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ABSTRACT 

Having an ability to appreciate, understand, and create proofs is crucial in being able to 

evaluate students' mathematical arguments and reasoning. As such, the development of this 

ability in pre-service teachers is imperative. Research, however, has repeatedly shown that the 

ability to understand and create proofs is difficult for students in general and for pre-service 

elementary school teachers in particular. 

This study aimed at extending the views and insights about the difficulties that pre- 

service elementary school teachers experience in dealing with the notion of mathematical proof. 

For this purpose I analysed students' discourses when they attempted to interpret or create proofs 

for some propositions related to elementary number theory. 

The communicational approach to learning is the theoretical perspective that I adopted to 

investigate the difficulties students experience in generating proofs. According to 

communicational approach to cognition, thinking is a special case of the activity of 

communication, and learning mathematics is an initiation in a certain type of discourse, which is 

called literate mathematical discourse. 

In this study, I have introduced the notion of dialogue as a tool for involving students in 

the process of creating a proof. Based on the idea that thinking can be considered as an act of 

communication that one has with oneself, I introduced dialogue as a self-dialogue or a 

conversation that a person has with oneself while shehe is thinking. I encouraged students to 

write a dialogue while they were thinking to interpret or create a proof. For this purpose, I 

designed six tasks. The results revealed that the main difficulty that students experienced in 

creating a proof is that they do not know how to communicate their idea mathematically. 

There are several contributions of this study to the field of mathematics education 

focusing on pedagogy, methodology and theory. 

Keywords: mathematics education, proof, pre-service elementary school teachers, elementary 

number theory, dialogue. 
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CHAPTER 1: 
INTRODUCTION 

"There is a traditional story about Newton: As a young student, he 
began the study of geometry, as was usual in his time, with the 
reading of the Elements of Euclid. He read the theorems, saw that 
they were true, and omitted theproofs. He wondered why anybody 
should take pains to prove things so evident. Many years later, 
however, he changed his opinion andpraised Euclid. " 

(Polya, 195 7, p.215) 

Many mathematicians, or those who are involved in mathematics as teachers or 

students, have had similar thoughts as Newton. Why should we prove a statement that 

seems obvious? What is the role of proof and its importance in mathematics and in 

mathematical thinking? The answers to these questions vary considerably from person to 

person, and are informed mainly through doing mathematics. 

As a mathematics student, I learned to see the proof of a mathematical theorem as 

a sequence of steps that leads to a conclusion. As I studied more mathematics, I learned 

more about the essence of a mathematical proof and how it helps distinguish mathematics 

from other sciences. However, for many people, especially non-mathematicians, a 

verification of an argument, by considering several possible cases, can be the most 

convincing way of proving. 

This raises an important question: what is in mathematical proof that is not in 

verification? Rota (1 997) proposes that even though verification in its ideal form, i.e. 

consideration of all the possible cases, is a proof, it may not give the reason for why the 



statement is true. Many good proofs provide the reason and explanation. The other value 

of a proof is that a given proof can be turned into a proof technique, suited to proving 

other theorems. Furthermore, on an advanced level, a proof may open up other 

mathematical possibilities, as seen in the proof of Fermat's last theorem by Andrew 

Wiles. One may gain and appreciate these types of experiences, in my opinion, only 

through doing mathematics. 

With this perspective on a proof I started my work with pre-service elementary 

school teachers. In a short time, I learned that for majority of these students the notion of 

a proof does not have the same meaning as the shared understanding of proof in a 

mathematical context. In fact, a proof for them was mainly a verification based on some 

confirming examples. This group of students had studied the notion of proof in the 

context of elementary number theory. Considering the elementary level of number theory 

in their program, many of the propositions seemed too trivial to students so it was a 

challenge for them to get the main idea and importance of proofs in that context. 

Reflecting on my own experience, I believe the best way to help students is by 

meaningfully involving them in the practice of doing proof. In my opinion, understanding 

the essence of proof is very personal, and it may not happen unless one is engaged in the 

process of proving. Research has repeatedly shown that proof is a difficult notion for 

students to understand. As a researcher, I believe that we can help our students only when 

we acquire a better understanding of the difficulties that they experience while doing 

mathematics and, this is especially the case in constructing a mathematical proof. The 

question then becomes: what can be an effective way to access student difficulties in 

writing proofs in a natural context? 



In the past decades, a growing body of research on students' understanding of the 

notion of proof as well as writing a proof has accumulated (e.g. Dreyfus, 1999; Hare1 & 

Sowder, 1998; Moore, 1994). However, there has not been a significant amount of 

research on pre-service elementary teachers' understanding of, and their difficulties with, 

the notion of proof. My study attempts to fill this gap. 

In my search, I encountered the work of Anna Sfard (2001), who introduced the 

communicational approach to cognition for the study of students' difficulties with 

mathematics in general. According to the communicational approach to cognition, 

thinking is a special case of activity of communication that a person has with oneself and 

learning mathematics is an initiation into a certain type of discourse. 

As I became familiar with this theoretical framework, I was led to the idea that if 

we have access to the students' thinking process we may recognize students' difficulties 

better. In several studies, proof has been viewed as means for communicating ideas 

between mathematicians (Balacheff, 199 1; Hanna, 1983; Hersh, 1993; Knuth, 2002; 

Schoenfeld, 1994). Indeed, a proof from this perspective can be considered as a self- 

sufficient discourse that includes the answers to all possible 'whys' related to the 

argument. Furthermore, we can regard the process of constructing a proof as engaging in 

self-dialogue to satisfy the above requirement. 

With this view, I attempted to create a learning environment that would 

implement the communicational nature of proof and make explicit students' thinking 

processes while they are creating a proof. I encouraged students to write a dialogue that 

they had with themselves, while they were trying to understand or create a proof. The 



written dialogues could provide a partial picture of students' thinking process as well as a 

rich source of students' discourses. I propose to examine whether organizing and 

analysing students' discourses through a communicational framework provides a better 

understanding of the difficulties that students experience in creating a proof. 

Overall, this study addresses the following research questions: 

1. What difficulties do pre-service elementary school teachers experience in 

writing and interpreting proofs for propositions related to elementary 

number theory? 

2. What are the outcomes of students' activity of creating a dialogue? 

(a) Does it facilitate students' participation in the process of proving? 

(b) Does it reveal their difficulties in this process? 

3. Can a communicational approach to cognition serve as a tool for 

researchers in recognizing and identifying factors that impede pre-service 

elementary school teachers' participation in the process of creating and 

interpreting proofs? 

Dissertation organization 

I present my investigation and argument through the following chapter 

organization. First, in Chapter 2, I review the chronological pathway of emergence and 

evolution of mathematical proof. I begin with a brief review on the history of ancient 

Greek mathematics and a brief review on the history of mathematics and mathematics 

education in the last two centuries mainly in western societies. I then review the literature 

that examines the difficulties that students experience in learning proof, and the different 

approaches towards teaching proof. At the end of this chapter, I discuss the necessity of 

including proof in the curriculum for the preparation of elementary school teachers. 



In chapter 3 , I  describe the communication approach to learning as a theoretical 

perspective that is based on the participation metaphor. In this theoretical perspective, 

learning mathematics is tantamount to becoming a participant in the mathematical 

discourse. I make a case for mathematical proof as a discourse for communicating 

mathematical ideas. 

Having laid the foundation with a framework, I then move into presenting my 

study. Chapter 4 is a review of the background of this study. I describe the three studies 

through which my main research evolved over the last three years: 'one line proof, 'what 

counts as a proof, and 'proof as a discourse'. The focus of chapter 5 is the setting of the 

study. First, I describe how the idea of proof as dialogue emerged from a 

communicational approach to cognition. Then I introduce the tasks designed for the 

purpose of the study and describe the rationale for this choice. 

In chapter 6, I describe the participants' performance on each task, with a 

quantitative summary of the responses, followed by samples of students' work and their 

analysis. The participants' discourses are next analysed through the lens of the 

cornmunicational framework, in chapter 7. In particular, I examine the four features of 

the literate mathematical discourses across the tasks: (1) the mathematical uses of words 

(2) the use of mediating tools (3) the routines, and (4) endorsed narratives (Sfard, 2002; 

Ben-Yehuda, et. al., 2005). Moreover, I propose a further refinement of these features as 

applicable to proofs in the elementary number theory discourse. Finally, in chapter 8 the 

outcomes of this study are discussed as well as its contributions to the field of 

mathematics education. 



CHAPTER 2: 
THE NOTION OF PROOF IN MATHEMATICS 

AND IN MATHEMATICS EDUCATION 

In this chapter I consider the history of mathematics education, mainly in the 

western society. I analyse why proof became a part of the mathematics curriculum, how 

mathematicians defined proof, and how their description of proof and its role in 

mathematics education evolved during the last decades. Then, based on the literature, I 

examine the difficulties that students have in learning proof. 

The teaching of proof has been one of the controversial issues during the last 

decades. As such, I review the different approaches that mathematicians and mathematics 

educators had toward teaching proof in classrooms. Finally, I discuss the necessity of 

including proof in the curriculum for the preparation of elementary school teachers. 

Introduction 

Historically the discovery of the process of proof is attributed to the Greek 

mathematicians and philosophers. The primary purpose of proof was providing validation 

and certification for claims (Davis & Hersh, 1980). As Schoenfeld (1 994) mentions, 

"One of the glorious things about proof is that it yields certainty: when you have a proof 

of something you know it has to be true, and why" (p. 74). In fact, "proof, in its best 

instance, increases understanding by revealing the heart of the matter" (Davis & Hersh, 

1980, p. 15 1). 



Traditionally, in schools proof was introduced and taught in Euclidian geometry. 

Euclidian geometry is the first example of a formalized deductive system and has become 

the model for all such systems. Through "new math" movement, however, in the mid 

1950s, proof received a broader place in school mathematics. In this era the notion of 

proof not only taught in geometry but also in other high school courses such as algebra. 

In addition, to introduce the axiomatic method and proof, set theory was proposed as 

another subject matter in school curriculum (Davis & Hersh, 1980). 

However, studies of high school students (and also university students) have 

repeatedly shown that only a limited number of them acquire a respectable degree of 

proof understanding and proof-writing ability during their high school mathematics 

(Hare1 & Sowder, 1998). "Proof is one of the most misunderstood notions of the 

mathematics curriculum" (Schoenfeld, 1994, p. 75) and therefore one of the greatest 

challenges for researchers and mathematics educators. Considering the important role of 

proof in teaching and learning mathematics, much research has been carried out in the 

last few decades to diagnose students' difficulties and provide opportunities for them to 

get better understanding of proof. Prior to going through the details of the literature of 

proof it would be helpful to review the historical background of proof in mathematics 

education. 

Historical background 

A glance at the history of mathematics education in western society shows that 

mathematics taught as a part of formal education has reformed dramatically during the 

last two centuries. The reforms were due to the influence of social and philosophical 

conditions of the eras and also the influence of the mathematicians' point of view. In this 



section I review the history to see how the notion of proof emerged in the mathematics 

curriculum, and how it developed and changed. To situate the notion of proof in 

mathematics education I integrate a synopsis of the development of this notion in 

mathematics, starting with the ancient Greeks. 

The ancient Greeks 

Thales (600 B.C.) was the first mathematician who saw the necessity of proving a 

general geometric proposition (Davis & Hersh, 1980). "The angles of the base of an 

isosceles triangle are equal", is one of the propositions, the proof of which is ascribed to 

Thales. Nobody, however, knows how he proved it (Delong, 1970). The same is true for 

the most famous theorem in the history of mathematics: the Pythagorean Theorem. 

Nevertheless, since then the idea of the proof, as deduction of facts from (apparently) 

simpler facts, established itself as the characteristic aspect of mathematics. 

Citizenship in ancient Greece required one to speak in public forums (Reed & 

Johnson, 2000). The sophists were the first professional Greek teachers who would travel 

and for a fee would teach their students how to speak persuasively to win arguments. In 

order to refute the arguments of sophists whose conclusions were either false or 

paradoxical Aristotle was the one who tried to devise a set of principles by which one 

could determine whether any given argument was a good one. Aristotle, with some help 

of his predecessors, formulated a rather extensive theory of logic. 

Delong (1970) summarizes Aristotle's motivation in inventing logic as follows: 

First, there is a desire to know the truth about the nature of argument, an 
intellectual curiosity, which needs no further account or justification. 
Second, there is the desire to know the condition under which something 
is proved.. . . Third, there is the desire to refute opponents (p. 13). 



Certainly one of the greatest achievements of the early Greek mathematicians was 

the creation of the axiomatic form of thinking through Aristotle7s and Euclid's works. 

Euclid's most famous work is his treatise on mathematics the Elements. For more than 

two millennia this work has dominated teaching of geometry. The text began with 

definitions, postulates, and common notions, then proceeded to obtain results by proof. 

Contrary to the common ideas that Euclid's Elements is on geometry alone, these books 

contain a large body of knowledge about number theory and elementary algebra as well. 

Probably few results in the Elements were first proved by Euclid, but "the skilful 

selection of propositions and their arrangement into a logical sequence are certainly due 

to him" (Eves, 1966, p. 1 15). In fact, Euclid's Elements has become the prototype of 

modem mathematical form. 

For centuries it was thought the Euclid's Elements covered the whole study of 

elementary synthetic geometry of the triangle and the circle. However, the findings of 

mathematicians in the nineteenth century initiated a new approach to the study of 

geometry (Eves, 1966). 

19th century 

The beginning of the nineteenth century marked the new emphasis on 

mathematics as a foundation for rational thinking. That was a reaction toward the 

eighteenth-century mathematics texts that were mainly based on memory work at the 

expense of logic. In 18 18 Samuel Goodrich, author of The Child's Arithmetic, believed 

that for children to understand arithmetic, rote learning and doing arithmetic just by 

following the rules do not suffice. He also suggested that children should find the rules 

through manipulating concrete objects (Cohen, 1982). 



Warren Colbum, who was a Harvard-trained mathematics major, took Goodrich's 

idea and developed it to a new system, "mental arithmetic". In 1821, he published First 

Lessons, Or Intellectual Arithmetic On The Plan Of Pestalozzi. This book that contained 

no rules and no memory work, was the most popular arithmetic text ever published 

(Hanna, 1 98 3). 

In the early years of the nineteenth century the accepted method of teaching was 

"to state a rule, give examples, and provide problems" (Jones & Coxford, 1970, p. 21, 

cited in Hanna, 1983). The focus was thus on the application of rules. But, Colburn did 

suggest an alternate procedure in which general principles were built up from examples. 

At the heart of his method was inductive reasoning. This method made arithmetic closer 

to rational thinking where students learn to make conclusion based on the given facts 

(Cohen, 1982). 

The enhanced position of mathematics in the school curriculum, during the first 

half of the nineteenth century, was parallel with the important developments in 

mathematics itself. There were many great mathematicians like Gauss, Galois, Riemann, 

Lobachevsky, and Cayley who published during this period. In addition, several events in 

the nineteenth century such as the industrial revolution, the development of the physical 

science and the expansion of the universities lead to the growth of mathematical science 

and increased attention to structure and methods of mathematics (Hanna, 1983). 

Late in the nineteenth century stronger arguments for a closer relationship 

between professional mathematics and school curricula began to be formulated and heard 

in educational communities (Hanna, 1983). In Italy under impression of Peano's idea an 

axiomatic approach to mathematics became popular in schools. In 1893, Felix Klein in 



Germany started a reform in content and pedagogy of school mathematics. He believed 

intensifying rigor in mathematics textbooks and programs will help students to have an 

understanding similar to that of practicing mathematicians. He also proposed the use of 

function to bring algebra and geometry together. However, in Britain and North America, 

under impression of John Perry's work, the main concern was the application of 

education. As a result of this view, education must introduce practical skills. Therefore, 

the selection of mathematical contents of high school was based on their utility (Hanna, 

1983). 

Until the nineteenth century the axiomatic method, far from being a general 

device in mathematics, was limited to Euclidean geometry. The development of non- 

Euclidean geometries in the nineteenth century laid the foundation for the development of 

new axiomatic structures in other areas of mathematics and coincided with growing 

attention to rigorous definitions and proofs. 

Early 20th century 

During the early years of the twentieth century the secondary school mathematics 

curriculum changed considerably in response to the changing demands of society. 

Until 1892, the purpose of mathematics in the secondary school 
curriculum was the education of mathematicians; by 1920, its purpose was 
the education of well-informed citizens. With the discrediting of "faculty 
psychology" and its replacement by stimulus response psychology and 
Thorndike's theory of bonds, it was no longer necessary for educators to 
see mathematics primarily as a discipline for the mind, or to believe that it 
had to be hard to be valuable; they were free to treat it as a means of 
imparting useful knowledge (Hanna, 1983, p. 9). 

In 1923 the National Committee on Mathematical Requirement of the 

International Commission on the Teaching of mathematics, issued a report entitled 



Reorganization of Mathematics in Secondary Education. This committee recognized the 

pedagogical theories, based on which the secondary curriculum has been designed, as the 

reason for the diverse problems of the curriculum. At the time, the curriculum had over 

emphasis on practical mathematics inspired by Perry movement. However, due to the 

work of Peano, Klein, Hilbert, and Poincare the necessity of greater rigor in mathematics 

textbooks was come out. As the result, the committee suggested less stress on arithmetic 

processes and formal presentation of geometry in junior high school and more emphasis 

on the business application of mathematics in that level (Hanna, 1983). 

During 1930- 1950, despite the World War I1 many of the suggested reforms were 

successfully implemented in schools. The domination of arithmetic, besides manipulation 

and memorization decreased in junior high school curriculum. Instead usefulness and 

application of mathematics received more attention. However, none of these increased 

students' motivation for the study of mathematics. 

In the first half of the twentieth century mathematics itself vastly developed. 

During this period new fields such as modern mathematical statistics, the theory of 

games, queuing theory, and graph theory emerged (Hanna, 199 1). 

Three schools of thought 

The growth of mathematics was accompanied by investigation of the foundation 

of mathematics from which three main schools of thought emerged: the logicist school in 

England, with Russell and Whithead; the formalist school in Germany, with Hilbert; and 

intuitionist school in Holland, with Brouwer and Heyting. Although, they differ widely in 

their approach to the definition of numbers, in their view of mathematical infinity, and 



the role they assign to logic, they did share an emphasis on the importance of formal 

proof (Hanna, 199 1). 

The Bourbaki approach 

By the growth of mathematics in the first half of the twentieth century, many 

mathematicians turn their attention to the axiomatic method. At that time, axiomatic 

method was considered as a means for unifying the disciplines that were unrelated 

formerly into some mathematical structures. This approach mainly emerged through the 

work of influential French mathematicians, such as Dieudonne. They wrote and 

promulgated their view under the name of Bourbaki. The Bourbaki group had a great 

influence on mathematical research at international level. Besides focusing on new topics 

in mathematics, the group introduced the "Bourbaki approach: formal, abstract, and 

rigorous approach, emphasizing precise definitions and formal proof" (Hanna, 199 1, p. 

54). 

The "New Math" era 

In the early 1950s, under the influence of the views of certain mathematicians and 

social and philosophical conditions, a new movement began. That movement, known as 

"New Math", was characterized primarily by the promotion of a more abstract approach 

to mathematics in the schools. The main reason for initiating the movement was the 

existing gap between high school mathematics and university mathematics (Hanna, 

1983). 

The first new math project began in 195 1 by three faculty members of 

mathematics and education at the university of Illinois. The project denoted as UICSM 



[the University of Illinois Committee on School Mathematics] (Usiskin, 1999). Six years 

later, in 1957, the new math received its biggest push when the Soviet Union launched 

Sputnik, the first artificial satellite. This achievement of the Soviet Union intensified the 

arguments for reform. As a result, the US federal government proposed to change the 

school curriculum. For this purpose some curriculum development projects designed to 

advance the school mathematics and science programs. Among different projects that 

performed for this purpose SMSG [the School Mathematics Study Group] was one of the 

earliest and may be the most famous of these projects (Stanic & Kilpatrick, 1992). 

The central focus of the studies was in making school mathematics similar in 

structure, content, and manner of presentation to what was perceived to be the theory and 

practice of mathematics as an academic discipline. In the elementary school curriculum, 

this idea appeared as stress on conceptualization. In high school mathematics, along with 

the introduction of some of the more abstract areas of modem mathematics into the 

curriculum, there was a new emphasis on the notion of mathematics as a unified 

axiomatic structure. Also, there was a new emphasis on logic and proof (Hanna, 1983; 

Usiskin, 1999). By the beginning of the new math era the notion of proof not only taught 

in geometry but also in other high school courses such as algebra. In addition, to 

introduce the axiomatic method and proof, set theory was proposed as another subject 

matter in school curriculum (Davis & Hersh, 1980). 

After being introduced, the new math movement was very well accepted by 

mathematics educators and general public. However, in 1960s the gradual sign of 

disagreement began to grow. One of the main reasons for the objections was that the new 

abstract mathematics curriculum could not serve all the students, particularly slower ones 



(Usiskin, 1999). Mathematicians such as Morris Kline also criticized the new math 

reform. Kline along with other mathematicians (~hlfors '  et al., 1962) believed that the 

new math was too abstract, impractical, and confusing. 

The "Back to Basics" approach 

As a response to the new math approach, in the mid 1970s, a series of new 

textbooks for grades K-12 published. The new textbooks followed a new approach, called 

"Back to Basics". This approach encouraged proficiency on skills without caring about 

properties or applications. In fact, the books did not contain any or much explanation. As 

a result of this approach teachers were encouraged to teach skills, such as algebraic skills 

without understanding, and paying much less attention to proof in geometry (Usiskin, 

1999). 

The 1970s was challenging for mathematics education community. Throughout 

these years there was a struggle between those who were supporter of mathematics 

reforms and those who preferred to put stress on the basics (O'Shea, 1998). To resolve 

the existing confusion, the National Council of Teachers of Mathematics (NCTM) 

decided to take the leadership of the teaching mathematics, mathematics curriculum 

designers and policy makers. The result was the publication of the Agenda for Action 

(NCTM 1980), which included eight recommendations. These recommendations form the 

foundation for Curriculum and Evaluation Standards for School Mathematics, produced 

by the NCTM in 1989. 

' The comment signed by sixty-five mathematicians from various geographical locations in the United 
States and Canada. 



The NCTM standards 

By the time the Curriculum and Evaluation Standards for School Mathematics 

(1989) was published, the concept of proof had almost disappeared from the curriculum 

(Greeno, 1994, cited in Hanna, 2000) or shrunk to a meaningless ritual (Wu, 1996, cited 

in Hanna 2000). The NCTM did not see any necessity for changing the situation of proof 

in the mathematics curriculum. It even suggested less emphasis on proof in geometry, 

especially in the form of two column proof. 

On the other hand, the Standards (1 989) did propose greater emphasis on the 

testing of conjectures, the formulation of counter examples and the construction and 

examination of valid argument, as well as on the ability to use these techniques in the 

context of non-routine problem solving (Hanna & Jahnke, 1996). In the Standards (1989) 

there were even two topics, among the seven recommended for greater attention, which 

had a distinct essence of proof: (1) short sequence of theorems, and (2) deductive 

arguments expressed orally and in sentence form (pp. 126-127). 

The standards approach (1989) was to increase students' motivation and 

involvement in heuristic argument. Therefore implicitly proof lost its role as a teaching 

tool. This document highlighted the importance of heuristic argument for the sake of 

discovery and understanding mathematics, but did not link this approach to mathematical 

proof (Hanna, 2000). 

The new version of the NCTM Principles and Standards (2000) has remedied this 

situation by recommending that reasoning and proof be a part of mathematics curriculum 

at all levels. One of the process standards of this document called "Reasoning and Proof" 

states that students should be able to: 



recognize reasoning and proof as fundamental aspects of mathematics; 

make and investigate mathematical conjectures; 

develop and evaluate mathematical arguments and proofs; 

select and use various types of reasoning and methods of proof. 

But even after inclusion of proofs in the Principles and Standards (2000), what it mostly 

emphasized is not proofs, but reasoning (except in geometry). 

Next, with reference to the literature I discuss what a proof really is. And, what 

roles proof could have in mathematics and mathematics education. Then I examine what 

difficulties students might have in learning the concept of proof, and what the different 

approaches toward teaching proof are. 

What is proof? 

For many years the only answer to the question "what is proof?" was: "a formal 

proof of a given sentence is a finite sequence of sentences such that the first sentence is 

an axiom, each of the following sentences is either an axiom or has been derived from 

preceding sentence by applying rules of inference and the last sentence is the one to be 

proved" (Hanna, 1990, p. 6). And, establishing the mathematical certainty of a theorem 

was the main purpose of its proving (Weber, 2003). 

In the last three decades both mathematicians and mathematics educators have 

begun to reassess the role of axiomatic structures and formal proof. They agreed that 

proofs might have different degree of formal validity and still gain the same degree of 



acceptance. In this regards, Hanna (1 990) makes distinction among different perceptions 

of proof in mathematics education. She considers three aspects: 

Formal proof: proof as a theoretical concept in formal logic (or metalogic), 

which may be thought of as the ideal which actual mathematical practice 

only approximates. 

Acceptable proof: proof as a normative concept that defines what is 

acceptable to qualified mathematicians. 

The teaching of proof: proof as an activity in mathematics education, 

which serves to elucidate ideas worth conveying to the student (p. 6). 

In the latter case she introduces an explicit distinction between proofs that prove 

and proofs that explain, as two legitimate proofs. She mentions a very important 

difference between these two kinds of proof. She believes a proof that proves shows only 

that a theorem is true. While, a proof that explains, also shows why a theorem is true and 

may cause a better understanding of mathematics. 

Hersh (1 993), after Hanna, distinguishes between proofs that convince and proofs 

that explain: 

Mathematical proof can convince, and it can explain. In mathematical 
research, its primary role is convincing. At the high school or 
undergraduate level, its primary role is explaining (p. 398). 

Weber (2002) makes this distinction finer. He describes four types of proof. 

According to Weber, two types of proof - proofs that convince and proofs that explain, 

provide knowledge about mathematical truth. Then he describes, two other types of proof 

- proofs that justify the use of definition or axiomatic structure and proofs that illustrate 



technique. As an example for the proof that justifies the structure, Weber mentions the 

Peano's proof for "two plus two equals four". He argues that the purpose of this proof is 

not persuasion of mathematicians or explanation for its truth, but to show that the Peano's 

system of arithmetic is a reasonable one. As an example for proofs that illustrate 

technique, Weber considers "f(x)=x is a continuous function". This proof can be used to 

show students how to prove this kind of mathematical statement. Students' awareness of 

different uses of proof may promote their appreciation of the essential roles that proof 

plays in mathematical science (Weber, 2003). 

Knuth (2002, p. 63) summarizes the various roles that mathematics educators 

suggested for proof in mathematics as follows: 

to verify that a statement is true, 

to explain why a statement is true, 

to communicate mathematical knowledge, 

to discover or create new mathematics, 

to systematize a statement into an axiomatic system. 

Further, NCTM's (2000) document gives a central role to proof for all students: 

"reasoning and proof should be a consistent part of students' mathematical experiences in 

pre-kindergarten through grade 12" (p. 56). Nevertheless, Knuth's (2002) research on 17 

experienced secondary school mathematics teachers shows, "teachers still tend to view 

proof as an appropriate goal for the mathematics education of only a minority of students 

@. 83)". The reality of mathematics classrooms, also, shows proof is a difficult 

mathematical concept for students (Wheeler, 1990). The question that arises from this is: 



what difficulty might students have with the concept of proof, and how then could this 

concept be taught more effectively? 

What are students' difficulties in understanding the concept of proof? 

