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Abstract 

This thesis sets the stage for clewlopment of an  autonomous-vehicle control theory. 

Chntrd of a~ltoaonruus vehicles is not an  artificial intelligence dilemma, but is a 

control problem where t h e  contrd ena-ironment is often under-sensed. In this thesis 

we hypothesize that machines; are only capable of applying a law given to tVhem by their 

desigrm-s, As the possessors of a Paw, machines do not understand the environnlent 

In which they exist, but simply react to that environmeot as they \%-ere built, or 

programmed to react. ifre present the  new ideas of sensor and actuator space as 

a mathematical fran~ework for describing under-sensed control problems in terms of 

ertvironnlerltal situations that sensors are able to differentiate. We also show that 

computer-based control systems have a lookup-table equivalent, referred to as a Q- 

SAM. Each sensor-differentiable situation is associated with a single location in the 

Q-SAM. 

Mr, use Q-SAMs to explore the potential of situation-basetf control and show that 

they can accept many different forms of control laws. When control environments 

are under-sensed, we have found that the definitions associated with differentiable 

crwironmcntal situations are a function of the entire vehicle as well as the ecviron- 

meut in which the vehicle exists, which is not the case for critically sensed control 

environments. 

We describe a design me tho do lo^ for autonomous systems that results in systems 

which are robust to disturbances in their environments. We use the methodology to 

determine the sonar parameters required by an autonomous underwater vehicle for 

the task of obstacle avoidance in an unknown obstacle field. Limitations of the vehicle 

are discttssed. 

.*. 
If? 



far Jennifer 



Acknowledgements 

There are two people t o  whom I owe much of the credit for this thesis: John, my 

supervisor, for supporting my struggle through the black periods, for it  is through 

that struggle that we learn what we truly believe, and Jennifer, my wife, for without 

her support this thesis would never have been. I would also like to  thank my other 

supervisor, S h a i ~ r a m ~  for his contributions, and everybody at the Underwater Research 

Lab, ir-t particular, Bill, with whom I could always discuss my ideas, and Paul, who 

listens. 



Contents 

... Abstract ...................................~.......................~.~..... 1 1 1  

................................ ..................... Acknowledgements .. v 

List of Tables ............................................................. ix 

List of Figures ............................................................. xii 

... Glossary ................................................................... x 11 I 

Nomenclature ............................................................. xvi 

........................................................... 1 Introduction 1 

1.1 Motivation .................................................... 1 

.................................................... 1.2 Principles 3 
................................................. 1.3 Contributions 4 

................................................ 1.4 Thesis Outline 5 

............................................................ 2 Background 7 

2.1 General Background ........................................... 8 

'2-"2undamental Assumption ....................................... I I 

2-3 Limitations of Different Control Strategies ........................ 11 

........................................... 2.4 Control Architedure 14 

2.5 SHAKEY: SRI International .................................... 16 

2-6 Allen: MIT Mobot Lab ......................................... 18 

2.7 Autonomous Land Vehicle (ALV): Hughes A1 Centre ............... 20 

2.8 Summary ....................,.,.............*............. 22 



2.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

.................................... 3 Sensor Actuator Mapping Theory 25 

3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2 Autonomous Vehicle Control Cycle 27 

..................... 3.3 Expanded Autonomous Vehicle Control Cycle 29 

3.4 Thespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.5 The Transformations 36 
. . . . . . . . . . . . . . . . . . . .  3.6 Quantized Sensor to Actuator Maps (Q-SAMs) 39 

3.7 Summary ..................................................... 41 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.8 Discussion 42 

.............................................. 4 Situation-Based Control 43 
..................................................... 4.1 Example 44 

. . . . . . . . . . . . . . . . . . . . . . . . .  4.2 Actuator Response Distribution Function 46 

. . . . . . . . . . . . . . . . . . . . . . .  4.3 Filling a Q-SAM with Proportional Control 48 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 Downloading from an Expert 49 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.5 Adaptive Situation-Based Control 56 

. . . . . . . . . . . . . . . . . . . . . . . . .  4.6 Implications of Control Law Downloading 62 

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

4.8 Discussion .................................................... 65 

..................... 5 . Design of an Autonomous Underwater Vehicle 66 
....................................................... 5.1 Vehicle 67 

........................................... 5.2 Design Methodology 70 

....................................... 5.3 Phase I: Experinlentation 72 

......................... 5.4 Phase 11: Robust Controller Development 73 

................... 5.5 Phase 111: Internal Representation Development 80 
................................................. 5.6 Brittle Design 83 

..................................................... 5.7 Summary 87 

5.8 Discussion .................................................... 88 

............................................................ 6 Conclusions 89 
..................................................... 6.1 Sunmlary 89 

vii 



6.2 Contributions ................................................. !I 1 

6.3 Future Work .................................................. 91 

............................................................... A SHAKEY 93 

A.1 SHAKEY and its Architecture ................... ... ........... 93 

A.2 Reasoning in STRIPS .......................................... 94 

......................................... A.3 fmplementing the Plan 96 

.................................................................... B Allen 97 

B.1 Subsumption Architecture ..................... .. ............... 97' 

B.2 Allen ........................................................ 99 

.................................... C Autonomous Land Vehicle (ALV) 101 

................................ C.1 ALV and its Cmtrd Architecture 't f) l  

................................................. C.2 ALV Progress 103 
................................ C.3 ALV Analysis and Future Work 104 

........................... D Situation-based Adaptive Control Surface 108 

...................................... E Sonar Bea-m Pattern Derivation 1 1 3  

............................................. F Path Planning Algorithm 118 

................................................................. References 123 



List of Tables 

5 . 1 Control mapping for seusor space cluantization partition ............ 72 

5.2 Meanings associated with the coarse sensor space quantization equiva- 

................................................. lenceclasses 75 

5.3 Control mapping and sensor space definitions for the vehicle ......... 2'7 



List of Figures 

Atrtonomcius vehicle development strategy ........................ it 

Standard aut anonlous vehicle control architecture .................. I5 

........... Decomposition by function type of controller orgmizat.ion 16 

Subsumptian architecture ....................................... I X 

...... ALV control architect nre ............................ ,,,. 21 

Autononrous te*eIricrkcantrol cycle ................................ 27 

Expanded autononlous vehicle control cycle ....................... 29 

Spaces of the autonomous vehicle control cycle .................... 31 

Quantized sensor space ......................................... 34 

Consistent sensor space partitions ................................ 3.5 

&-SAM equivalent of the f i n e d  code: y = 5s 4 3  .................. 41 

65quanta &-SAM . ............................................ 
Control diagram for altitude-keeping with a 65 quanta Q-SAM ...... 
Control surface showing control surface features ................... 
Repetitive application of the actuator respans e. distributiw fimctio~~ . . 
PropoPtiond control law and its Q-S A M i mplemer~ tation ............ 
Step responses for the Q-SAM and continuous control laws [Sttq~ is 

within Q-SAM range) .......................................... 
Step responses for the Q-SAM and contir~uous coatrctl laws (Step is 

outside of Q-SAM mag4 ....................................... 
Dowdadng  t r a d e r  twbnlqm ................................. 
Contra! law and step response from expert transfer ted~uiyuc: withaut 

actuator response distribution ................................... 



4-10 Control law and step response from expert transfer technique with ac- 

tuator reqmnse distriritutian ..................................... 55 

........................ 3. f l (.crrrrpari.w,a of fwat and globat adaptation 56 

4 . I2 Cant rol faw and step response from adaptation algorithm (25% rule) . 59 

4. I 3  Parameters assoc~aiteci with the adapted control surface ............. 60 

4-14 Control law and step response from adaptation algorithm (75% rule) . 61 

4 . I 5  Clruwt~It~ding from an expert system .............................. 63 

Autortornocs uudematiter vehicle ................................. 68 

Autoriormus underwater vehicle controller ........................ 69 

............. Controt mapping with sensor space and actuator space 70 

SensorcriticaIre~~*on . . . . . . . . . . . . . . . . . . . . . . . . . . . . I f . . . . , . . . . . . . . .  7'4 

Vehicle encmnltering a right slanted wall .......................... 76 

Another sufficient sensor mapping ............................... 77 

Yt.raw II wehide encountering a flat wall .......................... 78 

Phase If =hide encountering a single object ...................... 79 

........ Robustness of the phase II vehicle to a dynamic environment 80 

Phase H I  control mapping. with internal representations, showing sen- 

.................................... sarspaceaud actr~atorspace 81 

5.1 1 Waypoints generated by the path planning algorithm ............... 82 

......................... 5.12 Phase II I vehicle encountering a Bat wall 83 

5.13 Phase III vehicle encountering a single object ...................... 84 

5.13 Robustness of the phase III vehicle to a dynamic environment and/or 

cu~nlrlative psGltioaaI errors ..................................... 84 

5.15 Brittle encountering a Bat wall ............................ 85 

5-16 Brittle vehicle encountering a single object ........................ 86 

5.17 Comparison of a he robustness of the brittle vehicle with the phase II  
and phase 111 vehicles .......................................... 86 

........... A.1 Detrom_mition by lirnction type of controller organization 94 

A 2  Blocks Wbrld ..................... ,.. ......................... 95 



......................... C.2 ALV atternptit~g to follow a blocked route 10% 

................................... C.3 A W  gradient fieid worid map 105 

. . . . . . . . . . . . . . . . . . . .  D.l Parameters described it1 equat.ious D.5 and D.6 I I I 

............................... E.1 Beam width derivation parameters 1 1 4  
. * . .......................................... E.2 Seusor crrt~cal region 114 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  E.3 Triangle in beam width derivation 115 
......................................... E.4 Beam length derivation 116 

xii 



Glossary 

actuator  mapping the function that describes how the actuators affect the envi- 
ronment as well as the natural changes of the environment 

ac tua tor  space the n-dimensional space that represents all possible actuator re- 
sponses 

adequacy refers to a controller that is able to complete its task regardless of initial 
conditions, but not necessarily in the most efficient manner 

A1 Artificial lntelligence 

Allen is an autonomous vehicle developed by the MIT mobot lab that uses only 
behaviour based control techniques 

ALV Autonomous Land Vehicle, an AV used by the Hughes A1 centre to demonstrate 
a hybrid control architecture 

ARDF Actuztor Response Distribution Function. This function is used to increase 
the rate at which a Q-SAM is filled. 

AV Autonomous Vehicle 

AUV Autonomous Underwater Vehicle 

behaviour the manifestation of activity in the environment that results from apply- 
ing specific responses to specific inputs. The inputs are generally not associated 
with internal representations. 

behaviour t rapping a limit-cycle type of effect that occurs when control oscillates 
among multiple independent behaviours 

bri t t le  a term used to describe systems that are not robust to changes in their envi- 
ronmen ts 

complete used with refereme to sensor and actuator space. Sensor space is com- 
plete when all environmental situations requiring differentiation by the control 
mapping are associated with different regions of sensor space. Actuator space 
is complete when all actions of the actuators required by the control mapping 
are associated with independent locations in actuator space. 



xiv 

consistent refers to partitions. Partition A is consistent with partition B when 
aii regions in the space differentiated by partition B are also differentiated by 
partition A 

control mapping the function that transforms sensor inputs into actuator responses 

critically sensed refers to control environments that are described with only re- 
cently sensed sensor values. For example, the environment of a position control 
system is critically sensed by a position sensor. 

disturbance a change in the environment for which a system was not specifically 
designed 

downloading a method of filling a Q-SAM by copying the responses determined by 
another controller 

environment space the portion of the control cycle that represents the physical 
world. Environment space includes computer memory used for internal repre- 
sentations. 

goal region the region of sensor space associated with a completed task. 

global adaptation adapting the control surface by changing the actuator responses 
associated with many or all locations in sensor space. 

hybrid architecture a control system that uses both behaviour-based and internal 
representation-based control techniques 

internal representation a representation in computer memory that is used to gen- 
erate control. Fbr AVs, a common internal representation is a world map. 

local adaptation adaptation of the control surface by changing the responses asso- 
ciated with one, or very few, differentiable situations 

partition a division of sensor or actuator space by function. For a complete space, 
the quantization partition must be consistent with all other partitions 

Q-SAM Quantized Sensor to Actuator Map. Q-SAMs are the lookup table equiva- 
lent of computer programs. 

recently sensed sensor values The most recent values returned by sensors. These 
are not values returned from internal representations. 

robust refers to a control system that responds well to disturbances in its environ- 
ment 

ROV Remotely Operated Vehicle 

sensor mapping the function that transforms environmental situations into loca- 
tions in sensor space 

sensor space the space that represents all situations the sensors can sense 

SHAKEY an AV developed at  Stanford Research Institute which relies heavily on 
internal representation-based control techniques 



situation a specific scenario in the environment 

situation differentiation refers to which environment a1 situations are differentiated 
by the sensor transformation 

situation identification refers to specification of the meaning of each location in 
sensor space 

STRIPS STanford Research Institute Planning System 

sufficient with reference to sensors that are able to differentiate all situations requir- 
ing differentiation by the control mapping. 

under-sensed refers to control environments that are not described with only re- 
cently sensed sensor information. For example, a single sonar beam cannot 
sense all the obstacles in an environment, so the obstacle control environment 
is under-sensed. 

world map an internal representation commonly used by AVs 



Nomenelat ure 

a width of sonar beam pattern 

co infinity, meaning no objects are presently sensed by a sonar sensor 

oo' not infinity, rdeaning an object is sensed by a sonar sensor 

8, angular orientation of AUV with respect to the world-based coordinate system 
(8, = 0" means the vehicle is pointing along the world's positive y-axis) 

- means that the refenced item is irrelevant 

ii actuator st ate vector, represents present location in actuator space 

actuator state vector at time index n, represents present location in actuator space 
- 
a, portion of the actuator state vector associated with real actuators 
- a,, portion of the actuator state vector associated with internal represent ations 

b parameter used to determine the width and length of sonar beam patterns 

c minimum desired clearance between the vehicle and obstacles 

d distance the sonars are placed in front of the centre of the vehicle 

d damping coefficient of the AUV in the altitude-keeping example 

dl distance to the closest object detected in the left sonar beam pattern 

cd, distance to the closest object detected in the right sonar beam pattern 

E environment state vector, represents present location in environment space 

E, en~ironment state vector at time index n, represents present location in environ- 
ment space 

- 
e, portion of the environment state vector associated with the real environment 
- 
e,, portion of the environment state vector associated with internal represeiltatiirns 

F, force applied at time index n in the AUV altitude-keeping example 

9 sensor mapping, represents the transformation of the environment into sensor space 
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9, portion of the sensor mapping that represents the effects of real sensors 

g,, portion of the sensor mapping that represents reading internal represent ations 

h actuator mapping, represents the effects of the actuators on the environment and 
the continual changes of the environment 

he actuator mapping, represents the continual changes of the environment 

h, portion of the actuator mapping that represents the effects of the real actuators 
on the real envrionment and the continual changes of the real environment 

h, actuator mapping, represents how the actuators effect the environment 

h,, portion of the actuator mapping that represents storing internal representations 

h' a composite function that shows that a vehicle in the environment is a modelable 
part of that environment 

1 length of a sonar beam pattern 

M mass of the AUV in altitude-keeping example 

m control mapping, specifies which actuator responses are associated with which 
situations differentiated in sensor space 

m, portion of the control mapping that assigns actuator responses to  real actuators 
(the responses can be determined from both internal representations and real 
sensors) 

m,, portion of the control mapping that assigns actuator responses to internal repre- 
sentations f the responses can be determined from both internal represent ations 
and real sensors) 

Mode mode command sent to the low-level control algorithm 

PA actuator partion of sensor space (determined by the actuator responses assigned 
to different situations under control law rn) 

Pc goal partition of sensor space (defines which regions of sensor space are associated 
with a complete task and which are not) 

P9 quantization partition of sensor space (caused by quantization of sensor values) 

T minimum turning radius of the AUV 

.G sensor state vector, represents present location in sensor space 
- 
,c, sensor state space zat time index n, represents present location in sensor space 
- 
s, portion of tbe sensor state vector associated with real sensors 
- 
s,, portion of the sensor state vector associated with internal representations 

t time 



t ,  indexed time 

z x-position of the next vehicle waypoint sent to the low-level control algoritlml 

z, x-position of the vehide's endpoint. [goal) locatio~l 

so x-position of an object, endpoint 

z, x-position of the vehicle in the world coordinate system 

zw x-position of the vehicle's next waypoint 

y y-position of the next vehicle waypoint sent to the low-level control aigori t l m  

y paition of the AUV in the dtitude-keeping example 

y velocity of the AUV in the altitude-keeping exampie 

y, y-position of the vehicle's endpoint (goal) location 

yo y-position of an object endpoint 

y, y-postition of the vehicle in the world coordinate system 

yw y-position of the vehicle" next waypoint 



Chapter 1 

Introduction 

I. I Motivation 

Advances in computational power over the last few decades have allowed our interest 

in control to expand beyond controlling simpie equipment, like motors and conveyor 

belts, which operate in completely structured environments, to attempting to control 

autonomous vehicles that operate in the real world, which is an unstructured environ- 

ment. Biological creatures have operated autonomously in the real world for many 

miIiennia, and of them, it is thought that humans are the most able to conceptu- 

alize and abstract about that real world. The human abilities of conceptualization, 

abstraction and reasoning, coupled with an ability to react to immediate situations, 

aHow people to perform complex tasks in an ever-changing world. With the computa- 

tional power of computers pressing towards that of the human mind, researchers are 

attempting to build computer-controlled machines to perform tasks that to date only 

humans have been able to perform (Waliich 1991). 

Yet, with all this computational power, researchers are still unable to endow a 

machine with the cognitive abilities of a small child. The reason for this inability is 

that there is more to humans than the complex collection of biological components 

af which humans physira'rsy consist, and computers are ody the sum of the electrical 

components of which they are comprised. This "more" we refer to may be unique 

to humans and has been labeled as gestalt and fringe consciousness (Dreyfus 1992). 

Eknfortunateiy, there is no proof of a human synergistic existence short of the fact that 

all attempts at artificial intelligence, and more specifically creating artificial creatures, 



have been verj7 disappointing (Wallich 1991). 

An illustration of this unique facet of humanity, relative to lack of it displayed by 

computers, is how people learn to play chess (Dreyfus 199'2). When a person first 

learns to play chess, they learn the rules for moving each piece on the board in rote 

fashion. After several games however, the pieces and the chess board take on new 

meanings for the player, who no longer considers every possible move all the time. 

Instead s/he only considers moves that are significant. As more experience is gained, 

the player rises above the rules and begins to look at the game in terms of flows and 

directions of attack. Rising above the rules in this manner is co~~ceptualization and 

abstraction. Computers on the other hand, are not able to rise above the rules. They 

are capable of only applying the rules which they have been given in rote fashion. 

The success of computer chess programs lies in the fact that computers are able to 

calculate the outcome of several thousand moves every second, something that people 

cannot do. 

The fact of the matter is that computers are able to perform tasks in only rote 

fashion. The "intelligence" they possess is in the form of rules, which were given to 

them by their designer, that they apply to different environmental stimuli. Cornput- 

ers do not understand the environment in which they exist but simply react to the 

environment as they were built to react. More precisely, computers are simply the 

possessors of a law that is handed down to them from a person that understands the 

environment in which the computer exists, and the intelligence resides in the person 

that determined the rules. 

Computers used to control equipment in the real world have an added constraint 

of requiring sensors capable of differentiating environmental stimuli to which the com- 

puter provides responses. Computers cannot respond to environmental stimuli which 

they cannot sense. Also, computers can respond to environmental stimuli with only 

responses associated with the actuators available to the computer. Computers cannot 

provide responses that their actuators cannot effect. From an overall perspective, 

computers are limited t o  supplying responses associated with their actuators to envi- 

ronmental stimuli that their sensors are able to differentiate. To the author's krrowl- 

edge, this thesis is a first look at  viewing autonomous vehicle control as a problem in 

differentiating environmental stimuli and providing appropriate actuator responses to 

those stimuli once they have been differentiated. 



CHAPTER 1 .  INTRODUCTION 

Principles 

At the outset of this thesis, we feel that it is important to clearly define the opin- 

ions of the author. It is our opinion that machines, which includes computers and 

au tonomous vehicles, are fundamentally different than human beings. This contrasts 

with the opinions of many artificial intelligence researchers who do not observe this 

distinction between man and machine and who believe that if a person can do some- 

thing, so can a machine. Consequently, we do not believe that machines, including 

computers, are intelligent or can be programmed to be intelligent. It is our opinion 

that machines simply implement a law which was designed for them by their design- 

ers and that anything that can only implement a law is not intelligent and does not 

understand what it is doing. 

With our opinions, it is reasonable to expect autonomous vehicle designers to ex- 

tend the ideas of control theory for the analysis and exploration of the capabilities 

and limitations of autonomous vehicles because they are, like the equipment that 

control theory was developed to analyse, machines. However, it is our opinion that 

this has not been the case. Instead of continuing to develop control theoretic ap- 

proaches, many autonomous vehicle researchers have chosen to base their designs on 

the concepts of artificial intelligence. We illustrate this change in development strat- 

egy in figure 1.1. It is our opinion that one reason for this change is that many of 

the sensors used on autonomous vehicles, and many of the environmentus in which 

autonomous vehicles operate, are difficult, if not impossible, to describe in the math- 

ematical framework of feedback control theory (Van de Vegte 1986). A second, and 

more persuasive argument, is that many of the sensors used by autonomous vehicles 

have similar scopes, and limitations, as human sensors. For example, cameras and 

human eyes provide very similar information about the environment. Consequently, 

the ideas of artificial intelligence are very appealing to  the designers of autonomous 

vehicles. However, i t  is our opinion that the use of artificial intelligence techniques 

has unreasonably raised expectations of autonomous vehicles and has exposed many 

of the limitations of machines that are not apparent in humans. In this thesis, we 

move back to a control-theoretic perspective of autonomous vehicle development, as 

shown in figure I. 1. 



C'HA PTER 1 .  INTRODE-f CTlON 
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Figure 1 .l: Autonomous vehicle development strategy 

1.3 Contributions 

The major contribution we make in this thesis is presenting a different set of initial 

assumptions on which to base development of autonomous vehicles. We assume that 

computers, and computer-controlled equipment, are not intelligent and do not under- 

stand the environment in which they exist. In accordance with this assumption, we 

show that computers, and computer controlled equipment, simply implement a law 

that is determined for them by their designers. This task is accomplished using the 

concept of Quantized Sensor to Actuator Maps, or Q-SAMs, which are lookuptable 

equivalents of computer-based control algorithms. 

Another contribution we make in this thesis is introducing the concept of under- 

sensed and critically sensed control environments. Under-sensed control environ~~ients 

are ones in which sensors do not sense the entire control environment simultaneously, 

and critically sensed control environments are ones in which sensors do sense the entire. 

control environment simdta~~eoilsly We show that autonomous vehicle development 

is a control problem where the control environment is often under-sensed. In doing 

so, we set the foundation of a control theory for systems operating in under-sensed 

control environments. 

The foundation of this control theory consists of several concepts introduced in 



this thesis. These concepts are sensor space, actuator space, situations; situation 

differentiation and situation identification, which are all related. Sensor space is the 

conceptual interface between sensors and control laws and actuator space is the con- 

ceptual interface between control laws and actuators. By Uconceptual" we mean that 

there are no physical components associated with these spaces, not that they are 

abstract ideas. Situations are specific environmental scenarios. Sensors transform 

each situation into one location in sensor space. Situation differentiation is determin- 

ing which situations are transformed into different regions of sensor space. Situation 

iderttification is assigning a meaning to each differentiable region in sensor space. 

We also introduce the concept of Quantized Sensor to Actuator Maps, or Q-SAMs, 

which are lookup-table equivalents of computer-based control algorithms. Q-SAMs 

are used to explore the potential of situation-based control. 

