

National Library of Canada

Canadian Theșes Service
Ottawa, Canada
K1A ON 4

Bibliothèque rationale du Canada

Services des theses canadiennes

THESES CANADIENNES

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproductron possible. If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the universilty sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30.

AVIS

La qualité de cette microfiche depend grandement de ta qualité de la these soumise au microfilmage. Nous avos tout fait pour assurer une qualité supérieure de reproduction.
S'demanque de pages, veuillez communiques aves l'universite qui a conféré le grade.
La qualité d'impression de certaines pages pout laisser à désirer, surtout si l les pages originalês ont été dactylographiées al l'aide d'un ruben use ou si l'université nous a fat parvenlr une photocopied de qualité inférieure.
Les documents quai font déjéa l'objet dun droit d'auteur articles de revue, examens publiés, etc.) ne ont pas microfilmés.
La reproduction, même partielle, de ce microfilm est soumise à la Lo canadienne sur le droit d'auteur, SRC 1970, c. C-30.

> THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

LA THESE A ÉTÉ MICROFILMÉE PELE QUE NOUS L'AVONS REÇUE

THE DEVELOPMENT OF PROBABILITY CONCEPTS

IN ELEMENTARY SCHOOL CHILDREN (K-7)
by

Susan H. L. Higginbottom B.A., Simon Fraser University, 1979

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

 THE REQUIREMENTS FOR'THE DEGREE OF MASTER OF ARTS (EDUCATION)in the Faculty
of
Education
s-
(C) Susan H. L. Higginbottom 1986

SIMON FRASER UNIVERSITY
March; 1986

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.
s
The author (copyright owner) yas reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without * his/her written permission.

L'aưtorisation a ete accordee a la Bibliothéque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se resserve les autres droits de publication; ni la these ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation Ecrite.

ISBN $\quad 0-315-30765-\mathrm{x}$

Name:
Dégree: .
Title of Thesis:

Examining. Committee

Susan H. L. Higginnbottom
Master of Arts (Education)
The Development of 'Probability Concepts in Elementary School Children (K-7
R. Marx

T. J: O'Shea
Senior Supervisor

A. J. Dawson

Associate Professor

[^0]Date approved 14 Mach, 1986

PRATIBL COPYAIGHILICEHSE

I hereby grant to Sison Fraser University the right to lend ey thesis, project or extended essay (the title of which is shown below) tousers of the Simon Fraser University Library, and to make partial or single coples only for such users or in response fogerequest from the I ibrary of any other university, or other educat faral institution, on Its oun behalf or for one of its users. L. further agree that permlsion for multiple copying of this work for scholarly purposes may be granted"; by Tie or the Dean of Graduate Studies. It is understood that copyting or publicat lon of this mook for financial gain shail not be ofliomed :ithout my uriten perission.

Title of Thesis/Project/Extended Essay

IHE DEYELOPMENT OF PROBABILTIY CONCEPTS IN ELEMENTARY SCHOOL

CHILDREN $(K-7)$
\qquad

Author:
(signot ure)

- Susen H. L. Hioginbottom
(name)
$\underset{\text { (doace) }}{\text { manch 14. } 1986 .}$

ABSTRACT

The work of Piaget on the origin of the concept of chance in children piovided much of the impetus for studying the development of probabilistic thinking.

In recent years there has been an increased effort to include the study of probability in the elementary mathematics curriculum. Researchers, Kowever, do not agree upon the age at which children develop am understanding of probability. This study 4, a partial replication of an experiment which investigated the level of probabilistic understanding of elementary school children.

A total of 48 children, from Kindergarten to Grade 7, in a Delta public school participated in the study. Individual sessions of approximately 30 minutes; involving 36 tasks, were conducted independentlywith each subject. For each task, the subject was presented with a pair of spinners with specific probabilities. The spinners were circles of varying radif which.were divided into sectors of equal central angles. The area of the spinner was proportional to the number of its seqtors. The sectors were
coloured blie or yellow. The children were asked to choose the spinner which was more likeiy to produce the payoff colour (blue). The choice of the subject and the outcome of the task were recorded by the experimenter. For certain preselected tasks, the students were asked to explain verbally, the reason for their selections.

The percent of correct scores increased with grade level. The percent of correct responses within each grade level decreased with the level of difficulty of the task.

- Five specific strategies were used by the subjects: () 7 1) reliance upon the pay-off colour (blue); 2) reliance upon the non-payoff colour (yellow); 3) the physical setup of the Finner board and the pointer; 4) the physical size or area of the spinner; and 5) a comparison between the pay-pff colour and the nonpay-off colour.

The study indicates that most children in elementary school do not have a verbal understanding of probability concepts even thogen the mean percent of correct responses for each grade level was above chance level. The choice of spinner was usually based upon features other than proportion. The most common strategy was to choose the spinner with the greatiest number of payoff elements.

Two of the 48 subjects demonstrated an understanding of probability concepts.

ACKNOWLEDGEMENTS

$\sqrt{7}$

I would like to express my appreciation to my senior supervisor, $D x$. Thomas o'shea for his thoughtful direction.

Love and thanks to Edward for his patience, understanding, and support, and to my parents for their encouragement.

Financyal support for the project was provided through a grant from the Educational Research Institute of British Columbia.

TABLE OF CONTEMTS
Page
APPROVAL PAGE ii
ABSTRACT iii
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS $v i$
LIST OF 'TABLES ix
LIST .OF FIGURES $x i$
!
Chapter

1. I NTRODUCTION 1
The Definition of Probability. 2
The Relevance of Probability
in the Curriculum. 3
The Problem. 4
Purpose. F
Description of the study 7
2. REVIEN 6P THE LITERATURE 9
Stages in the Development of Children's Concept of Chance 9
Decision-making Tasks. 14
Effect of Reinforcement. 15
Verbal and Nonverbal Techniques 16
Role of Dominant Features 17
Development of Probability Concepts 18
1
Alternative Hypotheses 21
Gender Differences 24
Conclusion 25
3. METHODOLOGY 27
The Gubjects 28
The Apparatus 29
The Design 32

* The Procedure. 37
The Analysis 44
* RESULTS 45
Group results 45
Grade Level Results 46
Grade Results for specific Categories. 51
Grade Results for Levels of Difficulty 57
Grade Results for Items 61
Individual responses 63
Items with Spinners of Equal Proportion 74
Gender Differences 77

5. DI 8CU88I ON 78
Sumary of method. 78
Discussion 79
strategy 79
The Role of Conservation 80

LIST OF TABLES
Table Page

1. Spinner sizes. $31-$
2. Classification of Tasks by Number of POC Elements and Total Number of Elements 35
3. Classification of Tasks by Number of POC Elements, NPOC•Elements; and Total Number of Elements 36
4. Composition of Tasks 37
5. Category Definition for Task. Item 47
6. Percent Correct Response by Category and Grade 48
7. Percent Correct Response by Category and Grouped Grades 49
8. Pefrcent Correct Response by - Level of Difficulty and Grade. 59
9. Percent Correct. Response of Paired Grades by Level of Difficulty 60
10. Percent Correct Response on Items 62
11. Categorization of Item 1DA 69
12. Categorization of Item 2M. 70
13. Categorization of Item 3E. 70
14. Categorization of Item:4D. 71
15. Categorization of Item 5RC 71
16. Categorization of Item 6D. 72
17. Categorization off Item 7R. 72
18. Categorization of Item 8M. 73
19. Frequency of Response and Percant of Response on Items of Equal Proportion 75

LIST OF FIGURES

Diagram of spinner board apparatus
Incentive board.......
3. Record Form 43
4. Total Percent Correct by Grade and Grquped Grades. 50 50

1. Diagram of spinner board apparatus 33
d) 2. Incentive board 40
2. Percent Correct in Category one by Grede and Grouped Grades . : 53 53
3. Percent Correct in Category Pive by Grade and Grouped Grades. 56

In the elementary school mathematics curriculum, the toplo of probability has historically served as a possible extension to core areas such as problem solving, fractions, ${ }^{r}$ and ratios. Often paired with the study of statistics, the exploration of probability theory has been left to interested university students This has produced a significant void in the general mathematics education of those students who do not continue their formal education after high school graduation (Reys, 1978).

Recently, there has been some movement by curriculum developers to include probability as a distinct area of study in the elementary school curriculum. At present, the mathematics curriculum in British Columbia is undergoing a major revision. The curriculum is in the draft stage and the Data Analysis Strand consists of an outline of topics and intended learning outcomes in probability and statistics foŕr grades 1 through 7. Furthermore, the December 1984 information circular distributed by the Ministry of

Education stated "Probability and Statistics will be essential parts of the mathematics curriculum at all levels." This interest in developing probability as an area of study is reflected in recent editions of mathematics textbooks in which specific sections, and often entire chapters, are devoted to the study of probability.

Although the decision to introduce the concept of probability into elementary schools has been made, little research has been completed which might guide its introduction into the curriculum. Lt is this paucity of relevant information that has prompted the present investigation.

The Definition of Probability

Probability is a mathematical theory of processes involving uncertainty" (Bullock \& Stallybrass, 1982, p. 497). The probability of an event can be expressed mathematically as a proportion which represents the likelihood, or chance, of the occurrence of a specific event. Probability, therefore, can be viewed as the combination of two concepts, chance and proportion. 'It is important to be aware of these eleraents for it is possible for a person to have an understanding of one or the other, but fail to understand the complex whole.

To illustrate; it is possible to have an understanding
of the chance of the occurrence $o f$ an event while being unable to express it as a proportion. When a die is thrown into the air there is an equal chance that any number on the die will come up. Most children will tell you that there is a possibility for the number they havg chosen to come up; but they may not be able to articulate the proportion. Similarly, it is conceivable for a person to recognize and state" a simple fraction, such as one-third of the circle is red, but be unable to apply this as an expression of the chance of an event occurring. The child may not understand that there is a one chance out of three that the pointer; or indicator, will land on red. This means that if children are aware of the element of chance without undengtanding and applying proportion, they do not have an understanding of probability. Moreover, if a child can figure out the proportion of elements but is unable to apply this as an expression of the chance of a specific event occurring; that child does not understand probability.

