees and Karger (1982) have written an excellent

survey on rip-up and reroute techniques.) Constraints 4 and

5 can be dealt with quite easily by restricting wires to run

on the grid lines. Figure 3 shows a typical kind of problem

ROUTER is to solve.

Figure 3

A typical problem ROUTER is to solve. (a) A problem. (b) A

solution.

3. Structure and'organization of ROUTER

In this chapter, the structure and organization of ROUTER

will be detailed. An overview of the system structure and

its components will be described first. Then a detailed

description of each component will be presented.

3.1 Overview -
Figure 4 shows an overview of the structure of ROUTER.

It consists of three major components: the high level

reasoner, the parallel processing retina, and the diagram.

The high level reasoner is a traditional problem-solving

program with the exception that it can direct a retina to

"observe" a diagram and make changes to the diagram when

necessary. The retina is responsible for extracting

information from the diagram on which the wire routing

problem will be represented.

3.2 The High Level Reasoner --
The high-level reasoner (HLR) is the ' major

problem-solving component which has knowledge of how to make

connections and can accommodate the constraints imposed on

the routing problem. The HLR consists of many specialists

which can interpret features extracted from a diagram

through the retina. Each specialist concerns a certain

feature such as "whether a track is alright to be used" or

"whether a wire will definitely block other unrouted nets."

Figure 4

An overview of the structure of ROUTER. (~dapted from Funt

(1 9 8 0) .)

I High L e v e l Reasoner 1
Perform
Experiment Answer5

t o Quescrons .-
I

Y R e t i n a

Diagram I
Diagram o n t o

R e t i n a l P r o c e s s o r s

Note that the HLR is a domain dependent system. So each new

problem domain will need a new HLR.

3 . 2 . 1 Redrawing Mechanism

Pencil, paper and eraser are readily available for

people in their daily problem-solving activities. Likewise,

the redrawing mechanism is available to the HLR in its

problem-solving. The redrawing mechanism can make changes

to the diagram under the control of the HLR. This allows

ROUTER to perform experiments in an organized

trial-and-error basis.

3 . 3 The Retina --
ROUTER'S retina is roughly modelled after the human

eye. It is - a collection of parallel processors simulated by
software. Each identical processor has its own independent

memory and input device called a receptor. ROUTER has two

analogous properties to the human eye:

1. The retina can move freely over a diagram and is able to

fixate at any particular location.

2 . The retina has declining resolution from its centre to

its periphery.

Without fixation, ROUTER would not be able to examine a

diagram in detail due to the declining resolution. Figure 5

shows the geometrical arrangement of the retinal receptors.

The central area is called the "fovea" and has the highest

Figure 5

The Retina

resolution, while the remaining area is called the

periphery. The retina is arranged in rings and wedges for

easy addressing. Each receptor (bubble) represents a

processor and the diameter of the smallest bubble equals the

length (or width) of one pixel in the diagram. Each bubble

can communicate with its neighbors and also with the retinal

supervisor which broadcasts the procedures to be executed by

the parallel processors. Such a simple communication

network will help to ensure possible future hardware

implementation. Note that the retinal supervisor is

responsible for a certain amount of sequential processing.

3.3.1 ROUTER'S retina vs. WHISPER'S -
Note that the retina of ROUTER differs from that of

WHISPER in that ROUTER has a fovea. Without the fovea, the

very centra-l portion of the retina cannot be filled with

bubbles that are getting smaller and smaller in size.

(Eventually, these bubbles will have infinitely small size.)

In other words, there will always be a central hole that

cannot be filled by the very small bubbles. This

singularity problem was not addressed in WHISPER. The fovea

of ROUTER provides a solution to the problem. Instead of

using bubbles that are decreasing in size to fill the

central part, bubbles of unit diameter are used. (~ o t e that

the innermost peripheral bubbles also have unit diameter.)

Despite the fact that the number of bubbles in a particular

foveal ring is usually less than that in a peripheral ring,

the structure of the fovea does not conflict with the wedge

organization of the retina since each foveal bubble is

logically assigned to one or more wedges. Therefore,

scaling and rotation of an image on the retina are supported

both on the fovea and the periphery.

3.3.2 Other possible retinal topologies --
The present retinal topology is not the only possible

one. The geometrical arrangement of a sunflower's seeds

seems to be a good alternative. A similar structure is also

observed in the central portion of a crysanthemum (see

Figure 6). Interestingly, Weiman and Chaikin's (1977)

logarithmic spiral grid for image processing and display is

very similar to the flower's central part. Sandini and

Tagliasco (1980) also have a retina-like structure similar

to Weiman and Chaikin's (see Figure 7). However, these

authors have not solved the singularity problem of a

retina-like structure.

3.3.3 The Perceptual Primitives --
Each perceptual primitive detects a particular domain

independent feature in the diagram. The HLR asks the retina

about a certain feature, and the retina uses the appropriate

perceptual primitive to answer the question. In other

words, the perceptual primitives are sequential/parallel

algorithms chosen by the HLR for the retina to execute.

Examples of perceptual primitives are: find the bubble

closest to the retinal centre satisfying a given condition;

scale the retinal image; rotate the retinal image; and find

if there is a straight path between two points. The

following procedure illustrates how to find a clear straight

path between two points, say A and B. -

The retina is first fixated on one of the points

arbitrarily (say A) , and then the retinal supervisor

directs each retinal bubble to execute the following

steps:

Step 1 . If the bubble value is empty then stop.

Step 2. If the bubble is not on the same wedge as point
B then stop.

Step 3. If the bubble has ring number smaller than that
of point B, then send a "NO" message to the
retinal supervisor,

Step 4. Stop.

