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ABSTRACT 

The study involved the creation and field-testing of a curriculum 

package on the use of parametric representations of functions leading 

to the simulation of problems involving motion. The curriculum was 

written for use on the TI  -8 l graphics calculator and can easily be 

adapted eo the TI  -82 or the TI-85.  It would also be useful as a 

resource for doing work on parametrics regardless of the technology 

used. 

The study documents the growing interest in the topic manifested 

in the literature and at mathematics conferences over a three year 

period from the spring of 199 1 to the fall of 1993. 

The curriculum package consists of an introduction to the graphics 

capabilities of the calculator, a detailed overview of graphing using 

parametrics, a secrion describing how parametrics can h e  used to 

simulate the motion of objects in two-dimensional space, and a set of 

solved and unsolved problems. 

The curriculum package was piloted with a small group of first- 

year technology students at a junior college and then field-tested with 

an honours Mathematics 1 1 class in a senior secondary school. The 

field-test involved student presentations of problems they solved from. 

the included problem set. 

The results of the questionnaires indicated that the use of 

parametric representations to simulate problems involving motion 

helped the students visualize and understand the problems, thereby 

acting as an aid in tne process of problem-solving. 



ACKNOWLEDGEMENTS 

I would like to thank Dr. Tom O'Shea and Dr. Harvey Gerber for 

setting up a program at SFU that would attract mathematics teachers 

genuinely interested in improving their understanding of the subject. Their 

leadership allowed for a collegial atmosphere in which the students could 

pursue their own diverse interests. 

1 would also like to thank Dr. Chuck Vonder Embse at Central 

Michigan University for responding to my request for materials to get me 

started on the curriculum package. 

The students in the pilot and the field test were very helpful and I 

appreciated their input. 

My final thanks go to my wife, Kathleen, whose patience and 

technical skills helped polish up the curriculum package. 



TABLE OF CONTENTS 

Topic 

APPROVAL 

ABSTRACT 

ACKNOW LEKEMENTS 

TABLE OF CONTENTS 

LlST OF TABLES 

LlST OF FIGURES 

Chapter 1. Introduction 

Background 

Purpose of the Study 

Justification 

Chapter Organization 

Chapter 2. Literature Review 

Recent Recommendations 

Expanding the Instructional Strategy Base 

The Use of Multiple Linked Representaticns 

Assumptions Underlying NCTM Standards 

NCTM Standards 

On the Use of Parametric Representations 

Existing Literature 

Workshops on Parametric Kepresentations a t  NCTM 93 

Summary  

Chapter 3- Method 

Design of the Curriculum Package 

Use of Technology and Graphing Capabilities 

Page 
. . 
11 

. . . 
111 

iv 

V 

vii 

viii 



Far ameirbc Representations of Fiinciions 

Motion Simulation from a Given Point 

The Simulation of Specdic Motion Problems 

Design of the Problem Set 

Pilot Study 

Results of Questionnaires 

Summary 

Chapter 4- Results 

Field-test - Mt. Douglas Secondary Students 

Structure of Lessons - Use of Technology 

Results of Questionnaires 

Written Comments 

Revision of Curricuf u m Package - Addendu m 

k 
Chapter 5- Discussion and Conchsions 

Conclusions from Questionnaires 

Conclusions from Comments 

Changing Roles of Students and Teachers 

The Effect of the Increase of Real-World Applications 

The Effect of an Increase in Experimentation 

I mplications and Su rn marv 

List  of References 

Appendix 

Ciirricirlii ffi Package 



Lf ST OF TABLES 

PAGE 

Table 1. Pilot Pre-Activity Questionnaire Results 42  

Table 2. Pilot Post-Activity Questionnaire Results 43 

Table 3. Field-Test Pre-Activity Questionnaire Results 52  

Table 4. Field-Test Post- Activity Questionnaire Results 53 



viii 

LIST OP PEGURES 

PAGE 

Figure 1 .  Parabolic motion (quadratic function) 

figure 2.  The golf problem Part D - problem 3 

Figure 3. Drawing a line joining two given points 

Figure 4- Three quadratic functions using parametrim 

Figure 5 .  Graphing functions using trigonometry 

Pigure 4. Horizontal motion of three particles 

Figure 7. Calculation d velocity 

Figure 8 .  The two-car problem Part D - problem 5 

Pigure9. PartD-Targetshooting#l 

Pigure 10. GoK problem: Part E - problem 3 

Pigure 1 1 .  The boat problem Part E - problem 4 

Figure 12. It projectile problem Part E - problem 7 

Pigure 13. Part TI, - Target shooting #2 

Pigure 14. Problem 6 - Part E 

Figure 15. Problem #5 - Part U 

Figure 16. Revised table of contents 

Figure 17. Addendum: Revised Part 3b 



Background 

Most teachers of mathematics would probably agree that the two 

most feared words in the teaching and learning of mathematics would be: 

wordpfoblems Many teachers are able to assuage these fears by the 

clever use of algorithms specific to the type of problem being studied. Most 

of these, although leading to successful solutions, do not address 

unde~"stafl~~g but rather an abstract analytical reinforcement of the 

initial source of the confusion: the wofdc This is especially true for 

problems involving motion. Here more than ever is the need for an 

effective mode of visualization for the type of problems that at once 

raise the levels of anxiety and lower the levels of confidence of the 

students, and at the same time, discourage them from careers in 

mathematics or related sciences. After all, a picture is worth a thousand 

words, especially one that moves. 

Another factor affecting the difficulty in getting started on word 

problems is that of a lack of sufficient motivation on the part of the 

student. This lack of involvement may stem from an incomplete 

understanding of the problem. When faced with an algebraic algorithm for 

its soiriiion, based on two-dimensionai tabies, the student, aitnough 

perhaps cabable of generating this solution on demand, probably does so 

without really connecting the abstract solution to the real five problem. 

The use of parametric representations of functions can bring 



problems involving motion to life on the screens of graphic calculatxs and 

computers. This video of the problem, that can be analyzed at any instant 

of time and replayed at s lmer  or faster tempos, could complete the 

understanding of the problem, and provide the link between the problem 

and its solution. 

Some of the strongest recommendations to improve the connections 

between representations have been made recently in a set of curriculum 

standards published by the National Council of Teachers of Mathematics 

(NCTM, 1.989). To say that all students should be able to make connections 

between different representations as well as different disciplines and 

model real-world phenomena using a variety of functions is a considerable 

challenge. Strengthening these statements further is the recommendation 

to make full use of the graphing technology available in the belief that this 

use will not act as a crutch, but will instead strengthen existing concepts 

and even aid in further developmental learning. Seeing is not just 

believing, it is much more than that. 

Although graphs have been recommended and used as a problein 

solving strategy their effectiveness in problems involving motion is limited 

by two factors. First, a single representation can invoive only two variables 

at a time. In problems consisting of' motion in a two-dimensional space, it 

is impossible to represent both dimensions as well as representing time. 

Secondly, even if there are only two dimensions, such as in a problem 

involving linear motion, the graphs drawn can only be static and never a 

dynamic representation of the actual problem. In both cases the graphs 

become another abstraction, marginally more representative than the 



algebraic one. By u ~ i n g  the parametric capabilities of recent technology, 

both displacement cmrdinates can be shown, and the object can be seen to 

move in its two-dimensional space in real time. 

Purpose of the Study 

The purpose was to design, test and revise a curriculum package on 

the use of parametric representations of functions leading to the 

simulation of prvblerns involving motion using the parametric capability of 

the TI-8 1 graphics calculator. This technology was used fully during the 

pilot and the field test of the curriculum. Tb.e curriculum was written for 

use on the TI-8 1 b u t  can be easily adapted to the TI-82 or the TI-85. 

Tire pilot was carried out with a group of students who had 
.I 

completed their first year of a civil engineering technology program at a 

junitx college. For them the advantage would be the realization that 

problems involving motion on a line or in space, as well as related rate 

problems can be simulated using parametrics. This visualization of the 

problem was intended to provide them with a stronger conceptual 

foundation, so  that their formuiations of these problems using cdcuius 

would make more sense to them. 

The field test was canducted on a group of grade I 1 students who 

were familiar with functions and graphing but who had little or no 

experience with the use of graphics calcufators and certainly not with 

parametric representations. For them the advantages would be to 

familiarize themselves with the technology and to participate in the 



simulation of real-world application-type problems, 

For both trials, pre-study and post-study questionnaires were used 

to determine whether this use of curriculum and technology could seduce 

the level of anxiety related to problems involving motion, lead to a better 

understanding of problems of this type, and be an aid in the solution of 

these problems, 

Justification 

Problems involving motion where fime is a variable can be made to 

come to life on the screens of graphics calculators and computers with 

parametric capabilities. The simplest of these problems would consist of 

only linear motion, as in the example of two trains approaching each other 

at different speeds on parallel tracks. Projectile problems where gravity is 

a factor and two dimensional problems where horizontal and vertical rates 

are different, such as a laddcr sliding down a wall, can also be simulated 

using parametric representations. 

To be shown, or better yet, to be able to create and adapt a video of 

a motion problem should be a confidence builder, and provide a strong 

motivational link between the different representations of the problem, 

These are: 

1 )  the algebraic equations used to construct the graph 

2) the simulated motion of the object, which is the graph 

3) the values of the variables, the position coordinates k , y )  and the 

time Tg which can be read off the graph using the TRACE key. 



Using the TRACE option, the problem can be  studied at any of its 

coordinate points and so the simulation can be used as an aid to the 

solution of the problem itself, or at least as a check of the analytical 

calculations. 

For example, Figure 1 shows a problem from the curriculum of an 

object moving on a parabolic path. If a TRACE is done and stopped at T = 5 

the display on the screen would contain the following infor mation: 

T. = 5, X = 125, Y = 27.3 

A table of values for various values of T, X, and Y, has been included to 

help the reader get a sense of time passing. 

A pair of parametric equations sf the form: 
XZT = 25T & Y z l =  50 + 20T - 4-93? 

describe the path of an object from an initial position ( 0. 50 

6 tiis. e 25f is the horizontal displacement (meters) at time 'h 
50 + 20T - 4.9P gives the vertical displacement 
50 = the initial vertical position ( T = 0 ) 
+20T represents an izitia! vertical velocity of 20 m/sec upward 
- 4.9T2 represents the vertical effect of the gravitational pull on an 
object causing the vertical velocity to continually decrease at 9.8 
m/sec each second. ( at2/2 = -9.8t2/2 = -4.9t2 ) 

Figure 1. Parabolic motion (quadratic function) 



The fact that a problem can not only be displayed graphically, bur 

can actually be simulated using time as a variable, is more than just a 

breakthrough in providing a sense of the dynamics of a problem. I t  also 

holds the exciting possibility of allowing stueents to discover greater 

understanding of the meaning and uses of mathematics. Graphing in 

secondary school mathematics is generally a static phenomenon. Even the 

so-called motion problems, when solved graphically, are not done in a way 

that gives a sense of action. Using parametric representations and 

simultaneously graphing the two or more functions, motion can be 

simulated on the screen of the TI-8 1 calculator. This is done by switching 

the MODE of graphing from function to parameter The third variable, 

tiine, can be slowed down or sped up to suit the problem. This is done by 

adjusting the Tstep in the RANGE. The problem can be studied at any 

point and all three coordinates--the two displacement coordinates and 

time--can be displayed by using the TRACE key and moving the cursor 

along the graph. 

Parametric representations of functions is a fairly obscure topic, 

visited briefly by calculus students doing related rates problems. To 

sub jecr students and teachers to vet another branch of mathematics, which 

itself is already too absrract for most sruden~s seems unreasonable, 

especially since a common complaint is that the curriculum is already 

overloaded. The most significant srrength of this proposal is that algebraic, 

parametric representations of verbal problems, will be translated into 

graphical simulaticns on the calculator screen. The student can then solve 

the problem using the TRACE option, or revise the algebraic 



representation, thus producing a newer, and possibly a better fitting visual 

representation, and so on until the problem is completed. This process can 

be illustrated by the golfing problem shown in Figure 2. The algebraic 

solution is at the end of the problem. 

A golfer is contemplating a 7-iron shot towards a circular green 
with theflag located at  the center. The hole is 130 meters away and the 
radius of the green is 8 meters. His 7-iron hits the ball at a 35" angle. 
Assuming the ball will be hit straight and that there is no wind, what 
velocity will it be necessary to impart to the ball so that it hits the green? 

The equati~ns for the path of the ball become: 
X(T) = VTCos 35' & Y(T) = VTSin 35' - 4.9T2 
Choose different values of V and TRACE the graphs drawn to find 
the $-value when Y = 0.  This is the distance the ball travels in the 
air. Y - 0 is ground. The desired X-value is 130, The algebraic 
solution of V is shown below. 

X ~ T  = 4OTCos 35' 
Y ~ T  = .bOfSin 35' - 4.8TZt0 
Set Range: 
T : O - > 6  (TStep=.02) 
X: 0 -> 200 IXScl- 301 
Y: 0 - >  40 (YScl - 10) - 

I 
Algebraic solution: 

The solution is a 130 meter shot ( X = 130 & Y = 0 1. 
( A )  130-VTCos3lj0 



( R l  O=VTSin35"-$.9T2 - >  T( VSin35" - 4.9T) = O 
-) T = O or T = VSin35'i4-9 

Substituting this back in ( A )  ->  130 = V2Sin35OCos35V4.9 
- >  V = 36-82 m k e c  

Figure 2. The golf problem: Part D - problem 3 

Another strength is that this approach is function based. Every 

parametric function is represented by  two functions X(P), the horizont a! 

component, and Y(t ) ,  the vertical. This should help reinforce the concept of 

functions, a major concern theme in the standards recommended in the 

recent NCTM report (NCTM, 1989 1. 

Chapter organization 

The thesis consists of five chapters. The experimental curriculum is 

added as an appendix. 

Chapter 1 consists of the background, including a description of some 

of the lizitations of present day mathematics teachings, the purpose of the 

study and the justification of it as well as a brief introduction to the 

conceptual basis of parametric representations, how they can be used to 

strengthen the problem-solving process, and some examples to illustrate 

the visualization aspect of this approach. 

Chapter 2 contains a brief review of the literature that recommends 

change and the specific use of parametric representations. 

Chapter 3 describes the development of the curriculum, how it was 

piloted, and how the technology was used. 



Chapter 4 consists of a description of the six-day field test, the 

student comments, and the results of the questionnaires. 

Chapter 5 contains an analysis of the results as well as a discussion of 

some of the implications involving the use of parametric representations. 

Appendix A contains the curriculum package itself. Revisions made 

to the curriculum, as a result of the field test, are described in Chapter 4. 



