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Abstract 

A knowledge-based agent reasons with its knowledge and answers queries while performing 

various tasks. We consider the case where we describe the agent's knowledge in a proposi- 

tional fragment of the situation calculus and queries in a fragment of ID-logic, the extension 

of first-order logic with inductive definitions. This fragment of ID-logic is equivalently as 

expressive as the alternation-free p-calculus. We formulate the agent's reasoning process as 

the following question: does the representation T of the agent's knowledge logically entail 

the query 4 (i.e., T k +)? We provide an efficient algorithm for this task, using a model- 

theoretic approach: we construct from T a canonical model gT of the agent's knowledge 

and ask whether zT satisfies 4. Using this approach, the agent can answer the query in 

time linear with respect to both the size of T and the size of 4. 

iii 
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Chapter 1 

Introduction 

Artificial Intelligence (AI) is the study of intelligent behaviour [42]. Its purpose is to un- 

derstand the principles that make intelligent behaviour possible in natural and artificial 

environments. A1 researchers, based on their hypotheses about the principles, construct 

agents, entities that can perceive, query, and act in a given environment. Moreover, A1 

researchers investigate and redesign their agents so that the agents do not simply mimic hu- 

mans but are capable of intelligent behaviour on their own. In other words, A1 researchers 

do not only observe the external behaviour of intelligent entities, but also examine and 

improve executable models of intelligent behaviour. 

Symbolic logic is an important mathematical apparatus for AI, for it allows A1 re- 

searchers to express and unify their ideas in a precise way 1171. Moreover, a solid grounding 

in symbolic logic provides a framework for interpreting, understanding, and building the dis- 

cipline of AI. For example, if we want to develop systems that use and manipulate declarative 

knowledge, a kind of knowledge that we describe in a language of symbolic logic, we should 

take into account the prior results on proof theory and model theory. 

An intelligent agent needs knowledge about its environment so that it can make good 

decisions. A knowledge-based agent formalizes its knowledge about the environment into 

sentences of a representation language, a language of symbolic logic to declare knowledge, 

and stores them in its knowledge base. Moreover, a knowledge-based agent reasons with its 

knowledge: given a query, the agent derives new knowledge from what it already knows, and, 

using the new knowledge, answers the query. Queries are given to the agent as formulae 

of a query language, a language of symbolic logic to state queries. The advantage of a 

knowledge-based agent is the flexibility of its declarative knowledge. Declarative knowledge 
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can be easily modified and used for different purposes, even purposes that are not anticipated 

when it is assembled. 

In this thesis, we rest our theoretical foundations on symbolic logic, and conduct the 

analysis of a knowledge-based agent through logical entailment: given a set T of sentences 

and a sentence @ in a language of symbolic logic, does every structure that satisfies each 

sentence in T satisfy the sentence @ (i.e., T + @)? We formalize an agent's reasoning process 

as the following problem of logical entailment: given a knowledge base T in a representation 

language and a query 4 in a query language, does T logically entail @? 

To achieve tractable reasoning, we need to choose our representation and query languages 

wisely. Symbolic logics are comparable on two dimensions: expressiveness and complexity. 

Given two logics L1 and L2, L1 is less expressive than L2 if every problem expressible in (a 

language of) L1 is also expressible in (a language of) L2, and L1 is equally as expressive as 

L2 if L1 is less expressive than L2 and L2 is less expressive than L1. A logic's (worst-case) 

complexity is the complexity of the most difficult problem expressible in (a language of) 

the logic. If logic L1 is less expressive than logic La, then the complexity of L1 is either 

less or equal to that of L2, and hence, we cannot reduce the complexity by increasing the 

expressiveness [37]. 

It is often difficult to strike a balance between expressiveness and complexity in our 

representation and query languages. On one hand, an expressive logic is desirable because 

it enables us to state a wide range of phenomena, and hence, we wish to increase the 

expressiveness of our representation and query languages. On the other hand, too expressive 

a logic (e.g., the first-order logic) leads to intractable or even undecidable reasoning. One 

technique for handling computationally intractable problems is to add some constraints to 

the description of the problem, so that the search space for the answers becomes small or 

structured enough to admit fast algorithms. In the context of reasoning with knowledge, 

this technique leads to the restriction of the expressiveness of representation and query 

languages [ 5 ] .  Logic L1 is a fragment of logic L2 if every sentence of L1 is a sentence of 

La. In this thesis, we shall restrict the situation calculus and ID-logic, two rather expressive 

formalisms, and present their fragments as our representation and query languages. 

An agent's environment evolves over time as a result of its actions. We hence consider 

and model the agent's environment, or rather, the agent's knowledge about its environment 

as a dynamic system. Many formalisms have been invented or suggested for modelling 

dynamic systems: process algebras, temporal and dynamic logics, finite automata, just to 
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name a few. However, both theoretically and practically, none of these formalisms seems as 

versatile as the situation calculus [32, 351. McCarthy presented the situation calculus as a 
formalism for reasoning about instantaneous and discrete actions and as a way of formally 

describing dynamic systems. Instead of dealing with explicit time, the situation calculus 

deals with situations, which denote the sequences of actions. Reiter and his collaborators 

[40] developed the theoretical foundation of the situation calculus. Instead of considering 

a situation as a world state, as McCarthy did, Reiter considered it as a history that is a 

sequence of executed actions. 

Initially, the situation calculus was a theoretical tool, without much practical use. It 

was the language of choice for investigating technical issues, such as the frame problem 1331, 

which is to represent what remains the same in a dynamic system after a certain action 

is executed. Specifically, the representational frame problem is to represent the effects 

(or non-effects) of actions on a dynamic system with a small knowledge base.' Reiter's 

partial solution to the representational frame problem in the situation calculus [39], which 

is easy to implement by logic programming, has increased the popularity of the situation 

calculus as a representation language. Moreover, Reiter [40] suggested that the situation 

calculus had more potential than was initially perceived, and demonstrated his hypothesis 

mainly by extending the formalism to incorporate features such as concurrency, procedures, 

and probability in ways that provide for efficient implementations. In Chapter 2, we shall 

present the propositional situation calculus, a fragment of the situation calculus, as our 

representation language. 

As for a query language, we consider a fragment of ID-logic [9]. ID-logic is the extension 

of first-order logic with inductive definitions, and provides a uniform and succinct way of 

representing various forms of inductive definitions. Denecker and Ternovska [9] observed 

that complex non-monotone inductive definitions occur not only in mathematics but also in 

common-sense reasoning, and that inductive definitions cannot be expressible in first-order 

logic. In Chapter 3, we shall present QL', a fragment of ID-logic, as our query language. 

In this thesis, we formalize the agent's knowledge as a set D of sentences in a language 

of the propositional situation calculus, a query as a sentence 4 of a language of QL' and the 

agent's reasoning process as the problem of logical entailment (i.e., D /= 4). Moreover, we 

solve the problem of logical entailment by a model-theoretic approach: we construct from 

' ~ u c h  related to the representational frame problem is the inferential frame problem, which is to project 
the result of a sequence of actions in a short time, but we do not discuss it any further in this thesis. 
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V a finite canonical model gv of the agent's knowledge through the filtration operation, a 

model-theoretic operation of collapsing a possibly infinite structure into a quotient structure. 

We prove that V logically entails 4 if and only if sv satisfies 4; that is, 

In other words, if formalized in the propositional situation calculus and QL', the problem 

of logical entailment is reducible to the problem of model-checking: does a model IU of a 

computing system satisfy a formal specification + (i.e., +)? In other words, to answer 

whether V logically entailments 4, instead of model-checking 4 and each (possibly infinite) 

structure in the (possibly infinite) set of models of V, we model-check 4 and gv. We call 

this result the reducibility theorem. Furthermore, we present a reasoning algorithm that 

solves the problem of logical entailment by reducing it to the problem of model-checking. 

This algorithm is based on the linear-time model-checking algorithm for Datalog LITE [20], 

and runs in time linear with respect to both the size of D and the size of 4. Moreover, 

this algorithm does not assume that the agent has the complete knowledge of its initial 

environment. 

Ternovska [45] and Liu and Levesque [31] showed work similar to this thesis. Ternovska 

[45] proposed a fragment of the situation calculus that allows second-order quantification 

over the uncountable action domain, and hence, the uncountable situation domain, and 

proved the decidability of the fragment by reducing the problem of logical entailment in the 

fragment to the decidable problem of emptiness for a tree automata. This work involves the 

construction of a canonical tree automaton that corresponds to a theory of actions in the 

situation calculus. 

Liu and Levesque [31] proposed a methodology to establish the tractability of reasoning 

with expressive first-order knowledge bases. The methodology consists of defining a logic 

that is a fragment of the first-order logic with the following two properties: a) the problem of 

logical entailment in this logic coincides with the problem of model-checking against a small 

number of characteristic models; and b) the problem of model-checking itself is tractable for 

queries with a bounded number of variables in this logic. They applied the methodology to 

reasoning with first-order knowledge bases that include disjunctive information, and proved 

that the reasoning is tractable if both the knowledge base and the query use a bounded 

number of variables. 

In Chapter 2, we shall present the propositional situation calculus, our representation 
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language. We shall also describe how to formalize the agent's knowledge as a set of sentences 

in the representation language and how to construct a finite canonical model of the agent's 

knowledge from the set of sentences. In Chapter 3, we shall present QL', our query language, 

and show its expressiveness. In Chapter 4, we shall prove the reducibility theorem and 

present our reasoning algorithm. In Chapter 5, we shall discuss two possible applications of 

the results of this thesis: planning under uncertainty and verification of robotics programs. 

Finally, in Chapter 6, we shall summarize this thesis and indicate the directions of our future 

research. 



Chapter 2 

Filtration 

In this thesis, we formalize the agent's knowledge as a set D of sentences in a language of 

the propositional situation calculus, a query as a sentence 4 of a language of QL', and the 

agent's reasoning process as the problem of logical entailment (i.e., V 4) .  Moreover, we 

solve the problem of logical entailment by a model-theoretic approach: we construct from 

V a finite canonical model zT of the agent's knowledge through the filtration operation, a 

model-theoretic operation that collapses a possibly infinite structure into a quotient struc- 

ture. In this chapter, we present the propositional situation calculus, our representation 

language. We also describe how to formalize the agent's knowledge as a set of sentences in 

the representation language and how to construct a finite canonical model of the agent's 

knowledge from the set of sentences. 

We shall first present the situation calculus, a well-known representation language in the 

knowledge representation community, and the propositional situation calculus as a fragment 

of the situation calculus. We shall also describe how to formalize the agent's knowledge 

in the representation language, as a basic action theory, a set of sentences that follow 

certain schema. Secondly, we shall describe the filtration operation on a possibly infinite 

structure. Thirdly, we shall describe the filtration operation on a basic action theory D in 

the representation language: we call the resulting structure the filtration of the set of models 

of D and denote it by zV. Finally, we shall prove that, zv is a finite canonical model of 

the agent's knowledge such that the computational behaviour of gv is equivalent to that of 

every model of D. 
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2.1 The Propositional Situation Calculus 

In this section, we first present the syntax and semantics of the situation calculus and show 

how to axiomatize a set of dynamic systems by a set of sentences in a language of the 

situation calculus. We then present the propositional situation calculus, our representation 

language, as a fragment of the situation calculus. 

2.1.1 The Situation Calculus 

A language of the situation calculus is a language of second-order logic with equality. It 

has three disjoint sorts: the situation sort, the action sort, and the object sort. We use 

the action terms to represent changes in the world, the situation terms to represent finite 

sequences of actions, which we call histories, and the object terms to represent any other 

kinds of objects that possibly exist in the world. We shall denote the domain of situations, 

the domain of actions, and the domain of objects by Sit, Act, and Obj, respectively. 

A vocabulary T of the situation calculus contains two function symbols that return values 

of the situation sort: a constant symbol So : -+ Sit that denotes the initial situation and a 

binary function symbol do : Act x Sit + Sit. Let a and s be an action term and a situation 

term, respectively. A situation term do(a, s) denotes a situation reachable from a situation 

s by the execution of an action a. We can also interpret the situation term do(a,s) as a 

sequence of actions that we construct by adding the action a to the sequence of actions that 

s denotes. Note that So and do are the only function symbols in T that return values of the 

situation sort. 

Moreover, r may contain two binary predicate symbols c and Poss. The symbol C 

denotes a partial order on Sit; given two situations s and st in Sit, s c s' means that we 

can obtain the sequence st of actions from the sequence s of actions by adding one or more 

actions to the front of s. The symbol Poss denotes a binary relation on a set Act x Sit; 

given an action a in Act and a situation s in Sit, Poss(a, s) means that it is possible to 

execute the action that a denotes in the situation that s denotes. 

Depending on an application domain, T contains a countable, possibly infinite number 

of the following symbols: 

For some integer r in N, predicate symbols of arity r of the following sort: 

(Act U Obj)r 
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such as Human (Joe) and Sensing (smell). They denote situation-independent rela- 

tions. 

For some integer r in N, function symbols of arity r of the following sort: 

(Act u Obj)' -+ Obj 

such as sqrt(x) and time( Jane, 1 OOm-run). They denote situation-independent func- 

tions. 

For some integer r in N, function symbols of arity r of the following sort: 

(Act u Obj)' -+ Act 

such that pick-up(x) and do-laundry(wash, dry, y). They denote action functions or 

action constants if r = 0. 

For some integer r in N, predicate symbols of arity r + 1 of the following sort: 

(Act U Obj)' x Sit. 

They denote relational fEuents. A relational fluent is a situation-dependent relation 

that changes its truth values from situation to situation. Furthermore, for some integer 

r in N, function symbols of arity r + 1 of the following sort: 

(Act u Obj)' x Sit -+ Act U Obj. 

They denote functional fEuents. A functional fluent is a situation-dependent function 

that returns different values from situation to situation. Relational and functional 

fluents take only one argument of the situation sort that is always its last argument. 

In a dynamic system, attributes of an object and relationships between objects change 

over time, and relational and functional fluents capture such dynamics. For example, con- 

sider the following block world: in the initial situation, blocks A and B are on the table, 

and nothing is on either A or B. The truth value of On(A, B, So) should be true, whereas 

the truth value of On(A, B, do(put-on(B, A), do(pick-up(B), So))) should be false. 
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2.1.2 Basic Action Theory 

We can succinctly axiomatize knowledge about an application domain, especially, the prop- 

erties of actions and situations, via a basic action theory in a language of the situation 

calculus. A basic action theory consists of five parts: unique name axioms for actions, the 

foundational axioms for situations, action precondition axioms, successor state axioms, and 

the description of the initial situation. We shall describe the parts sequentially. 

Definition 2.1.1 (Unique Name Axioms). Unique name axioms for a sort S, Duna(S), 

are sentences of the following schema: for every pair of distinct function symbols f and g 

of the sort S, 

va:@[if (3) = dk) ] ,  

and, for every function symbol f of the sort S with an arity greater than zero, 

v3vy [f (a:) = f (y) > a: = y]. 

Unique name axioms for actions are then 

Definition 2.1.2 (Foundational Axioms for Situations). The foundational axioms for 

situations consist of the following axioms: 

The unique name axioms for situations: Duna(Sit). 

The domain closure axiom for situations: 

VPIP(So) A VsVa[P(s) > P(do(a, s))] > VsP(s)]. 

