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Abstract 

Distributed Algorithms may be represented by a finite network of communicating 

processes. Each process is represented by a set of 'guarded commands' which behaves 

like a generalised iterator. The distributed execution consists in the non-deterministic 

interaction of processes. This interaction occurs exclusively by means of message 

interchange over unreliable communications channels. 

A suitable logic for distributed algorithms must at least be capable of describing 

some aspects of the dynamic behaviour of processes. 

We develop a modal logic for processes, in which safety, liveness and fairness 

properties, as well as partial and total correctness properties, may be derived. 

~h~ logic is ...+ L,,e,,,e~c, -,.- + A In ' a Kripke-style relational semantics. No higher-order 

semantical objects such as execution paths or trajectory sets are introduced. 

In a concluding section, we indicate how the results may be extended to accounl for 

message interchange. 
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Sacks 

Nerode 
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Kleene 

Nerode 

Mostowski 

This conversation appears in full in [4]. 

I guess one of the saddest things in logic is that Presburger never got 
his degree. 

That Presburger never got his degree? 

Yes, yes. Tarski refused to give him a degree for his paper [361. 

Which is now one of the most cited. 

Why? 

Because he considered it too simple. He thought that it was not what he 
wanted. 

What was this? The decidability of . . .? 

Addition and Multiplication - separately. 

No, without multiplication. 

How you can do it with multiplication without addition I do not know, 
because the usual recursion equations for multiplication have addition in 
them. 

Sure, but I thought that Presburger had also done the theory of 
multiplication alone. That was my memory of it. Were you the first to 
do that? 

I think Skolem was the first to do that. 

Nerode Ah, Skolem! 

Mostowski Yes, but I think Skolem was later than Presburger. I am not sure 
whether it was so. But in Presburger's paper there is only addition. 

Sacks So Tarski thought the proof was too simple. 

Mostowski Yes. This was a very obvious application of elimination of quantifiers. 
1-ou know a t  that time . . . 

Kleene Presburger - nine pages in 1930. 

Chang A nine page thesis! 

Mostowski Well, he could have expanded it a bit. 

vii 



Chapter 1 

Introduction 

This thesis is about the modal logic of distributed computation. Its principle 

contributions are extensions of existing work in the logics of programmes. We ought, 

therefore, to begin by saying what a "logic of programmes" is. 

Programming Logics 

A logical system for reasoning about the behaviour of computer programmes should 

be constructed from the following components. 

1. A semantics i.e. a mathematical abstraction of computer programmes, 

2. A Language in which statements about the behaviour of programmes may 
be expressed, 

3. A notion of satisfaction, so that sentences in the language may be 
interpreted in the semantic idiom and thus said to be true or false, 

4. A deduction system within which particular sentences in the language may 
be proved or disproved. 

With these pre-formal notions in hand we may sketch the development of 

programming logics. 

One of the first instances of a programming logic is due to Hoare [18]. Hoare's 

system and its many extensions are characterised by syntactical constructions of the 

form 

which is interpreted 

1 



if p is true when programme a starts, then q will be 
true if and when a finishes. 

properties of this form are called partial correctness assertions, as opposed to total 

correctness assertions. which add that a does in fact finish, or terminate. We refer 

to logics of this ilk as input/output or I/O logics. Formulae in I/O logics describe 

programmes in terms of initial conditions or input ( p )  and final conditions or output 

(4). 

Hoare systems have been developed for fairly rich programming languages. In 

particular. Lamport [24] presents a Hoare style deductive system for reasoning about 

concurrent computations, such as are characteristic of operating systems. The semantics 

of this and similar systems seems always to be presented informally. 

Hoare systems are most used to provide a formal means of reasoning about what 

have been called safety properties. A safety property asserts that certain situations 

never develop over the course of programme execution. Partial correctness is an 

example; it is asserted that if p is true when a begins, (Y can not finish with $ false. 

Total correctness, on the other hand, is an example of a liveness property. Liveness 

properties make some positive assertion about programme behaviour: for instance that 

CY actually does terminate. A logical system for total correctness of concurrent or 

parallel programmes appears in [ll. 121. It is based upon a Hoare style rule system, 

augmented by Dijkstra's weakest pre-condition predicates [6]. 

However, to quote Lamport [29] 

...p rogrammes are capable of many more sins of omission than just failure 
to terminate. Indeed for many concurrent programmes - operating systems 
are a prime example - termination is known by the less flattering name of 
crashing, and we want to prove that it does not happen. 



proving liveness properties requires an ability to reason about the ongoing or dynamic 

behaviour of programmes. This has led to extensive research into the possible 

of linear and branching time temporal logics to the logics of programmes. 

Typically, the languages employed prefix a temporal modality such as henceforth 

or eventually to a programme location predicate 129, 32, 21, 331. The latter 

papers deal with programme verification - proving that the programme does or does 

not exhibit certain behaviours. Similar temporal logical schemata have been proposed 

purely as specification languages, to define explicitly the required behaviour of 

programmes yet to be written. See, for instance [40, 11. Algorithms for effectively 

constructing programmes which realise a given temporal logic specification have also 

been developed [25, 31. More abstrusely, much attention has been devoted to 

complexity and decidability issues which arise from the mere use of temporal 

logics 18, 46, 311. 

In parallel with the research cited above, various modal logics of computation have 

been developed. I t  was noticed by Pratt [34] that the proposition 

has a ready interpretation in a kripkean relational semantics. This led to the 

development of Dynamic Logic (DL) [15] and its propositional variant (PDL) [9]. The 

modality employed in these systems is after, as in 

the intended interpreted of which is "after a terminates, p is true". This corresponds 

to the Hoare rule 

true {a1 q , 

Where true denotes an input condition to cw which is always true. 



In the semantics, each programme is assigned a binary relation on a set of states. 

1f the pair <s,t> is in the binary relation for programme a,  it means that 

programme a can terminate in state t when started in state s. 

More recently, the logician Robert Goldblatt presented a rigorous and detailed 

of a Dynamic Logic for a programming language roughly equivalent to 

PASCAL or ALGOL-60 [14]. It is this work which serves as the foundation for the 

present thesis. By the criteria above. these various dynamic logics qualify as true 

logics of programmes, in that they provide a semantical underpinning, in the form of 

relational semantics, which is a reasonable abstraction of programme behaviour. The 

existence of an underlying semantics also makes it possible to speak of the soundness 

and completeness of any proposed deduction system. 

The limitation of dynamic logics is that they support only the modality after. In 

consequence, it suffers from the same limitations as Hoare logic when it comes to 

expressing what we have termed liveness properties. Thls limitation has inspired some 

very powerful generalisations of DL, which are referred to as Process Logics. The 

underlying relational interpretation of programmes 1s altered. Instead of binary 

relations, programmes are assigned sets of paths, which correspond to possible 

computations. That IS. a path for a i q  an  ordered sequence of states with a first 

element. Depending upon the language introduced. ~t is possible to deflne almost any 

given property of programme behaviour. For instance, total correctness amounts to 

the requirement that all execution paths be of finite length. More discussion of the 

various process logics occurs in $ 5 .  

The desire for greater expressive power motivated the development of Process Logics. 

However, there seems to be general agreement that a programming logic supporting a 



fairly restricted set of modalities would be adequate in practice for proving the 

correctness of most computer programmes. Following Pratt [35] ,  these modalities are 

2. thuoughout(a.p) - p is true at every point in the computation of a. 

3. during(a,p) - p is true at least once during the execution of a 

4. p-eserveda ,~)  - if p ever becomes true during a ,  then it remains true 
thereafter. 

No logic based on relational semantics has ever been presented which is capable of 

expressing the property of preservation. Pratt [35] presents such a system adequate for 

the modalities during and throughout, with the severe restriction that these modalities 

can not be nested in any way. 

The objective of this thesis is to develop a programming logic capable of 

representing a t  least the above list of programme behaviours (indeed, a great deal 

more.) Furthermore, we aim to accomplish this with out leaving the first order 

framework of Kripkean relational semantics. 

In addition, the notions of non-termination and failure prove capable of 

interpretation within the formal semantics. This appears to be a new result. 

Distributed Computation 

Distributed computation refers to problem solving which depends upon the 

cooperation of loosely coupled, but autonomous computers. We do not consider either 

concurrent processing, which involves time sharing on a single machine, nor the 

tightly coupled computations of massively parallel architectures. 

The reliable exchange of messages between distant computers involves a form of 



distributed computation - there is no central god machine ensuring that the message 

interchange is successful. At the far  end of the scale, it is disturbing to real~se that 

military command and control systems depend upon distributed computation of great 

and reliability. We describe a model of distributed computation in the 

next chapter. 

The design of reliable distributed computer programmes is a task of great difficulty, 

yet no programming logic for distributed computation appears ever to have been 

advanced. 

Outline 

Chapter 2 presents and justifies the model of distributed computation which 
we employ. 

Chapter 3 serves as an introduction to modal logic. 

Chapter 4 extends the I/O logic of [14] to account for a new programming 
construct. This construct represents local components within a 
distributed programme. 

Chapter 5 contains the main results of this thesis. A logical system adequate 
to account for the dynamic behaviour of processes is developed, and 
partially axiomatised. The system is able to reason about divergence 
and failure. 

Chapter 6 concludes the thesis by indicating how the results may be extended 
to describe actual distributed computation. 

Notational Conventions 

In proofs and informal reasoning, the meta-logical connectives 

P and q 

if p then q ( p  implies q is synonymous) 

p iff q,  for 'if and only if' 

are used freely. They occur either in roman or italic face as necessary. Punctuation 



is provided by the informal use of brackets and commas. The meta-logical 

connectives take precedence as indicated above. 

Chapters are referenced e.g. Q 3.1. Sections and Subsections are referenced e.g 9 4.1 

and 9 5.1.4. Theorems, Lemmas and Definitions are referenced e.g Thm. (5.2.15). The 

first two digits denote the Chapter and Section within which the Theorem or 

Definition is stated. 



Chapter 2 

A Model of Distributed Computation 

2.1. Parallel Event Servers 

In this section we introduce the paradigm for distributed computation which has 

shaped this research. 

Distributed computation is characterised by the following properties: 

1. The distributed programme is distributed into a fixed number of processes. 

2. Each process executes on a dedicated processor. 

3. Processes communicate by means of a fixed set of unreliable channel3 
connecting pairs of processors. Channels are the medium by which 
messages are transmitted between processes. 

4. Processes have disjoint sets of variables (i.e. there are no shared variables.) 

5.  Processes execute asynchronously 

6. Execution at both the local and global level is non-deterministic. 

7. In general, the programme does not (is not supposed to) terminate. 

An event is something which occurs intermittently to some process a t  some processor. 

The idea is that when an event occurs, the process will serve it, doing whatever is 

required to be done, and then be ready to correctly serve the next event. Service of 

an event will often cause another event to occur later, either a t  the same process, or 

somewhere else. 



We sometimes use the term Parallel Event Servers to describe a programme 

distributed in this way. 

The structured way to represent a process is to list the set of detectable events, and 

associate with each of them the piece of code which serves the particular event. The 

programme scheme outlined below illustrates the syntax which we use to represent 

parallel programmes. 

parbegin 
P1 : 

rep 
G11 ' S11 

parend 

This scheme is a variation of the guarded commands introduced by Dijkstra in [6]. 

The variant, due to Flon and Suzuki [ l l ,  121, represents the following behaviour. 

The Pi are process labels. The S.. are sequential, deterministic programmes (referred 
'I 

to throughout as sequential components.) The G.. are the guards, which enable the 
'I 



sequential components. A guard is some truth condition on local Pi variables and 

locally testable events. 

In addition, we must introduce two primitive commands which are used to read 

from and write to channels [18]. Let C be the name of a channel, and let x be a 

variable. Then the command C!x causes the current value of the variable x to be 

transmitted over C. The command C?x is somewhat more complex. It acts as a test 

to determine whether the channel may be read. If so, the variable x is assigned the 

current value which the channel is transmitting. Thus C?x acts both as a boolean 

expression and an assignment statement. A possible formal semantics for these 

commands will be described in $9 6.1. 

A process may begin executing by evaluating its guards. From among those which 

are true, one is selected and the corresponding sequential component is executed. Upon 

termination, ihe guards are re-evaluated, and a new choice is made. If the attempt to 

evaluate one of the guards fails then the process fails or aborts. 

The local non-determinism consists in the fact that several guards may be true 

during the interval when evaluation occurs. The global non-determinism arlses in 

consequence both of this fact, because guard selection affects which events may occur 

later at other processes, and also because the relative speed of different processes and 

lossyness of different channels is not specifiable (in the proposed language). The 

lossyness of a communications link is a measure of the probability that a message is 

transmitted without error. 

A process is blocked if none of its guards are true a t  evaluation. If none of the 

guards may eventually become true, then the process is deadlocked. The entire 



programme is deadlocked if all guards Gij become permanently false. A process is live 

if one or more guards is, or will become, true. 

The existence of non-determinism gives rise to the issue of fairness. An execution 

is said to be fair if it does not discriminate between equally valid choices. The most 

usual and simplest fairness condition is this: if a guard is infinitely often true, it 

will be selected infinitely often. This and many other conditions for fair execution are 

studied in [221. 

Actual termination of a rep - per block is accommodated in [ l l ]  by an explicit exit 

command. This feature does not appear to be helpful for the sorts of programmes 

under consideration here. 

Following [ I l l ,  we have required that all sequential components be deterministic. 

This implies that an S.. may not spawn other parallel programmes. It may however 
'I 

effectively invoke them by sending messages which result in the activation of parallel 

components on other machines. 

Should a par~icular application rey uire non-determimstic behaviour, the methods 

of [I 1, 121 may be employed. The sequential components containing non-deterministic 

programming constructs may be effectively decomposed into a guarded command 

schema. 'To guarantee that the result of the decomposition executes without the 

interleaved execution of other sequential components, some additional flags must be 

incorporated into each of the process's guards. These flags would be used to disable 

the selection of sequential components not involved in the non-deterministic 

computation. 



Due to the nature of the programmes under consideration, a further simplification is 

possible: the S. are to be free of procedure and subroutine calls, and function 
'I 

invocations. The technical machinery needed to account for these (useful) features 

considerable complexity to a programming logic. The study of parallel 

programmes is largely a study of process interaction. What the sequential components 

actually do is not that interesting. Formal treatment of the semantics of guarded 

commands may be found in [6.  11, 12, 14, 431. Discussion of a more general case. 

in which processes can spawn other processes (accomplished by allowing parbegin 

parend blocks as general statements) may be found in [48]. 

In the next Section, some examples of distributed algorithms will be presented. 

These examples are all expressable in the programming schema given in $9 2.1. 

2.2. Programme Examples 

We now illustrate the application of the programming constructs introduced in the 

previous section, moving from a very general specification schema to a specific 

distributed algorithm. By demonstrating a reasonably broad range of applicability, 

this section serves as the justification for introducin'g the parallel event server as a 

paradigm for distributed computation. 

2.2.1. IS0 Protocol Specification Language 

At the time of writing an extension to the PASCAL language was being 

developed [19] to facilitate the specification and implementation of communications 

Protocols. 

A communications protocol is an inherently distributed algorithm which enables 

Processes on different computers to exchange messages. A minimal requirement of 



is that it overcome the limitations of the physical communications 

medium, or channel. These limitations include a tendency to lose messages completely, 

or to corrupt them. The protocol should present to the two parties using it a virtual 

&annel of higher performance than the physical one. 

An example of a simple communications protocol is presented in $$ 2.2.3 

In the proposed standard, processes are represented by extended finite state machines 

(FsMs). The extension is to provide local variables and associate with each state 

transition a piece of sequential deterministic PASCAL code. State transitions are 

enabled by a combination of 

0 EVENTSs : input signals from other FSMs. 

PROVIDEDs: boolean predicates on local variables. 

Transitions occur between major states which are abstractions of the current state of 

the FSM, excluding the local variables. Transitions may result in message 

transmission to other FSMs, which may in turn result in a distant input event. 

Procedures are available insofar as the state !ransitinn code is written in PASCAL. 

This is more for expressive convenience than necessity. 

The IS0 standard also provides for DELAY operators. These operators specify the 

amount of delay permissible between the enabling of a transition and its firing or 

execution. Process delay will not be dealt with here. Some results in the formal 

treatment of delay may be found In [17, 281. 

The standard specifies that non-deterministic choice be made between simultaneously 

enabled transitions. 



The standard allows a single process to realise several instances of a protocol. That 

is, a single system process could provide protocol connections to many user level 

processes. This is accomplished by means of context variables which distinguish the 

various protocol connections being served. Local variables are then arrays indexed by 

the context variable. Formal treatment of arrays would only complicate the logical 

system under development - so we ignore it. The concerned reader is referred 

to E14•̃ 51. 

The only difficulty in translating algorithms encoded in extended Pascal into the 

language of the previous section consists in the construction of the guards. Input 

events are things of a different type than boolean predicates. How to recast them into 

tests for "the recent occurrence of an input event" is considered in the Conclusion. 

2.2.2. Fault Tolerant Networks 

In [5]  Dijkstra proved the existence of distributed algorithms which can recover 

from errors. He calls these algorithms 'self-stabilising', because continued execution of 

process steps is guaranteed to transform the system from a failure or illegitimate state 

to a Ze~ztzn~atc \late Con\~tlerat~on of the work u ~ e d  engendered the research 

culmmating in this thesis 

In Djjkstra's model, processes are finite state machines, and the distributed 

programme is a sparsely connected network of processes. Each process has a local state 

variable, and has instantaneous access to the states of adjacent processes. Processes 

execute by evaluating guards just as above. The only difference is that the selection 

of the next process step is not made locally, but by a central daemon. In consequence, 

only one state transition occurs a t  a time. This means that the system executes 

synchronously 



The global state is the cross product over all processes of the set of guards. Some 

subset of this is said to be legitimate. In the cases considered in [5]  the legitimate 

states are just those in which exactly one guard is somewhere true. 

The global criteria for self stabilisation are 

1 .  in each legitimate state a t  least one guard is true, 

2. no transition moves from a legitimate to an illegitimate state, 

3. each guard is true in some legitimate state. 

4. there is a path (sequence of transitions) between any two legitimate states. 

These conditions roughly correspond to deadlock freedom (11, a global safety 

condition (2). a liveness property for each guard (3) and a global liveness property 

(4) which, assuming a fair daemon, would result in each process step being repeatedly 

executed. 

A system is self-stabilising iff 

0 a t  least one gum-tj is always true 

an illegitimate state will always be transformed into a legitimate state in 
a finite number of transitions. 

Here is a self-stabilising algorithm for N machines with K > N distinct states. 

The machines are connected in a cycle and numbered from 0 to N-1. So, the 

neighbours of machine n are n-1 and n+l ,  mod IV. Note that process Po changes states 

by performing addition mod K on its state variable S. For process i, Sl- l  denotes the 

current value of i's left neighbour. The reader should verify that this structure 

satisfies the required conditions. 



parbegin 
P0 : 

P1 : 

Pi : 

PN-l : 

parend 

rep if sN-, = s0 then 
s0 := (S+l)mod K f i  per 

rep if s0 f s, then sl := s0 f i  per 

rep if s ~ - ~  f s i  then si := si-l f i  per 

rep if s ~ - ~  f sN-l then SN-*. := SN-* f i  per 

The pseudo-code above may be translated into the language of guarded commands. 

Where, above, neighbours states were treated as variables, we now write R (L) to 

indicate the channel connecting process Si to its right (left) neighbour. 

parbegin 

Pi  : 

rep 
L? + temp := L ;  

temp f S i  -+ S i  = temp;  

true + R !  s i ;  

Per 

where Si ho lds  the va lue o f  the  c u r r e n t  s t a t e  o f  Process i ,  

temp i s  a  l oca l  v a r i a b l e  o f  type state, and 
the guard L? i s  a  t e s t  f o r  the  a v a i l a b i l i t y  

o f  neighbour ( i - 1 ) ' s  s t a t e  i n fo rma t ion .  
the command R !  Si t r a n s m i t s  t he  va lue o f  

Si on channel R 

Notice that the standard communication primitive has been broken down into two 

components. In the first guarded command, we see the guard L?, which is true 



when a message niay be read from the channel connecting St and St_,. Within 

the component itself, we see the state variable S2.* on the left hand side of an 

assignment operator. This assignment should be Interpreted as a read command. We 

will argue in $$ 6.1 that; this is a better representation of channel communications. 

We will also present a clearer syntax. 

The behaviour of the algorithm is now slightly different. Now, Pi must explicitly 

receive the state ~ a l u e  of its left neighbour, and send an updated version of its state 

to its right neighbour. By virtue of the third guarded command, it does so frequently. 

This recasting raises some interesting questions. Until Pi actually receives a message 

from its neighbouds) what is the value of Si_, or temp? Without an initialisation 

phase, the system might well be inconsistent. But since all transitions are supposed to 

preserve system legitimacy, the occurrence of a fault in a self-stabilising system 

corresponds to ihe sysiem starting in an iilegitimaie state. The usual definitions of 

parallel algorithms always include a specification of the initial conditions. To the 

extent that these conditions affect the truth value of guards, deviation from them 

could result in the system starting in an illegitimate state. Dijkstra has established 

that ultimately correct behaviour can be independent of the initial state of a 

distributed system. 

2.2.3. A Version of the Alternating Bit Protocol 

The alternating bit protocol (ABP) is a simple though non-trivial communications 

Protocol. As a final programming example we illustrate a simplified instance of this 

Protocol and give an explanation of its behaviour. 

