
Querying Cyclic Databases in Natural Language

Gary W. Hall

B.A. Simon Fraser University, Burnaby

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUlIIEMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Gary W. Hall 1986

SIMON FRASER UNIVERSITY

September 1986

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author

Approval

Name: Gary W. Hall

Degree: Master of Science

Title of Thesis: Querying Cyclic Databases in Natural Language

Examining Committee:
Chairperson: Dr. Joseph Peters

-
Dr. Nick Cercone
Senior. Supervisor

~ X s h u n (dug
Senior Supervisor

- .
Dr. Arthur L. Liestman

August 15th, 1986

Date Approved

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser University the r i g h t t o lend

my thesis, proJect o r extended essay (the t i t l e o f which i s shown below)

t o users of the Simon Fraser Univers i ty Llbrary, and t o make p a r t i a l o r

s ing le copies only f o r such users o r i n response t o a request from the

l i b r a r y o f any other un ivers i ty , o r other educational I n s t i t u t i o n , on

i t s own behalf o r f o r one of i t s users. I fu r ther agree t h a t permission

f o r mu l t i p l e copying of t h l s work f o r scholar ly purposes may be granted

by me o r the Dean of Graduate Studies. I t i s understood t h a t copying

o r pub l l ca t ion o f t h i s work f o r f inanc ia l gain sha l l not be allowed

without my wr i t t en permission.

T i t l e o f Thes i s/Project/Extended Essay

Author:

(sigLnature)

(date)

Abstract

Knowledge of the logical structure of a computer database is necessary for efficient

access to information in the database. It is unlikely that naive users of these systems

would possess such knowledge. Thus, providing access to database systems to

relatively unsophisticated users requires that "logical data independence1' be incorporated

into database systems, that is, such systems must be able to interpret queries which

do not completely specify the access path to the desired data. The system must solve

the "Multiple Access Path Problem" (MAPP), choosing the correct access path from a

number of possible candidate paths, in order to provide logical data independence.

Several systems which use highly ambiguous formal query languages make

unrealistically restrictive assumptions about the database in order to solve the MAPP.

Accessing database information through natural language queries is a promising

approach to logical data independence. Research into natural language interface systems

indicates that syntactic and semantic analysis of natural language queries often

provides an incomplete specification of the access paths to the requested data.

Sections of the path must be filled in by the database system. Current natural

language interfaces to databases are able to solve this constrained MAPP only for

some acyclic databases. Further customization of the system to the application is not

a desirable solution to this problem because the amount of customization required for

practical applications is too great.

A method is provided to

interfaces to cyclic databases.

solve the MAPP in the context of natural language

This method avoids the restrictive assumptions of the

formal systems without requiring an unreasonable customization effort. We show

that the access paths which are solutions to the constrained MAPPs that occur with

natural language interfaces have a characteristic semantic structure. A heuristic

method is developed which makes reasonable guesses of correct access paths based on

this characteristic structure. A representation of the semantic structure of the

database is presented and an algorithm is provided to map an incomplete specification

of an access path into this database representation and derive a complete

representation of the path.

Acknowledgements

I would like to thank my wife. Margarita Berrios, for her love and inspiration

which make all things possible for me. In addition. I would like to thank my two

senior supervisors. Dr. Nick Cercone and Dr. WoShun Luk, for their generosity and

patience, Dr. Arthur ~iestman, who pointed out a number of problems in the work

and helped find solutions to them, and Dr. James Delgrande, for his careful reading

and many helpful suggestions. I am also grateful to Dr. Stanley Petrick of the

Thomas J. Watson Research Laboratory, who took the time to personally answer a

number of inquiries and supplied a great deal of material about the TQA project. I

- would like to acknowledge the financial support of the School of Computer Science

and the Senate Committee on Scholarships. Awards and Bursaries of Simon Fraser

University, and of the Natural Sciences and Engineering Research Council of Canada.

Approval

Table of Contents

Abstract
Acknowledgements
Table of Contents
List of Figures
1. Introduction

1.1. Motivation
1.2. The Task

2. The Multiple Access Path Problem
2.1. Defining the Problem

2.1.1. Data Manipulation Languages
2.1.2. Data Retrieval
2.1.3. Logical Data Inderendence
2.1.4. The UNIVERSITY Database
2.1.5. Natural Join Graphs '
2.1.6. The Problem

2.2. The Minimum Connection Strategy
2.2.1. The Strategy
2.2.2. Acyclic vs Cyclic Databases

2.3. Previous Approaches to Solving the MAPP

3. Natural Language Interfaces and the M4PP
3.1. Introduction to Natural Language Interfaces

3.1.1. Basic Natural Language Interface Structure
3.1.2. Customization and Portability
3.1.3. Logical Form

3.2. The TQA System
3.2.1. Description of the System
3.2.2. Structure Verbs and Database Relations
3.2.3. Structure Verbs and Simple Natural Language Predicates
3.2.4. Performance of TQA

3.3. Characterizing HumadMachine Discourse
3.3.1. Propositional Acts and the Principle of Identification
3.3.2. Context of HumadMachine Discourse

4. The
4.1.
4.2.

Semantics of Attribute Relationships
Basic Relational Database Semantics
Attributes within a Base Relation
4.2.1. Predicative Role
4.2.2. Classificatory Role
4.2.3. The Co-dependency Relationship
Attributes from Different Base Relations
4.3.1. Joining on a Key
4.3.2. Joining on Non-key Attributes
4.3.3. The Co-incidental Relationship

5. Choosing the Correct Access Path
5.1. The Dependency and Key Join Graphs Defined
5.2. Assumptions

5.2.1. The Fourth Normal Form/Single Candidate Key Assumption
5.2.2. The Unique Key Name Assumption
5.2.3. The Surrogate Key Assumption

5.3. The Minimum Felicitous Path Strategy

6. Observations and Future Research
6.1. Using Lexical Information to Disambiguate Verbs
6.2. Managing Multivalued Co-dependencies

6.2.1. Multivalued Co-dependencies
6.2.2. Multivalued Co-dependencies and Natural Language
6.2.3. Strong Multivalued Co-dependencies
6.2.4. Representing Strong Multivalued Co-dependencies

6.3. Multiple Candidate Keys
6.4. Generating Natural Language

7. Conclusions
Appendix A.

A. 1. Database Basics
A.2. Relational Databases

A.2.1.
A.2.2.
A.2.3.
A.2.4.
A.2.5.
A.2.6.
A.2.7.

References

Intuitions
Relations
Keys
Operations
Functional Dependencies
Multivalued Dependencies
Normal Forms

vii

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figwe 3-8:
Figure 3-9:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 4-10:
Figure 4- 1 1:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:

The COURSEGRADE Database Scheme
The UNIVERSITY DB Scheme
The UNIVERSITY DB NJ-graph
The SIMPLEK DB Scheme
The SIMPLE/U DB NJ-graph
Possible Paths for Query (2.1)
The SIMPLE/U DB Join Tree
Minimum Paths for Query (2.2)
Minimal Structure of a Natural Language Interface
Organization of the TQA Natural Language Processor
Query Surface Structure (from (Johnson, 1984))
Structure with Feature Information Added
Canonical Form (from (Johnson. 1984))
Example Database Schema
Example Query Structure (from (Petrick, 1984))
Canonical F ~ r m correspcndixg to a Base Relatioil
Logical Form from Fig 3-7
Dependency Diagram for R = {A_. B}
Co-dependency of CNAME and FAC#

Semantic Connections Between Relations
Co-dependency of CNAME and GRADE

Co-dependency of DEPT and GRADE

Co-dependency with three Dependents
Complex Co-dependency
Co-dependency of UNITS and FAC#

Relations Joined on Non-key Attribute
The Co-incidental Relationship
Dependency Diagram for R1WR2MR,

The UNIVERSITY Dependency and Key Join Graphs
Dependency Graph Before Surrogate Added
Dependency Graph After Surrogate Added
Dependency Graph After ASSIGNID Added
Co-incidental Relationship in a Key Join Graph
Virtual Relation Clause Example
Key Join Graph with Target Nodes Added
Candidate Preliminary Trees
Final Tree

. . .
Vlll

Figure 5-10:
Figure 5-1 1:
Figure 5-12
Figure 5-13:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 8-1:
Figure A-2
Figure A-3:
Figure A-4:

Minimum Paths for Query ((5.1))
Logical Form equivalent to Query ((5.1))
Tree for Logical Form in Figure 5-11
Translation of Tree in Figure 5-12

Canonical Multivalued Co-dependency
Multivalued Co-dependencies in the GRADSCHOOL
GRADSCHOOL Key Join Graph
Modified GRADSCHOOL Dependency Graph
The PARTSUPPLIER Database
Examples of Database Operations
Example of Multivalued Dependency
Examples of 4NF Relations

83
8 3
84
86
91

Database 93
99
101
107
11 1
115
116

Chapter 1

Introduction

1.1. Motivation

In recent years mdch work has been done designing and implementing natural

language interfaces (NLIs) to databases (DBs). The motivation behind this work has

been twofold. Database researchers have long tried to make databases accessible to

users who are naive about computers in general and databases in particular. Creating

database systems that understand natural language (NL) is one approach to increasing

- accessibility for unsophisticated users. Researchers into the problem of Natural

Language Understanding (NLU) recognized that narrowing the domain in which natural

language discourse takes place makes the problem much more tractable. Thus natural

language researchers have studied and built natural language interfaces to databases
-

which typically represent small, well-defined domains.

Recent research into databases focuses on the relational model (Codd. 1970). which

is easier to use than the other major models of database design - the network and

hierarchical models (Ullman. 1982a). One area of research into relational databases

.which is of particular relevance to the problem of creating natural language interfaces

is the query inference problem. Simply stated, the query inference problem is the

problem of translating an ambiguous query, expressed in some query language (QL)

which permits such queries, into an unambiguous representation which can be used to

manipulate the database (Wald and Sorenson. 1984). The query language which has

received the most attention in this regard is one which allows queries to be

formulated without explicit mention of every base relation and join1 required to

produce the correct response. This type of query language may be described as an

implicit tuple calculus (ITC). With ITC queries there is usually a number of different

possible ways to combine the attributes, relations and/or joins which are explicitly

mentioned in the query. Choosing the correct one from among these alternative

"paths" through the database is known as the Multiple Access Path Problem (MAPP).

Two different approaches to the solution of this problem in the context of ITC

systems are described in (Ullman. 1982a) and (Wald and Sorenson. 1984).

The implications of this work on the MAPP for natural language interface research

seem obvious. Natural languages are notoriously ambiguous and methods to resolve

ambiguity in database queries can relate to natural language queries to databases. A

great deal of research has been done to resolve ambiguity of natural language

statements via syntactic analysis and semantic interpretation. See (Barr and

Feigenbaum. 1981) for an overview of computational approaches. Natural language

queries to databases must undergo such analysis and interpretation before they can be

expressed in a logical form (LF) containing the names of attributes, attribute values

and relations similar to the form of ITC queries. The question naturally arises: how

' ~ a s e relations are the basic data structures of relational databases and join is an operation which
combines these basic structures in order to relate the data in one base relation to the data in other base
relations. See Appendix A for a presentation of the terms and basic theory of relational data bases.

much ambiguity is left to resolve after natural language queries have been translated

to such a logical form? In particular, it is important to discover to what extent the

MAPP is present when natural language logical forms are to be used to access a

, database. The richer semantics of natural language in comparison to ITC suggests that

in general, given effective syntactic analysis and semantic interpretation, natural

language logical forms will be less ambiguous than ITC queries. If this is indeed the

case, the methods used to resolve the MAPP for ITC queries may not be appropriate

for natural language queries.

1.2. The Task

We consider the extent to which the MAPP arises in the context of natural language

interfaces and come to a decision on the best method for its solution. The problem

of choosing from among alternate paths becomes significantly more difficult when the
-

database in question is cyclic.

To assess the extent to which the MAPP itself arises in natural language queries it

is necessary to analyze how deficiencies in data6ase queries lead to the MAPP and

assess to what extent these deficiencies will appear in natural language logical forms.

Data from current natural language interface systems, for example, the

Transformational Query Answering (TQA) system (Petrick, 1984). which have been in

use in practical applications, will be helpful in making this assessment of the natural

language logical form. Analyzing the nature of the interaction between a human user

and a natural language interface system can help explain such data and lead to

generalizations which should apply to other natural language interface systems. By

comparing the humadmachine interaction with humadhuman linguistic interaction, for

which there exists a great deal of analysis from philosophy of language and

linguistics, progress toward a suitable understanding may be made.

To decide on the best methods for resolving the MAPP in the context of natural

language interface systems, current approaches to the problem in' ITC systems are

examined. Alternative approaches need to be designed and evaluated. A comparison

between the various alternatives can thus be made.

Chapter 2

The Multiple Access Path Problem

2.1. Defining the Problem

2.1.1. Data Manipulation Languages

Each relational database management system (DBMS) provides a language in which

.users may formulate instructions to the system in order to manipulate the database.

To some extent these data mnipdation languages (DMLs) are unique to each system.

The subset of a DML which is used to retrieve data is called a query language.

- There are three dxtract query languages which are equivdent iG each oiher iii

expressive power and which represent the minimum capability of any reasonable

relational database query language (Codd. 1972). These query languages include: the

relational dgebra, the tuple relational calculus, and the. domain relat iod calculus. In

practice query languages are usually blends and/or extensions of one or more of these

abstract languages.

A DML allows the user to retrieve, insert or modify data by creating expressions in

terms of the conceptual database; thus DMLs provide physical data independence.

However, to be 'correctly formulated, query expressions in each of the abstract.

languages must be logically complete, that is, they must provide a full, unambiguous

account of a correct process for retrieving the data, expressed in terms of the

conceptual (logical) database.
5

2.1.2. Data Retrieval

The basic strategy for data retrieval in a relational database is to associate, via a

natural join, the relations which contain the attributes for which values are known

and those which contain the attributes whose values are desired, thus making

accessible desired unknown values which correspond to known values. If two

relations, R and S, are not connected. (do not share an attribute), they can only be

associated by a natural join which includes other relations such that there is a series

of connections which form a path between them.

Figure 2-1: The COURSEGRADE Database Scheme

For example, the database scheme presented in Figure 2-1 is composed of three

relational schemes. Following standard practice, we underline the primary key in a

relation. The relations SL and IL do not share any attributes. Although SL and IL

could be joined on the attributes SNAME and INAME. (to find a student who was

taught by an instructor of the same name, for example), they can only be associated

by a natural join if the relation CL is included in the operation. Part of any

logically complete specification of a process to retrieve data from a relational database

must include the naming of those relations which are on the path that connects the

relations containing the known and unknown values. In addition, the formulator of a

query must specify which attributes form the connections between the relations which

are to participate in the natural join. Let the precise specification of the relations

and connections which are required to answer a query Q be called the access @h for

Q. Suppose a user of the COURSEGRADE database wished to know the names of the

students of Professor Jones. "Jones" is a value of the attribute INAME in the relation

IL which constrains the values of the attribute SNAME of the relation SL which must

be returned in the answer. A specification of the access path to associate SL and IL

must include references to the relation CL, the connection between SL and CL (the

attribute STUD#), and the connection between CL and IL [the attribute CLASS). Thus

a user who wishes to retrieve data using the DML must have an intimate knowledge

of the conceptual database (or that part of it which comprises his particular user

view) as well as the syntax of the DML and the operations that the DML describes.

2.1.3. Logical Data Independence

A goal of current research into relational DBMS's is to create systems which obviate

the need for users to know the logical structure of the conceptual database. Such
-

systems would thus provide logical data independence. Two proposals which free

users from knowing connections between relations are detailed in (~ l l m a n . 1982a) and

(Wald and Sorenson. 1984). Both contain correspondingly simplified query languages

which, nevertheless, require the user to know attribute and/or relation names and

which have a somewhat rigid and unnatural syntax. For example, the query in the

section above regarding the names of the students of Professor Jones would be

expressed in the query language of System/U (Ullman. 1982a) as follows.

R e t r i e v e h ~ ~ ~ ~) where FNAME = "Jones" (2.1)

The system must discover the access path to retrieve the information that the user

desires; all the user has specified is the type of attribute values which are to make

up the answer and the value of the attribute which constrains the answer.

Discovering the access path for ambiguous queries of this type is known as the query

inference problem (Wald and Sorenson. 1984). The query inference problem is to

translate an ambiguous representation of a query into a correct unambiguous

representation.

2.1.4. The UNIVERSITY Database

A simple university database is now described. The data for the UNIVERSITY

database can be defined informally as follows.

1. Each student is represented uniquely by a student number. Each student
number uniquely determines the name, major, minor and sex of the
student it represents.

2. Each faculty member is represented by a faculty number. Each faculty
number uniquely determines the name and sex of the faculty member it
represents.

3. Courses are represented by course names. Each course is offered by o n 3
one department. Courses are .worth credit of a specific number of units.

4. Classes are represented by unique class identifier, for example, m100862sl
is the name for the first section of the Math 100 class offered in the
second term of 1986. Each class has one instructor (faculty member) and
is one of a possible number of offerings of a course -during one term.

5. Students attend many classes: classes contain many students. For each
student in each class there is a final grade.

6. Departments employ many faculty members: faculty members are
appointed to one or more departments.

The formal definition of the relation schemes in the database is given in Figure 2-2.

STUDENT = {STUD#, SNAME, MAJOR, MINOR, SSEX]

FACULTY = {FAC#, FNAME, FSEX)

COURSE = {CNAME, DEPT, UNITS}

CLASS = {m, CNAME, TERM, FAC#)

GRADES = {CLID, STUD#, GRADE)

APPOINT = {PAC#, DEPT)

Figure 2-2: The UNIVERSITY DB Scheme

2.1.5. Natural Join Graphs

We introduce a graphical representation of the connections in a database, called a

netural join graph (NJ-graph), which is useful for plotting access paths in the

database. Let R = {R1.R2, Rp) be a database scheme over U. The complete

ilttersection graph for R is the complete undirected graph on nodes Rl.R2. ..., Rp with

edge labels chosen from the subsets of U. For an edge e = (Ri . R,). 1 6 i < j 6 p,

the label of e. denoted L(e) , is Ri(IRj. A NJ-graph for R is the complete intersection

-
graph for B with asy edge e removed .jv.h€ie L(E) = 0.

