
COMPILATION AND EVALUATION OF NESTED 
LINEAR RECURSIONS: A DEDUCTIVE DATABASE 

APPROACH 

Tong Lu 

B.S., East China Normal University, Shanghai, China, 1990 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 
in the School 

of 

Computing Science 

@ Tong Lu 1993 

SIMON FRASER UNIVERSITY 

November 1993 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



APPROVAL 

Name: 

Degree: 
c 

Title of Thesis: 

Tong Lu 
G 

Master of Science 

Compilation and Evaluation of Nested Linear 

Recursions: A Deductive Database Approach 

Examining Committee: Dr. Tiko Kameda 

Professor 

Computing Science, Chairman 

Dr. Jiawei Han, ior Supervisor 

- 

Dr. William Havens, Supervisor 

- 

Dr. Ze-Nian Li, Examiner 

Date Approved: 



PARTIAL COPYRIGHT LICENSE 

I hereby g ran t  t o  Simon f raser Un l ve rs l t y  the r l g h t  t o  lend 

my thesis, p ro jec t  o r  extended essay ( the  t i t l e  o f  which i s  shown below) 

t o  users o f  the Simon Fraser Unlvers l ty  L ibrary,  and t o  make p a r t i a l  o r  

s i ng le  copies only f o r  such users o r  fn  response t o  a request from the 
c 

l i b r a r y  o f  any o ther  university, o r  o ther  educational I n s t i t u t i o n ,  on 

i t s  own behalf o r  f o r  one o f  I t s  users. I fu r t he r  agree t h a t  permission 

f o r  mu l t i p l e  copying o f  thfs work f o r  scho la r l y  purposes may be granted 

by me o r  the Dean of Graduate Studies. It i s  understood t h a t  copying 

o r  publication o f  t h i s  work f o r  financial ga in  sha l l  not  be al lowed 

wi thout  my w r l t t en  permlsslon. 

T i t l e  o f  Thes i s/Project/Extended Essay 

Compilation and Evalua t ion  of Nested Linear  Recursions:  A Deductive 

Database Approach. 

Author: ,- 

(s ignature) 

Tong Lu 

( name 1 

November 16 ,  1993 

(da te  1 



Abstract 

A deductive database system is an extension of a relational database system by supporting a rule- 

based, more expressive database language while preserving the set-oriented and declarative style 

of a relational database query language. 

This thesis studies the implementation and extension of the chain-based compilation and 

evaluation method, an interesting method for deductive query evaluation. 

Our'work makes the following two contributions : (1) a query-independent compilation method is 

developed in C using LexlYacc, which automatically generates compiled chain-forms for linear 

recursions; and (2) the applicable domain of the chain-based compilation and evaluation method is 

extended to functional nested linear recursions. 

The query-independent compilation method is based on the expansion regularity of a graph 

matrix, the V-matrix, which represents the variable connection pattern of a recursive rule. A 

complex linear recursion can be compiled into a highly regular chain-form and linear normal form, 

which facilitates efficient query analysis and processing. 

The study on the extension of the applicable domain of the chain-based compilation and 

evaluation method to fbnctional nested linear recursions leads to the systematic analysis of a 

typical logic program, the n-queens program. Our analysis shows that nested linear recursions can 

be implemented systematically and efficiently using the chain-based query evaluation method. 

iii 



Acknowledgments 

My greatest thanks go to professor Jiawei Han, my senior supervisor, for inspiring my interest in 

deductive databases, for his responsiveness, encouragement and considerations. The important 

work of this thesis comes from the written works and many discussions with him. Thanks also go 

to professor William Havens and professor Zenian Li, for their valuable comments and 

suggestions. 

I would also like to express my gratitude to the following people: to professor Fuling Huang, my 

teacher in China, for her warm encouragement; to professor Woshun Luk, for his interesting 

classes which aroused my interest in database systems; to Hong Fan and Wei Lu, for their 

friendship and thoughthl advice when I needed them most; to Zhongmin Guo, Ju Wu, Zhaohui 

Xie and Ling Liu, for some helphl discussions on the project; to Alan Brewer and Bhavesh 

Doshi, for their carehl job of proofreading; and to my friends, fellow students and colleagues: 

Arrnin Bruderlin, Ben Yao, Biaodong Cai, Beysim Segzin, James McDaniel, Jeff Dailey, Langlee 

Chu, Lingyun Wang, Martin Vorbeck, Natalie Shannon, Hong Shi, Jun Yu, Qiang Wang, Wei 

Zhou, Yifeng Zheng, Yongjian Fu, Youmin Zhang and others, for their friendship and help. 

Special thanks go to Ms.Kersti Jaager, for her kind help throughout my graduate years. 

Finally, I would like to thank my parents and sister, for their encouragement and support in all 

these years. They have always let me know for sure that their love will be with me wherever I am. 



Contents 

... 
Abstract .................................................................................................................... 111 

Acknowledgments ....................................................................................................... iv 

1 . Introduction ............................................................................................................ 1 
. . 

1 .1 .  Motivations ............................................................................................... 1 

1.2. Logic Database : EDB + IDB + Query ...................................................... 2 

1.3. Datalog = Database + Prolog ?? .............................................................. 5 

1.4. Thesis Overview ...................................................................................... 8 

2 . Deductive Database and Its Implementation Techniques .......................................... 10 

2.1. A Deductive Database Model: Logic and Databases ................................. 10 

2.2. A Classification of Recursions ................................................................... 14 

2.3. Characteristics of the Strategies ................................................................. 18 

2.3.1. Search Strategy: Bottom up or Top Down .................................. 18 

2.3.2. Objective: Query Evaluation or Query Optimization .................... 20 

2.3.3. Type of optimization: Syntactic or Semantic .............................. 20 

2.4. Survey of Evaluation Methods and Optimization Techniques ..................... 22 

2.4.1. Naive and Semi-Naive Evaluation Methods ................................. 23 

2.4.2. Query/Subquery Method ............................................................. 25 

2.4.3. The Magic Sets Method .............................................................. 28 

2.4.4. The Counting Method ................................................................ 32 

2.4.5. Chain-Based Compilation and Evaluation Method ....................... 33 

3 . Compilation of Linear Recursions ............................................................................ 38 

3 .1 .  Difficulties of Magic Rule Rewriting ......................................................... 38 

3.2. A Variable Connection Graph-Matrix: the V-matrix .................................. 41 



3.3. Derivation of Stable Rules by V-matrix Expansion .................................... 46 

3.3.1 Expansion of Single-Unit Linear Recursive Rules ......................... 46 

3.3.2. Expansion of Multiple Unit Linear Recursive Rules .................... 52 

3.4. Compilation of Linear Recursions .............................................................. 53 

3.4.1. Automatic Generation of Chain Forms for Single-Unit Linear Recursions 

............................................................................................................ 53 

3 .4. 2. Normalization of Single-Unit Linear Recursions .......................... 60 

3.5. Implementation of the Chain Based Compilation Method .......................... 63 

4 . Compilation and Evaluation of Functional Nested Linear Recursions ....................... 70 

4.1. From Function Free to Functional Recursions ............................................ 70 

4.2. Compilation of Nested Functional Linear Recursions ................................. 72 

4.3. Query Analysis in Compiled Functional Nested Linear Recursions ............. 75 

4.3.1. Finiteness Evaluability of Functional Recursions ......................... 76 

4.3.2. Termination of Query Evaluation ................................................ 79 

4.4. Generating the Evaluation Plan for Functional Linear Recursions .............. 82 

4.4.2. Query Closure vs . Existence Checking ........................................ 90 

4.4.3. Constraint-Based Evaluation ...................................................... 91 

4.5. Evaluation of Nested Linear Recursions: the n-Queens Problem ................ 93 

5 . The Conclusion ....................................................................................................... 103 

5.1 Summary .................................................................................................... 103 

.................................................................................................. 5.2 Discussion 104 

................................................................................................................... References 106 



List of Figures 

.................................................................. Figure 1.1 . The family tree of example 1-1 4 

........................................................................................... Figure 2-1 The family tree 22 

.................................................................... Figure 2-2 The chain following directions 36 

Figure 3-1 The initial V-matrices of rules (Al) to (GI) ................................................. 45 

Figure 3-2 V-matrices of rules (A1) to (F1) ................................................................. 47 

Figure 3-3 The expansion of the V-matrix of rule (GI) ................................................. 53 

Figure 3-4 The compilation flow chart ......................................................................... 64 

Figure 3-5 The chain generating process ...................................................................... 65 

Figure 3-6 The internal data structure: chain form ........................................................ 65 

...................................................... Figure 3-7 The expanded V-matrix of example 3.6 66 

Figure 4-1 Diagram of complete chain based evaluation method .................................. 82 

Figure 4-2 Multi-way counting method ........................................................................ 83 

Figure 4-3 The evaluation of query "?- append([a.b]. V. [a.b.c]) . " ................................ 87 

Figure 4-4 The evaluation of query "?- (U. V. [a.b])." ................................................. 88 

Figure 4-5 The recursive levels of the n-queens problem .............................................. 94 

vii 



Chapter 1 

Introduction 

This Chapter provides a general introduction of the Deductive Database System and an overview 

of this thesis. 

1.1 Motivations 

The research in Deductive Database Systems started in the late 1970's with a summary in the 

book "Logic and Databases" by Gallaire and Minker. From the beginning, research in this area has 

beeni.motivated by two converging trends[BaRa86]: (i) the desire to integrate database technology 

and artificial intelligence technology, to extend database systems and provide them with the 

functionality of expert systems, thus creating "the knowledge base systems", and (ii) the desire to 

integrate logic programming technology and database technology and extend the power of the 

interface of the database system to that of a general purpose programming language. The 

feasibility of this integration is based on the fact that logic programming and relational calculus 

have the same underlying mathematical model : the first-order logic. Since the mid 1980fs, 

substantial research has been done on deductive database systems, with the focus on query 

optimization, an essential issue on building high performance systems for large applications. 

Over the past decade, relational database system has gained enormous popularity due to its 

uniformed data structure, its successful implementation of data management functions (such as 

integrity, data sharing and recovery), and its query language SQL, which is a declarative and set- 

. oriented language for both data definition and management. However, there are a number of 

applications that have a database flavor and yet are not well-addressed by conventional Database 

Management Systems. These new applications pose demands that are not answered by 



conventional DBMS, such as the need to deal with complex structures , recursively defined 

objects and more flexible queries [UllZa90] . 

Deductive Database Systems are thus systems which extend relational database systems while 

preserving their programming style by supporting a rule-based language capable of expressing 

complete applications. These systems are based on predicate logic as a data model, following a 

Prolog style of using Horn-clause or if-then rules to define predicates or relations. A salient 

feature of deductive database systems is their capability of supporting a declarative, rule-based 

style of expressing queries and applications on large databases. 

1.2 Logic Database : EDB + IDB + Query 

Let's start with a simple example and look at the components of a "logic database". 

Example 1-1. A simple Logic Database. 

Suppose we have two relations: person(name) and parent(child, parent) stored in a relational 

database. The instances of these relations are as follows [CeGoLe89] : 

person:name 

Anne 

Bertrand 

Charles 

Dorothy 

Evelyn 

Fred 

George 

parent: child parent 

Dorothy George 

Evelyn George 

Betrand Dorothy 

Anne Dorothy 

Anne Hilary 

Charles Evelyn 

Hilary 



These relations express the set of ground facts, just like the facts we speciQ as ground clauses in 

Prolog programs. The difference is that, in Prolog, all the knowledge (facts and rules) relevant to 

a particular application is contained within a single logic program P, while in Deductive 

Databases, we are dealing with a large number of facts which must be manipulated by a database 

system for its efficient data management functionality, such as data retrieving, data modification, 

data sharing, concurrency and consistency control. 

In Deductive Databases, we call the set of ground facts Extensional Database(EDB) , which 

should be physically stored in a relational database. 

Moreover, we have a set of rules which speciQ derived relationships based on the data stored in 

EDB. For example, with the above EDB storing two base relations (or tables), we can define a 

derived relation sg( for same~eneration) in a Datalog program P as: 

Due to rule rl, the derived relation "sg" contains a tuple <p,p> for each individual in the "person" 

relation. The rule r2 is recursive and states that two persons are same generation cousins if their 

parents are same generation cousins. 

Thus, based on the current data in the relations "person" and "parent", we can derive the relation 

"sg" as: < Anne, Anne >, < Anne, Betrand >, <Anne, Charles >, < Betrand, Anne >, < Betrand, 

Betrand >, < Betrand, Charles >, ..., <George, George >. 



George 

A 
Hilary Dorothy Evelyn 

Anne Betrand Charles 

Figure 1-1. The Family Tree of example 1 - 1. 

In Deductive Databases, we call the set of derived relations Intensional Database (IDB). The 

tuples or facts of an IDB relation is not physically stored in mass memory as EDB facts, but are 

derived from the current EDB data upon query. 

The IDB relations derived from the EDB and a set of deduction rules are usually very large. 

However, it often happens that a user is only interested in a subset of these relations. For instance, 

they might only want to know the same generation cousins of "Anne" rather than all same 

generation cousins of all the people in the EDB. 

To express such additional constraints, we can sped@ a query to the IDB. A query is a single 

literal preceded by a question mark and a dash, for example "?- sg(anne, X)". Queries serve to 

formulate ad-hoc requests against a "view" defined by a set of derivative rules. 

Usually the EDB is considered as a time-varying collection of information while the rule set is a 

time-invariant mapping which associates an IDB to each possible database state. In this sense, 

IDB relations correspond to relational views, which is a form of supporting a restricted set of 

logic queries. The significant difference between IDB definitions and relational views is that views 

are restricted to non-recursive definitions while the definition of an IDB relation can be recursive. 

The efficient evaluation of recursive queries is an important task of Deductive Database research. 



1.3 Datalog = Database + Prolog ?? 

The language for Deductive Databases is Datalog. Datalog defines the syntax and semantics of 

relations in Deductive Database (like SQL to Relational Database Systems), it has been designed 

and intensively studied over the last few years and has been well accepted as the hndamental 

language of Deductive Database Systems. The efficient implementation and hrther extensions to 

Datalog is the current focus of DDB research. 

From the syntax point of view, Datalog is in many respects a simplified version of a general logic 

programming language, such as Prolog. It consists of a finite set of facts and rules. Facts are 

assertions about a relevant piece of the world while rules are statements which allow us to deduce 

facts from other facts. Both facts and rules are particular forms of knowledge. 

In the formalism of Datalog, both facts and rules are represented as Horn Clauses of the form Lo 

:- Ll, ..., L,. Each Li is a literal of the form Pi(tl, ... tk) such that Pi is a predicate symbol and tjts 

are terms. A term is either a constant or a variable. 

The left hand side (LHS) of a Datalog clause is called its head and the right hand side (RHS) is 

called its body. The body of a clause can be empty. Clauses with an empty body represent facts 

(EDB relations), and clauses with at least one literal in the body represent rules (IDB relations). 

Any Datalog program P must satisfjl the following safety conditions[BaRa86] : 

(1) Each fact of P is ground. (i.e. it does not contain any variables.) 

(2) Each variable which occurs in the head of a rule must also occurs in the body of the same rule. 

These conditions guarantee that the set of all facts that can be derived from a Datalog program is 

finite. 



From the syntactical point of view, Datalog is a subset of Prolog, thus each set of Datalog clause 

could be parsed and executed by a Prolog interpreter. However, Datalog and Prolog dzfler in 

their semantics. 

Datalog has been developed for applications which use a large number of facts stored in a 

relational database. Therefore, we always consider two disjoint sets of clauses, i.e. a set of ground 

facts: the Extensional Database (EDB), and a Datalog program P: the Intensional Database 

(IDB). 

Ground facts are stored in a relational database. We assume that each EDB predicate r 

corresponds to exactly one relation R of our database, such that each fact r(cl, ..., ck) of the EDB 

is stored as a tuple < cl, . . ., ck > of R. 

The IDB predicates of P can be identified with relations, called the IDB relations, or derived 
> 

relations. IDB relations are not stored explicitly and they correspond to the concept of "view" in 

relational databases which is calculated upon querying. IDB relations can be defined using 

recursive rules. "The materialization of these recursive views, i.e. their effective and efficient 

computation is the main task of a Datalog compiler or interpreter." [CeGoLe89] 

In summary, because Datalog is a database language, it has significant semantic differences from 

Prolog[CeGoLe89] : 

1. Datalog has a purely declarative semantics while Prolog is defined by operational semantics. 

2. Datalog uses a set-oriented data processing strategy while Prolog returns query results in a 

one-tuple-at-a-time fashion. 



A Prolog program proceeds according to a resolution strategy which uses a depth-first search 

method with backtracking for constructing proof trees and respect the order of the clauses and 

literals as they appear in the program [StSh86]. This strategy does not guarantee termination. The 

termination of a recursive Prolog program depends strongly on the order of the rules in the 

program, and on the order of the literals in the rules. 

Example 1-2. The difference between Prolog and Datalog. 

Suppose we rewrite the same generation program in Examplel-1 as PI: 

This program P' differs from program P of Examplel-1 only by the order of the rules and by the 

order of literals in the rule bodies. From a Datalog point of view, the order of clauses and literals 

is totally irrelevant, thus P and P' are equivalent. On the other hand, suppose we use a Prolog 

interpreter to evaluate the same query "?- sg(Anne, X)", P and P' will be evaluated differently. If P 

is used, Anne's same generation cousins will be returned one by one. But if P' is used, we would 

run into an infinite recursion without getting any result. 

In spite of this, efforts have been made to couple Prolog to an external database[CeGoLe89]. A 

Prolog interpreter can be designed to distinguish between IDB and EDB predicates. When an 

EDB goal is encountered during the execution of a Prolog program, the interpreter tries to 

retrieve a matching tuple from mass memory. Due to the procedural semantics of Prolog, which 

prescribes a particular order of visiting goals and sub-goals, the required interaction between the 

interpreter and the external database is of the type one tuple at a time. This method of accessing 

mass memory is quite inefficient compared to the set-oriented methods used by high-level query 

languages such as SQL. 



Because of these reasons, although Prolog is a rich and flexible logic programming language 

which has gained enormous popularity over the last decade in many application domains, it is not 

an efficient and practical database language. One goal of Deductive Database query languages, 

such as Datalog, is to provide flexible and efficient access to large quantities of data stored in 

mass memory. 

1.4. Thesis Overview 

So kr,  we have generally discussed the major concepts of Deductive Database and its 

fkndamental query language: Datalog. We will now concentrate on one of the most essential 

issues of Deductive Database research: recursive queryprocessing. 

The focus of this thesis is on the implementation aspects of recursive query processing, especially 

on a recursion optimization method : the chain-based compilation and evaluation method on 

linear recursions. For the details on Deductive Database formalisms, please refer to the literature 

references[GrMi92, Ullm89a, BrJa841 listed at the end of this thesis. However, a survey of some 

of the most well-known evaluation and optimization techniques on recursive query processing 

using deductive database techniques is presented in Chapter 2. 

