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Abstrac t  

This i s  a s tudy of  t h e  s t r u c t u r e  of f i n i t e  groups from t h e  s tandpoint  

of c e r t a i n  c l a s s e s  of  groups. Examples of  such c l a s s e s  a r e  formations,  

s a t u r a t e d  formations and Schunck c l a s s e s .  Genera l iza t ions  of Hal l  

subgroups a r e  t h e  dominating theme, and we begin wi th  t h e  theorems of Hal l  

and Car t e r  about t h e  ex i s t ence  and conjugacy of Hal l  and Car t e r  subgroups 

( r e spec t ive ly )  i n  f i n i t e  so lvab le  groups. 
i 

A b a s i c  no t ion  i n  r e c e n t  work i s  t h a t  of covering subgroups of a 

f i n i t e  group, where t h e  main r e s u l t  i s  t h a t  if f i s  a s a t u r a t e d  formation 

then every f i n i t e  so lvab le  group has f-covering subgroups and any two of  

them a r e  conjugate.  

A more genera l  no t ion  than t h a t  of covering subgroups i s  t h a t  of  

p r o j e c t o r s ;  however, i n  t h e  case  of s a t u r a t e d  formations t h e  covering 

subgroups and p r o j e c t o r s  of any f i n i t e  so lvab le  group coinc ide  and form 

a s i n g l e  conjugacy c l a s s .  Moreover, t h e  covering subgroups (p ro jec to r s )  

f o r  t h e  formation of f i n i t e  n i l p o t e n t  groups a r e  t h e  C a r t e r  subgroups. 

In  a d d i t i o n ,  pul l-backs exis . t  f o r  the  f -pro jec . tors  a s soc ia t ed  with a 

s a t u r a t e d  formation f of  f i n i t e  so lvab le  groups, and y i e l d s  t h e  

cons t ruc t ion  of c e r t a i n  formations.  

A n a t u r a l  ques t ion  i s :  which c l a s s e s  F g i v e  r i s e  t o  f - p r o j e c t o r s ?  

The answer i s  t h a t  f o r  Schunck c l a s s ,  which a r e  more genera l  than 

s a t u r a t e d  formations,  every so lvab le  group has  &covering subgroups iff F 

i s  a Schunck c l a s s .  In  t h i s  case  F-covering subgroups a r e  conjugate.  

( i i i )  



This i s  now known t o  be t r u e  i f  "F-covering subgroups" i s  replaced by 

''F-proj ectors",  and we prove t h i s  r e s u l t  using p r o j e c t o r s .  

In f a c t  these  theorems can be extended t o  f i n i t e  IT-solvable groups, 

and i f  F i s  a IT-saturated formation (or  a IT-Schunck c l a s s )  then every 

f i n i t e  IT-solvable group has f-covering subgroups (p ro jec to r s )  and any 

two of them a r e  conjugate.  

The ex i s t ence  of p r o j e c t o r s  i n  any f i n i t e  group i s  proved; however, 

they may no t  be conjugate and may no t  coincide with t h e  covering subgroups, 

which might not  a t  a l l  e x i s t ,  i n  t h i s  ca&. But i f  F is  a Schunck c l a s s  

then F-projec tors  and F-covering subgroups do coincide i n  groups i n  UF, 

although t h e  F-pro j e c t o r s  need no t  be con jugate .  
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NOTAT ION 

P \ 9  

< 1> 

1 

Aut (G) 

A \  B 

g i s  an  element of G .  

elements of groups. 

s e t s ,  groups. 

c l a s s e s  of groups. 

H i s  isomorphic with G .  

H i s  a subgroup of G .  

H i s  a proper  subgroup of  G .  

H is a normal subgro y p o f  G .  

t h e  order  of t h e  group G .  

Index of t h e  subgroup H i n  t h e  group G .  

p d i v i d e s  q. 

t h e  i d e n t i t y  subgroup. 

t h e  i d e n t i t y  element of a group. 

t h e  group of automorphisms of G .  

= ( x  : x E A and X B B). 

= ( p  : P i s  a prime and p \ \ G I ) .  

= g-lhg where g,h C G and G i s  a group. 

-1 -1 
= x y xy. 

= <[x,y]  : x E H and y E K > .  

= ( g  E G : hg = h f o r  a l l  h E G I  - t h e  c e n t r e  of G .  

= ( g  E G : hg = h f o r  a l l .  h E H) - t h e  c e n t r a l i z e r  of  

PI i n  G .  

= ( g  E G : hg E H f o r  a l l  'h E H I  - t h e  normalizer of 

H i n  G .  



a group with every element having order  a power of t h e  

prime p. 

a group with every element having order  a power of p ,  

where p € n,  and n i s  a f ixed  s e t  of primes. 

a group with every element having order  a power of p ,  

where p is  a prime not  i n  n ,  n is  a f ixed  s e t  of  

primes. 

on (G) t h e  l a r g e s t  normal n-subgroup of  G .  

H x K  d i r e c t  product of H and K .  

Maximal subgroup : proper subgroup, n o 6  contained i n  any g r e a t e r  proper 

subgroup. 

Minimal normal subgroup of G : normal subgroup M # <l> of G which does 

no t  conta in  normal subgroups of G except <1> and M. 

( v i i )  
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Chapter 1 

1.1 PRELIMINARIES: 

A l l  groups mentioned a r e  assumed t o  be f i n i t e .  The no ta t ion  used 

i s  standard,  but we have provided a l i s t  of symbols and t h e i r  meanings. 

The rest of t h i s  s e c t i o n  i s  a l i s t  of t h e  b a s i c  r e s u l t s  we w i l l  need most 

f requent ly .  When proofs  a r e  not  provided, they w i l l  be found i n  any b a s i c  

textbook i n  group theory ,  e .g . ,  Macdonald [ 4 ] ,  Suzuki [7] o r  Robinson [ S ] .  

1.1.1 LEMMA: I f  A and B a r e  subsets  of G ,  then ( A B I  = I B A J  = 

I4 I B I / I A  n B I .  /- 

1.1.2 LEMMA: 

Let H,K be subgroups of a group G such t h a t  ( 1 G : H I  , I  G : K I  ) = 1, 

then: (a) I G : H  n K I  = ~ G : H J  I G : K ( .  
I -  

(b) G = HK. 

Proof: 

Set  [ G I  = g, I G : H (  = m, ~ G : K \  = n and I H  fl K I  = a .  Then 

I H I  = ah, ( K /  = ak f o r  some i n t e g e r s  h,k.  Hence g = ahm = akn which 

implies t h a t  hm = kn. Since (m,n) = 1, h = n r ,  k = m r  f o r  some r. 

But then a l s o  g = amnr. On t h e  o the r  hand, g = I G )  2 / H K I  = 

I H I  I K ~ / I H  fl K I  = (ah)(ak) /a  = amnr2.. So amnr = arnnr2 which implies t h a t  

r = 1. Hence 1 HK 1 = amn = I G 1 . Therefore G = HK. Furthermore, 

I G :  H fl K I  = amn/a = mn = I G : H (  ( G : K ( .  



DEFINITION: Two subgroups H and K of a group G a r e  sa id  t o  permute 

i f  HK = KH. This i s  i n  f a c t  p rec i se ly  t h e  condit ion f o r  HK t o  be a 

subgroup. 

1.1.3 LEMMA: 

I f  H and K a r e  subgroups of a group G ,  then HK i s  a subgroup 

i f f  H and K permute. In t h i s  event HK = <H,K> = KH. 

Proof: 

Suppose t h a t  HK 4 G .  Then H 5 HK and K 5 HK, so KH - c HK. 

Taking inverses of each s ide  we get  HK - c KH, whence HK = KH. Moreover, 
F 

<H,K> - c HK, s ince  HK i s  a subgroup of G ,  while HK - c <H,K> is  always 

t r ue ;  thus <H,K> = HK. 

Conversely l e t  HK = KH. I f  hi E H and ki E K ( i=1,2) ,  then 

-1 -1 hlkl (h2k2)-l = hl (klk;l)h;l. Now (klk2 )h2 = h3k3 where h3 E H and 

k3 € K. Hence hlkl(h2k2)-I = (hlh3)k3 € HK and so HK i s  a subgroup 

1.1.4 LEMMA (Dedekindls Modular law): 

Let H, K ,  L be subgroups of a group and assume K 5 L.  Then 

HK n L = (H n L)K.  

Proof: 

(H f l  L) K 5 HK and (H 0 L) K 5 LK = L; hence (H fl L) K 5 HK n L .  

Conversely l e t  x E HK 0 L and wr i te  x = hk where h E H, k E K. Then 

h = xk-l € LK = L ,  so  t h a t  h f H fl L.  Hence x E (H n L)K. 



1.1.5 DEFINITIONS: A chain of subgroups of a group 

w i l l  be ca l l ed  a subnormal s e r i e s  i f  G i m l  CGi, i = 1 ,  n and a 

normal s e r i e s  i f  G .  3 G i = O,. , . . . ,n .  I f  each inclus ion i s  proper and 
1 

the  chain i s  maximal ( i  . e. , no more terms may be inse r ted  without causing 

some term t o  be repeated) then the  s e r i e s  is  ca l led  a composition s e r i e s  

o r  a chief  s e r i e s .  The corresponding quot ient  groups Gi/Gi-,  a r e  ca l l ed  

composition and chief f ac to r s .  

I f  H i s  a subgroup of G and H i s  a member of some subnormal 

\ 
s e r i e s  we say H i s  a subnormal subgroup of G .  

1.1.6 DEFINITION: Let H c G .  Then H i s  a cha rac t e r i s t i c  subgroup of 

G i f  a(H) = H f o r  a l l  a E Aut(G). We wr i t e  H char G .  We have t h e  

following r e s u l t s :  

1.1.7 LEMMA: 

(a) Let H be a subgroup of a group G.  I f  a(H) - H f o r  a l l  

a E Aut (G) then H char G .  

(b) <1> char G ,  G char G ,  Z (G) char G and G 1  = [G,G] char G .  

Also H char G implies t h a t  CG(H) char G and NG(H) char G .  

(c) I f  a subgroup H of a f i n i t e  group G i s  t he  unique subgroup 

of i t s  order,  then H is  cha rac t e r i s t i c .  

(d) I f  H char K char G ,  then H char G .  



(e) If K Z G and H char K then H S G. 

(f) If H 2 G and (IHI,IG:HI) = 1 then H char G. 

Proof: 

(a) By assumption, a (H) - c H for a1 1 a E Aut (G) . Hence 

- 1 a (H) 5 H, and this implies H - c a(H). So we have H = a(H) for all 

a E Aut (G) . Hence H char G. 

(b) It is obvious that a(G) - c G and a(<l>) = <1> so <I> and 

G are characteristic subgroups of G. Choose an element g of CG(H). 

- 1 For any a E Aut (G) and x f H, we have ga-l (x) = a (x)g. Applying the 

automorphism a to both sides, we g t a(g)x = xa(g). Since this holds 'i 
for any x E H, we conclude that a(g) E CG (H) . Hence a(CG (H)) - c CG (H) 

for all a f Aut (G); by (a), CG(H) char G. Similar argument shows that 

NG (H) char G. 

(c) Since \ a(H) I = )HI, (c) follows easily from (a). 
d 

(d) Let a E Aut(G). Since K char G, we have a(K) = K. Thus the 

restriction $ = a of a on K is an automorphism of K. By assumption k 

H char K; so, we have @(H) = H. The function @ is the restriction of 

a, so p (H) = a(H) = H. The last equality holds for all a E Aut (G) ; so, 

H char G. . 

(e) The preceding proof (d) is valid for a = i the inner 
g ' 

automorphism of G, and shows that H is invariant by all inner 

automorphisms of G. Thus H is normal in G. 



( f )  Let ( H I  = m and ~ G : H \  = n ,  s o  t h a t  (m,n) = 1 and 

[ G I  = mn. If  a  € Aut(G) then l a ( ~ ) I  = m and a(H)H is  a subgroup of G .  

2 
Set t ing  d =  la(^) fl H I ,  we have t h a t  d \ m y  ~ ~ ( H ) H I  = m /d,  and 

2 (m /d) \ mn. Since (m,n) = 1, t h i s  fo rces  m = d and H = a(H). Thus 

H char G .  

The following lemma i s  elementary and we omit t h e  proofs.  

1.1.8 LEMMA: 

(a) Z (G) and G 1  = [G , G I  a r e  normal subgroups of G .  

(b) G 1  = <1> i f f  G is  abel ian .  

\ 
(c) I f  H is  a subgroup of G then H 4 NG(H) . 

(d) I f  H 9 G  then CG(H) ' 1 G .  

(e) I f  H i s  abe l i an  then H 9 CG(H) 

( f )  1 1 9 G  i f f  N G ( H ) = G .  

We no te  t h e  fol lowing p roper t i e s  of commutators. 

1.1.9 LEMMA: Let H, K 5 G .  Then 

(a) [H,K] 9 <H,K>.  

(b) [ H A  = [K,HI. 

(c) H 5NG(K) i f f  [H,K] 5 K. 

(d) H,K '1 G implies t h a t  [H,K] 5 G and [H,K] 5 H fl K. 

(e) I f  K 2 G then G / K  i s  abe l i an  i f f  [G,G] 5 K. 



( f )  H 5 CG(K) i f f  [H,K] = < I > .  

(g) I f  M 5 G then [HM/M, KM/M] = [H, K]M/M. 

(h) I f  H,K G and H 5 K,  then  K/H 5 Z(G/H) i f f  [K,G] P H. 

1.1.10 DEFINITIONS: Let G be a f i n i t e  group. 

(a) A subgroup is  c a l l e d  a p-subgroup i f  i t s  order  i s  a power o f  p. 

(b) I f  / G I  = prim, (p,m) = 1 then a subgroup of G is c a l l e d  a 

n Sylow p-subgroup i f  i ts  o rde r  i s  p . We n o t e  t h a t  1 .1 .7 ( f )  implies 

t h a t  a l l  normal Sylow subgroups a r e  c h a r a c t e r i s t i c .  

1.1.11 THEOREM (Sylow) : L e t  4 be a f i n i t e  group. 

( i )  G has a Sylow p-subgroup. 

j i i j  Any two Syiow p-subgroups of  2 a r e  conjugate.  

( i i i )  Any p-subgroup of G i s  contained i n  some Sylow p-subgroup. 

1.1.12 LEMMA: Let H 5 G and l e t  S be a Sylow p-subgroup of G .  Then 

( i )  S fl H i s  a Sylow p-subgroup of H; 

( i i )  SH/H i s  a Sylow p-subgroup of G/H. 

1.2 NILPOTENT, SOLVABLE AND SUPERSOLVABLE GROUPS: 

This  s e c t i o n  con ta ins  most of t h e  b a s i c  r e s u l t s  on n i l p o t e n t ,  

so lvable  and supersolvable  groups t h a t  we w i l l  need. 



1 . 2 . 1  DEFINITIONS: 

(a) A cen t r a l  s e r i e s  i n  t he  group G i s  a normal s e r i e s  

such t ha t :  

( i )  Gi i s  a normal subgroup of G ,  0  5 i 5 r and 

( i i )  G i G i 1  5 Z (GGi1)  , f o r  1 5 i 5 r: 

(b) A group i s  n i lpo ten t  i f  it has a c e n t r a l  s e r i e s .  

We now def ine  spec i a l  c en t r a l  s e r i e s  c a l l ed  upper and lower c en t r a l  

s e r i e s .  
J 

DEFINITIONS: 

1 2 3 
(a) Let Z (G) = G y  Z (G) = [G,G], Z (G) = [[G,G],G], . .., 

zn+l  (G) = [zn (G) , G I  . The sequence of subgroups 

is ca l l ed  t h e  lower c en t r a l  s e r i e s  of G .  

(b) Let Zo (G) = c l> , and f o r  i 0 Z.  (G) i s  t he  subgroup of G 
1 

corresponding t o  Z(G/Zi-l(G)); by t h e  correspondence theorem 

Z i  (G) / Z i - l  (G) = Z (G/Zi-l (G)) . The sequence of subgroups 

Zo(G) 5 Z1 (G) 5 Z2(G) 5 . . . 

is  ca l l ed  t h e  upper c en t r a l  s e r i e s  of G .  



1 . 2 . 2  LEMMA: Let 

be a s e r i e s  of subgroups each normal i n  G .  This is  a cen t ra l  s e r i e s  i f f  

[Gi,G] 4 Gi-19 f o r  1 5 i 4 r. 

1.2.3 LEMMA: I f  t h e  n i lpo ten t  group G has a proper subgroup H then 

H is  a proper subgroup of i t s  normalizer. 

Proof: 

Take a cen t r a l  s e r i e s  f o r  G :  

we have [Gi,G] 4 Gi-l  f o r  1 4 i 4 r, by 1.2.2. Suppose t ha t  Gk-l  5 H 

L 

while Gk d H. S u c h  a value of k e x i s t s  because <1> = G o  5 H and 
3 .  

G = Gr L H, H being a proper subgroup of G .  Then [Gk,G] 4 Gk-l 4 H ,  

and so [Gk,H] 5 H and hence by 1.1.8 (c) , G k  E NG(H) . By t h e  choice of 

k the re  is  an element of G which does not l i e  i n  H, and it follows k 

t h a t  H r NG(H). 

The following lemma w i l l  be useful  l a t e r  when we study c losure  

operations on c lasses  of groups. 

1.2.4 LEMMA: 

(a) The c l a s s  of n i lpo ten t  groups i s  closed under t h e  formation 

of subgroups, quot ients ,  and f i n i t e  d i r e c t  products. 

(b) A l l  p-groups a r e  n i lpo ten t .  



(c) A group G i s  n i lpo ten t  i f f  a l l  i t s  maximal subgroups a r e  

normal. 

(d) A group G i s  n i lpo ten t  i f f  a l l  i t s  Sylow subgroups a r e  

normal. 

(e) A n i l po t en t  group i s  t h e  d i r e c t  product of i t s  Sylow subgroups. 

1.2.5 LEMMA: If H i s  a  non- t r iv ia l  normal subgroup of t he  n i lpo ten t  

group G ,  then H fl Z (G) # <I> .  

Proof: 

Let <1> = G ... 5 Gr = G be a  c e n t r a l  s e r i e s  of G .  G o -  1 -  

There i s  a  l e a s t  in teger  k  such t h a t  H n G k  # <I>. Let x  be a  non- 

t r i v i a l  element i n  H n G k .  Then [x,G] 5 [H,G] 5 H a s  H Ir G .  Also 

[X,ci  rG  c i  
"1 - L kyUJ - k-l ~y  1 . 2 . 2 .  ~ h u ~  [x,G] 5 H fi G = <I> by the k-1 

L 
c h o i c e o f  k. By1 .1 .8 ( f ) ,  x  E Z(G). o 

1.2.6 LEMMA: The following a r e  equivalent:  

( i )  G i s  n i lpo ten t .  

( i i )  There e x i s t s  an in teger  n  such t h a t  z ~ " ( G )  = < I > -  

( i i i )  There e x i s t s  an in teger  n  such t h a t  Zn(G) = G .  

I t  may be shown t h a t  t h e  l e a s t  n  i n  ( i i )  i s  t h e  same as  t he  l e a s t  n 

i n  ( i i i ) .  This in teger  n  i s  ca l l ed  t h e  c l a s s  of t he  n i lpo ten t  group. 

Since a  group G is  abel ian  i f f  G '  = < I > ,  a11 abel ian  groups 

a r e  n i lpo ten t .  On t he  .other hand, A4 i s  an example of a  non-nilgotent 

group. This i s  because Z1(A4) = < I > ,  as  a  d i r e c t  check shows. Hence 



Z1 (A4) = Z 2  (A4) = . . . , and thus  Zn(A4) + A4 f o r  every n.  

1.2.7 DEFINITION: A group G i s  solvable  i f  it has a subnormal s e r i e s  

<1> = Go ZG1 5 ..' S G r = G  

i n  which Gi /Gi - l  i s  abe l i an  f o r  1 5 i 5 r. 

Comparison of d e f i n i t i o n s  shows t h a t  every n i l p o t e n t  group is 

solvable.  On t h e  o the r  hand, t h e r e  a r e  solvable  groups such a s  S3 and 

A4 t h a t  a r e  not  n i l p o t e n t .  

Again we s t a t e  some c losure  r e s u l t s  f o r  l a t e r  use.  

1.2.8 LEMMA: 

(a) The c l a s s  of solvable  groups i s  closed with respec t  t o  t h e  

formation of subgroups, homomorphic images, and f i n i t e  d i r e c t  products. 

(b) Let H be a normal subgroup of G .  I f  H and G/H a r e  

both solvable  then G i s  solvable .  ' 
(c) Put D (G) = [G , G I  , def ine  by induction Dn (G) = [Dn-l (G) , 

Dn-l (G)]. Then G i s  solvable  i f f  Dn(G) = <1> f o r  some in teger  n. 

Hence G is  solvable  implies t h a t  G 1  < G .  

1.2.9 DEFINITION: Let p be a prime number. 

An abe l i an  group E i s  an elementary abe l i an  p-group i f  every 

element of E has order  p o r  1. 

1.2.10 LEMMA: 

Chief f a c t o r s  of f i n i t e  solvable  groups a r e  elementary abel ian  

p-groups f o r  some prime p.  



1 . 2 . 1 1  COROLLARY: A minimal normal subgroup of a f i n i t e  solvable  group i s  

an elementary abel ian  p-group f o r  some prime p. 

1.2.12 DEFINITION: A group i s  sugersolvable i f  it has a normal s e r i e s  with 

cyc l i c  f a c to r s .  

Again we s t a t e  some r e s u l t s  on c losure  f o r  f u t u r e  reference.  

1.2.13 LEMMA: 

(a) The c l a s s  of supersolvable groups i s  closed with respect  t o  

t h e  formation of subgroups, homomorphic images, and f i n i t e  d i r e c t  products. 

(b) A group G i s  supersolvable i f f  i t s  maximal subgroups have 

prime index. 

(c) Nilpotent  groups a r e  supersolvable and supersolvable groups a r e  

solvable .  In general ,  we have t he  following hierarchy of c l a s s e s  of groups: 

\ 
Cyclic c Abelian c Nilpotent  c Supersolvable c Solvable c Group. 

A l l  inc lus ions  a r e  proper, and i n  p a r t i c u l a r  A4, which has no 

normal s e r i e s  

with each f a c t o r  group Gi/Gi-l  c yc l i c  and with each G i m l  9 G ,  i s  t h e  

f i r s t  example of a solvable  group t h a t  is  not  supersolvable.  

1.3 EXTENSIONS : 

Let H and F be groups. The study of extensions involves f inding 

a l l  groups. G (up t o  isomorphism) such t h a t  H 2 G and G/H "= F. 



1.3.1 DEFINITIONS: I f  K and F a r e  groups, an extension of K by F 

is a group G such t h a t :  

( i )  G contains K a s  a normal subgroup. 

( i i )  G / K  F .  

I f  H 5 G and there  e x i s t s  another proper subgroup K of G such 

t h a t  H fl K = <1> and G = HK we say H is  complemented i n  G .  I f  

H fl K # < I >  then K is ca l led  a p a r t i a l  complement of H .  In  t he  

following we point  out  some spec ia l  cases of extensions.  

I f  H and K a r e  normal subgroups of G such t h a t  G = HK and 

H n K = <1> then G is  a d i r e c t  product of H and K ,  wr i t t en  

G = H x K. We not ice  t h a t  i f  G = H x K then t he  elements of 

H commute with those i n  K ,  t h a t  i s  H and K commute elementwise. 

-1 -1 -1 -1 
For i f  h C H and k E K ,  n # k, then n k hk = h jk hkj = 

-1 -1 
(h k h)k E H n K = <I>, hence hk = kh. 

1.3.2 LEMMA: I f  G = H x K  and A S H  then A 5 G .  

Proof: 

Let a E A,  g E G ,  then g = hk where h E H, k E K and 

- 1 -1 -1 g ag = k h ahk = k-'ark where h-'ah = a '  € A as  A I1 H 

= afk-'k as  a 1  E A E H, k" € K 

= a '  E A. 

From t h e  d e f i n i t i o n  of d i r e c t  product we no t ice  t h a t  t h e  subgroups 

H and K a r e  required t o  be normal. A na tura l  general izat ion of d i r e c t  



13. 

products is  t h e  s i t u a t i o n  i n  which only one of t h e  subgroups i s  requ i red  t o  

be normal. 

1 .3 .3  DEFINITION: Agroup  G i s a  

case G conta ins  subgroups K and 

( i )  K 5 G .  

semidi rec t  product of K by F i n  

F such t h a t :  

( i i )  K F = G .  

( i i i )  K f l  F = < I > .  

I t  fol lows from t h e  second isomorphism theorem t h a t  a semidirect  

product of  K by F is  an extension of  K by F. 