An NJ-graph is a graph (V.E) where each vertex in V represents a unique relation

in the corresponding database. R, and every relation in R is represented by exactly

one vertex in V. Each vertex in V is labelled with the name of its corresponding

relation. For each pair of relations in R which share one or more attributes there is

an edge between the corresponding vertices in the NJ-graph. This edge is labelled

with the combined names of its corresponding attributes. Thus every natural join

permitted by the database structure is represented by a unique edge in the NJ-graph.

including its adjoining vertices.

Figure 2-3 depicts the NJ-graph for the UNIVERSITY database scheme given in

Figure 2-2. The nodes in the graph represent the relations in the database. Note

that the relation names have been shortened for convenience in labelling the nodes.

The edges represent the shared attributes; for example, the STUDENT (ST) relation

and the GRADES (GR) relation share the STUD# attribute and the ST and GR nodes

are linked by an edge labelled "stud#".

fac# dedt

Figure 2-3: The UNIVERSITY DB NJ-graph

2.1.6. The Problem

It is easy to see that for every path in the NJ-graph there is a corresponding access -

path in the database, in which the relations corresponding to the nodes in the path

are joined on the attributes corresponding to the edges in the path. We will simply

use the term "path" if there is no need to distinguish between the type of path under

discussion. Since lin NJ-graph is an undirected graph and edges may be traversed

more than once in a path through an undirected graph.

infinite number of paths between any two nodes. Thus

of access paths connecting any set of relations in

in a NJ-graph there are an

there are an infinite number

the corresponding database.

Therefore, given an ambiguous query which simply specifies, either directly or

indirectly, a proper subset of the relations in the access path for that query, the

number of candidate access paths is theoretically infinite. How to choose the access

path that will produce the correct answer is the Multiple Access Path Problem

(MAPP).

2.2. The Minimum Connection Strategy

The relational scheme for the SIMPLE/U database is given in Figure 2-4. The

SIMPLE/U database is a sliglitly simplified UNIVERSITY database with a few

attributes and one relation omitted.

STUDENT = {STUD#,SNAME}

FACULTY = {FAC#,FNAME)

CLASS = {=,FAC#)

GRADES = {CLID,STUD#,GRADE}

APPOINT = {FAC#,DEPT}

Figure 2-4: The SIMPLE/U DB Scheme

Figure 2-5 represents the NJ-graph for the SIMPLE/U database.

Figure 2-5: The SIMPLE/U DB NJ-graph

2.2.1. The Strategy

Recall Query (2.1), repeated below for convenience, about the names of Professor

Jones' students, and suppose that (2.1) was to be applied to the SIMPLE/U database.

Retrieveb~AM~) where FNAME = 'Jonesn

Figure 2-6 illustrates three of the infinite number of possible paths through the

SIMPLE/U NJ-graph that include the STUDEhT and FACULTY relations indicated by

the attributes SN.AME and FNAME contained in the query. A possible interpretation is

included with each path.

Which students are taught by professors named Jones?

(a)

Who is taught by appointed professors named Jones?

(b)

Who is taught by professors who teach the classes Jones teaches?

(c)

Figure 2-6: Possible Paths for Query (2.1)

The MAPP for Query (2.1) is to decide which of these or the any number of other

possible interpretations matches the question that the user had in mind when she

13

I formulated the query. There is no way of determining which interpretation is correct

i without asking the user directly. A reasonable guess, based on the structure of the
b .

database and the information available in the input query, is desired. One strategy

for making such a reasonable guess is to choose the path with the minimum

connection (Ullman. 1982a). that is, the path requiring as few or fewer joins as any

candidate path. Let us call this strategy the Minimum Connection Strategy (MCS).

The MCS is based on two assumptions:

1. Queries are more frequently simple, direct, and short rather than long.
indirect, and circuitous.

2. Removing dangling tuples from the answer is normally not de~irable .~

Let path P I , connecting a set of relations R in a database, be such that there is no

other path P2 connecting the relations in R that has fewer joins than PI. This path

- PI is c d k d a mz'ntmzrm ~ + h for R. Path (a) in Figure 2-6 is the minimum path for

the set {sTUDENT.FACULTY} through the SIMPLE/U database and will therefore be

the path that is chosen by the MCS in response to Query (2.1). Path (a) is

obviously the least circuituous of the three paths and represents the least complex of

the queries, where complexity is measured in terms of the grammatical form of the

sentences expressing the queries.

2~ dungling tuple is a tuple in a relation R which contains a value v for attribute A, while there exists
another relation S which has A as one of its attributes but does not contain v as a value for A in any of
its tuples. The second tuple in R2 below is dangling. Note that there is not a tuple in the join of R1

- and R2 corresponding to the dangling tuple in R2.

The following discussion explains the intuition behind the second assumption.

Suppose the university allowed professors not employed by some department to teach

- visiting professors for example. In this case, there could be dangling tuples in the

FACULTY relation. Path (b) would eliminate these tuples from the answer. This is

not normally desirable because the query indicates an interest in students taught by

one or more professors named Jones, not whether the professor is a member of any

department.

Thus, unless a relation is mentioned in a query or is on a minimum path which

connects the relations which are mentioned, our assumption is that it does not belong

in the query. ,

2.2.2. Acyclic vs Cyclic Databases

- The MAPP is a more difficult problem to solve for a certah class of databases

which are known as cyclic databases. After presenting a definition of acyclicity and

cyclicity we will discuss how well the MCS performs on the MAPP for these two

classes.

There are a number of different characterizations of acyclic database schemes due to

various authors (Maier, 1983). We present the one that is most intuitive from the

point of view of the NJ-graph.

Definition 1: Let R = {R,. R2. Rp) be a database scheme over the set

of attributes U. Let G be a subgraph of the complete intersection graph for
R and let A E U. A path el, el. ek from node Ri to node Rj in G is an
A-path if A E L(ei) for all 1 6 i 6 k. It follows that A must be in every
node R along the A-path. G is a join graph if, for every pair of nodes Ri.
Rj in G. if A E (RinRj) then there is an A-path from Ri to R,. A join tree

is a join graph that is a tree.

15

A database scheme R is acyclic iff it has a join tree. A database with an acyclic

database scheme is an acyclic database. A cyclic database scheme has no join tree. A

database with a cyclic database scheme is a cyclic ddabase.

The SIMPLE/U database scheme is acyclic. Figure 2-7 represents the join tree for

the SIMPLE/U database scheme. '

otud9 cli

Figure 2-7: 'The SIMPLE/U DB Join Tree

A cursory examination of the NJ-graph in Figure 2-3 confirms that there is no join

tree for the UNIVERSITY database scheme; therefore this scheme is cyclic.

The MCS is able to find an unique reasonable path connecting a set of attributes

when the database scheme is acyclic but is not able to do so if the scheme is cyclic

(Ullman. 1982a). Consider the following query to the cyclic UNIVERSITY database.

Retrieve (FNAME) where UNITs=3 (2.2)

There are two minimum paths connecting the attributes mentioned in this query.

shown with their interpretations in Figure 2-8.

Who teaches 3 credit courses?

(a>

Who works in depts that offer 3 credit courses?

(t$

Figure 2-8: Minimum Paths for Query (2.2)

Although the latter English query is more complex grammatically than is the

former, this is not reflected in the number of connections in their corresponding

paths. Clearly the two paths may lead to different results. Thus the MCS alone
-

fails to provide a unique reasonable guess of the correct access path for Query (2.2).

2.3. Previous Approaches to Solving the MAPP

In an early work on the MAPP problem. (Carlson & Kaplan. 1976). three

approaches to its solution were provided; a) design the DB so that all access paths are

identical, b) rename attributes until ambiguity is removed, and c) query the user.

There are problems with each of the approaches. The first approach is that taken by

those who make the universal relation assumption discussed below. The second

approach, attribute ,renaming, can lead to a proliferation of attribute names which

obviates logical data independence (Kent. 1981). The third approach must be part of

any natural language interface system since dialogue with the user is required to

verify that the correct interpretation of the query has been made, at least in those

cases where there are closely competing candidate paths. However, the most likely

candidates must be computed automatically if the user is not to be overburdened.

Thus user dialogue cannot be a total solution.

A number of authors base solutions to the MAPP on one or more of the various

universal relation (UR) assumptions (Osborn. 1979. Ullman. 1982a. Sagiv. 1981). The

implementation of one of these solutions. known as System/U, has been described in

(Ullman, 1982a). An overview of the: universal relation assumptions is given in

(Ullman, 1982b). All of these assumptions have been called into question (Atzeni

and Parker. 1982). The weakest of the universal relation assumptions is called the

Universal Relation Scheme Assumption (URSA). The URSA holds that sufficient

renaming of attributes has occurred that a unique relationship exists among any set of

attributes (Ullman. 1982b). All of the universal relation approaches cited above make

the 'U'RSA.

We believe that even the URSA, is too restrictive. Consider the UNIVERSITY

database scheme of -Figure 2-2. Within this scheme there are two distinct

relationships represented by {FAC#, DEPT). In one, faculty are the appointees of

departments; in the other, faculty teach in departments. While one of these attributes

could be renamed to "correct" the situation, this does not seem reasonable in general,

due to the proliferation of attribute names. Also, in the context of a natural

language interface users do not know any database attribute names. A natural

language question from such a user may be unclear as to the role of a particular

attribute set. For example, the question

"Give me the names of the Math professors"

gives no indication of which of the relationships between faculty members and

departments is involved. In cases such as this, all possibilities must be considered

and attribute renaming would be to no avail.

Another approach to the solution of the MAPP is to use the Entity-Relationship

(ER) model (Zhang. 1983. Wald and Sorenson, 1984). This approach avoids the

proliferation of attribute names because: the model represents different relationships

between attributes by different paths in the database. The solution proposed by

Wald and Sorenson has been implemented in a system called Verdi. It provides an

efficient solution to the MAPP only for a subset of database schemes.

All of the previous approaches assume or use an interface that requires the user to
-

input the names and values of the attributes as they appear in the database using a

query language with a rigid syntax. In Chapter 3 we examine how the MAPP

presents itself in the context of a natural language interface. In Chapter 4 we

analyze the relationship between a certain class of natural language predicates and

virtual relations in databases. with an eye towards constraining the MAPP in the

context of natural language interface systems in order to make the MAPP more

tractable. In Chapter 5 the results from the analysis in Chapter 4 are used to

develop an approach to the MAPP in the context of natural language interfaces which

avoids the restrictive assumptions of the universal relation approaches and is more
I

1 broadly applicable than that of the ER approaches.
I

Chapter 3

Natural Language Interfaces and the MAPP

We begin with brief review of some issues relevant to the topic of the MAPP in

natural language interfaces. We examine, in depth, the Transformational Question

Answering (TQA) System (Petrick. 1984). a state-of-the-art example of a natural

language interface to a relational database, to determine how the MAPP presents itself

in such a system. We then discuss whether the TQA methods and results are

generalizable to other natural language interfaces.

- 3.1. Introduction to Natural Language Interfaces

The systems mentioned in Chapter 2 are designed to provide users of databases a

measure of logical data independence. Users of these systems are not required to

know the connections between relations and the burden of computing access paths is

placed onto the system. Users are typically required to know database attribute

names and values as well as the syntax of the query language used to query the

system. A natural language interface to a database would remove these remaining

requirements. Users of a natural language interface could specify the information

they desire in their own terms in their own language. For a discussion of the

advantages of natural language interfaces see (Pylyshyn and Kittredge. 1985).

20

3.1 .I. Basic Natural Language Interface Structure

Any database system that is able to respond satisfactorily to natural language

queries must be able to understand those queries at some level. Basic to

understanding of natural language sentences is an understanding of the words that

make up the language. All natural language interface systems must make use of a

lexicon containing some subset of the words in the natural language. Attached to

each word in the lexicon is information used by the system to assess its meaning

when encountered in the input. Some of the information attached to each word is

grammatical. For example. "teach" may be identified as a transitive verb, which

requires (or prefers) faculty members as subjects and classes as objects. Some of the

information attached to each word is application-specific. For example, the entry for

"teacher" in the lexicon of a natural language interface system which interfaces the

UNIVERSITY database will include the idorna t ion that it refers to the FAC*

attribute. The lexical information is used to create a structure which represents the

meaning of the input sentences to the system. This process involves syntactic analysis

of the grammatical relationships among the words and semantic analysis of the

meaning relationships among the words. The meaning structure is then converted into

a query language expression. Figure 3-1. adapted from (Damerau. 1985). shows

minimal structure for a natural language interface to a database. The subsystem that

reads the lexical input looks up each word read in the lexicon and attaches to each

input word the relevant information discovered in its lexical entry. Then the input

Which has been augmented by the lexical information is translated into the query

language of the DBMS.

NL input

v
NL to Query
Language
Conversion

v
Query Language
Expression

Lexicon Reader and
Lexicon Lookup

Figure 3-1: Minimal Structure of a Natural Language Interface

a

e

- 3.1.2. Customization and Portability

The process of building that part of the lexicon which is specific to the desired

application and fine-tuning the translation subsystem to the specific requirements of

that application is called mstomization. Customization is required by all natural

language interface systems. Customization requirements can make a natural language

I
I interface system impractical or even impossible for many applications (Petrick. 1984).

Thus it is important that these requirements be carefully considered when designing a

natural language interface system. Recently much effort has been directed towards

devising systems which are portable from one application to another (Hafner and

Godden. 1985. Thompson and Thompson, 1985. Damerau. 1985. Martin and Appelt.

1985. Ballard and Lusth. 1985). Minimizing customization requirements makes

systems more transportable. Since portable systems require less effort to customize

they are less expensive to set up for any given application and therefore are more

marketable.

Building the application specific lexicon is one of the major tasks in the

customization process. Minimizing thi9 aspect of customization means minimizing the

amount and detail of the information that is attached to each entry. With less

information available from the lexicon, a greater burden is placed on the translation

subsystem. In Section 3.2 we discuss how reducing the requirements for

customization of the lexicon resulted in the introduction of the MAPP to the TQA

system.

3.1.3. Logical Form

- Typically the interpretation of a natural language qvest,ion proceeds t h m ~ g- h 8 series

of transformations. At the final stage before formulation of the query in the

database query language, all of the relevant information extractible from the natural

language input is expressed in a structure (possibly) using database terms. This final- .

structure, although often referred to as a logical form3 is not capable, in current

working systems, of being used for making inferences. If some information about the

necessary relations and connections required to extract the desired data is missing

from this final form, the part of the system which is to formulate the database

- query is faced with the MAPP. In the next section we examine the problem as it

appears in the TQA system in order to establish the nature of the MAPP in the

context of natural language interfaces.

3.2. The TQA System

TQA uses its knowledge of English syntax and semantics to parse natural language

input into composite substructures. These substructures represent base and virtual

relations in the database. The system is powerful enough to deduce the connections

between the substructures and, thereby, the connections needed to join their

corresponding relations. The MAPP is thus reduced to those substructures

corresponding to virtual relations. In this section we examine how TQA works; in

the next section we discuss how TQA's success results from certain principles

underlying natural language discourse which make TQA's methods and results

generalizable. In Chapter 4 we examine the semantic relationship of the composite

substructures of the natural language queries and their corresponding virtual relations

in the database. This semantic connection leads to a useful solution to the MAPPs

faced when translating substructures corresponding to virtual relations into access

paths which yield those virtual relations (Chapter 5).

3.2.1. Description of the System

TQA is one of several state-of-the-art natural language interface systems designed to

interface with a relational database. The DBMS to which TQA interfaces is the IBM

product SQL/DS. TQA has been under development at the IBM Thomas J. Watson

Research Center since the early 197OSs, when it was known as REQUEST (Petrick,

1973).

TQA consists of four parts:

1. A Customization Program which can interact with a database expert and
inspect the database (Damerau. 1985).

2.

3.

4.

Since

most

A Natural Language Processor which translates English questions to
database queries (Johnson. 1984).

A Query Paraphrase Generator which validates system interpretations by
feeding a English paraphrase of the translated query back to the user.

An Answer Processor which formats the response.

we are primarily concerned with the MAPP in query translation we consider

closely the natural language processor and those aspects of the customization

program relevant to this problem. However, we consider validation of interpretations

to be an important step in the generation of accurate responses to natural language

questions.

Figure 3-2. from (Johnson. 1984), is a representation of the natural language

processor. The proprocessor reads the input sentence and, using the lexicon, provides

a list of lists of lexical entries, denoted here as "initial stringsw. The initial strings

are simplified by the transformational parser, which amalgamates certain local lexical

entries. For example. the phrase "June 10. 1986" is transformed into a noun. The

modified strings are parsed by the context-free parser to produce surface structures.

The surface structure shown in Figure 3-3 represents the string

"What suppliers are located in Paris?"

Feature information from the lexicon is then attached to the surface structure. Figure

3-4 shows the structure of Figure 3-3 after the addition of feature information. This

structure is then parsed by the transformational parser to produce zero or more

canonical forms. The parser has rejected the surface structure as ill-formed when

zero canonical forms produced. More than one canonical form indicates some sort of

ambiguity. The canonical form for the structure illustrated in Figure 3-3 is depicted

input

1
Preprocessor Lexicon

Transformational
Parser String Transformations

modifieh strings

Surf ace Parser Context-free Grammar

I
surface strings
L
I Transformational Transformations

Parser

canonidal forms

Translator Attribute Grammar

logicaf forms
V

' Logica! Form to
1

I SQL Translator b-' DB Structure Tables

v
SQL expressions

Figure 3-2: Organization of the TQA Natural Language Processor

in Figure 3-5. The canonical forms then undergo semantic translation producing

logical forms which are then converted into expressions in SQL. the SQL/DS query

language.

Figure 3-6 illustrates the schema of the PARTS database for which TQA produced

the examples considered. The feature information attached to the abstract verb in

Figure 3-4 indicates that 'locate' takes either a supplier number subject and a locative

t
NOM

t
NOM

what NOM I

NOUN INDEX

supplier Paris

Figure 3-3: Query Surface Structure (from (Johnson. 1984))

argument city from the ZP table. The COLN feature attached to the NOUN in the

first NP substructure indicates that "supplieru corresponds to the column name SNO of

the ZS table. The +LOC feature of the second NP identifies it as a locative and the

feature information attached to the corresponding NOUN node indicates that "paris" is

a column value, either from the CITY column of the ZS table or the CITY column of

the ZP table. The subsequent parse of this structure uses the COLN information

attached to "supplier" to select the ZS alternative for "locate". This in turn restricts

the choice for "paris" to the ZS alternative, producing the canonical form of Figure.

