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Abstract 

Realistic unquenched Lattice QCD including dynamical ferrnions has become available 

thanks to the use of highly improved staggered quarks and other newly developed tech- 

niques. While these calculations yielded excellent agreement with experiments, unquenched 

studies of the static quark potential at short distances show larger discretization errors than 

in quenched simulations. At leading order in perturbation theory these errors arise from 

0(a,a2) corrections to the couplings in the lattice gauge action (a, is the QCD coupling 

and a is the lattice spacing); fermion loop contributions to these couplings have not previ- 

ously been available. 

In this thesis, fermion loop contributions to 0(a,a2) improvement of the gauge action 

are calculated. The approach developed by Liischer and Weisz is adopted and reviewed in 

detail. It is observed that dynamical contributions are large and hence can be the source of 

the large scaling violations in previous simulations of the unquenched static potential. 
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Chapter 1 

Introduction 

The standard model of particle physics is one of the most successful physical theories. It has 

stood up against thirty years' experimental tests ever since its birth[l]. However, not only 

have hints for physics beyond standard model[2] been accumulating, there are also vast 

territories within the standard model remaining to be explored. The chapter is dedicated 

to present an updated general picture of particle physics and a general description of the 

Standard Model. A brief introduction to non-perturbative aspects of strong interactions and 

Lattice QCD is also included. Finally, chiral symmetry and its breaking are described and 

their importance to low energy physics and lattice QCD is indicated. 

1.1 Current picture of Particle Physics and the Standard 

Model 

The fundamental building blocks of our universe can be categorized into two species, 

namely fennions and bosons. Fermions obey Fermi-Dirac statistics and have half-integer 

spins. In contrast bosons are governed by Bose-Einstein statistics and possess integer spins. 

According to the Standard Model(SM), there are 3 generations of fennions and 12 gauge 

bosons at the fundamental level1. 

' ~ o w a d a ~ s  particle physics community generally regards SM as a effective field theory at low energy. 

However, since no new degree of freedom has been established through clear-cut experimental evidence, I 

will stick to a more conservative point of view. 
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Table 1.1 : Numbers in SU(3) ,  and s U ( 2 ) ~  sections denote transformation properties of 

corresponding particles under certain group. For example, UR transform as both a S U ( 3 ) ,  

triplet and a SU ( 2 ) L  singlet. Numbers in U  ( 1 )  give the corresponding hypercharges. 

Particle S u ( 3 ) c  S u  ( 2 )  L ~ P ) Y  

Each generation of fermions contains 2  quarks, a charged lepton and a neutrino. In the 

SM, particles of different chirality are regarded as different particles. Taking into account of 

the fact that there are no right handed neutrinos in the SM, there are 7 chiral fermions within 

a generation. Corresponding fermions in different generations possess identical quantum 

numbers except for mass. The generation structure can't be explained within the standard 

model and remains one of the most fascinating questions in particle physics. The first 

generation of fermionic degrees of freedom in the SM are summarized in table 1.1. 

There are two kinds of interactions between fermions. The strong interaction exists 

between quarks and is mediated by 8 kinds of gluons of different colors. The electro- 

weak(EW) interaction occurs universally between fermions. Above the EW symmetry 

breaking scale, the interaction is mediated by 4 massless bosons. Below the scale, the 

symmetry is broken to U ( 1 )  symmetry for Quantum Electrodynarnics(QED). While the 

photon remain massless, the other three bosons become massive w+, W- and Z bosons. 

The form of the SM Lagrangian is tightly constrained by Lorentz invariance and gauge 

symmetry SU ( 3 ) ,  8 SU ( 2 ) ~  8 U  ( 1 ) .  The s U ( 2 ) ~  8 U ( 1 )  gauge group is responsible for 
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the EW interaction. The gauge symmetry is broken minimally by a Higgs doublet, which 

forms a fundamental representation of s U ( 2 ) ~ .  Within each generation, left-handed quarks 

and left-handed leptons form fundamental representations of s U ( 2 ) ~  respectively while the 

right-handed counterparts are s U ( 2 ) ~  singlets. Each one of doublets and singlets has a 

particular U(1) charge. The EW sector of the standard model has passed extensive exper- 

imental tests at B factories, LEP, HER4 and Tevatron with percentage accuracy[l]. The 

Higgs sector remains to be discovered and studied. The relevant energy regions are to be 

explored in LHC [3]. 

The SU(3), generates Quantum Chromo-dynamics(QCD), the theory for strong inter- 

actions. QCD reconciles the infrared confinement and the ultraviolet asymptotic freedom 

into a simple and consistent theory. The gauge coupling of strong interactions gs runs with 

the characteristic energy scale of the physical system of interest. The energy range in which 

a, ZE g:/(4n) < 1 is called the perturbative region of QCD while in the non-perturbative re- 

gion of QCD, a, _> 1. The energy scale separating the perturbative and the non-perturbative 

regions of QCD is usually denoted as AQC-. Concrete experimental evidence for QCD 

comes mostly from perturbative region of QCD. The non-perturbative aspect of QCD will 

be described in next section. 

There are also some discrete symmetries and "accidental" symmetries[4] present in the 

SM. Parity(P) reverses the spatial coordinates, time reversal(T) flips the time coordinate 

while charge conjugation(C) changes particle to antiparticle. The QCD Lagrangian is in- 

variant under C, P, T respectively while the EW Lagrangian respects only CP and T. The 

combination operation of CPT is believed to be a fundamental symmetry of the SM. Given 

the degrees of freedom in the SM, baryon number and 3 kinds of lepton numbers(electron, 

muon, 2) are conserved accidentally. In fact, some models beyond the SM predicts baryon 

number and lepton number violating processes. 

All in all, the SM is deduced from a limited number of basic principles and explains 

natural phenomena in a vast range of energy scales. It is certainly a remarkable triumph of 

human intellectual exploration. However, some big questions are still left unanswered like 

the famous fermion mass problem and the hierarchy problem[5]. Hopefully new discoveries 

and breakthroughs would be achieved through the next generation experiments. 
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1.2 Non-perturbative aspect of QCD and Lattice QCD 

Ironically, as the theory of strong interactions, QCD was established and tested mostly 

by experiments performed in the perturbative region where the strong interactions are 

"weak"(a, < 1). It doesn't mean that the non-perturbative aspects of strong interactions 

are of little interest to us. Actually, the situation is quite the opposite. There are many both 

fascinating and important questions to be answered in this field. 

First of all, the non-perturbative aspects of strong interactions is of great theoretical in- 

terest. As a, becomes larger than 1, two interesting phenomena take place. One of them 

is the famous color confinement[6]. Below AQcD there are no free quark or gluon degrees 

of freedom. All the colors are confined into colorless hadrons and mesons. While indica- 

tions of confinement were obtained by Lattice calculation[6], a clear understanding of its 

mechanism is still absent. The other interesting phenomena is c h i d  symmetry breaking[7]. 

The breaking of chiral symmetry is essential for the establishment of low energy effective 

theories such as chiral perturbation theory. It is also a good chance for us to understand the 

dynamics of symmetry breaking in particle physics. In order to appreciate the problem and 

also for later reference, a brief introduction to chiral symmetry and its breaking in QCD will 

be presented in Section 1.4. Of course, there are other very interesting questions such as 

the topology of QCD vacuum, the QCD superconductivity and the quark gluon plasma[8]. 

Secondly, an effective way to handle non-perturbative QCD is very important if we 

want to address a lot of relevant experimental and phenomenological problems. The ongo- 

ing quest of measurements of CKM matrix elements[9] rely heavily on semi-leptonic and 

leptonic decays of meson, where various form factors are essentially non-perturbative QCD 

quantities. There are also some "exotic" particles predicted by QCD like glueballs[lO] and 

hybrid mesons whose existence and properties can be determined by clear well-understood 

non-perturbative calculations. 

First proposed by Wilson[l 11, lattice QCD(LQCD) is one of the most well-established 

and effective tools to explore the non-perturbative aspect of QCD. By replacing continuous 

Minkowski space-time with a finite Euclidean hyper-cubic lattice, the number of degrees 

of freedom is reduced to be finite so that statistical Monte-Carlo methods are applicable. 

Gauge symmetry is preserved rigorously while Lorentz symmetry is broken down to 4 di- 

mensional hyper-cubic symmetry. Ideally, a calculation is performed on lattices of different 
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lattice spacing a and an extrapolation to zero lattice spacing will be performed in order to 

get the continuum limit, which implies that the finer lattice spacing is preferred. How- 

ever, our ability to reduce lattice spacing given a specific problem is severely constrained 

by available computer power. Therefore in order to get results with a certain accuracy on 

relatively coarse lattice, various improvement schemes of the discretized QCD lagrangian 

are adopted by the lattice community. A good deal of effort has been focused on improving 

the convergence of lattice calculation results as a decreases by perturbatively removing the 

higher order lattice artifacts in lattice QCD Lagrangians. 

A sketch of the goal 

As was pointed out in the previous section, perturbatively improved lattice actions have be- 

come indispensable for high precision lattice QCD calculations. Lattice QCD is an effective 

theory which excludes high-energy modes beyond the lattice cutoff - n/a, and whose con- 

tributions to physical amplitudes in the continuum theory are therefore missing in a naive 

lattice discretization. One can use perturbation theory to compensate for the effects of these 

high-energy modes by including irrelevant operators in an "improved" lattice discretization; 

the strength of these operators can be computed by matching a set of scattering amplitudes 

in the lattice theory to the corresponding results in the continuum, order by order in an 

expansion in as(q*), at a scale q* - n/a. Generally speaking the discretization errors in a 

lattice calculation can be expanded in terms of aAQcD and a,. AQcD is roughly 250MeV 

and a is typically 0.1 fm. Therefore aAQcD is around 0.2 - 0.3. a, at the scale of reverse 

lattice spacing here is also of the same range. In order to achieve few percent accuracy, we 

need only perform our perturbative improvement of the lattice action to order 

a: and c&aAQcD. It's in fact usually the goal of the HPQCD(High precision QCD) collab- 

oration. 

Following the same argument, order asa2 improvement considered by Lucsher and 

Weisz[l2] is generally not needed for the HPQCD collaboration . However, Christine T. 

H. Davies and her team[l3] have analyzed simulations of the heavy quark potential using 

the Luscher-Weisz gauge action with the presence of dynarnical quarks. They found that 

the scaling violations is somewhat larger than the scaling violations in the quenched case, 

which is contradictory to the conventional wisdom that by introducing quark loop effects 
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the simulation result should be more continuum like. A first possible answer to the problem 

is that the missing sea quark contributions to the improvement coefficients in the Luscher- 

Weisz action will reduce the scaling violations to be at least comparable to the quenched 

case. Our work here is trying to find out whether the possible error source can explain the 

large scaling violations observed. 

As will be clear latter, the "complete" improvement coefficients are the sums of gluon 

contributions, ghost contributions and quark contributions. Since the non-quark contribu- 

tions are well-established by the calculations of Luscher and Weisz[l2], we only calculate 

the quark loop contributions here. We pursue only the on-shell improvement[l4] which is 

designed to cancel out the scaling violations only in on-shell quantities and was also in- 

vented by Luscher and Weisz. The detail of the approach will be reviewed in Chapter 4. 

It was shown that if one pursues only order a:a2(n = 0 , l .  . .) improvement there are mere 

two dimension six operators with independent coefficients needed in the counter-term. We 

then perform the improvement by calculating the one-loop contributions to two indepen- 

dent on-shell quantities and tuning the coefficients of the counter-terms to cancel out the 

order a2 scaling violations within. 

It was also pointed out by Liischer and Weisz that one loop calculations of on-shell 

quantities in four dimensional Euclidean space-time are too complicated to implement in 

lattice perturbation theory. They proposed to cany out the calculation in the "twisted world" 

in which two directions of space-time are compactified and twisted periodic boundary con- 

ditions2 are imposed. The special geometrical setting generates a tower of "mesons" which 

are just gluons of different minimum momentum modes. Among these mesons, the two 

with lowest and the second lowest minimum momentum modes, namely A and B meson, 

remain stable when interactions are turned on. A set of new on-shell quantities are there- 

fore available and we choose the minimum momentum mode of A meson as well as the 

phenomenological coupling between two A mesons and one B meson as our two on-shell 

quantities. 

Readers shouldn't be bothered to feel confused after the present section. There is a lot of 

information presented with details due in following chapters. One needs only keep in mind 

the big picture. The second chapter will give a detailed review of Lattice QCD formalism 

in general. Lattice perturbation theory and twisted periodic boundary conditions will be 

'~wisted periodic boundary conditions will be reviewed in detail in Section 3.3. 
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reviewed in Chapter 3. We will introduce the idea of on-shell improvement in Chapter 4. 

The quenched calculation done by Liischer and Weisz as well as Snippe will be reviewed in 

the same chapter. In Chapter 5 the current calculation of previously uncharted quark loop 

contributions is described and results are summarized. Finally in the last chapter the results 

are discussed and the conclusion is drawn. 

1.4 Chiral symmetry and its breaking in QCD 

Before moving on to Chapter 2, a brief account for chiral symmetry and its breaking in 

QCD is necessary for future reference and also for its own importance. First, let's take a 

look at the QCD Lagrangian: 

where D, = 3, - igAETa, Fp = dpAV - &Ap + ig[Ap,Av] and q denotes different quark 

flavors. To's are SU(3) generators. Tp is the Dirac matrix and Ap is the vector gauge field. 

If we concentrate on the quark sector of the Lagrangian and consider the massless limit, 

the Lagrangian can be decoupled into a left part and a right part3: 

where q~ = (9) q and q~ = (q) q. It is clear that the Lagrangian is invariant under 

rotations independently applied on left field and right field. In the other word, classical 

massless QCD is invariant under U ( ~ ) L  €3 U(3)R. Symmetries can be rewritten as U ( l ) v  8 

U ( ~ ) A  63 SU(3)L €3 SU(3)R. U ( l ) v  is responsible for conservation of baryon number while 

U ( ~ ) A  is broken due to anomalies as the theory is quantized. In the perturbative region, the 

S U ( ~ ) L  63 SU(3)R symmetry is present. However, it is inferred from experimental facts that 

the symmetry is broken down to SU(3)V in the non-perturbative region. The mechanism of 

the symmetry breaking is still unknown. 

Chiral symmetry and its breaking have very profound physical implications. First of 

all, a BCS-like understanding of the dynamics of symmetry breaking will bring our un- 

derstanding of symmetry breaking in particle physics to a complete new level. Secondly, 

3~egarding to properties of gamma matrices one can refer to [16] 
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SU (3)" present in the low energy physics imposes strong constraints on the forms of effec- 

tive field theories in low energy region. The celebrated success of chiral perturbation theory 

is a good example. A lattice fermion Lagrangian should also respect chiral symmetry to a 

certain extent if the Lagrangian is going to impact phenomenology. 



Chapter 2 

A brief review of Lattice QCD 

Pioneered by Wilson[ll], Lattice QCD(LQCD) is almost as old as QCD. After decades 

of development[l5], LQCD is one of the most effective tool to explore non-perturbative 

aspects of QCD. There are various applications ranging from highly theoretical interest 

like non-perturbative definition of c h i d  symmetry to phenomenological interests. The 

present chapter is intended to give a brief description of lattice formalism as well as a 

simple account of its problems and applications. 

