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Abstract 

This thesis describes projection constraints (PCs), a language for compiling and optimizing 

constraint propagation in the numeric and Boolean domains. An optimizing compiler based on 

PCs has been implemented in Nicolog, a constraint logic programming (CLP) language. In 

Nicolog, like other CLP languages such as CHIP, Echidna, CLP(BNR), cc(FD), and clp(FD), 

domains for variables are explicitly represented and constraint processing is implemented with 

consistency algorithms. Nicolog compiles each constraint into a set of arc revision procedures, 

which are expressed as PCs. Instead of using full arc revision based on enumeration, Nicolog 

uses regions where functions are monotonic to express arc revision procedures in terms of interval 

computations and branching constructs. Nicolog compiles complex constraints directly, not 

needing to approximate them with a restricted set of basic constraints or to introduce extra variables 

for subexpressions. The Nicolog compiler can handle a very general class of constraints, allowing 

an arbitrary mixture of integer, real, and Boolean operations with a variety of domain 

representations. The only requirement is that for each domain, it must be possible to compute a set 

of intervals whose union contains that domain. Nicolog also lets the user program using PCs 

directly making it possible to implement sophisticated arc revision procedures. This thesis shows 

that PCs are a simple, efficient, and flexible way to implement consistency algorithms for complex 

mixed numeric and Boolean constraints. Emperical results with a prototype Nicolog 

implementation show it can solve hard problems with speed comparable to the fastest CLP 

systems. 
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1.  Introduction 

Many difficult 'real world' can be specified as finding values for a set of variables subject to a set 

of constraint relations. For instance, scheduling problems usually involve finding times to start a 

set of tasks subject to precedence and various other constraints. Packing problems consist of 

finding locations for objects in containers subject to the constraint that a particular space in a 

container can be occupied by only one object at a time, among many other constraints. These 

kinds of tasks are instances of what is known as the constraint satisfaction problem (CSP). 

Problems like these have been solved with specialized algorithms implemented with procedural 

languages. Though these solutions can be efficient, they usually take a very long time to develop 

and are difficult to adapt to even small changes in the problem specification. 

Van Hentenryck [89] noted that CSPs can be solved much more effectively using constraint logic 

programming (CLP) languages. CLP refers to a powerful new class of programming languages 

[JL87] . These languages are based on logic programming languages [Lloy84], such as Prolog. 

Term unification of Prolog is generalized in CLP to constraint processing in various domains. 

Several CLP languages have now been implemented, dealing with constraint systems involving 

numeric [Clea87; JM87; DVS*88; SA89; VanH89; Colm90; OV90; B092; HSS*92; SH92; 

VHSD93; DC931, Boolean [BB88; SA89; Colm90; B092; Side93; CD931, and sequence (ie. list 

and string) domains [Wali89; Colm901. 

, For solving CSPs, CLP languages have several advantages over procedural languages. Because 

1 CLP is declarative, CSPs can be expressed almost exactly as formulated. Because CLP languages i 1 have built-in backtracking, they are very nice for writing programs that generate CSP instances and 

\ solve them using search based algorithms. 
1 
CLP is suitable for solving large real world problems in a diverse set of areas. For instance, CLP 

has been used in digital circuit analysis [GVPZ89; Simo891, electrical engineering [HMS87], 

computer aided design [Jose92], financial analysis [LMY87], mechanical engineering [Jone90; 

NL931, and scheduling [DSVH90], just to name a few areas. Moreover, recent research 

[VHSD93] shows that CLP can solve difficult real world problems with efficiency comparable to 

specialized procedural programs. 

CLP systems like CLP(R) [JM87], CAL [SA89], and Prolog I11 [Colm90] process constraints 

using symbolic manipulation algorithms, such as the simplex algorithm [DOW55], polynomial 

canonization algorithms [BuchSS], and theorem proving algorithms [BB88; Side931. Though 

these languages can solve the constraint systems for which they are designed, they have certain 

drawbacks. CAL is limited to polynomial constraints on real numbers, and its constraint solving 



algorithm is very inefficient in the worst case. CLP(R) has efficient algorithms for linear 

constraints but delays solving non-linear constraints until they become linear. This means complex 

constraints cannot be used to prune the search space. Prolog I11 also delays complex numeric and 

list constraints, and, though it provides a complete Boolean constraint solver, it provides no 

mechanism to form arbitrary Boolean combinations of numeric constraints. In all these systems, 

the constraint solver is a black box, meaning there is no way for the user to control what it does or 

define new constraints not supplied with the system. 