The final contribution we make in this thesis is showing that situations in the 

erwironment that are differentiated in sensor space by sensors operating in under- 

sensed control environments are a function of the entire autonomous system. This is in 

contrast with critically sensed control environments whose situations are a function of 

only the sensor transformation. This concept is the basis of a design methodology that 

we  introduce for developing autonomous vehicles that operate in under-sensed control 

environments. This methodology develops systems that are robust to disturbances in 

their environments, 

1.4 Thesis Outline 

In chapter 1, this chapter, we have provided motivation for our research and stated the 

contributions we have made in this thesis. We now conclude chapter 1 by providing 

an outline of the remainder of this thesis. 

In chapter 2, we present a brief history of Autonomous Vehicle (AV) develop- 

ment. The reader is introduced to the two basic paradigms of autonomous control: 

behaviour-bd centrd zcd world map, or ioteroal reprse~tat ion,  -based control. 

To present a clear picture of the state of the research field, several "key" autonomous 

vehicles are described and their accomplishments and limitations discussed with ref- 

erence to situation digerentiation. 



Ln chapter 3, we describe &he autonnsnom vehicle control qcie and show that, Q- 

SAMs are fundionally equivalent to computer-based control systems. The concepts of 

sensor space, actuator space. situations, situation differentiation and ~ituat~ion icien- 

tifieation are described in this chapter. We also show bow both autonoinor~s vehic-It. 

control paradigms are represented in the Q-SAM representation and the auto~ion~ous 

vehicle eon t rol cyde. 

In chapter 4, we explore the potential of situation-bawd coi.rt3rol, a new metl~ott 

of control law description? by using ftbe Q-SAM representation of a control fm. Q- 

SAMs are shown to suppart many forms of c~ntrol laws by using them to impfertwot, 

aIgorithmic as well as expert-based control laws. The potential of sit~ratiou-bawl1 

adaptive control is examined. 

In chapter 5, we outline a design metl~odology for developing autono~nous vtltit.les 

that operate in under-sensed control envirmments, The inett~odology specifics tlte 

appropriate use of istemal representations in au tonontoils vehicle can trol systems to 

ensure that the autonomous vehicles are robust to disturbances in their enviroiments. 

In this chapter, we also show %hat the situations differentiated in sensor space arc: a 

function of the entire autonclmous whicte when the colltrol cnvironnwnt is I I  nder- 

sensed. Through the course of this chapter, we examine t h e  potential of vehicle: Lased 

sonar systems for obstacle avoidance. 

fi"inallyT in chapter 6: we provide a general discussiorl of our results, suinn~arizt: 

the significant- ideas presented in this thesis and indicate areas of future wc~rk. 



Chapter 2 

Background 

This chapter provides tbe reader with a background in autonumous vehicle research 

ard a foundation for the research described in this thesis. To accomplish this task, 

we Erst present a general discussion of the philosophy and activity of the autonomous 

vehicle community. W e  then describe the fundamental assumption that makes our 

re~earch different from previous research. To clearly illustrate the research field, we 

describe the yldosophy of, and systems developed by, several key research groups. 

The progress of the implementation phase af each group is discussed with reference to 

this thesis. The chapter is concluded by summarizing the present state of autonomous 

vehicle research. 

A t  this point, it is important to note that there is no general consensus about the 

meaning uf the terms intelligence, learning, understanding and reasoning. f t is our 

opinion that this circumstance exists because there are no direct methods of observing 

thew human characteristics, Instead, these attributes are often determined indirectly 

b ~ +  it. system's ability to provide appropriate responses to stimuli. Unfortunately, 

appropriate responses can also be: generated by systems that are, in our opinion, not 

iattdligent, which is the case for autonomous vehicles or, as they are sometimes referred 

to, wtific-id creatures. For example, we do not consider a light switch intelligent 

simply because it can turn a light on, even though turning a light on is sometimes an 

appmpriare reportse This Exk of OefiOibiens has left much leeway for use of these 
r - &. &LA --&L.- C*--- 
6-a emt- U L ~ E C E I U E C  ~ v i ~ ~ n e n t & - ~  the terns intdigence, 1eaming, mderstanbing 

and nrasuning are wed in many different contexts in this chapter to properly present 

tbr ideas of different reeiifch pups ,  W%ae it is not obvious, we have noted the 



form or definition of intelligence being described. 

In section 2.1, we provide a general background of AV research, and describe 

the two basic paradigms of autonomous vehicle control: behaviour-based control and 

world map or internal representation-based control. Ln section 2.2, we describe tile 

fundamental assumption that makes our research different from previous research, and 

discuss the implications of that assumption. In section 2.3, we outline many limita- 

tions of autonomous vehicle control strategies. In section 2.4, we describe the standard 

autonomous vehicle control architecture. In section 2.5, we describe SHAKEY, an AV 

that demonstrates many of the ideas of traditional artificial intelligence tiirough its use 

of internal representations. We discuss the success of the SHAKEY project in terms of 

situation differentiation. In section 2.6, we describe Allen, a behaviour- based AV. We 

also describe the subsumption architecture, which is the basis of most behaviour-based 

control architectures, as well as some of the limitations of behaviour- based control . 
In section 2.7, we discuss the Autonomous Land Vehicle (ALV), a hybrid systeln that 

uses both behaviour-based and wo~ld-rnap-based control paradigms. We also disci~ss 

the limitations of this system in terms of situation differentiation. Finally, in section 

2.8 we summarize the significant ideas discussed in this chapter and in sectiou 2.9 we 

discuss some c?f the directions taken by autonomous vehicle researchers. 

2.1 General Background 

Much of the work on autonomous vehicles is centred in the artificial intelligence corn- 

munity, even though the work is really a controls problem. By the term L'cantrols 

problem", we mean that autonomous vehicles operate in a control cycle in which they 

continually read sensors and perform some calculations on those sensor values to set 

actuators. The reason for this state of affairs is that autonomous vehicles face sirriilar 

sensing impediments as human beings: namely sensors that are incapable of sensing 

the entire environment simultaneously. For example, human eyes cannot see an ett t ire 

city and yet, people are able to plan and navigate a path through a city, i t  is the 

autbor's opinion that a person" ability to  accomplish this navigational task relies on 

some fom of mental internal representation of the city lie. a world map) that is 

milicient for navigational purposes. Another reason that much autonomous vehicle 

work is done in the &ifidat inteKgence community is that many researchers believe 
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they are creating artificial creatures and not just machines (Brooks 1991). Their 

fundamental ;issumption is that the intelligence which humans possess is biologically- 

based and therefore they should be able to replicate it with a machine. Consequently, 

many of the designs of autonomous vehicles have their roots in psychology and not in 

engineering. The work done by the MIT Mobot Lab (Brooks 1990) is based on be- 

haviourist psychotogy. The work done at the Georgia Institute of Technology (Arkin 

1990) is based on the psychological concept of schema. The work done by Laird and 

Rosenbloorn (1990) is based on an artificial intelligence system called SOAR, whose 

ideas have been expanded into a unified theory of cognition (Newel1 1990). 

The ideas of psychology have led to the development of two basic comp~nents 

in autonomous vehicle control systems, namely: situated reactive elements, known 

as behaviours, and internal representations, generally known as world maps to the 

autonomous vehicle community. Behaviours are a desired manifestation of activity 

in the world (Brooks 1986). They are created through a tight coupling between 

sensing and actuation (Brooks 1991). That is, only recently sensed sensor values 

are used to determine actuator responses. For example, a mobile robot developed 

by Brooks (1986) has an obstacle-avoidance behaviour controlling the robot. The 

robot uses the most recent distance values, returned by a ring of sonars mounted 

around the robot's chasis, to determine the direction and distance of the robot's next 

motion. The intelligence of the robot is displayed when the robot moves away from 

objects. In general, the intelligence of behaviour-based robots is evident from the 

interaction between the robot and the environment in which the robot exists. That 

is, the intelligence is observed indirectly through activity. It should be noted that 

A g e  and Chapman (1990) state that the robot itself does not need to be intelligent 

for intelligence to exist, but that intelligence is a result of the interaction between the 

robot and the environment in which the robot exists. For behaviour-based systems, 

we can say that intelligence is in the eyes of the beholder and is displayed through 

activity. 

Though behavioura! systems are able to perform tasks io the world, in our opinion 

they are not intelligent. Behavioural systems are simply able to produce appropriate 

responses to the stimuli which they can sense. That is, in our opinion, they do not 

understand the environment in which they exist, but simply respond to it. 
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On the other hand, internal representations, the backbo~~e of the artificial intelli- 

gence community, are based on models of how people view the world. For exa~nple, 

Simmons and Krotkov (1991) use range finders to construct internal represeutations 

of terrain geometry surrounding a vehicle from which their system reasons. Another 

example is STRIPS, a reasoning system based on first-order logic, which reasons 

about the blocks world (Nilsson 1980). The blocks world defines every object in the 

world and all potential relationships between the objects. The general approach to 

generate solutions with internal representations is as follows. Determine the repre- 

sentations (objects) and relationships among the representations for the domain of 

interest. Then, set up a search space and search1 through all possible combinations of 

relations and representations until one is found that satisfies the system goals (Nils- 

son 1980). The intelligence of systems using internal representations is based 011 the 

fact that they follow a logical flow of thought and is demonstrated when the system 

determines the correct solution to a problem. For autonomous vehicles, an example 

problem is that of determining the "best path" between two locations in the world. 

Unfortunately, most work doue by the artificial intelligence conlmunity is faced 

with an insurmountable hurdle that prevents the adoption of their ideas by au- 

tonomous vehicle designers. Many A1 researchers assume that sensing systems will 

one day be able to uniquely identify all the objects in the world with which their 

systems reason. Unfortunately, this is an unreasonable assumption. Work done by 

Ullman (1984) on visual routines suggests that to recognize an object being sensed 

requires a priori knowledge about the object being sensed. Observation of this hurdle, 

led to  the beginnings of behavioural intelligence (Brooks 1986) and also provides a 

basis for our research, 

Though computers using internal representations "reason" about objects, they are 

not intelligent in the sense that people are intelligent. They do not, in our opinion, 

understand the environment in which they exist. Instead, computers using internal 

representations simply apply a set of algorithms determined by their designer, in a 

specific manner also determined by their designer, to the scenario or problexn with 

which they are faced. More specifically, these systems are reacting to stimuli in the 

same manner as behavioural systems, though the stimuli are different. Consequently 

the two components of autonomous vebicle control systems are functionally equivalent 

k c h  strategies are often referred t;o as control strategies in the artificial intelligence community. 
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and, in our opinion, possess the same amount of intelligence: none. 

2.2 Fundamental Assumption 

The fundamental assumption of our research is radically different from those of previ- 

ous groups. We assume that human beings are more than just a collection of biological 

components and that computers are just a collection of electrical components. This 

implies that intelligence, learning, understanding and reasoning do not have the same 

meaning for autonomous vehicles as they do for humans. It also means that the task 

performed by an autonomous vehicle control system is similar to the task performed 

by control systems of simpler machines, like motors, and that autonomous vehicle 

development is one facet of control theory. 

In feedback control theory (Van de Vegte 1986), mathematics is used to describe 

control problems. However, much of the work with AVs has not been described with 

the mathematical tools of control theory because AVs often operate in under-sensed 

control environments. By "under-sensed" we mean that sensors are not able to sense 

the entire control environment simultaneously. For example, to control an AV to 

navigate through an obstacle field, the control environment is described by the position 

and size of all the obstacles in that obstacle field. In all but very restricted cases, 

sensors are unable to sense this control environment simultaneously, so the control 

environment is under-sensed. On the other hand, when sensors are able to sense the 

entire control environment simultaneously, we say that the control environment is 

"critically sensedn. For example, to control the position of a motor shaft, the control 

environment is described by the position of the shaft, which is critically sensed by a 

position sensor. 

Limitat ions of Different Control Strategies 

In the framework of control theory, we accept that tangible limits on autonomous 

vehicle functionality exist. In fact, we can even look for those limits which, to the au- 

thor's knowledge, is something that has not been done by anybody in the autonomous 

vehicie community. Unfortunately, many researchers do not detail the limitations they 
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experience because they do not view AV development as a control problem, but in- 

stead compare their work with humans, who are more than machines. For example, 

Daily et al. (1988) describe successful experiments with an autonomous land vehi- 

cle, though careful analysis of later publications, (Payton 1990), ( O h  and Tseng 

1991), reveals that the experiments were not so successful. Consequently, marly of 

the ideas discussed in this section are not referenced because they have been obtained 

through the author's experience and by piecing together co~nlnents made by various 

researchers. Most of the ideas in this section are described through examples because, 

as  mentioned earlier, suitable mathematical construzts are not available and because 

examples provide a clear picture of the concepts. 

We refer to some of the limitations of AVs as brittleness associated with the use of 

internal representations. Brittle refers to a lack of robustness on the part of the vehicle 

to disturbances in its environment. Brittle is a vague term that encompasses the many 

odd ways that systems using internal representations fail. We discuss three forms of 

brittleness related to autonomous underwater vehicles, for more, the interested reader 

is referred to Malcom and Smithers (1990). 

The first form of brittleness we discuss results from using internal representat ions 

to provide inputs for control algorithms when the system is operating in a dynamic 

environment. Consider using a world map to determine a path through the world. 

If any object in the world moves after the path is generated, it is possible that the 

vehicle will pass through the moved object. Consequently, internal representations are 

not robust to changes in the envimnment and therefore can only guarantee reliable 

control in undisturbed environments, in our case, a static world. This also implies 

that the validity of any internal variable is effectively unknown any length of tirne 

after it is sensed, and the likelihood of the varizble being valid diminishes with tirne 

since the variable was sensed. 

A second form of brittleness in control generated from world maps results from 

cumulative sensor errors. Errors do not accumulate in traditional control systerns 

because traditional sensors sense their values relative to a fixed reference. Vehicle 

based positioning systems however, do not have any fixed refelewe with which they 

are associated. If an onboard positioning system has a 5% error, then after traveling 

3m the vehicle can be up to 0.15m from its sensed location. Or, from the vehicle's 

perspective, everything in the world map is now out by up to 0. Eim. As the vehicle 
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continues to travel, the position of objects in the map becomes increasingly erroneous. 

Therefore, as time goes on, the likelihood of a, collision with an object increases 

because the vehicle's knowledge of obstacle locations decreases. Cumulative errors , 

are disturbances for which control systems that use internal representations are not 

robust, unless the internal representations can be updated periodically. 

A third form of brittleness results from computational explosions of which, all 

world maps are susceptible. Systems operating in dynamic worlds have strict timing 

constraints on t h i r  control cycles to maintain stability. Unfortunately, the compu- 

tational time required to use a world map grows exponentially with the number of 

elements in the map and can quickly grow beyond the limits of the control cycle. Con- 

sequently, the use of world maps can result in unstable systems because of excessive 

computational requirements. 

Brittleness also results from excessive extrapolation of sensor data. This is not 

related to internal representations specifically, but instead is related to how humans in- 

terpret data and the internal representations used by humans. This form of brittleness 

is very evident when vision systems are employed as sensors in control systems. For 

example, the vision systems on both the Autonomous Land Vehicle (ALV) (Thorpe 

1991) and the Stanford Cart (Moravec 1983) have been noted to be sensitive to both 

shadows and changes in illumination, a common vision problem. In Thorpe (1991), 

the vision system Vomors tracks lines on the edge of roads the ALV wishes to follow. 

However, if the wrong edge is detected by the vision system, the vehicle will follow 

the new edge, which might take the vehicle off the road. This brittleness results 

when parameters used by control algorithms are not sensed directly, but instead are 

extrapolated from other sensor data. Though errors with vision systems might be in- 

frequent, their occurrence is unpredictable and can be catastrophic. A direct method 

of sensing the line on the edge of the road, if it existed, would be much more robust 

than using a vision system. Consequently, great care must be exercised when sensor 

data must be extrapolated for the control algorithm. 

A problem cornman to behavioural systems has been independently labeled as 

as a command arbitration problem (Payton 1990) and behaviour conflict trapping 

(Bellingham 1990). Both terms describe a sequence of actions associated with in- 

dependent behaviours, on a vehicle that is controlled by multiple independent be- 

haviours, frustrating each other to the point that the vehicle is placed in a limit cycle. 
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By "independent behaviours", we mean that the vehicle is controlled t>3. different cou- 

trol algorithms, depending on the present sensor values. The example Bellingllal~l 

provides is that of an AUV which is confronted with an obstacle on its left atid shal- 

low water on its right. The two independent behaviours controlling the vehicle are 

called avoid obstacles and avoid shallow water. If obstacles are detected, the obsta- 

cle avoidance behaviour controls the vehicle. If no obstacles are detected, the avoid 

shallow water behaviour controls the vehicle. As we can see, the obstacle avoidance 

behaviour has the highest priority. Initially, the obstacle avoidance behaviour first 

turns the vehicle away from the obstacle and into shallow water. Once clear of the 

obstacle, the avoid shallow water behaviour turns the vehicle away from shallow water 

and back towards the obstacle. When the obstacle is again sensed, the avoid obstacle 

behaviour turns the vehicle back to shallow water. The vehicle oscillates between the 

obstacle and shallow water until it slips between the two or runs aground. This limit 

cycle may be temporary or permanent, depending on the situation. In this thesis, wc 

call behaviour trapping %behaviour fusion" because the vehicle exhibits a behaviour 

that is a composite of both independent behaviours controlling t h e  vehicle. As will he- 

come apparent, the effects of behaviour fusion must be incorporated into autonomoils 

vehicle design methodologies. 

A limitation of behavioural systems results from the fact that behavioural systems 

do not respond to stimuli which they cannot sense. Observing this fact wit11 the 

limited sensing capabilities of today's vehicles, we see that today's behaviour-based 

control systems are unable to plan paths through environments in the way people 

plan paths. Consequently, today's behaviour-based systems are limited to hnlbling 

through the environment like a person with no recollection of how to travel to tlteir 

destination. 

2.4 Control Architecture 

All control systems for mechanical devices can be decomposed into a hierarchical 

organization of feedback loops like those described by Albus (1981). However, it is 

often difficult to discern the hierarchical loops when controllers are developed using the 

concepts of behaviours and reasoning systems. Instead, it is easier to view autonomous 

vehicle control structures as the two level hierarchy shown in figure 2.1. The low-level 
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Figure 2.1: Standard autonomous vehicle control architecture 

control system is responsible for maintaining vehicle stability in the world and is 

generally developed using feedback control theory. The control environment of the 

low-level control system is usually critically sensed. The high-level control system 

provides setpoints to the low-level control system, and is often associated with an 

under-sensed control environment. That is, control tasks which require "cognitiven 

type capabilities. For example, the high-level control system for an AUV might be 

concerned with obstacle avoidance, a generally under-send control environment, 

and provide setpoints in the form of waypoints or attitude commands to the low-level 

controI system, which operates in the critically sensed control environment described 

by the vehicle's position and velocity, 

AIt t h e  systems described in this chapter adhere to this general architecture. The 

values used as setpoints for d system are different because the choice of setpoints is 

gae~zbly zpp!icatim specific. f= the case ~f a=tooo=to3a -mderwader veEkks, Belling- 

ham (1990) found that waypoints provide better control than attitude setpoints be- 

cause of the dpamicd properties associated with underwater vehicles. 
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2.5 SHAKEY: SRI International 

SHAKEY (Nilsson 1984)' is the first system we describe because it is one of the 

first autonomous vehicles des~loped and it is a complete system that dernoltstrates 

the ideas of traditional artificial intelligence in a real robot. SH AK EY is a mobile 

cart that has a camera and two range finders whicl~ it can pan and tilt. S H X K E I '  
determines its position and orientation from two shaft encoders connected to its two 

drive wheels. 

SHAKEY's environment consists of a few rooms that are connected with doorways. 

The walls are light and their edges highlighted with thick dark fines. Inside the rooms 

are a few blocks and wedges, each painted a distinct cotour for easy identification by 

the vision system under proper lighting, which is provided. 

The generat architecture of SHAKEY" higher-level control systern is shown in 

fiwre 2.2, which is the detomposition by function organization that is used by nlany 

To low-ievel 
Rom c l d  loop 
Senso control sysrem 

Figure 2-2: Decomposition by function type of controller organizatioxr 

autonomous systems. The sensing and sensor analysis subsysten-rs update intertml 

representations that are stored in the reasoning subsystem. The reasoning suhsys- 

tern uses the internal representations to develop a plan that acconrplishes systelrl 

gods, which are determined by an operator external to SHAKEY. A typical goal 

fix SHAKEY is to organize the blocks in a certain fashion. The task decorrlpositiorl 

subs~stem decomposes the plan generated by the reasoning subsystem i JI to y l~ysical 

actuator comarads that are then executed by the actuator subsystern. 

SHAKEY is intelligent because it reasons about the  environment in which it ex- 

ists- Reasoning for SHAKEY means that it generates and compares different plans 

to determine the k t  plan for accornp1ishing the system goat. The internal repre- 

sentations and the da which SHAKEY applies to t b a e  internal reprentatio~lu 

are impiernented with first order logic in the reasoning system STRIPS (STaaiord 
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ftesearch Institute Problem Solver) (Nilsson 1980). First order logic is one mathe- 

matical formalism that represents how humans deduce new facts from old facts. For 

a. mare indepth discwsion about SHAKEY, the reader is referred to appendix A. 

Though SHAKEY's success is said to stem from its ability to reason, its success 

really stems form the fact that SHAKEY's physical sensors, coupled with internal 

representations, are able to differentiate all situations requiring differentiation by the 

cantrol algorithm. SHAKEY's reasoning system is part of that control algorithm. 

The situations requiring differentiation by SHAKEY pertain to the position and ori- 

entation of SHAKEY and the objects in its environment. This feat is accomplished 

through the meticulous engineering performed by SHAKEY's designers. 

This meticulous engineering overcame the hurdle described in section 2.1 and miti- 

gated the brittleness associated with internal represent at ions. The hurdle is overcome 

by making everything in SH AKEY's environment uniquely identifiable. For exam- 

ple, all mobile object.s, blocks and wedges, are uniquely identifiable through colour 

coding, and all static objects, walls, doors and corners, are uniquely identifiable by 

using the vision system in conjunction with the vehicle's position and orientation. Un- 

fortunately, this approach is generally not possible for systems operating in the real 

world because of the vast number of different objects in the world. The brittleness 

associated with a dynamic world is avoided by having a relatively static world. That 

is, very little changes d e s s  SHAKEY changes it. The brittleness associated with 

cumulative errors is mitigated by frequently calibrating the positioning system. For 

example, when SHAKEYk vision system detects a corner, whose location is known, 

SHAKEY can determine its own location by using the vision system in conjunction 

with the range finders. The brittleness associated with computational explosions is 

mitigated by not requiring SHAKEY to move at a fixed rate. SHAKEY can take as 

much time as is necessary to make a move. Finally, the brittleness resulting from ex- 

cessive extrapolation of sensor data, namely vision, is virtually eliminated by the well 

constrained surface properties of all the objects in the environment. The meticulous 

engineering by SPI AKEY k designers enables SHAKEY's sensing system and internal 

representations a0 differentiate all situations requiring differentiation by SHAKEY's 

crmtrd mapping. 

Mote that despite the fact that SHAKEY reasons, it always determines the same 

actuator response for specific situations differentiated by the physical sensors and 
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the internal representations- More specificalf y, SH AKEY Is reasoning sys tern can be 

viewed as a many-to-one mapping from sensor values, which include the values stsrect 

in internal representations, to actuator values. This also means that SHAKEY sim- 

ply applies the rules it was given. If SHAKEY is given incorrect rules, it performs 

incorrectly. 