Starting at Chapter 3, the discussion focuses on the chain-based compilation and evaluation 

method. Chapter 3 concentrates on the compilation part, i.e. the automatic generation of 

compiled chain forms for function-free single linear recursions and its implementation 

considerations. Chapter 4 discusses the analysis/evaluation part and the extension of this method 

to the domain of nested functional linear recursions. A typical case, the n-queens program will be 

used to illustrate how this method works and compare it with the conventional Prolog approach. 



Chapter 5 concludes the thesis by comparing the chain-based evaluation method with other 

recursion processing methods and discussing its possible further extensions. 



Chapter2 

Deductive Database and Its Implementation Techniques 

In this chapter, we discuss the area of recursive query processing in Deductive Databases and 

present a survey on the most well-known techniques in this area. 

2.1 A Deductive Database Model: Logic and Databases 

First.of all, we summarize the deductive database terminologies and some special assumptions our 

discussion will be based on. 

(1) The Two Components of a DDB: EDB and IDB 

A Deductive Database consists of an extensional database(EDB), an intensional 

database(1DB) and a set of integrity constraints (ICs). The EDB is a large set of ground facts 

stored in a relational database. The IDB is a set of intensional predicates defined by a set of 

hnction-free Horn clauses called deduction rules. The ICs are not included in our discussion here. 

For the ease of analysis, we assume that each predicate symbol either denotes an EDB relation or 

an IDB relation, but not both. In another word, we decompose the database into a set of pure 

base predicates and a set of pure derived predicates. It is easy to prove that such a decomposition 

. is always possible[Ullm89a]. 



(2) The Syntax of Datalog 

Datalog is a typical data definition language for Deductive Databases. 

According to the syntax of Datalog, both facts and rules are represented as Horn clauses in the 

form of "Lo :- L1, ..., L,." where each Li is a literal of the form pi(tl, ... t d  such that p is a 

predicate of arity n and tj is a constant or a variable. 

The left hand side of a Datalog clause is called its head and the right hand side is called its body. 

The body of a clause may be empty. Clauses with an empty body represent facts while clauses 

with at least one literal in the body represent rules. 

As a notational convention, we use strings starting with upper case letters to denote variables and 

strings starting with lower case letters to denote relations (or predicates) and constants. For a 

given Datalog program, it is always clear from the context whether a particular nonvariable 

symbol is a constant or a predicate symbol. 

For simplicity, we require that all literals with the same predicate symbol are of the same arity, i.e. 

they have the same number of arguments. 

A literal which does not contain any variables is called an instantiated literal. 

Any Datalog program P must satisfjl the following safety conditions[BaRa86]: 

Each fact of P is ground, i.e. it does not contain any variables. 

Each variable which occurs in the head of a rule also occur in the body of the same rule. 



These conditions guarantee that the set of all facts that can be derived from a Datalog program is 

finite. 

(3) The Logical Semantics of Datalog 

Considering Datalog as a simplified version of Logic Programming, its semantics can be easily 

described in terms of model theory. 

In this point of view, we see rules as defining possible worlds or models. An interpretation of a 

collection of predicates assigns truth or falsehood to every possible instance of those predicates, 

where the predicate's arguments are chosen from some infinite domain of constants. Usually an 

interpretation is represented by its set of true instances. To be a model of a set of rules, an 

interpretation must make the rules true, no matter what assignment of values from the domain is 

made for the variables in each rule. 

Example 2-1. Consider the following Datalog program[Ullm89a]: 

P(X) :- q(W. 0-1) 

q m  : - r(W. (r2) 

Suppose the domain of the variable X is integer. 

Intuitively, these rules state the fact that " If r is true for a certain integer, then q is also true; and 

whenever q is true, p is true as well. " 

Let's assume that in this case, r is an EDB predicate while p and q are IDB predicates defined in 

terms of r. We also assume that r(X) = true iff X=l. 



The model M1 = { r(l), q(l), p(l), q(2), p(2), p(3) ) is a possible interpretation of the database 

because it satisfies all the rules and facts defined in this program. 

However, there is another consistent model M2 = { r(l), p(l), q(1) ) which also satisfies the 

program. In fact, there are an infinite number of models consistent with the EDB that has only 

r(1) true. But M2 is special because it is a minimal model, i.e. we can not make any true fact false 

and still have a model consistent with the database { r(1) ). 

Formally, given a set of relations for the EDB predicates, say R1, ..., Rk, a fixed point of the 

Datalog equations (with respect to R1, ..., Rk) is a solution for the relations corresponding to the 

IDB predicates of these equations. 

It has been proved that each Datalog program has a unique minimal model containing any given 

EDB relations, and this model is also the unique minimal fixed point with respect to those IDB 

relations. A solution or fixed point So is the least fixed point with respect to a set of EDB 

relations R1, ..., Rk if for any solution S, we have So c S ( [Ullm89a] ). 

We always use the least fixed point as the model of the database. (Notice that if we allow 

evaluable arithmetic predicates, the minimal model is generally infinite.) 

(4) The Query and the Adornment of a Predicate 

We use "adornments" to represent the instantiation information of a predicate. Let p(X1, X2, ..., 

X d  be an n-ary predicate. The adornment of p is a sequence of length n of b's and f s  (a l...an) 

where ai is 'b' if the i-th varible of p is bounded or instantiated, otherwise it is I f .  Adornments are 

denoted as superscripts. For example, parent(adam, X) is denoted as parentbf(adam, X). 



A query is an adorned predicate with an instantiation of the bounded variables. For example, ?- 

parentbf(adam,X) is a query. 

Having discussed the basic terminologies, we now get to the point of discussing recursions. 

2.2 A Classification of Recursions 

Definition. 

A predicate p is said to imply a predicate r ( p + r) if there is a Horn clause in IDB with 

predicate r as the head and p in the body, or there is a predicate q where p + q and q + r 

(transitivity). A predicate r is recursive if r 3 r. (3 is defined is the transitive closure of + ) 

Two predicates p and q are mutually recursive if p 3 q and q 3 p. Mutual recursion is an 

equivalence relation on the set of recursive predicates. 

A rule p :- pl, p ~ ,  ..., pn is recursive iff there exists pi in the body of the rule which is 

mutually recursive to p. A recursive rule is linearly recursive if there is one and only one 

predicate pi in the body of the rule which is mutually recursive to p. 

A rule cluster of predicate r is the maximal subset of rules in IDB in which all the head 

predicates of the rules are either r or p where p 3 r. If r is recursive, the r-cluster is called the 

recursive-cluster. A recursive cluster is linear, or more precisely, single linear if it consists of 

one linear recursive rule and one or more nonrecursive rules (exit rules). 



Example 2-2. The predicate sg (sameseneration) is defined as follows: 

According to the above classification, sg is a recursive predicate; 1-2 is a linearly recursive rule and 

the rule cluster of sg is a single linear recursive rule cluster where rl  is the exit rule and 1-2 is the 

only recursive rule. 0 

Altho,ugh recursions can be much more complicated than linear recursions, we find that a large set 

of database-oriented applications belong to this relatively simple domain. Thus, many techniques 

studied in this thesis are confined to linear recursions. Nevertheless, we do find some interesting 

applications which involve recursions with function symbols (such as arithmetic functions and list 

processing functions) and multiple "levels" of linear recursions. We will discuss how to handle 

these extensions to linear recursions as well. 

Here are some examples of the various kinds of recursions : 

Example 2-3. The ancestor relation: 

ancestor(X,Y) : - parent(X,Y). (rl) 

ancestor(X,Y) :- ancestor(X, Z), parent(Z,Y). (r2) 

Ancestor is a recursive predicate and its rule cluster is single linear. 0 



Example 2-4. A random linear recursion 

In this example, r is recursive and the cluster is single linear recursive. We will be looking into this 

example in Chapter 3 because it is a typical case that the Magic Sets method (which is one of the 

most popular optimization methods on recursive query optimization in Deductive Databases) has 

some inherent problems in binding propagationpan9 1 b]. 

Example 2-5. A functional linear recursion. 

This is a single linear recursion with list fbnction symbols. We will discuss its implementation in 

Chapter 4. 

Example 2-6. An airline reservation example p a n 9  1 a]: 

travel ( [Fno], Dep, DTime, Arr, ATime, Fare ) 

:- flight ( Fno, dep, DTime, Arr, ATime, Fare). 61) 

travel ( [FnoIL], dep, DTime, Arr, ATime, Fare) 

:- flight( Fno, dep, DTime, Int, IATime, F1), 

travel( L, Int, IDTime, Arr, ATime, S1), 

Fare = F1 + S1. (r2) 

This is a functional linear recursion with both list finctions and arithematic functions. 



Example 2-7. The n-queens problem: 

nqueens(N, Qs) :- range(1, N, Ns), queens(Ns, [I, Qs). 

range(M, N, [MlNs]) :- M<N, M1 is M+1, range(Ml, N, Ns). 

rangem, N, IN). 

queens( Unplaced, safe, Qs) :- Select(Q, Unplaced, Unplacedl), 

not attack(Q, Safe), 

queens(Unp1aced 1, [QI Safe], Qs). 

queens( [I, Qs, Qs). 

aGack(~, Xs) :- attackl(X, 1, Xs). 

attacklor, N, [YIYs]) :- X is Y+N. 

attackl(X, N, [YIYs]) :- X is Y-N. 

attackl(X, N, [YIYs]) :- N1 is N+1, attackl(X, N1, Ys). 

select@, [XlXs], Xs). 

select(X, [YJYs], [YIZs]) :- select(X, Ys, Zs). 

This recursion consists of multiple levels of linear recursions, which is more formally named as 

nested linear recursion. We will discuss how to process queries against "nqueens" in a deductive 

database approach in Chapter 4. This example is interesting because it is a good showcase on how 

the DDB approach is different from that of Prolog, and what the advantages/disadvantages are of 

each. However, for this particular example, there are no associated EDB relations. 



2.3 Characteristics of the Strategies 

Before discussing the evaluation methods, it would be helpfbl to see some of the criteria used to 

distinguish them. We will briefly look at three such criteria [CeGoLe89]: 

Bottom-up vs. Top-down strategy 

Query evaluation vs. Query optimization 

Syntactic optimization vs. Semantic optimization 

2.3.1 Search Strategy: Bottom up vs. Top Down 

The evaluation of a Datalog goal can be performed in two different ways: 

bottom-up: starting fi-om the existing facts and inferencing new facts 

top-down: starting from the query, trying to verify the premises which are needed in order for 

the conclusion to hold. 

We consider these two evaluation strategies as representing different interpretations of a 

The Bottom-up evaluation methods consider rules as productions that apply the initial program to 

the EDB and produce all the possible consequences of the program, until no new facts can be 

deduced. The bottom-up method can naturally be applied in set-oriented fashion, i.e. taking as 

input the entire relations of EDB. This is a desirable feature in the deductive database context 

. because large amount of data must be retrieved from mass memory. On the other hand, the 

bottom-up methods do not take immediate advantage of the selectivity due to the existence of 

arguments bound to constants in the goal predicate. The selection is usually done on the final 

result set. 



Most of the methods we will be discussing belong to this category, such as NaiveISemi-Naive 

method [2.4.1], the Magic Sets method [2.4.3], the CountingReverse Counting method [2.4.4] 

and the Chain-Based Compilation and Evaluation method [2.4.5]. To take advantage of query 

bindings and other available constraints, three of these methods are optimization methods 

[2.4.3,2.4.4,2.4.5] which do some pre-processing (compilation or rule-rewriting) on the original 

rule set before actually retrieving data from EDB to eliminate irrelevant data at an earlier stage. 

On the other hand, top-down evaluation treats rules as problem generators. Each goal is 

considered as a problem that must be solved. The initial goal is matched with the left-hand side of 

somerules and generates other problems corresponding to the right-hand side predicates of that 

rule. This process continues until no new problems are generated. 

In this case, if the goal contains some bounded argument, then only the facts that are relevant to 

the goal constants are involved in the computation. Thus, this evaluation method performs an 

optimization because the computation automatically disregards many of the facts which are not 

usehl for producing the results. However, using top-down methods, it is more natural to produce 

the answers in one-tuple-at-a-time fashion which is not desirable in database applications. 

Furthermore, we can distinguish two search strategies in top-down approach, i.e. breadth-first or 

depth-first. With the depth-first approach, we face the disadvantage that the order of literals in 

rule bodies strongly affects the performance (especially termination) of methods. This happens in 

Prolog, where not only efficiency but also the termination of programs is affected by the left-to- 

right order of subgoals in the rule bodies[StSh86]. Instead, Datalog goals are more natually 

executed through breadth-first technologies, thus the result of computation is neither affected by 

the order of predicates in the body of a rule, nor by the order of the rules in a program. The 

Query-Subquery method [2.4.2] applies top-down searching strategy. 



2.3.2 Objective : Query Evaluation vs. Query Optimization 

The second classification criterion is based on the different objectives of the methods [BaRa86]: 

Query evaluation methods: These strategies consist of an actual evaluation algorithm, i.e. a 

program which, given a query and a database, will produce the answers to the query. The query 

evaluation methods that we will discuss are NaiveISemi-Naive evaluation and Query-Subquery 

approach. 

Q u e q  optimization methods: Strategies in this class assume an underlying simple evaluation 

strategy and optimize the rules to make their evaluation more efficient, based on the current IDB 

definitions and sometimes the particular query. These methods are usually referred to as 

"rewriting methods". We will discuss the Magic Sets method, Counting/Reverse-Counting 

method and the Chain-Based Evaluation method. 

2.3.3 Type of Optimization: Syntactic Optimization or Semantic Optimization 

Optimization methods differ in the type of information used [CeGoLe89] . 

Syntactic optimization is the most commonly used. It deals with those transformations to a 

program which are based on the program's ~yntactic features. We usually consider two kinds of 

structural properties: one is the program structure, i.e. the types of the rules which constitute the 

program. For example, the methods we will be discussing are mostly based on the linearity of the 

recursive rules to produce optimized form of evaluation. The other one is the structure of the garl 

or query. Particularly, we consider the selectivity or query bindings that comes from goal 

constants. These two approaches are not mutually exclusive. Actually most optimization methods 

combine both of them. 



Semantic Optimization, on the other hand, concerns the use of additional semantic knowledge 

about the database in order to produce an efficient answer to a query. More importantly, the 

combination of the query with additional semantic information is performed automatically. 

Semantic methods are often based on integrity constraints, which express properties of valid 

databases. For example, in example2-6, we have the constraint that the arrival time of a flight is 

always later than its departure time, thus, when we construct a chain of consecutive flights, only 

the flights with a departure time later than the arrival time of the previous flight should be 

considered. 

Although semantic optimization has the potential of significant improvements on query processing 

strategies, it is more case-specific. We are not going to discuss semantic optimization methods 

here. Interested reader can find references listed in [CeGoLe89] and [Han9la]. 

Lastly, there are three important properties all recursion processing methods must 

satisfl[CeGoLe89]: 

1. The method must be sound: it should not include in the result set tuples which do not belong 

to it. 

2. The method must be complete: it must produce all the tuples of the result. 

3.  The method must be terminable: the computation must be performed in finite time. 

Although we are not going to provide formal proofs, the methods studied in the next section 

satisfl all these properties. 



2.4 Survey of Evaluation Methods and Optimization Techniques 

We will use the example of same-generation to illustrate how the methods work. 

Example 2-8. A sample DDB : 

The Intensional Database is : 

The sample query is: "?- sg(a, X). " - 

Figure 2-1. The Family Tree 



2.4.1. Naive and Semi-Naive Evaluation Methods 

Naive evaluation is a bottom-up, iterative evaluation strategy. The method is also well-known in 

numerical analysis as Gauss-Seidel method, used for determining the iterative solution (fixpoint) 

of system of equations. 

Assume the following relational equation: Ri = Evali(R1, ..., Rd,(i = 1, ..., n). The Naive 

Evaluation Method works as follows [BaRa86] : 

Initially, the relations Ri (i = 1, ..., n) are set to the empty set. Then, the computation Ri := Evali( 

R1, ..., R,, ) ( i = 1, ..., n) is iterated until all the Ris do not change between two consecutive 

iterations (i.e. until Ris have reached its fixedpoint). At the end of the computation, the value 

assumed by the variable relations Ri is the solution of the system. 

Algorithm2-1. The Naive Evaluation Method [CeGoLeSg] 

Input: A system of IDB relations R1, ..., R, and an EDB. 

Output: The least fixed point of the IDB relations R1, ..., R,. 

Method: 
For i:= 1 to n do Ri := 0; 

Repeat 

nochange := true; 

For i:= 1 to n do 

begin 

S :=Ri; Ri:=Evali(R1, ..., RJ; 

if Ri # S then nochange := false; 

end 

until nochange; 

For i :=1 to n do output(Ri). 



For example2-8, to compute the sg relation using the Naive Evaluation method, we have in each 

Since sg3 r sgq , for the query ?- sg(a, Y), we have the result set Y= {a, b, c). 

Notice that the Naive Evaluation method is a bottom-up evaluation method. It proceeds in a 

set-oriented way, and the order of rules and the order of predicates in the body of a rule do not 

affect the algorithm. 

The Naive Evaluation is probably the simplest and the most natural way of processing recursive 

queries in a set-oriented manner. However, we can easily see two weaknesses of this method: (I) 

it involves a lot of duplication of calculation at each iteration; (2) it does not take advantage of 

query instantiation information to make the algorithm work more efficiently. 

To deal with the first problem, the Semi-Naive Evaluation Method is introduced. Basically, it 

takes the same approach as Naive Evaluation method, except that it is designed to eliminate some 

redundancies in the evaluation of tuples at different iterations[Ullm89a] . 

In the particular case of linear recursions, the Semi-Naive method proceeds by evaluating only 

the new tuples generated at each iteration and terminates when no more new tuples are generated 

[BaRa86]. , 



2.4.2 QueryISubquery Method 

The QueryISubquery (QSQ) Method is a top-down evaluation method based on backward 
I 

chaining. The advantage of this method is that, it takes into consideration the query instantiation 

information at the very first stage, and tries to access the minimum number of facts in order to 

determine the answer. 

The key concept of this method is subquery. A goal, together with the program, determines a 

query. Literals in the body of any one of the rules defining the goal predicate are subgoals of the 

given goal. A subgoal, together with the program, defines a subquery. In order to answer the 

query, each goal is expanded in a list of subgoals, which are then expanded in their turn. 

The method memorizes two sets at each stage of computation: (i) a set Q of generalized 

subqueries, which contains all the subgoals that are currently under consideration, and (ii) a set R 

of derived relations, containing answers to the main goal and answers to intermediate subqueries. 

The QSQ algorithm is basically doing two things: generating new answers to the R set and 

generating new subqueries that must be answered to the Q set. 