So if the retinal supervisor has not received a message

after a certain time delay, then there is a clear straight

path between points A and B.

3 . 3 . 3 . 1 Retinal Scalinq

It is extremely easy to scale the retinal image on the

periphery by employing neighbourhood communication. For

example, to expand the retinal image, each peripheral bubble

simultaneously sends its value as a message to its outer

wedge neighbour (Figure 8). In order to bring about the

desired scaling, the message passing process has to be

repeated sequentially. A proof of the scaling property of

Figure 8

Each bubble sends its value t o its outer wedge neighbour.

the periphery has been given by Funt (1976) .- Although
scaling on the fovea is not as easy as on the periphery, it

is not too difficult. Since each scaling step involves a

constant scaling factor, what each foveal bubble has to do

is to determine if it should pass its value to its logical

wedge neighbour. More precisely, each foveal bubble must

simultaneously..execute the following:

1. Let D = the distance from the centre of the retina to

the centre of the bubble.

2. Let D = D x scaling factor.

3. If D lies outside of the bubble's area, then pass its

value as a message to its logical wedge neighbours.

It turns out that after a few scaling steps, some

foveal bubbles may receive a message and yet their values

have not been passed. The resulting values of those bubbles

will contain all colours currently covered by them. There

is still one more complication. When scaling objects on the

fovea, gaps will occur since some bubbles will have passed

their values and yet have not received a message from their

neighbours (~igure 9). The solution to this problem is to

let each foveal bubble record the colour its inward or

outward wedge neighbour is looking at. Then after the

scaling, each appropiate foveal bubble can check and fill

the gaps that should not be there.

Figure 9

Gaps occurred in the fovea as an object was enlarged.

3.3.3.2 Retinal Rotation

This is very similar to the retinal scaling. For the

periphery, each bubble passes its values as a message to its

clockwise ring neighbour or anticlockwise ring neighbour

depending on the rotational direction. For the fovea, each

bubble determines if it has to pass or not. Actually,

retinal rotation is simpler than the retinal scaling since

for each foveal ring, either all bubbles in that ring pass

their values or none do.

3.3.4 Implementation -- of the Retina

The retina is simulated by a two-dimensional array.

Figure 10 shows the logical-to-physical mapping of the

retina. Each element of the array represents a bubble which

has a name of the form Pw-r - - where - w denotes the wedge number
and - r denotes the ring number. For example, P8-15 is the

name of the bubble with wedge number 8 and ring number 15.

Each bubble has a 16-bit value representing the current

contents of the bubble. Each bit represents a colour, so

each retinal bubble is capable of distinguishing 16

different colours. The- primary advantage of this encoding

scheme is that it saves memory space and also allows the

retina to be filled quickly.

Figure 10

The logical to physical mapping of the retina.

3.4 The Mappinq from Diaqram to Retina -- - -
The diagram of the IC is simulated by a 70 x 70 array.

The mapping from the array diagram to the retina can be

visualized as overlaying the retina on top of the diagram

and filling the bubbles accordingly. The grid lines of the

routing IC will-fall on the even numbered rows and columns.

The width of a pixel in the array diagram is assumed to be

one unit.

4 . See and Compute

In the previous chapter, I described the overall structure

of ROUTER. Now it is time to present the algorithms used to

solve the routing problem.
-

4.1 Methods -

A flowchart is given in Figure 1 1 showing an overview

of the flow of control of the system. First, ROUTER reads

the sizes of each of the rectangular functional blocks and

their positions on the two-layer IC. Then it reads an

interconnection list which specifies a set of electrical

connections or nets. Boxes 2 and 3 represent the most

important parts of the system and they will be detailed in

the sections to follow.

4 .2 Groupinq Similar Nets

It is interesting to note that many of the nets on a

routing IC are similar. Given a set of similar nets, can a

person use it to facilitate routing? It seems that if he

could route a net from that set, then the rest of nets could

also be routed "like" the first one. But could ROUTER do it

too? This will be investigated after the section where the

actual routing algorithms will be detailed. Let us first

describe how ROUTER groups similar nets.

First, all nets with the same number of pins are

grouped together. Then for each group, the following is

l i s t

-I-

Figure 1 1

An overview of t h e flow of c o n t r o l of ROUTER.

executed:

1. For all possible pairs of nets (denoted by net-A and

net-B)

a. if net-A and net-B pass both a preliminary - test and

a similarity - test

DO

1) Put them into the same set.

2) Record the scaling and rotational information.

The preliminary test calculates the relative distances

of pins to the centre of gravity of the nets.

How well ROUTER can apply similarity in routing depends

on many factors. One is the accuracy of the similarity

test. However, similarity is quite subjective and a

completely accurate similarity test is, if not impossible,

very difficult to find. Nevertheless, a similarity test

based on the location of pins, the block that each pin

belongs to, and the obstructions within the net has been

developed. Given net-A and net-B with their centres of

gravity, the similarity test can be loosely described as

follows:

1. The retinal supervisor directs the retina to fixate at

the centre of gravity of net-A. Note that the area of

interest will be specially coloured so that the retina

will not be confused during this phase.

2. Each bubble in the retina remembers what it has seen.

3. The retina is fixated at the centre of gravity of net-B.

4. A scaling factor is calculated.

5. The retinal image is scaled.

6. F o r n = O t o 3

DO

a. Rotate the retinal image by 90 degrees in the

clockwise direction

b. For each bubble

DO

1) Compare the colour a bubble is looking at to the

colour in its memory cells. (use the Excuse

2) Report match or no match to the retinal

supervisor.

