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Abstract 

There has been a considerable number of algorithms developed ,for supporting < -  a 

distributed 'database system in areas such as concuirenc$ control. minimizink data 
I 

transmission for a t  operations. crash recovery. and command processing. However. t 

the present time. most of these algorithms have only theoretical and/or simulated 
I 

results concerning their performances. There is very little conrete  knowledge 
1 

concerning the actual performance of such algorithms in a real situation. 
% 

In order to obtain some empirical results, a set* of these algorithms have been 

implemented. Specifically. they are algorithms for performing set intersections in a 

distributed database system based on a broadcast network. The result shows that for 

a small database. a static algorithm that fixes the order of the schedule a t  the start :. 
-' y 

of processing performs better than a more sophisticated algorithm that o r d k  the 4 
1 

3 

schedule dynamically. 

In a distributed database system, the performance of the algorithms is a1 o very 
, I 

1$ 
much dependent on the method used to send the data. The method of broadcasting 

allows one processor to send its data .out and all the rest of the processorsaattached 

QP 

to the same n e ~ k  will receive this data simultaneously. As a result, all the 

processors can now do parallel preprocessing of the data received. Howebver, under 

the UNIX 4.2BSD operating system in which we did our experiments, broadcasting is 

only supported by the Internet User Datagram Protocol (UDP). and it turns out that 

iii -. --. 



P* k n 
this protocol is unreliable. Thus. a high l e ~ i i f  *liable broadcasting protocol h_as to be 

designed on top of the- LBP. Factors concerning the design of a high level reliable 

broadcasting protocol and the results for the protocols tested will also be presented in 

this thesis. 
1 . i. 
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Chapter 1 

Introduction 

1.1. Background 

Over the last few years, there has been a growing trend towards a more 

decentralized computer system. Instead of having one big main frame computer. 

several smaller computers located at  different *geographical areas but i l l  connected 
/ ' 

.: 
together through a local area network are being used. These computers or 

workstations usually have their own resources such 'as"processor, memdry and disk 

storage. Each of the workstations can work independently or together by 
L 

- @ 

cbmmunicating with the others through the network. 

We can quickly see the advantages in having a distributed database system in 
- 

this environm.ent where the 'data is stored on different computers. Such a system can 
9r e .* 

aherkffore allow data to be physically stored close to the point where it is most + -  
- . c  

+. 

freq%ently used - with obvious efficiency advantages - while at  the same t ime.  
a 

permitting that same data to be shared by  other, geographically remote users. 'I'hese - 
1 

advantages are, however, balanced off with the numerous technical problems that also 
b 

come with it. The main tradeoff is the problem of larger data transmission time 
. a  

required to send the data from one site t o  another over the network. For a non- L 
- -- 

distributed system, the main concern fcr a database system is often the number of 
- 

disk, accesses necessary in order to retrieve certain information from the database. 
.. - When the base is distributed over a number of processing sites connected together 

8 . 



by a \comrfiunication network, the amount of data transmission required to obtain the 

information is an 'additional consideration for system performance evaluation. ~n ' f a c t .  

many authors of papers on distributed databases have made the assumption that the 
---C 

disk access time is insignificant when compared with the data transmission time. 

There has been a considirable 'number of algorithms developed for supporting a 
8 

- 
d.istributed database system in areas such as .concurrency control - dB+811. set 

o rations such as joins, unions and intersections on a .  broadcast network [Luk84], . 3 
: crash recovery, minimizing the number of acknowledgements required for a broadcast 

- >  
network [ C h ~ a 8 4 ]  and, command processing. H o w e w ,  a t  the present time, most of 

t 

these algorithms have only theoretical and/or 'simulated results concerning their 

performance. 'There is very little concrete , knowledge concerning the actual 

performance of such algorithms in a real situation. The purpose of this research is to 

provide some empirical resu f i r  different algorithms to perform set interseyions in 
L. - + 

a distributed database system based on a broadcast network. 

I 
B 

Let us assume here that t h e ~ e n t i  e database is a relazion, which is basically a 

two-dimensional table [Codd-Il]. A ro of a table represents a record and a column 

represents a set of values in the cine field of all the records. In the distributed - 
P 

databas4 environment. pbrtions of the database, again as relations, are stored in 

various sites. for the - convenience of the users. Since the sites are all connGted 

together by a communication network, the distributed nature of the database should 

be transparent to the users. 

There may be requests forjinformation that necessitate accesses to relations 

stored in more than one site. According to the relational model [DateW], there are 

t h m  oprations that may require data. stored in two differeAt relations. and hence 
L 



t 

from two different sites.. The first two operations are (row-wise) union and 

intersection of records belonging to different relations. If the records are long. it may 

be too expensive to move an entire r from site to site. By assignin ach record Y 
a unique identifier. we may perform unions and intersections of these identifiers as/ 

preprocessing operations to select the records that are requested. The third o 
1 
\ 

join, concatenates records frbm two relations together. if they have a common value 

in a common 'joining column. Semi-join [BeC118i] i s  an effective preprpcessing * 

operation for join to reduce data transmission. Ther-e two steps in performing a 

semi-join operil%kan of two relations in two different sites: 1. ' the joining column of a . 

relation is sent to the other site. and 2. an intersection is performed between this 

column and the corresponding joining Column to eliminate records (i-e. rows) that 'need 

not participate in the join operation. Thus in this sense. the semi-join operation and 

therefore the join operation is basically a set intersection operation. From the above 
- 

discussion. 'we conclude that intersection and union of sets are important database . - 
operations, the seds being relations, groups of identifiers or joining columns. 

w 
n 

J 
1.2. The Problem Defined 

From [ ~ u k 8 4 ] ,  we have noted that the optimal algorithms for performing set 
C- 

ptersectio'n and union are very- much similar. The data transmission is exactly the 
I 'l 

same. They differ in the they perform, either an intersection or 

a union. In fact. because it is unnecessary tc) reorder 
j 3 

d the sets according to their cardinalities in order to minimize the amount of data 

transmission, whereas for set intersec'tion. this reordering makes a substantial 

difference in *the amount of data transmitted. 

t 

. In this thesis, we consider the problems of performing set intersections of data 



? 

sets distributed over a number of processing sites. To be-  more p r ~ i s e ,  it is a 

9 l e m  of gathering a t  a particular site. a set of data which satisfies a given set 
5. 

' 5 -  

a 
expression in a conjhnctive normal form of a number of sets located in different 

9 4 

sites. We will look at  sever;! algorithms for performing these queries in a 

dist 'buted database environment anJ several transmission protocols for sending data 

beq% the sites. Since the d im transmission time affects the overall performante , . of 

the algorithm a .great deal, we want to look especially for ways to minimize this 

factor. The method of broadcasting provides just what is needed. It allows many 
i 

processors. to receive the same message at  the same time yhen that message is 
C 

broadcast out by sne processor. As  a result, all the sites can not only preprocess 
P 

i- 
their data to eliminate .redundant information, but do this preprocessing in panillel. 

1.3. Objective of the The@s 

The optimal algorithm to perform set intersections on a broadcast network has 

.been implemented in a real situation. The objective of this thesis is to compare the 

empirical results that have been collected from this implementation with the 

theoretical results presented in [Luk84]. The costs of the algorithms in terms of the 

transmission time, the local operation time, the handshake time. .and the amount of 

data transmission a r e  used as the comparison criteria. The empirical results from two 

other algorithms will also be compared. The first one requires no knowledge of the 

data sets and does not perform any ~ r e ~ r o c e s s i n ~  of the data, w ile the second one 
\L- , . B y  
-3 

\ 

C 
tries to reduce .even more data transmission than the optimal algorithm. This is done 

\ 
t at the expense of the overhead required to gather more information about the data . 

P - - 

'' --- &4ynamically reordering the schedule. This. analysis will provide us with tlre 

information about whether the theoretical results as presented in [ ~ u k 8 4 ]  reflect real 

situations and whether the algorithm is optimal. If it is. then the algorithm is indeed 



optimal, otherwise, analysis ,will be presented to explain the discrepancies between lhe 

theoretical results and the 

Since the method of 

experimental findings. 

data transmission is such a vital part of the distributed set 

interseztion algorithms. we have also analyzed several reliable broadcasting protocols 

for data transmission. The analysis of the empirical results fw these protocols will 

Sso b e  presented and the criteria for a fast reliable broadcasting protocol k i l l  be 
t 

described. 

1.4. Organization of the Thesis 

The organization of the rest of this thesis is as follows. In chapter 2 .  the 

broadcast network and 'its reliability are described. In hapter 3. we discuss the two 
\ f 

internet protocols, UDP and TCP, and how they rdlate to broadcasting. Several 

reliable broadcasting protocols , tha t '  we have tested are described in chap;er 4. The 

results from these tests will also be shown in this chapter. In chapter 5 ,  an optimal 

algorithm for performing set intersections in a broadcast network is described. This is 

followed by the description of three variations of the algorithm that we have 

implemented. The experimental setup in terms of the hardware and the software. 

together with a description of how the data is collected, is described in chapter 6. 

The rest' of the chapter is devoted to the results and analysis of the three 

broadcasting . algorithms to perform set intersections that we have implemented. 

'I Finally, chapter 7 contains the conclusion. 



' Chapter 2 
fl 

The Broadcast Network 

2.1. Introduction 

. . 
-& t.& 

In a distributed database system, the amount of data transmission over the 
"! 
L 

n e d k  is dependent not only on the algorithm used but also very much on the ' 
PI* 

&+*w-, & 
tdblogy of the network. In this research, we have selected to use the Ethernet 

network. which is a multiple-access broadcast network, as the basic communication 
. > .# 

architecture. In this chapter, we will discuss the components of the E t h e t .  -its 

reliability. and how it relates to our experiments. 
0 

2.2. The Ethernet 

The Ethernet [MetBoggs76. Da~aPrSo791 is a system for local communication 

among computing stations. The shared portion of the Ethernet consists ,of the &Ether. 

which is a- passive medium for the propagation of digital signals and can be 

constructed using any number of media including coaxial cables, twisted pairs, and 

optical fibers. The Ethernet can be extended from any o b its points in any 

by adding new segments which are joined together by repeaters. However, there m 

be only one path through the Ether between any source and destination; if 

one path were to exist, a transmission would interfere with itself. 

E t k r ~  interface connects through an interface cable to a transceiyer which in turn 

taps into the Ether. See figure 2-1. Our current experimental hardware configuration 
6 

c m r s t s  of five Sun Workstations, all connected together by an Ethernet network 

which operates at  a speed of 10 megabits per second. 
6 



terminator I 

E t h e t  
segment 

#1 

station 'F;1 
controller 

station n - 
controller 

interface 

Ether segment #2 I 

Figure 2-1: The%ernet . 
1. 

2.2.1. Transceiver 
- - 

The transceiver can be connected to or disconnected from t* Ether at any point 
- I 

through the use of a tap, which is a simple device for physically connecting to the 

Ether. This procedure can be done at  any time without disrupting any on-going 

communication on the network. ' Precautions must be taken to insure that likely 

failures in the transceiver do not result in pollution of the. Ether. In particular, the 

transceiver should automaticallyi be disconnected electrically from the Ether if power 



is removed from it or if it acts suspiciously. Apnormal transceiver should be able 

drive a kilometer of coaxial cable Ether tapped by up to 256 stations transmitting 
-2 

10. megabits per second. 1 

t 

2.2.2. Interface * 

The Ethernet interface is a device - that ba&cdly performs three jobs? When 
I 

. packet arrives at the transceiver, the interface hardware will check the address .in the 

packet's header to see whether the packet is destined for this station. This hardware 

address filtering helps a station to avoid burdensome software packet processing 'when 

the Ether is very 'busy carrying traffic intended for other stations. If the packet is , 
1 

addressed for this station, it will be accepted. 1 
/ 
,' 

After accepting a packet, the interface -must c~nve r t  the ser&l data from the 

network to parallel data used by the stationt(or vice versa if the station is sending 
-. 

out a packet). *- - 

Finally. a 16-bit cyclic redundancy checksum is calculated by the hardware on 

the serial data of the whole packet as it is transmitted or received. 

2.23. Controller 

The controller is a station specific low level firmware or sKtware for getting' . 

packets onto and out of the Ether. It is respdnsible for the collision control of 
L 

packets and the random delay time for the retransmission of collided packets. ,- 
I.* 

In our research. the 3Com 3C400 Multibus Ethernet Controller k used. This .-. 

controller combines the functions of both the interface and the controller into one. 

thus  eliminating a 'kparate interface. 



