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Abstract 

The development of numerical methods and software for dynamical systems has become a 

very active research topic during the last two decades. One of the most successful examples 

is the software AUTO. This software is capable of doing bifurcation analysis, tracing the 

different solution branches and determining the stability of the solutions for steady state 

problems as well as boundary value problems. However, robustness has been sacrificed 

in some places in order to achieve efficiency (e.g., in the linear system solver for BVPs), 

and better numerical methods can sometimes be implemented to improve the stability, 

accuracy and speed of the code (e.g., in the numerical methods for computing periodic 

solutions and connecting orbit). In this thesis, some new numerical methods are analyzed 

and implemented in AUTO. These numerical methods include a new linear system solver 

for the boundary value problems and a new algorithm for computing periodic solutions 

and connecting orbits (homoclinic orbits and heteroclinic orbits). A comparison between 

the original AUTO and our implementation is done. Finally, a pseudo-spectral method for 

computing connecting orbits is investigated. 
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Chapter 1 

Introduction 

Nonlinear phenomena appear virtually everywhere in our daily life. These problems arise 

not only in the traditional areas in mechanics, physics and chemistry, but also increasingly 

in mathematical modeling of biological, ecological, social and economic systems. As a result, 

the research in nonlinear dynamical systems has become increasingly attractive to scientists 

and engineers, analysts and experimentalists in many disciplines. Many of these problems 

are remarkably difficult and their solutions have extremely rich structures. Despite the effort 

by many great scientists, analytical solutions for nonlinear problems can only be obtained 

for some special cases. Most of the problems can only be solved numerically. 

With the increasing computer power during the past 30 years, numerical software has 

become extremely useful for studying the problems in dynamical systems. Therefore, numer- 

ical analysis plays an important role in producing efficient and robust numerical methods, 

algorithms and software for the study of dynamical systems. Various numerical software 

has been developed during the 1970s and 1980s, such as, BIFPACK [65] written by Seydel, 

AUTO [25, 281 by Doedel, COLCON [7] by Bader and Kuker, and several other packages. 

Among them, AUTO is one of the most successful ones due to its capacity, efficiency, flexi- 

bility, well-designed user interface and its graphics facilities. It has been widely used in the 

engineering and applied mathematics research and development. This software is capable of 

doing bifurcation analysis for steady state problems, boundary value problems and discrete 

systems. Using a pseudo-arclength continuation method, it is able to compute the solution 

branches and to determine their stability and bifurcation. AUTO was first released in 1980 
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and was revised in 1986. Since then, there have been a number of improvements. Fairgrieve 

and Jepson [31] improve the method for computing Floquet multipliers of the periodic so- 

lutions without a significant increase of the cost. Taylor [70] has developed a graphical user 

interface software for SGI machines so that users can use AUTO interactively. 

Despite all the success of AUTO, there are still some places in the code where robustness 

has been sacrificed in order to achieve efficiency. One example is the numerical algorithm 

for solving the linear systems for boundary value problems, where AUTO uses a potentially 

unstable solver. In many other places, better numerical algorithms and implementations 

should be used to improve the efficiency and stability of the code. Some examples include 

the numerical continuation for the periodic solutions, connecting orbits, limit points, period 

doubling bifurcation points and tori bifurcation points. One purpose of this thesis is to 

address the problems of instability and inefficiency of the numerical methods in AUTO and 

to improve its performance by incorporating stable and efficient numerical algorithms into 

the software. 

Dynamical systems described by ordinary differential equations and finite difference 

equations are called continu, .ns and discrete dynamical systems, respectively. In the real- 

life models, people are usually concerned about the long-term behaviour of the solutions. 

Some of these solutions may be very complicated. However, they stay bounded on certain 

regions of the domain for all time. One interesting problem in studying dynamical systems 

is to compute the different types of invariant manifolds and their stability. An invariant 

manifold defines a certain region of the domain on which, if the initial conditions are given 

on it, the solution remains for all time. The stability characterizes the long-term behaviour 

of the solution near the manifold. If this solution always stays close enough to the invariant 

manifold, the invariant manifold is stable; otherwise, it is unstable. Invariant manifolds for 

continuous dynamical systems include steady state solutions, periodic solutions, connecting 

orbits (either homoclinic or heteroclinic orbits), invariant tori, and other more complicated 

structures like strange attractors. 

The properties of an invariant manifold may change suddenly due to the change of the 

condition (usually a change of parameters) of the system; this phenomenon is called bifur- 

cation. The bifurcation brings the qualitative change for the solutions of the model, and it 

is always important to be able to identify such a case. Bifurcation points are usually de- 

termined by continuously computing the invariant manifolds and monitoring the properties 
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(such as the stability) of the manifolds along the change of the conditions or parameters. 

Therefore, in bifurcation analysis, it is very important to develop numerical methods for 

the computation and continuation of the invariant manifolds as well as the determination 

of the stability for the invariant manifolds. For the continuous dynamical systems, numer- 

ical methods for computing steady state solutions involve solving some nonlinear algebraic 

equations where Newton's methods are usually used. The stability and bifurcation for the 

solution branch can be obtained by studying the eigen-structures for linearized problems. To 

compute periodic solutions and connecting orbits, certain nonlinear boundary value ODEs 

need to be solved. These boundary value problems may contain some types of singularities. 

For example, computing a connecting orbit involves solving a BVP defined on an infinite 

domain, where the standard numerical BVP solvers may not be suitable. In this thesis, we 

will try to discuss some of the issues related to the stability of solving boundary value ODEs 

and the numerical computations of homoclinic and heteroclinic orbits. 

In chapter 2, we will briefly review the stability issues for steady state problems, initial 

value problems, and boundary value problems. Our discussion about bifurcations is focused 

on the steady state solutions and periodic solutions. Many types of bifurcation will be 

demonstrated with examples. Numerical methods for the continuation, bifurcation analysis 

and their implementation in AUTO will also be studied. 

The ability to solve boundary value ODEs is one of the essential parts for the study 

of dynamical systems. Problems like computing periodic orbits and connecting orbits all 

involve solving BVPs. Many numerical methods for the discretization of a BVP such as the 

multiple shooting method, the finite difference method and the collocation method usually 

produce a linear system with a special structure, and it should be solved efficiently and 

accurately. The linear system solver for the boundary value problems in AUTO has its own 

advantages. It is of capable of dealing with the non-separated boundary conditions, the 

integral conditions and the scalar parameters directly. It is also able to obtain the Floquet 

multipliers for periodic solutions with little extra cost and thus to determine the stability and 

bifurcation for periodic solutions. However, under certain circumstance, this algorithm is 

known to be equivalent to a compactification algorithm, and may suffer from poor numerical 

stability. In chapter 3, a new linear system solver based on the QR factorization is studied 

and implemented in AUTO. We will discuss the stability and efficiency of this solver as 

opposed to AUTO'S original linear solver with several numerical examples. 
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Structural changes in dynamical systems are often related to the appearance or dis- 

appearance of solutions connecting two stationary points. These solutions can be either 

homoclinic orbits or heteroclinic orbits. They are one of the important types of invariant 

manifolds in the continuous dynamical systems and are extremely useful in the study of the 

structural stability of dynamical systems. Both homoclinic orbits and heteroclinic orbits 

can arise as the limiting cases of the periodic orbits where the period tends to infinity. 

The applications of the heteroclinic orbits can also be found in travelling wave problems 

for nonlinear parabolic partial differential equations. However, numerical computation of 

such connecting orbits can be very difficult due to solving the boundary value problems 

on a infinite domain. In chapter 4, we will study the applications of the homoclinic and 

heteroclinic orbits, and the conditions for the existence and uniqueness of such solutions. 

We will develop a new collocation algorithm based upon the arclength parametrization of 

the connecting orbits and discuss its convergence properties and implementation in AUTO. 

Our numerical results will be shown with several examples. In the final part of the chapter, 

we will apply rational spectral methods to  compute the connecting orbits. In this method, 

we use a rational spectral approach with the implementation of a special type of boundary 

condition and a phase condition. 

In chapter 5, we will summarize our conclusions and provide the information for the 

future research. 



Chapter 2 

Continuation and Bifurcation 

A continuous dynamical system consists of one or several nonlinear ordinary differential 

equations and parameters. A series of solutions for a dynamical system with respect to 

the change of parameters is known as a solution branch. To study the properties of the 

dynamical system, one would like to investigate the qualitative and the quantitative changes 

of the solution branches. This study requires a numerical algorithm to do the continuation 

of the solution branches in accordance with change in the parameters. These changes can 

sometime result in the birth or death of solution branches or the change of the stability 

for the solutions. Such qualitative change of the solution is called a bifurcation. The 

numerical methods for determining bifurcation points are also very important in studying the 

dynamical systems. In this chapter, we will review the stability and bifurcation properties 

for several types of solutions for continuous dynamical systems, and numerical continuation 

and bifurcation analysis of these systems. 

2.1 Stability and Bifurcation 

We start our discussion with the following ODE system 

~ ' ( t )  = f ( ~ ( t ) ,  A) 

where t E R, u,f  E Rn and A E R P .  Our interest is to study the properties of the solution 

u(t) with respect to the parameter A. We call the pair (u(t), A) a solution branch. We 

5 
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are particularly interested in the long-term behavior of the solution branches, their local 

stability and bifurcation. We first define the stability for the initial value problems. 

Definition 2.1 A solution u(t) of ODE system (2.1) where t > a is said to be locally stable 

if Vc > 0, there is a 6 > 0 such that any solution u ( t )  satisfying 

Vt > a. Otherwise, the solution u(t) is said to be unstable. Moreover, u(t) is called asymp- 

titically stable if it is stable and 

2.1.1 Steady State Solutions 

A solution of (2.1) satisfying ul(t) = 0 is called a steady state solution or fixed point or 

stationary solution. Here we assume that there is only one free parameter X E R. Note that 

the steady state solution u is independent of t and the ODE system (2.1) is reduced to a 

nonlinear algebraic system 

f(u,  A)  = 0. (2.2) 

The definition of local stability for steady state solutions follows from Definition 2.1, where 

u(t) r u. 

If uo is a steady state solution of (2.2) at X = Xo, then the local stability of uo may 

be determined by the eigenvalues of fu(uo, Ao). We assume that uo is a hyperbolic fixed 

point, i.e., that no eigenvalue of fu(uo, Ao) has zero real part. If all of the real parts 

of the eigenvalues are negative, then uo is locally asymptotically stable; otherwise, it is 

unstable. For certain parameter values, if at least one eigenvalue of fu(uo, Ao) appears on 

the imaginary axis, uo is a singular point of the solution branch. We will only discuss 

the following types of singular point: simple bifurcation, quadratic turning point and Hopf 

bifurcation. 
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Definition 2.2 (uo, Xo) is called a simple bifurcation point if 

(1) f(u0, Xo) = 0; 

(2) rank(fU(uo, XO)) = n - 1 ;  

(3) rank(fu(u0, Xo)lfx(w3, Xo)) = n - 1; 

( 4 )  exactly two branches intersect with two distinct tangents. 

Example 2.1 Tmnscritical Bifurcation 

I 2 u = X u - U .  

In this example, there are two branches of the steady state solutions u = 0 and u = A. 

These two branches intersect at X = 0 and change their stability. 

Example 2.2 Supercritical Pitchfork Bifurcation 

3 u'=Xu-u . 

In this example, there is only one solution u = 0 when X < 0 and it is stable; when X > 0, 

the solution u = 0 becomes unstable, and two other stable steady state solution branches 

u = f f i  appear. 

Example 2.3 Subcritical Pitchfork Bifurcation 

u' = Xu+ u3. 

When X < 0, the solution u = 0 is stable and the solution u = f f l  are unstable; when 

X > 0, there is only one solution u = 0 and it is unstable. 

Definition 2.3 (uo, Xo) is called a simple or quadmtic turning p i n t  i f  

(1) f(u0, Xo) = 0; 
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( 4 )  there exits a parametrization ( u ( s ) ,  X(s))  such that   so), X(so)) = (uo, Xo) and 

d2X(so)/ds2 # 0. 

Example 2.4 Turning Point 
/ 

U = A - u 2 .  

A steady state solution does not exist for X < 0. For X > 0, the stable steady state solution 

u = fi turns into an unstable steady state solution u = -a at X = 0. The turning point 

is also referred as a saddle-node bifurcation or a limit point in some literature. 

Definition 2.4 (uo ,  Xo) is called a Hopf bifurcation point if 

(2) f u ( ~ ,  Xo) has a simple pair of purely imaginary eigenvalues p(Xo) = f i p  and no other 

eigenvalue has zero real part; 

Example 2.5 Hopf bifurcation 

The steady state solution ul = u2 = 0 is stable when X < 0 and unstable when X > 0. At 

this point, a stable branch of periodic solutions u: + u i  = X appears with period T = 27~ .  

Theorem 2.1 If (uo, Xo) is a Hopf bifurcation point, then there is a birth of periodic solu- 

tions and the initial period is To = 2?r/P. 

2.1.2 Initial Value Problems 

We now consider the ODE system 
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with the initial condition 

u ( a )  = uo (2.4) 

where t > a ,  u E Rn7 f E Rn, X E RP. The stability of an IVP is defined in Definition 2.1. 

We first study the stability condition for the linear initial value problem 

where t > a,  A ( t )  E Rnxn7 u E Rn and q ( t )  E Rn. The initial condition is given by (2.4). 

Definition 2.5 A matrix Y ( t ;  r )  E R~~~ is called a fundamental solution (matrix) of dif- 

ferential equation system (2.5) if V r  > a 

Y 1 ( t ;  T) = A( t )Y ( t ;  r ) ,  t > a 

We will also refer to Y ( t )  := Y ( t ;  r )  E Rnxn as a fundamental solution if Y ( t )  satisfies (2.6) 

but not necessarily (2.7). 

