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ABSTRACT

A weakly minimal structure is one in which any non-algebraic strong
type has a unique non-algebraic extension over any set. If p is a
non-algebraic strong type in a saturéted weakly minimal structure M,
and aEb if and only if a and b are algebraic in each othef, we
can give p(M)/E the structure inherited from M. We suppose:
(*) In the structure p(M)/E the algebraic closure operation is

non-trivial, but the algebraic closure of a finite set is finite.

Many known examples of weakly minimal theories have strong types
satisfying (*). We find in this case that there is an almost 0-definable
equivalence relation © and formula ¢(x) € p such that ¢(M)/6 has
formulas giving it the structure of either an affine or projective space
over a finite field. We dgtermine exactly what further structure is

possible on ¢ (M)/6.

If we further assume that M has no two orthogonal types, we find

6 as above and get a global structure theorem for M/8.

(1i1)
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INTRCDUCTION

In [Mo], Morley proved Ko§'s conjecture that a countable theory
T categorical in one uncountable cardinal is categorical in every
uncountable cardinal. Shelah, in [Sh, 1], generalized this to
uncountable T, proving that if T is categorical in some « > T,
it is categorical in every « > |T|. To do this he invented the notion
of weakly minimal sets. In retrospect, the study of weakly minimal sets
is quite natural, as they are precisely the superstable structures of
U-rank 1. U-rank is due to Lascar [Las]. Here we investigate a subclass

of the class of weakly minimal sets.

Strongly minimal sets, a special case of weakly minimal sets, were
investigated earlier than general weakly minimal sets first by Marsh [Mar],
and later by Baldwin and Lachlan [BL]. 1In the latter, strongly minimal
sets are used to show that a c0unfab1e N —categoricél theory has either

1
one or NO countable models up to isomorphism. Even more special are the
strictly minimal sets whi;h in the No—categorical case have been
classified by Zil'ber [Z1, Z2] and Cherlin [CHL] as affine or projective
spaces over finite fields, or disintegrated sets. Strictly minimal sets

are widely used in [CHL] to study N.-categorical, N_ -stable structures.

0 0
The weakly minimal sets studied here have a strong resemblance to

No-categorical strictly minimal sets.

General weakly minimal sets have been investigated by Andler [A],
and rather more recently and deeply by Buechler [Bu 1-8]. Buechler has
considered and exploited the geometrical nature of these sets — if we
take as points the algebr;ic closures of singletons, the algebraic closure

operation naturally yields a geometry on any weakly minimal set. Usually



this geometry is restricted to the collection of realizations of some
strong type. Here we concern ourselves with weakly minimal sets M
such that there is a non-algebraic strong type p such that:

(*) For any N >~M and finite F C p(N) there is a finite G < p(N)

such that acl(F) N p(N) = U acf{g} N p(N).
. g€G

That is, the geometry described above is locally finite. Equivalently,
the geometry is either disintegrated or an affine or projective space

over a finite field. See 3.4(1).

Perhaps Buechler's crucial result is that if p(N) is as above,
either p has Morley rank 1 or is locally modular. Local modularity
means that for any closed X and Y with XN Y # ¢,

dim(X U Y) + dim(X N Y) = dim(X) + dim(Y). This gives, between any two
non-orthogonal strong types, an algebraic relation after naming at most

one element realizing each.

The following comes essentially from [Bu 7]: Suppose M is weakly
minimal and locally modular, Th(M) contains only countably many k-types
over ¢ for each k € w, and p 1is a strong type such that p(M) is
not contained in a strongly minimal set. Then p satisfies (*). So if

we have the above hypotheses, the work that follows here applies.

Work of Hrushovski [Hr] also has a direct bearing on weakly minimal
sets. While.his work is not in final form, at the time of writing it
seems safe to say that his resuits imply the following:

Suppose M is\saturated, weakly minimal, uni-dimensional, Th(M) is
countable but M 1is not N, -stable. Then tﬁere is a strong type p and

0

E, an almost 0-definable equivalence relation with finite classes, such



that p(M)/E has an almost O-definable abelian group structure. As in
Section 6 of this paper, the group structure exists on ¢(M)/E for
some @(x) € p. The result of the present paper can be seen as a special

case of this, although in our case we get more specific information.

The importance of weakly minimal sets in the study of
uni-dimensional superstable theories is indicated by the following theoreﬁ
of Buechler :

If M is an LMFR structure, {a} UACSM and a £ acf(A), then for
some N>M and c € N°9, U(c/A) =1 and c ¢ acl(Aa).

An IMFR structure has every weakly minimal type locally modular (LM),
and every type of finite U-rank (FR). Neq is a structure canonically
associated with N having names for definable subsets. Every non-

R0

is similar to the Coordinatization Theorem of [CHL], which gives

-stable, superstable, uni-dimensional structure is LMFR. This result

considerable information about No—categorical, No-stable structures.

The naturalness and amenability to study of superstable
uni-dimensional structures, at least those without the omitting types
order property, is indicated by the following consequence of Shelah's
general classification machinery:

For a complete theory T, there is a cardinal x such that in any
cardinal X T has <k non-isomorphic models of size X\ iff T is
superstable, uni-dimensional and has NOTOP. For countable such T, the

minimum such x is either 1 or 12,

The standard example of a uni-dimensional, weakly minimal, non-

Nomstable structure is the following, due essentially to Morley:



M = (F(n)w; +, *a, P : k € w, o € F(n)).

k,o
Here F(n) is the finite field of n elements, (F(n)w; +, *0: o € F(n))
is a vector space over F(n) with operations defined pointwise, and

P oM iff n() =a for m¢ F(m)®. If N> M is saturated and p
is a non-algebraic strong type over ¢, p(N) is an affine or projective
space over F(n). Also, the algebraic closure of a finite set is finite. .
This is naturally lost if infinitely many points of N are named, but

our condition (*) remains. We will find.that in some sense this is the

only example of a weakly minimal, uni-dimensional theory with a strong

type satisfying (*).

Another example of a weakly minimal, uni-dimensional, non-NO—stable
structure is (Z,+), the integers as an abelian group. Andler credits
recognition of this example to Harnik. If N 1is a safurated elementary
extension of (Z,+) and p ‘is a strong type, p(N) 1is an affine or
projective space over the rationals. A third example, due to Hrushovéky,

is somewhat similar to Morley's except that in a strong type there is an

affine or projective space over U F(pk), where p 1is some prime. This
kew

example seems somehow intermediate to the previous two.



SECTION 1

PRELIMINARIES AND NOTATION

In this section we will define the basic notions and fix notation
for the rest of the paper. Much of the section is devoted to a
description of affine and projective spaces over finite fields. While
these are well-understood, the usual description of them is as two—sorted‘

structures, and we want a one-sorted description.

We will assume the reader has some familiarity with stability
theory, although little of the deep theory will in fact be used here.
Indeed, except for quoting the Classification Theorem for No—categorical
strictly minimal sets in section 3, most of the proofs will use nothing

deeper than the Compactness Theorem.

We will require from stability theory the notions of strong type,
algebraic closﬁre, Meq’ and of course weak minimality. We will dendte
models as well as their underlying sets by M or N with various
decorations, and in one case by K. Aut(M) denotes the group of

automorphisms of M. Our structures will always be infinite.

M*%  is the structure obtained from M by adjoining, for each
k € ® and each 0-definable equivalence relation- E on Mk, a point
for each class of Mk/E. Im M9 e have, for each k € w and E as
above, a 0-definable function taking (al,.,.,ak) to (al,...ak)/E for
Apseeesdy € M. For further details see [Sh,2] or [Ma]. Much of our

notation comes from the latter.

We write ¢(M,a) for the set of realizations in M of a formula

¢(x,a). Similarly p(M) if p is a collection of formulas. |M| is the



cardinality of M,

Suppose A € M; a type over A 1is algebraic if it is realized by
only finitely many elements in any N » M. acf(A), the algebraic
closure of A, 1is the set of realizafions of all algebraic types over
A — acf(A) will usually be taken in M®4. A strong type over ‘A is a
complete type over acf(A) taken in M4, The term "strong type'" will
refer to a nonjalgebraic strong l-type over ¢ unless otherwise

indicated. If a,b realize the same type (strong type) over C, we

will write a = b(C) (a = °b(C)). Often we will ignore the distinction
between sets, sequences and singletons, writing such things as a = Sb(c)
and a € acf(c). An equivalent definition of a = SB(C) is that for

every C-definable equivalence relation E with finitely many classes,

E(a,b).

Definition 1.1: (1) A structure M is weakly minimal if for any

N7M,a,b€N and CCS N with a =5b and a,b £ acf(C), we have

a =°b(C).

(2) M is strongly minimal if it is weakly minimal and for any N > M and

a,b € NNacl(9), a =5p.

(3) M is strictly minimal if it is strongly minimal, Aut(M) is

transitive on M, and for each a € M, acf{a} N M = {a}.

Remark: Weak minimality is equivalent to being superstable and
of U-rank 1. Strong minimality is equivalent to being superstable and

of U-rank and multiplicity 1.

Proposition 1.2: M is weakly minimal if and only if the following

holds:



For any formula ¢(x,y) without parameters there are unary

Q;(x),...,eg(x) with parameters from acf(¢) taken in Meq’ such that

o

'e;(M),.,.,e(p(M) partition M and such that:

For all N»M, a ¢ N°? and 1 <i <k, either 6$(N) N ¢(N,a) -or

ei(‘N)w(N,a) is finite.

Proof: (<=) Suppose the condition holds, N >M, a,beN, C SN
and a =°b but a,b £ acl(C). Suppose N | ¢(a,c) where ¢ ¢ acl(C).
Choose 6; ,...,eg as given by the condition and suppose N = qi(a).
Since a £ acl(c), ei(N) N ¢(N,c) 1is infinite, so ei(N)\ 8(N,c) is
finite. Since b £ acf(c) and N |= qi(b), N | ¢(b,c). Since ¢ was
arbitrary, a Esb(C), and since a,b,C and N were arbitrary, M is
weakly minimal.

(=>) Suppose M is weakly minimal and let ¢(x,y) be a formula without
parameters, and N # M be saturated. For any strong type p and
a S_Neq,either p(N) N o(N,a) or p(N)\~¢(N,5)V is a subset of acf(a)
by the weak minimality, and hence finite by the saturation. So we can
find by compactness © - € p such that 6¢’p’5(N) N ¢(N,a) or

¢,p,2a

e¢ D 5(N)‘\ ¢(N,a) is finite. Again using the saturation, for each P
3 3

the following collection of formulas is inconsistent:
>m - >m = = €q
- - . C
{3 X(9¢,p’aCX) A o(x,y)) A3 X(9¢,p’a(X) ATe(x,y)): m € w, a N}
Here 32mx abbreviates 'there are at least m x's".

Using compactness we find a finite subset of the above set

o . i i =!
inconsistent. Let 6¢,p(x) € p be the conjunction of the Q$,p,a [

occurring in this subset. For any a EﬁNeq we have either



e¢ p(N) N ¢(N,a) or qp p(N)\\w(N,é) finite. By compactness, we can

choose a finite set of e¢ p's covering N and then appropriate Boolean

combinations of these yield the required Q;'s. As N 1is saturated,

the proof is complete.

Remarks: (1) Full saturation of N is not really needed‘in the
above proof, but it is direct from weak minimality that in any cardinal
KZZITh(M)|,|M| there is N ~ M saturated of size K.

(2) From this characterization it is clear that if M 1is weakly minimal
and o¢(x,y) is an M-formula, we cannot find {éi: i € o} with each
¢(M,5i) infinite and ¢(M,ii) n w(M,éj) =¢ for i#3j € w.

(3) The original definition of weak minimality is similar to the above
condition, except that the qi's were allowed parameters f?oﬁ M. That
4 tﬁis is equivalent to the above condition follows from a npfmalization
argument. ‘

(4) We will use the condition of this proposition without mention at

various points of the paper.

On a weakly minimal structure, the algebraic closure operation
has the following nice geometric properties, of which only exchange
requires weak minimality:
(1)» A € acf(A);
(2) (transitivity) If a € acf(B) and B < acf(C), then a € acf(C);
(3) (monotonicity) If A C B, acf(A) ¢ acf(B); |
4 (finite basis) If a € acf(A), there is finite B € A such that
a € acl(B);
(5) (exchange, a.k.a. forking symmetry) If a ¢ acf(A U {b})\ acl(A),

then b € acf(A U {a}).



We will sometimes write a J/ b for a € acf(A U {b})\ acl(A)
A

and a | b for the negation. The ahove properties allow us to
A

meaningfully introduce the notion of independent sets — A € M is
independent if for no a € A is a € acf(A\{a}) — and of basis,

spanning set and well-defined dimension.

We now consider a general method of obtaining other structures

from a given one.

Definition 1.3: If M is a structure, A<M and E is an

equivalence relation on A, the structure induced hxlformulas (of M) on

A/E 1is the structure with universe A/E and, for each formula
w(xl"'°xk) of M without parameters, a predicate Pw.

A/E = Pw(al/E,,..,ak/E), where a € A, if and only if there

1,...,ak

are a; € A with a’{Eai for 1 <=i<k and M ]= 1b(a*,...,a§).

Remarks: (1) If the terminology 'structure induced by formulas"
is used and no E 1is mentioned, it is assumed to be the identity.
(2) 1f both A and E are definable, this construction is harmless.

More interesting uses come when at least one is not definable.

In fact, the first thing done in Section 3 is to apply the above
where A = p(M), for some strong type p, and aEb if and only if
a € acf{b}. 1In addition to assuming M is weakly minimal, we will be
assuming that p satisfies the following:
(* For any N> M and G C p(N) finite, there is H ¢ p(N) finite

such that acf(G) N p(N) = U acl{hl N p(Nj.
heH



10.

Any type we subject to scrutiny will in fact be assumed to
satisfy (*). When we take the structure induced by formulas on p(M)/E
we find we have an No—categorical strictly minimal structure, which

brings us to:

Theorem 1.4 (The Classification Theorem for X _-categorical

0
Strictly Minimal Sets): If M is an No-categorical strictly minimal
structure, then (M,acf), where acf is the algebraic closure operation,
is isomorphic to one of the following:

(1) The degenerate geometry on M;

(2) An affine geometry of infinite dimension over a finite field;

(3) A projective geometry over a finite field.
This is Theorem 2.1 of [CHL].

Here the degenerate geométry has acf(A) = A for any A CM;
in this case M effectively cannot have any structure at all. We will

rarely consider this case.

The isomorphism here is a geometric one; if (M,acf) is isomorphic
to an affine geometry we mean there is an affine structure on the set M
and for any A €M, acf(A) = <A> where the latter notation means the

affine closure of A, Similarly in the projective case.

Definition 1.5: (1) An affine structure over F(n), where F(n)

is the finite field of n elements, is a structure M with a ternary
predicate R and a 4-ary predicate Q satisfying the following axioms:
#¥0  R(&x,x,y) =y =x

In
ﬂ 3x9y3 ZR(X,}’»Z)

!
(Here 3°™z abbreviates "there are exactly n z'".)
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#2 R(x,y,x)

#3 R(x,y,z) = R(y,x,z)

#4 R(x,y,2) A R(X,y,w) AXx # z—> R(X,z,w)

#5 AMwQ(x,y,z,w)

#6  Qx,y,x,y)

#7  Qx,y,z,w) = Q(x,z,y,w) A Qly,x,w,z)

#8 Q(x,y,z,w) A R(x,y,u) A Q(x,z,u;v) -> R(z,w,V)

#9 Q(x,y,z,x) = R(x,y,z)

#10  Q(x,y,z,w) A Q(x,y,u,v) => Q(z,w,u,v)

#11  Q(x,y,z,w) A R(x,y,u) Au # x = 3v[R(u,z,v) A R(y,w,v)]

(2) A projective structure over F(n) 1is a structure M with a ternary

predicate S satisfying the following axioms:
#0 S(x,x,y) =y =x

#1 3x,y3 "las(x,y,2)

#2 S(x,y,x)

#3 S(x,y,Z) —> S(y,x,z)

#4 S(x,y,2z) A S(X,y,w) Ax #z—> S(x,z,w)

#5 S(x,y,z) A S(x,u,v) and x,y,z,u,v distinct

— w(S(y,u,w) A S(z,v,w)).

Remark: 1In the above definitions, we make no restrictions on what

other structure M may have.

We shall.justify that these axioms give the usual notions of affine,
respectively projective, space in an appendix. For now we content
ourselves with describing what they mean. -R(a,b,c) and S(a,b,c) should
both be_read "a,b and c¢ are on the same line". Q(a,b,c,d) is best

read as "b plus c¢ equals d, with a as zero'"; in fact when we have
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an affine structure we will often write b + a® = d for Q(a,b,c,d).
Any structure M with a 4-ary Q satisfying #'s 5,6,7 and 10 has an
abelian group structure on it; pick any a € M and let b + ¢ =d iff
Q(a,b,c,d) as above. #'s 5,6,7 and 10 imply that this gives an abelian

group operation with a as zero. Similarly, we will sometimes write

"¢ = ab + (1-a)a for some a € F(n)" instead of R(a,b,c) or just

"ec = gb" if a is taken as zero, since there is little difference
between an affine and a vector space over F(n). Abusing terminology,
we will call the structure with universe M and predicate Q an

abelian group.

Geometrically, for a,b,c not collinear, Q(a,b,c,d) means d

"completes the parallelogram':

b po d

-

e

Q

Here ab||cd and ac||bd .

Axiom #1 says that some line has exactly n, respectively n+l, points
in the affine, respectively projective, case. What #'s 2 and 3 say is
obvious. #4 says that a line is determined by any two distinct points

on it.

In the projective case, #5 says that no two lines are parallel —
if a,b,c and d are in the same plane in the sense that there is e
with S(a,b,e) and S(e,c,d) then the line through a and c¢ meets

the line through b and d.



Diagram: e

C

13.

In the affine case, what #'s 5 and 6 say is clear. #7's meaning is clear

from the diagram

.
—

W

#8 is also best understood by a

M

Diagram:

O

fl

>
LE\

7u=0\3
#8 can also be understood as saying z + ay = a(z+y) + (l-a)z.

#9 says that y,-y and zero are collinear.

#10 can be understood as saying (with x as zero) that

y*z=Ww A y+usv —> z+v=w+u, or that if Xxy||zw, xy||uv, xz||yw and

Xu| |7V, then Zw||@ and Zu||w.

Diagram: ‘ w

Y eV

AR
AR )
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#11 is again best understood by a

Diagram: z W= \j Y&

O =X

#11 can also be understood algebraically as saying

u=d3

o loy) + (1-a™hz = aly + (1m0l (ye2).

Where we have an affine or projective structure, we will feel free
to use any theorems true about them. For more details, the reader is

referred to such combinatorial works as [Hir] and [Ha].

For A €M, <A> is the closure under Q and R of A if M is
an affine space, <A> is the closure under S if M 1is projective.

We will use the following frequently:

Proposition 1.6: (1) If M is an affine structure, and C # ¢,

then a € <{b} U C> if and only if either there is c¢ € <C> with
R(c,b,a) or there are d,c € <C> with Q(d,c,b,a), for any a,b,C in
(2) If M is a projective structure, and C # ¢, a € <{b} UC> if and

only if there is ¢ € <C> such that S(c,b,a).

Proof: (1) Pick any point in C and label it 0. Then
<{b} UC> ={ab + c: o € F(n) and c € <C>}. Let a € <{b} UC>; find
o € F(n) and c¢ € <C> with a =oab + ¢c. If a=1, Q(0,c,b,a). If
afl, a = ab + (l-a)(l—a)_lc and (1—a)'1c € C. In the second case,

R(b,(l-a)—lc,a). The converse is clear.



15,

(2) If c € <C> and S(c,b,a), certainly a € <{b} UC>. For the
converse, we show that {a: dc € <C>S(b,c,a)} 1is closed under S, which
suffices. 8o suppose c,d € <C>, S(b,c,a) A S(b,d,e) A S(a,e,f).

We assume a,b,c,d and e are distinct; the other cases are similar.
Find, by #5 of 1.5(2), g such that S(c,d,g) A S(a,e,g). Then

g € <C>, and #3 gives S(a,g,f). Now S(a,f,g) A S(a,b,c) give,

by #5, h with S(f,b,h) A S(c,g,h). So h € <C> and S(h,b,f).