The Relevance of Probability in the Curriculum

There are three important reasons for including the topic of probability in the mathematics curriculum. First, probability is a term which is often used in daily life and therefore should be defined and explained to students so they have some understanding of the concept and its application. The weather forecaster may indicate the
probability of precipitation for the next twenty-four hours is 75 percent, or the chance of winning a lottery is one in a million. Second, some research has shown that the ability to solve probability problems increases only marginally *through the lévels of the education system, while also suggesting that probability concepts are unlikely to develop incidently or through maturation (Reys, 1978). If we accept these findings, and we want students to become familiar with the concept of probability, the mathematics curriculum should be revised to include the opportunity for students to develop probabilistic understanding. Third, probability exercises force students to examine the options within a problem, the likely and the unlikely. The notion of a single correct answer to a mathematics question is altered and a discussion of possible outcomes is encouraged. Carefully prepared lessons present the opportunity for students to systematically probe possible solutions to a problem.

The Problem

The development of the idea of chance and probability in children was initially investigated by piaget and Ithelder (1951/1975). They concluded that children must progress through a series of stages--first developing a recognition and understanding of the reversibility of operations and then the concept of chance. studies
involving comparisons of thethod (Yost, Sélgel \& Andrews, 1962), the use of reinforement (Goldberg, 1966), the ' relative significance of verbal and non-verbal techniques (Carlson, 1970), and children's undezstanding of probability (Davies, 1965; Hoemann \& Ross, 1971) have stemmed.directly from the work of Piaget and Inhelder (1951/1975). Other reséarchers (Fischbefin, Pampu, \& Manzat, 1970; Perner, 1979a, 1979b) have investigated alternative models of the development of, chance and probability concepts in children.

Researchers in the area of children's probabilistic thinking have reached differing/conclusions as to the age at which probabilistic thinking is in evidence. piagét and Inhelder (1951/1975), and Fischbein et al. (1970) concluded that formal probabilistic thinking is not in evidence until the child is nine or ten years old, and even then fischbein contended they murst have a period of instruction to understand the concept. Other researchers (Davies, 1965; Goldberg, 1966; Yost et al., 1962) found that children as young as four years old were capable of forming systematic probabilistic judgments.

Various reasons hate been offered to explain the discrepancy between these results (Hoemann \& Ross, 1971). One of the explanations for the difference between these f findings is the magnitude estimation hypothesis. This hypothesis states that children can select the task with the better probability of occurring, not by calculating the
proportion of elements, but by looking at the relative physical area or the absolute number of elements in the specific task. This explanation is particularly valid in experiments where the sybject is given choice between two tasks, and the total number of elements (denominator) or the number of the pay-off elements (numerator) in each task are equal. The subject has only to select the task widh the greatest number, or magnitude, to also, unwittingly, choose the task with the greatest probability.

Recently, Falk, Falk, and Levin (1980) devised a sophisticated expeqimental procedure which addressed the factor of magnitude estimation, and they appear to have resolved the issue of the development of probability concepts. They found that the children have the potential for discriminating between probabifities around the age of six. The present research is a partial replication of one of the probability experiments of falk et al. (1980) in which a series of paired spinners were used to investigate the level of students' probabilistic understanding:

The experimental design required choices similar to the decision-making tasks of Yost et al. (1962). In a decision-making task, the subject is offered a choice of two items, and is asked to choose the item which fulfills specific criteria previously outlined by the experimenter. For this experiment the subject was presented with a choice
of two spinners, and was asked to decide which spinner to twirl to provide the best chance of achieving the pay-off colour. For the purpose of this experiment, a spinner is a circle of a specific radius which has been proportionally segmented and coloured to represent a certain probability. Pivoted at the centre, and unattached to each spinner, is an indicator which can be twirled to land, without bias, on a segment of the circle.

Purpose

The purpose of this study was to analyze the development of probabilistic understanding at various age levels in elementary school in order to: 1) determine a general age range at which children have developed an understanding of the concept of probability; 2) identify and discuss any recurring strategies which the subjects use to help solve probability problems; 3) suggest an age level at which probability concepts and activities could be - introduced in the matinamatiofeurriculum.

Description of the study

In the first chapter, a definition of probability is. provided and the relevance of probability in the curriculum is outlined. In addition, the background to the problem is discussed and the purpose of the study identified.

In Chapter 2, the literature is reviewed. The work of

Piaget and Inhelder is outlined, other studies based upon piaget's research are discussed, and alternative hypotheses are présented.

The research methodology is outlined in Chapter 3. The subjects, the apparatus, and the research design are described, and the data collection procedure is discussed.

In Chapter 4, the results of the experiment are tabulated. Grade ievei results and individual results are described.

The resulta of the study are discussed in Chapter 5. Methodological implications are outlined, and topics for further research are suggested.

Chapter 2
REVIEW OF THE LITERATURE

Abstract

The work of Piagat and Inhelder will be discussed at development of the notion of chance in children was the first to be published and consequently prompted additional studies in the field. Following this, other investigations related to probabilistic thinking in children will be discussed.

Stages in the Development of Children's

 Concept of ChancePiaget and Inhelder (1951/1975) were the first to attempt anfexplanation of the development of the idea of chance in children. Their gytudies of the development of children's thought led them to believe that the notion of chance is not innate, but comes 'from a search for order and its causes. They held that children progress through a series of stages in which they develop a recognition and understanding of operations. The stage development hypothesis means they gradually understand and accept that
some operations obey set laws and always follow a pattern, while others do not. Piaget and Inhelder explain that,

> Logical and arithmetical operations constitute systems of actions interrelated in figorous way and always reversible, this reversiore aspect rendering deduction possible. Transformations occurring by chance, on the contrary, are not interrelated in a rigorous way and the most probable systems that they form are essentially irreversible. While logical and arithmetical operations lead to and end in the construction of groupings or groups fortaitous transformation remin nonreducible to this type of structure. Finaliy, induction lies between operative deduction and nondeducible fortuitous transformations: induction comprising those steps by which one sifts through experimentation separating what is fortuitous fiem what is deducible, while at the same time preparing for deduction itself (p. 212 l.

In Piaget and Inhelder's hypothesis, the preoperational stage, prior to about age six, is characterized by a failure to differentiate between the possible and the necessary, between chance and nonchance. The child has no well-defined concept of cause and effect, nothing is certain or uncertain, and therefore there is no understanding of what constitutes chance.

In the concrete operations stage, from age 6 to about
age 12, the child recognizes the element of chance.
Children discover there are areas of knowledge which are certain. There are things they can know, but there are also other areas which are uncertain, where they must guess.

They can complete simple probability tasks, but are unable
to perform tasks requiring cabbinatoric operations and proportions. They do not have the conceptual strategies for defining ali possible outcomes of an event. They need to see or hande objects to define their actual relationship.

In the final stage beginning at about age 12 , there is a synthesis of chance and deductivéoperations. Children can tien together concrete operations and at the same time n and hypothesize what the outcome might be. Children develop a system for finding combinations, and the Laws of Large Numbers provide a basis for making predictions. This means they begin to see a relationship developing after many trials have been completed.

Through these stages there is a gradual recognition of the reversibility of operations. since piaget and Inhelder claimed the discovery of chance comes after an underetanding of reversible operations, it is only after children have the mental organization to recognize operations that are reversible that they will berable to identify those that are. not reversible and therefore fortuitous.

Piaget and Inhelder's work was divided into three parts; chance in physical reality, random drawings and combinatoric operations.

In the first part, they studied the notion of random mixture and irreversibility. For the first experiment, they used a rectangular box which rested on pivot, enabing it to be tilted liks a seesaw. gight white balls and eight red
balls were lined up at one end of the box and were separated into colour groups by a divider. . The box was slowly tipped back and forth so the balls were gradually mixed. The subjects' reaction to the mixing of the elements were recorded. Random mixing of elements leads to the study of distributional form, since the final positions of the elements in mix represent a distribution. The distributions which Piaget and Inhelder studied were centered distributions (ie. the normal curve), and uniform distributions. Piaget and Inhelder used the distribution of sand grains as an example. A centered distribution was formag when the grains of sand poured out of a small hole in a funnel, and a uniform distribution is represented when the grains of sand are spread over a flat surface.

Following this, piaget and Inhelder investigated the child's ability to dissociate what can be due to chance and what is due to non-fortuitous elements. "In reality it is precisely this combination of what today is commonly called uncertain and what is not uncertain (or only weakly so) which most frequently gives rise to the intervention of the intuition of probabilities, both in the laboratory and in life" (p. 57).

In the second part of their work they investigated random drawings. Thay axamined children's notion of chance and miracle in the game of heads and tails, and in drawing pairs of marbles from a far. They arsa studied the
quantification of probabilities in random drawings.
Finally, they analyzed the development of operations of combination, permutation, and arrangement, and concluded With their hypothesis bf three stages in the development of the idea of chance.

Piaget and Inhelder's experiments wore presented to the children as a game. In their experiments they used the clinical method, in which an experimenter worked with each child individually, asking on-going questions about the activity. The questions and the child's responses were recorded verbatim. For example, in an experiment using a single spinner and a 16-sectored circle (equal proportions) with 8 colours (colours of opposite sections are identical) the following exchange occurred:

> "Do we know where the bar will stop?" "On the red." "Is that certain or noti" "Certain." (We do the experiment: green.) "Where now?" "On the yellow." Why?" "Because that's a wonderful yellow." (Experiment: blue:). "Oh, no, on the blue." "Where now?" "Red." (Experiment: red.) "And next?" "Again red." "Why? © © " The same kind of answers, without motives. We put the magnetsin, place: "The bar got tired." (Piaget anhelder, 1951/1975, p.62)

All responses were classified at the end of the experiment. The child in the above example would be" placed in the first stage of development, or preoperational stage, as the subject does not use logical considerations and is predicting solely on the basis of personal feeling for a
colour.

