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Abstract

This is a study of the structure of finite groups from the standpoint
of certain classes of groups. Examples of such classes are formationms,
saturated formations and Schunck classes. Generalizations of Hall
subgroups are the dominating theme, and we begin with the theorems of Hall
and Carter about the existence and conjugacy of Hall and Carter subgroups

(respectively) in finite solvable groups.

A basic notion in recent work is that of covering subgroups of a
finite group, where the main result is that if F 1is a saturated formation
then every finite solvable group has F-covering subgroups and any two of

them are conjugate.

A more general notion than that of covering subgroups is that of
projectors; however, in the case of saturated formations the covering
subgroups and projectors of any finite solvable group coincide and form
a single conjugacy class. Moreover, the covering subgroups (projectors)
for the formation of finite nilpotent groups are the Carter subgroups.
In addition, pull-backs exist for the F-projectors associated with a
saturated formation F of finite solvable groups, and yields the

construction of certain formatioms.

A natural question is: which classes F give rise to F-projectors?
The answer is that for Schunck class, which are more general than
saturated formations, every solvable group has F-covering subgroups iff F

is a Schunck class. In this case F-covering subgroups are conjugate.

(iii)



This is now known to be true if "F-covering subgroups' is replaced by

"F_projectors', and we prove this result usin rojectors.
proj P J

In fact these theorems can be extended to finite m-solvable groups,
and if F 1is a m-saturated formation (or a m-Schunck class) then every
finite m-solvable group has F-covering subgroups (projectors) and any

two of them are conjugate.

The existence of projectors in any finite group is proved; however,
they may not be conjugate and may not coincide with the covering subgfoups,
which might not at all exist, in this casé: But if F is a Schunck class
then F-projectors and F-covering subgroups do coincide in groups in UF,

although the F-projectors need not be conjugate.
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NOTATION

g 1is an element of G.

elements of groups.

sets, groups.

classes of groups.

H 1is isomorphic with G.

H 1is a subgroup of G.

H is a pfoper subgroup of G.

H 1is a normal subgroyp of G.

the order of the group G.

Index of the subgroﬁp H in the group G.
p divides gq.

the identity subgroup.

the identity element of a group.

the group of automorphisms of G.

{x : x €A and X ¢ B}.

{p : P is a prime and p \ |G|}.

g—lhg where g,h € G and G is a group.
x—ly-lxy.

<[x,y] : x € H and y € K>.

{g € G : h® = h for all h € G} - the centre of G.
{g €G : h® = h for all. h € H} - the centralizer of
H in G.

{g €G: h® ¢ H for all 'h € H} - the normalizer of

H in G.
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p-group a group with every element having order a power of the
prime p.

T -group a group with every‘element having order a power of p,
where p € m, and 7® 1is a fixed set of primes.

n'-group a group with every element having order a power of p,

where p 1is a prime not in w, w is a fixed set of

primes.

On(G) the largest normal mw-subgroup of G.

H x K direct product of H and K.

Maximal subgroup : proper subgroup, nof contained in any greater proper
subgroup.

Minimal normal subgroup of G : normal subgroup M # <1> of G which does

not contain normal subgroups of G except <1> and M.
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Chapter 1

1.1 PRELIMINARIES:

All groups mentioned are assumed to be finite.

The notation used

is standard, but we have provided a list of symbols and their meanings.

The rest of this section is a list of the basic result
frequently. When proofs are not provided, they will b

textbook in group theory, e.g., Macdonald [4], Suzuki

1.1.1 LEMMA: If A and B are subsets of G, then
B .
|Al181/[a 0 3] -

1.1.2 LEMMA:
Let H,K be subgroups of a group G such that

then: (a) |G:H N K|

|G:H||G:K].

(b) G = HK.

Proof:

m, |G:K|] =n and |HN

n

Set |G| =g, |G:H|

|H| = ah, |K| = ak for some integers h,k. Hence g

implies that hm = kn. Since (m,n) =1, h =nr, k =
But then also g = amnr. On the other hand, g = |G|

|H||K|/|H N K| = (ah) (ak)/a = amnr?. So amnr = amnr’

T HK.

1. Hence |HK| = amn = |G|. Therefore G

|G: HN K| = amn/a

mn = |G:H||G:K]. o

s we will need most
e found in any basic

[7] or Robinson [5].

|AB| = |BA| =

(|G:H|,|G:k|) = 1,

K| = a. Then
= ahm = akn which

mr for some r.

> |HK]| =

which implies that

Furthermore,



DEFINITION: Two subgroups H and K of a group G are said to permute
if HK = KH. This is in fact precisely the condition for HK to be a

subgroup.

1.1.3 LEMMA:
If H and K are subgroups of a group G, then HK 1is a subgroup

iff H and K permute. In this event HK = <H,K> = KH.

Proof:

Suppose that HK = G. Then H <HK and K = HK, so KH ¢ HK.
Taking inverses of each side we get HK ¢ KH, whence HK = KH. Moreover,
<H,K> ¢ HK, since HK 1is a subgroup of G, while HK < <H,K> is always

true; thus <H,K> = HK.
Conversely let HK = KH. If hi ¢ H and ki € K (i=1,2), then
-1 _ -1, -1 -1, -1 _
hlkl(hzkz) = hl(klk2 )h2 . Now (klk2 )h2 = h3k3 where h3 € H and

3
of G. o

-1 .
k, € K. Hence hlkl(h2k2) = (hth)k3 € HK and so HK 1is a subgroup

1.1.4 LEMMA (Dedekind's Modular law):
Let H, K, L be subgroups of a group and assume K < L. Then

HKN L= (HN L)K.

Proof:

(HN L)K < HK and (H N L)X < LK

L; hence (HN L)K =HKN L.

Conversely let x e HKNN L and write x hk where h € H, k € K. Then

.h = xk-1 € LK=1L, sothat h € HN L. Hence x € (HN L)X. o



1.1.5 DEFINITIONS: A chain of subgroups of a group

<l>=GOEG1$..._<.Gn=G

will be called a subnormal series if Gi—l S_Gi, i=1,...,n, and a

normal series if G, <G i =20,.,...,n. If each inclusion is proper and
1 >

the chain is maximal (i.e., no more terms may be inserted without causing

some term to be repeated) then the series is called a composition series

or a chief series. The corresponding quotient groups Gi/Gi—l are called

composition and chief factors.

If H is a subgroup of G and H is a member of some subnormal

series we say H 1is a subnormal subgroup of G.

1.1.6 DEFINITION: Let H =< G. Then H 1is a characteristic subgroup of

G if a(H)'= H for all a € Aut(G). We write H char G. We have the

following results:

1.1.7 LEMMA:
(a) Let H be a subgroup of a group G. If a(H) €< H for all

@ € Aut(G) then H char G.

(b) <1> char G, G char G, Z(G) char G and G' = [G,G] char G.

Also H char G implies that CG(H) char G and NG(H) char G.

(¢) If a subgroup H ofva finite group G 1is the unique subgroup

of its order, then H is characteristic.

(d) If H char K char G, then H char G.



(e If K=2G and H char K then H =G.

(f) If H=G and (|H|,|G:H|]) = 1 then H char G.

Proof:
(a) By assumption, a(H) € H for all a € Aut (G). Hence
a_l(H) C H, and this implies H € a(H). So we have H = a(H) for all

a € Aut(G). Hence H char G.

(b) It is obvious that a(G) ¢ G and a(<1>) =<1> so <1> and
G are characteristic subgroups of G. Choose an element g of CG(H).
For any a € Aut(G) and x € H, we have ga-l(x) = a—l(x)g. Applying the
automorphism a to both sides, we gjt a(g)x = xa(g). Since this holds
for any x € H, we conclude that a(g) € CG(H). Hence a(CG(H)) S_CG(H)
for all a € Aut(G); by (a), CG(H) char G. Similar argument shows that

NG(H) char G.

(¢) Since |a(M)| = |H|, (c) follows easily from (a).

o

(d) Let a € Aut(G). Since K char G, we have a(K) = K. Thus the

restriction B =a, of a on K is an automorphism of K. By assumption

k
H char K; so, we have B(H) = H. The function § is the restriction of
a, so PB(H) = a(H) = H. The last equality holds for all a € Aut(G); so,

H char G..

(e) The preceding proof (d) is valid for a = ig’ the inner
automorphism of G, and shows that H 1is invariant by all inner

automorphisms of G. Thus H is normal in G.



(f) Let |H| =m and |G:H| = n, so that (m,n) =1 and
|G| =mn. If a € Aut(G) then |a(H)| =m and a(H)H is a subgroup of G.
Setting d = |a(H) N H|, we have that d \ m, |a(H)H| = m2/d, and
(mz/d)'\ mn. Since (m,n) = 1, this‘forces m=d and H = a(H). Thus

H char G. O]

The following lemma is elementary and we omit the proofs.

1.1.8 LEMMA:

(a) Z(G) and G' = [G,G] are normal subgroups of G.
(b) G' =<1> iff G 1is abelian.

(¢) If H is a subgroup of G then H = Ng(H) .

(d) If H =G then Ce(H) = G.

(e) If H 1is abelian then H < CG(H).

(f) H=2G iff NG(H) = G.

We note the following properties of commutators.

1.1.9 LEMMA: Let H, K < G. Then

(a) [H,K] = <H,K>.

(b) [H,K] = [K,H].
() H =N;(K) iff [H,K] < K.
(d) H,K =G implies that [}-I,K] <G and [H,K] <=HAN K.

() If K =G then G/K is abelian iff [G,G] < K.



(f) H= CG(K) iff [H,K] = <1>.
(g) If M=G then [HM/M, KM/M] = [H,K]M/M.

(h) If H,K=G and H =<K, then K/H =< Z(G/H) iff [K,G] = H.

1.1.10 DEFINITIONS: Let G be a finite group.
(a) A subgroup is called a p-subgroup if its order is a power of p.

1 then a subgroup of G is called a

® 1f 6] = p'n, (p.m)

Sylow p-subgroup if its order is pn. We note that 1.1.7(f) implies

that all normal Sylow subgroups are characteristic.

1.1.11 THEOREM (Sylow): Let ﬁ be a finite group.
(1) G has a Sylow p-subgroup.
{ii) Any two Sylow p-subgroups of G are conjugate.

(iii) Any p-subgroup of G 1is contained in some Sylow p-subgroup.

1.1.12 LEMMA: Let H <G and let S be a Sylow p-subgroup of G. Then
(i) SN H is a Sylow p-subgroup of H;

(ii) SH/H is a Sylow p-subgroup of G/H.

1.2 NILPOTENT, SOLVABLE AND SUPERSOLVABLE GROUPS:

This section contains most of the basic results on nilpotent,

solvable and supersolvable groups that we will need.



1.2.1 DEFINITIONS:

(a) A central series in the group G 1is a normal series

<1> = GO SGl

such that:

(1) Gi is a normal subgroup of G, 0 =<1i <r; and

(ii) Gi/Gi-l < Z(G/Gi_l), for 1 =1i=<r.
(b) A group is nilpotent if it has a central series.

We now define special central series called upper and lower central

series.

DEFINITIONS:
@) Let z'(G) =G, z°(6) = [6,6], Z°(G) = [[G,6],G], ...,

Zn+1(G) = [Zn(G),G]. The sequence of subgroups

@) 2 2°@) = ...

is called the lower central series of G.

(b) Let‘ZO(G) = <1>, and for i > 0, Zi(G) is the subgroup of G
corresponding to Z(G/Zi_l(G)); by the correspondence theorem

Zi(G)/Zi_l(G) = Z(G/Zi_l(G)). The sequence of subgroups

Z,(6) = Z,(6) < zzgc) < ...

is called the upper central series of G.



be a series of subgroups each normal in G. This is a central series iff
[Gi’G] < Gi—l’ for 1 =1i=<r.
1.2.3 LEMMA: 1If the nilpotent group G has a proper subgroup H then

H 1is a proper subgroup of its normalizer.

Proof:
Take a central series for G:
<1> = G0 < G1 <... = Gr = G.
we have [Gi’G] =G5 4 for 1 =i=<r, by 1l.2.2. Suppose that Gk-l <H
while Gy £ H. Such a value of k exists because <I> = G, = H and

G=G.#£H, H being a proper subgroup of G. Then [Gk’G] < Gk—l < H,
and so [Gk’H] < H and hence by 1.1.8(c), Gk < NG(H). By the choice of

k there is an element of G, which does not lie in H, and it follows

k
that H = NG(H). g

The following lemma will be useful later when we study closure

operations on classes of groups.

1.2.4 LEMMA:

(a) The class of nilpotent groups is closed under the formation

of subgroups, quotients, and finite direct products.

(b) All p-groups are nilpotent.



(¢) A group G is nilpotent iff all its maximal subgroups are

normal.

(d) A group G is nilpotent iff all its Sylow subgroups are

normal.

(e) A nilpotent group is the direct product of its Sylow subgroups.

1.2.5 LEMMA: If H is a non-trivial normal subgroup of the nilpotent

group G, then H N Z(G) # <1>.

Let <1> = G0 < G1 < ... = Gr = G be a central series of G.
There is a least integer k such that H N Gk # <1>. Let x be a non-
trivial element in H N Gk' Then [x,G] = [H,G] <=H as H =2 G. Also

[x,G} = [G,,G] =< by 1.2.2. Thus [x,G] =HNG = <1> by the

G
k’ - k-1
choice of k. By 1.1.8(f), x € Z(G).

1.2.6 LEMMA: The following are equivalent:
(1) G 1is nilpotent.
(ii) There exists an integer n such that Zn+1(G) = <1>,
(iii) There exists an integer n such that Zn(G) = G.

It may be shown that the least n in (ii) is the same as the least n

in (iii). This integer n 1is called the class of the nilpotent group.

Since a group G ié abelian iff G' = <1>, all abelian groups

are nilpotent. On the other hand, A4 is an example of a non-nilpotent

group. This is because Zl(A4) = <1>, as a direct check shows. Hence -



Zl(A4)'= 22(A4) = ..., and thus Zn(A4) # A4 for every n.

1.2.7 DEFINITION: A group G is solvable if it has a subnormal series

<1> = G0 = G1 < ... = Gr =G

in which Gi/Gi—l is abelian for 1 =i =< r.

Comparison of definitions shows that every nilpotent group is
solvable. On the other hand, there are solvable groups such as S3 and
A4 that are not nilpotent.

Again we state some closure results for later use.

1.2.8 LEMMA:
| (a) The class of solvable groups is closed with respect to the
formation of subgroups, homomorphic images, and finite direct products.
(b) Let H be a normal subgroup of G. If H and G/H are
both solvable then G is solvable. &
(¢) Put D(G) = [G,G], define by induction Dn(G) = [Dn_l(G),

Dn_l(G)]. Then G 1is solvable iff Dn(G) = <1> for some integer n.

Hence G 1is solvable implies that G' < G.

1.2.9 DEFINITION: Let p be a prime number.

An abelian group E is an elementary abelian p-group if every

_element of E has order p or 1.

1.2.10 LEMMA:

Chief factors of finite solvable groups are elementary abelian

p-groups for some prime p.
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1.2.11 COROLLARY: A minimal normal subgroup of a finite solvable group is

an elementary abelian p-group for some prime p.

1.2.12 DEFINITION: A group is supersolvable if it has a normal series with

cyclic factors.

Again we state some results on closure for future reference.

1.2.13 LEMMA:
(a) The class of supersolvable groups is closed with respect to

the formation of subgroups, homomorphic images, and finite direct products.

(b) A group G is supersolvable iff its maximal subgroups have

prime index.

(c) Nilpotent groups are supersolvable and supersolvable groups are

solvable. In general, we have the following hierarchy of classes of groups:
N
Cyclic <€ Abelian < Nilpotent <€ Supersolvable € Solvable ¢ Group.
- All inclusions are propef, and in particular A4, which has no
normal series

<1> =G, =G, 2 ...3G_=A

with each factor group Gi/Gi-l cyclic and with each Gi G, 1is the

<
-1 —

first example of a solvable group that is not supersolvable.

1.3 EXTENSIONS: -
Let H and F be groups. The study of extensions involves finding

all groups. G (up to isomorphism) such that H <G and G/H =F.
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1.3.1 DEFINITIONS: If K and F are groups, an extension of K by F

is a group G such that:

(1) G contains K as a normal subgroup.

(ii1) G/K=F.

If H <G and there exists another proper subgroup K of G such

that HN K =<1> and G = HK we say H 1is complemented in G. If

HNK#<1> then K is called a partial complement of H. In the

following we point out some special cases of extensions.

If H and K are normal subgroups of G such that G = HK and

HN K =<1> then G 1is a direct product of H and K, written

G = H x K. We notice that if G = H x K then the elements of
H commute with those in K, that is H and K commute elementwise.
For if h ¢H and k € K, h#k, then h 'k''hk = h7l(xThk) =
" M)k € HA K = <1>, hence hk = kh.
-

1.3.2 LEMMA: If G=HxK and A <2H then A =G.

Proof:

Let a € A, g €G, then g = hk where h € H, k € K and

k_la'k where h-lah =a' €A as A<H

a'k 'k as a' €A <H, kK€K

g lag = k" hlank

4]

i

i

a' €eA. o

From the definition of direct product we notice that the subgroups

H and K are required to be normal. A natural generalization of direct
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products is the situation in which only one of the subgroups is required to

be normal.

1.3.3 DEFINITION: A group G 1is a semidirect product of K by F in

case G contains subgroups K and F such that:
(1) K =aG.
(ii) KF = G.
(iii) KN F = <1>,

It follows from the second isomorphism theorem that a semidirect

product of K by F is an extension of K by F.

1.3.4 LEMMA: If G 1is a semidirect product of K by F then there is a
-1

homomorphism © : F - Aut(K) defined by GX(K) = xkx“1 = K , for all

k € K, x € F. Moreover, ex(ey(k)) = ny(k) and Gl(k) =%k, k €K,

x,y,1 € F, N

Proof:.

Straightforward, using the normality of K. m

DEFINITIONS:

(a) Given K, F, and 6 : F » Aut(K), then a semidirect product
-1
G of K by F realizes 6 in case Ox(k) = K for all k € K.

)
the set of all ordered pairs (k,x) € K x F under the binary operation
-1
(k,x) (ky,y) = (kky ,xy).

(b) Let K, F, and 6 : F » Aut(K) be given. Then K % , F is
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1.3.5 THEOREM: Let K, F, and 6 : F - Aut(G) be given, then

G =K g Fis a semidirect product of K by F that realizes 6.

We first prove that G = K g F is a group. Multiplication is
associative:
[(k,x) (ky,¥)] (kys2) (k,x) [ (ky,¥) (ky»2)]
x1 y‘l
= (kk1 ,xy)(kz,z) = (k,x)(klk2 »YZ)
-1 -1 -1 -1
= (kkT k§XY) ,Xyz) = (k(klkg L xyz)
11 -1 | , -1 -1.-1

X X X X
kk1 kg »XyYZ); (kk1 kg ,Xyz).

It is easy to check that the identity element is (1,1) and

-1.x

k= (ah¥xh.