There are two versions of the Query/Subquery algorithm: Iterative QueryISubquery (QSQI) 

and Recursive QueryISubquery (QSQR). The difference between these two versions is which 

set (Q or R) is considered first[CeGoLe89]. QSQI privileges the production of answers, i.e. when 

a new query is encountered, it is suspended until the end of the production of all the possible 

answers that do not require using the new subquery. QSQR, on the other hand, behaves in the 

other way around: whenever a new query is found, it is recursively expanded and the answering to 

the current subquery is postponed until the new subquery has been completely solved. 



At the end of the computation, R contains the answers to the goal. As in NaiveISeh-Naive 

method, a final selection is needed to generate the answers. However, the query instantiation 

information has been considered in the initial goal, thus the size of the relations involved in the 
' 

computation is comparatively much smaller than those involved in Naive evaluation. 
C 

The two algorithms are described as follows: 

Algorithm2-2. Iterative QueryISubquery Algorithm QSQI PaRa861 : 

Initial'state is <{query(X)), {)> 

while the state changes do 

for all generalized queries in Q do 

for all rules whose head matches the generalized query do 

begin 

(i) unifjr rule with the generalized query; 

( i.e. propagate the constraints. This generates new generalized queries 

for each derived predicate in the body by looking up the base relations. ) 

(ii) generate new tuples; 

( by replacing each base predicate on the right by its value and every derived 

predicate by its current temporary value.) 

(iii) add these new tuples to R; 

(iv) add these new generalized queries to Q; 

end. 



Algorithm2-3. Recursive QueryISubquery Algorithm QSQR[BaRa86]: 

~nitial state is < {query(X)), { ) > 
* 

evaluate(query(X)). 

procedui*e evaluate( q ) I* q is a generalized query *I 

begin 

while "new tuples are generated" do 

for all rules whose head matches the generalized query do 

begin 

unifjr the rule with the generalized query; (i.e. propagate the constants) 

until there are no more derived predicates on the right do 

begin 

(i) choose the firsthext derived predicate according to the selection fbnction; 

(ii) generate the corresponding generalized query; 

(This is done by replacing in the rule each base predicate by its value and each 

previously solved derived predicate by its current value). 

(iii) eliminate from that generalized query the queries that are already in Q; 

(iv) this produces a new generalized query q', add q' to Q; 

(v) evaluate (q') 

end 

replace each evaluated predicate by its value and evaluate the generalized query q; 

add the results in R, 

return the results; 

end 

end 0 



This method can be compared with Prolog because they both use the top-down strategy. The 

differences are : (1) Prolog proceeds one tuple at a time while QSQ is set-oriented, because it 

processes the whole relation (generalized queries) at each step. In this sense, QSQ is more 
s 

appropriate for database applications. (2) QSQ adopts breadth-first search and always terminates, 

while prolog applies depth-first search and may not terminate in some cases. 

The queryhubquery algorithm was first introduced by L.Vieille [CeGoLe89]. A compiled version 

of QSQR has been implemented on top of the INGRES relational system [BaRa86]. 

2.4.3. I'he Magic Sets Method 

The method of Magic Sets is a logical rewriting method ( optimization method ) that generates 

from the given set of rules a new ( and larger ) set of rules, which are equivalent to the original set 

with respect to the query, and its bottom-up evaluation is more efficient. 

The idea of the Magic Set method is to use query binding information to cut down on the number 

of potentially relevant facts involved in the computation. The new rules involved in the rewriting 

part act as constraints, which force the program variables to satisfjr some additional conditions, 

based on the information of query bindings. 

We use example 2-8 to show how it works, more details can be found in @3aRa86, BMSU861. 

The original rule set is : 

sg(X,X) :- person@). 

'g(XY> :- parent(x XI), Y1), sg(X1, Y1)- 

- The query is: "query(X) :- sg(a, X)." i.e. "find person a's same generation cousins". 



The following steps are taken to generate a "Magic Set" from the original rules based on the 

provided query constraints (bindings) [BaRa86] : 

Step 1. Generate Adorned Rules 

c 

For each rule r and for each adornment a of the predicate on the left, generate an adorned rule: (i) 

Define recursively an argument of a predicate in the rule r to be bounded if either it is bounded in 

the adornment a, or it is a constant, or it appears in a base predicate that has a bounded variable. 

These bindings are propagated through the base predicates. (ii) The adorned rule is obtained by 

replacing each derived literal by its adorned version. 

For example, the rule 

sg(X,Y) :- P(X, Xl), P(Y, Yl), sg(X1, Y1). 

with the adornment "bf' on the head predicate (which means X is bounded and Y is free) would 

generate the adorned rule : (Note that we assume all the non-recursive predicates are base 

relations and do not have functions involved. Thus, only the adornment of IDB predicates needs 

to be considered.) 
sgbf(X, Y) 1- P(X, XI), p(Y, Y1), sgbf(X1, Y1). 

Note that for a set of R rules with the same head predicate, the adorned system is of the size K*R, 

where K is a factor exponential to the number of attributes per derived predicate. Among these 

adorned rules, we only consider the ones that derive the query. 

In our example, the reachable adorned system is: 

sgbf(XY) 1- P(X Xl), P(Y, Yl), sgbf(X1, Y1)- 

sgbf(X, X) :- person@). 

queryf(X) :- sgbf(a, X). 

This new set of rules is equivalent to the original set in respect to the query sgbfa,X). 



Step 2. Generate Magic Rules 

For each occurrence of a derived predicate on the right of an adorned rule, we generate a magic 
' 

rule [BaRa86] : 

(i) Choohe an adorned literal p on the right of an adorned rule r 

(ii) Erase all the other derived literals on the right. 

(iii) In the derived predicate occurrence, replace the name of the predicate by magic.pa where a is 

the literal adornment and erase the non-distinguished variables. 

(iv) Erase all the non-distinguished base predicates. 

(v) OH the left hand side, erase all the non-distinguished variables and replace the name of the 

predicate by magic.p,$ where p, is the predicate on the left and a' is its adornment. 

(vi) Exchange the two magic predicates. 

For example, 

sgbf(X, Y) 1- P(X, Xl), P(Y, Yl), sgbf(X17 Y1). 

generates the magic rule 

magicbf(Xl) : - p(X, XI), magicbf(X). 

Notice that the magic rules simulate the bound of arguments through backward chaining. 

Step 3. Generate Modified Rules. 

For each adorned rule generated in Stepl, we generate a modified rule : for each rule whose head 

is p.a , add on the right hand side the predicate magic.p.a(X), where X is the list of distinguished 

variables in that occurrence of p. 



Combining Steps 1, 2 and 3, the complete modified set of rules is as follows: 

After the rule rewriting, the IDB relation "magic" contains all the ancestors of a. The tuples of the 

relation "magic" defined by the magic rules form the magic set. By computing the magic set, we 

impose the restriction that, to compute a's same generation cousins, we only need to consider 

those pairs of same generations whose first element is an ancestor of a. This is essentially the 

whole purpose of the rule rewriting: to cut down on irrelevant facts at an earlier stage of 

computation. 

After the magic sets transformation, the resulting program can be evaluated by a simple bottom- 

up algorithm, such as Naive or Semi-Naive method, but still takes advantage of the binding 

information. 

The original idea of Magic Set method was presented in [BMSU86]. The method has been 

extended by Sacca and Zaniolo to a class of queries to logic programs that contain fimction 

symbols [CeGoLe89]. So far, the Magic Sets method is one of the most popular methods used in 

DDB implementations. 



2.4.4. The Counting Method 

' 

The counting method is derived from the Magic Set method. It applies under two conditions: (i) 

the data is acyclic and (ii) the program is linear and has at most one recursive rule for each 

predicate PMSU861 . 

Consider again the same~eneration example. The Magic Set method restricts the computation to 

the ancestors of person "a". Furthermore, the counting method maintains the information of the 

persods "distance" to person "a" in the generation tree, i.e. whether it is one of a's 

parents(distance = 1 ), grandparents( distance = 2 ), grand-grand parents (distance = 3), etc. Thus 

hrther computation is restricted to the children of a's parents, grandchildren of a's grandparents, 

and grand-grand children of a's grand-grand parents, etc. 

Here is the result rule set of applying counting transformation to the output of Magic Sets method 

on the query ?- sg(a, X). 

sg@, X, I) :- person(X), integer(1). 

sg(X, Y, I) :- parent@, XI), sg(X1, Y1, J), parent(Y, Y1), counting(X1, I), I=J-1. 

counting(a, 0). 

counting(X1, I) :- counting(X, J), parent& XI), I= J+1. 

Generally, if we have a "general" single linear rule system: 

r(X, Y) :- flat(X, Y). 

r(X, Y) :- up(X, XU), r(XU, YU), downWJ, Y). 

query(X) 1- r(a, X). 



The resulting rule set after applying counting method is: 

counting(X, I) :- up(Y, X), counting(Y, J), I=J+l. 

r'(X, Y, I) :- counting(X, I), flat(& Y). 

r8(X, Y, I) :- counting(X, I), up(X, XU), r'(XU, YU, J), down(YU, Y), I=J-1. 

Obviously, if the base relations are cyclic, the counting method encounters the termination 

problein. Also, special considerations should be put with the evaluation of built-in functions, such 

as "+" and "-". We will discuss the evaluation of function symbols in more detail later, but . 

generally the rule is to defer the computation until enough binding information has been gathered 

to generate a finite result set. 

The original idea of the counting method was introduced in PMSU861, a similar method called 

"reversed counting" is discussed in the same paper. 

2.4.5 The Chain-Based Compilation and Evaluation Method 

To conclude the survey, we discuss the general idea of the chain-based compilation and evaluation 

method. The implementation and extension of this method is the focus of this thesis. 

- Chain-based compilation method is a query-independent compilation method. The idea is that, 

based on the expansion regularity of recursive rules, a single linear recursive rule cluster can be 

compiled into a highly regular chain-form (or linear normal form) which captures query 

bindings that are difficult to be captured in other methods and facilitates efficient query analysis 

and evaluation [Hanggal . 



We define the first expansion of a linear recursive rule as itself, and the k-th expansion of a 

linear recursive rule as the unification of the (k-1)th expansion and the definition recursive rule. 
' 

Let's looE at the expansion behavior of the recursive rule for sg: 

The first expansion (the definition rule) is : 

sg(X Y) :- parent(X, XI), sg(X1, Y1), parent(Y, Y1). 

The second expansion is: 

sg(& Y) :- parent@, Xi), parent(&, X2), sg(X2, Y2), parent(Y1, Y2), parent(Y, Y1). 

The tKrd expansion is: 

sg(X, Y) :- parent(X X1)7 parenGI, X2), parent(X2, X3) sg(X3, Y3), 

parent(Y2, Y3), pxent(Y1, Y2), parent(Y, Y1). 

and so on. 

We can see that the variable connection patterns in these expansions is highly regular and the 

variables in the head predicate and the variables in the recursive predicate in the body are 

connected by a "chain" of predicates. 

If we describe such a chain as: 

f True i = 0 
parenti (Xi.l, Xi) = { parent(Xiel, Xi) i =  1 

parenti-l(~i-l, Z), parent@, Xi) i > 1 

The i-th ( i > 0 ) expansion of sg is: 



Since the definition of "sg" is the union of all its expansions, we have the chain-form of "sg" as: 
00 

sg(X, Y) = . U ( parenti(X, Xi), parenti(y, Yi), (person(Xi), Xi=Yi) ). 
1 = 0 

Thus, sg is a "double-chain recursion", with two chains: par en ti(^, Xi) and paren t i (~ ,~ i ) .  These 

two chains are actually two binding propagation paths. 
C 

Notice that: 

The compilation process is independent of any query forms. (Thus the name "query 

independent compilation".) 

The chain form depends only on the logical definition of the rule. The order of rules specified 

in the rule cluster and the order of literals specified in the body of rules are not relevant to the 

result of compilation. 

It has been proved that all single linear recursions can be compiled into either bounded 

recursion or regulated chain forms [Han89a] . 

Each chain in the compiled form has two ends: the near end of the chain shares variables with the 

exit expression while the far end is the other end which connects to queries. For example, 

considering the chain par en ti(^, Xi) in the case of "sg", X is the far end and Xi is the near end. 

Based on the chain form, we can generate efficient evaluation plans for various queries. The basic 

considerations in the evaluation phase are: 

1. Choose the more selective end of the chain to start processing. 

2. Based on the query requirements, choose an evaluation strategy between query closure or 

existence checking [Han89b] . 

More complicated situations, such as fbnctional recursions and multi-level recursions require 

more considerations such as chain-splitting[HaWa9 11, which will be discussed in Chapter 4. 



Considering again the query "?- sg(a, Y)", we can see that, for the chain parenti(% Xi), the far 

end is bounded ( X = a ) while the near end is free. Thus, the query process should start from the 

far end of this chain, then the exit part, and proceed "downwards" along the other chain. 

Near End: (Xi, Yi) 

Far End: (XI Y) 

Figure 2-2. The Chain Following Directions 

The evaluation proceeds as follows: 

i=O, sq,,)(a, Y) = person(a), a=Y. 

which derives Y = {a). 

i=l, sq,,(a, Y) = parent(a, XI), (person(X1, Yl), X1 = Y1), parent(Y, Y1). 

which derives in the following order: X1 = {d, h); Y1 = {d, h); Y={a,b). 

i=2, %+,(a, Y) = parent@, XI), parent(X1, X2), (person(X2, Y2), X2=Y2), 

parent(Y1, Y2), parent(Y, Y1). 

which derives the following result set: X1={d, h); X2={g); Y1={d,e), Y={a,b,c). 

3 sq3)(a,Y)= parent(a,X1),parent(X1,XZ),parent(X2,X3), 

(person(X3, Y3), X3=Y3), 

parent(Y2, Y3), parent(Y1, Y2), parent(Y, Y1). 

which derives: X1 = {d,h), X2 = {g), X3 = 0. Processing terminates. 

Thus, we have the result set Y = {a) u {a,b) u {a,b,c) = {a, b, c ) .  0 



The key to this method is to generate the compiled chain form. The idea is proposed in [Han89a]. 

In the next chapter, we will discuss in detail how to automatically generate the chain form. In 

Chapter 4 we will discuss the query analysis and evaluation based on chain forms. 
G 



Chapter 3 

Compilation of Linear Recursions . 

3.1. Diffi'culties of Magic Rule Rewriting 

As we discussed in Chapter 2, many techniques have been developed to evaluate recursions in 

deductive databases. These methods can be classified as either evaluation or optimization 

methods. Furthermore, the optimization methods can be classified into two categories: query- 

depen'dent optimization and query-independent optimization. 

A query-dependent method rewrites a logic program into an equivalent but more efficiently 

evaluable one based on specific query forms. The magic rule rewriting technique is a typical 

example. 

A query-independent method, on the other hand, compiles IDB predicates into a set of compiled 

forms independent of queries. When a query is submitted, an evaluation plan is generated based 

on the compiled form, current database statistics and the query information. The chain-based 

, compilation and evaluation method is such a query-independent optimization method. 

Although there have been some quite interesting studies on query-independent compilation of 

complex linear recursions (We921)  , these studies did not produce an efficient algorithm for 

- automatic generation of compiled linear recursions. In this chapter, we discuss a simple variable 

connection graph matrix, the V-matrix, and develop a V-matrix expansion technique which 

discovers the minimal necessary expansions in the compilation of complex linear 

recursions[HaZe92]. Based on such V-matrix expansions, complex linear recursions can be 

normalized into highly regular chain-forms and linear normal forms. The compilation facilitates 



the development of powerful query analysis and evaluation techniques for complex linear 

recursions in deductive databases. 

A chain of length k (k>l) is a sequence of k predicates with the following properties: (1) all k 

predicates have the same name, say p, and the I-th p of the chain is denoted as pg), (2) there is 

at least one shared variable in every two consecutive predicates, and if the i-the variable in the 

first predicate is identical with the j-th variable in the second, the (i, j) is an invariant of the 

chain in the sense that the i-th variable of pg) is identical with the j-th variable of p(l+l) for 

eviry 1 where 1 5 1 5 k-1. Each predicate of the chain is called a chain predicate. A chain 

predicate may consist of a sequence of connected non recursive predicates. 

A linear recursion is an n-chain recursion if for any positive integer K, there exists a k-th 

expansion of the recursion consisting of one chain ('when n=l) or n synchronous (of the same 

length) chains (when n>l) each with the length greater than K, and possibly some other 

predicates which do not form a chain. It is a single chain recursion when n=l, or a multi- 

chain recursion when n >1. A recursion is bounded if it is equivalent to a set of non 

recursive rules. 

A linear recursion is in linear normal form (LNF) if it consists of a set of exit rules and at 

most one normalized recursive rule in the form of: 

X2, -.., Xn) 1- cl(X1, Yl), c2(X2, Y2), .-., c@n, Yn), r(Y1, Y2, e S . 9  Yn). 

where Xi and Yi ( 1 5 i I: n) are variable vectors. Each ci (1 5 i 5 n) is a chain predicate. 

Notice that a chain predicate ci for some i can be null in the sense that there is no ci predicate 

and Yi = Xi. The normalization of a linear recursion is the process of transforming a linear 

recursion into its equivalent Linear Normal Form. 



Normalization transforms linear recursions into highly regular compiled forms which not only 

facilitates systematic development of query analysis and evaluation techniques, but also helps 

binding propagation which may not be captured in other optimization methods. 
' 

Below is'an example where the Magic Sets method encounters the problem of "lost bindings in 

propagation" while our normalization method can still obtain sufficient binding information 

wan9lbl . 

Example 3-1. Suppose a query (ql), " ?- r(X, Y, c)." is posed on the linear recursion : 

Using the Magic Set rule rewriting technique, the goal node is adorned as ra. The binding in the 

adorned goal node is propagated to the subgoal r in the body of the recursive rule, resulting in Pf, 
which is in turn propagated into the subgoal r in the body of the recursion at the next expansion, 

resulting in rm. 

The resulting rule set is : 

r a K  Y, Z) - rfbf(X1, Z, Zl), aff(X, Y), bbb(X1, zl). 0-1 1) 

rfbf(X1, Z, Zl) :- afb(X1, Z), rm(X2, Z1, Z2), bbb(X2, Z2). (r12) 

- Since the binding from the query could not be propagated further to the subgoal rm in r12, the 

Magic Set involves the entire base relation a, thus the binding information cannot help reduce the 

set of data to be examined in Naive or Semi-Naive evaluation . 



On the other hand, using the chain-based compilation method, the above recursion can be 

normalized into the following normalized form: 

r(X, y ,  Z) :- %(X, y ,  Z). ('2 1) 

r(X, Y, Z) :- a(X, Y), t(Z). 0-22) 

t@) r- %(u, z ,  V), b(U, V). (r23) 

t(Z) :- ab(Z, Z1), t(Z1). (r24) 

where ab(Z, Z1) :- a(X1, Z), b(X1, Z1). 

After the compilation, the query binding "Z=c" can be propagated into every firther expansion of 

the noamalized recursion. Furthermore, the query(ql) is essentially the verification of t(c) which 

can be evaluated efficiently by existence checking algorithm instead of evaluating the whole query . 

closure. 0 

In this chapter, we discuss the concept and implementation of the compilation process, which 

automatically generates the chain-form and linear normal form of a finction-free single linear 

recursion. 