Two axioms to define a partial order on Sit that the symbol c denotes: 

Vs[-s C So], 

VsVst[s c do (a, st) = s C st] 

where C is an abbreviation for s C st V s = st. 

The domain closure axiom for situations implies that the situation domain Sit is the 

smallest set that includes the initial situation So and is closed under the do function, for 

every subset of Sit that includes the initial situation So and is closed under the do function 

is equal to Sit itself. We do not impose any restrictions on the action domain Act: it can be 
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finite, countable, or even uncountable. For example, Act will be uncountable if an action 

function has an argument that ranges over real numbers (e.g., the time of action execution).' 

The foundational axioms for situations are domain-independent. They provide the basic 

properties of situations in any axiomatization of particular fluents and actions. We can 

represent the situation domain of a model of the foundational axioms for situations by a 

tree with the branching degree equal to the cardinality of the action domain. If the action 

domain is finite, the situation domain composes a finitely branching tree. 

In a model of the foundational axioms for situations, two situations are identical if and 

only if they are reachable from the initial situation by the same sequence of actions. It 

is possible that two situations are different but have the same truth values to all fluents. 

Thus, we cannot identify a situation by the set of fluents that hold in the situation; that 

is, by a state. The proper way to understand a situation is as a history, a finite sequence 

of actions; two situations are identical if and only if they denote identical histories. This is 

the major reason for using the term "situation" instead of "state"; the latter carries with 

it the connotation of a snapshot of the world. In the situation calculus, situations are not 

snapshots, they are finite sequences of actions. While states can repeat themselves-the 

same snapshot of the world can happen more than once-situations cannot. 

Before presenting the domain-dependent parts of a basic action theory, namely, action 

precondition axioms, successor state axioms, and the description of the initial situation, we 

need to define the uniformity of a formula of the situation calculus. We say that a formula 

4 of the situation calculus is uniform in a situation term a if 4 satisfies the following 

conditions: 

d mentions neither Poss nor C. 

There is no quantification over variables of the situation sort in 4 .  

0 There is no equality between situation terms in 4 .  

If 4 mentions a term of the situation sort as the situation argument of a fluent symbol, 

then it should be a. 

Definition 2.1.3 (Action Precondition Axiom). An action precondition axiom for an 

'1f Act is uncountable, then Sit will be uncountable 
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action function that a symbol a denotes is a sentence of the following schema: 

V3Vs[Poss(a(3),  s )  = IIa(3,  s ) ]  

where I ta(%, s )  is a formula that is uniform in s ,  and the free variables of II(5, s )  are among 

3 and s .  

The uniformity of I Ia  in s ensures that the current situation determines the precondition 

of the action's executability. 

Definition 2.1.4 (Successor State Axioms). A successor state axiom for a relational 

fluent that a symbol F denotes is a sentence of the following schema: 

V3VaVs[F(3, do(a, s ) )  = @ F ( z ,  a ,  s ) ] ,  

where aF (3, a ,  s )  is a formulae that is uniform in s ,  and the free variables of QF (3, a ,  s )  are 

among 3, a ,  and s. Moreover, a successor state axiom for a functional fluent that a symbol 

f denotes is a sentence of the following schema: 

V?VyVaVs[f (3, do(a, s ) )  = y - +f(3,  y ,  a ,  s ) ] ,  

where + j ( % ,  a ,  s )  is a formulae that is uniform in s ,  and the free variables of +f (3, a ,  S )  are 

among 3, a ,  and s. 

The uniformity of aF in s ensures that the current situation determines the truth value 

of the relational fluent in the successor situation. This is call the Markov property in control 

and systems theory.2 Moreover, the uniformity of +j  in s ensures the Markov property of 

the value of the functional fluent. 

For example, suppose that we are given the following successor state axiom of the block 

world domain: 

Va VsVxBroken(x, do(a, s ) )  z a = drop(x, s )  V Broken(x, s )  A l a  = repair(x). 

It tells us that a block will get broken if the agent drops it, and that a block will remain 

broken if it is already broken and the agent does not repair it. 

2 ~ o r  the non-Markov extension of the situation calculus, see Gabaldon [15] 
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Definition 2.1.5 (Description of the Initial Situation). The descviption of the initial 

situation is a set of first-order sentences that are uniform in So. We often call it the initial 

database because it represents the agent's initial knowledge about an application domain. 

For example, suppose that we are given the following initial database of the block world 

domain: V x l  Broken ( x ,  So). It states that no objects are broken at the beginning. 

The initial database may contain sentences that mention no situation terms at all; for 

example, non-temporal facts such as Mountain(MtEverest) and Vx[dog(x)  > mammal(x)] .  

We say that the initial database is incomplete if it does not provide complete knowledge 

of the initial situation. For example, suppose that there are two blocks A and B in the block 

world domain, and that we are given the following initial database: NothingOnTop(A). It 

states that there is initially no block on top of the block A, but states nothing about the 

block B. The initial database does not provide the agent with complete knowledge of the 

initial situation of the block world domain, and hence it is incomplete. 

Definition 2.1.6 (Basic Action Theory). Suppose that D is the following set of sentences 

in a language of the situation calculus: 

where: 

Duna(Act) is a set of unique name axioms for actions. 

Df is the set of foundational axioms for situations. 

Dapa is a set of action precondition axioms. 

Dss is a set of successor state axioms. 

Dso is the initial database. 

We say that D is a basic action theory if each successor state axiom for a functional fluent 

in D satisfies the following consistency property for functional fiuents: if a successor state 

axiom for a functional fluent that a symbol f denotes is 
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The consistency property for functional fluents ensures that the condition that defines 

the value of the functional fluent in the successor situation does indeed define the value, 

and that the value is unique. It hence prevents inconsistency in the successor state axiom 

for the functional fluent. Moreover, the consistency property for functional fluents leads to 

the following theorem: 

Theorem 2.1.7 (Relative Satisfiability [41]). A basic action theory V is  satisfiable if 

and only i f  Vuna(Act) U VSo i s  satisfiable. 

The preceding theorem ensures that, if the initial database and unique name axioms for 

actions are satisfiable, then we will not introduce unsatisfiability by augmenting these axioms 

with the foundational axioms for situations, action precondition axioms, and successor state 

axioms. 

Given a basic action theory V, we shall let Vuna(Actl, Vf, Vapa, Vss, and Vso denote the 

set of unique name axioms for actions, the set of foundational axioms for situations, the set 

of action precondition axioms, the set of successor state axioms, and the initial database, 

respectively. 

2.1.3 Syntax of The Propositional Situation Calculus 

The propositional situation calculus is a fragment of the situation calculus, and is a repre- 

sentation language that we use to axiomatize an agent's knowledge base in this thesis. A 

vocabulary T of the propositional situation calculus is a vocabulary of the situation calculus 

that consists only of So, do, a finite number of action constant symbols, and a finite number 

of unary, relational fluent symbols. The propositional situation calculus does not consider 

the partial order on a set of situations, and hence T does not include the symbol c . ~  More- 

over, the propositional situation calculus assumes that every action is always executable, 

and hence T does not include the symbol ~ o s s . ~  

In the T-language of the propositional situation calculus, the foundational axioms for 

situations consist only of the unique name axioms for situations and the domain closure 

axioms for situations. We do not need the two axioms 2.1 and 2.2 for the symbol c because 

3The partial order on a set of situations is definable in our query language QL, which we shall introduce 
in Chapter 3. 

4 ~ t  is not difficult to lift this assumption if we allow only action preconditions that are simple (e.g. a 
conjunction of literals). 
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T does not contain C. Moreover, we do not have any precondition axioms for actions 

because T does not contain Poss. As for successor state axioms and the initial database, 

the propositional situation calculus imposes further syntactic restrictions on their schemata, 

which we shall discuss sequentially. 

We shall call atomic formulae or their negations literals, which originally mean proposi- 

tional symbols or their negations. 

Definition 2.1.8 (Propositional Successor State Axiom). A propositional successor 

state axiom for a unary relational fluent that a symbol F denotes is an axiom of the following 

schema: 

VaVs[F(do(a, s)) z y: (a, s) V F(s)  A 17; (a, s)], 

where ?$(a, s) and 7; (a, s) are first-order formulae of the disjunctive normal form that are 

uniform in s,  and the free variables in ?$(a, s) and ?;(a, s) are among a and s. Moreover, 

each conjunct in (a, s) and 76 (a, s) takes the following form: 

a = act A 4(s) 

where act is an action constant symbol, 4 is a conjunction of literals, and s is the only free 

variable that occurs in 4. 

The uniformity of y; and 7; ensures the Markov property of the truth value of the 

unary relational fluent. Moreover, ?$(a, s) formalizes the circumstances that cause the 

unary relational fluent to be true whereas ?;(a, s) formalizes the circumstances that cause 

it to be false.5 

Definition 2.1.9 (Propositional Description of the Initial Situation). The proposi- 

tional description of the initial situation is a set of literals that are uniform in So. We shall 

also call it the propositional initial database. 

Definition 2.1.10 (Basic Action Theory of the Propositional Situation Calculus). 

Suppose that V is the following set of sentences in a language of the propositional situation 

calculus: 

D := Vuna(~ct) U Vf U Dpss U Vpso 1 

where: 

'we can alternatively encode simple action preconditions (e.g. a conjunction of literals) in y: and y i  
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Vuna(Act) is a set of unique name axioms for actions. 

0 V f  is the set of foundational axioms for situations. 

0 Vapa is a set of action precondition axioms. 

Vpss is a set of propositional successor state axioms. 

0 Vpso is the propositional initial database. 

We say that V is a basic action theory of the propositional situation calculus. 

Example 2.1.11. Suppose that r is the following vocabulary of the propositional situation 

calculus: 

r := {SO, do, drop-vase, repair-vase, VaseBroken) 

where drop-vase and repair-vase are action constant symbols and VaseBroken is a unary 

relational fluent symbol. 

In the r-language of the propositional situation calculus, the unique name axiom for 

actions is -drop-vase = repair-vase. The following successor state axiom 

VaVs[VaseBroken(do(a, s ) )  = a = drop-vase V VaseBroken(s) A l a  = repair-vase] 

means that the vase will be broken if it is dropped, or if it is already broken and does not 

get repaired. Moreover, the following description of the initial situation 

1 VaseBroken(So) 

means that the vase is initially unbroken. 

2.2 Filtration 

In the preceding section, we have presented the propositional situation calculus, our rep- 

resentation language, and have shown how to formalize the agent's knowledge as a basic 

action theory in the representation language. In this section, we describe the filtration oper- 

ation, a model-theoretic operation that collapses a possibly infinite structure into a quotient 

structure. We shall first describe the filtration operation on a possibly infinite labelled tran- 

sition system, which is indeed a relational structure. We shall then describe the filtration 

operation on a possibly infinite structure over a vocabulary of the propositional situation 

calculus. 
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2.2.1 Transitional Version 

We describe the filtration operation on a possibly infinite labelled transition system. Suppose 

that p and a are a set of action symbols and a set of proposition symbols, respectively. 

Definition 2.2.1 (Labelled Transition System). A labelled transition system is the 

following tuple: 

(St, {Ra)aep, L) 

where St is a non-empty set, R, is a binary relation on a set St x St, and L is a unary 

function that maps an element of St to a subset of a. We call St a state set, the elements 

of St states, R, a transition relation, and L a labelling function. 

Given a labelled transition system (St, {Ra)aEp, LC), we define a non-empty binary re- 

lation R, on a set St x St such that (st, st') E R, if and only if, for each symbol P in 

that is, LC(st) = L(stl). Moreover, R, is an equivalence relation. We denote the equivalence 

class of a state st in St with respect to R, by Istl,, or simply by [st[ if a is clear from the 

context. 

Definition 2.2.2 (Filtration-the Transitional Version). Given a labelled transition 

system ?Yn, a filtration of ?Yn through a is a labelled transition system ( ~ t f ,  { ~ , f ) , ~ ~ ,  ~ f )  

that satisfies the following conditions: 

(i) ~ t f  = {/st1 : st E st"); that is, ~ t f  is the set of equivalence classes of states in st" 

with respect to R,. 

(ii) For each state 1st 1 in ~ t f  , Lf (1st 1 )  = Lm(st). 

(iii) If, for some symbol a in p, (stl, stz) E R , ~ ,  then ( I  stl 1 ,  I stz 1 )  E R , ~ .  

We denote a filtration of Dl through a by Dl:, or by ?JXf if a is clear from the context. 

The filtration operation which we consider in this thesis is the modification of the filtra- 

tion operation that Blackburn et al. presented [3]. In the original filtration operation, the 

equivalence relation on a set St x St is definable with respect to any subformula-closed set 

of formulae of a modal language. The filtration operation in this thesis is the special case 

of the original filtration operation such that the equivalence relation on St x St is definable 

only with respect to a set of propositions. 
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2.2.2 Structural Version 

We describe the filtration operation on a possibly infinite structure over a vocabulary of the 

propositional situation calculus. The structural version of the filtration operation is a slight 

modification of the transitional version. In the structural version, we define a non-empty, 

binary relation on each domain of a given structure. Suppose that T is a vocabulary of the 

propositional situation calculus, and that p and a are the set of action constant symbols in 

T and the set of unary relational fluent symbols in T, respectively. 

Given a T-structure U which satisfies the unique name axioms for actions, we define a 

non-empty binary relation R, on a set sitU x sitU such that (s, st) E R, if and only if, for 

each symbol F in a, 

s E F% S' E F%. 

Similarly, we define a non-empty binary relation R, on a set ActU x ActU such that (a, a') E 

R, if and only if, for each symbol act in p, 

a = actU e=+ a' = act 0 

Moreover, R, and R, are equivalence relations. We denote the equivalence class of a situ- 

ation s in sita with respect to R, by Isla, or simply by Is1 if a is clear from the context. 

Similarly, we denote the equivalence class of an action a in ActU with respect to R, by lal,, 

or simply by la1 if p is clear from the context. 

We shall let 7\S0 denote the set T - {So). 

Definition 2.2.3 (Filtration-the Structural Version). Given a T-structure U which 

satisfies the unique name axioms for actions, a filtration of U is a (.r\So)-structure 5 that 

satisfies the following conditions: 

(i) sit5 = {Is1 : s E sitU); that is, sitS is the set of equivalence classes of situations in 

sita with respect to R,. 

(ii) Act5 = {la\ : a E ActU); that is, ActS is the set of equivalence classes of actions in 

ActU with respect to R,. 

(iii) For each situation Is1 in s t5  and each symbol F in a, 
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(iv) For each action a in ActU and each symbol act in p, if actU = a,  then act3 = la\. 

(v) If doU(a,sl) = s2, then do5(lal, Isll) = Is2[. 

We denote a filtration of U by Uf. (This notation does not include subscripts for p and a 

because p and a are clear once r is given.) 

Often, not every element in the action domain is identifiable by an action constant 

symbol. We call actions that we cannot identify unnamed actions. If U is a r-structure and 

ActU contains some unnamed actions, ActUf will contain one unnamed action, and it is the 

equivalence class of unnamed actions in ActU. 

