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| J Abstract

There has been a ‘considerable number of algorithms developed for supporting a

distributed 'database system in areas such as concuffency control, minimizing data

f

transmission for set operations,  crash recovery. and command processing. However, at
the present time, most of these algorithms have only theoretical and/or simulated

o ‘
results concerning their performances. There is very little concrete knowledge
: - }
R )

concerning the actual performance of such algorjthins in a real situation.

.

°

In order to obtain some empirical results, a set of these algorithms have been
vi,mvpl‘(-amented. Specifically. they are algorithms for performing set intersections in a
distributed database system based on a broadcast network. The result shows that for
a small database, a static algorithm that fixes the order of }he ‘schedule .at\ the start
of processing performs better than a more sophisticated algorithm that ordérs the

>

schedule dynamically.

-

_In a distribuied database system.‘ the performance of the algorithms is alfo_very
much dependent on the method used to send the data. The method of bfoadcasting
allows one processor to send its déta out and all the rest of the processors:attached
to the same network will receivé this data simultaneously. As a result, all the
processors can now do f):u‘allel prebrocessing of Ithe data received. However, under
the UNIX 4.2BSD operating system in which we did our experiments, broadcasting is

only supported by the Internet User Datagram Protocol (UDP). and it turns out that

A

ii




“nh

" this protocol is unreHable. Thus a high le:‘?e'lg ikhable broadcasting protocol has 1o be ,,‘,,,,,,7

designed on top of the” UDP. Factors concernmg the desxgn of a: hxgh level reliable

broadcasting protocol and the rwult,s for the protocols tested will also be presented in

this thesis.

By
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Chapter 1

Introduction
" ad

1.1. Background )

Over the last few years, there has been a growingf trend towards a more

decentralized computer system. Instead of having one big ‘main frame computer,

several - smaller computers located at different geographical areas but all connected
: A
<

together through a local area network are being used. These computers or
workstations usually have their own resources such as ‘processor, memory and disk
storage. Each of the workstations can work independ’ently or  together by

: - : 4
communicating with the others through the network.

b

We can quickly see the advantages in having a distributed database system in

this environment where the data is stored on different computers. Such a system can

- N;;ghgr"@fore allow data to be physically stored close to the point where it is most

frequently used - with obvious efficiency édvamages - while at the same time-
permitting that same data to be shared by other, geographically remote users. These -+ =~
advantages are. however, balanced off with the numerous technical problems that also

come with it. The main tradeoff is the problem of larger data transmission time

. ¥ . :
required to send the data from one site to another over the network. For a non- as

distributed system, the main concern-for a database system is often the number of

disk' accesses necessary in order to retrieve cértain information from the database.

-

When the database is distributed over a nUénber of processing sites connected together

_,/\j - ' )

/



/ 2
by a .communication network, the amount of data transmission required to obtain the
information is an additional consideration for system performance evaluation. In fact,

many authors of papers on distributed databases have made the assumption that the

disk access time is insignificant when compared with the data transmission time.

There has been a considerable ‘number of algorithms developed for supporting a
distributed database system in a{_egs such as .concurrency control "383381], set

Ohgrations such as joins, unions and intersections on a.broadcast network [Luk84], -

crash recovery, minixﬁizing the number of acknowledgements required for a broadcast ‘
: ; B e

network [ChMa84] and command processing. Howevgr, at the present time, most of

these algorithms have only theoretical and/or ‘simulated results concerning their
performance. ‘There is very little -concrete - knowledge concerning the actual
performance of such algorithms in a real situation. The purpose of this research is to

provide some empirical resutéf?r different algorithms to perform set intersec{ions in

a distributed database system based on a broadcast network.

» | AR
Let us assume heré that the-entife database is a relation, which is basically a
two-dimensional tabte [Codd71]. A row of a table represents a record and a column
represents a getv of values in the s;'i‘me field of all 4th'e records. in the distributed -
"databasé eqvironment. portions of the database, agaih as relations, are stored in
various sites for the -convenience of the users. Since the sites are all connected

together by a communication .network, the distributed nature of the database should

be transparent to the users.

There may be requests for('information that - necessitate  accesses to relations
stored in more than one site. According to the relational model [Date81]. there are

. . . . : X .
three operations that may require data' stored in two different relations, and hence
o
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{ :
from two different sites.. The first two operations are (row-wise) union and

intersection of records belonging to different relations. If the records are long. it may
be 100 expensive t0 move an entire recgrd f;'om site to site. By assigning‘r:ach record
a unique identifier, we may perform unions and intersections of these identifier:s bas/“'
preprocessing Operaiions to select the records that are requeste{d. The third opera_ﬁ%n.

A
join, concatenates_records from two relations ‘together, if they have a common value
in a common joining co‘lumn. Semi-join [BeCh81] is_ an effective preprocessing
6pération for join to reduce data transmission. There“are two steps in performihg a L
semi-join operation of two relations in two different sites: 1." the joining column of a .
relatioz; is sent to tﬁe other site, and‘ 2. an intersection is performed between this
column and the corresponding joining column to eliminate records (i.e. rows) that ‘need ) (
not participate in the join operation. Thus in this s;.anse. the semi-join operation and
therefore the join operation is basically a set intersection operation. From the above
discussion, ‘'we conclude that intersection and union of sets z;re important database
o'pefations. the setis being relations, groups of identifiers or joining golurﬁhs. |
1.2. The Problem Def ined

From [Luk84], we have noted that the optimal algorithms for performing set

pnersectio{n and union are very. much similar. The data transmission is exactly the
. :

same. They differ in the 10§ _Opeg{:ion}t’hat they perform, either an intersection or

Lt union is simpler because it is unnecessary to reorder

.

the sets according to their cardinalities in order to minimize the amount of data

a union. In fact, performing.

transmission, whereas for set intersection, this réordering makes a substantial.

difference in ‘the amount of data transmitted.

¥

_In this thesis, we consider the problems of performing set intersections of data

i
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sets distributed over a number of processing sites. To»b’eq more - precise, 'it is a
wlem of gathering ’_at/ 7a pariic;l:llar Site. a. set of data whmh Eatisfies ‘a giyep set-
expression in a conié‘hctiVe nérmal form of a number of sets located in different
Tﬁsites. We will look at severu! algorithms for performing thesc; queries in a
distributed database environment and several transmission protocéls for Sending data
betiw. ‘the sites. Since the ‘dalz;a transmission time affects the overall perfprmante of
the ‘algorith‘m a great deal, we Qant to l.ook especiallylr for ways to minimize this
-factdr. The method of broadcasting provides just what is needed. It alléws many
processors: 1o receivo; the same ’messrage“ at the same time v{hen that message is
- ' vbroadcast q-out» by ene processor. As a result, all the sites can not only preprocess

» A .
. - ° A. . (’\
their data to eliminate redundant information, but do this preprocessing in parallel.

1.3. Objective of the Thegis

The optimal algofithm to perform set intersections on a broadcast network has
been imp]ementeq in a reél situation. The objective of this thes,is‘is to compare the
empirical results that. have been collected from this implementation. with the
theoretical results presented in [Luk84]. 'fhe costs of the algc‘>r'ithms in terms of the
lransmiésion time, the local opération time, the handshake .time, -and the amount of
data transmission are used as the comparisbn criteria. The empirical results‘from two

other algorithms will also be compared. The first one requires no knowledge of the

\f‘\;; data sets and does not peri;c:rm’any preprocessing of the data, w‘xile the second one
) . o . . -
\ tries to reduce-even more data transmission than the optimal algorithm. This is done
N at the expense of the overhead required to gather more information about the data

™~ . : / -
N —-—sets- and. dynamically reordering the schedule. This,analysis will provide us with the

information about whether the theoretical results as presented in [Luk84] reflect real

situations and whether the algorithm is optimal. If it is, then the algorithm is indeed

¢



optimal, otherwise, analysis will be presented to explain the discrepancies between lhe

theoretical results and the experimental findingé.

Since tfme method of .data transmissi'on is such a vital part of “the disiri_buted,set
interse:tion algori'fhms. we have also ana]yzed‘ several reliable broadcasting protocols
for data transmission. The analysis of the empirical results for these prbtoc‘ols will
Iso be presented and the criteria for a fast reliable t;roadcasting protocol will be

!

described.

1.4. Organization of the Thesis

The organization of the rest of this tilesis is as folllow‘s. In chapter 2, the
broadcast netv;'ork ‘and. ‘itsk reliability are described. vIn Ehapter 3. we discuss the two
internet protocols, UDP and TCP, \and how they ré]au; to broadcasling. Several
reliable broadcasting. protocols ;that  we have tested are described in chapt'er 4. The
results from these tests will also be shown in this chapter. lh chapter 5. an optimal
aléorithm for performing set intersections in a broadcast r‘\etwork is described. This is
followed by the vd‘escription of three variatiohs of the a]gorithm that we have
in}plemented.' The experimental setup in' terms of the hardware and the software,
together with a description of how the data is collected, is described in chapter 6.
The rest of the chapter is devoted to the results and analysis of the three

\

broadcasting . algorithms to perform set intersections that we have implemented.

N

Finally, chapter 7 contains the conclusion:

. | e



* Chapter 2

P
"The Broadcast Network
2.1. Introduction
i In a distributed database system, the amoint of data transmission over the

neé,.)yfﬁ’k is dependent not only on the algorithm used but also very much on the

. pe
B R -

tépology of the network. In this research, we have selected to use the Ethernet
network, which is a multiple-access broadcast network. as the basic communication

architecture. In this chapter, we will discuss the components of the Etheznet, ‘its

reliability, and how it relates to our experiments.

-

2.2. The Ethernet

The Ethernet [MetBoggs76. DaBaPrSo79] is a system ‘fpr local communication
among computing stations. The shared portion of the Ethernet consisté ‘of the -Ether,
which is a passive medium for the propagation of digitai signals and can be
constructed using any nﬁmber of media including coaxial cables, twisted pairs, and
optical fibers. The Ethernet can be eitended,from any \Fits points in any ‘d‘h%t:
by adding new segments which are join;d together by repéalers. Howe\l/er, theré m
be only one path through the Ether between any source and destination; if mdre than
one path were 10 exist; a transmission would interfere with itself. A |station’s
_Ethernet interface connects through an interface c;'ible to a transceiver which in turn
taps into the Ether. See figure 2-1. Our current expérimental hardware configuration

consists of five Sun Workstations, all connected together by an Ethernet network

which operates at a speed of 10 megabits per second.
’ 6
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2.2.1. Transceiver : ‘

A .
—.
4 ¥

The transceiver can be connected to or discbnnected from t}& Ether at any point
through the use of é tap.‘ which is a simple device for physically >c0‘nncctin-g‘t'<‘:>‘ the
Ether. This procedure can :be done at any time without disrupting any ‘on-going
comrﬁuhication on the netw‘ork.ﬂ Precautions must be rtaken to insure that likely
failures in the transceiver do no(t result in pollution of the Ether. In particular. the

transceiver should automatically be disconnected electrically from the Ether if power



8 ~ )

is removed from it or if it acts suspiciously. A normal transceiver should be able to

drive a kilometer of coaxial cable Ether tapped by up to 256 stations transmitting at

10- megabits per second. 1

£

22.2. Interface - - )

The Ethernet interface is a device that basicélly performs three jobs” When a
packet arrives at the transceiver, the interf‘ace hardware will check the addul"‘éss_,ﬂi_n the
packet’s header \to see whether - the packet is destined for this station.  This ha‘rdware
address filtering helps a station to avoid ’burdensomé software packet processing ‘'when

the Ether is very 'busy carrying; traffic intended for other stations. If the packet is

addressed for this station, it will be accepted.

After accepting a packet, the interface must convert the serial data from the
network to parallel data used by the station‘(or vice versa if the station is sending

~

out a packet).

~

‘Finally. a 16-bit cyclic redundancy checksum is calculaied by the hardware on

the serial data of the whole packet as it is transmitted or received.