Cha~ter  2- Literature Review 

The literature reviewed in this section was chosen by focusing on a 

particular theme: that the learning of mathematics will be enhanced by 

representing or visualizing problems in a variety of ways. The emphasis on 

alternative strategies for problem solving was reinforced by the advent of 

graphic calculators. The literature that followed suggested parametric 

representations of functions as a means of the simulation of problems 

involving moti0.n in 1989. Since then there has been a growing interest in 

this topic. The remainder of the review focuses on literature specifically on 

parametric representations. 

Recent Recommendations 

A key problem area in the teaching of mathematics has been its 

perceived lack of relevance to real-world situations. The different 

disciplines of mathematics were not seen as connected to each other, much 

less to other subject areas. Efforts were made in the late 1970s to correct 

this perception by  providing teachers with the skills and tools to present 

mathematics as an interconnected and application-or iented subject. The 

first step was to establish problem solving as the focus of teaching. 

Expanding the Instructional Strategy Base 

Problem solving was recommended to be the number one basic skill 

as early as 1978 by the National Council of Supervisors of Mathematics 

(NCTM, 19781, and adopted as the focus of school mathematics for the 



1980's in the NCTM's Agenda for Action (NCTM, 1980). The 

recommendation below from this Agenda makes a clear case to include the 

use of technology in the problem-solving process. 

Mathematics programs of the 1980s must be designed to equip 
students with the mathematical methods that support the full range of 
problem solving, including - 
- the traditional concepts and techniques of esaputation md 
agpiieations of mathematics to solve real-world problems 
- the use of the problem-solving capacities of computers to extend 
traditional problem-solving approaches and to implement new 
strategies of interaction and simulation 
- the use of imagery, visualization, and spatial concepts (NCTM, 1980, 
P. 13) 

Before the advent of graphics calculators, the only tools available to 

provide any kind of visualization of graphic events were computers, with 

software devoted mainly to diagnostic work. Since then there has been an 

enormous effort on the part of all those active in the field to come to grips 

with a variety of instructional strategies for problem solving, and to devise 

appropriate approaches to what most people agree is the essence of 

mathematics, the "doing" of mathematics. The work done by those in 

developing thorough problem solving plans and lists of solution strategies 

(notably Charles & Lester, 1982, 1987) suggest that teachers model the use 

of different strategies, that students be encouraged to use a variety of 

strategies even after the siiccessfijl cornpietion of a problem. 

The U s e  of Multiple Linked Representations 

The discussion of different strategies was subsequently focused in 



the direction of different representations of the same concept or problem. 

It was agreed that the learning environment could be enriched by a 

presentation that involved more than one way of visualizing or 

interpreting the solution of a problem. 

Students who are able to apply and translate among different 
representations of the same problem situation or of the same 
mathematical concept, will have at once a powerful, flexible set of 
tools for solving prob!ems and a deeper appreciation of the 
consistency and beauty of mathematics. ... Students' understanding 
of the connections among mathematical ideas facilitates their ability 
to formulate and deductively verify conjectures across topics. 
(NCTM, 1989, p. 147) 

The above is a quote from the NCTM's Standards document and is part of 

the description of Standard 4 titled Mathematical Connections, which reads: 

In grades 9- 12, the mathematics curriculum should include 
investigation of the connections and interplay among various 
mathematical topics and their applications so that all students can: 
* recognize equivalent representations of the same concept; 
* relate procedures in one representation to procedures in an 
equivalent representation; 

* use and value the connections among mathematical topics; 
* use and value the connections between mathematics and other 

disciplines (NCTM, 1989, p. 146) 

New technologies can help to make these connections by providing 

the link between the algebraic (syntactic) and the graphical or visual 

(semantic). In a study that recommends an algebra learning environment 

that supports the Ilir;7k1hg of different algebraic representations, Kaput 

( 1989) argues that the problem of student alienation is 



the result of teaching aigebra syntax instead of semantics ... dealing 
with the ryntax of formal algebraic symbols and the lack of linkages 
to other representations that might provide informative feedback Qn 
the appropriateness of actions taken. (p. 168 

Syntactic actions are described as opaque, whereas semantic ones are 

transparem in which the user sees through the notation. On the use of new 

technologies, Kaput ( 1989) says 

the bird of mathematical competence cannot fly on one wing ... 
neither the syntactic nor the semantic suffices alone. By providing 
the means to link actions on a notation with their consequences in a 
reference field, new technologies may help redress the 
se mantic/conceptual balance without giving u p  syntacticlprocedural 
power. (p. 176) 

Assumptions Underlying the NCTM Standards 

in March 1989, the Working Groups of the Commission on Standards 

for School Mathematics of the National Council of Teachers of Mathematics 

issued a report recommending sweeping, definitive changes in the way 

mathematics is taught in the classroom. A common thread throughout the 

assumptions governing the selection of the K - 12 standards was that the 

presentation of mathematics needs to be broader, more flexible, and more 

applicable to real-world situations: 

Programs that provide limited developmental work, that emphasize 
symbol manipulation and computational rules, and that rely heavily 
on pencil and paper worksheets do not fit the natural learning 
patterns of children and do not contribute to important aspects of 
children's ma.thematica1 development. ... Extensive and thoughtful use 
must be made of physical materials to foster the learning of abstract 
ideas. ... Children also need to understand that mathematics is an 



integral part of real-world situati~ns and activities in other curricular 
areas. (NCTM, 1489, pp. 16,17.18) 

The vision articulated in the standards is of a broad, concept driven 
curriculum, one that reflects the full breadth of relevant mathematics 
and its interrelationships with technology. (NCTM, 1989, p, $ 6 )  

The broadened view of mathematics described in the introduction to 

this document under the rubric mathematicalpower, together with the 

capabilities of available and emerging technology, suggests a need for 

changes in instructional patterns and in the roles of both teachers and 

students: 

A variety of instructional methods should be used in classrooms in 
order to cultivate students' abilities to investigate, to make sense of, 
and to construct meanings of new situations; to make and provide 
arguments for conjectures; and to use a flexible set of strategies to 
solve problems. (NCTM, 1989, p. 125) 

The possibility ~f a more varied instructional approach that centers 

on the investigative powers of the students themselves is strengthened by  

emergence of the kind of technology that allows students to visualize and 

even simulate mathematical processes. This kind of exploration is 

inevitable, and if directed in an effective way, cannot help but add to the 

confidence and skill levels of the students: 

an environment that encourages students to explore, formulate and 
test conjectures, prove generalizations and discuss and apply the 
results of their investigations. Such an instructional setting enables 
students to approach the learning of mathematics both creatively 
and independently and thereby strengthen their confidence and skill 
in doing mathematics. ..... Technology .... can be used effectively for 
class demonstrations and independently by students to explore 
additional examples, perform independent investigations, generate 



and summxize  ,.. Technology ... transforms the mathematics 
classroom into a laboratory much like the environment in many 
science classes, where students use technology to investigate, 
conjecture and verify their findings. (NCTM, 1989, p. 128) 

NCTM Standards 

The first recommended standard repeats the call of ten years earlier 

io focus on mathhe maties as proble m soiving. The problem-solving process, 

spread across the curriculum, should entail appropriate use of calculator 

and computer technology: 

* apply integrated mathematical problem-solving strategies to solve 
problems from within and outside mathematics 
* apply the process of mathematical modelling to real-world problem 
situations (NCTM, 1989, p. 137) 

The pervasiveness of functions and the ease by which functions can 

be displayed on computer and calculator screens once again encourages the 

expansion of this topic as a major recommendation: 

In grades 9- 12, the mathematics curriculum should include the 
continued study of functions so that all students can - 
* model real world phenomena with a variety of functions 
* translate among tabular, symbolic, and graphical representations of 
functions 
* recognize that a variety of problem situations can be modeled by 
the sane type of function (NCTM, 1389, p. 154) 

A separate recommendation is reserved for trigonometry and 

e mphasites the importance of trigonometric functions: 

* explore periodic real-world phenomena using the sine and cosine 



functions 
use circular functions to model periodic real-world phenomena 

CNCTkI, 1989, p.163) 

Probably the first indication of a recommended use of parametric 

representations for secondary students occurs in the text of the 

trigonometric section of the report !NCTM, 1989, p. I65 ): 

Problem: Suppose a Ferris wheel with a radius of 2 5  feet makes a 
complete revolution in 12 seconds. Develop a mathematical model 
that describes the reiationship between the height of a rider above 
the bottom of the Ferris wheel and time. 

A t  a certain level students would use right triangle trigonometry and 
simple proportions to derive the parametric representation of a point 
P = [ xlt), y(t) 1 on the rotating Ferris wheel as a function of time, 
thereby establishing that the height is a sinusoidai function of 't'. 
They could then use a parametric graphing utility to simulate the  
motion of a point moving on the Ferris wheel. 

On the U s e  of Parametric Representations 

The literature in this section deals exclusively with recornmendatums 

and applications on the use of parametric representations to simulate 

motion. Without a graphics calculator or computer that has a parametric 

graphing utility, the reader would have no sense of the motion in the 



problem. The graph is the simulation of the event. The Iitefatt~re for the 

most part, focuses on specific simulations and does not attempt to teach a 

conceptual or experiential development of the topic itself. The curriculu m 

package was designed as an introduction and a step b y  step development 

of use of parametric representations. 

Existing: literature 

Various educators at the forefront of the drive for increased use of 

technology in the classroom are making a strong case to include parametric 

representations as a component of mathematics instruction. At  a recent 

presentation at the Third International Conference on Technology in 

Collegiate Mathematics, Vonder Embse ( 1 99 1 ) used the following model to 

show the role that linking different representations plays in problem 

Graphical 
Representation 

Problem 

Situation 



B y  using parameiric representations of reiationshigs. we can 
graph any function or relatonship done in two dimensions and we 
have the ability to add yet a third variable to the set. This third 
variable becomes the independent variable. It is not represented 
visually on the graph, but is implicit to the graph in the same way 
that time is a fourth dimension implicit to the three dimensional 
world in which we live. The TI-8 1 graphing calculator has a built-in 
parametric graphing utility which allows students to interactively 
explore problems and concepts in ways not possible without a third 
variable. (Vonder Embse, 199 1, pp. 3 ' 4 )  

He provides a wide-ranging exploration of the use of parametric 

representations from junior high level graphing to the construction of 

exotic curves using polar equations. He  classifies motion simulation 

problems into two categories. The first is motion on the earth's surface and 

he uses a "two-train problem" as an example. He then borrows a problem 

from a pre-calculus textbook to illustrate his motion in space categoi-y: 

A basehall is hit when the ball is 3 feet above the ground and leaves 
the bat with initial velocity of 150 feet per second and at an angle of 
elevation of 20". A 6-mph wind is blowing in the horizontal direction 
against the batter. A 20-foot high fence is 400 feet from home plate. 
Will the hit go over the fence and be a home run?(Demana & Waits, 
1993. p.497) 

Horizontal and vertical components involving trigonometry may 

seem a bit intimidating. However, since every parametric function is 

represented b y  two functions Xi t 1, the horizontal component, and Y ( t  ), tne 

vertical, students will have to deal with this type of thinking initially. By 

the time fly balls drift across the~alculator screen towards the fence in 

center field student anxiety should be ameliorated. In recent issues of  the 



TI-8 1 newsletters two mathematics specialists have picked up the ball, so 

to speak, and come up with golfing and basketball variations of the above 

baseball theme (Texas Instruments, 1992). Foley ( l9W) argues that: 

Parametric representations can illuminate the relationships between 
rotation and angle measure, between vectors and their components, 
and between the geometry of curves and the motion of objects. In 
the past, constructing the graph of a pair of parametric equations 
was a laborious task. Now hand-held graphing calculators (e.g. the 
Texas Instru rnents TI-8 1 ) have built-in parametric graphing utilities 
that automate the curve construction process. They can 
simultaneously plot related curves and provide a user-controlled 
Trace that displays a numerical readout of the parameter value and 
coordinates associated with each plotted point. Graphing calculators 
reveal the dynamic nature of parametric representations. They can 
simulate the flight of a projectile or the path swept out by a point on 
a rolling wheel. The plotting speed can be adjusted to give the effect 
of a slow motion instant replay. Students and teachers can use this 
technology to gain relatively easy access to the interesting and useful 
mathematics of parametric equations and their graphs.(p. 138 

 he power of visualization is again reinforced in an article (Demana 

& Waits, 1992 on the motion of a particle on a horizontal line. A particle 

moving according to the position function: 

can be analyzed as to position and velocity by simply doing a trace on the 

motion Q!' the particle. By setting Y = F , the motion is easier to follow. 

Since the gartlc!e is simulated to rise, it doesn't double hack on itself and 

the acceleration is evident: 

By pressing either the up  or down arrow key you can look at the 
same motion on the vertically expanded view. It's not exactly the 
path of the particle, but makes the left to right motion of the particle 



Workshops on Parametric Representations sat NCTM 93 

At the April, 1993 NCTM Conference in Seattle there were four 

standing-room-only workshops on simulating motion using parametriss. At  

the 199 1 conference in New Orleans, there were none. I attended two in 

Seattle and acquired the handout from a third. The first highlighted a 

project entered into by the presenter with his precalculus class to stir u p  

the interest of the punter on the varsity football team. The parametric 

equations: 

X(T) = VTCosB & Y(T1 = VTSinQJ - 16Tz 

were used to analyze his kicks to come up  with the ideal angle: 

Pick some values for 0 and V and the graph shows the path of the 
ball over time. Let us assume that we know how far our punters' 
best kicks travel in the air. Assuming a constant initial velocity, what 
happens as we vary the angle? What angle produces the best kicks? 
(Barnard, 1993, p. 3)  

He also posed an interesting question. Given the coordinates of a triangle, 

how do you come up with the parametric equations to graph the triangle? 

The second presentatron focused on the "monkey in the tree" 

problem which is usually a popular feature at science fairs. If a projectile 

is aimed directky, at any arijgk, at a target (thz monkey), and if at the same 

imtant, that the projectile is fired, at m y  initial velocity, the target fa!!s 

(out of the tree), then the projectile will hit the target every time. This was 

demonstrated using the parametric capabilities of the TI-82 graphics 

calculator. He had also prepared a video in conjunction with the physics 



department with ball bearings and tin cans. The tin can was connected 

electromagnetically to the trigger so that it would fall at the instant the 

ball bearing was fired. The handout included some interesting 

investigations, such as: 

Experiment with different bullet velocities. Does the bullet always hit 
the falling target? Why? What would happen if this experiment was 
performed on a different planet? ..,.. What angle would be necessary 
to hit the target if it was stationary? (Vonder Embse, Engebretsen, 
Carlson, 1993, pp. 1 1, f 4) 

The presenter of a workshop running concurrently with the one I 

was in arrived as we were filing out. H e  was demonstrating a program 

simulating the shooting of a free throw of a basketball. What I saw on the 

screen of his calculator was a basketball hoop attached to a backboard. He 

entered the parametric equations for the path of a basketball, pressed 

GRAPH and the ball arced through the air bounced off the front of the rim, 

off the backboard, then fell through the hoop hit the floor bounced a few 

times and rolled to a stop. I later acquired the handout from a friend who 

had attended the workshop. 

