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Abstract

This thesis investigates interfaces to deductive databases in order to allow deaf people easy
consultation using their native language (in particular, American Sign Language), and de-
velops one specific approach to the problem. Qur approach consists of developing a multiple-
valued logic system which serves both as the internal representation of American Sign Lan-
guage (ASL) and as the database consultation language. We exemplify our ideas with a
concrete system that assumes preprocessing of visual images translating them into a writteﬁ
form. Our system then translates this written form into a rigorously defined logical system
with muitiple truth values which allow richness of expression. For instance, this system
can differentiate between different kinds of plural and detect failed presuppositions. The
translation in terms of our logical system can then be used directly to consult deductive
databases. While our exemplifying focus is database consultation in ASL, it is clear that the
logical system developed around this application has other possible uses in natural language

processing in general, and database interfacing in particular.
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Chapter 1

Introduction

This thesis describes research in two areas: cooperative answering in deductive database
systems and natural language front ends for manual languages (in particular, American
Sign Language) to databases. Below we will motivate our research in each of these areas
and review related work.

Our contributions in each of these areas have significance and application independently
of those in the other area. We have also combined them into an integrated approach for

human, in particular ASL speakers, consultation of deductive databases with cooperative

answering.

1.1 Natural Language Interfaces for Manual Languages

Deaf people learn spoken languages as their second language. In addition to facing the
usual difficulties related to mastering a second language, they feel that their expressive
capacity is severely restricted by the sequential nature of spoken language'. These concerns
create a significant barrier between deaf people and computer applications and hopefully
this research will help reduce these barriers by making computer applications available to
deaf people in their native language.

The linguistic structure of sign languages is different from spoken languages and therefore
a different type of interface has to be developed. ASL linguists have identified two areas
where ASL differs substantialy from spoken languages: 1. ASL’s paralell use of non-lexical
information and 2. ASL’s built-in memory.

Parallelism also exists in spoken languz ., e.g., body language (and tone of voice) is

'Roger Carver, Director of Programs and Services, Deaf Children’s Society of British Columbia. Personal
communication, Sept. 1992.
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used for emphasis, in irony and satire. but it is the degree to which ASL uses non-lexical
information that makes it interesting. ASL uses facial expressions to convey Tundamental
linguistic concepts like negation and questioning, which one has to account for in a natural
language interface to, for example. a database. In spoken langnages these concepts are
conveyed through lexical items, word order and inflection. so we can detect questions and
negation through simple sequential processing of lexical items. We do not have to account
for body language since, for example. irony, is rarely part of a query for factual information.
However, in, for example, a translation system, body language aunalysis is interesting also
for spoken languages.

ASL uses locations in the signing space to represent people and objects, i.e., the signer
establishes a contextual reference somewhere in the space and all later reference to that
person/object is done by pointing to the location. This memory aspect of ASL makes the
parsing task more complicated since traditinal parsers are not equiped with memeory, but it
makes it easier to produce a semantic representation since pronominal references are unigue.

Traditionally, research on natural language front ends to computer systems has focused
on spoken languages, especially English, and to the best of our knowledge, no-one has
attempted a computational model of manual languages. We develop such a model for a
subset of ASL, tailored for use as a front erd to deductive databases. Although, our specific
application is a database, this model is applicable anywhere where an ASL interface is
wanted (e.g., expert systems). QOur model presupposes a vision system that transforms
a signer’s manual signs into distinct tokens (names of signs} and that recognizes relevant

non-manual behaviour performed by the signer. Work in this area is already underway (sce
[(17)).

1.2 Cooperative Answering

Providing correct answers to users is not good enough since such answers may be ambigu-
ous. Also the user may have misconceptions about the database or the world such that a
merely correct answer may in fact be more misleading than helpful. As we shall sce below,
alternative information or extra information may be more useful and less misleading te the

user.

as a means of providing natural and cooperative answers to queries. The database is tailored
to be used in conjunction with a natural language front end (our front end is the ASL front

end discussed above, but our database is of course independent of language). We propose
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multiple logical values in view of more informative answers. matching the more nuanced
input allowed by patural language. For example. through our new logical values, we can
detect queries with false presuppositions, queries that are inconsistent with the current state
of the knowledge base, and gueries that are semantically anomalous. Our system also easily
accommodates intensional answers.

Our work extends the L3 formalism developed by V. Dakbl into a multi-valued formalism
for deductive databases, which we shall wame L. Our line of research makes it possible
to use logic throughout the entire database system: as the database definition language.
as the database query language, as the data manipulation language. and as the analyser’s
fanguage. This uniformity of representation minimizes the interfaces between the different
romponents of a natural language consultable dalabase. A preliminary version of the system
presented here has been implemented in a prototype system.

Below we briefly review some of the previous work done in this area. The material in

this seetion is mostly collected from [25].

1.3 Related Work in Cooperative Answering

The origin of the field of cooperative guery answering can be traced back to work by Joshi
and Webber in the mid/late 19705 and a workshop held at the University of Pensylvania
in 1978, which resulted in the book ~Elements of Discourse Understanding™ [30] based on
the papers presented there. From this initial work, research has grown out of the following

three areas in which question-and-answer disconrses arise:
I. Natural Language Interface
2. Databases
3. Logic Programming and Deductive Databases

In the words of Gaasterland et al. [25]: Re. I: ~Some researchers are interested in model-
ing human conversation. Others hope to ese human discourse as a normative standard for
information systems’ behaviour.” {See [20.35. 49].} Re. 2: “A number of researchers in the

oo of databocec [T & U8 22 hove rocoemise aractical need Tor coanerative answerin
area of databases [7. 8, 33, 43] have recognized the practical need for cooperative answering

bebaviour in standard. widely available information systems.” Re. 3: “Logic offers a suit-
able representation for expressing cooperative answers. whereas SQL and other database

languages must be extended 1o do this. The rules and integrity constraints of deductive
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databases allow for a rich semantics, which plays a vital role in gencrating cooperative
responses.”
The techniques that have grown out of each of the above areas can be separated into

the following five categories (from {25]):
1. Consideration of specific information about a user's state of mind
2. Evaluation of presuppositions in a query
3. Detection and correction of misconceptions in a query {(other than false presupposition)
4. Formulation of intensional answers
5. Generalization of queries and of responses

We consider each in turn.

1.3.1 Beliefs and Expectations

These techniques are concerned with the question ~Can the systemn interpret the query
properly?” For example, natural language queries might need disambiguation to be answered
or a query might be asked with different intentions or beliefs.

Webber [49, 31} is concerned with user’s beliefs and expectations and how to provide

extra information to avoid misconceptions. Consider the following example:

Q: “Is Sam an associate professor?”
User believes that associate professors have tenure.
Sam does not have tenure. Sam is an associate professor.

A: “Yes, but he does not have tenure.”

Lehnert [35] is concerned with the users intent. Her system, QUALM, parses the query
into a conceptual dependency representation. Then it analyses the question and the previous
test in the conversation to decide the user’s intent. Consider the following question and its

three potential answers:

Q: “How did John take the exam?”

Ay: “He crammed the night before.” {enablement)

As: “He took it with a pen.” {instrumental/proceduralj
Aj;: “He took it badly.” {emotional)
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1.3.2 Presuppositions
Kaplan [32, 33] states that presuppositions are statements that must be true for the query
to have an answer and if a presupposition is false, the query is nonsensical. For example, a

student might ask a database
“Who passed CMPT710 in the fall semester of 19917”

The database answers “No one”. The student then asks
“\Vho failed CMPTT710 in the fall semester of 19917”

Again, the database answers “No one”. The student becomes suspicious and asks
“Who taught CMPT710 in the fall semester of 19917”

and the database answers “No one”. Kaplan calls this stone walling, i.e., the database
answers yes or no regardless of whether the answer is misleading. If the original question
was asked to a human, she would have answered that there was no such course that semester
right away.

In the system CO-OP, Kaplan represents queries as a semantic network and the query
answering system checks that each connected subgraph is non-empty. An empty subgraph
represents a false presupposition that ought to be reported.

Consider the query “Which employee owns ared car?” («— employee( X ), owns(X,Y), car(Y),red(Y)
This query may fail because no employee owns a car at all and reporting this failure is more
informative than just answering “No one”.

Janas’ [28] solution to the problem of failed presuppositions is to report the smallest sub-
query that fails. If we consider a conjunctive query as a set of atoms, then subqueries are
elements of the power set (i.e., there are 2" subqueries for a conjunctive query with » atoms.)
Consider the query “Which employee owns a red car?” (— employee(X ), owns(X,Y), car(Y), red(Y)).
This query may fail because no employee owns a car at all and reporting this failure is more
informative than just answering “No one”. 1.e., the subquery — employee( X ), owns(X,Y), car(Y)
is the smallest subquery that would fail.

Colmerauer is also concerned with failed presuppositions, and we will review Colmer- .

auer’s work in more detail in section 2.1.

1.3.3 Misconceptions

Misconceptions arise when the user has an unclear understanding of the database’s seman-

tics. Consider query




CHAPTER 1. INTRODUCTION 6

“Wh

ich professors took CMPT7107”

with respect to a database in which students take courses, while professors teach courses.
Mays [39] uses the database schema to correct this type of misconception. He introduces
aspects of the database’s semantics into the answer in order to correct misconceptions with

respect to the database schema. The answer to the above query would be:

“None.”
“Professors teach courses.”

“Students take courses.”

McCoy [41] uses world knowledge to correct misconceptions a user might have about the

properties of a given object. For instance,

Q: “Where are the gills on a whale?”
The system knows the user probably thinks whales are fish
because fish use gills to breathe.

A: “Whales do not have gills. They breathe through lungs.”

For a belief logic based view of ill-formed input see [18, 19].

1.3.4 Intensional Answers

An intensional answer denotes a non-enumerative characterization of a set. For example,
if a user asks the query “Which students are enrolled?” in a context in which all students
must be enrolled, it is misleading to return a list of all the students. It is better to answer
“All students are enrolled”. Intensional answers are more succinct than concrete answers
and this is important when we are dealing with databases with huge stores of data. The
work on intensional answers was started by Imielinski [26] and many researchers have since

studied the topic, e.g, [4, 5, 44, 47, 48, 55]

1.3.5 Generalizations

The scope of a query is extended so that one can include information on related topics in

the answer.
Cuppens and Demolombe {12] use a meta level definition of = query with additional
variables that carry relevant information and these variables are reported together with the

original ones in the answer. For example, the query

— travel(vancouver, oslo).
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might be modified such that the answer includes rost. They also introduced the notion
of finding answers close 10 those asked for. For example, if a user asks for a flight from
Vancouver to Frankfurt between 17:00 and 21:00 and the only flight to Frankfurt leaves at
21:05, it would be more useful to return that one than nothing.

Wabhlster, Marburger, Jameson, and Busemann [58] introduce over-answering of yes/no
questions when further questions on the same topic are anticipated from the user. Their
system uses domain knowledge to guess which types of follow-up questions are likely. For

example,

Q: “Has a yellow car gone by?”
The system adds that the user will want to know where.

A: “Yes, one went by on Hastings S5t.”

Chu, Chen, and Lee |7, 8], use a type abstraction hierarchy to provide related answers

to queries in a relational database system. For example, if the query
AmericanAirlines_flight(burbank, dulles, at_10am)

fails, it can be abstracted into the more general query
CoastToCoast flight(los_angeles, washington, morning)

and the database can provide close alternative answers.
Gaasterland, Godfrey, and Minker [24] introduces the notion of relaration of queries to
deductive databases. The scope of a query is expanded by relaxing the logical constraints

implicit in a query.

1.4 The Main Challenges and Our Solutions

In developing an ASL front end to database knowledge, the main challenge is of course
the pioneering character of our task. Because this task has not been previously attempted,
and because the features of ASL are so suigeneris with respect to the features of spoken
languages for which front ends have been previously studied, we had to extensively researc
the literature on ASL looking for any kind of helpful clues, and rely on our own imagination
to gradually develop insights on useful pieces of representation and on how to put them
together.

Because of the special needs of deaf people, we set out to achieve a cooperative envi-

ronment for question answering. We found that together with those ASL idiosyncrasies
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that made our task challenging. there were also others that actually lent themselves partic-
ularly well (better than oral languages) to the cooperative answering we were intent upon
providing.

In the areas of cooperative answering itself, there exists an extensive body of literature,
but previous research has focused on individual issues in cooperative answering (e.g., inten-
sional answers, detection of presuppositions, correcting misconceptions) and each solution
is cast in a different framework. Our main task was to develop an integrated framework
which would simultaneously provide a useful representation of ASL queries and a coop-
erative evaluation of these queries via such representations, such that most of the issues
raised in cooperative answering could be solved within this single framework. To achieve
this, we developed the rigorous, typed, multi-valued logical system LM, in terms of which
ASL queries can be expressed as (automatically obtained) formulae. In this framework, we
formally define a database as an interpretation or situation, i.e. as a multi-valued assign-
ment of a relation to each relational symbol. Database consultation then reduces to the
automatic evaluation of a formulae corresponding to a given ASL query with respect to a

given situation, and following the also rigorously defined semantics of LM.

1.5 Organization of the Thesis

In chapter one we introduce the topic of the thesis. In chapter two, we review Colmerauer’s
three-valued formalism, the typed logical representation L3, logic grammars and incomplete
types. In chapter three, we motivate each of the new logical values and discuss treatment
of some of these values. In chapter four, we present the definition of a multi valued logic
database and corresponding query language. In chapter five, we give a brief introduction to
American Sign Language. In chapter six, we propose a computational model for a subset
of ASL that is suitable as a front end to a database. In chapter seven we summarize and

discuss our results.



Chapter 2

Natural Language Processing

In this chapter, we give a brief review of the various natural language processing theories
and tools that form the background for this thesis. In section one, we discuss Colmerauer’s
three-valued logic representation for a subset of natural language. In section two, we discuss
V. Dahl’s extension of Colmerauer’s work into the database query language L3. In section

three, we discuss incomplete types and in section four, we discuss logic grammars.

2.1 Colmerauer’s Three-Valued Logic

In the late 1970s, A. Colmerauer developed a logical representation for the meaning of a
subset of natural language expressions [10]. In his proposal, each quantified expression in a
given natural language (expressions introduced by articles such as a, the, all, some, no) is
assigned an intermediate three-branched quantifier repiesentation. The final representation
is a formula from a three valued logical system, whose main components are the single
quantification mechanism for/3!, logical operators that range over three logical values, set
formulae, statement formulae and integer formulae. The formal definition can be found in
[10] and we provide a summary in 2.1.7. For other work in multi-valued and fuzzy logics,
see [40, ch.12].

In this section, we briefly discuss the main features of Colmerauer’s treatment of a
subset of English: quantification hierarchy, three logical values, the single quantification
mechanism and formulae. In the following section, we discuss how to translate natural

language statements into rigorously defined formulae.

!We borrow notation from logic programming: predicatename/N means that predicate predicatename has
N arguments
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2.1.1 Elementary Statements

Elementary statements involve proper nouns plus either a) the verb to be and a common

noun, b) a verb, or c) the verb to be and an adjective. Colmerauer hypothesized:

“To each verb, to each adjective and to each common noun there corresponds a

property with n arguments, each argument being a proper noun.”

Elementary statements translate directly into logic formulae without any intermediate three-

branched quantifier. Consider the following examples? and their associated logic formulac.

a) Garfield is a cat. = iscat{Garfield)
Jorg is the son of Heidi. = issonof(Jorg, Heidi).

b) Garfield trots. = trots(Garfield)

Diana lent Garfield to Brigitte. = lentto(Diana, Garfield, Brigitte)
c) Garfield is striped. = isstriped(Garfield)
Garfield is happy with Diana. = ishappywith(Garfield, Diana)

2.1.2 Quantification Hierarchy

Natural language determiners are the basis for translating sentences into three-branched
quantifiers. Let us first consider, simple sentences consisting of a noun phrase followed by
a verb phrase, where the noun phrase contains a determiner. Such sentences can be repre-

sented by a three-branched quantifier of the following form:

9(X, F1,F2) In tree notation: ¢
F1 2

X

where g represents the determiner, X is a variable, F1 is the noun phrase’s representation,
and F2 is the verb phrase’s representation. Intuitively, F1 specifies the domain of quantifi-
cation, and q states what portion of this domain F2 holds for. (For an alternative account
of quantification see [11].)

In general, for any given natural language quantification, ¢, a three-branched quantifier
relates a variable X, to two formulae F1 and F2. (As opposed to the classical quantifiers 3

and V, which relate a variable to a single formula, three-branched quantifiers relate a variable

2All the examples in this section are taken from [10] (but modifed a little).
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X, to two formulae.} Consider the following example of how to translate statements with

only one quantification from natural language into three-branched quantifiers:
Brigitte owns a car.

This statement can be be paraphrased as:
for an X such that X is a car, it is true that Brigitte owns X

and represented by the following three-branched a-quantifier:

a \
X iscar owns where iscar(X) = F1 and

l / \ ouns(Brigitte, X ) = F2
X Brigitte X

In the rest of this section, we discuss how to translate sentences with more than one
quantification into three-branched quantifiers. We note that the hypotheses presented here
are valid in most cases, but were not designed to be infallible and we will examine a couple of
cases where they would give incorrect representaions. They represent a useful compromise
between coverage and simplicity and his hypotheises give the preferred readings in the
majority os cases. First we discuss sentences where the subject and the complement of the
verb both contain a quantification. Consider the following sentence and its two possible

translations into a three-branched quantifier:

No man has a trunk.

(1) no (2) a
X1 1sman a X 1sirunk no
P2 RN VAN
X1 Xsoistrunk has X2 X, isman  has
I /\ | /\
X2 X X: X1 X1 X,

The second representation is not correct (it would mean something like: there exists a trunk
that no man owns), and from experimentation with several articles in several sentences,

Colmerauer {10} hypothesizes:
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“The quantification introduced by the article of the subject of a verb domi-
nates the quantification(s) introduced by the complements(s) closely related to
that verb. In speaking of complements closely related to the verb, we exclude

adverbial phrases, which will not be studied here.”

Next we discuss sentences that include a noun and a complement of this noun. Consider

the following sentence and its two possible translations into a three-branched quantifier.

Garfield knows the smell of every bush.

(1) each (2) the
TN IS
X3 isbush the X, issmellof cach
X; Xjissmellof knows X1 X2 Xuisbush knows
/\ /\ | / \
X; XoGarfield X, X, Garfield X,

Again the second translation is not correct (it would mean something like: the smell of every
bush is the same and Garfield knows it), and from a series of similar examples, Colmerauner

arrived at the following hypothesis:

“In a construction involving a noun and complement of this noun, the quantifi-
cation introduced by the article of the complement dominates the quantification

introduced by the article of the noun.”

We would like to point out that there are situations where this hypothesis does not hold.

Consider the following example:
I know the ambition of every politician.

In this example, there is only one ‘ambition’ so the quantification of the noun should in fact
dominate the quantification of the complement. However, il we chauge every to each in the

above sentence:
I know the ambition of each politician.

Colmerauer’s hypothesis gives us the preferred reading!
Next, we discuss sentences where a verb, an adjective or a noun has two complements.

Consider the following example.
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Diana gave a gift to each child.

(1) each 2) a
AT /I
Xo ischild a X, sgift each
/1 A
X2 X, isqift gives X, Xs ischild grves
| /1IN | /IN\
‘X'l DianeX, X2 X2 DianaX,1 X,

The second quantifier representation implies that there was only one gift and the children
were sharing this gift. Although, this may have been the author’s intention, it is more likely
that she meant that each child got a separate gift (the interpretation is context dependent).

Colmerauer hypothesized:

“Whenever a verb, an adjective or a noun has two complements, the quantifi-
cation is made in the inverse order of the natural order of their appearance;
that is, the rightmost complement generates a quantification dominating the

quantification generated by the other complement.”
This hypothesis is clearly too simple, since the sentence
a) Diana gave each child a gift.
should presumably produce the same representation as
b) Diana gave a gift to each child.?

If we follow Colmerauer’s hypothesis, a) would give us the representation in 2) above, which
we agreed that is not correct. It seems that if the quantification of the recipient is not « or
the and follows some other quantification, we shall adhere to the old hypothesis and process
the complements from right to left, while if the quantification of the recipient is not a or the
and precedes another quantification, we process the complements from left to right. Under
this hypothesis both a) and b) above will produce the same representation.

Note that this only applies if the quantifications of the recipient is not a or the (e.g.,

o

some, each, all, every). In the following example,

*If we take topic and focus into account when analysing these sentences, they should not give the same
representation, since differences in emphasis brought about by focus/topic changes, through changes in
constituent ordering, should ngorously speaking be accounted for in the representation. However, for the
purpose of extracting information from a database such degree of detail is not necessary, and we shall
therefore disregard foces/iopic distinctions in this thesis. Interested readers can refer to [53).
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Allan gave the cat a fish.

Allan gave a fish to the cat.

the right to left processing of complements lets us represent the slight difference in emphasis
of these two statements.

Finally, we discuss the transformation of a sentence from the active to the passive voice.
Consider the following active/passive sentences and their translations into three-branched

quantifiers:

Few people speak several languages.

Several languages are spoken by few people.

(1) few (2) several
X, 1sperson several X, islanguage few
P | /1
X1 X, islanguage speaks X2 Xyisperson ispokenby
I /\ | / \
X2 X1 X X, X, X,

H we assume that speak(X,, X;) = isspokenby( X2, X1), (2) becomes:

(2) several

Ve

X, islanguage few

|l /1

X, X,isperson  speak

| / \
X, X

X

This leads us to conclude that passive sentences reverse the quantification hierarchy hetween
subject and a complement of the verb.
2.1.3 Negation

Negated statements introduce the operator not. If the quantification introduced by the sub-

ject is every or all, not applies to the whole statement and is placed above the quantification.
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For all other quantifications it is placed immediately below the quantification introduced by

the subject. For other research on negation see for example [42, 53]. Consider the following

examples:

Many tourists do not know Vancouver = All ducks are not white =

many not

TN |

istourist not all
| | AR
X know X  isduck 1swhite
/ '\ I I
X Vancouver X X

2.1.4 Conjunction between Statements, Relative Clauses

The relative clause itsell is treated as an ordinary statement where the relative pronoun

is replaced by a variable. It is linked to the noun by the conjunction and. Consider the

following example:

Garfield appreciates the food that is contained in the can of Ron-ron.

the
X and appreciates
% AN / \
1sfood the Garfield X,

|

X, X; iscanof  iscontainedin

/ \ / \
X,

X2 Ron-ron X,

The three-branched quantifiers we have seen above are merely devices that simplify the

translation into the single quantification mechanism for/3, which we will discuss next.
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2.1.5 A Single Quantification Mechanism

For each quantifier, ¢, in the natural language. Colmerauer proposed a trauslation of its three
branched quantifier into the single quantification mechanism ferf3. This quantification

mechanism is represented by the formaula:

for
/ i \ = for{X, F1, F2) in functional notation,
X F1 F2

which is interpreted as foliows:
{for those X's that satisfy F1, condition F?2 holds.
Recall the following example:
Brigitte owns a car.
which we translated into the three-branched a-quantifier:
a \
X iscar owns where iscar(X )} = F1 and

I / \ owns{ Diana, X) = F2
X Brigitte X

and now we translate this three-branched quantifier into the following for/3 formula:

i - fi’"\

and greater_thar
VRN / \
1S€ar owens  eard 0

I /N |

X Brigitte X X

In general, three branched a-quantifiers are transiated into for /3 formulae as follows (from
14y
al X, F1,F2) = for{X,and{ F1, F2), greater than{card{ X },0j)
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)

Simitarly, the three-branched quantifiers el wo, sonre and integers ¢ translate into for for-
mulae (from LHD;

atl{ X, FY, F2) = for({ X and{ Fi.not{ F2}}, equal{card{ X },0}}

ned X, F1, F2) = for{ X, and{ F1. F2).equal{card{ X },0}}

HX,FL, F2)= for{l X, and{F1, F2j.equalicard( X ), 1}}

some{ X, F1, F2)= for{ X.and({F1. F2} grealer thanicard{X }.1})

Some more examples:

Al birds have wings = for
l \
X amnel equal
-/ X\ / \
rsbird uof  cord
l b
X haswings X
|
X

Some birds fly =

/I\

and grealer_thar
/ N\ / \
isbird fly  eard

| .

X X X
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Three blind mice rur = for
X and equal
/7 \\ / \
ISMOUSE and card 3

| /\ |

X blind run X

|

X X

2.1.6 Three Logical Values

A third logical value unde fined is introduced in order to detect failed presuppositions
{ presuppositions are discussed in detail in, for instance, [40, ch.9],{11, ch.6]). Consider the

following statement:
The cat that Jorg is holding is mewing.