2.2.3. Controller

The controller is a station specific low level firmware or software for getting

packets onto and out of the Ether. It is responsible for the collision control of

1S

packets and the random delay time for the retransmission of collided packets. ,,

K

In our research, the 3Com 3C400 Multibus Ethernet Controller is used. This
controller combines the functions of both the interface \': and the controller into one,

thus eliminating a separate interface.

i
b
/

Y,



2.2.4. Work,station |

In our research, five Sun Workstations have been used. each representing a data

node. The Sun Workstations are powerful general—purpose'microcomp'u‘ters using the .

32-bit MC68010 CPU which operates at a speed of 10MHz. More will be said about

the architecture of this machine in section 6.2.1. , -

4

2.2.5. Data Transmission . S

There is no central controller allocating access to the Ether. instead. a random
access procedure is used in which each station independently decides when to transmit.

A station with -a packet to transmit first listens to the Ether using a carrier sense

mechanism. If the Ether is idle, it immediately transmits the packet. otherwise, it °

waits until thé transmission that is already in progress finishes. Once it hears tﬁe
transmission cease, ‘the lstation immediately transmits its packet. If no other station
has been waiting, the station will acquire thé Ether and the packet transmission
should be successful. However, it is possible that two or more stations have been

waiting and now they all sense the idle Ether and begin transmission}simultaneously,

producing a collision. Each sender, however, continues to monitor th& Ether during

transmission and detects collision when the signal on the Ether does not match its

own output. Using a collision consensus enforcemeat- procedure to ensure that all

other colliding stations have seen the collision, the failure will .be immediately

apparent to all the transmitting stations and they can therefore abort the transmission

immediately. The collided packets will be retransmitted after a random delay by the
different stations in order to avoid repeated collisions. The use of a passive medium
and the lack of any active elements in the shared portion combine to help provide a

very reliable and flexible system.



2.3. Rehablhty of the Ethexgx:et

« One of the major objectives of any Iocal network is- to- provide reliable

communication faciiity, reflected both in the, COntinu%’Silability of the - network
itself aﬁd in the lowest possible'errorlrate as seen by the ipdi_vidua? hosts. S{ince the
only shared compénent in the network is the passive coaxial cable with no active
components, the overall reliability of the system is very high. However, packets are
none the less subject to transmission errors. Thus, five/*’/mechani‘sms are provided by
the Ethernet for reducing the . probability and cost of los.i;;”a packet. These are (1).

carrier detection, (2) interference detection, (3) packet error detection, (4) truncated

packet filtering, and (5) collision consensus enforcement.

S
- ~.

-

2.3.1. Carrier Detection

‘A packet’'s data is phase encoded on the carrier signﬂ;’;’iﬁus é passing packet on
the Ether can be detected by listening for its transitions. As a résult, no station will
start to transmit when there is” a packet on the Ether. The only time when a
collision can occur is when two or more stations find the Ether silent and begin

transmitting simultaneously.

2.3.2. Interference Detection ' .

Interference detection is done by the sending station and is indicated when the
transceiver notices a difference between the value of the bit it is i-eceivipg from the
Ether.and the value of the bit it is attempting. to tfansmit. The advantage‘gf this is
that the sendér will know \yhether its packet has been damaged after a paaxinium of
one round trip time. As a result, the packet can be scheduled for retransmission
immediately without having to wait for an acknowledgemen}. from the receiver. The

frequency of detected interference is also used to estimate the Ether traffic for

adjusting retransmission intervals and optimizing channel efficiency. .
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2.3.3. Packet Error Detection - o

A 16-bit cycllc redundancy checksum is computed and appended to each packet.
~&/ A

Packets with unmatchmg checksums are discarded.

2.3.4. Truncated Packet Filtering

During transmission. packets may be truncated. Packets’ that are truncated by

usually only a few bits are filtered out in hardware.

‘ 2.3.-5. Collision Cbngensus Enforcement

When a station determines that its transmission is experiencing interference. it
momentarily jams the Ether to insure that all other participants—im the collision will

detect interference and thus be forced to abort and retransmit after a random delay.

-

—

2.3.6. Reliability Reméf;
With these five (irror reducmg mechanisms, experlments have shown that the
transmxssnon error/__g&e‘ is about 1 in 2,000,000 packets [ShHu80]. It has also been

(

"shown that unde

rmal load, 99.18 percent of the packets make it out with zero

)

latency.‘ and less than 0.03 percent of the packets are involved in collisions. This

extremely small ‘error and collision rate justifies our assumption that all the lost
- ‘ ,

packets are due to problems in flow control and not in the data transmission itself.

Hence. solving the problem of Iost packets involves the design of a high level reliable

protocol that ménages the flow control.

PEMSORS
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2.4. Broadcasting and Multicasting

[

The significance - of using the Ethemet local area network is that it is a

multiple-access broadc&st netwofk The Ethernet uses a bus or tree topology (see
: z
flgure 2-2) and therefore, cgn support both broadcasting and multlcastmg

. e

)

-

(a) | " (®)

‘Figure 2-2:  (a) The Bus and (b) Tree Topology of the Ethernet.

In broadcasting, a transmitted packet will propagate the length of the medium

and thus, all other stations connected to the network can receive this packet.

Multicasting'i’s very similar to broadcasting except that the packet being transmitted is -

received by only some subset of all the stations connected to the network. In both

cases, the destination address in the packet header will, instead of contaipiﬁg a- unique

stations’ addresses. o

: ‘.
If a message is t0o be sent to all stations on the network./é broadcast of this

/ ;
y

S

station address. contain a "wildcard address” which will match all or/a subset of the



13

»

message will provide a lower variance of tfansniission arrival time bve'f Ms're]r)a’lr‘ﬂ’e’ -
single-destination' transmissions. Since all tﬂe stations can now reeeivebt’his'messageﬁt' S —
thé‘ same time (with negligible transmission delays), the processors can now ;;roceed to
précess the data ;imultaneousiy. In our distributed database applica‘tion. preprocessing
of the data is perfprméd‘- in this manner and will hopefully eliminate some redundant
information. The eliminated inforxhation need not, be transmitted later on in the

process of doing the query.



Chapter 3

Internet Protocols

3.1. Introduction
The Internet network ‘supports two protocols: the Internet User - Datagram
Protecol (UDP) and _the Internet Transmission Control Protocol (TCP). The main
giifference between the UDP and the TCP is that the TCi’ provides a reliable, flow- .
controlled. two-way transmission of data through a ‘connected socket, whereas the

UDP is a simple, unreliable datagram protocol using. a connectionless socket. The

issues that relate to these two protocols in comnection with our research will be

\ \ .
3

3.2. Socket Types and Protocols

-

discussed in this chapter.

“

Within the Internet network. communication between two processes Or nodes
takes place between communication endpoints known as sockets: FEach socket has the
potential to - exchange information with other sockets within the network. Several

methods of communication are available and each is associated with a different socket

Bl

type..

The two main socket types that the Internet supports are virtual circuit socket

. ‘. : \ +
and datagram socket. These two socket types correspond to the two protocols TCP
and UDP respectively. Thus, the way in which TCP and UDP work is inherent to

the communication methods used by these two different sockets.

. 14



3.2.1. Déta.gram Packet Switéhing‘ \

For the datagram packet switch;n“g technique, a message that is to be sent is
broken into smaller units®called Ppackets. The reason for this is that the ler;gth of
the data that may be trangr'm’t{ed\is limit‘ed in the paékefﬁswitched network. A
typical maximum length is oﬁe to several thousand bits: In our experiméntacl
'n¢iwork, the maximum length is 1518 l3ytes with' 46 bartes being the Apa&kel header
,ana ’1_47‘2 bytes for data. A méssag;'thét is of length greaier‘ than the rgaximum
packet size will be sent one packet at a time. FEach packet is tr;eated independently
by thé” network.  In addition,.no dedicated path ‘is established between the two
com'nvnuﬁ‘icating‘stations.v As a re'sqlt, each paéket must have a destinalion‘address
appended to it. | \

: , . | -

One advantage of the datagram approach is that no connection

required. Thus if "a station wishes to send only one or a few packets, thijgervice is

~

very fast.

3.3. TCP vs UDP :

Our -initial task is to investigate what the d\fference is in the trangmission Lime

between' the two protoeols - TCP and UDP. The‘ (periment is very simple; we just
check the time fequired to send a fixed number of fixed size packets ‘using the two
7c71ifferen1 \p}Z\tocols. The packet size used is four bytes and (the tirge is the average
elapsed time in seconds in sending 1000 packets to one node. e result is shown i.n‘

Lable. 3-1. -

3

From this result, we can draw the following conclusions: v
, N

1. Connection time for TCP is long.
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2. A small routing overhead for UDP. -
3. TCP is reliable. ,-F
. 4. UDP is unreliable.
Elapsed Time (seconds) f <
’ € : ) . :
Method , ' Connection - Transmission - Total
TCP : 113.00 4.15 | 17.15
TCP with additional
acknowledgemént/packet 13.00 16.89 29.89
UDP without acknowledgement 0 ' 6.32 errory
UDP with acknowledgement/packet 0 17.04 17.04
Table 3-1: . Trahsmission Time for TCP and UDP .

3.3.1. Connection and Transmission Times

TCP uses the virtual circuit socket which requires an initial connection'time for
establishing the virtual circuit. The result shows that indeed the connection time for
TCP is very long as compared to that of UDP. In fact, UDP does rot require any

connection time at all simply because ‘the datagram socket is connectionless.

However. the tﬁansmisgion time for UDP without acknowledgemént is. 2.17
seconds longer than’that of TCP.. This is exblained by the fact that for TCP. there
aré no record boundaries, so data can be packed t\ighter together. Thus, less paékets
are ne:ded for the transmission of the file. ivFor UDP, different records éannot be

packed together because there are record boundaries, and so, more packets are needed;

for the transmission of the file.
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3.3.2. Error Free Data Transmission | e

For error free data transmission, we can use either ,<the. TCP without
acknowledgement scheme or the UDP with acknowledgement scheme. The result in

1

table 3-1 shows that the transmission time for the TCP scheme is about four times

t

less than 1hai of the UDP scheme. However, with the large connection time for the
TCP scheme, the total‘ elaps ‘times for the two schemes are aboul the same.. l’;gure
3-1 shows a plot of the 101§ transmission time for sending diffeﬂrem numbers of four
bytes packets. From this, it is clear “that the UDP scheme is much&qter' for sending
less than 4K bytes orf data. Howévevr. when more than 4K bytes of data is to be
transmitted, the TCP scheme is faster. We might ask whelher‘this result is.
dépendent on the packet size at all. The answertis yes. When a packet size of 1472
bytes is used, we get the result as plotted iﬁ figure 3-2. Using a large packet size,
it does not seem like that there is any crossover point belween: th'e two curves.

Thus, the UDP scheme is much faster for sending any amount of data when a large‘

packet is used. Moreover, we will see in the next section that it is better to use a

-
larger packet size. \q
. b
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3.4. Optimal Packet Size

In our experiments, we have found that even though the transmission time
increases as the packet size ;\éw'r—luger (see figure 3-3), it is étill better to use the
largest possible packet size. The reason is that when we calculate the transmjSSion
.timve ‘per byte, the time decreases as the packet size gets larger. This resu i§
depicted iﬁ fiéure i3‘-4. This .graph show§ that for a data packetv,ﬁi‘ze of 400 bytes,
the throughput rate for both the UDP and theeTCP is the same. MSWeVer, as the

daté\\packet size increases, the throughput rate of the UDP improves over the TCP

throughput rate. ;. ' ]

T:)édips and peaks in .figure//3f3‘ar€";iplained by the fact that the buffer size
in the workstation is 512 bytes. ;In order td ;g;id a packet of size over 512 bytes,
more than one buffér must be acqﬁired. : Thus,‘for'the UDP case, the time increases
as a buffer is being filled. When the buffer is&full and a new buffer is acquire’d.
the time decreases again because of an almost empty buffer. For the TCP case, the
time changes are not as drastic as the UDP case. Note that the buffer holds, not

only data but also header information such as the source and destination addresses.

This is why the dips in the figure do not occur exactly at the 512 byte voundary.

Moreover, other experiments done by Shoch and Hupp [ShHu80] have shown

that the larger the packet size, the better the utilization of‘gthe network.’