22.4. Workstation 

In our research, five Sun Workstations have been used, each representing a data 

node. The Sun Workstations are powerful general-purpose microcomputers using the 

32-bit MC68010 CPU which operates a t  a speed of 10MHz. More will be said about 

the architecture of this machine in section 6.2.1. - - 

2.25. Data Transmission - - 
4 

I 

There is no central controller allocating access to the Ether. instead, a random 

access procedure is used in which each station independently decides when to transmit. 

A station with a packet to transmit first listens to the Ether using a carrier sense 

mechanism. If the Ether is idle, i t  immediately transmits the packet, otherwise, it ' 

waits until the transmission that is already in progress finishes: Once it hears the 

transmission cease. the station immediq t'ely transmits its packet. If no other station 

has been waiting, the station will acquire the Ether and the packet transmission 

should be successful. However. it is possible that two or more stations have been . 
- - 

waiting and now they all sense the idle Ether and begin transrnissim 

producing a collision. Each sender, however,. continues to monitor th Ether during a 
transmission and detects collision when the signal on the Ether does not match its 

own output. Using a collision consensus enforcemeat- procedure to ensure that all 

other colliding .stations have seen the collision, the failure will -be  immediately 

apparent to all the transmitting stations and they can therefore abort the transmission ' _ _ _ <  

immediately. The collided packets will be retransmitted after a random delay by the 

different stations in order to avoid repeated collisions. The use of a passive medium 

and the lack of any active elements in the shared portion combine to help provide a 

very reliable and flexible system. 
'I 



*2Lt 2.3. Reliability of the Ethe 

One of the major objectives of any local network is- to- provide reliable 

communication facility, reflected both in the,  cofitinu ailability of the network 
C- 

itself and in the lowest possible error rate a s  seen by the i n d i v i d d  hosts. Since the 

only shared component in the network is the pass?e- coaxial cable with no active 

components, the overall reliability of the system is very high. However, packets are 

none the less subject to  transmission errors. Thus, five. mechanisms are provided by 
- -  

the Ethernet for reducing the probability and cost of losing a packet. These are ( I ) &  

carrier de t~ t ion , .  (2) interference detection. (3) packet error detection. (4) truncated 

packet filtering, and ( 5 )  collision consensus enforcement. 
I-- 1% 

,23.1. Carrier Detection 

\ 
A packet's data is phase encoded on the carrier signZT--thus a passing packet on 

the Ether can be detected by listening for its transitions. As a result, no station will 

start to transmit when there is- a packet on the Ether. The only time when a 

collision can occur is when two or more stations find the Ether silent and begin 

transmitting simultaneously. 

23.2. Interferepce ~etection 

Interference detection is done by the sending station and is indicated when the 

transceiver notices a difference between the value of the bit it is receiving from the 

Ether and the value of the bit it is attempting to transmit. The advantage of this is 

- that the sender will know whether its packet has been damaged after a maximum of 
- 

one round trip time. As a result, the packet can be scheduler! for retransmission 

immediately without having to wait for an acknowledgement from the receiver. The 

frequency of detected interference is also used to estimate the Ether traffic for 

adjusting retransmission intervals and optimizing channel efficiency. - 



233. Packef Error Detection - - 

A 16-bit cyclic redundancy checksum is computed and appended to each packet, 
r. 

Packets with unmatching checksums are discarded. 

2.3.4. Truncated Packet Filtering 

During transmission. packets may be truncated. Packets* that are truncated by - 
usually only a few bits aTe filtered out in hardware. 

- 

23.5. Collision &us Enforcement 

When a s t a x n  determines that its transmission is experiencing interference. it 

momentarily jams 

detect i n tp f  erence 

23.6. Reliability 

the Ether to  insure that al l  other participantsin the collision will 

and thus be forced to abort and retransmit after a random delay. 

I - 

With these five rror reducing mechanisms, experiments have shown that the 

/ '  
transmission e r r o r s 4  is about 1 in 2.000.000 packets [ShHu80]. It has also been 

99.18 percent of the packets make it out with zero 

of the packets are involved in collisions. This 

extremely small 'qrror and collision rate justifies ,our  assumption that all the lost 

packets are due to '\ pr lems in flow coptrol and not in the data transmission itself 

\ Hence. solving the problem of lost packets involves the design of a high level reliable 

rX 
protocol that manages the flow control. 

'h 



2.4. Broadcasting and Multicasting 

The significance -of using the Ethernet local' area network is that it is a - 

multiple-access broad&& netwofk. The Ethernet uses a bug or tree topology (see 
a 

figure 2-2) and therefore, q n  support both broadcasting and multicasting. 

(a) (b) 

Figure 2-2: (a) The Bus and (b) Tree Topology of the Ethernet 

In broadcasting, a transmitted packet will propagate the length of the medium 

and thus, all other stations connected to the network can receive this packet. 

Multicasting 1s very similar to broadcasting except that the packet being transmitted' is 

received by only some subset of all the stations wnnected to the network. In ,both 

cases, the destination address in the packet header will, instead of containing a- unique 
-- 

station address. contain a "wildcard address" which will match all orfa subset of the 
I 

stations' addresses. ! 
1 

If a message is to be sent to all stations on the network,,'a broadcast of this 



message will provide a l ~ w e r  variance of transmission arrival time over separate -- - -  

single-destination transmissions. Since all the stations can new r e e k  this nresz;;age=t - ----- 

th; same time (with negligible transmission delays). the processors can now proceed to 

process the data simultaneously. In our distributed database application. preprocessing 

of the data is performed in 

information. The eliminated 

process of doing the query. 

this manner and will hopefully eliminate some redundant 
* 

information need not, be transmitted later on in the 



Chapter 3 

Internet Protocols 

The Internet network supports two protocols: the Internet User Datagrarm 

Protwol (UDP) and&& Internet Transmission Control Protocol (TCP), The main 

difference between cke UDP and the TCP is that the TCP provides a reliable. flow- , 

con trolled, two-way transmission pf data through a connected socket, whereas the 

UDP is a simple, unreliable datagram protocol using connectionless socket. The 
*a- 

issues that relate to these two piotocols in cofinection with our res:arch will be 

discussed in this chapter. 

\ 
3.2 Socket Types and Protocols 

Within the Internet network. communication between two processes or nodes - 

takes place between communic+tion endpoints known as sockets. Each socket has the 

potential to exchange information with other sockets within the network. Several 

methods of communication are' available and each is associated with a different socket 

tY Pe. 

The two main socket types that the Internet supports are virtual circuit socket 
1 

and datagram socket. These two socket types correspond to 'the two protocols TCP 

and UDP respectively. Thus, the way in which TCP and UDP work is inherent to 

the communication methods used by these two different sockets. 



32.1. Datagram Packet Switching 

For the datagram switching technique. a message that is to 6 sent is . ' 

broken into smaller unitsacalled packets. The reason for this is that the length of . . 

4 the data that may be t ransm~t ted '  is limited in the pcketswi tched network. A 

c 
typical maximum length is on'e to several thousand bits: in our experimental 

network, the maximum length is 1518 bytes with 46 bytes being the packet headei 
,' 

I 

and 1472 bytes for data. A message that is of length greater than the maximum 
a 

packet size will be sent one packet a t  a time. Each packet is treated independently 

.by t h z n e t w o r k .  In addition, no dedicated path is established between the two, 

commu&ating stations. As a r e h l t ,  each packet must have a destination addrew 

appended to it. 

One advantage of the datagram approach is that no connection rhead is 

required. Thus if ' a  station wishes to send only one or a few packets, t h ~  service is \- . 
very fast. 

3.3. TCP vs UDP 

- Our linitial task is to investigate what the d fference is in the i between the two protocols - TCP and UDP. The periment is 

check the time required to send a fixed number of fixed size. packets using the two 

different $oJocols. The packet size used is four bytes and the time is the average 

elapsed time in seconds in sending 1 0  packets to one node. b e  result is shown in 

table 3-1. 

t, 

Frqm this result, we can draw the following conclusions: t,> -- '. 

1. Connection time for TCP is long. 



2. A small routing overhead for UDP. 
* 

3. TCP is reliable. 

4. UDP is unreliable. 

Elapsed Time (seconds) 
f f .  

Connection - Transmission 
If 

Method Total 

TCP 13-00 4.15 17.15 , 

TCP with addition21 

UDP without acknowledgement 0 6.32 

UDP with acknowledgement/packet 0 17.04 
b 

. 
Table 3-1: Transmission Time for TCP and UDP 

29.89 

errorg 

17-04 

3.3.1. Connection and Transmission Times 

TCP us& the virtual circuit .socket which requires an initial connection' time for 

establishing the virtual circuit. The result shows that indeed the connection time for 

TCP is very long as compared to that of UDP. In fact. UDP doe; r:ot require any 

connection time at  all' simply because *the datagram socket is connectionless. 

llowever, the t~ansrxtission time for UDP without acknowledgement is. 2.17 

seconds longer than that of T C P . ~  This is explained by the fact that for TCP. there 

are no record boundaries, so data can be packed tighter together. Thus. less packets 
a 

are nivded for the transmission of the file. For UDP. different records cannot be 
5 

I 

packwi together because there are record boundaries, and so. more packets are needed 
I 

for the transmission of thk file. 



1 
33.2. Error Free Data Transmission - 

\ 

For error free data transmission, we can use either ,the TCP witlo6t ' 

acknowledgement scheme or the  UDP with acknowledgement scheme. The result in 

table 3-1 shows that the transmission time for the TCP scheme is about four times 

less than that  of the UDP scheme. However. with the large connection time for the 

TCP scheme. the total elaps times for the two schemes are about the same.. Figure 
# 

3-1 shows a plot of the tot  transmission time for sending different numbers of four 
I 

bytes packets. From this, i t  is clear 'that the UDP scheme is m u c h 3 t e r  for sending 

less than 4K bytes of data. However. when more than 4K bytes of data is to be 

transmitted, the TCP scheme is faster. We might ask whether this result is 

dependent on the packet size at all. The answertis yes. When a packet size of 1472 
c, 

bytes is used. we get the result as  plotted in figure 3-2. Using a large packet size. 

it does not seem like that there is any crossove; point between the two curves. 

Thus. the UDP scheme is much faster for sending any amount of data when a large 

packet is used. Moreover, we will see in the next section that it is better to use a 

larger packet size. 



A UDP 

0 TCP 

Number of Packets (~100) 

Fig- 3-1: Transmission Time for Different Number of Packets of Size 4 ~ ~ t s h  



A UDP 

0 TCP 

- 
I - Kumber of Packets (x1OO) 

Figure 3-2: ~ r a n s k i s s i o n  Time for Different ~ u r h b e r  of Packets of Size 1472 Bytes 



Optimal Packet Size 

In our experiments, we have found that even though the transmission time 
-\ - -. 

increases as the packet size gets -larger (see figure 3-3), it is still better to use the , 

largest possible packet size. The reason is that when we calculate the transm'ssion f- 
'+js time per byte, the time decreases as the packet size gets larger. This resu 

' 7 ,  
depicted in fiiure 3-4. This .graph shows that for a data packet4ize of 400 bytes. 

the throughput rate for both the UDP and the TCP is the same. r, as the 
I 

d a t a v k e t  size increases. the throughput rate of the UDP improves over the TCP 

throughput rate. 1 

7. 

i %. 

The dips and peaks in .figure ,3?Pare explained by the fact that the buffer size '5 i /' z4 , 

(Cj in the workstation is 512 bytes. In order to send a packet of size over 512 bytes. 

more than one buffer must be acquired. Thus, for the UDP case, the time increases 
%? 

as a buffer is being filled. When the bqffer is full and a new buffer is acquired. 

the time decreases again because of an almost empty buffer. For the TCP case, the 

time changes are not as drastic as the UDP case. Note that the. buffer holds, not 

only data But also header' information such as the source and destination addresses. 

This is why the dips in the figure do not occur exactly at  the 512 byte boundary. 

Moreover, other experiments done by ~ h o c h  and Hupp [ShHuBO] have shown 

that the larger the packet size. the better the utilization oF?fhe network.' 