Diagram:

Remarks: (1) We can prove (1) above directly from #'s 0 to 11 of
1.5(1) as we did (2) above, but there would be several cases to check.
(2) In the above proof, and throughout the papér, if P(x) is an

M-formula, a €M and M is understood, we write just Y(a) for

M v().

As is well known, the field underlying an affine or projective space
can be canonically identified from the space. Suppose M is an affine
spacé, a,b,a*,b* € M with <a,b,a*,b*> of dimension 4 and R(a,b,c).
Pick d £ <a,b,a*,b*> and then e and f with Q(a,b,d,e) A Q(a,c,d,f).
Then pick e* with Q(a*,b*,d,e*) and then f* with R(d,e*,f*) and
the line through e and e* parallel to the line through f and f*;

then choose c¢* with Q(d,a*,f*,c*).
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Diagram:

We will have R(a*,b*,c*) and c* uniquely determined by a,b,c,a* and
b* — the choice of d 1is irrelevant. The above construction gives an
equivalence relation & on triples (a,b,c) with R(a,b,c) A a # b.

It has n classes, and is O-definable.

Notation 1.7: (1) The equivalence classes of the 6 just described

will be called the field elements. They will be in -acf(¢) taken in M,
(2) There is a similar equivalence relation on 4-tuples (a,b,c,d) with
a,b,c distinct and S(a,b,c) A S(a,b,d) in a projective space. The

classes will again be called the field elements.

Given a projective space M and any A €M, there is a natural

equivalence relation on M\<A> called the localization of M at A

and denoted ix'Aa We have, for a,b € M\<A>, a = Ab iff S{a,c,b)

for some c € <A>. S naturally induces a projective structure on

MN\<A>)/ ~ Each class of x A is an affine space if we set R to

Al
be the restriction of S to the class and let Q(a,b,c,d) iff for some

e,f € <A>, S(a,e,b) A S(c,e,d) and S(a,f,c) A S(b,f,d) on the class.
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Diagram:

WIRL
//\ ] |

G/QA

GH

For any subspace A of M, the = A—classes'will be referred to

as "affine subspaces'" of M, abusing terminology.

Given an affine structure M, there is a canonical way of

deriving a projective structure from it.

Definition 1.8: If M 1is an affine structure over F(n), let

M! = [Mz‘\{(a,a): a € M}]/~ where (a,b) ~ (c,d) 1iff there is e with
R(c,d,e) and Q(a,b,c,e). ~ 1is a O-definable equivalence relation, so
M! E_Meq. Let F: M2‘\{(a,a): a € M} - M' be the projection. M' is

called the projective companion of M, as it is a projective structure

over F(n). We have S((a,b)/”,(a,c)/”,(a,dj/“ﬂ if and only if

d € <a,b,c> in M.

In fact, if M is affine, M UM' is naturally a projective space;

we extend S to M UM' as follows:

For a,b,c € M', S(a,b,c) in M UM' iff S(a,b,c) in M'.
For a,b,c €¢ M, S(a,b,c) iff R(a,b,c). For a,b €M, c € M', S(a,b,c)
iff F(a,b) = c. This essentially takes care of all possible cases. M!'

is a maximal subspace of M' U M.
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There is no canonical way of creating an affine space from a
projective one, but the preceding several paragraphs indicate a non-
canonical way. Suppose M 1is a maximal subspace of the projective space

N. Then N\M consists of a single &, -class, so is an affine space.

M
In the structure (N;M)eq — here (N;M) has a predicate for M —
there is a 0-definable bijection between M and (N\M)'. As this

construction is not canonical, care must be exercised when it is applied

in Section 5.

The notation above will be used later. So (M;A) refers to the
structure M with a predicate for the set A. (M,A) will have constants
for the elements of A — as these are quite similar notationally, we

will remind the reader whenever the former is used.

If p and q are non-algebraic types (or strong types) over

some set A, we say p and q are non-orthogonal if there are

B < p(N), Cc q(N) each independent over A, such that BUC 1is not-

independent over A. We say our structure M is uni-dimensional if for

any two types p and q, p and q are non-orthogonal.
We record the following [CHL, Corollary 2.5]:

O’Hl are 0-definable non-orthogonal

strictly minimal sets in an No-categorical structure M such that each is

Proposition 1.9: If H

either disintegrated or projective over a finite field, there is in M

a 0-definable bijection between them.
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SECTION 2

Qur purpose here is simply to state the results proved in the

present paper and to give an outline of the proofs.

We start with M, a weakly minimal structure, and p, a strong
type satisfying our condition (*) but having non-trivial dependence
relation. The main result here is that there is 6, an almost
0-definable equivalence relation on M with finite classes, and
o(x) € p such that ¢(M)/6 1is an affine or projective structure over a
finite field. That is, either there are almost O-definable predicates
Q and R on oM)/6 satisfying #'s 0 through 11 of 1.5(1), or there is

almost O-definable S on ¢(M)/6 satisfying #'s 0 through 6 of 1.5(2).

Furthermore, we can specify what further structure is possible on

. eq
¢M)/6. For simplicity, assume acﬂM () 1is named. Suppose ¢(M)/6

is affine. Let M1 be the structure with universe o¢(M)/86, predicatés
Q and R and a unary predicate for each 0-definable subspace of

oM)/6. Then for some C S_Meq, (Ml,C) is interdefinable with ¢ M)/®
under the full structure inherited from M. if eM)/6 1is projective,
let M1 have predicates S and a predicate for each 0-definable

subspace X aﬁd each Q:X—class. Recall that a Q:Xb iff S(a,c,b) for
some c¢ € X. Again, thefe is C S_Miq such that o¢M)/6 and (Ml,C)

are interdefinable.

If we make the further assumption that M is uni-dimensional, then
we can find an almost 0O-definable equivalence relation 6 such that we
can give a global structure theorem for M/6. Again assume for simplicity

. eq
that ace™ (¢) 1is named. Then we can find X, (i<ke€w, Y and
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G ¢ M*%  such that:

(1) M/6 is either GU UX, or GUYU UX;
i<k i<k
(ii) Each X; is an affine space with structure as specified for
¢(M)/06 above;
(iii) Y 1is a projective space as specified above;
(iv) For each 1 < k, there is a bijection between Xi and Y;

() G is finite;

{(vi) All of the above is O-definable.

The proof of the above results goes in several steps, which we

now outline.

First, we assume our structure M 1is saturated, and consider the
structure induced by formulas on p(M)/E, where aEb iff a € acf{b}.

(*) on p implies that this is an N -categorical strictly minimal set,

0
and the non-triviality of the dependence relation tells us it is not

disintegrated. By the Classification Theorem for X, -categorical

0
strictly minimal sets, p(M)/E 1is then either an affine or projective
space over a finite field. Next we find M-formulas inducing the affine
or projective structure on p(M)/E. Next we show that p(M) in the
affine case, or p(M) plus some algebraic points in the projective

case, is a strongly minimal set in the structure induced by formulas of

M. This is all done in Section 3.

The next step is to take a transitive strongly minimal set M
such that "M/E (= p(M)/E in the previous paragraph) is an affine
No-categorical strictly minimal set, and show that the affine structure

lifts to M/© where © has finite classes and is almost O-definable;



21.

this is perhaps the most difficult part of the paper. We find predicates
Q and R on M that induce the affine structure on M/E, and after a
little adjustment find that the additive structure 1lifts. Using this,

we show that any definable binary predicate B with B(a,M) and

B(M,a) finite for a € M has a definable transitive closure. We know
that while Q and R may not quite give M an affine structure, they
must be "close'" as they induce the structure on M/E. So on an
appropriate factor M/6 they induce affine structure. This is in

Section 4.

Also in Section 4 we show that M/6 has little other structure.
Specifically, if M/© is strongly minimal and has an affine structure
over a finite field on it which induces the dependence relation, we will
see that éfféctively‘only some points of M/6 or (M/©)' can be namqa.

There's no room for other structure.

The fifth section is devoted to doing much the same thing for the
projective case. We assume M is strongly minimal and if p is the
non-algebraic strong type, p(M)/E 1is a strictly minimal projective
space over a finite field. We find an M-formula S inducing the projective
structure. The basic result here is that there is 8, a 0O-definable
equivalence relation on M with finite classes, and a finite O-definable
set G such that S induces projective structure on M\G)/8. To do
this we find N > M such that N = acf({a} UM) for a € N\M, and’
consider the structure (N;M) with a predicate for M. We find this has
rank 1 and finite multiplicity, and any strongly minimal piece of it
besides M 1is precisely what we started with in the previous section.

So a suitable factor K of it is an affine space, and the relationship S
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gives between K and M implies there is a factor of M (less a

finite set) which is an almost 0-definable bijection with K'. Section 5
concludes with the result that any strongly minimal projective structure
arising as above can have essentially no other structure except possibly
some set of constants named. Again we go through N = acf({a} UM) as

above.

Returning to the situation where our structure M is assumed
weakly rather than strongly minimal, we assume that there is a strong
type p ?;uch that either p(M) carries an affine structure induced by
M-formulas, or that a set P .consisting of p(M) and some algebraic
points carries a projective structure induced by M-formulas. In the
second case P is the projective closure of p(M). We find that for
any X(x) € p there is ¢(x) € p such that the affine or projective
structure extends to ¢(M), and o¢M)\NXA(M) consists of a finite set
of algebraic points. In each case the proof is through a series of
successive approximations. In the affine case, we find ﬁhat the strong
types in ¢(M) are essentially affine subspaces which are translates

of p(M). 1In the projective case, if P is as above, the strong types

are essentially the classes of the relation =~ p-

In the seventh section, we study what further structure is possible
on ¢(M) as in the previous paragraph. Actually we consider the
projective case as the affine case can then be read off by considering
eM) U (p(M))*. We assume then that M .is a weakly minimal projective
structure with a strong type p such that <p(M)> = P 1is a projective
subspace on which we know the complete structure as in Section 5. Section 6

tells us that any point in every definable subspace is in P, and so
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that if a and b are non-algebraic and a = xb for each 0-definable
subspace X 2 P, then a =%b. From this and our knowledge of P, we
‘then find that M can only have structure as specified for ¢(M)/6 at

the beginning of this section.

In Section 8, we first notice that if p and q are non¥orthogona1
strong types in a weakly minimal set and p satisfies (*), so does q.
Using this, we consider the case where M, in addition to being weakly
minimal and having a strong type satisfying (*), is uni-dimensional.
1,...,Zk and 91,... K
such that M\U Z.1 is finite and each zi/ei is like ¢ M)/6 described

-
From the above and compactness we can find 2 ,0

at the beginning of this section. From this, it is largely a matter of

"straightening out'" to get the final result.
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SECTION 3

In this section we get off the ground. We take M, a saturated
weakly minimal structure, and p a strong type on M satisfying our
condition (*). Recall that we mean ‘p is a non-algebraic strong 1-type
over ¢. Then if we factor out the algebraic closure of points‘in pM)
and transfer the structure from M, we find we have an No-categorical
strictly minimal set. We choose formulas on M inducing the structure
" on this factor of p(M) and devote the bulk of the section to showing
-

that p(M) along with a collection of algebraic points is a strongly

minimal set.

To begin, let M be a saturated weakly minimal structure of size
> [Th(M)l and p be a strong type. For a,b € p(M) let aEb if and
only if a € acf{b}; this gives an Aut(M)—invariant equivalence relation
on p(M). We place the following structure on p(M)/E: For each
M-formula w(xl,...,xk) without parameters, we have a predicate
Pw(xl,...,xk) on pM)/E; if a; € pM) (i=1,...,k) let a} = ai/E
and by definition p(M)/E |= P (ai,...,ai) if and only if
M |= 1p(a*,...,ai) for some a;Eai(i=l,...,k). We will use the notation
a' for a/E where a € p(M) from now on; also if a = <al,...,ak>,
a' = <a1/E,...,ak/E>, etc. This is the structure induced by formulas on

p(M)/E.

Proposition 3.1: Any o € Aut(M) fixing p(M) setwise induces an

automorphism of p(M)/E.

Proof: Suppose p(M)/E |= Pw(é') and o € Aut(M). Then for some

a*Ea, M = y(@*). So M |- ¢(a(a*)) and so pM)/E [ Pw(a(é*)').
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Since a(a*)' = a(a'), we are done.

Corollary 3.2 (1) If a=b in M, then a' =b' in p(M)/E
for a,b < pM).

(2) If a £ acl(b) in M, a' ¢ aCKCB') in pM)/E.

Proof: (1) is immediate from 3.1. For (2) we can find
{a;: i< IM[} < p(M) with a. E 2y if i#j such that each a, = a(b)
if a £ acf(b). But then in p(M)/E, al = a'(b') and al # aj if  i#j.

So a' ¢ ael(b').

Until further notice, we assume the following condition on p:
(*) If N=M and F < p(N) is finite, then there is G ¢ p(N) finite

such that acf(F) N p(N) = U{acl{g}: geG} N p(N).

Remark: Since M 1is Saturated, we can replace N by M in the

above. It is stated as it is so that (*) holding on p depends only on

p and Th(M), and not on M.
Given (*) on p, we get the converse of 3.2(2).

Lemma 3.3: For a,b in p(M), if a € acf(b) in M then

a' € acl(b') in p(M)/E.

Proof: We may assume b is independent, as a counter-example with

b of shortest possible length has b independent. Choose P(x,y) with
M |= {(a,b) witnessing a € acl(b) and G < p(M) finite with

acf(®) N pM) = U acli{gl N p(M). Now p(M)/E |= Pw(a',B') and if
g€G

pM)/E |= Pw(c',B') there is c*Ec, b*Eb with M |= ¢(c*,b*). Since b

is independent, so is b*, so c* € acl(b*) = acl(h). Thus
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c' = (c*)' € {g': g€G} and so a' € acl(b').

Lemma 3.4(1): p(M)/E 1is an No—categorical strictly minimal

structure.

(2) Suppose Pys--+»P are distinct‘strong types of M, all of which
satisfy (*), and we define E on pl(M) u...u pk(M) by aEb iff
a=>b and a € acl{b}. Then (pl(M) Uu...U pk(M))/E under the
structure induced by formulas is No-categorical and the union of k
strictly minimal sets. For a,b in (pl(M) Uu... U pk(M)), a € acl(b)

iff a/E & acl(b/E).

Proof: (1) If b' Zc'(a') thenin M, b # c(a) by 3.2(1).
So b € acl(a) or c € ac(a). So by 3.3, b' € acf(a') or c' € acl(a').
Further b' € acf(a') implies b € acf(a) N p(M) = U{acl{g}: g€G} N p(M)
for a finite G € p(M); so "b' € {g': géG} and acl(a') is finite.
This implies that there are only finitely many k-types in p(M)/E for
any k € w, so pM)/E is No—categorical. Then the above also tells us
p(M)/E is strongly minimal. Also, if b' € acf{a'}, b € act{al so
b!' = a',

(2) This is similar to 3.2, 3.3 and (1) above, once we have the following

Claim: If F E_pl(M) u... U pk(M) is finite, there is

G S_pl(M) Uu... U pk(M) finite such that

acL(FH YN[ U p; M] = Ulacl{g}l: geGt n [ U p, M]
1=i<k 1=i<k

Proof of Claim: Pick Fi € acl(F) N pi(M) a maximal independent
set. From the superstability of M, each Fi is finite, and

acl(F) N pi(M) = acﬂ(Fi) n pi(M), Since (*) holds on P;» choose
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G, ¢ p; M) finite with acﬂ(Fi).ﬂ p;(M) = Ulacl{g}: gEGi} N p, M.
Then take G = U Gi'
1=i=<k
Note: This lemma implies that p(M)/E has an essentially countable
language, even though no restriction was made on the size of the language

of M.

Now we apply the Classification Theorem for N -categorical strictly

0

minimal structures. See 1.14. We say that p is of affine, projective

or disintegrated character respectively if p(M)/E is an affine or

projective space over a finite field F(n), or disintegrated respectively.

Suppose p 1is of affine character over F(n), and let a,b € p(M)
be independent. Then acf{a,b} N p(M) consists of precisely n E-classes
by 3.2(2) and 3.3 since in -p(M)/E acz{a',b'} has siz¢ n. Pick
R(x,y,z) an M-formula such that R(a,b,M) consists of a finite set of
elements from each of these E-classes, except a' and b'. We assume
that for any c¢,d,e € M, R(c,d,e) implies that each of c,d,e is
algebraic in the other two. So PR defines .the lines on p(M)/E. Let
a,b,c € p(M) be independent and pick d € p(M) such that in pM)/E
b' + 1€t =d'; if d* € pM) and d = d*({a,b,c}) then (d*)' = d!
since abcd = abcd* implies a'b'c'd'= a'b'c'(d*)'. Choose Q(x,y,z,w)
an M-formula with Q(a,b,c,M) a non-empty subset of d'. We assume
Q(d,e,f,g) implies each of d,e,f,g algebraic in the other three for

any d,e,f,g in M. Later we will redefine R and Q.

Now assume p 1is of projective character over F(n); we will keep

this assumption until after Corollary 3.16, where we find a set consisting
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of p(M) plus some algebraic points which is strongly minimal under the

structure induced by formulas.

We call a binary M-formula Y(x,y) an algebraic formula if for any

d,e € M, x(d,e) implies d € acf{e} and e € acf{d}. For the remainder
of this section, we will assume any algebraic formula also satisfies

x(d,M) U xM,d) ¢ p(M) for d € p(M).

Let a,b € p(M) be independent; then acf{a,b} N p(M) contains
n-1 E-classes besides a' and b'. Pick an M-formula S(x,y,z) such that
S(a,b,M) consists of a finite number of points from each of these
E-classes, and such that for any c,d,e € p(M), S(c,d,e) implies each
of c,d,e 1is algebraic in the other two. We may further assume
S(a,M,b) and S(M,a,b) are subsets of p(M) and that
NII= S(x,y,z) ——%'S(y,x,z) k S(z,y,x); for this, replace S(x,y,z)
by \/ S(ox,0y,0z).

ceSym{x,y,z}
We can find an algebraic Y(x,y) such that if a,b,c € p(M) are

independent, then:
(t) ¥x,y[S(a,b,x) A S(a,c,y) =
3z,2*(S(b,c,2) A S(x,y,z*) A x(z,2*))].

For pick such a,b,c; for any d,e with S(a,b,d) A S(a,c,e),

d,e € p(M) are independent. Also Ps(a',b',d') A Ps(a‘,c',e') in
p(M)/E. So, since p(M)/E is a projective space, there is £f' € p(M)/E
with Pg(b',c',£') A Pg(d',e',f'). Since bl ¢ and d ] e, there are

f*, f** ¢ £f* with S(b,c,f*) A S(d,e,f**); £*Ef** can be witnessed by



29.

an algebraic formula. There are finitely many choices for d and e and

hence for f* and f**, so a single YX(x,y) can be chosen as claimed.

By compactness, we can find e(x,y) algebraic such that if
a,b,c € p(M), 1e(a,b) and c ¢ acﬂ{é,b}, then (+) for a,b,c.
Let Sy(,y,2) <> SG,y,2) A /\ Te(u).
u#ve{x,y,z}
Lemma 3.5: For a,b € p(M), So(a,b,c) implies ¢ € p(M) or c

is algebraic.

Proof: If a | b, c € p(M). Suppose af b. Choose
d € pM) \ acl{al. Since 7e(a,b) we can find, for any e with
S(a,d,e), f and f* with S(b,d,f) A S(c,e,f*) A x(£f,f*). e € p(M)
and f € p(M) since d |, b, so f* € p(M). If £* ¢ acl{el,
S(f*,e,c) gives c € pM). - If f* f e, c € acl{e}. But e é‘acﬂ{c}

since otherwise d € acf{a,e} implies d € acl{a,c} ¢ acl{a,b} = acl{a}

contrary to our choice. So ¢ 1is algebraic.

Now if a,b € p(M) are independent, then for some algebraic

Xo(X5>¥) 5

(1) ¥y,z[S,(a,b,y) A Sy(a,b,2) >
Xo(y»2) v 32* (S (b,y,2%) A X4 (z,2*))].