3.2 A Variable Connection Graph-Matrix: the V-matrix 

The concept of chain-based compilation method was proposed in Wan89al. Extensive study has 

been done on the compilation of complex linear recursions using a variable connection graph: the 

V-graph. The conclusion is that a single linear recursion is either a bounded recursion or can be 

compiled into highly regular chain forms. 

Moreover, it is found that the expansion behaviour is closely related to its variable connection 

pattern. Based on hrther study of this discovery, the idea of V-matrix is introduced [Haze921 



and implemented [HaZeLu93] to automatically generate the compiled form of a linear recursion 

by simulating its expansion behaviour through V-matrix expansions. 

' 

To simpliQ our discussion, the following assumptions are made in this chapter: 

1. The fecursion is single linear, i.e. there is only one recursive rule in the cluster and it is a 

linearly recursive rule. 

2. The rules arefinction-fee, i.e. all the non-recursive predicates are EDB predicates. 

3. There are no constant or duplicate variables appearing in the recursive predicate . 

4. There is only one exit rule (non-recursive rule) in the recursive cluster, with the same head as 

the recursive rule, i.e. the exit rule (Eo) is of the form V(X1, ..., Xn) :- eo(X1, ..., XJ. 

Definition. [Hanggal 

For a linear recursive rule with the head predicate r(X1, ..., Xd, the 0-th expansion of r is 

defined as a tautological rule: "r(X1, ..., X d  :- r(X1, ..., X,)." the first expansion of r is the 

recursive rule of r. The k-th expansion of r ( k > 1 ) is the unification of the recursive rule of 

r with the ( k - 1 )st expansion of r. The k-th expanded exit rule of r ( k 2 0 ), denoted as 

ek(X1, ..., X,) is the unification of the k-th expansion with the exit rule Eo. 

The expansion behaviour of a recursion is closely related to the variable connections among its 

predicates. 

Definition. [HanZe92] 

Two predicates in the body of a rule are connected if they share a variable with each other or 

with a set of connected predicates. Two non-recursive predicates in the body of a rule are U- 

connected if they share a variable with each other or with a set of U-connected predicates. A 

set of variables are U-connected if they are in the same non-recursive or in the same 

set of U-connected (non recursive) predicates. 



The variables appearing in the recursive rule head are distinguished variables, while those 

appear only in the body of the rule are non-distinguished variables. 
' 

' 

The variables of a recursive rule can be partitioned based on the relation of U-connections. In 

order to study the expansion behavior of a linear recursive rule, a variable connection graph- 

matrix, the V-matrix, is constructed as the following: 

Definition. [Haze921 

Thi: variable connection graph-matrix, V-matrix, for a linear recursive rule of arity n consists 

of a sequence of rows. Each row consists of n columns with the i-th column corresponding to . 

the i-th argument position of the recursive predicate. Moreover, there are possible U- 

connection edges between some columns in a row. 

The contents of the initial V-matrix reflect the variable information in the original recursive rule, 

while the expansion of V-matrix simulates the expansion of the recursion rule. 

The initial V-matrix, which consists of the first two rows (row[O] and row[l]) of the V-matrix, is 

constructed according to the following V-matrix initialization rules, while the expanded rows are 

constructed based on the V-matrix expansion rules to be discussed in next section. 



V-matrix initialization rules waZe921 : 

A V-matrix is initialized according to the following four steps: 
I 

1. Partition the variables in the rule according to the U-connections (each partition is called an 

U-cofinection set). 

2. Copy the variables in the recursive predicate in the head and the body to the corresponding 

columns in row[O] and row[l] respectively. 

3. Replace the variable at each column of row[l], say X, by the set of distinguished variables U- 

connected with X, if any. 

4. Fin%lly, set up a U-connection edge between each pair of columns in the corresponding row if 

the pair of columns are in row[O] and contain U-connected distinguished variables , or if they 

are in row[l] and contain U-connected nondistinguished variables. 

We will use the following set of rules throughout our discussion of this chapter[HaZe92]: 



Figure3-1. The initial V-matrices of rules(Al) to (GI). 

For rule(Al), X1 in row[l] is replaced by {X) because there is a U-connected set {X, XI). For 

rule(B1), X1 in row[l] retains X1 because X1 is not U-connected to any distinguished variable. - 

For rule(C1), X1 is replaced by {Y) and Y1 is replaced by {X) because there are two U- 

connected sets: {X, Y1) and {Y, XI). For rule(Dl), there are three U-connected sets: {X, Y), 

{Z) and {XI, Z1), but row[l] remains the same because none of the non-distinguished variables 

in row[l] is U-connected to any distinguished variables in row[O]. However, there are two U- 

connection edges, one between columns 1 and 2 in 'row[O] and the other between columns 

columns 1 and 3 in row[l]. For rule(F1), there is one U-connection set : {X, Y, X1, Y1) which 

contains all the variables, thus X1 and Y1 in row[l] are replaced by the set of distinguished 

variables {X, Y). Moreover, there is one U-connection edge between columns 1 and 2 in row[O]. 

Finally, rule(G1) contains six U-connection sets: {X, Y1, T), {W, TI), {Z), {Z1), {Y) and {U, 

V, U1). Thus in row[l], Y1 and T are replaced by {X, T), Tl by (T) and (U1) by {U, V). 

Moreover, there are U-connection edges in row[O] : U-connection between columns (1, 4) and 

, columns (6, 7). 0 



A V-matrix can be partitioned into one or more unit V-matrices based on the connections among 

V-matrix columns. 

I 

Definitions. [Haze921 

Two ~olumns of a V-matrix are connected if the two columns in the initial V-matrix share a 

variable, have a U-connection edge or are connected to a set of connected columns. A set of 

connected columns form a unit V-matrix. A linear recursive rule whose V-matrix consists of 

only one unit is a single-unit rule; otherwise it is a multiple-unit rule. 

In exmple 3-2, the first five rules are single unit rules while the sixth rule (GI) is a multiple-unit 

rule and its V-matrix consists of three units consisting of columns (1, 2, 3, 4), (5) and (6,7) 

respectively. 

3.3 Derivation of Stable Rules by V-matrix Expansion 

3.3.1 Expansion of Single-Unit Linear Recursive Rules 

We first examine the expansion regularity of Single-Unit Linear Recursive Rules and the 

correspondence with its V-matrix expansion. 

Example 3-3. The second expansion of rules (Al) to (F1) are (A2) to (F2) respectively [HaZe92]: 

r m  1- a@, XI), 4x1, X2), r(X2). (A21 

:- a(X, x), a(X1, Xi), r(X2). @2) 

r(X, Y) :- a(X Yi), b(X2, Yi), r(X2, Y2), a(X1, Y2), b(X1, Y). (C2) 

r(X, Y, 2 )  :- Y), ~ ( X I ,  Z), r(X2, Z1, z2), b(X2, Z2), b(X1, 21). 0'2) 

r a  Y) 1- a(X, Xi, Y), b(Y, Yl), 4x1, X2, Y1), b(Y1, Y2), r(X2, Y2). (F2) 



If each recursive rule generated at the second expansion is treated as an original recursive rule, 

row[2] of each V-matrix can be constructed as row[l] using the same V-matrix initialization 

rules. 
101 X 101 X ' 101 X Y 

121 {X2) Z (22) 121 {X, Y) {X, 

t d  tf) 

Figure 3-2. V-matrices of rules (Al) to (F1) at the second expansion. 

Interestingly, row[2] of the V-matrices can also be derived from the initial V-matrix, i.e. from 

row[O] and row[l]. For example, Fig3-2(a) indicates that if a distinguished variable X at row[O] 

derives the same variable X at row[l], it will derive the same variable X at row[2]. Fig3-2(b) 

indicates that if a distinguished variable X at row[O] derives a non distinguished variable X1 at 

row[l], it will derive a new non distinguished variable (in this case X2) at row[2]. Fig3-2(c) 

indicates that if a distinguished variable X at row[O] derives another distinguished variable Y at 

row[l], it will derive the same distinguished variable Y from row[l] to row[2]. Fig3-2(d) is more 

complicated. According to the derivation rule observed from Fig3-2(b) and Fig3-2(c), row[2] 

should be [{X2), {Z1), {Z2)]. However, by copying U-connection edges from row[l] to row[2] 

. and then from row[O] to row[l], we can see that Z and Z1 are now U-connected. Thus, Z1 in 

row[2] is replaced by the distinguished variable Z and row[2] is now [{X2), {Z), {Z2)]. 

Similarly, row[2] of Fig3-2(Q is [{X, Y), {X, Y)] because both X and Y derive the set {X, Y). 



This example shows that the expansion of V-matrix is closely related to the expansion of the 

recursive rule. In another words, the new rows of a V-matrix can be generated from its initial V- 

matrix by a set of V-matrix expansion rules, and the generated rows reflect the U-connectivity of 
' 

the corresponding expanded recursive rules [HaZe92]. 

c 

Definition. 

A variable Y is a derivative of a distinguished variable X in a V-matrix if Y is derived by X, 

that is, Y and X are at the same column in the V-matrix, but Y's row number is X's row 

number + 1. 

V-matrix expansion rules [Haze921 : 

1. (Row generation) For each distinguished variable X in V-matrix [LastRow, i], add X's 

derivatives to V-matrixmextRow, i] . 

2. (U-connection Propagation) The U-connection edges are copied from LastRow to NewRow 

and then from LastRow-1 to LastRow. If such copying makes a distinguished variable X 

U-connected to the set of variables in V-matrix[NewRow, i], X is added to the set of variables 

in V-matrixmewRow, i]. 

Lemma 3-1. 

Each row of the V-matrix generated by the above two V-matrix expansion rules correctly 

registers the set of distinguished variables U-connected to each column of the recursive 

predicate in the body at each expansion [HaZe92] . 

In principle, a V-matrix can be expanded infinitely by following the V-matrix expansion rules. 

However, our goal is to find the regulation of its expansion. The theory of chain-based 

, compilation [Han89al says that "from a certain point, hrther expansions of a recursion rule will 

repeat the patterns of the existing expansion rules". In the representation of V-matrix, it means 

48 



that from a certain row i, firther expansions of a V-matrix will repeat the patterns of the existing 

rows in the V-matrix. 

G 

Definition. [HanZe92] 

The DV-set (distinguished variable set) of a column is the set of all the distinguished variables 

U-connected to the variables in the column. Two rows, row[i] and rowfi], in a V-matrix are 

identical (denoted as row[i] = rowti] ) if each pair of the corresponding columns have the 

same DV-set . 

In Fig3-2, row[l] = row[2] in (a) and (f). Similarly, row[2] = row[l] in (b) and (d); row[2] = 
I 

row[O] in (c). 

Obviously, if rowti] = row[i] (i > i), all the expansions starting at rowu] repeats the expansions 

- starting at row[i]. Thus we have : 

Lemma 3-2. [Haze921 

In a single-unit V-matrix, if row[i] = rowti], and i < j, then rowfi+k] r row[i+k] for any k 2 0. 

Based on such regularity of V-matrix expansions, we define the stable level and the period of a 

V-matrix as: 

Definition. 

If starting at row S, there exists a T such that the row of a single-unit V-matrix repeats at 

every T more expansions, that is, row[S+k*T] - row[S] for all k > 0, then S is the stable level 

and the smallest T the period of the V-matrix. If row[S] contains no distinguished variables, T 

is defined as 0. 



Algorithm 3-1. The expansion of a single-unit V-matrix and the derivation of its stable level S 

and period T [HaZe92] . 

Input: An initial single-unit V-matrix. 
C 

Output: An expanded V-matrix, the stable level S and the period T. 

Method:' 

begin 

LastRow := 0; CurrentRow := 1; 

while not RowRepeating (CurrentRow, ExistingRow) 

do 

begin 
r 

LastRow := CurrentRow; 

CurrentRow := CurrentRow + 1 ; 

I* Generate the contents of the CurrentRow. *I 

for each column i do 

I* Every column in CurrentRow is initially empty. *I 

for each distinguished variable X in V-matrix[LastRow, i] do 

Add x's derivatives to V-matrix[CurrentRow, i]; 

I* U-connection Propagation. */ 

Copy the U-connections from LastRow to CurrentRow; 

Copy the U-connections from LastRow - 1 to LastRow; 

for each column i do 

for each X in V-matrix[CurrentRow, i] do 

if X is U-connected to a distinguished variable Y which 

is not already in V-matrix[CurrentRow, i] 

then Add Y to V-matrix[CurrentRow, i] 

and remove, if any, non distinguished variables there; 

end; 



S := ExistingRow; 

if there is no distinguished variable in CurrentRow 

then T :=0 
' 

else T := CurrentRow - ExistingRow 

end. 0 

Notice that RowRepeating is a Boolean hnction which returns true if there is an ExistingRow, 

where 0 r ExistingRow < CurrentRow, such that rowmstingRow] = row[CurrentRow]. That is, 

functim RowRepeating (CurrentRow, var ExistingRow): Boolean; 

begin 

ExistingRow := CurrentRow - 1; 

repeat 

If row[CurrentRow] = row[ExistingRow] 

then return(true) 

else ExistingRow := ExistingRow - 1 

until ExistingRow < 0; 

return(fa1se) 

end. U 

For Example 3-2, the stable levels and periods of the recursions (Al) to (F1) are shown in Table3-1. 

Table3-1. Stable levels and periods of the recursions Al to F1. 



Theorem 3-1. In a single-unit recursive rule of arity n, the expansion of its V-matrix terminates at 

or before the n-th iteration. That is, S+T I n m e 9 2  ] . 

3.3.2 Expansion of Multiple Unit Linear Recursive Rules 

Although the V-matrix expansion rules can be applied directly to multiple-unit linear recursions, it 

may lead to relatively large number of expansions. Suppose there are k units in the V-matrix, the 

minimum number of expansions to reach the row repeating stage should be the least common 

multiplier of the arity of each unit, that is, Icm(nl, n2, ..., nk), where nj (1 < j < k) is the arity of 

the j-thknit. 

For example, if a V-matrix consists of three unit matrices V1, V2 and V3, with S1=S2=S3=0, TI= 

5, T2=6, and T3=7, it will take T = lcm(5,6,7) = 210 expansions to find a repeating row in the 

combined V-matrix. 

However, since each V-matrix unit reaches its own stable stage independent of other units, the 

stability of a recursion can be determined by the examination of each unit independent of others. 

That is, for the above example, only 7 expansions are necessary to detect the regularity of the 

expansion patterns. 

Definition. [Haze921 

A linear recursion whose recursive rule corresponds to a multiple unit V-matrix reaches a 

stable stage at the S-th expansion if for every unit V-matrix Vi, either no new results can be 

generated from this unit on any EDBs ( i.e. bounded for this unit), or each hrther Ti 

expansion adds to the body of the rule the same set of EDB predicates connected to the same 

set of variables in the unit. 



For the recursive rule (GI) in Example 3-2, we have three unit V-matrices. According to 

Algorithm 1, we have the S and T for each of them as follows: S1=l, T1=2; S2=l, T2=0; S3=0, T3 

=l. Therefore, their combined stable level is S = maximum(S1, S2, S3)=l, with TI=2, T2=0 and 

T3=l. 

Figure 3-3. The expansion of the V-matrix of rule (GI) 

3.4. Compilation of Linear Recursions 

The goal of the compilation phase is to generate chain forms and linear normal forms (LNF) of a 

linear recursion based on the expansion of its V-matrix. For simplicity, we discuss only the case of 

single-unit recursions, the chain form and linear normal form of a multiple-unit recursion can be 

derived by merging the compiled forms of all its units. Detailed discussion on the compilation of 

multiple-unit recursions can be found in [HaZe92]. 

3.4.1 Automatic Generation of Chain Forms for Single-Unit Linear Recursions 

Since the variable connectivity of an expanded V-matrix corresponds to the variable connectivity 

of the expanded recursive rules, the regularity of the expansions of a V-matrix corresponds to the 

regularity of the expansion of its corresponding recursion. Thus, "when a single-unit V-matrix 

reaches its stable level, the corresponding linear recursion reaches its stable stage" [HaZe92]. 



A linear recursion is stable at the S-th expansion if (1) it generates no new results for any 

EDBs by further expansions (bounded recursion), or (2) it adds to the body of an expanded 
C 

rule the same set of EDB predicates U-connected to the same set of distinguished variables at 

every hrther T expansions (periodicity). 

Lemma 3-3. A single-unit linear recursion is bounded if its period T = 0. [Haze921 

In Example 3-2, the recursion (B1) is bounded. 

Lemma 3-4. The number of potential chains of a single-unit linear recursion is the number of 

distinct DV-sets in the row [S+T] of its V-matrix, where S is the stable level and T is the period 

of the V-matrix [Haze921 . 

In Example 3-2, the [S+T] row of the V-matrices indicates that (Al) has one potential chain, (C1) 

has two potential chains , (Dl) has one potential chain and (F1) has one potential chain. 

Each chain is a set of U-connected predicates that (1) repeats at every T expansions starting at 

the S-th expansion, and (2) connects the columns corresponding to the DV-set in row[S] to 

row[S+k*T]. 

Basically a chain acts like a bridge that connects the corresponding chain variable positions 

. between expansions S and S+K*T. The predicates in a chain must satisfy two connectivity 

conditions: (1) The U-connection set of all the predicates in a chain must be connected to the 

chain position variables on the Sth and S+Tth expansions. (2) The predicates in a chain must be 

U-connected to each other. 



The Chain Generating Rules: 

1. Choose the set of chain predicates for each chain. 
C 

The set of non-recursive predicates generated from the (S+l)-th expansion to the (S+T)-th 

expafision forms the "candidate set" of the chain predicates. This is because the same set of 

predicates repeats at each T fbrther expansion. However, if the candidate set of a chain does 

not satisfy either of the two connectivity conditions, some of the predicates in the candidate 

set should be replaced by their corresponding predicates in earlier expansions. The result is 

called the "primitive set", which is the actual set of chain predicates. 

2. Properly index the chain variables. 

The chain variables need to be indexed properly to reflect the expansion regularity. There are 

two general rules to form the head of a chain predicate: 

The variables not shared with any predicates outside of the chain should not appear in the 

chain predicate. The reason is that these variables are only "internal" to the chain, they do 

not participate in binding information exchange between chains during iterative 

processing. 

The remaining variables should be indexed properly to reflect the information passing 

between iterations. Considering the chain position variables in the recursive predicate of 

the S-th and (S+T)-th expansions, and name them the S-set and ST-set respectively. For 

each variable in a chain predicate, the variable in the ST-set should have the same variable 

name as the corresponding variable in the S-set but with the index increased by one. Some 

variables may be in both S-set and ST-set, in such cases we extract a "thread" of variables 

and name them according to the position in the thread. For example, if the S-set is [A, B, 

C] and the ST-set is [B, C, Dl, we find a thread "A -+ B + C + DM, thus the variables A, 

B, C, D should be renamed as Xi, Xi+l, Xi+2, Xi+3 respectively. 