The notion of proof has an especial interpretation in mathematics, which is not the 

same as its common application in everyday language. This variation may lead 

mathematics students to have a different interpretation of proof (Tall, 1989). They usually 

consider non-deductive arguments as a proof (Weber, 2003). This claim agrees with 

Schoenfeld's (1 985) observations of the empirical nature of students' beliefs about 

mathematics and their failure to use deductive reasoning as a mathematical tool. Harel 

and Sowder (1998) have given an inclusive classification of such beliefs. Some of these 

beliefs, denoted by Harel and Sowder as "proof schemes", are as follows: 

Authoritative: an argument is a proof if it is appeared in a textbook, 

presented by or approved by an established authority, such as a teacher or 

famous mathematician. 

Ritual: an argument is a proof if its appearance is in accordance with 

common formalism of mathematical convention. 

Inductive: a general statement is true if it holds for a number of examples 

Perceptual: by way of a basic mental image, such as an appropriate 

diagram, one can visually show that a certain property holds. For instance, 

by looking at an isosceles triangle ABC, one might perceptually observe 

two equalities: AB = AC and L C = L B, without seeing the causality 

relationship between these two equalities. 



In recent decades research has focused on why students may have these beliefs 

about proof. The results of Dreyfus' (1999) research on students' conceptions of proof 

show they mostly do not have a clear idea about proof and the purpose of proving. 

According to Hare1 (1998), a most important reason that students are not interested to 

involve in proof process is that they do not see the necessity to prove some results that 

seem obvious to them. This attitude leads students to see proof as a bunch of formal rules 

and unimportant point of learning. 

Historically, proof has nominally been a major ingredient of high school 

mathematics through the medium of Euclidian geometry. Dina and Pierre van Hiele, two 

Dutch researchers, proposed five levels through which students may progress as they 

learn Euclidian geometry: visualization, analysis, informal deduction, deduction, and 

rigor. They proposed that students need to pass through all the levels in sequence, and 

their instruction should be in accordance with their learning level. In fact, according to 

Van Hiele's idea students in a lower level can never have required understanding for the 

higher level. Senk (1989) in her study, conducted in United States, mentioned the reason 

that high school students have difficulty in geometry is that they enter high school with a 

lower required level of understanding of Van Hiele model. 

In the process of solving a problem, it happens very often that students show they 

have a good understanding but they are not capable to present it mathematically (Dreyfus, 

1999). In other words, they are not capable to use mathematical notations and language to 

present their idea. Many college students begin higher level courses which require 

writing proof without receiving any instruction for it. In fact, for most of them high 



school geometry is the only experience of writing proof. So they usually are not familiar 

with different possible methods of proving and writing it (Moore 1994). 

Even in the cases that students decently present familiar proofs, there is no 

guarantee that they can present any thing beyond that in a new situation (Weber, 2003). 

Moore (1994) in a study observed five undergraduate students as they progressed through 

an introductory proof course. He found that many of the students' difficulties were 

cognitive. In this regard he established some major sources of the student difficulty in 

doing proofs as follows: 

The students did not know the definitions, that is, they were unable to state 

the definitions. 

The students had little intuitive understanding of the concepts. 

The students' concept images were inadequate for doing the proofs. 

The students were unable, or unwilling, to generate and use their own 

examples. 

The students did not know how to use definitions to obtain the overall 

structure of proofs. 

The students were unable to understand and use mathematical language 

and notation. 

The students did not know how to begin proofs (p. 25 1-252). 

Altogether, the literature (cited in Moore, 1994, p. 250) suggests the following 

areas of potential difficulty that students encounter in learning to do proofs: perception of 



the nature of proof (Balacheff, 1988; Bell, 1976; Galbraith, 198 1 ; Lewis, 1987; 

Schoenfeld, 1985), logic and methods of proof (Bittinger, 1969; Duval, 199 1 ;Morgan, 

1972; Solow, 1990), problem solving skills (Goldberg, 1975; Schoenfeld, 1985), 

mathematical language (Laborde, 1990, Leron, 1985; Rin, l983), and concept 

understanding (Dubinsky and Lewin, 1 986; Hart, 1 987; Tall, and Vinner, 1 98 1 ; Vinner 

and Dreyfus, 1989). 

These studies show that the combination of beliefs, knowledge, and cognitive 

skills is required for the study of abstract mathematics and creating proofs (Moore, 1994). 

More research is needed to recognize what combination of these factors could be more 

useful for students to have a better understanding of the notion of proof. 

Teaching proof 

Improving the understanding of proof among all students requires effective 

mathematics teaching. Teaching mathematics well is a complex endeavour, and there is 

not any special method that works for all students (NCTM, 2000). Considering the 

different contributions that proof might have in mathematics during the last decades, 

mathematicians and mathematics educators have introduced different approaches toward 

teaching proof. In what follows I provide an overview of these approaches. 

Explanation 

According to Hanna (2000) the primary responsibility of proof in the classrooms 

is answering the "why" questions. In other words, in the educational domain the main 

role of proof is to explain why a claim is true. Hence it would be a great advantage for 

teachers who used explanatory proofs. However, it is not possible to choose explanatory 



proofs for all the theorems, because "some theorems need to be proved using 

contradiction, mathematical induction, or other non explanatory methods" (p. 9). 

Conviction 

One of the common mathematical meanings of proof is: an argument that 

convinces qualified judges (Hersh, 1993). To help the students focus on the various 

stages of putting up a convincing argument, Mason, Burton, and Stacey (1 982) suggest 

three stages: convince yourself, convince your friend, and convince your enemy. 

Convincing oneself involves having an idea of why some statement might be true, but 

convincing a friend requires that the arguments be organized in a more coherent way. 

Convincing an enemy means that the argument must now be analysed and refined so that 

it will stand the test of criticism. 

Rigor 

Tall (1 989) believes that in Mason et a17s approach the formal notion of 

mathematical thinking is absent. He acknowledges that it is not because the authors do 

not believe in formal mathematical proof, but because "the nature of formal mathematical 

proof is very difficult for students to comprehend" (p. 30). Tall considers clearly 

formulated definitions and statements, and rules of deduction as two important ideas that 

mathematical proof must be based on them. 

However, Hanna (1983) in Rigorous Proof in Mathematics Education, without 

rejecting well formulated and well presented proof in mathematics, criticizes the view of 

formal proof in education. This view, which emphasized rigorous proof has been adopted 

by the new math movement of the 1950s and 1960s. By "rigorous proof' she means "a 



finite sequence of formulae of some given system, where each formulae of the sequence 

is either an axiom of the system or a formulae derived by a rule of the system from some 

of its preceding formulae" (p. 66). In her study Hanna argues that a stress on rigorous 

proof does not necessarily bring a mathematics curriculum closer to mathematical 

practice. She came to the conclusion that in educational settings understanding has 

priority over rigorous proof. 

Heuristics 

Considering these critiques and including the important role of proof in 

mathematical practice, the 1990s saw substantial changes in both school mathematics 

curricula and teachers' instructional practices based on the NCTM standards (1989). This 

book did not focused on proof, but; it suggested the use of conjecturing, reasoning, 

validating claims to discuss and question thinking of their own and others. This point of 

view encourages students to use heuristic and inductive approach to support their 

mathematical perception (Hanna & Jahnke, 1996). 

Mathematicians have no doubt that intuition, speculation and heuristics are very 

useful for initiating a mathematical proof. However, they emphasize the distinction 

between proof and heuristic argument as well. Indeed, there is a consensus among 

mathematicians that the only way to validate a mathematical result is to use proof 

(Hanna, 2000). 

Hanna (1 991) discusses naive mathematical ideas emerge from routine daily 

experiences. These experiences must be refined and developed to become explicit 

through including an amount of formalism. In other words, in teaching mathematics in 



general and promoting reasoning skills in particular a degree of formalism is required. 

For this purpose, formalism would be considered as a crucial tool for better clarifying, 

understanding and validating a mathematical result. Applying an appropriate amount of 

rigor to justify any theorem could immensely improve learning. 

Generic example 

In mathematics the purposes of proof may be one or more. These purposes 

include assurance of truth, explanation of observed regularities, and clarification of 

claims (Hersh, 1993). The generic example is a mode of explanation. In this mode 

students generate examples from their empirical mathematical experiences. Also, 

teachers may use these examples as didactic tools to clarify some proofs that students 

would otherwise find complicated (Rowland, 2000). 

According to Mason and Pimm (1984, p. 287), "a generic example is an actual 

example, but one presented in such a way as to bring out its intended role as the carrier of 

the general". In fact, a generic example inductively deduces that the result is true in 

general. 

Rowland (2002) argues that in mathematical community, generic proof is not 

accepted as a proof. In its best case, generic proof can be considered as an intermediate 

stage between nahe empiricism and perception, and a general argument. Nevertheless, 

without rejecting this view he states that mathematics teachers and mathematical texts 

could assist all mathematics learners to recognize and value the generics in their insights, 

explanations, and arguments. 



Visualization 

Traditionally, diagrams and other visual representations have been an essential 

component of mathematics curriculum to facilitate insight and understanding of 

mathematical knowledge. Considering the existence of misleading diagrams the question 

arises as to what extent we should use them as evidence or even justification of 

mathematical statements. 

In the last decade a number of mathematicians, logicians and researchers 

(Bonvein & Jorgenson, 1997; Brown, 1999; Francis, 1996; Nelsen, 1993; Palais, 1999; 

cited in Hanna, 2000) have been investigating the use of visual representations, and their 

potential contribution to mathematical proofs. Among them, Bonvein and Jorgenson 

(1 997) would consider a great role for visualization in reasoning. They believe an image 

can act as a form of visual proof provided it meets certain qualifications, such as 

reliability, consistency, and repeatability. 

As an example of visual proofs we can consider proofs without words, which 

began to appear in modern mathematical texts about 1975 (Nelsen, 2000). "Proofs 

without words are pictures or diagrams that help the reader see why a particular 

mathematical statement may be true, and also to see how one might begin to go about 

proving it true" (Nelsen, 2000, p. ix). For many researchers, however, visual 

representations are really no more than heuristic devices. According to them visual 

representations are psychologically suggestive and pedagogically important, but they 

prove nothing. 



Exploration 

One of the educational innovations in the last decades is introducing dynamic 

geometry software. Geometer Sketchpad and Cabri Geometry are two dynamic geometry 

softwares that are designed for teaching geometry. These softwares by providing the 

opportunity for constructing geometric shapes with high degree of accuracy facilitate 

students understanding. In fact, the flexible environments of these softwares help students 

to make conjectures and explore propositions based on the accurate construction. 

However, these also lead students to make conclusions as a general result based on their 

exploration (Hanna, 2000). 

Despite mathematics educators' agreement on the usefulness of teaching students 

how to explore, formulate and test conjectures, they just consider it as a step towards 

constructing a proof. Exploration alone does not satisfy the required generality of a proof. 

In this regard Hanna (2000, p. 14) says: "what we really need to do, of course, is not to 

replace proof by exploration, but to make use of both." 

The NCTM's approach to teaching proof 

By reviewing the NCTM's (2000) document it seems that it tries to make use of 

all the former attempts of the educational communities to give suggestions for teaching 

and learning proof more effectively. 

"At all levels, students should reason inductively from patterns and 
specific cases. Increasingly over the grades, they should also learn 
to make effective deductive arguments based on the mathematical 
truths they are establishing in class (p. 59)." 

"By the end of secondary school, students should be able to 
understand and produce mathematical proofs-arguments 
consisting of logically rigorous deductions of conclusions from 



hypotheses-and should appreciate the value of such arguments 
@.56)." 

"Students at all grade levels should learn to investigate their 
conjectures using concrete materials, calculators and other tools, 
and increasingly through the grades, mathematical representations 
and symbols @. 57)." 

"Along with making and investigating conjectures, students should 
learn to answer the question, Why does this work? (p. 58)" 

"High school students using dynamic geometry software could be 
asked to make observations about the figure . . .and attempt to 
prove them @. 57)." 

"High school students should be able to present mathematical 
arguments in written forms that would be acceptable to 
professional mathematicians (p. 58)" 

In my opinion the main challenge for meeting these demands in the K-12 

curriculum, is having teachers who have good understanding of the notion of proof, and 

teachers who know what kind of proof for what purpose and for what level is appropriate. 

The fact that mathematical proof, in its common meaning, is not a separate topic 

in the mathematics curriculum of elementary school, brings up the question: Is it really 

important for elementary school teachers to have deep understanding of and have ability 

to generate mathematical proof? If yes, what would be the characteristic of the proofs that 

they need to know and how could this understanding serve them to be more efficient 

teachers? 

The role of mathematical proof in elementary school teacher education 

Traditionally, mathematics education for pre-service elementary school teachers 

aims at providing a certain level of understanding of mathematics and mathematical 



methods. Most of the students in this group will often not continue their studies of 

mathematics at more advanced levels, but almost all of them will have to apply their 

knowledge of mathematics in their future profession as a teacher. 

According to Polya (1957), "the first rule of teaching is to know what you are 

supposed to teach. The second rule of teaching is to know a little more than what you are 

supposed to teach" (p. 173). The authors of the standards believed that "knowing" 

mathematics is "doing" mathematics and "what" students learn, highly depends on "how" 

they learn it (Smith, Smith, & Romberg, 1993). If we consider the classroom as a place in 

which students should develop their mathematical beliefs and values and consequently 

their intellectual autonomy in mathematics (Yackel & Cobb, 1996), then the critical and 

central role of mathematics teachers as conductors and facilitators of establishing the 

mathematical thinking becomes clearer. In this regard, mathematical proof, in its 

common essence can be held to be a topic that has much to offer in the promotion of 

mathematical thinking. For this reason alone, the discussion of having mathematical 

proofs as a part of pre-service elementary teachers curriculum should be intensified. 

Research, however, has repeatedly shown that proofs and the ability to understand 

and generate proofs is difficult for students in general (Hoyles, 1997) and for pre-service 

elementary school teachers in particular (Gholamazad, Liljedahl, & Zazkis, 2003,2004; 

Barkai, Tsamir, Tirosh, & Dreyfus, 2002; Ma 1999; Martin & Harel, 1989; Simon & 

Blume, 1996). The evidence from these studies suggests that pre-service elementary 

teachers tend to accept inductive evidence, such as a series of empirical examples or a 

pattern as being sufficient to establish the validity of a claim. Considering the high 

tendency of pre-service elementary teachers toward inductive reasoning, Martin and 



Hare1 (1 989) make an argument on the importance of the teachers understanding of what 

constitutes mathematical proof. They argue that, since the primary source of children's 

experience with verification and proof is their teacher, therefore if elementary teachers 

lead their students to accept a few examples as a proof, it is natural that the students have 

difficulty with the idea of proof at the secondary level. In other words, the inductive 

proof frame, which is constructed at an earlier stage, is not deleted from their memory, 

and the requirement of the deductive proof frame presents an obstacle. 

Developing the role of proof in the classroom requires a great amount of teachers' 

understanding of the nature and role of proof. The mathematics teacher education and 

professional development programs can play a key role for meeting this demand. In a 

regular university mathematics course, mathematical proof is presented according to 

modem standards of rigor. But, pre-service elementary school teachers usually have 

neither strong background in mathematics nor enough interest to struggle through long 

proofs or to appreciate subtleties. Considering this fact, we need to know what kind of 

proof might better serve pre-service elementary school teachers. 

The idea of improving pre-service elementary school teachers understanding and 

improving their active involvement in the process of creating proofs is the initial driving 

force for this study. The coming chapters explore and discuss one possible approach to 

this issue. 

Conclusion 

A review of the evolution and state of the status of proof in school mathematics 

still raises the fundamental question: Do we need proof in school mathematics? 



Schoenfeld's response to this question is "Absolutely". This would be the response of 

most people who have been involved in professional mathematical practices, because for 

this group mathematics without proof does not make sense. But we should make it clear 

what we mean by proof, because as Hanna (1983, p. 29) mentions, "there is no consensus 

today among mathematicians as to what constitutes an acceptable proof and there never 

has been". 

Considering the literature, I place the different understandings of proof on a vast 

spectrum: on one end, there is rigorous proof, on the other end, visual proof, and between 

them different kinds of arguments, justifications, verifications, and explanations. The 

important point is that all the views of proof are acceptable, but how we use them 

depends on the purposes of their usage. As Manin (1977) says, "a proof becomes a proof 

after the social act of accepting it as a proof' (p. 48). So it seems to me that 

mathematicians and mathematics educators based on different scientific, philosophic, and 

social requirements have introduced a view of proof, which could satisfy their needs in 

the specific paradigm. For example we can consider the proof of the four-colour theorem, 

which is a computer-assisted proof. Even for the educational purposes we observed 

radical changes in expectations about an acceptable proof during the last half of the 20th 

century. 

In the 1950s, as a response to the inadequate preparation of high school students 

for the mathematics courses offered by universities, the emphasis was placed on rigorous 

proof. That approach could not last for long because mathematics educators very soon 

reached the result that "premature formalization may lead to sterility'' (Ahlfors et al, 

1962, p. 192). As result of social objection against rigorous proof in mathematics 



curriculum, the role of proof has been changed to explanation. Proof in its new form - 

explanation -produces reasons more than examine the strength of these reasons, 

something that was needed in formal proof. Many of the mathematicians who support this 

approach share "the view that a proof is most valuable when it leads to understanding, 

helping (learners) think more clearly and effectively about mathematics" (Rav, 1999; 

Manin, 1992, 1998; Thurston, 1994; cited in Hanna, 2000, p. 7). 

The explanation role of proof opened up new approaches to the teaching of proof: 

heuristic, exploration, and visualization. Each of these approaches, in my view, has a 

relationship with empirical verification. While empirical verification is very useful in 

clarifying a problem, it is only a preliminary stage toward a proof. However, it is seen for 

many students who were presented by a deductive proof still further empirical 

verification is required to be convincing (Fischbein & Kedem, 1982). This suggests that 

the activation of both the inductive and the deductive proof frames may be required for 

students to reach a particular conclusion. Here the main question is: what could be an 

appropriate teaching approach, which helps students to move from inductive to deductive 

reasoning? 

We can see an effort towards the remedying of this problem in the latest version 

of NCTM standards (2000) with the recommendation that reasoning and proof be a part 

of the mathematics curriculum at all levels. But, in reality, there is always a gap between 

intention and implementation. Professional teachers, in my opinion, can play the main 

role in reducing this gap. 

I conclude this chapter with a quote from Schoenfeld (1994), because I strongly 

agree with his words. 



I think that if students grew up in a mathematical culture where discourse, 
thinking things through, and convincing were important parts of their 
engagement with mathematics, then proofs would be seen as a natural part 
of their mathematics (why is this true? It's because . . .) rather than as an 
artificial imposition (p. 76). 

Therefore, I focus my study on pre-service elementary school teacher education, 

which is the starting point of the "mathematical culture" that Schoenfeld refers to. 



CHAPTER 3: 
THEORETICAL PERSPECTIVES 

In this chapter I describe how the study emerged from the theoretical perspective. 

I begin by giving a very brief overview of the background of two approaches to the 

notion of 'learning' in mathematics education: learning as 'acquiring mathematical 

knowledge', and learning as 'becoming a participant in mathematical discourse'. I then 

describe how the idea of learning as becoming a participant in mathematical discourse 

emerged from a communicational approach to learning. 

Background of the study 

Mathematics and psychology are two disciplines that have had a seminal 

influence on research in mathematics education (Kilpatrick, 1992). Research in this field 

has developed as mathematicians and educators have turned their attention to how and 

what kind of mathematics might be taught and learned. The history of mathematics 

education shows that research in this field, influenced by psychological theories, has been 

subject to a number of major shifts during the last century - from behaviourism to 

constructivism. Behaviourism is mostly based on the repetition of stimulus and response 

among different creatures (eg. human beings or animals) and it does not focus on the 

functions of the mind. Conversely, constructivism relies on the shaping of ideas in the 

mind (Tall, 199 1). 



Introducing the idea of learning-with understanding in cognitive psychology 

brought the behaviourist era to an end. Cognitive psychology through equating 

"understanding with perfecting mental representations" and defining "learning-with- 

understanding as one that effectively relates new knowledge to the knowledge already 

possessed" (Sfard, 2001, p. 21) opened up a new trends of study on human cognition. 

The ways in which most educational researchers have been looking at learning 

during the last half century may vary from gradual reception to an acquisition by 

development or construction. Currently these ways were unified by the metaphor of 

learning as acquisition of knowledge, which justifies the individuality of efforts. In this 

framework by acquisition of information individuals become enriched, and what they 

acquire or learn becomes their own possession (Sfard, 1998). Acquisition of knowledge 

happens actively or passively and through which individuals make their own concepts 

and procedures. However, sometimes the acquired knowledge shapes from 

misconceptions rather than formal accepted conceptions (Sfard, 2001). 

Recently different publications paved the way for the emergence of another 

learning metaphor, which is the "participation metaphor". An example of those 

publications is Situated learning (Lave & Wenger, 199 l), which refers to learning as a 

legitimate peripheral participation. Basically, participationist approach to learning grows 

from the sociocultural tradition. In the participationist framework, unlike the 

acquisitionist approach, learning is becoming a participant in certain activities and its 

goal is community building. In this metaphor knowledge is considered as an aspect of 

discourse (Sfard 1998). 



There is no doubt that the emergence of the idea of learning-with-understanding 

had a beneficial impact on the study of mathematics education in the last decades. 

Nevertheless, some researchers believe the notions grounded in the acquisition metaphor 

are not sufficient for some of their more advanced needs. Anna Sfard (2001) is one of 

those who believe that acquisition-based theories serve only a restricted part of the 

learning processes. 

Overall, it is important to emphasise that substituting the words "acquiring 

mathematical knowledge" with "becoming a participant in mathematical discourse" 

implies a different way of looking and researching (Ben-Yehuda, Lavy, Linchevski, & 

Sfard, 2005). Without rejecting the long-standing acquisition metaphor, Sfard (2001), 

through a communication approach to cognition, supplements it with socio-culturally 

grounded metaphor of participation. The following section is an overview of the 

communicational approach to cognition and the essential role of the participation 

metaphor in this approach. 

The communicational approach to cognition 

Currently the attention of researchers in the areas of human and mathematical 

thinking is attracted to communicational approach grounded on Vygotsky's theory. In 

this approach priority is given to communicative public speech rather than inner private 

speech (Vygotsky, 1987). Human cognitive processes are based on the need for 

communication, which is "the primary driving force behind human cognitive processes 

. . . , understanding thinking requires understanding the ways people communicate with 

one another" (Sfard, 2000a, p. 320). Therefore, better understanding of public discourse 

deepens our insight into a dialogue that one leads with oneself. 



Let us pause to examine what communication is, and what researchers mean by 

this notion. Generally speaking, communication is "a process by which information is 

exchanged between individuals through a common system of symbols, signs, or 

behaviour" (Merriam- Webster Dictionary, 2006). In this definition information may be 

considered as an objective entity, which could be exchanged among individuals while its 

identity remains stable. In other words, the nature of these experiences does not change 

among individuals. Due to this perspective individual experiences would be as 

"comparable and measurable as material objects are, and they may therefore be used as 

explanatory devices in the study of human communication" (Sfard, 2000a, p. 299). 

Rather, this kind of process is more interpretative than explanatory. 

According to Sfard (2000a) communication is an activity through which one tries 

to make their interlocutor act or feel in a certain way. It is effective if it achieves its goal 

of evoking reactions in tune with the interlocutor's expectations. Hence, paying attention, 

thinking, and attempting to remember can be consider as different forms of 

communication. 

In the study of human cognition, cornrnunicational approach considers thinking as 

a kind of communication between one and itself. Regarding ideas of Bakhtin (1986) and 

Vygotsky (1962, 1978, 1987), Sfard (2000a, 2001) argues that thinking is similar to 

conversation between two people and the same as any other conversation it involves turn 

taking, asking questions, giving answers, and building a new interconnected audible or 

silent utterance, in words or in other symbols. 

The principal assumption of considering thinking as a special case of the activity 

of communication is that what happens in a public conversation is indicative of what 



might be taking place in the individual's head as well (Sfard, 2000a). Accepting this 

assumption gives an essential role to language and discourse in the genesis, acquisition, 

communication, formulation and justification of all knowledge in general, and 

mathematical knowledge in particular. Therefore, a close analysis of the public discourse 

may reveal much about learning. 

Within a communicational framework the focus of a study would be on discourse. 

Indeed, in this framework learning mathematics is defined as an initiation to 

mathematical discourse, that is, initiation to a special form of communication known as 

mathematical. In the following section I examine the notion of mathematical discourse to 

see what must be learned if a person is to become a skilful participant in a given 

mathematical discourse. 

Learning mathematics in terms of discourse 

According to current scholarship, rather than considering learning as "acquisition 

of knowledge", it is possible to view learning as "becoming a participant in a certain 

discourse" (Sfard, 2000b). The word discourse has a very vast meaning. Indeed, 

discourse includes all the communicative activities that may be practiced by a given 

community. As Gee (1997, cited in Sfard 2000b) says: 

Discourses are sociohistorical coordinations of people, objects (props), 
ways of talking, acting, interacting, thinking, valuing, and (sometimes) 
writing and reading g that allow for the display and recognition of socially 
significant identities, like being (certain sort of) African American, 
boardroom executive, feminist, lawyer, street-gang member, theoretical 
physicist, 1 8th-century midwife, 1 gth-century modernist, Soviet or Russian, 
schoolchild, teacher, and so on through innumerable possibilities. If you 
destroy a discourse (and they do die), you also destroy its cultural models, 
situated meanings, and its concomitant identities (pp. 255-256). 



It seems that any community may be characterized by the distinctive discourses they 

create. The mathematical community is one of them. 

Mathematics as a form of knowledge is considered as a kind of discourse in the 

communicational framework (Sfard & Cole, 2002). In mathematical discourse individual 

learning emerges from communication with others and adjusting one's discursive ways to 

those of theirs (Sfard, 2002). A mathematical discourse deals with mathematical objects 

such as quantities and shapes. Depending on who is communicating about mathematical 

objects there are two types of discourses: colloquial and literate mathematical discourses 

(Sfard & Cole, 2002). 

The colloquial discourses are everyday natural discourses that shape as a result of 

repetitive actions. These discourses take place in different situations, in other words, they 

are situation specific with limited applicability. Indeed, the colloquial discourses are 

suitable for the situations in which they develop. On the other hand, literate mathematical 

discourses are purposeful goals of teaching and schooling (Sfard & Cole, 2002; Ernest, 

2003; Ben-Yehuda et al, 2005), and include generality and more applicability. 

Literate mathematical discourse as the objective of school learning are 

distinguished from other types of communication through four criteria: (1) their special 

vocabulary, (2) their special mediating tools, (3) their discursive routines, and (4) their 

particular endorsed narratives (Sfard, 2002; Ben-Yehuda et al, 2005). 

The special mathematical vocabulary is what renders mathematical discourse its 

distinctive identity (Sfard, 2002; Ben-Yehuda et al, 2005). While becoming a participant 

in a mathematical discourse, the student may learn terms that she/he has never used 

before. Expressions such as odd or even number that are unique to mathematics are good 



examples for these words. Another word-related type of change that is often necessary in 

the course of learning is the use of words that are already known to the children from 

other discourses. Once these words become a part of mathematics they must be applied 

quite differently. For example, the word proof, familiar to children from spontaneously 

learned everyday discourse, will have to be applied in a somewhat different manner once 

the child begins learning mathematics at school. 

"Every discourse is about something, and if the discourse is to go on, this 

something must be either actually visible or imagined" (Sfard & Cole, 2002, p. 4). 

Mediators as vehicles for 'somethings' are mainly visible means with which people help 

themselves while communicating. In more concrete discourses, independent material 

objects could generate images that can visually support them. Unlike, mathematical 

discourse is mediated by signs and symbols designed for the purpose of mathematical 

communication. Within the communicational framework the designed symbolic artefacts 

are not used just as auxiliary means. It means that one considers them as an inseparable 

part of mathematical communication and cognitive processes (Sfard, 200 1). 

Discursive routines refer to patterns that can be noticed in discursive activities. 