In this simulation the concepts are intended to be learned through 
trial and error. The graphics calculator is used as a tool to model the 
path of the basketball. The user "shoots" the basketball by inputting 
values for the height that the basketball is released above the floor, 
the iaitia! angle the &eased ball makes with the h~c iz~ntab,  and the 
initial velocity of the basketball upon release. The path of the ball is 
graphed and the user can adjust the values until a 'successful' free 
throw is made (Engebretsen & Vonder EmbseJ993, p.141. 

The workshops were extremely well attended, and the participants 

were mostiy in awe that finally mathematics could come alive on a 



cafcufator screen, and 'rhai stiideriis could experiment with different 

representations of problems much iike science students in laboratories. 

There was a heady mix of fun with a sense of being on the edge of 

breakthroughs in some significant areas of the teaching of mathematics. 

Summary 

In the first workshop I attended in April 199 1 one of the presenters 

suggested to the participants that they use parametric representations to 

simulate motion. After mostly blank stares and chaotic fumbling for an 

hour or so, the groups handed in their work and I overheard the 

presenters conferring In husheds tones to the effect that they were really 

on to something. Even though we were promised some form of summary 

of the ideas generated at the workshop, it never materialized and I left 

.. feeling somewhat like a guinea pig bu t  with the distinct impression that, 

yes, something was going on that was bordering on revolutionary. I 

presented a workshop on the topic in Oct 199 1 at the Northwest 

Conference in Richmond, B.C. Those in attendance seemed interested, 

especially a physics teacher who appreciated the connections between the 

two disciplines. I decided at that point that a comprehensive curriculum 

package on the use of parametrics was necessary so that students can 

translate a problem involving motion into parametric equations that will 

effectively simuiaie that motion on a caicuiator screen. Not only will this 

e - - h g  r r a v a e  students to visualize, trace or freeze the actual motion of a3 object 

on a screen, but it will allow students to have in their hands, for the first 

time, the technology to understand the mathematics of motion. 



M y  first exposure to simulations, using parametric representations, 

of problems involving motion was a challenging experience. I t  was 

necessary for m e  to work backwards from the solution given in the 

problem, to try to understand the conceptual basis involved. The result of 

that struggk was a y  decision to develop a curricerfern; on parametric 

representations that started at a level of mathematics that included right 

triangle trigonometry and a knowledge of functions and graphing. The 

examples I'd seen, mostly from sports, were the most straightforward 

examples since they represented the visualizations of definite projectiles. 

In the curriculum package I planned to include problems involving the 

motion of trains, rectangles, or ladders sliding down a wail which are more 

like simulations of events rather than actual visualizations. .'- 

Design of the Curriculum Package 

The curriculum is designed in five parts which are labelled Parts A 

through E. Part A consists d an introduction to the function graphing 

capabilities of graphics caiculators. Part B is an introduction to the use of 

parametric representations. Part C describes the use of parametrics to 

represerzt motion. Part O consists ~ , f  specific probkms and their sohitions. 

Part E is a problem set with no so!ot!ons given. After the field test ! 

created an addendum to improve on a particular topic. The curriculum 

package is Appendix A, and the addendum, (see Figure 171, is described in 

Chapter 4. 



Use of Technology and Graphing Capabilities - Part A 

My first thoughts in designing a curriculum that relied heavily on the 

use of calculators was to keep it untechnical and to include as many 

diagrams as possible. This meant teaching largely by example, and 

choosing the examples in such a way as to provide the conceptual 

development of the topic. In this way I hoped to avoid the dulling effects 

of some textbooks and most technical manuals. One constraint I felt obliged 

to uphold was that the package should be designed to fit a 6 to 10 hour 

time frame and that the students should have completed the grade 1 1  

graphing and trigonometry units. 

The first hour would have to be an introduction to the technology 

and its graphing capabilities. In Part A of the package I included a few 

technical terms, and referred students to the appendix for elaborations for 

features such as the ZOOM function. I chose as an example the solution of 
-& 

the equation: 

O S X  + 1 = 2x2 - 5X - 2 

by graphing the linear and quadratic functions represented by the 

opposite sides of the equation, and finding the x-values of the points of 

intersection of the two graphs. 

Parametric Representations of Functions - Part B 

In the introduction to parametric representations I wanted to cclnvey 

two major concepts. The first was that motion occurs according to a 

controllable parameter. Setting the RANGE for F is analagous to setting a 

stopwatch for a specific interval of time (Tmin -; Tmax), and deciding on 

how fast time should travel. A small TStep would slow the graph down. 



The second concept wm that two equations, each one a function of T, are 

necessary to describe the motion of a particle. A good example to illustrate 

this is shown in Figure 3. I had previously set TStep = 0.05 and had 

mentioned that doubling the TStep would double the speed of the graph: 

I.  b l  Drawing a line joining two given points: 
( - 5 .  8 )  bt (7 . -2)  

Press Range and set Tmin = 0. T X Y 
If T represents TIME then starting 0 -5 8 
at T = 0 would be natural. ? 7 -2 

To increase X & T at the same rate enter 
X I T =  -5 + TandvaryTfromO -> 12 . .  
Note: X changes from -5 to 7 as T changes at the same rate. Y, 
however, changes at a different rate, as it decreases from 
8 to -2. 

Q Calculate the function K 

YIT, by setting YIT = 8 + kT 
Substitute T & Y -2 =8+12k 

\ 
(values from table) - 10 = 12k -is - w  d 

Solve for k -5 /6  = k 
4 

Enter YIT = 8 + (-5/6)T. 
-Id 

-- - --- 

Figure 3. Drawing a line joining two given points 

For quadraiic fiinciions i used the example shown in Figure 4 to 

represent the motion of particles in two-dimensional space. My intent was 

to design three parabolas that would simultaneously leave the point (0,201 

and hit the spot (20,O) at the same time. The graphs would be seen as 

having a projectile quality. 



- -- 

b) Designing a Quadratic Function to connect (0 .20 )  & (20 .0)  

Mote: This can be done any number of ways. In the three cases below 
I've kept X = T so the graphs will proceed left to right. In each of the 
three cases a value of k can be determined b y  substituting from the 
table: 

i)  Enter XIT = T & Set Y ~ T  = 20 + kT2 
Substitute 0 = 20 + k(202 
Solve for k k = - 0.05 
Enter Y ~ T  = 20 - 0.435T2 

ii) Enter XZY - T & YZT = 20 + T - OAT2 
iii) Enter X3-r = T 

Set Y ~ T =  211 + 2T + kT2 
0 = 20 + 40 + k(202) 
k = - 0.15, 

Enter Y ~ T  = 20 + 2T - 0.15T2 

a Experiment with TStep changes 

GRAPH in Sequence or Simultaneously ( a MODE menu option ) 

Figure 4. Three quadratic functions using parametrics 

1 wanted to make the connection between linear functions and 

trigonometry. In Figure 5 ,  1 described how a linear graph with a slope sf 

30' could be drawn using trigonometry, I avoided using the concept of 

motion at this point, because that would involve talking about velocity. I 

followed this with another graph starting at the point (0.3) and rising at 



30' hut puiied down by a gravitational effect. Notice that the graph is the 

line Y = (Tan3Ij0) X in regular function notation, 

- 

e )  Graphing a linear function using trigonometry. 
9 If a straight line has an angle of elevation of 30" then the line can be 

described parametrically as follows: 
XI% = TCos 30' & YIT = TSin 30' 

t) Graphing a quadratic function using ttigonome try: 
9 Enter X ~ T  = TCss 30' b Y ~ T  = TSin 30' - 8.82T2 + 3 

Nsbe: This graph will also have an initial slope of 3O ". It will start at + 3 
on the Y-axis and will be pulled down by the gravitational effect of - 

0.OZT2. 
t y  15 

T XI PI  X2 Y2 
0 0 0 0 3 
1 3 7  5 .87 3.48 

/- 

2 1.73 2 1 7 3  4.92 l o /  

/ 

Figure 5. Graphing functions using trigonometry 

Motion Simulation from a Given Point - Part C 

This is the section where graphing becomes the simulation of the 

motion of a pasticie. I started this section with motion on a horizontal line. 

I had three particles moving on the lines Y = 4, Y = 8, and Y = 12. The 

bottom one travels at a constant rate of 30 units/sec to the right, the 



middle one has no initial velocity but accelerates at 4 units/secz to the 

right, and the top one has an initial velocity to the left then accelerates to 

the right to try to catch the other Vso (see Figure 6 ) .  All three particles 

started at X = 50: 

1 , Horizontal Motion 
Set Range T: 0 -> 20: X: 0 -> 11100: Y: 0 -> 20 

a)  Objects travelling at a constant speed: bicycles, trains .... 
An object starts from 1 50.4 1 and travels ai a constant Horizontal 
rate of 30 unitdsec. This can. be represented by: 

X1T = SO + 30T & 

b) Objects accelerating: 
An object starts at (50,8) with acceleration a = 4 units/secZ. Distance 
travelled is given by D(t) = Do + Vot + atU2 

0 This can he represented parametrically by: 
X2f = 50  + 2T2 & Y 2 ~ = 8  

If there is an initial velocity of V o  = - 20 units/sec, then using the 
same acceleration and starting from ( 50,  12 ) we get: 

X ~ T  = 50 - 20T + 2T2 Cis Y 3 ~ = 1 2  
Note: Ih a TRACE on this one and notice the cursor start towards the 

left (negative velocity) bu t  it changes direction eventually because 
the acceleration is positive. 

Note: A constant headwind of 20m/sec, would have the same effect as 
the initial velocity. 

Figure 6. Horizontal motion of three particles 

The first contact I had with parametric representations that would 

simulate the path of a projectile in the air was the baseball problem from a 



precalculus textbook ( k m a n a  & Waits, 1993): 

A baseball is hit when the ball is 3 feet above the ground and 
leaves the bat with initial velocity of 150 feet per second and 
at an angle of elevation of 20'. A 6 - mph wind is blowing in 
the horizontal direction against the batter. A 20-foot high 
fence is 400 feet from home plate. Will the hit go over the 
fence and be a home run?( p. 497 ) 

The 6-mph, (8.8 ft/sec), wind ac.ts as a negative horizontal velocity. The 

parametric equations for this problem were given as: 

Even though I knew these equations worked I didn't really understand 

that I SOT Cos2QW and 1 50FSin2OW represented the initial horizontal 

and vertical displacement components of the motion of the baseball. I 

knew the T was necessary for the graph but I wasn't comfortable with this 

until d designed an addendum to the curriculum that involved using the 

TRACE to calculate the velocity of such an object, as shown in Figure 7. 

Enter X(T) = 5TCos 30' L Y(T) = 5TSin 30' as the horizontal and 
vertical cnmpnnents d the displacement of an object travelling along a 30" 
path 
6 Set RANGE as T: 0 -, 5 ,  X: -5 -+ 2 5 ,  Y: -5 + 15 ( Note: 3 2  ratio) 

Press GRAPH 



--- the velacity of the object, along path? --- 
Velocity - distance/ time and the hypotenuse, which is equal to 5T, 
represents the distance the object travels along the 30" path: 

V = distance/time = ST/T = 5 
We can check this by doing a TRACE on our object 
Q, Press TRACE and proceed until T = 3.8 

Calculate Distance =-) = d( 16.45452 + 9.52) = 19 
Calculate velocity along the path V = D/T = 19/33 = 5 

Figure 7. Calculation of velocity 

The Simulation of Specific Motion Problems - Part D 

In this section I wanted specific problems and their solutions, 

representing a variety of motion situations. Problem #3, is a variation of a 

golfing problem from a TI-% 1 newsletter (Texas Instruments, 1992). The 

rest I designed myself. The first two problems are standard motion 

probiems. Problem *4 involving horizontal motion, is useful in studying 

velocity. Problem # S ,  (see Figure 8 J, involves two cars approaching an  

intersection. When the equations and the range are set, the graph will 

show a visualization of the two cars approaching each other. To answer the 

questions about the distance between the cars a third graph needs to he 

drawn showing the shrinking distance between the cars. This graph is not 

so much a visualization as an abstract simulation of the distance. In a 

typical related rate problem in first year calculus, a question might be 

"How fast is the distance between the cars changing at a particular value of 

T?" A more difficult question would be to find the minimum distance 

between the cars. To determine this from the graph, without calculus, is 

perhaps the most powerful, and controversial aspect of this technique. I 



attended a workshop on calcuius at the coliege level given by Bert waits at 

the  Northwest Mathe matics Conference in Richmond, B.C. in Oct. 1 99 1 .  He 

used a more difficult variation of this problem using two people on two 

different sized ferris wheels to demonstrate the ease at which new 

technology can make traditional calculus teachers nervous. 

Two cars are approaching an intersection at location ( 50, 50 1. Car A 
is coming from the north, 300 k m  away, at a speed of 40 km/h. Car B is 
approaching from the east, 400 k m  from the intersection, at a speed of 60 
km/h. 

a)  A t  what time will the two cars be 100 k m  apart? 
h) What is the minimum distance between them? 

Note: The ( 50.  50 1 location for the intersection, off the X & Y axes, is 
chosen to allow for better viewing on the calculator. 

Set the path of car A as: XIT = P O  & YIT = 350 - 40T 
Set the path of car E3 as: X ~ T  = 450 - 60T $s HZT = 50 

Note: Car A starts at I- = 350 and moves downwards on the vertical line 
X = 50 at 40 km/h .  Car R starts at X = 450 and moves to the left on 
the horizontal line = 50 at 68 bm/h. 
To calculate the distance between the two cars, which is always the 
hypotenuse of a right triangle, use Pythagoras: 

Set Y ~ T  = 150. The distance will be seen to be shrinking along this 
horizontal path towards a minimum then will increase once the cars 
pass each other : you'Il aeed a TRACE to see this 1. 

* Set Range: 
T: 0 - 10 fTStep = 0.05) 
X: -200 -+ 500 (XScl= 100) 
Y: -200 - 400 (YSc! = 100) 



Figure 8. The two-car problem Part D - problem 5 

At this point I decided to reverse the given information in a typical 

problem. Instead of looking for a point of intersection of two given 

functions, a problem could be devised to calculate the function necessary 

to intercept a given function at a given point. If two trains can be 

simulated to traveI along tracks and the point of intersection can be 

calculated then a projectile could be launched to intercept a target at a pre- 

determined location. In target-shooting, two things need to be calculated - 

the time until contact and the parametric equations of the projectile. I 

demonstrated this in the first target shooting problem (see Figure 91 

4 target, is moving according to the function rules: 
X n = - 1 6  + T  & Y I T =  10 - T  

This target starts at the point ( - lO,lO 1 and moves diagonally through the 
origin. The goal is to shoot the target at one of its locus points, say ( 5 . 3 )  
from a specified point say ( 10,lO). This means 
to mathematically devise the necessary parametric functions of a projectile 
that will intercept the target at the precise specified point a t  the 



Step 11: 
Find T by setting the target equations equal to the coordinates of the 
impact point (bold print in the table). 