3-5.

(ORF((=SU(SNO ZSN v NP NP (+LOC)
(=LOC(CITY ZS)))
((=SU(PNO ZP))
(=LOC(CITY ZP)))) 1 1

NOM

I
NOM

locate A (CITY ZS)

1
(=CQLN(ORA NOUN

what (CITY ZP)))
(+COLV) I

(=coLr\r NOUN
(SNO ZS))

1
supplier

INDEX

Paris

Figure 3-4: Structure with Feature Information Added

3.2.2. Structure Verbs and Database Relations

In general, a structure verb such as "locate" from the structure shown in Figure 3-3

corresponds to a vertical or base relation in the database. The feature information

attached to a structure verb consists of selectional restrictions which associate

grammatical roles governed by the verb such as subject, object, locative, and temporal.

with relatiodattribute names from the database. The elicitation of these selectional

restrictions comprises a significant part of the customization process (Johnson. 1984).

In fact, this aspect of the customization process is prohibitively difficult for a

linguistically naive database administrator (DBA) (Petrick, 1984). Therefore the

NOM NOM
t

locate

(+COLV)

J
(=COLN(CITY ZSN NOUN

a

what NOM

INDEX

supplier Paris

Figure 3-5: Canonical Form (from (Johnson. 1984))

ZS = {SNO, SNAME, STATUS, CITY}

ZP = {PNO, PNAME, COLOR, WEIGHT, CITY}

ZSP = ISNO, PNO, QTY)

Figure 3-6: Example Database Schema

creators of TQA changed the system to eliminate the need for some of the selectional

restrictions by making greater use of the COLN features which associate noun phrases

-with their corresponding relatiodattribute pairs. By eliminating some selectional

restrictions the MAPP was introduced into the TQA system.

Figure 3-7 is a representation of the query structure for the sentence

"What is the zone of the vacant parcels in subplanning area 410?11

Some detail which is irrelevant to our present discussion has been left out of the

representation.

DET NOM

zone x4 DET NOM

the NOM SIB

lot x8 S 1 S1

subplan-area 410 x8 luc 910 x8

Figure 3-7: Example Query Structure (from (Petrick. 1984))

Figure 3-8 shows the detail for the last S l substructure in the query structure.

Without the selectional restrictions attached to the (abstract) verb "luc* the system

V NP (=COLN NP (=COLN

I 1 (LuCLUCF))

luc 910

1 (JAcCNLUcF))

x8

Figure 3-8: Canonical Form corresponding to a Base Relation

must determine which base or virtual relation is indicated. TQA uses the fact that

the COLN feature for "910" indicates the LUCF relation and that one of the choices

in the COLN feature for "x8" also indicates the LUCF relation to decide that this

relation is the one in question. Note that this is an application of the Minimal

Connection Strategy (MCS) discussed in Chapter 2. The logical form produced from

the query structure depicted in Figure 3-7 is reproduced in Figure 3-9. Each S1

substructiire has been translated inJo a RELATiON clause in the iogicai form. Each

RELATION clause represents one base or virtual relation in the database. The

attribute list in each RELATION clause lists the attributes from the corresponding

relations which are involved in the query. Also part of the RELATION clause is a

list of attribute values and a list of the relational operators which relate the values

to the appropriate attributes. An attribute value may be a constant or a variable.

u For example, the final clause in Figure 3-9 represents LUC=910,1ACCN=X8 LUCF

. Shared attribute values indicate how the relations are to be joined to produce the

4 ~ e e Appendix A for an introduction to this notation for representing relational operations. The
expression here means "the relation consisting of the LUC-values and ~~ccsr-values projected from the relation
consisting of the tuples of the relation LUCF whose LUC-values are "910" and whose JACOJ-values are equal
to the value of X8."

(setx 'X4
'(setx 'X8

'(and
(RELATION 'ZONEF

'(ZONE JACCN)
'(X4 X8)
'(= =)

(RELATION 'GEOBASE*
'(SUBPLA JACCN)
'('410 X8)
'(= =))

(RELATION 'LUCF)
YLUC JACCN)
'('910 X8)
'(= =)>)>)>

Figure 3-9: Logical Form from Fig 3-7

access path for the entire query. In this case the JACCN-value "X8" is shared among

a11 the relations, indicating that the three relations are to be joined on this attribute.

Since the system is able to deduce how to join the relations represented by the S1

- substructures of the query structure, if every S1 substructure corresponds to a base

relation the MCS is sufficient to solve the MAPP for that particular query.

However, when one or more of the corresponding relations is a virtual relation

composed of more than one base relation, further heuristics are required. In the

logical form shown in Figure 3-9 GEOBASE* is a virtual relation. The SUBPLA

attribute is not contained in any of the three relations which contain the JACCN

attribute. TQA identifies the relations which make up the virtual relation by some

process (which was not made clear in the literature). That is, for each given

attribute the system decides which of the relations containing that attribute will be

included in the join to create the the virtual relation. Then TQA consults a table

compiled during customization from information supplied by the database

administrator to retrieve the path required to join these relations. Since TQA

presently requires that there be only one joinpath between two relations in the

database (Petrick. 1986). compiling this table is a trivial matter. With this restriction

in force, it is easy to see that the MCS will provide a unique minimum path between

any two attributes. This is most likely the method used to identify the base

relations which make up virtual relations.

The restriction to databases with only one access path between two relations results

in simple MAPPs solvable by the MCS. However, this restriction is unrealistic

(Petrick, 1986). With cyclic databases, the MCS will not be sufficient to resolve the

MAPP. Some further strategy is required and we propose one such strategy in

Chapter 5.

3.2.3. Structure Verbs and Simple Natural Language Predicates

TQA query structures consist of substructures composed of sentence 6 1) nodes

which dominate an abstract verb (V) followed by a sequence of noun phrases (NPs).

These simple structures are joined together to form -a complete sentence structure.

Abstract query structure verbs correspond to virtual and base relations in the

database and their NP arguments correspond to names and values of the attributes of

their associated relations (Petrick, 1984). On the other hand, abstract query structure

verbs correspond to natural language predicates (Johnson, 1984). The TQA parser

.maps natural language predicates into abstract verbs and then maps the verbs into

database relations.

They may be natural language verbs. The verb in the query. "Which suppliers are

located in Paris?", mapped to the abstract verb "locate". They may be simple nouns.

The noun "location" from 'which suppliers have their location in Paris?" would also

map to the abstract verb "locate". Sometimes the natural language predicates

corresponding to abstract verbs are simple phrases. The phrase "subplanning area"

from the land use query on page 29 is an example. Sometimes the predicate is

understood. In the phrase "vacant parcel" of the same query. "vacant" corresponds to

a value of the LUC (land use code) attribute, while "parcel" corresponds to the

attribute name JACCN which refers to lots. The predicate is implicit in the phrase.

Complex natural language predicates which are composed of more than one simple

natural language predicate are parsed by TQA into the respective components. In

Chapter 4 we argue that, since abstract query structure verbs correspond to

relationships among entities which can be named by these simple natural language

predicates, the database relations which they map to are constrained in ways which

help solve the inherent MAPPs.

3.2.4. Performance of TQA

TQA was tested over a period of two years at the City Hall of a New York State

municipality. It was used very successfully by municipal employees to access a land

use database. Queries from two time periods were collected by the system builders

and TQA's performance on them was analyzed. By the end of the test run. TQA

was correctly answering 80% of the queries submitted by experienced users, that is.

Users who had previously submitted more than 25 queries to the system. For

detailed results, see (Damerau, 1981). No training was provided to the users.

Subsequent to the test, improvements were made to TQA. In 1983 the collected

queries were rerun and this time TQA correctly answered 91.5% of the queries

submitted by experienced users. Many of the remaining 8.5% of the queries either

were unintelligible to humans or referenced concepts and/or data outside the scope of

the database (Petrick, 1984). The database which was used in the test was an acyclic

database. We show, in Chapter 5, how the capability of the TQA system can be

extended to cyclic databases.

It may be unwise to assume that TQA can achieve the same success that it had

with the land-use database with all applications, based on this one test run. The test

users may have been especially articulate and accomodating. Perhaps the application

itself promoted queries which are easy to interpret. In the remainder of this chapter

we argue that the successful performance of TQA during this one field test was not

-
an accident d w tc the nature of the app!ication or the 7-+--- a ~ u i e of the users. Thus.

given a method to interpret queries to cyclic databases, TQA or an equally powerful

system will be able to provide logical data independence for users in practical

situations.

3.3. Characterizing HurnadMachine Discourse

We have shown that TQA parses natural language sentences into their basic

substructures. The MAPP occurs at the level of these substructures. These basic

.substructures, because they cannot be further broken down, correspond to simple

natural language predications. We argue in Chapter 4 that these simple predications

refer to definite relationships between entities in the world. which are represented in

the database by certain types of relationships between attributes. However, simple

natural language predications can be indefinite and ambiguous. For example, does "the

classes associated with Prof ones" refer to the classes taught by Prof Jones, or to the

classes offered by the department in which she works, or to the classes taken by the

students she supervises? In this section, we argue that certain rules governing human

speech acts will also govern human discourse with natural language interfaces. Speech

acts have been the subject of extensive research by linguists, philosophers of language

and others. We apply the results of Searle (Searle, 1969). one of the &st prominent

speech act theorists, to explain why accurate evaluation of database queries can be

expected. The rules governing the speech acts of reference and predication require

that these acts be unambiguous to the hearer. We therefore conclude that the simple

predications in natural language queries will be unambiguous and refer to definite

relationships between entities in the world. We argue further that these same rules

that govern human reference and predication have conditioned people to adjust to the

frames of reference of their discourse partners and that they adjust in the same way

when their partners are computer systems. Therefore the predications appearing in

natural language queries tend to be ones which the systems can interpret.

3.3.1. Propositional Acts and the Principle of Identification

Among the different types of speech acts identified by Searle are propositional acts.

The propositional acts are acts of referring and predicating. These acts are committed

by speakers in the ,performance of various illocutionary acts. Illocutionary acts are

another type of speech act identified by Searle. Making a request and asking a

question are two illocutionary acts. The propositional acts committed during these

two illocutionary acts are the specification of a future action of the hearer and/or the

identification of the information desired by the speaker. Thus propositional acts are

made when querying a database in a natural language.

According to Searle, human speech is a rule-governed activity. The commission of

propositional acts is governed by rules, as is the commission of all speech acts. The

principle behind the rules governing propositional acts is the principle of identification.

: This principle holds that successful reference must contain enough information so that

the hearer can uniquely identify the referent in the context of the utterance, that is,

the reference must contain an identifying description. Since speakers are obligated by

the rules governing reference to include a description of the object referred to that

will allow the hearer to identify that object in the context of the discourse, it

follows that speaker will adjust to the frame of reference of the hearer. See
-

(Perrauit and Cohen, i981j for a discussion of the mutuality of accurate reference.

A speech act context provides information that, together with the utterance, makes

the propositional content of that act unambiguous. In t he following example dialogue

there are five (potential) actors: John has a sister and a classmate both of whom are

named Mary; Sue knows John's family but not his class; Fred is in John's class but

does not know his family; Joe is also in John's class but does know John's family;

Ann knows John but does not know anyone else in his class or his family.

X: Hi. John!
John: Hi, X!

X: What did you do last night?
John: I went to the movies.

X: Who did you go with?

3 7

Depending on whether X is Sue. Fred. Joe, or Ann. John's reference to his companion

of the previous evening is an identifying or non-identifying description of that person.

Sue recognizes John's sister. Fred recognizes John's classmate. Joe is confused between

the sister and the classmate, and Ann has no idea to whom John is referring.

Furthermore, in the same assertion (I), there is a successful reference to a particular

time (the previous night), another s&cessful reference to an individual (the speaker

John), and a predication of the objects referred to (go-to-the-movies), all of which

are provided by the discourse that preceded the assertion. If John is speaking with

Sue or Fred, all of the references in assertion (1) are successful. Therefore, if the

hearer is one of those two people, the assertion is successful. However, if the hearer

was either Joe or Ann. John broke the rule governing reference and the assertion does

not succeed.

- 3.3.2. Context of HumadMachine Discourse

The context of a speech act is partly defined by the common knowledge of the

speaker and the hearer. The knowledge of the rules governing speech acts is an

important part of this common knowledge. Knowledge may be common for different

reasons. Among these reasons are the fact that both speaker and hearer are human,

both belong to the same university, or both have participated in the same dialogue.

Much of the discourse between people who are unfamiliar with each other is directed

at establishing the boundaries of common knowledge.

A; "What did you think of the Leaf's game last night?"
B: "I don't follow baseball."

As a person 'gets to know' his partner better, as they establish and extend the

boundaries of their common knowledge. they can communicate more deeply and

broadly because they are able to successfully co-refer to more entities.

When a person discovers that her discourse partner does not share knowledge that

she previously assumed he did share, she will adjust to this new frame of reference.

In fact, the rules governing the propositional speech acts require that she do. A

reference to an object must identify that object such that the hearer can recognize it.

If the above dialogue about John's activities had taken place with Fred, it may have

continued in the following manner:

Fred: "I didn't know you two were going together!"
John: "I meant my sister Mary!"

Realizing his mistake and remembering that Fred does not know his family, if John

wants to refer to his own brother later in the conversation he will not use his

- brother's proper name alone but will include enough information to identify him

clearly. People expect to adjust to others who have different frames of reference and

accept their obligation to do so. This occurs naturally when adults talk with

children and when people from different cultures converse.

When users are interacting with a machine in a natural language they will bring to

that interaction the rules they have learned which govern speech in that language.

This an assumption which underlies all work in Computational Linguistics. The

motivation is to free the users from having to learn new rules. The rules governing

propositional speech acts require that speakers clearly identify their referents. This

means that speakers must adjust their speech to suit the hearers. Therefore, a

reasonable expectation is that users will endeavour to clearly identify referents to the

computer systems with which they are interacting and will adjust their queries in

order to do so.

References in natural language queries to databases will, therefore, tend to be

unambiguous to the system. This tendency will increase as the user identifies the

areas of common knowledge and adjusts to the system.

Chapter 4

The Semantics of Attribute Relationships

A database is a model of some part of the world. The tuples in the base and

virtual relations of the database represent facts in the modelled part of the world

(Biller. 1979). Facts can be expressed by natural language expressions. Therefore a

correspondence exists between database tuples and natural language expressions. We

investigate this correspondence in order to develop a systematic way to translate

certain natural language expressions into database language expressions which specify

tuples.

If a database is to be an accurate model of the real world it must be constrained

in such a way that tuples which do not represent facts are not derivable via

legitimate operations on the database, -including insertion and update. A database

designer examines the part of the world he wishes to model and selects those facts

which constrain the database to be an accurate model. These constraints are expressed

as data dependencies. Functional dependencies (FDs) and multivalued dependencies

(MVDS)~ are the most important of the data dependencies relevant to the problem of

designing a database which is an accurate model (Ullrnan, 1982a). Once the

dependencies have been determined, the database is designed in such a manner that the

dependencies are incorporated into the database structure.

'see Appendix A for a discussion of dependencies

One of the major purposes of database systems is to avoid redundancy of data.

Normalization is a design process by which redundancy in a database can be reduced

while maintaining the accuracy of the database. There are a number of levels to

which relations in a database may be normalized. Each level yields relations with

certain characteristics. To begin with we will assume our database is normalized into

fourth normal form.6 That is, each relation scheme R in the database contains only

functional dependencies of the form K + X , where K is a candidate key for R and

X E R. No other functional dependencies or multivalued dependencies exist in R. We

will also assume, for simplicity, that each R has only one candidate key - its

primary key.

Our purpose is to provide a mapping between expressions in natural language, which

represent facts in the world, and tuples in the database, which also represent facts in
-

the world. In Chapter 3 we saw how complex natural language expressions could be

broken down into their composite structures and the words and phrases that make up

those substructures finally transformed to abstract verbs and noun phrases. The

abstract verbs are translations of simple natural language predicates. In general, the

abstract verbs correspond to database relation names and the noun phrases correspond

to attribute names and values. We saw that the translation of the abstract verbs

into database base and virtual relation names presented a problem when the database

in question was cyclic. We attempt to find a method to make a reasonable guess of

the correct relation names corresponding to the abstract verbs in the query structure.

%ee Appendix A for a discussion of normal forms

We proceed by examining the semantics of the relationships between attributes in the

database and use what we learn to assist us in defining the mapping we seek.

4J. Basic Relational Database Semantics

In this section we discuss the semantic connection between natural language

expressions and simple database expressions. We will use the UNIVERSITY database

introduced in Chapter 2 to illustrate our discussion. The database scheme is repeated

below for convenience.

STUDENT = {STUD#, SNAME, MAJOR, MINOR, SSEX}

FACULTY = (9, FNAME, FSEX]

COURSE = {CNAME, DEPT, UNITS)

CLASS = {CLID, - CNAME, TERM, FAC#}

GRADES = {CLID, -- STUD#, GRADE}

APPOINT = {F.~c#. -- DEPT) ,

Entities exist in the world. Entities may be substantial beings, such as faculty

members. Entities may be insubstantial beings, such as departments. Entities may be

relationships. For example, an appointment is a relationship between a faculty

member and a department. Some entities are highly complex. Classes are complex

entities composed of students and faculty members which stand in certain

relationships to courses and departments. Entities have properties, or, from another

perspective, entities have relationships with other entities which are properties. There

is a property of being female; some faculty members have this property. Some

courses have the property of being worth three credits.

Particular entities often have names in natural languages. One faculty member is

named Ann Jones. One course is named Math 100. One property of Ann Jones is

43

named "female". One property of Math 100 is called "three credits". Particular

entities are referred to in databases by attribute values. Ann Jones is referred to

with the FAC#-value "85110-1000". The faculty number is used rather than the name

because it can be guaranteed to be unique to Ms. Jones, whereas "ann jones" cannot.

The CNAME-value ''math 100" refers to the course Math 100. The UNITS-value '3"

refers to the property, 'three credits'. Natural language names for particular entities

map to attribute values in the database.

Referencing the corresponding entity is one of the semantic roles played by an

attribute value. Other semantic roles of attribute values are discussed below.

In the world, relationships exist between entities. Relationships are represented in

relational databases by the structuring of attributes into relation schemes. A relation

scheme represents a macro view of an entity type which inc!udes certain of the

significant relationships in which the entity type participates. For example, FACULTY

= {F.~C~;,FN.~ME,FSEX] is a macro view of the 'faculty member' entity type, representing

the entity type and some of its properties. CLASS = {CLID,CNAME,TERM,FAC#)

represents the 'class' entity type and certain relationships it has with the 'term'.