Theorem 2.2 Let Y ( t )  := Y ( t ;  a )  be a fundamental solution of the ODE (2.5). Then the 

solution u ( t )  of (2.5) and (2.4) is stable if and only if sup,,, - IIY(t)ll is bounded. Moreoves; 

u ( t )  is asymptotically stable if and only i f  IIY(t)ll + 0 as t + m. 

To investigate the stability for the nonlinear IVP (2.3) and (2.4), we consider the lineariza- 

tion of the ODE (2.3). Let u ( t )  be a solution of (2.3) with u ( a )  = u,, and v ( t )  = u ( t )  - u( t ) .  

We define the variational equation for (2.3) as 

- where A ( t )  := fu(u(t), A). 

Theorem 2.3 Suppose that 

where 
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is the remainder term. If the fundamental solution Y ( t ;  a )  satisfies 

IIY(t; all1 < K ,  t 2 a 

for some constant K ,  then the solution u ( t )  is stable. Moreover, if 

lim IIY(t; a ) [ [  = 0,  
t+m 

u ( t )  is asymptotically stable. 

2.1.3 Periodic Solutions 

A solution u ( t )  of the equation (2.1) is called a periodic solution or periodic orbit if there 

exists T > 0 such that 

u( t  + T )  = u ( t )  (2.9) 

for all t. T is called the period. Throughout this thesis, we shall assume that T is the 

"minimum" period, i.e., T is the smallest positive constant satisfying (2.9). Obviously, a 

steady state solution is also a periodic solution with period any positive number. However, 

we are interested in the time-dependent periodic solutions, and we exclude the steady state 

solutions in our definition. Periodic solutions are an important type of invariant manifold 

in continuous dynarnical systems and have many real-life applications. 

The definition of stability for periodic solutions also follows from Definition 2.1 and it 

can be determined by the eigenvalues of the monodromy matrix. 

Definition 2.6 Let P(t; X o )  be a periodic solution of (2.1) with period T ,  and let Y ( t ;  0 )  E 
~ n x n  with Y ( 0 ;  0 )  = I be a fundamental solution matrix of the variational equation 

Then Y ( T ;  0 )  is called a monodromy matrix, and its eigenvalues are called the Floquet 

multipliers. 

Note that u(0 )  = u(T) = Y ( T ;  O)u(O), so 1 is an eigenvalue of Y(T;  0) .  We denote the 

Floquet multiplers as p1, p2, . . . , pn with pn = 1 and summarize the stability results in the 

following theorem. 
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T h e o r e m  2.4 Let ~ ( t ;  Ao) be a periodic solution of (2.1) with pried T .  Then 1 is a Floquet 

multiplier of u ( t ) .  Furthermore, 

( 1 )  ~ ( t ;  Ao) is stabk if lpil < 1 for all 1 5 i 5 n - 1; 

( 2 )  ~ ( t ;  Ao) is unstable if there exists 1 5 i 5 n - 1 such that lpil > 1. 

The stability of the periodic solutions changes when one or several Floquet multipliers 

cross the unit circle. Similar to the steady state solutions, several types of bifurcation such as 

tmnscritical bifurcation, pitchfork bifurcation and turning points also exist for the periodic 

solutions. However, there are number of interesting types of bifurcation for the periodic 

solutions which do not exist for the steady state problems. We demonstrate these cases in 

the following examples. Unless stated otherwise, the computations throughout this thesis 

were done by the author using AUTO. 

E x a m p l e  2.6 Period Doubling Bifurcation 

This system is known as Rossler's band [60]. The bifurcation diagram and some of the 

periodic solutions are shown on Figure 2.1 for b = 2,c = 4. The Hopf bifurcation point 

is located at a = 0.1249676 on the steady state solution branch (branch 1). The periodic 

solution branch 2 loses its stability at the periodic doubling point a = 0.3348535, a stable 

(period 2)  solution branch appears (branch 3). This phenomenon repeats for all new periodic 

solution branches. In fact, the continuous period doubling bifurcation leads to chaos. 

A period doubling bifurcation is also called a flip bifurcation or subharmonic bifurcation, 

and it typically happens when one of the Floquet multipliers crosses the unit circle at -1. 

E x a m p l e  2.7 Bifurcation to Invariant Tori [44] 
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Ilu (t) ll 

Figure 2.1: Period doubling bifurcation for Rossler's Band 
(a) Period doubling bifurcation points are a = 0.3348535,0.3747523,0.3833313,0.3851549; 

(b) Periodic solutions on z - y plane. 
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In this example, the steady state solution branch (0,O, A) (branch B) loses its stability 

through a Hopf bifurcation at X = 1.683375 (label 2 on Figure 2.2(a)). The periodic solution 

has the period ;. On the periodic branch C, the torus bifurcation happens when X = 2.0 

(label 3 on Figure 2.2(a)). At this point, the stable solution has two frequencies, 4 and 

m. Because is an irrational number, this solution is quasi-periodic and stays on an 

invariant torus. Letting x = r cos 0 and y = r sin 6, we can reduce the above system to 

With the above transformation, the periodic branch in the Example 2.7 (branch C in Fig- 

ure 2.2(a)) is the steady state branch for the ( r ,  z) system (branch C in Figure 2.2(b)), the 

tori bifurcation point (label 3 in Figure 2.2(a)) becomes a Hopf bifurcation point (label 3 

in Figure 2.2(b)), and the invariant tori branch corresponds to a periodic solution branch 

(branch D in Figure 2.2(b)). 

Torus bifurcation has also been referenced as Hopf bifurcation for periodic solutions, and 

it usually happens when a pair of complex conjugate Floquet multipliers crosses the unit 

circle. In Example 2.7, they are -0.14936 f 0.98878i. 

There is another type of bifurcation arising from periodic solutions. It is the limit of a 

periodic solution branch, where the period approaches infinity. Such a type of bifurcation 

is called a homoclinic bifurcation or heteroclinic bifurcation depending on the nature of 

the limiting solution. We will leave our discussion of this case to chapter 4. The period 

doubling bifurcation, the torus bifurcation and the homoclinic bifurcation are believed to 

be the routes to chaos in many applications. 

2.1.4 Boundary Value Problems 

For boundary value problems, we will use the word "conditioning" instead of "stability". 

Consider the linear BVP 
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Ilu (t) ll 

Figure 2.2: Bifurcation to tori 
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where A ( t )  E Rnxn is continuous in t E [a, b]. In [4], the conditioning of the BVP (2.11) and 

(2.12) is studied by using the dichotomy conditions of the fundamental solutions for ODES. 

Let Y ( t ) ,  t E [a,  b] be a fundamental solution for the ODE (2.11) which satisfies 

Then 

is the unique solution of (2.11) and (2.12) where 

is called an n x n Green's (matrix) function. 

The conditioning of the BVP (2.11) and (2.12) may be defined by the constant 

where 

Definition 2.7 Let Y ( t )  be a fundamental solution of (2.11). The ODE has an exponential 

dichotomy if there exists an orthogonal matrix P E Rnxn of rank p, 0 < p < n,  and positive 

constants K ,  A, p, such that 

for a 5 t ,  T 5 b. It is said to have an ordinary dichotomy if X = 0 and/or p = 0 in  the 

conditions (2.17) and (2.18). 

There is a close relationship between the conditioning of BVPs and dichotomy. A well- 

conditioned BVP must have a corresponding dichotomy; on the other hand, if the ODE has 

a dichotomy, then the associated BVP is well-conditioned provide I E ~  is of moderate size. In 

fact, I E ~  can be bounded in terms of I E ~  ([4], Corollary 3.104). 
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For the nonlinear BVP 

ul(t) = f(u(t),X), a 5 t I b, u E Rn,  f E Rn, X E R P  (2.19) 

g(u(a>, u(b), 4 = 0, (2.20) 

the conditioning results can be obtained by studying the variational problem 

where 

2.2 Numerical Continuat ion 

In this section, we discuss the numerical methods for the continuation of the solutions of 

dynamical systems, the stability of the solution branch, the determination of the bifurcation 

points, and the branch switching techniques. 

2.2.1 Steady State Solutions 

Consider the steady state problem 

and assume that (uo, Ao) is a known solution. Then, the continuation of a solution branch 

(u, A) involves computing a series of solutions 

from this known solution until a certain limit is reached. Many numerical methods for 

the continuation of solution branches have been developed. In [66], Seydel gives a com- 

plete review of these methods and divides them into four different categories: predictor, 

parameterization, corrector and step length control. In particular, the pseudo-arclength pa- 

rameterization and continuation method is studied in [41] and implemented into the software 

AUTO. 
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( 1 )  Pseudo-arclength continuation 

Consider the n + 1 dimensional system 

where Y ( s )  = E R"+'. If s represents the arclength along the solution branch, we 

choose the continuation equation 

wpere 0 < 0 < 1. However, (2.25) is not practical in general as it involves evaluating the 

first derivatives with respect to the arclength of the solution branch. One solution is to use 

the linear approximation for u ( s )  and i ( s )  and thus, we obtain 

where (uk,  Ak) = ( u ( s k ) ,  A(sk)) is the previous solution during the continuation. Another 

alternative is to use 

This approximation is obtained by the Taylor expansions 

U ( S )  - ~ ( s k )  = ( 8  - sk)U(sk) + O(IS - skI2), 

X ( S )  - A ( s ~ )  = ( S  - sk ) i ( s k )  + O ( [ S  - skI2)- 

Equations (2.26) and (2.27) are called pseudo-arclength continuation equations. The advan- 

tage of this continuation method is that the Jacobian at a turning point is nonsingular. 

Theorem 2.5 Let (uk,  Ak) be a solution of (2.23) with rank( fU(uk,  A k )  l fA(uk, Ak)) = n and 

f E C2 in  neighborhood of (uk,  X k ) .  Then there exists a unique solution ( u ( s ) ,  A(s))  for 

(2.23) and (2.27) on Is - ski < p for suficiently small p > 0,  and the matrix 

is nonsingular. 
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The continuation technique used in AUTO is based on (2.27). Note (2.27) is linear, but 

not (2.26). The algorithm implemented in the software solves the system 

for (uk, Xk) by Newton's met hod where 6s is the stepsize along the solution branch. BU and 

Ox are the scaling parameters with 

0: + 0: = 1. 

The direction vector (uk-1, &-I) is approximated by extrapolating the two previous solu- 

and then rescaling them so that 

to avoid instability from the continuation process. 

(2) Stability, bifurcation and branch switching 

The stability of the stationary solution uk can be determined by calculating the eigen- 

values of fu(uk, Xk). If no eigenvalue has positive real part, then uk is stable; otherwise, 

it is unstable. If there exists an eigenvalue with zero real part, it is a potential bifurcation 

point. 

First, we consider the case where fu(uk, Xk)  is singular. If [fu(uk, Xk)lfA(uk, Xk)] is of 

full rank (rank n), then (uk,  Xk) is a turning point; otherwise, it is a bifurcation point. We 

will only discuss the simple bifurcation point and the quadmtic turning point, where the 

matrix fu(uk, Xk) is of rank n - 1. 

Let the function d(s) = det(A(s)). Since there is only one eigenvalue of fU(uk, Xk) 

changing sign when the solution crosses the simple bifurcation points on the solution branch, 

d(s) will also changes sign. In AUTO, such points are located accurately by using a secant 

iteration so that d(0) = 0. After locating the bifurcation point (u(6), X(B)), we may perform 

branch switching from this point to trace out another steady state solution branch. In 
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AUTO, the method of doing branch switching is to obtain the first solution (ul, 11) on the 

new steady state solution branch by solving the system 

&(iil - u ~ ) ~ u ;  - 8i(Al - & ) X i  - 6s = 0 

where (u;, Xi) satisfies 

The quadratic turning points can also be located by using a secant iteration such that 

i ( s )  = 0 where (u, A) satisfies 

The turning point branch can be continued by a pseudo-arclength continuation method in 

two parameters 

For the Hopf bifurcation point, fu(uk, Xk)  is nonsingular. However, some eigenvalues 

have zero real parts. Again we consider the simplest case, i.e., only one pair of eigenvalues 

is purely imaginary. To compute the Hopf bifurcation points, we compute all eigenvalues of 

fu(uk, Xk) 

P ~ ( s ) = ( Y ~ ( s ) + ~ / ? ~ ( s ) ,  i = l , - - - , n  

along the solution branch. If there is a pair of eigenvalues with real parts, say crj(s), changing 

sign, we may also use the secant method to calculate i such that a ( i )  = 0 and thus obtain 

the Hopf bifurcation point. To trace out the Hopf bifurcation branch with two-parameter 

continuation, a pseudo-arclength continuation method can be applied to solve the 3n + 2 

system 
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where v d t )  = sin(%)& + c o ~ ( % ) ~ ~  is the periodic solution at a previous solution on the 

Hopf bifurcation branch. 

2.2.2 Boundary Value Problems 

We now review the numerical methods for the continuation of solutions for boundary value 

problems. We defer a description of the numerical solutions for BVPs to the next chapter, 

but emphasize the numerical continuation method here. In general, all methods mentioned 

in section 2.2.1 can be extended to do the continuation for BVPs. In particular, a tangent 

vector continuation with step length control method is used in COLCON, while a pseudo- 

arclength continuation method is used in AUTO. We only discuss the latter. 

(1) Pseudo-arclength continuation 

Consider the first order ODE system 

subject to the non-separated boundary conditions 

and the integral conditions 

Assuming that there is only one free parameter in the BVP system (2.33), (2.34) and (2.35), 

then p = nb + n, - n + 1. To perform the continuation of the solution branch for this BVP 

system, AUTO uses a pseudo-arclength continuation equation 

In (2.36), like the steady state case, the direction vector, (lio(t), io) ,  of the solution branch 

is approximated by extrapolating the previous two solutions. 