. There is, however. a limit to the size of a UDP packet. This restriction is due 
h 

to the datagram packet-switch network itself. This maximum packet size is fixed a t  

1518 bytes including the packet header and 1472 bytes of data. Hence. all our 

experiments are d@e using this maximum packet size. 
' I  



~ ~ .- 

Data Transmission Time 
Per Packet 

vs Data Packet Size 

. Data Packet Size ( ~ 1 0 0  bytes) 

Figure  33: Transmission Time Per. Packet vs Data Pack'et Size 



Data Transmission Time 
Per Byte 

vs Data Packet Size 

0 TCP 

Data Packet Size ( ~ 1 0 0  bytes) 4 

- 

Figure 3-4: Transmission Time Per Byte. vs Data Packet Size 



3.5. ~eliability 

TCP is reliable 

of TCP 

in itself because the - protocol has already incorporated a flow- 

control and window mechanism to guarantee delivery of packets. Thus. TCP without 

acknowledgement is sufficient and an extra bgilt on top of . 
TCP is unnecessary. 

3.5.1. Flow Control in TCP 
1 

- .  
Flow control is concerned with ensuring that the rate of transmission of packets 

from t h e w u r c e  shall not exceed the capacity of the destination to receive packets. 

- - The flow control mechanism i n  -TCP is based on a multi-packet acknowledgement 

scheme. For a single packet acknowledgement scheme, after the sender sends out ti 

packet, it will wait for an acknowledgement from the receiver before sqnding out the 

next packet. If, after a certain time delay, the sender has not received the 

acknowledgement, it .will retransmit the packet. This scheme can be highly &efficient 
\ 

since the network can be idle for a great part af the time while ackndwledgements 
v 

are awaited after. each packet. To improve the efficiency of the line, several packets 

can Ix transmitted by the sender before waiting for an acknowledgement. In doing 

this, it will be necessary to provide 'some means of distinguishing individual packets. 

An acknowledgement also must now, be able to specify which packets i t '  is 

acknowledging. Packets can be distinguished simply by using a sequence number 

carried in the packet header. An acknowledgement can thus use these packet sequence 

numbers to specify which packets it is &knowledging. 

.The number of packets that may be transmitted before an acknowledgement is 

received is determined by several factors such as the line bandwidth and the 
< 

availability of the receiver's buffers. This number, known as the "window width*. is 
/ 

, 



agreed upon by all the nodes at  

transmit packets that are with& 

initialization time. At any point, the' transmitter can 

the width of the window continuously. Once th& is 

done, it will wait for an acknowledgement for these packets. The window is moved 

forward as the acknowledgements are received. thus, allowing new packets to be 

transmitted. In this way, the scheme parantees that all the packets will be received. 

In section 2.3, we saw that the possibility of transmission error due to the - 
network itself is very small. However. our experiment shows that lost packets are 

very common with UDP. The reason, therefore, for this unreliability is due to the 
t 

fact that 'the UDP does not have any flow control as does the TCP. As a result, the 

pro~tocol can ohly give its best effort to deliver the internet packetsP4 but it cannot 

guarantee that they are delivered once and only once, nor that they will be delivered 

in the same order that they were transmitted. Packets may also be lost due to the 

transceiver's buffer overflowing. If data arrives at a controller which i s  unablC to 

accept it into its buffers. that data can simply be thrown away with the complete - 

assurance that it will be retransmitted eventually. However, with just the bare UDP. 

no retransmission will be called for. 

Packets lost due to buffer overflow happens quite frequently when a sender is 

sending out packets at, a very high rate without any interruption, but the receiver is 

picking up the packets at  a much slower speed.  noth her cause for buffer overflow is 

when' messages from various stations arrive simultaneously or within a very short 
c- 

period of time and again the receiver is unable to process them as fast. In order to 

understand this problem of buffers overflowing more fully, we need to look at the 

hard ware 

picked up - 
aspect of the  multibus Ethernet 

and buffered from the network. 

controller where the packets are being 



3.6.1. Multibq Ethernet Controller 

- - - - - - - -- - - 
- 

Our experimental Ethernet uses the 3Com 3C400 Multibus Ethernet Controlle; as 
0 

depicted in figure 3-5. The controller is a device that is responsible for the carrier 
* 

- 
sensing, collision detecting, and the buffering of encoded data for transmission and 

reception. Part of its internal memory is allocated to two buffers each of size 2 K  

bytes for the storing of data. 

Ethernet 
tap 

F 2 
t r  sceiver 

, 

I 

- < 

F i g y r e  3-5: The 3Com Multibus Ethernet Controller 

I 

controller 

buffer 1 

A packet of encoded data placed"6nccche Ether will be picked up by the 

buffer 2 0 

controller if i t ,  is addressed to it, and will temporarily place it in one of its two 

internal receive buffers. Following this, the controller will then t ry  to interrupt the 

> 

multtbus 

workstation 
CPU 

workstation. If the workstation is not manipulating the message queue in its own 

memory 
- 

> 



memory when the interrupt occurs. it 

packet from the controller's txlf f er 

will service the interrupt- by  transferring-the - - - 

to the message queue in its rrwrr memory. 

However, while the workstation is manipulating the message queue, the interrupt is 
-- 

disabled for concurrency control reasons. While the interrupt is disabled by the ' 

workstation and more than two packets of information arrive a t  the controller, the 

first . two will be stored in the two buffers, but -the subsequent packets will be - 
..* --- 

ignored. The problem is that the contrpller has only two buffers  and-each-buffer 

can only hold one packet no matter how small the packet is. 

*robla of buffer overflow happens frequently, in  two situations. The _ 
first situation is where a sender sends out a continuous stream of packets with nQ" 

. ! 

pauses. to , a receiver who is unable to empty the buffers at this fakt rate. The 
6 

second situation is where there are several receivers who need to acknowledge the 

arrival of a packet to the broadcaster at the same time. Since the packet was 

broadcast, all the receivers will receive the packet at the same1 time with negligible . 
- - - -- -- 

transmission delay, and if they all work at about the same sped. they will all 

acknowledge at about the same time. ' As a result, the third and subsequent 

acknowledgements arriving a t  the broadcaster will be lost. 
----. - 

3.62. Experiment . .. 

The experiment whose result is summarized in table 3-1 shows that the first 

situation does indeed happen. In the case of UDP witho;t acknowledgement, packets + 

are last due to the seader sending & ~~ f&ex the c a ~  handle 

them. - For the second situation. if there are only two buffers. then acknowledgement * 

packets are lost if more than two receivers acknowledge a packet a t  the same time. 
L 

The' experiment uses one braadcaster and four receivers. The broadcaster 



J 
broadcasts a fixed number of fixed size packets to the  four--rgceiversL-Upon receiving+ 

a packet, the four receivers will send an a c k n o w ~  hack t o - t h c b r e a d c a s t e ~ -  

Only after receiving all of the acknowledgements (or a time-out occurs if some 
d 

acknowledgements are lost) will the broadcaster broadcast the next packet. The 

experiment is set up in such a way that either ;he four receiyers can ac4nowledge the 

receipt of a packet immediately or some of the receivers wait for one second before 

acknowledging. The result for (as summarized - - - - - -- in - table - - 3-2) shows 
t -h- 

I ? that when more than two receivers ,reply at the same time, acknowledgements are . 
< i 
A% 

indeed lost. when only two receivers acknowledge at the same time. no 
-* 

acknowledgements are lost. This is9 so the case when three receivers delay' e v e n  - -  

? .  1 

though there are only two buffers. T*S'~S because when the first packet arrives. the 

workslation can immediately transfer this packet from the controller to its own 

memory. Thus there are still twafrnpty buffers for storing the next two packets. 

This also explains why the number of acknowledgements 

delay case , is less than~tbe_n_~tececeiv_err&1aycase.~ 

- lost for the one receiver 

When a workstationis 
- 

%manipulating t6e message queue, _which_ js a time consuming process, the interrupt 

tT 

from the controller is disabled. If both buffers already contain packets and another 

packet arrives in the mean time, it will be thrown away. This is just the case &hen 

no receiver or four receivers .wait in our experiment. 
- 

When three receivers or four receivers delay for thg same time, we would 

expect the results to be respectively similar to one receiver and no receiver-delay, but 

this is not the case. 'The reason is that experiment is done in a multi-taski* 
\ 

environment. Thus. when the acknowledgements are delayed for one second, t h e L  

f- process could very well be swapped in and out several limes- .h a result.. the L 

acknowledgements will be sent at different times and thus arrive at the broadcaster 

a t  different times. This in effect, is almost like using randomized delays for the 

\ 



acknowledgements. Thus, the percentages of lost acknowledgements for the three and 
- - - - -- - -- - - 

four receivers .delay cases are much smaller than the one and ho receiver delay 

number of percentage of 
receivers that wait -- r acknowledgements lost 

* i - 
0 

4 I 25% 
1 13% 
2 0% 
3 0% 
4 0.03% 

- -  -- - - 

Table 3-2: Percentage of lost acknowledgements 

Broadcast TCP 
-/ 

For error free data transmission, we can use either TCP without 

acknowledgement or UDP with acknowledgement. We have seen that the UDP scheme 

is much faster than the TCP scheme. Moreover, if we want to '  send the same . 
message to all the nodes. we can do still better than either of the two schemes by 

- --- 
-7 

-- - 

8 , 
using the broadcast method that is supported by the Ethernet. In order to send the 

same packet to n nodes using TCP, one will have to do this sequentially by sending 

the packet to one node a t -  a time, whereas if we use broadcasting, we need only 
* 

broadcast the packet once and all the nodes will receive the packet simultaneous~y. 

This means that tol send the same data to n nodes, TCP will take n times longer 

than broadcasting. 

3 There, is. owever, one draw-back in using broadcasting because it is only . 

supported' by UDP: and not by TCP. The result shows that UDP by itself is 
. , 

unreliable because it does not have a built in flow control mechanism like TCP. 

Therefore, if we are to use the UDP broadcast for data transmission, we will have to 

f 
build a higher level reliable protocol on top of UDP. 



- - - 

3.8. Conclusion 
I 

. To send a packet to many nodes using the broadcast method is definitely faster 
I 

than sending a packet using either T6P without acknowledgement or UDP with 
F 

acknowledgement: However, the broadcast method is only supported by UUP, and 

UDP is unreliable. Thus. if we are to use the UDP broddcast for data transmission. 

we will have to build a higher level reliable protocol on top of UDP. This protocol 
-- 

must guarantee that all the processors involved must receive all the data correctly. 

This would imply that when a packet is lost. the receivers must be able to let \he 
u 

sender know that the packet iG lost and requbt  the sender for a retransmission. 



Chapter 4 

Reliable Broadcasting Protocols 

4,l. Introduction ' 

Since data transmission is a critical factor % a distributed database system. we 

need not only a reliable but also a fast broadcasting protocol. That is, one which 

will spend the l e a ~ t  amount of time in sending data, and yet guarantees that , all the 

data will be received by all of the participating nodes. We have noted that the UDP 

broadcast is unreliable and therefore needs to have a higher level reliable broadcast 

protocol built on top of it. In this research. several broadcasting protocols built on 

top of the Internet User Datagram Protocol have been tested. They differ in the way 

in which the -acknowIedgeme~s are-ade- and i+ t8e- metbe& *sed - f e ~ t k e  

retransmission of lost packets. The protocols are: acknowlt5dgement per packet. 

acknowledgement per file with file retransmission, acknowledgement per file with 
P' 

selective packet retransmission, and no acknowledgements or retransmissions. Note 
1 

that the last scheme is not really a protocol, but only for the purpose. of finding the 

lower bound for data transmission and the overhead required for acknowledgements. 

,Sveral variations of the above protocols have also been tested. We will now describe. 

these protocols in detail. A pseudo code listing of these protocols can be found in 

' appendix A. 



C 4.2 Acknowledgemm-t Per Packet With Packet 
Retransmission 

d 

For this protocol. a file is broadcast from a sender to the receivers in data 

packets consecutively numbered from one. A data packet, as depicted in figure 4-1. 

has a sequence number and a data field. i 

4 bytes 7 n bytes 

Figure 4-1: Data Packet 

The sequence numbers begin with one and increase by one for each new data packet. 

thus allowing the receivers to discriminate between old and nsw packets. Tb ta 

field has a length of from one-to 1456Lbytes-making the maximum packe_lengtt.n--- 

be 1472 bytes.' All the packets. except possibly for the last one. have the maximum 

length size. If the packet is 1472 bytes long. the packet is not the last data packet; 

if i t  is from one to 1471 bytes long. it acts as the end packet and signals the end of 

the file transfer. 