1.3.4 LEMMA: I f  G i s  a semidi rec t  product of K by F then t h e r e  i s  a 
- 1 

X 
homomorphism i) : F -t Aut (Kj def ined by Ox(K) = xkx-' = k , f o r  a i l  

k E K ,  x C F .  Moreover, ex(ey(k))  = f3 (k) and G1(k) = k, k t K ,  
XY 

x , y , l  E F .  \ 

Proof: 

S t ra ight forward ,  using t h e  normali ty of K.  

DEFINITIONS: 

(a) Given K ,  F ,  and 0 : F + Aut(K), then a semidi rec t  product 
- 1 

G of  K by F r e a l i z e s  0 i n  case  Gx(k) = kX f o r  a l l  k E K .  

(b) Let K ,  F ,  and f3 : F -+ Aut (K) be given. Then K F i s  

t h e  s e t  of a l l  ordered p a i r s  (k,x) E K x F under t h e  b inary  opera t ion  
- 1 

(k,x) ( k l Y ~ )  = (kk; Y ~ Y ) .  



1.3.5 THEOREM: Let K ,  F ,  and 8 : F -t Aut(G) be given,  then  

G = K x8 F i s  a semidi rec t  product of K by F t h a t  r e a l i z e s  8. 

Proof: 

We f i r s t  prove t h a t  G = K F i s  a group. M u l t i p l i c a t i o n  is  8 

a s s o c i a t i v e :  

- 1 - 1 
= (kk; k2 (xy) , xyz) 

I t  is  easy t o  check t h a t  t h e  i d e n t i t y  element i s  ( 1 , l )  and 

(k,x) -l = ((k-l)x,x-l) .  

Let u s  i d e n t i f k K  with t h e  subse t  of G c o n s i s t i n g  of a l l  p a i r s  

of t h e  form ( 1  Since t h e  only l 1 t w i s t l 1  occurs  i n  t h e  f i r s t  coordina te ,  

t h e  map a : G + F def ined  by a(k,x)  = x i s  a homomorphism. I t  i s  

e a s i l y  checked t h a t  ke ra  = k, so  t h a t  K 2 G .  

I d e n t i f y  F with a l l  p a i r s  (1,x) .  Then F I G wi th  KF = G and 

K fl F = <(1 ,1 )> .  Therefore,  G is  a semidi rec t  product of K by F .  

To s e e  t h a t  G r e a l i z e s  8, compute: 

- 1 - P 
(1,x) ( k , l )  ( 1 , ~ ) - '  = (kx ,x) ( 1 , ~ - l )  = (kX . I ) .  



1 .3 .6  LEMMA: I f  G is  a semidi rec t  product of K by F, then  

G "= K xr F f o r  some 8 : F + Aut(G). e 

Proof: 

Define 

g = kx, where 

Mul t ip l i ca t ion  

- 1 
Bx(k) = kX . Since G = KF, each g E G has t h e  form 

k E K ,  x E F; t h i s  form i s  unique s i n c e  K f l  F = <I>.  
- 1 - 1 i n  G s a t i s f i e s  (kx) (klxl) = k(xklx )xxl = kk? xxl 

and it now i s  easy t o  s e e  t h a t  t h e  map K rgF + G def ined  by (k,x) -r kx 

is  an  isomorphism. 

1 .4  THE FRATTINI AND FITTING SUBGROUPS: 

1 . 4 . 1  DEFINITION: The i n t e r s e c t i o n  of a l l  maximal subgroups of  a group G 

i s  c a l l e d  t h e  F r a t t i n i  subgroup of  G and i s  denoted by +(G). 

The F r a t t i n i  subgroup has t h e  remarkable p roper ty  t h a t  it i s  t h e  

s e t  of a l l  nongenerato s of t h e  group, where an  element g i s  nongenerator 9 
if G = <g,X> always impl ies  t h a t  G = <X> when X i s  a subse t  of G .  

The fol lowing lemma s t a t e s  t h i s  formal ly  and w i l l  be of cons tant  use  t o  u s  

i n  t h e  sequel .  

1 .4 .2  LEMMA: 

(a) For a subse t  X of G ,  <X,+(G)> = G i f f  <X> = G .  I n  

p a r t i c u l a r ,  i f  G = H+(G) f o r  some subgroup H of G ,  then  G = H. 

(b) If H 5 G ,  then  H has a p a r t i a l  complement i n  G i f f  



Proof: 

(a) Suppose G = <X,+(G)>. If <X> were a proper subgroup of G ,  

then  t h e r e  would be a maximal subgroup M which would contain X. Then 

we would have <X,+(G)> - c M ,  con t ra ry  t o  t h e  assumption. The converse 

impl ica t ion  i s  obvious. In  p a r t i c u l a r ,  G = H+(G) - c <H,+(G)> = <H> = H 

as H i s  a subgroup. So G = H .  

(b) Assume t h a t  H 9 G with H 6 + (G) . Then t h e r e  is  a maximal 

subgroup M of G with H 6 M. But HM i s  a group a s  H Z G and - 

M < HM a s  H f M. Maximality of M implies t h a t  G = HM and M i s  a 

p a r t i a l  complement of  H.  

Conversely, suppose H 5 +(G) and H has a p a r t i a l  complement 

K. Then G = HK 5 +(G)K = K ,  con t ra ry  t o  t h e  d e f i n i t i o n  of a p a r t i a l  

comnpienlent . 

1.4.3 LEMMA: I f  H i s  a normal subgroup of t h e  f i n i t e  group G and P 

i s  a Sylow p-subgroup of H, then  G = NG(P)H. 

Proof: 

g Let g 6 G ;  then  P c H and pg i s  Sylow p-subgroup of H.  

Hence pg = ph f o r  some h 6 H by Sylowls theorem. Consequently 

ghm16 NG(P) and g € NG(P)H. 

The proof of  t h i s  enormously use fu l  r e s u l t  i s  u s u a l l y  r e fe r red  t o  

a s  t h e  F r a t t i n i  argument and t h e  technique i n  t h e  proof is of ten  used. 
, 

One app l i ca t ion  is  t o  show t h a t  t h e  F r a t t i n i  subgroup of a f i n i t e  group i s  

n i l p o t e n t ,  a f a c t  f i r s t  e s t ab l i shed  by F r a t t i n i  himself .  



In the following lemma we collect some useful properties of the 

Frattini subgroup of a finite group. The proofs may be found in 

Gorenstein [l] or Suzuki [7] and we omit them. 

1.4.4 LEMMA: 

(a) + ( G )  is a nilp~tent, characteristic subgroup of G. 

(b) If H s G then 4(H) r 9(G). 

(d) If H 5 G, then H is nilpotent iff [H,H] 5 4(G), In 

particular G is nilpotent iff G' 5 $(GI. 

1.4.5 LEMMA: If L is abelian normal subgroup of G 

L fl #(G) = <I>, then L is complemented in G. 

such that 

Proof: \ 
Choose H 5 G minimal .subject to G = HL. (Su .ch an H exists 

by l.4.2(b)). Since L is an abelian normal subgroup of G, H fl L 9 G. 

If H fl L 5 4 (H) then H f l  L 5 4(H) fl L 5 4 (G) fl L = <I>. So we may assume 

that H f l  L 6 + (H) ., Then H L $ M for some maximal subgroup M of H, 

and so H = M(H fl L). But then ML = M(L fl H)L = HL = G, a contradiction 

to the minimality of H. a 

Now to introduce another nilpotent subgroup of the finite group G 

we remind the reader t h ~ t  the product AB of two normal nilpotent subgroups 

A and B of a group G is again a nilpotent subgroup (Gorenstein [I], 

6.1.1). We may now state: 



1.4.6 DEFINITION: The subgroup generated by a l l  t h e  normal n i l p o t e n t  

subgroups of a group G is  c a l l e d  t h e  F i t t i n g  subgroup of  G and i s  

denoted by F(G). I t  i s  ev iden t ly  t h e  unique l a r g e s t  normal n i l p o t e n t  

subgroup of G .  

1 .4.7 LEMMA: For a f i n i t e  group G .  

( i )  9 (GI 5 F(G) 

( i i )  F(G)/+ (G) is  abel ian .  

Proof: 

( i )  Obvious. 

( i i )  Let F denote F(G). Since F i s  n i l p o t e n t ,  each maximal 

subgroup of F i s  normal and hence con ta ins  F ' . Thus F ' I 9 (F) C 4 (G) 

from which it fol lows t h a t  F/+(Gj i s  abe i i an .  o 

1.4.8 LEMMA: I f  G i s  so lvab le  and 9 (G) = <I> then F (G) is  t h e  i 
product of (abel ian)  minimal normal subgroups of G .  

Proof: 

Write F(G) = L.  Since L i s  n i l p o t e n t ,  a maximal subgroup of 

L i s  normal and has prime index. Hence L '  5 9 (L) 5 4 (G) = <I> and so 

L is  abe l i an .  

Let N be the product of a l l  the (abel ian)  minimal normal subgroups 

of G .  N i s  the  d i r e c t  product because any two such subgroups i n t e r s e c t  

t r i v i a l l y .  Then N is  abel ian  and normal i n  G s o  by 1.4.5 t h e r e  is  a 

subgroup H of G such t h a t  G = HN and H n N = <I> .  Now 

H n L o H L  = G .  S ince  (L n H) n N = L fl (H fl N) = <I>,  the normal 



subgroup H n L cannot conta in  a minimal normal subgroup of G; we 

conclude H n L = <I>. Hence L = L n HN = N ( L  n H) = N .  

1.4.9 LEMMA: I f  G i s  a so lvable  group then CG(F(G) )  5 F ( G ) .  

Proof: 

For b r e v i t y  s e t  F(G) = F and CG(F)  = C .  Suppose t h e  lemma f a i l s  

so  t h a t  CF # F.  Then CF/F  i s  a n o n - t r i v i a l  normal subgroup of G/F,  

hence conta ins  a minimal normal subgroup Q/F of G/F.  S o l v a b i l i t y  

implies Q/F i s  a b e l i a n  so  we have Q' 5 F < Q 5 CF and (Q n C ) F  = Q. 

On t h e  o the r  hand Q fl C o G and Q n C is  n i l p o t e n t  because 

[ ~ n  c ,  ~n c ,  Q n C] 5 [Q',c] 5 [F,c] = <I>.  Hence Q ~ I  c 5 F SO t h a t  

(Q fl C ) F  = F.  This  and (Q C ) F  = Q y i e l d s  t h e  con t rad ic t ion  F = Q 

completing t h e  proof .  

HALL n -SUBGROUPS : 

Let G be  a f i n i t e  group and l e t  n be a non-empty s e t  of  primes. 

n-subgroup we mean a subgroup whose order  i s  t h e  product of  primes 

i n  n .  A Sylow n-subgroup of G i s  def ined t o  be a maximal n-group. While 

Sylow n-subgroups always e x i s t ,  they  a r e  u s u a l l y  not  conjugate i f  

n-contains more than one prime. 

A more u s e f u l  concept i s  t h a t  of  a Hall  n-subgroup. A n-subgroup 

H of  G such t h a t  I G : H \  is not  d i v i s i b l e  by any prime i n  n is  c a l l e d  

a Hall  n-subgroup of  G. I t  i s  r a t h e r  obvious t h a t  every Hall  n-subgroup 

i s  a Sylow n-subgroup. In  genera l ,  however, a group G need not  conta in  

any Hall  n-subgroups a s  we w i l l  s e e  from t h e  fol lowing example. 



1.5 .1  EXAMPLE: Let n = {2,5) .  A Hal l  n-subgroup of  As would have 

index 3, but As has no such subgroups. For i f  t h e r e  were a subgroup B 

of index 3 ,  then B would have t h r e e  conjugates ;  t h e  i n t e r s e c t  N of 

t h e s e  would be a subgroup of index a t  most 35 = 27. But then  N would be 

a proper  normal subgroup of A5, whereas A5 is  simple.  Therefore A5 

has no subgroup of order  20. 

A5 must have Sylow n-subgroups. Among t h e s e  a r e  t h e  Sylow 

2-subgroups, such a s  V = <(12) (34),  (13) (24)>, i s  one, f o r  if it were 

contained i n  a l a r g e r  n-subgroup then t h e  l a t t e r  would have order  20 by 

Lagrange1 s theorem. Another Sylow n-subgroup is  U = < (12345) , (25) (34)> ; 

f o r  it w i l l  be found t h a t  t h i s  has order  10 and is  t h e r e f o r e  again  a 

maximal n-subgroup. Here i s  a case  i n  which Sylow n-subgroups a r e  not  

conjugate. 

We s h a l l  s ee  now t h a t  i n  c o n t r a s t  t o  t h e  s i t u a t i o n  i n  t h e  non-solvable 

group A5 i n  a f i n i t  so lvab le  group Hall  n-subgroups always e x i s t  and i 
form a s i n g l e  conjugacy c l a s s .  

1.5.2 THEOREM (P. H a l l ) :  

Let G be a f i n i t e  so lvab le  group and n a s e t  of primes. Then 

( i )  G conta ins  a Hall  n-subgroup; 

( i i )  any two Hal l  n-subgroups of G a r e  conjugate;  

( i i i )  every n-subgroup of G l i e s  i n  a s u i t a b l e  Hall  n-subgroup. 



Proof: 

We proceed by induction on ] G I  . Let N be a minimal normal 

subgroup of G with I N (  = pr where p is  a prime. By induction G / N  

has a Hall  n-subgroup H/N,  moreover, any two Hall  n-subgroups of G/N 

a r e  conjugate i n  G / N .  We consider  s e p a r a t e l y  t h e  cases p E n and 

P f n. 

Case 1: p E n.  In  t h i s  case  H is a n-subgroup of G and, s i n c e  

] G / N  : H / N ]  = I G  : H I ,  it i s  e a s i l y  seen t h a t  H i s  i n  f a c t  a Hall  

n-subgroup of  G.  I f  L i s  any o t h e r  n-subgroup of G then by induction 

X LN/N = ( H / N ) ' ~  f o r  some x f G ,  and the re fo re  L s H . I f  L i s  a l s o  a 

Hall  n-subgroup of G ,  then / L I  = / H I  = ]H' / .  This and L 5~~ give 

X 
L = H .  

Case 2:  p 1 n ,  If M < G, then by induction, H has a _H_all 

n -subgroup H1 which must be- a Hal l  n-subgroup of  G .  I f  L is  any 

o the r  n-subgroup of  F , t hen ,  by induct ion  LN/N l i e s  i n  H'/N f o r  some 

X X x i n  G and hence L 5 H . Since HI is  a Hall  n-subgroup of HX, we 

X 
may apply induct ion  t o  conclude t h a t  L l i e s  i n  qY f o r  some y E H . 
Moreover, i f  L i s  a l s o  a Hall  subgroup of  G then ,  a s  i n  case 1, L 

would coincide  with H;'~ 
\ 

We assume f o r  t h e  remainder of t h e  proof t h a t  G = H and, without 

l o s s  of g e n e r a l i t y ,  t h a t  G # N.  We a l s o  observe t h a t  under these  

condi t ions  N i s  a Sylow p-subgroup of  G .  Let T/N be a minimal normal 

S subgroup of G / N  with (TIN] = q f o r  some prime q # p.  Let Q be a 

Sylow q-subgroup of T, so  t h a t  T = NQ. By t h e  F r a t t i n i  argument, 

G = TNG(Q) = NNG(Q). I f  G = NG(Q)' then we may apply t h e  argument of 



case 1 using Q for N. We therefore assume that G # N~(Q). Since 

N fl NG(Q) 2 G as N is abelian, it follows that N fl NG(Q) = <I>. 

Thus IG:N\ = IN~(Q)I and NG(Q) is a Hall n-subgroup of G. Set 

H1 = NG(Q) and let L be any n-subgroup of G. Since G = HIN, 

LN = LN fl HIN = N (HI fl LN) . Thus H1 fl LN is a Hall n-subgroup of LN. 

X 
If LN P G, then by induction L 5 (H n LN) s H; for some x in 1 

LN. If LN = G, then T = N(L fl T) and in this situation L fl T = Q~ 

X X 
for some x € T. Then T 2 G implies L n T a L so that L 5 NG(Q ) = H1. 

Again, if L is also a Hall n-subgroup of G, then the argument of 

X 
Case 1 can be used to show L = H1. 

1.5.3 LEMMA: Assume G has a Hall n-subgroup H. Then: 

(i) If H 5 K 5 G then H is a Hall n-subgroup of K. 

(iij If M 5 G then M l l  H and HMjM are Hall n-subgroups of 
, -  

M and G/M respectively. 

Proof: i 
(i) Follows immediately from the definition of Hall n-subgroups. 

(ii) By (i) H is a Hall n-subgroup of HM and since 

J M  : Mfl H I  = IHM : HI, J M  : M fl H I  is divisible only by primes in nl, 

where n1 is the complement of n in the set of all primes. Since H is 

a n-group and (M fl H I  divides 1 H I  , we have H fl M is a n -group. 

Therefore H fl M is a Hall n-subgroup of M. A similar argument shows that 

HM/M is a Hall n-subgroup of G/M. 



1.6 CARTER SUBGROUPS: 

In 1961 R.W. Carter published a striking theorem about the nilpotent 

subgroups of a finite solvable group in his paper llNilpotent self-normalizing 

subgroups of a solvable group1'. 

1.6.1 THEOREM (Cart ex) : 

If G is a finite solvable group, then: 

(a) G has a self-normalizing nilpotent subgroup. 

(b) If H1, Hz are self-normalizing nilpotent subgroups of G, 

then H1 = H: for some g € G. 

We shall prove a more. general version of this theorem later. 

1.6.2 DEFINITION 

Self-normalizing nilpotent subgroups are now called Carter subgroups. 

1.6.3 LEMMA: I 

Let E be a Carter subgroup of G. Then: 

(i) If E 5 F 5 G, then E is a Carter subgroup of F. 

(ii) If M G, then EM/M is a Carter subgroup of G/M. 

Proof: 

(i) As the definition of nilpotence takes no account of any group 

in which E may lie, we have E is a nilpotent subgroup of F. 

Since E is self-normalizing in G, E = NG(E) and so if E 5 F, 

then NF (E) = NG (E) fl. F = E n F = E. Therefore E is a nilpotent self- 

normalizing subgroup of F. Thus E is a Carter subgroup of F. 



( i i )  Since M Z G ,  E f l  M a E ,  and s ince  E i s  n i lpo ten t ,  

E/E n M i s  n i lpo ten t .  But E / E  n M " =  EM/M, t he re fore  EM/M i s  n i lpo ten t .  

To show EM/M is self-normalizing, suppose EM/M 5 F/M. Then 

EM 5 F. By ( i )  E i s  a Car ter  subgroup of EM and so by (1.6.1) a l l  

conjugates of E i n  EM under the  act ion of F a r e  conjugate i n  EM; 

t h a t  is  f o r  a l l  x E F, t he r e  i s  g E EM such t h a t  E~~ = E which implies 

t h a t  xg E NG(E) = E implies t ha t  x C E ~ - '  implies t h a t  F = E-EM = EM, 

so EM/M is self-normalizing i n  G/M and there fore  EM/M is  a Car ter  

subgroup of G/M.  

Ca r t e r ' s  discovery aroused considerable i n t e r e s t ,  although it was 

c l ea r  from t h e  s t a r t  t h a t  it could not be extended i n  an obvious way t o  

a r b i t r a r y  f i n i t e  groups. The a l t e rna t i ng  group A5 shows t ha t  Car ter  

subgroups need not  e x i s t  i n  insolvable groups. 

Car ter  subgroups may be seen a s  analogues ( fo r  t he  c l a s s  of n i lpo ten t  

C groups) of Sylow p subgroups ( fo r  t he  c l a s s  of p-groups) and Hall n-sub- 

groups ( fo r  t he  c l a s s  of n-groups). A l l  a r e  maximal subgroups of t h e i r  

c l a s s ,  a r e  preserved under epimorphisms, and s a t i s f y  t h e  existence and t h e  

conjugacy condit ions,  i . e .  they ex i s t  and form a s i ng l e  conjugacy c l a s s .  

One important component of t he  theorems of Sylow and Hall t h a t  i s  missing 

from Car te r ' s  theorem, however, is  t he  following theorem: 

THEOREM : 

Every p-subgroup of a group is  contained i n  a Sylow p-subgroup; 

every n-subgroup of a solvable group i s  contained i n  a Hall n-subgroup. 



I t  i s  not  t h e  case  t h a t  every n i lpo ten t  subgroup of a solvable  group 

is  contained i n  a self-normalizing n i lpo ten t  subgroup. 

EXAMPLE : 

Consider S3. The subgroup H = ( I ,  (123) , (132) 1 is  e a s i l y  checked 

t o  be a normal i n  S3. Since H'C3,  S3/H"C2' by 1.2.8(b),  S3 is  

solvable.  Z IS3) = <1> a s  a d i r e c t  check shows. Hence Z (S ) = 1 3  

Z (S ) = . . . , and thus Zn (S3) # S3 f o r  every n. Hence by 1.2.6 ( i i i )  , 2 3 

S3 i s  not n i lpo ten t .  

H i s  n i lpo ten t  and H i t s e l f  i s  t h e  l a rge s t  n i lpo ten t  subgroup of 

S3 t h a t  contains H. But H i s  not self-normalizing,  s ince  H 4 S3 which 

implies t h a t  N G ( G )  = S3. 

Some years were t o  e lapse  before t h e  discovery of new conjugacy 

c l a s se s  of generalized Sylow subgroups s a t i s fy ing  Theorem 1.6.1. 

[ 



Chapter 2 

PROJECTORS and FORMATIONS 

2.1 FORMATIONS: 

By a c l a s s  of groups F we mean a c l a s s  - not a s e t  - whose 

members a r e  groups and which enjoys t h e  following p roper t i e s :  

( i )  F conta ins  a group of order  1; 

( i i )  G S G  t F always implies t h a t  G1 h F. 
1 

2.1.1 DEFINITION: 

Let F be a c l a s s  of f i n i t e  groups. F i s  c a l l e d  a homomorph i f  

G E F, N 3 G implies t h a t  G I N  E F.  

Examples of homomorphs a r e  r e a d i l y  found. The c l a s s e s  of f i n i t e  

groups, f i n i t e  so lvab le  groups, f i n i t e  n i l p o t e n t  groups, and f i n i t e  super- 

so lvable  groups a r e  homom phs. T 

2.1.2 DEFINITION: 

A homomorph F is  c a l l e d  a formation i f  it s a t i s f i e s  t h e  following 

condit ion:  

(*) I f  N l Y . . - , N k  a r e  normal subgroups of G such t h a t  
k 

G / N i  t F and n Ni = <l> i = l . ,  then G C F. 
i=l 

REMARK 1: Condition (*) of t h e  d e f i n i t i o n  2.1.2 is  equivalent  t o  t h e  

following condi t ion:  

( *  I f  G / N l Y  G / N 2  C F, then G /  (N1 fI N2) C F. 



This is because: i f  N1, N2 4 G with G/N1, G /N2  E F,  then 

(G/N1 n N2)/ ( N ~ / N ~  fl N,) E-- G / N i  E F i = 1 , 2 ,  

and (N1/(Nl n N,)) fl (N,/N~ fl N2) = <1>, and there fore  

Thus we have shown (*) implies (**). On the  other  hand, 

k 
normal subgroups of G such t h a t  G/Ni E F and fl Ni 

i= 1 

G / N ~  n N, c F. 

if N1, . . . ,Nk a r e  

= <I>, then 

assuming (**) we have G/N19 G / N 2  E F implies G/(N1 n N2) E F. Again 

G/N3 E F and G / N ~  fl N2 E F implies G/(N1 ll N 2  fl N3) € F.  Continuing 

t h i s  we f i n a l l y  ge t  G/(N1 I-I ... fl Nk-l), G/Nk C F implies G /  n Ni E F, 

k i=l 

but n Ni = < I > ,  the re fore  we have G E F.  
i=l 

REMARK 2: 

Condition (**) can be replaced by t h e  following apparently weaker 

condition: (***) I f  N1, N2 4 G such t h a t  G / N l ,  G /N2  E F and 
i 

N1 fl N2  = < I > ,  then 'G E F. 

REMARK 3: 

I f  G , H  E F then GxH E F. 

We w i l l  provide examples of formations l a t e r .  Now we have t he  

following lemma. 

2.1.3 LEMMA: 

Let F be a formation, and G a group. Let G F  = fl{H : H s G ,  

G/H c F}. Then G F  i s  unique and minimal subject  t o  t h e  property t h a t  

G / G F  6 F. Moreover, G/H 6 F i f f  GF I H, H 9 G .  In pa r t i cu l a r ,  G E F 

i f f  G F  = <l>. 



Proof: 

By (**) of t h e  de f in i t i on  of formation we have G / G F  E Fa  G F  is  

unique and minimal subject  t o  G / G F  E F by i ts  very de f in i t i on .  

Also if GF 5 H, then G/H " (GIGF)/ (H/GF) C F, s ince  G / G F  C F 

and F i s  closed under epimorphisms. 

G F  is  of ten ca l led  t h e  F-residual of G .  I t  i s  cha rac t e r i s t i c  i n  

G by 1.1.8(c),  and it may be characterized as  t h e  l e a s t  normal subgroup with 

f ac to r  group i n  F. 