Also similar to the steady state case, the turning point on the BVP solution branch can 

be accurately computed, and the turning point solution branch can be traced by solving a 
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two-parameter continuation problem. Suppose that X is the principal continuation param- 

eter and X = (A, p ) .  We use the secant method to obtain the zero of i ( s )  on the ODE 

solution branch. Such a solution is the turning point. Adding the following equations to 

the system (2.33)-(2.35), we can carry out the two-parameter continuation for the turning 

point solutions: 

v ' ( t )  = f u ( v ( t ) ,  l.4 W t )  + f p ( v ( t ) ,  p ,  4% (2.37) 

J 6 [ v T ( t ) v ( t )  + wTw - l]dt = 0 

where p, w E ~ p - l .  

( 2 )  Periodic solutions 

The problem for finding periodic orbits of (2 .1)  can be regarded as a boundary value 

problem with the boundary condition 

where T is the minimum period. Equation (2.41) is called a periodic boundary condition. 

However, this condition does not give the unique periodic solution. In fact, if u ( t )  is a 

solution of (2.1) and (2.41),  u ( t  + T )  is also a solution for any constant T .  To form a well- 

posed problem, a certain phase condition is needed. We discuss the following two types of 

phase conditions which are often used in the numerical computations. As before, we refer 

to u o ( t )  as the previous solution on the same periodic solution branch. 

Classical phase condition The classical phase condition is defined by 

This phase condition fixes u ( 0 )  in a hyperplane through uo(0) and orthogonal to uL(0). 

Integral phase condition Suppose ii(t  + a)  is a solution of (2.1) and (2.41). We choose 

a* such that the distance between uo and ii ,  
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is a minimum, or equivalently, G1(a*) = 0. Letting ii(t + a*) = u(t), then 

After integration by parts for (2.44), we obtain the integral phase condition 

Generally speaking, phase condition (2.45) is more reliable than (2.42) in numerical 

computation, but the classical phase condition is easy to program since it does not need to 

evaluate the integral constraints. AUTO uses the phase condition (2.45) due to its ability 

of handling the integral constraints directly. 

During the continuation, the period T of the current solution is unknown. We will 

rescale the independent variable t to [ O , 1 ]  and treat T as a free parameter and rewrite the 

boundary value problem as follows: 

ul(t) = Tf (u, A) (2.46) 

0; i l [ u ( t )  - uo(t)lTio(t)dt + O$(T - T O ) ~ O  + +:(A - Xo)io = 69. (2.49) 

Equations (2.46)-(2.49) consist of n ODES, n boundary conditions and 2 integral constraints. 

There are two free parameters X and T. This system is solved by a boundary value solver 

(a collocation method in AUTO). By computing the Floquet multipliers for the periodic 

solution, we can determine the stability. Branch switching methods for the steady state 

solution can be generalized for the (transcritical, pitch-fork and period doubling) bifurcations 

as well as two-parameter continuation for the turning points, period doubling points and tori 

bifurcation points. However, the current implementation for two-parameter continuation of 

the secondary periodic solutions (turning points, period doubling points and tori bifurcation 

points) is not efficient. The improvement is considered in [30]. 
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Linear System Solutions 

In the last chapter, we discussed numerical methods for the continuation of the solutions 

for the boundary value ODES. The essential part of each continuation step is to solve a 

nonlinear ordinary differential equation system with certain boundary value conditions and 

integral conditions. Several numerical methods are available for solving BVPs, among them, 

the finite difference method, the multiple shooting method and the spline collocation method 

are the most popular ones. All these methods involve solving linear systems with a similar 

sparse structure. In general, these linear systems are solved by a Gaussian elimination 

method with some type of pivoting. The cost of solving the linear systems is usually the 

most expensive part in the BVP solvers. Therefore, an efficient numerical method should be 

used if possible. However, the numerical stability of the linear system solution will affect the 

stability of the solution for boundary value problems. The trade off between the efficiency 

and the stability for the linear system solution should be balanced. For nonlinear boundary 

value problems, Newton's methods are usually used. Since each Newton iteration involves 

solving a linear system, we usually use the Newton-Chord methods to gain some efficiency, 

i.e., fix the Jacobian for several Newton iterations. In order to obtain the convergence, a 

stable numerical linear system solver is needed. For BVP continuation codes, one computes 

a series of solutions on one or several branches rather than one particular solution of a BVP. 

In this context, an efficient and stable linear system solver becomes even more important. 

In this chapter, we will discuss some efficiency and stability issues when solving block bi- 

diagonal linear systems numerically. These types of systems are often the results of the 

discretization of the boundary value problems by the finite difference methods, the multiple 
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shooting methods or the spline collocation methods. Our goal is to develop a stable and 

efficient numerical linear system solver, in particular to replace the current linear system 

solver for AUTO, where robustness is sacrificed to obtain efficiency. 

3.1 Linear Two-Point Boundary Value Problems 

In this section, we consider numerical methods for solving the linear two-point boundary 

value problem 

where t E [a, b], ~ ( t ) ,  q(t), d E Rn and A(t), B,, Bb E R ~ ~ ~ .  

There are two classes of numerical methods for solving BVPs, initial value methods such 

as the shooting and multiple shooting methods, and the global methods such as the finite 

digerence and collocation methods. In most of these methods, the discretization of the BVP 

produces a large sparse linear system of equations. The efficiency of the BVP solver mainly 

depends on the efficiency of the linear system solver; therefore, a stable and efficient linear 

system solver is essential for solving BVPs. 

Our discussion of the numerical solutions for BVPs includes the multiple shooting meth- 

ods, the finite digerence method, and the collocation method. All of them lead to a similar 

linear system of equations, namely, (almost) block bi-diagonal linear systems. 

The spectral and pseudo-spectral methods for solving boundary value problems are also 

studied by many other authors (e.g. [16, 171) and these methods are very efficient in some 

applications. However, the linear systems generated by the spectral and pseudo-spectral 

methods have a different structure and may not have sparsity structure. We will not study 

these methods in this chapter. We will apply rational spectral methods to solve a certain 

type of boundary value problems (connecting orbits) in the next chapter. 

3.1.1 Numerical Discretizations 

Throughout our discussion, we assume that the BVP (3.1) and (3.2) is well-conditioned, i.e., 

the condition number rc defined in (2.16) is of moderate size. We now review the numerical 
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algorithms for the multiple shooting method, the finite difference method and the spline 

collocation method, including their numerical stability and convergence properties. 

(1) Multiple shooting method 

Given a mesh a = tl < t2 < < t ~ + l  = b, we compute a fundamental solution 

Y,(t) E RnXn and a particular solution vi(t) E Rn on each mesh interval [ti, ti+l], 1 5 i 5 N, 

such that 

5' = A(t)X, X(ti) = F; (3.3) 

v: = A(t)v; + q(t), v;(ti) = e;. (3.4) 

We then find a vector Si E Rn,  1 5 i 5 N such that 

For the standard multiple shooting method, we choose F; = I and e; = 0. By satisfying the 

continuity conditions at the mesh-points and the boundary conditions to the end-points, we 

obtain 

Solving the above linear system, we obtain the numerical solution ~ ( t ; )  = s; for the BVP 

(3.1) and (3.2). Note on each mesh interval, we need to integrate the system of differential 

equations by an initial value solver. 

If the shooting points (mesh points) are chosen so that all IIx(t;+l)ll, i = 1, . . . , N, are of 

moderate size (which implies that N is large enough), then the standard multiple shooting 

method is stable and the condition number of the coefficient matrix is O ( K )  [4, 461. 

(2) Finite difference method 

Similar to the multiple shooting case, we define a mesh a = tl < t2 < . < t ~ + ~  = b 

and let hi = t;+l - ti, and ti+; = ti + ?hi. In the finite difference methods, we replace 
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the derivates in the differential equations by the difference quotients and solve the resulting 

difference equations. To be more specific, we consider one step finite difference schemes, 

where the difference operator is based only on values over one subinterval [t;,t;+l]. We 

obtain 

where Si7 R; are n x n matrices for all 1 5 i 5 N. For the trapezoidal scheme 

and for the midpoint scheme 

Both schemes are numerically stable. The conditioning of the linear system is O ( K N ) .  

There is a close relationship between the finite difference method and the multiple shooting 

The local truncation error for the finite difference method is 0 ( h 2 )  where h = maxlgilN hi. 

In fact, the second order accuracy is the disadvantage of the finite difference method as it 

may not be efficient for many applications. 

( 3 )  Collocation method 

Since our main purpose is to examine the linear system solver for the code AUTO, 

we only discuss the collocation method as it is implemented therein with Lagrange basis 

functions. We try to find 
m 
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such that 

P:(zji) = A(zjzj;)~j(zjzj;) + Q(*ji) (3.12) 

Bayl + &YN+I = d (3.13) 

where zj;, 1 5 i I: m, are the Gauss-Legendre points on the interval [tj, tj+l] for 1 5 j 5 N. 

The above formulation results in (mN + l )n  linear equations. By using a local parameter 

condensation method, we can eliminate the unknowns at non-mesh points yj++ for 1 < i < 
m. The linear system is then reduced to 

- 
A1 C1 

A2 C2 

AN CN 

- Ba Bb 

The collocation method is also numerically stable. Assuming that the solution is smooth 

enough, the above collocation method converges to the solution of the BVP at the rate of 

O(hm) globally. On the mesh points, the method has a super-convergence property where 

the rate of convergence is 0(h2m). In particular, if rn = 1, this collocation method is the 

finite difference method using the mid-point scheme. 

For the first-order system, the condition number of the linear system (3.14) is O(r;N). 

For the higher order BVPs, depending on the actual implementation of the collocation 

algorithm, the condition number of the linear system number may be considerably larger 

than O(KN) [4]. Since we only deal with the first-order system in this thesis, this situation 

will not be discussed further. 

3.1.2 Solution of Linear Systems 

The three linear systems (3.6), (3.7) and (3.14) have a similar (almost block bi-diagonal) 

structure. Without loss of generality, we consider the equation (3.14). In general, it can 

be reliably solved with a standard linear system solver such as Gaussian elimination with 

partial pivoting or the QR factorization. However, in order to preserve the sparsity of the 

system, special linear system solvers are usually used. We discuss several of these below. 
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The compactification algorithm is a well-known but potentidy unstable method for 

solving block bi-diagonal linear systems formed when solving two-point boundary value 

problems. To study this method, we consider the linear system (3.6) generated by the mul- 

tiple shooting method. We compute a discrete fundamental solution {!Di)Ktl and particular 

solution { P ~ ) ~ ~ '  by 

with the initial condition 

P1 = 0, = I 

and form 

s; = @;sl +Pi ,  i = 2,aa.N 

where sl satisfies 

iBa + Bb@N+l]sl = d - BbPN+i. 

The compactification algorithm, like the single shooting method, suffers from instability 

because the fastest growing (fundamental solution) mode dominates the others. A similar 

compactification technique can be applied for other methods by, for example, using 

to eliminate all the interior mesh-point unknowns Y.L, , YN and reduce the linear system 

to a 2n x 2n dense system in the unknowns Y1 and Y N + ~ .  

(2) L U decomposition 

Gaussian elimination with various pivoting strategies has been used for solving the linear 

system (3.14). It is well-known that Gaussian elimination method with complete row pivot- 

ing is stable in practice, where the worst case error growth is 0 ( 2 ( ~ + ' ) ~ ) .  For the separated 

boundary condition case, the linear system is block bi-diagonal and Gaussian elimination 
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with row pivoting can be used to efficiently solve the system 

This method has been widely used (e.g. in the software SOLVEBLOK [13] used in COL- 

SYS [3] and COLNEW [6]), and it is generally very stable. In fact the worst case error 

growth is exponential only in the bandwidth [12]. However, the non-separated boundary 

condition case is more delicate and more important to us as our interest is to modify AUTO'S 

linear system solver. Although it is easy to convert non-separated boundary conditions to 

separated boundary conditions, this method usually doubles the size of the problem and 

is not efficient. Therefore, we will try to deal with the non-separated boundary conditions 

directly. A well-conditioned BVP has ordinary or exponential dichotomy. For the latter, the 

pivoting strategy should properly "decouple" the exponentially increasing and exponentially 

decreasing modes of the fundamental solution. With this idea in mind, Mattheij [55, 561 

develops a stable block LU decomposition based on Gaussian elimination with row partial 

pivoting. Unfortunately, this method is not always practical because it requires knowing 

the exact number of increasing modes, and this may not be realistic to assume. Recently, 

Wright [76] considers applying Gaussian elimination to the columns of the reordered system 

The serial version of this method starts to use Gaussian elimination with row pivoting for 

the first 2n rows of (3.16) such that 

where PI,; E R ~ ~ ~ ~ ~ ,  i = 1, . , n, are permutation matrices; Ll,i E R ~ ~ ~ ~ ~ ,  i = 1, , % 

are Gauss transformations; and Ul is upper triangular. The transformed linear system of 
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(3.16) becomes 
- 

Ul El G1 

212 E2 G2 

A3 C3 

AN CN 

BN Bo - 

If we apply a similar process to the blocks for k = 2 , 3 , - - - ,  N - 1, we obtain the 

fi?al system 

The vector Y1 and Y N + ~  can be obtained easily by solving the (dense) linear system 

and yk, k = 2,. - -, N, can be recovered by back substitution from the equation (3.18). 

Wright [76] proves that under certain assumptions, this method is equivalent to Mat theij 's 

block LU decomposition and that it is stable. However, it is not clear how often the required 

assumptions are satisfied. In fact, if no pivoting occurs between the blocks Ek and Ak+l, 

then this method is equivalent to the compactification algorithm. The worst case error 

growth is 0(2(~+l)").  

(3) QR factorization 

In [77], Wright also proposes applying a Householder QR factorization procedure to solve 

the linear system (3.16). The process is similar; instead of applying LU decompositions, we 

use the QR factorization to obtain the coefficient matrix (3.18). Wright has proved the 
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stability of this algorithm. The serial the LU decomposition is about twice as 

fast as the QR factorization. Both the advantage that they can be easily 

parallelized [76, 771. 

