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ABSTRACT

Calculation of the one-loop QED self-energy for fermions in the
presence of a background characterized by a temperature T and a chemical
potential u is performed using the real time propagator formalism of
Niemi and Semenoff. Two general cases are studied: (1) chirally
invariant (massless) QED; (2) QED with broken chiral symmetry (massive
QED). For the chirally invariant case a dispersion relation is obtainéd
in the form of two coupled non-linear integral equations which are
solved numerically. The dispersion relation is shown to be similar to
that for a free particle of mass [(a/2m)(u2+m2T2)]1/2, For the case of
broken chiral symmetry, the finite T,u mass shift is calculated. Two
simple limits, T=0, large u (neutron stars) and T#0, u=0 are studied in
detail. For the neutron star case it is shown that although the
effective mass of an electron is approximately 14 m,, this effect is
probably not important in the evolution of neutron stars. For the
T#0,u=0 case, discrepancies between results obtained here, and those
published in the literature are discussed and an explanation for these
differences is given. The renormalization procedure is also discussed
and it is shown that in order to give a direct physical interpretation
to the self-energy corrections, the renormalization condition must be

specified at a u,T dependent point.
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Chapter 1

Introduction

When one considers an interacting relativistic field theory, conven-
tionally there is a term in the lagrangian which describes the inﬁeraction.
For example, the addition of the term —eJAy to the free field QED
lagrangian appears to describe very well how photons interact with
electrons, and leads to a variety of experimentally verified phenomena such
as the Lamb shift, the Casimir effect and prediction of the magnetic moment
of the muon.! There are however, other types of interactions of interest,
such as many-body effects. Even though no new term appears in the |
lagrangian, the effect is just as real.

Such a many-body system will be discussed here in an effort to answer
the following question: Given a particle and a background parameterized by
some temperature T and chemical potential p (hereafter referred to as tﬁe
thermal background), how can the interaction between the particle and the
background be characterized? Only one aspect of this rather general problem
will be investigated here, namely the effectivé mass of a fermion in the
presence of a thermal background. The technique for studying this is finite
temperature and density (FTD) field theory.

The study of FID field theories began with Matsubara's discovery thirty
years ago of the relationship between the quantum mechanical evolution
operatof and the density operator? (see Chapter 2 for details). This non-

" relativistic theory has since been applied to a wide range of physical
systems including superconductivity, superfluidity, condensed nuclear

matter, and electron-phonon interactions.3™* 1In contrast, only in the last
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decade has there been any interest in relativistic versions of FTD field
theories. This has been due largely to the discovery that broken gauge
symmetries can be restored at sufficiently high temperatures.®=® This
discovery spurred several lines of reséarch including: studies of phase

9

transitions,’ *® the plasmon effect for Yang-Mills theories,® construction

of the thermodynamic potential 10 gtellar evolution and the early

8

universe,®?1! renormalization techniques for FID theories,!Z and a FTD

path integral formulation.!3

More recently, self-energy corrections to FID propagators have been
investigated. Bechler has studied all one-loop FTD diagrams for QED and
obtained a spectral representation. Uedal® has suggested a renormalizaﬁion
scheme for the FID self-energy which removes a gauge invariance problem
first raised by Dolan and Jaclfiw6 and by W’einberg.16 Using a T#0,u=0
background, Weldon has calculated the one loop vacuum polarizationl!? for
QED and the dispersion relation for a chirally invariant (zero rest masé)
fermion interacting with a gauge field!8® which results in an effective

fermion mass of O(T). Extension to the M#0 case has also been done by Boal

19 with results that are similar to those found in ref. 18.

and Levinson
Peressutti and Skagerstam?0 have calculated the effective mass of an
electron in the presence of a T#0, u=0 background and found it to be of
0(T2). Discussion of the disagreement between this result and the results
of ref. 18 and 19 can be found in Levinson?! and Chapter 5 of this thesis.
Cambier, Primack & Sher?2 and Dicus et al,,23 using calculations similar to
those in ref. 20, have investigated the effect of the FTD electron mass
shift on primordial nuc leosynthesis and found the effects to be

unimportant.
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The calculations in refs. 17-20,22,23 use a representation for the FTD
propagators introduced in ref. 6, known as the real time formalism (in
contrast to Matsubara's imaginary time formalism). Niemi and Semenoff2"
have pointed out that the applicability of this formalism is extremely
limited but can be extended by giving the FTID propagators a matri# structure
and introducing a new set of Feynman rules. The matrix structure for the
propagators and the Feynman rules are identical to those obtained by

25 and by Umezama, Matsumoto and Tachiki® in formulating Thermo. Field

Ojima,

Dynamics.

In this thesis the real time (matrix) propagator formalism is used to
obtain the one loop QED correction to the dispersion relation for a chi?ally
invariant spin 1/2 fermion in the presence of a thermal background. It
should be emphasized that the primary thermodynamic variables are tempera-
ture and chemical potential. The broken chiral symmetry phase of the theory
is also studied and the effective mass calculated. A summary of this wbrk
can be found in refs. 19 and 21. Certain aspects of this problem have
already been investigated,l'*’la’zo’26°28 but the literature cannot be con-
dered either complete or even consistent. In én effort to remedy this
situation, the calculations done here will emphasize two aspects of the
problem:

1. Previous calculations rarely if ever include finite u effects. While
they turn out to be of a similar nature to the finite T effects when u>0
(particle and background of opposite sign for net charge), they can be
different when u<0 (particle and background with the same sign for net

charge).
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2. The calculations done here dis#gree in some respects with those of other
workers - the main differences being in the high temperature fermion
mass shift and the renormalization procedure for obtaining the physical
mass. An attempt is made here not'only to produce, what is hoped to be,
a correct one loop calculation, but also discuss the differenées between
the results presented here and those found elsewhere.

The remainder of this work is organized as follows: Chapter 2 contains

a derivation of the FTD pfopagators for a scalar field in both the imaginary

time and real ﬁime formalisms, and a discussion of the relative merits of

the two. In order to give the treatment some unity, both formalisms are
derived from a path integral representation of the generating functionai.