X I T = - I O + T =  5 
r =  15 

Step 2: 
Find X ~ T  & Y ~ T  
X Z T =  1 0 +  hT (atT=O,Xz = 10) 

5 = 10 + h(15) (at impact point, T = 15 and X2 = 5) 
-5 = 1Sh 
h = -1/3 

Y Z T =  1 0 +  kT (at T = 0, Y2 = t 0) 
-5 = l o +  k(l5) (at impact point, T = 15 and Y2 = - 5 )  
k = - 1  

Step 3: 
IEntesXz~= 10 - 1/3T & H ~ T =  18 - F 
Press MODE, choose the SIMULtaneous option then GRAPH. 

Figure 9. Part D - Target shooting#l 

Design of the Brobiem Set - Part E 

1 set up the pi-obiem set i pat i  E ) as an assignment for the students 

in the field test. In designing the problem set I wanted to set up problems 

that could be solved by using algebra or by  parametric representations. 

Problem * 1 is a motion problem suitable for Grade 10 students: 



I .  Two planes leave airports 1000 km. apart, flying towards each other. 
Plane A leaves airport A at ! 4OOh and trave!~  at a constant speed of 
200 k d h .  Plane B leaves airport B at 1600h and travels at 
300km/h. At what time and at what location will the two planes pass 
each other? 

Problem #2 is a variation of the baseball problem previoersly 

described (Demana & Waits, 1993, p.4971, where the velocity at impact, 

the angle and the initial height are known and the ball travels towards a 

5 m  wall 150m out into center field. In this problem the student enters the 

equations and checks the trajectory and answers the questions. 

Problem #3, (see Figure 101, is a metricised variation of the golf 

problem in the TI-8 1 Newsletter (Texas Instruments, 1992). Students are 

expected to experiment with different clubs, different angles and impact 

velocities, and choose the best club (greatest possible loft) for the shot. 

3. A golfer is faced with a 140 m shot directly into a 5 m/sec wind. The 
problem in golf is to choose the best club for the shot. The best club 
is the highest numbered club to provide the greatest possible loft, 
thus minimizing the distance travelled after it hits the green. Each 
club imparts a different angle and a different maximum velocity to 
the ball at impact. 

Club Angle Max. speed s f  ball 
4-iron 28" 50 m/sec. 
5 -iron 32' 48 rn/sec 
6 -iron 30" 45 rn/sec 
7-iron 39" 40 m/sec 
8 -iron 43" 36 m/sec 

Determine the best club and the velocity needed to drop the ball as 
close as possible to the hole. 

Figure 10. Golf problem: Part E - problem 3 



For the bend it of the cdege  students ir, the pilet ! revised a rrelzted 

rate problem from their calculus text (Washington, 1990, p.7 10 ). A 

question specific to their curriculum would be "How fast is the boat 

moving at a particular value of T?" In this problem, (see Figure 1 1 ), the 

rope is being pulled in at a constant rate bu t  the boat is accelerating. My 

intention with the table of values was for the students to see that the boat 

is accelerating since the distance travelled in each secmd increases. This 

simulation becomes in a sense an experiment, math-lab style: 

4, A 25 m rope has one end attached to a boat and the other to a 
pulley on a dock. The rope is being pulled in at a constant rate of 
2.50 m/sec. The water is 5 m below the pulley. 

a)  Set u p  two functions that will decrease, X ~ T  showing the length of 
the rope, and XZT representing the distance of the boat from the 
dock. Graph both these functions on parallel horizontal lines. 

b) Is the speed of the boat constant? Why or why not? 
c )  Complete the table below calculating the distance the boat travels 

Figure 1 1. The boat problem Part E - problem 4 

d u r i n ~  the 6th. 7th, and 8th seconds. 
T 
5 

XZT (Dist. from dock) ~ k t .  travelled that second 
xxxXXXXXxxXXXXXxXXXXX 



In designing the target shooting problems I wanted to set up a 

variety of paths that a projectile (target) could take. The target in problem 

#7. (see Figure 121, is travelling in a parabolic path. The problem seems 

difficult and I ,wasn't sure it would be successfully solved by the students 

in the field-test. 

7. A ball is tossed from a height of 2 m. at ail initial velocity of 25 
m/sec. at an angle of 60". Its path is described by: 

XIT = 25T Cos 60' & YIT = 2 + 25T Sin 60' - 4.9T2 

From the point ( 100,O ) a bullet is to be fired that will travel in a 
straight line at 100m/sec. The problem is to fire the  gun so that it 
makes contact with the ball exactly 3 seconds after the ball is tossed. 

a) How long after the ball is tossed should the gun be fired? 
b) At what angle will the bullet travel? 
c) What are the parametric equations simulating the path of 
the projectile 7 

Figure 12. A projectile problem Part E - problem 7 

In all of the problems discussed so far the parameter, T. has stood 

for time. If motion is circular or elliptical then it becomes convenient tr? set 

up T as an angle although it can still be thought of as representing time. In 

a target shooting problem, (see Figure 13), the equations of the target are 

given. The target is moving in a circular path starting on the Y-axis and 

rotating counter-clockwise. The challenge is to hit the target at the exact 

time that it reaches the X-axis. 



A particle is moving in a circular path starting at the point (0,3) and 
moving in a counter-clockwise direction according to the functions: 

X ~ T  = -3SinT br YIT = 3CosT 
From a specified point, ( 10.10 ) launch a projectile that wiS1 intercept this 
particle as it reaches the point (3.0). 

Figure 13. Part D - Target shooting Sf2 

In a problem involving a rectangle that is touching both axes as it 

rotates, (see Figure 14), the student is asked to set up parametric functions 

representing the path of the tip of a rotating rectangle. T, in this case, is an 

angle and is further removed from being a representation of' time. I didn't 

really expect anyone to solse this particular problem for a variety of 

reawns, The problem is a revision of the final question on a Euclid contest 

and as such is considered very difficult. The Euclid contest is written by 

the top grade 12 students in each school across Canada and the last 

question is often the one that determines the winners. Even with the hint 

of setting up the angle as a parameter the problem still requires a 

conceptual leap in the understanding of the  ole of a parameter: 



6. A rectangle ABCD is moved so that vertex B always touches the 
Y-axis and vertex C always touches the X-axis. AB = 3 and AD = 7. 
Let ( S, Y 1 be the coordinates of point A,  and T be the angle shown 
in the diagram. 

a~ Find a pair of parametric representations Y(T) and Y(T). 
b! Graph the path of point A. 
ci  Find'the maximum value of Y. 

Summary 

The curriculum package contains the range of features and 

applications of parametric representations. I t  asks students to: 

I '! graph functions starting at any point and going in either direction, 

2 j  graph non-f unctions such as circles, 

3)  graph and trace the motion of an object that is moving on a 

hr?rizontal or ~ e r t i s d  line accordkg to some function rule, and 

4 )  simulate the motion of an object in two-dimensional space when 

the horizontal and vertical component functions are known, and the 



parameter, T: represents time or an angle of rotation. 

The crucial difference between this type of graphing and traditional 

graphing is that the student can observe the motion of an object as it 

moves through time, play it back at whatever speed is desired, and trace 

the graph to obtain the values of the three coordinates. In traditional 

graphing the graphs are static because they can only represent two out of 

the three coordinates. 

Pilot Study 

The pilot of the cerrriculum package was with a group of technolsgy- 

literate first year students at Camosun College. They were about half way 

through first year calculus having just finished a unit on applications of 

derivatives. They were excited at the technological capacity of simulating 

projectile problems and visualizing related rate problems. 

I bypassed about half of the introductory material and tried to get 

to the applications as quickly as possible. For the first two hours with 

them, during their regular class t ine,  I introduced the technology and the 

concept of graphing functions parametrically. W e  used a borrowed set of 

TI-8 1s in conjunction with the overhead version of the TI-85. To try to get 

them to come to the 3-hour Saturday morning session, I emphasized how 

much it would help them with understanding their calculus problems. 

They attended the final Saturday morning session with the promise from 

me that I would concentrate on applications that would be helpful for their 

upcoming calculus test. So after simulating the problems on related rates 

and projectile motion using parametric representations, we analyzed and 



solved them using calculus. 

On Saturday morning five students showed up, and my son, who had 

just completed a Mathematics 12 course, operated the video camera and 

offered some suggestions as well. We spent most of an hour on the car 

problem (see Figure 15 1. Using calculus we were able to calculate at what 

time the distance between the two cars was a minimum. The simulation of 

the distance function allowed them to understand the problem in greater 

depth, and to check the accuracy of the answers that were obtained using 

calculus. 

We then did the ladder problem, which was fortunate for them since 

coincidentally they were working on a similar project in physics where 

they had to find out what would be happening to someone standing on the 

center of the ladder. We also did the boat and the helicopter problems ( #4  

& # 5  from the problem set 1, analyzing both of these problems using 

calculus at different values of time. 

There were a few interesting observations that the students made, 

The most positive comment was that the simulation on the screen acted 

like a bridge between the problem and the calculus necessary to solve it. 

Certain problems, especially those involving related rates, are simplified 

by  the use of parametric representations, because the problems can be 

visualized or simulated. The students felt more confident of the use of 

calculus once the problem was understood. The response was also quite 

strong to the whole concept of providing not just a graph b u ~  a "video of 

the event". One student, having just acquired an HP-48, regretted having 

sold her more user -friendly TI-8 1. 



Two cars are approaching an intersection at location ( 50, 5 0  ). 
Car A is coming from the north, 300 k m  away, at a speed of 40 km/h. Car I3 
is approaching from the east, 400 k m  from the intersection, a t  a speed of 
60 km/h. 

a )  At what time will the two cars be 100 km apart? 
b )  What is the minimum distance between them? 

Set the path of car A as: XI+ = 50 & HIT = 350 - 4OT 
Set the path of car B as: XZT = 450 - 60T & Ym = 50 

Note: Car A starts at 'lr' = 350 and moves downwards on the vertical line 
X = 50 at 40 km/h. Car R starts at X = 450 and moves to the left on 
the horizontal line Y = 50 at hrjkm/h. 

To calculate the distance between the two cars, which is always the 
hypoteneuse of a right triangle, use Pythagoras: 

Distance = X ~ T  = ~ ( Y I T  - 5012 + (XZT - 5012 
Set Y3-r = 150. The distance will b e  see11 to be shrinking along this 
horizontal path towards a minimum then will increase once the cars 
pass each other ( you'll need a TRACE to see this 1. 

- - - - - - - - - -  - -+  * -.. - 2  CXScl-1110) 
~ : - 2 0 0 - 4 0 1 )  c l 

300 400 
: ,X 

500 Answers 

6 110 90 72.1 
7 70 30 28.3 .-.,, ' , "9 

8 30 -30 82.5 
10 -50 -150 223.6 
Set Range: loo- 

T : O - . i t i  (TStep = i).liS! 

Figure 15. Problem *5 - Part D 
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Resuits of Questionnaires 

The five students who participated in the Saturday morning session 

of the pilot completed a pre-activity (see Table I ) ,  and post-activity 

questionnaire (see Table 2 1. The choices for the questions were: 

STj - Strongly Disagree, I) - Disagree, N - No Opinion, 

A - Agree, SA - Strongly Agree 

The number of students are noted in bold underneath their choice. 

Table 1 
Pilot Pre-Activity Questionnnaire Results 

Questions Answers 
SE> D N A S A  

- 

A I .  Problems involving motinn like these are usually 
difficult for me to visualize. 

2 I often don't understand these problems even 2 1  2 
when I 'm able to do the calculations. 

3. I have a hard time getting started on these problems, 1 2 2 

4. I usually get codused by these problems. 2 2 1  

5. I often experience a fair degree of anxiety when I 3 1 
faced with problems like these. 



Table 2 
Pilot Post- Activity Questionnaire Results 

Questions Answers 
SD D N A SA 

1. The simulation of these problems on a calculator 
screen, using the parametric representation of 
functions, helps me to visualize them. 

2. A visual simulation of these problems helps me 
to understand what's happening in them. 

3, When I see these problems simulated on a screen 
I fed  more confident that I will be able to come up  
with a correct solution. 

4. My level of anxiety towards these problems became 
less when I saw them come to life on the screen of a 
graphics calculator. 

5 I feel more confident in m y  ability to understand 1 2 2  
and solve these types s f  problems. 

6. The simulation of motion problems by parametric 
representations is an aid to problem solving. 

Swnmafy 

The results of the questions # I ,  #2, and #6 (see Table 2) are an 

indication that the students agreed that this use of technology helped them 

to visualize and understand the problems, and as such become an aid in 

the solution of problems involving motion. It was clear to me from the 



experience of the pilot i h i  the sitidenis felt ihai the use vf parametric 

representations would be a worthwhile addition to their curriculum. For 

me, I was able to get a feel for the time necessary to teach the concepts 

and demonstrate the examples. 

The inconclusive results of question #5  could be reflected in the 

ambiguity of the question itseff. If a student disagrees that his or her level 

sf corLidence rose, it's because either the confidence was already high, or 

it was at an urnshakeable low level. So I don't think the results of question 

# S  should be seen as a contradiction to the results of the other questions, 

which indicated that the simulation of these problems is an aid in 

understanding them and in their solution. 



Chaoter 4 Results 

This chapter contains four sections all pertaining to the field- testing 

of the curriculum package. The first section is a day-to-day description of 

the aaivities in the classroom. The second section contains tables of the 

results of the questionnaires. The third is a list of the written comments of 

the students. The fourth describes the revisions made to the curriculum. 

Field-test - Mt- Douglas Secondary Students 

The field-test was with a group of Math 1 1 Enriched students from 

Mt-Douglas Secondary. They had little or no experience with graphics 

calculators much less with motion simulations with time as a parameter. 

This section includes the curriculum topics covered, the questions and 
. :- 

comments of the st ~ d e n t s ,  and descriptions of their presentations d wing 

the final class. There were six hours of class rime available. To fit the 

necessary components in to complere the main sections of the curriculu m I 

orni~ted Part A - sections 3 and 4, Part B - section 1 b) p.7, and Part B - 

section 3a). bi, and cj. In Part D, I demonstrated problems 1, 3, 5 ,  and 

target shooting "1 .  Some of these sections involved understanding graphs 

of trigonometric functions, which they had not yet been taught ar that 

point. 