Decision-making Tasks

The work of Piaget and Inhelder prompted a number of studies in the field of probabilistic thinking in children. Yost, Siege, and Andrews (1962) maintained that piaget's techniques underestimated the ability of young children. They cited five factors that they believed might account for Piaget and Inhelder's negative results: 1) piaget and
 Inhelder relied heavily on verbal skills; the child had to understand terms such as "most likely", "predict", and "expect"; they had to demonstrate their understanding of the concept by verbalization; 2) there was no control for subjects' colour preference; 3) the memory aids (small tokens which represented the payoff colour) proved to be a distracting influence as they were not randomized; 4) there were no tangible rewards or positive verbal reinforcement given for correct responses to provide motivation; and, 5) no provision was made for statistical treatment of results, as the conclusions were based upon individual responses which could not be compared, rather than response frequencies for repeated comparable events.

Yost et al. (1962) attempted to take these factors into consideration by designing two-choice decision-making task In which the child could make non-verbal responses, the influence of colour preference was controlled, the memory
aids were randomized, and the child would receive a reward for a correct response. They compared their decision-making task with a one choice Piagetian style task. They hypothesized that children exhibit a greater understanding of probability under the decision-making condition than under the piaget-styled condition. Two groups of 10 subjects, ranging in age from 4 years 10 months to 5 years 8 months, were individually presented with 24 trials of both tasks. All subjects performed at or above chance level at both tasks; however, no group's mean score represented consistent use of probability concepts in their responses. Yost et al. (1962) claimed that the'introduction of reinforcement into the experiment, as well as statistical controls gave validity to their conclusion that 4-year-old children do have some understanding of probability.

Effect of Reinforcement

Goldberg (1966) investigated the effect of reinforcement on the performance of subjects in Piaget's single task model and Yost et al.'s two task decision-riaking model. In both cases, the knowledge of whether their decision was correct or incorrect was the only reinforcement for the subjects.

Goldberg (1966) found the subjects in the decision-making model made more correct responses than those in the Piagetian model. This meant that under conditions of
equal reinforcement the subjects performed better in the decision-making model. Searching for an alternative explanation for the superior performance of subjects in the decision-making task, Goldberg found colour preference, or canfueion of colour preference and colour expectation can strongly influence the outcome of the experiment. The absence of control for colour preference in the piagetian model was cited as a possible explanation for the poor performance of the subjects on these probability tasks. However, Hoemann and Ross (1971) inferred from Goldberg's results, if preschool children can be swayed by colour preference then the strength of their grasp of probability concepts is questionable.

Verbal and Nonverbal Techniques

Davies (1965) supported Piaget's interpretation of the acquisition of probability concepts as a developmental progression. However, in support of Yost et al., (1962), she found that children do have an understanding of probability concepts at an early age, but they cannot verbalize them. In a study of 112 subjects ranging from age 3 to 9 years, the mean age for acquisition of verbal ability to describe probability was 7 years 4 months, but 100% of the subjects did not pass the verbal test until 9 years of age.

Carlson (1970) compared Piaget's (1951/1975) verbal technique and Yost et al.'s (1962) nonverbal technique. He
found that verbal and nonverbal techiniques assiess different aspects of development and consequently should not be compared. In contrast to Davies (1965), the general age brackets suggested by Piaget for the development of probabilistic thinking were supported. In addition, Carlson (1970) suggested that the procedure used by Yost et al.. (1962) may not adequately assess a child's concept of probability. He suggested that correct responses appeared to be dependent upon an understanding of simple empirical frequencies rather than an operative system that allows prediction of distribu ional form.

Role of Dominant Features

Falk, Falk, and Levin (1980) claimed that the results of Yost et al. (1962), Goldberg (1966), and Davies (1965) contradicted those of Piaget and Inhelder (1951/1975) because of differences in the mathematical features of the problems that were presented. After analyzing the problems used in the studies, Falk et al. found that some investigators included certain elements in their tasks that others overlooked. For example, Yost et al. (1962) and Davies (1965) compared only complementary probabilities (e.g. 1/4 with $3 / 4,1 / 3$ with 2/3). These always included the same number of elementenand therefore the correct. answers could be obtained by looking at absolute numbers of the payoff colour. Hoemann and Ross.(1922) also suggested
that, while the studies of Yost et al., Davies, and Goldberg have in common the above chance level of performance of very young children on probability tasks, they do not show any evidence that their tasks do indeed measure understanding of probability. They cited an example; if a child, who likes black jelly beans, was offered a choice of two equal handfuls of felly beans, one which has four black and one other colour or one which has one black and four other colour, the child would likely pick the hand with the most black without using the concept of probability.

Development of Probability Concepts

Hoemann and Ross (1971) carried out a series of studies to find out whether probability concepts are required for above-chance performance in probability tasks. They investigated two types of probability tasks; 1) the decision-making task, where the choice is between two alternate spinners, and 2) a single spinner task, where a prediction is made based upon the coloured elements on the. spinner: In all the experiments the subjects were presented with spinners that were divided into relative proportions of black and white. Hoemann and Ross devised two types of Instructions, , one requiring a probability judgment and the other requiring a magnitude eatimation. For example, for the single spinner prediction task, the probability instruction asked the subjects where they thought the
pointer will land when it stopped, on white or black. For the magnitude estimation instruction, the subjects were asked to state which colour was the most, white or black.

Hoemann and Ross found that in the two-choice, alternative odds task the two types of instructions gave the same results. They concluded that comparing proportions and estimating odds was not required for a correct answer in this two-choice task, and therefore an understanding of probability concepts was not required for above-chance performance. However, they pointed out that this does not mean that two-choice tasks fall to measure probabllity concepts, only that researchers who use the two-choice tasks must demonstrate that the task measures what it is designed to measure.

For the single-spinner prediction task the results showed a difference between the two types of instructions. The errors in the probability instruction' were significantly. higher that of the magnitude estimation instruction. Hoemann and Ross concluded that an understanding of probability concepts did contribute to above-chance performance in the prediction task.

Hoemann and Ross concluded that successfully choosing the task with the more favourable odds did not give an index of probability knowledge, particularly if direct magnitude comparison can take place. They indicated that not all the tasks that nominally are probability tasks require the use
of probability concepts. They also acknowledged the various definitions of probability and concluded that magnitude discrimination, for them, was not considered to be a probability concept, but rather a necessary step before understanding probability. Recalling piaget and Inhelder * (1951/1975), they concluded that the "discovery of chance" does not occur until the onset of concrete operations when a child is about' 6-8 years old, but magnitude discrimination is almost completely pastered by this time. They also concluded that the 4 -year-old children showed no evidence of a concept of probability.

Chapman (1975) supported Piaget and Inhelder's (1951/1975) view that proportionality concepts and the ability to deal logically with abstract relations do not develop before formal operations. He found that even 10 to 11 year old children do not discriminate proportions for the probabilistic reasoning task. Chapman also compared' children's performance on one-container and two-container tasks. Previously, Goldberg (1966) and Yost et al. (1962) had found that performance of preschool children on two-container tasks were significantly better than performance on one-container tasks. However, Chapman (1975), did not find any significant difference between performances of first grade children on one-container and two-container tasks.

Alternative Hypotheses

Perner (1979a) offered an "Alternative Events" hypothesis to counter Piaget and Inhelder's (1951/1975) claim that young children's inability to deal with probabilistic tasks stems from fifficulty with part-whole relationships (the "Part-Whole" hypothesis). Parner (1979a) suggested that young children have difficulty understanding truly alternative events. He claimed that once they can evaluate and compare alternatives they will arrive at an initial understanding of probability. This hypothesis, although similar in form to Piaget and Inheider's 2 (1951/1975), does not assume that children understand part-whole relationships before they understand probability. Perner tested his "Alternative Events" hypothesis and piaget and Inhelder's "Part-Whole" hypothesis in two experiments involving part-whole related spinners and disjoint spinners. Neither hypothesis was supported.

In a second study, Perner (1979b) sought to explain why some studies found performance differences between single-spinner and doublp-spinner tasks, yet others did not. Perner conducted two experiments. In thel first experiment, he hypothesized that preferential priming, that is asking children to express their preference between sets of colours, would induce the subjects to choose the correct spinner in the double-spinner task, but the incorrect event in the single-spinner task. The preferential priming was
completed before the experiment and the answers given by the subject during the preferential priming were neither right dr wrong.

Perner found no evidence that preferentially primed subjects performed better on the double-spinner task than on the single-spinner task. Perner concluded that preferential priming did not seem to account for the performance differences in the two tasks.

In the second experiment, Perner (1979b) hypothesized that subjects would be more likely to attend to features such as number and area the more these features varied. Focusing on variation in magnitude, Perner used seven different disks to test this hypothesis. The hypothesis was not supported by the data.

Perner concluded that reported differences between single-spinner and double-spinner tasks are due to idiosyncratic experimental methods and cannot be replicated.

As previously mentioned, Piaget and Inhelder's
(1951/1975) research has formed the impetus for much of the investigation into the development of probabilistic thinking In children. By focusing on the concept of chance, they have frovided a conceptual framework for discussion of the systemitic development and underistanding of laws and causality.

Fischbein (1975) explored what he called the "primary Intuition" of chance. He claimed that the intuition of
chance is evident before the concept of Chance is developed. Fischbein suggested that the intuition of chance exists before the ages of 6 to 7 years, in preschool children. He claimed "there certainly exists a primary, pre-operational intuition constructed out of the day-to-day experience of the child and complementary to the intuition of necessity" (p.71).

Fischbein (1975) hypothesized two kinds of intuition: primary intuitions, which are contained within the individual and do not require instruction; and secondary intuitions, which are formad through education. He stated that preschool children have an intuition of chance, but it is distorted by: 1) subjectivism, where the child sees the random event jf an object as having a "will" of its own; 2) passive induction, where children base their decision on the event immediately before, not on the basis of all previous events; 3) a belief that random events are controlled by the operator; and 4) changes in the experiment which are unneressary and can confuse the subject (e.g. subjective preference, preceding outcomes). Fischbein contended that if preschool children work with a small number of possibilities and therefore limifed possible outcomes, they can reason correctly.

Fischbein, in support of Piaget and Inhelder, acknowledged that a systematic understanding of probability does not appear until a much later age (il to 12 years).

