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ABSTRACT
The general theory of the line transect method for
estimating wildlife population densities and some of the popular
estimators being used are reviewed. Amongst the estimators
considered are the follovwing; thke half-normal estimator, the
Fourier series estimator and the generalised exponential series

estimator.

A new estimator for wildlife densities using line transect
data and based on shape-restrictions for the detection curve is
presented. This estimator uses only grbuped, perpendicular
distances from the observer's line of travel to the sighted

object.

The sampling behaviour of the new estimator is studied
through simonlation studies. These studies show a marked
improvement over existing estimators in stability and efficiency

for a variety of detection curves.
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CHAPTER 1

Introduction

The line transect sampling method is a relatively efficient
technique for estimating wildlife densities, which has gained
popularity in wildlife studies. The method has been used on

birds, land animals, and even on plants.

The technique involves travelling along randomly placed
lines (transects), and recording the nﬁmber of sightings n, and
distances (radial (r) and/or perpendicular (y)) from the
transects (Fig. 1). These observed distances are then used to
estimate the population density. Both the practical and
theoretical aspects have been extensively discussed by Eberhardt

(1978) , Gates (1978, 79) and Burnham, et al., (1980).

In order to model line transect sampling methods,
assumptions are made about the distribution, response and method
of sighting and counting of the animals in the tramsect study

area. These assumptions are outlined in Section 2.2.1.



Fig 1
P is the point at which an object is first seen:
by an observer at O. M is the point on the line
perpendicular to the obiject.

Most developmént in line transect sampling methods has been
éoncentrated on parametFic and nonparametric modelling of the
function g(x). This is the probability of a point being seen;
given that it is at a perpendicular distance x from the transect
line. g{x) is called the detection function. Some of these
parametric models are very restrictive and they give reasonable
estimates only when the detection funétion follovws closely the
form of that used in the model. For example, Gates, et al.,
(1968) developed the negative exponential, which was later shown
to be very restrictive. Any deviation of the detection function
- from negative exponential produces absurd estimates of f(x). The
generalised parametric models (Cain 1974, Pollock 1978) though
flexible, are prone to estimation errors. Pollock's (1978)

€exponential power series model, for example, with



g (x) = exp (- (X/a)b)

encompasses a wide variety of detection curves, including the
half-normal (b = 2) and the negative exponential (b = 1) (see
Section 3.3.3) . Hovever, there is a considerable loss in
efficiency when both parameters of the model are estiﬁated. The
efficiency can be improved uponr by judiciously fixing one of the

parameters {Burnham, et al., 1980).

Hore success has been achieved through nonpararetric
nodels. These models, being nonparametric, are designed to
perform wvell over a wide variety of detection curves.

The Fourier seriesrestimator is the most commonly used
nonparametric technique for estimating wildlife densities. One
possible deficiency of this estimator (and others based on |
orthogonal series) is that the estimate of f(x) can dip down
below zero; i.e., the estimate of f (x) is not a true probability

density (Wedgman 1971).

In this thesis, a nonparametric approach based on a
constrained least squares technigue is developed and its
sampling behaviour is investigated.

The main results of a-simulation study are given in Section 1.1.
In Chapter 2, the general theory of the line transect sampling
method based on perpendicular distances is reviewed, and the

shape-restricted estimator is derived.



Three models suggested by Burnham and Anderson {1978), Quinn (in
a 1977 M.Sc. thesis) and Poilock (1978) are presented in Chapter
3. Two of these are examiqed in Chapter 4, through an extensive,
comparative, simulation study. 2 FORTRAN list of the simulation

program is given in Appendix A.

Since the exact behaviour of estimators subjected to
inequality constraints is complex (Barlow, et al., 1972),
simulation studies were done to determine the samrpling behaviour
of the shape-restricted estimator. The simulation results bf the
shape-restricted egtimator will shov a general improvement in

efficiency and stability over existing estimators.

For comparison purposes, the Fourier series estimator; the
shape-restricted estimator and the half-normal estimator were
used. Each was tested on eight detection functions shown in
Pigs. 3 (a), 3(b) and 3(c). Statisticai quantities such as the
dverage standard error and bias are calculated as percentages of

the true density, D.

The shape-restricted estimator behaves well in terms of its
efficiency, standard errors, and bias. Unless the detection
curve closely resembles the form best suited to one of the other

estimators, the shape-restricted estimator has smaller root mean



Squared error. For example, one of the detection functions used
was based on the two-tern cbsine curve, the root mean squared
error of the shaped-restricted estimator based on 100
observation using this curve is 97% and 82% of that for the
half-normal and Fourier seriesvestimators respectively. The
corresponding efficiency ratios are 106% and 147%. Fof a wide
variety of detection curves, the simulated results show that the
shape-restricted estimator has an overall percent relative bias
that is comparable to that of the commonly used Fourier series

estimator {Table 2).

The results in Table 3 demonstrate the stability of the
shape-restricted eétimator._This stability and degree of
flexibility in fitting detection curves from the set of possible
detection curves makes it a fairly robust nonparametric
estimator. The half-normal estimator exhibits unstable
behaviour. It behaves spectacularly well for detection curves
close to the half-normal form, but is prone to large bias fbr

other forms of detection curve {Table‘z).

Likewise, the Fourier series estimator exhibits the sane
unstable behaviour as the half-normal estimator, but with a much
more erratic pattern. However, when the detection curve foliows
closely that of the one-term cosine series (FPig. 3(b)), it has a
high degree of accuracy. For other detection curves, it has a

ruch larger relative root mean squared error. This is true even



for the twvo-term cosine (Fig. 3(b)). The Fourier series is
unlike the half-normal in that it has much smaller bias, with

slight increase in its chance components.

The efficiency and stability of the shape-restricted
estimator over a wide variety of detection curves makéé it a
plausible alternative to existing estimators for grouped data
whenever the parametric form of the detection curve is unkno¥n.
It has great advantages in allowing the user with prior
information about the detection curve, to transfer this
information into restrictions on the estimator. One need only to
alter the constraint matrix on input. Section 2.8 shows how
these restrictions>on the detection curve can be transferred to

the estimator.



CHAPTER 2

General Theory of Limne Transect Nethodology

2.1 Underlying Assunmnptions for Model

In order to develor any mathematical model for line

transect sampling, several assumptions about both the spatial

distribution of the birds, land animals or plants in the study

area and about the methodology of sampling must be rade. For the

purpose of modelling line transect sampling methods, birds, land

animsals and plants are referred t¢, in abstract terms, as points

or objects. The following are the basic assunpticns underlying

various parametric and nonparametric models.

Poipts are randomly and independently distributed over
the study area, A, with density, D per unit area;

i.e., P{point is in (x,x+di) it is in A) = 2Ldx/A;
where L is the leagth of strip traversed.

Sightings are independent events.

No points are counted more than once.

Points are stationary, at least until detection.

The detection function is constant throughout the stuody.
(In particular the respcnse behaviour of the population

ought to remain fairly stable in the course of running



the transect.)
6. Points exactly on the transects are seen with probability

one.

Let the probability of a point being seen, given that it is
at a perpendicular distamce x from the transect line bé called
the detection function, g{x);

i.e., g(x) = P{point is seen , perpendicular distance, X)..

Then assumption six becomes g{0) = 1.

Eberhardt ({1978a), discussed these underlying assnmptions,
and made snggestioﬁs for estimating the density (D) when some of
these assunptions are violated.

For example, assumption 2 is violated when objects are being\
observed in gfoups {birds flushing in groups). This probleﬁ can
be avoided by estimatihg the number of groups, and then
adjusting this estimate by multiplying it by the average group
size. The final estimate may be biased; since the average group
size is a biased estimate of the population mean if the group

sizes and radial distances are correlated.

It has been observed that im practice, objects may move
avay from the observer, thus violating the *no movement?
assumption. This problem can be alleviated by using monotonic

nonincreasing estimators for estimating the density of the



objects (Burnham, et al., 1980). The isotonic regression
estimator (Barlow, et al., 1972) and shape-restricted estimator

(Section u4.2) satisfy this property.

Given that the detection function, g(x), is continuous at
x = 0 and g*(0) = 0, then it is sensible to assume that in the
neighbourhood of the transect, the observer would see objects
with probability close to 1; meaning that, the detection
function would have a shoulder near x = 0. Indeed observers have
generally found that whenever g(0) = 1, it remains very close to
1 for small x. That is; the graph of g{x) has a shoulder near

x = 0.

