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ABSTRACT 

Muonium (~'e-) is generally regarded as a light isotope of 

hydrogen. It has been detected in single crystals of ice from 

8 K to 263 K using the muon spin rotation (fiSR) technique at 

TRIUMF. Hydrogen atoms have never been observed in ice for much 

of this temperature range. Transverse spin relaxation rates of 

muonium in single crystals of H,O- and D,O-ices have been 

measured over a wide temperature range. The dominant relaxation 

mechanism is shown to be modulation of the dipolar interaction 

between muonium and the lattice nuclei by diffusion of muonium 

through the lattice. Contrary to previous findings, muonium is 

found to be diffusing at temperatures as low as 8 K. 

A classical model has been used to represent the 

intermolecular interactions between muonium and the lattice. 

Calculations show that muonium preferentially diffuses along 

channels parallel to the c-axis. The potential energy function 

for motion along such a channel gives an activation energy of 

* 35 meV. An activation energy of 40 + 4 meV is obtained by 
fitting the experimental relaxation rates above 128 K to an 

Arrhenius expression. Curvature of the Arrhenius plot at lower 

temperatures can be explained by tunnelling, in accord with the 

theoretical prediction that the tunnelling rate exceeds 

activated diffusion at temperatures below 100 K. 

iii 
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T o  my Mot h e r  



"The  i c e  was  h e r e ,  t h e  i c e  was  t h e r e ,  

T h e  i c e  was a l l  a r o u n d :  
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L i k e  n o i s e s  i n  a  s w o u n d ! "  

-Samuel Taylor Coleridge 1772-1834, 

in "Ancient ~ariner" stanza 15. 
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I .  Introduction 

1. General backqround 

In 1954, Livingston e t  a l  [I] reported the detection of 

trapped hydrogen atoms, formed by gamma irradiation, in acidic 

ices at 77 K. It was further reported by Piette e t  a1 [2] in 

1959 that H atoms, also formed by y-irradiation, are stably 

trapped in pure ice at 4.2 K. Fluornoy e t  a l  [3] discovered that 

these trapped H atoms disappear rapidly around 50 K. It was 

deduced that this thermal decay is caused by diffusion of the H 

atoms through the lattice. Subsequent studies on the thermal 

decay of these H atoms were mainly concerned with the deviation 

of decay kinetics from simple rate laws. 

Thus, despite its fundamental importance, little was known 

about the diffusional process and the chemical reactions of 

trapped H atoms until Shiraishi e t  a1 [4] published their report 

in 1976. They investigated the electron spin resonance (ESR) 

spectra of trapped H atoms, formed by continuous electron 

irradiation, in neutral and acidic ices from 160 K up to the 

melting point. They utilized motional line narrowing and 

chemically induced electron polarization (CIDEP) [5,61 effects 

to enhance the ESR signal intensities. In the range of 

approximately 50 K to 160 K, it has not been possible to detect 



H atoms in pure ice by conventional ESR methods. 

However, it is a relatively simple procedure to observe 

muonium [71 in ice using the Muon Spin Rotation (PSR) 181 

technique. Muonium, ~ ' e - ,  is an exotic atom. It is formed by 

stopping high energy muons in matter. BSR is the experimental 

technique employed to observe the muon spin precession and the 

rate its spin depolarizes (relaxes) in matter. Muonium has long 

been regarded as a light isotope of hydrogen. Since the 

ionization potential and Bohr radius of muonium are very close 

to those of hydrogen, it is expected to behave similarly to 

hydrogen. Therefore, it is not unreasonable to study muonium in 

ice in place of hydrogen in view of the difficulties encountered 

as stated previously. The behaviour of hydrogen atoms in ice can 

then be inferred from muonium results. 

Ice was one of the first condensed substances in which 

muonium was directly observed by means of its triplet precession 

signal in low transverse field [57]. In 1973, Gurevich e t  a1 [9] 

reported measurements of the relaxation rates of muonium in H20- 

and D,O-ices at 77 K. Discrepancy between the relaxation rates 

predicted by dipolar interactions and experimental results led 

them to conclude that muonium does not diffuse in ice at that 

temperature. In 1978, ~ercival e t  a1 [lo] presented a study of 

muonium in ice over a range of temperatures. Their results 

indicated in addition to dipolar broadening there was another 

relaxation mechanism which was of unknown origin. Recently, 

Percival e t  a1 [ 1 1 ]  reported a study of muonium in single 



crystals of ice. The relaxation rates they obtained were less 

than those for polycrystalline ice as reported in [ l o ] .  They 

also observed a splitting at low field where Zeeman splitting is 

insignificant. This splitting'was shown to be isotope and 

temperature independent but dependent on the orientation of the 

crystal with the applied field. In single crystals of quartz, 

the same phenomenon had been observed by Brewer e t  a1 

[ 1 2 , 1 3 , 1 4 ] .  The origin of the splitting has been attributed to 

an anisotropy in the hyperfine tensor of the spin Hamiltonian of 

muonium in quartz. 

The most common crystalline form of ice is ice Ih.  In ice 

Ih ,  the oxygen nuclei are set in a tetrahedral environment. A 

hydrogen nucleus is situated between each pair of oxygen nuclei. 

The crystal is said to have a wurtzite structure with the oxygen 

nuclei arranged in a hexagonal close packed manner. The crystal 

structure of ice Ih has a very striking semblance to that of 

quartz - they both have hexagonal channels parallel to the 
c-axis of the crystal. According to Brewer e t  a t ,  muonium 

diffuses along these channels in quartz. 

In analogy to the results obtained by Brewer e t  a l ,  

Percival e t  a1 [ 1 1 ]  concluded that the hyperfine tensor of 

muonium in ice Ih is also anisotropic. The spectra of muonium in 

polycrystalline ice are inhomogeneously broadened because of 

this anisotropy. The relaxation rates obtained for muonium in 

polycrystalline ice will be characteristic of the powder line 

width. This explains the discrepancy of experimental results 



with theoretical predictions cited by Gurevich e t  a l .  Hence, it 

seems imperative to undertake a study of muonium in single 

crystals of ice Ih in order to characterize its relaxation 

behavior and from that, the diffusion parameters. 

In order to characterize the diffusion of a hydrogen atom 

in ice, it is necessary to determine the potential energy 

experienced by the hydrogen atom as a function of its location 

along the diffusion path. This in turn involves the calculation 

of the total intermolecular energy between the hydrogen atom and 

the lattice nuclei. Eisenberg and Kauzmann [ 1 6 ]  have presented a 

set of Buckingham potential functions describing the interatomic 

interactions between two water molecules. Benderskii e t  a1 [ 1 7 ] ,  

approximated the potential energy of a hydrogen atom diffusing 

in ice through the channel parallel to the c-axis of the crystal 

by treating the water molecu1e.s in the lattice as single 

entities. They combined the oxygen-hydrogen potential function 

as given by Eisenberg and Kauzmann and the results from ab 

i n i t i o  calculations obtained for the reaction: 

as calculated by Niblaeus e t  a1 [181.  The a b  i n i t i o  calculations 

were made to estimate the stability of the radical H30*. 

However, the assumption taken by Benderskii e t  a1 that the 

interactions between the diffusing hydrogen atom and the lattice 

nulcei can be approximated by treating the water molecules as 



single entities is debatable. 

As the hydrogen atom is diffusing through the channel, it 

is always closer to the hydrogen nuclei in the lattice than to 

the oxygen nuclei because of the lattice geometry. The a b  i n i t i o  

calculations of Nibleaus e t  a1 were made for the hydrogen atom 

approaching the water molecule along a line bisecting the H-O-H 

angle, i . e . ,  the hydrogen atom is farther away from the hydrogen 

nuclei than the oxygen nucleus of the water molecule. The 

intermolecular force is either r-6 or exp(-r) dependent, 

depending on the distance separating the two molecules in 

question. It is questionable whether the procedure taken by 

Benderskii e t  a1 to describe the potential of a hydrogen atom in 

an ice lattice is correct. Hence, it seems quite important to 

undertake an investigation of the potential 

by the hydrogen atom as it diffuses through 

up the question. 

energy experienced 

the channel to clear 

2. Aims of this research 

Gurevich e t  a1 [ 9 1  proposed that muonium does not diffuse 

in ice at 77 K. On the other hand, Percival e t  a1 1 1 1 1  pointed 

out that the hyperfine tensor of the spin Hamiltonian for 

muonium in ice is anisotropic and the relaxation rate of muonium 

in polycrystalline ice is characteristic of the powder line 

width. This explained the discrepancy between experimental 

results and theoretical predictions cited by Gurevich e t  a l .  



However, the question regarding the mobility of muonium in pure 

ice at 77 K still remains. 

It is the purpose of the present research to investigate 

the mobility of muonium in single ice crystals as a function of 

temperature. It involves both theoretical modelling and 

experimental work. Experimentally, the relaxation rates of 

muonium in single crystals of H20- and D20-ices are measured 

using conventional uSR methods. From the experimental results, 

the mobility of muonium in ice can be inferred. Theoretical 

modelling involves the estimation of the intermolecular 

potential between the muonium and the lattice nuclei. From this 

potential, both the thermally activated and the quantum 

tunnelling diffusion rates are calculated. Results from these 

calculations are compared to the experimentally obtained data. 

Hopefully, the question of the mobility of muonium in ice 

can be answered by this investigation. In addition, it is hoped 

that the doubt about the intermolecular potential experienced by 

the diffusing muonium can be cleared up. 



11. Crystal structure of Ice Ih 

1. Geometrical arrangements of the oxyqen nuclei 

The geometrical arrangement of oxygen nuclei in crystalline 

ice Ih  can be determined from analyses of the x-ray diffraction 

pattern of the solid. Early studies of ice Ih by x-ray 

diffraction were made by Rinne, St.John, and Dennison 

[19,20,21]. From these results, Bragg [22] deduced that each 

oxygen nucleus in ice Ih is situated in a tetrahedral 

environment and is approximately at the center of mass of its 

four neighbouring oxygen nuclei. The arrangement of the oxygen 

nuclei is shown in Figure 11.1 1231. The tetrahedral 

co-ordination of the oxygen nuclei gives rise to a crystal . 
structure possessing hexagonal symmetry. The crystal is said to 

have a wurtzite structure with the oxygen nuclei arranged in a 

hexagonal close packed (HCP) lattice with successive layers 

arranged in a sequence of AABBMBB...etc. The layers of oxygen 

nuclei are called the "basal planes" of the lattice where all 

the molecules are concentrated. The normal to these basal planes 

is referred to as the c-axis of the crystal and can be seen in 

Figure 11.1. This wide open structure of the crystal explains 

the lower density of ice when compared to liquid water. Of most 

relevance to the present research is the existence of channels 



Figure 11.1. The arrangement of oxygen atoms in ice Ih: 
( a )  view perpendicular to the c-axis. 
(b) view along the c-axis. 



parallel to the c-axis which will serve as the diffusion channel 

for muonium/hydrogen atom. 

The unit cell is the fundamental building block of the 

crystalline structure of ice Ih. The complete crystallographic 

structure can be constructed by stacking identical unit cells 

face to face in perfect alignment in three dimensions. The total 

number of oxygen nuclei in a unit cell is four with the 

tetrahedral angle at 1 0 g 0 2 8 ' .  The various symmetry elements 

exhibited by the complete lattice of oxygen nuclei in ice Ih are 

represented by the Hermann Mauguin space group symbol P6,/mmc.l 

Finally, it should be noted that the molecular structure of 

ice Ih is centrosymmetric, i . e . ,  a point can always be located 

within the lattice such that every molecule which occurs at a 

distance from this point in one direction has a corresponding 

molecule at the same distance from the point in the opposite 

direction. This characteristic has been utilized in simplifying 

computer programs. 

Most crystals of ice Ih show hexagonal morphology appropriate 
to this space group. Some rare crystals showing trigonal ( 3 m )  
or polar hexagonal (6mm) symmetry have been observed [ 2 4 ] .  These 
crystals suggested structures of symmetry lower than P63/mmc. 
However, such structures have not been observed in x-ray 
diffraction studies of ice Ih.  



2. Positions of the hydroqen nuclei 

Because of the empirical chemical formula of ice (HzO), 

each oxygen nucleus must have two hydrogen nuclei associated 

with it. Since there are four other oxygen nuclei surrounding 

each oxygen nucleus, there is one hydrogen nucleus situated 

between each pair of oxygen nuclei. The question is how are 

these hydrogen nuclei distributed in the structure. The 

positions of these hydrogen nuclei are hard to determine by 

studying the x-ray diffraction pattern of the solid because the 

intensity of the x-rays scattered by the oxygen nuclei is about 

eight times greater than that scattered by the hydrogen nuclei. 

It was not until in the late 40's that attempts were made to 

establish the exact location of the hydrogen nucleus between two 

oxygen nuclei. One of the earliest speculative models puts the 

hydrogen atom in exactly the middle of the line separating the 

two oxygen nuclei [25]. However, this idea was displaced by the 

proposal of "Bernal-Fowler rules" [26]. The Bernal-Fowler rules 

are formulated under a statistical model, and an ice crystal 

which obeys these rules is termed an ideal crystal: 

1. Each oxygen nucleus has two hydrogen nuclei attached to it 

at distances of about 0.95 A ,  thereby forming a water 

molecule. 

2. Each water molecule is oriented so that its two hydrogen 

nuclei are directed approximately towards two of the four 



oxygen nuclei which surround it tetrahedrally. 

The orientations of adjacent water molecules are such that 

only one hydrogen nucleus lies between each pair of oxygen 

nuclei. 

Under ordinary conditions ice Ih can exist in any one of a 

large number of configurations, each corresponding to a 

certain distribution of the hydrogen nuclei with respect to 

the oxygen nuclei. 