But he also contended that attaining an understanding of probability could occur at a younger age (9 to 10 years) if there iselementary instruction. Fischbein, Pampu, and Manzat (1971) stated that 9 to 10 year olds have the conceptual framework to complete these problems, but it must be nurtured through training.

Fischbein (1975) concluded that the development of chance is a progressive phenomenok which begins with the intuition of chance in preschool children. He contended that probabilistic thinking is an important element of our scientific education which cannot be entrusted to primary Intuitions. He stated:
(But) in order for this requirement of an efficient scientific culture to be met, it is necessary to train, from early childhood, the complex intuitive base relevant to probabilistic thinking; in this way a genuine and constructive balance between the possible and the determined can be achieved in the working of intelligence (p.131).

Falk et al. (1980) also supported the inclusion of probability instruction at a very young age. They suggested that one method of helping to develop probabilistic concepts in'young children is to have them play probability games.

Gender Differences

Some probability studies have included investigations of the differences in task success between male and female
subjects. Davies (1966) found no significant difference at any age level in a non-verbal test. However, on a verbal test there was one significant difference in favor of girls at age 7. Other probability studies which have shown significant'gender differences (Chapman, 1975; Perner, 1979b; Ross, 1966) favoured boys. In all the above studies, the gender differences were, so small that generalizations concerning sex differences in performance on probabilistic tasks cannot be made.

Conclusion

Most recently, one of the emphases of the research in probabiliatic thinking in children has been to encourage the exposure to and instruction of probibility concepts in the elementary school (Falk et al., 1980; Fischbein, 1975; Fischbein et al., 1971; Reys, 1978). This has evidentiy provided the impetus for some publishing companies to include units on probability in the upper intermediate texts, and introductory sections on probability in programs for primary children.

With the exception of Quebec, which articulated the inclusion of probability as an enrichment unit in 1980, the field of probability has been conspicuousiy absent from most of the elementary mathematics provincial curriculum guides until very recently. At present, the newly revised provincial curriculum guides for mathomatics in British

Columbia, Alberta, and Manitoba have included guidelines: for the introduction of probability and statistics to elementary students.

In sumary, the development of probabilistic thinking In children is a relatively new area of research. Piaget and Inhelder (1951/1975) provided much of the impetus for early explorations in the field. Recently, the importance of including probabilistic thinking as a topic in mathematics education (Falk et al. 1980; Fischbein, 1975; Reys, 1978) has been explored. Additional research in this area needs to be pursued so that educators can use appropriate methods to provide interesting and relevant instruction in probability.

Chapter 3

METHODOLOGY

This study is a partial replication of one of the experiments developed by Falk, Falk, and Levin (1980), who studied the development of probability concepts in children from the ages of 4 to 11 years: The reasons for replicating their study were as follows: i) the expertmental design was well-defined and provided substantial information about the details of the experiment; 2) major iasues ariaing from other research were addressed, for example, the factor of magnitude estimation; 3) the subjects were from a different education system and consequently the findings of Palk et al. (1980) were not directly applicable to our educational situation; and 4) the subjects weze not randomly selected and represented a potentially biased sample, namely those who were interested in playing the "lottery game".

The following is an outline of the methodology used in this experiment, including the changes that were made to the procedures used by Falk et al. (1980).

The subjects

A total of 48 subjects frow a single elementary school participated in the experiment. The elementary school has a total population of approximately 650 students and is located in an upper-middle socioeconomic class suburban neighbourhood.

The subjects of the study consisted of 24 boys and 24 girls. They were chosen according to grade level, rather than on the basis of age, because the main purpose of this research was to study the development of probability concepts in children at the various grades in elementary school. 'To select the sample, the students at each grade level were divided into two groups on the basis of gender. Pour boys and four girls were randomly selected from each grade list from. kindergarten to grade seven. The first three boys and three girls selected at each grade level were contacted to participate in the study. The fourth selection for each gender at each grade level was reserved as an alternate.

Some parental resistance to the research was encountered. A few parents were concerned with the ethical and moral implications of exposing their children to "gambling" and refused to allow their children to take part. These parents were assured that the intention of the research was to study the cognitive development of
probability concepts in children and their children were replaced by the alternate students at that grade level.

The research of Talk, Talk, and Levin (1980) comprised two experiments. The first experiment involved 36 children, 20 girls and 16 boys, from the age of 5 to 11 years. For the second experiment the 25 children, 15 girls and 10 boys, were between the ages of 4 and 7 years. The children were unsolicited volunteers from an upper-middle class neighbourhood near the Hebrew University of Jerusalem.

The Apparatus

Talk, Falk, and Levin (1980) initially designed three distinct types of apparatus to assess the performance of the subjects on probability comparison activities in different dimensions: 1) pairs of spinners of different radii divided into proportional yellow and blue sectors (one-dimensional); 2) pairs of \mathbf{p} plastic containers with different numbers of yellow and blue wooden beads in each (two-dimensional); and 3) pairs of wooden spinning tops of different volumes divided into sections of yellow and blue (three-dimensional). Using Pearson's coefficient of correlation, Falk et al. (1980) found no significant difference between the results obtained from each apparatus (p. 192). This meant that each set, of apparatus was found to be reliable as a independent measure of children's ability to compare probabilities. Because no statistical
difference was found between the results of the different kinds of materials, the spinner apparatus was selected for use in their second experiment because it had produced the shortest average session time.

Based upon the findings of Falk et al. (1980), the decision was made to use spinners in the present study. The © spinners were round circles of varying radii (see Table 1) which were divided into sectors of equal central angles. The area of the spinner was proportional to the number of its sectors. This ensured that the sectors were of equal area. The apparatus was designed so that two of the largest spinners would fit onto one half of a piece of standard railway board (36 cm wide by 56 cm long). Thirty-six pairs of cardboard spinners were constructed. The sectors on each spinner were coloured blue or yellow. These colours were chosen because Falk, Falk, and Levin (1980) had used blue and yellow as their sector colours, and the colours offered a good contrast, but were not too bright. The sectors of the spinner were coloured by alternating blue with yellow. If the number of sectors were not equal, the colours were arranged to present dis great a contrast as possible. For example, if the spinner had four yellow sectors and six blue sectors, the pattern would be yellow, blue, blue, yellow, blue, yellow, blue, blue, yellow, blue. In addition to adjusting the pattern of colours on the spinner, the

TABLE 1
Spinner Sizes

orientation of the spinner was shifted. For example, for a set of spinners, each with three sectors, two blue and one yellow, one spinner would have the yellow sector at the "top" of the spinner board, while the other would be rotated to either side or to the "bottom" of the spinner board.

A seven millimetre hole was made in the centre of each spinner. The cardboard spinner pairs were stacked in groups of 18 on a wooden board (45 cm wide by 65 cm long). A piece of wooden doweling (6 in diameter by 8 cm long) was pushed through the central hole in each spinner and anchored in a drilled hole in the wooden board (see Figure 1). A small pointer, made from a wooden popsicle stick, was used as the spinner's indicator. The, popsicle stick was cut to seven centimetres and then filed to a point at one end. The opposite end was filed to conform to the inner concave curve of a metal washer. This end was glued to the metal washer and easily slipped over the doweling.

The Design

For each task the subject was presented with a pair of spinners of specific probabilities and asked to choose the spinner which he or she would like to twirl in order to produce an element of the payoff colour (POC). The probability of the payoff colour for each spinner was the ratio of the number of elements of the POC to the total number of elfants in the spinner. This meant that the two

Figure 1. Diagram of spinner board apparatus.
spinners in each spinner set could differ in three ways: 1) the total number of elements; 2) the number of payoff elements; and 3) the number of non-payoff elements.

Table 2 shows the relation between the number of payoff elements and the total number of elements. This produced a potential for nine different kinds of tasks. However, three of these combinations (Cell D, Cell F, Cell G) are impossible as the two variables, POC and the total number, are not independent of each other. For example, the number of POC cannot be smaller on the correct side if the total number of elements are equal (Cellf): six different tasks remained. Another task (Cell I), where the total number is w equal on both spinners and the POC is equal on both spinners, produces identical tasks.

With the addition of the number of non-payoff elements as a variable, the number of potential tasks increases to 18 (see Table 3). Most of these potential tasks, however, are impossible because the elements are not independent of each other. As a result, only two different tasks were added, for a total of eight task categories.

After this initial categorization, the tasks were divided into three levels of difficulty. The level of difficulty for each task was determined by the relation of the proportion of the spinner to the fraction 1/2. Easy tasks were those in which one of the two proportions was larger than $1 / 2$ and the other shaller than 1/2. Medium

TABLE 2
Classification of Tasks by Number of POC Elements and Total Number of Elements

2 Tasks in these cells are impossible.
Classification of Tasks by Number of POC Elements,
NPOC Elements, and Total Number of Elements

tasks offered a comparison where one proportion was $1 / 2$ and the other differed from 1/2. Difficult tasks presented proportions on the spinners which were both larger or both smaller than 1/2. In the easy and medium tasks; the proportions were designed using the minimal number of elements that satisfied all the requirements of the task. In the difficult tasks the proportions were constructed so that the tasks became increasingly difficult, with the most difficult task having the smallest difference of ratios between the elements. The experiment included 12 easy, 10 medium, and 14 difficult tasks. The tasks are outlined in Table 4.

Each child was presented with all 36 tasks. The tasks were presented in one sitting with a break at the conclusion of 18 tasks. The tasks were presented in a random order to each student. This was accomplished by shuffling all of the spinner boards at the conclusion of each experimental session.