If Jorg is actually holding a cat, this statement evaluates to true or false depending on
whether the cat is mewing or not. lf Jorg is not holding a cat, the statement is meaningless
and evaluates to unde fined. Note, that we cannot say that the statement is false since

that implies that its negation:
The cat that Jorg is helding is not mewing.

is true. Clearly, this is no more true than the original statement. The article the presupposes
existence and uniqueness of its referent. so if Jorg is not holding a cat, we say that the
presupposition failed.

Colmerauer defined the operator i f to deal with presuppositions induced by the definite

article. Sentences that contain a definite article translate into L3 as follows (from [14]):

singular-the{ X, F1, F2) = for(X, F1, if(equal{card(X}), 1), F2))
plural-the(X, F1, F2) = for(X, F1, if{(greater than(card(X), 1), }'2)}

2.1.7 A Logical System for a Subset of Natural Language

We briefly summarize the logical system underlying L3. For a complete definition of the
logical system see [10].
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We define three types of formulae: set formulae s, statement formulae e, and integer

formulae n. A set formula can take any of the forms:
e a list of constants
e a variable
e those(V,e), where V is a variable and e is a statement formula
A statement formula e can take any of the forms:
e for(V,ej,ez), where V is a variable, e, €5 are statement formulae
e 7(s1,...,3,), where r is a relational symbol, sy,...,s, are set formulae
e and(e;,ez), where e, e are statement formulae
e if(e;,e;), where €1, €2 are statement formulae
e not(e; ), where e, is a statement formula
o equal(n),n;), where n;, ny are integer formulae
e greater than(n;,n;), where ny,n, are integer formulae
An integer formula n, can take any of the following forms:
e JEN
e card(s), where s is a set formula

In a well defined situation a statement formula will evaluate to true, false or pointless,

a set formula will evaluate to a set, and an integer formula will evaluate to an integer.

2.2 L3-a Natural Language Oriented Database Query Lan-
guage

V. Dahl extended Colmmerauer’s theoretical work into the fyped database query language L3
{13, 15]. Dahl translates a wide range of natural language sentences (elementary statements,
conjunctive statements, relative clauses, passive sentences, and negated statements) into
L3 through a natural language processor and uses Colmerauer’s three-branched quantifiers
as intermediate representations, while the final representation in L3 involves the single
quantification mechanism for/5, where types are used to determine the search domain.

Below we discuss the new features of L3 that were not dealt with in the previous section.
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2.2.1 L3’s Quantification Mechanism

for/5 differs from Colmerauer’s for/3 in that the search domain is explicitly defined through
types. Each constant and variable is typed (its domain) so the search space is narrowed
to only those constants of a variable X's type (its domain) D. This narrowing of search
space clearly improves efficiency. The quantification mechanism for/5 is represented by the

following formula:

for(S,X,D,P,C)}
which is interpreted as follows

for the set S of those X's in domain D that satisfy P, condition C' holds.
Consider our previous example

Brigitte owns a car

which translates into the following for/5 representation

for
7 I\
S X cars and greater_thar
7\ / \
iscar owns card 0

|/ \ |

X Brigitte X §

2.2.2 Safe Negation as Failure

It is only safe to evaluate negated formulae when their arguments are ground at the time
of evaluation, but in a natural language front end we cannot guarantee safe negations. For

example, the user’s request for an inexpensive item, might result in the unsafe query:
a) not(expensive(X)), item(X)
instead of the safe query:

b) item(X), not(expensive(X))

*In an actual implementation, S and D appear in less explicit forms.
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If there are any expensive items in the knowledge base, the first clause of a) will fail, and no
items are returned as an answer. In b), individual items are retrieved and then examined,

and the correct list of inexpensive items is returned.

The quantification mechanism for/5 makes negation as failure safe through its use of

types, and the above query can safely translate into:
for(S, X,items, and(not(expensive( X)), item( X)), greater than(card(S),0))

During evaluation, elements are successively taken from the domain items and added to

if not expensive.

2.3 Incomplete Types

Consider the query Is Sammy happy?, given a database where Sammy is a seal, seals are

animals, and animals are happy. In Prolog:

7- happy(sammy) .

happy(A) :- animal(a).
animal(A) :- seal(a).

seal (sammy) .

From this ordinary untyped database, we can obtain a positive answer to the query in
three resolution steps. By introducing a typed logic database, we can obtain a solution to
the same query in only one resolution step. From the above program we can extract the
following hierarchical taxonomy, animal D seal 3 sammy, and we can write a compiler

which transforms the taxonomy and the untyped database into the following typed database:
1) happy(A-[animal D> T]).

where A is a variable of type [animal O T]. This type is incomplete in that it contains a
tail variable which allows for further instantiation. Thus [animal D T] stands for “at least
of animal type”. (Input to the compiler would look something like: happy(A € animal),
reptile C animal, crocky € reptile. In general: i; C 1;, where £;,¢; € T and k € #;
where t; € K.)

Similarly the compiler can transform the query into:

2) ?- happy(sammy-[animal D seal > sammy]).
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(3%

where sammy is a constant of type [animal D seal 5 sammy]. (Note. the type representa-
tion of constants is closed such that no further instantiation is possible.) When this query
is presented to the typed database, a solution is obtained in one resolution step. Further,
when 1) and 2) are resolved, A unifies with sammy and T with seal > sammy. thus making
the type of A further known as both seal and animal.

In this example, the number of resolution steps were reduced from three to one. In
general, for strictly hierarchical taxonomies including a chain of » set inclusions, the number
of resolution steps are reduced from n to one. We can obtain the same reduction of resolution
steps through partial evaluation of logic programs (see, for example [52]), but since we
cannot obtain the other advantages (see below) that types offer through partial evaluation,
we prefer to stick to types.

Incomplete types is a natural addition to a database since database relatious are typically
typed anyway. Incomplete types allow for disambiguation of some statements by reducing
semantic agreerient to syntactic matching (see 3.3), and they reduce the search space to
pertinent domains rather than the whole Herbrand universe.

Definition: An incomplete lype for t , denoted h{t), is a term of the form:
ty O,- D in—-l,t;3 "r,

where V is a variable ranging over the incomplete type ¢, D,---. D (,_;,t and where there
exists no tp such that # D #;

In Prolog notation this would be list of the form [t;,....4,,—,! | V], where | is a binary
infix operator that separates the tail from the rest of the list.

Property: Let s,t € T. Then s C t & 3h(t),h(s) and a substitution 8 such that
h(s) = h(t)8. (See proof in [16].)

Remark: As a practical consequence of this property, a type s can be proven to be a
subtype of t simply by unifying h(s) and h(t), and checking that t’s tail variable has become

mstantiated.

2.3.1 Intensional Answers

n

[
[}

we saw above, domain sweeping is necessary for safe negation, but it is expensive when
the domains are large. In a typed database, we can avoid domain sweeping by producing

an intensional answer to negated queries: Consider the query:
“Which animals are not happy?”

with respect to the animal knowledge base from section 2.3. We can reply
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“All but reptiles.”

and as before, we may add an option for the user to ask for a complete listing. By allowing

intensional answers, negation is reduced to set complement rather than domain sweeping.

2.4 Logic Grammars

The term “logic grammars” refers to a whole family of grammars, that was developed for
computational analysis of natural languages (see [1, 45]) (lately they have also been used
for parsing of formal languages [1]). Logic grammars are high level grammar description
tools which are usually built on top of the Prolog programming language although they
can also be considered a separate formalism. They are automatically translated into Prolog
such that all the details of the Prolog mechanism are hidden from the users and they can
concentrate on linguistic and parsing issues instead of computer issues.

Some logic grammars are: Metamorphosis Grammar, Definite Clause Grammar, Ex-
traposition Grammar, Static Discontinuity Grammar. Even though logic grammars are
basically syntactic variants of Prolog, they are recognized as a distinct and powerful formal-
ism in their own right. In the rest of this section we will give a short introduction to logic

grammars.
Logic grammars are similar to type-0 grammars in the Chomsky hierarchy of formal

grammars [6]. A type-0 grammar, G is defined:

G = (V.T,P,5) where V is a finite set of non-terminal grammar symbols
T is a finite set of terminal grammar symbols
P is a finite set of rules

S is a start symbol

Assume VNT = @ and P is of the form a — (3 where a and 3 are strings of grammar
symbols from (VUT')". Let £(G) be the language generated by a grammar G, then for every
type-0 grammar G there exists a Turing machine that recognizes £(G).

The above definition also applies to logic grammars (In natural language terminology,
terminals are words, while non-terminals are grammar constituents.), but logic grammars
differ from formal grammars in that the grammar symbols are not atomic—they may be

logical terms with arguments. In general, logic grammar symbols (terms) are of the form:

< term >:u=< variable > | < constant > | < complez term >

< complex term >::= name(< term >,< term >,...,< term >)
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By convention, constants are written in lower case. Terms are often represented as a trees.

For example, the term

noun-phrase(determiner(a), noun(woman})).

is represented as the tree

noun_phrase
7 N
determiner noun

a woman

A variable stands for an as yet unidentified constant or complex term. Consider the following

grammar, G.

(1) sentence(ParseTree) — proper noun(Pers, Num, Subj), verb(Pers,
Num, Subj, ParseTree)

(2) proper noun(third, singular, name(diana)) — [diana].®®

(3) verb(third, singular, Noun, study(Noun)) — [studies].

(4) verb(AnyPerson, plural, Noun, study(Noun)) — [study].

Here, (1)-(4) are the rules of grammar G. sentence(ParseTree), proper_noun(Pers,
Num, Subj), verb(Pers, Num, Subj, ParseTree), proper noun(third, singular, name(diana)
etc. are nonterminal grammar symbols. [dianal, [studies] and [study] are terminal
symbols. Sent, Pers, Num and Subj are variables. third, singular and plural are
constants. name(diana) and study(Noun) are trees.

The execution of a logic grammar embedded in a programming language like Prolog is
based on unification of grammar symbols and their arguments. Unification is defined as

follows [1, p.8-9] (For a more elaborate account of unification see [56, p.68-72]:

“Given two terms which may confain variables, unification is the process of

finding values for those variables, if such values exist, that will make the two

terms identical. The set of value assignments that makes two terms equal is

calied a substitution.”

For instance the trees

SUnlike ordinary English, proper names are writlen in lower case since variables start with a capital.
STerminals are written between °{” and'].
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rooi root
/ \ and / \
b X b c
unify into root
/7 \
b C
The trees root root
/ N\ / N\
t X and t u
/7 \ 7\
g X Z Y
unify into root

t/ N\,
7N\,

If two trees share any variable names, all occurrences of these must be renamed in one

of the trees before attempting unification. For instance, in the trees:

root root
/ \ 7/ \
t X and t u
/7 \ /7 \

4 X X Y

rename X in the second tree to a new variable, say Z (alternatively, rename both X’s in
the first tree). Renaming is done automatically in Prolog and as a consequence, we can use
tke same variable names in different rules without them interfering with each other. Only
variables used more than once in the same grammar rule, refer to the same entity, i.e., a
substitution applies to all occurrences of a variable in the same rule. Consider the above
grammar, both occurrences of Noun in rule 3 refer to the same entity, while Noun in rule 3
and Noun in rule 4 are considered different variables.

If we execute a logic grammar with no input, it will return/generate all possible sentences

in the language described by the grammar. Consider the following simplified version of

grammar §.
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(1) sentence — proper-noun(Pers, Num), verb(Pers, Num).
(2) proper noun(third, singular) — [diana]l.

(3) verb(third, singular) — [studies].

(4) verb(AnyPerson, plural) — [study].

The execution of this grammar with no input proceeds as follows { All grammar symbols are

processed left to right.}):

1.

sentence rewrites into proper noun(Pers, Num) and verb(Pers, Num). In Prolog
terminology, we say that sentence creates the two subgoals proper noun(Pers, Num)

and verb(Pers, Rum).

proper_noun(Pers, Num) unifies with proper noun(third, singular) (rule(2)) with

substitutions {Pers=third, Num=singular}

. proper noun{third, singular) rewrites to [diana] and since [diana] is a terminal,

it is put on the output stream.

The second subgoal of rule (1), verb(third, singular), unifies with verb(third,
singular) (rule (3)).

verb(third, singular) rewrites to [studies] and since [studies] is a terminal,

it is added to the output stream.

. All subgoals of rule (1) are successfully completed so Prolog empties its output buffer

and prints [diana, studies] as the first sentence of this grammar. Prolog continues sys-
tematically to look for all other substitutions which satisfy the goals through a process
called backtracking. Next, Prolog tries to satisly the second subgoal of rule (1) through
unification with rule (4). At this point, substitutions {Pers=third, Num=singular}
are still valid since they were obtained in a previous subgoal, so the unification prc-
cedure elegantly prohibits the generation of [diana, study]: The second argument of
verb in rule (1) is singular and the second argument of verdb in rule (4) is plural
so verb(third, singular) (rule (1)) cannot unify with verb(AnyPerson, plural)
{rule (4}). (This example shows syntactic agreement, but the same technique can

crmocnd in 2T
5584 ik J.9.)

Aol

appiy to semant

S ras mowanoaond wo 4
ki 4 a

L% aslwuxc
Since there are no alternative substitutions which satisfy the second subgoal, Prolog
tries to redo the first subgoal. Of course. there are no alternative substitutions which
satisfy this goal either, so [diana, studies] is in fact the only sentence in the language

generated by G.
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So far, we have seen how a grammar can generate all possible sentences of a particular
language. Another, and perhaps more useful, property of logic grammars is that one can
present them with an input sentence and ask the grammar to parse it. If we ask the above
grammar to parse the sentence “Diana studies” (input is in the form of a list: [diana,
studies}}, it proceeds as described above except that nothing is put on the output stream.
At the end of a successful parse it simply prints ‘yes’. If the grammar is asked to parse a
sentence which is not in the language (e.g., Diana study), it prints ‘no’.

In the previous example, we saw how the user can include syntactic information in the
arguments in order to guide the parse. If the user wants to build up a representation of a
sentence, for instance, a parse tree or a semantic representation, she can do this through
clever manipulation of arguments such that the representation is built up through rule
application and unification in the course of parsing. Grammar ¢ above is equipped with
arguments for building a parse tree of the input sentence. If we ask it to parse “Diana

studies”, the execution proceeds as follows:

1. sentence(Parsetree) rewrites into proper noun(Pers, Num, Subj) and verb(Pers,

Num, Subj, ParseTree).

2. proper_noun(Pers, Num, Subj) unifies with proper noun(third, singular, name(diana))

(rule (2)) with substitutions {Pers=third, Num=singular, Subj=name(diana)}

3. proper noun(third, singular, name(diana)) rewrites to [diana] and since [diana]

is a terminal, the first subgoal of rule (1) is satisfied.

4. The second subgoal of rule (1), verb(third, singular, name(diana), ParseTree),
unifies with verb(third, singular, Noun, study(Noun}) (rule (3)) with substitu-

tions {Noun=name(diana), Parsetree=study(name(diana))}

w

is a terminal, the second subgoal of rule (1) is satisfied.

6. All subgoals of rule (1) are satisfied so Prolog prints “yes’, and in addition it prints

the value of the variable ParsaTrae, i.e., Parsetree = study(name(diana)).

7. As above, Prolog systematically searches for all alternative substitutions through back-

tracking. (In this case there are none.)

The output of the grammar is [diana, studies]

. verb(third, singular, Noun, study(Noun)) rewrites to {studies] and since [studies]
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The particular logic grammar used in this project is called Definite Clause grammar or
DCG. DCG is a special case of Metamorphosis Grammar (MG) [9], with rules of the form:
S—p3

where S is restricted to a single nonterminal symbol and 3 is as before. (In some implemen-
tations, additional symbols are allowed on the left-hand side, as long as they are terminals.)

Both the above examples are definite clause grammars.



Chapter 3
Multiple Logic Values

In this chapter, we introduce six new logical values in addition to the traditional values
true and false. Further, we motivate each one of the truth values in our multi-valued logic
and provide some sample statements where the new values are useful. We discuss which of
the new values need to be explicitly defined in the logical system underlying the database
and which are useful conceptual tools and need not be explicitly defined. Our database
system is typed, and we discuss how the inclusion of types affects query evaluation; some
of the new logical values are assigned to semantically anomalous queries as a result of type

incompatibility. Also, types offer a simple and efficient way of giving intensional replies.

3.1 Motivation

The truth values true and false largely retain the meaning they have in a traditional binary
logic. However, the new values allow for subtler distinctions than what is possible in a
binary logic, so some statements that in a binary logic would evaluate to false will now
evaluate to pointless, absurd, mized, unknoun, or inconsisient. Next we motivate each of

these new logical values.

3.1.1 Pointless

This value was introduced in L3 (see sections 2.1 and 2.2) for detection of failed presupposi-
tion (called undefined there), and we only repeat the discussion here for completeness. The
idea is that any sentence that contains a failed presupposition evaluates to pointless instead

of false. For instance, if we evaluate

1) The sales report that John wrote was ready in one day.

29
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with respect to a knowledge base representing a world in which Alice. not John, wrote
the sales report, it is assigned the value pomtless and not folse since false implies that the

negation of the statement:
2 ) The sales report that John wrote was not ready in one day.

would have to be acknowledged as Irue. Because the presupposition Tails. it is pointless to

say whether the report was or wasn’t ready in one day.

3.1.2 Absurd

Some statements contradict basic world knowledge rather than making a wrong assumption.
Consider the following example:
3 ) Can Rover speak Latin?

If we evaluate this statement with respect to a knowledge base of ordinary dogs, it evaluates
to absurd since ordinary dogs don’t speak. While in the previous example we can conceive
of John having written a sales report, this statement is considered semantically anomalous.

Some statements are syntactically ambiguous, but have only one semantically acceptable
interpretation. Humans will not likely choose the wrong interpretation in these cases, but a
computer may, since both interpretations are syntactically correct. Cousider the following

question:
4 ) What is the price of a recorder which can play stereo music?

It admits two interpretations: the intended one, where the recorder plays stereo music
{i.e., “recorder” is the antecedent of the relative clause) and an unintended one, where the

v

price plays stereo music {i.e., “price” is the antecedent of the relative clause). The latter

interpretation should evaluate 1o absurd.

3.1.3 Vague
The value, vegue, helps us deal with statements/questions that are under-specified.  For
instance, the question

5) Who teaches Norwegian?
could result in the database system sweeping through the domain of all people in the knowl-
edge base, if the interrogative pronoun is used to find a domain for the object queried.
Vague-referring pronouns could induce a vague truth value, indicating that further domain

determination can perhaps be done from the context.
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Some relationships distribute a certain property among all the elements of their arguments.

For example, the relation like as in the following example:
6 ) Ann and Tom like karate.

To evaluate this statement, the database system checks whether Ann likes karate and
whether Tom likes karate. If both {none} of them do, the statement evaluates 1o frue
ffolse . But if one likes karate, while the other does not, it evaluates to mized. which is a
muck more informative reply than what we can expect from a binary logic or L3. where the
statement would simply evaluate to folse.

The value mized is also nseful when evaluating relations that are introduced by the word

“respectively” in any given senfence. For example, the statement
7} Tom and Anp carn $1000 and $1100 respectively

evaluates to mired if Tom earns $1000 while Ann does not earn $1100, or if Ann earns $1100

and Tom does not carn $1000.

3.1.5 Unknown

Generally speaking, we shall adhere to the closed world assumption {Reiter 1978 [51]) which
allows us to infer -4 from a logical program P. if A is not a logical consequence of P. In
logic programming, negation (-} is implemented as failure, i.e., only positive information
is histed in the database and if a ciosed world database system cannot find a given ground
fact {i.e., prove it), we infer that the fact is false.

Open world databases, admit positive, negative and unknown information, but it is
expensive to implement open werlds since the negative and unkonown information usually
excesd the positive information by several orders of magnitude. Since one has to distinguish
between unknown and negative information. one of them has 1o be defined explicitly and
thus the conciseness allowed by negation-as-default is Jost.

However, for relations whose arguments are in a cne-to-many relationship. we introduce
a way of simulating an open world situation, while only including positive information in
the knowledge base. In this situation we distinguish between false and unknown queries by
introducing a2 metalogical treatment of values retrieved from the knowledge base. Consider
the following example:
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8} Does Ann live in Paris?

This query can be compiled into something like: “Find the place X where Ann lives; if X is
ground and equal to “Paris™, evaluate the query to true; if X is grouild and different from
“Paris”, evaluate the query to false, otherwise to unknown (i.e.. failure implies unknown).
The unknown value allows us to produce an informative reply instead of a misleading neg-
ative answer.

Only for one-to-many relations can we allow failure to imply unknown and for many-
to-many relations we must maintain the traditional interpretation of negation as failure.
Consider the following example: knowing that Betsy is David’s aunt does not, in an open
world, authorize us to conclude that Doreen is not, since David can have many aunts. Thus
for many-to-many relationships we shall stay within closed worlds and use negation as failure
and only those relationships in which two arguments are in a one-to-many relationship will
be tested for false versus unknown.

This approach should, of course, be used with caution, and it certainly does not solve
all open world problems as we have seen. But it does provide a compromise that allows

greater flexibility than completely closed worlds.

3.1.6 Inconsistent

Some queries evaluate to null value because they are inconsistent to begin with. For iustance,
in a world where all secretaries are insured and all part-time employees are not (hence

implying that no secretaries are part-time), it would be inconsistent to query:
9} Which part-time secretaries are insured?

Rather than simply answering “None”, which does not point out the user’s inconsistency,
it would be more helpful te reply, for instance, that all secretaries are insured whereas
part-time employees are not.

Rigorously speaking, the difference between inconsistent and absurd is a matter of de-
gree - absurd being assigned when the situation is unimaginable in the world considered,

sistent heing assigned for forbidding situations that are not inconceivable but are

ﬁﬁ’i ;nmn ue wllls 6!“‘“ R Ay I’l“ulllB

disallowed in our database (e.g., integrity constraints). Inconsistent queries could also eval-
uate to poiniless since the user presupposes something that is not consistent with the state
of the database. However, we choose to separate the inconsistent case from the absurd and
the pointless cases since the mistakes are indeed different. We think that datzbase sys-

tems should have the flexibility of distinguishing between these values in order to provide
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Assigned during: H Logical value

Parsing absurd, inconsistent, (vague)
Database true, false, mized, pointless, unknown

Table 3.1: Implicit and explicit logical values.

appropriately informative responses in each case.

3.2 Implicit and Explicit Logical Values

Some of the truth values introduced in the section need to be explicit in the logical system
that underlies our deductive database and query language, while others are useful conceptual
tools and need not be part of the formal definition. Our multi-valued query language
is intended to work together with a natural language front end, so some queries might
be assigned truth values during the natural language parsing stage, while others will be
assigned values during query evaluation, i.e., during the database consultation stage. Only
queries that are found not to be semantically anomalous by the parser, produce a complete
formula and become completely evaluated in the database system. When a query is assigned
a truth value during the parsing stage, it is only partially executed and the reply is available
without ever having to consult the database system. Table 3.1 summarizes which values are
assigned during the parsing stage and which are assigned during the database consultation
stage.

The values absurd aud inconsistent indicate semantic anomalies and induce an immedi-
ate interruption of the parse. A complete formula representing the query is never generated,
and the formula’s evaluation with respect to the knowledge base never takes place. Since
semantically anomalous queries never reach the database consultation stage, it is unnec-
essary to include the values absurd and inconsistent in the definition of the logical system
underlying our database and query language. In section 3.3, we will show how the addition
of semantic information to the natural language grammar is used to detect semantically
anomalous queries.

Vague is just a conceptual tool that prompts for further domain determination and this
truth value is never actually assigned to a query. The domain determination is a consequence
of adding semantic informatior to the natural langnage grammar and knowledge base.

Al the other values, frue, false, mized, unknown and pointless, are assigned during
query evaluation and therefore have to be defined in the logical system that underlies our

deductive database and query language. In chapter 4, we will give a formal definition of a
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typed deductive database and query language.

3.3 Semantic Types

As mentioned above, we will introduce semantic information in the grammar and the knowl-
edge base. The semantic information takes the form of incomplete types (section 2.3). Here
we will discuss how they are used to infer some of the logic values introduced above.

We can require the grammar to enforce type agreement between the argumments of a
relation and the arguments of the main verb of a sentence. Returning to example number

3 above:
Can Rover speak Latin?

The concept of speaking may be represented by the following relation in the knowledge base:

speak(Subject-[person | X ], Object-[language | Y ])
i.e., the first argument of speak is of type person, while the query may introduce the

formula:
speak(rover-[animal, dog, rover], latin-{language, latin}),

where the type of the first argument is dog. Since the types of the two first arguments
don’t match (Subject-[person | X] and rover-[animal, dog, rover] cannot unify) the parse is
immediately interrupted and the value absurd is assigned to the query. This value is then
interpreted by a natural language output module that will priut a message indicating the
reason for disagreement.

Types can make vague-referring expressions, e.g., interrogative pronouns, more precise

as in our previous example:
Who teaches Norwegian?