BNR Prolog [OV90] (which has evolved into CLP(BNR) [B092]) and CHIP [DVS*88] were the 

first CLP systems that explicitly represented sets of possible values, also called domains, for 

numeric variables. Consistency algorithms refine those domains and case analysis algorithms1 

complete the search for solutions [Mack77]. BNR Prolog uses interval domains for real numeric 

variables and CHIP uses finite sets for integer variables. It should be noted that CHIP also uses 

symbolic constraint manipulation for real and Boolean variables, with drawbacks similar to those 

of CLP(R) and Prolog 111. BNR Prolog and CHIP both open up constraint solving to user 

programmed case analysis algorithms. BNR Prolog, however, keeps its consistency algorithms 

hidden in a black box, whereas CHIP provides some user control over its consistency algorithms. 

In CHIP, declarations are available that allow the user to use arbitrary logic programs as active 

constraints2 and, to a small degree, control how actively they are used. Unfortunately, using logic 

programs to write custom constraints is very inefficient when compared to built in constraints. 

BNR Prolog decomposes complex constraints into basic constraints using extra variables for 

subexpressions. Decomposing constraints is sometimes less efficient. 

Newer domain based CLP systems have added improvements to the original systems. Echidna 

[HSS*92; SH921 takes advantage of hierarchically structured domains to control the precision of 

consistency and case analysis. Aristo [EK92] elaborates the CHIP user constraint system to 

provide more control over when these constraints are executed. CLP(BNR) allows an arbitrary 

mixing of Boolean and numeric constraints by treating the numbers 0 and 1 as false and true, 

respectively. 

lgy  case analysis algorithms, we mean the general class of searching algorithms including backtracking and domain 
splitting. 

2 ~ y  'active constraints' we mean an implementation of constraints where they are used as more than just a passive 
test when their arguments become ground. Active constraints should be capable of generating missing values as 
soon as enough information is available. For instance, the constraint x+y=z should be able to instantiate a variable 
as soon as the other two are instantiated. An active constraint should also be able to prune the impossibilities by 
removing values from domains of variables. 



Perhaps the greatest recent advance in domain CLP is the introduction of cc(FD) [VHSD91]. 

cc(FD) provides several facilities that can be used to implement active constraints efficiently. 

cc(FD) introduced indexical constraints as a way to give the user much more flexible control over 

consistency algorithms. The meaning of an indexical constraint depends on (ie. is indexed by) a 

CSP. Indexical constraints give the user a way to custom program arc revision, the procedure at 

the heart of arc consistency algorithms. Most of the primitive constraints in CHIP can be compiled 

into indexical constraints, which are like a reduced instruction set (RISC) assembly language for 

constraints. Indexical constraints have two advantages. First, it is possible to custom program 

specific constraints and constraint reasoning methods not supported by the compiler as indexical 

constraints, making the system considerably more flexible and extensible. Second, since indexical 

constraints are compiled into many simple instructions instead of a small number of complex ones, 

a small number of general optimizations can drastically improve the global performance of a system 

[DC93]. In contrast, earlier systems such as CHIP rely on a large number of specific 

optimizations for good performance. 

cc(FD) also adds powerful ways to combine constraints, including the cardinality [VHD91], 

constructive disjunction, and extended ask (also known as blocking implication [VHSD93]) 

constraints. Cardinality constraints, which state how many constraints in a given list must be true, 

can be used to implement arbitrary combinations of Boolean and numeric constraints. Constructive 

disjunction can be used to implement very active minimum and maximum constraints, which are 

needed in scheduling problems. Extended ask constraints make it possible to block the addition of 

a constraint until truth of another constraint can be decided. A recent paper [VHSD93] shows that 

cc(FD) can be implemented efficiently enough to solve very difficult problems in time similar to the 

best special purpose programs painstakingly developed in procedural languages. clp(FD) [DC93] 

is an efficient implementation of a subset of cc(FD) that includes indexical constraints but omits 

cardinality, constructive disjunction, and bloclung implication. 

However, cc(FD) is more complicated than need be. Since CLP(BNR) [B092] allows arbitrary 

mixing of Boolean and numeric constraints, cardinality constraints are already available. In 

[CD93], it is shown how to implement Boolean constraints with only indexical constraints. 

In this thesis, we describe the Nicolog3 CLP system, which is a simple way to implement a 

significant part of cc(FD) with comparable efficiency. Nicolog grew out of an attempt to 

implement the constraint system of CLP(BNR). Later, it was realized that Nicolog was using a 

3~icolog is pronounced ni-'k6,lbg. 



generalization of indexical constraints, which we call projection constraints (PCs). PCs alone are 

sufficient to implement all the constraints available in CLP(BNR), as well as cardinality constraints 

and many cases of constructive disjunction and extended ask constraints. Moreover, using PCs 

for all classes of constraints available in cc(FD) means that, unlike cc(FD), optimizations for PCs 

improve the performance of all constraint processing. PCs are also natural and effective 

for programming efficient constraint propagation methods for the complex constraints that arise in 

real world scheduling and configuration problems. Because of PCs, Nicolog is simpler, more 

flexible, and more extensible than all other CLP systems. 