Definition. [Haze921 

If the set of the variables at the (S+T)-th expansion is the same as the set of distinguished 

variables of the head predicate, the corresponding potential chain is trivially true and the chain 
C 

is a "null chain". 

Lemma 3-5. Following the chain construction rules, the chain predicates and their associated 

variable names and indices are generated correctly [Haze921 . 

Algorithm 3-2. Generation of the compiled chain form for a single-unit linear recursion. 

Iriput: A linear recursion r, its expanded V-matrix and its stable level S and period T. 

Output: The compiled chain form of recursion R. 

Method: 

Case l .T = 0. 

The recursion r is bounded and the compiled form is the union of the expanded exit rules 

from 0-th to S-th expansions. That is: 

rw1, V1, .-., X1) = E&, V1, . a * ,  XI) U E I W ,  V1, ..a, Xl) u 

U EsW1, V1, -.., XI). 

Case 2. T#O, but the recursion contains only null chains. 

The recursion r is bounded and its compiled form is the union of the k-th expanded exit 

rules for 0 I k I S+T-1. That is: 



Case 3. T $0 and the recursion contains some non-null chains. 

The recursion is a single-chain or multiple-chain recursion with the following compiled 

form: R =  SS U ( U ~ = ~ ~ ~ ( M M ,  CC~, TT)), 
' 

which consists of four portions: (i) pre-stable exit rule portion (SS), (ii) stable exit rule 

portion (TT), (iii) chain-portion (CC) and (iv) miscellaneous portion 0. 

The SS-portion represents the pre-stable expansions, which is the union of Ek for k from 

0 to S-1 if S > 0 or empty otherwise. That is, 

SS = i 4, S-1 ei w1, V1, -.., X1)- 

The TT-portion consists of the bodies of the exit rules contributing to the period of the 

The CC-portion consists of a set of non-null chains, represented by its chain form in the i- 

th iteration. Each non-null chain predicate is generated following the chain generating 

rules. 

Finally the MM-portion is composed by the non-recursive predicates in the body of the 

(S+T)-th expansion which are not chain predicates. Notice that the variables in these 

predicates need to be adjusted if they are chain predicates, because such variables could be 

involved in the chain in the next expansion. 0 



Example 3-4. Generating compiled chain forms of (Al) to (F1). 

For (Al), we have S=O and T=l. The S-th expansion and (S+T)-th expansions are : 
C 

S-rule: r(X) :- r(X). 

Obviously, there is one chain and the chain predicate set is simply { a(X, X1) ) which 

connects r(X) and r(X1). Thus, the CC portion is a(Xi-1, Xi), the TT portion is %(Xi) while 

SS portion and MM portion are 0. Therefore , the compiled chain form for Al is: r (G) = U 

For (B1), we have S=l and T=O. The recursion is bounded, and the complied form is: 

r(X) = %(X) u = eo(W u X'), %(X,) 1. 

For (C1), we have S=O and T=2. The S-th and (S+T)-th expansions are: 

The expanded V-matrix [Fig3-2(c)] shows that there two DV-sets in row[S+T]: (X) and 

{Y), thus there are potentially two chains. 

Chain1 connects variables on colurnn[O] of the recursive predicates in the S-th and (S+T)-th 

expansion, i.e. X and X2, thus we have chain1 : "ab(X, X2) :- a(X, Y1), b(X2, Y1)." Chain2 

connects variables on colurnn[l] of the recursive predicates in the S-th and (S+T)-th 

expansion, i.e. Y and Y2, thus we have chain2 "ba(Y, Y2) :- b(X1, Y), a(X1, Y2)." 



The SS-portion and MM-portion are 0, and TT-portion is %(Xi, Yi) u el(Xi, Yi) based on 

variable renaming. 

6 

The compiled chain form for C1 is: 

For (Dl), we have S=l, T=l. Its S-th and (S+T)-th expansions are: 

S-rule: r(X Y, Z) :- a(X, Y), r(X1, Z, Zl), b(X1,Zl). 

There is only one DV-set in row[S+T] of the matrix, thus there is one potential chain. The 

chain should connect the variables on column[l] of the recursive predicate in the body of S- 

rule and ST-rule, i.e. Z and Z1. 

The candidate set of the chain is (a(X1, Z), b(X2, Z2)) because they are newly generated in 

the 2nd expansion. However, b(X2, Z2) is not U-connected to a(X1, Z), neither is it connected 

to the chain variables Z or Z1, thus it needs to be "swapped" with its corresponding predicate 

in the previous expansions : b(X1, Z1). The new set of chain predicates {a(X1, Z), b(X1, Z1)) 

satisfies both connectivity conditions and is thus the primitive set of the chain. The chain is : 

"ab(Z, Z1) :- a(X1, Z), b(X1, Z1)." 

The SS-portion is eo(X, Y, Zo), the CC-portion is ab(Zi, Zi+,), the TT-portion is eo(U, Zi, V) 

and the MM-portion is a(X, Y), bOJ, V). 



For (F1), we have S=O and T=l . The S-rule and ST-rule are: 

S-rule: r(X Y) :- r e ,  Y). 

ST-rule: a Y) 1- a@, Xl,'Y), b(y, yl), @I, Yl). 

The& is one DV-set (X, Y) in row[S+T], thus it has one potential chain. The chain is 

obviously "ab(X, Y, X1, Y1) :- a(X, X1, Y), b(Y, Y1)." 

3.4.2. Normalization of Single-Unit Linear Recursions 

Although the internal processing of a linear recursion is largely based on its chain form, it is not 

very obvious when comparing to other rule rewriting methods, such as the Magic Sets method. 

However, the compilation method based on V-matrix expansions can be viewed alternatively as a 

query independent rule rewriting process, which transforms a complex linear recursion into a 

normalized linear recursion. Furthermore, the generation of the linear normal form fkom its 

corresponding chain form is quite straightforward. 

The compiled chain form of a linear recursion is either a bounded recursion or an n-chain 

recursion. A bounded recursion is already in linear normal form since it consists of only non- 

recursive rules. A complied n-chain recursion can be transformed into linear normal form 

composed of the following set of rules [HaZeLu93] : 

1. A set of exit rules in the form of "r :- S.", where s is a disjunct in the SS-portion of the 

compiled chain form; 



2. One auxiliary rule in the form of "r :- M, P. ", where m is the set of predicates in the MM- 

portion which do not share variables with the TT-portion at the i-th expansion, and p is an 

auxiliary predicate; 
' 

3. One n o d i z e d  linear recursive rule in the form of "p(X1, X2, . . ., Xn) :- cl(X1, Y1), 

c5(X2, Y2), ..., cn(Xn, Yn), p(Yl, Y2, ..., Y,). " , where cl, ..., c, is a set of chain 

predicates which form the CC-portion of the compiled form; and 

4. A set of stable exit rules in the form of "p :- M', T.", where T is a disjunct in the TT- 

portion of the compiled chain form, and Mt is the set of remaining predicates in the MM- 

portion. 

Example 3-5. Transforming recursions (Al) to (F1) into linear normal form : 

For (Al), the recursive rule is already in normalized form. Thus the linear normal form of the 

recursion is: 

For (B1), it is a bounded recursion, thus its LNF is : 

r(X) :- eo(X). 



For (C1), the recursion consists of two chains, and its SS-portion and h4M-portion are 0, thus the 

linear normal form is: 

r(X, Y) 1- %(X, Y). 
0 

r K  Y) 1- el@, Y). 

r(X, 9 1- N X ,  XI), ba(Y, Y1), r(X1, Y1). 

where el(qY) is the first expanded exit rule "el(X, Y) :- a(X, Y1), r(X1, Y1), b(X1, Y)."; ab(X, 

Xi) and ba(Y, Y1) are two chain rules ."ab(X, X1) :- a(X, T), b(X1, T)." and "ba(Y, Y1) :- a(T, 

Yl), b(T, Y). " 

For (Di), it is a single recursion, and its MM-portion consists of two parts: MM1 = {a(X, Y)) 

which does not share variables with the TT-portion and Mw = {b(U, V)) which shares variables 

Note: (Dl) is the same recursion in Example3-1, we already see that for some query forms, the 

Magic Sets method may lose the binding information in its propagation, but if the rules are 

rewritten into linear normal form, it can capture the binding information properly and pass it onto 

krther iterations. 

For (F1), the recursion is a single chain recursion and its linear normal form is: 

rOc, Y) :- eo(X, Y). 

r(X, Y) :- ab(X, Y, X1, Yl), r(X1, Yl). 

where "ab(X, Y, X1, Y1) :- a(X, X1, Y), b(Y, Y1)." and the variables < X, Y > and < X1, Y1 > 

form two variable vectors. 



3.5 Implementation of the Chain-Based Compilation Method 

So far, we have discussed the concept and algorithms of the chain-based compilation method. One 
' 

of the major contributions of this thesis is the implementation of the compilation process 

discussed above. The compilation subsystem parses and compiles a complicated single linear 

recursive rule cluster into a highly regular chain form, which provides the basis for hrther analysis 

and evaluation [Chapter 41. 

This section summarizes the implementation and discusses a compilcated example to illustrate the 

proce& Below is the flowchart of the overall design: 

I Linear Recursive Rule Cluster: r I 

Parsing: Use LexlYacc to transform r into 
the internal data structures: 
Rule-Cluster, Rule, 
Pred-Cluster, Pred 
Var-List, Var 

V-Matrix Initialization: 

V-matrix* new-Vmatrix( Rule-Cluster) 

V-Matrix Expansion 
(Generates Stable Level S and Period T ) : 
m-expand(Vmatrix*) 



Compilation 

Find all the "threads" : 
find-threads(S-Rule, ST-Rule, Vmatrix) 

find-chaingreds(S-Rule, ST-Rule, Vmatrix) 

Figure 3-4. The compilation flow chart 

The implementation consists of three major phases: . 

1. The parsing phase uses LedYacc to parse the rule cluster and transforms it to internal data 

structures for further processing. 

2. The V-matrix expansion phase implements the V-matrix initialization rules, V-matrix 

expansion rules and Algorithm3-1, which initializes and expands the V-matrix of the recursive 

rule , and generates the stable level S and period T. 

3. The compilation phase is based on Algorithm3-2, which generates the compiled chain forms 

of the recursion. The main procedure of this part, find-chainqreds, is further broken down 

into three parts: 



/ of all the nonNULL chains: 

Form the candidate set for each 
chain by partition the set generated 
above: 
partition-candidate-set(S-Rule, 

Form the primitive set for each 
chain by swapping preds in the 
candidate set with their 
correspondences in earlier expansion 
to satisfy connectivity: 
confirm-chain-preds(S-Rule, 
ST-Rule, V-matrix) 

Figure 3-5. The chain generating process. 

The data structure "chain-form" for a k-chain recursion is defined as follows: 

Near End: Exit Rules r ( Un, Vn, ..., Xn) 

Far End: Queries r ( UO, VO, ..., XO) 

Xi+l 

Figure 3-6. The internal data structure: Chain-Form 

Chain 

Xi 

0] (Ui, Ui+l) Chain 

, 

l](Vi, Vi+l) Chain[ . . . <](Xi, Xi+l) 



The compilation process is isllustrated by analyzing the following example: 

Example 3-6. 

Phase 1. Parsing. 

The parsing phase reads in the two rules and forms a rule set. Notice that a set is different 

fkom a list in that elements in a set are unordered. Thus, the order in which these two rules are 

specified is not relevant to the processing part. Similarly, the body of each rule is defined 

intmally as a set of predicates, while the variables of each predicate form a list. 

Phase 2. V-matrix Expansion. 

Using the V-matrix initialization and expansion rules r3.2, 3.31, we have the following 

expanded V-matrix for rl: 

Figure 3-7. The expanded V-matrix of Example 3-6. 



Considering the U-connection edges, row[l] = row[2]. Thus, we get the stable level S = 1 and 

the period T = 1. 

Phase 3. Generate the compiled chain form. 

Since T # 0, we generate the S-th and (S+T)-th expansion of the recursive rule: 

S-Rule: r(A B, C, D, E) 1- a(& B), b(C, E), c(F, D), d(G, H), 

r(C, F, D, G, H). 

ST-Rule: r(A, B, C, D, E) :- a(A, B), b(C, E), c(F, D), d(G, H), 

a(C, F), b@, HI, c(F1, G), D(G1, HI), 

r(D, Fl, G, Gl, HI). 

By checking the row[S+T] of the expanded V-matrix, we find that there is only one set of 

distinguished variables, i.e. {C, D, E), which means that there is only one potential chain for 

this recursion [Lemma 3-41. The columns that this variable set resides indicate the chain 

variable positions, which is columns 1, 2 and 3 in this case. 

Next, we extract the "thread" of the chain, i:e. the variable connection pattern from the 

recursive predicate in the body of the S-Rule to that of the ST-Rule. In this case, the 

corresponding variable sets are [C, F, Dl and [D, F1, GI. Thus, we have two "threads", i.e. "C 

-+ D -+ G" and "F + F1". Since the threads are not cyclic, this is a non-NULL chain. Thus, we 

will generate the chain form according to Algorithm 3-2. 

The candidate set of the chain predicates consists of the predicates generated from the S-th 

to (S+T)-th expansion, i.e. "a(C, F), b(D, H), c(F1, G), d(G1, HI)". However, this set does 

not satisfl the second connectivity condition, because none of the predicates in this set is U- 

connected to the others. Thus, some or all of the predicates in the candidate set must be 

exchanged (or swapped) with their corresponding predicates generated in earlier expansions. 



We swap c(F1, G) with c(F, D), and d(G1, H1) with d(G, H). The new set of potential chain 

predicates is now "a(C, F), b(D, H), c(F, D), d(G, H)", which is (1) connected to the chain 
* 

variable sets {C, F, D) and {D, F1, G), and (2) U-connected among its elements, because 

therec exists a U-connection chain , "a(C, F) u c(F, D) u b@, H) t, d(G, H)", which 

connects all the member predicates. Thus, this is theprzmitive set of the chain predicates. 

After examing which variables should appear in the chain definition, we have the chain defined 

as : 

'abed( C, D, G) :- a(C, F), b(D, H), c(F, D), d(G, H). 

Notice that, only the chain predicates {C, D, G) appears outside of the chain in the (S+T)-th , 

expansion, all other variables are internal to the chain. 

After variable renaming and indexing, we have the final chain form defined as : 

abcd(Xi-1, xi xi+l) 1- a(xi-l, F), b(Xi, H), cO;, xi), d(Xi+l, H). 

Thus, the compiled form is [Algorithm 3-21: 

The correctness of the compilation can be verified by comparing the expanded exit rules with 

the corresponding rules generated by the chain form. 



For example, when i=O, the rule generated by the chain form is "r(A, By $, XI, E) :- a(A, B), 

b(%, E), c(X2, XI), d(G1, HI), e(&, X2, XI, GI, HI)". It is the same as the first expanded 

exit rule. When (i=l), the rule generated by the chain form is "r(A, B, $, XI, E) :- a(& B), 
C 

secoiid expended exit rule. When (i=2), the rule generated by the chain form is "r(A, By &,, 

XlY E) :- a(A, B)Y b(%, E), abcd(Xo, XI, X2)Y abcd(X1, X2, X3), c(X4, X3)> d(G1, HI), e(X2, 

X4, X3, G1, HI)", which is the third expanded exit rule, etc. 

To summarize, the rule generated at the i-th iteration of the chain form is the (i-6)-th 

expianded exit rule, and the exit rules before the stable stage are covered by the SS portion of 

the compiled form. Thus, the compilation is complete. Moreover, by compiling the recursion 

into chain forms, the information passing between iterations is made clear, which greatly 

facilitates systematic analysis [Chapter 41. Below is the compiled chain form represented by 

the internal data structure "Chain-Form" : 

Chain(Xi-1, Xi, Xi+l) :- 
a(Xi-I, F), b(Xi, H), c(F, Xi), d(Xi+l, H). 

Near End: r ( Xi, Xi+2, Xi+l, G I ,  H i  ) 

I MMO :- a(A, B), b(X0, E). 

Chain-tail ( Xi, Xi+l ) 

( Far End: r( A, B, XO. X1, E) I 

MMl :- c( Xi+2, Xi+l ), d( G1, H I  ). . 



Chapter 4 

Evaluation of Functional Nested Linear Recursions 
6 

In Chaptkr 3, we discussed how to compile a function-free single linear recursion into chain forms 

and linear normal forms. In this chapter, we will discuss the query evaluation process based on the 

compiled forms and the extension of the chain-based compilation and evaluation method to the 

domain of hnctional nested linear recursions. 

The major contribution of this part is the extension of the compilation, analysis and evaluation 

algorithms to the domain of functional nested linear recursions, which will be illustrated by a 

detailed discussion of the n-queens problemjHaLu92]. However, for the purpose of completeness 

and ease of understanding, the algorithms on the analysis and evaluation of functional recursions 

are also included [4.1,4.3,4.4]. Detailed studies in these areas are provided in jHan92, Hangla 

and HaWa911, the discussion in this Chapter focuses on implementation aspects. 

4.1. From Function Free to Functional Recursions 

In the discussion of Chapter 3, the assumption was made that all base relations are finite EDB 

relations. However, in many real life deductive database applications, functions (especially 

relational, arithmetic and list functions) are encountered frequently. The airline information system 

(Example 2-6) is one such application. Because of this, we need to generalize the applicable 

domain of the chain-based compilation and evaluation method to include functions in the rule 

definition and query processing. 



Example 4-1. A typical linear recursion with list functions, append&, L2, L3) is defined as: 

We will <use this example extensively to illustrate the analysis and evaluation of functional 

recursions. 

To compile such functional recursions, we need two preprocessing steps to rewrite the rules: 

(1) function-predicate transformation: This maps a function together with its functional 

variable to a predicate (called functional predicate), where the functional variable is the 

variable which unifies the returned value(s) of the function. 

That is, each function of arity n is transformed to a predicate of arity n+l, with the last 

argument representing the unifLing variable. 

For Example 4-1, the rules (rl) and (r2) are rewritten as (rll) and (ri) after the function- 

predicate transformation: 

(2) rectification: Logical rules in different forms are rectified to facilitate the compilation and 

analysis. The rules for predicate p are rectifzed if all the functions are mapped to the 

corresponding functional predicates by the function-predicate transformation, and all the 

heads of the rules are identical and of the form p(X1, ..., Xk) for distinct variables XI, ..., Xk. 



After rectification, the "append" cluster becomes : 

C 

Now, using the compilation technique discussed in Chapter 3, the recursion "append" can be 

compiled into the following chain form: 

4.2. Compilation of Nested Functional Linear Recursions 

We fbrther generalize our domain of discussion to functional nested linear recursions: 

Definition [HaLu92] . 