-- 
A f e r  broadcaiting 'a packet. the broadcaster b e  Walt for G o w l e d g e m e n t  k 

. % 

from each of the receivers. An acknowledgement packet is Qhown in figu 
r 

seqvence number is the number of. L h L  pack& Lhat i t  -yLg and Lhc 

message is always OK. The broadcaster will miss an acknowledgement if either the .I -. \ 

acknowledgement was lost or the data 
0 

'!See section 3.4kfor a discussion of why we hive  selected lo use a maximum packet size of 1472 h y b  
* .  



V 4 bytes 4 bytes , 

e 

Figure 4-2: Acknowledgement 'Packet 

t 

packet never arrived at the receiver and so no acknowledgement was made. In either 

case, the broadcaster will timeout and will rebroadcast that data packet. The 

broadcaster will not go on to send the next packet until the acknowledgements have 

been received from all the receivers. All packets received by the receive-rs will be 

ackriowledged with the message OK, but only the ones with the same sequence number 

as' that of its own internal sequence number count will be taken. The others with 
t 

the previous sequence number will be ignored. This acknowledgement scheme 

guarantees that at each broadcast, all previous packets will have been received by all + 

the receivers. 

The end packet. as mentioned before, contains less than 1472 bytes of data. 

4 bytes 4 bytes 

sequence 
number 

b 

Figure 4-3:. End Packet 

- 
message A END 

If the file happens to divide evenly into the packets, thushfilling up 

then an extra end packet will be broadcast. This end packet 9 the 

L 



33 

< - -  - 

the acknowledgement packet (see figure 4-31 except that it 3 .- 
- sequ&ce ngmber and the message is END. After receiving the end packet. the 

w 
receivers will acknowledge,it as before. They then wait for an end-reply packet 

from the broadcaster, upon which they will terminate. n receiving all the 
a 

acknowledgements for the end packet. the broadcaster adcast out an end-reply 

packet a h e n  is free to the file has been 

. transferjed successfully.~ end packet is lost. - 

the broad;-1 rebroadcast fhe d packet j s t  like the data packets. -- ",i 
The purpose of the end-reply packet is to make it practically certain that the 

r 
sender and receivers of a file will &ree on whether the file has 'been trans d e d  

- - 
? 

correctly. If the broadcaster lost an acknowledgement for the end packet, if will 

rebroadcast the end packet. With the above end sequence, the receivers will still be * 

d . 
around to ackno dge an end packet if the original one was lost. Thus the 

broadcaster and receivers cari a11 termiiiate to@t6er after kTng assured o r  a successful 

file transfer. 
/ 

p 3 .  Acknowledgement Per File With File Retransmission * 

The second broadcast protocol is very much like the first one. The data packet, 

like the first one, has a length of 1472 bytes with a sequence number field and a 

data field. The end packet is a data packet that is shorter than 1472 bytes or one 

with an EN-ge. The data packets are broadcast out consecutively numbered 

from one. ~ h e d f e r e n c e  is that instead of the receivers acknowledging every packet 
f' 

that is broadca- will wait until. receiving the end packet. After receiving the 

end packet, each receiver will send an acknowledgement packet back to the 

' broadcaster. Tpe acknowledgement packet is similar to the previous one with a 



- -- 

sequence number followed by a four byte message. The message, however, can be d 

either OK (if all the packets be re  received) or RETRANSMISSION (if some packets were 
t 

lost and retransmission is . If one of the acknowledgement message is 
I t - 

RETRANSMISSION or 'if an ack packet is lost, the broadcaster will 

? retransmit' the whole fi e one: in .effect. restarting the whole 

process. Howeve i f f l  the acknowledgement messages are OK. then it will broadcast A 
- LL 

. the endFPIy  - % y k e t  and then terminate. The receivers. after sending o t t  the 

a. 
ackno#edgement f oh  the end packet will either wait for the retransmission of the file . 

l 
if it has lost some $ackets. or wait for the end-reply packet. If it is waiting for the 

end-reply packet but receives data packets, they will be ignored. 

4.4. Acknowledgement Per File With Selective Packet 

Retransmission 

As the name suggests, the procedure for this third protocol is much the same as 
- - -- - - - - - - - -- -- 

the second protocol. The detailed operations for dealing with the packets and $he 

acknowledgements. however, are quite different. Instead of retransmitting the whole 
)I 

file when some packets are lost, only those packets that are lost are retransmitted. 

Thus the acknowledgements will need to specify which data packets have been lost 

and then the broadcaster needs to be able to selectively pick out a portion of the file 

corresponding to those lost data packets for retransmission. This scheme is very 
n 

much like the flow control and window mechanism used by the TCP protocol with 

the window width being the size of the file., , 

The broadcaster begins wiih broadcasting the data packets consecutively 
-J 

numbered from zero to the receivers. The data packet same format as 
k 

descrikd previously with a total length of 1472 bytes. packet, even 



with a length of less than 1472 bytes is not considered aF the end packet. An extra 

end packet using the next sequ,ence number with the message END is always broadcast 

to signal the end of a f '  e transfer. The reason is that this extra end packet must be 9- 
when several packets all having the maximum length size are . 

situation is similar to the case where the file divides .evenly 

into the packets and so all the packets have the same maximum length. 

- 

-- 

The acknowledgement packet has a variable size as shown in figure 4-4. 

4 bytes 4 bytes 4 bytes 4 bytes 

L 

sequence 
number 

t 

Figure 4-4: Variable Format Acknowledgement Packet 

There are as many messages in the acknowledgement packet as there are data packets: 

the first message corresponds to the first data packet, the second message to the 

message n 

- - -  
message 1 

second data packet; etc.. Each of the messages can & either OK if the corresponding 

message 2 

data packet was received or RETRANSMISSION if that packet was lost. With this 
- 

acknowledgement scheme, there is a limit to the 'number- of packets that can be sent 

for each file transfer. This limit of 364 data packets or a file size of about 530K 

I 

bytes is good enough for our p u r p s e .  Notice that we can use a message size of only 

one bit, thus increasing our limit by 32 times. 

Upon receiving a packet. the receiver will check whether or not it has already - 
received this packet. If it has already received this dacket, the packet will be 

ignored, otherwise, it will store the packet and notes down that this.packet has been 



received. After receiving the end packet, the receiver will construct the - 

7- 

acknowledgement packet according to whether a data packet has or has not been 
, * 

received. After sending the acknowledgement pac+et back to the broadcaster, the 

receiver will either wait for the end-reply packet if it has received all the data 

packets or it will wait for the retransmission of lost packets. If it is waiting for the 

end-reply packet, it will ignore all other packets that it receives. It will continue to 

wait until it receives the end-reply packet upon which it will terminate. 

The broadcaster, upon receiving all the acknowledgements will decide on which * packets need to be retransmitted. This means that all the packets will need to be 
- $ . 

buffered. All lost data packets from any receiver will be rebroadcast sequentially 

with no interruption. The last data packet rebroadcast will be followed by the end 

packet. This rebroadcasting of lost packets will ,continue until all the messages in all 

9 the ackno ledgement packets are OK, after which the broadcaster will broadcast out 

the &eply packet and will then terminate. 

I 4.5. No Acknowledgements Or Retransmissions 

This last protocol with no acknowledgements or retransmissions is really not a ' 

.protocol at all. The broadcaster simply assumes that all data packets will be received 

by all the receivers. Thus, all the data packets will be broadcast out consecutively 

numbered from one with no interruption until the end packet. The end packet, as in 

the first protocol, is either a data packet with less than 1472 bytes long or one with , 

any further work. ~ l l - ' t h a t  the receivers can do .is just hope for the best. If there 
w 

are lost data packets, th& the result will be erroneous. 

The purpose of this is io find out what is the overhead for the 



acknowledgements and retransmissions required by the previous three protocols. When 
- -- 

there are lost packets or incomplete file transfer (which happens quite' often). no data 

-*-gathered. Nevertheless. when all the file transfers run to completion. we will have 

- 

the lower bound for the transmission time. 

4.6. Variant Of The Third F'rotocol 

Of the four protocols that we have discussed so far. the acknowledgement per 
- - 

file with selective packet retransmission protocol described in section 4.4 is probably 

the best one. However. we might sfill be able to imprdve on it by putting a time 

delay between the broadcasting of the data packets. This folloiks from the fact 

discussed in section 3.6 that when packets are arriving too fast at  a transceiver. they 

will be ignored. Thus, if we slow down the broadcasting process, fewer data packets 

will be lost by the receivers, and so fewer retransmissions will be required. 

If we also make the -receivers wait before making the acknowledgements. then 
- - - - - -- - -- 

1 

the broadcaster will not lose so many acknowledgements and therefore will no1 have 

to wait for a timeuut. This will not work if we use a constant time delay t for all 

the receivers. We need to have the first two receivers reply with no delay, the 

second two with a delay of t,  the third two with a delay of 2l .  etc.. 

d 

4.7. The Initial Connection 

The initial connection routine is common to all' of the protocols It basically - 
checks whether all & nodes specified in lAe query are  responding or.not- If all the 

nodes respond, then the ' processing can continue, otherwise, the intersection cannot be 

The node where the query is issued inithtes this connection by broadcasting out 



the query to all the nodes. Upon receiving the query, all the nodes will check 
- - 

whether its data set is being requested for the intersection. If it is, then the node 

will respond by sending its data set size back to the requesting node, otherwise. 

nothing is, done. When the requesting node has received, all the- data set sizes from 

the participating nodes. then the processing of the query will start. If one of the 

requested data nodes did not respond, it is assumed that that node is 'down and its 

data set is not available, therefore, the query cannot be processed. 
- - - 

This process of gathering the data set sizes is referred to as the "handshaken in 

later chapters.' The initial connection, therefore. involves the setting up of the sockets , 

and their addresses, followed by the handshake. 

Empirical Results 

The transmission times for the different protocols are sumar i zed  in table 4-1. .. 
The lower bound for data transmission is 0.25 milliseconds per byte. The t w ~  

protocols with delay, which are variations of the acknowledgement per file with 

selective retransmission protocol were expected to perform better. However. they 

performed the worst among all the protocols tested. The reason is that the delay 

used is one F o n d  which is too long foi  any practical purposes. Most of the time is 

spent on waiting.' Thus. if we are to use delay, it will have to be less than one 
- -  - 

second. The acknowledgement per packet scheme has a transmission overhead of 0.19 

milliseconds. This scheme requires too many acknowledgements, which are time 

consuming. 

The 0.39 millisecond transmission time for the acknowledgement per file with 

whole file retransmission protocol is .  a little misleading. This protocol runs 
_.-- - --. _ 

indefinite15 for a veiy long time for many file transfers and this is not reflected in 



Method 
No acknowledgements 

Acknowledgement per file with 
selective retransmission 

Acknowledgement per file with 
whole file retransmission 

Transmission 
Time (ms/byte) - 

0.25 

Acknowledgement per packet 0.44 

Acknowledgement per file with 
delay in sending 
acknowledgement 

1 .  

Acknowledgement per file with 
delay in broadcast 

Table 4-1: Transmission Time For Different Protocols 

the summary. The reason why this happens is that the whole file is retransmitted 
-- - - -- - - -- - - -- I 

when there is a lost packet. This in effect, is the same as' restarting the whole 

%process. If all the processes operate at the same speed, then the same resylt will 

happen again and the same packets will be lost. Thus., repeating cycles are formed. 

and the process goes on indefinitely. 

The best of all the protocols tested is the acknowledgement per file with 

selectwe retransmission scheme. This protocol require a .  transmissiorl time of 0.36 

milliseconds per byte and has an overhead) of only 0.11 milliseconds. The comparison 

experiments for the three set intersection algori~hms - - use this $protocol. 



4.9.. Criteria for -- a --- Fast Reliable Broadcasting ProtocoI 

From our experiments, we have found several criteria for a fast reliable 

broadcasting protocol. In order to have a -reliable protocol, some kind of 

acknowledgement is necessary. However, we must .minimize the number of . &A- 

*% 3 
acknowledgements required. Our protocol which uses only one acknowledgement after 

each file transfer is the fastest. 
' / 

Another criterion is the packkt size used. We h found that the-larger the 
- 

d. - %- 
6 a, *,* 

packet size, the faster the rate of data transmission. is 

Both the delay in broadcasting, a and the delay in sending , 

acknowledgements must be less than one second. In using a one second delay, most 

of the transmission time is spent in useless waiting. 