The remainder of this thesis is organized as follows: Chapter 2 describes how Nicolog extends 

logic programming with constraints and describes how these constraints are processed. Chapter 3 

shows how Nicolog compiles primitive constraints through isolations to projection constraints. 

Chapter 4 compares Nicolog with other CLP systems. Chapter 5 gives some examples and 

computation results, and compares Nicolog's efficiency with some of the fastest similar CLP 

systems. Finally, chapter 6 closes with some conclusions and possibilities for future work. 



2.  The Nicolog Language 

This chapter introduces the Nicolog language. Section 2.1 gives an overview of Nicolog, 

describing the various constraints it adds to a Prolog dialect and how they can be used. Section 

2.2 describes how constraints are processed with arc consistency algorithms. 

2 .1  Overview of Nicolog 

Nicolog contains a subset of the familiar Edinburgh family of Prologs as described in [SS86]. As 

is usual in CLP languages [JL87], Nicolog adds constraints to logic programming by introducing 

special predicate and function symbols. As in standard logic programming [Lloy84], uninterpreted 

symbols can be used for atoms and terms to be interpreted in the Herbrand domain. 

Constraints fall into one of three classes: domain, primitive, and projection constraints (PCs). 

Domain constraints provide an interface between domain variables and their domains. Primitive 

constraints include the usual relations on Boolean and numeric expressions, as well as some less 

usual constraints involving arbitrary nesting of constraints and conditional expressions. As we 

will see in section 2.1.4 and chapter 3, all domain and primitive constraints can be expressed with 

PCs. In this section, we give an overview of Nicolog constraints and how they can be used. The 

full syntax of Nicolog is described formally in appendix A. 

Currently, Nicolog only supports constraints in the integer domain. However, only domain 

constraints and a small part of Nicolog's implementation need to be generalized to support 

constraints in the real domain as well. 

2.1.1 Domain Constraints 

A domain constraint is of the form 

term : set. 

A domain constraint is actually not a constraint if the set is not ground. We will discuss this 

further shortly, but first let us look at the case where the set is ground. A simplest form of a 

domain constraint is X :  1 . . 5 ,  which means the domain of x is the set { 1,2,3,4,5}. The set can 

also be a union of ranges, such as ( 1 , 3  . . 5 , 7  ) which means the set { l,3,4,5,7}. Expressions, 

such as those evaluable by the i s  / 24 predicate, are also allowed in the definition of domains. For 

4 ~ t  is traditional in the Prolog community to refer to a predicate named p  which takes n  arguments as p / n .  

5 



instance, if N is instantiated to the number integer n at run time, X  : 0 . - 2  ̂ N- 1 declares the 

domain of X  to be {0,1, ..., 2n-1). 

For convenience, the first argument can be any Prolog term. In this case, all variables in the term 

are assigned the domain given by the set and all numbers in the term are checked for membership 

in the set. For instance, [A,  B, C I : 1 . . 3  sets the domains of A, B, and c to {1,2,3}. 

In the case where the set argument is not ground, the domain constraint can be used to access the 

current domain of a variable. In thls case, the first argument must be a single domain variable and 

the second argument must be either a variable or of the form L  . . U  where L  and U  are variables. 

x : D instantiates D to a set term representing the domain of x. x : L . . U  instantiates L and u to the 

lower and upper bounds of the domain of X, respectively. These forms of the domain constraint 

can be used to implement case analysis algorithms including backtrack search and domain splitting 

[Mack77; VanH891. For instance, domain splitting is a divide and conquer search algorithm which 

first tries half of a variable domain and later backtracks to try the other half. After a domain is 

split, consistency algorithms are applied starting with the constraints on the split variable. For 

finite domain variables, this process can be applied recursively until the variable is instantiated. 

The following predicate implements domain splitting on its argument. 

s p l i t ( X )  : -  X : L .  . L .  
s p l i t  ( X )  : -  X : L .  . U ,  L < U,  

M i s  (U-L)  / 2+L ,  
( X  #< M ; X  #>= M ) ,  
s p l i t  ( X )  . 

The first clause takes care of the case where the variable is instantiated, in which case its bounds 

are the same. In the second case, the bounds are different so the midpoint is calculated. Then, a 

choicepoint is set up to try X smaller or bigger than the midpoint. #< and #>= are inequality 

constraints, which are described shortly. The inequalities automatically trigger all other constraints 

on X. Finally, domain splitting is applied recursively and terminates when the variable becomes 

instantiated. 

