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Abstract

This thesis sets the stage for development of an autonomous-vehicle control theory.
Control of autonomons vehicles is not an artificial intelligence dilemma, but is a
control problem where the control environment is often under-sensed. In this thesis
we hypothesize that machines are only capable of applying a law given to them by their
designers. As the possessors of a law, machines do not understand the environment
in which they exist, but simply reaci to that environment as they were built, or
programmed to react. We present the new ideas of sensor and actuator space as
a mathematical framework for describing under-sensed control problems in terms of
environmental situations that sensors are able to differentiate. We also show that
computer-based control systems have a lookup-table equivalent, referred to as a Q-
SAM. Each sensor-differentiable situation is associated with a single location in the
Q-SAM.

We use Q-SAMs to explore the potential of situation-based control and show that
they can accept many different forms of control laws. When control environments
are under-sensed, we have found that the definitions associated with differentiable
environmental situations are a function of the entire vehicle as well as the environ-
ment in which the vehicle exists, which is not the case for critically sensed control
environments.

We describe a design methodology for autonomous systems that resulis in systems
which are robust to disturbances in their environments. We use the methodology to
determine the sonar parameters required by an autonomous underwater vehicle for
the task of obstacle avoidance in an unknown obstacle field. Limitations of the vehicle

are discussed.
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Glossary

actuator mapping the function that describes how the actuators affect the envi-
ronment as well as the natural changes of the environment

actuator space the n-dimensional space that represents all possible actuator re-
sponses

adequacy refers to a controller that is able to complete its task regardless of initial
conditions, but not necessarily in the most efficient manner

AT Artificial Intelligence

Allen is an autonomous vehicle developed by the MIT mobot lab that uses only
behaviour based control techniques

ALV Autonomous Land Vehicle, an AV used by the Hughes Al centre to demonstrate
a hybrid control architecture

ARDF Actuator Response Distribution Function. This function is used to increase

the rate at which a Q-SAM is filled.
AV Autonomous Vehicle
AUV Autonomous Underwater Vehicle

behaviour the manifestation of activity in the environment that results from apply-
ing specific responses to specific inputs. The inputs are generally not associated
with internal representations.

behaviour trapping a limit-cycle type of effect that occurs when control oscillates
among multiple independent behaviours

brittle a term used to describe systems that are not robust to changes in their envi-
ronments

complete used with reference to sensor and actuator space. Sensor space is com-
plete when all environmental situations requiring differentiation by the control
mapping are associated with different regions of sensor space. Actuator space
is complete when all actions of the actuators required by the control mapping
are associated with independent locations in actuator space.

xiii
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consistent refers to partitions. Partition A is consistent with partition B when
all regions in the space differentiated by partition B are also differentiated by
partition A

control mapping the function that transforms sensor inputs into actuator responses

critically sensed refers to control environments that are described with only re-
cently sensed sensor values. For example, the environment of a position control
system is critically sensed by a position sensor.

disturbance a change in the environment for which a system was not specifically
designed

downloading a method of filling a Q-SAM by copying the responses determined by
another controlier

environment space the portion of the control cycle that represents the physical
world. Environment space includes computer memory used for internal repre-
sentations.

goal region the region of sensor space associated with a completed task.

global adaptation adapting the control surface by changing the actuator responses
associated with many or all locations in sensor space.

hybrid architecture a control system that uses both behaviour-based and internal
representation-based control techniques

internal representation a representation in computer memory that is used to gen-
erate control. For AVs, a common internal representation is a world map.

local adaptation adaptation of the control surface by changing the responses asso-
ciated with one, or very few, differentiable situations

partition a division of sensor or actuator space by function. For a complete space,
the quantization partition must be consistent with all other partitions

Q-SAM Quantized Sensor to Actuator Map. Q-SAMs are the lookup table equiva-
lent of computer programs.

recently sensed sensor values The most recent values returned by sensors. These
are not values returned from internal representations.

robust refers to a control system that responds well to disturbances in its environ-
ment

ROV Remotely Operated Vehicle

sensor mapping the function that transforms environmental situations into loca-
tions in sensor space

sensor space the space that represents all situations the sensors can sense

SHAKEY an AV developed at Stanford Research Institute which relies heavily on
internal representation-based control techniques
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situation a specific scenario in the environment

situation differentiation refers to which environmental situations are differentiated
by the sensor transformation

situation identification refers to specification of the meaning of each location in
sensor space

STRIPS STanford Research Institute Planning System

sufficient with reference to sensors that are able to differentiate all situations requir-
ing differentiation by the control mapping.

under-sensed refers to control environments that are not described with only re-
cently sensed sensor information. For example, a single sonar beam cannot
sense all the obstacles in an environment, so the obstacle control environment

is under-sensed.

world map an internal representation commonly used by AVs



Nomenclature

«a width of sonar beam pattern

oo infinity, meaning no objects are presently sensed by a sonar sensor
! infinit i bject i db

oo’ not infinity, rueaning an object is sensed by a sonar sensor

#, angular orientation of AUV with respect to the world-based coordinate system
(0, = 0° means the vehicle is pointing along the world’s positive y-axis)

— means that the refenced item is irrelevant

a actuator state vector, represents present location in actuator space

a, actuator state vector at time index n, represents present location in actuator space
a, portion of the actuator state vector associated with real actuators

a4, portion of the actuator state vector associated with internal representations
b parameter used to determine the width and length of sonar beam patterns

¢ minimum desired clearance between the vehicle and obstacles

d distance the sonars are placed in front of the centre of the vehicle

d damping coefficient of the AUV in the altitude-keeping example

d; distance to the closest object detected in the left sonar beam pattern

d, distance to the closest object detected in the right sonar beam pattern

¢ environment state vector, represents present location in environment space

e, environment state vector at time index n, represents present location in environ-
ment space

e, portion of the environment state vector associated with the real environment
€.m portion of the environment state vector associated with internal representations
F, force applied at time index n in the AUV altitude-keeping example

g sensor mapping, represents the transformation of the environment into sensor space
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g, portion of the sensor mapping that represents the effects of real sensors
Gum portion of the sensor mapping that represents reading internal representations

h actuator mapping, represents the effects of the actuators on the environment and
the continual changes of the environment

h. actuator mapping, represents the continual changes of the environment

h, portion of the actuator mapping that represents the effects of the real actuators
on the real envrionment and the continual changes of the real environment

h, actuator mapping, represents how the actuators effect the environment
h.m portion of the actuator mapping that represents storing internal representations

h’ a composite function that shows that a vehicle in the environment is a modelable
- part of that environment

! length of a sonar beam pattern
M mass of the AUV in altitude-keeping example

m control mapping, specifies which actuator responses are associated with which
situations differentiated in sensor space

m, portion of the control mapping that assigns actuator responses to real actuators
(the responses can be determined from both internal representations and real

sensors)

Mym portion of the control mapping that assigns actuator responses to internal repre-
sentations (the responses can be determined from both internal representations
and real sensors)

Mode mode command sent to the low-level control algorithm

P4 actuator partion of sensor space (determined by the actuator responses assigned
to different situations under control law m)

P¢ goal partition of sensor space (defines which regions of sensor space are associated
with a complete task and which are not)

Pg quantization partition of sensor space (caused by quantization of sensor values)
r minimum turning radius of the AUV

§ sensor state vector, represents present location in sensor space

§, sensor state space at time index n, represents present location in sensor space
s, portion of the sensor state vector associated with real sensors

Swm portion of the sensor state vector associated with internal representations

t time



t, indexed time

z x-position of the next vehicle waypoint sent to the low-level control algorithm
z, x-position of the vehicle’s endpoint (goal) location

z, x-position of an object endpoint

z, x-position of the vehicle in the world coordinate system

I, X-position of the vehicle’s next waypoint

y y-position of the next vehicle waypoint sent to the low-level control algorithm
y position of the AUV in the altitude-keeping example

y velocity of the AUV in the altitude-keeping exampie

Y, y-position of the vehicle’s endpoint (goal) location

Y, y-position of an object endpoint

Y, y-postition of the vehicle in the world coordinate system

Yu y-position of the vehicle’s next waypoint

XViil



Chapter 1

Introduction

1.1 Motivation

Advances in computational power over the last few decades have allowed our interest
in control to expand beyond controlling simpie equipment, like motors and conveyor
belts, which operate in completely structured environments, to attempting to control
autonomous vehicles that operate in the real world, which is an unstructured environ-
ment. Biological creatures have operated autonomously in the real world for many
millennia, and of them, it is thought that humans are the most able to conceptu-
alize and abstract about that real world. The human abilities of conceptualization,
abstraction and reasoning, coupled with an ability to react to immediate situations,
allow people to perform complex tasks in an ever-changing world. With the computa-
tional power of computers pressing towards that of the human mind, researchers are
attempting to build computer-controlled machines to perform tasks that to date only
humans have been able to perform (Wallich 1991).

Yet, with all this computational power, researchers are still unable to endow a
machine with the cognitive abilities of a small child. The reason for this inability is
that there is more to humans than the complex collection of biological components
of which humans physically consist, and computers are only the sum of the electrical
components of which they are comprised. This “more” we refer to may be unique
to humans and has been labeled as gestalt and fringe consciousness (Dreyfus 1992).
Unfortunately, there is no proof of a human synergistic existence short of the fact that

all attempts at artificial intelligence, and more Speciﬁca.lly creating artificial creatures,
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have been very disappointing (Wallich 1991).

An illustration of this unique facet of humanity, relative to lack of it displayed by
computers, is how people learn to play chess (Dreyfus 1992). When a person first
learns to play chess, they learn the rules for moving each piece on the board in rote
fashion. After several games however, the pieces and the chess board take on new
meanings for the player, who no longer considers every possible move all the time.
Instead s/he only considers moves that are significant. As more experience is gained,
the player rises above the rules and begins to look at the game in terms of flows and
directions of attack. Rising above the rules in this manner is conceptualization and
abstraction. Computers on the other hand, are not able to rise above the rules. They
are capable of only applying the rules which they have been given in rote fashion.
The success of computer chess programs lies in the fact that computers are able to
calculate the outcome of several thousand moves every second, something that people
cannot do.

The fact of the matter is that computers are able to perform tasks in only rote
fashion. The “intelligence” they possess is in the form of rules, which were given to
them by their designer, that they apply to different environmental stimuli. Comput-
ers do not understand the environment in which they exist but simply react to the
environment as they were built to react. More precisely, computers are simply the
possessors of a law that is handed down to them from a person that understands the
environment in which the computer exists, and the intelligence resides in the person
that determined the rules.

Computers used to control equipment in the real world have an added constraint
of requiring sensors capable of differentiating environmental stimuli to which the com-
puter provides responses. Computers cannot respond to environmental stimuli which
they cannot sense. Also, computers can respond to environmental stimuli with only
responses associated with the actuators available to the computer. Computers cannot
provide responses that their actuators cannot effect. From an overall perspective,
computers are limited to supplying responses associated with their actuators to envi-
ronmental stimuli that their sensors are able to differentiate. To the author’s knowl-
edge, this thesis is a first look at viewing autonomous vehicle control as a problem in
differentiating environmental stimuli and providing appropriate actuator responses to

those stimuli once they have been differentiated.
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1.2 Principles

At the outset of this thesis, we feel that it is important to clearly define the opin-
jons of the author. It is our opinion that machines, which includes computers and
autonomous vehicles, are fundamentally different than human beings. This contrasts
with the opinions of many artificial intelligence researchers who do not observe this
distinction between man and machine and who believe that if a person can do some-
thing, so can a machine. Consequently, we do not believe that machines, including
computers, are intelligent or can be programmed to be intelligent. It is our opinion
that machines simply implement a law which was designed for them by their design-
ers and that anything that can only implement a law is not intelligent and does not
understand what it is doing.

With our opinions, it is reasonable to expect autonomous vehicle designers to ex-
tend the ideas of control theory for the analysis and exploration of the capabilities
and limitations of autonomous vehicles because they are, like the equipment that
control theory was developed to analyse, machines. However, it is our opinion that
this has not been the case. Instead of continuing to develop control theoretic ap-
proaches, many autonomous vehicle researchers have chosen to base their designs on
the concepts of artificial intelligence. We illustrate this change in development strat-
egy in figure 1.1. It is our opinion that one reason for this change is that many of
the sensors used on autonomous vehicles, and many of the environments in which
autonomous vehicles operate, are difficult, if not impossible, to describe in the math-
ematical framework of feedback control theory (Van de Vegte 1986). A second, and
more persuasive argument, is that many of the sensors used by autonomous vehicles
have similar scopes, and limitations, as human sensors. For example, cameras and
human eyes provide very similar information about the environment. Consequently,
the ideas of artificial intelligence are very appealing to the designers of autonomous
vehicles. However, it is our opinion that the use of artificial intelligence techniques
has unreasonably raised expectations of autonomous vehicles and has exposed many
of the limitations of machines that are not apparent in humans. In this thesis, we
move back to a control-theoretic perspective of autonomous vehicle development, as

shown in figure 1.1.



CHAPTER 1. INTRODUCTION 4

A
This AQ
Thesi
‘Theoretical Autonomous
Advancements Vehicle
Development
Control Artificial
Theory Intelligence

Different Theoretical Fields of Study
Figure 1.1: Autonomous vehicle development strategy

1.3 Contributions

The major contribution we make in this thesis is presenting a different set of initial
assumptions on which to base development of autonomous vehicles. We assume that
computers, and computer-controlled equipment, are not intelligent and do not under-
stand the environment in which they exist. In accordance with this assumption, we
show that computers, and computer controlled equipment, simply implement a law
that is determined for them by their designers. This task is accomplished using the
concept of Quantized Sensor to Actuator Maps, or Q-SAMs, which are lookup-table
equivalents of computer-based control algorithms.

Another contribution we make in this thesis is introducing the concept of under-
sensed and critically sensed centrol environments. Under-sensed control environments
are ones in which sensors do not sense the entire control environment simultaneously,
and critically sensed control environments are ones in which sensors do sense the entire
control environment simultaneously. We show that autonomous vehicle development
is a control problem where the control environment is often under-sensed. In doing
so, we set the foundation of a control theory for systems operating in under-sensed
control environments.

The foundation of this control theory consists of several concepts introduced in
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this thesis. These concepts are sensor space, actuator space, situations, situation
differentiation and situation identification, which are all related. Sensor space is the
conceptual interface between sensors and control laws and actuator space is the con-
ceptual interface between control laws and actuators. By “conceptual” we mean that
there are no physical components associated with these spaces, not that they are
abstract ideas. Situations are specific environmental scenarios. Sensors transform
each situation into one location in sensor space. Situation differentiation is determin-
ing which situations are transformed into different regions of sensor space. Situation
identification is assigning a meaning to each differentiable region in sensor space.

We also introduce the concept of Quantized Sensor to Actuator Maps, or Q-SAMs,
which are lookup-table equivalents of computer-based control algorithms. Q-SAMs
are used to explore the potential of situation-based control.

The final contribution we make in this thesis is showing that situations in the
environment that are differentiated in sensor space by sensors operating in under-
sensed control environments are a function of the entire autonomous system. This is in
contrast with critically sensed control environments whose situations are a function of
only the sensor transformation. This concept is the basis of a design methodology that
we introduce for developing autonomous vehicles that operate in under-sensed control
environments. This methodology develops systems that are robust to disturbances in

their environments.

1.4 Thesis Outhne

In chapter 1, this ché.pter, we have provided motivation for our research and stated the
contributions we have made in this thesis. We now conclude chapter 1 by providing
an outline of the remainder of this thesis.

In chapter 2, we present a brief history of Autonomous Vehicle (AV) develop-
ment. The reader is introduced to the two basic paradigms of autonomous control:
behaviour-based control and world map, or internal representation, -based control.
To present a clear picture of the state of the research field, several “key” autonomous
vehicles are described and their accomplishments and limitations discussed with ref-

erence to situation differentiation.
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In chapter 3, we describe the autonomous vehicle control cycle and show that Q-
SAMs are functionally equivalent to computer-based control systems. The concepts of
sensor space, actuator space, situations, situation differentiation and situation iden-
tification are described in this chapter. We also show how both autonomous vehicle
control paradigms are represented in the Q-SAM representation and the autonomous
vehicle control cycle.

In chapter 4, we explore the potential of situation-based control, a new method
of control law description, by using the Q-SAM representation of a control law. Q-
SAMs are shown to support many forms of control laws by using them to implement
algorithmic as well as expert-based control laws. The potential of situation-based
adaptive control is examined.

In chapter 5, we outline a design methodology for developing autonomous vehicles
that operate in under-sensed control envircnments. The methodology specifies the
appropriate use of internal representations in autonomous vehicle control systems to
ensure that the autonomous vehicles are robust to disturbances in their environments.
In this chapter, we also show that the situations differentiated in sensor space are a
function of the entire autonomous vehicle when the control environment is under-
sensed. Through the course of this chapter, we examine the potential of vehicle based
sonar systems for obstacle avoidance.

Finally, in chapter 6, we provide a general discussion of our results, summarize

the significant ideas presented in this thesis and indicate areas of future work.



Chapter 2
Background

This chapter provides the reader with a background in autonomous vehicle research
and a foundation for the research described in this thesis. To accomplish this task,
we first present a general discussion of the philosophy and activity of the autonomous
vehicle 7(:ommunit,y. We then describe the fundamental assumption that makes our
research different from previous research. To clearly illustrate the research field, we
describe the philosophy of, and systems developed by, several key research groups.
The progress of the implementation phase of each group is discussed with reference to
this thesis. The chapter is concluded by summarizing the present state of autonomous
vehicle research.

At this point, it is imporiant to note that there is no general consensus about the
meaning of the terms intelligence, learning, understanding and reasoning. It is our
opinion that this circumstance exists because there are no direct methods of observing
these human characteristics. Instead, these attributes are often determined indirectly
by a system’s ability to provide appropriate responses to stimuli. Unfortunately,
appropriate responses can also be generated by systems that are, in our opinion, not
intelligent, which is the case for autonomous vehicles or, as they are sometimes referred
to, artificial creatures. For example, we do not consider a light switch intelligent
simply because it can turn a light on, even though turning a light on is sometimes an
appropriaie response. This lack of definitions has left much leeway for use of these
terms in the literature. Counsequently, the terms intelligence, learning, understanding
and reasoning are used in many different contexts in this chapter to properly present

the ideas of different research groups. Where it is not obvious, we have noted the
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form or definition of intelligence being described.

In section 2.1, we provide a general background of AV research, and describe
the two basic paradigms of autonomous vehicle control: behaviour-based control and
world map or internal representation-based control. In section 2.2, we describe the
fundamental assumption that makes our research different from previous research, and
discuss the implications of that assumption. In section 2.3, we outline many limita-
tions of autonomous vehicle control strategies. In section 2.4, we describe the standard
autonomous vehicle control architecture. In section 2.5, we describe SHAKEY, an AV
that demonstrates many of the ideas of traditional artificial intelligence through its use
of internal representations. We discuss the success of the SHAKEY project in terms of
situation differentiation. In section 2.6, we describe Allen, a behaviour-based AV. We
also describe the subsumption architecture, which is the basis of most behaviour-based
control architectures, as well as some of the limitations of behaviour—based control.
In section 2.7, we discuss the Autonomous Land Vehicle (ALV), a hybrid system that
uses both behaviour-based and world-map-based control paradigms. We also discuss
the limitations of this system in terms of situation differentiation. Finally, in section
2.8 we summarize the significani ideas discussed in this chapter and in section 2.9 we

discuss some of the directions taken by autonomous vehicle researchers.

2.1 General Background

Much of the work on autonomous vehicles is centred in the artiﬁcialrintelligence com-
munity, even though the work is really a controls problem. By the term “controls
problem”, we mean that autonomous vehicles operate in a control cycle in which they
continually read sensors and perform some calculations on those sensor values to set
actuators. The reason for this state of affairs is that autonomous vehicles face similar
sensing impediments as human beings: namely sensors that are incapable of sensing
the entire environment simultaneously. For example, human eyes cannot see an entire
city and yet people are able to plan and navigate a path through a city. It is the
author’s opinion that a person’s ability to accomplish this navigational task relies on
some form of mental internal representation of the city (ie. a world map) that is
sufficient for navigational purposes. Another reason that much autonomous vehicle

work is done in the artificial intelligence community is that many researchers believe
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they are creating artificial creatures and not just machines (Brooks 1991). Their
fundamental assumption is that the intelligence which humans possess is biologically-
based and therefore they should be able to replicate it with a machine. Consequently,
many of the designs of autonomous vehicles have their roots in psychology and not in
‘engineering. The work done by the MIT Mobot Lab (Brooks 1990) is based on be-
haviourist psychology. The work done at the Georgia Institute of Technology (Arkin
1990) is based on the psychological concept of schemas. The work done by Laird and
Rosenbloom (1990) is based on an artificial intelligence system called SOAR,, whose
ideas have been expanded into a unified theoryrof cognition (Newell 1990).

