COMPILATION AND EVALUATION OF NESTED
LINEAR RECURSIONS: A DEDUCTIVE DATABASE
| APPROACH

by

Tong Lu
B.S., East China Normal University, Shanghai, China, 1990

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School
of

Computing Science

© Tong Lu 1993
SIMON FRASER UNIVERSITY
November 1993

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Name:
Degree:

Title< of Thesis:

Examining Committee:

Date Approved:

APPROVAL

Tong Lu
Master of Science

Compilation and Evaluation of Nested Linear

Recursions: A Deductive Database Approach

Dr. Tiko Kameda
Professor

Computing Science, Chairman

Dr. Jiawei Han, Sénior Supervisor

Dr. William Havens, Supervisor

Dr. Ze-Nian Li, Examiner

Novew lren 15—; 443

i

PARTJAL COPYRIGHT LICENSE

}‘hereby grant to Slmon Fraser University the right to lfend
my thesis, project or extended essay (the tltle of which is shown below)
to users of the Simon Fraser Unlversity Llbrary, and to make partial or
single copies only for such users or In response to a requast from the
iibrary of any other universlty, or other educational institution, on
its own behalf or for one of Its users. | further agree that permission
tor multiple cobylng of thls work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying

or publlication of thls work for flnanclal galn shall not be allowed

without my written permission.

Title of Thesis/Project/Extended Essay

Compilation and Evaluation of Nested Linear Recursions: A Deductive

Database Approach.

Author:
(signature)

Tong Lu

{name)

November 16, 1993

(date)

Abstract

A deductive database system is an extension of a relational database system by supporting a rule-
based, more expressive database language while preserving the set-oriented and declarative style

of a relational database query language.

This thesis studies the implementation and extension of the chain-based compilation and

evaluation method, an interesting method for deductive query evaluation.

Our‘work makes the following two contributions : (1) a query-independent compilation method is
developed in C using Lex/Yacc, which automatically generates compiled chain-forms for linear
recursions; and (2) the applicable domain of the chain-based compilation and evaluation method is

extended to functional nested linear recursions.

The query-independent compilation method is based on the expansion regularity of a graph
matrix, the V-matrix, which represents the variable connection pattern of a recursive rule. A
complex linear recursion can be compiled into a highly regular chain-form and linear normal form,

which facilitates efficient query analysis and processing.

The study on the extension of the applicable domain of the chain-based compilation and
evaluation method to functional nested linear recursions leads to the systematic analysis of a
typical logic prograrh, the n-queens program. Our analysis shows that nested linear recursions can

be implemented systematically and efficiently using the chain-based query evaluation method.

iii

Acknowledgments

My greatest thanks go to professor Jiawei Han, my senior supervisor, for inspiring my interest in
deductive databases, for his responsiveness, encouragement and considerations. The important
work of this thesis comes from the written works and many discussions with him. Thanks also go
to provfessor William Havens and professor Zenian Li, for their valuable comments and

suggestions.

I would also like to express my gratitude to the following people: to professor FulingA Huang, my
teacher in China, for her warm encouragement; to professor Woshun Luk, for his interesting
classes which arouséd my interest in database systems; to Hong Fan and Wei Lu, for their
friendship and thoughtful advice when I needed them most; to Zhongmin Guo, Ju Wu, Zhaohui
Xie and Ling Liu, for some helpful discussions on the project; to Alan Brewer and Bhavesh
Doshi, for their careful job of proofreading; and to my friends, fellow students and colleagues:
Armin Bruderlin, Ben Yao, Biaodong Cai, Beysim Segzin, James McDaniel, Jeff Dailey, Langlee
Chu, Lingyun Wang, Martin Vorbeck, Natalie Shannon, Hong Shi, Jun Yu, Qiang Wang, Wei
Zhou, Yifeng Zheng, Yongjian Fu, Youmin Zhang and others, for their friendship and help.

Special thanks go to Ms.Kersti Jaager, for her kind help throughout my graduate years.

Finally, I would like to thank my parents and sister, for their encouragement and support in all

these years. They have always let me know for sure that their love will be with me wherever I am.

v

Contents

ADBSITACE L...eiiiiiiitie et et iii
ACKNOWIEAZMENTScoviiiiiiiiiieie et et iv
L INEEOAUCHION ...ttt e eeea et eenea e e 1
L1, MIOtIVALIONS.etiieiiiiseiteeeiee ettt e et e e et b e e et eeeneeeeennaeeas 1
1.2. Logic Database : EDB + IDB + Quéry .. 2
1.3. Datalog = Database + Prolog ?7.........cccoooooiiiiiiiii e 5
+ 1.4, Thesis Overview e 8
2. Deductive Database and Its Implementation Techniquesc.ccoeviiiieennenn, 10
2.1. A Deductive Database Model: Logic and Databases.................c..cccoenne.. 10
2.2. A Classification of ReCUISIONSccoviiiiiiiiieiiei e 14
2.3. Characteristics of the Strategies...................ccccooiiiieiiiiiiiie e, 18
2.3.1. Search Strategy: Bottdm up or TopDown...........ooooveiiiiinn. 18
2.3.2. Objective: Query Evaluation or Query Optimization.................... 20
233. Type of optimization: Syntactic or Semantic.............................. 20
2.4. Survey of Evaluation Methods and Optimization Techniques..................... 22
2.4.1. Naive and Semi-Naive Evaluation Methods................................ 23
2.4.2. Query/Subquery Method............................ e 25
2.4.3. The Magic Sets Method................ et 28
2.4.4. The Counting Method........................ooiviiii 32
2.4.5. Chain-Based Compilation and Evaluation Method....................... 33
3. Compilation of Linear ReCUISIONSccooiiiiiiiiiiiieeeceee e, 38
3.1. Difficulties of Magic Rule Rewriting TSP RRRT SRR 38
3.2. A Variable Connection Graph-Matrix: the V-matrixc.cccooeerin.. 41

3.3. Derivation of Stable Rules by V-matrix Expansioncc.cc...iooeieenes 46

3.3.1 Expansion of Single-Unit Linear Recursive Rules......................... 46
3.3.2. Expansion of Multiple Unit Linear Recursive Rules.................... 52
3.4. Compilation of Linear Recursions................cccoociiiviiniiiieoieiiiiiiciie i 53

3.4.1. Automatic Generation of Chain Forms for Single-Unit Linear Recursions

.. 53

3.4.2. Normalization of Single-Unit Linear Recursions.......................... 60
3.5. Implementation of the Chain Based Compilation Method 63 |

4. Compilation and Evaluation of Functional Nested Linear Recursions 70

4.1. From Function Free to Functional Recursions............. S P 70

4.2. Compilation of Nested Functional Linear Recursions........................ e 72

4.3. Query Analysis in Compiled Functional Nested Linear Recursions............. 75

4.3.1. Finiteness Evaluability‘of Functional Recursions 76

4.3.2. Termination of Query Evaluation....................c..ccoo 79

4.4. Generating the Evaluation Plan for Functional Linear Recursions 82

4.4.2. Query Closure vs. Existence Checking...................cccooinininnnn 90

4.4.3. Constraint-Based Evaluation..................cccooiiiiiiiininn 91

4.5. Evaluation of Nested Linear Recursions: the n-Queens Problem JURT 93
5. The CONCIUSIONoovviiiiiiiiiiiie e 103
5.1 SUMMATY.......ooiiiiiiie e e 103
5.2 DISCUSSION.ovviiiiiiieiiiiicis et e 104
RELEIENCES.ooiiiiiiiii et 106

vi

List of Figures

Figure 1-1. The family tree of example 1-1 ..., 4

Figure 2-1 The family treeccoooiiiiiiii 22
Figure 2-2 The chain following directionscoccooeeeieenne 36
Figure 3-1 The initial V-matrices of rules (ADto(Gy)evvvoveeneennns e 45
Figure 3-2 V-matrices of rules (A1) t0 (F1) oo 47
Figure 3-3 The expansion of the V-matrix of rule (Gy)..........oooniiiiin 53
Figu-re 3-4 The compilation flow chart ... 64
Figure 3-5 The chain generating ProCess.............ccveeveiireieriiiiiieiiee ettt 65
Figure 3-6 The internal data structure: chain form........................ 65
Figure 3-7 The expanded V-matrix of example 3-6.cccooeiiiiiiiiiiiiii 66
Figure 4-1 Diagram of complete chain based evaluation method 82
Figure 4-2 Multi-way counting method.................cooooiiiii 83
Figure 4-3 The evaluation of query "?- append([a,b], V, [a,b,c]).". ... 87
Figure 4-4 The evaluation of query "?7- (U, V, [é,b])." JSTUTTRO 88
Figure 4-5 The recursive levels of the n-queens problem ... 94

vii

Chapter 1

Introduction

This Chapter provides a general introduction of the Deductive Database System and an overview

of this thesis.
1.1 Motivations

The research in Deductive Database Systems started in the late 1970's with a summary in the
book "Logic and Databases" by Gallaire and Minker. From the beginning, research in this area has
been*motivated by two converging trends[BaRa86]: (i) the desire to integrate database technology
and artificial intelligence technology, to extend database systems and provide them with the:
functionality of expert systems, thus creating "the knowledge base systems", and (ii) the desire to
integrate logic programming technology and database technology and extend the power of the
interface of the database system to that of a general purpose programming language. The
feasibility of this integration is based on the fact that logic programming and relational calculus
have the same underlying mathematical model : the first-order logic. Since the mid 1980,
substantial fesearch has been done on deductive database systems, with- the focus on query

optimization, an essential issue on building high performance systems for large applications.

Over the past decade, relational database system has gained enormous popularity due to its
uniformed data structure, its successful implementation of data management functions (such as
integrity, data sharing and recovery), and its query language SQL, which is a declarative and set-
oriented language for both data definition and management. However, there are a number of
applications that have a database flavor and yet are not well-addressed by conventional Database

Management Systems. These new applications pose demands that are not answered by

conventional DBMS, such as the need to deal with complex structures , recursively defined

objects and more flexible queries [UllZa90] .

Deductive Database Systems are thus systems which extend relational database systems while
preserving their programming style by supporting a rule-based language capable of expressing
complete applications. These systems are based on pfedicate logic as a data model, following a
Prolog style of using Horn-clause or if-then rules to define predicates or relations. A salient
feature of deductive database systems is their capability of supporting a declarative, rule-based
style of expressing queries and applications on large databases.

1.2 Logic Database : EDB + IDB + Query

- Let's start with a simple example and look at the components of a "logic database".
Example 1-1. A simple Logic Database.
Suppose we have two relations: person(name) and parent(child, pdrent) stored in a relational

database. The instances of these relations are as follows [CeGoLe89] :

person:name parent: child parent
Anne Dorothy George
Bertrand | Evelyn Géorge
Charles Betrand Dorothy
Dorothy | Anne Dorothy
Evelyn Anne Hilary
Fred | Charles Evelyn
George |
Hilary

These relations express the set of ground facts, just like the facts we specify as ground clauses in
Prolog programs. The difference is that, in Prolog, all the knowledge (facts and rules) relevant to
a particular application is contained within a single logic program P, while in Deductive
Databases, we are dealing with a large number of facts which must be manipulated by a database
system for its efficient data management functionality, such as data retrieving, data modification,

data sharing, concurrency and consistency control.

In Deductive Databases, we call the set of ground facts Extensional Database(EDB) , which
should be physically stored in a relational database.

Moreover, we have a set of rules which specify derived relationships based on the data stored in .
EDB. For example, with the above EDB storing two base relations (or tables), we can define a

derived relation sg(for same_generation) in a Datalog program P as:

sg(X, X) - person(X). ' (D)
sg(X,Y) - parent(X, X)), sg(Xj, Y7), parent(Y, Yp). (r)

Due to rule ry, the derived relation "sg" contains a tuple <p,p> for each individual in the “person"
~ relation. The rule 1y is recursive and states that two persons are same generation cousins if their

parents are same generation cousins.

Thus, based on the current data in the relations "person" and "parent", we can derive the relation
“sg" as: < Anne, Anne >, < Anne, Betrand >, <Anne, Charles >, < Betrand, Anne >, < Betrand,

Betrand >, < Betrand, Charles >, ..., <George, George >.

George

/\

Hilary Dorothy Evelyn
Anne Betrand Charles

Figure 1-1. The Family Tree of example 1-1.

In Deductive Databases, we call the set of derived relations Intensional Database (IDB). The
tuples or facts of an IDB relation is not physically stored in mass memory as EDB facts, but are
derived from the current EDB data upon query.

The IDB‘ relations derived from the EDB and a set of deduction rules are usually very large.
HoWever, it often happens that a user is only interested in a subset of these relations. For instance,
they might only want to know the same generation cousins of “Anne" rather than all same

generation cousins of all the people in the EDB.

To express such additional constraihts, we can specify a query to the IDB. A query is a single
literal preceded by a question mark and a dash, for example "?- sg(anne, X)". Queries serve to

formulate ad-hoc requests against a "view" defined by a set of derivative rules. [

Usually the EDB is considered as a time-varying collection of information while the rule set is a
time-invariant mapping which associates an IDB to each possible database state. In this sense,
IDB relations correspond to relational views, which is a form of supporting a restricted sét of
logic queries. The significant difference between IDB definitions and relational views is that views
are restricted to non-recursive definitions whﬂe the definition of an IDB relation can be recursive.

The efficient evaluation of recursive queriés is an important task of Deductive Database research.

1.3 Datalog = Database + Prolog ??

The language for Deductive Databases is Datalog. Datalog defines the syntax and semantics of
relations in Deductive Database (like SQL to Relational Database Systems), it has been designed
and intensively studied over the last few years and has been well accepted as the fundamental
language of Deductive Database Systems. The efficient implementation and further extensions to

Datalog is the current focus of DDB research.

From the syntax point of view, Datalog is in many respects a simplified version of a general logic
programming language, such as Prolog. It consists of a finite set of facts and rules. Facts are
assertions about a relevant piece of the world while rules are statements which allow us to deduce.

facts from other facts. Both facts and rules are particular forms of knowledge.

In the formalism of Datalog, both facts and rules are represented as Horn Clauses of the form L,
=Ly, ..., L. Each L; is a literal of the form Py(t;, ... i) such that P; is a predicate symbol and t;'s

are terms. A term is either a constant or a variable.

‘The left hand side (LHS) of a Datalog clause is called its head and the right hand side (RHS) is
called its body. The body of a clause can be empty. Clauses with an empty body represent facts

(EDB relations),vand clauses with at least one literal in the body represent rules (IDB relations).

Any Datalog program P must satisfy the following safety conditions[BaRa86] :
(1) Each fact of P is ground. (i.e. it does not contain any variables.)

(2) Each variable which occurs in the head of a rule must also occurs in the body of the same rule.

- These conditions guarantee that the set of all facts that can be derived from a Datalog program is

finite.

From the syntactical point of view, Datalog is a subset of Prolog, thus each set of Datalog clause
could be parsed and executed by a Prolog interpreter. Howéver, Datalog and Prolog differ in

their semantics.

‘Datalog has been developed for applications which use a large number of facts stored in a
relational database. Therefore, we always consider two disjoint sets of clauses, i.e. a set of ground
facts: the Extensional Database (EDB), and a Datalog program P: the Intensional Database
(IDB). |

Ground facts are stored in a relational database. We assume that each EDB predicate r,
corresponds to exactly one relation R of our database, such that each fact r(cy, ..., ¢y) of the EDB

is stored as a tuple <cy, ..., ¢ > of R.

The IDB predicates of P can be identified with relations, called the IDB relations, or derived
relations. IDB relations are not stored explicitly and they correspond to the concept of "view" in
relational databases which is calculated upon querying. IDB relations can be defined using
recursive rules. "The materialization of these recursive views, i.e. their effective and efficient

computation is the main task of a Datalog compiler or interpreter." [CeGol.e89]

In summary, because Datalog is a database language, it has significant semantic differences from
Prolog[CeGoLe89]:

1. Datalog has a purely declarative semantics while Prolog is defined by operational semantics.

2. Datalog uses a set-oriented data processing strategy while Prolog returns query results in a

one-tuple-at-a-time fashion.

A Prolog program proceeds according to a .resolution strategy which uses a depth-first search
method with backtracking for constructing proof trees and respect the order of the clauses and
literals as‘they appear in the program [StSh86]. This strategy does not guarantee termination. The
termination of a recursive Prolog program depends strongly on the order of the rules in the

program, and on the order of the literals in the rules.

Example 1-2. The difference between Prolog and Datalog.

Suppose we rewrite the same generation program in Examplel-1 as P":

sg(X,Y) - sg(Xj, Y1), parent(X, X), parent(Y, Y). | (1)
sg(X, X) - person(X). (r2)

This program P' differs from program P of Examplel-1 only by the order of the rules and by the
order of literals in the rule bodies. From a Datalog point of view, the order of clauses and literals
is totally irrelevant, thus P and P' are equivalent. On the other hand, suppose we use a Prolog
interpreter to evaluate the same query "?7- sg(Anne, X)", P and P' will be evaluated differently. If P
is used, Anne's same generation cousins will be returned one by one. But if P' is used, we would

run into an infinite recursion without getting any result. [

In spite of this; efforts have been made to couple Prolog to an external database[CeGoLe89]. A -
Prolog interpreter can be designed to distinguish between IDB and EDB predicates. When an
EDB goal is encountered during the execution of a Prolog program, the interpreter tries to
retrieve a matching tuple from mass memory. Due to the procedural semantics of Prolog, which
prescribes a particular order of visiting goals and sub-goals, the required interaction between the
~ interpreter and the external database is of the type one tuple at a time. This method of accessing
mass memory is quite inefficient compared to the set-oriented methods used by high-level query

languages such as SQL.

Because of these reasons, although Prolog is a rich and flexible logic programming language
which has gained enormous popularity over the last decade in many application domains, it is not
an efficient and practical database language. One goal of Deductive Database query languages,
such as Datalog, is to provide flexible and efficient access to large quantities of data stored in

mass memory.
1.4. Thesis Overview

So far, we have generally discussed the major concepts of Deductive Database and its
fundamental query language: Datalog. We will now concentrate on one of the most essential.

issues of Deductive Database research: recursive query processing.

The focus of this thesis is on the implementation aspects of recursive query processing, especially
on a recursion optimization method : the chain-based compilation and evaluation method oh
linear recursions. For the details on Deductive Database formalisms, please refer to the literature
references[GrMi92, Ullm89a, BrJa84] listed at the end of this thesis. However, a survey of some
of the most well-known evaluation and optimization techniques on recursive query processing

using deductive database techniques is presented in Chapter 2.

Starting at Chapter 3, the discussion focuses on the chain-based compilation and evaluation
method. Chapter 3 concentrates on the compilation part, i.e. the automatic generation of
compiled chain forms for function-free single linear recursions and its implementation
considerations. Chapter 4 discusses the analysis/evaluation part and the extension of this method
to the domain of nested functional linear recursions. A typical case, the n-queens program will be

used to illustrate how this method works and compare it with the conventional Prolog approach.

Chapter 5 concludes the thesis by comparing the chain-based evaluation method with other

recursion processing methods and discussing its possible further extensions.

Chapter2

Deductive Database and Its Implementation Techniques

In this chapter, we discuss the area of recursive query processing in Deductive Databases and

present a survey on the most well-known techniques in this area.
2.1 A Deductive Database Model: Logic and Databases

First.of all, we summarize the deductive database terminologies and some special assumptions our

discussion will be based on.
(1) The Two Components of a DDB: EDB and IDB

A Deductive Database consists of an extensional database(EDB), an intensional
database(IDB) and a set of integrity constraints (ICs). The EDB is a large set of ground facts
stored in a relational database. The IDB is a set of intensional predicates defined by a set of

function-free Horn clauses called deduction rules. The ICs aré not included in our discussion here.