Let us identify K with the subset of G consisting of all pairs
of the form (k,1). Since the only '"twist'" occurs in the first coordinate,
the map a : G+ F defined by a(k,x) = x is a homomorphism. It is

easily checked that kera = k, so that K < G.

Identify F with all pairs (1,x). Then F =G with KF =G and

KN F=<(,1)>. Therefore, G is a semidirect product of K by F.

To see that .G realizes 6, compute:

-1 x 1 -1 x1
(1,x)(k,1)(1,x) ~ = (k¥ ,x)(1,x 7) = (k" ,1). m
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1.3.6 LEMMA: If G 1is a semidirect product of K by F, then

oy
%

K Xy F for some © : F - Aut(G).

Proof:
x~! k
Define Gx(k) =k . Since G = KF, each g € G has the form
g = kx, where k € K, x € F; -this form is unique since KN F = <1>,
-1
Multiplication in G satisfies (kx)(klxl) = k(xklx_l)xx1 = kk? XX

and it now is easy to see that the map K xeF - G defined by (k,x) - kx

is an isomorphism. m

1.4 THE FRATTINI AND FITTING SUBGROUPS:

1.4.1 DEFINITION: The intersection of all maximal subgroups of a group G

is called the Frattini subgroup of G and is denoted by ¢(G).

The Frattini subgroup has the remarkable property that it is the

set of all nongeneratoTs of the group, where an element g is nongenerator
if G = <g,X> always implies that G = <X> when X 1is a subset of G.
The following lemma states this formally and will be of constant use to us

in the sequel.

1.4.2 LEMMA:

(a) For a subset X of G, <X,$(G)> =G iff <X> = G. 1In

particular, if G = H¢(G) for some subgroup H of G, then G = H.

(b) If H=G, then H has a partial complement in G iff

H £ ¢(G).
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Proof:

(a) Suppose G = <X,¢(G)>. If <X> were a proper subgroup of G,
then there would be a maximal subgroup M which would contain X. Then
we would have <X,¢(G)> < M, contrary to the assumption. vThe converse
implication is obvious. In particular, G = H¢(G) < <H,$(G)> = <H> = H

as H 1is a subgroup. So G = H.

(b) Assume that H =G with H £ ¢(G). Then there is a maximal
subgroup M of G with H #M. But HM is a group as H <G and -
M<H as H £ M. Maximality of M implies that G =HM and M is a
partial complement of H.

Conversely, suppose H < ¢(G) and H has a partial compiement
K. Then G = HK = ¢(G)K = K, contrary to the definition of a partial

complement. m

1.4.3 LEMMA: If H( is a normal subgroup of the finite group G and P

is a Sylow p-subgroup of H, then G = NG(P)H.

Proof:
Let g € G; then P  <H and P® is Sylow p-subgroup of H.
Hence P = Ph for some h € H by Sylow's theorem. Consequently

gh°1 € NG(P) and g € N;(P)H. @

The proof of this enormously useful result is usually referred to

as the Frattini argument and the technique in the proof is often used.

~

One application is to show that the Frattini subgroup of a finite group is

nilpotent, a fact first established by Frattini himself.
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In the following lemma we collect some useful properties of the
Frattini subgroup. of a finite group. The proofs may be found in

Gorenstein [1] or Suzuki [7] and we omit them.

1.4.4 LEMMA:

(a) ¢(G) 1is a nilpotenf, characteristic subgroup of G.
(b) If H=G then ¢(H) = ¢(G).

(¢) If H<G and H =< ¢(G) then ¢(G)/H = ¢(G/H). In

particular, ¢(G/¢(G)) = <1>.

(d) If H=G, then H is nilpotent iff [H,H] < ¢(G), In

particular G 1is nilpotent iff G' = ¢(G).

1.4.5 LEMMA: If L 1is abelian normal subgroup of G such that

LN ¢(G) = <1>, then L 1is complemented in G.

Proof:

Choose H = G minimal -subject to G = HL. (Such an H exists
by 1.4.2(b)). Since L 1is an abelian normal subgroup of G, HN L =G.
If HANL=¢(H) then HNL<¢MH)NL =<¢(G) NL =<1> So we may assume

that HN L £ ¢(H).. Then HN L £#M for some maximal subgroup M of H,

and so H=M(HNL). But then ML = M(L N H)L = HL = G, a contradiction

to the minimality of H. o

Now to introduce another nilpotent subgroup of the finite group G
we remind the reader that the product AB of two normal nilpotent subgroups
A and B of a group G is again a nilpotent subgroup (Gorenstein [1],

6.1.1). We may now state:
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1.4.6 DEFINITION: The subgroup generated by all the normal nilpotent

subgroups of a group G 1is called the Fitting subgroup of G and is

denoted by F(G). It is evidently the unique largest normal nilpotent

subgroup of G.

1.4.7 LEMMA: For a finite group G.
(1) ¢(G) = F(G).

(i1) F(G)/#(G) 1is abelian.

Proof:

(1) Obvious.

(ii) Let F denote F(G). Since F 1is nilpotent, each maximal
subgroup of F is normal and hence contains F'. Thus F' =¢(F) = ¢(G)

from which it follows that F/¢(G) is abelian. o

1.4.8 LEMMA: If( G 1is solvable and ¢(G) = <1> then F(G) 1is the

-product'of (abelian) minimal normal subgroups of G.

Proof:

Write F(G) = L. Since L 1is nilpotent, a maximal.subgrdup of
L is normal and has prime index. Hence L' < ¢ (L) < ¢(G) = <1> and so
L is abelién. |

Let N be the product of all the (abelian) minimal normal subgroups
of G. N is-the direct product because any two such subgioups intersect
trivially. Then N is abelian and normal in G so by 1;4.5 there is a

<1>. Now

1]

subgroup H of G such that G =HN and HN N

HNL=HL = G. Since (LNH) NN=LN (HNN

<1>, the normal
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subgroup H N L cannot contain a minimal normal subgroup of G; we

conclude HN L =<1>., Hence L =LNHN=N(LNH) =N. a

1.4.9 LEMMA: If G 1is a solvable group then CG(F(G)) < F(G).

For brevity set F(G) = F and CG(F) = C. Suppose the lemma fails
so that CF # F. Then CF/F is a non-trivial normal subgroup of G/F,
hence contains a minimal normal subgroup Q/F of G/F. Solvability
implies Q/F 1is abelian so we have Q' <F < Q=<CF and (QN C)F = Q.
On the other hand QN C <G and QN C 1is nilpotent because
[Qnc,qQqnc,qQnc] < [Q,C] < [F,C] =<1>. Hence QN C <F so that
(QN C)F = F. This and (Q N C)F = Q yields the contradiction F = Q

completing the proof. m

1.5 HALL w-SUBGROUPS:

Let G %e a finite group and let m be a non-empty set of primes.
By a m-subgroup we mean a subgroup whose order is the product of primes

in m. A Sylow m-subgroup of G 1is defined to be a maximal w-group. While

Sylow m-subgroups always exist, they are usually not conjugate if

f-contains more than one prime.

A more useful concept is that of a Hall w-subgroup. A T-subgroup

H of G such that |G:H| is not divisible by any prime in w 1is called

a Hall m-subgroup of G. It is rather obvious that every Hall w-subgroup
is a Sylow m-subgroup. In general, however, a group G need not contain

any Hall w-subgroups as we will see from the following example.
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1.5.1 EXAMPLE: Let w = {2,5}. A Hall w-subgroup of A5 would have

index 3, but A. has no such subgroups. For if there were a subgroup B

5
of index 3, then B would have three conjugates; the intersect N of
these would be a subgroup of index at most 33 = 27. But then N would be

a proper normal subgroup of AS’ whereas’ A5 is simple. Therefore A5

has no subgroup of order 20.

A5 must have Sylow m-subgroups. Among these are the Sylow
2-subgroups, such as V = <(12)(34), (13)(24)>, 1is one, for if it were
contained in a larger w-subgroup then the latter would have order 20 by
Lagrange's theorem. Another Sylow T-subgroup is U = <(12345), (25)(34)> ;
for it will be found that this has order 10 and is therefore again a

maximal m-subgroup. Here is a case in which Sylow m-subgroups are not

conjugate.

We shall see now that in contrast to the situation in the non-solvable

group A

5 in a finitf solvable group Hall m-subgroups always exist and

form a single conjugacy class.

1.5.2 THEOREM (P. Hall):
Let G be a finite solvable group and ©m a set of primes. Then

(1) G contains a Hall w-subgroup;
(ii) any two Hall w-subgroups of G are conjugate;

(iii) every mw-subgroup of G 1lies in a suitable Hall m-subgroup.
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We proceed by induction on |G|. Let N be a minimal normal
subgroup of G with |N| = p° where 'p is a prime. By induction G/N
has a Hall m-subgroup H/N, moreover, any two Hall m-subgroups of G/N
are conjugate in G/N. We consider separately the cases p € m and

p £ .

Case 1: p € m. In this case H is a m-subgroup of G and, since
|G/N : H/N| = |G : H|, it is easily seen that H is in fact a Hall
n-subgroup of G. If L is any other m-subgroup of G then by induction
LN/N = (H/N)XN for some x € G, and therefore L < H. If L is also a

Hall m-subgroup of G, then |L| = |H| = |HX|. This and L <H® give

L = H".

Case 2: p ¢mn, If H< G, then by induction, H has a Hall

m-subgroup H. which must bé a Hall m-subgroup of G. If L is any

1

other n-subgroup of then, by induction LN/N lies in HX/N for some

G,
4 X . > S X
L = H . Since H1 is a Hall w-subgroup of H , we

: X
may apply induction to conclude that L 1lies in HTY for some y € H .

X in G and hence

Moreover, if L 1is also a Hall subgroup of G then, as in case 1, L

would coincide with HTY.

We assume for the remainder of the proof that G = H and, without
loss of generality, that G # N.  We also observe that under these
conditions N ‘'is a Sylow p-subgroup of G. Let T/N be a minimal normal
subgroup df G/N with |T/N| = qs for some prime q # p. Let Q be a
Sylow q-subgroup of T, so that T = NQ. By the Fratfini argument,

G = TNG(Q) = NNG(Q). If G = NG(Q), then we may apply the argument of
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case 1 using Q for N. We therefore assume that G # NG(Q). Since
NN N;(Q =G as N is abelian, it follows that NN N;(Q) = <I>.

Thus |G:N| = INg(Q)| and N;(Q) is a Hall m-subgroup of G. Set

H1 NG(Q) and let L be any w-subgroup of G. Since G = HlN’

LN

LN N HlN = N(H1 N LN). Thus H1 N LN is a Hall w-subgroup of LN.

If LN # G, then by induction L < (H1 n LN)x < H?

N(LN T) and in this situation LN T = Q

for some x in

X

IN. If LN =G, then T
for some x € T. Then T 2 G implies LN T 2L so that L < NG(Q;) = H?.
Again, if L 1is also a Hall w-subgroup of G, then the argument of

X

Case 1 can be used to show L = Hl. o

1.5.3 LEMMA: Assume G has a Hall w-subgroup H. Then:

(i) If H=K <G then H is a Hall w-subgroup of K.

(i1) If MG then MNH and HM/M are Hall w-subgroups of

M and G/M respectively.

/

Proof:
(1) Follows immediately from the definition of Hall w-subgroups.
(ii) By (i) H is a Hall w-subgroup of HM and since

IM : MNH|l = |HWM : H|, |M:MNH| is divisible only by primes in w',

where w' 1is the complement of m in the set of all primes. Since H is
a m-group and |M N H| divides |H|, we have HN M is a m-group.
Therefore HN M 1is a Hall w-subgroup of M. A similar argument shows that

HM/M is a Hall w-subgroup of G/M. O
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1.6 CARTER SUBGRQUPS:

In 1961 R.W. Carter published a striking theorem about the nilpotent
subgroups of a finite solvable group in his paper "Nilpotent self-normalizing

subgroups of a solvable group".

1.6.1 THEOREM (Carter):
If G is a finite solvable group, then:
(a) G has a self-normalizing nilpotent subgroup.

(b) If H,, H, are self-normalizing nilpotent subgroups of G,

1’ 2

then H1 = Hg for some g € G.

We shall prove a more general version of this theorem later.

1.6.2 DEFINITION

Self—normalizing nilpotent subgroups are now called Carter subgroups.

(

Let E be a Carter subgroup of G. Then:

1.6.3 LEMMA:

(1) If E<F =G, then E 1is a Carter subgroup of F.

(i1) If M =G, then EM/M is a Carter subgroup of G/M.

Proof:
(1) As the definition of nilpotence takes no account of any group

in which E may lie, we have E is a nilpotent subgroup of F.

Since E 1is self-normalizing in G, E = NG(E) and so if E < F,
then NF(E) = NG(E) NF=ENF-=E., Therefore E is a nilpotent self-

normalizing subgroup of F. Thus E 4is a Carter subgroup of F.
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(ii) Since M =G, ENM<E, and since E is nilpotent,

E/EN M is nilpotent. But E/E N M= EM/M, therefore EM/M is nilpotent.

To show EM/M is self-normalizing, suppose EM/M 2 F/M. Then
EM @ F. By (1) E 1is a Carter subgroup of EM aﬁd so by (1.6.1) all
conjugates of E in EM under the action of F are conjugate in EM;
that is for all x € F, there is g ¢ EM such that E*® = E which implies
that xg ¢ NG(E) = E implies that x ¢ Eg'_1 implies that F = E<EM = EM,
so EM/M 1is self-normalizing in G/M and therefore EM/M is a Carter

subgroup of G/M. @

Carter's discovery aroused considerable interest, although it was
clear from the start that it could not be extended in an obvious way to

arbitrary finite groups. The alternating group A5 shows that Carter

Carter subgroups may be seen as analogues (for the class of nilpotent
groups) of Sylow p[subgroups (for the class of p-groups) and Hall w-sub-
groups (for the class of n-g;oups). All are maximal subgroups of their
class, are preserved under epimorphisms, and satisfy the existence and the
conjugacy conditions, i.e. they exist and form a single conjugacy class.

One important component of the theorems of Sylow and Hall that is missing

from Carter's theorem, however, is the following theorem:

THEOREM:
Every p-subgroup of a group is contained in a Sylow p-subgroup;

every wW-subgroup of a solvable group is contained in a Hall w-subgroup.
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It is not the case that every nilpotent subgroup of a solvable group

is contained in a self-normalizing nilpotent subgroup.

EXAMPLE :

Consider 'S The subgroup H = {I,(123),(132)} is easily checked

3
to be a normal in S Since H5¥ Cs» SS/H?¥ C,, by 1.2.8(b), Sg is

solvable. Z(S,) = <1> as a direct check shows. Hence ZI(SS) =

3)
ZZ(SS) = ..., and thus Zn(SS) # S3 for every n. Hence by 1.2.6(iii),

S3 is not nilpotent.

H is nilpotent and H itself is the largest nilpotent subgroup of
83 that contains H. But H is not self-normalizing, since H = S3 which

implies that NG(G) = SS'

Some years were to elapse before the discovery of new conjugacy

classes of generalized Sylow subgroups satisfying Theorem 1.6.1.

/
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Chapter 2

PROJECTORS and FORMATIONS

2.1 FORMATIONS:

By a class of groups F we mean a class - not a set - whose

members are groups and which enjoys the following properties:
(i)  F contains a group of order 1;
(ii) G1 = G € F always implies that G1 € F.
2.1.1 DEFINITION:
Let F be a class of finite groups. F 1is called a homomorph if

G€F, N=G implies that G/N ¢ F.

Examples of homomorphs are readily found. The classes of finite
groups, finite solvable groups, finite nilpotent groups, and finite super-
solvable groups are homomqrphs.

2.1.2 DEFINITION:

A homomorph F 1is called a formation if it satisfies the following

condition:
*
(*) If Nl,...,Nk

N. =<1> i1=1,...,i, then G € F,
1 1

are normal subgroups of G such that

n D=

G/Ni € F and

i
REMARK 1: Condition (*) of the definition 2.1.2 is equivalent to the
following condition:

(**) If G/Nl, G/N2 € F, then G/(N1 N, ¢ F.
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This is because: if N., N, @ G with G/Nl’ G/N2 € F, then
(G/N1 n N2)/(Ni/N1 N N2) = G/Ni €eF i=1,2,

and (Nl/(N1 n N2)) n (N2/N1 n N2) = <1>, and therefore G/N1 n N, € F.
Thus we have shown (*) implies (**). On the other hand, if Nl""’Nk are
; k
normal subgroups of G such that G/Ni € F and N N; = <1>, then
i=1

assuming (**) we have G/Nl’ G/N2 € F implies G/(N1 NN,) € F. Again

G/N3 € F and G/N1 n N, € F implies G/(N1 n N, n N3) € F. Continuing

k
this we finally get G/(N. N ... NN .), G/N, € F implies G/ N N, € F,
1 k-1 k o 1
K =
but Ni = <1>, therefore we have G € F.
i=1
REMARK 2:

Condition (**) can be replaced by the following apparently weaker

condition: (***)y If Nl’ N2 < G such that G/Nl’ G/N2 € F and
N1 n N2 = <1>, then G € F.
REMARK 3:

If G,He F then GxH € F.

We will pfovide examples of formations later. Now we have the

following lemma.

2.1.3 LEMMA:

Let F be a formation, and G a group. Let G. =N{H : H =G,

F
G/H ¢ F}. Then GF is unique and minimal subject to the property that

G/GF € F. Moreover, G/H ¢ F iff GF <H, H<G. In particular, G ¢ F

iff GF = <1>.
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Proof:
By (**) of the definition of formation we have G/GF € F. GF is

unique and minimal subject to G/GF € F by its very definition.

Also if G <H, then G/H= (G/GF)/‘(H/GF) ¢ F, since G/G € F

and F is closed under epimorphisms. o

GF is often called the F-residual of G. It is characteristic in
G by 1.1.8(c), and it may be characterized as the least normal subgroup with

factor group in F.

EXAMPLE:
Let A be the class of finite abelian groups. We will see later that
A is a formation. G' = [G,G] is the A-residual, since for N <G,

G/N € A implies that G/G' ¢ A and G' =< N.

To provide examplegg we denote by
N: The class of all finite nilpotent groups.

P: The class of all finite p-groups, where p 1is a fixed

prime.
T: The class of all finite supersolvable groups.

The class of all finite solvable m-groups (where © is a

=

set of primes).
U: The class of all finite solvable groups.

A: The class of all finite abelian groups.

We have seen that formations are closed under taking factors and
direct products. If on the other hand we require a class to be closed under

both of these operations and taking subgroups it is, in fact, a formation.
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2.1.4 THEOREM:
If H,K 2 G, then there exists a monomorphism 6 of G/HN K

into G/H x G/K.

Proof:

Define 6 : G/HN K-+ G/H x G/K by 6[g(HN K)] = (gH,gK). Then 6

1

is well defined, since g (HN K) = g,(HN K) implies that glgé € HN K

L eu and g,gé1 € K. Hence gH=g)H and gK=gX

implies that g 1

182
and so (g H,g;K) = (g,H,g,K).