So by compactness, there is &(x) € p such that if §(a*) and
b € p(M) \ acf{a*}, then (++) holds for a*,b. Let

S (x5y,2) <> S5,(x,y,2) A S(x) AS(y) AS(2).

Lemma 3.6: Suppose S, (a,b,c) A S (a,b,d), b € p(M) \ acf{a}

and ¢ € p(M). Then d € p(M).
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Proof: "This is clear if a € p(M), so by 3.5 we can assume
a € acf(¢). Also &(a), so by (+t) either xo(c,d) or there is e
with So(b,d,e) A xo(c,e). If xo(c,d), d e pM). If
SO(b,d,e) A xo(c,e), e € p(M) and by 3.5 either d € p(M) or

d € acf(¢). Since b € acl{a,d} = acﬂ{d}, d ¢ acl(9).
(t+1) Vx,y[Sl(a,b,x) A Sl(a,C,Y) -
3z,2*(S, (b,c,2) A S, (x,y,2z*) A x(z,2%)]

holds for a,b,c € p(M) independent. Find el(x,y) algebraic such that
if a*,b* € p(M), 1el(a*,b*) and ¢ € p(M) \ acf{a*,b*} then (+¥t)
holds for a*,b*,c. Pick 61(x) € p such that 61(a*) and

b € p(M) \ acl{a*} imply 1el(a*,b) A 1el(b,a*). Also

61(a*) A 61(b*) A 1el(a*,b*)> and c € p(M) ™\ acl{a*,b*} imply (ft+t)

for a*,b*,c. ‘

Let Sz(x,y,z) <> Sl(x,y,z) A /A\ (1el(u,v) A 61(u)).
u#ve{x,y,z}

Definition 3.7: Let p*(M) denote

{a € M: 3b € p(M) \ acl{aldc € p(M) Sz(a,b,c)}.

Lemma 3.8: (1) p(M) < p*(M) € p(M) U acl(¢).
(2) There is a finite set A of algebraic elements of M such that

a,B € p*(M) and Sz(a,b,c) implies ¢ € p*(M) U A.

Proof: (1) Since Sz(a,b,c) — So(a,b,c) this follows from 3.5.
(2) Pick any a € p(M) and let
A= [U{Sl(a,b,M): el(a,b)} N acl($)] \ p*(M). This finite set does not

depend on the choice of a ¢ p(M). Now suppose a,b € p*(M) and
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Sz(a,b,c); choose d € p(M) \ acf{a,b}. By definition there are
e, f ¢ p(M) with Sz(a,d,e) A Sz(b,d,f). Also 1al(a,b) A Sl(a) A Sl(b).
By (+++) applied to a,b,d there are g and g* with

S,(b,d,g) A S,(c,e,g*) A X (g,g*). Now S,(b,d,g) A S,(b,d,f),
depM N ack{b}, and f ¢ p(M) gives g € p(M) by 3.6. So.

g* € p(M). By 3.5 and SO(c,e,g*), c € p(M) U ac£(¢). We can assume
c £ pM). If 1Sz(c,e,g*), by Gl(c) and e,g* € p(M) we have
1€l(c,e) A 181(c,g*) A 1al(e,c) A 1al(g*,c), so al(e,g*) v al(g*,e).
But then Sl(c,e,g*) gives ¢ € A Up*M). If Sz(c,e,g*), c € p*M)

by definition.
Let Ss(x,y,z) > Sz(x,y,z) AXEANY EAANZ EA,

Corollary 3.9: p*(M) 1is closed under SS’

-
Proof: Immediate.

S3 is symmetric and PS = PS so we forget about the original S
3

and call S3 S from now on.

Lemma 3.10: There is n(x,y) algebraic such that if a,b € p(M),

aJ b and T(a,b) then there is c¢ € p*(M) \ p(M) with S(a,b,c).

Proof: There is Mo algebraic such that if a,b,c € p(M) are

independent,
(**) vx,y[S(c,a,x) A S(c,b,y) —> 3Jz,2*(S(a,b,z) A S(x,y,z*) A my(z,2*))].

Let m be algebraic such that if 7n(a,b), a,b,c € p(M) and
¢ £ acl{a,b}, then (**) holds. Now suppose a,b € p(M), Mm(a,b) but

a‘l,b. Pick ¢ € p(M) \ acf{a,b} and then d with S(c,a,d). In
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p(M)/E, Ps(é',a',d') and b'=a', so there is eEd with S(c,b,e).
By‘(**) find f and f* with S(a,b,f) A S(d,e,f*) A no(f,f*)° Then

- f € acl{a}; also f € acf{f*} C acf{d}. Since d ¢ acl{al, f € acl(¢).

Lemma 3.11: Suppose o(x,a) is such that for b E'p(M)‘\ acl(a),
M | o(b,a). Then for all but finitely many b € p*(M), M | o(b,a).
In particular, there is a set of formulas p* over acl($¢) with

a € p*(M) iff a realizes each formula of p*.

Proof: Pick <(x) € p such that for any ¢ C M either
TM) A o(M,c) or T(M) A JoM,c) is finite. By assumption
TM) A o(M,a) is ot finite, so T(M) A lo(M,a) is. Thus it suffices
to prove that p*(M) \t(M) is finite. If a,b € p(M), a‘l,b and
S(a,b,c), then c € pM) so <T(c). By compactness, find +v(x,y)
algebraic such that for a,B § pM), 1v(a,b) A S(a,b,c) = t(c). The
finite set C = {c € M: S(a,b,c) for some b with +(a,b)} N acl($)"
does not depend on the choice of a € p(M). But if c € p*(M) N T(M)
then c¢ € acf(¢); pick any a,b € p(M) with S(a,b,c). Then since

1t(c), +v(a,b), so c €C.

Now for any <T(x) € p, let T*(x) < T(x) vx € p*M) \T(M).
By the above, p*(M) \t(M) 1is a finite algebraic set, so <* 1is almost

0-definable. Clearly a € p*(M) iff a realizes each T for T € p.

We define formulas ﬂk(x,i) with £h(y) = k by induction on

k=1, ﬂl(x,y) is x=y. If ﬁk(x,i) is defined, let
Mo KoY <¥g?) > 2[m (2,y) A (S(X,¥y,2) V x=y, v x=z)].

Lemma 3.12: If a C p*(M) and " h (a) (b,a), then b € p*(M).
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Proof: Immediate from the definition and 3.9.

Lemma 3.13: If a,b < p(M) and a € acl{b}, then there is

c € p(M) with (c,b) and a € acl{c}.

£Zh(b)

Proof: We go by induction on £h(b), the result being obvious if
this is 1. If a € acf(b) then in pM)/E, a' € écﬂ(B') by 3.3.
Suppose b = d"<e>; " we can assume a ¢ acf(d), so for some
f € acl(d), Ps(f',e',a‘) since p(M)/E 1is a projective space. See
1.6(2). By induction we can assume ﬂzh(a)(f,a); also since f,lle,/

S(f,e,M) intersects a', so for some cEa, S(f,e,c). Then

= ‘
"en(6) (2P

Lemma 3.14: There is a finite set B S_ac£(¢) N\ p*(M) such that

if a € p*(M) and mn(a,b) then b € p*(M) U B.

Proof: Suppose c,d € p(M) are independent and S(c,d,e) A n(e,f);
then Pg(c',d',e') so PS(c';d',f') and C‘l,f’ so there is gEd with
S(c,g,f). Given ¢ and d, there are finitely many choices for e,

f and g, so we can find nl(x,y) algebraic such that y(c,d) where
X(X,y) <> Vz,w[S(x,y,2) An(z,w) = J(S(x,v,w) Am, (y,v))].

Let A = {e € p*(M) N acl($): 3y(S(c,y,e) A x(c,y))} for some c € p(M).
There are finitely many d € p(M) with 1x(c,d), so this set is finite,
and does not depend on the choice of ¢ € p(M). Let

B =Umn(a,M) \p*M): a € A}. If a € p*M)\N A and b € p(M) \ acl{a}
choose ¢ € p(M) with S(a,b,c). We have x(b,c) so if mn(a,d) there
is e with nl(c,e) A S(d,b,e); so e € p(M) and d € p*(M). This

suffices.
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Lemma 3,15: For any ¢(y) O-definable on p*(M) in the structure
induced by formulas, there is ¢*(y) almost O-definable on M such

‘that for a Cp*M), M | o¢*(a) if and only if p*(M) | o(a).-

Proof: By induction on ¢(y), the only difficult case being
3x6(x,y) where by hypothesis we can assume 6(x,y) is an M-fofmula
almost without parameters. Choose o(x) € p such that for any b C M,
either o(M) A 6(M,B) or o(M) A 16(M,b) is finite; by 3.11 we can
assume ¢ (a) for all a € p*(M). 'Now for each k, 0 <k < £Zh(y) we
find wk(x) and pk(x,§) M-formulas almost without parameters such
that ¢, (M) N p*(M) = ¢, pk(M,a) C p*(M) for all a < p*(M), and if
a € p*(M) has an independent subset of size =k, then either

g(M) A 16(M,a) 1is finite or Tk(é) where

T, () < ¥x(0(x) A 8(x,7) = [ () Vv o , 1D

We start at k = £h(y). Pick <a ,a,> = a independent in p(M);

1o 0By
if oM) A 18(M,a) is finite we let wk(x) < x # x and

pk(x,i) < x # x and there is nothing to ;heck. Suppose

oM) A 16(M,a) is not finite, so oM) A 6(M,a) 1is. Let {bi: i<t}
list p*(M) N o(M) N &(M,a) and {ci: i<m} 1list oM) N 6(M,a) \. p*(M).
Using 3.11, find (x) with q;]i((M) Np*M) = ¢ and M | xp]i((ci) for

each i<m; wk(x) is wi(x). For each i<f, we find pi(x,?)

i<m
isolating tp(bi/é U acl($)); if b, € p*M) N\ p(M) we let

pi(x,i) > X = bi' Suppose b.l € p(M). Then by 3.13 there is s
with ﬁk(ci,é) and ci\lzbi° By 3.10, either n(e;,b;) or there is

d € acL($) with S(d’ci’bi)° So we can assume either

ol (,7) = 32(r (2,7) An(x,2)) or op (LTI 32 (M (2,7) A 8(d,2,X))
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for some d € p*(M) N\pM). We let pk(x,i) <> \/@ pi(x,i) AX £ B,
. i<

where B comes from 3.14. By 3.12 and 3.14, for any b ¢ p*(M),

pk(M,B) € p*(M). Clearly alsd wk(M) N p*(M) = ¢. Since any independent
sequence of length k realizes the same strong type as a, we just need
to check Tk(é). But this is clear since any solution to

g(x) A 6(x,a) is either a c;, and wi(ci), or a b, and

3 -
pk(bi,a) A bi £ B.
Now suppose we have defined wk and pk(x,i) as above for all Kk,

j <k =2Zh(y). Pick 21500053y € p(M) independent and consider the set

‘rj = {2 € p*(M): £h(a) = Lh(y), & 2 {al,...,aj}

and o(M) A 18(M,a) is infinite and 1Tj+1(5)}.

This set is definable by a éollection of formulas, so if it was infinite,
by the saturation of M it would have a sequence with j+1 independént
elements, contrary to our supposition. We let {ci: i<m} 1list

UoM) N 6(M,a): a ¢ rj} N\ p*(M) and {bi: j<f} 1list

U{oM) N 6M,a): a € Fj} N p*(M). We pick ¢§(x) and p?(x,?) precisely
as in the case where j = k; p?(x,é) isolates tp(bi/é) for any a €T,
with O(bi) A é(bi,é), for i<f. We let wj(x) <~—;\/w§(x) v wj+l(x)
and pj(x,i) > ayé§(x,§) v pj+l(x,§)) A'x ¢ B; again, checking that

wj and 4pj are as claimed is routine.

Now let (3x6(x,y))* be ‘3x(0(x) A B(X,y) A 1w0(x)). If
a cp*M) and p*(M) | 3Ix6(x,a) choose c € p*(M) with 6(c,a);
M = o(c) A 6(c,a) A W,(c). Now suppose a < p*M) and

M = Bx(o(x) A B(x,a) A Wy(x)). If o) A 16(M,a) is finite, then
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for all but finitely many c¢ € p*(M), M |=6(c,a) so p*(M) |

- 3x6(x,a).

If oM) A 16(M,a) 1is infinite, then
M [ vx(o(x) A 8(x,a) = (y(x) Vv 0y(x,2))),

so for some c, 6(c,a) A po(c,é). So c¢ € p*(Mj and

p*(M) | 3x6(x,a).

Corollary 3.16: p*(M) 1is saturated and strongly minimal.

Proof: Suppose A C p*(M) with [A| < [p*M)| = [M|, and
T € Sl(A) taken in p*(M) is non-algebraic. For each ¥(x,a) € r find
Y*(x,y) from 3.15 with M |= ¢*(b,a) if and only if p*M) |= ¥ (b,a)
for a,b € p*(M). Then p(x) U {y*(x,a): ¢(x,a) € r} is consistent
as an M-type and so is realized in M, since M 1is saturated. So

r 1is realized in p*(M), which is therefore saturated.

Now if ©(x,y) is O-definable on p*(M), choose 6*(x,y) froﬁ
3.15. For any b < p*(M), 1let a € p(M) \ acf(b). If M [ 6*(a,b)
then using 3.11 76*(M,b) N p*(M) 1is finite, so 16(p*(M),b) 1is finite,
otherwise 0(p*(M),b) is finite. Since p*tM) is saturated, it is

therefore strongly minimal.

Lemma 3.17: Suppose p is of affine character. Then p(M),
under the structure induced from M, 1is saturated and strongly minimal.
Also fof any o(x) a p(M)-formula without parameters, there is o* (x)
an M-formula almost without parameters such that if a cpM),

M |= ¢*(a) if and only if pM) |k ¢(a).
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BEEEE:( Recall that we have R and Q such that for a,b,c € p(M)
iﬁdependent, R(a,b,M) intersects all the E-classes except a' and b!
of acﬂ{a,b} N pM) and Q(a,b,c,M) intersects b' + a1¢' € pM)/E.

So PR and PQ generate the algebraic closure operation on p(M)/E.

Now we can replace Q and R by QO and RO’ still having this property
such that p(M) 1is closed under QO and RO. Oncé we do this, we can
mimic 3.13, 3.15 and 3.16 virtually unchanged, except there is no mention

of algebraic elements. We give the description of QO and RO and

omit the rest of the proof.
Let Q,(x,y,z,w;u,v) <—

Br’s,t[Q(x’u’v’s) A Q(u,y,s’t) A Q(Z’u’v’r) A Q(r’u’t’w)]'

r
Diagram: §

Let Qo(x,y,z,w) abbreviate
Ju,viu £ acl{x,y,z} A v £ aclix,y,z,u} A Ql(x,y,z,w;u,v)].
Suppose a,b,c € p(M), d € p(M) \ acf{a,b,c} and e € p(M) \ acf{a,b,c,d}.

a,d and e are independent so there is f with Q(a,d,e,f) and

any such f is in p(M) and satisfies f' = d' + a,e'; d,b and £

are independent since e € acf{a,d,f}, so for any g with Q(d,b,f,g),

g €pM) and g' =b' + d,f' = b' + a,f' - a,d' =b' + ,e'. c,d and e
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are independént, so if Q(c,d,e,h), h € p(M) and
h' = d' + c,e' =d' + ,e' - ,c'. Also h,d and g are independent
for otherwise either h' = ad' + a,(1—oc)g' in pM)/E or g' = ad'

for some o € F(n). If g' =oad', ad' = b' + a,e', SO

e € acf{a,b,d}; if h' = ad' + (1-a)g', ad' + (1-a)(b'+e') d' + e
(We omit the a''s.) Then if o # 0, (a-1)d' + (1-a)b' + c' = cef
gives e ¢ acl{a,b,c,d}; if o = 0, it gives d € acf{a,b,c}. In any

case, we get a contradiction. So for any i with Q(h,d,g,i), i € p(M)

and i' =4d' + h,g' =d' + ar8' - a,h' =d' + a,b' +ogre!
- a,(d' + a,e' - a,c') = b' + a,c'. This shows Ql(a,b,c,i;d,e) for
some i, and for any such i, i' = b' + a,c'. In particular,

i € acf{a,b,c}, so for any d*,e* € p(M) with d* ¢ acf{a,b,c} and
e* ¢ acl{a,b,c,d*} we havc‘Ql(a,b,c,i;d,e) «—> Qlca,b,c,i;d*,e*).

Thus  Q,(x,y,z,w) 1is almost O-definable.

Now let Rl(x,y,z;w) if and only if

Ir,s[R(x,w,T) A Qo(x,w,y,s) A R(r,s,z)]

Diagram: e

! 4
Let Ro(x,y,z) «—> Rl(x;y,z;w) A Rl(x,y,z;v) for some (any)
w € pM) \ acl{x,y}, v € pM) \ acl{x,y,w}. The choice of w and v

is irrelevant, and R0 is as desired.
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Note: Whether P 1is of projective or affine character, it is
clear that for a Cp*M) (p(M)), acl(a) N p*(M) (acl(a) N p(M)) 1is the

same whether computed in M or in p*M) (p(M)).

The following example shows that we may not be able to replace

p*(M) by p(M) in 3.15 and 3.16.

Example 3.19: Let M be a projective space over a finite field

F(n), with constants for every element of a subspace A. Let

|a] = Ry IM| = X Then the type p of an element of M \ A is of

1"
projective character, but p(M) under the structure induced by formulas
does not satisfy 3.17. For consider the following formula of
p(M)-—-H!nzS(x,y,z). pM) = H!nzS(a,b,z) exactly if

a € acf{b} = <{b} U A> in M, recalling that <C> 1is the projective

span of C. This formula is not induced by any M-formula, and

!
3'nzS(a;y,z) defines an infinite, co-infinite set.
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SECTION 4

In this section we assume M 1is a strongly min¥mal transitive
structure such that (*) holds on M, so for any N> M and finite
F C N, there is a finite G ¢ N with acl(F) = U{écl{g}i g€Gl. We also
assume M 1is of affine character. This includes the structuresvarising

from 3.17. Our aim is to prove the following:

Theorem 4.1: There is a O-definable equivalence relation 6 on M
with finite classes such that M/6, under the obvious structure, is an

affine space over F(n).

We also determine what other structure is possible on M/6. The

crucial lemma for 4.1 is

Lemma 4.2: Suppose p(x,y) is an algebraic M-formula; i.e. for
a €M, p(a,M) and p(M,a) are both finite. Then p, the transitive

closure of p, is defined by.an algebraic formula o(x,y).

An equivalent statement is that any such p can be included in a

0-definable equivalence relation with finite classes.
We may assume M is saturated and |[M| > |Th(M)].

To prove the lemma, we use Q; the crucial property of Q, we
recall, is that for a,b,c € M ihdependent PQ(a',b',c',d‘) is the same
as b' + ,c' =d' in M/E. We may assume that Q(x,y,z,w) —>

Q(y,x,w,z) AQ(x,z,y,w) since if we replace Q(x,y,z,w) by

Qx,y,z,w) v Q(x,z,y,w) vV Q(y,x,w,z) Vv Q(y,w,x,z)

v Q(z,X,W,¥) V Q(ZW,%,Y) V QWW,Y,Z,X) V Q(W,z,y,X)
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we do not change the above property. Let Q'(x,y,z,w) abbreviate
"Q(x,y,z,w) and dim{x,y,z,w} = 3" and el(x,y) >

Yu,v,z(Q'(u,v,z,x) «<— Q'(u,v,z,y)). 61 gives an equivalence relation

on M and if el(a,b) we have b ¢ acf{a}. So Gl(a,b) if and only
if, for some (any) c ¢ acl{a}, d ¢ acl{a,c},

v¥z[Q(c,d,z,a) <— Q(c,d,z,b)]. So 61 is 0-definable.