A rule is linearly recursive if its body contains exactly one recursive predicate, and that 

predicate is defined at the same deduction level as that of the head predicate. A rule is nested 

linearly recursive if its body contains more than one recursive predicate but there is exactly 

one defined at the same deduction level as that of the head predicate. A recursion is linear if 

it consists of one linearly recursive rule and one or more non-recursive exit rules. A recursion 

is nested linear if every recursive predicate in the recursion is defined by one nested linearly 

or linearly recursive rule and one or more non-ecursive rules. A recursion is function-free if 

it does not contain knction symbols; otherwise, it is functional. 



Example 4-2. The n-queens problem: 

nqueens(N, Qs) :- range(1, N, Ns), queensws, [I, Qs). 

queens( Unplaced, safe, QJ :- Select(Q, Unplaced, Unplacedl), 

not attack(Q, Safe), 

queens(Unplacedl, [QI Safe], Q,). 

queens( [I, Qs, QJ. 

attk(X, N, [Y I Y,]) :- X is Y+N. 

attk(X, N, [Y I Y,]) :- X is Y-N. 

attk(X, N, [Y I Y,]) :- N1 is N+1, attk(X, N1, Y,). 

s e w x ,  [X I &I, &). 
select(X, [Y I Y,], [Y I Z,]) :- select(X, Y,, Z,). 

The n-queens problem is a functional nested linear recursion because the IDB predicate "nqueens" 

is defined by one linear recursion "range" and one nested linear recursion "queens", while both 

recursions contain function symbols. The compilation of such a recursion is performed by first 

transforming it into a function-free recursion using the function-predicate transformation 

[Han92], and then compiling the recursions at every level by treating every lower level IDB 

predicates as EDB predicates [HaLu92]. 



The n-queens program is normalized as follows. Notice that cons@& Ns, MNs) is a built-in list 

construction predicate indicating MNs = [M 1 Ns]. 

rang;(M, N, MNs) :- M<N, MI = M+1, cons@& Ns, MNs), range(Ml, N, Ns). 

range(M, N, MNs) :- M = N, cons(N, [I, MNs). 

queens(U, S, Qs ) :- select(Q, U, U1), not attack(Q, S), cons(Q, S, S1 ), 

queensW1, S1, Qs 1. 
queensOr, S, Qs ) :- U = [I, S = Qs. 

attk(X, N, YYs) :- X = Y + N, cons(Y, Ys, YYs). 

attk(X, N, YYs) :- X = Y - N, cons(Y, Ys, YYs). 

attk(X, N, YYs) :- cons(Y, Ys , YYs), N1 = N + 1, attk (X, N1, Ys). 

select(X, YYs, YZs) :- cons(X, YZs, YYs). 

select(X, YYs, YZs) :- cons(Y, Ys, YYs), cons(Y, Zs, YZs), select@, Ys , Zs). 

By normalization, the chain-predicate(s) of each recursion and their variable connections are made 

explicit : 

The recursion range(M, N, MNs) is a single chain recursion. The variables M and MNs in the 

head predicate are connected to the corresponding variables MI and Ns respectively in the 

recursive predicate in the body via the chain predicates " M < N, M1 = M + 1, cons(M, Ns, 

MNs)". The variable N is an exit variable (the variable in the corresponding argument positions 

of the recursive predicates in both the head and body of the rule) [Han89b]. 



Similarly, queens(U, S, Qs ) is a single chain recursion where Qs is an exit variable, while U and 

S in the head are chain variables connected to U1 and S1 in the recursive predicate in the body 

through the chain predicates "select(Q, U, U1 ), not attack(Q, S), cons(Q, S, S1)". 
' 

Also, seltct(X, YYs, YZs) is a single chain recursion with X as an exit variable, while YYs and 

YZs in the head as chain variables connected to Ys and Zs in the body via the chain predicates 

"cons(Y, Ys, YYs), cons(Y, Zs, YZs)" . 

Finally, attk(X, N, YYs) is a double chain recursion with X as an exit variable, while N and YYs 

in the head are chain variables connected to N1 and Ys in the body via the chains "cons(Y, Ys, 

YYs)" and "N1 = N +  1". 

4.3. Query Analysis on Compiled Functional Nested Linear Recursions 

For functional recursions, we have the extra phase of query analysis between the compilation 

and evaluation phases. The reason is that without the consideration of functions, we can safely 

assume all the base relations involved are finite. Thus, using the semi-naive evaluation method, the 

intermediate relations generated at each iteration are finite and the evaluation will terminate in 

finite steps. However, with functions being considered as part of the base relations, we are facing 

the possibility of having infinite intermediate relations or non-terminable evaluations. 

The compilation of a functional linear recursion greatly facilitates its analysis. Since many 

functional predicates are built-in predicates(e.g. arithmetic, relational and list functions) defined 

on infinite domains, the analysis must ensure that query evaluation can generate all the result set 

and terminate properly. Two major issues must be examined in the analysis phase: (1) finite 

, evaluability, that is, the evaluation is performed on finite relations and generates finite 



intermediate relations at each iteration, and (2) terminability, that is, the evaluation generates all 

the answers and terminates in finite number of iterations. 

' 

Other enhancements, such as the detailed analysis of data types, can improve the efficiency of 

evaluatioh[HaLu92]. However, such enhancements will not affect the evaluability of a query and 

are therefore not discussed in this thesis. 

4.3.1 Finite Evaluability of Functional Recursions 

The justification of finite evaluability relies on both query information and finiteness constraints. 

A finiteness constraint, X j Y ,  over a predicate r implies that each value of attribute X 

corresponds to a finite set of Y values in r [Han92]. Finiteness constraint is strictly weaker than 

the functional dependency studied in database theory [Ullm89a]. It holds trivially true for all finite 

predicates. Since all the EDB relations are finite, all the arguments in EDB relations satisfy the 

finiteness constraint. In a functional predicate f(X1, ..., X,, V), if all the domains for arguments 

X1 , ..., X, are finite, V must be finite no matter whether f is a single or multiple valued fbnction, 

that is, (XI, ..., X, ) + V. 

Specific finiteness constraints should be explored for specific functions. In many cases, one 

argument of a function can be computed from the values of the other arguments and the value of 

the function. For example, in the hnctional predicate +(X, Y, Z) (i.e. "X+Y = Z"), any argument 

can be finitely computed if the other two arguments are finite. Such a relationship can be 

. represented by a set offiniteness constraints, such as (X, Z)+Y, and (Y, Z)+X. An important 

finiteness constraint, Z+(X,Y), holds in the fknctional predicate cons(X, Y, Z), which indicates if 

the list Z is finite, there is only a finite number of choices of X and Y [Han92]. 



Since query constants may bind some infinite domains of variables to finite ones, the analysis of 

finite evaluability should incorporate query instantiation information. Similar to the notations used 

in the Magic Sets transformation [BaRa86, Ullm89a1, a superscript b or f is used to adorn a 
C 

variable to indicate the variable being bounded (finite) orfree (infinite), and a string of b's and f s  

is used t6 adorn a predicate to indicate the bindings of all its arguments. 

Algorithm 4-1. Testing the finite evaluability of a query in an n-chain recursion [Han92] . 

Input. 

(1)'An n-chain recursion consisting of an n-chain recursive rule and a set of exit rules, (2) A 

set of finiteness constraints, and (3) query instantiation information. 

Output. An assertion of whether the query is finitely evaluable. 

Method. 

1. Initialization: A variable is finite if it is in an EDB predicate or is equivalent to one or a 

set of constants. 

2. Test the finite evaluability of (1) the exit rule set, and (2) the first expanded exit rule set 

(the rule set obtained by unifLing the n-chain recursive rule with the exit rule set). This is 

done by pushing the query binding information into the rules being tested and 

propagating the finiteness bindings iteratively based on the following two Jiniteness 

propagation rules: (i) If there is a finiteness constraint (XI, . . ., X,) -+ Y and (for 1 5 

i r n), then yb; and (ii) if (X = Y or Y = X) and Xb, then yb. 

3. Return yes if every variable in the two sets of rules being tested is finite after the 

finiteness binding propagation or no otherwise. 

Theorem 4-1. Algorithm 4-1 correctly tests the finite evaluability of an n-chain recursion in O(k) 

time, where k is the number of predicates in the recursion [HaWagl] . 



Example 4-3. For the recursion "append" defined in Example 4-1, we have 23 = 8 possible query 

binding patterns for the head predicate append(U, V, W), the adornments are: bbb, bbf, bfb, bff, 

fbb, fbf, ffb and fff. 
(I 

To analy~e the finite evaluability, we consider the exit rule and the first expanded exit rule: 

appendw, V, W) :- U = [I, V = W. (e0) 

appeWJ,  V, W) :- cons@, U1, U), cons@, W1, W), U1 = [I, W1 = V. (el) 

We go through the analysis of two cases as examples : 

Case 1. Queries with the binding pattern ffb, such as " ?- append(U, V, [a, b, c])." 

For eo, the initial set of finite variables is (U, W), U is finite because it equals to the constant 

"[I", W is finite because it is instantiated in the query. In the propagation of the binding 

information, V is also finite because V = W and ~ b .  

For El, the initial set of finite variables is {W, U1). The finiteness is then propagated as 

follows: (1) X and W1 are finite because ~b and there is the finite constraint "W-+(X, W1)" 

because "cons(X, W1, W)"; (2) V is finite because wlb and V = W1; (3) finally, U is finite 

because of the constraint "(X, U1) -+ U" in "cons(X, U1, U)". 

We have proved that all the variables in eo and el are finite after binding propagation, and thus 

query appendffb is finitely evaluable. Notice that the order of finiteness propagation is very 

important in deciding the evaluation order of the predicate, as we will see in the query 

evaluation phase [4.4]. 



Case 2.Queries with the binding pattern fbf, such as " ?- appendw, [I,  21, W)." 

For e ~ ,  we have the initial finite variable set {U, V), and then W is finite because W=V and 
' 

v". 

For el, the initial finite variable set is {V, U1), we can have the binding information 

propagated to wlb because v" and V = W1. However, the finite set {V, U1, W1) can not be 

extended any hrther with the predicates "cons(X1, U1, U)" and "cons(X1, W1, W)". Thus, the 

query is not finitely evaluable. 

Notice that once we come to the conclusion that the query is not finite evaluable, the analysis 

is terminated without actually getting into the evaluation phase, and thus eliminates the 

possibility of getting into infinite loops. This is one of the valuable aspects of this evaluation 

- method. 

Following the same process, it can be easily proved that among the eight possible binding patterns 

of queries on append, only three cases : b e  fbf and mare not finitely evaluable @an92]. 

4.3.2. Termination of Query Evaluation 

.The second important part of query analysis on functional recursions is its terminability. Finite 

evaluability guarantees that intermediate relations at each iteration are finite, but this does not 

mean that the iterative processing will terminate in finite steps. To analyze the terminablity of the 
\ 

processing of a recursive query, we need to consider the "monotonicity constraints". 



Definition. 

A monotonicity constraint is a relationship ri ) rj, ( " ) " represents a partial order ), where ri 

and rj are two arguments. The constraint holds for ri and 9 if and only if ri is strictly greater 
C 

than 9 according to the partial order " ) ". 
< 

Monotonic behaviour is typical in arithmetic functions, list functions and relational functions. 

Such behaviour should be used in query analysis and evaluation to determine the termination of 

the iteration. 

Some examples of monotonic constraints are[Han92]: 

1. An acyclic EDB relation is a partially ordered relation, and can be considered as a 

monotonicity constraint. 

2. An arithmetic operation often implies the monotonicity of a function. For example, F1 + F2 = 

F3 implies that F3 > F1 and F3 > F2 . 

3. The monotonicity of a listfinction is usually associated with the growing and shrinking of its 

length. For example, cons(X, L1, L2) implies that length&) > length(L1). 

The process of evaluating a compiled linear recursion is essentially the iterative processing of a 

growing sequence of chain elements. An argument in the chain predicate is monotonic if its value 

has certain monotonic behaviour as the number of iterations increases. The query evaluation 

process terminates if there exists a termination restraint which blocks the growing or shrinking 

of the monotonic argument. A termination restraint can be provided by a query, an EDB relation 

- or the natural constraints provided by the semantics of an argument, such as : " for any list L, 

2 Notice that, since each chain has two ends, the far end (which shares variables with the query) 

and the near end (which shares variables with the exit rules), it can be evaluated in two 

80 



directions, i.e. from the far end to the near end, or vise visa. Thus, we need to first decide which 

direction to proceed for each chain. The main factors need to be considered are : (i) which end is 

more selective and (ii) whether the processing can terminate properly following this direction. 
C 

These analysis are done before the evaluation part. Actually we are generating an "execution plan" 

for everyquery before evaluating it. This again shows the systematic approach of this method. 

Example 4-4. The queries on "append" are terminable if it is evaluable. 

We study one simple case here, the general algorithm will be discussed in [4.4.1] when we 

consider the chain-splitting evaluation of functional recursions. 

Consider the query pattern appendbfb , representing queries such as "?- append([a,b],V, [a,c,d])." . 

We will see that the evaluation should follow the chain "cons2(Ui, Wi, Ui+1, Wi+1) :- cons(Xi, 

Ui+l, Ui), cons(X1, Wi+1, Wi).It from the far end to the near end, i.e. from p i ,  Wi) to (Ui+1, 

Because of the monotonic constraint 

have < length(Ui)" and 

that " if cons(X, L1, L2), then length(Ll) < length(L2)", we 

"length(Wi+l) < length(Wi)", which means that the length of 

the lists Ui and Wi shrinks when the iteration number i increases when proceeds fiom the far end 

to the near end. Moreover, at the other end of the chain (the near end in this case), we have the 

termination restraint that "length(Ui+l) = 0" because "Ui+l = [I" , which would block the 

shrinking of Ui. Thus, the evaluation is terminable. 0 

This example shows that the terminability is associated with the following aspects: (1) the 

processing direction of the chains; (2) the monotonic behaviour of the arguments in the driving 

chains (chains evaluated in the forward process of evaluation in the case of multiple chains); and 

(3) the termination restraint on the terminating end of the driving chains. 



4.4. Generating the Evaluation Plan for Functional Linear Recursions 

C 

In this section, we examine the process of generating the evaluation plan for a fhctional linear 

recursioa Before getting into the details, here is a diagram of the complete process: 

Function Free? Pre-Processing 

I Adorned Query 

1 . 
benerate planl: far to near end 1 I I 

I Linear Recursive cluster1 

Plan = select-f rom 

(Plan1 , Plan2) 
Plan = Plan2 

t + 1 
f 

Evaluate According to the 
chosen Plan 

Figure4-1. Diagram of Complete Chain Based Query Evaluation Method 

The goal of this section is to generate an efficient query plan based on the input of (i) the 

compiled chain form of a recursion, and (ii) the query binding information. Three major issues will 

be discussed : (1) chain-following vs. chain-splitting; (2) existence checking vs. query closure; and 

(3) constraint pushing techniques. 



4.4.1. Chain-following Evaluation vs. Chain-splitting Evaluation 

A hnction-fiee n-chain recursion can be processed in three processing direction 

(a) U p-Down (b) AILUP (c) All-Down 

Figured-2. Multi-Way Counting Method 

1. Up-Down: start at the far end of some chains (the driving chains), climb up to the center, 

unifjr with the exit rules, and then step down along the remaining chains (the driven chains). In 

this case, the far end (or query end) is the "starting end" of the evaluation. 

- 2. All-Up: start from the far end and synchronously climb up to the near end along all the chains. 

Obviously, the far end is the "starting end" and all the chains are "driving chains". 



3. All-Down: start fiom the near end and synchronously step down to the near end along all the 

chains. In this case, the near end is the "starting end" and again all the chains are "driving 

chains". 
* 

There are many factors which influence the selection of processing directions, e.g. the selectivity 

of query constants, the size of the EDB predicates, the join selectivity of chain elements. Among 

these, the selectivity of the two ends plays a major role in quantitative analysis. For example, the 

Up-Down strategy should be used if the query end provides highly selectivity at only some of the 

chains. The All-Up processing should be used if the query provides high selectivity on all the 

chains, while the All-Down is used when the exit rules provides high selectivity on all the chains. 

This method is called chain-following evaluation, and is applicable to all function-free n-chain 

recursions in a way similar to a generalized counting method [Han89b]. 

The chain-following evaluation method is also applicable to functional recursions if every 

predicate in a chain evaluation path is immediately evaluable. However, depending on the 

recursions and the available query bindings, some functional predicates in a chain generating path 

may not be immediately evaluable. 

In this case, a driving chain may need to be partitioned into two portions: an immediately 

evaluable portion and a bu#eredportion[Han92]. The immediately evaluable portion is evaluated 

from the "starting end" of evaluation, while the evaluation of the buffered portion is delayed until 

. the other end is reached and sufficient binding information is obtained. (Notice that the recursion 

must befinitely evaluable in the first place.) 

The evaluation of the buffered portion of a driving chain is very similar to that of the driven 

chains, except that the shared variables between the immediately evaluable portion and the 



buffered portion of a chain must be "buffered" in the forward process and combined into the 

computation in the backward process. , 

4 

Such evaluation technique is called the chain-split evaluation [HaWagl]. 

Example 4-5. Case study of the evaluation of "append". 

From the compilation, we know that the recursion "append" is a single chain recursion. The chain 

is defined as "cons2(Ui, Wi, Ui+1, Wi+1) :- cons(X, Ui+1, Ui), cons(X, Wi+1, Wi).". The "head' 

of the chain cons2 is "cons2(Ui, Wi)" while the "tail" of the chain cons2 is "c0ns2(U~+~, Wi+1)"; 

the far end is < Uo, Wo > and the near end is < Un, Wn >. V is an "exit variable" which is in both 

the far end and the near end. 

We study the evaluation plan of two queries against append: 

Casel. Queries with the adorned predicate appendbfb(Uo, V, WO), such as "?- append([a, b], V, 

The far end is "appendbfb(Uo, V, WO)", thus, the head of cons2 is "cons2bb(Ui, Wi)". The near 

end is "appendbff&, V, WJ" CU, is bounded because "append&, V, WJ :- Un = [I, V = 

W,." and "[I" is a constant), and thus the tail of cons2 is " C O ~ S ~ ~ ~ ( U , + ~ ,  Wi+l)'l. 

Since this is a single chain recursion, it should be processed either all-up or all-down: 

All-up: Starts from the chain-head, considering the iteration i: we have the chain-head 

c0ns2~~(Ui, Wi) Propagating the binding to the body of the chain, we get consifb(X, Ui+l, 

Ui), consbfb(X, Wi+l, Wi). According to the finite evaluability constraints of "cons", both 



hnctional predicates are immediately evaluable, which generates the tail of the chain 

C O ~ S ~ ~ ~ ( U ~ + ~ ,  Wi+1). Notice that the "tail" of iteration i is the "head" of iteration i+l, and the 

variable X is "internal" to the current iteration which does not need to be "remembered" in 
' 

fixther iterations. 