The six possible arrangements of hydrogen nuclei on the 

four bonds around each oxygen atom in ice Ih are shown in Figure 

11.2. According to these Bernal-Fowler rules, the structure of 

ice Ih may change from one configuration to another by the 

movement of a hydrogen nucleus from a potential minimum 0 .95  A 

from one adjacent oxygen nucleus to another one 0 . 9 5  A from the 

other adjacent oxygen nucleus. In an ideal crystal, the movement 

of the hydrogen nuclei must be simultaneous for all six hydrogen 

nuclei in a basal plane. However, this would involve all the 

hydrogen nuclei in the crystal because of the interrelation 

between these planes, and seems energetically unlikely. The 

movements of hydrogen nuclei in the lattice is likely allowed by 

the existence of defects [231. These movements are measured by 

the dielectric relaxation times. At 0 O C ,  the dielectric 

relaxation time of ice Ih was measured to be 1 2 x sec 

[27]. At lower temperatures, the protons are frozen into one of 

a large number of configurations and the dielectric relaxation 



Figure 11.2. The six possible arrangements of the hydrogen 
atoms on the four bonds around each oxygen atoms 
in ice Ih. @-oxygen, o-hydrogen atoms. 



time is longer. The region where this freezing-in takes place is 

speculated to be between 100 and 120 K from the results of 

determination of the heat capacity of the solid [ 2 8 ] .  This 

arrangement of the hydrogen nuc'lei of the water molecules in the 

lattice implies a non-ordered distribution of the dipoles of the 

water molecules and allows a zero-point entropy for the solid. 

Experimentally, the value of the zero-point entropy was 

determined to be 3 .41  J mol-'deg-' [ 1 6 ] .  The theoretical value 

of this zero-point entropy has been calculated by Hobbs [ 2 3 ]  

( S o  = 3.4103 + 0 .0008  J mol-'deg-'1. The movement and . 

freezing-in of hydrogen nuclei in ice Ih have no direct bearing 

on the present research since their motional time scale is long 

compared to the muon life-time and the muonium relaxation time 

( ~ s  regime). 

Neutron diffraction has been used to determine the position 

of hydrogen nuclei in ice, and the space group of P6,/mmc was 

determined in D,O ice Ih [ 3 0 ] .  The deuterium nucleus is found to 

be at a distance of 1.011 A from its nearest oxygen nucleus. The 

same distance has also been determined by nuclear magnetic 

resonance (NMR) techniques [ 3 1 ] .  However, there are two schools 

of thought regarding the H-0-H bond angle ( 1 0 9 . 5 '  vs 104.5 ' )  

[ 2 3 ] .  This difference has made the determination of the 

intermolecular potential of hydrogen and/or muonium in the 

structure quite difficult. The most recent structural study of 

ice Ih by Kuhs and Lehmann [ 5 8 ]  using high-resolution, 

high-flux, and short-wavelength neutron sources supports the 



former opinion. Following Kuhs and Lehmann, the positions of the 

hydrogen nuclei in ice Ih are taken to be 1.0 A from their 

nearest oxygen nuclei with the H-0-H bond angle being 109.5' in 

all later calculations. 

3. Dipole moment of the water molecule in ice Ih 

The dipole moment of a water molecule is important since it 

causes induction forces on the trapped hydrogen atom in the 

lattice. The average dipole moment, p,, of a water molecule in 

ice Ih is not accessible to direct measurement. Its value is 

different from the dipole moment in the vapor phase since in ice 

Ih the electrostatic fields of the neighboring water molecules 

induce an additional dipole in each molecule. 

The electrostatic potential produced by a charge 

distribution at an external point may be represented as the sum 

of the potentials produced by the electric moments of the charge 

distribution. In the case of a water molecule in an ice lattice, 

the most important contribution to the potential is from the 

dipole moment, but the higher moments should also be 

considered [23]. Coulson and Eisenberg [32] calculated the 

contributions from the dipole, (PI, quadrupole (Q), and 

octupole (0) moments of neighboring water molecules to the 

dipole moment of a water molecule in an ice lattice. They 

concluded that the average magnitude of the field arising from 

neighboring molecules is: 



They also calculated the value of the dipole moment of a water 

molecule in ice Ih and obtained: 

This value of P O  is over 40 per cent greater than the value of 

the permanent dipole moment of an isolated water molecule. 

However, this is not unexpected due to the contributions from 

neighboring molecules [23]. This value is used for later 

calculations on the induction forces as caused by the dipole 

moments of the water molecules in the lattice on the hydrogen 

atom as it diffuses along the channel in the lattice. 



111. Muon Spin Rotation, MSR 

1. Positive muon and muonium 

The positive m u o n ,  p+, is an elementary particle. It is a 

lepton because it decays via the weak interaction and has a spin 

of $ 181 . The p+ is produced by the decay of a positive pion: 

In a weak interaction, the spins and angular momenta of the 

reactants must be conserved. Since the n e u t r i n o  has negative 

helicity, the spin of the positive muon must be anti-parallel to 

its momentum in the pion's center-of-mass co-ordinate system 

[ 3 3 ] .  Hence, a highly polarized beam of p+ can be produced by 

judiciously selecting the momenta of muons in the in-flight 

decay of the pions. 

Muonium is an exotic atom consisting a positive muon and an 

electron (~'e') [7]. It is formed by stopping high energy muons 

in matter. It has a mass of about 106 MeV. Although muonium has 

only 1/9 the rest mass of a hydrogen atom, its reduced mass is 

within 0.5% that of hydrogen. Therefore the chemical properties 

of muonium are very similar to those of a hydrogen atom. A table 

of the properties of the muon and muonium is shown in 



Table 111.1, Muonium has been widely recognized as a light 

isotope of hydrogen [8,341. Because of the magnitude of the mass 

discrepancy between muonium and protonium, the kinetic isotope 

effect is very readily observed [35]. The inclusion of muonium 

in the series of hydrogen isotopes (mass ratios 3:2:1:0.11) 

increases the scope of kinetic isotope studies vastly. The 

greatest advantage of the inclusion of muonium in the hydrogen 

isotope series is in the investigations of quantum tunnelling 

effects. 

pSR is the experimental technique used in detecting muons 

and muonium [81. Normally, it utilizes a highly polarized muon 

beam which can be obtained in "Meson Factoriesw. There are three 

such establishments: 

1. Los Alamos Meson Physics Facility (LAMPF), 

2. Swiss Institute for Nuclear Research (SIN), and 

3. TRI-University Meson Facility (TRIUMF). 

Other less intense muon beams are available at CERN, 

JINR (Dubna, near Moscow), Leningrad and KEK (~apan). 

There are two types of uSR: transverse field and 

longitudinal field. A magnetic field is applied perpendicular or 

parallel, respectively, to the initial muon polarization. The 



Table 111.1 

Muon and Muonium Properties 

Positive Muon B 

spin 

mass 1/9 mass of proton 
105.6596 MeV c - ~  

magnetic moment 28.0272 x 10-l8 MeV G-I 
3.18 proton magnetic moment 

gyromagnetic ratio, Y,, 13.544 kHz G-' 

mean lifetime, 7 2.197~s 

Muoni urn, M u  

spin 

mass 

Bohr radius 

ionization potential 

gyromagnetic ratio, yM 

hyperfine frequency, w ,  

mean lifetime, 7 

1 for triplet 
0 for singlet 

1/9 mass of protonium 

0.5315 A 

13.539 eV 

1.394 MHz G-I 

4463 MHz 

limited by that of p *  



sample is placed in the path of the muon beam. Various degraders 

and collimators are used to ensure that the muons stop inside 

the placed sample. In the sample, the muon decays into a 

positron and two neutrinos in the process: 

The angular distribution of positrons is anisotropic with the 

greatest probability in the direction of the muon spin at the 

moment of decay. As a result, the variation of positron 

detection probability in a given direction reflects the 

evolution of the muon spin polarization. 

In the absence of muon spin polarization, the histogram 

accumulated would depict a single exponential decay. In a 

transverse field experiment, the precession of the muon spin in 

the applied field results in an oscillation of the e+ signal. 
b 

Figure 111.1 is a typical example of the muon spin precession 

signal in water in a transverse field experiment. The general 

form of the histogram is : 

where No is the normalization factor, B is the background, and 7 

is the life-time of the muon. A ( t ) ,  the asymmetry factor, 

includes the sum of the time dependence of the muon and muonium 

spin polarization, and various geometrical parameters. 



Figure 111.1. rSR histogram (top) and diamagnetic signal 
(bottom) from water in a transverse field 
of 200 G. The precession signal is obtained from 
the histogram by subtraction of the background 
and dividing out the exponential decay. 



Muonium is a two spin-* system. Therefore, there are four 

spin states for muonium. For a symmetric hyperfine tensor, the 

spin states are divided into a singlet and a triplet at zero 

field. If a magnetic field is applied to muonium, the degeneracy 

of the triplet state is lifted. Figure 111.2 describes the 

variation of the energy levels of the four spin states as a 

function of the strength of the applied field (Breit-Rabi 

Diagram). In a transverse field experiment, the precession 

signal of this system will consist of four allowed transition 

frequencies. However, two frequencies are too high to be 

resolved by conventional p S R  techniques. At low applied field, 

the two observable frequencies are degenerate. A t  moderate 

fields, the degeneracy will be lifted and the two frequencies 

will give rise to the beat pattern given in Figure 111.3. The 

signals are field dependent and their splittings can be obtained 

by ~ourier transforming the time spectrum. 

3. pSR spectrum of muonium in ice 

Figure 111.4 is a USR spectrum of muonium in a D20 single 

crystal of ice Ih at 146 K with an applied field of 10 G. The 

crystal has its c-axis oriented parallel to the applied magnetic 

field. The beat pattern represents a splitting of 1.2 MHz. At 

10 G, Zeeman splitting is minor (0.09 M H Z ) .  The experimental 

splitting is temperature and isotope independent [11,36]. 

However, it is orientational dependent, i . e . ,  its magnitude 
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Figure 111.2. Breit-Rabi diagram of the energy levels of a 
two spin f system as a function of applied 
magnetic field. Of the four allowed transitions, 
only the two denoted by full lines are resolvable 
in a low transverse field r S R  experiment. 
(Ho = 1585 G,  v o  = 4463 MHz) 
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Figure 111.3. Split muonium precession signal from quartz in a 
101 Gauss magnetic f i e l d .  



Figure 111.4. Split muonium precession signal in a D20 crystal 
at 211 K with its c-axis parallel to a magnetic 
field of 10 G. 



depends on the angle the c-axis makes with the applied field, 

B,. This same field dependent splitting had been observed in a 

single crystal of quartz by Brewer e t  a1 [12,13,14]. They 

concluded that the hyperfine interaction of muonium in quartz is 

slightly anisotropic. In their case, the hyperfine tensor was 

axially symmetric for temperatures above 130 K but became 

totally anisotropic for temperatures below that. 

A striking similarity relates single crystals of quartz to 

single crystals of ice Ih - they both have hexagonal channels 
parallel to the c-axis of the crystal. In view of this, Percival 

e t  a l  [ 1 1 ] ,  postulated that the hyperfine tensor for single 

crystal of ice Ih is also anisotropic with axial symmetry. In 

addition, they found that this axial symmetry is preserved for 

temperatures as low as 4.3 K. 

The spin Hamiltonian for muon spin, I, and electron spin, 

S, in ice f h  can be written as: 

where the anisotropic tensor, TI has the axially symmetric form: 

when written in the principal axes of the crystal. The electron 

and muon Larmor precession frequencies, o, and op respectively, 



are field dependent. 

For a transverse field NSR experiment, the axis of 

quantization of the spins is defined by the direction of the 

applied magnetic field. Because the principal axes of the 

crystal and the axis of quantization are different, a unitary 

transformation has to be taken to transform the principal axis 

of the crystal into the laboratory frame of reference where the 

axis of quantization is defined, i . e . ,  

Utilizing the axial symmetry of the crystzl, it is up to one's 

discretion to choose the x- and y-axes of the crystal. If 8 is 

the angle the principal axis of the crystal makes with the axis 

of quantization, and if one chooses to have the y-axis of the 

crystal in the xy-plane of the laboratory, the unitary matrix 

required to rotate the co-ordinates of the crystal into those of 

the laboratory is: 

After some simple algebra and utilizing the step-up, S, ,  and 

step-down, S., operators, the Hamiltonian becomes: 



where S +  = S  + i s  
X Y 

S .  = Sx - i s y  

I ,  = Ix + i s  
Y 

I .  = I - i s  
X Y 

= (Al-A//)cos2e + A// 

Z = (Al-~//)cosi3sini3 

@ = (A//-Al)cos28 + A1 

The four wave functions which describe the basis set of the 

coupling of the electron spin to the muon spin are: lam, lap>, 

Ifla>, and (Pfl>, where the first spin refers to the electron spin 

and the second to that of the muon. Since the anisotropy of the 

hyperfine tensor is small, the terms (€9-All and Z are neglected. 

Utilizing the fact that H* = E*, the secular determinant can be 

written as: 

where w .  = (o -u ) / 2  
e y. 



After solving the quadratic equation, the four energy levels of 

muonium in ice can be obtained: 

The two symmetric wavefunctions tau> and Ipp> remain 

eigenfunctions of the spin system while the two antisymmetric 

wavefunctions mix with each other to form the other two 

eigenfunctions. The two mixed eigenfunctions are solved by the 

orthogonality relation of the wavefunctions. The four 

eigenfunctions corresponding to these four energy levels are: 



The experimental observables are the transitions between these 

four energy levels. The selection rules for the transitions 

between these spin energy levels can be obtained by calculating 

the expectation value of the relevant operator: 

In a transverse field uSR experiment, the muons spins are 

completely polarized, i . e . ,  only the f i  states are populated, and 

are in the x-y plane of the laboratory frame of reference. The 

muonium electrons, because of their origin, are not polarized 

and can take the values of a or p .  The observable transitions 

are those between muon spins. The expectation value of the muon . 
step-up operator is used to calculate the transition 

probabilities. Using this operator and Equation 3.32, the 

selection rules for allowed transitions were determined to be 

Am = f l .  The four allowed transitions are : 



The four precession frequencies corresponding to these four 

transitions are: 

Since the direction of the applied field is the axis of 

quantization of the muon spin, The observed muon polarization 

is: 

The two transition frequencies, w , ,  and w 3 , ,  are too high to 

be resolved by conventional pSR techniques. The two remaining 

frequencies give rise to the beat pattern shown in ~igure 111.4. 

The splitting of these two frequencies is ( 6 w  - 20). The 
Breit-Rabi diagram which describes the variation of the energy 

levels of the four spin states as a function of applied field is 

given in Figure 111.5. In the low field limit, Q + 0, the 

frequency splitting should exhibit the characteristic (3cos28-1) 

dependence. This had been confirmed by Percival e t  a1 171. Their 

data revealed the magnitude of the anisotropy, 
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Figure 111.5. Breit-Rabi diagram for muonium in ice Ih as 
a function of applied magnetic field strength. 
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I A / / - A ~ ~  = 1.27 MHz for both H20- and D20-single crystals of 

ice. 