This kind of repetitive patterns can be seen in any form of mathematical discourse. In 

fact, participants of mathematical discourse use these routine patterns to response a well- 

defined familiar type of request, question, task or problem, which happens in similar 

situations (Sfard & Cole, 2002). As examples of discursive routines that a person may 

perform in typical mathematical tasks we can refer to calculation, estimation, 

explanation, justification, and exemplification. These routines, which are used by 

discourse participants, may vary significantly in different mathematical discourse. In the 



literate mathematical discourse these routines may vary considerably, but they are all 

"particularly strict and rigorous" (Ben-Yehuda et al, 2005, p. 182). 

Discursive patterns could be recognized only by professional observers. These 

rules are called meta-discursive rules. Being formulated, they take a form of propositions 

about the discourse (Ben-Yehuda et al, 2005). For instance, the rules such as "If you are 

to solve the equation 2x -5 = 9, the actual physical shape of the letter used is 

unimportant" or "If it is true that statement A entails B and statement B entails statement 

C, then statement A entails C" are meta-discursive since their objects are mathematical 

statements (Sfard, 2000b). Indeed, meta-discursive rules are mostly invisible rules that 

guide the general course of communicational activities. Discursive routine, as opposed to 

an actual discursive action, is a set of meta-discursive rules that specify the when and 

how of such action (Ben-Yehuda et al, 2005). 

Endorsed narratives are the product of typical mathematical routines. These are 

narratives that are accepted by mathematical communities and are labelled as true. 

Endorsed narratives include discursive constructs (e.g. definitions, proofs, and theorems), 

and some of which are in the form of formulae and identities. (Ben-Yehuda et al, 2005). 

Regarding communicational approach, learning mathematics means creating 

changes in students' discourse. Such a change may be expressed within the above- 

mentioned conceptual framework. Indeed, features of mathematical discourse must be 

learned if a person is to become a skilful participant of a given mathematical discourse. 

Now, the question might arise as to whether all the mathematical notions could be 

analysed under the lens of this conceptual framework. In what follows I explain the 



applicability of this framework for analysing proof as a form of a literate mathematical 

discourse, which facilitates the mathematical communication activities. 

Proof as discourse 

For years the only role of proof was showing the correctness of results and 

providing certainty. During the last decades, however, many researchers turn their 

attention to the social aspect of proof as well (e.g. Davis, 1986; Hanna, 1983; Hersh, 

1993; Richards, 1996). They basically consider proof as a social construct and the 

product of mathematical discourse. From this perspective proof is also considered as a 

means to communicate mathematical knowledge. Nevertheless, this aspect of proof has 

not have a great role in the practicing proof in school mathematics yet (Knuth, 2002). 

Balacheff (1991) also noted the limited attention given to the social nature of proof: 

"What does not appear in the school context is that a mathematical proof is a tool for 

mathematicians for both establishing the validity of some statement, as well as a tool for 

communication with other mathematicians" @. 178). 

According to Schoenfeld (1994), "proof is not a thing separable from 

mathematics, . . .; it is an essential component of doing, communicating, and recording 

mathematics" (p. 76). Indeed, proof is what distinguishes mathematics from natural 

science. A well-structured deductive proof offers humans the purest form of reasoning to 

establish certainty. Rorty (1979, cited in Ernest, 2003) relates the persuasion aspect of 

proof, as its very origin, to the conversational nature of that. 

If, however, we think of "rational certainty" as a matter of victory in 
argument rather than of relation to an object known, we shall look toward 
our interlocutors rather than to our faculties for the explanation of the 
phenomenon. If we think of our certainty about the Pythagorean Theorem 



as our confidence, based on experience with arguments on such matter, 
that nobody will find an objection to the premises from which we infer it, 
then we shall not seek to explain it by the relation of reason to 
triangularity. Our certainty will be a matter of conversation between 
persons, rather than an interaction with nonhuman reality (pp. 156-157). 

Ernest (2003), also, considers dialectics and conversation as the origins of mathematical 

proof and logic. According to him, 

Mathematical proof is a special form of text, which since the time of the 
ancient Greek, has been presented in monological form. This reflects the 
absolutist idea that total precision, rigour and perfection are attainable in 
mathematics. Thus the monologicality of the concealed voice uttering a 
proof itself belies and denies the presence of the silent listener. But as it is 
an argument intended to convince, a listener is presupposed. The 
monologicality of proof tries to forestall the listener by anticipating all of 
her possible objections. So the dialectical response is condensed into the 
ideal perfection of a monologic argument, in which no sign of speaker or 
listener remain (p. 5). 

The ideas of these two philosophers provide a basis for accepting mathematical 

proof as a form of discourse, and pave the way for analysing proof under the lens of 

communicational framework. Seeing proof from this perspective could open a new 

window toward the essence and the nature of proof, which could reveal the factors that 

impede students' active participation in creating a proof, and communication through 

proof. These assumptions based so far on theory need to be validated through research. 

To sum up, let us return to a definition of mathematical proof. "A mathematical 

proof of a given sentence is a finite sequence of sentences such that the first sentence is 

an axiom or has been derived from preceding sentence by applying rules of inference and 

the last sentence is the one to be proved" (Hanna, 1990, p. 6). Regarding the precise use 

of well-defined axioms, sentences, and rules of inference in the construction of a proof, it 

would be considered as a most literate form of a text in mathematics. On the other hand, 



the persuasive nature of it as an argument that compels the mind to accept an assertion as 

true, would give it a role as an objective tool for communication in a mathematical 

community. Hence, examining the above mentioned features of literate mathematical 

discourse - mathematical vocabulary, mediators, routines, and endorsed narratives - in 

students arguments could provide researcher with a better understanding of the nature of 

their arguments and the possible factors comprising their notion of proof. These features 

are explored in the following chapters. 



CHAPTER 4: 
HOW THE RESEARCH EMERGED 

In this chapter I review the studies through which my main research evolved over 

the years. The preliminary investigations of 'one line proof and 'what counts as a proof 

by pre-service elementary school teachers were followed by the study of 'proof as a 

discourse'. The extension and expansion of the latter study culminated in the current 

work. In what follows I describe the three studies: 'one line proof, 'what counts as a 

proof, and 'proof as a discourse', to describe how they paved the way for the current 

research. 

One line proof 

In this study we (Gholamazad, Liljedahl, & Zazkis, 2003) narrowed down the 

wide area of mathematical proof to very specific proofs in number theory that we denote 

"One Line Proof', metaphorically referring to very short proofs. For those we provided a 

framework that allowed us to carry out a fine grain analysis of participants' work, and 

gave insight into the complex coordination of competencies that is required for 

generating such short proofs. 

Participants of this study were 1 16 prospective elementary teachers, enrolled in 

the course 'Principles of Mathematics for Teachers' (the detailed information about this 

course is provided in chapter 5). During the course the students were exposed to the 

concept of closure as part of the discussion of number systems. The formal definition was 



provided: "a set is said to be closed under an operation if and only if for any two elements 

in the set the result of the operation is in the set". Further, a variety of examples of sets 

closed or not closed with respect to certain operations were provided and students were 

engaged in a variety of problems in which they had to prove or disprove claims. 

In this study we analysed the participants written response for the following two 

questions. 

(Ql) The set of perfect squares is closed under multiplication. Prove the 
statement or provide a counterexample. 

(42) The set of odd numbers is closed under multiplication. Prove the 
statement or provide a counterexample. 

For our purpose, we considered the "ideal" solutions (that is, proofs) of these statements 

to be: 

(Q1) Let a2  and b2 be any two square numbers. Then, a2x  b2 = (ab12 which 
is itself a square number. 

(Q2) Let (2m + 1) and (2n + 1) be two odd numbers. Then (2m + 1)(2n + 
1) = 4mn + 2m + 2n + 1 = 2 (2mn + m + n) + 1 which is itself odd. 

However, the generation of such seemingly simple and short proofs is deceivingly 

intricate, requiring an appreciation of the need for, and the coordination of many skills 

(see Figure 1). First and foremost is the recognition that a proof is indeed required for the 

purposes of establishing the truth of a statement. From a mathematical perspective, such a 

requirement is obvious. The establishment of the validity of a statement requires the 

treatment of the statement in general, as opposed to the examination of a few particular 

cases. Once a need for a proof has been established, the students then need to be sensitive 

to the fact that treatment of the general case requires the selection of some form of 



representation. Representations play a crucial role in mathematics; they are considered as 

tools for communication, as tools for symbolic manipulation, and as tools that promote 

and support thinking (e.g. Skemp, 1986; Kaput, 1991). Furthermore, the choice of 

representation is often linked to students' understanding of the content (Lamon, 2001). 

Figure 1: Pathway towards (and digression from) a one line proof 

unable to interpret 



However, the recognition that a representation is needed is not enough. The 

students must select one that is both correct and useful for the purposes of generating a 

proof. For Q1 (above), for example, choosing to represent the two square numbers as X 

and Y is in itself not incorrect, but for the purposes of generating a proof, it is completely 

useless. A much more effective (and natural) representation of two square numbers is a2 

and b2. Once such a representation is established, the students must then be able to work 

with it. That is, they must be able to perform correctly any manipulations necessary to 

transform the expression into the form that clearly represents the nature of the number. In 

the example of Ql such a manipulation is not onerous. 42, however, requires much 

greater adeptness with algebraic manipulation in order to mould the expression into one 

that clearly expresses its inherent 'oddness'. There is an assumption in this last sentence, 

though. The phrase clearly expresses assumes that the students are able to interpret the 

result of their manipulation as representative of what they are aiming to show. This is the 

last step in the proof process. The students must be able to constantly interpret their 

manipulations in order to know what they have found, and when they have found it. By 

analysing the students' work, we realized that the lack of understanding of each of these 

steps could be a potential obstacle in a pathway towards presenting an authentic proof. 

A complete and correct proof was provided by 19% of the participants for Q1 and 

by 37% of the participants for 42.  We organized students' incorrect responses according 

to the framework provided above. The potential obstacles at every step include: 

(Not) recognizing the need for a proof 

(Not) recognizing the need for representation 

(Not) providing a useful representation 



(Not) manipulating representation correctly 

(Not) interpreting the manipulation 

In general, the study demonstrated that the concept of closure was generally well 

grasped. That is to say, the majority of students understood that they were expected to 

show that the product of two perfect squares is a perfect square, and the product of two 

odd numbers results in an odd number. 

However, it is troublesome that what prevented some students from completing 

the proof was not their understanding of closure, or appreciation of the need for a proof, 

but a poor ability to choose an appropriate representation or inability to manipulate the 

chosen representation. The latter draws the focus from undergraduate teacher education 

and invites regression to skills of simple algebraic manipulation. Lack of competence in 

these skills presents an obstacle not only for correct manipulation, but also for 

interpreting the meaning of manipulation, that is, the ability to represent the manipulated 

expression in a desired form. 

Overall, the result of this study showed that students have different attitudes 

towards and understanding about proof. Hence, this study encouraged us to examine what 

really counts as a proof for pre-service elementary school teachers. 

What counts as a proof? 

Everyone who is involved in doing serious mathematics has asked himself or 

herself at least once in their lifetime, the basic question: what counts as proof, As simple 

as the question is, the answer to it is rather complicated. As already discussed in chapter 

2, the main reason for this is that, although there is an expectation that every individual 



mathematician should have an operational understanding of what aproof is, there seems 

to exist no succinct definition ofprooJ In fact, the varying interpretations of what 

constitutes a proof revolve largely around the notion of rigor. The question here is: how 

much rigor is required for various groups of students? 

In this study we (Gholamazad, Liljedahl, & Zazkis, 2004) investigated students' 

ability to evaluate the correctness of a given 'proof, that is, the ability to judge whether a 

given argument, or sequence of arguments, proves a given statement. We saw this ability 

as an important precursor to the ability to generate correct proofs. Furthermore, we 

believe that this ability is an extremely important one for teachers to have or acquire 

because they are to be the facilitators of mathematical understanding of their students. 

As such, we chose to focus our investigation on prospective elementary school 

teachers' ability to judge the validity of presented arguments as proofs. More specifically, 

we focused on the tendencies and trends in the accepting or rejecting of arguments as 

proofs and examined the role that numerical examples played in participants' reasoning. 

In this study we used the framework presented-above, referred to as "one line 

proofs" (Gholamazad, Liljedahl, & Zazkis, 2003). As already mentioned, the framework 

describes five competencies necessary for the generation of a complete and correct proof. 

Itemized competencies of this framework not only detail what is needed in generating 

short proofs of number properties, but also provide a tool for the diagnosis of possible 

obstacles in generating such proofs. As such, we used this framework as a guiding tool in 

the design of the instrument for this study. 

The seventy-five participants in this study were prospective elementary school 

teachers enrolled in the course "Principles of Mathematics for Teachers" (the detailed 



information about this course is provided in chapter 5). The participants responded to a 

written questionnaire in which they were asked to consider the validity of arguments 

purporting to 'prove' five different statements related to set closure (See the statements 

along with their 'proofs' that were used in the study in appendix I). They were asked to 

examine the arguments and decide, in each case, whether the argument was acceptable as 

a proof for the given statement or not. In the case that an argument was not acceptable, 

the participants were asked to provide an acceptable proof either by editing or by 

augmenting the presented argument as necessary. In particular, they were invited to 

delete parts of the presented arguments that they perceived as unnecessary. 

As mentioned, the 'proofs' were constructed from plausible errors as indicated by 

the framework. We examined the participants' awareness of situations in which a proof 

can rely on exhaustive consideration of all possible cases ('proof #1) and those where 

one example is sufficient ('proof #2). Furthermore, we examined the participants' 

awareness of the need for representation when a multitude of examples does not 

constitute a proof ('proof #3) and the existence of valid argument not involving 

algebraic symbolism ('proof #4). The final item ('proof #5) addressed the participants' 

attentiveness to the correctness of symbolic manipulation. 

The results of the study indicated that: 

The majority of participants accepted, as valid, proofs that consider all 

possible cases in a finite set. 

The majority of participants were not satisfied with the use of a single 

counterexample to disprove a claim. There was a tendency toward having 

more than one counterexample. 



The majority of participants accepted the confirmation of examples as a 

valid method of proof. 

The conventional form of presenting the proof seemed to play no role in 

the decision of a proofs validity. 

The majority of participants did not detect the error in algebraic 

manipulation of a given 'proof. 

In general, the participants' feedback demonstrated that, although the 

mathematical concepts of the statements were generally well grasped, the concept of 

proof was not. As such, they often believed that non-deductive arguments constitute a 

proof. For the majority of participants it seemed so clear that the sum of two multiples of 

five would be a multiple of five, or the product of two odd numbers would be an odd 

number, that they were unable to see the need for anything more than a few confirming 

examples as support. In the cases where the truth value of the statements was not as 

'obvious', the results still showed the tendency of the prospective elementary school 

teachers to acknowledge empirical verification as an acceptable proof. Together, these 

results confirm the findings of prior research (Harel & Sowder, 1998; Martin & Harel, 

1989; Fischbein & Kedem, 1982) that suggests a strong reliance on empirical proof 

schemes. However, an interesting contribution of our study dealt with a question of how 

many examples constitute a 'proof, as perceived by our participants. For the majority, 

two or three examples seemed to be sufficient, as evidenced by the way in which the 

participants deleted or added numerical examples to the provided arguments. 

Although, some research (Vinner, 1983; Selden & Selden, 2003) suggests that 

students tend to judge a mathematical argument on its appearance, we did not find high 



reliance on this 'ritualistic' aspect of proof. Instead, the arguments in items four and five 

were either augmented or verified with numerical examples before they were accepted as 

'proofs'. This finding, however, can be explained by the participants' mathematical 

background. Prospective elementary school teachers experience only minor exposure to 

the rituals of the proof, as compared to the participants (mathematics majors) in the 

aforementioned studies. As such, mathematical proof does not become a part of the 

prospective teachers' mathematical culture and beliefs in the same way that it does for 

mathematics majors. 

The results of this study drew my attention to the way that prospective elementary 

school teachers usually think while they are proving a mathematical statement. 

Considering the close relationship between language and knowing (Vygotsky, 1987) I 

decided to study the kind of language or discourse that the students use in their 

mathematical arguments. It seemed to me that considering students' discourse as a tool, 

would provide a valuable insight into the way that they think. In a further study 

(Gholamazad, 2005) I compared the discourses that are used by students in mathematical 

arguments, with literate mathematical discourses that are available in the literature. 

Proof as discourse 

Considering the idea that the language of proof can also be used to communicate 

and to debate, I examined students' generated proofs to see how successful they are in 

communicating their mathematical knowledge through it. I considered several theorems 

or claims and examined different kinds of proofs for these claims. The proofs were drawn 

from the work of Euclid, from work of a typical contemporary mathematics instructor, 

and from proofs provided by university students. 



In this study I adopted the communicational framework (Sfard, 2002; Ben- 

Yehuda et al, 2005). (See chapter 3 for the description of this framework). In my opinion 

this theoretical framework of mathematical discourse offers a new approach to the 

analysis of mathematical proof and students' learning of proof. Since itemized 

components of literate mathematical discourse not only detail what should be considered 

in generating proof and communicating through that, but also provide a tool for the 

diagnosis of possible obstacles in generating such proof. Furthermore, it offers a 

framework for the examination of proof as an evolving discourse, for in the work of 

Euclid, although crude by modem standards, there is available the first illustration of 

what present-day mathematicians would call a mathematical discourse (Newsom, 1964). 

For this study I adopted three propositions from Euclid's Elements (2002), which 

can be also found in most number theory textbooks. 

Proposition 24, from book seven: 

If two numbers be prime to any number, their product also will be prime 
to the same. 

Proposition 30, from book seven: 

If two numbers by multiplying one another make some number, and any 
prime number measure the product, it will also measure one of the original 
numbers. 

Proposition 29, from book nine: 

If an odd number by multiplying an odd number, make some number, the 
product will be odd. 

I adjusted the language of these propositions and presented them to 1 10 prospective 

elementary school teachers enrolled in the course "Principles of Mathematics for 



Teachers" (the detailed information about this course is provided in chapter 5). They 

were invited to determine whether the statement was true or false, and then to prove it or 

provide a counterexample respectively. Students' proofs for these propositions, in 

addition to Euclid's proofs (See appendix 2) and proofs presented by a typical 

contemporary math instructor, provided a good variety of discourses on mathematics. 

I had a close look at the role and the form of the characteristics of the literate 

mathematical discourses, according to the aforementioned framework, in each of the 

proofs. Although in different forms, the observations verified the inevitable presence of 

the components of the literate mathematical discourses in Euclid's and contemporary 

proofs. Non-attendance or wrong attendance of those components in students' works, 

however, can be seen as the factors that impede students' active participation in creating 

a proof, and communication through proof. 

Mathematical vocabulary: The hallmark of Euclid's proof is the precise use of 

well-defined words for concepts, numbers, operations, and the rules of inference. 

However, the same precision can be seen in a contemporary proof, where there can also 

be found an equivalent sign or symbol for most of the technical words. This is the 

distinguishing characteristic of contemporary mathematical discourse. 

Analysis of students' works revealed that familiarity with the colloquial uses of 

words might have given them means for an ad hoc interpretation. Indeed, their lack of 

understanding of mathematical concepts usually led them to use technical words in an 

inappropriate manner or using inappropriate words for a technical purpose. 

Mediators: The strong use of language in presenting a mathematical idea is the 

salient aspect of Euclid's proofs. The only non-lingual mediator in his proof is the line 



segments that he used as an icon or pictorial means for representing numbers. In a 

contemporary proof, algebraic symbols are the main mediator tools created specially for 

the sake of literate mathematical discourse. Surprisingly, in students7 works there was no 

high tendency to use algebraic symbols. The majority of students used numerical 

examples, as a visual mediator for understanding and showing the validity of the 

proposition. 

Routines: In Euclid's work, Aristotelian logic rules are the set of meta-rules or the 

routine that specify the 'how' of the proof. Considering the major role of the algebraic 

notations and symbols in contemporary proofs, the routine (beside the logic rules) is the 

rules for manipulating the algebraic notations and symbols. However, generalization 

based on a limited number of numerical examples was the dominating routine that was 

used by the majority of the students. Results also revealed that the mostly invisible rules 

that guide the general course of students7 communicational activities are influenced by 

their everyday discourse. 

Endorsed Narratives: Endorsed narratives, in general, are produced throughout 

the discursive activities. Indeed, as a result of mathematical routines, according to a set 

of well-defined rules, the new endorsed narratives are constructed from previous 

endorsed narratives. This chain of constructing endorsed narratives from previous ones is 

the main characteristic of Euclid's proofs. 

In the contemporary proof of the first and second proposition, for example, we 

can see the key role of the Fundamental Theorem of Arithmetic, as an endorsed narrative 

that supports and guides the whole process of the proof. The students' work, however, 

was mainly based on their intuition. Some of students' work demonstrated that they had a 



good understanding of the proposition but they did not know how to present it in the form 

of a mathematical proof. 

Examining the components of literate mathematical discourses in different 

discourses in past and present provides an opportunity to see their importance. However, 

an interesting contribution of my study deals with the gaps that the lack of each of these 

communicational means can cause. Indeed, these gaps may impede students' active 

participation in creating a proof, and communication through proof. 

In the work of Euclid's and modem texts however, based on totally different 

discourses, the persuasion aspect of proofs is salient. This aspect was the weakness of 

students' arguments. The results showed that the students' proofs were very subjective 

and based on their intuition, which is not enough to satisfy the social nature of proof. It 

seems that students did not consider the social aspect of the proof, that a proof should be 

convincing for a third person who reads it. Indeed, they were satisfied with an argument 

that was convincing enough for them. 

Overall, results showed that the students' arguments were significantly influenced 

by their colloquial discourse. Indeed, the results might remind us that we cannot teach or 

evaluate students in isolation and the fact that we cannot disconnect them from their 

everyday experiences. 

Conclusion 

All the above-mentioned studies led me to the question: how can we help students 

acquire a better understanding of a given proof and also how can we help them 

participate in a process of creating a mathematical proof? Since communication is a 



dialogic process, the meanings that are made by speakers and listeners or writers and 

readers with respect to individual utterances are strongly influenced by the discourse 

context in which they occur. This is the approach I will be using in my search for an 

effective method for teaching proof. In the following chapters I examine the students' 

engagement in creating a dialogue as a means towards understanding and creating proofs. 



CHAPTER 5: 
RESEARCH SETTING 

In this chapter I explain the research setting. First, I focus on how I extracted the 

idea of proof as a dialogue from the communicational approach to cognition. Next, I 

describe the educational environment in which this study took place, including the course 

setting, and the participants of the study. Then I introduce the tasks designed for the study 

and describe a rationale for this choice. 

Proof as a dialogue 

In this study I adopted the communicational approach to cognition (introduced in 

chapter 3), based on the learning-as-participation metaphor, and conceptualisation of 

thinking as an instance of communication. Considering the idea that thinking is a kind of 

communication that one has with oneself (Sfard, 2002), I encouraged students to write 

down the dialogue that they have withlor among themselves while they were thinking to 

understand or create a proof. The main purpose of this kind of task was to satisfy the 

convincing aspect of a student-generated proof, not only for the writer but also for the 

third person that might read it. Therefore, such dialogue should answer all the possible 

questions related to the mathematical properties or arguments used in a proof. 

Hare1 and Sowder (1 998) consider two sub processes for the process of proving: 

ascertaining, the process an individual employs to remove her or his own doubts about 

the truth of an observation, and persuading, the process an individual employs to remove 



others' doubts about the truth of an observation. Writing down a dialogue provides 

students an opportunity to reflect on their ascertaining and thinking process and to 

organize it in a convincing or persuading way. From this perspective the dialogue can be 

considered as an intermediate stage between having an overview of a proof and writing a 

mathematical proof. It also offers an opportunity for researchers to examine students' 

arguments, presented in their discourse, and to investigate the possible obstacles that 

impede their understanding and creating a proof. 

To introduce the idea of writing a proof through a dialogue the participants 

received a sample of a dialogue (see figure 2). The sample dialogue is between two 

imaginary persona, EXPLORER, the one who tries to prove the proposition, and WHYer, 

the one who asks all the possible questions related to the process of the proof. The main 

idea of designing these two personas was to consider two aspects of the character of an 

individual who is proving a mathematical statement. The dialogue is supposed to 

illustrate a conversation that one might have with oneself while one is thinking. 

Figure 2: Exploring proof via dialogue 

EXPLORER: If from an odd number an even number be subtracted, the result will be 

odd. 

WHYer: What is this? 

EXPLORER: This is a proposition. 

WHYer: What is a proposition? 

EXPLORER: A statement in terms of a truth to be demonstrated. 

WHYer: What do you mean by demonstrating? 

EXPLORER: To prove or make clear by reasoning or evidence. 

WHYer: What is proof? 

EXPLORER: Something that induces certainty or establishes validity. 



10. WHYer: Are you going to prove this proposition? 

11. EXPLORER: Yes! But I need to read it again to have better understanding of it.. ... 

12. WHYer: What are even and odd numbers? 

13. EXPLORER: An Even number is a whole number which is divisible by 2, such as 

2,4,6,8,. . .. In other words they are multiples of 2. 

14. WHYer: What about odd numbers? 

15. EXPLORER: An Odd number is a whole number which leaves a remainder of 1 when 

divided by 2, such as 1,3,5,7,. . . and so on. 

16. WHYer: How many of these numbers you might have? 

17. EXPLORER: Infinitely many. 

18. WHYer: So how are you going to prove the proposition? 

19. EXPLORER: Let me start with an example. 

20. WHYer: Why example? 

21. EXPLORER: Numerical example helps to set a sense of what the proposition is talking 

about. 

22. WHYer: Well, what is your example? 

23. EXPLORER: Let us take 7 as an odd number and 4 as an even. Then 7 - 4 = 3, which is 

an odd number. 

14. WHYer: What about other possible choices? 

1.5. EXPLORER: We can test it for other numbers as well. 

5 - 2 = 3 ,  1 1 - 6 = 5 ,  2 1 - 1 2 = 9 ,  9 - 4 ~ 5 ,  1 5 - 8 = 7  

All the examples confirm the proposition. 

!6. WHYer: But you test it for small numbers. How can you be sure that the result will be 

valid for big numbers as well? 

!7. EXPLORER: You are right. Let us test it for some bigger numbers: 

573-198=375, 48105-7964~40141,  12649729-9478920=3170809 

These examples confirm the proposition as well. 

!8. WHYer: Yes, but as you said there are infinitely many even and odd numbers that you 

have not tried them yet. How can you be sure that the proposition is valid for the cases 

that you didn't test? 

!9. EXPLORER: Your doubt is reasonable, but it is impossible to test the proposition for all 

the numbers. We will never finish. 

)O. WHYer: Is this why you need a proof? 



31. EXPLORER: Exactly. The proof will show that the proposition is true in general, that it 

is true for all the possible choices of numbers. 

32. WHYer: How can you do that? 

33. EXPLORER: We first need to use a form of representation for even and odd numbers. 

34. WHYer: What kind of representation? 

35. EXPLORER: A representation for an even and an odd number can be an algebraic 

expression, which shows the structure and properties of the number. 

36. WHYer: Like what? 

37. EXPLORER: Since an even number is a multiple of 2, we can represent it in the form of 

"2n". 

38. WHYer: What is n? 

39. EXPLORER: n can be any whole number. What ever we chose for n, 2n is always even. 

40. WHYer: And, what about odd numbers? 

41. EXPLORER: Similarly, since an odd number has remainder 1 after dividing by 2, we 

can represent it by "2mt-1" where "m" can be any whole number. We also assure then 

m 2 n .  

42. WHYer: Why did you say m 2 n. 

13. EXPLORER: We want to stay with whole numbers, and if this condition doesn't hold, 

the subtraction may take us outside of whole numbers. 

14. WHYer: And, why did you use n and m? 

15. EXPLORER: Actually it doesn't matter what letter you use, m, n, r, k, . . . . 
It is just a symbol that can be substituted with any whole number. 