2.2 Geperal Model for Perpendicular Distances

Given the above assumptions, we derive the distribution of
the observed distances X 4 XgreeeceeesX, conditional on n, the
number of sightings. We define the intensity function, h(x)
{through which we shall obtain the denéity of objects), and
establish its rélationship to the detection function and the
probability density function of observed distances. The density,
D, of objects, is derived in terms of the above probability

density function and hence the intensity function.

Consider a strip centred on the transect with half-width,

T, Let its total area be givem by A. Then from assumption 1,



P{point is in (x,x+dx) it is in A) = 2Ldx/A.
(Formal limit definitions are omitted for clarity of
exposition.) From the definition of g{(x),

P (point is seen I point is in {(x,x+dx)) = g(x),
so |

P{point is seen in (x,x+dx))| point is in A)

= [21dx/A] g (x),

and the probability, P; of seeing a point at distances < T

=

from the transect is
. T
[2L/3] fg(x) ax

(]
{VT][g(x) ax .
Thus P, = [I/T]/u,r. Where /u.‘.=j:g (x) dx.

’ [o24
{for the unbounded strip /4 = Jfg(x) dx
o

it

T
sumi i uch that 1linm = =hm dx. < oo).
as ing g{x) is suc a lim /‘41- /4 _H»Lg(x) , ) ‘
Now P(point is in (x,x+dx) I point is seen)

P (point is seen in {x,x+dx))

I

P (point is seen)

g(x) dx /T

|l

Pr

g(x) dx

\

TPT

g(x) d4dx o

ST

so for any T > 0 and conditional on n, X, ¢Xg40ee0Xp

1l

are i.i.d with density

f(x) = g(x)//uT- (2.2.1)

10



How define a function,‘h(x), called the intensity function
as the fraction of sightings seen in x to x + dx multiplied
by the expected nupgber of sightings seen in the study area.
This is just the probability density for the distance of a
single observation multiplied by the expected number of

sightings; that is, h(x) = £(x) E{(n).

The reiationship betwveen h(x) and g{x) can be shown’
by considering the number of observations at distances between
x and x+dx from the tramnsect. Since only a fractiom, g(x), of
these points in this range is expected to be detected, the
expected number of sightings is 2DLg(x) dx. The intensity
function is the limit of the expected number of sightings im x
to x + dx divided by dx as dx --> 0. Therefore h{x) = 2DLg (X) .
This implies that the expected number of sightings, E{n), for
the study area is given by;

T T
E(n) = fh(x) ax = ZLng(x) ax.
[»] Jo ?

Thus

E{n) = 2LDM,. (2.2.2)

In order to estimate the density D, of points
per unit area, we only need to estimate h({0).. (Since h(0)= 2LD,

which implies D = h (0)/2L.)

11



From (2.2.2), let D = n/ZE/Hu
From assumption 6, g(0) = 1.

Hence from (2.2.1)

£0) = 9(0)/fr= 1/pir,
which implies
f(0) = 1//447.
So to estimate 1/yMT + We could also use an estimate of
the probability density function f(x) at zero; i.e., f(0).
Since ﬁ(x) = E(n)f{x), it is sensible to require that
g(x) = nf(x). We have then an estimate of h(0) given by n?(O).,
Thus

A ~ A
D = nf{0)/2L = h(0)/2L . (2.2.3)

2.3 Motivation for ShapefRestricted Estimator

Histogram-like-estimates are maximum likelihood estimétes
and have been in use since 1895 (Tapia and Thompson, 1978). As
was observed by Wedgman (1972b), they have large errors compared
to orthogonal series, but the rate of éonvergence of their mean
integrated squared error, (MISE) seems to be better than those
of the orthogonal series or kernel estimates. An estimate of the
rate of convergence of the MISE for the classical histogram is
0(n') and the rate for both the orthogonal series and kernel
estimates is 0(64“) (Wvedgman 1978b). Thus, if some appropriate
smoothing could be introduced, it is conceivable that the large

standard errors for histogram estimators, based on small

12



samples, could be improved upon without a concomitant
degradation of convergence. Hence, small standard errors might

be available for all sample sizes.

One form of smoothing which has been considered by Barlow,
et al., (1972), and also by Hayes {unpublished thesis)’is that
obtained by insisting that the density function be monotonically
nonincreasing. This (least squares) estimator known as the
isotonic regression estimator is also the maximum likelihood
estimator of f (x), under the sole restriction that f {x) be
monotonic nonincreasing. Its major weakness is its tendency to

produce spiked estimate of f(x) at x = 0.

What is being presented here is a similar form of
smoothing, but one which also incorporates some knowledge of
plausible detection curves encountered in line transect

sampling.

From (2.2.3), the estimate of denéity (D) of points is
given by
5 = n.£(0)/2L = h(0) /2L.
Hhere £ (0) and h(0) are the underlying p.d.f. and intensity

function evaluated at x = 0.

A
A paive estimation technigue for h{0) would be to use only

observations close to the transect line. But this completely

13



ignores information available from observations avay from the

‘transect line and produces inefficient estimates. One way around

this is to estimate the entire h({x), incorporating all
observations.

This estimation is done through fhe observed intensity within
reasonably small intervals of distance; i.e., through the
freguency histogram of observed distances, imposing the
following shape-restrictions on g({x). (Restrictions on g(x)

transfer directly to h{x)).

(i) Yonotonicity {g(x) is assumed monotonic nonincreasing)
{(ii) Concavity ({(g{x) is assumed to curve downwards over
the range containing about 90% of the observations), and

(iii) Positivity (g(x) is non-negative in domain of g).

2.4 Derivation of the Shape-Restricted Estimator

The estimator is based on grouped data. Hence consider
a partition of the interval [0,T), say
0 = b <t <re <t = T,

Let Ty denote the half-open interval [ti'tk) for 1 = 1, e0,Ma .

For random samples Xy s XgpeeesX in {0,T), le; n denote the

n
number of these samples falling in the interval T;
M
Then n: = n .
= |
&

Let £ = (n‘,nl,...,..,nm), be the vector of frequencies.

Fe now have to transfer the above restrictions (i) through

14



{iii) on g(x) to restrictions on the estimator. Before
developing these restrictions, we define the following

quantities.

———— e e

(a) Convex Set: A set X is convex if for any two points
in X, all points on the line segment joint

and X, are also in X. That is; X, X, in X implies

8x, + (1-9)&2, is also in X.

(b) Monotone function: A function g is monotone on

some interval I if either g is nondecreasing

(x|< X,

(xl< X,

==> g(x,)< g(x,)) om I, or g is nonincreasing

==> g(x|)2 g(xl)) on I.

(c) Convex {Concave) function: A functiom g is convex

{concave) over a set X if for any two points x, and x, in X

and for all 8, 0<8<1;

g(@x, + (1-9)x,) < 8g(x,) + (1-8)g(x,).
(2)

A function is strictly convex if '<' is replaced by *'<'

vhenever x|$ X, and 0<B<1 or alternatively, if the Hessian

of g{x) is defined and is positive definite for all x.

15



To formulate the problem as one of constrained
minimisation, we first observe that the raw estimate of h{x)
(i.e., the estimate of the intensity function through the
frequency histogram of the observed distances) is given by,

A m
h(x) = ‘iZln,-/(tiﬂ - tj) I(T;) (%),

vhere 1 T ) (x) denotes the indicator function of the interval

T, - It the smoothed estimate in the i'th class
o ~ - o) ~
the y -values minimise 2: (% - yi) s With Y, = h{x) , the
=)
rav estimate of the intemsity in the i'th class, subject.

yi . then

to the constraints that the y-values ke non-negative and
nonincreasing and their graph be concave out to a
prespecified point. That is; we are to

ninimise

subject to

>
R £
y' - y:L < Y, ~Y, wvhere k is that interval
- < - i i - u- 1
yi y3 < y3 y“ containing the 90th {2 )
: s 2 : percentile.
- S —
yk—; yk" y\‘-\ YK
y 2%
k-1 K
>
Yt\-l yﬂ
>
yn 2 0.

16



i.e.; the problem is to mininmise

M A2
i (Yi RS )
i:l
subject to
ai (Y) = -yi'\+ ZY“I Yi+‘ 20 1:2'- o.-'k (2.”’.2)
aj{y) = ¥, - ¥, 20 i=k+l,..,D
an(Y) = Yr\ ZO'

We can write {2.4.2) in a nore conpact form as follovs;
mininise
2
”~
fo=|b - y“ {2.4.3)
subject to
Ay 2 O.
Where lly “is the Euclidean norm of y defined as

1= 3

The i'th row of the matrix A is given by a , i=1,...n.

For the above quadratic minimisatibn problem, if we
can show that fhe objective function is strictly coavex
and the admissible y-values constitute a convex set, then
then we are guaranteed that any local minimum of (2.4.3)
is also the unique global minimum. In what follows, we show
that the restrictions together do indeed constitute a

convex set and that fo is strictly convex.