Spinor and gauge field propagators will then be written down in analogy with

the scalar field case. In Chapter 3 the general structure of the self-

energy and the renormalized FTD propagator are considered from the
standpoint of Lorentz invariance. Some subtleties regarding the renormél—
ization procedure required to obtain the physical mass are also discussed.

Chapter 4 contains the details of the calculation of the one loop FID dis-

persion relation for a chirally invariant fermion, and a discussion of the

effective mass for these particles. Chapter 5 contains the details of the
calculation of the FTD mass shift for a fermion with broken chiral symmetry.

As an application, the mass shift for an electron in a neutron star is cal-

culated. The results obtained in Chapter 5 are also compared with those

given in refs. 18 and 20, and the differences discussed. Chapter 6 contains

a summary of the conclusions. . An appendix on the FTD chain approximation is

also included.
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In the interest of clarity, the following notation will be used

consistently throughout the thesis:

1)
2)

3)

4)

quantities with a zero subscript (e.g. Z,) denote T=p=0 terms;
quantities with a 8 subscript‘(e.g. Zg) denote FTD terms;
quantities with no subscript denote the sum of the T=u=0vand FTD
terms (e.g. I = I *+Ig);

matrices in FTD space are denoted by capital letters (with or

without latin superscript indices) and a bar over the letter.



Chapter 2

FTD Propagators

A. Path Integral Formulation

We will use the path integral formulation to derive the FTD propagators,
but before doing this we briefly review its application to the T=u=0 case. A
~ much more detailed derivation can be found in ref. 29 and the second ‘listing
in ref. 1.

The Feynman path integral for the vacuum-to-vacuum transition amblitude

for a scalar field is

F=<0[0> = N [ D[n] p[¢] ei/d*x[Fo-H(m,4)] (2.1)

where |[0> is the vacuum or ground state, % is the hamiltonian density

appropriate for a field theory characterized by the lagrangian density

%o =

N |-

1
(2,) (%) - = uf ¢2

and 7 is the momentum density conjugate to the field;

n = LM
3

In order to make (2.1) calculable perturbatively we make F a functional of a

c~number variable J; F + F[J] where
. 4 A"‘_ " A . 4 N
F(J] = N [ DnIp[4] el/d*x(Fé-F+38) o (o) ifd*xId|gy | (2.2)
Performing the gaussian integration over D[m] has the simple effect of
changing the normalization constant from N to N';

Pl3] = n' [ D[] e/ (X o*I®) (2.3)



- 7 -

In order to do the D[¢] integration, we first rewrite the argument of the
exponential in terms of its Fourier transform, and then, making the change of
variable

o' (p) = ¢(p) + Ag(p) J(p)
leads to

X JLL S CSINEIN SR I U A
e [ Dlsle

F{J]

- 5 [d*xd*y3(x) 8 (x-y) 3(y)

= F[0]e (2.4)
The function
d*p e-ip® (x-y) '
Ao (x-y) = | P (2.5)
(2m)* p2-md+ic
is the scalar particle propagator.
From (2.3) it is easy to see that
-1 828(J] N’ A irdad
= D[(l)](l)(x)(l)(y)elfd xL o .
Flo] 8J3(x)83(y) |;,, FlO]
Furthermore, the rhs only has meaning when t; > t2,30 so
-1 82F[J] _<olT(3G) §(n) o>
F[0] 6J(x)8J(y) J=0 <0|0>
= ].-Ao(x‘y) (2 .6)

where T is the time ordering symbol and the second line in (2.6) follows from
(2.4). We conclude from (2.6) that F[J] is the generating functional for the
scalar particle propagator. 1In the preceeding discussion, only free fields

29 and

have been treated. The extension to interacting fields is well known,
of course, does not effect results (2.5) and (2.6). This is also true for

FTD theories.
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Turning now to FTD theories, we define the FTD Feynman propagator for a

scalar field in analogy with the T=u=0 theory;

Teifg TIHG) $(p1}

~ (20;)

iA(x-y) =

o A
where 6G = eBH j5 the quantum mechanical density operator, H is the system
hamiltonian operator, and B is a Lorentz invariant defined as the inverse
temperature as measured in the reference frame of the heat bath. Taking a

functional approach

N

A —Bﬁ ifd“xJ$
pg * pgld]l = e Te

gives the relation

-l &2zlJ] (2.8)

iA(x-y) =
* z[0] 8J3(x)8J(y) |s=0

where
z[J] = Tr B,lJ]
Noting that
Tr Al¢] = [ Dlo1<o|R| o>
Z[J] can be written as
g i [d*xJ$
[ DIo] <o|ePH pel/d xI 4y (2.9)
The ]¢>‘s form a complete set of states and are eigenvectors of the operator

¢ with similarly labelled eigenvalues, i.e.

$lo> = o]e> . | (2.10)

If support of the field variables for ¢ = ¢(t,;) is extended to the complex

time domain then

<¢(t,§)]e'ﬂﬁ = <¢p(t-iB,Xx)| . (2.11)



Hence,

23] = [ Dlo] < ¢(t-i8, %) |Te/ ¥ (e D) > . (2.12)

A consequence of (2.10) and (2,12) is that only those states for which
¢(t-iB,%) = ¢(t,%X) will contribute to the integral. In other words, we are
concerned only with states that are periodic (anti-periodic for fermions) in
the complex time variable. The space of the field is thus spanned by
integrating over all 3-space and from t to t—-iBf in the time direction.

Writing this as a contour integral in the complex t-plane

if (dt[a3%39

203] = [, . DI&(E)] < 6(c-iB,¥)|Te loCe, %) > . (2.13)

The notation [ . D[¢(t)] is interpreted as

[ T deCey,x) deley,%,)...
with the t;'s constrained to lie on the contour and the ;i's uncon-
strained.
As emphasized in ref. 31, the choice of contour for evaluating (2.13) is

not unique - the only requirements on it being

Ci - Cf = iB (2.’14)

Imt, > Imt, | (2.15)

where c; and cg are respectively the initial and final points on the

contour, and t; occurs before t, when moving along the contour. Figs. 1 and
2 show two contours which are consistent with requirements (2.14) and (2.15).
If the contour c; is chosen, the imaginary time formalism is obtained,

whereas contour Cr leads to real time formalism.
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imt
A t
< > Ret
Y
-IB
v
Fig. 1. Contour used to obtain the imaginary time formalism.
Imt
-T C, T
< > - > Ret
(A |
-T-—I-ZE — - T-lE
C, 2
Ye.
-T-ip
v

Fig. 2. Contour used to obtain the real time formalism.