For the ease of analysis, we assume that each predicate symbol either denotes an EDB relation or
an IDB relation, but not both. In another word, we decompose the database into a set of pure
base predicates and a set of pure derived predicates. It is easy to prove that such a decomposition

is always possible[Ullm89a].

10

" (2) The Syntax of Datalog
Datalog is a typical data definition language for Deductive Databases.

According to the syntax of Datalog, both facts and rules are represented as Horn clauses in the
form of "Ly :- L;, ..., L, " where each L is a literal of the form pi(ty, .--txi) such that p is a

predicate of arity n and t; is a constant or a variable.

The left hand side of a Datalog clause is called its head and the right hand side is called its body.
The body of a clause may be empty. Clauses with an empty body represent facts while clauses

with at least one literal in the body represent rules.

As a notational conventibn, we use strings starting with upper case letters to denote variables and
strings starting with lower case letters to denote relations (or predicates) and constants. For a
given Datalog program, it is always clear from the context whether a particular nonvariable

symbol is a constant or a predicate symbol.

For simplicity, we require that all literals with the same predicate symbol are of the same arity, i.e.

they have the same number of arguments.
A literal which does not contain any variables is called an instantiated literal.
Any Datalog program P must satisfy the following safety conditions[BaRa86]:

e Each fact of P is ground, i.e. it does not contain any variables.

» Each variable which occurs in the head of a rule also occur in the body of the same rule.

11

These conditions guarantee that the set of all facts that can be derived from a Datalog program is

finite.
~ (3) The Logical Semantics of Datalog

Considering Datalog as a simplified version of Logic Programming, its semantics can be easily

described ih terms of model theory.

In this point of viéw, we see rules as defining possible worlds or models. An interpretation of a
collection of predicates assigns truth or falsehood to every possible instance of those predicates,
where the predicate's arguments are chosen from some infinite domain of constants. Usually an
interpretation is represented by its set of true instances. To be a model of a set of rules, an
interpretation must make the rules true, no matter what assignment of values from the domain is

made for the variables in each rule.

Example 2-1. Consider the following Datalog program[Ullm89a]:

pX) - q(X). (rp)
4(X) :- r(X). (1)

Suppose the domain of the variable X is integer.

Intuitively, these rules state the fact that " If r is true for a certain integer, then q is also true; and

whenever q is true, p is true as well. "

Let's assume that in this case, r is an EDB predicate while p and q are IDB predicates defined in

terms of r. We also assume that r(X) = true iff X=1.

12

The model M; = { r(1), q(1), p(1), q(2), p(2), p(3) } is a possible interpretation of the database

because it satisfies all the rules and facts defined in this program.

However, there is another consistent model M, = { r(1), p(1), q(1) } which also satisfies the
program. In fact, there are an infinite number of models consistent with the EDB that has only
r(1) true. But M, is special because it is a minimal model, i.e. we can not make any true fact false

and still have a model consistent with the database { r(1) }. O

Formally, given a set of relations for the EDB predicates, say R;, ..., Ry, a fixed point of the
Datalog equations (with respect to Ry, ..., Ry) is a solution for the relations corresponding to the

IDB predicates of these equations.

It has been proved that each Datalog program has a unique minimal model containing any given
EDB relations, and this model is also the unique minimal fixed point with respect to those IDB
relations. A solution or fixed point Sy is the least fixed point with respect to a set of EDB

relations Ry, ..., Ry if for any solution S, we have Sy < S ([Ullm89a]).

We always use the least fixed point as the model of the database. (Notice that if we allow

evaluable arithmetic predicates, the minimal model is generally infinite.)
(4) The Query and the Adornment of a Predicate

We use "adornments” to represent the instantiation information of a predicate. Let p(X;, X», ...,
Xp) be an n-ary predicate. The adornment of p is a sequence of length n of b's and f's (a;...a,)
where a; is 'b' if the i-th varible of p is bounded or instantiated, otherwise it is 'f. Adornments are

denoted as superscripts. For example, parent(adam, X) is denoted as parent®{adam, X). |

13

A query is an adorned predicate with an instantiation of the bounded variables. For example, ?-

parent®f(adam, X) is a query.
Having discussed the basic terminologies, we now get to the point of discussing recursions.
2.2 A Classification of Recursions

Definition.
A predicate p is said to imply a predicate r (p — r) if there is a Horn clause in IDB with
predicate r as the head and p in the body, or there is a predicate ¢ where p > qand q > r

(transitivity). A predicate r is recursive if r = r. (= is defined is the transitive closure of —)

Two predicates p and q are mutually recursive if p = q and q = p. Mutual recursion is an

equivalence relation on the set of recursive predicates.

A rule p :- pyg, pa2, -y Py is recursive iff there exists p; in the body of the rule which is
mutually recursive to p. A recursive rule is linearly recursive if there is one and only one

predicate p; in the body of the rule which is mutually recursive to p.

A rule cluster of predicate r is the maximal subset of rules in IDB in which all the head
predicates of the rules are either r or p where p = r. If r is recursive, the r-cluster is called the
recursive-cluster. A recursive cluster is linear, or more precisely, single linear if it consists of

one linear recursive rule and one or more nonrecursive rules (exit rules).

- 14

Example 2-2. The predicate sg (same_generation) is defined as follows:

sg(X,X) :- person(X). | (r)
sg(X,Y) :- parent(X,X}), sg(Xy, Y1), parent(Y,Y1). (r2)

According to the above classification, sg is a recursive predicate; r is a linearly recursive rule and
the rule cluster of sg is a single linear recursive rule cluster where ry is the exit rule and r, is the

only recursive rule. [

Although recursions can be much more complicated than linear recursions, we find that a large set
of database-oriented applications belong to this relatively simple domain. Thus, many techniques
studied in this thesis are confined to linear recursions. Nevertheless, we do find some interesting
applications which involve recursions with function symbols (such as arithmetic functions and list
processing functions) and multiple "levels" of linear recursions. We will discuss how to handle
these extensions to linear recursions as well.

Here are some examples of the various kinds of recursions :

Example 2-3. The ancestor relation:

ancestor(X,Y) :- parent(X,Y). (ry)
ancestor(X,Y) :- ancestor(X, Z), parent(Z,Y). (ry)

Ancestor is a recursive predicate and its rule cluster is single linear. O

15

Example 2-4. A random linear recursion

(XY, 2) - aX,Y), (X, Z, Z)), X, Z)). (1)
(XY, Z) - e(XY,Z). ' ' (rz)

In this example, r is recursive and the cluster is single linear recursive. We will be looking into this
example in Chapter 3 because it is a typical case that the Magic Sets method (which is one of the
most popular optimization methods on recursive query optimization in Deductive Databases) has
~ some inherent problems in binding propagation[Han91b]. [

Example 2-5. A functional linear recursion.

append([], L, L))
append([X|L1], Ly, [X|L3]) :- append(L;, L, L3). (r)

This is a single linear recursion with list function symbols. We will discuss its implementation in

Chapter 4.0
Example 2-6. An airline reservation example [Han91a]:

travel ([Fno], Dep, DTime, Arr, ATime, Fare)
- flight (Fno, dep, DTime,rArr, ATime, Fare). (r)
travel ([Fno]L]', dep, DTime, Arr, ATime, Fare)
- flight(Fno, dep, DTime, .Int, IATime, Fy),
travel(L, Int, IDTime, Arr, ATime, S;),
Fare=F, + S;. ' (r2)

This is a functional_linear recursion with both list functions and arithematic functions. O

16

Example 2-7. The n-queens problem:

nqueens(N, Qs) :- range(l, N, Ns), queens(Ns, [], Qs).

range(M, N, [M|Ns]) :- M<N, M; is M+1, range(M;, N, Ns).
range(N, N, [N]). '

queens(Unplaced, safe, Qs) :- Select(Q, Unplaced, Unplaced1),
’ not attack(Q, Safe),
queens(Unplacedl, [Q|Safe], Qs).
queens([], Qs, Qs).

attack(X, Xs) :- attack1(X, 1, Xs).

attack1(X, N, [Y[Ys]) :~ Xis Y+N.
attack1(X, N, [Y|Ys]) :- Xis Y-N.
attack1(X, N, [Y|Ys]) :- N; is N+1, attack1(X, Ny, Ys).

select(X, [X|Xs], Xs).
select(X, [Y]Ys], [Y|Zs]) :- select(X, Ys, Zs).

This recufsion consists of multiple levels of linear recursions, which is more formally named as
nested linear recursion. We will discuss how to process ciueries against "nqueens" in a deductive
database approach in Chapter 4. This example is interesting because it is a good showcase on how
the DDB approach is different from that of Prolog, and what the advantages/disadvantages are of

each. However, for this particular example, there are no associated EDB relations. [

17

2.3 Characteristics of the Strategies

Before discussing the evaluation methods, it would be helpful to see some of the criteria used to
distinguish them. We will briefly look at three such criteria [CeGoLe89]:

¢ Bottom-up vs. Top-down strategy

o Query evaluation vs. Query optimization

« Syntactic optimization vs. Semantic optimization

2.3.1 Search Strategy: Bottom up vs. Top Down

The evaluation of a Datalog goal can be performed in two different ways:

¢ bottom-up: starting from the existing facts and inferencing new facts

o top-down: starting from the query, trying to verify the premises which are needed in order for

the conclusion to hold.

We consider these two evaluation strategies as representing different interpretations of a

rule[CeGoLe89].

The Bottom-up evaluation methods consider rules as productiohs that apply the initial program to
the EDB and produce all the possible consequences of the program, until no new facts can be
deduced. The bottom-up method can naturally be applied in set-oriented fashion, i.e. taking as
input the entire relations of EDB. This is a desirable feature in the deductive database context
because large amount of data must be retrieved from mass memory. On the other hand, the
bottom-up methods do not take immediate advantage of the selectivity due to the existence of

arguments bound to constants in the goal predicate. The selection is usually done on the final

result set.

18

Most of the methods we will be discussing belong to this category, such as Naive/Semi-Naive
method [2.4.1], the Magic Sets method [2.4.3], the Counting/Revérse Counting method [2.4.4]
and the Chain-Based Compilation and Evaluation method [2.4.5]. To take advantage of quéry
bindings and other available constraints, three of these methods are optimization methods
[2.4.3,2.4.4,2.4.5] which do some pre-processing (compilation or rule-rewriting) on the original

rule set before actually retrieving data from EDB to eliminate irrelevant data at an earlier stage.

On the other hand, top-down evaluation treats rules as problem generators. Each goal is
considered as a problem that must be solved. The initial goal is matched with the left-hand side of
some-rules and generates other problems corresponding to the right-hand side predicates of that

rule. This process continues until no new problems are generated.

~In this case, if the goal contains some bounded argument, then only the facts that are relevant to
the goal constants are involved in the computation. Thus, this evaluation method performs an
optimization because the computation automatically disregards many of the facts which are not
useful for producing the results. However, using top-down methods, it is more natural to produce

the answers in one-tuple-at-a-time fashion which is not desirable in database applications.

Furthermore, we can distinguish two search st.rategies in top-down approach, i.e. breadth-first or
depth-first. With the depth-first approach, we face the -disadvantage that the order of literals in
fu_le bodies strongly affects the performance (especially termination) of methods. This happens in
Prolog, where not only efficiency but also the termination of programs is affected by the left-to-
- right order of subgoals in the rule bodies[StSh86]. Instead, Datalog goals are more natually
executed through breadth-first technologies, thus the result of computation is neither affected by
the order of predicates in the body of a rule, nor by the order of the rules in a program. The

Query-Subquery method [2.4.2] applies top-down searching strategy.

19

2.3.2 Objective : Query Evaluation vs. Query Optimization
The second classification criterion is based on the different objectives of the methods [BaRa86]:

Query evaluation methods: These strategies consist of an actual evaluation algorithm, i.e. a
| program which, given a query and a database, will produce the answers to the query. The query
evaluation methods that we will discuss are Naive/Semi-Naive evaluation and Query-Subquery

approach .

Query optimization methods: Strategies in this class assume an underlying simple evaluation
strategy and optimize the rules to make their evaluation more efficient, based on the current IDB
definitions and sometimes the particular query. These methods are usually referred to as
"rewriting methods". We will discuss the Magic Sets method, Counting/Reverse-Counting

method and the Chain-Based Evaluation method.
2.3.3 Type of Optimization: Syntactic Optimization or Semantic Optimization
Optimization methods differ in the type of information used [CeGoLe89] .

Syntactic optimization is the most commonly used. It deals with those transformations to a
program which are based on the program's syntactic features. We usually consider two kinds of
structural properties: one is the program structure, i.e. the types of the rules which constitute the
program. For example, the methods we will be discussing are mostly based on the linearity of the
recursive rules to pr-o‘duce optimized form of evaluation. The other one is the structure of the goal
or query. Particularly, we consider the -selectivity or query bindings that comes from goal
constants. These two approaches are not mutually exclusive. Actually most optimization methods

combine both of them.

20

Semantic Optimization, on the other hand, concerns the use of additional semantic knowledge

about the database in order to ‘produce an efficient answer to a query. More importantly, the

combination of the query with additional semantic information is performed automatically.

Semantic methods are often based on integrity constraints, which express properties of valid

databases. For example, in example2-6, we have the constraint that the arrival time of a flight is

always later than its departure time, thus, when we construct a chain of consecutive flights, only

the flights with a departure time later than the arrival time of the previous flight should be

considered.

Although semantic optimization has the potential of significant improvements on query processing
strategies, it is more case-specific. We are not going to discuss semantic optimization methods

here. Interested reader can find references listed in [CeGoLe89] and [Han91a].

Lastly, there are three important propertiés all recursion processing methods must

satisfy[CeGoLe89]:

1. The method must be sound: it should not include in the result set tuples which dé not belong
toit. | | |

2. The method must be complete: it must produce all the tuples of the resﬁlt.

3. The method must be terminable: the computation must be performed in finite time.

Although we are not gloing to provide formal proofs, the methods studied in the next section

satisfy all these properties.

21

2.4 Survey of Evaluation Methods and Optimization Techniques

We will use the example of same-generation to illustrate how the methods work.

Example 2-8. A sample DDB:

The 'Intensional Database is :
sg(X, X) :- person(X).
sg(X,Y) - parent(X, Xy), sg(Xy, Yy), parent(Y, Yy).

The Extensional Database is:

person: { (), (b), (c), (d), (¢), (8), () }
parent: { (d, g), (¢, 8), (b, d), (3, d), (a3, h), (c, €) }

The sample query is: "?- sg(a, X). "

AN
VA

Figure 2-1. The Family Tree

(ry)
(rp)

22

2.4.1. Naive and Semi-Naive Evaluation Methods

Naive evaluation is a bottom-up, iterative evaluation strategy. The method is also well-known in
numerical analysis as Gauss-Seidel method, used for determining the iterative solution (fixpoint)

of system of equations.

Assume the following relational equation: R; = Evalj(Ry,..., Rp),(i = 1, .., n). The Naive
Evaluation Method works as follows [BaRa86] :

Initialiy, the relations R; (i = 1, ..., n) are set to the empty set. Then, the computation R; := Evaly(
Ry, ... Ry) (i=1, .., n) is iterated until all the R's do not change between two consecutive
~ iterations (i.e. until R's have reached its fixedpoinr). At the end of the computation, the value

assumed by the variable relations R, is the solution of the system.

Algorithm2-1. The Naive Evaluation Method [CeGoLe89]
Input: A system of IDB relations Ry, ..., R, and an EDB.
Output: The least fixed point of the IDB relations R, ..., R,

Method:
Fori:=1tondoR,; =,

Repeat
nochange := true;
For i=1tondo
begin
S:=R;; R;=EvalR,, ..., Rp;
if R; # S then nochange := false;
end '
until nochange;

For i =1 to n do output(R;). O

23

)

For example2-8, to compute the sg relation using the Naive Evaluation method, we have in each
iteration:
sg1(X.Y) = { (a,2), (b)b), (c,), (d,d), (,¢), (8,8), (h,h) }.
sg2(X,Y) = { (a,2), (b,b), (c,c), (d,d), (e,e), (2,8), (h,h), (d,e), (¢,d), (a,b), (b,2) }.
sg3(X,Y) = { (2), (b,b), (c,0), (d.d), (&€, (8.8), (hh), (de), (e,d), (ab), (b,a), (ac); (.c),
(c,a), (c,b)}.
s24(X.Y) = { (a,2), (bb), (c,0), (d,9), (e,e), (8,2), (h,h), (de), (,d), (a,b), (b2), (a,0), (b,0),
(c,a), (c,b)}.

Since §g3 = sgy , for the query ?- sg(a, Y), we have the result set Y= {a, b, c}.0

Notice that the Naive Evaluation method is a bottom-up evaluation method. It proceeds in a
set-oriented way, and the order of rules and the order of predicates in the body of a rule do not

affect the algorithm.

The Naive Evaluation is probably the simplest and the most natural way of processing recursive
queries in a set-oriented manner. However, we can easily see two weaknesses of this method: (1)
it involves a lot of duplication of calculation at each iteration; (2) it does not take advantage of

query instantiation information to make the algorithm work more efficiently.

To deal with the first problem, the Semi-Naive Evaluation Method is introduced. Basically, it
takes the same approach as Naive Evaluation method, except that it is designed to eliminate some

redundancies in the evaluation of tuples at different iterations[Ullm89a] .
In the particular case of linear recursions, the Semi-Naive method proceeds by evaluating only
the new tuples generated at each iteration and terminates when no more new tuples are generated

[BaRas6].

24

2.4.2 Query/Subquery Method

The Query/Subquery (QSQ) Method is a top-down evaluation method based on backward
chaining. The advantage of this method is that, it takes into consideration the query instantiation
information at the very first stage, and tries to access the minimum number of facts in order to

determine the answer.

The key concept of this method is subquery. A goal, together with the program, determines a
query. Literals in the body of any one of the rules defining the goal predicate are subgoals of the
given goal. A subgoal, together with the program, defines a subquery. In order to answer the

query, each goal is expanded in a list of subgoals, which are then expanded in their turn.

The method memorizes two sets at each stage of computation: (i) a set Q of generalized
subquerié&, which contains all the subgoals that are currently under consideration, and (i) a set R

of derived relations, containing answers to the main goal and answers to intermediate subqueries.

The QSQ algorithm is basically doing two things: generating new answers to the R set and

generating new subqueries that must be answered to the Q set.

There are two versions of the Query/Subquery algorithm: Iterative Query/Subquery (QSQI)
and Recursive Query/Subqhery (QSQR). The difference between these two versions is which
set (Q or R) is considered first{CeGoLe89]. QSQI privileges the production of answers, i.e. when
a new query is encountered, it is suspended until the end of the production of all the possible
answers that do not require using the new subquery. QSQR, on the other hand, behaves in the
other way around: whenever a new query is found, it is recursively expanded and the answering to

the current subquery is postponed until the new subquery has been completely solved.

25

At the end of the computation, R contains the answers to the goal. As in Naive/Semi-Naive
method, a final selection is needed to generate the answers. However, the query instantiation
information has been considered in the ini}ial goal, thus the size of the relations involved in the
computation is comparatively much smaller than those involved in Naive evaluation.