Sgructure of Lessons - use of Technology 

Each class with the high school students at Mr. Douglas Secondary 

was conducted using their class set of TI-8 1 calculators and the overhead 

version of the TI-85 belonging to Carnosun College. The differences 



bet-ween the two technologies was minima! and probably worried m e  =ore 

than it did the students. When it came time for them to make their 

presentations on the sixth and final class they easily adapted to the TI -87  

in front OF the class. There were 23 students on the first day and I0 

students on the final day. 

The first four classes were taken up with my teaching the material 

and demonstrating some examples and solving some problems with the T I -  

85 on the screen. The students followed along on their calculators working 

lmsely in groups which were forming by the students themselves so they 

could help each other and work together. It wasn't possible to assign any 

homework since they had no access to the calculators. The groups 

tightened u p  on the fifth day as the students worked cm their group 

assignments which was ro solve at least two of the problems from &If? 

TheProbIem Ser one of which had to be presented b y  the group in front 

of the class on the sixth day. The groups had three to four members in 

each and during the last two classes they worked with their desks pushed 

rogether. The students were told that the assignment was to be evaluated 

by the home teacher although this was purely to motivate them, since she 

thought they would work harder If there were marks involved. 

The first five classes were recorded on audio tape and the 

presentations in the fina! class were video-taped. 

Day  1 

The first day aFas taken up mostly to introduce the graphing capatiry 

of the cafculators. The key point was to demonstrate to the students that a 

distance-time graph, such as one describing a ball thrown straight up. was 



not a simuiation of the motion of the baii. They were asked to consider 

bow to graph the motion of a ball thrown at an angle since there would 

then be three variables: the horizontal co-ordinate, X, the vertical co 

-ordinaxe, Y, and the time, T. We discussed how to graph circles under the 

regime of a calculator driven by  a function mechanism. 

The students then worked on the pre-assignment, which consisted of 

problems 1 ,  3 and 5 from Part D. They were asked to try to solve the 

problems and answer the pre-activity questionnaire at the end. My 

intention was to familiarize the students with the kinds of problems 

suitable for parametrics, before handing out the curriculum package. These 

three problems are solved using parametrics in the package. 

Day 2 

The second class was spent introducing the parametric 

representation of functions and the role of the variable T- Each student 

was given a copy of the curriculum package and the students 

experimented with this new way of graphing by following the instructions 

from me or from the package. Many of them were quite responsive and 

could tell that when a graph slopped it had run out of 'time'. We  

concentrated solely on linear functions and linear motion, including motion 

with a given angle, but  with no acceleration component in either case. On 

this day we cornpietea Part 3 - sections la),  i b j  and 3e).  I t  was in this 

class ihai I recognized the need for an addendum lo make a better link 

between analytical geometry and the physics of motion. We finished the 

class by doing the C3fIon the15rX-e problem, (Part D - pr~blern 11, using 

parametrics. When I asked which of the graphs represented the girl on the 

bike and which one the father in the car, the answer came quickly: " The 



top one's the father's because it's moving faster." 

Day 3 

The third day was spent on quadratic functions, starting with Part B 

- sections 2a). We started with IZ = T and Y as a function of T and the 

parabolas were familiar to the students except for the fact that they would 

stop because they ran out of time or they would go backwards, from right 

to left, if we changed to X = 5 - T. On a simultaneous graph of three 

parabolic graphs, ( Part B - section 2b),  arching out from the same spot at 

different angles and meeting at the ground at the same spot and at the 

same time, the spirit of what they were seeing was evidenced by the 

sound effects of the whistling sounds of projectiles. We then extended the 

linear motion problem done the day before, (Part B - section 3e).  given the 

initial angle 2nd velocity by including gravitational effects which in eifect 

makes it quadratic. 

W e  spent about twenty minutes on Part I: - section 1, which involved 

the horizontal motion of three objects according to the functions: 

X2T = 50 + 2T2 & YZT = 8 

X33' = IjO - 20T + 2T2 & Y 3 ~ = 1 2  

When we were simulating motion on a straight line according to the third 

function one student cleverly pointed out that this was like a horizontal 

(one dimensional) parabola. This was at the end of the third hour with 

them and they were helping each other w . h tracing the oh ject using the 

cursor buttons, wondering why the object moved to the left at the 



beginning then slowed, stopped and accelerated to the righe. One student 

who had gone backwards in time got stuck at the beginning and wondered 

why but was quickly rescued by another student. The students 

experimented a lot with this section b y  trying to set up a race between the 

objects by changing the initial conditions or by entering a cubic function. 

There was some discussion on the velocity and acceleration of each object, 

and reiating these "horizontal parabolas" to previous ones they had dose. 

For the third graph we related the point at which the object stopped to the 

Yertex of the parabola". 

Day 4 

On the fourth day we started with the simulation of the motion of 

three objects dropping under three different gravitational environments 

.<: j'<; 

(Part C - section 2).  We also demonstrated this using DOT Made with 

TStep = 1 so the students could see how far the objects would fall in each 

second. W e  then calculated the speed of the objects along linear paths as is 

done in Part C - section 3. We also did this calculation using trigonometry 

where the initial angle is given. This is explained in the addendum which 

is included at the end of this chapter (see Figure 17). Perhaps the most 

positive comments came when we were measuring the velocity of an 

object along a 30" slanted path. We had entered: 

X = 5TCos30 & Y = 5TSin30 

When we did a trace, ~~e used ihe X & 'i mordinaies io ealcuia~e eke 

distance travelled, divided the distance by the time coordinate and 

verified that in fact the object was travelling with a velocity of 5 along a 

30' The comments indicated that we were really onto a real-life 

simulation and not just doing parlour tricks. This section was no6 in my 



currjculum package, hut I considered it a break-through, which is why 1 

created the addendum. One student cleverly suggested setting up DOT 

Mode with TStep = 1 and working out the distance between the dots, 

which of course is correct and probably easier. To end the class we played 

with the golf problem, Problem #3  in Part D. 

On the fifth day we solved three problems using parametric 

representations, each one from Part D: the car problem, Problem # 5 ,  and 

the target shooting problem. The rest of the time was group work on 

specific problems chosen by the students from the set of unsolved 

problems in Part E. The regular teacher at this point seemed a bit 

concerned that some of the students would not come u p  with much for 

,: .:,.: 
presentation day. At  this point the students probably realized that marks 

- .. 

were not at issue and a few had become spectators for whatever reason. 

Day 6 

On the sixth day I set up  the video while the students worked on the 

problems. I suggested that everyone choose the plane problem ( # I  j just 

to get started and at least one other, and that it would be all right if two 

groups presented the same problem. 

The first group the helicopter problem (Part E ' 5 ) .  One 

student, who had already contributed some interesting comments during 

Day 4, suggested that they graph not just the falling steel ball but also the 

helicopter overhead. It  was clear immediately to him that the horizontal 

component of the helicopter would be the same as that of the ball. When 

his solution came u p  on the screen the helicopter was always directly 



above the ball as it arched towards the ground. 

The second group presented the plane problem, (Part E # 11, and the 

next twenty minutes at least were spent working on other problems. The 

third presentation was the baseball problem (Part E #2 ). The student 

graphed the 5m wall at 150m from home plate and showed the fly ball hit 

the wall at about 4 m  from the ground. There was some discussion about 

whether that ball could be caught. The student built in a wind factor of 

1.5 m/sec and on this attempt the ball cleared the wall. He had started 

with 5 mhec then worked down to 1.5 m/sec. 

The fourth and final presentation, ( Part E #7 1, was the projectile 

(not under gravity's influence) shooting a ball that had been tossed 

(gravity included). It was a challenge but was quite popular and was 

successfully solved by two of the groups that attempted it. The problem 

. .' , r,' 
was to calculate when the shot should be fired so that the ball would be hit 

exactly three seconds after it was tossed. This problem involved a lot of 

calculations and another group solved it correctly, but f ~ r  some reason 

couldn't simulate it properly. The problem was successfully completed by 

the bell and the students by this time had finished their post-activity 

questionnaire. The applause for the final student group presentation, 

which was the successful completion of problem 7, the shooting of the 

tossed ball with a bullet, was quite enthusiastic. It was a dramatic finish, 

made more so by the timing, a few seconds before the noon 

announcements. One student who thanked me afterwards was honest in 

his belief that this six-hour session would help him a lot with his next 

year's math and physics courses. 



Results sf Questionnaires - Field-Test 

Twenty-four students participated in the pre-activity questionnaire, 

(see Table 3h and nineteen were present for the post-activity 

questionnaire (see Table 4). The choices for each question were: 

SD - Strongly Disagree, D - Disagree, N - No Opinion, 

A - Agree, SA - Strongly Agree 

The number of students are noted in bold underneath their choice. 

Table 3 
Field Test Pre-Activity Questionnaire Results 

Questions Answers 
ST> D N A SA 

1. I've encountered problems similar to these before 0 5 1 1 5 3  

2. Problems involving motion like these are usually I 1 4 4  5 0 
difficult for me to visualize. 

3. I often don't understand there problems even 5 1 0 2  4 2  
when I'm able to do the calculations. 

4. I have a hard time getting started on these problems. 1 5 5 6 6 

5 .  I usually get confused by these problems. 0 6 7 1 0 0  

6. I often experience a fair degree of anxiety when t 1 0 3  5 4 
faced with problems like these. 



Table 4 
Field Test Post- Activity Questionnaire Results 

Questions 

I .  The simulation of these problems on a calculator 2 1  2 3 1 1  
screen, using the para metric representation ot 
functions, helps me to visualize them. 

2 .  A visual simulation of these problems helps me 3 1  6 9  6 
to understand what's happening in them. 

3. When I see these problems simulated on a screen 3 4  2 6  4 
I feel more confident that I will be able to come u p  
with a correct solution. 

4. M y  level of anxiety towards these problems became 4 3 3 8 0 
it less when I saw them come to life on the screen of a 

graphics calculator. 

5 I feel more confident in my ability to understand 6 3  3 7  0 
and solve these types of problems, 

6. The simuia~ion of motion problems by  parametric 3 0  1 1 2 4  
representations is an aid to problem solving, 

7. This work wz did with calculators will help me deal 4 2 5 7 P 
with motion problems in the future. 



Written comments 

The two questions helow were at the end of the post-activity 

questionnaire and allowed for open comments about the students' 

experiences. 

How do you think this work will help you deal with these 
kinds of motion problems? 

would help me visualize the motion of objects 

it may be easier to write on a calculator but it doesn't seem to make 

much of a difference 

makes horizontal & vertical components of problem more clear 

when you have something real to work with you can better visualize the 

relationship ( relative or not ! ) 

it will take less time because you don't have to do guesswork 

9 I'll be able to picture what's happening and the speed, height etc.. 

it might not unless I have a graphics calculator, but I think I have a 

better understanding 

a just to be able to able to visualize the problem, if the graph looks like 

what you think it should look like in real life you know you're on the 

right track 

a need more time with the calculators to understand 

 re there any other comments, critical, helpful, suggestions 
ctc.... that you would likc to add 

I needed more reasons for why we did what we did. 

interesting but  cnnfusing 

m more relation to the math we are presently learning would be helpfull. 



although more interaction would have been appreciated, both student & 

teacher 

I think sometimes the instructor assumed that we were clear on things 

before we totally understood them 

* more time to work on group (or individual) problems 

Revision of Curricuiu m Package - Addendlu m 

The field-test involved more work than the pilot on Part B and Part C 

where the concentration was mainly on the demonstration of problems by 

using parametric representations and calculus. I t  was still difficult to get 

through the material, largely because of the students' unfamiliarity with 

the calculators and their lack of access to the calculators outside of class 

time. We concentrated only on motion in a straight line, or in parabolic 

arches such as projectiles. It was during the introduction of the paraboiic 

motion of projectiles using trigonometry, where the initial angle is known, 

that I came u p  with a link that was missing in the curriculum package. 

When I was writing the curriculum I remember being uncomfortable 

with the transition I was making between analytical geometry and the 

physics of motion. I remember not being convinced, or at least uncertain 

that: 

X = 25TCos35 and Y = 25TSin35 

would in fact propel an object aiong a 3 i "  path at a velocity of 25. Part C - 

section 3 has been changed as shown in the revised table of contents (see 

Figure 16). The new section 3b)  is the addendum (see Figure 17). The 

. original section 3b i  would be split into two, section 3c) and 3 d i .  



Original 

Part C : Motion Simulation From a Given Poinl 

3. Projectile motion: motion in two-dimensional space 
a )  Linear motion 
b )  Parabolic motion (quadratic function) 

Revised 

Bart C : Motion S i m u l a t i o n i t  

3. Projectile motion: motion in two-dimensional space 13 
a)  Linear motion - rectangular components 13 
b) Linear motion - given the velocity and angle 
c) Parabolic motion - rectangular components 14 
d)  Parabolic motion - given the velocity and angle 

Figure 16. Hevised table of contents 



3 bd Linear Motion - given the velocity and angle 

In a right triangle with a base angle of 30" and a hypoteneuse of one unit 
in length, the adjacent and opposite sides ( X Ec Y ), can be calculated by: 

Sin 30" = opposite/hypoteneuse 
= Y / I  

/ 
sin30•‹ 

---> Y = Sin 30' 

If the Hypoteneuse is changed to T or 5T, and the base angle is kept 
at 30' the triangles will be similar, so the new X & Y values will just be 
multiples of Cos 30' and Sin 30' as shown in the diagrams below. 

c Enter XIT) = 5TCos 30' & Y(T) = STSin 30' as the horizontal and 
vertical components of the displacement of an object travelling along a 30" 
path 
9 Set RANGE as T: 0 -, 5 ,  X: -5 + 25, Y: -5 -+ 15 ( Note: 3:2 ratio) 
9 Press GRAPH 

--- What is the velacity of the object along the path? --- 
Velocity - distance/ time and the hypoteneuse, which is equal to ST, 
represents the distance the object travels along the 30' path: 

Y = distance/+;-- - t T  = c b 1 W G  - j i l l  3 

We cm check this b y  doing a TRACE on our object 
9 Ress TRACE and proceed until T = 3.8 

Calculate Distance = J( X2 + ~ 2 j  = d'( 16.45452 + 9.52) = 19 
Crlculato velocity along the path V = D/T = 1W3.8 = 5 

Figure 17. Addendum: Revised Part 3b 



Chapter 5-  Discussion and Cor~cliasisns 

Conclusions from Questionnaires 

A total of 29 students (. 5 from pilot, 24 from field-test) participated 

in the pre-activity questionnaire and 24 answered the post-activity 

questionnaire. Five high school students in the field-test were not present 

on the final day. The first questionnaire focused on difficulties students 

sometimes experience when faced with problems involving motion. These 

can take the form of high levels of anxiety or difficulties in getting 

started on or even visualizing the problem. The college students, whose 

high school mathematics experiences were of mixed success, were in 

strong agreement that these difficulties were very real for problems of 

, . 
this type, and unanimous in agreeing that representing these problems on 

-, 

a screen using parametric representations, both alleviated these 

difficulties and aided in their solution. The high school students were 

somewhat more confident of their abilities, had low levels of anxiety, b u t  

admitted to some confusion and considerable dilficulty in getting started 

on problems of this type. The post-activity questionnaire results were 

much more conclusive. Over 70% of the students agreed that using 

parametric representations helped them visualize the problems and aided 

them in understanding and solving the problems. 