The concept of teaching may be represented by the following relation in the knowledge base:

[e—

teach{Subject-[person. teacher | X ], Object-{course | Y ]},

i.e., the first argument of teach, is of type leacher, while the query might introduce the

following formula:

teach(Query_Subject-[person | Z ], norwegian-[course, norwegian}).
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i.e., the interrogative pronoun introduces a first argument of type person. Since teacher
is a subtype of person, the two Subject arginents are not incompatible and we take the
intersection of the two types {person N teacher = teacher) to be the further specified type
of Query_Subject. Through semantic agreement and unification (Z unifies with [teacher | X
] as a result of parsing the query) the vagueness introduced by the interrogative pronoun
simply disappears and the search space is considerably narrowed from person to teacher
without ever having derived vague an explicit truth value.

Types can also serve to disambiguate some natural language queries which have more

than one syntactically correct reading. Returning to example 4):
What is the price of a recorder which can play stereo music?
If *play’ is represented by the relation
play(Subject-[inanimate, device | X ], Object-[music | Y ])

Further if the type of ‘price’ is price and the type of ‘recorder’ is device the reading in
which a price is required to play stereo music is made impossible since {inanimate, device
| X ] and [inanimate, price | Z ] can not unify. Again the incorrect reading is assigned the
truth value absurd at the parsing stage and if this reading can simply be discarded if a
semantically acceptable reading exists. If not a natural language output module interprets
the truth value and informs the user about the semantic anomaly.

Sometimes ambiguities arise because words mean different things in different situations.

Consider the word ‘bank’ in the following examples:
With which bank do you have an account?
On which bank did you sit?
On which bank did you fish?

In the first example, bank = money bank, in the second, bank = river bank, and in the last
example, bank = fishing bank. If the relations have_account, sit, and fish all insist on a
different type of argument, the incorrect readings are easily detected in the parsing stage.
Firally, inconsistent queries can be detected through type incompatibility. Recall our
previous example where all full time employees and all secretaries are insured. Then the

query:
Which part-time secretaries are insured?

introduces a type mismatch that interrupts the parse.
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3.3.1 Intensional Replies

If the database is typed, we can easily obtain intensional replies (seel.3.1). Further, if an
extensional reply is requested, the search space is automatically reduced to the domains
which are compatible with respect to type.

Let us add the fact that all reptiles crawl to our knowledge base of happy animals
in section 2.3, and then consider the query “Which animals crawl?” with respect to this
knowledge base. In Prolog:

crawl(A-[animal, reptile | X])

?- animal(A), crawl(A)
and the database would sweep through the whole domain of animals and test for each
whether it crawls, and provide alternative answers upon backtracking. lowever, a typed

database system can provide an intensional reply and only proceed to find specific answer

instances if further prompted by the user. We can compile the query into:

?- crawl(A-[animal | Y ])
when this query is entered in the database system Y unifies with [reptile | X ] and we
can answer the query with something like *All animals of type reptile crawl. Would you

like a listing?”. If the user requests a listing, the search space is already pruned and only
g €q g P A A

the reptile domain will be examined.

3.3.2 Presupposition Formulae

In order to detect a failed presupposition in sentences with definite articles, our natural

language analyser constructs formulae of the form:

presupp(P, Q)

where P represents a presupposition, and @ is a statement evaluated with respect to P. In

our previous example,
The sales report that John wrote was ready in one day.

P is the logical representation of “John wrote the sales report”, and @ is the logical repre-
sentation of “The sales report that John wrote was ready in one day”. Thus, if P evaluates
to false, the whole sentence can be assigned pointless, and a message can be produced
informing the user of his/her failed assumption. The complete definition of presupp is given

in the next chapter.

1Equivalent to if in Colmeraner’s terminology



Chapter 4

A Typed Multiple-Valued

Deductive Database

In this chapter, we provide a formal definition of a multi-valued typed logic database and
its query language with respect to the logic values we introduced in the previous chapter.
As discussed earlier, only some of the values need to appear explicitly in the definitions.
Every relation in our database evaluates to one of the values true, false, mized, and un-
known. However, all four values mayv not apply to a particular relation, for example, any
many-to-many relation can not evaluate to unknown since we adhere to the closed world
assumption for many-to-many relations. Complete queries evaluate to either true, false,
mized, unknoum, or pointless according to the definition in section 4.3.

The chapter is organized as follows. In section one, we describe the partitioning of
relations. In section two we give the rigorous definition of a deductive database and in

section three, we define the query language associated with our database.

4.1 Partitioning of Relations

Natural language sentences can introduce different types of plural, i.e., a relation may apply
to a whole set as in “The beams are parallel”, where the relation parallel must apply to
the whole set of beams, while in our old example “Ann and Tom like karate” the relation
like distributes to individual members of the set. Our system can recognize different kinds
of plural and they are treated differently, therefore all the relations in our system must be
partitioned into the disjoint groups distributive, inherently collective, partially collective and

respective relations.
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Disiributive Relations: Relations hold on each individual member of a set. E.g.,
“Eve and Adam live in Paradise”.

Inherently Collective Relations: Relations apply to a whole set of individuals. E.g.,
if we know that Eli, Jorg and Dia lifted the table, the query *Did Eli. Dia and Jorg lift the
table?” evaluates to frue, while the query “Did Eli and Jorg lift the table?™ evaluates to
false since the lifting cannot be distributed into one person at a time.

Partially Collective Relations: Re'ations apply on sets, but a subset is sufficient to
satisfy a relation in the knowledge base. E.g., if we know that Eli, Jérg and Dia met in the
park, the query “Did Eli and Jorg meet in the park?” evaluates to true.

Respective Relations: All the above types of relations can participate in respective
relations. Arguments must have the same number of elements. E.g. “Eric and Martin study
theory and Al respectively™.

Each of the above groups of relations is further divided into many-to-many and one-to-
many relations according to their arguments’ relationship to each other.

Single Argument Relations: Relations with only one argument (a set) and the rela-

tion holds on each individual member of the set. E.g., “Leslie and Ann are students”.

4.2 Rigorous Definition of a Typed Multiple-Valued Logic
Database
Definitions:
— Let K be a finite set of symbols called proper names.
— Let T be a finite set of symbols called types.
— Let D be a finite set of symbols called distributive relalional symbols
— Let IC be a finite set of symbols called inherently collective relational symbols.
— Let PC be a finite set of symbols called partially collective relational symbols.
— Let R be a finite set of symbols called respective relational symbols.
— Let S be a finite set of symbols called single attribute relational symbols.

— Let Rel be a finite set of symbols called relational symbols such that Rel = DU IC' U
PCURUS.

We will use the notation A:"'l_" to denote the set of relations A € RelfS such that the i’th argument iy
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— Let X be a set of variables.
— To each symbol k € K corresponds a symbol ¢ = type(k), with 1 € T.
— To each variable z € X corresponds a symbol ¢ = type(z), with 2 € T.
—- 'To each symbol r € Rel we associate:

— a positive integer n = degree(r).

— alist [ty,...,t,] = domain(r), where t; € T.
— Let E(t) represent the set of proper names whose type is t.
— Let P(E(t)) represent the set of all subsets (th= power set) of E(1).
— Let P,,( E(t)) represent a subset of the power set P(E(t)).
— Let L={E(1)|t €T}

— Let U= J E(t)=K.
teT

Then a lattice is defined by L, the partial ordering relation of set inclusion (C), and the
binary operators of set union (U) and intersection (N). It is bounded by the top U and the

bottom { }.

Definition: The product of sets A;, Ag, ..., An (A1 R A& ...5 A,,) is defined as follows:
A3 AQ0...Q A, ={< a1,a2,...,a > | V1 < i< m, a; = {a;} and a; € A;}, where

V1 < k < m such that A =@, ag = 8. (This definition is a variation of the cross product of
sets: individual members of a tuple have to be singleton sets and the ordinary cross product

gives A x 0 =0.)

Definition: A relation schema r(ty,13,...,1,), wherer € Rel and V1 < k < n, t; € T,
describes a relation whose name is r. (We say: describes the relation r.) t,.1,,...,1, are
the attributes of relation r. ¥1 < k < n, the domain of tx = E(t)). (In logic programming

terminology, attributes are called arguments. We will use these terms interchangeably.)

Definition: Instances of a relation r are denoted r(z,,z3,...,7,), where V1 < k£ < =,
I € P(E(t:)ifr ¢ DUICUPCUS, or x C P(E(t:)) if r € R. The set {z3,z3,...,2,}

ie an m-to-n relationship with the j"th argament. For instance, Clll;" indicates the sei of collective relations
mm which the first argument is in a 1-to-n relationship to the second. Note, the letters m and n used as
superscripts and as subscripts are never related.
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- £ 1 . -
is sometimes denoted 7.

Definition: The efomization of an instance’s arguments is the set of all possible arguments
that can be constructed by taking the smallest meaningful decomposition of the arguments.
Meaningful decomposition depends on the type of relation and will be formally defined below

together with the definition of the different reiations.

Definition: The smallest meaningful decomposition is called a tuple. Tuples are written

between * <’ and * >’, also sometimes denoted Z.

An example: Consider the instance speak(english, [eli, diana])?. Since speak is a dis-
tributive relation, it can be meaningfully decomposed by computing the product of the

arguments: {english} ® {eli.diana} = {< english,diana >, < english,eli >}.

Definition: The atomization of an instance is the set of instances obtained by applying
its relation name on the atomization of the arguments (see example below). Individual

members of this set are called atoms.

Definition: Some atoms are defined to be true and this subset of instauces is called facts.
(With respect to a Piolog program, an atom is a fact if and only if it is derivable from the

knowledge base.)

An example: Assumespeak € D. Consider the relation schema speak(language, human),
where E(language) = {english} and E(human) = {eli,dia}. We can construct the foilow-

ing insiances:

1. speak(9, 9)

2. speak(@, dia)

3. speak(0, eli)

4. speak(english, 0)

5. speak(english, dia)

6. speak(english, eli)

7. speak(english, [dia, eli}}

Further, if we define speak(english, dia) to be frue (e.g., if we list it in the knowledge
base), speak(english, dia) is a fact. The atomization of 7) is {speak< ¢ng, dia >, speak <

2Nate, in examples, set valued arguments are wrilten between " and ‘], when necessary. In general, all
arguments are sets but in this docament, set markers are left out when the cardinality of a set is one.
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Definition: A (yped multi-valued database or situation g is an application which associates,
to each relational symbol r € Rel of degree n and domain [ty,...,1,], an n-ary relation
p = g(r), which maps

1) P(E(t))) x --- x P(E(tn)) — {true, false,mized,unknown} if r € DU IC U PC and
maps

2) £< Pus(E(11))s Pus(E(82)), - -, Pus( E(t) > | V1 < & < n, Pus(E(t8)) € P(E())
and

cardinality( Pos( E(1i))) = m,m > 2} — {true, false, mized, unknown} if r € R, and
maps
3) P(E(t)) — {true. false, mized}ifr € S.

In logic programming terms, a typed multi-valued database g is a logic program where
multiple values are assigned to relations as defined below and where variables and constants
are typed (e.g., A € animal). The inclusion relationships between types have been de-
clared as described in 2.3, and the simple types associated with variables and constants are

transparently compiled into incomplete types.

4.2.1 Distributive Relations

Distributive relations are relations which distribute a certain property to all individuals of
a set. For example, in the statement “Eli and Dia speak English”, the property “speak”
distributes to both Eli and Dia and we may infer that the two statements “Eli speaks
English” and “Dia speaks English” are both true. Distributive relations are divided into

many-to-many and one-to-many relations.

Many-to-many Distributive Relations

A many-to-many relation r with attributes ,,1,,...,1, has two attributes ¢; and ¢; (1 <
i,J < n) that are in a many-to-many relationship with one another. The atomization of an
instance’s arguments r{T;, I2,..., Ty} is the product of the arguments (z; ® 22 ® ...® z,).

A many-to-many relation r evaluates to true (or holds) on a tuple Z if and only if r(Z) is

fact, and to false {or fails) if and only if £(Z) is not a fact. An instance of a many-to-many

2
distributive relation evaluates to frue, false, or mized with respect to its atomization as

follows:
— If the relation holds on every member of the atomization, the instance evaluates to
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true.

— If the relation fails on every member of the atomization, the instance evaluates to

false.
— If the relation holds on some and fails on the rest of the members of the atomization,

the instance evaluates to mized.

An example: Consider the following instance of the many-to-many distributive relation

speak:
speak([eli, dia], [english, spanish]) (= “Eli and Dia speak English and Span-
ish.™)
The atomization of the arguments = {<eli, english>, <eli, spanish>, <dia, english>, <dia,

spanish>} and the instance evaluates to:

a. true if applied to the knowledge base: {speak(dia, spanish),
speak(dia, english),
speak(eli, spanish),
speak(eli, english) }

b. false if applied to the knowledge base: {speak(jorg, english) }

c. mized if applied to the knowledge base: { speak(dia, spanish),

speak(dia, english),
speak(eli, english) }

Formally: If r € D}"’j'"(m,n > 2),p maps P(E(t)) x P(E(l3)) x --- x P(F(t,)) —
{true, false, mized} as follows:
1. p(zy,22,...,2,) = true <
P(?Ihyz, sees yn) = true
for every tuple < 41,42, -- -, Yn > €1 G T2 @ - @ 2y v
2. p(xl:$2}---,~zn) = false —

(Y1, Y2s- - - ¥n) = false

@

for every tuple < y1.9z,--,¥n > €T1 O 220+~ @ Tn

3. p(z1,22,...,2,) = mized otherwise
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One-to-many Distributive Relations

A one-to-many distributive relation r with attributes ¢;,1,,...,1; is a relation where an at-
tribute ¢; is in a one-to-many relationship with attribute ¢; (1 < 1,5 < n). Similarly to many-
to-many distributive relations, the atomization of an instance’s arguments r(z,,zs,...,2,)
is the product of the arguments (z; @ 22 @ ... 9 z,).

For any given tuple < y1,...,%i,---s¥Yjs-- -, Yn D€ T1 QT2 ... B 2, there is only one y;
value that can satisfy the tuple (e.g., a person can only have been born in one specific place),
therefore an instance r(zj,z2,...,z,) of a one-to-many distributive relation is only defined
if the cardinality of z; = 1. Consider the following example. Assume that the one-to-many
distributive relation born_in{country, people) represents the concept of people being born
in different countries. If the cardinality of country is unrestricted, the following relation
is valid: born_in([norway, sweden], eli) and would mean something like “Eli was born in
Norway and Sweden™, but this is of course meaningless.

A one-to-many distributive relation r holds on a tuple Z if and only if r(Z) is a fact. In
contrast to many-to-many relations, a relation failson atuple =< z,,...,z;,...,2j,...,Tn
if and only if there exists another fact that contradicts r{Z), i.e., there exists a tuple
< ZyyeeerYiy---»Tjy---1Zn >, Where z; # y; such that r(zy,...,¥%i,...,z;,...,z,) is a fact.
Otherwise, the relation evaluates to unknown on Z, i.e., r(Z) is not a fact and there is no
other fact which contradicts r(Z). {(For example, if the statement “Ann lives in Grenoble”
is a fact, the statement “Ann lives in Oslo” evaluates to false. If we have no factual infor-
mation about Ann’s whereabouts, the latter statement evaluates to unknown.) An instance
r(Z) of a one-to-many distributive relation evaluates to true, false, unknown, or mized with
respect to its atomization as follows:

— If the relation holds on every member of the atomization, r(Z) evaluates to true.

— If the relation fails on every member of the atomization, r(Z) evaluates to false.

— If the relation is unknown for one or more members of the atomization, r(Z) evaluates
to unknown.

— If the relatior holds on some and fails on the rest of the members of the atomization,

r( ) evaluates to mizred.

An example: Consider the following instance of the one-to-many distributive relation

born:
born_in(finland, [eli, dia, jorg]) (= “Eli, Dia and Jérg were born in Finland.”)

The atomization of the arguments = {<finland, eli>, <finland, dia>, <finland, jérg>} and
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the instance evaluates ta:

a. true if applied to the knowledge base: { born_in{finland. oli).
born_in{finland, dia),
born_in{finland. jorg)}

b. false if applied to the knowledge base: { born_in{norway, eli).
born_in{uruguay. dia}.
born_in{germany, jorg}}

c. mized if applied 1o the knowledge base: { born_in{norway, eli),
born_in{finland. dia).
born_in{germany, jorg) }

d. unknown if applied to the knowledge base: { born_inglinland. elij.

born_in{germany, jorg} }

e. unknown if applied to the knowledge base: { born_inifinland, cli),

born_in{finland, jorg)}

f. unknown if applied to the knowledge base: { born_in{norway, eli),

born_in{germany. jorg) }

Formally: ¥r € Bf;”‘ fm > Lof{ry.....Tie. ... Zjyo.., g} is defined <= cardinality of

- I
Fy = 1.

H re D};’“ {m > 1), p maps P{E{ty)) x P(E(l3}) < --- = PUE{,1) — {irue, fulse,
unknown, mized} as follows™:
1. plzy,x22,...,2,) = frue <=
péyiry?w'* "%yn; = lrue
forevery tuple < ¥y, 4. - Y > ET G T30 ... Ty
2. plxy,22,. .., 2} = false <>
for every tuple <y, . s Y- M > ED B ma B D w,
3z; € P{E(t}), sach that z; # y; and

p{yﬂ:m-'ayﬁ—lwziryiﬁinw--ryjmu-'zyﬂ:j: frue

*We assnme that ‘many-to-one” relationships are rewritten as ‘one-to-many” relationships and treat these
as one case.
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3. plry.xg.... 0, = unknowrn ==
Fatuple < oo onttn > €75 225 .. & 1, such that
PR

Py, Yz - 4a) #F false

4. plry. 2z .., 2} = mized otherwise

4.2.2 Inherently Collective Relations

Inherently collective relations are relations where a certain task is done collectively by

a whole set of individuals, i.e., each set member is pecessary but not sufficient for the

the heavy table” deseribes a situation where Ala, Brigitte and Dia lifted a heavy table
together, and we cannot infer that, for example. the statement ~Ala and Dia lifted the
heavy table™ is true. Since inherently collective relations apply to groups of individuals, an
instance r{r;,..., Ziwuwuy Xy, 2} of a relation r is only defined if cardinality of z;, > 2.

Inherently collective relations are divided into one-to-many and many-to-many relations.

Many-to-many Inherently Collective Relations

A many-to-many inherently collective relation r with attributes &, #5.. .., 1, has two at-
tributes I; and {; (I € #. 7 < n) that are in a many-to-many relationship with one an-
other. The atomization of an instance r{zy.x3.....r,)’s arguments is the one member set
{< Ty.23,-..00 >}

An instance r{T} of an inkerently collective many-to-many relation evaluates to frue or
false as follows:

— M p{ Ty is a fact. r{T) evaluates 16 frue.

''''' I r{F}is not a fact. r{F) evaluates to false.

An example: Consider the following instance of the many-to-many inherently collective

relation raise (Say. a set of nuns raise a set of orphans and the raising is a collective job

such that no child is being raised by any particular nun. and vice versa.):
raise{[nunl.nun2], [child1, child2. child3]} {="Nun! and nun2 raised childi. child2.
child3.”)

The a2tomization of the arguments = {<[nunl. nun2j, [childl, child2. child3]>} and the

imstance evaluates to:
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a. true if applied to the knowledge base: { raise({nuni, nun2j, jchild1. child2. child3]) }

b. faise if applied to the knowledge base: { raise({nunl, nun2. nund], [child1. child2, child3})}

c. false if applied to the knowledge base: { raise([nunl, nun2}, [child1, child2, child3, child4])}

d. false if applied to the knowledge base: {raise({nun3. nund. nund], childt. child2, child3])}

Formally: If r € IC™ "{m.n > 2).p maps P{E(1;)) x P{E{t2})) x --- x P{E{t,)) —

{true, false} as follows:
L plz1,22,....2,) = true
r{Zy,T7,...,2,) Is a fact

2. plry,z0,....2,) = false <

Ty, r2,...,T,}) i5 not a fact

One-to-many Inherently Collective Relations

A one-to-many inherently collective relation r with attributes t;.1,....,1,, is a relation where
attribute #; is in a one-to-many relationship with attribute ¢ j (1 £1,7 < nj. The atomization

of an instance r(xy,z2,....2,}’s arguments is the one member set {<xizy .. 2, >}

An instance r{Z} of a one-to-many inherently collective relation evaluates to truc, Jalse

or unknown as follows:

— I r{Z) is a fact, r{T) evaluates 10 truc.

— If thereexists a fact r{zy, ..., 4, .. «+Tj.-.., 2y ) which contradicts e{x,,..., x;, ..., I,
ie, z; # y;, r(Z) evaluates to false.

— If r{T) is not a fact and there is no other fact which contradicts r(F), r{Z} evaluates

to vnknown.
An example: Consider the following instance of the one-to-many inherently collective
relation Lift:
lift{table, [ala. dia]} (= “Ala and Dia lifted the table.”)
The atomization of the arguments = {<table, [ala. dia]>} and the instance evaluates to
a. frue it applied to the knowledge base: { lift(table, [ala, dial} }
b. false if applied to the knowledge base: {lift{table, [andrea, kaci) }

c. false if applied to the knowledge base: {lift(table, {ala, dia, jorg}j}
d. unknoun if applied to the knowledge base: {lift(bookcase, [jorg, allan}) }

"-1111)7
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Formaliy: Vr € IC'},_;-’mr(xl, cees&iyen ey Tjy...,2Tn) is defined <= cardinality of z; = 1.

Ifre IC',{;'" (m > 1), pmaps P(E(t1))x P(E(t3))x- - -Xx P(E(t,)) — {true, false, unknown}

as follows:

1. p(z1,22,...,25) = lTUE <>

r(Zy,22,...,%5) Is a fact

2. p(xy,x2,...,2n) = false <=
Jy; € P(E(t;)) such that cardinality(y;) =1 and z; # y;
p(zlv' '°1Ii—lvyi7xf+lr"'1zj1-'--.-In) = true

3. p(z1,22,...,2,) = unknown otherwise

4.2.3 Partially Collective Relations

Partially collective relations are also relations where a certain task is done collectively by a
whole set of individuals, but where a subset of the original set may be sufficient to satisfy the
relation. For example, if we define lift in our previous example to be a partially collective
relation, we can infer that the statement “Dia and Ala lifted the heavy table” is true from

the statement “Ala, Brigitte and Dia lifted the heavy table”.

Many-to-many Partially Collective Relations

A many-to-many partially collective relation r with attributes ¢,%5,...,t, has two at-
tributes, t; and t; (1 < ¢,7 < n) that are in a many-to-many relationship with one another.
The atomization of an instance’s arguments is the one member set {< z1,%2,...,Z, >}.
An instance r(zy,...,%i,...,&j,...,Z,) of a many-to-many partially collective relation
evaluates to true or false as follows.
— If there exists a fact, r(z1,...,¥is---,¥j»--.»Tn) such that z; is a subset of y; and z;
is a subset of y;, r(zy,...,z,) evaluates to true.

— If there is no fact, r(z;,...,%i,.-.,¥j,-..,2Zn) such that z; is a subset of y; and z; is

a subset of y;, r(z1,....%i,...,Zj,...,Ty) evaluates to false.

An example: Reconsider the nuns and children example above, but assume that raise is

a partially collective relation instead of an inherently collective relation.

raise([nuni, nun2], [childl, child2, child3]) (= “Nunl and nun2 raised childl,
child2, child3.™)
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The atomization of the argements is {<[nunl. nun2], [child1, child2, child3]>} and it eval-

uates to:

a. true if applied to the knowledge base: { raise({nunl, nun2}, [child1, child2, child3])} }

b. true if applied to the knowledge base: {raise([nunl. nun2, nun3], [child1. child2, child3])}
. true if applied to the knowledge base: {raise([nunl. nun2}. {child1, child2, child3, child1]) }
. false if applied to the knowledge base: {raise([nun3. nuni. nundl. [childl, child2, child3]} }
. false if applied to the knowledge base: { raise([nun2, nund. nun3}, {child!, child2, child3]) }

A 0

]

Formally: If r € PC7"",p maps P(E(1;)) x P(E(12)) x --- x P{E{1,}) — {true, falsc)

as follows

1. p(z1,22,-..,2Tn) = true <=
Jy; € P(E(t;)), y; € P(E(L;}) such that
z; C ¥i,z; C y; and
Ty Tic, Yis Tigts - o -2 Tjm1. Y Tjgds- - -2 Iy ) = lTUE

2. p{zy,22,....Tn) = false otherwise

One-to-many Partially Collective Relations

A one-to-many partiaily collective relation r with attributes 8, {;,..., 1, is a relation where
attribute #; is in a one-to-many relationship with attribute {; {1 < i,7 € n). The atomiza-
tion of an instance r{zy,Z2,...,T,)’s arguntents is the one member set {< 1y, 1y, ..., 1, >}
As with other one-to-many relations, r{z),....Z;,. ... Tj,..., 2] Is only defined if the car-
dinality of z; = 1.