The analysis shows that all-up evaluation of cons2 is feasible in that it generates finite 

intermediate relations in each iteration. Next, we must check the terminability of the 

evaluation. Notice that in the all-up process, we have the monotonicity constraints : 

"length(Ui+l) < length(LJi)" because Ui and Ui+1 satisfl the predicate "cons(X, Ui+1, Ui)". By 

checking the other end of the chain, we have the constraint "U, = [I", which means 

"length&) =ON. Combine these two aspects, we have the termination restraint: "length(Ui+l) , 

=OM and the iteration terminates when the restraint is satisfied. 

So far we have proved that appendbfb(uo, V, Wd) is (1)finitely evaluable and (2)terminable if 

evaluated all-up. Thus all-up is a valid direction of evaluation and an evaluation plan is 

generated that a chain following strategy should be used. 

All-down: Similarly, we analyze the all-down evaluation process. Starting fkom the near end, 

we have the chain tail as "c0ns2b~(U~+~, Wi+l)t'. Propagating the constraints into the chain 

body, we have consfbf(x, Ui+1, Ui), consm(x, Wi+l, Wi), none of the two fbnction predicates 

are finitely evaluable. Changing the order does not help either. Obviously, this is not a valid 

evaluation direction. 

The conclusion is, to evaluate appendbfb@, V, WO), we should follow the chain "cons2(Ui, 

wi, Ui+1, Wi+1) :- cons(X, Ui+17 Ui), cons(X, Wi+i7 Wi).l1 bottom-up (from <Ui7 Wi> to 

<Ui+l, Wi+1>) using partial transitive closure algorithm . 



The evaluation process of query "?- append([% b], V, [a, b, c])." is shown as follows[Han92]: 

cons(X1, U1, UO) cons(X1, W1, WO) 
XI-a. U1-b Xl=a, Wl=[c, dl 

Figure 4-3. The evaluation of query " ?- append([% b], V, [a, b, c])." 

Caset. Queries with the adorned predicate appendffb(Uo, V, Wo), such as "?- append(Uo, V, [a, 

b])." 

The far end is "appendffb(Uo, V, Wo)", so the head of cons2 is "cons2fD(Ui, Wi)". The near 

end is "appendbff(U, V, W,)" OJ, is bounded because "append(Un, V, WJ :- Un = [I, V = 

W,." and "[I" is a constant), and thus the tail of cons2 is "cons2bf(~~+~,  Wi+l)l'. 

Using the same analysis method as in Case 1, we can see that following the chain either all-up 

or all-down will leave some or all hnction predicates on the evaluation path not immediately 

evaluable. However, the two directions are different: in the all-up evaluation, part of the chain 

is evaluable while in the all-down evaluation, none of the chain predicates are evaluable. 



Thus, chain-splitting must be applied to the all-up evaluation as follows: 

The chain "cons(Xi, Ui+1, Ui), cons(Xi, Wi+1, Wi)" should be partitioned into two portions: 
C 

the immediately evaluable portion "consffb(xi, Wi+1, Wi)It and the bufferedportion "cons(Xi, 

ui+l ; Ui)". The evaluation follows the immediate portion, which generates and buffers the 

value set < Wi+l, Xi > for each iteration i . When the termination condition (length(Wi+i) = 0) 

is satisfied, the far-end to near-end processing stops and the set of Wi+1 generated in each 

iteration is unified with the exit rules which provides binding for V (Wi+1 = V) and Ui+1 (Ui+] 

= [I). Next, the near-end to far-end processing starts which evaluates the buffered portion of 

the'chain with the adornment "consbbf(xi, Ui+l, Ui)lt. Notice that the values of Xi are . 

generated and buffered during the first phase of process, while the bindings for Ui+1 is,  

obtained from the near end. 

The evaluation process of "?- append(U, V, [a, b])." is shown as follows [Hang21 : 

cons(X1, W1, WO), 
Xl=a, Wl=[b] 

Ul=[], v=Wl=[b] 

/' 
'1 cons(=, W2, Wi), 

U=UO=[a], 
==b, W2=[] 

cons(X1, Ui, UO) I 

Ul=[b], cons(X2, U2, U1) 

/ 
U=UO=[a, b]; cons(X2, U2, Ul)  

Figure 4-4. The evaluation of the query "?- (U, V, [a, b])." 



The above discussion is summarized into the following algorithm: 

Algorithm 4-2. Chain-split evaluation of a single-chain recursion [Han92, modified] . 
b 

Input. A query and a compiled finctional single-chain recursion. 

Output. A query evaluation plan which applies the chain-split evaluation. 

Method. 

1. If every predicate in the chain generating path is immediately evaluable, the query can be 

evaluated without chain-split evaluation. 

2. Otherwise, suppose (i) the chain is partitioned into two portions according to the available 

query bindings: an immediately evqluable portion p and a buffered portion q; (ii) p and q share . 

the variable vector Xi on the i-th iteration; and (iii) the chain variables for p and q are Ui and 

Wi respectively, the evaluation proceeds in the following two phases: 

(1) Phase 1 : 

i=O; Ui = the initial set from the starting end; 

For iteration i, do 

begin 

If Ui matches the termination restraint, k = i, break; 

else begin 

1) evaluate the immediate portion p based on Ui : 

compute the values Xi and Ui+l; 

2) buffer the set < i, Ui, Xi >; 

3) i ++; Ui = Ui+l; 

end; 

end; 



(2) Phase 2 : 

For i=k toOdo  

begin 

j = i -  

c while (i >O ) do 

begin 

1) unify Uj with the other end and compute the value Wj ; 

2) compute the buffered portion based on < Xj, Wj > and generate the 

value for Wj-1; 

3) j = j-1; Wj = Wj-1; 

end; 

add Wo to the result set; 

end; 0 

4.4.2. Query Closure vs. Existence Checking 

The evaluation methods we have discussed so far are based on the evaluation of query closures. 

However, in some cases, the computation of the entire query closure is not necessary. 

As in Prolog, we differentiate two types of distinguished variables: an inquired variable (whose 

value is required by the query) and an un-inquired variable (whose value is not inquired by the 

query, denoted in Prolog by starting with an underscore, such as "-X"). For example, if we have a 

. query "?- ancestor(a, -X).", we do not check the whole result set of a's ancestor, the computation 

should terminate (and return TRUE) if one of a's ancestor is found during the search. This type of 

computation is called existence checking. 



In chain-based evaluation, there are two ends for each chain. In most cases, the evaluation should 

start at a more selective end and proceeds towards the other end of the chain. The evaluation 

computes the intermediate relations for each iteration using the query closure algorithm, and the 
' 

computation stops when no more new results can be generated or some termination restraint is 

satisfied. 

However, if the variables at the other end of the chain are not inquired, the computation could 

terminate whenever a value that satisfies the predicate is found. Applying existence checking in 

the chain-based evaluation method was first discussed in the evaluation of hnction-free linear 

recursidns [Han89b], which is also applicable in the case of hnctional recursions. [Hang21 

4.4.3. Constraint-Based Evaluation 

The constraint based evaluation is another enhancement on the chain-based evaluation method. 

The idea is to combine query constraints into the evaluation in an earlier stage. - 

A query constraint usually adds constraint information to an IDB predicate. In a n-chain 

recursion, query constraints can be enforced at both ends of a compiled chain. It might be quite 

straightforward to push these constraints into the starting end of a chain, but with some special 

consideration, they can also be pushed into the terminating end of a chain, which usually helps to 

terminate the processing at an earlier stage. Detailed discussion is provided in Vangla] 

With some generalization, we have the following algorithm [Han92, modified] : 

Algorithm 4-3. Chain-based query evaluation of a compiled hnctional single-chain recursion. 

[Fig4- 1] 

Input. A compiled functional single-chain recursion, a set of integrity constraints and a query. 

Output. A chain-based query evaluation plan. 



Method. 

1. Test whether the query is finitely evaluable(A1gorithrn 4.1). If not, terminate. 

2. Generate query evaluation plans : 
(. 

for each of the two directions do 

begin 

for each chain of the recursion do 

begin 
(1) partition the chain into two portions : the immediately evaluable portion 

and the buffered portion. (Notice that for EDB relations, the buffered portion 

is always empty.) 

(2) If the immediately portion is not empty: check the terminability of the 

evaluation on this portion. Basically this involves checking the monotonicity 

behaviour of the chain variables against the terminating end to form a 

termination restraint. 

If the evaluation is not terminable, break from the inner for loop. Otherwise, 

this is a valid driving chain on this direction. 

end; I* the inner for loop *I 

if the set of driving chains is empty 

then this is not a valid evaluation direction 

else this is a valid evaluation direction, generate an evaluation plan. 

end; I* the outer for loop *I 

3. If there is at least one valid evaluation plan, evaluate the query: 

(1) If both directions are valid, choose the one that is more efficient based on the relative 

selectivity of the two ends. 

(2) If the finishing end is not inquired, apply the existence checking method, otherwise, 

apply the query closure method. 



(3) Push the query constraints as early as possible according to the constraint-based 

evaluation algorithms. [Han9 1 a] 

(4) Return the result set. 

Otherwise, print error message and tckminate. (Notice that this eliminates the possibility of 

getting into infinite loops.) 

4.5. Evaluation of Nested Linear Recursions: the n-Queens Problem 

Now that we have shown the advantage of using the chain-based evaluation method, that is, a 

systematic approach of evaluating hnctional linear recursions in a declarative and set-oriented 

way, we must have also noticed its weakness: the limited applicable domain of this method 

compaced to general recursion handling systems, such as Prolog. 

Our goal in this section is to push the applicable domain of the chain-based compilation and 

evaluation method further to functional nested linear recursions. Although the essential algorithms 

are mostly the same as the algorithms applied to single-layer recursions, this extension makes the 

method applicable to many more real life applications. 

The basic idea of the extension is to process recursive predicates according to their "recursion 

level". Lower level recursions are treated as EDB predicates from the view of higher level 

predicates. A typical example : the n-queens program is used to show how the method works 

[H&u92] . 

The n-queens problem Fxample 4-2) is a classical example used in the study of logic 

programming, constraint satisfaction and search methodologies. In [4.2], we have discussed how 

to compile nested linear recursions such as the n-queens problem into chain forms. In this section, 

we show the analysis and evaluation of this problem based on the compiled form and the query 

constraints. 

Our study shows that the chain-based query analysis method generates efficient query evaluation 

plans not only for typical query bindings such as "?- nqueens(4, Qs).", but also for other kinds of 

queries, such as " ?- nqueens(N, [2, 4, 1, 31)" or "?- nqueens(N, [3, X, Y, 21 )". Moreover, for 

queries that are not safe (not generating finite result sets), such as "?- nqueens(N, [2 1 L])", the 

query processing terminates after the query analysis phase which detects the infiniteness and 

terminates by returning a warning message before getting into any infinite loops. 



nqueens(N, Qs) a 

Figure 4-5. The recursive levels of the n-queens problem 

Example 4-6. The analysis and evaluation of the n-queens problem[Halu92]. 

Case 1. Queries with the adornment nqueensbf(~, Qs), such as "?- nqueens(4, Qs)." 

Firstly, we propagate the query bindings and get evaluation plans for each predicate: 

The binding "bf" for nqueens leads to the adorned rules: "nqueensbf(N, Qs) :- rangebbf(l, N, 

Ns), queensbbf(Ns, [I, Qs)." or "nqueensbf(~, Qs) :- queensfbf(~s, [I, Qs), rangebbb(l, N, 

Ns)." However, analysis on the predicate "queens" shows that queensfif is not terminable in 

the evaluation of either direction, so we must evaluate the predicate "range" first. Notice that 

the analysis is done by the system and the order in which the rules are specified does not affect 

the evaluation process. This is the declarativeness that we want to achieve. 



Using the same binding propagation technique, we have the adorned rule cluster as follows: 

rangebbf(M, N, MN& : -  <bb(M, N), +fib&€, 1, MI), rangebbf(Mly N, N,), 
consbbf(M, N,, w). 

rangebbf(M, N, MN,) :- =bb(M, N), consbbf(N, [I, M S ) .  

queensbbfw, S, Q& :- selectfbf(~, U, U1), not attackbb(~, S), 

consbbf(q, S, S1), queensbbf(ul, Sly Q,). 

queensbbfw, S, Q,) :- =bbw, [I), =bf(~, Q~) .  

selectmf(~, YY, YZ,) :- consffb(x, YZ, YY,). 

selectfbf(x, YY,, YZ,) :- consfm(Y, Y ,  YY,), selectfbf(X, Y,, Z,), 
consbfb(Y, Z,, YZ,). 

attackbb(X, XJ :- attkbbb(~, 1, X,). 

attkbbb(x Ny YY,) :- +bfb(~, N, X), consbfi(Y, Y,, YY,). 

attkbbb(x N, YYs) :- -bf i (~y N, X), consbfi(~, Y, w&. 
attkbbb(x N, n s )  :- consbfb(y, Y,, YY,), +fbb(N, 1, N1), attkbbb(X, N1, Y,)). 

In order to compare the evaluation efficiency of different predicate ordering and adjust the 

predicate evaluation orders, more detailed analysis can be performed on the adorned program. 

For example, cardinality analysis can be performed on the program to determine the possible 

number of outputs for a particular set of query bindings. Obviously, card(M, N):card(MNs) = 

1: 1 in rangebbfw, N, MNs). That is, for a particular pair of values of M and N, the recursion 

produces exactly one value for MNs. This can be deduced based on the properties of "cons". 

Moreover, the knowledge about the selectivity of bindings also benefits the analysis of 

processing efficiency. For example, the binding "U =bb [I" is highly selective since there is only 

one possible value for U which satisfies the predicate "=" . 



Finally, termination analysis must be performed on each compiled recursion based on the 

monotonicity behavior of the variables in the recursive predicates and the available binding 

information. For example, the recursion rangebbf(M, N, MNs) terminates for the following 
' 

reason: In the adorned recursive rule (q2'), we have both "M < N" and "M1 = M+1". The 

latter indicates "M1>MW, that is, the value in the first argument position monotonically 

increases; whereas the former indicates that the value in the first argument position must be 

less than the given value N. Thus, the iteration will terminate in finite steps. Similarly, we can 

show that the evaluation of other recursions with the given binding patterns can terminate as 

well. 

The binding propagation analysis determines not only the predicate evaluation order but also 

the appropriate query evaluation strategies. For example, the adorned rules (qlf) to (qllt) 

indicate that chain-split evaluation should be performed on "rangebbf(M, N, MNs)" because 

the compiled chain "M < N, M1 = M + 1, cons (M, Ns, MNs)" must be split into two "M < N, 

MI = M + 1" and "cons(M, Ns, MNs)" in the evaluation to guarantee finite evaluation (as 

shown by the predicate oredering in the body of (q20 ). Similarly, chain-split evaluation should 

be performed on "selectfbf(~, YYs, YZs)", chain-following evaluation on "queensbbf(U, S, Qs 

)'I, and existence-checking evaluation on "attkbbb(X, N, YYs)" . 

Secondly, we examine in detail the evaluation process of the query "?- nqueens(4, Qs).", 

based on the adorned programs (qlt) to (qllt). 

First, chain-split evaluation on "range(1, 4, MNs)" derives MNs=[1,2,3,4]. This proceeds as 

follows: (i) at the first iteration, range(1, 4, MNs) generates range(2, 4, Ns), cons(1, Ns, 

MNs), (i) at the second iteration, range(2, 4, Ns) generates range(3, 4, Ns2), cons(2, Ns2, 

Ns), (iii) at the third iteration, range(3, 4, Ns2) generates range(4, 4, Ns3), cons(3, Ns3, Ns2), 



and finally, (iv) at the fourth iteration, range(4, 4, Ns3) matches only the exit rule and 

produces Ns3 = [4]. Thus, we have the result that MNs = [I, 2, 3,4] . 

The chain-following evaluation should be performed on the predicate "queens([1,2,3,4], [I, 

Qs) '\. The evaluation process is presented below iteration by iteration. 

For the first iteration, select (Q, [1,2,3,4], U1) derives the pairs of Q and U1 values as: (Q, 

U,): ((1, [2,3,4]), (2, [1,3,4]), (3, [1,2,4]), (4, [1,2,3])). Every generated Q passes the test 

"not attack (Q, [I)" and the iteration generates a table of inputs for the second iteration, 

queens(ul, S1, Qs), as: (U1, S1): {([2,3,4], ['I), ([1,3,41, r21), ([1,2,41, I31), ([1,2731, [41)). 

(Notice that the negation handling itself is a research area in deductive databases, which is out 

of the scope of discussion in this thesis. ) 

Similarly, the second iteration will generate a table of inputs for the third iteration. Take the 

first pair queens([2,3,4], [I], Qs) as an example. "Select (Q, [2,3,4], U1)" derives the pairs of 

Q and U1 values as: (Q, U1): ((2, [3,4]), (3, [2,4]), (4, [2,3])). (Notice that "Q=2" cannot 

pass the test "not attack (2, [I])"). It generates a table of inputs "queens(U1, Sl, Qs)" for the 

third iteration as follows: (UI, S1): {([2,4], [1,3]), ([2,3], [1,4])). 

The process continues until the input set U for queens becomes empty, and the final result set 

to the query is Qs = {[2,4, 1,3], [3, 1,4,2]). 

The evaluation of the above query demonstrates that the compilation-based query evaluation 

has the following distinguished features in comparison with Prolog implementations: (i) 

appropriate predicate evaluation orders are determined automatically based on the compilation 

and the query binding analysis; (ii) efficient query evaluation strategies are selected and query 

evaluation plans are generated based on analysis of the predicate ordering and their associated 



bindings; and (iii) the processing generates all the answers to a query by set-oriented 

processing without backtracking [HaLu92]. 

Based on the principles discussed in the analysis of nqueensbf(N, Qs), queries with other 

adornments, such as nqueensfb(~, QS): can be analyzed and evaluated similarly. Notice that 

the analysis and evaluation of complex logic programs with sophisticated query bindings, such 

as nqueensfbw, Qs), cannot be performed by Prolog implementations, nor by other previously 

studied deductive query evaluation techniques (according to the best of our knowledge). 

Case 2. Queries with the adornment nqueensm(~, Qs), such as "?- nqueens(N, [2,4,1,3])." 

In this case, the predicate queens should be evaluated first because it is unsafe to evaluate 

rangebff. Thus, the adorned program becomes, 

(q2I1) rangebfb(M, N, MN,) :- consbfb(M, N,, M . ) ,  +fbb(M, 1, MI), 

rangebfb(~l, N, Ns), < b b ( ~ ,  N). 

(4-3") rangeb%@, N, MN,) :- =bf(M, N), consbbb(N, [I, MN,). 

(44") queensfbb(u, S, Qs) :- queensmOJ1, S1, Qs), consfbb(~, S, S1), 
not attackbb(~, S), selectbfb(q, U, U1). 

(q7I1) selectbfb& YY,, YZ,) :- consbbf(~, YZ,, YL).  
(q~")  selectbfb@, W ,  YZ,) :- consbfD(y, Z,, YZd, selectbfD(x, Y,, Z,), 

consbbf(~, Y,, YX). 