. There is, however, a limit to the size of a UDP packet. This restriction is due

8
to the datagram packet-switch network itself. This maximum packet size is fixed at
1518 bytes ix;cluding the packet header and 1472 bytes of data. Hence, all our

experiments are dépe using this maximum packet size.

[ 4 .
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3.5. Reliability of TCP

TCP is reliable in itself because the protocol has already incorporated a flow-

control and window mechanism to guarantee delivery of packets. Thus, TCP without

acknowledgement is sufficient and an extra acknowled’geme}a{z::heme built on top of " -

TCP is unnééessary.

3.5.1. Flow Control in TCP

Flow control is concerned with ensuring that the rate of transmission of packets

“from the~source shall not exceed the capacity of the destination to receive packets.

The flow control mechanism in -TCP is based on a multi-packet acknowledgement

scheme. For a single packet acknow\ledgement scheme, afte._r the sender sends out 4
packet, it will wait for an acknowledgement from the receiver before sending out the
next packet. If, after a certain time delay, the sender has not vreceived the
acknqwledgement, it will retr;nsmit the packet. This scheme can be high‘ly égefficient
since the network can be idle for a great part of the ti;ne while acknﬁwledgem‘en,ts
‘are awaited ‘after.' each packet. To improve the efficiency of the line, several packets
can be transmitted by the sender before waiting for an acknowledgerrient. In doing
this, it will be' necessary to provide some means of distinguishing individual packets.
An acknowledgement also must now, be able to specify‘ which" packets it  is
acknowledging.  Packets can be distinguished simply By using a sequence number

carried in the packet header. An acknowledgement can thus use these packet sequence

numbers to specify which packets it is acknowledging.

t

"The number of packets that may be transmitted before an acknowledgement is
received is determined by several factors such as the line bandwidth and the

<

availability of the receiver’'s buffers. This number, known as the "window width", is
/ B
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s

agreed upon ~by all the nodes at initialization time. At any point, 'the'transmitiér can
transmit packets that are'with.‘i*n' the width of the window continuously. Once this is
done, it w.ill wait for an acknowledgément for these paékets. The window is moved
forward as the acknowledgements are received. _thué, allo'wi‘ng new packets to be

transmitted. In this way, the scheme guaraniees that all the packets will be received.

3.6. Unreliability of‘e UDP

In section 2.3, we saw tl{ai the i)ossibility of tranémission error due to jjhe
network itself vis very small. However, our experiment shows that lost packets are
very common with UDP. The reason, therefore, for this u‘nreli.ability is due nto the
fact that the UDP does not have any flon control as does the 'i‘CP. As a result, the
jnro'tdcofl}c':an only gi\)e its best effort to deliver the internet packets, but it' cannot
guarantee that they are delivered once and only once, nor that they will be delivered
in the same order that they were transmitted. Packets may‘lélso be lost due to the
transceiver's buffer overflowing. " If data arrives at a controller whicl} is unablé to
accept it in;o its buffers, that data can simﬁly be thrown away with the 'comp17e1e

assurance that it will be retransmitted eventually. However, with just the bare UDP,

no retransmission will be called for.

—

Packets lost due to buffer overflow happens quite frequently when a sender is
sending out packets at a very high rate without any interruption, but the receiver is
picking up the packetsvat a much slower speed. Another cause for buffer overflow is
when messages from various statiéns arrive simultaneously or within a very short
period of time and again the receiver is unable to process them as fast. In order to
understand this problem of buffers overflowing more fully, we need to look at the
hardware aspect of -the multibus' Ethernet controller where the packets are being

picked up and buffered from the network. _ \

LY ¢ ]
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3.6.1. Multibus Ethernet Controller

Our experimental Ethernet uses the 3Com 3C400 Multibus Ethernet Cb;ntrolle»: as
depicted in figure 3—5. The controller is a device that 1: responsible for the carrier
sensing, collision detecting, and the buffering of encoded data for transmission and
reception. Part of its internal memdry is allocated to two buffers each of size 2K
bytes for the storing of data. ' *

.Ethernet

* tap

—
tr&ésceiver

controller

'
e . workstation

CPU

memory

¥

multibus

Figure 3-5: The 3Com Multibus Ethernet Controller

. A packet of encoded data placed™on the Ether will be picked up by the
controller if it is addressed to it, and will temporarily place it in one of its two
internal receive buffers. Following this, the controller will then try to interrupt the

workstation. If the workstation is not manipulating the message queue in its own
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memory when the interrupt occurs, it will service the interrupt by ‘transferring the

packet fron} the con‘troller's‘ buffer to the message quene i - its*"own”meinory.'
However, while the worl‘(‘stfzgion is manipulating the message queue, the interrupt is
disabled for concurrency control reasons. @ While the interrupt is disabled by the
workstation and ~more than two packets of information arrive at the controller, the
firstb-tw’o will be stored in: the two buffers, but the subsequent packets will be

"ignored. The pi:oblem is- that -the coﬁtrpl,lér, has only two buffers and each buffer

can only hold one packet no matter how small the packet is.

is 'problem of buffer overflow happens frequently, in two ~sitﬁations. The _
‘first situation is where a sender sends out a continuous stream of packets with nc?fx
pauses~ to a receiver who is‘ unable to en:pty. the buffers at this fast rate. ’I;hé
second situation is where t'here are several rreceiVers who need to acknowledge the.

arrival of a packet to the broadcaster at the same time. Since the: packet was

broadcast, all the receivers will receive the packet at the same' time with negligible

~ transmission delay, and if they all work at about.the same speed, they - will all
acknowledge at about the same time. " As a result. the third and subsequent

acknowledgements' arriving at the broadcaster will be lost.

- 3.6.2. Experiment .

L.

The experiment whose result is summarized in table 3-1 shows that the first

situation does indeed happen. In the case of UDP without acknowledgeﬁ;sgtj packets———— -

are lost due to.the sender sending out packets faster than the receiver can handle —
them. For the second situation. if there are only two buffers. then acknowleagement v

packets are lost if more than two receivers acknowledge a packet at the same time.

JR—

*

The experiment uses one broadcaster and four receivers.  The broadcaster
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broadcasts a fixed number of fixed size packets to-the four receivers. Upon receiving —

a packetA, the four receivers Will send an ackqdwledgemcm,,hackfmfihﬂmdcaéten.i
Only after receiv-i;ag all of the acknowledgements (or a time-out occurs if some
acknowledgements are lost) will tile brdadcaster broadcast the -next packet. = The
experiment is set up in such a way that either t'h‘e four receivers can acknowledge the

receipt of a packet immediately or some of the receivers wait for one second before

acknowledging. ‘The result for thf&txyriment‘(assuminarized in table 3-2) shows
_ N . o - _ & -

that when more than two receivers E‘eply ‘at the same time, acknowledgements are

3

o

indeed lost. | When only two réceivers acknowledge at the same 'time, no
'ackn(')wl‘edgements are lest. This 1sﬁ&1$o the case when three receivers delay even - -
though there are only two buffers. Tlﬁ§ is because when the first packet arrives, the
workstation can immediately transfer this packet from the controller to its own
'memory.v Thus there are still twyempty buffers for storing the next two packets.

This also explains why the number of acknow'ledgements lost for the one receiver

delay - case -is less than the no receiver delay case. When a workstation is
-manipulating the message queue, which is a time consuming process. the interrupt
from the controller is disabled. If both buffers already contain packets and another

packet arrives in the mean time, it will be thrown away. This is just the case when

no receiver or four receivers wait in our experiment.

" When three receivers or four receivers delay for thg same time, we would

‘expect the results to be respectively similar to one receiver and no recelver delay, but

this is not the case. ‘The reason is that t;hg”experiment is done in a multi-taskimv;
i N - ‘

environment.  Thus. when the acknowledgements are delayed for one sgcond, thek
process could very well be ‘swapped in and out several times. As a result, the C

acknowledgements will be sent at different times and thus arrive at the broadcaster

at different times. This in effect, is almost like using randomized delays for the
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acknow]edgements. Thus, the percenitages ofrm lost acknowledgements for the three and

four receivers delay cases are much smaller than the one and ho receiver delay cases.

number of D ) percentage of
receivers that wait L, ) acknowledgements lost
e, - ‘} ’ 25%
1 ' ‘ 13%
2 . 0% )
3 0%
4 0.03%

Table 3-2: Percentage of lost acknowledgements

e i

3.7. UDP Broadcast vs TCP

For error free data transmission, we can use either TCP without

acknowledgement or UDP with acknowledgement. We have seen that the UDP scheme
) . ‘

is much faster than the TCP scheme. Moreover, if we want to’ send the same

4

message to all the nodes., we can do still better than either of thé two schemes by

. & * . ] St
using the broadcast method that is supported by the Ethernet. In order to send the

same packet to n nodes using TCP, one will have to do this sequentially by sending
the packet ‘1o one node at- a time, whereas if we use broad‘c;aéting. we need only
broadcast the packet ’on;;é and all: the nodes will receive the packet simulténeously.
‘Thi§' means that to send the same data to n nodes, .TCP will take n times ylongelj

[3

than broadcasting.

There is.\-however, one draw-back in using broadcasting because it is only .

supported' by UDP and not by TCP. The result shows that UDP by itself is
unreliable because it does not have a built in flow control mechanism like TCP.
Therefore, if we are to use the UDP broadcast for data transmission, we will have to

~

/
build a higher level reliable protocol on top of UDP.
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3.8. Conclusion

~
- >

‘ : , /
To send a packet to many nodes using the broadcast method is definitely faster

than seniding a packet using .either TCP without acknowledgement or UDP with
acknowlédgémer;t: However. the broadcast method is only suﬁported by UDP, and
UDP is unreliable. Thus, if we are to use the UDP b;oadcast for data transmission,
we will have 1o build a higher level reliable protocol on top of UDP. Thlsf protocol
musi guarantee ihat ‘all the processors involved must receive. all thg data correctly.
This would imply that when a packet is lost, the receivers must be able to let the

Yy

sender know that the packet is lost and requést the sender for a retransmission.

v

—a_
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| Chapter 4

Reliable Broadcasting Protoeols

4.1. Introduction

Since data transmission is a .critical factor in a distributed database system, we
need not only a reliable bui also a fast broadcasting protocol. That is, one which
will spend the least amount of time in sending data, and yet guérantees‘ that all ;he
deta will be received by all of the pélrticipating nodes. We have noted» that the UDP
broadcast is unreliable and therefore needs to have a higher level reliable broadcast
protocovl built on top of it. In this research, several broadcasting ’protocols built on
top of the lmernepUser Datagram Protocol have been tested. They differ in the Wayv
in which the —acknowledgements —are —made- zmd in—the —method used —for the ——
retransmission  of lost packets. ' The protocols are:  acknowlédgement per packet._ '
ackﬁowledgement per file with file retranémission. acknowledgement per file with
selective packet retransmission, and no acknowledgements o; retranﬁmissions. Note
that the last scheme is not really a protocol, but only for the 1~Jurposee_ of finding the
lower bound for data transmiesion and the everhead required for ac'knowledgements.
Several variations of the above protocols have also been tested. We will now describe-

these protecols in detail. A pseudo code listing of these protocols can be found in

“appendix A.

0
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4.2. Acknowledgement Per Packet With Packet

Retransmission f/

For this prdtocol. a fileg is broadcast from a sender to the receivers in data

packets consecutively numbered from one. A data packet, as depicted in figure 4-1,

has a sequence number and a data field. ‘ J
,/7< _‘V' 7
sequence data
number

4 bytes ™\ nbytes

Figure 4-1: Data Packet

The sequence numbers begin with one and increase by one for each new data _packet.
thus allowing the receiveré to discriminate between old and new packets. Thwta v'
fAi'eld has a length of from one to 1456 bytes making the maximum packet length to
be 1472 bytes.lA All thg packets, except possibly for the last one, have the maximum
lehgth size. If ‘the pz;qket is 1472 bytes long., the packet is noi the last data packet;
if it is from one to 1471 bytes long, it acts as the end packet and signals the end of

e

the file transfer.