Now, 6[g;(HN Kg,(HN K] = 6(gg,(HN K)] = (g 8,H, g,8,K)

(g,Hg,ot, g,Kg,K)
= (g1H, g,K) (g, g,K)

6[g, (HNK)]6[g, (HNK) ]

and therefore 6 is a homomorp@ism. Now G[gl(H nKl-= e[gz(H N x)
implies that (g1H, glK) = (gZH, gzK) and so g1H = g2H and glK = gzK.
Hence gilg2 € HN X and therefore gl(H NK = gz(H N K). Thus & is

one-to-one homomorphism. o

The following corollary to Theorem 2.1.4 enables us to prove very

simply that all the classes N, P, T, n, U and A are formations.

2.1.5 COROLLARY:
Let F be a non-empty class of groups, closed under epimorphisms,

subgroups, and direct products. Then F 1is a formation.

Proof:

Since F 1is a homomorph (i.e. closed under epimorphisms), we only
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need to show that if G/H, G/K € F then G/HN K € F where H,K =G.

Since G/H x G/K € F, and by 2.1.4, G/HN K is isomorphic to a subgroup

of G/H xG/K, G/HN K € F as required. o

2.1.6 EXAMPLES:
(a) Since all the classes N, P, T, n, U and A are clearly closed

-2

under epimorphisms, subgroups and direct products, then they are formations.

(b) In this example we show that formations are not necessarily

closed under taking subgroups.

Let F = {G : G is solvable and |M/N| # 2 for all 2-chief
factors M/N of G}. We show that F is a formation. It is obvious
that F 1is a homombrph, since all 2-chief factors of G/N (where ~ﬁ 4 G)
are isomorphic to a subset of those of G.

Now, let G/ng G/H2 € F and by (***) of (2.1.2) we may assume
that H1 n H2 = <}>, and we want to show that G € F.

If M/N is a chief factor of G, then, since Hi 2G6 (i =1,2)
we must have either Hi covers M/N or avoids it by (1.1.6). If H.

i
covers M/N, then MHi = NH, so that MHi/NHi = <1>, If Hi avoids M/N,

R K

then again by (1.1.6), M/N MH, /NH, = (MHi/Hi) /(NH;/H;) which means that

M/N 1is isomorphic to a chief factor of G/Hi' Therefore we have G € F.

For instance, A4 € F since its chief factors have order 4 and 3,
but V = {(1),(12)(34),(13)(24),(14)(23)} is a normal subgroup of A, and
V ¢ F since C, is a 2-chief factor of V with order 2. Thus F is not

closed under (normal) subgroups.
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In order to generalize Carter's result (1.6.1), Gaschiitz needed to
consider a special kind of formations which he defined (in his paper "Zur
theorie der endlichen aufldsbaren Gruppen', Math Z. 80, 1963, 300-305) as

follows:

2.1.7 DEFINITION:

Let F be a non-empty formation. Then F is said to be saturated

provided that G/¢(G) € F implies G € F.

2.1.8 EXAMPLES:

(a) Consider N, the class of finite nilpotent groups. By 2.1.6(a),
N 1is a formation. To show N is saturated, suppose G/¢(G) € N and let
P be a Sylow p-subgroup of G. Then P$(G)/¢(G) is a Sylow p-subgroup of
G/¢(G). But G/¢(G) € NV S0 P¢§G)/¢(G) < G/¢(G) which implies that
P$(G) = G; \

If NG(P) <‘G, then there exists a maximal subgroup M of G
such that NG(P) <M. Now P is a Sylow p-subgroup of P¢(G) so by the
Frattini argument we have G'= (P¢(G))NG(P) < M (as P <= NG(P) <M and
¢(G) = M) which is contradiction. Therefore NG(P) = G and hence P =G.

Thus G 1is nilpotent.

(b) By 2.1.6, T is a formation. Since G 1is finite, G/¢(G) is
supersolvable implies that G 1is supersolvable (see Robinson 9.4.5). Thus,

the class of finite supersolvable groups is a saturated formation.

(c) We know that A is a formation (Example 2.1.6), and if G 1is a
non-abelian p-group, we know that G/¢(G) € A but G ¢ A (e.g. take G = Qg

the quaternion group). Thus A 1is not saturated.
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The following characterization of saturated formations provides

insight into their properties as well as a list of useful criteria.

2.1.9 THEOREM:
Let F be a formation and G a finite solvable group. Then, the
following are equivalent:

(1) F is saturated;

(ii) if G#F and M is a minimal normal subgroup of G
such that G/M € F, then M has a complement and all such complements are
conjugate in G; and

(iii) if G £ F, M 1is a minimal normal subgroup of G, and

G/M € F, then M has a complement in G.

Proof: (

(i) = (ii): Suppose F is saturated, G ¢ F and M is a minimal
normal subgroup.of G and G/M € F. We need to show that M has a

complement and any two complements of M are conjugate.
Since F ‘is saturated and G ¢ F, we conclude that G/¢(G) ¢ F.

If ¢(G) # <1>, the result follows by induction. For, since
G/M ¢ F it follows that M # ¢(G) and hence M N ¢(G) = <1>, Then
Mo (G)/¢(G) 1is a minimal normal subgroup of C/¢(G) and so it has a
complement L/¢(G). It follows that G =ML and MN L = <1>. Also, any
two complements of M must be maximal subgroups and hence, again by

induction, are conjugate in G.
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So we can assume ¢(G) = <1>. Hence, there exists a maximal subgroup
H of G such that G =MH. Now MN H=MH =G, as M is abelian, and
so MM H=<1> by minimality of M and so H is a complement of M in
G. It only remains to show that if K is another complement of M in G,

then H and K are conjugate.

By induction we may assume that M 1is the unique minimal normal
subgroup of G. For if N is another minimal normal subgroup of G then
MNN=<1> It follows that G/N ¢ F (otherwise G/N, G/M € F implies
G €F) and that N <H and N =<K, for if N £ H then by maximality of
H, NH = G and hence G/N=H/HN N € F, which was just seen to be false,
so0 N < H. Similarly, N =K. Thus H/N and k/N are complements of
MN/N in G/N. 1t follows (by induction) that H/N and XK/N are conjugate

in G/N and hence tPat H and K are conjugate in G.

So since M 1is the unique minimal normal subgroup of G and
4(G) = <1>, then by (1.4.8) we have M = F(G), and by (1.4.9), Cy(M) = M,
Suppose |M| = pk for some prime p. Then we conclude that OP(G/M) = <1>
(otherwise, the inverse image of OP(G/M) in G 1is a normal p-group
strictly containing M = F(G), a contradiction), and hence that

0,,(6/M) # <1>.

Let R/M be a minimal normal subgroup of G/M contained in
Op,(G/M). It follows that (|R/M|, |M|) = 1. Now R/M is an elementary
abelian gq-group, q # p, 9 a prime. Now R = M(RN H) = MR N K) so we
conclude that RN H and R N K are Sylow gq-subgroups of R. Hence there
exists x € M so that RN H= (RN K)x = RN K. As R 2 G, we have

X

RNH<H and RNH= RNK* <2k’ Hence NgR N H) 2 H,K".
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Since M 1is the unique minimal normal subgroup of G, it follows
that RN H is not normal in G and that <H,Kx> is not all of G.
As H and K* are maximal subgroups of G, we conclude that H = K< as

desired.
(ii) = (iii): 1is trivial.

(iii) = (i): Suppose (iii) is satisfied and G/¢(G) € F. Assume G
is minimal with this property, subject to G ¢ F. Then for any minimal
normal subgroup M of G with M < ¢(G) we have G/¢(G) = (G/M)/(¢(G)/M) =
(G/M)/¢(G/M) € F and so by minimality of G we have G/M € F. (Thus we
have a minimal normal subgroup M of G with G/M € F and G ¢ F).

Therefore by (iii) M has a complement in G, contracting M < ¢(G). o

In 1963 Gaschutz published a far-reaching generalization of Hall and

Carter subgroups.

2.1.10 DEFINITION:
Let F be a class of finite groups. A subgroup F of a group G

is called an F-covering subgroup of G 1if:

(1) FeF

(ii) If F<H<G and N = H such that H/N € F, then

2.1.11 REMARK:
If F is a non-empty formation, then by definition of GF’ the
F-residual of G, we have for any N <G with G/N € F, GF <N. It

follows that a subgroup F of G so that F € F is an F-covering subgroup



35.

of G iff F <H <G implies that H = FH where H is the F-residual

FS
of H.

2.1.12 EXAMPLE:

Consider m, the class of finite solvable m-groups, where m is
a set of primes. Take F to bé\a Hall n-subgroup of the finite solvable
group G. Then F € m. Moreover, if F <= H =G and Hl < H such that
H/Hl € w, then clearly (lH:Hl‘;|H:F|) =1 and so by (1.1.2), H=FH.
Thus Hall m-subgroups of G are T-covering subgroups.

In particular, taking m = {p} we see Sylow p-subgroups are the

P-covering subgroups, where P, as before, is the class of finite p-groups.

2.1.13 LEMMA: (
Let F bea homomorph and let F be an F-covering subgroup of the
finite group G. Then if F < H = G, we must have that F 1is an

F-covering subgroup of H.

Proof:

Clear from the definition. m

2.1.14 LEMMA:

Let F be a homomorph and F be an F-covering subgroup of the
finite group G, and suppose that N < G. Then FN/N 1is an F-covering

subgroup of G/N.

Proof:

First we notice that FN/N € F as FN/N=F/F NN € F, Since F
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is a homomorph.. Now, suppose that FN/N < H/N < G/N and (H/N)/(M/N) € F.
Then H/M EAF and so as F =H <G we get that H = MF from the fact
that F 1is an F-covering subgroup of G. Hence it follows that
H/N = MF/N = (M/N) (FN/N) and consequéntly FN/N is an F-covering subgroup

of G/N. DO

2.1.15 REMARKS:
(i) It follows trivially from (2.1.10) that if F is an F-covering
subgroup of G,F <=H <G and H € F, then H = F, which means that

F-covering subgroups are maximal F-subgroups.

(ii) It also follows that if G € F, then G is its own F-covering

subgroup.

The next {;mma allows us to pull an F-covering subgroup of a factor

group of G back to an F-covering subgroup of G.

2,1.16 LEMMA:
Let F be a homomorph and N be a normal subgroup of the finite
group G. Suppose F/N is an F-covering subgroup of G/N. If F is

an F-covering subgroup of F. Then F is an F-covering subgroup of G.

Proof:
Clearly F € F. Suppose that F <H <G and H/M € F. Since F is

an F-covering subgroup of ¥ and F/N ¢ F, it follows that F = FN.

Since F <H, F <HN and so F/N < HN/N. Hence by 2.1.13, F/N

is an F-covering subgroup of HN/N. In view of the isomorphism
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H/HN N2 HN/N we find that (FN H)/(H N N) is an F-covering subgroup of
H/HN N; indeed: (FN H)/(HNN) = (PNN H)/HNN) = FHNN)/MHNN) =
F/(ENHNN) =F/(FNN) =FN/N=F/N. By 2.1.13, F is an F-covering
subgroup of HN F. Now if H < G, it would follow by induction that F

is an F-covering subgroup of H. As H/M € F, this would give that H = MF

as required.

Thus we suppose that H = G and hence G/M ¢ F. Now F/N is an
F-covering subgroup of G/N and (G/N)/(MN/N) = G/MN = (G/M)/(MN/M) =

(H/M)/ (MN/M) € F, and so G/N = (F/N)(MN/N). Thus G = F(MN) = FM.

Now F/FNM=FMM=G/M€eF so F=FFNM. Thus G =FM =

F(FN MM = FM as required. @

Now we cqﬁe to the fundamental theorem on F-covering subgroups which

yields numerous families of conjugate subgroups in a finite solvable group.

2.1.17 . THEOREM:

Let F be a formation.

(i)’ If every finite group has an F-covering subgroup, then F is
saturated.

(ii) If F 1is saturated, then every finite solvable group contains
an F-covering subgroup and all of its F-covering subgroups are conjugate

(in the group).

Proof:
(i) Let G be a finite group such that G/¢(G) € F. If F is an

F-covering subgroup of G, then G = F$(G), which implies that G = F by
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by the non-generator property of ¢(G). Thus G € F and so F is

saturated.

(ii) This part will be established by induction on |[G|. If
G € F, then G 'is evidently the only F-covering subgroup, so we shall
exclude this case. So suppose G ¢ F, and choose a minimal normal subgroup
N of G. Then by induction G/N has an F-covering subgroup F/N. We

consider two cases.

Case 1: Suppose first that G/N ¢ F, so that F # G. By induction
F has an F-covering subgroup F. We deduce directly from (2.1.16) that
F is an F-covering subgroup of G. Now let Fl, F2 be two F-covering
subgroups of G. By 2.1.14, the subgroups FlN/N and F2N/N are
F-covering subgroyps of G/N,' whence they are conjugate, say FlN‘= F%N
where g € G. Now FlN # G because G/N ¢ F. Hence Fl and F%, as

F-covering subgroups of F.N, are conjugate by induction, which implies

1

that Fl and F2

are conjugate.

Case 2: Assume now that G/N € F.. Then 2.1.9 shows that there is
a complemeht K of N in G. Moreover, since N is a minimal normal
subgroup of G, ‘K must be maximal in G. Since G/N € F, we have
N = GF and so G = KGF' Therefore by Remark (2.1.11) K 1is an F-covering
subgroup of G. (Notice that K € F as K= G/N ¢ F). If H is another

such group, then G = HN, while HN N = <1>, since N 1is abelian.

Applying (2.1.9) again, we conclude that H and K are conjugate. @

The following lemma is simple but useful application of Theorem

2.1.17,
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2.1.18 LEMMA:
Let F be a saturated formation and G a finite solvable group.
If N =G, then each F-covering subgroup of G/N has the form FN/N where

F 1is an F-covering subgroup of G.

Let F/N be an F-covering subgroup of G/N and let F, be an
F-covering subgroup of G. Then by 2.1.14, FlN/N is an F-covering
subgroup of G/N. So by 2.1.17, FlN/N is conjugate to F/N. Hence

F = (FlN)g for some g € G. Define F to be F%, then we have F = FN. 0

Before going any further we want to refer again to some examples of

formations we looked at previously.
[
2.1.19 EXAMPLES:

(i) We saw iniExample 2.1.8(c) that A, the class of finite abelian
groups, does not form a saturated formation. It is easy to see that QS’
the quaternion group of order 8, has no A-covering subgroups. In fact, no
p-group in which G' = ¢(G) # <1> can have an A-covering subgroup. For if
F were such a covering subgroup then ¢(G) = G' implies that G/¢(G) is
abelian which implies that F¢(G) = G and hence F = G by the non-generator

~property of ¢(G). Thus we have G € A, a contradiction. Q8 is one such
group.
On the other hand, SS is an example of a group which does have

A-cavering subgroups; these are the subgroups of order 2, and notice that

they are all conjugate.
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(ii) Let T, as before, be the class of finite supersolvable
groups. We have seen in Example 2.1.8(b) that T is a saturated formation,
so by Theorem 2.1.17(ii) if G is any finite solvable group then G must
have T-covering subgroups. We will show that the T-covering subgroups of
G are precisely the supersolvable subgroups F of G so that for every
pair of subgroups H,K of G éuch.that F =H <K =G, the index
|K:H| is not a prime.

First suppose that F is a T-covering subgroup of G and
that F < H <K < G. Suppose that |K:H| = p, a prime. Then H is a
maximal subgroup of K. Let N = CoreK(H) (i.e., N 1is the largest normal
subgroup of K which is contained in H) and let A/N be a maximal
abelian normal subgroup of K/N. Then AN H <K so AN H=N. Hence,

AN H, we have N =&A N H. Now as H 1is a maximal subgroup of

as N =
K, K =HA. Thus |K| = |HI]Al/lH N A] = |H]<]A]/|N|. Tt follows that
|A:N| = |K:H| = p. It follows that AF/N 1is supersolvable ((AF/N)/(A/N) =

AF/A = F/F N A 1is supersolvable, so AF/N 1is supersolvable by 1.2.14).
Hence AF = NF, a contradiction. This establishes that all T-covering
subgroups satisfy the above condition.

Now suppose F 1is a supersolvable subgroup of G satisfying
the given condition. Let F =H =G and suppose H/N € T. Now if NF # H,
" then there would exist a maximal subgroup-containing NF whose index in H

would be a prime, contrary to assumption.

2.1.20 DEFINITIONS:
Let F be a class of finite groups and G any finite group.

(a) A subgroup H of G 1is called F-maximal if:
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(1) H € F.

(ii) H = H1 < G, H1 € F implies that H =H

1
(b) A subgroup H of G is an F-projector of G 1if for any

N =G, HN/N is F-maximal in G/N.

2.1.21 LEMMA:
Let F be a homomorph and let G be a group.
X

(a) If H 1is an F-projector of G, then for any x € G, H" is

an F-projector of G.

(p) If H 1is an F-projector of G and if N =G, then HN/N is

an F-projector of G/N. \

(¢) If F/N is an F-projector of G/N and if F is an F-projector

of F, then F 1is an F-projector of G.

Proof:

(a) and (b) are clear from the definition.

(c) Let M be any normal subgroup of G. Suppose FM/M < H/M and
H/M € F. Since FMN/MN is an F-projector of G/MN and HN/MN =
(HN/M) / (MN/M) = ((H/M) (MN/M))/ (MN/M) 2 (H/M)/ ((H/M) N (MN/M)) € F (as F
is a homomorph and H/M € F), we have FMN/MN = HN/MN which implies that
HN = FMN = FM. Thus H < FM and hence H/M < FM/M.
Since F is an F-projector of F, FM/M 1is F-maximal in

FM/M by definition of F-projector. Thus FM/M = H/M which means that F

is an F-projector of G. a
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The following lemma is useful for proofs by induction.

2.1.22 LEMMA:
Let F be a homomorph and G a group. A subgroup H of G is an
F-projector of G iff H is F-maximal in G and HM/M is an F-projector

of G/M for any minimal normal subgroup M of G.

Proof:

Suppose H is an F-projector of G. Since <1> ©G, H must be an
F-maximal in G. Moreover, if M is a minimal normal subgroup of G, then

by 2.1.21(b), HM/M 1is an F-projector of G/M.

On the other hand, suppose g/—is an F-maximal subgroup of G and
HM/M 1is an F-projector of G/M for any minimal normal subgroup M of G.
If N =G then there is a minimal normal subgroup M of G such that
M = N. if HN = H1 =G Qith Hl/N € F, then (Hl/M)/(N/M) € F and
(HM/M) (N/M)/ (N/M) = (HN/M)/(N/M) < (H;/M)/(N/M). But by definition of
projectors, (HM/M) (N/M)/(N/M) is F-maximal in (G/M)/(N/M), so HN = H1
and HN/N = HI/N € F. Thus .H is an F—projebtor of G. am

2.1.23 REMARKS AND EXAMPLES:

(a) Let F be a homomorph and G a group. Then every F-covering
subgroup of G is an F-projector of G. For if H 1is an F-covering

subgroup of G and H < H G~ such that Hl/N € F. Then by definition of

<
] <
covering subgroups, HN = H1 and so HN/N = Hl/N € F. Therefore H 1is an

F-projector of G.
For instance, Hall m-subgroups and Sylow p-subgroups are T7- and

P - projectors respectively (see Example 2.1.12). Also from Example
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2.1.19(ii), the supersolvable subgroups F of the finite solvable group G
so that for every pair of subgroups H,K with F <H <K <G, the index

|K:H| is not a prime, are the T-projectors.