EXAMPLE : 

Let A be t h e  c l a s s  of f i n i t e  abel ian groups. We w i l l  see  l a t e r  t h a t  

A i s  a formation. G 1  = [G,G] i s  t he  A-residual, s ince  f o r  N 5 G ,  

G /N  E A implies t h a t  G / G 1  E A and G 1  5 N. 

To provide examples\ we denote by 

N :  The c l a s s  of a l l  f i n i t e  n i lpo ten t  groups. 

P: The c l a s s  of a l l  f i n i t e  p-groups, where p i s  a f ixed 

prime. 

T: The c l a s s  of a l l  f i n i t e  supersolvable groups. 

n :  The c l a s s  of a l l  f i n i t e  solvable n-groups (where n is  a - 

s e t  of primes). 

U: The c l a s s  of a l l  f i n i t e  solvable groups. 

A:  The c l a s s  of a l l  f i n i t e  abel ian groups. 

We have seen t h a t  formations a r e  closed under taking f ac to r s  and 

d i r e c t  products. I f  on t he  other hand we requ i re  a c l a s s  t o  be closed under 

both of these  operations and taking subgroups it i s ,  i n  f a c t ,  a formation. 



29. 

2.1.4 THEOREM: 

I f  H,K 5 G y  then  t h e r e  e x i s t s  a monomorphism 8 of G/H n K 

i n t o  G/H x G / K .  

Proof: 

Define 8 : G/H fl K -t G/H x G / K  by 8[g (H n K) 1 = (gH,gK) . Then 8 

is  well  def ined,  s i n c e  gl(H fl K) = g2(H fl K) impl ies  t h a t  glg;l € H fl K 

- 1 - 1 implies t h a t  g g € H and glg2 € K .  Hence g H = g2H and glK = g K 
1 2  1 2 

and so  (glH,glK) = (g2H,g2K). 

Now, Q[gl (H n K)g2(H fl K) 1 = 9(g1g2 (H n K)1 = (g1g2H9 g1g2K) 

= (g1Hg2H, g1Kg2KI 

= (glK glK) k 2 H Y  g2K) 

= 9[g1 ( H m l  @kZ (mK) I 

and there fore  8 i s  a homomorphism. Now 8[gl (H 9 K) 1 = @kg2(!! 9 K) 

implies t h a t  (glHy glK) = (g2H, g2K) and so  glH = g2H and glK = g2K. 

Hence g;1g2 € H fl K and t h e r e f o r e  gl(H fl K) = g2(H n K). Thus 8 is  

one-to-one homomorphism. o 

The fol lowing c o r o l l a r y  t o  Theorem 2.1.4 enables us  t o  prove ve ry  

simply t h a t  a l l  t h e  c l a s s e s  N ,  P, T, - IT, U and A a r e  formations. 

2.1.5 COROLLARY: 

Let F be a non-empty c l a s s  of groups, closed under epimorphisms, 

subgroups, and d i r e c t  products .  Then F i s  a formation. 

Proof: 

Since F is  a homomorph ( i . e .  closed under epimorphisms), we only 



need t o  show t h a t  if G/H, G / K  E F then  G/H fl K E F where H,K 5 G .  

Since G/H x G / K  E f ,  and by 2.1.4, G/H fl K i s  isomorphic t o  a subgroup 

of G / H  x G / K ,  G/H fl K € F a s  r equ i red .  a 

2.1.6 EXAMPLES: 

(a) Since a l l  t h e  c l a s s e s  N ,  P, T, 5 U and A a r e  c l e a r l y  c losed  

under epimorphisms, subgroups and d i r e c t  products ,  then  they  a r e  formations.  

(b) In  t h i s  example we show t h a t  formations a r e  no t  n e c e s s a r i l y  

closed under t ak ing  subgroups. 

Let F = {G : G i s  so lvab le  and I M / N I  # 2 f o r  a l l  2-chief  

f a c t o r s  M / N  of G I .  We show t h a t  F i s  a formation.  I t  i s  obvious 

t h a t  F i s  a homomorph, s i n c e  a l l  2-chief f a c t o r s  of  G / N  (where N f G) 

a r e  isomorphic t o  a subse t  of those  of G .  

f 
Now, l e t  G/H1i G/H2 e F and by (***) of (2.1.2) we may assume 

t h a t  H1 H2 = <I>,  and we want t o  show t h a t  G € F. 

If M/N i s  a ch ie f  f a c t o r  of G ,  then ,  s i n c e  H.  5 G ( i  = 1,2) 
1 

we must have e i t h e r  H covers  I / N  o r  avoids it by (1.1.6) .  I f  Hi 
i 

covers  M / N ,  t hen  MHi = NHi so  t h a t  MHi/NHi = <I>. I f  Hi avoids M / N ,  

then again by (1.1.6)  , M/N "5 MHi/NHi (MHi/Hi) / (NHi/Hi) which means t h a t  

M / N  i s  isomorphic t o  a c h i e f  f a c t o r  of G / H i  Therefore we have G € F.  

For ins t ance ,  A4 € F s i n c e  i t s  c h i e f  f a c t o r s  have order  4 and 3, 

but V = { ( I ) ,  (12) (34) ,  (13) (24) ,(14) (23) I i s  a normal subgroup of A4 and 

V # F s i n c e  C 2  i s  a 2-chief f a c t o r  of V wi th  order  2. Thus F is  not  

c losed  under (normal) subgroups. 



In order t o  genera l i ze  C a r t e r ' s  r e s u l t  (1.6.1) ,  Gaschstz needed t o  

consider a s p e c i a l  kind of formations which he def ined ( i n  h i s  paper llZur 

t h e o r i e  de r  endlichen aufl6sbaren Gruppenl1, Math Z .  80, 1963, 300-305) a s  

follows : 

2.1.7 DEFINITION: 

Let F be a non-empty formation. Then F is  s a i d  t o  be sa tu ra ted  

provided t h a t  G/g(G) € F implies G f F. 

2.1.8 EXAMPLES: 

(a) Consider N ,  t h e  c l a s s  of f i n i t e  n i l p o t e n t  groups. By 2.1.6(a) ,  

N i s  a formation. To show N i s  sa tu ra ted ,  suppose G/g(G) f N and l e t  

P be a Sylow p-subgroup of G.  Then Pg(G)/g(G) i s  a Sylow p-subgroup of 

G/g (G) . But G/g (G) € s o  PQ (G) /Q (G) 5 GI4 (G) which implies t h a t  
\ 

P4 (G) 2 G .  

I f  NG(P) < G ,  then t h e r e  e x i s t s  a maximal subgroup M of G 

such t h a t  NG(P) 5 M. Now P i s  a Sylow p-subgroup of Pg(G) so  by t h e  

F r a t t i n i  argument we have G = (Pg (G))NG (P) 5 M (as  P 5 NG (P) 5 M and 

g(G) 5 M) which i s  con t rad ic t ion .  Therefore NG(P) = G and hence P 4 G .  

Thus G is  n i l p o t e n t .  

(b) By 2.1.6, T i s  a formation. Since G i s  f i n i t e ,  G/d(G) i s  

supersolvable implies t h a t  G i s  supersolvable (see Robinson 9.4.5). Thus, 

t h e  c l a s s  of f i n i t e  supersolvable groups is  a sa tu ra ted  formation. 

(c) We know t h a t  A i s  a formation (Example 2.1.6) , and if G i s  a 

non-abelian p-group, we know t h a t  G/g(G) € A but G { A (e.g. t ake  G = Qs, 

t h e  quaternion group). Thus A i s  not sa tu ra ted .  



The following character izat ion of sa turated formations provides 

ins ight  i n to  t h e i r  p roper t i es  a s  well a s  a l i s t  of useful  c r i t e r i a .  

2.1.9 THEOREM: 

Let F be a formation and G a  f i n i t e  solvable group. Then, the 

following a r e  equivalent  : 

( i )  F i s  sa turated;  

( i i )  i f  G j! f and M i s  a minimal normal subgroup of G 

such t ha t  G / M  € F, then M has a complement and a l l  such complements a r e  

conjugate i n  G ;  and 

( i i i )  i f  G j? F, M is  a minimal normal subgroup of G ,  and 

G / M  E f, then M has a complement i n  G .  

Proof: r 
( i )  = ( i i ) :  Suppose F i s  sa turated,  G 4 F and M i s  a minimal 

normal subgroup of G and G / M  E F. We need t o  show t h a t  M has a 

complement and any two complements of M a r e  conjugate. 

Since F i s  sa turated and G # F, we conclude t h a t  G/9(G) 4 F. 

I f  9(G) # < I > ,  t h e  r e s u l t  follows by induction.  For, s ince  

G/M € F it follows t h a t  M f 9 (G) and hence M n 9 (G) = (1,. Then 

M+ (G) /+ (G) i s  a minimal normal subgroup of G / +  (G) and so it has a 

complement L/+(G). I t  f o l l o w s t h a t  G = M L  and M n L = < l > .  Also, any 

two complements of M must be maximal subgroups and hence, again by 

induction, a r e  conjugate i n  G. 



So we can assume +(G) = <I>. Hence, there exists a maximal subgroup 

H of G such that G = MH. Now M fl H 5 MH = G, as M is abelian, and 

so M n H = <I> by minimality of M and so H is a complement of M in 

G. It only remains to show that if K is another complement of M in G, 

then H and K are conjugate. 

By induction we may assume that M is the unique minimal normal 

subgroup of G. For if N is another minimal normal subgroup of G then 

M fl N = <I>. It follows that G/N 4 F (otherwise G/N, G/M E F implies 

G € F) and that N a H and N 5 K, for if N $ H then by maximality of 

H, NH = G and hence G/N "= H/H fl N E F, which was just seen to be false, 

so N 5 H. Similarly, N 5 K. Thus H/N and K/N are complements of 

MN/N in G/N. It follows (by induction) that H/N and K/N are conjugate 

in G/N and hence t at H and K are conjugate in G. F 
So since M is the unique minimal normal subgroup of G and 

+(G) = <I>, then by (1.4.8) we have M = F(G), and by (1.4.9), CG(M) = M. 

Suppose ( M I  = pk for some prime p. Then we conclude that 0 (G/M) = <1> 
P 

(otherwise, the inverse image of 0 (G/M) in G is a normal p-group 
P 

strictly containing M = F(G), a contradiction), and hence that 

Op, (G/M) # <I> 

Let R/M be a minimal 

- Opt (G/M) . It follows that ( 

normal subgroup of G/M contained in 

1 R/M I , 1M 1 ) = 1. Now R/M is an elementary 

abelian q-group, q # p, q a prime. Now R = M(R fl H) = M(R fl K) so we 

conclude that R fl H and R fl K are Sylow q-subgroups of R. Hence there 

exists x E M so that Rfl H = (Rn K)' = R n K ~ .  As R 9 G ,  we have 

X 
R fl H 5 H and R fl H = (R fl K)' 9 K'. Hence NG(R fl H) 1. H,K . 



Since M is the unique minimal normal subgroup of G, it follows 

that R n H is not normal in G and that <H,KX> is not all of G. 

X As H and KX are maximal subgroups of G, we conclude that H = K as 

desired. 

(i) = (iii) : is trivial. 

(iii) = (i): Suppose (iii) is satisfied and G/9(G) € F. Assume G 

is minimal with this property, subject to G F. Then for any minimal 

normal subgroup M of G with M I 9 (G) we have G/9 (G) (G/M)/ (+ (G)/M) = 

(G/M)/9 (G/M) E F and so by minimality of G we have G/M E F. (Thus we 

have a minimal normal subgroup M of G with G/M E F and G f F). 

Therefore by (iii) M has a complement in G, contracting M I +(G). o 

In 1963 Gaschiitz published a far-reaching generalization of Hall and 

Carter subgroups. 

2.1.10 DEFINITION: 

Let F be a class of finite groups. A subgroup F of a group G 

is called an F-covering subgroup of G if: 

(i) F E F 

(ii) If F I H 5 G and N 2 H such that H/N E F, then 

H = FN. 

2.1.11 REMARK: 

If F is a non-empty formation, then by definition of GF, the 

F-residual of G, we have for any N 5 G with G/N € F, GF 5 N. It 

follows that a subgroup F of G so that F E F is an F-covering subgroup 



of G iff F C H 5 G implies t h a t  H = FHF9 where HF i s  t h e  F-residual  

2.1.12 EXAMPLE: 

Consider n, t h e  c l a s s  of f i n i t e  so lvable  n-groups, where n i s  - 

a s e t  of primes. Take F t o  be a Hall  n-subgroup of  t h e  f i n i t e  so lvable  

group G .  Then F € n .  - Moreover, if F 5 H 5 G and H1 5 H such t h a t  

H/H1 C - n,  then c l e a r l y  ( J H : H ~ J ; I H : F J )  = 1 and so  by (1.1.2) ,  H = FH1. 

Thus Hall  n-subgroups of  G a r e  n-covering subgroups. - 

In p a r t i c u l a r ,  tak ing n = {p) we s e e  Sylow p-subgroups a r e  t h e  

P-covering subgroups, where P, a s  before ,  i s  t h e  c l a s s  o f  f i n i t e  p-groups. 

2.1.13 LEMMA: 

Let F be a homomorph and l e t  F be an F-covering subgroup of t h e  
3 -  

f i n i t e  group G .  Then i f  F 5 H 5 G ,  we must have t h a t  F is  an 

F-covering subgroup of H. 

Proof: 

Clear  from t h e  d e f i n i t i o n .  

2.1.14 LEMMA: 

Let F be a homomorph and F be an F-covering subgroup of t h e  

f i n i t e  group G ,  and suppose t h a t  N 2 G .  Then FN/N i s  an F-covering 

subgroup of G / N .  

Proof: 

F i r s t  we n o t i c e  t h a t  FN/N € F a s  FN/N 2 F/F  fl N C F, Since F 



i s  a homomorph. Now, suppose t h a t  FN/N 5 H/N 5 G / N  and (HIN) / (M/N) E F. 

Then HIM E F and so a s  F 5 H c G we ge t  t h a t  H = MF from t h e  f a c t  

t h a t  F i s  an F-covering subgroup of G .  Hence it follows t h a t  

H/N = MF/N = (M/N)(FN/N) and consequently FN/N i s  an F-covering subgroup 

of G / N .  

2.1.15 REMARKS: 

( i )  I t  follows t r i v i a l l y  from (2.1.10) t h a t  if F is  an F-covering 

subgroup of G,F '; H 5 G and H E F,  then H = F,  which means t h a t  

F-covering subgroups a r e  maximal F-subgroups. 

( i i )  I t  a l s o  follows t ha t  i f  G E F, then G i s  i t s  own F-covering 

subgroup. 

The next i enuna allows us t o  pu l l  an F-covering subgroup of a f ac to r  

group of G back t o  an F-covering subgroup of G .  

2.1.16 LEMMA: 

Let F be a homomorph and N be a normal subgroup of t he  f i n i t e  
- 

group G .  Suppose F/N is an F-covering subgroup of G / N .  I f  F i s  

- 
an F-covering subgroup of F .  Then F is  an F-covering subgroup of G .  

Proof: 

Clearly F E f .  Suppose t h a t  F 5 H r G and HIM E F.  Since F i s  
- 

an F-covering subgroup of F and F/N 6 F, it follows t h a t  F = FN. 

- - 
Since F c H ,  F 5 HN and so FIN 5 HN/N. Hence by 2.1.13, FIN 

i s  an F-covering subgroup of HN/N. In view of t h e  isomorphism 



H/H ll N HN/N we f i n d  t h a t  ( F  fl H)/(H fl N) i s  an F-covering subgroup of 

H/H n N ;  indeed : ( F  n H) / (H n N) = (FN n H) / (H n N) = F (H I7 N) / (H n N) % 

F/ (F n H n N) = F/  (F n N) FN/N = FIN. BY 2.1.13, F i s  an F-covering 

subgroup of H n F. Now i f  H < G ,  it would follow by induction t h a t  F 

i s  an F-covering subgroup of H. A s  H/M E F, t h i s  would give t h a t  H = MF 

a s  requi red .  

Thus we suppose t h a t  H = G and hence G/M E F. Now FIN i s  an 

F-covering subgroup of G/N  and (G/N) / (MN/N) "= G/MN (G/M) / (MN/M) = 

- 
(H/M) / (MN/M) E F , and so  G / N  = (F/N) (MN/N) . Thus G = F (MN) = %. 

- 
NOW F/F n M FM/M = G/M E F SO F = F ( F  n M). Thus G = FM = 

F(F n M)M = FM 'as requi red .  

Now we cobe t o  t h e  fundamental theorem on F-covering subgroups which 

y i e l d s  numerous f a m i l i e s  of conjugate subgroups i n  a f i n i t e  solvable group. 

2.1.17 THEOREM: 

Let F be a formation. 

( i )  I f  every f i n i t e  group has an F-covering subgroup, then F is  

sa tu ra ted .  

( i i )  I f  F i s  sa tu ra ted ,  then every f i n i t e  so lvable  group conta ins  

an F-covering subgroup and a l l  of  i t s  F-covering subgroups a r e  conjugate 

( i n  t h e  group). 

Proof: 

( i )  Let G be a f i n i t e  group such t h a t  G/+(G) € F. If F i s  an 

F-covering subgroup of G ,  then  G = F+(G), which implies t h a t  G = F by 



by the non-generator property of 4(G). Thus G € F and so F is 

saturated. 

(ii) This part will be established by induction on I G I .  If 

G € F, then G is evidently the only F-covering subgroup, so we shall 

exclude this case. So suppose G 4 F, and choose a minimal normal subgroup 
- 

N of G. Then by induction G/N has an f-covering subgroup F/N. We 

consider two cases. 

Case 1: Suppose first that G/N 4 F, so that # G. By induction 
- 
F has an F-covering subgroup F. We deduce directly from (2.1.16) that 

F is an F-covering subgroup of G. Now let F F2 be two F-covering 

subgroups of G. By 2.1.14, the subgroups FIN/N and F2N/N are 

F-covering subgro s of G/N, whence they are conjugate, say FIN = F ~ N  F 
where g C G. Now FIN + G because G/N { F. Hence F and F:, as 1 

F-covering subgroups of FIN, are c0njugate.b~ induction, which implies 

that F1 and F2 are conjugate. 

Case 2: Assume now that G/N E F.. Then 2.1.9 shows that there is- 

a complement K of N in G. Moreover, since N is a minimal normal 

subgroup of G, K must be maximal in G. Since G/N E F, we have 

N = GF and so G = KG Therefore by Remark (2.1.11) K is an F-covering F ' 

subgroup of G. (Notice that K E F as K G/N E F ) .  If H is another 

such group, then G = HN, while H fI N = <I>, since N is abelian. 

Applying (2.1.9) again, we conclude that H and K are conjugate. 

The following lemma is simple but useful application of Theorem 



2.1.18 LEMMA: 

Let F be a sa turated formation and G a f i n i t e  solvable group. 

I f  N 2 G ,  then each F-covering subgroup of G / N  has t h e  form FN/N where 

F i s  an F-covering subgroup of G .  

Proof: 

Let F/N be an F-covering subgroup of G / N  and l e t  F1 be an 

F-covering subgroup of G .  Then by 2.1.14, F N/N  i s  an F-covering 
1 

- 
subgroup of G / N .  So by 2.1.17, FIN/N i s  conjugate t o  F/N. Hence 
- 
F = ( F ~ N ) ~  f o r  some g t G .  Define F t o  be F:, then we have = FN. 

Before going any fu r the r  we want t o  r e f e r  again t o  some examples of 

formations we looked a t  previously.  

2 = 1,19 EXAMPLES : 

( i )  We saw i n  Example 2.1.8(c) t h a t  A ,  t h e  c l a s s  of f i n i t e  abel ian 

groups, does not form a sa turated formation. I t  i s  easy t o  see  t h a t  Q8, 

t h e  quaternion group of order 8 ,  has no A-covering subgroups. In f a c t ,  no 

p-group i n  which G 1  = +(G) f <1> can have an A-covering subgroup. For if 

F were such a covering subgroup then +(G) = G f  implies t h a t  G/+(G) i s  

abelian which implies t h a t  F+(G) = G and hence F = G by t he  non-generator 

property of +(G). Thus we have G E A ,  a contradic t ion.  Q8 i s  one such 

group. 

On t h e  other  hand, S3 is  an example of a group which does have 

A-cavering subgroups; these  a r e  t h e  subgroups of order 2 ,  and no t ice  t h a t  

they a r e  a l l  conjugate. 



( i i )  Let T, a s  before, be t h e  c l a s s  of f i n i t e  supersolvable 

groups. We have seen i n  Example 2.1.8(b) t h a t  T is  a sa turated formation, 

so by Theorem 2.1 .17( i i )  i f  G i s  any f i n i t e  solvable  group then G must 

have T-covering subgroups. We w i l l  show t h a t  t h e  T-covering subgroups of 

G a r e  precise ly  t h e  supersolvable subgroups F of G so  t h a t  f o r  every 

p a i r  of subgroups H,K of G such t h a t  F 5 H 5 K 5 G ,  t h e  index 

~ K : H I  i s  not a prime. 

F i r s t  suppose t h a t  F i s  a T-covering subgroup of G and 

t h a t  F s H 5 K c G .  Suppose t h a t  I K : H \  = p, a prime. Then H i s  a 

maximal subgroup of K .  Let N = CoreK(H) ( i . e . ,  N i s  t h e  l a rges t  normal 

subgroup of K which i s  contained i n  H) and l e t  A/N be a maximal 

abel ian normal subgroup of K/N. Then A n H 5 K so A n H 5 N.  Hence, 

a s  N s A fl H, we have N =b fl H. Now as  H i s  a maximal subgroup of 

K ,  K = HA. Thus [ K (  = ! H \  [ A [ / ( H  fl A [  = l H l = l ~ l ! l b J l  - I t  follows that 

( A : N  I = J K : H (  = p. I t  follows t h a t  AF/N i s  supersolvable ((AF/N)/ (A/N) 

AF/A F / F  fl A i s  supersolvable, so AF/N i s  supersolvable by 1.2.14). 

Hence AF = NF, a contradiction.  This es tab l i shes  t h a t  a l l  T-covering 

subgroups s a t i s f y  t h e  above condition. 

Now suppose F i s  a supersolvable subgroup of G s a t i s fy ing  

t h e  given condit ion.  Let F 5 H 5 G and suppose H/N € T .  Now i f  NF # H, 

then there  would ex i s t  a maximal subgroup containing NF whose index i n  H 

would be a prime, contrary t o  assumption. 

2.1.20 DEFINITIONS: 

Let F be a c l a s s  of f i n i t e  groups and G any f i n i t e  group. 

(a) A subgroup H of G is  ca l led  f-maximal i f :  



( i )  H E F .  

( i i )  H c H1 5 G ,  H1 E F implies t h a t  H = H 
1 ' 

(b) A subgroup H of G i s  an F-projector  of G i f  f o r  any 

N 2 G ,  HNIN i s  F-maximal i n  G I N .  

2.1.21 LEMMA: 

Let F be a homomorph and l e t  G be a group. 

(a) I f  H i s  an F-projector  of G ,  then f o r  any x E G ,  H~ is  

an F-projector  of G .  

(b) If H i s  an F-projector  of G and i f  N Q G ,  then H N I N  is  

an F-pro j e c t o r  of G I N .  

(c) If FIN i s  an F-projector  of G I N  and i f  F i s  an F-projector  

of F, then F i s  an F-projector of G .  

Proof: 

(a) and (b) a r e  c l e a r  from t h e  d e f i n i t i o n .  

(c) Let M be any normal subgroup of G .  Suppose FMIM 5 HIM and 

H/M E F.  Since TMNIMN i s  an F-projector  of GIMN and HNIMN 

(HNIM) I (MN/M) = ( (HIM) (MNIM) 1 (WM) ' (HIM) I ( (HIM) n (MNIM) 1 E F (as F 
- 

is  a homomorph and HIM E F) ,  we have FMNIMN = HNIMN which implies t h a t  

- 
fi = FMN = FM. Thus H r FM and hence H/M 5 FMIM. 

- 
Since F is an F-projector of F ,  FMIM i s  F-maximal i n  

- 
FMIM by d e f i n i t i o n  of F-projector .  Thus FMIM = HIM which means t h a t  F 

is  an F-projector  of G .  



The following lemma is  useful  f o r  proofs by induction. 

2 . 1 . 2 2  LEMMA: 

Let F be a homomorph and G a group. A subgroup H of G i s  an 

F-projector of G i f f  H i s  f-maximal i n  G and HM/M is an F-projector 

of G/M f o r  any minimal normal subgroup M of G .  

Proof: 

Suppose H is  an F-projector of G .  Since <1> a G ,  H must be an 

F-maximal i n  G .  Moreover, i f  M i s  a minimal normal subgroup of G ,  then 

by 2 . 1 . 2 1  (b) , HM/M i s  an F-proj ec to r  of G / M .  

On t h e  other  hand, suppose H i s  an F-maximal subgroup of G and r 
HM/M i s  an F-projector of G/M f o r  any minimal normal subgroup M of G .  