7. The retinal supervisor finds the best fit. (~est fit

will be defined later.)

8. If no best fit, return no and stop.

9. The scale and rotation amounts are returned.

10. Stop.

4.2.1 Excuse Mechanism

It is rarely the case that two nets have exactly the

same configuration. In other words, the colour seen by a

bubble seldom matches the colour it is currently looking at.

Thus we need a mechanism-- the excuse mechanism-- which

allows us to match things that are close together. The

excuse mechanism works as follows:

If a bubble is looking at something green, say, and its

memory cell records something red, then the bubble asks

its immediate neighbours if they have red recorded in

their memory cells. If there is at least one such

neighbour, a match is found.

4.2.2 Comparison

The comparison phase is based on three factors:

pin-locations, blocks that pins belong to, and obstructions

within the net. Note that in order to avoid false matches

as illustrated in Figure 12, we have to compare net-A to

net-B and then net-B to net-A. This is analogous to the

definition of set equality:

if Set A is a subset of Set B and if Set B is a subset

of Set A, then Set A equals Set B.

The following definitions are necessary for

understanding how the best fit is found.

Definitions

Let

tl be the average percentage of match of

pin-locations,

t2 be the average percentage of match of the

blocks that associate with the pins, and

t 3 be the average percentage of match of

obstructions within the nets.

Two nets will pass the similarity test if

Figure 12

A false match will occur if net-A is compared to net-B, but
net-B is not also compared to net-A.

tl > 0.8 and t2 > 0.7 and t3 > 0.6

The best fit is defined as the highest score computed from
the sum of tl, t2 and t3. The parameters in the similarity

decision function may not be the best ones. An example is
I

shown in Figure 13 where net-1 and net-2 are recognized as-

similar. There are, however, some cases where two nets are

similar and yet are not recognized as such by ROUTER. (see

Figure 14)

4.3 Route each set of similar nets -----
After similar nets have been grouped together, ROUTER

routes each set of similar nets one at a time. Routing nets

with the largest number of pins first seems to be a

reasonable choice. This routing phase is the central part

of the system. It contains a preprocessor, two Lee's

routers, and an analysis phase. The preprocessor makes use

of likely paths and similarities between nets. The two

Lee's routers are responsible for wire connections. The

analysis phase is an optimization phase.

4.3.1 Preprocessor

Given a net to be routed, the preprocessor draws the

likely paths of the net on the IC (See Figure 1 5) . The

reason those paths are called likely paths is that when a

net is routed, a lot of wires are likely to fall on these

paths. The idea here is to move wires that lie on the

Figure 13

Experimental results of the similarity test.

Figure 14

Cases that ROUTER does not recognize as similar.

Figure 15

Likely paths are denoted by dotted lines.

likely paths to empty tracks such that the total length of

each wire and its number of vias does not increase. One

type, the "Z" wire, has been identified that can be moved in

two directions without increasing its length or number of

vias as shown in Figure 16. Other types of wires can also

be moved without penalty but have not been included in this

thesis as shown in Figure 17.

4.3.1.1 How ROUTER makes use of likely paths - ---
Having drawn the likely paths, the retina fixates at

the centre of the diagram. It detects all segments of wires

that are lying on the likely paths. Then ROUTER finds all

the Z wires and moves them aside if possible.

4.3.1.2 -- Use of Similarity

After moving aside type Z wires, a net is ready to be

routed. ROUTER first checks if this net is similar to any

other nets that have been routed. For example, if net-B is ,

the net under consideration and net-A is a routed net that

is similar to net-B, then ROUTER will execute the following:

1. The retinal supervisor directs the retina to fixate at

the centre of gravity of net-A and record the solution

of net-A. (i. e. the wires of net-A)

2. Apply the necessary scaling and rotation to the retinal

content. (~hese parameters are readily available since

net-B stored this informaticn when it was compared to

net-A in the phase of Grouping Similar ~ets.)

3. Move the retina to the centre of gravity of net-B.

Figure 16

Type Z wire.

Figure 17

Wire - ab can be moved in the direction indicated without

penalty.

4. For each bubble

DO:

a. If a bubble records a part of the solution THEN

- use a special colour to colour the area that it is

looking at

5. Stop.

Note that if a bubble is 3 units in diameter, then it

will paint the area it is over with a circle of 3 + "BLUR"

units in diameter. "BLUR" was set to 4 in the program.

This is necessary since there are some little gaps between

bubbles. If those gaps are not filled, then they may affect

the Lee's routers which will be presented in the next

section. The claim here is that the specially coloured area

will very likely contain a solution to the net we want

routed. But what about a net that is not similar to any

other or is the first one from a group to be routed? In

this case, the easiest solution is to let Lee's router .
search the entire IC o r , a suitably large rectangle that

contains the net to be routed. Another solution may be to

use the algorithm by Rubin (1 9 7 4) .

4.3.2 Lee's Router

Lee's algorithm (~ e e 1961) is a well-known method of

finding the shortest path between two points in a maze.

Given two points say A and B on a 2-0 grid IC, Lee's

algorithm can be briefly described as follows:

1. Initialize each grid point to zero.

2. Pick a point, say A , label it as 1.

3. Let n = 2.

4. For each grid point n-1, label its neighbours, if

possible, as n.

5. Increment ri.

6. If B is now labelled, then stop.

7. If the whole IC has not been traversed, goto 4.

8. Stop.

Figure 18 shows how Lee's router works. When point B

finally gets a label, in this case 4, the algorithm stops.

Finding the shortest path simply requires tracing back from

point B to point A.