The ideas of psychology have led to the development of two basic components
in autonomous vehicle control systems, namely: situated reactive elements, known
as behaviours, and internal representations, generally known as world maps to the
autonomous vehicle community. Behaviours are a desired manifestation of activity
in the world (Brooks 1986). They are created through artight coupling between
sensing and actuation (Brooks 1991). That is, only recently sensed sensor values
are used to determine actuator responses. For example, a mobile robot developed
by Brooks (1986) has an obstacle-avoidance behaviour controlling the robot. The
robot uses the most recent distance values, returned by a ring of sonars mounted
around the robot’s chasis, to determine the direction and distance of the robot’s next
motion. The intelligence of the robot is displayed when the robot moves away from
objects. In general, the intelligence of behaviour-based robots is evident from the
interaction between the robot and the environment in which the robot exists. That
is, the intelligence is observed indirectly through activity. It should be noted that
Agre and Chapman (1990) state that the robot itself does not need to be intelligent
for intelligence to exist, but that intelligence is a result of the interaction between the
robot and the environment in which the robot exists. For behaviour-based systems,
we can say that intelligence is in the eyes of the beholder and is displayed through
activity.

Though behavioural systems are able to perform tasks in the world, in our opinion
they are not intelligent. Behavioural systems are simply able to produce appropriate
responses to the stimuli which they can sense. That is, 1in our opinion, they do not

understand the environment in which they exist, but simply respond to it.
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On the other hand, internal representations, the backbone of the artificial intelli-
gence community, are based on models of how people view the world. For example,
Simmons and Krotkov (1991) use range finders to construct internal representations
of terrain geometry surrounding a vehicle from which their system reasons. Another
example is STRIPS, a reasoning system based on first-order logic, which reasons
about the blocks world (Nilsson 1980). The blocks world defines every object in the
world and all potential relationships between the objects. The general approach to
generate solutions with internal representations is as follows. Determine the repre-
sentations (objects) and relationships among the representations for the domain of
interest. Then, set up a search space and search! through all possible combinations of
relations and representations until one is found that satisfies the system goals (Nils-
son 1980). The intelligence of systems using internal representations is based on the
fact that they follow a logical flow of thought and is demonstrated when the system
determines the correct solution to a problem. For autonomous vehicles, an example
problem is that of determining the “best path” between two locations in the world.

Unfortunately, most work done by the artificial intelligence community is faced
with an insurmountable hurdle that prevents the adoption of their ideas by au-
tonomous vehicle designers. Many Al researchers assume that sensing systems will
one day be able to uniquely identify all the objects in the world with which their
systems reason. Unfortunately, this is an unreasonable assumption. Work done by
Ullman (1984) on visual routines suggests that to recognize an object being sensed
requires a priori knowledge about the object being sensed. Observation of this hurdle
led to the beginnings of behavioural intelligence (Brooks 1986) and also provides a
basis for our research.

Though computers using internal representations “reason” about objects, they are
not intelligent in the sense that people are intelligent. They do not, in our opinion,
understand the environment in which they exist. Instead, computers using internal
representations simply apply a set of algorithms determined by their designer, in a
specific manner also determined by their designer, to the scenario or problem with
which they are faced. More specifically, these systems are reacting to stimuli in the
same manner as behavioural systems, though the stimuli are different. Consequently

the two components of autonomous vehicle control systems are functionally equivalent

1search strategies are often referred to as control strategies in the artificial intelligence community.
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and, in our opinion, possess the same amount of intelligence: none.

2.2 Fundamental Assumption

The fundamental assumption of our research is radically different from those of previ-
ous groups. We assume that human beings are more than just a collection of biological
components and that computers are just a collection of electrical components. This
implies that intelligence, learning, understanding and reasoning do not have the same
meaning for autonomous vehicles as they do for humans. It also means that the task
performed by an autonomous vehicle control system is similar to the task performed
by control systems of simpler machines, like motors, and that autonomous vehicle
development is one facet of control theory.

In feedback control theory (Van de Vegte 1986), mathematics is used to describe
control problems. However, much of the work with AVs has not been described with
the mathematical tools of control theory because AVs often operate in under-sensed
control environments. By “under-sensed” we mean that sensors are not able to sense
the entire control environment simultaneously. For example, to control an AV to
navigate through an obstacle Aﬁeld, the control environment is described by the position
and size of all the obstacles in that obstacle field. In all but very restricted cases,
sensors are unable to sense this control environment simultaneously, so the control
environment is under-sensed. On the other hand, when sensors are able to sense the
entire control environment simultaneously, we say that the control environment is
“critically sensed”. For example, to control the position of a motor shaft, the control
environment is described by the position of the shaft, which is critically sensed by a

position sensor.

2.3 Limitations of Different Control Strategies

In the framework of control theory, we accept that tangible limits on autonomous
vehicle functionality exist. In fact, we can even look for those limits which, to the au-
thor’s knowledge, is Something that has not been done by anybody in the autonomous

vehicle community. Unfori;unately, many researchers do not detail the limitations they
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experience because they do not view AV development as a control problem, but in-
stead compare their work with humans, who are more than machines. For example,
Daily et al. (1988) describe successful experiments with an autonomous land vehi-
cle, though careful analysis of later publications, (Payton 1990), (Olin and Tseng
1991), reveals that the experiments were not so successful. Consequently, many of
the ideas discussed in this section are not referenced because they have been obtained
through the author’s experience and by piecing together comments made by various
researchers. Most of the ideas in this section are described thfough exammples because,

“as mentioned earlier, suitable mathematical c011stfucts are not available and because
examples provide a clear picture of the concepts.

We refer to some of the limitations of AVs as brittleness associated with the use of
internal representations. Brittle refers to a lack of robustness on the part of the vehicle
to disturbances in its environment. Brittle is a vague term that encompasses the many
odd ways that systems using internal representations fail. We discuss three forms of
brittleness related to autonomous underwater vehicles, for more, the interested reader
is referred to Malcom and Smithers (1990).

The first form of brittleness we discuss results from using internal representations
to provide inputs for control algoritims when the system is operating in a dynamic
environment. Consider using a world map to determine a path through the world.
If any object in the world moves afier the path is generated, it is possible that the
vehicle will pass through the moved object. Consequently, internal representations are
not robust to changes in the environment and therefore can only guarantee reliable
control in undisturbed environments, in our case, a static world. This also implies
that the validity of any internal variable is effectively unknown any length of time
after it is sensed, and the likelihood of the varizble being valid diminishes with time
since the variable was sensed.

A second form of brittleness in control generated from world maps results from
cumulative sensor errors. Errors do not accumulate in traditional control systems
because traditional sensors sense their values relative to a fixed reference. Vehicle
based positioning systems however, do not have any fixed refe.ence with which they
are associated. If an onboard positioning system has a 5% error, then after traveling
3m the vehicle can be up to 0.15m from its sensed location. Or, from the vehicle’s

perspective, everything in the world map is now out by up to 0.15m. As the vehicle
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continues to travel, the position of objects in the map becomes increasingly erroneous.
Therefore, as time goes on, the likelihood of a collision with an object increases
because the vehicle’s knowledge of obstacle locations decreases. Cumulative errors .
are disturbances for which control systems that use internal representations are not
robust, unless the internal representations can be updated periodically.

A third form of brittleness results from computational explosions of which, all
world maps are susceptible. Systems operating in dynamic worlds have strict timing
constraints on their control cycles to maintain stability. Unfortunately, the compu-
tational time required to use a world map grows exponentially with the number of
elements in the map and can cﬁickly grow beyond the limits of the control cycle. Con-
sequently, the use of world maps can result in unstable systems because of excessive
computational requirements. |

Brittleness also results from excessive extrapolation of sensor data. This is not
related to internal representations specifically, but instead is related to how humans in-
terpret data and the internal representations used by humans. This form of brittleness
- is very evident when vision systems are employed as sensors in control systems. For
example, the vision systems on both the Autonomous Land Vehicle (ALV) (Thorpe
1991) and the Stanford Cart (Moravec 1983) have been noted to be sensitive to both
shadows and changes in illumination, a common vision problem. In Thorpe (1991),
the vision system Vomors tracks lines on the edge of roads the ALV wishes to follow.
However, if the wrong edge is detected by the vision system, the vehicle will follow
the new edge, which might take the vehicle off the road. This brittleness results
when parameters used by control algorithms are not sensed directly, but instead are
extrapolated from other sensor data. Though errors with vision systems might be in-
frequent, their occurrence is unpredictable and can be catastrophic. A direct method
of sensing the line on the edge of the road, if it existed, would be much more robust
than using a vision system. Consequently, great care must be exercised when sensor
data must be extrapolated for the control algorithm.

A problem common to behavioural systems has been independently labeled as
as a command arbitration problem (Payton 1990) and behaviour conflict trapping
(Belllngha.m 1990). Both terms describe a sequence of actions associated with in-
dependent behaviours, on a vehicle that is controlled by multiple independent be-

haviours, frustrating each other to the point that the vehicle is placed in a limit cycle.
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By “independent behaviours”, we mean that the vehicle is controlled by different con-
trol algorithms, depending on the present sensor values. The example Bellingham
provides is that of an AUV which is confronted with an obstacle on its left and shal-
low water on its right. The two independent behaviours controlling the vehicle are
called avoid obstacles and avoid shallow water. If obstacles are detected, the obsta-
cle avoidance behaviour controls the vehicle. If no obstacles are detected, the avoid
shallow water behaviour controls the vehicle. As we can see, the obstacle avoidance
behaviour has the highest priority. Initially, the obstacle avoidance behaviour first
turns the vehicle away from the obstacle and into shallow water. Once clear of the
obstacle, the avoid shallow water behaviour turns the vehicle away from shallow water
and back towards the obstacle. When the obstacle is again sensed, the avoid obstacle
behaviour turns the vehicle back to shallow water. The vehicle oscillates between the
obstacle and shallow water until it slips between the two or runs aground. This limit
cycle may be temporary or permanent, depending on the situation. In this thesis, we
call behaviour trapping “behaviour fusion” because the vehicle exhibits a behaviour
that is a composite of both independent behaviours controlling the vehicle. As will be-
come apparent, the effects of behaviour fusion must be incorporated into autonomous
vehicle design methodologies. |

A limitation of behavioural systems results from the fact that behavioural systems
do not respond to stimuli which they cannot sense. Observing this fact with the
limited sensing capabilities of today’s vehicles, we see that today’s behaviour-based
control systems are unable to plan paths through environments in the way people
plan paths. Consequently, today’s behaviour-based systems are limited to bumbling
through the environment like a person with no recollection of how to travel to their

destination.

2.4 Control Architecture

All control systems for mechanical devices can be decomposed into a hierarchical
organization of feedback loops like those described by Albus (1981). However, it is
often difficult to discern the hierarchical loops when controllers are developed using the
concepts of behaviours and reasoning systems. Instead, it is easier to view autonomous

vehicle control structures as the two level hierarchy shown in figure 2.1. The low-level
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Figure 2.1: Standard autonomous vehicle control architecture

control system is responsible for maintaining vehicle stability in the world and is
generally developed using feedback control theory. The control environment of the
low-level control system is usually critically sensed. The high-level control system
provides setpoints to the low-level control system, and is often associated with an
under-sensed control environment. That is, control tasks which require “cognitive”
type capabilities. For example, the high-level control system for an AUV might be
concerned with obstacle avoidance, a generally under-sensed control environment,
and provide setpoints in the form of waypoints or attitude commands to the low-level
control system, which operates in the critically sensed control environment described
by the vehicle’s position and velocity.
All the systems described in this chapter adhere to this general architecture. The
values used as setpoints for each system are different because the choice of setpoints is
enerally application specific. In the case of autonomous underwater vehicles, Belling-
ham (1990) found that waypoints provide better control than attitude setpoints be-

cause of the dynamical properties associated with underwater vehicles.
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2.5 SHAKEY: SRI International

SHAKEY (Nilsson 1984)% is the first system we describe because it is one of the
first autonomous vehicles developed and it is a complete system that demonstrates
the ideas of traditional artificial intelligence in a real robot. SHAKEY is a mobile
cart that has a camera and two range finders which it can pan and tilt. SHAKEY
" determines its position and orientation from two shaft encoders connected to its two
drive wheels.

SHAKEY’s environment consists of a few rooms that are connected with doorways.
The walls are light and their edges highlighted with thick dark lines. Inside the rooms
are a few blocks and wedges, each painted a distinct colour for easy identification by
the vision system under proper lighting, which is provided.

The general architecture of SHAKEY’s higher-level control system is shown in

figure 2.2, which is the decomposition by function organization that is used by many

Task To low-level
From in, Analysis NG (= ask Lsta ot uatorg—e closed loop
Sensors l 'l l ¥ B *ecomposition control system

Figure 2.2: Decomposition by function type of controller organization

autonomous systems. The sensing and sensor analysis subsystems update internal
representations that are stored in the reasoning subsystem. The reasoning subsys-
tem uses the internal representations to develop a plan that accomplishes system
goals, which are determined by an operator external to SHAKEY. A typical goal
for SHAKEY is to organize the blocks in a certain fashion. The task decomposition
subsystemn decomposes the plan generated by the reasoning subsystem into physical
actuator commands that are then executed by the actuator subsystem.

SHAKEY is intelligent because it reasons about the environment in which it ex-
ists. Reasoning for SHAKEY means that it generates and compares different plans
to determine the best plan for accomplishing the system goal. The internal repre-
sentations and the rules which SHAKEY applies to those internal representations

are implemented with first order logic in the reasoning system STRIPS (S5Tanford

2This is the classical SHAKEY reference, unfortunately we were unable to obtain it. Instead,
our information comes from personal knowledge and secondary sources like (Nilsson 1980), (Brooks
1991) and (Shapiro and Eckroth 1987).
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Research Institute Problem Solver) (Nilsson 1980). First order logic is one mathe-
matical formalism that represents how humans deduce new facts from old facts. For
a more indepth discussion about SHAKEY, the reader is referred to appendix A.

Though SHAKEY’s success is said to stem from its ability to reason, its success
really stems form the fact that SHAKEY’s physical sensors, coupled with internal
representations, are able to differentiate all situations requiring differentiation by the
control algorithm. SHAKEY’s reasoning system is part of that control algorithm.
The situations requiring differentiation by SHAKEY pertain to the position and ori-
entation of SHAKEY and the objects in its environment. This feat is accomplished
through the meticulous engineering performed by SHAKEY’s designers.

This meticulous engineering overcame the hurdle described in section 2.1 and miti-
gated the brittleness associated with internal representations. The hurdle is overcome

by making everything in SHAKEY’s environment uniquely identifiable. For exam-

~ ple, all mobile objects, blocks and wedges, are uniquely identifiable through colour

coding, and all static objects, walls, doors and corners, are uniquely identifiable by
using the vision system in conjunction with the vehicle’s position and orientation. Un-
fortunately, this approach is generally not possible for systems operating in the real
world because of the vast number of different objects in the world. The brittleness
associated with a dynamic world is avoided by having a relatively static world. That
is, very little changes unless SHAKEY changes it. The brittleness associated with
cumulative errors is mitigated by frequently calibrating the positioning system. For
example, when SHAKEY’s vision system detects a corner, whose location is known,
SHAKEY can determine its own location by using the vision system in conjunction
~ with the range finders. The brittleness associated with computational explosions is
mitigated by not requiring SHAKEY to move at a fixed rate. SHAKEY can take as
much time as is necessary to make a move. Finally, the brittleness resulting from ex-
cessive extrapolation of sensor data, namely vision, is virtually eliminated by the well
constrained surface properties of all the objects in the environment. The meticulous
engineering by SHAKEY’s designers enables SHAKEY’s sensing system and internal
representations to differentiate all situations requiring differentiation by SHAKEY’s
control mapping;

Note that despite the fact that SHAKEY reasons, it always determines the same
actuator response for specific situations differentiated by the physical sensors and
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the internal representations. More specifically, SHAKEY’s reasoning system can be
viewed as a many-to-one mapping from sensor values, which include the values stored
in internal representations, to actuator values. This also means that SHAKEY sim-
ply applies the rules it was given. If SHAKEY is given incorrect rules, it performs

incorrectly.

2.6 Allen: MIT Mobot Lab

Allen (Brooks 1986) is the second system we describe because it is the first autonomous
vehicle built using only behaviour-based control techniques. Allen is a mobile robot
whose drive unit can rotate a specified number of degrees or move forward a specified
distance. Allen has 12 sonar transducers evenly distributed around its circular chasis,
one of which faces forward, that return values that are proportion'a.l to the distance
to the nearest obstacle in front of the transducer. Allen operates in regular office
environments.

Allen’s higher-level control sysiem is an implementation of the first three levels
of the subsumption architecture (Brooks 1986). In the subsumption architecture,
robots are decomposed into levels of task-achieving behaviours, as shown in figure 2.3.

The higher levels (larger numbers in figure 2.3) subsume the levels beneath them,

Level 7 reason about behaviour of objects
Level 6 plan changes to the world
Level 5 idendify objects
Level 4 monitor changes
Sensors —————————im Level 3 build maps et ACtuators

(to low-level

closed loop

Level 2 explore .
control system)

Level 1 wander

Level 0 avoid objects
Figure 2.3: Subsumption architecture

thus ensuring that the robot always incorporates its lower-level functionality into

its actions. The lowest level behaviour is avoid objects, which enables the robot
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to survive. A robot that uses only a level 0 controller moves as far away from all
objects in the world as possible. The level 1 behaviour, wander, makes the robot
move randomly around the environment. The robot wanders in such a way that it
avoids objects, and thus the level 1 behaviour subsumes the level 0 behaviour. The
level 2 behaviour, explore, determines interesting objects in the environment, based
on sensor values, and moves the robot towards those objects. The explore behaviour
subsumes the wander behaviour by supplying the wander behaviour with a constant
wandering direction. When the explore behaviour subsumes the wander behaviour, it
also subsﬁmes the avoid objects behaviour.

Allen is intelligent because it exhibits characteristics often attributed to biologi-
cal creatures. The explore behaviour gives Allen the appearance of curiousity. The
obstacle avoidance behaviour makes Allen appear to be aware of obstacles in its envi-
ronment. The intelligence of behavioural systems is thought to be more on the level
of an insect’s intelligence than on the level of a human intelligence (Brooks 1989). For
a more detailed discussion of Allen and the subsumption architecture, the interested
reader is referred to appendix B.

Though Allen is said to be a demonstration of insect level intelligence, it is really a
demonstration of the limited number of situations sensors are able to differentiate in
an unstructured environment. The situations Allen is able to differentiate pertain to
the size and shape of the free space surrounding Allen. By “free space” we mean areas
in the environment that are free of obstacles. Note that these situations do not pertain
to any object characteristics, as SHAKEY’s do, because object characteristics cannot
be differentiated by Allen’s sensors. Interesting objects for Allen are the farthest
points in sensed free space, a situation that can be sensed. One aspect of Allen and
its control system, which determines actuator responses using only recently sensed
sensor values, is that Allen is robust to changes in its environment. For example,
Allen moves away from objects that move towards it. However, Allen is not capable
of performing any practical tasks, it simply moves toward the farthest point in sensed
free space which, if Allenisin a hall, causes Allen to move down that hall or, if Allen
is in a large room, causes Allen to wander aimlessly in that room.

* This lack of functionality was addressed in Herbert (Conneli 1989), Allen’s succes-
sor, which has the added capability of being able to follow walls. However, Connell

found that wall following, with the intent to return to an initial location, without
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any internal representations is only useful in extremely limited domains, and that in
those domains wall following produces inefficient and circuitous routes. Other work
by Connell (1992) shows that sensors are able to differentiate the difference between
halls and the intersections of halls with doorways or other halls. This work also shows
the increased functionality that can be obtained by adding internal representation to
behaviour-based contral architectures.

In summary, Allen, like SHAKEY, determines actuator responses from sensor val-
ues and some predefined set of rules specified by Allen’s designer. The difference
betvreen Allen and SHAKEY is that Allen does not use any form internal representa-

tions.

2.7 Autonomous Land Vehicle (ALV): Hughes Al

Centre

The final system we discuss, the Autonomous Land Vehicle (ALV), is a hybrid system
that uses both internal-representation-based and behaviour-based control paradigms.
The ALV is well described in the literature, (Payton 1986), (Daily 1988), (Payton
1990), (Olin and Tseng 1991), (Thorpe 1991) and illustrates the folly of using internal
representations that cannot be sensed by sensors.

The ALV is an 8-wheeled vehicle designed to navigate over mildly rough terrain.
It uses an onboard navigation system to determine the vehicle’s position, orientation,
pitch and roll relative to the world. The ALV also has a range scanner that scans an
80° horizontal and 30° vertical swath in front of the vehicle. Experiments with the
ALV were conducted in a grassy field that contained gullies and rocks.

The control architecture of the ALV is shown in figure 2.4. The low-level control
system of figure 2.1 is incorporated into the Motion Controllers block of this archi-
tecture. For autonomceus vehicles, the ALV’s architecture is relatively standard in
the sense that it has a sensing leg (the left side of the figure) and an actuation leg
(the right side of the figure). The bottom portion of the architecture is connected to
real sensors and real actuators. As we move vertically in the perception system, data
is assimilated producing a more complete picture of the environment. As we move

down the actuation leg, tasks are decomposed into increasingly smaller subtasks to
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Figure 2.4: ALV control architecture

the point that they are actual motion commands. The different levels of the percep-
tion leg provide information which is pertinent to the tasks being decomposed in the
respective levels of the actuation leg. The structure of figure 2.4 is described in (Daily
1988) but the ideas supporting the architecture are described in (Payton 1986).