I f  N C3 G then t he r e  is  a minimal normal subgroup M of G such t h a t  

M 4 N. I f  HN 4 H1 5 G with H1/N € F, then (H~/M)/(N/M) € F and 

(HM/M) (N/M) / (N/M) = (HN/M) / (N/M) 4 (HI/M) / (N/M) . But by de f in i t i on  of 

projectors  , (HM/M) (N/M) / (N/M) is  F-maximal i n  (G/M) / (N/M) , so HN = HI 

and HN/N = H1/N € F. Thus H i s  an F-proj ec to r  o f  G .  

2.1.23 REMARKS AND EXAMPLES: 

(a) Let F be a homomorph and G a group. Then every F-covering 

subgroup of G i s  an F-projector of G .  For i f  H i s  an F-covering 

subgroup of G and H 5 H1 s G such t h a t  H1/N € F. Then by de f in i t i on  of 

covering subgroups, HN = H1 and so HN/N = H1/N € F. Therefore H i s  an 

For ins tance,  Hall n-subgroups and Sylow p-subgroups a r e  - n -  and 

P -p ro j ec to r s  respec t ive ly  (see Example 2.1.12). Also from Example 



2.1 .19( i i ) ,  t h e  supersolvable subgroups F of t h e  f i n i t e  so lvable  group G 

so  t h a t  f o r  every p a i r  of subgroups H,K with F 5 H 5 K 5 G,  t h e  index 

) K : H ~  i s  not a prime, a r e  t h e  T-projec tors .  

(b) For a prime p, a non-abelian p-group G has no A-projectors .  

For i f  H were an A-projector ,  then  by 2.1.22, H would be abe l i an  and 

H G r / G r  = G / G 1 ,  t h a t  i s  HG1 = G .  But s i n c e  G r  I +(G) f o r  any p-group G ,  

it would then follow t h a t  H = G ,  i n  con t rad ic t ion  t o  t h e  assumption t h a t  

G is  non-abelian. I 

(c) Consider t h e  simple group As. As has a subgroup E " V ,  t h e  

Klein four-group. In f a c t ,  E 5 A4 5 As. E E N ,  s i n c e  V E N ,  where N 

is  t h e  c l a s s  of f i n i t e  n i l p o t e n t  groups. Also it i s  c l e a r  t h a t  EN/N i s  
/- 

an N-maximal i n  As/N f o r  any N a As. Thus E i s  an N-projector of  As. 

O n  t h e  e t h e r  hand, E i s  x c t  ax  N-c~vering subgroq of ='5 ' 

s ince  E 9 A4 5 As and A4/E E N but  E = EE # A4. 

As a l s o  has a subgroup F " Cs and F Z D 5 As where 

D Z D  10' Similar  argument shows t h a t  F i s  an N-projector of As, and F 

is  not an N-covering subgroup of As. 

Thus, t h e  not ion  of p r o j e c t o r s  i s  more genera l  than t h e  not ion  

of covering subgroups, the re fo re  poorer  i n  p r o p e r t i e s .  However, t h e  

advantage of p r o j e c t o r s  over covering subgroups, a p a r t  from t h e i r  g r e a t e r  

genera l i ty ,  l i e s  i n  t h e  f a c t  t h a t  they possess good dua l s  (namely t h e  

i n j e c t o r s ,  which l i e  out  of  t h e  scope of  t h i s  r e sea rch) .  Also t h e r e  i s  a 

c lose  connection between covering subgroups and p r o j e c t o r s  a s  we w i l l  see .  



2.1.24 LEMMA: 

I f  F i s  a homomorph and G a group, then t h e  subgroup H of G 

i s  an F-covering subgroup of G i f f  H i s  an F-projector of K f o r  a l l  

H 5 K 5 G .  

Proof: 

Let H be an F-covering subgroup of G and K a subgroup of G 

with H 5 K .  By 2.1.13, H i s  an F-covering subgroup of K and by 

2.1.23(a), H i s  an F-projector bf K. 

Conversely, l e t  H be a subgroup of G which i s  an F-projector of 

any subgroup K of G with H 5 K. We have H E F. Let given K and L ,  

with H 5 K 5 G ,  L z! K,  K/L E F. H i s  an F-projector of K ,  so t h a t  
/- 

HL!L i s  F-maximal i n  K/L. But K/L E F. I t  follows t h a t  HL/L = K/L, 

hence K = HL. o 

The following aux i l i a ry  lemma i s  due t o  Car ter  and Hawkes. 

2.1.25 LEMMA: 

Let F be a sa turated formation and G a f i n i t e  solvable group. 

I f  H is  an F-subgroup of G such t h a t  G = HF(G), then H i s  contained 

i n  an F-covering subgroup of G .  

Proof: 

We w i l l  argue by induction on I G I . We may assume G 1 F (For other-  

wise G i s  evidently t h e  F-covering subgroup which contains H). Let N 

be a minimal normal subgroup of G .  Then HN/N i n h e r i t s  t h e  hypothesis on 

H, so by induction it i s  contained i n  some F-covering subgroup K*/N of 



G/N. By 2.1.18, then KX/N w i l l  be of t he  form KN/N where K i s  an 

F-covering subgroup of G .  Consequently H 5 KN. Now we consider two 

cases : 

Case ( i ) :  KN < G .  Then by t he  induction hypothesis, H i s  

contained i n  some F-covering subgroup M of KN. But a s  K i s  an 

F-covering subgroup of G ,  it i s  F-covering subgroup of KN and so it 

must be conjugate t o  M .  This shows M t o  be an F-covering subgroup of G .  

Case ( i i ) :  KN = G .  Let F = F(G) . Since N i s  a minimal normal 

subgroup of t h e  solvable  group G ,  N i s  abel ian and so n i lpo ten t  and 

therefore  contained i n  F .  Indeed N 5 Z(F) because <1> # N fl Z(F) 2 G 

(see 1.2.5). Therefore F ! KN = G .  Now, i f  K fl F # <I> ,  we can 

apply t h e  induction hypothesis t o  G / K  fl F, concluding t h a t  H I T where 

T/K fl F i s  an F-covering subgroup of G / K  fl F. Now T < G (For otherwise 

T = G would imply t h a t  G / K  fl F = T/K n F C F and s ince  K is  an 

F-covering subgroup of G ,  we must have G = K(K fl F) = K E F,  a 

contradic t ion) .  And so again by induction t he r e  i s  an F-covering subgroup 

R of T containing H. But then by 2.1.16, R i s  an F-covering subgroup 

of G .  

Consequently we can assume t h a t  K fl F = <I>. Hence F = F fl G = 

F fl KN = N(F fl K) = N. So from the  hypothesis of t h e  lenima we have 

. G = H F = H N .  A l s o w e n o t i c e t h a t  H i s a m a x i m a l i n  G :  f o r  H # G  s ince  

G d F. F ina l ly  G = N ,  s ince  G/N E F. Hence G = F 
H G F  A s  G i s  t he  

only subgroup of G t h a t  properly contains H (because of maximality of H), 

then by Remark 2 . 1 . 1 1 ,  H i t s e l f  i s  an F-covering subgroup of G .  



2.1.26 THEOREM: 

If F is  a sa turated formation and G a f i n i t e  solvable group, 

then every F-projector of G i s  an F-covering subgroup of G .  

Proof: 

We s h a l l  argue by induction on \ G I .  Assume t h a t  H i s  an 

F-projector of G and l e t  N be a, minimal normal subgroup of G .  Then 

HN/N is  an F-projector of G / N .  By induction hypothesis HN/N is  an 

F-covering subgroup of G/N.  Put M = HN. By 2.1.18 we can wri te  M = H*N 

where H* i s  an F-covering subgroup of G .  Since N is  abel ian (so it i s  

n i l po t en t ) ,  it contained i n  F(M), and so  M = HN = HF(M) = H*F(M) . By 

- 
2.1.25, t he r e  i s  an F-covping subgroup H of M containing H. But H 

i s  F-maximal i n  G by 2 . 1 . 2 2 ,  so = H, and there fore  H i s  an 

F-covering subgroup of M. Also H* i s  an F-covering subgroup of M s ince  

it i s  an f-covering subgroup of G .  So it follows from 2.1 .17( i i )  t h a t  H 

and H* a r e  conjugate i n  M. Obviously t h i s  shows t h a t  H i s  an 

F-covering subgroup of G .  

The following theorem is  analogous t o  2.1.17, t h e  fundamental theorem 

on covering subgroups. 

2.1.27 THEOREM: 

Let F be a formation. 

( i )  I f  every f i n i t e  group has an F-proj ec to r ,  then F i s  sa turated.  

( i i )  I f  F i s  sa turated,  then every f i n i t e  solvable  group possesses 

F-projectors and any two of these  a r e  conjugate ( i n  t h e  group). 



Proof: 

( i )  Suppose t h a t  every f i n i t e  group has an F-proj ec tor ,  and l e t  G 

be a f i n i t e  group such t h a t  G/4(G) E F. I f  H i s  an F-projector of G ,  

then H+ (G) /$ (G) i s  an F-maximal i n  G/+ (G) . Since G/4 (G) E F and 

H4 (G) /+ (G) .; G / +  (G) , we must have H4 (G) /4 (G) = G/4 (GI which implies t h a t  

&(G) = G ,  which implies t h a t  G = H E F by t he  non-generator property of 

+ (GI 

( i i )  Follows from 2.1.17(i i)  and 2.1.23(a) and 2.1.26. 

A s  we have seen i n  Theorem 2.1.26, t he r e  i s  a c lose  connection between 

F-covering subgroups and F-proj ec to rs  . The most important instance of t h i s  
\ 

theory is  when F = N ,  t h e  c l a s s  of f i n i t e  n i lpo ten t  groups. Since F i s  

sa tu ra ted  (see Example 2.1.8 (b) , t h e  F-covering subgroups and F-pro j e c to r s  

coincide and form a s i ng l e  cenjugacy c l a s s  of n i lpo ten t  se l f -nomal iz ing  

( i . e .  Car ter)  subgroups i n  any f i n i t e  solvable  group. 

2.1.28 THEOREM (Car ter) :  

Let G be a f i n i t e  solvable group. Then t h e  Car ter  subgroups of G 

a r e  t h e  covering subgroups (or projectors)  f o r  t h e  formation of f i n i t e  

n i lpo ten t  groups. 

Proof: 

Let H be an N-covering subgroup of G ,  where N i s  t he  formation 

of f i n i t e  n i lpo ten t  groups. Suppose H i NG (H) . Then t he r e  is  a subgroup 

K such t h a t  H u K and K/H has prime order .  Now K = HKr However 

KM 5 H so  K = H a con t rad ic t ion  which shows t h a t  H = NG(H). Since 

H E N ,  it i s  a Car ter  subgroup of G .  



Conversely, suppose H i s  a Car ter  subgroup of G and H 5 H1 5 G 

with H1/N C N. Then by 1.6.3,  HN/N i s  a Carter  subgroup of H 1 / N  But 

since H1/N is  n i l po t en t ,  i t s  only self-normalizing subgroup i s  H1/N 

i t s e l f  (see 1.2.3).  Thus H1 = HN as  required.  



2.2 PULL-BACKS FOR COVERING SUBGROUPS (PROJECTORS): 

In t h i s  sec t ion ,  we show t h a t  llPull-backsll ex i s t  f o r  the  F-covering 

subgroups (or F-projectors) associated with a sa tu ra ted  formation F of 

f i n i t e  solvable groups, and we w i l l  use t h i s  t o  const ruct  several  c lasses  

of formations. We f i r s t  prove a number of preliminary r e s u l t s .  

2 . 2 . 1  LEMMA: 

I f  F i s  a formation, i f  F i s .  an F-projector of a f i n i t e  (not 

necessar i ly  solvable) group G ,  and i f  M , N  a r e  normai subgroups of G ,  

then FM n FN = F (M n N) . 
i 

Proof: 

Let L = F M n F N .  Then F(MflN) S L ,  L M = F M ,  L N = F N ,  

L / L  n M LM/M = FM/M € F and L / L  n N "= LN/N = FN/N E F. Hence 

L/M fl N = L/(L fl M fl N) c F. But F(M n N)/(M n N) i s  F-maximal i n  

G/M n N,  so t h a t  L = F(M fl N) . This completes t h e  proof. o 

2.2.2 LEMMA (Huppert ) : 

Suppose t h a t  F is  a sa turated formation, and t h a t  F i s  an 

F-covering subgroup of G .  Then fo r  a l l  normal subgroups N1, N2 of G ,  

F n N ~ N ~  = (F n N ~ )  (F n N,). 

Proof: 

We w i l l  argue by induction on I G I z 1. Put M = N1 fl N2 a G .  Then 

by 2.1.14, FM/M i s  an F-covering subgroup of G/M.  I f  M # < I > ,  then by 

induction we have (N1N2M/M) l l  (FM/M) = ( (NIM/M) n (FM/M) ) ( (N2M/M) n (FM/M) ) 

which implies NlN2M n FM = (NIM n FM) (N2M fl FM) and so we have 



N ~ N ~  n F s ( N ~ N ~ M  n FM) n F = ( N ~ M  n FM) ( N ~ M  n FM) n F 

= [M(NIM n F) ] [M (N2M n F) ] n F by t h e  modular law 

= (N M n F) (N2M fl F) (M n F) by t h e  modular law again 
1 

s ince  (NIM n F) (N2M n F) s F. Thus we have 

Subs t i tu t ing  f o r  M = N1 n N2 i n  (*) we get  

\ 

But c l e a r l y  (N1 fl F) (N2 fl F) 5 N1N2 n F so t he  equa l i ty  holds i n  t h i s  

case. 

So we now consider t h e  case  when N1 I7 N2 = <I>:  Since F i s  an 

F-covering subgroup of G ,  F i s  an F-covering subgroup of FN1 by 

2.1.13. So i f  NIF i G then by induction we have: 

Similar ly  i f  N2F < G .  So we may assume now t h a t  N F = N F = G .  But then 1 2 

G/Ni = FNi/Ni FINi fl F € F f o r  i = 1 , 2 ,  and consequently G/N1 I1 N2 € F, 

s ince  F i s a f o r m a t i o n .  Since % n N 2 = < I > ,  G E F, a n d s o  F = G  

by 2 .1 .17( i i ) .  The conclusion then i s  t r i v i a l .  



2.2.3 LEMMA: 

Denote by FlF2 t h e  c l a s s  of a l l  groups which a r e  extensions of 

groups i n  F1 by groups i n  F2, and l e t  F l y  F2 be sa tu ra ted  formations. 

Suppose t h a t  t h e  order  of each group i n  F1 is  coprime t o  t h e  order of each 

group i n  F2.  Then FlF2 i s  a formation. I f  F1 i s  an F -covering 
1 

subgroup of G ,  and F2 is  an F -covering subgroup of NG(F1), then 2 

F1F2 is  an F F -covering subgroup of G .  1 2  

Proof: 

Let G t FlF2 and N s G .  Since G € F1F2, then f o r  some normal 

subgroup M of G we have M € F1 and G/M C F2. Now 

G/MN " (G/M) / (MN/M) € F2,  kince F2 is  a formation; and MN/N " M/MflN € F1, 

s ince  F1 i s  a formation; and so  G/N t F1F2. Now suppose G/M,  G / N  € F1F2 

where M,N 9 G .  Then f o r  some normal subgroups R ,  S of G we have 

G / R ,  G/S € F2 while R/M, S/N € F1. Let n be t h e  s e t  of primes d ividing 

I R/MI o r  ( S/N I , and l e t  H be a Hall  n-subgroup of G .  Then by the  

hypothesis on F1 and F2, H 5 R n S, and HM = R ,  HN = S. Thus 

H / H n  M - R / M  6 F1 and H / H n  N"S/N € F1, and s o  H/(H n M n  N) € F1. 

Now R fl S = HM fl HN = H(M fl N) by 2.2.1, s i n c e  H i s  - n-projec tor  of G 

(see 2 .1 .23(a)) .  SO R n S/M n N 'H/ (H n M n N) e F1. Since G/R n S E F2 

we have G / M  fl N € F1F2 a s  des i red .  

We consider t h e  second conclusion. Cer ta in ly  F F € F1F2. Now 1 2  

suppose t h a t  FlF2 s V, and V/N F F1F2. We want t o  show t h a t  F1F2N = V .  

Since V/N € F1FZ9 t h e r e  i s  a normal subgroup K of V so  t h a t  V/K E F2 

and K / N  c F1. Since ( K  F 1) = 1 F1 g K ,  and the re fo re  F1 is  an 

F -covering subgroup of K. Thus K = FIN. Since any two V-conjugates of 1 



v k  
F1 a r e  necessa r i ly  K-conjugate, it follows t h a t  f o r  any v € V ,  F1 = F 1 

vk- 
f o r  some k € K ,  and so  F1 = F1 o r  vk-l  C NV(F1) ; t h a t  i s  

V € NV(F1)K which means t h a t  V = NV(F1)*K. Therefore 

V/K  NV(F1)/NV(F1) fl K c F2 a s  V/K  € F2. Since F I V n NG(F1) = NV(Fl) 

and F2 i s  an F-covering subgroup of NG(Fl), it follows t h a t  

NV(Fl) = F2(NV(F1) fl K); hence V = KN (F ) = KF2 = F1F2N. v 1 

Now we come t o  t h e  main theorem i n  t h i s  s e c t i o n .  

2.2.4 THEOREM: 

Let F be a sa tu ra te?  formation. Let G be a f i n i t e  so lvable  

group with normal subgroups M and N ,  and suppose M n N = < I > .  If  an 

F-covering subgroup of G/M and an f-covering subgroup of G / N  have t h e  

same image i n  G/MN then they a r e  both homomorphic images of some 

F-covering subgroup of 

Proof: 

Let M and 

respec t ive ly  such t h a t  

subgroups of G .  Thus 

- 
F2/N be F-covering subgroups of  G/M and G / N  

- 
F1/M and F 2 / ~  have t h e  same image i n  G/MN. By 

and F 2 / ~  = F2N/N where F1, F2 a r e  F-covering 

we may suppose t h a t  t h e r e  a r e  F-covering subgroups 

F1, F2 of G such t h a t  FIMN = F2MN. We must f i n d  an F-covering subgroup 

. F of G s o t h a t  F M = F I M  and F N = F 2 N .  

I f  G i s  a minimal counterexample t o  t h e  theorem, then we claim t h a t  

G = F MN and M ,  N a r e  minimal normal subgroups of G .  To show t h i s ,  1 

suppose FIMN < G. Then F1, F2 a r e  F-covering subgroups of  FIMN = F2MN, 



and so by minimality of G there is an F-covering subgroup F of FIMN 

such that FM = FIM and FN = F2N But since F is an F-covering subgroup 

of FIMN and F MN/MN is an F-covering subgroup of G/MN, by 2.1.16, 
1 

F must be an F-covering subgroup of G, a contradiction, since G has 

no such F-covering subgroups. 

Now we show that M, N are minimal in G. Suppose not, and assume 

that MI, N1 are minimal normal subgroups of G such that <I> < M < M 
1 

and <1> < N1 < N. Since G is a counterexample to the theorem, then for 

any F-covering subgroup F of G we have FM # FIM or FN # FIN. We may 

assume FM # F1M Now consider the smaller group G/Ml with its normal 
\ 

subgroups M/Ml and see Fig. 1. 

Clearly (M/Ml) fl (NM1/M1) = '1,. Now since F1 is an F-covering 

subgroup of G, FIM1/M1 is an F-covering subgroup of G/Ml and therefore 

(FIMl/Ml) (M/M1) / (M/Ml) = (FIM/M1)/ (M/M1) is an F-covering subgroup of 

(G/M1)/(M/M1). Similarly F2 is an F-covering subgroup of G implies that 



F2M1/M1 i s  an F-covering subgroup of G/M1 and hence 

(F2Ml/M1) (NM1/M1) / (NM1/Ml) = (F2M1N/Ml) / (NMl/M1) i s  an F-covering subgroup 

of (G/M1) / (NM~/M~)  . Since (FIM/M1) / (M/M1) " FIM/M and 

(F NM /M ) / (NMl/M1) F2M1N/M1N and c l e a r l y  FIM/M, F2MN/M1N have t h e  2 1 1  

same image i n  G/MN, we conclude t h a t  (FIM/M1)/(M/M1) and 

(F2M1N/M1) / (NM1/M1) have t h e  same image i n  (G/Ml) / (MN/Ml) . and the re fore  

- 
t h e r e  is  an F-covering subgroup of F/M1 of G/M1 such t h a t  ( F / M ~ )  (M/Ml) = 

(FIMl/M1) (M/M1) and ( R M ~ )  (NM1/M1) = (F2M1/M1) (NMl/M1Is But = FM1/M1 

by 2.1.18 where F is  an F-covering subgroup of G .  So we have 

(FM1/M1) (M/M1) = ( V M ~ )  (M/M1) = (FIM1/M1) (M/M1) , t h a t  i s  FM/M1 = FIM/M1 

which implies t h a t  FPJ$ = FIM, a contradic t ion.  So i f  G i s  a minimal 

counterexample t o  t he  theorem, then we must have G = FIMN and M y  N a r e  

minimal normal subgroups of G ,  and the re fore  abel ian .  Hence a non- t r iv ia l  

i n t e r s ec t i on  F I7 M o r  F fi N would be a noi-nmi i n  G (see i . 3 . 2 j Y  
1 1 

and the re fore  F1 must e i t h e r  contain o r  have t r i v i a l  i n t e r s ec t i on  with each 

of M and N. Suppose t h a t  M 5 F1. Then G/N = FIN/N E F ,  so  t h a t  

F2N = G .  Thus we may take  F = F and we f in i shed ,  i n  t h i s  case.  By 
1 

symmetry, we may suppose t h a t  M n F1 = N n F1 = <1>. Now by 2 . 2 . 2 ,  

1 MN = <1>, and we may suppose t h a t  s im i l a r  r e s u l t s  hold f o r  F2. Now 

F = F1Mn F2N Then I F I  = / F ~ M I I F ~ N / / I G I  = I F J  (not ice  t h a t  

F ~ M N = F ~ M N = F M F N  and F ~ ~ M =  ~~n N =  < I> ) .  NOW 
1 2  

MF = M(FIM n F2N) = FIM f l  G = F M .  This shows that  F and F1 a r e  both 

complements of M i n  MF1, and a r e  the re fore  conjugate. In p a r t i c u l a r ,  

F i s  an F-covering subgroup of G .  Since we can show i n  i den t i c a l  fashion 

t h a t  NF = NF2, our proof i s  complete. o 



Now we see  how can we construct  new formations by comparing covering 

subgroups (or pro j ec to rs )  . 

2.2.5 LEMMA: 

Let F1 and F2 be sa turated formations and l e t  Y be t he  c l a s s  

of groups f o r  which F1-covering subgroups belong t o  F2. Then Y is  a 

formation. 

Proof: 

Let G C Y, N 2 G .  Let H1/N be an F -covering subgroup of G / N .  
1 

Then by 2.1.18, H1/N = /HN/N where H is an F1-covering subgroup of G .  

Now H is  an F1-covering subgroup of G implies t h a t  H t F2 and hence 

HN/N C F2,  s ince  F2 i s  a formation. Thus H1/N t F2 and so G / N  t Y. 

Now l e t  G!N, G / M  € Y c  We want t o  show t h a t  G/M fi N E Y. Le t  

H /M n N be an F1-covering subgroup of G/M n N .  Then again by 2.1.18, 
1 

H1/M fl N = H(M n N)/(M n N) where H i s  an F -covering subgroup of G .  1 

But then HN/N, HM/M a r e  F1-covering subgroups of G/N  and G / M  

respect ively .  Since G / N ,  G/M t Y it follows t h a t  HN/N,  HM/M € F2. 

Now, s ince  H/H n N " HN/N € F2 and H/H fl M HM/M € F2,  we have 

H/ (H n M n N) € F, a s  F2 is  a formation. But H/ (H n M n N) " 
H(M n N)/ (M n N) = H*/M n N.  Thus H*/M n N € F, and there fore  

A s  an app l ica t ion  of t he  theorem 2.2.4, we o f f e r  a more d e l i c a t e  

construction.  



2.2.6 THEOREM: 

Suppose t h a t  F1 and F2 a r e  s a t u r a t e d  formations; then t h e  

c l a s s  of groups i n  which F -covering subgroups a r e  subgroups of F -covering 
1 2 

subgroups i s  a formation. In p a r t i c u l a r ,  t h e  c l a s s  of  groups f o r  which 

F1- and F2-covering subgroups coincide  i s  a formation. 