17



Because the functions ai(y) are concave functions
for all i, then the set of points Y satisfying a; (y) 2 0

i =1,...,n is a convex set. The proof is as follows:

Take any two points, yland in Y. Then ai(z)‘2 o,

Ty
and ai(zz) 2 0 for i = 1,...,0.
Then for any i, 1i = 1,...,n
ve have

ai(en + (1-9)Yi ) 2 eai(y‘) +(1-9)ai(zl) by concavity

20 since 0,1-6,20.

Hence ey' + (1—Q)y1 is in the set Y whenever ¥, and y, are,
vhich from the definition of a convex set implies that

the inequality constraints together constitute a convex

domain.

Similarly, the proof that £ 1is strictly convex is as follows;
M A2 ALl
We have, £, =3 (5~ fiJ = |y -¥[.
=\
and the gradient vector,vf , is given by
A ~ 4 N
and the Hessian H = 2I vhere I is the identity matrix,
which is positive definite. Hence f, is strictly convex,

and there is a unique minimum to (2.4.3)..

18



2.5 Kuhn-Tucker Theory and The Solution Alqorithnm.

We are faced with the constrained minimisation problem:

Minimise

9
lv-v | =g w.
subject to
-y < 0.

Solutions to such constrained minimisation problems can
sometimes be deduced through the Kuhn-Tucker conditions. These
conditions are essential in characterising the solutions and
also in defining the vector of Lagrange multipliers LA VT PS
They form the foundation for development of some algorithas

used in solving constrained minimisation problenms.

The Kuhn-Tucker necessary conditions for y and )\ to be
stationary points for the above minimisation problem can

be sunmarised as follous:

(1) N Ngreeesdy< O.
(2) V£, (y) -AVay = 0.

i.e., 2(y ‘9) + A2 0,
where(y - ) =03, =%, ) s (1 -F) veeenns (3,-%0)) -
(3) Maj(y)) =0 i=1,....,0.

{4) -Ay< 0.

19



These necessary conditions are also sufficient conditions
since f(y) is strictly convex and the minimisation is over a
convex domain {Rockafellar, 1970, Thm. 27.2. and preceding
materials). Thus, the local minimum is a global minimum. It is
however difficult to solve these resulting conditions explicitly
for y and . Consequently, the minimisation problem was
transformed to one of LEAST DISTANCE PROBLEM (LDP). (Hanson and
Lawson, 1974, Ch. 22). The Kuhn-Tucker cpnditions form the
foundation upon which the algorithm for solving the LDP is
based. The LDP, was then solved wvia a NON-NEGATIVE LEAST SQUARES
PROBLEY (NRLS) (see Hanson and lawson, 1974, Ch. 22 for
details).

To transform to LDé format, the problem of
rinimising
lv-3 (2.5.1)

subject to

let r =y ~ ?.
Then {2.5.1) becones,
minimise
|1t

subject to

We now seek the point c* of the polyhedral set
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{r | At 2 v}at least distance from the origim r = 0.
Lavson and Hanson (1974) NNLS algorithm finds r* by iteratively

searching for the solution to the Kuhn-Tucker conditions.
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CHAPTER 3

Examples of Three Hodels and Associated Methods of Estimation

Most estimatioa methods in line transect sampling involve
parametric or nonparametric estimation of f (X). Parametric
estimators are typically maximum likelihood estimators. TwO
examples of parametric mqdels are the half-normal with
f{x) = (2/0J21) exp (—xl/Zog and parameter ¢ , and the neéative
exponential with f {x) = a exp (-ax) and parametar a (see

Sections 3.2 and 3.4).

Nonparametric estimates are usually obtained by the method
of expectations or least squares technigques,
The former techniguoe lends itself readily to the Fourier series
with ungrouped data, with great ease of computation. One of the
problens encountered in using this technique is that, estimates
of f(x) may not be true probability demsities. In fact, when
applied to the Fourier series estimator, the estimate ?(x)

F
= {1/T) + -jzejcos(jnx/T) may dip below zero.

J=

The general estimation techniques for three popular methods
namely, the Fourier series, the half-normal and the exponential

power series models are revieved.
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3.1 Maximum Likelihood Estimation

Let f(x,8) 0<x<T be a pdf with parameter 8, wvwhich may be
vector valued, 0 = (8, +Bys--..8r). As was noted earlier, T can
be finite or infinite. Let xl,xz,...,xnbe random perpéndicular
distances from f (x,8).

Define the conditional likelihood function given n as

L (9)

0
h
~
o]

l'e) f(xz'e) 'cc.'f(xn'e)

I
Hh
. .~
o
-
2
-

and 1(8) = 1n (L (8)) as»the log likelihood function. The
maximum likelihood (ML) estimate(s) of 8, 8 for a well behaved
model can be found by solving the following equations for 0.
qi(e) = 381(8) = 8. =140,
a8j
The asymptotic variance - covariance matrix of 8 is
I“(Q)/n where I{8) is the Fisher information matrix and has
elements
IJ'K(G) = ‘E [311!9! ] - j,k=1,...,l’.’
@8;) @sy) '
The former equations often require numerical solutioms
since the analytic equations involved are sometimes very

comrplex. A hybridisation of the Newton-Raphson and Marquardt
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procedure is generally employed. An empirical estimate of the

information matrix I(8) is derived through H, with elements,

n a2
(8) =1, 9 1(x;,98). .k =1,0..,r
'”‘ - 2@ 3}) (@)

The ML estimate is ?(0) = f(O,ﬁ) and its asymptotic sampling

variance is

var (£00,8)) = [9£00.%) 7 17" 8 ) [v£ 0.0 )
n

Where wf(x) is the gradient vector of f(x) with respect to 8.

Suppose the data were grouped into m classes with

intervals defined by
0 = t,( t2<onqq.< tM*|= T

Since detections are independent events, the n are

rultinomial random variables, define by

{ ) ' | T2 o
P n n AR N 'n = n.: P P ..qqp
e ~ o in t....n,! ! 2 "
;11
vhere Pf = f (x,0) dx i=1,...,8
t
= F(t,,) F(t; ),
and dp; = AF (tis,) -~ AF (t; ) i = 1,00.,m.
Saj a9 'a8j § = 1400e,T
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The log likelihood function 1(8) is given by

n

1() = 1n K(n) + D n;ln p,

wvhere K{n) = n! -

Under suitable regularity conditions (Rao, 1973), the ML

estimates are the solutions to the log likelihood equations

e = 3 o ¥p; = 0. § = 1yesa,r

The Fisher information matrix I{0) has elements given by

I:.(8) = & _Léap-,‘iagily Jok=1,eee,L

Fisher's method of scoring can be used with Marquardt
modification for an iterative numerical method in solving the

above eguations.

It is not always possible to use ML technigues in
estimation. In cases where the proposed density estimator (f(x))
is not a bona-fide density function {density dipping below |
zero), a method of expectatibns is used in avoiding taking
logarithms of negative numbers. Estimation for the Fourier

series is based on this method for ungrouped data.
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3.2 A Parametric Case: The Half-normal Estimator

Consider the untruncated half-normal model defined by

'/2, 2 1, .
f(x) = 1(2_) exp (-x~/2 o) 0<x<® 0<0 . (3.2.1)

o\

The truncated model is

f(x) = 1 exp (-x%/20% ) 0<x<T 0<o~ . (3.2.2)
o 2T [F(T/) -1/2] '

fhere F(.) 1s the standard normal cumulative distribution

function (cif).

The following example considers ML estimation with
ungrouped,truncated data.

Using (3.2.2), the log likelihood 1(0) is given by

= 2

1{¢y = -nln o - _n 1In( 277) - nln[F(T/o-) - 1/2 ] -1 EZFi-

2 20 it

The ML estimate of oo is the solution to the eguation

A1/% = 0. i.e.,

n
da = -n_ - n Fr (/&) + 1.5 xt = 0.
doo & [F(I/&) -1/2] 62 i=

Furthermore,

31 = n-on {F(T/0-) - 1/2) F'"(T/0- ] - [F(T/00) ] -~
3o o [F(T/) - 1/2]

q
o
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and the information matrix given by \

I(0) = -E [il_l]
do-
vhere F(a) = _1 exp (-x2/20}') dx,
V2o
PY(T/0-) = dF(T/0°) = _1_exp (-T2/2 o) (~T/c") ,>(3.2.3)
do~ n ‘
FY'(T/0-) = _1 T exp (-T1/2 %) (2 - T76%),
21 o ‘
and
E(F) = d(a,T) [2 0% - o* exp -12/2 %) (1% + 2 ¢ )]
2 | J
Where J(0 ,I) is defined as in (3.2.6),
and Var (?(0) ) = v £(0) ]21"' (69, (3.2.4)
N |
with £(0) = _1 1 1 (3.2.5)

2n 6 (F(T/6) - 1/2)'

and
af(0) = £(0) [-1 + TE(0) exp (-1/2 az)]._
do o

The ML estimate will have to be found by iterative

techniques such as the Newton-Raphson method (Seber 1973),
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or the method of séoring {Rao 1973) . The ML estimator of
f (0) can then be obtained from (3.2.5),and approximate

variance from {3.2.4).