The mission-planning module defines system goals and constraints, and instructs
the mission-sensing module to configure the sensors to look for specific landmarks
in the environment. This level of the architecture is designed to interact extensively
with human mission planners. The world perception module maintains a world map
of the environment that includes a list of landmarks indicating which have and have
not been sensed. The route planner module uses the world map and the constraints
of the mission planner module to determine a satisfactory route through the environ-
ment. The local perception module performs sensor fusion. It identifies landmarks
and passes this information to the world perception module, and it identifies obsta-
cles and environmental conditions and passes that inforisation to the local planning
module. The local planning module uses route information and environmental infor-

~ mation to determine which reflexive behaviour will control the vehicle in the reflexive



CHAPTER 2. BACKGROUND

[
(3]

planning module. The virtual sensor module detects specific environmental features
as requested by the local perception module or the reflexive behaviour module. The
term “virtual sensor” is used because the sensor values might not correspond to a
single sensor, but might result from the processing of several sensor values. The re-
flexive behaviour module implements the currently active behaviour as specified by
the route planning module. For a more indepth discussion of the ALV, the interested
reader is referred to appendix C.

The ALV is considered to be intelligent because it uses both reasoning systems,
at the higher-levels in the control architecture, and behaviours, at the lower-levels in
the control architecture. Humans also use reasoning and behaviours. However, the
ALV, like SHAKEY and Allen, simply applies actuator responses to situations that
its sensors and internal representations are able to differentiate. The ALV is more
functional than Allen because it uses internal representations. The ALV can traverse
to distant locations in its environment, something that Allen cannot do. However,
to accomplish this feat, the ALV uses a world map which is supplied to it by its
designers. The sensors onboard the ALV are not able to sense the features stored in
that world map and consequently, the ALV cannot sense changes in the environment,
and is therefore brittle. Another reason the ALV is brittle is that the positioning
system accumulates errors that cannot be mitigated by any other vehicle sensors.
Consequently, the vehicle is limited to a range that is proportional to the rate at
which errors accumulate in the positioning system. Though not directly stated in the
literature, this limitation is evident from the fact that the ALV’s longest trip was only
735m. The situations the ALV’s sensors are able to reliably differentiate are those
pertaining to terrain obstacles in front of the vehicle, based on range sensor data.
Consequently, the ALV 1s able to successfully navigate local obstacles.

This work shows that despite complex internal representations, system functional-
ity is limited by the actuator responses associated with situations that can be reliably

differentiated by sensors.

2.8 Summary

This chapter provides a background and critical analysis of progress in autonomous

vehicle research to date. The autonomous vehicles described in this chapter illustrate
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that systems that do not use internal representations are robust to changes in their
environments, and that systems that use internal representations can be brittle. These
systems also illustrate that the underlying principle of operation of all autonomous
vehicles is that they take inputs, which include sensor data as well as things like
initial program parameters, and through some predefined set of rules and calculations
produce a set of outputs that are used to set actuators. The ability of these systems
to operate in a real world depends more on how well the sensing system is able
to differentiate different situations in the world and the merit of the mapping that
assigns actuator responses to each different situation than it does on the ability of the
processor. The remainder of this thesis puts a concrete form to the ideas of situation

differentiation and its applicability to autonomous vehicle control.

2.9 Discussion

In this section, we focus on how well researchers have followed through with their
ideas. In the case of Nilsson, he returned to strictly computer work after the SHAKEY
project. It is our opinion that the reason for this return is that the immense amount
of pure engineering required to make Al operate in a wholly contrived world daunted
the development of a system that would operate in the real world. More specifically,
the inability of sensors to sufficiently differentiate objects in general environments
prevents researchers from extending the SHAKEY paradigm to systems that operate
in completely unstructured environments.

A similar trend is noted with Brooks, who has not constructed a vehicle that
functions at level 3 of the subsumption architecture, which is the build maps level.
However, a robot that does construct maps of its environment, TJ (Connell 1992),
is able to identify only the office landmarks of the intersection between hallways and
other hallways or doors, which are very specific landmarks. It is our opinion that
the inability of sensing systems to sufficiently differentiate appropriate landmarks in
general environments prevents the extension of the behaviour-based control paradigm
to more complex tasks.

And ﬁhélly, with regard to the ALV, research also seems to have halted. The
researchers have not presented any work related to implementing the higher levels

of their architecture. The work presented by Payton (1990) simply describes better
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methods of using the sensor information available to their vehicle. In conclusion, it is
our opinion that the work of the groups described in this chapter is limited by a lack

of sensors able to sufficiently differentiate appropriate environmental stimuli.
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Chapter 3
‘Sensor Actuator Mapping Theory

This chapter provides a mathematical framework for the concepts associated with
situation differentiation and under-sensed control environments. Some elements of
this framework are the ideas of sensor space and actuator space, which are part of
a generalized contfol cycle describéd in this chapter. Sensor space is the conceptual
interface between sensors and control laws and actuator space is the conceptual link
between control laws and actuators. By “conceptual” we mean that there are no
physical components associated with these spaces, not that they are abstract ideas
because they are representable.

~ Using the generalized control cycle, we show that control laws can be represented
as a many-to-one mapping from sensor space to actuator space. When the mapping
is implemented on a digital computer, it is equivalent to a simple lookup-table, which
- we refer to as a Quantized Sensor to Actuator Map, or Q-SAM for short. By viewing
control laws implemented on a computer as lookup-tables, it becomes obvious that
computers simply implement a law, in our case a control law, and, in our opinion, do
not themselves understand the environment in which they exist.

In section 3.1, we describe an example that we use to illustrate the ideas pre-
sented in this chapter. In section 3.2, we describe the generalized control cycle of an
autonomous vehicle. In section 3.3, we expand the autonomous vehicle control cycle
to show the role of internal representations in that cycle. In section 3.4, we describe
sensor space, actuator space and environment space of the autonomous vehicle control
cycle. In section 3.5, we describe the sensor transformation, control law and actuator

transformation of the autonomous vehicle control cycle. In section 3.6, we introduce
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Q-SAMs, which are lookup-table equivalents to computer-based control algorithms.
Finally, in section 3.7, we summarize this chapter and in section 3.8 we provide a

general discussion of some of the ideas presented in this chapter.

3.1 Example

Many of the ideas presented in this chapter are very general. To illustrate these ideas
we use a simple example, that of an AUV whose task is to move to and then maintain a
specific altitude in the water column. The dynamics of this simplistic altitude-keeping

task are described by the linear differential equation
My(t) + dy(t) = F(t) (3.1)

where M is the mass of the vehicle, d the drag, F(t) the applied vertical force, y(¢)
the altitude off the bottom and ¢ is time. The desired altitude of the vehicle, y,,
is specified by an agent that is external to the AUV system. Since the controller
is computer-based, we assume that the force F(¢) is applied in steps that have a
time interval of At. This lets us represent the system in discrete time so that the

parameters become

Yn = y(tﬂ)
Z]n = yn(tn)
B, = F(t)

tn = tn1+ At

where n is the time index. For the control system discussions that follow, system
error, erry, is the difference between the desired altitude and the present altitude.

More specifically

erry, = Yo — Yn-
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3.2 Autonomous Vehicle Control Cycle

The control cycle of an autonomous vehicle is shown in figure 3.1. It consists of

m

P

Figure 3.1: Autonomous vehicle control cycle

three vectors, 3, @, €, that represent the states of the sensors, actuators and environ-
ment respectively. Each vector is associated with a corresponding space, the sensor
state vector with sensor space, the actuator state vector with actuator space and the
environment state vector with environment space. The vectors can represent one po-
sition in their respective spaces at any given time. Connecting these spaces are three
functions, g, m, h, that are the transformations made by the sensors, control law and
actuators/environment respectively. A control cycle for the vehicle consists of the
following: The present state of the environment is transformed by the sensors (trans-
formation g¢) into the sensor state vector 5. The control mapping m takes the sensor
values and through some predefined set of rules and/or calculations determines the
actuator response a. The transformation h uses the actuator commands to determine
the new state of the environment . This cycle then repeats. The split arrow asso-
ciated with transformation h signifies that h uses both the actuator commands and
the present state of the environment to determine the new state of the environment.

Mathematically the system is represented as

5n = g(&n) (3.2)
a, = m(3,) (3.3)
€nt1 = h(&n,an). (3.4)

where

h(ndn) = he(@n) o hul@n) (3.5)
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is a composite function of the effects of the environment k. and the effects of the

vehicle h,. By combining equations 3.2-3.4 we see that

ént1 = h(€n.,m(g(€,))) = h'(E,) (3.6)

where k' is a new function that incorporates all three transformations g, m and h. This
function is interpreted to mean that once the vehicle is placed in an environment, it
becomes part of that environment. That is, k' describes the vehicle’s activity in
the environment. Equation 3.6 also means that the more that is known about the
environment k., the more the vehicle m, g and h, can be designed to make A’ reflect
the wishes of the designer. |

Describing the altitude-keeping example in the terms of the autonomous vehicle

control cycle, the three state vectors are

Sn = [erry) (3.7)

a, = [F] (3.8)
Yo

€n = | yn |- (3.9)
Yn

Yo, the goal altitude, is part of the environment because it is supplied to the vehicle

by an agent that is external to the vehicle. The transformation h is

Yo
S (3.10)
| Yn

(1 0 0 Yo 0

0 1 Mu—e @8 | | guy |+ | & — M —e 8 | [Fay] (3.11)
00w T
= Alea] + Blan1] (3.12)

II=

where A represents the natural changes of the environment, k., and B represents the
effects of the vehicle’s actuators on the environment, h,. In general these effects are
not necessarily decouplable, as they are for our linear example. The transformation
gis

5. = [ya) , (3.13)
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yo]

£ [1 —1 0] ynJ (3.14)
Un

Clen) (3.15)

i

where ' represents the sensor transformation from the environment. In this example,
calculating the error err, is part of the sensor transformation g, though it could easily
have been part of the control mapping m. We have taken this approach because it

provides a clearer picture of the ideas presented in this thesis.

3.3 Expanded Autonomous Vehicle Control Cy-
cle

The expanded autonomous vehicle is shown in figure 3.2. We present the autonomous

/N

Maym
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§r o ar
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b,
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Figure 3.2: Expanded autonomous vehicle control cycle

vehicle control cycle in this manner to clearly illustrate the role of internal repre-
sentations. In figure 3.2, the subscript wm indicates elements of the control cycle
associated with internal representations (World Maps), and the subscript r indicates

elements of the control cycle associated with real sensors and real actuators.
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The ordinates of €,,, are the specific values of internal representations and are
stored between control periods. In the example, the error sensor value err, might be
stored in an internal representation to be used the following control period with the

new error sensor value. The sensor state vector for this scenario is

— gwm €TrTn—1
5= [ - ] = [ } (3.16)
Sy err,

and the control mapping m can use the difference between the two error values as

an estimate of the derivative of the error. The internal representations of €,,, are
generally stored in computer memory. Therefore, some computer memory in an au-
tonomous vehicle is part of the environment, from the perspec’.ve of the autonomous
vehicle control cycle. The other portion of memory is that which is used to store the
program code that implements the control law (mapping) m. The transformations
hiym and g, respectively write to and read from the internal representations €,,,.
Generally, they are inverse transformations whose net effect is a unity gain trans-
formation. That is, the value written to memory is generally the value read from
memory. Each control period m,,, updates the internal representations by deriving
new values based on 5,,, and 5, or simply copies values directly from 3, to Gyn,.
The former process changes the values of the internal representations and corresponds
to updating the internal representations based on relevant sensor information and the
latter process corresponds to simply maintaining the present values stored in memory.

Figure 3.2 provides visual clarification of some of the properties associated with
internal representations. First, internal representations do not necessarily reflect any
portion of the real environment. They can be a complete figment of the designer’s
imagination. Secondly, internal representations are a minimum of one control period
old. That is, they must first be read from a real sensor value in 3, and stored in
MEMmOory €,,, before they can be used as an internal representation from 3,,,, and this
process requires one control period. Generally however, internal representations are
older than a single control period, which is another reason that internal representations
often do not correspond to the dynamic environment that they represent because the
representation represents the state of the environment a long time ago. This lack of

correspondence is one cause of system brittleness.
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3.4 The Spaces

The three spaces in the control cycle, represented by the three vectors 5,a and e,
are the conceptual links between the physical components of the system and are

illustrated in figure 3.3. The dimensionality of these spaces is not necessarily the

Sensor Space Actuator Space

53 a

51

Y
I

€1 €1
€2
€2 e= ] e3
€4
Environment Space | €5 |

Figure 3.3: Spaces of the autonomous vehicle control cycle

same. By “dimensionality” we mean the number of axes in the space, which is equal
to the number of ordinates in the respective state vector. Of these spaces, sensor
space is our focus because we have found that sensor space requires the most effort
to understand and design. One reason for this fact is that there are many different
sensors available for autonomous vehicles, each able to sense different aspects of the
environment. On the other hand, there are very few choices of actuators. For an
AUV we are generally restricted to thrusters that operate in a single direction and
rudders. Also, environment space is usually so large that designers often consider only |
the elements of it that can be sensed and the definition of those elements is usually
obvious. )

It is important to note, as mentioned in the previous section, that the ordinates of
the sensor state vectors do not necessarily correspond to the output of a specific sensor,

“though this is often the case. Some sensor state vector ordinates might be associated
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with internal representations stored in computer memory. Likewise, some ordinates
of the actuator state vector and the environment state vector might represent internal
representations stored in computer memory.

Computers used for control see the world through their sensors. Consequently
sensor space represents a “computer’s eye” view of the world. Every situation in the
environment is transformed into one location in sensor space. These locations need not
be unique for unique situations. That is g : e, — s, is a many-to-one transformation.
For the controller to recognize situations in the world as being different, however, they
must correspond to different locations in sensor sﬁace. In the example, sensor space
is the one dimensional continuous space represented by the error signal.

We say that sensor space is “complete” for a given task if all situations in the
world requiring differentiation by the control mapping are associated with different
locations in sensor space. This condition is satisfied for the example. An example of an
incomplete sensor space is if we were to place a velocity limit on the altitude-keeping
task. The sensor space of the example is then incomplete because situations with
velocities in excess of the limit are not differentiable from situations with velocities
below the limit. A complete sensor space for this case has an axis for the error signal
and another axis for system velocity or an estimate of system velocity.

Associated with completeness, is the concept of situation identification. Situation
identification refers to the process of identifying the meaning associated with each
differentiable region in sensor space. In the example, the meaning of each region in
sensor space is a specific altitude error. This process is relatively straightforward when
the control environment is critically sensed, as it is for the altitude example, because
the meanings are a function of only the sensor transformation g. However, when
the control environment is under-sensed, the meaning associated with differentiable
regions of sensor space are a function of the entire autonomous vehicle, and these
meanings are not so straightforward, as will become apparent in chapter 5

Another concept in the design of sensor space is the goal region. The goal region is
an area of sensor space that corresponds to the completed task of the vehicle. That is,
if the vehicle has completed its task, then the sensor state vector represents a point in
the goal region of sensor space. For the example, the goal region is the point err =0
in sensor space. Though a point is acceptable it is common to specify a region like

—0.05m < err < 0.05m when being within 5¢m of zero error is sufficient. In general,
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multidimensional sensor spaces have goal regions that are also multidimensional. De-
pending on how the goal is specified, the dimensionality of the goal region can vary,
but its dimensionality is always less than or equal to the dimensionality of the sensor
space. For the point err = 0 the dimensionality of the goal region is zero and for
the line segment —0.05m < err < 0.05m the dimensionality of the goal region is one,
which is equal to the dimensionality of the sensor space.

- Associated with goal regions are subgoal regions which are supersets of the sensor
space goal region, but subsets of sensor space. Subgoal regions can be used to represent
progress towards the goal region or to prioritize different routes through sensor space
to the goal region. When the vehicle travels to the goal region, it follows a trajectory
through sensor space, and some trajectories are preferable to others. For the example,
a subgoal is the region —0.5m < err < 0.5m which indicates that the system is
approaching the goal region. For multidimensional sensor spaces, subgoals are any
volume of sensor space that is larger than and encompasses the goal region. A common
subgoal in a multidimensional sensor space is when one of the ordinates of the sensor
state vector is equal to that of the goal region. Note that vehicles complete tasks in
sensor space, whereas designers view tasks in environmental space. Therefore, one
reason that systems do not complete the tasks for which they were designed is that
the transformation g maps situations that do not correspond to the completed task
(system goal) into a region of sensor space that the designer believes corresponds
to the completed task (goal region). That is, the designer did not understand the
situations differentiated by the sensors, and consequently the system’s sensor space is
incomplete.

Before we discuss the final concept associated with sensor space, partitioning, we
must consider the effects on sensor space when control laws are implemented on digital
computers. All values used by a computer are digital, or ;luantized. Consequently,
sensor space, and also actuator space, are quantized. When each sensor value is
quantized independently, which is usually the case, the sensor space is broken into
a countable number of multidimensional rectangles, as shown in figure 3.4. Each
rectangle represents several situations and can be thought of as a single equivalence
class in a partition of sensor space caused by quantization.

Partitioning is the final concept we discuss in sensor space design. The partition

caused by quantization, Pq,‘is the most significant because it must be consistent
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Figure 3.4: Quantized sensor space

with all other partitions on sensor space. We say that Py is consistent with another
partition, say P4, when each equivalence class of Py is a subset of only one equivalence
class of P4, as shown in figure 3.5. More specifically, the borders of the equivalence
classes of P4 are colinear with the borders of the equivalence classes of Py though
the converse is not necessarily true. If the converse is true then the two partitions are
mutually consistent and they are the same partition. Let P4 be the partition whose
equivalence classes represent regions of senscr space that are associated with the same
actuator responses under the mapping m. If Py is not consistent with P, then at
least one equivalence class of PQ overlaps two equivalence classes of P4. In other
werds, different portions of the same quantization region require different actuator
responses, which is impossible to implement with any mapping m. Therefore to be
complete, a quantized sensor space has an additional constraint that is: Py must be
consist:-nt with all other partitions placed on sensor space. Another partition that is
always present is the goal partition, Pg. Pg has at least two equivalence classes; one
that is the goal region and one that is not.

Actuator space is very similar to sensor space with the only exception being the
lack of a goal region. Actuator space represents every effect that the actuators can

have on the environment. Different locations in actuator space correspond to different
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actions in the environment. In our example, actuator space is the one dimensional
axis representing the force applied to the system. The actuator transformation h
transfers every location in actuator space into its corresponding action in the world.

Like sensor space, actuator space is complete if each unique actuator response
- in the environment required by the control mapping m is represented by a different
location in actuator space. The actuator space associated with the vertical thruster
of our example is complete. An example of an incomplete actuator space is that
associated with a horizontally mounted thruster because it has no actuator response
that moves the vehicle vertically. That is, the vehicle cannot physically move to the
goal region y,,.

Quantization in actuator space replaces a group of actuator responses in the en-
vironment with a single response. Like sensor space, the partition caused by quanti-
zation must be consistent with every other partition placed on actuator space.

Environment space represents everything about the environment. In our exam-
ple, envitonment space is the altitude, velocity and desired altitude of the AUV. For
a general AUV, environment space includes things like the AUV’s position, objects
and their positions, ocean currents, temperature and computer hardware, many of
which cannot be sensed by the mapping g. One aspect of environment space is that it
does not consist of only things that are external to the physical vehicle. Environment
space also includes things like computer memory used for internal representations.
Note that a vehicle’s functionality is demonstrated in that part of environment space
that is external to the physical vehicle, and not in any internal representations. Con-
sequently, designers that rely heavily on the use of internal representations must be
aware that their vehicle’s performance is not judged on the values stored in those

internal representations, but is judged on the actions taken in the world.

3.5 The Transformations

The three transformations, m, g, and h are the physical connections between the three
conceptual spaces of the autonomous vehicle control cycle of figure 3.1. By “physical”
we mean that there is generally some sort of hardware associated with the transforma-
tions. Though each transformation is independent of the rest, they are tightly coupled

by the spaces, and consequently must be designed together. Specifically, the output
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of the sensor transformation ¢ must correspond to the inputs required by the control
mapping m and likewise the output of the control mapping m must correspond to the
abilities of the actuators.

By stating that the transformations must be designed together, we mean that au-
tonomous vehicles must be designed as a whole. Decomposing autonomous vehicles
into the manageable subcomponents of figure 2.2 has lead to important details slip-
ping between the cracks of the interfaces (Malcom and Smithers 1990) which, in the
autonomous vehicle control cycle, are sensor space, actuator space and environment
space. That is, when the different subcomponents of figure 2.2 are developed inde-
pendently, assumptions are often made about the other subcomponents that might be
unreasonable. For example, a team designing a reasoning system for an autonomous
vehicle might assume that the sensing system will be able to reliably detect every ob-
ject in the environment, which might not be possible. Unfortunately, it is not until the
system is finally assembled that the lack of attention paid to the interfaces becomes
apparent in the system’s poor performance or brittleness. Consequently, sensor space,
actuator space and environment space must be clearly defined before the components
of m, g and h are designed and built.