4.3.2.1 Usinq the retina to apply Lee's algorithm - -
An effort has been made to implement Lee's algorithm on

the parallel processing retina. The first approach was to

fixate the retina. on, say pin A and then use the retina's

communication links to broadcast the labels until a label

reaches the bubble representing pin B. However, this method

has two problems. First, bubbles in the periphery do not

have the resolution to distinguish i f the areas they -are

looking at can be labelled. For instance, consider Figure

19 in which a big bubble is over two tracks. One of them is

occupied and the other is free. This bubble, however, will

not see the empty track. Second, the grid of the IC does

not correspond to the positions of the bubbles in the

retina.

Figure 18

An example showing how Lee's algorithm works.

doer AD^
see
f rack

~ i g u r e 19

This bubble could not see the empty track.

Rather tLan fixating at one of the pins, a second

approach was to move the retina midway between the two pins.

This method, however, still suffers from the same problems;

Since the peripheral bubbles have rather poor resolution,

they are deactivated during the labelling process. Since

the foveal bubbles' diameter equals the width of a grid

line, when the retina fixates on a grid point, some foveal

bubbles will fall on each grid line of the IC. The foveal

bubbles that fall on the grid lines will be marked as

special bubbles called the Lee's bubbles. The neighbouring

Lee's bubbles will then be called the Lee's neighbours. The

Retinal Lee's Algorithm can be loosely described as follows:

1. Initialize a labelling array to zero.

2. Use a "special colour" to mark one pin. (say pin A)

3. The element of the labelling array that corresponds to

the location of pin A is labelled as 1.

4. Let n = 2.

5. Move the retina to the area such that the fovea is able

to see the special colour.

6. If the retina sees no special colour, goto 9.

7. For all foveal bubbles that see the special colour

DO

a. For all its Lee's neighbours (at most 4)

1) if one sees an area which is OK to be labelled,

send its name to the retinal supervisor.

b. If at least one Lee's neighbour says OK

DO

8.

9 .

10.

The

1) Label the grid point as n.

2) Erase the special colour in the area covered by

this foveal bubble from the IC.

Got0 5.

Since the retinal supervisor has all the names of the

bubbles that say OK, colour those areas on the IC with

the special colour and increment n.

Repeat step 5.

termination criteria are: (1) if a bubble labels pin B,

then stop. (2) if no more of the special colour exists on

the IC, stop. his is the case when there is no path

between the two pins.)

Note that the periphery is primarily responsible for

performing Step 5. In the current implementation, the

position of the farthest bubble away from the retinal centre

that sees the special colour will be the location for the

next fixation. Only. about 8 foveal bubbles will actually

label the IC in each fixation.

One advantage of this algorithm is that it can make use

of the property of similar nets. As mentioned in a previous

section, a certain area of a net will be coloured so that

the retina can concentrate on that area of interest. This

approach could significantly reduce the search space often

traversed by the ordinary Lee's algorithm.

Since true parallel processing is not possible on the

VAX-11/750, and the Retinal Lee's Algorithm was originally

implemented in LISP, it took roughly three minutes of

elasped time to route a single wire. It has been estimated

that the number of fixations ROUTER has to make is of the

order of k ** 3 (i.e. k to the power of 3) where k is the
length of the wire to be connected. For these reasons, a

Lee's algorithm that does not use the retina has been used

in testing the system. However, this algorithm can also

make use of the property of similar nets by only searching

the smallest rectangular area of the IC that contains the

special colour.

4.3.2.2 Routing a Net - -
The Lee's algorithm we have just described can only

route two pins at a time. However, what is needed is a

router that can route nets with more than two pins. It

turns out that it is relatively easy to modify Lee's

algorithm to do just that as was suggested by Akers (1972) .

The idea is to first route any two pins. Then in a second

pass of the Lee's router, the whole area under the routed

wire will be labelled as 1. The labelling process

broadcasts the labels until one of the unconnected pins of

that net is labelled. This process is illustrated in Figure

20.

4.3.3 Analysis

After a wire has been laid out, control is passed to

the analysis phase. This phase is responsible for detecting

definite blockages, and minimizing vias and wire lengths.

Figure 20

Using modified Lee's algorithm to route a net with three

pins.

4.3.3.1 Definite blockages

One of the biggest problems with a sequential router is

that wires already laid out may block other unrouted nets.

Consider Figure 21a; net 2 makes it impossible to reach pin

3. One solution is to put in an imaginary obstruction as in

Figure 21b, and then reroute 2. ROUTER detects definite

blockages with a specialist called

definite-blockaqe-detector. Given the pins of a net and the

location of a via, the definite-blockage-detector performs

the following:

1. Fixate the fovea on the via.

2. If one or more of p0-2, p4-2, p8-2 and p12-2 sees a pin

that does not belong to the net under consideration

a. Return definite blockage found.

b. Stop.

3. Return no definite blockage found.

4. Stop.

If definite blockages are found, then imaginary

obstructions are put in their places and the wires are

rerouted. Note that removing definite blockages does not

guarantee the routability of other unrouted nets. What

ROUTER has achieved here is that it can recognize obvious

blockages. Preventing blockages remains an area for further

research. (Supowit 1982)

Figure 21

(a) Pin 3 is definitely blocked. (b) Imaginary obstruction
placed by ROUTER and net-2 rerouted.

4.3.3.2 Minimizing Vias and Wire Length ---
In routing a net, there are many situations where vias

and wire length can be minimized. Consider Figure 22a, the

solid path wxyz is routed first, and the dotted path mn is -
then connected to path wxyz. But if the segment xy can be

moved downward as in Figure 22b, the total length of the net

will be decreased. This situation is termed a type-1

defect. As in the earlier case, path wxyz is a Z wire.