For grouped data estimation, integrating f (x) with respect

to x gives

h

x
B (x) J (o~ ,T) S‘exp (-01/201 ) du
o

#l

2 J(o,T) ( F(x/0) - 1/2 ).

Where J(0-,T) = 1 (3.2.6)

i I .
ol2n (F(T/0°) - 1/2 )

The cell probabilities are given by

P; = Bitj,,) - B(t])
=2J(0,T) [ F(t;,, /o) - F(t;/0) 1.
then ?ﬁ 2 J(o,T)[ F'(ty,, /o) =~ Fi(tj/0) ]
c' B

+ J*(0-,T) [ F(t;,,/0)- E(tj/0 )]
where J'(o-,T) and F' (t/o) are calculated using equations

(3.2.3) . PROGRANM TRANSECT has these egquations coded in FORTRAN

routines. This program was used in the comparative study.

28



3.3 A Nonparametric Case:; The Fourier Series Estimator

The Pourier series estimator is based on the Fourier series
expansion of a functiomn over a finite interval, (Tarter and

Kronmal 1968,1976).

Define the even extemsion +(x) of f(x) from [0,T] to [~T,T] as

+(x) = f (x) 0< x <T

f{-x) -T< x <0.

The Fourier expansion of 4(1) over [~-T,T] is

O{x) =1 + Ei [ a-cos(jﬂz) + p}sin(jﬂg) ] -T <x <T.
T j._._l J T
vhere aj = ;L_j. ?(x)’cos(igg dx
T T
-T
IT‘
= 2 j f (x) cos(igz) dx
T Jy T
T
by = 1 (x) sinm |[jnx]| dx = 0.
J T _T? (T)

It follows then that,

©
fix) = 1 + E:ajcos(jﬂx) 0 <x <T.
T J=t T

We want to estimate f£{0). Noting that cos(0) = 1. we have
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© P
o) =1 + ZQJ : 1+ DY 0 <x <T.
T J=1 T 3=l

Although f(x) integrates to 1, f(x) may not be a bona-fide
density function. The method of expectation is used to
estimate the aj 's.

We first observe that

T
ay = 2 S f(x) cos (jnx) ax
J = , BALRS

o]
=2 E cos('nx -
T T

and so an estimator for a; is

J
: S cos (3my
at = _2_1‘. COS jn" - . j=1,.oo'p
J T n i:‘ (T)

This estimate, /a\j , is unbiased for a . The Fourier coefficients

minimise the Mean Integrated Squared Error (MISR), defined by

A 2
MISE = E [J( f{xy - f£(x) )]dx,

[ o]
P
where f(x) = 1 + Zajcos(J'Wx).
T
Kronmal and Tarter (1968) suggested the following stopping
rule based on the MISE; which could be expressed in terms of

the variance of the estimate of aj :

30



' A
Add i i >
terms to the series until Var(aP*‘) _(ar*,).

iz

i-eo, _L LT am& + 2 ’ Z a -
T ( ntl ‘ ""'I

It was observed by Burnham, et al., (1980), that typically

alpf< aH‘, and they suggested computing their stopping rule
t

by setting Samﬁ= 0 . This leads to computing 3P sequentially

until the first estimate 3P+1: such that,

/|

2
2 | QFﬂ\ .

The stopping rule used by Burnham, et al., (1980) relies on

the fact that a << a

2Pra Prl * Although, this fact was noted by

Kronmal and Tarter (1968), they did not make any assumptions:

A . ~
about a,, . relative to ap,,, .

\
The Burnham et al. (1980) stopping rule value [2/(fﬁn*1))]b
does not depend on the data set. Even .if some part of the data
is changed, the value of the stopping rule is not affected. One

can find no theoretical justification for assuming aﬁw& to be

Z€r 0.

Simulation studies show that Smunis not always much less
than QRH and that in practice, very rarely are more than one or
at most two cosine terms included in the series. Consequently,

the Pourier series estimate has a tendency to retain the
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half-bell-shaped curve even wvhen it is inappropriate (e.g. the

piecewise linear detection curve with a = 20 as in Pig. 3).

We nov consider estimation with grouped data. Though the
cell probabilities, p , may invtheory be negative, however it
has been found in practice that they are always positive
{Burnham, et al., 1980, p.134).

Integrating the Founrier series model yields

P
Flx) = x + Y aj T sin(igg),

and since
» P
= tim-t; + Y a;

Then

Ap; = _@‘_[sin jrtin) - sin(j_ﬂ_t_i 3=1,e..,p-
Ja; Iw T i=1

Burnham, et al., (1980 p 70) argqued that the stopping rule for
ungrouped data is not applicable here, since the estimates of-gj
may vary slighty with the number of terms to be included in £ {x)
They used a likelihood ratio test in deciding the appropriate
model in conjunction with the usual goodness of fit test.

The likelihood ratio test of the following hypotheses;
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H : E@p, ) = 0
VSa» A
H E(aF+‘) # 0

is based on the difference between 1 p (d) and l ().

P
Where lp(a) = constant + :E.niln p; (@)
i=1

. ~ ~ 'X-z'
Given that -2 lP(a) - lF*Ja) ) ~ v

ve reject Hgy if this difference exceeds 3.84 and conclude that

~

ahlis a significant term in the series expansion of f (X).

3.4 A Generalised Parametric Case:

The Exponential Power Series Estimator.

The exponential power series estimator was proposed by
Pollock (1978). The detection function g{x) is given by
b
g(x) = exp (-(x/a) ).

with the p.d.f £(x) given by

£(x) = exp (~(x/a)") x>0 , a>0 , b>0 . (3.8.1)
a (1 + b
Therefore £(0) = (& M(1 + B')) . A {3.4.2)

Maximum likelihood estimates of a and b and hence f (0)

are found by maximising the log likelihood l(a,b).

n
1{a,b) = exp ( - E:(x;/a)L y/(@arl (1 + H')fl (3.4.3)
=\
with
a1 = b 'i(}.)b_ 'n =0, (3. 4.4)
da & 3 a
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and N

n b | !
dl = - x;j! In(x;) - n 1 + = 0. {3.4.5)
> (E) ) - eyO B

db y

The maximum likelihood estimator of a and b are the
solutions to equations (3.4.4) and (3.4.5).

The function V’ is the digamma function.

Assuming now that sufficient prior information is available
on the form of the detection function, g(x), to make
b known, then from (3.4.4),

U

=[O i(x;)/n)] (3. 4.6)
1=1 .

We now consider two special cases:

Case 1: b= 1
f(x)= exp (-(x/a))saf(1 + 1)
= exp (-(x/a))/a
wvhich is the negative exponential distribution. Maximum
likelihood estimate of a, using (3.4.6), is
3 = 5tx;/n =X |
i=1

and

@ ro o+ Y
(1/5)M(2) = 1/x .

’~
£(0)

This estimator was first proposed by Leopold et al.
{1951) , based on the negative exponential distribution. .

It differs from Gates® (1968) estimator by a factor of
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{(n-1)/n which is Gates' correction for bias.
The density estimate for ungrouped, untruncated data

~ ~ -
is D = nf (0) /2L = (n-1)/21LX.

Case 2: b=2

f (x)

exp (-(X/a)l)/a M1 +1/2) (3.4.7)

2
2 exp (- (x/a)”)/afw
which is the half-normal distribuotion. The maximum

likelihood estimate of a is given by
n 2
3 = [25:1? /n],
i=

and
i

A o 2 /Z
F(0) = 1 o= (2" (3. 4. 8)
r3s/2)(2 Zx?‘/n)/l WZX /n

121
This estimator was proposed by Hemlngway {1971) and

differs from Quinn's {nnpublished thesis) by a factor

of (n-0.8)/n, which is Quinn's correction for bias.

The density for ungrounped, untruncated data

'y
nix/q'

is; D = nf(0) /2L = (n o 8) {

The exponential power series estimator is plagued with
numerical problems. It is often necessary to restrict the value
of the shape parameter to be greater than or equal to one; i.e.p
b > 1, since otherwise the estimate of the density function will
have a spike at x = 0. As was noted in Section 1.1 , estimation

of both parameters is met with a considerable loss in

35



efficiency.