'course' and 'faculty member' entity types. The tuples of relations represent instances

of the macro views represented by the scheme of the relation to which they belong.

When discussing the relationships between the entities represented in the database we

will refer to instances of macro entities repesented by tuples as tuple entities and

entities represented by attribute values as attribute entities. A tuple t in a class

relation represents a particular tuple entity, a class. The FAC#-value in t represents a

particular attribute entity, a faculty member. Thus tuples summarize entities. The

key value of the tuple names the entity. The functional dependencies between the

key value and the non-key attribute values represent relationships between the tuple

entity and certain attribute entities.

The relationships between entities in the world which correspond to functional

dependencies in the database are most likely to be referred to by simple natural

language expressions. An attribute 3 is functionally dependent on an attribute A if

and only if each A-value has associated with it exactly one B-value. Presuming this

functional dependence represents an actual state of affairs, the corresponding

relationship in the world can be characterized as direct, definite, and thus likely to be

prominent in the awareness of the group of people involved with that state of affairs.

Such relationships are therefore likely to be referred to simply by the group.

especiaiiy if the reiationships are significant to them. The relationships identified by

a database designer as functional dependencies to be built into the database are almost

certainly significant to the community of users of the database. Therefore, this

community will usually have simple natural language expressions of the kind we saw

in Chapter 3 to refer to these relationships.

However, such relationships are not named explicitly in relational databases. Rather.

they exist implicitly in the structure and are specified by expressions which name the

operations required .to extract the implicit relationships. For example, consider the

"majoring in" relationship which exists between students and departments. In general.

this relationship is specified in the database by .rr~,,,,,,,,R) (STUDENT). For a

particular world, the students of which are repesented by a particular student relation,

all such relationships are specified by niSTUD*,MA,OR) (student). A particular relationship

within that world, for example, the one for the student represented by "86300-3394".

is 'pecif ied by a{sruD#,M,,oR~(usTuD*=86300-3394 (student)). such expressions specify virtual

relations implicit in the database. Simple natural language predicates, together with

their arguments, map to the virtual relations in the database.

The mapping from natural language expressions to virtual relations in the database

is problematic because it involves specifying the operations required to derive the

virtual relations. The difficulty is more pronounced when multiple relations having

multiple access paths between them are involved in the virtual relation. In order to

devise a strategy to make reasonable guesses of the correct choice of access path, we

examine the semantics of the relationships between attributes. A virtual relation is a

relatio:: between attribiites which represefiis a relationship between entities in t h e

world. The semantics of such relations between attributes constrain the choice of

access paths.

4.2. Attributes within a Base Relation

Let us examine the relationship between the attributes belonging to a single relation

scheme. Let an attribute A, which alone forms a key for relation scheme R, be

called the key attribute for R. Let all other attributes in R be called the mn-key

attributes for R. For those relations in which the key is composed of more than one

attribute, let each of the attributes that make up the key be called co-key attributes.

A co-key attribute is, by definition, also a non-key attribute. For any key K of a

relation scheme R and a tuple t of r , let the K-value of t be called the key vdw.

Consider the CLASS relation scheme.

CLASS = {c~n>, CNAME, TERM, FAC#}.

Each tuple in a relation on the CLASS scheme represent a class in the university.

Since CLID is the key in the scheme, each class represented by a tuple is uniquely

identified and represented by a C L D value, that is, by a class identifier.

There are two semantic roles played by attribute values within a tuple, with respect

to the tuple to which they belong. ~ h e i e are a predicative role and a classificatory

role. These roles are separate from the role of referencing their respective attribute

entities. The interplay of the attributes' semantic roles defines the semantics of the

relationships between attributes. We discussed the roles attribute values play

referencing attribute entities in Section 4.1. We now examine the predicative and

classificatory roles.

4.2.1. Predicative Role

An attribute predicates a property of the entity type represented by the relation

scheme to which the attribute belongs. For example, the attribute FAC# in the

relation scheme CLASS predicates a property of classes, namely the property

"instructor-of''. In the relation scheme APPOINT, FAC# predicates a property of

appointments, that is, the property "appointee-of". Note that we are using the term

'property' in a general sense when we say that an appointee is a property of an

appointment, or a professor is a property of a class. In cases such as these, the

predicative role of the attribute involved is to relate the tuple entity to the attribute.

entity rather than to relate the tuple entity to one of its properties. Consider a

given appointment x which involves the appointment to the Math department of Ann

Jones, whose faculty number is 85110-1000. Appointment x will be represented in

the database by the following appoint tuple.

<85110-1000. math>.

The predication represented by the occurrence of the FAC#-value '85110-1000' in the

above tuple may be represented in logical notation as

appointee-of(x, 85110-1000).

The relationships which exist between a tuple entity and its properties are the kinds

of relationships for which natural language has simple expressions of the type in

which we are interested. We have for the FAC# attribute of the CLASS relation

scheme:

"the
"the
''the
''the
"the

teacher of the class".
instructor of the class",
faculty member teaching the class",
professor taking the class".
lecturer in the class,

and so on. In addition, the relationship may be expressed in English in a passive - .

voice. For example.

"the classes taught by the faculty member", and
"the classes given by the professor".

Since a key uniquely identifies a tuple, a key also uniquely identifies the entity

which the tuple represents. Therefore the type of relationship which holds between a

non-key attribute and the tuple to which it belongs, holds between that attribute and

the key of that tuple. Thus the predicative relationship described above that holds

48

between FAc# and the tuples of CLASS, holds between FAC# and CLID, the key for

CLASS. Suppose the class relation from a given instance of the UNIVERSITY

database contains the following tuple.

<m100/861/sl, math100. 86-1. 85110-1000>.

where 'm100/861/sl' is the class identifier of Section 1 of the MATH I00 offering in

the first term of 1986. and 85110-1000 is the faculty number for Ann Jones. For

simplicity, in the following discussion we refer to this instructor by her name instead

of her number. The predications contained in this tuple could be expressed in English

as follows.

"Professor Jones teaches mlOO/86l/sl.",
"The instructor of m100/861/sl is Jones.",
"m100/861/sl is given by Jones.",

and so on. Similarily, for the remaining attributes of the example tuple, we have.

"rr?100/86l/sl is an effering cf MATE 100.".
"m100/861/sl is a MATH 100 'class.", and
"m100/861/sl is being offered in 86-1."

Note that this predicative relationship that holds between a tuple of a base relation

and its attributes is inherent in the relationship that a database designer identifies as

a functional dependency and builds into the database structure. The tuple entity is

denoted by the key for the tuple. The non-key attribute values of the tuple are all

functionally dependent on the key value. Implicit in the functional dependency

relationship between key and non-key attributes of the same base relation is the

predicative role described in this section. We can illustrate the functional dependency

between the attributes of R = {A. BJ with the dependency diagram in Figure 4-1.

Given this functional dependency we would expect there to be in the world a

Figure 4-1: Dependency Diagram for R = {A. - B}

definite, direct relationship between the types of entities represented by A and B.

Furthermore, for the reasons given in Section 4.1, it is likely that there are simple

natural language expressions which describe this relationship.

4.2.2. Classificatory Role

There is a kind of semantic equivalence that exists between sets of values of an

attribute of a given relation and sets of key values of that relation. Consider value

a of the non-key attribute A in relation r on relation scheme R. Value a specifies a

certain set of tuples S from r. For example. the value "math 100" in the CNAME

attribute of the CLASS relation specifies the set of tuples that represent the offerings

of the Math 100 course. The set K of key values for S also specifies S Thus a

given value a from dom(A) is co-referent with a unique set of values K in dom(K).

That is, they both uniquely denote a certain set of tuples of the relation to which

they both belong. No other value from dom(a) nor any key value in r which is not

a member of K denotes any of the tuples denoted by a and the set 9. It is this

equivalence relation between non-key attribute values and sets of key values in

relations that yields the semantics for the relationships between non-key attributes

from the same relation and between attributes from different relations.

This semantic equivalence between the key and non-key attributes from the same.

relation arises from the functional dependence that exists between them. K 4 A

implies a l:n mapping between dom(A) and d o m (~) . Furthermore, the functional

dependence implies that no two distinct values, el and a2, from dom(A) map to the

same value k from dom(K). Thus every A-value occuring in any relation r specifies

a unique set of keys which is disjoint from the set of keys specified by every other

A-value occuring in r. Therefore any distinct set of A-values in r must specify a

unique set of keys for r.

Natural language also supports this classification of entities by their properties. One

may refer to a certain subset of the students in a university as being the "females",

or to another as being the "Math majors".

Consider again the relationship illustrated in the dependency diagram of Figure 4-1.

We expect to find simple natural language expressions denoting this relationship and

we also expect to find natural language names corresponding to B-values used to

denote sets of entities corresponding to sets of A-values.

4.2.3. The Co-dependency Relationship

The kind of relationship that can be referred to with a simple natural language

expression often exists between the entities represented by non-key attributes in a

relation. For example, associated with the CLASS relation scheme, we have

"the teachers of the courses".
"the courses taught by the teachers".
"the terms a course is offered".
"the courses offered this term".
'the faculty teaching this term".
"the terms a professor was lecturing".

and so on. The above expressions correspond to virtual relations formed by projecting

the class relation onto pairs of attributes. For example, the first two expressions

to ?T{mAMESACa) (c~~ss) .

It is the ability of attribute values to classify, or 'stand for', sets of tuples that

establishes the connection between non-key attributes in a relation which is expressible

in a simple natural language expression. In a given instance of a class relation, a

particular FAC# value f stands for a set of tuples S, which can be represented by the

set of keys U. The set S contains the set of CNAME values T, which are the

properties 'offering-of' which are being predicated of S . We therefore have

off ering-of (ST).

Substituting f for S we have

off ering-of (f ,T).

This predicative relationship can be expressed in English as

"Professor (fl's courses".
"the courses (TI offered by Professor (f)",
"the courses (T) taught by Professor (f)",

and so on.

CNAME

Figure 4-2: Co-dependency of CNAME and FAC#

Figure 4-2 illustrates these relationships. CNAME and FAC# are co-determined by

CLID. The functional dependency CLID + CNAME permits a CNAME-value to classify a

set of CLID-values of which are predicated a set of FAc#-values. The functional

dependency CLID -+ FAC# permits the FAC-values to be predicated of the CLID-values.

This cedependency relationship between CNAME and FAC# reflects a relationship

between courses and faculty members in the world. This relationship between courses

52

and faculty members is characterized by the type of relationship faculty members

have with classes and the type of relationship courses have with classes. We expect

natural language names for courses to denote classes and natural language names for

faculty members to denote properties of those classes. Similarly, names of faculty

members can denote classes and names of courses can denote properties of those

classes. We find, therefore, such simple natural language expressions as we have seen

above describing the relationship between courses and faculty members. In general,

we expect to find simple natural language expressions corresponding to co-dependency

relationships between non-key attributes within a base relation.

4.3. Attributes from Different Base Relations

The relationship between attributes from different relations is also sometimes

expressible in terms of simple natural language expressions. Consider the two relation

schemes CLASS and GRACES from the UNIVERSITY database.

CLASS = {w, CNAME, TERM, FAC#)

GRADES = {CLID, -- STUD#, GRADE}

The tuples of the relations on GRADES represent an aspect of the experience of one

student taking one class in the university. Let us refer to this 'entity' as an

undertaking.

Some of the relationships which exist between attributes from the GRADES and

CLASS schemes can be expressed in English as follows:

"the grade received for the course",
"the grades received for the term",
"the grades given by the professor".
"the student taking the course".
"the students registered for the term", and
"the students taught by the faculty member".

These expressions correspond to virtual relations formed by projecting pairs of

attributes on the join of 'class and grades relations.

Whether or not such v i~ tua l relations have corresponding simple NL expressions is

largely dependent on the semantics of the connection between the base relations which

are joined to form the virtual relation. The semantic connection created between the

two base relations when the join takes place on a set of attributes which contains a

key for one of the relations often yields virtual relations which have corresponding

simple natural language expressions. When the shared attribute set does not contain a

- key from one of the relations, the relationship represented is much weaker a d it is

much less likely that there will be corresponding simple natural language expressions.

4.3.1. Joining on a Key

To investigate the semantic connection between attributes from different relations

where the connection between the relations contains a key for one of the relations, let

us consider the virtual relation n ~ , , , , , , , , , , ~ (g r a d e ~ ~ ~ l a ~ ~) , 7 using for examples the

relations depicted in Figure 4-3. Figure 4-3 contains a class relation which represents

three classes. two of which are offerings of Math 100 and one offering of Math 250.

7"W" is the join operator symbol. gradeskklass refers to the relation created when the grades relation
is joined to the clnss relation on their common attributes.

CLASS
m100/861/sl (math 100 1 86-1 (85110-1000 1

I m100/861/s2 (math 100 1 86-1 1 86310-0002 1
m250/861/sl I math 250 1 86-1 1 81110-0218

GRADES

Figure 4-3: Semantic Connections Between Relations

m100/861/sl

m100/861/sl

m100/861/s2

m100/861/s2

m250/861/sl

m250/861/sl

GRADES WCLASS

The figure also contains a grades relation which represents the two undertakings of

each of the three classes. The third relation is gru.des[xlclass.

86100-1032

86100-1922

86100-1168

86100-0273

85200-0172

84300-1528

m100/861/sl

m100/86i/sl

ml00/861/s2

m100/861/s2

m250/861/sl

m250/861/sl

When two relations, R1 and R2. are joined on a set of attributes which contains the

A

C

B

B

B

C

86-1

86-1

86-1

86-1

86-1

86-1

- key K, for R , , the key K 2 for R , M R , is the same as the key for R2. Assuming

that K1 represents the same entity type in both R1 and R2, all the non-key attributes

85110-1000

85110-1000

86310-0002

86310-0002

81110-0218

81110-0218

86100-1032

86100-1922

86100-1168

86100-0273

85200-0172

84300-1528

from R1 are transitively functionally dependent on K. The entity type represented

by RiDdR, is the entity type that is represented by ,R2. The join augments R2 by

A

C

B

B

B

C

including the additional relationships between the tuple entity and the entities

represented by the attributes of R1. Thus R l W R 2 represents a wider macro view of

math 100

math 100

math 100

math 100

math 250

math 250

the entity type represented by R2. The attribute values of R2 perform the same

roles in R1WR2 as they did in R2. That is, they refer to the same attribute entities

. and to the same relationships those entities have with the same tuple entity. The

attribute values of R1 which are included in R1WR2 have expanded roles in the

virtual relation. They refer to the same attribute entities. However, they now

represent the functional dependency relationship between those attribute entities and

the tuple entities of R1WR2. Let us refer to a join of two relations RI and R2,

which takes place on a set of attributes that contains the key K2 for R2 as the key

join of R1 to R2. written RIWkR2. All other joins are called mn-key joins.

The relation classIxlgrades of Figure 4-3 contains tuples which are an expanded

view of the undertakings represented by the grades relation. This view incorporates

details about the c1asses:which make up the undertakings. {CLID,STUD#) is the key in

both GRADES and GRADESMCLASS. The entities represented by the virtual relation.

i.e. undertakings, are instances of an entity type which has been selected by the

designer of the database as worthy of representation in a base relation. As we have

discussed earlier, these entities and the relationships they have with the entities

represented by the attributes of the base relation are likely to be referred to with

simple naturd lmgmge eupressicns. For example, tuple entities of an a p p i n i relation

represent 'appointmentsu. We speak of the "appointment of Prof. Jones" and of an

"appointment to the Math Department". We shall see in the following subsection that

the entities represented by virtual relations created by a join of two base relations on

a set of attributes that do not contain a key for one of the base relations are much

less likely to be referred to with a simple natural language predicate.

In the class relation of Figure 4-3, the CNAME-value 'math 100'' denotes the Math

100 course and specifies as well the two Math 100 classes represented by the first

two tuples of the relation. In classWgrades, "math 100" specifies the undertakings

represented by the first four tuples of the virtual relation as well as the one course

56

and the two classes. Inasmuch as as the functional dependence of CNAME on

{CLID,STUD#} is transitive, this specification is also transitive. CNAME-values specify

CLID-values which specify (CLID,STUD#)-values which denote undertakings. The

attribute on which the transitivity depends is CLID, the attribute on which the two

attributes are joined. The semantic roles CLID-values play in dassMgrades are

relatively straightforward and uncomplicated. They denote classes and specify

undertakings. These are the same roles they play in the grades relation. We shall

see that when two relations are joined by a non-key join, the semantic roles played

by the values of the attributes on which the join takes place are more complex.

In the relation ciassDdgrades "math 100" denotes a specific set of undertakings.

These undertakings have the grades denoted by the GRADE-values in their respective

tuples as properties. The relationship between the grades and the undertakings is the

kind of p-ediative re1atiensh;- which , is usual!y named by a simple natural ianguage

expression. Thus we expect to find such expressions linking natural language names

for these entities.

The attributes CNAME and GRADE belong to different relation schemes. However, as

shown in Figure 4-4, they are co-dependents. When the transitive functional

dependency is 'collapseds8 the dependency diagram in Figure 4-4(a) yields the diagram

in Figure 4-4(b), which has the same structure as Figure 4-2.

*TO 'collapse' a chain of transitive functional dependencies is to remove the intermediate attributes in the
chain and thus make the functional dependence between the first and last attribute explicit.

Figure 4-4: Co-dependency of CNAME and GRADE

Attributes need not belong to the same or adjacent relations to be co-dependents.

We saw earlier that . CNAME from CLASS and GRADE from GRADES were co-

dependent. -4s Figure 4-5 illustrates, DEPT is also co-dependent with GRADE.

DEPT

-

Figure 4-5: Co-dependency of DEPT and GRADE

Therefore the virtual relation resulting from

(adesD<lcLassD<lcourse) v { ~ ~ ~ ~ , ~ ~ ~ ~ ~ ~ gr

is a candidate for having a corresponding simple natural language expression. We say.

for example, in English

'the grades for the department".

A co-dependency may contain more than two co-dependents and still have a

corresponding simple natural language expression. Consider the dependency diagram in

Figure 4-6. The simple natural language predicate. "the names of the female Math

SNAME MAJOR

Figure 4-6: Co-dependency with three Dependents

majors", expresses an instance of the relationship depicted in Figure 4-6. In this case

a SSEX-value and a MAJOR-value simultaneously classify a set of STUD#-values of

which q e predicated a set of SNAME-values.