Allen: MIT Mobot Lab 

Allen (Brooks 1986) is the second system we describe because it is the first autouolnous 

vehicle built using only behaviour-bascd control techniques. Allell is a mobile robot 

whose drive unit can rotate a specified number of degrees or move forward a specified 

distance. Allen has 12 sonar transducers evenly distributed around its circular chasis, 

one of which faces forward, that return values that are propctrtional to the distance 

to the nearest obstacle in front of the transducer. Allen operates in regular office 

environments. 

Allen's higher-level control system is an implementation of the first three levels 

of the subsumption architecture (Brooks 1986). In the subsumption arclii tecture, 

robots are decomposed into levels of task-achieving behaviours, as shown in figure 2.3. 

The higher levels (larger numbers in figure 2.3) subsume the levels beneath them, 

h v e l  7 reason about behaviour of objects 

plan changes to  the world 

Level 5 idendify objects 

Level 4 monitor changes - Actuators Sensors ------C Level 3 build maps 
(to low-level 

Level 0 avoid objects 

Figure 2.3: Subsumption architecture 

closwJ loop 
control system) 

thus ensuring that the robot always incorporates its lower-level functionality into 

its actions. The lowest level behaviour is avoid objects, which enables the robot 
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to survive. A robot that uses only a level 0 controller moves as far away from all 

objects in the world as possibie. The ievei 1 behaviour, wander, makes the robot 

move randomly around the environment. The robot wanders in such a way that it 

avoids objects, and thus the level 1 behaviour subsumes the level 0 behaviour. The 

level 2 behaviour, explore, determines interesting objects in the environment, based 

on sensor values, and moves the robot towards those objects- The explore behaviour 

subsumes the wander behaviour by supplying the wander behaviour with a constant 

wandering direction. When the explore behaviour subsumes the wander behaviour, it 

also subsumes the avoid objects behaviour. 

Allen is intelligent because it exhibits characteristics often attributed to biologi- 

cal creatures. The explore behaviour gives Allen the appearance of curiousity. The 

obstacle avoidance behaviour makes Allen appear to be aware of obstacles in its envi- 

ronment. The intelligence of behavioural systems is thought to be more on the level 

of an insect's intelligence than on the level of a human intelligence (Brooks 1989). For 

a more detailed discussion of Allen and the subsumption architecture, the interested 

reader is referred to appendix B. 

Though Allen is said to be a demonstration of insect level intelligence, it is really a 

demonstration of the limited number of situations sensors are able to dieentiate in 

an unstructured environment. The situations Allen is able to differentiate pertain to 

the size and shape of the free space surrounding Allen. By Tree space" we mean areas 

in the environment that are free of obstacles. Note that these situations do not pertain 

to any object characteristics, as SHAKEY's do, because object characteristics cannot 

be differentiated by Allen's sensors. Interesting objects for Allen are the farthest 

points in sensed free space, a sithation that can be sensed. One aspect of Allen and 

its control system, which determines actuator responses using only recently sensed 

sensor values, is that Allen is robust to changes in its environment. For example, 

Allen moves away from objects that move towards it. However, Allen is not capable 

of performing any practical tasks, it simply moves toward the farthest point in sensed 

free space which, if Allen is in a hall, causes Allen to move down that hall or, if Allen 

is in a large room, causes Allen to wander aimlessly in that room. 

This lack of frmctiondity was dciressed in Berbert (C'onneU1989), A h ' s  succes- 

sor, which has the added capability of being able to follow walls. However, Connell 

found that wall fdlowing, with the intent to return to an initid location, without 



any internal representations is only useful ia extremely limited domains, and that in 

those domains wall folloxing produces i~illefficient and circuitous routes. Other work 

by Connelt 61992) shorn-s that sensors are able to differentiate the difference betwtuw 

halls and the intersections of halls with doorways or other halls. This work also shows 

the increased functionality that can be obtained by adding internal representatiot~ to 

behaviour-based ccsnir~f architectures. 

In summary, Allen, like SHAKEY. determines actuator responses from sensor val- 

ues and some predefined se& of rules specified by Allen's designer, The difference 

betvreen Allen and SWAKEY is that Allen does not use any form internal r~prest~tta- 

tions, 

2.7 Autonomous Land Vehicle (ALV): Hughes A1 

Centre 

The final system we discuss, the Autonomous Laud Vehicle (ALV), is a hybrid system 

that uses both internal-representation-based and behaviour-based control paradignru. 

The ALV is wdl descaibetf In the  literature, (Payton 1986), (Daily 1988), (Paytoll 

19909, (Olin and Tserig 11991), (Thorpe 1991) and illustrates the folly of using il;tc:rnal 

representations that cannot be sensed by sensors. 

The ALV is an 8.wrheelecI. vebicle designed to navigate over r~tilcily ro~tgfi terrain. 

It uses an onboard navigation system to determine the vehicle" ppotiitioo, orientation, 

pitch and roll relative to the world, The ALV also has a range scanner that scans ari 

80" harizontal and :ItO" vertical swath in front of the vehicle, Experi~nents with tttc: 

ALV were conducted in a grassy field that contained gull ia and rocks. 

The control architecture of the ALV is shown in figure 2.4. The low-level control 

system of figure 2.1 is incorporated into the Motion Controllers block of this archi- 

tecture. For autonomous vehiclest the ALV'S architecture is relatively staridard in 

the l~ense that it has a sensing leg (the teft side of the figure) and an actuation leg 

(the Sgbk side of the figure). The bottom p r ~ f i i t n  of the architecture is connected to 

is assimilated producing a more complete picture of the environment, As we snow 

down the actuation kg, tasks are: decomposed into increasingly smaller subtasks to 
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Figure 2.4: ALV control architecture 

Increasing 

Decomposition 

the point that they are actual motion commands. The different levels of the percep- 

tiau leg provide information which is pertinent to the tasks being decomposed in the 

respective levels of the actuation leg. The structure of figure 2.4 is described in (Daily 

1988) but the  ideas supporting the  architecture are described in (Payton 1986). 

The mission-planning module defines system goals and constraints, and instructs 

the mission-sensing module to configure the sensors to look for specific landmarks 

in the environment. This level of the architecture is designed to interact extensively 

with human ~nissiou planners. The world perception module maintains a world map 

of the environment that includes a list of landmarks indicating which have and have 

nalt k n  sensed. The route planner module uses the world map and the constraints 

of the misioa planner module to determine a satisfactory route through the environ- 

ment, The local perception module performs sensor fusion. It identifies landmarks 

asrd passes lihk infer~~atioa to t5e world perception rnod.de, and it  identifies obsta- 

module- The locall planning module uses route information and environmental infor- 
marion lie determine which d e x i v e  behaviour will control the vehicle in the rdexive 



planning module. The virtual sensor module detects specific environmei~tal features 

as requested by the local perception 1110dule or tf e reflexive behaviour module. The 

term %irtual sensor" is used because the sensor values might uot correspond to a 

single sensor, but might rxult from the processing of several sensor values. The re- 

flexive behaviour module implements the currently active behaviour as s yeci fied by 

the route planning module. For a more indepth discussion of the ALV, the interested 

reader is referred to appendix C. 
The ALV is considered to be intelligent because it uses both reasoning systems, 

at the higher-levels in the control architecture, and behaviours, at thc lower-levels ia 

the control architecture. Humans also use reasoning and behaviours. However, the 

ALV, like SHAKEY and Allen, simply applies actuator responses to situations that 

its sensors and internal representations are able to differentiate. The ALV i s  more 

functional than Allen because it uses internal representations. The ALV can traverse 

to distant locations in its environment, something that Allen cannot do. However, 

to accomplish this feat, the ALY uses a world map which is supplied to it by its 

designers. The sensors o n h r d  the ALV are not able to sense the features stored in 

that world map and consequentlq; the ALV cannot sense changes in the environn~eut, 

and is therefore brittle. Another reason the ALV is brittle is that the positionirlg 

system accumulates errors that cannot he mitigated by any other vehiek sensors. 

Consequently, the vehicle is limited to a range that is yroportionai to the rate at 

which errors accumulate in the positioning system. Though not directly statcd i 11 t lie 

literature, this limitation is evident from the fact that the ALV's longest trip was only 

7&5m. The situations the ALv% sensors are able to reliably differentiate are thosc? 

pertaining to terrain ottstxles in fiont of the vehicle, based on range sensor data. 

Consequently, the ALV is able to successfully navigate local obstacles. 

This work shows that despite complex internal representations, system functiortal- 

ity is limited by the actuatar responses associated with situations that can be reliably 

differentiated by sensors. 

2.8 Summary 

This chapter provides a background and critical analysis of progress in autonornous 

vehicle research to da te  The auf;onomous vehicles described in this chapter illt~strate 
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that systems that do not use internal representations are robust to changes in their 

environments, and that systems that use internal representations can be brittle. These 

systems also illustrate that the underlying principle of operation of all autonomous 

vehicles is that they take inputs, which include sensor data as well as things like 

initial program parameters, and through some predefined set of rules and calculations 

produce a set of outputs that are used to set actuators. The ability of these systems 

to operate in a real world depends more on how well the sensing system is able 

to differentiate different situations in the world and the merit of the mapping that 

assigns actuator responses to each different situation than it does on the ability of the 

processor. The remainder of this thesis puts a concrete form to the ideas of situation 

differentiation and its applicability to autonomous vehicle control. 

In this section, we focus on how well researchers have followed through with their 

ideas. In the case of Nilsson, he returned to strictly computer work after the SHAKEY 
project. It is our opinion that the reason for this return is that the immense amount 

of pure engineering required to make A1 operate in a wholly contrived world daunted 

tbe development of a system that would operate in the real world. More specifically, 

the inability of sensors to sufficiently differentiate objects in general environments 

prevents researchers from extending the SHAKEY paradigm to systems that operate 

in completely unstructured environments. 

A similar trend is noted with Brooks, who has not constructed a vehicle that 

functions at level 3 of the subsumption architecture, which is the build maps level. 

However, a robot that does construct maps of its environment, TJ (Come11 1992), 

is able to identify only the oEce landmarks of the intersection between hallways and 

other hallways or doors, which are very specific landmarks. It is our opinion that 

the inability of sensing systems to sufficiently differentiate appropriate landmarks in 

general environments prevents the extension of the behaviom-based control paradigm 

to more complex tasks. 

And finally, with regard to the ALV, research also seems to have halted. The 

researchers have not presented any work related to implementing the higher levels 

of their architecture. The work presented by Payton (1990) simply describes better 

_ _----- 
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methods of using the sensor information available to their vehicle. In conclusion. it is 

our opinion that the work of the groups described in this chapter is limited by a lack 

of sensors able to sufficiently differentiate appropriate euvironxneutal stimuli. 



Chapter 3 

Sensor Actuator Mapping Theory 

This chapter provides a mathematical framework for the concepts associated with 

situation differentiation and under-sensed control environments. Some elements of 

this framework are the ideas of sensor space and actuator space, which are part of 

a generalized control cycle described in this chapter, Sensor space is the conceptual 

interface between sensors and control laws and actuator space is the conceptual link 

between control laws and actuators. By "conceptual" we mean that there are no 

phj-sical components associated with these spaces, not that they are abstract ideas 

because they are representable. 

Using the generalized control cycle, we show that control laws can be represented 

as a many-to-one mapping from sensor space to actuator space. When the mapping 

is implemented on a digital computer, it is equivalent to a simple lookup-table, which 

we refer to as a Quantized Sensor to Actuator Map, or Q-SAM for short. By viewing 

control laws implemented on a computer as lookup-tables, it becomes obvious that 

computers simply implemeot a law, in our case a control law, and, in our opinion, do 

not themselves understand the environment in which they exist. 

In section 3.1, we describe an example that we use to illustrate the ideas pre- 

sented in this chapter. In section 3.2, we describe the generalized control cycle of an 

autonomous vehicle. In section 3.3, we expand the autonomous vehicle control cycle 

to show the role of internal representations in that cycle. In section 3.4, we describe 

seaso;. space, actuator space and environment space of the autonomous vehicle control 

cycle. In section 3.5, we describe the sensor transformation, control law and actuator 

transformation of the autonomous vehicle control cycle. fn section 3.6, we introduce 
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Q-SAMs, which are lookup-table equivalents to computer-based control algoritllxlls. 

Finally, in section 3.7, we summarize this chapter and in section 3.8 we provide a 

general discussion of some of the ideas presented in this chapter. 

3.1 Example 

Many of the ideas presented in this chapter are very general. To illustrate these ideas 

we use a simple example, that of an AUV whose task is to move to and tlien ~nabtain a 

specific altitude in the water column. The dynamics of this simplistic a1 titude-keeping 

task are described by the linear differential equation 

where M is the mass of the vehicle, d the drag, F ( t )  the applied vertical force, y ( t )  

the altitude off the bottom and t  is time. The desired altitude of the vehicle, yo, 

is specified by an agent that is external to the AUV system. Since the controller 

is computer-based, we assume that the force F ( t )  is applied in steps that have a 

time interval of At. This lets us represent the syste~n in discrete time so that the 

parameters become 

where n is the time index. For the control system discussions that follow, system 

error, errn, is the difference between the desired altitude and the present altitude. 

More specifically 
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3.2 Autonomous Vehicle Control Cycle 

The control cycle of an autonomous vehicle is shown in figure 3.1. It consists of 

Figure 3.1: Autonomous vehicle control cycle 

three vectors, 3, a, E ,  that represent the states of the sensors, actuators and environ- 

ment respectively. Each vector is associated with a corresponding space, the sensor 

state vector with sensor space, the actuator state vector with actuator space and the 

environment state vector with environment space. The vectors can represent one po- 

sition in their respective spaces at any given time. Connecting these spaces are three 

functions, g, m, h, that are the transformations made by the sensors, control law and 

actuators/environment respectively. A control cycle for the vehicle consists of the 

following: The present state of the environment is transformed by the sensors (trans- 

formation g) into the sensor state vector S .  The control mapping m takes the sensor 

values aud through some predefined set of rules and/or calculations determines the 

actuator response ii. The transformation h uses the actuator commands to determine 

the new state of the environment e. This cycle then repeats. The split arrow asso- 

ciated with transformation h signifies that h uses both the actuator commands and 

the present state of the environment to determine the new state of the environment. 

Mathematically the system is represented as 

where 
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is a composite function of the effects of t h e  environment h, and the effects of tlie 

vehicle h,. By combining equations 3.2-3.4 we see that 

where h' is a new function that incorporates all three transformations g, ?n and h. This 

function is interpreted to mean that once the vehicle is placed in an environment, it 
n becomes part of that environment. lha t  is, h' describes the vehicle's activity in 

the environment. Equation 3.6 also means that the more that is known about the 

environment h,, the more the vehicle na, g and h, can be designed to make h' reflect, 

the wishes of the designer. 

Describing the altitude-keeping example in the terms of the au tononlous vehicle 

control cycle, the three state vectors are 

yo, the goal altitude, is part of the environment because it is supplied to the vehicle 

by an agent that is external to the vehicle. The transformation h is 

where A represents the natural changes of the environment, he, and B represents the 

effects of the vehicle's actuators on the environment, h,. In general these effects are 

not necessarily decouplable, as they are for our linear example. The transformation 



where C represents the sensor transformation from the environment. In this example, 

catculating the error err, is part of the sensor transformation g, though it could easily 

have been part of the control mapping m. We have taken this approach because it 

provides a clearer picture of the ideas presented in this thesis. 

3.3 Expanded Autonomous Vehicle Control Cy- 

cle 

The expanded autonomous vehicle is shown in figure 3.2. We present the autonomous 

Figure 3.2: Expanded autonomous vehicle control cycle 

vehicle control cycle in this manner to clearly illustrate the role of internal repre- 

sentations. In figure 3.2, the subscript w m  indicates elements of the control cycle 

associated with internal representations (World Maps), and the subscript r indicates 

elements of the control cycle associated with real sensors and real actuators. 



The ordinates of i?- are the specific values of internal representations r t t d  are 

stored between control periods. In the example? the error sensor value err.,, might be 
stored in an internal representation to be used the following control period with the 

new error sensor value. The sensor state vector for this 

err,+ 1 

err, 

scenario is 

(3.1 ti) 

and the control mapping m can use the difference between the two error values as 

an estimate of the derivative of the error. The internal representations of z,,,,,, are1 

generally stored in computer memory. Therefore, some co~nputer menlory in an au- 

tonomous vehicle is part of the environment, from the perspec4:ve of the autonomous 

vehicle control cycle, The other portion of memory is that which is used to store tlic 

program code that implements the control law (mapping) n. The transformations 

h,, and g,, respectively write to and read from the internal representations &,. 
Generally? they are inverse transformations whose net effect is a unity gain traris- 

formation. That is, the value written to memory is generally the value read from 

memory. Each control period m,, updates the internal representations by cleriving 

new values based on & and 5, or simply copies values directly from &,,, to n,,,,. 
The former process changes the values of the internal representations and correpo~rds 

to updating the internal representations based on relevant sensor information anti t hc 

latter process corresponds to simply maintaining the present values stored in  memory. 

Figure 3.2 provides visual clarification of some of the properties associated with 

internal representations. First, internal representations do not necessarily reflect any 

portion of the real environment. They can be a complete figment of the tiesigner's 

imagination. Secondly, internal representations are a minimum of one co~ltrol period 

old. That is, they must first be read from a real sensor value in 3, and stored in 

memory & before they can be used as an internal representation from S,,, and this 

process requires one control period. Generally however, internal representations art: 

older than a single control period, which is another reason that internal representations 

often do not correspond to the dynamic environment that they represent because t; he 

representation represents the state of the environment a long time ago. This lack of 

correspondence is one cause of system brittleness. 
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3.4 The Spaces 

The three spaces in the control cycle, represented by the three vectors S, ii and e, 
are the conceptual links between the physical components of the system and are 

illustrated in figure 3.3- The dimensionality of these spaces is not necessarily the 

Seirsor Space Actnator Space 

Environment Space L 2 
Figure 3.3: Spaces of the autonomous vehicle control cycle 

same. By "dimensionalityn we mean the number of axes in the space, which is equal 

to the number of ordinates in the respective state vector. Of these spaces, sensor 

space is our focus because we have found that sensor space requires the most effort 

to understand and design. One reason for this fact is that there are many different 

sensors available for autonomous vehicles, each able to sense different aspects of the 

environment. On the other hand, there are very few choices of actuators. For an 

AUV we are generally restricted to thrusters that operate in a single direction and 

rudders. Also, environment space is usually so large that designers often consider only 

the elements of it that can be sensed and the definition of those elements is usually 

obvious. 

ft is important to note, as mentioned in the previous section, that the ordinates of 

the sensor state vectors do not necessarily correspond to the output of a specific sensor, 

though this is often the w e .  Some sensor state vector ordinates might be associated 
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with internal representations stored in computer memory. Likewise, some ordinates 

of the actuator state vector and the environment state vector might represent internal 

representations stored in computer memory. 

Computers used for control see the world through their sensors. Consequently 

sensor space represents a Ucomputer's eyen view of the world. Every situation in the 

environment is transformed into one location in sensor space. These locations need not 

be unique for unique situations. That is g : e, --+ s, is a many-to-one trausfornlatiou. 

For the controller to recognize situations in the world as being different, however, they 

must correspond to different locations in sensor space. In the example, sensor space 

is the one dimensional continuous space represented by the error signal. 

We say that sensor space is "complete" for a given task if all situatiom in the 

world requiring differentiation by the control mapping are associated with different 

locations in sensor space. This condition is satisfied for the example. An exarnple of an 

incomplete sensor space is if we were to place a velocity limit on the altitude-keeping 

task. The sensor space of the example is then incomplete because situations with 

velocities in excess of the limit are not differentiable from situations with velocities 

below the limit. A complete sensor space for this case has an axis for the error signal 

and another axis for system velocity or an estimate of system velocity. 

Associated with completeness, is the concept of situation identification. Situation 

identification refers to the process of identifying the meaning associated with each 

differentiable region in sensor space. In the example, the meaning of each region ill 

sensor space is a specific altitude error. This process is relatively straightforward when 

the control environment is critically sensed, as it is for the altitude example, because 

the meanings are a function of only the sensor transformation g. However, when 

the control environment is under-sensed, the meaning associated with differentiable 

regions of sensor space are a function of the entire autonomous vehicle, and these 

meanings are not so straightforward, as will become apparent in chapter 5 

Another concept in the design of sensor space is the goal region. The goal region is 

an area of sensor space that corresponds to the completed task of the vehicle. That is, 

if the vehicle has completed its task, then the sensor state vector represents a point in 

the god region of sensor space. For the example, the goal region is the poix~t err = 0 

in sensor space. Though a point is acceptable it is common to specify a region like 

-0.05m 5 err 5 0.05m when being within 5cm of zero error is sufficient. In general, 
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multidimensional sensor spaces have goal regions that are also multidimensional. De- 

pending on how the goal is specified, the dimensionality of the goal region can vary, 

but its dimensionality is always less than or equal to the dimensionality of the sensor 

space. For the point err = 0 the dimensionality of the goal region is zero and for 

the line segment -0-O5m 5 err _< 0.05rn the dimensionality of the goal region is one, 

which is equal to the dimensionality of the sensor space. 

Associated with goal regions are subgoal regions which are supersets of the sensor 

space goal region, but subsets of sensor space. Subgoal regions can be used to represent 

progress towards the goal region ~r to prioritize different routes through sensor space 

to the goal region. When the vehicle travels to the goal region, it follows a trajectory 

through sensor space, and some trajectories are preferable to others. For the example, 

a subgoal is the region -0.5m < err 5 0.5m which indicates that the system is 

approaching the goal region. For multidimensional sensor spaces, subgoals are any 

volume of sensor space that is larger than and encompasses the goal region. A common 

subgoal in a multidimensional sensor space is when one of the ordinates of the sensor 

state vector is equal to that of the goal region. Note that vehicles complete tasks in 

sensor space, whereas designers view tasks in environmental space. Therefore, one 

reason that systems do not complete the tasks for which they were designed is that 

the transformation g maps situations that do not correspond to the completed task 

(system goal) into a region of sensor space that the designer believes corresponds 

to the completed task (goal region). That is, the designer did not understand the 

situations differentiated by the sensors, and consequently the system's sensor space is 

incomplete. 

Before we discuss the final concept associated with sensor space, partitioning, we 

must consider the effects on sensor space when control laws are implemented on digital 

computers. All values used by a computer are digital, or quantized. Consequently, 

sensor space, and also actuator space, are quantized. When each sensor value is 

quantized independently, which is usually the case, the sensor space is broken into 

a countable number of multidimensional rectangles, as shown in figure 3.4. Each 

rectangle represents several situations and can be thought of as a single equivalence 

class in a partition of sensor space caused by quantization. 

Partitioning is the final concept we discuss in sensor space design. The partition 

caused by quantization, PQ, is the most significant because it must be consistent 
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Figure 3.4: Quantized sensor space 

with all other partitions on sensor space, We say that PQ is consistent with another 

partition, say PA, when each equivalence class of PQ is a subset of only one eqitivali~r~ce 

class of PA, as shown in figure 3.5. More specifically, the borders of the equivalencx 

classes of PA are coIinear with the borders of the equivalence classes of PQ though 

the converse is not necessarily true. If the converse is true then the two partitions arc 

mutually consistent and they are the same partition. Let PA be she parti tioil whose 

equivalence classes represent regions of sensor space that are associated with tile same 

actuator responses under the mapping rn. If PQ is not consistent with PA then at 

least one equivalence dass of PQ overlaps two equivalence classes of PA. In other 

wcrds, different portions of the same quantization region require different acttlator 

responses, which is impossible to implement with any mapping 77s. Therefore to be 

complete, a quantized sensor space has an additional constraint that is: f.h ~ n ~ l s t  he 

consist snt with all other partitions placed on sensor space. Another partition that is 

always present is the g d  partition, Pc. PG has at least two ey uivalence classes; onc 

that is the goal re@= and one that is not, 

Aduator space is very similar to sensor space with the only exception being the 

lack of a god region, Actuator space represents every effect that the actuators car1 

have on t;be environment. Different locirtions in actuator space correspond to different 
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actions in the environment. In our example. actuator space is the one dimertsio~~al 
rn axis representing the force applied to the system. I he actuator tratlsformittio~l h 

t r a d e r s  every location in actuator space into its corresponr'lir~g action in the world. 