Theoretically, this estimator can take a wide variety of
plausible shapes for the detection functions, but estimation
problems have limited its usage; It was one of the estimators
that was originally planned to be used in the simulatién study
(Chapter 4) but was abandoned because of severe numerical
convergence problems. For a more detailed treatment, see Pollock

(1978) and Burnham, et al., (1980).
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CHAPTER &4

The Estimation Problen

Seber (1973) and Burnham and Anderson (1976) supplied the
general framework for estimation based on perpendicular |
distances. This framework is reviewed in Chapter 2.

Suppose that we require an estimator of density, D, of obiects
based on the set xl, XgreeeeesXpn of observed perpendicular
distances. Under the assumptions in Secfion {2.2.1) these
distances are identically and independently distributed with
density, f(x) = g(x)//AT » over 0< x< T where g(x) is the
conditional probability of an object been seen, given that it is
at a perpendicular distance x from the transect and

}H—= ‘Lg(x)dx. The intensity h(0) can be estimated by n§}0), and

A A ~ ~
the estimate of Density,D ,is given by D = nf(0) /2L = h {0) /2L.

The fundamental problem is thus reduced to estimating h(0),
given a sample of independent observations. In order to compare
estimators 2f h{x) in line transect sampling methods, and also
to classify these estimators as acceptable in estimating
wildlife densities, the following criteria must be taken into

consideration:
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1. Measure of Robustness, Resistance and Stability: Robustness
in nonparametric estimation is hard to define. In line

transect theory, Burnham, et al., (1980) introduced the

concept of model Robust estimators, which refers to
estimators that are sufficiently flexible in fitting
different types of detection functions. They associated

robustness of an estimator to small standard error ahd small

bias of the estimator. If the ratio of the bias to the
standard error of that estimator is small, say 0.5, they
conclunded that the estimator is robust. It is true that
small size of estimation errors is an important criterion.
Hovever, one should look at the resistance and stability of
fhese estimatién errors,

a. Resistance: A statistic is said to be resistant if any

changes in a small part of the data, no matter how
substantial, fails to produce any substantial changes in
the statistic (Mosteller and Tukey, 1977) ..

b. Stability: An estimator said to be stable if changing
the underlying detection function does not substantially
change the behaviour of the estimation errors.

We shall also consider resistance and stability of the

estimation errors of different estimators, as being a
necessary measure for robustness as used in the above
context.

2. Estimator Efficiency: We would like our estimators to be

statistically efficient; i.e., in the class of all
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acceptable estimators we want those with very small sampling
mean squared error.

3. Shape Criterion: We shall further constrain our possible

choice of estimators by insisting that they have a shoulder
near x = 0. This restriction is consistent with the notion
that in some small neighbourhood near the transect, g (X)

will indeed be equal to 1.

Resistance and Stability of estimation errors point to reliable

estimation technigques. One would normally be skeptical of a
technique, if the estimation errors were to depend critically on
a small portion of-the data set, or were the errors tended to be
large for certain, plausible detection curves. Furthermore,
estimation errors are serious only if they form a substantiai
percentage of the actual gunantity being estimated. For thi§

reason, the average errors are given as percentages of h({0).

4.1 Simulation Study Design

In the simulation study that was done, perpendicular
distances were generated from the following detection

functions:
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{i) PIECEWISE-LINEAR with shape parameter a

0 x <0
f(x) = b 0 <x £ a
(T-x)b/h a<x<T71T

0 T x> T.

Where b = 2/(a + T) and T > 0.

{ii) ONE-TERHM cos;NE
f(x) = /T {1 + cos(ng/T) ] 0<
(iii) TWO-TERM COSINE
f(x) = 1T [ 1 + cos(wx/T) + 0.25cos‘nm/T)] 0<
(iv) HALF-NORMAL with parameter o
£(x) = 2/077 & exp(-x*/20") | 0<

In the simulations, T was set equal to 100.

x<T -7

x < o0.

The different

detection functions were simulated from the piecewise linear

with a =20 , 50 , and 80. and, T for the half-normal detection
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function was set at o0, 26, and 30-. The data were grouped into
10 classes of equal intervals. 250 replicates were generated
from sample sizes 60 and 100 for each of the 8 detection
functions. A list of the program for estimating f (0) using the
shape-restricted estimator is gifen in Appendix A.

An average f{0) was calculated from the estimate of each sample.

The following statistical quantities were used in assessing
efficiency, stability of estimation errors, robustness and-
A
robustness of efficiency. hj(0) = estimate from replicate # i,

and R 1s the number of replicates.

1. The Percent Relative Bias (PRB), given by

PRB

1

( h{0) - h({0) ) x 100%,
h (0)

where (0)

1 i h;(0) ,
B i:‘
and R is the number of replicate lines.

2. The estimate of the sampling variances of h(0), Var({ h(0))

& — 2
var (R0 = —L— Y (B0 - E(O )-
R - i=l

~
3. The Mean Squared Error {(MSE), of h{0), 1is given by
AN -\ ~ by 2
MSE(h(0)) = var{ h{0)) - (h{0) - Hh(0)).
. . N
4, The estimate of percent relative Standard Error of h (0)
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given by

\N
SE(_h(0)) x 100%.
h {0)

5. The estimate of the percent relative Root Mean Square Error

of ﬁ{O), given by

RESE (h(0)) x 100%.
B (0)

Where RMSE(.) = (MSE(.))*

6. The Relative Efficiency (RE), of the Shape-Restricted

estimator, given by

~ -~ o
RE (b, (0)) = HMSE (h. (0)).
f MSE (Rgpe (0))
Hhere'ﬁ (0) is some other estimator andﬁ;“JO) is the

shape-restricted estimate of h({0).

Program TRANSECT was used in calculating estimates of h{0)
for the Fourier (cosine) series and half-normal estimators.
These estimates of h{0) were then used in calculating the above

gquantities.
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4.2 Detailed Findings

On examining the bias (Table 2) of different estimators,
one immediately notices the magnitude of the bias of the
half-normal estimatcr. This manifests itself when ve simulate
fromn detection functions that have fairly troad shouldérs. An
examnple of this is the piecewise linear with a = 50 for which
the kias is 20%. Both the Fourier series and shape-restric ted
estimators have moderate sizes for their corresponding biases;
having a range of -0.2% to 7.3% for sanmple size 100. As was
previously observed in Chapter 2, the half-normal and Fourier
{(cosine) series estimators had only negligible bias when thé
underlying detection functions are the same form as the

estimator used.

It is interesting to note that, the Fourier {cosine) séries
estimator does poorly when estimating h(0) for the two-ternm
cosine detection function, as seen from the estimate of its
relative standard error and relative robt mean sguared error.
This anomaly could te explained as follows: More terms of the
cosine series are needed to fit the two-term cosine curve with a
corresponding loss in rrecision of the estimates of the
coefficients. This loss in precision produces the loss in

efficiency.

43



The problem is even more pronounced with the half-normal
estimator, since the tvo-term cosine curve is not very similar
in shape to the half-normal (Figs. 3(a) and 3(b)). The two-term
cosine curve has a significant probability of large
observations. Both the Fourier séries and half-normal estimators
attempt to fit these outliers, thereby distorting the éstimate
of the remaining portion of the density curve.

The shape-restricted estimator does not suffer from this

deficiency.

Inproved performance of the shape-restricted estimator over
the Fourier series and half-normal estimators is seen by
observing Tables 1-and 3. The relative standard error and
relative root mean sguargd error are stable with respect to
changes in the detection function. This stability is not
displayed by any of the other estimators considered in the

simulation.

One can also conclude form Tables i and 3 that the
shape-restricted estimator is resistant to changes in the tail
observations: Since changes in this part of the data do not
substantially change the statistic. For example, the half-normal
curve with T = 20 and 30" ; there is hardly any change in the |
relative standard error (14.7% and 14.0%) and relative root mean
squared error (14.7% and 14.2%) even though the tail has changed

substantially (it had been eliminated when T = 20-). This
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resistance is not displayed by the other estimators considered

in the simulation.

On examining statistical efficiency (Table 4), one finds
not one estimator that has higher efficiency, uniformly. The
shape-restricted estimator, though not surpassing the qurier
series and half-normal estimators in efficiency, does show
reasonably good efficiency. Apart from cases where the estimator
naturally assumes the same form as the detection function used,

the shape-restricted estimator has high efficiencies.

Dicussion and Recommendations.