An instance r{Zy,-..,Zi...,Tj.-.,Ty) Of aone-to-many partially collective relation eval-
uates to true, false or unknouwn as follows.

— H there exists a fact, r{Zy,...,Zi,....¥j,.-.,Ts) such that z; is a subset of y,,

r(zlr”’r:zi,‘~‘z

Zjy.-., Ty} evaluates to frue.
— H thereexists a fact, e{x;,...,¥%i.-- -, ¥j.- - ., T} Which comtradicts sy, .. o2 oo ixy 0 2
i.e., z; is a subset of y;, but z; is different from y;, r{z;,...,zi ..., 1. ... 2.} evaluates to

false.
—H r{z;,--.,Ts)is not afact and there is no other fact which contradicts it, rlzy, ..., z,...,x,,

< .-y Ty ) evaluates to unknown.
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tion meet:
meet(park, [ala, dia]} {= “Dia and Ala met in the park.”)
The atomization of the arguments = {<park, [ala, dia]>} and the instance evaluates to:

a. true if applied to the knowledge base: { meet(park, [ala, dia)) }

b. true if applied to the knowledge base: { meet(park, [eli, ala, dia}) }
b. false if applied to the knowledge base: { meet(school, [ala, dia]) }

¢. Jalse if applied to the knowledge base: { meet(school. [eli. ala. dia}) }

d. unknown if applied to the knowledge base: { meet(park. [jorg, allan]) }

Formally: Vr € PC‘:;” {m > 1)yr{ry,....%i ... Z5,...,X,) is defined <= cardinality of

z; = L.
Ifre PC;‘;’“ (m > 1), pmaps P{E(t;)}x P(E(12))x- - -x P{E(1,)) — {true, false,unknown}

as follows

3y; € P(E(t;)) such that r; C y; and
P{Th-«-zréwsul}_py},l}@.hn*,15?}: true

2. plxy.e T Ty Ty ) = false <
3y, € PCE(L,)),y; € P{E(1;)) such that z; # y; and z; C y; and
P TN s T Wi T i b e o n LBy Yy T §e e - - Ty) = rue

3. plxy, 2o, ..., 2,) = unknown otherwise

Comment

We can collapse the two classes of collective relations into one class if we introduce another
fogical vaiue yes_buf and make the partiaily collective relations that now evaliuate to i{rue
evaluate (o yes_bul, while we keep the interpretations of frue, false, and unknown as defined

above for inherently collective relations.
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4.2.4 Respective Relations

Unlike distributive and collective relations, respective relations do not reflect an inherent
property of a given concept. The most common way of introducing a respective relation is to
include the word “respectively” in a statement. Since respective relations are not introduced
by a concept itself, both distributive and collective relations can participate in respective

relations. Consider the following examples,

— The one-to-many distributive relation born_in(country, human); From the statement
“Dia and Ala were born in Uruguay and Poland (respectively)” we may infer that the
statements “Dia was born in Uruguay” and “Ala was born in Poland™ are both {rue,
and that, for example, the statements “Dia was born in Poland™ and “Dia was born

in Norway” are false.

— The one-to-many collective relation meet(place, human); From the statement “Brigitte
and Edwin and Eli and Jorg met in the park and at school respectively” we may infer
that the statements “Brigitte and Edwin met in the park” and “Eli and Jorg met at

school” are true.

— The many-to many distributive relation speak(language, human); From the state-
ment “Ala and Dia speak Polish and Spanish respectively” we may infer that the

statements “Ala speaks Polish” and“Dia speaks Polish™ are true.

It is the job of the natural language front end to detect the words that introduce respective
relations.

Since all the relations discussed earlier can participate in respective relations, we need
to create a corresponding “respective” symbol for each one of them such that the databasc
system can distinguish between respective and non-respective queries. The r_resp symnbol
is only for identification purposes in order to generate the correct atomization. The query is
evaluated with respect to r. In this document, we simply create new symbols by attaching
the suffix _resp to the original symbol r (e.g., speak becomes speak_resp).

There is one class of respective relations for each class of distributive and collective rela-
tions and we name these respective distribulive, respective inherently collective and respeclive
pariially collective. In addition to new “respective” constraints, respective relations inherit
the argument properties of the original relation (e.g., a one-to-many relation is still one-to-
many). Consequently, each respective class is divided into many-to-many and one-to-many

relations.
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Regardless of origin, an instance r(z;,z3,...,Z,), of a respective relation is only defined
if all arguments have the same number of elements, i.e., 3m such that m > 2and V1 < k < n,
Tk = {Thy s Thyy-- .- & ,,}. [f domain(r) = [t1,85,...,1;), then 2, € P(E(t)) (1< k< n,1<
i < m). The atomization of r(f)’s arguments is r;, @ T2, ® ... D T, U T1, O T2, ®...Q

Tn,U... Uz, @22, @...0 I,,. Weintroduce the following notation z; 0o z30...0z, =

Ty, @22, G.. 0T,V T, B22,0...81,,U.. .Uz, @2, &...02,,,.

Many-to-many Respective Relations

A many-to-many respective relation r with attributes t), 1o, ...,t, has two attributes, #; and

t; (1 £1,7,< n)that are in a many-to-many relationship with one another. The atomization

of an instance r(z,,2,...,Z,)’s arguments, is £} 0230 ...0 T,.

A many-to-many respective partially colleclive relationr holds on a tuple, < z,,...,z;,...,2;,...

z, >, if there exists a fact r(z1,....¥i,....Yj.-.., Ty ) such that z; is a subset of y; and z;
is a subset of y;. It fails on a tuple < zy,...,2;,...,2;,...,2, > if there is no fact,
r(Zy, ... Y-+, Yj,---»Zn) such that z; is a subset of y; and z; is a subset of y;.

All other many-to-many respective relations r hold on a tuple ¥ if and only if r(Z) is a
fact, and fail if and only if r(Z) is not a fact. An instance r(Z) of a many-to-many respective
relation evaluates to frue, false, or mized with respect to its atomization as follows:

— If the relation holds on every member of the atomization, r(Z) evalnates to true.

— If the relation fails on every member of the atomization, r(Z) evaluates to false.

— If the relation holds on some and fails on the rest of the members of the atomization,

r(Z) evaluates to mized.

An example: Consider the following instance of the many-to-many respective relation

speak_resp:

speak_resp([[eli, jorg], [veronica, dia]], [german, spanish]) (= “Eli and Jorg

and Veronica and Dia speak German and Spanish respectively.”)

The atomization of the arguments = {<eli, german>, <jorg, german>, <veronica, spanish>

<dia, spanish>} and the instance evaluates to:

a. frue if applied to the knowledge base: {speak(eli, german),
speak(jorg, german),
speak(veronica, spanish),

speak(dia, spanish) }
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b. false if applied to the knowledge base: {speak(brigitte, german)}
c. mired if applied to the knowledge base: { speak(dia, spanish).

speak(jorg, german),

One-to-many Respective Relations

A one-to-many respective relation r with attributes ¢),#;,.... ¢, is a relation where attribute
t; isin a one-to-many relation with attribute {;. An instance r{T)of a one-to-many respective
relation is only defined if the cardinality of z;, = 1 V1 < p < m. The atomization of an
instance r(zy,Z2,...,T,)’s arguments is £; 0 x30...01,,.

A one-to-many respective relation r holds on a tuple ¥ =< x;,...,xi,....2j ..., 2, >
if and only if r(Z) is a fact. It fails on £ if and only if there exists another fact that
contradicts r(Z), i.e., there exists a tuple, < zy,...,¥i,..-,Zj,..., Ty >, where x; £ y;, and
C(Z1,. 3 Yir---rTjr---.Zn) is a fact. Otherwise, the relation evaluates to unknown on T,
i.e., if r(Z) is not a fact and there is no other fact which contradicts it. An instance r(f) of
a one-to-many respective relation evaluates to true, false, unknown, or mired with respect
to its atomization as follows:

— If the relation holds on every member of the atomization, r(Z) evaluates to fruc.

— if the relation fails on every member of the atomization, r( ) evaluates to false.

— ¥f the relation is unknown for one or more members of the atomization, r{f) evaluates
to unknown.

— If the relation holds on some and fails on the rest of the members of the atomization,

r(Z) evaluates to mized.

An example: Consider the following instance of the one-to-many respective relation

earn_resp:

earn_resp({1000, 1100], [brigitte, ann]) (= “Brigitte and Ann earn $1000 and
$1100 respectively.™)

The atomization of the arguments = {<1000, brigitte>, <1100, ann>} and the instance

evaluates to

a. frue if applied to the knowledge base: { earn(1000, brigitte),
earn(1100, ann) }
b. false if applied to the knowledge base: { earn(900, brigitte),
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earn(1200, ann) }
c. mized if applied to the knowledge base: { earn(1000, brigitte),
earn(1200. ann) }
d. unknown if applied to the knowledge base: { earn(1000, alian) }

Formally:

Vrresp € R, r(z),73,...,%,) is defined <= 3Im > 2 such that V1 < k < n, 74 =
{zk,>Thyy .- - Tk, } and 2k, € P(E(1;)), V1 < i < m.

Respective Distributive Relations
Ifrrespe Randre D™ (m,n > 2), pmaps < Py (E(11)). Pous( E(12)). - . ., Poup(E(2y)) >,
where V1 < k < n, Py (E(ix)) C P(E{t)) — {true, false, mized} as follows

1. p(zy,22,...,2,) = true <

P(yl, y2?"-sym) = true

for every tuple < Y1,Y2:---3Ym > €Ty 019 0---0Ty,

2. P(zl,fz,- - -9£ﬁ) = fGIS(:’ Ao

p(ylay2.v' - -zym) = fﬂISE

for every tuple < y1,¥0,..., Ym > €xy0T90---0T,

3. p(z1,22,...,2,) = mized <
Jatuple < ¥,¥2,.--.¥m > €Exy0290---0z, and
Jatuple < z,25,...,2, > €x10z90---02, such that

Ay, ¥ -, Ym) = true and

Ifrrespin Randre Di;'" (m > 1), pmaps < Py (E(11)), Peus{ E(22)), . . ., Pop(E(tn)) >,
where V1 < k < n, Poog(E(tr)) C P{E(1s)) — {true, false, mized, unknown} as follows
I plzi, 2y 2p) = true &

Ay, 92, - - Ym) = true

for every tuple < y1.p2....,4m > € 210220 01,
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2. p(r1,22,...,2,) = false <=
for every tuple < yy,....¥%i-. s ¥jse - Y > €ETj0rp0---01,
dz; € P(E(t;)) such that
PYLs - Ui 1, 2 Yigdr - - -2 Yjre - -+ Ym ) = True

3. p(z1,22,...,2,) = unknown <=
Jatuple < y1,¥2,---3Ym > €E 1012 0---0x, such that
p(Y1,92,- - -, Ym) = unknown

4. p(xy,x9,...,7,) = mized otherwise

Respective Inherently Collective Relations
Hr_respin Randrc ICEZ—'" {(m,n > 2}, pmaps < Py (E{(11)). Psusl E(12)). - - -, Poa( E(1,)) >,
where V1 < k < n, P (E(1t)) C P(E(1y)) — {true, false,mixed} as follows
1. p(z1,%2,....%5) = lrue <=
for every tuple < ¥, ¥2....,Yym > €ET10T90-- 01,
r(1,Y2,---,¥Us) is a fact
2. p(z1,22,-..,2,) = false <=
for every tuple < ¥, ¥2, ..., Ym > €ET10T20---0Z,
r(y; Y25, ¥n) is not a fact

3. p(z1,22,-.-,2,) = mired otherwise

Hfr_respin Randr € ICI5™ (m > 1), pmaps < Prus( E(11)), Paus E(12)). ... Pu( E(Ln)) >,
where V1 < k < n, Pou(E(l)) C P(E(tx)) — {true, false, mixed, unknown} as follows

1. p(zy1,Z2,...,2,) = true <=
for every tuple < ¥y, ¥2,-.., Y > €Exj 022001,
P{Y1:Y2;- -+ Yn) = True

2. p{x1,22,--..Zm) = false =
for every tuple < y3,....¥iy---sYj---2¥m > €1 0T30---0T,
dz; € P(E(1;}) such that y; € z; and

p(yl»~~~3yi~lxzizyi<§-lz--~1ng-- -7y1n) = lrue
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3. p(z1,22,...,2,) = unknown <=
J atuple < ¥3,%2,---:Ym > € T1 0F2 0--- 0T, such that
P(Y1,Y2,- -, Ym) # true and
Ay, 21, - ym) # false

4. p(zy,23,...,Z,) = mized otherwise

Respective Partially Collective Relations
lfr_respin Randr € PCI " (m,n > 2), pmaps < Pous(E(11)), Psus( E(12)), - - . Psus(E(15)) >,
where V1 < k < m, P,ub(E('tk)) C P(E(t)) — {true, false,mized}
1. p(zi,%2,...,Z,) = lrue <=
for every tuple < yp,...,%,-- -, ¥js---sYm > €Tj0T20---0Ty
3z; € P(E(t:)), z; € P{E(L;)) such that
¥i € z,y; C z; and
P(Y1s-- 2 Yie1s Ziry Yit1s- - -2 Yjm1s Tja Yj4 14 - - - Tn) = LTUE
2. p(z1,%2y...,2T5) = false &=
for every tuple < #1,--.,¥is-- -2 ¥Yjr+--+2Ym > €T} 0T20---02Z,
Az € P(E(t;)), zj € P(E(1;)) such that
zi,zj # B and y; C z,y; C z; and
PYLs- - Y12 Zi Vit 1o - - > Yim15 252 Y15 - - -, Un ) = LT UE

3. p(z1,22,...,2,) = mized otherwise

Hr_respin Randre PCI{JT"l (m > 1), pmaps < Psup( E(t1))s Psus( E(12)), - - -5 Psup( E(25)) >,
where V1 < k < n, Pou(E(lr)) C P(E(l})) — {true, false, mized,unknown} as follows

1. p(xy1,22,....2,) = true <

P(yl¥"' 21/ TEEREY NS P00 /28 "-ayn) = lrue
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for every tuple < y1,...,¥i,.- - Yje-e-iYm > €ET10x30-- 01,
3z € P(E()), 2 € PE(t;))
such that z; # y; and y; C z; and
YLy -+ 2 Uim1s 2 Uit 1 - - -2 Yim15 Zr Yit1a - - o2 Yn) = LT UE
3. p(zy,22,...,2,) = unknown <
Jatuple < ¥1,¥2,---1Ym > €1 0320---01,
P(y1, Y25 - - -+ Ym) # true and

P(yl,yz,--—,ym) # false and

4. p(z1,z9,..-,Z,) = mized otherwise

4.2.5 Single Attribute Relations

Single attribute relations are relations with only one attribute . Single attribute relations
are often introduced by the verb fo be as in, for example, “Pepe and Alicja are students”.
The property student distributes to all members of the set and we may infer that the two
statements “Pepe is a student” and “Alicja is a student” are both true.

The atomization of an instance r(x)’s argument, where r € P(FE(!)) such that z =
{£1,22,...2,},is {< 21 >, < 23 >,...,< 2, >}, where z € E(1).

A single attribute relation r evaluates to true on a tuple x4 if and only if r(zy) is a fact
and fails if and only if r(zx) is not a fact. An instance of a single attribute relation evaluates
to true, false or mized with respect to its atomization as follows.

— If the relation holds on every member of the atomization, the instance evaluates to
true.

— If the relation fails on every member of the atomization, the instance evaluates to
false.

— If the relation Lolds on some and fails on the rest of the members of the atomization,

the instance evaluates to mized.
An example: Consider the following instance of the single attribute relation student:
student([pepe, leslie]) (= “Pepe and Leslie are students”.)

The atomization of the argument = {<pepe>, <leslie>} and the instance evaluates to:
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-

a. true if applied to the knowledge base: { student(pepe),
student(leslie) }
b. false if applied to the knowledge base: {student(alicja),
student(brigitte) }
c. mized if applied to the knowledge base: { student(alicja),
student(leske) }

Formally: Vr € §, p maps P(E(t)) — {true, false, mized} as follows:

1. p(z) = true <

p(zy) = true

for every tuple < zx >€ {< z; >, < 22>,..., <2, >} (1 <k < n)
2. p(z) = false <=

p(zx) = false

for every tuple < z >€ {< 2y >, < x2>,...,< 2, >} (1 <k < n)

3. p(z) = mized otherwise

Comment

We said above that the word respectively introduces respective relations, but this is not the

case with single attribute relations. Consider the following example,
Pepe and Fred are student and professor respectively.

Bad style considerations aside, this sentence introduces two relations, namely student and
professor, which one has to tie together with for example, the logic operator and (see 4.3),

i.e., the above sentence can be represented:

and(student(pepe), professor( fred))

p—— e 3 1o atd
5€T ISy TeCogniZe Sinfgie averl

appropriate representation.
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4.3 Rigorous Definition of A Multiple-Valued Typed Query

Language

4.3.1 Syntax

QOur query language has three kinds of expressions: t-tyvped terms. formulae, and integer

terms.

A t-typed term s can take any of the following forms:
1. k, where k € K and typelkit €T
2. z, where £ € X and type{fz)t €T
3. those(z,1,¢e), where r € X and type(x) € T, € is a statment formula
4. [ky,..., k] where, k; € K and V1 < i< ntype(k;)=teT
A statement formula e can take any of the following forms:
1. for(s,z,t,e3,€2), where s,z € X, 1 € T, e),e; are statement formulac

2. r(51,52,...,5,) where r € Rel. degree(r) = n and domain(r) = i}, l2....,1,] such

that type(s;) =t; €T
3. and(ey,eq,...,6,), where ¥1 < i < n ¢; are statement formulae
4. presupp(e;, ez}, where e;, e, are statement formulae
5. noi(e), where € is a statement formula
6. equal(ny,n,), where nj, ny are integer terms
7. greater than{ny, n}}, where ny, ny ave integer terms
An integer term n can take any of the following forms:
1. 7, where je N >0

2. eardinality(s}), where s is a t-typed formula and type{sj=te T
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4.3.2 Semantics
Definition: An occurrence of a variable r in an expression [ is said to be free if it does
not occur inside a sub-expression of the form: for{s.z.l.€;, €2} or those{r 1.e)of f. An

expression which contains no free variable occurrences is said to be closed.

Definition: In a well defined situation g {see p.41). a closed formuia will have a truth value
{true, false, unknown_ mizred, pointless), a closed {-tvped term where ! € T will have a

subset of E(t) as its value and a closed integer term will nave an integer as its value.

We car now define the value of a closed expression in a given situation g.

The valve valis) of a closed f-typed term s, where § € T is defined by:
I. if s =k with k € |, hen
val{s) = {k}
2. if s is an enumerated set E {ie., a f-typed term of type 4. above', then
val{sy = E
3. il s = those(x.1.e) where type(-} = 1. then val{s} = {y € E(t}such that val{e () =
true}. where ¢, p represents the formula ¢ in which every free occurrence of r has

been replaced by the enumeration of the set F
The value ral ¢ of a closed statement fornula ¢ is defined as follows:

I. if e = for{s.x.t €y.€2) then
val{e) = val{ez) with s = ng (those{x, t. ey} where every free occurrence of s in e Las

been replaced by the enumeration of val{s).

ae

if ¢ = r{s1.82.....%,) then

ral{e} = pral(sy), val(sy).. .., val{s,}). where p = g )

&

J. e = andley.ep ...k,

a
E)

2.1 rel{e) = true —= ¥I < i < mrol{e;} = true

2.2, val(e) = false = ¥1 < i < val{e;) = false
2.3. val(e) = mized <= Y1 <1 < 2 val{e;} = true or valle;) = false and neither 2.1

nor 2.2 holds
2.4. ral{e) = wnknown <> 31 < i < n ral{e;) = wolnown

2.5. rval{e} = pointless <= 1 <1 < n ralie;} = pointless



CHAPTER 4. A TYPED MULTIPLE-VALUED DEDUCTIVE DATABASK 60

4. f ¢ = presupple;.eal.

if val(:1) = frue. then ral{e) = val{es).
if val{e;} = false. then ralie} = poiniless.

otherwise, val{e) = valie; ).

5. if e = not(eg ).
if val(e.} = true, then val{e)= false.
if val(ey) = false, then val{e) = truc,

otherwise val{e} = val{e;).

6. { ¢ = equal{n;, nz).
if val(n;} = rei'nz), then val{e) = true,

otherwise val{e)} = false.

7. if € = greater_than{n;.ny).
if val(ny) > val{nz). then »oi{e} = true,

otherwise, val{e} = false.
The value »al{n) of a closed integer term n is defined by:

1. if » = 7, where } > 0. then
val{n) = j

2. if m = card(s) then,
val(n) = number of elements in the set s
Comment on Qur Dafinition of Logical ‘and’

Our definition of the logical operator and {p.539) differs from what is usual » jogic. Consiler
the following statements:
a. “Eric and Martin earn $1600.7
= earn( 1000. [eric. martin])
b. “Eric and Martin earn $1000 and $2000 respecavely.”

= earn_resp{[1000, 2000], [eric, martin]}

¢. “Eric earns $1000 and martin earns 51000.

= and{earn(1000. eric). earn{ 1609, martinj}

with respect to the following knowledge base:
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earn{<51000, eric>, <51001, martin>}
Assume earn € D}7™. If the value of and is defined as

and(ey, e3) = min(val(e;, ey))

where true > unknown > false > mized > pointless (say),

which is common in logic, the above statements evaluate to different values: a.) and b.)
evaluate to mized, while c.) evaluates to false! In a consistent system, all three statements
should evaluate to the same truth value, and therefore the definition of and was written
such that it is consistent with the definition of distributive and respective relations. With

our definition for ‘and’, all three statements evaluate to mized.



Chapter 5
American Sign Language

This chapter provides a brief overview of the linguistic structure of ASL. The chapter is
organized as follows: Section 1 introduces ASL’s main building block---the sign. In Section
2, we discuss various ASL strategies for cutting the number of words in a sentence, while
maintaining comprehension. and in Section 3 we examine ASL’s basic sentence structure.
Section 4 discusses ASL verbs. In sections 5 and 6, we discuss the concept of time. The
first three sections are concerned with isolated sentences, while the last three are concerned
with the ASL discourse.

We collected the material in this chapter from the following sources: [27, 37, 59, 34, 22].

The examples (sometimes modified a little) are taken from [27]. unless otherwise stated.

5.1 What is a sign?

A sign is defined by the following four parameters: hand shape— ASL has 36 distinct hand
shapes (see [59, p.22] for a good illustration), hand posilion—relative to the body, hand
movemeni—path specification, local movement (e.g.. opening or closing hand. flicking a
finger) and speed of delivery, and palm direction.

Signs can be either one handed or two handed. Which haud the siguer uses for one
ns may have one or two
active {i.e., moving) hands'. If both hands are active, the sign must be symunclric, i.e., the
hand shapes must be the same on both hands, and the movement must be identical for both
hands or one hand moves like a mirror image of the other. If only one hand is active, the

symmetry condition does not apply.

! Also called dominant hand.

62
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Some signs become unintelligible if the signer deviates from the specification, while others
change meaning. For example, the sign tNDERSTAND? is usually signed with an extended
index finger. By substituting the little finger for the index finger, the signer changes the
meaning to “understand a little™. Also, puns and many art signs are made by deliberately
changing one or more of a sign’s parameters (see for example, [34]). Some signs are loosely
defined for some parameters and we will return to this in section 5.4, where we discuss
different verb types in ASL.

The neutral signing space extends like a bubble in front of the signer with boundaries as
follows: from the top of the head to the hip, from shoulder to shoulder and approximately
an arm’s length in front. Normally, all signs are made within the neutral signing space but
the signing space may be enlarged, if signing to a large audience. or confined, for secretive

purposes.

5.2 Economization

It takes roughly twice as long to produce a single ASL sign as an average English word, yet
the information transmission rate is the same for both languages. Consequently, ASL must
use many fewer words than English. The basic technique is to eliminate words and phrases
with little semantic meaning; articles, interjections, expletives {dummy subjects), idle
chatter and linking verbs {(e.g., any form of “to be”) are always deleted. Consider the

following examples,

The boy is a star. = BOY FAMOUS.

Gee, you're beautiful’ = BEAUTIFEL YOU.

There is nobody home. = HOME PERSON NONE.

I don't want to be personal. but yvou are a nice person = NICE PERSON, YOU.

The car has a flat tire. = CAR FLAT TIRE.
All these examples demonstrate elimination of linking verbs. In addition. the first example
shows elimination of articles, the second demonstrates elimination of interjections, the third
illustrates deletion of expletives and the fourth shows deletion of idle chatter.