<

The two algorithms are described as follows:
Algorithm2-2. Iterative Query/Subquery Algorithm QSQI [BaRa86] :

Initial state is <{query(X)}, {}>
while the state changes do
for all generalized queries in Q do
for all rules whose head matches the generalized query do
begin
(i) unify rule with the generalized query;
(i.e. propagate the constraints. This generates new generalized queries
for each derived predicate in the body by looking up the base relations.)
(ii) generate new tuples;
(by replacing each base predicate on the right by its value and every derived
predicate by its current temporary value.)
(iii) add these new tuples fo R;
(iv) add these new generalized queries to Q;

‘end. O

26

Algorithm2-3. Recursive Query/Subquery Algorithm QSQR[BaRa86]:

Initial state is < {quéry(X)}, {}>
evaluate(query(X)).
procedure evaluate(q) /* qis a generalized query */
begin |
while "new tuples are generated" do
for all rules whose head matches the generalized query do
begin
° unify the rule with the generalized query; (i.e. propagate the constants)
until there are_nd more derived predicates on the right do
begin
(i) choose the first/next derived predicate according to the selection function;
(ii) generate the corresponding generalized query;
(This is done by replacing in the rule each base predicate by its value and each
previously solved derivéd predicate by its current value).
(iii) eliminate from that generalized query the queries tflat are already in Q;
(iv) this produces a new generalized query q', add q' to Q;
(v) evaluate (q')
end
replace each evaluated predicate by its value and evaluaté the generalized query ;
add the results in R;
return the results;
end

end O

27

This method can be compared with Prolog because they both use the top-down strategy. The
diﬁ’erences are : (1) Prolog proceeds one tuple at a time while QSQ is set-oriented, because it
processes the whole relation (generalizeq queries) at each step. In this sense, QSQ is more
appropriate for database applications. (2) QSQ adopts breadth-first search and always terminates,

while Prolog applies depth-first search and may not terminate in some cases.

The query/subquery algorithm was first introduced by L.Vieille [CeGoLe89]. A compiled version
of QSQR has been implemented on top of the INGRES relational system [BaRa86].

2.4.3. The Magic Sets Method

The method of Magic Sets is a logical rewriting method (optimization method) that generates
from the given set of rules a new (and larger) set of rules, which are equivalent to the original set

with respect to the query, and its bottom-up evaluation is more efficient.

The idea of the Magic Set method is to use query binding information to cut down on the number
of potentially relevant facts involved in the computation. The new rules involved in the rewriting
part act as constraints, which force the program variables to satisfy some additional conditions,

based on the information of query bindings.
We use example 2-8 to show how it works, more details can be found in [BaRa86, BMSU86].
The original rule set is :

'sg(X,X) - person(X).

sg(X)Y) :- parent(X, X;), parent(Y, Yi), sg(Xy, Y1)

The query is: "query(X) :- sg(a, X)." i.e. "find person a's same generation cousins".

28

The following steps are taken to generate a "Magic Set" from the original rules based on the

provided query constraints (bindings) [BaRa86] :

Step 1. Generate Adorned Rules

For each Crule r and for each adornment a of the predicate on the left, generate an adorned rule: (i)
Define recursively an argument of a predicate in the rule r to be bounded if either it is bounded in
the adornment a, or it is a constant, or it appears in a base predicate that has a bounded variable.
These bindings are propagated through the base predicates. (ii) The adorned rule is obtained by
replacing each derived literal by its adorned version.

For example, the rule

sg(X,Y) - p(X, Xy), p(Y, Y1), sg(Xy, Y1)
with the adornment "bf* on the head predicate (which means X is bounded and Y is free) would
generate the adorned rule : (Note that we assume all the non-recursive predicates are base
relations and do not have functions involved. Thus, only the adornment of IDB predicates needs

to be considered.)
sg™(X, Y) - p(X, Xp), p(Y, Yy), sg°(Xy, Y1)

Note that for a set of R rules with the same head predicate, the adorned system is of the size KR,
where K is a factor exponential to the number of attributes per derived predicate. Among these

adorned rules, we only consider the ones that derive the query.
In our example, the reachable adorned system is:

sg*(X.Y) - p(X, Xy), p(Y, Y1), sg*(Xy, Y1)

sgh(X, X) :- person(X).

query(X) :- sg"(a, X).

This new set of rules is equivalent to the original set in respect to the query sg¥(a,X).

29

Step 2. Generate Magic Rules

For each occurrence of a derived predicat? on the right of an adorned rule, we generate a magic
rule [BaRa86] :

.(i) Choose an adorned literal p on the right of an adorned rule r.

(ii) Erase all the other derived literals on the right.

(iii) In the derived predicate occurrence, replace the name of the predicate by magic.p? where a is
the literal adornment and erase the non-distinguished variables. |

(iv) Erase all the non-distinguished base predicates.

(v) On the left hand side, erase all the non-distinguished variables and replace the name of the
predicate by magic.p,¥, where p, is the predicate on the left and a' is its adornment.

(vi)- Exchange the two magic predicates.
For example,
sg’(X, Y) - p(X, Xy), p(Y, Yy), sg™(Xy, Yy).
generates the magic rule
magic®(X;) :- p(X, X;), magic’(X).
Notice that the magic rules simulate the bound of arguments through backward chaining.

Step 3. Generate Modified Rules.

For each adorned rule generated in Stepl, we generate a modified rule : for each rule whose head
is p.a , add on the right hand side the predicate magic.p.a(X), where X is the list of distinguished |

variables in that occurrence of p.

30

For instance, the adorned rule:

sg(XY) - p(X, Xp), p(Y, Y1), sg*(Xy, Y1),

generates the modified rule:

sg®(X, Y) - p(X, Xy), p(Y, Y1), magic*(Xy), sg*(X, Yy).

<

Combining Steps 1, 2 and 3, the complete modified set of rules is as follows:

sg(X, X) :- person(X). ()
sg(X, Y) :- magic(Xy), p(X, Xy), p(Y, Y1), sg(X1, Yy). ()
magic(a). | ()
magic(X) :- magic(X), p(X, X). (r4)

After the rule rewriting, the IDB relation "magic" contains all the ancestors of a. The tuples of the
relation "magic" defined by the magic rules form the magic set. By computing the magic set, we
impose the restriction that, to compute a's same generation cousins, we only need to consider
those pairs of same generations whose first element is an ancestor of a. This is essentially the
whole purpose of the rule rewriting: to cut down on irrelevant facts at an earlier stage of

computation.

After the magic sets transformation, the resulting program can be evaluated by a simple bottom-
up algorithm, such as Naive or Semi-Naive method, but still takes advantage of the binding

information.

The original idea of Magic Set method was presented in [BMSU86]. The method has been
extended by Sacca and Zaniolo to a class of queries to logic programs that contain function
symbols [CeGoLe89]. So far, the Magic Sets method is one of the most popular methods used in

DDB implementations.

31

2.4.4. The Counting Method
The counting method is derived from the Magic Set method. It applies under two conditions: @)
the data is acyclic and (ii) the program is linear and has at most one recursive rule for each

predicate [BMSUS86] .

Consider again the same_generation example. The Magic Set method restricts the computation to
the ancestors of person "a". Furthermore, the counting method maintains the information of the
person's “distance" to person “a" in the generation tree, i.e. whether it is one of a's
parents(distance = 1), grandparents(distance = 2), grand-grand parents (distance = 3), etc. Thus -
further computation is restricted to the children of a's parents, grandchildren of a's grandparents,

and grand-grand children of a's grand-grand parents, etc.

Here is the result rule set of applying counting transformation to the output of Magic Sets method
on the query 7- sg(a, X).

sg(X, X, I) :- person(X), integer(]).

sg(X, Y, I) :- parent(X, Xy), sg(X, Yy, 1), parent(Y, Y;), counting(Xy, I), I=J-1.

counting(a, 0).

counting(X, I) :- counting(X, J), parent(X, X;), I=J+1.

Generally, if we have a "general" single linear rule system:
(X, Y) :- flat(X, Y).
(X, Y) :- up(X, XU), (XU, YU), down(YU, Y).
query(X) :- r(a, X). |

32

The resulting rule set after applying counting method is:

counting(a, 0). ‘

counting(X, I) :- up(Y, X), counting(Y, J), [=J+1.

r'(X, Y, I) :- counting(X, I), flat(X, Y).

r'(X, Y, I) :- counting(X, I), up(X, XU), r'(XU, YU, J), down(YU, Y), I=]J-1.

~query(X) :-r'(a, X, 0).

Obviously, if the base relations are cyclic, the counting method encounters the termination
problein. Also, special considerations should be put with the evaluation of built-in functions, such
as "+" and "-". We will discuss the evaluation of function symbols in more detail later, but .
generally the rule is to defer the computation until enough binding information has been gathered

to generate a finite result set.

The original idea of the counting method was introduced in [BMSUS86], a similar method called

“reversed counting" is discussed in the same paper.
2.4.5 The Chain-Based Compilation and Evaluation Method

To conclude the survey, we discuss the general idea of the chain-based compilation and evaluation

method. The implementation and extension of this method is the focus of this thesis.

- Chain-based compilation method is a query-independent compilation method. The idea is that,
based on the expansion regularity of recursive rules, a single linear recursive rule cluster can be
‘compiled into a highly regular chain-form (or linear normal form) which captures query
bindings that are difficult to be captured in other methods and facilitates efficient query analysis

and evaluation [Han89a] .

33

We define the first expansion of a linear recursive rule as itself, and the k-th expansion of a

linear recursive rule as the unification of the (k-1)th expansion and the definition recursive rule.

Let's look at the expansion behavior of the recursive rule for sg:
The first expansion (the definition rule) is :

sg(X,Y) :- parent(X, X;), sg(Xj, Y1), parent(Y, Y)).
The second expansion is:

sg(X,Y) :- parent(X, X;), parent(Xy, X5), sg(Xs, Y,), parent(Y;, Y,), parent(Y, Y}).
The third expansion is:

sg(X, Y) - parent(X, X), parent(X;, X,), parent(X,, X;) sg(X3, Y),

parent(Y,, Y3), parent(Yq, Y,), parent(Y, Yy).

and so on.

‘We can see that the variable connection patterns in these expansions is highly regular and the
variables in the head predicate and the variables in the recursive predicate in the body are

connected by a "chain" of predicates.

If we describe such a chain as:

. [True ' 1=0
parent!(X;;, Xj) =1{ parent(X;_;, X;) i=1
' parent-I(X; ;, Z), parent(Z, X;) i>1

The i-th (i> 0) expansion of sg is:

sgg (X, Y) = parent(X, X)), sg(X;, Yy, parenti(Y, Y;).

34

Since the definition of "sg" is the union of all its expansions, we have the chain-form of "sg" as:

205 Y) = U (parenti(X, X)), parenti(Y, Y, (person(Xy), Xi=Y;)).

Thus, sg is'a "double-chain recursion", with two chains: parenti(X, X;) and parent(Y,Y;). These

two chains are actually two binding propagation paths.

Notice that:

e The compilatien process is independent of any query forms. (Thus the name "query
independent compilation".)

o The chain form depends only on the logical definition of the rule. The order of rules specified
in the rule cluster and the order of literals specified in the body of rules are not relevant to the
result of compilation.

e It has been proved that all single ‘linear recursions can be compiled into either bounded

recursion or regulated chain forms [Han89a] .

Each chain in the compiled form has two ends: the near end of the chain shares variables with the
exit expression while the far end is the other end which connects to queries. For example,

considering the chain parenti(X, X;) in the case of "sg", X is the far end and X; is the near end.

Based on the chain form, we can generate efficient evaluation plans for various queries. The basic
considerations in the evaluation phase are:

1. Choose the more selective end of the chain to start processing.

2. Based on the query requirements, choose an evaluation strategy between query closure or

existence checking [Han89b] .

More complicated situations, such as functional recursions and multi-level recursions require

more considerations such as chain-splitting[HaWa91], which will be discussed in Chapter 4.

35

Considering again the query "?- sg(a, Y)", we can see that, for the chain parenti(X, X;), the far
end is bounded (X = a) while the near end is free. Thus, the query process should start from the

far end of this chain, then the exit part, and proceed "downwards" along the other chain.

Near End: (Xi, Yi)
parenti(X, X) parent(Y,Y)

FarEnd: (X, Y)

Figure 2-2. The Chain Following Directions

The evaluation proceeds as follows:
i=0, sgqy(a, Y)= person(a), a=Y.
which derives Y = {a}.

i=1, sga, Y)= parent(a, X)), (person(X;, Y;), X; = Y;), parent(Y, Yy).

which derives in the following order: X; = {d, h}; Y; = {d, h}; Y={a,b}.
. 8,8 Y)= parent(a, X)), parent(X;, X,), (person(Xy, Y5), X,=Y3),

parent(Y, Y5), parent(Y, Y;).
which derives the following result set: X;={d, h}; X,={g}; Y;={d,e}, Y={a,b,c}.

1=

=3, sgs)(a, Y)= parent(a, X)), parent(X;, X;), parent(X,, X3),
(person(X3, Y3), X3=Y3),
| parent(Y,, Y3), parent(Y, Y5), parent(Y, Y;).
which derives: X = {d,h}, X, = {g}, X3 = &. Processing termiﬁates.

Thus, we have the result set Y = {a} U {ab} U {abc}={ab,c}.O

36

The key to thié method is to generate the compiled chain form. The idea is proposed in [Han89a].
In the next chapter, we will discuss in detail how to automatically generate the chain form. In

Chapter 4 we will discuss the query analysis and evaluation based on chain forms.

37

Chapter 3

Compilation of Linear Recursions
3.1. Difficulties of Magic Rule Rewriting

As we discussed in Chapter 2, many techniques have been developed to evaluate recursions in
~deductive databases. These methods can be classified as either evaluation or optimization
methods. Furthermore, the optimization methods can be classified into two categories: query-

dependent optimization and query-independent optimization.

A query-dependent method rewrites a logic program into an equivalent but more efficiently
evaluable one based on specific query forms. The magic rule rewriting technique is a typical

example.

A query-independent method, on the other hand, compiles IDB predicates into a set of compiled
forms independent of queries. When a query is submitted, an evaluation plan is generated based
on the compiled form, current database statistics and the query information. The chain-based

" compilation and evaluation method is such a query-independent optimization method.

Although there have been some quite interesting studies on query-independent compilation of
complex linear recursions ([HaZe92]) , these studies did not produce an efficient algorithm for
automatic generation of compiled linear recursions. In this chapter, we discuss a simple variable
connection graph matrix, the V-matrix, and develop' a V-matrix expansion technique which
discovers the mirﬁmal necessary expansions in the compilation of complex linear
recursions[HaZe92]. Based on such V-matrix expansions, complex linear recursions can be

normalized into highly regular chain-forms and linear normal forms. The compilation facilitates

38

. the development of powerful query analysis and evaluation techniques for complex linear

recursions in deductive databases.

Definitions|[Han89%a] .
A chain of length k (k>1) is a sequence of k predicates with the following properties: (1) all k
predicates have the same name, say p, and the I-th p of the chain is denoted as Pq) (2) there is
at least one shared variable in every two consecutive predicates, and if the i-the variable in the
first predicate is identical with the j-th variable in the second, the (i, j) is an invariant of the
chain in the sense that the i-th variable of p() is identical with the j-th variable of p1y for
every | where 1 <1 < k-1. Each predicate of the chain is called a chain bredicate. A chain

predicate may consist of a sequence of connected non recursive predicates.

A linear recursion is an n-chain recursion if for any positive integer K, there exists a k-th
expansion of the recursion consisting of one chain (when n=1) or n synchronous (of the same
length) chains (when n>1) each with the length greater than K, and pbssibly some other
predicates which do not form a chain. It is a single chain recursion when n=1, or a multi-
chain recursion when n >1. A recursidn is bounded if it is equivalent to a set of non

recursive rules.

A linear recursion is in linear normal form (LNF) if it consists of a set of exit rﬁles and at
most one normalized recursive rule in the form of:

(X, Xy, ..., Xp) - €1(Xy, Y1), €2(X3, Y3), ..., €(Xps Yo), 1(Y}, Yo, ..., Yp).
where Xj and Y; (1 <i < n) are variable vectors. Each ¢; (1 <i < n) is a chain predicate.
Notice that a chain predicate ci for some i can be null in the sense that there is no ci predicate
and Y; = X;. The normalization of a linear recursion is the process of transforming a linear

recursion into its equivalent Linear Normal Form.

39

Normalization transforms linear recursions into highly regular compiled forms which not only
facilitates systematic development of query analysis and evaluation techniques, but also helps

binding propagation which may not be captured in other optimization methods.

Below is“an example where the Magic Sets method encounters the problem of "lost bindings in
propagation" while our normalization method can still obtain sufficient binding information

[Han91b] .

Example 3-1. Suppose a query (qq), " 7- r(X, Y, c)." is posed on the linear recursion :
1(X,Y,Z) -ep(X, Y, Z). (to)
(X, Y, Z) - a(X, Y), i(Xy, Z, Zy), b(Xy, Zy). (r1)

Using the Magic Set rule rewriting technique, the goal node is adorned as rf®. The binding in the
adorned goal node is propagated to the subgoal r in the body of the recursive rule, resulting in ™
which is in turn propagated into the subgoal r in the body of the recursion at the next expansion,

resulting in rff.

The resulting rule set is :
rﬂ"’(X, Y, Z) - I'ﬂ’f(Xl, Z, Zl), aff(X, Y), bbb(Xl, Zl) (1'11)
(X1, Z,Zy) - a®™Xy, Z), 17Xy, Zy, Zy), b™(Xy, Zp). (r12)

Since the binding from the query could not be propagated further to the subgoal rf in ry,, the
Magic Set involves the entire base relation a, thus the binding information cannot help reduce the

set of data to be examined in Naive or Semi-Naive evaluation .

40

On the other hand, using the chain-based compilation method, the above recursion can be

normalized into the following normalized form:

X, Y, Z) - (XY, 2). (@)
X, Y, Z) - aX, Y), (). (r22)
HZ) - eo(U, Z, V), b(U, V). (r23)
HZ) - ab(Z, Zy), UZy). (r24)

where ab(Z, Z,) :- a(X, Z), b(Xj, Zy).

After the compilation, the query binding "Z=c" can be propagated into every further expansion of
the normalized recursion. Furthermore, the query(q;) is essentially the verification of t(c) which
can be evaluated efficiently by existence checking algorithm instead of evaluating the whole query .

closure. [

In this chapter, we discuss the concept and implementation of the compilation process, which
automatically generates the chain-form and linear normal form of a function-free single linear

recursion.

3.2 A Variable Connection Graph-Matrix: the V-matrix

The concept of chain-based compilation method was proposed in [Han89a]. Extensive study has
been done on the compilation of complex linear recursions using a variable connection graph: the
V-graph. The conclusion is that a single linear recursion is either a bounded recursion or can be

compiled into highly regular chain forms.

Moreover, it is found that the expansion behaviour is closely related to its variable connection

pattern. Based on further study of this discovery, the idea of V-matrix is introduced [HaZe92]

41

and implemented [HaZeLu93] to automatically generate the compiled form of a linear recursion

by simulating its expansion behaviour through V-matrix expansions.

<

To simplify our discussion, the following assumptions are made in this chapter:

1.

The fecursion is single linear, i.e. there is only one recursive rule in the cluster and it is a
linearly recursive rule.

The rules are function-free, i.c. all the non-recursive predicates are EDB predicates.

There are no constant or duplicate variables appearing in the recursive predicate .