A type-? defect is illustrated in Figure 23. In this

case, by moving the Z wire as shown in Figure 23b, not only

could we save one via, but we could also shorten the net and

thereby free a track for other nets.

4.3.3.3 How does ROUTER rectify the defects -

Let us again consider Figure 21. First of all, when a

wire has been routed to the net it belongs to, the last

segment (here only one segment namely mn) of that wire and

the point of contact are registered. Then ROUTER finds the

segment xy that is perpendicular to - mn. From then on,

ROUTER determines whether is actually part of a Z wire.

In this case, it is. ROUTER then determines the defect

type Note that the retina was not used in the

determination of the Z wire even though it is theoretically

possible. Rather, the retina is used to check if the newly

moved wire is still within the routing constraints. Two

specialists-- track-checker and definite-blockage-detector-

are responsible for the checking. Since

Figure 22

Type-1 defect. (a) wxyz is a Z wire. (blwxyz moved

downward.

Figure 23

Typey2 defect. (a) wxyz is a Z wire. (blwxyz moved left.

definite-blockage-detector has been described previously,

only track-checker will be elaborated here.

If we want to check if a track is free, it is first

specially coloured. Then the retinal supervisor directs the

retina to fixate at one of the two ends of that track.

Since the retina also knows the orientation of the track,

the procedure to check a track is:

1. For each bubble

DO

a. If the bubble is over a special colour

DO

1) If it sees an obstruction colour or a via colour

that does not belong to the current net

DO

a) If it is a foveal bubble THEN

Return its position on the IC and the

message "track not OK"

ELSE

Send an ALARM to the retinal supervisor

2) If it sees a route colour

a) Send "saw route colour" to supervisor

2. Supervisor checks if there is a message saying "track

not ok"

a. Return "track not ok" and Stop.

3. If all bubbles that saw the special colour sent the

message "saw route colour"

a. Return "track not ok" and Stop.

4. If there is an alarm from the periphery

DO

a. Move the retina to that location

b. Got0 1,

5. Return "track ok" and Stop.

Although two types of defects-have been identified and

can be handled by ROUTER, I suspect more defect types

actually exist.

4.4 Some Examples --
The first example ROUTER worked on was taken from

Ciesielski and Kinnen (1982). There were ten nets to be

connected. Nets 5 and 8 each had three pins and the rest of

nets each had only two pins. Considering Figure 24a, a type

2 defect was discovered when net 5 was connected. However,

it could not be resolved. Nets 8, 1, 2, 3 , were routed

without any problem. When net 4 was preprocessed, wires

from nets 5 and 2 were found lying on the likely paths of

net 4. This is illustrated in Figure 25a and was resolved

as in Figure 25b. After net 6 had been routed successfully,

wires from nets 1 and 2 were found lying on the likely paths

of net 7 (see Figure 26a). Those wires were moved as

illustrated in Figure 26b. Note if net 1 (or net 6) was not

moved, then net 7 could not be connected. Besides, the

length of net 7 was also shortened.

Figure 24

A type 2 defect was found but could not be resolved. wxyz is
a Z wire. Wire xy should be moved downward but is block by

Figure 25

Two Z wires were found when net 4 was preprocessed. Wire bc
moves down 3 tracks and wire xy moves down 1 track. The
tracks previously occupied by wires bc and xy are now free.

lo-

& -,

30-

-40-

Sc -,

60-

t o 30 4~ So Lo 70 h

lo-

& - ,

30-

4-

-

b' . a

70
Figure 26

Two Z wires were found when net 7 was preprocessed. Wire bc
moves right 3 tracks and wire xy moves left 1 track.

There was no problem with net 9. However, when net 10

was preprocessed, a Z wire from net 5 was found as in ~igure

27a. It was moved aside as in Figure 27b. The finished IC

is shown in Figure 28. The total wire length was 612 units

and the total number of vias used was 32.

It is interesting to see how an ordinary Lee's

algorithm will solve the problem presented in this example.

Note the routing order was maintained for comparison. Lee's

router had no trouble routing nets 5, 8, 1, 2, 3, 4 and 6.

However, it could not connect net 7 since it was blocked by

net 1 and net 6. (~igure 29.) After manually moving net 1

aside, the router managed to finish routing the IC with a

total wire length of 624 units and a consumption of 38 vias.

(See Figure 30.)

The second example is taken from The Giant Book of - --

~lectronics Projects by the editors of 73 magazine (1982)

page 141. Although this is actually a part of the component

layout of a display IC circuit, it helps demonstrate

ROUTER'S capability of handling similar nets. Of the 18

nets to be routed, ROUTER found four groups of similar nets.

They are grouped as follows: 7 and 14; 1, 2, 8, and 9; 3, 4,

10, and 11; 5, 6, 12 and 13. First, net 7 was routed

followed by its similar net 14 according to the solution of

net 7. Second, net 1 was routed followed by its similar

nets 2, 8, and 9 according to the solution of net 1 . The

rest of the nets were routed in the same fashion. A

completed IC is illustrated in ~igure 31.

lb-

to -.

So-

Figure 27

A Z wire was found when net 10 was preprocessed. Wire bc
will move up 3 tracks.

Figure 28

The finished IC for example 1.

Figure 29

An ordinary Lee's router was blocked when routing net 7.

Figure 30

The finished IC produced by an ordinary Lee's router after
manual intervention.

Figure 31

A completed IC.

In this example, a lot of exactly similar (identical)

nets were found and if their solutions could be duplicated

exactly, a lot of computational effort would be saved.