2.1.2 Primitive constraints 

Primitive constraints include the usual numeric equalities, inequalities, disequalities (ie. f ) ,  and 

Boolean constraints. Numeric constraint relation symbols are prefixed with #. Thus, equality is 

represented by # =; inequalities are represented by #<, # =<, # >, and # >=; and diseqauality is 

represented by # / =. Boolean constraint relations are represented by / \ for 'and', \ / for 'or', - 
for 'not', => for 'implies', < => for 'equivalence', and # for 'exclusive or'. Numeric functions 

are represented by the standard symbols. The complete syntax for primitive constraints is given in 



appendix A. Unlike many other systems, Nicolog allows non-linear constraints and constraints 

involving absolute value, minimum, and maximum. 

Like CLP(BNR) [B092], Nicolog represents Booleans by numbers. Thus, arbitrary nesting of 

constraints is possible where a nested constraint means 1 if true and 0 if false. This is a very 

powerful feature which allows the definition of cardinality constraints [VHD91]. For instance, 

is true if exactly two of the subconstraints is true. Moreover, if any one becomes surely false, the 

other two are actively propagated. For instance: 

Since A cannot be equal to B, M is constrained to be equal to N and x is 3. If two subconstraints 

are surely false, then the constraint fails and backtracking is initiated. 

Nicolog also allows conditional expressions in constraints. For instance, 

constrains D to be the same as B if A is 1 (ie. true) and constrains D to be the same as C if A is 0 

(ie. false). In keeping with the spirit of constraint processing, this constraint can be used to 

propagate information in many directions. For instance, consider the following query: 

Since c can not be 7, Nicolog deduces that A must be true and B must be 7. 

2.1.3 Tiling Rectangles with Nicolog 

Before we continue with the definition of the PCs, it is a good idea to give a non-trivial Nicolog 

program which illustrates the use of the constraints introduced thus far. This program also 

illustrates the programing style used in most Nicolog programs. The program below, which was 

derived from the one given in [VHSD93], solves the following square packing problem (SPP): 

Given: 
a set of squares with given sizes and a rectangle of given size 



Find: 
a way to pack all the squares into the rectangle so that none overlap and there is no wasted 
space. 

The SPP is a subproblem of a famous tiling problem [CFG9 11 : 

Given: 
a rectangle of given size 

Find: 
a set of squares, all of different sizes, which can be packed into the given rectangle so that 
none overlap and there is no wasted space. 

The order of a square tiled rectangle is the number of squares packed into it. For simplicity here, 

we will stick to the SPP. Example problem instances, which are taken from [CFG92], are 

supplied by the predicate: 

where N is a problem identification number, sx and SY are the sizes of the rectangle along the x 
and Y axes respectively, and Ss is a list of square sizes (ie. the length of each side). The following 

are the four problem instances we have tried with Nicolog: 

It is interesting to note that problem 1 has the smallest possible order of all square tiled rectangles 

and problem 3 has the smallest possible order of all square tiled squares. A solution to problem 3 

is shown in figure 1. 

Most Nicolog programs, and in fact most CLP programs, are of the following form: 



Figure 1. A square tiled square 

The first goal creates the variables in the problem representation and specifies their domains. The 

second goal creates constraints which form a complete specification of the problem in the 

representation given by the variables. Since arc consistency, the constraint solving algorithm used 

by Nicolog, only solves the constraints approximately, the final goal is used to implement a case 

analysis algorithm whlch searches for exact solutions. The third goal creates constraints which are 

implied by the constraints generated by the second goal. However, redundant constraints can often 

drastically reduce the search space, resulting in a much faster solution time. 

The top level predicate for the SPP is as follows: 

square(P,Xs,Ys, Ss) : - 
gen(P,Xs,Ys,Ss,SX,SY), 
nooverlap (Xs, Ys, Ss) , 
cap(Xs,Ss,SX,SY), 
cap (Ys , Ss , SY, SX) , 
label (Xs) , 
label (Ys) . 

The variable P is the problem number to solve. Ss is the list of square sizes in problem P, and xs 

and YS are, respectively, corresponding lists of the x and y coordinates of the lower left corners of 

the squares in a solution. The lower left corner of the rectangle being packed is assumed to be 

point (0,O). For instance, a solution to 



This is the solution shown in figure 1. The first goal in square/ 4 looks up the data for a given 

problem and generates the lists of x and y coordinates. The second goal adds constraints which 

require that no pair of squares may overlap. Assuming that the sum of the square areas is equal to 

the area of the rectangle being filled, the first two goals are sufficient to formulate the problem. 