The protocol assumes that a channel may garble or lose but not reorder messages. 



Tllat is, a message may be physically distorted, or lost entirely, but messages are 

if a t  all. in the same order as they were transmitted. 

The following programme is a fragment of the full alternating bit protocol as 

specified in [19]. The representation is largely that of Kroeger in [21] although state 

are used as in the IS0  standard. 

Channel names are IN,OUT, and D. When referenced as "D?" in a guard, a test is 

performed to see if the channel holds a value. On the right hand side of an 

assignment they function as variables. D!(exp) sends the value of the expression exp 

onto the channel. 

Major Programme states are READY, SEND, and ACK-WAIT. When they appear in 

guards they function as a test on the current global state. In statements they are an 

assignment to the state variable. 

The Sender's channel IN is connected to some other process which at intervals wants 

to send messages across the faulty channel D. We can regard IN as a queue. Sender S 

takes items from IS one dt  a time, associates a sequence number with them, and 

sends a composite message to receiver R. When S eventually receives an ACK from 

R containing the same sequence number as that of the last message sent, i t  assumes 

that the message has reached R intact. It is then ready to send the next message, if 

any. 

Now to define the programme variables: 

* dr,ds: current message for the receiver (sender) 

1s: sequence number of last message sent 



parbegin 

S : 
rep 

READY and IN? 

dr := I N ;  

Is := Is '@ 1 ;  
SEND ; 

e nr: expected sequence number of next message 

e a: sequence number acknowledged 

initial conditions: nr = 1 ,  2s = a = 0 ;  

SEND 

D !  ( ls,dr) ; 

ACK-WA I T ; 

ACK-WAIT and D? -+ 

a := D; 

if 1s = a then READY else SEND fi  
Per 

R : 
rep 

D? -+ 

(rnn,ds)  := D;  

if mn = nr then OUT! (d,) ; 

nr := nr Q 1 

f i 

t r u e  -$ 

D ! ( m  @ 1 )  

per 
parend 

R c~ntinuously sends acknowledge messages, but will not change the sequence 

number i t  sends until it gets a message from S with the sequence number it is 

expecting. This forces S to keep sending duplicate copies of a message until R gets one 

intact. The reader may care to verify that the correct pattern of sequence numbers 

will be followed no matter in which state process S begins. 

This simple example lacks some obvious refinements. There is no error checking 



done on incoming messages by either R or S, other than to verify the sequence 

number. In practice the total message traffic would be reduced by the addition of a 

Timer process. The Timer could interrupt R a t  intervals, causing it to send an ack if 

appropriate at the time (e.g. if a message had arrived) and not 'as fast as it can'. 

Equally, S could interact with a timer process, so as not to respond to every false 

ack with a new copy of the current message. However, the example given here is 

complex enough. 

This protocol is often employed as a vehicle for demonstrating logical specification 

languages: see, for instance [48, 40, 211. 

In this section, a fairly broad range of distributed algorithms has been presented. 

All of them can be written in an algorithmic language using the rep per construct 

provided a suitable set of communications primitives is given. This suggests that 

Parallel Event Servers are suitable to represent disiribliied algorithms. 

In the case of self-stabilising computations, several examples are given in [5]  but no 

techniques are provided for either proving that the property holds in a given case, or 

for deriving algorithms which exhibit it. In [19] only the syntax oi. a formal 

specification language is given. In itself, this does not assist anyone in determining if 

the specifications are correct. Nor does syntactic correctness guarantee the correctness 

of the algorithm. 

The correctness of both types of algorithm has to do with their behaviour over 

time, not only with the way that particular events are dealt with. A logic for partial 

correctness, as described in the Introduction appears inadaquate for the task. 



We conclude that a programming logic permitting the derivation of correctness 

poperties directly from the syntactic representation of programmes written in the 

language under consideration would be useful in many applications. The point of the 

preceding two sections is that such a logic would qualify as a logic of distributed 

computation. 



Chapter 3 

Introduction to Modal Logic 

The bulk of this chapter is devoted to a tutorial development of the well known 

modal systems K and K4. We employ a simple propositional language LK and the 

usual Kripkean relational semantics. Proof of completeness is by means of the now 

standard Henkin technique. Readers familiar with these topics may skip the first 

section without loss. A system similar to K resurfaces in 5.  

ln the the concluding sections, we illustrate some of the many extensions of K 

which have been advanced as suitable programming logics. These extensions are 

obtained by adding LO ix various powerful modai operators, which we introduce and 

define. Finally, we show how a simple system, such as K ,  is capable of representing 

those dynamic properties of programmes which were introduced in the preceding 

chapter. 

3.1. The Modal Systems K and K4 

In this section we develop a simple modal logic, for the purpose of illustrating the 

fairly abstract approach taken throughout this thesis. We begin with an intuitive 

discussion of some fundamental notions. 

A language is just a set of symbols which may be strung together according to 

specified formation rules to make well formed formulae, or wffs. Some of these will be 

true in a particular interpretation or semantics, others false. For instance, the English 



w f f  "If she weighs the same as duck, she's made of wood" is probably false. By 

we mean a characteristic class of models and a collection of rules for 

interpreting formulae in models. A model is a mathematical structure which is an - 
abstraction of the concept or process about which we wish to reason. When a formula 

is said to be true, it is always with respect to a particular model in a given 

semantics. A formula is said to be valid if it it is true in every model allowable in 

the semantic idiom.. Of course it is often controversial to claim that "truth about a 

model" implies truth about anything else. 

An important task for the logician, which is sometimes even possible, is to find a 

distinguished subset of the wffs of a language, called axioms, and a set of closure 

conditions on sets of w f f s ,  called inference rules such that the closure of the set of 

axioms under the rules of inference is sound and complete in a given semantics. Such 

a set of formulae is called a logic. A member of the set is a theorem of the logic. A 

logic is sound is all of it's theorems are valid. A logic is complete if every valid 

formula is a theorem. The process of finding such a list of axioms and inference 

rules is called axiomatisation. -4 famous and unsuccessf'ul example of this venture is 

Peano's axiomatisation of  a firs1 o r d e ~  logic 01' a r i t h m e t ~ c .  

We now proceed with this task for a simple propositional modal logic. The 

development below is essentially a connected series of excerpts from 1201 and [14]. 

For the sake of legibility we forego item by item references. The notation employed 

is somewhat nonstandard; it is used in the interest of consistency with later chapters. 

We begin by defining a language LK. Then a set of wffs  is defined, using the 

Primitive symbols of L, and various syntactic formation rules. We then provide a 

semantics by defining a model (or rather, class of models) and rules for  interpreting 



formulae of LA. The next step is to present a well known axiomatisation, namely that 

of [2 ] ,  and show it to be sound. Finally, a Henkin style completeness proof is 

illustrated. 

where P = p,q.r . . . is a countably infinite set of elementary propositions (called the 
non-logical symbols of LK.) 

Call the set of well-formed formulae of Lg Fma, and define it thus: 

0 false E Frna 

if p E P then p E Frna 

0 if$.$ E Frna then $ + $  E Frna 

if $ E Frna then O$ E Frna 

that's all! 

The other logical connectives can be defined using + . In particular 

-6 =cj,, (4 -+ false) and true = lfalse. The modal operator has a dual, which we 4 

deiine 

In passing, we note that Fma is relative to a particular language, and to be explicit, 

should be written FmaL . To 'avoid avoidable subscripts' we will ignore this nicety 
if 

when no ambiguity results. In general more than one class of wff's may be defined 

for any language. Throughout this thesis however, every language will have exactly 

one set Frna associated with it. This enables us to utter without ambiguity phrases 

Such as "6 is an L~-formula." 



The only major difference between L, and the language of the propositional calculus 

(PC) is the presence of the symbol 0. Since Fma is merely a set of uninterpreted 

strings of symbols generated by the 'grammar' above, 0 should be no more (or less) 

mysterious than, for instance. ' p ' .  

To motivate the construction of the class of models below we briefly discuss some 

possible intended interpretations of 0. One example is a preference relation over a 

collection of conceivable states of affairs, or "possible worlds". One thing about 

preference relations is that, like 'later than' or 'greater than', they are transitive. In 

other words, if the intended interpretation of is 

any state of affairs preferable to the actual is such that 6 

we might expect that any yet more desirable state of affairs also satisfies 6. Equally, 

if a 'state' is a moment in time and 06 is intended to mean ''4 tomorrow and 

thereafter", we would expect that also "tomorrow @" be true. Thus Qb means (in 

this interpretation) "henceforth always 6" while the dual operator 0 means 

I1 11 

"eventually" 1.e. "at some later time. preference" and "Henceforth" are examples of 

modalilies. A symbol such as used to represent them is a modal operator. For our 

purposeb, the mtended mterpretation oi IS the temporal modality "henceiorth 

always". W1t11 this mterpretatlon in mind, we can proceed to deflne a semantics for 

h 

A model M is a structure (S,v.R), where S is a set of states, R is a binary relation 

R C S X S and v is an operator which associates with every s E S a valuation function 

V , :  P+ (0,1}, where 0 and 1 are the synonyms for false and true. This is sometimes 

expressed as v : S +  2'. The meaning is that v assigns to each state the set of 

Propositions which hold in that state. Members of S are denoted by the lower case 

italic letters s,t ,u,v,w, etc. 



Interpretation of members of Fma is accomplished by defining the satisfaction 

relation . We write M 5 $ to say that 4 is satisfied a t  s by M. Synonyms for 

satisfaction are true or holds. Validity in a model M is denoted M k$. Formulae 

which are valid per-se, such as propositional tautologies, may be written simply kc$, 

indicating that 56 is true at all states in all models. The relation t= is defined 

inductively for all members of Fma. 

1. for p E P M 5 p iff vs(p)  = 1 

2.  M 9 ($ + $1 iff M 5 c$ implies M 5 $ 

3. M 5 -.l$ iff not M 5 4 

4. M 7 Qb iff Vt ( S R L  implies M 5 4) 

We write M 5 $ for not M 9 4 .  

It is easy to see that vs could be extended to all formulae 4, so that 

M 5 $ iff vS(c$) = I . 

The meaning of the k relation is that a formula is true in consequence of the 

structure of S induced by R, the functions v and the meanlng of the truth functional 

connectives and the modal operator 0. 

It remains to restrict attention to a class of models appropriate to the intended 

interpretation of 0. This is done by establishing some conditions on M. We call these 

standard model conditions. The appropriate condition for the interpretations of 0 which 

- we have considered is transitivity. The condition is imposed by requiring that 

Vu,v ,w E S , uRv and vRw implies uRw 

Henceforth we restrict our attention to standard models. Thus the expression k4  is 

interpreted to mean that 6 is valid for the class of all transitive models. 



We now turn our attention to axiomatising the formulae of LK which are valid for 

the class of transitive models. Below and throughout, we use "PC" to refer to the 

Propositional Calculus. 

Our axioms Ax are: 

1. any set of axioms adequate for PC 

2. n(4 -+ $1 -+ (n+ + ~ $ 1  

3. c#)-,OU+ 

The symbols K and 4 are commonly used to name the indicated axioms. 

The rules of inference are 

MP: modus ponens 

RN: from 4 derive 04 

A logic is a subset A of Fma which contains all instances of schemata Axl ,  Ax2 

and Ax3, and which is closed under the inference rules MP and RR. That is, 

@ E A and ($ + $1 E A implies $ E A 

and 

@ E A implies Oc$ E A. 

This system of axioms and inference rules is known in the literature as System 

K4 [2]. The system is named after its distinguishing modal principles. When our 

axiom 3 is dropped, the result is the minimal modal logic K. 

A A-theory or theory is a subset r of Fma which contains A and which is closed 

under the rule MP. The intersection of any collection of A-theories is a A-theory 

itself. It follows that there is a smallest A-theory, namely A. 



The difference between a logic and one of its theories is this. A logic is intended to 

be those formulae which are t,rue of every state in a model, while a theory, as an 

extension of a logic, will be true only at  some states. The additional formulae in a 

theory may be regarded as the consequences of certain assumptions, say, about the 

definition of t7 at a particular point. This explains why theories are not closed under 

the rule RN. The fact that d, is the case a t  some state does not imply that 4 is true 

a t  all related states. For instance, it does not logically follow that it will rain 

tomorrow in Vancouver just because it is raining today. 

We now define the deducibility relation for a login A. We use C to represent an 

arbitrary subset of Fma. 

C i;i 4 iff for all A-theories r such that C C r , 4 E r 

That is. C t;i 4 if d, belongs to every A-theory which is an extension of C. The reader 

should verify that {QI : C $1 is a A-theory. We write CT; QI to mean 6 E A. It is 
. - ' &  

easy to check that t;i @ iff 0 t;i QI, where 0 is the empty set. 

We say that Z is consistent if Z $ false. Since (false + $1 is a tautology, this is 

equlvalenr to the requirement that C % qh for a t  least one lormula 9. 

A maximal consistent A-theory is a consistent A-theory r with the property that, for 

each formula @, either @ E r or -4 E I'. 

Before we proceed with the proofs of soundness and completeness, we prove a few 

results about A-theories. 



3.1.1 the 0-Deduction Theorem 

Proof: 

Let r be any any A-theory containing { 04 : $ E C 1. Define A = { rl, : O$ E r 1. 
We need to show that 04 E r ,  i.e. that @ E A .  By our hypothesis, it is enough to 
show that  A is a A-theory containing li;. 

If $ E Z then O$ E r by choice of T. Then, by definition of A rl, E A. 

If $ then, by RN,  $ D$. so O$ E r and rl, E A.  

Finally we show that A is closed under the rule MP. If rl, --+ 8 . rl, E A then 
0 + 0 )  . $ € . Since r is a A-theory, it contains the Ax2 instance 
O($ -+ 8 )  -. (34 -) 08).  By MP-closure of T, 08 E F whence 8 E A,  as required. 

m 

This somewhat indirect proof is a consequence of our abstract definition of 

deducibility. An alternate definition is 

@ is deducible from C iff there exists a finite ordered list of formulae 
whose last member is 4 with the property that every entry is an axiom, a 
member of 2 ,  or follows from earlier entries by application of MP. 

Such a list is called a proof or der-ivaliot? of I$ from the assumptions C. Given such 

a definition oi' '5, the proof of the theorem would consist of an inductive construction 

of a derivation of CI@ given l C I & .  E Z} from a derivation of 4. Given such a 

definition ot theoremhood, the set of A-theorems is recursively enumerable (which is 

why such definitions are used.) The snag consists in the assumption that inference 

rules mav refer only to a finite number of antecedents. For the infinitary logics we 

consider in later chapters, this is not the case. Proofs appealing to the structures of 

derivations would require the techniques of trans-finite induction. We achieve the 

same results using only the most elementary set theory. 



The following Corollary is used later in the completeness proof. 

3.1.2 Corollary If r is a A-theory, then 

Proof: 

Necessity: if 04 E r then 4 E ~ ( r ) .  and so O(T) k 4 .  

Sufficiency: if 0(T)  4 then, by the Lemma, !3$ is -deducible from the set 

{a+ : + E u r ) }  = {a+ : n+ E r ]  c r. 

Since r is a A-theory , T @. It follows from the definition of and the fact 

that r is a A-theory containing itself that 04 E T. 

3.1.3 The Deduction Theorem 

Proof: 

Sufficiency: immediate from the observation that deducibility is preserved by set 
inclusion and the fact that (4 : C k  4) is a A-theory 

Necessity: assume C U (4) $ 4. Let 

We wish to show that J, E r. By the hypothesis we have to show that I- is a 
A-theory containing C and 4. From here the proof proceeds as with (3.1.1). 



3.1.4 Theorem For any maximal consistent A-theory T, 

Necessity: is just the MP-closure of r 

Sufficiency: suppose 4 E r implies \Ir E T. If $ E r then MP closure applied to 
the propositional tautology $ + (4 + $1 yields the result. If 4 f T, then by 
maximality, -4 E r. In that case, MP closure of r applied to the tautology 
14 + (4 + $1 again gives (4 + $1 E r. rn 

The object of a completeness proof is to connect the purely syntactic notion of 

deducibility with the semantic notion of truth in a model. 

The theorem we wish to prove is that, for any 4 E Fma, 

k4$ iff k4, 

that is, that 4 is a A-theorem if and only if 4 holds in each state of every standard 

model. 

The easv d~rection of this bicond~tional is the Sountlnes\ pdrf f r o m  lei1 1 1 ,  r lght 

Soundness 1s demonstrated by showing that the axioms of A are valid in standard 

models, and that the rules of inference preserve validity. Since all propositional 

tautologies are valid due to our standard interpretation of implication and negation, 

we need only be concerned with Ax2 and Ax3. 

To see that Ax2 is valid, assume the contrary, i.e. that it is false a t  some state u 

in a model M. Applying the truth condition for -+ we see that this means 



iff 

M D($ -+ $)and M U$ a n d 3  v s.t. uRv a n d M  6 $. 

But, by the truth condition for 13. M (4 + $) and M 5 4, which in turn, by 

the truth condition for + , means that M $ $, which is a contradiction. It follows 

that Ax2 is valid. 

To see the soundness of Ax3, we again proceed by reductio. Suppose that 

M 5 Cq5 -+ nu$ 

then, 

M 5 04 and 3 v s.t. uRv and M 5 3. 

which tr,eans, ir? turn, that  3 w s.t. vRw andM 9. Biii, since R is iransilive. 

uRw holds, and so M 5 $ which is the desired contradiction. 

It is obvious that the rule MP preserves validity by the truth condition on + 

To show that KN is sound, again assume otherwise. That is, assume that for some 

valld $ there is a state u in a model M such that M 5 O@. But then there must be 

a state v in M with uRv and M 5 $, which contradicts the assumed validity of $. 

These arguments complete the soundness proof for K4. 

Completeness is shown by means of a canonical model construction. The canonical 

model for a logic A is the structure MA = (SA,v.R,,), where 



SA is the set of all maximal consistent A-theories, 

RA is defined V T,A E SA by 

r R A A  iff V $  E Fma(Oq5 E r implies $ E A )  

and v is defined such that tl p E P ,  = 1 iff p E r. 

Before using the canonical model, we must check to  see that it is a standard model. 

That is, we must show that RA is a transitive relation. Suppose, on the contrary, that 

there exist states x, y and z in SA with xRAy, yRAz, but not xR,,z. The last 

condition means that for some formula $, O$ E x but  that $ k z which in turn 

means, since z is maximal, that -$ E z .  Since x is a A-theory, the Ax2 instance 

belongs in x and so by MP closnre, DDQ E s . Then by the definitior. of *.A' R 

O$J E y and so again by the definition $I E z. But then, z IS inconsistent. This 

assures us the M A  is indeed a standard model. 

> 

I he nexl r e s u l ~  d x x u r e ~  ux tha; the states of M A  provide an adequate lnterpretatlon 

of deducibil i t~.  Specif~cally, we prove that if C%+ then for some maximal consistent 

extension A of I3, $I BA. It is not necessary to attempt to construct a canonical 

model which has states corresponding to every A-theory. 



3.1.5 Theorem For any C C Fma. 

C k 4 iff V u  E SA(C C u  implies 4 E u ) 

Pro0 j: 

Necessity is immediate from the definition of C k 4, as each u is a A-theory. 

to prove sufficiency, we assume that C A maximal consistent set is 

constructed which contains the set C U 1-41. We will not carry this proof out here; 
the technique is illustrated in $ 5. rn 

An important consequence of (3.1.5) is that every consistent set of formulae has a 

maximal consistent extension, in particular, a member of SA. To see that this is the 

case, note that C 4 for some formula 4, or else C is not consistent. The 

constructive part of the proof then yields a maximal consistent set which contains C. 

(3.1.5) is actually Lindenbaum's Lemma for the logic A. 

We employ the canonical model to prove the 

Fundamental Theorem for A: Vc$ E Fma and V  u E SA, 

With the Fundamental Theorem in hand, completeness for the logic A is obtalned b)' 

the followmg argument. We first establish 

The Completeness Theorem for A 

Proof: 

Assume ~ 4. Then the set {-$I is consistent by a simple corollary of the 

Deduction Theorem. By (3.1.5), A U (-4) has a maximal consistent extension which 
must be some state u of the Canonical Model. By the Fundamental Theorem, 



M -6 and so k 6 by definition. Contraposition yields the completeness result. 

m 

Using the completeness result for an arbitrary logic A, the completeness theorem for 

K 4  follows easily. The logic K 4  is. by definition, the smallest logic. It is easy to 

show that, for any standard model M, the set {+ : M  w} is a logic, and so contains 

K4.  Thus all K 4  theorems are valid in M. On the other hand, if 6 is valid in all 

standard models, it is valid in the canonical K 4  model. The previous theorem then 

yields that k4+. 

We now undertake the proof of the ~undamental  Theorem. The proof is by 

induction on the complexity of formulae. 

If $ is an propositional letter, the result is from the definition of v .  

Assume the result for 6 and 4. 

If M A  i? -+ then M A  $ 6 iff 6 f u by the hypothesis of induction. Maximality 

of u tells us that this is equivalent to -6 E u .  

If M A  $ (6 + $1 the result follows by the truth condition on + and Theorem 

(3 .1 .4 )  

Of course, the hard part is the induction step for  06. We prove first that 

06 E u implies Ml1 5 06. 

Suppose otherwise, i.e. 06 E u and MA 06. Then there is a 

state v for which uRAv and M A  $ -6. By the induction hypothesis, 

-6 E v . But since uRAv, the assumption on O$ requires that 

$ E v . contradicting the consistency of v. 