Complex co-dependencies can correspond to simple natural language predicates.

Consider the dependency structure in Figure 4-7.

CLID STUD# CLID DEPT

GRADE UNITS

Figure 4-7:' Complex Co-dependency

This structure is an extension of the dependency structure depicted in Figure 4-5; the

node for UNITS has been added. The co-dependency depicted in Figure 4-5 resulted

when a department classified a set of classes which classified a set of undertakings of

which were predicated a set of grades. In the current example, the undertakings of

which the grades are predicated, are simultaneously transitively classified by a

department and a credit value. This co-dependency can be expressed by a simple

predicate, for example. "the grades for the three-credit Math courses".

Not all co-dependency relationships have corresponding simple natural language

expressions. UNITS and FAC# are co-dependent as shown in Figure 4-8. Nevertheless

Figure 4-8: Co-dependency of UNITS and FAC#

there does not seem to be a way in English to refer to UNITS-values and to

FAc#-values together without explicitly mentioning the courses which link them. That

is, we say

"the teachers of three-credit courses"

rather than

"three-credit teachers"

or something similar. The semantic relationship between these two attributes is

undistinguishable from that between DEPT and F.4C# from the same relations, yet

"Who's teaching for the Math department?"

is meaningful. Presumably the relationship between UNITS and FAC# is not significant

enough to warrant the simple expression. Both UNITS-values and DEPT-values denote

specific sets of classes but we are more apt to classify, classes by department than we

are by credit.

4.3.2. Joining on Non-key Attributes

Consider the COURSE and APPOINT relation schemes and the virtual relations

which may be formed by projecting pairs of attributes from their join where the

members of the pair are from different relations.

T { ~ ~ ~ ~ , ~ ~ ~ *) (course~aappoint) corresponds to

"the courses offered by the departments employing the
faculty members", or
"the faculty in the department offering the courses".

o~m,,,c,l(course~~ppint) corresponds to

"the x-credit courses offered by the departments
employing the faculty members", or
"the faculty in the department offering the x-credit
courses".
where x is a variable for UNITS-values.

T { ~ ~ ~ ~ , ~ ~ ~ ~) (courseCQappoint) corresponds to

"the courses offered by the departments which employ
faculty members", or
"the faculty-employing departments offering the courses".

None of these or any of the other possible virtual relations can be expressed with a

simple natural language expression.

We expect the same result for all such pairs of relations. Consider two relations

with the following schemes. R1 = { ~ l A , ~) and R2 = {&,A,c}. Let R1WR2 =

{ K -1-2 K A,B,C} be called R3. Let the attribute entity denoted by a given A-value ai be

aei. Let the non-empty set of R1 tuple entities denoted by ai be S and the non-

empty set of R2 tuple entities denoted by ai be R.

The key for RlCQR2 is K1K2, which represents a relationship of some type between

the entities represented by tuples of R1 and the entities represented by tuples of R2.

Note that such a relationship is very possibly arbitrary; that is, its implicit

incorporation into the structure of the database was not necessarily deliberate and

thus is not necessarily a relationship of significance to the users of the database.

The attribute value ai in R1 denotes aei and a certain relationship rl that entity has

with the members of the set S of R1 tuple entities. In R2, ai again denotes m.; it
1

also denotes a relationship r2 that mi has with the members of the set R of RZ tuple

entities. In one tuple t = < k l , k2, Q , b, c> of R3. Q denotes the the entity cre which

has relationship rl with the entity denoted by kl and the relationship r2 with the

entity denoted by kt . The tuple entity t represents is the relationship of the entities

denoted by kl and k2. The relationship represented by t is the one that results when

kl has relationship rl with the same a with which k2 has relationship r2.

Let us consider an example using the COURSE and APPOINT relation schemes:

COURSE = {CNAME, DEPT, UNITS).

APPOINT = {FAC#, DEPT}.

Suppose our database contained the course and appoint relations shown in Figure 4-9.

APPOINT
COURSE

86310-0210
cmpt 101

Figure 4-9: Relations Joined on Non-key Attribute

In course "math" denotes the Math department and indicates that this department is in

the 'offers' relationship to the course Math 100. In appoint "math" denotes the Math

department and indicates that it is in the 'employer' relationship with the

COURSE WAPPOINT

appointments denoted by "{85110-1000, math)" and "(86310-0121, math)". In

QppointWcourse the key is {CNAME,FAC#,DEPT}. Tuples in this relation represent a

. 85110-1000
86310-0210

82210-0014

math

math

cmpt

math 100

math 100

cmpt 101

3

3

4

relationship between appointments and courses. The relationship represented is that

the appointments are in the same departments that offer the courses. The DEPT-value

"math" in courseDaappoint denotes the Math department and indicates that this

department both offers Math I00 and is the employer involved in the appointments

denoted by "(85110-1000. math)" and "(86310-0121, math}".

4.3.3. The Co-incidental Relationship

Figure 4-10 illustrates the dependency relationships of K1, K2, and A from the

relations R1 = {&A,B} and R2 = { K ~ A , c } .

Figure 4-10: The Co-incidental Relationship

K1 and K2 both functionally determine A and there is no functional dependency or

co-dependency between K1 and K2. Let the relationship between K1. K2 and A,

where K1 and Kz both functionally determine A, be called co-incidental and K1 and

K2 be called co-determiners on A. The dependencies between K1 and A and Kz and

A may be transitive. The co-incidental relationship is neither direct nor definite. It

is indefinite because there is no definite single K1-value with which a given K2-value

has the co-incidental relationship, and the reverse is equally true. The co-incidental

relationship is clearly indirect since it is based on the mediation of the attribute A.

Unlike the role played by the intermediate attribute in a transitive functional

dependency, the role of the A attribute in the co-incidental relationship is not to pass

along the dependencies to which it is subject to its own dependents. Thus the

relationship between co-determiners is much more indirect than that of attributes

which are transitively functionally dependent. Since co-incidental relationships are

indefinite, much less direct and less likely to be significant than the functional

dependency and co-incidental relationships. it is less likely that they will be named in

natural language. Tuples in virtual relations such as R I W R Z represent instances of

such co-incidental relationships. The relationships that attribute entities in such

relations have with the tuple entities are even less likely to be named given that

there is probably no simple natural language expression referring to the tuple entities

themselves.

Note that if we were to join R1 and R2 together with a third relation R3 = (4. D}

the result would still contain a co-incidental relationship, even though neither R I W R Z

nor R3WR2 contain such a relationship. Figure 4-11 illustrates the dependency

diagram for RlPQR2MR3

Figure 4-1 1: Dependency Diagram for R1 WR2CUR3

This virtual relation contains the same co-incidental relationship between K1 and K2

that Rl W R 2 contains.

Chapter 5

Choosing the Correct Access Path

We develop a strategy to identify the access path in the database which yields the

virtual relation corresponding to a given S1 substructure in the query structure of a

natural language query. The abstract verb dominating the substructure corresponds on

the one hand to the access path which links the attributes corresponding to the NPs

of the substructure, and on the other hand to a simple predicate in the natural

language query. It is unlikely that the simple natural language predicate will

correspond to an access path which links attributes in a co-incidental relationship.

Thus, when considering candidate relations we will prefer those which contain only

functional dependencies and/or co-dependency relationships to any relation containing a

co-incidental relationship. In this chapter we develop a method to implement this

strategy.

5.1. The Dependency and Key Join Graphs Defined

Suppose R = {R1.R2 Rp) is a database scheme over U = { A I A 2 ,... A,}. Let K =

{K i I Ki is the key for Ri, l < i < p) . Let C = (5 I K j 6 U . 1 < j G p) . the set of

all composite keys in R. The database dependency gmph (DG) is a directed graph on

nodes N = UUC. Some nodes (the set U) correspond to single attributes while the

rest of the nodes (the set C) correspond to keys which contain multiple attributes.

Note that, since some single attributes may be keys, KnU may be non-empty. There

64

is an edge in the dependency graph from node Kj E K to Ai E U iff Ai E Rj. Each

node Ki E K is also labelled Ri. Note that if Ri has a composite key Ki there will be

a node Ki and edges from Y to all nodes AIAZ9.-.Aq E Ki.

Let us call the nodes corresponding to keys, key nodes. Since there is a one-to-one

correspondence between keys and relations, key nodes are also referred to as relation

nodes. We generally refer to a key node as a relation node if we are discussing its

correspondence to a base relation in the database. Let us call the nodes corresponding

to attributes, attribute nodes. As noted above, some key nodes may also be attribute

nodes.

The key join graph for R is the subgraph of the dependency graph induced by the

set K. An edge in the key join graph between Ki and K, represents a potential key

join between relations Ri and Rj. This join takes place on the key Ki for Ri.

Note the correspondence between the key join graph and the natural join graph.

Both have a one-to-one correspondence between nodes and the relations of the DB.

The natural join graph has an undirected edge between two nodes if and only if the

relations corresponding to the nodes share some attribute, permitting a natural join of

the two relations. The key join graph has a directed edge between two nodes if and

only if the relation corresponding to the node at the head of the edge contains the

key of the relation corresponding to the node at the tail of the edge, permitting a

key join of the two relations. We abandon the natural join graph in favour of the

key join graph as a representation because we wish to restrict our joins to be key

joins in order to guarantee that the virtual relations we create contain only functional

dependencies and co-dependencies. We demonstrate later in this chapter the usefulness

of the key join graph for selecting access paths in the database which correspond to

simple natural language predicates.

Figure 5-1 shows the dependency graph and the key join graphs for the

UNIVERSITY database. The dashed line delimits the key join graph.

MAJOR MINOR

1

STUD#/ i 1 1 i key join graph
STUDENT

I I
I I

I CLID/

I CLASS
I

Figure 5-1: The UNIVERSITY Dependency and Key Join Graphs

Note that the dependency graph contains one node corresponding to each of the

attributes in the database. In addition, there are nodes corresponding to the two

composite keys CLID STUD# and DEPT FAC#. Each key node is also labelled with the

name of the relation to which it belongs. There are edges from each of the nodes

corresponding to keys in the database to each of the attributes in the corresponding

relations.

5.2. Assumptions

We now make explicit our assumptions.

5.2.1. The Fourth Normal Form/Single Candidate Key Assumption

In Chapter 4 we assumed that all relations in the database are in fourth normal

form (4NF) and that for each relation the primary key is the only candidate key.

This assumption limits the dependency structure of each relation and, thereby, of the

whole database. If we restrict the database in this manner the only dependencies that

exist in a database relation R are those of the form K + A where K is the key for R

and A E R.

5.2.2. The Unique Key Name Assumption

In Chapter 4 we stated that key joins result in relations in which _all non-key

attributes in the resulting relation are functionally dependent on the key of that

relation, assuming that the key on which the join takes place refers to the same

entity in both the original relations. In this subsection and the next we make explicit

the assumption that the key refers to the same entity in both relations.

We assume that if an attribute has the same name as an attribute which is part of

a key for a relation then both attributes refer to the same entity. For example.

although the keys for the FACULTY and STUDENT relations are both numbers, they

cannot both be named NUMBER. Also, if we wished to keep a record of the number

of students in each class we could not name the corresponding attribute in the CLASS

relation STUD#. Call this the Unique Key Name Assumption (W A) . We must make

this assumption if we are going to infer that joining two relations on a key for one

yields only functional dependencies and co-dependency relationships between the

attributes in the resulting relation. The UKNA allows variables such as FSEX and

SSEX in the UNIVERSITY database to both be named SEX, and similarily. FNAME and

SNAME to both be called NAME, since none of these attributes are keys in their

respective relations.

Note that this is a much weaker assumption than is the Universal Relation Scheme

Assumption (URSA) made by the universal relation (UR) approaches mentioned in

Chapter 2. Recall that the URSA required that there be only one relationship

between any set of attributes. Foi example, if we made the URSA when designing

the UNIVERSITY database, we could not represent both the "teaching for" and

"appointee of" relationships between departments and faculty members using only the

DEPT and FAC# attributes. One of these attributes would have to be renamed in one

of the relations in which it occurs. Not only would this renaming be counter-

intuitive but also it would place an additional burden on the natural language

parserhterpreter. For example, if one of the occurrences of DEPT was renamed, given

the name for a department, the system would be required to decide which of the

attributes was being 'referenced. Even though the department in both cases is the

same entity the URSA requires that there be two names. The only restriction

required by the UKNA is that attributes which are part of keys not have their

names duplicated by other attributes which do not refer to the same entity.

5.2.3. The Surrogate Key Assumption

Let us call an entity which is represented by a composite key a composite entity.

We assume that there are no composite keys in the database which are functionally

dependent. That is, we assume that if a composite entity is functionally dependent

on some other entity which is represented in the database then the database

administrator will create a surrogate key to represent that composite entity. Call this

the Surrogate Key Assumption (SKA).

There are two ways in which a composite entity may be represented other than as

a key in a base relation. A composite entity may be represented by a set of

attributes which is contained entirely within each of one or more base relations, or

the set of attributes may be spread over a number of base relations. Let us consider

first the case when the entity is reqresented entirely within base relztims. For

example. consider the relation scheme

CLASS = {CLID,CNAME,TERM,FAC#}. -

Suppose that there is only one section of a course offered during a term. Since a

course and a term uniquely identify a class, the following relation scheme represents

classes as well as CLASS,

CLASS2 = {CNAME,TERM,FAC#). --

In CLASS2, {CNAME,TERM} is a composite key representing the composite entity type

"class". However, since we desire to refer to classes in other relations, for example,

GRADES = { CLID,STUD#,GRADE) .
we assume that the database administrator creates the surrogate key CLID and uses it

to represent classes.

Adopting the SKA allows sets of attributes in the database to represent more than

one type of relationship. Suppose the database administrator wished to keep a record

of the majors and the faculty advisors of each student. She may decide to create the

following relation scheme.

STUDENT = {STUD#,DEPT,FAC#] .

If the database contained

APPOINT = {DEPT,FAC#,SALARY] --

it would appear that a join of these two relations could take place on the key for

APPOINT, making explicit the implicit functional dependency between STUD# and

SALARY. This would be erroneous because DEPT FAC# represents different entities in

the two different relations. We adopt the SKA to avoid this type of error.

When the composite entity is represented in a virtual r&tiofi composed sf more

than one base relation, adding a surrogate becomes slightly more complex. Consider

the following database scheme R.

R1 = {g, K2. ~ 3 1 ,

R2 = { ~ 2 , - A].
R3 = {E, B},

R4 = {&, - B}.

The dependency graph for R is given in Figure 5-2. We are considering the case

where the relationship between the entities represented by A and B is the same in

both subgraphs (a) and (b) in Figure 5-2. In subgraph (a) the relationship which

exists between a given A-value and B-value pair <a.b> is the co-dependency of a and

b on the corresponding KI-value k. Since {A,B} is the key for R4, each pair <a,b>

which occurs in R4 is unique. Therefore. given a composite key value {al bl} from

Figure 5-2: Dependency Graph !%fore Snrrogaie Added

R4. if the entity represented in R4 by {al bl) is represented by {al bl] in

R l w R 2 w R 3 . then there is a unique Ki-value on which the connituents of this

composite key value are co-dependent. Therefore. when {A.B] is replaced by surrogate.

S, the database scheme R becomes the modified scheme M composed of the following

relation schemes.

Figure 5-3 represents the dependency graph for M. To illustrate how a composite

entity that is represented by a composite key may be also represented by the same

attributes in a virtual relation consider the following example. In the UNIVERSITY

Figure 5-3: Dependency Graph After Surrogate Added

database there is the following co-dependency in which F.4C# and DEPT are co-

dependent on CLID,

FAC# + CLID -$ COURSE -$ DEPT.

This co-dependency represents the "teaches a class for" relationship between

departments and faculty members. Suppose the database' administrator created a

relation,

SPECASSIGN = {DEPT, -- FAC#},

to represent a special subset of the instances of this relationship, say, for visiting

professors under a special project which restricts the teaching assignment to one class.

Since the key for the relation is {DEPT,FAC#} there could only be one such relationship

for each pair of faculty members and departments. For each occurrence of this

special relationship, there is one and only one class. Therefore (DEPT,FAC#} -+ CLID

when the {DEPT,FAC#}-value is a key in R4. Figure 5-4 show the relevant subset of

the dependency graph after the surrogate ASSIGNID is substituted for the composite

key.

SPECASSIGN +

Figure 5-4: Dependency Graph After ASSIGNID Added

We believe the SKA to be a realistic assumption. A composite key represents an

attribute entity. If that entity participates in a relationship it is more intuitive to

refer to the entity by its own name rather than the names of its components. That

is, it is more intuitive to refer to classes by "classes" rather than "course offerings

during terms". If a composite entity type ae is not referred to outside the base

relation R1 which represents it, it is redundant to add the surrogate. To do So

increases the storage requirements of the database by

n = (size of surrogate) X (# of tuples in Rl).

However if ae is referred to wholly within base relations outside R1 the size of the

database is likely decreased if the surrogate is added. The size of the decrease will

N((size of composite) - (size of surrogate)) - n.

where N is the number of tuples in the database outside of Rl containing the

surrogate key. N is likely to be greater than the number of tuples in R1 because

each entity of type ue will be referred only once within R1 and will usually be

referred to more than once, on average, in the rest of the database. For example.

there is only one tuple in the relation class for each class represented in the database.

However, in the relation grades there are many tuples per class, one for each

undertaking of each class. Since the size of the composite key is likely to be larger

than the size of the surrogate key and N is likely to be greater than the number of

tupies in R1, some storage savings, will be realized. There may not be a saving in

storage if the composite entity is represented in a virtual relation composed of more

than one base relation. The change in storage requirements in this case is

- ((size of composite) -(size of surrogate)-(size of K1)) x (# of tuples in R1)

However, representing a composite entity by a set of attributes shared among a

number of base relations is a rare occurrence. Therefore, following the SKA in these

cases does not result in unreasonable demands on storage. Since adding the surrogate

is more "natural" and usually less costly when composite entities are referred to in

more than one relation, we feel justified in making the SKA.