2.3 Filtration Operation on a Basic Action Theory 

In the previous section, we have described the transitional and structural versions of the 

filtration operation. In this section, we describe the filtration operation on a basic action 

theory in a language of the propositional situation calculus. In the transitional and structural 

versions of the filtration operation, we extract the essence of a structure. Through the 

filtration operation on a basic action theory D, we extract the essence of a set of structures 

(i.e., the set of models of D). 

Suppose that T is a vocabulary of the propositional situation calculus, and that p and 

a are the set of action constant symbols in T and the set of unary relational fluent symbols 

in T, respectively. We shall view p and o as lexicographically (totally) ordered sets. We 

denote the smallest element in p as actl, the second smallest element in p as act2, and so 

on. Similarly, we denote the smallest element in a as Fl, the second smallest element in cr 

as F2, and so on. Moreover, we denote the cardinality of p and the cardinality of a by m 

and n, respectively. 

Given a basic action theory D in the r-language of the propositional situation calculus, 

the filtration 5 of the set of models of D has the situation domain sitS and the action domain 

ActS that are the vector spaces, (0, lIn and (0, lIm, respectively. For each situation s' in 

sit3, (gi denotes a unary function {1,2,. . . , n) H { O , l )  that returns the value of the i-th 

coordinate of the vector s'. For example, for n = 3 and s'= (O,1, I), ( q l  = 0, (32  = 1, ( q 3  = 

1. Similarly, for each action a' in ~ c t ~ ,  (a')i denotes a unary function {1,2, . . . , m) I+ {0,1) 

that returns the value of the i-th coordinate of the vector a'. 
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Given that a structure U interprets the symbols in r, we shall use the following notations: 

for each integer i from 1 to n, if s is an element of situ and t is a term of the situation sort, 

Fi(t) if s E Fin 
LP(t) = 

7Fi (t)  otherwise; 

moreover, for each integer i from 1 to m, if a is an element of Acta and t is a term of the 

action sort, 

( l t  = acti otherwise. 

Definition 2.3.1. Given a basic action theory D in the T-language of the propositional 

situation calculus, the filtration of the set of models of D is a (r\So)-structure 5 that 

satisfies the following conditions: 

(i) Sit5 = {s': ZE (0, l)n); that is, sit5 is the vector space (0, l In .  

(ii) ~ c t 8  = {a' : a' E (0, l)m, Ila'll = 0 or Ila'll = 1); that is, Act5 consists of the unit vectors 

and the zero vector of the vector space (0, l)m. 

(iii) For each situation s'in s t5 and each integer i from 1 to n, 

(iv) For each action a' in ~ c t ~  and each integer i from 1 to m, if (a')i = 1, then acti5 = a'. 

(v) do5(a', ~ i )  = S: if, for some action variable xa and for some situation variable z,, 

We denote the filtration of D by s=, or by 5 if D is clear from the context. 

Example 2.3.2. We shall construct the filtration 5 of the set of models of the basic action 



CHAPTER 2. FILTRATION 

theory in Example 2.1.11: 

drop-vase 

repair-vase 

0 
repair-vase 

The filtration sv of the set of models of V is not a model of V per se. However, as we 

shall show in the next section, the computational behaviour of sv is equivalent to that of 

each model of V. 

2.4 Computational Equivalence via Bisimulation 

In the preceding section, we have described the filtration operation on a basic action theory 

in a language of the propositional situation calculus. In this section, we formalize the 

concept of computational equivalence via bisimulation, an equivalence relation on a set of 

computation models. As far as computational behaviours are concerned, it is adequate 

to model computing systems as labelled transition systems, and study these models up to 

bisimulation equivalence [36]. Moreover, we show that, given a basic action theory V in a 

language of the propositional situation calculus, the filtration sD is a finite canonical model 
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of the agent's behaviour such that the computational behaviour of gV is equivalent to that 

of each model of V. 

We shall first present a bisimulation on a set of labelled transition systems. Secondly, 

we shall present a bisimulation on a set of structures over a vocabulary of the propositional 

situation calculus. Finally, we shall show that, given a basic action theory V in a language 

of the propositional situation calculus, the filtration zv of the set of models of V is bisimilar 

to each model of 27; that is, the computational behaviour of zv is equivalent to that of each 

model of V. 

2.4.1 Transitional Version 

We present a bisimulation on a set of labelled transition systems. A labelled transition 

system is a standard way of thinking about computation. When we traverse a labelled 

transition system, we build a sequence of state transitions; in other words, we compute. 

When two labelled transition systems are bisimilar, they build the same sequence of state 

transitions, and hence, they are computationally equivalent. 

Definition 2.4.1 (Bisimulation-the Transitional Version). Suppose that p and a are 

a set of action symbols and a set of proposition symbols, respectively. Given two labelled 

transition systems 93 and T, a bisimulation between Dl and '3 is a non-empty binary 

relation Z on a set s t m  x s t n  that satisfies the following conditions: 

(i) If (st, st') E Z,  then, for each symbol P in a, st E prn st' E pn. 

(ii) If (stl, st:) E Z and, for some symbol a in p, (stl, st2) E Ram, then there exists a state 

st; in s tn  such that (st2, st;) E Z and (st:, st;) E R~~ (the forth condition). 

(iii) The converse of (ii): if (stl, st:) E Z and, for some symbol a in p, (st:, st;) E Ran, 

then there exists a state st2 in strn such that (st2, st;) E Z and (stl, st2) E R , ~  (the 

back condition). 

If there exists a bisimulation between two transition systems Dl and '32, then we say that 

93 and T are bisimilar, and we denote it by 93=%. Moreover, if there exists a bisimulation 

between two states st and st', then we say that st and st' are bisimilar. Bisimilar states have 

identical propositional information and matching transition possibilities; that is, whenever 

it is possible to make a transition in one state, it is possible to make a matching transition 

in the other. 
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2.4.2 Structural Version 

We present a bisimulation on a set of structures over a vocabulary of the propositional 

situation calculus. The structural version of bisimulation is the slight modification of the 

transitional version. In the structural version, we have the back and forth conditions for 

unnamed actions. 

Definition 2.4.2 (Bisimulation-the Structural Version). Suppose that p and a are 

a set of action constant symbols and a set of unary relational fluent symbols, respectively. 

Moreover, suppose that two structures U and 23 interpret the symbols in p and a and the 

function symbol do, and that U and '23 satisfy the unique name axioms for actions. A 

bisirnulation between U and 23 is a non-empty binary relation Z on a set sit' x sitB that 

satisfies the following conditions: 

(i) If (s, s') E Z, then, for each symbol F in a ,  s E F' e sf E FB. 

(ii) If (sl, s i )  E Z and, for some symbol act in p, doU(act", sl) = s2, then there exists a 

situation S; in sitB such that (52, s;) E Z and doB(actB, si) = sb (the forth condition). 

(iii) If (sl , si ) E Z and, for some unnamed action a in ~ct ' ,  doQ(a, sl) = s2, then there 

exists a situation S; in sitB such that (s2, s;) E Z and, for some unnamed action a' in 

ActB, doB(a', si) = S; (the forth condition for an unnamed action). 

I (iv) The converse of (ii): if (sl, s i )  E Z and, for some symbol act in p, doB(actB, si) = s2, 

then there exists a situation s2 in sit' such that (sz, s;) E Z and do'(acta, sl) = s2 

(the back condition). 
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(v) The converse of (iii): if (sl, s l )  E Z and, for some unnamed action a' in ActB, 

doB(a', s i )  = s',, then there exists s2 such that (s2, s;) E Z and, for some unnamed 

action a in ActU, doU(a, sl) = s2 (the back condition for an unnamed action). 

If there exists a bisimulation between two structures U and 23, then we say that U and 

23 are bisimilar, and we denote it by U & 3 .  

2.4.3 Finite Canonical Model of the Agent's Knowledge 

We present a theorem that, given a basic action theory V in a language of the propositional 

situation calculus, the filtration zD of the set of models of V is bisimilar to each model of 

V. Thus, the filtration zD is computationally equivalent to every model of V, and hence, 

zD is a finite canonical model of the agent's knowledge that V denotes. 

Theorem 2.4.3. Given a basic action theory D in a language of the propositional situation 

calculus, the filtration of the set of models ofD is bisimilar to each model of V. 

Proof. See Appendix A. 0 

The models of 2) are infinite tree-like structures, because of the foundational axioms 

[40]. Infinite structures are not desirable from the computational point of view. Through 

the filtration operation on V, we extract the essence of the set of infinite models of V into 

a finite canonical structure 5=. 
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Language 

In Chapter 2, we have presented the propositional situation calculus, our representation 

language. We have also described how to formalize the agent's knowledge as a set of sen- 

tences in the representation language and construct a finite canonical model of the agent's 

knowledge from the set of sentences. In this chapter, we present QL', our query language, 

and show its expressiveness. 

Our query language QL' is a fragment of ID-logic. ID-logic is the extension of first-order 

logic with inductive definitions, and it provides a uniform and succinct way of representing 

various forms of inductive definitions that occur in mathematics and common-sense rea- 

soning. The expressiveness of QL' surpasses that of the first-order logic. For example, we 

cannot express transitive closure in the first-order logic, but we can do so in QL'. Moreover, 

we can express in QL' extended properties, properties that account for non-determinism and 

possible failures of actions in a dynamic system. For example, we can express in QL' that 

the agent will eventually finish its given task despite possible interruptions. 

We shall first present ID-logic, the extension of first-order logic with inductive definitions. 

We shall then present two fragments of ID-logic, QL and QL', where QL' is the extension 

of QL with limited quantification over actions. Moreover, we shall describe how to express 

queries as QL' sentences. Secondly, we shall present the full p-calculus, a specification 

language well-known in the model-checking community, and its alternation-free fragment. 

Finally, we shall prove that QL is equally as expressive as the alternation-free ycalculus. 

Then, by extending the proof of the expressiveness of QL, we shall prove that QL' is equally 

as expressive as QL with respect to a certain set of structures. 
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3.1 Query Language QL' 

In this section, we present the syntax and semantics of ID-logic, the extension of first-order 

logic with inductive definitions, and then, QL and QL' as fragments of ID-logic. Moreover, 

we demonstrate by examples how to state queries in QL'. 

We introduce a new binary connective t and call it the definitional implication. A definition 

A is a set of rules in the following form: 

where 3 is a tuple of variables, X is a predicate symbol (i.e., a predicate constant or variable) 

of an arity r ,  f is a tuple of terms of length r, and cp is a first-order formula that may contain 

free first-order or second-order variables. 

The definitional implication t must be distinguished from material implication 3. A 

rule V3[X(f) t cp] in a definition does not correspond to the disjunction V?[X(q V l c p ] ,  

although it implies it. Intuitively, definitional implication should be understood as the "if" 

found in rules in inductive definitions (e.g. Definition 3.1.3 consists of 5 such rules). Another 

important difference is that, unlike V?[X(f) V i c p ] ,  V3[X(f) t cp] does not have a truth value 

if it is considered by itself. 

In front of each rule, we allow only a universal quantifier. In the following rule V3[X(q t 

cp], we call X ( q  and cp the head and the body, respectively, of the rule. A defined symbol of 

a definition A is a predicate symbol that occurs in the head of at least one rule of A; we 

call the other symbols open symbols of A. 

Suppose that T is a vocabulary that includes all the free symbols in a definition A. We 

denote the set of defined symbols of A by ~i and the set of open symbols of A by TZ. The 

sets 72 and 72 form a partition of T; that is, 72 U TZ = T and 72 f l  TX = 9). 

Syntax 

We define well-formed formulae of ID-logic by the following (monotone) induction: 

1. If X is an n-ary predicate symbol and t l ,  . . . , t, are terms, then X( t l , .  . . , t,) is a 

formula. 
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2. If A is a definition, then A is a formula. 

3. If 4 and $ are formulae, then so is (4 A $). 

4. If 4 is a formula, then so is (14). 

5. If 4 is a formula, then 3a 4 is a formula where the symbol a can be either first-order 

or second-order . 

A formula 4 is an ID-logic-formula over a vocabulary T if the set of free symbols in 4 is 

a subset of T. It is a FO(ID)[.r]-formula if it does not contain any second-order quanti- 

fiers; otherwise, it is a SO(ID)[T]-formula. Moreover, 4 V $, Q, > $, and 4 - $ are the 

abbreviations for ~ ( 1 4  A +), 1 4  V $, and (4 > $J) A ($J > 4), respectively. 

Example 3.1.1. Suppose that T is a vocabulary that consists of a constant symbol 0 

and a unary function symbol s,  and that 0 and s denote zero and the successor function, 

respectively. The following SO(1D) [TI formula expresses that there exists a set that contains 

zero and is the smallest set closed under the successor function. The formula is equivalent 

to the domain closure axiom for situations (in Subsection 2.1.2): 

The formula in Example 3.1.1 contains an existential quantifier over the second-order 

variable N. We can avoid second-order existential quantification by slcolemization, a way of 

replacing with constants variables that are bound by existential quantifiers but are outside 

the scope of universal quantifiers. We can simply replace N with a predicate constant 

symbol in Example 3.1.1. 

Semantics 

The semantics of the ID-logic is the extension of classical logic semantics with the well- 

founded semantics from logic programming [46, 7, 141. 

We shall define the well-founded model of a definition A that extends a 72-structure 

a. For each defined symbol X of A, we construct the following formula cpx(Z): given that 

Vyl[X(fl) +- 911, . . . , Vym[X(&) t cp,] are the rules of A with X in the head, 
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where Z is a tuple of new variables. 

For every defined symbol Y that occurs in cpl ,  . . . , cp,, we introduce a new predicate 

symbol Y' of the same arity as that of Y .  We then construct a formula &(Z) from cpx(%) 

by substituting each negative occurrence of Y with Y'. 

Suppose that T = TX U T:. For any pair (B, C) of 7-structures that extend U, we define 

a T-structure Be,  the extension of U that interprets each defined symbol X of A as the 

value of X in 23 (i.e., XB) and each new symbol X' as the value of X in C (i.e., Xe). We 

construct the well-founded model of A that extends U via the operator TA. The operator 

TA maps pairs (B, C) of T-structures that extend U to a T-structure U' that also extends 

24, such that, for each defined symbol X of A, 

where BC(Z : a) denotes that BE replaces each occurrence of the variable in 3 with the 

corresponding value in a. In other words, the operator TA evaluates positive occurrences of 

defined symbols by B and negative occurrences of defined symbols by C. 

In the lattice of T-structures that extend U, the operator TA is monotone in its first 

argument and anti-monotone in its second argument. We hence define the stable operator 

STA' as follows: 

STA(C) := Ifp(Ta(., C)). 

This stable operator is anti-monotone, and hence its square is monotone and has least and 

greatest fixed-points. We denote 1fp(sTi) and g f p ( ~ ~ % )  as UAl and UAf, respectively. 

Definition 3.1.2. A definition A is total in a TX-structure U if UAL = UAy. If A is total, 

then we call UAl (or UAT) the A-extension of U and abbreviate it as UA. Generally, A is 

total in a structure !B that interprets a subset of TZ if A is total in each TX-structure that 

extends B.  

The purpose of a definition is to define its defined symbols, and hence we consider only 

total definitions. 

Definition 3.1.3. Suppose that 4 is a formula of ID-logic and U is any structure that 

interprets all the free symbols of 4. We define U 4 (in words, 4 is true in U, or U satisfies 

4, or U is a model of 4)  by the following induction: 

'This operator is often called the Gelfond-Lifschitz operator as introduced in [16]. 
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1. U + X(tl ,  .., t,) iff (tln, .., tnU) E x'. 