To compare the stability properties of these methods, we now study two examples. In our 

numerical results, the multiple shooting method uses the ODE initial value code DVERK 

from NETLIB and the tolerance in this routine is set to lo-''; the finite difference code 

uses the midpoint scheme. 

Example 3.1 

The ezact solution is y(t) = ~ . l e ~ - ~  + e20(t-T) + O.le-t. 

This example is constructed in [46] to show that the compactification algorithm can easily 

fail, which it does around T = 2. However, both the LU and QR algorithms solve the 

problem without any difficulty for much larger values of T (see Table 3.1). 

Table 3.1: Maximum absolute error for Example 3.1 (50 mesh intervals) 

Example 3.2 

T 
1 
2 
5 
10 

Finite Difference Method 
Compact 

4.8981 E-03 
5.4491 E-02 

Fails 
2.6306 E 04 

Multiple Shooting Method 
LU method 
4.8981 E-03 
2.0758 E-02 
1.3534 E-01 
3.5170 E-01 

QR method 
3.4657 E-10 
3.1326 E-09 
3.8738 E-09 
1.2815 E-09 

Compact 
3.7357 E-10 
7.4008 E-03 
4.2072 E 23 
6.8387 E 63 

QR method 
4.8981 E-03 
2.0758 E-02 
1.3534 E-01 
3.5170 E-01 

LU method 
3.4657 E-10 
3.1327 E-09 
3.8738 E-09 
1.2815 E-09 
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The exact solution is 

This example is constructed by Wright [78] to show the instability for the LU algorithm 

applied to (3.16). We compute the solution for T = 10 and use an equal-spaced mesh, the 

compactification algorithm fails for all N, and the LU method fails for both multiple shooting 

and finite difference methods when the number of mesh points is big enough (N > 177). In 

fact, the fundamental solution for this example is 

For the multiple shooting method with equal-spaced mesh, 

where N is the number of mesh points. Note, when T = 10, e5T1N + e-7T1N < 1 for N > 177. 

In this situation, there is no pivoting between blocks Ck and Ak+l and the LU method is 

equivalent to the compactification algorithm. On the other hand, the QR method performs 

the pivoting between these two blocks, and the method is stable (see Table 3.2). 

Table 3.2: Maximum absolute error for Example 3.2 (T=10) 

N 
50 
150 
200 
500 

3.2 Nonlinear Problems 

Since our purpose is to implement a stable and efficient linear system solver for AUTO, 

we will consider the collocation method with Lagrange basis polynomials for solving first 

Multiple Shooting Method Finite Difference Method 
QR method 
4.3887 E-09 
5.6750 E-09 
4.6708 E-09 
3.1246 E-11 

Compact 
1.0000 E 00 
1.0000 E 00 
3.9188 E 05 
1.0000 E 00 

Compact 
1.0000 E 00 
1.0000 E 00 
1.0000 E 00 
1.0000 E 00 

LU method 
4.3887 E-09 
5.9750 E-09 
1.0000 E 00 
1.0000 E 00 

LU method 
7.0126 E-02 
6.8273 E-03 
1.0000 E 00 
1.0000 E 00 

QR method 
7.0126 E-02 
6.8273 E-03 
3.8006 E-03 
6.0204 E-04 
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order nonlinear ordinary differential equations. We will also allow the integral constraints 

and scalar parameters to appear in our systems. The stability properties of the various 

linear system solvers when implemented in AUTO will be considered. There are several 

other factors which may affect the stability of the resulting codes, for example, the mesh 

selection and continuation strategies. We will investigate the role of these factors with a 

few examples. 

Consider the ODE system 

~ ' ( t )  = f(u(t), A), 0 5 t 5 1 (3.20) 

with boundary conditions 

and integral constraints 

where u, f E Rn, X E RP and p = nb + nq - n. We solve the boundary value problem (3.20), 

(3.21) and (3.22) by a spline collocation method with an appropriate mesh 

and basis functions 

'Jji(t), 0 5 j 5 N - 1 0 < i 5 m. 

Using a spline collocation method with m Gauss points per subinterval, the differential 

equations are discretized by 

the boundary conditions become 

bi(ui, UN+I, A) = 0, 1 < i 5 na; 

and the integral equations are approximated by a Gaussian quadrature 

N m  
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The above discretization gives mnN + nb + n, nonlinear algebraic equations which are then 

solved by a Newton iteration. When solving the linearized system, all of the local variables 

u ~ + ~ ,  1 < i < m, are eliminated by a condensation of parameters algorithm, which leaves 
m 

a linear system in the following form: 

where Ai,Ci E Rnxn, Bi E RnrXn,  Di E RnXp, E E RnrXp, nT = nb + n,. 

AUTO solves this linear system by a Gaussian elimination with row partial pivoting 

algorithm similar to Wright's LU decomposition. The pivoting is only applied to the first 

nN equations and the blocks of Bk, 1 5 k 5 N  - 1, are eliminated without any pivoting. One 

advantage of this linear system solver is that the Floquet multipliers of the periodic solutions 

can be obtained with little extra work. However, as we have seen in the Example 3.2, 

this type of linear solver is potentially unstable. An alternative is to modify Wright's QR 

algorithm to replace the current linear system solver. It is also easy to perform partial 

pivoting during the condensation of parameters. While we have experimented extensively 

with this modification to the condensation process, it is usually not critical yet it is very 

expensive, and as it is not important to us here, we will not discuss it further. 

We now give a brief description of our implementation of Wright's Householder QR 

algorithm. Let the Householder transformation Ql E R~~~~~ satisfy 

where R1 E R~~~ is upper triangular. If IM E RMxM where M = ( N  - 2)n + nT, then 
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Similarly, let Q; E R~~~~~ satisfies 

where 1 < i < N - 1  and R; is upper triangular. Let 

where IMl and IM2 are (i - l ) n  by (i - l ) n  and (N - i - l ) n  + n, by (N - i - 1)n + n, 
identity matrices. Applying these Householder transformations to A, we obtain 

After eliminating blocks B1, B2,. . . , BN-1, we obtain the same coefficient matrix structure 

as does AUTO'S original linear system solver. 

The original linear system solver in AUTO is virtually the same as the LU algorithm we 

discussed in the previous section and will thus be referred to below as simply the LU method. 

Similar to the linear case, the LU method is unstable in theory while the QR method is 

stable. As for the efficiency in the serial version of these two methods, the QR method 

roughly doubles the cost of the LU method. In practice, however, because the condensation 

of parameters takes most of the CPU time, the actual increase is not very significant. Our 

numerical tests indicate that the difference between the two algorithms is usually within 

15% in CPU time. In fact, there are certain cases that the QR method out-performs the 

LU method due to its stability nature. 

Both the LU and QR algorithms have similar characteristics. There is no column pivoting 

during the elimination, and boundary condition and integral condition blocks are eliminated 

without pivoting with the equations from the discretization of the differential equations. The 

advantage of these types of algorithm is that the Floquet multipliers for the periodic solution 
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can be obtained easily with little extra work. In fact they are the eigenvalues of the matrix 

0 = -GIAN. 

Theorem 3.1 Let the matrix 

be the Hiscretimtion of the Jacobian for the ODE (3.20). If there exists a nonsingular matrix 

L c RnNxnN such that 
. . . . . . . 

L A  = [ :  . : . . : . : I  . 
Po 0 . . -  0 PI 

where Po, Pl E Rnxn,  then -P;'P~ is an approximate monodromy matrix. 

Proof If a;, i = 0,1, - .  ., N, are the discrete fundamental solutions of equation (2.10) at 

t = t ; ,  then + Ciai  = 0 , Oo = I. Therefore, 

Hence Poao + P1aN = 0 which yields @N = -PT~(PO@O) = -P;~PO. 0 

In practice, the matrix CN may be ill-conditioned and the eigenvalues of @ cannot be 

accurately computed. However, one can solve the generalized eigenvalue problem 

to recover more accurate approximations of the Floquet multipliers [31]. 

We now focus on the stability analysis of the two methods. First, we test both methods 

with Examples 3.1 and 3.2. Somewhat surprisingly, not only the QR solver but also the 

LU solver computes the solutions without any difficulty (see Table 3.3 and 3.4). In these 

tests, both fixed and adaptive meshes are used. One possible explanation for the success 

of AUTO (with the LU solver) for Example 3.2 is that the addition of the continuation 

parameter equation appears to help stablize the problem. 
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I Without Ada~tive Mesh (IAD=O) I With Ada~tive Mesh (IAD=l) I 

Table 3.3: Maximum absolute error for Example 3.1 (use AUTO, NTST=50, NCOL=2) 

T 
1 

Table 3.4: Maximum absolute error for Example 3.2 (use AUTO, T=10, NCOL=2) 

NTST 
50 

In order to further challenge the LU method for AUTO, we extend Example 3.2 to the 

I 

following example: 

LU method 
4.9434 E-05 

LUmetho; QRmethod ' 

Example 3.3 

QR method 
4.9434 E-05 2.6954 E-06 

Without Adaptive Mesh (IAD=O) 

2.6954 E-06 

LU method 
3.7409 E-03 

With Adaptive Mesh (IAD=l) 

Not surprisingly, when using the multiple shooting and finite difference methods to solve 

QR method 
3.7409 E-03 

LU method 
9.6359 E-05 

T h e  exact  solution i s  

this example, only the QR factorization is stable (see Table 3.5). We also run the problem 

QR method 
9.6359 E-05 

= 

with AUTO, using T as the continuation parameter and starting the solution from T = 1. As 

- ,5(t-T) + e-7t - 
e5(t-T) - e-7t 

e7(t-T) + e-9t 

e7(t-T) - e-9t - 

' 
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before, we turn off the adaptive mesh selection (set IAD=O). AUTO successfully computes 

the solution for at  least T = 20 when using a small number of mesh intervals. However, 

when we increases the mesh number (NTST) to  300, AUTO fails at T = 8.9893. On the 

other hand, the QR solver is successful in all cases until at least T = 20 (see Table 3.6). 

This result seems to  demonstrate that the continuation parameter equation in AUTO helps 

to stablize the problem when there is only one increasing mode, but with two increasing 

modes, instability may occur. 

Table 3.5: Maximum absolute error for Example 3.3 (N=300) 

T 
2 
5 

'8 
10 

Table 3.6: Maximum absolute error for Example 3.3 (use AUTO, NTST=300, NCOL=2) 

Finite Difference Method 

Interestingly, after we turn on the mesh selection (IAD=l), in ad of the above cases, 

AUTO successfully computes the solution with the LU method. This shows how a good 

mesh selection strategy can help to  stablize the problem. Presumably, this stablizing effect 

of the adaptive mesh selection would carry over for many other BVP solvers. 

Multiple Shooting Method 

T 
2 
5 
8 
10 

The following practical example shows that the advantage of the QR solver over the LU 

solver. 

QR method 
1.1039 E-04 
6.9059 E-04 
1.7756 E-03 
2.7725 E-03 

Compact 
1.1039 E-04 
7.1832 E-02 
1.1553 E 08 
1.3333 E 14 

With Adaptive Mesh (IAD=l) 

Example 3.4 Kummoto-Sivashinsky equations [40] 

LU method 
1.1039 E-04 
1.3137 E-01 
2.3920 E 00 
1.2665 E 00 

QR method 
2.1455 E-13 
4.6527 E-11 
6.6350 E-10 
2.1705 E-09 

Compact 
7.1638 E-11 
4.1914 E-02 
1.0000 E 00 
1.0000 E 00 

LU method 
3.9444 E-08 
5.8461 E-09 
1.0866 E-08 
3.1209 E-08 

Without Adaptive Mesh (IAD=O) 

LU method 
5.0653 E-10 
1.3137 E-01 
1.0000 E 00 
1.0000 E 00 

QR method 
3.9444 E-08 
5.8461 E-09 
1.0866 E-08 
3.1209 E-08 

LU method 
4.7525 E-08 
1.1764 E-06 
7.2077 E-06 

Fails at  T4 .9893  

QR method 
4.7525 E-08 
1.1764 E-06 
7.2077 E-06 
1.6817 E-05 



CHAPTER 3. LINEAR SYSTEM SOLUTIONS 39 

The detailed description of model and the numerical discretization for the K-S equations 

will appear in the next chapter. We use this example to test the stability of linear system 

solvers. We use AUTO to compute the main branch of periodic solutions which is born from 

the Hopf bifurcation point at  a = 30.34522 on the steady state solution branch (branch 1 

in Figure 3.1). This periodic solution branch approaches a homoclinic cycle formed by two 

heteroclinic orbits (see discussion in Section 4.2). We use a 12-mode traditional Galerkin 

method with 10 mesh intervals and 4 collocation points on each interval to follow this 

periodic branch starting from this Hopf bifurcation point. Both the LU and QR methods 

fail after 115 continuation steps at a = 35.97086. After increasing the number of mesh 

intervals to  40 and restarting the continuation from a = 35.37104, the LU methods fails 

again after only 39 continuation steps when it reaches the turning point at  a = 36.19939. 

Using the QR method, we successfully continue this periodic solution branch for another 

305 steps without difficulties (see Figures 3.1-3.2). As for the efficiency of both solvers, we 

compare the CPU time used for the continuation of the first 100 periodic solutions starting 

from the Hopf bifurcation point. Our test is performed on a SUN 4/670MP using the SUN 

Fortran 1.4 compiler. The LU solver takes 241 seconds while QR solver spends 254 seconds 

to complete the test. The difference is only about 5%. In fact, the total time spent on 

solving the block bi-diagonal systems is around 20 seconds, which is less than 10% of the 

total CPU time. Indeed, most of the CPU time is taken by the local condensation (more 

then 60%) and the linear system setup (more than 20%). 
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Figure 3.1: LU method for solving KS equation 
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Figure 3.2: QR method for solving KS equation 



Chapter 4 

Computing Connecting Orbits 

The appearance and disappearance of the solutions connecting one or several saddle points 

is one of the (extra) aspects in global bifurcation analysis for dynamical systems. In this 

chapter, we discuss numerical methods for computing these connecting orbits. 