The Procedure

The experiment was held in a small seminar room in a classroom complex: The apparatus was set up for the duration of the experiment. Each child was met at his or her classroom and escorted by the experimenter to the seminar room. During this time the child was familiarized with the basic purpose of the experiment and any

TABLE 4
Composition of Tasks

Category	Level of Difficulty	Item Identifier	Compos $(B-\bar{Y})$	sition $(B-Y)$
1	Easy	18A	(4-3),	$(1-2)+$
1	Easy	18B	(6-4)	(2-3)
1	Easy	1EC	(6-3)	(4-2) +
1	Medium	1MA	(5-3)	(2-2)
1	Medium	1MB	(4-4)	(2-3)+
1	Difficult	1DA	* (4-6)	(1-2)
1	Difficult	1DB	(3-5)	$(1-2)+$
1	Difficult	1 DC	(3-6)	(1-3)
1	Difficult	1DD	(3-4)	(2-3)+
2	Rasy	2 S	(5-3)	(2-4)
2	Medium	2 H	*(5-2)	(3-3) +
2	Difficult	2D	(7-3)	(5-4)
3	Easy	3E	* (2-3)	$(1-3)+$
3	Medium	3M	(3-2)	(2-2)
3	Difficult	3D	(4-2)	(3-2) +
4	Easy	4B	(4-1)	(2-4)
4	Medium	4M	(5-2)	$(4-4)+$
4	Difficult	4D	*(3-4)	(2-6)
5	Easy	5EA	(2-1)	$(5-6)+$
5	Easy	5RB	(3-2)	(4-6)
5	Easy	5EC	* (2-6)	(3-9) +
(5	Medium	5MA	(2-2)	(3-5)
5	Medium	5MB	(2-1)	$(3-3)+$
5	Difitcult	5DA	(3-1)	(5-2)
5	Difficult	5DB	(4-2)	(7-4) +
5	Difficult	5DC	(3-2)	(7-5)
5	Difficult	5DD	(2-1)	$(4-3)+$
6	Rasy	6R	(3-2)	(3-4)
6	Medium	6M	(3-3)	$(3-5)+$
6	Difficult	6D	*(2-3)	(2-4)
7	Rasy	78	*(4-1)	$(3-2)+$
7	Medium	7M	(6-4)	(5-5)
7	Difficult	7D	(2-6)	(1-7) +
8	Easy	88	(1-1)	(1-1)
8	Medium	8M	* (2-3)	(2-3)
8	Difficult	8D	(5-3)	(5-3)

apprehensions he or she may have had with regards the the experiment were eased. Upon arrival at the seminar room, the child was asked to sit at a large rectangular table opposite the experimenter. The spinner board, the incentive board (see Figure 2), and a tape recorder microphone were arranged on the table. The purpose of this apparatus was explained to child and any questions regarding the apparatus were answered.

Each child was invited to play a preliminary game to familiarize the child with the incentive procedure and the idea that the game involved chance. In the game the child was asked to pick a number from one to six on a over-sized die. The child was told to throw the die in the air to see, if the die would land with the number that he or she selected showing on top. The child was given three tosses' of the die.

Each time the number the child selected came up, the child was given a simall plastic token. The plastic tokens were used as "steps" on a trail toward an item of food for "Hotdog Day". Hotdog Day is a monthly fund raising event at the school sponsored by the Parent Consultative Comittee. The Hotdog Day chart offered three items: a hotdog, a donut and a drink (see Figure 2). Each item had a trail of apaces for the tokens. When the token apaces were filled the child was given a credit for that item for the following Hotdog Day. This procedure was followed for all children in

Donut (1) (1)(2)(3)(3)

\checkmark

Figure 2. Incentive board.

Grades 1 through 7.
A different incentive was used for the kindergarten children because their short day did not permit them to take part in Hotdog Day. The kindergarten children wege given a choice of ten different "Scratch-n-Sniff" stickers. The chosen sticker was placed at the end of a trall of token spaces. If the number the kindergarten child solected came up, the child was given a token to place along the trail. When the trail was filled with tokens the child was given the Scratch-n-Sniff sticker.

When the preliminary game was finished, the purpose of the experiment was reiterated. The spinner board was explained to the child and the apparatus was demonstrated. Each child was given the opportunity to flick the pointer a couple of times in order to familiarize himself or herself with the apparatus. At the outset of each trial during the experiment, a token was placed to the side of the spinner board. The subject was initially informed and subsequently reminded throughout the experiment that the payoff colour was blue. A blue blöck was used as a visual reminder and was placed at the top of the spinner apparatus in full view of the subject. The child was then asked to choose the spinner which he or she would expect, to produce an element of the required colour (blue). After making a choice, the child was asked to spin the pointer of that spinner. If the pointer landed on a blue segment, the token was placed along
the selected trail. If the pointer did not land on a blue segment; the token remained for the next item. The spinner the student chose, as well as the outcome of spinning the pointer were recorded by the experimenter on a form (see Figure 3).

One record form was used for each student. The gender and the' grade level of the student was recorded. Each item was listed by code.- Adjacent to the code a narrow bar was coloured black to indicate right side of-the spinner board (experimenter's right) as the correct choice, or left uncoloured to indicate the left side of the spinner board (experimenter's left) as the correct choice. The subject's selection of the spinner (experimenter's right or left) and the outcome gf the spinner were recorded. The third column was used for scoring at the conclusion of the experiment.

Each session was audio-recorded to obtain an accurate account of all verbal comments made by the students. This provided an explanation for the choices made by individuals.

In order to enable a comparison between the grade groups, and between the individual responses within grade levels, one task was chosen from each of the eight categories for specific questioning. The choice to limit specific questioning to eight items was necessary in order to keep the individual sessions to a manageable time (30 minutes). The main factor when selecting the items was representation of the levels of difficulty. The items were

Subject: MF Grade: $K 1234567$

		Choice	Decision
$1 E A$			
$1 E B$			
$1 E C$			
$1 M A$			
$1 M B$			
$1 D A$			
$1 D B$			
$1 D C$			
$1 D D$			
$2 E$			
$2 M$			
$2 D$			
$3 E$			
$3 M$			
$3 D$			
$4 E$			
$4 M$			
$4 D$			

		Choice	Decision
$5 E A$			
$5 E B$			
$5 E C$			
$5 M A$			
$5 M B$			
$5 D A$			
$5 D B$			
$5 D C$			
$5 D D$			
$6 E$			
$6 M$			
$6 D$			
$7 E$			
$7 M$			
$7 D$			
$8 E$			
$8 M$			
$8 D$			

Total Correct. \qquad $\%$
Easy Correct \qquad \qquad 7
Medium Correct. \qquad \qquad $\%$
Difficult Correct.. \qquad \qquad 7

Figure 3. Record form.
selected from the eight categories without bias. The selected items were 1DA, $2 M, 3 E, 4 D, 5 E C, 6 D, 7 E$, and 8M. These task items are defined in Table 4. The selected tasks were marked with a small asterisk by on the spinner board to facilitate identification by the experimenter during the sessions.

As the selected tasks were completed by the student and the results were recorded by the experimenter, the student Was asked why he or she made that particular choice. At the end of each session the audiotapes were coded and subsequently transcribed. The transcriptions were mounted by category and grade level on large pleces of cardboard. This enabled a ready comparison between and within the grade groups.

The Analygis

The data collected was analyzed by determining: 1) the percent of correct responses of all tasks by grade; 2) the percent of correct responsés by grade and category; 3) the percent of correct responses by grade and the level of difficulty; and 4) individual responses from the verbal discussions.

Chapter 4

RESULTS

The results for each grade, task category, and level of difficulty were calculated by compiling the number of I correct responses for each grouping. This raw score was transformed into a percent correct scóre by dividing the actual number of correct responses by the total possible number of correct responses. The verbal responses made by each student were also assessed.

Group Results

The group results were calculated from subject response on 31 of the 36 items. Five items were not included in these results because they represented a choice between two spinners with equal proportions. An analysis of these tasks will conclude the section on group results.

For the 31 tasks, the percent of correct response by all subjects was.77\%. This is above chance level, as the upper threshold for percent correct by chance is about 53\%
(n of items $=31, n$ of subjects $x 48, \alpha=0.05$).
The group results were evaluated in three ways: 1) by grade level; 2) by task category (see Table 5); and 3) by level of difficulty: easy, medium, and difficult.

Grade Level Results

For each grade the percent of correct responses for each category and for the total of each category were calculated. These results are presented in Table 6.

The total percent correct scores for each grade are above chance level. The upper threahold for percent correct by chance is about 57\% (n of items $=31$, n of students $=6, \alpha=0.05)$. The percent correct scores tend to increase through the grades. The Grade Three average of 75\% and the Grade six average of 79s show some deviation from the upward trend, with scores lower than the previous grade, but these do not represent a substantial shift from the trend. When the adjacent grade groups are paired the improvement through the grade levels is evident. Table 7 shows the percent of correct responses for the adjacent gradé pairs (K-1; 2-3; 4-5; 6-7). Response by grade and paired grades are graphically represented in Figure. 4.

There is a spread of 20% between the highest success rate (Grade Seven; 84\%) and the smalleatouccess rate

TABLE 5
Category Definition For Task Items

TABLE 6
Percent of Correct Response by Category and Grade

*

TABLE 7

Percent Correct Response by Category and Grouped Grades

- Mean percent correct

Mean percent correct of grouped grades

Figure 4. Percent correct by gradé level and grouped grades.
(Kindergarten; 64s). The greatest difference betwen adjacent average success scores is 10\% between Kindergarten and Grade One. This is the same as the difference between the Grade One average score (74s) and the Grade Seven average score (84\%). In this sample, there was a greater improvement in task understanding between Kindergarten and Grade One than between' any other adjacent grade lovelís.

Grade Results for Specific Cateqories

The 36 tasks were divided into eight categories according to three criteria: 1) the total number on the correct spinner; 2) the relative number of the pay-off colour (POC) on the correct spinner; 3) the relative number of the nonpay-off colour (NPOC) on the correct spinner. The categories have been defined in Table 5.

The categories with the greatest average success percentage were Category Two (91\%) and Category Three (88\%). In both of these groups the POC and total number were greatest on the correct spinner. The category with the next highest average success percentage was Category seven (87\%) where the POC was greatest on the correct spinner, but the total number was the same. In these three groups the pq(was greater on the correct side, and the NPOC on the correct side was less than or equal to the NPOC on the incorrect sides In these categories the students could choose the correct spinner simply on the basis of the greatest area (or
number of sectors) devoted to the POC.
The lowest average auccess percent occurred in Category One (67\%) even though it fulfilled the main characteristic of the categorses which evoked the highest correct response; specifically, the POC was greater on the correct spinner.