- Afger broadcasting a packet, the broadcaster h@}/fo wait for an ackRmowledgement
from each of the receivers. An acknowledgement packet is 4hown in figure 4-2.. The
. ¢ §

| : /
sequence number is the number of. the packet that it i&&o’%mg and the

message is always OK. The broadcaster will miss z:ryacknowledgemem if either the

acknowledgement was lost or the data Lj

«

lSce section 3.4.for a discussion of why we have selected to use 2 maximum packet size of 1472 bytes,
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sequence
number

\/ _ ' 4 byteé | | 4 bytes s

. i Figure 4-2: Acknowledgement Packet

message = OK.

+ .

packet never arrived at the receiver and so no acknowledgement was made. In either
_ case, the broadcaster will tim‘eout and will rebroadcast that déta packet. The
broadcaster will not go on to send the next packet until the acknowledgements have
been received fromlrall the receivers. All pagkets rece;ivéd by the receivers will 7be
acknowledged with thé message OK, but only the ones with the same sequence number
as that of its own internal sequence number count will be tvaken. The others with

b |

the previous sequence number will be ignored. This acknowledgement scheme

guarantees that at each broadcast. all previous packets will have been received by all,

1

~ the receivers.

The end packet, as mentioned before, contains less than 1472 bytes of data.

/

~*
sequence 12
number message = END
4 bytes 4 bytes

Fi 4-3: End Packet

7

If the file happens to divide evenly into the packets, thussfilling up the-las) packet,

'> . then an extra end packet will be broadcast. This end packet bg the sam7 format as
N
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. w -
v

the aéknow}edgemen&packet (see figure 4-3) except that it Has the next dawpack;t

sequZch number and the message is END.  After receiving the end packet, “the
O ' :

receivers will acknowledge .it as before. They will}then wait for an end-reply packet

from the broadcaster, upon which they will terminate.  Updn receiving all the

acknowledgements for the end packet, the broadcaster will brpadcast out an end-reply
packet anid then is free to go off with the asglrance that the file has been

transf eri-\ed successfully. However,

R S
the vbroachl rebroadcast the

The purpose of the end-reply packet is to make it practically certain that the
sender and receivers of a file will agree on whether the file has 'been transn{'p'réi

correctly. If the broadcaster lost an acknowledgement for the end packet, i} will

rebroadcast the end packet. With the above end sequence, the receivers will still be’
' f ‘, . ’

around toacknmfl)édge an end packet if the original one was lost.  Thus the

if an acknowfedgement for the end. packet is lost.

broadcaster and receivers can all terminate together after being assured of  a successful

file transfer. )

__A43. Acknowledgement Per File With File Retransmission

The second broadcast protocol is very much like the first one". The dafa packet,

- like the first one, has a length of 1472 bytes with a sequence number field and a

data field. The end packet is a data packet that is shorte‘r than 1472 bytes or one
with an ENR_message. The data packets are broadcast out consecutively numbered

;
from one. The difference is that instead of the receivers acknowledging every packet

7~ .
that is broadcam will wait until, receiving the end packet. After receiving the
end packet, each receiver will send an acknowledgement packet back to the

~ broadcaster. The acknowledgement packet is -similar to the previous one with a

A
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sequenée‘ ﬁumber followed by a four byte message.' The message, howeve;', can be" . (
éither‘ oK (if all the packets Wwere received) or RETRANSMISSION (if sc;nie paékets were 7
lost and retransmission 1s requipéd). If one of the acknowledgement message is

L. ’ ’
RETRANSMISSION or "if an acknowledgement packet is lost, the lvbroa'dcaster will

retransmit’ the whole 1>e starting ' from packet one; in .effect. restarting the whole

process. However, if 411 the acknowledgenient messages are OK, then it will broadcast

€

. the end-feply “packet and then terminate. The receivers, after sendirig out the
acknov‘ledgement fors the end packet will either wait for the retransmission of the file
if it has lost some ]é’ackets, or wait for the end-reply packét. If it is waiting for the

end-reply packet but receives data packet's, they will be ignored.

e

4.4. Acknowledgement Per File With Selective Packet

Retransmission

Ny

As the name suggests. the procedure for this third protocol is. much the same as

the second proiocél. The detailed operations for dealing witﬂ the packets and the
acknowledgements, ‘however, are quite different. Instead of retransmitting the thole
file when some I;ackets are lost, only those packets that are lost are retransmitted.
Thus the acknoWledgements will need to specify which data packets have been lost
and then the broadcaster needs to be able {o selectively pick out a portion of the file
correspondingv to those lost data packe_:.ts for retransmission. This scheme is very

much like the flow control and window mechanism used by the TCP protocol with

the window width being the size of the file. |

The broadcaster begins with broadcasting the data packets consecutively
-

numbered from zero to the receivers. The data packet uses the same format as

described previously with a total length of 1472 bytes. The lasi data packet, even

¢
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with a length of less than 1472 bytes is not gons.idered as the end packéf. An 'erxtrrsﬁlr -
end packet using the next sequence number with the message‘ END is always broadcast
td signal’ the end of a fije transfer. }The reason is that.this extra end packet must be
there to signal The "end when several packets all having the maximum length size are
being rebroadcast. This' situation is similar to the case where the file divides evenly

into the packets and so all the packets have the same maximum length.

The acknowledgement packet has a variable size as shown in figure 4-4.

sequence message 1 messa e2 | message n
number g ' g€ < _ SSag

4 bytes 4 bytes 4 bytes ' 4bytes

Figure 4-4: Variable Format Acknowledgement Packet
There are as many messages in thei acknowledgement packet as there are data packéggiii
the first message corresponds to the first data packet, the second meésage to the
secona data packet, etc.. Ea.ch of the méssﬁges can be either OK if the corresponding
data packet was received or RETRANSMISSION if that packet ';iwas lost.  With this
acknowledgement scheme, there is a limit to the number of pe;ckets that can be sent
for ‘each file transfer. This limit of 364 datﬁ packets or a file size of about 530K

bytes is good enough for our purpose. Notice that we can use a message size of only

one bit, thus increasing our limit by 32 times. - -

Upon receiving a packet, the receiver. will check whether or not it has already
received this packet. If it has already received this p;acket. the packet will be

ignored, otherwise, it will store the packet 2nd notes down that this.packet has been
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received. After receiving the end packet, the receiver-- will construct — the -

acknowledgeme;t packet according to whether a data packet has or has not been

-

re.ceived.‘ After sending the acknowledgement packet back to the broadcaster, the
receiver will either wait for the end-reply ‘packet if it has relace‘iv‘ed all the data
packets or it will wait for vthe retransmissién of lost paékets. If it is waiting for the
end-reply packet, it will ignore all other pavckets that it receives. It will continue to

wait ‘until it receives the end-reply packet upon which it will terminate.

»l The broadcaster, upon receiving all. the acknowlédgements will decide on which
packets need to be ;etransn{xtted. This‘means tixat\all the packet‘s‘ will need to be
buffered. All lost data packets from any receiver \‘Nill be rebroadcast sequer;tially
with no interruption. The last data packet rebroadcast will be followed. by the end
-packet. This rebroadcasting of lost packets will continue until all the messages in all

the acknowledgement pa’ckets are OK, after which the broadcaster will broadcast out

the erfid-reply packet and will then terminate.

4.5. No Acknbwledgements Or Retransmissions

This last protocol with né acknowledgements or retransmissions is really not a
-protocol at all.4 The broadcaster‘ simply assumes that all data packets will be received
by all the receivers. Thus, all the data packets will be broadcast out consecutively
numbered from one with no interruption until the end packet. The end packet, as in
the first protocol. is either a data packet with less than 1472 bytes long or one with
the END message. After the end packet. the broadcaster will just terminate without
any further work. All“'th‘at the receivers can do'is just hope for the best. If there

-

are lost data packets, then the result will be erroneous.

The purpose of this is 1o find out what is the overhead for the
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acknowledgements and retransmissions required by the previous three protocols. When
there are lost packets or incomplete file transfer (which happens quite often). no data
~is-gathered. Nevertheless, when all the file transfers run to completion, we will have

the lower bound for the transmission time.

4.6. Variant Of The Third Protocol

Of the four protocols that we have discﬁssed so far. the acknowledgement per

file‘w‘ith selective packet retransmission protocol deséribed in section 4.4 is probably

. the best one. HowgVer, \a;e might still be able to impréve on it by pufting‘ a time

- delay between the broadcasting of the data i)ackets. This follows from the fact

discussed in seciion 3.6 that when paékets are arriving too fast at a ,trahsceiver. they

will be ignored. Thus, if we slow do\\(ﬁ the broadcasting process, fewer data packets
will be lost by the receivers, and so fewer retransmissions will be required.

If we also make the -receivers wait before making the acknowledgements. t.hen'.

the broadcaster will not lose so many acknowledgements and therefore will not have
1o wait for a timeout. This will not work if we use a constant time delay ¢ for all
the receivers. We need to have the first two receivers reply with no delay. the

second two with a delay of ¢, the third two with a delay of 2¢. etc..

~

4.7. The Initial Connection

The initial connection routine is common to all of the protocols. It basically

checks whether all the nodes specified in the qliery are responding or .not. If all the
nodes respond, then the ‘processing can continue, otherwise. the intersection cannot be

completed.

The node where the query is issued initiates this connection by broadcasting out
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the query to all th;e nodes. Upon receiving the query, all the nodes will check
‘whether its data set is being requested for the intersection. If it is, then the node
will respond by sending its data set size back to the réqUesting node, otherwise,
nothing 1s done. When the requesting node has received -all the d;ta set‘sim from
the part‘icipating nodes, then the processing of the query will start. If one of the

requested data nodes did not respond, it is assumed that that node is down and its

data set is not available, therefore, the query cannot be processed.

This process of gathering the data set sizes is referred to as the "handshake” in
later chapters.” The initial connection, therefore, involves the setting up of the sockets

and their addresses, followed by the handshake.

4.8. Empirical Results

The transmission times for the different protocols are summiarized in table 4-1.

The lower bound for data transmission is 0.25 milliseconds per byte. The two

protocols with delay, which are variations of the acknowledgement per file with
selective retransmission protocol were expected to perform better. However, tﬂhey
performed the wo-rst among all the protocols tested. Th‘e reason is that .the delay :
used is Vone fegond which is too lphg for any practical'purposes. Most of the time is

spent on waiting." Thus. if we are to use delay, it will have to be less than one

second. The acknowledgement per packet scheme has a transmission overhead of 0.19

milliseconds. This scheme requires too many acknowledgements, which are time
consuming. .

'

The 0.39 millisecond transmission time for the acknowledgement per file with

-wh{_)ie file retransmission protocol is a little misleading. This protocol runs

indefinitely for a very long time for many file transfers and this is not reflected in



Transmission Acknowledgement

Method Time (ms/byte) Overhead (ms)

No acknowledgements ‘ 0.25 ‘ 0.00
Acknowledgement per file with

selective retransmission ‘ 0.36 0.1
Acknowledgement per file with

whole file retransmission 0.39 , ~6:14
Acknowledgement per ‘packet . 0.44 - 0.}2 e
Acknowledgement per file with

delay in sending : .

acknowledgement - ' 0.72 0.47
Acknowledgement per file with

delay in broadcast - 095 0.70

Table 4-1: Transmission Time For Different Protocols

the summary. The reason why this happens' is that the whole file is retransmitted

when there is a lost packet. This in eifect, is the same as' restarting the whole

.process. If all the processes operate at the same speed. then the same result will

happen again and the same packets will be lost. Thus, repeating 'cyc!es are formed,

and the process goes on indefinitely.

The best of all the protocols tested is the acknowledgement per file with
selective retransmission scheme. This protocol requireS a transmission time of 0.36
milliseconds per byte and has an overhead of only 0.11 milliseconds. The comparison

experiments for the three set intersection algorithms use this .protocol.
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4.9. Criteria for a Fast Reliable Broadcasting Protocol

From our experiments. we have found several criteria for a fast reliable

bl;oadcastirig protocol. ' In order to have a -reliable protocol, some kind of
ackhowledgem‘ent iS necessary. However, we must __minimiz,e the number"of
acknowledgements required. Our protocol which uses on]? oﬁe acknowledgement after
éach file traﬁsfer is 7thie ;z;test ' ﬁ o T

~L

Another criterion is the packét size used. We ha§k found that the‘larger the

- %
T e - ‘5‘“ w. T -
- | e eyt

s

packet size, the faster the rate of data transmission.