M/e1 is strongly minimal, transitive, Q induces a relation on

M/e1 with the same symmetry, and PQ(x',y',z',w') is still the same as

y' + x,z' = w' in (M/el)/E. From the definition and the symmetry of Q

it is clear that 61 is a congruence with respect to Q'. So in M/e1

we have: Vx,y,z(Q'(x,y,z,w) <—> Q' (x,y,z,w*)) = w = w*,

A counter-example to 4.2 in M remains a counter-example in M/el,
SO we assume 61 is trivial. Thus in M if a,b,c are independent and

<d >~d 1lists Q(a,b,c,M), then /\ Q(d,b,c,e) <> e = a and

0 de<d >~

/\ Q(b,a,d,e) <—> e =c. As Q(a,b,c,d*) implies b' + a,c' = (d*)"',

d€<d0>‘d

d E_acﬂ{do}; let p(x,y) isolate the type of d over dy-

Let

Qo(x:)’szsw;u:\7) > p(u,\7) A

35,6, /N (QGEVE,S) A QUvt,s,y,t) A QUz,E,vt,T) A
vEe<u>y

Qr,t,v*,w))

for some f ¢ acl{x,y,z,u}. This is similar to the QO defined in 3.17.



Diagram:

MY -t

£ W
As in 3.17, if a,b,c € M and ey ¢ acl{a,b,c} and p(eo,é) we get
Qo(a,b,c,d,eo,é) implies d' =b' + ,c'. Thus the choice of f is
irrelevant; the choice of <e0>“é is also irrelevant as we will see

later. First we note some properties of QO.

Lemma 4.3: Suppose € £ acl{a,b,c,a*}, and p(eo,é). Then
(1) There is a unique d with Qo(a,b,c,d;eo,é).
(2) 1If Qo(a,b,c,d;eo,e), then Qo(c,d,a,b;eo,e) “and Qo(d,c,b,a;eo,e).
. a * a * . a
(3) If Qy(a,b,c,d;ey,e) A Qylc,d,a*,b*,e ,e), then Q,(a,b,a*,b*;eg,e).
. A x . = * . -
4) 1If Qo(a,b,c,d,eo,e) A Qo(b,a*,d,c ,eO,e), then Qo(a,a ,c,c*,eo,e).

. a . 3
(5) If Qo(a,b,c,d,eo,e), then Qo(a,c,b,d,eo,e,.

Proof: (1) Pick an f ¢ acﬂ{a,b,c,eo}; then there is a unique g

with /\ Q(a,f,e,g). Since e,g and b are independent, there is a
e€<e >"e
’ /\
unique h with Q(e,g,b,h). . We finish as in 3.17 except keeping
ee<e0>"é

uniqueness throughout.

(2) Pick f ¢ acﬂ{a,b,c,eo}. We have g,h and i with

Q(a,f,e,8) A Qle,g,b,h) A Q(e,f,e,i) A Q(i,h,e,d) for all e € <ey>"e.
By the symmetry of Q, Q(c,f,e,i) A Q(e,i,d,h) A Q(a,f,e,g) A Q(g,h,e,b)

for e € <e0>”é , witnessing Qo(c,d,a,b;eo,é). Also, h ¢ acﬂ{a,b,c,eo}
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and Q(d,h,e,i) A Q(e,i,c,f) A Q(b,h,e,g) A Qg,f,e,a) witnessing
Qo(d,cfb,a;eo,e)-

(3) Diagram: \j'

Pick f ¢ acﬂ{a,b,c,a*,eo}. Find g,h,i with

Q(a,f,e,g) A Q(e,g,b,h) A Q(c,f,e,i) A Q(i,h,e,d) and then j with
Q(a*,f,e,j) (for all e ¢ <eo>"é). Since Qo(c,d,a*,b*;eo,é),
Q(c,f,e,i) A Q(e,i,d,h) A Q(a*,f,e,j) we must have Q(j,h,e,b*). Now
Q(a,f,e,g) A Q(e,g,b,ﬁ) A Q(é*,f,e,j) A Q(j,h,e,b*) witnesses
Qo(a,b,a*,b*,eo,é)°

(4) Diagram:
I
3 ) .
TR
et ¢ b//%a*/}
C. A (:*

Pick f ¢ acﬂ{a,b,c,a*,eo}, Find g,h,i with

Q(a,f,e,g) A Q(e,g,b,h) A Q(c,f,e,i) A Q(i,h,e,d) and then j with
Q(e,a*,g,j), for all e € <eo>"é . h ¢ act{b,d,a*,el}, énd S0
Q(b,h,e,g) A Q(e,a*,g,j) A Q(d,h,e,i) along with Q,(b,a*,d,c*,e,,e)

give Q(i,j,e,c*). Now Q(a,f,e,g) A Q(e,g,a*,j) A Q(c,f,e,i) A Q(i,],e,c*)
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witnesses Qo(a,a*,c,c*;eo,é).
(5) For any f ¢ acﬁ{eo}, let f* be such that for some a,b independent
over {f,eo} there is ¢ with Qo(a,b,c,f;eo,é) A Q(a,c,b,f*;eo,é).

By (1) and (2), c¢ 1is uniquely determined by a,b,f and <eO>Aé

so f* 1is uniquely determined by a,b, <eo>“é and f. Also in M/E,

f* = b' + a1C =t a,b' = (f*)', so f* € acl{f}, which implies that

the choice of a and b 1is irrelevant; f* 1is determined by f and

-
<e.>"e .
0

Now suppose a,b and e, are independent and Qo(a,b,c,d;eo,é).

0
Pick a, /3 acﬂ{a,b,c,eo} and bd‘ with Qo(a,b,ao,bo;eo,e). By definition

Qo(a,ao,b,bo*;eo,é). By (2) and (3) above, Qo(c,d,ao,bo;eo,é). Since

c,d,a and e

0 0

Qo(ao,c,bo*,d;eo,e) and from (4) and Qo(a,ao,b,bo*;eo,e),

are independent, Qo(c,ao,d,bo*;eo,é). From (2),

Qo(a,c,b,d;eo,e) .

We now remove the assumption a‘ijb, still assuming that

Qo(a,b,c,d;eo,é) and e, ¢ acl{a,b,c}. Pick f ¢ acl{a,b,c,e,} and g

0
with Q.(a,f,c,g;e.,e). By the above (a,c,f,g;e.,e) and by (4) and
0 0 0 0

(2) q,(b,f,d,g;eq,e). b,f and e, are independent, so Q,(b,d,f,g;e.,e).
0 0 0 0

0
From this and Qo(a,c,f,g;eo,é), (2) and (3) we get Qo(a,c,b,d;eo,é).

Lemma 4.4: Suppose p(ei,éi) for i = 0,1 and that e, ¢ acf{a,b,c}.

Then Qo(a,b,c,d;eo,éo)‘<——> Qo(a,b,c,d;el,él).

Proof: Picking e, £ acﬂ{a,b,c,eo,el} and then e, with p(ez,éz),

2

we may assume that € and e, are independent over {a,b,c}. By 4.3(1)

we find -di’ i=20,1, with Qo(a,b,c,di;ei,éi) and these are uniquely

determined. Choose f ¢ acﬂ{a,b,c,do,dl,eo,el} and g i=0,1, with
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Qo(a,b,f,gi;ei;éi). By 4.3(3) and (2), Q,(c,d;,f,g;5¢;,8;). Now
acﬂ{f,go,gl,eo,éo,el,él} = acﬂ{f,go,eo,el}. Our assumptions give

c,a ¢ acﬂ{f,eo,el}, so if a or c¢ 1is in acﬂ{f,go,eo,el} then g,

is in acﬂ{a,f,eo,el} or acﬂ{c,f,eo,el} respectively. Qo(a,b,f,go;eo,éo)
gives b ¢ acﬂ{a,f,go}, SO a € acﬂ{f,go,eo,el} ﬁhen gives

b € ac!_{a,f,eo,el}° If b € acl{a}, g, € acl{f} an& then

a € act{f,eo,el} which is impossible; but if b £ acl{a}, {a,b,eo,el,f}

is independent by choice so a ¢ acﬂ{f,go,eo,el}. If c € acﬂ{f,go,eo,el},

d0 ¢ acl{c} so again {c,d f} is independent. But

0°%0°°1°
dO € acﬂ{c,f,go} E_acﬂ{c,f,eo,el}, again a contradiction. So

a,c £ aCﬂ{f,go,gl,eo,eo,el,el} so a = c({f,go,gl,eo,eo,el,el}). Since
by 4.3(1) and (2), Qo(a,x,f,go;eo,eo) defines b and Qo(c,x,f,go;eo,eo)
defines dO’ ab = cdo({f,go,gl,eo,eo,el,el}). Similarly,

ab = cdl({f,go,gl,eo,eo,el,el}). But then cd0 = cdl({f;go,eo,eo}) so‘

Qo(c,dl,f,go;eo,eo). By 4.3(1) and (2), dO dl'

Let

Q) (x,y,z,w) <— 3u,v(u £ ack{x,y,z} A p(u,v) A Qy(x,y,z,w;u,v)).

4.4 allows us to replace u ¢ acl{x,y,z} by a suitable first-order formula,
SO Q1 is O-definable. As Q1 satisfies 4.3, it gives M an abelian
group structure. In fact the group is of bounded exponent, for otherwise
by saturation we can find a and bi(iém) all distinct with

Q, (a,by,b;,b, ) for all icw. Let cld,; if Ql(c’do’di’di+l) for

0 1
. _ . ’ 1 = ' '
i <« n-1 then ¢ len-l for in M/E we have di+1 di + c'do S0
dﬁ-l = ¢'. Let To(x,y) witness c\l,dn_l' and Tl(x,y) be algebraic
such that

M

= [T ye) A dygsesyngy iﬁ:ilql(x’yo’yi’yi+1)] > Ty, 40
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We can pick kénw s.t. 110(a,bi) A 111(a,bi) for all i=k. Yet

iégilQl(a’bk’bik’b(i+l)k)' This is a contradiction, and it establishes

that the group is of bounded exponent.

Proof of Lemma 4.2: If not, we can find bi(iEm) distinct with

p(bi,bi+1) for all i€w, where p is algebraic. Pick a ¢ acl{bo}
and let {cj: j<r} list 3x(p(b0,x) A Ql(a,M,bO,x)). Now bi = bO(a),
so for each i€w there is j<r with Q,(a,c.,b.,b. .). But then the
1 j’i’ i+l
set generated by the finite set {a,bO} U {cj: j<r} under Q1 is infinite.

This is impossible in an abelian group of bounded exponent.

We now head toward the proof of 4.1. First we deal with the

case n=2, which does not require 4.2. But we do need the following:

Lemma 4.6: (1) Let Qi(a,b,c,d) A Ql(a,e;f,d) in M. Then
Ql (b,e,f,c) °

(2) If n=2 (n = size of field), M |= Q (x,¥,y,x).

Proof: (1) Let Ql(a,b,c,d) A Ql(a,e,f,d). Pick h with

1Q(a,b,e,h). Using 4.3 repeatedly, Ql(c,d,e;h) A Q (b,h,£,d),

SO Ql(h,d,e‘,C) A Ql(b’f,h,d), SO Ql(b,f,e,C).
(2) Let a,b € M; pick c¢ ¢ acf{a,b} and d with Ql(c,a,a,d)n
Since n=2, d € acf{c} so a = b{c,d} and Ql(c,b,b,d). By (1),

Q, (a,b,b,a).
We can now finish:

Proof of Theorem 4.1 [Case n=2]: Let Q be Q1 and

R(x,y,z). «<—> x=z V y=z. Running through #0 to #11 of 1.5(1) is trivial;

occasionally use 4.3 and for #9 (Q(x,y,z,x) —> R(x,y,z)) wuse 4.6(2). So
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the long-forgbtten 61 is the 6 for our original M.

Actually, we won't ever return to our original Q, so we drop the
"1t from Qlo We assume n#2; we will later redefine R, but we need
to keep the original for a while. We assume that

R(x,y,z) = R(y,x,z) A R(z,y,x) by replacing it by . \/ R(ox,0y,0z).
ogeSym{x,y,z}

This doesn't affect the crucial property of R, which is that if a‘l,b,
R(a,b,M) intersects every E-class in acf{a,b} \ [acf{a} U acf{b}] in a

finite non-empty set; i.e. Pp defines the lines on M/E.

Now let
Ry(xy,23w) «<— Jr,s(R(x,w,r) A Q(x,w,y,s) A R(r,s,z)),
and

Rl(x,y,z) «—> Ro(x,y,z;a) A Ro(stsZ;b)

for any a,b independent over {x,y} . The choice of a and b is
irrelevant since for any c¢,d,e with Rl(c,d,e), e € acl{c,d}. This is

the same as in 3.17.

Lemma 4.7: 1If a,l,b, Rl(a,b,M) meeté the same E-classes as

R(a,b,M).

Proof: Suppose Rl(a,b,c); so ¢ € acf{a,b}. Pick d ¢ acl{a,b}.
There are then e,f with R(a,d,e) A Q(a,d,b,f) A R(e,f,c). Since
d £ acf{a,b}, in M/E, b' is not on the line through a' and d'.
The line through a' and d' is parallel to the one through b' and f',
and meets the line through f' and c¢' at e'; so b' #c'. d' is on
the line through a' and e' but not the one through c¢' and e', so

c' # a'.v Thus c¢ £ acf{a} U acl{b}.



48.

Now suppose R(a,b,c) and ‘a\l}b. Pick anyA d ¢ acf{a,b} and
f vwith Q(a,d,b,f). Since <c' ¢ {a',b'} is on the line through a' and
b', the line through a' and d' meets the one through c¢' and f',

at say e'.

Diagram: O t;r Cf

!
e
e' £ {d',a'}, so there is e € e' with R(a,d,e). e' g {f',c'} so there

is e* € e' with R(e*,f,c). Thus there is c¢* € c¢' with R(e,f,c*).
So R(a,d,e) A Q(a,d,b,f) A R(e,f,c*) and since‘ d was arbitrary,

*
Rl(a,b,c )-
Now let Rz(x,y,z) é~—>-Rl(x,y,z) \ Rl(y,x,z) VX=2zZVYy-=z,

Lemma 4.8: There is an algebraic ~T(x,y) without parameters such
that:
(1) If a | b, R(a,b,c) A R,(a,b,d) and ¢ J d, then =(c,d).
(2) If a | b, R,(a,b,c) A R,(a,b,d) and c /) d, then =(c,d).
(3) If Rz(a,b,c) A Rz(a,b,d) A a # c, then there is d* with
T(d,d*) A Rz(a,c,d*).
(4) 1f Q(a,b;c,d) A Q(a,b,e,f) A Rz(a,c,e), then there is f£* with
T(£,£%) A R,(b,d,f*).
(5) If Q(a,b,c,a), there is c* with <T(c,c*) A Rz(a,b,c*).

(6) I1f Q(a,b,c,d) A Rz(a,c,e) A a# e, then there are f and f* with
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T(£,£*) A Ry(b,e,f) A Ry(c,d,f*).

Proof: Doing each of (1) - (6) separately is sufficient. For (1),
given g,l/b there are finitely many c¢ and d with R(a,b,c) A R,(a,b,d);
for each pair with ¢ 1Jd pick a formula witnessing this. Take the
disjunction of these. (2) is similar. (3) to (6) are all similér to each
other; we just do (6) to illustrate. First suppose a | c,

Q(a,b,c,d) A Rz(a,c,e) Aa#e. In M/E, d' = b' + a,c' and e',c' and
a' are collinear with a' # e' so the line through e' and b' meets
the line through c¢' and d', say in f'. So we can find f£f,f* € f'
with R,(e,b,f) A R,(c,d,f*). If aj c, Qa,b,c,d) A Ry(a,c,e) Ae # a,
then a'«= c' = e' and b' = d' so the line through e' and b' is the
line through c¢' and d', so again we have f and f* with

R,(e,b,f) A R,(c,d,f*) and £ ] £*.

Now find TS (i=1,2,3) algebraic such that if {a,b,c} has =i-

independent elements, then Yi(a,b,c) where
Yi(x,y,z) <> Ww,ulQ(x,y,2z,w) A Ry(x,z,u) Au#x —>
HV:V*(Ti(V:V*) A Rz(}’,'u,V) A RZ(ZJW:V*))]'

Let a,b,c be independent; there are finitely many choices for d,e,f
and f* with

Q(a,b,c,d) A Ry(a,c,e) A e # a ARy(b,e,f) AR, (c,d,f*) and £ J f*.

For each such pair find a formula witnessing f\l,f*. Ts is the

disjunction of these. Now if a\l,b, there are finitely many c¢ with

V 1Y3(oa,ob,oc). For each such ¢ we can find finitely many
geSym{a,b,c}
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d,e,f,f* as ébove, and pick a formula witnessing f*\l,f for each. T, is

the disjunction of these and < T is picked similarly. This does (6).

3
By 4.2, we can assume T from the above lemma defines an equivalence

relation. Now we can find e€(x,y,z;u,v,w) inducing the relation 6 of

1.7(1) on M/E. We may assume ¢€(X,y,Z;u,v,w) —> Rz(x,y,z) A Ré(u,v,w)

and if a | b, d | e and R,(a,b,c) then €(a,b,c;d,e,M) is

R2(d,e,M) N £f' for some f with Rz(d,e,f). Similarly for

e(d,e,M;a,b,c). Let 06*(z,w) <> Ix,y(e(a,x,z;a,y,w) A T(x,y)) for

some (any) a ¢ acf{z}. 6*(b,c) implies b f c so the choice of a is

irrelevant. So 6*(b,c) if and only if for some d,e with <(d,e) and

a ¢ acl{b}, Rz(a,d,b) A Rz(a,e,c) and b J c. If we take the transitive

closure of ©*, we get by 4.2 an O-definable equivalence relation 6 with

finite classes, as 6* is reflexive and symmetric. 6 is the formula

required for 4.1.

We have M |= =1(x,y) = O(x,y) as ¢e(a,b,bja,c,c) always. The

crucial property of 6 is:

Lemma 4.9: (1) Rz(a,b,c) and b6b implies there is c,8c with

0 0
Rz(a,bo,co).
(2) Q(a,b,c,d) A ceco implies there is doed with Q(a,b,co,do)
(3) Q(a,b,c,d) A aea0 implies there is doed with Q(ao,b,c,do).

Proof: We first do (1) in case a ] b, then (2), and finally return

to (1). We finish with (3). So suppose a | b, R,(a,b,c) and e*(b,bo).

If c=a, let ¢, = @; SO suppose c#a and so a | c. By the definition

of e* find d and dO with T(d,do)

Rz(a,d,b); since Rz(a,d,d) and a#b, by 4.8(3) there is d* with

and e(a,d,b;a,do,bo)° So
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. {
t(d,d*) and Rz(a,b,d*). From Rz(a,b,d*) A Rz(a,b,c) and a#d* find

c* with 7T(c,c*) A Ry(a,d*,c*). Since a | d*,d; find c with

* * o * * * * *
e(a,d*,c ,a,do,co). T(d ,do), so 6*(c ,co). From

0 with

* ‘ .
RZ(a’dO’bO)bA Rz(a,do,co) A a#bO and 4.8(3) flnd c

* * * 1 o
RZ(a’bO’CO) A 1(c6,c0). T(Cc,c*) A e*(c*,co) A T(CO{CO) gives e(c,co),

this suffices for (1) if a | b.
(2) Again, first suppose a,b and c¢ are independent, and

Q(a,b,c,d) A cbc Find d0 with Q(a,b,co,do)° Pick e ¢ {a,b} with

0
Rz(a,b,e). Q(a,c,b,d) A Rz(a,b,e) A e # a give, by 4.8(6) f and f£f*

with Rz(c,e,f) A Rz(b,d,f*) A T(f,f*). Similarly there are fO’fB with
Ry(cqse,£) A R(b,dy,EH) A T(f,,f). By el ¢, cbc, and the above,

%
fef0 as Rz(e,c,f) A Rz(e,co,fo) and f\L fO. Use also 4.8(2). So

£¥0£5. Ry(b,d,£*) A Ry(b,d,d) A b # £ gives R,(b,£*,d*) with

t(d,d*); similarly Rz(b,fa;da) with ©(d,,d¥). If b} £*, then

b l,d*; then Q(a,c,b,d) A T(d,d*) give a\L ¢ contrary to assumption.