The first transformation we discuss is the sensor transformation g, which takes
situations in the environment and converts them into locations in sensor space. The
requirements on the transformation are specified by situations in the environment that
the control mapping m needs differentiated. We say that g is “sufficient” if the sensors
transform each situation in the world that requires differentiation into a different lo-
cation in sensor space. For the example (altitude-keeping), the sensor transformation
simply converts small ranges of errors (the ranges are due to quantization) in the en-
vironment into unique locations in sensor space. The example sensor transformation
is sufficient for a proportional control law. For under-sensed control environments,
the identification of situations differentiated in sensor space is a function of the entire
vehicle. Consequently, the sufficiency of the sensor transformation is also a function of
the entire vehicle. The quantization of sensor values into the quantized sensor space
of a computer is also part of sensor transformation g.

The second transformation we discuss is the control mapping m. m is the control
law of an autonomous vehicle, and m defines which actuator responses are applied to

which differentiable situations. More specifically, m maps each location in sensor space
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into one location in actuator space. That is, m : §, — a,, like g, is a many-to-one
mapping. The reason that m is a many-to-one mapping is that machines, which are
drive; by rules, can apply only one set of rules to a given set of inputs. If situations are
associated with the same actuator response, they do not need to be differentiated from
one another in sensor space. Note that the “intelligence” of an autonomous vehicle
is displayed by its ability to apply the appropriate actuator responses to appropriate
environmental situations, and it is m that does this assignment.

Another concept associated with the control mapping m is that m defines how
the vehicle’s position in sensor space changes. The reason for this fact is that m is
responsible for assigning actuator responses, which change the environment, which
in turn change the sensor values and consequently, the vehicle’s location in sensor
space. More specifically, the control mapping m determines the vehicle’s trajectory
through sensor space, from its present location to the goal region. For the example,
the trajectory is a straight line because sensor space is one dimensional. We say that
a control mapping is “adequate” if all trajectories through sensor space lead to the
goal region. That is, the system is able to move to the goal region from anywhere
in sensor space. It is again noted that an autonomous vehicle views its progress in
sensor space, whereas designers view the vehicle’s progress in environment space.

The concept of adequacy is important when working with under-sensed control
environments because optimal control, in the sense of feedback control theory (Van
de Vegte 1986), might not be possible. For systems operating in critically sensed
control environments, optimal control is possible because the system’s progress can
be quantitatively analysed from its sensor values. However, in under-sensed countrol
environments this analysis is not possible. For example, in all but very restricted
cases, it is impossible for a vehicle to determine an optimal path through an unknown
obstacle field that it cannot critically sense.

Finally, the mapping h models the effects of the actuators on the environment. £
is different than ¢ and m in two major ways. First, it is in h that the time step At
takes its effect in the control cycle. ¢ and m, unlike k, are generally assumed to be
instantaneous. Secondly, h is really a composite of two transformations, as shown in
equation 3.5. h models the effects of the vehicle’s actuators, h,, and the effects of
the environment on itself, h.. For the example, h, represents the effects of applying a

force to the system for one control period, and k. represents the effects of the vehicle’s



CHAPTER 3. SENSOR ACTUATOR MAPPING THEORY 39

momentum. Note that h, might not have any effect on many of the elements of the
environtnent €. For instance, a vehicle cannot control the ocean currents but instead

must move with them.

3.6 Quantized Sensor to Actuator Maps (Q-SAMs)

The mapping m, in conjunction with the autonomous vehicle control cycle, can imple-
ment any form of analog or digital control law. In this thesis, we are mainly interested
in digital control mappings because most autonomous vehicle control systems are im-
plemented with computers. Consequently, the discussion in this section focuses on
digital control mappings, though many of the ideas presented also apply to analog
control mappings.

It is not hard to envision the low-level control laws of figure 2.1 as a many-to-
one mapping from sensor space to actuator space, but the high-level control laws of
figure 2.1 have rarely been described in these terms. In fact, Badreddin (1991) simply
said that we cannot even assume that these functions are one-to-one, which is the
case. In the next few paragraphs, we will show how m can be represented as a simple
lookup-table and how that lookup-table, as part of the autonomous vehicle control
cycle, can implement the higher-level control mappings of figure 2.1.

As a digital mapping, m maps each region of quantized sensor space, which we
refer to as a quantum, into one region of quantized actuator space. Since there are
a finite number of quanta in quantized sensor space, we can use each quantum to
index a unique location in a lookup-table, in which is stored the appropriate actuator
response defined under m. We refer to this lookup-table as a Quantized Sensor to
Actuator Map, or Q-SAM for short.

To show that Q-SAMs, in conjunction with the autonomous vehicle control cycle,
can 1mplement higher-level control mappings, consider some facilities of higher-level
controllers generally though unimplementable with a lookup-table representation:
random numbers, clocks and program variables. With respect to the autonomous
vehicle control cycle, random number generators and computer clocks are part of the
environment & That is, random number generators and computer clocks are each
associated with one ordinate of the sensor state vector 5 and one axis of sensor space.

Higher-level control laws are generally implemented on a computer by a computer
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program, which uses variables, that we refer to as “program variables”. These pro-
grams have two types of variables: those which are used only during the control cycle,
called temporary variables, and those which are stored between control cycles, called

permanent variables. Temporary variables like ¢ in the code segment

outvar = proc(invar)

{

fori =11t 10
{

temp = temp + 1 * invar

}

outvar = temp

}

are part of the control mapping m. If m is represented in its Q-SAM form, 7 is incor-
porated into the Q-SAM when it is filled. By “fill” we mean the process of storing an
actuator response in each location (quantum) in the lookup-table. Permanent vari-

ables, like last_pos in the code segment

outvar = proc(invar)
{
static last_pos
outvar = invar + last_pos

last_pos = invar

}

are internal representations, and are part of the environment é,,, of figure 3.2.
Despite the fact that higher-level autonomous vehicle control systems have a Q-

SAM equivalent, people rarely thing of them in such terms. The reason for this state of

affairs is that programs, the form of most higher-level controllers, obscure the Q-SAM

representation. Consider the line of code
y=>5z+3. (3.17)

To a casual observer it is not obvious that this line of code implemented on an 8-bit

computer is equivalent to the Q-SAM in figure 3.6, where z is the sensor input and y
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Figure 3.6: Q-SAM equivalent of the line of code: y = 5z + 3

is the actuator output. However this is the case.

There are several advantages to using the computer program implementation of
higher-level control laws instead of the Q-SAM implementation. First, programs are
easier to understand than lookup-tables. The line of code 3.17 is much easier to
understand than the functionally equivalent Q-SAM in figure 3.6. Also, programs
generally require significantly less memory than their Q-SAM counterparts. The Q-
SAM of figure 3.6 requires 512 bytes to implement with 2 byte integers, whereas the
line of code 3.17 can be represented in as few as 5 bytes.

On the other hand, there are several advantages to using the Q-SAM implemen-
tation of a control law. First, Q-SAMs are fast. The response time of the entire
control algorithm is reduced to that of a memory access, which is why people often
use lookup-tables to replace time-critical algorithms. Secondly and more importantly,
the Q-SAM representation allows us to apply any actuator response to any situation.
That is, the Q-SAM is an explicit representation of the mapping m, and can support

any form of control law.

3.7 Summary

This chapter provides a mathematical framework for the concepts associated with
situation differentiation. The interfaces between system components, namely sensor
space, actuator space and environment space, must be clearly defined and under-
stood before work on the system subcomponents can begin. This requirement is
accomplished by constructing complete sensor and actuator spaces. Both high-level
and low-level control mappings have a lookup-table equivalent called a Q-SAM. In
the next chapter, we explore several ways that control laws can be developed using

Q-SAMs and the concepts of situation differentiation.
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3.8 Discussion

In section 3.6, we showed that both high-level and low-level controllers have a lookup-
table equivalent called a Q-SAM. Coupling that discussion with the discussion of
section 3.3, we see that computers running a program have a Q-SAM equivalent in
terms of the autonomous vehicle control cycle. Note that the sensor state vector
might be a time series of all values encountered by the computer. For example,.the
sensor state vector of a learning algorithm includes all combinations of inputs and
outputs supplied to that algorithm. In doing so, we have shown that computers,
and autonomous vehicles, simply implement the set of rules that was used to fill the
Q-SAM, or equivalently, write the program. It is our opinion that the intelligence
resides in the person that designed the rules used to fill the Q-SAM and not in the
computer or autonomous vehicle.

As a final note, consider removing g,, & and h, from the expanded autonomous
vehicle control cycle of figure 3.2. This corresponds to removing the physical com-
ponents of our vehicle and leaves us with a dynamic model of a computer simulation
where 3, is the simulation’s inputs and a, is the simulation’s outputs. From the discus-
sion of section 3.3, it is clear that the results of a simulation are completely contrived.
Therefore, results obtained through simulation might have little, or no meaning with

regard to systems operating in a real world.
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Chapter 4
Situation-Based Control

This chapter demonstrates how situations can be used to develop and implement
control laws. This task is accomplished by exploring various methods of filling Q-
SAMs with control laws. By “filling” we mean storing specific actuator responses in
each quantum of the Q-SAM. In the first few sections, we show that Q-SAMs are an
explicit representation of a control law by filling the Q-SAM first with a proportional
control law and then with the control law of an expert control system. In the latter
section, we present evidence that adaptive situation-based control is feasible but not,
as yet, practical.

Through the course of our work, we found that filling Q-SAMs with control laws
can be time consuming due to the large number of quanta that are generally associated
with a single Q-SAM. To reduce the number of situations that must be encountered
during the filling process, we employ the use of a function, that we refer to as an
actuator response distribution function, which distributes actuator responses among
similar situations (similar Q-SAM quanta).

It is important to note that we are not trying to develop optimal controllers in this
chapter because that is always application dependent, and there is a lot of control
theory for any particular application. Instead, our purpose is to illustrate some of
the facilities of situation-based control and the Q-SAM representation, and show that
Q-SAMs can be used to implement many forms of control laws.

- In section 4.1, we describe the system with which we conduct our experiments in
this chapter. In section 4.2, we describe the actuator response distribution function

that we use to increase the rate at which Q-SAMs are filled. In section 4.3, we
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show a method of filling Q-SAMs with rule-based control laws by filling a Q-SAM
with a proportional control law. In section 4.4, we fill a Q-SAM with the control
law of an expert controller, whose control law we cannot describe mathematically,
by a technique we refer to as “downloading”. In section 4.5, we use the Q-SAM to
experiment with adaptive situation-based control. In section 4.6, we discuss some of
the philosophical implications of downloading control laws. Finally, in section 4.7,
we summarize the results described in this chapter, and in section 4.8 we provide a

general discussion of those results.

4.1 Example

In this chapter, we again use the altitude-keeping example described in chapter 3. We
set the parameters of equation 3.1 to have a mass (M) of 35.0kg, a drag coeflicient (d)
of 20.0kg/s and a control period (At) of 2.0s. These parameters are estimates of
the parameters governing the vertical motion of an AUV under development at the
Underwater Research Lab. The control laws are implemented with a 65 word Q-SAM
whose range of operation is [—2.0m,2.0m]. That is, the sensing system is capable
of differentiating 65 different error situations in the range [—2.0m,2.0m] as shown in

figure 4.1. It should be noted that errors greater than 2.0m are associated with the

System ~2.0m 2.0m
Error l ! ! !

65 Qunantization

Regions  ——| | | | | . ... HEEE
QSAM  —> 0 1 2 62 63 64
Index

Figure 4.1: 65 quanta Q-SAM

situaticn of quantum 64, and errors less than —2.0m are associated with the situation
of quantum 0.

The control diagram for this example is shown in figure 4.2. The desired altitude,
Yo, is set externally with respect to the control system. y, is used to generate an error

signal, which is quantized into one of 65 situations in sensor space. The response to
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Sensor Actuator
Space Space
Address Location
7 . err. Memor E n B
L Quantizex Lid y D/A System Yn
65 words

Figure 4.2: Control diagram for altitude-keeping with a 65 quanta Q-SAM

‘each of the 65 situations are stored in the 65 Q-SAM quanta. During the control
cycle, err, is used to access the appropriate response stored in the Q-SAM, which is
converted to an analog signal and applied to the AUV.

At this point, we define the term control surface, and discuss some of the ideas
that are associated with control surfaces. The control surface is the curve generated
when sensor space is plotted versus its corresponding actuator responses. For this

example, a typical control surface is shown in figure 4.3. Two control surface features

Actuator
Space : Control
(F orce) : S llI'f&C e

Edge

i
T

0 32 64

wle

Sensor Space
(32is err =0)

Figure 4.3: Control surface showing control surface features

illustrated in figure 4.3 are edges and holes. An edge is a drastic change in actuator
‘responses associated with similar situations. Situation similarity is an application
specific definition. For this example, similar situations are those associated with sim-

ilarerrors. A control surface hole is a region of the Q-SAM whose actuator responses
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are default values. In our example, the default value is zero.

4.2 Actuator Response Distribution Function

We have found that filling Q-SAMs can be a tedious and time consuming task be-
cause there are many locations in Q-SAMs, and each requires an individual actua-
tor response. To speed up this process, we implement a function that distributes
learned responses among situations that are similar and expected to have similar re-
sponses. By “learned response” we mean responses that have been determined to be
appropriate for a particular situation. We call this function an Actuator Response
Distribution Function, or ARDF for short. Actuator response distribution functions
should have greater effects on situations that are more similar to the situation for
which the response was learned than on situations which are less similar. To satisfy
this requirement, we have chosen the following exponential distribution function for
the altitude-keeping example. We chose this function because it produces a smoother
‘control surface than the other distribution functions that we tested. Similarity of

situation is determined by proximity in sensor space. The function is

Fitmewy = wij fi + (1 = wi;) fiota) (4.1)

where

wij = bel~cH—3) (4.2)

and z is the quantum associated with the learned actuator response, 7 is the quantum
being updated, f; is the learned response, f;(.q) is the old response stored in quan-
tum j, fj(new) is the updated response to be stored in quantum j, b is the averager
weight for quantum z, and c¢ is the diffusion constant. b is called the averager weight
for guantum z because when quantum z is being updated, the exponential portion of
equation 4.2 is equal to 1.0. ¢ is called the diffusion constant because it effects the
width of the distribution function, which will be discussed in the next paragraphs.
For this actuator response distribution function, learning a response for one quantum
alters the responses associated with all other quanta.

To envision the operation of this actuator respounse distribution function, consider

the Q-SAM of the example filled with zeros. This corresponds to a flat control surface
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with all the actuator responses being 0.0. Suppose the system determines that an
actuator response of 1.0 is an appropriate response for the situation associated with
quantum 7. Storing this response in the Q-SAM leaves a Q-SAM that is filled with
zeros, except in quantum z, which has a response of 1.0. The Q-SAM is still relatively
empty. By applying the ARDF, more situations than that associated with quantum :

will have non-zero actuator responses. Figure 4.4 shows the repetitive application of

1

1st lteration ~e—
2nd lteration ——--
3rd iterafion -8--
4th lteraion —»—
5th lteration ~a--
6th lteraon -=---

0.75

0.5

Actuator Response

0.25

1 i i+1
Q-SAM Quanta

Figure 4.4: Repetitive application of the actuator response distribution function

the actuator response distribution function, with b = 1.0 and ¢ = 1.0, to the Q-SAM.
- The width of the function is controlled by the parameter ¢. The line labeled 1%
iteration shows the control surface after the ARDF is applied once. After application
of the ARDF, many situations are associate with non-zero actuator responses. As
figure 4.4 shows, repetitive application of the ARDF does not change the response
associated with quantum i, but makes the responses associated with other quanta
increasingly similar to that of quantum 7. It should be noted that the effects of the
ARDF are less significant when the responses are similar, which is illustrated by the
decréa.sing effects of the repetitive application of the ARDF. The repetitive application
of the ARDF also shows the exponential convergence of the ARDF. Note also that

the ARDF has a greater effect on situations which are more similar to the situation
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for which the response was learned (z) than situations which are less similar. For the
parameters chosen, the ARDF has little effect 4 sensor space quanta away (7 —4) from
the quantum associated with the learned response.

It should be noted that actuator response distribution functions like this one have
a smoothing effect on the control surface in the areas of the Q-SAM in which they are
applied. Smoothing is inherent when trying to make the actuator responses of similar
situations similar. Consequently, care should be taken when using ARDFs on Q-SAMs
so as not to remove desirable edges in the control surface. As a precaution, ARDFs
should not be used in regions of a Q-SAM expected to have dissimilar responses. For
the altitude keeping example, all situations in sensor space are expected to have similar

actuator responses to those of neighbouring sensor space quantum. Consequently this

ARDF can be used throughout the Q-SAM of the altitude-keeping task.

4.3 Filling a Q-SAM with Proportional Control

Most control theory requires a system model on which to base the development of the
control law. The model is used to determine a control law and to analyse the effects of
altering different design parameters. In this section, we show how to fill Q-SAMs with
control laws developed from system models by determining a proportional control law
for the example system and filling the Q-SAM with that control law.

The proportional control law is represented by the equation

F, = k‘P(yo - yn) (43)

where k, is the proportionality constant to be determined by the control engineer. To
determine the appropriate value of k,, the engineer uses standard digital control theory
{Jacquot 1981) and puts equations 3.1 and 4.3 together and takes the Z-transform of

the system. This process yields a characteristic equation of the form
Z2deazte=0 (4.4)
Atk,

M V
a = BE_qgetey Moo A (4.5)
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and

kAt Mk 4
’.Pd )+ d2?’(1 _ e—:!A() (4.6)

P
g = e mA(] -

for our example. The locations of the system poles in the Z-plane’s unit circle de-
termines the system’s responses, and are a function of the proportionality constant
k,. The designer often chooses k, so the system is critically damped because this
produces the fastest movement to the goal without any overshoot. For the example,
k, = 2.1694 produces a critically damped system, and if k, > 24.58 the system is
unstable.

To fill the Q-SAM with the proportional control law, we apply equation 4.3, with
k, = 2.1694, to the central value of each quantization region in the Q-SAM and
store the calculated actuator responses in their appropriate locations in the Q-SAM.
By “central value”™ we mean the middle value of the error range represented by the
quantum in question. For error signals outside the range of the Q-SAM, the force
applied to the system is that which corresponds to the end quanta of the Q-SAM.
The control surfaces associated with the control law and the Q-SAM implementation
of the control law are shown in figure 4.5. Note that the limited range of the Q-SAM
limits the magnitude of forces applied to the system when the error signal is outside
the range [~2.0m,2.0m]. The unit step response of both control laws is shown in
figure 4.6. The responses are similar because the initial error is within the Q-SAM
range. The difference in the steady states results from the coarse quantization of the
Q-5AM. Increasing the number of quantization levels near the goal region reduces
this bias. For a step of 8m, whose initial error is outside the the Q-SAM range, the
force limitations of the Q-SAM cause a slower response, as illustrated in figure 4.7.

This example has illustrated filling a Q-SAM with a proportional control law. This
technique can be used with any rule-based control law like those generated using fuzzy
logic theory or neural networks.

4.4 Downloading from an Expert

To illustrate some of the unique facilities of Q-SAMs and situation-based control,
consider the problem of trying to convert a Remotely Operated Vehicle (ROV) into
an AUV. Through years of experience, the ROV operator, an expert, has developed a
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Figure 4.5: Proportional contrel law and its Q-SAM implementation
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Figure 4.7: Step responses for the Q-SAM and continuous control laws (Step is outside

of Q-SAM range)

control law that is sufficient to control the vehicle, however, that control law must be
transferred to a computer to make the vehicle autonomous. Unfortunately, operators
are generally unable to describe the control laws they have developed in terms that
control engineers can exploit to develop computer-based controllers. In this section,
we use a technique that we call “downloading” to record the responses of an expert
controller into a Q-SAM. The Q-SAM, when implemented as the controller, mimics
the responses of the operator, and the vehicle is autonomous. Note that this technique
does not require any knowledge about the plant being controlled.

Experiments with the downloading transfer technique were conducted with a
graphical simulation of the altitude-keeping task on a Sun workstation. The vehi-
cle moved up and down the screen as a function of the force applied to the system
by the operator through the mouse input device. The force applied to the system
was proportional to the distance from the mouse to a central location on the mouse
pad. The operator’s task was to simply move the AUV to a specific location from
several different initial locations. To download the operator’s control law, the altitude

error was sensed at a rate of 1/At Hz while the operator was controlling the vehicle.
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The sensed error was used to address locations in the Q-SAM where the concurrently

applied force was stored. This process is shown in figure 4.8

Q-SAM
HENNEES
Q-SAM > ¢ 64 1 Stored
Index | 1 Actuator
Goal : err F
Yo ——)FQ—Q.%E—A——R, Operator il D/A System >~ Yn

Figure 4.8: Downloading transfer technique

One requirement of this downloading technique is that the sensors must differenti-
ate situations that correspond to the situations differentiated by the expert when the
expert controls the vehicle. These situations must also be sufficient for the task at
hand. For the altitude-keeping example, the altitude error sensor 1s sufficient, though
vehicle velocity can also be sensed because the expert has some idea of the velocity
of the vehicle he is observing. Using a velocity sensor means that sensor space is two
dimensional and has one sensor axis for the system error, err,, and another for the
derivative of the error, err,.