To complete the proof, we show that 

MA 5 D$ implies C@ E u . 

Let U(O) = {$ : O$ E u ) .  



Suppose u (0) C v E SA. Then, by definition, uRAv. The truth condition on C@ 

gives us that M A  % @ and so by the induction hypothesis, c$ E v 

Thus. c$ belongs to every maximal consistent theory that contains 
u (0) and so, by (3 .13) .  u (a) t;i 4. (3.1.2) proves that 04 E u .  

This completes the proof of the Fundamental Theorem. 

3.2. Other Temporal Modalities 

This section contains a definition and discussion of other modalities which are 

commonly encountered in programming logics. These logics are often referred to as 

temporal logics. Strictly speaking, this is in most cases a misnomer. As may now be 

clear a logic is not about a structure (eg.  time) merely because the language contains 

certain modal symbols. The axioms describing the behaviour of the operators are what 

really tell us what the logic is referring to. Temporal logics have suggested themselves 

to computing scientists because the sequence of states which constitutes the execution 

of a programme is a partial order (for non-deterministic programmes) or a linear 

order (for deterministic programmes.) However, the "temporal" logics of computing 

science mostly lack the axioms which logicians employ to characterise the temporal 

order. 

Below, we employ the '< '  symbol for a generic binary relation. If s is a state of 

model M for whlch < is discrete, st 1s the next state under <. That is, 

s < sf A 13 (S < t < s') 

The Until operator, written ($UI,!I), is read "4 is true (at least) until \Ir becomes true". 
It is used in the logic of programmes to represent programme 
invariants. 

The atnext operator is a dual of until which has been investigated in [21]. It is 
intended to mean ''in the next state in which I,!I, also +It. Both Until 
and atnext are well defined only in linear orders. 



The 0 operator is used to refer to the next state under <. So. 04 is true if (b is 
true next. This particular operator is used when the existence of a 
unique next state is guaranteed. 

The c'* or chop operator, written ((bcXJ), has been used in [32] to construct axioms 
for loops. The meaning is that (b is true a t  zero or more successive 
states but that eventually $ becomes true. +h represents a condition 
holding a t  the termination of a loop, while (b represents an initial 
condition for each iteration. 

These operators may be interpreted in our semantics as follows. 

M 5 ((bU J) iff 3 t ( r  < t  and M 9 J and b t l ( s  < t l <  t implies M 5 (b)) 

M 5 ($atnext$) iff b t ( s  < t  implies M 9 -J) V p t ( s < t A M  $ $ ) ( M  94)  

either, for some n > 0 there is a finite ordered set of states 
t O , t l  . . . tn s.1. t r  < ti+l and s = t o  artd Yi( (0 d i' < n ) :  A! 9 4 )  

I 

and M 9 I,!I 
n 

or else M 5 0 0 ( b  

The satisfiability problem for a logic A is: for an arbitrary formula 56. is (b true at 

some state in some model? A loglc is sald to be decidable ~f the  satisfiability 

problem is decidable. 

Two techniques for proving decidability exist. The first is to demonstrate an 

algorithm which is capable of constructing a model for (b. If model construction 

admits to an effective procedure, i t  is natural to inquire of its computational 

complexity. Just how long does it take to build? Equivalently, how many states 

must the model have for a given formula? 



The second technique is to demonstrate that any instance of the satisfaction problem 

may be effectively reduced to an instance of some other problem of known 

decidability and complexity. In his classic paper [37] Rabin showns that the decision 

problem for the weak second order theory of n-successors (SnS) is decidable. 

Translating, quantifiers over finite sets and monadic set predicates are allowed in the 

language, while models are (infinite) trees where each node has a t  most n immediate 

successors. The logic K4 is proven decidable by such a reduction in [13]. Results 

dependent upon reduction to SnS are small cause for wild excitement: the complexity 

of Rabins' algorithm is not elementary recursive [26]. It could be worse. Logics have 

been demonstrated [44] which are decidable but for which there is no recursive bound 

on the size of the models which are required for the algorithm. 

In the case of K4, an exponential upper bound is known, since K4 is no more 

complex than the logic considered in [31]. 

The decision problems for languages containing U, atnext and the 'chop operator' C' 

are inherently more difficult than those containing only 0. These binary operators are 

not finitel! expressible in the language Lg above. That is, no K4-formula of finite 

length is equivalent to a nontrivial instance of a formula containing U. An example 

of a 'trivial instance' is the formula dUfalse. 

The operators U ,  atnext and C' are essentially second order predicates because they 

assert the existence of a connected interval of points with some property. We can 

'get away' without an explicitly second order definition only because we are assuming 

that < is a transitive relation. In the first order meta-language we are using to 

define truth conditions, these operators are not expressible using a single quantifier. 

For instance, p U  q translates more or less as 



3 y V x (Q(y) and (now < x < y P(x))) 

while q is 

These two formulae belong to different levels in the arithmetical hierarchy [39]. As 

a result, one would expect the decision problem for languages containing Until and 

chop operators to be harder than for simpler languages, as is indeed the case. Some 

programming logics containing the equivalent of the Until operator are known to be 

decidable by reduction to SnS. The Process Logics of [47, 16, 301 are examples. Some 

logics with chop are known to be undecidable [16]. The point is that the complexity 

of the decision problem for logics of programmes arises already in languages which 

have no syntactic representations of programmes at all. 

The difficulty of the decision problem is intimately connected to the expressive 

power ef the language used. Becidabilitj: is not an issue in this ihesis; ihe logic 

under development will turn out to be undecidable. Nevertheless, it seems 

worthwhile to keep the pieces as manageable as possible. 

3.3. System K as a Programming Logic 

We conclude this chapter by showing how those properties of programme execution 

advanced in the preceding chapter may be expressed in a language as simple as L,. 

Interpret the following formulae as if the model's relation coincided with the steps in 

the execution of a programme. 

throughout : 

during: 

preserves: O(4 + W) 
liveness : a$ + O$) 

(i.e. if 6, then sometime later $.) 



fairness: if d, represents a guard and if 3/ represents some consequence of the 
execution of the associated sequential component, then 

uorp  -+ n o $ .  
Interpret the modality 0 0  as aLways eventually, or infinitely often. 

after : Ufalse -+ d, 

The representation of after uses the modal formula Ofalse. This formula is true 

only a t  states which are related to no other states. In our informal interpretation, 

such a state is the last state in a programme. So if 4 is supposed to be true after 

programme a has finished, the correspondence becomes clear. 

In the next Chapter we present a programming logic in which the after modality is 

fundamental. 



Chapter 4 

The I/O Logic of Processes 

Robert Goldblatt in [14] presents a sound and complete axiomatisation of the 

input/output behaviour for a class of programmes which contains conditional and 

iterative instructions. In this chapter, these results are extended by adding a new 

programming construct to the syntactic class of well formed programmes. This new 

construct is a syntactic representation of a Process, or set of guarded commands. We 

dub this representation of processes generalised iteration. 

The development closely parallels that of $9 3.1. We define a language 4,, which 

contains an inrinite set of modal operators; one, in fact, for each programme. We 

define a model for the language, and give standard model conditions such that the 

meaning of the modalities corresponds to the aspects of programme behaviour being 

modelled. A set oi valid formula schemata are introduced as axioms. Finally, the 

inferential closure of the set of axioms is shown to be complete with respect to the 

given semantics. 

Of necessity, many of the definitions, and some 

from Goldblatt's work. For the sake of brevity, 

extension are presented. All theorems which are 

in [14] are marked by an italicised reference 

reference given is the number of the result in 

of the commentary, are appropriated 

only those theorems which required 

straightforward extensions of results 

to the corresponding theorem. The 

141. References to theorems which 

hold without modification are made e.g. (G2.4.3(1)), again using Goldblatt's 

numbering. The statements of all such theorems appear in Appendix A. 

4 1 



4.1. Syntax 

In this section we present the formal language L,,, which is used to construct 

formulae describing the input/output behaviour of sequential programmes and 

processes. 

4.1.1. Boolean Expressions 

Let 

Bvp = {p,.p,,p,.. . .I 

be a denumerable set of boolean variables. The set Bxp of Boolean expressions is 

defined inductively: 

1. The constant symbol false is in Bxp, 

2. Bvp is a subset of Bxp, 

1 T r  
3. 11 E, 8, 6 are in Bxp, then so is (E 3 6 . t) ,  

4 .  If E ,  6 are in Bxp, so is ( E  = 6). 

The constant expresson lruc is introduced as an abbreviation for  (false = / a h ) .  

The value of a Boolean expression is the member of the data type 

It3 = { O , l }  

which it denotes. Boolean variables denote some state dependent member of IB, while 

constant symbols denote fixed members IB. The constant symbol false names the 

element 0. 

The symbol 3 is the logical conditional connective. The expression (E 3 6 ,[) is 

read 



if E then 6 , else 5. 

We indicate below how the conditional may be used to define the logical operations 

common in the conditional expressions of programming languages. The expression 

( E  = 8) takes the value 1 when 6 and 6 denote the same member of IB, and 0 

otherwise. The set 18 the function symbols false and 3 ,  together with equality 

constitute a Boolean Algebra. 

Boolean expressions serve two roles in our system. An expression functions as a 

term, denoting a member of IB, and as an atomic formula in the language of IB. 

4.1.2. Programmes 

Let .rro.rrl.. . . be a denumerable list of programme letters. The set Cmd of commands 

is defined by induction. 

1. skip and abort are in Cmd. 

2. Each programme letter .rr is in Cmd,  

3.  If a, 0 are in Cmd,  then so is (a$), 

4. IS a, p are in C!nd and  E is in h'sp then ( E  + a ,  is in Cmd 

5. If a is in Cmd and E is in Bxp then ( E  # a )  is in Cmd. 

Programme letters are uninterpreted place holders for actual instructions. The skip 

command is a No-Operation or null command. abort is defined by Dijkstra thus 

When invoked, the mechanism named "abort" will fail to reach a final 
state: its attempted activation is interpreted as a symptom of failure. 

The command (a$) is the conjunction of the commands a and P. It represents the 

Programmes "do a and then do P". The command (E+ a$) is the conditional 

( i f  E  then a else 0 )  and ( E  # a) is the iterative (while E do a). 



Processes 

We now define a new set Proc, the set of Processes. 

1. If ej is in Bxp and 4 is in Cmd for ( 1  < j < k) then ( e l .  . .Ex # oil. . .4) 
is in Proc, 

2. If II is in Proc and cr is in Cmd, then (a; II) is in Proc. 

Processes represent the sets of guarded commands defined in •˜$ 2.1. The commands 

az are the sequential components. The boolean expression E~ is the guard for az. 

Clause 2 in the definition of Proc allows that a process have a sequential initialisation 

phase which is executed before execution of the iterative phase begins. A process may 

not contain further processes embedded within i t ,  as discussed in $9 2.1. However, it 

is easy to see how to extend the inductive definition to allow this. Due both to the 

syntactic and semantic resemblance between processes and iterative commands, we 

sometimes call processes generalised iterators. 

Finally, define the set of Programmes Pgm to be the union of Cnzd and Proc. 

4.1.3. Fowmulac 

We now define the class Fma of well formed formulae of the language LI,o. 

1. Bxp C Fma , 

2. If $, $ are in Fma, so is (+ -+ $). 

3. If + is in Fma and a is in Pgm, then [a]$ is in Fma. 

Using the connective -+ , the other logical connectives are defined in the usual 

way. In particular, negation is defined 



Since Fma is a denumerable set, we may assume the existence of a fixed 

enumeration of its members. 

Throughout, unless otherwise specified, E ,  6 and 6 denote members of Bxp, a and P 

denote members of Cmd. Ilk denotes some member ( E , .  . .E, # at .  . .ak) of Prof with k 

components and 6, \CI, 8 and x denote members of Fma. These designators may be 

subscripted where convenient. 

The intended meaning of the modal formula [a]$ is: 

all terminating computations of a terminate in a state in which $ holds 

That is, [a] is the after modality for programme a. 

4.2.1. Models 

A Model for the language L ,  is a structure M = ( s , v .  [r 1 ) where 
1 

1. S is a non-empty set of states; 

2. v is an operator which associates with every state J E S a valuation, 1.e. a 
function vs : Bvp + B', where IBi = IB U {d; 

3. [ * I  is an operator that associates with each a in Cmd and each ll in 
Proc a binary relation [cu] or [[Ill on S. 

A member € of Bvp takes the value o in IB' if E is undefined in B. For each 

s E S, the valuation vs extends canonically to all of Bxp by induction on the 

formation rules for Boolean expressions: 



2. If vs(e)  = w then vs(& 3 8 .  [) = w. Otherwise, 

3 .  If either vs(e)  or vs(8)  is w ,  then vs(& = 6 )  = w. Otherwise, 

Writing DE as an abbreviation for ( E  = E ) ,  we find from clause 3 that 

and hence 

vs(true> = vs(D false) = 1 

The definition of vs(€ 3 6 .  is intended to represent the way an optimising compiler 

would parse such a conditional. By evaluation we mean those steps a computer 

would actually execute in order to determine the value of an expression. If v ~ ( E )  = O  

then the entire expression takes the value w ,  meaning that the evaluation fails to 

terminate. In that case, conditional, iteratibe and (as we will prove) guarded 

commands attempting the evaluation will abort. 

If the value of & is 1 ,  the result of the expression is vs(6) ,  independent of the 

value or undefinedness of 6. ( e  3 6 .t) may be used to define the logical and, or 

and all other logical operators employed in conditional expressions. In all cases, the 

definition is such that only those terms needed to determine the value of the 

expression are evaluated. For instance if vs(e)  = 1 and vs(8) = w ,  vs(e V 6) is 1, not w. 

We explicitly define only one logical connective other than 3 ,  

not-€ =df (6 = false). 

Then not-false is true and not-€ is undefined only if e is. 



Let A l . .  .An+, be arbitrary data types (i.e. algebras like B.) A,+ denotes the data 

type which has an element w adjoined with the elements of Ai. A function f of the 

form 

f : A I X . .  .XA, + An+1 

may be extended canonically to one of the form 

A + ~ x . .  .xAfn  -' A + ~ + ~  

by putting f(xl. .  . ..xn) = w whenever one or more of its arguments is w. The idea is 

that a function is undefined whenever one or more of its arguments is. However, 

the operations on IB' definable using (€ 3 6 ,[) are not .in general just the canonical 

extensions of the same operations on B. 

It is worth pointing out that any two place operator on B is definable using only 

3 and the constant symbol false. For instance, the implication of the Propositional 

Calculus may be defined 

( E  3 6 , true) . 

4.2.2. Satisfaction 

We now define the satisfaction relation "6 holds at  s in M", written 

M 5 6. 

We sometimes omit the prefix M when no ambiguity results. @ is valid in M, 

written M !=@ if is satisfied a t  every state in M. @ is valid per se if it is valid in 

all models. The relation b is defined inductively for all formulae @. 

Where E E B x p ,  4 ,  I,!I E Fma and a E Pgm: 

1. M +  iff vs(e) = 1- 



2. M 5 ($ + $1 iff M 5 gb implies M 5 $. 

3. M 5 [a]$ iff V t  E S  ( s [ r a ] t  implies M 9 $ 1 .  

In referring to these rules, we will use expressions such as 'by the semantic clause 

for + ' and the like. 

The implication + and the Boolean operator 3 should not be confused. The 

former acts as the material implication between members of Fma. The latter may be 

used only to construct complex boolean expressions. The formula ( 6  + 6) is not 

member of Bxp. 

We illustrate the above rules by interpreting the formula -. [alfalse: 

M -. [alfalse 

iff M 5 [a]false + false iff by def'n of negation 

iff M 5 [[afalse iff since M k false 

iff -. V t ( s  [ a ]  t implies M 5 false) iff by clause(3) above 

iff 3 t ( s  (la] t and M 5 false) iff by meta-logical manipulation 

iff 3 t ( s  [ a ] !  and v,(faLse) f 1) by clause (1 ) 

iff 3 t ( < s , t >  E [ a l l )  since vt(jalse) = 0 by definition. 

which is to say, there is at least one terminating computation of a starting from s 

We conclude this section by clarifying the semantics of -,not- and D. An n-ary 

relation R on a set A may be identified with its characteristic function d R :  An + IB 

and then canonically extended to a function mapping to IB+. If n =  1 and 

R = A  we define this canonical extension dA : A +  + B+ 

w if a = w  
d,(a) = { 1 if a E A  

dA represents the "defined" elements of A+ (i.e. the members of A).  Because 



we may interpret De as "E is defined". In fact. 

M 5 DE iff vs(e) # w 

However the interpretation of the Boolean expression DE as "E is defined" is an 

'external' matter. The expression DE can not be used as a test for the definedness of 

E, since DE is undefined whenever E is. Thus a command such as [DE #a] will abort 

if € is undefined, rather than terminate. 

We can abbreviate not-(€ = 6 )  by (E # 6). This expression on IB has an extension to 

IBt, which turns out to be the canonical extension. Notice that (E f 8) is not 

equivalent to the formula - (€=6) ,  since the latter will hold (because (E = 6) does 

not) when either E or 6 is undefined, whereas (E f 6) can hold (have value 1) only 

when both E and 6 are defined. Similarly, 1 E and not-€ differ in that 

M not-€ ifi M (E = jake) iff vs(e j = O 

while 

M YE iff M 5 E iff v ( E )  f 1 

4.2.3. Standard Models 

As in the development of the modal logic in $9 3.1, it will be necessary to restrict 

the relation [a] so that the meaning of a is conveyed. As before, 

a model in which the properties of the relations [a] reflect the intended 
meanings of commands will be called standard 114, p. 471. 

In order to define standardness, we need to introduce some notation and operators for 

binary relations. We use R,P to refer to arbitrary subsets of SXS. The expressions 

sRt and <s.t> E R are used interchangeably. We often write sRuPt in place of sRu 

and uPt. 



Define 

Equality: Es = I = {<s.s> : S  E SI 

Restrictions : +\R = {<s,t> :sRt and k=+} 

II+\all = +\ uan 
u+\+\an = (+A  +>\ [all 

R/+ = {<s.t> :sRt  and ?+} 
ua/+n = Iran 4 

Composition: PeR = {<s.t> : 3 u  (sRuPt)} 

Closure: Rm = U n E N  Rn 

Recall that I l k  is an abbreviation for a Process ( e l .  . .ek # a ] .  . .ak) with k 

components. We introduce D ; ~  as a definitional abbreviation for (DE,  A,. . .,A DE&. 

D;, asserts that all k of Ilk's guards are defined. We remark that 

is a valid formula 

A model M for the language L is called standard if the operator 1 I ]  satisfies the 

following conditions. 

a. [skip] = 1 

b. [abort1 = 0 

c. Ira: P I  = UP1 U ~ D  

i.e. s [a ; P J  t iff 3 u s.t. s [all u [PI t 

d. [ E  + a.P] = [ E  \ an U  [not-€ \ 



i.e. s U E  3 a . ~ ]  t  iff 
vS(€)  = 1 and s  [la] t or 

~ ~ ( € 1  = 0 and s  @ ] t  

i.e. s  [€#a]  t iff for some n E N , s  [[€ \ a ]  nt and vt(€) = 0 

iff for some n and some so . . . sn, 

s  = s o r t  = sn and for 0 d i < n 

v, (€1 = 1 . sl [ a ]  s ~ + ~  and ~ ~ ( € 1  = 0. 
L 

--$ 

f .  En,] = ( D E , \  U I=,, , U:\qD)w/not - ( s lV . . .V~k)  

iff for some n E IN, 
s  [I \ n,D "t and vt(not-(el V . . . V E , ) )  = 1 

iff for some n and some s o . .  .sn, s = so , t  = s n' 
for each i, 0 f i < n E .  is defined for 0 < j < k, 

I 
vt(ei) = 0 for 0 f j < k and 

for each i . 0 d i < n there is a j . 0  6 j < k 
such that xi vs,(:) \ [ a ]  si+, . 

L I 

In standard models, the relation assigned to a composite programme accurately 

reflect the programme's actual behaviour. For instance, s  [a  ; P I  t if and only if there 

is some u such tha s  [ a ] u  @ ] t ,  which means that the programme [ a ;  P ]  executed by 

first doing a, and then P. 

One of the key restrictions on the relation Enk] is that s  [nx] t implies 5 D;,. 
which is to say, every guard must be defined initially, and every time guard 

evaluation occurs. When that is not the case, lIk effectively aborts, since the set of 

states Ilk-related to s is empty. 



Where 5 not-(€, V . . . V bk) ,  all the relations [€.\a 3 evaluate to the empty set. 
I I 

because ~ ( 4 )  = 0. Thus the entire expression ( D ; ~  \ UI=I,k US \ a J ]  ) evaluates to 

the empty set. Then, by the definition of infinite closure, 

( ~ 2 ,  \ u , 1: \ qn 1" = 1. 

If s [ I I l k j t  then either s = t and ITk does not execute, or else t  was reached by 

executing a finite sequence of enabled sequential components ai. In either case, t is a 

final state because all the guards ei are false. 