5.3. The Minimum Felicitous Path Strategy

Let us call functional dependencies and co-dependencies felicitous relationships. Let

us call a virtual relation which contains only felicitous relationships a felicitous virtual

relution, and an access path which yields a felicitous virtual relation a felicitous access

p h . Let us call access paths and virtual relations which are not felicitous,

infelicitous. Any infelicitous access path creates a relation which contains at least one

co-incidental relationship. If an access path does not contain a co-incidental

relationship then it is felicitous because, given our assumptions, there is no

relationship possible between attributes connected by an access path in the database

other than the functional dependency, co-dependency or co-incidental relationship.

In Chapter 2 we introduced the Minimum Connection Strategy (MCS) to choose

between candidate access paths. The MCS is to choose an access path which requires

no more joins than any other candidate path. In Chapter 4 we demonstrated that

felicitous access paths. (functional dependencies and co-dependencies), are preferable to

infelicitous paths. (co-incidental relationships). We, combine our preference of
-

felicitous access paths with the MCS to create the Minimum Felicitous Path (MFP)

strategy. The Minimum Felicitous Path strategy chooses a path which creates only

functional dependencies or co-dependencies and which has no more joins than any

other candidate path. In this section we demonstrate how to use the key join graph

to find the minimurn felicitous access path corresponding to a simple natural language

predicate.

The state-of-the-art natural language interface system TQA translates a natural

language query into a logical form which contains clauses representing the relations

which are to be joined to answer the query. These clauses specify the attributes

which are to be projected from each relation. The attributes specified include the

attributes whose values are desired, the attributes whose values are known, and the

attributes on which the joins of the relations will take place. When a relation clause

specifies a virtual relation which is composed of attributes from more than one base

relation the access path between those attributes must be calculated by the system.

The MFP strategy is 'a suitable strategy for calculating the path. We show that the

path may be calculated by calculating the corresponding tree in the key join graph.

Let the attributes in the attribute list of the virtual relation clause whose access

path must be calculated be called the target attributes. We seek an access path which

- links the target attributes with a minimum number of key joins. Before presenting

the method for calculating a minimum felicitous access path that links the target

attributes, we show that a minimum tree in the key join graph that contains nodes

representing relations containing a set of attributes A corresponds to a minimum

felicitous access path in the database linking the attributes in A.

Since nodes in the key join graph correspond to relations in the database and edges

in the key join graph correspond to key joins in the database between the relations

represented by the nodes adjacent to the edges, it is obvious that a felicitous access

path in the database linking a set of attributes A is represented by a path in the key

join graph linking nodes representing relations that contain attributes A. We now

show that a tree in the key join graph with n edges corresponds to a felicitous access

77

path in the database with n joins. We leave out references to attributes with the

understanding that "access path" refers to "access path linking attributes A", and

"path/tree in the key join graph" refers to "pathkree linking nodes representing

relations that contain attributes A". Since every edge in the key join graph represents

a join in the database, every path of n edges in the graph represents an access path

of n joins in the database. However, even though the joins represented by edges in

the key join graph are key joins, not every path in the key join graph represents a

felicitous access path. " Consider the final example from Chapter 4 involving the

following small database,

The dependency graph for this database is shown in Figure 5-5.

Figure 5-5: Co-incidental Relationship in a Key Join Graph

There is co-incidental relationship between the attributes KI and K2. This relationship

is contained in the virtual relation created by the joining of the three relations. If

78

two joins represented by two co-incident key join edges are involved in the creation

of the same virtual relation, the second join takes place on a non-key attribute of the

virtual relation created by the first join and therefore results in a co-incidental

relationship. Such relationships can be avoided by avoiding multiple joins on the

same key. Multiple joins on the same key are represented by multiple edges co-

incident on the same node in the key join graph. No tree has any co-incident edges,

therefore an access path corresponding to a tree contains no co-incidental relationships

and is felicitous. Similarly, a felicitous access path contains no co-incidental

relationships. Therefore, a felicitous access path involves only key joins where no

two joins take place on the key of the same relation. Therefore, a felicitous access

path is represented by a tree in the key join graph. Since every join in the database

corresponds to an edge in the key join graph, a felicitous access path involving n

. . . pans 1s represenled by a tree of n edges ir! the key j o h grzph.

A minimum tree in the key join graph corresponds to a minimum felicitous access

path in the database. Assume this is not the case. Then a minimum tree in the key
-

join graph which contained n edges would correspond to a felicitous access path in the

database containing n joins and the minimum felicitous access path would contain m

joins, where m < n. The minimum felicitous access path would therefore correspond

to a tree in the key join graph containing m edges. Therefore the minimum tree

would not be minimum. Therefore the assumption is wrong and the minimum tree

in the key join graph corresponds to a minimum felicitous access path in the database-

Finding a minimum tree containing nodes representing relations containing a set of

target attributes is a variation of the Minimum Directed Steiner Tree (MDST) problem

in graphs. Given a connected digraph G = (V,E), and a subset of the vertices XCV.

the MDST in graphs is to find a rooted tree T = (WJ) in G with arcs directed out

from the root and IFI minimized such that XCWCV and FCE. The corresponding

decision problem was proved NP-complete in (Karp. 1972).

Because the number of target attributes in a virtual relation clause is limited, the

problem of finding the minimum tree in the key join graph is simpler than the

general MDST problem. The number of target attributes in a relation clause does not

exceed five because the number of NPs in the corresponding S1 substructure does not

exceed five (Petrick, 1973). In fact, in most cases, there are only two or three NPs

in a S1 substructure. There is an efficient linear time algorithm for solving the

- MDST problem in graphs when IX1 = k, for any small, fixed k (Liestman & Richards.

1986). First, we create a target node for each target attribute and add the node to

the key join graph. Then an edge is added to connect each target node to every

relation node corresponding to a relation that contains the target attribute. The

minimum Steiner tree connecting the target nodes is found using the

LiestmadRichards algorithm. Let this tree be called the preliminary tree. The target

nodes and their adjacent edges are removed from the preliminary tree. The remaining

tree, the join tree, is a minimum tree in the key join graph corresponding to a

. minimum access path in the database connecting the target attributes.

The preliminary tree is more useful than the join tree for specifying the complete

access path for the virtual relation specified in a virtual relation clause. The target

attributes consist of those attributes which belong to the virtual relation and are

referred to in the natural language query. These attributes are either known

attributes, desired attributes, or attributes on which the virtual relation is joined to

other relations in the query access path. Thus they must appear in a complete

specification of the operations needed to create the virtual relation. Therefore we

work with the preliminary tree which contains both the target nodes corresponding to

the target attributes and the relation nodes corresponding to the relations which are to

be joined. An edge connecting a target node to a relation node in the preliminary

tree represents the projection of the corresponding relation on the corresponding target

attribute. An edge connecting two relation nodes in the preliminary tree represents

the join of the corresponding relations on the attribute which is the key of the

relation represented by the node at the tail of the edge. Thus this edge represents

the projection of both corresponding relations on this attribute If one of the target

attributes is the same as one of the attributes on which a join takes place then that

attribute will be represented twice in the preliminary tree, once in a target node and

once in a key/relation node. We eliminate the redundant nodes by traversing the tree

and checking to see if any interior (key) nodes of the tree have the same name as a

target node, and removing any target nodes where this is the case. The duplicate key

node must be interior because if a join is required to include an attribute, the

required attribute must be different from the attribute on which the join takes place

and the node corresponding to the required attribute will be the child of the duplicate

key node. The final tree which results when the redundant target nodes are removed

is a subtree of the dependency graph, consisting of the join tree which is a subtree of

the key join graph and some number of non-key attribute nodes connected to relation

81

nodes in the join tree representing relations which contain the corresponding non-key

attributes. Since adding and deleting target nodes to the join tree does not repesent

the inclusion or elimination of joins in the minimum felicitous access path represented

by the join tree, the path represented by the final tree is a minimum felicitous access

path which links the target attributes.

We now give an example of how a virtual relation clause is transformed into a

final tree corresponding to a minimum felicitous access path for the virtual relation

specified by the clause. Figure 5-6 contains a virtual relation clause corresponding to

the simple English predication "the Math 100 students' names"

(STUDENTS*
(STUD# CNAME NAME)
(x4 math100 x8)
(= = =))

--. Figure 5-6: v,irtual Relation Clause Example

Figure 5-7 shows the key join graph of the UNIVERSITY database with the target

nodes corresponding to the target attributes from the attribute list of the virtual

relation clause depicted in Figure 5-6. Figure 5-8 contains the two possible

preliminary trees that could be generated from the graph in Figure 5-7. Figure 5-9

depicts the final tree that results when the redundant STUD# target node is pruned

from either of the candidate preliminary trees.

- We now give an example of how the access path corresponding to a final tree is

calculated and show how the MFP is an improvement over the MCS. In Chapter 2

we saw that the MCS alone was unable to choose a unique access path for Query

(2.2). We repeat Query (2.21, for convenience.

NAME 1 STUDENT

CNAME

t
CNAME/ FAC# DEPT/ FAC#'
COURSE APPOINT

*
FACULTY

Figure 5-7: Key Join Graph with Target Nodes Added

NAME
STUDENT

p&-kCI STUDENT I

w

CNAME CLID/ I
I I CLASS 1

Figure 5-8: Candidate Preliminary Trees

Retrieve (FNAME) where UNITS=~ (5.1)

Figure 5-10 duplicates Figure 2-8 and shows the alternative minimum join paths

which exist in the database for Query (5.1). Figure 5-11 shows a logical form

relation clause containing the same information as Query (5.1). The relation is

arbitrarily assigned the name "VIRTUALlW. It contains the attributes UNITS and

FNAME. The UNITS-value of each tuple in the relation is "3". The set of

F H STUDENT I
I

GRADES/
GRADE

I
*

CNAME
CLASS

: Figure 5-9: Final Tree

0 0 cname -0
Who teaches 3 credit courses?

(a>

Who works in depts that offer 3 credit courses?

(b)

Figure 5-10: Minimum Paths for Query ((5.1))

FNAME-values in the virtual relation is unknown, and, after the relation has been

derived, will be assigned to "~4" .

(RELATION VIRTUAL1
(UNITS FNAME)
(3 x4)
(= =I 1

Figure 5-11: Logical Form equivalent to Query ((5.1))

Using identical information the MFP is able to find a unique access path where the

MCS is unable to do so.

As can be easily verified by examining Figure 5-1. the final tree that would be

produced for the current example is the tree shown in Figure 5-12.

CLID/ I CLASS I
CNAME/ FAC#/
COURSE FACULTY

I I

Figure 5-12: Tree for Logical Form in Figure 5-11

Once the tree has been computed. it is necessary to translate it into logical form so

that it can be substituted into the query logical form for the virtual relation clause

-
corresponding to the tree. ?IRA?JSLATE-TREE, (shown below), is a pseudocode

algorithm which translates final trees into a list of logical form relation clauses. The

variables used in the program include:

TREE - the final tree

CURRENT-NODE - node currently being visited in traversal of the tree

MASTERLIST - list of entries each containing an attribute name, the value
associated with that attribute, and the relational operator (=, <. >. ...I
linking the name to the value. Values may be variables or constants. For
example, the masterlist corresponding to the clause in Figure 5-11 is

((UNITS = 3) (FNAME = ~ 4)) .

CURRENT-RELATION-CLAUSE - If the current node is a relation node, the
program builds a corresponding relation clause; the current relation clause
is the clause currently being built.

CURRENT-ATTRIBUTE - After the attribute list for the current relation
clause has been built, the attributes in the list are checked against the
masterlist to see if their values (and relational operators) are known; the
current attribute is the attribute from the list which is currently being
checked.

CURRENT-VALUE-LIST - the list of attribute values under construction for
the current relation clause.

CURRENT-OPERATOR-LIST - the list of relational operators under construction
for the current relation clause.

CLAUSELIST - the list of base relation clauses corresponding to the tree
being translated. This list will be substituted into the query logical form
for the virtual relation clause corresponding to the input tree.

TRANSLATE-TREE :
CREATE-MASTERLI ST ;
t rave rse TREE, i f CURRENT-NODE i s a key node do,

CREATE~RELATIoN~CLAusE,
ADD-ATTRIBUTE-LIST,
ADD-VALUE-LIST ,
ADD-OPERATOR-L I ST,
UPDATE-MASTER-LIST ;
ADD-RELATION-CLAUSE;

CREATE-MASTERLIST:
i n i t i a l i z e MASTERLIST w i t h i n f&mot ion from v i r t u a l r e l a t i o n
c lause;

CREATE-RELAT ION-CLAUSE :
c r e a t e CURRENT-RELATION-CLAUSE w i t h the r e l a t i o n name from
CURRENT-NODE ;

ADD-ATTRIBUTE-LIST:
c r e a t e a l i s t o f every a t t r i b u t e name i n nodes adjacent t o
CURRENT-NODE and make t h i s l i s t t he a t t r i b u t e l i s t o f
CURRENT-RELATION-CLAUSE ;

ADD-VALUE-LI ST :
sea r c h MASTERLIST f o r a t t r i bu t es i n CURRENT-RELATION-CLAUSE ,
i f CURRENT-ATTRIBUTE i s i n MASTERLIST then

add va I ue f rom MASTERLIST en t r y t o CURRENT-VALUE-LIST
e l s e c rea te unique v a r i a b l e and add i t t o CURRENT-VALUE-LIST;

make CURRENT-VALUE-LIST vo 1 ue l i s t o f CURRENT-RELATION-CLAUSE ;

ADD-OPERATOR-LIST:
search MASTERLIST f o r a t t r i bu t es i n CURRENT-RELATION-LIST ,
i f CURRENT-ATTRIBUTE i s i n MASTERLIST then

add ope ra to r f rom MASTERLIST en t r y t o CURRENT-OPERATOR-LIST
e l se add "=" t o CURRENT-OPERATOR-LIST ;

ma ke CURRENT-OPERATOR-LIST ope r a t a r 1 i s t o f
CURRENT-RELATION-CLAUSE ;

UPDATE-MASTERLIST:
f o r eoc h a t t r i but e i n CURRENT-RELATION-CLAUSE ,

i f i t does not have an e n t r y i n t h e MASTERLIST then
c r e a t e an e n t r y and add i t t o MASTERLIST;

ADD-R E LAT I ON-C LAUSE :
add CTJRRENT-RELATION-CLAUSE t o CLAUSELIST ;

Given the tree from Figure 5-12, and the logical form in Figure 5-11,

TRANSLATE-TREE will create the list of clauses shown in Figure 5-13.

((RELATION CLASS
(CNAME FAC#)
(x10 x20)
(= => >

(RELATION COURSE
(CNAME UNITS)
(x10 3)
(= =) 1

(RELATION FACULTY
(FAC# FNAME)
(x20 x4) 1 1

Figure 5-i3: T~ansiation oi Tree in Figure 5-i2

Note that the subroutines ADD-VALUE-LIST, ADD-ATTRIBUTE-LIST and

UPDATE-MASTERLIST can be merged into one routine so that only one pass through

the attribute list of the current relation clause is made.

Chapter 6

Observations and Future Research

The observations made in this chapter are speculative and require further

investigation. However, they indicate what appears to be an exciting, natural and .

promising extension of the work reported in the thesis thus far.

6.1. Using Lexical Information to Disambiguate Verbs

The minimally connected access path is not always the correct access path. Consider

the following query to the UNIVERSITY database.

"Which faculty members teach .in the Math department?"

The minimum tree in the key join graph corresponds to the base relation APPOINT

and this interpretation results in the return of the Math department appointees. It is

possible, however, to use information attached to verbs in the lexicon-to make better

choices in cases such as this.

As mentioned in Chapter 3, the TQA team found that attaching detailed

grammatical information to verbs in the lexicon was too great an expectation for

linguistically naive ' database admininstrators. However, it is not unreasonable to

expect that the customization process will include the attachment, to the lexical entries

for verbs, of the names of the attributes corresponding to the noun phrase arguments

of those verbs. For example, one entry for the verb 'teach" would include the

87

88

information that it takes two arguments, corresponding to FAC# and CLID names

and/or values. This information is required to decide that the pronoun in the

following query refers to faculty members.

"Who teaches for the Math department?"

This capability is essential for a practical natural language interface. The creation of

the lexical entries for the verbs corresponding to the functional dependencies between

the key and non-key attributes of the base relations is relatively simple. There are

relatively few such dependencies, one for each edge in the dependency graph. The

database admininstrator, upon examining these dependencies, possibly being prompted

with them by the customization system, could enter the relevent verbs and attach the

information about their arguments.

Given this information about the arguments of the verbs which correspond to the

functional dependencies in the base relations, the system would be able to make more

reasonable choices when faced with those verbs in substructures containing NPs

corresponding to attributes from more than one base relation. For example, when

searching for the correct access path corresponding to the verb in the following query,

"Which faculty members teach in the Math department?",

it would prefer a path which includes the functional dependency cLID+ FAC# that is

attached to the lexical entry for "teach". Thus it would select

DEPT + CNAME + CLID -+ FAC# over
DEPT + {DEPT,FAC#) FAC#.

Note that the correct choice is a co-determinancy relationship that is based on the

functional dependency between CLID and FAC#. In the English query. "Math

department" refers to a set of courses, which in turn refer to a set of classes to

which the faculty members in question are to be in the "teach" relationship. By

keying on the functional dependency indicated by the verb the system selects the co-

determinancy corresponding to the query over the alternative which is more minimal.

There are a number of ways to implement this heuristic. The system could find '

all trees and then, if there were more than one, choose the minimum tree containing

the desired edge. Otherwise, it could include the nodes adjacent to the preferred edge :

in the target graph and thus ignore more minimal trees which do not include it.

, Similarly, it would be useful and practical to attach to the lexical entry for a noun

which refers to only one possible role of an attibute sufficient information to allow

the system to select the corresponding path. For example, consider the attribute FAC#.

This attribute represents an entitytwhich has more than one role represented in the

database. That is, the attribute is at the tail of more than one edge in the

dependency graph. The two roles corresponding to the two edges incident on FAC#

are "teacher" and "appointee". Some of the natural language noun phrases

corresponding to this attribute do not distinguish clearly between the two roles, eg..

"faculty member" and "professor". Attached to the lexical entries for these two

phrases would be the information that they correspond to the attribute FAC#.

However, noun phrases such as "appointeew and "teacher" specify only one of the

possible roles. In these cases. the name of the node at the tail of the edge would be

included in the lexical entry. {DEPT,FAC#) for "appointeen and CLID for "teacher".

When interpreting a query containing one of these noun phrases, both corresponding

nodes would be included in the list of target nodes. In this manner, the system

would select the longer access path for the query

"Who are the Math teachers?"

and the shorter one for

"who are the Math appointees?".