(b) For a prime p, a non-abelian p-group G has no A-projectors.
For if H were an A-projector, then by 2.1.22, H would be abelian and

HG'/G' = G/G', that is HG'

G. But since G' = ¢(G) for any p-group G,

it would then follow that H

G, 1in contradiction to the assumption that

G is non-abelian. )

(c) Consider the simple group AS' A5 has a subgroup E =V, the

Klein four-group. 1In fact, E 2 A, <A E € N, since V € N, where N

4 5°

is the class of finite nilpotent groups. Also it is clear that EN/N is

an N-maximal in AS/N for any N <2 Ag. Thus E is an N-projector of Ag.
On the other hand, E is not an N-covering subgroup of AS,
since E = A4 < AS' and A4/E € N but E = EE # A4.
Ac also has a subgroup F= Cc and F 2D = Ay where
D= DlO' Similar argument shows that F is an N-projector of AS’ and F

is not an N-covering subgroup of Ag.
- Thus, the notion of projectors is more general than the notion
of covering subgroups, therefore poorer in properties. However, the
advantage of projectors over covering subgroups, apart from their greater
generality, lies in the fact that they possess good duals (namely the

injectors, which lie out of the scope of this research). Also there is a

close connection between covering subgroups and projectors as we will see.
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2.1.24 LEMMA:
If F is a homomorph and G a group, then the subgroup H of G
is an F-covering subgroup of G iff H 1is an F-projector of K for all

H=K=G.

Proof:
Let H be an F-covering subgroup of G and K a subgroup of G
with H < K. By 2.1.13, H 1is an F-covering subgroup of K and by

2.1.23(a), H 1is an F-projector of K.

Conversely, let H be a subgroup of G which is an F-projector of
any subgroup K of. G with H < K. We have H € F. Let given K and L,
with H=K=<G, L =2K, K/L€F. H 1is an F-projector of K, so that
HL/L is F-maximal in K/Lj/ﬁBut K/L € F. It follows that HL/L = K/L,

hence K = HL. n
The following auxiliary lemma is due to Carter and Hawkes.
2.1.25 LEMMA:
Let F be a saturated formation and G a finite solvable group.

If H 1is an F-subgroup of G such that G = HF(G), then H is contained

in an F-covering subgroup of G.

Proof:

We will argue by induction on |G|. We may assume G § F (For other-
wise G 1is evidently the F-covering subgroup which contains H). Let N
be a minimal normal subgroup of G. Then HN/N inherits the hypothesis on

H, so by induction it is contained in some F-covering subgroup K*/N of
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G/N. By 2.1.18, then K*/N will be of the form KN/N where K 1is an
F-covering subgroup of G. Consequently H < KN. Now we consider two

cases:

Case (i): KN < G. Then by the induction hypothesis, H is
contained in some F-covering subgroup M of KN. But as K is an
F-covering subgroup of G, it is F-covering subgroup of KN and so it

must be conjugate to M. This shows M to be an F-covering subgroup of G.

Case (ii): KN = G. Let F = F(G). Since N 1is a minimal normal
subgroup of the solvable group G, N is abelian and so nilpotent and
therefore contained in F. Indeed N < Z(F) because <1> # NN Z(F) =G

(see 1.2.5). Therefore KN F < KN

G. Now, if KN F # <1>, we can
apply the induction hypothesis to G/K N F, concluding that H < T where
T/KN F i; an F-covering subgroup of G/KN F. Now T < G (For otherwise
T = G would imply that G/KN F =T/KNF € F and since K is an
F-covering subgroup of G, we must have G = K(KN F) = K€ F, a
contradic;ion). And so again by induction there is an F-covering subgroup
R of T containing. H. But then by 2.1.16, R 1is an F-covering subgroup

of G.

Consequently we can assume that KN F = <1>. Hence F =FN G =

FNKN=N((FNK =N. So from the hypothesis of the lemma we have

G = HF

HN. Also we notice that‘ H is a maximal in G: for H # G since

G ¢ F. Finally G_ =N, since G/N € F. Hence G = HG.. As G is the

F F

only subgroup of G that properly contains H (because of maximality of H),

then by Remark 2.1.11, H itself is an F-covering subgroup of G. m
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2.1.26 THEOREM:
If F 1is a saturated formation and G a finite solvable group,

then every F-projector of G 1is an F-covering subgroup of G.

We shall argue by induction on |G|. Assume that H 1is an
F-projector of G and let N be a minimal normal subgroup of G. Then
HN/N 1is an F-projector of G/N. By induction hypothesis HN/N is an
F-covering subgroup of G/N. Put M = HN. By 2.1.18 we can write M = H*N
where H* 1is an F-covering subgroup of G. Since N is abelian (so it is
nilpotent), it contained in 4F(M), and so M = HN = HF(M) = H*F(M). By
2.1.25, there is an F-covqfing subgroup H of M containiﬂg H. But H
is F-maximal in G by 2.1.22, so H = H, and therefore H is an
F-covering subgroup of M. Also H* is an F-covering subgroup of M since
it is aan-covering subgroup of G. So it follows from 2.1.17(ii) that H
and H* are conjugate in M. Obviously this shows that H is an

F-covering subgroup of G. m

The following theorem is analogous to 2.1.17, the fundamental theorem

on covering subgroups.

2.1.27 THEOREM:
Let F be a formation.
(i) If every finite grdup has an F-projector, then F 1is saturated.
(ii) If F 1is saturated, then every finite solvable group possesses

F-projectors and any two of these are conjugate (in the group).
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(1) Suppose that every finite group has an F-projector, and let G
be a finite group such that G/¢(G) € F. If H is an F-projector of G,
then Hy(G)/¢(G) is an F-maximal in G/¢(G). Since G/¢(G) € F and
Hp (G)/#(G) =< G/¢(G), we must have Hp(G)/$(G) = G/$(G) which implies that
Hp (G) = G, which implies that XG = H € F by the non-generator property of

¢ (G).

i

(ii) Follows from 2.1.17(ii) and 2.1.23(a) and 2.1.26. m

As we have seen in Theorem 2.1.26, there is a close connection between
F-covering subgroups and&F-projectors. The most important instance of this
theory is when F = N, the class of finite nilpotent groups. Since F is
saturated (see Example 2.1.8(b), the F-covering subgroups and F-projectors
coincide and form a single conjugacy class of nilpotent self-normalizing

(i.e. Carter) subgroups in any finite solvable group.

2.1.28 THEOREM (Carter):
Let G be a finite solvable group. Then the Carter subgroups of G
are the covering subgroups (or projectors) for the formation of finite

nilpotent groups.

Proof:

Let H be an N-covering subgroup of G, where N is the formation
of finite nilpotent groups. Suppose H < NG(H). Then there is a subgroup
K such tﬁat H <K and K/H has prime order. Now K = HKN. However
K, =<H so K

N
H € N, it is a Carter subgroup of G.

H a contradiction which shows that H = NG(H). Since
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Conversely, suppose H 1is a Carter subgroup of G and H < H1 =G

with Hl/N € N. Then by 1.6.3, HN/N is a Carter subgroup of Hl/N' But
since Hl/N is nilpotent, its only self-normalizing subgroup is Hl/N

itself (see 1.2.3). Thus H1 = HN as required. m



49,

2.2 PULL-BACKS FOR COVERING SUBGROUPS (PROJECTORS):

In this section, we show that "Pull-backs' exist for the F-covering
subgroups (or F-projectors) associated with a saturated formation F of
finite solvable groups, and we will use this to construct several classes

of formations. We first prove a number of preliminary results.

2.2,1 LEMMA:

If F is a formation, if F is an F-projector of a finite (not
necessarily solvable) group G, and if M,N are normal subgroups of G,

‘then FM N FN

F(M N N). (

Proof:

Let L

FM1 FN. Then F(MN N) <L, LM =FM, LN = FN,

L/LNM=IM/M=FM/M € F and L/L N N2 LN/N = EN/N € F. Hence

L MAON=L/(LANMNN) € F. But F(MN N)/MN N) is F-maximal in

G/MN N, so that L =F(MN N). This completes the proof. o

2.2.2 LEMMA (Huppert):
Suppose that F 1is a saturated formation, and that F is an
F-covering subgroup of G. Then for all normal subgroups Nl’ N2 of G,

FNNN, = (FNND(FNN,).

We will argue by induction on |G| > 1. Put M = N, N Ny < G. Then
by 2.1.14, FM/M is an F-covering subgroup of G/M. If M # <1>, then by
induction we have (N1N2M/M) N (FM/M) = ((NlM/M) N (FM/M)) ((NZM/M) N (FM/M))

which implies NlNZM N FM = (NlM N FM)(NZM N -FM) and so we have
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A

NN,NF s (NNMAFM) NF = (NMNEM)(NM N EM) N F

[M(NlM n F)][M(NZM N F)] N F by the modular law

(NM 0 F)(NM N FIM N E

(NlM n F)(NZM N F)(MN F) by the modular law again

since (NM ﬂ‘F)(NZM N F) < F. Thus we have

NN, MFs (NMAF)NMNFE)MNOEF) ..., (*).
Substituting for M = N1 N N2 in (*) we get
N
N1N2 NF <= (N1 N F)(N2 N F)(N1 n N, nNFE) = (N1 n F)(N2 n F).

But clearly (N1 N F)(N2 N F) < N1N2 N F so the equality holds in this

case.

So we now consider the case when N1 n N2 = <1>: Since F is an
F-covering subgroup of G, F is an F-covering subgroup of FN1 by

2.1.13. So if NJF <G then by induction we have:

N2 N F (NlN2 n NlF) nFE= Nl(N2 n NlF) NF =

N

(N1 n F)(N2 n NlF N F) = (N1 n F)(N2 n F).

Similarly if N2F < G. So we may assume now that N1F = N2F = G. But then
G/N.1 = FNi/Ni = F/N.1 NFeF for i=1,2, and consequently G/NlﬂN2 €F,
since F 1is a formation. Since N1 n N2 =<I>, Ge€¢F, and so F =G

by 2.1.17(ii). The conclusion then is trivial. o
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2.2.3 LEMMA:
Denote by FlF2 the class of all groups which are extensions of

groups in F1 by groups in F2, and let Fl’ F, be saturated formations.

2

Suppose that the order of each group in F1 -is coprime to the order of each

group in F2. Then FlF2 is a formation. If F., is an Fl-covering

1

subgroup of G, and F2 is an Fz-covering subgroup of NG(Fl), then

F1F2 is an F1F2—covering subgroup of G.

Proof:
Let G ¢ FlF2 and N 9 G. Since G ¢ F1F2, then for some normal
subgroup M of G we have M ¢ F1 and G/M ¢ F2. Now

G/MN = (G/M)/(MN/M) ¢ F2, éince F, 1is a formation; and MN/N ééM/MﬂN € Fl,

2
since F1 is a formation; and so G/N € F1F2. Now suppose ‘G/M, G/N ¢ FlF2
where M,N =@ G. Then for some normal subgroups R, S of G we have

G/R, G/S €>F2 while R/M, S/N € Fl' Let m be the set of primes dividing
IR/M| or |S/N|, and let H be a Hall m-subgroup of G. Then by the
hypothesis on F1 and F2, H<RNS, and HM = R, HN = S. Thus
H/HNM=R/M ¢ F, and H/HNN=S/N¢€F, and so H/V(H NMAN)y€F,.
Now Rl S=HMNHN = HMN N) by 2.2.1, since H 1is m-projector of G
(see 2.1.23(a)). So RN S/MNANH/(HNMAN) € F. Since G/RNSE€F,

we have G/M N N ¢ FlF2 as desired.

1F2 € F1F2. Now

suppose that F1F2 <=V, and V/N ¢ F1F2. We want to show that F1F2N = V.

We consider the second conclusion. Certainly F

Since V/N ¢ F1F2, there is a normal subgroup K of V so that V/K ¢ F2
and K/N ¢ F,. Since (|V/KI,IF1|) =1, F =K, and therefore F, is an

Fl-covering subgroup of K. Thus K = FlN. Since any two V-conjugates of
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Fl are necessarily K-conjugate, it follows that for any v €V, FX = Fl
' vt -1 :
for some k € K, and so Fl = F1 or vk € NV(Fl); that is

v € N, (F)K which means that V = N, (F;)*K. Therefore
V/K & Nv(Fl)/NV(Fl) NKeF, as V/K€F,. Since F=VNNI(F) = Ny (F)
and F2 is an F-covering subgroup of NG(Fl), it follows that

Ny(F) = F,(N,(F{) N K); hence V = KN (F;) = KF, = F,F,N. m

Now we come to the main theorem in this section.

2.2.4 THEOREM:

Let F be a saturate@ formation. Let G be a finite solvable
group with normal subgroups M and N, and suppose M N = <1>. If an
F-covering subgroup of G/M and an F-covering subgroup of G/N havé the
same image in G/MN then they are both homomorphic images of some

F-covering subgroup of G.

Let Fi/M and ?é/N be F-covering subgroups of G/M and G/N
respectively such that ?E/M and fé/N have the same image in G/MN. By
2.1.18, Fi/M = FlM/M and fé/N = FZN/N where F,, F, are F-covering
subgroups of G. Thus we may suppose that there are F-covering subgroups

Fl’ F2 of . G such that FlMN = FZMN. We must find an F-covering subgroup

F of G so that FM = F.M and “FN = F,N.

1 2

If G 1is a minimal counterexample to the theorem, then we claim that

G = FlMN and M, N are minimal normal subgroups of G. To show this,

suppose 'FlMN < G. Then Fl, F2 are F-covering subgroups of FlMN = FZMN,
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and so by minimality of G there is an F-covering subgroup F of FlMN

such that FM = FlM and FN = F2N. But since F 'is an F-covering subgroup

of F/MN and FlMN/MN is an F-covering subgroup of G/MN, by 2.1.16,
F must be an F-covering subgroup of G, a contradiction, since G has

no such F-covering subgroups.

Now we show that M, N are minimal in G. Suppose not, and assume

, @re minimal normal subgroups of G such that <1> < M, < M

and <1> < Nl < N. Since G 1is a counterexample to the theorem, then for

any F-covering subgroup F of G we have FM # FlM or FN # F2N. We may

that Ml’ N

assume FM # FlM. Now consider the smaller group G/M1 with its normal

subgroups M/M1 and NMl/Ml’ see Fig. 1.

G

MN = M(M;N)

.1

<1>

Clearly (M/Ml) n (NMl/Ml) = <1>. Now since F) is an F-covering
subgroup of G, FlMl/Ml is an F-covering subgroup of G/Ml and therefore
(FlMl/Ml)(M/Ml)/(M/Ml) = (FlM/Ml)/(M/Ml) is an F-covering subgroup of

(G/Ml)/(M/Ml). Similarly F, is an F-covering subgroup of G implies that
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F2M1/Ml is an F-covering subgroup of G/Ml and hence
(F2M1/Ml)(NMl/Ml)/(NMl/Ml) = (F2M1N/Ml)/(NM1/M1) is an F-covering subgroup
of (G/M)/(NM,/M). Since (FM/M)/(M/M]) = FM/M and
(FZNMl/Ml)/(NMl/Ml) ==F2M1N/M1N and clearly PlM/M, FZMN/MlN have the

same image in G/MN, we conclude that (FlM/Ml)/(M/Ml) and
(F2M1N/Ml)/(NM1/M1) have the same image in (G/Ml)/(MN/Ml), and therefore
there is an F-covering subgroup of fYMl of G/M; such that (?VMI)(M/MI) =
(FM; /M) (M/M)) and - (F/M)) (NMj/M)) = (FM /M) (M) /M), But F/M; = FM /M
by 2.1.18 where F 1is an F-covering subgroup of G. So we have

(BM, /M) /M) = (F/M)) (/M) = (F M;/M;) (M/M;), that is EM/M; = F{M/M,
which implies that ‘F@ =FM, a contradiction. So if G 1is a minimal

counterexample to the theorem, then we must have G = FlMN and M, N are

minimal normal subgroups of G, and therefore abelian. Hence a non-trivial

intersection Fl NM or Fl N N would be a normal in G (see 1.3.2),
and therefore Fl must either contain or have trivial intersection with each

of M and N. Suppose that M < F Then G/N = FlN/N € F, so that

1
F2N = G. Thus we may take F = Fl and we finished, in this case. By

symmetry, we may suppose that M N F. = Nl Fl = <1>, Now by 2.2.2,

1

Fl N MN = <1>, and we may suppose that similar results hold for F,. Now

let F=FMNF,N. Then |F| = lF1M||F2N|/|G| = lFll (notice that
G = FlMN = FZMN = FlMFZN and Fl AM= F2 N N =<1>). Now
MF = M(FlM N FZN) = FlM N G=FM. This shows that F and Fl are both

complements of M in MF and are therefore conjugate. In particular,

1,

F is an F-covering subgroup of G. Since we can show in identical fashion

that NF = NF our proof is complete. o

2,
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Now we see how can we construct new formations by comparing covering

subgroups (or projectors).

2.2.5 LEMMA:
Let Fl and F2 be saturated formations and let Y be the class

of groups for which Fl—covering‘subgroups belong to F Then Y is a

2
formation.

Let Ge¢Y, N<2G. Let Hl/N be an Fl-covering subgroup of G/N.
Then by 2.1.18, Hl/Nl=(ﬁN/N where H 1is an Fl—covering subgroup of G.
Now H 1is an Fl—covering subgrqup of G implies that H ¢ F2 and hence

HN/N € F2’ since F2 is a formation. Thus Hl/N € F2 and so G/N € VY.

Now let G/N, G/M € Y. We want to show that G/M N N € V. Let
Hl/M N N be an Fl-covering subgroup of G/M N N. Then again by 2.1.18,
Hl/M NN=HMNN)/MNN) where H is an Fl—covering subgroup of G.
But then HN/N, HM/M are Fl—covering subgroups of G/N and G/M
respectively. Since G/N, G/M € Y it follows that HN/N, HM/M € F,.
Now, since H/H N N = HN/N € F2 and H/HN M= HM/M € F2, we have
H/ (H h MNN) € F, as F, is a formation. But H/(HN MNN) =
HMNN)/(MMNN) =H/MNN. Thus H*/MN N € F2 and therefore

G/MNNeVY. o

As an application of the theorem 2.2.4, we offer a more delicate

construction.
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2.2,6 THEOREM:

Suppose that F1 and F2 are saturated formations; then the
class of groups in which Fl—covering subgroups are subgroups of Fz-covering
subgroups is a formation. In particular, the class of groups for which

Fl— and Fz—covering subgroups coincide is a formation.