The shape-restricted estinmator provides a monotonically
nonincreasing concave step function as a representation of the\
underlying detection function. It meets the shape criterion that
in some small neighbourhood near the transect, g(x), will indeed

be equal to 1.

With regards to resistance and stability of the estimation
errors, it is encouraging to see a marked improvemént over
existing estimators. However, it would be statistically more
efficient to improve upon the»siie of these errors. It is
envisaged that a method for deterrining exactly where the
detection curve changes concavity would help to improve the

estimation errors.
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The assumptions that the function be monotonically
nonincreasing and concave up to at least the 80th percentile
have additional advantages: Monotonic nonincreasing estimators
are 'robust' to movement of the population away from the line in
response to the observer (Burnham, et al., 1980). Since nmovement
of the population is often away from the observer's line of
travel, the number of sightings in4£he neighbourhood of x = 0
will decrease the apparent underlying detection curve near
X = 0. Assuming the detection curve is continuous at x = 0, then
g(x) < 1 and g'(x) > 0 for x close to zero. Any estimator that
is not constrained to be monotone nonincreasing will estimqte
this bogus detectiqn carve more closely. The monotonicity and
concavity restrictions ought to reduce the magnitude of such

estimation errors.

Though the shape restricted estimator is not universally
superior to existing estimators, it does have qualities
desirable of estimators in line transect work. It is truly
nonparametric in that it does not perform markedly better on a

limited class of detection functions.

One potential criticism is that its implementation requires
the possibly subjective choice of the point of possible
inflection. (In the simnlation, it wvas set at 90'th percentile.)
However, additional simnlations have shown that the location of

the point where the underlying detection function changes from
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concave to possibly convex, is not extremely crucial as long as

it is betvween the 80th and 95th percentiles.

For the estimator to be fully operational, procedures for
computing the variance of the estimator and for producing
c?nfidence intervals are required. Furthermore, as was noted
earlier, techniques for improving upon the estimation errors and
handling of ungrouped data are desirable. Work is still being
done in these two areas. Research for reducing bias and
producing confidence intervals could be directed towards the

Bootstrap technique (Efron, 1978, 1983). Further research along

these lines looks promising.

}
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Table 1

Estimated percent relative root mean squared error of
R(0), BNSE[h{0) )/h (0) x100%, for three different
estimators using the eight detection curves in FPig. 2.

For the half-normal curve, T = the truncation point, and
o = the standard deviation; For tke piecewise linear form,

a the position of the kink.
Estimators
n=60 n=100

Detection Fourier Half Shape Fourier Half Shape
function Series Normal restricted Series Normal restricted
Half-Normal 18. 1 12.2 12.0 15.7 10.0 9.6

T =&
Half-Normal 13.8 11.7 14.9 10. 2 8.4 11.8

T =20 ’
Ha 1f-Normal 14.0 . 11.0 14,2 1.7 7.6 11. 4

T = 30
One-tern 9.5 14,2 14.2 7.1 11.7 11. 9
Cosine ‘
Two~-tern 16.8 13.8 15.5 13.7 11.5 11.2
Cosine ‘
Piecevise 14.8 15.7 14.3 12.2 13.0 10.7
Linear a=20
Piecevise 26.8 23.9 13.6 ' 22.0 22.1 11. 1
Linear a=50
Piecevwi se 25.0 19.7 13.5 21.0 16. 4 10. 3

linear a=80
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Table 2

Estimated percent relative bias of g}O) for three different
estimators using the eight detection curves in Fig. 2.

Por the half-normal curve, T = the truncation point, and
0 = the standard deviation; For the piecewise linear forn,
a8 = the position of the kink.

- — - e M e st e " — — S — . v — - — . " — > —— —— — —— o ——— " - — -

Estimators
n=560 n=100
Detecticn Fourier Half Shape Fourier Half Shape
function Series Normal restricted Series ©Normal restricted
Half Normal -D.5 -0.1 -0.2 -0.2 -0.0 -0.5
T = o ‘
Half Formal 0.3 0.7 -2.5 1.4 0.2 -2.1
T=20
Half Normal ~-6.8 2.2 -2.2 5.5 1.3 -4.0
T =30
One-tern 1.0 8.9  -1.9 1.0 8.1 -1.5
Cosine
Two-tern ~-7.2 -7.7 -3.8 -5.1 -8.9 -3.1
Cosine
Piecevise €.9 9.9 2.0 7.3 9.8 2.5
Lipear, a=20
Piecewise 5.3 19.9 6.6 2.3 20.0 6.0
Linear, a=50
Piecewise 3.1 13.6 8.1 1.7 12.7 6.3

Linear, a=80
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Table 3

Estimated percent relative standard error of

h(O), SE[h(O)]/h(O)x100% for three different

estimators using the eight detection curves in Fig. 2.

For the half-normal curve, T = the truncaticn point, and
¢ = the standard deviation; For the piecevise 11near form,

a the position of the kink.
Estimators
n=60 n=100

Detectiocn Fourier Half Shape Fourier Half Shape
function Series Ncrmal restricted Series ¥XNormal restricted
Half-Normal 18.0 12.2 12.0 15.7 10.0 9.6

T =0
Hal f-Normal 13.8 11.7 14.7 10.1 B. 11.6

1 =20 .
Half-Normal 12.2 10.8 14.0 10.3 7.5 10.7

T = 36
Cne~-tern 9.5 111 4.1 7.0 8.4 11.8
Cosine
Two-term 15. 2 11.5 15.0 12.7 7. 4 10.8
Cosine '
Piecewise 13.1 12.1 14.2 9.8 B. 5 10.5
Linear a=20
Piecewise 26.3 13.2 11.9 21.8 9.4 9.3
Linear a=50 :
Piecewi se 24.8 14, 2 10.8 20.9  10.4 8.1

Linear a=80
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Table 4

Estimated percent relative efficiencies for the
Shape-restricted estimator, relative to the half-normal
and Fourier series estimators.

(MSELR. (0) 1/MSE[ hsge(0) J) x100%.

For the half-normal curve, T = the truncation point, and
o = the standard deviation; For the piecewise linear form,
a = the position of the kink.

- —— - —— - ———————— - —— A ————— ————— ——— — ————————— — -

Estimators
n=60 n=100
Detection Fourier Half Fourier Half
fupnction Series Normal Series Normal
Half~-Normal 2.3 1.0 2.7 1.0
T = o
Ha 1f-¥ormal 0.9 D.6 0.7 D.6
T = 20 ’
Half-Normal 1.0 0.6 1.1 0.4
T = 30
One-tern 0. 4 1.0 0.4 1.0
Cosine -
Two-tern 1.2 0.8 : 1.5 1.1
Cosine
Piecewise 1.1 1.2 1.3 1.5
Linear a=20
Piecevi se | 3.9 3.1 _ 3.9 4.0
Linear a=50
Piecevise 3.5 2.1 4,2 2.5

Linear a=80
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Proper rigures to Lollow
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AN\
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Fig. 2

Three parametric models of detection curves:

(a) Half Normal, g(x) = exp(—x2/202) (

),

{b) Generalized Exponential, g(x) = exp(—(x/75)8)
( ————— )r and
(c) Reversed Logistic, g(x) = (llexp(-x/20))/(1+10exp(-x/20))

(emses) |

The dashed vertical lines give the 90th perventiles
for each of the corresponding probability density

curves.
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Proper Figures to Follow

Fig. 3(a)

The six detection curves used in the simulation study.

Half Normal curves, g(x) = exp(—x2/2¢2)’ truncated

at o

), 26(----- ), and 3¢ (-,
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Proper Figures to Follow

1
. One-term Cosine
0.5}
Two-term Cosine
0 1 1 1 1
0 20 40 60 80 100

Fig. 3(b)
Cosine curves with g(x) = (l+cos{nx/100))/2 ( ),
and g(x) = (l+cos( x/100)+cos(2rmx/100))/2.25(-~-~-- ).
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Proper Figures to Follow
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Fig.

)

Piecewise linear forms with kinks at 20(

) ’ and 80 (---.-..-..) .
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APPENDIX A

In order to run this program, and do the simulation study
as vwas presented in the paper, the following program packages
are needed:

1. Program TRANSECT and
2. Program LLSQ
Program TRANSECT could be obtained from the following address:
SHARE Program Library Agency
P.0. Box 12076
Research Triangle Park
NC 27709 Usa
in ANSI FOTRAN 1V at an approximate cost of $40.00

This progran Qas used in generating estimates of f (0) using
the Fourier series and Hglf-normal estimators. One has to
surpress most of the output from this program, since, only thé
rav estimates of f(0) are needed. These estimates are stored in
a temporary file for later use.