- 11 -
B. Imaginary time formalism

Using ¢y, (2.13) becomes

178 g fdad%de

2031 = [¢ o, DlO(O)] < ¢(t-i8,%)|Te ° loCe,%) > . (2.16)

Eq. (2.16) is very similar to (2.2) the only difference being that now the
integration in the exponent is finite in t and the D[¢] integration
is periodic. Following steps similar to the T=u=0 case we find
- %-fg drxdryfd3§d3§J(x)iA(x-y)J(y)
z[J] = z[0] e
where
dt = -idt
and A(x-y) is given by a spatial Fourier transform and a temporal Fourier

series, viz,

ipe (x-y) - iwbn(rx-ry)

1 a3 '
AMx-y) == I | LI — (2.17)
B n (2m)3 wlzm - p2 - m%
2Tin
Wy = n=1, 2, ...
8
As before
-1 82231

= iA(x~y) .
2007 3300 839Gy |yep | 2O

Thus, the only difference between the T=u=0 and FTD cases is that the 0
component of the momentum in the FTD propagator is a discrete function of
energy rather than a continuous one. While all of our derivations have been
for a free scalar field, thé results still hold for interacting fields,
including the correspondence between T=u=b and FTD propagators. This leads

us to the following important conclusion:
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FTD imaginary time Feynman rules are obtained from their T=p=0

counterparts by the following substitutions;!3
L 3
e R
(2m)* 8 n ° (2m)3
Po * Wp
and (2m)% 8% (p +pyt...) > (2m)3 BE (B +hy+t...) S(w +w ,+...).

Similar results hold for fermion and gauge fields

(5(p) i (2n+1)7i
1 p = mf T e ———
(Wgn*in) YO = Bed-m, " B

. "igu\)
Puv(p) = =——7
Wbn T P

(2.18)

- (2,19)
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C. Real time formalism

The real time formalism is obtained from (2.13) by using contour cy as
shown in fig. 2. Following procedures that are analogous to the T=u=0 case
above we find

i

> fcRd“xd“yJ(x)A(x-y)J(y)

zZ[J] = e (2.20)

where cp is the contour composed of segments C1s C3s Cy, and c, in that
order,

The limit T+» (~T + -®) is now taken énd, by virtue of Riemann's
lemma, results in a decoupling of the two-point functions for adjacent .
segments (in time) of the contour. That is, two—-point functions that
connect points along ¢, or ¢, to points along c¢; or c, vanish. Hence

T
-3 fcl ,CZJAchs ,c, I8
Z2[J] = e .

The second integral is uninteresting here and is simply absorbed into the

normalization leaving

i ,
-5 Je e, 303
z[J] = e . (2.21)

There are actually four separate terms in the exponent of (2.21); one
each to connect points on the same contour segment and two terms which

connect points on different segments. Explicitly

i
z(J] ) 5'[fcldtfcldt'fd3§Id3§JAJ+fczcz+f°1°2+f°2°l]
= e - )

These four terms can be arranged in the form of a matrix product

All al2 Jl
(Jl JZ) ) e
AZl A2 J2
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It is now easy to see that the original field actually has two components;
a type | field (corresponding to the c; segment) and a type 2 "ghost field"
(corresponding to the Co segment). The four components of the matrix
propagator connect the two components of the field.32

The Feynman rules for this theory are the same as for the T=p=0
theory with the modification that every T=p=0 diagram generates a set of
FID diagrams that are distinguished from each other by creating all
possible combinations of type 1 and type 2 vertices (which determine the
appropriate component of the propagator matrix for each line). There is
further the proviso that external lines must be of type 1. We give a
very simple example of thekapplication of these rules below. A much more
sophisticated example can be found in ref. 34.

The self-energy graph for a T=u=0 ¢3 theory (including external legs)
is shown in fig. 3a, while ité FID extension is shown in fig. 3b. The
numbers at each vertex determine which component of the propagator matrix is
appropriate for each diagram. Thus, for example, the self energy insertion
for the second diagram in fig. 3b is calculated by integrating fhe product
of two 12 components of the propagators.

Explicit results for scalar, fermion, and photon propagators are
shown below.

For scalars

— _ iAo (p) 0 _
ixab(p) = T(8,) G (2.22)
0 -ia¥(p) '
ch8 sho
T p p 1 1
u(e,) = - sh28 = by (p) = ————— .
P (shep ch6p> eB]p‘u -1 pi-mi+ie
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Fig. 3a. One~loop T=p=0 self-energy for a ¢3 theory.

Fig. 3b. One~loop FTD self-energy for a $3 theory.
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For photons (Feynman gauge):

iD,(p) 0
[iBHV(p)]%® = "V T(a ) | ° " >ﬁwJ
P 0  -iD¥(p) P

1

Dy(p) =
° p2+ie

For fermions:3%

_ iS,(p) 0 _
i52b(p) = 8(p,) Vip,u) | - V(p,u)
0 -is¥(p)

+ 8(~py) Vi(p,-u) vi(p,-u)
Po P < 0 -is¥(p) P
coswg -éiﬂulzsin¢§
V(p,tu) =
etB“/zsinwg coswg
1 1
24 = =
sin“yy = So(p) = ——
P eBlpeuftuly P T ymoeie

The quantity u® in the preceeding equations is the 4-velocity of the
heat bath normalized by uyu® = 1. Thus the quantity peu is a Lorentz
invariant equal to p, as measured in the rest frame of the heat bath.