Proof: 

The second statement i s  a d i r e c t  consequence of t h e  f i r s t .  Suppose G 

i s  a member i n  t h e  c l a s s  of  groups i n  which F -covering subgroups a r e  1 

subgroups of  F2-covering subgroups, and N 4 G .  I f  N i s  an F1-covering 
- 

subgroup of  G / N  then  by 2.1.18, H/N = HIN/N where HI i s  an F -covering 1 

subgroup of G ,  but  then H1 5 H2 where H2 i s  an F -covering subgroup of 2 

G ;  hence E/N = HIN/N 5 H2N/N and by 2.1.14, H2N/N i s  an F2-covering 

subgroup of G/N .  Thus t h i s  c l a s s  is  a homomorph. Now suppose t h a t  M and 

N a r e  normal subgroups of  G ,  M n N = <1>, and i n  both G/M and G / N ,  

F -covering subgroups a r e  subgroups of F2-covering subgroups. Then f o r  an 
1 

Fl-covering subgroup of  F1 of G ,  FIM/M and FIN/N a r e  F1-covering 

subgroups of G / M  and G I N  r e spec t ive ly .  Furthermore, by l i f t i n g  back 

from G/MN i n t o  G/M and G / N ,  and then applying Theorem 2.2.4,  we may 

assume t h a t  f o r  some F2-covering subgroup F2 of  G ,  we have F M 5 F2M 1 

and FIN s F2N. Applying 2.2.1 we see  t h a t  

our proof i s  complete. o 

Several  important formations a r i s e  i n  t h e  manner of Theorem 2.2.6. 

For ins tance ,  groups i n  which Car te r  subgroups ( i . e .  n i l p o t e n t  covering 



subgroups (projectors))  are Hall subgroups (i.e. n-covering - subgroups 

(n - -pro j ec tors)  ) . 



Chapter 3  

PROJECTORS and SCHUNCK CLASSES 

I n  t h i s  chap te r  a l l  ob jec t s  c a l l e d  groups a r e  supposed t o  belong t o  

t h e  c l a s s  of f i n i t e  so lvab le  groups unless  e x p l i c i t l y  s t a t e d  otherwise.  

3.1 DEFINITION: 

Let G be any f i n i t e  group. G i s  c a l l e d  a  p r i m i t i v e  i f  t h e r e  

i s  a  maximal subgroup/ S  of G with CoreG (S) = c l > ,  where 

CoreG (S) = n{sg : g c GI. 

The subgroup S  i s  c a l l e d  a  p r i m i t i v a t o r  of G .  

3 .2 REMARKS and EXAMPLES 

( i )  I f  G i s  a  group, S  i s  a  maximal subgroup of  G ,  then  

G/Core (S) i s  obviously p r i m i t i v e  with S/Core (S) a s  p r i m i t i v a t o r ,  and a l l  G G 

t h e  p r i m i t i v e  f a c t o r  groups of G a r e  obtained t h i s  way. 

( i i )  From ( i )  i t  fol lows immediately t h a t  

O(G) = ll{CoreG(S) : G/CoreG(S) i s  p r i m i t i v e )  

= fl {CoreG (S) : S i s  maximal i n  G . 

( i i i )  I f  H 5 G  and HN = G f o r  a l l  p r i m i t i v e  f a c t o r  groups G / N  

of G ,  then  H = G .  For otherwise t h e r e  would e x i s t  a  maximal subgroup S 

of G wi th  H 5 S, and t h i s  would imply t h a t  HN s SN = S f o r  

N = CoreG(S) , a  c o n t r a d i c t i o n .  



( iv)  <1> i s  not pr imi t ive .  

(v) I f  G is a  group with a  prime order ,  then G is  pr imi t ive  

and < I>  i s  a  p r imi t iva to r  of G .  

(vi)  Since i n  a  n i lpo ten t  group every maximal subgroup is  normal, 

a  n i lpo ten t  group i s  pr imi t ive  i f f  it has prime order .  

3 . 3  LEMMA: f 
Let G be a  p r imi t ive  group, S  a  p r imi t iva to r  of G ,  <1> # H I! G 

and H is  n i l po t en t .  Then S is  a  complement of H i n  G .  

Proof: 

S  l l  H < H s ince  CoreG(S) = <I> ;  the re fore  S  fl H c NH(S I7 H) 

because of t h e  ni lpotence of H (see 1 .2 .3) .  Hence S c SNH(S n H) ( for  
- -  

otherwise NH(S I7 H) 5 S fl H). Since S i s  a  maximal subgroup of G ,  we 

must have SNH(S n H) = G .  But H n S  4 S and H n S 9 NH(H fl S) ,  so 

H n  S  Z SNH(S fl H) = G .  Since CoreG(S) = <I>, we have H n  S  = <I>. 

SH = G now follows immediately from H f M and t h e  maximality of 

M. 

3.4 COROLLARY: 

Let G be a  p r imi t ive  group. Then G has a  unique non- t r iv ia l  

n i lpo ten t  normal subgroup N .  

In p a r t i c u l a r ,  N is  t he  unique minimal normal subgroup of G .  



Proof: 

Let S be a primitivator of G, N a minimal normal subgroup of G, 

and H a nilpotent normal subgroup of G. Since N is abelian, HN is a 

non-trivial nilpotent normal subgroup of G. From this, by 3.3 

I H N ~  = IG:sI = I N I  so N = NH and H = <1> or H = N. o 

3.5 LEMMA: 
/' 
/ 

Let G be a primitive group, S < G, and N minimal normal 

subgroup of G. Then S is a primitivator of G iff SN = G. 

Proof: 

Suppose S is a primitivator of G. Then S is a maximal subgroup 

of G and N 6 S, since Core (S) = <I>. Hence G = SN. 
G 

Conversely, suppose G = SN. Then by 3.4, S contains no minimal 

normal subgroup of G; hence CoreG(S) = <I>. Let S 5 S < G. NS = G 1 

implies that N i S1. Since N is abelian and NS1 = G, N n S1 5 G. 

Since N $ Sly N f l  S1 = <1> so N n S = <1> and S = Sly and therefore 

S is a maximal subgroup of G .  

3.6 LEMMA: 

Let G be a group, N minimal normal subgroup of G, and Sly S2 

primitivators of G. Then S1 and S2 are conjugate under N. 

Proof: 

If G = N ,  then S 1 = S 2 = < 1 >  by3.3. Otherwise let L/N b e a  

a 
chief factor of G, I N /  = p , and /L/N( = qp where p and q are primes. 

Then by 3.4, L is not nilpotent, so p # q .  Since Sly S2 are complements 



of N i n  G by 3 .3 ,  it fol lows t h a t  Si fl L i s  a Sylow q-subgroup of L 

X 
( i  = 1 , ) .  But then  S1 fl L = (S2 fl L) by Sylowls theorem, where X € L.  

X Then S1 fl L 2 S1 and S1 fl L = (S2 f l  L) s If S1 + s;, then 

X 
<S1, S2> = G and S1 n L would be a n o n - t r i v i a l  n i l p o t e n t  normal subgroup 

of G ,  i n  c o n t r a d i c t i o n  t o  3.4. 

3.7 THEOREM: 

A group G i s  p r i m i t i v e  i f f  t h e r e  e x i s t s / a  minimal normal subgroup 

N of  G such t h a t  CG (N) = N. 

Proof: 

< 1> 

Fig.  2 

Suppose G i s  p r i m i t i v e  wi th  p r i m i t i v a t o r  S. Let N be t h e  unique 

minimal normal n i l p o t e n t  subgroup of G ,  whose ex i s t ence  i s  guaranteed by 

3.4. Since N i s  a b e l i a n  normal subgroup of  G,  N I CG (N) +1 G by 1.1.9.  

By 3.3,  SN = G and S n N = <I>. Hence G = SCG(N) and S f l CG(N) 4 G .  

Therefore S fl CG (N) = <1> and so  CG (N) = N.  



Conversely, suppose G has a minimal normal subgroup N such t h a t  

CG(N) = N .  If N = G y  then G has a prime order,  and the  theorem holds. 

a Otherwise l e t  L / N  be a chief  f ac to r  of G ,  I N )  = p and 

I L/NI  = qP where p and q a r e  primes. If p = q, then L would be a 

p-group and <1> # N fl Z (L) s G ,  hence N c Z (L) i n  contradiction t o  

CG(N) = N (Notice t h a t  N 4 Z(L) implies t h a t  L c CG(N)). Therefore 

p # q. Let T be a Sylow q-subgroup of L and S = NG(T). By t he  

F r a t t i n i  argument, SL = G .  I f  S = G then T Q G so  T c CG(N) s ince  

T 5 N = <1> (see l . l . l O ( f ) ) ,  a contradic t ion.  Therefore S < G and 
f 

S n N = <I>. Furthermore, Core (S) fl N = <1> and so by l . l . l O ( f ) ,  
G 

CoreG(S) 5 CG(N) = N ,  hence CoreG(S) = <1, and there fore  S i s  a 
1 L 

primit ivator  of G .  a 

3.8 DEFINITION: 

A homomorph F i s  ca l l ed  a Schunck c l a s s  (or sa turated homomorph) 

i f  it is  pr imi t ive ly  closed,  i . e .  i f  any f i n i t e  (not necessar i ly  solvable) 

group G ,  a l l  of whose pr imit ive  f ac to r s  a r e  i n  F, i s  i t s e l f  i n  F. 

3.9 EXAMPLES: 

i )  <1> i s  a Schunck c l a s s  and i s  contained i n  every Schunck c l a s s .  

( i i )  Consider N ,  t h e  c l a s s  of f i n i t e  n i lpo ten t  groups, which is  

closed under epimorphisms. I f  f o r  a group G a l l  t h e  p r imi t ive  f ac to r  

groups a r e  n i lpo ten t ,  then by 3.2(vi)  and 3 . 2 ( i ) ,  t h i s  means t h a t  a l l  t he  

maximal subgroups of G a r e  normal i n  G ,  so  G i s  n i lpo ten t .  



( i i i )  Let - n denote the  c l a s s  of solvable  n-groups, where n is  

a f ixed s e t  of primes. Let C(n) denote t he  c l a s s  of groups G such t h a t  

f o r  a l l  proper normal subgroups M of G ,  G/M + n.  C(n) is cal led  the  - 
c l a s s  of n-perfect  groups. C(n) i s  closed under epimorphisms. 

In 2.1.3 we showed t h a t  t h e  group G has a unique normal subgroup 

N minimal subject  t o  G / N  E n .  Now we show t h a t  if N < G ,  then G has - 
a pr imi t ive  quot ient  group i n  - n : For if N i s  a maximal i n  G ,  then 

G / N  i s  cyc l i c  of prime order and so pr imi t ive .  Otherwise N is  properly 

contained i n  a maximal subgroup of G .  Since N 4 G ,  N 5 CoreG(S). 

By 3 . 2  ( i )  G/CoreG(S) i s  p r imi t ive  and as  N c coreG (S) we have 

G/CoreG(S) (G/N)/ (CoreG(S)/N) E n ,  - a s  G/N  t n .  - Thus if G has a l l  i t s  

pr imi t ive  quot ient  groups i n  C(n), G i t s e l f  must be i n  C(n) and so 

C(n) i s  a Schunck c l a s s .  

There i s  a c l o se  connection between Schunck c l a s se s  and sa tura ted 

formations, a s  t h e  next two Lemmas ind ica te .  

3.10 LEMMA: 

If F is  a sa tu ra ted  formation then F i s  a Schunck c l a s s .  

Proof: 

Let G be a group and l e t  G / N  € F f o r  a l l  p r imi t ive  f a c t o r  groups 

G / N  of G .  Then G/N i s  of t he  form G/CoreG(S) where S is  a maximal 

subgroup of G .  By 3.2 ( i i )  , G / +  (G) = G/fl{CoreG (S) : S i s  maximal i n  G I  F 

a s  F i s  a formation. Since ? i s  sa tu ra ted ,  G € F.  o 

The converse i s  not  t r u e  i n  general .  



3.11 EXAMPLE: 

C({2)) i s  a Schunck c l a s s ,  a s  has been e s t a b l i s h e d  i n  Example 

3 . 9 ( i i i ) ,  but  C({2}) i s  no t  a formation.  To s e e  t h i s ,  l e t  H = C3Q8 be 

t h e  semidi rec t  product of Q8 with a subgroup C3 of  Aut(Q8) I t  can 

e a s i l y  he seen t h a t  H € C(t21).  The group G = C 2  x H obviously does not 

belong t o  C( (2 ) ) .  But i n  G t h e r e  is  another  normal subgroup C;, 

d i f f e r e n t  from C 2 ,  wi th  G = C?j x H. Therefore G/C2  zi G / C h  € C({21) 

and C 2  n C* = <I>.  2 

3.12 LEMMA: f 
Let F be a formation.  I f  F is a Schunck c l a s s  then  F is  a 

s a t u r a t e d  formation. 

Proof: 

Suppose G/+(G) € F. I f  G/CoreG(S) is  a p r i m i t i v e  f a c t o r  group, 

then  by 3.2 ( i i )  , Q (G) s CoreG (S) and F being a. homomorph imply t h a t  

G/CoreG(S) € F. S ince  F i s  a Schunck c l a s s ,  G C F, so  F i s  a s a t u r a t e d  

formation. o 

From Lemma 3.10 and Example 3.11 we conclude t h a t  Schunck c l a s s e s  a r e  

more genera l  than  s a t u r a t e d  formations.  

Fig. 3 



The main object  of t h i s  chapter i s  t o  extend t h e  r e s u l t s  of Gaschiitz 

on t he  existence and conjugacy of covering subgroups (projectors)  i n  sa tu ra ted  

formations t o  the  case of Schunck c lasses .  F i r s t  we s t a r t  with the  following 

def in i t ion .  

3.13 DEFINITION: 

Let F be a c l a s s  of groups. 

F i s  ca l l ed  p ro jec t ive  i f  f o r  any group G t he r e  e x i s t s  an F-projector of 

G.  

3.14 THEOREM: f ' 

I f  F is  pro jec t ive ,  then F is  a Schunck c l a s s .  

Proof: 

Let G E F. Then G is  an F-projector of G and so  G / N  is  an 

F-subgroup of G / N  f o r  any normal subgroup N of G ,  t h a t  i s  G / N  E F 

f o r  any N 5 G and there fore  F i s  a homomorph. 

Now l e t  H be an F-projector of G and G / N  E F f o r  a l l  pr imit ive  

f ac to r  groups G/N of G .  Then by t he  d e f i n i t i o n  of F-projectors 

HN/N = G/N,  t h a t  i s  HN = G and G = H E F by 3 . 2 ( i i i ) ,  a s  required.  

Now we show t h a t  a Schunck c l a s s  F i s  p ro jec t ive  and t ha t  i n  every 

group ( i . e .  f i n i t e  solvable group) t h e  F-projectors a r e  conjugate. 

3.15 MAIN LEMMA: 

~ e t  F be a Schunck c l a s s ,  H a n i lpo ten t  normal subgroup of G 

and G/H E F. Then: 



( i )  There e x i s t s  M c: G ,  M F-maximal i n  G ,  MH = G .  

( i i )  A l l  such M a r e  conjugate under H. 

Proof: 

( i )  (see f i g . 4 )  

I t  i s  c l e a r l y  s u f f i c i e n t  t o  cons t ruc t  T 5 G ,  T E F with TH = G.  

For t h i s  purpose l e t  T be minimal with T 5 G and TH = G .  If T 4 F, 

then by d e f i n i t i o n  of Schunck c l a s s  t h e r e  would e x i s t  a p r imi t ive  f a c t o r  

group T/N of T with T/N f F. Then T n H 6 N because otherwise 

G/H T/T n H would have a f a c t o r  group which does not  belong t o  F. 

However, by hypothesis  G/H € F and F i s  a homomorph so  t h i s  i s  

impossible. So (T fl H)N/N would be a n o n - t r i v i a l  n i l p o t e n t  normal 

subgroup, hence by 3.4 a minimal normal subgroup of T/N. Let To/N be a 

p r imi t iva to r  of T/N. Then (To/N) (N(T fl H) /N) = T/N by 3.5, t h a t  i s  

ToN(T n H) = T and G = TH = ToN(T R H)H = ToH; s ince  To c T, t h i s  would 

. con t rad ic t  t h e  minimality of T. Hence T E F. 

( i i )  ( see  f i g . 5 )  



Let M I ,  M2 be F-plaximal i n  G and MIH = M2H = G .  

I f  G c F ,  then ,M1 = M2 = G which proves t he  asse r t ion .  

I f  G 1 F, then by 3.8 there  e x i s t s  a p r imi t ive  f ac to r  group G/N 

of G with G / N  1 F. Now MiN # G f o r  i = 1,2,  because otherwise 

G / N G M i / M i  f l  N € F.  Furthermore G/H E F and, a s  F is  a homomorph, 
- - 

H 6 N,  so HN/N i s  a non- t r iv ia l  n i lpo ten t  normal subgroup of G I N ,  hence 

by 3 . 4  HN/N is  a minimal normal subgroup of G I N .  Since (MiN/N)(HN/N) = 

MiH/N = G / N ,  MiN/N a r e  pr imit ivators  of G / N  by 3.5 and conjugate under 

h 
HN/N by 3.6. Therefore M I N  = ( M ~ N ) ~  = M2N f o r  some h C H. If we put 

G* = MIN and H* = MIN n H. Then G*/H* = MIN/(MIN n H) " G/H C F, and 

h ' M1, M2 a r e  F-maximal i n  G* with MIH* = M:H* = G*. By induction it now 

h 
follows t h a t  MI and M2 a r e  conjugate under H* and therefore  M I ,  M2  

a r e  conjugate under H. 

3.16 MAIN THEOREM: 

Let F be a Schunck c l a s s  and G a f i n i t e  solvable group. Then: 

(i) There e x i s t s  an F-projector of G .  



(ii) All F-projectors of G are conjugate under G. 

Proof: 

(see fig.6) 

Fig. 6 , 

The theorem obviously holds for G = <I>. We carry out the proof by 

induct ion on I G I . 

(i) Let G # <I>, <1> # L 3 G, L nilpotent, and by induction 

H/L is an F-proj ector of G/L. Then R/L E F and so by 3.15 (i) there 

exists M 5 M, M F-maximal in and ML = M. We show that M is an 

F-projector of G. 

First we show M is F-maximal in G: For if M 5 M* 5 G, 

M* E F then M*L/L M*/M* n L E F since F is closed under epimorphisms. 

Since W/L is F-maximal in G/L, M*L/L 5 K/L and M* 5 M. M = M* now 

follows from the F-maximality of M in 3. 

Now we show that MN/N is an F-projector of G/N for any 

minimal normal subgroup N of G: By induction, let F/N be an F-projector 



- 
of G / N  and by 3 .15( i )  l e t  T be F-maximal i n  T with TN = ?;. H = NL 

i s  n i l p o t e n t .  &/H = MH/H and TH/H = TH/H a r e  F-projectors  of G/H,  

so by induct ion  they  a r e  conjugate i n  G/H and the re fo re  MH and TH 

go go 
a r e  conjugate i n  G .  So MH = (TH) = T H f o r  some g, EG.  Then T 

go 
- 

i s  a l s o  F-maximal i n  G ,  and by 3 . 1 5 ( i i )  Tgo and M a r e  conjugate 

under H; t h a t  is  M = T ~ ,  g  E G .  A s  ?;/N i s  an F-projector  of G / N ,  

so i s  ( V N ) ~ *  = T ~ N / N  = m/N. Par t  ( i )  of t h e  theorem now fol lows from 

( i i )  I f  M1 and M2 a r e  F-projec tors  o f  G and if <1> # H 4 G ,  

H n i l p o t e n t ,  then MIH/H and M ~ H / H  a r e  F-projec tors  of G/H by 2.1.21 (b) 

goH go 
and by induct ion  MIH/H = (M~H/H) = Me H/H with go t G .  Then by 

3 . 1 5 ( i i )  MI = M; wi th  g E G ;  a s  requi red .  



Chapter 4 

COVERING SUBGROUPS and PROJECTORS IN FINITE n-SOLVABLE GROUPS 

I n  t h i s  chap te r  we study t h e  ex i s t ence  and conjugacy of covering 

subgroups and p r o j e c t o r s  i n  f i n i t e  n-solvable  groups. We fol low Brewster 'S  

and Covaci l s  proofs  ( [ l o ] ,  [15], [16] and [17])  t h a t  some r e s u l t s  of 

Gaschiitz and Schunck (Chapters 2 ,  3 ) ,  o r i g i n a l l y  proved only  f o r  so lvab le  

groups, can be extended t o  n-solvable  groups. A l l  groups considered he re  

a r e  f i n i t e .  

f 
We f i r s t  s t a r t  with some r e s u l t s  t h a t  we s h a l l  u se .  These r e s u l t s ,  

which a r e  t r u e  f o r  any f i n i t e  group, a r e  due t o  R .  Baer. 

4.1 LEMMA: 

I f  M i s  a so lvab le  minimal normal subgroup of a f i n i t e  group G ,  

then  M i s  an a b e l i a n  p-group, f o r  some prime p. 

I f  a maximal subgroup S of  G does not  con ta in  M y  then  G = MS 

and M fl S = <I>.  

Proof: 

S ince  M has  no proper  c h a r a c t e r i s t i c  subgroups (because t h e s e  

would be normal subgroups of  G), and s i n c e  t h e  commutator subgroup M '  of 

. t h e  so lvab le  group M i s  d i f f e r e n t  from M, M 1  = <1> so t h a t  M i s  

abe l i an .  I f  t h e  Sylow p-subgroup K (say) were a proper  subgroup of M y  

then  K would be a c h a r a c t e r i s t i c  subgroup of M and so  a normal subgroup 

of G ,  a c o n t r a d i c t i o n .  So M i s  a p-group. 



I f  t h e  maximal subgroup S of  G does not  con ta in  M ,  then  

c l e a r l y  G = MS. Since  M 5 G ,  M fl S 3 S and s i n c e  M is  abe l i an ,  

M fl S 3 M ,  s o  M fl s dMS = G ,  and M C1 S = M o r  M fl S = <I>.  But a s  

M f S, M fl S # M hence M fl S = <I>. 

4 .2  LEMMA: Let G be  a p r i m i t i v e  group. 

I f  S i s  a p r i m i t i v a t o r  of G ,  i f  N i s  a n o n - t r i v i a l  normal 
f 

subgroup of  G, and i f  C = CG(N), t hen  C fl S = <1> and C i s  e i t h e r  

<1> o r  a minimal normal subgroup of G .  

Proof: ( s ee  f i g .  7) 

S ince  CoreG(S) = <I>,  N 6 S and s o  G = NS. S ince  N 4 G ,  C a G .  

Consequently C fl S 4 S so t h a t  S 5 NG(C T! S ) .  Since N i s  contained iil 

. t h e  c e n t r a l i z e r  of  C ,  and hence N 5 CG(C n S) C NG(C fl S) , 

G = NS r- NG(C fl S) and hence C n S 4 G s o  S fl C = <1> because 

CoreG(S) = < I > .  

Now suppose t h a t  C con ta ins  a n o n - t r i v i a l  normal subgroup K o f  G. 

A s  be fo re  we s e e  t h a t  K f S and s o  G = KS. Hence K 5 C 5 KS, and s o  by 

t h e  modular law C = K(C fl S) = K .  Hence e i t h e r  C = <1> o r  e l s e  C i s  a 

minimal normal subgroup of G .  



Fig. 7 

4.3 COROLLARY: / 

If G is a primitive group and S is its primitivator. Then: 

(i) There exists at most one non-trivial abelian normal subgroup 

of G. 

(ii) There exists at most two different minimal normal subgroups 

of G .  

Proof: 

(i) If K is a non-trivial abelian normal subgroup of G, then 

K 5 CG (K) . Hence <1> < K 5 CG (K) ; and by 4.2, CG (K) is a minimal normal 

subgroup of G. Consequently K = CG(K) is a minimal normal subgroup of G. 

Assume now by way of contradiction the existence of abelian 

normal subgroups U and V of G such that <1> # U # V # <I>. By the 

preceding result U and V are both minimal normal subgroups of G so 

that in particular U n V = <I>. Consequently U 5 CG(V). But V has been 

shown to be its own centralizer so that U c V, a contradiction. 

(ii) Assume by way of contradiction the existence of three different 

minimal normal subgroups P, Q and R of G. Then P n R = P n Q = <I> SO 



t h a t  R and Q a r e  both contained i n  t h e  c e n t r a l i z e r  of P .  Since 

R fl Q = <I>,  RQ i s  not  a minimal normal subgroup of G so  t h a t  t h e  

c e n t r a l i z e r  of P i n  G i s  n e i t h e r  <1> nor a minimal normal subgroup of 

G .  This  c o n t r a d i c t s  Lemma 4 .2 ;  and t h i s  c o n t r a d i c t i o n  proves ( i i ) .  

4 . 4  COROLLARY: 

I f  S is  a p r i m i t i v a t o r  f t h e  f i n i t e  group G and i f  A ,  B a r e  ? 
two d i f f e r e n t  minimal normal subgroups of G ,  t hen  

I 

( i )  G = AS = BS, <I> = A n s = B n s; 

( i i )  A = CG (B) (and B = CG(A)) ; 

( i i i )  A and B a r e  mon-abelian groups. 