16. WHYer: So, can we use 2n for an even and 2n+ 1 for an odd? 

17. EXPLORER: This would mean that we have chosen consecutive numbers. To emphasis 

that the proposition is about any even and any odd we chose different letters. 

18. WHYer: I see, you are saying that 2n is a representation for any even number and 2m+ 1 

is a representation for any odd number. Now, I'm wondering in what way are these 

useful? 

19. EXPLORER: Subtract 2n from 2m+ 1 and have: (2m +1) - 2n. 

;0. WHYer: How can you say if the result is an odd number or not? 

il. EXPLORER: For being an odd number, (2m +1) - 2n should be in the form of "2 times 

some whole number, plus 1". 

i2. WHYer: Yes. But is it? 

i3. EXPLORER: Not apparently. But we can manipulate it based on properties of numbers. 
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54. WHYer: What manipulation? It is not clear for me! 

55. EXPLORER: By using the properties of numbers we can rearrange the terms of our 

expression, (2m + I )  - 2n, and obtain its equivalent expression. 

56. WHYer: could you show it? 

57. EXPLORER: Yes, based on commutative property and associative property of whole 

numbers we can write 

(2m+ 1) -2n  = ( 2 m - 2 n ) +  1 

58. WHYer: Are you saying that (2m - 2n) + 1 is an odd number? 

59. EXPLORER: Yes, but to see this clearly we can pull out 2  from the first two terms, as 

their common factor, as follows: 

( 2 m - 2 n ) + 1 = 2 ( m - n ) + 1  

In fact we have applied the distributive property, ab - ac = a(b - c). 

60. WHYer: Okay. What is next? 

61. EXPLORER: Since m  and n  are two whole numbers, and m  is bigger or equal to n, the 

result (m - n) would be also a whole number. 

62. WHYer: Is this what you wanted? 

63. EXPLORER: Indeed, we had to show that the result is of the form 

2xfsome whole number) + 1. To see this more clear we can say that rn - n  = k. Then 

2(m - n) + 1 can be written 2k + 1 ,  which has the structure of an odd number. 

64. WHYer: Sony to say that but I lost the point of your last interpretation. Can you 

summarize your argument? 

65. EXPLORER: We wanted to show if we subtract an even number from an odd number 

the result would be an odd number. We considered (2m +1) as an odd number and 2n as 

an even number, where m  and n  are whole numbers and m  2 n. 

Therefore: (2m + 1 )  - 2n = (2m - 2n) + 1 

= 2  (m - n) + 1 ( m  - n  is a whole number, k)  

= 2k + 1 which is an odd number. 

Now we can say that we proved the validity of the proposition. 

66. WHYer: Do you always make it so complicated? 

67. EXPLORER: In fact, the three lines above are sufficient for a proof. What we did here 

was to explain every symbol and every step in this derivation. 



My claim is that such a self-dialogue happens in the mind of whoever is proving a 

mathematical statement. However, depending on the familiarity of a person with a 

mathematical discourse, the dialogue might take varying amounts of time and may 

express diverse qualities or rationality. For instance, for a mathematician it might take 

half a second and the answers to some of the 'whys' are implicit in his or her 

understanding. However, for a nai've student it might take much longer and it might not 

include the answer to all the possible 'whys'. In my experience, the main problem with 

the nai've students' self-dialogue is that many of the reasonable questions in the process 

of proving are not usually 'a question'for them. 

According to Sfard (2002) the process of thoughtful imitation is the most natural, 

or rather, the only imaginable way to enter new discourse. Therefore observing the more 

experienced players in mathematics may enable students to make sense of the new rules 

of the mathematical games and may enable them to participate in the activity. Hence, in 

this study, I brought the participants into a discourse through imitation. I did this by 

giving the students the sample dialogue to encourage them to pose questions in the 

environment of dialogue. I believe that writing a dialogue could cultivate the art of 

question posing, and after a while would become a part of the culture of students' 

mathematical thinking. 

For a teacher, the dialogues offer an opportunity to examine students' arguments, 

and through posing more appropriate questions, lead the students to refine and strengthen 

their arguments. On the other hand, for researchers, written dialogues provide a rich 

source of students' discourses. Analysis of the discourses may reveal the factors that 

block or mislead the learners' understanding and production of proof. 



To remind the reader, this study sought to address the following research 

questions: 

1. What difficulties do pre-service elementary school teachers experience in 

writing and interpreting proofs for propositions related to elementary number 

theory? 

2. What are the outcomes of students' activity of creating a dialogue? 

(a) Does it facilitate students' participation in the process of proving? 

(b) Does it reveal their difficulties in this process? 

3. Can communicational approach to cognition serve as a tool for researchers in 

recognizing and identifying factors that impede pre-service elementary school 

teachers' participation in the process of creating and interpreting proofs? 

For the purpose of answering the questions, I explored students' engagement in creating 

proofs in the environment of a dialogue. 

Participants 

Participants in this study were 93 pre-service elementary school teachers enrolled 

in the course "Principles of Mathematics for Teachers" described in the next section. A 

survey on the background of the participants showed that none of them had mathematics 

or science as herlhis major or minor. The students mostly majored or intended to 

complete their degree in History, Geography, Psychology, English, Interactive Arts, and 

Sociology. Their background in mathematics was not strong. 70% of the participants 

mentioned that the last mathematics course that they had taken was mathematics I 1  in 

high school, and the rest of them had some college courses such as statistics, accounting, 



and business math. The main reason for students7 taking the course was to fulfil the 

requirements and get into the Professional Development Program (PDP), which is a 

program for teacher certification. In general, most of the students enrolled in the course 

did not show much enthusiasm for mathematics. In other words, they did not consider a 

great role for mathematics as a part of their academic identity. 

The course setting 

One of the prerequisite courses for entry into PDP at Simon Fraser University is 

'Principles of Mathematics for Teachers7, or Math190. The prerequisite for this course is 

Grade 11 Mathematics (or equivalent) with a grade of at least 'C' or permission of the 

Mathematics department. The goal of this course is to promote the understanding of 

mathematical concepts and relationships. It concentrates on investigating why we do 

something in mathematical activities rather than how we do it. It looks at the language of 

mathematics, patterns, and problem solving. 

The course has been designed to cover mathematical ideas involved in number 

systems and geometry in the elementary school curriculum. Whole number, fractional 

number, and rational number systems, plane geometry, solid geometry, and motion 

geometry constitute the content of the course. One of the issues that wove itself through 

all the topics of the course is the need for support of mathematical claims. Extensive 

discussion and exercises are usually aimed at helping students understand when and 

where a general argument, or a proof, is needed and when an example is sufficient. 

The course runs for one semester, and has two, two-hour sessions each week. The 

course mark is determined from performance on weekly assignments, a project, two 



midterms, and a final exam. The students in this course are provided with support through 

an open tutorial lab. The lab is a place where students can go to seek help with their 

homework problems as well as a place to meet each other, exchange their experiences, 

and work on assignments. The lab is open to students from 20 to 30 hours per week and 

is staffed at all times with one to four teaching assistants. 

Tasks 

Number Theory is one of the chapters taught in Math 190. The topics include: 

Prime numbers as the building blocks for counting numbers, 

Divisibility of the counting numbers and its properties, 

The greatest common factor and the lowest common multiple of the 

counting numbers and the application of these concepts in solving 

different problems, 

The Fundamental Theorem of Arithmetic and its application in solving 

problems or proving other propositions, 

Euclid's Theorem about infinitely many prime numbers. 

In this study, the students were presented with several tasks related to number 

theory as a part of the course assignments, the course project, and the exams. Details of 

each task are summarized in Table 1. Further detail is provided in the next section. 

Based on the purpose of the tasks, the participants performed them in small 

groups or individually. Task 1 was designed as a diagnostic tool to assess students 

understanding of what is considered a proof. Given the developmental priority of 



communicative public speech over inner private speech (Vygotsky, 1987) discussed in 

chapter 3, the students were asked to work on Task 2 and Task 3 in a group of two to 

four. The main purpose of the group work was to encourage the students to have a 

discussion and to provide a reason to convince each other about their ideas and claims. 

For the remaining tasks (4, 5, and 6) students were asked to work individually. 

They were expected to incorporate the experiences from the group discussions on prior 

tasks into their individual performance on tasks 4, 5, and 6. The students received 

detailed written comments on their performance. 

Task 

Table 1: Synopsis of tasks 

Time of the task 

Week 6 

Form of 
the task 

Week 5 

-Group work 
-Homework 
assignment 

-Midterm 
question 

Week 8 

Week 10 

-Group work 
-Homework 
assignment 

-Individual 
-Midterm 
question 

Description of the task 

The sum of any 3 odd numbers is odd. 
Is it true or false? 
Provide a convincing argument to justify your 
decision. 

The set of odd numbers is closed under 
multiplication. 
Prove the statement by filling the blanks in the given 
dialogue. Make it convincing for yourself and any 
otherreader. 
Consider the following statement and its given 
proof. 
For any two whole numbers a and b, if a and b 
are relatively prime then a2 and b are also 
relatively prime. 
Write a dialogue between two characters that will 
convince yourself and everybody else about the . . 

validity of;he given proof. 
a) Prove the following statement by filling the 

blanks in the given dialogue. 

For any three whole numbers a, m, and n ,  if alm 
and aln, then alm+n. 

b) Consider the following statement for natural 
numbers a, b and c. 
If alb and blc then alc. 
Circle one TRUEIFALSE. Prove it or provide a 
counterexan~ple. 



Task 
Form of 

Time of the task 

Week 9 
(Students were 

allowed to work on 
the project for three 

weeks.) 

Week 14 

the task 

-Individual 
-Course 
project 

-Individual 
-Final exam 

Description of the task 

a) Consider the following statement and its given 
proof. Write a dialogue that you have with yourself 
while you are convincing yourself about the validity 
of the given proof. 

I f p  is a prime number andplab thenpla orplb. 

b) Write a dialogue that you have with yourself for 
proving the following proposition. 

Let a, b, and c be whole numbers. If a and c a r e  
relatively prime, and b and c a re  relatively prime 
then a b  and c a re  relatively prime. 

a) Consider the following statement 

If a and c are  relatively prime and b and c a r e  
relatively prime, then a X b  and c a re  relatively 
prime. 

Is this statement true or false? Circle TRUEIFALSE. 
If true-justify. If false-provide a counterexample. 

b) Consider the following statement: 

The sum of any 3 multiple of 7 is a multiple of 7. 

IS this statement true or false? Circle TRUEFALSE. 
If true-justify. If false-provide a counterexample. 

Task analysis 

The selection of the tasks was guided by the progression of thinking about proof. 

In what follows I discuss the purpose of including the tasks for data collection. The 

pedagogical value of the tasks will be offered in the last chapter. 

Task 1 

The sum of any 3 odd numbers is odd. 

Is it true or false? 

l~rovide a convincing argument to justify your decision. I 



Task 1 was a part of a question in the first midterm exam. A typical mathematical 

proof for the statement is: 

Consider 2n+ 1, 2m+ 1, 2k+ 1 as three odd numbers where n, m, and k are 
whole numbers. Then (2n+1)+(2m+I)+(2k+l) = 2(n+m+k+l)+l, which 
is an odd number. 

The purpose of asking this question was to investigate whether students pay 

attention to the fact that a convincing argument in mathematics, even for such simple and 

obvious statements, required a deductive reasoning that satisfied the generality of the 

claim. 

Task 2 

Prove the given statement by filling the blanks in the following dialogue. Make it convincing for 

yourself and any other reader. 

1. EXPLORER: I am going to prove that "the set of odd numbers is closed under 

multiplication." 

2. WHYer: Could you tell me what is an odd number? 

3. EXPLORER: Sure, an Odd number is 

4. WHYer: And what is the set of odd numbers? Can you show it? 

5. EXPLORER: Yes, we can show it by 

6. WHYer: Fine. But, what does it mean that the set "is closed under multiplication"? 

7. EXPLORER: It means 

8. WHYer: Can you give me an example of it? 

9. EXPLORER: For example 

10. WHYer: I see. Did you prove the statement by these examples? 

11. EXPLORER: These numerical examples 



12. WHYer: Why? 

13. EXPLORER: Because 

14. WHYer: How can you show that the statement is true in general? 

15. EXPLORER: First we need to select a notation that represents odd numbers in general. 

16. WHYer: Can you explain it more? 

17. EXPLORER: Sure. We can consider 2m+l as an odd number, where rn is a whole number, 

18. WHYer: How can you multiply them? 

19. EXPLORER: By using the properties of multiplication and addition: 

(2m + 1 )  x ( > = 

20. WHYer: But how can you say that the result is an odd number? 

21. EXPLORER: To make it more clear we can manipulate the result and simplify it in a form of 

an odd number 

22. WHYer: Could you please repeat and summarize what you have done? 

23. EXPLORER: Sure. I considered - and - as two odd numbers in general and 

24. WHYer: Can we consider it now as a proof for the given statement? 

25. EXPLORER: 

The participants received Task 2 attached to a copy of the sample dialogue (see p. 

61) The sample dialogue addresses the proposition: 'The difference of an odd number and 

an even number is an odd number '. The similarity of this statement with the one in the 

first task provided the participants with an opportunity to have a reflection on their 

previous performance in Task 1. Indeed, the main purpose of giving the sample dialogue 

was to show the students how many reasonable questions the proof of such simple 



statement might bring up. Also, I wanted to encourage the students to have such a self- 

dialogue when they were making a deductive argument. 

In Task 2 participants were asked to complete the given dialogue (see p. 71) to 

prove that 'the set of odd numbers is closed under multiplication '. The reason for 

choosing "incomplete dialogue" was to make students more familiar with the possible 

questions in a process of proving a statement. The incomplete dialogue provided them 

with an opportunity to face the questions that they should answer to prove the statement. 

The design of the questions was based mainly on the most plausible errors as indicated by 

the "one line proof' framework (Gholamazad, Liljedahl, & Zazkis, 2003). As was 

mentioned in chapter 4, the framework describes five competencies necessary for the 

generation of a complete and correct proof. Answering the questions of WHYer in Task 2 

leads the students to a proof for the statement. 

Task 3 

Consider the proposition and its proof. 

Write a dialogue that you have with yourself while you are convincing yourself about the validity 

of the given proof. 

Proposition: For any two whole numbers a and b, if a and b are relatively prime then a and b 

are also relatively prime. 

Proof: By the Fundamental Theorem of Arithmetic each whole number can be expressed as the 

product of primes in exactly one way. 

Let a and b be expressed as the product of primes as follows: 

2 2 2 2 Thena =pip ,.... p,ll  

Since a and b do not have any common prime factor therefore a and b do not have either. 

Therefore a and b are relatively prime. 



Having an ability to understand proofs is crucial for being able to evaluate and 

generate mathematical arguments and reasoning. Task 3 provides a researcher an 

opportunity to explore how students go through the different steps in the process of 

interpreting. In the task students were asked to write a dialogue to extend the given proof 

for a number theory proposition. 

The proposition was related to the course material, but it was unfamiliar to the 

participants. They saw the proposition and its proof in this task for the first time. This 

task was also designed to be completed in a group. It was expected that students would 

discuss and question all the steps of the proof in their group, and through posing and 

answering the questions make the given proof clear and convincing for themselves and 

for the reader. 

Task 4 

a) Prove the given statement by filling the blanks in the following dialogue. 

1. EXPLORER: I am going to prove that " for any three whole numbers a, m, and n, if alm and 

aln, then al(m + n)." 

2. WHYer: How do you read alm? 

3. EXPLORER: We say a divides m. 

4. WHYer: What does "a divides m mean"? 

5. EXPLORER: "a divides m" means for some whole number x we have ax = m. 

6.  WHYer: Can you give me an example of it? 

7. EXPLORER: Sure. For example divides because 

8. WHYer: Can you explain what you are going to prove? 

9. EXPLORER: Well, let's get started with an example of it. If a = , m = , and n = 

, you see 

10. WHYer: So does the example proved the statement? 

11. E X P L O R E R : ,  limited number of examples a proof for a general statement. 



/ 13. EXPLORER: I will use the definition of divisibility to prove the statement. 

If a 1 m then - - for some whole number , and 

If aln then - - for some whole number . 

Adding the respective sides of the two equations we have 

And that implies al(m + n). 

14. WHYer: Do you know if the converse of the statement is also a true statement or not? 

15. EXPLORER: What do you mean? 

16. WHYer: I mean, shall we say for any three whole numbers a, m, and n, 

if aj(m + n), then alm and aln? 

17. EXPLORER: I don't know. Let's see 

b ) Consider the following statement: 

For natural numbers a, b and c, 

if alb and blc, then alc. 

Circle one TRUEIFALSE. Prove it or provide a counterexample. 

Task 4 was a part of the second midterm exam, and therefore, performed 

individually. This task consisted of two parts. In the first part students were asked to fill 

the blanks of the given incomplete dialogue, and in the second part they were asked to 

prove the given proposition. 

In the beginning of the given incomplete dialogue students were reminded of the 

algebraic definition of the divisibility of one whole number by another (see line 5). The 

main purpose of the task was to see whether and how students interpret the given 
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definitions and then implement them in the process of proving the statement. The 

students also received the converse of the given statement (see line1 6), and they were 

asked to examine whether it was valid or not. The purpose of including this part was to 

see whether students could recognize that for rejecting a general statement one 

counterexample is enough. 

The purpose of the second part of the task was to examine participants' awareness 

of their work on the first part. In other words, the main purpose was to see if the 

participants could implement the definition of divisibility in a new situation and if they 

were capable of creating and presenting a reasonable argument without further hint. 

Task 5 

a) Consider the following proposition and its proof. 

Write a dialogue that you have with yourself while you are convincing yourself about the validity 

of the given proof. 

I Proposition: I fp  is a prime number a n d p a b  thenpla or plb. 

Proof: Sinceplab, then ab=px for some whole number x. 

Let a and b be expressed as the product of primes as follows: 

Therefore ab = p , p2  .... p ,, q ,  q , ...q 

Or px ....pn, q ,q2  ...qn 

By the Fundamental Theorem of Arithmetic each composite number can be 

expressed as the product of primes in exactly one way, 

and s o p  = p ,  or q for some i,j ( 1 S i i m ,  1 S j S n ) .  

I f p  = p i  thenpla, 

and i f p  = q thenplb. 



b) Write a dialogue that you have with yourself for proving the following proposition. 

Proposition: Let a, b, and c be whole numbers. 

If a and c are relatively prime, and b and c are relatively prime then ab and c are relatively prime. 

Task 5 was a part of the course project. The participants were asked to perform 

this Task individually, and they had three weeks to work on it. As pointed out earlier, the 

main purpose of asking the participants to extend a proof in the form of a dialogue was to 

provide a researcher and an instructor with an access to the possible difficulties that 

participants may experience. Indeed, investigating the learners7 questions and answers, as 

well as the important points that are not included in their questions, may reveal the 

quality of the participants' engagement in the process of understanding a given proof. 

The purpose of the second part of the task was to encourage students to prove the 

given statement through writing down their self-dialogue. The given statement in this part 

was unfamiliar for the students; however, it could be considered as a kind of 

generalization for the statement presented in Task 3. Hence, performing this task would 

be an evaluation for students' progress in communicating mathematically with 

themselves and creating a proof through their self-dialogue. 

Task 6 

a) Consider the following statement 

If a and c are relatively prime and b and c are relatively prime, then a x  b and c are relatively 

prime. 

Is this statement true or false? Circle TRUERAISE. 

If true-justify. If false-provide a counterexample. 



b) Consider the following statement: 

The sum of any 3 multiple of 7 is a multiple of 7. 

Is this statement true or false? Circle TRUEJFALSE. 

If true-justify. If false-provide a counterexample. 

Task 6 was a part of the final exam, and had two parts. In the first part 

participants were exposed to the proposition that they had already written a dialogue for 

in the project: 

Let a, b, and c be whole numbers. I f a  and c are relatively prime, and b 
and c are relativelyprime then a x  b and c are relatively prime. 

And, in the second part of the task they were asked to provide a proof for the unfamiliar 

statement: 

The sum of any 3 multiple of 7 is a multiple of 7. 

The main purpose of Task 6 was to evaluate the participants' improvement in 

presenting mathematical argument, particularly, to evaluate students' performance 

outside of the environment of dialogue. Task 6 also investigates participants' 

understanding and engagement in creating a proof in a form of a literate mathematical 

discourse. 

Summary 

In this chapter I introduced the setting for the research and the tasks designed for 

this study. In particular, I discussed the purpose and the rationale for including the tasks. 

The selection of the tasks was guided by two criteria: mathematical content and 

engagement of students in the process of proving. The tasks addressed several key 



concepts of elementary number theory: whole numbers, prime numbers, relatively prime 

numbers, divisibility and Fundamental Theorem of Arithmetic. The progression of the 

tasks followed the gradual involvement of students in the process of proving, from public 

to private, moving from imitation of sample dialogue by completing and explaining a 

proof in a group to creating a proof individually. 

Task 1 reveals the students' initial mathematical discourse for presenting a 

convincing argument. Tasks 2-5 require students to actively participate in the 

construction of a proof in a form of a dialogue through completing the given dialogue and 

writing their own dialogue. Task 6 evaluates the students' writing of a proof for the 

familiar and unfamiliar propositions. Tasks 6(a) and 5(b) introduce the same proposition 

but require a different approach to presenting an argument: as a formal proof and as a 

dialogue, respectively. Considering the idea that learning means a change in the manner 

of communication (Sfard, 2002), the similarity of Tasks 1 and 6(b) reveals a possible 

change in the students' discourse for presenting a mathematical proof. Chapters 6 and 7 

discuss and analyse the results of the study. 



CHAPTER 6: 
RESULTS AND ANALYSIS, BY TASKS 

In this chapter I describe the participants' perfonnance on each task. It was not 

the purpose of the study to quantify participants' responses. However, when presenting 

the results I will give a quantitative summary of the responses if it is applicable, followed 

by the samples of students' work and their analysis. 

Task 1 

The sum of any 3 odd numbers is odd. 

Is it true or false? 

Provide a convincing argument to justify your decision. 

In Task 1, the participants were asked to provide a convincing2 argument for the 

mathematical statement. 93 pre-service elementary school teachers provided arguments 

for the given statement. All the participants acknowledged that the statement is true. 

None of the students presented a correct algebraic proof for the statement. Different types 

of arguments and mediators used by participants for communicating their ideas are 

presented in Table 2. 

By "convincing" I mean, "convincing according to mathematical convention" 



Table 2: Summary of students' responses to Task 1 

Type of argument The applied mediators 
Number of 

students 

Potentially reasonable arguments 
Empirical reasoning 
Intuitive reasoning 

Potentially reasonable arguments 

Five of the participants created reasonable arguments based on their common 

sense. These students used all the tools available to them to create a convincing 

argument. Four of them presented a generic proof by use of pictorial mediators. They 

applied the basic property and structure of odd numbers without using algebraic symbols. 

Superficial algebraic reasoning 
Wrong reasoning 

Indeed, their work illustrate a very good use of non-algebraic symbols in presenting a 

convincing argument (see Fig. 3) 

Pictorial mediators and numbers 
Verbal explanation and numbers 
Verbal ex~lanation 

Figure 3: Use of non-algebraic symbols as a mediator for Task 1 

(n = 93) 
5 

5 4 
11 

Algebraic symbols and numbers 
Verbal explanation 

11 
12 



Another form of a reasonable argument was provided with a student who tried to 

test all the possible cases. In other words, she tried to present a proof by exhaustion. She 

wrote: 

1+3+5=9 7+9+1 1=27 (1 +3+5)+7+9=25=ODD 

n+m=Odd 

The last # of any odd # will be either 1,3,5,7 or 9 

When any combination of these are added together the outcome is an odd # so 

therefore the sum of 3 odd #'s will be odd 

It is obvious that in writing "the last # of any odd #" the student meant to say "the 

last digit of an odd number". Her argument, if it were complete, could be a very natural 

and reasonable approach for showing the validity of the statement. 

Empirical reasoning 

The results of this task show the high reliance of the participants on numerical 

evidence and rhetorical tools. As shown in Table 2 the majority of the participants (54 out 

of 93) established their argument considering numerical examples. Based on the 

numerical evidence the statement sounded too obvious to these students. The following 

example is a sample of this approach: 



An example of how the statement is true is: 

ie. 25+97+3=125 

you can keep providing examples and discover that the sum of three odd numbers 

will always end up an odd number. 

Intuitive reasoning 

The common explanation used by the participants in this category shows their 

intuitive understanding of the statement. They explained that since the sum of two odd 

numbers is an even number and the sum of an odd and an even number is an odd number, 

therefore the sum of three odd numbers is an odd number. Indeed, based on their intuition 

and despite their deficiency in reasonable representation, the students presented a correct 

overview of the proof without going through its deductive details, such as why the sum of 

two odd numbers is an even number. An example of these arguments is as follows: 

The statement is true since the sum of 2 odd numbers is even (odd + odd = even) 

and the sum of an odd and even number is odd (odd + even = odd), the sum of 

the first two odd numbers equals an even number to which an odd number is 

added, thus giving us an odd total, or odd + odd = even + odd = odd. 

Superficial algebraic reasoning 

None of the participants who tried to use the algebraic notations in their 

arguments were successful. Indeed, the superficial use of notations in the arguments 

revealed the participants' weakness in use of algebraic tools. For instance, some of them 

used consecutive notations, XI X + 2, X + 4, without even referring to the structure of X 



as an odd number. Others, took the same representation for the three odd numbers, X + 1, 

X + 1, X + 1, again without referring to the structure of X as an even number. The 

following argument exemplifies the superficial use of symbols in some of the participants 

work. 

Two odd numbers added together will always have an even sum. 

D {odd numbers) F {even numbers) 

a€  D b~ D c~ F 

a + b = c  

3a + 3a = 6a 

An even number and an odd number added together will always have an odd sum 

X E  D 

2 + 3 = 5  

2 a + a = a  

a + c = x  

Wrong reasoning 

Twelve of the students presented different kinds of incorrect reasoning. The root 

of most of the students' problems was in misunderstanding the mathematical rules. For 

example one of the students wrote: 

The sum of any 3  odd numbers is odd because each of the addends cannot be 

divided by an even number. Therefore the sum of those numbers would have the 

same property as well. 



As it can be seen the student generalized the property of each addend to their 

sum, which is not true in general. These kinds of reasoning, however incorrect, are a rich 

source of the discourses and logical inferences used by the students. For example, an 

incorrect wording in students7 discourse can be seen in the following argument. 

Any two number added together can be divided by 2. That is, 2 + 2 can be split 

into its original 2 parts. 3 + 3,4 + 4,5 + 5, every two numbers added together can 

be divided back into its 2 original numbers. 

3 whole numbers added together cannot be split into 2 numbers if the result of 

the split must stay a whole number. 

In this argument the student expressed her belief that "every two numbers added together 

can be divided back into its 2 original numbers" However, the presented examples show 

that she meant the statement for "every two equal numbers", not every two numbers in 

general. She also, without expressing it explicitly, considered an odd number as a 

number which is not divisible by 2, and without any more explanation, seeming only to 

base it on the example, evaluated the given statement as true. 

In general, the results of this task showed the majority of students had a personal 

understanding of the given statement. Indeed, the statement was too obvious for the 

majority of them. Therefore, they skipped the answers of the basic 'whys7 that could have 

made their argument self-sufficient and convincing from a mathematical point of view. 



Task 2 

Prove the given statement by filling the blanks in the following dialogue (see p. 71). Make it 

convincing for yourself and any other reader. 

The set of odd numbers is closed under multiplication. 

In this task students were supposed to fill in the blanks of the given incomplete 

dialogue to prove that 'the set of odd numbers is closed under multiplication'. They 

completed this dialogue in groups of 2 to 4. The number of completed dialogues was 26. 