Another important feature of the four spin states is that 

at zero applied field, the triplet state is not degenerate as in 

the isotropic case. So, for a zero field pSR experiment, one 

should be able to observe a signal corresponding to the allowed 

transitions. This expected zero-field oscillation 

( v  = +(Al-A//)) has been observed for muonium in both single 

crystals of H20- and D20-ices oriented with their c-axes 

perpendicular to the beam polarization [36]. 

The splitting caused by the anisotropic hyperfine tensor is 

field independent and is negative with respect to the Zeeman 

splitting. Since Zeeman splitting is field dependent, there 

should exist a field such that both effects cancel each other. 

The magnitude of the field was calculated to be 37 G for the 

situation when the c-axis of the crystal is parallel to the 

applied field. At this applied field strength, the two 

transitions become degenerate and only a single muonium 

precession frequency is present. This has been observed for both 

H20- and D20-ices [36]. 



I V .  Line broadening mechanisms for Mu in ice 

1. Line broadening in solids 

There are two principal types of resonant lines in solids: 

those that are homogeneously broadened and those that are 

inhomogeneously broadened. The former are pure spectral 

singlets. The latter type consists of a spectral distribution of 

much narrower homogeneously broadened lines. 

In 1946, Bloch proposed a set of phenomenological 

differential equations to describe the time dependence of the 

components of magnetization in the presence of an applied field 

[ 371 .  Solutions to these equations allow the lineshape and 

relaxation behaviour of material under magnetic resonance 

conditions to be predicted. This set of equations applies to 

homogeneously broadened lines at or near resonance. The 

Lorentzian lineshape function for the absorption mode is [38]: 

where T2 is the transverse or spin-spin relaxation time in s, 

Aw = o - oo, 
o, is the Larmor precession frequency in radians/s, 

w is the observed frequency in radians/s. 



The maximum of this function occurs at frequency w ,  and is equal 

to 2T2. A straightforward algebraic manipulation leads to the 

result that T2 = 2/~($), where a(+) is the full width at half 

maximum (FWHM) of the absorption signal. The corresponding 

expression for a Gaussian lineshape is: 

Homogeneous broadening occurs when the magnetic resonance 

signal results from a transition between two spin levels which 

are somewhat intrinsically broadened. Several sources of 

homogeneous broadening are: ( 1 )  dipolar broadening between like 

spins, (2) spin-lattice relaxation, (3) interaction with the 

radiation field, (4) diffusion of excitation throughout the 

sample, and (5) motionally narrowing fluctuations in the local 

field. 

An inhomogeneously broadened resonant line is one which 

consists of a spectral distribution of individual lines merged 

into one overall line or envelope. Several sources of 

inhomogeneous line broadening are : ( I )  applied field 

inhomogeneity, ( 2 )  dipolar interaction between unlike spins, ( 3 )  

unresolved hyperfine structure, and (4) crystal lattice 

irregularities ( e .  g .  , mosaic structure). 



2. Theory of spin-spin relaxation mechanisms in solid 

According to general magnetic resonance theory, the 

efficiency of spin-spin relaxation mechanisms is determined by a 

'correlation timew constant, 7 = ,  which characterizes the time 

scale for fluctuation in the frequency spectrum of local fields 

at the spin concerned 1391. T2 consists of an energy term 

describing the coupling between the observed spin and other 

spins and a spectral density function. The various physical 

interactions which can provide a mechanism for spin-spin energy 

transfer in solids are: ( 1 )  dipole-dipole coupling, (2) electric 

quadrupole interaction, ( 3 )  relaxation through chemical shift 

anisotropy, and ( 4 )  scalar coupling. The total effect of these 

relaxation mechanisms is expressed as a sum of all the 

individual relaxation rates: 

where DD = dipole-dipole coupling, 

SC = scalar coupling, 

EQ = electric quadrupole interaction, 

AH = hyperfine anisotropy. 

For muonium in ice, the broadening due to the anisotropic 

hyperfine tensor (only for polycrystalline samples) and 

dipole-dipole interactions between muonium and the lattice 



hydrogen/deuterium nuclei- are shown later to be dominant. Other 

minor effects, such as the coupling of the muon spin with the 

nuclear quadrupole moment of deuterium (Q(2H) = 2.8 x 10-2B m2), 

can be neglected. There is of course some broadening due to 

field instability and applied field inhomogeneity which will be 

discussed later in Section VI .6. 

3 .  Inhomoqeneous line broadening by anisotropic hyperfine tensor 

~olycrystalline ice is made up of micro-crystals in many 

different orientations. Since the magnitude of the shift of the 

resonance frequency is dependent on the angle the c-axis makes 

with the applied magnetic field, each micro-crystal will give a 

slightly different spectrum. The result of this will be a powder 

spectrum well known in ESR and NMR spectroscopies [39]. The 

spectrum of muonium in polycrystalline ice contains 

contributions from all crystal orientations. Each contribution 

consists of a pair of lines at v(Mu)+(~~-A//)(3cos~8-1)/4 with 

weighting proportional to sine. The simulated line shapes of 

muonium in polycrystalline ice for several natural line widths 

are given in Figure IV.l 171 .  The pure "powder pattern" spectrum 

is shown in part (a). The effect of increasing natural 

line-width is demonstrated in parts (b) to ( d l .  The line widths 

correspond to actual values for muonium in H20 at approximately 

260 Kt 220 Kt and 130 K. At higher temperatures, the powder line 

width is dominant. Any attempt to derive relaxation times from 
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Figure IV.1. Simulated line shapes (solid lines) of muoniun in 
polycrystalline ice for natural line widths (FWHM) 
of (a) 0, (b) 0.08, (c) 0.32, (d) 1.28 MHz. For 
comparision, single Lorentzian lines of corres- 
ponding width are shown by the dotted curves [36]. 



the decay curves which are Fourier transforms of these spectra 

will only result in decay constants characteristic of the 

inhomogeneous line width. The results obtained by Gurevich 

e t  a l  [ 9 ]  suffered from this inhomogeneous broadening and led 

them to the erroneous conclusion that muonium does not diffuse 

in ice at 77 K. 

4. Dipole-dipole interaction 

- Classically, a magnetic point dipole, p , ,  interacts with 

another magnetic point dipole, z2, located at a distance F away 

from it by means of the dipolar interaction [39]: 

This is a through space interaction which occurs because two 

spins exert a magnetic field on each other. For two spins I ,  and 

12, since p = yZ1, the Hamiltonian for dipolar interaction can 

be written as: 

When the scalar products are expanded, the expression 

transformed into spherical co-ordinates, and utilizing the 

step-up and step-down operators analogous to those defined in 

the chapter before, Equation 4.5 can be expressed in six 



terms [40]: 

where A = -I,12(3cos28-1) 

B = $(I+iI.2 + J.1I+2)(3coS28-1) 

C = -t(IlI+2 + I,l12)sin8cos8exp(-it$) 

D = -3(IlI.2 + I.~12)sin8cosBexp(it$) 

E = -$I+ ,I+, sin28exp(-2i 4) 

F = -31- ,I., sin28exp(2i#) 

Each of the terms A to F contains a spin factor and a 

geometric factor, the effects of which can be appreciated 

separately. Term A causes broadening of the intrinsic 

line-width. Term B' contains the "flip-flop" operator, which 

links the lap> and IPa> only, whereas, terms C and Dl which 

contain one step-up or step-down operator, link states differing 

by m = 1 in the total spin angular momentum, m, of the system. 

As a summary, the spectral densities and the induced transitions 

by the dipolar Hawiltonian are given in Table IV.l. The 

expressions for wO, Wi, W:, and w2 have been determined 

explicitly [40]: 



Table IV. 1 

Transitions induced by the dipolar Hamiltonian. 

Transition Dipolar Transition Spectral 
term rate density 

Definition of transitions 



where R is the dipolar interaction constant: 

In addition to these contributions, the terms causing 

spin-lattice relaxation lead to an uncertainty in the 

transitions and hence will contribute to the value of Ti1. The 

dipolar term A modulates the energy levels directly, leading to 

a secular contribution to linewidths and Ti1 which depends on 

the zero-frequency spectral density J(0). If there is only a 

single correlation time constant, r,, the spin-spin relaxation 

rate, Ti1, can be obtained 1403: 

The gyromagnetic ratio, yl, for muonium is 1.394 MHZ/G 

whereas that of the hydrogen nuclei, y,,  is 1/328 that of 

muonium. Therefore, for muonium in an ice lattice, 01>>02. For 

low field limit, i . e . ,  02r2<<1, Equation 4 . 1 2  is simplified to: 
M c 

Ti ' - - ~1~(1~+1)(2~~)'r~[l + (l+o:r:)-'] (4.13). 



5. Motional narrowinq 

Diffusion of ions and atoms are known to exist in many 

crystals [ 4 1 ] .  This is particularly easy for muonium in ice Ih 

because of its light mass and of the existence of the hexagonal 

channels parallel to the c-axis. The resonance line-width will 

be narrowed because of this diffusion of muonium and it is 

termed, in magnetic resonance nomenclature, motional narrowing 

effect. 

The time dependence of the homogeneous line broadening 

caused by dipolar interaction between the muonium spin and the 

spin of the lattice nuclei is 1403: 

where Po is the initial muon polarization, T is the average 
C 

time spent by muonium in one crystal cell, and o is: 

where I and 1 are the spin and magnetic moment of the lattice 

nuclei respectively. 

~t follows that for fast diffusion (t>>r): 



and in the absence of diffusion (7-): 

If h is the reciprocal of the time take for the precession 

amplitude to decrease by a factor of e, then, for fast diffusing 

muonium 193: 

and for non-diffusing muonium [9]: 

where rc(H20) is assumed to be equal to rc(D20). Hence, by 

measuring the experimental relaxation rates of muonium in H20- 

and D20- single crystals of ice at various temperatures, the 

ratio of the two relaxation rates can be calculated. By 

comparing with Equations 4.18 and 4.19, the motion of 

muonium/hydrogen in ice can be characterized. The fast diffusion 

and slow diffusion regimes can then be defined. 



6. The calculated static dipolar line width of muonium in ice 

The mathematical complications involved in solving the 

dipolar Hamiltonian may be circumvented by computing several 

moments of the line using the trace method [ 4 1 ] .  The n-th 

moments, <(w-w,)">, centered about o, , the center frequency of 
the unbroadened line, are of practical use [ 4 1 ] .  They allow the 

shapes and widths of the resonant lines to be estimated. 

The second moment <a2> is given by [ 3 9 ] :  

where the square bracket denotes the commutator of the two 

operators and Tr is the trace of the operator. Since frequency, 

o, is related to applied field by the relation w = yHI one can 

calculate the second moment by evaluating the quantity AH. The 

change in magnetic field, AH, caused by nuclei with spins, I,, 

and experienced by a nucleus with spin, I,, at a distance r away 

is given by [ 4 1 ] :  

where 8 is the angle between the applied magnetic field and the 

line joining the two interacting nuclei. Then the second moment 

becomes : 



Solving for the second moment explicitly, one has: 

where the sum is to be taken over all the lattice nuclei, For a 

Gaussian line-shape, the relaxation time, T2, is related to the 

second moment by the following expression: 

For muonium in H20- and D20- ices, the line shapes as 

caused by static dipolar interaction between the muonium and the 

lattice nuclei were simulated. Muonium was taken to be in a 

cavity defined by two chair forms of the oxygen nuclei. The 

number of hydrogen/deuterium nuclei used in the calculation was 

15 corresponding to the 12 H/D nuclei in the two layers defining 

the cavity and the 3 H/D nuclei between the layers. The quantity 

AH was evaluated for each combination of the spins of the H/D 

nuclei. There were 215 spin combinations for hydrogen (I = i)  

and 315 for deuterium (I = 1 ) .  The calculated values of AH were 

accumulated in a histogram. The histogram was normalized with 

the total number of spin combinations being 1. The simulated 

line shapes are given in Figure IV.2 and IV.3. The second, 



Figure IV.2. Simulated static dipolar line shapes of muonirun 
in H,O-ice. The c-axis of the crystal is 
( i )  0• ‹ ,  ( i i )  5S0, ( i i i )  90' t o  the applied field. 
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Figure IV.3. Simulated static dipolar line-shapcs of muonium 
in D,O-ice. The c-axis of the crystal is 
(i) 0 • ‹ ,  ( i i )  55O, (iii) 90' to the applied field. 

47 



fourth, and sixth moments were also calculated using the 

appropriate expressions. The results are tabulated in Table 

IV.2. In addition, from the second moment, the static dipolar 

relaxation time had been estimated using Equation 4.24. The 

static dipolar relaxation time is found to be dependent on the 

angle the c-axis of the crystal makes with the applied field and 

is at a minimum for 8 = 55'. Therefore, the experimental 

relaxation rates should also be angular dependent with a maximum 

at 8 1 55'. 



Table IV.2. 

Calculated second, fourth, and sixth moments for muonium in 
H20- and D20-sinqle crystals. The position of Mu is 
taken to be in between two layers of oxygen nuclei. 

For H20, I = f 

Angle between 
applied field 
and c-axis 
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moment 
( G 4 )  
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moment 
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rate 
(ps- ' 

For D20, I = 1 



V.  on-bonding interactions of muonium in ice 

1. Nature of the interactions 

When two molecules or atoms are infinitely apart, their 

interaction energy is zero. When the two atoms/molecules are 

separated by a finite distance, r, the interaction energy 

provides an extra contribution to the total energy of the 

system. This contribution is commonly referred to as the 

intermolecular potential energy. The energy of this interaction 

between the two molecules arises from electric forces between 

the charged entities of which they are made up. 

The general shape of the intermolecular force between two 

interacting particles consists of a strong repulsive force at 

short range and an attractive force at long range. In terms of 

potential energy, ~ ( r ) ,  this behavior corresponds to large, 

positive energies at small separations and negative energies at 

long range. The two extreme regions are joined by a function 

with a single negative minimum. 