Proof: 

Since A and B a r e  two d i f f e r e n t  minimal normal subgroups of G ,  

A n B = <1> so t h a t  B 5 CG(A)  We s e e  from t h e  proof of 4.3 t h a t  

B = CG (A) and l ikewise  t h a t  A = CG (B) . This  proves ( i i )  . 

Since CoreG(S) = <I>,  n e i t h e r  A nor  B i s  contained i n  S. 

Hence SA = SB = G .  Since A = CG(B), A fl S = <1> i s  a consequence of 4.2; 

and l ikewise  we s e e  t h a t  B n S = <I>.  This  proves ( i ) ,  and ( i i i )  i s  a 

t r i v i a l  consequence of ( i i ) .  a 

- 4.5 LEMMA: Let G be a p r i m i t i v e  group. 

I f  t h e  i n d i c e s  i n  G of a l l  t h e  p r i m i t i v a t o r s  of G a r e  powers of 

one and t h e  same prime p, then  G has a unique minimal normal subgroup. 



Proof: 

Assume by the way of contradiction the existence of two minimal 

normal subgroups A and B of G. Because of the existence of maximal 

subgroups with Core <1> we may deduce from Corollary 4.4 that A is 

non-abelian and that G = AS, A fl S = <1> for any maximal core-free 

subgroup S of G. Since I A I  = I G: S I  , and since the later is by the 

hypothesis is a power of p, A is a minimal normal subgroup of prime 

power order. Since such groups artfsolvable, Lemma 4.1 implies that A 

is abelian, and so we have arrive'd at a contradiction to 4.4(iii). 

4.6 LEMMA: Let G be a primitive group. 

If G has a non-trivial normal solvable subgroup, then G has one 

and only one minimal normal subgroup. 

Proof: I , .  

Let N be a solvable minimal normal subgroup of G. Then N is, 

by 4.1, an elementary abelian p-group. If S is a maximal subgroup of G 

with CoreG(S) = <I>, then N 6 S; and G = SN, N n S = <1> by 4.1. 

It follows that I G : s I  = I N /  is a power of p. The result now follows by 

4.5. 0 

4.7 THEOR-EM : 

Assume that the group G possesses a non-trivial solvable normal 

subgroup, and that the core of the maximal subgroup S of G is <I>. 

(a) The existence of a non-trivial solvable normal subgroup of S 

implies the existence of a non-trivial normal subgroup of S whose order is 



r e l a t i v e l y  prime t o  I G : S I  . 

(b) If t h e r e  e x i s t s  a  non- t r iv i a l  normal subgroup of S  whose order  

i s  r e l a t i v e l y  prime t o  I G : S \  , then S i s  conjugate  t o  every maximal 

subgroup T of G whose co re  i n  G i s  <I> .  

Proof: 

(a) From our hypothesis  we deduce f i r s t  t h e  ex i s t ence  of a  so lvab le  

minimal normal subgroup N of G .  By 4.1, N i s  an abel ian .  p-group f o r  some 

/" 

<I> ,  then  N i X ;  and 4 . 1  impl ies  G = NX,  <1> = N fl X .  I n  p a r t i c u l a r  

G / N  X ,  and ( G :  x ( = I N  ( which i s  a  power of p.  (Note t h a t  t h i s  may 

be appl ied  t o  X = S t o o ) .  

I f  t h e r e  e x i s t s  a  n o n - t r i v i a l  so lvab le  normal subgroup of  S, 

then  t h e  same is  t r u e  f o r  t h e  isomorphic group G/N.  Consequently t h e r e  

e x i s t s  a  so lvab le  minimal normal subgroup M/N of  G / N .  By 4.1, M/N 

i s  an a b e l i a n  q-group f o r  some prime q. Assume by way of con t rad ic t ion  t h a t  

p  = q.  Then M i s  a  p-group. Since N is  a  n o n - t r i v i a l  normal subgroup 

of t h e  p-group M, N con ta ins  n o n - t r i v i a l  c e n t r a l  elements of M .  But 

t h e  c e n t e r  of  M i s  a  c h a r a c t e r i s t i c  subgroup of  a  normal subgroup of G ;  

and so  Z (M) 3 G .  The minimali ty of N and <1> # N n Z (M) imply t h a t  

N 5 Z(M) and t h a t  t h e r e f o r e  M 5 CG(N). Since G possesses  maximal 

- subgroups with Core <I>,  and s i n c e  <1> < N 5 C (N) (as  N i s  a b e l i a n ) ,  G 

CG(N) i s  a  minimal normal subgroup of G by 4 . 2 .  Hence 

CG(N) = N < M = CG (N) , a  con t rad ic t ion  proving p # q. The isomorphic 

groups G / N  and S con ta in  t h e r e f o r e  a  n o n - t r i v i a l  normal subgroups of 



order  a power of  q ,  whereas IG:sI = I N / ,  which i s  a power of t h e  prime 

P f 9 -  

(b) Assume t h e  ex i s t ence  of a n o n - t r i v i a l  normal subgroup of S 

whose order  i s  prime t o  I G :  s I . Then t h e  group G / N  "- S conta ins  a 

n o n - t r i v i a l  normal subgroup P/N whose order  i s  prime t o  I G : S \ .  S ince 

I N  I = I G :  s I , we s e e  t h a t  (1 N 1 , 1 N 1.) = 1 Consider now some maximal 

subgroup X of G such t h a t  CoreG(X) = <I>.  Then G = NX and 

<1> = N fl X .  Because of N 5 P 5 NX h d  t h e  modular law, we have 

P = N(P fl X) so  t h a t  P fl X i s  a complement of N i n  P. Since 

P fl X 4 X ,  X 5 NG(P fl X). 'Since G possesses maximal subgroups with 

core  <I> a s  well  a s  t h e  abe l i an  minimal normal subgroup N ,  N is ,  by 

4.3,  4.4 t h e  unique minimal normal subgroup of G .  Hence P fl X i s  no t  a 

normal subgroup of G so t h a t  NG(P fl X) i s  e x a c t l y  t h e  maximal subgroup 

X of G .  

Suppose now t h a t  T i s  a maximal subgroup of G with 

CoreG(T) = <I>.  Appl ica t ions  of  t h e  r e s u l t s  of t h e  preceding paragraph 

of our proof show t h a t  P fl S and P fl T ' a r e  both  complements of N i n  

P,  t h a t  S = NG(P fl S) and t h a t  T = NG(P fl T).  Since ( \ N I , I P / N I )  = 1, 

and s i n c e  N is a b e l i a n ,  any two complements of N i n  P a r e  conjugate 

i n  P; ( see  KOCHENDORFFER [3] , p.  101, Theorem 6.2.3) . Consequently t h e r e  

e x i s t s  an element g i n  P conjugat ing P fl S t o  P fl  T ,  and t h i s  element 

g n a t u r a l l y  conjugates  t h e  normalizer  S o f  P fl S i n t o  t h e  normalizer  

T of P ~ T .  

4.8 DEFINITION: Let n be a s e t  of primes and n s  t h e  complement t o  n 

i n  t h e  s e t  of a l l  primes. 



A group is n-solvable  i f  every c h i e f  f a c t o r  i s  e i t h e r  a so lvab le  

n-group o r  a nl-group.  C lea r ly  so lvab le  groups a r e  n-solvable ,  and i f  n 

i s  t h e  s e t  of  a l l  primes, any n-solvable group i s  so lvab le .  

I t  i s  a l s o  c l e a r  t h a t  subgroups of n-solvable  groups a r e  n-solvable.  

Also, i f  G is  n-solvable  group and N 5 G then G / N  i s  n-solvable  s ince  

ch ie f  f a c t o r s  of G/N a r e  isomorphic t o  a subse t  of  those  of G .  

4 . 9  DEFINITION: With n and n a s  above. 

/'- 

A c l a s s  F of groups i s  s a i d  t o  be n-closed i f :  G / O n l  (G) E F 

implies  t h a t  G E F, where O n ,  (G) denotes t h e  l a r g e s t  normal n -subgroup 

of G .  

We s h a l l  c a l l  a n-closed homomorph a n-homomorph, a n-closed Schunck 

c l a s s  a n-Schunck c l a s s ,  and a n-closed s a t u r a t e d  formation a n-sa tura ted  

format ion.  

4.10 DEFINITION: I f  el and G 2  a r e  c l a s s e s  of groups, , then by 
' Y 2  

we denote t h e  c l a s s  of  groups G with a normal subgroup N such t h a t  

N E O1 and G / N  C 02. 

I t  i s  no t  hard t o  show t h a t  i f  O1 and e2 a r e  formations and el 

i s  c losed  under normal-subgroups, then  Ole2 i s  a formation. 

4.11 LEMMA: Let M u ,  denote t h e  c l a s s  of f i n i t e  n l -groups  and l e t  F 

be a formation. Then F i s  n - sa tu ra t ed  i f f  F = M , F .  n 



Proof: 

Suppose F is n-saturated formation. Clearly F - c Mn,F. If 

G E M,, F, then there is N 2 G such that N is a fl '-group and G/N E F. 

But N C On, (G) and so G/O, , (G) (G/N) / (On, (G)/N) E F as F is a 

formation. Hence G E F. 

Conversely if F = M, , F suppose G/On , (G) E F. Then G E M, , F 
and this class is contained in F so G E F. o 

/- 

The following theorem, which is due to Brewster, is a generalization 

of GaschGtz theorem 2.1.17(ii). 

4.12 THEOREM: 

Let F be a n-saturated formation. If G is n-solvable, then G 

has F-covering subgroups and any two are conjugate. 

Proof: 

First the existence of F-covering subgroups is established by 

induction on \ G I .  If G E F, there is nothing to show since G is its 

own F-covering subgroup. So suppose G j! F and let N be a minimal normal 

subgroup of G. Since GIN is n-solvable, there is an F-covering subgroup 

E/N of G/N. If E is a proper subgroup of G, then since E is 

n-solvable, by the induction, E has an F-covering subgroup E . By 
0 

2.1.16, Eo is an F-covering subgroup of G. Thus the result is proved 

unless E = G. 

However, in this case G/N E F for each minimal normal subgroup N 

of G and so, since F is a formation and G I F, G has a unique minimal 



normal subgroup N. Because F is saturated, +(G) = <I>. Also because 

G is n-solvable N is either a solvable n-group or a n1-group. If N is 

a n ' -group, then N 5 On, (G) and so we have G/On , (G) " (G/N) / (On, (G) /N) . 
But G/N E F, hence G/On, (G) € F, which implies, by the n -closure of F, 

the contradiction that G E F. So N must be a solvable n-group, and so 

by 4.1, N is an abelian p-group for some p E n. 

Let S be a maximal subgroup of G such that N $ S. We shall show 
/ 

that S is an F-covering ,subgroup of G. First, by 4.1, G = SN and 

S n N = <I>. Also S = S/<D = S/S n N SN/N = G/N E F. Finally if 

S 5 S* 4 G ,  K 5 S *  with S*/K € F then either S = S* which implies that 

SK = S* or S* = G which implies that N 5 K as N is the unique minimal 

normal subgroup of G and hence SK = SN = G. So in both cases SK = S* 

which means that S is an F-covering subgroup of G. 

Similarly conjugacy of F-covering subgroups of G is shown by 

induction on I G I . Let E and Eo be any two F-covering subgroups of G. 

If G C F ,  E = G =  
0 
. So suppose G f F. Let N be any minimal normal 

subgroup of G. By 2.1.14, EN/N and EoN/N are F-covering subgroups of 

X G/N and so for some x € G, EN = EON Thus if EN # G, then E, E: are 

F-covering subgroups of EN and so are conjugate in EN. 

So we may assume EN = G = E N for each minimal normal subgroup N 
0 

- of G. Since F is a n-saturated formation and G j! F, N is a unique 

minimal normal subgroup of G and is a solvable n-group. Hence N is an 

abelian p-group for some p € n and so E and Eo are maximal subgroups 

of G. Now E is n-solvable and so a minimal normal subgroup of E is 

either a nf-group or is solvable. By Theorem 4.7 E and Eo are conjugate. 



Some properties of these F-covering subgroups will now be established. 

4.13 COROLLARY: 

If F is a n-saturated formation and G is a n-solvable group, 

then an F-covering subgroup of G contains a Hall nl-subgroup of G. 

Proof: 

Using induction on/(GI, let N be a minimal normal subgroup of G 

and suppose E is an F-covering subgroup of G. Then EN/N is an 

F-covering subgroup of G/N, and so by induction, EN/N contains a Hall 

If N is a n-group, then )G:E( = (G:EN~(EN:N~ is a n-number. 

If N is a nl-group, EN E M,,F = F and so E = EN by 2.1.15(i). In 

either case 1 G:E I is a n-number and so a Hall n I-subgroup of E is a 

Hall nl-subgroup of G. 

DEFINITION: Let be a set of primes. A group G is called r-closed 

if G has a normal Hall r-subgroup. 

4.14 LEMMA: Let F be a n-saturated formation and let G be a n-solvable 

group in which the F-covering subgroup E ?s nl-closed. Denote the normal 

Hall nl-subgroup of E by En,. If H is a Hall n-subgroup of NG(EnI) 

. such that H 0 E -is a Hall n-subgroup of E, then H 0 E is an F-covering 

subgroup of H. 



Proof: 

We argue by induction on ] G I  . If NG(En ,) # G, then E E NG(En ,) 

and is an F-covering subgroup of NG(E,,). Since NG(En,) is n-solvable, 

the induction implies H fl E is an F-covering subgroup of H. 

So suppose N (E ,) = G. If En, = <I>, then by 4.13, G is a 
G d 

n-group. Consequently \ H  = G and H fl E = E so that H n E is an 

F-covering subgroup of H. Thus the case En, # <1> is left for considera- 

tion. Then / G/E,, I < I G I , G/E, , is n-solvable, E/E,, is a n -closed 

F-covering subgroup of G/En , and HE,, , /E,, , is a Hall n-subgroup of ' 

G/En, = N 
(GIE,, 1 ((E/En,)nl). So by induction (HEn,/En,) fl (E/Enl) = 

(H fl E)En, /En, is an F-covering subgroup of HEn, /En,. But the natural 

isomorphism from HE,,/Enl to H maps (H fl E)E,,,/E,, onto H fl E .  Thus 

H n E is an F-covering subgroup of H. 

The following two theorems, which are due to Covaci, give a 

generlization to Brewster1s theorem (4.12). 

4.15 THEOREM: 

If F is a n-homomorph, then any two F-covering subgroups of a 

n-solvable group G are conjugate in G. 

Proof: 

By induction on I G  I . Let E, Eo be two F-covering subgroups of G. 

If G E F, then by definition of an F-covering subgroup, we obtain 

E = Eo = G. So suppose G fi F. Let N be a minimal normal subgroup of G. 

By 2.1.14, EN/N and EoN/N are F-covering subgroups of G/N. By the 

induction, EN/N and EoN/N are conjugate in G/N and so for some 

x € G, EN = E ~ N .  We distinguish two cases: 



( i )  There is  a minimal normal subgroup M of  G with EM # G .  

We put N = M .  By 2.1.13, E and E: a r e  F-covering subgroups of EN;  

hence, by t h e  induct ion ,  E and E: a r e  conjugate  i n  EN and so  E and 

Eo a r e  conjugate i n  
G.  

( i i )  For any minimal normal subgroup N of  G ,  EN = G = E N.  
0 

Then every minimal normal subgroup N of G i s  a so lvab le  n-group. 

Indeed, s i n c e  G i s  n-solvable,  N i s  e i t h e r  a  so lvab le  n-group o r  a  

nl-group.  Suppose t h a t  N i s  a nl-group.  I t  fo l lows t h a t  N 5 0, I (G) 

and we have G / O n ,  (G) (GIN) / (On, (G) /N) . But G / N  = EN/N E/E n N € F ,  

hence G / O n I  (G) € F, which impl ies ,  by t h e  n-c losure  of F, t h e  

c o n t r a d i c t i o n  G € F. So N i s  a so lvab le  n-group. By 4 .1 ,  N is  abe l i an .  

We s h a l l  prove t h a t  E and Eo a r e  maximal subgroups of G .  I n  t h e  case  

of E ,  E < G s i n c e  G j! F. Also E I E* < G impl ies  E = E X ;  f o r ,  

i f  E < E*, t h e r e  i s  an  element e* C E*\ E C G = EN so e* = eg with 

e  € E ,  g  E N .  But, we s e e  t h a t  g C N n E* = <I>,  which implies  t h e  

c o n t r a d i c t i o n  e* = e C E.  Let us  n o t i c e  t h a t  coreG(E) = <1> = core  (E ) .  G 0 

I f  we suppose, f o r  example, coreG@) # <I>, p u t t i n g  N I coreG(E) we 

have G = EN = EcoreG(E) = E ,  a  c o n t r a d i c t i o n  t o  E c G .  Applying now 

Theorem 4.7, it fo l lows t h a t  E and Eo a r e  conjugate  i n  G .  

4.16 THEOREM: A n-homomorph F i s  a Schunck c l a s s  i f f  any n-solvable 

group has F-covering subgroups. 

Proof: 

In  f a c t ,  f o r  t h e  proof i n  one d i r e c t i o n ,  i f  F 

(not n e c e s s a r i l y  n-c losed) ,  we prove by induc t ion  on 

i s  a Schunck c l a s s  

I G ( t h a t  any n -so lvable  



group G has F-covering subgroups. Two p o s s i b i l i t i e s  a r i s e :  

( i )  There i s  a minimal normal subgroup M of G such t h a t  
7 - 

G / M  f! F. By induct ion  G / M  has an F-covering subgroup H/M. Since 
- 

G/M f! F,  IHI < 1 G I  and so ,  by t h e  induct ion ,  H has an F-covering 

subgroup H.  Now, by 2.1.16, H i s  an F-covering subgroup of G .  

( i i )  Any minimal normal subgroup M of G s a t i s f i e s  G/M € F.  

If G i s  not  p r i m i t i v e ,  then  by d e f i n i t i o n  of p r i m i t i v i t y ,  we conclude 

t h a t  f o r  any maximal subgroup S of G ,  CoreG(S) # <1> and so  t h e  co re  

conta ins  a minimal normal subgroup M of G and hence G/CoreG(S) 

(G/M)/(CoreG(S)/M) € F a s  G/M € F. Thus i f  G is  no t  p r i m i t i v e  then  

a l l  p r i m i t i v e  f a c t o r  groups of  G belong t o  F and hence G E F s i n c e  

F is  a Schunck c l a s s  and t h e r e f o r e  G i s  i t s  own F-covering subgroup. 

So we may assume t h a t  G is  p r i m i t i v e  and G f F. I f  S i s  a p r i m i t i v a t o r  

of G then  we c la im t h a t  S i s  an F-covering subgroup of G .  F i r s t  of 

a l l  we n o t i c e  t h a t  S € F. Fur ther ,  if S c V 5 G ,  V Z!V, V/Vo € F, we 
0 

have, s i n c e  S i s  a maximal subgroup of G ,  V = S o r  V = G .  If V = S 

then  V = SVo, but  if V = G ,  we choose a minimal normal subgroup M of G 

with M 5 V o .  B y 3 . 5 ,  M S = G  so  V =  SVo . 
Conversely, l e t  F be a n-homomorph wi th  t h e  proper ty  t h a t  any 

n-solvable  group has F-covering subgroups. We s h a l l  prove t h a t  F is  a 

Schunck c l a s s .  Suppose F i s  not  a Schunck c l a s s  and l e t  G be a 

n-solvable  group of minimal order  with r e s p e c t  t o  t h e  condi t ions :  G f f 

and any p r i m i t i v e  f a c t o r  group of G i s  i n  F. I f  M i s  a minimal normal 

subgroup of G t hen  by t h e  minimali ty of G ,  G/M € F. Since G is  a 

n-solvable group t h e r e  i s  an  F-covering subgroup H of G .  Thus H 5 G ,  



M c3 G and G/M E F imply G = MH. By t h e  n-c losure  of  F and by t h e  

assumption G 1 F, we conclude, a s  i n  t h e  proof of  4.15, t h a t  M i s  a 

so lvable  n-group, hence, by 4 .1 ,  M i s  abe l i an .  So M fl H = <I>.  A s  i n  

4.15, H i s  a maximal subgroup of G .  

J 

Now suppose G i s  not p r i m i t i v e .  Then CoreG(H) # <I>,  so ,  

by t h e  minimali ty of  G ,  G/CoreG(H) € F. However, H/CoreG(H) is  an 

F-covering subgroup of  G/CoreG(H) and so H = G .  But t h i s  i s  not  p o s s i b l e  

because H E F and G j? F. Thus G is  p r i m i t i v e ,  c o n t r a d i c t i n g  t h e  choice 

of G .  

Now a f t e r  we proved t h e  ex i s t ence  and conjugacy of F-covering 

subgroups i n  f i n i t e  n-solvable  groups, we extend our s tudy one f u r t h e r  s t e p  

t o  F-projec tors  which, a s  we not iced  before  a r e  more genera l  than  F-covering 

subgroups s i n c e  every F-covering subgroup of t h e  f i n i t e  group G is  an  

F-projector  of G ( see  2.1.23).  

By t h e  previous theorem 4.16 we have: 

4.17 THEOREM: 

I f  F i s  a n-Schunck c l a s s ,  then  any f i n i t e  n-solvable  group has 

F-pro j e c t o r s  . 

conjugate.  In 

So it remains t o  prove t h a t  t h e  p r o j e c t o r s  i n  a n-solvable group a r e  

p repa ra t ion  f o r  t h i s  r e s u l t  we g ive  t h e  fol lowing theorem. 

4.18 THEOREM: 

Let F 

a b e l i a n  normal 

be a n-Schunck c l a s s ,  G a n-solvable  group and A an 

subgroup of G with G/A E F. Then: 



( i )  There i s  a subgroup S of G with S t F and AS = G .  

( i i )  I f  S1 and S2 a r e  F-maximal subgroups of  G with 

AS = G = AS2, then  S1 and S a r e  conjugate i n  G .  1 2 , '  

Proof: 

( i )  Let X =  { S X : S 5 G ,  AS* = G I .  Since G E X ,  X # + .  

Considering X ordered by inc lus ion ,  X has a minimal element S. We 

s h a l l  prove t h a t  S t F.  

Put D = S n A. Then D 5 G .  Let W be a maximal subgroup 

of S. We have D c W. Indeed, i f  we suppose t h a t  D & W ,  we o b t a i n  

DW = S, hence ADW = AS = G ,  which means W E X ,  i n  c o n t r a d i c t i o n  t o  t h e  

minimali ty of S i n  X.  Put N = CoreG(W). C l e a r l y  D 5 N .  Then 

SIN (S/D)/(N/D). Because S/D = S/S n A "= ASIA = G/A € F, we deduce, 

s i n c e  F i s  a homomorph t h a t  S/N E F. 

For any p r i m i t i v e  f a c t o r  group SIN of  S, we can f i n d  a 

maximal subgroup W of  S such t h a t  N = CoreG(W). But t h i s  means by t h e  

above t h a t  any p r i m i t i v e  f a c t o r  group of S i s  i n  F which implies  t h a t  

S E F, s i n c e  F i s  a Schunck c l a s s .  

( i i )  We argue by induct ion  on I G I . We d i s t i n g u i s h  two cases :  

(a) I f  G € F then  i f  S1 and S2 a r e  F-maximal subgroups of G ,  

S = S = G and t h e  theorem i s  proved. 
1 2 

(b) G 1 F. I t  means t h a t  t h e r e  i s  a p r i m i t i v e  f a c t o r  group G I N  

with G / N  1 F. We have NS1 # G and NS2 f G .  Now we claim t h a t  AN/N i s  

a minimal normal subgroup of G I N .  C e r t a i n l y  AN/N 5 G I N .  Also AN/N i s  a 



86. 

non-trivial subgroup, for otherwise AN = N which implies that 

S N = S AN = SIA = G, a contradiction. Finally, if H/N 9 G/N with 1 1 

<1> < H/N 9 AN/N then H/N is abelian since AN/N is abelian and SO 

if S/N is a primitivator of G/N then (H/N) fl (SIN) = <1> = 

(ANIN) n (SIN) and (SIN) (H/N) = G/N hence I H/NI = 1 GIN: S/N\ = ~AN/N/ 

and so H/N = AN/N therefore AN/N is a minimal normal subgroup of GIN. 

Now put M = AN. Clearly (NSi)M = G, i = 1,2. 

M/N is a solvable n-group. Indeed, M/N being a minimal 

normal subgroup of GIN, M/N is a chief factor of the n-solvable group 

GIN, hence M/N is a solvable n-group or a nl-group. If M/N is a 

nl-group, M/N < On, (GIN) and (G/N)/On, (GIN) " 
( (GIN) / @IN) ) / (On I (GIN) / (M/N) ) ; but (GIN) / (M/N) ^- G/M = ANS1/AN L1 

S1/Sl n (AN) € F; it follows that (GIN) /On, (GIN) € F, which implies, by 

the n-closure of F, the contradiction G/N € F. Thus M/N is a solvable 

By 4.6, M/N is the unique minimal normal subgroup of GIN. 