2. 11 t= A iff U = ( 1 1 1 ~ ~ ) ~ '  = ( U ~ G ) ~ '  where UITg denotes the restriction of 24 to TZ. 

5. U k 3a$ iff, for some value v of a in the domain of U, %(a : v) + $. 

Given a vocabulary T and a set T of sentences in the T-language of ID-logic, we say that 

a T-structure 31 satisfies T if U satisfies each sentence 4 in T, and we denote it by T. 

The inductive definition in the preceding definition is a prototypical example of a non- 

monotone inductive definition, specifically a definition over a well-founded poset. It is the 

set of ID-logic formulae, the element of which the sub-formula relation orders. It contains 

non-monotone recursion in rule 4. It is also an example of a sort of induction that we can 

formalize in ID-logic. 

3.1.2 Fragments QL and QL' 

We shall present two fragments of ID-logic: QL and QL'. We transported the syntactic 

characteristics of Modal Datalog, a fragment of Datalog LITE [20], from the context of 

database theory to that of mathematical logic, and encapsulated them in QL. As we shall 

prove in Section 3.3, QL is equally as expressive as the alternation-free p-calculus, just as 

Modal Datalog is. The other fragment of ID-logic, QL', is the extension of QL with limited 

quantification over actions. Since QL is a fragment of QL', QL' is more expressive than 

QL, and hence, since QL is equivalently as expressive as the alternation-free p-calculus, 

QL' is more expressive than the alternation-free p-ca lc~lus .~  However, as we shall prove in 

Section 3.3, with respect to a certain set of structures, QL' is equally as expressive as the 

alternation-free p-calculus. 

We shall define the concept of stratification, which is integral to the syntax of QL and 

QL'. 

'Whereas QL' allows quantification over unnamed actions, the alternation-free p-calculus allows quantifi- 
cation over only named actions. 
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Definition 3.1.4 (Stratification). A series Al,  A2, . . . , A, of definitions is a stratification 

of a definition A and, for each integer i from 1 to n,  Ai is a stratum of A if the following 

conditions are satisfied: 

Each defined symbol of A appears in only one of the definitions Al,  A2, . . . , A,. 

For each i E {1,2, .  . . , n),  if a predicate symbol appears negatively in the body of a 

rule in Ail then the predicate symbol is either open or defined in Aj  with j < i. We 

say that Ai is higher than Aj ,  and Aj  is lower than Ai. 

We say that a definition A is stratifiable if there exists a stratification of A. Moreover, 

the well-founded semantics coincides with the least fixed-point semantics for stratifiable 

definitions of ID-logic. 

Well-formed formulae of QL and QL' are in the following schema: A A X ( S o )  where A 

is a definition of ID-logic and X is a defined symbol of A. The definition A is restricted 

in two ways: a) the open vocabulary TX of A should be a vocabulary of the propositional 

situation calculus 2.1.3; b) the rules of A should meet certain schemata. 

Each rule of a definition of QL should meet one of the following schemata: 

Vs[H(s) 4(s>l1 

Vs[H(s) + 4(s) A 3s1[s' = do(act, s)  A $(sl)]], 

Vs[H (s) + 4(s) A Vsl[s' = do(act , s) 3 $(s')]], 

where $(s) and $(sl) are quantifier-free first-order formulae in which s and s' are the only 

free variables appearing in 4(s) and $(sl), respectively. In the second and third schemata, 

the atomic formula s' = do(act, s) works as a guard, a syntactic entity that captures the 

variables of the rule and relativizes the values which the variables can possibly take. We say 

that a rule in the second schema is existentially guarded because the guard s' = do(act, s)  

is existentially quantified. Similarly, we say that a rule in the third schema is universally 

guarded. 

Each rule of a definition of QL' should meet one of the schemata for QL plus the following 

schemata: 
Vs[H(s) t $(s) A 3a3s1[s' = do(a, s) A $(sl)]], 

Vs[H (s) t 4(s) A VaVs'[sl = do (a, s)  > $(s')]], 

Vs[H(s) t 4(s) A 3a3sr[x(a) A sf = do(a, s)  A $(s')]], 

Vs[H (s) + +(s) A VaVsl[x(a) A s' = do(a, s)  3 $(sl)]] , 
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where 4 ( s )  and +(st)  are quantifier-free first-order formulae in which s and s1 of the sit- 

uation sort are the only free variables appearing in d ( s )  and +(st) ,  respectively, and ~ ( a )  

is a quantifier-free first-order formula in which a variable a of the action sort is the only 

free variable appearing in ~ ( a ) .  In the preceding list of schemata, rules in the first and 

third schemata are existentially guarded, and rules in the second and fourth schemata are 

universally guarded. As we have said, QL' is the extension of QL with limited quantification 

over actions. This is reflected in the preceding, additional schemata for QL' that specify 

what form of quantification over actions we allow in QL'. 

Given a vocabulary T of the propositional situation calculus, the T-language of QL' is 

the set of well-formed formulae of QL' with TZ = T for each definition of QL'. 

Definitions of QL' in the Normal Form 

To make readable the proofs in Appendix B and the algorithms in Chapter 4, we want to 

transform a definition of QL' to an equivalent definition in the normal form where each rule 

of the definition meets one of the following schemata: 

V s [ H ( s )  4'(4l 
V s [ H ( s )  + 3s1[s' = do(act, s )  A X$(s l ) ] ]  

V s [ H ( s )  +- Vs1[s' = do(act, s )  > X$(s l ) ] ]  

V s [ H  ( s )  t 3a3s1[s' = do (a ,  s )  A X$ (s ' )]]  

V s [ H ( s )  + VaVsl[s' = do(a, s )  > X$ (s ')]] 

Va[Ax(a)  X' (41 
V s [ H ( s )  t 3a3s1[AX ( a )  A s' = do(a, s )  A X$ (s ' )]]  

V s [ H  ( s )  t VaVs'[Ax(a) A s' = do(a, s )  > X$(s l ) ] ]  

where 4' and X' are the conjunctions of literals and H ,  Ax, and XQ are predicate symbols, 

which are not necessarily distinct. 

Indeed, V s [ H  ( s )  t Vs1[s' = do(act , s )  > X ( s l ) ] ]  abbreviates the following rules: 

where H' is a new predicate symbol. Moreover, V s [ H  ( s )  t VaVsl[sl = do(a, s )  > X$(s l ) ] ]  

abbreviates the following rules: 
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whereas V s  [ H ( s )  t VaVs' [ A x  ( a )  A st = do ( a ,  s )  > X* ( s t ) ] ]  abbreviates the following rules: 

Vs[Hl  ( s )  + 3a3s1[Ax(a) A s' = do(a, s )  A ~ X ~ ( s l ) ] ]  

Vs[H2(s)  l H l ( ~ ) ] .  

Given a definition A of QL', we can transform A to an equivalent definition in the 

normal form, in time linear to the total number of connectives in A. We shall demonstrate 

the transformation by the following example. 

Example 3.1.5. Suppose that T is a vocabulary of the propositional situation calculus that 

includes one action constant symbol act and three unary relational fluent symbols A ,  B ,  

and C .  Given the following definition in the T-language of QL' 

{ V s [ H ( s )  t A ( s )  A ~ B ( s )  A C ( S )  A 3s'[s1 = do (act ,  s )  A ( D ( s 1 )  > E ( s 1 )  A +(s l ) )]]  ) 1 

we can transform it to the following equivalent definition in the normal form: 

Vs[Hl  ( s )  t A ( s )  A i B ( s )  A C ( s )  A Hz(s ) ]  

V s [ H 2 ( s )  t 3s1[s' = do(act, s )  A H3(s1)]]  

Vs[H3(s)  +- l D ( 4 1  

Vs[H3(s )  +- E ( s )  A l F ( s ) ]  

Moreover, given the following definition in the T-language of QL': 

{ V s [ H  ( s )  - Vs'[sl = do(act, s )  3 ( A ( s l )  > B ( s l ) ) ] ]  } , 
we can transform it to the following equivalent definition in the normal form: 

Vs[Hl  ( s )  + Vs'[sl = do(act, s )  > H2(s1)]  

' J s [ H ~ ( s )  7 4 ( ~ ) ]  

V s [ H 2 ( 4  +- B(s) l  

3.1.3 Queries as QL' Sentences 

Suppose that we have a robot that cleans a floor by sweeping. Suppose that a vocabulary 

T of the propositional situation calculus includes an action constant symbol sweep-floor 

and two unary relational fluent symbols Open and Clean. The robot cleans the floor by 

performing the action sweep-floor. The relational fluent Open is true if the floor is open 

to the public, and the relational fluent Clean is true if the floor is clean. The following 

examples show how we can formalize queries about the robot's environment as formulae in 

the T-language of QL. 
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Example 3.1.6. "The robot will keep sweeping the floor until the floor becomes clean." 

The robot stops sweeping the floor as soon as the floor becomes clean; otherwise, it keeps 

sweeping the floor. 

Example 3.1.7. "The floor will remain closed to the public until the robot finishes cleaning 

the floor." 

Vsl [H(s1) '-- 
Vsl[H(sl) + lOpen(s1) A V S ~ [ S ~  

The floor is either open or closed to the public after the robot finishes cleaning the floor; 

otherwise, the floor remains closed to the public and the robot keeps sweeping the floor. 

3.2 The ,+Calculus 

In the preceding section, we have presented our query language QL'. In this section, we 

present the p-calculus, a well-known specification language, and compare to it the expres- 

siveness of QL'. We shall first present the syntax of the p-calculus and the syntactic char- 

acterization of its alternation-free fragment. Secondly, we shall present the semantics of the 

p-calculus via a labelled transition system, and then, via a structure over a vocabulary of the 

propositional situation calculus. Finally, we shall present examples of the alternation-free 

y calculus sentences. 

3.2.1 Syntax 

The p-calculus is the extension of the propositional modal logic with the least fixed-point 

operator and the greatest fixed-point operator, p and v, respectively. It is a well-known 

specification language, the expressiveness of which subsumes that of other well-known spec- 

ification languages such as LTL, CTL, and CTL*. 

Given a set p of action symbols, a set a of proposition symbols, and a set Vars of 

proposition variables, the following grammar defines the well-formed formulae of the (a, p)- 

language of the p-calculus: 
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where act is a symbol in p, P is a symbol in 0, and Z is a symbol in Vars that occurs 

only positively in # of pZ.4 and vZ.4. Moreover, # V 4 and [act]# are the abbreviations for 

~ ( 1 4  A T$) and l ( a c t ) l # ,  respectively. 

We shall eliminate formulae with greatest fixed-points by using the following logical 

equivalence: 

vz .0  u lpZ ' . l# (Z/ lZ ' )  

where Z l l Z '  denotes that we replace each occurrence of the propositional symbol Z in 4 
with the propositional symbol 2'. 

The alternation-free fragment of the p-calculus does not allow any nesting of least and 

greatest fixed-points; that is, in formulae pZ.4 and vZ.4, there are no such sub-formulae 

vY.$ and pY.$, respectively, that the outer fixed-point variable Z occurs inside $. 

We illustrate the difference between alternation-free and alternating fixed-point formulae 

by examples. 

Example 3.2.1. Let actl and act2 be action symbols, P a propositional constant, and Z 

and Y propositional variables. Consider the following fixed-point formula: 

It specifies the property: "It is always possible that the proposition P will hold." We observe 

that pY.P A (act)Y is a sub-formula of #. However, the outer fixed-point variable Z does 

not occur inside the sub-formula of pY.P A (act)Y, namely, P A (act)Y, and hence, 4 is 

a formula of the alternation-free p-calculus. In contrast, consider the following fixed-point 

formula: 

# := pY.vZ.[actl]Y A [actz]Z. 

It specifies the property: "A process performs action act only finitely many times." We 

observe that vZ.[actl]Y is a sub-formula of 4, and that the outer fixed-point variable Y 

indeed occurs inside the sub-formula of vZ.[actl]Y, namely, [actl]Y. Therefore, # is not a 

formula of the alternation-free p-calculus. 

3.2.2 Semantics 

For a labelled transition system 9.R := (St, {RaIaEp, C) (Definition 2.2.1) and a function 

v : Vars -+ @(St), the following induction defines the set I I # I I ~  of states where a formula # 
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is true: 

If q5 is a sentence, we omit v in the notation and write 9X, st + 4, instead of st E II+IIrn 

Semantics-The Structural Version 

We need to address one problem before we compare the expressiveness of QL' to that of the 

alternation-free p-calculus. On one hand, structures over a vocabulary of the propositional 

situation calculus define the semantics of QL', and, on the other hand, labelled transition 

systems define the semantics of the p-calculus. 

We overcome this problem by defining the semantics of the p-calculus via structures over 

a vocabulary of the propositional situation calculus as follows: 

3.2.3 Examples of Alternat ion-Free p-Calculus Sentences 

Given a set p of an action constant symbol sweep-floor and a set a of two proposition 

symbols Open and Clean, the following examples show how we can formalize the queries 

about the robot's environment in Examples 3.1.6 and 3.1.7 as formulae in the (p, a)-language 

of the alternation-free p-calculus. 

Example 3.2.2. "The robot will keep sweeping the floor until the floor becomes clean." 



CHAPTER 3. QUERY LANGUAGE 

Example 3.2.3. "The floor will remain closed until the robot cleans the floor." 

pZ. [Clean V (Closed A [sweep-floor]Z)]. 

We can illustrate the trade-off between succinctness and readability by comparing the 

examples of the alternation-free p-calculus formulae and those of QL' formulae. A formula 

of the alternation-free p-calculus tends to be shorter than a formula of QL' that describes 

the same phenomenon. However, The formula of the alternation-free p-calculus is not as 

easy to decode as the formula of QL' where inductive definitions describe causality relations 

explicitly. 

3.3 Expressiveness of QL' 

In the preceding section, we have presented the p-calculus and its alternation-free fragment. 

In this section, we show that QL is equivalently as expressive as the alternation-free p- 

calculus. Moreover, we show that QL', the extension of QL and our query language, is 

equivalently as expressive as QL with respect to a certain set of structures. 

We have informally defined a logic's expressive equivalence in Chapter 1. We define 

expressiveness in a concrete way. 

Definition 3.3.1. A logic L1 is less expressive than a logic L2 if every set of structures 

definable in a language of L1 is definable in a language of La. Moreover, L1 is equivalently 

as expressive as L2 if L1 is less expressive than L1 and L2 is less expressive than L1. 

We shall let L1 5 L2 denote that L1 is less expressive than La, and L1 = L2 that L1 is 

equivalently as expressive as L2. 

Moreover, we present expressive equivalence in a narrower scope. 

Definition 3.3.2. Given a set K of structures, a logic L1 is less expressive than a logic 

L2 with respect to  K if every set of structures that is definable in a language of L1 and is 

a subset of K is definable in a language of La. Moreover, L1 is equivalently as exp~essive 

as L2 with ~espec t  to  K if L1 is less expressive than L1 with respect to K and L2 is less 

expressive than L1 with respect to K. 