All this is to say that, in standard models. Processes execute in the way described 

in $$ 2.1 

An important property of Process execution is fairness. A fair execution sequence 

can not be specified in the language L used in this chapter. This is because a 

fairness specification has to say something about the relative frequency of execution 

of each sequential component. The fairness condition introduced in fjfj 2.1 was 

If a component is infinitely often enabled, then it is infinitely often 
executed 

We are presently considering on1 y terminating computations, that IS,  I'rocess executions 

in which o n l ~  a flnlte number of sequentla] components are executed But under tbls 

rather llberal defin~tlon of fairness, any finile execution sequence is a fair one. In $ 5 ,  

equipped with a stronger language, we will present formulae which specify fair 

execution. 

It may appear that a fairness condition is covertly introduced by the requirement 

that all guards be defined a t  guard selection time. This requires that the 'selection 

daemon' a t  least examine all of the guards, no matter what scheduling algorithm it 



employs. Fair schedules exist for which this need not be the case. There indeed are 

non-standard models in which any given scheduler would be 'fortunate enough' to 

find a particular guard defined when it required evaluation: and far more 

non-standard models in which this would fail to be the case. Short of encoding a 

particular scheduler into the standard model conditions, there is no alternative to the 

present restriction. 

4.2.4. Analyses of Generalised Iteration 

In the remainder of this section, we establish some results about the semantics of 

Processes. The results establish (for standard models) the validity of the axioms for 

Processes to be introduced in $9 4.3.1. 

4.2.1 Theorem In  any standard model M, 1 ~ 2 . 3 . 4 1  

En,] = (D;, \ u ,=,, ( nnkn - U: \ a,] u not-(€, v . . . v e k )  \ [skip] 

Proof: 

Suppose s [nkD t .  Then for some n E N 

+ 
I ( D E ~ \  U j = I , K  (1:\4j )*t and ~ n o l - ( t i \ /  . . V e t )  

If n = 0 then 5 = t and so s (not-(e, V . . . V E ~ ) \  [skip] ) t .  

Otherwise, for some j ,  

s ( ( D \ Uj=,, 1: \ aJl )n-l D;~\ 1: \ a,] ) t 

so that, for some state u ,  

But then. U( [ \ nkDn-')t and so u [ I l k ]  t. Thus we have r [a.]u En,] t and 

I= s E J il D f  k .  which gives s ( ~ 1 ,  \ U ( I n k ]  [f \ ?]l ) ) t .  



Conversely, suppose that <s,t> belongs to the relation on the right side of the 
statement of the theorem. There are two cases. 

Case 1: 
s [skip] t and 9 not-(cl V . . . V ek)  

Then, s = t .  so s ( ~2~ \ Uj=,,, 11: \ 51 lo t and 9 not-(el V . . . V ek) ,  giving 

3 I n k ]  t .  

Case 2: 

For some j and some state u .  5 f A D Z k ,  s [ L q u  and u[IIkn t . Then for some 

n, u 1 \ IIkn .t and 9 not-(el V . . . V ek)- Then since s ( ~ 2 ~  \ [:\4] ) u, 

s [L \ n,] "'It, which gives r [ n k ]  t again. 

The scary equation in the statement of the theorem is essentially a recurrence 

relation in [In,] . It says that a pair <s.t> is in the relation [ilk] if and only if 

1. s = t and all the guards are false a t  s ,  (the meaning of the subformula 
" not-(el C/ . . . V ck)  \, [ s k i ~ j  '7, or else 

2. all the guards are defined a t  s ,  s [Lq]u for some enabled sequential 

component [?I and u t .  

There is a connection between this representation of the relations for iterative 

commands and the denotational semantics of Dana Scott. In denotational semantics, 

[LII$ would be defined to be the least fixed point of a certain relational operator. 

4.2.2 Corollary The schema 

ink]+ - ( ~ 2 ,  - A ~ ~ = ~  -+ bil[ny1d 

is valid in all standard models. 

Proof: 

If not, then there must be a state s in some model M such that 



for some j , 1 < j 6 k.  Thus, M 5 A D;* and M 5 [[a/[(nk]$ i .e  for some t 

such that s / [ I lk ]  t , M 5 $. But by the Theorem, s l[IIk]I t ,  contra the 

hypothesis that [I Ik]$ .  

4.2.3 Corollary The schema 

not-(el V . . . V E,) -$ ($ ++ I n k ]  $1 

is  valid in all standard models. 

Proof: 

Suppose M 5 not-(el V . . . V E,). By the Theorem. s [[II,] t iff s = t .  

Then [II,]$ iff 5 $. 

The formula [ E  + a#]$ is equivalent in standard models to 

For non-iterative programmes, any modal formula may be reduced in like fashion to 

a single formula containing only the operators [skip]. [abortland [T ]  where T is a 

programme letter. The only 'reduction' possible with Processes, as with iterative 

programmes, is one which generates an infinite set of formulae whose modal operators 

involve just the sequential components 0,. We now define this reduction. If $ E Fma 

and [ E ~ . . . E ~ # C Y ~ . . . ~ , ]  E P ~ o c .  define the series q50(nk)...4n(IIk)... inductively by 

letting 

n =, V . . . V E,) -+ $1 

and 

This sequence reduces to the similar sequence for iterative programmes for processes 

with only one component, namely 



In this case the requirement DE is redundant, since ( E  -+ D E )  is a valid formula. 

4.2.4 Theorem I n  any model M ,  for any n E IK [G 2.3.61 

Proof: 

The result is shown for all s in M, by induction on n. 

When n=O, we must show that 

5 +o(lIk) iff (s = t and not-(E1 V . . . V ) implies 9 4 .  

i.e. that 5 not-(€, V . . . V ek )  -+ + iff 5 not-(el V . . . V e k )  implies 5 + which is 

just the semantic clause for + . 

NOW assume the result fo r  Q Let + (  Then, if s [[ \ I lk]  ""f and 

nnf-(El V . . . V Ek). for some j and some state u 

But then. 5 5 ~ ~ 2 ~  and r [ I a i ] u .  By u ~ e  def ini~ion of' $,?+,(n,) and the semantic 

clauses for A and - , we find that 5 [aj]+n(Ilk) and since s [ [ a j ] l u ,  % @n(IIk) .  

By the induction hypothesis on n applied to u and t ,  we get + as desired. 

On the other hand, suppose (bn+l(IIk). Then for some j .  5 E j  A ~2~ and 

It follows from the semantic clause for [a,]  that for some u, 
I 

s [q]u and . By the induction hypothesis, there exists a t such that 

u [ \  nkD "t and 5 not-(EI V . . . V E*)  but 5 4. Then, since s (02, \ [f \ a,] )u, 
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4.2.5 Corollary I n  any standard model M ,  [G 2.3.71 

9 [It,]$ iff V n  E I N .  9 $n(II,>. 

Proof: 

Suppose [n,]$. For any n, if s [[ \ II,] nf and V . . . V E ~ ) .  we have 

s[II,D t by the standard model condition, and so 5 $. Hence, by the Theorem, 

9 $&JJ,)- 

On the other hand, if 5 [I Ik ]$  then for some t ,  s [ n , ]  t and $ $. Since the 

model is standard. there is some n E IN for which s [ \ II,] "t and 

9 not-(el V . . . V E , ) .  The Theorem then shows that 5 Sbn(IIk) .  

The result of the Corollary 

whose members are strings of 

$1 + 

may be extended. We define a class of admissible forms 

the form 

I P l l ( $ ,  - - . . ($, - [P,l# 1. - -1 

(in which not all the t,hl's and p 's need be present.) These forms are not really 
J 

formulae because of the single occurrence of the symbol #. They become formulae 

when # is replaced by a member of Fma. 

To make  th l .  

follows. 

1.  # E Afm 

2. If @ E A f m  

3. If @ E A f m  

and p E Cmd then [ P I @  € A f m  

and Jr E Fma then ($ -+ @) E Afm. 

We denote by @($I  the formula obtained by substituting $ E Fma for the occurrence 

of # in @. 

We may regard an admissible form @ ( I I )  as specifying initial conditions (the $j's) 



and intitialisation steps (the [PJ'S) for the process n. We must convince ourselves 

that the following theorem still holds now that the new Process modality is a 

possible substituend in an admissible form. 

4.2.6 Theorem In any standard model, for any iP E Afrn , 

Proof: 

By straightforward induction on the formation rules for the class Afm. The basis 
step is (4.2.5). 

4.3. Proof Theory 

In this section we define a logic A and characterise its deducibility relation k. As 

in $9 3.1, this relation is intended to provide a syntactic characterisation of validity. 

The following list of axioms is from [14, 92.41. 

Axioms 

Tautologies 

f 

I 

b2 Structured Commands 
I 



Boolean Expressions 

~ l l  (E = 6 )  -+ (a -+ a'> where 0' differs from a only in 
having 6 in one or more places 
where a has E. 

A12 true 
A13 DE ct ( E  V not-€) 
A14 E -+ ( E  = true) 
A15 ~ 3 6 . 6  - ( ( ~ ~ 8 ) v ( n o t - ~ A t ) )  
A16 D ( E  3 8 . 6 )  t-t ( ( E A D S ) V ( ~ O ~ - E A D ~ ) )  
A17 D(e = 6 )  +-+  DEAD^) 

To Goldblatt's axioms we add two more to describe generalised iteration. 

Processes 

It is worthwhile to verify that A10 is a special case of AP1, for processes having 

i>nl;k one comjwnenl. 

Rules of Inference 

Modus Ponens 
MP: From (4 + JI )  and 4, infer $I. 

Termination 
TR: From + infer [a]+. 

Omega-Iteration 
01: From @(+,(€.a)) for all n E IN,  infer @([€#a]+). 



One further rule is required by the presence of Processes in our language. 

Generalised Omega-Iteration 
G01: From @($n(17,)) for all n E IN, infer @([I$]$). 

All instances of axioms A1 through A17 are shown to be valid in standard 

models [14, $21 The validity of AP2 is proven by (4.2.3), while the result for APl is 

(4.2.2). That the rule GO1 preserves validity is shown by (4.2.6). 

We now define a logic to be a subset A of Fma which contains all instances of the 

axioms A1 through A17, AP1 and AP2, and, which is closed under the inference rules 

MP, TR, 01 and GOI. 

As before, we write k$ to mean that $ E A. The members of A are called the 

theorems of A. 

By PC, abbreviating 'Propositional Calculus', we refer to the set which contains 

axiom instances A l ,  A2 and A3 and whlch is closed under modus ponens. PC contains 

all propositional tautologies. When a step In a theorem follows from the predicate 

calculus, b e  wrlte "I>\ I T "  or some s ~ r n ~ l d r  f c r n ~ u l a t ~ o n  

The intersection of any set of logics is itself a logic. We call the smallest logic PL. 

for Programming Logic. In the remainder of this chapter, we prove that 

$L+ i f f  b+ 

that is, that the PL-theorems are exactly those formulae valid in all standard models. 

This result is the completness theorem for the logic PL. 

The next two theorems establish some necessary results about the deducibility of 



formulae containing Process modalities. First, we demonstrate the deducibility of the 

analogue for Processes of schema A9. 

4.3.1 Theorem 17i not-(el V . . . V ek)  -+ -[IIk]false 

Proof: 

By an AP2 instance and PC, k not-(el V . . . V ek )  -+ ([IIk]false -+ false). From the 

definition of negation, not-(el V . . . V ek )  -+ -[nk]false 

We prove the result by induction on the complexity of members of Afm.  

If the result holds for an admissible form @, then it holds for the form [a]@ by 
the rule TI (G2.4.1(1)), and for the form $ - @ by PC. It is enough, then, to 
show the result for the admissible form # i.e. 

[nkM - $,(nk) 

Vv'e proceed by inciuciion on n. 

From AP2 and PC we derive the basis step 

Assuming the result for n and applying T I  we have, for each a,, 

Applying AP1 and PC, 

which is the result for n+l. 



4.3.1. Theories 

A A-theory for a logic A is any subset r of Fma which contains A and which is 

closed under the rules MP, 01 and G01. 

The intersection of any set of A-theories is itself a A-theory, a n d .  so there is a 

smallest A-theory, namely A. 

The deducibility relation C k  @ is defined just as in $$ 3.1. except of course that 

the A theories in question are based on a different language and different sets of 

axioms and closure conditions. 

The reader should verify that 

1. (4: C k  +] is a A-theory, for any C C Fma. 

2. If M is a standard model, then 

A, = { $ : M  k+) 

is a logic, and 

3. If M IS standard, then for each state 5 In 42, (& hf t= dl 1. .i2,,-theor)~. 

where AM IS as defmed above. 

The difference between a logic and one of ~ t s  theor~es parallels the 
difference between the set of formulae valid In a model, and the set of 
formulae that hold at some particular state in that model [14. p. 671. 

The preceding remark can be best understood by reference to the suggested exercises. 

Below, we prove the Deduction Theorem for A, and the generalisation of the 

0-Deduction Theorem of TL. This generalisation shows that the result holds for all 

of the infinitely many modalities [a] and 



4.3.3 The Deduction Theorem 

Proof: 

If 2 $ ( $  + $1, then by (G2.4.4(2)), Z U  {$}$($ + JI). From (G2.4.4(1)), 

Z U {$) $ and the fact that {$ : C $ $1 is a A-theory and so MP-closed, 

Z u {$I $ $. 

Conversely, suppose C U ($1 $4.  Let 

We need to show that $I E r. By hypothesis, it suffices then to show that r is a 
A-theory containing 2 U ($1. We need only show here that r is closed under the 
rule GOI. (For the remainder of the proof, see the cited theorem.) In order to see 
this, suppose that 

for @ E Afm, x E Fma, II E Proc. Then 

Applying GO1 closure to the admissible form ((b -+ @), we find E $ (b -+ @ ( [ ~ I x ) .  

and so @([II]x) E I- . m 

4.3.4 The a-Deduction Lemma / G  2.4.91 

Proof: 

Let r be any A-theory containing {[a]$: $ E C}. Put A = {JI: [a]$ E TI. We need 
to show that [a]$ E r, i.e. that $ E A. By hypothesis, if A is a A-theory which 
contains Z, then we are done. It is enough to show here that A is closed under 
the rule GOI. 

But, if {@(x,(II>> : n E IN) C A . , then {[a]@(x,(II)) : n E IN} C r . Applying the GO1 

closure of r to the admissible form [a]@, we get [a]@([II]x) E T, and hence 
@([II]x) E A. This establishes the result. m 



4.4. Completeness 

If M is a A-model, i.e. has 

then each state s in M determines the set 

which is an extension of A closed under MP. If M is standard, then Ts will be 

closed under 01 (G2.3.8) and GO1 (4.2.6). It will also be consistent, since false does 

not hold a t  s. Since in general, either 4 or -4 holds a t  s, Ts is a maximal consistent 

A-theory . 

As before, the completeness proof is obtained by of a canonical model based on the 

set SA of all maximal consistent A-theories. 

Our first result verifies that, in characterising k, we may confine our attention to 

maximal theories. That is, we show that each consistent set of formulae I: has a 

maximal consistent extension. 

4.4.1 Theorem C b @  iff lor all r E SA s.t. C _C T, c$ E r [G 2.5.2(1)] 

Proo j : 

From lef I to right is immediate by the definition of k. 

For the converse, suppose that C %4. It is necessary to show that for some 

maximal consistent theory r, C C T and yet 4 B T. We therefore construct such a 
. r that contains C U (-4). 

Let $0,41,42, . . . be an enumeration of Fma. The enumeration is used to define an 

increasing sequence To G T, c . . . whose least upper bound T is a maximal 

consistent set in SA which contains C U (14). Of course, this T is the one we need. 

The series is defined inductively 



Tn+, is defined according to the 

Case 1: 

~f m 4n. put r,+, = rn u M~ 
otherwise (i.e. Tn % ;in), 

Case 2: 
If ;in is not an admissible form, 

Case 3: 
If $n is of the form @([€#a]$), 

- 

6 5 

r, = c u (-41 

following cases. 

let 

l ,+I = rn u {l@($J(~.a)), -4n1. 

where j is the least number such that 

rn @($,(€.a)) 

There remains a further possibility due to the introduction of generalised iterators, 
namely 

Case 4: 
If IS of the form @([II,]$), put 

rn+I = rn u {-@($p& 7;in1, 

whel-c ; 1s ~ n ( \ e r  dh 111 Caie 3. 

This completes the def-inition of Tn+l. We define r = U {rn : n E N ] .  It remains 

to show that r is a maximal consistent A-theory. 

Lemma 1. For all n E IN, Tn is A-consistent . 

Proof: 

By induction on n. When n = 0 the result is (G2.4.8(2)), since C 4. 

Assume that Tn is consistent. There are four cases for Tn+l. We need 

consider here only Case 4. 



If + = rn U , $ 1  is not A-consistent, by (G2.4.8(2)) 

where $n is @([Ilk]$). But $n + @(J;(II)) is a A-theorem by (4.3.21, so 

which makes rn U - @ ( $ j ( ) )  inconsistent. By (G2.4.8(2)) again, 

Fn $ j ) ,  which contradicts the choice of j in the definition of m+l 

Lemma 2. 
For any $ E Fma, exactly one of 4 and i$ belongs to T. 

Any $ is $n for some n. Either $n E Tn+l C T (Case I )  or else 

-$n E rn+, (Cases 2, 3 and 4.) So at least one of $ , -$ is in r. But if 

both are, Tm is inconsistent for some m, contradicting Lemma 1. 

Lemma 3. 

Proof: 

T is  closed under M P ,  0 1  and GOT. 

We show only that r is closed under GOI. 

Suppose {O($x.(II)) : k E N) G r. Let O([nk]$) = 4,. Then if (bn E T. 
rn X;i $,. or else $n E T'n+l. 

By Case 4 of the definition of m+l, -@($,(II)) E r for some j. From 

Lemma 2 it follows that @($,(II)) E T. contrary to hypothesis. 

To complete the main result, if $ q5n then, by (G2.4.4(3)),  rn$ $n, SO r contains 

A. By Lemma 3 then, r  is a A-theory. By (G2.4.6(4)), r is consistent, or else 
false is a member of r. But then false E rn for some n, contradicting Lemma 1. 

Maximality of follows by Lemma 2 .  Since r  contains I: and does not contain $, 
the theorem is established. 



4.4.2 Theorem h$ iff for all r E SA,$  E r 

Proof: 

Put C = 0 in (4.4.1). 

4.4.1. The Canonical Model 

The canonical model for a logic A is the structure 

M,=(S,,v, (I 11 1, 

based on the set SA of maximal A-theories with 

(i) for each p E Bvb and r E SA 

a. v ,=1  if p E r  

b. v, = 0 if not-p E I- 

c. v = w if -DE E T r 
(by (G2.5.1(6)), vr is well defined) 

(ii) the reiation [a8 on SA is defmed inductively, by putting 

r A iff {I) E Fma : [TI$ E I'} 5 A ,  

for programme letters T ,  and then for structured commands by the 
appropriate standard model conditions. 

Thus is a standard model by definition. 

Fundamental Theorem for A: For any 4 E Fma, and any T E SA 

The rest of this chapter is devoted to proving the Fundamental Theorem. Before 

proving it, we show how it  yields a solution to the completeness problem for A. 



Completeness Theorem for A 

Proof: 

By the Fundamental Theorem, " M A  b$" is equivalent to "for all I- E SA ,$ E I-". 
By (4.4.2). this is equivalent to $ 6. 

Completeness Theorem for PL 

6 iff $I i s  valid i n  every standard model. 

Proof: 

Recall that PL is the smallest (i.e the intersection) of all logics. 

Now if M is a standard model, then ( 6 :  M !=$I} is a logic, and so contains PL. 
Thus all PL theorems are valid in M. 

Conversely, if $I is valid in all standard models, then in particular. 6 is valid in 
MPL. Hence, by the previous result, $L$. 

Each stage in the hierarchical development of a logic of distributed algorithms 

repeats the following steps. 

1.  .4da neli I oi-mulae and programme constructing devices to L. 

2. Introduce the 'necessary' new axioms and standard model conditions. 

3. Extend the definition of the canonical model to account for the new 
standard model conditions. 

4. Extend the Fundamental Theorem to cover the new sorts of formulae. 

This strategy or 'completeness proving algorithm' is somewhat misleading. The 

'necessary' axioms for each step are just those valid schema which are required to 

make the Fundamental Theorem work. The conditions on standardness are those 



unearthed in the attempt to show that the new axioms are valid. To quote van 

Benthem 1451 

probably the most interesting, and certainly the most instructive way of 
discovering the fundamental calculus [for a logic] is by starting a Henkin 
proof empty-handed, so to speak, writing down necessary axioms and rules 
of inference along the way. (This heuristic use of proofs is described quite 
vividly in [23].) Historically however, the outcome was found in advance ... 

and that is how it is always presented. 

We now proceed with the proof of the Fundamental Theorem. 

4.4.3 The First a- Lemma I n  M A ,  for all r.A E SA, 

By induction on the formation of a. We prove the theorem only for the case 
where a is in Proc. What follows is essentially case (f)  of the proof cited. 

Assume the Lemma for ai , i  = 1.k.  To prove it for (e l . .  .ek # a l  . .ak) we require a 

preliminary result: 

Sublemma: For all T . A E SA , 

l f T b \ I I , D R ~  and $ not-(6, V . .  .\i e k )  , then 

+n(IIk) E implies & E A.  

Proof: 

By induction on n 

If n = 0,  then r = A and so $ not-(€] V . . . V ek), whence, by (G2.5.5). 

not-(el V . .  .Vek )  E r. Then, if $,(II,), i.e. (not-(el V . .  . Vek) + 4). is in 

r, MP closure of r gives 4 E T. 