Like sensor space, actuator space is complete if each unique actuator response 

in the environment required by the control mapping in is represented by a different 

location in actuator space. The actuator space associated the vertical t h u s  ter 

of our example is complete- An example of an incomplete actuator space is that 

associated with a l~orizontally mounted thruster because it has no actuator response 

that moves the vertically. That is, the t-ehide cannot physically nlove to the 

goal region yo. 

Quantization in actuator space replaces a group of actuator responses in the en- 

vironment with a single response. Like sensor space, the partition carisecf by cpitnti- 

z&im must be ca;rs?steiit W Z E ~  ever?,. other partition placed orr actuator space. 

Environment space represents everything about the environment. Iu our exitl-rt- 

ple, envisonment space is the altitude? velocity and desired altitude of the A I W .  For 

a general AUV, environment space includes things like the AUV" position, objects 

and their positions, ocean currents, temperature and computer hardware, rlratly of 

which cannot be sensed by the mapping g. One aspect of environment space is  that it 

does not consist of only things that are external to the physical vehicle. Envirottr~~e~it 

space also includes things like computer memory used for internal reprrset~tatioiis. 

Note that a vehicle's functionality is demonstrated in that part of environzneut sjmx 

that is external to the physical vehicle, and not in any internal representatiom Con- 

q u e n t l ~  designers that rely heavily on the use of internal representations must Ijt: 

aware that their vehicle's performance is not judged on the values stored in those 

i~ternaal representations, but is judged an the actions taken in the world. 

tmdomatians-,  m,g, and hr are the physical connections hetweer~ the three 

cmeeptud spaces of fthe aulionomours vehicle control cycle of figure 3- 1 .  By "physicals 

we mean that there is g a e r d l y  some sort of hardware associated with the transforma- 

%ions- Thou& each trauosffarmation is independent of the rest, they are tightly coupled 

by the spaces+ and consqaently must be deigned tugether, Specificdly, the output 
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of the sensor transformation 9 must correspond to the inputs required by the control 

mapping m and likewise the output of the control mapping rn must correspond to the 

abilities of the actuators- 

By stating that the transformations must be designed together, we mean that au- 

tonomous vehicles must be designed as a whole. Decomposing autonomous vehicles 

into the manageable subcomponents of figure 2.2 has lead to important details slip- 

ping between the cracks of the interfaces (Malcom and Smithers 1990) which, in the 

autonomous vehicle control cycle, are sensor space, actuator space and environment 

space. That is, when the different subcomponents of figure 2.2 are developed inde- 

pendently, assumptions are often made about the other subcomponents that might be 

unreasonable. For example, a team designing a reasoning system for an autonomous 

vehicle might assume that the sensing system will be able to reliably detect every ob- 

ject in the environment, which might not be possible. Unfortunately, it is not until the 

system is finally assembled that the lack of attention paid to the interfaces becomes 

apparent in the system" poor performance or brittleness. Consequently, sensor space, 

actuator space and environment space must be clearly defined before the components 

of m,g and h are designed and built. 

The first transformation we discuss is the sensor transformation g, which takes 

situations in the environment and converts them into locations in sensor space. The 

requirements on the transformation are specified by situations in the environment that 

the control mapping m needs differentiated. We say that g is Ksufficient" if the sensors 

transform each situation in the world that requires differentiation into a different lo- 

cation in sensor space. For the example (altitude-keeping), the sensor transformation 

simpIy co~lverts small ranges of errors (the ranges are due to quantization) in the en- 

vironment into unique locations in sensor space. The example sensor transformation 

is sufkient for a proportional control law. For under-sensed control environments, 

the identification of situations differentiaced in sensor space is a fundion of the entire 

vehicle. Consequently3 the sufficiency of the sensor transformation is also a function of 

the entire vehicle. The quantization of sensor values into the quantized sensor space 

of a computer is also part of sensor transformation 9. 

The second transformation we discuss is the control mapping m. m is the control 

law of an autonomous vehicle, and rn defines which actuator responses are applied to 

which &fFerentiable situ&ions. More spscificaily, m maps each location in sensor space 
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into one location in actuator space. That is, Tn : 9 ,  - ii,,, like g,  is a many-to-one 

mapping. The reason that nt is a many-to-one mapping is that machines, which are 
A 

driven by rules, can apply only one set of rules to a given set of inputs. If situations are 

associated with the same actuator response, they do not need to be differentiated from 

one another in sensor space. Note that the "intelligence" of an autonomous vehicle 

is displayed by its ability to apply the appropriate actuator responses to appropriate 

environmental situations, and it is nz that does this assignment. 

Another concept associated with the control mapping ?n is that 7n defines how 

the vehicle's position in sensor space changes. The reason for this fact is that rn is 

responsible for assigning actuator responses, which change the environment, whicll 

in turn change the sensor values and consequently, the vehicle's location in sensor 

space. More specifically, the control mapping m determines the vehicle's trajectory 

through sensor space, from its present location to the gaaI region. For the exanqde, 

the trajectory is a straight line because sensor space is one dimensional. We say that 

a control mapping is Gadequate" if all trajectories through sensor space lead to the 

goal region. That is, the system is able to move to the go4 region from anywhere 

in sensor space. It is again noted that an autonomous vehicle views its progress i n  

sensor space, whereas designers view the vehicle's progress in environment space. 

The concept of adequacy is important when working with under-sensed coutrol 

environments because optinral control, in the sense of feedback control theory (Van 

de Vegte 1986), might not be possible. For systems operating in critically stmsed 

control environments, optimal control is possible because the system's progress can 

be quantitatively analysed from its sensor values. However, in under-sensed cot~trol 

environments this analysis is not possible, For example, in a11 but very restrictecl 

cases, it is impossible for a vehicle to determine an optimal path through a n  unkriowr~ 

obstacle field that it cannot critically sense. 

Finally, the mapping h models the effects of the actuators on the environrne~lt. h 

is different than g and m in two major ways. First, it is in h that the time step At 

takes its effect in the control cycfe, g and rn, unlike h, are generally assrirncrri to he 

instantaneous. Secondly9 h is really a composite of two transforrnatior~s, as shown it1 

equation 3.5. h madeis the effects of the vehicle's actuators, h,, and the effects of 

the environment on itselfa he. For the example, h, represents the effects of ay plying a 

force to the system fix one control period, and h, represents the effects of the  vehicle's 
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momentum. Note that h, might not have any effect on many of the elements of the 

environment t?. For instance, a vehicle cannot control the ocean currents but instead 

rnust move with them. 

Quantized Sensor to Actuator Maps (Q-SAMs) 

The mapping m, in conjunction with the autonomous vehicle control cycle, can imple- 

ment any form of analog or digital control law. In this thesis, we are mainly interested 

in digital controI mappings because most autonomous vehicle control systems are im- 

plemented with computers. Consequently, the discussion in this section focuses on 

digital control mappings, though many of the ideas presented also apply to analog 

control mappings. 

it is not hard to envision the low-level control laws of figure 2.1 as  a many-to- 

one mapping from sensor space to actuator space, but the high-level control laws of 

figure 2.1 have rarely been described in these terms. In fact, Badreddin (1991) simply 

said that we cannot even assume that these functions are one-to-one, which is the 

case. In the next few paragraphs, we will show how m can be represented as a simple 

lookup-table and how that lookup-table, as part of the autonomous vehicle control 

cycle, can implement the higher-level control mappings of figure 2.1. 

As a digital mapping, m maps each region of quantized sensor space, which we 

refer to as a quantum, into one region of quantized actuator space. Since there are 

a finite number of quanta in quantized sensor space, we can use each quantum to 

index a unique location in a lookup-table, in which is stored the appropriate actuator 

response defined under nz. We refer to this lookup-table as a Quantized Sensor to 

Actuator Map, or Q-SAM for short. 

To show that Q-SAMs, in conjunction with the autonomous vehicle control cycle, 

czrn implement higher-level contro1 mappings, consider some facilities of higher-level 

cont~oilefs generally though unimplementabie with a lookuptable representation: 

rZmd0m numbers, clocks and program variables. With respect to the autonomous 

vehicle control cycle? random number generators and computer clocks are part of the 

emironment Z, That is, random nlunber generators and computer clocks are each 

asmciated with one ordin& of the sensor state vector S and one axis of sensor space. 

Higher-level control laws are generally implemented on a computer by a computer 
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program, which uses variables, that we refer to as "program variables". These pro- 

grams have two types of variables: those which are used only during the control cycle, 

called temporary variables? and those which are stored between control cycles, called 

permanent variables. Temporary variables like i in the code segment 

outvar = proc(invar) 

{ 
for i = 1 to 10 

{ 
temp = temp + i * invar 

1 
outvar = temp 

1 
are part of the control mapping m. If 7 n  is represented in its Q-SAM form, i is incor- 

porated into the Q-SAM when it is filled. By "fill" we mean the process of storing an 

actuator response in each location (quantum) in the lookup- table. Permanent vari- 

ables, like last-pos in the code segment 

outvar = proc(invar) 

{ 
static last-pos 

outvar = invar + lastqos 

last-pos = invar 

1 

are internal representations, and are part of the environment e , ,  of figure 3.2. 

Despite the fact that higher-level autonomous vehicle control systems have a Q- 

SAM equivalent, people rarely thing of them in such terms. The reason for this state of 

affairs is that programs, the form of most higher-level controllers, obscure the Q-SAM 
representation. Consider the line of code 

To a casual observer i t  is not obvious that this line of code implemented on an 8-bit 

computer is equivalent to the Q-SAM in figure 3.6, where z is the sensor input and y 
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(y) Quantized 
t o  1 3 8 13 18 23 

(5) Quantized + 0 1 2 3 4  
Sensor Inputs 

Figure 3.6: Q-SAM equivalent of the line of code: y = 5x + 3 

is the actuator output. However this is the case. 

There are several advantages to using the computer program implementation of 

higher-level control laws instead of the Q-SAM implementation. First, programs are 

easier to understand than lookup-tables. The line of code 3.17 is much easier to 

understand than the functionally equivalent Q-SAM in figure 3.6. Also, programs 

generally require significantly less memory than their Q-SAM counterparts. The Q- 

SAM of figure 3.6 requires 512 bytes to implement with 2 byte integers, whereas the 

line of code 3.17 can be represented in as few as 5 bytes. 

On the other hand, there are several advantages to using the Q-SAM implemen- 

tation of a control law. First, Q-SAMs are fast. The response time of the entire 

control algorithm is reduced to that of a memory access, which is why people often 

use lookup-tables to replace time-critical algorithms. Secondly and more importantly, 

the Q-SAM representation allows us to apply any actuator response to any situation. 

That is, the Q-SAM is an explicit representation of the mapping m, and can support 

any form of control law. 

Summary 

This chapter provides a mathematical framework for the concepts associated with 

situation differentiation. The interfaces between system components, namely sensor 

space, actuator space and environment space, must be clearly defined and under- 

stood before work on the system subcomponents can begin. This requirement is 

accomplished by constructing complete sensor and actuator spaces. Both high-level 

aid Iow-level control mappings have a lookup-table equivalent called a Q-SAM. In 

the next chapter, we explore several ways that control laws can be developed using 

Q-SAMs and the concepts of situation differentiation. 
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Discussion 

In section 3.6, we showed that both high-level and low-level controllers have a lookup- 

table equivalent called a Q-SAM. Coupling that discussion with tlie discussio~l of 

section 3.3, we see that computers running a program have a Q-SAM equivalent in  

terms of the autonomous vehicle control cycle. Note that the sensor state vector 

might be a time series of all values encountered by the computer. For example, tile 

sensor state vector of a learning algorithm includes all combinations of inputs and 

outputs supplied to that algorithm. In doing so, we have shown that co~nyuters, 

and autonomous vehicles, simply implement the set of rules that was used to fill the 

Q-SAM, or equivalently, write the program. It is our opinion that the intelligencc 

resides in the that designed the rules used to fill the Q-SAM and not in the 

computer or autonomous vehicle. 

As a final note, consider removing gT, eT and h, from the expanded autonomous 

vehicle control cycle of figure 3.2. This corresponds to removing the physical com- 

ponents of our vehicle and leaves us with a dynamic model of a computer simulation 

where is the simulation's inputs and a, is the simulation's outputs. From the ctiscus- 

sion of section 3.3, it is clear that the results of a simulation are completely contrived. 

Therefore, results obtained through simulation might have little, or no meaning with 

regard to systems operating in a real world. 



Chapter 4 

Situation-Based Control 

This chapter demonstrates how situations can be used to develop and implement 

control laws. This task is accomplished by exploring various methods of filling Q- 

SAMs with control lams. By 'Tilling" we mean storing specific actuator responses in 

each quantum of the Q-SAM. In the first few sections, we show that Q-SAMs are an 

explicit representation of a control law by filling the Q-SAM first with a proportional 

control law and then with the control law of an expert control system. In the latter 

section, we present evidence that adaptive situation-based control is feasible but not, 

as yet, practical. 

Through the course of our work, we found that filling Q-SAMs with control laws 

can be time consunling due to the large number of quanta that are generally associated 

with a single Q-SAM. To reduce the number of situations that must be encountered 

during the filling process, we employ the use of a function, that we refer to as an 

actuator response distribution function, which distributes actuator responses among 

similar situations (similar Q-SAM quanta). 

I t  is important to note that we are not trying to develop optimal controllers in this 

chapter because that is always application dependent, and there is a lot of control 

theory for any particular application, Instead, our purpose is to illustrate some of 

the facilities of situation-based control and the Q-SAM representation, and show that 

Q-SAMs can be used to implement many forms of control laws. 

En section 4.1, we describe the system with which we conduct our experiments in 

this chapter. In section 4.2, we describe the actuator response distribution function 

that we: use to increase the rate at which Q-SAMs are Ned.  In section 4.3, we 
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show a method of filling Q-SAMs with rule-based control laws by filling a Q-SAM 

with a proportional control law. In section 4.4, we fill a Q-SAM with the control 

law of an expert controller, whose control law we cannot describe mat tlemat ically, 

by a technique we refer to as "downloading". In section 4.5, we use the Q-SAM to 

experiment with adaptive situation-based control. In section 4.6, we discuss some of 

the philosophical implications of downloading control laws. Finally, in section 4.7, 

we summarize the results described in this chapter, and in section 4.8 we provide a 

general discussion of those results. 

4.1 Example 

In this chapter, we again use the altitude-keeping example described in chapter 3. We 

set the parameters of equation 3.1 to have a mass (M) of 35.0kg7 a drag coefficient ( ( 1 )  

of 20.0kgls and a control period (At) of 2.0s. These parameters are estimates of 

the parameters governing the vertical motion of an AUV under development at the 

Underwater Research Lab. The control laws are implemented with a 65 word Q-SAM 

whose range of operation is [-2.0m,2.0m]. That is, the sensing system is capahlc 

of differentiating 65 different error situations in the range [-2.0m, 2.0rnI as shown in 

figure 4.1. It should be noted that errors greater than 2.0m are associated with the 

System -2.0m 2.0m 

Error - - -  - - - - - -  
I I 

65 Quantization 

Q-SAM + o 1 2 

Index 

Figure 4.1: 65 quanta Q-SAM 

situaticn of quantum 64, and errors less than -2.0772 are associated with the situation 

of quantum 0. 

The control diagram fcrr this example is shown in figure 4.2. The desired altitude, 

yo, is set externally with respect to the control system. yo is used to generate an error 

signal, which is quantized into one of 65 situations in sensor space. The response to 
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Sensor 
Space 

Actuator 
Space 

Address Location 
err, -Memory F n  

Quantize1 r D/A - System - > !In 
65 words 

Figure 4.2: Control diagram for altitude-keeping with a 65 quanta Q-SAM 

each of the 65 situations are stored in the 65 Q-SAM quanta. During the control 

cycle, err,, is used to access the appropriate response stored in the Q-SAM, which is 

converted to an analog signal and applied to the AUV. 

At  this poirrt, we define the term control surface, and discuss some of the ideas 

that are associated with control surfaces. The control surface is the curve generated 

when sensor space is plotted versus its corresponding actuator responses. For this 

example, a typical control surface is shown in figure 4.3. Two control surface features 

Actuator 

I i i 
0 32 64 

Sensor Space 
(32 is er r  = 0) 

Figure 4.3: Control surface showing control surface features 

illustrated in figure 4.3 are edges and holes. An edge is a drastic change in actuator 

responses associated with similar situations. Situation similarity is an application 

specific definition. For this example, similar situations are those associated with sim- 

ilar errors. A control surface hole is a region of the Q-SAM whose actuator responses 
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are default values. In our example, the default value is zero. 

4.2 Actuator Response Distribution Function 

We have found that filling Q-SAMs can be a tedious and time consuming task be- 

cause there are many locations in Q-SAMs, and each requires an individual act~ia- 

tor response. To speed up this process, we implement a function that distributes 

learned responses among situations that are similar and expected to have similar re- 

sponses. By "learned response" we mean responses that have been determined to be 

appropriate for a particular situation. We call this function an Actuator Response 

Distribution Function, or ARDF for short. Actuator response distribution funct,ioriv 

should have greater effects on situations that are more similar to the situation for 

which the response was learned than on situations which are less similar. To satisfy 

this requirement, we have chosen the following exponential distribution function for 

the altitude-keeping example. We chose this function because it produces a sinootJ~er 

control surface than the other distribution functions that we tested. Si~nilari ty of 

situation is determined by proximity in sensor space. The function is 

where 
,. . = beC-"l;-jl) 
V 

and i is the quantum associated with the learned actuator response, j is the quantu~n 

being updated, f; is the learned response, fj(,rd) is the old response stored in quan- 

tum j, fj(,,) is the updated response to be stored in quantum j ,  b is the averager 

weight for quantum i, and c is the diffusion constant. b is called the averager weight 

for quantum i because when quantum i is being updated, the exponential portion of 

equation 4.2 is equal to 1.0. c is called the diffusion constant because it effects the 

width of the distribution function, which will be discussed in the next paragraphs. 

For this actuator response distribution function, learning a response for one qua~ltum 

dters the responses associated with ali other quanta. 

To envision the operation of this actuator response distribution ftlnction, consider 

the Q-SAM of the example filled with zeros. This corresponds to a flat contra1 surface 
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with all the actuator responses being 0.0. Suppose the system determines that an 

actuator response of 1.0 is an appropriate response for the situation associated with 

qwntum i. Storing this response in the Q-SAM leaves a Q-SAM that is filled with 

zeros, except in quantum i, which has a response of 1.0. The Q-SAM is still relatively 

empty. By applying the ARDF, more situations than that associated with quantum i 

will have non-zero actuator responses. Figure 4.4 shows the repetitive application of 

i-5 i-4 i3 i-2 i-1 i i+l ii2 i+3 i+4 i+5 
USAM Quanta 

Figure 4.4: Repetitive application of the actuator response distribution function 

the actuator response distribution function, with b = 1.0 and c = 1.0, to the Q-SAM. 

The width of the function is controlled by the parameter c. The line labeled IS' 
iteration shows the control surface after the ARDF is applied once. After application 

of the ARDF, many situations are associate with non-zero actuator responses. As 

figure 4.4 shows, repetitive application of the ARDF does not change the response 

associated with quantum i, but makes the responses associated with other quanta 

increasingly similar to that of quantum i. It should be noted that the effects of the 

ARDF are less significant when the responses are similar, which is illustrated by the 

decreasing effects of the repetitive application of the ARDF. The repetitive application 

of the ARDF also shows the exponential convergence of the BRDF. Note also that 

the ARDF has a greater effect on situations which are more similar to the situation 
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for which the response was learned (i) than situations which are less similar. For the 

parameters chosen, the ARDF has little effect 4 sensor space quanta away ( i  - 1) from 

the quantum associated with the learned response. 

It should be noted that actuator response distribution functions like this one have 

a smoothing effect on the control surface in the areas of the Q-SAM in which they are 

applied. Smoothing is inherent when trying to make the actuator responses af similar 

situations similar. Consequently, care should be taken when using A RDFs on Q-SAMs 

so as not to remove desirable edges in the control surface. As a precaution, ARDFs 

should not be used in regions of a Q-SAM expected to have dissi~nilar responses. For 

the altitude keeping example, aU situations in sensor space are expected to have similar 

actuator responses to those of neighbouring sensor space quantum. Consequently this 

ARDE can be used throughout, the Q-SAM of the altitude-keeping task. 

4.3 Filling a Q-SAM with Proportional Control 

Most control theory requires a system model on which to base the development of the 

conh-01 law. The model is u s d  to determine a cout rot law and to analyse the eRec ts of 

altering different design parameters. In this section, we show how to fill Q-S A Ms wit ll 

eontroli laws developed from system models by determining a proportional control law 

for t-he exampk system and fitling the Q-SAM with that control law. 

The proportional control law is represented by the equation 

where k-, is the proportianality constant to be determintxi by the control engineer. To 

determine the  appropriate of k-,, the engineer uses sta~jdard digital control t hcory 

QSiacquot 1981) and puts equations 3.1 and 4.3 together and takes the  Z-transform of 

the system. This prmess yields a characteristic equation of the form 



arid 

for o w  example. The locations of the system poles in the Zplaneas unit circle de- 

termines the system's responses, and are a function of the proportionality constant 

4. TQBP designer often ch- k;, so the system is critically damped because this 

produces the fastest movement to the goal without any overshaat, For the example, 

kp = 2.1694 produces a critically damped system, and if k-, > 23.58 the system is 

unstable. 

To fill the  Q-SAM with the proportional control law, we apply equation 4.3, with 

Ar, = 2-1694, to the central value of each quantization region in the Q-SAM and 

store the calculated actuator responses in their appropriate locations in the Q-SAM. 

Pig 'central value" we mean the middle d u e  of the error range represented by the 

quaatam in question- E6r error signals outside the range of the Q-SAM, the force 

applied to the system is that which conmponds to the end quanta of the Q-SAM. 

The coatrol surfaces associated with the control law and the &-SAM implen~entation 

of the control law we shown in fi,tr~~e, 425. Kote that the limited range of the Q-SAM 

f h i t s  the magnitude af furces applied tu the system when the enor  signal is outside 

the range [-2.Qm,2.0mf. The unit step response of both control laws is shown in 

figure 46.  The responses are similar because the initial error is within the Q-SAM 

range, The difference in the  steady states results from the coarse quantization of the 

&-SAM. Increasing the number of quantization levels near the goal region reduces 

this bias. For a step of 8m, w h e  initial error is outside the. the Q-SAM range, the 

force linlitations of the Q-SAM cause a slower response, as illustrated in figure 4.7. 