The results of question # 5  seemed to contradict those of questions 

#2 and #6 (see Table 4). The responses to questions #2 and #6 indicate 

that the visualization of the probiems on the screen is an aid in the 

understanding and the solution of the problems, The responses to 

question #5  indicate that the confidence levels of the students in 



approaching problems of this type remained unchanged. A s  previously 

discussed with the resufts of the pilot questionnaire, the responses to this 

question are hard to interpret, since for the better students their 

confidence levels may have been high to begin with, 

Conclusions from Comments 

Once the students overcame the mysteries of the technology and the 

strange way of representing functions their participation and sense of 

experimentation increased. This was evidenced during the classes by  

sound effects accompanying the projectiles and comments such as "this is 

iike a video" or "this is useful (meaning relevant) stuff". The generally 

high level of activity, curiosity, and to some extent excitement, especially 

.P 

during the final student presentation was captured on the video, but the 

most significant comment came from one student on the open-ended 

question at the end of the questionnaire. 

* just to be M e  to M e  to vismhze the problem, if the graph lmks h2e 

whs~ p u  t h ~ ~ k  it shou/dfmk Me h reaYlW2 you know p u k e  on the 

f2jj?ht 2" 

Often teachers and other marhematics practitioners worry about giving 

away too much, that the extended use of graphics calculators will reduce 

the students' thinking capaciry and involvement in the problem. This 

siiiiient's comment shouid alieviare sucn concerns. 

Changing Roles of Students and Teachers 

The use of this curriculum implies a change in teaching style. The 



students will have in their hmds a problem solving tool thai they will be 

experimenting with, coming up  with ideas or methods of solution in 

unpredictable ways. Teachers may be reluctant to involve themselves 

with the use of technology in this way for a variety of reasons. Even if 

their ievel of confidence, knowledge and organizational skills are high 

they may not be prepared to surrender their control and switch to an 

erivironment that is more experimeniai and as a consequence more 

chaotic. Students naturally fall into 'What if?' situations in this kind of 

environment. One student, not happy with my solution of the bicycle 

problem pushed the problem by fiddling with the equations to see what 

was really going on. On another occasion when we had three objects 

moving on horizontal paths questions arose as to how we could make one 

of the particles speed up to catch up with another or what would happen 

if we changed the equation to a cubic one. With the machines in their 

hands it's to be expected that students are going to play, and as a result 

come up with some discoveries. Another example of this occurred after I 

showed them briefly how to draw a circle parametrically using 

trigonometric functions. One student, by varying the TStep and the 

equations as well, came u p  with a star with about 100 points and wanted 

to know why. 

In an already overloaded mathematics curriculum at the Grade 1 1 

and f 2 level, there may not be  a place for experimenting with the 

sirnufatiom of real-world problems involving motion. Teachers are far too 

busy with a tightly packed curriculum consisting for the most part of 



basic skiiis. ~athernatics teachers may feel uncomfortable straying 

outside the borders of their discipline. Comments that students made 

during the trials of the curriculum dealing with the relevance of what we 

were doing, and the likening of what we were doing to a ''video of the 

problem", and the enthusiasm of the participants of the workshop 

participants indicate that change is inevitable. And that change must fall 

to the classroom teacher to concentrate on the kind of applications that he 

or she never had time to do before, and to the central authorities to 

create the time to do it. 

The Effect of an Increase in Experimentation 

Perhaps the most subtle change will come about as a result of the 

increase in experimentation in the mathematics classroom. Algebraic 

skills and processes will still be necessary for formal and generalized 

solutions of problems, but never before have students had the power to 

learn by trial and error and feedback. Instead of learning algorithms for 

specific problems, students will be trying different approaches and 

corning up with new ideas on their own, with feedback that is close to 

being instantaneous. When I was calculating the speed of an object along 

a linear path by dividing the distance travelled by the time, one student 

suggested setting the TStep = I making the distance between the dots 

eqiiivaieni to the speed. instead of a substitution for thought which is 

what many educators are afraid of, my experience is that caiculators 

encourage thought, and with the speed of the technology, can reinforce a 

good idea instantly. 



Implications and Summary 

In designing this package I needed to consider the difficulties 

involved in field-testing the curriculum. Given the pressured state of 

most senior mathematics classrooms in British Columbia, I felt the onllr 

possibility would be a Math 1 1 Enriched class since the better students 

often complete the grade 1 1 curriculum sooner than a regular class. Even 

so, I felt t h a ~  the maximum time that I could hope to acquire would be six 

hours. If more time, and calculators, were available the package could be 

used more independently by the students. As ix was the students in the 

field-test felt as I did that they were being pushed along. With less 

teacher input, and a greater variety of problem assignments, the package 

could be  used more as a reference manual by the students. The focus 

would then be not just on the use of parametric representations as an aid 

to problem-solving, but on the development of the individual problem- 

solving skills of the students themseh~es. The experimental nature of the 

topic combined with the use of sraphics calculators, imply that the best 

environment would be something like a math lab where the students 

could proceed at their own pace and design their own assignments. 

When graphic calculators first appeared in mathematics classroomc 

about six years ago there n7as Zome concern and still is, about their role, 

and whether students m7ould use them as a substitute for thought. 

Students must spend their time, not relying just on their calculators, b u t  

analyzing the problems algebraically, ar,d later using caiculus, so that 

they can appreciate that calculators and computers do not solve 

problems, but more and more are becoming an rntegrated and essential 

part of the process of problem-solving. 
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Part B t - m  h ~ . ~ t i o n s  of t..khm~ - 
How to activate options 
How to graph functions of the form y a F(xk 
I .  Graphing linear functions. 
2. Graphing quadratic functions 
3. Graphing trigonometric functions 
4. Combining graphs. 

Bart B: Ir~troduction to Parametric Re~resentation of 
Functions. 
Using the PARAMeter option 
How to graph functions parametrically 
l .a) Given a linear function. 

One way 
Another way 

1 .b) Drawing a line joining given points 
One way 
Another way 

2.a) Given a quadratic function 
b )  Designing a quadratic function to connect 2 points 

3. Trigonometric functions 
a) thru d )  Examples using trig functions 
e j  Graphing a linear function using trigonometry 
f )  Graphing a quadratic function using trigonometry 

mt C: Motion Simulation From a Given Point 
1 . Horizontal Motion 
a! Objects travelling a? a constant speed: 
b ) Objects accelerating: 

2. Vertical Motion 
3. Projectile Motion: motion in two-dimensional space 

a) Linear Motion 
b) Parabolic Motion (Quadratic function) 



Bart D: T u m l a t i o n  of Specific Motion Problems 
# 1 ,#2 Horizontal motion problems 
#3 Simulation of a golf problem 
#4 Horizontal motion - cubic function 
#5,#6 Problems involving related rates 
Target shooting problems - linear & curved paths 

P a r a  P r o k m  Set 
Nine challenges: 
# 1 Regular motion problem 
#2,#3 Sports simulations - golf & baseball 
# 4  Related rate problem 
5 Parabolic motion - gravity 
#6 A moving rectangle 
#7 Target shooting - parabolic motion 
#8,#9 More advanced target shooting 

en- 
1. Use of the MODE feature 
2. Use of the RANGE feature 
3. Use of the ZOOM feature 
4. Use of the TRACE feature 



How to activate options: 

Options can be selected by using the arrow keys to move a flashing 
cursor. When the cursor is over a desired option press ENTER to 
activate the option. An option is active if shaded. 

How to graph functions of the form y - P(x): 
1.  Graphing linear functions. 

Press MODE to check that the Function option is activated. It will 
be shaded when activated. 
Press the Y - key. There are four ch~ices for entering functions: 
Yi=. Yz=. Y3=, or Y4=. 

4 At Yr=, where the cursor is flashing, type O.5X + I .  (Find X on 
the X I T key). Press ZOOM. Select menu item 6 to see the plot of 
the graph using the standard range. 
Experiment with the TRACE and ZOOM functions. Refer to the 
appendix for instructions on using these two functions. 

2. Graphing quadratic functions. 
Press the Y - key. Enter Y2 - 2x2 - 5 X  - 2. The Y1 and Y2 
functions can be graphed in sequence or simultanec>usly Press the 
MODE key to select the SEQUENCE or SIMUL option. The TRACE 
can be used to get the points of intersection of these two functions. 
The X-values of these two points of intersection are the solutions 
of the quadratic equation: 6.5X + 1 = 2x2 - FX - 2 

Even without zooming, a TRACE 
on the graphs shown at the right 
will produce X-cssrdlnates: 

( 3.3, -0.47 1 

The solution of this equation using 
the quadratic formula is: 

( 3.216 , -0.466 ) 



Press Y = key- Enter Yg = 4 Sin X- Press the MODE key and 
select the Radian option. (To deactivate the earlier entered 
functions Y1 & Y2, position the cursor over each equal sign, in 
turn, and press the ENTER key.! Now press the GRAPH key. The 
trigonometric function entered at Yg- will be graphed as shown 
below. 

4. Combining graphs. 

Press Y = and perform the following steps to set u p  the function 
Y.r = Y1 + Yz. First press the blue 2nd key then the Y-Vars key. 
Select menu item 1. and press ENTER. Press the following keys in 
sequence: +, 2nd. Y-Vars, 2. Deactivate Yz. Press GRAPH and 
function Yi will be displayed. 

To graph the Yj.Yz,  & Y4 functions simultaneously press PI=. Re- 
activate Y1 & Yg. Press the MODE key. Select the SIMUL option 
Press GRAPH. Notice that Y4 is a quadratic function with function 
values equal to the sum of the function values of the other two 
functions. 

Change Y4 to Y1 * Y2 (Multiplication), deactivate Y 1 & Y2. Graph 
the new function Y4. Notice that the new function is cubic because 

of the multiplication Of the X in Y1 by the X2 in Y2. 

Press Y = and enter Y4  = Yf + Y3. Ensure Y2 is deactivated. Can 
you predict what the graph of the new Y4 will look like? Now 
graph Y4. 



Using the PARAMeter option: 

r Pressing MODE and selecting the BARAM option activates the 
parametric mode. In this mode the X I T key will display a T instead 
of an 81. 

Pressing the Y - key displays three pairs of functions. To graph a 
single function parametrically, a pair of functions. X u  & YIT. or X ~ T  
6r Y21, or X31 k Y 3 ~ i s  entered. Each member of each pair is a 
function of the parameter T which can be thought d as representing 
TIME. [ XZT - Xz(T) means X2 is a function of T.1 

The speed of the graph can be changed by varying the TStep which 
is found in the RANGE. $7 / 

How to graph functions parametrically: I / 
1.  a) Given a linear function. 

0 The linear function Y = 2X + 1 
whose graph is shown at the 
right can he represented 
parametrically by introducing 
a parameter T. This can be done 
in many ways. 

One way: 

Press Y = and enter 
P I [ ~ T - %  & Y I T = ~ F  + I 
Press Range andvary T 
from -3 -> 3. 
Set TStep - 0.05. Press GRAPH. 
Note the direction of the graph. 
Change the TStep. Press TRACE. 
The instantaneous values of T, X, 
% Y are displayed. 

't' 



o P i e s  Y = and enter 
X ~ T  = 2 - 5T. 
(Note: If 2 - 5T is algebraically 
substituted for X in Y - 2X + I ,  
the result is Y - 5 - 10T.I 

9 Enter YZT = 5 - ]I OT. 
Press GRAPH, Using the T-Range 
from -3 -> 3, as set in the first way, / 

the same line will be graphed but in a 
significantly different way as shown. T X Y 
A table of values, showing the X and Y -3 17 35 
values as T changes, demonstrates the 0 2 5 
mechanics of the graphing process. 3 -1.3 -25 

1. b)  Drawing a line joining two given points: 
(-5. 81 & U . - 2 )  

Press Range and set Tmia - 0. T X H 
I If T represents TIME then starting 0 -5 8 

at T - 0 would be natural. ? 7 -2 

To increase X & T at the same rate enter 
XIT = -5 + T and vary T from 0 -, 12, 
Note: X changes from -5 to 7 as T ch~inges at the same rate. Y, 
however, changes at a different rate, as it decreases from 8 to -2. 

I5 ) y 
Calculate the function 
HIT, by setting Y ~ T  - 8 + kT to 

* Substitute T & Y - 2  = 8 + 12k 
(values from table) - 10 - 12k 

e Solve for k - 5 / 6  = k -15 -M -6 

Enter YIT - 8 + j-S/$)T. 
-5 

r Set the RANGE using the table values, -1 

Press GRAPH. 
Note: The slope of the line is -5 /6  which represents how Y is 
changing compared to T ( and in this case X). 



To increase X at swice the rate of T, enter 
Xza- -5 + 2T 

s To calculate the f ind value of T,  substitute the final value of X from 
the table into the equation 

X ~ T -  - 5  + 2T 
7 - -5 + 2T 

9 Solve for T 6 - T  

Note: X changes at twice the rate of T, reaching its final value of 7 
when T - 6. (In half the thmd 

Calculate the function YZT, by setting 
YZT - 8 + kT 

Substitute Y = -2 & T = 6 -2 = 8 + 6k 
-10 = 6k 

0 Solve for k - 5 / 3  = k 

Enter YZT - 8 + (-5/3)T. 

Set the RANGE using the final table values of X and Y and Tmax - 6 .  

Press GRAPH. 

Note: The slope of the line graphed is the same with both approaches. 
but with this second approach, X & Y are each increasing at twice the 
previous rate - In half the time- 



2. a) Given a quadratic function: 
Thegraphof Y = X2 + 2X - 3 =(X + 3)(X - 1 )  isshown: 

This function can be drawn parametrically by setting: 
Xlr-T & Y I T = T ~ +  2T - 3 

Set Range as below 
T: -4 ->  4 
X: -6 ->  6 1-1 
Y: -5 - >  23 
TStep - 0.05 

Press Graph. The graph on the -lo 
-5 5 'O 5 

right shows which section of the 
original function was graphed. 

By varying the starting point ( initial value of T ) this graph can be 
viewed in sections. 

a Also by varying the TStep and using the TRACE the behavior of this 
function can be investigated for different values of T. For e x a ~ p l e  as 
T increases from T - -1 the cursor can be seen to steadily accelerate 
upward. 