So bJ f* and so fx6fy gives d*6d¥. Thus déd,. Now suppose al b,

c € acf{a,b}, Q(a,b,c,d) A Q(a,b,co,do) A ceco. Choose e ¢ acl{a,b}
and f with Q(a,b,e,f). Then Q(e,f,c,d) A‘Q(e,f,co,do); in M/E c¢' is
on the line through- a' and b', so not on the line through e' and £

so ¢ ¢ acl{e,f}. So e,f,c are independent and chO, so by the above
dedo. Now just suppose Q(a,b,c,d) A Q(a,b,co,do) A ceco, Pick
e ¢ acl{a,b,c} and f,fo with Q(a,e,c,f) A Q(a,e,co,fo). We have

fefo. Also from 4.3, Q(e,b,f,d) A Q(e,b,fo,do), SO doed.

0

let Cp=2s if c=b, let cO=b. So we can assume Rl(a,b,c) % Rl(b,a,c).

First suppose Rl(a,b,c); pick d ¢ acl{a}, e and f with

To finish (1), suppose Rz(a,b,c), béb, and a\llb. If c=a,
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R(a,d,e) A Q(é,b,d,f) A R(e,f,c)vg by the definition of Rl. Find f0
with Q(a,by,d,f)); by (2), fef,. e i,f since otherwise
e € acf{c} = acl{a}, so there is <o with R(e,fo,co) and <o !}c.

. ‘ . . .
Since c € acﬂ{ao,bo}, Ry(a,by,c,).  We can by 4.7 find ¢ ’CO‘L ¢ with
%) .

Rz(e,f,c*) A R2(e,f0,c0), by 4.8(1), <T(c,c*) A T(CQ’CB) and by fef0
and (1) in the independent case, c*ecs. So ceco. If Rl(b,a,c),
pick d ¢ acf{a,b}, e and f with Q(b,d,a,e) A R(b,d,f) A R(f,e,c).
Then find d0 with Q(bo,do,a,e), so by (2) dedo. Choose fo\l,f with
R(bo,do,fo) and then <, !Jc with R(fo,e,co); we then have
Rl(bo,a,co). Pick f; 4 £ with R(b,do,fl); as in the last paragraph,
flef. -Now R(do,b,f Y A R(do,bo,fo) A bebo, S0 foefl. So foef and
similarly cée,.
(3) First suppose a,b and c¢ are independent,
Q(a,b,c,d) A Q(ao,b,c,do) A éeao. Pick e ¢ {a,b} with Rz(a,b,e) and

- N 3 * * .
eoee with Rz(ao,b,eo). By 4.8(6) find f£,f ,fo,f0 with
T(£,£*) A T(fO’fB) and R2(e,c,f) A Rz(b,d,f*) A Rz(eo,c,f )} A R2(b,d0,f6).
Now fef,, so f*6ff. b L f* for otherwise
e € acl{b,c} N acl{a,b} = acl{b} implying e=b, so R2(b,d,f*) gives
d* with <(d,d*) and R2(b,f*,d*); similarly find d6 with

(dy,d8) ARz(b',f*,dB). £x6f% implies d*6d% yielding déd.
We can finish (3) like (2).

Now we forget about the original R, and let R denote R,. In the

following, Q and R also denote the relations they induce on M/6,

Proof of Theorem 4.1 (n#2): We run through #'s 0 to 11 of 1.5(1).

Actually, we alter R on M/6 a little further by replacing R(x,y,z) by
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(R(x,y,2) A x%y) v (x=y=z%/ to get #0. This doesn't affect anything else.
Sihce 8 1is a congruence for Q, the following are immediate from the
same in M:

IwQ(x,y,z,wW).

QxX,y,X,¥) .

Qx,y,z,w) = QX,z,y,w) A Q(y,x,w,z).

E 15 & |&

Q(x,y,z,w) A Qx,y,u,v) = Q(z,w,u,v).

The next two are also clear from the same in M:
#2 R(x,y,x).
#3 R(x,y,z) = R{y,x,z).
#1 3x,y3!an(x,y,z).
Pick a l}b _in M. Then in M, R(a,b,M) meets n E-classes, so in
M/6, R(a/6, b/6, M/6) has size at least n. Now suppose
R(a,b,c) A R{a*,b*,d) in M, with .aea*, béb* and c J d. Pick e
with R(a,b*,e) A cfe, by 4.9(1). Now R(b*,a,e), so by 4.9(1) again

find f with R(b*,a*,f) A e6f. Also R(b*,a*,d), b* | a* and f | d,

1
so by 4.8(2), d6f. So c6d, which sufficesf

#4 R(x,y,2z) A R(Xx,y,w) A x#z = R(x,z,w).

Suppose R(a/6,b/6,c/8) A R(a/6,b/6,d/6) A a/6 # c/6. Pick a,b,c,

a*,b*,d with aba*, bGb* and R(a,b,c) A R{a*,b*,d). Apply 4.9(1) twice
to find d* with R(a,b,d*) and déd*. By 4.8(3), find d** with

d*6d** and R(a,c,d**); then d6d**, so R(a/6,c/6,d/6).

#8 Q(x,y,z,w) A R(x,y,u) A Q(x,z,u,v) - R(z,w,v).

Suppose Q(a/6,b/8,c/0,d/6) A R(a/6,b/6,e/8) A Q(a/®,c/0,e/6,£/6). Pick
ada*@a**, bbéb*, c6¢c*, ebe* with Q(a,b;c,d) A R{a*,b*,e) A Q(a**,c*,e*,f)

in M. By 4.9(1), find e**6e with R{a,b,e**) and then using 4.9(2)
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] {
and (3) find f£* with Q(a,c,e**,f*). So by

Q(é,b,c,d) A R(a,b,e**) A Q(a,c,e**,f*) and 4.8(4) find f£**6f* with
R(c,d,f**). So M/6 | R(c/6,d/6,£/8).

#9  Qx,y,z,w) = R(x,y,2).

Clear from 4.8(5).

#11  Q(x,y,z,w) A R(x,z,u) Au # x = I(R(u,y,v) /\'R(z,w,v))°

This follows like #8, using 4.8(6) instead of 4.8(4).

Our next task is to determine the possible other structure on M/6.

For the rest of this section we assume © 1is the identity. We will prove:

Theorem 4.10: Suppose M is strongly minimal, transitive, of

affine charag}er, Q and R give an affine structure on M, and PQ
and PR' give the affine structure on M/E. Let M1 be the structure with
universe M and the predicafes Q and R. Then there is C E_Miq with

M and (Ml,C) interdefinable.

We prove a few lemmas first. Recall M', the projective companion

of M as mentioned in 1.8, and F: M2

N {(a,a): aeM} — M'. Both are
0-definable in M®%. we keep the notation and assumptions of 4.10 for

the remainder of this section. Again, we also assume M 1is saturated.

Lemma 4.11: If a,b are distinct in M, then a € acl{b} iff

F(a,b) € acl(¢).

Proof: (<) Direct from a ¢ acl{b,F(a,b)}.
(») Suppose a € acf{b}; pick c € M\ acl{a} and d with Q(a,b,c,d).
In M/E, PQ(a',b',c',d') and a' = b', so c' =d',

F(a,b) = F(c,d) € acl{a} N acl{c} = acl(¢).
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Lemma 4;12: If a € acf(B) where {a} UB <M, then
a € <B U ac£{b}> for any b € B. Recall <C> is the affine span of

C, i.e. the closure of C under Q and R.

Proof: We may assume B 1is finite, and proceed by induction on
|B|, the case |B| =1 being clear. Suppose b,c € B are distinct,
a € acf(B) and without loss of generality that ¢ £ acf(BN\{c}). In
M/E, a' € acf({c'} U {d': d € BN\{c}}) so either a' = c' + d,e' or
a' is on the line through <¢' and d' for some d,e € acl(B\{c}).
So Q(d,c,e,a*) or R(d,c,a*) where a*\l,a. By the induction hypothesis,
e and d are in <BN\{c} U acl{b}>, so a* € <B U acl{b}>. Now

choose b* with Q(b,b*,a,a*); b* € acl{b} so a € <B U acl{b}>.

We fet racf($p) (the "relevant algebraic closure') be the
definable closure taken in Miq of the following sets in qu:
(1) ack(p) N M';
(2) the field elements - see 1.7(1);
(3) for each £ € acf(¢) N M', Q(x,y,z,w) A F(x,y) = £ yields an

almost 0-definable equivalence relation with finitely many classes

on the set defined by F(x,y) = £, so we include the corresponding points

of acl(9).

We will use different notions of racl($) in different contexts

later.

Leima 4.13: If a € acf(B) in M, then a 1is definable over B in

(M), Tack(9)).

Proof: We may assume B 1is finite, and proceed by induction on |B].
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If a ¢ acﬂ{b}, either a=b or F(a,b) € acl(¢) by 4.11. If

F(é,b) = F(al,b) = f € acf(¢$), then if ab = alb in (Ml, racl(¢)),
Q(a,b,a;,b) so a=a,. ‘This takes care of |B| = 1. Suppose |B| > 1;
pick b,c € B distinct. By 4.12, if a € acf(B),

a € <{c} UBN{c} Uact{b}> so either Q(d,e,c,a) or R(d,c,a) where

d,e € acl(BN\{c}). By induction, d and e are definable over B\{c}.

If Q(d,e,c,a), clearly a 1is definable over B. If R(d,c,a) and

a ao({c,d}) in (Ml,rac£(¢)), then 6(d,c,a;d,c,a0) implies

a=a so again a 1is definable over B.

0’

Proof of Theorem 4.10: Let C < racf(¢) be the collection of points

of M?q definable from M. Then clearly (Ml,C) is definable in M,

For the converse it suffices to show M 1is definable in (Ml,rac£(¢)).
£

If T 1is a relation O;definable on M but not on (Ml, rack(¢))
then since M is saturated there are a,b € M realizing the same type in
M;, with T(a) A 1T(b). Towards a contradiction pick a and b of
shortest possible length such that a = b in (Ml,rac£(¢)) but not in

(M,acf(¢)) where the last acf(d) is in M4, 1f 3 =<a,>%a, and

1 0
b = <b1>"E0 then" 50 = EO in (M,acf(9)) so find a strong automorphism
of M taking BO to 50; say it takes b, to a,. So in M,acl(9)),

a, 2 az(ao) and so either a, € acﬁ(ao) or a, € acﬁ(ao). From 4.11
and 4.12, acﬂ(ﬁo) is the same in M and in (Ml,rac£(¢)). But then
a, = az(éo) in (Ml,rac£(¢)) implies a; = a, by 4.13. This

contradiction finishes the proof.
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SECTION 5

In this section we do the same as in the last, except for a structure
of projective character. So we assume M is strongly minimal and if
P € Sl(¢) is the non-algebraic type, p satisfies (*) and is of

projective character over F(n). We prove

Theorem 5.1: (1) There is A, a 0O-definable finite set, and a
0-definable equivalence relation ¥ on MNA with finite classes such
that (M\A)/x has a 0-definable ternary relation S giving it a
projective structure, such that S induces the projective structure on
p(M)/E.

(2) 1f M,A,x and S are as in (1) and we let M, be the structure

1
with#4universe (M\A)/x and predicate S, there is some C S_Miq with -

(M\A)/x and (Ml,C) interdefinable.

Again we assume M is saturated and |[M| > |[Th(M)|. One possible
approach to (1) is to prove the analogue of 4.2, but we take a different
tack. Essentially we construct an affine structure with M attached to it,

apply 4.1 to it, and use this to induce the projective structure on M.
We start with a few more general facts.

Lemma 5.2: Let N be a saturated strongly minimal structure and

N, » N. For any a,b in N, if a= b in N, then a = b in the

structure (NI;N) with a predicate for N.

Proof: It suffices to find an automorphism of N. fixing N setwise

1
and taking a to b. If acl(a) # acz(igﬁ), pick

c € ac(a"b)\ acf(a) and then d € acl(a"bh) with a’<c> = b"<d>;
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b has the same dimension as a, 'so any d € acf(a”b)\ acf(b) will do.
Byviterating this, we can assume acf(a) = acf(b). Then find B a basis

for N over a and complete it to a basis C for N1 over a. Then

aC = bC, so we can find an automorphism of N, fixing C pointwise and

1
taking a to b. It will take acf(a UB) to acf(b UB); that is,

it fixes N setwise.

Note: By essentially the same proof, we can get this result in more

generality.

Corollary 5.3: If N,N1 as in 5.2, then any formula definable on

(N1;N) P N is definable on N.

Proof: Take (N};N*) > (N;3N) |Th(N)|" - saturated. If ¢(X) is
L : -
a counter-example, we have a,b € N* realizing the same type in N* but

- ¢(38) A 19(B), contradicting 5.2.

Lemma 5.4: Suppose N 1is a structure, N = N1 U N2 where N1 is
0-definable in N and strongly minimal. Suppose there is an N-formula
7(x,y) such that: (1) if a ¢ Nl\\ac£(¢),n(a,N) is a subset of N, of
size k<w, and (2) U{n(a,N): a € N> |m(a,N)| < k} covers all but

finitely many points of N,.
Then N has rank 1 and multiplicity <l+k.

Proof: Suppose not. So for some N* > N with IN¥| > |Th(N)| and

¢i(x,5i) (i = 1+k) formulas with parameters from N* = Ni Y NE we have

¢i(N*,5i) infinite and if i#j ¢i(N*,éi) n ¢j(N*,5j) = ¢. (2) implies

tp(éi[NI) is algebraic and so isolated, say by wi(i,éi), where Ei c N%.

Then 3}(¢i(x,§) A wi(i,ai)) has the same solutions in Nt as wi(x,éi)
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does. This inplies that ei(x,éi) AX € NI is Ni-definable, SO at most
one wi(N*,éi) intersects Ni in an infinite set. So we can assume that
for i<k each wi(N*,éi) is an infinite subset of Nj. Let

Yi(x,éi) «— 3y[¢i(y,éi) A Tm(x,y)]; for each isk ¢. defines an
infinite subset of Ni. As above, choose Ei S_Ni with Y3 Eiédefinable,

* -~ o~ T . =
and let a ¢ Nl\\acﬂ{co ce ck}. For i<k, N* E P;(a,a;) so we can
find b. with ¢.(b.,a.) A w(a,b.); the b.'s are disinct so

i itti%i i i

|n(a,N*)| = k+1, contradicting N* > N and (1).

Now we assume M 1is saturated of size >]Th(M)[ and strongly
minimal of projective character. As in section 3, we pick a ternary S
inducing the lines on p(M)/E; so we assume that for any a,b € p(M)
independent, S(a,b,M), S(a,M,b) and S(M,a,b) each contain a finite
nontempty subset of each E-class of acf{a,b}\ [acf{a} U acl{b}]. Now

let N> M and N = acf(M U {a}) for some a € N\M.

5.3 implies that M and (N;M) MM are essentially the same, i.e.
any predicate definable on the set M in (N;M) 1is definable in the

structure M. (N;M) has a predicate for M.

Lemma 5.5: (1) (N;M) has rank 1 and finite multiplicity, and is
saturated.

(2) . For any A €N, acf(A) is the same in (N;M) as it is in N.

Proof: (1) For any a,b € N\M, there is an automorphism of N
fixing M pointwise and taking a to b. Hence fixing a point
a € N\M does not affect M, and clearly if ((N;M),a) has rank 1 and
finite multiplicity so does (N;M). So we fix some (any) a € N\ M, If

b € M\acf{a}, S(b,a,N) is a finite subset of N\M. If
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c € (N\\M)\acl{a} in N, then in P(N)/E c' € acl({a'} U {m': m € M})
so‘there is m €M with m',a’ and c¢' collinear. Hence

S(N,a,c) NM#£G¢. Also for all but finitely many points c € acl{a}l we
have by 3.10 that S(N,a,c) intersects acl(¢) € M. We can assume for

b € acl(¢), |S(b,a,N)| < k = |S(d,a,N)| where a ] d. So we apply 5.4

to ((N;M),a) with S(x,a,y) A x € M taking the part of m, M the part'
of N1 and N\M the part of N,. This does (1), as the saturation
follows from |(N;M)| > |Th(N;M)|.

(2) Clearly if b € acf(A) in N, then b € acf(A) in (N;M). If not
the converse, pick a counter-example A,b with |A| as small as possible.
Then |A} is independent in (N;M) and so in N. For A €M, acl(A)

is the same in N as in (N;M) by 5.3 and the fact that for any

a,b € N\M there is an N-automorphism fixing M pointwise taking a to
b. So let a € A\NM. For eééh c € A\M, c#a, choose c* € M with
S(c*,a,c) and let A* = (AN M) U {a} U {c*: ¢ € ANM}. Then b € acl(A*)
in (N;M) but not in N since in both c¢* and c¢ are algebraic in each
other over a. If b ¢M find b* € M with S(b*,a,b); b* € acfL(A*) in
(N;M) but not in N. So in (N;M), b* € acf(A*)\ acl(A*\ {a}), so

a € acf(A*\ {a} U {b*}). But A*\{a} U {b*} © M, a contradiction.

Now suppose MO satisfies 4.10. So it is a transitive, strongly
minimal affine structure under Q and R, and PQ and Pr give the
canonical affine structure on MO/E. We will show that a quotient of M

can be identified with M! for some such M later. First we notice

0 0
a few things about M6, It is clear that M6 is of projective character
and that S the ternary relation on it induced by Q and R, gives it

O’

a projective structure and induces the projective structure on q(Mé)/E
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where q 1is the type of any non-algebraic element.

0
£ € acl(¢) N My with Sy(b,f,a).

Lemma 5.6: (1) If a,b € M! and a € acf{b} there is

(2) Suppose A 1is a maximal subspace of M! containing the algebraic

0
elements; a,b,c € M6\~A, a # b,c and So(a,b,c), "Then there is an
automorphism of Mé fixing A U {a} pointwise taking b to c.

(3) Suppose U is a 0-definable binary algebraic relation on q(Mé);
then there is a finite C < acl(¢) N Mb such that C 1is 0-definable
and for a,b € q(M}) distinct M} | U(a,b) e« 3x € C S,(a,x,b). If U

defines an equivalence relation, C 1is closed under SO.

Proof: (1) We can assume a # b and a ¢ acf(¢). Pick any

c € Mb\\acﬂ{a} and d ¢ {a,c} with So(a,c,d). Then d £ acf{a}. 1In

q(Mb)/E;- a',c' and d' are collinear and a' = b', so there is e € Mb

with eEd and So(b,c,e). So(c,a,d) A So(c,b,e) and a,b,c,d and e
are distinct so there is f ¢ Mb with So(a,b,f) A So(d,e,f). So
f € acf{a} N acl{d} = acl(¢$) and So(b,f,a).

(2) Pick any e € MO; corresponding to e and A there is a maximal

subspace A* of M_; recall F: Mg‘\{(d,d): d € MO}——> M!. There is

0’ 0
d € A with So(d,a,b). We can find a* ¢ M0 with F(e,a*) = a and
b*,d* ¢ M0 with F(e,b*) = b, F(e,d*) =d and Q(e,d*,a*,b*).
Mo Mo
Diagram:

d* LL* ):)\

. b C ; ’
A d 1O iy é%

& ks (l%

L
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Then the line through d* and b* meets the line through e
cofresponding to c¢ at, say, c*. Let a** be such that Q(e,d*,a**, c*),
Now a*,a** ¢ A* = acf(A*), so there is an automorphism of MO fixing
A* pointwise taking a* to a**, It then takes b* to c*. This
induces an automorphism of Mb fixing A U {a} pointwise and taking

b to c.

(3) 1f a,b € q(Mé) and U(a,b), then from (1) there is c € acf(¢)
with Sj(a,c,b). Fix a ¢€ q(Mé)' and for each b with U(a,b) choose
such a ¢, and let C be the collection of these c¢'s. Clearly C is
0-definable. From (2) it follows that any d ¢ q(Mb) with SO(a,c,d)
has ab = ad. So for any a,d distinct in q(Mb),

Mb |= U(a,d) «<— 3Ix € C So(a,x,d). Now suppose €9:¢1 € C and
SO(CO’CI’CZ)' We may assume o # - Pick a,bo,bi € q(Mé) with
SO(a’CO’BO) A SO(a’C’bl)’_ U(a,bo) A U(a,bl). From

SO(CO’CI’CZ) A So(co,a,bo) find d with So(a,cl,d) A SO(bO’CZ’d)'
U(a,d) as d € q(Mb). If U 1is an equivalence relation, U(bo,d).