Assume the Sublemma for n. Then if 1 \nu] n + l ~  and 

%not-(elV . . .  V"), for some A' and some j we have 



r ( ~ 2 ~  \ 1: \ a$ ) A' 1 \ IIk]l nA. by (4.2.1). Rut then vr = 1 and I- la] A' 

Thus, if $,+,(IIk) E r i.e. 

the fact that 7 E r and D ; ~  E I- (G2.5.5) guarantees that 

[ql$n(IIk) E r. By the main hypothesis on a (4(I Ik)  E A'. From this, by 
I' 

the induction hypothesis on n, @ E A .  This establishes the result for n+l  
and so completes the proof of the Sublemma. rn 

Returning to the main result for ( e l . .  .ek # al . .  .ak) ,  if r [n,] A in S,, then, for 

some n. r I[ \ IIk] nA and 5 not-(el V . . . V ek). But if [ I I k ]$  E T, we have 

$ n ( I I k )  E r by (4.3.2) and so c$ E A by the Sublemma. 

This completes the inductive case for Processes, and thus the necessary extension of 
the First a-Lemma. rn 

4.4.4 The Second a- Lemma For a22 formulae $ /G 2.5.71 

if MA $ $ implies $ E . for all r E SA, 

then M,, $ [a]+ implies [a]$ E r , for a22 r E S,. 

We proceed jnductively 

As with the First a-Lemma we need only prove the result for a a Process, 
extending the result cited. 

Assume the result for ai,i=l.k To prove it for .ek # al.. .ak) we again need a 

preliminary result. 

Sublemma: 

For all r E S,,, 



Let , i.e. (not-(€1 V . . . Vek)  + 4) hold at  T. Then, if 

not-(el V . .  . V  ek)  € r , 5 not-(el V . .  . V E,& and so $ by the 

semantic clause for + . By the main hypothesis on $, it follows that 
# € r. 

Assume the result for  n .  and let kji $n+l ( I Ik ) ,  i.e. 

If $ D Z k  then $ ~2~ and so for each i. $ ( a L  -+ [a,]$,(II,)). So, if 

El  € r. applying (G2.5.5) again yields that $ and so $ [cu,]$n(Ilk). 

By the hypothesis on n for the Sublemma and the main hypothesis on a t ,  

[ a i l $ n ( ~ ~ k )  E I-, for each i. Then (G2.4.6(5)) establishes the result for nS1.  

To prove the main result, suppose $ [Ilk]$. By (4.2.6). $n(Ilk) ,  for 

each n E In'. By the Sublemma, $n(nk) E r. Since r is closed under GOI, 

[nk]$ E r. This concludes the inductive case for ( e l .  . .ek # a , .  . .ak)  and so 

completes the extension of the Second @-Lemma. 

We nou f~na l lv  prove the Fundamental Theorem, i.e. 

We proceed inductively: 

1. For $ E Bxp the result is (G2.5.5). 

2. Assume the result holds for $ and $. The semantic clause for + and 
the fact (G2.5.1(3)) that 

($ - $1 E r iff ($ E r implies $ E 

allow us to conclude that the theorem holds for the formula ($ + $1. 



3. Assume the result for 4, and let a E Pgm. Then if 9 [a]$, the Second 

a-Lemma gives [a]@ E r. Conversely, let [a]$ € T. Then, if T [a] A ,  we 
get $ E A by the First a-Lemma, and so % $ by the assumption on $. 

This shows, by the semantic clause for [a], that $ [&, and so 

establishes the result for the formula [a]$. 

This completes the proof of the Fundamental Theorem, and so our extension of 

Goldblatt's I/O logic to Processes. 



Chapter 5 

Logic of Dynamic Behaviour 

In the previous chapter we presented the foundations of an existing Programming 

Logic PL, augmented by a new syntactic construction [Ilk], representing Parallel Event 

Servers. The semantics for PL is fundamentally indistinguishable from the semantics 

for the Dynamic Logic (DL) of Pratt [35] and the many variants thereof. All are 

founded on a generalised Kripkean relational semantics, in which each programme is 

assigned a binary relation. 

Henceforth we employ the symbol LI,(, to refer to the language defined in $ 4, and 

La to denoie the language or' $$ 3.1. The iocutlon "$I is an LlIo iL,j formula" means 

that + belongs to the set Fma defined in @ 4.1 ($3 3.1). 

The langauge and semantics so far developed is inadaquate for  the purposes of this 

thesis. Consider, for instance, the two programmes 

[€.true # a,abort] and [ E  # a] 

It turns out that, in standard LI,o models, they are both assigned identical binary 

relations. It follows from this that any formula + of 4,0. or any other language, is 

true (in standard models) of the one programme if and only if it is true of the 

other. The non-deterministic nature of the generalised iterator effectively disguises the 

fact that abortion may occur. Goldblatt observes that "our semantics is not finally 

adequate to describe non-determinism." 



It is also unsuited to interpreting assertions about the progressive behaviour of 

programmes, such as 

sometime during a. @ is true. 

We maintain that this difficulty is not inherent in relational semantics. It is the 

nature of the binary relations actually employed which places inherent limitations on 

the expressive power of any language. In PL, s [ a n t  means that a computation of a 

can end in state t if started in state s. It is not easy to say in PL or DL that a 

passes through an intermediate state u. 

5.0.1. Comparison to Previous Work 

The best developed system for the problem under study appears to be the Process 

Log~c of Hare1 et.al. [161. The word 'Process' in the name does not refer to Processes 

in our sense. Process Logic is built upon Propositional Dynamic Logic (PDL), as 

in [91. The key semantical feature is that programmes are characterised by a set sf 

paths. A path is a linearly ordered subset of the set of states In a model. Formulae 

in the logic are interpreted relatively to paths. The important meta-logical notions 

are those of the fll-st and last states of a path, and a suffix of relation between 

paths 4 va ld  theorem from PL of the form [a!]@ would be interpreted as follows 

In Process Logic: 

c [a]@ iff,  for every u path p, 5 fin + last@ 

where fin is true of finite paths, and last@ asserts that (b is true of a path p's final 

state. 

Process Logic is very much more powerful than the logic we develop, since it 

contains the theory of well-founded linear orderings. Its only drawback is that, in 

appearance, i t  has little to do with programming. It was designed so that decidability 



could be proved by reduction to SnS [37]. The axioms used in the proof of 

completeness are distant abstractions from the properties of actual computer 

programmes. This abstraction appears to arise from the fact that paths are taken to 

be primitive objects. 

A less general system was developed by Segerberg [42]. His logic incorporates a 

version of PDL. In addition there are two dual operators of the form throughout and 

during, as introduced by Pratt [35]. These operators are interpreted relatively to paths. 

A model for Segerberg's logic includes both path and input/output relations for 

programmes. The difficulty with this system is that the expressive power of its 

language is very limited. It is not possible to encode liveness or preservation 

properties in it. 

It was observed by Emerson 171 that there is a connection between the paths 

exp!oyed ir! the semantics cf Process Logics and the binary relations empjoyed in the 

various Dynamic Logics. Emerson identified conditions under which the two are 

inter-definable. This suggests the possibility of avoiding the explicit use of paths as 

semantic objects. 

In the present chapter we develop a semantics which is capable of supporting all of 

the durational assertions, such as liveness and fairness which were mentioned in the 

Introduction. Concurrently, an extension of PL is defined and shown to be sound 

and complete with respect to the new semantics. 

The role of paths is filled by meta-logical objects which, inspired by Hare1 [MI, we 

dub computation-trees. A generalisation of the modal system K4 of $9 3.1 is then 

introduced, to allow for the interpretation of abort. A new modality is then defined, 



the computation tree of a particular programme. The syntax is similar in flavour to 

that of Nishimura [27]. The semantics is new. 

5.1.  eta-) Logical Preliminaries 

5.1.1. Cornputation Trees 

We write ctM(a,s)  to denote the cornptation tree of programme a as started a t  state 

s in model M .  ctM(a.s) is a binary relation on the states S of M. It represents a 

pre-ordering of the states which may be traversed by an execution of a which starts 

a t  state s. If <t,u> E ctM(a,s)  it means that a can pass through state t before state 

U .  

We write P ( a . 3 )  to denote a subset of the states in ctM(a,s) .  We call members 

of ~ ~ ( a , s )  queer- points. if r E @(a.sj i t  means that some a-computation started at s 

in model M aborts at state t .  The notion of queer points is central to the semantics 

of programme failure motivated in the following pages and formally developed in 

The purpose of defining these structures 1s to provide a class of binary relations 

with which to augment the models of $ 4. These augmented models will then be 

capable of interpreting a more powerful language. In particular, to the language L,,  

we will later add a class of formulae similar to that defined in $$ 3.1. For the 

remainder of this section we will freely use modal formulae such as those of L,. 

They should be interpreted as follows. Let M=(S,v, 1 - ) be a standard Ll,o model. 

To say that a formulae @ in the language LK is true of a computation tree ctM(a.s) 

means that @ is true a t  state s in the L, model N = ( S , v , < ) ,  where 



t < u iff <t,u> E ctM(cr,s). Formally, this is of course not quite meaningful, as the 

elementary propositions in the two languages are not the same. We are interested just 

now only in explaining what computation trees are, and showing that a simple 

language like LK is expressive enough to represent certain important properties of these 

structures. 

We now present the formal definition of a computation tree. and of the queer 

points within it. The symbols s,t,u refer to states in a standard 4,0-model M. 

v and [ 1 are M's valuation function and relational operator. 

We require two preliminary ideas. 

5.1.1 Definition Generated Submodels 

Let M = (S,v, [ be an LIln model. M(s) = (Si.v'. [ a 1 ' )  is an s-generated 

submodel of M iff S' is the least subset of S such that 

(ii) Vt E Sf, if t UaDu in M for some programme cr then u E S'. 

while v' and [ I  1' are the restrictions of I) and [r I] to members of S'. 

Jntuit~vely, M ( , )  is t h a ~  subset 01 M containing \ anti 

programme execution from s. 

Let S be a set of states with a distinguished subset & 

closed under reachability by 

of queer points, and R be a 

binary relation on a set S. In the manner of Fitting [lo] we 

property of Transitivity based on normal states (i.e states which 

also define a restricted transitive closure operator r .  

define the relational 

are not queer). We 



TRANS=: Vs,t .u E S, if s,t are not queer and sRt and tRu, then sRu. 

Define R7 to be the TRANS'-closure of the relation R. A modal axiom characteristic 

of this weakened transitivity is introduced in $$ 5.1.4. 

When reading the following definitions, it may help to refer to the inductive 

definitmn of the 1 ] operator in $4 4.2.3. Think of the def~nition of ctM(a,s) as the 

'unwinding. of the definition of [[a]. For instance, [a : p] was defined as the set 

of all pairs <s,t > such that for some u, s [a] u and u up] t .  In the definition of the 

computation tree, all the intermediate points such as u are preserved. Recall that the 

symbol I l k  in clause (6) denotes the process ( E ~ . .  . E ~  # al. . .%). with k components. 

5.1.2 Definition Computation Trees ct"(a,s). 

The computation tree ctM(a,s) is 

1.  ctM(skip,s) = 0 

2. ctj/i(abort,s) = { <s. t> : t E M(s) 

defined by induction on the formation of a: 

3. clA4(.rr,s) = <s,s> U { <s,t > : s In-] t ) .  for ?.r an elementary programme 

letter. 



5.1.3 Definit ion Queer Points Q"(a,s). 

The queer points QM(a.s) in a computation tree ctM(a,s) are defined 
inductively on the structure of a: 

3. QM(v.s)  = is] if [TI = 0 and is empty otherwise 

5.  Q ~ ( ( E  +=- a$),s)  = if vS(e) = o then ~ ~ ( a b o r t , s ) ,  otherwise, 

M Since the definition of ct (cv,r) employs the 7 operator, which in turn makes use of 

~ ~ ( a , s ) ,  the 'deiinitions' above should proceed mstead by simultaneous induction on 

a .  Yet again, rigour is sacrificed for the sake of exposition. 

M We usually write "t is queer in ctM(a,s)" to mean t E ct (a ,s) .  

To make the relationship between computation trees and paths more explicit, we 

introduce 



5.1.4 Definit ion 

8 0 

a is an a-computation starting a t  s if 

a = { s Z : O  < i 6 5 )  . <  6 W .  such that 

so = s and 

a is a maximal linearly ordered subset of ctM(a,s) .  

We say that a is a terminating computation if 6 is finite and <s .s > BctM(a,s). It 3 S 
is now clear what it means to say that a always, never, or sometimes terminates. 

A point t is an endpoint if <t,u> E ctM(a,s) implies t = u. t is a final or terminal 

state if it is an endpoint which is not related to itself in ctM(a,s). t is an internal 

state if <t.u> E ctM(a,s)  with t f u. 

As an example, ctM((true#skip).s) = { <s,s>) .  The only computation a for this tree 

is the series a = { s ) .  a is a finite but non-terminating computation. A programme 

like (true # x := x + l )  possesses an infinite non-terminating computation. 

We previously remarked that the semantics of $ 4 fails to distinguish a computation 

which sometlines aborts from one which nei?r iloes !sw the rernal-i\ on pagp 73.) In 

order explain Ihe reasoning behind the definitions oi computation trees and queer 

A1 points, and especiitll?, the definition oi ct (abort.sj, we must consider more closely 

what we intend by the notion of an aborting computation. An appropriate semantics 

for abort is constrained by the distinctions we wish to make between certain general 

types of programme behaviours. We claim that the following is a minimal list of 

distinguishable behaviours. 



1. The null programme skip.  

2. Programmes which sometimes terminate e.g (E + a,  (true # skip)  ) 

3 .  Programmes which never terminate e.g. (true # s k i p )  

4. Programmes which always terminate. 

5. The aborting programme abort itself. 

6. Programmes which sometimes abort, but which may properly execute some 
steps first e.g. ( true,true # T, abort )  

7. Programmes which never abort. 

8. Programmes which always abort, but which may properly execute some 
steps first e.g. ( E  I (a  : abort ) ,  abor t )  

We first show how the language Lg can deal with the various sorts of non-aborting 

computations. 

5.1.2. Semantics of Termination and Divergence 

The elementary programme skip has the simplest computation tree, namely the 

empty set. The formula Ofalse is true of ctM(skip .s ) ,  since Ofalse is true at a state 

s if and only if s has no  successors 

To say that a sometinze~ terminates is to say that it has a terminating computation. 

A terminat~ng computation for a is one which has a final state. Then either s is 

final, or some later state t  is. Suppose that s is not final, i.e. that 0 true holds at 

s. Assuming for the moment that ctM(a,s )  is a transitive relation, that means that 

for some pair <s, t>  E ctM(a.s ) ,  there is no u such that <t.u> E ctM(a,s ) .  Then Ofalse 

is true a t  t ,  and so ( O t r u e  -+ 00false)  is true a t  s .  The analyses of the Ll,o 

formula -[a]false given in $$ 4.2 shows that the two formulae are equivalent: both 



assert the existence of a t  least one final state, and thus at least one terminating 

computation of a .  Note that ( O t r u e  -+ o n f a l s e )  holds in ctM(skip,s) because the 

antecedent 0 true fails. 

We next show how a LK formula can assert that a programme a always terminates, 

something that we have shown can not be said by any LI,(, formula. To say that a 

always terminates when started at s means that every state in ctM(a,s)  is either a 

final state, or has a successor which is a final state. The appropriate Lg formula for 

this condition is  false V 0 Dfalse) or, equivalently D( 0 true -+ 0 Ufalse). 

Next consider a computation which never terminates. That is, s is not a final state 

in ctM(a,s) ,  and no successor t is final either. It is easy to see that the appropriate 

LK formula for this condition is ( 0 true A 0 0  true 1, again assuming transitivity of 

ctM(a,s). 

Consider the relationships between the preceding formulae. The notions never 

terminates and sometimes terminales are dual. That is, it is not the case that a never 

terminates if and only if ar sometimes terminates. Recalling the dua l~ ty  between 

and 0 in LE, the formula 

( o true /\ DO ~ m c )  ++ -( o trz~e -+ ~ D f a L r e )  

is just a substitution instance of a tautology. 

Equally, if a always terminates, we ought to be able to deduce that it terminates 

sometime. In other words, the formula 

O( 0 true -+ 0 0false) -+ ( 0 true -+ 0 Dfalse) 

should be valid. If computation trees were reflexive relations it would be valid, 



since it is an instance of the axiom schema T: (Op + p). It is easy to show that 

this schema is valid In exactly the class of reflexive models [20]. Inspection of the 

definit~on of computation trees shows that they are not reflexive relations. In fact, 

they are defined such that exactly the terminal points are irreflexive. It is clear 

from the definitions that computation trees satisfy the following property, which we 

dub Internal reflexivity. 

IREF: Vx ( 3 y  ( x  < y )  + x < x )  

This condition says that if a point is related to anything, then it is related to itself. 

Endpoints are allowed to be either reflexive, or irreflexive. Irreflexive endpoints are 

what we have called terminal points. As we prove below, the appropriate modal 

axiom schema for models satisfying IREF is 

T*: o true -+ (Up  + p )  

In any model validating this principle, 

U ( 0 l r u e  -+ 0 0 f a l s e )  -+ (0 true -+ 0 0 f a l s e )  

is true at internal points and reflexive endpoints. At any irreflexive endpoint t ,  

Ofalse holds. Since, in general (Ofalse + a$), O ( 0  true + 0 0 f a l s e )  holds at t .  

Since Djn1.w is Lrue, 0 true is false at t and so (0 Zrue + 0 D f n l s e )  holds at Z. 

This reasoning has established that if a programme inevitably terminates, then it 

terminates sometime 

We can use the formulae developed above to compare the behaviours of certain 

programmes. For instance, consider sk ip  and ( true#skip)  A glance a t  the definitions 

shows that the computation tree of the former is the empty set, while that of the 

latter is a single reflexive point. It is easy to see that sk ip  always terminates. On 

the other hand. 0 true holds a t  reflexive points, and since <s,s> is the only 

member of c tM(skip ,s )  D O t r u e  holds a t  s. It follows that ( true#skip)  never 

terminates. 



Thjs illustration explains why the pair <s . s>  is included in clauses (21, ( 5 )  and 

(6 )  of (5.1.21, and why the programme sk ip  is assigned the empty computation tree 

in clause (1 ) .  It would be handier, and more elegant, if we could postulate a state 

"just like, but not equal to s" for sk ip  to go to. The machinery to specify such a 

property is not readily available: we wish to define computation trees only in terms 

of concepts and semantic objects already available from 9 4. 

Since [skipl] was defined as the identity relation in standard Lllo models, a 

computation for sk ip  starting a t  s  may at most proceed from s back to s .  But then, 

it would be impossible to say in Lg that sk ip  terminated. No choice remains but to 

make c tM(skip ,s )  = 0. 

An inspection of the standard model conditions for iterative programmes reveals that 

Utrue#skipl] = 0. Thus, in the semantics of 9 4, ( true#skip)  is equivalent to abort. 

Tl. l r ~ e  cost of disiingiiishing ihe two in LK would be too high if we were Iorced to 

claim that ( true#skip)  was just the same as skip.  By adding <s . s>  to the relevant 

clauses it becomes possible to tell the two apart in LK. 

Havlng accounted for clauses ( 5 )  and (61,  consider clause ( 2 ) .  The computation 

ctM(n-,s) for an elementary programme T IS defmed so that the reflexive point 

related to one or more irreflexive endpoints, as pven by the relation [ n - j .  

intended interpretation of a formula of the form 04 is that ~t is true a t  s  if 

tree 

s  is 

The 

and 

only if @ is true at all related points. If s were not reflexive in ctM(?r,s) then C@ 

would be true of state s  in the tree if and only if M 5 [TI$ (assuming that ?r 

always terminates.) We intend that C@ be true of c tM(a . s )  if and only if 4 is true 

of every point in the computation, including the start. Hence the definition of clause 

(2) requires that < s,s > E ctM(77.s). 



To summarise the results so far ,  the following modal formulae correspond to 

programme behaviours (1) through (4) above 

1 .  Ofalse for ctM(skip,s)  

2. ( 0 true + O O f a l s e  ) for ctM(a,s ) ,  if a sometimes terminates. 

3 .  (0 true A D O  true) for ctM(a,s ) ,  if a, never terminates. 

4. U( 0 true + 0 0 f a l s e  ) for ctM(a,s ) ,  if a always terminates. 

5.1.3. Semantics of Aborting Computations 

In this section we present arguments to justify the formal semantics for programme 

failure already implicit in the definition of ctM(abort , s ) .  

In dissecting non-termination we found that the modal formula Ofalse characterised 

the simplest terminating programme. We were then able to construct more complex 

iormulae which could distinguish programmes which terminate always from those 

which terminate sometimes, or never. These formulae relate the idea of programme 

termination to the existence of final states in a computation tree. If we could 

identify a property characteristic of the aborting computat~on and I ~ n d  an I,h formula 

corresponding to that property, presumably our problem would be solved. 

Certainly abort can not be the same as any terminating computation. Equally, the 

mere lack of a final state should not cause us to insist that a programme aborts. 

Reviewing Definition (5.1.21, we see that a computation of a aborts if and only if it 

contains abort as a sub-programme, or else attempts the evaluation of an undefined 

boolean expression. There are perfectly good infinite computations to which none of 



It may help a t  this point to review some of what has been said about aborting or 

failure in the literature. Dijkstra [6] considers that 

When invoked, the mechanism named "abort" will fail to reach a final 
state: it's attempted activation is interpreted as a symptom of failure. 