(qsW) attackbb(x, &) :- attkbbb(x, 1, X,). 



The binding propagation analysis is performed as follows. 

The "fb" binding in nqueens(N, Qs) indicates that queensfbb(Ns, [I, Qs) must be evaluated first 

and then rangebfb(l, N, Ns); otherwise, the evaluation of rangebff(l, N, Ns) will lead to an 
c 

unsafe (infinite) program. 

Similarly, queensfbb(Ns, [I, Qs) indicates that the recursive predicate in the body queens( U1, 

S1, Qs) must be evaluated first. Otherwise, the evaluation will lead to an infinite program. 

The bindings in the head are propagated into the body, resulting in queensfEb(~l , S1, Qs) as 

s h o p  in (q4I1). The hrther propagation in the recursive rule leads to the same binding 

pattern in the recursive predicate in the body, as shown in (q5"). This evaluation order can be 

naturally viewed as evaluating first the exit rule portion and then the chain portion in the 

chain-based evaluation. In principle, a compiled chain can be evaluated in the order of either 

first-chain-then-exit or first-exit-then-chain. Since the former leads to an infinite program for 

the query whereas the latter leads to a finite one, the evaluation adopts the latter. The 

selection between the two orderings may also be based on the evaluation efficiency if both 

directions are feasible [HaLu92]. 

Binding propagation in the remaining program is similar to that in Case 1. 

Next, we examine the evaluation of the adorned logic program for the query "?- nqueensw, 

[2, 4, 1, 31)". First, the binding propagation leads to the evaluation of queensfbb(Ns, [I, [2, 4, 

1, 3]), which should be evaluated in the first-exit-then-chain order according to our binding 

propagation analysis. The first iteration in the evaluation of the recursive rule proceeds as 

follows, 



not attack (Q, S), select (Q, U, [I). 

This leads to Q = 2, S = [4, 1, 31 and U = [2]. The second iteration proceeds as follows, 

queens ([21, [4, 1,317 [27 4, 1,31)7 
e 

cons (Q, s ,  14, 1,31)7 

not attack (Q, S), select (Q, U, [I). 

This leads to Q=4, S=[1,3] and U= {[2,4], [4,2]).The third iteration proceeds as follows, 

queens (([2,41,[4,21), C1,31, [2, 4, 17 311, 

cmls (Q, S, [I, 311, 

not attack (Q, S), select (Q, U, [I). 

This leads to Q=1, S=[3] and U={[1,2,4], [1,4,2], [2,1,4], [2,4,l], [4,1,2], [4,2,l]). Similarly 

for the fourth iteration. The result of the evaluation of queensws, [I, [2,4,1,3]) is Ns = {[I, 2, . 

3,41,[1, 2,4,31, ..., [4,3,2, 11). 

After the derivation of the set of Ns in (qlW), the evaluation of rangebfb(l, N, Ns) proceeds in 

the order indicated in (q2I1), which derives N = 4, the only answer to the query. 

Case 3. Queries with only uninstantiated or partially instantiated variables. 

(1) Suppose that the binding pattern in nqueens(N,Qs) is "ff', such as "?-nqueens(N, Qs)". It 

is easy to verify that it is unsafe to evaluate the two predicates (no matter in what order), 

queens (Ns , [], Qs) and range (1, N, Ns), in (qlV). Similarly, it is easy to show that the 

partially instantiated binding, "?- nqueens (N, [2(L])", will lead to the same problem. Although 

the partial binding "Qs = [21L]" makes the initial evaluation proceed in a way similar to 

nqueensfb, in the evaluation of the rule (q4"), the evaluation of cons(Q, S, S1) with the binding 

"S1 = [21L]" results in an uninstantiated (fiee) S, which leads to the same problem in the future 

evaluation. 



Interestingly, if more detailed program behavior analysis were performed before query 

evaluation, certain queries containing only partially instantiated variables can be evaluated 

efficiently. 
' 

(2) We examine the query "?- nqueens (N, [3, X, Y, 21)" on the same compiled program. If 

the binding analysis similar to that in (1) were performed on the two predicates queens and 

range without fbrther analysis, it would have concluded that the program is unsafe for query 

evaluation. 

Ho'wever, a more detailed program behavior analysis can be performed on the compiled 

program before query evaluation, which derives the list length relationships between the . 

variables of type "list of integers" in the recursive predicates. In particular, we have: 

"length(Ns) = length(Qs)" in queens(Ns, [I, Qs) and "length(Ns) = N" in range(1, N, Ns). The 

former is based on the property that "length0 + length(S) = length(Qs)" in queens (U, S, Qs 

); while the latter is based on the property that "length(MNs)=N-M+1" in "range(M, N, 

MNs)". Notice that both properties are derived based on the basic property of list 

construction: "length (MNs) = length(Ns) + 1" in "cons(M, Ns, MNs)". 

With the above two properties available, it is straightforward to derive N=4 from the fact that 

length ( [3, X, Y, 21 ) = 4. Thus, the query is equivalent to "?- nqueens ( 4, [3, X, Y, 2 ] )" 

which can then be analyzed and evaluated in a way similar to Case 1. 0 

- Based on the analysis of the n-queens problem, the process of query evaluation on (nested) linear 

recursions can be summarized into the following algorithm . 



Algorithm 4-4. Query evaluation on (nested) linear rec~rsions[~aLu92] . 

Input: A linear or nested linear recursion and a query. 
' 

Output: The answer set to the query or a warning message if the query is not finitely evaluable. 

Method:' 

1. Compile every linear recursion in the nested linear recursive cluster into a normalized 

recursion. 

2. Perform type, cardinality or other behavior analysis on each normalized recursion. 

3. Based on the available query bindings, perform binding propagation analysis. If the 

'available bindings lead to an unsafe program, print a warning message and terminate the 

processing. Otherwise, proceed to the following steps. 

4. Based on the result of binding propagation analysis, perform quantitative analysis on each 

normalized recursion, select efficient query evaluation strategy and generate a query 

evaluation plan. 

5. Perform query evaluation and return the result set to the query. Cl 



Chapter 5 

The Conclusion 

This chapter summarizes the research and implementation work of this thesis, and discusses the 

major advantages and disadvantages of this method compared to other recursion handling 

techniques. 

5.1 Summary 

This thesis discussed the implementation of the chain-based compilation method on linear 

recursions and the extension of the chain-based recursive query analysis and evaluation method to 

the domain of functional nested linear recursions. 

Firstly, the implementation of the chain-based compilation method of linear recursions is 

discussed, which constructs a variable connection graph-matrix, the V-matrix, for a linear 

recursion and simulates recursion expansions by V-matrix expansions. 

Based on the expansion regularity of linear recursions discovered by V-matrix expansions, 

compiled forms in either bounded or highly regular chain forms can be automatically generated for 

complex linear recursions. 

The compilation of linear recursions into highly regular relational expressions facilitates the 

quantitative analysis of recursive queries and the generation of efficient query evaluation plans. 

Moreover, some bindings which are difficult to be captured by other techniques can be captured 

easily by the chain-based compilation method. Therefore, the automatic generation of compiled 

forms for linear recursions is a powefil tool for the analysis and evaluation of complicated linear 

recursions in deductive databases. 

Secondly, the applicable domain of the chain-based compilation and evaluation method is 

extended to that of hnctional nested linear recursions. 

A typical complex logic program containing nested linear recursions with list and arithmetic 

functions, the n-queens program, is analyzed using the chain-based compilation and evaluation 

method. 



Our deductive query evaluation technique consists of query-independent compilation of logic 

programs and chain-based query analysis and evaluation of the compiled program. The method 

first compiles a logic program into a normalized program and then performs query binding 

propagation analysis, selects appropriate evaluation order, and derives efficient query evaluation 

plans for different query binding patterns. Some query bindings that cannot be evaluated by other 

logic programming techniques can be evaluated efficiently using the chain-based evaluation 

method. 

The analysis of the n-queens program demonstrates that a large set of logic programs with linear 

or nested linear recursions can be evaluated efficiently using the compilation-based query analysis 

and evaluation technique. In comparison with other logic programming techniques, the deductive 

database approach shows its flexibility and efficiency on the analysis and evaluation of linear 

recursions. 

5.2 Discussion 

To conclude the thesis, we discuss the major advantages and disadvantages of the chain-based 

compilation and evaluation method compared to other recursion handling systems, and summarize 

the research work that has been done so far as well as the hture research areas on this method. 

1. In comparison with Prolog, the traditional logic programming language, it has the following 

two significant features, which are common for all deductive database approaches: 

It has a pure declarative semantics. The advantage is that such methods handle 

optimization and termination systematically. 

It uses a set-oriented data processing strategy. The advantage is that such methods are 

much more efficient when processing large amount of data stored in mass memory. 

2. In comparison with some other deductive database query optimization methods, such as the 

magic sets method, it has the following advantages : 

By query-independent compilation, our method generates highly regular chain forms 

which facilitates systematic query analysis and efficient query processing . 



By using the highly regular chain forms, this method is better in capturing query bindings 

and integrating constraints to optimize the query evaluation . 

By extending the applicable domain, this method is able to handle functional linear 

recursions while the magic sets method can only handle function free recursions . 

The major limitation of this method is that its applicable domain is limited to the recursions 

compilable to chain forms, whereas Prolog can handle general recursions with nested levels of 

functions and the magic sets method is applicable to general function free recursions. 

Major research works done so far on the chain-based compilation and evaluation method are 

[Han89a, Han89b, Hangla, Han92 and HaZe921. More research is being conducted on extending 

the applicable domain of this method to non-linear recursions and incorporating some important 

features such as aggregation functions and negation handling into the query evaluation . 

Furthermore, it is important to perform hrther research into the issues on the extensions of the 

compilation and chain-based query evaluation method to deductive and object-oriented databases. 



Reference 

[BMSU86] F. Bancilhon, A D. Maier, A Y. Sagiv and A J. D. Ullman, "Magic Sets and Other 
Strange Ways to Implement Logic Programs", Proc. 5th ACM Symp. Principles of Database 
Systems, pp. 1 - 15, Cambridge, MA, March 1986. 

[BaRa86] F. Bancilhon and R. Ramakrishnan, "An Amateur's Introduction to Recursive Query 
Processing Strategies", Proc. 1986 ACM-SIGMOD Conf Management of Data, pp.16-52, 
Washington, DC, May 1986. 

[BeRa87] C. Beeri and R. Ramakrishnan, "On the Power of Magic", Proc. 6th ACM Symp. 
Principles of Database Systems, pp.269-283, San Diego, CA, March 1987. 

[BrJa84] M. Brodie and M. Jarke, "On Integrating Logic Programming and Databases", Proc. 1st 
Int. Workshop on Expert Database Systems, Kiawah Island, SC, October 1984. 

[BrSa89] A. Brodsky and Y. Sagiv, "On Termination of Datalog Programs", Proc. 1st Int. Conf. 
Deductive and Object Oriented Databases (DOODf89), pp.95-112, Kyoto, Japan, December 
1989. 

[CeGoLe89] Stefano Ceri, Georg Gottlob, and Letizia Tanca, "What You Always Wnated to 
Know About Datalog (And Never Dared to Ask)", IEEE Trans.on Knowledge and Data 
Engineering, Vol. 1, No. 1, pp. 146- 166, March1989 . 

[LDL90] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur and C. Zaniolo, "The 
LDL System Prototype", IEEE Trans. Knowledge and Data Engineering, pp.76-90,2(1), 1990. 

[Dahl82] V. Dahl, "On Database Systems Development Through Logic", ACM Trans. Database 
Syst., 7(1), 1982. 

[Date861 C. Date, "An Introduction to Database Systems", Addison-Wesley, 1986. 

[GMN84] H. Gallaire, J. Minker and J. Nicolas, "Logic and Databases: A Deductive Approach", 
ACM Comput. Surv., 16(2), pp. 153-185, 1984. 

[GrMi92] J. Grant and J. Minker, "The Impact of Logic Programming on Databases", Comrn. of 
ACM, 35(2), pp.66-8 1, 1992. 

[HaLu89c] J. Han and W. Lu, "Asynchronous Chain Recursions", IEEE Trans. Knowledge and 
Data Engineering, 1(2), pp. 185-195, 1989. 

[HaLu92] J.Han and T.Lu, "N-Queen Problem Revisited: A Deductive Database Approach", 
Proc. 1992 IJCSLP Workshop on Deductive Databases, pp.48-55, Washinton D.C., Nov. 1992. 



[Han89a] J. Han, "Compiling General Linear Recursions by Variable Connection Graph Analysis", 
Computational Intelligence, 5(1), pp. 12-3 1, 1989. 

[Han89b] J. Han, "Multi-Way Counting Method", Information Systems, 14(3), pp.219-229, 1989. 

[Hangla] J. Han, "Constraint-Based Reasoning in Deductive Databases", Proc. 7th Int. Conf. 
Data Engineering, pp.257-265, Kobe, Japan, April 199 1. 

[Hanglb] J. Han, "Is It Possible to Capture More Bindings than Magic Rule Rewriting?", 
Proceedings of Int'l Workshop on Deductive Databases (in conjunction with 1991 Int'l Logic 
Programming Symp.), pp.10-19, San Diego, CA, October 1991. 

[Hang21 J. Han, "Compilation-Based List Processing in Deductive Databases", In A. Pirotte, C. 
Delobel, and G. Gottlob,(eds.), Extending Database Technology - EDBTt92 [Lecture Notes in 
Computer Science 5 801, pp. 104- 1 19, Springer-Verlag, 1992. 

[HaWagl] J. Han and Q. Wang, "Evaluation of Functional Linear Recursions: A Compilation 
Aroach", Information Systems, 16(4), pp.463-469, 199 1. 

[Haze921 J.Han and K.Zeng, "Automatic Generation of Compiled Forms for Linear Recursions", 
Information Systems, 17(4), pp.299-322, 1992. 

[HaZeLu93] J.Han, K.Zeng and T.Lu "Normalization of Linear Recursions in Deductive 
Databases", Proc.9th Int'l Conf on Data Engineering, Vienna, Austria, pp559-567, April 1993. 

[Hentag] P. van Hentenryck, "Constraint Satisfaction in Logic Programming", MIT Press, 1989. 

[Imie87] T.Imielinski, "Intelligent Query Answering in Rule Based Systems", J.Logic 
Programming, 4, pp.229-257, 1987. 

[JaLa87] J. Jaffar and J-L. Lassez, "Constraint Logic Programming", Proc. 14th ACM Symp. 
Principles of Programming Languages, pp. 1 1 1 - 1 19, Munich, Germany, 1987. 

[JiangO] B. Jiang, "A Suitable Algorithm for Computing Partial Transitive Closures", Proc. 6th 
Int. Conf. Data Engineering, pp.264-27 1, Los Angeles, CA, February 1990. 

[KKR90] P. C. Kanellakis, G. M. Kuper and P. Z. Revesz, "Constraint Query Languages", Proc. 
9th ACM Symp. Principles of Database Systems, pp.299-3 13, Nashville, TN, April 1990. 

[KRBM89] D. B. Kemp, K. Ramamohanarao ,I. Balbin and K. Meenakshi, "Propagating 
Constraints in Recursive Deductive Databases", Proc. 1989 North American Conf. Logic 
Programming, pp.98 1-998, Cleveland, OH,October 1989. 

[La901 J.L. Lassez, "Query Constraints", Proc. 9th ACM SIGACT-SIGMOD-SIGART symp on 
PODS, April 1990, Nashville, Tennessee, pp.288-198. 



[Mink881 J. Minker, "Foundations of Deductive Databases and Logic Programming", Morgan 
Kaufmann, 1988. 

[Nest891 E. Neuhold and M. Stonebraker, "Future Directions in DBMS Research (Laguna Beach 
Report)",ACM SIGMOD Record, 18(1), 17-26, 1989. 

[RBS87] R. Ramakrishnan, F. Bancilhon and A. Silberschatz, "Safety of Recursive Horn Clauses 
with Infinite Relations", Proc. 6th ACM Symp. Principles of Database Systems, pp.328-339, San 
Diego, CA, March 1987. 

[SaVa89] Y. Sagiv and M. Vardi, "Safety of Datalog Queries over Infinite Databases", Proc. 8th 
ACM Symp. Principles of Database Systems, pp. 160- 17 1, Philadelphia, PA,March 1989. 

[SagigO] Y. Sagiv, "Is There Anything Better than Magic?", Proc. 1990 North American Cod. 
Logic Programming, pp.236-254, Austin, Texas, October 1990. 

[ShKe84] D.E. Shepherd and L. Kerschberg, "Constraint Management in Expert Database 
Systems", Proc. 1st Int. Workshop on Expert Database Systems, Kiawah Island, SC,October 
1984. 

[SSU91] A. Silberschatz, M. Stonebraker and J. D. Ullman, "Database Systems: Achievements 
and Opportunities",Comm. ACM, 34(10), pp.94- 109, 1991. 

[StSh86] L. Sterling and E. Shapiro, "The Art of Prolog", The MIT Press, 1986. 

[Ston881 M. Stonebraker, "Readings in Database Systems", Morgan Kaufinann, 1988. 

[Ston901 Michael Stonebraker, Lawrence A. Rowe and Michael Hirohama, "The Implementation 
of the POSTGRES", IEEE Trans. Knowledge and Data Engineering, 2(1), pp. 125- 14 1, 1990. 

[TYZ89] D. Troy, C.T. Yu and W. Zhang, "Linearization of Nonlinear Recursive Rules", IEEE 
Trans. Software Engineering, 15(9), pp. 1109-1 119, 1989. 

[Tsurgl] S. Tsur, "Deductive Databases in Action", Proc. 10th ACM Symp. Principles of 
Database Systems, pp. 142-153, Denver, CO, May 1991. 

[Ullm89a] J. D. Ullman, "Principles of Database and Knowledge-Base Systems, Vols. 1 & 2", 
. Computer Science Press, 1989. 

[Ullm89b] J. D. Ullman, "Bottom-up Beats Top-down for Datalog", Proc. 8th ACM Symp. 
Principles of Database Systems, pp. 140-149, Philadelphia, PA, March 1989. 



[Ullm91] J. D. Ullman, "A Comparison of Deductive and Object-Oriented Database Systems", 
Deductive and Object-Oriented Databases (DOOD'91)[Lecture Notes in Computer Science 5661, 
pp.263-277, Springer Verlag, 199 1. 

[UllZa90] J.D.Ullman and C.Zaniolo, "Deductive Databases: Achievements and Furture 
Directions", SIGMOD RECORD, Vo119, No.4, December 1990. 

[YHH88] C. Youn, L. J. Henschen and J. Han, "Classification of Recursive Formulas in 
Deductive Databases", Proc. 1988 ACM-SIGMOD Conf. Management of Data, pp.3 20-328, 
Chicago, IL, June 1988. 

[Zani84] C. Zaniolo, "Prolog : A Database Query Language For All Seasons", Proc. 1st Int. 
Workshop on Expert Database Systems, Kiawah Island, SC, October 1984. 