So ¢, € C.

2

Proof of 5.1(1): Consider (N:M). It has rank 1 and finite

multiplicity; one of the strongly minimal sets is M and the others are
subsets of N\M. Let K be one of them. If r 1is the strong type

of an element of K, certainly r satisfies (*) by 5.5(2). Clearly
also r is non-orthogonal to p. In [(N;M)Nacf(¢)]/E where we recall
aEb iff a € acl{b} and a = *b  we have p(M)/E non-orthogonal to
K/E; PS witnesses this. Since both are, by 3.4, strictly minimal
No—categorical sets, K/E 1is either affineror projective over the same

field F(n) over which p(M)/E is projective. Now by 5.5(2), if
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a,b € X are independent, acf{a,b} is the same in (N;M) as in N.

In N, acf{a,b} intersects n+l1 different E-classes, one of which is in
p(M). So in K, acl{a,b} intersects at most n E-classes. So K is
of affine character over F(n). Ey 4.1, there is 6 O-definable on K

such that K/8 1is an affine structure over F(n).

Consider the structure M, =M U K/8 U (X/8)!'. This consists of

1
three strongly minimal sets, and [Ml\ acl($)]/E has three strictly
minimal No—categorical sets. p(M)/E and q(Ml)/E are both projeqtive
and they are non-orthogonal, where q 1is the type of an element of
(K/8)'. So by 1.9, .in [Ml\\ac£(¢)]/E there is a 0-definable bijection
between them. So in M1 there is a formula <(x,y) with T(a,Ml)

a finite subset of q(Ml) for a € pM) (= p(Ml)) and T(Ml,b) a

finite subset of vp(M) for b € q(Ml).

Let t*(x,y) «—> 3z(t(z,x) A T(z,y)); this gives an algebraic -
relation on q(Ml). Find C < (K/8)' as in 5.6(3). Then consider the
localization of (K/6)' at C; recall that this means the equivalence
relation Xc on (K/8)'\<C> with xc(a,b) iff 3dc € <C>So(a,c,b).

Here SO is the ternary relation giving the lines on (K/8)' and <C>

is the closure of C wunder SO. Then T 1induces a function from M

minus a finite set A onto [(K/G)'\<C>]/XC minus a finite set— by
expanding C we assume the latter is empty. So if we take the appropriate

equivalence relation ¥ on M\\A, T induces a 0-definable bijection

between (M\A)/x and the projective space [(K/G)'\\<C>]/xc.

SO transfers in a natural manner to a ternary relation on
((K/8) '\ <C>)/XC. The pre-image S of this certainly induces the lines

on p(M)/E. Since ¥ 1is on M, it is 0O-definable on M, as are A
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and S. This'completes the proof of 5.1(1).

Towards the proof of 5.1(2) let us start with (M,S) a projective
space over F(n) such that S induces the lines on p(M)/E; all as
above except we assume A = ¢ and ¥ 1is the identity. Then take
N>M, N=aclM U {a}) for some (any) a € N\M, -as above. Again,

consider (N;M). 5.5 holds, and in this case:

Lemma 5.7: (N;M)\M = M, is a strongly minimal structure

satisfying 4.10. Mb is M; strictly speaking, there is in (M;N)eq

a 0-definable bijection between Mb and M.,

Proof: We know from 5.5 that (N;M) has rank 1 and finite

multiplicity. Suppose M0 is not strongly minimal. For any a,b € M0

independent, frdm 5.5 acf{a,b} intersects M, and since S induces
the lines on N/E, there is ¢ € M with S(a,b,c); c¢ £ acl(d). We

could hawe chosen a,b in different strongly minimal pieces of MO’

so for any a ¢ MO’ c € p(M), there is b in a different strongly

minimal piece of M0 than a with S(a,b,c), Let C Dbe the stfongly
minimal piece containing a € MO’ and c¢,d € p(M) be independent.

We count <c,d,a> N C in two different ways. Let b € MO\ C be such
that S(a,b,c) and k = |{f: S(a,c,f)} N C| = |{f: S(b,c,£)} N C]|.
For each e € <c,d> < p(M), ea =ca and eb = cb -in (N;M), so

|{£: S(a,e,f)} N C] = k = [{f: S(b,e,f)} N C|]. Now

<c,d,a> = <c,d,b> = U S(a,e,N) = U S(b,e,N).
e€<c,d> e€<c,d>

For distinct e »€) € <c,d>, the lines S(a,eO,N) and S(a,el,N) meet

0
at a € C, but the lines S(b,eO,N) and S(b,el,N) meet at b £ C.



65.
So | U S(a,e,N) N C| = (n+1)(k-1) + 1. But
e€<c,d>

| U S(b,e,N} N C| = k(n+l1), a contradiction. So M0 is strongly
e€<c,d>

minimal.

Diagrams:
M T7

C
// K C C K

S R
/"
LCf‘k’ NYM

N M

I

Now there is a natural way to define R and Q on M0 giving it

an affine structure. We let R(a,b,c) «<— S(a,b,c) for a,b,c € MO

and for a,b,c,d € MO’ let .

Q(a,b,c,d) «<— 3Ix,y € M(S(a,b,x) A S(c,d,x) A S(a,c,y) A S(b,d,y)).

L4

See just after 1.8. It is easily checked that Q and R give M_ an

0

affine structure; we know M0 is strongly minimal and transitive, and

5.5 tells us M0 is of affine character. The fact that S induces the

lines on p(N)/E and 5.5 imply that R induces the lines on MO/E. Since
the addition on MO/E is derived from the lines on N/E in the same

manner as Q was derived from S, Q induces the addition. So M0

satisfies 4.10. That Mb is M 1is also clear.

Proof of 5.1(2): Let M1 be the structure with universe M and

predicate S. 1In this situation, let racl(¢) E_Miq consist of the

definable closure taken in Miq of the algebraic points of M and the

field elements. As in the proof of 4.10, it suffices to show that if
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a = b(c) in '(Ml,rac£(¢)) then a = b(c) in (M,acl(¢$)); the last

acf(¢) is taken in M®%.

Let N be formed from M as usual; let N1 be obtained from

(Ml,rac£(¢)) in the same manner; we can assume N and Ni have the
same universe. If a = b(c) in (Ml,rac£(¢)), there is an automorphism

v of (Nl;Ml) fixing ¢ pointwise and taking a to b. For any

e € Nl\ M1

L € MN acl(¢) if this is not empty and f # e in Nl\ M, with

fixing M U {e}

we can assume this automorphism fixes e. Now pick

1
pointwise and taking +~(f) to f. If MAN acl($) = ¢, let B be the

S(e,£,f). By 5.6(2) there is an automorphism B of N

identity.

By is an automorphism of (Nl;Ml); it fixes acf(¢) N M and
the field elements as well as e. Further, it fixes the classes of the
relation Q(x,y,i,w) AF(x,y) =4£ on Nl\ M. Let Zl # £ be any
point of M N acf(9), and g € Nl\M1 be such that e # g and
S(e,ﬂl,g). Pick 22 with S(Z,Zl,ﬂz) A S(f,g,ﬂz); this comes from
S(e,f,2) A S(e,g,ﬂl). Now 22 € MN acl($), so is fixed by By, as are
e,f and Zl. So g is fixed by Br.

———

=

Diagram:

-
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Thus for any 'ﬂl € MN acl(d) the classes of the relation

Q(x,y,z,w) A F(x,y) = £; on N\M are fixed by By.

Applying 4.10 we get that if M_ = (N;M)\M, then (MO,ac£(¢))

0
is interdefinable with (Mz,rac£(¢)) .where M, has universe N\M,
predicates Q and R, and here racf(¢) is the definable closﬁre of
Mé N acl($) = M N acl(d), the field elements, and the classes of relationé
Q(x,y,z,w) A F(x,y) =& for £ € MN acf(9). So the restriction of
By tdo N\M 1is an automorphism of (MO,ac£(¢)). It extends uniquely
to an automorphism f of (MO,ac£(¢))' which is (M,acf(9)). For any

a,b distinct in MO, we must have f(F(a,b)) = F(By(a),By(b)) = By(F(a,b)),

so By P M is an automorphism of (M,acf(9)). It fixes ¢ pointwise and

takes a to b. This completes the proof of 5.1(2).
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SECTION 6

Our aim in this section is to extend the affine or projective
structure found to hold on a strong type (in the projective case on a
strong type plus some algebraic points) to a formula in a Weakly minimal
structure. We assume M 1is a saturated weakly minimal structure of

size >|Th(M)|, p is a strong l-type over ¢ which is non-algebraic.

If we assume there are almost O-definable formulas of M giving
an affine or projective structure on p(M), we show here that there is
an almost O-definable subset of M on which the same férmulas give us
an affine or projective structure. We begin with the affine case.

We first prove:

Lemma 6.1: Suppose there is an almost O-definable predicate Q
which acts as an abelian group operation on pM) (i.e. its réstrictiqn
to p(M) satisfies #5,6,7 and 10 of the axioms for an affine space),
and itx) € p. Then there is o(x) € p with M F= c(x) = A(x) such

that Q acts as an abelian group operation on do{(M).

Towards the proof of 6.1, we first pick by compactness Go(x) €p
with M |= Go(x)-—> X(x) and if a,b,c,d,e,f € GO(M), then
(1) 3!wQ(a,b;c,w), (2) Q(a,b,a,b),
(3) Q(a,b,c,d) —> Q(a,c,b,d) A Q(b,a,d;c) and
(4) Q(a,b,c,d) A Q(a,b,e,f) = Q(c,d,e,f). G, may not be the formulas

we seek since it may not be closed under Q. But any o(x) € p with

Ml (0x) = 09(x)) A (0(x) Aa(y) Ao(z) AQx,y,z,w) = o(w))
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will do. Pick cl(x) €p with M |= Gl(x) — Go(x) and
M= 0,(x) Aoy(y) Ao (z) AQUX,Y,z,W) = 0 (W),

Define ~ on Gl(M) by ¢ ~d iff for all a € p(M), there is

b € p(M) with Q(a,b,c,d).

Lemma 6.2: (i) ¢ ~d iff for some a € p(M), b € pM),
Q(a,b,c,d).

(ii) ~ 1is an equivalence relation on 9y ™.

Proof: (i) (=>) obvious. (<=) Pick any e € p(M), and f
with Q(e,f,c,d). By (1) and (3) we can, and M | co(f).
Q(a,b,c,d) A Q(e,f,c,d) give, from (3) and (4), Q(a,b,e,f); since
a,b,e € p(M), £ € p(M) and we are done.
(ii) From (2) and (3), Q(a,-a,b,b), so reflexivity is clear. Suppose
c~d and a € p(M). Pick b€ pM) with Q(a,b,c,d); then (3)
give‘\s Q(b,a,d,c) so (i) gives d ~ c. Now suppose ¢ ~d and
d~e, and a € p(M). Pick b € p(M) with Q(a,b,c,d) and then
f € pM) with Q(b,f,d,e). Then by (3), Q(b,d,a,c) A Q(b,d,f,e)
so by (4), Q(a,c,f,e) and by (3) again, Q(a,f,c,e). So c~e

by (i). So ~ 'is transitive.

Lemma 6.3: Suppose Gl(c) Acl(d) and neither ¢ nor d is

algebraic. Then ¢ =°d iff ¢ ~d.

Proof: (=>) Let a € p(M)\acl{c,d}. We can find f ~c¢ with
f ¢ acl{a,c,d} for as b varies through p(M), Q(a,b,c,M) varies
through ¢/~ and by (1) and (3) distinct b's give distinct f's with

Q(a,b,c,f); so there are |M| f's with ¢~ f. Pick b € p(M)
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with Q(a,b,c,f). Since c =54 and c,d ¢ acl{a,f} there is a strong
automorphism of M fixing a and f taking ¢ to d. It takes b to
some g € p(M) with Q(a,g,d,f). So d~f and so c¢c ~d.

(<) Suppose c ~d. We can assume c | d as we can compare both to

an element of ¢/~ Nacl{c,d}. Choose a € p(M)\\acﬂ{é,d}, e Esc,

e £ acl{a,c,d}. Pick b € p(M) with Q(a,b,c,d) énd, using the above,
f €e p(M) with Q(a,f,c,e). f,b ¢ acl{a,c} and f =5p, so abc =°afc.

S

So d Ese c.

Choose 0,(x) € p with M |= 0,(x) = 0,(x) and
M |= oz(x) A Oz(y) A oz(z) A Q(x,y,z,w) —> ol(w). 6.3 implies that if
OZ(C) A 102(d), a,b € p(M) and Q(a,b,c,d) or Q(a,b,d,c) then either
c or d is algebraic. By compactness, find I and J finite with
I UJ minimal such that I U J < acf($) and Oz(a) A 102(b) and
a~b implies a € I or b € J. Let OS(X) “—> (oz(x) vx £ 1) v x_e J.

os(x) € p.

Lemma 6.4: If ol(a) A ol(b) and a ~b, then os(a) «—> os(b).
Proof: Since we can compare both a and b to a non-algebraic
element of a/~, we can assume a £ acl(¢). If OS(a) then Oz(a)
and a ¢ I, soany c ™~ a with 102(0) is in J. If d ~a and
oz(d), any c¢c~d has ¢ ™~ a, so either Oz(c) or ¢ € J; by the
minimality of I UJ, d ¢ I. So b € (OZ(M) UINI = OS(M)’ Similarly

if 103(a).

Now let
Oy (x,y) <> 05(x) A Vz,wloz(z) A (QX,y,2,W) V QX,Y,W,2)) —> 0z (W)].

Note that if a,b € p(M), M | 04(a,b),
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Lemma 6;5: If ae€pM), 64(b,a) A 04(c,a) and

Q(a,b,c,d) v Q(a,b,d,c), then 04(d,a).

Proof: Since 04(b,a) A OS(C)’, cs(d). So to show 04(d,a),

we pick e,f with Os(e) A (Q(a,d,e,f) v Q(a,d,f;e)) and we shqw

os(f). Notice co(f). We have four cases:

(1) Q(a,b,c,d) A Q(a,d,e,f). Pick g with Q(a,b,e,g); since
04(b,a) A cs(e), os(g). Also Q(b,d,g,f), so Q(a,c,g,f);
since 04(c,a) A os(g), 03(f)~

(ii) Q(a,b,c,d) A Q(a,d,f,e). Pick g with Q(a,b,g,e); cs(g).
Pick h with Q(a,d,g,h); co(h), so Q(b,d,e,h) A Q(f,g,e,h).
So Q(b,d,f,g), so Q(a,c,f,g). Since 04(c,a) A os(g), os(f).

(iii) Q(a,b,d,c) A Q(a,d,e,f). Pick g with Q(a,b,g,e); cs(g).

o So Q(d,c,g,e). Pick h with Q(a,d,h,g), so |
Q(e,f,h,g) A Q(a,h,c,e), so Q(a,c,g,f). So cs(f).

“(iv) Q(a,b,d,c) A Q(a,d,f,e). Pick g with Q(a,b,e,g); cz(8).

“ Qu,c,e.g) so Qac,f,g) so og(E).

Lemma 6.6: If a,b € p(M), then M }='04(x,a) «—> 04(x,b).
Hence there is o(x) € p such that for any a € p(M)

M= o(x) «<— 0, (x,a).

Proof: If 04(c,a) A 104(c,b) there must be d and e with
cs(d) A 103(e) A (Q(b,c,d,e) v Q(b,c,e,d)). If Q(b,c,d,e),v pick f
with Q(a,b,f,d), so 03(f). Bﬁt also Q(a,c,f,e); since 04(c,a),
03(e). If Q(b,c,e,d), pick f with Q(a,c,f,d), so os(f). But then

Q(a,b,f,e) gives cs(e)° This contradiction establishes the lemma.



72.

Proof of 6.1: Suppose ao(a) A o(b) A o(c) A Q(a,b,c,d).

Pick e € p(M) and f with Q(a,b,e,f). By the two previous lemmas,

o(f). Also Q(e,f,c,d) so again o(d).
vWe now take care of the affine case:

Lemma 6.7: Suppose there are ternary R and 4-ary Q almost
O-definable on M whose restrictions give an affine space structure
over F(n), say, on p(M). Then for any A(x) € p there is <T(x) € p
such that Q and R give an affine space structure over F(n) on <T(M).

and T(M) C A(M).

Proof: First find To(x) € p such that #'s 0 through 11 hold on
TO(M) € A(M), as do the following gffine space theorems:
#12 Q(x,y,z,w) A R(x,w,v) = 3r,s[R(x,y,T) A R(x,z,s) A Q(x,T,s,v)]
#¥13  Q(x,y,z,w) A R(x,y,v) —> dr,s[R(x,z,r) A R(x,w,s) A Q(x,T,s,V)]
#14  R(y,z,w) —> 3Jr,s[R(x,y,r) A R(x,2,s) A Q(x,T,s,w)].
For examplﬁe if a,b,c,d,e € TO(M), then

Q(a,b,c,d) A R(a,d,e) — 3Jr,s[R(a,b,r) A R(a,c,s) A Q(a,r,s,e)].

Diagrams: $13 13 W
T v T

Mz 2
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Then find Tl(x) € p such that

M = (T (x) = 75(x)) A (v (x) A T (y) AR(X,Y,z) = T3(z)). Applying
6.1, we find o(x) € p with M | o(x) = Tl(x) and o(M) closed
under Q. Let =(x,y) <—> 0(x) A o(y) A Vz(R(x,y,z) —> o(z)). Note

that if a,b ¢ p(M), M | 7(a,b).

Now suppose a € p(M), ~t(b,a) A t(c,a) A Q(a,b,c,d). Then
t(d,a); for consider any e with R(a,d,e). To(e), so by #12, find
f and g with R(a,b,f) A R(a,c,g) A Q(a,f,g,e). By =(b,a), o(f);

by <(c,a), o(g) and by Q(a,f,g,e), o(e).

Suppose a € p(M), =T(b,a) A t(c,a) A Q(a,b,d,c). Using #13,
t(d,a).

Now suppose a € p(M),- T(b,é) A t(c,a) A t(d,a) A Q(b,c,d,e).
Then <(e,a), for pick f with Q(a,b,f,c); then <(f,a) and also

Q(a,f,d,e), so =t(e,a) by the two previous arguments.

ﬂSuppose a€pM™M, =T(b,a) A t(c,a) A R(b,c,d). From #14, find
e and f with R(a,b,e) A R(a,c,f) A Q(a,e,f,d). So o(d). Suppose
R(a,d,g). From #12, find h,i with R(a,e,h) A R(a,f,i) A Q(a,h,i,g).
If a=e, a=h;‘ if a#e, R(a,b,h) from R(a,b,e) A R(a,e,h).
Similarly R(a,c,i). So o(h) A o(i) and so o(g). This shows <(d,a).
Thus for any a ¢ p(M), t(M,a) 1is closed under Q and R; if we
show that M |z t(x,a) <— T(x,b) for any a,b € p(M) we can then
find <(x) € p such that M | t(x) «<— t(x,a) and this T is our
formula. Suppose <(c,a) A R(b,c,d) where a,b ¢ pM); then =(b,a),
so- t(d;a) by the above argument. So o(d) and so <(c,b). This

completes the proof.
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Now we turﬁ to the projective case. So we assume M has an
almost‘ O-definable ternary relation S such that p*(M) 1is a projective
spacie over F(n) wunder the restriction of S. Here p*(M) is the
closure of p(M) wunder S, and p*(M) \ pM) < acl($). Also, as in

3.11, p* 1is a possibly incomplete type over acl(¢d).

Lemma 6.8: For any X(x) € p*, there is o(x) € p* such that

o(M) ¢ A(M) 1is a projective space over F(n) wunder S.

As a first approximation, pick Oo(x) € p* with OO(M) < M)
such that if a,b,c,d,e € OO(M), then:

(1) a#b —> 3!n+1

zS(a,b,z)

(2) S(a,b,a); S(a,a,b) > b = a

(3) - s(a,b,c) = S(b,a,c)

€)) S(a,b,c) A agc —> S(a,c,b)-

(5) S(a,b,c) A S(a,b,d) A agc —> S(a,c,d)

(6) S(a,b,c) A S(a,d,e) A a,b,c,d,e distinct = 3Ju(S(b,d,u) A S(c,e,u)).
I£ we can find o(x) € p* with
M= (0(x) = 0,(x)) A (6(x) A 0(Y) A S(x,y,2) = 6(2))
we will be done. Pick 0, (x) € p* with
M= (0,(x) = 0,(x)) A (0,(x) Ao () AS(x,y,2) = 0y(2)).