The questions in the incomplete dialogue addressed the key points, definitions, and 

properties that were required for proving the proposition. The questions and analysis 

were designed based on the possible obstacles that were explained in the 'one line proof 

framework in chapter 4. The results showed four groups of the participants could 

complete the argument properly. A summary of the results is presented in the Table 3. 

Table 3: Summary of students' responses to Task 2 

Number of groups (n = 26) 1 Description of the responses 
6 
4 
8 

All of the groups presented correct definitions for an odd number (line 3), 

however, some of them had a weak performance for showing the set of odd numbers (line 

5). All the groups, also, presented a correct definition for the closure property of a set, 

and described it further by presenting some related numerical examples. 

Acknowledged numerical examples as a proof 
Could not choose appropriate representation 
Could not mani~ulate the chosen remesentations correctlv 

4 
4 

Could not interpret the results correctly 
Could comdete the proof reasonably well 



To answer the question "did you prove the statement by these examples?" (line 

1 O), more than half of the groups, in different phrases, acknowledged that some 

numerical example could not be a proof for the statement. However, some of them 

accepted numerical examples as a proof. For example, one of the groups wrote: 

These numerical examplesprove this as the product is always a whole number 

try it yourselfand see ifyou can come up with one answer to disprove this 

statement. That's all you need. One example to disprove3. 

And to answer the "why" (line 12) they explained: 

Because the number system we use base I0  makes it so. 

This rhetorical answer, although not wrong, cannot be considered as an acceptable reason 

from a mathematical point of view. In another dialogue, students gave more examples to 

support their idea: 

These numerical examples show that the set is closed because ifyou multiply any 

of the two numbers together the answer will also be in the set. Ex. 1 x 3=3, 

3 x 5=l5, and so on. 

And to answer "why" they explained: 

Because the set contains all of the odd whole numbers and theproduct of two 

odd numbers is always an odd number. 

The italics are added to represent students' writings. 

87 



As it can be seen, this group used the statement itself in its proof. This was a common 

problem in students' arguments. Several groups, to answer the above-mentioned 

questions (lines 10 and 12), gave some explanations based on their empirical results and 

intuitions. For example one of the groups wrote: 

These numerical examples help set an example for what a number closed under 

multiplication looks like. 

And to answer "why" they explained: 

Because our examples show that an odd number multiplied by an odd number 

equals an odd number. 

Choosing an appropriate representation for odd numbers and manipulating them 

correctly is an important part of writing a proof for the statement. In the dialogue, a 

representation for an odd number was given. The point was to see if the participants 

could choose an appropriate representation for the second odd number (line 19) that 

satisfied the generality of the argument, because keeping the generality of the proof was 

not possible without choosing appropriate representations. 

Results showed that in several dialogues the chosen algebraic notations were 

incorrect or inappropriate. For example, in the following excerpt the chosen notations are 

representing two consecutive odd numbers, which does not satisfy the generality of the 

argument. 



Manipulating the algebraic notations is very challenging for pre-service 

elementary teachers. It can be seen in some dialogues that their sound reasoning was 

established on the incorrect results. For example one of the groups wrote: 

And for simplification (line2 1 )  they wrote 

We say that m + n = k, when k E W s o  then 2(m + n) + 1 can be written as 2k + 
1 which has the structure of an odd number. 

There were also some groups that wrote a correct product but they could not 

interpret the result. One example of it is as follows: 

For simplification (line 2 1) they wrote, 

if m = 3 and k = 5 then 2(2(3)(5) + (3) + (5)) + 1 = 77 

This shows the high reliance of this group on numbers as the main mediator and the 

superficial use of algebraic notation. As it is observed, even for substituting m and k the 

students used odd numbers, which may show that the structure of 2m+l has not had that 

much meaning for them. 

For presenting a summary of their argument, most of the groups used the 

algebraic notations that they had already introduced in their argument as the main tool for 



communicating their idea. However, some groups, despite working with algebraic 

notations, summarized their argument in a narrative style. For example: 

I considered 2m+l and 2n+l as two odd numbers in general and multiplied them 

together. With properties of multiplication and addition we recognize the product 

into a simple form of an even number plus one, making an odd number. 

There were also two groups that summarized their argument by using more numerical 

examples: 

I considered 3 and 7 as two odd numbers in general and when we multiply 3X 7 it 

equal 21 which is odd. When using algebra equation, any number can be put into 

the equation to create an odd answer. 

In general, the results of this task revealed yet again the participants' high reliance 

on the numerical examples and their poor skill in working with the algebraic notations. 

Task 3 

Consider the proposition and its proof (see p. 73). 

Write a dialogue that you have with yourself while you are convincing yourself about the validity 

of the given proof. 

Proposition: For any two whole numbers a and b, if a and b are relatively prime then a and b 

are also relatively prime. 

In Task 3 participants were given the statement and its proof (see chapter 5 ) ,  and 

were asked to write a dialogue they would have while convincing themselves about the 

validity of the given proof. They performed the task in groups of 2 to 4. Altogether 25 



dialogues were created. In this task participants wrote a complete dialogue for the first 

time. Results showed many of the sentences that they used in their dialogues were an 

exact duplication of the sentences from the sample dialogue. The artificial use of those 

sentences revealed students' lack of understanding in different places. However, such 

duplication can be considered as the first step in imitation, and may be a necessary step in 

the progress of students' evolution towards creating a proof. Almost none of the groups 

created a dialogue that answered all of the implicit key 'whys' of the proof. In what 

follows I explain some of the characteristics and problems in students' discourses that the 

environment of dialogue made them known for the researcher. 

All of the dialogues began by referring to the definition of 'relatively prime 

numbers'. In addition to the main concept in the statement - 'relatively prime numbers' - 

the majority of participants recalled some other concepts as well. They defined the 

concepts such as whole numbers, prime numbers, composite number, greatest common 

factor, factor, divisor, and prime factorisation. It seems that for these students the concept 

of relatively prime number has not been objectified yet. So they situated its definition in 

relation to the other connected concepts. 

11 out of 25 groups began their dialogue with this question: "what is a whole 

number?" To answer this question, 4 groups referred to the counting numbers: 

A whole number is a counting number together with zero. i.e. 0,1,2,3,. . . 

While the remaining 7 groups introduced whole numbers by using their intuitive 

understanding. An example of these descriptions is as follows: 

All numbers greater than or equal to zero with no fractional parts. 



This description, although it can be considered as an intuitively based explanation for 

whole numbers, is not mathematically correct because based on this definition, for 

example, f i  can be also considered as a whole number. 

As mentioned in chapter 5, one of the main purposes of using a dialogue was to 

encourage students to pose appropriate questions related to the proposition or the process 

of its proof. The results showed that the environment of a dialogue was very appropriate 

for this purpose. The following three excerpts illustrate some of these questions that were 

presented in the group dialogues: 

Explorer: We can show a and b as the product of prime by: 

Whyer: Fine. But why do you only look at the prime factors of the number? 

What about the other factors? 

Explorer: Because the prime factors are factors of all the larger composite 

factors of the number. 

The above excerpt reveals that the group of the students who created this dialogue 

made a distinction between prime and composite factors of a number, which is a principal 

point for working on number theory statements. The following excerpt illustrates another 

good question referring to the prime factors of a number. 

Whyer: What is prime factorisation? 

Explorer: Prime factorisation means that we can express the number only using 

its factors which are prime. For example: 24=2 x3. 



Whyer: But how do we know we have the right prime factors? 

Explorer: By the Fundamental Theorem of Arithmetic each whole number can 

be expressed as the product of prime numbers in exactly one way. For example 

The first step in finding the prime factorisation of a number, usually using a 

factor tree as a mediator, is writing it as a product of two of its factors. For most of the 

numbers, especially large numbers, this step can be performed in several different ways, 

depending on the chosen factors. Hence, it usually causes a doubt for many of the 

students, where, depending on the first two factors they may end up with different prime 

factorisation. Addressing this issue in the above-mentioned excerpt may show that the 

students overcame this common misunderstanding. Often times, students do not 

differentiate between the use of mathematical terminology in different contexts. 

However, the following excerpt illustrates the students' attentiveness to this issue. 

Whyer: Are relatively prime numbers always prime? 

Explorer: Not necessarily. For instance, 4 and 9 are relatively prime numbers 

because they do not have a common factor other than 1. 

As can be seen, this excerpt adequately addresses a potential misunderstanding that may 

be caused by using the word 'prime' in different concepts: prime number, and relatively 

prime numbers. 



Recognizing the hidden aspects of students' difficulties in the dialogues 

The results showed the environment of a dialogue revealed some aspects of 

learners' difficulties that may not be recognizable in their regular presentation of a proof. 

Therefore, these dialogues provided me with an access to the misunderstandings that 

might weaken learners' performance. For instance, from the Fundamental Theorem of 

Arithmetic students know that "each composite number can be expressed as the product 

of primes in exactly one way, except for the order of the factors" (Musser, Burger, & 

Peterson, 2003, p. 186). In the following excerpt we can see that the students ignored the 

phrase ". . . except for the order of the factors" of the theorem. Indeed, these students 

included the order of the prime factors in the unique representation of it. 

~ e r t ~ :  How do we find a numbers' prime factors? 

Ernie: You perform prime decomposition. It looks like this: (a tree diagram) 

The prime factors of 8 are 2,2,2 this is written as 2 3 .  

Bert: Can I write the prime factors of 8 like this: 2 X2? 

Ernie: No, each whole number, can be expressed as the product of its prime in 

EXACTLY ONE way. 

Another problem that students usually have in mathematical discourse is related 

to the use of quantifiers. Through the course material the students might have learned that 

a mathematical argument should satisfy the generality of a statement. It was observed that 

some students try to satisfy the generality of their argument by including quantifiers in 

their discourse. However, most of the times they used the quantifiers in an inappropriate 

4 Notice the choice of personas. Participants' choices will be discussed under "Personas in students' 
dialogues" at the end of this chapter. 



place. In the following excerpt we can see the students' effort to show the generality of 

the argument. But, the rather weak use of the word 'any' reveals their poor skill in 

working with algebraic notations. 

W: How do you prove it? 

E: We can show the proposition is true in general, for any whole #'s. we can 

start by expressing a and b as the product of any primes, such as: 

a = p , p ,  .... p ,  andb  = q , q ,  . . . q . .  

W: What are p  and q? 

E: These are just different symbols to present any whole #, in this case the 

individual factors of a and b. 

One of the main issues that implicitly impede the students' participation in 

mathematical discourse is their own attitude toward mathematics. This attitude can be 

seen in some of their dialogues. 

Clark Kent: I am going to prove to you that for any two whole numbers a and b, 

if a and b are relatively prime, then a and b are also relatively prime. 

Bruce Wayne: Sorry Clark, was that English? Lets start at the beginning. I 

know that whole numbers are a set of numbers {1,2,3,4,. . .) but what does it 

mean to be relatively prime? 

B. W. : Fundamental Theorem? Is that like a law? 

C.K. : Yes Bruce, a law of arithmetic. So let's . . .. . . 



Considering a theorem as a "law", in the above-mentioned excerpt, may show that 

the students did not perceive the persuading aspect of a mathematical theorem. It seems 

they see theorems as some rules or laws to obey without questioning, which is far from 

the real nature of a mathematical theorem. 

As already mentioned, there is a strong belief among students that numerical 

examples can guarantee the validity of a claim. The following excerpt illustrates this 

tendency, 

Whyer: I see. Did you prove the statements by these examples? 

Explorer: Yes. The examples induced certainty and established validity. 

Whyer: You have not tried every integer. How can you be sure that the 

proposition is valid for the case that you didn't test? 

Explorer: Your doubt is reasonable, but it is impossible to test the proposition 

for all the numbers. We will never finish. 

As can be seen, the above dialogue includes duplication of some lines from the sample 

dialogue (see Figure 2, p. 61), however with a totally different intention. We can learn 

from this excerpt that what the students perceived from sample dialogue is not 

necessarily the same as what they read. It sounds as if the students' belief and insight 

about acceptability of numerical examples creates a robust obstacle that does not let them 

acknowledge a new approach or extend their perspectives easily. 

Overall, the results showed 12 out of 25 group-generated dialogues explained the 

given proofjust by using some numerical examples. In fact, what they did was translating 

the given proof to the language of numbers, which apparently is more understandable for 



the students. The rest of the dialogues (13 out of 25) provided interpretation for the given 

algebraic proof. In 6 of these dialogues students could not expand the proof more; indeed, 

they just reiterated what they received in the task. The remaining 7 dialogues could not 

even re-present the given proof correctly. In the following excerpt we can observe a 

sample of the weak performances with the algebraic notations and the use of words: 

WHYER: How can you show that the statement is true in general? 

EXPLORER: First we need to select a notation that represents a whole 

counting number and it's products in general. We will use: a = p ,  , p 2 ,  . . . . p , .  

We will use b for the 2nd number. 

WHYER: So how do you show that a & b are also relatively prime? 

2 2 2 EXPLORER: Well, a = p , , p 2  , .... p ",. b = q , ,q , ...q . These numbers still 

don't have any common prime factors, therefore they are relatively prime. 

In the above excerpt, it appears that the students interpreted the prime decomposition of a 

whole number as ". . . a whole counting number and its products in general", which 

conveys a totally different idea. Despite having the algebraic representation for prime 

decomposition of numbers, a and b, in the given proof, it can be seen that the students for 

re-presenting the prime decompositions in their dialogue used commas between prime 

factors. This misrepresentation may show students7 poor understanding of the notations, 

which had an effect on their imitation. Also, it may reveal that they are not completely 

aware of what the given argument is presenting. 



Overall, students' work on this task showed the usefulness of their written 

dialogues for a researcher in order to have access to the hidden aspects of students' 

difficulties. 

Task 4 

a) Prove the given statement by filling the blanks in the following dialogue (see p. 74). 

I For any three whole numbers a, m, and n, if alm and aln, then al(m + n). I 

b ) Consider the following statement: 

For natural numbers a, b and c, 

if alb and b(c, then aJc. 

Circle one TRUEIFALSE. Prove it or provide a counterexample. 

93 students performed the task. More than half of the students completed the 

given dialogue (Task 4 part a) correctly. The result of the first part of the task is 

summarized in the Table 4. 

Table 4: Summary of students' responses to Task 4(a) 

/ Number of the I Description of the responses 

In the first part of task 4 participants were reminded of the definition of 

students (n=93) 
8 

2 5 

11 

49 

divisibility (line 5). Nevertheless, the results show that several students had a problem 

Could not provide a numerical example for the statement (line 9) 
Could not write the definition of divisibility by algebraic 
notations (line 13) 
Could not manipulate and interpret the algebraic notations to get 
the desired results (line 13) 
Could complete the proof reasonably well 

with providing a numerical example for the definition or the statement (line 7 and 9). 



Almost one forth of participants could not repeat the definition with different letters (line 

13). Also, despite the given hints for operations, some of the participants could not 

manipulate the representation and interpret the results to get the desired conclusion. In 

general, results showed that working with the algebraic symbols and signs was the most 

challenging part for the participants. This is both surprising and frustrating, given that the 

algebraic operations involved are very basic and part of curriculum in introductory school 

Algebra. 

However, to a much lesser degree than in previous tasks the reliance on the 

numerical examples was seen in the results of this task. In answer to the line 10 - "So 

does the example prove the statement?" - 80% of the participants (74 out of 93) 

acknowledged that numerical examples cannot be considered as a proof for the statement. 

To show whether the converse of the statement is true or not (line 16- 17), one 

third of the participants correctly provided a counterexample. The rest of them tried to 

prove the converse of the statement by applying the definition of divisibility or by 

providing a few confirming examples. For instance in the following excerpt we see that a 

student by using the definition, showed ' a J ( m  + n)'  means ' (m+n> is a whole number', 
a 

which is correct. But, in the next step of his reasoning he tacitly considered, every whole 

number is only the sum of two whole numbers, which is not necessarily correct in 

general. 

If al(m + n)  then ax = ( m  + n)  



m n 
x = - + - property of distributivity of addition 

a a 

:. If al(m + n), then alm and aln 

In the second part of Task 4 participants were asked to prove, or disprove with a 

counterexample, that for any three whole numbers a, b, and c if a 1 b and blc then a lc. 

About 10% of the participants (9 out of 93), by misusing the logical rules of inference or 

by misusing the definition of divisibility claimed that the statement was false. For 

example one of the students wrote: 

If alb and blc then alc if and only if c is a multiple of both a and b. 

Ex. a=4, b=2, c = 12 then412,2112, and4112 

Counterexample: a = 4, b = 12, c = 3 then alb= 4\12 and blc= 1213 but 4 doesn't 

divide 3. 

In this argument, the student interpreted "If alb and blc then alc7' as "c is a 

multiple of both a and b", which is true. But by misusing the phrase "if and only i f7  she 

also considered if "c is a multiple of both a and b" then "alb" which is not necessarily 

true. The presented example and the counterexample reveal the possible root of this 

mistake, which can be the wrong perception of the writer about the divisibility of a 

number by another. 

The rest of the students (84 out of 93) acknowledged that the statement was true. 

However, only 34% (32 out of 93) of the students could provide a deductive argument for 

the statement. The description of the students' performance is summarized in the Table 5. 



Table 5: Summary of students' responses to Task 4(b) 

Number of 
students (n = 93) 

9 

Description of the presented arguments 

Acknowledged the statement as false 
18 
2 7 

Only provided some confirming examples 
Repeated the definition of divisibility and provided some 

4 

The results showed that working with algebraic notations is still the main 

confirming examples 
Onlv reiterated the statement 

3 
32 

challenge for the students. Nevertheless, we see an improvement in a dialogue but still a 

Provided some verbal explanation 
Provided deductive argument 

major deficiency in writing a proof. The comparison between the results of two parts of 

Task 4 shows the importance of a dialogue as a step towards a proof. 

Task 5 

a) Consider the following proposition and its proof (see p. 76). 

Write a dialogue that you have with yourself while you are convincing yourself about the validity 

of the given proof. 

Proposition: I f p  is a prime number and plab thenpla or p(b. 

b) Write a dialogue that you have with yourself for proving the following proposition. 

Proposition: Let a, b, and c are whole numbers. 

If a and c are relatively prime, and b and c are relatively prime then ax  b and c are relatively 

prime. 

Task 5 of the study was part of the course project to be completed within three 

weeks. As such, any sloppiness due to time constraints would not be an issue for this 



task. Altogether 83 students5 performed this task. In the first part of the task the 

participants were required to write a dialogue to extend the given proof of the 

proposition. In this part, almost all of the participants began their dialogues defining the 

prime numbers followed by the definition of divisibility. Providing numerical examples 

for the definitions and for the proposition was the other common aspect of all the 

dialogues. Indeed, for the majority of the participants, empirical verification was the first 

step towards understanding the proposition. This corresponds to 'specializing' as a type 

of mathematical thinking discussed in Mason et a1 (1 982). 

21 (out of 83) of the participants presented a reasonable dialogue by going 

through all the steps of the proof and addressing the key points of the given argument. 

The following dialogue illustrates the performance of this category of students. 

Explorer: Hello Whyer, I have a proposition for you, i f p  is a prime number and 

plab thenpla orplb. 

Whyer: That is nice but what is a prime number, and what does this symbol ( 1 ) 
represent? 

Explorer: I'll start by explaining what a prime number is. A prime number 

belong to the set of whole numbers and has only two divisors, 1 and the number 

itself ( p  ). As for your second question, ( 1 ) that symbol tells us that the number 

on the right (a, b, or ab) is divisible by the number on the left ( p  ). Another way 

of puttingpla for instance is that p x n = a ,  where n is an element in the whole 

number set. 

Whyer: When you said ' ) la orplb" in your original proposition what exactly did 

you mean? 

' 10 students did not submit this task. 



Explorer: The word "or" implies that if either or both of the criteria are met then 

the statement is true. Bothpla andplb must be untrue in at least one case to 

disprove my original statement. 

Whyer: So have you proved your proposition yet? 

Explorer: Not in the slightest. If I want to prove the proposition I will have to 

show you it is true in all cases. 

Whyer: I don't even understand one case let alone all of them, can you give me 

an example? 

Explorer: Certainly, 5150 and 5/25, although 512 is untrue the proposition is still 

true because 5125. In this examplep = 5, a = 25, b = 2, ab = 50. 

Whyer: Ok, that makes sense, the prime number 5 divides 50 and also divides 25 

so your proposition is true in this case, but what about all cases like you 

mentioned earlier? 

Explorer: well, for the general case we have to leave the proposition in it's 

variable form with all of thep, a, b and ab, this way all of the possible situations 

are represented. So, if p jab then pla or plb. 

First, I will begin by writing the problem in another way. 

I f p  xw=ab, for some whole number w 

Thenp x y =  a o r p  Xz=b, for some whole numbers y, z. 

If a is written as a product of primes: 

Whyer: Hold on a minute, what doesp ,, represent? 

Explorer: Numbers may have different numbers of prime factors, for example 

60 can be decomposed into the primes 5 x 3 x 2  . p n7 is just a way of implying 



that there may be different numbers of primes and includes the entire prime 

decomposition of the number. 

Whyer: I understand. You can continue with what you were saying. 

Explorer: Substituting from the above equationpxw = ab, 

The fundamental theorem of arithmetic sequence confirms that a composite 

number may be expressed as the product of primes in exactly one way, so our 

prime numberp must be equal to one of the primes that compose the prime 

decomposition of ab. This can be demonstrated with an example: 

p12 10 the prime decomposition of 2 10 is 2 x 3  x 5 X 7, this also means that because 

2 10 can only be expressed in one way the prime p must be a prime from the 

group 2 , 3 , 5  or 7 because they are the only primes that divide 210. 

In the general case p must be equal to one of the primes between p , , p , . . . .p or 

q ,  , q , ...q, . Because p is equal to one of the primes that compose ab it also must 

help compose a or b or both. 

Whyer: Does that now prove your proposition? 

Explorer: Yes. 

Whyer: Can you sum it briefly one more time? 

Explorer: Sure, 

If plab thenpla orplb for some primep. 

p x w=ab, for some whole number w, 

a = p I x p 2 x p 3  .... p,, a n d b = q , x  q , x q  ,... q,,whereqisalsoprime. 



P = one of the primesp,, p ,  .... p,,, or q , ,  9 ,  ... 9 ,  

So,pla orplb. 

In this dialogue the student began with clarification of the statement through 

describing related vocabulary and symbols, and providing a numerical example. She, then 

by choosing appropriate representations, manipulating them correctly, interpreting and 

supporting the results by the Fundamental Theorem of Arithmetic drew a conclusion and 

created a convincing argument. The reasonable flow of this dialogue indicates the 

expected change in the writer's mathematical discourse and her improvement in 

presenting a mathematical argument. 

19 (out of 83) participants just reiterated the given proof in the form of the 

question and answer. The dialogues created by these students showed that they just 

mimicked the proof that they received. Therefore, it is hard to assess whether they had 

any difficulty or true understanding of the proof. 

The rest of the dialogues (43 out of 83) revealed the different kinds of challenges 

or misunderstandings that the students had. Indeed, these dialogues illustrated how 

different kinds of a weak or wrong use of the mathematical concepts, routines, or 

language may mislead the process of understanding or creating a proof. The following 

excerpt of one of the students' dialogue exemplified the challenges that students may 

experience in working with the algebraic symbols: 

1 .  Me2: What is a and b? 

2. Mel: a and b are any whole numbers in this case we will use a and b 

to be expressed as the product of primes. 



Me2: How do you express these products of primes if you don't use 

numerical symbols? 

Mel: We can allow a=pl,p 2...pn, and b=ql,q 2...q,, 

Me2: What is this showing us? 

Mel: pl,p 2...p,,, show that we continue to double, triple so on until m 

number of times the prime number so that no matter what our prime 

number can go into the nzth number evenly and this also applies to 

ql,q2. ..q,. Therefore ab=pI,p2 ...pn, q1,q2. ..qn. 

Me2: Is that all? 

Mel: No, if ab=pl,p2. ..p, q1,q2 ...q, then px=pl,p2. ..p, q,,q2.. .q,. 

Me2: What does this confirm in our proposition? 

Mel: By the Fundamental Theorem of Arithmetic each composite 

number can be expressed as a product of primes in exactly one way. 

Me2: What is that mean? 

Mel: Let take pl,p7 we will use 2 as our prime number 27=128. As 

we can see (in prime factor trees) no matter how we write the 

composite number we still end up with the same product of primes, 

(same way every time) 

Me2: What are composite numbers? 

Mel: Composite numbers are counting numbers with more than two 

factors, such as 128, 9, 12, 1065, 32. 

Me2: Okay now knowing all this how do we express the theorem in 

our proof? 

Mel: So we use p=p, or q for some i, j .  

Me2: What is i and j ?  

Mel: It is any whole number between 1 and mth and nth number. 

(1 < i s m )  (1 < j I n). 



19. Me2: Why did you say 1 l i I m  and 1 5  j I n ?  

20. Mel: We need to keep our conditions where it holds so i and j must 

be greater than 1 and less than the mth number and nth number in the 

sequence of the products of primes. 

2 1.  Me2: So can you summarize what you have done? 

22. Mel: Ifp=pi thepla and ifp=q, theplb. 

Lines 6 and 12 of the above dialogue reveal that the writer assumed the prime 

decomposition of a is showing the number of times that prime factorp exists in a,  or as if 

every composite number is represented as a power of one prime. This misunderstanding 

led her whole argument towards a wrong direction. 

Overall, the results showed, because of the algebraic structure of the given proof 

the main emphasis of the dialogues were on description and interpretation of the symbols 

and representations. Further discussion on details of students' work related to 

representations is presented in chapter 7. 

In Task 5(b), participants were asked to write a dialogue and through that prove 

the given proposition. The results showed that all the participants began their dialogues 

by recalling the definition of relatively prime numbers. Similarly to Task 3 and Task 5(a), 

many of the students recalled some other related definitions as well. An example of this 

presentation can be seen in the following excerpt from one of the dialogues: 

A. The proposition begins with a, b and c being whole numbers. 

Q. What are whole numbers? 

A. Whole numbers are counting numbers and zero. For example 0,1,2,3,. . . are 

whole numbers. Next the proposition states that a and c are relatively prime. 



Q. What does relatively prime mean? 

A. Relatively prime is when there are two counting numbers whose greatest 

common factor is 1. For example, the greatest common factor of 2 and 3 is 1. 

Q. What are factors? 

A. They are the numbers whose product are other numbers. For example, the 

factors of 10 are 2 and 5. In this case these are the prime factors. 

Q. What are prime factors? 

A. Prime factors are numbers that only have factors of 1 and itself. For example, 

the only prime factors of 3 are 1 and 3. b and c are also relatively prime. 

Q. So a and c have the greatest factor of 1, the same with b and c. 

A. That's correct. What is being proved is that the product a and b, which will be 

referred to as x will still be relatively prime with c. 

Q. What does product mean? 

A. Product is the answer when two numbers are multiplied together. 

For presenting their arguments, participants had recourse to different types of the 

mediating tools that served as a communication means such as numbers, verbal 

explanation, algebraic representation, and set theory symbols and diagrams. An outline of 

the participants' tendency to use each of these tools is summarized in the Table 6. 

Table 6: Summary of mediating tools used in students' responses to Task 5(b) 

Number of students (n = 83) 
5 7 
14 
7 
5 

Mediating tool 
Algebraic representation 
Verbal explanation 
Numerical examples 
Set theorv svmbols and diaaams 



Yet again, the main common aspect of all the dialogues was an empirical 

verification of the proposition. Almost all the participants provided some numerical 

examples and used them to explain the main idea of the proposition. The results, 

however, showed that only 8% of the participants used only this form of mediator and 

finished their argument in this step, which is a promising result. The following excerpt 

illustrates this approach. In this dialogue the writer after recalling the related definitions 

continued: 

Whyer: can you explain what are you going to prove? 

Explorer: Sure. Let's start with an example of it. If a = 5, b = 9, c = 7 then the 

GCF of a & c = 1 and the GCF of c & b = 1 then a. b and c are relatively prime. 