6.2. Managing Multivalued Coilependencies

Up until' now we have ignored multivalued dependencies in our examination of the

correspondence between natural language predicates and database predicates. We

consider multivalued dependencies in this section.

A multivalued dependence is defined in (Smith. 1985) as follows: "There is a

multivalued dependence from A to B (A-B) if, at any point in time, a fact about

A determines a set of facts about k". For example, a class may have many students.

Each combination of A and B must be unique, that is, {A,B} must be a key in a

relation. For example. {CLID, STUD#) is the key for GRADES. A given student

determines a set of classes, therefore STUD#-CLID. A given class determines a set of

students, therefore CLID-STUD. As pointed out by Smith, this definition is not in

exact accord with previous definition^.^ However, this definition is derived from and

is similar to the previous definitions; it makes good common sense and suits our

purpose.

6.2.1. Multivalued Co-dependencies

Let us call the members of a set of attributes (entities) X, which are all

multivalued dependents of the same attribute (entity) A, multivdued co-dependents and

the relationship among the members of X and A a rndtivalued co-dependency. In

order to be clear, we replace the term "co-dependentsM and "co-dependencyM with

functional co-dependents and functional co-dependency when we refer to attributes

which are functionally dependent on the same key and to the relationship among the

attributes and the key. The following relation schemes represent a canonical

multivalued co-dependency.

We represent multivalued dependencies in dependency diagrams by light double headed

- arrows from the determiner to the dependents. The dependency diagram for RI and

R2 is given in Figure 6-1. Since a given A-value in RI determines a set of B-values,

1 and vice versa, there is a light double headed arrow from node A to node B in the
I

I . dependency diagram, and vice versa. Similarly, since a given A-value in R2

determines a set of C-values, and vice versa, there is a light double headed arrow

from node A to node C in the dependency diagram, and vice versa.

Figure 6-1: Canonical Multivalued Co-dependency

Note that the relationship between the multivalued co-dependents B and C is

infelicitous, that is, B and C are not linked in a functional dependency or a

functional co-dependency.

We will use the following GRADSCHOOL database scheme to inform our discussion

of multivalued co-dependencies.

STUDENT = {STUD#, SNAME, SSEX],

FACULTY = {FAC#, FNAME, FSEX),

CLASS = {a, TERM).

ASSIGN = {CLID, FAC#).

GRADES = {CLID, -- STUD#, GRADE},

SUPERVISE = {FAC#, -- STUD#).

This scheme contains the following multivalued dependencies.

CLID-STUD* .
CLIDWFAC# ,

STUD# -CLID,

%AC# -CiiD,

STUD#-F.4C#, and
FAC# -STUD#

Dependency diagrams for the three multivalued co-dependencies contained in the

GRADSCHOOL database are shown in Figure 6-2. Intuitively; . the GRADSCHOOL

database is a representation of a school where there is more than one student in a

class and where there can be more than one teacher of a class. In this school

students may attend more than one class, and faculty members may teach more than

one class. Furthermore, a faculty member supervises more than one student and

students have more 'than one supervisor.

CLID FAC#/ CLID STUD#/
ASSIGN GRADES

FAC#/ 4 CLID/ - - STUD#/
FACULTY CLASS STUDENT

.a

(a>

t C

Figure 6-2: Multivalued Co-dependencies in the GRADSCHOOL Database

FAC# STUD#/
SUPERVISE

CLID STUD#
GRADES

6.2.2. Multivalued Co-dependencies and Natural Language

Although the multivalued co-dependency is an infelicitous relationship and weaker

CLID FAC#/
ASSIGN

FAC# STUD#/
SUPERVISE

than the functional co-dependency, it is possible to have simple natural language .

CLID/ c : STUD#/ - - FAC#/
CLASS STUDENT FACULTY

(c>

expressions corresponding to some multivalued co-dependencies. Consider the

functional co-dependency FAC# 6 {FAC#.STUD#} --t STUD#, where {FAC#, STUD#} is the

CLID/
CLASS

-
STUD#/ -c 4 FAC#/

STUDENT FACULTY

(b)

- - r

94

key for the relation SUPERVISE. A given FAC#-value in the SUPERVISE relation

specifies a set of {STUD#, FAC#]-values of which is predicated a set of STUD#-values.

This functional co-dependency reflects the supervisory relationship between faculty

members and students. Compare this functional co-dependency with the multivalued

co-dependency FAC# -CLID-STUD*. A given F A c # - v ~ ~ u ~ specifies a set of

CLID-values of which is predicated a set of STUD#-values. This multivalued CO-

dependency reflects the teaching relationship between faculty members and students.

The multivalued co-dependency relationship is not a strong as the functional co-

dependency relationship because in the functional co-dependency the relationship

between the determiner and its corresponding set of dependents is one-to-one, while in

the multivalued dependency the relationship between the determiner and its

corresponding set of dependents is one-to-many. For example, in the functional Co-

- dependency. FACa +{FAC#,STUD#]-+STUD#, a given Fa4c#-value specifies a set of

supervisory relationships, and there is a one-to-one relationship between each

supervisory relationship and the student which comprises it. In the multivalued co-

dependency, FAC#-CLID-STUD#, a given F A C # - V ~ ~ U ~ specifies a set of classes, and

there is a one-to-many relationship between each class and the students which

comprise it. Thus, when we speak of "Jones' students" in the graduate school context

we are more likely to assume that "Jones" is specifying the stronger relationship

between faculty members and classes, that is, the supervision relationship. However.

.if we speak of ".Tones' Math 891 students" we know that we are referring to the

teaching relationship.

The virtual relation corresponding to the phrase "Jones' Math 891 students" is

7z~tm+~~~c+=85110-1~0~,~~~~=m891/861/sl teach Wgrades.

We are using the faculty number to represent Jones and the class id of the current

offering of Math 891 to represent the course for simplicity. Note that the access

path corresponding to the virtual relation joins assign with grades. In our canonical

example in Figure 6-1, the access path which yields the virtual relation containing the

multivalued co-dependency contains RIWR2. As we discover below, the relationship

between the entities represented by the relations which are joined to create the virtual

relation containing an multivalued co-dependency determines whether the multivalued

co-dependency has a corresponding simple natural language expression.

Kot all multivalued co-dependencies have corresponding simple natural language

expressions. For example. it seems that neither of the multivalued co-dependencies

represented by the dependency diagrams in Figures 6-2(b) and (c) can be expressed by
-

a simple natural language expressibn. The relationship between a student and the

classes taught by his supervisor and the relationship between a faculty member and

the classes attended by his supervisees are not strong or direct enough to warrant

such an expression. However, as Figure 6-2 mades clear, the dependency relationships

in a multivalued co-dependency which has a corresponding natural language expression

appear identical to the dependency relationships in the multivalued co-dependencies

which have no such expression.

6.2.3. Strong Multivalued Co-dependencies

Let us call a multivalued co-dependency which has a corresponding natural language

expression a strong multivalued co-dependency. We refer to a multivalued co-

dependency which does not have a corresponding natural language expresssion a weak

multivalued co-dependency. Strong multivalued co-dependencies do have different

dependency relationships from the relationships in weak multivalued co-dependencies.

They differ in a way which the diagrams of Figure 6-2 do not show. We have said

that the tuples in a grades relation represent undertakings. Let us refer to the

relationships that are represented in the relation ASSIGN as "assignments". Let us

refer to the relationships between faculty members and students which are represented

in the relation SUPERVISE as 'supervisions'. One way of describing the significant

difference between strong multivalued co-dependencies and weak multivalued co-

- dependencies is to say that there is a dependency between the composite entities that

make up strong multivalued co-dependencies, and this is not the case with weak

multivalued co-dependencies. For example, consider the multivalued co-dependency of

Figure 6-2(a), which represents the teaching relationship between faculty members and

students. This relationship is based on the intermediating relationship between the

composite entities assignments and undertakings. There is a dependency between

assignments and undertakings. For any assignment there must be a corresponding

non-empty set of undertakings, given the make-up of the graduate school. Given an

undertaking there must be a corresponding non-empty set of assignments. These

multivalued dependencies are dependencies that exist between entities in the world.

One can imagine that an assignment of a teacher to a class takes place before any

registration of students in that class. Therefore, in the database there may be a

assign tuple without any corresponding grades tuples. However, in the world an

assignment implies undertakings, real or imminent. Thus, we say that an assignment

determines a set of undertakings, and an undertaking determines a set of assignments.

There is no strong relationship between the composite entities which make up the

multivalued co-dependency depicted in Figure 6-2(b). Given an assignment there need

not be any corresponding supervisions. Given an supervision there need not be any

corresponding assignments. The same holds true for supervisions and undertakings.

the composite entities which comprise the multivalued co-dependency depicted in

Figure 6-2(c).

Another way of describing the difference between strong and weak multivalued co-

dependencies is to say that the entities represented by the attributes composing strong

multivalued co-dependencies together comprise a third entity, whereas this is not the -

case with weak multivalued co-dependencies. In the strong multivalued co-dependency

represented in Figure 6-2(a), undertakings and assignments cohere to form a third

entity, which we might refer to as an "instruction". An instruction is the product of

a bringing together of a teacher and a student in the same class. An instruction is

an entity which, although abstract, is easily recognizable. Consider now the

multivalued co-dependency represented in Figure 6-2(b). The entities represented in

this diagram, that is, assignments and supervisions, do not cohere to form a

recognizable entity. It is the strength and closeness of the coherence between

undertakings and assignments that leads to the fact that there are simple natural

language expressions which refer to relationships between the entities which comprise

them. It is a lack of coherence between assignments and supervisions which accounts

for the fact that there are no natural language expressions corresponding to the

relationships between the entities that comprise assignments and supervisions.

6.2.4. Representing Strong Multivalued Co-dependencies

The dependencies which distinguish strong multivalued co-dependencies from weak

ones often are not represented in a database scheme or its corresponding key join

graph. If access paths are to be generated to yield virtual relations containing strong

multivalued co-dependencies, these dependencies must be represented. If we are to use

the method developed in Chapter 5, the representation of these dependencies must be

compatible with that method. We present two approaches for representing these

"hidden multivalued co-dependencies".

The first approach requires a change in our algorithm for translating dependency

graph trees into logical form accesq path specifications. The second approach requires

a change to the database itself. Both approaches have an impact on the key join

graph.

Our first approach follows from the observation that there are multivalued

dependencies between the composite entities which comprise the strong multivalued co-

dependency. We represent these dependencies in the key join graph by light double

headed edges between the nodes representing the corresponding composite keys. The

key join graph for .the GRADSCHOOL database is depicted in Figure 6-3. Since we

prefer functional co-dependencies over multivalued co-dependencies we weight the

edges, giving the multivalued dependency edges a greater weight than the functional

dependency edges. Thus the problem of finding the minimum tree in the key join

STUD#/ FAC# STUD#/
STUDENT SUPERVISE

Figure 6-3: GRADSCHOOL Key Join Graph

graph corresponding to the virtual relation in the database specified by a simple

natural language predicate in the query becomes the Minimum Directed Cost Steiner

Tree (MDCST) problem. This problem subsumes the Minimum Cost Steiner Problem.

. 1

The algorithm in (Liestman & Richhrds. 1986) solves the MDCST in linear time when

the target nodes number less than seven. Therefore we may use this same algorithm

after including the multivalued dependency edges. Further research is required to

CLID STUD#/
GRADES

assess how much weight to assign to the two different types of edge. Below we

offer an argument for assigning a weight of 2(weight of the functional dependency

edges) to the multivalued dependency edges. The algorithm for translating the

resulting trees into logical form specifications of access paths must change if we use

this approach because a join represented by a multivalued dependency edge does not

take place on the attribute corresponding to the node at the tail of the edge. The

join takes place on the attribute which is the intersection of the composite keys

represented by the nodes adjacent to the edge.

FAC#/
FACULTY

A

CLID/ CLID FAC#/
CLASS ASSIGN

The second method for representing hidden multivalued dependencies follows from

the observation that the composite entities which comprise the multivalued co-

dependency cohere to form a third entity. A relation is added to the database to

represent instances of this third entity. In order to abide by the restrictions of the

surrogate key assumption, surrogate keys are created for the composite keys of the

relations representing the original composite entities. The key for the new relation is

a composite of these surrogates. The following relation scheme reflect the

modifications that this approach has on the GRADSCHOOL database.

ASSIGK = {ASSIGNID,CLID,FAC#)

GRADES = {GRADEID,CLID,STUD#,GRADE}

INSTRUCT = {GRADEID,ASSIGNID}

Figure 6-4 shows the modified GRADSCHOOL dependency graph. Note that the

relationship between STUD# and FAC# is now a functional co-dependency. Thus, the

anaiysis that strong muitivaiued ,co-dependencies are strong because the composite

entities compising them together form a third entity implies that strong multivalued

co-dependencies are implicit functional co-dependencies. If this analysis is valid, then

if we were to use the first approach the appropriate weight for the multivalued

dependency edges is 2(weight of the functional dependency edges), because these edges

represent the implicit joins of the two relations represented by their adjacent nodes to

the third, implicit relation.

Creation of the new relation could be done automatically by a sophisticated DBMS

such as would be necessary to implement RM/T (Codd. 1979). The DBMS would be.

required to update and delete tuples from the new relation whenever additions and

deletions from the original composite relations warranted. Note that to create the

SNAME
STUD#/ - FAC# STUD#/

STUDENT SUPERVISE

SSEX , A

L

ASSIGNID GRADEID/ FAC#/
INSTRUCT FACULTY

C
FNAME FSEX

ASSIGNID/
ASSIGN

Figure 6-4: Modified GRADSCHOOL Dependency Graph

new relations the system must be informed by the database admininstrator of the

existence of the multivalued dependencies between the composite entities, for example,

of the multivalued dependency between assignments and undertakings.

6.3. Multiple Candidate Keys

One of the most unrealistic assumptions on which our method is based is the

assumption that there is only one candidate key for a given relation. This

assumption could be relaxed by assuming instead that only primary keys are used to

represent the tuple entity in other relations and treating other candidate keys like any

other non-key attributes. It may be that the method could handle having all

candidate keys acting like primary keys in the sense that they could be used as

connections between the relations in which they

database. This would complicate the dependency

what, if any, alterations to our approach to

Similarly, further research is needed to see how

the results. !

are keys and other relations in the

graph and research is needed to see

choosing access paths is necessary.

relaxing the 4NF assumption affects

6.4. Generating Natural Language

Paraphrasing access paths in natural ldnguage and feeding them back to the user is a

common technique for validating query interpretations. Responding to user queries in

natural language may be more appropriate then listing data at times. More natural

and comprehensible discourse may be generated by using lexical information about

natural language predicates and knowledge about the database structure as contained in

the dependency graph. For example, paraphrases such as "Does Prof Jones teach John

Wong?" might be generated as an alternative to 'Does Prof Jones teach classes

undertaken by John Wong?"

Chapter 7

Conclusions

In this thesis, we have developed an approach to solving the MAPP in the context

of natural language interfaces to relational databases.

We have shown that the MAPP in the TQA system is confined to choosing paths

which yield virtual relations that correspond to simple natural language predicates.

We have argued that the rules governing propositional speech acts will cause human

users of natural languages interfaces to express their queries in such a manner that

the MAPP will be confined in this ,way for natural language interfaces in general.

We have argued that the entities referred to in simple natural language predicates

have a definite, direct relationship with each other, and that this relationship is of

significance to the human users of the natural language. We have argued further

that this type of definite, direct relationship between entities will be reflected in the

database by the relationship of the attributes corresponding to the entities.

We have characterized the relationships between attributes in the database based on

an informal semantics for relational databases that we have developed. We have -

shown how a certain class of these attribute relationships, the felicitous relationships.

which arose from our characterization, correspond to simple natural language

103

predicates. Based on the correspondence between simple natural language predicates

and attribute relationships in the database, we developed a strategy for making

reasonable guesses of the access paths which yield the virtual relations referred to in

natural language database queries by simple predicates.

We developed a rich representation of the database which embodies the syntactic and

semantic relationships among attributes and relations in the database. We provided a

heuristic method to map a simple natural language predication to this representation

and thereby derive an image of an access path in the database which yields a virtual

relation corresponding to the predication.

image into a logical form specification of

Our method for deriving access paths

We provided an algorithm to

the access path.

is suitable for cyclic databases.

improvement over previous methods used in natural language interface

translate the

which is an

systems. It

does not require an undue or impractical amount of

language interface to a particular application.

customization of the natural

Appendix A

A.1. Database Basics

A computer database is a collection of data. A set of programs which allows a

user to manipulate, store and retrieve the data in a database is called a database

management system (DBMS).

One major purpose of a DBMS is to eliminate the requirement that users know how

data is physically stored in the computer. A DBMS which provides this feature

provides physical data independence. Physical data independence is accomplished by

presenting users with a view of the data, called the user view, which represents the

database in terms of data structures which are easier for users to manipulate.

Intermediate between the external views and the physical database is the conceptual

database. The conceptual database may be merely the amalgamation of the external.

views, or it may include additional information useful to others who are involved in

the enterprise which the database supports, such as the database administrator (DBA).

Historically, there have been three main approaches to the design of the conceptual

database and the user views: the relational, the network and the hierarchical

approaches. The hierarchical approach is often viewed as a restricted case of the

network approach (Date. 1981). The relational approach is generally accepted to have

advantages over the network and hierarchical approaches (Date. 1981). (Ullman,

1982a). One of its advantages is its greater ease of use; relational databases are easier

to understand and manipulate. In addition, the relational approach has a strong

theoretical basis. including mathematical set theory as well as a large body of its own

theory. For these reasons, most database research since 1970 follows the relational

approach. This is the approach that we observe in this thesis.

A.2. Relational Databases

We follow the notation that is described in (Maier, 1983).: Much of what follows

is a paraphrase of part of the first six chapters of that work.

A.2.1. Intuitions

The simplicity of the relational approach results from viewing all data as being

stored in tables, with each row in a table having the same format. Each row in a

table summarizes some object or 'relationship in the world. Let us consider an

enterprise which buys certain parts from certain suppliers at different times. Part of

the world of this enterprise might be represented in the tables which appear in Figure

A-1. Each supplier is represented by a- row in the SUPPLIER table, each type of

part by a row in the PARTS table and each shipment of one type of part by a

supplier is represented by a row in the SHIPMENT table. Suppliers are summarized

by their number, name and location. Parts are summarized by their number, name

and location of use. Shipments are summarized by their supplier, part and the

quantity shipped. The kind of information that can appear in any one column is

restricted. The SNAME column must contain the names of suppliers. The order of

the columns in any one table is irrelevant to the information contained. Each row is

unique in each table: no object (that is, supplier. part or shipment) is represented by

more than one row.