But Categoxy One had an additional feature; the NPOC was greater on the correct spinner. This means that if a child chose the spinner on the basis of the area or number of sector's devoted to the POC, the choice would be correct. However, if the decision was based on the NPOC, and the spinner with the least number of sectors devoted to the NPOC was selected, the choice would be incorrect.

Another feature of the results in Category One was the relative percent correct of the Kindergarten subjects compared to the other grades. Kindergarten subjects had the highest percent correct (79\%), with Grades One, Two, and Three each with 75\% (see Figure 5) . the

However, the percent correct restonse for Grades Four to Seven dropped considerably with the Grade Four group producing the smallest percent of correct responses out of all groups of items in the experiment (468). Although there is improvement with the Grade Five scores (63\%), the Grade six and Seven percent of correct responses remain in the same range (Grade Six, 60\%; Grade Seven, 65\%). The upper threshold for chance level of correct response is 64\% (n of items $=8, n$ of subjects $=6, \alpha=0.051$. This

Figure 5. Percent correct in Category Orie by grade level and grouped grades.
suggests that the primary children may have been single-minded in their responses... looking for the spinner with the greatest number of POC while not even considering the NPOC. It also suggests that the majority of Grade Four to. geven subjects did not calculate the proportion of pOC to NPOC to determine a response.

When the audio-taped comments were reviewed and paired with the results of each item, the primary strategy seems to have consisted of comparison of the relative number of sectors on each spinner devoted to the POC or the NPOC. students would look at the dominant colour and make their 0 choice. If the dominant colour was blue, the choice would usually be the spinner with the greater number of blue sectors. For example, student MC (grade 2), on task 1MA, reported: N 'Cause this one had more spaces of blue than this one."

If the dompant colour was yellow, the choice would often be the spinner with the least yellow, as it was the non-payoff colour. For example, student ss (grade 4), on task 1DD, reported: "Less yellow triangles than on the other side."

Within Categories Two and Three, the percent of correct responses generally increased through the grade levels. There are small discrepancies in the grade to grade devalopment but an overall trend of improvement is evident.

Category Pour shows improvement in the percent of
correct responses from Kindergarten to Grade Three. This is followed by moderate fluctuations in the percent of correct responses from Grade Four to Seven.

In Category P ive there is a definite split in the data (see Figure 6). In this category the Kindergarten to Grade Three groups show the lowest percent of correct responses of all categories. As in Category One, the upper threshold for chance level of correct response is 64\% (n of items $=8$, n of subjects $=6, \quad=0.05$). There is a 29\% jump in the percent of correct responses from Grade Three to Grade Four, with marginal decreases in Grades five and six. The average percent correct for the Kindergarten to Grade Three group was 55\% and for the Grade Four to Grade Seven group, 80%.

Category Five was the only category where the POC was smallest on the correct spinner. The NPOC and the total number were also smallest on the correct spinner. This would seem to reinforce the hypothesis that primary children exclusively examined the number of sectors, or area, devoted to the POC. If the sectors; or area, devoted to the NPOC had been taken into account the choice would have been the alternative spinner that is, selecting the spinner with the smallest number of NPOC would have produced the correct choice.

In Category $8 i x$ the percent correct does not show a smooth increase from grade to grade. There is a large

Mean percent correct
Mean percent correct of grouped grades
Figure 6. Percent correct response in Category five by grade and grouped grades.
increase in the percent correct frombindergarten to Grade One, but then the scores seem to fluctuate.

Category Seven shows an increase in percent correct responses from Kindergarten to Grade Two, with fluctuations thereafter. The upper threshold for chance level of correct response is 74% (n of items $=3$, n of subjects $=6, \alpha=0.05$).

Grade Results for Levels of Difficulty

The tasks were also grouped according to level of difficulty within each of the categories. The tasks were classified as easy, medium, and difficult. As is shown in Table 8 , the total percent correct for the easy tasks was slight y better (87%) than that for medium tasks (64\%). However, there is a large drop of 19: between the percent correct of the medium and difficult tasks, indicating that the difficult tasks were relatively more challenging. With the exception of the easy and medium scores at the Kindergarten and Grade One level, there is a tendency for the total number of correct responses to decrease with the difficulty of the task.

Because the level of difficulty of the task was determined by the relation of the proportion of the POC on the spinner to the fraction $1 / 2$, the difference between the proportion of the POC on each spinner can be used as a
measure of the difficulty of the task. One can assume that the smaller the difference between the proportions on the erpinners, the more difficult the task. For example, on item 1EB (an easy task), one spinerer had 6 blue and 4 yellow (0.60 blue), and the other, 2 blue and 3 yellow (0.40 blue), a difference of 0.20; on item 6D (a difficult task), one spinner had 2 blue and 3 yellow (0.40 blue), and the other, 2 blue and 4 yellow (0.33 blue), a difference of 0.07 . The correlation between the percent of correct response on each item, and the difference between the proportion of the POC on each spinner was calculated by means of the Pearson product-moment. The results of the Pearson product-moment calculations showed a relationship between the percent of correct response and the difference between the proportion of the pOC on each spinner, $r=0.47, p<.01$.

The percent of correct responses by grade for the easy, medium, and difficult categories do not demonstrate any trend from grade to grade (Table 8). However, when the grades are grouped in pairs ($K-1 ; 2-3 ; 4-5 ; 6-7)$ the percent of correct responses monotomically increases through the grades (see Table 9).

The difference between the percent correct of the Kindergarten group and the Grade seven group on the easy tasks was 26\%, and on the medium tasks, the difference was 24\%. For the difficult tasks the difference between the Kindergarten and Grade seven percent correct scores was the

TABLE 8
Percent Correct Response by Level of Difficulty and Grade

TABLE 9
Percent of Correct Response of Paired Grades by Level of Difficulty

f
smallest at 14\%. Thus; there was less improvement between groups for the difficult tasks than for either the medium or easy tasks. The decreasing difference between the Kindergarten and the Grade Seven results on the tasks is even more striking when the grades are grouped (Table 9). The difference between the percent of correct responses on the easy tasks for the $k-1$ group and 6-7 group remalns the greatest at 22\%, the difference between the groups on the medium tasks decreased slightly to 15\%, but the difference between the groups on the difficult tasks was only 4\%.

Grade Results for Items

The percent of correct response were calculated for each item and the results are shown in Table 10. Item 2 E (5b, 3y-vs. 2b, 4y) generated the highest percent of correct response (948). This is not surprising as the POC was greater on the correct spinner and the NPOC was lesser on the correct spinner.

Item 1DB (3b, 5y'vs. 1b, 2y) had the smallest percent of correct response (15\%). The reason for this is unclear. The item with next smallest percent of correct response was item 5DB, where the percent of correct response was 42\%/ The difference between the proportion of the POC of the spinners in Item 1DB was small (0.05), but other spinner sets had a smaller difference between the proportion of the POC and achieved a higher percent correct response. For

TABLE 10

Frequency of Correct and Incorrect Response and Percent Correct Response on Items

example item 1DD, had a difference between the proportion of the $P O C$ on the $s p i n n e r s$ of 0.03 , and a percent correct response of 59\%, and item 5DC, had a difference between the proportion of the POC on the spinners of 0.02 , and d percent correct response of 56\%. A possible explanation for the choice of the incorrect spinner on Item lDB is the amount of area devoted to the NPOC on the correct spinner. The correct spinner is much larger (radius; 9.8 cm) than the incorrect spinner (radius; 6.1 cm), and with the greater number of NPOC, there appears to be relatively more area devoted to the POC.

Individual Responses

Individual responses to items in the experiment were interpreted by examining the audio-tape transcriptions. The Individual responses to each item were examined by grade in order to detect similar comments. Distinct response patterns were indicated and these were recorded in tabular form (see Tables 11 to 18). In this study, the individual verbal responses seem to fall into six categories according to the feature the subject used to make the spinner choice. These were:

1. Reliance on the POC, that is, the subjects referred to some feature of the POC (blue) as the reason for their selection, for example:

AP (Grade 2), on item 7E, reported: "It had more blues. I just see if there's very many and if there aren't then I go the the other side and look and if there's more then I take that side."

LE (Grade 6), on item 2M, stated: "This one had more blues. I go for the one that has more blues."
2. Rellance on the NPOC, that is, the subjects referred to some feature of the NPOC (yellow) as the reason for their choice of spinner, for example:

8G (Grade 1), on item 2M, teported: "Because this one has less yellow than this one."

KM (Grade 6), on item 6D, stated: NUm-m ...This one has more yellows than this one. This one has three yellow pieces and that one has four yellow pieces."
3. The physical setup of the spinner board and spinner, that is, the subjects referred to the arrangement of the sectors of the spinner, for example, if two blues side by side or, the placement of the pointer (which was started in the same location throughout the experiment). For example

AH (Grade 4), on item 6H, responded: whell, because when you started it, it was in the yellow and like usually spinners go all the way around and it would come all the way around again and I'd have a better chance of getting blue because they're right together."

J8 (Grade 5), on item 1DA, stated: MThese ones are more mpread out and these ones aren't. The blues are more spread out and the yellows are all in one place.

Cause if the yellows are closer together than you only have a chance on one side with the blue and if they're ali spread out then you have a better chance."
4. The physical size or area of the spinner, that is, the student referred to the relative size of one sinner compared to the other, for example:

DS (Grade 7), on item 3F, stated: "It's smaller (circle) and it's thicker. Well, I don't know if it's much thicker, but it's smaller."

BN (Kindergarten), on item 1DA, responded: ' Cause. This one's small. This one's bigger than it."
5. A comparison of the POC and the NPOC between spinners, that is, the student made an observation about the relationship of the $P O C$ and the NPOC on one spinner and compared this to the other spinner, for example:

SW (Grade 4), on item 4D, reported: where were only three blue and two yellows here and one here (yellow) and one here (yellow). And that one had three yellows and three yellows and only two blues.".