E.g. 5.9 = 45, and 45 is relatively prime with 7 GCF = 1 

Whyer: So does the example prove the statement? 

Explorer: Yes. 

Whyer: Can you summarize what you have said? 

Explorer: Yes, I considered for any three whole numbers a, b, c if a and c are 

relatively prime and b and c are relatively prime then together a.b and c are 

relatively prime. 

Another example of a logical derivation that does not rely on a mathematical 

formalism can be seen in the responses of some participants who used the verbal 

explanation as a mediator for communicating their ideas. The following excerpt 

illustrates this approach. The verbal explanation is a good example of the student's 

logical reasoning. 

Whyer: How can we generalize the statement? 



Explorer: Let's look at what we already know. a and c have to be relatively 

prime so writing a and c in prime factorisation we will notice they have no 

common primes. We also know that b and c are relatively prime. So, writing b 

and c in prime factorisation we will notice they have no common primes. We can 

see then that a and b can have the same prime factors therefore multiplying a and 

b together will give you the same prime factors of a and b, when we compare 

them to c's prime factors they will still have nothing in common and therefore be 

relatively prime. This concludes the proof of our proposition. 

The majority of the participants, following an empirical verification, tried to use a 

representation in their argument such as algebraic notations, set theory symbols, or 

diagrams. Around two thirds of the participants, used the algebraic representation for 

prime decomposition of a whole number. However, a poor competence in using algebraic 

notations and algebraic routine procedures led almost half of the students to a superficial 

presentation. For example, in the following dialogue the student, after an empirical 

verification, continues: 

Aye: So, are we done? 

Myself: No, because we have not proven the proposition yet, we have just seen 

that one example works. To prove the example, we have to go back to using 

letters, which represent all possibilities. 

Aye: sounds good. 

Myself: To start, we will express a, b, and c as a product of their primes such that 

a=pl,p2 ...p m, b=ql,q2 ...q n and c=rl,r2 ... rq. Therefore ab=plql,p2,q2 ...p mqn. 

Since the Fundamental Theorem of Arithmetic states that each composite number 

can be expressed as the product of primes in exactly one way and we know that 

ab=pmqn and c=rq, we can state that ab and c are relatively prime. 

Aye: And that was all we needed for proof? 



Myself: Yes! 

A few of the participants used set theory symbols or diagrams to present their 

argument. These dialogues revealed the writers' understanding of the proposition and its 

proof; however the poor access to the conventional symbolism and operations weakened 

their presentation. For example in the following excerpt (see Fig. 4) by using Venn 

diagrams the student distinguished between all the possible different cases, which shows 

the writer's understanding. However the written discussion does not satisfy the required 

precision of a mathematical discourse. 

Figure 4: Use of set theory symbols and diagrams as a mediator for Task 5(b) 

Overall, 43 (out of 83) participants through implementing different types of 

mediators were able to create a reasonable argument to justify the given statement in 



Task 5(b). The performance of this group of students is a promising result of the study. 

The dialogues created by these students indicate their improvement in presenting an 

argument in the form of a mathematical discourse, by using appropriate mathematical 

words, mediators, routines, and endorsed narratives. A more detailed discussion of 

students' work as it relates to the use of different features of mathematical discourse is 

presented in chapter 7. 

In general, the results of this task showed that the flexible environment of 

dialogue could be very helpful for involving students in the process of proving. 

Task 6 

a) Consider the following statement 

If a and c are relatively prime and b and c are relatively prime. Then a x  b and c are relatively 

prime. 

Is this statement true or false? Circle TRUERALSE. 

If true -justify. If false - provide a counterexample. 

b) Consider the following statement: 

The sum of any 3 multiple of 7 is a multiple of 7. 

Is this statement true or false? Circle TRUEBALSE. 

If true -justify. If false - provide a counterexample. 

Task 6 was part of the final exam. 92 students6 performed the task. In the first part 

of the task the participants were required to provide a justification or a counterexample 

for the familiar statement. Students had already written a dialogue for this statement in 

Task 5(b). All the students, except 3, acknowledged the given statement as a true one, 

One of the students missed the final exam 



and supported their decision with some sort of argument. 3 1 (out of 92) students, mainly 

by using algebraic representations, provided acceptable justification for the statement. 

The rest of the results are summarized in the Table 7. 

Table 7: Summary of students' responses to Task 6(a) 

I Number of students (n = 92) 1 Descri~tion of the  resented argument 1 
3 1 
14 

13 I Wrong explanation 

Correct proof of the statement 
Empirical verification 

11 
2 3 

Despite high reliance of students on empirical verification at the beginning of the 

study, here, the results showed that only 15% of the students established their argument 

based on the numerical examples. A sample of these arguments follows: 

Incorrect use of representations 
Weak explanation 

We know that two numbers that have GCF of 1 is called relative prime. 

First use example to prove: a = 6 b  = 3 c = 17 

Sub statement: If 2 and 17 are relatively prime and 3 and 17 are relatively prime 

then (3 x 2 ) = 6 and 17 are relative prime. 

:. therefore the statement is true based on the # example. 

In this task, also, the incorrect numerical example misled 3 of the students. The 

following argument is one of those: 

False, because if a = 3, b = 2, and c = 9 then a x b  and c are relatively prime. 

Well, 3 x 2  = 6  a n d c = 9 .  

6 and 9 are not relatively prime numbers therefore this statement is false. 



Among those students who tried to use a type of algebraic representation in their 

argument, 11 students were not successful. The following argument exemplified the 

performance of this category of students: 

a = 2  c = l l  b = 4  

GCF (2 ,11) = 1 (2 , l  1) are relatively prime 

GCF (4 ,l 1) = 1 (4 , l  1) are relatively prime 

a x  b = 8 GCF (8 , 11) = 1 (8, 11) are relatively prime 

Let the prime decomposition of a = ala2a3 

the prime decomposition of b = blb2b3 

and, the prime decomposition of c = clc2c3 

The GCF of a, c is 1, the GCF of b, c is 1 

:. a and c are relatively prime and b and c are relatively prime. 

Prime decomposition of a x  b = abl , ab2 ab3 

GCF ( a x  b , c) is 1, :. ax b and c are relatively prime. 

Using (abl , abz ab3) as prime factorisation of a x b ,  reveals the student's weak 

understanding about algebraic representation of a prime factorisation.. 

Several participants tried to communicate their idea through verbal explanation. 

Here, I distinguish between arguments that presented a weak explanation for the 

statement and those that presented a wrong explanation. In weak explanation I 

categorized those arguments that do not include any wrong claim but do not answer the 

entire key "whys" either. The following argument illustrates this kind of argument: 



If the prime factors of a and c are different, and the prime factors of b and c are 

different, the ax b will always be relatively prime with c, because the prime 

factors will be different. 

As can be seen the above argument is mainly the reiteration of the given statement, and 

hence cannot be acceptable as a mathematical proof for the statement. 

By wrong explanation I mean those arguments that included incorrect 

information, The following argument is an example of this category, which includes an 

incorrect definition of relatively prime numbers. 

If a & c are relatively prime, that means a & c have only 2 factors, 1 & itself. If b 

& c are relatively prime then b & c only have 2 factors, one & itself. Therefore, it 

follows a & b are relatively prime sharing the same common factors 1 & itself. 

Therefore, when multiplying them together, you still get a larger relatively prime 

number. It is like the GCF. When every composite # can be broken down into a 

product of primes, if 2 numbers share the same primes, they are factors of each 

other. They can all be broken down into their common elements. 

In Task 6(b) students were required to provide a justification or a counterexample 

for an unfamiliar statement. All the students acknowledged that the given statement was 

true. 57 (out of 92) students provided a mathematical proof for the given statement. The 

following argument illustrates the proofs provided by a student using algebraic notations. 

A multiple of 7 can be expressed as 7 times some whole number. 

Let 3 multiples of 7 be represented as 7x, 7y, and 72 where x, y, and z E W 

Their sum is 7x + 7y + 72, using distributivity of multiplication over addition, 

7 x + 7 y + 7 z = 7 ( x + y + z )  



We know x + y + z is a whole # because the set of whole numbers is closed 

under addition, so since x, y, z E U.: x + y -t- Z E  W 

Therefore we have expressed the sum of 3 multiples of 7 as a multiple of 7, 

namely 

The students' arguments are summarized in the Table 8. 

Table 8: Summary of students' responses to Task 6(b) 

The result of this task showed only 7.5% of the participants established their 

Number of students (n = 92) 
5 7 
7 
7 
11 
10 

argument based on numerical example. A sample of this type of arguments is as follows; 

Description of the arguments 
Provided a mathematical proof 
Empirical verification 
Using incorrect representation 
Incorrect manipulation 
Weak explanation 

Any numbers that are multiples of 7 when they are added together are still 

multiples of 7. For example: 

An algebraic proof for this task requires a selection of a correct and useful 

representation. For some of the students who wanted to present an algebraic proof, lack 

of access to appropriate representation was an obstacle. For instance, the chosen 



representations in the following argument, even if they appear correct, do not satisfy the 

required generality of a proof. 

Ifx is a whole number we say that 7x + 7x + 7x = 21x 

Knowing this we have any variable representing a number it is a multiple of 7.  

x  can be any whole number. 

The other required competence for creating a proof is the ability to manipulate the 

chosen representation correctly. The result of this task showed almost 12% of the 

participants could not complete their arguments correctly because of their weak skill in 

manipulating the algebraic symbols. The following argument illustrates one of the most 

common mistakes that students had. 

21 +28+7=56  s 7 = 8  

7m +7n + 7r = 2  1m + n  + r which is divisible by 7 because 7 1 21 

In addition to the misuse of the equality sign, the writer considered 7m +7n + 7r 

as (7 + 7 + 7 )  x m  + n + r, which is totally wrong. 

The rest of the participants provided weak explanation for the statement. As I 

mentioned above, by weak explanation I mean a verbal explanation that does not include 

any wrong point but does not answer the entire key "why's" related to the statement 

either. An example of this kind of argument is as follows: 

The multiples of 7  means that 7 is their common factor. This indicates when 3 

multiples of 7  add together, the sum must still have 7  as its common factor 



because the sum is created by the multiples that have 7 in them. So, when the 

sum has the common factor of 7, then it is the multiple of 7. 

In general the results of this task showed the students' progress in providing a 

deductive argument for a mathematical statement. Also, in comparison with the results of 

Task 1, the results of this task showed a dramatic decrease in students' tendency towards 

accepting an empirical verification as a proof. 

Personas in students' dialogues 

One of the noteworthy points about the students' dialogues is the selection of the 

personas. Even though many of the students use the same personas that were introduced 

in the sample dialogue: EXPLORER and WHYer, still some of the students created their 

own personas. A list of some of them is as follows: 

EXPLORER 

Teacher 

Me 1 

Me 

Questionee 

Plato 

Simon says 

Einstein 

Me 

Sara1 

Tweedle Dee 

WHYer 

Student 

Me2 

My head 

Questioner 

Aristotle 

Curious George asks 

Curious George 

Myself 

Sara2 

Tweedle dumb 



A 

Batman 

Text 

B 

Robin 

Travis 

Clark Kent Bruce Wayne 

Eros Ethos 

Dumbledore H a m  

Hee Haw 

As can be seen, the selection of the names carries a message about students' 

interpretation of and the attitude towards the idea of a dialogue, a self-dialogue. For 

example, Sara1 and Sara2 can represent two aspects of one persona having a dialogue 

with oneself. The case of Student and Teacher may show the authority that this student 

places on a teacher as a source of knowledge. In an informal conversation with a student I 

inquired about the reasons for choosing his personas as Travis and Text. He said: "I 

consider Travis as myself. Because for answering my questions I usually refer to the 

textbook, I chose the Text as the other one who is a source of knowledge." 

The selection of the names may also reveal some of students' perception of the 

idea of a dialogue and also sometimes indicates their beliefs about the source of 

mathematical knowledge, their learning styles, and their attitude towards mathematics. 

Summary 

In this chapter I summarized students' work on each task, considering the purpose 

of designing the tasks. The tasks were designed first, to involve the students in the 

process of writing a proof; second, to see the applicability of using dialogue for this 



process; and third, to see the usefulness of a written dialogue for researcher as a tool to 

investigate students' understanding. 

For each task I provided a numerical summary of students' work, exemplifying 

the key features. Further, I outlined the mediators (such as numbers and symbolic 

representations) and possible source of obstacles. The repeating features in all the tasks 

were over-reliance on numerical verifications and inability to perfom basic algebraic 

manipulations. However, comparing students' work in Tasks 1 and 6 (beginning and end 

of the course), significant improvement is noticeable. In the next chapter I analyse the 

results through the lens of a communicational framework. 



CHAPTER 7: 
RESULTS AND ANALYSIS ACROSS THE TASKS 

In this chapter, I analyse the participants7 discourses through the lens of the 

communicational framework (proposed in Chapter 3). This approach will, I propose, 

make visible aspects relating to the process of creating proof that might otherwise remain 

invisible. In particular, I examine the four features of the literate mathematical discourses 

across the tasks. As mentioned in chapter 3, the four features that distinguish literate 

mathematical discourses from colloquial mathematical discourses are, (1) the 

mathematical uses of words (2) the use of mediating tools (3) the routines, and (4) 

endorsed narratives (Sfard, 2002; Ben-Yehuda et al, 2005). Moreover, I propose a further 

refinement of these features as applicable to proofs in the elementary number theory 

discourse. 

Mathematical vocabulary 

Having a clear understanding of mathematical vocabulary and using it 

appropriately is very important for participating in a mathematical discourse. One of the 

features that distinguish a literate mathematical discourse from a colloquial or everyday 

discourse is its special vocabulary. However, when introducing students to mathematical 

words, it is important to note that the work never starts from nothing, because students' 

familiarity with the colloquial use of some of the words might have given them the means 

for an ad hoc interpretation. Indeed, it happens very often that students who are not 



familiar with mathematical meaning of a given word assign to it meaning from their 

everyday experiences. Consider, for example, the term proof. Students live in a world in 

which the term proof may mean different things in different contexts. For example, a 

person can prove that shelhe was not at a crime scene because sheke has a proof, such as 

a witness saying that shelhe was somewhere else. As such, we see students often do not 

recognize the necessity of having a mathematical proof for some statements. As the 

results showed, at the beginning of the study a majority of participants did not see any 

need for providing a deductive argument for Task 1. In fact, the presented arguments for 

Task 1 were mainly subjective, based on the students' intuition and empirical evidences. 

Within the communicational framework, according to Vygotsky's theory, there is 

no split between a word and its meaning. Considering Vygotsky's (1962, cited in Sfard, 

2000c, p. 45) idea that "Thought is not merely translated in words; it comes into 

existence through them", there is no split between what a person says and what she/he 

thinks. Hence, for analysing a number theory proof from the perspective of a 

communicational framework it is important to distinguish between different kinds of 

words that are used in this type of discourse. 

In the spirit of the categorization of word use in the arithmetic discourse (Ben- 

Yehuda, et al, 2005), I propose the following refinement for the keywords in a proof for 

an elementary number theory proposition: (1) descriptive words, (2) quantifiers, and (3) 

operation words. This refinement emerged through analysing students' arguments. In 

what follows, by analysing some typical misuse of these mathematical terminologies in 

students' discourses, I examine how the students think when they are proving a 

statement. 



Descriptive words 

Descriptive words, in this work, refer to nouns and adjectives that are assigned for 

a number such as a whole number or aprime number. The data revealed that students had 

different approaches to introducing and implementing the descriptive words in different 

tasks depending on the nature of the task. For example, in Tasks lor 4(b), when the 

students were asked to present a proof, they rarely provided a definition for the words 

related to the statement or its proof. So, we could simply judge students understanding of 

the words in terms of their performance because the meaning is embodied in use. 

However, the environment of a dialogue in Tasks 3 and 5 provided students the 

opportunity to recall all the meaning, and provided a researcher the opportunity to have 

access to students' thinking process in this regard. 

As mentioned in chapter 6, all the dialogues began with recalling the definitions 

of the descriptive words that were present in the propositions, such as 'relatively prime 

numbers' in Tasks 3 and 5(b). The majority of students, however, saw the necessity to 

situate the concept of relatively prime numbers in relation with others such as whole 

number, prime number, factor, and the greatest common factor. The following excerpt is 

part of a dialogue for Task 5(b). 

WHYer: Could you tell me what is a whole number? 

EXPLORER: Sure, a whole number is a member of the set of positive integers 

and zero (0, 1,2,3,4, and go on). Integers are defined as the set of numbers 

consisting of the counting numbers (that is, 1, 2, 3,4, 5, . . .), their opposites 

(that is negative numbers, -1, -2, -3, . . .), and zero. 

WHYer: And what is prime number? Can you show some examples of prime 

numbers? 



EXPLORER: Some examples of prime numbers are 1 ,3 ,5 ,7 ,  and 11. A 

prime number is a number that cannot be divided evenly by any other number 

except itself and the number one. 

WHYer: How many of these numbers you might have? 

EXPLORER: Infinitely many. 

WHYer: Fine. But what is a relatively prime number? 

EXPLORER: Two integers are relatively prime if there is no integer greater 

than one that divides them both (which means that their greatest common divisor 

is one). 

WHYer: OK. What is greatest common divisor? 

EXPLORER: The greatest common divisor is the largest factor two numbers 

have in common. 

Recalling all the definitions in the above excerpt shows that the writer did not take 

any one of the mathematical words for granted. In this situation, a written dialogue 

provides the students with a big picture of related vocabulary for further use in their 

argument. It also offers the researcher access to students' possible misuse or 

misunderstanding of the concepts. As can be seen in this dialogue the student incorrectly 

considered 1 as a prime number, and excluded 2 from the set of prime numbers. 

Below is an excerpt from a dialogue for Task 3. In this excerpt, the word 'prime' 

acts as a noun rather than an adjective for a number. 

A: What are Prime factors? 

B: Prime factors are the factors of a number, which are prime. Prime is when the 

number's only factors are 1 and itself. 

A: So how do we look at the primes of a and b? 



B: a's primes are p ,  , p ,  , . . . p ,  and b's primes are q ,  ,q, ,  ... g ,  . S o . . . . . .  

In the phrase: 'Prime is when the number's only factors are I and itself, it appears that 

for the writers of the dialogue, 'primes' are well-known objects, not a description of a 

number that may have some other characteristics as well. 

One of the common problems in the students' argument is that they have 

difficulty distinguishing between two words, digit and number. We saw an example of 

this confusion in chapter 6, considering Task 1. The following excerpt is another example 

of the confusion between digit and number. To answer, "what is the set of odd numbers? 

Can you show it?" (Task 2, line 4), a group of students wrote: 

We can show it by multiplying any digit by 2 in order to yield an even product 

and then adding 1 to create an odd sum: (2m-l-1). 

The other noteworthy point in this excerpt is that the students introduced an even 

as a product, and an odd as a sum, rather than a number with some properties. In other 

words, we can say that, for this group of students, odd and even are the words used to 

announce the results of the operations rather than an adjective for a number. Also, in this 

response, the students did not show the set of odd numbers but the structure of an odd 

number. 

Quantifiers 

One of the important characteristics of a proof is its generality. This aspect of a 

proof is hardly perceived by students in general and by pre-service elementary teachers in 



particular. Students' high reliance on the limited number of numerical examples as a 

proof confirms this claim. The results of this study, especially students' responses to 

Tasks 1,2 ,  and 3 acknowledged this tendency. In my opinion, one of the reasons why 

students do not pay attention to the 'generality' aspect of a proof is that they may not 

have a good understanding of the meaning of quantifiers in a mathematical context, such 

as in the structure of propositions. They usually implement the colloquial usage of these 

words in their argument. For example in the statements of Tasks 1, 3,4,  5, and 6, the 

word 'any' is equivalent to 'every' that necessitates the consideration of the statement in 

general. However, some students did not recognize this necessity. A typical misuse of the 

word 'any' can be illustrated in the following sample of argument for Task 1. 

In the following 4 attempts, 3 odd numbers were added and resulted with an odd 

number. Therefore, the sum of any 3 odd numbers is odd. 

On the other hand, in some students' work we can see the superficial 

overemphasis resulting from inappropriate use of quantifiers, such as misusing the word 

'any' in a dialogue for Task 5(a). 

Sinceplab then there was some whole number x such that px=ab. If a and b can 

be expressed as the product of primes in exactly one way 

a = p , p  , . . .p ,, for any prime number 

b = q , q , . . . q for any prime number 



In this argument there is a contradiction between two claims that: "a . . . can be expressed 

as the product of primes in exactly one way" and "a = p  , p 2  . . .p for any prime number" 

The misuse of 'any' in this argument indicates that the student either did not know the 

application of the word 'any' in a mathematical context or did not have understanding of 

the unique factorisation of a whole number. 

Operation words 

Examining the students' arguments revealed the effect of their colloquial 

discourse on their writing. In daily life, students deal with the basic mathematical 

operations: addition, subtraction, multiplication, and division. Hence, they use many of 

the required words implicitly and ignore them in their utterance. The following example 

is a typical utterance made by students for Task 1. 

Two odd numbers equals an even number. Two even numbers equals an even 

number. But adding an odd and an even number which is what you get after the 

first two are added results in an odd number. 1+3+5=9, 11+9+13=33 

In the first two sentences of the argument, we can see that the student is talking about the 

sum of two odd numbers without using any word that indicates the operation. The 

following excerpt, from a dialogue for Task 3, shows another misuse of an operation 

word: 'product'. 

WHYER: How can you show that the statement is true in general? 

EXPLORER: First we need to select a notation that represents a whole 

counting number and it's products in general. We will use: a = p ,  , p 2 ,  . . .p,, ,  . 

We will use b for the second number. 



Here, the use of 'a whole number and it's product' for 'a = p ,  , p ,  , ...p ' shows 

that the writer either did not have understanding of a product of numbers or did not have 

understanding of the prime factorisation of a number. Another misuse of the word 

'product' is illustrated in the following excerpt from a dialogue for Task 5(b). 

Whyer: How does this show that a and c and b and c are relatively prime? 

Explorer: a and c are relatively prime because their product of primes do not 

have a common element. The same is true for b and c. 

In this excerpt, it seems the student used 'their product of primes' for 'the prime 

decomposition' of a and c. This, again, shows the student's problem with seeing a 

'product' as a number rather than a list of numbers. 

Presenting a proof in the form of mathematical discourse, as it is discussed in 

chapters 3 and 4, requires disciplined use of words. According to the communicational 

framework (Sfard, 2002; Ben-Yehuda, 2005), students' use of words could reveal their 

thinking process. Having a close look on students' discourses and examining students' 

word use is helpful in recognizing the possible misunderstanding of the words that 

misleads and weakens students' arguments. 

Mediator use 

According to Sfard (2001, p. 28) "Communication either inter-personal or self- 

oriented (thinking) would not be possible without symbolic tools, with language being 



the most prominent among them". In the case of building a deductive argument, we 

usually have recourse to certain means that serve as communication mediators. 

The results of the study showed the emergence of different types of mediators, 

which were used by students to communicate their ideas. The mediators used by students 

were: ( I )  numbers, (2) verbal explanation, (3) algebraic representation, and (4) set 

theory symbols and diagrams. In many of the cases, students implemented the 

combination of these mediators in their arguments. Examining the different combinations 

of mediators in students7 arguments provides us with an insight into their thinking 

process and the depth of their understanding. In what follows, I describe the use of 

mediators in students7 arguments across the different tasks. 

Numbers 

The results of the study showed that numerical examples are the most common 

type of mediators for pre-service elementary school teachers for communicating their 

ideas. Indeed, students' use of numerical examples shows they are very comfortable with 

using numbers for verification, and the results are convincing and working as a proof for 

them. 

Although the results showed that a significant number of participants in each task 

established their argument based on the empirical verification of a proposition, they also 

showed that this tendency decreased through the semester, from 60% for Task 1 to 7.5% 

for Task 6(b). The reason for this promising result may lie in the flexible environment of 

a dialogue, which encourages students to use all mediators available to them to create a 

reasonable argument. 



Here I would like to distinguish between two different types of numerical 

examples that students presented in their arguments: a numerical example that just 

verifies the proposition and a generic example. To reiterate, by generic example I mean 

an example that tacitly expresses a process of a proof. Indeed, the use of a generic proof 

may compensate students' lack of access to an appropriate mediator through recourse to 

numbers. The following excerpt is part of a dialogue for Task 5(b). In this dialogue, the 

writer, after recalling the related definitions continued: 

Whyer: Can you give me an example? 

Explorer: Sure, let's use the numbers 15, 16, and 7. a being 15, b being 16, and 

c being 7. 15 is thus relatively prime with 7 and 16 is relatively prime to 7. 

Whyer: How is 15 and 16 relatively prime to 7? 

Explorer: When breaking down 15 the factors are 3 and 5, and when breaking 

down 16 they are 2 . These numbers are not equal to the breakdown of 7 which 

is 7. 

Whyer: I understand! But when a and b multiplied to be ab then how does this 

work? 

Explorer: Well when 15 and 16 are multiplied together it equals 240 but the 

prime factorisation still remains 2 ~3 and 5. Thus the prime factors will never 

equal to 7. 

Whyer: Why does this always happen again? 

Explorer: This is the fundamental theory of arithmetic. 

Whyer: Does this prove your statement? 

Explorer: Indeed, it does! You'll remember that I stated that a and c do not have 

any common prime factors and b and c do not have any common prime factors. 

Therefore when a and b are multiplied and become ab their prime factors will not 

be the same as c. 



As can be seen, the student drew a conclusion by choosing arbitrary relatively prime 

numbers and applying the Fundamental Theorem of Arithmetic to their prime 

decompositions. This argument, even though it is not a mathematical proof, illustrates the 

logic that the student has in her reasoning. 

This kind of an argument, a proof by using a generic example, was mostly 

presented in Tasks 3 and 5(a), where students were supposed to extend the given proof 

through writing a dialogue. In these cases students mainly went through the details of the 

different steps of the proof by using numbers. However, the argument nowhere relied on 

the properties of the chosen numbers. In such cases we can consider the presented 

argument as a generic proof, as described by Rowland (2002). For example in the 

following excerpt from a dialogue for Task 5(a), Sue went through all the details of the 

proof by using arbitrary numbers that satisfy the assumption of the proposition. 

Explorer: "p divides ab" means for some whole number x we havepx = ab. 

Whyer: Can you give me an example of it? 

Explorer: Sure. For example 5 being a prime number divides 40 or (4)(10) 

because 5 multiplied with 8 equals 40. 

Whyer: Can you explain what you are going to prove? 

Explorer: Well lets give an example of ab. If ab = 40 and a = 10 and b = 4, then 

p can divide either 4 or 10. 

Whyer: How do you know this? 

Explorer: If 5 is the prime number and it multiplied with x being 8 then the 

prime factors px will equal the prime factors of ab. 

Whyer: What do you mean by prime factors? 



Explorer: Well prime factors are the lowest factorisation of a number. For 

example the number 10, its prime factors are 2 , 5  because 2 and 5 cannot be 

broken down any more than 2.5. 

Whyer: How does this then relates to your statement? 

Explorer: Well when ab is broken down into its prime factors it will look like 

this a = tlt2 and b = qlq2 then ab equals tIt2q1q2. 

Whyer: Ok I understand. But can I have an example? 

Explorer: Of course you can. Now lets go back to the old example where a is 10 

and b is 4. The prime factorisation of a equals 2.5, and the prime factorisation of 

b equals 2.2 which can be changed to 2 . Now when a is multiplied with b, the 

product equal 40, yet the prime factors remain the same. 

Whyer: 40 can be divided in other ways too, like 8 multiplied with 5. So how 

can the prime factors stay the same? 

Explorer: Lets use your example 5 and 8. 5 is a prime number but 8 needs to be 

broken down. 8 broken down can equal 2.2.2, where this equals 2 3 .  Thus the 

prime factorisation still remains the same. 

Whyer: WOW! Does this always happen? 