There is only one exit rule (non-recursive rule) in the recursive cluster, with the same head as

thé recursive rule, i.e. the exit rule (Eg) is of the form "r(Xj, ..., Xp) :- eo(Xy, --., Xp)"

Definition. [Han89a]

For a linear recursive rule with the head predicate r(Xy, ..., Xp), the 0-th expansion of r is
defined as a tautological rule: "r(Xj, ..., Xp) :- r(Xj, ..., Xp)." the first expansion of r is the
recursive rule of r. The k-th expansion of r (k > 1) is the unification of the recursive rule of
r with the (k - 1)st expansion of r. The k-th expanded exit rule of r (k 2 0), denoted as

ex(Xy, ..., Xp) is the unification of the k-th expansion with the exit rule Ey,.

The expansion behaviour of a recursion is closely related to the variable connections among its

predicates.

Definition. [HanZe92]

Two predicates in the body of a rule are connected if they share a variable with each other or
with a set of connected predicates. Two non-recursive predicates in the body of a rule are U-
connected if they share a variable with each other or with a set of U-connected predicates. A
set of variables are U-connected if they are in the same non-recursive p';edicate or in the same

set of U-connected (non recursive) predicates.

42

The variables appearing in the recursive rule head are distinguished variables, while those

appear only in the body of the rule are non-distinguished variables.

The varidbles of a recursive rule can be partitioned based on the relation of U-connections. In
order to study the expansion behavior of a linear recursive rule, a variable connection graph-

matrix, the V-matrix, is constructed as the following:

Definition. [HaZe92]
The variable connection graph-matrix, V-matrix, for a linear recursive rule of arity n consists
of a sequence of rows. Each row consists of n columns with the i-th column corresponding to .
the i-th argument position of the recursive predicate. Moreover, there are possible U-

connection edges between some columns in a row.

The contents of the initial V-matrix reflect the variable information in the original recursive rule,

while the expansion of V-matrix simulates the expansion of the recursion rule.
The initial V-matrix, which consists of the first two rows (row[0] and row[1]) of the V-matrix, is

constructed according to the following V-matrix initialization rules, while the expanded rows are

constructed based on the V-matrix expansion rules to be discussed in next section.

43

V-matrix initialization rules [HaZe92] :

1.

A V-matrix is initialized according to the following four steps:

Partition the variables in the rule according to the U-connections (each partition is called an
U-corinection set).

Copy the variables in the recursive predicate in the head and the body to the corresponding
columns in row[0] and row[1] respectively.

Replace the variable at each column of row[1], say X, by the set of distinguished variables U-

connected with X, if any.

- Finally, set up a U-connection edge between each pair of columns in the corresponding row if

the pair of columns are in row[0] and contain U-connected distinguished variables’, or if they .

are in row[1] and contain U-connected nondistinguished variables. [

We will use the following set of rules throughout our discussion of this chapter[HaZe92]:

Example 3-2. The initial V-matrices of the recursive rules (A;) to (Gp) are shown in Figure 3-1.

(a) to (g).
r(X) - a(X, X;), ri(Xy). (Ap)
r(X) - a(X, X)), r(Xy). (By)
X, Y) - a(X, Y)), r(X;, Yp), b(X;, Y). | | (Cp
1(X,Y,Z) - aX, Y), i(Xy, Z, Zy), b(Xy, Zy). D)
(X, Y) - a(X, X3, Y), b(Y, Yy), 1(Xj, Yy). | Fp

r(X1 Y’ W: T, Z’ U: V) - r(Y7 Y]_a T’ T]_’ Zl’ Ul: Ul)’
a(X, Yl’ T)’ b(ws Tl): C(Z): d(U: Va Ul) (Gl)

44

[0] X [0 X 0] X Y

o X Yy 2z
mn x M &) U M M1 (X1 @ {z1)
(a) b © L)
[] X Y [0 x Y W T Z U V

m Xy &Y mym Xn X0 W 1) UV

N (g

Figure3-1. The initial V-matrices of rules(A;) to (Gy).

For rule(A;), X, in row[1] is replaced by {X} because there is a U-connected set {X, X;}. For
rule(Bﬁl), X, in row[1] retains X; because X; is not U-connected to any distinguished variable. -
For rule(C,), X; is replaced by {Y} and Y, is replaced by {X} because there are two U-
connected sets: {X, Y;} and {Y, X;}. For rule(D,), there are three U-connected sets: {X, Y},
{Z} and {X,, Z,}, but row[1] remains the same because none of the non-distinguished variables
in row[1] is U-connected to any distinguished variables in row[0]. However, there are two U-
connection edges, one between columns 1 and 2 in row[0] and the other between columns
columns 1 and 3 in row[1]. For rule(F), there is one U-connection set : {X, Y, X;, Y;} which
contains all the variables, thus X; and Y, in row[1] are replaced by the set of distinguished
variables {X, Y}. Moreover, there is one U-connection edge between columns 1 and 2 in row[0].
Finally, rule(G,) contains six U-connection sets: {X, Yy, T}, {W, T}, {Z}, {Z;}, {Y} and {U],
V, U;}. Thus in row[1], Y, and T are replaced by {X, T}, T; by {T} and {U;} by {U, V}.
Moreover, there are U-connection edges in ‘row[O] - U-connection between columns (1, 4) and

columns (6, 7). O

45

A V-matrix can be partitioned into one or more unit V-matrices based on the connections among

V-matrix columns.

Definitions. [HaZe92]
Two columns of a V-matrix are connected if the two columns in the initial V-matrix share a
variable, have a U-connection edge or are connected to a set of connected columns. A set of
connected columns form a unit V-matrix. A linear recursive rule whose V-matrix consists of

only one unit is a single-unit rule; otherwise it is a multiple-unit rule.
In exdmple 3-2, the first five rules are single unit rules while the sixth rule (Gy) is a multiple-unit
rule and its V-matrix consists of three units consisting of columns (1, 2, 3, 4), (5) and (6,7) .
respectively.
3.3 Derivation of Stable Rules by V-matrix Expansion
3.3.1 Expansion of Single-Unit Linear Recursive Rules
We first examine the expansion regularity of Single-Unit Linear Recursive Rules and the

correspondence with its V-matrix expansion.

Example 3-3. The second expansion of rules (A) to (F;) are (A,) to (F,) respectively [HaZe92]:

fX) - aX, X)), a(X), Xp), r(Xp). | (Ag)
1(X) - aX, X)), a(Xy, X}), 1(Xy). (B))
X, Y) - a(X, Yy), b(Xy, Yy), 1(Xy, Y), a(X;, Y), b(X}, Y). (©))
1(X,Y,Z) - a(X,Y), a(Xy, Z), 1(Xy, Zy, Z), b(Xy, Zy), b(Xy, Z). (D7)
rX,Y) - a(X, Xj, Y), b(Y, Yy), a(Xy, Xy, Yy), b(Yy, Yp), 1(Xp, Y2). ()

46

If each recursive rule generated at the second expansion is treated as an original recursive rule,

row[2] of each V-matrix can be constructed as row[1] using the same V-matrix initialization

rules. -
[0 X [0 X 0 X Y
(11 {x} [11 {X1} 11 {1 (X
< [21 {X} [21 {X2} 21 (X} (v}
(a) (b) (c)
o X Y z o X Y
ar X1y (@) {z1) 11 (X, Y} (X
‘ [21 {X2} K {22 [21 (X, Y} .
(d)

Figure 3-2. V-matrices of rules (A;) to (F,) at the second expansion.

Interestingly, row[2] of the V-matrices can also be derived from the initial V-matrix, i.e. from
row[0] and row[1]. For example, Fig3-2(a) indicates that if a distinguished variable X at row[0]
derives the same variable X at row[1], if will derive the same variable X at row[2]. Fig3-2(b)
indicafes that if a distinguished variable X at ro.w[O] derives a non distinguished variable X; at
row[1], it will dén've a new non distinguished variable (in this case X,) at row[2]. Fig3-2(c)
indicates that if a distinguished variable X at row[0] derives another distinguished variable Y- at
row[1], it will derive the same distinguished variable Y from row[1] to row{2]. Fig3-2(d) is more
complicated. According to the derivation rule observed from Fig3-2(b) and Fig3-2(c), row[2]
should be [{X,}, {Z;}, {Z,}]. However, by copying U-connection edges from row[1] to row[2]
and then from row[0] to row[1], we can see that Z and Z; are now U-connected. Thus, Z, in
row[2] is replaced by the distinguished variable Z and row[2] is now [{Xj}, {Z}, {Z,}].
Similarly, row[2] of Fig3-2(f) is [{X, Y}, {X, Y}] because both X and Y derive the set {X, Y}.
|

47

This example shows that the expansioh of V-matrix is closely related to the expansion of the

recursive rule. In another words, the new rows of a V-matrix can be generated from its initial V-

matrix by a set of V-matrix expansion rules, and the generated rows reflect the U-connectivity of

the corresponding expanded recursive rules [HaZe92].

Definition.
A variable Y is a derivative of a distinguished variable X in a V-matrix if Y is derived by X,
that is, Y and X are at the same column in the V-matrix, but Y's row number is X's row
number +1.

V-matrix expansion rules [HaZe92] :

1. (Row generation) For each distinguished variable X in V-matrix [LastRow, i], add X's
derivatives to V-matrix[NextRow, i].

2. (U-connection Propagation) The U-connection edges are copied from LastRow to NewRow
and then from LastRow-1 to LastRow. If such copying makes a distinguished variable X
U-connected to the set of variables in V-matrix[NewRow, i], X is added to the set of variables

in V-matrix[NewRow, i].

Lemma 3-1.
Each row of the V-matrix generated by the above two V-matrix expansion rules correctly
registers the set of distinguished variables U-connected to each column of the recursive

predicate in the body at each expansion [HaZe92] .

In principle, a V-matrix can be expanded infinitely by following the V-matrix expansion rules.
- However, our goal is to find the regulation of its expansion. The theory of chain-based
compilation [Han89a] says that "from a certain point, further expansions of a recursion rule will

repeat the patterns of the existing expansion rules". In the representation of V-matrix, it means

48

that from a certain row i, further expansions of a V-matrix will repeat the patterns of the existing

rows in the V-matrix.

Definition. [HanZe92]
The DV-set (distinguished variable set) of a column is the set of all the distinguished variables
U-connected to the variables in the column. Two rows, row[i] and row][j], in a V-matrix are
identical (denoted as row[i] = row[j]) if each pair of the corresponding columns have the

same DV-set.

. In Fig3-2, row[1] = row[2] in (a) and (f). Similarly, row[2] = row[1] in (b) and (d); row[2] =
row[0] in (c). | |

Obviously, if row[j] = row[i] (j > i), all the expansions starting at row[j] repeats the expansions

starting at row[i]. Thus we have :

Lemma 3-2. [HaZe92]

In a single-unit V-métrix, if row[i] = row[j], and i <}, then row[j+k] = row[i+k] for any k > 0.

Based on such regularity of V-matrix expansions, we define the stable level and the period of a

V-matrix as:

Definition.
If starting at row S, there exists a T such that the row of a single-unit V-matrix repeats at
every T more expansions, that is, row[S+k*T] = row[S] for all k > 0, then S is the stable level
and the smallest T the period of the V-matrix. If row[S] contains no distinguished variabies, T

is defined as 0

49

Algorithm 3-1. The expansion of a single-unit V-matrix and the derivation of its stable level S
and period T [HaZe92] .

Input: An initial single-unit V-matrix. ‘
Output: An expanded V-matrix, the stable level S and the period T.
Method®
* begin
LastRow = 0; CurrentRow = 1;
while not RowRepeating (CurrentRow, ExistingRow)
-do
‘begin
LastRow := CurrentRow;
CurrentRow := CurrentRow + 1;
/* Generate the contents of the CurrentRow. */
for each column i do
/* Every column in CurrentRow is initially empty. */
for éach distinguished variable X in V-matrix[LastRow, i] do
Add x's derivatives to V-matrix[CurrentRow, i];
/* U-connection Propagation. */
Copy the U-connections from LastRow tb CurrentRow;
Copy the U-connections from LastRow - 1 to LastRow;
for each column i do
for each X in V-matrix[CurrentRow, 1] do
if X is U-connected to a distinguished variable Y which
is not already in V-matrix[CurrentRow, i]
then Add Y to V-matrix[CurrentRow, i]
and remove, if ény, non distinguished variables there;

end;

50

S := ExistingRow;
if there is no distinguished variable in CurrentRow
then T =0

else T :=CurrentRow - ExistingRow

end. O+

Notice that RowRepeating is a Boolean function which returns true if there is an ExistingRow,

where 0 < ExistingRow < CurrentRow, such that row[ExistingRow] = row[CurrentRow]. That is,

function RowRepeating (CurrentRow, var ExistingRow): Boolean;
begin
ExistingRow ;= CurrentRow - 1;
repeat
If row[CurrentRow] = row[ExistingRow]
then return(true)
else ExistingRow := ExistingRow - 1
until ExistingRow < 0;
return(false)

end. (J

For Example 3-2, the stable levels and periods of the recursions (A;) to (F;) are shown in Table3-1.

Rule A1 B1 C1 D1 F1
S 0 1 0 1 : 0
T 1 0 , 2 1 1

Table3-1. Stable levels and periods of the recursions A; to Fj.

51

Theorem 3-1. In a single-unit recursive rule of arity n, the expansion of its V-matrix terminates at
or before the n-th iteration. That is, S+T <n [HaZe92].

[

3.3.2 Expansion of Multiple Unit Linear Recursive Rules

Although the V-matrix expansion rules can be applied directly to multiple-unit linear recursions, it
may lead to relatively large number of expansions. Suppose there are k units in the V-matrix, the
minimum number of expansions to reach the row repeating stage should be the least common
multiplier of the arity of each unit, that is, lcm(nj, n,, ..., o), where n; (1 <j <k) is the arity of

the j-th"unit.

For example, if a V-matrix consists of three unit matrices Vq, V, and V3, with §1=S,=8;=0, T =
5, T5=6, and T4=7, it will take T = lcm(5,6,7) = 210 expansions to find a repeating row in the

combined V-matrix.

However, since each V-matrix unit reaches its own stable stage independent of other units, the
stability of a recursion can be determined by the examination of each unit independent of others.
That is, for the above example, only 7 expansions are necessary to detect the regularity of the

expansion patterns.

" Definition. [HaZe92]
A linear recursion whose recursive rule corresponds to a multiple unit V-matrix reaches a
stable stage at the S-th expansion if for every unit V-matrix Vi; either no new results can be
generated from this unit on any EDBs (i.e. bounded for this unit), or each further T;
expansion adds to the body of the rule the same set of EDB predicates connected to the same

set of variables in the unit.

52

For the recursive rule (G;) in Example 3-2, we have three unit V-matrices. According to
Algorithm 1, we have the S and T for each of them as follows: S;=1, T1=2; Sy=1, T,=0; S3=0, T3
=1. Therefore, their combined stable level is § = maximum(§;, S,, S3)=1, with T1=2, T,=0 and

T3=1.

[0] X Y w T @ Z u

(11 {v} {X, T} (X, T} {w} Z1 '{U, v}

21 {X. T} {Yy.wW} {y,w} {X T}

381 {Y,W} {X, T} {X T} {Y.W}
Figure 3-3. The expansion of the V-matrix of rule (G;)
3.4. Compilation of Linear Recursions

The goal of the compilation phase is to generate chain forms and linear normal forms (LNF) of a
linear recursion based on the expansion of its V-matrix. For simplicity, we discuss only the case of
single-unit recursions, the chain form and linear normal form of a multiple-unit recursion can be
- derived by merging the compiled forms of all its units. Detailed discussion on the compilation of

multiple-unit recursions can be found in [HaZe92)].

3.4.1 Automatic Generation of Chain Forms for Single-Unit Linear Recursions

Since the variable connectivity of an expanded V-matrix corresponds to the variable connectivity
of the expanded recursive rules, the regularity of the expansions of a V-matrix corresponds to the

regularity of the expansion of its corresponding recursion. Thus, “when a single-unit V-matrix

reaches its stable level, the corresponding linear recursion reaches its stable stage" [HaZe92].

53

Definition. [HaZe92])
A linear recursion is stable at the S-th expansion if (1) it generates no new results for any
EDBs by further expansions (bounded recursion), or (2) it adds to the body of an expanded
rule the same set of EDB predicates U:connected to the same set of distinguished variables at

every further T expansions (periodicity).
Lemma 3-3. A single-unit linear recursion is bounded if its period T = 0. [HaZe92]
In Example 3-2, the recursion (B;) is bounded.

Lemma 3-4. The number of potential chains of a single-unit linear recursion is the number of
distinct DV-sets in the row [S+T] of its V-matrix, where S is the stable level and T is the period

of the V-matrix [HaZe92] .

In Example 3-2, the [S+T] row of the V-matrices indicates that (A;) has one potential chain, (C;)

has two potential chains , (D) has one potential chain and (F;) has one potential chain.

Each chain is a set of U-connected predicates that (1) repeats at every T expansions starting at
the S-th expansion, and (2) connects the columns corresponding to the DV-set in row[S] to

row[S+kxT].

Basically a chain acts like a bridgé that connects the corresponding chain variable positions
between expansions S and S+K#*T. The predicates in a chain must satisfy two connectivity
conditions: (1) The U-connection set of all the predicates in a chain must be connected to the
chain position variables on the Sth and S+Tth expansions. (2) The predicates in a chain must be

U-connected to each other.

54

The Chain Generating Rules:

1. Choose the set of chain predicates for each chain.

The set of non-recursive predicates generated from the (S+1)-th expansion to the (S+T)-th

expansion forms the "candidate set" of the chain predicates. This is because the same set of

predicates repeats at each T further expansion. However, if the candidate set of a chain does

not satisfy either of the two connectivity conditions, some of the predicates in the candidate

set should be replaced by their corresponding predicates in earlier expansions. The result is

called the "primitive set", which is the actual set of chain predicates.

2. Properly index the chain variables.

The chain variables need to be indexed properly to reflect the expansion regularity. There are

two general rules to form the head of a chain predicate:

The variables not shared with any predicates outside of the chain should not appear in the
chain predicate. The reason is that these variables are only "internal" to the chain, they do
not participate in binding information exchange between chains during iterative
processing.

The remaining variables should be indexed properly to reflect the information passing
between iterations. Considering the chain position variables in the recursive predicate of
the S-th .and (S+T)-th expansions, and name them the S-set and ST-set respectively. For
each variable in a chain predicate, the variable in the ST-set should have the same variable
name as the corresponding variable in the S-set but with the index increased by one. Some
variables may be in both S-set and ST-set, in such cases we extract a "thread" of variables
and name them according to the position in the thread. For example, if the S-set is [A, B,
Cl and the ST-set is [B, C, D], we find a thread "A - B - C — D", thus the variables A,

B, C, D should be renamed as X;, X;1, X+, Xj+3 respectively.

55

Definition. [HaZe92]
If the set of the variables at the (S+T)-th expansion is the same as the set of distinguished
variables of the head predicate, the corresponding potential chain is trivially true and the chain

«

is a "null chain".
Lemma 3-5. Following the chain construction rules, the chain predicates and their associated

variable names and indices are generated correctly [HaZe92] .

Algorithm 3-2. Generation of the compiled chain form for a single-unit linear recursion.
Input: A linear recursion r, its expanded V-matrix and its stable level S and period T.
Output: The compiled chain form of recursion R.