KD (Grade 3), on item 7E, stated: "Cause it has three blues and, (pause - counting mentally) 4, blues actually, and one yellow and this has three blues and two yellows." .
6. Comments that were not related to the POC, the NPOC, the physical setup or the area of the spinner, for example:

LE (Grade 7), on item 5EC, responded:
' Cause I usually always get blue on this side. It's my lucky side."

8G (Kindergarten), on item 1DA, stated: " 'Cause I like it. I like big ones."

Tablesf 11 to 18 show the range of responses for each item at each grade level. In four or five instances, a subject provided a response which combined the elements of the categories, and in these cases the first response was used.

The number of responses at each grade level does not always equal the number of subjects at that grade level due to the reluctance of subjects to supply a verbal response, or the failure of the researcher to ask about that item. The reluctance to respond to questions was most common at the Kindergarten level. Although subjects at other grade levels did not always provide a verbal response, there would be a shrug of the shoulders as if to say ${ }^{n}$ I don't known.

For six of the eight items, the absolute number of the POC was the reason most often used by the greatest percentage of subjects.

On item 8M, the vast majority of subjects made a comparison between the two spinners on the spinner board. In this.item both sides were identical in size and number of sectors, and the only difference between the tasks was the orientation of each spinner on the board.

On Item 6H, the absolute number of the NPOC was used most often to determine the choice. This was an appropriate strategy because the POC was equal on both spinners, while the $\dot{N P O C}$ was greater on one spinner.

A thorough review of the verbal responses reyealed that only two students demonstrated a sound understanding of the concept of probability. These students showed evidence of calculating proportion, as well as an understanding of the element of chance. Por example:

JD (Grade 6), on item 2M, stated: "This one's half and this one's over half so you have a better chance with the one over half."

JD (Grade 6), on item 5EC, responded: "One, two, three, ... twelve. So you have twelve. Three out of twolve. One, two, three, four and two out of eight. So they both equal one-quarter, so it doesn't really matter which one you decide to pick so I'll pick the one with less yellows."

CB (Grade 7), on item 3E, stated: "Two -fiths and one quarter and have the same denominator. Change them to twentieths and this (pointed to the spinner with two blue and three yellow) will have more twentieths."

CB (Grade 7), on item 2M, commented:
"This one was seven-fourteenths and this one was ten-fourteenting (and so) this one had a higher chance of getting it."

After choosing many items by correctly computing the proportion of the blue and yellow sectors on each apinner and not experiencing success at getting the POC, student CB (Grade 7) decided, "Most of the ones I have been calculating have been wrong so that's why I picked this one" (1HA). In
this instance" the student purposely chose the wrong apinner
in the hope of a "chance" success.

Categorization of Individual Tasks
A - Reliance on the POC
B - Reliance on the NPOC
C - Physical setup of the spinnef board and spinner

TABLES 11 to 18

D - Physical size or area of the spinner
E - A comparison of the POC and the NPOC
F - Comments that were not related to the POC, the NPOC, the physical setup, ∂ the area of the spinner

TABLE 11

TABLE 12
Categorization of Item 2M

	A	B	C	D	E	F	Total
	2					2	4
1	2	1		2		1	6
2	2				2	1	5
3	3	1			1		5
4		1	2		1		4
5	2		3		1		6
6	2		2		1		5
7	1	2	1		1		5
Total	14	5	8	2	7	4	40

TABLE 13
Categorization of Item 3E

TABLE 14
Categorization for Item 4D

TABLE 16
Categorization of 6D

TABLE 18
Categorization of Item 8M

Iteme with 8pinners of Bqual Proportion

In order to investigate student strategies for choosing one spinner over the other when the spinners were of equal proportion, five tasks were designed: These were 1RC, 5RC, 8E, 8M, and 8D. Table 19 , p hows the frequency of students in each grade who chose the left hand side or the right hand situe for each category with spinners of equal proportion. The responses were categorized according to the left hand or right hand of the experimenter.

For items 8E, 8M, and 8D, the subjects were shown spinner sets which were identical in size, and in which the number of sectors devoted to the POC and the NPOC each were equal. The only difference between the spinners was the orientation of the sectors. On all three tasks, the majority of students chose the right hand side over the left hand side. The individual responses for item 8M indicate that half of the given responses made a comparison between the two spinners in the set (see Table 19). Most students did acknowledge that the spinners were the same, but the reasons for choosing one spinner over the other were varied. For example, student 8 (Kindergarten) stated: "I could get blue. I thought it would come on that one. (Experimenter: "Why?") 'Cause." Student CW (Grade 1) responded: " Cause that one was nice and straight and that one was crooked" (referring to the orientation 0 the sectors). student JS (Grade 5) stated: WWell, they're both the same. I fust

TABLE 19
Frequency of Response and Percent of Response on Items of Equal Proportion

1EC

Right	4	3	4	5	4	4	2	3	29	(60)
Left	2	3	2	1	2	2	4	3	19	(40)

5EC

Right	2	2	3	3	6	2	5	4	27	(56)
Left	4	4	3	3	0	4	1	2	21	(14)

$8 E$

Right	2	2	2	2	2	3	4	4	21	(44)
Left	4	4°	4	4	4	3	2	2	27	$(.56)$

8M

Right	2	1	3	3	2	2	0	2	15	(31)
Left	4	5	3	3	4	4	6	4	33	(69)

8D

| Right | 3 | 3 | 2 | 2 | 2 | 4 | 1 | 2 | $19(40)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Left | 3 | 3 | 4 | 4 | 4 | 2 | 5 | 4 | $29(60)$ |

-Numbers in parentheses indicate the percent of responses for that choice.
©Refers to the right hand side of the experimenter - subject's left.
went for this one because it's my right arm." LE (Grade 6) stated: "They're both the same. But whenever I spun this one I got blue and whenever I spun that I got yellow, so I spun this one."

Item 1RC had the same proportion of POC and NPOC, but the number of sectors on each spinner varied (experimenter's left: 4 blue, 2 yellow; experimenter's right: 6 blue, 3 yellow). The total size of the spinner also varied to correspond to the total number of sectors. For this item the POC was greater than the NPOC on both spinners and the majority of students chose the side with the greater number of POC. Individual coments were not available for this item.

In item 5RC, for each spinner the POC was less than the NPOC, and the number of sectors varied (experimenter's right: 3 blue, 9 yellow; experimenter's left: 2 biue, 6 yellow). The majority of students (56\%) chose the spinner on the experimenter's right hand side of the spinner board. The wain reason given for the choice was the greater number of POC (blue) sectors on the larger spinner. For example, student KD (Grade 3), stated:" "It's more bigger and it has three blues and this only has two and it's smaller than this one." Student PH (Grade 7), responded: " 'Cause there's three blues and I thought that they'd have more chance than trying to land on fust two." Two students recognized that the proportions were the same on both spinners. For

```
example, student CB (Grade 7) responded: "They're the same
- (eenie, meenie, points with finger). They're exactly the
same so it doesn't matter."
```


Gender Differences

For the items where a correct or incorrect answer was possible (31 items), there was no significant difference between the scores of males and females, $F(1,14)=0.64$.

Chapter 5

 DISCUS8IONThe purpose of this research was to investigate the level of probabilistic understanding at the various levels in the elementary school in order to: 1) establish a general age range (grade level) at which children have an understanding of the concepts of probability; 2) outline and discuss any recuring strategies which the subjects have used to help solve probability problems; and 3) suggest a grade level at which probability concepts and activities could be introduced in the mathematics curriculum.

Summary of Method

A total of 48 students from Kindergarten to Grade Seven in a Delta public school participated in the study. Individual sessions of approximately 30 minutes, involving 36 tasks, were conducted with each subject. For each task the subject was presented with a pair of spinners of specific probabilities and asked to choose the one where
the pay-off colour (POC) would come up when the pointer was spun. The choice of the subject and the outcome of the task were recorded by the experimenter. For certain preselected tasks additional information regarding the subject's choice was solicited by asking for the reasons behind the selection.

The session scores were tabulated, and the percent of correct response for each item at each grade level was tabulated. The percent of -correct response for each level of difficulty (easy, medium, difficult) was also determined.

Discussion

strategy

Although most of the percent correct responses were above change, the verbal response to questioning indicated that specific features of the spinner served as indicators of success for the students, rather than a calculation of ratio. Five specific strategies were used by the subjects: 1) reliance on the payoff colour; 2) reliance on the nonpay-off colour; 3) the physical setup of the spinner board and the pointer; i) the physical size or area of the spinner; 5) comparison between the payoff colour and the nonpay-off colour. similar to the results of Talk, Park, and Levin (1980), many of the children in Kindergarten and

Grade One stated the placement of the pointer, or their favourite colour, or sheer will made the pointer stop at the pay-off colour. These students tended to concentrate on one aspect of the task. older students gften made comparisons between the elements of the task. They considered both the POC and the NPOC, but they looked at the relative number of elements of each colour, not the proportion. There were only tero students who calculated the proportion of the elemants of the two colours.

Paik, Paik, and Levin (1980) found that a few subjects integrated the numbers of the POC and the NPOC by using a strategy which involved the computation of difference between the numbers of elements of the two colours rather than their ratio. Although this study was designed to accommodate the difference strategy, no students dembnstrated that technique to select a spinner.

The Role of Conservation

Falk, Falk, and Levin (1980) found that understanding ratio and proportion is presupposed by the principle of conservation. This means that the gize, and number of objects within the set can be different, but the proportion can remain unchanged. The understanding of conservation was investigated through pairs of spinners with equal proportions.

In the items where the spinners were identical, some
students at each grade recognized that they were both the same. However, when the spinners had the same proportion, but were different in number of POC and NPOC, many students did not recognize that the items had the same probability. An understanding of the conservation of size, and number in probability activities was not evident in most students.

Fearining Probability

Falk et al. (1980) state that there is a potential for discriminating between probabilities at about the beginning of Grade One. Although the results from this study show no specific grade level emerging as the definitive point for beginning the instruction of probability concepts, the results indicate that Grade One students did perform at an above chance level (74\%) on 31 items, although their ability to verbalize the reason for their choice of spinner was limited. The upper threshold for percent correct by chance is about 57\% (n of items $=$ 31, n of subjects $=6, \alpha=0.05)$.