4.1 Connecting Orbits and Their Applications 

Consider the dynamical system 

where u E Rn and X E RP. For certain X = A, if there exists a non-constant solution u(t) 

of (4.1) such that 

u- = lim ~ ( t ) ,  u+ = lim u(t), f(u*, i) = 0, 
t+-00 t 4 m  (4.2) 

then the pair (ii(t), X) is called a connecting orbit between stationary solutions (COSS) or 

simply a connecting orbit. Moreover, if u- = u+, the orbit is c d e d  a homoclinic orbit; 

otherwise, it is called a heteroclinic orbit. A closed path formed by several heteroclinic 

orbits is called a homoclinic cycle. 

To motivate the importance of connecting orbits, we begin this chapter with two appli- 

cations of homoclinic and heteroclinic orbits: travelling wave problems for parabolic partial 

differential equations and limits of periodic solutions. 

42 
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4.1.1 Travelling Waves in Parabolic Systems 

Consider the one dimensional nonlinear parabolic partial differential equation 

If u ( x , t )  is a travelling wave solution of the PDE (4.3) with a constant wave speed c, then 

u ( x ,  t )  takes the form 

u ( x ,  t )  = U ( x  + ct) .  

Substituting this expression into the PDE (4.3), we obtain the second order ODE 

U" - cu t  + f ( U ,  A )  = 0. (4.4) 

 ken u1 and a2 are the stationary solutions of the ODE (4.4), they are also the zeros of 

the function f .  If u1 # u2, the front wave of the PDE (4.3) is a non-constant solution of 

(4.4) with 

U(-00)  = U 1 ,  U(00) = 212. 

Therefore U forms a heteroclinic orbit for the ODE (4.4). When ul = 142, U is a homoclinic 

orbit of the ODE (4.4) which represents a pulse wave for the PDE (4.3). 

Example 4.1 The Nagumo equations 

U t  = U x x  + f(V) 

f ( u ,  a )  = u ( 1 -  u ) ( u  - a) ,  0 < a < 1. 

This equation is a special case of the Fitzhugh-Nagumo equation [32, 581, 

which is a conceptual model for nerve-membrane excitability. Here, t is dimensionless time, 

x is dimensionless distance along the "nerve", u is associated to membrane potential and v 

is the recovery variable. 

The Nagumo equation has two branches of travelling wave solutions 
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with wave speed c = k a ( a  - +). These two branches of heteroclinic orbits form a branch 

of homoclinic cycles on the phase plane (U, U') with stationary points (0,O) and (1,O) (see 

Figure 4.1). 

4.1.2 Periodic Solutions 

The appearance of homoclinic orbits and homoclinic cycles often occurs from the "birth" and 

"death" of periodic solutions where the periods tend to infinity. To demonstrate this phe- 

nomenon we present two examples: the Lorenz equations [53] and the Kuramoto-Sivashinsky 

equations 140, 621. 

~ k a r n ~ l e  4.2 The Lorenz equations 

XI = a(y - 2) 

y' = Xx - y - xz 

z' = xy - pz. 

The Lorenz equations provide a simple model for weather forecasting. It describes the 

dynamics of flow and temperature in a rectangle region, where there are only three modes 

of action and they are represented by x, y, z. In the equation, a is the Prandtl number of 

the fluid, X is a dimensionless Rayleigh number, and p = 4/(1+ a2) where a is the aspect 

ratio of the rectangle. 

We assume that a = 10, p = $ and X is the continuation parameter. When X < 1, 

the trivial stationary solution (0,0,0) is stable. This solution branch goes to a pitchfork 

bifurcation at X = 1, and the new steady state solutions 

are stable. At the Hopf bifurcation point AH = 24.73684, the non-trivial steady state solu- 

tion branches lose their stability. Two branches of periodic orbits born at Hopf bifurcation 

points converge to the homoclinic orbits at X = 13.92656 (see Figure 4.2). Note both pe- 

riodic branches exist only for X 5 AH, and they are unstable. In fact, when X > AH, the 

invariant manifold for the Lorenz equations is a strange attractor. 
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Figure 4.1: Travelling wave solutions in the Nagumo equation 
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Integral x (t) 

10.0 

X 
(b) 

Figure 4.2: Periodic solution branches approach to homoclinic orbits in the Lorenz equation 
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Example 4.3 The Kurarnoto-Sivashinsky equations 

The K-S equations can arise in many applications, such as temporal phase evolution of 

reaction-diffusion chemical systems [43] and flame front propagation where u(x, t)  represents 

the perturbation of a plane flame front which propagates in a fuel-oxygen mixture [68]. When 

a is large enough, the flow tends to a turbulent state as t + oo. 

It is known that there exists a global attractor for the K-S equation which is invariant, 

h$s finite Hausdorff dimension and attracts all solutions to it. However, the attractor may 

be topologically very complicated and attract the solutions at very slow rate. Therefore, 

in the numerical computation, it is more efficient to compute the inertial manifold, a finite 

dimensional invariant manifold which attracts all trajectories exponentially. Obviously, the 

global attractor is a subset of the inertial manifold. Spectral methods for computing in- 

ertial manifolds for K-S equations have been discussed by many authors recently, e.g., see 

[40, 621. The numerical results in Figures 4.3-4.8 are obtained by using a 16 mode flat (tra- 

ditional) Galerkin method as the spatial discretization of the PDE. We solve the resulting 

(16 dimensional) ODE system with AUTO. Figure 4.3 shows the bifurcation behavior of the 

K-S equation. When a = 30.34523, a Hopf bifurcation occurs for the stationary solution 

branch 2, and a stable periodic solution branch 5 appears. This periodic branch goes to a 

secondary bifurcation at a = 32.85349. The main branch becomes unstable and eventually 

converges to a homoclinic cycle (a pair of heteroclinic orbits) at about a = 36.12736 (Fig- 

ure 4.4). The secondary periodic solution branch 6 becomes unstable after a period doubling 

bifurcation at a = 32.97169, and it converges to a homoclinic trajectory near a = 34.36606 

(Figure 4.5). Period doubling bifurcation repeats for branch 7 which also converges to a 

homoclinic orbit (Figure 4.6). At a = 34.29904, a Hopf bifurcation occurs on the steady 

state solution branch 4, and the stable periodic branch 8 is born. This periodic branch also 

goes to a period doubling bifurcation, and both branch 8 and branch 9 terminate on the 

homoclinic orbits (Figure 4.7-4.8). Unlike the homoclinic orbits and heteroclinic orbits for 

the Lorenz equations and Nagumo equations, all the connecting orbits are are ~ilnikov-type 

in which complex conjugate pair of eigenvalues exist for the Jacobian at the fixed points 1671. 
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This type of connection is also called a saddle-focus bifurcation. All results were obtained 

by the author use 'AUTO. 

4.2 Well-Posed Problem for the Connecting Orbits 

We start our discussion by considering a solution pair (u(t), A) for the equation (4.1) and 

(4.2). We assume that both u+ and u- are hyperbolic fixed points, and let M s  and M $  

be the stable and unstable manifolds of the stationary solutions u* defined by 

M: = {u E R ~ :  lim u(t) = ii*), 
t+m 

M Y  = { U E R ~ :  t+-oo lim u( t )=u*) ,  

respectively, with dimensions 

d i m ( h  S) = n+, d i m ( ~ y )  = n - n+. 

Note that when M U  and M s  intersect, M u  nM$ is at least one dimensional. Moreover, if 

n- + n+ = n + 1 there exists exactly one orbit between u- and u+. When n- + n+ > n + 1, 

 dim(^! n MS) > 1, and further conditions are required to obtain the unique connecting 

orbit. When n- + n+ < n + 1, the connection solution is not structurally stable, and we 

need to add some free parameters to establish the stable connection between u- and u+. 

In this case, the number of the free parameters is 

In particular, for homoclinic orbits, p = 1 or n- + n+ = n. In this thesis, we only consider 

the case for n- + n+ 5 n + 1. The following definition is given by Beyn [lo]. 

Definition 4.1 A connecting orbit between stationary solutions (ii(t), X) is said to be non- 

degenerate if both u- and u+ are hyperbolic fixed points, p = n + 1 - (n- + n+) and the 

ODE system 

v' = fu(ii, X)v + fx(u, X)p (4.6) 

has only the trivial solution p = 0,  v = cu' for all c E R. 
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Figure 4.3: Periodic solution branches approach to connecting orbits in the K-S equation 
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Figure 4.4: Periodic solution branch 5 converges to a homoclinic cycle 

Figure 4.5: Periodic solution branch 6 converges to a homoclinic orbit 
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Figure 4.6: Periodic solution branch 7 converges to a homoclinic orbit 

Figure 4.7: Periodic solution branch 8 converges to a homoclinic orbit 
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Figure 4.8: Periodic solution branch 9 converges to a homoclinic orbit 

Let us consider the variational equation of (4.1) for a solution pair (u(t), A) 

where A(t) = f,(u(t), A) is continuous and satisfies 

lim A(t) = A* := f , ( ~ * ,  A). 
t+* oo 

The theory of exponential dichotomy introduced in chapter 2 allows us to further inves- 

tigate the properties of COSS. In the following theorem, we summarize the results obtained 

by Beyn [lo, 111, Coppel [22] and Palmer [59]. 

Theorem 4.1 Let Y(t) be a fundamental solution for (4.7) with Y(0) = I. The ODE 

system (4.7) has an exponential dichotomy on both [O, m )  and (-m, 0] if (4.8) is satisfied. 

Moreover, if P and Q are corresponding projectors, then 

lim Y(t)pY(t)-l = P+, 
t-bm 

lim Y(t)(I - Q)y(t)-' = P- 
t-+-oo 

where P+ and P- are the projections onto M: and M U ,  respectively. 
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With the help of Theorem 4.1, Beyn further obtains the following results. 

Theorem 4.2 Define the Banach spaces 

xk = {U E c ~ ( R ,  Rn)  : lim u(') exist for 0 5 i 5 k ) ,  
t + f  oo 

with 

Let (ii, X) be a COSS of (4.1) with hyperbolic fixed points, and the linear operator 

L : X1 t XO, Lu = u' - A(t)u 

with its adjoint 

L* : X1 XO, L*u = u' + A ~ ( ~ ) u .  

Then (ii, X) is nondegenerate if and only if 

(1) dim N(L) = 1 and dim N(L*) = p; 

(2) the matrix E = Jrm QrT(t)fA(u(t), X)dt is nonsingular, where the columns q5i E X1 of 

Qr = (41, - - . , q5p) form a basis of N(L*). 

However, the condition for nondegeneracy does not include a phase condition 

and thus will not define a unique solution. To obtain a well-posed problem, this condition 

must be included. It can be shown that if the phase condition !@ E C1(XO x RP, R) satisfies 

(u, X) is indeed a regular solution for (4.1). In the next section, we will discuss the numerical 

implementation for the phase conditions. 
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4.3 Numerical Met hods for Computing Connecting Orbits 

Numerical methods for computing homoclinic and heteroclinic orbits have been recently 

discussed in [8,9, 10, 11, 28, 29,33,34, 51,52,57]. These methods use various discretizations 

for boundary value problems for ordinary differential equations on the infinite interval and 

generally are distinguished from one another by the way in which different types of boundary 

conditions and phase conditions are introduced. In [9, 10, 111, the domain is truncated to 

[T-,T+] and the boundary value problem is solved by a multiple shooting method on this 

interval. The boundary conditions are taken by projecting u(T,) - u- to the unstable 

manifold M U  at u- and u(T+) - u+ to the stable manifold M s  at u+, and a classical 

phase condition is used. In AUTO, the homoclinic orbits and the homoclinic cycles are 

approached by computing the periodic solution branch to a very large period via a pseudo- 

arclength continuation process. With this software, the periodic boundary conditions and 

an integral phase condition are used and the differential equations are discretized by a spline 

collocation method. In [29,33,34], the end-points of the BVP are approximated by moving 

the fixed points slightly along their eigenvector directions and the phase condition is similar 

to that in [28]. Numerical results are obtained by using AUTO. In [8], projection boundary 

conditions are used with AUTO for computing heteroclinic solutions of parabolic partial 

differential equations. In [51, 521, rational spectral methods are applied to compute the 

connecting orbits, along with the implementation of special types of boundary conditions and 

a phase condition so that more collocation points are located near a variational region of the 

connecting orbits (away from the fixed points). In general, most of these methods truncate 

the infinite domain into a finite interval and rescale it to [ O , l ] .  Because the connecting orbit 

solution decays exponentially near the fked points, the solution changes fast in a relatively 

small region, and the rescaling of the domain usually produces an interior layer (or possibly 

a boundary layer). These types of "artificial" interior layers or boundary layers may cause 

great difficulty in the numerical computation. 

4.3.1 Periodic Solution Approach 

Since homoclinic orbits and homoclinic cycles are the limiting cases of the periodic solutions 

in many applications, they can be approached by periodic solutions at very large periods. 

These (large period) solutions can be computed by the continuation method for the periodic 
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solution branch. In AUTO, the method for the continuation is to solve the boundary value 

problem (2.46)-(2.49). Note, when a periodic solution branch approaches a connecting 

orbit, the period T tends to infinity. Therefore, there is exactly one free parameter X in the 

system, which means that p = 1 and n- +n+ = n.  As discussed in section 4.2, this condition 

always holds for homoclinic orbits. In fact, the relation between the periodic solutions and 

connecting orbits can be established by the homoclinic bifurcation theorem [36]. 