We shall let L1 S K  L2 denote that L1 is less expressive than L2 with respect to K ,  and 

L1 =K L2 that L1 is equivalently as expressive as L2 with respect to K. 
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We consider Definition 3.3.1 as the general case of Definition 3.3.2. In Definition 3.3.1, 

we measure a logic's expressiveness with respect to the universe of structures whereas, in 

Definition 3.3.2, we do so with respect to a certain subset of the universe. 

We present a theorem about the expressiveness of QL. 

Theorem 3.3.3. Q L  is equivalently as expressive as the alternation-free p-calculus. 

Proof. See Appendix B. 0 

The p-calculus is invariant for bisimulation [27]; that is, a sentence of the p-calculus 

cannot distinguish bisimilar structures. Because QL is equivalently as expressive as the 

alternation-free p-calculus by Theorem 3.3.3, QL' is invariant for bisimulation. 

Corollary 3.3.4. Q L  is invariant for bisimulation. 

We present a theorem about the expressiveness of QL', and, by using Theorem 3.3.3, 

prove the theorem. 

Theorem 3.3.5. Given a basic action theorg D i n  a language of the propositional situation 

calculus, QL' is equivalently as expressive as QL with respect to the set of structures that 

are bisimilar to sV. 

Proof. See Appendix B. 0 

Corollary 3.3.6. Given a basic action theolly 2) i n  a language of the propositional situation 

calculus, QL' is invariant for bisimulation with respect to the set of structures that are 

bisimilar to gV. 



Chapter 4 

Reasoning Algorithm 

We have presented our representation language, the propositional situation calculus, in 

Chapter 2, and our query language, QL', in Chapter 3. In this chapter, we shall show 

that, if formalized in the propositional situation calculus and QL', the problem of logical 

entailment is reducible to the problem of model-checking. We shall state this result as 

the reducibility theorem. Moreover, we shall present our reasoning algorithm AlgoR, the 

correctness of which follows from the reducibility theorem. 

We shall first prove the reducibility theorem by using the results of Chapters 2 and 3. 

We shall then present the reasoning algorithm AlgoR and prove that, given a knowledge 

base 2, in our representation language and a query 4 in our query language, AlgoR answers 

whether V logically entails 4 in time linear with respect to both the size of D and the size 

of 4. 

4.1 Reducibility Theorem 

In this section, we shall show that, if formalized in the propositional situation calculus and 

QL', the problem of logical entailment is reducible to the problem of model-checking. 

Theorem 4.1.1 (Reducibility Theorem). Given a vocabulary T of the propositional 

situation calculus, a basic action theory V i n  the T-language of the propositional situation 

calculus, and a query 4 i n  the T-language of QL', i f  D is  satisfiable, then 

where zV is  the filtration of the set of models of V .  



CHAPTER 4. REASONING ALGORITHM 38 

Proof. Suppose that D is satisfiable. To prove D k  4 k p  4, we shall first prove that 

and then, that 

D k 4  + = k p 4 .  

(===+) Suppose that D logically entails 4 (i.e., D k 4) but zv does not satisfy 4 (i.e., F p  4). 
Since D is satisfiable, there must exist at least one model of D. Now suppose that U is a 

model of D (i.e., kru D). By Theorem 2.4.3, zv is bisimilar to every model of D, and hence, 

zv is bisimilar to 2l (i.e., 5 v t t ~ ) .  By Corollary 3.3.6, 4 is invariant for bisimulation with 

respect to the set of structures that are bisimilar to sv, and hence, because zvtt21, 

Since F p  4 and k p  4 4, we have Flu 4. However, this is a contradiction because 

we derived earlier that ka D. Therefore, our initial assumption that D k  4 and F p  4 is 
false, and hence, D k  4 k p  4. 
(-) Suppose that zv satisfies 4 (i.e., k p  4). By Corollary 3.3.6, 4 is invariant for 

bisimulation with respect to the set of structures that are bisimilar to D, and hence, because 

k p  4, every structure bisimilar to zV satisfies 4. Since every structure bisimilar to zv 
satisfies 4 and every model of D is bisimilar to zv by Theorem 2.4.3, every model of D 

satisfies 4. Furthermore, because D is satisfiable, there must exist at least one model of 2). 

Therefore, D k 4, and hence, D k  4 e b p  4. 0 

To answer whether D logically entails 4, instead of model-checking 4 and each (possibly 

infinite) structure in the (possibly infinite) set of dynamic systems that D defines, we model- 

check 4 and one structure zv .  Moreover, if 7 is finite, then zv is a finite structure. 

4.2 Reasoning Algorithm AlgoR 

In the preceding section, we have proved the reducibility theorem, which says that if formal- 

ized in our representation and query languages, the problem of logical entailment is reducible 

to that of model-checking. In this section, we shall present our reasoning algorithm AZgoR, 

the correctness of which follows from the reducibility theorem. 
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Given a vocabulary T of the propositional situation calculus, a basic action theory V 

in the T-language of the propositional situation calculus, and a query A A H(So) of the 

T-language of QL', AlgoR returns "yes" if D A A H(So); otherwise, it returns "no". 

The reasoning algorithm AlgoR uses three other algorithms as sub-routines: AlgoF, 

AlgoG, and AlgoIS. First, via AlgoF, AlgoR constructs the filtration of the set of models 

of V and returns it in the array representation 5 on a unit-cost Random Access Machine 

(RAM). The array representation stores the characteristic membership function of each 

relation in an array whose dimension equals the arity of the relation. Secondly, AlgoR 

expands 5 over a set of situation constant symbols and normalizes the rules of A. This 

is to prepare for the application of AlgoG. Thirdly, via AlgoG, AlgoR computes relations 

that A defines: AlgoR applies AlgoG to each stratum of A from the lowest to the highest. 

Fourthly, via AlgoIS, AlgoR constructs a set As, such that each element of As, can possibly 

be the initial situation of the filtration of the set of models of V. Finally, AlgoR answers 

whether D + A A H(So) by comparing As, and H ~ :  if As, ~ 5 ~ ,  AlgoR returns "yes"; 

otherwise, it returns "no". 

In the following pseudocode, we shall let n denote the number of unary fluent relation 

symbols in T, and sitl, sit2, . . . , s i tp  situation constant symbols. Moreover, we shall view 

the situation domain sit5, the vector space (0, I)", as a lexicographically (totally) ordered 

set. We shall denote the smallest element in sit5 as s l ,  the second smallest element in sit5 

as sz, and so on. Furthermore, we shall assume that a series All A2,.  . . , Al is a stratification 

AlgoR(7, V, A A H(So)) 
5 := AlgoF(.r,D) 
Expand 5 over {sitl, sit2,. . . , sitan) as follows: 

for each integer i from 1 to 2" - 
siti$ := si 

Normalize the rules of A. 
for each integer i from 1 to 1 

AlgoG({sitl, sit2,. . . , s i tp) ,  AiJ) 
Aso := AIgoLS(D, 5) 
if As, c 

return "yes" 
else 

return "no" 

To specify the complexity of each algorithm, we shall define the size of input data 

structures as follows: 



CHAPTER 4. REASONING ALGORITHM 40 

The size of r, I T ( ,  is the number of unary fluent relation symbols in r plus the number 

of action constant symbols in 7. 

The size of V, IVI, is the sum of the lengths of axioms in 23. 

Given that the size of A, [A[ ,  is the sum of the lengths of the rules in A, the size of a 

query A A H(So) is the size of A. 

Given that the size of a relation is the number of its tuples and the size of a domain 

is the number of its elements, the size of 5, 151, is the sum of the size of each domain 

of 5 and the size of each relation of 3. We convert the do function to an equivalent 

ternary relation. 

In the rest of this section, we shall describe each sub-routine of AlgoR in detail and 

show its correctness and complexity. We shall then show the correctness and complexity of 

AlgoR. 

4.2.1 Construct The Filtration-AlgoF 

Given a vocabulary T of the propositional situation calculus and a basic action theory D in 

the r-language of the propositional situation calculus, the algorithm AlgoF constructs the 

filtration of the set of models of 23 and returns it in the array representation on a RAM. 

In the following pseudocode, we shall let 5 denote a (r\So)-structure, m the number 

of action constant symbols in T, and n the number of unary fluent relation symbols in r. 

Moreover, AlgoF constructs the do function as a ternary relation Rdo on a set Act x Sit x Sit 

such that, if (c, u, u') E Rdo, then do5(c, u) = u'. 

Theorem 4.2.1. Given a vocabulary r of the propositional situation calculus and a basic 

action theory D i n  the r-language of the propositional situation calculus, the algorithm AlgoF 

returns the filtration of the set of models of V in time 0(2IT1 x (Dl). The sire of the filtration 

is 0(2IT1). 

Proof. Essentially, AlgoF constructs a (r\So)-structure 5 that satisfies the five conditions 

in Definition 2.3.1. Straight-forward, 5 satisfies the first four conditions. We shall show 

that 5, or rather, do5 satisfies the fifth condition. 
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AZgoF(r, V) 
sit5 := (0, lIn 
~ c t ~  := {c : c E (0 ,  l ) m ,  llcll = 0 or I I c I I  = 1) 
for each integer i from 1 n 