Chapter 

Intersection Algorithms 

5.1. Introduction 

A straightforward solution to obtain an answer for a given set expression is to 

require all  the data sets-specif ied in the expression to b e  transmitted tcrthe-sitep- - 

L , 
,where the answer is to be presented and then compute the answer there. The a . 

problem with this solution is that it ignores the distributed nature of the problem 
e r 

and the properties of the bioadcast network. , It will therefore result in a tremendous 

amount of data that needs to be t~ansmitted. Since in a broadcast network, every set 
* 

transmitted over the network is available to all nodes, each node can make use of 

this information to process its local set and hopefully to eliminate some elements 
R 

from the set which have been rendered redundant. This will result in a smaller set 

of data that needs to&transmfiteddinthehefuture.-~addition,plrallel~cming in. 

each node may reduce the response time in deriving the answer. 

In this chapter, we will describe three different algorithms to 'perform set 

intersections on a distributed database: Simple, Static, and Dynamic. The Simple 
J 

algorithm does not take into consideration the properties of the broadcasting network. 

while the Static and the Dynamic algorithms are based on the theoretical results . 
- 

described in [~uk84].  We will briefly summarize the theory developql in [ L U L ~ ~  

and then describe the three algorithms in detail. 
- - 



52.1. Definitions And Notations - 
8 

The processors or data nodes in' the broadcast 

N I , N 2 ,  ..., N,. tored in each data node Ni , I 6 i 6 
f 7 

network are 

n. is a set of data objects 

denoted by 5,' I < i < n. Any one d f  the data nodes can be a request node R 
i 1 . - 

- - - -  

and can submi a request Q. A request Q is a set expression of intersections of the J 
data objects , and has the form .. 

where each Sq is one of the sets which are all distinct from each other. Once Q has 
- x - 

8 

been submitted, it is interpreted within R, which acts as the schedpler, and .a schedule 
1 f c  t 

to perform all necessary operations is derived and broadcastfl aH the data nodes. . 
0 

5.2.2. The Schedule 
J 

The schedule is a sequence of operations which are arranged in the order of 

.At +very time step in a schedule, a node is designs-tkd to be the q$P- < 
transmitter, of its- !set and the other nodes will be the receivers. The local 

/ operations to be performed in each node after reception of the transmitted set are also 

spec if ied. 

After the schedule has heen formulated by the scheduler R, it is broadcast Xo . 
- 

all the nodes All the parlicipatmg nodes will then f ~ l l o w  this schedule in their 

processing. After the completion of all the operations specified in, the schedule, the 

r m f t  T, which is a set of objects satisfying the request Q, will be availabk to the 

result node R. 



- 
5.23. Node Operations 

\ 
There are two kinds of operations specified in a .schedule fiat the pcesscsr in 

each data node performs: data transmission. and local operation. For data 

transmission, if node Ni is the transmitter, it simply broadcasts its own data set Si to 

all the other nodes. In the schedule. it is denoted by 

Ni: Si network , 

* 
-- - 

A local operation is an intersection of the local set with the received set. When S, is 
i 

received, the node Ni will performxhe local operation denoted by 

Thjs means that the. local set Si is replaced by the intersection' of the two sets Si and 
F 'B - 

-Sj.  b&rationally, ,the part o f - the  set Si which cannot be found in the received set S'] 
k 

will be removed from Si. 

52.4. Optimization 1' 
As i n  many optimization problems, the kind of optimization' achievable depends 

* 

.very much on the amount of information that is available to the scheduler. In order 

td reach an optimal, solution, the- scheduler must have complete knowledge of all the . 

sets stored in all the nodes. But in an environment where the data is constantly 

changifig, it would be very costly for the-scheduler to have a complete 'knowledge of 

all  the data sets. This is especially so when the scheduler is not fixed at  one 
p.5. 

L' 

particular node. Any node in tbe network can be a request node and therefore is the 

scheduler. This would imply that all the nodes in the network mst ishave a 

complete knowledge of all the sets stored in all the nodes. Even if this information 
L 

is available, and the scheduler has determined the optimal schedule, once the nodes 

start  to  process the schedule, the data would be changed, and a n ,  optimal schedule 

may no longer be optimal any more. 
- 

-/ 



, Since it seems highly unrealistic to expect the scheduler to have complete 
- ----- - 

knowledge of all the data sets, we will assume that only the cardinalities of all the 

sets are known a t  the start to the scheduler. This is not an uncommon assumption 

in a database environment. Due to this limitation, it is therefore only possible for 
*/----- 

the scheduler to derive an optimal solution in the average case. i-e.. the solution with 

the least expected 'cost. The amounc of data transmission is calculated as the expected 

value of what will be eventually sent. For example. if SlnS2 is to be transmitted. 

the amount of data transmission is estimated to be 
.I 

cordinalily(SI ) X cardidi ty(S2)  

cardinality of the universal set 

For a more detail treatment of this, the reader is referred to [Luk84]. 

The cost of a schedule is the total cost of all data transmission. The cost of 

the local Operation is omitted because it is assumed to be negligible. (This is an 

transmission, an object is one unit of data and transmission of an object incurs one 

unit of transmission cost. Thus the cost of a :schedule is the total number' of objects 

that are sent out on ihe network. 

An optimal schedule is defined to be one by which the answer to the request Q 

will be derived with minimum cost. 

We will now derive an optimal schedule for Q ,where Q is an i n t e r t i p n  of  n 
b 

sets. i.e.. S,  n S2 fl ... fl S, Let us relabel, for the time being, the sets according to 

their cardinalities in increasing order. so that S, is rhe set with the least cardinality 

and 



IS) Q ty < ... < IS,I 
- - 

This reordering of the sets is denoted in the schedule by 

Q + reorder Q 

The optimal schedule is as follows: 

The Optimal Schedule - 

(01 R : Q reorder Q 
Q -* network 

(2) N2: Sb + network 4 

Ng: S3 + S'p3 , . . . , N,: S,. + sps, 

s 

T is thus the answer to Q and is available not- only to R, but also to all the 

other nodes. The proof of optimality for the above schedule is.given in [ ~ u k 8 4 ] .  

5.3. The Simple Algorithm 

This first algorithm. referred to as' the Simple Algorithm, does not make use of 
'--.-/ / 

the parallel processing that is possible with a broadcasting netyork. Neither do the 

nudes perform any preprocessing to its database. When given the query @, the 

request node R will 'initiate a connection with all the Ni's as specified in Q by 

broadcasting Q. This procedure is referred to as the initial connection and is 

described in detail in section 4.7. The request node R does not rearrange the order of 

Q at  all. I? simply uses the ordec of Q as the schedule for operation. 



After the initial connection has been established with all the participating nodes. 

the request node R will wait for all the data nodes to send their entire data set 
/. 

sequentially following 'the order of the schedule. Upon rweiving S. R will replace - 
i J ' 
\ 

its own data set Si w i z  the intersection oT Si and S,. This is the local operation - - 
denoted by 

The data nodes. upon receiving Q, will follow the order as specified by Q in 

which to send the data. The data is broadcast by each node sequentially to the rest 

of the nodes. However, all the nodes except for R, simply ignore the data being 

* 
-received and no local operations are done whatsoever. 



5.3.1. The Schedule 

Given the q,uery 

Q =S IP f  S, * ...'* S, 

the nodes will follow schedule 1 below 

(0) R : Q + network 

T + S1 otherwise 

,(R) NR: Sn + network 

Note that all the nodes do not make use of the information that is received 

from the broadcast. They can certainly make use of it by doing some preprocessing /- 
and hopefully. they can reduce the size of their data set by eliminating the redundant 

information. This is just the approach taken by our next algorithm. 



5.4. The Static Algorithm 

in this algorithm, we want to make use of the information that is broadcast' to 

each of the nodes. Since the data is broadcast, all the nodes will receive the data at 

the same time.--This means that the, processing of #he data can be done in parallel 

by all the nodes. 

The algorithm starts. when given a query, by performing the initial connection--- 

' s t e p .    his involves the broadcasting of the query to the other nodes. All the 

participating nodes will reply by sending the cardinality. of their database to the 

request node. Upon receiving all the cardinalities. the request node will reorder the 

query sequence according 'to the .cardinalities in the increasing order. This reordered 

query becomes the schedule of operations and is broadcast to all the nodes. This 
# 

schedule remains fixed for  the duration of t i e  whole process and the nodes will use 

th ipchedule  to determine which of the two operations. local or data transmission, to 

&form. This algorithm i s  just ThiF fh=feTiCilly optimal aIgo?iihri a5 b s e i b e ~ r i i i  
I 

sec'ftOrr<2.4. 

5.4.1. The Schedule 

Given the query 

R will reorder Q according to the cardinalities in increasing order. Let us, for the 

time being, re-label the sets accbrding to their cardinalities so that 

L 
This reordering of the sets is denoted in the schedule by 

R : Q + reorder Q 



', I 

The static schedule is as follows. 

Schedule - 2 

R : Q + reorder Q 
Q -+' network 

N2: S2 -+ network 

N,: S, 1, network 
R :  T - S ,  

Operationally. we  select the set with the smallest cardinality first and broadcast 

the set to the other nodes. Each node then calculates the intersection of the received 
- - - -- 

set with its own set. The resulting set size will therefore be either the same or 

smaller than the original set size. The next smaller set in the original schedule is 

then broadcast out. Each node again calculates the intersection of the received set 

with its own set. This sequence is repeated until tall the nodes con'taining sets in the 

expression Q have broadcast their own set once. Whatever. the I* node broadcast will 



The Dynamic Algorithm 

The Dyna&c algorithm is very much similar to the Static 'algorithm. The only 

difference is that after each set transfer, the' request node will wait for the other 

nodes to sen h e i r  new "data set sizes to it. Only those nodes that have not sent 

their data set need to reply, the rest of them that have already sent their data set 

need not *do so. Having received all the new data set sizes. the request node will -- - 

recalculate a new order for the schedule. , Just like the initial construction of the 

schedule, this reordering is done according to the cardinalities of the data sets in the 

increasing order. Once this is done, the new schedule is again broadcast to all the 

nodes. and the nodes will fol4ow this new schedule. The last set broadcast will be 

the answer to Q. ' - A- - 

This process of dynamically reconstructing the schedule after each node has 

transmitted its file should reduce the amount of data transfer even more than the 

Static algorithm. However, there is a price to , be paid for this. First, more 

operational time will be needed to recalculate a new order after each file transfer. 

and secondly, more data transfers are necessary from the data nodes so that the 

request node can have the new data set sizes for doing the rescheduling. This trade- 

off is confirmed by our experimental results. 



5 5 .1 .  The Schedule 

The dynamic schedule is as follows. 

Schedule - 3 

(0) R : Q + reosder Q 
Q + network 

network , 

network 



Chapter 6 

- - Results And Analysis 

6 1 Introduction 
* 

In this chapter, we will first d k r i b e  the setup for our experiments and how 

the data is collected. The rest of the chapter will be devoted to the  presentation and 

analysis of the results for the three set intersection algorithms described in chapter 5. 

6.2. Experimental Setup 

62 .1 .  The Hardware 

All the experiments performed in this research were carried out on the local 

SFU Ethernet network which operates at a speed of 10 megabits, per second. The 

current hardware configuration -- consists - of five - Sun -- -- Workstations, -- ----- all connected . 
together by the Ethernet hnd all running under the UNIX 4.2BSD operating systepl. 

The Sun Workstations are powerful general-purpose microcomputers ~ providing 

state of the art computing environment. Operating in a distributed network, each 

workstation supplies its user with a dedicated 32-bit architecture CPU and memory. , .. 

while using high-speed local area communications to share other network resources and 

servics. The computational power of the workstations begin with the most advanced. 

plicroprocssor available today: the MC68010. a recen t  improvement to the Motorola 
- 

68000. The MC68010 operates with a clock speed of lOMHz and is able to address 



v 

up to 4 megabytes of physical memory 

to 16 megabytes of virtual memory per 

All the Sun Workstations run the 
\ 

with no wait states. I t  can_ also- support-wp-_- 

process. 

k 
most advanced version of the UN1.X operating 

system, as enhanced at  the %iversity of California at Berkeley. The UNIX 4.2BSD 

version supports remote interprocess communication and remote execution of a process. 
D 

Thus, a local area network communication faci!ity is a standard capability of every 
- - - - -- 

workstation. t 

. Of the five Sun Workstaticns that we have, one is the file server for the 
- 

others. Hence. the work load on this particular machine is heavier than the other 

four. During most of our experiments, most of the machines have no more than two 

processes running except for the file server. This fact is reflected in our results by 

the higher operation time requiredq by the file server as compared to the other four 

machines. 