Method:

Case 1.T =0.
vThe recursion r is bounded and the compiled form is the union of the expanded exit rules
from O-th to S-th expansions. That is:
r(Uy, Vi, .., X)) = Eo(Uy, Vy, ., X v Ei(Uy Vi, ., XPu..
U Eg(Uy, Vy, ..., Xj).

Case 2. T#0, but the recursion contains only null chains.
The recursion r is bounded and its compiled form is the union of the k-th expanded exit
rules for 0 <k < S+T-1. That is: A
r(Ug, Vi, . Xy) = €U, Vp, ., Xp)we (U, Vi, . X o
U eg,.r.1(Ug, Vi, .., XD

56

Case 3. T #0 and the recursion contains some non-null chains.
The recursion is a single-chain or multiple-chain recursion with the following compiled
form: R =SS U (U ;4. (MM, CCi, TT)),
which consists of four portions: (f) pre-stable exit rule portion (SS), (ii) stable exit rule

portion (TT), (iii) chain-portion (CC) and (iv) miscellaneous portion (MM).

The SS-portion represents the pre-stable 'expansions, which is the union of Ey for k from

0 to S-1if S > 0 or empty otherwise. That is,

SS=U i 0ws1 8 (Ul’ Vi, s Xl)
.The TT-portion consists of the bodies of the exit rules contributing to the period of the .
recursion, which is the union from e, to e ;. That is:

TT = Uj=0 to T-1 ej(lji, Vl’ ceng Xl)'

The CC-portion consists of a set of non-null chains, represented by its chain form in the i-
th iteration. Each non-null chain predicate is generated following the chain generating

rules.

Finally the MM-portion is composed by the non-recursive predicates in the body of the
(S+T)-th expansion which are not chain predicates. Notice that the variables in these
predicates need to be adjusted if they are chain predicates, because such variables could be

involved in the chain in the next expansion. [

57

Example 3-4. Generating compiled chain forms of (A;) to (Fj).

For (A;), we have S=0 and T=1. The S-th expansion and (S+T)-th expansions are :

S-rule: r(X) :- (X).
ST-rule: r(X) - a(X, Xp), r(Xy).

Obviously, there is one chain and the chain predicate set is simply { a(X, X;) } which
connects r(X) and r(X;). Thus, the CC portion is a(Xj_;, Xj), the TT portion is ey(X;) while

SS portion and MM portion are &. Therefore , the compiled chain form for A; is: 1(Xy) = U

010 (@(Xi1, Xise0(Xi)).

For (B;), we have S=1 and T=0. The recursion is bounded, and the complied form is:

1(X) = ep(X) v)(X) = eo(X) L (a(X, X), eo(X})).

For (C,), we have S=0 and T=2. The S-th and (S+T)-th expansions are:

S-rule: X, Y) - (X, Y).
ST-rule: r(X’ Y) - a(X: Yl)’ a(Xl’ Y2)> r(X2’ YZ)’ b(Xl’ Y): b(XZ’ Yl)

The expanded V-matrix [Fig3-2(c)] shows that there two DV-sets in row[S+T}: {X} and

{Y}, thus there are potentially two chains.

Chainl connects variables on column[0] of the recursive predicates in the S-th and (S+T)-th
éxpansion, ie. X and X,, thus we have chainl: "ab(X, X;) - a(X, Y}), b(X,, Y;)." Chain2
connects variables on column[1] of the recursive predicates in the S-th and (S+T)-th

expansion, i.e. Y and Y5, thus we have chain2: "ba(Y, Y,) :- b(X}, Y), a(X;, Y,)."

58

The SS-portion and MM-portion are &, and TT-portion is ey(X;, Y;) v €1(X;, Y;) based on

variable renaming.

The compiled chain form for C; is:

rXp, Y0) = U i 10w (a1(Xiy, Xp), bai(Yy.1, Y5), (eo(Xi, Yi) v e1(Xi, Yi))).

For (D), we have S=1, T=1. Its S-th and (S+T)-th expansions are:

S-rule: (X, Y,Z) - a(X, Y), 1(Xy, Z, Zy), b(Xy, Zy).

ST-rule: r(Xa Y’ Z) - a(X’ Y)’ a(Xls Z): r(XZ’ Zl’ ZZ)) b(XZ’ ZZ)) b(Xl’ Zl)
There is only one DV-set in row[S+T] of the matrix, thus there is one potential chain. The .
chain should connect the variables on column[1] of the recursive predicate in the body of S-

rule and ST-rule, i.e. Z and Z;.

The candidate set of the chain is {a(Xj, Z), b(X,, Z,)} because they are newly generated in
the 2nd expansion. However, b(X,, Z,) is not U-connected to a(X;, Z), neither is it connected
to the chain variables Z or Z, thus it needs to be "swapped" with its corresponding predicate
in the 'previous expansions : b(Xj, Z;). The new set of chain predicates {a(Xy, Z), b(Xy, Z1)}
satisfies both connectivity conditions and is thus the primitive set of the chain. The chain is :

"ab(Z, Zl) - a(Xl, Z), b(Xl, Zl)‘“

The SS-portion is eg(X, Y, Z,), the CC-portion is ab(Z;, Z;+1), the TT-portion is ey(U, Z;, V)
and the MM-portion is a(X, Y), b(U, V).

The compiled chain form of D; is:
(X, Y, Zy) = eo(X Y, Zy) v
U 01000 (@(X, Y), b(U, V), abi(Z;_1, Z)), eo(U, Z;, V)).

59

For (F;), we have S=0 and T=1. The S-rule and ST-rule are:

S-rule: (X, Y) - X, Y).
ST-rule: (X, Y) - a(X, Xy, Y), b(Y, Yy), r(Xy, Yp).

There is one DV-set {X, Y} in row[S+T], thus it has one potential chain. The chain is

obviously "ab(X, Y, Xj, Y}) - a(X, X;, Y), b(Y, Y})."

Thus, the chain form of (F;) is:

r(XO,' YO) =V i=0to e (abl(Xl’ Yi’ Xi+l: Yi+l)’ eO(Xb Yl)) O

3.4.2. Normalization of Single-Unit Linear Recursions

Although the internal processing of a linear recursion is largely based on its chain form, it is not
very obvious when comparing to other rule rewriting methods, such as the Magic Sets method.
However, the compilation method based on V-matrix expansions can be viewed alternatively as a
query independent rule rewriting process, which transforms a complex linear recursion into a
normalized linear recursion. Furthermore, the generation of the linear normal form from its

corresponding chain form is quite straightforward.

The compiled chain form of a linear recursion is either a bounded recursion or an n-chain
recursion. A bounded recursion is already in linear normal form since it consists of only non-
recursive rules. A complied n-chain recursion can be transformed into linear normal form

composed of the following set of rules [HaZeLu93] :

1. A set of exit rules in the form of "r :- S.", where s is a disjunct in the SS-portion of the

compiled chain form;

60

2. One auxiliary rule in the form of "r :- M, P.", where m is the set of predicates in the MM-
portion which do not share variables with the TT-portion at the i-th expansion, and p is an
auxiliary predicate; ‘

3. One normalized linear recursive rule in the form of "p(X;, X, ..., Xp) - ci(X, Yp),
(X, Y3), -y cnXp, Yn), P(Yy, Yo, .., Yy). ", where ¢j, ..., ¢, is a set of chain
predicates which form the CC-portion of the compiled form; and

4. A set of stable exit rules in the form of "p :- M, T.", where T is a disjunct in the TT-

portion of the compiled chain form, and M' is the set of remaining predicates in the MM-

portion. [
Example 3-5. Transforming recursions (A;) to (Fy) into linear normal form :

For (A;), the recursive rule is already in normalized form. Thus the linear normal form of the

recursion is:
1(X) - eg(X).
(%) - a(X, Xy), i(Xy).

For (B,), it is a bounded recursion, thus its LNF is :

1(X) - e(X).
n(X) - a(X, X), eg(Xy).

61

For (C)), the recursion consists of two chains, and its SS-portion and MM-portion are &, thus the
linear normal form is:

X, Y) - e, Y).

X Y) - (X Y).

(X, Y) - ab(X, Xp), ba(Y, Yy), r(Xy, Yy).
. where ¢;(X,Y) is the first expanded exit rule "e;(X, Y) :- a(X, Yy), r(X}, Yy), b(Xj, Y)."; ab(X,
X;) and ba(Y, Y;) are two chain rules "ab(X, X)) :- a(X, T), b(Xy, T)." and "ba(Y, Y,) :- a(T,
Y, b(T, Y). "

For (D)), it is a single recursion, and its MM-portion consists of _two parts: MM; = {a(X, Y)}
which does not share variables with the TT-portion and MM, = {b(U, V)} which shares variables -
with the TT-portion. Thus, its linear normal form is:

(X Y,Z) - eg(X, Y, Z).

X, Y, Z) - a(X, Y), p(Z).

p(Z) - (U, Z, V), b(U, V).

p(Z) :- ab(Z, T), p(T).

Note: (D) is the same recursion in Example3-1, we already see that for some query forms, the
Magic Sets method may lose the binding information in its propagation, but if the rules are
rewritten into linear normal form, it can capture the binding information properly and pass it onto

further iterations.

- For (F;), the recursion is a single chain recursion and its linear normal form is:
r(X’ Y) - CO(X, Y)
(X, Y) - ab(X, Y, Xy, Yy), r(Xy, Yy). |
where "ab(X, Y, X;, Y}) - a(X, X}, Y), b(Y, Y)." and the variables < X, Y > and < Xj, Y; >

- form two variable vectors. (I}

62

3.5 Implementation of the Chain-Based Compilation Method

So far, we have discussed the concept and fﬂgorithrm of the chain-based compilation method. One
of the major contributions of this thesis is the implementation of the compilation process
discussed above. The compilation subsystem parses and compiles a complicated single linear
recursive rule cluster into a highly regular chain form, which provides the basis for further analysis

and evaluation [Chapter 4].

This section summarizes the implementation and discusses a compilcated example to illustrate the

process. Below is the flowchart of the overall design:

Linear Recursive Rule Cluster:r

Y
Parsing: Use Lex/Yacc to transform rinto |
the internal data structures:

Rule_Cluster, Rule,

Pred_Cluster, Pred

Var_List, Var

\/

V-Matrix Initialization:

V-Matrix Expansion }
(Generates Stable Level S and Period T) :

63

S_Rule := expand(r_rule, S)
ST_Rule := expand(r_rule, S+T)

Compilation

Find all the “threads” :
find_threads(S-Rule, ST_Rule, Vmatrix) ;j

Generate all the non-NULL chains:
find_chain_preds(S_Rule, ST_Rule, Vmatrix)

Figure 3-4. The compilation flow chart

The implementation consists of three major phases:

1. The parsing phase uses Lex/Y acc to parse the rule cluster and transforms it to internal data
structures for further processing.

2. The V-matrix expansion phase implements the V-matrix initialization rules, V-matrix
expansion rules and Algorithm3-1, which initializes and expands the V-matrix of the recursive
rule , and generates the stable level S and period T.

3. The compilation phase is based on Algorithm3-2, which generates the compiled chain forms
of the recursion. The main procedure of this part, find_chain_preds, is further broken down

into three parts:

64

Form a set of the candidate preds
of all the non-NULL chains:

find_candidate_set(S_Ruie, ST_Rule)

Form the candidate set for each 1
chain by partition the set generated |
above:
partition_candidate_set(S_Rule,

Form the primitive set for each

chain by swapping preds in the

candidate set with their

correspondences in earlier expansion

to satisfy connectivity:
confirm_chain_preds(S-Rule,

X)

Figure 3-5. The chain generating process.

The data structure "chain_form” for a k-chain recursion is defined as follows:

Near End: Exit Rules r{ Un, Vn, ..., Xn)

Chain_tail Chain_taii[k]
Ui+t Vi+1 Xi+1

Chain[0] (UI, Ui+1) Chain[1](V1, Vi+1) Chainfkipd, Xi+1)

ui Vi Xi
Chain_head[0] Chain_head[K]

Far End: Queries f{ U0, VO, ..., X0)

Figure 3-6. The internal data structure: Chain_Form

The compilation process is isllustrated by analyzing the following example:

Example 3-6.
(A, B, C, D, E) :- a(A, B), b(C, E), c(F, D), d(G, H), r(C, F, D, G, H). (ry)
r(A,B,C,D,E):-e(A,B,C,D, E). (rp)

<

Phase 1. Parsing.
The parsing phase reads in the two rules and forms a rule set. Notice that a set is different
from a list in that elements in a set are unordered. Thus, the order in which these two rules are
specified is not relevant to the processing part. Similarly, the body of each rule is defined

intérnally as a set of predicates, while the variables of each predicate form a list.

Phase 2. V-matrix Expansion.

Using the V-matrix initialization and expansion rules [3.2, 3.3], we have the following

expanded V-matrix for ry:

0o A B c D E
(11 {(CE} {D} {D} (G} {H}

21 {¢,D,E} ({(C,D,E} ({C,D,E} {G1} {H1}

Figure 3-7. The expanded V-matrix of Example 3-6.

66

. Considering the U-connection edges, row[1] = row{2]. Thus, we get the stable level S =1 and
the period T = 1.
Phase 3. Generate the compiled chain fom:.
Since¢ T # 0, we generate the S-th and (S+T)-th expansion of the recursive rule:
S_Rule: (A, B, C,D,E) :- a(A, B), b(C, E), c¢(F, D), d(G, H),
r(C, F, D, G, H).
ST Rule: (A, B,C,D,E) :- a(A, B), b(C, E), c(F, D), d(G, H),
a(C, F), b(D, H), c(F1, G), D(Gy, Hy),
: | r(D, F;, G, Gy, Hy).

By checking the row[S+T] of the expanded V-matrix, we find that there is only one set of
distinguished variables, i.e. {C, D, E}, which means that there is only one potential chain for
this recursion [Lemma 3-4]. The columns that this variable set resides indicate the chain

variable positions, which is columns 1, 2 and 3 in this case.

Next, we extract the "thread" of the chain, iie. the variable connection pattern from the
recursive predicate in the body of the S_Rule to that of the ST_Rule. In this case, the
corresponding variable sets are [C, F, .D] and [D, F{, G]. Thus, we have two "threads", i.e. "C |
-D - G" and "F - F". Since the threads are not cyclic, this is a non-NULL chain. Thus, we

will generate the chain form according to Algorithm 3-2.

The candidate set of the chain predicates consists of the predicates generated from the S-th
to (S+T)-th expansion, i.e. "a(C, F), b(D, H), c¢(F;, G), d(G;, H;)". However, this set does
not satisfy the second connectivity condition, because none of the predicates in this set is U-
connected to the others. Thus, some or all of the predicates in the candidate set must be

exchanged (or swapped) with their corresponding predicates generated in earlier expansions.

67

We swap c(Fy, G) with ¢(F, D), and d(Gy, Hy) with d(G, H). The new set of potential chain
predicates is now "a(C, F), b(D, H), (i(F, D); d(G, H)", which is (1) connected to the chain
variable sets {C, F, D} and {D, F;, G}, and (2) U-connected among its elements, because
there® exists a U-connection chain , "a(C, F) & c(F, D) «& b(D, H) « d(G, H)", which

connects all the member predicates. Thus, this is the primitive set of the chain predicates.

After examing which variables should appear in the chain definition, we have the chain defined
as:

‘abed(C, D, G) :- a(C, F), b(D, H), c(F, D), d(G, H).
Notice that, 6nly the chain predicates {C, D, G} appears outside of the chain in the (S+T)-th -

expansion, all other variables are internal to the chain.

After variable renaming and indexing, we have the final chain form defined as :

abcd(Xi_l, Xi’ Xi+1) - a(Xi_l, F), b(Xi, H), C(F, Xi)’ d(Xi+1: H)
Thus, the compiled form is [Algorithm 3-2]:

r(Av B, XO: Xl’ E) = e(Av B, XO’ Xl’ E)u (U i=0t0w(a(A, B), b(X07 E)> adei(Xi-l’ Xis

Xi+1), oXir2, Xiw1)s d(Gy, Hy), e(X;, Xiua, Xjvy, Gp, Hy))

The correctness of the compilation can be verified by comparing the expanded exit rules with

the corresponding rules generated by the chain form.

68

For example, when i=0, the rule generated by the chain form is "r(A, B, X, X;, E) :- a(A, B),
b(Xo, E), c(X,, X;), d(Gy, Hy), e(Xo, X3, X3, G, Hy)". It is the same as the first expanded
exit rule. When (i=1), the rule generat?d by the chain form is "r(A, B, X, X, E) :- a(A, B),
b(Xp, E), abcd(Xy, X;, X3), o(X3, Xy), d(Gy, Hy), e(X;, X3, Xy, Gy, Hy)", which is the
seconid expended exit rule. When (i=2), the rule generated. by the chain form is "r(A, B, X,
Xy, E) - a(A, B), b(Xo, E), abed(Xp, Xy, Xy), abed(Xy, Xg, X3), c(Xg, Xa), d(Gy, Hy), (X,

X4, X3, G, Hp)", which is the third expanded exit rule, etc.

To summarize, the rule generated at the i-th iteration of the chain form is the (i+S)-th
expanded exit rule, and the exit rules before the stable stage are covered by the SS portion of
the compiled form. Thus, the compilation is complete. Moreover, by compiling the recursion -
into chain forms, the information passing between iterations is made clear, which greatly
facilitates systematic analysis [Chapter 4]. Below is the compiled chain form représented by

the internal data structure "Chain_Form" :

Near End: r(Xi, Xi+2, Xi+1, G1, H1)

MM1 :- ¢(Xi+2, Xi+1), d(G1, H1).
Chain_tail (Xi, Xi+1) b

Chain(Xi-1, Xi, Xi+1) :-
a(Xi-1, F), b(Xi, H), ¢(F, Xi), d(Xi+1, H).

Chain_head(Xi-1, Xi)

MMO :- a(A, B), b(X0, E).

FarEnd: (A, B, X0, X1, E)

69

Chapter 4
Evaluation of Functional Nested Linear Recursions
In Chaptér 3, we discussed how to compile a function-free single linear recursion into chain forms
and linear normal forms. In this chapter, we will discuss the query evaluation process based on the
compiled forms and the extension -of the chain-based compilation and evaluation method to the

domain of functional nested linear recursions.

The major contribution of this part is the extension of the compilation, analysis and evaluation
algorithms to the domain of functional nested linear recursions, which will be illustrated by a .
detailed discussion of the n-queens problem[HaLu92]. However, for the purpose of completeness
and ease of understanding, the algorithms on the analysis and evaluation of functional recursions
are also included [4.1,4.3,4.4]. Detailed studies in these areas are provided in [Han92, Han91a

“and HaWa91], the discussion in this Chapter focuses on implementation aspects.
4.1. From Function Free to Functional Recursions

In the discussion of Chapter 3, the assumption was made that all base relations are finite EDB
relations. However, in many real life déductive database applications, functions (especially
relational, arithmetfc and list functions) are encountered frequently. The airline information system
(Example 2-6) is one such applicatién. Because of this, we need to generalize the applicable
domain of the chéin-based compilation and evaluation method to include functions in the rule

definition and query processing.

70

Example 4-1. A typical linear recursion with list functions, append(L, L,, L3) is defined as:
append([}, L, L). ()
append([X|L1], Ly, [X|L3]) :- append(Ly, Ly, L3). (r2)

- We will ‘use this example extensively to illustrate the analysis and evaluation of functional

recursions.,

To compile such functional recursions, we need two preprocessing steps to rewrite the rules:
(1) function-predicate transformation: This maps a function together with its functional
varfable to a predicate (called functional predicate), where the functional variable is the

variable which unifies the returned value(s) of the function.