Another point to note in this example is that there are

actually two identical groups of components (1C6, IC12 and

IC18; IC5, IC11 and IC17). If ROUTER could recognize them,

then the solution to the first group would also be a

solution to the second one.

The last example ROUTER worked on was the one

illustrated in Figure 3a. This example shows the kind of

complexity ROUTER can handle. There were eight nets to be

routed. Nets 7 and 8 had the most pins (5), and nets 1, 2,

3, 4 and 5 each had four pins. Net 6 had only three pins.

Of all these nets, only nets 4 and 5 passed the preliminary

test. However, they failed the similarity test. After net

7 was routed, net 8 was-preprocessed. ROUTER found that a Z

wire from net 7 was on a likely path (~igure 32a). That

wire was moved as illustrated in Figure 32b. Then net 8 was

routed and followed by net 1. In routing net 2 (~igure

33a), a type 2 defect was found and was resolved as in

Figure 33b. Nothing of particular interest happened when

net 3 was routed. When routing net 4, a type 2 defect was

found. (See Figure 34a.) However, this defect could not be

resolved. The finished IC is shown in Figure 35a. The

total wire length was 680 units and the total number of vias

used was 53. A finished IC produced by an ordinary Lee's

algorithm is illustrated in Figure 35b for comparison.

(Note that the routing order is the same in both cases.) In

this case, the total wire length was 692 units and the total

number of vias was 55.

4.5 Eye Movement Protocols -
It is an interesting experience to study how the retina

focuses on the different parts of the diagram in order to

solve a problem. In many instances, ROUTER has to determine

if laying a wire on a track will violate the routing

constraints. As illustrated in Figure 36, point 2 is

supposed to connect to point 2'. Assume that the retina is

first fixated at point A. Since the retina does not see any

Figure 32

A Z wire was found when net 8 was preprocessed.
moved down 1 track.

Wire bc

.-

Figure 33

A type 2 defect was found when net 2 was routed. abcd is a Z
wire. The dotted wire which joined the Z wire abcd made it
a type-2 defect.

Figure 34

A type 2 defec t was found when net 4 was routed. Wire bc
should move down 4 t rack. B u t i t could not s ince i t was
blocked by rectangle I V . abcd i s the Z wire when wire ef i s
joined t o it.

Figure 35

Finished ICs. (a) By ROUTER. (b) By ordinary Lee's

algorithm

Figure 36

Eye movement of a linear scanning process

constraint violations, ROUTER asks the periphery if any

violations occur. With its limited resolution, bubble Pw-r

detects a possible violation-- the tentative wire may cross

a via. Upon receiving the alarm, ROUTER directs the retina

to fixate at point B so that the fovea can decide if the

alarm should be honoured. Of course the tentative wire does

not cross the via and the fovea can also tell that via 1'

does not pose any problem. This process repeats until

either no alarm is generated (which means the tentative wire

does not violate the routing constraint) or wire 2-2' should

not be laid.

Another example is illustrated in Figure 37. This time

ROUTER is to find all the vias that lie on the likely paths.

Figure 37

Eye movement protocol of the process of picking points of

interest

Assume the retina is first fixated at point A where the

fovea detects no violation. Then ROUTER asks the periphery

if any violations occur. In this case, four peripheral

bubbles detect vias near the likely paths. The position of

the bubble that is closest to the fovea becomes the next

fixation point. ROUTER finds that vias 1 and 1' both lie on

the likely paths. Two bubbles in the periphery have

detected possible via candidates and the retina is moved to

focus on point C. This time the fovea can see that vias 2

and 2' do not lie on the likely paths.

The advantage of the two processes is that there is no

need to search each cell in sequence in order to pick up

points of interest. This advantage is more prominent in the

second example where a few fixations can replace a search

through the whole area.

The eye movements in the first example seem to be

analogous to the scanning process of a human being while the

second example appears to be similar to the process of

picking points of interest.

4.6 How colour can be applied to hiqhlight areas of interest
-7 -- - --

There are many situations where special colours are

needed in order to facilitate problem solving. For example,

ROUTER may want to know if a specific track is free. The

first thing ROUTER does is to paint some colour on that

track in order to highlight it. But the time taken to

sequentially paint each pixel on that track is equivalent to

sequentially checking if each section of the track is free.

So it seems that colouring the diagram may be a waste of

time. However, there is another way to colour a diagram by

using the parallel processing retina. This is how it works:

The retinal supervisor broadcasts the area (by means of

range) where it should be highlighted. Since each bubble

can calculate its current location on the diagram, it will

also be able to test if it is actually looking at the area

specified by the supervisor. Therefore, those bubbles that

are looking at the area of interest will mark in their

memory cells the special colour assigned by the retinal

supervisor for highlighting purposes. Remember, all the

calculations needed here are done in parallel. This method

of "seeing things1' is much faster than sequentially painting

each pixel of interest.

4.7 Lanquages used -
The languages used in ROUTER'S implementation were

FRANZ LISP and C. In the early phases of the project, FRANZ

LISP was mainly used because of its interactive environment.

As the project progressed, more and more functions were

written in C. Although programs written in FRANZ LISP can

be compiled, they are still inefficient compared to the same

versions written in C. In particular, programs that were

executed by the retina were mostly written in C for

efficiency.

4.8 Complexity Analysis -
The task of estimating the complexity of ROUTER'S

algorithms is complicated by the amount of pins and blocks a

chip has. So only rough estimates will be given in this

section. For the purpose of analysis, one addition is

assumed to consume one unit u of cpu time. One

multiplication/division takes IOU. Time taken to pass one

byte of information from one to ones neighbour is assumed to

be m mits. Also we will assume the retina has a fixed

number of rings r and a

is assumed to have the

fixed.number of wedges w. The fovea

same structure as the periphery.