The second statement is a direct consequence of the first. Suppose G
is a member in the class of groups in which Fl—covering subgroups are
subgroups of F2—covering(subgroups, and N 2G. If H/N is an Fl-coverihg

subgroup of G/N then by 2.1.18, H/N = HlN/N where H, is an Fl-covering

1

subgroup of G, but then Hl < H, where H2 is an F2—covering subgroup of

2
G; hence H/N = HlN/N < HZN/N and by 2.1.14, H2N/N is an Fz-covering
subgroup of G/N. Thus this class is a homomorph. Now suppose that M and
N are normal subgroups of G, M N N = <1>, and in both G/M and G/N,
Fl-covering subgroups are subgroups of Fz—covering subgroups. Then for an

F,-covering subgroup of F -covering

1 1 1
subgroups of G/M and G/N respectively. Furthermore, by lifting back

of G, FlM/M and FlN/N> are F

from G/MN into G/M and G/N, and then applying Theorem 2.2.4, we may
assume that for some F2-covering subgroup F2 of G, we have FlM < F2M

and FlN < FZN' Applying 2.2.1 we see that

Fi = F/(MNN) =FMNFNSFMAFN=F,MNN) = F,y

1

our proof is complete. n

Several important formations arise in the manner of Theorem 2.2.6.

For instance, groups in which Carter subgroups (i.e. nilpotent covering



subgroups (projectors)) are Hall subgroups (i.e. T-covering subgroups

(m-projectors)).

57.
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Chapter 3

PROJECTORS and SCHUNCK CLASSES
In this chapter all objects called groups are supposed to belong to

the class of finite solvable groups unless explicitly stated otherwise.

3.1 DEFINITION:
Let G be any finite group. G 1is called a primitive if there

is a maximal subgroup[ S of G with CoreG(S) = <1>, where
CoreG(S) = ﬂ{Sg : g € G},

The subgroup S 1is called a primitivator of G.

3.2 REMARKS and EXAMPLES

(i) If G is a group, S is a maximal subgroup of G, then
G/CoreG(S) is obviously primitive with S/CoreG(S) as primitivator, and all

the primitive factor groups of G are obtained this way.

(ii) From (i) it follows immediately that

¢ (G)

ﬂ{CoreG(S) : G/CoreG(S) is primitive}

ﬂ{CoreG(S) : S is maximal in G}.

(iii) If H <G and HN = G for all primitive factor groups G/N
of G, then H = G. For otherwise there would exist a maximal subgroup S
of G with H =S, and this would imply that HN < SN = S for

N = CoreG(S), a contradiction.
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(iv) <1> 1is not primitive.

(v) If G is a group with a prime order, then G is primitive

and <1> is a primitivator of G.

(vi) Since in a nilpotent group every maximal subgroup is normal,

a nilpotent group is primitive iff it has prime order.

3.3 LEMMA: : //

Let G be a primitive group, S a primitivator of G, <1> #H =G

and H is nilpotent. Then S 1is a complement of H in G.

Proof:

SN H«<H since CoreG(S) = <1>; therefore SN H< NH(S N H)
because of the nilpotence of H (see 1.2.3). Hence S < SNH(S N H) (for
otherwise kNH(S M H) =SNH). Since S 1is a maximal subgroup of G, we
must have SNH(S MH =G, But HN S=2S and HN S 2 NH(H ns), so

HN S = SNH(S N H) = G. Since CoreG(s) = <1>, we have HN S = <1>,

SH = G now follows immediately from H £ M and the maximality of

3.4 COROLLARY:
Let G be a primitive group. Then G has a unique non-trivial

nilpotent normal subgroup N.

In particular, N is the unique minimal normal subgroup of G.
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Let S be a primitivator of G, N a minimal normal subgroup of G,
and H a nilpotent normal subgroup of ~G. Since N is abelian, HN is a
non-trivial nilpotent normal subgroup of G. From this, by 3.3

|HN| = |G:S| = |[N] so N=NH and H=<1> or H=N. g

3.5 LEMMA:

/

Let G be a primitive group, S < G, and N minimal normal

subgroup of G. Then S is a primitivator of G iff SN = G.

Proof:
Suppose S is a primitivator of G. Then S 1is a maximal subgroup

of G and N £ S, since CoreG(S) = <1>, Hence G = SN.

Conversely, suppose G = SN. Then by 3.4, S contains no minimal

normal subgroup of G; hence CoreG(S) = <1>, Let S = Sl< G. NS =G

implies that N £ S,- Since N is abelian and NS, = G, NN S1 2 G.

Since N £ Sl’ NN S1 =<1> so NN S=<1> and S =S5 and therefore

1’

S 1is a maximal subgroup of G. m

3.6 LEMMA:

Let G be a group, N minimal normal subgroup of G, and Sl’ 52

primitivators of G. Then S, and S

1 are conjugate under N.

2

Proof:
If G =N, then S1 = 52 = <1> by 3.3. Otherwise let L/N be a
chief factor of G, |N| = p®, and |L/N| qB where p and q are primes.

Then by 3.4, L 1is not nilpotent, so p # q. Since Sl’ 52 are complements
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of N in G by 3.3, it follows that S, N L is a Sylow g-subgroup of L

(i =1,2). But then S, N L= (5,0 L)® by Sylow's theorem, where x € L.

X _ X X

= Tl

Then S, N L =S and S NL=(S,NL)" =S,. If S #85,, the
<Sl’ S§> =G and S1 N L would be a non-trivial nilpotent normal subgroup

of G, in contradiction to 3.4. m

3.7 THEOREM:
A group G is primitive iff there exists[a minimal normal subgroup

N of G such that CG(N) = N.

Proof:

<1> <1>

Fig. 2

Suppose G 1is primitive with primitivator S. Let N be the unique
‘ minimal normal nilpotent subgroup of G, whose existence is guaranteed by
3.4. Since N 1is abelian normal subgroup of G, N < CG(N) <G by 1.1.9.
By 3.3, SN =G and SN N =<I>. Hence G = SCc(N) and s N C;(N) =G.

Therefore S N CG(N) = <1> and so CG(N) = N.
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Conversely, suppose G has a minimal normal subgroup N such that

CoN) =N. If N =G, then G has a prime order, and the theorem holds.

Otherwise let L/N be a chief factor of G, |N| = pa and
|L/N| = qB where p and q are primes. If p =‘q, then L would be a
p-group and <1> # NN Z(L) = G, hence N = Z(L) in contradiction to
CG(N) = N (Notice that N < Z(L) implies that L < CG(N)). Therefore
P#q. Let T bea Syloqu;subgroup of L and S = Ng(T). By the
Frattini argument, SL =G. If S =G then T =G so T < CG(N) since
T =N =<1> (see 1.1.10(f)), a contradiction. Therefore S < G and
SN N = <1>. Furthermore, CoreG(S) NN =<1> and so by 1.1.10(f),
CoreG(S) < CG(N) = N, hence CoreG(S) = <1> and)thgrefore S is a

primitivator of G. o

3.8 DEFINITION:

A homomorph F 1is called a Schunck class (or saturated homomorph)

if it is primitively closed, i.e. if any finite (not necessarily solvable)

group G, all of whose primitive factors are in F, is itself in F.

3.9 EXAMPLES:

(1) <1> 1is a Schunck class and is contained in every Schunck class.

(ii) Consider N, the class of finite nilpotent groups, which is
closed under epimorphisms. If for a group G all the primitive factor
grbups are nilpotent, then by 3.2(vi) and 3.2(i), this means that all the

maximal subgroups of G are normal in G, so G 1is nilpotent.
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(iii) Let 1 denote the class of solvable m-groups, where m is
a fixed set of primes. Let C(m) denote the class of groups G such that
for all proper normal subgroups M of G, G/M ¢ n. C(n) is called the

class of m-perfect groups. C(m) 1is closed under epimorphisms.

In 2.1.3 we showed that the group G has a unique normal subgroup
N minimal subject to G/N 6 3: Now we show that if N < G, then G has
a primitive quotient group in © : For if N is a maximal in G, then
G/N is cyclic of prime order and so primitive. Otherwise N is properly
contained in a maximal subgroup /S of G. Since N =G, N = Core,(S).
By 3.2(1) G/CoreG(S) is primitive and as N < CoreG(S) we have
G/CoreG(S) QQ(G/N)/(CpreG(S)/N) €n, as G/N € n, Thus if G has all its
primitive quotient groups in C(m), G itself must be in C(m) and so

C(m) 1is a Schunck class.

There is a close connection between Schunck classes and saturated

formations, as the next two Lemmas indicate.

3.10 LEMMA:

If F 1is a saturated formation then F is a Schunck class,

Let G  be a group and let G/N € F for all primitive factor groups
G/N of G. Then G/N is of the form G/CoreG(S) where S 1is a maximal
subgroup of G. By 3.2(ii), G/#(G) = G/N{Core;(S):S is maximal in G} e F

as F 1is a formation. Since F 1is saturated, G € F. o

The converse is not true in general.
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3.11 EXAMPLE:

C({2}) 1is a Schunck class, as has been established in Example
3.9(iii), but C({2}) is not a formation. To see this, let H = C3Q8 be
the semidirect product of Q8 with a subgroup C3 of Aut(Qs) It can
easily be seen that H é C({2}). The group G = C2 x H obviously does not
belong to C({2}). But in G tﬁere is another normal subgroup C%,
different from C,, with G = C} x H. Therefore G/C2 ;=G/C§ € C({2hH

and C2 N CE = <1>.

3.12 LEMMA: //

Let F be a formation. If F is a Schunck class then F is a

saturated formation.

Suppose G/¢(G) ¢ F. 1If G/CoreG(S) is a primitive factor group,
then by 3.2(ii), ¢(G) < CoreG(S) and F being a.homomorph imply that
G/CoreG(S) € F. Since F 1is a Schunck class, G € F, so F 1is a saturated

formation. 0

From Lemma 3.10 and Example 3.11 we conclude that Schunck classes are

more general than saturated formations.

Formations Schunck classes

Saturated formations

Fig. 3
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The main object of this chapter is to extend the results of Gaschﬁté
on the existence and conjugacy of covering subgroups (projectors) in saturated
formations to the case of Schunck classes. First we start with the following
definition. |
3.13 DEFINITION:/

Let F be a class of gréﬁps.

F is called projective if for any group G there exists an F-projector of

G.
3.14 THEOREM: e

If F 1is projective, then F 1is a Schunck class.
Proof:

Let G € F. Then G is an F-projector of G and so G/N is an
F-subgroup of G/N for any normal subgroup N of G, that is G/N € F

for any N 2 G and therefore F is a homomorph.

Now let H be an F-projector of G and G/N € F for all primitive
factor groups G/N of G. Then by the definition of F-projectors

HN/N = G/N, that is HN =G and G =H € F by 3.2(iii), as required. m

Now we show that a Schunck class F 1is projective and that in every

group (i.e. finite solvable group) the F-projectors are conjugate.

3.15 MAIN LEMMA:
Let F be a Schunck class, H a nilpotent normal subgroup of G

and G/H € F. Then:
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(1) There exists M <G, M F-maximal in G, MH = G.
(ii) All such M are conjugate under H.

Proof:

(1) (see fig.4)

™

<1l>

It is clearly sufficient to construct T <G, T € F with TH = G.
For this purpose let T be minimal with T <G and TH=G. If T ¢ F,
then by definition of Schunck class there would exist a primitive factor
group T/N of T with T/N ¢ F. Then T N H £N because otherwise
G/H=T/T N H would have a factor group which does not belong to F.
However, by hypothesis G/H € F and F is a homomorph so this is
impossible, So (T N H)N/N would be a non-trivial nilpotent normal
subgroup, hence by 3.4 a minimal normal subgroup of T/N. Let To/N be a
primitivator of T/N. Then (TO/N)(N(T N H)/N).= T/N by 3.5, that is
TON(T AH) =T and G =TH = TON(T A H)H = TOH; since To < T, this would

contradict the minimality of T. Hence T € F.

(ii) (see fig.5)
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Fig. 5

Let M,, M, be F-}rréximal in 6 and M. H = M,H = G.

12 72 1 2

If G € F, then ‘Ml =M, = G which proves the assertion.

If G ¢ F, then by 3.8 there exists a primitive factor group G/N
of G with G/N ¢»F: Now M.N # G for i = 1,2, because otherwise
G/N g-Mi/Mi N N € F. Furthermore G/H € F and, as F 1is a homomorph,
H#N, so HN/N is a non-trivial nilpotent normal subgroup of G/N, hence
by 3.4 HN/N is a minimal normal subgroup of G/N. Since (MiN/N)(HN/N) =
MiH/N = G/N, MiN/N are primitivators of G/N by 3.5 and conjugate under

HN/N by 3.6. Therefore M,N = (MZN)h = M?N for some h € H. If we put

1
G* = MlN and H* = MlN N H. Then G*/H* = MlN/(MlN N H) #G/H € F, and
Mi, Mg are F-maximal in G* with MlH* = MgH* = G*. By induction it now
follows that M1 and Mg are conjugate under H* and therefore Ml’ M2

are conjugate under H. no

3.16 MAIN THEOREM:

Let F be a Schunck class and G a finite solvable group. Then:

(1) There exists an F-projector of G.
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(ii) All F-projectors of G are conjugate under G.

Proof:

(see fig.6) G

Fig. 6 % <1>

The theorem obviously holds for G = <1>. We carry out the proof by

induction on |G|.

(1) Let G # <1>, <I> # L =G, L nilpotent, and by induction

M/L is an F-projector of G/L. Then M/L € F and so by 3.15(i) there
exists M <M, M F-maximal in M and ML = M. We show that M is an
F;projector of G.

First we show M is F-maximal in G: For if M < M* < G,
M*VE F then M*L/L=M*/M* N L € F since F 1is closed under epimorphisms.
Since M/L is F-maximal in G/L, M*L/L < M/L and M* <M. M = M* now
follows from the F-maximality of M in M.

Now we show that MN/N is an F-projector of G/N for any

minimal normal subgroup N of G: By induction, let T/N be an F-projector
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of G/N and by 3.15(i) let T be F-maximal in T with TN =T. H = NL
is nilpotent. MH/H = MH/H and TH/H = TH/H are F-projectors of G/H,
so by induction they are conjugate in G/H and therefore MH and TH
&o & : &o
are conjugate in G. So MH = (TH) = T "H  for some g9 €G. Then T
g
is also F-maximal in G, and by 3.15(ii) T © and M are conjugate

under H; that is M = Tg, g € G. As T/N 1is an F-projector of G/N,

so is (TVN)gN = TgN/N = MN/N. Part (i) of the theorem now follows from

2.1.22,
p
(ii) 1f Ml and M, are F-projectors of G and if <1> # H 2 G,
H nilpotent, then MlH/H and 'MZH/H are F-projectors of G/H by 2.1.21(b)

g H g
and by induction M H/H = (M,H/H) ° = M°H/H  with g, € G. Then by

3.15(i1) M, = Mg with g € G; as required. @
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Chapter 4

COVERING SUBGROUPS and PROJECTORS IN FINITE w-SOLVABLE GROUPS

In this chapter we study the existence and conjugacy of covering
subgroups and projectors in finite w-solvable groups. We follow Brewster's
and Covaci's proofs ([10], [15],y[16] and [17]) that some results of
Gaschiitz and Schunck (Chapters 2, 3), originally proved only for solvable
groups, can be extended to m-solvable groups. All groups considered here
are finite.

7

We first start with some results that we shall use. These results,

which are true for any finite group, are due to R. Baer.

’

4.1 LEMMA:

If M 1is a solvable minimal normal subgroup of a finite group G,

then M 1is an abelian p-group, for some prime p.

If a maximal subgroup S of G does not contain M, then G = MS

and M S = <1>.

Since M has no proper characteristic subgroups (because these
would be normal subgroups of G), and since the commutator subgroup M' of
the solvable group M is different from M, M' = <1> so that M is
abelian. If the Sylow p-subgroup K (say) were a proper subgroup of M,
then K would be a characteristic subgroup of M and so a normal subgroup

of G, a contradiction. So M 1is a p-group.
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If the maximal subgroup S of G does not contain M, then
clearly G = MS. Since M=sG, MNS =S and since M is abelian,
MNS<=M, so MNS<<MS =G, and MNS=M or MNS =<1>. But as

M£ZS, MNS#M hence MN S =<1>. @

4.2 LEMMA: Let G be a primitive group.

If S is a primitivator of G, if N is a non-trivial normal
subgroup of G, and if C = CG(N), then CN S =<1> and C 1is either
<1> or a minimal normal subgroup of G.

~

Proof: (see fig. 7)

Since CoreG(S) =<1>, N£S and so G =NS. Since N=2G, C <4G.
Consequently C N1 S 2S so that S < NG(C N 8). Since N 1is contained in
the centralizer of C, and hence N =Cy(CN S) = NG(C ns),

G =NS = NG(C NS) and hence CN S <G so SN C = <1> because

CoreG(S) = <1>..

Now suppose that C contains a non-trivial normal subgroup K of G.
As before we see‘that K#££S and so G = KS. Hence K =C = KS, and so by
the modular law C = K(C 1 8) = K. Hence either C = <1> or else C is a

minimal normal subgroup of G.
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Fig. 7 1> a
4.3 COROLLARY: /"
If G is a primitive group and S is its primitivator. Then:
/ .

(1) There exists at most one non-trivial abelian normal subgroup

of G.

(ii) There exists at most two different minimal normal subgroups
of G
Proof:

(i) If K 1is a non-trivial abelian normal subgroup of G, then
K =C,(K). Hence <1> <K <= CG(K); and by 4.2, CG(K) is a minimal normal
subgroup of G. Consequently K = CG(K) is a minimal normal subgroup of G.
Assume now by way of contradiction the existence of abelian
normal subgroups U and V of G such that <1> # U # V # <1>. Bf the
preceding result U and V are both minimal normal subgroups of G so
that in particular U N V = <1>, Consequently U < CG(V). But V has been

shown to be its own centralizer so that U <V, a contradiction.

(ii) Assume by way of contradiction the existence of three different

minimal normal subgroups P, Q and 'R of G. Then PN R =PN Q=<1>.50
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that R and Q are both contained in the centralizer of P. Since
RN Q=<1>, RQ is not a minimal normal subgroup of G so that the
centralizer of P in G is neither <1> nor a minimal normal subgroup of

G. This contradicts Lemma 4.2; and this contradiction proves (ii). 0O

4.4 COROLLARY:
If S is a primitivator/pf the finite group G and if A, B are
two different minimal normal subgroups of G, then

(i) G=AS =1BS, <l>=AMNS=BNS;

(ii) A

Cg(B) (and B = C.(A));

(iii) A and B are mon-abelian groups.

Proof:
Since A and B are two different minimal normal subgroups of G,
ANl B=<1> sothat B < CG(A). We see from the proof of 4.3 that

B = CG(A) and likewise that A = CG(B). This proves (ii).

Since CoreG(S) = <1>, neither A nor B is contained in S.