Explorer: Yes! According to the Fundamental Theorem of Arithmetic, each 

whole number can be expressed as the product of primes in exactly one way. 

The key question in the proof of the proposition is how prime numberp emerged in the 

prime factorisation of a or b. In Sue's dialogue, w e  see that she first showed this with 

numbers and then supported her claim with the Fundamental Theorem of Arithmetic. 

Not all students who used numbers as a mediator employed the numbers as a 

generic example. Indeed, several students used numbers just to  illustrate the statements in 

the given proof, as can be  seen in Travis' dialogue for Task 5(a). 



Text: 1fp)ab then ab =px, this means that becausep divides ab  then there must 

be x that multiplies p. ab = px 

Travis: What? 

Text: Lets use some numbers. P = 2, a = 4, b = 10. Soplab = 2 1 4 ~  10 = 2140 = 20 

such that 2x20 = 40. 

Travis: Great! Why use letters at all, numbers seem so user friendly. 

Indeed, one of the noteworthy findings in the analysis of numerical examples for 

Task 5(a) was that only a few students considered ab as one number. The majority of 

students first chose a prime number for p ,  and then two numbers for a and b such that at 

least one of them was a multiple ofp. In fact, they used the converse of the proposition 

for choosing a numerical example. The following excerpt from Anna's dialogue for Task 

5(a), illustrates this approach. 

Aristotle: I'm sorry, but can you please give me an example? 

Plato: Okay, Let's say thatp is 3, a is 15 and b is 20. ab equals 300. We know 

that 300 is divisible by 3, therefore 300 is divisible byp.  This means that ab  is 

divisible byp ,  because 3 divides into 300, we know that 3 divides into either 15 

or 20 (a or b). 

Aristotle: Hang on a second. 3 does not divide into 20. 

Plato: That does not matter because it divides into 15. When 15 is multiplied 

with 20, 3 will divide into the product. We needed to show that either a is 

divisible b y p  or b is divisible byp. 

The order of selecting the numbers: "p is 3, a is 15 and b is 20. ab equals 300", 

does not reflect the original statement of the proposition: "ifplab thenpla orplb". 



However the selection follows the converse of the statement: 'if p J a  orpl b then plab' . On 

the other hand, Sue's choice of numbers indicates the correct interpretation of the 

proposition: 'if a b  = 40, a = 10 and b = 4 thenp (= 5 )  can divide either 4 or 10.' 

In Anna's dialogue we can also observe one of the common colloquial uses of the 

words for divisibility: 'divide into'. As discussed in Zazkis (2000,2002), this type of 

colloquial word use is very common in students' discourses; however, it is not a part of 

formal mathematical terminology. 

Verbal explanation 

Verbal explanation is a very common type of mediator in the colloquial forms of 

reasoning. Hence, it could be considered as the basic mediator for students to 

communicate their ideas. The results showed in most cases that the students implemented 

a verbal explanation to support and interpret other mediators used in their arguments, 

such as numbers or different kinds of representation. The results of each task also showed 

there was a group of students that established their arguments mainly based on verbal 

explanation. 

Most of the students that just used verbal explanation to present their argument, 

reiterated a given statement, or relied upon other statements that also required a proof. 

The following example illustrates this kind of presentation for Task 1. 

Because there are an odd number of elements the sum will always be odd. If 

there were an even number of elements of odd numbers the sum would be an 

even number. 



In this argument the student made a conclusion by referring to a more general statement 

without providing a proof: 'The sum of an odd number of odd numbers is an odd 

number'. The other common type of argument for Task 1 is as follows: 

Because anytime you add 2 odd numbers together you receive an even #. 

Anytime you add an even # to an odd # you receive an odd number. The sum of 

any 3 odd #'s is odd. 

This kind of explanation reveals the students' personal understanding; however, it 

cannot be considered as a complete mathematical proof, because there are still some 

"why's" that the argument did not answer yet, such as: why is the sum of two odd 

numbers even? And, why is the sum of an odd number and an even number is an odd 

number? We, also, can see this kind of arguments in students7 responses for Task 4(b) as 

well: 

Yes, if a is a factor of b, then a will also be a factor of any multiple of b. 

This argument, which is a verbal interpretation of the statement, may show the writer's 

insight into the statement, and also that the statement may have been too trivial for her to 

present any more reasoning for that. In fact, what she wrote is exactly what she had to 

show. 

A combination of a verbal explanation with other mediators was very common in 

the dialogues, especially in Tasks 3 and 5(a) where students required to expand the given 

proof. In these cases, the students were asked to expand the given algebraic proofs. For 

this purpose, students mostly used verbal explanations to interpret the algebraic 



presentation of the argument. The following excerpt, which is a part of a dialogue that 

Kate wrote for Task 5(a), illustrates this use of verbal explanation in the dialogues. In this 

dialogue, Kate began with recalling the definition of a prime number, factor, composite 

number, divisibility and some numerical example for each of them. Then she continued: 

1. EXPLORER: Let a and b be expressed as the product of prime as 

follows: a = p ,  ,p2 . . .p ., and b = q l  ,q, .. .qn . Where a is a whole 

number andp is a prime number and b is a whole number and q is a 

prime number. Therefore, ab =p,  ,p2 . . . .p, ,q, ,q , . . .q. or px = 

P I  ,P2 ....Pnz41 992 . . . 9 n .  

2. WHYER: what is n and m? 

3. EXPLORER: It does not matter what letters you use m, n, r, k, ... n and 

m are random letters that have be chosen to represent the total number of 

primes in the set. 

4. WHYER: Ok, so why does ab equalpx? 

5 .  EXPLORER: According to the rule of division both ab andpx are equal 

equations. As plab = x and x is some whole number. p x x  = ab. 

6. WHYER: Alright, 1 understand the connection now. Please continue. 

7. EXPLORER: By the Fundamental Theorem of Arithmetic each 

composite number can be expressed as the product of two primes in 

exactlyoneway, andsop = p i  orq ,  forsomei, j ( 1 5 i I m ,  1 5 j I n ) .  

The symbol means less than or equal to. I fp  = p ,  thenpla and i fp  = q , 
thenplb. 

8. EXPLORER: this statements show that, a composite number is a 

positive integer, which has factors other than 1 and itself. Composite 

numbers are also the result of multiplying two prime numbers. Also, 

p, or q has to be less than or equal to m or j in order for the rules of 



divisibility to work. Therefore, ifp = p i  thenpla and ifp = q ,  then 

PP 

9. WHYER: Sorry to say but I lost the point of your last interpretation. Can 

you summarize your argument? 

10. EXPLORER: Sure we wanted to show that a and b be expressed as the 

product of primes as follows: a = p, ,p , . . . .p , and b = q , ,q , . ..q , . 

Where a is a whole number andp is a prime number and b is a whole 

number and q is a prime number. In my examples, I have illustrated 

thatplab,pla, andplb whenp is a prime number and a and b are 

products of two prime numbers. It was also seen that pxx  is equal to 

a x  b. Now we can say that we proved the validity of the proposition. 

Kate's verbal explanations, rather than explaining the provided algebraic proof, 

revealed her misunderstandings of it. In line 1, Kate's verbal explanation of prime 

decomposition for a and b indicates that she did not distinguish between different prime 

factors of a by referring to onlyp as a factor: "where a is a whole number andp is a 

prime number". Kate's later incorrect interpretation of Fundamental Theorem of 

Arithmetic (line 7) is another evidence of her poor understanding of algebraic 

representation of prime decomposition of a number. 

Verbal explanations are not necessarily indication of weakness, as the above 

examples may suggest, but of a preferred form of communication. The results showed 

that some students established their argument for Task 5(b) mainly based on verbal 

explanation. In these cases students implemented their common sense to administer the 

argument. For example: 

Sara 2: What is a factor again and how do they differ from numbers? 



Sara 1: The factors of a number are all the numbers that multiply together to 

yield that number. 

Sara 2: So none of the factors that multiply together to form a are the same as 

any of the numbers that multiply together to form c. 

Sara 1: that's correct! 

Sara 2: and none of the factors that multiply to yield b are the same as the factors 

that multiply together to create c. 

Sara 1: exactly! 

Sara 2: So how does that prove that ab is relatively prime to c? 

Sara 1: ab are combined factors of a and b because the factors of the two 

numbers are combined when they multiply. 10 x 5 = 50 = 5 x 2 x 5 x 1. 

Sara 2: What does that tell me? 

Sara 1: Since factors of 'a' and the factors of 'b' have no overlap with the 

factors of c, this is true for the factors of ab. Therefore ab is relatively prime to c. 

Sara presented a correct explanation of the proof without using any symbolic 

representations. Her argument can be considered as an outline of a mathematical proof of 

the proposition. 

Algebraic representation 

Algebraic symbols are visual mediators created specially for the sake of literate 

mathematical discourse. However, as mentioned in chapter 6, working with algebraic 

representation was the most challenging part of the tasks for pre-service elementary 

school teachers. The results showed that none of the students successfully used algebraic 

symbols as a mediator to communicate their idea in Task 1. Indeed, they could not 



provide a correct algebraic representation for an odd number. For example one of the 

students wrote: 

n+n+n=odd, 3+3+3=9 Same odd number added 3 times together gets an odd 

number. 

3+5+7=15 , if n is 3 then, n+(n+2)+(n+4)=odd 

This response showed that the student extracted the algebraic representation of 

three odd numbers from the numerical examples, which does not satisfy the required 

generality of an algebraic representation. In the first case she incorrectly used the same 

symbol to represent the same three odd numbers and in the second case she again 

incorrectly used consecutive odd numbers to illustrate the statement. The formal 

representation of an odd number utilizes the structure of odd numbers, namely, an odd 

number is an even number plus 1. Some students used this interpretation of the structure 

of odd numbers in their dialogues; however, the algebraic representation the students 

provided was not useful for the proof. In particular, student's representations do not 

reveal the 'evenness' of an even number part of the structure. The following example 

illustrates a typical argument based on this representation. 

An odd number is basically an even number +l.  If even numbers are represented 

by X, the odds would be X+1. 

(X+l) + (X+l) + (X+l) = odd number 

because 2 odd equal an even, (X+l) + (X+l) = W+2 

adding another odd would make it odd, 2x3-2 + (X+l) = 3X+3 



The chosen representation for odd numbers does not satisfy the generality of the 

argument. The writer took it for granted that the sum of three even numbers, 3X, is 

always an even number; however, this claim has the same complexity as why the sum of 

any three odd numbers is an odd number. Although, this argument is not mathematically 

correct, it shows the writer's effort to combine different types of mediators - numbers, 

verbal explanation, and representations - to support her argument. 

In Task 2 the algebraic representation for an odd number was given to students. 

Nevertheless, the results showed several students had a problem with representing 

another odd number (line 10) and performing the required manipulation. 

Further, the results of Task 4 also revealed that, despite having the definition of 

divisibility in the dialogue, students had problems stating the definition using the 

algebraic symbols: "a (m  means for some whole number x we have ax  =m". In what 

follows, we can see some of the students' incorrect presentations: 

If alm then X E  w=w for some whole number x 

If alm then alm = a.x for some whole number m 

If alm then a.x = ax for some whole number m 

The inappropriate use of symbols such as E in the definitions reveals the students' lack 

of understanding. 

In Tasks 3 and 5(a), students were exposed to a proof for the given propositions 

through the use of algebraic symbols, and were asked to expand the given proof by 

writing a dialogue. Some of the written dialogues were mainly explanations for the 



symbols presented in the proof. This approach shows students did not feel comfortable 

using the symbols and each of them needed an explanation. Also, the provided 

explanations revealed the misunderstandings that students have in regards to algebraic 

symbols and the concepts. 

The following excerpt depicts the writer's difficulty in implementing algebraic 

notations into the definition of a prime number and prime decomposition. 

Curious George: So what are i, j,  m, and n anyways? 

Einstein: Well, remember the prime factors of a and b? they were as follows: 

m is the greatest prime factor of a, and n is the greatest prime factor of b. 

p i  is a prime factor ofp that is also a prime factor of a. 

q, is a prime factor ofp that is also a prime factor of b. 

Curious George: Oh, Okay. So ifp has the same prime factor as a ( p  = p ,  ) then 

pJa, but i fp has the same prime factor as b @ = q,) thenplb? 

Einstein: right. 

Curious George: I understand a lot better now, thanks! 

Einstein: no problem . . . me too! 

It is interesting to note that the writer began her dialogue with the correct verbal 

definition of a prime number. However, the subsequent conversation shows the student's 

difficulty with interpreting the meaning of symbols. 



The result of Task 5(b) shows that the majority of the participants used the 

algebraic notations following an empirical verification. These students used an algebraic 

representation for prime decomposition of a whole number. However, at the time, their 

poor background in using algebraic notations led almost half of them to a superficial 

presentation. For example, in the following dialogue the student, after an empirical 

verification, continues: 

Aye: So, are we done? 

Myself: No, because we have not proven the proposition yet, we have just seen 

that one example works. To prove the example, we have to go back to using 

letters, which represent all possibilities. 

Aye: sounds good. 

Myself: To start, we will express a, b, and c as a product of their primes such that 

a=pl,p2.. .pm, b=ql,q2.. .qn and c=rl,r2.. .rq. Therefore 

ab=plql,p2,q2.. .pmqn. Since the Fundamental Theorem of Arithmetic states 

that each composite number can be expressed as the product of primes in exactly 

one way and we know that ab=pnzqn and c=rq, we can state that ab and c are 

relatively prime. 

Aye: And that was all we needed for proof? 

Myself: Yes! 

The use of comma in the prime decomposition of a and b may indicate that the writer 

perceived "pl,p2 . . .p  m" as a set of prime numbers rather than a product. And for making 

a conclusion she did not even present all the factors but just compared "pmqn" with "rq". 

(The use of indices, in a form of a coefficient, such as 'pm7, is reproduced as was shown 

in the student's work). 



Although the results confirmed the general weakness in students' use of algebraic 

representation, it also revealed good progress in some students' performance. As the 

results showed (in chapter 6) more than half of the participants were able to create a 

reasonable argument for Task 5(b) by using the environment of dialogue. The following 

excerpt from a dialogue for Task 5(b) illustrates these presentations. 

WHYer: Could you please repeat and summarize what you have done? 

EXPLORERE: sure, we set out to prove that for the whole numbers, a,  b, and c, 

if a and c are relatively prime, and b and c are relatively prime then ab and c are 

relatively prime. 

We considered that: 

and noted that it was not necessary that a and b were relatively prime for the 

purpose of our proposition. 

We determined that a and c were relatively prime because they shared no 

common prime factors and b and c were relatively prime because they shared no 

common prime factors either. 

W e t h e n s h o w e d t h a t i f a b = p , ~ p , ~ p  , . . . p n , x q , x q 2 x g 3 . . . q n  a n d c = r l x  

r ,  x r ,  ... r, then ab and c were also relatively prime because they shared no 

common prime factors. 

The Fundamental Theorem of Arithmetic states that a composite number can be 

expressed as the product of prime factors in only one way (except for the order of 



the factors), which means there is no other way that a ,  b, c, or ab  can be 

expressed other than what we have stated and since we have clearly illustrated 

that neither a and c nor b and c nor ab  and c have any prime factors in common, 

we can conclude that if a and c are relatively prime and b and c are relatively 

prime, then ab and c are also relatively prime. 

WHYer: Can we now consider this as proof for the given statement? 

EXPLORER: Yes, we can now say that we have proven the validity of the 

statement that for any three whole numbers a ,  b, and c if a and c are relatively 

prime, b and c are relatively prime then ab and c are relatively prime. 

Set theory symbols and diagrams 

The analysis of the dialogues showed that some of the participants selected set 

theory language, symbols, and diagrams as mediators in their arguments. This kind of 

mediators were mainly seen in the dialogues for Tasks 1, 3 and 5, where students were 

dealing with the set of prime factors of a whole number. A sample of this approach can 

be seen in the following excerpts from a dialogue for Task 3. In this dialogue the writers 

refers to "set a", which is not commonly used in mathematical language. 

Explorer: Prime #'s are those that have exactly 2 factors: 1 and itself. Relatively 

prime means that none of the numbers in set a are found in set b. 

Whyer: What is set a and set b? 

Explorer: Set a is all the prime numbers that represent a. set b is all the 

prime numbers that represent b. 

Whyer: can you give me an example? 

Explorer: Set a includesp, ,p , , ...p ., and set b includes q , ,q , , ... q ,  . Since a & 

b are relatively prime, they don't have any common   rime factors. 



Here, the writer defined 'set a '  as "all the prime numbers that represent a", but again the 

"prime numbers that represent a" is also not commonly used in mathematical language. 

This discourse, although not mathematically conventional, depicts the writer's correct 

perception of the relatively prime numbers, through indicating that 'set a '  and 'set by do 

not have any common prime factors. The following excerpt is part of a dialogue that Sue 

provided for Task 5. 

Figure 5: Use of set theory symbols as a mediator for Task 5(b) 

Figure 5 shows Sue's correct understanding of the concept; however, the use of 

symbols is not mathematically conventional. As we can see, due to lack of access to 

correct symbols to represent two disjoint sets, she invented a symbol - "does 

not intersect" - incorporating the available ones. It seems that the words were not 

sufficient for this student to express her idea, and she needed symbols to further support 

it. Another possible interpretation may stem from students' tendency to satisfy the 

ritualistic aspect of a proof by using more symbols. 



Diagrams are a very effective means for communication. Several students 

included diagrams to give a clear picture of their argument. Figure 6, which is a part of a 

dialogue that Pari provided for Task 5(a), illustrates the use of a diagram in students' 

arguments. 

In this excerpt, Pari used Venn diagrams to represent the sets of prime factors of a 

and b. She considered very well, the three possible conditions that the prime  factor,^, 

may have in relation with these two sets. This visual presentation may illustrate the 

insight that Pari had into the proof. Even though she did not present it in a conventional 

mathematical form, it can be a good indication of her understanding and logical 

reasoning. 

Figure 6: Use of diagram as a mediator for Task 5(a) 

Overall, we observed that students used different types of mediators to 

communicate their ideas. Even though the algebraic representations were the most 

problematic for them, the flexible environment of dialogue invited the students to 

implement the other accessible mediators to communicate their ideas. 



Routines 

In a communicational framework the term 'routine' refers to repetitive patterns 

that can be considered in discursive activities. However, the routines with which we react 

to prove a proposition may vary from one mathematical discourse to another. For 

example, an arithmetic discourse varies from a geometrical discourse. In this study, I 

examined the possible repetitive patterns in a proof for elementary number theory 

propositions. Based on the analysis of students' work, I categorized the emerged rules in 

three groups: ( I )  operation routines, (2) clarification routines, and (3) semantic 

routines. In what follows I explain each of these routines in students' arguments to see 

how these routines appear in their work and how the misuse of each of them may weaken 

students' arguments. 

Operational routines 

By operational routines I mean all the repetitive patterns that students use for 

manipulating numbers or different types of representations. The results of the study 

showed that the most challenging part of the Tasks for students was working with the 

algebraic representations, especially their manipulations. Some of these problems point to 

the general carelessness that we usually see in students' performance. A sample of this 

kind of problem can be seen in students' performance for Task 2, where they multiplied 

two binomials incorrectly: 

There were, also, some deeper problems in students' mathematical discourses that 

were caused by unconscious use of some meta-rules. One of the most common problems 



observed in students' arguments was in presenting the prime decomposition of a whole 

number. Despite having the prime decomposition of a whole number in the given proof in 

Tasks 3 and 5(a), many of the students used commas between the factors when they 

rewrote the prime decomposition in their dialogue. This problem might have originated 

from presenting the prime factors of a whole number in a form of a list of numbers. As a 

result, some students may unconsciously transfer this representation to the prime 

decomposition of a whole number as a list of prime numbers, separated by commas. The 

other common problem, related to misuse of symbols for operation can be seen in the 

definition of divisibility. The following excerpt from Betty's dialogue for Task 5(a), 

illustrates these and some other problems. 

1 .  WHYer: Where did you get x from? What does it represent? 

2. EXPLORER: From my definition of multiplication and division which I 

previously discussed, alb=c and this equation can be seen as cXa=b 

and cxb=a. In relation toplab=x, andx is some whole number. 

pxx=ab.  

3. WHYer: Further explain a and b. 

4. EXPLORERE: Moreover, let a and b be expressed as the product of 

primes as follows: a=p,,p ~...p,, and b=q,,q z...q,. In this equation, a and b 

are any whole number and it equals the products of primes. And rn and n 

stand for the amount of prime numbers. For example, if a=84. 84 = 4 x 2 I 

=2 x 2 x 3 x 7 =2 x 3 x 7. I have just expressed 84 as the product of 

primes. PI=2 , p2 =3,p3 =7. In the same way as the proposition, a and b 

is also a whole number which is also expressed as the product of primes. 

Different letters are used in the equation to symbolize different numbers. 

5. WHYer: What happens when you multiply a with b? 



6. EXPLORER: keeping in mind what I just explained, ab=pl,p 2...p, 

,ql,q2...qn orpx=p,,p2 ...pm ,q],q2...qn. When you multiply a with b o r p  

with x, the product of primes is represented by multiplyingpI,p 2...p,,, and 

q,,q2 ...q,,. And m and n stand for the amount of prime numbers. For 

example if a = 84 = 2 2  ~ 3 x 7  and b = 12 = 2 ~ 2 x 3  = 2 2  x3.  

ab=2 x 3  x 7. Remember that a , ~ a ~ = a , + ~  which is a rule for 

exponents. 

7. WHYer: Alright, keep explaining please. Why does ab equalspx? 

8. EXPLORER: Both ab andpx are equal equations as a result of a 

fundamental rule of division. Sinceplab=x andx is some whole number. 

p x x  =ab. 

9. WHYer: Ok, I can see why now. Go on. 

10. EXPLORER: I think it is important to illustrate the Fundamental 

Theorem of Arithmetic at this point. By the Fundamental Theorem of 

Arithmetic, each composite number can be expressed as the product 

of two prime in exactly one way, and sop=p, orp=q, for some i and j 

(1 < i < m, 1 <j < n). i and j stand for the product of primes. The sign 5 

means equal and or less than. Moreover, if p=p, thenpla and ifp=q, then 

~ l b -  

First, Betty incorrectly used the divisibility notation 'alb' as 'alb = c' (line 2). 

The source o f  this confusion might stem from the use of a common division symbol as in 

L b ' b = c y  or  ' - = c'. The more substantial mistake comes from Betty's interpretation of 
a 

the operation: 'alb = c which means c x a  = b and cxb  = a'.  Further, the idea o f  

considering two primes (line 10) might be a superficial inference from usingpiYs and qj's 

as a representation for the prime decompositions o f  a and b. 



Another example of an incorrect reliance on the appearance of the symbolic 

representations can be seen in the following excerpt from Roshe's dialogue for Task 5(a). 

A: Sop=pi or q for some i, j (1 I i I m ,  1 sjsn). 

B: Can you explain this more? 

A: Sure, so basically you can look at it this way. We know that ab=px, and a = 

p l p 2  ...pn, and b = q 1 q 2  . . .qn;  ifweknowthatab=pxthen wealso know that 

P'PlP2 ... Pnt and x =  9192 ...qn. 

It seems that for Roshe the symbols do not carry any meanings. She simply 

assigned a t o p  and b to x from the operation ab = px without any attention to what the 

symbols stood for. Her assignment o f p = p  ,p2 ...p, shows Roshe's negligence of the 

primeness ofp,  that is the key point of the proposition. 

A few of the students used set theory symbols as mediators for presenting their 

arguments for Task 5(b). At the same time, these arguments illustrate the role of meta- 

rules, discussed in chapter 3, that led students to misuse some operational rules or 

symbols. The following excerpt from Sahar's dialogue depicts this phenomenon. 

1. A: So we need to find the relationship between ab and c. 

2. A: So weknow that a = p l p 2  . . . p ,  , b = q l q 2  . . .qn, c = x l x 2  ... x, 

3. when { p l p 2  ...pn,) n { x l x 2  ... x , )  = 1 

4. and { q l q ,  . . .qn)  n { x , x ,  ... x , )  = 1 

5. we know that a and c, b and c are relatively prime 

6. ab=  pip, ...pl,,q1q2 . . .qn, c = x l x 2  ... x, 



7. s o a b = a u b  

8. a u b = a + b - a n b  

9. ( a u b )  n c = ( a n c )  u ( b n c )  

10. s inceanc=  { p l p 2  . . .p, , , )  n {x ,x2  ... x , )  = 1 

11. a n d b n c = { q l q 2  ...q,} n { x l x 2  ... x,}  = 1 

13. meaning 

( a u b )  n c = a b  n c =  { p l p 2  ...p,q,q, . . . q n ) n  {x1x2  ...xk)= 1 

14. Thus ab and c are relatively prime! 

Sahar incorrectly implemented the rules of algebraic operations through the set 

theory symbols. This misunderstanding may have originated from the way the basic 

arithmetic operations were introduced to students from set theory perspective7 (Musser, et 

al, 2003). In lines 3 and 4, Sahar unconventionally matched the set theory representation 

of two disjoint sets to the concept of relatively prime numbers by using ' 1 ' as the only 

common factor of two numbers instead of the empty set,' $J '. In addition, in line 7, she 

related the multiplication of two whole numbers to the union of the sets of their prime 

factors, which is not correct in general. Also, in line 8, Sahar misused the rule 'n(a u b) = 

n(a) + n(b) - n(a n b)' for 'a u b = a + b - a n  b7 without any application of this rule in 

her argument. In line 9, she again combined her interpretations of the union and the 

intersection of sets, as a multiplication of two whole numbers and a tool for showing two 

' For example the addition of whole numbers defined as follows: 
"Let a and b be any two whole numbers. IfA and B are disjoint set with a=n(A) and b=n(B), then 
a+b=n(A U B)" (Musser, et al, 2003, p.96). 



relatively prime numbers, respectively, with the correct set theory rule ' ( a  u b) n c = 

( a n  c) u (b n c)'. Following this rule allowed Sahar to make her desired conclusion that 

was consistent with her invented assumptions. Despite all the flaws, this argument 

reflects the student's sound thinking process. 

Clarification routines 

By clarification routines I mean all the meta-rules that a person may consciously 

or unconsciously apply to make a mathematical statement or a proof clear for oneself. 

These meta-rules may include recalling or searching for the meaning and definition of 

words or concepts, and also all the activity that someone may do to make an idea clear for 

oneself, such as making a conjecture or finding a more sensible evidence for that. 

In a process of creating a proof, through clarification routines, students recognize 

definitions and statements to implement into their arguments. Indeed, when students give 

an overview of a proof based on their intuition they are clarifying the idea of a proof 

without providing all the required steps, and most of the time they consider what they 

obtained through clarification as a proof. In such cases, even though the provided 

argument cannot be considered as a mathematical proof, it depicts the writer's perception. 

The following argument is the proof that one of the participants provided for Task 4(b). 

If alb , then b is a multiple of a. Therefore, any number for which b is a factor 

also has a for a factor. Thus, would be divisible by a. For example, let a = 13, b = 

26 and c = 156. 13126 because 26+2 =13 and 261 156 because 156+6 =26 

therefore 156+ 13=12, as such, 131 156. 



This argument shows that the student has clear idea of the proposition; however, in her 

argument she did not provide any answer for some possible 'whys' such as, why "any 

number for which b is a factor also has a for a factor"? 

When students provide a numerical example for a given statement, we can also 

say that they are using numbers to clarify the meaning of the statement. The following 

dialogue exemplifies such meta-rules that lead the student in her clarification procedure 

for Task 5(a). 

1. Me: So the proposition is that i fp  is a prime number andplab thenpla or 

~ l b .  

2. Myself: What's a prime number? 

3. Me: A counting number with exactly two different factors: itself and 

one. 

4. Myself: And factors are . . . 

5.  Me: A number's factors are all the other numbers that evenly divide that 

number. For example, 3 is a factor of 9 because 3 + 3 + 3 = 9. 