By multiplying out the matrices in (2,21)-(2.24) and noting that

the propagators can be written as

ik2P(p) = iA8P(p) + iA3P(p)

: _ 1Ay (p) 0
where iAgb = < ° >
0 - ia¥(p)

2 1
sh<0 5 sh29p

and {Zgb = 218(p2-m2)

(2.23)

(2.24)

(2.25a)

(2.25b)

(2.25¢)
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[]'_'I_)U\)(p)]ab - [iﬁg\)(p)]ab + [iﬁlé\)(p)]ab (2.26a)
where
_ iDo(P) 0
[iDEV(p) ]3P = ¥V | (2.26b)
0 -inF(p)
and
sh28 L sn2e
RHUV]ab Hv P 2 P :
[iDgV]2> = -2mgh” &(p2) L (2.26¢)
- 2
> shzep sh ep
i§2%(p) = i53P(p) + 6(py)iSED + 6(-p,)iSE> (2.27a)
where
3 iS,(p) 0
i53%(p) = (2.27b)
0 -isg(p)
and
sinzwg * %-e-B“/z sin2¢§
iS82(p) = -27 (p+m,) 8(p2-m2) 1 ) (2.27¢)
¥ E.eBu/Z sinzwg sinzwg

Notice that the propagators have now separated into temperature indepen-

dent and temperature dependent pieces.
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D. Comparison of the Formalisms

Historically, the imaginary time formalism has been used much more
widely than the real time formalism - partly because it was discovered first

® of the real time formalism did not give

and partly because the older version
correct results beyond the one loop level. There are however, some dis-
agreeable aspects to the imaginary time formalism, which arise from the
special connection between time and temperature. In this formalism Lorentz
covariance and manifest Lorentz invariance are lost as can be seen by~
inspecting (2.17)-(2.19). More importantly, the formalism as it stands is
only defined at certain points in the complex w-plane. Thus, in order to
study dynamical aspects of a system, an analytic continuation to the whole
real axis must be performed. This is not always easy or unambigious. There
is a further technical difficulty that multiple sums over w in higher order
diagrams can be difficult to perform.

In contrast, the real time formalism maintains Lorentz covariance and
manifest Lorentz invariance and is defined for all real w, Thére is the
additional feature that the real time propagators separate into T=p=0 and
FTD parts. The great disadvantage of this formalism is that a single T=u=0
diagram can generate many FID diagrams whereas there is a one to one
correspondence between T=u=0 and FTD diagrams when the imaginary time

formalism is used.
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Chapter 3

Structure of the Self-Energy and Renormalization

Before actually calculating the self-energy corrections, we find it
necessary to investigate its general structure and the attendant renormal-

ization procedure.

A. Self-energy for chirally invariant fermions3®

For T=u=0 QED, the bare fermion propagator is

1

rrrpalit (3.1)

So(K) =

Using the chain approximation,! we find that the full propagator is

(K) = 1 (3.2
Ja[o K-I,(K)+ie )

where
Lo(K) = ~aK . _ (3.3)

The structure of (3.3) follows from two observations:

1) Iy(K) is a Lorentz invariant

2) Chiral symmetry holds to all orders of perturbation theory.
From the first observation we can deduce that L, can be written as a linear
combination of all Lorentz invariants found in the theory, of which there are
only two; K and K. This also implies that the coefficients (such as agy)
must also be Lorentz invariants. From the-second observation K2=0 always and
Ly, reduces to (3.3).

For FTD QED the 1l component of the full propagator is
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41 E) ='E:E?%3:;; - (8(Ry)sin2yF + 8(=K )sin?yg) x

[ L. (3.4)
K-I +ie K-I'-ie
where »
r = ZO +ZB
with
Lg(R) = -agk - bé . ) - (3.5)

and we have set u=0 for simplicity. We see that I has an extra term which is
related to the heat bath 4-velocity, u*.37 For the remainder of this dis-
cussion it is sufficient to consider only the first term in (3.4). Dropping

the other term leaves

1
.elll(K) = f_ifﬁlfiEf (3.6)
D
where
D = (1+ag)? (w2-k2) + 2(l+ag)bw + b2 | (3.7)

and we have introduced the Lorentz invariant functions

w = Keu

k [wZ_K2]1/2
which have the simple interpretation of the particle's energy and 3-momentum
in the rest frame of the heat bath. Eq. (3.7) also assumes that he T=u=0
wave function regularization has been performed, hence, ap 1s not present
in (3.7).

For both the T=u=0 and the FTD theories, the excitations of the system
(or, in the lahguage of field theory, the physical masses) are governed by a

dispersion relation which yields the poles of the propagator. The structure

of (3.3) insures that the poles are always located at K?=0 for the T=u=0



- 2] -

case. On the other hand, the poles of the FTD propagtor are determined by

setting D=0 which gives the dispersion relation

b

Trag . : (3.8)

w =%k -

The solution of (3.8) is not K2=0, and this shift in the location of the pole

is entirely due to the presence of the second term in (3.5).
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B. Self-energy for fermions without chiral symmetry

Turning now to the massive case, the T=u=0 renormalized fermion
propagator is
Ao ® = (R - mg =2, (K))"! , (3.9)
where
oK) = = ay(K2) - d,(k2) . (3.10)
and mp is the bare mass. Note that Z, now has a K2 dependence.

Eq. (3.9) can also be written as

K + mB - do(KZ)

() =

where
D(K) = K2 - (mpg-d,(K2))?2

and we have absorbed the wave function renormalization comstant, (l+a,),
as it is unimportant in what follows. If we now choose ,
dy(mg2) = Smy | (3.11)
with my, the physical mass, related to my by
mpg = m, + Sm,
then kaoz) =0,

and we can interpret m, as the physical mass. What we wish to emphasize
here is not so much that renormalization condition (3.11) is defined at the
T=u=0 mass, but rather that it is defined at the physical mass. While there
is no distinction between the two here, the difference will be important for
FTD theories.

. For the FID fermion full propagator (u=0), the 11 component is
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1
K - mg - Z(K) + ie

+ (other terms) (3.12)

where

Ig(R) = -ag K - bd - dg . : (3.13)
As before, ZB is a Lorentz invariant, hence ag, b and dB must alsovbe Lorentz
invariants. Keeping only the first term in (3.12) for the discussion here

leaves

(l+a3)K + bd + (mB-do-dB) ‘( )
3.14

SN =

D
where

D(K) = (l+ag)? RZ + b2 + 2(l+ag) bR-u - (mg-d,~dg)? . (3.15)
In analogy with the T=0 theory we define the physical mass m, in the
following way;
ReD(K) [p2_2 = 0 . (3.16)
Two popular methods for obtaining the physical mass are:
1) define it by38

m= mB + Z(K)|K2=m02 s (3.17)

2) first invoke condition (3.11) and then require3?