Let Oz(x,y)' «—> Ol(x) A Ol(y) A Yz(S(x,y,z) = Ol(z)). Note Oz(a,b)
if a,b € p*M). If o,(c,a) for some a ¢ p(M)\acl{c}, then a,(c,b)
for any b ¢ p(M)\ acl{c}, so there is oz(x) € p* with

OS(C) «—> dz(c,a) for any a € p(M) \acl{c}.
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Lemma 6.9: If p*(a), os(b) A 103(c) A S(a,b,c), then either

b or c¢ 1is algebraic.

Proof: First suppose b £ acl(¢), a4€ pM)\acl{b},
os(b) A S(a,b,c). Certainly ol(c), and if c#a, af aéﬂ{c}.
This is because a € acf{c} implies c € acf{a}, giving b € acf{a}
and so a € acf{b}. So if not 03(03, there is d with
S(a,c,d) A 1ol(d). Note that oo(d) as ol(a) A ol(c). But
S(a,b,c) A S(a,b,d) A a #c gives S(a,b,d) and this contradicts

oz(a,b). So OS(C)'

Now suppose a € p*(M), OS(b) A S(a,b,c) and b,c ¢ acl(9).
If 103(c), we have a € acf{b} by the above. Hence b\L c. Pick
d ¢ p(M)\~ac£(b)v and e ¢ {b,d} with S(b,d,e); Os(e) by the
above. a,b,c,d and e must gé distinct, so from (6) and
S(b,a,c) A S(b,d,e) find f with S(a,d,f) A S(c,e,f). S(a,d,f)
implies f € p*(M). Now f £ acl{e}, for if f = e, then
S(b,d,e) A S(a,d,e) give S(a,b,d) and d € acl{b}; if f # e and
f\l,g, then c¢ € acl{e}, so b € acl{e} and d € acL{b} contrary
to assumption. But the previous paragraph shows that oz(e,f) A S(f,e,c)

implies os(c)n

So we can find 1I,J finite.sets of algebraic elements such that
p*(a) and os(b) A 103(§) A S(a,b,c) imply b € I or c € J; pick
them with I UJ minimal. Let 04(x) —> (03(X) Ax ¢ 1) vx €Jd.
Then 04(x) € p* for if a,b € p*M) and S(a,b,c), c € p*(M), so

os(c); thus b € 03(M) and b £ I.
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Lemma 6.10:  If p*(a), 04(b) A S(a,b,c), then 04(c)°

Proof: Towards a contradiction let a,b,c yield a counter-
example. If 03(b) A 103(0), either b € I or ¢ € J, a contradiction.

Three cases remain:

Case 1: 03(b) A 03(0). So ¢ € I. By the minimality of I U J there
is e e p*M) and d £ J with 103(d) A S(e,c,d)}. Either e = a or
a,b,c,d,e are distinct; if e = a, S(a,b,c) A S(a,c,d)} gives

S(a,b,d) A 03(b) A 103(d) AbgIAand¢J, acontradiction. If e # a,
there is f with S(a,e,f) A S(b,d,f) from S(c,a,b) A S(c,e,d). So

f € p*(M) but 03(b) A 103(d) Ab ¢gIAndg¢gJ, again a contradiction.

Case 2: 103(b) A 103(c). So b € J. There are d and e with

e € pM), d £ I, S(e,d,b) A os(d). Again either e = a or

a,b,c,d and e are distinct. e = a implies

S(a,d,c) A os(d) A 103(c); since d £ I, ¢ € J, a contradiction.

e # a implies there is f with S(a,e,f) A S(c,d,f); f € p*(M), so

again we have a contradiction.

£

Case 3: 103(b) A 03(0)- So b€J and c¢ € I. By the minimality of
IUJ and c E‘I there is e € p*(M), d ¢ OS(M) UJ with S(e,d,c);
note - oo(d). If e =a, S(a,b,d). If e #a, a,b,c,d and e are
distinct, so there is f with S(a,e,f) A S(b,d,f). In either case
there is f € p*(M) with S(f,b,d). Since b € J, there is h € p*(M)
and i € o;(M) N1 with S(h,i,b). S(b,f,d) A S(b,h,i) and either
f=h or b,f,h,d,i are distinct. If f = h, S(f,d,i); otherﬁise
there is. k with S(f,h,k) A S(d,i,k). k,f € p*M), d ﬁ‘os(M) UJ

and i € OS(M)‘\I, so S(f,d,i) v S(k,d,i) gives a contradiction.



Proof of Lemma 6.8: Let

o (x)

The previous lemma
Certainly 04(c).

S(c,d,e) A 04(d) A-

<> 0,(x) AVy,z(o4(y) A S(x,y,2) = 0,(2)).

gives o(x) € p*. Suppose o(a) A o(b) A S(a,b,c).
If not o(c), there are d and e with

164(6). Either d=a or d=b or a,b,c,d and e

are distinct; if d=a, S(a,c,b) A S(a,c,e) give S(a,b,e)

contradicting o¢(a) A 04(b). Similarly if d=b. Otherwise there is

‘with S(a,e,f) A S(b,d,f). Since o(b) A 0,(d), o,(f). Since

c(a) A 04(f), 04(e). This completes the proof.
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SECTION 7

In this section we concentrate on determining the structure of an
affine or projective structure like the ones arising from 6.7 or 6.8.
We will show that this structure has some collection of almost
0-definable subspaces.of finite co-dimension, some collection of algebraic
points, and essentially no other structure. 1In the projective case,

most of the ''subspaces' will of course be affine.

We begin the projective case, since once this is decided, there
is little trouble reading off the affine case. So until 7.7 we will
assume M 1is weakly minimal, saturated and of size .>|Th(M)|, and that
there is a ternary S 0-definable on M giving it a projective structure
over F(n). Further, we will assume there is some strong type p with
p* (M) gs in 5.1 and 6.8. Spécifically, we have P S_M' such that:
1) There is a strong type p with p(M) € P € p(M) Uacl($) and p
is of projective character;
2) P 1is closed under S;
3) S induces the lines on p(M)/E;

4) P = p*(M), where p* 1is a possibly incomplete type over acl(¢).

Lemmas 3.11, 3.15 and 3.16 apply to P as do 6.8 and 5.1(2), so
we know the full structure induced on P by formulas. There is some
C S_rqc£(¢) such that P as a structure is interdefinable with the
structure (Pl,C) where P1 has‘universe P and predicate S. Recall

that in this context racf(¢) is the definable closure of the algebraic

points in P along with the field elements.
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If A S;M is any subspace, we recall that a =~ Ab iff there is
¢ € A with S(a,c,b); this gives an equivalence relation on MN\A. Each
élass of A has an affine structure on it, and we will abuse
terminology by calling it an "affine subspace" of M.

Lemma 7.1: Suppose a,b € M\ (P U acl(¢)). Then a =°b iff

aNPb.

Proof: (=>) We can assume a # b. Clearly a/~ p has size |M|,
so choose ¢ o pds C ¢ acf{a,b}. Then pick d € P with S(a,d,c).
There is a strong automorphism of M fixing ¢ and taking a to b.

It takes d to e where S(b,e,c) and e € P. So b= pC and

ax Pb. |

(<=) We can assume a‘l/b by picking an element of a/x p independent
from both a and b and comﬁaring both to that elemenf. Choose ¢ € P
with S(a,c,b) and some d € P\acf{a,b}. ‘Now a,c,d and b,c,d are
independent triples, so for any e with S(c,d,e), e € P and

e £ act{a} U acl{b}. So ae =ac and be =°bc for any such e. Also
<a,c,d> = <b,c,d>. If a ¥Sb, we can repeat‘the argument of 5.7,
counting <a,c,d> 1l q(M) in two ways where q 1is the strong type of a.
Using a, we gét |<a,c,d> N q(M)I = (k-1)(n+1) + 1 and using b we get

|<b,c,d> N q(M)I = k(n+l), a contradiction. See 5.7 for more details.

Lemma 7.2: (1) Suppose P € X, an almost O-definable subspace of
M. Then X is of finite co-diménsion in M and the 2&-classes are
almost O-definable.
(2) ax Pb iff ax Xb for all X as in (1).
(3) 1If 'A is a definable infinite subspace of M, then P < A and

A is almost 0O-definable.
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Proof: tl) If a € M\X, then a/mx is defined by
dy(y € X A S(a,y,x)). This does not depend on the choice of a in its
=~ x-class, so not upon the choice of a in its strong type. So the
‘class is almost O-definable. If X had infinite co-dimension, there
would be infinitely many = y-classes and then 3y(y‘ € X A S(a,y,x))
would, for various choices of la, give ini;initely many pairwise disjoint
infinite sets. This would contradict weak minimality. See remark (3)
following 1.2.
(2) As P cX, a::spb implies a::xb. Suppose a;ézpb. Then
p*(x) U {S(a,x,b)} 1is inconsistent as M 1is saturated. Choose
A(x) € p* with X(x) U {S(a,x,b)} inconsistent. By 6.8 we can find
o(x) € p* with o(M) € A(M) and o(M) an almost O-definable subspace
of M. So a# G(M)b’
(3) Suppose A is c'l—defina‘t;le; choose a € ANacf(d). Then choose

b, b=%a(d) and b | a. By 7.1 there is c € P with S(a,c,b).
d

So c £ acf(d) and c € A. Since some c € PNacl(d) is in A,
P\acf(d) < A and since A is closed, P CA. By 3.1l pick A(x) € p*
with AM)\NA finite. By 6.8 find G(M)v an almost O-definable subspace
with P € oM) € \(M). Since o(M) and A are subspacesr, A is
infinite and o(M)\ A 1is finite, oM) < A. So A is the union of o(M)

and some =&Y G(M)—classes, and so A is almost O-definable.

Now we determine the algebraic closure operation.

Lemma 7.3: Let A be a %P—class of MXN\P. Then for any

BCPUA, ac(B) N (P UA) = <B U (acl(¢) N (P U A))>.
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Proof: Ciearly P UA 1is closed under S, so
<B U (acf(¢) N (P UA))> < acf(B) N (P UA). Now assume a,b € P UA
and a € acf{b}. We can assume a #b and a ¢ ac£(¢j, and in fact
that a ¢ P, as we know from 5.1(2) that_if BCP,
acL(B) N P = <B U (acl(¢) N P)>. First suppose b € P; pick ¢ with
c=" and c | a and then d with cd =°ab. c pa so find
e € P with S(a,c,e). e € acf{b,d} and e,b,d €¢ P so
e € <{b,d} U (acl($) N P)>, so we can find
d* € <{d} U (acl(¢) N P)> < ack{d} with S(b,d*,e); d* ¢ {e,b}. Now
S(a,c,e) A S(b,d*,e) give f with S(a,b,f) A S(c,d*,f), so

f ¢ acl{a,b} N acl{c,d*} = acl{a} N acl{c} = acl().

Now suppose b € A; since a X Pb find ¢ € P with S(a,b,c).
Either ¢ € acf(¢) or a € act{c} and we can apply the previous

paragraph. So if B = {b} we are done.

For the general case, we can assume first that B is finite and then
by induction that acf(B\{b}) N (P UA) = <B\{b} U (acl($) N (P U A))>,
where b € B. Then we apply the case of a singleton to (M, B\{b}) to

&

conclude.
Lemma 7.4: For any B € M, acf(B) = <B U acl($)>.

Proof: As in 7.3, it suffices to do the case where B = {b}.
Suppose a € acf{b}\acl(¢), a # b. Pick c Esa, cla and d with
cd Esab and then e ¢ P with S(a,c,e). b ~pd and e ¢ acl{b,d}
so by 7.3, e € <{b,d} U acl(¢)> so there is d* ¢ acf{d} with
S(b,d*,e). So there is f with S(a,b,f) A S(c,d*,f);

f € act{a} N ack{c) = acl(d).
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Now let M1 be the structure with universe M, ternary predicate
S, and a unary predicate for each 0-definable projective subspace of M,

Our aim is to show

Theorem 7.5: There is C <€ ack(¢$) ﬂ-M?q with (Ml,C)> and M

interdefinable. Here acf(¢) 1is taken in M.

We first notice that any almost O-definable (projective) subspace

of M 1is almost 0-definable in Ml' For suppose X 1s an almost

O0-definable subspace of M; 1let Y be the intersection of all the

conjugates of X. Y 1is a 0-definable subspace, and the =2 _-classes are

Y

almost O-definable in M, as Ry on MNY 1is defined by
Jz(z € Y A $(X,2,y)). Since X 1is the union of Y and finitely many

of these classes, it is almost O-definable in M1°

As in the proofs of 4.10 and 4.1(2), we have a notion of rac£(¢).‘
Here racf(¢) 1is the definable closure of the following sets in Miq:
1) acl($) N M;
2) the classes of = X for each O—definable‘subspace X of M;
3) the field elements;
4) for each £ ¢ PN acl(¢) and X a O-definable subspace, we have
the following equivalence relation on pairs of distinct points in
each = x—class -
Ez(x,y,z,w) «—> S(x,y,&) A S(z,w,&) A Jv(v € X A S(x,2z,v) A S(y,w,V)).

This has finitely many classes, and these go into racl(¢).
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Diagram for 4):

WAy

In 4), the dependence on X is illusory. If a,b,c,d ¢ P and
E’e(a,b,c,d) with respect to X, and Y is another O-definable
subspace with a,b,c,d in the same = Y—class we have Eﬂ(a,b,c,d) with
respect to Y. . The effect of naming the equivalence classes of E2 is

to distinguish between (a,b) and (a,c) if a,b,c are distinct in

M\P and all on the same line through £ .

Lemma 7.6: If a € M\P and c ¢ Miq is in racf({a}), then ¢
is definable over {a} U racf(¢). Here racf({a}) means racl(d)

taken in (M,a).

Proof: The field elements remain the same whether a is named
or not. By 7.2(3), the {a}-definable subspaces afe almost 0O-definable,
so 2) and 3) of the definition of racf($p) for (M,a) take care of
themselves. If b € acf{a} N M there is by 7.4 some c € acf(d) with
S(a,c,b). If ¢ € P, 4) implies b is definable over {a} U racf(¢).
If ¢ ¢ P we can find an almost 0-definable subspace X with a,c £ X
and a = c,u For choose any almost O-definable subspace Y with

X

a,c £Y; if not a v© pick and d ¢ {a,c} with S(a,c,d) (we can

assume a # c¢), and let X =Y U d/~ v Now there is a unique point of
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on the same line as a and ¢, so it is definable over a and c.

Since the field elements are in racf(¢), every point on the line through
a and c 1is definable over {a} U racf(¢); recall c € racf(d). This
takes care of 1). It also takes care of 4). For if £ € act{a} n P,

then the points on the line through a and £ are all definable over

{a} U {b}, where b € acf(¢) N M with S(a,£,b), and this implies

the Eﬂ—classes are definable over {a} U racl(¢).
7.6 is false for a € P.

Proof of 7.5: 1If 7.5 is false, we can as in 4.10 and 5.1(2)

find a,b in M with a = b in (Ml,rac£(¢)) but not in (M,acf(¢)).

We pick a counter-example M with a,b as above of shortest possible
length in any counter-example. If a contains an element of P,

without loss a = <a,>"¢c, b = <bo>"c'1 with a

0 and hence bO in P.

0

If a has no element of P, write a = <aO>AE and b = <bO>Aa‘ for any

a, in a. There is by choice of a,b an automorphism of (M,acf(9))

taking d to c¢; say it takes b, to a;. So aj

(Ml,rac£(¢)) but not in (M,acf($)) and either 3452, € P or c

al(E) in

contains no elements of P.

But by choice of a,b and M, ¢ contains no elements of M\P,
For 7.6 implies that if ¢ € ¢\P, we can replace M by (M,c) and

then a_. = al(E \{c}) in ((Ml,c),racﬂ({c})), But a, 4 al(E \{c}) in

0
((M,c),act ({ch)).
. - . : _s . .
Now if a, =a; in (Ml,rac£(¢)), then a, ='a; in M 51nc§
either a, = a) € acl($) or ay,a, are in P\acl(¢) or in the same

] P-class. We use 7.2(2) for this and then 7.1 applies. So we must
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have 3552 and ¢ all in P. But 5.1(2) holds on P, giving us a

contradiction.
As promised, we can now read off the affine case.

Lemma 7.7: Let M be a weakly minimal structure with predicates
Q and R giving it an affine structure. Suppose there is a strong
type p of affine character such that:
(1) pM) 1is closed under Q and R; and
(2) PQ and PR give the affine structure on p{(M)/E — the notation

is from section 3.

Let M1 be the structure with universe M, predicates Q and R
and a predicate for each 0-definable equivalence relation of M
partitioning M into conjugate subspaces. Then there is C S_qu with

M and (Ml,C) interdefinable.

Proof: Apply 7.5 to the projective space M U M'. The set P
is the image of p(M)2 under F: Mz\\{(a,a): a €M} -> M'., Our
assumptions on p(M) assufe us that P satisfies 1) - 4) in the
beginning of this section. M is a O-definable subset of M U M', and

7.5 gives us the structure of M U M',
We now summarize what we have done to this point.

Theorem 7.8: Suppose M is a weakly minimal structure and p
is a strong type satisfying (*) of either projective or affine character.
Then there is 6 an almost 0-definable equivalence relation with finite
classes, and 0(x) € p such that o(M)/6 is either a projective or

affine space over a finite field. There is some collection of algebraic
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points of U(M)/O, or (c(M)/8)' in the affine case, and some collection
of almost O-definable subspaces of o(M)/6, and o(M)/6 has

essentially no other structure.

Proof: Combine 4.1, 4.10, 5.1, 6.7, 6.8, 7.5 and 7.7.
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SECTION 8

In this section we consider the case where our structure M, in
addition to being weakly minimal and having a strong type satisfying (*)
but not of disintegrated character, is uni-dimensional. That is, no
two types are orthogonal. We will show that this implies (*) holds on

every strong type.

Using this, we show that we can find pairwise disjoint almost

..,Xk_l,Y E_Meq,e an almost 0-definable

equivalence relation with finite classes on M UY, and F(n) a finite

0-definable sets G,XO,.

field, such that:

(i) M=GU XOU ... U Xk-l or M=G U X0 u...u Xk_1 Uy;

(ii) G 1is finite;

(iii) for each i<k there afe Qi’Ri almost O-definable giving xi/e
an affine structure over F(n);

(iv) there is an almost O-definable relation S giving Y/6 a
projective structure over F(n);

) for each i<k, there is an almost O-definable bijection between

» (xi/e)' and Y/O; and this bijection takes the relation on (xi/e)'
induced by Qi and Ri to S;

(vi) Y/® satisfies the conclusion of 7.8. To be precise, let Y* be
the structure with universe Y/6, ternary predicate S and a unary
predicate for each {Y/6,S}-definable subspace of Y/6. Here we
recall {Y/0,S} € acf(¢) in M*%.  Then Y/6, with the point
S € M°? named and full structure inherited from M, is inter-
definable with (Y*,C) for some C ¢ (Y*)°9,

(vii) Similarly for each xi/e.
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" We willtfinish the section with the easy observation that if M
is weakly minimal, uni-dimensional and has a strong type of disintegrated
character, then M Vis categorical in power >[Th(M)|.. Bradd Hart has
pointed out to the author that the assumption of weak minimality can be

weakened considerably.
We begin with:

Lemma 8.1: If q and r are strong types in weakly minimal M,

q satisfies (*) and q and r are non-orthogonal, then r satisfies

*).

Proof: We may assume M is saturated. Pick A U {ao} < qm),
B U {bO} S rM), with first A U {ao} and then B U {bo} minimal,
such that each of A U {ao},> B U {bo} is independent but their union
is dependent. By choice of A U {aO}, for any C ¢ r(M),

acZ(AUC) N rM) = acl(C) N r(M).