2.1 A General introduction 

LQCD is based on several general ideas. First of all, functional quantization of QCD allows 

the possibility to solve QCD numerically. According to the path integral formalism[l6], the 

expectation value of an operator 0 can be calculated as following: 

where L is the QCD Lagrangianl . 1 . A particular field, say gauge field A, at a specific space- 

time point is an independent integration variable. Effectively in 2.1 we average operator 0 

over all possible field configurations weighed by corresponding exponential factors. For 

continuum space-time, there are an infinite number of degrees of freedoms to integrate over 

and a numerical treatment is impossible. However, if continuum space-time is replaced with 

a discrete lattice and a finite volume is adopted, the number of degrees of freedoms becomes 
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finite and a numerical treatment is feasible in principle. This is the most naive picture of 

LQCD. However, it's also transparent that when the action S = J d 4 x ~  is large the expo- 

nential factor will oscillate rapidly. If a lattice calculation is carried out in the naive way 

as suggested, there would be a lot of cancelations between different contributions, which 

would be a great waste of computer power. Furthermore there is a more serious problem: 

generic poles exist in Minkowski correlation functions so that the naive integration would 

just blow up. 

The above difficulties necessitate the second ingredient: Euclidean space-time field 

theory[l7]. A quantum field theory formulated in Minkowski space-time can be analyti- 

cally continued to Euclidean space-time by Wick Rotation: 

Let's consider Klein-Gordon scalar QFT as an example. The Minkowski space-time La- 

grangian reads: 

The theory can be quantized using a functional method similar to 2.1. After Wick Rotation, 

the functional formula undergoes following the changes: 

These generic relations are also true for QCD. The expectation value of an operator 0 now 

reads: 

where the subscript E is used to distinguish Euclidean operators from Minkowski oper- 

ators. Equation 2.5 bears close similarity to a calculation of the expectation value of a 

correlation function in statistical mechanics. This observation enables us to apply well- 

developed Monte-Carlo methods. The legitimacy of the analytical continuation was shown 

in the context of perturbation theory by Wick and Schwinger[l8]. However, its applicabil- 

ity in the non-perturbative region is an unproven assumption. Euclidean field theory can 
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also be constructed independent of a counterpart in Minkowski space and it is interesting 

by itself. However, for our purposes it is only necessary to notice that the Lagrangian of 

Euclidean field theory is positive definite and divergence free. 

A bit more discussion about the Wick rotation is necessary for future reference. The 

common statement that Wick rotation transforms a quantum field theory in Minkowski 

space into a quantum field theory in Euclidean space is misleading. In fact, forced by 

the pole structure in complex po plane, 2.2 implies po should be rotated to the opposite 

direction. One can convince oneself that it's the case by observing the fact that operator 

corresponding to po is proportional to do which rotates the opposite way to xo. It is natural 

that A. transforms the same way as do given their same footing in the definition of covariant 

derivative. Summing these up, we have 

Notice that koxo - z f transforms to k4x4 - z .? which is not a Euclidean O(4) invariant. 

However, for a pure gauge field, the argument of the plane wave function eik'x can be re- 

placed by ikE . x~ = c:=, kixi. 

Thirdly, it is important to notice that the lattice is a way to regularize a general QFT 

non-perturbatively[l9]. Generally a QFT is well defined only after a proper regularization 

scheme is specified. In the perturbative region, regularization is applied perturbatively as a 

way to cut off the infinities present in loop diagram calculation. A new scale is introduced 

into the theory once the theory is regularized. An explicit example is A Q C ~  in QCD which 

is introduced into the theory through the regularization scheme. Lattice regularization 

introduces a new scale as well, namely the lattice spacing a and the would-be infinities in 

loop integration are cut off to finite values thanks to the finite size of the Brillouin zone. If 

not specified, a will be set to 1 and it will be assumed that every dimensionful quantity is 

scaled by proper powers of a and becomes dimensionless in the following sections. It is 

equally important to notice that lattice regularization is applied at the level of Lagrangian 

and is therefore independent of perturbation theory. Lattice regularization is the only known 

non-perturbative regularization which is gauge invariant. 

In addition, symmetries are as important as in other physical systems. By introducing 
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a 4-dimensional hyper-cubic lattice, space-time Lorentz symmetry(Poincar6 group) is re- 

duced to the discrete hyper-cubic group. However, as the continuum limit is taken Lorentz 

symmetry will be recovered. Local gauge invariance is preserved on the lattice by using a 

link field as gauge degrees of freedom as will be discussed in detail in Section 2.3.1. 

Finally, a lattice action should yield the right continuum theory, say QCD, as a  + 0. For 

finite lattice spacing, the difference between lattice quantities and their true physical values 

will be of the order of powers of u p  where p  is the typical scale of physical process we are 

considering. Normally p  is much less than $. Ideally errors relative to continuum theory 

induced by lattice spacing can be extrapolated away by reducing a. However, the computer 

power available now is not enough for such a straightforward approach. As a result, various 

improvement programmes are invoked to reduce the effects of lattice artifacts. 

The following sections of this chapter will show step by step how lattice regularization 

is applied and how gauge invariance is preserved. In Section 2.5 a combined picture of 

lattice QCD will be given. An introduction to lattice perturbation theory will be presented 

in the Section 2.6 and various sources of errors will be reviewed in the last section. 

2.2 Local Gauge invariance 

Before we move on to explicit construction of lattice QFT, it is instructive to review the im- 

plementation of local gauge invariance in continuum QFT'S~. It will serve as the reference 

and basis for the realization of gauge invariance on the lattice. Building blocks of LQCD 

will also be introduced. 

Local gauge invariance is one of the key ideas behind the Standard Model. It is deeply 

connected to locality and unitarity of a quantum field theory, both of which have in turn been 

corner stones of physics since the revolution of Quantum Mechanics and Special Relativity. 

There is also an intrinsic relation[20] between local gauge invariance and the celebrated 

CPT theorem. All of these add up to the essential importance of gauge symmetry. 

In the Abelian case, the principle can be stated as follows: the Lagrangian of a proper 

theory should be invariant under transformation y~ i e'a(x)yJ where y~ is a generic fermion 

field. It is apparent that mIT"C/ is gauge invariant. In order to construct gauge invariant 

'A more detailed account of local gauge symmetry can be found in Chapter 15 of [16] 
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operators involving derivatives, a comparator field U(x ,  y) is introduced2 which transforms 

as follows: 

~ ( x , y )  i e ia (x )~(x , y )e - ia (y ) .  (2.7) 

Now we can define covariant derivative of y: 

It can be shown that W y ( x )  transforms the same way as y ( x ) .  The comparator field can be 

parameterized as 
U ( Y , X )  = P(e- ie 1; d.x,,~V ( x )  1, (2.9) 

where A(x) is identified as the gauge field and P  stands for path ordering operator. As one 

can see in detail in [16] ,  by defining U(y ,x )  as in 2.9 and requiring it to transform as a 

gauge group element as in 2.7 A,,(x) transforms like A,,(x) A,,(x) - l /ea, ,a(x) ,  which is 

the standard Maxwell gauge transformation for EM gauge fields. Given D,,y transforms the 

same way as y, the operator WyD,,y is gauge invariant as well. Taking the limit as a  i 0, 

\7,y D,,y + rnw becomes the familiar QED Lagrangian. 

One might notice that v ( x  + a ) U ( x + a , x ) y  is gauge invariant by itself. More generally, 

a "line" operator is gauge invariant if it's of the following form: 

where j = 2 , 3 . .  .n .  

For a pure gauge action, the continuous gauge invariant form F,, is related to the "loop" 

operator in the following way: 

where F,, = aPAv - &A,, and we replaced path ordering integration in 2.9 with e " ~ ( " + i ~ f l ) ~  

as a  i 0. The gauge invariance of the loop operator is easy to verify. A more general loop 

can be written in the following form: 

2 ~ e  aware that comparator field is now defined in Minkowski space. The transition to Euclidean space will 

be performed latter. 
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where j = 1,2 ... n -  1. 

"Loop" and "line" operators introduced above can be easily generalized to the non- 

Abelian case by replacing -eA,,(x) with gA;'Tu where T u  is the generator of corresponding 

non-Abelian gauge group. The loop operator U ( x )  is also redefined as the trace of 2.12: 

All of the above discussion is set in Minkowski space. We can also start from the 

Euclidean free fennion action and define comparator field in Euclidean space-time. The 

discussion follows the same line because the gauge group is independent of the space-time 

symmetry group. We can define the comparator field in Euclidean space as follows: 

It transforms similarly to the comparator field in Minkowski space under gauge transfor- 

mation. It is evident that loops and lines formed by Euclidean comparator fields are gauge 

invariant as well. 

In order to build a continuum gauge invariant theory, we make use of building blocks 

including the covariant derivative and Fp. Through the above arguments it is noticed that 

there is a set of equally good gauge invariant building blocks consisting of "line" and "loop" 

operators. These operators are officially named as the Wilson line and the Wilson loop. 

They are essential for us to build up a gauge invariant lattice action. 

2.3 Bosons on the Lattice 

As discussed in Section 2.1 and Section 2.2, a proper lattice action should obey gauge and 

other lattice symmetries while yielding the correct continuum limit as a -+ 0. There are 

nevertheless an infinite number of actions satisfying the two requirements. Unimproved 

actions usually converge slower to the continuum limit as a approaches zero, resulting in 

large deviations from the continuum limit while an improved lattice action to certain orders 

of a generally produces more accurate results with modest computation cost. Therefore 

construction of a good lattice action is a highly non-trivial issue. Pure gauge actions will 

be constructed in the present section while fermionic actions will be discussed in the next 

section with corresponding improvement efforts discussed. 
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Figure 2.1: The diagram shows a two dimensional lattice. Fermions live on the lattice sites. 

The single arrow shows an example of link variable U,. The rectangle consisting of four 

link fields(arrows) is a plaquette. 

2.3.1 The basic formalism 

Gauge invariance is the key ingredient in the construction of a lattice version of a pure gauge 

action. It is essential to preserve Ward identities and universality of the gauge coupling. If 

we don't preserve gauge symmetry rigorously, every coupling, for example the three gluon 

coupling and the four gluon coupling, has to be fine tuned independently in the of various 

operators in order to produce the right continuum limit, which would be an unnecessary 

complication of the calculation. For this purpose, the continuum gauge-field degrees of 

freedom are replaced with a "link" field: 

where we set the lattice spacing to 1 as discussed in Section 2.1. In the non-Abelian case, 

Ap(x) = A; (x)Ta where Ta is the generator of the corresponding non-Abelian gauge group. 

It is apparent that the definition of the link field is closely related to definition of the com- 

parator field in 2.9. If we approximate the path ordering integration in 2.14 to be a product 

of Ap(x + :fi) and a, after setting a = 1 we will get relations between the Euclidean com- 
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parator field and the link field: 

The subscript E will be dropped hereafter. For simplicity of discussion, the Abelian case 

will be considered in the rest of the section. 

Based on the discussion in Section 2.2, we can preserve gauge symmetry rigorously on 

the lattice if a gauge action consists of the Wilson loops. The simplest Wilson loop on the 

lattice is a plaquette. A plaquette is defined as the trace of the product of four link fields: 

If we make use of relation 2.16, Up(*) Uv (x + f i ) ~ J  (x +o)  U$ ( x )  becomes U ( x ,  x  +f i )U (x + 
f i , x + f i + i ) ) U ( x + f i + i ) , x + i ) ) U ( x + O , x )  which is exactly the form of 2.11. The gauge 

invariance of the plaquette is now evident. Let's restore the lattice spacing a  temporarily 

and expand every gauge field around x  + a(';+Y). We have: 

a4g2 
=l +i(a28F, + 0 ( a 4 ) )  - -I--FpF'-"' + 0 ( a 6 ) ,  

where we used Wl ,1 to denote the plaquette. Keep in mind that repeated indices do not 

imply summation here. It is clear that: 

Now define the lattice gauge action Sw as: 

where p = 4 for SU(3) QCD. As a  + 0, Sw converges to the continuum gauge action with 
g 

0 ( a 2 )  error. The action bears the official name the Wilson gauge action. 
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Figure 2.2: A set of three Wilson loops can be added to the gauge action to cancel out 0 ( a 2 )  

scaling violations. 

2.3.2 Improvement of the gauge action 

It is shown in the previous section 2.3.1 that the Wilson gauge action Sw yields the correct 

continuum limit up to an 0 ( a 2 )  correction for the abelian case. As discussed in Section 2.1, 

it is very desirable to remove at least the leading discretization errors given the insufficiency 

of today's computer power. 

In the non-Abelian case the 0 ( a 2 )  correction reads[21]: 

This term can be found also in the expansion of a Wilson loop of size 1 x 2: RP whose 

shape is shown as a  in Fig. 2.2. It was also shown by Luscher and Weisz[l4] that in the 

following definition of gauge action the 0 ( a 2 )  error can be removed3: 

A more complete treatment was given by Lusher and Weisz[22] where a set of Wilson loops 

were added to the plaquette with certain coefficients to cancel out the 0 ( a 2 )  error. One can 

refer to Fig. 2.2 for the set of Wilson loops. 

Of course, there are other sets of Wilson loops one can add to the action so that the 

0 ( a 2 )  correction is canceled among them. An example can be found in Snippe's square 

action[23]. The improvement generally facilitates the convergence as promised at much 

lower computational cost than brute-force reduction of the lattice size. 

3~ more pedagogical review can be found in [21] 
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2.4 Fermions on the Lattice 

Transcription of the fermion sector of QCD on the lattice appears to be easier than the pure 

gauge action. However, naive regularization invokes some serious theoretical trouble which 

is deeply rooted in the chiral symmetry structure of QCD. In this section, quantization of 

fermions on the lattice and its issues will be described. 

2.4.1 Wilson action 

The fermionic sector of QCD is of the following form in Minkowski space: 

where Dp z 3, - igAp(x). If we perform a Wick rotation and refer to our prescription 2.6, 

We will get: 

LM * -xvf  ( x ) ( & ~ i  + m f  )vf (x)  = -LE,  (2.23) 
f 

where Di = ai + igAi(x) and everything is defined in Euclidean space now. Euclidean 7 
matrices are defined: 

7 i = &  &=&,  (2.24) 

where i7 j = 1 . . .4. Now we have a Euclidean continuum QCD to compare our lattice action 

with. 

A straight forward way to discretize LE can easily be formulated: 

It is called the naive fermion action. The continuum covariant derivative is replaced by sym- 

metric finite differences so that the lattice spacing error is reduced to 0 ( a 2 ) .  To demonstrate 



CHAPTER 2. A BRIEF REVIEW OF LATTICE QCD 19 

this point, let's consider only the latter part of the action and expand the link as well as the 

y~ fields: 

After put all these pieces together we get: 

It is clear that the lattice spacing error is of order a2. In other words, the naive quark action 

has the comparable convergence as the Wilson gauge action 2.20. 