Fi5 := 0 
for each integer i from 1 n 

for each element u in sitS 
if ( u ) ~  == 1 

F~~ := FiS U {u) 
for each integer i from 1 m 

for each element c in ~ c t ~  
if (c)i == 1 

actis := c 
R~~~ := 0 
for each u E sit5 

~~~5 := do5 u ( ( ( 0 ~ 0 , .  . . , o), U, u)) 
for each integer i from 1 m 

u' .- .- (0, 0, . .  . ,O). 
for each integer j from 1 n 

if a = acti appears in yf (a, s)  5 
(U1)j := 1 

else if (u)j == 1 AND a = acti does NOT appear in yFj(a, s)  
( U f ) j  := 1 

RdoS := RdoS U {(actiS, U, u')) 
Convert 5 from the list representation to the array representation. 
return 5 

AlgoF constructs the ternary relation Rdo such that (c, u, u') E Rdo if and only if, for 

each integer i from 1 to n,  

Thus, because (c, u, u') E Rdo if and only if do5(c, u) = u', doS(c, u) = u' if and only if 
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and hence, do5 satisfies the fifth condition. 

AlgoF constructs the situation domain sit5 in time 0(2171), and the action domain Act5 

in time O(Ir1). Secondly, it constructs the fluent relations of 5 in time 0(2IT1 x I T [ ) ,  that 

is, 0(21'1), and the action constants in time 0(1712). Thirdly, it constructs the ternary 

relation Rd, (consequently, do5) in time 0(2IT1 x Irl x [Dl), that is, 0(2ITI x [Dl). This 

time complexity contains the factor ID1 because AlgoF traverses the successor state axioms 

for each element of sit5 x Act5. Fourthly, it converts 5 from the list representation to its 

array representation on a RAM in time linear with respect to 151 [20], that is, 0(2IT1). (The 

size of sit5 is 0(2171), the size of Act5 is 0(1r1), and the sum of the size of each relation 

including Rd, is in 0(2ITI x \ T I ) ,  that is, 0(2IT1).) Finally, the time complexity of AlgoF is 

0(2IT1 x ID[), and the output size of AlgoF is 0(2ITI). 0 

4.2.2 Compute the Def ined  Relations-AlgoG 

Suppose that r is a vocabulary of the propositional situation calculus. Given a set of sit- 

uation constant symbols {sit l , .  . . , sitam), a definition A of the r-language of QL' in the 

normal form, and a structure 5 that interprets the symbols in (r\SO) U {sit l , . .  . , sit2m), 

by the grounding method, AlgoG computes relations that A defines. Informally, grounding 

(propositionalizing) is the process of eliminating variable symbols by replacing them with 

constant symbols. We have stated that, before applying AlgoG, AlgoR expands the v e  

cabulary r with a new set of situation constant symbols and associates each new constant 

symbol with an element of sit5. This is to bring the elements of sit5 into the syntax of our 

query language. 

AlgoG grounds a rule of A by instantiating constant symbols for the variable symbols in 

the rule. After grounding, we can view the atomic sentences in the rule as a propositional 

symbol. We shall call a definition of QL' that consists of grounded rules a propositional 

definition of QL'. 

AlgoG closely follows the model-checking algorithm for Datalog LITE [20] as it utilizes 

a Horn clause base (HCB), the Gelfond-Lifschitz transform algorithm, and the linear-time 

evaluation algorithm for Horn clauses 110, 26, 341. A Horn clause is a propositional formulae, 

or equivalently, a propositionalized first-order formula that has at most one positive literal. 

A HCB is a data structure that represents Horn clauses in such a way that we can store, 

delete, and read literals in constant time. 

The Gelfond-Lifschitz (GL) transform algorithm evaluates in linear time a logic program, 



CHAPTER 4. REASONING ALGORITHM 43 

and also a stratifiable logic program, in which case it evaluates one stratum at a time. The 

GL transform algorithm is readily extendible to a propositional definition of QL' because 

the rules of a propositional definition of QL' are very similar to the rules of a logic program. 

Given a grounded rule r and a structure U, if r contains any false literals, the GL transform 

algorithm discards r completely; otherwise, it returns a Horn clause that is a Horn clause 

equivalent to r minus the literals true over U. Consequently, if the GL transform algorithm 

returns a Horn clause at all, then it should contain only defined symbols in the current 

stratum. 

First, AlgoG grounds each rule of A, transforms it into a Horn clause via the GL trans- 

form algorithm, and stores the Horn clause in a HCB. Then, AlgoG evaluates the Horn 

clauses in the HCB via the linear-time evaluation algorithm for Horn clauses. 

In the following pseudocode, we shall let HCB denote a HCB, AlgoGL the GL transform 

algorithm, and AlgoEvalHorn the linear-time evaluation algorithm for Horn clauses. More- 

over, we shall let A denote the set of defined relations that AlgoG has computed so far. We 

shall view A as a persistent data structure: A remains after the current execution of AlgoG 

ends such that AlgoG can access A in the next execution and stores in A relations that it 

computes during each iteration. We shall assume that A is in the array representation on a 

RAM so that AlgoG can check the membership function of each tuple in a constant time. 

Moreover, we shall let gA denote the expansion of 5 with the relations in A. 

Theorem 4.2.2. Suppose that T is a vocabulary of the propositional situation calculus, and 

that A is a definition of the T-language of QL' in  the normal form that has no negated defined 

symbol. Given a set { s i t l , . .  . , sitam) of situation constant symbols, A, and a structure 5 
that interprets the symbols in  (r\SO) U {s i t l ,  . . . , ~ i t p ) ,  AlgoG computes relations that A 

defines in  time O(lAl x 151). 

Proof. The algorithm AlgoG is a straight-forward application of the grounding method to 

a definition of QL'. It instantiates each rule of A, transforms each instantiation into a Horn 

clause, and evaluates the Horn clause to compute relations that A defines. 

To instantiate a guarded rule, AlgoG checks the tuples of the rule's guard. Given the 

array representation 5 on a RAM, AlgoG can do so in time linear with respect to the size of 

the guard, which is O(151). Thus, AlgoG instantiates all the rules of A in time O(lA1 x 181). 

Moreover, for each instantiation, AlgoG calls AlgoGL, and AlgoGL runs in time linear with 

respect to the length of the instantiation. Thus, AlgoG transforms all the instantiations 
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HCB-:= 0 
for each rule r in A 

if r is a monadic rule Vs[H(s) + cp(s)] 
for each integer i from 1 to 2m 

HCB := H ~ B  6 AlgoGL({H(sitj) c cp(sitj)), 5) 
else if r is a existentially guarded rule 

if the guard is s' = do(act, s) 
R := {(u, u') : do5(act5, u) = u') 

else if the guard is sf = do(a, s) 
R := {(u, u') : 3c with do5(c, u) = u') 

else if the guard is +(a) A s' = do(a, s) 
R := {(u, u') : 3c with do5(c, u) = u' and C3~(a:c) +(a)) 

for each tuple (u, u') in R 
HCB := HCB U AlgoGL({H(sitj) t x(s i tk) ) , sA)  where sitj5 = u, sitk' = u', 
and H and X denote the head predicate of r and the predicate of the situation 
sort that appears in the body of r ,  respectively. 

else if r is a universally guarded rule 
for each integer j from 1 to 2m 

if the guard is s' = do(act, s) 
R := {U : do5(actz, sitj5) = U) 

else if the guard is s' = do(a, s) 
R := {u : 3c with do5(c, sitj3) = u) 

else if the guard is +(a) A s' = do(a, s) 
R := {u : 3c with do3(c, sitj5) = u and k3~(a:C) +(a)) 

HCB := HCB U AlgoGL({H(~itj) +- I\SilkJER X(sitk)), 8A) where H and X are 
the head predicate of r and the predicate of the situation sort that appears in 
the body of r ,  respectively. 

A := A U AlgoEvalHorn(HCB) 

(i.e., grounded rules) in time O(lA1 x 181). 

Given a rule r of A, the number of grounded rules that are instantiations of r depends 

on whether r is a) monadic, b) existentially guarded, or c) universally guarded: 

If r is a monadic rule, then the number of grounded rules that are instantiations of 

r equals to the size of sit3, which is O(151). The length of each grounded rule differs 

from that of r only by a constant factor. 

If r is an existentially guarded rule, then the number of grounded rules that are 

instantiations of r equals to the size of the guard of r ,  which is O(151). The length of 

each grounded rule differs from that of r only by a constant factor. 

If r is a universally guarded rule, then r gives only one instantiation, and hence, only 
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one grounded rule, but the length of the grounded rule differs from that of r at most 

by the size of the guard of r ,  which is in O(131). 

After AlgoG finishes grounding each rule in A, the sum of the lengths of the grounded rules, 

that is, the size of HCB is O(lA1 x 131). AlgoEvalHorn evaluates the Horn clauses in HCB 

in time linear with respect to the size of HCB, which is O(lAl x 151). 

Therefore, the total running time of AlgoG is O(lAl x 181). 0 

4.2.3 Find the Initial Situation(s)-AlgoIS 

Suppose that r is a vocabulary of the propositional situation calculus. Given a basic action 

theory D in the r-language of the propositional situation calculus and a (r\So)-structure 

5, the algorithm AlgoIS computes a subset As, of sit5 such that the elements of As, are 

possible initial situations. 

In the following pseudocode, we shall let m denote the number of unary fluent relation 

symbols in r, and Dso the description of the initial situation in D. 

AlgoIS(D, 5 )  
As, := 8 
for each element u in sit5 

Flau := 1 
u 

i := 1 
while Flag == 1 OR i == m 

if u E ~ i '  AND iFi(So) appears in Dso 
Flag := 0 

else if u 6 F~~ AND Fi(So) appears in Dso 
Flag := 0 

else 
z : = i + l  

if Flag == 1 
As, := As, U {u )  

Theorem 4.2.3. Suppose that r is a vocabulary of the propositional situation calculus. 

Given a basic action theory V in the T-language of the propositional situation calculus and a 

structure 5 that interprets the symbols in r\SO, AlgoIS computes a subset AS, of sit5 such 

that the elements of As, are possible initial situations of 5 in time O(131 x (71 x (Dl). The 

size (i.e., cardinality) of As, is O(131). 

Proof. For each element u of sit', AlgoIS checks whether u satisfies the description of the 

initial situation Dso in time O(Ir1 x [Dl) because each time AlgoIS checks the membership 
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of u in each fluent symbol, it traverses Vso. If u satisfies Vso, then AlgoIS adds u to the set 

As,. Thus, after checking each element of sit5, As, contains the elements of sit5 that satisfy 

VSo and are possible initial situations. The total running time of AlgoIS is O(151 x  IT^ x ID/). 

Since As, is a subset of sit3, the size of As, is 0 ( [ 5 [ ) .  0 

4.2.4 Correctness and Complexity of AlgoR 

We have showed the correctness and complexity of each sub-routine of AlgoR. We shall show 

the correctness and complexity of AlgoR, which follows from the correctness and complexity 

of each of its sub-routines and the reducibility theorem (i.e., Theorem 4.1 .I). 

Theorem 4.2.4. Given a vocabulary T of the propositional situation calculus, a basic action 

theory V in the T-language of the propositional situation calculus, and a query A A X(So) in 

the T-language of QL', AlgoR answers whether V + A A X(So) in time 0(2IT1 x (ID1 + IAl)). 

Proof. The reasoning algorithm AlgoR uses three other algorithms as sub-routines: AlgoF, 

AlgoG, and AlgoIS. First, AlgoF constructs the filtration of the set of models of V and 

returns it in the array representation 5 on a Random Access Machine (RAM). By Theorem 

4.2.1, AlgoF does so in time 0(2171 x [Dl) and the size of the filtration is 0(2IT1). 

Secondly, given that T contains n fluent relation symbols, AlgoR expands 5 over a set 

of 2n situation constant symbols, and then, normalizes the rules of A. This is done in 

0(2IT1 + IAI). Thirdly, AlgoG computes relations that A defines with the filtration: AlgoG 

evaluates each stratum of A from the lowest to the highest. By Theorem 4.2.2, AlgoG 

evaluates each stratum Ai of A in time O(lAil x 21Tl), and hence, AlgoR evaluates the whole 

definition A in time O(lA1 x 21'1). 

Fourthly, AlgoIS constructs a set of elements that are possible initial situations in the 

filtration of the set of models of V and returns it in the array representation ASo By 

Theorem 4.2.3, AlgoIS does so in time 0(21'1 x 171 x ID\), that is, 0(2IT1 x IVI), and the 

size of As, is 0(2IT1). Finally, AlgoR answers whether V + A A H(So) by comparing As, 

and HTA: if ASo 2  HE^, AlgoR returns L'yes"; otherwise, it returns "no". AlgoR does so 

by checking whether each element of As, is an element of HF in time 0(2IT1). 

Therefore, the time complexity of AlgoR is 

that is, 0(2lT1 x (ID1 + IAl)). 
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By Theorem 4.1.1, AlgoR answers the problem of logical entailment by reducing it to 

the problem of model-checking, which AlgoR answers by using AlgoF, AlgoG, and AlgoIS. 

Moreover, the correctness of AlgoR follows from the correctness of each of its sub-routines. 

0 

If we restrict T to be constant, then the time complexity of AlgoR will be O(IDI + In[). 
Such a problem is called fixed-parameter tractable [ll]. Fixed-parameter tractability is a 

highly desirable feature, for it helps us to understand the computational nature of our 

problem and develop better parameterized algorithms for solving problem[21]. 



Chapter 5 

Possible Applications 

We suggest to apply the results of this thesis to the following two areas: planning under 

uncertainty and verification of robotics programs. 

5.1 Planning under Uncertainty 

Classical planning relies on several restrictive assumptions such as: 

Actions have only deterministic effects. 

The objective is to build a plan that leads to one of the goal states. 

Complete knowledge about the current state is available. 

Consequently, plans in classical planning are sequences of actions. We want to relax the 

preceding assumptions and allow uncertainty such as non-determinism and possible failure 

of actions in our planning problem. 

Determinism is a simplistic view in which the world evolves along one fully predictable 

path. It is a rather unrealistic assumption, for we know that not every event in the world 

is predictable. Non-determinism is a more realistic view. By non-determinism, we model a 

case where a system fails and plan for emergency and recovery. In some planning domains, 

we can model frequent, nominal cases by determinism and ignore non-nominal cases. In 

safety-critical and mission-critical planning domains, however, non-nominal cases are so 

important that we must model them at our planning time. Moreover, in other planning 

domains, nominal cases simply do not exist. 
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In non-determinism planning domains, we need to devise a plan that contains conditional 

behaviours and trial-and-error strategies. Such a plan results in many different executions, 

and hence, it is a little too strict to require that every possible execution of the plan meets 

the goal. We combine reachability goals (i.e., conditions about goal states) with extended 

goals (i.e., conditions on plan executions) to address a less strict notion of a satisfactory 

plan. 

We can formalize and solve the problem of planning with extended goals via the results 

of this thesis as follows: 

1. Axiomatize the planning domain (e.g., the action primitives, the description of the 

initial state) as a basic action theory D in the language of the propositional situation 

calculus. 

2. Specify goal conditions (either reachability or extended) as a sentence q5 in the language 

of QL'. 

3. Solve the problem of logical entailment, D k 4, by our reasoning algorithm AlgoR. 

If AlgoR returns the negative answer, then there exists no plan that meets the specified 

goal conditions in the given planning domain. If AlgoR returns the affirmative answer, then 

we will generate a plan by applying a state-space search algorithm on the filtration zv and 

progressing on the sentence q5 of QL' to prune the search space. 

Our reasoning algorithm AlgoR runs time only linear with respect to both the size of 

D and the size of 4. The time complexity of this planing algorithm depends on how fast 

we can generate a plan once receiving the affirmative answer from AlgoR. Moreover, AlgoR 

can deal with partial observability in the initial state; that is, it does not require complete 

knowledge about the initial state. 

5.2 Verification of Robotics Programs 

We want to prove the reliability of robotics programs when they are part of a safety-critical 

or mission-critical system. Especially when they employ concurrency, bugs are difficult to 

find just by testing (e.g., running several simulations of important scenarios) because bugs 

that concurrency induces tend to be non-reproducible. The verification of robotics programs 

is hence a topic worth exploring. 
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Golog [29] is a high-level programming language for robot control. It is based on the situ- 

ation calculus. In Golog, the programmer can define primitive actions and fluents by writing 

action precondition axioms and successor state axioms. She can hence specify primitives ac- 

cording to the program domain she wants to model, regardless of the actual implementation 

of the system's primitive architecture. She can also choose the level of abstraction at which 