It was this interpretation that led to the definition [abort] =0. We have already 

explained that merely failing to reach a final state is at least an incomplete 

characterisation of abort. We are left with the notion of failure and symptoms of 

failure. 

It is possible to leave the term failure undefined, and cast about instead for a 

formula which just says that failure occurs. This is the approach taken by Hare1 [15]. 

A set of predicates faila are introduced. An inductive definition is then given in 

terms of the structure of a. From the remarks above, we can see how such a 

definition would go in our language. failabort would be true by definition. The 

predicates for skip and elementary programmes .rr would be false. Then for 

compound a,  the definitions would proceed analogously to the following illustration: 

failk =3 a s p )  -- (-De V ( ~ A f a i l ~ )  V (not-eAfailp) ) . 

Iiarel IS also able to define looping (which we call non-termination) by similar means. 

Segerberg in [42] alludes to possible generalisations of Kripke models which are 

capable of giving some meaning to failure. Each programme is assigned a set of 

states F ( a )  from which a has a failing computation. Then the predicate failN is 

defined to be true a t  a state s if and only if s E F(cr). The models are otherwise 

similar to our own. 

The concept of failure is not explicitly addressed in the literature on Process Logics. 



The solution we ultimately adopt is similar in flavour to Segerberg's. We are, 

however, able to found ours upon at least a sketchy analysis of what failure actually 

means. 

There are two common models of failure in distributed networks. Both model the 

failure of individual network processes. We do not consider here what 'failure' of an 

entire network should mean. 

Fail-Stop: a reaches an aborting state, and can not continue execution. 
Physically, the operating system recognises that an abort has 
taken place, perhaps by means of a signal from the hardware. 
The aborting programme is then prevented from continuing, 
either by fiat of the operating system, or an actual "crash" of 
the supporting hardware. Depending on which agent intervenes, 
other programmes may be capable of executing correctly. We 
use the term 'prevented' because if a were allowed to continue 
execution, the process might exhibit 

Byzantine-Failure: a term connoting treachery. a exhibits Byzantine failure 
if it continues to execute after an abort in such a way that 
its behaviour is independent of its inputs. That is, after 
failure, programmes no longer behave in the way that the 
axioms say they should. 

We adopt the Fail-Stop model, with the assumption that an abort by a in state s 

affects o n l ~  a. .An) ot l ler  p i - ~ g r a n m e  n~a\i  begin executing from s without being 

affected. W e  choose t h ~ s  model onl~7 because the solution is easier. The technique we 

employ could be extended to account for Byzantine Failure, or for both failure models 

together. 

Intuitively, a programme exhibiting fail-stop failure has been prevented from 

continuing to execute. If it had continued, it could have traversed a large portion of 

the state space. To see how large, we again appeal to the behaviour of real machines. 

Presumably there is a limit to the non-determinism of a programme exhibiting 

Byzantine failure. This limit is defined as follows. 



<u,v> E ctM(abort.s) implies 301 E Pgrn (u [a] v )  

What this expression means is roughly this: an aborting computation can effect a 

transformation between two states if and only if there exists some terminating 

programme cw which is capable of effecting the same transformation. That is, an 

aborting computation started at s can reach a t  most states within the generated 

submodel Mls).  This restriction rules out certain kinds of infinite behaviours. For 

instance, a programme exhibiting Byzantine Failure is not capable of changing the 

value of more than finitely many variables. 

We may now determine which Lx formulae have to be true a t  state s in an LK 

model corresponding to ctM(abort.s). It is obvious that Ofalse can not be true a t  s ,  

which means that 0 true must hold. But no successor of s can be a final state 

either,or else abort would have a terminating computation, so it seems that 0 0  true 

must hold at s. Now the logic K has the inference rule RN,  namely 

from h$ infer I;jD$ 

In the presence of this rule, 01$ must hold at s for every theorem $ of the 

underlyiny, logic. I t  is tempting Ic; characterice .) by sa~iing that no formulae of the 

form O& hold at s unless required to by RE. Modal logics exist which roughly 

correspond to this nolion. It would be possible to introduce yet another modality 

(call it * j  and  interpret it in the universal relation on the model for ctM(abort,s). 

Assume this * were given the axioms for S5 (see, for instance [2]). Then *@ is true 

at any state s if and only if it is true at all states in the model. In that case, the 

infinite conjunction over all formulae @ of O$ t. *+ could be taken to represent an 

aborting state. There is at least one problem with this idea. This infinite conjunction 

would place our programming logic in the nether realm of infinitary logics which 

allow formulae to contain an infinite number of terms, and an infinite number of 



variables. Although first order languages (called La ,a -languages) of this sort have 
1 1  

been studied, developing a modal extension of such powerful languages is beyond the 

scope of this thesis. This approach also requires that, for every non-terminating 

computation, there exist some non-theorem 4 such that 0+ holds for the computation. 

Since there is no obvious (finite) set of El-formulae which provides a convenient 

way of picking out aborting states, perhaps aborting states should make all of them 

false. In order to do this the logic of 3.1 will have to be modified to remove the 

inference rule RN. Modal logics have been studied which contain no theorems of the 

form 04. We present such a Non-Normal logic suitable for our purposes in the next 

section. 

We can now provide a simple formula characteristic of aborting states. For, if 

every formula of the form 04 is false a t  an aborting state, then in particular Otrue 

is false, and so O j a l s e  lnusi be true. 

Consider a programme a, which sometimes aborts, say a t  state t .  Then O f a l s e  is 

true at 1 In cfA4(c-w,s). I t  follows that 0 0 false must hold a t  s. Now if conlputation 

trees are transltlve. they val~date the axiom schema (0 0$ + o$), which is 

merely the dual of the axiom schema 4 (O$ -r OD$). In that case, a programme 

which sometimes aborts is indistinguishable in LA from the aborting programme itself. 

This consideration motivated the introduction of the sets Q ~ ( C Y , S )  and the restricted 

transitive closure operator 7. 

We are now in a position to derive modal formulae which characterise the 

properties of never, always, and sometimes aborting. 

5.  0 false for ctM(abort,s). 



6 .  (0 0 false) for ctM(a.s) if a sometimes aborts. 

7. OOtrue for ctM(a.s)  if cr never aborts. 

8. ( 0 false V ( 0 true A 0 0 0 false) ) for ctM(a,s)  if a always aborts. 

Case 8 requires a little discussion. If a always aborts when started from s ,  then 

either it aborts directly, in which case O f a l s e  holds at s, or else every successor t 

of s is related to an aborting point, so 0 O f a l s e  holds a t  t .  But state s must have 

a t  least one successor, or else a would be identical to skip. So, if s is not itself an 

aborting point. O t r u e  must hold a t  s. 

The application of Non-Normal modal logic to the analyses of non-termination and 

failure is one of the original contributions of this research. The appropriate logic and 

semantics are formally derived in the next section. The correctness of the formulae 

listed above may then be verified. 

5.1.4. A Non-Normal Logic for  Computation Trees 

In this section we present a modal system which is adequate for Kripke models 

whose relation has the structure of a computation tree. These relatmnal structures are 

characterised by 

'I'he presence of queer points at which the formula Otrue fails to hold. 
Queer points represent a point in a computation tree for cr at 
which a aborts. 

The principles TRANS* and IREF~. 

The following exposition of the minimal non-normal logic C (and the name 'C') is 

derived from [lo. 411. The Logic K introduced in $9 3.1 is a normal logic. It is 

called normal because of the presence of the inference rule RN. K is the smallest 

normal logic, in the sense that the theorems of K are a subset of any other normal 

logic. To aid the development, we present a logic K', which is equivalent to K. 



The Logic K' is the smallest set of formulae which contains all instances of the 

following schema 

1. any set of axioms adequate for PC 

2. 0(# -, $1 + (@ " [3$) 

3. Otrue 

and is closed under the inference rules 

MP: modus ponens, and 

RM: from Ci; ((b $1 infer Ci; (@ + a$) .  

To see that these axiomatisations are equivalent, we must show that RM preserves 

validity in K, that RN preserves validity in K' and that Cltrue is a theorem of K. 

Suppose ((b + $1 is K-theorem. Then RN, the axiom K and MP yield (Qb + ~ $ 1 .  

If (b is a Kt-theorem then, by PC and MP, so is ( t rue  + $1. By RM, (Otrue + 0 4 )  

whence, since Otrue is a E;' axiom, MP yields O(b. Finally, since true is a K-theorem 

by completeness, the rule RN yields Cltrue, so K's  distinguishing axiom is valid in K. 

, . 
I h e  i o ~ l c  (- which 1s merely h i  wi thout  the axiom O t m c  qualliies as the minmal 

non-normal log~c. G v e n  the semantics to be introduced below, it can be seen that K 

and C are inequivalent. Models exist which validate all C theorems but for which 

certain k theorems (in particular, Otrue) fail. See below. C has no theorems of the 

form 06: if it did, it would be equivalent to K. Suppose that kO(b, for some (b. 

Since +(b + true by PC, kO(b + Otrue by RM. Then kOtrue  by MP. But if k(b, 

then k t r u e  + (b by PC. Applying RM, kCltrue -+ @. Since by assumption, k t r u e ,  

C is closed under RN. Thus the presence of a single theorem of the form O(b makes 

C equivalent to K. 



Remark: 
The Logic C is equivalent to that logic having as its only axiom 
the so-called principle of aggregation 

and RM (and MP) as its only rules of inference. The axiom K and 
the aggregation principle are inter-derivable in the presence of RM. 

It is clear that Otrue is valid in any model for K. In order to provide a semantics 

appropriate for C it is necessary to generalise the notion of model. The appropriate 

generalisation of the Kripke-style semantics we have used so far is a model with 

distinguished elements, or queer points. 

A model for C is a tuple M =(S,v.R,Q) where (S,v,R) is a model as defined in 

$$ 3.1, and Q is a subset of S. Members of Q are called queer or (non-normal) 

points. States in S - Q  are normal. The interpretation of C-formulae is similar to 

. . that of $9 3.1. The interpretation ~f propositions! f - - m q l l -  . ,, ,,, ,,,e and ~f imp1:cat:on 

remains unchanged. Otherwise, 

Notice that the relation R plays no role in the evaluation of formulae at queer 

points. By definition, M 5 -.O$ . Vq € Q. 

From this point, the development of C follows the course of $9 3.1.  We first show 

that the scherna K is valid in any C-model M. K holds a t  all of M's normal points 

by the same reasoning as in $$ 3.1. For queer points, every instance of K is true, 

because the antecedent is false by definition. To quote Fitting [ lo ,  p301], 

The extension to queer worlds is thus by a trivial argument, but that's 
what comes of saying truth isn't necessary. 



To see that the rule RM preserves validity in C-Models is easy. Suppose (+ + I/I) is 

valid. Suppose that (O$ + ~ $ 1  fails at state t ,  i.e that (06 A -El$) holds. Then t is 

not queer, and there must be some u at which both 4 and -I/I hold, which contradicts 

the validity of (gb -+ $1. It follows that all C-theorems are valid in any model M. 

The results used in the completeness proof for K4 carry over directly. The only 

alteration that is needed is in the proof of (3.1.1). It is necessary to show that the 

A-theory A is closed under rule RM, instead of RN. This is left as an exercise for 

the reader. (3.1.21, (3.1.3).  (3.1.4) and (3.1.5) carry over without modification. To 

show completeness, it is necessary only to prove the Fundamental Theorem for C. 

The canonical model Mc = (S,,v,,R,.Q,) is defined as before, except that Qc is 

exactly that subset of Sc whose members do not contain the formula Utrue. In 

consequence of the definition of R,, queer points are related to every member of Sc. 

The Fundamental Theorem f o r  C Vr,h and Vu E Sc 

M,F + iff + E u .  

h-ooj:  

Proceeds as the proof of the ITundamental 'I'heorem for h. 

Define ~ 4 *  to be the logic containing, in addition to C, all instances of the schema 

4*: U+ + O(Otrue + or$). 

Likewise, define CT* to be the logic containing C and all instances of the schema 

T*: o true + (C+ + +). 

The notation is intended to suggest that these principles are analogous to the better 

known principles 4, which corresponds to transitivity, and T (C+ + (6). which 

corresponds to reflexivity. We now show that the modal principles 4* and T* 

correspond to the principles TRANS* and IREF respectively. 



We have hitherto been concerned with models. The usual development 

completeness proofs employs more general structures known as frames. Frames 

the underlying structure upon which models are based. 

A frame F is a pair <S,  < ,Q>, where S is a set of states, Q is a subset of S 

of 

are 

and 

< is a binary relation on S. A model M on a frame F is the frame, together with 

a valuation function. A formula (b is valid on a frame F if it is valid in every 

model on F. We say that F is a frame for a logic A if every A-theorem is valid on 

F. 

A class of frames T conditions is said to determine a logic A if the following 

conditions hold: 

a. F E T implies F is a model of A. Soundness 

b. h(b implies F ,&4 for some F E T. Completeness 

The class of frames of interest here are all those satisfying the conditions  TRANS^ 

and IREF. 

I.qu~valentl), MI? m a )  \a; thal khe 1or;ii 1 i k  i \ t r n l l  anti ~ o m p l e l e  with 1-ec;pect t v  

the class of frames 7' That is, ever5 A-theorem is valld in every member of T, and 

every non-theorem lails in some model on iome irame in 1'. 

We first show that the class of C-frames which satisfy TRANS* determines the 

logic c4*. 



5.1.5 Theorem determines the logic C4* 

Proof: 

Let M be a model on some frame F E r. Suppose that 04 -+ ~(Cl t rue  + 04) fails 
at s in M. Then 

M 9 04 and for some t ,  s < t and M $ Otrue A-04. 

Then for some u. t < u and M 5 14. 
But s and t are both normal, so by TRANS*, sRu. 

The assumption that M % 04 then gives a contradiction. 

To show that C4* is complete for T, it is enough to show that the canonical c4*  

model is TRANS'. The proof is almost identical to the demonstration in $$ 3.1 
that the canonical K4 model is transitive. 

Let r be the class of C-frames satisfying the principle IREF. 

5.1.6 Theorem The class determines the logic CT* 

Proof: 

Suppose the T* instance ( 0  true + (04 + +)) is not valid in r. Then for some 
state s of some model M on some frame F in r, 

If s is queer, we get a contradiction directl\., since for any queer point q ,  M 5 O$ 

nnd M ,f= 06 
Y 

If .\ 1s normal, the fact that 11.1 0 h-ue requirex that there exlst some I with 

s < t .  'Then by IKEF, s < s But M 5 04 + 6 requlres that M Ci+/\-+. Then 

s < s and the truth condition for yield the desired contradiction 

It follows that every instance of schema T* is valid for every F in r. 

To complete the proof, suppose that the canonical CT* model MA is not internally 

reflexive. Then there exist distinct maximal consistent CT*-theories s and t such 
that s <At  and not s <As.  By the definition of the canonical relation, s is not 

queer (or else s <As.)  It follows, since s is a maximal consistent set, that @ E s 

and -$ E s, for some formula 4. The assumption that s <,,t ensures that 



0 true E s, whether s is queer or not. But the T* instance ( O t r u e  -, (04 + +)) 
is in s, so by deductive closure of s, the formula Oc$ -+ c$ is in s also. But the 
assumption of ir-reflexivity at s required that Oc$ E s and by deductive closure 
again, 6 E s, which makes s inconsistent. It follows that the canonical model is 
internally reflexive. 

The main result of this section concerns the logic c~ 'T*.  

5.1.7 Theorem 

The class of U-frames C satisfying TRANS* and IREF determines the logic u ~ * T * .  

Proof: 

It is necessary to show that the canonical c ~ * T *  model satisfies the principles 

TRANS' and IREF. 

The details are left to the reader. rn 

Finally, consider the formula ODtrue. It is easy to see that if this formula holds at 

a state s in any model M on any frame in T then all successors of s in M must be 

normal. This observation justifies the use of i70lrue to characterise computations 

which never abort. 

5.2. Language and Semantics 

In this section we develop the language of and a semantics for a logic of the 

dynamic behaviour of programmes. We first introduce a language L and define a set 

of well formed formulae. We then say what a model for L is like. With the help 

of some properties of models that we define and derive, we show how to evaluate a 

formula In a model. The remainder of the section is devoted to establishing the 

validity of certain formulae required for the axiomatisation. 



5.2.1. Syntax 

We now present the formal language L used to describe the ongoing behaviour of 

processes. 

The categories Boolean expression ( B x p )  and Programmes (Pgm)  are exactly as in 

$$ 4.1. We add two new operators on formulae. The first of these is the now 

familiar 0. The second operator is for every a E Pgm. Informally, the operator 

- - 
(Y 

causes its operand to be interpreted relatively to a computation tree of the 

programme a. For this reason, =a is referred to as an indexical operator or modality. 

This operator is the distinguishing feature of the system under development. 

The set of formulae Fma is defined inductively. 

1. Bxp C Fma, 

2. If + and $ are f x ~ n l z e ,  so is !+ + $1, 

3.  If a is in Pgm and 6 is a formula. [a]$ is a formula, 

4. If + is a formula, so is D$, 

5 .  I f  a. is in l ' gm and  6 IS ;i l o r r n u i a .  =, Cb 1. < i  b !1-m~lia .  

The use of brackets is informai, 2.; ;iiv.a>x. 'I'he other logical connectives may be 

defined as in Chapter 3. 



5.2.2. Semantics 

Models 

A model for the language L is a confabulation of an LI,o model and a frame with 

queer points as defined in $9 5.1.4. Formally 

5.2.1 Definition A model M is a structure (S,V, [ . I ] ,  < ,Q) such that 

(S,v, 11 ; I] ) is a standard LI,,model and 

( S ,  < ,Q) is a relational frame with queer points, satisfying TRANS* and 
IREF. 

Defining the satisfaction relation C= requires some elementary model theory. 

Generated Submodels 

By MI,,, we mean an Lllo-model. Unless otherwise specified, c$ is understood to be 

an LI,o formula when interpreted in any LI,o-model. We reiterate the definition of 

generated submodel 

5.2.2 Definition Let MI,, = (S,v, 1 I] ) be an LIlomodel,s a state in Milo. 
M l  (,(s) = (S' .V',  1 1 ) is an s-generated sub-model of MI if S' is the least 

sukxel of S such that 

1. J E S' and 

2. Vu E S, Vt E s', Vcu E Pgm (t [ a ]  u implies u E s') 

while v' is the restriction of v to members of S' and [ 1' is the restriction of 
[ I] to members of St. That is, 

V S  E S' , v', = V,  and 

Vs.t E S' V a  E Pgm ( s [a] 't iff s [ a ]  t ). 

We denote the s-generated submodel of MIjo by M,,,(s). Intuitively, MI,o(s) contains 

just those states that are reachable from s by means of some terminating programme 



or other. MIiG(s) is '"ust like" MI,, except that points irrelevant to the execution of 

any programme from s are stripped away. The next theorem gives formal life to 

this intuition. 

5.2.3 Theorem For any model MI,,  and any state t in MIio(s),  

MI,o 9 $ iff M&) 5 @ 

for any LI,', formula 55. 

Proof: 

The easy proof is by induction on 4. 

The import of this theorem is that no LIIo formula can tell a state in a generated 

submodel from the same state in the model. The next result shows that validity is 

preserved by submodel generation. 

5.2.4 Corollary For any model MI,, and any state s i n  MIio, 

MIio I= 55 implies Mio(s>  k 4 

Proof: 

M I  (, kg5 means that M I  (, 7 g5 for every state s in M I  o. The previous theorem and 

the  OI?L I O U \  f act 1 h a t  5"C.S ectabilshec the theorem E 

11 is also a s \  to show that the property of being a standard Ll,o-model is 

preserved under submodel generation. 

5.2.5 Theorem For every state s i n  every standard model MI,,. 

MI,,(s> i s  a standard LIi,  model 

We again omit the tedious proof, which is by induction on the formation rules for 
the set Pgm of programmes. Each part of the proof requires checking that the 
standard model conditions for each type of programme are preserved in the 
submodel. 



The following Corollary follows immediately from (5.2.2). 

5.2.6 Corollary For any model MI;L  and any state s in  Milo, 

MI,o(t> = MIlo(s>(t> . for any t in MIlo(s> 

w 

As a consequence, MI,o(s) = MI,o(s)(s),  which is to say that an s-generated submodel 

of Milo is the unique s-generated submodel of itself. 

When M is an L-model, the notation M(s)  refers to the s-generated submodel of the 

LI,c-model MI,o which is contained in M.  Of course the relation < and the set Q of 

queer points is restricted in M ( s )  to just those states in MI,,. 

p-morphisms 

Let M = (S ,V ,<)  and Mi = (S' ,vJ,<') be two L, models. j is a pmorphism from 

M to M' if 

1. f is a surjection from S to S' 

2. s < t implies fs < ffi 

3 js < 11 impl~es 3u i s < u and /u = 11 1 

Clauses ( 1  1 and ( 2 )  say that f 1s a homomorphism. Clause (3) is sometimes known 

as the backwards condition. Following [41], we say that a p-morphism f is reliable if 

vs =v i  for every state s E S. Versions of the following well known preservation f s  

theorem may be found in [41,  451 



5.2.7 Theorem 

If f is a reliable pmorphism between Lx models M and M' then, for any L, formula 4, 

M 5 4 iff M' Fs Q. 