However, a closer look at the action will reveal a serious problem. Consider the free 

field limit where g = 0, the action takes the following form: 

where Fourier transformations to the momentum space were performed. It is easy to see 

that the momentum space quark propagator is: 

If we take pi = 0 for i = 1,2,3, the on-shell condition will be: 

However, for any p4 that satisfies this relation, n: - p4a will satisfy this relation as well 

since we know sin(a) = sin(n: - a) .  The extra pole behaves like a particle which has no 

continuum counterpart but would not disappear as we simply take 2.26 to its continuum 
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limit. As a result, it is evident that for each dimension the number of "flavors" will double. 

In d = 4 Euclidean space we end up have 24 = 16 species on the lattice for one single flavor 

in the continuum, which is impossible to simulate at present. This is the famous fermion 

doubling problem. 

There is a straight forward way to cure the problem. Introduce the lattice Laplacian 

operator: 

The operator is added to the naive quark action with an arbitrary coefficient r, 

where Di stands for the finite symmetric difference in 2.26. Now the denominator of the 

fermion propagator become: 

2 P4a sin2 (p4a) + (ma + 2r sin (t)) . 

Now the extra pole is damped away because of the presence of the sin2 (y) term. How- 

ever, not only has an O(a) error been introduced, but chiral symmetry present in continuum 

QCD has been broken leading to additive renormalization of quark mass. The inverse prop- 

agator is not protected against zero mass and might be singular even at finite quark mass. 

After careful investigation, it turns out that the doubling problem has a much deeper 

physical reason for it. It was proven rigorously by Nielsen-Ninomiya[24] that doubling is 

inevitable if the following conditions are to be satisfied simultaneously[25]: 

i. The fermion propagator is an analytic periodic function of the momenta pi with period 

2 x 1 ~ .  

ii. For momenta much lower than cut-off, the continuum limit is valid up to order a2p2. 

iii. The fermion propagator is non-singular for all non-zero(mod 2 x 1 ~ )  momenta. 

iv. The chiral symmetry of continuum QCD is respected exactly, i.e. y~ anti-commutes 

with inverse-fennion-propagator. 
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The first condition ensures the locality of the action while the second and the third guarantee 

the right continuum limit. The fourth one ensures that the lattice action bears exactly the 

same chiral symmetry as continuum QCD does. It is accepted that first three conditions 

are essential in order for a lattice action to be physically relevant. Therefore preservation 

of exact chiral symmetry and elimination of doublers seem to be mutually exclusive goals. 

The lattice community adopts two general approaches to the dilemma. The first one is to 

break chiral symmetry in favor of doubler free action, the Wilson action 2.33 is an example. 

The other approach is to preserve chiral symmetry at least to some extent. Staggered, 

domain wall and overlap fermions all belong to this category. It is this second approach 

that contributes the most to ongoing dynarnical LQCD simulations. 

2.4.2 Introduction to Staggered Fermions 

The staggered fermion action was first introduced by J. B. Kogut and L. Susskind[26]. It is 

based on the so-called spin diagonalization technique. Let's recall the naive fermion action 

2.26: 

Lq = V ( X )  ( x ~ i ~ i  + m q ) ~ ( x ) .  
i 

As was demonstrated before, the naive action has 16 distinct species quarks corresponding 

to each physical flavor. They are termed as different "tastes" of a single flavor so as not 

confuse the doublers with the desired physical quark flavors. In order to reduce the number 

of tastes if not completely eliminate them, it is observed that by performing a site-dependent 

bilinear transformation the kernel Ci yiDi can be diagonalized. Under the transformation we 

have: 

V ( x >  = Y ( X ) X ( X )  N-4 = i i ( x ) ~ ( x )  7 (2.35) 

where: 

y ( x ) = $ y ; ' e $  and x = ( x 1 a 7 x 2 a 7 x 3 a , x 4 a ) .  (2.36) 

The naive quark action takes the following form: 

where qi ( x )  = (- 1 ) ~ 1 +  is a universal phase independent of spinor index a. Therefore 

the action contains exactly four degenerate replicas of a "staggered" field and it's legitimate 
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to drop the index a. By the above prescription the number of effective degrees of freedom 

decreases by a factor of 4 and the doubler problem is far less severe than it is in the naive 

action. 

The staggered ferrnions also have another attracting property: remnant chiral symmetry. 

Consider the massless limit of the staggered quark action: 

It can be shown that such an action is invariant under U ( ~ ) L  C3 U(4)R = U(1)" 8 U(l)A 8 

SU ( 4 ) ~  C3 SU(4)R. Although the c h i d  symmetry present in the staggered quark action is 

much less powerful than the counterpart in continuum QCD, it is nevertheless good enough 

to prevent additive mass renormalization and therefore not only protects the inverse propa- 

gator from exceptional singular modes but also facilitates chiral extrapolation down to the 

physical mass region4. 

Furthermore, the staggered quark is cheaper to simulate. All these virtues combine 

together to make the staggered quark action a good candidate for dynamical simulation. 

Nowadays the action used is usually 0(a2) improved. Together with other techniques such 

as tadpole improvement[27] and the 0(a2) improved gauge action, the improved staggered 

quark action makes LQCD calculation relevant to phenomenological quantities for the first 

time. 

However, the staggered quark action does have its own drawbacks[28]. First of all, spin 

and taste degrees of freedom conspire in a subtle way in order for the staggered quark action 

to work. For each flavor in the real physical world there are 4 degenerate staggered flavors 

on a sublattice with lattice spacing 2a thanks to the 2a periodicity of ~ ( x ) .  Inside the 2a 

hyper-cube the degeneracy is lifted and 16 degrees of freedoms which are a mixture of spin 

and taste degrees of freedoms are present. Therefore it is highly non-trivial to construct and 

interpret operators in terms of spin and flavor, which makes the action non-user-friendly 

and non-intuitive to some extent. Due to this drawback, the Wilson quark action has been 

frequently used, though its great computational cost has been an impediment to its use in 

realistic unquenched simulations. 

Second of all, the action is not actually doubler free and there are still 4 staggered flavors 

for each "input flavor" which is still too many for real dynamical simulation. A further trick, 

4 ~ h e  necessity of the extrapolation will be discussed in Section 2.5. 
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the so-called root trick[29], is introduced to reduce number of degrees of freedom one more 

step. The theoretical legitimacy and conceptual validity of the trick is still under debate. 

However, various evidences from different approaches including perturbation theory, RG 

arguments and effective field theory arguments suggest that the rooted staggered quark does 

converge to QCD in the continuum limit[30]. 

2.4.3 Further effort on a satisfactory fermionic action 

While lattice theorists are trying to improve Wilson action and understand more about 

the root trick of the staggered quark, tremendous efforts have been made in order to de- 

velop other good lattice fennion actions. Although all actions present today suffer from 

either conceptual unclearness or practical infeasibility, great improvements have neverthe- 

less been made. A brief survey will be given in this section of major actions in the field. 

Firstly, a new algorithm invented by LiischerC3 11 made unquenched simulations using 

Wilson quarks possible. As was discussed in Section 2.4, Wilson quarks have been long 

troubled by the critical slowing-down problem in exceptional gauge field configurations in 

which light quarks are essentially massless. The so-called domain-decomposition method 

divides a finite lattice into small blocks whose sizes are no more than 1 fm. Interactions 

between distant blocks are considered to be weak. Generally different blocks are first de- 

coupled completely and interactions between blocks are treated as corrections. Combined 

with the Hybrid Monte Carlo algorithm[32], the domain-decomposition algorithm shows 

some encouraging results[33]. 

The second approach is twisted mass LQCD(tmLQCD)[34]. Initially proposed as a 

tool to study spontaneous parity and flavor symmetry breaking, tmLQCD as an alternative 

regularization of QCD has been an interesting subject of the lattice community for several 

years. In its simplest version containing one flavor doublet the tmLQCD action reads: 

23 is the third Pauli matrix. mo is the bare mass term while p is the twisted mass. D[U] is 

the kernel of the Wilson action 2.33 without the mass term. It was shown that the inverse 

propagator of tmLQCD action is protected from the zero mode by finite p despite chiral 
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symmetry being broken by a Wilson term. For particular choices of p, the action is auto- 

matically O(a)  improved. Furthermore, the action's computational cost is almost as cheap 

as the staggered quark action. However, the action does break flavor and parity symme- 

tries that will be only recovered in the continuum limit, which causes unwanted splitting 

between physically degenerate states. This issue is being addressed with dynarnical simu- 

lations. All in all, tmLQCD has many attractive properties and would provide an alternative 

for dynamical simulations if on-going investigations of the action yield positive results. 

The third approach is the perfect action pioneered by Hasenfratz and Niedermayer[35]. 

Based on the renormalization group method, it is hoped that cut-off effects can be elimi- 

nated from lattice simulation no matter what the lattice spacing is. Fermion fields on lattice 

are obtained through block averaging continuum fields. The resulting lattice action should 

in principle be equivalent to continuum QCD. The perfect action was proven to obey the 

Ginsparg-Wilson relation which is thought to be the correct definition of chiral symmetry 

on lattice non-perturbatively. However, it is practically not possible to solve the analytical 

form of the perfect fermion action and thus the actual simulations rely on a complicated 

process to fit the RG equations. Therefore the perfect action is too expensive to simulate 

despite its theoretical appeal. 

The fourth approach is domain wall fermions proposed by David B. Kaplan[36] in 1992. 

It is a 5-dimensional model related to similar ideas in the continuum. In this prescription, 

massless chiral fermions are confined in the kink present in the 5th dimension to separate 

regions of opposite masses. It is then observed that once boundary conditions are imposed 

on a finite 5th dimension, an anti-wall will appear with c h i d  fermions of opposite chiral- 

ity of the original wall confined in it. Two walls are separated and their overlap decreases 

exponentially as the distance between them increases. If the distance is taken to be infin- 

ity, we obtain the so-called overlap fermion developed independently by Narayanan and 

Neuberger[37]. which obeys Ginsparg-Wilson relation exactly. Despite the interesting chi- 

ral properties and some early attempts to use these actions in unquenched simulations, they 

are both fairly expensive to simulate dynamically. 
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2.5 Complete Lattice QCD 

In previous Sections different ways of transcribing gauge boson and fennion degrees of 

freedom on a lattice were reviewed. A lattice version of full QCD can be obtained by 

addition of a gauge action and a consistent quark action, for example, sum of the Wilson 

gauge action 2.20 and the Wilson quark action 2.33: 

Generically, the fennion action can be write as the following form: 

where i, j denote flavor and other relevant quantum numbers. As was discussed in Section 

2.1, the expectation value of a general operator 0 can be calculated by averaging it over 

different field configurations. Fennion fields would be described with Grassmann numbers 

on lattice. However, since these numbers are hard to implement numerically, fennionic part 

of path integrals are performed analytically thanks to the quadratic form of fennion action: 

We can then write the action in terms of pure gauge fields despite M being highly non-local: 

It is also important to have a gauge invariant integration measure for gluon fields. The 

measure is defined in terms of the same link variables as those used in the action. Link 

fields are unitary matrices with determinant 1. It is proposed by Wilson to introduce an 

invariant SU(3) group measure, the Haar measure, as the integration measure. The measure 

is normalized to be 1: 

Given that Ul and U2 are arbitrary SU(3) elements and that f (U) is a function of U, the 

measure satisfies: 
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Once the action is picked, different background gauge field configurations are generated 

in actual simulation. Although the number of field configurations is infinite, the probabil- 

ity distribution is peaked around the field configuration which minimizes the free energy. 

Configurations around the peak dominate the functional integral. Therefore they should be 

generated with higher priority. 

After background gauge field configurations are generated, the quark propagator should 

be calculated by inverting M. In an unquenched simulation, the inversion of M is performed 

in each step of the Monte-Carlo simulation as well. The inversion of M consumes most of 

the time of a lattice calculation. Naturally it is the bottleneck of lattice action in several 

ways. First of all, the size of M will increase dramatically as the number of lattice sites 

and number of quark species increase. Together with the finite lattice volume in order to 

accommodate a system of interest, a practical upper bound of lattice site number severely 

constrains the lower limit of the lattice spacing. Furthermore, if we are working at phys- 

ical up or down quark mass, inversion of M will be extremely expensive since the matrix 

will have almost zero eigenvalues. This is the so called critical slowing-down problem. 

Practically people work with higher light quark mass and then extrapolate the results to the 

physical light quark mass. This is the practical reason why the lattice community tried so 

hard to construct the chiral symmetric and doubler free action. 

In the final step, the operator of interest is averaged over different configurations. 

For a long time the lattice community had to impose the so-called "quenched" approx- 

imation due to the limitation of computer power and lack of relevant techniques. Under 

this approximation one declares det (M) = 1 in 2.42. Physically, such an approximation 

eliminates all the sea quark effects in lattice calculation. The quenched approximation 

made many important contributions including evidence for confinement and chiral symme- 

try breaking on the lattice. However, this is not really an approximation, since one has no 

systematic control over the errors which are thereby introduced. If lattice calculations are 

to be relevant to phenomenology whether for comparison or for prediction, the quenched 

approximation must be lifted and dynarnical quarks have to be introduced. 
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2.6 Lattice Perturbation Theory 

In previous sections I have been advocating that the lattice is one of the most effective tools 

to explore the non-perturbative aspect of QCD. Indeed, the simulation process introduced 

in Section 2.5 is essentially non-perturbative. It's somewhat ironic to talk about Lattice 

Perturbation Theory(LPT)[38] right after all that I said. However, LPT is very important if 

not indispensable in order for Monte-Carlo simulation results to have any physical meaning 

for reasons which will be clear after the current section. 

Before motivating the importance of LPT, it is appropriate to give a description of what 

LPT is. For a specific lattice action, say the Wilson action, we can Taylor-expand all the 

link variables: 

Here g can be seen as the bare coupling which is defined at cut-off scale :. Generally 

we have a relatively small lattice spacing so that the cut off scale is larger than AWD so 

we expect the relevant a, < 1. Therefore after Taylor expanding the link fields, the lattice 

action will have the form of free field part plus a tower of different interactions organized 

in powers of a and g, just like a non-renormalizable continuum quantum field theory. It 

is useful to view such a theory as a effective field theory. Although an exact solution is 

impossible, the theory does possess predictive power up to a certain accuracy by keeping 

interaction terms to a corresponding order of a and g. After truncating the action to the or- 

der, perturbation theory can be used to calculate matrix elements and correlation functions. 

It is worth noticing that the truncated action should be gauge invariant if the truncation is 

done consistently, since the original action is gauge invariant. A more detailed description 

of LPT will be presented in the next chapter. 

With this simple description in mind we are able to appreciate the importance of LPT 

now. It can be seen from two perspectives. 

First of all, LPT is needed in many cases to explain Monte-Carlo simulation results. 