However, the search can be performed much more efficiently with redundant constraints exploiting 

the fact that the squares must fill the rectangle exactly. The two cap/ 4 goals add such capacity 

constraints. The final two 1 abe 1 / 1 goals implement a case analysis algorithm which 

nondeterministically generates values for the goals. 

We now examine the gen/ 6, nooverlap/ 3, cap/ 4, and label / 1 predicates in more detail. 

Gen/ 6 is defined by the following two predicatess. 

genCoords( [I , [ I ,  [ I  ,sencoordso.SXIISY). 
gen~oords([~I~s], [YIYsI, [S]SS],SX,SY) :- 

X:O..SX-S, 
Y:O..SY-S, 
gencoords (Xs, Ys, Ss, SX,SY) . 

The goal x : 0 . . sx- s declares the domain of X, the leftmost point on the square of size S, to be in 

the integer range 0 . . SX-s where SX is the width of the rectangle being packed. A similar goal 

declares the domain of Y, the lowest point in the square of size S. 

NoOver 1 ap / 3 is defined by the following predicates: 

nooverlap( [I, [I, [I 1 .  
no~verla~([~I~s], [YIYS], [S~SSI) : -  

noOverlapl(Xs,Ys,SsIXIYIS) I 

nooverlap (Xs,Ys, Ss) . 

5 ~ t  is customary in logic programming to use variable names starting with an underscore character for variables 
which occur singularly in a clause. -SX and -SY in the first clause for gencoords / 5 are examples of this. 



noO~erlap2(X1,Yl,Sl~X2,Y2~S2) :- 
(X l+S l  #=< X2) \ /  ( X I  #>= X2+S2) \ /  
( Y l + S l  #=< Y 2 )  \ /  ( Y 1  #>= Y2+S2).  

For a pair of squares indentified by the coordinates (xl,Yl), (X2,~2)  and sizes sl  and ~ 2 ,  these 

predicates generate the disjunctive constraint 

which means that at least one of the inequalities is true, guaranteeing that no pair of squares 

overlaps. 

To improve the efficiency of the program, the cap/ 4 predicate adds extra "capacity" constraints. 

The idea is to exploit the fact that the squares must fit into the rectangle exactly. More specifically, 

the sum of the sizes of all squares intersecting with a vertical (horizontal) line through a given x 

coordinate (y coordinate) must be equal to SY (SX), the height (width) of the rectangle being 

packed. The following predicates add capacity constraints for each x coordinate. 

capl (SX, SX, -SY, -Xs ,  -Ss) . 
c a p l ( P , S X , S Y , X s , S s )  :- 

P < SX, 
sumOfSqsWith(Xs,Ss,PISY) I 

P1 is P + 1, 
c a p l ( P 1 , S X I S Y , X s , S s ) .  

sumOfSqsWith( [ I  , [ I  ,-PI 0 )  . 
s u m ~ f ~ q s ~ i t h ( [ ~ I ~ s ] ~  [ S ] S S ] ~ P ~ S U ~ )  : -  

Sum #= ( (X  #=< P) / \  ( P  #< X+S) ) *S + Sum1 , 
sumOfSqsWith(Xs,Ss,P,Suml) . 

A vertical line through an x coordinate p intersects with a square of size S at (X,Y) iff 

- So c a p /  4 calls capl / 5 to loop for p from 0 to SX-I, the x coordinates of the vertical lines that 

could intersect with a packed square. For each P, capl / 5 calls sumof SqsWi t h /  4 to add up all 

the squares containing P and make sure it is SY, the height of the rectangle being packed. 

Sumof SqsWi t h  adds the size of each square to the sum iff x 5 P < x+s .  It uses the fact that 

Boolean false and true are represented by the numbers 0 and 1, respectively. Thus, adding up 



for each square of size s at (x,Y) computes the desired sum. 

Cap/ 4 is called with the role of x's and y7s reversed to set up the capacity constraints on y 

coordinates as well. 

Label / 1 implements the case analysis algorithm which is used to search for a placement of the 

squares. It uses an idea that Van Hentenryck et. al. [93] attribute to Aggoun and Beldiceanu [92]. 

At each choice point in the search, a smallest possible coordinate is identified and a square is 

selected to use that coordinate. Since the squares fit the rectangle exactly, there must be at least one 

square which fits at the smallest coordinate. To find the square for the smallest coordinate, the 

squares are tried in the order they are given in the problem/ 4 predicate. Since big squares are 

harder to fit than smaller ones, performance is best if they are ordered from largest to smallest. 

This is an example of the first fail principle [HE80]. 

Label / 1 is implemented by the following predicate. 

label([]). 
label([~I~sl) : -  

minlist ( [XIXS] ,Min) , 
selectSq( [XIXS] ,Min,Rest) , 
label (Rest) . 