2. Lonq ranqe forces 

The long-range forces are invariably attractive. There are 

three possible contributors to the long range forces: 

(a) electrostatic forces, (b) induction forces, and ( c )  London 

dispersion forces, depending on the nature of the interacting 

molecules. Only the London dispersion force is present in all 

intermolecular interactions. A short discussion for all three 

contributors will be given with emphasis on those which are of 

relevance to the present research. 

A.  Electrostatic forces 

It is well known that some molecules such as HC1 possess 

permanent electric moments by virtue of the electric charge 

distribution in the molecule. One component of the interaction 

energy for two such molecules at long range therefore arises 

from the electrostatic interaction between these moments. The 

contribution to the total potential will thus be: 

where the terms in parentheses denote the interactions between 

dipole moments, p, quadrupole moments, Q, and so on. For muonium 

in an ice crystal, this kind of forces does not apply since 

muonium does not possess a permanent electric moment. 



B. Induction forces 

The electric field experienced by a molecule positioned at 

a point 0 due to a dipole ii located at F is given by [42]: 

Electric multipoles may be induced in the molecule by the 

electric field E by a distortion of its electron cloud. In the 

simplest case only a dipole moment is induced. The induced 

dipole is proportional and parallel to the field, so that [431: 

The scalar quantity a(0) is the static polarizability of the 

molecule which is assumed to be isotropic. The energy of a 
- 

dipole, p ,  in an electric field I? is: 

Thus the energy of the dipole induced in a molecule with an 

isotropic polarizability by the field E is: 



C. London dispersion Force 

The London dispersion force is the only long range force 

which is present in all intermolecular interactions. For the 

interaction of two molecules possessing no permanent electric 

dipole or higher-order moments, the London dispersion force is 

the only interaction term. A molecule always possesses an 

instantaneous dipole moment because of motions of its electron 

cloud. This instantaneous dipole moment will induce an 

instantaneous dipole moment on another molecule 1441.  The origin 

of the London dispersion force has been attributed to the 

interaction between these instantaneous dipole moments. So, the 

London dispersion force is also known as the induced-dipole 

induced-dipole interaction. There are also higher order 

contributions to the dispersion force arising from instantaneous 

dipole-quadrupole, quadrupole-quadrupole interactions e t c .  The 

dispersion energy can be written as [ 4 5 ] :  

Generally, the higher order terms are neglected and only the r-6 

term is retained. The C, term can be estimated from the 

Slater-Kirkwood expression [ 4 6 ] :  



where e is the electronic charge, a. is the Bohr radius, a, and 

a, are the polarizabilities of the interacting atoms, and N, and 

N, are the number of electrons in the outer sub-shell of the 

atoms. This expression was derived originally by using a 

variational approach. It is found to be identical to results 

obtained by using more sophisticated methods (Pad: approximants 

and moment t heory) [60]. 

3. Short ranqe forces 

When two molecules approach sufficiently close to each 

other, their electron clouds overlap. The Pauli Exclusion 

Principle prohibits the electrons from occupying the overlap 

region and so reduces the electron density in this region. The 

positively charged nuclei of the atoms are thus incompletely 

shielded from each other and, therefore, exert a repulsive force 

on each other. Such short range forces are also referred to as 

overlap forces. The effective range of this force is 5 3 A .  The 

quantum mechanical theoretical treatment of this problem would 

involve the wave functions of all the electrons involved. 

Methods such as: (a) a b  initio, (b) Self consistent field (SCF), 

(c) Configuration interaction (CI), and combinations of these 

methods are generally used. However, these methods are 

mathematically complicated and calculations are time consuming 

and their results are very sensitive to geometry and the size of 

the basis set used [18]. Hence, empirical formulae are devised. 



These empirical formulae generally have two terms: one for the 

short range repulsive force and another for long range 

attractive forces. The two most widely used expressions are the 

Lennard-Jones 6-12 potential function (L-J or 6-12) [47]: 

and the Buckingham potential function (6-exp) [48]: 

The two expressions are very similar - they both contain a r-6 
attractive term and a repulsive term. The L-J expression has a 

r-l2 dependence as its repulsive term while the 6-exp expression 

uses an exponential function to describe the repulsive energy.' 

4. Intermolecular potential of muonium in an ice lattice 

The characterization of the intermolecular potential of 

muonium/hydrogen in ice involves estimating the contributions 

from all the lattice nuclei. Eisenberg and Kauzmann [16] 

presented a set of empirical formulae for the intermolecular 

potential between two water molecules using the method described 

by Hendrickson 1561. They used Buckingham potentials to describe 

The Buckingham potential is generally accepted as a 
representation closer to reality because of its milder 
dependence on r at short distances [431. 



the interactions between individual nuclei from one molecule 

with the nuclei of the other. The constants p were estimated 

from scattering of rare gases while C6 were estimated by the 

Slater-Kirkwood Formula given in Equation 5.7. The values of 

constant A were calculated from the condition that aV/ar must 

vanish at r = r,, where r, is the sum of the van der Waals radii 

of the interacting nuclei. 

In 1980, Benderskii e t  a1 [17l'proposed an intermolecular 

potential for a hydrogen atom diffusing in an ice-lattice. Their 

potential function takes the form: 

where A, p, C6 have the values of 3 . 5  x 102 eV, 3 . 6  A-', and 

4.1 eV As respectively. They constructed a potential by 

"meshing" the Buckingham potential supplied by Eisenberg and 

Kauzmann for the interaction between a hydrogen nucleus and an 

oxygen nucleus with the results obtained by Niblaeus et a1 [ 1 8 ]  

for the reaction: 

Benderskii e t  a1 made the assumption that the interactions 

between the diffusing hydrogen atom and the lattice nuclei can 

be approximated by treating individual water molecules in the 

lattice as one entity instead of treating individual nuclei of 



the molecule separately. 

As the hydrogen atom diffuses along the channel, it is 

always closer to the lattice hydrogen nuclei than the oxygen 

nuclei because of the lattice geometry. Since the intermolecular 

potential is either r-6 or exp(-r) dependent, it is questionable 

whether the procedure used by Benderskii e t  a1 is valid. 

In view of the questions mentioned above, an investigation 

into the intermolecular potential of muonium in ice was 

undertaken. The potential of interaction of muonium and the 

lattice atoms is assumed to be of the atom-atom type. Therefore, 

the intermolecular potential of muonium in ice consists of 

contributions from both the hydrogen and oxygen atoms in the 

lattice. In addition, the induction force exerted on muonium by 

the permanent dipoles of the water molecules in the lattice has 

to be included: 

The induction potential experienced by muonium from the 

dipoles of the water molecules was calculated. It is plotted as 

a function of the position of the muonium along the diffusion 

path in Figure V. 1. The number of water molecules used in the 

calculation is 36. The calculation procedure involved summing up 

the total electric field gradient exerted on muonium by the 36 

point dipoles using Equation 5.2. The induction potential was 

obtained by using Equation 5.5. The value of the static 



Distance along c-axis, R / A 

Figure V.1. Induction Potential of muonium as it diffuses 
along the channel parallel to the c-axis. 



polarizability, a(O), of muonium was taken to be that of a 

hydrogen atom (5.36 x cm3) [61]. The value of the dipole, 

z, is the same as in Equation 2.2 with its direction along the 

angle bisecting the H-0-H angle. Since the orientations of the 

hydrogen nuclei obey the Bernal-Fowler rules, the orientations 

of the dipoles are random. As can be seen in Figure V.1, the 

magnitude of the induction potential is small (peak to peak 

height is 5 3 meV). This is in agreement with results obtained 

for MU/H in water by Klein e t  a1 1721. Therefore, the induction 

contribution was not included in the calculation of the overall 

potential. 

Following Eisenberg and Kauzmann [16], Buckingham potential 

functions (Equation 5.9) were used to represent the dispersion 

and overlap interactions between muonium and the lattice atoms. 

The values of p were not estimated from scattering of rare gases 

since more accurate quantum mechanical calculations are now 

available [62,63,64]. The values of p used were those calculated 

by Bohm and Ahlrichs [641. They used first order SCF theory to 

estimate the exponential repulsive potential for nonbonded atoms 

in arbitrary states between closed-shell molecules (2.63 A - l  for 

H-H and 3.13 A - I  for H-0). 

The dispersion coefficients used were calculated from the 

Slater-Kirkwood expression (Equation 5.7). The values of the 

static polarizability of the hydrogen and oxygen nuclei in the 

ice lattice were approximated by that of the hydrogen and oxygen 

nuclei in a hydroxyl group as recommended by Ketelaar [65]. The 



calculated C6's are 2.986 eV As for H-MU and 5.443 eV A 6  for 

Finally, the values of the coefficients A were calculated 

from the condition that the slope of the potential, i . e . ,  av/ar, 

must vanish at the sum of the van  der W a a l s  radii of the 

interacting nuclei [16]. The van  der W a a l s  radius is defined as 

the distance between two atoms where the attractive forces just 

balance the repulsive force. ~ondi [671 pointed out that the van 

der W a a l s  radius of an atom depends strongly on its chemical 

environment. For example, the van  der W a a l s  radius of Xe in XeF, 

is 1.7 A while the accepted value from solid xenon is 2.18 A 

[70].3  his point of view is supported by Huheey [71]. In the 

present case, the chemical environment of muonium is different 

from those of the lattice hydrogen. Since the literature value 

for the van  der W a a l s  radius of hydrogen was deduced from 

aliphatic compounds [67], it is not unreasonable to assume that 

the van der W a a l s  radius of muonium is different. Klein et al  

Kolos and Wolniewicz [66] used variational method to calculate 
the energy function for the triplet state ('Z') of a free 
hydrogen molecule. Their results were fitted to an analytical 
expression and a value of 3.883 eV h6 for C6 was obtained by 
Silvera [691. The value of C6 for two free hydrogen atoms as 
calculated by the Slater-Kirkwood formula is 4.218 eV As. The 
difference can be explained by the inclusion of higher order 
dispersion terms (C8 and C,,) in the analytical expression. 
Although the variational calculation is accepted as more 
accurate, the Slater-Kirkwood expression is used because of its 
simpler form and lack of data for the 0-Mu interaction. 

In XeF, the xenon atoms do not touch each other. The van der 
W a a l s  radius of xenon was estimated by subtracting the van  der 
W a a l s  radius of fluorine from the shortest non-bonded 
xenon-fluorine distance (3.2-3.3 A ) .  



[731 quoted a value of 1.8 A for the v a n  der W a a l s  radius of 

Mu/H. They based their claim on the triplet state calculation 

for a free hydrogen molecule by Kolos and Wolniewicz 1661. 

However, Silvera [69] cited a value of 2.1 A from the same 

reference. Inspection of the original literature indicated that 

the value quoted by Klein et a1 might be the Lennard-Jones 

radius [71] of MU/H. Following Silvera [69], the v a n  der W a a l s  

radius of muonium is taken to be 2.1 A. 

There are two sets of v a n  der W a a l s  radii for bonded 

hydrogen and oxygen available [64,67]. According to ~ondi [67], 

the v a n  der W a a l s  radii for hydrogen and oxygen are 1.2 A and 

1.52 A respectively. However, Bohm and Ahlrichs [64] calculated 

them to be 1.5 A and 1.48 A.  In view of the controversy 

surrounding the definition and actual value of the v a n  der W a a l s  

radius discussed earlier, both sets of radii were used to 

calculate the value of A. Hereinafter, the potential obtained 

from the Bohm and Ahlrichs parameters is called V, and that from 

Bondi V,. For the sake of reference, the parameters supplied by 

Benderskii were used to calculate the potential V,. A summary of 

the values for the coefficients used is tabulated in Table V.1. 

The potential energy curves of V(H-Mu) and V(0-MU) are 

shown in Figure V.2 as a function of the distance separating the 

two interacting particles. When Mu is between two layers of 

oxygen nuclei, it is -3.2 A away from each layer. As it 

diffuses, it is never closer than 2.6 A from the lattice nuclei 

because of lattice geometry. Therefore, the portion of the 



Table V. 1 

The values of parameters used in the 

Buckinqham potentials for V(H-Mu) and V(0-Mu) 

Buckingham potential: V(X-Y) = A exp(-pr) - ~ ~ / ~ 6  

Other parameters used in the calculation 

Parameter V,(H-MU) V,(H-MU) v,(O-MU) ~~(0-MU) 

r(vdw) (A) for diffusing MU/H: 2.10 A $ 

static polarizability, 4 . 2  x 5.9 x 
a(O) (cm3) (lattice hydrogen) (lattice oxygen) 

static polarizability for diffusing Mu/H: 6.6 x cm3 

- - - - -- - 

t From ref. [ 6 4 ] .  $ From ref. [66]. tt From ref. [ 6 7 1 .  



Distance, r / A 
Figure V.2. The calculated Buckingham potential function 

for Vl(O-Mu) (solid line), v,(H-Mu) 
(broken line), V,(O-Mu) (chaindashed line), 
and v,(H-MU) (chaindotted line) as a function 
of the distance separating the particles. 



potential from 2.6 A to 3.2 A is important for the present 

calculation. This implies that the choice of the van d e r  Waals 

radii is critical since the potentials are at their turning 

points around these distances. If the radii chosen are too 

small, the potential that muonium experiences will always be 

attractive while the opposite happens if the choice is too 

large. 

The total potential energy of muonium as a function of its 

location along the diffusion path was calculated by summing the 

potential energy contributions from each individual lattice 

nucleus using the respective expressions for the hydrogen and 

oxygen nuclei. The contributions from the hydrogen and oxygen 

nuclei to the intermolecular potential from the two sets of 

parameters (v, and v,) are shown in Figure V.3. 

The total potential energy of muonium as a function of its 

location along the channel parallel to the c-axis, R, is shown 
b 

in Figure V.4. Also shown in Figure V.4 is the total potential 

energy of muonium as it diffuses along a zig-zag channel 

perpendicular to the c-axis. It can be seen clearly from 

Figure V.4 that the channel perpendicular to the c-axis is not 

favored energetically for diffusion because of its wider barrier 

width (lower permeability for quantum tunnelling) and taller 

barrier height (lower thermally activated diffusion rates). 

Therefore, it is not unreasonable to assume that muonium 

diffuses solely along the channel parallel to the c-axis. 