Re Dl(K)IK2=m2 =0, (3.18)
where

= 2 g2 2 oy - - 2
D, (R) = (l+ag)“ K% + b* + 2(l+ag) bReu - (m,=dg)* . (3.19)
Neither of these methods gives a mass which satisfies (3.16) as can be
seen by simply substituting (3.17) and (3.18) into (3.16). For the first

method we find D(m) is a complicated eipression in ag, b, and dg, but

should approach zero if these constaﬂts are small. In other words, (3.9)
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provides a first approximation to m for sufficiently small temperatures. For
the second method we find
ReD(m) = dy(m?) - dg(mg2) # 0 . (3.20)

Equation (3.20) clearly illustrates the‘source of the problem. Doing the

T=0, and T#0 renormalizations separately has the efféct of specifying the

renormalization condition for the T=0 term at a point which is off-shgll. It

is not surprising then, that when the self-energy is evaluated on-shell, the

T=0 mass counterterm no longer cancels the bare mass infinity. In order to

insure the infinities properly cancel we must use

do(m?) = 8my (3.21)
as our renormalization condition.
A few comments regarding (3.21) are in order:

1. The above discussion does not imply that (3.21) is the only valid FID
renormalization condition. As with T=p=0 theories, one can renormalize
at any convenient point. However, just as in the T=p=0 case, it is true
for FTD theories that only certain remormalization schemes give quanti-
ties which can be readily interpreted in a physical manner. Eq. (3.21)
is such a condition.

2. Although the renormalization point specified in (3.21) is T dependent
(since m is T dependent), émy has no T dependence. This result has
been shownll212:%0 to hold to all orders of perturbation theory.

3. Since the renormalization prescription varies with temperature, it makes
it difficult to compare quantities calculated at different temperatures.
This is not a problem here since the mass shift depends only on one

temperature. It would, however, be a problem when doing thermodynamics
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or any calculation which iﬁvolved two or more values of T such as

differentiating with respect to T. It is quite likely that this problem

can be avoided using FID renormalization group techniqués.“1

The technique for actually carrying out this calculation is straight-
forward. One proceeds in the same way as method 2 described above employing
(3.18) and (3.19). The only difference is that in doing the loop integrals
one must set K> = m? instead of K% = my2, Unfortunately, this usuélly

leads to an implicit equation for m.
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Chapter 4

Dispersion Relation for Chirally Invariant Fermions

In order to give an explicit expression for dispersion relation (3.8),
the coefficients ag and b from (3.5) must be calculated. Using the well~

known identity
1
— Tr(4¥) = a-b
4

d‘-l-z

we fin

l-Tr(KReEB) = —as(wz-kz) - bw 4.1)
4

i-Tr(KR.eZB) —agw - b . (4.2)
4

Combining (4.1), (4.2) and (3.8) gives

1/4 Tr(KRezB)

(4.3)

w =%k +
k + 1/4 Tr(ﬁRezB)

for the dispersion relation. The physical mass is obtained from (4.3) by
imposing the additional condition that the particle be at rest relative to

the heat bath, Hence

_ lim
m= 0" (4.4)
Figure 4 shows the one loop FTD self-energy diagrams that can be used to

calculate I. Alternatively, we can use (A.17), (A.18) and (A.12) directly

(provided we set my; = 0) and obtain

-
ReI(K) = Rel,(K) = e28(K ) Im [ (Z ?u Yu[fﬁgv(g) + iDRV(p) J11 x
.,T .

[i_s-o(K-P) + e(Ko-po) i§8+(K-p) + e(po"Ko) i§B_(K—p)]ll Yv . (405)
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Fig. 4. The one-loop FID fermion self-energy (including the T=y=0 term)

and its expansion in terms of labelled vertex diagrams. The T=u=0
counterterm is not shown.
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The T=u=0 part of the propagators are now split into two parts, viz.

Dy(p) = P 1—2 -in8(p2)
p
S0(p) = B (B =5 -ins(p2)) 4.6)
p .

where P stands for the principal value. There will be terms in (4.5)
which include the §-functions of (4.6) but these are the T=u=0 part of

the self-energy, I,(K). Dropping these terms we are left with

Relg = EE-S(KO) f d“p { 5(P2)(9('Po)sin2¢; + 9(p°)sin2¢5)
T

(p+K)2
=, -
§(p2 29 .7
FTopr S ety -
oh - &
ere a = e .

A change of variables: p + p+K for the first term and p + -p for the

second term has been made. %-Tr(ﬁReZs) and %-Tr(KReZB) can now be

evaluated. We find

1 - o K2 w 1
Z-Tr(KReZB) = Io dq{[2q +';; (2n ;fJ + E‘[Jl(q) - J,(0) 1) Jng(q+n)
K2 w 1
+ (20 - 50 (20 () - 5 191€@) + 3,(@) 1) Jngla-w)
K2 .
+ [4q - e 3, (@) ]ny (@)} (4.8)

1 1 ° w 1
Z-Tr(ﬁReZB) e Io dq{q [&n (;f) - ;-(Jl(q) + Jz(q))]nf(q+u)

+q [t (E) + % (3,(0) = 3,(@)) nglq=)

+ [2q n G%t) -qJ,(q) - le(q)]nb(q)} (4.9)
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1
where q = |p| , w: = E-(wik) and
H@ = (=) - e ()
174 q+e- q-w-’
- q+w q-w+ .
J,(q) = &n [Fw—‘_‘-) + n [q_w_) . (4.10)

The distribution functions D¢ {, are the usual
]

ng p(x) = [exp(Bx) * 1]71

Substituting (4.8) and (4.9) into (4.3) gives the promised implicit equation
for w. However, we can gain some insight into the solution of (4.3) by
investigating the regime where T and/or u are sufficiently large. There the
distribution functions in (4.9) and (4.10) will effectively cut off the
integration at q ~ T * u. Thus, for the high T/u limit we need only keep
terms in (4.9) and (4.10) which are highest order in q. Noting that

Jl’z(q) ~ 1/q for large q gives

i-Tr(KReZB) =2 fw dq Zq[nf(q+u) + ng(q-n) + an(q)] : (4.11)
4 2n 0
=M2
1 a o w
Z-Tr(ﬁReZB) aleyon fo dq q lnﬁjf)[nf(q+u) + ng(q-u) + an(q)] (4.12)
=L s AV
™ in [w_) M
where
M2 = s-fw dq q[nf(q+u) + ng(q-u) + 2nb(q)] (4.13) -
0
= = [u2 + 12 12]
2m

The dispersion relation can now be written in the form
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tn (—)] . (4.14)

Taking the k + 0 limit we find

%i% w =M (4.15)

indicating that M is the physical mass.