L

{

Both the delay . in Broadcasting,, a packét l and the delay in sending
acknowledgements must be less than one second. In using a one second delay, most

of the transmission time is spent in useless waiting.




Chapter 5

Set Intersection Algorithms

- 5.1. Introduction

A straightforward solution to obtain an answer for a given set expression is to

require all -the data-sets—specified in the expression to ~be transmitted to the site

’

_where the answer is to be presented and then compute the answer there. The

problem with this solution is that it ignores the distributed nature of the problem
N . ) N - r -
and the properties of the broadcast network. .It will therefore result in a tremendous

amount of data that needs to be transmitted. Since in a broadcast network, every set

&

transmitted over the network is available to all nodes, each node can make use of

this information to process its local set- and hopefully to eliminate some elements

*

from the set which have been rendered redundant. This will result in a smaller set

each node may reduce the response time in deriving the answer.

3

In this chapter, we will describé three different ‘algorithms to "perform set
intersections on a distributed »da‘tabase:. Simple, Static. and Dynamic. The Simple
algorithm does not take into consideration the properties of Vthe !;roadcasting network,
while the Static and the Dynamic algorithms are based on the theoretical results

described in [Luk84]. We will briefly summarize the theory developed in [Luk84]

and then describe the three algorithms in detail.

41
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5.2." Theory

5.2.1. Definitions And Notations

¥

The processors or data nodes in" the broadcast network are denoted by

—_— s

ANI.Nz, v N ;fmred in each data node N, , I S i € n, is a set of data objects -
denoted by ‘5 j I £ i < n " Any one of the data nodes can be a request node R
and can Smel} a requeSt' Q A request Q is a Set eXpreSSlOl'l of lntersectlons Of thew*ﬂ”**”

data ob]ects # ., and has the form
- /-f

i S

q(1) N : .

S(z) n .. N === (m)f form £ n

. where each Sq is one of the sets which are all distinct from each other. Once Q has

been submitted, it is interpreted within R, which acts as the scheduler, and a schedule
7~

. ‘ .
’ ¢

to perform all necessary operations is derived and broadcast aH the data nodes.
. N y pe ~

[

5.2.2.. The Schedule L

, N < IR I
The schedule is a sequence of operations which are arranged in the order of

egi\ejcy.hen- At&%very time step in a schedule, a node is desxgnated to be the

transmitter- of its set and the other nodes will be the recelvers The local

operations to be perfofmed .in each node after reception of the transmitted set are also
specified. ~ | .

After the schedule has been formulated by the scheduler R.. it is broadcast to . =
“all the nodes. All the participating nodes will then follow this schedule in thelr —
processing. After the completion of all the operations specified in, the schedule, the

result 7, which is a set of objects satisfying the request Q. will be available to the

resfult node R.
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5.2.3. Node Operations | e

There are two kinds of operations specified in a schedule that the procesgot in

each data node performs:  data transmission- and local operation. For - data

transmission, if node .V, is the transmitter, it simply broadcasts its own data set S, to

all the other nodes. In the schedule, it is denoted by

Ni: Si — network .

*

A local operation is an intersection of the local set with the received set. When § ;ig'i

received, the node N, will perfdrm “the local operatidn denoted by

v ) -

1

N1 .Si - SiﬂSj

This means that the. local set §, is replaced by the intersection’ of the two sets S, and

%

'Sj., bpératio’nally. ‘the part of "the set S, which cannot be found in the received set S;

~will be rémoved from Si.

)h
5.2.4. Optimization |

As in- many optimization problems. the kind of 7opt,imization' achievable depends

very much on the amount of information that is available to the scheduler. In order

to reach an optimal.soluiion, the- scheduler must have complete knowledge of all the .

sets stored in all the nodes. But in an. environment where the data is constantly

changing, it would be very costly for the'scheduler to have a complete knowledge of

all the data sets. This is especially so when the scheduler is not fixed at one

i

- —_— ‘ L . *
particular node. Any node in the network can be a request node and therefore is the

scheduler.  This would imply that all the nodes in the network must have a

complete knowledge of all the sets stored in all the nodes. Even if this information

*

is available, and the scheduler has determined the optimal schedule, once the nodes
start to process the schedule. the data would be changed, and an. optimal schedule

may no longer be optimal any more.

e

Pt el -
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Since it seems highly unrealistic to expect the scheduler to have complete

knowledge of all the data sets, we will assume that only the cardinalities of all the
sets are known at the start to the scheduler. This is not an uncommon assumption

in a database environment. Due to this limitation, it is therefore only possible for
. T T )
the scheduler to derive an optimal solution in the average case, i.e., the solution with

-

the least expected cost. The amount ‘Vof data transmission is calculated as the expected

value of what will be eventually sent. For example, if S, NS, is to be transmitted,

the amount of data transmtission is estimated to be -

,cardin,ality(Sl) X cardinleity(SZ)

cardinality of the universal set

For a more detail treatment of this, the reader is referred to [Luk84].

t ¢
The cost of a schedule is the total cost of all data transmission. - The cost of

the local operation is omitted because it is assumed to be negligible: (This is an

assumption not to -be —adopted —in—our -experiment.) - - From —the - viewpoint—of —

transmission, an object is one unit of data and transmission of an object incurs one

=

unit of transmission cost. Thus the cost of a ‘schedule is the total number of objects

that are sent out on the network.

An optimal schedule is defined to be one by which the answer to the request Q

will be derived with minimum cost.

We will now derive an optimal schedule for Q .where Q is an intersectipn of n
sets. i.e. S, N S, N .. N S Let us re-label, for the time being, the sets according to
their cardinalities in increasing eorder, so that §, is the set with the least cardinality

S

and ' T ' _ -
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n

N N oo

This reordering of the sets is denoted in the schedule by

Q <« reorder Q

The optimal schedule is as follows: \

The Optimal Schedule

(0) R : @ « reorder @
¢ — network

(1) Nl-" Sl — network .
Nz.' S'Z - 81082, e e ey N.D: S.D - SlnSB

(2) Ny: S’ZV — network ‘
Ng: 53 = SpNSg . .... Np' Sp = 5gNsy

(n) N,: S, — network

R : 4',7.,—, Rt . e

T is thus the answer to Q and is available not. only to R. but also to all the

other nodes. The proof of optimality for the above schedule is given in [Luk84].

5.3. The Simple Algorithm

This first algorithm, referred to as\the Sxmple Algorlvthm» does not make use of
the parallel processing that is possible wni —é—broadcastmg network. Neither do the
nodes perfornr any preprocessing to its database. When given the query Q.-rhe
request node R will \iniiiate a connection with all the N/s as si)ecified in Q by
broadcastiné Q. This procedure is referred to as the initial connection. and is

described in detail in section 4.7. The request node’ R does not rearrange the order of

Q at all. R simply uses the drde; of Q as the schedule for operation.

.
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After the initial connection has been established with all the participating nodes.
the request node R will wait for all the data nodes to send their entire data set

sequentially following {/tfl'xe order of the schedule. Upon receiving SJ. , R will replace

~

its own data set §; with: the intersection of S; and Sj. This is the local operation

! N
—_— y

~denoted by ‘ . ),

S, « §;NS,

The data nodes. upon receiving (., will follow the order as specified by >Q in
which to send the data. The data is broadcast by each node sequentially to the rest
of the nodes. However, all the nodes except for R. simply ignore the data being

. : :
teceived and no local operations are done whatsoever. ﬁ_

»

1
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i

5.3.1. The Schedule
Given the query

Q=5*S,* .*8§

n

the nodes will follow schedule 1 below

Schedule 1

(0) R : @ — mnetwork

(1) N;: 87 - network
o R: T <« SgNS; if Sp is in Q
T « S;  otherwise

(2) Ny: S, — network
R».‘ T \an TﬂSZ

(n) N,: S, — network
R :T +-'Tr'hSn

Note that all the nodes do not make use of the information that is received

/—f/r(:l:; broadcast. They can certainly make use of it by doirig some preprocessing

and hopefully, they can reduce the size of their data set by -eliminating the redundant

information. This is just the approach taken by our next algorithm.
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5.4. The Static Algorithm

In this algorithm, we want to make use of the information that is broadcast to
each of the nodes. Since the data is broadcast, all the nodes will receive the data at
the same time.~-This means that the processing of ihe data can be done in parallel

by all the nodes.

The algorithm starts, when given a query, by pérforming the initial - connection———
steps. This involves the broadcastingv of the query to the other nodes. All the
participating nodes Will reply by sending the cardinality" of  their Idatébase to the
request node. Upon receiving all tﬁe cardinalities, the request node will reorderk the
query sequence according to the vcardinalitieé in the increasing order. This reordered
quefy becomes the schedule of operations and is broadcast to all ‘the nodes. - This
schedule .rerr;ains fixed for t'he> duration of tl;e whole process and the nodes will use

thig—schedule to determine which of the two operations, local or data transmission, to

p%rform. This algorithm is just the theoretically optimal algorithm as described in
secTiom~S,2.4. ) X
5.4.1. The Schedule

Given the query

Q=S,%S,* ..*5

n
R will reorder Q according to the cardinalities in increasing order. Let us, for the

" time being, re-label the sets according to their cardinalities so that

5 < g < < sy ’
1 n

X ‘\-—/" 7 ,
This reordering of the sets is denoted in the schedule by P

R:Q ~ reorder Q
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The static schedule is as follows.

Schedule 2 . ; .

reorder @
' network

SN
\®)
- -
o
DD
11

(1) N;y: S5, — network , .
Ngi Bz = 51N8z . ..., Np? 5p = 8,05,

(2) Np: S5 — network
N3 Sz < SgNSz ., ..., Npi S; = SpNsy

S.  — network

(n) n
T «~ S,

o=

\ .

Operationally, we select the set with the smallest cardinality first and broadcast

the set to the other nodes. [Each node then calculates the intersection of the received

set with its own set. ’fhe resultikng set size wiil therefore be either the same or

’,smaller than the original set size. The next‘ smaller set in the original schedule is

then broadcast out. Each node again calculates Vt*he_ intersection of the received set

with its own set. This sequencé is repeated until :all the nodes containing sets in the

expression  have broadcast their own set once. Whatever the last node broadcast will -
. /

i ‘»/\_,,_\_‘_ﬁ__//
be the answer to Q. . : S
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5.5. The Dynamic Algorithm
" The Dynaniic algorithm is very much similar to the Statié ‘algorithm. The only
difference is that after each set transfer, the request node will wait for the other‘
nodes to sén@eir new data set sizes to it. Only those nodes that have not sent
their data set need to4 reply, ih'e~rest of .them tha_t have élready sent their data set
need not do so Having received all the new data set sizes, the request node wi‘ll,, .
recalculate a new order for the schedule. Jhst like the initialvconstruction of the
schedule. this reordering is done according to the cardinalities of the data sets in the

increasing order. Once this is done, the new schedule is again broadcast to all the

nodes. and the nodes will follow this new schedule. The last set broadcast will be .

the answer to Q. ~ : .

‘This process of dynamically reconstruéting the schedule after each node has

transmitted its file should reduce the amount of data transfer even more than the =~

Static. algorithm. | However. there is a price to be paid for this.  First, more
operational time will be needed to recalculate a new order after each file transfer,
and secondly, more dai; transfers are necesSary from the data nddes so that the
reqﬁest node can have the new data set sizes for doing the rescheduling. This trade-

off is confirmed by our experimental results.
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5.5.1. The Schedule

- 51

The dynamic schedule is as follows.