Distance along the c-axis / A 
Figure V.3. contribution to the potential from hydrogen and 

oxygen nuclei: (i) V,(O-Mu) (solid line), 
(ii) VJH-MU) (broken line), (iii) V2 (0-Mu) 
(chaindashed), (iv) V2(H-~u) (chaindotted). 
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Distance from saddle point, R / 8 
Figure V.4. The potential energy curve of muoniun as a function 

of its location on the diffusion path: ( i )  along 
the channel parallel to the c-axis (lower curves), 
(ii) along a zig-zag path perpendicular to 
the c-axis (upper curves). Solid line are V, 
results and broken line are V2 results. 
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5. Bound states for muonium and hydroqen in the intermolecular 

potential 

The motion of muonium/hydrogen in the potential barrier has 

been approximated by a simple harmonic oscillator ( S . H . O . )  [ 6 8 ] :  

where R is the distance the particle travels from its 

equilibrium position and o is the oscillator frequency. The 

parameter m is the reduced mass of the system, and for the 

present case can be taken as the mass of the particle in the 

potential. The value of $ m u 2  was found from the y-intercept of 

the best straight line with a slope of 2 through the linear 

portion of the log-log plot of V ( R )  versus R: 

The values of o for muonium and hydrogen for the two different 

sets of parameters and the potential of Benderskii e t  a1 are 

given in Table V.2. 

The energy levels for muonium/hydrogen calculated in the 

S . H . O .  approximation 1681 



are also tabulated in Table V.2. There is only one bound state 

found for muonium but three for hydrogen for all three 

 potential^.^ This is not unexpected since the mass of a hydrogen 

atom is 9 times that of mu~nium.~ 

Figure V.5 is a plot of the potential barriers calculated 

from the previous section with the S.H.O. approximation 

superimposed on one period. 

- - - - 

E, of Mu coincides with E l  of H because of the 
inverse-root-mass dependence of o (ma = 9mNu) and E l  = 3E0. 

The value of E, for hydrogen is probably an over-estimate 
since the potential barrier deviates significantly from the 
S.H.O. at that region. 



Table V.2 

Comparision of parameters between muonium 

and hydroqen obtained from the 

simple harmonic oscillator approximation 

Potential w (s") Eo (mev) E l    me^) E, (mev) 

muonium 1.00 x lo 1 "  32.9 

hydrogen 3.33 x 10" 11.0 

muonium 9.00 x 1013 29.6 

hydrogen 3.00 x 10" 9.87 

muonium 1.5 x l O l 4  45.0 

hydrogen 5.0 x 1013 15.0 

t from ref. [ 1 7 ] .  



-3 -1 1 3 

Distance along the c-axis, R / A 
Figure V.5. The total potential function of Mu/H in ice with 

the simple harmonic oscillator. Results from V, 
are shown in solid line while those from V, 
in broken line. 



V I .  Diffusion mechanism of muonium and hydrogen in ice 

1. Activated diffusion in ice 

Classically, the thermally activated diffusion rate of a 

particle over a potential barrier is described by the Arrhenius 

Equation [ 7 4 ] :  

where Do is the diffusion constant, EA is the thermal activation 

energy and k is the Boltzmann constant. It is assumed that the 

diffusing atom oscillates from its equilibrium position with the 

frequency calculated from the simple harmonic oscillator model. 

The value of Do is calculated by 1751:  

where g is the number of saddle points surrounding the 

equilibrium site and w is the oscillator frequency. For the 

present case, g is two, corresponding to diffusion "upw and 

"downw the channel. E is calculated from the separation between 
A 

the energy levels and the maximum of the potential barrier. The 

activation energies calculated from the three different 



potentials are tabulated in Table VI.l. 

From statistical mechanics, the distribution of particles 

among allowed energy levels is given by the Boltzmann 

distribution [77]: 

where pi and E. are the degeneracy and the energy of the i - t  h 
1 

level. For the present case, the value of p is 1 since there are 

no degenerate energy levels. The probability of finding the 

particle in a higher energy level is always less than that of 

the ground state. Therefore, the activated diffusion rates for 

each energy level have to be weighted by this Boltzmann factor. 

The total activated diffusion rates have been calculated at 

various temperatures for both muonium and hydrogen in the three 

potentials used. The results are given in Figure VI.l in the 
b 

form of h(DA) versus I / T .  The activation energy determined from 

the slope of the linear portion of the plot is the same as EAo. 

2. Quantum tunnellinq in ice 

Non-linear Arrhenius behaviour at low temperatures where 

the effect of the Boltzmann distribution is minor has been 

observed [761. This can be explained by quantum tunnelling [86]. 

Although prohibited by classical theory, the probability of 

finding a particle bound in a potential in the adjacent saddle 



Table VI. 1 

Activation enerqies for muonium and hydrogen 

for the three potentials. 

(All units in meV) 

M u o n i  urn 

E A0 

H y d r o g e n  

A0 

A' 

~2 

Peak to peak 

height of V: 



Figure VI.1. l n ( ~  ) of Mu from V, (solid line), V2 (broken 
line? and v3 (chain-triple-dashed line) and H irom 
V, (chaindashed line), V2 (chaindotted line), 
and V3 (chain short dashed line) as a function of 
reciprocal temperature. 



points is non-zero. This probability is called the 

"permeability" of the particle through the potential barrier and 

can be calculated using the BWK approximation.' 

A computer program [ 8 8 1  formulated under this aproximation 

was used to calculate the permeabilities for the potentials. The 

results are given in Table VI .2. The permeability of the 

potential increases for higher energy levels. This is expected 

since the barrier width decreases towards the top. Therefore, 

the probability of hydrogen diffusion via quantum tunnelling is 

greatest for bound state E, and smallest for E,. 

The tunnelling rate of a particle in a potential barrier 

depends on the permeability, P I  the oscillator frequency, w ,  and 

the number of adjacent saddle points, g [78]: 

where g and w are the same as defined in Equation 6.3. The total ' 

tunnelling rate is a sum of the Boltzmann weighted tunneling 

rates from each individual energy level. For muonium in ice, 

this is temperature independent because there is only one 

populated level. For hydrogen in ice, the tunnelling rate is 

temperature dependent. A plot of the calculated h(DT) of 

hydrogen in ice as a function of inverse temperature is 

BWK approximation stands for the method for solving the 
Schrodinger equation for a bound system proposed almost 
simultaneously, though independently, by Brillouin, Wentzel, and 
Kramers. Other variations of the acronym are permutations of the 
letters: WKB, KWB e t c .  



Table VI - 2  

Calculated permeabilities for muonium and hydroqen 

in the different energy levels of the potentials 

using the BWK approximation. 

Muoni urn 

Po 

Hy d r o g e n  

Po 

p 1 

p2 



displayed in Figure VI.2. As can be seen from Figure VI.2, the 

tunnelling rate of hydrogen is constant in the low temperature 

regime (T < 40 K) but rises sharply when temperature is 

increased as the Boltzmann factor becomes important. At 

intermediate temperatures, the plot resembles that of a 

classical Arrhenius plot before it bends over to give a smaller 

slope at high tempeatures. 

3. Effective diffusion in ice 

The "effective" diffusion rate is a sum of the total 

activated diffusion rates and the total tunnelling rates: 

This has been calculated. The result is plotted in the form of 

ln(D ) versus inverse temperature in Figure VI.3. The calculated 
E 

effective diffusion rates for both muonium and hydrogen have 

temperature dependent and independent regions. The temperature 

dependent region is the manifestation of thermally activated 

diffusion. Quantum tunnelling dominates the temperature 

independent region. The intermediate region is a sum of the 

rates of the two mechanisms and exhibits the characteristic 

"bend-overw before it reaches the tunnelling limit. The 

effective activation energy is determined by the slope of the 

linear portion of Figure VI.3. This has been calculated and is 



Figure VI.2. ln(D ) of H in ice from V, (solid line), V2  
(broien line), and V3 (chain-triple-dashed line) 
as a function of reciprocal temperature. 



Figure VI.3. ln(D ) of Mu from V,  (solid line), V 2  (broken 
lineF and v, (chain-triple-dashed line) and H from 
V, (chaindashed line), V2 (chaindotted line), 
and V3 (chain short dashed line) as a function of 
reciprocal temperature. 



tabulated in Table V 1 . 3 .  The effective activation energy of 

hydrogen in ice does not deviate significantly from that 

obtained by activated diffusion alone. However, that calculated 

for muonium does show a decrease of 10% in the high 

temperature regime before it reaches the tunnelling limit. 

In addition, the temperature where the tunnelling rate 

begins to exceed the activated rate (their cross-over point) is 

estimated and is also given in Table V I . 3 .  Obviously, because of 

the inverse-root-mass dependence of DA and D the cross-over 
T ' 

point of muonium is at much higher temperature than that of 

hydrogen. 



Table VI . 3  

Calculated effective activation energies from 

the slope of the total diffusion rates 

(All units in meV) 

Muon i um Hydrogen 

Estimated temperature where tunnelling becomes dominant 

(Units in ~ e l v i n )  



VII. Experimental methods 

1. Sample preparation 

Single crystals of H20- and D20- ice were grown by two 

separate methods. The first method was that outlined by Jona and 

Scherrer [50]. Several sets of thermostatically controlled 

heating coils were wound around a beaker at various levels. The 

beaker was then put inside a box with thermal insulation around 

it. Distilled and degassed water was poured into the beaker. The 

whole apparatus was placed in a freezer .at -20•‹C. A temperature 

gradient was introduced by applying different electric currents 

through the different sets of coils around the beaker with the 

lowest current at the top. By slowly reducing the current in the , 

individual coils in a controlled manner, it was possible to 

initiate and control the growth of an ice crystal from the 

surface downwards. It took 2 to 3 days for complete growth of a 

crystal. The single crystals produced by this method usually 

have their c-axis parallel to the length of the beaker. 

The second method (mentioned by Jaccard [51]) was both 

faster and simpler. A capillary tube was drawn from a 

cylindrical beaker. Distilled and degassed water was poured into 

the beaker. The tip of the capillary tube was then seeded by 

dipping it into liquid nitrogen. The whole apparatus was then 



slowly lowered into an ethanol bath at -20•‹C with the seeded tip 

of the capillary tube just touching the ethanol surface 

initially. The rate of descent was 6mm/hour. As the device was 

lowered into the bath, a single ice-crystal started to grow from 

the capillary tube upward. The c-axis of the crystal is usually 

perpendicular to the axis of the beaker. This whole process took 

about 1 to 2 days. Hereinafter, the crystals grown by the first 

method will be labelled crystals I and those by the second 

method crystals 11. 

Crystals I 1  are of superior quality when compared to 

crystals I. The success rate of the second method was also much 

higher than that of the first. Both methods yielded cylindrical 

blocks of ice typically of the size 7 cm in diameter and 10 cm 

long. Good quality single crystals were carved from the centre 

of the blocks using a rotary cutting disc. They were 

subsequently polished with emery cloth and suede leather. The 

samples used in experiments were either cuboid or cylindrical in 

shape. The sides of the cuboid samples were approximately 4 cm. 

The cylindrical samples were 4 cm in diameter with a typical 

height of 4 cm. 

The location of the c-axis of each crystal was determined 

by varying the orientation of the crystal with respect to 

polarized light. When the c-axis of a crystal is parallel to the 

polarized light, no light extinction should result from rotation 

of the crystal around its symmetry axis. 



2. Cryostats 

The prototype cryostat was essentially a double walled 

styrofoam box through which thermostatically controlled cold 

nitrogen gas was passed. Sample temperature was monitored by a 

silicon diode sensor (Lake Shore Cryotronics DT-500-DRC) held in 

contact with the sample surface at the edge of the expected muon 

stopping region. The lowest temperature attained by this 

cryostat was 88 K. The temperature gradient inside the cryostat 

was large. A second cryostat was constructed so that the 

'exhaust' nitrogen gas was passed through an inner wall of the 

cryostat. The schematic drawing for this cryostat is given in 

Figure VII.l. By doing this, the lowest temperature attainable 

was 80 K and the temperature gradient reduced. The temperature 

stability was also improved. 

However, some of the experiments required a cryostat which 

can reach temperatures down to 10 K. A 2-stage helium expansion 

cryostat was obtained (CTI-Cryogenics Model 21C Cryodyne 

Cryocooler). This He cryostat consists of a compressor and a 

cold head. Helium gas is compressed in the compressor and 

transported to the cold head. It is then allowed to expand in 

two stages in the cold head and, during the expansion, extracts 

heat from the cold tip. After expansion, the helium gas is 

returned to the compressor for recycling. The cold head was kept 

under vacuum. The sample was placed in thermal contact with the 

second stage cold tip. The temperature of the sample was 



Figure VII.l. Schematic diagram of the nitrogen flow cryostat. 
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controlled by thermostatically controlled coils wound around the 

cold tip. The temperature sensor used was the same as that for 

the nitrogen flow cryostats. A shield with mylar sheet wrapped 

around the window was installed in order to block thermal 

radiation, which becomes important at low temperatures. Special 

precautions such as applying thermally conducting grease between 

the sample and the cold tip and making sure the sample was not 

in thermal contact with the radiation shield had to be taken to 

ensure the stability of temperature and to minimize the 

temperature gradient in the sample. The schematic diagram of 

this cryostat is shown in Figure VII.2. The lowest temperature 

attained with this cryostat was 8.0 K. The stability of this 

cryostat is extremely good. For a 2 hour experiment, the 

temperature drift was no more than 1 K at high temperatures and 

much less at low temperatures. 

3. pSR experiments 

Experiments were performed at the M20A beam line of TRIUMF, 

using the conventional transverse field muon spin rotation (PSR) 

technique. The apparatus used was SFUMU,' which consists of a 

set of Helmholtz coils, a water degrader and various 

collimators. The sample was placed in the cryostat. The cryostat 

was mounted onto SFUMU with the sample volume in the middle of 

' SFUMU, as its name suggests, stands for the Simon Fraser 
University MU spin rotation group. Although SFUMU nominally 
belongs to the SFU group, it is shared with other TRIUMF users. 
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the Helmholtz coils where the field inhomogeneity is least. The 

whole apparatus was aligned with the beam. A beam of 

longitudinally polarized backward muons ( p + )  with momentum of 

88 ~eV/c in the laboratory frame of reference was introduced to 

the sample. The momentum of the muons was sufficient to ensure 

that the muons penetrated the cryostat walls and irradiated the 

target sample. The thickness of the water degrader was varied 

remotely to moderate the momentum of the muons and optimize the 

stopping site of the muons. With a final beam collimator of 

20 mm in diameter the muon stopping rate was typically 

2 x 104/s. Three positron telescopes, arranged in forward, 

backward and perpendicular directions with respect to the muon 

beam, were used at first. At a later experimental stage, a 

fourth telescope was installed in the other perpendicular 

direction. The experimental set-up is given in Figure VII.3. 