A generic quantum field theory calculation must first introduce a regularization scheme in 

order for it to yield a finite result. Then the result has to be renormalized by eliminating the 

regularization scale through a proper renormalization process. For example, in dimensional 
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regularization we introduce cut-off A so that the logarithmic infinity is rendered to be in(;), 

then we introduce the ;i?j: scheme so that the cut-off is eliminated by subtracting off ln(4) 

and some constants from the result. On the lattice we have a similar process. Lattice can 

be viewed as a non-perturbative regularization scale Z .  Somehow the regularization scale 

should be sent to infinity or equivalently a should go to 0 to yield a physically meaningful 

result. In the ideal world the renormalization part can be done by simulating at finer and 

finer lattice spacing a so that an extrapolation to a = 0 can be done literally. Unfortunately 

it is not feasible given computer power today. It is therefore up to LPT to map the lattice 

renormalization scheme(notice now within LPT renormalization is done perturbatively) to 

a continuum renormalization scheme, say the scheme, so that they yield the same result 

for various matrix elements. Since I am not doing any matching calculations here, interested 

readers can refer to corresponding sections in [38]. 

I should mention that renormalization can also be done non-perturbatively using the 

Schrodinger functional in some cases. However, it's generally more expensive to compute 

and its result agree with LPT results providing that proper schemes are chosen for LPT. 

Second of all, LPT is one of the primary tools to improve the convergence of lattice ac- 

tions. As was discussed in Section 2.3.2, convergence of lattice actions can be improved by 

adding new gauge invariant terms with coefficients designed to cancel errors to certain or- 

ders in the lattice spacing a. We also have discussed that a lattice action in LPT expansions 

can be regarded as an effective field theory. It is expected that all the quantities related to it 

will receive quantum corrections from loop diagrams. For example, the scaling violations 

will be of order O(a,ntan) as well as O(an). Given the coarse lattice size we are limited to 

nowadays, a, is roughly of order 0.1. Therefore if we want to keep our theoretical sys- 

tematic error under 0(a2)  for, say, Wilson ferrnions, not only the O(a) error but also the 

O(a,a) error should be removed. It is only possible with the aid of LPT. 

Given the relevance of LPT to interpreting the simulation results and to improving the 

scaling properties, it is necessary for us to understand its drawbacks and ways to deal with 

these drawbacks. Since symmetry constraints on lattice is milder than continuum, the al- 

lowed interaction terms are generally more complicated. To make the situation worse, dif- 

ferent lattice actions give rise to very distinct sets of Feynman rules, which require separate 

treatments. However, as we will see in the next chapter in more detail, an algorithm in- 

vented by Liischer and Weisz[l2] makes it possible to automate the generation of Feynman 
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rules for almost arbitrary lattice actions. Combining with other techniques such as tadpole 

improvement[27], LPT contributes greatly to the on-going dynarnical simulation quest. 

2.7 Sources of theoretical errors 

In the last section of the chapter, I will summarize simply different possible sources of 

lattice errors. A more detailed account can be found in [39]. 

First of all, statistical errors are introduced by Monte-carlo simulations. Generally such 

errors will fall as 1/& where N is the number of independent measurements. Given the 

large number of configurations available today, statistical errors are often small in compar- 

ison with theoretical systematic errors. 

The second source is comprised of finite lattice spacing errors. This source has been the 

subject of discussion in previous sections and it is also my primary target of improvement 

here. 

Finite volume errors comprise the third source. In order for actual numerical simulation 

to be feasible, not only does continuum space-time have to be discretized but the lattice 

also has to be confined into a finite volume so that the number of degrees of freedom is 

rendered finite. Such errors manifest themselves in two ways. Firstly, by imposing periodic 

boundary conditions the actual simulated system can be regarded as infinite space filled with 

periodic cells and there is a identical copy of the system of interest, say a proton, in each 

cell. Naturally these copies are expected to interact with each other. One can parameterize 

the interaction with a Yukawa like coupling and it is estimated[40] that for sufficiently large 

lattice side length L  the finite volume error caused by the interaction falls as e - M L / ~  where 

M is the mass of the system of interest. It is therefore preferred to adopt a L  large enough 

so that the error due to interactions falls exponentially. Secondly, L  decides the resolution 

of the lattice momentum sum. The lowest momentum mode is $ under periodic boundary 

conditions. In order to increase resolution, L or a should be increased. This aspect also ties 

to the finite lattice spacing error in the sense that if we want to keep the number of degrees of 

freedom stable and increase resolution L  and a must be increased simultaneously, implying 

larger finite lattice spacing errors. 

A major source of uncontrollable systematic errors comes from quenched approxima- 

tion. With introduction of dynamical fennions it is no longer a problem. There are also 
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other sources of errors such as errors coming from chiral extrapolation, renormalization 

factors, operator mixing, etc. Efforts to control all of them are necessary in order for LQCD 

to be relevant to phenomenology. 



Chapter 3 

A review of important techniques 

Two important techniques will be reviewed in detail in this chapter. First of all, Lattice 

Perturbation Theory(LPT) will be described in detail for both the gauge action and the 

ferrnion action. The algorithm developed by Liischer and Weisz will be introduced. After 

that, the other important technique, namely twisted periodic boundary conditions will be 

reviewed. 

3.1 Lattice Perturbation Theory 

LPT was briefly sketched and motivated in Section 2.6. Given its essential status for my 

work here, it is necessary to review it in greater detail. The review here is based on [38]. 

3.1.1 Pure gauge action and Fermion action 

The expansion of the pure gauge action in non-Abelian theory is greatly complicated by 

the non-commutivity of link fields even for a plaquette. One can get a taste of the difficulty 

by deriving the lowest order gauge action1. According to the Baker-Campbell-Hausdorff 

relation we have: 
1 

k e B = e x p { ~ + ~ + ; [ A , B ] +  ...). - (3.1) 

 h he derivation here is the SU(3)  version of the corresponding part in Kogut's review[41]. 
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Let's denote the plaquette in the following form: 

with a a A 

A = iagA, (xo - -0) C = iagA,(xo + -v) 
2 and 2 
a ,  a ,  

B - iagAv (xo + -p) , D = iagA,(xo - -p) , 2 2 
where xo - x + $i + :0. Now we have: 

where we define aa,,Av (xo) = Av (xo + ;fi) -Av (xo + $0). Notice the final result is the same 

as 3.1.1 for the Abelian case. The gluon propagator can not be determined at the moment 

due to contributions from the integration measure and gauge fixing terms. The expansion 

will also produce a tower of different interaction vertices with different numbers of gluons. 

Even the lowest order interaction vertex is more complicated than in the continuum with 

lattice artifacts of higher order in a. 

The complete form of the 3-gluon vertex for the plaquette action is given in [38]: 

2 
w$,(p,q,r) = -ig0fabc-{6psin Q(P - 411 cos - a r ~  

a 2 2 
- P)v cos %}, 

(3 .2) 
+ti,,n sin a(q - 'Ip cos 52 + tip1 sin 

2 2 2 2 
where p +q + r = 0 and all momenta are flowing into the vertex. It can be seen that as a + 0, 

3.2 will converge to its continuum form. However, all the lattice artifacts are necessary to 

ensure local gauge invariance. Despite the relatively simple form of the 3-gluon vertex, 

higher order vertices will be very tedious to write down. For the explicit form of 4-gluon 

vertex one can refer to [38]. Moreover, for an improved gluon action even 3-gluon vertex 

will be much more complicated. Liischer and Weisz[l2] gave an estimate of the number of 

terms in a typical vertex of r gluons: 

nr,1 = l ( l + l ) . - . ( l + r -  I ) ,  ( r -  I)!  
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where I is the circumference of the Wilson loop in the relevant Lattice Gauge action. Nowa- 

days people typically use order a2 improved actions which imply I = 6. If we consider r = 6, 

we will have 5544 terms in the vertex function. The above example gives a sense of the 

complexity of the problem we are dealing with. 

LPT for the fermion action can be visualized in a straightforward way. After link vari- 

ables are Taylor-expanded, it is clear that there will be a tower of couplings between quarks 

and two or more gluons in addition to the minimal coupling in the continuum. 

3.1.2 Contributions from the measure 

It was discussed in Section 2.1 that the integration measure of the link fields is defined as 

the invariant Haar measure of SU(3)  group. However, the proper degrees of freedom for 

perturbation theory are the gauge field A,(x). Therefore a relation between the integration 

measures we used for link field and DA needs to be established. Consider the following two 

form: 

d2s = ~ r ( d u J d ~ , ) ,  

where dU(x)  = dU,(A, + dA,) - dU(A,) and dA, is the gauge-field integration element. It 

is clear that 3.4 is invariant under local gauge transformations. If we write d2s in terms of 

vector gauge potential A, in the perturbative region, a measure g can be introduced: 

Therefore the gauge invariant Haar measure is defined to be: 

g(A) is only dependent on the properties of SU(3) group. 

Following the road map described above, we need to first express the two form in terms 

of A,. It was derived[42] that a link field with an infinitesimal change of A, can be expanded 

as follows: 

Up (A, + dAp) = Up (A,) ( 1  + i a g d ~ z ~ ~ b  (A,) T ~ ) ,  (3.7) 

where repeated color indices a ,  b imply summation. Mab(A,) is a matrix. It is the unit 

matrix in the continuum limit. For finite lattice spacing, it is defined as follows: 
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where (t")DC = -ifaDc. 

Now we are ready to derive the explicit form of 3.4: 

where we used relation Tr(TCTd) = iGCd. Combining the result of 3.9 with 3.5 we get the 

expression for g (A) : 

Now we are ready to derive the explicit form of the Haar measure defined in 3.6. If we 

define DA = m,,,, dAi(x), the Haar measure can be expressed as follows: 

Using the relation detg = exp(Tr1og ,g) SmeaSu,(A) can be expressed as follows: 

It is evident that the integration measure over AE(x) contains a tower of interaction terms 

non-trivially. It is also clear that the interaction terms are the result of the non-Abelian 

nature of the SU(3) group. For an Abelian group (ta)bc = -ifabc = 0, we would have 

DU = DA. 
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The lowest order interaction term is a "two gluon" vertex. Using the relation ~ r ( t ' t ~ )  = 

3 P b  it can be derived that to the lowest order of g: 

g ' 
Smeusure (A)  = 

X>',P 

Therefore these interactions will not contribute to tree level processes. 

3.1.3 Faddeev-Popov gauge fixing 

Gauge fixing is an important step in order for any continuum gauge theory to produce 

physical predictions. Field configurations differing by a gauge transformation will produce 

identical physical observables and thus describe the same universe. Intuitively, we can 

imagine there are infinite copies of our universe on the gauge potential level each of which 

will contribute the same amount to the path-integral and lead to an inevitable un-physical 

divergence. In order to fix the problem, we need to fix our description to a particular gauge 

so that only one copy of universe is left at the cost of losing manifest gauge invariance. 

For LQCD we generally don't have to fix the gauge since the volume of the phase space 

of UP is finite. However, degrees of freedom shift back to AP in LPT once we expand all the 

link fields. A proper gauge fixing process is therefore needed to free us from a divergent 

path-integral. As in the continuum, the goal can be achieved with the aid of the Faddeev- 

Popov method. 

One can refer to [16] for gauge fixing in continuum QFT. The Faddeev-Popov method 

proceeds in essentially the same way on the lattice. First, the gauge fixing condition is 

chosen to be: 

F;U[A,OI = = 0, 

where a, -- ! (6x,x+;.p - FX,,- g j p ) .  As in the continuum we can introduce Faddeev-Popov 

determinant AFp [Aa, a] using the following relation: 

where a is a gauge transformation function and Aa is the gauge potential after the gauge 

transformation. We can now insert 3.15 into the path integral: 

/ DA / Da8 ( F  [Aa, a]) AFP[Aa, m]e-s~c~-smemure. 
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Then we integrate over oa with a gaussian weight: 

where the integration over oa (x) was completed with the aid of the delta function. It is now 

clear that there are two effects of Faddeev-Popov gauge fixing. Firstly, an extra term Sgf - 
~ , ( a ~ A ; ( x ) ) ~  is added to the action; the other effect is the Faddeev-Popov determinant 25 

which will give rise to interaction with ghost fields as in the continuum. 

Let's consider Sg first: 

a' a a 
=- (A; ( x ) a v ~ :  (x - -p) - A; W,A: ( x  + ,PI) 

25 x,a 2 

It can also be seen as an illustration that integrating by parts works for a finite lattice sum as 

well as long as we have translational invariance. Let's recall the unimproved Wilson gauge 

action in SQcD in 3.1.1: 

In momentum space, Sg + Sgf reads for infinite lattice: 

Sg + Sgf 
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where the integration over each component of k is limited to the first Brillouin zone [- :, t]. 
For a finite lattice, the integration will be replaced by a finite sum while the kernel remains 

the same. Therefore the full propagator for the particular action and gauge fixing condition 

is: 

The continuum limit of the action is consistent with the gluon propagator obtained using the 

compatible gauge fixing condition. By setting 6 = 1 we will recover the familiar Feynman 

gauge. I should mention that generally an improved action will produce a gluon propagator 

with spin-indices not diagonalized. The spin diagonalization for the Feynrnan gauge in the 

case of an unimproved Wilson action is merely an accident. 

Similarly to continuum QCD, the lattice Faddeev-Popov determinant will give rise to 

interactions with ghost fields. First we need to write out the explicit form of the Faddeev- 

Popov determinant. In order to do that, we need to make use of 3.7 in more general forms. 

For simplicity the lattice spacing a and the strong coupling g will be set to be 1 temporarily: 

Their derivations can be found in [42]. In analogy to continuum QCD, the Faddeev-Popov 

determinant is the linear response to an infinitesimal gauge transformation. Explicitly we 

have: 
e ' ~ u ( ~ ) T u  u (A ) e - i ~ u ( ~ + P ) T u  = U, (A,,,, + 6 A ) 

P P E P (3.22) 

and we need to identify &. 

Then we need to make use of 3.21. The infinitesimal gauge transformation can be 

performed through two steps. First e-i"(x+P)Tu is multiplied to the left side of Up. We 

have: 

We can also get a first order expression by expanding e-iEu(X+fi)T" = 1 - ~ E ~ ( x + F ) T ~ .  Com- 

bining the two expressions together, it can be solved that: 
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Keeping only the linear term, we can get the second part of &Ap: 

6 2 ~ ~  = ~ , - d  ( -A)&~.  (3.25) 

Recall the explicit form for Mab(A) in 3.8 and combine the two parts together: 

SEA: = - (iA;tC + M-I (A)$)&~(x), 

where tC is the SU(3) generator in the adjoint representation and 3; = 
can establish the explicit form of the Faddeev-Popov determinant with 

AFP [A] = det(-apDp [A]) 

=det(-d,(~-l (A) . $ + iag~;(x)ta)). 

6X3x+fi - 1. Now we 

a and g restored: 

We can introduce ghost fields c and F so that the determinant can be reexpressed as a La- 

grangian involving ghost fields and their interactions with gauge field: 

which does have the correct continuum limit. However, the presence of M-I (A) gives rise 

to a tower of interactions of different numbers of gluons coupling with ghost fields. As in 

other sectors, the perturbation theory on the lattice for ghost field is much more cumbersome 

than in the continuum. 