6. Myself: Right. 

7. Me: OK, let's try this proposition assign actual numbers. Let's sayp = 3 

(because it's prime number) a = 6, b = 4. 6x4=24 and 3 divides 24, 

which means so far we are OK. Now 3 does not divide 4, but 3 divides 6, 

and the proposition states that p does not have to divide both a and b, it 

just has to divide one of them, so this example appears to work. 

8. Myself: Yay! Now what? 

9. Me: Now, let's try to make some sense out of this written proof. The first 

step says, " since plab then ab = px for some whole number x." 

10. Myself: Zah? 



11. Me: It's not as confusing as it sounds. Remember in our example ab = 

24, all this statement is saying that p (which in our example equals 3) 

times some number (which they distinguish as x) is going to equal ab 

(24). In our example x = 8 because 3 x 8=24. 

12. Myself: Gotcha. 

13. Me: Alright, next step. "Let a and b be expressed as the product of 

primes as follow: a=pl,p2 ...p m and b=ql,q2 ...q n or 

px=pl,p2. ..pmql,q2 ...q m." 

14. Myself: I think I get that. It is basically states that we should think of a 

and b as their prime components, and add up the primes until you reach 

the number. a= 6, so listed in its prime components, it would look like 3, 

6, 9, 12, 15, 18,24. b= 4, so listed in its prime components, it would look 

like 2,4, 6, 8, 10, 12, 14, 16, 18, 20,22,24. 

15. Me: Did you notice that the primes for a and the number we are dividing 

by are both represented by the letterp? 

16. Myself: No I didn't, but that would make sense because both represent 

the same number, which in our example is 3. 

Since meta-rules are usually invisible, the written dialogue may provide us with a 

partial picture of it. As can be seen, in the above dialogue the student tried to explain the 

relations and notations by substituting numbers. However, her explanation in line 14 

reveals her incorrect perception about the given representation for prime decomposition 

of numbers. 

Semantic routines 

Semantic routines refer to all the meta-rules (explained in chapter 3) that 

administer the structure of mathematical discourses. Logic rules can be considered as a 



part of semantic routines. The results of this study show that the prevailing rules that 

govern the students7 arguments was their common sense. 

One of the common logical issues in students' arguments is that they usually 

consider (P a Q), and (Q a P) equivalent. This logical confusion was observed mainly in 

students7 performance in Task 4, where they were asked about the validity of the 

converse of the statement (line 14, p. 78). 60 out of 93 students gave an incorrect answer 

because they could not see the statement conversely. The following excerpt shows a 

typical answer provided by students (line 17) 

Yes because if m and n are each divisible by a then you add them together their 

sum will also be divisible by 5. as long as a,m,n E W 

The other common logical confusion is when students take (P Q) equivalent to 

(l P =. Q). For example in the following argument (for Task 4(b)), the student 

provided an example in which a does not divide b and b does not divide c (7 P) but a 

divide c (Q). Through implicit acceptance of the equivalency of (P a Q) and 

(7 P 3 7 Q) the students considered her example as a counterexample for the statement 

and rejected the validity of the statement on that understanding. 

The statement is not necessarily true, because if a=2, b=3, c=4 then a doesn't 

divide b, and b doesn't divide c but a divides c. 

The other observed issue relates to colloquial use of 'or' in students' 

mathematical discourse. As we know 'or' is always used inclusively in mathematics, 



while 'or' in colloquial discourse is usually used exclusively. Under the influence of their 

colloquial discourse, the over emphasis on an exclusive aspect of 'or' was observed in 

some students' arguments. The following excerpt from one of the student's dialogue (for 

Task 5(a)) illustrates this misunderstanding. 

Explorer: To sum up, we have shown that ifp divides ab (5110x4) thenp 

divides a or b, but not both. In the case of our examplespla (5110) not b (514). 

So although when a & b are multiplied, their sum is divisible byp, when they are 

on their own, p will divide one or the other, not both. 

As it is mentioned in chapter 3, the characteristic of the literate mathematical 

discourse is that its routines are particularly strict and rigorous (Ben-Yehuda et al, 2005). 

The results of the study showed how the lack of this characteristic in students discourses 

weaken or mislead their whole process of proving. The analysis of students' arguments 

revealed their poor skill in discursive routines related to manipulation of symbolic 

representations. The detailed presentation of students' argument in the form of a dialogue 

disclosed how the rules of their colloquial discourses administer their arguments. In other 

words, the main problem with some students' arguments was that they implicitly (or 

unconsciously) implemented the rules of their colloquial discourse in creating or 

interpreting a mathematical proof. 

Endorsed narratives 

The endorsed narratives are the production of discursive activities and 

mathematical routines (Ben-Yehuda et al, 2005). In other words, the endorsed narratives 

are narratives that are accepted by mathematical communities and are labelled as true. 



Therefore, we can say that producing endorsed narratives is the main aim of a 

mathematical proof. On the other hand, the process of proving can be also considered as 

producing a chain of endorsed narratives that leads the argument to the desired 

conclusion. Indeed, all the definitions and axioms, and pre-proven propositions can be 

also considered as endorsed narratives that are employed for creating a formal 

mathematical proof. 

The inquiring nature of a dialogue implicitly motivated students to create 

endorsed narratives in each step of their argument. The presented endorsed narratives in 

the dialogues were mainly the results of discursive activities such as (1) manipulation of 

numbers or different form of representations, (2) memorization of definitions, rules, or 

pre-proved proposition, and (3) composition of an argument in the form of a proof. 

The results of this study indicate that this aspect of proving, using endorsed 

narratives for supporting each step of a proof, has been missing in some students' work. 

In several dialogues, for example, it was observed that students made a claim about the 

prime decomposition of whole numbers without referring to the Fundamental Theorem of 

Arithmetic. The following excerpt is part of a dialogue that one of the students created for 

Task 5(b). 

Whyer: I get it. So now we can express a, b, and c as their product of their 

primes right? 

Explorer: Right. Let a, b, and c be expressed as their products of primes as 

follows: a = p i  p ,  p ,  ...p,, b = q ,  q ,  q ,  ...qf, and c = r ,  r ,  r ,  ... r, 

Whyer: What does this tell us? 



Explorer: This shows that a and c are relatively prime because their products of 

primes do not have any common primes. It also shows that b and c are relatively 

prime because they too do not have any common primes. 

Whyer: But, then how do we know that ab and c are relatively prime? 

Explorer: We know this because ab = ( p ,  p ,  p ,  . . .p, ) (q ,  q ,  q ,  . . .qf) and these 

do not have any common primes with c, ( r ,  r ,  r ,  ... r,). Therefore ab and c are 

also relatively prime because their greatest common factor is 1. 

Whyer: So can we now say that we proved the statement? 

Explorer: Yes. 

This student did not see the necessity to support her argument explicitly by 

presenting required endorsed narratives. In this dialogue the student made the conclusion 

without any reference to the Fundamental Theorem of Arithmetic, and simply based on 

the appearance of the selected letters for prime factorisation of a ,  b, and c. However, in 

mathematical argument we know that different letters necessarily do not refer to different 

numbers unless we indicate it in our argument. 

Summary 

In this chapter the communicational framework provided us with a tool for 

analysing students' mathematical discourses. Through the analysis of students' dialogues 

a further refinement of the communicational framework emerged: the word use has been 

broken into ( I )  descriptive words, (2) quantifiers, and (3) operation words; the mediators 

- (1) numbers, (2) verbal explanation, (3) algebraic representation, and (4) set theory 

symbols and diagrams; routines - (1) operation routines, (2) clarification routines, and (3) 

semantic routines; and endorsed narratives resulted from discursive activities such as (1) 

nzanipulation of numbers or different form of representations, (2) memorization of 



definitions, rules, or pre-proved proposition, and (3) composition of an argument in the 

form of a proof. The profile of this refinement is presented in Figure 7. 

The examination of the four features of a literate mathematical discourse in 

students' work gave the researcher an insight into the possible obstacles to students' 

endeavour of creating a proof. The results showed that the students' colloquial use of 

words might weaken or mislead their arguments. Even though students had poor access to 

formal mathematical representations for expressing their argument, students' ability to 

communicate their reasoning and logic through the alternative mediators should be 

acknowledged. It was also observed that the manipulation of different types of 

representation was the main challenge for students. The construction of the written 

dialogues within this classroom context can be considered as a series of endorsed 

narratives. However, inadequate understanding of mathematical words, mediators, and 

routines prevented the majority of students from producing mathematically valid 

endorsed narratives. 



Figure 7: Profile of Number Theory Discourse 



CHAPTER 8: 
DISCUSSION AND CONCLUSION 

"The birth of mathematical proof is essentially the result of the 
willingness of some philosophers to reject mere obsewation and 
pragmatism, to break offperception (le monde sensible), to base 
knowledge and truth on reason. " 

(Balachefi 1991, p. 187) 

My research was aimed at extending the views and insights about the difficulties 

that pre-service elementary school teachers experience in dealing with the notion of 

mathematical proof. I have done so by analysing students' discourses when they 

attempted to interpret or create proofs for some propositions related to elementary 

number theory. 

The communicational approach to learning is the theoretical perspective that I 

adopted to investigate the difficulties students experience in generating proofs. According 

to the communicational approach to cognition, thinking is a special case of the activity of 

communication, and learning mathematics is an initiation into a certain type of discourse, 

which is called literate mathematical discourse (Sfard, 2001; Sfard & Cole, 2002). From 

this theoretical perspective, the four features that render literate mathematical discourse 

its distinctive identity are its special vocabulary, mediating tools, routines, and endorsed 

narratives (Sfard, 2002; Ben-Yehuda, et. al., 2005). 

In this study, I have introduced the notion of dialogue as a tool for involving pre- 

service elementary school teachers in the process of creating a proof. Based on the idea 



that thinking can be considered as an act of communication that one has with oneself, I 

introduced dialogue as a self-dialogue or a conversation that a person has with oneself 

while shelhe is thinking. I encouraged students to write a dialogue while they were 

thinking in order to interpret or create a proof. For this purpose, I designed six tasks. The 

progression of the tasks followed the gradual involvement of students in the process of 

proving, from public to private, and moving from imitation to creating a proof 

individually. I examined the collected data to answer the following research questions: 

1. What difficulties do pre-service elementary school teachers experience in 

writing and interpreting proofs for propositions related to elementary 

number theory? 

2. What are the outcomes of students' activity of creating a dialogue? 

(a) Does it facilitate students' participation in the process of proving? 

(b) Does it reveal their difficulties in this process? 

3. Can communicational approach to cognition serve as a tool for researchers 

in recognizing and identifying factors that impede pre-service elementary 

school teachers' participation in the process of creating and interpreting 

proofs? 

The results revealed that the main difficulty that students experienced in creating 

a proof is that they did not know how to communicate mathematically. In other words, 

they did not have the required competences to be an active participant in mathematical 

discourse. The students' communication was highly influenced by their colloquial 

discourse, and their arguments were mainly subjective. 



In mathematics we say that "logically establishing the truth" can be considered as 

a proof. This definition might raise the question what we mean by logic. Many pre- 

service elementary school teachers use the informal logic of their colloquial discourse to 

prove a mathematics statement. This is a point where problems might originate. In a 

colloquial discourse, we may establish a truth based on limited observation. However, in 

mathematics the universality of truth is needed. This study aimed at moving students 

from colloquial to literate mathematical discourse. 

At the beginning of the study (based on the results of tasks 1,2,  and 3), some 

confirming examples were sufficient for the majority of students to be convinced about 

the truth of the statement. For these students, their presented argument, based on 

empirical verification, was reasonable because they evaluated it in terms of their own 

logic. And, we cannot ignore the fact that the visual or inductive argument provides 

students with an insight into the meaning of a proposition. Nonetheless, it cannot provide 

a mathematical persuasion. 

According to Balacheff (1 991), an epistemological obstacle is "a genuine piece of 

knowledge which resists to the construction of the new one, but such that the overcoming 

of this resistance is part of a full understanding of the new knowledge" (p. 191). From 

this point of view, a high reliance on numerical example or empirical verification is an 

epistemological obstacle for pre-service elementary school teachers. In fact, this is one of 

the main obstacles that prevent students from understanding the essence of the notion of 

proof. 

The lack of understanding and proficiency in using and manipulating algebraic 

symbols and representations are also the root of many difficulties that pre-service 



elementary school teachers experienced in writing and interpreting proof for propositions 

related to elementary number theory. This problem returns to their poor background in 

mathematics. This poor background formed the mathematical world view or belief 

system of pre-service elementary school teachers. The belief system, formed through this 

poor background, may have weakened students' self-confidence and motivation for 

involvement in the process of creating a mathematical proof (Schoenfeld, 1985). 

The results of the study showed that writing a dialogue was a useful tool for 

involving students in the process of proving and changing their attitude about what a 

proof is, as well as their own capability of producing a proof. The environment of 

dialogue involved students in the process of questioning about all the details related to a 

given statement, which is the best support for writing a mathematical proof. The 

atmosphere of dialogue provided students not only with a space to practice questioning, 

but also with a space for reflection, which improves mathematical thinking. 

I found that the common aspects of all the students' written dialogues were 

recalling the related definitions, and making sense of the idea of a given proposition by 

presenting some confirming examples. Even though none of these two are part of a proof, 

both of them are very useful preliminary steps for initiating a proof. The result of the 

study showed the decrease of mere reliance on empirical verification. One of the common 

questions in all the dialogues for Task 5(b) was (in different phrases): "does a numerical 

example prove the proposition?" Almost all of the participants answered 'no', which is a 

promising result of the study. After this question, 92% of the participants continued their 

argument in its general form by using different types of mediators. The results showed 

that using dialogue was useful for changing students' attitudes toward empirical proof 



that was a kind of epistemological obstacle in their understanding of proof. In fact, it 

provided the students with an opportunity to face the conflict of whether some limited 

number of examples can guarantee the validity of a statement in general, and mediate 

colloquial understanding of proof. 

The atmosphere of dialogue encouraged students to create an honest conversation, 

that is, to answer the most basic and natural questions that came to their mind without 

any concern about judgment, and with ample space and time. Hence, created dialogues 

revealed most of the difficulties that students may experience in the process of creating or 

understanding a proof. In other words, the written dialogues revealed the details of 

misunderstandings that misled students' arguments and therefore, provided me with rich 

source of students' discourses. From this perspective, the written dialogue can also be 

considered as a research tool for collecting data related to students' discourses and 

students thinking process. 

As I mentioned earlier, poor access to appropriate mediators, especially in the 

form of an algebraic representation and poor skills in discursive routines, are still the 

main challenges for pre-service elementary school teachers to present their argument 

mathematically. Nevertheless, I would like to acknowledge students' ability to 

implement, and in some cases even invent different kinds of mediators to present and 

communicate their idea. Indeed, dialogues provided the students with a flexible 

environment where they could cultivate their reasoning in the form of a literate 

mathematical discourse. 

According to the communicational approach to cognition, "we can define learning 

as the process of changing one's discursive way in a certain well-defined manner" (Sfard, 



2002, p. 26). The new discourse may facilitate communication and participation in 

mathematical processes including proving a proposition. On the other hand, we know that 

for making any change we need to have a clear idea about the current condition. 

The communicational framework with its explanatory power helped me to 

organize the interrelated phenomena that incorporate an understanding and creating a 

proof. Indeed, examining the four features of literate mathematical discourse in students' 

arguments revealed some roots of many difficulties that pre-service elementary school 

teachers may experience. 

Having a clear understanding of the mathematical vocabulary and using it 

appropriately is the very important requirement for being a legitimate active participant in 

a mathematical discourse. The study demonstrated that explaining mathematical words is 

a common part of the dialogues. The majority of students posed questions regarding the 

explanation and application of words or symbols and they answered them. That is to say, 

writing dialogues led them to make all the related definitions available and engaged them 

in the process of proof. However, the explanations very often revealed students' 

misunderstandings or misuse of terms, more than describing the words or concepts. 

Following this, this misuse of words would be helpful to identify a possible root of 

students' failure in thinking mathematically and understanding or creating a proof. 

According to the communicational approach to cognition, mediating tools and 

routines are two things that must be learned if a person is to become a skilful participant 

of a given discourse. The results of the study showed the implemented mediators and 

routines in students' arguments were strongly influenced by their colloquial discourse. 

Having a close look at the pre-service elementary school teachers' argument through the 



lens of the communicational framework provided the researcher with indicators for 

recognizing the factors that impeded students in the process of creating and interpreting a 

proof. 

Specific contributions of the study 

There are several contributions of this study to the field of mathematics education, 

particularly to the research on pre-service elementary school teachers' understanding and 

creating proofs for propositions related to elementary number theory. The contributions 

can be viewed from different perspectives: methodological, pedagogical, and theoretical. 

As a methodological contribution, this study introduced the idea of writing 

dialogue as a data collection tool to investigate not only students' discourses but also 

students' thinking processes while they try to prove a mathematical statement. The results 

of the designed tasks based on the idea of writing dialogue revealed the difficulties that 

students experienced in writing and interpreting proofs for propositions related to 

elementary number theory. The created dialogues provided the researcher an opportunity 

to examine students' arguments and, by posing more appropriate questions, led the 

students to refine and strengthen their arguments. From this perspective it provided a 

researcher with an opportunity to trace the students' progress. 

As a pedagogical contribution, this study introduced the activity of writing 

dialogue as a heuristic tool to involve students in the process of creating a proof. The 

benefit of writing dialogue is that it encourages students to 'explain why and how to do' 

instead of just doing. This is what Schoenfeld (1 994) calls mathematical culture, where 

discourse, thinking things through, and convincing are important parts of students' 



engagement with mathematics. The students' dialogues revealed their improvement in 

producing a reasonable mathematical argument, and also revealed their appreciation of 

the space of dialogue that gave them a chance to present their ideas in a flexible, 

explorative environment. From this perspective we can consider the activity of writing 

proof as an intermediate stage between having an overview of a proof and writing a 

mathematical proof. 

This study was guided by the communicational approach to cognition. As 

described in chapter 2, the literate mathematical discourse is characterized with its four 

features: mathematical vocabulary, mediators, routines and endorsed narratives (Sfard, 

2002; Ben-Yehuda et. al., 2005). The theoretical contribution of the study is the further 

refinement of these features, applicable to elementary number theory discourse, that 

emerged through analysing students' arguments (see Figure 7, p. 160). The proposed 

finer categorization enables a researcher to analyse students' discourse in more detail. 

Limitations of the study and suggestions for further exploration 

The main limitation of this study was the time frame of the course. Considering 

the number of participants, the time frame of the course did not allow me to follow the 

individual's progress. However, each student received a written feedback on herlhis 

work; it could have been much more effective if it were supplemented by some 

discussion on each dialogue as well. 

As noted above, the results reported in this dissertation are from involvement of 

pre-service elementary school teachers in the activity of creating dialogues for proving 



propositions related to elementary number theory. We can extend and explore the idea of 

the study in other directions focusing on methodology, teaching, or content. 

The claim of the study is that writing dialogue provides students with an 

opportunity to revise their ways of thinking about mathematical thinking and practice. 

Therefore, it should not be limited to interpreting and creating proof. The method of 

writing dialogue could be applicable for students' involvement in the process of 

mathematical problem solving, where students need to engage their knowledge sources to 

understand a problem, make a conjecture, and by reflecting on their own ideas find the 

solution. From this perspective the method of writing dialogue not only works as a 

heuristic tool to activate students participation in a mathematical practice, but may also 

provide a research tool for collecting data related to students' thinking process while they 

are solving a problem. 

The exploratory nature of activity of writing dialogue aimed at cultivating a 

mathematics culture, including posing questions and providing reasonable explanation for 

'why' and 'how' to do what to do. Considering the formation of mathematical thinking in 

early schooling, this study can be extended to investigate the applicability of writing 

dialogue for introducing and teaching proof to high school students. 

This study examined students' discourses in their attempts for creating a proof for 

propositions related to elementary number theory through the communicational 

framework. Another extension of this study might focus on using communicational 

framework for analysing students' discourse for different topics such as geometry or 

algebra. 



APPENDICES 



Appendix 1 

Consider each of the following statements along with its justification 

(pro0 0. 
Examine each proof carefully and decide whether it is satisfactory for 
provinglvalidating the given statements. 

If you believe it is mathematically acceptable write OK. 

If not, either add lines to provide an acceptable justification (valid proof) 
or delete lines to avoid statements that are unnecessary for the proof. You 
may rewrite the entire proof if you wish. 

(1) Statement: The finite set B = {0,1) is closed under multiplication. 
Proof: O x l = O  

o x o = o  
l x l = l  
l x O = O  
.'. the set B is closed under multiplication 

(2) Statement: 
Proof: 

(3) Statement: 
Proof: 

The set of prime numbers is closed under addition. 
The set of prime numbers = 

{2,3,5,7,11,13,17,19,23,29,31,37 ,. . .I 
2 + 3 = 5 is a prime number 
2 + 5 = 7 is a prime number 
17 + 2 = 19 is a prime number 
but 3 + 5 = 8 is not a prime number 
and 19 + 13 = 32 is not a prime number 
So, the set of prime numbers is not closed under 
addition. 

The set of multiples of thirteen is closed under addition. 
The set of multiples of thirteen = 

{ 0, 13, 26, 39, 52,65,78,91,104, 117, 130, 143, 156, 
169, . . . I  
13 +26 = 39 is a multiple of thirteen 
39 + 52 = 91 is a multiple of thirteen 
65 + 78 = 143 is a multiple of thirteen 
91 + 104 = 195, 195 = 15 x 13 so it is a multiple of 
13 
117+156=273, 273=2 l  x 13 
130+ 169=299,299=23 x 13 
195 + 143 = 338, 338 = 26 x 13 
1300 + 2613 = 3913, 3913 = 301 x 13 
We have seen that the sum of two multiples of thirteen 
is another multiple of thirteen so we can say this set is 
closed under addition. 



(4) Statement: 
Proof: 

(5) Statement: 
Proof: 

The set of multiples of five is closed under addition. 
True, because for a multiple of five the last digit is 0 or 
5. When we add up two numbers, which are multiples 
of five, then the last digit could be O+O, 0+5, 5+5, 
which would be again a number with the last digit 0 or 
5. Therefore, the set of multiples of five is closed under 
addition 

The set of odd numbers is closed under multiplication. 
0 = {1,3,5,7,9,11,13,15 ,... ) =set ofoddnumbers 
For any n,me W, (2n + 1) E 0 and (2m + 1) E 0 
[2n+l and 2m+l are two odd numbers] 
(2n+ 1)(2m+ 1 ) = 4 n m +  1 =2(2nm)+ 1 = 2 k +  1 ~ 0  
[2nm is a whole number like k] 
So, the set of odd numbers is closed under 
multiplication 



Appendix 2 

Proposition 24, from book seven 

If two numbers be prime to any number, their product also will be prime to the 
same. 

For let the two numbers A, B be prime to any number C, and 

let A by multiplying B make D; A 

I say that C, D are prime to one another. B 

For, if C, D are not prime to one another, some C 

number will measure C, D. D 

Let a number measure them, and let it be E. E 

Now since C, A are prime to one another, F- 
and a certain number E measures C, 

therefore A, E are prime to one another [VH. 2319 

As many times, then, as E measures D, so many units let there be in F;  

therefore F also measures D according to the units in E. [VH. 161" 

Therefore E by multiplying F has made D. [VII. Def. 1511 I 

But, further, A by multiplying B has also made D; 

Therefore the product of E, F is equal to the product of A, B. 

But, if the product of the extremes be equal to that of the means, the four numbers are 
proportional; [VII. 1 9 1 ' ~  

Therefore, as E is to A, so is B to F. 

But A, E are prime to one another, 

numbers which are prime to one another are also the least of those which have the same 
ratio, [VII. 211i3 

The proof is from EuclidJs Elements (Euclid, 2002, p. 173). 
[VII. 231 If two numbers be prime to one another, the number which measures the one of them will be 

prime to the remaining number. 
'O [VII. I61 If two numbers by multiplying one another make certain numbers, the numbers so produced 
will be equal to one another. 
I '  [VII. Def. 151 A number is said to multiply a number when that which is multiplied is added to itself as 
many times as there are units in the other, and thus some number is produced. 
12 [VII. 191 If four numbers be proportional, the number produced from the first and fourth will be equal to 
the number produced from the second and third; and, if the number produced from the first and fourth be 
equal to that produced from the second and third, the four numbers will be proportional. 



and the least numbers of those which have the same ratio with them measure 

those which have the same ratio the same number of times, the greater the greater 

and the less the less, that is the antecedent the antecedent and the consequent the 
consequent; [VII. 20]14 

therefore E measures B. 

But it also measures C; 

therefore E measures B, C which are prime to one another: 

which is impossible. 

Therefore no number will measure the numbers C, D. 

Therefore C, D are prime to one another. 

[VII. Def. 121 l 5  

Q.E.D. 

l 3  [Vll. 211 Numbers prime to one another are the least of those which have the same ratio with them. 
l 4  [VII. 201 The least number of those which have the same ratio with them measure those which have the 
same ratio the same number of times, the greater the greater and the less the less. 
'' [VII. Def. 121 Numbers prime to one another are those which are measured by an unit alone as a common 
measure. 



Proposition 30, from book seven 

If two numbers by multiplying one another make some number, and any prime 
number measure the product, it will also measure one of the original numbers. 

proof16: 

For let two numbers A, B by multiplying 

one another make C, and let any prime A- 

number D measure C; B 

I say that D measures one of the C 

numbers A, B. D- 

For let it not measure A. E 

Now D is prime; 
" 

therefore A, D are prime to one another. [VII. 29]17 

And, as many times as D measures C, so many units let there be in E. 

Since then D measures C according to the unit in E, 

therefore D by multiplying E has made C. [VII. Def. 1 5 1 ' ~  

Further, A by multiplying B has also made C; 

therefore the product of D, E is equal to the product ofA, B. 

Therefore, as D is to A, so is B to E. [VII. 19]19 

But D, A are prime to one another, 

Prime are also least, 

and the least measure the numbers which have the same ratio the same number of times, 
the greater the greater and the less the less, that is, the antecedent the antecedent and the 
consequent the consequent; [VII. 201~' 

therefore D measures B. 

Similarly we can also show that, if D do not measure B, it will measure A. 

Therefore D measure one of the numbers A, B. Q.E.D. 

l6  The proof is from Euclid's Elements (Euclid, 2002, p. 177). 
l 7  [VII. 291 Any prime number is prime to any number which it does not measure. 
I s  [VII. Def. 151 A number is said to multiply a number when that which is multiplied is added to itself as 
many times as there are units in the other, and thus some number is produced. 
l 9  [VII. 191 If four numbers be proportional, the number produced from the first and fourth will be equal to 
the number produced from the second and third; and, if the number produced from the first and fourth be 
equal to that produced from the second and third, the four numbers will be proportional. 
20 [V11.21] Numbers prime to one another are the least of those which have the same ratio with them. 
2' [VII. 201 The least number of those which have the same ratio with them measure those which have the 
same ratio the same number of times, the greater the greater and the less the less. 



Proposition 29, from book nine 

If an odd number by multiplying an odd number make some number, the product will be 
odd. 

For let the odd number A by multiplying the odd number B make C; 

I say that C is odd. 

For, since A by multiplying B has made C, therefore C is made up of as many numbers 
equal to B as there are units in A.  [VII. Def. 1 5 1 ~ ~  

And each of the numbers A, B is odd; 

therefore C is made up of numbers the multitude of which is odd. 

Thus C is odd. [IX. 2 3 1 ~ ~  

Q.E.D. 

22 The proof is from Euclid's Elements (Euclid, 2002, p. 230). 
23 [VII. Def. 151 A number is said to multiply a number when that which is multiplied is added to itself as 
many times as there are units in the other, and thus some number is produced. 

24 [IX.23] If as many odd number as we please be added together, and their multitude be odd, the whole 
will also be odd. 
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