This example has illustrated filling a Q-SAM with a proportional control law. This 

fimhnique can be u d  with any rule-bad contra1 law like t h e  generated using fuzzy 

cr t h r y  or neural ne0;works- 

Downloading from an Expert 

To illustrate mme of tihe unique facilities of Q-SAMs and situation-based control, 

emsider the problem of trying to convert a. Remotely Operated Vehicle (ROXJ) into 

am AfFt". T h u &  ~eais of experiencer the ROV operatar, an expert, has developed a 



Figure 4.55 Propilional control faw and its Q-SAM impicmen tation 

Figure 4.6;: Step responses for the Q-SAM and continuous cxmtrol laws (S tey i s  wit hilt 

Q S M  range) 



CHAYfER 4. SITUATIQiV-BASED CONTROL 

Figure 4.7: Step responses for the Q-SAM and continuous control laws (Step is outside 
of Q-SAM range) 

control law that is sufkient to control the vehicle, however, that control law must be 

transferred to a computer to make the vehicle autonomous. Unfortunately, operators 

are generally unable to describe the control laws they have developed in terms that 

control engineers can exploit to develop computer-based controllers. In this section, 

we use a technique that we cdl "downloadingn to record the responses of an expert 

controller into a Q-SAM. The Q-SAM, when implemented as the controller, mimics 

the responses of the operator, and the vehicle is autonomous. Note that this technique 

d m  not require any knowledge about the plant being controlled. 

Experiments with the downloading transfer technique were conducted with a 

graphical simulation of the altitudekeeping task on a Sun workstation. The vehi- 

cle moved up and down the screen as a function of the force applied to the system 

by the operaitor through the mouse input device. The force applied to the system 

wihfi ~ T O P O T Z S O ~  to the distmce from the mouse to a central loation on the mouse 

pd. The operatar% fzsk sa te simply move the AUV to z. specilk l oa t im  from 

several difkt-ent initial locations. To download the operator's control law, the altitude 

e m r  was sensed a t  a rate of f /At Hz while the operator was controlling the vehicle. 
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The sensed error was used to address locations in the Q-SAM where tltt cunturrently 

applied force was stored. This process is shown in figure 4.8 

I 

Index r 
I 

I 

: Actuator 
1 

I 

Figure 4.8: Downloading transfer technique 

One requirement of this downloading technique is that the sensors must r different 

ate situations that comespond to the situations differentiated by the expert when the 

expert controls the vehicle. These situations must also be sufficient for the task at 

hand. For the altitudekeeping example, the altitude error sensor is suffcieltt, though 

vehicle velocity can also be sensed because the expert has some idea of the  velocity 

of the vehicle be is observing. Using a velocity sensor means that sensor space is  two 

dimensional and has one sensor axis for the system error, err,, and another for the 

derivative of the error, eri-,, 

Figure 4.9 a) shows a control law developed by this transfer technique using 30 

randomly chosen initial Iocatioon during development. Durirtg the cfowilioarlirig pro- 

cess, when a quantum of sensor space is encountered more than once, the newly 

recorded response is averaged in with all previously recorded responses for that quarl- 

turn. Though the step response of this technique, shown in figure 4.9 h), is acleyuatc?, 

the control surface is rough and has holes: in it. Holes in the  control surface arts as- 

suciated with regions of sensor space that are not accessed during downloding atrd 

thedore hold the default response of zero. For example, there is a fioie at yuarlta 

14 and I5 in figure 4.9 a), If the system is placed iu one of these locations with zero 

~~eh5ty ,  it will not move. 

The steady state error in figure 4.9 b) results from the fiat section in the control 

surface near the g d  region of em = 0-0. This Bat section is caused by the  expert, 
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Figue 4.9: Contml law and step response from expert transfer technique without 
actuator response. distribution 
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who had difficulty in maintaining the vehicle at the goal region. ConsequentlS., the 

responses associated with the quanta near the goal region were conti~~ually adjusted, 

causing the Bat section. 

To reduce the number of holes in the Q-SAM, we can increase the number of 

randomly chosen initial locations or implement some mechallism that chooses initial 

locations from the group of sensor space locations that have not yet been accessed. 

The second approach guarantees no holes in the control surface a d  is reasonable for 

our one dimensional example. Unfortunately, it is not reasonable for most multidi- 

mensional systems because there are simply too many locations in the Q-SAM. 

Therefore, we use the actuatdr response distribution function to fill in the holes 

during downloading so that the total number of trials is kept small. Since the actuator 

response of the expert is a desirable response, we average it into its respective quantum 

in the Q-SAM. Then, this newly averaged actuator response is distributed through the 

Q-SAM using equations 4.1 and 4.2. In equation 4.1, f; represents this newly averaged 

actuator response which is then distributed with parameter b in equation 4.2 always 

set to 1.0. Parameter b is set smaller than 1.0 when the designer wishes to cumulatively 

develop a control surfacet which is not the case in this section (see section 4.5 for an 

application with b not set to 1.0). 

Figure 4.10 a) shows a control surface developed with the use of actuator response 

distribution. Again 30 randomly chosen initial locations were used during the down- 

loading process. Parameter c of equation 4.2 was set to 1.0. This value of c causes 

the ARDF to  have less than a 2% effect four sensor space locations away frotii the 

newly recorded actuator response, as can be seen in the  Ist iteratiori of figure 4.4. c 

was chosen to be 1.0 because it provides sufFtcient actuator response distributio~~ for 

the example. The other system parameters were the same as the prey ious exam y lc?. 

The resulting control surface is smoother than that of figure 4.8 a) and the holes are 

significantly r e d u d .  The only locations in this Q-SAM that hold zero values are 

at the outer limits of sensor space. This scenario cannot be avoided when random 

locations are: c k s m  during Aowdding,  as we hiwe Owe, because there is a low 

probability of randomly chuosing the extreme locations of sensor space. However, it 

is not diEcult to force the development phase to include the outer limits of sensor 

space- 

?"he flat section of & control surface in figure -2.10 a) and the large steady state 
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0 8 16 24 32 40 48 56 64 
Q-SAM Quanta (32 is en = 0) 

Figure 4.1 0: Control law and step response frmn expert transfer technique with actu- 
ator response distribution 
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error are again caused by the poor performance of our expert 

This experiment shows that it is possible to download control responses from 

expert controllers whose functionality is unknown and also demonstrates the use of 

actuator response distribution functions to speed up the Q-SAM filling process by 

reducing the number of holes in the Q-SAM. 

4.5 Adaptive Situation-Based Control 

Adaptive, or self-learning, control algorithms are used when neither an expert nor a 

sufficient system model are available to the control engineer. Si tuat ion-based adapt a- 

tion, speciii-ally adaptation with a Q-SAM implementation of the control law, permi tls 

an added degree of flexibility, relative to many adaptive techniques, because the con- 

trol surface is adapted locally with respect to sensor space. By "local" we mean that 

adaptation is done one differentiable situation at a time. This means that the con- 

trol surface can be altered every control period based on the effects of a particular 

actuator response to a specific differentiable situation. Figure 4.1 1 a) shows cllanges 

Actuator 

I I 
1 

0 
I 

32 35 64 

Sensor Space 
(32 is err = 0) 

Actuato~ 
Space 
(Force) 

I I 
0 32 64 

Sensor Space 
(32 is err = 0) 

Figure 4.11: Comparison of local and global adaptation 

in a control surface caused by altering the response associated with one situation, 
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specifically the situation associated with quantum 35 in the figure. Relative to sen- 

sor space, most adaptive techniques are global in nature and require several control 

periods of analysis prior to adaptation. By "global" we mean that adaptation alters 

the actuator responses associated with many differentiable situations. An example of 

a globally adaptive control law is an adaptive proportional controller. When the pa- 

rameters of a proportional controller are adjusted, the actuator responses associated 

with most situations (all but the situation associated with zero error) are altered. 

Figure 4.11 b) shows the changes in a control surface caused by changing the constant 

of proportionality, kp,  of a proportional control law from 1.0 to 2.0. Most responses in 

the Q-SAM are changed. Examples of global analysis techniques are those associated 

with system step responses because their analysis requires several control periods, and 

consequently involves the actuator responses associated with several situations. 

There are several reasons to examine situation-based adaptation. First, when the 

control environment is under-sensed, global adaptation is not possible because global 

analysis techniques compare their results relative to a standard, which in the case 

of an under-sensed control environment, cannot be sensed. For example, there is no 

known standard for navigating through an unknown obstacle field, and the vehicle's 

performance cannot be measured using only the vehicle's sensor values. Also, AVs 

generally have only a single mission that is usually very l o ~ g ,  which means that global 

anaiysis techniques are of little value because they provide analysis after the vehicle 

has moved to the goal region. Finally, with situation-based adaptation, the general 

form of the control surface does not need to be specified a priori as it does with global 

adaptive techniques. For example, the use of an adaptive proportional controller 

presupposes that a control surface which is a flat plane in sensor space is desirable, 

as is shown in figure 4.11 b). 

The adaptive algorithm we use in this section operates as follows. The &-SAM 

is initially empty (ie. filled with zeros). The vehicle assigns a new altitude every 20 

control periods, The new altitude is within a 4m window of the previous altitude 

a s i p m e n t  so that the system is operating within the + 2 a  Q-SAM railge during 

adaptation. Every control period, a new actuator response is generated by taking 

the appropriate response, based on the present error, from the Q-SAM and adding to 

it a random perturbation which is uniformly distributed in the range [-2.ON, 2.ONI. 

The random pertrubation is the system's way of experimenting with new responses. 
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The effects of this new response are asalysed after it has been applied for one control 

period. If the new response moved the system closer to the goal, but not too much 

closer, then it is distributed through the Q-SAM using the actuator response distri- 

bution function described in equations 4.1 and 4.2, which is how the system adapts. 

fi in equation 4.1 is the successful new actuator response and parameter b of equa- 

tion 4.2 controls the influence f; has on the response presently stored in  quantum i 

and what portion of f; is distributed through the Q-SAM. This adaptive algorithm 

cumulatively generates a control surface. 

Figure 4.12 a) shows a control law generated using this technique and running the 

model through 100 000 new altitude assignments. 100 000 altitude assigtiments are. 

required because the Q-SAM is initially empty. If the Q-SAM is initially filled with a 

functional control law, then the number of iterations can be reduced. This reduction 

depends on the initial control law in the Q-SAM, though for most reasonable control 

surfaces 10 000 altitude assignments are required. The ARDF parameters are b = 0.01 

and c = 0.5. That is, the newly learned force is averaged in with a 1 % effect on the 

quantum with which it is associated and it is distributed so that it has less than a 

0.02% effect eight sensor space locations from the quantum with which it is associated. 

These parameters were chosen because they provide a relatively stable control surface. 

By "stable" we mean that the control surface does not change drastically after the 

control surface has reached steady state. With this adaptation algori thin, the steady 

state control surface is continually changing during adaptation, though its deviation is 

probabalistically bounded. That is, there is a variance (a) associated with the steady 

state control surface: as shown in figure 4.13. Increasing b increases the variance in  

the steady state control surface but, the steady state is approached ~nuclr faster. I f  

c is decreased, variance in the steady state control surface is reduced, but SO is the 

magnitude of the surface. 

The parameters b and c are sensitive to the number of elerner~ts in the Q-SAM. 
Consequently, their values should be determined relative to sensor space distances 

and not indexed qumtization regions. For this system, any valui: of b < 0.1 will 

generate a relatively stable control surface. It should be noted that unless extreme 

values of b and G are chosen, this algorithm generates an adequate control surface. 

For figure 4.12, "Not too closen is defined as 25%. In other words, commands are 

distributed into the Q-SAM if tbey move the system up to, but not more than 25% 
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Figure 4.12: Control law and step response from adaptation algorithm (25% rule) 
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Figure 4.13: Parameters associated with the adapted control surface 

closer to the goal after one control period. 

The 25% rule corresponds to a relatively slow approach to the goat. This can 

be seen by the step response of figure 4.12 b) that requires 20s to reach the goal. 

Figure 4.14 a) illustrates the controI surface and figure 4.14 b) the step response of 

the system with %ot too closen being defined as 75%. This control surface moves 

the system to the goal in 13s but has some overshoot. The roughness of the steady 

state portion of both step responses results from the low quaatization of the Q-SAM, 

When the number of quantization levels is increased near the goal region, the steady 

state portion of the step responses is smooth. The drooping at the end of the cor~trol 

surface in figrre 4.14 a) results from a combination of control surface deviation, and 

the system not yet, having fully exercised the far reaches of the sensor space. 

The control surface generated by this algorithm is a balance between two opposing 

pressures. The adaptation algorithm tends to increase the magnitude of t h e  response 

stored in each q u a n t a .  The strength of this increase decreases with the ~nagriitilde of 

the response. The AItDF tends to decrease the niagnitude of each quantum by trying 

to make all the responses equal, in this case equal to zero. The greater the differam 

between nearby quanta the larger the effective decrease. The steep section of the 

control surface near the origin (err = 0) is an artifact of the random perturbations 

cont;inually being applied to the system, which cause the system to millate around the 
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Figure 4.14: Control law and step response from adaptation algorithm (75% rule) 



goal region during adaptation. This oscillation reduces the average velocity of syste~j\ 

near the goal region, wbich requires a proportionately higher force, on averqp,  to 

compensate. A more detailed explanation of the shape of t4he control surface is giwn 

in appendix D. 
This example shows that situation-based adaptation is possibie though it is 11vt 

as practical as initially desired. For the si~nple altitudekeeping task, at teast 10 000 

altitude assignments, though 100 000 is preferable, are required to generate a control 

surface that resembles the steady state control surface. After 200 altitude assigutnents, 

the control surface is generaEIy very poor. Also, as mentioned earlier, we are interested 

in adapting the control surface during a single movement to the goal regiotl, which is 

a single altitude assignment for the example. This experime~t suggests ttiat adapt iv r  

control, locally or globally? is not possible in a single movement towards the goal 

region which, in retrospect, is reasonable. Therefore, adaptive control teclrniques can 

ody be used on aubonomous wehides when the vehicle moves to a goal regiou ~ n m y  

times during a mission. 

There are several positive results obtained from this experiment. First, for situation- 

based adaptive control, actuator response distribution functions are required to give 

the control surface form. When ARDFs are not used during adaptation, the actuator 

values stored in each sensor space quantum vary in a bounded ra~idom walk. T11at is, 

the responses stored in each quantum vary independent of the valua stored itr ally 

other quantum. This resdts in the entire control surface having no steady state forn~. 

Despite this fad, the control surface generated without actuator response distribiitioit 

is adequate because it mows the system to the goal region. Finall_v, this expr41ne1tt 

hits provided furt,her evidence that the Q-SAM representation supports any form of 

cantml law becase the control law generated by this algorithm has  a very uriique 

shape. 

4.6 Implications of Control Law Downloading 

At this point, we &verge frOm the  engineering discussion to cmsidttr .wme id the 

pbil0w)phical impl idom of the Q-SAM representation and the ahility to cJowrdoacl 

control laws to that rep,resatation, This discussion is the opinion of the atttfrsir artd is 

ased to d&fy the diiqwlriky between man and machine. imagine that  mrnmne designs 



atrr expert system to conltrd an A W ,  but the expert system is too slow to calculate 

aritrmtrrr responses in stliiicienii time to respond to the dynamic world in which the 

A W  exists. As a solution to this dilernma, they ilnplement a Q-SAX4 on the AUV 

with t bc: expert system operating above the Q-SAM, as shown in figure 4.15. The Q- 

t I 

Q-SAM 1 i Appropriate 
I n : fadex . Actuator Response 

F i 

Figure 4-15: Downloading from an expert system 

SAM Is filled with random reisipanfes when the Atr'V is released into the environment. 

When the expert system is abk, it generates responses and places them in their correct 

location in the  Q-SAM. Initiall2;; control is poor and the vehicle thrashes around the 

en\rironmerrt. But, as time g6es; an, the Q-SAM gradually takes on t h e  control law 

generated by the expert system, Eventually3 the Q-SAM mimics the expert system 

and ~rrouides the control that the expert system would have provided had it. been fast 

enough to ayerate in the H-orid, 

Ttie situation we have just described is one where the intelligence of a person is 

used to  generate a canirof fan' in the form of an expert system, The expert. system then 

that control law to  a Q-SAM, whose form is a sensor to actuator mapping. The 

unc!elistarrding of the enviro~mem resides only in the person and the law, chosen by 

them, is equivalently represented in both the expert system and the Q-SAM. Keither 

%he experti system nor the: $-SAM have a*- mderstanding of their environment. They 

sip1~zpEy react as the>- pmgamrned to react. 

This idea can k f*&Her extended by considering that the person who developed 

the  expert system might have learned the rules from another person in rote fashion 
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and that the other person might have been given the rules from a predecessor in their 

fieEd. In fact; the rules implemented irr the Q-SAM might have beeu iial~tieti ciowtl 

from as far back as the beginning of time. This raises an intyortant issue: Whrre 

is the t u e  intelligence. and understanding, of the situations differentiated in sensor 

space to which the Q-SAM applies responses? If we assume that none of the pt*ople 

who learned the rules understood them, then either the rules were present at tlw 

beginning of time, which is unlikely. or the rules were developed by random ctmncc, 

which is also unlikel_u, especially for tasks that are a mere convenience i11 the society 

of today. 

Therefore, some of the people along the way ~ m s t  have understood what they were 

doing. ft is this group of people that initially created the rules and later modified 

the rules. In the limit, only the creators of the rules required au understaacli~~g of 

what they were doing. X d e  that many af the people along the line did not need to 

understand what they were doing for the rules to work or to repeat the n i l t ~ i  to their 

descendents. 

This discussion has focussed on several ideas. First, uderstandiug is uot rt?quirc!cl 

to apply rules and appear intelligent. Secondly, on many occasions ~rmple are riot 

necessarily exhibiting the intelligence they possess when they are performing tasks 

which appear to  require intelligence Finally, computers performing tasks that appear 

intelligent are only applying rules in rote fashion, and simply appear intt4igcr1t: t h y  

are not intelligent arid do not understand the environment in which they exist. 

4.7 Summary 

In this chapter, we explore the potential of situation-based controi using the Q-SAM 

representation of controI laws. The Q-SAM representatio~~ of the control law trt ac- 

cepts many forms of control laws because of its unique ability to handle each situatiort 

in the environment individually. First, we fifl the Q-SA M with a proportio~~al control 

law to show that Q-SAMs are. equivalent to rule-based control systems. Secmd, we 

download the ccmtrol law of an expert controlier, whose functionality is unkrlowt~, by 

recording the actuator response of the expert while s / he is controiiing an  RCiV. C h :  

requirement of the downloading procedure is that situations used by the expert must 
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be differentiated in .sensor space. Our experiments with adaptive situation based con- 
*--] 6c *.*d 

* .  
&,., x c / w x . r J  that dap?a?km dwhg z single mowmeat to the  g a l  reson IS not, as yet, 

practical. Through the course of experimentation, we required the use of an actuator 

response distribution function to increase the rate at which the Q-SAM is filled and 

to provide form to the control surfaces developed adaptively. Finally, an analysis of 

the downloading procedure has suggested that people do not use their intelligence for 

every task they perform. Indeed, many people perform tasks in rote fashion, which is 

the only method by which computer-controlled equipment can perform tasks. 

4.8 Discussion 

In this section, we discuss two opinions not discussed in this chapter. First, using 

zx=%uzt-or response distributim ftmctions wheo filling Q-SAMs with ant ro l  laws has a 

snlouthirig effect on the control surface that is similar to the smoothing effects on con- 

trol surfaces generated by control laws that are implemented with fuzzy logic (Smith 

and Comer 1991). Secondl_v, when recording a human expert;, we observed the fact 

that humans have a very small control period when controlling equipment. Though 

we u d  a control period of 2,Os, we codd have explored the effects of decreasing 

the control period durirrg recording. It  should be noted that Q-SAMs can have the 

shortest control period of a q  digital control law implementation. 



Chapter 5 

Design of an Autonomous 

Underwater Vehicle 

This chapter describes zt design methodology based on situation ideutification i d  

&Regentiation that, results in ~ h i c f e s  that are robust to disturbawes ia tlwir cnvi- 

ronmeuts, By (Crobustn we mean that the performance of the vehicle dc:gratfes in  a 

predictable manner that is proportional to the size of the disturbalrcct. By Uctisti~r- 

bancen we mean changes in the environment for which the  vehicle was rmt sitecificatly 

desigoed or cannot sense. The des ip  methodology h a s  three pirasm. 1x1 the  first 

phase, experiments are conducted with the vehicle to identify the meaning of c w h  

differentiable situation in sensor space. In the second phase3 the entire vehicle is  

designed using only recently sensed sensor values because systems deve1opc.d in this 

fashion can be robust to disturbances the their enviromient, By %t.contIy senst:ci 

sensor values" we mean the mast recxmtip acquired setsor value. In the  third piww, 

internal representations are added to  the second phase system to augment system 

performance without making the system brittle. 

One aspect: af this mdhodology is that sensors are developed togetit~er with vihicle 

dynamics, In tbe case of AUVs, this means that sensors must be designed for specific 

vehicles because vehicle dynamics are generally fixed for sqxcific envirurments and 

missions, This contrasts with the traditional approach of choosing stjn.wrs a priori 

itnd expecting &sign e n g k a s  to  dwefop sufficient controf systems to acrxmpliuh 

the desired task- The tra&tional approach is acceptable for critically w11*d currtrol 



environments, but is unacceptable when the control environment is under sensed be- 

cause the  meanings of differentiable situations are a function of the entire autonomous 

uehlck cortt rol cyde. 

In this chapter, we use our design methodology to  determine the sensor require- 

ments and contrcrl mapping for an AUV that uses forward-looking sonars t o  avoid 

ohstxlct;.; in an unknown obstacle field. The work supporting this chapter has brought 

to fight the fact that  the definitions associated with differentiable regions in sensor 

space are a function of the entire system (ie, m, g and 6 in figure 3.1) when the 

controI environment is under-sensed, 

In ,section 5.1, we describe the vehicle that we will use t o  illustrate our design 

rnehdo logy~  which we describe in .section 5.2 dong with the motivation for the 

methodology. In .section 5-3, we describe the experimentation phase of the design 

methodology for t h e  vehicle. In section 5.4, we describe the second phase of the de- 

sign nretl iotfoio~ w it. pergains to &Ire vehicle, and she= that the vehicle is robust 

t o  disturbances in its ax-ironment. la section 5.5, we describe the third phase of the 

methodology with respeck ta the vehicle, and show the performance improvements 

obtained by using internal representations, In section 5.& we describe an improperly 

designed vehicle operating in an under-sensed control environment and show the dif- 

ficulty in determining system brittleness. fn section 5.7, we summarize the significant 

restdts presented in this chapter and in section 5.8 we provide a general djscussion of 

t h e  results. 

The used in this chapter is a tm-o-dimensional version of the  torpedo-shaped 

AFW under develapnent at International Submarine Engineering Research. The ve- 

hEcIek attitude is ccontmlld by planes and it has a singte, rear-mounted thruster 

far pmpulsion. The vehicle travels at l.Sm / s and has a maximum turning rate of 

@.95%ad/s [5-LW~g/s)7 which camspads to a m i ~ m l m  taming r d m  ef 1923m. 

The vehicle is 4nr long irnd has a clearance of 3.5nq which mexms that  we do not 

wish any ahliack to be c l w r  than 3 . h  from the vehicle" centrefine. The vehicle is 

qu ipped  with two sonars, maunted 2 . h  in front of the vehicle" centre point, both 

facing forward with sne f&ng to the left a d  the other %Q the  right. Each sonar 



retmas a. vafue that corrspuads to the distance to the ncawst object in the souar's 

bean] pattern. 

The task of the vehicle is to transit to a distant location, called the endpoint 

(G. gs). without colliding with any objects. Therefore, the \-d~icle's prinrary subgoal is 

oi stack avoidance- An on-board positioning system i:, used to deterlnjne the posit ion 

(s,, y,) and orientation &Ow) of the vehicle relative to the world. The vchic.le is j~iitc'rti 

in art environment far which there is no previously recorded kuowkdge. TIk vetlirlc 

is shown in figure 5.1. 