Figure 4.9 a) shows a control law developed by this transfer technique using 30
randomly chosen initial locations durieg development. During the downloading pro-
cess, when a quantum of sensor space is encountered more than once, the newly
recorded response is averaged in with all previously recorded respouses for that quan-
tum. Though the step response of this technique, shown in figure 4.9 b), is adequate,
the control surface is rough and has holes in it. Holes in the control surface are as-
sociated with regions of sensor space that are not accessed during downloading and
therefore hold the default response of zero. For example, there is a hole at quanta
14 and 15 in figure 4.9 a). I the system is placed in one of these locations with zero
velocity, it will not move.

The steady state error in figure 4.9 b) results from the flat section in the control
surface near the goal region of err = 0.0. This flat section is caused by the expert,
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Figure 4.9: Control law and step response from expert transfer technique without
actuator response distribution
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who had difficulty in maintaining the vehicle at the goal region. Consequently, the
responses associated with the quanta near the goal region were continually adjusted,
causing the flat section.

To reduce the number of holes in the Q-SAM, we can increase the number of
randomly chosen initial locations or implement some mechanism that chooses initial
locations from the group of sensor space locations that have not yet been accessed.
The second approach guarantees no holes in the control surface and is reasonable for
our one dimensional example. Unfortunately, it is not reasonable for most multidi-
mensional systems because there are simply too many locations in the Q-SAM.

Therefore, we use the actuator response distribution function to fill in the holes
during downloading so that the total number of trials is kept small. Since the actuator
response of the expert is a desirable response, we average it into its respective quantum
in the Q-SAM. Then, this newly averaged actuator response is distributed through the
Q-SAM using equations 4.1 and 4.2. In equation 4.1, f; represents this newly averaged
actuator response which is then distributed with parameter b in equation 4.2 always
set to 1.0. Parameter b is set smaller than 1.0 when the designer wishes to cumulatively
develop a control surface, which is not the case in this section (see section 4.5 for an
application with b not set to 1.0).

Figure 4.10 a) shows a control surface developed with the use of actuator response
distribution. Again 30 randomly chosen initial locations were used during the down-
loading process. Parameter ¢ of equation 4.2 was set to 1.0. This value of ¢ causes
the ARDF to have less than a 2% effect four sensor space locations away from the
newly recorded actuator response, as can be seen in the 1% iteration of figure 4.4. ¢
was chosen to be 1.0 because it provides sufficient actuator response distribution for
the example. The other system parameters were the same as the previous example.
The resulting control surface is smoother than that of figure 4.9 a) and the holes are
significantly reduced. The only locations in this Q-SAM that hold zero values are
at the outer limits of sensor space. This scenario cannot be avoided when random
locations are chosen during downloading, as we have done, because there is a low
probability of randomly choosing the extreme locations of sensor space. However, it
is not difficult to force the development phase to include the outer limits of sensor
space.

The flat section of the control surface in figure 4.10 a) and the large steady state
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error are again caused by the poor performance of our expert

This experiment shows that it is possible to download control responses from
expert controllers whose functionality is unknown and also demonstrates the use of
actuator response distribution functions to speed up the Q-SAM filling process by
reducing the number of holes in the Q-SAM.

4.5 Adaptive Situation-Based Control

Adaptive, or self-learning, control algorithms are used when neither an expert nor a
sufficient system model are available to the control engineer. Situation-based adapta-
tion, specifically adaptation with a Q-SAM implementation of the control law, permits
an added degree of flexibility, relative to many adaptive techniques, because the con-
trol surface is adapted locally with respect to sensor space. By “local” we mean that
adaptation is done one differentiable situation at a time. This means that the con-
trol surface can be altered every control period based on the effects of a particular |

actuator response to a specific differentiable situation. Figure 4.11 a) shows changes

Actuator Actuator
Space . . Space .
(Force) (Force) k‘p = 2.0

i 1 [ !
T T 1 T

e

0 32 35 64 0 32 64
Sensor Space Sensor Space
@B32iserr=0) 32iserr = 0)

a) b)

Figure 4.11: Comparison of local and global adaptation

in a control surface caused by altering the response associated with one situation,
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specifically the situation associated with quantum 35 in the figure. Relative to sen-
sor space, most adaptive techniques are global in nature and require several control
periods of analysis prior to adaptation. By “global” we mean that adaptation alters
the actuator responses associated with many differentiable situations. An example of
a globally adaptive control law is an adaptive proportional controller. When the pa-
rameters of a proportional controller are adjusted, the actuator responses associated
with most situations (all but the situation associated with zero error) are altered.
Figure 4.11 b) shows the changes in a control surface caused by changing the constant
of proportionality, &,, of a proportional control law from 1.0 to 2.0. Most responses in
the Q-SAM are changed. Examples of global analysis techniques are those associated
with system step responses because their analysis requires several control periods, and
consequently involves the actuator responses associated with several situations.
There are several reasons to examine situation-based adaptation. First, when the
control environment is under-sensed, global adaptation is not possible because global
analysis techniques compare their results relative to a standard, which in the case
of an under-sensed control environment, cannot be sensed. For example, there is no
‘known standard for navigating through an unknown obstacle field, and the vehicle’s
performance cannot be measured using only the vehicle’s sensor values. Also, AVs
generally have only a single mission that is usually very long, which means that global
analysis techniques are of hittle value because they provide analysis after the vehicle
has moved to the goal region. Finally, with situation-based adaptation, the general
form of the control surface does not need to be specified a priori as it does with global
adaptive techniques. For example, the use of an adaptive proportional controller
presupposes that a control surface which is a flat plane in sensor space is desirable,
as is shown in figure 4.11 b).
The adaptive algorithm we use in this section operates as follows. The Q-SAM
is initially empty (ie. filled with zeros). The vehicle assigns a new altitude every 20
control periods. The new altitude is within a 4m window of the previous altitude
assignment so that the system is operating within the £2m Q-SAM range during
adaptation.r Every control period, a new actuator response is generated by taking
the appropriate response, based on the present error, from the Q-SAM and adding to
it a random perturbation which is uniformly distributed in the range [—2.0N, 2.0N].

The random perturbation is the system’s way of experimenting with new responses.
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The effects of this new response are analysed after it has been applied for one control
period. If the new response moved the system closer to the goal, but not too much
closer, then it is distributed through the Q-SAM using the actuator response distri-
bution function described in equations 4.1 and 4.2, which is how the system adapts.
fi in equation 4.1 is the successful new actuator response and parameter b of equa-
tion 4.2 controls the influence f; has on the response presently stored in quantum 3
and what portion of f; is distributed through the Q-SAM. This adaptive algorithm
cumulatively generates a control surface.

Figure 4.12 a) shows a control law generated using this technique and running the
model through 100 000 new altitude assignments. 100 000 altitude assignments are
required because the Q-SAM is initially empty. If the Q-SAM is initially filled with a
functional control law, then the number of iterations can be reduced. This reduction
depends on the initial control law in the Q-SAM, though for most reasonable control
surfaces 10 000 altitude assignments are required. The ARDF parameters are b = 0.01
and ¢ = 0.5. That is, the newly learned force is averaged in with a 1% effect on the
quantum with which it is associated and it is distributed so that it has less than a
0.02% effect eight sensor space locations from the quantum with which it is associated.
These parameters were chosen because they provide a relatively stable control surface.
By “stable” we mean that the control surface does not change drastically after the
control surface has reached steady state. With this adaptation algorithm, the steady
state control surface is continually changing during adaptation, though its deviation is
probabalistically bounded. That is, there is a variance (o) associated with the steady
state control surface, as shown in figure 4.13. Increasing b increases the variance in
the steady state control surface but, the steady state is approached much faster. If
¢ is decreased, variance in the steady state control surface is reduced, but so is the
magnitude of the surface.

The parameters b and ¢ are sensitive to the number of elements in the Q-SAM.
Consequently, their values should be determined relative to sensor space distances
and not indexed quantization regions. For this system, any value of b < 0.1 will
generate a rélatively stable control surface. It should be noted that unless extreme
values of b and ¢ are chosen, this algorithm generates an adequate control surface.
For figure 4.12, “Not too close” is defined as 25%. In other words, commands are
distributed into the Q-SAM if t.hey move the system up to, but not more than 25%
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Figure 4.12: Control law and step response from adaptation algorithm (25% rule)
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Figure 4.13: Parameters associated with the adapted control surface

closer to the goal after one control period.

The 25% rule corresponds to a relatively slow approach to the goal. This can
be seen by the step response of figure 4.12 b) that requires 20s to reach the goal.
Figure 4.14 a) illustrates the control surface and figure 4.14 b) the step response of
the system with “not too close” being defined as 75%. This control surface moves
the system to the goal in 135 but has some overshoot. The roughness of the steady
state portion of both step responses results from the low quantization of the Q-SAM.
When the number of quantization levels is increased near the goal region, the steady
state portion of the step responses is smooth. The drooping at the end of the control
surface in figrire 4.14 a) results from a combination of control surface deviation, and
the system not yet having fully exercised the far reaches of the sensor space.

The control surface generated by this algorithm is a balance between two opposing
pressures. The adaptation algorithm tends to increase the magnitude of the response
stored in each quantum. The strength of this increase decreases with the magnitude of
the response. The ARDF tends to decrease the magnitude of each guantum by trying
to make all the responses equal, in this case equal tc zero. The greater the difference
between nearby quanta the larger the effective decrease. The steep section of the
control surface near the origin (err = 0) is an artifact of the random perturbations

continually being applied to the system, which cause the system to oscillate around the
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Figure 4.14: Control law and step response from adaptation algorithm (75% rule)
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goal region during adaptation. This oscillation reduces the average velocity of system
near the goal region, which requires a proportionately higher force, on average, to
compensate. A more detailed explanation of the shape of the control surface is given
in appendix D.

This example shows that situation-based adaptation is possible though it is not
as practical as initially desired. For the simple altitude-keeping task, at least 10 000
altitude assignments, though 100 000 is preferable, are required to generate a control
surface that resembles the steady state control surface. After 200 altitude assignments,
the control surface is generally very poor. Also, as mentioned earlier, we are interested
in adapting the control surface during a single movement to the goal region, which is
a single altitude assignment for the example. This experiment suggests that adaptive
control, locally or globally, is not possible in a single movement towards the goal
region which, in retrospect, is reasonable. Therefore, adaptive control techniques can
only be used on autonomous vehicles when the vehicle moves to a goal region many
times during a mssion.

There are several positive results obtained from this experiment. First, for situation-
based adaptive control, actuator response distribution functions are required to give
the control surface form. When ARDFs are not used during adaptation, the actuator
values stored in each sensor space quantum vary in a bounded random walk. That is,
the responses stored in each quantum vary independent of the values stored in any
other quantum. This results in the entire control surface having no steady state form.
Despite this fact, the control surface generated without actuator response distribution
1s adequate because it moves the system to the goal region. Finally, this experiment
has provided further evidence that the Q-SAM representation supports any form of
control law because the control law generated by this algorithm has a very unique

shape.

4.6 Implications of Control Law Downloading

At this point, we diverge from the engineering discussion to consider some of the
philosophical implications of the Q-SAM representation and the ability to download
control laws to that representation. This discussion is the opinion of the anthor and is

used to clarify the disparity between man and machine. Imagine that someone designs
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an expert system to control an AUV, but the expert system is too slow to calculate
artuator responses in sufficient time to respond to the dynamic world in which the
AUV exists. As a solution to this dilemma, they implement a Q-SAM on the AUV
with the expert system operating above the Q-SAM, as shown in figure 4.15. The Q-

Expert
e - System
' —
K ¥
' Q-SAM C Appropriate
“ Index s+ Actnator Response
; Vo
L s
: V
A/D = QPBAM D/A AUV

Figure 4.15: Downloading from an expert system

SAM is filled with random responses when the AUV is released into the environment.
When the expert system is able, it generates responses and places them in their correct
location in the Q-SAM. Initially, control is poor and the vehicle thrashes around the
environment. But, as time goes on, the Q-SAM gradually takes on th2 control law
generated by the expert system. Eventually, the Q-SAM mimics the expert system
and provides the control that the expert system would bave provided had it been fast
enough to operate in the world.

The situation we have just described is one where the intelligence of a person is
used to generate a control law in the form of an expert system. The expert system then
passes that control law to a Q-SAM, whose form is a sensor to actuator mapgping. The
understanding of the environment resides only in the person and the law, chosen by
them, is equivalently represented in both the expert system and the Q-SAM. Neither
the expert system ner the Q-SAM have any understanding of their environment. They
simply react as they were programmed to react.

This idea can be further extended by considering that the person who developed

the expert system might have learned the rules from another person in rote fashion
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and that the other person might have been given the rules from a predecessor in their
field. In fact, the rules implemented in the Q-SAM might have been handed down
from as far back as the beginning of time. This raises an important issue: Where
is the true intelligence, and understanding, of the situations differentiated in sensor
space to which the Q-SAM applies responses? If we assume that none of the people
who learned the rules understood them, then either the rules were present at the
beginning of time, which is unlikely, or the rules were developed by random chance,
which is also unlikely, especially for tasks that are a mere convenience in the society
of today.

Therefore, some of the people along the way must have understood what they were
doing. It is this group of people that initially created the rules and later modified
the rules. In the limit, only the creators of the rules required an understanding of
what they were doing. Note that many of the people along the line did not need to
understand what they were doing for the rules to work or to repeat the rules to their
descendents.

This discussion has focussed on several ideas. First, understanding is not required
to apply rules and appear intelligent. Secondly, on many occasions people are not
necessarily exhibiting the intelligence they possess when they are performing tasks
which appear to require intelligence. Finally, computers performing tasks that appear
intelligent are only applying rules in rote fashion, and simply appear intelligent: they

are not intelligent and do not understand the environment in which they exist.

4.7 Summary

In this chapter, we explore the potential of situation-based control using the Q-SAM
representation of control laws. The Q-SAM representation of the control law m ac-
cepts many forms of control laws because of its unique ability to handle each situation
in the environment individually. First, we fill the Q-SAM with a proportional control
law to show that Q-SAMs are equivalent to rule-based control systems. Second, we
download the control law of an expert controller, whose functionality is unknown, by
recording the actuator response of the expert while s/he is controlling an ROV. One

requirement of the downloading procedure is that situations used by the expert must
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be differentiated in sensor space. Qur experiments with adaptive situation based con-
trol found that adaptation during a single movement to the goal region is not, as yet,
practical. Through the course of experimentation, we required the use of an actuator
response distribution function to increase the rate at which the Q-SAM is filled and
to provide form to the control surfaces developed adaptively. Finally, an analysis of
the downloading procedure has suggested that people do not use their intelligence for
every task they perform. Indeed, many people perform tasks in rote fashion, which is

the only method by which computer-controlled equipment can perform tasks.

4.8 Discussion

In this section, we discuss two opinions not discussed in this chapter. First, using
actuator response distribution functions when filling Q-SAMs with control laws has a
smoothing effect on the control surface that is similar to the smoothing effects on con-
trol surfaces generated by control laws that are implemented with fuzzy logic (Smith
and Comer 1991). Secondly, when recording a human expert, we observed the fact
that humans have a very small control period when controlling equipment. Though
we used a control period of 2.0s, we could have explored the effects of decreasing
the control period during recording. It should be noted that Q-SAMs can have the

shortest control period of any digital control law implementation.
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Chapter 5

Design of an Autonomous

Underwater Vehicle

This chapter describes a design methodology based on situation identification and
diffegentiation that results in vehicles that are robust to disturbances in their envi-
ronments. By “robust” we mean that the performance of the vehicle degrades in a
predictable manner that is proportional to the size of the disturbance. By “distur-
bance” we mean changes in the environment for which the vehicle was not specifically
designed or cannot sense. The design methodology has three phases. In the first
phase, experiments are conducted with the vehicle to identify the meaning of each
differentiable situation in sensor space. In the second phase, the entire vehicle is
designed using only recently sensed sensor values because systems developed in this
fashion can be robust to disturbances the their environment. By “recently sensed
sensor values” we mean the most recently acquired sensor values. Iu the third phase,
internal representations are added to the second phase system to augment system
performance without making the system brittle.

One aspect of this methodology is that sensors are developed together with vehicle
dynamics. In the case of AUVs, this means that sensors must be designed for specific
vehicles because vehicle dynamics are generally fixed for specific environments and
missions. This contrasts with the traditional approach of choosing sensors a priori
and expecting lesign engineers to develop sufficient control systems to accomplish

the desired task. The traditional approach is acceptable for critically sensed control
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environments, but is unacceptable when the control environment is under sensed be-
cause the meanings of differentiable situations are a function of the entire autonomous
vehicle control cycle.

In this chapter, we use our design methodology to determine the sensor require-
ments and control mapping for an AUV that uses forward-looking sonars to avoid
obstacles in an unknown obstacle field. The work supporting this chapter has brought
to light the fact that the definitions associated with differentiable regions in sensor
space are a function of the entire system (ie. m, ¢ and h in figure 3.1) when the
control environment is under-sensed.

In section 5.1, we describe the vehicle that we will use to illustrate our design
methodology, which we describe in section 5.2 along with the motivation for the
methodology. In section 5.3, we describe the experimentation phase of the design
methodology for the vehicle. In section 5.4, we describe the second phase of the de-
sign methodology as it pertains to the vehicle, and show that the vehicle is robust
to disturbances in its environment. In section 5.5, we describe the third phase of the
methodology with respect to the vehicle, and show the performance improvements
obtained by using internal representations. In section 5.6, we describe an improperly
designed vehicle operating in an under-sensed control environment and show the dif-
ficulty in determining system brittleness. In section 5.7, we summarize the significant
results presented in this chapter and in section 5.8 we provide a general discussion of

those results.

5.1 Vehicle

The vehicle used in this chapter is a two-dimensional version of the torpedo-shaped
AUV under development at International Submarine Engineering Research. The ve-
hicle’s attitude is controlled by planes and it has a single, rear-mounted thruster
for propulsion. The vehicle travels at 1.9m/s and has a maximum turning rate of
0.9599rad/s (5.5deg/s), which corresponds to a minimum turning radius of 19.8m.
The vehicle is 4m long and has a clearance of 3.5m, which means that we do not
wish any obstacles to be closer than 3.5m from the vehicle’s centreline. The vehicle is
equipped with two sonars, mounted 2.0m in front of the vehicle’s centre point, both
facing forward with one facing to the left and the other to the right. Each sonar
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returns a value that corresponds to the distance to the nearest object in the sonar’s
beam pattern.

The task of the vehicle is to transit to a distant location, called the endpoint
(z4.¥4), without colliding with ‘any objects. Therefore, the vehicle’s primary subgoal is
oi:stacle avoidance. An on-board positioning system is used to determine the position
(z+, y») and orientation (@,) of the vehicle relative to the world. The vehicle is placed
in an environment for which there is no previously recorded knowledge. This vehicle

is shown in figure 5.1.

.
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World
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Figure 5.1: Autonomous underwater vehicle

For reasons of simplicity and to prevent clouding the issue with mathematics, the
beam patierns of the sonars used by the vehicle are assumed to be isosceles triangles.
The unequal angle of the triangle is the beam width (a) of the sonar beam pattern
and is attached to the front of the vehicle. The beam length (1) is the distance in front
of the vehicle that the sonar beam pattern extends. Describing sonar beam patterns
in this manner preserves their function and therefore the essence of the problem. The
beam patterns are also shown in figure 5.1.

The control system for the vehicle is shown in figure 5.2. It is the same diagram

as figure 2.1 updated with the particulars of this vehicle. The low-level controller
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Figure 5.2: Autonomous underwater vehicle controller

is designed using feedback control theory. In this chapter, we develop the high-
Jevel controller whose actuator responses are waypoints and turning commands for
the low-level controller. The actuator space for the high-level controller has the form
(x,y, Mode) where (z,y} is the position of the next waypoint in the world, and (M ode)
can hold one of three values: 0 meaning hard left turn, 1 meaning drive towards the
specified waypoint, and 2 meaning hard right turn.

The sensor space for this vehicle is represented by the sensor state vector
(s Yo, Ou, d1, d,) where (r,,¥,,0,) are the position and orientation of the vehicle in
the world and d; and d, are the distances to the nearest object in the left and right
sonar beam patterns respectively. (d;,d.) = (co, o00) represents the situation that no
objects are in either sonar beam pattern. The sensor and actuator spaces as well as
the control mapping are illustrated in figure 5.3.