That is, each function of arity n is transformed to a predicate of arity n+1, with the last

argument representing the unifying variable.

For Example 4-1, the rules (r;) and (r,) are rewritten as (r;') and (r,") after the function-
predicate transformation: |
append(Y,L,L) :- Y=]] (Y]

append(U, Ly, W) :- append(L;, L, L3), cons(X, Ly, U), cons(X, L3, W). (r2)

(2) rectification: Logical rules in different forms are rectified to facilitate the compilation and
analysis. The rules for predicate p are rectified if all the functions are mapped to the
corresponding functional predicates by the function-predicate transformation, and all the

heads of the rules are identical and of the form p(X], ..., Xj) for distinct variables X, ..., Xj.

71

After rectification, the "append" cluster becomes :

append(U, V, W) :- U=[], V=W. (r1")
append(U, V, W) :- append(U,;, V5 W)), cons(X;, Uy, U), cons(X}, Wi, W). (")

<

Now, using the compilation technique discussed in Chapter 3, the recursion "append" can be

compiled into the following chain form:

append(Uy, V, Wy) =
Ui=0tooo ((COHS(Xi, Ui+1’ Ui),COHS(Xi, Wi+1’ Wl))l ’ Ul = [], Wl =V)

4.2. Compilation of Nested Functional Linear Recursions

We further generalize our domain of discussion to functional nested linear recursions:

Definition [Hal.u92].
A rule is linearly recursive if its body contains exactly one recursive predicate, and that
predicate is defined at the same deduction level as that of the head predicate. A rule is nested
linearly recursive if its body contains more than one recursive predicate but there is exactly
one defined at the same deduction level as that of the head predicate. A recursion is linear if
it consists of one linearly recursive rule and one or more non-recursive exit rules. A recursion
is nested linear if every recursive predicate in the recursion is defined by one nested linearly
or linearly recursive rule and one or more non-ecursive rules. A recursion is function-free if

it does not contain function symbols; otherwise, it is functional.

72

Example 4-2. The n-queens problem:
(q1) nqueens(N, Qs) :- range(l, N, Ns), queens(Ns, [], Qs).

(1) range(M, N, [M|N]) - M <N, M is M+1, range(M;, N, N,).
(1) rangeN,N,[N).

(q4) queens(Unplaced, safe, Q) :- Select(Q, Unplaced, Unplacedl),
not attack(Q, Safe),

queens(Unplaced;, [Q]Safe], Q).
(95) queens([], Qg Qy)-

(g6) -attack(X, X) :- attk(X, 1, X,).

(@) attk(X, N, [Y|Y]) - Xis Y+N.
(qg) attk(X, N, [Y] Y]) - X is Y-N.
(q9) attk(X, N, [Y | Y{]) - Ny is N+1, attk(X, Ny, Y).

(q10) select(X, [X | X], X).
(1) select(X, [Y | Y], [Y | Zg]) :- select(X, Y, Zy).

The n-queens problem is a functional nested linear recursion because the IDB predicate "nqueens"
is defined by one linear recufsion "range" and one nested linear recursion "queens", while both
recursions contain function symbols. The compilation of such a recursion is performed by first
transforming it into a function-free recursion using the function-predicate transformation
[Han92], and then compiling the recursions at every level by treating every lower level IDB

predicates as EDB predicates [HaLu92].

73

The n-queens program is normalized as follows. Notice that cons(M, Ns, MNs) is a built-in list -

construction predicate indicating MNs = [M | Ns].

nqueens(N, Qs) :-range(l, N, Ns), ciueens(Ns, [], Qs).

range<(M, N, MNs) :- M<N, M, = M+1, cons(M, Ns, MNs), range(M;, N, Ns).
range(M, N, MNs) :-M =N cons(N, [], MNs).

queens(U, S, Qs) :- select(Q, U, Uj), not attaék(Q, S), cons(Q, S, S;),
| queens(Uy, Sy, Qs).
queens(U, S,Qs) - U=[], S=Qs.

attack(X, Xs) :- attk (X, 1, Xs).

attk(X, N, YYs) ;- X=Y +N, cons(Y, Ys, YYs).
attk(X, N, YYs) :- X=Y - N, cons(Y, Ys, YY5s).
attk(X, N, YYs) :- cons(Y, Ys, YYs), Ny =N+ 1, attk (X, Ny, Ys).

select(X, YYs, YZs) :- cons(X, YZs, YYs).
select(X, YYs, YZs) :- cons(Y, Ys, YYs), cons(Y, Zs, YZs), select(X, Ys, Zs).

By normalization, the chain-predicate(s) of each recursion and their variable connections are made

explicit :

The recursion range(M, N, MNs) is a single chain recursion. The variables M and MNs in the
head predicate are connected to the corresponding variables M; and Ny respectively in the
recursive predicate in the body via the chain predicates " M < N, M; = M + 1, cons(M, N,
MNs)". The variable N is an exit variable (the variable in the corresponding argument positions

of the recursive predicates in both the head and body of the rule) [Han89b].

74

Similarly, queens(U, S, Qs) is a single chain recursion where Qs is an exit variable, while U and
S in the head are chain variables connected to U; and S, in the recursive predicate in the body

through the chain predicates "select(Q, U, Uj), not attack(Q, S), cons(Q, S, S;)".

Also, select(X, YYs, YZs) is a single chain recursion with X as an exit variable, while YYs and
YZs in the head as chain variables connected to Ys and Zs in the body via the chain predicates

"cons(Y, Ys, YYs), cons(Y, Zs, YZs)" .

Finally, attk(X, N, YYs) is a double chain recursion with X as an exit variable, while N and YYs
in the head are chain variables connected to N; and Ys in the body via the chains "cons(Y, Ys,

YYs)"and "Ny =N+1". [0
4.3. Query Analysis on Compiled Functional Nested Linear Recursions

For functional recursions, we have the extra phase of query analysis between the compilation
and evaluation phases. The reason is that without the consideration of functions, we can safely
assume all the base relations involved are finite. Thus, using the semi-naive evaluation method, the
intermediate relations generated at each iteration are finite and the evaluation will terminate in
finite steps. Howevéf, with functions being considered as part of the base relations, we are facing

the possibility of having infinite intermediate relations or non-terminable evaluations.

The compilation of a functional linear recursion greatly facilitates. its analysis. Since many
functional predicates are built-in predicates(e.g. arithmetic, relational and list functions) defined
on infinite domains, the analysis must ensure that query evaluation can generate all the result set
and terminate lproperly. Two major issues must be examined in the analysis phase: (1) finite

evaluability, that is, the evaluation is performed on finite relations and generates finite

75

intermediate relations at each iteration, and (2) terminability, that is, the evaluation generates all
the answers and terminates in finite number of iterations.

Other enhancements, such as the detailed analysis of data types, can improve the efficiency of
evaluation[HaLu92]. However, such enhancements will not affect the evaluability of a query and

are therefore not discussed in this thesis.
4.3.1 Finite Evaluability of Functional Recursions

The justification of finite evaluability relies on both query information and ﬁnitenes§ constraints.
A finiteness constraint, XY, over a predicate r implies that each value of attribute X .
corresponds to a finite set of Y values in r [Han92]. Finiteness constraint is strictly weaker than
the functional dependency studied in database theory [Ullm89a). It holds trivially true for all finite
predicates. Since all the EDB relations are finite, all the arguments in EDB relations satisfy the
finiteness constraint. In a functional predicate X, ..., X, V), if all the domains for arguments
X;, ..., X, are finite, V must be finite no matter whether f'is a single or multiplé valued function,

that is, (X, ..., X,) > V.

Specific finiteness constraints should be explored for specific functions. In many cases, one
argument of a function can be computed from the values of the other arguments and the value of
the function. For example, in the functional predicate HX, Y, Z) (i.e. "X+Y = Z"), any argument
can be finitely computed if the other two arguments are finite. Such a relationship can be
represented by a set of finiteness constraints, sugh as (X, Z)-»Y, and (Y, Z)»X. An important
finiteness constraint, Z—>(X,Y), holds in the functional predicate cons(X, Y, Z), which indicates if

the list Z is finite, there is only a finite number of choices of X and Y [Han92].

76

Since query constants may bind some infinite domains of variables to finite ones, the analysis of
finite evaluability should incorporate query instantiation information. Similar to the notations used
in the Magic Sets transformation [BaRa86, Ulim89a], a superscript b or fis used to adomn a
variable to indicate the variable being bou;1ded (finite) or free (infinite), and a string of b's and f's

is used to adorn a predicate to indicate the bindings of all its arguments.
Algorithm 4-1. Testing the finite evaluability of a query in an n-chain recursion [Han92] .

Input.
(1)*An n-chain recursion consisting of an n-chain recursive rule and a set of exit rules, (2) A
set of finiteness constraints, and (3) query instantiation information.

Output. An assertion of whether the query is finitely evaluable.

Method.

1. Initialization: A variable is finite if it is in an EDB predicate or is equivalent to one or a
set of constants. _

2. Test the finite evaluability of (1) the exit rule set, and (2) the first expanded exit rule set
(the rule set obtained by unifying the n-chain recursive rule with the exit rule set). This is
done by pushing the query binding information into the rules being tested and
propagating the finiteness bindings iteratively based on the following two finiteness
propagation rules: (i) If there is a finiteness constraint (X;, ..., X;) » Y and XD (for 1 <
i< n), then YY; and (ii) if (X = Y or Y = X) and X?, then Yb.

3. Return yes if every variable in the two sets of rules being tested is finite after the

finiteness binding propagation or no otherwise. 0

Theorem 4-1. Algorithm 4-1 correctly tests the finite evaluability of an n-chain recursion in O(k)

time, where k is the number of predicates in the recursion [HaWa91] .

77

Example 4-3. For the recursion "append" defined in Example 4-1, we have 23 = 8 possible query
binding patterns for the head predicate append(U, V, W), the adornments are: bbb, bbf, bfb, bff,
fbb, fbf, fib and fif.

To analyze the finite evaluability, we consider the exit rule and the first expanded exit rule:
append(U’ V’ W) -U= []’ V=W. | (eO)
append(U, V, W) :- cons(X, Uy, U), cons(X, Wy, W), Uy =[], Wy = V. (ep)

We go through the analysis of two cases as examples :

Case 1. Queries with the binding. pattern fib, such as " 7- append(U, V, [a, b, c])."

For e, the initial set of finite variables is {U, W}, U is finite because it equals to the constant
“[1", W is finite because it is instantiated in the query. In the propagation of the binding

information, V is also finite because V=W and Wb.

For E|, the initial set of finite variables is {W, U;}. The finiteness is then propagated as
follows: (1) X and W, are finite because WP and there is the finite constraint "W—(X, W;)"
because "cons(X, W;, W)"; (2) V is finite because Wb and V = Wy; (3) finally, U is finite

because of the constraint "(X, 'Ul) — U"in "cons(X, U, U)".

We have proved that all the variables in e, and e, are finite after binding propagation, and thus
query appendfl® is finitely evaluable. Notice that the order of finiteness propagation is very
important in deciding the evaluation order of the predicate, as we will see in the query

evaluation phase [4.4].

78

Case 2.Queries with the binding pattern fbf, such as " ?- append(U, [1, 2], W)."

For ¢, we have the initial finite variable set {U, V}, and then W is finite because W=V and
Vb

For e,, the initial finite variable set is {V, U;}, we can have the binding information
propagated to W;b because Vb and V = W,. However, the finite set {V, U;, W;) can not be
extended any further with the predicates "cons(X;, U, U)" and "cons(X;, Wy, W)". Thus, the
query is not finitely evaluable.

Notice that once we come to the conclusion that the query is not finite evaluable, the analysis .
is terminated without actually getting into the evaluation phase, and thus eliminates the
possibility of getting into infinite loops. This is one of the valuable aspects of this evaluation

“ method.

Following the same process, it can be easily proved that among the eight possible binding patterns

of queries on append, only three cases : bff, fbf and fif are not finitely evaluable [Han92]. [J
4.3.2. Termination of Query Evaluation

The second important part of query analysis on functional recursions is its terminability. Finite
evaluability guarantees that intermediate relations at each iteration are finite, but this does not
mean that the iterative processing will terminate in finite steps. To analyze the terminablity of the

N

processing of a recursive query, we need to consider the "monotonicity constraints".

79

Definition.
A monotonicity constraint is a relationship r;) r;, (") " represents a partial order), where r;
and r; are two arguments. The constraint holds for r; and r; if apc_i only if r; is strictly greater

<

than r; according to the partial order ")".
Monotonic behaviour is typical in arithmetic functions, list functions and relational functions.
Such behaviour should be used in query analysis and evaluation to determine the termination of

the iteration.

Some examples of monotonic constraints are[Han92]:

1. An acyclic EDB relation is a partially ordered relation, and can be considered as a.
monotonicity constraint.

2. An arithmetic operation often implies the monotonicity of a function. For example, F; + F, =
F3 implies that F3 > Fy and F3 > F, .

3. The monotonicity of a list function is usually associated with the growing and shrinking of its

length. For example, cons(X, L;, L,) implies that length(L,) > length(L,).

The process of evaluating a compiled linear recursion is essentially the iterative processing of a
- growing sequence of chain elements. An argument in the chain predicate is monotonic if its value
has certain monotonic behaviour as the number of iterations increases. The query evaluation
process terminates if there exists a termination restraint which blocks the growing or shrinking
of the monotonic argument. A termination restraint can be provided by a query, an EDB relation
or the natural constraints provided by the semantics of an argument, such as : " for any list L,

length(L) > 0".

Notice that, since each chain has two ends, the far end (which shares variables with the query)'

and the near end (which shares variables with the exit rules), it can be evaluated in two

80

directions, i.e. from the far end to the near end, or vise visa. Thus, we need to first decide which
direction to proceed for each chain. The main factors need to be considered are : (1) which end is
more selective and (ii) whether the processing can terminate properly following this direction.

These analysis are done before the evaluation part. Actually we are generating an "execution plan"

for every-query before evaluating it. This again shows the systematic approach of this method.
Example 4-4. The queries on "append" are terminable if it is evaluable.

We study one simple case here, the general algorithm will be discussed in [4.4.1] when we

considet the chain-splitting evaluation of functional recursions.

Consider the query pattern append®® | representing queries such as "?- append([a,b},V, [a,c,d])." .
We will see that the evaluation should follow the chain "cons2(U;, W;, Ui+, Witp) - cons(Xj,
Ui+1> Uy, cons(Xy, Wirq, W;)." from the far end to the near end, i.e. from (U;, W;) to (Ui,

Wis1) .

Because of the monotonic constraint that * if cons(X, L, L,), then length(L;) < length(L,)", we
have "length(Uj.y) < length(U;)" and "length(Wi4;) < length(W;)", which means that the length of
the lists U; and W; shrinks when the iteration number i increases when proceeds from the far end
to the near end. Moreover, at the other end of the chain (the near end in this case), we have the
termination restraint that "length(U;yq) = 0" because “Ujy; = []" , which would block the

shrinking of U;. Thus, the evaluation is terminable. O

This example shows that the terminability is associated with the following aspects: (1) the
processing direction of the chains; (2) the monotonic behaviour of the arguments in the driving
chains (chains evaluated in the forward process of evaluation in the case of multiple chains); and

(3) the termination restraint on the terminating end of the driving chains.

81

4.4, Generating the Evaluation Plan for Functional Linear Recursions

.

In this section, we examine the process of generating the evaluation plan for a functional linear

recursior: Before getting into the details, here is a diagram of the complete process:

Adorned Query Linear Recursive Cluster
i
—— | Pre-Processing
Yes Y Yes |
Y | Query Independent Compilation
benerate plan1: far to near endl
<'» Yes Generate Plan2: near to far end |

No
be’nerate Plan2: near to far enc}

Plan = select_from
l (Plan1, Plan2)

v ¥
Y

Evaluate According to the
chosen Plan

i Plan = Pianz

Figured4-1. Diagram of Complete Chain Based Query Evaluation Method

The goal of this section is to generate an efficient query plan based on the input of (1) the
compiled chain form of a recursion, and (ii) the query binding information. Three major issues will
be discussed : (1) chain-following vs. chain-splitting; (2) existence checking vs. query closure; and

(3) constraint pushing techniques.

82

4.4.1. Chain-following Evaluation vs. Chain-splitting Evaluation

A function-free n-chain recursion can be processed in three processing direction

combinations[Han89b] :

Near End

Near End Near End

Ai+ Bi+1 Ci+t

A { S |
Ai Bi Ci
Far End
(a) Up_Down

Ai+ Bi+1 Ci+1 Ai+1 Bi+1 Ci+1
pob L T
Ai Bi Ci Ai Bi Ci
~ ~ Y
“Far End Far End
(b) All_Up (é) All_Down

Figure4-2. Multi-Way Counting Method

1. Up-Down: start at the far end of some chains (the driving chains), climb up to the center,

- unify with the exit rules, and then step down along the remaining chains (the driven chains). In

this case, the far end (or query end) is the "starting end" of the evaluation.

2. All-Up: start from the far end and synchronously climb up to the near end along all the chains.

Obviously, the far end is the "starting end" and all the chains are "driving chains".

83

3. Al-Down: start from the near end and synchronously step down to the near end along all the
chains. In this case, the near end is the "starting end" and again all the chains are "driving

chains".

There are many factors which influence the selection of processing directions, e.g. the selectivity
of query constants, the size of the EDB predicates, the join selectivity of chain elements. Among
these, the selectivity of the two ends plays a major role in quéntitative analysis. For example, the
Up-Down strategy should be used if the query end provides highly selectivity at only some of the
chains. The All-Up processing should be used if the query provides high selectivity oh all the

chains, while the All-Down is used when the exit rules provides high selectivity on all the chains.

This method is called chain-following evaluation, and is applicable to all function-free n-chain

recursions in a way similar to a generalized counting method [Han89b].

The chain-following evaluation method is also applicable to functional recursions if every
predicate in a chain evaluation path is immediately evaluable. However, depending on the
recursions and the available query bindings, some functional predicates in a chain generating path

may not be immediately evaluable.

In this case, a driving chain may need to be partitioned into two portions: an immediately
evaluable portion and a buffered portion[Han92]. The immediately evaluable portion is evaluated
from the "starting end" of evaluation, while the evaluation of the buffered portion is delayed until
the other end is reached and sufficient binding information is obtained. (Notice that the recursion

must be finitely evaluable in the first place.)

The evaluation of the buffered portion of a driving chain is very similar to that of the driven

chains, except that the shared variables between the immediately evaluable portion and the

84

buffered portion of a chain must be "buffered" in the forward process and combined into the

computation in the backward process.

<

Such evaluation technique is called the chain-split evaluation [HaWa91].

<

"Example 4-5. Case study of the evaluation of "append".