Hence SiN/N contain no minimal normal subgroup of GIN (i=1,2); therefore 

Core (S.N/N) = <I>. Also S N/N is a maximal in GIN. For otherwise G/N 1 1 

SIN/N c S*/N c G/N which implies that M/N 6 S*/N. Since M/N is abelian 

and (S*/N) (M/N) = GIN, (S*/N) n (M/N) d G; that is (SIN) fl (M/N) 5 

(S*/N) n (M/N) = <I>, and S*/N = SIN, a contradiction. Similarly S2N/N 

is a maximal subgroup of GIN. 

Now we prove that NS /N and NS2/N are conjugate in GIN. 1 

If SIN/N = <I>, we have GIN = (SIN/N)(M/N) = M/N; but 

G/N = (S2N/N) (M/N); hence (S2N/N) (M/N) = M/N, that is NS$N 5 M/N; it 

follows that (S2N/N) fl (M/N) = S2N/N; but, on the other hand, 4.1 implies 



8 7 .  

t h a t  (S2N/N) n (M/N) = <I>;  we conclude t h a t  S 2 N / ~  = <I>.  This  shows 

t h a t  SIN/N = <1> impl ies  S2N/N = <l> and s o ,  

conjugate i n  G / N  i n  t h i s  case .  Let us  suppose 

We s h a l l  u se  4.7. We know t h a t  M/N # <1> is a 

of G / N  and S N / N  i s  a p r i m i t i v a t o r  of G/N.  
1 I 

SIN/N and S2N/N a r e  

now t h a t  SIN/N # c l > .  

so lvab le  normal subgroup 

Let u s  prove t h a t  SIN/N 

has a  normal subgroup L/N # <1> with ( I L / N  I , I  G / N :  SIN/N I ) = 1. Indeed, 

S N / N  being n o n - t r i v i a l ,  l e t  K/N be a  minimal normal subgroup of 1 

SIN/N K / N  i s  e i t h e r  a  so lvab le  n-group o r  a  n l -group.  I f  K / N  i s  a  

so lvab le  n-group, then ,  by 4 . 7 ( a ) ,  t h e r e  i s  a normal subgroup L/N # <1> 

of SIN/N with ( 1 L / N  I , / G / N :  S ~ N / N I  = 1. I f  K/N i s  a n -group, then  

even K / N  < 1, is a normal subgroup of SIN/N with ( / K / N  / , I G / N :  S ~ N / N  I = 1. 

Applying now 4 .7(b) ,  NS1/N and N S ~ / N  a r e  conjugate  i n  G / N .  Hence 

NS1 and NS2 a r e  conjugate  i n  G .  

g  Put G* = NS1 = (NS2) = S ~ N ,  where g € G ,  and A* = A n G*. 

We apply t h e  induc t ion  t o  G*. We n o t i c e  t h a t  A* i s ' a n  abe l i an  normal 

subgroup of G*, with G*/A* € F and S1, S! a r e  F-maximal subgroups of 

G*, with A * S ~  = (A n G * ) s ~  = s1 (A n G*) = S,A n G* = G 0 G* = G* and 

g A*S; = S:(A n G*) = $A n G* = G 0 G* = G*. By induct ion ,  S1 and S2 

a r e  conjugate i n  G*, hence S and S2 a r e  conjugate  i n  G .  
1 

Now we come t o  a  theorem which i s  one of  t h e  main r e s u l t s  of t h i s  

chapter .  

4.19 THEOREM : 

I f  F i s  a n-Schunck c l a s s  then  any two F-projec tors  of a  n-solvable  

group G a r e  conjugate  i n  G .  



Proof: 

Induct on / G I  and l e t  Sly S2 be two F-projec tors  of G and M 

- 
a minimal normal subgroup of  G .  We put  S1 = MS and S2 = MS2. 

1 

- - 
S1 and g2 a r e  conjugate i n  G .  Indeed, S ~ / M  and %/hl a r e  

F-projectors  of G / M  and hence, by induct ion ,  they  a r e  conjugate i n  G / M .  

- 
But t h i s  means t h a t  S1 and S2 a r e  conjugate i n  G ,  i . e .  

-3 g MS = 5 = S2 = MS2, with g C G .  
1 1 

In o rde r  t o  prove t h a t  S1 and S2 a r e  conjugate  i n  G ,  we n o t i c e  

t h a t  s ince  M i s  a minimal normal subgroup of t h e  n-solvable  group G 

two cases  can a r i s e :  

( i )  M i s  a so lvab le  n-group. By 4.1, M i s  abe l i an .  Now we show 

t h a t  t h e  hypothes is  of theorem 4 . 1 8 ( i i )  a p p l i e s :  F is  a n-Schunck c l a s s ,  

- - 
S1 i s  a n-solvable  group, M i s  an a b e l i a n  normal subgroup of S1 with 

- - g S1/M = SIM/M "= S /M l l  S C F and we have S1 = S M = S2M where S and 
1 1 1 1 

- 
S; a r e  F-maximal subgroups of S1. I t  fol lows t h a t  S1 and S: a r e  

- 
conjugate i n  S1, hence S1 and S2 a r e  conjugate  i n  G .  

- 
( i i )  I f  M i s  a n l-group. Then M 5 O n ,  (5) and so  Sl/On I (TI) zz 

- 
( M )  / 0 I ( )  M )  . Since % / M  C F we deduce t h a t  S O  , ( )  C F , and 

- 
hence, F being n-closed,  S1 t F. By t h e  F-maximality of  S1 and S2, !2 

S = = sg where g C G .  The theorem is  completely proved. 
1 1 2 

Combining Theorems 4.17 and 4.18 we g e t  t h e  fol lowing r e s u l t :  

4.2 0 THEOREM : 

I f  F i s  a n-Schunck c l a s s ,  then  any n-solvable  group has 



F-projectors  and any two of them a r e  conjugate.  

In  order  t o  make our s tudy of t h i s  s u b j e c t  complete, we need t o  

prove t h e  converse of Theorem 4.20 t o  conclude t h a t  t h e  only n-homomorphs 

f o r  which t h e  f i n i t e  n-solvable  groups have p r o j e c t o r s  a r e  t h e  n-Schunck 

c l a s s e s .  To do t h a t  we f i r s t  need two lemmas. 

4.21 LEMMA: 

I f  F  i s  a  n-homomorph, G i s  a  n-solvable  group, H an F-maximal 

proper  subgroup of G ,  and N a  minimal normal subgroup of G with HN = G ,  

then  N is  abe l i an .  

Proof: 

N i s  a  c h i e f  f a c t o r  of G s o  t h e r e  a r e  two p o s s i b i l i t i e s :  

(i] N is  a s e l v & l e  ?-greup, i x  which case by 4 .1 ,  N i s  abelian. 

( i i )  N i s  a  n  -group. Then N 5 O n ,  (G) , hence G/On , (G) 

(G/N)/(On,(G)/N). But G / N  = HN/N z H / H  fl N € F, because H € F and F 

is a  homomorph. I t  fol lows t h a t  G/On,(G) € F, which impl ies ,  by t h e  

n-c losure  of F, t h a t  G E F. This  i s  a  c o n t r a d i c t i o n  t o  t h e  F-maximality 

of I i  < G .  

4.22 LEMMA: I f  F  i s  a  n-homomorph, G a  n-solvable  group, H an 

F-maximal proper  subgroup of G ,  and if t h e r e  i s  a  minimal normal subgroup 

N of G with HN = G ,  then:  

(a) H i s  maximal i n  G ;  

(b) ~n M =  a>. 



Proof: 

(a) Let H* given with H 5 H* < G .  I f  H < H* then t h e r e  i s  an 

element h* E H*\H. Because G = HN, h* = hx, wi th  h  E H and x  E N .  

- 1 
Suppose we can prove t h a t  N fl H* = <I>.  Then x  = h h* is  i n  N n H*, 

so  x  = 1. But t h i s  impl ies  h* = h E H, c o n t r a d i c t i n g  t h e  choice of h*. 

I t  fol lows t h a t  H = H*. 

To prove t h a t  N fl H* = <l> observe t h a t  N fl H* 5 G .  Indeed, 

if g C G then  g  = h*x, with h* E H*, x  E N ,  because G = HN = H*N, 

and i f  y  c N fl H* then  g-lyg = (h*x)-ly(h*x) = x-' (h*-lyh*)x,. 

I f  z = h*-lyh* then  z C N fl H*, s i n c e  N fl H* 5 H*. So 

z E N .  But by Lemma 4.21, N i s  abe l i an .  This  impl ies  t h a t  g-lyg = 

- 1 x zx = x-'xz = z E N fl H*, which proves t h a t  N f l  H* 4 G .  Now, 

N n H* # N ,  because N fl H* = N implies  N I H*, hence t h e  con t rad ic t ion  

G = HN = H*N = H*. Since N is  a  minimal normal subgroup of  G ,  N fI H* ! G 

and N n  H* # N imply t h a t  N n  H* = <I>.  

(b) S e t t i n g  H* = H i n  t h e  proof of ( a ) ,  we ob ta in  H fl N = <I>.  o 

Now we a r e  ready t o  prove t h e  theorem we promised. 

4.23 THEOREM: 

A homomorph F with t h e  proper ty  t h a t  any f i n i t e  n-solvable  group 

has F-projec tors  i s  a  Schunck c l a s s .  

Proof: 

To show F i s  a  Schunck c l a s s ,  suppose t h e  con t ra ry  and l e t  G be a  

f i n i t e  n-solvable  group of minimal order  wi th  r e s p e c t  t o  t h e  condi t ions :  

G j! F and any p r i m i t i v e  f a c t o r  group of G i s  i n  F .  Let M be a  minimal 



normal subgroup of  G .  Then G / M  € F by d e f i n i t i o n  of G .  Let H be an 

F-projector  of G .  I t  follows t h a t  HM/M i s  F-maximal i n  G / M ,  so G = HM. 

Applying Lemma 4.22, we conclude t h a t  H i s  maximal i n  G .  Suppose G i s  

not  p r imi t ive .  We then  have CoreG(H) # <I>.  So t h a t  ~ / C o r e ~ ( H )  < F, 

by d e f i n i t i o n  of G .  But H/CoreG(H) i s  an F-projector  of G/COreG(~).  

Hence H = G ,  c o n t r a d i c t i n g  t h e  hypothesis  G f F and H 'Thus G 

i s  p r imi t ive ,  i n  c o n t r a d i c t i o n  t o  t h e  choice of G .  

Now we s tudy some aspec t s  of t h e  connection between p r o j e c t o r s  and 

covering subgroups i n  f i n i t e  n-solvable groups. 

The fol lowing lemma, which we need here ,  i s  an immediate consequence 

4.24 LEMMA: 
-- 

If F is  a  homomorph, G a  f i n i t e  group and H an F-projector  of 

G which is maximal i n  G ,  then H is  an F-covering subgroup of G .  

Proof: 

Let K be a  subgroup of G with H 5 K .  We d i s t i n g u i s h  two cases :  

( i )  K = G .  Then H i s  an F-proj e c t o r  of G = K .  

( i i )  K < G .  Then H = K. But H c F is  i t s  own F-projector .  

The lemma i s  proved. o 

4.25 COROLLARY: 

If F  i s  a  homomorph and G a  group then  any subgroup H of G 

with t h e  p r o p e r t i e s :  



( i )  H i s  an F-projector  of G ;  

( i i )  H i s  a p r i m i t i v a t o r  of G 

i s  an F-covering subgroup of G .  

Lemma 4.22 has t h e  fol lowing consequence: 

4.26 LEMMA: 

I f  F is  a n-homomorph, G a  n-solvable  group and H an F-projector  

of G with t h e  p roper ty  t h a t  t h e r e  i s  a minimal normal subgroup N of G 

such t h a t  HN = G ,  then  H i s  an F-covering subgroup of  G .  

Proof: 

Suppose without  l o s s  of g e n e r a l i t y  t h a t  H < G .  Then t h e  hypothesis  

of  Lemma 4.22 a p p l i e s  and it fol lows t h a t  H i s  maximal i n  G .  Hence H 

i s  an F-covering subgroup of  G by 4.24. o 

4.27 LEMMA: 

Let F be  a  n-homomorph, G a n-solvable  group and H < G with 

t h e  p roper ty  t h a t  H i s  F-maximal i n  G .  Then t h e  fol lowing a r e  equivalent .  

( i )  For any minimal normal subgroup N of G ,  HN = G ;  

( i i )  H i s  a p r i m i t i v a t o r  of  G .  

Proof: 

( i )  = ( i ) .  H is  maximal i n  G ,  by 4.22. Fur the r ,  CoreG(H) = <I>, 

f o r ,  i f  we suppose t h a t  CoreG(H) # <I>, it fo l lows t h a t  G has a  minimal 

normal subgroup N wi th  N 5 CoreG(H). But t h i s  means G = HN 5 

H. CoreG (H) = H, i. e .  , H = G ,  i n  c o n t r a d i c t i o n  wi th  H < G .  



( i )  = ( i ) .  T h i s  fo l lows  from Lemma 4 .1 .  



Chapter 5 

PROJECTORS OF FINITE GROUPS 

The i n t e n t  of t h i s  chapter  i s  t o  i n v e s t i g a t e  t h e  p roper t i e s  of 

p ro jec to r s  i n  groups t h a t  a r e  not  necessa r i ly  solvable  o r  n-solvable. 

A l l  groups considered here  a r e  assumed t o  be f i n i t e .  Our f i r s t  aim i s  t o  

prove t h e  exis tence  of F-projectors i n  a l l  f i n i t e  groups, where F i s  a 

Schunck c l a s s ,  and we begin with a d e f i n i t i o n .  

5.1 DEFINITION: Let F be a c l a s s  of f i n i t e  groups. 

F is  Em-closed i f  G/+(G) C F implies t h a t  G t F. 

DEFINITION: 

Let N 5 G .  The subgroup H of G i s  a supplement of N if 

HN = G. 

5.2 LEMMA: 

Let F be a homomorph and suppose F is  E -closed.  I f  G i s  a + 
group with normal subgroup N and i f  G/N  E F, then every minimal 

supplement of N i n  G belongs t o  F. 

Proof: 

Let H be a minimal member of t h e  s e t  of subgroups which supplement 

of N i n  G.  Since any supplement of N n H i n  H i s  a l s o  a supplement 

of. N i n  G ,  H i s  a minimal supplement of N fl H i n  H and t h e r e f o r e  

N f l  H r +(H). Hence H/+(H) = (H/(Hll N ) ) / ( + ( H ) / ( H ~ ~  N)) E F, s ince  



H/H fl N 2 HN/N = G / N  € F and F i s  a homomorph. Since F is  E -closed, 
6 

H E F .  0 

Now we a r e  ready t o  our f i r s t  main r e s u l t  of t h i s  chapter. 

5.3 THEOREM: 

Let F be a c l a s s  of groups. I f  F is  a Schunck c l a s s ,  then every 

f i n i t e  group possesses an F-projector. Conversely, i f  Y i s  a Schunck 
, 

c l a s s  containing F and i f  every group i n  Y possesses an F-projector, 

then F i s  a Schunck c l a s s .  

Proof: 

Let .F be a Schunck c l a s s  and l e t  G be a group of minimal order 

not possessing an F-projector. Then G f F and G ,  <I>. Let A be a 

minimal normal subgroup of G L  Then C/A has an F - p r o j e s t ~ r  W/A. If 

W < G ,  then W has an F-~irojkktor  E .  But then 2.1.21 (c) implies t h a t  

E i s  an F-projector of G ,  a  contradic t ion.  Hence W = G and G/A E F 

fo r  each minimal normal subgroup A of G.  Since F i s  a homomorph.and 

G/A E F f o r  any minimal normal subgroup A of G ,  every proper quotient  

of G belongs t o  F. Thus, i f  G i s  not pr imit ive ,  every pr imit ive  

quotient  of G belongs t o  F and hence G € F ,  a  contradic t ion.  Hence 

G i s  pr imit ive .  

Suppose f i r s t  t h a t  G has a unique minimal normal subgroup A and 

l e t  U be a minimal supplement of A i n  G .  By Lemma 5.2, U € F. Let 

E be an F-maximal subgroup of G containing U. I f  N 3 G and N > <I>, 

then N contains A, so t h a t  EN/N = G / N  € F and hence EN/N i s  

F-maximal i n  G / N .  Thus E is  an F-projector of G ,  again a contradic t ion.  



In view of Corollary 4 . 3  we conclude t h a t  G has exactly two 

minimal normal subgroups A and B,  and by 4 . 4  both of them a r e  

complemented by a maximal subgroup E ,  Then E G/A E F and an argument 

s imi la r  t o  t h a t  given i n  t h e  preceding paragraph shows t h a t  E i s  an 

F-projector of  G .  This contradic t ion completes t he  proof of the  f i r s t  

a s s e r t i on  of t he  theorem. 

For t h e  converse, assume t h a t  every f i n i t e  group belonging t o  t he  
/ 

Schunck c l a s s  Y possesses an F-proj ec to r .  Let G 6 F and N 5 G .  Then 

G E Y and hence G has an F-projector E .  Then E = G and EN/N = G / N  

i s  F-maximal i n  G/N;  i n  pa r t i cu l a r ,  G / N  E F. Hence F i s  a homomorph. 

I t  remains t o  show t h a t  F is  a Schunck c l a s s .  Suppose t h i s  is 

f a l s e ,  and l e t  G be a group of minimal order  such t h a t  every pr imi t ive  

quot ient  of G belongs t o  F but G does n n t i  Then G is  not  primitive.  

Since F - c Y and Y i s  a Schunck c l a s s ,  we have G € Y. Let E be an 

F-projector of G ,  so E < G ,  and l e t  A be a minimal normal subgroup 

of G .  The minimal choice of G implies t h a t  G/A E F. Hence EA = G .  

Let S be a maximal subgroup of G containing E .  Then SA = G and 

s ince  A i s  an a r b i t r a r y  minimal normal subgroup, S i s  a maximal subgroup 

of G with CoreG(S) = <l> and hence G i s  p r imi t ive ,  a f i n a l  

contradic t ion.  

In Chapter 2 we have seen t h a t  i f  F i s  a sa tu ra ted  formation and 

G i s  a solvable  group, then t he  F-projectors of G a r e  conjugate and 

coincide with t h e  F-covering subgroups. These r e s u l t s  a r e  a l s o  t r u e  when 

F is  a Schunck c l a s s  and G is  a solvable  group (see Erickson [P9], 1.3.8).  

However, these  r e s u l t s  a r e  not  va l i d  i n  a r b i t r a r y  f i n i t e  groups. 



5.4 EXAMPLE: 

A s  we have seen i n  Example 2.1.23 (c) , t he  subgroups E and F of 

t h e  simple group A5 a r e  N-projectors but not  N-covering subgroups of A5, 

where N ,  a s  before,  i s  t h e  c l a s s  of f i n i t e  n i lpo ten t  groups, and it is  

c l ea r  t h a t  E and F a r e  not conjugate s ince  they have d i f f e r en t  orders.  

In f a c t  A5 has 3 conjugacy c lasses  of N-projectors but no N-covering 

subgroups which means t h a t  t h e  covering subgroups may not ex i s t  a t  a l l  i n  

t he  general case. 

5 . 5  DEFINITION: 

Let U denote t h e  c l a s s  of f i n i t e  solvable  groups. By - UF we 

denote t h e  c l a s s  of .groups  t h a t  a r e  extensions of solvable groups by 

F-groups. 

In our next main r e s u l t ,  we w i l l  show t h a t  t h e  F-covering subgroups 

and F-projectors do coincide i n  groups i n  UF. To do t h i s  we need two 

preliminary lemmas. 

5.6 LEMMA: Let F be a Schunck c l a s s .  Let A be a minimal normal 

subgroup of t he  f i n i t e  group G with A abel ian,  G/A E F and G g F. 

Then A i s  complemented i n  G and t he  complements a r e  p rec i se ly  the  

F-projectors of G .  Moreover, every F-projectors of G i s  an F-covering 

- subgroup of G .  

Proof: 

Since F i s  a Schunck c l a s s ,  F is  E -closed. Since G/A € F and 
9 

G F, A p $(G), so  t he r e  i s  a maximal subgroup S of G such t h a t  



A $ S. By 4.1, S is a complement of A in G. Also it is easily seen 

that each F-projector of G is a complement of A and (since it is a 

maximal subgroup) also an F-covering subgroup of G. Thus the F-covering 

subgroups and F-projectors of G coincide, and we need only to show that 

every complement E of A is an F-covering subgroup of G. 

Let G be a minimal counter-example. By Theorem 5.3, G has an 

F-projector L. First suppose that E is not corefree, that is 

CoreG(E) # <1> and let N 'be a minimal normal subgroup of G with N 5 E. 

If N is also contained in L, that is N 5 L fl E, then since G/N is 

not counter-example E/N is an F-covering subgroup of G/N. By 2.1.16, 

then, E is an F-covering subgroup of G, a contradiction. 

So N 5 E and N $ L so that NL = G. Since A is abelian, . 

AN 5 CG (A) . Thus AN fl L 5 G . Moreover, AN I7 L 6 E f o r  otherwise we 

would obtain the contradiction A 5 AN = AN fl NL = N(AN fl L) 5 E. Hence 

E (AN fl L) = G and G/ (AN fl L) 2 E € F. Since L is an F-covering 

subgroup of G, we have G = L(AN fl L) = L, a contradiction. 

Thus CoreG(E) = <1> and A is the unique minimal normal subgroup 

of G. It follows easily that E is an F-covering subgroup of G, a 

final contradiction. 

- 5.7 LEMMA: Let F be a Schunck class. Let G be a group with a nilpotent 

normal subgroup N, and let E be an F-subgroup of G that supplements 

N in G. Then E is contained in an f-covering subgroup of G. In 

particular, if E is F-maximal in G, then E is an F-covering subgroup 

of G. 



Proof: 

The lemma is  t r i v i a l  when N = <I>. Suppose N # <1> and l e t  A 

be a minimal normal subgroup of G with A 5 N .  The hypotheses a r e  

s a t i s f i e d  i n  G/A,  so by induction we conclude t h a t  EA/A i s  contained 

i n  F*/A, an F-covering subgroup of G/A.  Therefore, E 5 F*. The 

hypotheses a r e  s a t i s f i e d  by F* and i t s  subgroups F* fl N and N. Thus, 

i f  F* < G ,  then by induction we have E c F ,  an F-covering subgroup 

of F*. Now by 2.1;16, F is  an F-covering subgroup of G ,  and so 

t h e  lemma is es tabl ished unless F* = G .  

However, i f  F* = G ,  then G/A = F*/A E F f o r  any minimal normal 

subgroup A of G contained i n  N.  By Lemma 5.6, G has an F-covering 

subgroup W. Then W i s  maximal i n  G ,  so  W fl N i s  maximal i n  N and 

s ince  N i s  n i lpo ten t  we have W fl N 3 G .  I f  W f l  N > <I>, by choosing 

A t o  be contained i n  W fl N, , we have G = WA = W(W fl N) = W, and t h e  

conclusion follows t r i v i a l l y .  Thus we may assume t h a t  W fl N = <1> and 

G i F. Then G = EN fl WA = E(N fl VJA) = EA(N fl W) = EA, and Lemma 5.6 

implies t h a t  E i s  F-covering subgroup of G .  

5.8 THEOREM: 

Let F be a Schunck c l a s s  o fn-groups  and l e t  G be an extension 

of a n-solvable group by an F-group. Then every F-projector of G i s  an 

F-covering subgroup of G .  

Proof: 

Let N 5 G with N n-solvable and G/N E F, and l e t  E be an 

F-projector of G .  Let A be a minimal normal of G with A 5 N.  By 



induction EA/A i s  an F-covering subgroup of G/A.  

I f  A i s  abel ian,  then 5.7 implies t h a t  E is an f-covering 

subgroup of EA. This conclusion a l so  holds if A is  a n'-group. In 

e i t h e r  case, E i s  F-covering subgroup of G .  0 

Even i n  t h e  s e t t i n g  of Theorem 5.8, t h e  F-projectors need not be 

conjugate. To introduce t h e  example given by SCHNACKENBERG, i n  h i s  work 

("On in j ec to r s ,  p ro jec tors  and normalizers of f i n i t e  groupsff, Ph.D. 

Disser ta t ion,  Univ. of Wisconsin, 1972) we f i r s t  give t h e  de f in i t i on  of 

holomorph. 

DEFINITION : 

The holomorph of t h e  group K i s :  K *8Aut(K), where 

8: Aut (K) -t Aut (K) is the  i d e n t i t y  map. 

Schnachenberg gives an example of a Schunck c l a s s  F and a group 

G E UF having non-conjugate F-covering subgroups. The group G i s  t h e  

holomorph of V(3,2), a 3-dimensional vec tor  space over GF(2); thus 

G = V(3,2) *, Aut(V(3,2)). But Aut(V(3,2)) "GL(3,2), s ince  V(3,2) 

5 
i s  an elementary abel ian group of order 2 . The c l a s s  F i s  t h e  smallest  

Schunck c l a s s  containing GL(3,2). By Lemma 5.6, V(3,2) is complemented 

i n  G and a l l  t h e  complements a r e  F-covering subgroups of G .  But a 

remark on page 161 of B. Huppert, Endliche Gruppen I ,  shows t h a t  t h e  

complements a r e  not a l l  conjugate. 