Fixation will take f'units to

4.8.1 Scalinq

On average, messages w

complete.

ill need to be passed r/2 t

for a scaling. Therefore, the cost for scaling is

mr/2 u

imes

4.8.2 Rotation

Most rotations of the retinal image are by 90 degrees.

Then the cost for rotation is

mw/4 u

4.8.3 Similarity

Two fixations are required for a similarity test (2f).

To find a scaling factor we need approximately 2p additions

(p stands for the number of pins in a net) and 3 divisions:

2p + 30 u

One scaling process is needed (mr/2). Three 90 degree

rotations are required (3*(mw/4)). Assuming each bubble

will only compare to its previous memory content and to its

8 nearest neighbours' contents, then the cost for comparison

in parallel is

where c units of time is taken for each comparison. Now if

20% out of rw bubbles report a match, then the cost of

passing messages to the retinal supervisor is

rw * 0.2m u
The retinal supervisor also needs time to calculate a score

which takes

rw * 0.2 u

Therefore, the approximate cost of comparing net-a to net-b

is

2f + 2p + 30 + mr/2 + 3mw/4 + 4(9c + 0.2rw(l+m))

Note that all the terms here can be regarded as constants

except 2p. Therefore, the operation of similarity test is

linear in the number of pins in the net.

4.8.4 Preprocessing

Let v be the number of vias already placed on a chip.

So in the worst case, we need v fixations to discover if

they lie on the likely paths of a net. However, using the

method of picking points of interest, only a small

percentage of vias will be picked up as if they are near the ,

likely paths. Assuming on the average only 20% of vias are

close to the likely paths, then the cost would become 0 . 2 ~

u. if those vias cluster together, then additional saving

will be achieved since one fixation may pick up a few of

those vias.

4.8.5 Identifyinq - - Z wires

The retina could theoretically be used to identify Z

wires. However, for simplicity, ROUTER uses .a very simple

method to recognize Z wires.

4.8.6 Lee's alqorithm --
The complexity analysis of Lee's algorithm and some of

its variations can be found in Rubin's paper (Rubin (i974)).

4.8.7 Track-checker

As can be seen in the section on "Eye Movement

Protocol," there is no need to sequentially search each

pixel to see if it is already occupied. The number of

fixations needed depends on the number of wires that cross

the track and the number of vias that are near it. If the

track of interest is k units long, then in the worst case,

we need k/R fixations in order to scan the track. (R

denotes the radius of the fovea.) Of course, the best case

would be just one fixation.

5 . Conclusion

ROUTER'S success in problem solving depends on its abilities

in extracting and interpreting information from diagrams.

In particular, information that is visually obvious such as

similarity, the Z wires, and the two defect types has been

exploited. This thesis has shown that visually represented

information is a suitable interface for a computeg system

equipped with a retina-like input device and some kind of

redrawing mechanism.

The redrawing mechanism of the HLR is one of the

important aspects of ROUTER that makes hypothesis testing

possible. It allows wires to be drawn and later erased from

the diagram. Without this capability, it would be very

difficult to move wires around. The redrawing mechanism is

analogous to human use of pencil, eraser and paper.

ROUTER'S fovea has provided a solution to the

singularity problem on the retina-like structure devices.

It allows the whole retina (fovea and periphery) to work in

unison. Scaling and rotation can be done by simply passing

information between neighbours. The periphery can work as a

global detector while the fovea can resolve any ambiguities

that exist.

5.1 Future Research Direction -

5.1.1 Construction -- of the parallel processing retina

The ultimate research effort is to build a prototype of

the parallel processing retina. But before such a prototype

can be built, many hardware design problems must first be

worked out. In particular, problems concerning the actual

representation of the diagram and the mechanism of filling

the retina must be solved. Yet to be determined is the

optimum number of bubbles needed in the retina. Problems

concerning communication protocols and the message passing

mechanism between the processors also need to be worked out

in great detail.

5.1.2 A Harder Problem --
It is not uncommon to see an automatic wire router get

stuck and request help from a person. Usually, that person

will look at the layout diagram representing the current

state of the routing phase and will tell the router how to

get around the problem. To use ROUTER to automate this

phase successfully may prove to be a real challenge.

ROUTER is still at its infancy in solving automatic

wire routing problems. To build a robust wire routing

system based on ROUTER, we need to incorporate rip-up and

reroute techniques, and be able to route wires on less

congested areas. Nonetheless, ROUTER has demonstrated that

a computer can use diagrams effectively in solving a

non-trivial problem, and that WHISPER'S model is a

particularly good approach to diagrammatic representation of

information.

References

Akers, Sheldon B. (1972). "Routing," in : M. Breuer

Cliffs, 1972)~ pp. 283-333.

Braccini, C., G. Gambardella, G. Sandini and V. ~agliasco
(1981). "Borrowing from the eyes to create robot vision
algorithms," Sensor - Rev. (GB), Vol. 1 (1981)~ No. 2,
Pp. 68-72.

Chaikin, George M. (1981).. "DRAWING MACHINES," Jolla
Institute Conference Proceedinqs 1981 Advanced Computer
Concepts, pp. 57-65.

Ciesielski, M. J. and E. Kinnen (1982). "AN ANALYTICAL
METHOD FOR COMPACTING ROUTING AREA IN INTEGRATED
CIRCUITS," 19th ~esign Automation Conference (1982)~
pp.30-37.