The f i v e  Sun Workstations. together with the multiple-access broadcasting 
4 

Ethernet network, provide necessary for our experiments. 
/ - 

The machines, connected nodes in our model, with 

the database distributed among t em. f 
6.22- The Database 

In our experiment we have treated the data sets as groups of identifiers. These 

identifiers .are simply integers. We .have. thus. made the issumption t h t  the record 

size is equal to the key size. We will see in later sections that this assumption will 

affect the ratio of the transmission time to the handshake time for the different 

algorithms. 



Our database currently consists ef lm inlegers distributed ev~YYamenethe -- --:- 
---. - 

five nod& within one-da*1 set. no two the same. T h e  in tegezshve  1 

been randomly generated and are uniformly ributed over a given range. This 

assumption of a uniform distribution in the data sets is very common and -is used in 

many modeling situations. This ' is especially ..- - the case when no prior knowledge of 

the database is known. However, we must realize that the results obtained based on '  

this assumption will have biases and theref~re--xi11 not apply,  ia3eneral.--+,o-_other- 

modeling situations. We will discuss the implication of this assumption in this work 

later 'on. For a more geneial discussion. the reader is referied to the Ph.D. thesis of 

Christodoulakis [Chris81 1. 
\ 

By using a different range. a different selectivity of the data set can be 

obtained. 

, Definition 1: The selectivity of a data set is defined as- 

the cardinality of the data set 

the range of numbers use4 

For example, if we generate 3000 numbers over a range of numbers from 1 to 

12000. then the selectivity of this particular data set is 
- - - - - - - - - 

p u s .  the larger the selectivity. the more chances - there - are of having - duplicates in the 

'y different data sets. and thus. the larger will be the resulting intenection of the sets. 

( This method of data gent&ation is consistent with the assumption [Luk84] used to 

estimate the size of overlap of two sets. 
- -. - 



We have also made the assumption that initially, there is a uniform selectivity' 
- - p-pppp-- 

and data set size throughout all the data sets. In the experiment. four different 
- 

selectivities are used: 0.10. 0.25. 0.50. and 0.75 . All of these use a data set size of 

3600 numbers. These numbers are generated by the different machines a t  

initialization time and remain in central memory for the duration of the whole 

process. Thus, the time measurements in thelresults do not include any data transfer 
, 

time to and from secondary storage. 
- - - - - - - - 

6.23. Data Collection 

The data that we have collected from our experiments falls into two catego;ies. 

These two categories represent the two ways in which we can look at the cost" of the 

algorithms. ' The first category contains data that deals with the amount of data 
- 

transmitted. The second category deals with the time required for the data 

transmissions and thk local operations. All the data is collected for the three 

algorithms - - using the four - -- different selectivities mentioned -- in section - -  6.2.2. Using the 

Five Sun korkstations as the data nodes. - - each .containing --- -- 30d0 integers. the query 
/ 

1 4 
given is always the intersection of the five data'sets - 

, 

Since our data sets contain integers, we can simply count the number of integers 
--- 

that are transmitted for the amount of data transmission. This will give us an exact 

cost for the data transmissions of the algorithms. I 

The .'time measurements collected are the elapsed times for the ' data 

transmissions, the local operations and the handshakes. These times arc obtained by 

starting a timer at the start of the operation and stopping i t  when the operation 

finishes Due to the constrainis of our hardware timer. the times are rounded off to 



d I - I 
4 - - - 

the w- 0 milliseconds. Since we are working in a multi-processing environment, 

'-- J t i r n 4  $0 <luctuate depending on the usage of the system. ~ h d  the d t a  

qrn - transmission tim? is the average elapsed time required to transmit a - set obtained - -. 
a 

from several runs. The local operation time is the average elapsed time required by a 
, 

v node to process the received data, i.e. to perform the operation , 

- - - 

S, t S, n s, u 

where Si is the. local data set and S, is the received set. 

The handshake time is the average time required for the scheduler to obtain the 
- 

I 
data set sizes from the participating data nodes and then to reconstruct the 'schedule. 

The process of obtaining theyaata set sizes involves two steE.  First, the scheduler 

will broadcast out a message specifying which node needs to respond. Upon receiving 
% '  ' .  - 

this message. -the specified node will reply with its own data set size. For the Static 

and the Dynamic algorithms, there is a handshake during the initial connection. This . 
, initial handshake time is the same for both of them. For the Dynamic algorithm. 

there is also a handshake after every file transfer. After obtaining the data s e t  sizes, 

the scheduler will reconstruct the schedule. The Simple a l g o r i t b  does *ot require 

hny handshake time' or schedule reconstructing time. 

t 

7 

The relationship of these three diffirent times are diagramed in appendix B. It 

* aIso shows the synchronization - of the five'data nodes for the three algorithms. 



- 
In this section, we will present and analyze our main results from t h e  research. 

6.3.1. Amount of 

The amounts 

Data Transmitted . 
6 

of data involved in the data transmissions for the three algorithms , 

are tabulated in able 6-1. As we can see from these results. the amounts of data F 
that need to d t r a n s m i t t e d  for the Static and the Dynamic akgogorithrns--are gteatiy 

/ reduced over the Simple algorithm,: This is especially true when t d & t i v i t y  is 

low. The* r !I ason is that there are few duplicates in the .integers between the sets 

when a low selectivity is used. In fact. when the selectivity is 0.10. the cardinality 
1 

of the resulting set T is zero. Thus. more than 90 percent of the integers are 

eliminated after the first n& has transmitted its data for both the Static and the 

Dynamic algorithms. When ,the selectivity is 0.75, the resulting set size is 950. ,and 

so less.data can be eliminated, which means more data-needs tp be transmitted. Even 

-, - -- -- - - - -- 

then, there is a saving of more than 23 percent. 
i 

t 

The results for the Static and the Dynamic algorithms are not too much 

different from each other. This observation depends very much on the way the data * 

is generated. With a -unifo&ly distributed database, there is very little variation in 
-- 

the size of t h e  intersection of any two data sets2 In other words. the probability of 

two different in terk t ions  having approximately the same size is v e r y  high. On the ' 

average, over 90 percent of the times, the intersection set size is within the range of 

* 30 elements from its mean for the various selectivities.' As a result of all the 

'See appendix C for an analysis ofL;he size of the intcrsrrtio? of two uniformly distributed data rcu. 

'See table C-1 in appendix C .  
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sets having almost the same size, it will not make much of a difference wlieth- t5e 

smallest set is selected for transmission (as in the Dynamic algorithm) or f i t  a 

random set  is  selected for transmission (as in the Static algorithm). 

I If we remove the constraint of a uniformly distributed database, the Dynamic 

algorithm might perform drastically- better in terms of data 

the' data distribution. As an&xample, it is possible i o  get 

data as depicted in figure 6-1. 
$ 

S1- (eg. SFU students) 

transmission depending 
/ 

three---overlapping~l sets  

S2 (kg. lower hainland residents) 

S3 
(eg. B.C. residents with 
ages between 18 and 24). 

Figure 6-1: Example of Overlapping ' Sets 

The Static. algorit~hrn will r ~ n ~ t ~ ~ ~ t ~ _ t h e ~ s ~ h ~ e ~ u l ~ e ~  St * S&Si&xbereas ihe  Dynamic 

algorithm will construct the schedule SI * S3 * S2. From the figure. it can be easily ' 
v 

seen that the schedule SI * Sj * S2 will transmit much less data. , 

Regardless of the database distribution, however, if substantial elimination of 

redundant information occurs after the first file transfer, the Dynamic algorithm 

might not out-perform the Static algorithm. This is because after each file transfer. - 
subsequent reordering of the schedule will not bring much improvement. Consider 'the 

- 

two cases when the selectivities' are 0-1 and 025 respctiyely, The data tmmmitkd 

in the first round already accounts for 90 percent and 75 percent respectively of all 

the data transmitted. Thus. for low selectivities, the Dynamic algorithm may not do 

any better even if the constraint of the uniform distribution ,is removed. 



--- - - - 
7- 

The restriction of a uniform size (and hence selectivity) for all the data sets 
I- - , i 4 

provides the worst case for the ~ t a i a l ~ o r i t h m .  &cause of this. the algorithm has 

no knowledge, whatsoever. of ,&w to construct the schedule. Thus. the schedule is 

constructed a t  random. @(moving this restriction will improve the perfohanre of the 
/ 

algorithm. The reason' is that in the absence of any prior knowledge of the database. 

we can expect -mar a small data set will remain small after the intersection. T,hus. 
I 

# 

the smallest .&LaA set identified by the Static algorithm will very likely ~till{be~the-~: 
t 

smallest data set after the intersectibn. 



Node Order for 
Simple & Static -- 

1 - 
2 
3 
4 
5 
, Total 

\ 

I 

/-- 

-1- 

Node Order for 
Simple & S-c - 

1 
. %.I 

.-) 

- 2' 
3 
4 
5 

Total 

Node Order for 
Simple & Static -- 

1 
2 
3 
4 
5 

Total 

Node C h k q  for 
Simple &tic -- 

1 
2 
3 
4 
5 

Total 

Simple 
0 

3000 
3000 
3000 
3000 

12000 

Simple 
0 

3000 
3000 
3000 
3000 

12000 

Node Order 
Static for Dynamic 

3000 1 
289 2 
23 5 
0 3 
0 4 

3316 

(a) Selectivity - - = 0.10 

Node Order 
Static for - Dynamic 

\ 

3000 1 
759 5 
183 3 

Node Order 
Simple Static for Dynamic - 

0 3000 L - 1 
3000 1501 3 
3000 5 
3000 i 4 

( c )  Selectivity = 

Simple 
0 

3000 
3000 
3000 
3000 

12000 

Static 
3000 
2252 
168 1 
1250 
950 

9133 
* 

(d) Selectivity = 

Node Order 
for Dynamic - 

1 
5 
3 
2 
4 

- 

Dynamic 
300Q - 

289 
22 
0 
0 

3311 

Dynamic 
3000 
1500 
744 
378 
193 

5815 

Dynamic 
3000 
2239 
1670 , 

- 

1250 
950 

9109 

Table 6-1: Amounts of Data Transmission for the Different Algorithms 



y & i v i n g s  of the amounts ofiqata tranyrnitted as obtained from t h e  A comparison o - - -  

< Static and t h  Dynamic algorithms over the simple algorithm is summarized in table 

/ 
/ Data Transmission Savings 

Static 
72.37% 
66.74% 
5 1.18% 
23.89% 

Dynamic 
72.41% 

.66.97% 
5 1.54% 
24.09% 

Table 6-2: Savings of the Static and Dynamic Over the Simple Algorithm 

63.2. Data Transmission Time 

The total data transmission time required by each algorithm to perform the 

intersection of 15000 records distributed evenly among five nodes is shown in table 

5-3. These times, which are the averages from different runs. are also plotted in 
- - - - - - - -- -- - - - -  - . - -  -- 

figure 6-2. 
i 

\ 

Selectivity 
Algorithm 0.10 - 0.25 OJO 
Simple 2.661 2.66 1 2.66 1 
Static 0.996 1.256 1 .525 1.808 
Dynamic 0.895 1.240 1.395 1.675 

Table 6-3: Data Transmission Time in Seconds 

For the Simple algorithm. the ambunt of data transmission is not dependent on 
- 

the selectivity. Whatever the selectivity is, the whole data set has to be transmitted. 

thus. the transmission ,time remains constant. For the Static and the Dynamic 

algorithms, less cia needs to be transmitted for smaller selectivity, but the data 
1 -2 



transmission time increases rapidly as the selectivity increases. When the . . selectivity 

approaches to one. the amount of data transmission will approach 100 percent of the 
D , 

data set, and therefore will require the same amount of transmission time as the 

Simple algorithm. This demonstrates the fact that for high selectivities, the Simple 

algorithm 
,+ 

t' 
- I 
7' The 

may have comparable performance. 
L 

- ---- 

performances of the Static and the Dynamic algorithms are about the same. 