The experiments with this vehicle were conducted with a graphical simulation of
the AUV on a Sur workstation.
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Figure 5.3: Control mapping with sensor space and actuator space

5.2 Design Methodology

The development of autonomous vehicles and their control systems is broken into
three phases. Each phase represents one step in an incremental process of developing
vehicles as a whole by identifying the situations differentiated in sensor space. The

three phases of autonomous vehicle development are:
1 Experimentation
II Robust Controller Development
111 Internal Representation Development

The firsi phase of development, Experimentation, provides the designer with an
understanding of the vehicle’s capabilities and an idea of what situations particular
sensors can differentiate. More specifically, the phase 1 experiments are conducted to
gain insight into the identification of each equivalence class of the sensor space quan-
tization partition Pg. This phase of development is required by systems operating in
under-sensed control environments because the meaning associated with each quan-
tization equivalence class is generally not obvious since the meanings are a function
of the entire vehicle. The control and actuator mappings, e and A, must be similar,
or identical, to those to be used in phase Il to ensure that appropriate meanings are

assigned to each quantization equivalence class.
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Using the knowledge obtained in phase I, the second phase of development, Robust
Controller Development, results in a complete autonomous vehicle whose actuator re-
sponses are determined from only recently sensed sensor values. Using recently sensed
sensor values to determine actuator responses means that the system has the poten-
tial to be robust to disturbances in its environment because the system is continually
sensing that environment. In terms of sensor actuator mapping theory, in phase II the
sensdr, actuator and control mappings (systems) are designed and each equivalence
class of Py is clearly defined. The actuator partition P4, which is a function of the
control mapping m, is designed so that Fjy is consistent with P4. The system’s goal
and subgoal regions are defined and incorporated into the mapping m. This phase
develops a system with complete sensor and actuator spaces.

The system developed in phase II is robust to disturbances in its environment.
In phase IIl, internal representations, which are brittle, are added to the phase 11
- system. Therefore, much effort should be expended in phase II to make the vehicle as
functional as possible so that the final system is as robust as possible. In short, the
system developec "a phase II defines the system’s robust functionality.

I» the third phase, Internal Representation Development, internal representations
are added to the phase Il vehicle to augment vehicle functionality. Internal repre-
sentations are necessary if the vehicie is to perform tasks which are more complex
than simply bumbling around the environment like Allen (Brooks 1986). The inter-
nal representations are added 1n such a way that the brittleness with which they are
associated does not affect the robustness of the system. This task is accomplished
by not altering the control mapping associated with regions of sensor space deemed
critical. For our vehicle, critical regious of sensor space are those associated with the
presence of obstacles. That is, internal representations are not used to control the
vehicle when sensors sense obstacles. Adding internal representations in this manner
is in concordance with the philosophy of the subsumption architecture (Brooks 1986)
in the sense that higher-level functions, those obtained with internal representations,
cannot adversely affect the survival of the system.

It is important to note that each phase of development in this methodology re-
quires experimentation with the vehicle to vaiidate designers’ beliefs and hypotheses.
Requiring experimentation in each phase is consistent with Brooks’ physical ground-

ing hypothesis (Brooks 1991) which states that systems must be connected to real
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sensors and real actuators if they are ever to function reliably in a real world.

5.3 Phase I: Experimentation

For initial experimentation with the vehicle, consider using sonar beam patterns which
are each 10° wide and 30m long. The front of these beam patterns are each more than
5m wide and therefore they should be able to sense a 10m wide path in front of the
vehicle. Since the primary vehicle goal is safety, the vehicle will turn away from ob-
stacles when they are sensed and towards the endpoint when they are not sensed. For
this task, the sensor space quantization partition has four coarse equivalence classes
with which it is associated. They are (d, d,) = {(c0, 00), (c0’, 20), (00, 00’), (00’, 00’) }
where co corresponds to the absence of obstacles in the respective sonar beam pattern
and oo’, meaning “not infinity”, corresponds to the presence of at least one obstacle
in the respective sonar beam pattern.

A reasonable control mapping for this sensor space quantization partition is shown

in table 5.1 where (x,,y,) are part of the control mapping and “—” means irrelevant.

»

Quantization | Actuator
- Equivalence | Response

Class
(di, dy) (z,y, Mode)
(00, 00) (24,95, 1)
(00, 00’) (—: ) 0)
(90’7 OC) (—"-) T 2)

(‘OOI: 00’) (’"a“a2)

Table 5.1: Control mapping for sensor space quantization partition

This control mapping causes the vehicle to drive towards the endpoint when no ob-
stacles are sensed and to turn left when obstacles are sensed in only the right sonar
beam pattern, and to turn right when obstacles are sensed in only the left sonar beam
pattern. When obstacles are sensed in both beam patterns, the vehicle arbitrarily
turns right. The region (d;, d,) = (oo, 00) corresponds to the primary subgoal of the

vehicle whose goal region in sensor space is (z,y,d;, d,) = (zg4,9y,,00,00) .
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When the vehicle is placed in the environment with an obstacle between the end-
point and the vehicle, the following scenario occurs. The vehicle moves toward the
endpoint location until the sonar beam patterns move into the obstacle. Then, the
controller applies the Mode 2 command, which turns the vehicle to the right until both
sonar beam patterns move away from the obstacle. No longer sensing the obstacle,
the vehicle moves toward the endpoint again by appiying the Mode 1 command which,
in this case, turns the vehicle left toward the endpoint location and also toward the
obstacle. Consequently, the left sonar beam pattern moves into the obstacle which
causes the vehicle to turn right again. This cycle continues until the vehicle collides
with, or just scrapes by, the obstacle. The net effect of this scenario is that the vehicle
moves the left edge of the left sonar beam pattern down the right edge of the obstacle
until the vehicle is incapable of turning the beam pattern back into the obstacle.

The scenario just described is behaviour fusion, which was discussed in section 2.3.
In this case, the behaviours being combined are move towards the endpoint and move

away from obstacles.

5.4 Phase II: Robust Controller Development

The behaviour fusion noted in the previous section results from the vehicle’s sensors
and the under-sensed control environment in which the vehicle exists. To incorpo-
rate this knowledge into the vehicle’s design means that the beam patterns must be
designed so that the vehicle cannot collide with obstacles that the edges of its beam
patterns move along. This means that the beam patterns must be wide enough so that
motion of the obstacle, relative to the vehicle, cannot violate the system’s clearance
requirements after moving down the edge of the beam pattern. The minimum beam

width that satisfies this requirement is
d
a= arcsin(—l;) (5.1)

where « is the width of each sonar beam pattern, d is the distance the sonars are

placed in front of the centre of the vehicle and b is one solution to the equation
e(2r — )b + 2d%(r — o -~ (> +d*) =0 (5.2)
where ¢ is the vehicle’s clearance and r is the minimum turning radius of the vehicle.

The derivation of this beam width is given in appendix E.



CHAPTER 5. DESIGN OF AN AUTONOMOUS UNDERWATER VEHICLE 74

With sonars of beam width « in the previous scenario, the vehicle moves the left
edge of the left sonar beam pattern down the right edge of the obstacle until the

release point (R;), shown in figure 5.4, reaches the obstacle. The release point is

AUV Trajectory
{(minimum turping

AUV minimum
turning radius 47)

Critical region
ritical regio AUV'clearance (C)

Path of obstacle, relative to the vehicle,
if the vehicle turns at its maximum turning rate

Figure 5.4: Sensor critical region

the nearest intersection, to the vehicle, of the edge of the sonar beam pattern and
the circle inscribed by the vehicle’s minimum clearance when the vehicle is driven
at its maximum turning rate. The significance of the release point is that when
a point obstacle is at the release point and the vehicle turns at its maximum rate
toward the obstacle, the vehicle will miss the obstacle by a distance equal to the
defined vehicle clearance. In a vehicle-based coordinate system, with the origin at the
vehicle’s turning centre, the positive y-axis extending forward from the origin and the
positive z-axis extending to the right of the vehicle in figure 5.4, the left release point
is

Ri=(—r+4(r—c)cosa,d+ (r —c¢)sina) (5.3)

and the right release point is
R, =(r—(r—c)cosa,d+(r —c)sina). (5.4)

Once the release point of the left sonar beam pattern contacts the obstacle, the vehicle

is incapable of turning into the obstacle. In fact, the vehicie is also incapable of turning
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the left sonar beam pattern back into the obstacle. Therefore, associated with « and
K; is a critical region, defined by the shaded area in figure 5.4, that cannot contact
an obstacle. There is also a critical region associated with o and R,. If the critical
region contacts an obstacle then the vehicle can pass the obstacle by a distance that
is less than the defined clearance and therefore may collide with the obstacle without
ever sensing it.

Assuming no objects are initially present in the critical region, the meaning asso-
ciated with each coarse equivalence class of the sensor space quantization partition,

as determined by a,r, ¢ and d, are summarized in table 5.2.

Equivalence Situation
Class Description
(d’ ’ df)
There are no objects in the world with which the vehicle
(00, 00)

can collide before they are detected

There is an object ahead of and to the right of the vehicle

/
(00,09) | ith which the vehicle can collide
(00, 00) There is an object ahead of and to the left of the vehicle
’ with which the vehicle can collide
(o', 00) There are objects ahead of and on both sides of the ve-

hicle with which the vehicle can collide

Table 5.2: Meanings associated with the coarse sensor space quantization equivalence
classes

To guarantee that the critical regions do not contact any obstacles requires that
obstacles are sensed in sufficient time to turn the critical regions away from the ob-
stacles. That is, the beam patterns must leave the obstacles ahead of the release
pomnts. For the vehicle, this fact means that assumptions about the type of obstacles
in the environment must be made. If we assume that the most complex obstacle in
the environment is a flat wall that can be detected from any angle then the minimum
required length of the sonar beam patterns to guarantee that the critical regions do

not contact an obstacle is

l=2r—d—(r—c)cosa (5.5)
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where [ is the length of each sonar beam pattern and & is the same solution to equa-
tion 5.2 that was used in equation 5.1. The derivation of this equation is also given
in appendix E.

For a flat wall environment, situations requiring differertiation by the control
mapping are those pertaining to the slant of the wall relative to the vehicle. These
situations can be differentiated with the values returned by the sonar sensors. If the

vehicle encounters a right-slanted wall, as shown in figure 5.5, then d; > d, and if the

+

Right Slanted
dy
Wall

Figure 5.5: Vehicle encountering a right slanted wall

vehicle encounters a left-slanted wall then d; < d,. If the vehicle encounters a wall
head-on, the sonar returns are equal, d; = d,.

With this knowledge we can construct the control mapping and actuator partion
P4 appropriately, based on the seusor mapping defined by « and I. The eanivalence

classes of the actuator partition and the control mapping are summarized in table 5.3.

It should be noted that the sensor space of the system we have just developed is not
complete as defined by section 3.4 because the sensor mapping defined by a and [ maps
the situation shown in figure 5.6 into the region in sensor space associated with a hard
left turn, even though this situation does not require an obstacle avoidance maneuver,
The beam patterns shown in figure 5.6 also define a sufficient sensor mapping for our
vehicle. The sensor space defined by a and [ is acceptably incomplete because it errs
on the side of caution.

For our vebhicle o = 40.8° and [ = 25.3m. The performance of this vehicle when it
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Actuator Sensor Space Situation Actuator
Equivalence Region Description Response
Class (i, y, Mode)
There is at least one object
0 dy>d, in the envirenment that re- (=.—.0)
quires a left turn to avoid
There are no objects in the
environment with which the |
1 di=d, = o ) . (2gy 4y, 1)
vehicle can collide before o
they are detected
There is at least one object
2 d; < d.Nd; # oo | in the environment that re- -, —2)

quires a right turn to avoid

Table 5.3: Control mapping and sensor space definitions for the vehicle
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Figure 5.6: Another sufficient sensor mapping
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encounters a flat wall is shown in figure 5.7. This figure was generated with our vehicle
stmulation. The initial position of the vehicle is (z.,y, 8.) = (0.0,0.0,0.0) and the
endpoint location is {0.0,30.0). The wall extends between the points (—30.0,40.0) and
(30.0,40.0). The trajectory of the vehicle does not contact the wall and the minimum
distance between the wall and the vehicle centre line is 3.552m which is just larger

than the defined vehicle clearance of 3.5m.
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Figure 5.7: Phase 11 vehicle enccuntering a flat wall

When the vehicle is faced with a point object located at (—10.0,17.2) and an
endpoint location of (—50.0,50.0), the vehicle passes the object with a minimum
distance of 3.581m, which is also just larger than the defined vehicle clearance. This
trajectory is shown in figure 5.8.

This vehicle always passes objects that are between itself and the endpoint at a
distance that is just larger than the defined vehicle clearance because of the situations
that sonar sensors sense. When using only recently sensed sensor values and sensors
like sonars, vehicles are limited to moving the edge of one beam pattern down one edge
Of the obstacles they encounter. Consequently, vehicles with limited range sensors,
like sonars, are relegated to wall following if only recently sensed sensor values are

used for control, which was also demonstrated by (Connell 1989).
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Figure 5.8: Phase Il vehicle encountering a single object

To demonstrate the robustness of this system, consider the vehicle encountering a
wall that is moving in the positive z direction. When the beam patterns first contact
the wall, the wall extends from the point (—30.0,40.0) to (5.0,40.0). We call this
scenario our “robustness test”. This environmental disturbance simulates a dynamic
environment and/or camulative positioning system errors, as discussed in section 2.3.
However, the phase I1 vehicle does not use position sensors for obstacle avoidance
maneuvers, so for this vehicle we are only illustrating robustuess to a dynamic envi-
ronment.

The clearance of the vehicle as it passes the wall at different velocities is shown
in figure 5.9. The performance degrades in a predictable, relatively linear fashion
that is inversely proportional to the size of the disturbance. This is very similar to
the degradation of a proportional controller to plant disturbances in the sense that

performance degradation is proportional to the size of the disturbance.
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Figure 5.9: Robustness of the phase 11 vehicle to a dynamic environment

5.5 Phase III: Internal Representation Develop-

ment

Internal representations only augment the control of the phase 11 system. That 1s, they
alter only the responses associated with non-critical environmental situations under
the mapping m. For our vehicle, the non-critical responses are those not associated
with the primary subgoal of obstacle avoidance, which are the responses associated
with actuator equivalence class 1 of table 5.3.

The internal representation we chose is an estimate of the endpoint of the object
around which the vehicle must travel. This internal representation is relatively reliable
because object endpoints are easily detected with sonar sensors. This i1s in contrast
to internal representations that pertain to the size and location of objects in the
envirommnent, which are not easily detectable with sonar sensors. To illustrate the
meaning of this internal representation, consider moving a sonar beam pattern across
an object. When the beam pattern leaves the object the value returned by the sonar
sensor increases to oo. Given the distance value previously returned by the sonar and

kunowing the size and shape of the sonar beam pattern we estimate the location of
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the endpoint of the object. If the object was last detected by the left sonar beam

o

ravel to the rig

pattern, the vehicle must ht of the object. and if the object was
last seen in the right sonar beam pattern. the vehicle must travel to the left of the
object. These situations can be represented in sensor space with three internal values
(Tobji- Yoss» beam) where (r,5;. y.5;) is the estimate of the location of the object endpoint
in the world and {deam) is a binary description of the last sonar beam pattern to
contact the object. beam can have the value left or right, which indicates on which
side of the object the vehicle must pass. The sensor and actuator spaces are expanded
to (Xobs, Yosj, beam, oy, 0, dy d ) and {25 Yobs, beam, &, y. Mode) respectively, from
the spaces of the phase I controller. These spaces aud the control mapping are

illustrated in figure 5.10.
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Figure 5.10: Phase III control mapping, with internal representations, showing sensor
space and actuator space

An efficient method of using this internal representation is to store the object
endpoint estimate for every control neriod in which the sonar beam patterns are in
contact with an obstacle. Then, when the sonar beams no longer contact obstacles (ie.

(d;, d.) = (00, 00)}, the estimate of the object endpoint is already stored in the internal
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representation. This is an acceptable approach because the internal representations
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in contact with an obstacle.

When neither sonar senses any obstacles (actuator equivalence class 1), the vehicle
uses the information stored in the world map to plan a path around the obstacle with
a greater clearance than the defined vehicle clearance. The control mapping uses an
algorithm, which we call the path planning routine, to supply the low-level control
system with intermediate waypoints that guide the vehicle aronnd the obstacle. Once
the vehicle is clear of the obsiacle, the control mapping supplies the low-level control
system with the mission endpoint as its waypoint. The path planning routine is part
of the control mapping m,.

The waypoint generated by the path planning routine is shown in figure 5.11,

where the left sonar beam pattern was the last to contact the object. If the vehicle

o (I3.7g)

(Izv: ym)

World Map

Clearance
{5.0m)

y=mzr+b

\7(11*: Ye)

Figure 5.11: Waypoints generated by the path planning algorithm

has not crossed the line y = myx + by in figure 5.11, then the mapping m, assigns the
response (£, Y., 1) to the low-level control system. If the vehicle has crossed the line
y = myx + by then the mapping m, assigns the response (z,,y,,1) to the low-level
control system. The vehicle determines if it has passed the line y = m;x + b, based
on the sensor values of the positioning system. the goal location and the estimate of

the obstacle endpoint location. The algorithm is described in appendix F.
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The trajectories of the vehicle under this augmented control system are shown in

y Position {m x 10}

4 i o 3

por
-

]
X Posttion {(m x 10)

Figure 5.12: Phase 111 vehicle encountering a flat wall

clearance of the path planning routine is set to 5.0m, which is how close each of the
trajectories came to their respective obstacles.

The results of the robustness test for the phase 111 vehicle are shown in figure 5.14.
The same linear trend in controller degradation is evident, however the vehicle has
a larger clearance for equivalent disturbances, which results from the angmentation
with interpal representations. In the limit {ie. when there is always obstacles in af
least one sonar beam pattern} the perforinance of the phase 1 vehicle is equal 1o

that of the phase Il system.

5.6 Brittle Design

In this section, we explore the effects of using internal representations before identify-
g the situations differentiated in sensor space. The initial instinct of many designers
after the phase I experiments is to use internal representations to mitigate the short-

comings of the sensing system. However, as we will see, this is a short-sighted solution
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Figure 5.14: Robustness of the phase IIl vehicle to a dynamic environment and/or
cumulative positional errors
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to the problem. Consider using the phase 111 control mapping with the sonar beam

| T
i

patterns of phase I. That is, use th

is, use the internal representations we have developed with
improper beam patterns. In the flat wall scenario, the vehicle performs as expected,

as shown in figure 5.15. The trajectory is very similar to that of the phase 111 vehicle
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Figure 5.15: Brittle vehicle encountering a flat wall

and would be sufficient proof of a successful project for most designers. However,
with the single object scenario, the vehicle passes the obstacle with a clearance of
only 0.31m in simulation, which is equivalent to a collision. This scenario is shown
in figure 5.16 and is similar to problems experienced by the ALV (Olin and Tseng
1991). That is, the vehicle collides with the obstacle because its sonar beam patterns
never contact the obstacle. This results from a poorly designed vebicle in which the
designer did not identify situations differentiated in sensor space. In short, for this
example, sensor space is incomplete.

The robustness test provides more disappointing results. Figure 5.17 plots the
results of this vehicle’s robustness test relative to those of the phase II and phase 111
vehicles. As the size of the disturbaunce is increased, the performance of this system
quickly degrades below that of the phase Il system, which doesn’t use any form of

internal representation. Note that the response of this system to disturbances is very
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Figure 5.17: Comparison of the robustness of the brittle vehicle with the phase II and
phase 11l vehicles
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sporadic. For our system. the reason for the sporadic behaviour is that when the wall
was moving at 25% of the vehicle’s speed, the wall moved into the beam patterns
an additional time, which caused the vehicle to turn again. Sporadic performance is
typical of brittle systems since the way many brittle systems fail is often difficult to
determine (Wallich 1991).

This system uses a relatively robust internal representation with an unacceptably
incomplete sensor space. If less robust representations were used, the degradation of

system performance under disturbance would be more drastic and more sporadic.

5.7 Summary

This chapter develops a design methodology for autonomous vehicles which develops
systems that are robust to disturbances in their environment. The methodology is
used to develop the sensor and control mappings of an AUV for the task of obstacle
avoidance in an unknown obstacle field. We show that the vehicle is robust to dis-
turbances by examining the clearance with which the vehicle passes a moving wall,
a disturbance for which the vehicle was not designed. The limitations of our vehicle
illustrate some of the limits of autonomous vehicles that are robust to disturbances
in their environments. OQOur vehicle is limited to a wall following type of obstacle
avoidance strategy.

In this chapter, we also show that the meanings associated with differentiable
regions of sensor space are a function of the entire autonomous vehicle control cycle
when the control environment is under-sensed. This fact means that autonomous
vehicles operating in under-sensed control environments must be developed as a whole,
and not as a collection of independent subcomponents. We also show that when
vehicles are operating in under-sensed control environments, a priori determination
of system brittleness is a difficult task without analysing the system in sensor space.