The ratio of the muon precession amplitudes detected by the 

forward and backward telescopes was used to optimize the water 

degrader setting. As a rule of thumb, the optimum muon stopping 

distribution was achieved when the muon precession amplitudes 

detected by the forward and backward telescopes were equal 

provided the sample was placed midway between the two detectors. 

This method was found to be more sensitive than other commonly 

used criteria such as the perpendicular telescope counting rate 

or the ratio of muon stops to beam intensity. 

For the experimental set-up to register a muon stop in the 

sample, the muon must pass through counters B, M,, M, but not 

88 





Fl. Therefore, the muon stop signature is B.M1.M2.Pl. 
- 

Correspondingly, M2.F1.F2 represents a decay of a muon in the 

forward direction. The two signatures form the start and stop 

signals for the life-time counting apparatus. The standard data 

acquiring system of TRIUMF was used. The elapsed time between 

muon stop and its decay (signalled by the emission of a 

positron) was measured with a 1 GHz digital clock (TRIUMF B080) 

at first. A pileup gate was used to reject events for which two 
b 

muons had entered the target within the gate time, which for a 

typical muonium experiment, was set at 8 psec, to reduce the 

distortion of the pSR spectrum. During September 1984, a new 

clock (Lecroy Camac 4024 TDC) was installed in place of the old 

clock. The resolution ( . 1  ns) of the new clock is better. The 

electronics is simplified because multiple stops of the clock 

are rejected. The data are collected in three/four histograms 

(N versus t )  corresponding to the three/four positron 

telescopes. For lower field muonium experiments, each histogram 

contains 2048 bins of 4 ns width. For higher field (70 G) 

experiments, the bin width was decreased. 6-8 million events per 

histogram are accumulated for a muonium experiment. Under 

typical beam intensities and stabilities, the whole experiment 

takes 12-2 hours. 



4. Data analysis 

The pSR histograms were analyzed by computer fitting of the 

appropriate theoretical function'. The general form of a 

histogram is: 

where B represents background, No is the normalization factor, 7 

is the muon life time, and ~ ( t )  is the muon asymmetry. For ice, 

~ ( t )  is a sum of the diamagnetic and muonium precession signals: 

The diamagnetic signal is given by: 

i . e . ,  a simple oscillation characterized by amplitude ( A  ) ,  
D 

relaxation rate (h ) ,  frequency (o ) and phase (6,). Two 
D D 

different expressions were used to fit the muonium signal, M(t), 

depending on the strength of the applied field and the 

orientation of the c-axis of the single crystal with respect to 

the applied field. For a single frequency, 



and for split muonium precession, 

The splitting parameter 6 can incorporate both the Zeeman 

splitting and the hyperfine anisotropy. The former also affects 

the relative amplitudes of the amplitude components. XA is the 

ratio of the amplitudes of the muonium frequencies with 6, the 

phase difference between the frequencies. At higher fields, 

e.g., 70 G experiments, this effect is important. 

For experiments done with an applied field of less than or 

equal to 10 Gauss and with the sample oriented 55' to the 

applied field, expression (7.3) was used to fit the histograms 

since the Zeeman splittings were small. For experiments done 

with an applied field of 37 Gauss and with the c-axis of the 

sample parallel to the applied field, expression ( 7 . 3 )  was also 

used since the Zeeman splitting offsetted the splitting caused 

by the anisotropic hyperfine tensor. All other data obtained 

from various experimental conditions were fitted with expression 

(7.4). The slow precession of the diamagnetic muon, was 

accounted for by Equation 7.2, in which oD is related to o by a M 

constant factor describing their gyromagnetic ratios 

(y(~u)/~(p+) = 103). Thus, for the most complicated case, split 

muonium precession (e.g. 70 Gauss experiments), 12 free fit 

parameters (B, No, A h , $ ,  AM, hM, o OM' 6, KAI 60) are 
D, D M ' 



required. 

Examples of the three types of signals are given in Figure 

VII.4 for muon and muonium in a D20-xtal. All fits were made to 

the full histogram, N ( t ) ,  but for clarity, the muon decay has 

been divided out. 

The computer program used was MINUIT, written by James and 

Roos [52]. It involves a non-linear least-square minimization 

procedure to fit a theoretical expression to experimental data 

and calculate the parameter errors and correlations. 

5. Calibration procedures 

The signal amplitudes A,, and AN were converted to muon 

polarization fractions PD and PM by calibration against AD for 

standard samples run in identical apparatus configurations 1531. 

The standard samples included aluminum foil and ferric oxide 

powder made into the same shape, size and weight as the real ice 

samples. Ferric oxide does not give rise to any signal at the 

observed o ,  so AD(Fe203) is attributed to the background signal 

due to muon stops outside the sample. Aluminum is used as a 

standard because it gives full asymmetry at oD. Then the 

polarization is given by [54]: 



Figure VII.4. MSR spectra of muonium in D,O ice: (i) 0" 
orientation, 37 G I  209 K. (ii) 0•‹, 70 G, 209 K. 
(iii) 55", 10 G I  95 K. 



The factor of 2 in PM accounts for the unobserved fraction of 

muonium in the singlet state [ 5 4 ] .  The polarizations obtained 

for each histogram were then statistically averaged: 

The temperatures measured by the silicon diode sensor were 

calibrated against various standard temperature baths [ 5 5 ] .  The 

deviations of the temperatures recorded by the silicon diode 

sensors were found to be no more than 1 K off the standard bath 

temperatures in the high temperature regime. A plot of the 

deviations as a function of bath temperatures exhibits a staight 

line. Extrapolation of the straight line indicated that, in the 

low temperature regime, the deviation is minimal. Since only the 

relative errors are important, the temperatures measured by the 

silicon diodes are taken to be absolute. 

The relaxation rates obtained for each histogram were also 

statistically averaged in the manner of Equation 7.7. The 

averaged relaxation rates contain contributions from both 

dipolar interactions and field inhomogeneities. The contribution 

from field inhomogeneities has to be subtracted from 

experimental relaxation rates. The calibration procedure for 

this was more complicated and is discussed in the next section. 

Another factor which can cause anomalous relaxation rates 

is applied field instability. If the applied field strength is 

not stable, the Larmor precession frequency of muons would be 



different at different points in time. This will cause dephasing 

of the muonium spins and will result in an apparent relaxation 

of the signal. The effect of this is not distinguishable from 

field inhomogeneity effects. Therefore, its effect is taken to 

be incorporated in the field inhomogeneity corrections. 

6. Field inhomoqeneity corrections 

If the applied field in a uSR experiment is not 

homogeneous, the precession frequencies of individual muons and 

muonium would be different. This arises because individual muons 

and muonium will experience different field strength depending 

on the stopping site. The effect of this will be depolarization 

of the muon spins and an increase of the transverse relaxation 

rate. Field inhomogeneity has two origins: the inherent magnetic 

field gradient of the helmholtz coils used and the presence of 

paramagnetic materials around or near the sample which alter the 

effective magnetic flux experienced by the sample. Another minor 

contribution to the field inhomogeneity is the change of the 

magnetic environment caused by other dipole, quadrupole and 

hexapole magnets of the beam lines, and the magnetic field of 

TRIUMF. The effect of this contribution is random field 

inhomogeneity because it depends on the environment. The 

correction of this effect is incorporated into the correction of 

field inhomogeneity. 



Measurements have been made to estimate the effect of the 

former two contributions. It was found that the field 

inhomogeneity caused by the Helmholtz coils on the SFUMU 

apparatus was minimal. The relaxation rates observed by a pSR 

experiment is a sum of all the different relaxation rates, i . e . ,  

In aqueous environment (water), muonium is diffusing rapidly 

while the water molecules are also rearranging themselves 

rapidly, the relaxation rate caused by dipolar interaction is 

motionally averaged and is negligible. Therefore, the origin of 

the observed relaxation rates of muonium in water (0.186+$:$::)  

can be attributed to field inhomogeneity of the coils. If no 

other cause for field inhomogeneity was present, relaxation 

rates obtained at lower temperatures must be corrected by this 

amount in order to determine the true relaxation rate caused by 
5 

dipolar interaction. The styrofoam cryostats used at the 

beginning of the research contain no paramagnetic materials and 

therefore did not contribute to the field inhomogeneity. 

Therefore, the experimental relaxation rates were corrected by 

subtracting the relaxation rates obtained for muonium in water. 

The Helium cryostat, however, did alter the magnetic flux 

around the sample. When the cryostat was first designed, the 

radiation shield was plated with Nickel while the vacuum shroud 

was made of steel. After the maiden application of the cryostat 



(January 1984), it was found that the relaxation rates measured 

were anomalously high when compared with results obtained by 

using the styrofoam cryostats. Hence, an investigation of the 

magnetic flux contour for the sample volume was initiated. The 

contours of the magnetic flux for a cross-sectional plane 

perpendicular to the applied field and bisecting the sample are 

plotted in Figure VII.5. In Figure VII.6, cross-sections of the 

field along and perpendicular to the direction of the field 

right through the middle of the sample for an applied field of 

10 Gauss are plotted. From this plot, the field inhomogeneity of 

the applied field is evident. The variation of this 

inhomogeneity as a function of applied field after the inaugural 

use of the He cryostat is given in Figure VII.7. In view of this 

field inhomogeneity effect caused by the cryostat, a set of 

experiments done with different applied field intensities at the 

same temperature (T > 220 K) were performed for each subsequent 

beam periods to serve as calibration. 

After the first usage of the He cryostat, the radiation 

shield and vacuum shroud were reconstructed using copper. The 

relaxation rates obtained during the second usage of the 

cryostat ( ~ a y  1984), were still higher than those obtained from 

the Nitrogen flow cryostat. This anomalous behavior was caused 

by the plating on the cold tip of the cryostat. The plating was 

subsequently sanded away. 

For the beam periods in November, 1984 and May, 1985, a new 

sample holder, radiation shield, and vacuum shroud were used. 



Figure VII.5. Contours of magnetic field intensity inside 
the radiation shield and vacuum shroud of the He 
cryostat. The applied field is 10 G. 
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Figure V11.6. Magnetic field intensities as a function of 
position at the sample area parallel ( a )  and 
perpendicular ( 0 1  to the applied field of 10 G. 
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Applied field, B / G 

Figure V11.7. Field inhomogeneity as a function of applied 
field strength. is for measurements in the 
direction of the field and o is perpendicular. 



The new sample holder was designed such that the sample volume 

is farther away from the cold tip. This way, the field gradient 

caused by any remaining paramagnetic material in the cold tip 

will be minimized. 

In view of the previous discussion, the experiments 

performed inside the He cryostat were corrected using four 

different methods corresponding to the four stages of the 

development of the cryostat. They are summarized below in 

reverse chronological order. 

A .  Runs done in November, 1984 and May, 1985 

. These two beam periods were grouped together for field 

inhomogeneity corrections because a re-designed sample holder 

was used in the He cryostat for both periods. During the May, 

1985 beam period, both the styrofoam and He flow cryostats were , 

used. The relaxation rate of Mu in water (0 .236 2 ps-') in 
b 

the styrofoam cryostat was measured in the more recent beam 

period. The intrinsic relaxation rate of muonium in water 

(0 .050 f 0.020 ps-' [ 5 9 1 )  was subtracted from the experimental 

value and a value of 0.186 2 g : g z g  ps-' was attributed to the 

static field inhomogeneity. This value was used to correct for 

all runs performed in the styrofoam cryostat. 

A series of experiments of muonium in D,O-ice were done in 

different applied fields at 209 K. A plot of the muonium 

relaxation rate as a function of applied field strength yielded 



a straight line with slope .0070 + 0.014 ~ s - '  G - '  (the result 

for the 37 G run was not used in this calibration procedure for 

reasons explained in later sections). Then all runs performed in 

the He flow cryostat were corrected by summing the static part 

(obtained from the relaxation rate of muonium in water) and the 

field dependent part (the product of the slope and the applied 

field) . 

B. For experiments done in June, 1984 

For these experiments, all the major contributors to field 

inhomogeneity had been removed. Relaxation rates were measured 

for muonium in D20-ice at 230 K at 10 G I  20 GI and 37 G of 

applied field. Since the relaxation rate of muonium at this 

temperature is negligible, the experimental relaxation rates 

were a measure of field inhomogeneity. Experiments performed at 

other temperatures were corrected by subtracting from the 

experimental relaxation rate the relaxation rate at 230 K and 

corresponding applied field. 

C. For experiments done in May, 1984 

There were only three experiments dedicated to the study of 

the behaviour of Mu in ice during this beam period. From results 

obtained by using the N2 cryostat, the relaxation rate of Mu in 



D,O ice at 110 K was estimated to be 0.55 us-'. By plotting the 

experimental data of Mu at 41.4 K t  a slope of 0.0092 PS-'G-' - a 
measure of the variation of relaxation rates as a function of 

applied fields - was obtained. The experimental relaxation rates 
were assumed to take the form: 

where Xo is the true relaxation rate, X& is a static field 

inhomogeneity, and h(G) is a field dependent inhomogeneity. From 

the calculation, the value of XA was estimated to be 1.49 us-' 

at 110 K. Since both X& and X(G) are temperature independent, 

the value of Xo was calculated. The errors quoted for these runs 

were the sum of the uncertainties of the estimated relaxation 

rate at 110 K (f0.1 us-') and those of the experimental 

relaxation rates at 110 K. The uncertainty of h(G) was estimated 

to be small and was subsequently neglected. 

D. Runs done in January, 1984 

The correction for data obtained during this beam period 

was the most difficult to estimate since the inhomogeneity 

effect was not noticed until all the experiments were finished. 

The true relaxation rates, Xo, in the linear region (high 

temperature regime) for 10 G runs were estimated from 

experiments performed with the nitrogen cryostat. The deviation 



between the relaxation rates obtained during this beam period 

for 10 G experiments and the true relaxation rates (0.77 M S - l )  

was estimated. This deviation was used to correct for lower 

temperature 10 G runs. The same slope, i . e . ,  0.0092 rrs-l G-I as 

obtained earlier, coupled with the deviation obtained for 10 G 

experiments were used to calculate the correction 

(0.86 + 0.07 MS-') for 20 G applied field runs. 