Falk et al. suggest that practice playing probability games and Macquiring experience with the operation of random processes may promote the existing potential" (p. 199). They also suggest that exposure to probability activities will enhance the ability of children to articulate the explanation of theif choices.

The results of this sthdy support the conclusion of

Falk et al. that Grade 1 would be an appropriate level to begin introducing probability tasks through games and group activities.

Limitations

This study was limited to one large elementary school (about 650 students) in a middle-class neighbourhood. The results of this study cannot be applied without consideration of this variable. The results could vary according to socio-economic status and school size.

During the sampling procedure, eight students from the initial random selection decided not to participate. The reasons for not participating were varied. Two specific reasons indicated were: 1) the student's lack of ability in mathematics; and 2) the concefn that probability tasks epcourage gambling.

Two main problems occurred during the data-collection. The recording of individual verbal response was to be ongoing throughout the experiment, with the experimenter . asking questions about each item. However, after completing a couple of sessions it was evident that the sessions were exceeding the time constraint and specific questioning had to be limited to specific tasks. The selected tasks were marked, but one task (3E) was inadvertently left out. This was not noticed until the first day of the study was completed and consequently relsulted in a loss of verbal
response data for task 3 F at the grade aeven and the grade four level. Second, one tape was unknowingly recorded over, eliminating the verbal response of one kindergarten subject.

Sugqestiong for Further Study

Four specific areas which. could be addeseed in further studies are: 1) the physical set up of the spinner board, specifically the arrangement of the colour sectors; 2) the level of probabilistic understanding of students over the age of thirteen, for example, in junior secondary school; 3) the strategies used with spinners of equal proportion, but different numbers of POC and NPOC; and 4) the individual verbal responses.

In this study each individual spinner was composed of equal size sectors. The sectors were outilned so the subject could clearly see how mahy sectors were coloured blue and how many were coloured yeligw. The arrangement of the colours for each spinner yas not controlled. When it was possible the colours were alternately spaced. However, a number of subjects used the arrangement of the sectors as a reason for their choice, These subjects chose the spinner where the sectors that were coloured the same were prock together. It would be interesting to investigate whether grouping the same-coloured sectors together would change the results of the stuply.

The oldest, gudents in this study were 13 years old, in

Grade 7. There was no indication of an age range, or grade level where probabilistic understanding was evident. Füfther study with older children who have nat been exposed to probability instruction would provide additional data to isolate an age range where anderstanding of probability is evident in the majority of students. Alternate strategies; such as theordifference method" noted by Palk, Falk, and Levin might also be investigated.

In this study, two items had spinners with an equal proportion of POC and NPOC which were represented by a different number, sectors. Most of the students did not recognize that the probability of achieving the poc on each spinner in the item was equal. An evaluation of the strategies, used by individual students on the items with spinners of equal proportion compared to those spinners with unequal proportions was not-possible as individual verbal responses were not available for all items. Falk, Palk, and Levin (1980) predicted "....that a child who seeks the set with more. POC elements would select the expanded fraction, whereas a child who prefers the set with few NPOC elements would select the reduced fraction" (p. 197).

Students'were asked to explain their reasons for selecting particular ipinners in several items in order for the experimenter to undepstand the student's perception of the task. The results show a disparity between the verbal explanation and the achievement on individual items. Verbal
achievemant seems to lag behind performance achievement as the students performed above chance level on all tasks, but often the explanation for the choice of spinner was unclear. Without individual verbal responses, it is possible for the data to misrepresent the level of understanding of the task by the students. A more detailed discussion with the students on each of the tasks could provide a better understanding of the reason for the shifts in strategy. Falk et al. (1980) suggest that the individual verbal responses must be secondary to the performance on items because the lack of the ability to clearly articulate a reason for a choice does not mean the subject does not understand the task. However, it remains that the verbal responses do indicate the students who use irrelevant principles, such as pointer placement, as the reason for their selection.

REFERENCES

Bullock, A., \& Stallybrass, I. (Eds.). The Eontana Dictionary of Modern Thought. London: Fontana/Collins, 1982.

Carlson, J. S. The development of probabilistic thinking in children: a comparison of two methods of assessment. The Journal of Genetic Psychology, 1970, 116, 263-269.

Chapman, R. H. The development of children's underatanding of proportion. Child Development, 1975, 46.141-148.

Davies, C. M. Development of the probability concept in children. Child Development, 1965, 36, 779-788.

Falk, R., Fajk, R., \& Levin, I. A potential for learning probability in young children. Educational studies in Mathematicg, 1980, 11, 181-204.

Fischbein, E. The intuitive sources of priobabliatic thinking in children. Dordrecht, Holland: Reidel, 1975.

Fischbein, E., Pampu, I.; \& Manzat, I. Comparison of ratios and the chance concept in children. Child Development, 1970, 11, 377-389.

Goldberg, s. Probability judgements by preschool children: task conditions and performance. Child Development, 1966, 37, 157-167.

Hỏemann, H. W., \& Ross, B. M. Children's understanding of probability concepts. Child Development, 1971, 12. 221-236.

Hoemann, H. W., \& Ross, B. M. Children's concepts of chance and probability. In C. J. Brainerd (Ed.), Children ${ }^{-1}$ s 1 oqical and mathematical cognition. New. York:* Springer-Verlag, 1982.

Perner; J. Discrepant results in experimental studies of young children's understanding of probability. Child Development, 1979a, 50, 1121,-1127.

Perner, J. Young children's bets in probabilistic tasks involving disjoint and part-whole related events. Archives de psychologie; ; 1979b, 47; 131-149.

Piaget, Jos. Inhelder, B. The origin of the idea of chance in children. ${ }^{-}$(L: Leak Jr.,'P. Burrell, \& H. D. Fishbein, trans.) New York: Norton, 1975. (Originally published, 1951.)

Province of British Columbia, Ministry of Education. Mathematics Curriculum Revision (ISSN 08230714). Victoria, B.C.: Ministry, Information Circular, December 1984.

Reyes, R. R . Basic concepts of probability -- what do people know? School Science and Mathematics, 1978, 78, 649-654.

Ross, B. M. Probability concepts in deaf and hearing children. Child Development, 1966, 37, 917-927.

Yoşt, P. A., Siege, A. E. Andrews, J. M. Non-verbal probability judgements by young children. Child: Development, 1962, 33, 769-780.

February 26, 1985.

Dear Porients.
1 an about to begin a research-project at Gray Elematary Schoot " He ourposi of this latter is to ask you to give pentission for your child to participath in chis project. The project has been approvid by the Deita School 0isthtce (137). And by Mr. Arehibald, the school principal. it has also betn cirefuily examinad and approved.by Simon Fraser's University's.: Ccialtese on Ethics.

The purpose of this project is to laarn about the development of probabiliey concepts: in piemneary school children.: Probability concepts will be included at allievels of the retised-Mathentics curriculum. This research will explore children's acquisition of this concept. Each pupil participaing ia this research will be excused from elass for about 30 alnutes. it will be working ladividually with each pupil. The pupil will be shown two spinners (siallir te those used in bourd gaes). The student will be asked to point to the spinatr which has the best chance of producing the 'pay-off colour'. The spinapr will then be spun and the results will be recorded. A series of trials iavolviag different pairs of splamers will be falsfated.

Participation in this project will have no betring on your child's regular classmort or gredes. Your child can Githdraw his/har participation. partially or fully, at any tim. The confidentiality of response of individual students will be strictily meintained.

Please fill the blanks bifion and have your child return this ietter to the classroom tolecher temorrow. If you mpild like more information about this praject, please phone m at Gray Elementary before 9 as or after 3 pm. .
rhisk you very auch for your klad consideration.
Yours sincersiy.

Mrs. -5. Higginbottem

> Or. T. ooshee

I will peralt ng child. \qquad - to participate

In this prosect. \qquad 10

TABLE 20
Codes for Item Lever Responses

2524116113110001111111111113111011111111323 2624119013000000111111011113111111111111322 2714116113110000111011011113111011111111222 28141201131100101111111111130010101111111222 2914111012010000111111111113111111111111232 3024122112110001111011110113011100111101233 31251261131100011111110111120101111111111232 3215126113110011111110111112111111111111322 33151271121110101111111111135111001111111223 34251310131000101011111111021111111111111323 $3515127112110000111111111113110011111+11223$ 36251211131100111111111100112001001011111332 3716141002111001110101110113101111001110322 38261431131100111111111111113100001111101322 3926145113111011111111711113110011111111322 4026143112110010111110111112111110101111222 41161441121100101111111111113111000111111222 4216146112000000111111111113110111111111322 4327151112110011111111101112111111110111323 4427159112100010111111111113111111111111222 4517157113100001111111111113111011111111222 4627156012111111111111010113110101011111322 $47171581131100001111111111131111011 \mathrm{H1110332}$.18171571131100111111111111121101101111111333 0110064012111111111110101002111000100001222 0210068112111010111010101112101010111110222 0320070013111111110111001112000000010111222 0420008113111011111111111112000000101111333 0510054103111001101011111113110000010000223 0520070113011101010001010103110111011101333 $0711081002101010101010000113101111111101 / 223$ 0821086102110001111110111113111111110111222 09110791131110111018.10011012110010181011322 1021075113111011111111111012010001111111232 1111079112111111111111011112011100181001223 1221081113111011111111111102100001101101323 1312087112111000011111111012010018101110222 142209611311101011111111111121110001111111222 1512097113111011111111111112010000110111323 1612093113111011110111110113011000101111232 1722088112110010101101111113011011110111233 $182209711311101011111+11113011011111111332$ 191310911311.1011111111111101311010011111122\% 2013108002110000101100111112111011100111222 2123107113111010111111111112011000111111333 222309811311111111111111111030010001111111232 23230991131111111111111101002010000000101322 2413106013101011011111111113111110111111233

$$
\sqrt{1}
$$

- APPENDIX C.

PHYSICAL COMPOSITION OF TASKS

$2 M$

5EC'

5DD虽

7E

$7 M$

70

[^0]: G. Spitler

 Associate Professor
 Faculty of Education
 Department of Math and Science Education University of British Columbia External Examiner