The automatic generation of LPT Feynman rules 

Given the formidable complexity of LPT, errors can come into calculations in almost all 

stages of a conventional scenario of application of perturbation theory. First of all, it is hard 

to make no mistake in deriving Feynman rules for a particular lattice action. Even if one 

succeeded in Feynman rule derivation, the intrinsic nonlinearity of the lattice formalism and 

the complicated structure of vertices intimidates, if not prevents, any analytical attempt to 

perform a loop calculation. To make matters worse, different lattice actions are employed 

either to study different physical systems in order to take maximum advantage of their 

specific physical features or to simulate one single system so that comparisons among the 

actions can serve as tests for certain theoretical ideas. While these actions share the same 
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continuum limit as they should, the relatively weak symmetry constraints on the lattice 

allow them to differ greatly in lattice artifacts and therefore result in quite different vertex 

structures. If one wants to make use of different actions to attack phenomenologically 

relevant problems, analytical study of all of them is a totally unnecessary burden. Given all 

the arguments above, it is necessary or even essential for us to be able to generate Feynrnan 

rules especially vertex functions automatically for a generic lattice action. 

Fortunately, such an algorithm already exists thanks to Liischer and Weisz's pioneering 

work[l2]. Since the algorithm is essential for my current work, a detailed description of 

it in a separate section is appropriate. The author also wants to state that the Feynman 

rules used for his calculation are provided by Dr. Howard D. Trottier who implemented the 

algorithm of [12]. The description here is based on Matthew Nobes' perspective[21]. One 

can refer to the original paper by Liischer and Weisz[l2] and other references[43][44] if a 

different understanding is needed for hisher research. 

3.2.1 Liischer and Weisz's algorithm: pure gauge action 

As discussed before, our goal is to generate vertex functions automatically for a generic 

lattice action. An effective field theory point of view can be adopted for phenomenological 

purposes so that only interactions to a certain order of strong coupling g will be kept. 

From the discussion in Chapter 2 we know that a general local gauge invariant lattice 

action is the summation of Wilson loops and Wilson lines of different sizes. In particular a 

pure gauge action is a summation of Wilson loops: 

where C denotes a Wilson loop of a specific shape and S(C) r Ex ReTr(1- C). For a naive 

Wilson action the C's are plaquettes of different directions. Now, we need to generate vertex 

functions for a sub-action S(C) where C is of arbitrary shape. 

First of all, it will be helpful if the problem is defined more explicitly. A particular sub- 

action is defined by the corresponding Wilson loop which is in turn defined by a specific 

closed path on the lattice. The most apparent way to define a path on the lattice is to list 

the series of lattice sites it connects. For example, for a plaquette in the x-y plane, it can be 
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described by the following point series: 

However, the point series fixes the plaquette at the origin of lattice while a sub-action should 

be summed over all possible positions. It is therefore more appropriate to define a lattice as 

a series of vectors: 
A 

Xn+ 1 --%I = SnPi XO = X I ,  (3.30) 

where I is the circumference of the Wilson loop and sn of value f lis used to describe 

the directions of the unit vectors. With xo unfixed, the series of vectors are well-suited 

to describe the sub-action. It also possesses a one-to-one correspondence to a link field 

formulation of a Wilson loop in the sense that we can write a general Wilson loop as 

without losing any generality. Recall the explicit definition of S(C):  

we want to reexpress the sub-action in terms of the summation of vertex functions of dif- 

ferent numbers of gluons: 

where repeated indices imply summations. Now the question of how to generate the vertex 

functions from a sub-action can be stated more explicitly as how to obtain the coefficient V 

of m gluon term given a Wilson loop C of particular shape and circumference I. 

The first scenario can be described as follows. For the Wilson loop expression eigSlApl ('1 
. - eigsiA"(x), we can assume that the first gluon field igsk,A,, comes from the link field 

e igsklApkl where 1 5 kl 5 I .  Now, the second gluon field can be expressed as igsk,A,, (x)  

only where kl 5 k2 5 I so that the ordering is preserved. In this way we get rn gluon fields: 
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In order to obtain all m gluon contributions we need to sum over all possible series of 

{ k l  , k 2 .  . . k,,) weighted by proper factors: 

where f ( { k l  . . . k , ) )  is the factor related to a particular series of kis. The factor can be 

understood easily. We want to pick m gluon fields from I  link fields with a fixed order. If 

we have ai gluon fields coming from ith link field, the corresponding symmetry factors have 

to be removed since there is no order within such ai fields. ai can be defined as follows: 

m 

a i = x 6 i , k j ,  where l < i < I .  
j= 1 

After removal of symmetry factors 3.35 becomes: 

We can rewrite the target form of S ( C )  in 3.33 as follows: 

Combining this expression and 3.37, we can identify that: 

In order to express Sm in momentum space, we need to Fourier transform every gluon 

In the above expression, we make use of the fact that the gauge field is defined at the 

middle point of the corresponding link. If we define x = xl and Ti r xi - x, we will have 
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f i  = ( f j  + xG1)/2.  The Kronecker delta is present to ensure the correct polarization of 

gauge field. After transforming every gluon field in 3.39, we make use of the fact that: 

After some algebra, we get: 

rn ! 
Sm = - (ig)" 

d4 Pm 

(3.42) 
x ( 2 ~ ) ~ 6 ( p i  +p2 +. . . +pm)s la l . .  . S ~ " ~ T ~ ( T ~ ~  ... Tali, + (-1)"Tam - - -  Tal )  

We can define the trace of matrices as a color factor: 

Then we denote other parts by a function: 

With these simplified notations, 3.42 becomes: 

Given the target form of S(C) in 3.33, we can identify the vertex function now. Accord- 

ing to Bose-Einstein statistics the vertex function should be symmetric under permutation 

of any two gluons. Therefore we can obtain: 

where P, is a set containing all possible permutations of {l,... , m ) .  One needs only to 

use a computer to generate the un-symmetrized expression of vertex function since the 

symmetrization can be implemented easily even by hand. It is noticeable that both the color 
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a1 ... Gll factor Cm and the function Y L  ...,7, ( p l , .  . . ,p,) are determined by the complete set of 

possible { k l ,  . . . , k,,). A dictionary can be set up indexed by { k l ,  . . . , k,,) with the entries 

Of c;. . . G ~ ~  and Y; ( p l ,  . . . ,p,,). One can refer to [21] for a explicit example. 

Since the algorithm is very important, it will be instructive if we can understand 3.42 

from a second scenario. We consider again a Wilson loop with circumference I :  

where the link field and its hermitian conjugation are both denoted as Ui. Now let's define: 

U ( i 1 ) U i  U ,  where l < i < l .  (3.47) 

Now we can define the Wilson loop recursively: 

U(1,O = ~ l U ( 2 , 1 ) ,  
l < i < l - 1 ,  

where (3.48) 
U(1, l)  = ul. 

U ( i , l )  = U i U ( i + l , l ) .  

Let's start from the first chain of the recursion. We can expand U1 without difficulty: 

Now, in order for the vertex function to contain only m gluon fields, the number of gluon 

field contributed from U1,  denoted as al, should not be larger than m. It is also apparent 

that the number of gluon fields from U (2 ,  m )  should compensate al in such a way that the 

total number of gluon fields is m. We can now write explicitly for the first chain that: 

where f (2 ,  I )  denotes the contribution to overall coefficient from U (2 ,  I ) .  Now we need to 

decompose U (2 ,  I )  into U2U(3, I ) .  It proceeds in the same way as the first decomposition 

only this time our upper limit for the number of gluons becomes a ( 2 , l )  instead of the m. 

We can proceed recursively using U ( i ,  I )  = UiU ( i  + 1 ,  I )  until i  = I - 1. The final expression 

we get for the m gluon contribution from U ( 1 ,  I )  is: 
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Recall the definition of S ( C )  in 3.29,3.32 and 3.38, it can be identified that: 

Up to some trivial differences, 3.51 is essentially the same as 3.39. All the development 

for the momentum space representation can be carried over. It is evident a1 , . . - , al can 

determine the form of vertex as well from this perspective. 

The two scenarios presented above are indistinguishable from each other in the current 

problem. However, the second scenario actually presents a more general understanding of 

Liischer's algorithm. The action of interest S might be decomposed into a set of basic oper- 

ators(not necessarily link fields) {01 ,  02 . .  .on}. Vertex functions of S will be convolutions 

of vertex functions of (01,. . . , O n ) .  To make the statement more concrete, consider n = 2 

and 
03 

The order gm vertex function of S = 0102 can be obtained by convoluting the two parts: 

The convolution can also be carried out in momentum space. In short, such an observation 

enhances our flexibility in vertex function generation and will be proven to be useful. One 

can refer to [43] and [45] for both momentum space convolution and the application of the 

idea. 

3.2.2 Luscher and Weisz's algorithm: fermionic action 

After discussing the implementation of Liischer's algorithm in gauge action, it is easy to 

generalize to the fermionic action. A fermionic lattice action is made up of Wilson lines 
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instead of Wilson loops. As was displayed in Eq. 2.10, a typical Wilson line can be written 

as: 

~(x)~,(x)Uv(x+fi)U,(x +fi +O)w(x+ 2fi +0). (3.54) 

We could employ either of the two scenarios discussed in Section 3.2.1 to generate an 

order-preserving vertex involving two ferrnions and rn gluons. 

There are several simple points worth mentioning. First of all, Fourier transformation 

of vertex functions should take into account the position shift in ferrnion fields. In the 

case of Eq. 3.54, there will be an extra e i ( 2 ~ p + ~ ~ )  in the momentum space form of the 

vertex functions. Secondly, since there is no requirement to take the real part or trace in the 

definition of fennionic action, the color factor now will be a product of matrices. For an rn 

gluon interaction, it is: 
C z  "'am = T a l  . . . T a m .  (3.55) 

There will also be some changes of definition so that we can have open paths. They are all 

trivial to implement. One can refer to [21] for a more detailed description. 

3.3 Twisted periodic boundary condition 

Loop calculations in quantum field theories, no matter in the continuum or on the lattice, 

generally suffer from infrared divergences. While one can introduce gluon mass to reduce 

the infrared divergence to finite, this scheme is not gauge invariant by its nature. It is 

therefore preferable to have a consistent gauge invariant infrared cut-off. Twisted periodic 

boundary conditions provide us such a cut-off. Furthermore, it simplifies the color struc- 

ture in the automatic vertex generation and also provides a spectrum which facilitates the 

on-shell improvement programme. All the points above constitute the importance of the 

technique and necessitate a detailed review of it. 

3.3.1 Basic forrnulism: pure gauge action 

The twisted periodic boundary condition was first introduced to continuum quantum field 

theory by 't Hooft[46]. Its lattice application was explored by many lattice theorists in- 

cluding Liischer and Weisz[l2]. Its basic idea is simple. While normal periodic boundary 
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conditions impose fields defined at one edge of lattice which have identical values as those 

defined at the other edge, or mathematically: 

where L is the size of lattice along the v direction, twisted periodic boundary conditions 

relaxes the requirement from identical to identical up to a constant gauge transformation: 

U, (x + L9) = Qv U, (x)  Lq . (3.57) 

Imposing the boundary condition along only one direction is trivial. It can be shown 

that the twisted periodic boundary condition is equivalent to periodic boundary condition if 

we redefine link fields as follows: 

Thus a twist in one direction does not make any difference physically and is not interesting 

to us. 

Twisted periodic boundary conditions in two directions(x,y for the current work) will 

however generate interesting consequences. First, let's write the link field U,(x) explicitly 

as U,(x,y, z ,  t )  with x,y,z and t defined in the range of (0 ,  L) understood. After defining link 

fields on all points within the lattice, there are generally two ways of defining the link field 

at point (x + L, y + L, z ,  t )  since the two boundaries can be crossed in different orders: 

where in the first line the x boundary is crossed first while in the second line the y boundary 

is crossed first. These two ways must result in the same definition for consistency: 

After some trivial algebra, one can derive: 
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According to group theory,R$2$2& must be a element of the c e n a l  group of SU(N), 

namely Z(N), in order for 3.61 to hold for arbitrary link field Up. Elements of Z(N) can be 

represented by e2n"'lN where n = 1 . . . N - 1. In the current work the following convention 

is adopted: 

It was shown in [1212 that the phase z can't be eliminated by a simple field redefinition 3.58. 

Explicit forms of Q's, although irrelevant to our purpose, are found in [48]. We need only 

know that: 

Rf = ( - I ) ~ - ~ I .  (3.63) 

In Lattice perturbation theory we expand link fields in terms of the gauge potential 

A&). It is apparent that gauge potential should satisfy the same boundary condition: 

A, (x + L3) = Q ~ A ,  (x) QZ. (3.64) 

For reasons which will be evident later, we decompose A,(x) into Fourier modes as follows: 

rp is a set of color matrices which are momentum dependent. One can find a convention 

for the explicit form of Tp in [21]: 

There is an interesting and important mixing of color and momentum degrees of freedom. 

rp have a set of useful properties[lZ]: 

rp = rpf if px = p, I and py = p,. I 

r, = I  i f p x = p y = O  

Trr, = 0 unless px = py = 0 

r; = Z(P)~-, ,  

rprpf = Z(P, pT,+,f, 

'A pedagogical description can be found in [47]. 
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where Z ( p )  and Z ( p , p f )  are all phase factors which vary as different choices are made for 

the explicit form of T p .  

Application of 3.65 to both sides of 3.64 reveals: 

Let's apply the transformation N - 1 times more on the righthand side of 3.68 and make 

use of 3.63: 
r - e ' N ~ v L  

P - r ~ .  (3.69) 

This can be solved by a different quantization from normal periodic boundary condition: 

The new quantization can be viewed from two perspectives. One can argue that it generates 

finer resolution in momentum space for a given box size while it can also be understood 

as a way to reduce finite volume effects since a "larger" box size is obtained. Indeed 

these applications of twisted periodic boundary conditions are discussed in the literature. 

However, for our purposes, the important point is that zero modes are eliminated; one need 

only notice that for nx = n, = O(modu10 N )  we have rp = I .  According to group theory 

Tr(A,(x))  should be 0 so that the generators of SU(N) will remain traceless. It can't be the 

case unless: 

A ( p x  = O(modu10 N )  , p, = O(modu10 N )  , pZ, pt ) = 0. (3.71) 

Effectively we exclude the troublesome zero momentum mode from our theory gauge in- 

variantly. 

The process above can be understood from an analysis of the number of degrees of 

freedom. In the normal basis we have L4 momentum degrees of freedom and N~ - 1 color 

degrees of freedom. Combining them together the total number of total degrees of freedom 

become ( N ~  - 1)L4. In the twisted basis, there are L2 degrees of freedom along untwisted 

directions. For the twisted directions, the number of degrees freedom seems to be N ~ L ~  

according to 3.70. However, properties of SU(N) group eliminates L~ degrees of freedom. 

In summary we have ( N ~  - 1)L4 degrees of freedom as well. Twisted periodic boundary 

conditions can be regarded as a way to align zero momentum degrees of freedom with a 

U ( 1 )  degree of freedom in U ( N )  = SU(N)  @I U ( 1 )  which drops out. It provides us with a 

general perspective to eliminate un-wanted degrees of freedom. 
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Twisted periodic boundary conditions can also be applied to three directions. However, 

such cases are not relevant to our discussion here and interested readers are referred to [47] 

and the references therein. 

3.3.2 Basic formalism: fermionic case 

Twisted periodic boundary conditions must also affect quarks for the sake of consistency. 