A summary of these corrections is given in Table VII.l. 



Table VII.l 

Summary of the corrections to the experimental 

relaxation rates made to each beam period. 

All units are in ps-' 

Nitrogen 

cryostat 

Runs done 
in Jan. 
1984. 

'Runs done 
in May 
1984. 

Runs done 
in June 
1984 

Runs done 
in Nov., 1984 0.2562 0 ' 0 6 8  

0 . 0 6 8  

& Apr., 1985 



VIII. Experimental results 

1. Spin relaxation rates of muonium 

The muonium signal in H20- and D20-ices decays as a 

function of time because of the spin relaxation mechanisms 

discussed earlier (Chapter IV). The relaxation rate of muonium 

increases as an inverse function of temperature because of the 

temperature dependent nature of the correlation time, r c .  As an 

illustration, Figure VIII.l shows the effect of temperature on 

the muonum signal in a single ice crystal of D20 oriented with 

its c-axis parallel to the field of 37 G. It is clear from 

Figure VIII.l that the muonium signal decays faster as the 

temperature is lowered. 

The experimental relaxation rates were extracted from the 

spectra using either Equation 7 . 3  or 7 . 4  depending on the 

experimental situation as explained earlier. The 8 = 55' 

orientation and the 37 G applied field experiments were chosen 

to simplify the expression used in fitting. However, the two 

frequency signal is preferrable at high temperatures, since any 

residual splitting due to an inaccurate 55" orientation or 37 G 

applied field strength would result in non-exponential 

relaxation. Below 200 K this source of error can be discounted 

since the natural linewidth is greater than any potential 



(ii) 

Figure VIII.l. Spectra of muonium in D,O ice at different 
temperatures in an applied field of 37 G: 
(ill95 K. (ii178.3 K. (iiil36.5 K. (iv)8 K. 



splitting. A summary of the experimental relaxation rates is 

given in Appendix 1. The relaxation rates quoted in Appendix 1 

have not been corrected for field inhomogeneity effects. 

Figure V I I I . 2  and V I I I . 3  are plots of the corrected 

relaxation rates of muonium in H20-ice and D20-ice as a function 

of temperature respectively. The correction procedure used is 

that mentioned in Section V I I . 5 .  The experimental data are 

divided into several sets corresponding to different crystal 

orientations ( 0 '  and 55') and applied field strengths ( 1 0  G ,  

2 0  G ,  and 37 G ) .  No distinction is given to the results obtained 

from crystals I and crystals I 1  since the experimental 

relaxation rates obtained from these two different crystals do 

not show any discrepancy. 

Experiments were done to investigate the dpendence of 

relaxation rate as a function of the angle the c-axis of the 

crystal makes with the applied field. The crystal used was H20 

and the temperature was at 2 2 7  K. A field of 1 0  G  was used. The 
' 

results are shown in Figure V I I I . 4 .  As can be seen in Figure 

V I I I . 4 ,  the relaxation rate of muonium is dependent on the angle 

the c-axis of the crystal makes with the applied field. The 

implications of this dependence will be discussed in the next 

chapter. 



Temperature / K 

Figure VIII.2. Corrected relaxation rate of muonium in 
H,O-ice as a function of temperature. 
(o O0 10G, a O 0  37G, n 55' 10G, 
55' 20G). 



Figure 

Temperature / K 
VIII.3. Corrected relaxation rate of muonium in 

D20-ice as a function of temperature. 
(O 0' 10G. a 0' 37G, n 55' 10G, 



Figure 

Angle c-axis makes with Bo 
VI11.4. Muonium relaxation rate as a function of 

orientation. The temperature was 227K. 
The crvstal used was H,O. 



2. Asymmetries of muon and muonium 

The diamagnetic fractions, PD, determined for single 

crystal samples are displayed as a function of temperature in 

Figure VIII.5. The data are divided into two sets according to 

the two different methods used in growing the crystals. No 

distinction is given to the diamagnetic asymmetries obtained for 

the different orientations of the crystals with respect to the 

applied field since there is no disagreement between the data. 

This suggests that there is no dependence of PD on the crystal 

orientation. The statistical errors in the PD values are all 

close to 0.01. Systematic errors in calibration are potentially 

higher, particularly for the earlier experiments where stops in 

the cryostat were not taken into account. However, good 

agreement of the data is evident. 

Muonium fractions, PM, are displayed in Figure VIII.6 as a 

function of temperature. The data are separated into two groups 

according to the crystal orientation: 8 = 0' or 55'. There is no 

disagreement between the PM values for these two orientations 

which in turn suggests that there is no dependence of P on 
M 

orientation. 

There is disagreement between the P values found for the 
M 

crystal I and crystal I 1  in the region T > 200 K. Difficulties 

have been encountered in calibrating the results. The cause of 

this disagreement is unclear as explained in an earlier 

publication [ 5 4 ] .  Nevertheless, the trend is clear: P continues 
M 



Temperature /K 

Figure VIII.5. Diamagnetic fractions in H,O ice crystals 
I (6) and 11 ( a ) .  

1 1 4  



Temperature 

Figure VIII.6. Muonium fractions in H,O ice crystal I with its 
c-axis at 0•‹(0) to the field, and 
crystal I1 oriented at OO(@) and 
55O(m). The solid line represents 1-PD 
for the crystals and for liquid water. 
The triangle is the muonium fraction in water. 



to fall as the temperature is raised above 200 K. 

As an aid to comparison of the diamagnetic and muonium 

fractions a smooth curve has been drawn through the P,, points in 

Figure VIII.5. It is reproduced in the form of 1 - P,, in Figure 

VIII.6. Clearly, for temperatures above 200 K PM falls short of 

1 - P,. Put another way, there is a missing fraction of muon 

polarization in ice above 200 K. A detailed explanation is 

beyond the scope of the present work and will not be discussed 

any further. Interested readers are referred to an earlier 

publication [54]. 

3. The hyperfine frequency of muonium in ice 

The Larmor precession frequencies and the splittings of 

muonium in H20- and D20-ices have been extracted from the 

experimental spectra using Equation 7.4. Knowing these two 

parameters, the hyperfine frequency and the anisotropic 

splitting parameter, 6 w ,  can be calculated using Equations 3.23 

and 3.24. Table VIII.l is a summary of these parameters for 

field dependence runs. These values should be compared with the 

hyperfine frequency of muonium i n  vacuo, 4463 MHz G-'. The 

hyperfine frequency of muonium in H20-ice is = 5% higher while 

that of muonium in D20-ice is marginally higher than that of 

muonium in vacuo. The implications of this will be discussed in 

the following chapter. 



Table VIII . I  

Summary of hyperfine frequency of muonium in ice 

H20 results 

- Temp. w Field 5 3  Anisotropic Hyperf ine 
(K) (MHZ (GI (MHz) splitting (MHz) freq. (MHz) 

D20 results 

t The c-axis of the crystal was not parallel to the applied field. 

tt The relaxation rate of muonium in ice at this temperature is 
high. Correlation between XM and 8 of Equation 7.4 made the fit 
difficult and yielded unreliable results. Therefore, 6 was fixed at 
the value obtained for higher temperatures. 



IX. Discussion 

1. Relaxation mechanism 

The marked difference between results in H,O- and D,O-ices 

shows that the line-width of trapped muonium arises mostly from 

dipolar interactions with protons/deuterons of nearby water 

molecules. The smaller relaxation rate (narrower line-width) at 

higher temperatures means the fluctuation of the magnetic field 

experienced by muonium is time averaged, Two possible 

interpretations can be applied to this narrowing effect: One is 

to explain this by re-orientations of the water molecules 

surrounding the "trapped" muonium, and the other is to explain 

this by the translational diffusion of muonium. 

For ice Ih, no phase transition has been observed below its 

melting point [23]. As discussed in Chapter 11, re-orientation 

of the water molecules (measured by dielectric relaxation) is 

slow when compared with the time scale of the muonium spin 

relaxation. In fact, the motional narrowing regime of the proton 

NMR line-width does not begin until 230 K [86]. Shiraishi et a1 

[4] explained the narrowing of the ESR line-width of hydrogen 

atoms by translational diffusion of the hydrogen atoms. This is 

particularly easy for muonium because it is nine times lighter 

than hydrogen. Therefore, the line-width of muonium in ice 



should be attributed to dipolar broadening modulated by 

translational diffusion. 

Second moment calculations from Chapter IV indicated that 

the relaxation rate of muonium in ice should be dependent on the 

angle the c-axis of the crystal makes with the applied field. 

The experimental results and the predictions from dipolar theory 

are given in Figure IX.l. The calculated results were made in 

the static dipolar line-width regime and have been normalized to 

the present data. Agreement of experimental data with static 

dipolar calculation is good except at 55" where the discrepancy 

between experimental and theoretical values is 0.3 ~ s - l .  There 

is no obvious reason for this discrepancy. Nevertheless, the 

experimental relaxation rates of muonium in H,O-ice showed a 

maximum at 55' and a minimum at 0•‹, in accord with predictions 

from dipolar calculations. 

In view of this, the experimental data are divided into two 

sets depending on the orientations of the c-axis of the crystal 
' 

- 0' or 55" to the applied field. The two sets of data for 

H20-ice are shown in Figure IX.2 and Figure IX.3. The D20-ice 

data are not divided into two sets because they can be 

distinguished easily due to the fewer number of data points 

available. 

It was discovered that the experimental relaxation rates 

obtained for experiments done with the applied field set at 37 G 

are less than those obtained from other fields. This anomaly is 

probably due to the degeneracy of the two observable transitions 



Angle c-axis makes with Bo 

Figure IX.l. Muonium relaxation rate as a function of the 
angle the c-axis of the crystal makes with the 
applied field. The solid line is the normalized 
results from static dipolar calculation. 



Temperature / K 
Figure IX.2. Relaxation rates of muoniurn in H,O-ice 

at 10 G (01 and 37 G ( a )  oriented with its 
c-axis 0' to the applied field. 





at 37 G. However, a quantitative treatment of the problem is 

beyond the realm of the present research and is not pursued 

further. The set of data obtained at this field is very 

consistent. Therefore, it is used for later calculations. Data 

for both H20- and D20-ices at 37 G are shown in Figure IX.4. 

The ratio of the relaxation rates for muonium in H20- and 

D,O- ices varies with temperature. The predictions from motional 

narrowing for fast and slow diffusing muonium in ice are 16 

and 4 respectively (Equations IV.18 and IV.19) 191. The ratio 

obtained by Gurevich et a1 [9] is 2.9 at 77 K. The ratio 

obtained from the present data at 77 K is 1 7.3. It seems that 

muonium is still diffusing in ice at 77 K. This negates the 

claim made by Gurevich e t  a1 that muonium does not diffuse in 

ice at this temperature. However, because of the limitations of 

the motional narrowing theory, the translational motion of 

muonium in ice cannot be inferred for lower temperatures by this 

method. 

According to Slichter [87], the longest r c  for which 

Equation 4.13 remains valid is when r c  < T,. For r c  > T,, the 

spins will not be dephasing by a "random" walk because dephasing 

occurs before there is a chance to hop. The line-width is then 

independent of the jump rate, resulting in the temperature 

independent rigid lattice line-width. In the present case, the 

calculated value of 7, at the rigid lattice limit is 

5.7 x s for H,O-ice which in turns implies that the 



Temperature / K 

Figure IX.4. Muonium relaxation rates in H20- ( a )  
and D20-crystals (0) oriented with their 
c-axis parallel to an applied field of 
37G as a function of temperature. 



relaxation rate of muonium at the limit should be 1 17 ps-l.l 

This relaxation rate corresponds to the experimental results in 

the temperature range of around 35 K. Since the theory breaks 

down at this value of r, the ratio of between H,O- and 

D20-ices at this temperature should not be taken into 

consideration. Furthermore, when rc = T2, the line-shape of the 

relaxation function deviates from a Lorentzian. However, due to 

the complexity of the spectra and lack of existing theory, the 

experimental spectra were fitted to a Lorentzian for practical 

purposes. 

As mentioned earlier, when rC - T2 the transverse 
relaxation rate, Ti1, reaches the dipolar limit. In the motional 

narrowing regime, the value of XM is small. The intermediate 

range is characterized by an increase of XM which indicates the 

slowing down of muonium; and a bend-over region after which it 

reaches the static dipolar broadening limit. The bend-over 

region signifies the on-set of localization of muonium in the 

cavity. This has not been observed. The experimental values of 

Ti1 for muonium in D,O-ice well exceeds the value of 1 4 ps- 1 

obtained at the dipolar rigid lattice limit. The explanation of 

this is given later in Section 3. In fact, the relaxation rate 

of muonium in D20-ice is 1 10 ps-I at 8 K. This means that 

muonium is not localized at this temperature. Put another way, 

muonium is still diffusing in ice at 8 K. 

This is probably an underestimate. See later sections for 
discussions. 
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2. Diffusion parameters 

In the motional narrowing 'limit, the correlation time, 7 
C ' 

is the inverse of DE. In that limit, the relaxation rate of 

muonium in ice is directly proportional to rC. If no other 

diffusion mechanism is present, a plot of ln(X) versus l/T will 

yield a straight line. The slope of the straight line is related 

to the activation energy by the Boltzmann constant. If quantum 

tunnelling is present, the plot will show the characteristic 

"bend-overw discussed in Chapter V1. The natural logarithm of 

the experimental relaxation rate of muonium in single crystals 

of ice as a function of reciprocal temperature is plotted in 

Figure IX.5. At around 75 K t  the plot for muonium in H,O-ice 

shows a "kink", i . e . ,  a dip from the expected straight line. 

This is thought to be the region where aMrC = 1. It is not 

observed for D20-ice because of insufficient number of data 

p ~ i n t s . ~  For temperatures below 50 K, the D20 data shows the 

characteristic bend-over which indicates the on-set of 

tunnelling. This is in accord with the prediction of the present 

potential that tunnelling dominates for temperatures at or below 

100 K. However, the temperature where tunnelling becomes 

dominant is different between the experimental data and the 

theoretical predictions. This difference is thought to be caused 

Discussions on the implication of this "kinkw are given in the 
following section. 