she wants to write her program. ConGolog [19] is the extension of Golog with constructs 

for concurrency. 

The verification of Golog and ConGolog programs is quite feasible due to the foundation 

of Golog and ConGolog in the situation calculus. Liu [30] demonstrated the embedding of 

Hoare-style proof systems into the Golog context. Shapiro, Lesperance, and Levesque [44] 

developed a verification environment for ConGolog programs. However, the verification of 

Golog and ConGolog programs has not been largely explored beyond these results. 

We can verify Golog and ConGolog programs by using the results of this thesis as follows: 

Given that a program II consists of a theory of actions ITv and a robot control IIctrl, and 

that I'I = IID U IIctrl and IIv n IIct,, = 8, 

1. Transform ItD into a set of domain-dependent axioms A (i.e., successor state axioms 

plus the description of the initial situation) in the language of the propositional situ- 

ation calculus. 

2. Transform IICtrl into a definition Al in the language of QLf. 

3. Formalize the program specification for Il as a sentence A2 A X(SO) in the language 

of QL' such that T& n T& = 0. 

4. Let D be a basic action theory in the language of the propositional situation calculus 

such that Dp,, U Dpso = A. Solve the problem D 2) (Al U A2) A X(So) of logical 

entailment via AlgoR. 

If AlgoR returns the affirmative answer, then II meets the program specification. If AlgoR 

returns the negative answer, then, as a counter-example, we will return a plan that we 

generate by applying a state-space search algorithm on the filtration T~ and progressing on 

the following sentence 4 of QLf: 
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where X' $! riIuaz. We have already verified that V (Al U A2) A X(So), and hence, 

Thus, we are ensured to find a plan that meets the goal condition 4. This plan generates 

executions of II that do not meet the specification A2 A X(So) .  

Not every program in Golog or ConGolog is verifiable in the framework. Programs 

verifiable in the framework are those that we can convert into a basic action theory in the 

propositional situation calculus and a query in QL'. However, programs do not need to have 

the complete knowledge of the initial situation to be verifiable. 

This framework for the verification of Golog and ConGolog programs is model-based and 

automated. Moreover, it is declarative, and hence, suitable for the verification of reactive 

programs, which result in infinite execution paths. Furthermore, the program specification 

4 together with the basic action theory V can serve as a system specification, which is an 

important component of a system documentation. A formally specified and verified system 

takes less resources to implement because we eliminate many errors in the designing phase. 

It is also easier to reuse because it comes with a documentation that clearly states what it 

is supposed to do. 



Chapter 6 

Conclusion 

In this thesis, we rest our theoretical foundations on symbolic logic, and conduct the analysis 

of a knowledge-based agent through logical entailment: given a set T of sentences and a 

sentence 4 in a language of symbolic logic, does every structure that satisfies each sentence 

in T satisfy the sentence 4 (i.e., T 4)? We formalize an agent's reasoning process as 

the following problem of logical entailment: given a knowledge base T in a representation 

language and a query 4 in a query language, does T logically entail 4? 
We choose the propositional situation calculus as our representation language, and QL' as 

our query language. We formalize the agent's knowledge as a set D of sentences in a language 

of the propositional situation calculus, a query as a sentence 4 of a language of QL', and the 

agent's reasoning process as the problem of logical entailment (i.e., 23 k 4). Moreover, we 

solve the problem of logical entailment by a model-theoretic approach: we construct from 

V a finite canonical model gv of the agent's knowledge through the filtration operation, a 

model-theoretic operation of collapsing a possibly infinite structure into a quotient structure. 

We prove that D logically entails 4 if and only if gv satisfies 4; that is, 

This results says that, if formalized in the propositional situation calculus and QL', the 

problem of logical entailment is reducible to the problem of model-checking: does a model 

U of a computing system satisfy a formal specification 11 (i.e., ku q)? In other words, to 

answer whether D logically entailments 4, instead of model-checking 4 and each (possibly 

infinite) structure in the (possibly infinite) set of models of V, we model-check 4 and gD. We 

call this result the reducibility theorem. Furthermore, we present a reasoning algorithm that 
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solves the problem of logical entailment by reducing it to the problem of model-checking. 

This algorithm is based on the linear-time model-checking algorithm for Datalog LITE [20], 

and runs in time linear with respect to both the size of V and the size of 4. Moreover, 

this algorithm does not assume that the agent has the complete knowledge of its initial 

environment. 

This thesis makes two major contributions to the research of knowledge representation 

and reasoning. The first contribution is that this thesis formalizes a model-theoretic ap- 

proach to reasoning about actions, which we can apply to representation and query languages 

more expressive than the propositional situation calculus and QL'. The second contribution 

is an expressive query language with a good complexity result, QL', which is more expressive 

than well-known specification languages such as LTL and CTL. 

Future Work 

In this thesis, we limit the vocabulary of the propositional situation calculus to include only 

unary relational symbols and constant symbols, so that a set of structures definable in the 

propositional situation calculus is bisimulation-closed; that is, if a structure is in the set, 

then every structure bisimilar to the structure is in the set. In other words, we choose to 

model dynamic systems at a certain level of abstraction, that is, into a bisimulation-closed 

set. We justify this limitation by the fact that QL', our query language, allows only queries 

about bisimulation-invariant properties of dynamic systems. We have stated in Chapter 2 

that this level of abstraction is adequate when we study the computational behaviour of a 

dynamic system. 

If we choose a query language more expressive than QL' to ask queries beyond bisim- 

ulation invariance, then we will need to choose a representation language more expressive 

than the propositional situation calculus, so that we can model dynamic systems at a lower 

level of abstraction (or at a higher level of granularity). Depending on the kind of queries 

we want to ask about dynamic systems, we change a level of abstraction (or granularity) 

in modelling the dynamic systems. As the next level of abstraction beyond bisimulation 

invariance, we suggest a set of structures that is closed under guarded bisimulation [I]. 

Guarded bisimulation is a straight-forward generalization of bisimulation. We can de- 

scribe guarded bisimulation as the following guarded version of the infinite Ehrenfeucht- 

FraYss6 game. We have two players I and I1 and two sets of labelled pebbles. Let % and 23 

be structures over the same vocabulary. Initially, neither U nor 93 carries pebbles. Player 
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I tries to show that U is different from %, and Player 11 does otherwise. Players I and 

I1 mark elements of U and 93 by placing pebbles on the elements, such that the currently 

marked elements form guarded sets in U and 23. A subset X of the domain of a structure 

is a guarded set if, given X = {al, az, . . . ,a,), there exists some r-ary relation R in the 

structure such that (al ,  az, . . . , a,) E R. 

After each round of the game, the pebble placement in U and 93 induces a mapping 

a H 6 ,  such that an element a in the domain of U is mapped to an element b in the domain 

of 23 if and only if a and b are marked by pebbles with the same label. Player I makes moves 

in one structure, and Player I1 mimics Player 1's moves by placing pebbles such that the 

new mapping a I+ b is a partial isomorphism between U and 23. Consequently, the elements 

that Player I1 marks forms a guarded set. We say that Player I1 has a winning strategy if 

she can always respond to Player I's move. Moreover, Player I1 has a winning strategy if 

and only if there exists some guarded bisimulation between U and 23 [22]. 

To ask queries beyond bisimulation invariance, we need a query language more expressive 

than QL', so we extend QL' to the alternation-free fragment of the guarded fixed-point logic 

pGF. pGF is the fixed-point extension of the guarded fragment GF of the first-order logic. 

GF is the generalization of the modal fragment of the first-order logic1, and retains nice 

properties of the modal logic such as decidability and finite model property. Moreover, pGF 

is characterized as the guarded-bisimulation-invariant fragment of the guarded second-order 

logic (GSO) [22]. GSO is the second-order logic with semantics that allows second-order 

quantifiers to range only over guarded sets. 

We need a new query language that is guarded-bisimulation-invariant. One such lan- 

guage is a fragment of ID-logic that is equivalently as expressive as the alternation-free 

pGF. Moreover, we can extend the fragment of ID-logic with limited quantification over 

actions such that the extension is equivalently as expressive as the alternation-free pGF 

with respect to a set of structures closed under guarded bisimulation. (In this thesis, we 

have extended QL similarly to obtain QL'.) Our new query language allows vocabularies 

to include more than unary relational symbols and constant symbols. Furthermore, we can 

apply the grounding method to evaluate queries in our new query language to attain a good 

complexity result. 

We need a new representation language to define a set of structures that is closed under 

 h he modal fragment of the first-order logic is the embedment of the modal logic into the first-order logic. 



CHAPTER 6. CONCLUSION 55 

guarded bisimulation. To apply the model-theoretic approach that we have formalized in 

this thesis, we need to limit the vocabulary of our new representation language (and our new 

query language) so that we can construct a finite canonical model of a basic action theory 

that is axiomatized in the representation language. For example, we limit the vocabulary to 

include only a finite number of action and object symbols so that we can divide the elements 

of the (infinite) situation domain in a model of the basic action theory into a finite number 

of equivalence classes. 

In this thesis, we have presented the propositional situation calculus, a fragment of the 

Reiter-style situation calculus as our representation language. It is not easy to describe 

ramifications (i.e., indirect effects of actions), in the Reiter-style situation calculus. To 

address the ramification problem, Denecker and Ternovska presented the inductive situation 

calculus [B]. The inductive situation calculus is a variant of the Reiter-style situation calculus 

(and also a fragment of ID-logic) where simultaneous inductive definitions define fluent 

symbols on the well-ordered set of situations. The solution to the ramification problem in 

the inductive situation calculus is among the most general solutions. We can alternatively 

obtain a representation language for the (guarded-)bisimulation-invariant level of abstract by 

identifying a (guarded-)bisimulation-invariant fragment of the inductive situation calculus. 



Appendix A 

Proofs of Chapter 2 

We shall first prove two lemmas, and then, by using these lemmas, prove Theorem 2.4.3. 

A . l  Lemmas for Theorem 2.4.3 

Lemma A.1.1. A structure over a vocabulary of the propositional situation calculus is  

bisimilar t o  the filtration of itself. 

Pmof .  A non-empty binary relation {(s, Is[) : s E sita, Is1 E  it"} satisfies the conditions 

to be a bisimulation between U and Uf, and hence, a structure over a vocabulary of the 

propositional situation calculus is bisimilar to the filtration of itself. 0 

Lemma A.1.2. Given a basic action theory D in a language of the propositional situation 

calculus, the filtration of the set of models of 2) i s  isomorphic t o  the filtration of each model 

of D. 

Proof. Suppose that T is a vocabulary of the propositional situation calculus, and that D is 

a basic action theory in the T-language of the propositional situation calculus. To prove that 

the filtration of the set of models of D is isomorphic to the filtration of each model of D, we 

shall show that, for each model U of D, there exists a one-to-one and onto homomorphism 

from sitaf to sitzD as well as a one-to-one and onto homomorphism from ~ c t ~ '  to ~ c t ~ ~ .  

Suppose that p and a are the set of action constant symbols in T and the set of unary 

relational fluent symbols in 7, respectively. We shall view p and a as lexicographically 

(totally) ordered sets. We denote the smallest element in p as act l ,  the second smallest 
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element in p as acta, and so on. Similarly, we denote the smallest element in a as Fl, the 

second smallest element in o as Fz, and so on. Moreover, we denote the cardinality of p and 

the cardinality of a by m and n,  respectively. 

For each model U of D, we shall define a function g : sit"' -+ sitTv as well as a function 

h : ActUf -+ ActTv as follows: 

For each element t of sit"', g(t) = u for some element u of sitTw where, for each 

integer i from 1 to n,  

t E F~"' ~f ui = 1. 

For each integer i from 1 to m, h(actiaf ) = c for some element c of ActTv with c, = 1. 

Both g and h are one-to-one and onto. Moreover, to show that g and h are a homomorphism 

from sit"' to sitTv and a homomorphism from Act"' to ActTv, respectively, we shall show 

that g and h satisfy the following conditions: 

For each element t of sit"' and each integer i from 1 to n,  

For each integer i from 1 to m,  

For each element (b, t)  of sit"' x ~ c t " ' ,  

g(do"' (b, t)) = doTv (h(b), g(t)). 

Given an element t of sit"', let g(t) = u for some element u of sitTv. By the definition 

of g,  t E Fin' Lf ui = 1 for each integer i from 1 to n. Moreover, by the definition of 

gV, u E F~~~ a ui = 1 for each integer i from 1 to n. Thus, for each integer i from 1 to 

n, t E F,"' u E FiTW , and hence, because u = g(t), t E Fiaf u g(t) E FiEV. We 

have proved that g satisfies the first condition. 
w 

Given an integer i between 1 and n,  let h(actin') = c for some element c of Act5 . By 
v 

the definition of h, ci = 1. Moreover, by the definition of gv, actig = c. Thus, because 

h(actiUf) = C, h(actiaf) = actiTv. We have proved that h satisfies the second condition. 
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Given an element (b, t)  of Actaf x sitaf, let g(doaf (b, t)) = u' for some element u' of 

sitsQ. Suppose that dod(b,t) = t' for some element t' of sitaf, and that b = [a[ ,  t = Is[, 

and t' = Is'\ for some element (a, s ,  s') of Acta x sita x sita. Because doaf (la[, Is[) = ls'l, by 

the definition of Uf, do(a, s) = s, and hence, for some action variable xa and some situation 

Suppose that (2,  .?, 2)  is an element of ActSQ x sitFQ x sitP such that, for each integer 

i from 1 to m, (G)i = 1 acti% = a;  moreover, for each integer i from 1 to n, 

(qi = 1 ++ s E Fia and (sf)i = 1 S' E F?. Because LP (2,) = A:, L;(X,), 
A:,1 L:(xs) = L:(X~), and L;'(xS) = A:=1 L? (xs), 

4 

and hence, by the definition of zv, dogQ(;, iT) = s'. Moreover, by the definition of g, g(ls1) = 
-+ 

l a n d  g(lsll) = st. Similarly, by the definition of h, h(la1) = a. Thus, dosv(h(lal),g(lsl)) = 
lur Q g(IslI), and hence, because la1 = b, Is1 = t ,  ls'l = t', and t' = do (b, t) ,  doS (h(b), g(t)) = 

g(doaf (b, t))  . We have proved that h and g satisfy the third condition. 

We have showed that, given a model U of D, g is a one-to-one and onto homomorphism 

from sitaf to sitTQ, and that h is a one-to-one and onto homomorphism from Actaf to 

ActTQ. Thus, we have showed that, for each model U of V, there exists a one-to-one and 

onto homomorphism from sitaf to sitFQ as well as a one-to-one and onto homomorphism 

from ~ c t ~ ~  to A C ~ E ~ .  

A.2 Proof of Theorem 2.4.3 

Theorem 2.4.3 Given a basic action theory V in a language of the propositional situation 

calculus, the filtration of the set of models of V is bisimilar to each model of V. 

Proof. Suppose that U is a model of D. By Lemma A.1.1, 31 is bisimilar to Uf (i.e., Ut,Uf ). 

By Lemma A.1.2, Uf is isomorphic to gv, and hence, there exists a one-to-one and 

onto homomorphism g from Uf to zv. Let Z be a non-empty binary relation on a set 

sitaf x sitTQ such that Z := (t, g(t)) for each element t in sitaf; indeed, Z is a bisimulation 

between Uf and zv (cf. Definition 2.4.2). Thus, Uf is bisirnilar to zD (i.e., Ufttgv). 
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Because ! 2 l & ? l f  and 2 l f  4-+gV, by the transitivity of bisimulations, ~ ~ 3 ~ .  Thus, we have 

proved that the filtration of the set of models of V is bisimilar to every model of V. 