Theorem 4.3 Let (ii, A) be a nondegenerate homoclinic orbit pair of (4.1) with the fixed 

point Go, then there exists a To and a branch of 2T-periodic solutions ( u ~ ( t ) ,  AT), -T < - 
t 5 T,  T > To of (4.6) such that for all t E [-T, TI, 

where 0 < cr < min{lRe(p)l : p is the eigenvalue of f,(iio, X)). 

Theorem 4.3 indicate that the periodic solutions exist near a homoclinic orbit and at 

least one branch of these periodic solutions converge to the orbit exponentially as T + 

oo. Unfortunately, in the case of heteroclinic orbits, p may not equal one; therefore, this 

approach may not be appropriate. Another disadvantage of this approach is when T becomes 

very large, uf(t) varies relatively fast (O(T)) only in a very small part of the domain [0, 11. 

On the rest of the domain, ul(t) 0. In fact, it is similar to a singular perturbation problem 

where an interior layer or boundary layer can cause great numerical difficulty. 

With the periodic solution approach, one can carry out numerical continuation for the 

solution branch of COSS. To do this, we fix the period T at a large value and free another 

parameter for the two-parameter continuation of the solution branches. Again, this method 

is not suitable for many applications such as the continuation of a heteroclinic orbit branch. 

Recently, Moore [57] considered an arclength formulation for computing the periodic 

solutions. If L denotes the total arclength of the periodic solution u in phase space, then 

Defining the arclengt h variable 
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the function 

v(a) := u(t(a)) 

satisfies the following system: 

The BVP system (4.12)-(4.15) is similar to (2.46)-(2.49) and can be solved in the same 

manner. However, in the formulation, L is bounded as the period T goes to infinity. This 

method can be very efficient for computing the periodic solution branch with large period 

T. But it may not be suitable to compute the connecting orbits. One reason is that when 

the periodic solution approaches the connecting orbits, Ilf(v, A ) [ )  approaches zero for some 

values of a = a0 and the right hand side of (4.12) becomes undefined. At these singular 

points, the solution v(a)  is continuous, but its first derivative is not. Therefore, numerical 

difficulty is expected. 

4.3.2 Eigenvector Approach 

In [29,33, 341, Doedel and Friedman consider the following system: 
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With this approach, the independent variable t  has been scaled to the interval [O,1] and 

the period T is treated as a free parameter. Two fixed points w o ,  wl E Rn are defined by 

(4 .17) .  In (4 .18)  and (4.19) ,  we assume that the Jacobian at w o  has no distinct positive 

eigenvalues po; with corresponding eigenvectors voj and the Jacobian at wl has nl distinct 

negative eigenvalues pl; with corresponding eigenvectors v l j .  The boundary conditions 

(4.21)  and (4 .22)  are used to require that the end-point u ( 0 )  lies in the unstable tangent 

manifold of the fixed point w o  at the distance €0 away and that u ( 1 )  lies in the stable 

tangent manifold of the fixed point wl at the distance €1  away. The phase condition (4.20)  

is .obtained by minimizing the functional 

against the phase shift a (@'(a) = 0 ) .  

In this formulation, there are p + ( n  + 2)(no + n l )  + 2 free parameters, n differential 

equations and 2n + ( n  + l ) ( n o  + n l )  + 3 constraints. Therefore, p = n + 1 - (no  + n l )  is 

required to satisfy the requirements for the existence of connection orbits. If continuation 

of such solutions is needed, the pseudo-arclength continuation equation (2.49) can be used 

where p = n + 2 - (no  + n l ) .  

4.3.3 Projection Approach 

In [9, 10, 111, Beyn develops a numerical method for computing the connecting orbits based 

upon projecting the solution at the end points to the stable and unstable manifolds of 

fixed points. Choosing appropriate J = [T-, T+] with T- < 0 and T+ > 0 ,  he solves the 

differential equation 

~ ' ( t )  = f ( u ( t ) ,  A) ,  t E J (4.24) 

subject to the boundary conditions 

and the phase condition 
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where f E C 2 ( ~ n + p ,  Rn),  B- E C ~ ( R ~ + P ,  Rn-n-), B+ E C ' ( R ~ + ~ ,  Rn-n+), and J E 

C1(CO( J, Rn ) x RP, R). The BVP system (4.24)-(4.26) is solved by a multiple shooting 

method. 

The implementation of the boundary conditions (4.25) is the projection boundary con- 

ditions 

U(T-) - u- E M!(A), u p + )  - u+ E M;(A), (4.27) 

i.e., to  project the vector u(T-) - u- and u(T+) - u+ to the unstable subspace M!(A) of 

u- and stable subspace M?(A) of u+,  respectively. However, in the numerical calculation, 

the projection conditions are presented in equation form 

where the rows of matrices P-(A) E R ( ~ - ~ - ) ~ ~  and P+(A) E R ( ~ - ~ + ) ~ ~  span the stable 

subspace of fc(u- ,  A) and the unstable subspace of fc(u+,  A), respectively. Note, (4.28) is 

equivalent to  (4.27) when u* are hyperbolic fixed points. 

The standard choice for !4 J is the integral phase condition 

or the classical phase condition 

introduced in chapter 2, where uo is a nearby known solution. In Beyn's numerical compu- 

tation, the classical phase condition is used. 

The system (4.24)-(4.26) consist of n ODES, 2n - (n- + n+) boundary conditions and 

one phase condition; therefore, the number of free parameters is p = n + 1 - (n- + n+). The 

stability and convergence results are summarized in the following theorem. 

Theorem 4.4 Let (ii, 5 )  be a nondegenerate connecting orbit between stationary solutions 

of (4.24). Assume that f E C2(Rn+p, R ~ ) ,  B- E C ~ ( R ~ + P ,  Rn-n-), B+ E C1(Rn+p, R ~ - ~ +  ) 

and !4 J E C'(C'(J, R n )  x R P ,  R), and the following conditions hold: 

Al:  B*(ii*, X) = 0, and B-,(ii-, X)E_S(X) and B+U(ii+, X)E+U(X) are nonsingular, where 

the columns of the matrices E!(X) E Rnx("-"-) and Ey(X) E Rnx("-"+) form a basis 

of the stable subspce of fu(ii-, A) and the unstable subspce of fu(u+ , i), respectively; 
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A 2 :  ! € J j ( u j , X j )  + 0 where J + R, I ! D j , u ( ~ j , X ) ~ ' J I  2 c > 0,  c is constant, J is suficiently 

.arge and !D'J is uniformly bounded on 

for some p > 0.  

Then the boundary value problem (4.24)-(4.26) has a unique sobution ( u J , A J )  in the tube 

K p .  Moreover, there is phase shift TJ + 0 as J + R such that w(t)  = u ( t  + T J )  and 

where 

a* < {min jRe(p)l : p is an eigenvalue of f,(u*, X )  with negative real part), 

,& < {min I Re@)[ : p is an eigenvalue of f,(u*, X )  with positive real part), 

w- = min(2dp-, dp- + a _ ) ,  w+ = min(2da+, da+ + P+) 

where d = 1 or 2. 

R e m a r k s :  

(1) Using the projection boundary conditions (4.28) and either the phase condition (4.29) 

or (4.30), d = 2. 

( 2 )  Using the eigenvector boundary conditions (4.21) and (4.22) with the phase condition 

(4.20), d = 2. 

( 3 )  Using the periodic boundary conditions with the phase condition chosen by either (4.29) 

or (4.30), d = 1. 

In [64], Schecter shows that the above estimate can be improved to 

llX j - ~ j l l  5 c(~("-+~P-)T- + e-(2at+P+)T+) 

if the projection boundary conditions and appropriate phase condition is used. Beyn's 

numerical results also support this argument. In general, the projection approach cannot 
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handle non-hyperbolic fixed points. Schecter [63, 641 shows that under certain conditions 

and with slight modification of the projection boundary conditions, this method can handle 

certain type of connecting orbits with semihyperbolic fixed points (quadratic turning points 

with ,B- = 0). The rate of convergence is 

Unfortunately, the commonly used phase conditions may not satisfy the assumptions given 

by Schecter. 

All three methods discussed in this chapter have a similar property. They all converge to 

the connecting orbits exponentially with respect to the truncation of the interval (-oo, oo). 

The periodic solution approach may not be suitable for some problems, such as heteroclinic 

orbits and the rate of convergence is slower than the other two methods. For both eigenvec- 

tor and projection approaches, the reduction of a BVP from an infinite domain to a finite 

domain is similar to [45], and the boundary conditions are the linear approximation of the 

stable and unstable subspace of the fixed points. These two methods have a close relation. 

In fact, vo;, 1 5 i 5 no, spans MU@) and vl;, 1 5 i 5 n l ,  spans M ~ ( A ) ,  respectively. 

Therefore, (4.28) is equivalent to (4.21) and (4.22) when u* are hyperbolic. However, be- 

cause of the different implementation, both have their own advantages and disadvantages. 

The eigenvector approach can handle some cases with nonhyperbolic fixed points, and the 

phase condition in this method is more reliable. However, in this formulation, the eigen- 

values and eigenvectors of fu(uh, f i )  are introduced as new parameters, so it increases the 

dimension of the original problem and also needs certain knowledge of the eigen-structures 

at the fixed points. The projection approach can handle more general cases where one does 

not have the information about the eigen-structure. However, the projections for certain 

invariant subspaces is not unique; therefore, a smooth QR factorization is necessary for the 

convergence of the Newton iterations. 

4.4 Arclengt h Parameterization 

All three numerical methods for computing the connecting orbits discussed in the last section 

involve the truncation of the domain for the independent variable t from (-my oo) to a finite 

interval J. In general, the eigenvector approach and the projection approach have better 
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convergence properties than the periodic solution approach. When using a boundary value 

ODE solver, the domain J = [T- , T+] is usually rescaled to [0, 11 . If T = T+ - T- is large, 

artificial interior layers or boundary layers often result since ul(t) is very large in a small 

region, then all three methods can suffer poor numerical stability. However, in the phase 

space the solution itself often remains bounded and smooth except at the fixed points. 

This suggests that a geometrical formulation may lead to a superior method. In [24], a 

geometrical method for computing invariant tori is developed and demonstrates the success 

of the geometrical approach. Moore's [57] recent geometrical approximation based upon an 

arclength parametrization for computing periodic orbits introduced in the previous section 

can be modified for computing connecting orbits. 

4.4.1 Formulation 

Let L be the total arclength of the solution u(t) in phase space and a be the scaled arclength 

parametrization variable. Following (4.9)-(4.12), we obtain 

and 

So 

satisfies the arclength parametrized differential equation 

The equation (4.34) has singular points at the end points, and away from the end points 

Ilvl(a)II = L. We assume that the connecting orbit is not of ~ilnikov type, i.e., all eigenvalues 

of fu(ii*, X) are real. In this case, 

lim vf(a) 
o+O 

and lim vl(a) 
0-1 

exist and they lie in the unstable and stable subspaces of 

conditions, we require 

u-, u+. To satisfy continuity 

(4.35) 
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Also, the boundary conditions 

ensure that the fixed points u- and u+ are the end point values for the solution. Note that 

a phase condition is not needed as we use the fixed points as the boundary points and L is 

bounded. The projection boundary conditions (4.25) become 

where the projection matrices P-(A) E R ( ~ - ~ - ) ~ ~  and P+(A) E R ( ~ - ~ + ) ~ ~  are defined as 

in section 4.3.3. 

The boundary value problem (4.34)-(4.37) consists of n ODES, 4n + 2 - (n- + n+) 
algebraic constraints, and p + 1 parameters where p = n + 1 - (n- + n+). Thus, we have 2n 

extra conditions, and a standard boundary value solver is not suitable to use without some 

modification. 

In particular, we are interested in computing the connecting orbit branches; therefore, 

the continuation methods should be considered. It turns out that the psuedo-arclength 

continuation equation 

can be easily implemented into the system (4.34)-(4.37). Therefore, the number of free 

parameters in our system should be p = n + 2 - (n- + n+). 

4.4.2 Numerical Discretization 

We now consider the numerical discretization for the boundary value problem given by 

(4.34)-(4.38). This BVP system is a singular boundary value problem as the right hand 

side of (4.34) is undefined when u = 0 and 1. The standard collocation methods cannot 

handle such problems. Therefore a special implementation of the collocation method is 

necessary. 

In [57], Moore recommends solving the boundary value problem (4.34)-(4.37) by a Gauss- 

Lobatto collocation method, which is as follows: 



CHAPTER 4. COMPUTING CONNECTING ORBITS 

Gauss-Lobatto Collocation Algorithm 

Choose C1 piecewise mth degree polynomial and a mesh 0 = a0 < a1 < . . . < ap~  = 1; 

Collocate (4.34) at all Gauss-Lobatto points apart from a = 0, l ;  

v(0) = u-(A), v(1) = u+(X); 

P-(X)v'(O) = 0, P+(X)vl(l) = 0; 

Ilv'(O>ll = llv'(1)ll = L. 

. One of our goals is to adapt an efficient algorithm for the software AUTO. Gauss-Lobatto 

collocation involves different collocation points and continuity conditions than that used in 

AUTO. It is not easy to implement with the given basis function (Lagrange polynomials). 

Our numerical implementation of the arclength formulation AUTO continues to use 

Lagrange polynomials as the basis functions and Gauss-Legendre collocation points in the 

interior subintervals but uses the Gauss-Radau collocation points on the first and last subin- 

tervals. The resulting numerical algorithm is as follows: 

Gauss-Radau Collocation Algorithm 

Collocate (4.34) at all Gauss-Legendre points apart from the first and the last mesh 

intervals. 