Projectors of Direct  Products and Well-Placed Subgroups: 

~ a s c h i i t z ,  i n  h i s  work "Selected Topics i n  t h e  Theory of Solvable 

Groupsn 1963, proved some proper t i es  of p ro jec tors  i n  t h e  d i r e c t  products. 

Gaschiitzl proof, which uses t h e  conjugacy of F-covering subgroups, does not 

apply t o  a r b i t r a r y  f i n i t e  groups, and t o  t r e a t  t h e  general case,  we f i r s t  

need a de f in i t i on  and preliminary lemma. 

5.9 DEFINITION: 

Let F be a c l a s s  of groups. We say F i s  Do-closed i f  it is  

closed under d i r e c t  products. 

5.10 LEMMA: Let F be a Do-closed homomorph. Let G = AB with A 2 G ,  

B Q G .  I f  G/A has an F-projector V/A and G / B  has an F-projector W/B, 

then (V fl W)/ (A fl B) i s  an F-proj ec to r  of G/A fl B .  

Proof: 

Since t h e  hypotheses hold i n  group G/A fl B y  by induction we may 

assume t h a t  A fl B = <I>. Suppose V < G. In view of t h e  isomorphism 

V/V fl B r V B / B  = G / B ,  we f i nd  t h a t  (V fl W)/(V fl B) i s  an f -projector  

of V/V fl B. Indeed, (V fl W)J(V fl B) = (V fl W)/(V fl W fl B) zB(V fl W)/B = 

(BV n W)/B = (G n W)/B = W/B.  

Also, V/A i s  an F-projector of V/A,  and A(V l l  B) = V fl AB = 

V fl G = V. So t h e  hypotheses of t h e  lemma a r e  s a t i s f i e d  i n  t he  group V. 

By induction, V fl W i s  an F-projector of V.  Since V fl W i s  an 

F-projector of V and V/A i s  an F-projector of G/A, V n W i s  an 

F-pro j ec to r  of G .  



So we may assume t h a t  V = G, and by symmetry, a l s o  t h a t  W = G .  

But then W = V = G = A x B, and s ince  B z  (A x B)/A = V/A E F and 

s im i l a r l y  A "= W/B E F and s ince  F i s  D -closed we conclude t h a t  G E F 
0 

so V fl W = G i s  an F-projector of G .  o 

5.11 THEOREM: Let F be a Do-closed homormorph. I f  A and B have 

F-projectors E and F ,  then E x F i s  an F-projector of A x B. 

Proof: 

Apply Lemma 5.10 with V = FA and W = EB. V fl .W = FA fl EB = 

F (A fl EB) = FE (A fl B) by t h e  modular law. But t h i s  l a t t e r  group i s  

REMARKS : 

( i )  I f  we l e t  P(F) denote t h e  c l a s s  of  groups possessing an 

F-projector, then P(F) i s  a Do-closed homomorph whenever F is .  This 

is  because, i f  G € P(F) then G has an F-projector E and s o  EN/N 

is  an F-projector of G / N  f o r  any N Z G ,  so  G / N  € P(F). Also i f  F is  

Do-closed and G,H € P(F) with F-projectors E and F respec t ive ly ,  then 

by 5.11, E x F i s  an F-projector of G x H. So G x H E P(F). 

( i i )  The analog of Theorem 5.11 f o r  F-covering subgroups i s  a l s o  

t rue .  

( i i i )  The conclusion of Theorem 5.11 f a i l s  under the  a l t e rna t i ve  

hypothesis t h a t  F i s  a Schunck c l a s s ,  s ince  t he r e  e x i s t s  a Schunck c l a s s  

F t h a t  is  not  D -closed and groups A and B such t h a t  A,B E F but 
0 

A x B j! F (see Erickson [ l g ] ,  2.4.10) . 



5.12 DEFINITIONS: 

(a) A subgroup W of the  group G is ca l led  well-placed i n  G ,  

i f  there  is  a chain W = M c M1 4 ... 5 Mn = G such t h a t  Mi = Mi-lF(Mi) 
0 

(1 5 i 5 - 1  , where F (Mi) is  the  f i t t i n g  subgroup of Mi. 

(b) For each c l a s s  F l e t  SwF be t he  c l a s s  of a l l  groups which 

a r e  well-placed i n  some F-group. We say F i s  Sw-closed if SwF = F. 

Examples of well-placed subgroups a r e  r ead i l y  found. The subgroup 

E = <(123)> of A4 i s  well-placed i n  A4,  s ince  F(A4) = V = 

{ 1, (14) (23) , (12) (34) , (13) (24) 1 and EV = A4. 

5.13 THEOREM: Let F be an Sw-closed Schunck c l a s s .  Let G be a group 

of t he  form UN, where U 4 G ,  N f G and N i s  n i lpo ten t .  Assume t h a t  

G has an F-projector F such t h a t  F = (F R U) (F R MI. Then F !7 U 

i s  an F-projector of U.  

Proof: 

Let G be a minimal counterexample. Then U < G and N > <I>. 

Also, by hypothesis, F fl U is  a well-placed subgroup of F ,  f o r  

F fl N 4 F(F) SO t h a t  F = (F fl U)F(F), SO F fl U € SwF = F. I t  follows 

t h a t  F < G  and G g F .  

Suppose t h a t  FN < G .  Now F is  F-maximal i n  FN and hence is  an 

F-projector of FN, by 5.7.  Thus t h e  hypotheses a r e  s a t i s f i e d  by t h e  group 

FN = G fl FN = UN fl FN = (U fl FN)N and i t s  F-projector F, and hence t he  

minimality of G implies t h a t  F fl U i s  an F-projector of U fl FN. But, 

s ince  FN/N i s  an F-projector of G / N ,  (U fl FN)/ (U fl N) i s  an F-projector 



of U/U fl  N ;  indeed, U / U f l  N ~ u N / N  = G I N  and (Ufl FN)/(Ufl N) = 

(U fl FN)/(U fl FN n N) (U fl FN]N/N = FN/N.  Thus we have F fl U i s  an 

F-projector  of U fl FN and (FN n U)/ (U n N) i s  an F-projector  of 

U/(U fl N), hence F fl U i s  an F-projector of U ,  a  con t rad ic t ion .  

So w e  may assume t h a t  FN = G .  In  t h e  counterexample G we may 

a l s o  assume t h a t  U i s  chosen a s  l a rge  a s  poss ib le .  Suppose U i s  not 

maximal i n  G .  Let U1 be a maximal subgroup of G t h a t  properly 

conta ins  U.  Then UIN = G ,  and F = (F fl U) (F fl N) 5 (F fl Ul) (F fl N) 5 F y  

and hence t h e  e q u a l i t y  holds.  Now we show t h a t  F fl U1 i s  an F-projector  

of U1: c l e a r l y  F i l  U1 i s  a well-placed subgroup of F, s o  t h a t  

F f l  U1 € SwF = F,  and s ince  F is  F-maximal i n  G ,  F n U1 is  

F-maximal i n  U Since U1 = FN fl U1 = (F fl U1) (F fl N)N fl U1 = 1 ' 

(F fl Ul)N fl Ul = (F fl Ul) (N il Ul) , by 5.7, F fl ul i s  an F-proj e c t o r  of 

U l .  Now t h e  hypotheses of t h e  theorem a r e  s a t i s f i e d  by t h e  group 

U1 = U(N fl U,) and i t s  F-projector  F fl U1, so  t h a t  t h e  minimality of G 

implies t h a t  t h e  subgroup (F fl U1) n U = F fl U i s  an F-projector  of U ,  

a  contradic t ion.  

Hence FN = G and U i s  maximal i n  G .  Since N i s  n i l p o t e n t  

normal subgroup of G ,  t h e  subgroup H = U fl N i s  normal i n  G .  Moreover, 

u = F N ~  u = (F n u ) ~ n  u = ( ~ n  u ) ( ~ n  u) ;  t h a t  i s  u = ( ~ f l  U)H. NOW 

U / H z  G/N F/F n N € F, so  we have two cases :  

( i )  e i t h e r  U/H i s  F-maximal i n  G/H; o r  

( i i )  G/H € F. 

Suppose ( i )  holds.  By 5.7, U/H i s  an F-projector  of G/H. 

But U = (F n U)H I FH, and FH/H i s  F-maximal i n  G/H, s o  t h a t  U = FH 



and F 5 U .  But then Lemma 5.7 implies t h a t  F i s  an F-projector  of U,  

a contradic t ion.  

Thus ( i i )  holds: G/H E F.  Since G j! F ,  we must have H > <I>. 

Let A be a minimal normal subgroup of G with A 9 H. The hypotheses 

of t h e  theorem a r e  s a t i s f i e d  by t h e  group G/A and i t s  F-projector  FA/A, 

so  t h e  minimality of G implies t h a t  (U fl FA)/A is  an '  F-projector of 

U/A . 

I f  AF c G ,  then t h e  argument used e a r l i e r  i n  t h e  proof (with N 

replaced by A) shows t h a t  F fl U i s  an F-projector  of U fl FA. But 

then F fl U i s  an F-projector  of U ,  a con t rad ic t ion .  

Thus FA = G .  But then F is  maximal i n  G ,  F fl N 5 G ,  and s i n c e  

U = (F fl U)H we have U(F fl N) = FH = G .  Now F/F f l  N i s  an F-proj e c t o r  

of G/F fl N; i n  view of t h e  isomorphism U/F fl H S G/F f l  N we conclude 

t h a t  (F fl U)/ (F fl H) is  an F-projector  of U/F fl H. But F fl U E F, so  

t h a t  F fl U i s  an F-projector  of U ,  a f i n a l  con t rad ic t ion .  

In  t h e  statement of t h e  previous theorem (Theorem 5.13) we assume 

t h e  exis tence  of an F-projector  F such t h a t  F = (F fl U) (F fl N). Such 

an F-projector  always e x i s t s ,  even without t h e  assumption of Sw-closure. 

Indeed, a somewhat s t ronger  conclusion holds.  

5.14 THEOREM: Let F be a Schunck c l a s s ,  and G be a group. Let 

U o 9 U l , . . . 9 U n , N o , . . . . N  be subgroups of G such t h a t :  n 

( i )  Uo = G ,  N = <I>, 
0 



( i i )  Ni is a n i lpo ten t  normal subgroup of Ui-l ( i = l ,  ..., n ) ,  

( i i )  U = U N  ( i = l  n )  ; and 
1 1  

( iv)  U .  n N. c Ni+l ( i = O Y n . .  ,n-1) - 
1 1 

Then there  is  an F-projector F of G such t h a t :  

Proof: 

By Theorem 5.3, G has an F-projector. I f  Ni = <I> f o r  each i, 

then (V) holds t r i v i a l l y  ( fo r  an a r b i t r a r y  F-projector F of G). So 

we may assume tha t  Ni > <1> f o r  some i. Let j  be minimal such t h a t  

N .  > <I>. Then N .  f G .  We may assume t h a t  j = l .  
J J 

Let A be a minimal normal subgroup of G with A 5 N1. Then by 

( i v ) ,  U. I ~ A S U , ~ N .  I S N - ,  L u . . ~ A ~ u , ~ u .  L I ~ A ~ u , ~ N . . s N , ,  L and 

i n  general ,  U i m l  " A Ni ( i = l ,  2 , .  . . ,n) . Hence f o r  i = 1 2  . n - 1  , we 

have : 

* U ~ A  n N ~ A  = A ( U ~  n N ~ A )  = A ( U ~  n ui - , n N ~ A )  

which a l so  holds when i = O .  The subgroups: 

s a t i s f y  ( i )  - ( i i i )  i n  t he  group G/A and i n  view of (*) they s a t i s f y  ( iv)  

a l so .  By induction, t he r e  e x i s t s  an F-projector F*/A of G/A such t h a t  



F* n Ui - ,A = (F* fl UiA) (F* f l  N ~ A )  = A(F* I l  Ui) (F* 0 NiA) f o r  i=l,. . . ,n, 

= (F* n U.) (F* (7 NiA), s ince  A 5 F* (7 NiA. 
1 

Upon i n t e r s e c t i n g  with Ui - we obta in ,  f o r  i=l , .* * , n 9  

= (F* n ui) (F* n N~ (A n ui-,)) 

= (F* fl Ui) (F* fl Ni) , s i n c e  A f l  Ui - 5 Ni ( i = l ,  . . . ,n) . 

Clear ly ,  t h e  subgroups F* n Uo,. .a ,F* fl Un, F* fl N1. ..., F* fl Nn s a t i s f y  

( i )  - ( iv)  i n  t h e  group F*. 

Thus i f  F* c G ,  by induction t h e r e  i s  an F-projector  F of F* 

such t h a t  f o r  i = 1 y 2 9 . . . , n ,  

F n (F* n ui-,) = (F n F* n ui) (F n F* n N ~ ) ;  t h a t  is ,  

F fl Ui - = (F fl Ui) (F fl N i )  Since F i s  an  F-projector  of F* and 

F*/A i s  an F-projector  of G/A,  F i s  an F-projector  of G ,  and t h e  

proof is  complete i n  t h i s  case .  

Therefore, F* = G and G/A C F.  We may assume t h a t  G j! F. I f  E 

is an a r b i t r a r y  F-projector  of G ,  then EA = G and A $ E. Since E is  

maximal i n  G and N i s  n i l p o t e n t ,  we have E fl N1 s G ,  so  t h a t  
1 

E n N1 = <I>, f o r  i n  t h e  contrary  case  we could have chosen A t o  be 

contained i n  E fl N1. I t  fol lows t h a t  N1 = A a minimal normal subgroup 

of G .  Hence U1 i s  a maximal subgroup of G complementing N1 i n  G .  



By emma 5.6, U1 i s  an F-projector of G ,  and (V) holds with F = U1, 

because U .  - u1 and so U1 fl Ui-l  = Ul fl U.N. = Ui(Ul fl Ni) = 
1 1 1  

(u, n ui) (ul W L ) .  0 

5.15 COROLLARY: Let F be an Sw-closed Schunck c l a s s .  Let U be a 

well-placed subgroup of a group G.  Then t he r e  e x i s t s  an F-projector F 

of G such t h a t  F f l  U i s  an F-projector of U .  

Proof: 

Since U i s  a well-placed subgroup of G ,  t h e r e  i s  a chain: 

U = Un 5 ... 5 Uo = G 

such t h a t  Ui-l = UiNi with Ni = F(Ui), f o r  i=l, ..., n. By theorem 

5.14, the re  is  an F-projector F of G such t h a t  F fl Ui-l = 

(F n Ui) (F n Ni) , ( 1  . . n )  By theorem 5.13, F fl U1 i s  an F-proj ector  
% .  

of U1. The hypothesis of Theorem 5.13 a r e  then s a t i s f i e d  i n  t h e  group 

U1 = U2N2,  SO t h a t  F fl U, = (F f l  U,) (F fl N,) i s  an F-pro jec to r  of U2 .  

Continuing i n  t h i s  fashion,  we obtain t h e  des i red  conclusion. 

The Class of Groups Whose F-Projectors a r e  F-Covering Groups: 

DEFINITION: For a homomorph F, we def ine  a c l a s s  

W(F) = { G :  every F-projector of G i s  an F-covering subgroup of G I .  

Thus W(F) cons i s t s  of groups whose Fiprojectors  and F-covering 

subgroups coincide.  Clear ly  F - c W(F), and i f  F is  a Schunck c l a s s ,  then 

by theorem 5.8 we have UF - c W(F). In our next proposit ion we w i l l  see  t h a t  



W(F) inherits certain closure properties from F, but to do this we first 

need a lemma about F-covering groups, which is of considerable interest in 

its own right. 

5.16 LEMMA: Let F be a formation and let A , B  3 G. Assume that V/A is 

an F-covering subgroup of G/A and w/B is an F-covering subgroup of G/B,  

and that VB = WA. Then (V fl W)/(A fl B) is an F-covering subgroup of 

G/A n B. 

Proof: 

Since A 5 V,  by the modular law, we have (V f l  W)A = V fl WA = 

V n VB = V .  Similarly (V n W)B = W, so (V f l  IV)/(V fl W fl A) 

(V f l  W)A/A = V / A  E F, and similarly (V fl W)/(V fl W fl B) E F, and since 

F is a formation, (V fl W)/(A fl B) E F. 

By induction we may assume that A fl B = <I>. Let L = VB = WA = VW. 

If V = G, then W = W fl V E F. Since W/B is an F-covering subgroup 

of G/B,  V fl W = W is an F-covering subgroup of G as required. 

So we may assume that V < G. In view of the isomorphism 

V/V fl B "= VB/B = L I B  we find that (V fl W) / (V fl B) is an F-covering 

subgroup of G/V I7 B; indeed (V fl W)/ (V f l  B) = (V fl W)/(V fl W n B) "= 

(V fl W)B/B = W/B which is F-covering subgroup of G / B ,  so W/B is an 

F-covering subgroup of L / B  as L 5 G. Therefore (V fl W)/ (V fl B) is an 

F-covering subgroup of V/V fl B. 

Also V/A is an F-covering subgroup of V/A and (V fl W)A = V = 

V(V fl B ) ,  so the hypotheses of the lemma are satisfied in the group V,  



By induction,  V fl W is an F-covering subgroup of V and hence, s ince  

V/A i s  an F-covering subgroup of G / A ,  we have V fl W is  an F-covering 

subgroup of G .  o 

5.17 REMARK: An examination of t h e  proof of t h e  previous lemma, shows t h a t  

t h e  s tatement  of t h e  lemma i s  t r u e  a l s o  f o r  F-projec tors  i n  p lace  of 

F-covering groups, assuming ( i n  t h e  n o t a t i o n  of t h e  lemma) t h a t  VA=WB=G.. 

In  our cons ide ra t ion  of t h e  c l a s s  W(F), we r e s t r i c t  our a t t e n t i o n  

t o  t h e  case  i n  which F is  a Schunck c l a s s  (so t h a t  F-projec tors  e x i s t  

i n  every f i n i t e  group).  

5.18 PROPOSITION: Let F be a Schunck c l a s s .  Then: 

(a) W (F) i s  an E -closed homomorph. 
9 

(b) I f  F i s  a formation,  then  W(F) i s  a ( sa tu ra t ed )  formation. 

(c) I f  F i s  Do-closed, so  i s  W(F). 

(d) I f  F i s  Sw-closed, s o  i s  W(F) . 

Proof: 

For a group G ,  l e t  Proj  (G) be t h e  s e t  of F-projec tors  of G 

and Cov(G) t h e  s e t  of F-covering subgroups of G .  

(a) Let G E W(F) and l e t  N d G .  Let F/N E Proj  (G/N) . Let 

E E Proj  (F).  Then E E Proj  (G) which impl ies  t h a t  E E Cov(G) and so  

F/N = E N / N  E Cov(G/N). Hence G / N  E W(F) and t h e r e f o r e  W(F) i s  a homomorph 

homomorph. 

To prove t h a t  W(F) i s  E -c losed ,  l e t  N 2 G wi th  N 5 9(G) 
9 

and G / N  E W (F) . Let E E Pro j (G) . Then EN/N E Pro j (G/NO = Cov (G/N) . 
Since E i s  F-maximal i n  EN and N i s  n i l p o t e n t ,  by 5.7, we have 

E E Cov(EN). Thus E € Cov(G), so  G E W(f). 



(b) Let G E  W(F) a n d l e t  A , B a G  with G/A,  G / B E  W(F); 

we show t h a t  G/A fl B E W(f). We may assume t h a t  A fl B = < I > .  Let 

E E Pro j (G) . Then EA/A E Pro j (G/A) = Cov (G/A) , E B / B  E Pro j (G/B) = Cov (G/B) 

and (EA)B = (EB)A, s o  Lemma 5.16 implies t h a t  EA fl EB E Cov(G). But 

E 5 EA fl EB and E is  F-maximal i n  G ;  so  E = EA fl EB E Cov(G). Thus 

G E W(F) . Since W(F) is  an E -closed homomorph by (a) , W (F) i s  a + 
sa tu ra ted  formation. 

(c) Let G = H x K with H,K E W(F), and l e t  P E Proj (G) . 
Then PH/H E Proj (G/H) and PK/K E Proj (G/K) . In view of t h e  isomorphism 

G / K Z H  we have PKfl H E Proj(H). Indeed PKfl H = (PKn H)/(Kfl H f l  PK) 

K(PK fl H)/K = (PK fl HK)/K = PK/K E Proj (G/K). A s i m i l a r  argument shows 

t h a t  PH fl K E Pro j (K) . Thus PK fl H E Proj (H) = Cov (H) and 

PH fl K E Proj  (K) = Cov(K) . By ( i i )  of t h e  remark a f t e r  t h e  proof of theorem 

5.11, we have (PK n H) (PH fl K) E Cov (G) . But 

(PK fl H) (PH fl K) = PH fl K(PK fl H) by t h e  modular law 

= PH fl PK fl HK by t h e  modular law again 

= PH n PK. 

Thus PH fl PK E Cov(G), and by F-maximality of P, we get  P = PH fl PK, 

so  t h a t  P E Cov(G), and G E W(F). 

(d) We want t o  show t h a t  if M is  a well-placed subgroup of 

W(F)-group, then M E W(F). I t  s u f f i c e s  t o  show t h a t  i f  M i s  a maximal 

subgroup of G ,  i f  MF (G) = G ,  and i f  G E W(F) then M E W(F) . Let 

E E Proj (M) and l e t  N = F (G) . Then EN/N E Proj (G/N) . Let C be 

F-maximal in EN then E s C ,  and by 5 .7 ,  C E Cov(EN). Hence C f Cov(G), 

Now C = C fl EN = E(C n N) 5 (C fl M) (C fl N) 5 c s o  t h e  equa l i ty  holds.  An 



appl icat ion of Theorem 5.13 shows t h a t  C n M E Cov(M). But E is 

F-maximal i n  M, whence E = C n M and E C Cov(M). Hence M € W(F). 

Somewhat more generally,  i f  F is  a Schunck c l a s s  and Y is  a 

homomorph, we can form t h e  c l a s s  W(F,Y) = (G: every F-projector of G is 

Y-covering subgroup of G I .  Then W(FyY) i s  a homomorph, is a formation 

when F and Y a r e  formations, i s  D -closed when F and Y a r e  
0 

D -closed, and i s  Sw-closed when Y is  Sw-closed and F Y. The proofs 
0 - 

employ arguments s imi l a r  t o  those above, together with Lemma 2.2.1. 

The following theorem gives a method f o r  constructing a formation by 

using t he  concept of F-covering subgroups. 

5.19 THEOREM: 

Let F be a formation. Let X = {G: f o r  a l l  H 5 G ,  H has an 

F-covering subgroup); t h a t  is  X i s  t h e  c l a s s  of groups a l l  of whose 

subgroups have an F-covering subgroup. Then X i s  a formation. 

Proof: 

Let G E X and N : G .  We want t o  show G / N  E X. Let H/N be a 

subgroup of G/N .  Then H 5 G and so H has an F-covering subgroup K 

(say). But then KN/N is  an F-covering subgroup of H/N. Thus every 

subgroup of G I N  has an F-covering subgroup and there fore  G I N  E X. 

Now suppose X i s  not a formation and l e t  G be a group of minimal 

order having normal subgroups A and B with G/A E X, G / B  € X but 

G j! X. Then A fl B = <I>  (For otherwise G/A fl B E X by minimality of G). 



We f i r s t  show t h a t  every proper subgroup of G belongs t o  X. I f  

U < G then UA/A, as  a subgroup of G/A,  belongs t o  X. But 

UA/A"= U/U ll A. Therefore U/U fl A E X. S imilar ly  U/U fl B E X .  By 

minimality of G we conclude t h a t  U E X .  

Now by d e f i n i t i o n  of X ,  we conclude t h a t  G does not  have an 

F-covering subgroup. Since G/AB "= (G/A)/(AB/A) E X (as G/A E X and X 

i s  a homomorph by t h e  f i r s t  p a r t ) ,  l e t  F/AB be an F-covering subgroup of 

G/AB. I f  F < G ,  then F E X and hence F has an F-covering subgroup E ,  

which i s  a l so  F-covering subgroup of G ,  a contradic t ion.  

Thus. F = G and G/AB E F. Let V / A  and W/B be F-covering 

subgroups of G/A and G / B  respect ively .  Since G/AB E F,  VB = G = WA, 

so  t h a t  Lemma 5.16 implies t h a t  V fl W is  an F-covering subgroup of G ,  

a f i n a l  contradic t ion.  o 

By the  Remark following Lemma 5.16, t h e  proof of t h i s  theorem a l so  

holds f o r  F-projectors, and so we obtain:  

5.20 THEOREM: 

Let F be a formation. The c l a s s  of groups a l l  of whose subgroups 

have an F-projector i s  a formation. 
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