Figure I X . 5 .  The natural logarithm of Ti1 of muonium 
in H20- ( @ )  and D20- (01 ices at 
37 G - -  an ~rrhenius plot. 



by an overestimate of the oscillator frequency which is 

discussed in the following section. Experiments were not done 

for H20 at these temperatures because the relaxation rates are 

too high to give reliable resuits. 

The slope of the linear portion of the plot (high 

temperature regime) gives an effective activation energy of 

40 a 4 meV. The calculated values from V1 and V3 are within 

experimental error. The value obtained from V2 is about 20 % 

less than that of the experimental value. 

Shiraishi e t  a1 [ 4 ]  studied the spectra of hydrogen atoms 

in pure and acidic ices from 160 K up to the melting point. They 

obtained an effective activation energy of 52 meV. This value is 

over 20 % less than the calculated values from V1 and V3 but 

appears to agree with that calculated from V,. However, they 

used polycrystalline samples. It seems that their ESR spectra 

could be suffering from inhomogeneous broadening. In that case, 

their activation energy will have to be scaled upwards and would 

be closer to the values predicted by V1 and V3. Fluornoy e t  a1 

[ 3 ]  have measured the thermal decay of trapped hydrogen atoms in 

pure ice between 20 and 50 K. Although the activation energy 

could not easily be determined because of the complexity of the 

decay curves, they suggested an activation energy of = 109 meV 

at 50 K. Furthermore, their results showed that diffusion is 

rapid above 40 K but slow below 20 K. Quantum tunnelling 

explains the wabsencew of localization, i . e . ,  continued slow 

diffusion, between 50 K and 20 K. At these temperatures, the 



calculated results exhibit the characteristic bend-over and 

reach the temperature independent diffusion rate at 1 2 5  K. 

3. Correlation time 

The correlation time, T,, is the average time spent by the 

diffusing particle in a crystal site. It is taken as the inverse 

of the diffusion rate. The experimental values of the 

correlation function, f(rC): 

were extracted from the experimental relaxation rates by 

dividing them by the theoretical second moment. The results for 

both H20- and D20-ices as a function of reciprocal temperature 

are plotted in Figure IX.6. Shiraishi e t  a1 [ 4 ]  calculated the 

correlation times for diffusing hydrogen atoms in ice. Their 

data are reproduced in Figure IX.6. Compared to the present data, 

their results are fractionally higher. This difference between 

the correlation times of muonium and hydrogen atoms is expected. 

Since a hydrogen atom is 9 times more massive than muonium, it 

diffuses slower because of the inverse-root-mass dependence of 

the oscillator frequency and the higher activation energy. 

At 75 K, there is a change of slope for the correlation 

function in Figure IX.6. Figure IX.7 is the same plot with 

log(l/T) as its x-axis to give a better view of this "kinkw. 



Figure IX.6. The correlation function, of muonium in 
H20- (01 ices and D20- ( 0 )  ices as a 
function of reciprocal temperature. The data 
for hydrogen 1 4 1  are reproduced (n). 



Figure IX.7. The correlation function, f ( r , )  of muonium in 
H,O- (0) ices and D 2 0 -  ( @ )  ices as a 
function of reciprocal temperature. The data 
for hydrogen in ice 141 are reproduced (n).  
The x-axis scale is logarithmic. 



This effect is not observed for D20 results because of 

insufficient number of data points. This kink can be explained 

by the condition that %rC = 1 at 75 K. T;' is proportional to 

27, (%rc << 1 ) and rc (%rc >> 1 ) for temperatures above and 

below respectively. At 37 G I  wM is 3.25 x 10' s-' which 

corresponds to r = w-I = 3.077 x s. At 75 K t  the value of 
C 

Ti1 is measured to be 4.57 ps-l. From these values of T;' and 

rC, the value of the second moment, <Au2>, for muonium in 

H20-ice is calculated to be 1.5 x 1015 s - ~ .  This is higher than 

the value of 3.05 x 1014 s-2 obtained theoretically. Therefore, 

the correlation function shown in Figure IX.6 and IX.7 will have 

to be scaled downwards. From the second moment, the relaxation 

rate of muonium at the rigid lattice limit is calculated to be 

30 us-'. The T ; ~  measured for muonium in H20-ice at 35 K is 

15.7 ps-'. This implies that the rigid lattice limit has not 

been reached at this temperature. The relaxation rate for 

muonium in D20-ice calculated in the same limit is = 12 us-'. At 

8 K, the relaxation rate is measured to be 9.3 ps-l. Since the 

rigid lattice line-width has not been reached, muonium is not 

localized in ice at these temperatures. In other words, muonium 

is still diffusing in ice at 8 K. 

There is a discrepancy between the correlation times 

obtained for muonium in H20- and DzO-ices. In the high 

temperature regime (2120 K), the correlation time of D20-ice is 

less than that of H,O-ice while the opposite happens for lower 

temperatures. As pointed out before, the rigid lattice 



line-width is reached at a higher temperature for muonium in 

H20- than for D20-ice. As the rigid lattice line-width is 

approached, the motional narrowing theory breaks down. 

Therefore, at lower temperatures, the D,O results will be a 

better description of the correlation time, since they are 

farther away from the limit. At higher temperatures, the 

correlation times for muonium in H20 ice are probably more 

reliable because the relaxation rates were determined more 

accurately. 

The predicted variation of rc  as a function of inverse 

temperature calculated from the present potentials is plotted in 

Figure IX.8. There are discrepancies of several orders of 

magnitude between the theoretical values and the experimental 

results. Since the activation energies obtained from the 

potentials are in agreement with the experimental results, the 

potentials used are thought to be qualitatively correct. The 

parameter which can cause this difference is the harmonic 

oscillator frequency. From Figure V.5, it can be seen that the 

potentials diverge significantly from the simple harmonic 

oscillator model. The frequency of oscillation obtained from the 

present H20 data is 4.5 x l o 9  s-'. Therefore, it is concluded 

that the simple harmonic oscillator can not be applied to the 

present potentials. However, the diffusion parameters can be 

obtained by working "backwards", i . e . ,  use the experimental 

oscillator frequency to obtain the diffusion parameter. Since 

the harmonic oscillator model does not apply, there is no simple 



Figure IX.8. Calculated corre la t i on  time from V, ( s o l i d ) ,  
V, (broken) ,  V, (cha in  dashed) a r e  p l o t t e d  
a s  a  funct ion of rec iproca l  temperature. H atom 
r e s u l t s  are  the  t o p  three  curves  whi le  the  bottom 
three  are  for  muonium. 



model to estimate the energy of the bound states. Nevertheless, 

a few features can be inferred qualitatively: 

1. the energy levels of the bound particles will be lowered; 

2. the activation energies for activated diffusion will be 

increased; 

3. there will be more bound states for muonium/hydrogen in the 

potentials; and 

4. the activated diffusion, the quantum tunnelling and the 

effective diffusion rates, will be lowered. 

However, a thorough investigation into this problem is beyond 

the scope of the present study and is not attempted. 

4. Hyperfine frequencies of muonium in ice 

The hyperfine frequency of muonium in H20-ice is * 5% 

higher than the value in  v a c u o  while that in D20 is only 

marginally higher. These high values of hyperfine frequency for 

muonium in ice imply the overall interaction of muonium with the 

lattice nuclei is repulsive. As muonium diffuses in the lattice, 

its electron cloud is distorted by the environment 1791. If the 

surroundings exert repulsive forces on muonium, the spherical 1s 

wavefunction of muonium will be "squeezed". As a consequence, 

the electron density will increase at the nucleus. and the 

hyperfine frequency will go up. This effect has been observed 

for hydrogen atoms trapped in rare gas matrices [80,81,821. An 

example of relevance to the present research is the hyperfine 



frequency of muonium in water. This hyperfine frequency was 

measured recently by Percival e t  a1 [85] using high statistics 

and field variation techniques similar to the methods used here. 

Their results indicated that the hyperfine frequency of muonium 

in water is less than the value i n  v a c u o .  According to Klein 

e t  a1 [73], muonium is trapped in water in a clathrate cavity of 

radius = 4 A .  The intermolecular potentials used here are also 

applicable for muonium in water. From the present models, 4 A 

corresponds to the attractive side of the potentials, and a more 

diffused electron cloud. Therefore, the hyperfine frequency of 

muonium in water will be smaller than the value i n  v a c u o .  The 

energy levels of muonium in the present calculated potentials 

are all positive, in agreement with the experimental findings 

for muonium in H20-ice. 

The difference between the hyperfine frequencies of muonium 

in H20- and D,O-ices may be due to the difference in amplitudes 

of the translational vibrations of the two isotopes in the 

lattice. The intermolecular potential is dependent on the 

distance separating the two interacting particles. The 

vibrational motion of the lattice nuclei will alter the shape of 

the potential as a function of time. The overall effect of this 

will be a "fuzziness" of the potential. Since vibrations are 

inversely proportional to the square root of mass, this 

"fuzziness" will be more important for H20-ice than for D20. 

However, the difference between the r.m.s. amplitudes of the 

translational vibrations for H in H20-ice and D in D20-ice is 



small ( 1 0 . 0 2  A)  [83,841. More theoretical studies will have to 

be undertaken in order to understand this effect. It is not 

attempted here because of the limited scope of the present 

research. 

5. Validity of the potential functions 

As discussed earlier, all three potentials give activation 

energies close to experimental results. It is also found that 

the diffusion parameters are quite insensitive to the 

potentials. Lengthening the van der Waals radii of lattice 

hydrogen by .3 A  ( 2 5 % )  only increases the activation energy by 

n 8 % .  Although potential V, has a fallacious origin, because of 

this insensitivity it also gives results compatible with the 

experimental data. As for the two potentials derived in the 

present research, V, is probably closer to reality than V2. This 

is because the van der Waals radii used were derived from SCF 

calculations whereas those in V2 were from old 

crystallographical data of aliphatic compounds. Therefore, V, is 

considered as a closer approximation for the intermolecular 

potential for muonium/hydrogen in H20-ice. For D20-ice, it is 

suggested that the intermolecular potential be re-investigated 

in view of the difference between the hyperfine frequencies of 

muonium in H20- and D20-ices. 



6. Summary and conclusions 

The transverse relaxation rates of muonium in single 

crystals of H20- and D20-ices'have been measured from 8 K up to 

263 K using the standard muon spin rotation (LLSR) technique at 

TRIUMF. The dominant relaxation mechanism was concluded to be 

modulation of the dipolar interaction between muonium and the 

lattice nuclei by diffusion of muonium along channels parallel 

to the c-axis of the crystal. Contrary to previous findings, 

muonium was found to be diffusing at 77 K. Furthermore, the 

mobility of muonium is confirmed for temperatures as low as 8 K 

by considering the temperature dependence of the relaxation 

rates in D20-ice. At these temperatures, it diffuses via quantum 

tunnelling. 

Buckingham potentials were used to represent the 

intermolecular potential between muonium and the lattice. The 

van der W a a l s  radius of muonium was taken to be 2.1 A in 

estimating the minimum of the Buckingham potentials. Two sets of 

values for the v a n  der W a a l s  radii of lattice hydrogen and 

oxygen were used in the calculation. Both sets of values yielded 

positive potentials which are in agreement with the experimental 

findings that the hyperfine frequency of muonium in H20-ice is 

larger than the value i n  v a c u o  (1 5%). The hyperfine frequency 

observed for muonium in D20-ice is smaller than that in H20-ice. 

This implies that the intermolecular potentials may be different 

for muonium in H20- and D20-ices. 



Calculations show that muonium diffuses preferentially 

along channels parallel to the c-axis of the crystal. It was 

found that the diffusion parameters are insensitive to the 

current potentials. Although Benderskii e t  a1 [ 1 7 ]  derived their 

potential fallaciously, it gives compatible results because of 

this insensitivity. The activation energies for muonium from the 

two potentials were determined to be = 38 and 31 meV. An 

activation energy of 40 2 4 meV was obtained by fitting the 

experimental relaxation rates to an Arrhenius equation. 

Curvature of the Arrhenius plot in the low temperature regime 

was explained by tunnelling, in accord with the prediction that 

the tunnelling rate exceeds activated diffusion at tenperatures 

below 100 K. Furthermore, the effective activation energies 

calculated for hydrogen atom diffusion was found to be - 65 and 
54 meV. This is also in agreement with previous findings [ 4 ] .  

Theoretical second moments were calculated for the rigid 

lattice limit. They were found to be smaller than the value 

obtained from experimental data. The correlation times for 

muonium in H20 were found to obey the inverse-root-mass ratio 

when compared to results from hydrogen data obtained elsewhere 

[ 4 ] .  The difference between the correlation times obtained for 

H20- and D20-ices was explained by the break-down of the 

motional narrowing theory. The discrepancy between the 

experimental correlation times and the theoretical results 

indicated that the simple harmonic oscillator approximation is 

not applicable. 



In conclusion, the diffusion of muonium in ice has been 

fully characterized from its melting point to 8 K. It diffuses 

via thermal activation for temperatures above 50 K and 

tunnelling for temperatures below. For hydrogen atoms in ice, it 

is inferred that tunnelling will dominate the diffusion rate for 

temperatures below 20 K. From these results, the importance of 

this study should be clear. For a problem not attainable by 

conventional methods, muonium can be used as an alternative 

probe. Possible future studies include studies of muonium in 

acidic ices where different activation energies for hydrogen 

atoms have been observed. 



APPENDIX 1 

The following is a summary of the raw experimental data as 

obtained from analysing the experimental spectra by MINUIT. The 

values of X have not been corrected for field inhomogeneity. 

H,O Results 

Temp. Field B e a m ?  Orient. Averaged X 
(K) (GI Period Deg . (MS- ' ) 







D,O results 

Temp. Field Beam Orient. Averaged X 
(K) (G) Period Deg . ( P S - ' 1  





t (1). The beam periods are defined as follow: 

A = Beam periods before or during December, 1982. 

B = Beam period during September, 1983. 

C = Beam period during January, 1984. 

D = Beam period during May, 1984. 

E = Beam period during June, 1984. 

F = Beam periods after June, 1984. 

G = Beam period during May, 1985 (Styrofoam cryostat 

runs 1 .  

For beam periods before 1984, only styrofoam cryostats 

were used. The helium cryostat was first used in 

January, 1984. 
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