In order to apply the bilinear form 3.57, a new gauge group, the smell group SU(3)s is 

introduced. In additional to color, quarks now possess a new quantum number: smell. The 

smell group has no dynamical implications and quarks have a three-fold degeneracy under 

smell group. 

Now, a quark field is represented by a 3 by 3 matrix in the color-smell basis. The 

equation of motion will be changed accordingly. For example, the mass term will become 

the trace of the product of two fennion matrices properly normalized: 

Other operators involving quark fields transform similarly. The new representation can be 

written in the plane wave expansion as well: 

However, since the representation is not related to generators of a Lie group, modulo N zero 

momentum modes are not excluded from the theory. This doesn't cause any trouble since 

fennion masses in our cases will act as infrared cut-offs by themselves. 

3.3.3 Twisted Lattice Perturbation Theory 

As was discussed in previous sections, once twisted periodic boundary conditions are im- 

posed, normal color matrices Ta will be replaced by momentum dependent rp9s. Naturally, 

the automatically generated Feynman rules for lattice actions will be slightly different as 

well. 

Let's review the process to generate Feynman rules introduced in Section 3.2.1. The 

only part in Eq. 3.42 involving color matrices are the color factor C,. The color factor in 
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the twisted basis should be: 

Let's recall the last property listed in 3.67 rprp, = Z(p,p')I'p+p, and use it recursively to 

simplify 3.74. The color factor defined in the twisted basis becomes: 

where Z ( p l , .  . . ,pin) is a phase factor determined by all momenta. We know from the 

third property in 3.67 that in order for the trace to be non-zero momentum components of 

the summation along twisted directions must be 0. This effectively enforces momentum 

conservation along twisted directions. In the end, the color factor is just a number. 

However, the explicit dependence of Z on these momenta has different conventions 

due to the different phase conventions that one may adopt for the twist matrices rp. For 
1 

example, in [12] Z ( p ,  q )  was defined to be 2 3 ( < p @ - ( p 4 ) )  where: 

(n,, n,) are momentum components of p along twisted directions while (m,, my) are the 

counterparts of q. In [21] a simpler convention for Z(p ,  q )  is adopted. One can derive the Z 

factor for m momenta recursively. 



Chapter 4 

On-shell improvement programme 

As was discussed in Section 2.3.2, improvement of the lattice action is necessary given 

the current computational power we have. Since the current work is primarily an improve- 

ment of the lattice action, it is therefore appropriate to give some detailed discussion of 

the philosophy of on-shell improvement programme. The previous works on the quenched 

on-shell improvement of the gauge action will also be introduced and summarized, which 

will serve as a conceptual basis for my work here. For a general overview of the on-shell 

improvement programme, one is referred to Section 1.3. 

Scaling violation of a lattice action 

We have been talking about finite lattice spacing errors loosely in previous Chapters. The 

errors can be described as the discrepancies between lattice results of a calculation on a 

lattice with finite spacing, and the "true" continuum result (neglecting other systematic 

errors). 

Now consider a generic lattice action in two versions: version I with dependence of 

a  explicitly preserved and version II with a  set to be 1. In order for a lattice theory to 

be physically relevant, the correlation length 6 of continuum QCD must be reproduced 

as the continuum limit is approached. 6 is a finite value. For version I, the continuum 

limit is defined as a  + 0 or 6 / a  + w. It is now clear if we set a  = 1 as in version II, 

the correlation length of such a lattice theory will diverge as the continuum limit is taken. 

This simple observation suggests that a second order phase transition occurs as a lattice 
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action is taken to its continuum limit. It provides us with a different perspective on the 

relation between lattice theory and continuum theory. We expect that in the vicinity of the 

phase transition all proper lattice actions will fall into the same universality class, in the 

other word different lattice actions should give identical expectation values of any n-point 

functions in the continuum limit. 

Since there is a second order phase transition, renormalization equations can also be in- 

troduced to give us a clearer idea. Let's consider lattice as a scheme to regularize continuum 

QCD. The lattice spacing a is introduced to all spectral quantities and n-point functions as 

a dynarnical scale. We generally have: 

where is dimensionless. In ideal case, we can find a renormalized coupling go(a) so that: 

In this case, the lattice theory possesses a perfect scaling property which ensures identical 

critical behavior in the vicinity of second order phase transition. However, for a general 

lattice theory the scaling is violated to the order of a2: 

A lot of effort has been devoted to improving the scaling properties of lattice theory. 

For example, the perfect action developed by P. Hasenfraz[l9] is designed to satisfy per- 

fect scaling. The work here follows a more modest approach to the problem. It was first 

shown by K. Symanzik[49] that 0(a2)  scaling violations in all n-point functions can be 

simultaneously improved by improving the action and a field redefinition in the context of 

non-linear o-model. The improvement condition was modified by Liischer and Weisz[l4] 

so that the scaling property of only spectral quantities is improved, hence the name "on- 

shell improvement". They also performed quenched improvement for the Wilson gauge 

action to one loop order[12][22] and one-loop improvement of dimension-six operators in 

the gluon action is hereafter referred to as 0(aSa2) improvement. The quenched one loop 

improvement was carried out for both the Liischer-Weisz action and the square action[23] 

by Snippe[SO]. Order asa improvement for the Wilson fennion action was performed by 
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Wohlert[5 11. Luscher-Weisz's improved action is adopted generally by lattice community 

as a one-loop improved action. However, the quenched nature of their calculation is in 

some sense incomplete. Recalling the motivation of the thesis in Section 1.3, it is therefore 

necessary to perform an unquenched implementation of on-shell improvement of gauge 

actions so that unknown systematics from an quenched approximation can be consistently 

understood, constrained and controlled. The rest of the chapter will summarize works by 

Lushcer, Weisz and Snippe whose approach will be adopted and generalized to include 

dynamical fermions in the current work. 

Particle spectrum of the Twisted world 

The scaling properties of a lattice action can be improved by adding irrelevant operators 

to the original action. As was shown in [14] there are generally four free parameters 

C O , C ~ , C ~ , C ~  to fix. Among them cl,c2 and c3 are the coefficients of different dimension 

six operators. One can write the improved gauge action in the following general form: 

where C is a Wilson loop of a particular direction and Ci is a set of Wilson loops of particular 

shape. Here Co consists of all plaquettes while C1, C2 and C3 consist of Wilson loops of 

shape a, b and c in Fig. 2.2 respectively. In order for the lattice action to yield the correct 

normalization in the continuum limit, one can impose: 

and thereby reduce number of free parameters to 3: cl , c2, c3. One can prove an isospectral 

transformation property[l4] of improved action if only on-shell quantities are to be im- 

proved. With the aid of the transformation it can be shown that c3(or cl) can be shifted to 

be 0 to all orders of perturbation theory without any effect on physical observables. Gener- 

ally the convention c3 = 0 is adopted for on-shell improvement programmes. 
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Now we need to fix the two genuine free parameters e l ,  ~2 SO that order a2 scaling viola- 

tions can be removed from all on-shell quantities. The strategy is relatively straightforward: 

we will first choose two on-shell quantities, calculate them to a certain order(one-loop order 

in the current work) and then adjust the two coefficients to cancel a2 errors in them. If the 

perturbative approach is legitimate and the calculation is canied out correctly, we expect 

the new lattice action with the two parameter fixed will have no a2 scaling violations in 

any on-shell quantities. One of the quantities can be chosen as the heavy quark potential 

at physical distances[22]. However, one-loop calculation can be very difficult if a second 

on-shell quantity is chosen in continuum QCD thanks to the complicated diagram structure 

and vertex function in Lattice Perturbation theory. Liischer and Weisz suggested to carry 

out the improvement on a different space-time setting to simplify the calculation, namely 

the twisted world. 

In order to build the twisted world, one starts with a Euclidean space-time QCD which 

can be easily obtained by proper Wick rotations of QCD in Minkowski space-time. Two 

directions(x and y) are compactified to a finite extent L with twisted periodic boundary con- 

ditions imposed while the other two directions remain infinite. As was discussed in Section 

3.3, momentum modes whose x and y components are O(mod 3) are excluded from the sys- 

tem. Effectively one finds a tower of particles of different "masses" in the uncompactified 

two dimensional space. For example, the particle with lowest mass 2n:/(3L) is denoted as 

the A "meson" while the B meson has mass 2&/ (3~ ) ,  which is the second smallest mass. 

Let's define m as follows: 
2n: m = -  
3L' 

It is clear that the A meson mass is m and that the B meson mass is a m .  In the interacting 

theory, most of the particles are unstable with the exception of A and B. In [12], it was 

shown that A and B mesons can be created by a Polyakov line and hence they are physical 

particles in the twisted world. They can appear as asymptotic states in contrast to gluons 

which are always confined inside hadrons and never appear as asymptotic states. Now we 

have a whole new set of on-shell quantities at our disposal. We can choose two of them to 

implement on-shell improvement. 
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4.3 Self-energy of the A meson 

The simplest on-shell quantity is the self energy or "mass" of A meson. It can be defined 

as the pole of the two point correlation function. Let's consider the two point correlation 

function in twist world: 

In order to get the twisted color factor straight, we need to look into Sg in some detail. Sg 

will be of the following form if we adopt the Feynman gauge: 

where Av = C A ; T a  and we used T ~ ( T ~ T ~ )  = 1/2Sab. With twisted periodic boundary 

conditions imposed on directions 1 and 2,  A(x)  can be Fourier transformed in terms of 

momentum dependent color matrices similar to Eqn. 3.65: 

We then need to make use of the completeness relation: 

- 2 2 6  
p1+k~,06p?+kz ,0~(~0 + kO)6(~3 +k3)  (4.9) 

1 
= - S 4 ( p  + k )  

N  
and integrate over one of the momenta, say p.  After all the dust settles down, the action in 

momentum space reads: 

where T ~ ( r ~ r - ~ )  = Z ( p ,  - p ) N .  Now the derivation of the two point function is a standard 

path integral exercise to do and the result is: 
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6 where Dp = -$ in the Feynman gauge. If we adopt Liischer's convention for Z(k, -k) in 

Eqn. 3.76, the 1/Z(k7 -k) factor become z- ' /~("").  
The poles of two point function come from D,, part. Consider an A meson with polar- 

ization vector E" = 4,,2; we can define a renormalized the two point function by summing 

all one-particle irreducible Feynman diagrams, and for convenience, contracting all the spin 

indices: 

where we absorb all the color factors into 2(k) in the last line. Field strength renormaliza- 

tion factor Z(k) can be extracted easily: 

The mass of the A meson and renormalization factor Z(k) at tree level can be calculated 

by setting k = (imA , m, 0,O). The results were given in [12]: 

Notice that even at the tree level both mass of the A meson and the Z(k) factor differ from 

their continuum counterparts by an amount proportional to m2, which can be identified as 

an order a2 scaling violations by dimensional analysis. In order for the on-shell quantity 

mA to be free of a2 corrections, we need the tree level cl and c2 to satisfy: 

It is observed that by adopting 4.15 the tree level field strength renormalization Z(k) is 

automatically order a2 improved as well. However, it is an accident. Since Z(k) is not an 
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on-shell quantity, in general it will not be order a2 improved by the on-shell improvement 

programme. 

As our primary goal is to improve m ~  to one loop order here, we need to consider the 

one-loop contribution to m ~ .  Let's first expand d ( k )  explicitly to one-loop order: 

where n P ( k )  is the vacuum polarization and the reader is reminded that the A meson is 

taken to have polarization in the "2" direction. We then take the inverse of d ( k )  and Taylor 

expand it to the first order in g2:  

It can be seen that: 
1 d ,  ( k )  = -n22(k). 

Let's consider the renormalized self energy E  ( k )  and the field strength renormalization Z ( k )  

where it is understood E(( imA,m,  0 , O ) )  = M A .  They can be expanded to one loop order as 

follows: 

We can now express the inverse of d ( k )  in a different way: 

Comparing it with 4.17 the expression for the self-energy at one-loop order is obtained: 

zo (4 El ( k )  = - -n22 ( k )  = 
2Eo (4 

Z ( k )  n22 ( k ) .  
4 z i ( k . k ) ~ o ( k )  

We expect El ( ( imA,  m ,  0 , O ) )  = m y ) .  Similarly to m f ) ,  m f  ) can be expanded as follows: 
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Figure 4.1: One loop contributions come from gluon and ghost loops in the quenched 

approximation. 

It is up to the counter terms coming from cjl), cp) to cancel out the order a2 violation: 

Comparing the two expansions, we can get our first condition on the one loop coefficients 

We can calculate one-loop self energy mf) at a range of different L's and extract a1 by 

fitting the calculation results to 4.22. There are four Feynman diagrams contributing to the 

vacuum polarization in the quenched calculation. A sketch of the diagrams can be found in 

Fig. 4.1. 

As we will see in Section 4.4, explicit expressions for one loop field strength renormal- 

izations are needed to extract the order asa2 scaling violations in the 3-meson coupling. It 

is easy to derive the expression for the A meson. Expanding Eqn. 4.13 to one loop order on 

both sides and making use of 4.18, we obtain: 

The field strength renormaliztion for the B meson will be derived in next section. 
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Figure 4.2: In the diagram a a possible channel of a A-A scattering is displayed. After the 

cut described by the dashed line, we get the tree level three point coupling in diagram b. 

4.4 One-loop correction to the 3 meson coupling 

The second on-shell quantity we choose is the three-meson coupling involving two A's 

and one B. Physically the coupling can be understood by analyzing A-A scattering. The 

scattering can happen through a point interaction as well as exchange of a B meson. As 

a result, it has a pole located at the mass of B meson. The residue of the pole can be 

interpreted as the square of a phenomenological three-meson coupling(Fig. 4.2). Through 

a closer look, one can conclude that the third components of both A mesons have to be 

imaginary in order for the B meson to be on-shell. Effectively we analytical continue the 

momentum components into the complex plane. The necessity of continuation can also be 

understood by a center of mass analysis: if the spatial momenta of both of the A's remain 

real, the center of mass energy is inevitably bigger than mass of the B so that the resulting 

B meson can not be on-shell. 

The formal definition of the three point coupling is given in [22]: 

The momenta are chosen as follows: 

k =(iEA(r), m,O,ir), p = (-iEA(r),O,m, ir) ,  

where r can be adjusted so that B meson is on-shell. The tree level value of r is &m/2. 
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f (k,  p,  q )  is the twisted color factor of the three point function: 

r3 (k,  y ,  q )  is the amplitude of three-meson scattering. Both field strength renormalizations 

of the A mesons are defined in the same way as Section 4.3. The field strength renormal- 

ization of the B meson can be derived similarly and its tree-level expansion is given in 

[5O] : 

Zs(q) = 1 - (c l  - c2)m2 + 0 ( m 4 ) .  (4.29) 

The polarizations of the A's and B are defined as: 

The tree level value of 1 was derived explicitly in [50]: 

Following the same argument as in Section 4.3, the following condition must be satisfied in 

order for 1 to be free of 0 ( a 2 )  scaling violations: 

Combining 4.32 with 4.15, we can obtain the values of c y )  and c p )  for the cancelation of 

0 ( a 2 )  scaling violations in all on-shell quantities: 

We now need to calculate the 0 ( a , a 2 )  scaling violations by studying all the one-loop 

contributions to the three meson scattering. By adopting the quenched approximation, loop 

contributions from dynamical fermions are absent. The one-loop diagrams containing gluon 

and ghost internal loops are given in Fig. 4.3 and Fig. 4.4 respectively. Considering Eqn. 