Minl is t / 2 finds   in-the smallest possible value in a non-empty list of domain variables and/or 

numbers. 

minlistl( [I ,M,M) . 
minlistl([~I~s],Ml,M) : -  

X:M2..MxI 
M3 is min(Ml,M2), 
minlistl (Xs,M3,M). 

Here, X : Min . . Max is called with X bound to a domain variable or integer and with Min and Max 

being uninstantiated variables. If X is a domain variable, Min and Max are unified with the lower 

and upper bounds for the domain of x, respectively. If X is instantiated to a number, Min and 

Max are unified with X. 

Select Sq/ 3 nondeterministically tries to set each of the coordinates to the minimum possible 

coordinate found by minl i s t / 2. It is defined as follows: 

select~q([~I~s],Min,Xs) :- 
X # =  Min. 



select~q([~I~s],~in,[XI~est]) :-  
X #> Min, 
selectSq(Xs,Min,Rest) . 

Nicolog can solve all of the above problems in times between a few seconds for problems 1 and 2 

to about 60 seconds for problem 3 and about 90 seconds for problem 4. Section 2.1.5 shows how 

some of the constraints can be programmed more efficiently as projection constraints. For detailed 

empirical results on this program, see section 5 .I. 

2.1.4 Projection Constraints 

The basic form of a PC is 

X $= set, 

which means that the variable x is a member of set. There are also two forms which are 

abreviations for when the set is unbounded below or above: 

X $=< expr = x $= -in•’. .expr 

X $>= expr = x $= expr. .in•’ 

When set is ground, a PC is nothing more than a domain constraint. In fact, we could have 

defined a special case of the domain constraint as follows: 

X:A..B : -  integer(A), integer(B), X $= A..B. 

However, the true power of PCs comes when domain variables occur in their set arguments. For 

instance, the expressions < X  and >x denote lower and upper bounds of the domain of x, 
respectively. In general, < and > return lower and upper bounds of arbitrary set terms. Similarly, 

a variable for a set argument denotes an interval approximation of the domain of the variable. 

However, if a PC contains a variable expression then it is not executed until that variable is 

instantiated to an integer. 

The bound access case of the domain constraint can be implemented as follows: 

This illustrates the fact that it is possible to write PCs which have no logical meaning. In 

[VHSD91], this problem is discussed briefly. Basically, for a PC to have a logical meaning, the 

set denoted by the right hand side must decrease monotonically with the domains of variables in the 



right hand side. This is not the case for PCs like A $= < X  above or X $= >A . . <B. Chapter 

3 shows how primitive constraints can be compiled into logically equivalent PCs which satisfy the 

monotonicity condition. 

Before we describe PCs further, let us consider a simple example from [VHSDgl] using the PCs 

we have described thus far. PCs are a way for Nicolog programmers to implement specialized 

constraint processing algorithms for constraints which are not handled effectively enough as 

primitive constraints. Suppose one needs the constraint x 2 y + c where x and y are variables and 

c is a constant. A good way to handle this constraint is to use the following two rules: 

1. whenever it is true that y2k (for k a constant), then we would like to impose the 
constraint x 2 k + c. 

2. whenever it is the case that x I k (for k a constant), then we would like to impose the 
constraint that y 5 k - c. 

This is in fact exactly what the Nicolog primitive inequality x #>= Y + c does. This inequality 

is compiled into the following two PCs. 

PCs 1 and 2 correspond to rules 1 and 2, respectively 

Any time a variable is constrained to be in the empty set, the constraint means false. For instance, 

constraints of the form x $ = { ) and x $= i . . j with i > j mean false. Constraints containing 

expressions which mean the fail expression f a i l  also mean false. 

The symbols << and >> are used in the proper implementation of strict inequalities. << e means 

just smaller than e; it is used to implement the inequalities like x #< 1 / Y ,  where some 

expressions do not have integer values. << e is e -1  if e is an integer and it is Lei otherwise. 

Similarly, >> e means just bigger than e, which is e + l  if e is an integer and re1 otherwise. 

As well as usual mathematical expressions, there are test expressions. For instance, the and test 

expression (el  , e2) means 1 if both el and e2 are non-zero and 0 otherwise. The equality test 

expression (e l  = : = e2) means 1 if e l  and e2 are equal and 0 otherwise. 

Not only are there complements of sets, which are written \ set, but also complements of singleton 

sets, written \ \ expr. \ set means any number but the ones represented by set while \ \ expr 

means any number except the one represented by expr. It is important to note at this point that PCs 



containing expressions with variables are not executed until the variables become instantiated. For 

instance, a PC containing \ \ x is not executed until x is bound to a number. 