Figure 5.1: Autonornous underwater vehicle 

For reasons of simplicity and to prevent clouding the issue with nrathenratics, the 

heam patterns of the sonars trsed b_v the vetride are assanid to be ismxdt-rl; iriai&s. 

The urmqual angle sf the triangle is the beam width (a) of the sonar bear11 patterti 

and is attached to &he f t ~ ~ ~ e  of the vehicle.. The beam length ( I )  is t h e  distance iu fro11 t 

sf the vehicle that the sonar beam pat tern extends. Describing sonar haax pat terns 

in this mamer p m r ~ s  their function a d  therefore the i;;-sse:rce of the p i ~ h h i .  Ttie 

beaim patterns are dm shown in fig~se. 5.1. 

Tae coxltrol system for the vehicle is shown in figure 5-2. Jt is the same diagram 

as figure 2-1 updated 6 t h  the particulars of this vehicle. The tow-level cmtrc>'tIer 
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figure 5.2: Autononlous underwater vehicle controfler 

is designed using feedback control theory In this chapter, we develop the high- 
Ilevei conbroiler whose actuator responses are waypoints and turning commands for 

the law-level controtkr. The actuator space for the high-level controller has the form 

(r, y, 1%1 ode) where fs, y 1 is the position sf the next waypoint in the world, and (Mode) 

cau hold one of three dues: 0 meaning hard left turn, 1 meaning drive towards the 

specified waypoint, and 2 meaning hard right turn. 

The sensor space for this vehicle is represented by the sensor state vector 

(rpt gPl+ aW7 dl? dr ) where Qz,, y,, &) are %he position and orientation of the vehicle in 

the world and dl and d, are the distances to the nearest object in the left and right 

.sonar beam patterns rmpective1~ [dl, dr)  = (m, oo) represents the situation that no 

o&&s are in either sonar beam pattern. The sensor and actuator spaces as well as 

the  control mapping are illustrated in figure 5.3. 

The expPiments with this vehicle were conducted with a graphid simulation of 
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%-ai f pace Actuator Space 

Figure 5.3: control mapping with sensor space and actuator space 

5.2 Design Methodology 

The development of autonomous vehicles and their control systems is broken into 

three phases. Each phase represents one step in an incremental process of developing 

vehicles as a whole by identifying the situatious differentiated in smsor space. The 
thee phases of autonomous vehicle development are: 

I Experiment ation 

II Robust Controller Development 

I If Internal Represent ation Developmen t 

The first phase of development, Experimentation, provides the clesig~ier with ari 

understanding of the vehide" capabilities and aa idea of what situations particillar 

sensors can differentiate. More specific ally^ the phase I experiments are conducted tc~ 

gain insight, into the identification of exkt equivalence dass of the sensur spx-c-? quait- 

bization partition PQ. This phase of development is required by systems operating i t 1  

under-sensed control eavironments because the meaning associated with each CllXHl- 

tiziitian equivalence class is generally not obvious since the meanings are a function 

of the eniire ve'nide, Tie contrai and actuator mappings, rn and h, must be sindar, 

or identical, to  those ta be used in phase II to ensure that appropriate meanings art: 

assigned Irr, each quantization equivalence dass. 
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Using the knowledge obtained in phase I, the second phase of development, Robust 

Controller Development, results in a complete autonomous vehicle whose actuator re- 

sponse are determined from only recently sensed sensor values. Using recently sensed 

sensor values to determine actuator responses means that the system has the poten- 

tial. to be robust to disturbances in its environment because the system is continually 

sensing that environment. In terms of sensor actuator mapping theory, in phase 11 the 

sensor, actuator and control mappings (systems) are designed and each equivalence 

cla.5~ of PQ is clearly defined. The actuator partition PA, which is a function of the 

control mapping m, is designed so that PQ is consistent with PA. The system's goal 

and subgoal regions are defined and incorporated into the mapping rn. This phase 

develops a system with complete sensor and actuator spaces. 

The system developed in phase 11 is robust to disturbances in its environment. 

in phase III, internal representations, which are brittle, are added to the phase I1 

system. Therefore, mu& effort should be expended in phase I1 to make the vehicle as 

functional as possible so that the fmd system is as robust as possible. IIn short, the 

system developei .a phase If defines the system's robust functionality. 

I- the third phase, Internal Representation Development, internal representations 

are added to the phase 11 vehide to augment vehicle functionality. Internal repre- 

sentations are necessary if the vebide is to perform tasks which are more complex 

than simply bumbling around the environment like Allen (Brooks 1986). The inter- 

nal representations are added In such a way that the brittleness with which they are 

assc,f:iatect does not affect the robustness of the system. Tbis task is accomplished 

by not altering the control mapping associated with regions of sensor space deemed 

critical. For our vehicle, critical regions of sensor space are those associated with the 

presence of obstacle- That is, internal representations are not used to control the 

vehicle when sensors sense obstacles. Adding internal representations in this manner 

is in concordance with the philosophy of the subsumption architectwe (Brooks 1986) 

in the sense that higher-level functions, those obtained with internal representations, 

'It is important to note that each phase of development in this rnethodoIogy re- 

qrrim experimentation with the vehicle to vaiidatite designers' beliefs and hypotheses. 

Requiring experimentation in each phase is consistent with Brooks? physical ground- 

ing hypo8hesis ( B m b  1991) which states that systems mu4 be connected to real 
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sensors and real actuators if they are ever to function reliably in a real world. 

5.3 Phase I: Experiment at ion 

For initial experimentation with the vehicle, consider using sonar bean1 patterns whidt 

are each 10" wide and 30m long. The front of these beam patterus art' each more tlmt 

5m wide and therefare they should be able to sense a 1O~n wide pat11 in front of the 

vehicle. Since the primary god is safety, tbe vehicle wiii turn away from ob- 

stacles when they are sensed and towards the endpoint when they are not sewer!. For 

this task, the sensor space quantization partition has four coarse equivalence classes 

with which it is associated. They are (dl ,  4 )  = ((00, oo). (so', m), (m, m'), (w', 00')) 

where rn corresponds to the absence of obstacles in tbe respective sonar beam pattern 

and m', meaning &not infinity", corresponds to the presence of at lead one obstacle 

in the respective sonar beam pattern. 

A reasonable control mapping for this sensor space quantization partition is showrt 

in table 5.1 where fxg, yg) are part of the control mapping and "-" means irrckv;tn t . 

Class 

Table 5.1: Control mapping for sensor space quantization parti ticrn 

This control mapping causes %he vehicle to drive towards t h e  endpoint when I J ~  ob- 

stacles are sensed and to turn left when obstacles are s e n d  in only the right soriar 

beam pattern, and ia t u n  right when sbkzccles are sensed in only the left soitar beam 

pattern, M e n  &stw!es are sad ia IsotE bearn patterns, the vehide arbitrarily 

turns right- I"he region (dl, 4) = (m, QG) corresponds to the primary subgoai of the 

vehide whme god region in sensor space is (z, y , dl, 4 )  = (z,, y,, m, m) . 



When the vehicle is placed in the environment with an obstacle between the end- 

point and the vehicle, the following scenario occurs. The vehicle moves toward the 

endpoint location until the sonar beam patterns move into the obstacle. Then, the 

controller applies the Mode 2 command, which turns the vehicle to the right until both 

sonar beam patterns move away from the obstacle. No longer sensing the obstacie, 

the vetride moves toward the endpoint again by applying the Mode 1 command which, 

in this case, turns the vehicle left toward the endpoint location and also toward the 

obstacle. Consequently% the left sonar beam pattern moves into the obstacle which 

causes the vehicle to turn right again. This cycle continues until the vehicle collides 

with, or just scrapes by? the obstacle. The net effect of this scenario is that the vehicle 

moves the left edge of the left sonar beam pattern down the right edge of the obstacle 

until the vehicle is incapable of turning the beam pattern back into the obstacle. 

The scenario just described is behaviour fusion, which was discussed in section 2.3. 

In this case, the behaviorus being combined are move towards the endpoint and move 

away from obstacles. 

5.4 Phase II: Robust Controller Development 

The behaviour fusion noted in the previous section results from the vehicle's sensors 

and tine under-sensed control environment in which the vehicle exists. To incorpo- 

rate this knowledge into the vehicle" design means that the beam patterns must be 

designed so that the vehicle cannot collide with obstacles that the edges of its beam 

patterns move along. This means that the beam patterns must be wide enough so that 

motion of the obstacle, relative to  the vehicle, cannot violate the system's clearance 

requirements after moving down the edge of the beam pattern. The minimum beam 

width that satisfies this requirement is 
d 

a = arcsin(-) 
b (5.1) 

where a is the width of eacb sonar beam pattern, d is the distance the sonars are 

placed in fmd of the centre, sf the vehicle and b is one solution to the eqnation 

~ ~ r - c j ~ + ~ ( r - c j b -  #(r2+pj = 0 ( 5 2 )  

where (cr is the vehicIePs clearance and r is the minimum turning radius of the vehicle. 

The derivation of this beam width is given in appendix E. 



With sonars of beam width a in the previous scenario, the vehicle moves the left 

edge of the left sonar beam pattern down the right edge of the obsiacfr aniil the 

release point (Rr) ,  shown in figure 5.4, reaches the obstacle. The release point is 

AUV Trajectory I 

(minimum 

/" 
AlsV minimum . . ...: .:. <*-.-..; 

turning radius 

criticxi re+/ 

Path of obstacle, relative ta the vehicle, 
, J 

if the vehicle t u n s  at its maximum turning rate 

Figure 5.4: Sensor critical region 

the nearest intersection, to the 1-ehicle, of the edge of the sonar b a r n  pattertl atid 

t-he circle inscribed by the vehicle" minimum clearance when the  vehicle is drive11 

at its maximum turning rate. The significance of the release point is titat wlrerr 

a point obstacle is at the release point and the vehicle turns at its rllaxit~lurn rati: 

toward the obstacle, the vehicle will miss the obstacle by a distance equal to the 

defined vehicle clearance. In a vehide-based coordinate system, with the origiu at tit(: 

wehic1e7s turning centre, the positive y-axis extending forward froin the origin ard the 

gusitive z-axis extending to the right of t,he vehicle in figure -5.4, t he  left release poi~~t 

is 

Rl = (-7- + (T - C )  cos a, d + (r  - c) sin a) (5.3) 

m d  the right release point is 

Once the release: point of the left sonar beam pattern contacts the  obstacle, the  vehicle 

is incapable of turning into the obstacle. In fact, the vehicre is also incapable of turning 



t h e  left sonar beam pattern back into the obstacle. Therefore, associated with cu and 

& is a criticai region, defined by the shaded area in figure 5.4, that cannot contact 

an obstacle. There is also a critical region associated with cr an6 E,-. If the critical 

region contacts an obstacle  the^ the vehicle can pass the obstacle by a distance that 

is less than the defined clearance and therefore may collide with the obstacle without 

ever sensiug it. 

Assuming no objects are initially present in the critical region, the meaning asso- 

ciated with each coarse equivalence class of the sensor space quantization pastition, 

as determined by a, r, c and d, are summarized in table 5.2. 

There are no objects in the world with which the vehicle 
can collide before they are detected 

Equivalence 
Class 
f&dJ 

Situation 
Description 

m'' 

'wt' m' 

Table: 5.2: Meanings associated with the coarse sensor space yuiantization equivalence 
classes 

There is an object ahead of and t o  the right of the vehicle 
with which the vehicle can collide 

There is an object ahead of and to the left of the vehicle 
with which the vehicle can collide 

L '*I' 07" 

li, guarantee that the critical regions do not contact any obstacles requires that 

obstircks are sensed in sufficient time to turn the critical regions away from the ob- 

stacles. That is, the beam patterns must leave the obstacles ahead of the release 

points. For the vehicle, this fact means that assumptions about the type of obstacles 

in a he environment must be made. If we assume that the most complex obstacle in 

the environrment is a flak waU that can be detected from m y  aq$e then the minimum 

reqrrired Sea& of the szmr patterns to girrl.ai;tee that the &tScd regions do 

aok contact an obstacle is 

There are objects ahead of and on both sides of the ve- 
hicle with which the vehicle can collide 



where f is the length of each sonar beam pattern and b is the  same solutiou to eclua- 

tion 5.2 that was used in equation 5.1. The derivation of this equation is also given 

in appendix E. 
For a flat wall environment, situations requiring differelltiation by the control 

mapping are those pertaining to the slant of the wall relative to the  veliicle. These 

situations can be differentiated with the values returned by the sonar sensors. If ttw 

vehicle encounters a right-slanted wall, as shown in figure 5.5, then dl > d ,  aid if t lw 

Kigbt Slanted 

Wall 

Figure 5.5: Vehicle encountering a right slanted wall 

t-ebicIe encounters a left-slanted wall then dl < 4. If the vehicle encotmters a w d l  

head-on, the sonar returns are equal, dl = d,. 

With this knowledge we can construct the control mapping and actrr;~t,tor particti] 

PA appropriately: b d  on the semor mapping defined by a and 1. The e:yivalei~c:e 

classes of the actuator partition and the control mapping are summarimd in table 5.3. 

It should be noted that the sensor space of the system we have just developed is  lot 

complete as defined by section 3.4 because tbe seasor mapping defined by rr arid 1 maps 

the situation shown in figure 5.6 into the region in sensor space associated with a lrard 

left turn, eveB though this situation does not require an obstacle avoidance maneuvt:r. 

The beam patterns shown in figure 5.6 also define a srlfficient seasor mapping fur our 

vehicle. The sensor space defined by a and 1 is acceptably incomplete because it errs 

on the side cif caation- 

f i r  our vehicle a = and f = 25.371~. The performance of this vehicle when it 



Actuator 
Equiva t eirce 

Class 

they arcs detected 

There is at least orre ubjert 
cEr < ci, hff di # I in the environment that re- 

/ quires a right t u r n  to  avoid 
I 

Table 5.3: Cor~trol mapping and sensor space definitions far tl~t-1 vt4ric:lc* 

Figure 5-6: Another sufiicient sensor mapping 



c-ncourrtt*rs a flat walf is sfiowr~ in  figure -5.7. This figure was generated with our vehicle 
- + =  sin~rtiaiion. I he initial position of tire vehicle is jz,, y,. b , j  = (O.O,O,O, 0.0) and the 

t w f  p i n t  IC)C~F~,~UEI  is (0-1). 40.0). Tlw wall extends between the points f -3O.O.JO.O) and 

[30.0.40,0f, Tire trajrc-tory of the vehicle does not contact the wall and the mini~uum 

r1isfarc .e  Letwmr thr wail and the sehkte centre line is 3.55'21~2 which is just larger 

-6 -4 -2 0 2 4 6 
x Position (m x 10) 

Figure 5.7: Phase II vehicle encountering a flat wall 

?Vhen the vehicle is faced with a point object located at (-10.0,17.2) and alr 

endpoint location of (-50.0,50.0), the vehicle passes the object with a iniaimum 

cfistance of 3.58l~n, which is also just larger than the defined vehicle clearance. This 

trajectory is sh.xv~i in figure 5.8. 

This vehicle ahvays passes objects that are between itself and the endpoint at a 

distance that is just larger than the defined vehicle clearance because of the situations 

that sonar sensors sense. When using only recently sensed sensor values and sensors 

like sonars, vehicles are limited to moving the edge of one beam pattern down one edge 

of the obstacles they encounter. Consequently, vehicles with limited range sensors, 

like -sonars, are relegated to wall following if only recently sensed sensor values are 

used for control, whicl~ was also demonstrated by (Connell 1989). 



Figure 5.8: Phase I1 vehicle erirountering a sirlgle object, 

To demonstrate the robustness of this system, consider tbr vehicle cttco~l~it~eri~~g a 

wall that is moving in the positive s direction. When the beam patttms first ccmft;tc4 

the wall, the wall extenrls from the point i(-30.0,49.0) to (5.0,40.03. \Ye call tllis 

scenario our "robustness test'. This environmental disturtxmct- sinlnlatc~s a ( I ~ ~ l ~ i ~ t i l i ( '  

environment and/or cumulative positioning system errors, ~ S S  ~cfiscussttf i ~ r  st*t.tiorr 2.3. 

However; the phase I1 vehicle does not use position sensors for ubstaclr avoictsncc. 

maneuvers, so for this vehide we are only illustrati~~g rolmstr~ess tcr a cty~litil~ir w v i -  

foment .  

The clearance of the vehicle as it passes the wall at different vclur-itks is SIIOWII  
in figure 5.9. The performance degrades in a predictable, relatively liwar faAion 

that is inversely proportional to  the size of the disturbance. This is very simifar t,o 

the degradation of a proportional controller to plant dist.t~rhances in the setisit tlj at, 

gedomance degradation is proportional to the size of the distwtar~ce. 



Figure 5.9: Rdmstxtess of t h e  plrasf: I1  vehicle to a dynamic environment 

5.5 Phase 111: Internal Representation Develop- 

ment 

Interiral representations only augment the control of the phase 11 system. That isl they 
- alter only the resprmsw associated with non-critical envirorsme~rtal situations uncter 

the mapping m, For our vehicle. the non-critical responses are those not associated 

with the yrimar_v subgoal of obstacle avoidance, which are the r.zsyonses associated 

witlt actuator eclni\-alence class I of table 5.3. 

The internal representation we drose is an estimate of the endpoint of the object 

around which the d i c l e  r11tlst trawl. This internal representation is relatively reliable 

htcause abject endpoints are easily detected with sonar sensors. This is in contrast 

t o  iott.r~ral representations that pertain to  the size and location of objects in the 

e~~virunrncnt, which are not easily detectable with sonar sensors. To illustrate the 

meaning of this internal represent at ion, consider moving a sonar beam pattern across 
I t f i  an object. rvnerl the beam pattern ieases the object the wine rctumed by the sonar 

sensor irtcrezasrs to m, Given the distance previously returned by the sonar and 

knowi l~g  the size and shape of the sonar beam pattern we estimate the location of 



the ertdpoint of eht~ object- If the object was last clt*tectrtl hy t l i t -  I t f t  sonar I,c*i\ln 

pattern. !he vefsicfc ,?rr:& traue! t:: !he right of !!itx -;?r;urf, aiiit i f  rjt>jc*t.f w;ls 

Iast seen in t tic right sclrrar frcam pat tern. t Iie 5-chic-lt- nwst t nv:t*l t ( 3  t lw I ~ f t  t ~ f  t 11,. 

objert. These sitaratiom can be represe~lted i11 sensor space wit il f 11iv.c. il~ttsrtrikf v;tl~lc>s 

[rQbj,-. y,b2+ 6 e ~ m  where ( ~ ~ 5 ~ -  ,Sf,53 1 is the ~ T t ~ l l l i t t ~  of t I lr  location t d  t h  o!~ji.c-t c - r l c l ~ w i l t t  

in t f t ~  world a n d  ( b u r n )  is a lrinary ttest-ription of tlw last s o r w  1wa11) pat ttSru rt; 

contact the object. beam car3 haw the t'dw f t  j t  or r ig i i t ,  w1tir"lt in~ i imt t~s  $11 w h ~ h  

side of the object the vehicle ~rrtzsf pass. The sellscrr and a c - t i m t  or spac.c.s , i n a  c . s p ; \ ~ i r i c * t I  

to j;rrgbjq ZJ,~~. becrrn. r,, y,,, tT*., d::. dr j and [I.,!,. y,bAt. Gccmr, .r, y. ,fitldc ! rcywc-tiwly. fronl 
-r%l the spaces ui the pirasc I i  rcintroiicr. ~ 1 . t t w  spares arlrt r i ~ c s  c.cotltro'i ~iral,pi~rg arcb 

illustrated in figwe 3- 10. 

Sensor Space Actuator Sl~ace 

Figure 5.10: Phase It1 control mapping, with in te r r~a l  reprcsentaticms, shs~wittg wrsor 
space and actuator space 

An efficie~it method of using this internal rcpreserttatiurt is to stmc titi* objid,  

endpvint estimate fur ewry control verisd in which the sonar htzan~ pattc*rns arc1 i r ~  

contact with an obstacle. Then, when the sonar Learns no Iotrger ut~ttart ol,stm-les (ie. 

(dl, &) = m)), the estimate of the object endpoilit is already stored i l l  t h  ir~ter~al 



Figure 5.1 1: ttial-paints generated by the path plarrning algorithm 

ha$ not crossed the line y = mfz + bl in figure 5.11, then the mapping rn, assigns the 

response f xz,, y,, 1 ) to tire low-level mntrol system. If t be vehicle has crossed the line 

y = m,+ + b, then the mapping rrr, assigns the response (z,, y,, I )  to the tow-level 

contrrri system. The vehicle determines if it has passed the iine y = mlz + bl based 

on r he sensor values of the positioning system, the goal location and the eskimate of 

the obstacle endpoint Irtcation. The algorithm is described in appendix F, 



The trajectories oaf the wllicfe under this aug-nir1rtt4 control systrwx ;u-ca sllowt: i n  

figures 5-f 2 and 5-1 3 far the sane sre!!arIr-.; q>cr l tq<-rd by t!!t. p!l;:sc 11 yp!:i:.i;*. '!'ttr 

Figrue 5. f 2: Phase li f f vehicle cacourttt*ring a Hat wait 

clearance of the path planning routine is set to 5.0rn. whirll is how &we c-at-11 uf 1h 

trajectories came to their rqrectiw uirstacles. 

The results of the robustness test for tire phase 1 I I whicie aw sllc~wrt i r t  fignrct 5. i 4.  

The same h e a r  trend in controller rlie,~~.radation is evident, huwevc4r tiit* vt*hic.ic itas 

a larger clearance for equivafent di~turtanres~ which rt.sults from tfrt* arrg~~rc*utat~ior~ 

with internal representations, In the limit fie. when thew is  always ol~stac.lts iri at 

least one sonar beam pattern] the performance of the phase i l l  vdrir-lr i s  cqttal to 

that of the phase Tf system. 

5.6 Brittle Design 



Figure 5-1 3: Phase II? vehicle encountering a single object 

Figwe 5-19: fsob-irstnms of 'the phase 111 vehicle to a dynamic environment and/or 



to the problem. Corrsider using the phase 111 control nlappiog wit11 t lw stmar hiuurl 
-..1- l~a~tei-ris of phase 1. That 1s. usc fbe hienid rqxesrniaiiuns wr ilitvr t i c w * i t r p v c t  wit  i t  

improper beam patterns. In the  flat wl i l  swnario, the  wbirlt* pt-rfornrs its imspc*r.t,cd, 

as shown in figure 5.15. The trajectory is very similar to that of r hr p l ~ i i s r ~  111 vc*hiclc\ 

Figure 5,I5: Brittle vehicle encountering a Bat wall 

and .eiiould be sufficient proof of a successful project for most <Ir+pt.rs. f fowc*vt~ ,  

with the single object scenario. the  vehicle passes the olzstacle with a rlc;tratrce of 
c * only O3lm in simdatian, w-t;hicb is equivalent tu a collision, I his sccmrio is sllowr~ 

in figure 5-16 and is similar fa problems experienced by tilt: i 2 i J  (Olin and 'I'serrg 

IS9l). That is, the vehie'te calfides with the obstacle because its soxlar t~eant yatttwls 

never contact the obstacle. This results from a poorly desigued vehicle i r r  which ttlc~ 

diesigaer did not idmtify sitttlations cfifkrentiated ir-! sensor space. In short, for this 

example, sensor space is incomplete. 

The robustness e a t  provides more disappointing results. Figure -5.17 plots tlie 

results of this vehicle's robustness test relative to those of the phase I I and pImw I I f  
vehicles. As the size of the disturbance is inc read ,  the performance of this system 

quickly degrades below that of the phase I1 system, which doesn't use any form of 

internal representation. N d e  that the response of this system to disturbances is very 
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-6 -5 -4 -3 -2 -1 0 1 
x Position (m x 10) 

Figure 5.16: Brittle vehicle encountering a single object 

........................................................... 
Phase 1i -s- 
Phase H E  4- 

BrU$ -e--. 