4.26, the left hand side can be expanded to one loop order as follows: 
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Figure 4.3: One loop diagrams containing a gluon loop. 

The right hand side can also be expanded to one loop order. After a proper comparison hl 

can be identified as follows: 

i ~ k ,  P ,  q )  = J ~ f ) ( k ) ~ f ) ( ~ ) ~ f ) ( q )  (irr) (* ('1 
z p  ( k )  

(4.35) 
~ P ( P )  + - m q )  +- -) +r, ( 1 ) )  7 

~ F ' ( P )  z f ) ( q )  

where I't) encompasses all the one-loop diagram contributions to the three point coupling. 

In order to resolve the 0 ( a , a 2 )  scaling violations, we need to start with an 0 ( a 2 )  improved 

action. After applying 4.33 to 4.15,4.32,4.29 and 4.31 and plugging the results into 4.35, 

we obtain the expression for hl [50]: 

We can then proceed the same way as in Section 4.3. Taking only contributions from one 



CHAPTER 4. ON-SHELL IMPROVEMENT PROGRAMME 

Figure 4.4: One loop diagrams containing a ghost loop. 

loop diagrams into account, the explicit small m expansion of hl was given in [12]: 

The counter term is of the following form: 

In order for hl /m  to be free of 0 ( a 2 )  scaling violations, the following condition must be 

satisfied: 

( 1 )  Combining 4.39 with 4.24 we are able to determine c j l )  and c2 . 
Similar to the case of the self energy of A meson, different contributions from gluon 

loops, ghost loops and fermion loops are linearly summed to give the total one-loop am- 

plitude. Given contributions from gluon loops and ghost loops are well established,by the 

work of Liischer and Wesiz[l2] as well as Snippe[SO], the new calculation in this thesis is 

to explicitly compute the contributions of dynamical ferrnion loops to one-loop coefficients 

cj l)  and c!) and then add the contributions to the previous results of Liischer and Weisz's 

or Snippe's to obtain complete results. 
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4.5 Facilities for numerical integration 

The intrinsic complexity of lattice perturbation theory makes any analytical attempt to per- 

form the loop integral infeasible. We need to use numerical integration programs to calcu- 

late one loop contributions. However, most numerical integration algorithms become very 

expensive if we want to resolve rn2 contribution when m is small. It is to Liischer and 

Weisz's credit[l2] again for inventing a finite sum approximation which allows accurate 

determination of loop integrals with errors understood through modest computational cost. 

The algorithm is quite simple to understand and essential to the current calculation. It will 

be described here in detail. 

First of all, in the lattice world all momenta become sinusoidal functions which are 

periodic functions. Let's consider integration over a 1-dimensional periodic function f ( k )  

whose period is 2n: 

F = Sn 2 ( k ) .  
-Ir: 2.n 

The integration can be approximated by finite a sum I ( T ) :  

Physically we impose finite box size T  on the given direction and impose periodic boundary 

conditions. The difference between the two is a finite volume effect. As was discussed in 

Section 2.7, such an effect generally falls exponentially as T  increases. In the present case, 

we can prove it rigorously. 

We can rewrite I  ( T )  as the special value of a function g(t ) : 

It is clear that Z(t; T )  is a periodic function whose period is 2.nlT. We can write I ( T )  in 

terms of Fourier sum now: 
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where the explicit form of c ,  can be derived as follows: 

where we used variable transformation ,& = k  + 2nvlT. After a trivial integration domain 

shift, we get: 
.n d k  
- f (k)eink (4.45) 

We can now return to 4.43 and obtain: 

.n dk  .n d k  
I ( T )  = f - f ( k )  + f - f ( k )  (eil'k + e-ink) -, 2n n= 1 -, 2n 

The first term of the right hand side is the integral we want to calculate. The difference 

between the finite sum and the integral is well represented by a series of Fourier integrals. 

Let's consider the case that f ( k )  has a pole whose distance from real k  axis is E. The 

series of Fourier integrals can now be performed one by one by contour integration. Clearly 

as a whole the difference will fall like e-ET which confirms our intuition from before. The 

more rigorous understanding does have its advantage in the sense that it is clear that the 

convergence of the approximation will be greatly facilitated if we can push the pole away 

from the real axis while keeping the periodicity intact by a proper variable transformation. 

The transformation was also given by Liischer[l2]: 

k = k f - a s i n ( k f )  where O < a < l .  (4.47) 

With the variable transformation the integration becomes: 

The periodicity is preserved explicitly. The corresponding pole of f ( k f )  is denoted as i d  

and it satisfies: 

E' - asinh(cf)  = E. (4.49) 

In the limit of small cf one can get an approximate relation: 
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Table 4.1: One loop coefficients from quenched calculations. 

It appears that the pole can be pushed away from real axis by a significant amount given a 
small enough. 

Coefficients 

4.6 List of previous results 

The quenched calculation of 0(a ,a2)  improvement for the Liischer-Weisz action have been 

given in [22] and [50]. Their results agree with each other nicely and are summarized as in 

Table 4.1. 

Liisher and 

Weisz [22] 

Snippe [50] 



Chapter 5 

Unquenched on-shell improvement of 

the gauge action 

0(a,a2) on-shell improvement for a pure gauge action was discussed in the previous chap- 

ter under quenched approximation. As remarked in Section 1.3, quark loop contributions to 

the improvement coefficients are needed to explain the large scaling violation in the static 

quark potential calculation. These contributions will be calculated in the current chapter. It 

is understood that the coefficients cil) and c(z') in this chapter are used to describe the quark 

loop contributions for the sake of simplicity. We adopt the order a2 improved Asqtad action 

as our quark action: 

where Ap(x) is the covariant derivative while A;(x) is also the covariant derivative with 

smeared links instead of ordinary link variables. Interested readers can refer to [52] for 

details of the action. 

5.1 Fermions in the Twisted Tube 

In order to calculate the contribution from dynamical fermions, we need first to put fermions 

in the twisted tube properly. The general approach to put fermions on a lattice with the 

twisted periodic boundary conditions was discussed in Section 3.3.2. As was discussed, the 
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major difference between fermions and bosons in the twisted tube is that the zero momen- 

tum modes(mode N) of fennions are not excluded. As a result, if we consider a massless 

fennion action for the twisted tube, both the A meson and the B meson would be unstable 

with regarding to decay into two fennions. The problem also manifests itself in the fact 

that the self-energy renormalization of the A meson will be infrared divergent. In order to 

keep mesons stable as well as prevent the infrared divergence, a infrared regulator should 

be introduced. One can adopt twisted anti-periodic boundary conditions: 

w(x + Lfi) = n,w(x)$efi. 

Following a similar argument to Section 3.3.2, it is observed that ~ ( x + N L f i )  = - ~ ( x ) .  By 

Fourier transforming both sides, the possible momentum modes can be determined: 

P p  = (2n+1)n where n = O , k l , k 2  ... NL ' 

Effectively a mass gap of n/NL is produced. This method was used by Wohlert[51] to 

improve the Wilson fermion action to order a,a. However, the mass of the A meson is 

2n/NL which is twice the mass gap while the mass of the B meson is larger than twice 

of the mass gap. The mesons are still unstable with regard to decay into two ferrnions. 

A fennion mass of large enough size will be adequate to solve the problem. Also, since 

we are introducing a fermion mass, we actually do not have to impose twisted boundary 

conditions, if we consider only the leading fermionic corrections to the gluon self-energy 

and three-point coupling. In fact, one can choose any boundary condition one likes to do 

the calculation as long as a sufficiently large quark mass mq is present. Nonetheless, we 

have used twisted periodic boundary conditions, since these also allowed us to conduct 

some tests of our computations on the gluonic corrections that were previously analyzed by 

Liischer and Weisz[l2] as well as Snippe[50]. 

The importance of an appropriate infrared regulator can be understood more clearly 

from a loop-integration point of view. Let's consider one of the one loop diagrams shown 

in Fig 5.1. Consider the loop integral in Minkowski space-time, the integral should look 

like the following: 



CHAPTER 5. UNQUENCHED ON-SHELL IMPROVEMENT OF THE GAUGE ACTION68 

Figure 5.1: One of the fermionic one-loop contributions to A meson self energy 

where f (q) is an analytic function of q. The poles of qo can be solved as follows: 

~ 2 -  - l i 2  2 
2 1 - -  +mq where 

i 
2 E: =({+ z ) 2  +mi 

It is clear that El  and E2 share a minimum, mq, although they can not reach their minima 

simultaneously. Let's bring both El and E2 to their minima together by considering zero 

three momenta q = 0 and k = 0: El = mq and E2 = mq. Now the poles in the complex qo 

vlane become: 

It can be seen that unless mq > m/2 there is no way to Wick rotating the integration con- 

tour to get a valid Euclidean theory in the infinite volume limit1. Therefore practically 

speaking one needs to keep the A meson stable. One can refer to Fig 5.2 for a visualized 

understanding. 

5.2 General discussion of small m expansion 

The necessity of introducing a gluon momentum(such as the mass gap m in the twisted 

world) as a tool to resolve discretization errors can be understood from a simple dimensional 
-- 

'AS for the twisted world, m can be made arbitrarily small as the size of twisted directions increases. It is 

therefore possible to perform Wick rotation for any quark mass bigger than zero. 
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Figure 5.2: Diagrams a, b and c describe possible pole structures of 5.1 for m, > m/2, 

mq = m/2 and mq < m/2 respectively under the assumptions that three momenta are 0 for 

both internal quarks. Poles of different colors come from different propagator. It is clear 

that Wick rotation can be performed without pole crossing in a. In the latter two diagrams 

Wick rotation can not be performed. 

analysis point of view. In the quenched calculation, a is the only dimensionful scale in the 

problem unless a mass gap m is introduced by the twisted periodic boundary conditions. 

am is the only dimensionless variable in quenched calculations and therefore it's relatively 

easy to expand dimensionless quantities such as m(l)/m and h(l)/m as polynomials of am. 

After the introduction of dynamical fermions we are facing a more complicated ques- 

tion. While the quantities needed to be expanded are still dimensionless, we introduced 

another scale mq into our problem. Now, there are two independent dimensionless vari- 

ables: am and amq. We have to examine the expansion problem more carefully before 

specific steps are decided to carry out the calculation. 

First of all, we have three scales in the problem, namely a, m and mq. As different 

limits are taken for them respectively, we will obtain different physical theories. a + 0 

corresponds to the continuum limit, we expect the continuum limit is well defined for both 

4-dimensional Euclidean space and the 2 + 2 twisted world. m + 0 is the same as L + - for 

the twisted directions. By taking such limits, theories in the twisted world should become 

their counterparts in the 4-dimensional Euclidean space, which are well defined in the case 

of QCD. mq + 0 gives rise to theories containing massless fermions. While these theories' 

existence in both 4-dimensional Euclidean space and twisted world is beyond doubt, the 
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on-shell processes we are using now will lose their virtues for massless fermion theories in 

the twisted world. In summary, we expect the results of a calculation at particular amq to 

yield good limits when m is taken to zero; we also expect calculations should have good 

continuum limits as a + 0. 

Bearing these observations in mind, let's consider a dimensionless function f (amq, am) 

which stands for either one-loop amplitude we are considering. We can Taylor-expand the 

function at fixed amq around am = 0: 

Now, the constant and coefficients are all functions of amq. Their expansions will depend 

on various physical constrains. First consider go(amq). First of all, since we expect a 

well-defined continuum limit, there can not be negative powers of amq in its expansion. 

However, there can generally be a logarithm term. In fact, n/a is the ultraviolet cut-off 

while mq serves as the infrared cut-off in loop integrals. Generally there should be a loga- 

rithm divergence in the form of ln(amq) even in the continuum. Positive powers of amq are 

also expected. Summarizing these points, the expansion of go(amq) reads: 

Now let's focus our attention on g2(amq). While all the discussions for go(amq) can 

be carried over, we can now include negative powers of amq: g2,-2/(amq)2. Combining 

these term with (am)2 we have a continuum Like contribution g2,-2m2/mi. At fixed m2 this 

term behaves like an infrared power divergence. As one can easily see we will in general 

have such continuum like contributions from ( ~ m ) ~ ~ ( n  > 0) terms which signal an infrared 

power divergence of order 2n. Since we need to match our lattice theory with continuum 

theory, these terms can be either preserved or excluded by examining the infrared properties 

of corresponding continuum one-loop amplitudes. For the sake of generality we preserve 

the term in our expansion here: 

Our next target will be g4(amq). The new problem that it poses to us is the nature of 

the term g4,-2/(amq)2. Combining with ( ~ m ~ ) ~  we get g4,-2m2/m:(am)2 which behaves 
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like an 0 ( a 2 )  discretization error. If we improve our action to the order asa2, we expect 

the a2 expansion here will be identical to its counterpart in the continuum, which is 0. In 

other words, we expect elimination of all the terms like g211,-2(,,-I) m2(n-l) (am)2 
once we finish our improvement. We can generalize the statement even further: once or- 

der % improvement is implemented, g2,t, -2(,-,) mzs/m$ ( ~ r n ) ~ ( ~ )  term will be 

eliminated from one-loop amplitudes. Given these arguments, since we are now imple- 

menting improvement, expansion of g4(amq) reads: 

The expansion process above suggests a possible way to carry out the calculation. For a 

particular one-loop quantity, say renormalization of the A meson self energy, one can first 

perform the calculation at fixed am, for different lattice sizes L(and hence different m). By 

fitting the data set to the form 5.7, we can obtain g2(am,). After repeating the process for 

different am,'s and then fitting the result to the form 5.9, we can obtain the constants and 

coefficients to a certain order, which enables us to improve the gauge action given any am,. 

An important thing to note in the calculation is that the order of limits, first am --t 0 then 

am, -4 0, can be preserved in current method. The process is more complicated simply 

because of the introduction of a third scale. 

Let me summarize the expansion process I have just described. A general dimension- 

less function f (am7amq) was introduced. The expansion of the function f (am7amq) was 

performed under the physical constraints that the theory yields good limits as a t 0 and 

that the theory is regular around m = 0 at fixed am,. We have seen that lattice artifacts 

of different order and continuum terms are actually mixed together thanks to the possible 

negative powers of am,. 

A different parametrization where am and m/m, are independent variables can be ob- 

tained by a simple resummation of different terms. This parametrization also implies a 

different fitting process. However, I am not going to discuss it in detail since the fitting 

process is not adopted in the current work. 
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5.3 Evaluation of systematic errors 

One of the problems we face is to assess the systematic errors for each g2(arnq), from 

which we can obtain the systematic uncertainty of the improvement coefficients. Normally 

it's quite an easy question. One can fit the data for fixed amq to Eqn 5.9 including some 

higher order terms, find their coefficients and assess systematic errors by calculating the 

higher order contributions. However, the simple approach turned to be troublesome in our 

case. 