Davis, Philip J. (1974). "VISUAL GEOMETRY, COMPUTER
GRAPHICS AND THEOREMS OF PERCEIVED TYPE," Proceedings of
Symposia - in Applied ~athematics, 20(1974), pp. 113-127.

Dees, William A. and Patrick G. Karger (1982). "AUTOMATED
RIP-UP AND REROUTE TECHNIQUES," 19th Design ~utomation
Conference (1982)~ pp. 432-439.

Dees, W., K. Parmar, A. Goyal, R. Tsui, B. ath hi, and R.
Smith, I1 (1981). "A computer-aided VLSI layout
system, " AFIPS Conference ~rbceedin~s 198 1 ~ational
Computer Conference (Vol. 501, pp. 11-18.

Eastman, Charles M. (1973). "Automated Space Planning,"
Artificial Intelligence, 4(1973), pp. 41-64.

Eastman, Charles M. (1970). "Representations for Space
Planning," Communications --- of the ACM, 13, No. 4 (1970)~
pp. 242-250.

Funt, Brian V. (1976). "A Computer Implementation Using
Analogues in Reasoning," Tech. Report 76-9, Department
of Computer Science, University of British Columbia
(1976).

Funt, Brian V. (1980). "Problem Solving with ~iagrammatic
~epresentation," Artificial Intelliqence, 13 (1980)~ pp.
201-230.

Garey, Michael R. and David S. Johnson (1979). Computers,
Complexity, Intractability: ---- A Guide to the Theory of

NP-Completeness, athe he ma tical Sciences Ser.), 1979, W H
Freeman

Garey, Michael R. and David S. Johnson (1977). "The
Rectilinear Steiner Tree Problem is NP-Complete," SIAM
J. Appl. Math., 32, 1977, pp. 826-834. -

Gelernter, H. (1963). "Realizat-ion of a Geometry-Theorem
Proving Machine," in : E. A. Feigenbaum and J.
~eldmah (Eds. 1, computer and Thouqht, (~c~raw- ill, New
York, 1963) pp. 134-152.

Hashimoto, Akihiro and James Stevens (1971). "Wire outing
by Optimizing Channel Assignment Within Large Aperture,"
8th D. A. Conference (1971)~ pp. 155-169.

Heinisch, J. (1981). "Aiming at a General Routing
Strategy," 18th Design Automation Conference, (1981)~
pp. 668-675.

Lee, C. Y. (1961). "An Algorithm for Path Connections and
Its Applications," IRE Trans. on Electronic Computers,
Vol. EC-10, No. 3 (~*1961),E. 346-365.

Preas, B. T. and W. M. vancleemput (1979). "Placement
Algorithm for ~rbitrarily Shaped Blocks," Design
Automation Conference, 1979, pp. 474-480.

Pylyshyn, Zenon W. (1976). " IMAGERY AND ART1 FI CIAL - - INTELLIGENCE, " Research Bulletin -- No. 376, University of
Western Ontario (1976).

Pylyshyn, Zenon W. (1975). "Representation of Knowledge:
Non-Linquistic Forms-- Do We Need Imaqes and Analogues?" .
~heoret ical Issues - in Natural ~anquage ~rocessinq; Ed.
R. Schank and B. L. Nash-Webber. Conference
Proceedings Cambridge, Mass., June 10-13, 1975, pp.
174-177.

Rubin, Frank (1974). "The Lee Path connection ~lgorithm,"
IEEE Transactions - on Computer, 23, No. 9 (1974)~ pp.
907-914.

Sandini, Giulio and Vincenzo Tagliasco (1980). "An
Anthropomorphic Ret ina-like Structure for Scene
Analysis," Computer Graphics - and Imaqe Processinq, 14
(1980)~ pp. 365-372.

Schenker, P. S., E. G. Cande, K. M. Wong, and W. R.
Patterson I11 (1981). "NEW SEYSOR GEOMETRIES FOR IMAGE
PROCESSING: COMPUTER VISION IN THE POLAR EXPONENTIAL
GRID," Proceedings of --- the 1981 IEEE International
Conference on ~coustics, Speech - and Signal Processing,
pp. 1144-1148.

Strothotte, Thomas (1981). FAST RASTER GRAPHICS USING
PARALLEL PROCESSING, Burnaby, B. C.: Simon Fraser
University, M. Sc. Thesis, 1981.

Supowit, Kenneth J. (1982). "A Minimum-Impact Routing
Algorithm," 19th Design Automation Conference (1982),
pp. 104-112.

Sussman, Gerald Jay and Richard Matthew Stallman (1975).
"Heuristic Techniques in Computer--Aided Circuit
Analysis," IEEE Transactions on Circuits and Systems,
November (1975)~ Pp. 857-865.

Sussman, Gerald Jay and Richard Matthew Stallman (1977).
"Forward Reasoning and Dependency-Directed Backtracking
in a System for Computer-Aided Circuit Analysis,"
Artificial ~ntelligence, 9, No. 2(1977), Pp. 135-196.

Sussman. Gerald Jav (1977). "ELECTRICAL DESIGN -- A PROBLEM
FOR'ARTIFICIAL*INTELLIGENCE RESEARCH," 5th International
Joint Conference on Artificial Intelliqence, Aug. 22-25
(1 9 7 7 1 , Pp. 894-900.

The Editors of 73 Magazine (1982). - THE GIANT BOOK OF
ELECTRONICS PROJECTS, TAB BOOK Inc., 1982.

Weiman, Carl and George Chaikin (1977). "LOGARITHMIC SPIRAL
GRIDS FOR IMAGE PROCESSING AND DISPLAY," Tech. Report
77-3, OLD DOMINION UNIVERSITY (1977).