In order to give the reader a better idea of the meaning of (4.15),
eq. (4.14) has been graphed in fig. 5 along with the dispersion relatidns for
a free massless fermion (w=k) ;nd a free massive fermion with rest mass M
(w = (M2+k2)1/2), As can be seen clearly from the graph, the dispersion
relation for a massless fermion interacting with a thermal background closely
resembles the dispersion relation for a free massive particle. Althougﬁ the
two dispersion relations are identical only in the limits k + © and k + O,
they never vary from each other by more than 10%Z. 1In this sense M is a
mass., ’

Figure 6 shows the results of a numerical calculation using (4.8) and
(4.9) for a typical value of u and T and its counterpart obtained from (4.11)
and (4.12). As can be seen, the inclusion of terms of smaller power in q do
not effect the dispersion relation very much - even for small values of T and
u. In all cases studied (~1000 < p < 1000, O < T < 1000; arbitrary units
for T and u), the difference between the two dispersion relations is never

more than 4% and the difference in the effective mass is negligible (<0.2%).
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Fig. 5. Dispersion relation for: (1) fermion interacting
with a thermal background; (2) free fermion of mass M;
(3) free massless fermion. The units on the w and k axes
are arbitrary.
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10°° 10" 10 10°

Fig. 6. Comparison of dispersion relations calculated using (4.8)
and (4.9) (solid line) and (4.11) and (4.12) (broken line). The
bump in the solid line has been exagerated for the purpose of
illustration. Units for w and k are arbitrary.
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Chapter 5

Calculation of the Mass Shift for Fermions without Chiral Symmetry

A. General calculation

We begin by rewriting (3.19) in the following way;

(1+ag)2(w?-k2) + 2(1+aglbw + b2 = c2 = 0 (5.1)
where ¢ =mp ~ do(mz) -Redg
= m, - Redg . ©(5.2)

Writing (4.1) in the form of a dispersion relation gives

-b £ [c2 + (1+ag)? Kk2]1/2 '
w = Le %) ] . (5.3)
1+a3

This expression is rather complicated - especially when one remembers

that 3g, b and c are, of necessity, functions of w and k. Rather than
attempt to solve (5.3) for the complete dispersion relation, we will

content ourselves with calculating the FID mass shift which we define by

- lim , _ '
SmB = 0 w-m, . | (5.4)

Applying this definition to (5.3) we find
= lim r 1 1
Smg = 1ap [ 7 Tr(dRelg) + = Tr(ReZp)] . (5.5)

In order to calculate Gms we proceed in a manner similar to the chiral sym-
metric case. Once again we use either the diagrams in fig. 4 or (A.17),
(A.18) and (A.12) to obtain an expression for ReIZ(K) which is formally

identical to (4.5). Dropping the T=u=0 piece leaves
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o p+2m

Relg = w2 0(Ko) [ d'p (p+K)
K-p~2m,
(K+p)2-mg

§(p?) sh?e, .

Using (5.6) we find

1 o o - -
7 Tr(dRelg) = S Io dq {[w(@]+L]) + q(@I-L]) ]np(q)

+ q[L; ng(r-u) - L, ng(r+u) |}

1 © - -
7 Tr(Relg) = %EQ Io dq f% [L;nf(r-u) + LGf(r+u)] - [LI+L1]nb(q)}

where

I+
I+

L =%1

-————%% 5(p2-m%)(9(—po)sin2¢; + e(po)sinzwg)

1/2(K2+g§l

<q(m+k)
n

2.2
— 1/2(K )> L% - 1n.(rm+qk
qlw-

1/2(K2-m)

I+
H+

rw-qk

r=[q? + m2]l/2,

We now take the k + 0 limit and find

1/2(K2+m3)

Smg
—_=1Ix + I + Ip-
mg B F+ F
where L. = JoW [a 1+ 2x2 + 2(w-1/w) - w?2 1
T e X X
BT, 0 4x2uw? - (w2-1)2 eX/t-]
20 =  x2 -2 1
Ipy = — fodx— 4 (y+v) /t
y 2yw-wi-l e\ TTV//t4
2a o x? +2 1
IF_=-—- I dx — J (
n ° y 2ywew2+l (TTVI/Ey
© 1 H 2 172
and wE—  t=—-— v=— y= (x°+]) )
m, Bmo My

)

(5.6)

(5.7)

' (5.8)

(5.9)

(5.10)
(5.11)

(5.12)

Once again we have an implicit equation for m which cannot be solved

easily. However, in the limit where p and/or T are sufficiently large
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compared to my, my can be neglected and we recover (4.13). For small
values of u and T (5.9) can be solved iteratively.

Figure 7 shows the results of a numerical solution to (5.9) for various
values of u. The small T region is shown in more detail in fig. 8, and it
can be seen that for u<0 it is possible to have a negative mass shift,
although its magnitude is small. We now investigate two special cases of

particular interest; (1) T#0, u=0 and (2) T<0, u>d>m,, (neutron stars).

B. Finite temperature, zero chemical potential case

As mentioned in the introduction, this calculation has already been
performed several times. For the sake of comparison, fig. 9 shows numerical
solutions for the results obtained here and in refs. 18 and 20.