In (M,A U B), stp(aOlA UB) = ql(A UB) satisfies (*) since for
any finite D € qM), acf(D U A UB) N qM) has dimension
5”|D| + |A] + |B] and q satisfies (*). So stp(by|A U B) satisfies
(*) as there is an algebraic relation between it and stp(aolA UB) in
(M,A U B). As naming A does not affect the dependence relation on r(M),
stp(bOIB) = r|B satisfies (*). Choose BO < r(M) minimal such that

rIBO satisfies (*). If BO = ¢ we are done. If not, by shifting to

(M,B.\ {b}) and considering rlBo\\{b} for some b € B we can

O’
assume B, = {b}. So for any c € r(M), r|c satisfies (*), but r

does not.
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So for’any finite C < r(M) and e € C,
acf(C) N r(M) = U{act{e,d}: d € D} N r(M) for some finite D < (M)
and so for c,d € r(M) independent acf{c,d} N r(M) contains an
infinite set {fi: i<w} of pairwise independent elements of r(M).
Let c,d,e € r(M) be independent and find SRR - € (M) with

acl{c,d,e} N rM) = U acﬂ{e,gj} NrM. Let
1<j<k

{fi: i<w} € r(M) N acl{c,d} be pairwise independent. Then if i # j,
f.1 ¢ acﬂ{e,fj}. So find i with acﬂ{e,fi} # acﬂ{e,gj} for all
1<j<k. Then £, € r(M) N acl{c,d,e}\ U acl{e;g.}, a contradiction
i . j
1<j=<k
establishing the lemma.

For the rest of this section we will assume M is uni-dimensional,
so every strong type satisfies (*). Until 8.3 we will also suppose that
some strong type is not of disintegrated character; hence no strong type
is of disintegrated character. As usual, M will also be assumed

saturated of size >|Th(M)| and weakly minimal.

We can also suppose there is a strong type p, which we will fix
until further notice, of projective character; this is harmless as if q

is of affine character find o(x) € q and 6  with o(M)/GO an affine

0
space as in 7.8. Then (O(M)/GO)' S_Meq is almost O-definable, and
the strong type of a non-algebraic element of

F((q(M)/eo)Z‘\{(a,a): a ¢ q(M)/eo}) is of projective character. We
choose o(x) € p and 61 for p as in 7.8; in particular O(M)/e1 is

a projective space over F(n) for some n € ». Shifting to M/e1 we

may assume 61 is the identity. Y will be a subspace of o(M).

Suppose o(x) £ q, q some strong type. Give (p(M) U q(M))/E
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the structure induced by formulas, where we recall aEb if and only if

a=p and a ¢ acf{b}. By 3.4(2) this is an N,-categorical structure

0
consisting of two strictly minimal sets. These are non—qrthogonal, since
there is an M-formula ¢(X,y) witnessing that p and q are non-
orthogonal; ifs‘projection P¢ witnesses the non-orthogonality -in

(p(M) U qM))/E. So if q is of projective characfer there is in this
quotient an almost O-definable bijection between p(M)/E and q(M)/E

by 1.9; if q 1is of affine character the bijection is between p(M)/E

and (qM)/E)".

Suppose q 1is of projective character; 3.4(2) and the previous
paragraph imply there is Tq an almost 0-definable binary algebraic
relation with Tq(a,M) cpM) for a € qM) and Tq(M,b) c qM) for
b € p(M). The relation BZ(Tq(z,x) A Tq(z,y)) defines an algebraic
relation on p(M), so if we factor p(M) by an appropriate almost
0-definable equivalence relation Xq with finite classes, Tq gives
a function from q(M) onto p(M)/Xq. By 5.6(3) Xq is the localization
of o(M) at some Cq SprM\NpM). If we factof q(M) by the appropriate
equivalence relation Gq, Tq gives a bijection on the factors. So we
can find Tq(x) €p and oq(x) € q such that Tq gives a bijection
between 'rq(M)/Xq and Gq(M)/Gq. Without 1loss, oq(M) NoM = ¢.

Using 6.8 and 3.11 we may assume Tq(M) is a subspace of o(M) less
a finite set of algebraic points, and we may assume this finite set is

a subset of Cq'

It is perhaps not so clear that we can do something similar if q

is of affine character.
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Lemma 8.2: Let p,0(x) € p be as above and q be a strong type of
affine character with o(x) £ q. Then there is cq(x) € q and eq an
almost O-definable equivalence relation with finite classes such that
oq(M) NoM) = ¢, and oq(M)/eq is an affine structure as in 7.8.
Further, there is a subspace Tq(M) of oM), Cé a finite algebraic

subset of Tq(M), and Tq an almost O-definable bijection between

(cq(M)/eq)' and the localization of Tq(M) at Cq.

Proof: First choose +(x) € q and X such that y(M) N o(M) = ¢
and yM)/X 1is an affine space over F(n), as in 7.8. Without loss we
may assume X is the identity. Let 1 be the strong type of a
non-algebraic element of F[q(M)z‘\{(a,a): a € qM)}] < yM)'. r is of
projective character, so as in the preceding paragraphs find Or(x) € f{
er, Tr’ Tr(x) € p,_*r and pr such that Tr: Or(Meq)/er — ('rr(M)\Cr)/Xr

is an almost O-definable bijection. We can assume Gr(Meq) cy(M)'.

er, acting on r(Meq), is by 5.6(3) a localization with respect
to the projective structure of +yM)'. So r(Meq)/er has two competing
ternary predicates giving it plus some algebraic points a projective

structure over F(n). Let SO be inherited from the projective structure
on v(M)' and let S, be transferred by T;l

So and S, both induce the lines on r(Meq)/E, so if a,b € r(Meq)/er

are independent, we can list SO(a,b,Meq) and Sl(a,b,Meq) as

from Crr(M)\\Cq)/Xq.

{egs--esc by 1dy, .. 5d ) Tespectively so that Ci‘l’di for each i<n+l.

Find an algebraic formula Y(x,y) with w(ci,di) for each i<n+l.

The following formula holds of a,b independent in r(Meq)/eri
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320,...,zn,wo,...,wn[iggil(so(x,y,zi) A Sl(x,y,wi) A w(zi,wi)) A

i#j<n+1

/\ (z; # zy AWy #wj)]

We can choose m(x,y) algebraic such that if a,b E‘r(Meq)/er either
N(a,b) or the above formula holds of a,b. Using 5.6, we can find an
almost O-definable equivalence relation & with finite classes such
that Meq'l= v(x,y) vn(x,y) = E(x,y), and & | r(Meq)/er is an

Sl-localization at, say, Dl' By 5.6(3), regarding & as acting on

r(Meq), g P r(Meq) is an So-localization at, say, DO.

Let £0 be the S -localization of the projective space

0

y(M) U yM)' at D, and &l be the S.-localization of or(Meq)/er

0 1

at Dl' It is clear that SO‘ and S1 induce the same relation on
rGMeq)/g, i.e. for a,b € r(Meq)/g, So(a,b,Meq) = Sl(a,b,Meq). So
the SO- and Sl-closures of r(Meq)/£ are the same, and it is easy to

see that SO and S1 on this closure <r(Meq)/£> are the same. We

know if a,b ¢ r(Meq)/£ that SO(a,b,Meq) = Si(a,b,Meq); if

a ¢ r(Meq)/£ and b € <r(Meq)/£>\r(Meq)/£, then for any c¢ # a,b

with éo(a,b,c) ‘we have So(c,a,b) so Sl(c,a,b) as a,c € r(Meq)/g

and so Sl(a,b,c). Suppose SO(a,b,c) where a,b,c € <r(Meq)/£>\\r(Meq)/£.
Pick any d ¢ r(Meq)/£ and e # a,d with SO(a,d,e). Then find f with
Se(0,d,£) A Sy(c,e,£). As d,e,f € TM°H/E we have 5 (d,a,e) A S (d,b,f)
so there is c¢* with Sl(a,b,c*) A Sl(e,f,c*). c* 1is algebraic and c

is the only algebraic element in So(e,f,Meq) = Sl(e,f,Meq), so

¢ =c¢* and Sl(a,b,c).
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Tr induces a bijection between Gr(Meq)/&:l and the localization
Xq of Tr(M) at Cq = <Cr U Tr(Dl)>. So Tr gives a bijection between
<r(Meq)/£O> and <p(M)/X>. Find 6(x) €T, \(x) € p such that
5(Meq) S_cr(Meq), A(M) S_Tr(M) and Tr gives a bijection between
5(Meq)/€0 and X(M)/Xq and SO = S1 on G(Meq)/éo. Using 3.11, we

eq , eq eq .

can assume <r(M )/£0> csM )/&:0 and then by 6.8 that 6&(M )/«EO is
a subspace of [(y(M)' U Y(M))\‘DO]/£O' So A(M) is Tq(M)\\Cq for
some subspace Tq(M) of oM). If we let Gq(x) € q be such that

M i bav] - M T b
Gq( )/EO is a G(Meq)/€0 class, Gq be &0 P Oq( ) and q be the

bijection between 6(Meq)/€0 = (Gq(M)/Gq)' and (Tq(M)\\Cq)/Xq induced

by Tr’ we have what is required.

Now by compactness we can cover all but a finite subset of M\ o(M)
by a finite set of these Gq(M)‘s. So we have a finite A of types,
and for each € A we have 0 (x) €q, 6 , T, T (x) € p, C_ and X
q eq()qqqq()pqq
such that:
(1) Oq(M) NoM = ¢;

(ii) M\[oM) U U o _(M)] is finite;
q€A L

(iii) Tq(M) is a subspace of o(M), and Xq is the localization of
T (M) at C ;
q( ) q
(iv) Gq is an equivalence relation with finite classes on Gq(M);
V) Tq is a bijection between either Gq(M)/Gq (if projective) or
g M)/8 )" and (Tt M)\NC /X ;
( q( )/ q) ( q( JAN q)/ q
(vi) Oq(M)/eq is as in 7.8;

(vii) all of the above are almost O-definable.

In fact, we can choose the above so that the Gq(M)'s are pairwise

disjoint. For let < well-order A, and consider
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H = [gq(M) \U Or(M)]/Gq° This is an almost O-definable subset of
r<q

cq(M)/Gq, so it follows from 7.8 that there is J, a finite union of
pairwise disjoint almost O-definable subspaces of Oq(M)/Gq such.that
HAJ is finite; if Oq(M)/Gq is projective these subspaces may be

affine. Tq induces a bijection between either K or K' and a
subspace of (Tq(M)\‘Cq)Xq if K 1is one of these subspaces. Basically,'
we ignore the points of H\J and replace Oq(M) by the subsets of
cq(M) which give these subspaces K after factoring by Gq. However,

if K contains points of J\NH, we should take a further localization
of K or K UK', and then a further localization of Tq(M). If we

do this, we can add to the list (i) - (vii) above

(viii) if 9 # q, € A, Oq M) n qu(M) = ¢.

1
Now we are very close-to the situation promised at the beginning
- of the section. Using the notation of (i) - (viii), let

Y= Nt MNC where C =< UC> T induces a bijection between a
qeA qea 4

localization of either Oq(M)/Gq or (cq(M)/Gq)' and (Tq(M)\\C)/X
where X 1is the localization of o(M) at C. Replacing Gq and perhaps
deleting a finite set from Oq(M)/Gq (if projective), we may assume the

first of these localizations is included in eq.

Consider Zq = T;I(Y/X), a subspace of either Oq(M)/eq or
(cq(M)/Gq)'. Tq of course gives a bijection between Zq and Y/X. Tq

also induces a bijection between W' and Y/X for any <~ 7 -class W
q

in cq(M)/eq‘ or Oq(M)/eq U (Oq(M)/Gq)'° There is also a natural

bijection between V' and Y/X for each =~ Y/x-class V of oM).

So replacing Oq(M) by the subsets of M which map to Zq and each W
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as above after factoring by eq’ and similarly replacing o(M) brings

us to the following picture:

Diagram:

W

where each Zq’ Wand V, or its prime, is in bijection with Y/X.
Restricting to those sets above (expect possibly Y) which are actually in
M, we can take a further quotient and identify all the projective

spaces above. Let 6 = U Gq UX and {Xi: i<k} 1list the affine
gq€A

spaces as above. This yields the promised situation.

The following is all we will say about ‘the case where we have a

type of disintegrated character.

Proposition 8.3: Suppose M is weakly minimal, uni-dimensional

and has a strong type of disintegrated character. Then any model N

of Th(M) 1is determined up to isomorphism by dim(q(N)), the number
of independent realizations of the strong type q in N. dim(qM)) is
the same for every non-algebraic strong type q. In particular, Th(M)

is categorical in any K > |Th(M)|.
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Bzggf;' First suppose M 1is saturated; then for any two strong
types q and r, there is in (qM) U r(M))/E an almost 0O-definable
bijection between vq(M)/E and r(M)/E, so in M there is an
algebraic binary relation Tq r with Tq,r(a,M) crM for’ a€qmM,

and Tq r(M,b) € qM) for b € r(M). Then the —Tq r's ensure there
are <= |Th(M)| strong types and that for any N |= Th(M) and q,r
strong types, dim(q(N)) = dim(r(N)). From this the categoricity is

immediate.
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APPENDIX 1

Our purpose here is to justify the claim in Section 1 that the
axioms #0 through #11 given in 1.5(1) yield the usual notion of an affine
space over F(n). From the discussion after 1.5(1) it is‘clear that #0
through #11 hold in an affine space over F(n). We refer the reader to

[Ha, p.167] for the projective case.

The following comes from [Hir, p.39-40]. '"We now give a set of
axioms for AG(n,q), n>2, in which n is not specified but q 1is."
Here AG(n,q) denotes the affine space of dimension n over F(q);
éince we will no longer be using q for a type we will revert to this
notation; as n 1is unbounded, the fact that the list below is intended
for affine spaces of finite dimension n whereas ours are of infinite
dimension is not problematié. We continue quoting. '"Let L be an
incidence structure wifh an equivalence relation parallelism on its
lines (blocks).

(i) Any two points Pl’PZ are incident with exactly one line P1P2.
(ii) For every point P and line £, there is a unique A£' parallel

to £ containing P.

(iii) If P1P2’ and P3P4 are parallel lines and P 1is a point on 'P1P3
distinct from P1 and P3, then there is a point P' on PP2 and

PP (see Fig.2).
-..3 4 - , ?Dk\
A [

i
|
P, | P, FI6. 2
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(iv) 1If no line contains more than two points and P,,P,,P; are distinct
points, then the line 23 through P, parallel to P1P2 and the
line 22 through P, parallel to P,P; have a point P in

common (see Fig.3).

FIG. 3

W) Some line contains exactly qg=2 points.

(vi) There exist two lines neither parallel nor with a common point.

Then L = AG(n,q) for some n=3."

Our plan is to take a structure M with predicates R and Q
satisfying #'s 0 through 11. We define a line to be any set R(a,b,M)
for a,b distinct in M. For lines 21,22 we say 21 is parallel to
22 iff there are a,b,c,d € M such that 21‘= R(a,b,M), 22 = R(c,d,M)

and Q(a,b,c,d).

We intend to show that with the above definitions, we get an
incidence structure satisfying (i) through (vi) above; the incidence

relation is set membership.

First we show parallelism is an equivalence relation. From
Q(x,y,x,y) it is reflexive, and Q(x,y,z,w) - Q(z,w,X,y) which follows

from #7 gives the symmetry.
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Before proving transitivity, we notice that R(x,y,x) and
R(x,y,z) = R(y,x,z) tell us that a,b € R(a,b,M) = R(b,a,M) and #4
tells us that any two distinct points of a line £ determine it. This
gives (i).‘ Now suppose 21 and 22 ‘are parallel, and 22 and 23 are
parallel. Choose a # b € 21, c #d ¢ 22, et f¢ 22 and g ¥ h € 23
with Q(a,b,c,d) A Q(e,f,g,h). Find, by #5, i with Q(e,g,c,i) and
j with Q(e,g,d,j). By #7 and #5, i # j. From #8 and
Q(e,f,g,h) A R(e,f,c) A Q(e,g,c,i) we get R(g,h,i). Similarly
R(g,h,j). So 23 = R(i,j,M). Now #10 gives, from Q(e,g,c,i) A Q(e,g,d,j);
~that Q(c,i,d,j), so by #7, Q(c,d,i,j). #7 and #10 then give

Q(a,b,i,j). So 21 and 23 are parallel, and parallelism is transitive.

For (ii), let £ = R(a,b,M) be a line and c¢ be a point. #5 yields
d with Q(a,b,c,d), so R(c,d,M) is parallel to £. Suppose R{c,e,M)
is parallel to £; then by transitivity, ’R(c,d,M) and R(c,e,M) are

parallel.

By #4, it suffices to find any point # ¢ of R(c,e,M) which is
in R{c,d,M) to show R(c,e,M) = R{c,d,M). -Pick f,g € R(c,d,M)
distinct and h,i in R(c,e,M) distinct with Q(f,g,h,i). We may
assume f # h. Pick c*,c** with Q(f,h,c,c*), Q(h,f,c,c**); then
by #5, #6 and #7, c # c*,c**, By #8, Q(f,h,c,c*) A R(f,g,c) A Q(f,g,h,1i)
gives R(h,i,c*). #7 gives Q(h,i,f,g), so by #8 and
Q(h,f,c,c**) A R(h,i,c), R(f,g,c**). So c** ¢ R(c,d,M) and
c* € R(c,e,M). From #7, Q(f,h,c**,c), so from #10, Q(c,c*,c**,c).
#9 gives R(c,c*,c**), so c* € R(c,c**,Mj = R(c,d,M). So the parallel

is unique.
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For (iii), suppose R(a,b,M) and R(c,d,M) are parallel and
e # a A R(a,c,e). Using #8 and adjusting d, we may assume Q(a,b,c,d).
So Q(a,c,b,d) A Q(a,c,e) A e # a. By #11 there is f such that
R(e,b,f) A R(c,d,f). This is exactly whaf we need.
(iv) comes immediately from Q(x,y,z,w) —=> Q(x,z,y,w).
(v) is immediate from #1 and #0. |

(vi) 1is clear as M is infinite.
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APPENDIX 2

OPEN PROBLEMS

The following is a list of open problems in the area and things

I would just like to know:

1.

The ultimate problem is to classify the superstable, uni-dimensional
structures, at least those with NOTOP. The results proved here, as
well as those mentioned in the introduction, may be regarded as the

beginnings of an answer. Obviously there is much more to do.

More specifically, what can be said of superstable uni-dimensional
structures of rank greater than 1 if the associated rank 1 types
satisfy (*)? An interesting example of Saffe ([Sa], pp.18-20) may
well be as archetypal for such structures of rank 2 as Morley's is
for those of rank 1. This example provides a particularly clearv
example of Buechler's Coordinatization Theorem (see the Introduction
here). [A caveat, however; Saffe incorrectly counts the number of

models, which should be < 1, for every cardinality.]

2

Returning to weakly minimal structures, the known non-NO—stable
uni-dimensional examples in the Introduction here all have, as the
dependence geometry on a strong type, an affine or projective space

over some field. Must this always occur? If not, what can occur?

In a similar vein, Hrushovski's work indicates that under fairly
general conditions we have an abelian group structure on some strong
type. What groups can occur? Given a particular group, what other

structure can there be on the strong type? On the model? We know
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the abelian group structure extends to a formula. Likely the work

of Pillay and Prest [PP] has application here.

Here we assume the dependence geometry on a strong type is locally
finite, and so if not trivial either an affine or brojective space
over a finite field. What can be said about weakly minimal
structures if we assume the dependence geometry is affine or

projective over U F(pk) (p a prime) as in Hrushovski's example?
kéw

Over Q, as in (Z,+)? Other possibilities?

Getting even more specific, and returning to structures as in
Section 8, there are still a few things to be cleared up. For
instance, what further structure is possible on M/6? We know
what Y/6 an& each xi/e can look like, so this is a question
about the interaction of these '"boxes'. .Given the similarity of
the structures here to X.-categorical structures of Morley rank‘l,

0

the work of Martin [Mr] could well be relevant here.

Also, what are the possibilities for M, given that M/6 is as
in Section 8?7 Or ¢(M), given that ¢(M)/6 1is as in Section 77
Perhaps the work of Ahlbrandt and Zeigler ([Ah], [AZ]) is relevant

%

here.
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