ASL uses conjunctions only if the conjunction disambiguates or supplies additional

iformation (also see section 5.3.5 on subordination). Consider the following examples,

*Following normal convention, Eaglish glosses for ASL signs are wrilten in UPPER CASE.
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I bought some apples and Coke. = ME BUY APPLE COKE.

I left because I had an appointment = ME LEAVE BECAUSE APPOINTMENT.

In the first example, “and” can be left out without distorting the meaning of the sentence.
But leaving out “because” in the second exan:ple, would leave us with a sentence that differs
in meaning from the original: ME LEAVE APPOINTMENT. = ~l left for my appointment.”
therefore ASL includes BECAUSE in this type ol sentences.

ASL substitutes a single sign for many English phrases, for example,

through the use of, by means of = wiTH
it is doubtful that, if it should = MAYBE

the reason is that, owing to the fact that, owing to the fact that = BECAUSE

ASL uses prepositions if the preposition represents an idea that cannot be determined

by context alone, for example,

Everyone sit around the table = SIT THERE TABLE.

Put the umbrella under the seat = PUT UMBRELLA UNDER SEAT.

The first example has only one common sense interpretation so the preposition is eliminated
{if you want your guests to sit on the table, you would have to use a preposition). In the
second example, the preposition makes it clear to put the umbrella “undcr the seat” as

opposed to “on the seat”™.

5.3 Basic Sentence Structures

Sign arder in ASL is still a topic of much discussion; some linguists (e.g., Fisher) arguoe that
the underlying sign order is Subject-Verb-Object, while others {e.g., Friedman} argue for free
sign order (for different analyses see, for example, {21, 22, 23, 27]). From a compuiational
point of view, sign order is largely an implementation issue and since sign order does not
affect the algorithms described in Chapter 6. we quite arbitrarily chose to follow Isen
analysis in our attempt to familiarize the reader with the basic sentence structures in ASL.
We shall later see how these basic patterns get altered in a discourse situation {Sections 5.4

and 54.3).
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e’

5.3.1 Declarative Sentences

The simplest sentence patterns are similar in ASL and English: subject + verb (4 object).

For example,

CAROL swIM. (Carol is swimming.)

poG BITE MAXN {The dog bit the man.)

But as we shall see below, a well formed sentence in ASL may also look quite different from
a well formed sentence in English; it may include several repetitions of a main verb or a
noun, it may be verb-less or it may not have overt subject and/or object.

As mentioned above, linking verbs are deleted since they don’t supply much semantic
information. Also, such sentences usually only have one plausible interpretation. Elimina-

tion of linking verbs leaves the sentence with subject and a subject complement—a noun or

adjectival phrase. For example,

CAR FLAT TIRE. (The car has a flat tire.)
ANN DOCTOR. (Ann is a doctor.)

SUMMER HOT. (The summer is hot.)

Some of the techniques for pluralization of nouns (also see 5.3.7) affect the surface
structure of a sentence. One method (used with multi-directional verbs, see section 5.4.2) is
reduplication of the sentence’s main verb. The signer repeats the main verb three or more

times, each time at a different spatial location. Consider the following example,

STUDENT CONVENE (move hands) CONVENE (move hands) CONVENE VANCOU-
VER.

(The students gathered in Vancouver.)

Each change in location symbolizes another person gathering. Two repetitions mean that
two students gathered. Three repetitions can mean either three or many students gathered.
A small number of nouns can be pluralized by reduplication of the noun itself. for example,
TEA, BOOK, CHAIR, PAPER, TABLE. Again, two repetitions mean two items and three
repetitions can mean three or many items.

Certain sentences do not have overt subjects and for objects (both direct and indirect).

This type of sentence is discussed together with verbs in section 5.4.
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. .
Oop icalization

ASL adheres to the principle of “strongest emphasized information first™ and is considered
a “topic-prone language”, where “topic™ means the subject of conversation. Following this
principle, ASL tends to structure a sentence such that information that is new, with re-
spect to the current discourse, is presented first, and what is already known follows. As
a consequence, topicalization is much more common in ASL than in Fnglish, bat many
other spoken languages with freer word order than Euglish (e.g.. Slavic langnages) may also
structure sentences such that new or emphasized information appears first.

In a non-topicalized sentence, the subject comes first, while in a topicalized sentence,
another part of the sentence is moved to the front. In addition to being first, the topic is
marked: 1. It lasts longer than if the same element were in a non-topicalized position. 2. 1t is
accompanied by an intonation break. An intonation break is a non-manual signal produced
together with the topic; the head is tilted up and back as the eyebrows are raised (sec
section 5.3.2 for further discussion of non-manual signals). In writing, topics are separated

from the rest of the sentence with a comma. For example,

swiM, HE. (He is swimming.)
DOCTOR, SHE. (She is a doctor.)
BOOK, ME READ. (I read a book.)
READ YOU, ME. (I am reading to you.)

HAIRCUT, TINA GIVE ERIC. (Tina gave Eric a haircut.)

The last example shows how topicalization offers a way of dealing with di-transitive verbs.

5.3.2 Non-Manual Signals; Questions and Negated Sentences

Definition: Non-manual signals are signals produced simultaneously with the sequence
of signs by body parts different from the hands (mainly face and head) and that carry
grammatical functions.

In addition to topicalized sentences {see ]
tences are marked by non-manual signals. Roth questions and negated sentences assume the
same basic sign order as declarative sentences and they are distinguished by the presence or
absence of certain facial expressions. During the delivery of a declarative sentence (unless
it is topicalized), the facial expression is neutral and eyebrows and body remain relaxed.

However, if the sentence is negated, the signer produces a side-to-side head shake together
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with the signs. If the sentence is a yes/no question, the signer raises her eyebrows and tilts
her head slightly forward or to one side. Finally, if the sentence is a wh-question. the signer
squints her eyebrows downward. A wh-question also includes an interrogative sign as the
last of the sequence.

Non-manual signals are written on a line above the sentence; q for question and n for
negation. The line extends over the part of the sentence that is accomnpanied by the signal.
(ASL linguists argue whether non-manual signals accompany the whole sentence or just part
of it. We choose to follow Isenhath and present a variety of examples. For an alternative

analysis, see [36].} Consider the following examples,

WOMAN BUY DOG. (The woman didn’t buy the dog.)

n
WOMAN BUY DOG. (It wasn’t the woman who bought the dog.)

DOCTOR, YOU MUST GO. {You don’t have to go to the doctor.}
9
DIANA HERE? (Is Diana here?)

q
YOuU FINISH? (Did you finish?)

9
YOU LATE WHY? (Why are you late?})

q
WASH DISH WHO? ({Who is going to wash the dishes?)

ASL also has negating signs {e.g., NOT, CAN'T. NEVER, NONE) but the non-manual
signal is the fundamental way of negating a sentence and it is always present even if the
signer chooses to include a negating sign. The combination of two negatives (the non-manual
signal and a negation sign; two negation signs are not allowed in the same sentence) does
not make a sentence positive, as is the case in English; the negating sign is only present
to emphasize and/or shade the meaning. A negating sign usually follows its target. Some

examples,

-3
HE KNOW NOT. (He doesn’t know.)

HE KKOW CAN'T. (He can’t possibly know.)

target sign.

CHANGE NONE, ME BAVE. (I have no change)

TRAFFIC NONE. (There is no traffic.)
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5.3.3 Compound Sentences

In English, a compound senience consists of two or more independent clauses joined together
by a coordinating word (and, or, for, etc.}. while in ASL. independent clauses are expressed
separately. Sentence arrangement is usually based on the actual chronological order of
events. Consider the following English sentence. ~I am going to write a letter as soon as |
get home.” In ASL, this sentence is divided into two sentences and rearranged according to
the actual chronological order: RETURN HOME, ME. WRITE LETTER.

Although chronological sentence arrangement is most common, other strategies are avail-
able: relative importance—a main thought is established first and then camments, e.g.,
WIN, HE. SHE PROUD. {“He won and she is proud of him.”). cause and effect the cause
is established first and then the result, e.g., LIGHT oUT. ME SCARED {“When the lights
go out, I get scared.”), event-reaction—the main though is immediately followed by a
reaction or response, €.g., DATE, HE ASK ME. ALMOST FAINT, ME. and finally, separation
of emotional states—different emotional conditions of different people must be conveyed
in separate clauses, e.g., ME DOUBT. HAPPY FUTURE, sHE. ("] doubt she will be happy.™).
H the emotional condition of all participants is the same, it can be conveved in one sentence,

e.g., RE SHE LAUGH. (“They laughed.”}.

5.3.4 Conditional Sentences

A conditional sentence consists of a condition, which can be “real” or “unreal™ {here, “uu-
real” means “cannot possibly be fulfilled™ ), and a result. Conditional semtences in ASL are
syntactically very similar to conditional sentences in English except that the sentence is
divided into separate clauses.’

ASL has two ways of expressing real conditions: 1. the sign SUPPOSE, as in, SUPPOSE MK
PASS TEST. ME BUY YOU DIXNER. {“If I pass the test, | will take vou out for dinner™). 2.
Stating the condition as a rhetorical question, as in, ME PASS TEST? ME BUY YOU DINNER.

A common way of expressing “unreal” conditions is to make it clear that the situation
is hypothetical. The signer can start by establishing the “truth value™ of the condition, as
in, MONEY NONE. SUPPOSE HAVE MONEY. BUY FANCY CAR. {~] dou™t have the mouey, but
if 1 did, I would buy a sports car™), or by informing the addressee that the result will never

-

be realized. For example, BUY CAR. HAVE MONEY? BUY FAXCY CAR {~] am not going to

buy a car, but if I had the money I would buy a sports car™).
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5.3.5 Subordination

A subordinate sentence contains an independent main clause and one or more dependent
clauses, which are linked to the main clause by subordinating conjunctions. ASL uses
subordinating conjunctions but the frequency of use is uncertain, and they are fewer than
and different from English conjunctions. The most common ones are BECAUSE and BUT,
which signal causation and exception respectively. BECAUSE is also sometimes equivalent
“since” in English. Consider the following examples,

14

CAR START BECAUSE GAS NONE. (The car won’t start because it is out of gas.)
WE-TWO TOGETHER NEVER BECAUSE YOUR NEW JOB. { We never see each other
since you got your new job.)

ME WANT BUY COAT BUT MOXNEY NONE. (I want to buy a coat, but I don’t have

the money.}

This is the only complex sentence type in ASL which is not divided into individual clauses.

5.3.6 Infinitives and Gerunds

Infinitives that are not subcategorized for, are translated into ASL as a separate clause (In

the previous example, “want™ subcategorizes for an infinitive.). An example,

“Her transfer prompted him to find a job.”

SHE CHANGE lOB. HE FIND JOB.

Gerunds are verbs with the suffix “-ing” attached to the stem and they are used as
nouns (e.g., runing and singing). ASL does not have gerunds and sentences that in English,
contain a gerund, are translated inte ASL by breaking them down into separate clauses.

For example,

“She won by running a good race.”

SHE WIN. RUN GOOD RACE.

5.3.7 Plural, Quantification

Nouns may be pluralized by including a plural modifier before the noun. Some plural
modifiers are: FEW,. SOME,. SEVERAL, MAXY and ALL, or numerals. Consider the following

examples:
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TWO ROOM, WE PAINT FINISH. {We have finished painting two rooms already.)
DROP MANY BOOK, ME. (I dropped a lot of books.)

WASH ALL CAR. (Wash all the cars.)

As mentioned before, a signer may choose to pluralize a noun by reduplicating the main

verb of the sentence three or more times. Recall the following example:

STUDENT CONVENE (move hands) CONVENE (move hands) CONVENE VANCOU-
VER.

(The students gathered in Vancouver.)

Also a small number of nouns may pluralize by reduplication of the noun itsell (e.g, tea,
book, chair).

Plural objects may be indicated by adding a smooth, horizontal arc to the verb (suffix
for ordinary multi-directional verbs, prefix for reverse multi-directional verbs). The smooth
arc indicates collective plural and implies that the action affects ail referents as a whole,
i.e., if the plural suffix is added to TELL it means “tell all of them”, and we transcribe this
form of plural by adding -ALL to the original verb, e.g., TELL-ALL.

If the signer wants to convey that the action affects each referent individually, she adds
the exhaustive affix to the verb. (Some researchers argue that the exhaustive allix is not
just an affix, but a complete reduplication of the verb [59, p.122].) The exhaustive affix is
an arc with 3-5 “bounces™. If the verbs has local movement, it is repeated at individual
point on the arc. We transcribe the exhaustive plural by adding -£ach to the original verb,
e.g., GIVE-EACH.

Yet another inflection is the allocative, which has the meaning “certain, but not all”.
This affix consists of repetitions of movement at randomly varying points in space, rather
than in an arc. We transcribe the allocative by adding -soMmE to the original verh, c.g.,

GIVE-SOME.

5.3.8 Dual Inflection

The signer can modify multi-directional verbs to indicate two objects (some signers also
use trial inflection). Dual inflection can be accomplished in two ways. 1] First moving to
one reference point and then quickly “bouncing” to the other reference point. (If the verb
includes local movement {e.g., INFORM, the local movement is not repeated when moving

from the first reference point to the second. This helps in distinguishing between the dual
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and the exhaustive affixes.} 2) The signer repeats the verb twice. each time with a different

endpoint (starting poirt for reverse agreement verbs). Consider the following examples:

eliGIVEjirg pepe CAKE OF

eliGIVEjsrg eliGIVEpepe CAKE

5.4 Verbs in ASL

Verbs are divided into two main groups: 1) multi-directional ® verbs can incorporate subject
and object into their movement, or the positioning of the verb conveys semantic information.

2) non-directional verbs must have overt subject and/or object.

5.4.1 Non-Directional Verbs

Non-directional verbs (e.g., EAT, LIKE, LOVE, WANT, WRITE) have all four parameters (hand
shape, movement, position, palm direction) completely specified and they are always per-
formed the same way, regardless of discourse. The movement usually includes direct contact

with the body or movement toward the body and any deviation from the specification will

make them unintelligible.

Spatial Indexing

Pronominal references (i.e., subjects and objects) in sentences with non-directional verbs are
achieved by indering. if a referent is actually present, the pronominal reference is made by
making an indexing motion directly towards the referent. If the referent is not present, the
signer must establish a contextual reference; the signer introduces the noun and establishes
a relerence point in space for referring to that person/object. All later reference to that
personfobject is made by an indexing motion in the direction of this point. Consider the

following discourse,

DIANA (establ) caLL. INDEX(DIANA) PLAX LATE.

ST | JE S ) LS | I G SR
Lrialld calleq. ane Wik 0e 1ate.

In the first sentence, the reference point is established. while in the second. it is being
indexed. There are three ways of establisking a reference poini: 1. Make the noun sign at

the location. 2. Use a POIXT sign to the particular location. 3. For some one-handed signs,

*Akso called agreement verbs.
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Figure 5.1: A possible arrangement of spatial references,

a POINT sign can be made by the non-active hand. at the same time as the active hand is
signing the noun. A signer may have 4-5 active reference points at o time. Figure 5.1 shows
a possible arrangement of spatial reference points. {In this exampl: LOCT is the signer
herself.}

5.4.2 Multi-Directional Verbs

Multi-directional verbs (e.g., ASK, GIVE, MEET. HELP, SEE. BRING) do not include contact
with the body and only the hand shape and location parameters are completely specilied.
The verb’s movement and/or paln direction parameters are not determined antil the the
verb is put in context. ( These verbs exist in a dictionary form for whicl the movement /palm
direction parameters are specified. )

Multi-directional verbs use spatial loal and linear movement to dilferentiate between the
subject and the object (direct or indirect) of a semtence. As with now dircetional verbs,
the signer must establish contextual reference points in space. But jnstead of indexing the
point, pronominal reference is achieved by incorporating the reference points into the verh’s
movement; the starting point represents the subject and the end point represents tie object,
{Some verbs have the directions reversed, i.e.. the starting point represents the object and
the end point represents the subject, e.g., TAKE. INVITE, APPOINT .

Consider the following situation where spatial references for Diana and David are es-
tablished to the left and the right of the signer. respectively. la this scenario, the sentence
“Diana asked David.” would be signed by starting ask at the lell and inoving it over to
the right {7, frASKrighe)- Conversely, the sentence “David aske
from the right side to the left side (,;;2:ASKs ). Notation: The start point is wrilten as

a snbscript immediaz,ely in front of the verb, while the end ;m%:si Is written as i mi)script

{first pers(m}, 2=addressee (second person), 3=third person. l-z.*., bothk the above examples

are normally transcribed: 3aSKy. To avoid any confusion. we will somelimes ase names
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instead of the number 3 for third person references: jian. A4Sk id-

Palm Directicx
Seme multi-directional vesds use palm direction to distinguish between the subject and the
object of a sentence; the back of the hand faces the subject, while the pal faces the object

{direct /indirect ). Consider the sentence ~l tease you™ {;TEASE; ). when giving the sign for
J L1 2 ) = gl

TEASE, the palm is facing the addressee aod the back of the hand is facing the signer. Scme

other verbs in this class are: BATE, PITY.

Body Oriented Verbs

Hody oriented verbs are not true multi-directional verbs since their movement parameter
is strictly defined and therefore they cannot incorporate subject andfor object into their
movement. Instead of 3 vatable movemeat parameter. their position parameter is loosely
defined and they can use location to focus asiention on an anatomical part of the body.
For example, if HURT is performmed in fromt of the head. the signer conveys the idea of a
har'ing head, if the verb is performed in front of the stomach. the signer conveyvs the 1dex

of & hurt’ng stomach, ete. Some other body oriented verbs are HURT. ACHE. CUT. WaASH.

5.4.3 Surface Structure in Discourse

The surface structure of a sentence in a discourse can be guite different from that of an
isofated sentence. We have already seen how multi-directional verbs can delete the subject
and/or object of a sentenc» by incorperating them o the verb movement. Below we will
furth r discuss the ASL sentence structure from a discourse point of view,

If the subject of a sentence is the same as the subject of the previous sertence, the signer
can delete it without any change in meantng. If the first verb in a discourse appears without
a subject, first person is assumed. This kind of subject deletion is optional and the signer
may choose to use both cvert ard deleted subjects in the same discourse. Cue can use this
technigue with noz-directional verbs.

In a situation where first person ieference is not refevant. ke signer can use her body

B male.w #on o Ehtwd e s a8 Bar Bl muamcures  meeBonesen s Be omecw Bemssosona c1.2 A
T FE&s 0 & GERklG Twﬁﬁ ‘.UEL ".E“!ffﬁﬁ,”-,.. EEE E g TTTRERTRRTIEAY 1D JINF luﬁ% Ti !}IN v Al

index motion Eowimfs» the body is interpreted as a third person reference. and a:;imiiarly,
for multi-directional verbs:; a start /end point mear the signers body is interpicted as third

persor . This is similar to divoct quotation m Enghsh: Terminacor sard, ~I'll b back.”
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A variation of the above can be wsed with multi-directional verbs: the signer “takes
on” the “roles” of two other referents {first person reference is no longer possible). At the
beginning of the discourse, the signer gives he nominal signs for the rifercnts and establishes
a body orientation (left /right ) for each. When giving the sign for the verb. the siguer conveys
subject reference by turning her head in the direction established for the referent, say left,
Further, if the verb uses palm direction to distinguish between its arguments, the verb sign
is giveny with the back of the hend facing left {the same way as the head) and the palm facing
right. If the verl uses movement to distinguish between its arguments, the sign moves to
the right {towards the object of the sentence—the direction oppusite to the orientation of
the head). This way, both subject and objecs can be deleted from the surface structure of
a sentence and both subject and object reference are conveyet thirough a simple turn of the

head. These concepts are illustrated by the following example {modificd from [22]):

MARY (establish orientation, left) To {establish oriemtation. nght) weeT
(turn head right} FLIRT {(moving left)
(turn head left} HATE (back of hand facing left, palm facing right)

{turv. head right) BOTHER (moving right ).

“Mary and Tom met. e firts with her. She hates ki, He botliers her”

5.5 Time
5.5.1 Time Markers
Time mariers are signs that either denote a spe 3 time {e.g.. YESTERDAY. TOMORROW)
or signs which can place an action in the past or future time division {Past1 and FUTURE
respectively}.
specific Time Markers
A specific time marker must satisfy the following two conditions [27. p.192]:
1. It must defire the ime span involved.
2. It must place the context into an explicit time division {past. future).

For example, the signs TOMORROW, YESTERDAY and EVERYBLAY satislv both conditions,
while NIGHT, WEEK and YEAR only satisfy the first and can therefore not be classified as

specific time markers (they are nounsj. Most specific time markers are compounds. ASL
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forms tune compounds by fusing a buse time sign {e.g.. seasons. days of week., months)
with a modifier sign (e.g., NOW, PAST. NEXT) such that the resujting compound meets the
above conditions. For example, DURING-SUMMER, NEXT-MOXDAY, NOW-NIGHT (“tonight™),

PAST-WEEK (“last week™} are tirie compounds.

General Time Markers

General time markers are distinguished from specific time markers in that they only supply

the time division, i.e., they orly satisfy the second condition above. ASL has two general

time markers—PAsST and FUTURE—which place a sentenve/discourse in the past and future
time divisions respectiver. . Present time is unmarked. A general (me marher usually follows

the target verb.

Indexing Time

Specific time markers can be produced by zttaching an index movement to a basic time
sign (e.g., WEEK, YEAR). As the time sign nears completion. the active hand changes into
an index hand and moves backwards or forwards depending on whether the time expression
conveys past or future. For example, LAST-WEEK has an index movement backwards over
the sigaer’s shoulder, while the index movement in NEXT-YEAR is extenaed in the forward
direction. A signer can substitute a siagle-digit-number hand shape for the index hand shape

in the indexing motion to convey concepts like TWO-WEEKS-AGO and IN-TV'O-WEEKS.

5.5.2 Verb Tenses, Tinie in the ASL Discourse

ASL does mot use verb tense or verb inflection to indicate time. A base time frame is
established at the beginning of a discourse and—until the signer deliberately changes the
time frame—all further references to time are made with respect to this time frame. Tie
signer usually establishes the precise time of a discourse {the base time frame} by placing
a spectfic £ me marker at the beginning of a sentence/discourse. Later, she can change the
time frame by supplying either a general or specific time marker. Consider the following

connected lisconrse:

(1) PAST-NIGHT PARTY, ME ATTEND. {2) MEET SPETIAL PERSON. {3} DANCE.
€4} TALK. {5) WONDERFUL TIME, WE ENJOY TOGETHER. {6i} NEW FRIEND,

-

MAYBE SEE FUTURE AGAIN SD0ON. éi» WE-TWO MAYBE GO DANCE AGAIX.
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"I went to a party last might. 1 met a special person there. \We danced and
talked and had 2 great time. Maybe l will see my new friend again some time

soon. Maybe we will go dancing again.”

In this example, the specific time marker PAST-NIGHT establishes “last night™ as the current
time frame and the first four sentences are interpreted as describing events that happened
“‘last night’. In the fifth sentence, the general time marker *r1eRE changes the tme frame
and consequently the last two sentences of the discourse are lterpreted as future events.

Now, consider the following isolated sentences:
I. PAST-NIGHT PARTY, ME ATTEXND.
2. SPECIAL PERSON, MEET PAST.

3. DANCE PAST, WE-TWO.

e
»

TALK PAST. WE-TWO.
5. WONDERFUL TIME, WE-TWO ENJOY PAST.

6. NEW FRIEND, MAYBE SEE FUTURE AGAIN SOON.
7. MAYBE GO DANCE FUTURE AGAIN.

Since these are isolated sentences, a time marker is required for each sentence,

The base time frame is physically represented by the signer’s body and the space imme-
diately in front of the signer (neuntral space J. The space bebind the signer’s body represents
time prior to the time frame, while the space in front of neutral space represents fulure
time. This is often referred to as the ASL time line - an imaginary live yanning horizon-
tally alongside the body.

The conversational time reference (i.e, the time at which & conversation takes place)
is always present. If no time frame is established at the begisning of a corversation, it is
interpreted in the present tense. For example, if you walk up to a friend and sign you po
WEATT, = “what are you doing?”, she might answer: READ, ME = “[ am reading”. No time
markers are used since present time is unmarked.

Normally the time frame does not change until the discourse has concluded, but ASL
includes a mechanism to temporarily switch time frame. If the signer tilts the body shghtly
forward /backward, neutral space no longer represents the initial time frame bat futare/past.

This remains in effect until the body is returned to upright position.



Chapter 6

ASL—The Computational

Challenge

Traditionally, computational analysis of a sentence is based on parsing words one at a time
and if the sequence fits an allowable sentence pattern it is accepted as a valid senteunce in a
given language. A wide range of sentences in spoken languages can be analysed this way,
sinee spoken languages are sequential of nature and one can derive 4 meaning representation
of a sentence from the combination of allowable sentence patterns {as defined by a grammar)
and individual lexical features {number, person. case, ete ). However. sequential processing
of lexical items (signs) in an ASL sentence is not sufficient since ASL uses non-manual
signals and spatial information in parallel with lexical items—instead of inflection and sign
order —to convey several grammatical fonctions.