Through development of the vehicle in this chapter, we have found that sonar

sensors are sufficient for the task of obstacle avoidance.
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5.8 Discussion

In this chapter, we have seen how antonomous vehicles can be designed in a brittle
mauner through the inappropriate use of internal representations. The reason we
were able to illustrate brittleness 1s that our system is very simple, and consequently,
we were able to chioose an appropriate scenario to illustrate the system’s brittleness.
Unfortunately, illustrating brittleness can be a difficult task when complex internal
representations are used as part of autonomous vehicle control cycle. One reason for
this fact is that the internal representations are often adapted, or patched, to solve
problems encountered through experience with the vehicle. However, it is ocur opinion
that by adding these patches, the designers construct systems that operate in their
test environments, and they do not directly address the brittleness of their original
design. It is our opinion that one reason many systems are brittle is that designers
often make improper assumptions about the vehicle’s environment that they might
not even realize they are making. For example, designers might assume that tree’s
are permanent structures, because their removal is a rare occurrence. However, if
the vehicle were to use the tree as a reference, the removal of the tree can make the
system’s brittleness manifest.

We have also seen the limited ability of a robust autonomous vehicle. To improve
our vehicle’s functionality requires sensors that are able to sense more of the con-
trol environment. For example, a sensor that sensed the entire obstacle avoidance
environment of our vehicle would be ideal. Regardless of the solution to the sens-
ing impediments, this chapter has outlined the need for better autonomous vehicle

S€ENSOors.
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Chapter 6

Conclusions

6.1 Summary

The lack of success in developing antonomous vehicles capable of performing many of
the simple tasks that humans can perform led us to examine some of the fundamental
assumptions underlying autonomous vehicle development. Traditionally antonomons
vehicle development is viewed as an artificial intelligence problem. and consequently,
one of the implicit assumptions made by most designers of autonomous vehicles is
that the intelligence possessed by humans can be mechaunically, or electrically, repro-
duced. In this thesis, we work from the assumption that humans are more than the
sum of their components, and that machines are only the sum of their components,
Consequently, autonomous vehicle development is viewed as a control problen in the
sense that the vehicle is a machine operating in a control cycle.

The reason many autonomous vehicle designers do ot view autonomous vehicle
development as a control problem is that the control environment of autonomous
vehicles is often under-sensed. We describe autonomons vehicle control in under-
sensed control environments with a generalized control cycle that includes sensor
space and actuator space. Analysis of control problemns in sensor space is a natural
extension to existing control theory and can also be used to describe more traditional,
critically sensed control problems. One requirement of well-designed systems is that
sensor space be complete.

Using Q-SAMs, which are lookup-table equivalents of computer-based control algo-

rithms, we explored the potential of situation-based control and showed that Q-SAMs



CHAPTER 6. CONCLUSIONS 90

can mmplement many forms of control laws. We filled a Q-SAM with a proportional
control law to show that Q-SAMs can be filled with rule-based control laws. Through
a process known as downloading, we recorded the control law of an expert controller
wheose control law was unknown. One requirement of the downloading process is
that the sensors must differentiate the situations differentiated by the expert. We
also explored adaptive situation-based control and found that adaptation during a
single movement to the goal region is not, as yet, practical. One important implica-
tion of the existence of Q-5AMs is that the underlying principle of operation of all
antonomons equipment is that they simply take a set of inputs and through some pre-
defined law produce a sel of ocutputs, which means that autonomous vehicles simply
react to the environment in which they exist and, in our opinion, do not understand
that environment.

In under-sensed control environments, situations differentiated in sensor space are
~a function of the entire autonomous vehicle as well as the environment in which the

vehicle exists. Consequently, a good method of identifying differentiable situations is
through physical experimentation that does not involve any form of internal repre-
sentations. That 1s, experimentation that uses only recently sensed sensor values to
determmmne actuator responses.

We used this idea as one of the corner stones of a new design methodology for
autonomous systems. The other corner stone of the methodology is to use internal
representations to improve performance in such a way that they do not affect actu-
ator responses associated with critical environmental situations. This methodology
develops systems that are robust to disturbances in their environment.

The methodology was used to determine the sensing requirements of an autonomous
underwater vehicle using sonars for the task of obstacle avoidance in an unknown ob-
stacle field. Through development of the vehicle, we showed the limitations of robust
obstacle avoidance in an unknown obstacle fields using sonar sensors. Qur vehicle is
limited to a wall-following type of avoidance strategy. The vehicle development also
illustrated that the manifestations of brittleness associated with internal representa-
tions are difficalt to determine without appropriate sensor space analysis.

This thesis has laid the foundation for development of 2 control theory for under-
sensed control environments, which will provide a mathematical basis for autonomous

vehicle control systemss.
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6.2 Contributions

In this thesis, we have made several contributions to the autonomous vehicle commnu-
nity. Our most significant contribution is providing a different set of assumptions from
which to base autonomous vehicle development. We assumed that computers and hu-
mans are fundamentally different, and that it is the designers, and not the computers
or autonomous vehicles, that understand the environment in which the computer, or
autonomous vehicle, exist. In accordance with this idea, we described autonomous
vehicles in a control cycle where the control environment is often under-sensed. This
process introduced the ideas of under-sensed and critically sensed control environ-
ments. It also introduced the concepts of sensor space, actuator space, situations,
situation differentiation and situation identification. With these concepts, we showed
that situations differentiated in sensor space are a function of the entire autonomous
system when the control environment is under-sensed, whereas they are a function of
only the sensor transformation when the control environment is critically sensed.

We have also introduced the autonomous vehicle community to Q-SAMs which are
lookup-table equivalents of computer-based control systems. We have used Q-SAMs
to illustrate the strengths of situation-based control.

The final contribution we made in this thesis is a design methodology for sys-
tems operating in under-sensed control environments which develops systems thal are

robust to disturbances in their environments.

6.3 Future Work

In this thesis, we laid the foundation of a new area of control theory: control in under-
sensed environments. Consequently, one area of future work is the development of
this control theory. Much of this work will revolve around digital systems, though
it will have implications for continuous systems. This theory, when developed, will
provide a mathematical framework for designing autonomous vehicles.

A second area of future work is sensor interpretation. A shortcoming of au-
tonomous vehicles is their inability to construct reliable world maps using their own
sensors. Overcoming this deficiency requires identification of unique environmental

features that vehicle-based sensors can differentiate. These features will be the basis
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of vehicle generated world maps. This research also requires a theoretical framework
for describing systems which use sensors that accumulate errors, like on-board naviga-
tional units, to determine the maximum distance a vehicle can travel between features
stored in the world map. It is our opinion that when autonomous vehicles are able
to uniquely identify regions of the environment using their own sensors, the day of

household autonomous vehicles will be upon us.
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Appendix A

SHAKEY

In this appendix, we provide a more detailed description of the SHAKEY (Nilsson
1984)! project. In section A.1, we describe the robot and its control architecture. In
section A.2, we explain how SHAKEY’s reasoning system, STRIPS, develops plans
for the robot. Finally, in section A.3, we describe how plans are decomposed into

actions and provide a brief summary of this appendix.

A.1 SHAKEY and its Architecture

SHAKEY is a mobile cart that has a camera and two range finders which it can pan
and tilt. SHAKEY determines its position and orientation from two shaft encoders
connected to its two drive wheels.

SHAKEY’s environment consists of a few rooms that are connected with doorways.
The walls are light and their edges highlighted with thick dark lines. Inside the rcoms
are a few blocks and wedges, each painted a distinct colour for easy identification by
the vision system under proper lighting, which is provided.

The general architecture of SHAKEY’s higher-level control system is shown in
ﬁgufe A.1, which is a decomposition by function organization that is used by many

autonomous systems. The sensing and sensor analysis subsystems update internal

Teom

*This is the classical SHAKEY reference but unfortunately we were unable to obtain it. Instead
our information comes from personal knowledge and secondary sources like (Nilsson 1980), (Brooks
1991) and (Shapiro and Eckroth 1987).
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Figure A.1: Decomposition by function type of controller organization

representations that are stored in the reasoning subsystem. The reasoning subsys-
teni uses the internal representations to develop a plan that accomplishes system
goals, which are determined by an operator external to SHAKEY. A typical goal
for SHAKEY is to organize the blocks in a certain fashion. The task decomposition
subsystem decomposes the plan generated by the reasoning subsystem into physical

actuator commands that are then executed by the actuator subsystem.

A2 Reasoning in STRIPS

SHAKEY’s reasoning engine is an implementation of STRIPS (STanford Research
Institute Problem Solver), which is a non-commutative production system based on
first order logic in the form of predicate calculus. We explain these ideas with an
example from Nilsson (1980) because it is simple and clear. Everything in STRIPS
is defined with well formed formulas (wffs), which are simply legitimate predicate
calculus expressions. The state of the world shown in figure A.2 can be described

with the following wifs:

on floor(A)
onfloor(B )
on(C, A)
clear(B)
clear(C)
handempty

where on floor(x) represents the fact that object z is on the floor, on(z,y) represents
the fact that  is directly on top of y, clear(z) represents the fact that there are no
objects on top of z and handempty represents the fact that the robot is not holding

any objects.
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Figure A.2: Blocks World

SHAKEY reasons about its world by searching through different combinations of
production rules to find a combination of production rules that will change the present

state of the world to the goal state. Goals are also defined in the form of wis like:
on(A, B) A on(B,C) (A1)

which represents the goal of having a stack of blocks with A on top B in the middle
and C on the bottom. Production rules represent physical actions that SHAKEY can
perform in the world like

pickup(x)
preconditions: ontable(z), clear(z), handempty
delete: - ontable(x), clear(z), handempty
add: holding(x) |

where the preconditions of the rule must exist in the current state of the world (ie.
must be true) for the rule to be applied to the system. Application of a production
rule removes the wifs in the delete list from the world state and adds the wifs in
the add list to the world state, which changes the state of the world. Some of the
production rules SHAKEY uses are:

goto(x) moves the robot into the vicinity of door z
push(dist, ob, tol) pushes object ob dist feet with a tolerance of tol
roll(dist, tol) moves the robot forward dist feet with a tolerance of tol

- gothrudr(door, fromrm,torm) move through door door from room fromrm to room torm
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The search through different. combinations of production rules is done with the
A" algorithm, which produces the best possible plan according to serme minimization
function. The A* algorithm is a search algorithm that used heuristics to increase the
speed of the search process. The plan is represented as an ordered set of production

rules like

{goto(D1), gothrudr(D1, R1, R2),r0ll(5,0.1), push(10, BL1,0.5),...}.

A.3 Implementing the Plan

Once the plan is generated, each production rule of the plan is decomposed into
specific actions by the task decomposition subsystem. For example, the production
rule goto(D1) is decomposed into a series of actions that will move SHAKEY to
near door D1. Depending upon SHAKEY’s position in the room, this move might
require SHAKEY to perform a complex series of maneuvers. The route to the door
is determined using a connected graph of the environment and the A* algorithm to
search through the graph for the best path. The connected graph is an internal
reﬁresentation of objects and routes in the world. It is used in addition to the blocks
world internal representation of the world. Though not in the reasoning subsystem,
path planning is another instance of reasoning performed by SHAKEY. Once the task
is decomposed into physical actions the actuator subsystem physically implements
each action in turn.

To summarize, SHAKEY maintains a list of facts about the world in the form of
wifs. SHAKEY reasons about accomplishing goals using production rules and the A*
algorithm, which produces a plan that is an ordered list of production rules. Each
element of the plan is decomposed into physical tasks that can be accomplished by
the robot. These physical tasks are then executed by the physical robot. SHAKEY’s
mtelligence is in the form of its ability to reason about accomplishing goals in the

world.
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Appendix B

Allen

In this appendix, we provide a more detailed description of Allen and the subsump-
tion architecture. In section B.1, we describe the subsumption architecture and in

section B.2, we describe Allen’s operation in detail.

B.1 Subsumption Architecture

Most work involving behaviour based control stems from the ideas of Rodney Brooks
and the subsumption architecture (Brooks 1986). Instead of decomposing a robot in
the traditional sense of figure A.1, robots are decomposed into layers of task achieving

behaviours as shown in figure B.1. Behaviours are defined by the external manifesta-

Levei 7 reason about behavicur of objects

Level 6 plan changes to the world

Level 5 idendify objects

Level 4 monitor changes

Arctuatory
. s ———————
Sensors  semm—— Lexcl 3 build maps ’

{to low-level

Level 2 expiore closed Joop
— control system)

Level 1 viander

Level O avoid objects

Figure B.1: Subsumption architecture
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tions of activity with which they are associated, not by any internal representations
they might possess. During development with the subsumption architecture, robots
are constructed incrementally by building modules that accomplish each behaviour in
turn. Higher layers (ie. larger numbers in figure B.1) are constructed in such a way
that they subsume the control of all lower layers (ie. smaller numbers in figure B.1).
This ensures that the functions of the lower, more survival oriented robot behaviours
are always incorporated into cont-ol decisions. The first layer built is level 0.
Subsuming behaviours is analogous to how humans move their extremities. For
example, our hand reflexively stops at, or moves away from, obstacles which it con-
tacts, a level 0 behaﬁour. When our cognitive mind decides to move our hand across a
table, it subsumes the level 0 behaviour so that we do not drive our hand through any
“obstacles, but instead our hand stops or moves around obstacles encountered enroute.
The “cognitive mind” we refer to is represented by levels 6 and 7 of figure B.1. Note
- that Rodney Brooks’ goal is to build artificial creatures capable of reasoning about
their environment by adding increasingly sophisticated behaviours to his robots. It is
‘Brooks® opinion that intelligence can result from a complex collection of behaviours.
The subsumption architecture has several advantages over traditional techniques.
First, central representations that must satisfy all robotic needs, which can be difficult
to develop, are not required. Instead, each behaviour uses sensor information and in-
ternal representations pertinent to its task, which may be completely independent of
those used by other tasks. Secondly, the surprises encountered when subcomponents
of figure A.1 are finally assembled together are avoided because there is a complete
robotic system at all levels of subsumption development. By “surprises” we mean
unexpected system failings. Building systems incrementally, as the subsumption ar-
chitecture requires, prevents designers from over estimating the abilities of their sys-
tems because design deficiencies are discovered throughout the development process.
In addition, the subsumption architecture explicitly handles the timing constraints
discussed in (Albus 1981). Lower-level behaviours, which respond to the environment
have shorter control periods while higher-level behaviours, which do more sophisti-
cated work, have longer control periods. The subsumption architecture is a structure
that can respond to the environment while it is thinking. Finaily, the subsumption

architecture degrades gracefully under failure. When a higher level behaviour fails
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to provide a response in sufficient time, due to failure or computational load, con-
trol reverts to the next lower level, whose control is less adept, but still sufficient
to at least guarantee the robot’s safety. Because behaviours operate independently,
systems built with the subsumption architecture do not suddenly fail, as is the case

when many traditional designs are overloaded.

B.2 Allen

Allen {Brooks 1986) (Brooks 1990) is an implementation of the first three levels of
the subsumption architecture. Allen physically moves with a drive unit that rotates
in place by a specified number of degrees or moves forward a specified distance. For
Allen, a general move is implemented by first turning and then moving forward. Allen
is equipped with 12 sonar transducers evenly distributed around its circular frame,
one of the transducers faces forward. Each transducer returns a “time of flight” value
that is proportional to the distance to the nearest obstacle in front of the transducer.

Level 0 control is accomplished by using the transducers to move the vehicle away
from obstacles. The inverses of the values returned by the sonar transducers are
summed to determine a “force vector” whose direction indicates the centre of free space
and whose magnitude is proportional to the distance the robot will move. The level 0
controller first sends a turn command to the motion controller which turns the vehicle.
When the motion controller is done turning, it sends an acknowledgement to the level
0 controller which replies with the appropriate forward motion command. When the
motion controller completes the forward motion, it sends an acknowledgement to the
level 0 controller to indicate that it has completed the forward motion. 1f, at any
time during forward motion, the sonar transducer facing forward indicates that an
obstacle is too close to the vehicle, the level 0 controller sends a halt command to
the motion controller, which stops the robot. This prevents the robot from colliding
with objects that are moving or were not previously detected because of gaps in the
sonar coverage. Providing the control period is sufficiently short, level 0 control moves
Allen away from any objects moving towards it and stops Allen when it is about to
collide with an object. In a static environment the level 0 controller moves Allen to

the centre of free space and keeps it there.
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The level 1 controller is designed to allow Allen to “wander” around the environ-
ment while avoiding obstacles. This task 1s accomplished by generating a random
motion vector approximately every 10 seconds. The random motion vector is added
to the force vector of level 0 to produce a new force vector which moves the vehicle
towards the goal, while avoiding obstacles. The halt reflex of level 0 is still active.
By adding a direction vector to the level 0 force vector, the level 1 controller sub-
sumes the level 0 controller. A new direction vector is determined for the vehicle that
incorporates the vehicle’s obstacle avoidance behaviour. ,

The level 2 controller gives Allen the ability to move down corridors. This is done
using the odometric and sonar sensors. When the vehicle stops for a short while, as
determined by the odometric sensors, the level 2 controller determines the farthest
location, relative to Allen, in sensed free space. The vector to this location replaces
the randomly chosen direction vector of the level 1 control system. By replacing the
level 1 direction vector, the level 2 controller subsumes the level 1 controller and also
the lévél 0 controllér.

With this control system, when the level 2 goal is unattainable, Allen simply choses
another goal. For example, if the goal location is behind a short wall that was not
initially detected, Allen will stop in front of the wall in such a way that the repulsive
forces of the wall are balanced with the attractive force of the goal. For a short while
Allen sits defeated. However once the level 2 controller notices the inactivity of the
odometric sensors, a new goal is determined, based on the sonar values, and Allen
heads toward that new goal. The net effect of this system is that Allen wanders
aimlessly around its environment, tending to move down halls.
~ In summary, Allen has 3 behaviour layers, an obstacle avoidance behaviour, a ve-
hicle behaviour, and an explore behaviour. The explore behaviour looks for the most
distant location in sensed free space, and subsumes the wander behaviour, which in
turn subsumes the obstacle avoidance behaviour to make Allen explore its environ-
ment. Allen’s intelligence is exhibited when it moves around the environment without

colliding with obstacles.
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Appendix C

Autonomous Land Vehicle (ALV)

In this appendix, we provide a more indepth discussion of the Autonomous Land
Vehicle (ALV) (Payton 1986), (Daily 1988), (Payton 1990), (Olin and Tseng 1991),
(Thorpe 1991). In section C.1, we discuss the ALV and its control architecture. In
section C.2, we describe the progress of the ALV project. Finally, in section C.3, we
and describe future work on the ALV that was not fully described in the main body
of the thesis.

C.1 ALV and its Control Architecture

The ALV is an 8-wheeled vehicle designed to navigate over mildly rough terrain. It
uses an cnboard navigation system to determine the vehicle’s position, orientation,
pitch and roll relative to the world. The ALV also has a range scanner that scans an
80° horizontal and 30° vertical swath in front of the vehicle. Experiments with the
ALV were conducted in a grassy field that contained gullies and rocks.

The control architecture of the ALV is shown in figure C.1. The low-level closed
loop control system of figure A.1 is incorporated into the Motion Controllers block
of this architecture. For autonomous vehicles, the ALV’s architecture is relatively
standard in the sense that it has a sensing leg (the left side of the figure) and an
actuation leg (the right side of the figure). The bottom portion of the architecture is
connected to real sensors and real actuators. As we move vertically in the perception
system, data is assimilated producing a more complete picture of the environment.

As we move down the actuation leg, tasks are decomposed into increasingly smaller
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Figure C.1: ALV control architecture

subtasks to the point that they are actual motion commands. The different levels
of the perception leg provide information which is pertinent to the tasks being de-
composed in the respective levels of the actuation leg. The structure of figure C.1
is described in (Daily 1988) but the ideas supporting the architecture are described
in (Payton 1986).

~ The mission planning moduie defines system goals and constraints, and instructs
the mission sensing module to configure the sensors to look for specific landmarks
in the environment. This level of the architecture is designed to interact extensively
with human mission planners. The world perception module maintains a world map
of the environment that includes a list of landmarks indicating which have and have
not been sensed. The route planner module uses the world map and the constraints
of the mission planner module to determine a satisfactory route through the environ-
ment. The local perception module performs sensor fusion. It identifies landmarks
and passes this information to the world perception module, and it identifies obsta-

cles and envirenmental conditions and passes that information to the local planning
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module. The local planning module uses route information and environmental infor-
mation to determine which reflexive behaviour will control th.e vehicle in the reflexive
planning module. The virtual sensor module detects specific environmental features
as requested by the local perception module or the reflexive behaviour module. The
term “virtual sensor” is used because the sensors values might not correspond to a
single sensor, but might result from the processing of several sensor values. The re-
flexive behaviour module implements the currently active behaviour as specified by
the route planning module.

The implemented version of the ALV has two behaviours, called activities by
(Daily 1988); one which is active when obstacles are sensed, “find-clearest-path-to-
goal” | and the other which controls the vehicle when obstacles are not sensed, “travel-
toward-goal”. Each activity consists of several “bel.aviours™ which can issue vehicle
commands like speed = 3m[s and turn = 10°/sec to a blackboard architecture that
arbitrates requests according to a fixed arbitration scheme. Each “behaviour” requests
specific information from the virtual sensor module which provides that information
in a timely manner.

It is the opinion of some researchers that this structure is similar in operation
to how humans perform tasks. At the lowest level are reactive elements that provide
responses to the immediate environment. As we move uj) the architecture the activities

become increasingly abstract and cognitive.