Note: In this case since the chcice was made to let X = T the graph was 
drawn from left to right with X increasing at the same rate as T. As 
in the case of the h e a r  function we could graph the same function in 
a different, way. For example if we choose: YYar - 2 - T 
and substitute this for X in Y - Xz + 2X - 3 we get: 

Y m = T 2 - 6 T + 5  

Enter this pair of functions 
Press GRAPH and notice that the end result is the same 



b)  Designing a Quadratic Function to connect (0 .20 )  & ( 2 0 , o )  

Note: This can be done any number of ways. In the three cases below 
I've kept X = T so the graphs will proceed left to right. In each of the 
three cases a value of k can be determined by substituting from the 
table: 

i)  Enter X ~ T  - T & Set Y ~ T  - 20 + kT2 

Substitute 0 = 20 + k(202) 
Solve for k k = - 0.05 

8 Enter YIT = 2 0  - 0.OST2 
Set appropriate ranges and GRAPH the first function 
Note: Y decreases steadily and if you do a TRACE you'll 
mtice the cursor accelerate downwards. 

ii) Enter XZT= T & Set Y ~ T  - 20 + T + kT2 
% Substitute 0 - 20 + 20 + k(202) 

Solve for k k = - 0.1 
@ E n t e r Y 2 ~ = 2 0 + T - O . I T 2  

For the second function notice 
how the Y-values increase at 
first then decrease down to zero. 

iii) Enter 3 1 3 ~  - T 
Set Y ~ T  - 20 + 2T kT2 

Q - P O  -. 40 + lr(202) 
k - - 0.15 

Enter Y3r = 20 i- 295 - Cf,l5TZ 

Experiment with TStep changes 

GRAPH in Sequence or Simultaneously ( a MODE menu option ) 
a For DOT graphs ( a MODE menu option ), set TStep - 1 or 2.  



Note: The variable T on this page represents an angle and we'll vary T 
from 0 " - > 3 h Q 0  

9 Press MODE and choose Degrees instead of Radians 

a )  Enter X ~ T  - T & PIT - Sin T 
9 Press Range and set: T:O -> 360 TStep- 10 

X : 0 -> 360 XSCI = 90 
Y :  -2 ->  2 YScl= 1 

Press Graph and notice how Y oscillates as T increases 

b )  Switch the role of the X & I' Variables by entering 
XIT- S i n T  & Y ~ T =  T 

Reverse the X & Y Range values and notice how the X-values now 
oscillate as T increases 

c )  Try changing KIT - Sin T & YIT - Sin T 
Press RANGE and set: X : -3 -> 3 

Y : -2 -> 2 
Press GRAPH and do a Trace if you were surprised 

Note: The Trace moves on the line H = X 
The angle will look like 45" because of the 3 2  Range ratio 

d)  Finally, set XIT - Cos T & Y ~ T  - Sin T and using the same Range 
values draw the Graph and do a Trace. ~4 

T X H 
0 1 0 
30 0.866 0.5 
40 0.76 6 0.643 
90 0 1 
260 -0.1 736 -0.9348 

The graph drawn is called the 
unit circle, since the radius, r = 1 

I, The non-parametric equation is: 
X2 + Y2 = 1 which shows why Cosz T + Sin2 T = 1 for all values 
of F. You can check this using the values in the table. 



Note: The variable T on this page can be thought of as representing 
TIME. 

e) Graphing a linear function using trigonometry. 
If a straight line has an angle of elevation of 30" then the line can be 
described parametrically as follows: 
XIT - TCOS 30' 
YLT - TSin 30' 

4 Set Range values: 
T: 0 -> 30 QTfiep - 0.5) 
X: -5 - ?  30 (XSd - 5 )  
Y: -5 - >  20 (YScl - 5 )  
Press GRAPH. -. 

i 0 I a P *- X 

f )  Graphing a quadrat ic  function using trigonometry: 
Enter XZT = TCos 30-  & YZT = TSin 30' - 0.02T2 + 3 

Note: This graph will also have an initial slope of 30 ". It will start at + 3 
on the Y-axis and will be pulled down by the gravitational effect of 
the term - 0,02T2. 

T Xi Y1 X2 Y2 
tY 

0 0 0 0 3 I5i 

1 '87 .? .87 3.48 lo, I 
2 1.71 2 1.73 4.92 / 

/ 

GRAPH the two functions above in Sequence or Simultaneously ( a 
MODE option 1. Now use the TRACE to answer the following 
questions. Check using Algebra. 

What  is the maximum value of Y2 as T goes from 0 -? 305 
For what value of T will it be true that Y l  = Y2 ? 



1 . Horizontal Motion 
Set Range T: 0 -> 20; X: 0 -, 1000; Y: 0 -> 20 

a) Objects travelling at a constant speed: bicycles, trains .... 
An object starts from ( 50,4 1 and travels at a constant Horizontal 
rate of 30 units/sec. This can be represented by: . 

b) 0 b  jects accelerating: 
An object starts at  (50.8) with acceleration a - 4 units/sec2. Distance 
travelled is given by D(t) - DO + Vot + atU2 
This can be represented parametrically by: 

If there is an initial velocity of V o  - - 20 units/sec, then using the 
same acceleration and starting from ( 50, 12 1 we get: 

X ~ T  - 50 - 20T + 2T2 & Y ~ T - ~ Z  
Mote: Do a TRACE on this one and notice the cursor start towards the 

left (negative velocity) b u t  it changes direction eventually because 
the acceleration is positive. 

Note: A constant headwind of 20m/sec. would have the same effect as 
the initial velocity. 

2- Vertical Motion 
Set Range: T: 0 -> 10; X: 0 -> 20: Y: 0 -> 500 
Suppose an object is dropped from a height of 400m. We can 
represent this event in the gravitational environments of the Moon, 
Mars, and Earth by the following: 

4 n - s a  
iw Vuu !Mars Earth 
X ~ T  - 4 XZT - 8 X3T- 12 
Y ~ T  - 400 - 0.8T2 YZT - 400 - l.9TZ Y3T - 400 - 4.9T2 
For either of the simulations on this page a strobe-light effect can be 
generated by moving from Connected to Dot MODE A suitable 
PStep would be 1 or 2. (TStep - 2 means one light flash every 2sec) 



Projectile Motion: motion in two-dimensional space 
Linear Motion: 
A pair of parametric equations of the form: 

XIT - 25'f ( 25  c d s e c  for T sec. 
YIT = 15 + 1OT ( 10 cm/sec for T sec.) 

describes the motion of an object in two-dimensional space, that has 
an initial position of ( 0, 1 5 1. 
X ~ T  is the Horizontal Component 
of the position (displace mentf. 
Y ~ T  is the Vertical Component. 
The Resultant ( R ) is the 
path taken by the object. 

Notes: 
In this example the path is linear with a slope of 10/2S - 2/5  
since Y IT is changing at a rate of 2/5 that of X ~ T  

The non-parametric equation would be Y = 2/5 X + 1 5  which can be  
arrived at afgebraicly by solving for T - XlT/2? and substituting this 
for T in the expression Y IT = 15 + 1 OT. 

The Horizontal component of the velocity is 25 crn/sec 
The Vertical component of the velocity is 10 cm/sec 
The actual velocity is J 102 + 252 = 26.9 cm/sec. This is the velocity 
along the path of motion. 

This type of motion would be on a frictionless surface or in the 
absence of a gravitational pull. 



b )  Parabofic Motion (Quadratic function) 

5 A pair of parametricequations of the form: 
X21 - 25T Ec YZT- 50 + 20T - 4.9T2 

describe the path of an object from an initial position ( 0, 50 ) 

25T is the horizontal displacement (meters) at time T 
5 0  + 20T - 4.9T2 gives the vertical displacement 
50 = the initial vertical position ( T = 0 ) 
+20T represents an initial vertical velocity of 20m/sec upward 
- 4.9T2 represents the vertical effect of the gravitatonal pull on an 
object causing the vertical velocity to continually decrease at 9.8 

m/sec each second. ( at2/2 - -9.8t2/2 = -4.9t2 j 

* If the actual initial velocity ( 100m/sec ) and the angle of the path is 
known ( 30" ) then Trigonometry  can be used as follows: 

X31- lOOT Cos 30' ( lOOT Cos 30" = 86.6T ) 
' P ~ T  - 108T Sin 30' - 4.9f2 ( 1007. Sin 30" = SOT ) 

Set Range values: 

T:O -. 10 ( TStep-0.1 1 
X: 0 - 1000 f XScl- 100 
Y: 0 -) 200 (YScl - 100) 



Probiem # I :  
A girl leaves o n  a camping trip on a bicycle travels at a constant 

speed of 20 km/h. Two hours later, her father, realizing she has left her 
glasses at home, pursues her in his car, averaging 60 km/h.  How long will 
it take him to overtake his daughter? 

The girl's horizontal displacement can be represented by: 
XIT = 20T 

Her father's horizontal displacement then becomes: 
XZT - 60(T - 2) 

N ~ t e :  Her father's positive displacement starts at T > 2 

To set up  parallel horizontal paths for both parties, enter: 
YIT = 3 Y Z T =  5 

Set Range then press Graph: 

Since there is no intersection of the two paths do a TRACE until an 
approximation can be made of the position and time of their meeting. 

* To get a point d intersection, the Y-coordinates can arbitrarily be 
made to vary as T does. To do this enter: 
Y1T - T br YZT = T then press Graph again: 

Note: The girl! is travelling at a 
slower horizontal rate than her 
father and therefore covers less 
distance from left to right in the 
same period of time. So her 
graph,using this simulation, has 
a greater vertical slope because 
the horizontal component of her 
motion is less than her fathers, 'I 

0 The intersection point ( 60.  3 ) tells us that 60 km. from home, 3 
hours after she leaves her father catches her. 



Problem W :  

Two trains leave at the same time and approach each other on 
parallel tracks from stations 280 km apart. One has an average speed of 60 
km/h, and the other 80 km/h. How long until and at what point will they 
pass each other? 

Q Set the parametric functions for the first train to be: 
Xtr - 6BT 1% HIT = F 

The second train, starting 280 km. down the track, becomes: 
XZT - 280 - 8OT & YZT = T 

Note: The starting position of the second train is ( 280, 0 ). The 
negative velocity ( -80 ) signifies that the second train is travelling 
in the opposite direction from that of the first train. 

a Set Range then press GRAPH: 
T : O - 5  (TStep - 0.02) 
X: 0 -+ 300 (XScl - 
Y : O -  5 (YScl = 1 )  

8 DQ a TRACE to get the 
time and location 
where the two trains 
pass each other. P 

The intersection point 
( 120, 2 ) tells u s  that the 
trains pass each other 120 km. 
from the first station 2 hours 
after they each leave. 



A golfer is contemplating a 7-iron shot towards a circular green with 
the flag located at the center. The hole is 130 meters away and the radius 
of the green is 8 meters. His 7-iron hits the ball at a 35 "  angle. Assuming 
the ball will be kit straight and that there is no wind, what velocity will it 
be necessary to impart to the ball so that it hits the green? 

If V is the velocity of the 
ball along the 35" path then: 
VCos 35' = the horizontal component of V 
V S i n  35' = the vertical component of V 

The equations for the path of the ball become: 
XITI = VTCss 35' Br Y(T) = VTSin 35' - 4.9T2 
Choose different values of V and TRACE the graphs drawn to find 
the X-value when Y = 8 .  This is the distance the ball travels in the 
.air. Y - O is ground. The desired X-value is 130. The algebraic 
solution of V is shown below. 
XIT - 35TCos 35' 

X ~ T  - 4OTCos 35 ' 
Y ~ T  = 4BTSin 35' - 4.9T2 
Set Range: 
T: 0 -. 6 ITStep = .02) 
X: 0 -+ 200 (XScl- 50) 
P: 0 -, 41. (YScL = 10) 

Algebraic sd.;tEon: 
The solutionis a 130 meter shot ( X - 130 & Y - 0 1. 

( A )  130 = VTCos35" 
fB) 0 = VTSin35' - 4.9T2 - T( VSin35" - 4.9T) - 0 - T = 0 or T = VSin35'/4.? 
Substituting this back in (A)  - 130 = VZSin35'Cos35"/4.9 

--+ V = 36-82 m/sec 



Probie m-"4: 

A particle moves on a horizontal line and its displacement is given by 
the formula: X(T) = -T3 + 4T2 - 3T 
where T is measured in seconds, and 0 3 F 4. 

a) Which direction is the particle moving at T - Is, 2s, 3s, 4s? 
b )  At approximately what times is the particle stopped? 
C) At what times is the displacement zero? 
dl  At what time is the speed the greatest? 

Note: These are questions that can be answered without calculus using 
pararnetrics on the TI-8 1. 

a The motion can be simulated on any horizontal line: 
Set XIT - -T3 + 4T2 - 3T & YIT - 2. 
Press TRACE and follow the motion of the particle. 

@ Set Y ~ T  - T & X i f  - XZT The cubic nature of the function can be 
seen in the second graph. Again use the TRACE, graph the functions 
SHMULtaneously and answer questions a) -> dl .  

Set Range as follows: 
T : O - , 5  (TStep - .02) 
X: -20 -, 10 (XScl - 10) 
Y: -5 -) 5 (YScl - 2 )  

Answers 
a) motion is to the right at 

1 sec. & 2 sec. and to the left 
at 3 see. & 4 sec. 

8 )  From the graph ~f Y2 or hy 
doing a TRACE cm YI we can see c. 
that the particie is stopped at 
T = 0.5 (point •’5) & T - 2.2 (point D). 

c )  The displacement C X-value ) is - o 

zero at T - 0 (point A), T = I (point C), 
& T - 3 (point E) 

d) The partic! 2 is moving the fastest, 
although with negative velocity, at T - 4 



Two cars are approaching an intersecion at location i 50,  50 ). 
Car A is coming from the north, 300 km. away, at a speed of 
40 km/h. Car B is approaching from the east, 400 km. f rom the 
intersection, at a speed of 60 km/h. 

a) At what time will the two cars be 100 km. apart? 
b! What is the minimum distance between them? 

Note: The ( 50, 50 ) location for the intersection, off the X & Y axes, is 
chosen to allow for better viewing on the calcutator. 

8 Set the path of car A as: X ~ T  = 50 & Y ~ T  = 350 - 40T 
Set the path of car B as: X2+ - 450 - 60T & 8 2 ~  - 50 

Mote: Car A starts at Y = 350 and moves downwards on the vertical line 
X = SO at 40 krn/h. Car B starts at X - 450 and moves to the left on 
the horizontal line Y - 50 at 6Okm/h. 

r To calculate the distance between the two cars, which is always the 
hypoteneuse of a right triangle, use Pythagoras: 

Distance = x 3 ~  - J(Y~T - 5012 + ( X ~ T  - 5012 
r Set Y31 - 150. The distance will be seen to be shrinking along this 

horizontal path towards a minimum then will increase once the cars 
pass each other ( you'll need a TRACE to see this ). 