As we have seen in the previous section. the amounts of data transmitted is very 

much the same. and this is directly related to the transmission time. Moreover, the 

few extra numbers needed for data transmission with the Static algorithm. for most ' 

cases. can fit into the same data packet any,way. 

Zsj 



Figure 6-2 Data Transmission Time vs Selectivity 
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633. Local Operation Time 

t 

The result for the local operation time ia shown in table 6-4 and is plotted in 
i' 

figure 6-3. 

9 

@% 
C 

Selectivity 
Algorithm 0.10 0.25 050 ,= 
Simple 0.909 1.051 1.295 1.415 
Static 0.420 0.460 0.620 0.848 
Dynamic 0.450 0.460 0.6 10 0.835 

0 

Table 6-4: Local Operation Tine  in Seconds 

As we can see, the operation time for the Simple algorithm increases' just a 

little with increasing selectivity. This should be the case because the nodes are 

transmitting the same amount of data. The only difference is that . f o r  higher 
- - - - - - - - - - - - - - - - - - - - - -  -- - - - - - - - - - 

selectivity, the intersection set is larger, and thus. a longer time is required for the 

operation. The operation times for the S ~ t i c  and the Dynamic algorithms are very 

similar. . This shows that not much is gained from the Dynamic algorithm. In fact, 

for small selectivity, the Dynamic algorithm takes longer than the Static algorithm 

because of the extra overhead involved. Only when the selectivity is large does the 

Dynamic algorithm performs better. ,Even then. the improvement is not that great. 



Local Opefation Time 
vs Selectivity 

for DiGrGnt Algorithms 

A STATIC 

o DYNAMIC 

0 0.10 , a 0.25 0.50 * 0.75 

* 
Selectivity 

Figure 6-3: Local Operation Time vs Selectivity 



63A. Transmission vs Local Operation Time - - 

7 _ _ - -  - 

When we derived our theoretically optimal algorithm in section 5.2.4, we 

assumed that the local operation time was very ,insignificant when compared to the 

data transmission time. We now want to look a t  our empirical results to see 

whether this assumption is indeed correct. 

The ratio of data transmission to local operation is dependent on t h e  par tkular  

f 
algorithm used, We have listea table 6-5 these ratios for t different algorithms "\ 
as obtained from our experiment. 

Selectivity 
> 

Algorithm - 0.10 - 0.25 OSO - 0.75 Average 
. , 

Simple 2.93:l 2.53:l 2.05:l 1.88:1 2.35:l 

Static 2.37:l 2.73:l 2.56:l 2.13:1 2.42:l 

Dynamic , 1.99: 1 2.70:1 2.29: 1 2.01:l 2.24:l 

Table 6-5: Ratios of Data Tr;ansmission to Local Operation 

These ratios show that the data--transmission time is just a little over two times that 

of the local operation time. The local operation time is therefore very significant and 

thus cannot be ignored. 

6.3.5. handshake Time 
~ -~ 

The Simple algorithm does not require any handshake time, whereas the Static 

and the Dynamic algorithms require one handshake during. the initial connection. In 

addition, the Dynamic algorithm-requires one extra handshake per file transfer and 

each handshake uses a considerable amount of time. This is because the handshake 



h .  
requires all tbe nodes to transmit their data set sizef te 4 selxxhk ltnd data 

,' 

transmission is time consuming. The handshake time also/inclJdes the construction of 
7 

the schedule f m  the Static and the Dynamic algorithms.   he handshake time is not 

dependent on the selectivities of the da-ather on the algorithm 

remains constant for the different selectivities as listed in table 6-6. 

Selectivity 
Algorithm 0.10 0.25 - 050 
Simple 0.000 , 0.000 0.000 
Static 0.059 0.059 0.059 
Dynamic 0.51 1 0.5 1 1 0.5 11 

I 

Table 6 4  Handshake Time in Seconds 

< 

used. Thus, it. 

Notice that the handshake time for the Dynamic algorithm is much larger than 
- -- ' --- - -- - -- - - - - 

\ 
- - 

that of the other two algorithms. When we compare the local operation time plus 
r 

the handshake time with the three dgorithms, (see figure 4-41, we find that the 

Dynamic algorithm is now 

algorithm now takes about 
- 
-- 

fact, when th'e selectivity is 

much worse than the Static algorithm. , The Dynamic 

the same amount of time as the Simple algorithm. In . 

low, it is worse, than the Simple algorithm. but gkdually 

improves o er the Simple algorithm when the selectivity increases. The reason is that 3. 
the overhead for the many handshakes required by the Dynamic algorithm is too ----- - 

4 

great to absorb the savings gained from the data reduction. 
i 



I / Local&eration Time Plus 
~andshdke Time vs Selectivity 

Different Algorithms - 

0 SIMPLE 

A STATIC 

0 DYNAMIC. 

6 
Figm 64: Local Operation Plus Handshake Time vs Selectivity 



- --- 

63.6. Handshake Time vs ~raimmidon % h e  - - - --- - -- - 

- - - - - 

.The handshake time is constant and is independent of the data set size. It is, 
t 

therefore, expected that as theAtdata set size increases. the handshake time will be 

proportionally reduced relatiye to the transmission time or the local. processing time. 

-3, There arc two ways in which the dala set size can increase: (1) by increasing the size 
- 

of the elements in the. data set, and ( 2 )  by increasing the number of elements in the 
-- - -  - - -- - 

data set. 

In the first ease, we can have e p h  element of the data set as a long data 
- - -- 

record instead of an integer. In this situation. the high percentage of handshake time 

of the Dynamic algorithm (see table 6-71, would be reduced. thus improving the 
Z 

performance of the Dynamic algorithm vis-a-vis the Static one. - Note. however, that 

with larger record size. we need not transmit the whole record for doing the 

'intersection. Just transniitt iq the keys of the records would be a good preprocessing 
- - -- --- 

strategy, b e c a % o n l f t h e d z a  records i n  the intersection need to be transmitted and - 
, . 

transmitted once. This is basically what we are doing in our experiments. Moreover. 
f 

as we have seen in section -6.3.1, the Dynamic algorithm will not out-perform the 
\ 

Static algorithm by much in terms of data transmission. Thus. into 

consideration, the Static algorithm will still have comparable results. 

The second way to increase the data set size is to increase the number of 
* -- - 

elements in the data set. We expect that in this situation, when the data s e f i s  
* - - - - - -- - - -- - 

increased to over a certain size, the Dynamic algorithm -will be better. We have.- 
- \ 

theiefore. interpolated the results of table 6-7 for . larger data sets. We wbl assume 
6. 

that with increasing data set size, the handshake time and tbe overhead remain , 

'. 

constant. while the data transmission and the local operatipn time . increase . 
*+-. 



promtion& y. For each selectivity, - let--% .be h sum of the -~ransmission Lime a n d -  - 

--'Y the operation time required by ea byte in the data set by the Static algorithm and 

Vd for that of the Dynamic e m .  Let 13, be the sum of the handshake time 

and the overhead time for the Static algorithm and' Cd f ~ r  the Dynamic algorithm. 

Let k denote the size of the data set such that the Static and the Dynamic algorithms 
V 

prodyce identical elapsed time. Thus - - - - -- 

The result from the interpolation is plotted in figure 6-5. In the area below tlie 

curve, the, Static algorithm is better, and in the k e a  above the curve, the Dynamic 

algorithm is better. We believe that the-peak should not be there, but instead. a 

mono t~nical l  y decreasing---cmmdin lhe  -points. The pe- 1 h t c u r v e - m a ~ -  

have k e g  caused for two reasons. The first plausible reason is that, as our analysis 

of the data sets used in the experiment has shown, when the selectivity is 0.25, fhe 
4. 

deviation from the mean size of the intersection set of two random sets is larger than 

that for the  other selectivities. Thus. the result from the experiment fluctu es 

4 f-,*: a 

at this selectivity. The second possible reason is that the curve is an fiterpolation df 
J' 

the results for database sizes of 3000 by is .  Because we -'interpolating these 

results for larger database sizes, the fluctuation in the experimental data is increased. 
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- 

Figure 6-$: Performance Cross Over Point for the Algorithms 

63.7. Total Elapsed Time 
/" 
L b 

Finally, when we combine all the factors together, i.e., the transmission time, 

the Zoeal operation time, and the handshake time. we obtain the results as plotted in 
* r 

fw 6-6. The results are also summarized in table 6-7. The timings fn t h e  t a w  

are all in seconds. From this, it is clear that indeed when the, database is small, the 

Static algoiithm is the -best algofithm* among the th& that we have implemented. 



t 

Simple 'Selectivity , 
- 0.10 0.25 .- 050 . - . . 0.75 - 

Bytes broadcast 
, , 

48000 4800d 48000 480QO 
b 

J- 
* 

Transmission time ' 2.66 (74%) 2.66 (7190) 2-66 (67%) 2.66- (65%) 
Local ' operation time 0.91 (25%) 1.G5 (28%) 1-.29 (32%) ' 1.42-(349~))' ; - - 
Handshake time 0.00 (0%) 0.00 (0%) 0.00 (0%) 0.00 (0% \ 

Overhead 0.04 1 % )  0.03 (1%) 0.05 (1%) 
J 

0.04 (170) 
Total elapse tjme 3.61 3.74 4.00 4.12 

Static Selectivity 
0.25 050 0.75 ' 0.10 

~ ~ t t k  broadcast ' 13264 15964 " 23436 36532 
0 

Transmission time 1.00 (65%) 1.26 (6990) 1.53 (69%) 1.81 (66%) 
Local operation time 0.42 (27%) 0.46 (25%) 0.62 (2890) 0.85 (31%) 
Handshake time 0.06 (490) 0.06 (3%) 0.06 (3%) 0.06 (2%) 
Overhead 0.07 (4%) , 0.06. . (3%) 0.01 (.4%) 0.04 (1%). 
Total elapse time 1.55 1.84 2.22 2.76 

Dynamic Selectivity 
0.10 - p.25 .OJO 0.75 

Bytes broadcast 13244 15852 23260 36436 

Transmission time 0.90 (43%) 1.24 (54%) 1.40 (54%) 1.68 (55%) 
Local operation time .0.45 '(22%) 0:46 (20%) 0.61 (23%) 0.84 (28%) 
Handshake time 0.51 (24%) 0.51 (2290) 0.51 (20%) 0.51 (17%) 
overhead * 0.23 (11%) 0.11 (4%) 0.07 (3%) 0.01 (.3%) 
Total elapse time 2.09 2.28 2.59 3.04 - 

L I - - 

i '-- Table 6-7: Comparison Summary of the Three Algorithms 





Chapter 7 

Conclusion 

The objective of this ihesis is to provide empirical resul;s for algorithms to 

perform set intersections in a distributed database environment. We have noted that 
C 

the set intersectibn operation is a very important database operation both in its own 
- - - - -- - - - - - - - --- - -- 

right and as a sub-operation for the join operation. - ? 

\ In searching for a good algorithm to perform set intersections, we '  have made 

use of the properties of a multiple-access broadcast network. For a broadcast 

network, it is possible for one node to broadcast a message and have all the nodes ' 

connected to this nq?ork receive this message simultaneously. As a result, all the 
1 

nodes can proceed to process the received data in parallel. ~ o r e o v e r r ' b i s  - ' 
L \ 

'-I 
preprocessing of the data' can eliminate all redundant information from data td'$x 

-- - - -- - - -- -- +- 

transmitted in the future by these nodes. The data reduction process i y d S Y  
\ 
'd 

important in a distributed database system because the data transmission time is 

sigfilf ican t when compared with the local processing time,. However. the broadcast 
' _>- 

m hod. which is only supported by the User Dqtagram Protocol, is unreliable. The *I - 
reason is that UDP does not have any flow control mechanism, and so. packets are 

thrown away when the receiver is unable to buffer tbem. 

The unreliability of the UDP can be solved if a flow control mechanism is 
- - - 

implemented in the networking software, or it can be decreased if more buffers are 

available in our Ethernet controller and if the usage of the buffers can be improved. 



Thus, our result may be slightly differeqt if an Ethernet Contrctller -'different from - 

- -- - -- 

the Ethernet Controller used. argue. however. that this a lone 

may not be sufficient to alleviate the unreliability problem substantially. For example. 

if the number af nodes attached to the network increases, while the number of 

buffers in the controller is fixed. the buffer overflow problem will persist. We 

, suspect that the heart of the problem liesb in the BSD 4.2 networking software. which 

disables interrupts from the Ethernet controller when manipulating the network data 
- -- -- - - - - - - - - - - -- - - 

structures. However, further discussion on the modification of the networking 

$ 

software is beyond the scope of this thesis. 