Collocate (4.34) at the left Gauss-Radau points apart from a = 0 in the first mesh 

interval; 

Collocate (4.34) at the right Gauss-Radau points apart from a = 1 in the last mesh 

interval; 
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4.4.3 Software Implementation 

In the Gauss-Radau Algorithm, there are only (m - l)n collocation equations in the first and 

the last mesh interval, so n more equations are needed to replace the collocation equations 

at a = 0 in the first subinterval and at a = 1 in the last subinterval. In our implementation 

in AUTO, the equation 

f(v(O), A) = 0 (4.39) 

is used in the first subinterval, and 

is used in the last. Other equations are treated as the boundary conditions, and they are 

placed in the bottom rows of the collocation matrix. Here vl(0) and vl( l )  are approximated 

by an mth order Langrage interpolation. The projection matrices P-(A) and P+(X) are ob- 

tained by using the LAPACK [I] subroutine DGEES. Note, when using the QR algorithm, 

these projection matrices are not unique and should be obtained smoothly. The final struc- 

ture of the linear system is shown in Figure 4.9 for 2 differential equations, 4 mesh intervals, 

3 collocation points and 3 free parameters. 

Recall from the previous chapter that the numerical method for solving the linear system 

involves first a local condensation method to eliminate the unknowns at non-mesh points. 

This condensation does not use row pivoting and hence, would fail at the first block. The 

remedy is rather trivial: use row partial pivoting or place the equation (4.39) in the bottom 

rows of the first block. In order to maintain efficiency for the linear system solver, we 

implement the latter. The coefficient matrix profile is shown in Figure 4.10. The condensed 

linear system has a block bi-diagonal structure, as discussed earlier, and blocks C1 and AN 

in (3.26) are zero. After applying either a QR or LU algorithm, the coefficient matrix for 

the linear system has the structure 
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Figure 4.9: Structure of the linear system profile 

Figure 4.10: Structure of the linear system profile after reordering the equations 
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If not further modified, the linear system solver of AUTO would fail when eliminating the 

block BNV1.  However, it is possible to reorder the equations and unknowns in the linear 

system so that the bi-diagonal structure is kept and the QR or LU algorithm is able to solve 

the reordered system. In our modification, we reorder the unknowns in such a way that the 

linear system has the form 

Because v(0) and v(1) are hyperbolic fixed points, the matrices A1 and CN are non-singular, 

and the linear system can be solved by the QR or LU factorization as before. The reduced 

linear system is 

In order to be able to use AUTO with this arclength implementation, we have also 

modified several parts of the code to d o w  users to provide discrete solution data as the 

starting solution, and we implement the arclength formulation for the continuation of the 

periodic solution branches. It allows users to switch from the "time" formulation to the 

"arclength" formulation directly. However, several quantities, such as the solution norm, 

may have different meanings and numerical values. These appear to be minor problems and 

should be easy to fix. Also, we should mention that our current software implementation 

is not suitable for solving large dimensional problems. Some major changes for the basic 

data structure and subroutine inter-dependency structure in AUTO are necessary before 

this implementation can be realized. 
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4.4.4 Numerical Examples 

To demonstrate the success for the arclength parameterization method, we give several nu- 

merical examples. We will simply refer to  the arclength parameterization method as the 

arclength method, the eigenvector approach introduced in section 4.3.2 as the eigenvector 

method, implementation of projection boundary conditions discussed in 4.3.3 as the projec- 

tion method, and the approach using the periodic solutions as the periodic method. In all 

of our computation, AUTO is used, with certain necessary modifications. Therefore, the 

discretization of the ODE system uses a Lagrange basis collocation method. For all cases, 

we choose 4 collocation points on each mesh subinterval (NCOL=4), which is the default for 

AUTO. Note, for the arclength method, the collocation points at  two end-intervals are dif- 

feient from the middle ones. They are Gauss-Radau points. Our numerical test is performed 

on a Silicon Graphics Indigo running IRIX 4.0.5F with a MIPS FORTRAN 77 compiler. 

Ideally, "-0" (Optimization) option should be chosen to maximize the efficiency of the 

code; however, for debugging reason, the option "-g" is used in our test. Our numerical 

examples are the Nagumo equations, the Lorenz equations and Rossler's band. 

Example 4.4 The Nagumo equations 

u; = U2 

u; = cu2 - ul ( l  - ul)(ul - a), 0 < a < 1. 

This system has been used in [lo, 29,521 as a test problem for computing heteroclinic orbits 

(a travelling wave solution branch). We test this example by the eigenvector method and 

the arclength method. 

For the eigenvector method, we use 10 mesh intervals (NTST=lO). As described in [29], 

we start with the exact solution 

at (a, c) = (3,O) and T = 5. We follows the solution by increasing T to 1000. Fixing T 

at this point and using a as the primary continuation parameter and c is the secondary 

continuation parameter, we compute both solution branches for c = f &$a - a) .  The 

eigenvector method fails after only 6 steps. After increasing the number of mesh intervals 
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to NTST=15, we successfully compute both branches. The absolute error for the lower 

half branch varies from 0 ( 1 0 - ~ )  to 0(10-~) .  As for the arclength method, we successfully 

compute both branches with only 10 mesh intervals (NTST=10). The absolute error is 

0(1oW8) for all solutions (see Figure 4.1 1). 

19-3 

10-4 

10-5 

10-6 

19-7 

la-8 

le- 9 

Figure 4.11: Absolute error for the Nagumo equation 

In this computation, the tolerance for the Newton iteration is set to On Figure 4.12 

and Figure 4.13, the distribution of the mesh points for the lower half branch solution is 

shown for the solution space (a) and the phase space (b). Note, there are 41 points for the 

arclength method (10 mesh intervals and 4 collocation points per interval) and 61 points for 

the eigenvector method (15 mesh intervals and 4 collocation points per interval). Clearly, 

the arclength method efficiently distributes the mesh points in phase space even though it 

uses less mesh points. 

Example 4.5 The Lownz equations 

2' = a(y - x) 

y' = Ax - y -  xz 

z' = xy-pz.  
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ul 

Figure 4.12: Distribution of the mesh points for the arclength method 
(a) arclength vs u; (b) u vs u' . 
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ul 

Figure 4.13: Distribution of the mesh points for the eigenvector method 
(a) t vs u; (b) u vs u' 
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At the Lorenz value (a, A, p) = (10,13.92656, $), there exists a homoclinic orbit with 

L = 64.89938. We use AUTO to trace out the periodic solution branch for (a,p) = (10, $) 

until close enough to this homoclinic orbit. Next we use several methods to continue the 

homoclinic orbit branch. The tolerance for the Newton iteration is set to The pri- 

mary and secondary continuation parameters are p and A. Their relation is shown in 

Figure 4.14(a), and the solution in phase space is shown in Figure 4.14(b). 

For the arclength parameterization method, using only 25 mesh intervals (NTST=25) 

we successfully continue the homoclinic orbit branch until p = 14.376. The final parameter 

value for X is 95040.54 and the total arclength L = 592401.13. When we use NTST=50, we 

have no trouble in continuing the homoclinic branch to p = 14.455. 

Next, we compute this branch of homoclinic orbit with the projection method and the 

periodic method. We start both computations from a periodic solution with the fixed period 

T = 1000 and use p and X as the primary and the secondary continuation parameters. 

Using 25 mesh intervals and setting the tolerance to we are unable to perform the 

continuation for both methods. Increasing the tolerance to we can continue the 

solution branch with both methods. The projection method fails at p = 14.328 and the 

periodic method fails at p = 13.920. However, the projection method cannot locate the 

solution at p = 14 during this continuation. In order to obtain the solution at p = 14, we 

have to further increase the tolerance to Both methods now are able to obtain the 

required solution. 

To compare the accuracy for all three methods, we summarize the relative error for the 

parameter X at p = 14 in Table 4.1. From these results, the superconvergence rate is clearly 

observed for the arclength method and the projection method. However, N=25 is inadequate 

for both the projection and periodic methods. For the latter, the superconvergence is not 

clear with these values. It suggests that T = 1000 may not be large enough for the periodic 

method. In this computation, we use the value of A obtained using 200 mesh intervals for 

the arclength method and the projection method as the exact solution (they agree in all 

printed digits). In Figures 4.15-4.17, the distribution of the mesh points for p = 14 is shown 

for all three methods with NTST=50. 

The above two examples have shown that the arclength parameterization method can 

be very efficient for computing the connecting orbits. However, there is one restriction in 
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Figure 4.14: Homoclinic orbit branch for the Lorenz equations 
, (a) Solution branch in parameter p-X space; (b) Homoclinic orbits in the x - z plane. . 
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x 

Figure 4.15: Distribution of the mesh points for the arclength method 
(a) arclength vs x; (b) x vs y 



-- -- 
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Figure 4.16: Distribution of the mesh points for the projection method 
(a) t vs x; (b) x vs y 
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x 

Figure 4.17: Distribution of the mesh points for the periodic method 
(a) t vs x; (b) x vs y 
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Table 4.1: Relative error for X in the Lorenz equation 

NTST 
12 
25 
50 
100 

this method, i.e., the stationary points are not saddle-focus. In another word, there are no 

complex eigenvalues in the Jacobian at the fixed points. Indeed, this condition is crucial 

in both Gauss-Lobatto collocation algorithm and Gauss-Radau collocation algorithm. The 

next example shows that the Gauss-Radau algorithm would fail without this condition. 

Example 4.6 RGssler's band 

Projection method 
- 

1.4231 E-05 
8.3057 E-09 
< 1.0 E-11 

The bifurcation diagram is shown in Figure 4.18(a) for b = 2 and c = 4. In this figure, the 

main periodic branch (branch 2) converges to a saddle-focus type homoclinic orbit at a = 

0.6511. First, we use T as the continuation parameter to compute the periodic solutions on 

branch 2. Using NTST=50, the periodic method takes 913 steps and fails at T = 352.0895; 

the projection method finishes 500 continuation steps with final T = 858.8219. Next, we 

use the solution at T = 200 as the starting point to compute the homoclinic orbit branch. 

The primary and the secondary continuation parameters are a and b. Both the periodic 

and projection methods successfully compute the homoclinic orbit branch (branch 3). The 

periodic method fails at a = 0.6099257 while the projection method fails at a = 0.606665. 

However, we are unable to continue this branch with the arclength method. Note that 

eigenvalues at the fixed points on branch 3 are XI > 0 and = a f iP with a < 0. 

Therefore, vl(l) does not exist and the projection condition 

is not appropriate to use in the computation. This problem a major drawback of the 

wclength method and is being studied. 

Periodic method 
- 

1.6894 E-05 
1.3579 E-09 
1.5836 E-09 

Arclength method 
8.0494 E-05 
4.5898 E-07 
6.0919 E-09 
8.0795 E-11 
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Figure 4.18: Homoclinic orbit branch in Rossler's band 
(a) bifurcation diagram (b) homoclinic orbit at a = 0.6511 
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4.4.5 Analysis 

Our numerical examples have shown that the arclength formulation can be very efficient for 

computing the connecting orbits. In this sub-section, we will discuss the convergence and 

uniqueness of the solutions for the system (4.34)-(4.37). In [57], Moore proves the following 

theorem: 

Theorem 4.5 Let X and y be two real Banach spaces: 

x E CO[O, 11 n c l (o ,  1) : SUP Ix(u)' < m, sup 
oE(0,l) oa ( l  - 4 P  uE(0,l) uP-l(l "'"' - 0)P-I < -1 

and 

y := f E co(o,1)  : sup { If ( 4 1  
0 ,  0 - 1  - .).-1 < -) 

where 

a := { min I : p is an eigenvahe of fu(ti-, X) with positive real part , 
2 m u  IRe(p)I 1 

P := { min IRe(')l : p is an eigenvalue of fu(ii+, A) with negative real part 
2 m u  I W P )  1 

Let the operator H : X n  x RP x R -+ yn satisfy equation 

H(w, A, L) := (1 + w)' - L 
f ( l  + w, A) 

Ilf(l+ w, A)II = O 

where 

l(0) = flu+@) + (1 - +-(A) 

and 

w(.) := ~ ( 0 )  - l(0). 

If (if, X, L) is a solution of (4.34), then Hw(w, X, L) is a Fredholna operator of index -1 - p 

with empty null space and (w, X, z) is an isolated solution of (4.44). Moreover, 

Hw(w, X, Z) + HA(w, X, Z) + HL(w, X, 2 )  

is invertible. 
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Theorem 4.5 shows that (w, 5,  L) is an isolated solution for (4.44).  Hence (+ ,X)  is an 

isolated connecting orbit solution for (4 .1) .  

The system (4.34)-(4.37) is a boundary value problem with the singularity of first kind 

at both end points a = 0 , l .  Linear singular boundary value problems have been studied by 

many authors, e.g., Russell and Shampine [61], de Hoog and Weiss [37 ,38] ,  and Weinmiiller 

[72, 73 ,  74 ,  751. Our discussion of the convergence property is similar to that in [74]. 

The variational equation for (4.34) at the solution is (+(a),  X )  

wiere P(a) is an orthogonal projection onto ?'(a) .  We further assume that there are no 

complex eigenvalues in both matrices fu(uh,  X), i.e, the connection solution is not of ~ilnikov 

type. Therefore, 

lim ?'(a) and lim 3'(a) 
u+o+ u+1- 

exist. Taking into account of (4.35),  we may assume that +(a) is at least C1[O, 11. We can 

now rewrite (4.45) to 

where 

It can be shown that 

M ( 0 )  := lim M ( a )  and M ( l )  := lim M ( a )  
u+O u-+l 

exist. We further assume that all eigenvalues of M ( 0 )  and M ( l )  are real with cr and ,O 

being the smallest positive eigenvalue for M ( 0 )  and largest negative eigenvalue for M ( I ) ,  

respectively. Our goal is to prove the convergence of the Gauss-Radau collocation algorithm 

described in 4.4.2. 