Hence SA = SB = G. Since A CG(B), AN S = <1> 1is a consequence of 4.2;
and likewise we see that B N S = <1>, This proves (i), and (iii) is a

trivial consequence of (ii). o

4.5 LEMMA: Let G be a primitive group.
If the indices in G of all the primitivators of G are powers of

one and the same prime p, then G has a unique minimal normal subgroup.
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Assume by the way of contradiction the existence of two minimal
normal subgroups A and B of G. Because'of the existence of maximal
subgroups with Core <1> we may deduce from Corollary 4.4‘that A is
non-abelian and that G = AS, AN S = <1> for any maximal core-free
subgroup S of G. Since |A|v= |G:S|, and since the later is by the
hypothesis is a power of p, A 1is a minimal normal subgroup of prime
power order. Since such groups are solvable, Lemma 4.1 implies that A

is abelian, and so we have arrived at a contradiction to 4.4(iii). O
4.6 LEMMA: Let G be a primitive group.
If G has a non-trivial normal solvable subgroup, then G has one

and only one minimal normal subgroup.

Proof:

Let N be a solvable minimal normal subgroup of G. Then N is,
by 4.1, an elementary abelian p-group. If S ‘is a maximal subgroup of G
with CoreG(S) =<1>, then N #£8S; and G =S8N, NN S =<1> by 4.1.
It follows that |G:S| = |N| 1is a power of p. The result now follows by

4.5. o

4.7 THEOREM:
Assume that the group G possesses a non-trivial solvable normal

subgroup, and that the core of the maximal subgroup S of G is <1>.

(a) The existence of a non-trivial solvable normal subgroup of S

implies the existence of a non-trivial normal subgroup of S whose order is
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relatively prime to |G:S]|.

(b) If there exists a non-trivial normal subgroup of S whose order
is relatively prime to |G:S|, then S is conjugate to every maximal

subgroup T of G whose core in G is <1>.

Proof:

(a) From our hypothesis we deduce first the existence of a solvable

minimal normal subgroup N of G. By 4.1, N 1is an abelian p-group for some

p

/

<1>, then N £ X; and 4.1 implies G = NX, <1> = NN X. In particular
G/N=X, and |G:X| = \Nl. which is a power of p. (Note that this may
be applied to X = § too).

If there exists a non-trivial solvable normal subgroup of S,
then the same is true for the isomorphic group G/N. Consequently there
exist; a solvable minimal normal subgroup M/N of G/N. By 4.1, M/N
is an abelian g-group for some prime q. Assume by way of contradiction that
P =q. Then M is a p-group. Since N 1is a non-trivial normal subgroup
of the p-group M, N contains non-trivial central elements of M, But
the center of M is a characteristic subgroup of a normal subgroup of G;
and so Z(M) 2 G. The minimality of N and <1> # N1 Z(Mj imply that
N =< Z(M) and-that therefore M < CG(N). Since G possesses maximal
subgroups with Core <1>, and since <1> < N = CG(N) (as N 1is abelian),
CG(N) is a minimal normal subgroup of G by 4.2. Hence
CG(N) =N<«<M= CG(N), a contradiction proving p # q. The isomorphic

groups G/N and S contain therefore a non-trivial normal subgroups of
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order a power of q, whereas IG:S[ = [N], which is a power of the prime

P #q.

(b) Assume the existence of a non-trivial normal subgroup of S

whose order is prime to |G:S|. Then the group G/N = S contains a
non-trivial normal subgroup P/N' whose order is prime to |G:S|. Since
IN| = |G:S|, we see that (|N|,|P/N|) = 1. Consider now some maximal

subgroup X of G such that CoreG(X) = <1>. Then G = NX and
<1> = NN X. Because of N <P < NX g#nd the modular law, we have
P=N(PNX) so that PN X is’a complement of N in P. Since
PN X=X, Xz« NG(P N X). Since G possesses maximal subgroups with
core <1> as well as the abelian mihimal normal subgroup N, N is, by
4.3, 4.4 the unique minimal normal subgroup of G. Hence P N X is\not a
normal subgroupdof G so that NG(P N X) 1is exactly the maximal subgroup
X of G.

Suppoée now that T 1is a maximal subgroup of G with
CoreG(T) = <1>. Applications of the results of the preceding paragraph
of our proof show that PN S and PN T ‘are‘both complements of N in
P, that S =N.(PNS) and that T = N,(PN T). Since (IN|,|P/N}) =1,
and since N is‘abelian, any two complements of N in P are conjugate
in P; (see KOCHENDORFFER [3], p.101, Theorem 6.2.3). Consequently there
exist; an element g in P conjugating PN S to PN T, and this element
g naturally conjugates the normalizer S of P N S into the normalizer

T of PN T. n

4.8 DEFINITION: Let © be a set of primes and n' the complement to T

in the set of all primes.
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A group is m-solvable if every chief factor is either a solvable
m-group or a m'-group. Clearly solvable groups are m-solvable, and if

is the set of all primes, any m-solvable group is solvable.

It is also clear that subgroups of m-solvable groups are m-solvable.
Also, if G 1is m-solvable group and N < G then G/N is m-solvable since

chief factors of G/N are isomorphic to a subset of those of G.

4.9 DEFINITION: With m and mn' as above.
/'
A class F of groups is said to be m-closed if: G/0_,(G) € F

implies that G € F, where Oﬂ,(G) denotes the largest normal m'-subgroup

of G.

We shall call a m-closed homomorph a m-homomorph, a m-closed Schunck

class a m-Schunck class, and a m-closed saturated formation a m-saturated

formation.

4.10 DEFINITION: If 6, and 92 are classes of groups, then by @&

1 192

we denote the class of groups G with a normal subgroup N such that

Née¢o, and G/N € 6

1 2°

It is not hard to show that if el and 62 are formations and 61

is closed under normal-subgroups, then 6162 is a formation.

4.11 LEMMA: Let Mﬂ, denote the class of finite m'-groups and let F

F.

be a formation. Then F 1is w-saturated iff F = Mn'
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Suppose F 1is mw-saturated formation. Clearly F E.anF' If
G &M ,F, then there is N =G such that N is a m'-group and G/N € F.
But N < On'(G) and so G/On,(G)?¥ (G/N)/(On,(G)/N)»G F as F is a

formation. Hence G € F.

Cpnversely if F =M ,F suppose G/On'(G) € F. Then G € M_,F

and this class is contained in F so G ¢ F. 0o

e
The following theorem, which is due to Brewster, is a generalization

of Gaschiitz theorem 2.1.17(ii).

4.12 THEOREM:
Let F be a m-saturated formation. If G is m-solvable, then G

has F-covering subgroups and any two are conjugate.

Proof:

First the existence of F-covering subgroups is established by
induction on |G|. If G € F, there is nothing to show since G is its
own F-covering subgroup. So suppose G £ F and let N be a minimal normal
subgroup of G. Since G/N is w-solvable, there is an F-covering subgroup
E/N of G/N. If E 1is a proper subgroup of G, then since E is
m-solvable, by the induction, E has an F-covering subgroup Eo. By
2.1.16, Eo is an F-covering subgroup of G. Thus the result is proved

unless E = G,

However, in this case G/N € F for each minimal normal subgroup N

of G and so, since F is a formation and G ¢ F, G has a unique minimal
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normal subgroup N. Because F 1is saturated, ¢(G) = <1>. Also because
G is m-solvable N 1is either a solvable m-group or a ﬂ}-group. If N is
a m'-group, then N =0, (G) and so we have G/O_,(G) = (G/N)/(O_,(G)/N).
But G/N € F, hence G/On,(G) € F, which implies, by the m-closure of F,
the contradiction that G ¢ F. So N ‘must be a solvable m-group, and so

by 4.1, N is an abelian p—group for some p € w.

Let S be a maximal/;pbgroup of G such that N £ S. We shall show
that S 1is an F-covering subgroup of G. First, by 4.1, G = SN and
SNN-=<1> Also S = S/<1>=S/SN N=SN/N=G/N € F. Finally if
S =8 <G, K<=S* with S*/K ¢ F then either S = S* which implies that
SK = S* or S* =G which implies that N < K as N is the unique minimal
normal subgroup of G and hence SK = SN = G. So in both cases SK = S*

which means that S is an F-covering subgroup of G.

Similarly conjugacy of F-covering subgroups of G 1is shown by
induction on |G|. Let E and EO be any two F-covering subgroups of G.
If Ge¢F, E=G = Eo' So suppose G £ F. Let N be any minimal normal
. subgroup of G. By 2.1.14, EN/N and EON/N are F-covering subgroups of
G/N and so for some x € G, EN = E§N. Thus if EN # G, then E, E§ are

F-covering subgroups of EN and so are conjugate in EN.

So we may assume EN =G = EoN for each minimal normal subgroup. N
of G. Since F 1is a m-saturated formation and G ¢ F, N is a unique
minimal normal subgroup of G and is a solvable m-group. Hence N is an
abelian p-group for some p € m and so E and EO are maximal subgroups
of G. Now E is m-solvable and so a minimal normal subgroup of E 1is

either a w'-group or is solvable. By Theorem 4.7 E and EO are conjugate. Ol
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Some properties of these F-covering subgroups will now be established.

4.13 COROLLARY:
If F 1is a m-saturated formation and G 1is a m-solvable group,

then an F-covering subgroup of G contains a Hall m'-subgroup of G.

Proof:

Using induction on /|G|, let N be a minimal normal subgroup of G
and suppose E 1is an F—Eovering subgroup of G. Then EN/N 1is an
F-covering subgroup of G/N, and so by induction, EN/N contains a Hall

m'-subgroup of G/N.

If N 1is a m-group, then |G:E| = |G:EN||EN:N| is a m-number.
If N isa m'-group, EN € M“,F = F and so E = EN by 2.1.15(i). In
either case |G:E| 1is a m-number and so a Hall w'-subgroup of E is a

Hall n'-subgroup of G. DO

DEFINITION: Let T be a set of primes. A group G 1is called T-closed

if G has a normal Hall T-subgroup.

4.14 LEMMA: Let F be a m-saturated formation and let G be a m-solvable
group in which the F-covering subgroup E 1is n'-closed. Denote the normal
Hall ﬂ'—subgroup.of E by E,,. If H is a Hall m-subgroup of NG(En')
such that HN E 4s a Hall w-subgroup of E, then HMN E is an F—coveriﬁg

subgroup of H.
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Proof:
We argue by induction on |G|. If NG(Eﬁ') # G, then E < NG(EH')
and is an F-covering subgroup of NG(Eﬁ')' Since NG(Eﬁ') is m-solvable,

the induction implies H N E 1is an F-covering subgroup of H.

So suppose NG(Ed]) =G. 'If E , =<1> then by 4.13, G is a
m-group. Consequently H =G and HN E =E so that HN E ié an
F-covering subgroup of H. Thus the case E s # <1> 1is left for considera-
tion. Then ]G/Eﬁ,! < |G], G/Eﬂ, is m-solvable, E/Eﬁ; is a m'-closed
F-covering subgroup of G/E , and HE ,/E, is a Hall m-subgroup of

G/Eﬂ, = N(G/Eﬁ,)((E/Eﬂ')ﬂ')' So by induction (HEﬂ,/Eﬁ,) n (E/Eﬂ,) =

HnN E)Eﬁ,/E is an F-covering subgroup of HEﬁ,/E“,. But the natural

ﬁl
isomorphism from HE ,/E,, to H maps (HN E)E ,/E,, onto HN E. Thus

"HN E 1is an F-covering subgroup of H. @

The following two theorems, which are due to Covaci, give a

generlization to Brewster's theorem (4.12).

4.15 THEOREM:
If F 1is a w-homomorph, then any two F-covering subgroups of a

m-solvable group G are conjugate in G.

By induction on |G|. Let E, EO be two F-covering subgroups of G.
If G € F, then by definition of an F-covering subgroup, we obtain
E = EO = G. So suppose G £ F. Let N be a minimal normal subgroup of G.
By 2.1.14, EN/N .and EON/N are F-covering subgroups of G/N. By the
induction, EN/N and EON/N are conjugate in G/N and so for some

X € G, EN = EﬁN. We distinguish two cases:
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(1) There is a minimal normal subgroup M of G with EM # G.
We put N =M. By 2.1.13, E and Ez are F-covering subgroups of EN;
hence, by the induction, E and Ez .are conjugate in EN and so E and

EO are conjugate in G. (

(ii) For any minimal normal subgroup N of G, EN =G = EoN'
Then every minimal normal subgroup N of G is a solvable m-group.
Indeed, since G 1is m-solvable, N is either a solvable m-group or a
n'-group. Suppose that N 1is a n'-group. It follows that N < On,(G)
and we have G/On,(G) QQ(G/N)/(OH,(G)/N). But G/N = EN/N=E/EN N ¢ F,
hence G/On,(G) € F, which implies, by the m-closure of F, the
contradiction G € F. So N is a solvable m-group. By 4.1, N is abelian.
We shall prove that E and EO are maximal subgroups of G. In the case

E*; for,

]

of E, E<G since G ¢ F. Also E < E* < G implies E
if E < E*, there is an element e* ¢ E¥*\NE € G = EN so e* = eg with
<1>

e € E, g € N. But, we see that g € NN E* , Wwhich implies the

contradiction e* = e € E. Let us notice that coreG(E) <1> = coreG(Eo).
If we suppose, for example, coreG(E) # <1>, .putting N = coreG(E) we
have G = EN = EcoreG(E) = E, a contradiction to E < G. Applying now

Theorem 4.7, it follows that E and EO are conjugate in G. dO

4.16 THEOREM: A n-homomorph F 1is a Schunck class iff any m-solvable

group has F-covering subgroups.

Proof:

In fact, for the proof in one direction, if F is a Schunck class

(not necessarily m-closed), we prove by induction on |G| that any m-solvable
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group G has F-covering subgroups. Two possibilities arise:

(1) There is a minimal normal subgroup M of G such that
G/M ¢ F. By induction G/M \;as an F-covering subgroup ﬁyM. Since
G/M ¢ F, |H| < |G| and so, by the induction, H has an F-covering

subgroup H. Now, by 2.1.16, H is an F-covering subgroup of G.

(ii) Any minimal normal subgroup M of G satisfies G/M € F.
If G 1is not primitive, then by definition of primitivity, we conclude
that for any maximal subgroup S of G, CoreG(S) # <1> and so the core
contains a minimal normal subgroup M of G and hence G/CoreG(S) =
(G/M)/(Corey(S)/M) € F as G/M € F. Thus if G is not primitive then
all primitive factor groups of G belong to F and hence G € F since
F is a Schunck class and therefore G 1is its own F-covering subgrdup.
So we may assume that G is primitive and G ¢ F. if S 1is a primitivator
of G then we claim that S is an F-covering subgroup of Gl First of
all we notice that S € F. Further, if S <V <G, VO v, V/Vo € F, we

have, since S 1is a maximal subgroup of G, V=S or V=G. If V=35

then V SVO, but if V = G, we choose a minimal normai subgroup M of G
with M = Vo° By 3.5, MS =G so V = SVO.

Conversely, let F be a w-homomorph with the property that any
n-solvable group has F-covering subgroups. We shall prove that F is a
Schunck class. Suppose F 1is not a Schunck class and let G be a
n-solvable group of minimal order with respect to the conditions: G ¢ F
and any primitive factor group of G is in F. If M 1is a minimal normal

subgroup of G then by the minimality of G, G/M € F. Since G is a

n-solvable group there is an F-covering subgroup H of G. Thus H =G,
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M<2G and G/M € F imply G = MH. By the m-closure of F and by the
assumption G ¢ F, we conclude, as in the proof of 4.15, that M is a
solvable w-group, hence, by 4.1, M is abelian. So M N H = <1>. As in
4.15, H 1is a maximal subgroup of G.

Now supposég/G isﬂnot primitive. Then CoreG(H) # <1>, so,
by the minimality of G, G/CoréG(H) € F. However, H/CoreG(H) is an
F-covering subgroup of G/CbreG(H) and so H = G. But this is not possible

because H € F and G ¢ F. Thus G is primitive, contradicting the choice

of G. m

Now after we proved the existence and conjugacy of F-covering
subgroups in finite m-solvable groups, we extend our study one further step
to F-projectors which, as we no;iced before are more general than F;covering
subgroups since every F-covering subgroup of the finite group G is an

F-projector of G (see 2.1.23).

By the previous theorem 4.16 we have:

4.17 THEOREM:
If F 1is a m-Schunck class, then any finite m-solvable group has

F-projectors. m

So it remains to prove that the projectors in a m-solvable group are

conjugate. In preparation for this result we give the following theorem.

4,18 THEOREM:
Let F be a m-Schunck class, G a m-solvable group and A an

abelian normal subgroup of G with G/A € F. Then:
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(i) There is a subgroup S of G with S € F and AS = G.

(ii) If S1 and 52 are F-maximal subgroups of G with

AS; = G = AS,, then S; and . S, Eﬁe‘conjugate in G.
(1) Let X = {Sf:S.S G, AS* = G}. Since G € X, X # ¢.
Considering X ordered by inclusion, X has a minimal element S. We
shall prove that S € F.
Put D=SNA, Then D <2G. Let W be a maximal subgroup
of S. We have D < W. Indeed, if we suppose that D # W, we obtain

DW = S, hence ADW = AS = G, which means W € X, in contradiction to the

minimality of S in X. Put N CoreG(W). Clearly D < N. Then

S/N = (S/D)/(N/D). Because S/D = S/S N A= AS/A = G/A € F, we deduce,

since F is a homomorph that S/N € F,

Fér any primitive factor group S/N of S, we can find a
maximal subgroup W of S such that N = CoreG(W). But this means by the
above that any primitive factor group of S ié in F which implies that

S € F, since F 1is a Schunck class.

(ii) We argue by induction on |G|. We distinguish two cases:
(a) If G € F then if S1 and 82 are F-maximal subgroups of G,
S1 = 52 = G and the theorem is proved.

(b) G £ F. It means that there is a primitive factor group G/N
with G/N ¢ F. We have NSl # G and NS2 # G. Now we claim that AN/N is

a minimal normal subgroup of G/N. Certainly AN/N < G/N. Also AN/N is a
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non-trivial subgroup, for otherwise AN = N which implies that

SlN‘= SlAN = SlA = G, a contradiction. Finally, if H/N =2 G/N with

<1> < H/N < AN/N then H/N 1is abelian since AN/N 1is abelian and so

if S/N is a primitivator of G/N then (H/N) N (S/N) = <1> =

(AN/N) N (S/N) and (S/N)=(H/N) = G/N hence |H/N| = |G/N:S/N| = |AN/N|
and so H/N = AN/N theréfore AN/N is a minimal normal subgroup of G/N.
Now put M = AN, C(Clearly (NSi)M =G, 1i=1,2.

M/N 1is a solvable m-group. Indeed, M/N- being a minimal
normal subgroup of G/N, M/N is a chief factor of the m-solvable group
G/N, hence M/N 1is a solvable m-group or a m'-group. If M/N is a
- m'-group, M/N < OH,(G/N) and (G/N)/On,(G/N) =
((G/N)/ (M/N))/ (O, (G/N)/(M/N)); but (G/N)/(M/N) = G/M = ANS /AN =
Sl/S1 N (AN) € F; it follows that (G/N)/Oﬂ,(G/N) € F, which implies, by
the n-closure of F, the contradiction G/N € F. Thus M/N 1is a solvable
m-group.