Schedule 3

(0

(1)

(2)

(n)

)

R

— reoxder @

= network

- network
A Sl 052,

< 5;N5p,
~ reorder

‘= network

— network

— 505y,
— reorder (¢ - Np)

p;‘a‘t

H W
S]

IS5l

ISDI

(Q -

IS5z

ISp1

— .network

— network

Q—Sn

Fo

— network

— hetwork
Nl )

= network

= network



Chapter 6
- Results And Analysis

o

6.1. Introductidn

In this chapter, we will first describe the setup for our experiménts and how

the data is collected. The rest of the chapter will be devoted to the presentation and

analysis of the results for the three set intersection algorithms described in chapter 5.
6.2. Experimental Setup

6.2.1. The Hardware

All the experiments performed in this research were carried out on the local

SFU Ethernet network which operates at a speed of 10 megabits. per second. The

current hardware configuration consists of five Sun Workstations, all connected

-

together by the Ethernet and all‘r’uh‘ninvg under the UNIX 4.2BSD operating system.

The Sun Workstations are po,wer%ul general-purpose microcomputers  providing
state of the art computing anirénment. Operating in a distributed networkr.\ each
workstation supplies its user with a dedicated 32-bit architecture CPU and memory,
\\{hile using high-speed local aréa ‘communication,s to share other network resources and
servicé. The computational power of the workstatipns begin with the most advanced
mi.croproéesor available today: the MC6'8010,W iwaecent improvement to the Mgtcixglg

68000. Thé MC68010 operates with a clock speed of 10MHz and is able to address

52 3
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up to 4 megabytes of physical memory with no wait states. It can also _support up

-

to 16 megabytes of virtual memory per process.

B - . ) ’ \'
All the Sun Workstations run the most advanced version of the UNIX operating
| v . '

system, as enhanced at the L@iversity of California at Berkeley.. The UNIX 4.2BSD
version supports remote interprocess communication and remote execution of a process.

Thus, a local area network communication facility is a standard capability of every

workstation. N

Of the five Sun Workstaticns that we have, one is the file server for the

others. Hence, the work load on this particular machine is heavier than the other
four. During most of our experiments, most of the machines have no more than two
processes running except for the file server. This fact is reflected in our results by

the higher operation time required' by the file server as compared to the other four

machines.

The five Sun Workstations, together with the multiple-access broadcasting

4

Ethernet network, provide all the ha ipment necessary for our experiments.

-

The machines, connected together/ can thus serve as data -nodes in our model. with

the database distributed among them.

6.2.2.. The Database

In our experiment we have treated the data sets as groups of identifiers. These
identifiers are simply integers. We .have, thus, made the assumption that the record
size is equal to the key size. We will see in later sections that this assumption will

affect the ratio of the transmission time to the handshake time for the different

algorithms.
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Our database currently consists of 15000 integers distributed —evé’n—lr—‘y;améngthef—?;’{—

five nodés. Within one data set. no two inteﬁ: are the same. These integers have -

been randomly generated and ar:e uniformly ributed over a given range. This

assumption of a uniform distribution in the data sets is very common and is used in
many modeling situations. This 'is especially the case when no prior knowledge of

the database is known. However, we must realize that the results obtained based on’

this assumption will have biases and ‘therefore_will not apply. in_general, to other

modeling situations. We will discuss the implication of this assumption in this work

later on. For a more general discussion. the reader is referred to the Ph.D. thesis of

Christodoulakis [Chris81].

By using a different range, a different selectivity of the ‘data set can be

obtained. o 7 ‘ .

Definition 1: The selectivit‘z of a data set 1s defined as-

the cardinality of the data set
the range of numbers used

P

For example, if we generate 3000 numbers over a range of numbers’ from 1 to

12000. then the selectivity of this particular data set is

us, the larger the selectivity.lthe more chances there are of having duplicates in the

different data sets, and thus, the larger will be the resulting intersection of the sets.
This method of data generation is consistent with the assumption [Luk84] used to

estimate the size of overlap of two sets. -
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We have also made the "assumrption th‘at initially, there is a uniform selectivity -

and data set size throughout all the data sets. In the experiment., four different

selectivities are used: 0.10, 0.25, 0.50, an.d‘ 0.75 . All of these use a data set size of

. 3000 numbers. These numbers are generated- by the different machines at

initialization time and remain in central memory for the duration of the whole

process. Thus, the time measurements in the results do not include any data transfer

Y

time to and from secondary storage. '

6.2.3. Data Collection \ - '

The data that we have collected from our experiments falls into two catego;'igs.,
These two categories represent the two ways in which we can look at the cost of the
algorithms. . The first category contains data that deals with the amount of data

transmitted. The second category deals with the time required for the data

transmissions and the local operations. All the data is collected for the three

algorithms using the four different selectivities mentioned in section 6.2.2. Using the
five Sun Workstations as the data nodes, each -containing 3000 integers, the query
S R - /’_" T

given is always the /ir'xtersection of the five datafsets ‘ N . ) -

S *S, xS, %S, * 55

Since our  data sets contain integers, we can simply count the number of integers

o~ ~

that are transmitted for the amount of data transmission. This will give us an exact

cost for the data transmissions of the algorithms. o e ——

~

The .time measurements collected are the elapsed times for the ' data
transmissions, the local operations and the handshakes. These times are obtained by
starting a timer at the start of the operation and stopping it when the operation

finishes. Due to the constrainits of our hardware timer, the times are rounded off to
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the naa.:est-i/() milliseconds. Since we are working in a multi-processing environment,

N~ e timeéL?do fluctuate " depending on the usage of  the system. Thus, the gelma
7 transmission n;im% is the average elapsed time required to transmit aiggfa set obtained

from several 'runs.r The local operation time is the avérag_e elapsed time required by a

" node to process the received data, ie. to perform the operation ‘ .

Si“.- St. N Sj

where Sl. is the. local data set and Sj is the received set.

The handshake time is the average time required for the scheduler to obtain the

e L ' ‘ o A
‘data set sizes from the participating data nodes and then to reconstruct the schedule.
The process of obtaining the, data set sizes involves two steps. ~ First, the scheduler

will broadcast out a message specifying which node needs to respond. Upon receiving

. :
this message, the specified node will reply with its own data set size. For the Static

and the Dynamic algorithms, there is a handshake during the initial connecti'on.r ~ This

-

initial handshake time is the same for both of them. For the Dynamic algorithm,
‘there is ‘also a handshake after every file transfer. After obtaining the data set_sizes,

the scheduler will reconstruct the schedule. The Simple algorithun does not require

A}

. any handshake time or schedule reconstructing time.

i

The relationship of these three different times are'diagraméd in appendix B. It -

- also shows the synchronization of the five data nodes for the three algorithms.
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6.3. Analyéis" \ B o S S

In this section, we will present and analyze our main results from the research.

6.3.1. Amount of Data Transmitted - -
The amounts of data involved in the data transmissions for the three algorithms ,

are tabulated in jable 6-1. As we can see from these results, the amounts of data

‘that need to transmitted for the Static and the Dynamic algorithms —are greatly —

reduced over sthe Simple algorithm! This is especially true when tbef/selectivity “is

low. The. reason is that there are few duplicates in the .integers between the sets’

“when a low selectivity is used. In fact, when the selectivity is 0.10, the cardinality

4

~

of the resulting set 7 is zero. Thus, more than 90 percent of the integers are
‘elimin‘ated after the first ngcj_e_. has transmitted its data for both the Static and the
Dynamic algorithms. - When .the selectivity is 0.75, the resulting set size is 950, and

so less data can be eliminated, which means more data_needs tp be transmitted. Even

then, there is a saving of more than 23 percent.

, ¥ .
The results for the Static and the Dynamic algorithms are not too much
different from each other. This observation depends very much on the way the data -
.is generated. With a -unifoxx‘m'ly-distributed database, there is very little variation in
the siz;‘ 'of ‘the intersectiqh of any two data sets.2 In other words.‘the probability of
two different ihter\sectio‘ns having approximately the same size is very high. On the

average, over 90 percent of the times, the intersection set 'size is within the range of

+ 30 elements from its mean for the various selecti\{ities.j As a result of all the

2See appendix C for an analysis of the size of the intersection of two uniformly distributed data sets.

3Sce table C-1 in appendix C.
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sets having almost the same size, it will not make much of a difference whether the
.‘ smallest set is selected for transmission (as in the Dynamic algorithm) or just a

random set is selected for transmission (as in the Static algorithm).

If we remove the constraint of a uniformly distributed database. the Dynamic

algorithm might perform. drastically. better in terms of data transmission depending on

-

data as depicted in figure 6-1.° . .

S1 (eg. SFU students)

'S2 ——————  (ég. lower mainland residents)

T
1

(eg. B.C. residents with
ages between 18 and 24)-

S3

Figure 6-1: Example of Overlapping Sets

The Static. algorithm will construct the schedule S, *S,* S, whereas the Dynamic

algorithm will construct the schedule S, * S, *Sz' From the figure. it can be easily

seen that the schedule SI * S3 * S2 will transmit much less data.

Regardless of the database distribution, however, if substantial elrimination*of
redundant informalion\ occurs after the first file transfer, the Dynamic algorithm
might not o@t—perform the Static algorithm. This isi because after each file transfer,
subsequent- rec;rdering of the schedule will not bring much improvement. Consider the
two cases when the selectivities are 0.1 and 0.25 respectively. The data transmitted
in the first round already accounts for 90 percent and 75 percent respectively of all
the data transmitted. Thus, for low selectivities, the Dynamic algorithm may not do

any better even if the constraint of the uniform distribution is removed.
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3

The restriction. of a uniform size (and hence selectivity) for all the data sets

-
4 -—
4 .

provides the worst case for the Sta)a'c/ algorithm. Because of this, the iﬁlgoi'iithix’ni has

: - ~ ’
no knowledge, whatsoeyer, of How to construct the schedule. Thus, the schedule is

-
—

constructed at random. Be/ moving this restrnctnon will improve the performance of the

algorithm. The reason’ 'is that in the absence of any prnor knowledge of the database

we can expect Thar"'a—sﬁall data set will remain small after the intersection. Thus.

e

the smallest data set identified by the Static algorithm will very likely still\be the ~
kY

) 3 . . ) . . ) ‘\‘
smallest data set after the intersection. \

-
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Node Order
Simple  Static  for Dynamic
0 3000
3000 289
3000 27
3000 0
3000 _0
12000 3316
Selectivity = 0.10
Node Order
Simple Static  for Dynamic
0 3000 1
3000 759 5
3000 183 3
3000 42 2
3000 __1 4
12000 3991
_ Ny
(b) - Selectiviyy” = 0.25
o Node Order
Simple Static  for Dynamic
. 0 3000 .1
3000 1501 3
3000 775 5
3000 39 4
3000 1 2
12000 5859 :
‘ (c) Selectivity = 0.50
- - Node Order
Simple Static  for Dynamic
' 0 3000 1
3000 2252 5
3000 1681 3
3000 1250 2
3000 950 4
12000 9133
(d) Selectivity = 0.75

289

3311

735
179
42

3963

Dynamic
3000

1500

- 744
378
_193

* 5815

3000
2239
1670

1250

950
19109

Table 6-1: Amounts of Data Transmission for the Different Algorithms
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A comparison o savings of the amounts of*data transmitted as obtained from the -

Static and the/ Dynamic algorithms over thevSin’xiple algorithm is summarized in table

6-2. P | / )

/ - ; Data Transmlssmn Savmgs
Seleétivitx ~ Static amic
0.10 - 72.37% 72.41%
0.25 T 66.74% -66.97%
0.50 . 51.18% 51.54%

1 0.75. , 23.89% | 24.09%

Table 6-2: Savings of the Static and Dynamic Over the Simple Algbrithm

6.3.2. Data Transmission Time

The total data transmission time required by each algorithm to - perform the

intersection of 15000 records distributed evenly among five nodes is shown in table

6-3. These times, which are the averages from different runs, are also plotted in

figure 6-2. ‘
. . 4
Selectivity
Algorithm - 010 0.25 - 050 0.75
Simple. 2.661 2.661 2.661 2.661
Static 0.996 1.256 1.525 1.808
Dynamic ' 0.895 11.240 1.395 1.675

Table 6-3: . Data Transmission Time in Seconds

For the Simple algornthm the amount of data transmlssmn is not dependent on
the selectlvny Whatever the selectlvny is, the whole data set has to be transmnted
thus, the transmission lime remains constant. For the Static and the Dynamic

algorithms, lessiay needs to be transmitted for smaller selectivity, but the data

<
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transmission time increases rapidly as the selectivity increases. When the selectivity

approaches to one, the amount of data transmission will approach 100 percent of the

Y ) ‘ :
data set, and therefore will require the same amount of transmission time as the

Simple algorithm. This demonstrates the ‘fact that for high selectivities, the Simple .

algorithm may have comparable performance.