Subroutine CLSA would generate both control and data file
for running TRANSECT, if the CALL PRINf is included in the main
program. (see main program list). |
The LLSQ Program can be obtained from the following address :

INSL

Customer Relation

Sixth Floor ,NBC. Building
7500 Bellaire Boulevard

Houston Texas 77036-5085 TUSA.
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Subroutine CLSA calls Subroutine LDP which is in Program LLSQ.
It vwrites output on two files namely, [8] and [9]. [8] contains
the control and data file for TRANSECT and [ 9] contains the raw
estimates of f(0) from the Shape-Restricted estimator. To get
estimates of f [(0) for the Fouriér series and Half-Kormal
estimators, Program TRANSECT is loaded specifying [ 8] és the
file data is to be read from. Output from TRANSECT are written
on {6].

In the simulation study, grouped, perpendicular distances
were generated from the piecewise linear, half-normal, one-ternm

cosine and two—-term cosine detection functions.
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REAL *8 DSEED
REAL #4 CC(300),F0
INTEGER MS (300)
DSEED=123457.0D0
DO 76 ILOOP=1,1
TP=0.90
NRR=1
MSTAT= 1
A1=20
NR=100
TSTAR=100.
CALL PRINT (TSTAR,NRE, NR)
DO 1 HTRY=1,NER
N=10
CALL CLSA{N,A1,NR,DSEED,HSTAT,HMTRY,TSTAR,CC,NS,TP,F0)
1  CONTINUE
WRITE({9, 19) {CC(I),I=1,NRR)
19 FORMAT (1X,10E15.7)
WRITE (8,57)
57 FORMAT (' END. ')
76 CONTINUE
STOP
END

SUBROUTINE CLSA {N,A1,NR,DSEED,HSTAT,HTRY,TSTAR,CC,HS,
-TP,F0)

SUBROUTINES CALLED—- FRQCY ,PISWIS, NCOS, CAUS

GGErpM, LDP
CALCULATES ESTIMATES OF F (D) FOR THE SHAPE~-RESTRICTED
ESTIMATOR AND SETUP DATA FILE FOR USE IN PROGRAM
TRANSECT.
N :NUMBER OF CLASSES USED IN GROUPIKG DATA (INPUT)
A1 :DENSITY FUNCTION PARAMETER DEPENDING ON MSTAT (INPUT)

MSTAT = 1 :PICECKISE LINEAR A1 IS THE KINK POSITION
MSTAT = 2 :ONE-TERM COSINE A1 IS PARAMETER T=TSTAR
MSTAT = 3 :THO-TERM COSINE A1 IS PARAMETER T=STAR

MSTAT = 4 :HALF-NORMAL - A1 IS PARAMETER (SIGHNA)

NR :SAHMPLE SIZE OF EACH REPLICATE (INPUT)

MSTAT :AS DEFINED ABOVE (INPUT)

NRR :NUMBER OF REPLICATES LINES {IRPUT)

TSTAR :TRUNCATION POINT OF DATA {IWPUT)

CC :VECTOR CONTAINING THE SHAPE-RESTRICTED ESTIMATES
FOR EACH OF THE NRR FRPLICATES (OUTPUT)

MS =:VECTOR CONTAINING THE SAMPLE SIZES {(OUTPUT)

FO :0UTPUT VALUE OF TRUE F (O) OF DENSITY FUNCTION USED

TP :PERCENTILE AT WHICH CONCAVITY IS ASSUMED UP TO .

DIMENSION G2{20,20), H2(20), X (20), Z{20), W({(20)
DIMENSION HLDP (500),CI(20)

IETEGER INDEX (20)

REAL *4 Y {300),R(300),CC(1),H41({20),D(20)
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15

87

140

19

107
89

REAL *8 DSEED
INTEGER *u4 FQ(20), %S (1)
DATA IPOT,PI/0,3.141592/

IF (MSTAT .EQ. 2) GOTO 140
IF(MSTAT .EQ. 3) GOTO 150
IF (MSTAT .EQ. 4) GOTO 160

THIS PORTION IS GENERATES PIECEWISE DEVIATES AND GROUPS
THEN INTO N CLASSES

H=TSTAR - A1l

CI{1)=0.0

UMP={A1+H) /FPLOAT (N)

Do 15 1I=1,N

CI[(I+1)=CI{I) + UMP

CALL PISWIS{NR,A1,H,R,Y, DSEED)
CALL FRQCY (NR,IPOT,CI,N,Y,FQ)
NP1=R + 1

WRITE (8,87)MTRY, (CI(I),I=2,H8P1)
KRITE(8,89) (FQ{I),I=1,N)

FORMAT (*SIMULATED PIECEWISE', 1X,I3,/20F¢€.1)

B=2/(H + (2%2a1))

FO=(TSTAR - A1)* (A1 — TSTAR + (2%H))
FO=B*F0/ (2*H)

FO=A1%B + FO

FO=B/F0

THIS IS THE END OF PIECEWISE GENEEATIOR
GoTO 170
THIS PORTION GENERATES GROUPED ONE-TERM COSINE DEVIATES

A2=PI/A1

CALL NCOS {NR,N,A2,R,FQ,D,DSEED)
CI(1)=0.

bo 19 1I=1,¥%

CI(I+1)=D(1)

UMP=D[1)

NP1=R + 1
WRITE([8,107) MTRY, {CI (T) ,I=2,NP1)
WRITE(8,89) (FQ(I),I=1,N)
FORMAT({*SINULATED ONE-TERHM COSINE',1X,1I3,/20F7.2)
FORMAT {2014)

FO=A2% [1+COS (A2%0.0)) /3. 141592
FO=F0/CDF (TSTAR, A2)

END OF THE ONE-TEBRM COSINE GENERATION

GOTO 170
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150

59

117
88

160

115

16
26

111
112

THIS PORTION GENERATES GROUPED TWO-TERM COSINE

AP=PI/A1

CALL CAUS (KR, N,AP,R,FQ, D, DSEED)
CI{1)=0.

DO 59 1I=1,N

CI(I+1)=D({I)

UMP=D(1)

NP1=N + 1

WRITE(8, 117) MTRY, (CI{I) ,I=2,H8P1)
WRITE({8,88) (FQg(1),I=1,N)
FORMAT(*SIMULATED TWO-TERM COSINE ',1X,I1I3,/20F7.2)
FORMAT (2014)

FO=(AP + AP*COS (AP*0.) + 0.25%3AP*COS(2%AP%0.)) /3. 141592
FO=FO0/CCF {TSTAR,AP)

END OF THE TWO-TEZRM COSINE GENERATION
s0T0 170

THIS PORTION GENERATES HALF-NORMAL DEVIATES AND
GROUPS THEN INTO N CLASSES

SIGHMA=21
UMP=TSTAR/ {FLOAT {N) *SIGHA)

CI(1)=0.0

DO 115 I=1,N

CI(I+1)=CI(I) + UMP*SIGMA

GENERATE N(0,1) AND TRANSFORM TO HN(0,SIGHMA)

NTC=IFIX ( (TSTAR/SIGHA) +0.5)

NRA=2%NR
CALL GGNPH (DSEED,NRA,R)
J=0

DO 16 I=1,NRA

R (I) =ABS {SIGNA*R (I))

IF{R{I) .GT. TSTAR) GOTO 16

J=J + 1

Y (J) =R {I)

IF(J .EQ. NR ) GOTO 26
CONTINUE

CALL FBQCY (NR,IPOT,CI,N,Y,FQ)
NP1=N + 1 '

WRITE (8, 111) HIRY, (CI(I) ,I=2,NP1)
WRITE (8, 112) {FO(I),I=1,N)

FORMAT (*SIMULATED HALF-NOMLY,1X,I2,/20F6.1)
FORMAT (201I4)

U MP=UMP*SIGHMA

FO=SQRT (2#%3. 141529) *SIGMA
XE=TSTAR/SIGMA
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170

53
135

55
56
98
24
99

13

F=0.5%ERFC (- 0.7071068*XE)
FO=1/( (F-0.5) *F0)

END OF HALF-NORMAL GENERATION
PROCEED TO FIND CLASS AT WHICH 90TH PERCENTILE IS.