We propose an algorithm which expands the scope of traditional natural language
parsers/grammars to manual languages by adding a non-lexical component to the parser
which records spatial and other non-manual behaviour and angmenting the parser with
complementary routines for accessing the new information. Both the non-lexical parsing
routine and the grammar were developed in a logic programming framework. but our ideas
are versatile and can be used to augment other types of parsers. Qur application is a natural
fanguage front end to a deductive database but the algorithm is, of course, not restricted to
this application.

It should be noted that our choice of programming language responds to the type of
information we are processing. and our specific application makes logic programming ideally
suited. For instance, the logical expressions for the ASL linguistic information presented in

section 6.3 translates very cleanly into Prolog. The advantages of using logic programming
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Figure 6.1: An ASL fromt end.

for such applications have been covered in, for example [56, 2, 38]. The DCQG form of logic
programming and its applications to language processing is discussed in [46, 14].

The chapter is organized as follows: Section 1 presents an overview of the ASI front
end, Section 2 introduces the reader to the new ideas in the parser and how they are
incorporated in its two main components: the ASL-grammar and the non-lexical parsing
routine. A detailed discussion of the non-lexical parsing routine and the ASL-grammar is
presented in sections 3 and 4. In Section 5, we discuss how to translate ASL into our logic

representation LM.

6.1 An ASL Front End

We present an overview of the system, describe how the different modules interact and give

a brief functional description of each component.

6.1.1 Overview

The front end, as illustrated in Figure 6.1, consists of three main modules: a visual interface,
a sign interpreter and a parser, where the parser is divided into two sub-modules; one for

lexical items ( ASL-grammar, see Section 6.4 ) and one for non-lexical information {non-lexical
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e

parsing routine, see Section 6.3.2). In this thesis, we are concerned with the two parsing
modules, but before going into details about the parser, we will give a briefl description of
the whole front end that we assume it being part of.

A typical sequence of events proceeds as follows. The visual interface gets its input from
a camera filming the signer, and from this input, it produces two types of output: lexical
and non-lexical. (The visual interface need not be a camera. It could be, for example, a
data glove/data suit {see [20]), but since there is work being done at SFU on handshape
recognition from images, we decided to think of it as a camera.} Non-lexical output is the
spatial and non-manual information that accompanies a sign sequence. while the lexical
information consists of descriptions of the individual signs in a sentence. When the visual
interface has finished processing the camera input, the sign interpreter starts to translate
the sign descriptors into a sequence of English glosses and the parser records the non-lexical
information. When they are finished, the ASL-grammar proceeds to produce a semantic
representation of the ASL-septence which is sent to an evaluation procedure (for example,
the one described in Chapters 3 ard 4) and the parser informs the visual interface that it
can deliver the next sentence’s data sets. This process repeats until the signer has no more
queries to ask and signs off.

With one exception. we asseme that input is processed sentence by sentence and that
together, the lexical and non-lexical information describe one complete sentence. The ex-
ception is establishment of spatial reference points, which we assume is processed as if it
were a complete sentence, i.e., the signer must establish reference points one by one and
prior to using them. This simplifying assumption avoids the following problem: Consider a
sentence with several noun phrases, e.g.. “Diana wrote Sergio a letter”. If the signer intends
to continue speaking about Sergio, she may choose to establish a reference point for him
before giving the whole sentence and then index this point, i.e.. SERGIO {establish ref.).
DIANA WRITE INDEX(SERGIO} LETTER, or she may choose to create the reference point as
she gives the sentence, i.e., DIANA WRITE SERGIO {establish ref.} LeTTER. If we allow the
second type of sentence, the visual interface must tag each sign that is accompanied by an
indexing motion, otherwise, the parser cannot tell which noun sign is being indexed since the
visual interface only records the onder in which indexing motions are made. By disallowing
the second type {and thereby avoiding the tagging), we achieve a clear distinction between

lexical and non-lexical information.
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6.1.2 The Visual Interface and the Sign Interpreter

We are not concerned with the low level routines in this thesis, but will include a short
description of them because of the importance of them being properly syunchronmized with
the parser (also summarized in figure 6.2). The low level processing in the front end is
described in terms of a visual interface and a sign interpreter, but in any real system it will
likely be done by many subcomponents. But, assuming a two part low level system, the
fow level processing proceeds as follows. For initialization purposes (sce 6.2.3) the signer
must introduce herself to the system, so before entering its main ioop, the visual interface
provides the sign interpreter with lexical input which identifies the signer (e.g.. her name).
After having informed the sign interpreter that the input is ready. it enters the main loop and
immediately starts processing the next input from the camera. The output is not delivered
to the sign interpreter and the non-lexical parsing routine until the visual interface receives
a message from the parser saying that the previous sentence is completely processed and it
is ready to receive the next sentence’s input data. When this message arrives, it sends its
output and a DONE-MSG to the sign interpreter and parser. This process repeats until the
signer has no more queries to ask and signs off, at which point the visual interface sends a
FINISH-MSG to the parser and sign interpreter and the process is shut down.

The visual interface receives its input from a camera which films the signer and trans-
forms the camera input into input to the sign interpreter {(a sequence of sign descriptors)
and to the non-lexical parsing routine. The sign descriptors are translated into a sequence
of English glosses by the sign interpreter, while the nen-lexical information is recorded by
the non-lexical parsing routine described in Section 6.3.2. According to W. . Stokoe [57],
ASL signs can be described in terms of the following four parameters: hand shape, relative
position to body, path movement, and orientation of the hands, so we assume this to be the
minimum amount of information present in a sign descriptor.! Some spatial information
may be common between a sign descriptor and the non-lexical input, but normally (e.g.,
indexing, role play}, the visual interface has to extract spatial references for the non-lexical
routine separately. In addition, it has 1o extract non-manual signals and shifts in body
position from the camera input.

The information from the camera must be translated into a format which is recognized
by the corresponding routine. Since the exact shape of the low level system is uncertain and

we are not concerned about the sign interpreter in this thesis we don’t want to speculate on

*Interesting work in the area of hand shape recognition and movement is currently being done at SFU,
see {17].
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Process: Visual-Interface{ }
% signer introduces herself

Gel Input from camera
Produce Lezical-outpul and Non-lexical-oulput from Inpui

Make Lerical-Oulput available to Sign Interpreter

Send DONE-MSG to Sign Interpreter

% Main loop

Wahile not done do
Get Input from camera
Produce Lerical-output and Non-lerical-oulput from Inpul
Wait for DONE-MSG from Parser
Make Lezical-oulput available to Sign Interpreter
Make Non-lezical-outpul available to Parser
Send DONE-MSG to Parser and Sign Interpreter

End While

Send FINISH-MSG to Parser and Interpreter

Shut down process

End Visual-Interface

Figure 6.2: A high level description of the visual interface.

its input format. However, the non-lexical output is consumed by the non-lexical parsing
routine which we describe later in this chapter so we make the following assumptions about
the non-lexical output: All forms of spatial referencing (indexing, palm direction. path
movement, i.e., begin and end point of multi-directional verbs. and role play} must yield
as output the name of the spatial location being referenced: Hence, spatial references must

translate into named locations as follows.

Indexing: LOCL, LOC2, LOC3, LOC4. or LOCS
Role play: LEFT, or RIGHT
Path movement: LOCI, LOC2, LOC3, LOC4, LOCS, LEFT. or RIGHT

- . - - 1 - .
alm direction: LOC?, LOC2, LOCS, LOC4, L

Further, non-manual information must translate into the following names: TOP, QUE,

NEG, FORWARD, BACKWARD. (More details of the non-lexical input are presented in Sec-

tion 6.3.1 together with some examples.}
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6.2 'The Parser

= ThEE afur

We give a high level description of the parsing algorithm and the iterface between the lexical
{ASL-grammar) and the non-lexical parsing routines. {The details of these two routines are

discussed in Sections 6.3.2 and 6.4.)

6.2.1 The Parsing Algorithm

A pseudo code version of the parsing algorithm is presented in Figure 6.3, Every time the
system is started up, the signer must intraduce hersell to the system (e, by signing her
name} and once the signer’s identity is known, the parser executes if= startup routine to
initialize the variables in the interface between the lexical and now-lexical parsing routines
{see Sections 6.2.2 and 6.2.3). After having executed the initialization routine, the parser
informs the visual interface of this and eaters a loop where further processing is blocked until
it receives a message from the visual interface; IT the signer had no more queries to ask and
signed off, the parser receives a “FINISH -message and the parsing provess is shut down.
Otherwise, the visual interface provides the parser with inpui to the non-lexical parsing
routine. After the non-lexical information has been recorded. the parser is blocked umil the
sign interpreter has finished translating sign descriplors into s sequence ol Faglish glosses,
It is important to ensure that the non-lexical parsing routine is completely hnished hefore
the ASL-grammar starts, since the ASL-grammar must uwse the non-lexical information to
build a semantic representation of the ASL query. If the grammar is allowed to start before
the non-lexical parsing routine is finished it may build the representation from obsolete
information. When done, the sign interpreter sends a “DONE™-message 1o the parser such
that it knows when to pick up iis lexical input. The lexical input { English glosses) is analysed
by the ASL-grammar and together with the praviously recorded non-lexical infurmation, the
grammar builds a semantic representation of the input ASL query. When the grionmar is
done, the parser makes the semantic representation available to the evaluation procedure
and sends a “DONE"-message to the visual interface so it can start processing a new guery.
Now, the parser is again blocked until it receives a message from the visual interface, at

I U5 S S

which point the above algorithm is repeated.
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Process: Parser{ )
Wait for DONE-MSG from visual interface
Wait for DONE-MSG from sign interpreter
Get Input from sign interpreter
Call Initialize{ Input)
Send DONE-MSG to visual interface
While not done do
Wait for Msg from visual interface
If Msg = FINISH-MSG then
Shut down process
Else
Get Non-Lerical-Input from visual interface
Call Non-Lexical-Parsing-Routine{ Non-Lerical-Inpul}
Wait for DONE-MSG from sign interpreter
Get Lexical-Input from sign inierpreter
Call ASL-Grammar{Lezical-Inpul, Grammar-Oulpul}
Make Grammar-Outpul available to evaluation procedure
End If
Send DONE-MSG to visunal interface
End While
End Parser

Figure 6.3: The Parsing Algorithm
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The lexical and the non-lexical parsing routines communicate through a set of common

variables:

Topic, Question, Negation, Locl, Loc2. Loc3. Loci. Locs, Lefl. Right, First-
Ref, Second-Ref, Third-Ref, Fourth-Ref, Firsl-Location, Time-Frame, Old-Time-
Frame, Last-Subject®

Topic, Question and Negation are boolean variables which keep track of non-manual
information in a sentence. Since at least two of the three signals can be present in the same
sentence (e.g., a topicalized question}, we chose o use a separate variable for cach signal.
Topic, Question and Negation indicate the presence or absence of the non-manual signals
that accompany topicalized sentences, questions and negated sentences respectively. Fach
variable’s domain is {PRESENT, ABSENT}. i.e., the presence of a signal is indicated by
assigning the value PRESENT to the corresponding variable, while the absence of a signal is
indicated by assigning the value ABSENT to the corresponding variable. Their initial value
is ABSENT.

Locl, Loc2, Loc3, Locf and Loc record the referents assigned to the spatial reference
points established by the signer {see Figure 5.1 for a possible arrangement of spatial reference
points}). If, for example, the signer in Figure 5.1 establishes a spatial refirence point for,
say Pepe, at location LOC2 and, say David, at location LOCH, the vaniables Loc2 and Locd
would have the values Pepe and David respectively. One of the spatial reference variables is
reserved for the signer, say Locf, and must be initialized to the signer at the beginning of a
conversation. (We assume that the signer introdaces herself 1o the system as the first thing
she does, e.g., by signing her name, such that Loc/ can be iuitialized correctly. ) Loc2 Loch
are initialized to ABSENT since there are no referents assigned to locations LOC2-LOCS
at the beginning of a conversation. The domain of Loc/! is {untiuale noun phrases i the
system’s dictionary} and the domain of Loc2-Loci is {ABSENT. woun phrases from the
system’s dictionary}.

A signer can have four to five active reference points at a time. excluding the sizner and
the addressee. We allow the signer four poinis plus one for herself, but this sumber can
easily be changed to five if necessary. (A point for the addressee was not included sinee that

would be the camera in our situation.} We assume that each variable ( Loed, Loc?, Locsd,

2A mote on notation: Varichle names start with an upper case letter followed Ly lowercase betters and Jor
digits and for dashes. Value names or constants are in afl UPPER CASE.
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Loc§, Loe5) corresponds to one fired physical location (or rather area) in the signing space
and that the visual interface is capable of distinguishing between these locations®. Having
fixed locations may seem like putting an unnatural restriction on the signer. but since there
are only four of them, each area can be made quite large and that should provide the signer
with enough flexibility.

Left and Right store the referents of role play, e.g., if the signer establishes a reference
for Pepe to her left and a reference for David to her right, the variables Left and Right take
the values Pepe and David respectively. Their domain is {ABSENT. animat= noun phrases
from the lexicon (except the signer}} and their initial value is ABSENT.

First-Ref, Second-Ref, Third-Ref and Fourth-Ref record the interpretation of spatial
references and keep track of the order in which they are made. Here. the term “spatial refer-
ence’ includes indexing, role play and incorporation of spatial locations into verb movement.
E.g., if LOC2 and LOC4 are assigred referents as in the above examples, and the signer
indexes LOC? first and LOCH second or if a multi-directional verb starts at LOC?2 and ends
at LOC4 or if the first reference is made by turning the head left and the second by turning
the head right, then First-Ref would have the value Pepe and Second-Ref would have the
value David. Their domain is {ABSENT, noun phrases from the lexicon} and their initial
value is ABSENT.

First-Location records the first spatial reference the signer makes {indexing or role
play} and it is used by the grammar when the signer establishes new referents. Its domain
is {ABSENT, LOCI-LOC5, LEFT, RIGHT}, and the initial value is ABSENT.

Time-Frame records the current time frame, e.g., if the signer is telling a story that
happened yesterday, the value of Time-Frame is “vesterday’. Whal “vesterday’ really means
is up to the user to decide (could be the date, for example). Initially Time-Frame is assigned
a value which reflects the time at which the “conversation” takes place. The domain is
implementation dependent.

Old-Time-Frame records the time frame which is effective before the the signer tem-
porarily switches to a new time frame by shifting her body backward or forward. The initial
value is ABSENT and the domain is implementation dependent.

Last-Subject records the last articulated subject reference. {It is common in ASL to
omit the subject of a sentence if it is the same as in the previous sentence.} The domain
is {all noun phrases from the dictionary} and the initial value is the same as Locl. i.e., the

Signer.

* According to B. Dorner, this is 2 reasonable assumption. Personal communication, Sch. Comp. Sd.,
SFVU. 1993.
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Comments

Having only four variables to record spatial references puts some restrictions on tie type of

sentence that a system can accept. For example.

¢ The subject of intransitive verbs may only include up to four referents hut if the signer

indexes locations in addition to the subject, the number of subject referentsis reduced.

¢ Multi-directional transitive verbs may have up to two subject and object referents or
the signer can give one location by indexing which limits the number of subject and

object referents to one.

¢ Multi-directional di-transitive verbs may have two subject and object referents pro-
vided the direct object is signed and not indexed. If the signer wishes to index the

direct object, subject and indirect object referents are lnited to one.

In our prototype, four variables suffice but if the user flinds it necessary. she ean casily
eliminate these restrictions by adding more variables {and modify the input accordingly).
Strictly speaking the variable First-Locafion is redundant sinee it is nol nhecessary to
interpret spatial references and role play in the non-lexical routine. One cau suuply record
the reference locations and leave the interpretation until they are sctually used, e when
the grammar needs referents to build a meaning representation. I one choses this approach,
one has to interpret the references every time they are used. However, in a large system,
we expect the sign interpreter to take longer than the non-lesical parsing rontine and if
this is the case, it makes sense to interpret references in the non-lexical rontine since these
routines can run in parallel. The grammar cannot start until the sign interpreter is fimshed,

so postponing interpretation to the grammar would degrade the system’™s performance.

6.2.3 Initialization

Every time the system is started up, the parser executes the instiadization routine in Fig-
ure 6.4. This routine summarizes the initialization information given ix Section 6,22,
6.2 The Non-Lexical Parsing Routine

We describe the input to the non-lexical-parsing routine and illustrate it with some examples,

Further, we describe how the input is interpreted by the neu-lexica! parsing routine.
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Subroutine : Initialize {E,, v Sigrer)

Let First-Ref = ABSENT

Let Second-Ref = ABSENT

Let Third-Ref = ABSENT

Let Fourth-Ref = ABSENT

Let Last-Subject = Signer

Let Left = ABSENT

Let Right = ABSENT

Let First-Location = ABSEXNT

Let Loci = Signer

Let Loc? = ABSENT

Let Loc? = ABSENT

Let Loc{ = ABSENT

Let Loe5 = ABSENT

Let Time-Frame = “now”

Let Old-Time-Frame = ABSENT
End Initialize

Figure 6.4: The initialization routine

6.3.1 Input to the Non-Lexical Parsing Routine

The non-lexical parsing routine assumes that its wput is ordered and that there are no
“holes” in the input data. The order is arbitrary but it has to agree with the order in which
the non-lexical parsing routine reads it. To avoid “holes™ in the data. we introduced the
special value NULL to mean “not present” {We use different names for values in the non-
fexical input and values in the interface even if the semantics are the same. {For example,
the input values for topicalized sentences are TOP and NULL {explained below), while
the corresponding interface variable Topic may take oun the values ABSENT or PRESENT
{see 6.2.2).} We made this distinction sirictly to enhance readability and the user may
of course choose names as she pleases.}, e.g.. if a sentence does not have a third spatial
reference, the visual interface assigns NULL to the sixth entry {see Table 6.1). At the

an be described as an array of s

can scribed : s strings, but it is up to

concant nal l 1 3
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the user to find the best actual data structure for a particular implementation. Aun overview
of the input format is presented in Table 6.1 and the individual entries are described below.
We introduce the following notation: Non-lexical-Inpul—the name of the array, Non-lezical-
Inputfindex]—an individual entry or value {should be clear from contexi, v.g.. Input{l] may
mean the first entry or the ralue of the first entry depending on the context), Non-Lerical-

Inputfrange]—consecutive entries (e.g., Non-Lerical-Input{1-3] meaus the first three entries
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Fntry # Conceptual Name Values

I Topic TOP, NULL

2 Question QUE, NULL

3 Negated NEG, NULL

< 1% Spatial Reference ;| LOCI, LOC2Z, LOC3, LOCY, LOC5, NULL, LEFT, RIGHT
5 27 Spatial Reference | LOCI. LOC2, LOCS. LOC4. LOCH. NULL. LEFT. RIGHT
6 374 Spatial Reference | LOCI, LOC2, LOC3, LOC4, LOC5. NULL. LEFT, RIGHT
7 4th Spatial Reference | LOCI, LOC2, LOC3, LOC4. LOCS, NULL, LEFT, RIGHT
5 Body Position FORWARD, BACKWARD, NULL

Table 6.1: Input to the non-lexical parsing routine.

or the values of the first three entries).

Non-lezical-Input[1-3] indicate the presence or absence of the non-manual signals that
accompany questions, topicalized and negated sentences. The absence of a signal is indicated
by the value NULL, while the values TOP, QUE and NEG indicate the presence of a signal.

Non-lexical-Inputf{-7] indicate the presence or absence of a first, second, third and
fourth spatial reference {as before, the term "spatial reference’ includes indexing, role play
and incorporation of spatial locations into verb movement). The absence of a spatial refer-
ence is indicaied by the value NULL, while the presence of a spatial reference is indicated by
the values: LOCI, LOC2, LOC3. LOC4, LOC5, LEFT and RIGHT. where LOC1, LOC2, LOC3,
LOC4 and LOC5 denote the physical spatial locations in the signing space. and LEFT and
RIGHT denote the left and right side of the body (see Figure 5.1}.

Non-lexical-Input{8] indicate body position. The value NULL indicates a neutral body
position, while the values FORWARD and BACKWARD indicate forward and backward shifts.

Some Examples

Table 6.2 illustrates the non-lexical input expected from the visual interface for some sample

ASL sentences.

6.3.2 The Routine

The interpretation of the non-lexical input through the non-lexical parsing routine is straight

forward (the complete non-lexical parsing routine and its subroutines are illustrated in

Figure 6.5):
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Subroutine : Non-Lexical-Parsing- Routine{IN: Non-Lerieul-1
Call Non-Manual-Signal{ Topic. Non-Lerical-Inputfi{}
Call Non-Manual-Signal(Guestion. Non-Le rical-Inpat].
Call Non-manual-Signal{ Negation. Non-Le riccl-Inpul[ 3]}
Call Spatial-Ref( First-Ref, Non-Lerical-Inputf]}}

Call Spatial-Ref(Second-Ref, Non-Lericel-Input{s]}
Call Spatial-Ref( Third-Ref, Non-Lerical-Tnputfif}
Call Spatial-Reff Fourth-Ref. Non-Lerical-Iuput{i])
Call Temp-Time-Frame(Non-Lerical-Fupui[s])

End Non-Lexical-Parsing- Routine

Subroutine : Non-Manual-Signal{ Non-Manual-Signal, Valucy
If Value = NULL then
Let Non-Manual-Signel = ABSENT
Else
Let Non-Manual-Signal = PRESENT
End Non-Manual-Signal

Subroutine : Spatial-Ref{IN: Reference. Localion)
Firsi-Location = Location
Case Location:
LEFT: Let Referense = Left
RIGHT: Let Reference = Right
LOCI: Let Reference = Loct
LOC2: Let Reference = Loc?
LOC3: Let Reference = Loc3
LOC4: Let Reference = Loc§
LOC5: Let Reference = Locs
End Case
End Spatial-Ref

Subroutine : Temp-Time-Frame{IN: Non-Manual)
If Non-Manual = FORWARD then
Let Old-Time-Frame = Time-Frame
Let Time-Frame = “after”-Old-Time-Frame
Else I Non-Menual = BACKWARD then
Let Old-Time-Frame = Time-Frame

Let Time-Frame = “belore™ - Old-Time-Frame

8L 2 IMRE-FTAIRE G

Else If Non-Manual = NEUTRAL and Old-Time-Frame '= NULL then

Let Time-Frame = Old-Time-Frame
Let Old-Time-Frame — NULL
End i
End Temp-Time-Frame

Figure 6.5: The non-lexical parsing routine and su broutines

Y
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ASL sentence | fuput to Non-Mannal Rontine
CAROL SWIM [NUEL, NULL, NULL, NULL, NULL. NULL, NULL, NULL]
PEPE {establish ref. ) NULL, NULL, NULL, LOC2 NULL. NULL. NELL. NULL)
pAvID {establish ref.} [wLL NULE, NULL. LOC4, NULL. NULL. NULL, NULL)
LoCITEASELOCs [NULL, NULL, NULL, LOC2, LOCY, NULL, NULL, NU LL}
HAIRCUT, LocaGIVELOC [TOP. NULL, NULL, LOC2, LOCY, NULL. NULL, NULL)

INDEXTLOCY) LIKE INDEX{LOCA} | [NULE, QUE, NULL, LOC2, LOCY, NULL. NULL, NULL)
LOCITEASELOC2 Lot TEASELOC ,jﬁé—'éf NULL, NULL, La¢y, Lo, LOdy, LGOS, ;’\’L%’LL%

Fable 6.2: Some sample sentences and their corresponding input data

Non-Manual Signals

The non-manual information in Non-Lerical-Input { Non-Lerical-Input{i-3]} is interpreted

as follows:

YX such that 1 < X <3 A
(if Non-Lexzical-Input[X] = TOP, then Non-manualy = PRESENT V
il Non-Lezical-Inpul[X] = QUE, then Non-manualy = PRESENT V
if Non-Lezical-Input[X] = NEG, then Non-manualy = PRESENT V
if Non-Lexical-InputfX] = NULL. then Nor-manualy = ABSENT).

Topic = Non-manualy, Question = Non-manualy. Negation = Non-manual,.

Subroutine Non-AManual-Signailf ) in Figure 6.5 illustrates this procedure.