Appendix B 

Proofs of Chapter 3 

We shall first present the preliminaries of fixed-point operations, and then, by using the 

preliminaries, prove Theorems 3.3.3 and 3.3.5. 

B. l  Preliminaries of Fixed-Point Operations 

Given a finite set A, a function or operator F : @(A) + p(A) gives rise to the following 

sequence of sets: 

0, W), F(F(0)), * . * - 
We denote the members of the sequence as follows: 

and call Fn the n-th stage of F .  If there exists a natural number no such that Fno+l = Fno 

(i.e., F(Fno) = FRO), then, we say that the fixed-point of F exists. We denote Fno, the 

fixed-point of F, by F,. Moreover, F(F,) = F,. If the fixed-point of F does not exist, 

then we set F, to 0. We say that F is monotone if, for arbitrary subsets X and Y of A, 

Lemma B.1.1. [12] If a unary operator F is monotone, then F, is the least fixed-point 

of F; that is, F(F,) = F, and F(X) = X implies F, C X .  (Even F(X)  c X implies 

F, c X.) 
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We shall define the fixed-point of a function or operator whose arity is greater than one. 

Given r finite sets All Az, . . . , A, and r functions or operators 

we define a sequence (F;), F;), . . . , FT )i>O as follows: for each integer j from 1 to r ,  (4 - 

If there exists a natural number no such that 

then we say that the simultaneous fixed-point of a tuple (F1, F2, . . . , FT)  of r operators 

exists. We denote the fixed-point of (F', F2, . . . , FT)  by (F&,), Ff2_), . . . , F&,)). Moreover, 

for each integer i from 1 to r ,  

If the fixed-point of (F1, F2, . . . , FT) does not exist, then, for each integer i from 1 to r, we 

set F&) to 0. We say that (F', F2, . . . , FT)  is monotone if, for each integer i from 1 to r ,  

where, for each integer j from 1 to r, Xj and Yj are arbitrary subsets of Aj. 

Lemma B.1.2. [12] If a tuple (F1, F 2 , .  . . , FT) of r operators is monotone, then 

(F&),F&,, . . . lFi,)) 

is the simultaneous least fixed-point of (F1, F2, . . . , FT) .  

We can express a simultaneous fixed-point by the fixed-point of nested monotone oper- 

ators. 
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Lemma B.1.3. [12] Let F and G be monotone operators such that 

and 

G : @ ( A ~ )  x @ ( A ~ )  t @(A~).  

Moreover, let E be an  operator such that 

where G(X, -) : @(A1) -t @(A1) denotes the monotone operator Y ++ G(X, Y) and G(X, -), 
denotes its least fixed-point. Then, E is monotone and Em = F(,). 

The following lemma is the generalization of Lemma B.1.3, which we shall use to prove 

Theorems 3.3.3 and 3.3.5. 

Lemma B.1.4. For each integer n greater than or equal to  2, the simultaneous fixed-point 

of n monotone operators is computable by n nested fixed-points. 

Proof. We prove the lemma by mathematical induction on n. The base case is n = 2. Let 

F~ and F~ be monotone operators such that 

and 

F2 : @(Ak') X @(Ak2) -+ @(Ak2). 

Moreover, let E' be an operator such that 

and 

E'(x) = F'(x, F 2 ( x ,  -),) 

where F 2 ( x ,  -) : @(Ak2) _+ @(Ak2) denotes the monotone operator Y tt F2(X,Y)  and 

F 2 ( x ,  -), denotes its least fixed-point. Then, by Lemma B.1.3, El is monotone and E,& = 

F&, . 
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Similarly, let E2 be an operator such that 

and 

E ~ ( Y )  = F ~ ( F ~ ( - ,  Y),, Y) 

where F'(-,Y) : @(Ak1) -+ @(Ak1) denotes the monotone operator X w F1(X,Y) and 

F1(-, Y), denotes its least fixed-point. Furthermore, let I' and I2 and monotone operators 

such that 

II : @(Ak2) x @(Akl) -+ @(Ak2) 

and 

: @(Ak2) x @(Ak') -+ @(Ak1) 

with I1(Y, X )  = F 2 ( x ,  Y) and 12(Y, X)  = F1(X, Y). Then, let H be an operator such that 

and 

H(Y) = I1(Y, 12(Y, -),). 

By Lemma 

and hence, 

(q,) F;,) 

B.1.3, H is monotone and H, = If,). Indeed, H, = EL and If,) = F&) 7 

E2 is monotone and EL = F2 Therefore, El and E2 are monotone, and 
(,) ' 

) = (EL, E&) where EL and E& are nested fixed-points. 

In the inductive step, we suppose that, for some m E Z+ \ l ,  the simultaneous fixed- 

point of m monotone operations is computable by m nested fixed-points. For each i € 

{1,2,.  . . , m + I), let Fi be a monotone operator such that 

and, for each j E {1,2, . . . , m + l ) \ i ,  suppose that 

denotes the monotone operation X H Fj(Z1, . . . , X, ZiS1, . . . , ZmS1), and that 

denotes its least fixed-point. 
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By the inductive hypothesis, for each i E {1,2,. . . , m + 1), the simultaneous fixed-point 

of m monotone operations is computable by m nested fixed-points; that is, for each monotone 

operator FJ (X/Zi), there exists a monotone operator whose nested fixed-point coincides 

with F~(x/z~)(,). Let E,3(X, -) : @(Akj) + @(Akj) denote the monotone operator that 

maps X to the monotone operator whose nested fixed-point coincides with Fj(X/Zi)(,). 

Consequently, E: (X, -), = Fj (X/Zi) (,I. 

For each i E {1,2,. . . , m + I) ,  let Ei be an operator such that 

and 

E ~ ( x )  = F~(E: ( x ,  -),, . . . , E:-' ( x ,  -),, x, E:+' ( x ,  -),, . . . , E?+' (x, -),). 

Since E i ( x )  is positive in X ,  Ei is monotone. 

We are going to show that, for each i E {1,2,. . . , m + 1), E L  c_ Fb). By the definition 

of the operator EZ,  

For each j E {1,2, 

and 

and hence 
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and hence, Ei(F?,)) C F&). By Lemma B.l.l ,  Ei(Ftm)) c Ftm) implies EL c F&). 

Therefore, EL C F?,). 

Furthermore, we are going to show that, for each i E {1,2,. . . , m + 1), Fb) c EL. 

First, we need to show by mathematical induction that, for each n E N,  F{n) c EL,  and, 

for each j E {1,2,. . . , m + l)\i ,  F&) C E ; ( E ~ ,  The base case is n = 0. Since Ft0) = 0, 
and, for j E {1,2 ,... , m +  l)\i, Ft0) = 0, Fb, c E& and F' (0) C - E:(EL,-)~.  

In the inductive step, we suppose that, for some k E N, F&, C EL and j E {1,2, . . . , m+ 

l)\i, FIk) C E!(E~, -),. Then, 

Since Fi is monotone, by the inductive hypothesis, 

Similarly, for each j E {1,2,. . . , m + l)\i ,  

For each j E {1,2,. . . , m + l)\i ,  E: (EL, -), = Fj(EL/Zi)(,), and hence 

By the base case and the inductive step, we have shown that, for each n E N, Ffn, EL, 
and, for each j E {I, 2,. . . , m + l)\i ,  Fin) c E;(E&, -),, and hence, FL) C_ EL.  

p m + l  Since EL C F& and F& EL, EL = F&. we have shown that (Ff,), . . . , (m) ) = 

(EL,.  . . , EE+') where, for each i E {1,2,. . . , m + I),  EL is a nested fixed-point. 

Finally, by the base case and the inductive step, we have proved that, for each n E Z+\ l ,  

the simultaneous fixed-point of n operators is computable by n nested fixed-points. 
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B.2 Proof of Theorem 3.3.3 

Theorem 3.3.3 QL is equivalently as expressive as the alternation-free p-calculus. 

Proof. Given a set p of action symbols and a set a of proposition symbols, we shall let 

L, denote the (a, p)-language of the alternation-free p-calculus. We view p and a as a set 

of action constant symbols and a set of unary relational fluent symbols, respectively, and 

hence, T := {SO, do) Up U a is a vocabulary of the propositional situation. We shall let LQL 

denote the T-language of QL. 

To show that QL is equivalently as expressive as the alternation-free p-calculus, we shall 

first show that the alternation-free p-calculus is less expressive than QL (i.e., L, 5 LQL), 

and then show that QL is less expressive than the alternation-free p-calculus (i.e., LQL 5 
L,). Concretely, given a sentence of the alternation-free p-calculus, we shall show how to 

construct a sentence of QL that defines the same set of structures as the given sentence 

does, and vice versa. 

(Proof of L, 5 LQL) Given a sentence 4 of the alternation-free p-calculus, we shall show 

how to construct a sentence 4' of QL such that 4' = A A H(So) with a definition A in LQL 

and a predicate symbol H in T:, and, for every structure U that interprets the symbols in 

7, 

U , S ~  + 4 ++ UA + A A H(S0); 

that is, 

l14lt = PA". 
First, we shall inductively define how to construct 4' from 4. We shall then prove by 

mathematical induction on the structure of 4 that Ilq5llt = H'~. 

In the following definition of how to construct 4' from 4, we shall let F denote a symbol 

in a, act a symbol in p, and 4 2  formulae in L,, and Al and A2 definitions in LQL 

such that H does not occur in either Al or A2. Moreover, we shall let HI and H2 denote 
A 

predicate symbols such that H1 E T;~, Hz E T&, H ~ "  = lit, and ~ 2 % ~  = /1421/f. 

If 4 is F, then 4' is {'ds[H(s) +- F(s)]) A H(So). 

0 If q5 is 141, then 4' is (Al U {Vs[H(s) + yHl(s)])) A H(So). 
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If 4 is (act)&, then 4' is 

0 If 4 is pZ.&(Z), then 4' is 

where Z in Al is a predicate symbol that corresponds to the propositional variable 

Z in and Al(H/Z) denotes a definition that we obtain by replacing by H each 

occurrence of Z in Al. 

We shall prove by mathematical induction on the structure of 4 that /Iq5lIf = HaA. 

The base case is when 4 is F .  Then, 4' is {Vs[H(s) t F(s)]} A H(So). By the structural 

semantics of the p-calculus, IIFllf = F". Moreover, H " ~  = F". Thus, IIFIlf = HaA. The 

inductive step consists of the following four cases: 

When 4 is -qh, fl is (A1 U {Vs[H(s) + iHl(s)]}) A H(So) where HIaA1 = 11$1 11:. 

By the structural semantics of the p-calculus, 1 1  -dl I I f  = sit" - Il$q l l f ,  and hence, 

because 1141 11; = ~ 1 % ~ '  , I \ -& 11; = Sit" - HlZA1. Moreover, HaA = si ta  - H ~ " ~ ' ,  
a- HuA. and hence, because I I l & I I ;  = sit" - HIzA1, I l - & l l v  - 

When 4 is (ad)+l ,  4' is (A1 U {Vs[H(s) + 3st[s' = do(act, s) A Hl(st)]])) A H(So) 

where HlaA1 = 1161 11;. By the structural semantics of the p-calculus, l\(act)$~~ll; = 

(31 I 3% with s2 = do"(act21, sl) and s2 E IIq!qIIf), and hence, because I14111f = 

~ 1 % ~ '  , 11 (act)& 11; = {sl 1 352 with s2 = do"(actn, sl) and s2 E HIzA1 }. Moreover, 

= {sl I 3sz with s2 = dog(act",sl) and s2 E HlaA1), and hence, because 
a- HaA Il(act)6 11; = {sl 1 3% with s2 = doa(act", sl) and s2 E HlnA'}, I l ( a ~ t ) + ~ l j ~  - . 

When is pZ.&(Z), then 4' is (Al(H/Z) U {Vs[H(s) + Hl(s)]}) A H(So) where, 

for each subset A of sit", H1 @ l ( A / Z )  - 
- Il$lll&,zl. By the structural semantics of 
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the p-calculus, 11pZ.41 ( 2 )  11: = n{A C sita I 1/41 l l ~ A l z i  G A), and hence, because 
2l Qpl ( A / Z )  1141 I I V ( A ~ Z ]  = H1 for any subset A of sitn, 

Suppose that, given a rule r ,  functions head and body return the head of r and the 

body of r ,  respectively. Moreover, suppose that, given a definition A and a predicate 

symbol H in .ri, R g  returns the set of rules in A such that, for each rule r in R;, 

head(r) = H .  We shall let a function FH1 : @(sitn x sit") + @(sitn) denote an 

operator such that 

A ( A / Z )  Because ~ 1 %  = pH1 (-, A), and 

Ilp2.~l(Z)ll: = n{A sitn I FH1(-,~), A}. We shall let 

@(sitn x sitn x sitn) + g(sitn) denote an operator such that 

a function FH : 

We shall then let a function EH : @(sitn) + @(Sitn) denote an operator such that 

By Lemma B.1.3, EH, = FH (,I. Because the well-founded semantics coincides with 
A 

the least fixed-point semantics for stratifiable definitions of ID-logic, Hn = FH(,). 
Thus, HnA = EH,. Furthermore, because F ~ ~ ( - , X ) ,  = E ~ ( x )  and 
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We have proved by mathematical induction on the structure of 4 that 11411; = H'~. 

(Proof of LQL 5 L,) Given a sentence A A H(So) of LQL, we shall show how to construct 

a sentence 4 of Lp such that, for every structure U that interprets the symbols in 7, 

that is, H ' ~  = /I4[('. First, we shall inductively define how to construct 4, and then prove 

that H ' ~  = 11q511' by mathematical induction on a stratification of A. 

For each relational fluent symbol F of a, we construct a sentence F of L,. Moreover, 

given each stratum Ai of A from the lowest to the highest, for each defined symbol H of 

Ai, we construct a sentence 4H of Lp as follows: 

1. Given a rule r of Ai, we construct a sentence $T of Lp as follows: given that 4' is a 

conjunction of literals such that AXEA(7)X(s) for some subset A of a U 7-2, and H 

and Xq are predicate symbols, which are not necessarily distinct. 

If r is Vs[H(s) + #(s)], then qY is AXEA(1)aX where ax is X if X E rii; 

otherwise, ax is 4X. 

0 If r is Vs[H(s) +- 3s1[s1 = do(act, s)  A X+(sl)]], then is (act)X if X E T:,. 

Otherwise, qY is ( a ~ t ) 4 ~ .  

2. For each defined symbol H of Ai, we construct a set aH of sentences of L, such that 

aH = {$J~ : head(r) = H). 

3. For each defined symbol H of Ai, we construct a sentence +IH of Lp such that +IH = 

V F E m H  $T. If qH contains no defined symbol of Ai, then iH is 4IH. Otherwise, 

given that $IH contains 1 defined symbols H I , .  . . , Hl of Ai, we perform the following 

procedure: 

(a) For each pair (j, k) of integers from 1 to 1, if j # k, Hj # H, and Hk # H, then 

we replace each appearance of Hk in $IH] with pHk.+IHk. 

(b) For each integer j from 1 to 1, if Hj # H, then we replace each appearance of H j  

in 4 I H  with p ~ j . 4 ' ~ j  (Hj, H). 

Then, 4H is px.4IH (X). 
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We have inductively defined how to construct a sentence 4 of L, for each defined symbol 

H of A. We shall prove that H~~ = II4I1" by mathematical induction on a stratification of 

A. 

For each relational fluent symbol F of a ,  we construct a sentence F of L, such that 

paA = FU = 1 1  FJJ. This is the base case. For the inductive step, we shall let 4H denote a 

sentence of L, for H .  Given each stratum Ai of A from the lowest to the highest, for each 

defined symbol H of Ai, we construct a set R~ such that {r : r E Ai, head(r) = H}, and 

then the following simultaneous fixed-point operator F~ : -+ @(sita): 

where k = and r& = {HI, .  . . , Hk}. We shall show that F&, = Ilq5HII. 

If VrERH body(r)(s) contains no defined symbol of Ai, then 4H is U@,@H qY. Moreover, 

Otherwise, c$H is p ~ . q 5 ' H ( ~ ) .  Given that VrERH body(r)(s) contains I defined symbols 

Hi,, . . . , Hi, of Ai, then we construct the following least fixed-point operator E~ : @(sita) -+ 

@(sita): 

E ~ ( A )  = F ~ ( A / H ,  ~~~l (A, -),/Hil,. . . , ~~~i ( A ,  -),/Hil) 

where, for each integer j from 1 to 1, if Hi, # H ,  then 

cHii (A, -), = FHii (A/H)(,). 

By Lemma B.1.4, there exists a monotone operator whose nested fixed-point coincides with 

F&), and, by the construction of such an operator in the proof of Lemma B.1.4, E~ is the 



APPENDIX B. PROOFS OF CHAPTER 3 

monotone operator with Eg  = FXi Consequently, 
(03) ' 

F? 1 = EX 00 = n { A  sita : E ~ ( A )  G A) 

- - 

- - 

- - 

Because the well-founded semantics coincides with the least fixed-point semantics for 

stratifiable definitions of ID-logic, HaA' = FH (_) , and hence, HZA' = I14H 11%. 0 

B.3 Proof of Theorem 3.3.5 

Theorem 3.3.5 Given a basic action theory D in a language of the propositional situation 

calculus, QL' is equivalently as expressive as QL with respect to the set of structures that 

are bisimilar to zv. 
Proof. Suppose that r is a vocabulary of the propositional situation calculus, and that p 

is the set of action constant symbols in r .  We shall let LQLl denote the T-language of QL. 

Moreover, suppose that acto is an action constant symbol not in p. We shall let LQL denote 

the (r U {acto))-language of QL. Furthermore, we shall let K denote the set of structures 

that are bisimilar to gv. 

Because QL is a fragment of QL', LQL 5 LQLl and hence LQL S K  LQL'. To show that 

LQL/ =K LQL, we shall show that LQL/ LK LQL. Concretely, given a sentence of LQLl, we 

shall show how to construct a sentence of L Q ~  that defines the same set of structures as the 

given sentence does with respect to K. 

Because K is the set of structures that are bisimilar to sv, by Corollary 3.3.6, every 

sentence of LQL can defines only two sets of structures with respect to K: 0 or K. In other 

words, if sv satisfies a sentence of LQL, then every structure in K satisfies the sentence; 

otherwise, no structure in K satisfies the sentence. Therefore, to show LQL' S K  LQL, 

given a sentence 4 of LQL/, we shall show how to construct a sentence 4' of LQL such that 

k p  4 - kp 4'. 

Suppose that p = {actl,. . . , act,), and that zv interprets act0 as the unnamed action 

(i.e., the zero vector) of ~ c t ~ ~  (cf. Definition 2.3.1). Given a sentence A A X(So) of LQL/, 

we shall construct a definition A' of LQL by replacing each rule of A with equivalent rules 
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of QL. Given that H, Ax, and Xq denote predicate symbols, which are not necessarily 

distinct, we replace a rule Vs [H (s) t 3a3s1[s' = do (a, s) A X$ (st)]] in A with the following 

rules: 
Vs[H(s) + 3st(s' = do(acto, s) A Xq(st)]] 

Vs[H(s) t 3s'[st = do(actl, s)  A X$(s1)]] 

Furthermore, given that XI ,  . . . , ~1 are conjunctions of literals, we replace the following rules 

in A: 

ValAx (4 x1(a)l 

'WAX (4 x1(a)l 
Vs [H (s) +- 3a3s1[AX (a) A st = do (a, s) A X$ (s')]] 

with the following rules: 

where, for each integer j from 1 to k, XI V - V ~ 1 .  ' j 
The definition A' of LQL computes the same set of defined relations as A does, and 

&5= 
hence, X - - xaaD. Therefore, C p  A A X(So) - C p  A' A X(S0). 0 
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