NSUM=0

DO 53 I=1,N
NSUE=FD {I) +NSUM

NTRUN=I
TMP=FLOAT{NSUM) /FLOAT {NR)
IF (TMP .GE. TP ) GOTO 135
CONTINUE

IF(NTRUN .EQ. N) GOTO 99
NTP1=NTRUN + 1

DO 55 I=1,N
ICI=IFIX ((CI (NTRUN+1)*10) +0.5)
ISTAR=IFIX {TSTAR*10)

NT=I

IF{ICI .EQ. ISTAR) GOTO 56
CONTINUE

N=NT

DO 24 I=NTP1,N

NSUN=8SUM + FQ{I)

MS(MTRY) =NSUM

SET PARAMETERS FOR SUBROUTINE LDP
NRE=N -1
HDGH=20
K=NTRUN

G2 DEFINES THE CONSTRAINT MATRIX IN Z-COORDINATES SYSTEHM

LI~ -]

) GOTO 13

ml
1o o - Q

IhBohoe

Z.OI
o

G2(I,I)=1.0

G2({I,I+1)==1.0

G2(N,N)=1.0

H2 DEFINES CONSTRAINT RT SIDE FOR 2Z-COGRDINATES SYSTEM

ETH1=K -1
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67

H2 {1) =PLOAT (FQ(2) - FQ(1))

IF(NTM1 .EQ. 0) GOTO 23

DO 20 I=2,NTHN1 ‘

H2 (I) =FLOAT (FQ{I-1) + FQ{I+1) - 2*FQ(I))
DO 22 I=K,NN

H2 (I)=FLOAT (FQ({I+1) - FQ(I))

H2(N) =FLOAT (-FQ {N))

CALL LDP {G2,MDGH,N,N,H2,Z,ZNORH,WLDP,INDEX,H4ODE)

TRANSFORM BACK FROM Z-COORDINATES TO X-COORDINATES.

DD 60 J=1,N
X(J)=Z (J)+FLOAT{FQ(J))

COMPUTE THE RESIDUALS.

RES=ZNORM
FORMAT {1X,I8,F10.5)

COHPUTE RELATIVE ESTIMATES OF X

X (1) =X {1) / (ESUK*UMP)

CC(MTRY) =X{1)

RETURN :

END

SUBROUTINE PISWIS (NR,A1,H,R, P¥,DSEED)

GENERATES PIECEWISE LINEAR RANDOM DEVIATES
SUBROUTINE CALLED- GGUF (FROM IMSL)

NR :SAMPLE SIZE {INPUT)

A1 :POSITION OF THE KINK {(INPUT)

H =:LENGTH WHICH PIECEWISE IS TRIANGLAR (INPUT)
DSEED :SEED YOR GENERATING UNIFORMS {INPUT)

PW :0UTPUT VECTOR CONTAINING PIECEWISE DEVIATES
R :OUTPUT VECTOR CONTAINING UNIFORM DEVIATES

REAL *4 R (1),P¥ (1)

REAL *8 DSEED

IOPT=1

B=1.0/{A1 + H/2.0)
AREA=A1%B

CALL SGUW (DSEED,NR, IOPT,R)
Do 1 I=1,NR o

IF (R{I) .LE. AREA) GOTO 2

CALCULATE PW(I)=B1+H(1-SQRT ((1-R{I)/(1-AREA)))

PWH=SQRT ({1 - R(I))/ {1 - AREA))
PWH=1 ~ PWH

PW(I)=A1 + H*PWH

GOTO 1

PH {I) =A1% (R (I) /AREA)
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CONTINUE
RETURN
END

SUBROUTINE NCOS {NR,N,22,R,FQ,D,DSEED)

GENERATES GROUPED COSINE RANDOM DEVIATES
SUBROUTINE CALLED- CCU¥W ({FROM INSL)

FONCTION USED-

NR :SANPLE
N =:=NUMBER
A2 :COSINE
R :0UTPUT
FQ :00TPOT
D :00TPUT

CCF

SIZE (INPUT)

OF CLASSES USED IN GROUPING DATA (*NPUT)
DENSITY PARAMETER (INPUT)

VECTOR CONTAINIG UNIFORM DEVIATES
VECTOR CONTAINING FREQUENCY COUNTS
VECTOR CONTAINING CLASS BOUNDARIES

DSEED :SEED FOR GENERATING UNIFORM DEVIATES (INPOUT)

REAL *4 R{1),D{1)

REAL *8 DSEED

INTEGER *4 FQ(1)

TOPT=1

AN=A2%FLOAT (N)

P=3.141592

E=P /AN

DO 2 J=1,N

XX=H*FLOAT{J)

D{J) = CDF(XX,A2)

FQ{J) =0

CALL GGUW{DSEED,NR,IOPT,R)
NN=N-1

DO 3 I=1,NR
RN=R(I)

DO 4 J=1,NN
IF (RN . GE.
FQ{J)=FQ (J)
GOTO 3
CONTINUE
FQ(H)=FQ(N) + 1

CONTINUE

DO 5 J=1,N

D (J) =H*FLOAT (J)

RETURN

END

FUNCTION CDF(XX,A2)

CDF=(A2*XX +SIN{A2%¥XX))/3.141592
RETURN

END

UBROUTINE FRQCY (NR,IPOT,CI,N,Y,FQ)

D{J)) GOTO 4
+ 1

ROUPS DATA INTO N CLASSES
:NUMBER IF CLASSES ([INPUT)

R :SAMPLE SIZE (INPUT)

I :VECTOR CONTAINING CLASS BOUNDARIES (INPUT)
:RANDON DEVIATES TO BE GROUPED (INPUT)
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FQ :O00UTPUT VECTOR CONTAINING FREQUENCY COUNTS

REAL *4 CI(1),Y (1)

INTEGER *4 FQ (1)

DO 1 I= 1,N

FQ(I)=0

NN2=N-1

DO 3 I=1,NR

RN=Y {I)

DO 4 J=1,KNN2

IF (RN .GE. CI(J+1) ) GOTO 4
FQ(J)=FQ(J) + 1

G0TO 3

CONTINUE

FQ(N)=FQ ({N) + 1

CONTINUE

RETUEN

ERD

SUBROUTINE CAUS[NR,N,AP,R,FQ, D, DSEED)

GENERATES GROUPED COSINE RANDOM DEVIATES
SUBROUTINE CALLED- CCUW (FRON IMSL)

FONCTION USED- CCF

NR :SAHMPLE SIZE [(IRPUT)

N :NUXBER OF CLASSES USED IN GROUPING DATA ({INPUT)
AP :COSINE DENSITY PARAMETER (INPUT)

R  :zJUTPUT VECTOR CONTAINIG UNIFORM DEVIATES

FQ :0UTPUT VECTOR CONTAINING FREQUEKCY COUNTS

D :00TPUT VECTOR CONTAINING CLASS BOUNDARIES
DSEED :SEED FOR GENERATING UNIFORM DEVIATES {(INPUT)

REAL *4 R(1),D{1)
REAL %8 DSEED

INTEGER *4 FQ (1)

I0PT=1

AN=AP*FLOAT (N)
P=3.141592

H=P/AN

- DO 2 J=1,N
XX=H*FLOAT (J)

D{J) = CCF{XX,AP)

FQ(J) =0

CALL GGUW{DSEED,NR,IOPT,R)
NHN=N-1

DO 3 1I=1,8R

RN=R {I)

DO 4 J=1,NN

IF(RN .GE. D(J)) GOTO 4
FQ(J)=FQ(J) + 1

GOT0 3

CORTINUE

FO({H) =FQ (N) + 1
CONTINUE
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DO 5 J=1,N
S  D{J)=H*FLOAT {J)
RETURN
END
FUNCTION CCF (XX, AP)
CCF=(AP*XX +SIN(AP*XX) +0.125%STIN (2%AP*XX)) /3.141592
RETUEN
END
SUBROUTINE PRINT (WSTAR, NRR, NR)

SETOP CONTROL FILE FOR DATA USED IN EOUNNING
PROGEAM TRANSECT.

CUTPUT APPEARS ON OUTPUT FILE 8

WSTAR zTRUNCATION POINT OF DATA (INPUT)

NRR : NUMBER OF REPLICATES {INPUT)

NR :SAMPLE SIZE (INPUT)

REAL *4 PL{300)
INTEGER *4 MS (300)
DO 1 I=1,NRR
MS (I)=NR

1 PL(I)=40.0
WRITE(8, 10)

10 FORHAT {**ANALYSIS OF EXAHPLE FROM SIMULATIGN*'/?'*DISTANCE
$MEASURED IN INCHES*',/,'+*LENGTH MEASURED IN INCHES*?',
$/,"*AREA IS IN SQUARED INCHES*')

¥RITE (8, 20) {PL(I),I=1,NRR)

20 FORMAT (13 {F5.1,1H,),1X, 14$)

WRITE(8,30) {iS(I),I=1,NRR) :

30 FORMAT(13(I6),1X,1HS$) ‘

WRITE (8, 40) WSTAR

40 FORMAT ('*PEST,GRPD,NPOL*',1X,F5.1,/%2.',/,"*FSER*1,

$/, V¥*HNOR*?)
RETURN
END
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