We now introduce the obvious generalisation of p-morphisms to LI,o models. 

5.2.8 Definition Let M = (S.V. [ ] ) and Mi = (s',v', [ * ] ') be Lr,o models. 

f :  M -+ M' is a p-morphism if 

1. f is a surjection from S to S' 

2. Vcr E Pgm, s [a] t implies fs [[a] ' f t  

3 .  Va E Pgm, fs [a] ' f t  implies 3 u E S ( s  [[a] u and fu = f t )  

It is easy to generalise the preservation theory for LA to one for  L,,,. 



5.2.9 The p-morphism Theorem 

If f is a reliable pmorphism between the Ll,c models M and M' then 

for any 4,0 formula $. 

Proof: 

The only non-trivial step in the inductive proof is for $ of the form [a]$. 

Suppose that M t [a]$. If M' qS [a]+, then for some ft, fs [ a ] ' f t  and M' $t +. 
Then by clause (3)  of the definition, there is a state u such that s [ a ] u  and 
fu = f t .  By the induction hypothesis, M 5 +, contradicting the assumption that 

M 5 [a]+. \ 

On the other hand, if M 5 [a]$ then for some state t .  s [ a ] t  and M $ $. Since 

f is a homomorphism, fs [ a ] ' f t .  By the induction hypothesis, M' k $. It follows 
ft 

by the truth condition on [a]$ that M' $s [a]+. 

In standard models, the relational operator [ I] is defined with reference to the 

valuation function v.  Because of this dependence we may prove the following 

interesting result. 

5.2.10 Theorem Any pmorphism between standard models is reliable. 

Suppose j 1s a p-morphlsm between M and M i .  If f is not reliable, then for some 
boolean express~on s and some state r in M. v s ( s )  # V / ~ ( E ) .  Assume that v S ( s ) =  I .  

Consider the programme ( E  + skip , abort). Since M is standard, 
s [Is +- skip . abort] s. Then fs [re + skip  , abort] ' f s  in Mi.  By assumption on v' f~ ' 
either I , ' ~ ~ ( E )  = w or v d f S ( € )  = 0. But then fs [abort] ' f t  in M',  which is impossible. 

For the case that vS(e)  = 0, use the programme [ E  * abort.skip1. 

If ~ ~ ( € 1  = w ,  then either v' ( E )  = 1 or v r f S ( € )  = 0. Then the programme 
fs 

[ E  +- skip,skip] and the backwards clause in Def'n. (5.2.8) yields the required 
contradiction. rn 



This result does not hold in general for p-morphisms between LA models, or for 

p-morphisms between nonstandard Llto models. 

Images of Models 

We now define an important relation between models. 

5.2.11 Definition Let M = (S.v,[, 1 ,  < .Q) be a model. 

A model M' = (s',v', (l 1 ', < I , & ' )  is an (a,s)-image of M if and only if there 
exists a function f such that 

1. f is a reliable p-morphism between the s-generated submodel of 

(S.v, Q 1 ) and ( s ' , ~ ' ,  [I 1'). 

2. tlfs,ft E S' , fs  < 'ft iff <s , t>  E ctM(a,s) 

3. f t  E Q' iff j s  < 'ft implies t E eM(cr,s). 

Condition (3 )  says that any queer point related to fs in the image must be an 

aborting (queer) point in the computation tree ctM(a,s). If N is an (as)-image of M, 

N is just like the generated submodel Ml.c.1 except that the relation < in N is defined 

by the computation tree for programme a starting a t  state .s in M. Note that the 

relation < in M plays no role in the definition of any image of M. It may help to 

think of an (ask image  of M as the world M as "experienced by1' a starting at  s. 

M(a.s) denotes an arbitrary (a,s)-image of M. We sometimes write "a-image of 

M(s)" for "(cr,s) image of M". 



5.2.12 Lemma 

Let N be an fa,s)-image of model M .  under the reliable pmorphism f .  Then 

<t,u> E ctM(a,s)  iff <ft,fu> E ctlV(a,fs) 

Proof: 

The proof is by induction on the complexity of a. We illustrate the basis step, for 
elementary programmes r. 

Suppose that <s,t> E ctM(r ,s) .  By definition of computation trees, either s = t  or 

s [1r] t .  If s = t then fs = ft and again by definition, <fs , f t> E ctN(r , fs ) .  If s [[TI t 
in M ,  then fs I T ]  f t  in N. Again, <fs,ft> E c t N ( r , f s )  by definition. 

Suppose on the other hand that < fs,ft > E ctN(7z.fs). If f.5 # ft then for some t' in 

M ,  s [ r ]  t' and ft' = ft. But <s,ti> E ctM(n,s) ,  because s [Er] t t  in M .  It follows, 
since N is an ( r . s )  image of M ,  that fs < ft' in N ,  which is to say, since f t l =  ft, 

fs < ft. Then, of course, <s,t > E ct"(.rr.s). H 

5.2.1 3 Theorem 

Let N be an (a.s)-image of model M under a reliable p-morphism f .  Let N' be a 
(/3,ft)-image of It' under g. Then id' is a (/3,t)-image of M. 

Proof: 

It is easy to verify that the function gf is a reliable p-morphism from M(t )  to N' 

N' is a (P,/t)-lmage of N. Suppose that gfu 1s a queer polnt in N' This can be 

true if and only if g f !  < gfu in N' implies that fu  1s queer in ct1'(/3,ft). By the 
previous lemma, this is equivalent to the condition: t < u in M implies u is queer 

in ct"(/3.t) 

Satisfaction 

We now define the satisfaction relation M 5 @ by induction on the members of 

Fma: 

1. If @ E Bxp, M 5 q5 iff ~ ~ ( $ 1  = 1 



2. M 9 ( 4  -+ $1 iff M 9 4 implies M 9 $. 

3. M 9 [a]+ iff s [[a] t implies M $ 4. 

4. M 9 C@ iff s < t implies M 9 $. 

5.  M 5 zN$ iff for every N an (a,s)-image of M (under p-morphism f), 

N FS $. 

Clause (5) reveals the hitherto dark purpose in the definitions of submodels and 

images, and of all the related theorems. The formula ZNO$ is intended to mean that 

Or$ is somehow true of the execution of programme a. This required first that the 

durational notion execution be given a formal meaning. This was done by defining 

computation trees. Temporal formulae such as 04 are given meaning by clause (4). 

Clause (5) then says that ZaO$ is true at state s in M if and only if Ck$ is true in 

a model N which is in all respects like M except that its relation < is determined 

by ctM(a,s). 

From previous results and truth conditions just defined, we may now prove an 

important result. 

5.2.1 4 Theorem L ~ I  fi = j M  and N' = gM be two (a,s )-images of M 

for every formula gb and every t in M ( s ) .  

Prmf :  

The proof is by induction on 4 .  

For boolean expressions, the result follows from the definition of images, which 
requires that f and g be reliable. 

The result is obvious for formula of the form (4 + $11 



Let c$ be of the form [PI+. and suppose N 5 [PI$ and N' k [PI* Then. for some 
gt 

gu in N' ,  gt [Pl] gu and N' ,k 4. By the backwards clause for g, there is an u' in 
gu 

M such that t [@I u' and gu Then N' %u. JI. By the fact that f is a 

homorphism, ft [P] fu' in N. Applying the induction hypothesis to +h and the states 
fu' and gut, N %. +. This contradicts the assumption that N C [PI$. 

ft 

It follows immediately from the definition of (a,s)-images that ft < fu in N if and 
only if gt < gu in N'. This establishes the result for $ of the form U4. 

Let c$ be of the form ZB+. Suppose N $  zB$ and N' $l %#. By the truth 

conditions, N(P .ft) $If, $, for any (P,jt)-image of N under hl. Equally. 

N1(P.gt) %2gt J)  for some (PPgt)-image of N' under p-morphismn 4. But by 

(5.2.13). N(P,ft) and N ' ( P , ~ ~ )  are both (P,t)-images of M. The result follows by 
the induction hypothesis. 

In view of the Theorem, clause (5) of the truth conditions may be written 

5'. M ?  zac$ iff for some f, fM is an (a,s)-image of M and fM $s $. 

We now prove some important properties of the indexical modality =. 

5.2.15 Theorem 

The following schemata are valid in all models. 

3. ++ =a+ 

4.  =,c$ - 4 for any Ll,o formula c$. 

Pro0 f : 

1. Let M ( a , s )  be some (a ,s)  image of M under f. Then 



M I= 2 (4 + $1 iff 
S N 

M(a,s)  Fs (+ + $1 iff 

M(a.s)  I= 4 implies ~ ( a , s )  Fs + iff 
fs 

M 5 =a+ implies M 5 ZW$, by the truth condition on 

The result follows by the truth condition on + . 

3. Let f  be the image function from M to some image M(a.s)  and g the 
function from M(a,s)  to one of its (P, f s )  images ~ ( a . s ) ( P . f s ) .  Then 

By Theorem (5.2.13). M(a,s)(P.fs) is a (P,s)-image of M. The result 

follows by (5.2.14) and the truth condition on zB. 

4. By Theorem (5.2.9) and clause ( 2 )  of Definition (5.2.11) 

Remark: 
The theorem demonstrates why the = operator is given the 
suggestive title of indexical modality. In the presence of a rule of 

normality, 2 bears a striking resemblance to an alethic modality. 

The distinction between 2 and the modality of S5 is that the 

schema (zm@- 4)  is restricted to LI,oformulae. For, of course, the 

truth of Dd, at state J is independent of the truth of Od, in 

cll"(cw.s) f o r  some arbitrary programme a. 

5.2.16 Theorem The following schemata are valid in all models. 

1. This scheme is valid for any binary relation. 



2. Follows from Theorem (5.1.5). since < satisfies the principle TRANS-. 

3. Follows from Theorem (5.1.6), since < satisfies IREF. 

5.2.17 Theorem 

The following schemata are valid in all  standard models. 

1. [a]$ =,O(OfaZse + 4). for  any  formula $. 

2. zskzpO false 

3. zabort 0 false 

4. =,O$ ++ zT($ A [TI$), for  any elementary programme .rr. 

Proof: 

1 .  M 5 ~ , 0 ( 0 f a l s e  + $1 iff,  in any ( a , s )  image of M, 

f s  < f t  and M(a , s )  FL Ofalse implies M(a , s )  $t $. 

Choose some such ft. By clause ( 2 )  in (5.2.11), <s,t> E ctM(a,s ) .  B y  
assumption, ff is a normal state (since OfaLse holds), so by clause ( 3 )  of 

the definition t 6? ~ ~ ( a . s ) .  I t  follows from TRANS* that t is a final 

slate in c fM(a , r )  which is to say s [ a l ] t  in M. The result follows by 
(5 .2 .0 ) .  

2. Suppose not. Then for some state s in some model M ,  M 5 zskzpO false. 

But  this is true iff 

M 5 -zskzpO false, iff (by Theorem (5.2.15)(2)) 

? zskip -.Ofalse, iff 
M % zsktp 0 true iff 

M(skip ,s )  I= 0 true iff 
,fs 

3 ft : fs < ft  i f f .  

since M(skip ,s )  is a (skips)- image of M .  <s,t> E ctM(skip.s). This is a 

contradiction since, by definition, ctM(skip,s)  = 0. 



3. M zabort 0 false iff 

M(ab0rt.s) FS 0 false iff 

fs is a queer point in M(abort,s) iff 

s is queer in ctM(abort,s) , 

which it is by Definition (5.1.3) and clause ( 4 )  of Definition (5.2.11). 

But fs < ft iff <s,t> E cfM(7r,s) which means that either t = s 
or s [ [ ~ ] t .  

Thus, in M(.rr,s), either fs = ft or fs [[.rr]'ft. 

5.3. Representation of execution properties 

Now ihai the language and semaniics have been defined, we show how this systeni 

is capable of representing those properties of programme execution introduced in earlier 

chapters. 

Representation of the after n~odality is of course inherited from the system in 4 4. 

And, as Theorem (5.2.17)(1) shows, the formula [a]$, which asserts "after a, $ is 

true", is equivalent to =mO(~fa l se  + $1. 

Reviewing the semantic clauses, it is easy to see that formula is valid if and 

only if c$ is true a t  every state in every computation tree of a. Thus Za0$ 

corresponds to the property "throughout a ,  6." The property "during a,  $" is merely 

the dual of "throughout a ,  $". But -.zaO-4 is equivalent, by Thm. (5.2.15)(2) and 

the duality of 0 and 0 ,  to %,O$. 



Properties such as Pratt's preserves or Lamport's rendition of liveness may be 

represented by indexing the appropriate U T ~ ~ "  formula by the operator Za. In 

particular, if programme a preserves formula c$, then in our system, za~(gl -+ Uc$) 

will be a valid formula. 

Finally, we show how a fair execution property may be represented. As remarked 

earlier, the weakest commonly accepted version of fair process execution is 

If a Process component is infinitely often enabled, then it will be executed 
infinitely often. 

It is necessary a t  last to clarify this notion. Recall that I Ik  stands for the Process 

(el. . .ek # al. . .ak). There is no way to say directly in our language that component 

[ai] is ever selected during the execution of I l k .  However, suppose that 

is a valid formula. It says that @ is true at some state in any computation of 

programme a which starts at a state in which its guard el is true. If, under some 
I 

conditions, we can then deduce that 

a connection between the execution of a Process as a whole and the execution of its 

separate components has been established. We would then have an axiom schema 

which says 

if c$ occurs during the execution of a .  and 
I 

if a is ever selected during the execution of I&, 
I 

then c$ occurs during the execution of I l k  

A component is enabled if its guard is true when "the scheduler" is selecting the 



next component to execute. There is no formula in our language which characterises a 

state in which this choice is being made. That is, there is no formula which says 

" p a r d  evaluation happening now". Reviewing the definition of a Process computation 

tree, it is easy to see that the selection of the next component occurs when the 

previous component has finished executing. The selection is made by choosing one of 

the components whose guard is true. 

The formula 

* D o e j  
nk 

asserts that e  occurs infinitely often during the execution of I l k .  It does not follow 
J 

from this that 5 need ever be enabled, let alone executed. For instance, some other 

component could repeatedly be switching the guard on and off. Moreover, guards 

will be employed to detect the occurrence of asynchronous events which occur 

independently of Process execution, such as the arrival of a message from some other 

Process in a network of parallel event servers. For these reasons, a fairness 

specification must include a provision that a guard, once true, rema~ns true at least 

until the next selection event. The formula 

is a slightly weaker preservation specification. It says that the guard € will be true 
J 

in any final state of programme aL if it becomes true at any point during an enabled 

execution of ai. The much weaker specification 

is an easy consequence. 

If the preceding schema is true for every component ai, then if ej ever becomes 



true during the execution of I l k ,  we may be confident that 7 will eventually be 

enabled (as long as no component aborts or diverges.) 

We may now present a fairness specification. 

This says that if eJ is preserved by every other component other than aJ, and if q5 is 

a consequence of the enabled execution of a., then if e ever becomes true during I l k ,  
J J 

then q5 will become true at  some later point in the execution. It is a simple 

consequence of this formulation that the consequent + 0 4 )  may be replaced 
nk 

by 

However the first formulation is actually stronger. It says that if a guard becomes 

true, it remains true at  least until it's sequential component is selected (but not 

necessarily any longer), and that this selection must occur. This specification 

corresponds to the weak equi-fairness of [22]. Every time a guard becomes true, the 

component which it guards is executed. 

Other notions of fairness could probably be expressed in this language system, but 

we pursue the matter no further. 

The standard model conditions for this and other notions of fairness will not be 

formally developed here. Suffice to remark that they would amount to the 

restriction that certain infinite suborderings could not occur in the computation tree of 

any process. 



The system under development is powerful enough to express at least some notion 

of execution fairness. It is able to do so without employing any predicates which 

refer to programme location. 

5.4. Proof Theory 

We take as our axioms, in addition to those of 4, all instances of the following 

schemata. 

Axioms 

U T * ~ *  axioms 

Bridge I'rinciples 

All instances of these axioms are shown to be valid in Theorems (5.2.15). (5.2.16) 

and (5.2.17). 
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The so called bridge axioms provide the linkage between the three distinct modalities 

of our system. 

As rules of inference, we take, in addition to MP, 01, GO1 and TR, the rule RM 

(see $9 5.1.4) and the rule of normality for the indexical modality, 

RZN: from kpb infer C;i 

We now define, as usual, a logic A to be any subset of Fma which contains all 

instances of the axioms, and which is closed under the rules of inference. 

The deducibility relation C;i is defined just as in $ 4. An A-theory is any subset 

of Fma which contains A and which is closed under the rules MP, 01, and GOI. 

5.5. Completeness 

We have been unable to finish the completeness proof for A. This section presents a 

snapshot of a Henkin proof in progress. 

5.5.1. The Canonical Model 

The canonical A-model is the structure M A  = (SA,vA, [[ 1 , <*, Q,,), where SA and vA 

are defined as in $9 4.4.1, and for all F,A E SA, 

( i )  for each elementary programme .rr, r IT] A iff (4 : [TI$ € r}LA. The 

relation [a ]  is defined inductively for arbitrary members of Pgm 
according to the standard LI,o model conditions. 

(iii) r E QA iff 0 false E r. 

M A  is a standard 4,0 model by definition. That <A satisfies the principles TRANS* 

and IREF follows just as in $$ 5.1.4. 



Of course the goal of this section is to prove the fundamental theorem for A, viz: 

The Fundamental Theorem t/+ E Fma , Vr E SA 

+ E T  iff M A $ $  

The completeness of A then follows just as in 4. However, in this instance, the 

actual proof of the fundamental theorem is somewhat more complex than in 4. As 

an aid to the reader, we pause to outline the strategy of the proof. 

The proof proceeds by induction on the complexity of formulae, in which the only 

difficult case is for formulae of the form Za+. Recalling the truth condition for the 

- -- operator, 

iff N % + ,  

where AT is a;; a-image of ?.ZA(T) under a p-m~rphism f. The burden cf cur prwf is 

to construct just such an image. 

Consider the set Zo(T)  = {c$ : =(?c$ E r)  We prove first that =n(T) is a maximal 

consistent &theory, and so a member of SA. We then construct a p-morphism j 

between the two submodels MI1(T) and MA(za(T)). By the construction, fT = Qm(T). 

Next, we show that 

fr  <, fA iff <T.A > E etMn(a.T) . 

establishing that MA(fT) is an a-image of MA(T). (It is this part of the proof which 

remains elusive.) Given the result, it follows easily that M A  5 $ iff M,(fr) 5 $. 

The inductive step for %,+ in the proof of the fundamental theorem is finally 

polished off by observing that Za$ E T iff + E fT ,  and then applying the induction 

hypothesis on $ to the state fT. We now establish the necessary theorems. 



We first re-state a theorem which carries over directly from 4. 

5.5.1 Theorem YE E Bxp and Vr € S A ,  

E E A  iff M A $ €  

This is the Fundamental Theorem for boolean expressions. 

5 -5.2 Theorem Va, E Pgm and Vr E SA , 

(r) = {$: E rJ  is a maximal consistent A-theory. 
(Y 

Proof: 

By the rule RN= , A C Za(r). By maximality and consistency of r and axiom 

A=2, Za(T) is maximal and consistent. Axiom A Z l  guarantees closure under the 

rule MP. 

We claim, but can not as yet prove, that Za(F) is closed under the rules 01 and 

GOI. A proof of this probably requires a generalisation of the results on Admissible 
Forms (9 4). Should no generalisation be necessary, then all admissible forms will 

be LI,(, formulae, and the result will follow via A 2 4 .  

Since 20(T) IS a maxlmal consistent A-theor).  it i\ a member of S,q. 

We now state, without proof, the analogue of theorem (4.4.2). 

5.5.3 Theorem $ 4  iff Vr € S A P $  E r 

The details of this (unfinished) proof depend on whether or not the axiomatisation 

requires additional rules of inference. 
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5.5.2. Proof of the Fundamental Theorem 

Our first objective is to establish a p-morphism between the generated submodels 

MA(T) and MA(=a(T)). The construction depends upon the existence of an 

enumeration of the states in a generated submodel, which we first define. 

It is obvious that, in standard models, if s [[a] t then there exists a programme 

y = ( n l  ; n2 ; . . . ; n n )  such that s [yl] t , 

where each .rri is an elementary programme. 

This observation suggests an (infinite) iterative procedure for constructing generated 

submodels. Before demonstrating this procedure, it is necessary to place some 

restrictions upon the behaviour of elementary programmes. In particular, we require 

that each elementary programme be deterministic and also that it terminate. These 

properties are determined by adding the following axiom schemata to those of 4: 

A D r :  [TI+ v [TI-$ 
A T r :  - [TI  false 

The corresponding standard model conditmn is that. for each elementary programme r, 

[7~] be a W t n !  lunctlon 017 t he  state he1 5.  I urmdly,  

For a proof of this fact, see [14,$2.6]. I-Ienceforth, assume that all standard models 

satisfy this condition, and that the logic A has been suitably re-defined to include all 

instances of the schemata A D r  and ATn. 