Finally, for both expressions and sets, there are two kinds of conditionals with the same syntax 

and similar meanings. The first is of the form 

if -> then ; else 

which means then when ifis non-zero and else when ifis zero. Conditionals of the form 

b ( bool , false, true, either) 

are used to implement Boolean constraints. If the set bool is { 0 ) , then the expression means the 

same as false, if bool is { 1 1, then it means true, and if bool contains { 0 ,1) , then it means either. 

Otherwise, the expression means •’ a i  1 in the expression case and { ) in the set case. There are 

also two specialized Boolean conditionals for when two of the branches are the same: 

bl (boo1 ,false, either) 5 b (boo1 , false, either, either) 

b2 (bool, true, either) = b ( boo1 , either, true, either) 

2.1.5 Square Packing Revisited 

As we will see in chapter 3, PCs are sufficient to express all the primitive constraints allowed in 

Nicolog and CLP(BNR) [B092]. In chapter 4, we will see that PCs can also implement 

cardinality and blocking implication constraints, as well as some cases of constructive disjunction 

constraints [VHSD93]. To see how PCs can be used to speed up programs, let us reconsider 

some of the constraints in the square packing program of section 2.1.3. First, consider the 

constraint in the noover lap2  / 6 predicate: 

Recall that this constraint means that two squares with lower left corners at ( X 1 , ~ l )  and ( x 2 , ~ 2 ) ,  

and sizes S1 and S2, respectively, do not overlap. In other words, if the two squares overlap in 

the x-axis then they must not overlap in the y-axis and vice versa. This way of handling the 

constraint is implemented by PCs like the following: 



(a) (b) 
Figure 2. Overlapping square positions on the x-axis 

The test part of the conditional, (>x2 ) < (<x l )  +S1 , ( a 2  ) +s2> ( > x l ) ,  succeeds only if the 

two squares overlap in the x-axis. To see this, consider the first conjunct. It tests the relative 

positions of the squares with square 1 as far left as possible (as defined by the domains of the 

variables) and square 2 as far right as possible. This is depicted in figure 2a, where the arrows 

indicate directions the squares could be moved while still satisfying conjunct one. Similarly, the 

second conjunct tests the relative positions of the squares if square 1 is put as far right as possible 

and square 2 as far left as possible. This is depicted in figure 2b. Putting the two conjuncts 

together, we can see that the conjunction is true exactly when the squares overlap for any possible 

values for the variables. 

Replacing x's with Y's in the test part of the conditional gives us an expression which is true if the 

squares overlap in the y-axis: 

By replacing bound expressions on Y 1  by Y 1  itself and rearranging, we obtain an expression 

which must be false for any instantiation of Y1: 

Negating gives an expression which must be true for any instantiation of ~ 1 :  

Thus, if the squares overlap on the x-axis, then Y 1 must not be in the set : 

In this case, the PC above constrains Y 1 to be in the complement of that set. The corresponding 

PCs for the other variables can be constructed using similar reasoning. 

Another example of the power of PCs comes from the constraint in the sumo f S q s  wi t h  / 4 

predicate: 



Sum #= ( ( X  #=< P) / \  ( P  #< X + S )  ) * S  + Sum1 

Let us consider the subconstraint: 

which means that B is true iff p is between X and x+S. Recall that P and S are instantiated when 

the predicate is called, so we are only interested in PCs with B and x on the left hand side. To help 

understand a good way to handle the above constraint taking the instantiated variables into account, 

we consider the following equivalent form: 

This way, we can see that if B is true, x is between P-s and p. Also, if B is false, x is not 

between P-S and P. Thus, the following PC constrains X appropriately. 

In some cases, we can also determine the value of B. For instance, if x can be no smaller than P- 

s and no larger than P, then B is 1. If x can only be smaller than P-s  or it can only be larger than 

P, then B is 0. The following PCs enforce these facts on B. 

B $= ( 
P-S < ( < X )  , ( > X )  =< P 
-> 1 
; 0..1 

) 

B $= ( 
P-S >= (>X) 
-> 0 
; 0..1 

) 

As is shown in section 5.7, replacing primitive constraints in the square packing program by the 

above constraints improves the execution speed of the program. Though similar constraint 

handling can be implemented by a combination of cardinality, constructive disjunction, and 



blocking implication constraints [VHSD93], PCs provide a simple and uniform mechanism to 

achieve comparable execution speed. 

2 .2  Implementing Constraint Processing with Arc Consistency 

Nicolog programs are executed by an SLD-resolution theorem prover [Lloy84] which 

incrementally constructs and maintains a constraint satisfaction problem (CSP) [Mack77]. Van 

Hentenryck [89] gives a complete operational semantics for CSP based CLP. He describes arc 

consistency [Mack77], the main constraint processing algorithm for CSPs, as an inference rule. In 

this section, we describe the arc consistency algorithm used by Nicolog and how it fits into a 

resolution theorem prover to implement CLP. 