!f" v . Y
rd
{

As Wwe have seen in the previous section, the amounts of data transmitted is very

much the same, and this is directly related to the transmission time. Moreover, the

3

few extra numbers needed for data transmission with the Static algorithm, for most

cases, can fit into the same data packet anyway.
5
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6.3.3. Local Operation Time

The result for the ldgal operation time iz shown in table 6-4 and is plotted in

2
»

- figure 6-3.
o~ :
: | | Selectivity
Algorithm 0.10 ' 0.25 0.50 . 0.75
Simple 0.909 ( 1.051 - 1.295 1.415
Static ~0.420 - 0.460 - 0.620 - 0.848
Dynamic 0.450 0.460 | 0.610 0.835

EY o e

Table 6-4: Local Operation Time in Seconds

G2

As we can see, the operation time for the Simple algorithm increases just a
little with increasing sélectivity. - This should be the case because the nodes are

transmitting the same amount of data. - The only difference is that for higher

selectivity, the intersection set is larger, and thus, a longer time is required for the

operation. "The operation times for the Static and the Dynamic algorithms are very
similar. . This shows that not much is gained' from the Dynamic algorithm. In fact,
for ‘small selectivity, ?zthe Dynamic algorithm takes longer than the Static algorithm
because of the extra overhead involved. Only when the seleétivity is large does the

Dynamic algorithm performs better. [Even then, the improvement is not that great.
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6.3.4. Transmission vs Local Operation Time

When we derived “our theoretically optimal algorithm in section 5.2.4, we
assumed that the local operation time was very Jinsignificant when compared to the
data transmission time. We now want to look at our empirical results to see

whether this assumption is indeed correct.

} The ratio of data transmission to Ipcal operation iS_ dependenton “the particular
algorithm used. We have listed in table 6-5 these ratios for tﬂa{fffeﬁt algorithms
! ,

as obtained from our experiment.

Selectivity | 3
Algorithm 0.10 0.25 050 075 Average
Simple 2.93:1 2.53:1 2051 1881 23511
Static 2371 2731 2.56:1 2.13:1 2.42:1
Dynamic 1.99:1 2701 2291 2.01:1 22411

Table 6-5: Ratios of Data Transmission to Local Operation
" These ratios sho_w t«ha't:;_t,he data transmission time is just a little over twé times that’
of the local operation time. The local operation time is therefore very significant‘and'

T

thus cannot be ignored.

>

6.3.5. Handshake Time

The Simple algorithm does not require any handshake time, whereas the Static
and the Dynamic algorithms require one handshake during. the initial connection. In
- addition, the Dynamic algorithm requires one extra handshake pei' file transfer and

each handshake uses a considerable amount of time. This is because the handshake



—

S~ R - . -

| N\ ‘
requires all the nodes to transmit their data set sizes to Lh;l scheduler -and data - -————
’ 4

transmission is time consuming. The handshake time also/'incllﬁdes the construction of

p—

the schedule for the Static and the Dynamic algorithms. The handshake time is not
dependent on the selectivities of the data,_but_rather on the algorithm' used. Thus, .it',
remains constant for the different selectivities as listed in table 6-6.

. Selectivity
Algorithm . 0.10 025 0.50 0.75
Simple 0.000 - 0.000 0.000 0.000
Static 10059 0.059 0.059 -+ 0.059
- Dynamic 0.511 0.511 0.511 0.511

Table 6-6: ° Handshake Time in Seconds ,

<

Notice that the handshake time for the Dynamic algorithm is much larger than

- that of the other two algorithms. When we compare the local operatic;n vtime plus
" the handshéke time with the three algorith;wls, (see figure 6-4), we find that the -
Dynamic algorithm is now much worse than the Static algor.ithml. . The Dynamic
algdrithm non takes about the same amouﬁt of time as tl;e Simple algorithm. In
fact, ﬁvhen the selectivity is lc‘)lw. it is worse_than the Simplev algo;'ithm; but gradually
improves ojer the Simple algorithm when the selectivity increases. The reason is that
the overhead for the many ha‘ndshakes‘ required by the Dynamic algorithm is too

great to absorb the savings gained from the data reduction.

&
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Figure 6-4: Local Operation Plus Handshake Time vs Seiectivity
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6.3.6. Handshake Time vs Transrm ion Time e

‘The handshake time is constant and .is independent of the data set size. It is,

- therefore, expected that as the data set size increases, the handshake time will be

proportionally reduced relative to the transmission time or the local. processing time.
%" )

There are two ways in which the data set size can increase: (1) by 1ncreas1ng the size

of the elements in the data set, and (2) by increasing the number of elements in the

7data set. - o : . ,A

In the first ease, we can have egch element of the data set as a ‘long data
record instead of an integer:. ‘In this situation, the hlgh percentage of handshake time
of the Dynamic algorithm (see t.able 6-7). would be reduced. thus improving the
performance of the Dynhmic algorithm vis—a—visf the Static one. _ Note, however, that
with larger record size, we meed not transmit the whole record for doing the

intersection.  Just transmitting the keys of the records would be a good preprocessing

- strategy. because only the data records in the intersection need to be transmitted and -

a“

transmitted once. This is basically what we are doing in our experiments. Moreover,

as we have seen in section -6.3.1, the Dynamic algorithm will not out-perform the

T

, Static algorithm by much in terms of data transmission. Thus, takingeverything into

consideration, the Static. algorithm will still have comparable results.

The second way to increase the data set size is to increase the number of

Y-S ——

elements in the data set. We expect that in this situation, when the data set is

increased to over a certain size, the Dynamic algorithm will be better. , We have.'
therefore, interpolated the results of table 6-7 for .larger data sets. We \&l assume
that with increasing data set size, the handshake ‘time and the qverh\eafi remain

constant, . while the data transmission and the local operaticn time . increase
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propQrLionZily. For each selechvuy._leLMs be the sum of the JLI‘&IISDJ.ISSIOII ~time and——
—

the operauon time required by eaCh _byte in the data set by the Static algorithm\and

Y 4 for that of the Dynamic orithm. Let €  be the sum of the handshake time

and the overhead time for the Static algorithm and C; for the Dynamic algorithm.

Let k& denote the size of the data set such that the Static and the Dynamic algorithms

B3

~ produce identical elapsed time. Thus L B

Vi + Cp = Vi + G g

or
k:cd_CSf
Vv, -V,

The result from the interpolation is plotied in. figure 6-5. In the area below the
curve, the)Static algorithm is better, and in the area above the curve, the Dynamic
algorithm is better. We believe that' the peak should not be there, but instead, a

mo

not(

onically decreasmg’\sm% cgnnecnnglhe,,pomts The peak in the curve may =
have been caused for two reasons. The first plausibie reason is that, as our analysis
of the data sets used in the experiment has shown, when the selectivity is 0.25, the

_deviation from the mean size of the intersection set of two random sets is larger than

~ that for the other selectivities. Thus, the result from the experiment fluctu?( n:)(n'e

e
at this selecuvntv The second possible reason is that the curve is an )ﬁterpolation of
/

the results for database sizes of 3000 Abytes.‘ ‘Because we -are interpolating these

results for larger database sizes, the fluctuation in the experimental data is increased.

Y o IR
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6.3.7. Total Elapsed Time

coL

- ) : ” " . N ‘.
Finally, when  we combine all the factors together, ie.. the transmission time,

~ the local operation time, and the handshake time. we obtain the results as plotted in

- r

figure 6-6. The results are also summarized in table 6-7. The timings in the table
‘are all in seconds.r From this, it is clear that indeed when the database is small, the

Static algo‘rithin is the best algo ithm’ among the three that we have implemented.



. Table 6-7:

Comparison Summary of the Three Algorithms

72
Simple S | Selectivity -
- 0.10 0.25 0.50 0.75
Bytes broadcast 48000 48000 48000 48000
Transmission time 2.66 (714%) 2.66 (711%) 2.66 (67%) 2.'66-(65%‘)\_ ‘
Local "operation time 0.91 25%)  1:05 (28%) 1.29-(32%) 1.4%(34%))){{, ffffffff
Hapdshake time 0.00 (0%) 0.00 (0%) 0.00 (0%) 0.00._ (0%)" .
Overhead 004 (1%) 003 (1%) -0.05 (1%) 0.04 (1%)
Total elapse time 3.61 3.74 4.00 4.12
Static _ Selectivity
) 0.10 0.25 0.50 075
Bytes broadcast ' 13264 15964 23436 36532
Transmission time 1.00 (65%) 126 (69%) 153 (69%)  1.81 (66%)
Local operation time 0.42 (27%)  0.46 (25%)  0.62 (28%) 0.85 (31%)
Handshake time 0.06 (4%) 0.06 (3%) 0.06 (3%) 0.06 (2%)
Overhead 0.07 (4%) . 0.06--(3%) 001 (4%) 004 (1%)
Total elapse time 1.55 1.84 2.22 2.76
Dynamic : ’ Selectivity
‘ 0.10 . 0.25 050 0.75
Bytes broadcast 13244 15852 23260 36436
* Transmission time 0.90 (43%) 1.24 (54%) 1.40 (54%) 1.68 (55%)
~ Local operation time 0.45°(22%)  0:46 (20%)  0.61 (23%) 0.84 (28%)
Handshake time 0.51 (24%)  0.51 (22%)  0.51 (20%) 0.51 (17%)
Overhead ~ 023 (11%) _0.11 (4%) 0.07 (3%) 0.01 (.3%)
Total elapse time 2.09 - 2.28 2.59 3.04 -
4 4 N
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Chapter 7
Conclusion

The objective of this thesis is to provide empirical results for algorithms to

3

perform set intersections in a distributed database environment. We,have noted that

-

the set intersection operatlon is a very 1mportant database operation both in its own

right and as a sub—operatlon for the join operation. .

H

+In searching for_ a good algorithm to perform set intersections, we have made-
use of the properties of a multiple-access broadcasl network. For a broafdcast
network, it is possible for one node to broadcast a message and have all the nodes
connected to this ngilwork receive this message simultaneously. As a result, all the
nodes can proceed to proéesé the recei\yed data in parallel. Moreovery~ ‘this ——

'

preprocessing of the data’ can eliminate all i(he redundant information from data t‘b"‘)be

/

transmltted in the future by these nodes. The data reduction process 1§/

important in a distributed database system because the data transmlssron ume is
_significant when compared with the local processing time, . However, the broadcast
method, which is only supported by the User Datagram Protocol, is unreliable. The’
reaéon is that UDP does not have any flow control mechanism, and so. packets are

©

' throyﬁ away ‘when the receiver is unable -to buffer them.

TFhe unrellablllty of the UDP can be solved if a flow control mechamsm is
implemented in the networking software. or it can be decreased if more buffers are

available in our Ethernet controller and if the usage of the buffers can be improved.

b4
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Fi

Thus, our result may be slightly different if an Ethernet Controller -different from -

the popula‘lr'3Com Ethernet Controller is used. We argue, however. that this alone
" may not be'sﬁfficient to alleviate the unreliability problem substantially. For example,
if the number of nodes attached to the network increases, w‘hile the number of
buffers ‘in  the controllér is fixed, the buffer overflow problem will persist. We
suspect that the heart of the problem lies in the BSD 4.2 networking software whichr

disables interrupts from the Ethernet controller when manipulating the network data

structures. ~ However, further discussion on the modification of the networking

4

software is beyond the scope of this thesis.

. Given the networking software as it exists, a higher level broadcast protocol has

t/) be designed on top of the UDP which guarantees that all the packets will be

/received by all the receivers. We have found that the protocol which uses only one
i . .

| acknowledgement after a file transfer with selective retransmission is the most

\ efficient. The acknowledgement will specify which packets need to be retransmitted.
\he sender will selectively retransmit. these lost packets. Moreover, since the
trz%n&eeion overhead per packet cannot be reduced, it is more efficient in using a

&
-+ large packet size as opposed to using a small packet size. The maximum packet size

allowed is 1472 bytes, excluding the Internet address header.