Our calculation results are of very high precision with relative errors as small as lo-' - 

We are forced to include a lot of higher order terms in order to make use of the full 

range of significant digits. To make the situation even worse, terms like m"/m?(~m)~' 

can not be fully eliminated in higher order terms. It suggests some terms are suppressed 

only by orders of (m/mq)2 which is relatively large compared to am especially when am, 

is small. As a result, higher order terms up to gs(amq) (am)8 have to be included in the fit, 

some of the terms are only different by 1 order of magnitude, which makes the extraction 

of their coefficients very difficult. We also have no qualitative argument for the sizes of 

these coefficients to make a constrained fit applicable and reasonable. At this point, it 

is worthwhile to note that, in practice, an estimate of the O(a,) coefficients in the gluon 

action of a few percent precision is more than adequate, since the uncalculated two-loop 

corrections are of order 10 - 20% of the one-loop improvement. Hence for our purposes we 

can be content with fairly loose estimates of the systematic errors in our fits for expansions 

such as 5.7. It is evident from Fig.. 5.4, for example, that terms beyond the leading ~ ( a r n ) ~  

discretization errors are very small (though a x2 fit requires such terms, given the high- 

degree of precision of our data). 

For our purposes, we make a crude estimate of the systematic error in the fit to 5.7 by 

first estimating the coefficients using the full data set, and then using only one-half of the 

data set (at the smallest values of m), taking the difference in the two sets of fit results to 

estimate the systematic error. 

Once we estimate the systematic uncertainties for every g2 (am,), we fit the upper-bound 

and lower-bound of g2(amq) to Eqn 5.9 as well so that we get the uncertainties of all the 

relevant coefficients. However, since we are working at relatively large am,'s, the system- 

atic error coming from the higher order terms in expansion 5.9 overshadows the systematic 
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error resulting from the errors of each g2 (arnq). The observation serves as a further valida- 

tion of our sloppy estimation of systematic errors of each g2 (amq): practically they are not 

the primary error source we need to be concerned with. 

Last I want to point out that accurate estimation of systematics is possible only if we are 

working at small antq and ant's which are much smaller compared to the given amq. Such 

an approach will be very expensive numerically. Since we are working at one-loop level, 

errors of a few percents will be enough for our results to be relevant phenomenologically 

and can be archived by our current setting. In one word, our calculation is practically 

adequate albeit not as rigorous as those by Liicsher and Weisz. 

5.4 Renormalization of the A meson self-energy 

We first calculate the renormalization of the A meson self energy. The analytical derivation 

follows the same route as Section 4.3 and bears the same final form 4.21 

Z(k) 1122 (k) . 
= 4Zi(k&)Eo(k) 

The core of the expression is the vacuum polarization contracted with the A meson's polar- 

ization vector. Now we consider the ferrnion loop contribution as in Fig. 5.3. Following the 

first approach proposed in Section 5.2, we need to fix amq first and calculate El for different 

m's. After that, we then fit the data to the proposed form 5.7 to obtain g2 (amq). However, 

there are still some unsettled issues in the general expansion. We don't know whether there 

is a logarithmic divergence in go(amq) or whether there is a power divergence behaving 

like m2/mi. Although we can find these out through data fitting, it's better to have some 

physical arguments first. 

As was remarked in the previous section, g0(amq) will survive if we take the m -+ 0 

limit which transforms the theories in the twist tube to their counterparts on 4-dimensional 

Euclidean lattice. Furthermore, if we consider the a --+ 0 limit for go(amq), it ought to have 

the same infrared behavior as the 4-dimensional continuum theory. In the continuum, only 

diagram a in Fig. 5.3 contributes. One need only to note that the contribution from the loop 

is transverse by itself: 
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Figure 5.3: Fermionic one-loop diagrams contribution to vacuum polarization. The tadpole 

diagram(b) is only present on lattice. 

If we contract 5.1 1 with the polarization vectors of the A meson, only the first term will 

survives. Given the fact that we put the gluon on-shell k2 = 0, we conclude that n22 = 0 

in the continuum. It is thus expected that go(amq) = 0 for any fixed am, and hence has no 

logarithm or power divergence with regard to amq. 

The calculation has been done for ranges of am at amq = 0.1,O. l5,0.2,0.3 . . .1 respec- 

tively. First of all, linearity with regards to (am)2 has been demonstrated when am is small 

compared to am,. One can refer to Fig. 5.4 to get a sense of the linearity. Also, uncon- 

strained least square fits reveal that the go(amq) for different amq are of order while 

constrained fits2 give 10-12, which are essentially 0. Therefore we enforce go(amq) = 0 

in Eqn. 5.9. Constrained fits to the resulting form are performed to extract g2(amq) for all 

amq's and the results are summarized in Table 5.1. 

The next step will be to fit the g2(amq) obtained from previous fits to the form 5.9 in 

which we know g2,-2 = 0 now. By the same arguments in Section 4.3 one can conclude 

that the following relation needs to be hold in order to improve lattice gauge action with 

massless staggered quarks: 

The extrapolation to mq + 0 is necessary so that our results can make contact with MILC 

simulations with u,d and s quarks, where am, < 0.03. 

In the actual fitting, we found that several higher order terms with regard to am have 

to be included in order for us to get a decent x2 in the first step of fitting although their 

2 ~ e  expect g,(amq) scales like l / (r~!(am,)~"+~) and by applying the corresponding Bayesian prior we 

get a constrained fit. 
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Table 5.1 : g P m  (am,) for different am,'s are summarized. It is observed that the systematic 

errors are relatively larger for small amq's. 

coefficients are generally not well-resolved. It is also observed that the fit results are very 

stable: a particular g2(am,) changes by only lo-' - 1 0V6 in an unconstrained fit if we leave 

one half of the data set out. They change on a similar scale if we vary the number of higher 

order terms included although x2 can look very bad. In the second step of the fit when we 

fit the set of g2(amq)'s to 5.9, the coefficients g2,o and g2,2 change up to a few percents if 

we exclude the term h2,21n(amq)(amq)2 from the fit form or leave out several data points 

at small amq(we have tried to leave out amq = 0.1,O. 15 and 0.2). However, as one can see 

in Fig. 5.5, the signature of the presence of the logarithm term(the apparent dip) is clear. 

Since the systematic errors for each g2(amq) are much smaller than a few percents, the 

change of g e m  after the exclusion of the smallest three amq9s from the data set is quoted 

as its systematic error. One can refer to Fig. 5.5 for the appearance of the data set and the 

fit. After performing all the fits, we get: 
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(1) Figure 5.4: m, /m is displayed as a function of (am)2 at amq = 0.2. One can see the 
( 1 )  excellent linearity as predicted by Eqn. 5.7. The intercept of the curve with mA /m axis is 

Self -Energy mAf0 / m 
35 - I I I I 

shown to be 0 as well. 

30 

Self-Energy: g z ( a m d  
I I I I 

Ei 
, , - , - 

, ,0 ' 

Figure 5.5: gp) (amq) ' s  are displayed versus amq. The dashed line is the fit result. It can 

be seen that a smooth limit exists as amq -+ 0. 
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Figure 5.6: Fennion loop contributions to renormalization of 3-point coupling. 

5.5 Renormalization of 3-point coupling 

Similarly to the previous section, analytical results from corresponding sections in Chapter 

4, namely Section 4.4, can be directly applied here. We again need some physical arguments 

regarding the continuum counterpart of 3-point coupling renormalization to determine the 

infrared behavior. First of all, the contribution of fennion loops in the QCD beta function 

where nf is the number of flavors in our problem. We also know that in the tree level 

calculation we conclude h,,,/rn N -8g. Taking the fact that g is effectively 1 in our theory 

into account, go (amq) now contains a logarithm contribution looking like: 

We have one flavor of quark now and can predict the logarithm term in go(am,) without 

difficulty. 

Furthermore, we need to find out if there are any power divergences with regard to 

Again we perform a continuum calculation: in the continuum, only two triangular 
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diagrams(d,e in Fig. 5.6) contribute to the renormalization. Using the same momentum set- 

up as in Section 4.4, it is relatively straightforward to carry out the trace algebra by keeping 

only the m3 term, which turns out to be just infrared divergent: 

We should then normalize the contribution by the tree level factor which can be obtained 

by contracting the tree level vertex with the polarization vectors of the three gluons. After 

that, one obtains: 
n n 

It is then clear that there is a power divergent term l /  in g2 (am,) and its coefficient 

is -1/(120n2). The power divergence should be the most severe divergence we expect in 

O(aO) terms. In summary, after the removal of the continuum like power divergence we 

expect the following relation to be satisfied in the limit of am, + 0: 

The actual calculation follows the same route as the previous section. We obtain go(amq) 

and g2(amq) for a set of amq's by fitting sets of data to 5.7 respectively. The results are 

summarized in Table 5.2. In the case of go(amq) the results show clear linearity with re- 

gard to ln(amq) as in Fig. 5.7. Also, quantitatively an unconstrained least-squares fit gives 

the value of the coefficient of the logarithm term as -0.0329 while our formula predicts 

-0.0337. Given the fact that the range of am, we are working on is not small enough to 

diminish higher order contributions, the value of coefficient we get is consistent with con- 

tinuum theory's prediction. It serves as a very good internal check for our calculations. 

Moreover, Eqn. 5.8 dictates that after the removal of the logarithm term we should recover 

a second-order polynomial function of amq. Indeed, it is again verified as shown in Fig. 

5.8. 

As for the g2(amq) term, it is shown in Fig. 5.9 and 5.10 that g2(amq) is not a simple 

quadratic function of am, before we deal with the power divergence while after the removal 

of l / ( ~ m , ) ~  term g2(amq) displays good quadratic behavior with regards to am,, which is 

fully expected from 5.9. 
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Trip le-Gluon:  g,(amJ 

.06 

(1) Figure 5.7: go (amq)'s are clearly linear with regarding to ln(amq).The dashed line has the 

theoretical predicted slope while it is forced to go through the data point at the minimum 

amq value. The agreement between the line and the data points is apparent. 

(1) ( m ~ )  We used the same approach to estimate the systematic errors gtj and g2 as for g2 

described in the previous section. The results are: 

5.6 Accumulation and discussion of the results 

(1) Combining the Eqns 5.12,5.18,5.13 and 5.19, we can solve for cil) and c2 : 

We need to transform our results into the form that is useful for the HPQCD collab- 

oration as in Eqns. (6) and (7) in [53]. First let us use cil)(i = 1,2,3) as the one-loop 

coefficients including both quenched and quark contributions. Now consider the general 
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Triple-Gluon: g , ( a m d + l o g ( a m d / ( 3 r r 2 )  

(XI Figure 5.8: After removal of logarithm part from go (am,), the data set shows quadratic 

behavior with regard to am,. The dashed line is the fit to the full set of data while the dot 

line is the fit where three smallest amq's are excluded. 

form of the improved action as 4.4: 

From the discussion in Section 4.3 and 4.4 we know that: 

By some simple algebra we have: 
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T r ip le -Gluon:  g2(amJ 
-0.12 I 1 I I I I 

( k )  Figure 5.9: g2 (amq) is displayed as the function of am, before the removal of power 

divergence. The dashed line is predicted by theory while constant c is fixed by forcing the 

line go through the data point at minimum am,. It is seen that at small amq's the infrared 

power divergence is the dominant term. 

Triple-Gluon:  g2(amJ+ l / (  120n2(amJ2) 
-0.125 

-0.130 
/ 

/ 

(1) Figure 5.10: After the proper elimination of l / ( ~ m , ) ~  term in g2 (am,), it appears now a 

quadratic function of am,. The dashed line and the dot line have the same meaning as in 

Fig. 5.8 
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(A) Table 5.2: go (amq)'s and gf)(amq)'s are summarized for different amq7s. It is noticed 

that systematic errors are generally larger for small amq's. 

Taking the Tadpole improvement[27] into account, the mean link can be expanded as fol- 

lows: 
(1) uo = l + u o  uS+0(u:). (5.23) 

We can now rewrite 5.22 into the following: 

Also, according to the normalization relation 4.5 and the fact that c3 can be set to 0 in 

all orders of perturbation theory, we have the following relation between the one-loop im- 

provement coefficients: 
(1) c p  + 8c, + 8 c p  = 0. (5.25) 

We are ready now to derive the final formula. Given the fact that all the quenched con- 

tribution and Tadpole contribution were calculated in 1531, we can simplify 5.24 into the 
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following: 

where now all the one-loop coefficients contain only quark loop contributions. After plug- 

ging the numbers in 5.20 

Po PI = -- (1 + O.4805as - 0 . 3 6 3 7 ( 1 4 ) ~ ~  a,) , 
2 0 4  

Po p2 = -- ( 0 . 0 3 3 ~ ~ ~  - 0.009(l)Nf a,), 
4 

where Nf is the number of flavors. Since we calculated the contributions to the improvement 

coefficients from one flavor, the contributions from Nf flavors can be obtained in 5.20 under 

the assumption that a flavor symmetry is present in the sea quark sector. The assumption is 

widely adopted in experiments and phenomenological calculations. 

It is observed that the corrections of improvement coefficients from sea quark contri- 

butions are significant for Nf = 3. These missing pieces can be responsible for the large 

scaling violations observed. 



Chapter 6 

Summary and conclusion 

Motivated by the somewhat larger scaling violations in unquenched static quark potentials 

than the quenched case, we performed the un-quenched improvement of the Lattice Gauge 

Action. We generally followed the approach of Luscher and Weisz[l2] by requiring only 

on-shell quantities to be improved. It was pointed out by Luscher and Weisz that we need 

only two operators with independent coefficients present in the counter-term if only order 

a2 improvement is pursued. A particular space-time geometrical setting, namely the twist 

world, provided us with two on-shell quantities that are relatively simple to calculate. Per- 

turbative calculations were performed for both of the on-shell quantities and the one-loop 

improvement coefficients were fixed accordingly. 

There was one major complication in our calculations compared to the quenched cal- 

culations done by Liischer and Weisz: we have one more energy scale mq present in our 

question. The complication manifests itself in many different ways: first of all, careful con- 

siderations must be taken to understand the physical meanings of different orders of limits 

for which different calculation processes need to be designed; second of all, it's relatively 

hard for us to estimate the systematic errors since some higher order terms in our expansions 

are suppressed only by (m/m,)2 and the convergence of the expansion is relatively poor; 

thirdly the calculations become more and more expensive as mq decreases since m must be 

kept to be (much) smaller than mq in order for us to get a good fit. Despite the larger compu- 

tational burden of the calculation for fennionic loops (the entire project required about 300 

- 500 CPU days on the Fermilab lattice QCD cluster), sufficiently accurate results were ob- 

tained for the improvement coefficients at small quark masses, of relevance to state-of-the 
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art simulations by the MILC collaboration. 

Finally, it was observed that the quark loop contributions to the improvement coeffi- 

cients are significant if there are three flavors of sea quark present. These contributions 

can be responsible for the large scaling violations observed in the static quark potential. 

Furthermore, now we have a complete one-loop improved lattice gauge action at our dis- 

posal. The action should prove to be useful in future high precision un-quenched lattice 

simulations. 
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