From the compilation, we know that the recursion "append" is a single chain recursion. The chain
is defined as "cons2(U;, Wi, Ui+1, Wi+) - cons(X; Ui+1, Uy, cons(X, W1, W;).". The "head"
of the chain cons2 is "cons2(U;, W;)" while the "tail" of the chain cons2 is "cons2(Uj+, Wis+1)";
the far end is < U, W, > and the near end is < U, W, >. V is an "exit variable" which is in both .

the far end and the near end.
We study the evaluation. plan'{of two queries against append:

Casel. Queries with the adorned predicate appendd®(Uy, V, W), such as "?- append([a, b], V,
[a, b, c])." |

The far end is "append®®(Up, V, Wp)", thus, the head of cons2 is "cons25(U;, W;)". The near
end is "append®®(U,, V, W,)" (U, is bounded because "append(Uy, V, Wp) :- U, =[], V=

W,." and "[]" is a constant), and thus the tail of cons2 is "cons2P{(Uj.;, Wiip)".
Since this is a single chain recursion, it should be processed either all-up or all-down:

All-up: Starts from the chain-head, considering the iteration i: we have the chain-head
cons2bb(U;, W;). Propagating the binding to the body of the chain, we get consfo(X, Uiy,

U;), consb®™(X, W;;;, W;). According to the finite evaluability constraints of "cons", both

85

functional predicates are immediately evaluable, which generates the tail of the chain
cons2%(U;, 1, Wiy). Notice that the "tail" of iteration i is the "head" of iteration i+1, and the
variable X is “internal" to the current iteration which does not need to be “remembered" in

&

further iterations.

The analysis shows that all-up evaluation of cons2 is feasible in that it generates finite
intermediate relations in each iteration. Next, we must check the terminability of the
evaluation. Notice that in the all-up process, we have the monotonicity constraints :
"length(Uiﬂ)‘ <length(Uj)" because U; and Uj,y satisfy the predicate "cons(X, U4, Up)". By
checking the other end of the chain, we have the constraint "U, = []", which means
"length(U,) =0". Cdmbine these two aspects, we have the termination restraint: "length(U;4) .

=0" and the iteration terminates when the restraint is satisfied.

So far we have proved that append®®(Uy, V, W) is (1)finitely evaluable and (2)terminable if
evaluated all-up. Thus all-up is a valid direction of evaluation and an evaluation plan is

“generated that a chain following strategy should be used.

All-down: Similarly, we analyze the all-down evaluation process. Starting from the near end,
we have the chain tail as "cons2bf(Ujy;, Witp)". Propagating the constraints into the chain
body, we have consi(X, Uj, 1, Uj), consf(X, W;,;, W;), none of the two function predicates
are finitely evaluable. Changing the ofder does not help either. Obviously, this is not a valid

evaluation direction.
The conclusion is, to evaluate appendb®(Uy,, V, W), we should follow the chain “cons2(Uj;,

Wi, Uis1, Witp) :- cons(X, Ujyy, Uj), cons(X, Wiy;, W;)." bottom-up (from <U;, W> to

<Uj+1, Wj+1>) using partial transitive closure algorithm .

86

The evaluation process of query "?- append([a, b], V, [a, b, c])." is shown as follows[Han92]:

?- append([a’ b]! Vy [a' c, d])

T~

s U0=U=[a, b] WO0=W=[a, c, d]
cons(X1, U1, UO) cons(X1, W1, WO0)
X1=a, U1=b X1=a, W1i=[c, d]
cons(X2, U2, U1) : cons(X2, W2, W1)
X2=b, U2=[] X2=c, W2=[d]

. T~

Contradictory(terminate)

Figure 4-3. The evaluation of query " 7- append([a, b], V, [a, b, c])."

Case2. Queries with the adorned predicate appendff(U,, V, W), such as "?- append(Uy, V, [a,
b])." ' '

The far end is "append®(Uj, V, W)", so the head of cons2 is "cons2fo(U;, W;)". The near
end is "append®X(U,, V, W,)" (U, is bounded because "append(Uy,, V, W) :-U, =[], V=

W,." and "[]" is a constant), and thus the tail of cons2 is "cons2bf(U;, 1, Wj+1)".

Using the same analysis method as in Case 1, we can see that following the chain either all-up
or all-down will leave some or all function predicates on the evaluation path not immediately
evaluable. However, the two directions are different: in the all-up evaluation, part of the chain

is evaluable while in the all-down evaluation, none of the chain predicates are evaluable.

87

Thus, chain-splitting must be applied to the all-up evaluation as follows:

The chain "cons(X;, Uj+1, U;), cons(X;, Wi+, W)" should be partitioned into two portions:
the immediately evaluable portion "co;nsﬁb(Xi, Wi+1, Wp" and the buffered portion "cons(Xj, .
U415 Up". The evaluation follows the immediate portion, which generates and buffers the
value set < Wj1, X > for each iteration i . When the termination condition (length(W i+ =0)
is satisfied, the far-end to near-end processing stops and the set of W;;; generated in each
iteration is unified with the exit rules which provides binding for V (W1 = V) and Ujy; (Ui
= []). Next, the near-end to far-end processing starts which evaluates the buffered portion of
the*chain with the adornment "consb®i(X; U;,;, U;". Notice that the values of X; are -
generated and buffered during the first phase of process, while the bindings for Ujy; is.

obtained from the near end.

The evaluation process of "?- append(U, V, [a, b])." is shown as follows [Han92] :

?-append(U, V, [a, b))

\

WO =W = [a, b]

U=U0=[], V=WO0=[a,b] — l

cons(X1, W1, W0),
X1=a, W1=[b]

u1=[], v=W1=[b] 1
/ cons(X2, W2, W1),
U=U0=[a]’ X2=b, lW2=[]

cons(X1, U1, U0)
u2=[], v=w2=[]
-—

U1=[b], cons(X2, U2, U1)

/
U=U0=(a, b], cons(X2, U2, U1)

Figure 4-4. The evaluation of the query "?- (U, V, [a, b])." O

88

The above discussion is summarized into the following algorithm:

Algorithm 4-2. Chain-split evaluation of a single-chain recursion [Han92, modified] .
Input. A query and a compiled functional ;ingle-chain recursion.

Output. A query evaluation plan which applies the chain-split evaluation.

Method.

1. If every predicate in the chain generating path is immediately evaluable, the query can be

evaluated without chain-split evaluation.

2. Otherwise, suppose (i) the chain is partitioned into two portions according to the available
query bindings: an immediately evgluable portion p and a buffered portion q; (i) p and q share .
the variable vector X; on the i-th iteration; and (iii) the chain variables for p and q are U; and

W; respectively, the evaluation proceeds in the following two phases:

(1) Phase 1 :
i=0; U; = the initial set from the starting end;
- For iteration i, do
begin
If U; matches the termination restraint, k = i, break;

else begin

1) evaluate the immediate portion p based on U; :
compute the values Xj and Uj,y;

2) buffer the set <i, Uj, X; >;
314+ Uj=Ujyy;

end,

end;

89

(2) Phase 2 :
Fori=kto Odo

begin
j=i; ‘
< while (j >0) do
begin
1) unify U; with the other end and compute the value W ;
2) compute the buffered portion based on < X;, W; > and generate the
value for W; y;
) 3) j=i1; Wj=Wjy;
end;
add WO to the result set;
end; - Qa

4.4.2. Query Closure vs. Existence Checking

The evaluation methods we have discussed so far are based on the evaluation of query closures.

However, in some cases, the computation of the entire query closure is not necessary.

As in Prolog, we differentiate two types of distinguished variables: an inquired variable (whose
value is required by the query) and an un-inquired variable (whose value is not inquired by the
query, denoted in Prolog by starting with an underscore, such as " X"). For example, if we have a
query "?- ancestor(a, X).", we do not check the whole result set of a's ancestor, the computation
should terminate (and return TRUE) if one of a's ancestor is found during the search. This type of

computation is called existence checking.

90

In chain-based evaluation, there are two ends for each chain. In most cases, the evaluation should
start at a more selective end and proceeds towards the other end of the chain. The evaluation
computes the intermediate relations for each iteration using the query closure algorithm, and the

[y

computation stops when no more new results can be generated or some termination restraint is

satisfied.<

However, if the variables at the other end of the chain are not inquired, the computation could
terminate whenever a value that satisfies the predicate is found. Applying existence checking in
the chain-based evaluation method was first discussed in the evaluation of function-free linear

recursions [Han89b], which is also applicable in the case of functional recursions. [Han92]

4.4.3. Constraint-Based Evaluation

The constraint based evaluation is another enhancement on the chain-based evaluation method.
The idea is to combine query constraints into the evaluation in an earlier stage.

A query constraint usually adds constraint information to an IDB predicate. In a n-chain
recursion, query constraints can be enforced at both ends of a compiled chain. It might be quite
straightforward to push these constraints into the starting end of a chain, but with some special
consideration, they can also be pushed into the terminating end of a chain, which usually helps to
terminate the processing at an earlier stage. Detailed discussion is provided in [Han91a]

With some generalization, we have the following algorithm [Han92, modified] :

Algorithm 4-3. Chain-based query evaluation of a compiled functional single-chain recursion.
[Figd-1]

Input. A compiled functional single-chain recursion, a set of integrity constraints and a query.

Output. A chain-based query evaluation plan.

91

Method.
1. Test whether the query is finitely evaluable(Algorithm 4.1). If not, terminate.
2. Generate query evaiuation plans : |
for each of the two directions do «
begin

for each chain of the recursion do

begin
- (1) partition the chain into two portions : the immediately evaluable portion
and the buffered portion. (Notice that for EDB relations, the buffered portion
is always empty.)

(2) If the immediately portion is not empty: check the terminability of the
evaluation on this portion. Basically this involves checking the monotonicity
behaviour of the chain variables against the terminating end to form a

termination restraint.

If the evaluation is not terminable, break from the inner for loop. Otherwise,
this is a valid driving chain on this direction.
end; /* the inner for loop */

if the set of driving chains is empty
then this is not a valid evaluation direction
else this is a valid evaluation direction, generate an evaluation plan.

end; /* the outer for loop */

3. If there is at least one valid evaluation plan, evaluate the query:
(1) If both directions are valid, choose the one that is more efficient based on the relative
selectivity of the two ends.
(2) If the finishing end is not inquired, apply the existence checking method, otherwise,

apply the query closure method.

92

(3) Push the query constraints as early as possible according to the constraint-based
evaluation algorithms. [Han91a]

(4) Return the result set.
Otherwise, print error message and terminate. (Notice that this eliminates the possibility of
getting into infinite loops.) [

4.5. Evaluation of Nested Linear Recursions: the n-Queens Problem

Now that we have shown the advantage of using the chain-based evaluation method, that is, a
systematic approach of evaluating functional linear recursions in a declarative and set-oriented
way, we must have also noticed its weakness: the limited applicable domain of this method

compated to general recursion handling systems, such as Prolog.

Our goal in this section is to push the applicable domain of the chain-based compilation and
evaluation method further to functional nested linear recursions. Although the essential algorithms
are mostly the same as the algorithms applied to single-layer recursions, this extension makes the
method applicable to many more real life applications.

The basic idea of the extension is to process recursive predicates according to their "recursion
level". Lower level recursions are treated as EDB predicates from the view of higher level
predicates. A typical example : the n-queens program is used to show how the method works
[HaLu92] .

The n-queens problem (Example 4-2) is a classical example used in the study of logic
programming, constraint satisfaction and search methodologies. In [4.2], we have discussed how
to compile nested linear recursions such as the n-queens problem into chain forms. In this section,
we show the analysis and evaluation of this problem based on the compiled form and the query
constraints.

Our study shows that the chain-based query analysis method generates efficient query evaluation
plans not only for typical query bindings such as "?- nqueens(4, Qs).", but also for other kinds of
queries, such as " 7- nqueens(N, [2, 4, 1, 3])" or "?- nqueens(N, [3, X, Y, 2])". Moreover, for
queries that are not safe (not generating finite result sets), such as "?- nqueens(N, [2 | L])", the
query processing terminates after the query analysis phase which detects the infiniteness and

terminates by returning a warning message before getting into any infinite loops.

93

nqueens{N, Qs}

queens(U,S,Qs) .

v

CSelect(X YYs Yz >
S

é

Figure 4-5. The recursive levels of the n-queens problem

Example 4-6. The analysis and evaluation of the n-queens problem[{HaLu92].
Case 1. Queries with the adornment nqueensPf(N, Qs), such as "?- nqueens(4, Qs)."
Firstly, we propagate the query bindings and get evaluation plans for each predicate:

The binding "bf" for nqueens leads to the adorned rules: "nqueensbf(N, Qs) :- rangebbf(1, N,
Ns), queensb(Ns, {1, Qs)." or "nqueensbf(N, Qs) :- queensf(Ns, [], Qs), rangebbb(1, N,
Ns)." However, analysis on the predicate "queens" shows that queens®f is not terminable in
the evaluation of either direction, so we must evaluate the predicate "range" first. Notice that
the analysis is done by the system and the order in which the rules are specified does not affect
the evaluation process. This is the declarativeness that we want to achieve.

94

Using the same binding propagation technique, we have the adorned rule cluster as follows:

(q;) nqueensbf(N, Q) :- rangebbf(1, N, Ny), queensbbf(N, [], Q).

(q2) rangei(M, N, MNy) - « <OO(M, N), +b(M, 1, M), rangebbf(M;, N, Ny),
consbbi(M, N, MN).

(d3) rangebd(M, N,MNy) - =Pb(M, N), consbbf(N, [], MNy).

(q4) queens™(U, S, Q) - selectff(Q, U, U)), not attackbb(Q, S),
consBi(Q, S, S;), queenstbf(U;, Sy, Q).

(95 queens®®(U, S, Qy) :- =bb(U, []), =DL(S, Q).

(qd6) select™(X, YY;, YZ) - constO(X, YZ, YY)).

(q7) select (X, YY, YZ) :- consf(Y, Y, YY), select®f(X, Y, Z),

consbf(Y, Z . YZ)).

(qg) attackb®(X, X) - attkbbb(X, 1, X)).

(q9) attkPP(X, N, YY) :- +bf(Y, N, X), consd(Y, Y, YYy).
(q10) attkPbO(X, N, YY) - -bfo(Y, N, X), consb(Y, Y, YY).
(q11) attkbbO(X, N, YY) :- consbf(Y, Y, YY), +HPO(N, 1, N}), attkbbb(X, Ny, Y,).

In order to compare the evaluation efficiency of different predicate 6rder’mg and adjust the
predicate evaluation orders, more detailed analysis can be performed on the adorned program.
For example, cardinality analysis can be performed on the pr'dgram to determine the possible
number of outputs for a particular set éf query bindings. Obviously, card(M, N):card(MNs) =
- 1:1 in rangebbf(M, N, MNG). That is, for a particular pair of values of M and N, the recursion
produces exactly one value for MNs. This can be deduced based on the properties of "cons".
Moreover, the knowledge about the selectivity of bindings also benefits the analysis of
processing efficiency. For example, the binding "U =bb []" is highly selective since there is only .

one possible value for U which satisfies the predicate "=" .

95

Finally, termination analysis must be performed on each compiled recursion based on the
monotonicity behavior of the variables in the recursive predicates and the available binding
information. For example, the recursion rangebf(M, N, MNs) terminates for the following
reason: In the adorned recursive rule ‘(qz'), we have both "M < N" and "M; = M+1". The
latter indicates "M;>M", that is, the value in the first argument position monotonically
increases; whereas the former indicates that the value in the first argument position must be
less than the given value N. Thus, the iteration will terminate in finite steps. Similarly, we can
show that the evaluation of other recursions with the given binding patterns can terminate as
well.

The binding propagation analysis determines not only the predicate evaluation order but also .
the appropriate query evaluation strategies. For example, the adomed rules (q;') to (q;;")
indicate that chain-split evaluation should be performed on "rangebbf(M, N, MNs)" because
the compiled chain "M <N, M; =M + 1, cons (M, Ns, MNs)" must be split into two "M <N,
M; =M + 1" and "cons(M, Ns, MNs)" in the evaluation to guarantee finite evaluation (as
shown by the predicate oredering in the body of (q,")). Similarly, chain-split evaluation should

be performed on "selectf(X, YYs, YZs)", chain-following evaluation on "queensP®f(U, S, Qs

)", and existence-checking evaluation on "attkbbb(X N, YYs)" .

Secondly, we examine in detail the evaluation process of the query "?- nqueens(4, Qs).",

‘based on the adorned programs (q;") to (q;1').

First, chain-split evaluation on "range(1, 4, MNs)" derives MNs=[1,2,3,4]. This proceeds as
follows: (i) at the first iteration, range(1l, 4, MNs) generates range(2, 4, Ns), cons(1l, N, ‘
MNs), (ii) at the second iteration, range(2, 4, Ns) generates range(3, 4, Ns,), cons(2, Ns,,

Ns), (iii) at the third iteration, range(3, 4, Ns,) generates range(4, 4, Ns3), cons(3, Ns3, Ns,),

96

and finally, (iv) at the fourth iteration, range(4, 4, Ns3) matches only the exit rule and

produces Ns; = [4]. Thus, we have the result that MNs =[1, 2, 3, 4] .

The chain-following evaluation should be performed on the predicate "queens([1,2,3,4], [],

Qs) " The evaluation process is presented below iteration by iteration.

For the first iteration, select (Q, [1,2,3,4], U;) derives the pairs of Q and U, values as: (Q,
Up: {Q, [2,3,4]), (2, [1,3,4]), (3, [1,2,4]), (4, [1,2,3])}. Every generated Q passes the test
"not attack (Q, [])* and the iteration generates a table of inputs for the second iteration,
quéens(Uy, Sy, Qs), as: (Uy, Sy): {([2,3,4], [1]), ([1,3,4], [2]), ([1,2,4], [3]), ([1,2,3], [4D)}.
(Notice that the negation handling itself is a research area in deductive databases, which is out .

of the scope of discussion in this thesis.)

Similarly, the second iteration will generate a table of inputs for the third iteration. Take the
first pair queens([2,3,4], [1], Qs) as an example. "Select (Q, [2,3,4], U;)" derives the pairs of
Q and Uj values as: (Q, Uy): {(2, [3.4]), (3, [2,4]), (4, [2,3])}. (Notice that "Q=2" cannot
pass the test "not attack (2, [1])"). It generates a table of inputs "queens(Uy, Sy, Qs)" for the

third iteration as follows: (Uy, S;): {([2?4], (1,3D), ([2,3], [1,4D}.

The process continues until the input set U for queens becomes empty, and the final result set

to the query is Qs = {[2, 4, 1, 3], [3, 1, 4, 2]}.

The evaluation of the above query demonstrates that the compilation-based query evaluation
has the following distinguished features in comparison with Prolog implementations: (i)
appropriate predicate evaluation orders are determined automatically based on the compilation
and the query binding analysis; (ii) efficient query evaluation strategies are selected and query
evaluation plans are generated based on analysis of the predicate ordering and their associated

97

bindings; and (iii) the processing generates all the answers to a query by set-oriented
processing without backtracking [HalLu92].

Based on the principles discussed in the analysis of nqueensbf(N, Qs), queries with other
adornments, such as nqueens®(N, Qs): can be analyzed and evaluated similarly. Notice that
the analysis and evaluation of complex logic programs with sophisticated query bindings, such
as nqﬁeensfb(N, Qs), cannot be performed by Prolog implementations, nor by other previously
studied deductive query evaluation techniques (according to the best of our knowledge).

Case 2. Queries with the adornment nqueensf?(N, Qs), such as "?- nqueens(N, [2,4,1,3])."

In this case, the predicate queens should be evaluated first because it is unsafe to evaluate
rangeb®. Thus, the adorned program becomes,

(q1") nqueens(N, Q) :- queensO(NG, [], Qy), ranged®(1, N, Ny) . |

(q2") rangebo (M, N, MN) :- consbfo(M, N, MNy), +Hb(M, 1, M),
rangebﬂ)(Ml’ N> NS): <bb(M’ N)
(q3") rangeb®(M, N, MNy) :- =bf(M, N), consbbb(N, [], MN).