By 4.6, M/N is the unique minimal normal subgroup of G/N.
Hence SiN/N contain no minimal normal subgrqup of G/N (i=1,2); therefore
CoreG/N(SiN/N) = <1>, Also SlN/N is a maximal in_ G/N. For otherwise
SlN/N < 8*/N < G/N which implies that M/N £ S*/N. Since M/N is abelian
and (S*/N) M/N) = G/N, (S*/N) N (M/N) < G; that is (S/N) N0 (M/N) =
(S*/N) N (M/N) = <1>, and S*/N = S/N, a contradiction. Similarly S,N/N
is a maximal subgroup of G/N.

Now we prove that NSl/N and NSZ/N are conjugate in G/N.
If SlN/N = <1>, we have 'G/N = (SlN/N)(M/N) = M/N; but
G/N = (S,N/N) (M/N); hence (S,N/N)(M/N) = M/N, that is NS,/N = M/N; it

follows that (SZN/N) n (M/N) = SZN/N; but, on the other hand, 4.1 implies
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that (SZN/N) N (M/N) = <1>; we conclude that SZN/N = <1>. This shows
that S N/N = <1> implies S,N/N = <1> and so, S;N/N and S,N/N are
conjugate in G/N 1in this case. Let us suppose now that SlN/N # <1>,
We shall use 4.7. We know that M/N #‘<1> is a solvable normal subgroup
of G/N and SlN/N is a primi}ivator of G/N. Let us prove that SlN/N
has a normal subgroup L/N # <1> with (|L/N|,|G/N:S|N/N|) = 1. Indeed,
SlN/N being non-trivial, lef K/N be a minimal normal‘subgroup of
SlN/N « K/N 1is either a solvable m-group or a n'-group. If K/N is a
solvable m-group, then, by 4.7(a), there is a normal subgroup L/N # <1>
of S/N/N with (IL/N‘,IG/N:SIN/NI = 1. If X/N is a m'-group, then
even K/N # <1> 1is a normal subgroup of SlN/N with (IK/N|,|G/N:SIN/N| = 1.
Applying now 4.7(b), NSl/N and NSZ/N are conjugate in G/N. Hence
NS1 and NS2 are conjugate in G. \

Put G* = NS, = ws)® = sgN, where g € G, and A* = A G*.
We apply the indhction to G*. We notice that A* 4is’ an abelian normal
subgroup of G*, with G*/A* € F and Sl’ Sg are F-maximal subgroups of
G*, with A*S1 = (AN G*)S1 = Sl(A N G*) = SlA NG* =GN G* = G* and
A*sg = S%(A N G*) = S%A N G* =GN G* = G*. By induction, S, and sg

are conjugate in G*, hence S1 and 82 are conjugate in G. @

Now we come to a theorem which is one of the main results of this

chapter.

4,19 THEOREM:
If F 1is a m-Schunck class then any two F-projectors of a m-solvable

group G are conjugate in G.
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Proof:

Induct on |G| and let Sl’ S, be two F-projectors of G and M

a minimal normal subgroup of G. We put §i = MSl and 82 = MSZ'

§i and §é are conjugate in G. Indeed, §i/M and §é/M are

F-projectors of G/M and hence, by induction, they are conjugate in G/M.

But this means that §l and S, are conjugate in G, i.e.

- - a8 . g :
MSl = Sl = 82 = MSZ’ “with g € G.

In order to prove that S, and 82 are conjugate in G, we notice

1

that since M is a minimal normal subgroup of the mw-solvable group G

two cases can arise:

(i) M 1is a solvable m-group. By 4.1, M 1is abelian. Now we show

that the hypothesis of theorem 4.18(ii) applies: F 1is a w-Schunck class,

S1 is a m-solvable group, M is an abelian normal subgroup of §i with

S /M = =~ 3 = = g8
Sl/M = SlM/M Sl/M n Sl € F and we have S1 SlM SZM. where Sl and

S% are F-maximal subgroups of §i, It follows that Sl and S% are
conjugate in _1, hence Sl and S, are conjugate in G.

(ii) If M is a m'-group. Then M < Oﬂ,(gi)
§i/M € F we deduce that §i/0n,(§i) € F, and

and so Sl/On,(Sl)<=
(Sl/M)/(On'(Sl)/M)' Since
hence, F being m-closed, §i € F. By the F-maximality of S,

S1 = S1 = S% where g € G. The theorem is completely proved. M

and S%,

Combining Theorems 4.17 and 4.18 we get the following result:

4.20 THEOREM:

If F 1is a m-Schunck class, then any m-solvable group has
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F-projectors and any two of them are conjugate. @
In order to make our study of this subject complete, we need to
prove the converse of Theorem 4.20 to conclude that the only w-homomorphs

for which the finite m-solvable groups have projectors are the m-Schunck

classes. To do that we first need two lemmas.

4.21 LEMMA:

If F 1is a m-homomorph, G is a m-solvable group, H an F-maximal
proper subgroup of G, and N a minimal normal subgroup of G with HN = G,

then N 1is abelian.

Proof:

N 1is a chief factor of G so there are two possibilities:

~
}-I .
~—

N is a sclvable w-group, in which case by 4.1, N is abelian.

(ii) N is a m'-group. Then N < On'(G)’ hence G/On,(G)§¥
(G/N)/(Oﬂ'(G)/N). But G/N = HN/N=H/HN N € F, because H € F and F
is a homomorph. It follows that G/On,(G) € F, which implies, by the
n-closure of F, that G € F. This is a contradiction to the F-maximality

of H< G. g

4.22 LEMMA: If F 1is a m-homomorph, G a m-solvable group, H an
F-maximal proper subgroup of G, and if there is a minimal normal subgroup
N of G with HN = G, then:

(a) H is maximal in G;

() HNN = <1>.
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(a) Let H* given with H <= H* < G. If H < H* then there is an
element h* € H*\H. Because G = HN, h* = hx, with h ¢ H and x ¢ N.
Suppose we can prove that N 1 H* = <i>. Then x .= h lh* is in NN H*,
so0 x = 1. But this implies h* = h € H, contfadicting the choice of h*,
It follows that H = H*.

To prove that N (1 H* = <1> observe that N (1 H* 2 G. Indeed,
if g€ G then g = h*x, with h* € H*, x € N, because G = HN = H*N,

1

and if y € NN H* then g lyg = (h*x) y(h*x) = x L (h* lyh*)x.

If z = h*_lyh* then z € NN H*, since NN H* s H*. So
z € N. But by Lemma 4.21, N 1is abelian. This implies that g—lyg =
xlax = xIxz = z € N N H*, which proves that N N H* 2 G. Now,
NN H* # N, because NN H* = N implies N < H*, hence the contrédiction

G = HN = H*N = H*., Since N 1is a minimal normal subgroup of G, Nl H* 9 G

and N1 H* # N imply that N N H* = <1>.
(b) Setting H* = H in the proof of (a), we obtain HN N = <1>. @

Now we are ready to prove the theorem we promised.

4.23 THEOREM:
A homomorph F with the property that any finite m-solvable group

has F-projectors is a Schunck class.

Proof:
To show F 1is a Schunck class, suppose the contrary and let G be a
finite m-solvable group of minimal order with respect to the conditions:

G £ F and any primitive factor group of G is in F. Let M be a minimal
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normal subgroup of G. Then G/M € F by definition of G. Let H be an
F-projector of G. It follows that HM/M is F-maximal in G/M, so G = HM.
Applying Lemma 4.22, we conclude that ‘H is maximal in G. Suppose G is
not primitive. We then have CoreG(H) # <1>. So that G/CoreG(H) € F,

by definition of G. But H/CoreG(H) is an F-projector of G/CoreG(H).
Hence H = G, contradicting thé\hypothesis G¢F and H€ F. Thus G

is primitive, in contradiction to the choice of G. m

Now we study some aspects of the connection between projectors and

covering subgroups in finite m-solvable groups.

The following lemma, which we need here, is an immediate consequence

of 2.1.24.

4.24 LEMMA:
If F is a homomorph, G a finite group and H an F-projector of

G which is maximal in G, then H is an F-covering subgroup of G.
Proof:
Let K be a subgroup of G with H < K. We distinguish two cases:
(i) K=G. Then H is an F-projector of G = K.

(ii) K< G. Then H=K. But H € F is its own F-projector.

The lemma is proved. o

4.25 COROLLARY:
If F is a homomorph and G a group then any subgroup H of G

with the properties:



92.

(1) H 1is an F-projector of G;
(ii) H 1is a primitivator of G

is an F-covering subgroup of G.

Lemma 4.22 has the following consequence:

4.26 LEMMA:

If F is a ﬂ—homdmorph, G a m-solvable group and H an F-projector
of G with the property that there is a minimal normal subgroup N of G

such that HN = G, then H is an F-covering subgroup of G.

Proof:
Suppose without loss of generality that H < G. Then the hypothesis
of Lemma 4.22 applies and it follows that H is maximal in G. Hence H

is an F-covering subgroup of G by 4.24. ©

4.27 LEMMA:

Let F be a m-homomorph, G a m-solvable group and H < G with

the property that H 1is F-maximal in G. Then the following are equivalent.
(1) Fof any minimal normal subgroup N of G, HN = G;

(ii) H 4is a primitivator of G.

Proof:

(i) = (di). H 4is maximal in G, by 4.22. Further, CoreG(H) = <1>;
for, if we suppose that CoreG(H) # <1>, it follows that G has a minimal
normal subgroup N with N < CoreG(H)° But this means G = HN =

H.CoreG(H) = H, i.e., H = G, in contradiction with H < G.



(ii) = (i). This follows from Lemma 4.1. dU

93.
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Chapter 5

PROJECTORS OF FINITE GROUPS

The intent of this chapter is to investigate the properties of
projectors in groups that are not necessarily solvable or m-solvable.
All groups considered here are assumed to be finite. Our first aim is to
prove the existence of F-projectors in all finite groups, where F is a

Schunck class, and we begin with a definition.

5.1 DEFINITION: Let F be a class of finite groups.

Fois E¢—cloéed if G/$(G) ¢ F implies that G ¢ F.

DEFINITION:

Let N = G. The subgroup H of G is a supplement of N if

5.2 LEMMA:

Let F be a homomorph and suppose F is E¢-closed. If G is a
group with normal subgroup N and if G/N € F, then every minimal

supplement of N in G belongs to F.

Let H be a minimal membe: of the set of subgroups which supplement
of N in G. Since any supplement of NN H in H is also a supplement
of N in G, H 1is a minimal supplement of NN H in H and therefore

NNH=¢(H). Hence H/¢(H) = (H/(HN N))/(s(H)/(HN N)) € F, since
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H/HN N=HN/N = G/N € F and F is a homomorph. Since F is E¢-closed,

HeF. o

Now we are ready to our first main result of this chapter.

5.3 THEOREM:

Let F be a class of groups. If F is a Schunck class, then every
finite group possesses an F-projector. Conversely, if V is a Schunck
class containing F and if every group in Y possesses an F-projectof,

then F is a Schunck class.

Proof:
Let F be a Schunck class and let G be a group of minimal order
not possessing an F-projector. Then G ¢ F and G > <1>. Let A be a

minimal normal subgroup of G. Then G/A has an F-projector W/A. If

(4

W< G, then W has an F-projéétor E. But then 2.1.21(c) implies that

E is an F-projector of G, a contradiction. Hence W =G and G/A € F
for each minimal normal subgroup A of G. Since F is a homomorph and
G/A € F for any minimal normal subgroup A of G, every proper quotient
of G belongs to F. Thus, if G is not primitive, every primitive
quotient of G belongs to F and hence G € F, a contradiction. Hence

G 1is primitive.

Suppose first that G has a unique minimal normal subgroup A and
let U be a minimal supplement of A in G. By Lemma 5.2, U € F. Let
E be an F-maximal subgroup of G containing U. If N <G and N > <1>,
then N contains A, so that EN/N = G/N € F and hence EN/N is

F-maximal in G/N. Thus E 1is an F-projector of G, again a contradiction.
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In view of Corollary 4.3 we conclude that G has exactly two
minimal normal subgroups A and B, and by 4.4 both of them are
complemented by a maximal subgroup E. Then E = G/A € F and an argument
similar to that given in the preceding paragraph shows that E is an
F-projector of G. This contradiction completes the proof of the first

assertion of the theorem.

For the converse, assume that every finite group belonging to the
Schunck class Y possesses an F-projector. Let G ¢ F and N =2 G. Then
G €Y and hence G has an F-projector E. Then E = G and EN/N = G/N

is F-maximal in G/N; in particular, G/N € F. Hence F 1is a homomorph.

It remains to show that F is a Schunck class. Suppose this is
false, and let G be a group of minimal order such that every primitive
quotient of G belongs to F but G does not. Then G is not primitive.
Since F <Y and Y 1is a Schunck class, we have G € Y. Let E be an
F-projector of G, so E < G, and let A be a minimal normal subgroup
of G. The minimal choice of G implies that G/A € F. Hence EA = G.

Let S be a maximal subgroup of G containing E. Then SA =G and
since A is an arbitrary minimal normal subgroup, S 1is a maximal subgroup
of G with CoreG(S) = <1> and hence G 1is primitive, a final

contradiction. o

In Chapter 2 we have seen that if F is a saturated formation and
G 1is a solvable group, then the F-projectors of G are conjugate and
coincide with the F-covering subgroups. These results are also true when
F is a Schunck class and G 1is a solvable group (see Erickson [19], 1.3.8).

However, these results are not valid in arbitrary finite groups.
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5.4 EXAMPLE:

As we have seen in Example 2.1.23(c), the subgroups E and F of
the simple group A5 are N-projectors but not N-covering subgroups of AS’
where N, as before, is the class of finite nilpotent groups, and it is
clear that E and F are not conjugate since they have different orders.
In fact A5 has 3 conjugacy clagses of N-projectors but no N-covering
subgroups which means that the covering subgroups may not exist at all in

the general case.

5.5 DEFINITION:
Let U denote the class of finite solvable groups. By UF we
denote the class of groups that are extensions of solvable groups by

F-groups.

In our next main result, we will show that the F-covering subgroups
and F-projectors do coincide in groups in UF. To do this we need two

preliminary lemmas.

5.6 LEMMA: Let F be a Schunck class. Let A be a minimal normal
subgroup of the finite group G with A abelian, G/A € F and G £ F.
Then A is complemented in G and the complements are precisely the
F-projectors of G. Moreover, every.F-projectors of G 1is an F-covering

subgroup of G.

Proof:

Since F is a Schunck class, F 1is E¢-closed. Since G/A ¢ F and

G£F, A#£¢(G), so there is a maximal subgroup S of G such that
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A£S. By 4.1, S is a complement of A in G. Also it is easily seen
that each F-projector of G is a complement of A and (since it is a

maximal subgroup) also an F-covering subgroup of G. Thus the F-covering
subgroups and F-projectors of G coincide, and we need only to show that

every complement E of A is an F-covering subgroup of G.

Let G be a minimal couﬁter-example. By Theorem 5.3, G has an
F-projector L. First suppose that E is not corefree, that is
CoreG(E) # <1> and let N “be a minimal normal subgroup of G with N < E.
If N 1is also contained in L, that is N < L N E, then since ’G/N is
not counter-example E/N is an F-covering subgroup of G/N. By 2.1.16,

then, E 1is an F-covering subgroup of G, a contradiction.

So N<E and N #£L sothat NL = G. Since A is abelian, -
AN = CG(A). Thus AN N L 2 G. Moreover, AN N L £ E for otherwise we
would obtain the contradiction A < AN = AN NL = N(AN N L) = E. Hence
E(ANN L) =G and G/(ANN L) ==E € F. Since L is an F-covering

subgroup of G, we have G = L(ANN L) = L, a contradiction.

Thus CoreG(E) = <1> and A 1is the unique minimal normal subgroup
of G. It follows easily that E 1is an F-covering subgroup of G, a

final contradiction. @

5.7 LEMMA: Let F be a Schunck class. Let G be a group with a nilpotent
normal subgroup N, and let E be an F-subgroup of G that supplements

N in G. Then E is contained in an F-covering subgroup of G. In
‘partigular, if E 1is F-maximal in G, then E is an F-covering subgroup

of G.
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The lemma is trivial when N = <1>, Suppose N # <1> and let A
be a minimal normal subgroup of G with A =< N. The hypotheses are
satisfied in G/A, so by induction we conclude that EA/A 1is contained
in F*/A, an F-covering subgroup of G/A. Therefore, E < F*. The
hypotheses are satisfied by F*a and its subgroups F* 1 N and N. Thus,
if F* < G, then by induction we have E < F, an F-covering subgroup
of F*. Now by 2.1,16, F 1is an F-covering subgroup of G, and so

the lemma is established unless F* = G.

However, if F* = G, then G/A = F*/A € F for any minimal normal
subgroup A of G éontained in N. By Lemma 5.6, G has an F-covering
subgroup W. Then W 1is maximal in G, so WN N is maximal in N and
since N is nilpofent we have WN N <G, If WN N> <1>, by choosing
A to be contained in WN N, we have G = WA = WIWN N) = W, and the
conclusion follows trivially. Thus we may assume that W fl N = <1> and
G£F. Then G =ENN WA =E((NONWA) =EA(NN W) = EA, and Lemma 5.6

implies that E -is F-covering subgroup of G. @

5.8 THEOREM:
Let F be a Schunck class of n-groups and let G be an extension
of a m-solvable group by an F-group. Then every F-projector of G 1is an

F-covering subgroup of G.

Proof:

Let N =G with N nmw-solvable and G/N € F, and let E be an

F-projector of G. Let A be a minimal normal of G with A < N. By
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induction EA/A is an F-covering subgroup of G/A.

If A is abelian, then 5.7 implies that E 1is an F-covering
subgroup of EA. This conclusion also holds if A 1is a W'-group. 1In

either case, E is F-covering subgroup of G. o

Even in the setting of Theorem 5.8, the F-projectors need not be

conjugate. To introduce the example given by SCHNACKENBERG, in his work

("On injectors, projectors and normalizers of finite groups'", Ph.D.
Dissertation, Univ. of Wisconsin, 1972) we first give the definition of

holomorph.

" DEFINITION:
The holomorph of the group K is: K ¥, Aut(K), where

B: Aut(K) - Aut(K) 1is the identity map.

Schnachenberg gives an example of a Schunck class F and a group
G € UF having non-conjugate F-covering subgroups. The group G is the
holomorph of V(3,2), a 3-dimensional vector space over GF(2); thus
G = V(3,2) g Aut(V(3,2)). But Aut(V(3,2)) = GL(3,2), since V(3,2)
is an elementary abelian group of order 23. The class F is the smallest
Schunck class containing GL(3,2). By Lemma 5.6, V(3,2) 1is complemented
iﬂ G and all the complements are F—covering-subgroups of G. But a

remark on page 161 of B. Huppert, Endliche Gruppen I, shows that the

complements are not all conjugate.
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Projectors of Direct Products and Well-Placed Subgroups:

Gaschiitz, in his work "Selected Topics in the Theory of Solvable
Groups" 1963, proved some properties of projectors in the direct products.
Gaschiitz' proof, which uses the conjugacy of F-covering subgroups, does not
apply to arbitrary finite groups, and to treat the general case, we first

need a definition and preliminary lemma.
5.9 DEFINITION:

Let F -be a class of groups. We say F is Do—closed if it is

closed under direct products.