We see that our results agree with ref. 20 for T <K my but disagree at
higher temperatures; the most serious disagreement being for T >> m,,
where dmg ~ T2 in réf. 20 and we find Smg ~ T which agrees with ref. 18,
The source of the discrepancy is not hard to find. In evaluating the
self-energy, Peressutti and Skagerstam ignore the effect of the heat bath
4-velocity, effectively setting %-Tr(ﬁReEB) = 0 (or, alternatively, b=0).
While the EB term proportional to u® is relatively unimportant at low
temperatures, it becomes increasingly important as the temperature
increases, and is the most important term for T >> my. At these tempera-
tures m >> m, and we get agreement with calculatioqs for massless fermions
as we would expect.

As a final point we note that the small effects of the finite temperature
electron mass on early universé helium production calculated in ref. 22 aﬁd

23 which assumed GmB ~ T2 will be reduced even further.



- 36 -

1072

TEMPERATURE (T/m,)

Fig. 7. FTD mass shift as a function of temperature for various

values of y.
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Fig. 8. Region of negative values for the FTD mass shift.
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Fig. 9. Comparison of FID mass shift calculations performed in:
(1) this thesis, (2) ref. 20, and (3) ref. (18). Since ref. 18
deals with massless fermions, it can only be compared to the
other two calculations in the large T regime.
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C. Neutron stars*3

We now investigate what effect the mass shifts discussed above might
have on the evolution of neutron stars. For our purposes a neutron star can
be parametrized thermodynamically by T=0 and an electron chemical potential
(ug), much larger than the T=0 electron mass (mg). From (4.13) we then

find for the effective electron mass

M = ‘/—"‘- e (5.13)
2T .

We now adopt a simplified model for neutron star evolution in order to see
what effect (5.13) has on it. Construction of a detailed model is beyond the
scope of this thesis, and in any event, will prove to be unnecessary.

For the model, a uniform gas of electrons, protons and neutrons will be
chosen for the neutron star matter (clearly such a model will not be valid at
high densities where coulomb and strong interaction effecté will become
bhpoftant). Chemical potentials ug, Mp, and up, which include the T=u=0
mass, are assigne& respectively to the electrons, protons and meutrons
present with number demsities ng, n, and n,. For a Fermi gas, these
quantities can be related by u? = m¢ + (372n)2/3, If u, + Hp exceeds Up,
then electrons will be captured by protons until the number densities change
such that pg, + Hp = Up. Hence, for each value of n,, there will be a
value of U, which satisfies the B-stability condition.

Assuming local electrical neutrality so that ng = np, then the

chemical potential equality yields
He *+ (MZ + m% - m%)l/2—= ((312n)2/3 + m2)1/2 | (5.14)

The solution of this equation for Mg as a function of n, is shown in



- 40 -

fig. 10. At small n,, Me ~ my ~ my, while for large np (but not so

large that the neutrons are relativistic)
ue = (372ny)2/3/2m . (5.15)

Both of these limits are obvious from fig. 10. This figure includes a region
in which ug exceeds my, although obviously e~ + 7~ + vg would be |
allowed in this region (see ref. 44),

From fig. 10 it can be seen that over much of the neutron density range
of interest in the formation of a neutron star, Ue 1is large compared to
m, and the large M expression for M should be reasonably accurate. The
mass shift is then found to be substantial compared to my, as is also shown
on fig. 10, but small compared to ug (M/ug ~ 1/30). The larger electron
mass will lead to an earlier onset of electron capture in the formation of
the neutron star, and hence an increase in the rate of neutrino emission.
Since the neutrino mass is changed only by the weak interaction, its mass
shift would be very small and would not compensate for the increased electron
mass, Similarly, the abundance of electrons in the neutron star core would
be lowered.

We can get some insight into the importance of the mass shift on

observational quantities by looking at the particle energy,

E2=m2+p%.

where p% = ug - mg is the Fermi momentum. Making use of (5.13) we find

2 & 2 g_
E2 = p2(1 + 2")

from which we conclude that FID effects induce a shift in the energy of about
0.1%Z. The smallness of the correction can be understood physically in the

following way. Since FTD effects induce mass shifts of O(au) the chemical
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Fig. 10. Expected value of the electron chemical potential and electron
mass shift shown as a fuction of neutron number density. Normal nuclear
matter density (ng) is indicated for comparison.
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potential must be of O(my/a) before the effect is important. However, for
such a large chemical potential the electron 3-momentum is so large that the

rest mass (even with FID effects included) is small by comparison.



- 43 -

Chapter 6

Conclusions

In this thesis, the one loop FTID corrections to the self-energy of
spin 1/2 fermions, in the context of QED, have been studied. We have found
that the interaction between a fermion and a thermal background can be
characterized reasonably well by a single parameter, m, in the sense ﬁhat the
dispersion relation for such a particle ciosely resembles the dispersion
relation for a free particle of mass m. In this way m can be considered the

effective mass. Several specific cases have been studied and we have found
m~ a[72T2 + p2]l/2 k6.1)
for chirally invariant fermions and for fermions with broken chiral symmetry
provided
w2 + T2 > wd . (6.2)

When u2 + T2 <K mZ we have found

m o~ = (r212 + u2) ., B (6.3)
My

Some workers have claimed that (6.3) appliés even when (6.2) is true,
but we have shown this to be a consequence of ignoring the heat bath
4-velocity. Early universe calculations which have employed (6.35 in the
high T regime to obtain finite temperature corrections to the helium
abundance are apparently incorrect but not in a significant way since the
small effect calculated will only be reduced even further.
The FTD renormalization précedure has also been analyzed and we have

shown that in order to calculate the physical mass, the T=u=0 part of the

theory must be renormalized at a T,u-depeﬁ&ent point. Finally, in the
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appendix, we have shown that despite its more complicated analytic structure
(vis a vis the T=u=0 theory), the chain approximation still works and allows

a simple physical interpretation of the self-energy.
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Appendix A: The FTD Chain Approximation
The chain approximation is a well-known technique in T=u=0 field
theories for demonstrating that one of the effects of the interaction
lagrangian is to cause the pole of the complete propagator to shift away
from the bare propagator value. The QED chain approximation is expressed

diagrammatically in fig. lla and algebraically by

,JO(K) ='s°(1<) + 55(K) Z5(K) So(K) + So(RI[Z,(K) ‘SO(K)]Z + .. (A.l)
where &, is the full propagator, S, is the bare propagator and I, is-
the self energy insertion given by

d*p
(2m)"

~iZ,(K) = -2 [ Yy (=g*V)iD, (p) iS,(R-p)yy - (A.2)

The solution is the well~known Dyson equation

of, = [k - mg -, (k) + ie]~}

(1+ag)) [¥ - mg]-] (A.3)
[cf (3.2)-(3.3)]. Tﬁe real miracle of (A.3) is that by summing the |
series in (A.1) we go from a complicated analytic structure (poles of all
orders located at mg) to a much simpler one (single simple pole at mg)
with a simple physical interpretation for &m, (mass shift).