0 10 20 30 40 50 60 
Wall Velocity (% of Vehide Velocity) 

Figure 5.17: Comparison of the robustness of the brittle vehicle with the phase I1 and 
phase 111 vehicles 



sporadic, For our system. the reason for the sporadic uehaviotlr is that when tilt. \\.all 

was moving at  25% oaf the veiiicie% speed, the ivaii moved inro the brat11 patttsrns 

an additional time, which caused the veliicle to turn agairi. Sporadic pt-d'rm~t;tirsv is 

typicd of brittle systems since the way many Iwittle systcms fail is ofttw ctifficrrlt to 

determine (Wallich 1991)- 

This system uses a relatively robust iuternal representation with an unaccc~ptal,ly 

incomplete sensor space, If less robust representations were used, thc tit*gradatiun of 

system performance under disturbance would bc ruorr-. drastic m t l  rnorcb sporiulic.. 

5.7 Summary 

This chapter develops a design methodology for autonomous veliicles which titw~ltrps 

systems that are robust to disturbances in their environment. Tlw tnt:tlrociology is 

used to develop the sensor and control mappings of a n  A l W  for the task of ol~staclv 

avoidame in an unknown obstacle field. We show that the vehicle is robitst to tfis- 

turbanees by examining the clearance with which the vehicle passes a rricnhg wall, 

a disturbance for which the vehicle was not designed. The limitations of our v41ic.k 

illustrate some of the limits of autonomous vehicles that are robust to tlisturlm~res 

in their environments. Our vehicle is limited to a wall followillg type of ol)staclv 

avoidance strategy. 

In this chapter, we also show that the meanings associated wi tlt ( i i f f t w ~ ~  t ial)Ic 

regions of sensor space are a function of the entire ailtonornous vehir:lc c:ont,rol rye-It* 

when the control environme~t is under-sensed. This fact means that autonon~ol~s 

vehicles operating in under-sensed control euvironments must be developed as a w h o l ~ ,  

and not as a collection of independent subcomponents. We also show that wtwn 

vehicles are operating in under-sensed control environments: a priori r b t ~ r m i u a t i o ~ ~  

of system brittleness is a difficult task without analysing the  system i l l  seusor space.. 

Through development of the vehicle in this chapter, we have found t h t ,  s o ~ ~ a r  

sensors are sufficient for the task of obstacle avoidance. 



5.8 Discussion 

trt  th in  c-haptt=r. i:.t. Iraw- w e n  1io.i.; arttontntuus vehiries ran be tiesigned i n  it l~r-ittie 

Jrtaafwr tltrvtlgl~ the impproprial-' use of irlternai representations. The reason we 

w e i - ~  aatrlc: to illustr;+tr fzrit tfeness is that our sxstem is very simple, a ~ l d  co~~sequently, 

we ~ w r e  a l h  to rlttlmsr au zppropriate scenario to illustrate the system's brit tlenr~ss. 

frnforirr~~atcly, i1ttrsir;rtittg brittleness car1 be a difficult task tt-lten co:itples internal 

rc*j~rcaserrtations are I I S P ~  as part of autonomous vehicle control cycie. One reason for 

this fact is that ilie irrt,crltai r~preseutations are often adapted, or patclied, to solve 

i i d t 1 ~ ~ 1 1 ~  cttcou~;trred tlimugh ~xper laxx  with the vehicle. However, it is our opinion 

that by adding these paidles, the desig~ters co~~struet systems that operate in their 

lest environments, and they do riot directly address the brittleness of their o r i g i d  

ciesigri. i t  is our opinion that ont- reason many systems are brittle is that designers 

offcz~ nakc improper assumpEions about the vehicle's environment that they might 

not even realize they are making. For example, designers might assume that tree's 

are permanent structrzres, hecause their removal is a rare occurrencc. However, if 

the vehicle were to use the tree as a referenre, the removal of the ftee call make the 

syst~m's brittleness manifest. 

?Ye have also seen the limited al~ility of a robust autonomous vehicle. To improve 

o w  vehicle's fux~ctioriality requires sensors that are able t,o sense more of the con- 

trol environment. For example, a sensor that sensed the entire obstacle avoidance 

erlvironment of our vehicle would be ideal. Regardless of the solution to the sens- 

ing impediments, this chapter has outlined the need for better autonomous vehicle 

SeRSOPS. 
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Chapter 6 

Conclusions 

6.1 Summary 

The Iack of succcAss in cle~txfupirtg aatttonomc~~ts wlrirlt~s r q ~ d i l c .  id pr-rhtrriring I I I ~ L L ~ Y  t r f  

the simple tasks that humarlis cart pcrfnrrn 1cd 11s to c*s;mlitrt* SQIIIP of t l w  f i ~ ~ t i l ; t i l ~ ( * t ~ t , i ~ i  

asstmptions underlying aubcrnornuus vehirle dc~wlop~nrwt.. T s a r l i t i c ~ ~ ~ i r l ! _ v  a r ~ l  t , r u t t ~ t r ~ ~ t , s  

vehicle cleveiopmertt is i-ieiwrf AS an ar~lficial i~ltelligmci' j ~ r ~ f ? l t ' ~ ~ ~ ,  ;mtl ~ ( ~ M Y J I I ~ ~ I I ~ , ~ ~ . ,  

one of the implicit assrimpti~ns made by ttrclst rlesigurrs ijf i t ~ t i > ~ s r ~ ~ ~ t i ~  t'(4iii~l~*s is 

that the intelligence posst-sseff I q -  hrimaris ran hr merl.lanic*atly, ur i-lrc-i ric-ally, rc-pro- 

duced. In this thesis. we work from t lw assirmpticrn that 1mm;ilrs arc- I I H P I X *  ~ I I ~ L I I  I l r t *  

sum of their componer_tts, and that ~ m r t r i n t ~ s  arc- orrl?; thc. su111 trf t l w i r *  r-crlrrpow~tts, 

Consequently, autonomous wbirk de-velopnw3t is v i e w 4  as  a ruiitrcil ~ m , l r l t b r  i r i r t  l,lit* 

sense that the vehicle is a ~nacfiine ojwrahg i ~ r  a contrul r-yrk. 

The reason many autoncrmous vdaicie rlesigirers do not view auf,wro~lrciris vr4ric+~ 



vr+ic.lr mists, (hrwqtlentE?: a good method of itientifying differentiable situztions is 

~I~mltgh pl~ysicat ~xpisrim~rriation that does not iuvolve any form of internal repre- 

wwt at ionb;. Tirat is, r~x~~-rirnt.ntation that uses only recently sensed sensor values to 

cfetertrtir~e actuator respa~ses- 

W* wf~d this idea as one of tbe corner stones af a new design methodology for 

anto~mno~~s  systenrs. The otf~er corner st an^ of tire methodology is to use internal 

rcprtzx-ntaticrns to improve performance in such a way that thex clo not affect actu- 

ator reqmrnses =wciated with critical en~ironmental situations. This methodology 

tlr:-&ps systems that aw robust to biisf~rrbances in their euvirornment. 

The nwt hociologv $\-as imxf to determine the sensing requirements of an autonomous 



In this thesis. we haw rriade several contributions to the autonomous velliclc cunltnu- 

nity. O w  most significallt contribution is providing a different set of asstin~ytions from 

which to  base autonomous vehicle developr-fle~~t. We assumed that computtw and 1111- 

mans are fundamentdly different. and that it is the designers, and not, the compl~ t t ~ s  

or autonomous vehicles, that understand the environment in wllitll the conqmtcr, or 

atitonomous vehicle, exist. In accordance with this idea, we desrri bed au tononm~s 

vehicles in a control cyrfe where the control environnient is often ~~nder-sensed. This 

process introduced the ideas of under-sensed and critically sensed con trcrl cwviro11- 

ments. I t  also introduced the concepts of sensor space, actuator space, sitl~atious, 

situat ion differentiation and situation identification. Witfh these concepts, we showed 

that situations differentiated in sensor space are a function of the eutire autonornous 

system when the control environment is under-sensed, whereas they are a functiorl oi' 

only the sensor transformat ion when the control environment is cri tical1 y sc~lscd. 

We have also introduced the autonomous vehicle community to  Q-SAMs which arc* 

lookup-table equivalents of computer-based control systems. We have tlst~tf Q-S AMs 

to  illustrate the strengths of situation-based control. 

The final contribution we made in this thesis is a design nletl~odology for sys- 

t ems operating in under-sensed control environments which clevelops systen ts t l ~ i ~ t ,  ;tw 

robust t o  disturbances in their envhnments.  

6.3 Future Work 

In this thesis, we laid the foundation of a new area of control theory: corltrvl ill  ux~rir*r- 

m s e d  environments. Consequently, one area of future work is the developn~ent of 

this control theory Much of this work will revolve around digital systcms, t lrougl~ 

it will have inlplications for continuous systems. This theory, when ctev~lopcrl, wili 

provide a mathematical framework for designing autclriornuus vehicles. 

A second area af future work is sensor interpretation. A shortcoming t r i  au- 

t s ~ s m o u s  vehicles: is their inability t o  construct reliable world maps using tkcir own 

sensors. Overcoming t k  deficiency requires identification of I ~ T I ~ ~ ~ I c , '  envin91~rrlcrrtal 

features that vehiclebased sensors can differentiate. Tilese features wili I)e tilt: Imis 
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of vehicle generated world maps. This research also requires a theoretical framework 

for describing systems which use sensors tbat accumuiate errors, like on-board naviga- 

tio~ial units, to determine the maximum distance a vehicle can travel between features 

stored in the world map. It is our opinion that when autono~nous vehicles are able 

to uniquely identify regions of the environment using their own sensors, the day of 

household autonomous vel~icles will be upon us. 



Appendix A 

SHAKEY 

In this appendix, we provide a more detailed description of the SHAKEY (Nilsson 

1984)' project. In section -4.1, we describe the robot a~lcf its control arcliiitecture. 111 

section A.2, we explain how SHAKEY2s reasoning system, STRIPS, develops plans 

for the robot. Finally, in section A.3, we describe how plans are deco!npost-:d ilrto 

actions and provide a brief summary of this appendix. 

A.1 SHAKEY and its Architecture 

SHAKEY'is a mobile cart that. has a camera and two range finders which it can p;tn 

and tilt. SHAKEY determines its position and orientation from two shaft encoders 

connected to its two drive wheels. 

SHAKEY's environment consists of afew rooms that are connected with doorways. 

The walls are light and their edges highlighted with thick dark lines. Inside tlrc rooms 

are a few blocks and wedges, each painted a distinct colour for easy identificatio~~ by 

the vision system under proper lighting, which is provided. 

The general architecture of SHAKEY's higher-level control system is shown i t ]  

figure A.1, which is a decomposition by function organization that is iised tjy many 

autonomous systems. The sensing aad sensor analysis subsystems update intern a1 
I-* - rms is the ciassicai SRAKEY reference but unfortunateiy we were unabie to obtain it. Instead 

our information comes from personal knowledge and secondary sources like (Nils.'jc~n 13bO), (Brooks 
1991) and [Shapiro and Eckroth 1987). 



Task 
e c o m p o a i t i o T a t O  

control system 

Figure A.1: Decomposition by function type of controller organization 

representations that are stored in the reasoning subsystem. The reasoning subsys- 

tem uses the interud representations to develop a plan that acco~nplishes system 

goals, which are determined by an operator external to SHAKEY. A typical goal 

far SHAKEY is to organize the blocks in a certain fashion. The task decomposition 

subsystem decomposes the plan generated by the reasoning subsystem into physical 

actuator co~n~nands that are then executed by the actuator subsystem. 

A.2 Reasoning in STRIPS 

SHAKEY's reasoning engine is an implementation of STRIPS (STanford Research 

Institute Problem Solver), which is a non-commutative production system based on 

first order logic in the form of predicate calculus. We explain these ideas with ar. 

example from Nilsson (1980) because it  is simple and clear. Everything in STRIPS 

is defined with well formed formulas ( ~ K s ) ,  which are simply legitimate predicate 

cdculus expressions. The state of the world shown in figure A.2 can be described 

with the following wffs: 

where on jfoorfs) represents the fact that object x is on the floor, m ( x ,  y) represents 

the k t  that z is directly on top of y, ciear(z) represents the fact that there are no 

objects on top of z and harkdetnpty represents the fact that the robot is not holding 
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Figure A.2: Blocks World 

SHAKEY reasons about its world by searching through different co~nbinations of 

production rules to find a combination of production rules that will change thc present 

state of the world to the goal state. Goals are also defined in the for111 of v :IS like: 

which represents the goal of having a stack of blocks with A on top H in the ~niddlc 

and C on the bottom. Production rules represent physical actions that SHAKEY call 

perform in the world like 

pickup (x) 

preconditions: ontable(s)? cleur(x), handempt y 

delete: orttnble(x), clenr(s), handempt y 

add: holdin,g(z) 

where the preconditions of the rule must exist in the current state of the world (ie. 

must be true) for the rule to be applied to the system. Application of a proctuctio~r 

rule removes the wffs in the delete list from the world state a11d adds the wffs i n  

the add list to the world state, which changes the state of the world. Some of the 

production rules SHAKEY uses are: 

~ o t 0 1 4  moves the robot into the vicinity of door z 

push(dzst, ob, tot) pushes object ob dist feet with a toferance of to1 

rd l (d i s t ,  tol) moves the robot forward &st feet with a toferanci: of tot 

gothru-dr(door, f r m r m ,  torrn) move through door door from room jrmwrn to room tor.rrt 
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The search through different combinations of production rules is done with the 

AT algorithm, which produces the best possible plan according to sr,me minimi-zation 

fimctimr. The A* algorithm is  a search algorithm that used heuristics to increase the 

speed of the searcli process. The plan is represented as an ordered set of production 

rilles like 

( g ~ t ~ ( D l  j ,godh~~rtr .(D1.  Rl, R2), 7-011(5,0.1),p~.r;h(l0. BL1,0.5), . . .). 

A.3 Implementing the Plan 

Once. the plan is generated, each production rule of the plan is decomposed into 

specific actions by the task decompositioi~ subsystem. For exa~nple, the production 

rule gotof Dl)  is decomposed into a series of actions that d l  move SHAKEY to 

near duor Dl .  Depending upon SHAKEY7s position in the room, this move might 

require SHAKEY to perform a complex series of maneuvers. The route to the door 

is determined using a connected graph of the environment and the -4" algorithm to 

search through the graph for the best path. The conuected graph is an internal 

reprsentatiorl of objects a d  routes in the world. It is used in addition to the blocks 

world internal rep resen tation of the world. Though not in the reasoning subsystem, 

path planning is another instame of reasoning performed by SHAKEY. Once the task 

is decomposed into physical actions the actuator subsystem physically implements 

each action in turn. 

To summarize, SHAKEY maintains a list of facts about the world in the form of 

wffs. SH AKEY reasons about acco~nplishiug goals using production rules and the A* 

algorithm, which produces a pian that is an ordered list of production rules. Each 

element of the plan is decomposed into physical tasks that can be accomplished by 

the robot. These physical tasks are then executed by the physical robot. SHAKEY's 

intelligence is in the form of its ability to reason about accompiishing goals in the 

mwrl d . 



Appendix B 

Allen 

In this appendix, we provide a more detailed description of Alkn  am1 t l t v  sill~soiml)- 

tion architecture, In section B-1, ?ye describe the subsi~mptir_rn arciriktv-twt* a d  i t 1  

section B.2; we describe Allen's operation in detail. 

•’3.1 Subsumption Architecture 

Most work ixwolving behaviour based contrd stems from the ideas of lCoc111cy Hrooks 

and the subsumption architecture (Brooks 1986). Instead of rltwmrposing a r t h t  i i l  

the traditional sense of figure A.1, rolmts are decom~>osed into layers of task ar-hicvi~rg 

behaviours as shown in figure B.1. Behaviours are defined by thtb t:xterrral rt-rar~ifvsi,;~- 

Level 4 monitor change 

Figure B.1: Subsumption architecture 



firms of activity with wtrich they are associated, not by any internal representations 

t h y  might pos.sas, During rieidopmeot with the subsumption architecture, robots 

are mustructed incrementall_a- b~t.; building modules that accon~plish each behaviour in 

tur i~ .  Higher layers fie. larger numbers in figure B.1) are constructed in such a way 

that thy subsume the mutrol of all lower layers (ie. smaller numbers in figure 3.1). 

This er~uurc-s that the f~mctions of the  lower. more survival oriented robot behaviours 

are always incorporated illto cont .ol decisions. The first layer built is level 0. 

Subsuming bshaviours is analogous to how bumans move the; r extremities. For 

ctxainpk, our hand reflexive1:fi~' stops at, or moves away front, obstacles which it con- 

tacts, a level 0 behaulour. When our cognitive mind decides to move our hand across a 

table, it sul>surnes the level 0 behaviour so that we do not drive our hand through any 

obstacles, but instead o w  hand stops or muses around obstacles encountered enroute. 

l'he "acopiiive mindF we i-&r to is ieprmented by levels 5 and 7 of figure 8.1. Note 

that Rodney Brooks' gixd is to build artificial creatures capable of reasoning about 

tlreir environment by adding increabsingly sophisticated behaviours to his robots. It is 

Brooks' opinion that. intelligence can result from a complex collection of behaviours. 

The subsumption architecture has several advantages over traditional techniques. 

First, central representations that must satisfy a11 robotic needs, which can be difficult 

to develop, are not required, Instead: each behaviour uses sensor information and in- 

ternal representations pertinent to  its task, which may be completely independent of 

those r t . d  by other tasks. Secondly, the surprises encountered when subco~nponents 

of figure A 1  are finally assembled together are avoided because there is a complete 

rob t i c  system at a11 levels of subsumption development. By %urprisesn we mean 

unexpected system failings. Building systems incrementally1 as the subsumption ar- 

chitexture requires, prevents designers from over estimating the abilities of their sys- 

tems because desitgu deficiencies are discovered throughout the development process. 

frs addition, the  subsumptian architecture explicitly handles the timing constraints 

cfisrnssd in (hlbtw 1981). h e r - l e v e l  behaviours, which respond to the environment 

have shorter rontroi periods while higher-level behaviours, which do more sophisti- 

cated work, have longer cantroi periods. The subsumptian architecture is a structure 

that can respond to the environment. wlbiie it is thinking. Finaii~., the subsumption 

architecture degrades: gracefully under failure. When a higher level behaviour fails 



to provide a response in sufficient time, due to failure or co~nputational load, con- 

t d  reverts t c  the cext !ewer level, whose control is less adept, but stit! safZicieat 

to at least guarantee the robot's safety. Because behaviours operate i~d~yei~dent ly ,  

systems built with the subsumption architecture do not suddedy fail, as is the case 

when many traditional desips are overloaded. 

B.2 Allen 

Allen (Brooks 1986) (Brooks 1990) is an implementation of the first three levels of 

the subsumption architecture. Allen physically moves wit11 a drive unit that rotates 

in place by a specified number of degrees or moves forward a specified dista11c.e. For. 

Allen, a general move is implemented by first turning and then znoving forward. Allen 

is equipped with 12 sonar transducers evenly distributed around its circular frame, 

one of the transducers faces forward. Each transducer returns a "time of flight," value 

that is proportional to the distance to the nearest obstacle in front of the transducer.. 

Level 0 control is accomplished by using the transducers to move the vehicle away 

from obstacles. The inverses of the values returned by the sonar transducers art. 

summed to determine a &force vector'' whose direction indicates the centre of free space 

and whose magnitude is proportional to the distance the robot will move. The level O 

controller first sends a turn command to the motion controller which turns the vehicle. 

When the motion controller is done turning, it sends an acknowledgeme~t to the level 

O controller which replies with the appropriate forward motion commancf. When the 

motion controller completes the forward motion, it sends an acknowledgement to t11c 

level 0 controller to indicate that it has completed the forward motion. If, at ally 

time during forward motion, the sonar transducer facing forward indicates that a11 

obstacle is too close to the vehicle, the level 0 controller sends a l~alt command to 

the motion controller, which stops the robot. This prevents the robot from collitfirig 

with objects that are moving or were not previously detected because of gaps iu the 

sonar overage. Providing the control period is sufficiently short, level 0 control moves 

AEen away from any objects moving towards it and stops Allen when it is about to 

coEde with an object. in a static environment the level O controlier moves Allen to 

the centre of fsee space and keeps it there. 
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The level 1 controller is designed to allow Allen to "wander" around the environ- 

merit while avoiding obstac!es. This task is accomplished by generating a random 

rnotiorr vector approximately every 10 seconds. The random motion vector is added 

to the force vector of level 0 to produce a new force vector which moves the vehicle 

towards the goal, while avoiding obstacles. The halt reflex of level 0 is still active. 

By adding a direction vector to the level 0 force vector, the level 1 controller sub- 

sumes the level 0 controller. A new direction vector is determined for the vehicle that 

incorporates the vehicle7s obstacle avoidance behaviour. 

The level 2 controller gives Allen the ability to move down corridors. This is done 

using the odornetric and sonar sensors. When the vehicle stops for a short while, as 

determined by the odometric sensors, the level 2 controller determines the farthest 

location, relative to Allen, in sensed free space. The vector to this location replaces 

the ra~ldoznly chosen direction vector of the level 1 control system. By replacing the 

level 1 direction vector, the level 2 controller subsumes the level 1 controller and also 

the level 0 controller. 

With this control system, when the level 2 goal is unattainable, Allen simply choses 

another goal. For example, if the goal location is behind a short wall that was not 

initially detected, Allen will stop in front of the wall in such a way that the repulsive 

forces of the wall are balanced with the attractive force of the goal. For a short while 

Allen sits defeated. However once the level 2 controller notices the inactivity of the 

odometric sensors, a new goal is determined, based on the sonar values, and Allen 

heads toward that new goal. The net effect of this system is that Allen wanders 

aimlessly around its environment, tending to move down halls. 

In summary, Allen has 3 behaviour layers, an obstacle avoidance behaviour, a ve- 

hicle behaviour, and an explore behaviour. The explore behaviour looks for the most 

distant location in sensed free space, and subsumes the wander behaviour, which in 

turrl subsun~es the obstacle avoidance behaviour to make Allen explore its environ- 

ment. Allen's intelligence is exhibited when it moves around the environment without 

colliding with obstacles. 



Appendix C 

Autonomous Land Vehicle (ALV) 

In this appendix, we provide a more indepth discussion of the Autonoinous 1 a 1 d  

Vehicle (ALV) (Payton 1986), (Daily 1988)) (Payton 1990), (Olin and Tseag 1 991 ), 

(Thorpe 1991). In section C.l, we discuss the ALV and its control architecture. In 

section C.2, we describe the progress of the ALV project. Finally, in sectiou C.3, wc 

and describe future work on the ALV that was not fully described in the main b a l y  

of the thesis. 

C.1 ALV and its Control Architecture 

The ALV is an &wheeled vehicle designed to navigate over ~nildly rough terrain. It 

uses an cmboard navigation system to determine the vehicle's position, ariel~tatiol~, 

pitch and roll relative to the u.orld. The ALV also has a range scanner that scans aa 

80" horizontal and 30" vertical swath in front of the vehicle. Experiments with thc 

ALV were conducted in a grassy field that contained gullies and rocks. 

The control architecture of tbe ALV is shown in figure C.1. The low-level closed 

loop control system of figure A.1 is incorporated into the Motion Cor~trollers t~lock 

of this architecture. For autonomous vehicles, the ALV's architecture is relatively 

standard in the sense that it has a sensing leg (the left side of the figure) a d  an 

actuation leg (the right side of the figure). The bottom portion of the ard~itecture is 

connected to real sensors and real actuators. As we move vertically in the perception 

system, data is assimilated producing a more complete picture of the environment. 