The tables shown in Figure A-1 are examples of relations. The column names of

each table provide the format for that table. The column names are called attribute

names. Each attribute name has a corresponding domain of permissable values for the

associated column. The domain of QTY might be the set of positive integers up to

1,000.000. The rows in the relations are called tuples. The tuples in each relation

form a set, that is, there are no duplicate tuples. There is a subset of attribute

names in each relation with the property that the tuples in that relation can be

distinguished by looking at the attribute values corresponding to the names in that

subset. This subset is called the key for the corresponding relation. S# is the key

for the SL'PPLIER relation, S# and P# together form the key for the SHIPMENT

relation.

SUPPLIER PART

london london

acme paris bolt madrid

s3 aone tome screw milan

s4 best paris (b)

(a)

SHIPMENT

Figure A-1: The PARTSUPPLIER Database

lo8

A.2.2. Relations

A relation scheme R is a finite set of attribute names {Al. Az. An).

Corresponding to each attribute name Ai is a set Din 1 < i d n called the domain of

Ai, sometimes denoted dom(Ai). Attribute names are sometimes called attributes. Let

D = D1UD2U ... UDn. A relation r on relation scheme R is a finite set of mappings

i t l . t2, t) from R to D with the restriction that each mapping t E r , t (A i) must
P

be in Di, 1 < i 6 n. These mappings are called tuples.

In Figure A-1 there are three relation schemes.

SUPPLIER = {s#, S N A M E , CITY}

PART ={P#, PNAME, CITY}

SHIPMENT = {s#, P#, QTY}

Some of the domains might be:

~ ~ ~ (S N A M E) = {ajax, acme, aone. best, numl, quality, cutrate)
dom(p#) = {pl, p2, p3, p4, p5. p6. p8. p91
~ O ~ (Q T Y) = the set of all positive integers less than 1OOOOOO

The SHIPMENT relation has 5 tuples. One of them is t defined as t (s#) = s l , t(p#)

= p l , ~ (Q T Y) = 300.

The tuples are defined as mappings in order to avoid any commitment to the order

of the attributes in the relations. However, for convenience we will denote relations

by listing attributes in a certain order and tuples by listing

The value of tuple t on attribute A is called the A-value

as a mapping the A-value of t is t (A) . If t is interpreted

A-value of t is the entry of t in the column headed by A.

values in the same order.

of t. If t is interpreted

as a row in a table, the

For any subset X of R.

we can restrict t to those attribute values correspondin

denoted t(X) and called the X-value of t.

~g to X; the restriction is

Let t be the tuple defined in the preceding example. The S#-value of t is t(s#) =

s l . Let X = {P#, QTY}. The X-value of t is {pl, 300).

A.2.3. Keys

A key of relation r on relation scheme R is a subset K = {B1. B2, B,) of R

with the property that no two tuples have the same values on all the attributes of

K; that is, t l (K) f t2(K), where tl and t2 are distinct tuples in r. Therefore, it is

sufficient to know the K-value of a tuple to identify the tuple uniquely.

Let us formulate some notation for relations. schemes and keys. We will use

-
7 l n t . l O - ,,,,Lc,se - !etters from i k beginnir,ig of t h e alphabet for attributes, uppercase ietxers

from the back of the alphabet for relation schemes, and lowercase letters for

relations. A relation scheme R = {Al. Az, ..., An} may be denoted by R[A,A~..-A,I.

or sometimes [A 1 ~ 2 . . . ~ n] when the name is unimportant. (Concatenation is used to

stand for set union between of sets of attributes.) A relation r is written r(R) or

r(AIA 2...An). If a relation has more than one key the various keys are referred to as

candidate keys and one of the candidate keys is designated to be the primary key. To

denote the primary key. (hereafter referred to as the key if there is no need to

distinguish it from .other candidates), of a relation or relation scheme we underline

the attributes in the key.

Rewriting the relation schemes for Figure A-1 we have:

SUPPLIER = {s#, SNAME, CITY)

PART ={P#, PNAME, CITY}

SHIPMENT = {w, - P#, QTY}

The definition of key has to be narrowed somewhat to include a concept of

minimality. A key of a relation r(R) is a subset K of R such that for any distinct

tuples t l and t2 in r , t l (K) # t 2 (~) and no proper subset K' of K shares this

property. K is a superkey of r if K contains a key of r .

A.2.4, Operations

Two relations on the same scheme can be considered sets over the same universe.

Thus. Boolean operations can be applied to two such relations. The set r n s is the

relation q(R) containing all tuples that are in both s and r . The set rUs is the

relation q f R) containing all tuples that are in either s and r. The set r - s is the

relation qfR) containing those tuples that are in r but not in s.

Select is a unary operation on relations. When applied to a relation r , it yields

another relation that is the subset of tuples in r with a certain value on a specified

attribute. Let r be a relation on scheme R, A an attribute in R, and a an element of

d o m (~) . Using mapping notation, U ~ = ~ (T) ("select A equal to a on r") is the relation

r'(R) = { t E &(A) = a) .

The relation in Figure A-2.b is u b_s &upplier), where supplier is the relation

in Figure A-1.a.

fioject is also a unary operator on relations. The projection of r onto X, written

.rrx(r), is the relation r'(X) obtained by striking out the columns corresponding to

attributes in R-X and removing duplicate tuples in what remains. In mapping

notation. .rrx(r> is the relation r'(X) = {t(X)lt E r].

The projection of the part relation from Figure A-1.b onto the attributes P# and

PNAME9 T { ~ , , ~ ~ ~ ~ ~) (part), is shown in Figure A-2.a.

sl I ajax I london 1 p l I nut

(c)

Figure A-2: Examples of Database Operations

Join is a binary operator for combining two relations. In general, join combines

two relations on all their common attributes. Start with relations r(R) and s(S) with

RS = T. The join of r and s, written rrxls. is the relation q(T) of all tuples t over

T such that there are tuples tT E r hnd t, E s with tr = t(R) and t, = t(S). Thus, q is

made up of all possible tuples that can be derived by combining the tuples of r and

the tuples of s. Since R n S is a subset of both R and S , as a consequence of the

definition, t,(RnS) = t s (R n S) . Thus, every tuple in q is a combination of a tuple

from r and a tuple from s with equal (RnS)-values. Join is sometimes referred to

as natural join to distinguish it from some other types of join operations that will be

briefly described below.

The join of the sirpplier and part relations of Figure A-1, supplierDQpart, is shown

in Figure A-2.c. SUPPLIERnPART = CITY, and the first tuples from each of the two

corresponding relations are the only pair which have equal CITY-values. Thus, the

only tuple in the join is the one created by the combination of these two tuples.

The resulting relation represents a relationship between a supplier and a part, that is.

the supplier is located in the same city in which the part is used.

It can be seen that the join operation is commutative from the symmetry in its

definition. It is also associative. Given relations q, r and s,

(q ~ r) ~ s = q ~ (s ~ < l r) .

The 0-join of r and s is the relation which may be formed by the selection of

those tuples in the cartesian product of r and s such that the A-value of R stands in

relation O to the B-value of S. A 0-join where O is '=' is called an equijoin. An

equijoin where A = B is the same as the join of r and s.

A.2.5. Functional Dependencies

Two primary purposes of databases are to avoid data redundancy and to improve

data reliability. Any a priori knowledge of restrictions or constraints on permissible

sets of data is useful when designing databases to achieve these purposes. The

knowledge of what is possible i n the world allows designers to impose restrictions on

the data which in turn impose structure on the database. Data dependencies are

formulations of such advance knowledge. Dependencies constrain relations in such a

way that they reflect only those states of affairs in the real world that are possible.

For example, in the world that is partially represented by the UNIVERSITY

database described in Section 2.1.4, there are a number facts about the entities and

relationships in that world that impose constraints on the database. For example.

Classes are offerings of exactly one course.
Courses are offered by only one department.
For each class, students receive only one grade.

These restrictions are examples of functional dependencies. The functional dependency

is the most important of the data dependencies.10 Informally, a functional

dependency occurs when the values of a tuple on one set of attributes uniquely

determine the values on another set of attributes. The above restrictions can be

phrased as

CNAME functionally depends on CLID.

DEPT functionally depends on CNAME, and
GRADE functionally depends on {CLID, STUD# 1.

where CLID is the class identifier attribute and CNAME is the course name attribute.

Generally the order of the sets is reversed and we write CLID, STUD# functiondly

determines GRADE, or {CLID, STUD#) --+ GRADE.

We now state this notion formally. Let r be a relation on scheme R, where X and

Y are subsets of R. Relation r satisfies the functional dependency (FD) X -+ Y if for

every X-value x . ~ ~ (c r ~ = ~ (r)) has at most one tuple. In other words, for two tuples

t l and t2 in r, if tl(X) = t2(X). then tl(Y) = t2(Y).

Given a relation scheme R composed of the set of attributes S and containing the

set of candidate keys K, we say R embodies the FD K -+ S if K E K.

Functional dependence is transitive. For example, since CLID + CNAME and

loother dependencies identified by DB theorists are multivalued dependencies (MVDS) and join
dependencies (JDs)

CNAME -+ DEPT. CLID -+ DEPT: i.e.. CLID -+ CNAME -+ DEPT. We say that the set of

dependencies {CLID -+ CNAME. CNAME -+ DEPT) logically implies the dependency

CLID -+ DEPT. In general, if F is a set of dependencies for a relation scheme R and

X -+ Y is a functional dependency we say F logically implies X -+ Y. if every relation

r on R that satisfies F also satisfies X - r Y. The closure of F, written p, is the set

of FD's that are logically implied by F. There is a sound and complete set of

axioms, known as Armstrong's axioms, which derive logical implications from sets of

FD's (Armstrong, 1974). We rephrase and repeat them here. If W, X, Y, and Z are

subsets of R, for any relation r on R:

F1. Reflexity: X -, X.
F2. Augmentatioa: X + Y implies XZ -+ Y.
F3. Pseudotransitivity: X + Y and YZ -, W implies XZ -r W.

There is a linear time algorithm due to (Beeri and Bernstein. 1979) to test whether a

FD is a =ember ef F+ fcr a giver, set of FD's P.

A.2.6. Multivalued Dependencies

Suppose we are given a relation scheme R and A and B are subsets of R. A

mdtidetermines B, A-HB, if, given values for the attributes of A, there is a set of

zero or more associated values for the attributes of B, and this set of B-values is not

connected in any way to values of the attributes in R-A -B. Formally, we say

A-B holds in R if whenever r is a relation for R, and t and s are two tuples in r,

with t(A) = dA) , then r also contains tuples u and v, where

1. u(A) = v(A) = t(A) = dA) , and
2. U(B) = t (~) = U(R-A-B) = S(R-A-B).

The relation in Figure A-3 contains two multivalued dependencies, COURSE-"PROF and

COURSE-TEXT.

math 100

math 100 Jones Calculus

math 100 Jones

Figure A-3: Example of Multivalued Dependency

A.2.7. Normal Forms

A relation is said to be in a particular normal form if it satisfies a certain specified

set of constraints. A relation scheme R is in first normal form (1NF) if the values in

dom(A) are atomic for every attribute A in R. That is, the values in each domain

are not lists, sets of values, or composite values. A relation scheme R is in second

normal form (2NF) if and only if it is in 1NF and every non-key attribute is fully

dependent on the primary key. (Attribute A is fully dependent on the set of

attributes B if it is functionally dependent on B and not functionally dependent on

any proper subset of B.) A relation scheme R is in third normul form (3NF) if and

only if it is in 2NF and every non-key attribute is nontransitively dependent on the

primary key. A relation scheme R is in Boyce/Codd Normal Form (BCNF) if and

only if every determinant is a candidate key. (A determinant is an attribute on

which some other attribute is fully dependent). BCNF is a stronger version of 3NF

devised to handle the case of a relation possessing two or more composite and

overlapping candidate keys. Sometimes relations can be in BCNF and still be

redundant. For example, the relation in Figure A-3 is in BCNF. (the key consists of

all three attributes). The redundancy results from the multivalued dependencies

COURSE-PROF and COURSE-TEXT. A relation R is in fatrth normal form (4NF) if

and only if, the only dependencies (FDs or MVDs) in R are functional dependencies

math 100 math 100 Calculus

math 100 math 100 Calculus1

Figure A-4: Examples of 4NF Relations

from a candidate key to some other attribute. The relations in Figure A-4 contain

the same information as the one in Figure A-3 and are in fourth normal form.

References

Armstrong. W.W. Dependency Structures of Data Base Relationships, pages 580-583.
Proceedings 1974 IFIP Congress. ~ m d e r d a m , 1974.

Atzeni, P. and Parker, D.S. Assumptions in Relationel Database Theory. pages 1-9.
Proceedings of the ACM Symposium on Principles of Database Systems. Los
Angeles, CA., 1982.

Ballard, Bruce W., Lusth, John C. and Tinkham, Nancy L. LDC-1: A Transportable,
Knowledge-Based Natural Language Processor for Office Environments. ACM
Transactions on Office Information Systems. 1985. 3(2), 1-25.

Barr, Avron & Edward A. Feigenbaum. The adb book of Artificial Intelligence, Volume
I. Los Altos. Ca1ifornia:William Kaufmann, Inc., 198 1.

Beeri, C.. and Bernstein, P.-4. Computational Problems Related to the Design of
Normal Form Relational Schemas. ACM Transactions on Daabases. 1979. 4(1),
30-59.

Biller, H. On the hotion of Irreducible Relations. In G. Bracchi and G.M. Nijssen
(Eds.), Data Base Architecture, Amsterdam: North-Holland Pub. Co.. 1979.

Carlson. C.R. & R.S. Kaplan. A Generalized Access Path Model and its Application to a
Relational Data Base System, pages 143-154. ACM SIGMOD, Washington. D.C.,
1976.

Codd, E.F. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 1970, I3(6), 377-387.

Codd, E.F. Relational Completeness of Data Base Sublanguages. In R. Rustin (Ed.).
Database Systems, Englewood Cliffs. N.J.: Prentice-Hall. 1972.

Codd. E.F. Extending the Database Relational Model to Capture More Meaning. ACM
Transactions on Database Systems. 1979. 4(4). 397-434.

.Dameraw Fred J. ,Operating Statistics for the Transformational Question Answering
System. American Journal of Computational Linguistics, 198 1. 7(1), 30-42.

Damerau, F.J. Problems and Some Solutions in Customization of Natural Language
Data Base Front Ends. ACM Transactions on Office Informution Systems. 1985.
3(2), 165-184.

Date. C.J. An Introduction to Ddabese Systems, Third Edition. Reading,
Mass.:Addison-Wesley. 198 1.

Hafner, Carole D. and Godden. Kurt. Portablility of Syntax and Semantics in
Datalog. ACM Transactions on Office Information Systems. 1985. 3f2). 141-164.

Johnson, D.E. Design of a Portable Natural Language Interface Grarnmr. Technical
Report 10767. IBM Thomas J. Watson Research Laboratory. 1984.

Karp, R.M. Reducibility among combinatorial problems. In R.E. Miller and J.W.
Thatcher (Eds.). Complexity of 'cornput& Computations, New York: Plenum Press,
1972.

Kent, W. Consequences of Assuming a Universal Relation. ACM Transactions on
Database Systems. 1981, 6(4). 539-556. :

Liestman. Arthur L., and Richards, Dana. A linear algorithm for small instances of
the Steiner tree problem in graphs. To be published. 1986.

Maier. David. The Theory of Relational Databases. Rockville. Mary1and:Computer
Science Press. 1983.

Martin, P., Appelt. D.. Grosz, B. and Periera. F. An Experimental Transportable
Natural Language Interface. Database Engineering, 1985, 8(3). 10-22.

Osborn. S.L. Towards a Universal Relaion Interface, pages 52-60. Proceedings of the
Fifth Internatinnal Conference on Very Large Ozta Bzses. Ria cfe Janeiro, Brazil,
1979.

Perrault. C. Raymond and Cohen. Philip R. 1t.s for your own good: a note on
inaccurate reference. In Joshi, Aravind K.. Webber. Bonnie L. and Sag, Ivan
A. (Eds.). Elements of Discourse Understanding, Cambridge: Cambridge University
Press. 1981.

Petrick. S.R. Semantic Interpretation i n the Request System. Technical Report RC 4457.
IBM Thomas J. Watson Research Laboratory. 1973.

Petrick. S.R. Natzrral Language Database @my Systems. Technical Report RC 10508.
IBM Thomas J. Watson Research Laboratory, 1984.

Petrick. S.R. Personal communication. 1986.

Pylyshyn. Z. and Kittredge, R- Databases and Natural Language Processing. Database
Engineering. 1985. 8(3). 2-9.

Sagiv, Yehoshua. Can We Use The Universal Instance Assumption Without Using NuLLs?.
pages 108-120. ACM SIGMOD. Univ. of Michigan, Ann Arbour. 1981.

Searle, John R. Speech Acts An Essay in the Philosophy of Language.
CambridgeCambridge University Press. 1969.

Smith. H.C. Composing Fully Normalized Tables From a Rigourous Dependency
Diagram. CACM. 1985. 28(8), 826-838.

Thompson, Bozena Henisz and Thompson. Frederick B. ASK Is Transportable in Half
a Dozen Ways. ACM Transactions on Office Informcrtion Systems, 1985. 3(2).
185-203.

Ullman. Jeffrey D. Principles of Database Systems, 2nd ed. Rockville.
Mary1and:Computer Science Press. 1982.

Ullman. Jeffrey D. The U. R. Strikes Back, pages 10-22. Proceedings of the ACM
Symposium on Principles of Database Systems. Los Angeles. CA.. 1982.

I
Wald. J.A. and Sorenson. P.G. Resolving the Query Inference Problem Using Steiner

Trees. ACM-TODS, 1984. 9f3). 348-368:

Zhang. Z-Q. & A.O. Mendelzon. A Graphical Query Language for Entity-Relationship
Databases. In C.G. Davis, S. Jajodia, P.A. Ng & R.T. Yeh (Eds.), Entity
Relationship Approach to Software Engineering, Amsterdam: North-Holland. 1983.