C.2 ALV Progress

Despite the well thought-out architecture, the implementation stage of the ALV has
not progressed beyond the architecture’s lowest levels (Daily 1988). The system im-
plemented uses a predetermined world map without any landmarks requiring iden-
tification by the sensing systems. The world map contains information about trees,
rocks, gullies and the slope of terrain in the environment. The world map is used to
plan 2 route through the environment to a predefined endpoint by specifying way-
points along the route through which the vehicle must pass. The rangefinder is used
n conjunction with the navigation system to develop a vehicle centred elevation map

of the local environment. Virtual sensors calculate the distance the vehicle can safely
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move in seven different forward directions along the elevation map. Only seven direc-
tions are analysed because of the processing constraints placed on the system by the
real time environment. Along with the traversable distance, the virtual sensors return
the reason the distance was chosen (ie. obstacle, lack of sensor data, etc.). When an
obstacle is detected along one of the seven paths, the local planning module activates
the “find-clearest-path-to-goal™ activity which chooses the best of the seven evaluated
routes with obstacle avoidance as the primary control emphasis. When no obstacles
are present along the seven routes the “travel-toward-goal™ activity controls vehicle
motion. This activity chooses the route best suited to moving the vehicle to the next

waypoint.

C.3 ALV Analysis and Future Work

The higher levels of the architecture were not implemented because the sensors used
are insufficient to uniguely identify landmarks in the environment. This lack of sensing
ability is also addressed in the implemented portions of the architecture because the
system is designed to differentiate only the presence or absence of obstacles. An
obstacle is defined as something through which the vehicle cannot traverse. The
actual sensors are not used to identify rocks, trees or gullies. The information in the
world map and the sensors is used to evaluate the feasibility of potential routes.

Though Dailey (1988} reported a successful experiment, much later work, (Payton
1990}, (Olin and Tseng 1991) discusses some of the shortcomings of the original design
and provides solutions to these shortcomings. The following discussion describes these
solutions with the author’s explanations as well as our own.

The first failing of the original design is that the system always moves to the next
waypoint, regardless of the present situation. Figure C.2 illustrates this scenario when
an unmapped obstacle prevents the venicle from following its initial route. The vehicle
circles the boulder to move to the next waypoint, which is clearly a bad move. The
vehicle should have coutinued on to the third or fourth waypoint. Payton consider
this to be an abstraction problem. When the vehicle turned away from the planned
patfl; the waypoints abstracted from the route were no longer appropriate. Payton
refer to the vehicle as “unopportunistic” because it did not move towards waypoint

3 when the opportunity presented itseff. It is our opinion that the system was not
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Figure C.2: ALV attempting to follow a blocked route

programmed properly. That is, the controller assigned an inappropriate response to
the present environmental situation. We can consider the route determined by the
planning system to be a very brittle form of internal representation. We use the term
“very brittle” because the internal representation of the path is generated from the
internal representation of the world map. Payton’s solution is to generate a gradient

field over the entire world map, as shown in figure C.3. Now, when the vehicle moves

Figure C.3: ALV gradient field world map

off the planned path of figure C.2, it takes advaniage of its new situation. It is our
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opinion that Payton simply made better use of the situations in the environment that
their vehicle’s sensors are able to differentiate. This is one example of altering iniernal
representations to address problems that are encountered during testing, instead of
addressing the system brittleness directly.

Another deficiency of the original design, as noted in Olin and Tseng (1991), is
that the vehicle has a tendency to move back towards objects that it has already
cleared because the “travel-towards-goal” activity does not consider obstacles when
determining the most appropriate route. Payton refers to this scenario as a “command
arbitration problem” because it is his opinion that the problem lies in the fact that
the vehicle’s motion is determined exclusively by only one of the vehicle’s two distinct
activities. We refer to this scenario as behaviour fusion, described in section 2.3. Peiy—
ton proposes to solve this problem with a connectionist approach where each activity
states its preference for different actuator responses, and the most preferred response
" is chosen for actuation. This again is simply making better use of the situations in
the environment that the vehicle is capable of sensing. Again, it is our opinion that
Payton is making better use of the situations in the environment that his vehicle’s
sensors are able to differentiate.

Some of the problems discussed in section 2.3 were not addressed by Payton,
though it is our opinion that they experienced them. For example, the brittleness
associated with the cumulative errors of positioning systems was not discussed. From
Olin and Tseng (1991), we know that 8 of 18 runs terminated successfully at the goal
point defined by the land navigation system. However, the correspondence between
the actual goal location and the sensed goal location was not mentioned. Also, the
longest vehicle trip was only 735m. Perhaps positioning system errors prevented
longer runs.

Finally, Payton never addressed the brittleness associated with world maps and
dynamic environments. Fortunately, the environment of the ALV was relatively static.
That is, the hills, rocks and gullies never moved. However, if anything had changed
after the world map was constructed, the ALV would never have known. For example,
if the rock in figure C.3 were to roll down the page, the vehicle would not take
advantage of the potential path through the rock’s previous location.

To summarize, despite the elaborate architecture initially envisioned by the de-

signers of the ALV, the implemented architecture basically differentiated situations
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in the environment that the sensors were able to differentiate and assigned responses
to those situations. Payton’s recent work has made better use of situations in the

environment which the sensing system is able to differentiate.
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Appendix D

Situation-based Adaptive Control

Surface

~ This appendix explains the shape of the control surface generated by the adaptive
situation based control algorithm. The general shape of the control surface can be
though of as an equilibrium between two pressures. One pressure, from the adaptation
algorithm, increases the magnitude of the force stored in each Q-SAM quantum,
and the other pressure, from the actuator response distribution function (ARDF),
decreases the magnitude of the force stored in each quantum. In this appendix we
describe these pressures and their equilibrium point.

The adaptation algorithm places a positive pressure on the magnitude of the force
stored in each Q-SAM quantum bebause, on average, the force recorded to each quan-
tum has a larger magnitude than the force stored in that quantum. To illustrate this
fact, consider Q-SAM quantum z, which is associated with some positive error whose
stored force, F(z), is some value that is less than the equilibrium value. When the vehi-
cle moves into sensor space quantum ¢, a force in the range [-2.0N + F(2),2.0N + F (1))
is applied to the system. Forces closer to 2.0N + F(7) are more likely to move the
system towards the goal than forces closer to —2.0N + F(2). Therefore, the expected
force recorded to quantum 7 is greater than F (), which tends to increase the value
sisored in quantum z. The converse is true if quantum 7 is associated with some neg-
ative error. In fact, the pressure exerted on the force stored in quantum 2z can be

mathematically represented as the expected increase in the force stored in quantum ¢
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when a new force is recorded by the adaptation algorithm. That is,
AFp (i) = (F(i) — F(3)) wy (D.1)

where AFj,.(z) is the expected change in the value stored in quantum 2, which is
equivalent to a pressure exerted on that force, F(z) is the average force recorded in
quantum z, F'(z2) is the value presently stored in quantum z, and w;; is the constant of
proportionality, which is the diffusion factor from the ARDF (equation 4.2).
Counteracting the positive pressure exerted by the adaptation algorithm is the
negative pressure exerted by the ARDF. We describe the pressure as negative be-
cause the ARDF usually reduces the magnitude of the value stored in each quantum
by trying to malke all the values equal to zero. This scenario arises because the ARDF,
when repeatedly applied to a control surface without any interference from the adap-
tation routine, eventually transforms that control surface into a flat line. In our case,
that flat line is the line force = 0 because the adaptation algorithm, on average,
stores positive forces for positive errors and negative forces for negative errors, and
the only value that is common to both positive and negative forces is zero. The pres-
sure exerted by the ARDF can be represented as the expected change in the value

stored in a quantum when a value is recorded to another quantum. That is,
AFyec(t,7) = (F(2) — F(5)) wy; (D.2)

where AFy..(z,7) is the expected change in the magnitude of quantum ¢ that results
from recording a new force into quantum j and w;; is the diffusion factor from the
ARDF (equation 4.2).

On average, the control surface takes the shape that balances the two pressures

described in equations D.1 and D.2 in each sensor space quantum. That is,

N
PO)AFu(i) = Y pl1)AFu.(i, ) (D.3)

1=11#7
where p(z) is the probability of recording a value in quantum z at any time during
adaptation, and N is the number of quantization regions in the Q-SAM. Equation D.3
must be satisfied for all sensor space quanta :. Combining equations D.1, D.2, and
D.3, the equilibrium state is described as
N -
0=3"p()FE) — F()wy Vi, (D.4)

1=1
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In equation D.4, F(j), the average force recorded to Q-SAM quantum j, and p(j),
the probability of being in a quantum 7, are unknown. In the paragraphs that follow,
we describe 1:_'()) and p(j) as functions of the vehicle’s dynamical parameters, the
Q-SAM parameters, the adaptation parameters, and the present state of the control
surface.

First, we describe 1:_'(]) in terms of distributions of random variables associated
with specific sensor space quanta. The adaptation algorithm records a force f into
the Q-SAM if that force moves the system towards the goal region without moving it
too much closer to the goal region. In chapter 4, we defined too much closer as 25%

and 75% of the distance to the goal region. More specifically, F(j) = f is recorded if
k() < 2 < t() (D.5)

where k(j) is the width of quantum j. which is 0.0625m in our case, t.(j) is the
_distance that is too close to the goal region for quantum 7, and z is the distance from
the edge of the quéntized region farthest from the goal region to the position of the
AUY after force f is applied for one control period. z is a function of the system

dynamics specified in equation 3.1, which is repeated here as

z=af +bv+z, (D.6)
where
_ At M —{;!-At
« = — —d2(1—e ) (D.7)
b = %J—(l — e'{?m), (D.8)

v is the velocity before application of the force f, and z, is the actual location of the
AUV in the quantum before application of the force f. These parameters are shown

in figure D.1.

For any quantum, f,v, and z, can be described as the random variables F,V, and

X,, respectively, which are constrained by the equation
X=aF +bV+ X, (D.9)

where X is the random variable associated with z. From equations D.5 and D.6, a

force f is recorded if

k(j) — bv — =z, t(y) —bv—2z,
G) - - <f< ,(J), bv o (D.10)
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Figure D.1: Parameters described in equations D.5 and D.6

The average force recorded to a particular quantum is the average force satisfying

equation D.10, which can be found by taking the expected value of the function

k(j)—bv—z, _ te(j)—bv—z0
Eo)bv=zo - g o teld)—bu-z,
g(F,V, X,) ={ / : / . (D.11)
0 else
which is
FG) = Ervx{9(F,V.X,)} (D.12)
= Evx {Ervx.{9(F,V,X.)}} (D.13)

telg)—bv—z0

a

400 4o
— {
- /_00 —oG fva“v’ IO) ki]!—bv—zo
a

fFIVXo(f) df(l’b‘(lil'o. (}).14)

If we assume that F,V and X, are independent for any quantum, then
a +oc  ptoo .._.LL.___‘CJ"':“"-"O 7 |
FG) = [ vo)ie) [y, S didvdz,  (D15)

-

where

fr(f) isthe distribution of forces apnlied in the Q-SAM, which is uniformly distributed
with a mean of F(3) (ie. U[F(5) — 2.0, F(3) + 2.0]).

fv(v) is the distribution of velocities associated with forces that are recorded into that
quantum j. This distribution is determined by the system parameters M, d, At,
the range and quantization of the Q-SAM and the distributions of the random

perturbations and new goal locations.
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fx_{x,} is the distribution of the locations in the quantum associated witk forces that
are recorded into that quantum. This distribution is also a function of all the

system parameters and is approximately uniform (ie.U[0, k(7)]).

We now describe p(j} in a similar fashion as we described F(j)- p(j), the proba-

bility of recording a force into quantum 7 at any time, is
p(j) = p(being in quantum j) p(recording | you are in quantum j). (D.16)

p(being in quantum j) is a function of the random distribution of the goal locations,
the control surface and the system dynamics. p(recording | you are in quantum j) is
the probability that the system leaves the quantum in one control period and does

not move too much closer to the goal region. More specifically,
p(recording | you are in quantum j) = p(k(j) < = < 1.(7)) (D.17)

where the probability density function of z is defined by equation D.9 and is a function

of fr(f), fv(v), fx.(x,). That is,

Ir2)  fr(2)
ol Tl

where * is convolution. Therefore equation D.17 becomes

fx(z) = * fx, () (D.18)

te(s)
p(recording | you are in quantum j) = /k ( _)J fx(z)dx (D.19)
J
and )
te(s
p(7) = p(being in quantum j) ) fx(z)dz (D.20)
j

is the probability of recording in quantum j at any time.

To summarize, the control surface generated by the adaptation algorithm of chap-
ter 4 is a function of the parameters associated with the system dynamics, the Q-SAM,
and the adaptation algorithm. The average control surface is a balance between a
pressure from the adaptation algorithm, which increases the magnitude of the force
stored in each Q-SAM quanta, and a pressure exerted by the ARDF, which decreases

the magnitude of the force stored in each Q-SAM quantum.
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Appendix E
Sonar Beam Pattern Derivation

In this appendix, we derive the beam width « and beam length [ of the sonar beam
patterns of our vehicle in chapter 5 so that the vehicle can avoid all obstacles in an
environment, where the most complex obstacle is a flat wall, using only recently sensed
sensor data to determine actuator responses. We first determine the beam width and
then the corresponding beam length. The discussion in this appendix focuses on the
left sonar bam pattern with little mention of the right beam pattern because the
derivation of both beam patterns are very similar.

The sonar beam patterns must be wide enough to continually sense all potential
vehicle trajectories, with the vehicle’s clearance. We refer to the trajectory of the
vehicle’s clearance as the clearance trajectory, as shown in figure E.1. The minimum
beam width that satisfies this criteria is shown in figure E.1, where » is the vehicle’s
minimum turn radius, ¢ is the vehicle’s clearance, and d is the distance the sonars
are ir front of the centre of the vehicle. The trajectories shown in figure E.1 are
those associated with the minimum turning radius, which require the widest beam
width of all potential trajecties to sense. Note that in figure E.1, a portion of the
vehicle trajectory, and a portion of the clearance trajectory, directly in front of the
vehicle are not continually sensed. This region is called the critical region and the
most forward point of the critical region is the release point R; shown iu figure 5.4,
which is repeated here as figure E.2. The significance of the release point is that when
the vehicle moves the sonar beam patterns away from obstacles after the release point
(ie. between the vehicle and the release point), the obstacle is in the critical region,

and obstacles in the critical region can violate the vehicle’s clearance requirements
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without being sensed.
The geometric relationships associated with the beam width derivation are shown

in figure E.3. At the release point R;, the edge of the sonar beam pattern is tangent to

R

Figure E.3: Triangle in beam width derivation

the clearance trajectory and perpendicular to the line from the turning centre of the
minimum turning radius to the relase point. This derivation begins with relationships

obtained from the highlighted triangle in the left corner of figure E.3, which are

sina = % (E.1)
cosa = % (E.2)
¥ o= &+4° (E.3)

where « is the desired beam width, and b and d are parameters used in this derivation.
Another relationship is obtained from the upper highlighted triangle of figure E.3 and
18

cos o = —1—7——:——1} (E.4)
Equating equations E.2 and E.4 results in the following relationship between ¢ and b.

rq — ¢* = (r — )b — b2 (E.5)
Replacing ¢ in equation E.5 with ¢ in equation E.3 and rearranging yields

r(b? = &) =(r—b—. (E.6)
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Squaring both sides and rearranging results in the equation for b stated in the thesis

as equation 5.2, which is
o(2r — )0* 4 28 (r — )b — d*(»* + d*) = 0. (E.7)

The beam width « is then J
« = arcsin — (E.8)

b
where b is the appropriate solution to equation E.7.

From figure E.3, the left release point, in vehicle based coordinates, 1s
Ri=(—r+(r—c¢)cose,d+(r —c¢)sina). (E.9)
Similarly, the right release point i.
R, =(r—(r—c)cosa,d+ (r —¢)sina). (E.10)

Now, we address the beam length, which must be sufficiently long so that the
vehicle can turn itself, and the release point, away from a flat wall. This scenario is

depicted in figure E.4, which shows the vehicle and the release point when turning at

Flat Wall R

r — (r — ¢jcosa

Vehicle

Traject%

R

Figure E.4: Beam length derivation

the vehicle’s maximum turning rate, which is the strategy of the our vehicle. From

figure E.4, we obtain the relationship

l-{-d:T'R[,! (E.ll)
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| f the r-coordinate of the left release point in vehicle
based coordinates. Substituting the value of [/ | from equation E.9 results i the
relationship

{+d=r+r—{r—clcosa , (1£.12)

because (r —cj cos a < r. Rearranging equation E.12 yields the beam length specified

in the thesis as equation 5.5 which is

I=2r —d—(r—c)cosa. (1.13)
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Appendix F
Path Planning Algorithm

In this appendix, we describe the calculations used by our path planning algorithm
to determine the next vehicle waypoint, when no obstacles are present in the sonar
 beam patterns. First, we describe the algorithm and then we display the code that
implements the algorithm. In this ippendix} we focus on the scenario of an obstacle
to the left of the vehicle because the calculations for obstacles to the right of the
vehicle are very similar.

In this algorithm, the estimated object endpoint and the endpoint location are
transformed from the world based coordinate system to the vehicle based coordinate
system, shown in figure F.1. The shortest vehicle trajectory that passes to the right
of the obstacle by a distance equal to the world map clearance ry, is specified by
the point (z;,y;) and the line y = myx in figure F.1. If the endpoint location (z,,y,)
is to the left of the line y = myr, the endpoint location is effectively behind the
- obstacle, so the point (3, y;) is the pext vehicle waypoint. If the endpoint is to the
right of line y = myx, the endpoint location (z,,y,) is not behind the obstacle, so
the endpoint location (x,,y,) is the next vehicle waypoint. Finally, the next vehicle
waypoint is transformed form vehicle based coordinates to world based coordinates
for the low-level vehicle control system.

The algorithm that implements this code follows:
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Figure F.1: Path planning algorithm

auv_wm.control() /* the world map control algorithm */

{

float #*a,**b;

Mat ml;

Point po; f* object location, relative to vehicle ¥/

Point pg; [+ the goal location, relative to the vehicle #/

Point wp; /f* the calculated waypiont, relative to the vehicle +/
Point p2; /* the clearance point, defined in my notes ¥/

float slope_m4; /x from my math, sorry +/

/+ get object location in robot coordinates %/
if {Objdoc.x # BIGREAL)

{

€

a = matrix(1,4,1,4); /+ Numerical Recipes form of transformation matrix */

- b = matrix(1,4,1,1}; /& A vector needed to do Gauss Jordan inverse #/

119
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b[1][1] = 1.0; b[2][1] = 2.0; b[3][1] = 3.0; b[4][1] = 2.0; *arbirary numbers#
Mat_to_nrmat(subl.m,a); /* convert sub matrix to numerical recipes mat */
gaussj(a,4,b,1); /¢ invert matrix a, result into a */
nrmat,to_Mat( a,ml); /* convert inverse matrix back to us */
- mat_point_mult(m1,&0bjloc,&po); f* determine the location of the object
7 in AUV coordinate frame #/
mat_point_mult(m1,&0ld_goal,&pg); /* determine the location of the goal

in AUV coordinate frame */

/* determine new waypoint in robot coordinates */

if (po.y <0.0) [+ we have passed the object, so just go to the goal +/

{

point;copy(&Old_goal,& goal.loc);
}
else

{ /* begin — calculating waypoints in AUV coordinates */

if (beam == Left)
{ |
[*¥ 12 = WM_clearance * WM _clearance; clearance for ISE vehicle
under world map control, squared */
if ( po.x¥po.x + po.y*po.y < WM_clearance * WM _clearance)
{
wp.x = 150.0; wp.y = 0.0; wp.z = 0.0; /* we are closer,

than the clearance, induce a hard right turn %/

}

else

{

auv_get_line_and_clearance_point({po,&p2,&slope_m4);

if (pg-x < (pg-y / slope_m4))
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{
point_copy(&p2,&wp); /+ goal is behind object */

}

else
{
point_copy(&pg,&wp); [+ goal is clear /

}

} -
else if (beam == Right)
{
[x 12 = WM_clearance ¥ WM _clearance; clearauce for ISE vehicle
under world map control, squared */
if ( po.x*po.x + po.y*¥po.y < WM_clearance * WM _clearance)
{
wp.x = —150.0; wp.y = 0.0; wp.z = 0.0;/+ we are closer
than the clearance, induce a hard left turn +/
}
elze

{

auv_get_line_and_clearance_point(po,&p2,&slope_m4);

if (pg.x > (pg.y / slope_m4))

{

point_copy(&p2,&wp); /+ goal is behind ohject #/-

}

else

{

point_copy(&pg,&wp); [* goal is clear */

}
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else

{

printf(" \n ERROR: beam was not left or right \n");

}

mat_point_mult(subl.m,&wp,&goal.loc); / convert the waypoint back
to world coordinates %/

} /* end calculating the waypoint in AUV coordinates */

}

else /x if no objects have been detected to date */

{
point_copy(&O0ld_goal,&goal.loc);

)

auv_goal_seek_horizontal(); / now, use the regular goal seeking control algorithm +/
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