As we move down the actuation leg, tasks are decomposed into increasingly smaller 
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Figure C. 1 : ALV control architecture 

subtasks to the point that they are actual motion commands. The different levels 

of the perception leg provide information ~vhich is pertinent to  the tasks being de- 

composed in the respective levels of the actuation leg. The structure of figure C.l 

is described in (Daily 1988) but the ideas supporting the architecture are described 

in  (Payton 1986). 

The mission planning module defines system goals and constraints, and instructs 

the mission sensing module to configure t~he sensors to look for specific landmarks 

in the environment. This level of the architecture is designed to interact extensively 

with human mission planners. The world perception module maintains a world map 

of the environment that includes a list of landmarks indicating which have and have 

not been sensed. The route planner module uses the world map and the constraints 

of the missiorl planner module to determine a satisfactory route through the environ- 

meut. The local perception module performs sensor fusion. f t identifies landmarks 

and passes this inforrn&ien to the wcrld perception module, and it  identifies obsta- 

cles and environmentai conditions and passes that information to the local planning 



module. The local planning module uses route irlforinatiorr and environmm~;il infor- 

mation to determine which reflexive befiaviour will control t f  z vehirlc in tllc reBc~sivr~ 

planning module. The virtual sensor r-rrotlule detects sptlr-ific en~irtsarncnt~al ft*zttrrlses 

as requested by the local perception ntodule or the reflexive lwl~aviour modulp. 'MU. 
term "virtual sensor' is  used because t h e  ser~sors values might 11ot corrt-spontl to a 

single sensor, but might result f m ~  the processing sf sewral srnsor valut.~. Tilt. st1- 

flexiw behaviour module implenwnts t h e  currently active frrhaviotw as slwcifitvt hy 

the  route planuing module, 

The implemented version of t h e  ALV has two betlaviotirs. c-alled activities by 

(Daily 1988); one which is active wlle11 obstacles are senscd. -fintl-rlcarest-pitttll-lo- 

goal", and the other which controls t h e  vehicle when ukstacles are tmt serlst*tl, "trit~cl- 

towarcI-goal* , Each activity consists of several "he!,avioursF wfricli can isslit* veh ic-It* 

commands like speed = 3mjs and turn = I05/sec to a ltiackboarcf arc.hitcct,~lrt- tttat 

arbitrates requests arsccrrdiag to a fixed arbitration scl-ieme. Earit "Ix43atritmrn rcrjwsts 

specific information from the virt uaf sensor ~nociule wtzicln provirics tllat ii~for~li CL * t' 1 0 1 1  

in a timely manner. 

I t  is the opinion of some researchers that this structrrre is similar i l l  cq~crath  

ta how humans perform tasks. At the lowest level are reartist* clt-t~ltwts that, providt~ 

responses to the imn~ediateenvironnrerat, As we ~muve sip tJrv archibcc-ttirv ttw iic.tivif,ic*s 

become increasingly abstract and cognitiw. 

ALV Progress 



tioas arc artalysd ti~cillww ~f f h e  ploressing constraiilts placed an the system by the 

wd tisrsc- r.rsrilrrrxknser-rk. A h g  with ilir ~raversable distance, the  =+ktual sensors return 

rttct rc:a,mrt the distance was chosen (ie. obstacle, lack of sensor data, etc.), Wllen an 

oLst,aclr* is  cft:tc*ctrd along m e  of t fie sewn paths, the local planning module activates 

ALV Analysis and Future Work 

TSrcb higher levels of iht. arc-f~itw'tare were not imp?ernenied hecause the sensors used 

an: i~~sr~fficieirt to ilnicply irferrtify landmarks in the environment. This lack of sensing 

ability is also artctreseci in the Jx~pfenrent_ed portions of the architecture because the 

systcrst is  dcsiefned i o  differentiate only the presence or absence: of obstacles. An 

drstaclr is defitwd as wnreQSting through which the vehicle cannot traverse. The 

itcrtiml sensors are rmt used to identify rocks, trees or gullies. The inforxnation in the 

werId rnap and the w n s m  is: a d  to e~aluate the feasibilitv of potential routes. 

Thaugtr Uai lq  f IS@) reparted a successf~~l experiment, much later work, (Payton 

19ffOi). (Olin and Tseng 1991) discusses mne of the shortcomings of t he original design 

and provides solutions to ri hew shortco~lrrlings- The following discussion describes these 

uwliutions with the anthorws explanations well as our own. 

The. first failing ctf the original design is that the system always moves to the next 

wa~gmirat, rt;%arc-lhs af t hc* present situation. Figure C.2 illustrates this scenario whell 

am rtrraa~q,pd obstaclie p r w e ~ t s  the vehicle from foliowing its initial route, The vehicle 

circles the Iwtddrr to nroaae ta the next waypoint, which is clearly a bad move. The 

this ta be an abstraction problem.. tVhen the vehicle turned away from the planned 

path, bite wag-pints abstracted from the route were no longer appropriate. Paytoa 

refer to %be \-elrick as Cmsgportunistic' because it did not move towards waypoint 



Unrinppd 

Obstacle 

Figure C.2: ALV attempting t,o follow a blocked route 

programmed properly, That is, the controller assigned an inappropriate response to 

the present environmental situation. We can consider the route determined hy t h e  

planning system to be a very brittle form of internal representation. We use tlie t(:rm 
CL very brittlen because the internal representation of the path is generated from thrl 

internal representation of the world map. Payton7s solution is to generate a gradit:ui, 

field over the entire tVorld map. as shown in figure C.3. Now, when the vehicle mows 

Fi,we C.3: ALV gradient field world map 

sE the planned path of figure C.2, it takes advantage of its new situation- ft is o w  
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opinion that Payton simply made better use of the situations in the environment that 

their vehicle's sensors are able to differentiate. This is one example of altering iniernal 

representations to address problems that are encountered during testing, instead of 

addressing the system brittleness directly. 

Another deficiency of the original design, as noted in Olin and Tseng (1991), is 

that the vehicle has a tendency to move back to-.yards objects that it has already 

c1earr:d because the %travel-towards-goal" activity does not consider obstacles when 

ctetermining the most appropriate route. Payton refers to this scenario as a "command 

arbitration problemn because it is his opinion that the problem lies in the fact that 

t he  vetiicle7s motion is determined exclusively by only one of the vehicle's two distinct 

activities. We refer to this scenario as behaviour fusion, described in section 2.3. Pay- 

ton proposes to solve this problem with a connectionist approach where each activity 

states its preference for different actuator responses, and the most preferred response 

is chosen for actuation. This again is simply making better use of the situations in 

the environment that the vehicle is capable of sensing. Again, it is our opinion that 

Payton is making better use of the situations in the environment that his vehicle's 

sensors are able to  differentiate. 

Some of the problems discussed in section 2.3 were not addressed by Payton, 

though it is our opi~~ion that they experienced them. For example, the brittleness 

associated with the cumulative errors of positioning systems was not discussed. From 

Olin and Tseng (1991), we know that 8 of 18 runs terminated successfully at the goal 

point defined by the land navigation system. However, the correspondence between 

the actual goal location and the sensed goal location was not mentioned. Also, the 

longest vehicle trip was only 7357n. Perhaps positioning system errors prevented 

longer runs. 

Finally, Payton never addressed the brittleness associated with world maps and 

dynamic euvironments. Fortunately, the environment of the ALV was relatively static. 

That is, the hills, rocks and gullies never moved. However, if anything had changed 

after the vwrld map was constructed, the ALV wruld never lmve known. For example, 

if the rock in figure 0 .3  were to roll down the page, the vehicle would not take 

advantage of the potential path through the rock's previous location. 

To summarize, despite the elaborate architecture initially envisioned by the de- 

signers of the ALV, the implemented architecture basically differentiated situations 
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in the environment that the sensors were able to differentiate and assigned responses 

to  those situations. Payton's recent work has made better use of sit~mt~ioas in tahc 

environment which the sensing system is able to differentiate. 



Appendix D 

Situation-based Adaptive Control 

Surface 

This appendix explains the shape of the control surface generated by the adaptive 

situation based control algorithm. The general shape of the control surface can be 

tbough of as an equilibrium between two pressures. One pressure, from the adaptation 

algorithm, increases the magnitude of the force stored in each Q-SAM quantum, 

and the other pressure, from the actuator response distribution function (ARDF), 

decreases the magnitude of the force stored in each quantum. In this appendix we 

describe these pressures and their equilibrium point. 

The adaptation algorithm places a positive pressure on the magnitude of the force 

stored in each Q-SAM quantum because, on average, the force recorded to each quail- 

t u ~ n  has a larger magnitude than the force stored in that quantum. To illustrate illis 

fact, consider Q-SAM quantum i, which is associated with some positive error whose 

stored force, F ( i ) ,  is some value that is less than the equilibrium value. When the vehi- 

cle moves into sensor space quantum i, a force in the range [-2.ON+ F ( i ) ,  2.ON+ F (i)] 

is applied to the system. Forces closer to LON + F ( i )  are more likely to move the 

system towards the goal than forccs closer to -2.ON $ F(i) .  Therefore, the expected 

force recorded to quaiturn i is greater than F( i ) ,  which tends to increase the value 

stored in quantum i. The converse is true if quantum i is associated with some neg- 

ative error. In fact, the pressure exerted on the force stored in quantum i can be 

mathematically represented as the expected increase in the force stored in quantum i 
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when a new force is recorded by the adaptation algorithm. That is, 

where AKnc(i) is the expected change in the value stored in quantum i, which is 

equivalent to a pressure exerted on that force, F( i)  is the average force recorticd in 

quantum i, F(i) is the value presently stored in quantum i ,  and to;; is the constant of 

proportionality, which is the diffusion factor from the ARDF (equation 4.2). 

Counteracting the positive pressure exerted by the adaptation algorithm is tlw 

negative pressure exerted by the ARDF. We describe the pressure as nt-gativt. lic- 

cause the ARDF usually reduces the magnitude of the value stored in  each quantru~n 

by trying to make all the values equal to zero. This scenario arises because the ARDF,  

when repeatedly applied to a control surface without any interference from the adap- 

tation routine, eventually transforms that cox~trol surface into a flat line. In our case, 

that flat line is the line force = 0 because the adaptation algorithm, 011 averztgc:, 

stores positive forces for positive errors and negative forces for negative errors, and 

the only value that is common to both positive and negative forces is zero. The prcx- 

sure exerted by the ARDF can be represented as the expected change in  the valtic 

stored in a quantum when a value is recorded to another quantum. That is, 

where AFde,(i,j) is the expected change in the magnitude of quantum i that, results 

from recording a new force into quantum j and w;j is the diffusior~ factor from the 

ARDF (equation 4.2). 

On average, the control surface takes the shape that balances the two prcssuros 

described in equations D.1 and D.2 in each sensor space quantum. That is, 

where p(i) is the probability of recording a value in cpantutn i at  any time during 

adaptation, and N is the number of quantization regions in the Q-SAM. Equation D.3 

must be satisfied for all sensor space quanta i. Combining equations D. 1, D 2, a d  

D.3, the equilibrium state is described as 

N 
O = xp(j)(~(i)  - B(j))wij Vi .  

j=l 
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In equation D.4, &j) ,  the average force recorded to Q-SAM quantum j, and p(j), 

tile probability of being in a quantum j ,  are unknown. In the paragraphs that follow, 

we describe F( j )  a d  p(j) as functions of the vehicle's dynamical parameters, the 

Q-SAM parameters: the adaptation parameters, and the present state of the control 

sirrface. 

First, we describe B( j )  in terms of distributions of random variables associated 

with specific sensor space quanta. The adaptation algorithm records a force f into 

the Q-SAM if that force moves the system towards the goal region without moving it 

too n.1uch closer to the goal region. In chapter 4, we defined too much closer as 25% 

and 75% of the distance to the goal region. More specifically, F ( j )  = f is recorded if 

where k(j)  is the width of quantum j .  which is 0.0625m in our case, t,(j) is the 

distance that is too close to the goal region for quantum j ,  and x is the distance from 

the edge of the quantized region farthest from the goal region to the position of the 

AUV after force f is applied for one control period. x is a function of the system 

dynamics specified in equation 3.1: which is repeated here as 

u is the velocity before application of the force f, and x, is the actual location of the 

AUV in the quantum before application of the force f .  These parameters are shown 

i n  figure D. 1, 

For any quantum, f, vt and x, can be described as the random variables F, V, and 

Xo, respectively, which are constrained by the equation 

where X is the random variable associated with x. From equations D.5 and D.6, a 

force / is recorded if 
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Figure D.1: Para~neters described in ecpations D.5 and D.6 

The average force recorded to  a particular quantum is the average forcc* satisfying 

equation D.lO, which can be found by taking the expected value of t h t x  fiir~ctio~i 

which is 

If we assume that F, V and X,  are independent for any quantum, then 

where 

fF( f )  is the distribution of forces applied in the Q-SAM, which is liniforrnly ciist,riI)uted 

with a mean of F ( j )  (ie. U [ F ( j )  - 2.0: F ( j )  + 2-01). 

f v ( v )  is the distribution of velocities associated with forces that are recorded illto that 

quantum j. This distribution is determined by the system parameters M ,  (1: At, 

the range and quantization of the Q-SAM and the dist,ributions c,f the ranciun, 

perturbations and new goal locations. 



fx,(z,) is the distribution of the locations in the quantum associated with forces that 

arc rec:orded Into that quantum- This distribution is also a function of ail the 

system parameters and is approxitnately uniform (ie,UfO, kfj)]). 

We now describe p f j )  in a similar fashion as we described F( j). y ( j ) ,  the proba- 

bility of reeding a force into quantum j at any t h e ,  is 

p(j  j = p(being in quantum j )  pjrecmding f you are in quantum j ) .  (D.16) 

plbeing in quantum jj is a function of the random distribution ~f the goal locations, 

the control stlrface artci the system dynamics. pjrecmding j you are zn quantum j )  is 

the prolxibility that the system leaves the yuantu~n in one control period and does 

rmt move too much c i w r  to the goal region. More specifically. 

y(re~mdi~zg I you are in quantum j )  = p ( k ( j )  < s < t , ( j j )  (D.17) 

where the probability density function of s is defined by equation D.9 and is a function 

where * is convolution. Therefore equation D. 1 T becomes 

y(recording 1 you are in quantum j )  = (D. 19) 

a d  
c 3 

~ ( j )  = plleing in quantum j) (D.20) 

is the probability of recordiag in quantum j at any time. 

To summarize, the cant rol surface generated by the adaptation algorithm of chap- 

ter 4 is a function of the parameters associated with the system dynamics, the Q-SAM, 

and the adaptation algorithm. The average control surf-ace is a balance between a 

pressure front the adaptation aigorit'nm, which increases the magnitude of the force 

stored in each Q-SAM quanta, and a pressure exerted by the ARDF, which decreases 

the  magnitude of the force s t u d  in each Q-SAM quaaturn. 



Appendix E 

Sonar Beam Pattern Derivation 

In this appendix: we derive the beam widtb cr and beant length 1 of the sonar brwil 

patterns of our vehicle irr cbaptet 5 so that the vehicle can amid all olxtacles in ail 

ewironment, where the most complex abstacle is a flat waif, using only recerttly sruatd 

sensor data to determine actuator responses. We first determine tlrc beam width a~ltl 

then the corresponding beam length. The discussion in this appendix focuses on t,lw 

left sonar barn pattern with little: mention of the  right bear11 patatvrrl lrrritl~sc tllc: 

derivation of both beam patterns are very similar. 

The sonar beam patterns nrust be wide enough to conti~mally sense all pottwtial 

trajectories? with the vehicle% clearance. We refcr to tlw trajedory of tlw 

vehicle's clearance as the clearance trajectory, as sbwn ill  tigl~re E.1, Thc: tninirnrm 

beam width t-hat satisfies this criteria is shown in figure E.1, whwe 7. is the vel~ic:l(*'s 

minimum turn radius, c is the vehicle's clearauce, and d is the distance th -  solmrs 

are i~ front of the centre of t he  The trajectories shown i n  figure E.1 art* 

those associated with the minimum turning radius, which require the wi<fest Immr 

s-idth of all potentid trajecties to sense. Note that in figure E.1, a portion of t11r~ 

vehicle trajectoryt and a portion of the clearance traject~or_v, directly in front of t h e  

vehicle are not continually sensed. This region is called the critical region and the 

mast forward paint of the critical region is the release point Rr show~j iri f i g w  5.4, 

wbi& is repeated here at; figure E.2. Tbe significance of the release puint is that when 

the vehicle moves the mxmr =barn patterns away from obstacles after tile rejea-x? [mint, 

(ie. between the vehicle and the release point), the obstacle is in the critical regiosl, 

and abstacIes in the critical region can violate the vehicle's clearance requirernes ts 
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of minimum turning 

radius 

Figure E.1: Beam width derivation parameters 

Path of obstacle, relative to the 
if the vehicle twss at5 I& maximum tamhg rzte 

Figure E.2: Sensor critical region 
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without being sensed. 

The geometric relationships associated with the beam width derivation are show11 

in figure E.3. At the release point R1, the edge of the sonar beam pattern is tangcot to 

Figure E.3: Triangle in bea,m width derivation 

the clearance trajectory and perpendicular to the line from the turning cmtro of t h  

minimum turning radius to the relase point. This derivation begins with rrlatio~~slrips 

obtained from the highlighted triangle in the left coruer of figure E.3, which are 

cos C1 = G' - 
b 

where CY is the desired beam width, and b and d are parameters used in this derivatio~i. 

Another relationship is obtained from the upper highlighted triangle of figure E.3 al~d 

T - C - b  
cos CY = 

r - q  
Equating equations E.2 and E.4 results in the following relatiousfiip between y arid 6. 

7.4 - q2 = ( T  - c)b-  b2. (E.5 j 

Replacing q in equation E.5 with q in equation E.3 and rearranging yields 
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Squaring both sides and rearranging results in the equation for b stated in the thesis 

as equatjor~ 5.2; which is 

c(2r - c)b2 + 2 8 ( ~  - c) b - d2(r2 + (11) = 0. (E.7) 

The beam width CY is then 
* d 

where b is the appropriate solution to equation E.7. 

From figure E.3, the left release point, in vehicle based coordinates, is 

Rl = ( -r  + (7- - c)  cos a, d + ( r  - c)  sin a). (E-9) 

Similarly, the right release point i ,  

R, = (I- - (r - c)cosa:d+ ( r  -c)s ina) .  (E. 10) 

Now, we address the beam length, which must be sufficiently long so that the, 

vehicle can turn itself, and the release point, away from a flat wall. This scenario is 

depicted ~ I I  figure E.4, which shows the vehicle and the release point when turning at 

Flat Wall Rl 

Figure E.4: Beam length derivation 

*I  -. -*-- i t 
uit- tchicle's maximum turning rate, which is ihe strategy or ine our vehicle. From 

figure E.4, we obtain the relationship 





Appendix F 

Path Planning Algorithm 

In this appmcfix, we describe the calcufatkms used by our path planning algorithm 

to tleter~nine thc next ~ehicie waypoint, when no obstacles are present in the sonar 

Immt patterns. First, w dm~rlke fk algorithm and then we display the code that 

E~rrylements the algorithm. Irr this appendixt we focus on the scenario of an obstacle 

to the left of the vehicle becau-;e the calculations for obstacles to the right of the 

vtt.cBicte are very similar, 

In this algorithm, the estimated object endpoint a11d the endpoint 1ocatio1-1 are 

transfomd from the wudd based cmrdinate system to the vehicle based coordinate 

system, sbowrr in figure F-1. The shortest vehicle trajectory that passes to the right 

of the ofrstacle by a distance equal to the world map clearance r,, is specified by 

the paint f rp, y2j and the line y = nzqx in figure - F.1. If the endpoint location (xs> ys) 

is to the left of the line y = nr4r, the endpoint location is effectively behind the 

&stack=, .so the p i n t  { x 2 . ~ j  is the next vehicle waypoint. If the endpoint is to the 

right of h e  y = m4r, the eridpoint location (x,,y,) is not behind the obstacle, so 

thc erdpoitlt location fx,, y,) is the next \*chicle waypoint. Finally, the next vehicle 

The algarit hm that implenwnts this code follows: 



y-axis 

Vehicle Vehicle 
Centre 2-axjs 

Figure F. 1 : Path planniug algori t l m  

auv-rvrnxoatrol() /* the lrorld map conirol algorit hm */ 

ffoat **a,**& - 
Mat ml; 

Point po; /* ohject location, relative to vehicle */ 
Point pg; /* the goal location, relative to the vehicle */ 
Point wp; /+ the calculated w-aypiontc relative to tire vehicle */ 
Point p2; /* the clearance point, dehed  in my notes */ 
Roat slopem$; /si from my math,.sorry 

a = rnatrix(l,4,1,4); /% Numerical Recipes form of transformation matrix */ 
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b [ l ] [ l ]  = 1.0; b[2fpI = 2.0; b[3][1] = 3.0; b[4][1] = 2.0;/*arhirary numbersd 

Mat-toarmat(subl.m,a)l /* convert su h matrix to numerical recipes mat */ 
gat1ssj(a,4,b,l); /t:invertmatrixa,resultintoa*/ 

nrmat-to-Mat(a,ml); /* convert inverse matrix back to us */ 
~nat-~oin tmul t ( rn  1 ,EiObj_loc,&po); /* determine the location of  the object 

in A fJV coordinate frame */ 
mat-point-mult I1.n 1 t&01d30al,&pg); /* determine the location of the goal 

in A UV coordinate frame */ 

/* determine new waypoint in robot coordinates */ 

if ( p a y  5 0.0 ) /* we have passed the object, so just go to  the goal */ 
{ 
point-copy(&Old-gsal~&goal.loc); 

1 
else 

( /* begin - calculating waypoints in A UV coordinates */ 

if (beam == Left) 

{ 
/* r2 = VIf~Z.l-clearance * MiMMckarance; clearance for ISE vehicle 

under world map control, squared */ 
i f  ( po.x*po.x + po.y*po.y < WM-clearance * WM-clearance) 

w p x  = 150.0; wp.y = 0.0; wp.2 = 0.0; /* we are closer, 

than the clearance, induce a hard right turn */ 
I 

else 
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pointcopy(kp2,kwp); /* goal is hebincl object */ 
1 

else 

{ 
point-copy(&pg,&wp); /* goal is clear */ 

1 
1 

1 
else if (beam == Right) 

{ 
/* r2 = WB4-clearance * WM-clearance; clearance for ISE vehicle 

under world map control, squnreci */ 
if ( po.x*po.x + po.y*po.y < WM-clearance * WM-clearance) 

{ 
wp-x = -150.0; wp.y = 0.0; wp-z = 0.0;/* we are closer 

than the clearance, induce a hard left tm-n */ 
1 

e l ~ e  

{ 

if (pg-x > (pg.y / slopem4)) 

{ 
point-copy(&p2,&wp); /* goal is behind ohject */ 

1 
else 

{ 
point-copyj&pg,&wpj; /* goal is ciear */ 

1 
1 

1 
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else 

printf(" \n ERROR: beam was not left or right \nM); 

1 

mat.t_point~mi~lt~subl.n~,&wp,&goa~.loc); /* convert the waypoint back 

to world coordinates */ 
j /* end calculating the waypoint in A U V  coordinates */ 

3 
else /* i f  no objects have been detected to date */ 

point-copy(&Ofd~oal,&goai.loc); 

3 

auv-goal-seekAorizontal(); /* now, use the regular goal seeking control algorithm */ 
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