We approximate ~ ( a )  by ~ ( a ) ,  a C0 piecewise continuous polynomial of degree m, 

satisfying the collocation equations 
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where a,k = a; + pkhi are the collocation points in the interval [a;, Note, in the 

Gauss-Radau collocation algorithm, at UOJ = 0 and a p ~ _ l , ,  = 1, the equation (4.48) is not 

well defined. We may replace the collocation equations at a = 0 and 1 by 

Because P ( a )  is a projection onto +'(a),  we have 

Clearly, (4.49) satisfies the boundary conditions 

Theorem 4.6 Let M ( a )  E Cm[O, 11, Y E C1[O, 11 n Cm+l(O, 1 )  and ~ ( a )  be a C0 piecewise 

continuous polynomial of degree m. Moreover, let P satisfy (4.48) and (4.49). Then, for h 

suficiently small 

where y = min{cr, IPI) and d i s  the dimension of the largest Jordan box associated with cr 

and p. 

The proof of this theorem follows from [37] Lemma 3.5 and [74] Lemma 3.8. Note in 

general, m is only one and we can only obtain the rate of convergence O ( h ) .  One advantage 

of the collocation method is the property of superconvergence for suitably chosen p l , .  . . , p,. 

If the solution is smooth enough and 

In particular, with Gauss-Legendre points, the rate of convergence is 0 ( h 2 m ) .  With Gauss- 

Radau points, the optimal convergence rate is 0(h2,-I) .  However, we are not able to prove 
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the superconvergence result at  this stage since the solution v(a)  is only C1 for the non- 

~ilnikov case. Our numerical results in Table 4.1 indicate that the rate of convergence is 

close to 0(h6.3)  when m = 4. This rate is close to optimal as we use both Gauss-Legendre 

points and Gauss-Radau points. For the Silnikov case, v (a)  is only CO, and the Gauss-Radau 

collocation algorithm does not converge with the current implementation (as we showed in 

Example 4.6). The study for this type of problem will be carried out in [48]. 

4.5 Rational Spectral Methods 

In [51, 521, rational spectral methods are applied to  compute the connecting orbits for the 

d&amical system (4.1). These methods have several advantages; they do not require the 

truncation or translation of the infinite domain, have convergence ~ ( e - ~ ~ )  and, with careful 

choice of collocation points, can be very efficient. 

4.5.1 Rational Basis Functions 

Rational spectral methods have been discussed by several authors with different choices of 

basis functions [14, 15, 20, 711. In our computation, we use the basis functions 

which can be obtained by mapping the Chebyshev polynomials 

from [-I, 11 to  (-XI, a~) by t = cot(arccos x). The first five basis functions are given by 
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The orthogonality relation for {Rn(t))r=o follows immediately from that of {Tn(x))r=o, i.e., 

where do = 2, d, = 1 (n 2 1) and Sm,, is the Kronecker delta. Like many other spectral 

basis functions, Rn also satisfy the ;.ecursive relations 

These basis functions R,(t) are closely related to those used in [71], 

With the help of (4.51), a function f (t) can be expanded as 

where 

4.5.2 Rational Spectral Methods 

We now consider rational spectral methods for solving (4.1) and (4.2). Let u = (ul, . . . , u , ) ~  

and f = ( fl, . . , fn)T. Approximating ui(t) by 

(where the approximation is still denoted by ui(t)) and substituting into (4.1), we obtain 
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where N is a given positive integer and the derivative of R(t) can be directly calculated from 

(4.50). For the rational spectral method, (4.55) is required to hold at a set of collocation 

points. This 

where 

gives the collocation equations 

are the Gauss-Lobutto collocation points. 

In practice, it is often more convenient to use the solution values u;(tj) at the collocation 

polnts than the coefficients c;k as unknowns. From 

we have 

where 2, = 2 if m = 0 or N + 1, & = 1 if 15 m 5 N, and to := oo, tl := -00. Noticing 

that 
jn kjn Ri(tj) = k sin2 (-) sin (-) 

N + 1 N + l  ' 
we have, for 1 5 j < N ,  

- 2 - -  k  mkn kjn 
N + 1  

cos (-) sin (-) ui(t,). (4.60) 
N + 1  N + 1  

Substituting (4.60) into 

yields n N  equations for unknowns u;(tj), i = 1, . . . , n, j = 0,. . . , N + 1. 

As noted in [14, 15, 69, 711, for the rational and the Hermite spectral methods, freedom 

exists to stretch the t variable by t -, Lt. The scaling factor L can be selected to optimize 

accuracy. A detailed analysis for choosing the scaling factor was given in [14] and [69] for the 
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rational and Hermite spectral approximation, respectively. With the use of scaling factor 

L, (4.61) can be rewritten as 

One may notice that the number of unknowns is n(N + 2) and (4.61) or (4.62) gives 

only nN equations. If p free parameters are needed to  estabish the stable connecting orbit 

in the system, then 2n + p boundary and phase conditions must be employed together with 

(4.61) to determine ui(tj) and A. The following two subsections are devoted to deriving 

these conditions. 

4.5:3 Boundary Conditions 

Generally speaking, the eigenvector or projection boundary conditions can be used for the 

computation. However, much simpler boundary conditions can be obtained when there is 

only one free parameter X in the system, which is just the case for the computation of 

homoclinic orbits. In facting, substituting 

lim Rk(t) = (-l)k, lim Rk(t) = 1, 0 < k 5 N + 1 
t+-oo t-+m 

into the boundary conditions (4.2), we obtain 2n equations as 

4.5.4 Phase Conditions 

In the last section, we have seen that the connecting orbits usually change fast only in a 

relatively small region of the domain. For the rational spectral methods, the collocation 

points cluster around t = 0. Thus, the rational spectral  approximation can lead to highly 

accurate resolution of u(t). Unfortunately, the classical and integral phase conditions all 

employ a known nearby solution to fix the phase of the current solution. This may shift 

the high variation region of u(t) away from t = 0. Here, we shall use a new phase condition 

which fixes the high variation region of u(t) close to t = 0. 
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Notice that the function IIuf(t)ll measures the change of the solution. Requiring it to 

reach a maximum at t = 0 gives 

From (4.65), we obtain the new phase condition as 

Note that 

where [a] denotes the integral part of a. Hence, (4.66) gives an equation for c;k which can 

be used to determine a unique solution of (4.1)-(4.2). 

The equation (4.56) or (4.61), together with boundary conditions (4.64) and the phase 

condition (4.66), form a system of n(N+2)+1 nonlinear equations for n(N+2) unknowns 

u;(tj) and one free parameter. This system can be solved by Newton's method. 

4.5.5 Numerical Results 

Again, we take the Nagumo equations and the Lorenz equations as our test problems. The 

computations are performed on a SUN 41670 in double precision. The subroutine DNEQN 

from IMSL is employed to solve the related nonlinear system. We will refer to the rational 

spectral methods in the coefficient space and in the solution space as RSM-1 and RSM-2, 

respectively. 

Example 4.7 The Nagumo equations 

As mentioned earlier, the scaling factor L can be very useful for improving computational 

accuracy. In Figure 4.19, we plot the numerical solution ul against u2 with N = 29 for 
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L = 2,1,0.5 and 0.1. Clearly, if L is not carefully chosen then numerical oscillations occur. 

However, when L E [0.1,0.5], there is no oscillation and the solution is fairly accurate. It 

was found in [14, 151 that the accuracy is not very sensitive to L in the neighborhood of 

the optimum L. Therefore, it is safe to use any L in this "trusted" region. Based on this 

observation, for any given N we can obtain a corresponding interval from which we can 

choose any value for L. The superconvergence property is demonstrated in Figure 4.20. 

In Figure 4.21, we compare numerical accuracy when using the rational spectral methods 

RSM-1, RSM-2, and the eigenvector method (EM). For the spectral methods, 29 collocation 

points are used. For the eigenvector method, 25 mesh intervals and 4 collocation points per 

interval are used. 

Example 4.8 The Lorenz equations 

We use this example to demonstrate our phase condition. Our computation is carried 

out with 29 collocation points. For (a, p )  = (10, $), we obtain X = 13.926555. The relative 

error is about 3.59 x In Figure 4.22, we plot IIul(t)ll against t for a = 10 and several 

values of p. It is observed that our new phase condition fixes the maximum values of IIu' 1 1  
at the origin, which ensures the uniqueness of the solution. 



- - - - -- 
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Figure 4.19: Numerical solution (ul, uz) obtained by RSM-1 with various values of L 

Figure 4.20: Convergence history for the rational spectral method RSM-I 
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Figure 4.21: Comparison between RSM-1, RSM-2 and EM 

Figure 4.22: New phase condition fixes the maximum of [Iu'(t)ll at t = 0 



Chapter 5 

Conclusions 

This chapter contains our conclusions and a discussion of potential further research. Through- 

out this thesis, we have addressed many issues regarding numerical methods and algorithm 

for the study of bifurcations. 

In chapter 2, we reviewed the stability and bifurcations for steady state problems and 

periodic problems, initial value problems and boundary value problems. Numerical meth- 

ods for their computation and continuation were discussed. We especially focused on the 

implementation of various numerical algorithms in the software AUTO, which has been an 

extremely useful tool for doing bifurcation analysis. We also mentioned some of the effi- 

ciency and stability problems with this software and put our effort towards improving it. 

Our contributions for the improvement of AUTO include at least two major areas, and they 

were presented in chapters 3 and 4, respectively. 

In chapter 3, we studied the stability problem for the linear system solver for bound- 

ary value problems. Several numerical methods such as the multiple shooting method, the 

finite difference method and the collocation method for solving boundary value ODES in- 

volve solving almost block bi-diagonal linear systems. These systems usually have condition 

numbers of the same order as the conditioning constant of the BVP. However, without a 

proper numerical algorithm, solving these equations may be inefficient and unstable. Com- 

pactification is one of the well-known examples of an unstable linear solver of this type. 

As for the Gaussian elimination with partial pivoting, it is generally stable if the pivoting 

starts in blocks associated with the boundary conditions at the left endpoint. Numerical 
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examples have shown that the instability can easily occur if the boundary conditions are 

not involved in the pivoting process until the end. Unfortunately, this type of linear solver 

is used in AUTO in order to obtain the Floquet multipliers of the periodic solution without 

significant extra cost. In the continuation code, the continuation equations may help to 

stablize the linear solver, but the potential instability still exists. In order to overcome the 

instability problems of Gaussian elimination and still preserve the structure of the Jacobian 

in AUTO to obtain the Floquet multipliers with little extra cost, we have implemented a 

linear system solver based on the QR factorization to replace the current LU decomposition 

based solver in AUTO. The extra cost of the QR factorization versus the LU decomposition 

is not very significant in AUTO since solving the block bi-diagonal linear system usually 

takes less than 15% of the total CPU time in the serial version. It appears that a good 

mesh selection strategy can also help to stablize the linear system solver. This phenomenon 

has been shown by an example. A close investigation into why the continuation and mesh 

selection strategies can stablize the linear system solvers will be carried out in the near 

future. 

In chapter 4, we reviewed some of the theory and applications of connecting orbits of 

dynamical systems. These types of solution appear in many real-life applications. We 

have shown several examples related to the appearance of the connecting orbits. In many 

cases, such solutions indicate global bifurcations and the route to the chaotic motion. The 

Lorenz equations and the Kuramoto-Sivashinsky equations are just some of these examples. 

Traditional numerical methods for computing connecting orbits are based upon the trun- 

cation of the infinite domain to a finite one, and then the imposition of certain boundary 

conditions and phase conditions upon the problem. Although the methods introduced in 

[lo, 11,28,29,33,34] are quite successful in many situations (such as the problem described 

in [8]), they all suffer a similar problem, i.e., the solutions change very fast in only in a small 

part of the domain. The solutions are similar to the ones in singular perturbation problems, 

and the numerical computation of such types of solution can be very inefficient. However, 

the solution is smooth and bounded in phase space. Therefore, a geometrical parameteriza- 

tion can be and should be considered. We have implemented an algorithm based upon the 

arclength parametrization of the solution introduced in [57]. The parametrization leads to 

a singular boundary value problem which needs to be handled differently from the standard 

ones. Our algorithm is to use Gauss-Radau collocation for the two end sub-intervals and 
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Gauss-Legendre collocation for the interior. The projection boundary conditions are used 

in our formulation. However, the implementation of this algorithm in AUTO is nontriv- 

ial, and many parts of the code need to be restructured. For example, the linear system 

solver needs to be adjusted. Nevertheless, our numerical examples show that, for the non- 

~ilnikov connecting orbits, this method has great advantages over the others. Numerical 

results indicate that the superconvergence properties are observed in spite the fact that the 

solution is usually not Cm[O, 11 for m > 1. At this stage, we have not been able to prove 

the superconvergence results. One of the problems in our current implementation is that 

~ilnikov connecting orbits cannot be handled. We believe that the lack of suitable continuity 

conditions is the main reason for the failure of this type of solution. In fact, ~ilnikov con- 

nesting orbits are only COIO, 11 with respect to the arclength parametrization. However, the 

information about the eigen-structure for the fixed points may result in a better numerical 

approach for this case. The study for such problems is currently under investigation. .Also, 

the current implementation for the arclength parametrization method in AUTO is not the 

best approach, and the efficiency needs to be improved. It is also not suitable for large 

systems. To solve these problems, a major re-structuring of the software is necessary, and 

we intend to carry out this change soon. 

In the last part of the thesis, we studied rational spectral methods for computing con- 

necting orbits. The advantage of these methods is that the infinite domains need not be 

truncated. In order to use this method more efficiently, we introduced special types of 

boundary conditions and phase conditions. The numerical results show that they can be 

very efficient. However, some of the problems should be carefully studied. For example, the 

scaling factor plays a very important role in achieving efficiency, but obtaining the optimal 

scaling factors is non-trivial. A better approach is to use the continuation technique for de- 

termining suitable scaling factors. Our current implementation does not have this facility, 

and it will be also considered in our further work. 

Besides the linear system solver and the numerical computation of the connecting orbits, 

there are many other interesting issues. One of them is the numerical computation and 

continuation for other types of invariant manifolds, such as invariant tori, and there is the 

possibility for implementing these methods in mathematical software.such as AUTO. We 

would like to address some of these questions in the future. 
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