T Y1 Xz 
0 350 450 
2 270 330 
5 150 150 
6 I10 90 
7 70 30 
8 30 -30 
10 -50 -150 
Set Range: 

a) T - 8.25 h & T - 5.59 h b) 27.74 m. (at T - 6.92 h)  



A ten metre ladder is resting against a ~7all  one metre from the base 
of the wall. The ladder starts to slide down the wall in such a fashion that 
the foot of the ladder is moving away from the wall at the rate of 2 m/s. 

a )  Is the speed of fall of the top of the ladder constant? 
b )  What is the path described by the center point on the ladder? 

For convenience sf viewing choose the point where the ground meets 
the wall to be ( 5 , s  ). Three parametric representations can be set up.  
( Refer to the diagram below). 

a)  The foot of the ladder, moving at a constant speed: 
XIT = 5 + 2T Y 1 1 = 5  

b! The Y-coordinate (YzT) of the top of the ladder can be calculated 
by using Pythagoras: 

( X i  - 512 + (YZ - 9 2  = 102 & solving for Y2 we get: 
Y ~ T =  5 + m- (ZIT-  5)2) & X ~ T . =  5 

c )  The X-coordinate of the center of the ladder has a constant horizontal 
velocity equal to half that of the foot of the ladder: XQT = 5 + T 
The center of the ladder is always 5 meters from the point ( 5 , 5 )  so 
again using Pythagoras or the distance formula: 

(XJT - 512 + (YJT - 512 = 52  & solving for Y g ~ w e  get: 

Y j T =  5 + J(25 - ( X ~ T -  512) 

o These three functions when graphed simultaneously trace the fall of 
the ladder. If you sight the cursor of each function it can be seen that 
they are concurrent and represent the ladder itself as it falls. 

Set Range: 
T : 0 - 5  (TStep = 0.02) 
X:0-15 (XScl = 5 )  
V : O -  15 !YSd = 51 

Answers 
a) No. If a TRACE is done / 

the top of the ladder can 
be  seen to accelerate. I 

b f A quarter-circle 



A target is moving according to the function rules: 
X 1 ~ = - 1 1 1 1 + T  Ir & Y P T = I O - T  

This target starts nt the- point (-  10,10 ) and moves diagonally through the 
origin. The goal is ;:, shoot the target at one of its locus points, say ( 5 3 )  
from a specified point say ( 10.1 0). This means to mathematically devise 
the necessary parametric functions of a projectile that will intercept the 
target at the precise specified point at the exact sane dime. 

Note: 

T 
O 
3 
i 0 
7 
20 

X1,Yl ) are the coordinates of the moving target. 
( X2,Y2 ) are the coordinates of the moving projectile. 

l&'J 

Xn YI Xa Ya @ \  -\ 

-10 10 10 10 \. 

-5 5 
0 0 
5 -5 ? ? 

10 -10 -10 5 

Step 1: I 
1 

Find T by setting the target equations equal to t i e  coordinates of the 
impact point (bold print in the table). 

X I T = - 1 0 + T  = 5 
T - 1 5  

Step 2: 
Find X2T & Y ~ T  

a X ~ T -  1 0 + h T  
5 = l o  + h ( l 9  

-5 = 15h 
h = -1/3 

@ Y ~ T -  10 i- kT 
-5 - 10 + br(l5) 
k = - 1  

(at T - 0 ,Xz  = 10) 
(at impact point, T = 15 and Xz  = 5 )  

! a t T = O , Y 2  = 10) 
(at impact point, T - 15, and Y2 - - 5 )  

Step 3: 
EnterX%f= 10 - f l S f  bz Y ~ T =  I D  - T  
Press MODE, choose the SIMULtaneous option then GRAPH. 

* Set the T-RANGE: O+l5 to stop the action at the impact point. 



A particle is moving in a circular path starting at the pin!  ( 0 3  ! and 
moving in a counter-clockwise direction according to the functions: 

XIT = -3SinT & YIT = 3CosT 
From a specified point. ( 10,lO launch a projectile that will intercept this 
particle as it reaches the point (3,U). 

Note: in  this problem T is an angle and this problem is solved below in 
RADian MODE. The RANGE for T should be at least one complete 
revolution: 0 5 T 5 271: (6,283) 

Step 1 .  Hind T: 
This can be done using the TRACE and stopping the cursor an the 
point (3.0). If the Tstep - .02 the value of T on the screen is T - 4.72 
This can also be done algebralcly by setting XIT equal to the 
X-coordinate of the impact point and solving for T: 

T = 3n/2 
T - 4.7124 

This value of T represents 
the radian measure of 3/4 
of a revolution, which is 
precisely the impact point: 

Step 2. Find X ~ T  k Y ~ T :  
r Shooting from ( 10.10) tc; 

X ~ T -  1 (1+hT-3  
19 + h(4.7124) - 3 

h - -1.485 

Step 3: 

(3 ,O)  and T - 4.7 1% -we set: 
& Y ~ T -  1 0 +  kT-(1 

k(4.7124) - -10 
k - -2.122 

Enter XZT - 10 - 1.485T 4c Y2r - 10 - 2.1221. 
Press MODE, choose the SIMULtaneous option then GRAPH. 

9 Set the T-RANGE: 0 -. 4.7 124 to stop the action at  the impact point. 



Part E: 

1 .  Two planes leave airports 1000 k m. apart, flying towards each other. 
Plane A leaves airport A at 1400h and travels at a constant speed of 
200 km/h. Plane •’3 leaves airport B at 1600h and travels at 
30Okm/h. At what time and at what location will the two planes pass 
each other? 

2. A baseball is struck with an initial velocity at impact of 
45 rn/sec. The initial height at impact is 1.1 m and the ball is struck 
at a 25"  angle. 
a) Find parametric representations for the horizontal QXaa) and the 
vertical ( Y ~ T )  distances covered in terms of time, T. 
b)  -How long does it take the ball to hit the ground? 
c )  How far does the baseball travel? 
d )  What is the maximum height reached by the ball? 
e )  Write a parametric representation ( X ~ T  & YZT) for a wall 5 rn 
high, 150 m out indo center field. 
5 )  Will the baseball clear the wall? If not, can it be caught? 
g) How strong a wind ( m/sec ) blowing towards center field, would 
he necessary for the hit to be a home run? 

3. A golfer is faced with a 1411 m shot directly into a 5 m/sec wind. The 
problem in golf is to choose the best club for the shot. The best cluh 
is the highest numbered club to provide the greatest possible loft, 
thus minirnizhg the distance travelled after it hits the green. Each 
cluh imparts a different angle and a different maximum velocity to 
the ball at impact, 

Club Angle Max. speed sf  bail 
4-iron 28" 50 rn/sec. 
5 -iron 32" 48m/sec 
6-iron 36' 45 m/sec 
7-iron 39" 40 m/sec 
8 -iron 43" 36m/sec 

Determine ihe best cluh and the velocity needed to drop the ball as 
close as possible to the hole. 



4. A 23 m. rope has one end attached t~ a boat and the other to a 
pulley on a dock. The rope is being pulled in at a constant rate of 
2.50 m/sec. The water is 5 m, below the pulley. 

a)  Set up two functions that will decrease, X ~ T  showing the length of 
the rope, and X2T representing the distance of the boat from the 
dock. Graph both these functions on parallel horizontal lines. 

b) Is the speed of the boat constant? Why or why not? 
c )  Complete the table below calculating the distance the boat travels 

during the 6th, 7th, and 8th secsnds. 

5 .  A helicopter, f .)ring at 18 m/sec. a!. an dtitudr:  of 120 m.,releases a 
steel ball, The horizontal component of the velocity remains constant 
at f 8 m/sec. 

I T  

a) Set up a parametric representation of the flight of the ball. 
b How high is the ball after 3 sec. 
c )  How far will the ball travel horizontally before it hits the ground7 

E .  XXXXXXXXXXXXXXXXXXXXX - 1 4 

XZT (Dist .  from dock) Dist. travelled -- that -- second - - - --- I 



6 ,  A rectangle ABCD is moved so that vertex 0 always touches the 
Y-axis and vertex @ always touches the X-axis. AB - 3 and AD - Sj. 
Let ( XI Y ) be the coordinates of point A, znd F be the angle shown 
in the diagram. 

a )  Find a pair of parametric representations X(T) and Y(T). 
b)  Graph the path of point 8. 
C) Find the maximum value of H. 
d)  Solve for Y in terms of X by eliminating T. 
e )  Graph this function ( change MODE from Parametric to 
Function 1. What is the shape of this curve? 

9. A hall is tossed from a height of 2 m. at an initial velocity of 25 
rn/sec. at an angle of 60". Its path is described by: 

ZIT = 251" Cos 60' & HIT = 2 + 25T Sin 68' - 4.9T2 

From the point ( 100,0 b a bullet is to be fired that will travel in a 
straight line at 100rn/sec. The problem is to fire the gun so that it 
makes contact with the ball exactly 3 seconds after the ball is tossed. 

8) How long after the ball is tossed should the gun be fired? 
b) At what angle wilt the bullet travel? 
C) What are the parametric equations simulating the path d 
the projectile? 
Set Ranger: 
TI 0 - 5 (TStep - 0.1) 
X: -10 - 100 (XScl- 10)  
H: -10 -, 60 fYScl- IOf  



8. A car on a test track is approaching a turn. I t  is headed due north at 
20 m/sec. when it starts to turn towards the northeast. The tu rn  is 
described by the parametric equations: 

Xnf = Q2%3 & Par = 20T - 2T2 
where X & Y are in meters and T in seconds. 

Set Range: 
T : 0 -  10 (TStep - 0.1 ) 
X: -10 -300 (XScl- 100) 
Y: -10 - 200 (YScl- 100) 

The origin ( 0.0 ) will be the beginning of the turn and the graph of 
the above equations will simuiate the path of the car for the next 10 
seconds. 

a) What is his position when he starts to turn south, in other 
words, when he reaches his maximum northern 
displace ment? 
b) A projectile launched at  T - 0, from the location (200, 2111) f, at a 
constant vertical height, Is to Intercept the race car a: a spot m b k  
track with location ( 6 02.4, 32 ). What would be the parametric 
representations for the straight line path of tnis projectile c! 
C) What is the speed of the projectile? 
d) If the projectile can travel at 1 UOm/sec. at what time 
should it be launched? 
e )  Set up a parametric represectation simulating the path of 
this faster projectile? 



9 .  A target is rotating in a circular path with a radius of 50 m. and 
center ( 200. 100 1 and rotates according to the equations: 

Press MODE aad choose the DEGree option 
Note: T - Time in secs. & one revolution is 0 2 T 5 360 
A projectile is fired from the origin at T - 0, at an initial velocity sf V 
- 2 m/scc. The problem is to design a gravitational effect that will 
cause this projectiie to arc in a parabolic path and intercept the 
target at one of its locus points ( 150, 100 ). 

a )  Find T. the time it takes the target to reach [ 150. 100 ). 
b ) Find the angle 8 needed so that the constant horizontal 

component of the velocity of the projectile: 
X a f  - VTCos 8 

satisfies the horizontal requirements. 
c )  Find the gravitational effect k necessary so that the 

vertical componeni of the velocity: 
YZT - VTSin 8 * kT2 

satisfies the vertical requirements of the projectile. 
Notes: 
= A linear path can be simulated to start a t  a later t ime by  translating 

the components to the left or right as was done with two previous 
problems: Prohlem*l in Part D wheri the father left two hours after 
the girl and in Problem aid) of the problem set with the faster 
projectile. 
In this problem if you have a faster projectile, and since the path i s  
parabolic, I assume that you would need to construct a program if  
you wanted to launch it at a later time. 



1. Use sf the MODE feature: 

o To change the option use the cursors and the ENTER button. 
An option is activated if it is shaded. 
When MODE is pressed the following options are significant: 

a) FUNCTION vs. PARAM - Function mode is the usual y = F(x)  
representation; parametrics is the other option. If FUNCTION is 
activated then when Y- is pressed there are four possible functions 
that can be created and X/T will display X . If PAWAM is 
activated then Y= gives three function possibilities but in this case 
each is represented by a pair of functions X(T) & PIT) and use of 
the X/T button will display the paranleter T . 

b) CONNECTED vs. DOT - The DOT feature is useful sometimes if a 
graph consisting of a series of dots is desired. The spaces between 
the dots can be adjusted using the 'ITSTEP which is contained in the 
RANGE. This is only possible when using parametrics. 

c )  SEQUENCE vs. SIMUL - Functions can be graphed in sequence OI- 
simultaneously. 

d )  GRID OFF vs. GRID ON - The grid lines can be displayed by using 
this feature and are determined by the XSCL and YSCL choices 
made when setting u p  the RANGE 

e )  RAD vs DEG - Calculations are done with trigonometric functions 
in radians or degrees, whichever one is activated. 

2. U s e  of the RANGE feature 

It is necessary to have some idea of what the function is going to 
look iike so that you can choose a suitable range for the X & Y 
variables, and in the case of parametrics, for the T variable. 

The choices made for XSCL & YSCL form the cross-hatches on the 
coordinate axes and they aim deter mine the grid if GRID ON is 
activated. 



If PARAM is activzlted then the choice of TSTEP determines the 
speed at which parametric graphs are drawn. 

3. Use  sf the ZOOM feature: 

If you want to zoom in to get a close-up picture of a section of a 
graph, then if you press ZOOM 1, BOX will be activated. Then press 
ENTER, adjust the cursor to the tog-left corner of the desired 
viewing rectangle and press ENTER again. Then dragging the cursor 
down and to the right will create the rectangle, and E N f  ER will 
activate the ZOOM. 

ZOOM 6 (Standard) will always return to a view of -10 to 10 for 
both the X Br Y variables 

ZOOM 5 (Square) will adjust the ratio of the X-range to the Y-Range 
to a 3 2  value so that circles will look round, squares will look like 
squares, and a slope s f  2 will look like a slope of 2. The X-values stay 
the same and the Y-values are changed when this feature is used. 

ZOOM 7 (Trig) sets up  a range of -360" to 360" for the X (or T) 
variable ( if DEGREE mode is activated). This is useful when 
graphing trigonometric functions. If RADIAN mode is activated then 
a range of -23-1 to 2 n  (in decimal form) is set up for X. 

4. Use of the TRACE feature: 

8 If Function mode is activated then the TRACE begins at the center of 
the X-range. If Parameter mode is activated then the TRACE begins 
at the middle of the T-range. Use of the left & right cursor keys will 
then move the cursor along the graph of the function. The 
coordinates are displayed as the cursor moves. If in parametric 
mode, the TSTEP choser! wi!l determine the speed 9f ?he TRACE. 
If more than one function is displayed then use of the. u p  or down 
cursor keys will switch to the next function on the Y - list. 