- ~ 

\ Given the networking software as it exists, a higher level broadcast protocol has 

I 
? be designed on top of the UDP which guarantees that all the packets will be 

received by all the receivers. We have found that the protocol which uses only one i 
I acknowledgement after a file transfer with selective retransmission is the most 

efficient. The acknowledgement will specify which packets need to be retransmitted. 
- --- - - - -- - 

he sender will selectively retransmit. these lost packets. Moreover, since the , a 
L trans ion overhead per packet cannot be reduced, it is more efficient in using a 

3 9 

: large packet size as opposed to using a small packet size. The maximum packet size 

allowed is 1472 bytes, excluding the Internet address header. 

' .  

The reduction of data transmission is dependent not. only on the broadcast 
* 

protocol used, but also on the algorithm selected 'for performing -the set intersection. 
b 

- 

Of the three algorithms. Simple. Static, and Dynamic, that we ha;.e impkmented in 

our experiments, only the Static- and the Dynamic algorithms make use of the 
- 

broadcasting properties. The Simple algorithm just ignores the broadcasting advantages. 

t 
Because of this, we find that indeed, the Static and the Dynamic algorithm? perform 

much better: The,amount of data transmitted is between 23 and 72 percent less than 
-.h 



the Simple algorithm depending on the selectivity of the data. &-tween &e Static and 
C 

the Dynamic algorithms, we would expect the Dynamic algorithm to be better because 

i t r  trieq to reduce the amount of data transmiikion even more. However, it has 

turned out that this is not the .case when the data sets are small (less than 36000 

bytes each). With our assumptions of a uniformly distributed database; having 

initially the - same size - (and hence selectivity), the many - - reconstructions - -- - - - - of - the 

schedule done by,  the Dynamic algorithm do not reduceA the amount of data 
\ 

transmission by much. The reason is that there is very little variation in the 
, 

intersection set size. whether the set was chosen randomly, o r  the smallest set was 
b 

chosen. Also, substantial elimination of redundant information occurs after the first 

file transfer, after which the reduction of data drastically decreasks. Thus, the 

subsequ&t reconstruction of the schedule does not bring about much data reduction. 

On the other hand. the overhead required for the extra reductions far exceeds the 

hene i i~  derived f& the l i t l leimxmnLof s a u i n g s  -2heStatiE_algarithmhmusesSdyYYthe 
i 

first ordering4 but not the subsequent ones. and so the overall performance is much 
II 

better than t L  other two algorithms for small databases. We must caution the 
L \ 

reader that the tradeoff between the reordering overhead and the possible data 

reduction must be, carefu y studied given prior knowledge of the characteristics of the 

database distribution over the network. 1 



Appendix A 

Pseudo Codes for the Broadcasting Protocols 

Acknowledgement Per Packet W i t s  Packet - -  

- 

R e t r a m o n  i 

Broadcaster 

Set sequence-number S = 1 ; 
mi. 

Send : Send packet S; 
'Set t imer ;  

S = S + l ;  
1 WHILE (more,packets t o  be sen t ) ;  

Send end-reply packet ;  

FOR C = 1 TO number-of-receivers! t 

I F P  ifher i n t e r r u p t s )  
THEN GOT0 Send; /* r e t r ansm i t  packet 

Receive acknowledgement; 
1 - - - - -- -- 

Reset t ime r ;  
/* I f  rece ived  a l l  acknowledgements, the program 
/* w i l l  reach t h i s  p o i n t  w i thou t  be ing  i n t e r r u p t e d  

An12 Receiver - 

Set sequence-numbe r S = 1 ; 

, .  Receive packet P; 3 

Send acknov t edgement f o r  p$ckdt P; 
I F  (P = S) r3 . 

T f + w  
process packet P; 
S = S + l ;  
I 

1 WHILE (P i s  n z  the  end packet )  ; 
Receive the  end-reply packet;  



A.2. Acknowledgement Per File With File Retransmission 

A.2.1. Broadcaster 
, - 

Send: Set sequence-number S = 1; 
Do4 

, Send packet S; 
C '  

S = S + l ;  P 

1 WHILE (more packets t o  g&sezi ) ;  - -- - - - - 

Set t imer; a 

FOR C = 1 TO number,of,rec&ivers# 
IF ( t imer  i n t e r r u p t s  OR acknowledgement i s  not ok) 

THEN GOTO Send; /+ ret ransmit  packet +/ 
Receive acknowledgement; 
t 

b Reset t imer;  

Send end-rep l y packet ; 

, A.2.2. Receiver 1P 

Repeat: Set sequence-number S = 1; 
Set f l a g  ACK = ok; 

4 '  w 
Re c e I ve pa cka t---iL--- - - - - 

IF (P = S) 
THEN process packat P; 

IF (P > S) 
THEN ACK = not ok; 

S -  S + 1; 1 

1 WHILE (P i s  not the end pocket); 
Send acknowledgement ACK; 
IF (ACK = not ok) 4 

T H p  GOTO Repeat ; 
Wait f o r  the end-reply packet; 



Y- 

A.3. Acknowledgement Per File With Selective Packet 

Retransmission 

Set f l a g  RETRANSMIT = f a l s e ;  
Set sequence-number S = 1; 

Send: DOf - - 

I F  (RETRANSMIT =, t rue) - 
THEN ( 

Se lec t  nex t  l o s t  packet S; 
Send packet S; s 4- -- 
I *  &A, 

r 

Ets€ f  
Send packet S; 
S = S + l ;  

I 
I WHILE (more pocke ts  t o  be sent ) ;  

Set t ime r ;  
FOR C = 1 TO nwnber,of,receiversf 

I F  ( t i m e r  i n t e r r u p t s  OR acknowledgement i s  not  ok) 
THEN 4 

' RETRANSMIT- t r u e ;  
GOT0 Send; /* r e  t ransmi t pocket */ 
t - - .- - -- -- 

Receive acUnowledgement; 

I 
Reset- t ime r ;  
Send end-reply packet ;  

A 3 2  Receiver 

Set a r r a y  ACK(i) = no t  ok f o r  .a1 1 i ; 
Repeat: 001 

Receive pocket P ; .  
I F  (ACK(P) - no t  ok) 

THEN 4 
Process pocket 9; 
ACK(P) = ok; & t 

1 W I L E  (P i s  n o t  t h e  end packet ) ;  
Send acknowledgment ACK; 
I F  ( A C K ( i )  = not  ok f o r  any i) 

- THeJ GOT0 Repeat; 
Wait f o r  the  end-reply packet ;  



A.4. No Acknowledgements (% Retrammissions - 

t 

A.4.1. Broadcaster 

Set sequence-number S = 1 ;  . 
001 

Send packet S;  
S = S + l ;  
1 W I L E  (eor_e_pack_ets t o  ba_ sent ) ;  ' 

Send end-rep l y packet ; 
1 

A.4.2- Receiver 

a B 

Receive packet P; + 

Process P; 
1 WHILE (P i s  not the end packet ) ;  

Receive end-reply packet ;  



Appendix B 

Timing Synchronization 

Rl. Simple 

rec I 1 brd 
I I 

rec 1 1 rec 1 1 brd 
1 I I I 

#5 1 rec 1 I rec 1 1 brd 
1 I 1 I I 

time 

- 

Figure El: Timing Synchronization for the Simple Algorithm 

handshake time 
broadcast time 

receive time 
= local operation time 



/ 

# l  hnk 1 brd 1 I rec 1 1 rec 1 1 rec 1 1 rec, 
I I I I I I I I I 

-. - 

hnk j rec 1 op 1' brd 
t 2  I I I 

& 

#3 
hnk- 1 rec 1 op rec 1 op I brd 

I i I I 

#4 hnk 1 rec 1 op 1 rec 1 op I rec ~ ~ o p  I brd 
I I I I I I I 

t 

time 
t 

, t Figure B-2 Timing Synchronization for the Static Algorithm 

B.3. Dynamic 

hnk 1 brd 1 I hnk 1 rec 1 1 hnk 1 rec . 1 1 hnk I rec I I rec 
I I I I I I I I I .  I I I 

hnk I rec I op 1 hnk I brd 
I I I I 

hnk I rec I op 1 hnk 1 rec I op 1 hnk 1 brd 
I I I I 

P 
I .  

op I hnk I 1 op 1 hnk 1 rec 1 op 1 hnk 1 rec 1 op 1 b r d - t  , 
I I I I I I I - I I I 

time 
L 

Figure B-3: Timing Synchronization for the Dynamic Algorithm 



Analysis 

Appendix C 

Of' The Intersection Set Size 

-- - - -- - - -- - - - - -- - - - - ---- - - - -- - - -- 
I n  this analysis, we want to show that given any two independent sets 

1 

containing uniform distributed data and uniform selectivity, the intersection set size k 
-rC 4 

is v e r F  close to a certain mean. We will show this, first. by calculating' the 
- 

probability of k inside a certain range of the mean, and then, we will show this with 

some empirical results. 

GI. Calculation Of The Probability 

, -  Let A and B be two Sets containing uniformly distributed data, each with N .  

elements selected randomly from a set of M elements. Let k be the, intersection set 
4 k . h . ' .  , 

size of Lthe two sets A and B. i-e.. k = IA n A, where 0 6 k "  : %V. M o w .  we 

will derive thet probability function of the random variable k. 

For k = 0. ,the number of possible ways of selecting two 

each from a set of size M is 

d '  
I 

M M - N  9 

( N ) (  N 1 
For k = 1, we get 

4 

sets of* N elements 

1 -. 

In general, for k = i ,  we get 



Thus, the general probability function for any k ,  where O k N is 

M M-k M - N  
( k  ) c ~ - i X  N - k  ) for k >/ 2 N  - M 

f o r k  < 2N - M 
.* 

Using thibB~robabili ty funttion equation. the probabilities for different values of 

k and M  have been calculated. N  is fixed at  3000. Table C-1 lists the probabilities 

I of getting a certain k within a certain sange of the mean for four different values of 

Selectivity 
0.10 
0.10 
0.10 
0. io 

0.75 

/< 
----\ 

Table C-lr ~ r o b a b i ~ t i e ~  

I 

f 
I 

On the average, over 90 

of Getting k Within a Certain Range of-the Mean 

percent of the times, k is within the range of * 30 

, elements from its mean for the various selectivities. 'This conclus ive ly~hows that 

given two uniformly distributed sets. the probability of getting the intersection set 

size of these two sets to be close to the mean is very high. 
@% 



C.2. Empirica Results ) "  
ow shows some empirical results in o r d e ~  to justif 

columns 3 and 5 ble 6-1. For each 

genera:e six random sets of size 3000 each from a given range of integers. (The 

ranges are 1-300000000 1-12000. 1-6000.  and . l-4000 for selectivities 0.10, 0.25. 0.50.' and 

0.75 respectively). -Then intersections are performed between one-chosen set and 'all 
I 

other five sets. The co1,umns RAND1 to RANDS contain the intersection set size of a 
-. 

'Y f 

$ommon set.  with the other five sets. The $IIN column contains the minimum set size 
b 

I . , 

among the five intersections. The AVG column shows 'the expected difference in size. 
I 

between a r'andomly chosen set from RAN& to RAND5 and the minimum of the five 

sets. 



MIN 
296 
283 
285 
2 76 
296- 
292 ' 
2 70 
289 

Table C-2 

Selectivity = 0.10 

Selectivity =b.25 
RAND2 RAND3 RAND4 ' RANDS 

Selectivity =a 
RAND3 RAND4 

1481 1523 
1480 1532 
1514 151 1 

-1518 1508 
1519 1496 
1503 1503 
1478 1522 
1529 1480 

RANDS 
1512 
II 

-?g: 
1529 
1506 
1528 
1491' 
1500 

RANDS 
2250 
2247 
a 4 6  
22 70 
2248 
2246 
2242 
2249 

Empirical Results of' the Intersection Set Size 

--- 

AVG 
-1 1 
21 
1 7  
25 
6 

22 
19 
7 

AVG 
_ 2 4 ~ ~  ~ - -- 

34 
27 
1 1  
21 
18 
24 
20 

AVG -- 
I ]  /g 
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