,

The reduction of data transmission is dependent not only on the broadcast

e

protocol used, but also on the algorithm selected ‘for performing _the set intersection.

Of the three algorithms, Simple, Static. and Dynamic, that we have impiemented in ™

our experiments, only the Staticc and the Dynamic algorithms make use of the
broadcasting properties. The Simple algorithm just ‘ig'nores the broadcasting advantages.
Because of this, we find that indeed, the Static and the Dynamic algorithms perform

much better. The amount of data transmitted is between 23 and 72 percent less than
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the Simple algorithm depend‘ing. on the selectivity of the data. Between the Static and
the Dynamic algorithms, we wbuld expect the Dynamic algorithm te be ‘better because
',itrl tries to reduce the amount of data transmission even moi‘e. However, it has
turned out that this is not the .case When the data sets are small (less than 36000
bytes each). With our aséumptions of a uniformly distributeq database, having
initiallyr the””sfziniriqmsjzg (and hencg ‘selectivity), the many reconstructions of the
schedule done by: the Dynamic algorithm do not reduce the. amount of data
transmission by much. The reason is Ithat there is very little variation in the
interseciion set size, whether the §et was chosén randomly,- or ‘the sn@llest set “‘ was
chosen. Also. substantial elimination of redundant infoxfmation occurs after the first )
file transfer, after which the reduction of data draétically decreasts.  Thus, the
subsequent reconstruction of the schedule does not bring about {huch data reduction.
On the other hand.‘the overhead recjuired for the extra reductions far exceeds the =
benefit dériv,ed, ,ﬁ:om the Jitﬂcjmounpof,,saying's;,J‘hLSLaLicJ'llghnithm,usesf y the
first ordermg uibut not the subsequent ones. and so the overall performancekls much
better than tile other two algonthms for small databases. @ We must caution the
reader that thle tradeoff between the reordering overhead and the possible data
reduction must be cgrefullly studied given prior knowledge of the characteristics of the

A

database distribution over the network.
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Appendix A

Pseudo Codes for the Broadcasting Pfotocols

‘A.l. Acknowledgement Per Packet With Packet

Retransmmon :

A.l.l; Broadcaster

Set sequence_ number S = 1;
DO{. ‘ ' . .
Send: Send packet S; )
Set timer; ‘
"FOR C = 1 TO number_of_ recelvers{ t
B IFJétrmer interrupts) ‘ |
THEN GOTO Send; /* retransmit packet s/
Receive acknowledgement; :
3 S
Reset timer; . % '
_ /* 1f received all acknowledgements, the program s/
/* witl reach this point wtthout being interrupted ¢/
S=S 4+ 1; .
} WHILE (more packets to be sent); . ' =
Send end-~reply packet; :

A.l1.2. Receiver- ‘ | ‘

Set sequence_number S = {;

Dot - | :

Receive packet P; : : “

Send acknowledgement for p&bket P; -

IF (P = S) o

THEN} Tt

process packet P; )
S=S+1;
§

) } WHILE (P is not the end packet);
= _Receive the end—reply packet; : .



A.2. Acknowledgement Per File With File Retransmission

A.2.1. Broadcaster

Send: Set sequence_number S = 1;
DO§ ‘
Send packet S; o
S=S +1; ' T, ‘ 3
} WHILE (more packets to bﬁ'senf) - -
Set timer; - »

FOR C = 1 TO number_of_recéivers}
IF (timer: |nterrupts OR acknowiedgement is not ok)
THEN GOTQO Send; /* retransmit packet o/
Receive acknowledgement;
; ,
Reset timer;
Send end-reply packet;

v

A.2.2. Receiver o

Repeat: Set sequence_number S'- 1,
Set flag ACK = ok;
DO§

Receive packet P; v
IF (P = S)
THEN process pocket P;
IF (P>sS)
THEN ACK = not ok;
S=S + 1;
} WHILE (P is not the end packet);
Send acknowledgement ACK;
IF (ACK = not ok) - 4
THEN GOTO Repeat;
Wait for the end-reply packet;



A.3. Acknowledgement Per File With Selective ‘Packet

Retransmission

A.3.1. Broadcaster - ‘ .
¥
Set flag RETRANSMIT = false;
Set sequence_number S = 1;
Send: "DO§y —— )
IF (RETRANSMIT = true)
THEN$ -
Select next lost packet S; '
Send packet S; “ —
B -
ELSE} ' - ?
Send packet S;
S=S+1;
} WHILE (more packets to be sent);
Set timer; '
FOR C = 1 TO number_of_receivers}
IF (timer interrupts OR acknowledgement is not ok)

THEN{ ‘ : -
RETRANSMIT = true;
GOTO Send; "/+% retransmit packet s/
Receive acknowledgement; -
}
Reset timer;
Send end—reply packet; .

A3.2. Receiver

Set array ACK(i) = not ok for «all i;
Repeat: DO '
" Receive pocket P; -
IF (ACK(P) = not ok)

THEN$
Process packet .P; -
ACK(P) = ok;
} - .

} WHILE (P is not the end packet);
Send acknowledgement ACK;
IF (ACK(i) = not ok for any i)

THEN GOTO Repsat;
Wait for the end—-reply packet;
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A.4. No Acknowledgements Or Retransmissions

A.4.1. Broadcaster

: Set sequence_number S = 1;
- DO{ )
: . Send packet S;

S=S +1;

_} WHILE (more packets to be sent); * o
Send end-reply packet; -
A.4.2. Receiver
DO§ - . .

Receive packet P; *

Process P;

} WHILE (P is not the end packet);
Receive end-reply packet;
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Timing Synchronization

. 4 R el

B.1. Simple
: .
#1 rec | Op | TEC op5[ rec | op | rec y.-op
A I | 1 L LB
#2 1 brd
#3 rec } brd -
rec | rec f brd
#4 / ! 1 1 T
- rec | | ‘tec | { rec 1 | brd
#3 | 1 L | | |
time
, >
Figure B-1: Timing Synchroniza/tion for the Siml;le Algorithm

= handshake time



B,

82

L\ e T
B.2. Static
/
'#1 { hnk § brd | rec | Tec g -y rec g rec . |
I | ' L} | I I L] ) |
{ hnk | rec j op 4 brd .
¥2 [
#3 { hnk-y rec 4 op y rec op y brd
L D -+ 3
¢ hnk | rec 1 6p f rec g opy rec j op brd -
M T T r '
#Slhnk|reC|op|reC‘]op|rec]op|ieclop brd |
. 1T T 1T 1 T —
! _
time
>
Figure B-2: Tiining Synchronization for the Static Algorithm
¢
B.3. Dynamic
#1 Bk brd | 4 hnk | rec q hnk | rec.y ¢ hnk ; rec | Tec
‘ rd | I I L | I R | | 1
#2 | hnk  rec |0plAhnk j brd _
[ 1 T J \ ‘
: : 1
#3 L hnk y rec yopy) hnk | rec yopy hnk ; brd ,
J T LIS L LIDL I )
#4 hnk y rec "yop) hnk , rec _“l'opl hnk y rec yopy hnk ;- brd i .
I L ! T‘g& L ‘ L L
_ hnk | rec jopy hnk y rec jopy hnk rec jopy hnk rec jyopy brd N
#> | N — - 'ir T T
time



 Analysis Of The Intersection Set Size

"~ In this analysis, we want to show that given any two independent sels

containing uniform distributeéd data’ and uniform selectivity, the intersection set size k
is very” close to a certain mean. We will show this, first. by calculating’ the -

probability of k inside a certain range of the mean, and then, we will show Lthis_vwith

some empirical results.

C.1. Calculation Of- The Probability

Let A and B be two sets com.ammg umformly dlstrlbuted data, each wnth N.

e * R
elements selected randomly from a set of M elements. Let k be thé intersection set
size of .the two sets A and B, je. k=1A N B, where 0 € k& X:!N. Below. we

. .

will derive the probablhty function of the random varlable ko« ¥

For ¥ = 0, .the number of possible ways of selecting two sets of N elements

each from a set of size M is

M M=N ) \ - . L

For & = 1, we get

()u baTH

In general, for &k = i, we get
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Thus, the general probability ,function‘ for ahy‘ k. where 0° € k < N is
M\, M=k, M—=N S
(k)('N—k)(N—k for k = 2N — M

. My M |
) o -

and 0 \f | . fork < 2N - M

Using thisé‘%i)robal;ility function equation, the probabilities for different values of

v

k and M have been calculated. N is fixed-at 3000. Table C-1 lists the probabilities
of getting a certain k& within a certain range of the mean for four different values of

M. | : 4 ' o

Selectivity s ' Mean + Range Probability
0.10 300 £ 1% 15%
0.10 : 300 + 3% . ‘ 48%
0.10 ' 300 £ 5% ' . 66%
0.10 300 10% ' 95% T

- Q:\
0.25 750 =+ 1% | 29%
0.25 750 £ 3% %

025 - 750 -+ 5% C93%

S50 - 1500 £ 1% 56%
0.50 1500 = 3% 98%
0.75 T 2250 = 1% 94%

‘___//‘\\ *

Table C—l:li Probébil\ities of Getting & Within a Certain Range of the Mean
- N ’/, ‘fv

¥
!

On the average. over 90 percent of the times, & is within the range of x= 30
elements from its mean for the various selectivities. This conclusively_shows that
given two uniforme distributed sets, the probability of getting the intersection set

size of these two sets to be close to the mean is very high.

(&5@3
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Ftommon set with the other five sets. The MIN column contains the minimum set size

' sets.

>

lack of wvari pions between columns 3 and 5 in ble 6-1. For each

generate six random sets of size 3000 each from a given range of integers. (The

ranges are 1-30000, 1-12000, 1-6000, and '1-4000 for selectivities 0.10, 0.25, 0.50, and

0.75 respectively).. -Then intersections are performed between one chosen set and ‘all

'

!

other five sets. The columns RANDI to RANDS5 contain the intersection set size of a

3

» ,

B N ) - P . ] L
among the five intersections. The AVG column shows the expected difference in size.

f‘ ,
between a fa_ndom]y chosen set from RAN@ to RANDS and the minimum of the five

Ve 5"4
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Selectivity = 0.10

RANDI1 RAND RAND3  RAND4 ANDS

296 303 296 324 303 RS 313
283 324 283 . 309 301 g 304
285 316 299 285 _ - 301 10
276 296 320 276 301 314
296" - 296 304 296 312 303
292 © 307 334 345 292 296
270 283 307 300 270 " 285
289 289 296 294 303 300
‘ : Selectivity '-=\0.25 _

MIN = RANDI RAND?2 RAND3 RAND4 RANDS
724 724 - 776 733 741 750
742 767 742 © 743 749 791
730 760 753 769 730 756
718 - 762 . 718 731 788 739
751 766 770 751 755 786
741 766 761 741 754 762
728 769 731 . 728 763 743
749 762 4 752, 757 - 751 749

- | Selectivity = 0.50 |

MIN RAND1  RAND2 RAND3 RAND4 RANDS

1474 1474 1503 1481 1523 1512

1461 1499 1507 1480 1532 1461

1477 1516 1477 1514 1511 ,v-\§§o4

1502 1502 1512 1518 1508 1529

1496 1515 1552 1519 1496 1506

1487 1504 1487 1503 1503 1528

1469 1508 1469 1478 1522 1491

1480 1485 1510 . . 1529 1480 1500

| , Selectivity = 0.75 |

MIN  RANDI RANDZ™ ™ RAND3 RAND4 RANDS

2243 2243 2761 2262 2255 2250

2242 2242 2247 2273 2243 2247

2236 2258 2244 2236 2256 2246

2237 2251 2237 /2246 2254 2270

2242 2258 2242 2264 2250 2248

2246- 2246 2264 - 2258 2252 2246

2241 2260 2241 2261 2246 2242

2239 2240 2239 2260 2244 2249

Table C-2: Empirical Results of the Intérsection Set Size

AVG
1
21
17
25
6
22

AVG
24
34

27
11
21
18
24
20

AVG
11 ’/\E
8
12
14
10
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