Indexing and Role Play

Recall: A spatial reference peoint is a physical location in the signing space that the signer
uses ta represent somebody or something. while spatial refereneing is the act of making an
index motion in the direction of a previonsly established reference point.
Spatial reference points and spatial references provide manual languages with a form of
“memory” that spoken languages don’t possess. The closest equivalent to a spatial reference
in spoken languages is their use of pronouns but. while spatial references uniquely define
their referents, this is often not the case with pronominal references. From a computational
point of view, this aspect of manual languages is an asset; the discourse situation is greatly
simplified since spatial referencing make manual languages far less ambiguous. When the
signer establishes a new reference, i.e., the signer takes on the role of some other referent or
assigns a new referent to one of the reference points. the lexical items {a noun phrase) are

sent via the sign interpreter to the grammar, while the spatial information is processed by

the parser.
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The non-lexical parsing routine is only concerned with referneing of spatial locations
and body directions, while the ASL-grammar is concerned with estubli~hing the references.
The routine for establishing references is discussed in Section .13 and for the rest of
this discussion, we assume that the references have already been established. The spatial

information in Nen-Lerical-Input { Non-Lexieal-Inputf{-7]} is interpreted as lollows:

VX such that 4 < X <V A
(if Non-Lexical-Input[X] = LOCY. where | <Y < 5 then Refx = LocY' v
if Non-Lexical-InputfX] = LEFT, then Refx = Le J1
if Non-Lerical-Inputf{X} = RIGUT, then Re fx = Right Vv
if Non-Lexical-Input{X] = NULL. then Refx = NULL).
Firsi-Ref = Ref; A Second-Ref = Re fs n Third-Ref = Re fo & Fourth-Hf = Refz A

First-Location = Non-Lezical-Inpul{{].

Subroutine Spatial-Reft} in Figure 6.5 illustrates this procedure.

Time
The signer can temporarily change the time frame by leaning her body slightly forward or

backward. Non-Lerical-Inpul[8]is interpreted as follows:

if Non-Lezical-Inpuff8] = FORWARD then
Old-Time-Frame = Time-Frame ~
Time-Frame = “after™-Old-Time-Framc¢
if Non-Lezical-Input{s] = BACKWARD then
Old-Time-Frame = Time-Frame A
Time-Frame = “before™- Old-Time-Frame
if Non-Lezical-Input[8] = NEUTRAL A Old-Time-Frame # ABSENT then
Time-Frame = Old-Time-Frame »

Old-Time-Frame = ABSENT

Subroutine Temp-Time-Frame() in Figure 6.5 illustrates this procedure.

6.4 ASL-Grammar

We describe how our prototype grammar interacts with the aon-lexical parsing routine

through the interface variables decribed in the previous sections. We are the first to admit
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that our linguistic competence in ASL is incomplete and we do 5ot claim that this grammar
is complete. We only want to show how our approach works and leave it to the linguists to
develop a complete and correct ASL-grammar. Hopefully the tools invented in this thesis
will be of help 1o them in their work.

The prototype was implemented in a Definite Clause Grammar {DCQG). therefore we
chose to present the ASL-grammar as DCG rewrite rules. Before discussing details of
the grammar, we describe its input format and illustrate it with some examples. Then
we proceed to the grammar and discuss the various topic in this order: basic sentences,
establishment of references. indexing, role play, non-manual signals. titne. aud finally, subject
deletion. The grammar rules, the dictionary and the grarnmar subroutines presented in this
section are summarized in appendices A, B, and C.

(Note to DCG hackers: The grammar presented here is strictly a prototype, only aimed
at illustrating the concepts, and we did not put emphasis on fancy coding. In a real system,
one ccould for example, include verb type information {multi- vs. non-directional, transitiv-
ness, etc.) in argument to avoid the long and cumbersome functor names. It would make
the grammar shorter and cleaner. Some meta programming can simplify the dictionary and

make it more modular.}

6.4.1 Input to the ASL-Grammar

The input format was dictated by the DCG formalism: DCG grammars expect their input
to be a list of lexical items. (Technically speaking a parser used for analysis of natural lan-
guage takes as input a grammar, written in. say. DCG and a list of lexical items.) Following
standard DCG notation, a list is delimited by [" and ‘" and list items are separated by

commas. Some examples,

ASL-sentence Input to ASL-grammar
CAROL SWIM [carol, swim;]

PEPE (establish ref. LOC2) {pepe]

pAVID {establish ref. LOC4) [david]

LOC2TEASEL O {tease]

HAIRCUT, 1002GIVELOCS [haircut, give]
INDEX{LOCZ} LIKE mnﬁx(wc?l} flike]

LOCI1TEASELge2 Lo TEASELOCy {t.ease, tease}
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6.4.2 Basic Sentences

We consider as basic senteunces. those that do not include non-manual signals, role play or
indexing, i.e., ASL sentences as they appear in isolation outside a discourse. Since there is
no non-lexical information present, a meaning representation of these sentences is obtained
in the same way as for spoken languages: simple parsing of lexical items by a grammar.
Together with the sample dictionary in Figure 6.6, the grammar fragment below can parse
basic ASL sentences.

sentence(S) —> sent{S).

sent(S) —> verb_less_sentence{S).

sent(S) —> np{Subj},

non_dir_vp(Subj, S).

sent(S) —> multi_dir_vp{Subj. Vp).

non_dir_vp(Subj, Vp} —> intrans_non_dir_verb{Subj. Vp).

nen_dir_vp(Subj, Vp} —> trans_non_dir_verb{Subj. Obj. Vp}.

np(Obj).
multi_dir_vp(Vp} —> trans_multi_dir_vp(Vp).
multi_dir_vp{Vp) —> ditrans_multi_dir_vp{Dobj, Vp).
np{ Dobj).
trans_multi_dir_vp{Vp)} —> np{Subj).
trans_multi_dir_verb(Subj. Dobj, Vp}.
np{Dobj}.
ditrans_multi_dir_vp{Dobj, Vp} —> up{Subj},
ditrans_multi_dir_verb{Subj. lobj, Dobj. Vp)

np(lobj).
verb_less_sentence(is_has{Subj, Comp}} —> np(Np!},
np(Np2).
verb_less_sentence(is_has{Npl, Ap)} —> np(Npl),
ap(Ap).

np{NP) —> noun(Noun).
ap{Ap) —> adjective{ Adj}.

Some examples

In all these examples, the non-manual input would be an array of NULL’s since there is no

non-manual and spatial information.
Grammar input | Grammar output

[diana, student] is_has(diana, student)
[sergio, love, diana] | love{sergio, diana)

[sergio, swim] swim{sergio})
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% adjectives

adjective —> [nice].

% nouns

noun{diana} —> [diana].

noun(sergio} —> [sergio].

noun({book)} —> [book].

% verbs

intrans_non_dir_verb{Subj, swim{Subj}) —> [swim].
trans_non_dir_verb{Subj, Obj, love(Subj. Obj)} —> Q!meji_
trans_multi_dir_verb{Subj, Obj, meet{Subj, Obj}} —> imeet].
ditrans_multi_dir_verb{Subj, lobj, Dobj, give(Subj, lobj. Dobj}} —> [give].
reverse_ditrans_multi_dir_verb{lobj, Subj. Dobj, takeiSubj. lobj. Dobj)} — [take]*

Figure 6.6: A sample dictionary.

6.4.3 Establishment of Spatial References and Roles

There are two types of references: spatial references. which are dereferenced by indexing and
roles, which are dereferenced by turning the head left or right. We assume that establishment
of both spatial references and roles are processed sequentially. When the signer establishes
a2 new reference, she must supply both a spatial location and a referent. The referent is
naturally lexical, while the location is spatial, so the two pieces of information are separated
in the visual interface and must “meet up”™ again in the parser. The referent must be a
single noun phrase, and since no other ASL “sentence™ consists of a single noun phrase it
is easy for the grammar to recognize when the signer establishes a new referent. Once the
grammar has parsed the referent, it retrieves the spatial location from First-Location and

interprets the two pieces of information as follows.

Assume Referent = the noun phrase processed by the grammar.

H First-Ref = LEFT then Let Left = Referent.

If First-Ref = RIGHT then Let Right = Referent.

W First-Ref = LOCY, where I <Y < 35, then Let LocY = Referent.

Pseudo code versions of the grammar fragment and the extra subroutines used by the
grammar to process establishment of new relferences are presented below (subroutines are
enclosed in curly braces). Notice that the grammar fragment does not produce any output,

since establishment of new referents is not a query and therefore should not be evaluated.

sent{_} —> establish-reference{ ).
establish-reference{_) —> np{Np)
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{Get-first-location{ Location) }.
{Establish-reference{ NP, Location}}.

Subroutine : Get-first-location{out: Location)

Location = First-Location
End Get-first-foeation

Subroutine : Establish-reference{in: Reforent, Location)

Case Location:
LEFT: Let Left = Refercnt
RIGHT: Let Right = Referent

LOCI:
LOC2Z:
LOC3:
LOC4:
LOC5:
End Case

Let Loct = Referent
Let Loc? = Referent
Let Loc? = Referent
Let Locf = Referent
Let Loc5 = Referent

End Establish-reference

An example

The signer establishes

Jorg.

a spatial reference for Diana in LOC2. The ofd referent in LOC2 was

H >

Non-manual input: [NULL, NULL, NULL, LOC2, NULL, NULL, NULL, NULL]
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Grammar itnput

[diana]

Grammar output

Interface Before

Topic = ABSEXNT
Question = ABSENT
Negaticn = ABSEXNT
Loci = eli

Loc2 = jorg

Locd = ABSENT

Locd = ABSENT

Loch = ABSENT

Left = ABSENT

Right = ABSENT
First-Ref = jorg
Second-Ref = ABSENT
Third-Ref = ABSENT
Fourth-Ref = ABSENT
First-Laeation = LOC2
Time-Frame = today

Interface After

Topic = ABSENT
Question = ABSENT
Negation = ABSENT
locl = ehi

Leec2 = dana

Locd = ABSENT

Locd = ABSENT

Laed = ABSENT

Left — ABSENT

Right = ABSENT
First-Refl = jorg
Second-Rel = ABSENT
Third-Rel = ABSENT
Fourthi-Ref = ABSENT
First-Location = LOC2

Tiune-Frame = today

96

Old-Time-frame = ABSENT

Old-Time-frame = ABSENT

fast-Subject = ABSENT last-Subject = ABSENT

6.4.4 Indexing and Role Play

When a signer uses indexing or role play, the grammar must access the previously estab-
lished spatial information in order to buiid a semantic representation of the sentence. Recall
from section 6.3.2 that the references have already been interpreted. so the grammar obtains
the necessary referents by simply reading off tie value of one of the variables in the inter-
face { First-Ref, Second-Ref, Third-Ref, or Fourth-Ref). Below, we show how the different
components of the parser interact to produce a semantic representation of an ASL sentence

that includes indexing or role play.
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non__dir_vp —> {Get_first _ref{Subj}}.
trans_non__dir__verb{Subj, Obj, Vp}
{Get_second_ref{ Obj}}.
multi_dir_vp{Vp) —> trans_mniti_dir_vp(\p).
multi_dir_vp{ Vp} —> ditrans_multi_dir_vp{Dobj. Vp).
np{Dobj}.
multi_dir_vp{Vp) —> reverse_ditrans_multi_dir_vp2{Dobj. \'p).
np{ Dobj}.
trans_multi_dir_vp{Vp} —> {get_first_ref{Subj)}.
trans_multi_dir_verb{Subj. Obj. \'p),
{get _second _ref(Ob})}.
ditrans_multi_dir_vp({Dobj. Vp) —> {get_first refiSubji},
trans_multi_ dir verb{Subj. lobj, Dobj, Vp).
{get_second _ref{lobji}.
reverse_ditrans_multi_dir_vp2({Dobj, Vpj. —>
{zet _first_ref(lobj)}.
reverse_multi _dir_verb{lobj. Subj. Doubj. Vp).
{get_second_ref{Subj)}.

Subroutine : Get-first-ref{out: Referent)
Let Referent = First-Ref
End Get-first-ref

Subroutine : Get-second-ref(out: Referent)
Let Referent = Second-Ref
End Get-second-ref

An example

Assume spatial references for Diana and Sergio have been established in LOC2 and LOC4

respectively. Then consider the sentence ;0¢2GIVELocq BOOK (Diana gave Sergio a book).

Non-manual input: [NULL, NULL, ¥ULL, LOC2, LOC4, NULL, NULL, NULL]J



CHAPTER 6. ASL—THE COMPUTATIONAL CHALLENGE

Grammar input

fgive, book]

Grammar output

give(diana, sergio, book)

Dual and Trial Inflection

By adding routines for accessing the variables Third-Ref and Fourth-Ref the above grammar

can easily be extended to parse dual inflection. The grammar fragment below gives some

examples.

Interface

Topic = ABSENT
Question = ABSENT
Negation = ABSENT
Locl = el

Loc2 = diana

Loe3 = ABSENT

Locd = sergio

Locd = ABSENT

Left = ABSENT

Right = ABSENT
First-Ref = diana
Second-Ref = sergio
Third-Ref = ABSENT
Fourth-Ref = ABSENT
First-Location = LOC?2
Time-Frame = today
Old-Time-frame = ABSENT
Last-Subject = eli

trans_multi_dir_vp{Vp) —> {get_first-ref(Subj)},

trans_multi_dir_verb(Subj, Dobjl, Vp).

{get_second-ref(Dobj1)}.
{get_third-ref(Subj)},

trans_multi_dir_verb(Subj, [Dobjl. Dobj2], Vp),

{get_fourth-ref(Iobj2}}.

=}

&

A
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ditrans_multi_dir_vp(Dobj, \p} —-> {got first-ref{Subjjl.
ditrans_muulti dir verbgSubi Hobil. lobi2], Dobj, \py.,
{get_second-refi fobjl i},
tzet_third-ref{Subj)}}.
ditrans_multi dir verbSabj. {lobji 1sbi2], Dobj \'p.
1get _fourth-refilobj2s}.
reverse_ditrans_multi_dir_vp{Dobi. Vip} - >
{get_first-refilobj1)}.
ditrans_multi_dir verb{Subj, Hobji. fobj2i Dobi, Vp),
{zet second-ref{Subj)}.
{get_third-ref{Iobj2}}.
ditrans_multi dir_verb{Subj. [lohjt, tubj2l Dohi \'p),
{zet_fourth-ref{Subj}}.

Subroutine : Ge!-third-ref{fout: Refernt}
Let Referent = Third-Ref

End Get-third-ref

Subroutine : Get-fourth-refiout: Referent)
Let Referent = Fourth-Ref

End Get-fourth-ref

Similarly, we can extend the grammar to parse trial inflection by adding two more variables
w ¥ (=2 - =

for spatial references and corresponding routines for accessing these variables.

An example

Assume spatial references for Eli, Diana and Sergio have been established in LOCL, LOC2
and LOC3 respectively. Then consider the sentence jocGIVE] o rtoe IV Epae- . BOOK (Eh

gave Sergio and Diana a book).

Nen-manual input: [XULL, NULL. NULL. LOCI. LOC2. LOCI. LOCS. NUL "
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Grammar input Interface

Topic = ABSENT
Questicn = ABSENT
Negation — ABSENT
Locl = eli

Loc2 = sergio

give(eli, {sergio,diana}, book)joc3 = diana

Locd = ABSENT

Loch = ABSENT

Left = ABSENT

Right = ABSENT
First-Ref = ¢li
Second-Refl = sergio
Third-Ref = eli
Fourth-Rel = diana
First-Location = LOCI
Time-Frame = today
Old-Time-frame = ABSENT
Last-Subject = eli

[give, give, book]

Grammar outpui

6.4.5 Question, Negation, and Topicalization

Questions, negated sentences, and topicalized sentences are all accompanied by non-manual
signals so in order to parse these, the grammar must gain access to the non-manual informa-
tion stored in the interface variables. These routines are similar to the ones we saw above
and we list them below { Non-manual-tepic, Non-manual-question. Non-manual-negated).
Yes-no questions and negated sentences are produced by giving a non-manual signal to-
gether with any of the declarative sentence patterns {topicalization included) so no new
sentence patterns are introduced and only two new clauses where one checks for the pres-
ence of the appropriate non-manual signal are needed to parse ves-no questions and negated
sentences. An interrogative question is posed by including an interrogative sign at the end
of a sentence. Also, some part of speech is deleted from the surface structure of an inter-

rogative question so some pew rewrite rules are needed. Topicalization affects the order in

which siges are produced and since both objects and verb plhrases can be topicalized the
complexity of the grammar will increase considerably. Below we show some of the rewrite
rules necessary for parsing topicalized sentences. negated sentences and questions. We do

not include any examples of interrogative sentences since they do not illustrate any new

points.



CHAPTER 6. ASL—THE COMPUTATIONAL CHALLENGE 101

sentence(S) —> {Non-manual-question{true)},
sent(S).
sentence(S) —> {Non-manual-negation(true)},
sent(S).
sent(S) —> {Non-manual-topic(true)},
topicalized_sent(S).
topicalized_sent(Vp) —> np{Dobj),
non_dir_vp_topicalized_dobj( Dobj, Vp).
topicalized_sent(Vp) —> non_dir_vp_topicalized _vp(Subj. Vp),
{get_second_ref(Subj)}.
topicalized_sent{Vp) —> np{Dobj),
multi_dir_vp_topicalized_dobj(Dobj. Vp).
non_dir_vp_topicalized_dobj(Dobj, Vp) —> {get_first_ref{Subj)}.
non_dir_verb(Subj, Dobj, Vp).
non_dir_vp_topicalized_vp(Subj, Vp} —> non_dir_verb(Subj, Obj, Vp),
{get_first_ref(Obj)}.
multi_dir_vp_topicalized_dobj(Dobj, Vp) —> ditrans_multi_dir_verb(Subj, Iobj, Dobj, Vp)
{get_first_ref(Subj)},
{get_second _ref(lobj)}.

Subroutine : Non-manual-topic(out: Non-manual-flag)
If Topic = PRESENT then
Let Non-manual-flag = TRUE
Else
Let Non-manual-flag = FALSE
End If
End Non-manual-topic

Subroutine : Non-manual-question(out: Non-manual-flag)
If Question = PRESENT then
Let Non-manual-flag = TRUE
Else
Let Non-manual-flag = FALSE
End i
End Non-manual-question

Subroutine : Non-manual-negation{out: Non-manual-flag)
If Negation = PRESENT then
Let Non-manueal-flag = TRUE
Else
Let Non-manual-flag = FALSE
End I
End Non-manual-negation
Note on the semantics of TRUE and FALSE: In logic programming terms, the semantics of
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TRUE is that the goal succeeds, while the semantics of FALSE is that the goal fails.

An example

Assume spatial references for Diana and Sergio have been established in LEFT and RIGHT
respectively. Then consider the sentence BOOK, pigHTGIVELEFT (Sergio gave Diana a
book).

Non-manual input: [TOP, NULL, NULL, RIGHT, LEFT, NULL, NULL, NULL]

Grammar input Interface

Topic = PRESENT
Question = ABSENT
Negation = ABSENT
Locl = el

Loc2 = ABSENT
give(sergio, diana, book) Loc3 = ABSENT

Loc4 = ABSENT

Loch = ABSENT

Left = diana

Right = sergio

First-Ref = sergio
Second-Ref = diana
Third-Ref = ABSENT
Fourth-Ref = ABSENT
First-Location = LOCH
Time-Frame = yesterday
Old-Time-frame = ABSENT
Last-Subject = eli

[book, give]

Grammar output

6.4.6 Time

In section 6.3.2, we discussed how the signer can temporarilly switch the time frame non-
manually by shifting her body slightly backward or forward. Here, we will concentrate
on how the signer establishes a new time frame by using lexical items. When the signer
tablish new time frame via a lexical item, it is considered a “permanent” change in
the sense that it is assumed that the signer will not talk more about what happened in the
previous time frame and therefore, there is no need to remember it. If the signer should
wish to go back to the previous time frame, she would have to do this by explicitly giving
the sign.

The signer uses a time-marker to establish a new time frame and since time markers

are lexical items, they are processed by the ASL-grammar, i.e., when the signer uses a time
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marker to change the time frame, the grammar must record the new time frame in the
interface variable . Time markers can be specific or general; if the signer uses

a specific time marker, it is stored in Time-Frame as is. If the signer uses a general time
marker (PAST, FUTURE), the parser must modify the Time-frame to “before™ or “after” cur-
rent time frame (how to implement “before” and “after” is up to the user). The grammar
activates the subroutine New-Time-Frame() every time it encounters a lexical item that it

recognises as a time-marker. We illustrate this below.

sent(S) —> spec_time_marker(Tm),
{New-time-frame(Tm)},
multi_dir_vp(Vp).
trans_multi_dir_vp(Vp) —> {get_first_ref(Subj)},
trans_multi_dir_verb(Subj, Obj, Vp).
{get_second_ref(Obj)},
general time_marker(Tm),
{new-time-frame(Tm).}

Subroutine : New-Time-Frame(IN: Time-AMarker)
If Time-Marker = PAST then
Let Time-Frame = “before”- Time- Frame
Else If Time-Marker = FUTURE then
Let Time-Frame = “after”- Time-Frame
Else
Let Time-Frame = Time-Marker
End If
End New-Time-Frame

The user (e.g., database designer) decides where to make use of the temporal informa-
tion and this decision must be reflected in the system’s dictionary, so when the grammar
encounters a sign (mostly verbs) which demands temporal information for its semantic rep-
resentation, the grammar calls the routine Get-time() which gets the current time frame
from the Time-frame variable in the interface. We give a couple of examples of dictionary

entries below.

trans_multi_dir_verb(Subj, Obj, meet(Subj, Obj, Time)) —> [meet],
{Get-time('Time)}.
intrans_non_dir_verb(Subj, swim(Subj, Time)) —> [swiin],
{Get-time(Time)}.
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Subroutine : Get-time(out: Time)
Let Time = Time-frame

End Get-time

An example

104

Assume spatial references for Eli and Diana have been established in LOC1 and LOC2 re-

spectively. Then consider the sentence pociMEETLoc2 PAST (Eli and Diana met), i.e., the

signer establishes a new time frame.

Non-manual input: [NULL, NULL, NULL, LOC1, LOC2, NULL, NULL, NULL)

Grammar input

[meet, past]

Grammar ouiput

Interface Before

Topic = ABSENT
Question = ABSENT
Negation = ABSENT
Locl = el

Loc2 = diana

meet(eli, diana, ’before to-1,0c3 = ABSENT

day’)

6.4.7 Subject Deletion

Loc4 = ABSENT

Loch = ABSENT

Left = ABSENT

Right = ABSERT
First-Ref = eli
Second-Ref = diana
Third-Ref = ABSENT
Fourth-Ref = ABSENT
First-Location = LOC2
Time-Frame = today

Old-Time-frame = ABSENT

Last-Subject = eli

Interface After

Topic = ABSENT
Question = ABSENT
Negation = ABSENT
Locl = eh

Loc2 = diana

Loc3 = ABSENT

Locd = ABSENT

Loch = ABSENT

Left = ABSENT

Right = ABSENT
First-Refl = eh
Second-Refl = diana
Third-Ref = ABSENT
Fourth-Ref = ABSENT
First-Location = LOC2

Time-Frame = before today
Old-Time-frame = ABSENT

Last-Subject = eli

It is common in ASL to omit the subject of a sentence if it is the same as the subject of

the previous sentence and if the verb of the current sentence is non-directional. In order to

obtain a subject referent when the signer chooses to use this technique, the grammar must

keep track of every articulated subject it encounters. In our prototype this is accomplished

by executing the routine Store-last-subject() which records the current subject in the inter-

face variable Last-subject after every sentence with an articulated subject. Below we give

some examples of how te include the routine.
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trans_multi_dir_vp(Vp) —> {get_first-ref(Subj)},
trans_multi_dir_verb(Subj, Dobjl, Vp),
{get_second-ref(Dobjl)}.
{get_third-ref(Subj)},
trans_multi_dir_verb(Subj. [Dobjl, Dobj2], Vp),
{get_fourth-ref(lobj2)},
{store-last-subject}.

non_dir_vp(Subj, Vp) —> intrans_non_dir_verb(Subj. Vp),

{store-last-subject}.

Subroutine : Store-last-subject(in: Subject)
Let Last-subject = Subject
End Store-last-subject

An example

Assume that the old subject is Eli and that the signer changes the subject to Dianha. Assume

that the spatial location for Diana is LOC2. Then consider the sentence DIANA (INDEX)

swiM (Diana is swimming).