(a4") queens®™(U, S, Qs) :- queensf®(Uj, S}, Qs), cons®d(Q, S, Sy),
not attackb®(Q, S), select®®(Q, U, Uy).

(as") queens@(U, S, Q) :- queens™(Uy, Sy, Qy), cons(Q, S, Sy),
not attackb®(Q, S), select®™(Q, U, U)), .

(g6") queens(U, S, Q) - =(U, [1), =fb(S, Qy).

(q7") selectP®™(X, YY, YZ) :- consh(X YZ YY)

(qg") selectt™(X, YY,, YZ) - consbfo(Y, Z, YZ)), selectd(X, Y, Z,),
cons®i(Y, Y, YY).

(qo") attackb®(X, X)) :- attkbbb(X, 1, X)).

(410") attkb(X, N, YY) - +b(Y, N, X), consbfo(Y, Y, YY)).

(911") attkbO(X N, YY) :- -bO(Y, N, X), consbfo(Y, Y, YY).
(q12") attkbbd(X N, YY) :- const®(Y, Y, YY), H0b(N, 1, N)), attkbbb(X N;, Y)).

98

The binding propagation analysis is performed as follows.

The "fb" binding in nqueens(N, Qs) indicates that queensfPb(Ns, [], Qs) must be evaluated first
and then rangeb®(1, N, Ns); otherwise, the evaluation of rangebfi(1, N, Ns) will lead to an
unsafe (infinite) program.

Similarly, queensfbb(N s, [1, Qs) indicates that the recursive predicate in the body queens(U,
Sy, Qs) must be evaluated first. Otherwise, the evaluation will lead to an infinite program.
The bindings in the head are propagated into the body, resulting in queensff(U; , S;, Qs) as
shoyvn.in (q4"). The further propagation in the recursive rule leads to the same binding
pattern in the recursive predicate in the body, as shown in (q5"). This evaluation order can be
naturally viewed as evaluating first the exit rule portion and then the chain portion in the |
chain-based evaluation. In principle, a compiled chain can be evaluated in the order of either
first-chain-then-exit or first-exit-then-chain. Since the former leads to an infinite program for
the query whereas the latter leads to a finite one, the evaluation adopts the latter. The
selection between the two orderings may also be based on the evaluation efficiency if both

directions are feasible [Halu92].
Binding propagation in the remaining program is similar to that in Case 1.

Next, we examine the evaluation of the adorned logic program for the query "?- nqueens(N,
[2, 4, 1, 3])". First, the binding propagation leads to the evaluation of queensfP®(Ns, [], [2, 4,
1, 3]), which should be evaluated in the first-exit-then-chain order according to our binding
propagation analysis. The first iteration in the evaluation of the recursive rule proceeds as
follows,

queens (], [2, 4, 1,31, [2, 4, 1, 3]),

cons (Q, S, [2, 4, 1, 3]),

9

not attack (Q, S), select (Q, U, []).
This leads to Q =2, S=[4, 1, 3] and U =[2]. The second iteration proceeds as follows,
queens ([2], [4, 1, 3], [2, 4, 1,3]),
cons (Q, S, [4, 1, 3]), ‘
not attack (Q, S), select (Q, U, [1).
This leads to Q=4, S=[1,3] and U= {[2, 4], [4, 2]}.The third iteration proceeds as follows, |
queens ({[2,4], [4, 21}, [1, 3], [2, 4, 1, 3]),'
cons (Q, S, (1, 3]),
not attack (Q, S), select (Q, U, ().
This leads to Q=1, S=[3] and U={[1,2,4], [1,4,2], [2,1,4], [2,4,1], [4,1,2], [4,2,1]}. Similarly
for the fourth iteration. The result of the evaluation of queens(Ns, [], [2,4,1,3]) is Ns = {[1, 2, .

3,4],11,2,4,3], ..., [4,3,2, 1]}.

After the derivation of the set of Nis in (q;"), the evaluation of rangebf(1, N, Ns) proceeds in

the order indicated in (q,"), which derives N = 4, the only answer to the query.
Case 3. Queries with only uninstantiated or partially instantiated variables.

(1) Suppose that the binding pattern in nqueens(N,Qs) is "ff", such as "?-nqueens(N, Qs)". It
is easy to verify that it is unsafe to evaluate the two predicates (no matter in what order),
queens (Ns , [], Qs) and range (1, N, Ns), in (q;"). Similarly, it is easy to show that the
partially instantiated binding, "?- nqueens (N, [2|L])", will lead to the same problem. Although
the partial binding "Qs = [2|L]" makes the initial evaluation proceed in a way similar to
nqueens®, in the evaluation of the rule (q4"), the evaluatjon of cons(Q, S, S;) with the binding
"Sl = [2|L]" results in an uninstantiated (free) S, which leads to the same problem in the future

evaluation.

100

Interestingly, if more detailed program behavior analysis were performed before query
evaluation, certain queries containing only partially instantiated variables can be evaluated

efficiently. |

(2) We examine the query "?- nqueéns (N, [3, X, Y, 2))" on the same compiled program. If
the binding analysis similar to that in (1) were performed on the two predicates queens and
range without further analysis, it would have concluded that the program is unsafe for query

evaluation.

However, a more detailed program behavior analysis can be performed on the compiled
program before query evaluation, which derives the list length relationships between the .
variables of type "list of integers" in the recursive predicates. In particular, we have:
“length(Ns) = length(Qs)" in queens(Ns, [], Qs) and "length(Ns) = N" in range(1, N, Ns). The
former is based on the property that "length(U) + length(S) = length(Qs)" in queens (U, S, Qs
); while the latter is based on the property that "1ength(MNs)=N—M+1" in "range(M, N,
MNs)". Notice that both properties are derived based on the basic property of list
construction: "length (MNs) = length(Ns) + 1" in "cons(M, Ns, MNs)".

With the above two properties available, it is straightforward to derive N=4 from the fact that
length (3, X, Y, 2]) =4. Thus, the query is equivalent to "?- nqueens (4, [3, X, Y, 2])"

which can then be analyzed and evaluated in a way similar to Case 1. [

Based on the analysis of the n-queens problem, the process of query evaluation on (nested) linear

recursions can be summarized into the following algorithm .

101

Algorithm 4-4. Query evaluation on (nested) linear recursions[HaLu92] .

Input: A linear or nested linear recursion and a query.
Output: The answer set to the query or a warning message if the query is not ﬁnitely evaluable.
Method:-

1. Compile every linear recursion in the nested linear recursive cluster into a normalized
recursion.

2. Perform type, cardinality or other behavior analysis on each normalized recursion.

3. Based on the available query bindings, perform binding propagation analysis. If the
‘available bindiﬂgs lead to an unsafe program, print a warning message and terminate the
processing. Otherwise, proceed to the following steps. |

4. Based on the result of binding propagation analysis, perform quantitative analysis on each
normalized recursion, select efficient query evaluation strategy and generate a query

evaluation plan.

5. Perform query evaluation and return the result set to the query. O

102

Chapter S

The Conclusion

This chapter summarizes the research and implementation work of this thesis, and discusses the
major advantages and disadvantages of this method compared to other recursion handling
techniques.

5.1 Summary

This thesis discussed the implementation of the chain-based compilation method on linear
recursions and the extension of the chain-based recursive query analysis and evaluation method to

the domain of functional nested linear recursions.

Firstly, the implementation of the chain-based compilation method of linear recursions is
discussed, which constructs a variable connection graph-matrix, the V-matrix, for a linear

recursion and simulates recursion expansions by V-matrix expansions.

Based on the expansion regularity of linear recursions discovered by V-matrix expansions,
compiled forms in either bounded or highly regular chain forms can be automatically generated for

complex linear recursions.

The compilation of linear recursions into highly regular relational expressions facilitates the
quantitative analysis of recursive queries and the generation of efficient query evaluation plans.
Moreover, some bindings which are difficult to be captured by other techniques can be captured
easily by the chain-based compilation method. Therefore, the automatic generation of compiled
forms for linear recursions is a powerful tool for the analysis and evaluation of complicated linear
recursions in deductive databases.

Secondly, the applicable domain of the chain-based compilation and evaluation method is
extended to that of functional nested linear recursions.

A typical complex logic program containing nested linear recursions with list and arithmetic

functions, the n-queens program, is analyzed using the chain-based compilation and evaluation
method.

103

Our deductive query evaluation technique consists of query-independent compilation of logic
programs and chain-based query analysis and evaluation of the compiled program. The method
first compiles a logic program into a normalized program and then performs query binding
. propagation analysis, selects appropriate evaluation order, and derives efficient query evaluation
plans for different query binding patterns. Some query bindings that cannot be evaluated by other
logic programming techniques can be evaluated efficiently using the chain-based evaluation
method.

The analysié of the n-queens program demonstrates that a large set of logic programs with linear
or nested linear recursions can be evaluated efficiently using the compilation-based query analysis
and evaluation technique. In comparison with other logic programming techniques, the deductive
database approach shows its flexibility and efficiency on the analysis and evaluation of linear
recursions.

5.2 Discussion
To conclude the thesis, we discuss the major advantages and disadvantages of the chain-based
compilation and evaluation method compared to other recursion handling systems, and summarize

the research work that has been done so far as well as the future research areas on this method.

1. In comparison with Prolog, the traditional logic programming language, it has the following -
two significant features, which are common for all deductive database approaches:

e It has a pure declarative semantics. The advantage is that such methods handle
- optimization and termination systematically.

» It uses a set-oriented data processing strategy. The advantage is that such methods are

much more efficient when processing large amount of data stored in mass memory.

2. In comparison with some other deductive database query optimization methods, such as the
magic sets method, it has the following advantages :

«» By query-independent compilation, our method generates highly regular chain forms
which facilitates systematic query analysis and efficient query processing .

104

o By using the highly regular chain forms, this method is better in capturing query bindings
and integrating constraints to optimize the query evaluation .

o By extending the applicable domain, this method is able to handle functional linear
recursions while the magic sets method can only handle function free recursions .

The major limitation of this method is that its applicable domain is limited to the recursions
compilable to chain forms, whereas Prolog can handle general recursions with nested levels of
functions and the magic sets method is applicable to general function free recursions.

Major research works done so far on the chain-based compilation and evaluation method are
[Han89a, Han89b, Han91a, Han92 and HaZe92]. More research is being conducted on extending
the applicable domain of this method to non-linear recursions and incorporating some important
features such as aggregation functions and negation handling into the query evaluation .
Furthermore, it is important to perform further research into the issues on the extensions of the
compilation and chain-based query evaluation method to deductive and object-oriented databases.

105

Reference

[BMSUB86] F. Bancilhon, A D. Maier, A Y. Sagiv and A J. D. Ullman, "Magic Sets and Other
Strange Ways to Implement Logic Programs", Proc. 5th ACM Symp. Principles of Database
Systems, pp.1-15, Cambridge, MA, March 1986.

[BaRa86] F. Bancilhon and R. Ramakrishnan, "An Amateur's Introduction to Recursive Query
Processing Strategies", Proc. 1986 ACM-SIGMOD Conf. Management of Data, pp.16-52,
Washington, DC, May 1986.

[BeRa87] C. Beeri and R. Ramakrishnan, "On the Power of Magic", Proc. 6th ACM Symp.
Principles of Database Systems, pp.269-283, San Diego, CA, March 1987.

[BrJa84] M. Brodie and M. Jarke, "On Integrating Logic Programming and Databases", Proc.1st
Int. Workshop on Expert Database Systems, Kiawah Island, SC, October 1984.

[BrSa89] A. Brodsky and Y. Sagiv, "On Termination of Datalog Programs", Proc. 1st Int. Conf.
Deductive and Object Oriented Databases (DOOD'89), pp. 95 112, Kyoto, Japan, December
1989.

[CeGoLe89] Stefano Ceri, Georg Gottlob, and Letizia Tanca, "What You Always Wnated to
Know About Datalog (And Never Dared to Ask)", IEEE Trans.on Knowledge and Data
Engmeermg, Vol.1, No.1, pp.146-166, March1989 .

[LDL90] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur and C. Zaniolo, "The
LDL System Prototype", IEEE Trans. Knowledge and Data Engineering, pp.76-90, 2(1),1990.

[Dahi82] V. Dahl, "On Database Systems Development Through Logic", ACM Trans. Database
Syst., 7(1), 1982.

[Date86] C. Date, "An Introduction to Database Systems", Addison-Wesley, 1986.

[GMN84] H. Gallaire, J. Minker and J. Nicolas, "Logic and Databases: A Deductive Approach"
ACM Comput. Surv., 16(2), pp.153-185, 1984.

[GrMi92] J. Grant and J. Minker, "The Impact of Logic Programming on Databases", Comm. of
ACM, 35(2), pp.66-81, 1992.

[HaLu89c] J. Han and W. Lu, "Asynchronous Chain Recursions", IEEE Trans. Knowledge and
Data Engineering, 1(2), pp.185-195, 1989.

[HaLu92] J.Han and T.Lu, "N-Queen Problem Revisited: A Deductive Database Approach",
Proc.1992 IJCSLP Workshop on Deductive Databases, pp.48-55, Washinton D.C., Nov. 1992.

106

[Han89a] J. Han, "Compiling General Linear Recursions by Variable Connection Graph Analysis",
Computational Intelligence, 5(1), pp.12-31, 1989.

[Han89b] J. Han, "Multi-Way Counting Method", Information Systems, 14(3), pp.219-229, 1989.

[Han91a] J. Han, "Constraint-Based Reasoning in Deductive Databases", Proc. 7th Int. Conf.
Data Engineering, pp.257-265, Kobe, Japan, April 1991.

[Han91b] J. Han, "Is It Possible to Capture More Bindings than Magic Rule Rewriting?",
Proceedings of Int'l Workshop on Deductive Databases (in conjunction with 1991 Intl Logic
Programming Symp.), pp.10-19, San Diego, CA, October 1991.

[Han92] J. Han, "Compilation-Based List Processing in Deductive Databases”, In A. Pirotte, C.
Delobel, and G. Gottlob,(eds.), Extending Database Technology - EDBT'92 [Lecture Notes in
Computer Science 580], pp.104-119, Springer-Verlag, 1992.

[HaWa91] J. Han and Q. Wang, "Evaluation of Functional Linear Recursions: A Compilation
- Aroach", Information Systems, 16(4), pp.463-469, 1991.

[HaZe92] J.Han and K.Zeng, "Automatic Generation of Compiled Forms for Linear Recursions",
Information Systems, 17(4), pp.299-322, 1992.

[HaZeLu93] JHan, KZeng and T.Lu "Normalization of Linear Recursions in Deductive
Databases", Proc.9th Int'l Conf on Data Engineering, Vienna, Austria, pp559-567, April 1993.

[Hent89] P. van Hentenryck, "Constraint Satisfaction in Logic Programming", MIT Press,1989.

[Imie87] T.Imielinski, "Intelligent Query Answering in Rule Based Systems", J Logic
Programming, 4, pp.229-257, 1987.

[JaLa87] J. Jaffar and J-L. Lassez, "Constraint Logic Prdgramming", Proc. 14th ACM Symp.
Principles of Programming Languages, pp.111-119, Munich, Germany, 1987,

[Jian90] B. Jiang, "A Suitable Algorithm for Computing Partial Transitive Closures", Proc. 6th
Int. Conf. Data Engineering, pp.264-271, Los Angeles, CA, February 1990.

[KKR90] P. C. Kanellakis, G. M. Kuper and P. Z. Revesz, "Constraint Query Languages", Proc.
9th ACM Symp. Principles of Database Systems, pp.299-313, Nashville, TN, April 1990.

[KRBM89] D. B. Kemp, K. Ramamohanarao ,I. Balbin and K. Meenakshi, "Propagating
Constraints in Recursive Deductive Databases", Proc. 1989 North American Conf. Logic
Programming, pp.981-998, Cleveland, OH,October 1989.

[La90] J.L. Lassez, "Query Constraints", Proc. 9th ACM SIGACT-SIGMOD-SIGART symp on
PODS, April 1990, Nashville, Tennessee, pp.288-198.

107

[Mink88] J. Minker, "Foundations of Deductive Databases and Logic Programming", Morgan
Kaufmann, 1988.

[NeSt89] E. Neuhold and M. Stonebraker, "Future Directions in DBMS Research (Laguna Beach
Report)",ACM SIGMOD Record, 18(1), 17-26, 1989.

[RBS87] R. Ramakrishnan, F. Bancilhon and A. Silberschatz, "Safety of Recursive Horn Clauses
with Infinite Relations", Proc. 6th ACM Symp. Principles of Database Systems, pp.328-339, San
Diego, CA, March 1987.

[SaVa89] Y. Sagiv and M. Vardi, "Safety of Datalog Queries over Infinite Databases", Proc. 8th
ACM Symp. Principles of Database Systems, pp.160-171, Philadelphia, PA March 1989.

[Sagi90] Y. Sagiv, "Is There Anything Better than Magic?", Proc. 1990 North American Conf.
Logic Programming, pp.236-254, Austin, Texas, October 1990.

[ShKe84] D.E. Shepherd and L. Kerschberg, "Constraint Management in Expert Database
Systems", Proc. 1st Int. Workshop on Expert Database Systems, Kiawah Island, SC,October
1984,

[SSU9%1] A. Silberschatz, M. Stonebraker and J. D. Ullman, "Database Systems: Achievements
and Opportunities",Comm. ACM, 34(10), pp.94-109, 1991.

[StSh86] L. Sterling and E. Shapiro, "The Art of Prolog", The MIT Press, 1986.
[Sfon88] M. Stonebraker, "Readings in Database Systems", Morgan Kaufmann,1988.

[Ston90] Michael Stonebraker, Lawrence A. Rowe and Michael Hirohama; "The Implementation
of the POSTGRES", IEEE Trans. Knowledge and Data Engineering, 2(1), pp.125-141, 1990.

[TYZ89] D. Troy, C.T. Yu and W. Zhang, "Linearization of Nonlinear Recursive Rules", IEEE
Trans. Software Engineering, 15(9), pp.1109-1119, 1989.

[Tsur91] S. Tsur, "Deductive Databases in Action", Proc. 10th ACM Symp. Principles of
Database Systems, pp.142-153, Denver, CO, May 1991.

[Ullm89a] J. D. Ullman, "Principles of Database and Knowledge-Base Systems, Vols. 1 & 2",
Computer Science Press, 1989.

[Ullm89b] J. D. Ullman, "Bottom-up Beats Top-down for Datalog", Proc. 8th ACM Symp.
Principles of Database Systems, pp.140-149, Philadelphia, PA, March 1989.

108

[Ullm91] J. D. Ullman, "A Comparison of Deductive and Object-Oriented Database Systems”,
Deductive and Object-Oriented Databases (DOOD'91)[Lecture Notes in Computer Science 566],
pp.263-277, Springer Verlag, 1991.

[UllZa90] JD.Ullman and C.Zaniolo, "Deductive Databases: Achievements and Furture
Directions", SIGMOD RECORD, Vol19, No.4, December 1950.

[YHHS88] C. Youn, L. J. Henschen and J. Han, "Classification of Recursive Formulas in
Deductive Databases", Proc. 1988 ACM-SIGMOD Conf. Management of Data, pp.320-328,
Chicago, IL, June 1988.

[Zani84] C. Zaniolo, "Prolog : A Database Query Language For All Seasons", Proc. 1st Int.
Workshop on Expert Database Systems, Kiawah Island, SC, October 1984,

109