The more complicated structure of the FID propagators raises the
question of whether this approximation scheme is still useful when
T,u # 0, Specifically, does the chain approximation fo the complete
matrix propagator have an analytic structure analogous to its T=u=0 coun-
terpart with a correspondingly simple interpretation for the self-energy
matrix fab? It is shown here that the simple' analytic structure of
21; is preserved at finite temperature, and that T3 can be interpreted

physically., In the process of demonstrating this, we will obtain
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Fig. lla. Diagrammatic equation for the T=u=0 chain approximation.
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Fig. 11b. Diagrammatic equation for the FTD chain approximation..
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expressions for the real and imaginary parts of the self-energy.
The FTD chain approximation is given diagrammatically in fig. 1llb

(see sect. 2 for details) and algebraically by

éZab = §ab 4 §ac Ted gdb 4 | (A.4)
where
- d*p sedc ) szed
-izCd(R) = -e2 M i5¢9(p) i5¢9(R-p)yY (A.5)

and i$2P and fﬁﬁg are defined in (2.20) and (2.21) respectively.

Proceeding in a manner similar to the T=u=0 case, we right multiply (A.4)
by 2P¢ 3¢ and then subtract the resulting equation from (A.4). The

resulting matrix equation is">

d® = [3-1(®) - TE®)]-! . (A.6)
Writing Z(K) as

0(Ky) V-1(R,n) Ty(R) V-1(R,u) + 8(=Ky)(VI(R,-1))~1 T_(R)(VI(K,~-u))"!
' (A.7)

will give the desired analytic properties for.zf if

— <Z: 0 ) 8
t =\o '2§ . N (A.8)

Furthermore, the interpretation of T+ is then clear since (A.6) will only

contain terms like

1 0

— | K-mp-ZI +ie —

v L -1 V. (4.9)
0 (K-mB—Z I‘iE)

In order to prove (A.8) we first note the identity

8(Ky) = 0(Ky)[6(KRo=pg) + 0(po=Ko)] (A.10)

Combining (A.5), (A.7) and (A.10) gives

I
To(K) = -ie20(Ry) [ ——P T(R, 1) [6(Ro=po)Hy(p,K-p)
(2m)*

+ 8(p,K ,)M_(p,K~p) ] V(K,n) (A,11a)
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dqp
(27m)

T_(R) = -ie20(-K,) [ = VT(K,-u) [6(Ry=po )My (p,K-p)
+ 8(py=Ko)M-(p,K-p) ] VH(K,-n)

W22 (p,k-p) = ¥* iD20(p)[i52P(K-p) + iSER(R-p)]v" .

For convenience we introduce the following notation

d“p
(2m)*4

T+, (K) = -ie26(%K,) [ 8 (Ky-po M, (p,K-p)

d“p

e 8(po~Ko)M-(p,K-p)

T4,(K) = -ie20(¥K,) [ (

Te(y,2) (K) = V(R Ti(q,,)(K) V(R,W)

T"-(1,?_)(K) = VT(K,-H)E_(l,Z)(K) THK,-u) .

Concentrating on T+1, it is given explicitly by

. 2 dqp
~le e(Ko) I'E'E’-T')_L; e(Ko_po)

Milcos2yf + eBH/2 cosyf sinyf(Mi2-mM2lewBH) - w22 sin?yf

X

(Mi1+Mi2)eB“/2 cos¢§ sinwi + M}_zeBu sinzwi + Mfl cos2¢E

(A.11b)

(A.12a)

(A.12b)

(A.13a)

(A.13b)

- (M}1l+M22)eBu/2 cosyy sinyf + M12 cos?yf + Mfle'B“sinsz

- Milsinzwz + ePH/2 cosyg sinwi(Miz-ME;e‘B“) + M22c0s2¢i

matrix elements of M, are

Y”(K-§+mo)Yu(Doch29

* *_ s
p~ Doshzep)(Aocossz_p + A051n2¢E_p)

- *_ “A®)a— 172 + .
YH(K x‘+mo)Yu(Do D,) (3, Ao)evB” chep shep cos¥g_, sing_,
- -p¥* ~A® /2 + s ot
T (R=p+m, ) v, (D,=DT) (8,-85)ePU/2 cho, she, cos¥g_, sinyf_,

* * i
Yu(x'ﬁ+mo)Yu(DOChzeP - DOShzeP)(Aocoszwi’p + A081n2¢i_p) .

abbreviations D, = D,(p) and A, = A,(K-p) have been used.

(A.14)

(A.15a)

(A.15b)

(A.15¢)

(A.15d)
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Since M%z = (Mil)* one of the conditions of (A.8) is satisfied. The

other condition
12 = 21 =
T+1 T+1 0
can be restated as

Im(z}!) = -iz2}2 eBH/2 cotan2yf . " (A.16)

By making use of the following identities,

2
- f dPo[Dvo + DgAg]f(P) = f dPo'%; [G(Po‘q)s(Ko'Po“r)
+ 6(p0+q)6(Ko—po+r)]f(p)
2
[ dpo[DoAd + Dobo JE(p) = [ dpo %;'[G(Po+q)5(Ko'Po‘r)
+ 8(po=-q)8(Ko=po+r) | £(p)
where q = l;l and r = [(i_;)z + m%]I/Z

(A.16) is shown to be true. Similar arguments can be made for T,,, T.;
and T_,.

Using (A.14)-(A.16) we also find

- 11 11
Rel, = Rel. Re2+1 + Re2+2 (A.17)

Imf, = sec2yy Im(Zil + Iil). (A.18)
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