Non-manual input: [NULL, NULL, NULL, LOC2, NULL, NULL, NULL, NULL]

Grammar input

[swim]

Grammar output

swim(diana)

Interface Before

Topic = ABSENT
Question = ABSENT
Negation = ABSENT
Locl = el

Loc2 = diana

Loc3 = ABSENT

Loc4d = ABSENT

Loch = ABSENT

Left = ABSENT

Right = ABSENT
First-Ref = diana
Second-Ref = ABSENT
Third-Ref = ABSENT
Fourth-Ref = ABSENT
First-Location = LOC2
Time-Frame = today
Old-Time-frame = ABSENT
Last-Subject = eli

Interface After
Topic = ABSENT
Question = ABSENT
Negation = ABSENT

Locl = eli

Loc2 = diana

Loc3 = ABSENT

Locd = ABSENT

Loch = ABSENT

Left = ABSENT

Right = ABSENT

First-Refl = diana
Second-Refl = ABSENT
Third-Ref = ABSENT
Fourth-Ref = ABSENT
First-Location = LOC2
Time-Frame = today
Old-Time-frame = ABSENT

Last-Subject = diana
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Later, when the grammar parses a subjectless sentence, it reads off the value of Lasi-
subject and uses it as the subject referent. The code below illustrates how to parse subject-

less sentences.

sent(S) —> missing _subject(Vp).

missing_subject_vp(Vp) —> intrans_non_dir_verb(Subj, Vp),
{get last_subject(Subj)}.

missing_subject_vp(Vp) —> trans_non_dir_verb(Subj. Obj, Vp).
{get_first_ref(Obj)}
{get_last_subject(Subj)}.

Subroutine : Get-last-subject(in-out: Subject)
Let Subject = Last-Subject
End Get-last-subject

An example

Assume that the last subject mentioned was Diana. Then consider the sentence swim (Di-

ana is swimming).

Non-manual input: {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL]

Grammar input

[swim]

Grammar output

swim(diana)

Interface Before

Topic = ABSENT
Question = ABSENT
Negation = ABSENT
Locl = eh

Loc2 = diana

Locd = ABSENT

Loc4 = ABSENT

Locd = ABSENT

Left = ABSENT

Right = ABSENT
First-Ref = ABSENT
Second-Ref = ABSENT
Third-Ref = ABSENT
Fourth-Ref = ABSENT
First-Location = ABSENT
Time-Frame = today

Old-Time-frame = ABSENT
Last-Subject = diana

Interface After

Topic = ABSENT
Question = ABSENT
Negation = ABSENT

Locl = eh

Loc2 = diana

Loc3 = ABSENT

Locd = ABSENT

Locd = ABSENT

Left = ABSENT

Right = ABSENT
First-Ref = ABSENT
Second-Ref = ARSENT
Third-Ref = ABSENT
Fourth-Ref = ABSENT
First-Location = ABSENT
Time-Frame = today
Old-Time-frame = ABSENT
Last-Subject = diana

The ASL grammar as presented above only parses ASL and does not produce a semantic
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representation of ASL sentences. In order to do produce a semautic represenation, the rules
must be modified and below we discuss the particular representation. which we designed as

part of LM and its assosiated query language.

6.5 Translating ASL into LM

bince ASL does not have explicit determiners we had to look for other clues for translating
ASL sentences into LM: surface structure, type of verb, non-manual signals, etec. We suggest

the following translations:

6.5.1 Elementary Statements

FElementary statements in ASL are translated directly into LM exactly as in English. Some

examples:
GARFIELD CAT = iscat{Garfield)
GARFIELD STRIPED = isstriped(Garfield)
DIANA GIVE BRIGITTE GARFIELD = give(Diana, Garlfield, Brigitie)

6.5.2 Determiners

It is unclear how the definite and indefinite/distinction is made in ASIL. Some rescarchers
claim that ASL does not have determiners {27, 59], while others claim that ASL does have
determiners [60]. Those who claim that ASL has determiners have not yet identified how

the indefinite/definite distinction is made. R. Wilbur [59, p.235] writes:

“English uses the articles a/an and the . whereas ASL uses pointing and specific
locations in space to make the distinction between definite {“the™ ) and indefinite

(“.aﬂ).”

Based on this quote we made the following assumptions about the indefinite/definite dis-
tinction in the input to our system: If the signer gives the sign for a noun, we assume that
she is introducing a new referent to the discourse, and that this is similar to using the indef-
inite article in English. If she uses a previously established reference point, we assume this
is similar to using the definite article in English. We emphasize that this is a simplifying

assumption that may change once the ASL linguists have investigated the topic further.
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Indefinite Articles

We translate indefinite type sentences, i.e., sentences where the sign for the noun is given,

into LM’s for representation for a:
Jor(S, X, D, and( F1, F2), grealer than{card(5),0)))}
Consider the following example:

BRIGITTE OWNX CAR. (DBrigitte owns a car.)

X ears and grealer_thar
iscar owns  card 0

| /N |

X Brigitte X §

The Definite Article

In English, the singular definite article presupposes existence and uniqueness of a noun’s ref-
erent, and in a database systein with an English frontend, failure to meet either of these two
assumptions is detected when the for formula for the: for(S.X.D. Fl,if(equal{card(5),1), F2))
is evaluated with respect to the knowledge base. We assume that using an already estab-
lished reference point in ASL, is similar to using the definite article in English. Consequently,
if the signer uses a non-existing reference point, she is violating the existence assumption
introduced by the definite article, and this type of violation is detected during the parse
since the discourse unit cannot substitute a referent for that particular reference. The parse

-

is immediately interrupted. no internal representation is produced and the reason for failure
is communicated to the user. One could introduce a new logic value for these violations but
we choose not to, since this is a grammatic and not semantic mistake on part the users part.

Since we cannot check the uniqueness assumption during the parse, a successfully parsed
query is translated into the usual for representation for the and evaluated with respect to
the knowledge base. For example, if the signer in our previous exaniple intends to talk more
about Brigitte’s car. she establishes a reference point for the car, which she can later index.

Asmn
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CAR (index) BLVE. =The car is blue.

o

X cars iscar if
X equal  isblue

/\ |

card one X

S

ASL provides us with an easy way of distinguishing between the two types of failure and
we can inform the user of which assumption she violated; il the query reaches the database
consultation stage, she violated the uniqueness assumption; if the query is interrupted in the
parsing stage, she violated the existence assumption. In, for example. English. we cannot
tell which assumption is violated and both types of violations will result in a complete

semantic representation, which evaluates to poinlless in the database.

-SOME Verbs

Statements with a “-some verb” are simply translated into the usual for formula for some,
i.e., some(X, F1,F2)= for(S,X,D,and(F1, F2)},greater than(card(.5), 1)))

6.5.3 ASL and LM’s Quantification Hierarchy

The basic sentence patterns in ASL are:

1. subject + intransitive verb

e.g., HE SWIM. (He is swimming.)

2. subject + complement
e.g., WEI DOCTOR. (Wei is a doctor.)
e.g., CAR FLAT TIRE. (The car has a flat tire.)

3. subject + verb + object
e.g., ME READ BOOK. (I read a book.}
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4. subject + verb + indirect object + object
e.g., TINA GIVE ERIC HAIRCUT. (Tina gave Eric a haircut.)

In general, the basic ASL sentences conform to the quantification hierarchy proposed by
Colmerauer (see 2.1.2): Quantifications introduced by the subject dominate those intro-
duced by a complement. If a verb has two complements, the rightmost dominates the
leftmost. Recall that this second hypothesis caused some problems in English and we con-
cluded: if the quantification of the recipient is not a or the, this quantification should
dominate regardless of position, i.e., “Diana gave each child a gift” and “Diana gave a gift
to each child” translate into the same for formula. Next we discuss how ASL offers a

solution to this problem.

-EACH and -ALL Verbs

Recall the two possible represenations of “Diana gave a gift to each child.”

(1) each (2) a

X2 ischild a X, sgift each
VAR VA N
X, X, wsgift gives X1, X, ischild  gives
| /1IN | /IN\
X1 DianaX1 X3 X2 DianaX) X,

The first representation implies that each child got a separate gift, while the second implies
that there was only one gift and the children were sharing this gift. For English, we assume
that the author intended the first interpretation, but we cannot be 100% certain. ASL can
convey both these ideas unambigously by adding different affixes to the verb: the -gachn
affix conveys the idea that each child got a separate gift, while the -ALL affix conveys the
idea that they shared one gift. We propose that if a sentence contains an -EACH verb, the
quantification of the recipient (i.e., each) dominates the quantification of the other comple-
ment. If the a sentence contains an -ALL verb, the quantification of the object dominates
the quantification of the recipient. l.e., DIANA GIVE-EACH CHILD GIFT is translated into (1)

above and GIFT, DIANA GIVE-ALL CHILDREN is translated into (2) above.
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Two Objects—Dual Inflection

Multi-directional verbs can indicate more than one object {(most signers only use dual inflec-
tion, but there are some which also use trial) and the implication is that the action applies to
both ob jects collectively (similar to -aLL verbs). Recall, dual inflection can be accomplished
in two ways; either by first moving to one reference point and then guickly “bouncing” to
the other reference point, or the signer can repeat the verb twice, each time with a different

endpoint (starting point for reverse agreement verbs). Consider the following examples:
eliGIVEj5rg pepe CAKE OrF
eliGIVE srg eliGIVEpepe CAKE

Since the action applies to both objects collectively, we propose to process the complements
from right to left. We also suggest that the duality concept translates into an integer for

formula. Hence, the above sentences translate into the following for formula:

a
X, iscake

P2

X: X,isperson  give

VA BN

Xy eli X, {jorg,pepe}

= for(S1, X1, cakes, and(iscake(X1),
for(S52, X2, people, and(isperson( X 2),
give(eli, X2,{jirg, pcpe})),
equal(card(52),2))),
greater than(card(51),1))

Topicalized Sentences
Recall the common topicalization patterns from section 5.3.1:

1. intransitive verb, subject

e.g., SWIM, HE. (He is swimming.)

2. complement, subject

e.g., DOCTOR, WEI. (Wei is a doctor.)
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e.g., FLAT TIRE, CAR. (The car has a flat tire.)

3. object, subject + verb
e.g., BOOK, ME READ. (I read a book.)

4. verb + object, subject
c.g., READ YOU, ME. (I am reading to you.)

object, subject 4+ verb + indirect object

ot

e.g., HAIRCUT, TINA GIVE ERIC. (Tina gave Eric a haircut.)

In terms of constituents (e.g., subject, complement, recipient) the hierarchy stays the
samne, but the order in which the quantifications appear in a sentence has changed, so in
terms ol order of appearance, there is obviously a difference. Type 1 sentences can only have
one quantification so there is no problem. Most type 2 sentences are elementary statements,
so they translate directly into LM. Type 2 sentences that are not elementary statements,
but have subject and complement, e.g., FLAT TIRE, CAR, should process the quantifications
from right to left. The same is valid for sentences of type 3 and 4. Type 5 sentences are
subject to our analysis of two complements of the verb, so the order in whieh to process the

complements depends on the inflection of the verb.

6.5.4 Negation

Sentences that contain a non-manual negating signal and possibly a negating sign different

from NONE, translate directly into the quantifer representation Colmerauer suggested for

negation.

n
e.g., WOMAN (INDEX) BUY DOG {The woman didn’t buy a dog.)

the
/ I \ = for(S1, X, women, iswoman(X,),
X, iswoman not i flequal(card($,),1),
! l not( for(S2. X, dogs,
Xy '

/(l‘ \ and(isdog( X3),buy( X, X3)),

X, isdog buy greater than(card($3.0)) ))))

/\

Xy X
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NONE

The negating sign NONE translates into the for for no. For example,

n

EMPLOYEE NONE LIVE IN BURNABY

/nlo\ = for(S. X.employees,

X ‘isemployeelive_in and(isemployec( XN ). live 2u( N, Burnaby))

| / \ equal{card(5).0))
X X Burnaby

Some sample ASL queries’ translation into complete LM formulae are listed in appendix

D.



Chapter 7

7.1 Coniributions
We helieve the main contributions of our work to be:
¢ a computational model of (a subset of } ASL
e a testbed of its use within ASL consultation of deductive databases

s the motivation of the use of multiple logical values, both explicit and implicit, to

provide more helpful answers to natural language queryving of deductive databases.

e a rigorous characterization of multi-valued deductive databases for cooperative an-

swering

¢ a rigorous logical system, LM, underlying both our computational model of ASL and

our database query language.

Our model of ASL accounts for its parallel nature and represents, to the best of our
knowledge, the first model for parallel human languages. The possibility of interesting
and mutual feedback between parallel and sequential human languages has been one of the
by-products of our research. The main strength in our approach, from our point of view,
is that our solutions are at the same time integrated in a cohesive formal logical system
with rigorously defined syntax and semantics, but also have the flexibility to be adapted to
different contexts. For instance, our cooperative answering mechanisms can be introduced
to systems with other kinds of front end and likewise, our model for ASL may be used for
other applications than database consultation.
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7.2 Limitations and Future Work

At present, our ASL interface cannot distinguish between the two following two sentences:

WOMAN BUY D6G. (The woman didn’t buy the dog.)
V«’(‘)ﬁ?\n_ﬁ BUY DOG. (It wasn’t the woman who bought the dog.)
But, for an interface to computer applications, it is not necessary to distinguish between
them, since they are basically syntactic variants of each other with a shift in emphasis, while
the semantic content is the same. In a translation system, however, it would be interesting
to distinguish between the two sentences. In such a system one would have to synchronice
the non-manual and the lexical information such that the analyser would know which part of
the sentence the non-manual signal accompanies. This requires a more sophisticated model
of ASL and we would have to develop a much more sophisticated semantic representation
of ASL than what we have presented here.
Future work in cooperative answering will concentrate on including the other problem
arez- {generalizations, user’s beliefs and expectations) into our formalism.
We expect it to be relatively easy to account for generallizations through our type

hierachy. Recall the query
AmericanAirlines_flight(burbank, dulles, at_10am)

from the introduction (section 1.3.5). If we have a type hierarchy like this

travel
VRN
flight train
7\
AA SAS

and similar hierarchies for the arguments and i the inital query fails, we traverse the hier-
archies sideways to offer alternative solutions or upwards to make the query more general.
Another area of cooperative answering that we have not dedlt with, is inclusion of
information on related topics. For example, if somebody asks for a flight between Oslo and
Vancouver, one can include, for example, the price and departure time (1.3.5). If we replace
our simple types with Typed Feature Structures (TFS) (see [3, 50, 54]), where each constant’s
associated type has a list of feature/value pairs. If we let the features of our Oslo-Vancouver
flight be cosT and DEP_TIME they will surface through the unification process, and magic,

we have more information in our answer.



Appendix A

ASL Grammar

% Basic sentence patterns

sentence(S) —> sent(S).
sent(S) —> verb_less_sentence(S).
sent(S) —> np(Subj),
non_dir_vp(Subj, S).
sent(S) —> multi_dir_vp(Subj, Vp).
non_dir_vp(Subj, Vp) —> intrans_non_dir_verb(Subj, Vp).
non_dir_vp(Subj, Vp) —> trans_non_dir_verb(Subj, Obj, Vp),
np(Obj).
multi_dir_vp(Vp) —> trans_multi_dir_vp(Vp).
multi_dir_vp(Vp) —> ditrans_multi_dir_vp(Dobj, Vp),
np(Dobj).
trans_multi_dir_vp(Vp) —> np{Subj),
trans_multi_dir_verb(Subj, Dobj, Vp),
np(Dobj).
ditrans_multi_dir_vp(Dobj, Vp) —> np(Subj),
ditrans_multi_dir_verb(Subj, Iobj, Dobj, Vp)
np(lobj).
verb_less_sentence(is_has(Subj, Comp)) —> np(Np1),
np(Np2).
verb_less_sentence(is_has(Npl, Ap)) —> np(Np1),
ap(Ap).
np(NP) —> noun(Noun).
ap(Ap) —> adjective(Adj).
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% establish a spatial reference or role

sent(_) —> establish-reference(_).

establish-reference(_) —> np(Np)
{Get-first-location(Location)},
{Establish-reference(NP, Location)}.

% indexing and role play

non_dir__vp —> {Get_{first_ref(Subj)},
trans_non__dir_verb(Subj, Obj, Vp)
{Get _second _ref(Obj)}.
multi_dir_vp(Vp) —> trans_multi_dir_vp(Vp).
multi_dir_vp(Vp) —> ditrans_multi_dir_vp(Dobj, Vp),
np(Dobj).
multi_dir_vp(Vp) —> reverse_ditrans_multi_dir_vp2(Dobj, Vp),
np(Dobj).
trans_multi_dir_vp(Vp) —> {Get_first_ref(Subj)},
trans_multi_dir_verb(Subj, Obj, Vp),
{Get_second_ref(Obj)}.
ditrans_multi_dir_vp(Dobj, Vp) —> {Get_first_ref(Subj)},
trans_multi_dir_verb(Subj, Iobj, Dobj, Vp),
{Get_second_ref(Iobj)}.
reverse_ditrans_multi_dir_vp2(Dobj, Vp), —>
{Get_first_ref(Iobj)},
reverse_multi_dir_verb(lobj, Subj, Dobj, Vp),
{Get_second_ref(Subj)}.

% dual and trial inflection

trans_multi_dir_vp(Vp) —> {Get_first-ref(Subj)},
trans_multi_dir_verb(Subj, Dobjl, Vp),
{Get_second-ref(Dobjl)},
{Get_third-ref(Subj)},
trans_multi_dir_verb(Subj, [Dobjl, Dobj2], Vp),
{Get_fourth-ref(Iobj2)}.

ditrans_multi_dir_vp(Dobj, Vp) —> {get_first-ref(5ubj)},
ditrans_multi_dir_verb(Subj, [Iobj1, Iobj2j, Dobj, Vp),
{Get_second-ref(Iobj1)},
{Get_third-ref(Subj)},
ditrans_multi_dir_verb(Subj, [lobjl, Iobj2], Dobj, Vp),
{Get_fourth-ref(Iobj2)}.
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reverse_ditrans_multi_dir_vp(Dobj, Vp) —>
{get_first-ref(Iobj1)},
ditrans_multi_dir_verb(Subj, [Iobjl, Iobj2], Dobj, Vp),
{Get_second-ref(Subj)},
{Get_third-ref(Iobj2)},
ditrans_multi_dir_verb(Subj, [Iobj1, Iobj2], Dobj, Vp),
{Get_fourth-ref(Subj)}.

% Yes-no question

sentence(S) —> {Non-manual-question(true)},
sent(S).

% Negated sentence

sentence(S) —> {Non-manual-negation(true)},
sent(S).

% Topicalization sent(S) —> {Non-manual-topic(true)},
topicalized_sent(S).
topicalized_sent(Vp) —> np(Dobj),
non_dir_vp_topicalized_dobj(Dobj, Vp).
topicalized_sent(Vp) —> non_dir_vp_topicalized_vp(Subj, Vp),
{get_second_ref(Subj)}.
topicalized_sent(Vp) —> np{Dobj),
multi_dir_vp_topicalized_dobj(Dobj, Vp).
non_dir_vp_topicalized_dobj(Dobj, Vp) —> {get_first_ref(Subj)},
non_dir_verb(Subj, Dobj, Vp).
non_dir_vp_topicalized_vp(Subj, Vp) —> non_dir_verb(Subj, Obj, Vp),
{get_first_ref(Obj)}.
multi_dir_vp_topicalized_dobj(Dobj, Vp) —> ditrans_multi_dir_verb(Subj, Iobj, Dobj, Vp)
{get_first_ref(Subj)},
{get_second_ref(Iobj)}.

% Set new time frame

sent(S) —> spec_time_marker(Tm),
{New-time-frame(Tm)},
multi_dir_vp{Vp).
trans_multi_dir_vp(Vp) —> {Get_first_ref(Subj)},
trans_multi_dir_verb(Subj, Obj, Vp),
{Get_second_ref(0Obj)},
general _time marker(Tm),
{New-time-frame(Tm).}
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% Subject deletion; Store last subject

trans_multi_dir_vp(Vp) —> {Get_first-ref(Subj)},
trans_multi_dir_verb(Subj, Dobjl1, Vp),
{Get_second-ref(Dobjl)},
{Get_third-ref(Subj)},
trans_multi_dir_verb(Subj, [Dobj1, Dobj2], Vp),
{Get_fourth-ref(lobj2)},
{Store-last-subject}.

non_dir_vp(Subj, Vp) —> intrans_non_dir_verb(Subj, Vp),

{Store-last-subject}.

% Subject deletion; Retrieve last subject

sent(S) —> missing _subject(Vp).

missing_sabject_vp(Vp) —> intrans_non_dir_verb(Subj, Vp),
{Get_last_subject(Subj)}.

missing_subject_vp(Vp) —> trans_non_dir_verb(Subj, Obj, Vp),
{Get-first-ref(Obj)}
{Get_last_subject(Subj)}.



Appendix B

ASL Dictionary

% adjectives

adjective —> [nice].

% nouns

noun(diana) —> [diana].
noun(sergio) —> [sergiol.
noun(book) —> [book].

% verbs

intrans_non_dir_verb(Subj, swim(Subj)) —> [swim].

trans_non_dir__verb(Subj, Obj, love(Subj, Obj)) —> [love].
trans_multi_dir__verb(Subj, Obj, meet(Subj, Obj)) —> [meet].
ditrans_multi__dir__verb(Subj, Iobj, Dobj, give(Subj, Iobj, Dobj)) —> [give].
reverse_ditrans__multi__dir__verb(Iobj, Subj, Dobj, take(Subj, Iobj, Dobj)) —> [take].

% Retrieve time frame

trans_multi_dir_verb(Subj, Obj, meet(Subj, Obj, Time)) —> [meet],
{Get-time(Time)}.
intrans_non_dir_verb(Subj, swim(Subj, Time)) —> [swim],
{Get-time{Time)}.
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Grammar Subroutines

Subroutine : Get-first-location(out: Location)
Location = First-location
End Get-first-location

Subroutine : Establish-reference(in: Referent, Location)

Case Location:
LEFT: Let Left = Referent
RIGHT: Let Right = Referent
LOC1: Let Locl = Referent
LOC2: Let Loc2 = Referent
LOC3: Let Loc3 = Referent
LOC4: Let Loc{ = Referent
LOC5: Let Loc5 = Referent

End Case

End Establish-reference

Subroutine : Get-first-ref(out: Referent)
Let Referent = First-Ref
End Get-first-ref

Subroutine : Get-second-ref(out: Referent)
Let Refereni = Second-Hef

End Get-second-ref

Subroutine : Get-third-ref(out: Referent)
Let Referent = Third-Re;
End Get-third-ref
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Subroutine : Get-fourth-ref(out: Referent)
Let Referent = Fourth-Ref
End Get-fourth-ref

Subroutine : Non-manual-topic(out: Non-manual-flag)
If Topic = PRESENT then
Let Non-manual-flag = TRUE
Else
Let Non-manual-flag = FALSE
End If
End Non-manual-topic

Subroutine : Non-manual-question{out: Non-manual-flag)
If Question = PRESENT then
Let Non-manual-flag = TRUE

Else
Let Non-manual-flag = FALSE

End If
End Non-manual-question

Subroutine : Non-manual-negation(out: Non-manual-flag)
If Negation = PRESENT then
Let Non-manual-flag = TRUE
Else
Let Non-manual-flag = FALSE
End If
End Non-manual-negation

Subroutine : New-Time-Frame(IN: Time-Marker)
If Time-Marker = PAST then
Let Time-Frame = “before™- Time-Frame
Else If Time-Marker = FUTURE then

Let Time-Frame = “after”- Time-Frame
Else

Let Time-Frame = Time-Aarker
End If

End New-Time-Frame
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Subroutine : Get-time(out: Time)
Let Time = Time-frame
End Get-time

Subroutine : Store-last-subject(in: Subject)
Let Last-subject = Subject
End Store-last-subject

Subroutine : Get-last-subject(in-out: Subject)
Let Subject = Last-Subject
End Get-last-subject
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Some Sample ASL Queries in LM

-J

q
JORG BORN WHERE? (“Where was Jorg born?”)
= those( X, country, born_in(X, jorg))

q
BRIGITTE OWN CAR (ESTAB.)? (“Does Brigitte own a car?”)
= for(S, X, cars, and(iscar(X), own(brigitte, X)), greater than(cardinality(S),0)))

CAR (INDEX) RES? (“Is the car red?”)
= for(S, X, cars,iscar(X),if(equal{cardinality(S),1),isred(X))).

9
ALICTA, DIANA WORK WITH WHO? (“Who do Alicja and Diana work with?”
= those( X, people, work_with([alicja,diana, X))

ADMINISTRATIVE EMPLOYEE LIVE_IN BURNAB;'.’ (“Does any administrative employee
live in Burnaby?”)
= for(S, X,employee, and(admin(X), employee( X ), livein(burnaby, X)),

greater than(cardinality(S),0))

9
- eliGIVE 5rg pepe CAKE?  (“Did Eli give Jorg and Pepe a cake?”)

= for(S1, X1, cakes, and(iscake(X1),
for(52, X2, people,and(isperson(X2),
give(eli, X2, {jorg, pepe})),
equal(card(52),2))),
greater than(card(S51),1))

a
. GIFT, DIANA GIVE WHO? (“To whom did Diana give a gift?”)

those( X, people, for(S, X, gi ft, give(diana, X, gi ft),
greater than{cardinality(S),0)))
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