5.10 LEMMA: Let F be a Do-closed homomorph. Let G = AB with A =G,

B =G. If G/A has an F-projector V/A and G/B has an F-projector W/B,

then (VN W)/(AN B) 1is an F-projector of G/A N B.

Since the hypotheses hold in group G/A N B, by induction we may
assume that A N B = <1>. Suppose V < G. In view of the isomorphism
V/V N B=VB/B=G/B, we find that (VN W)/(V N B) is an F-projector
of V/VN B. Indeed, (VN W)/(VAB) = ((VNW/(VNWNB)=BVNW/B=

(Bv.N W)/B = (G N W)/B = W/B.

VN AB-=

Also, V/A 1is an F-projector of V/A, and A(V N B)
VN G=V. So the hypotheses of the lemma are satisfied in the group V.
By induction, V N W is an F-projector of V. Since VN W 1is an
F-projector of V and V/A 1is an F-projector of G/A, VN W is an

F-projector of G.
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So we may assume that V = G, and by symmetry, also that W = G.
But then W=V =G = A x B, and since B= (A x B)/A = V/A € F and
similarly A = W/B € F and since F is Do—closed we conclude that G ¢ F

so VN W=G 1is an F-projector of G. o

5.11 THEOREM: Let F be a Do—élosed homormorph. If A and B have

F-projectors E and F, then E X F is an F-projector of A x B.

Proof:
Apply Lemma 5.10 with V = FA and W =EB. VO W=FANEB-=
F(A N EB) = FE(A N B) by the modular law. But this latter group is

FE = F xE, so F x E 1is an F-projector of A x B. o

REMARKS :

(1) If we let P(F) denote the class of groups possessing an
F-projector, then P(F) is a Do—closed homomorph whenever F 1is. This
is because, if G € P(F) then G has an F-projector E and so EN/N
is an F-projector of G/N for any N =G, so G/N € P(F). Also if F is
Do-closed and G,H € P(F) with F-projectors E and F respectively, then

by 5.11, E x F 1is an F-projector of G x H. So G x H € P(F).

(ii) The analog of Theorem 5.11 for F-covering subgroups is also

true.

(iii) The conclusion of Theorem 5.11 fails under the alternative
hypothesis that F 1is a Schunck class, since there exists a Schunck class
F that is not Do-closed and groups A and B such that A,B € F but

A xB ¢ F (see Erickson [19], 2.4.10).
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5.12 DEFINITIONS:

(a) A subgroup W of the group G is called well-placed in G,
if there is a chain W = Mo < M1
(1 =1 <=n-1), where F(Mi) is the fitting subgroup of M. .

... = Mn = G such that‘ Mi = Mi_lF(Mi)

(b) For each class F ‘let SwF be the class of all groups which

are well-placed in some F-group. We say F is S _-closed if S,F = F.

Examples of well-placed subgroups are readily found. The subgroup
E = <(123)> of A4 is well-placed in A4, since F(A4) =V =

{I, (14)(23), (12)(34), (13)(24)} and EV = A4.

5.13 THEOREM: Let F be an Sw—closed Schunck class. Let G be a group
of the form UN, where U <G, N <G and N 1is nilpotent. Assume that
G has an F-projector F such that F = (FN U(FNN). Then FNU

is an F-projector of U.

Proof:
Let G be a minimal counterexample. Then U< G and N > <1>.

Also, by hypothesis, F N U is a well-placed subgroup of F, for

FNN<F(F) sothat F= (FNUF(F), so FNUESF=F. It follows

that F< G and G ¢ F.

Suppose that FN <« G. Now F is F-maximal in FN and hence is an
F-projector of FN, by 5.7. Thus the hypotheses are satisfied by the group
FN =GN FN=UNNFN = (UN FN)N and its F-projector F, and hence the
minimality of G implies that F N U 1is an F-projector of U N FN. But,

since FN/N 1is an F-projector of G/N, (U N FN)/(UN N) 1is an F-projector
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of U/UN N; indeed, U/UN NZUN/N =G/N and (U N EN)/(U N N) =
(UN FN)/(U N FNN N) = (UN EN)N/N = FN/N. Thus we have F N U is an
F-projector of UN FN and (FNN U)/(U N N) is an F-projector of

U/(UNN), hence FN U is an F-projector of U, a contradiction.

So we may assume that FN = G. In the counterexample G we may
also assume that U is chosen as large as possible. Suppose U is not

maximal in G. Let U, be a maximal subgroup of G that properly

1

contains U. Then 1U1N =G, and F= (FNU(FNN) = (F ﬂ‘Ul)(F N N) <F,

and hence. the equality holds. Now we show that F U1 is an F-projector

of Ulz clearly F N U1 is a well-placed subgroup of F, so that

F N U1 € SWF = F, and since F is F-maximal in G, F N U1 is

F-maximal in Ul' Since U1 = FN N U1 = (FN Ul)(F N NN N U1 =
(F N Ul)N N U1 = (F N Ul)(N n Ul), by 5.7, FnN U1 is an F-projector of
Ul' Now the hypotheses of the theorem are satiéfied by the group

U1 =UNNN Ul) and its F-projector F N Ul’ so that the minimality of G
implies that the subgroup (F N Ul) NU=FNU is an F-projector of U,

a contradiction.

Hence FN =G and U is maximal in G. Since N is nilpotent
normal subgroup of G, the subgroup H=UN N is normal in G. Moreover,
U=FNAQ U= (FAUNNU= (FNUNNU); that is U = (F N U)H. Now
U/H=G/N=Z2F/FN Ne€F, so we have two cases:

(1) either U/H 1is F-maximal in G/H; or

(ii) G/H ¢ F.

Suppose (i) holds. By 5.7, U/H 1is an F-projector of G/H.

But U= (FNUMH<FH, and FH/H is F-maximal in G/H, so that U = FH
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and F < U. But then Lemma 5.7 implies that F 1is an F-projector of U

a contradiction.

Thus (ii) holds: G/H € F. Since G ¢ F, Qe must have H > <1>.
Let A be a miﬁimal normal subgroup of G with A < H. The hypotheses
of the theorem are satisfied by the group G/A and its F-projector FA/A,
so the minimality of G implies that (U N FA)/A is an F-projector of

U/A.

If AF < G, then the argument used earlier in the proof (with N
replaced by A) shows that F 1 U is an F-projector of U N FA. But

then F N U is an F-projector of U, a contradiction.

Thus FA = G. But then F 1is maximal in G, F 1 N =G, and since
U= (FN UH we have U(FAN) =FH=G. Now F/FAN N is an F-projector
of G/F A N; in view of the isomorphism U/F N H#= G/F N N we conclude
that (F N U)/(FNH) 1is an F-projector of U/FN H. But FNUE€F, so

that F N1 U is an F-projector of U, a final contradiction. dm

In the statement of the previous theorem (Theorem 5.13) we assume
the existence of an F-projector F such that F = (FN U)(F N N). Such
an F-projector always exists, even without the assumption of S, -closure.

Indeed, a somewhat stronger conclusion holds.

5.14 THEOREM: Let F be a Schunck class, and G be a group. Let

Uo’Ul""’Un’No’°"’Nn be subgroups of G such that:

(1) U, =G, N =<I,
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(ii) N.1 is a nilpotent normal subgroup of Ui—l (i=1,...,n),

(iii) Ui—l UiNi (i=1,...,n); and

(iv) U.1 n Ni < N.1+1 (i=0,...,n-1).
Then there is an F-projector F of G such that:

v) FNU,_ = (FN ui)(‘F NN)  (=1,...,n).

Proof:

By.Theorem 5.3, G has an F-projector. If N.1 = <1> for each i,
then (V) holds trivially (for an arbitrary F-projector F of G). So
we may assume that Ni > <1> for some i. Let j be minimal such that

Nj > <1>. Then Nj 4 G. We may assume that j=1.

Let A be a minimal normal subgroup of G with A < N.. Then by

1
(iv), U, N A<U,NON, <N,, U,NA<U,NU.NA=<U,NN, =N, and
1 1 1 2 2 YA i 2 2 3
in general, Ui-l NA=s Ni (i=1,2,...,n). Hence for 1i=1,2,...,n-1, we

have:

(*) UiA n NiA A(Ui n NiA) A(U.1 n Ui-l n NiA)

A(Ui n Ni(Ui_1 nA) = A(Ui n Ni),
. which also holds when i=0. The subgroups:
UOA/A,...,UnA/A, Nl/A,...,NnA/A

-satisfy (i) - (iii) in the group G/A and in view of (*) they satisfy (iv)

also. By induction, there exists an F-projector F*/A of G/A such that
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F* N U, A
1=~

(A = (F* N UA)(F* 0 N;A) = ACF* 0 U;) (F* N N,A) for i=1,...,n,

(F* 0 U.) (F* 0 N,A), since A < F* (1 N,A.

Upon intersecting with U, _ we obtain, for i=1,...,n,

1’

F* AU, = (F* N U)F* N NA) N U,

1 1

= (F* NU)E N NANU, )

(F* N U (F* NN, (AN U, )

n

(F* N Ui)(F* n Ni), since A N Ui-l < Ni (i=1,...,n).

Clearly, the subgroups F* N Uo,...,F* n Un’ F* N Nl,...,F* n Nn satisfy

(i) - (iv) in the group F*,

Thus if F* < G, by induction there is an F-projector F of F*

such that for 1i=1,2,...,n,

EN(F*NU, )= (FNF NUIFNFYNN); that is,

1

F N Ui-l = (FN Ui)(F n Ni)' Since F is an F-projector of F* and
F*/A is an F-projector of G/A, F 1is an F-projector of G, and the

proof is complete in this case.

Therefore, F* = G and G/A € F. We may assume that G ¢ F. If E
is an arbitrary F-projector of G, then EA =G and A £ E. Since E is

maximal in G and N, 1is nilpotent, we have E N N, 2 G, so that

1 1

E N N1 = <1>;. for in the contrary case we could have chosen A to be

contained in E N Nl' It follows that N1 = A a minimal normal subgroup

of G. Hence U, 1is a maximal subgroup of G complementing N1 in G.

1
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By emma 5.6, U1 is an F-projector of G, and (V) holds with F = Ul’
because U, =U, and so U NU; , = Up NUN, = U; (U NN =

U NUHU NN). o

5.15 COROLLARY: Let F be an Sw-closed Schunck class. Let U be a
well-placed subgroup of a group“G. Then there exists an F-projector F

of G such that F N U is an F-projector of U.

Proof:

Since U 1is a well-placed subgroup of G, there is a chain:

c
il
c
IA
IA
c
[}
[#p]

such that U, = U.N. with N. F(U,), for i=1,...,n. By theorem
i- ivi i i

1

5.14, there is an F-projector F of G such that F N Ui—l =

(FN Ui)(F n Ni), (i=1,...,n). By theorem 5.13, F N U, is an F-projector

1
of Ul’ The hypothesis of Theorem 5.13 are then satisfied in the group

U, =U

1 2N2, so that F N U2 = (F N Ul)(F n N2) is an F-projector of U,.

Continuing in this fashion, we obtain the desired conclusion. O

The Class of Groups Whose F-Projectors are F-Covering Groups:

DEFINITION: For a homomorph F, we define a class
W(F) = {G: every F-projector of G is an F-covering subgroup of G}.

Thus W(F) consists of groups whose F-projectors and F-covering
subgroups coincide. Clearly F ¢ W(F), and if F is a Schunck class, then

by theorem 5.8 we have UF € W(F). In our next proposition we will see that
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W(F) 1inherits certain closure properties from F, but to do this we first
need a lemma about F-covering groups, which is of considerable interest in

its own right.

5.16 LEMMA: Let F be a formation and let A,B < G. Assume that V/A is
an F-covering subgroup of G/A and W/B is an F-covering subgroup of G/B,
and that VB = WA. Then (VN W)/(AN B) is an F-covering subgroup of

G/A N B.

Since A =V, by the modular law, we have (VN WA =V N WA =
VAVB=V. Similarly (VN WB =W, so (VN W/(VAWNA =
(VN WA/A=V/AeF, and similarly (VN W)/(VN WN B) € F, and since

F 1is a formation, (VN W)/(AN B) € F.
By induction we may assume that AN B = <1>. Let L = VB = WA = VW.

If V=G, then W=WNVé€F. Since W/B is an F-covering subgroup

of G/B, VN W=W is an F-covering subgroup of G as required.

So we may assume that V < G. In view of the isomorphism
V/VN B=VB/B = L/B we find that (VN W)/(VN B) is an F-covering
subgroup of G/V N B; indeed (VN W)/(VN B) = (VN W/(VN WN B) =
(VN W)B/B = W/B which is F-covering subgroup of G/B, so W/B is an
F-covering subgroup of L/B as L < G. Therefore (VAw/(vn B) is an

F-covering subgroup of V/V N B.

Also V/A 1is an F-covering subgroup of V/A and (VN WA =V =

V(V N B), so the hypotheses of the lemma are satisfied in the group V,
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By induction, V N W 1is an F-covering subgroup of V and hence, since
V/A is an F-covering subgroup of G/A, we have V N W is an F-covering

subgroup of G. o

5.17 REMARK: An examination of the proof of the previous lemma, shows that
the statement of the lemma is true also for F-projectors in place of

F-covering groups, assuming (in fhe notation of the lemma) that VA=WB=G.

In our consideration of the class W(F), we restrict our attention
to the case in which F 1is a Schunck class (so that F-projectors exist

in every finite group).

5.18 PROPOSITION: Let F be a Schunck class. Then:
(a) W(F) 1is an E¢-closed homomorph.
(b) If F is a formation, then W(F) 1is a (saturated) formation.

(¢) If F |is Do—closed, so is W(F).

(d) If F is Sw-closed, so is W(F).

For a group G, let Proj(G) be the set of F-projectors of G
and Cov(G) the set of F-covering subgréups of G.

(a) Let G € W(F) and let N <G. Let F/N € Proj(G/N). Let
E € Proj(F). Then E € Proj(G) which implies that E € Cov(G) and so
F/N = EN/N € Cov(G/N). Hence G/N € W(F) and therefore W(F) is a homomorph.
homomorph. |

To prove that W(F) is E#-closed, let N =G with N < ¢(G)
and G/N € W(F). Let E € Proj(G). Then EN/N € Proj(G/NO = Cov(G/N).
Since E is F-maximal in EN and N is nilpotent, by 5.7, we have

E € Cov(EN). Thus E € Cov(G), so G € W(F).
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(b) Let G ¢ W(F) and let A,B =G with G/A, G/B € W(F);
we show that G/A N B ¢ W(F). We may'assume that AN B = <1>, Let
E € Proj(G). Then EA/A € Proj(G/A) = Cov(G/A), EB/B € Proj(G/B) = Cov(G/B)
and (EA)B = (EB)A, so Lemma 5.16 implies that EA N EB € Cov(G). But
E<EANEB and E is F—maximal-in G; so E = EAN EB € Cov(G). Thus
G € W(F). Since W(F) is an En-closed homomorph by (a), W(F) is a

)
saturated formation.

(c) Let G =H x K with H,K € W(F), and let P € Proj(G).
Then PH/H € Proj(G/H) and PK/K € Proj(G/K). 1In view of the isomorphism

G/K=H we have PKN H € Proj(H). Indeed PKN H= (PKN H)/(XNHN PK) =

1

K(PK N H)/K = (PK N HK)/K = PK/K € Proj(G/K). A similar argument shows
that PHN K € Proj(K). Thus PK N H € Proj(H) = Cov(H) and
PHN K € Proj(K) = Cov(K). By (ii) of the remark after the proof of theorem

5.11, we have (PK N H)(PH N K) € Cov(G). But

(PK N H)(PH N X) PH N K(PK N H) by the modular law

PH N PK N HK by the modular law again

PH N PK.

Thus PH N PK € Cov(G), and by F-maximality of P, we get P = PH N PK,

so that P € Cov(G), and G € W(F).

(d) We want to show that if M is a well-placed subgroup of
W(F)-group, then M ¢ W(F). It suffices to show that if M 1is a maximal
subgroup of G, if MF(G) = G, and if G € W(F) then M € W(F). Let
E € Proj(M) and let N = F(G). Then EN/N € Proj(G/N). Let C be
F-maximal in EN then E =< C, and by 5.7, C € Cov(EN). Hence C € Cov(G).

Now C=CNHEN=E(CNN) ={CNMNN) =C so the equality holds. An
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application of Theorem 5.13 shows that C N M € Cov(M). But E is

F-maximal in M, whence E=CNM and E € Cov(M). Hence M € W(F).

Somewhat more generally, if F 'is a Schunck class and Y 1is a
homomorph, we can form the class W(F,Y) = {G: evéry F-projector of G is
Y-covering subgroup of G}. Theg W(F,Y) 1is a homomorph, is a formation
when F and Y are formations, is Do-closed when F and Y are
Do—closéd, and is Sw-closed when VY is S,~Closed and F ¢ V. The proofs

employ arguments similar to those above, together with Lemma 2.2.1.

The following theorem gives a method for constructing a formation by

using the concept of F-covering subgroups.

5.19 THEOREM:
Let F be a formation. Let X = {G: for all H <G, H has an
F-covering subgroup}; that is X is the class of groups all of whose

subgroups have an F-covering subgroup. Then X is a formation.

Let G € X and N 2G. We want to show G/N € X. Let H/N be a
subgroup of G/N. Then H <G and so H has an F-covering subgroup K
(say). But then KN/N is an F-covering subgroup of H/N. Thus every

subgrouﬁ of G/N has an F-covering subgroup and therefore G/N € X.

Now suppose X is not a formation and let G be a group of minimal
order having normal subgroups A and B with G/A € X, G/B € X but

G ¢ X. Then AN B =<1> (For otherwise G/A N B € X by minimality of G).
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We first show that every proper subgroup of G belongs to X. If
U< G then UA/A, as a subgroup of G/A, belongs to X. But
UA/A=U/U N A. Therefore U/UN A € X. Similarly U/UN B € X. By

minimality of G we conclude that U € X.

Now by definition of X,‘\we conclude that G does not have an
F-covering subgroup. Since G/AB = (G/A)/(AB/A) € X (as G/A € X and X
is- a homomorph by the first part), lét F/AB be an F-covering subgroup of
G/AB. If F< G, then F € X and hence F has an F-covering subgroup E,

which is also F-covering subgroup of G, a contradiction.

Thus, F =G and G/AB € F. Let V/A and W/B be F-covering
subgroups of G/A and G/B respectively. Since G/AB € F, VB = G = WA,
so that Lemma 5.16 implies that V1 W 1is an F-covering subgroup of G,

a final contradiction. o

By the Remark following Lemma 5.16, the proof of this theorem also

holds for F-projectors, and so we obtain:

5.20 THEOREM:
Let F be a formation. The class of groups all of whose subgroups

-have an F-projector is a formation. o
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