These requirements smack of ad-hocery. There is, however, a justification beyond 

immediate need. Elementary programmes are designed to be replaced with assignment 

statements in the first order extension of our system. These statements take the 

form 
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(x := (+) 

where x is a variable in the first order language of some algebra, and (+ is an 

algebraic expression, naming some element of the algebra. An example is the 

programme ( p  := false), where p E Bvb. Of course false is a boolean expression. The 

analogues of the schemata ADT and ATT are required in the completeness proof for 

the first order system of [14,•˜3]. By introducing them at  this stage we merely 

anticipate. It is a consequence of these axioms that, in the canonical model, 

r [ IT ]  A iff {gb : [TI$ E r} = A . 

Let M = ( S v ,  [I - 1 ,<.a). We now describe an enumeration for the generated 

submodel M(s) .  

5.5.4 Definition For any state s in a model M ,  let 

By axioms ADT and A T r ,  sr+, is well defined a t  each stage. 

5.5.5 Theorem For any model M = (S,v,  [ 1 ,<,I)) and s E S 

sx is exactly the set of states in the generated submodel M ( s ) .  

Proof: 

Immediate from the definition of generated submodels (5.2.2). and the observation 
on page 117. 



5.5.6 Definition 

f(r , j  = f r  = (4: =,$ E 1-1 = z e ( r )  = = J r o j  

If A' E rl+l then for some elementary programme a and some state A E TI, 

A [TI A'. By ADa and ATa,  f A  La] A" for some unique A". Put fA' = A". 

We sometimes refer to f as the Canonical function, or where specificity is required, as 

the canonical (ff,T) function. 

It is necessary to verify that the function f preserves the value of boolean 

expressions. In fact, we prove the slightly more general: 

5.5.7 Lemma For every A E MA@) and every 6 E Ll,o 

$ E A implies 4 E f A  

Pro0 f: 

By induction on the construction of f. 

For the basis step, if 4 E r then, by A z 4 .  E r. Then @ E fT. 

Assume the result for step i. Suppose that A[r.rrDA8 and that @ E A'. Then by 
functionality of [n] , [TI@ E A. Since [TI@ is an LJ,o-formula if 4 is, the 

hypothesis of induction applied to A assures, u s  that [ T I $ €  fA. Again by 
functionality of [TI , there exists a unique A" such that j A  A". 'l'he definition 
of M?, requires that 4 E A". But by construction of f ,  A" = fa'. 

We are now able the prove the first of two vital preliminary theorems. 

5.5.8 Theorem For every r E SA and a E Pgm, 

is a p-morphism, for f defined as above. 

Proof: 



An equivalent statement of the theorem is that f is a p-morphism from T* to 

s (I-)'. 
ff 

That f is really a function follows from the functionality of the relations Err] 
and Theorem (5.5.5). 

Since there are three clauses in the definition of a p-morphism, the proof takes the 
form of three sublemmata 

Lemma 1. We prove that f is surjective by induction on the 

construction of TI. Specifically, we show that f is a surjection from Ti to 

2 (T I i ,  for 0 6 i < o 
cr 

For the basis step, f is clearly a surjection: there is only one element in 

= CY (T )o  . namely fT. 

Assume the result for stage i, in order to prove it for stage i+l.  Suppose 

that A is in =a(r)i+l. Then by construction, and the induction 

hypothesis, fA [rr] A", for some rr. By ADv and ATrr, these is a unique 
A' E Ti+, such that A [ w ]  A'. By definition of f ,  A" = fA'. 

This establishes that f is a surjection from rr onto Q ~ ( T ) * .  

Lemma 2. We now show that f is a homomorphism. That is. 
A [Ian A' ~ rnp l l e s  /A [la] {A', for every programme a. The proof is by 
~ n d u c t m n  on a. 

The steps for  elementary programmes. and for skip and abort are trivial. 

Assume the result for a and p ,  in order to prove it for ( a ;P ) .  If 
A bcu ; A' then, since by Theorem (5.2.5) M A ( T )  is standard, there is 

some A. such that A [all A. (loll A'. The induction hypothesis, and the 

standardness of M A ( z a ( T ) )  yields the result. 

Assume the result for (Y and p,  in order to prove it for [E + a@].  By 
the standard model conditions, if A [E =+ a,P] A' then either vA(€) = 1 and 

A baa A' or ~ ~ ( € 1  = 0 and A UP] A'. Then by Theorem (5.5.1). either E E A 
or not-€ E A. The induction hypothesis applied to a (or P), Lemma (5.5.7) 
and the standardness of MA(%a(A)) establishes the result. 



We leave to the reader the pleasant diversion of proving the result for 
iteration and generalised iteration. rn 

Lemma 3. Finally, we must estabish the backwards clause for 
f. That is, we must show that if f A  [a] fa" then for some A', A [ a ] ~ '  
and fA'  = fA". Again, we proceed by induction on a. 

The bases steps for the programmes abort and skip are trivial. For, by 
standardness, [abort] is empty, while [skip] is the identity relation. 

Suppose that f A  [TI f A f .  By ADT and ATT, A [T] A", for some A". But 
by the definition of f, fA" is the (unique) state T-related to f A ,  namely 
fA'. 

Assume the result for a and p. Suppose that f A  [[a; f ~ ' .  By 
standardness, f A  [a] fO '  1/31 fA',  for some fO' .  The induction hypothesis 
applied to [a] yields that, for some O ,  A [ a ] O  and f O = f O 1 .  Then 
f O  [PI fA'. Again by the induction hypothesis, O [[PI A" for some A" such 
that f ~ "  = fAf .  By standardness, A [[a ; /3] A" in MA. 

Assume the result for a and /3. Suppose that f A  n€ + a,@] fA'. If 
v y ( € )  = 1 ,  then Theorem (5.5.7) and the standard model conditions yield 

that f A [ a ]  fa'. From the hypothesis on a we obtain the desired result. 
For the case that v r ( e ) =  0, the result follows similarly. 

'The remaining casrs ar r  louncllings, lef't to the mercy of the reader, @ 

Recall that, by Theorem (5.2.5).  the property of being a standard model is preserved 

under sub-model generation. Thus, since M A  is standard, so are MA(T)  and M * ( ~ T ) .  

f has just been shown to be a p-morphism between two standard models, and so, by 

Theorem (5.2.10). f is reliable. 

This development suggests some interesting questions. 



4. 

Some 

Lemma (5.2.12) suggests that f may be stronger than a p-morphism. In 
exactly what sense is this true? Might J really be an isomorphism? If 
not, what extra conditions would be required to make it one? 

Is it possible to relax the conditions of determinacy and/or termination for 
elementary programmes and still prove the theorem with f as presently 
defined? If not, what kind of a morphism would f need to be? Would it 
be strong enough to prove an appropriate preservation theorem? 

The proof depends upon a construction that has countably many stages, 
each of which involves evaluating countably many relations. Can a more 
finitary construction be found? 

Is a direct existence proof available? 

exploration of the model theory of our system would likely shed light on these 

questions. 

We now turn our attention to the proof of the second key result needed for the 

Fundamental Theorem. The following 'theorem' should be regarded as a conjecture. 

5.5.9 Theorem V a  E Pgm and VT,A E SA. 

far <, f,A iff <r.A> E ctMn(a.r) .  

where fn  is the canonical (@,TI function. 

By induction on a. Only the cases for elementary programmes can yet be 
established. 

Case 1: skip 

By Definition 5 1 . 2 ,  ct",(skiP,r) = 0. By A56, 2sk,pOfal~eET, whence 

Ofalse E fr. It follows that f T  $ fA for any state fA. 

Case 2: abort 
By definition, <I'.A> E c tM~(abor tX) ,  for every A E r*. i a .  for every A E M,(T). 

By A 5 7 ,  ~ a b o n O f a l s e  E r. So, .=>false E fA. By the definition of the canonical 

relation <A, f r  <,A, for every state A € SA. So, in particular, 

f F  <AfA, VfA E f ( rX) .  (Notational Reminder: f ( f )  denotes the set of images under 

f of the states in the r-generated submodel.) 



Case 3: an elementary programme 71. 

By Definition (5.1.2). 

where A is the unique state such that T  [TI A -  

We prove first that fT <AfT and that fT <JA. By A 2 8  and PC, every instance 

of (C@ -, (b) and (C@ -t [+rr](b) is in f  T .  Clearly f  T < A f  T ,  by the definition of 

<A- And, since frl'rrl) f ~ .  [n]$ E f r  implies (b E fA. Then, Q6 E fT implies 

(b E fA ,  whence fT <AfA. 

We observe that f T  is not queer. true is an axiom (A121 so, by the rule TR, 

['rrltrue is a theorem. Applying Rule RNZ,  we obtain ( z T t r u e  A [ ~ I t r u e ) .  Then by 

an instance of A z 8 ,  =TDtrue is a theorem of A. So, Otrue E f T .  

To complete the case for 'rr, we show that 

f  T  implies O = f  T  or O = fA . 

The proof requires a sublemma. 

Sublemma: If f r  <,o then O G { f r  U fA 

Proof: 

Suppose not. Then \Ir E 0 ,  but \Ir B fr and $ B J A .  Since fT is a maximal 
consistent A-theory, -.$ E f T and + € /A.  Furthermore, since, by 
def ~nitlon of (b, fr f A ,  it follows by axlorn A D r  that  [TI-.$ E f r. 
By the A 2 8  instance 

and the fact the fT = {(b:zT(b E T } ,  04 E f T .  This contradicts the 

assumption that f  T  since $ E O. Therefore, O C { f  T  U fA}  

Now suppose that O # f r .  Since both fT and @ are maximal consistent A-theories, 
there must be some formula (b such that (b E O and (b 6! f r .  Then by the 
Sublemma, (b E fA. By axiom ADv. [ T I $  E f r .  



Choose an arbitrary $ in fA. We show that $ must be a member of O. By 
construction of f and AD7.r. [TI$ € fr .  If $ E fr .  we get the result directly, by 

the A 2 8  instance ",O$ H =,($ A [T I$ ) .  SO let's assume that $ t? fr. 
Reviewing the situation, we find that 

$ and + are in fA.  

y 5  and -$ are members of fr .  
It follows that (c$ + $) is a formula in f r  and fA.  

T ~ U S  [TI($ -r $) E fr. 

Applying A z 8  once again, we find that + $1 E fr. But by assumption, 
f r  <*O, so (+ -, $) E O. But $ E O under the assumption that f T  f 0. So $ E O 

by the fact that O is closed under the rule MP. 

This reasoning has established that if fT Z @, then f A S @ .  Since no maximal 
consistent set may be the proper subset of another, it follows that f A  = O. 

We have shown that if f T  <*O then f T  # O implies fil= O. Equivalently, 

f T <*O implies O = f r  or O = f A  

Proving the result for iteration and generalised iteration depends upon proving it for 

composite programmes of the form (a$) .  The 'obvious' bridge principle 

04 - - O$ A [a] =&I@. 
(cr:P) a 

whlch 1s the one employed in [42, 351, fails. While it would be valid if c$ were 

restricted to LI,, formula, we can not live with this restriction. Even the formulae 

introduced in $9 5.1.2 and $$ 5.1.3 require u ~ " T =  subformula of depth two or three 

(e.g.  D O  true.) If the reader considers the formula 
Q 

- 7a ;s ,00$  * 5 0 0 $ A [ a l ~ , 0 0 $ .  
Q 

the problem will become clear. It says that if 6 happens infinitely often in (a;P) 

then + also occurs infinitely often during a. Clearly this principle will not do. The 

proof of the theorem has cetaceously beached upon this inhospitable shoal. 
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Of course, the fact that the theorem is not completed explains the absence of bridge 

axioms for iteration and the rest. These principles will emerge as the inductive steps 

in the theorem are completed. 

The proof of the fundamental theorem requires the statement of one further 

Lemma. We have established (conjectured) that MA(fT) is an (cr,l?)-image of the 

canonical model. We still need to show that 

5.5.10 Lemma For every cr E Pgm, E SA and $ E Fma. 

By an induction on the complexity of 6, in which the only non trivial step is for 
formulae of the form O$. It is obvious that 

since a submodel is a subset of the entire model. 

To see the other direction, suppose that M k 06. Then for some A ,  fur < A A  
A far  

and M A  6 $. By the definition of the canonical relation <A, it follows that 

4 J Since /(, T I \  a mdxin~al consistent set, -.D& E f o r ,  whence zn-.0q5 E T. 

By Theorem (5.2.15)(2), -(=(YO@ E r. 

A separate induction on a,  similar to that of the previous theorem, establishes that 

there must be some state A within ctMA(a.r) such that $ is false a t  fa A'. By the 

theorem, far <*fa A'. It follows directly from the truth condition that 

as required. 

This completes the Lemma. 



Assuming the result (5.5.9). we may now prove the 

Fundamental Theorem for A: V $  E Fma and V r  E S A ,  

$ E r iff M A $  4 .  

Proof: 

By induction on 4. 

For $ a boolean expression, the result is Thm (5.5.1). 

For ($ + $1 and [a]$ the result is just as in 9 4. 

For !3$ the result follows as in $9 5.1.4. 

Finally, we consider the formula Za$. Let f be the cu canonical function from the 

generated submodel MA(T)  to M A ( z C Y ( r ) ) .  Then 

iff M A  9, $ 

iff M ? ( f T )  5, + 
But, by theorems ( 5 .  5.8) and 6 . 5 . 9 )  

by definition of f ,  

by hypothesis on $ and f r  
by Lemma (5.5.10). 

'This completes the inductive step for ZcL6. and proves the Fundamental Theorem. H 



Chapter 6 

Conclusion 

The principle contributions of this thesis are 

1. An extension of an existing PDL-like programming logic to include an 
account of generalised iteration. A generalised iterator is the syntactic 
representation of a process. A process is an individual component within 
a distributed network. 

2. The development of a semantics for non-termination and failure. 

3. The partial axiomatisation of a logic for the dynamic behaviour of 
processes. 

We claim that the system presented qualifies as a logic for individual processes. 

6.1. Directions for Further Work 

We conclude this thesis by indicating how to extend the system to account for 

tlirtrlbuted computation. Of course the f ~ r s t  thing to do is to J ~ n ~ s h  thr completenes\ 

proof begun in 9 5 ,  or show that this can not be done. We belleve that ~t is possible 

to complete the axiomatisation. 

One obvious extension is to increase the power of the modal fragment LK. This 

could be done by adding the operators required for reasoning about partial, as opposed 

to linear, orders. These operators are those employed in the temporal logic of 

branching time, for which see [38]. Alternatively, an Until or atnext operator (see 

$9 3.2) could be added. In either case the logical system would require more axioms 

and bridge principles. If an operator as powerful as Until were to be added, the 

language would approach Process Logic in ex ressive power. 
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According to the model of distributed computation presented in @ 2.1, a distributed 

network is a set of processes connected by communication channels. Distributed 

computation consists in the interaction of the various processes in the network. This 

interaction occurs exclusively via the exchange of messages between pairs of processes. 

1 In order to develop a full blown logic of distributed computation, it is necessary to 

1 
P 

account for the receiving and sending of messages by processes. 

g 
3 r 
1 

i 6.1.1. An Algebra for Data Buffers 
f 

i The programming construct C?x was introduced in $9 2.1. Its meaning is "If 

channel C has a message waiting, read the message into variable x." As was indicated 

in $9 2.2.2 this operation should be decomposed into two separate operations. There 

should be a boolean expression of some kind which can test for the availability of a 

message on a given channel. This expression may then serve as a guard within a 

generalised iterator. There should also be a read command, which reads a value from 

the channel into a variable. 

A data type may be interpreted as an algebra. That is, a data type is an underlying 

structure and a set of operations on the structure. For instance, the class of Boolean 

expressjons with the function symbol 3 is a data type. A possible underlying 

structure for the Positive Integers is any infinite well ordered set. We propose that 

channels be represented as a data type, which, suggestively, we name buffers. The 

elements of the buffer algebra are (all of the) finite well ordered lists of integers. A 

channel is a variable of sort buffer, or Bff.  If C is a channel variable, the value of 

C in a given state s is a list of messages which have arrived on Channel C, but 

which have not yet been read. Let h represent the empty list, the identity element in 

the buffer algebra. We add to the algebra the undefined element o. Thus, channel 

variables not "bound" to some existing physical channel may be said to be undefined. 

$a Call this augmented algebra, in the manner of $$ 4.1 Bf f t .  



One possible operator on this new data type is the equality 

f = : B f f ' x B f r - + B + .  

Then, if C is a buffer variable, the expression C j =  h evaluates to the boolean 

constants true, false or w according as C is empty, contains one or more messages, or 

is undefined. An appropriate guard for a process component required to read from a 

data buffer C is the boolean expression 

not-(C f= A ) .  

Alternatively, it may turn out to be desirable not to have equality in the algebra. 

Given that our language supports the data type integer (as it must), a length function 

could be defined, which would return the current (integral) length of a buffer 

variable. The appropriate guard would then be 

length(C) > 0 .  

Next, a function read could be defined, mapping buffers to integers. The precise 

definition of read would vary, depending as a particular buffer was Intended to be a 

queue, a stack, or some other list structure. An  attempted read from an empty or 

undefined buffer should return t h e  u n d e f i n d  element nf [ h e  1nlege7 data type, which 

would result in programme failure. 

Let C be a buffer variable, and x an integer variable. Read would in general be 

defined as a function 

read:C -+ < C J . x >  

where C' is the element of Bff resulting from removing an element from C. Suppose 

C is a queue. If the value of C in state s is (x1,x2.x3), then the binary relation of 

the programme (read(C,x)) should include a pair <s.t> such that the value of C in t 



is (x2,x3 and the value of x is x,. On the other hand, if C is a stack. then the 

value of C at t should be xl,x2, while the value of x should be x 3 .  

In 114, $31, Goldblatt extends the logic which we presented in $ 4 to the first order 

case. The result is quite general: it provides for first order expressions in arbitrary 

data types. The first step in accounting for data buffers is then to carry out the 

(direct) extension of these results to our system, and suitably axiomatise the 

behaviour of a t  least one variety of read command. Some indications of the algebraic 

structure of finite and infinite queues and stacks is to be found in [46]. The work 

cited shows that stacks can not be characterised in linear temporal logic using a 

language more powerful than that of $9 5.1.4 - the language employed contains the 

Until operator. Since Goldblatt has shown that the first order extension of our 

system can define the integers up to isomorphism, it seems likely that the behaviour 

of infinite stacks should prove no obstacle. This, of course, needs to be proved. 

6.1.2. Message Arrival 

Accounting for the arrival of new messages presents an interesting logical problem. 

We propose that message arrlvals be regarded a \  events occurring in time. A path In 

time, as witnessed by a particular process, would record the history of message 

arrivals. 

The proposed solution is to tense the modal logic already developed. After the 

fashion of [20], we introduce a partial ordering on the class of all models of the first 

order extension proposed above. 

Let M 1 ,  MI be two models. By we denote the valuation function at state s in 

model Mi. 



We say that Mi < M. if there exists some function f which maps the states of Mi 
1 

onto the states of Mi such that 

1. the valuation v.  agrees with v .  for all variables except buffer variables, 
2 ,S j9fs 

and 

2. for all buffer variables C. vlJ(C) is a suffix of vjg(C). 

Buffer C is a suffix of buffer D if C is an. initial segment of D. So, if fs is a state 

in M j .  it means that fs is just like state s in MI except that more messages have 

arrived on one or more channels. 

The precise nature of the function f can not be guessed. It is probable that it 

must be a t  least a p-morphism with respect to the relations [ . ] .  The interaction of 

the time ordering relation, and the relation between models implicit in the modality 

3 will determine the nature of f. 
0 

The !angmge of the logic wculd be extended by adding the usual tense logical 

modality G. The interpretation of a formula GQ, is 

MzFGQ,  iff V M l . M l  < M, implies MI i;\ $ 

This extended language could account for certain network behavlours not presently 

representable. lkadlocl, Ireedom. for instance, could be expressed by an assertion that 

certain guards will become true at some later instant in time. That is. the arrival of 

a new message is guaranteed to occur a t  some later time. 



6.1.3. Message Transmission 

The final step needed to account for process interaction must be to provide a 

semantics for the message sending command C!x.  Recall that this meant: transmit the 

value of variable x on Channel C. The intended result of the execution of C!x by 

one process is that, a t  least sometimes, a message should arrive at the process a t  the 

other end of C. Moreover, the value received a t  one end should sometimes be '"the 

same as" the value that was transmitted. A solution to this problem seems to require 

a modal representation of causation. Beyond this, the author has not even: a 

conjecture to offer. 



Appendix A 

Statements of Theorems Referenced 

2.4.1( 1) Rule of Terminal Implication 

TI: If + + $ then k [a]+ + [a]$ 

2.4.4(2 j 

I f  Z Q, and ZC A G Fma, then C i;i +. 
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2.4.6(2) If r is a A-theory, then 

r is deductively closed, i.e. T @ only if $ E T. 

2.4.6(4) If r is a A-theory, then 

r is  A-consistent i f f  false kr iff  r f Fma. 

2.4.66) If r is a A-theory, then 

$ A $  E r i f f $  E r and $ E r. 

2.4.8( 1 ) (Corollary to the Deduction  heo or em) 

X U  {$) is A-consistent i f f  I= -$. 

2.4.8(2) (Corollary to the Deduction Theorem) 

Z U {-.$I is A-consistent i f f l  % @. 

2.4.10 (Corollary to the a-Deduction Lemma) 

If r is  a maximal A-theory, then Exactly one of ~ D E ,  E ,  and not-€ belongs t o r  
for all E E Bxp. 
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2.5.5 Completeness for Boolean Expressions 

For any E E Bxp,  M A  $ E i f f  E E T. 
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