Section 2.2.1 gives some definitions and section 2.2.2 discusses arc consistency algorithms. 

Section 2.2.3 describes the PAC, the arc consistency algorithm used by Nicolog and section 2.2.4 

gives an extended example of the operation of PAC. We conclude in section 2.2.5 with an 

analysis of the complexity of PAC. 

2.2.1 Definitions 

A CSP is defined by a set of variables, each associated with a domain of candidate values and a set 

of constraints on subsets of the variables. A constraint specifies which values from the domains of 

its variables are compatible. The notation Ax is used to denote the domain of the variable x. A 

solution to the CSP is an assignment of values to all its variables which satisfies all the constraints. 

For a CSP containing a variable X, a value a E Ax is inconsistent if it is not assigned to x in any 

solution to the CSP. When a constraint is selected by the theorem prover, it is added to the CSP. 

Nicolog manipulates the CSP primarily by using arc consistency [Mack771 to remove inconsistent 

values from the domains of variables under constraints. Case analysis algorithms [Mack77], such 

as backtracking and domain splitting, are required because arc consistency algorithms are not 

powerful enough to test the satisfiability of arbitrary constraints. Recall from section 2.1 that case 

analysis algorithms can be implemented with domain and primitive constraints. If the arc 

consistency algorithm ever removes all values from a variable's domain, then the constructed CSP 

has no solutions and the set of constraints is not satisfiable, so the theorem prover backtracks. 
- Backtraclung through a constraint consists of removing it from the CSP. 

When we say C is a constraint, we mean C is a meta-variable which stands for a Nicolog primitive 

constraint with syntax as given in table 2 of appendix A. We will see how domain constraints and 

PCs fit into the picture shortly. A constraint defines a mathematical relation as follows. We use 

the notation v(C) to denote the set of variables in C .  The arity of C is Iv(C)I. We write 



C(xl,. . . ,xk) as a shorthand for v(C) = {xi, .  . . ,xk}, specifying an order on the variables in C. ~f 

we have a constraint C(x1,. . . ,Xk) then C(a1,. . .,a,$ is C with the numbers (al,. . . ,ak) substituted 
for (X 1,. . . , ~ k ) .  C defines the relation {(a 1,. . . ,ak) E Ax,x.. . xAx, I C(a 1,. . . ,ak)}. During 

execution, Nicolog modifies the relation defined by a constraint C indirectly by changing the 

domains of variables in C. Where no confusion results, we treat constraints as the relations they 

define directly. 

Later, we will take the statement 'E is a cterm' to mean E is a meta variable standing for a 

constraint term with the syntax given by cterm in table 2 of appendix A. As with constraints, for a 

cterm E, v(E) is the set of variables in E, E(xl,.. . , ~ k )  means v(E) = {XI,. . .&}, and E(al,.. .,ak) 

is E with numbers (al,. . . ,ak) substituted for (XI,. . . ,xk). 

A CSP is formulated as a directed hypergraph6 where variables are associated with nodes and each 

constraint C is associated with a set of arcs of the form (T, C) for each T E v(C). T is called the 

target and the rest of the variables in v(C) are called sources. Given a CSP of this form, an arc 

consistency algorithm deletes inconsistent values from target variable domains. These inconsistent 

values are such that there are no corresponding values for the source variables which satisfy the 

constraint. Such deleted values cannot be part of any global solution to the CSP. When 

inconsistent values are deleted from a domain, we say the domain is refined. 

2.2.2 Arc Consistency Algorithms 

A useful function for describing consistency algorithms is projection, denoted n, which takes as 

arguments a constraint C ( X ~ ,  . . . ,Xi,.. . ,Xk) (1 5 i I k) and a variable Xi  and returns a set of 

numbers. It is defined by: 

An arc (T, C) is arc consistent if AT = AT n zT(C). Full arc consistency algorithms delete all 

inconsistent values from every domain in the CSP, making all constraints arc consistent. Partial 

arc consistency algorithms [Nade89] delete only some inconsistent values. A well-designed partial 

arc consistency algorithm deletes most inconsistent values at less cost than any full consistency 

algorithm. Nicolog uses a partial arc consistency algorithm which is well designed for many 

constraints. 

6~ directed hypergraph is a generalization of a directed graph where hyperarcs may 'connect' any number of nodes. 
Most of the CSP literature deals only with binary CSPs (all constraints have arity 2 or less), which can be 
formulated as standard directed graphs. We use hypergraphs because we wish to deal directly with complex 
constraints involving an arbitrary number of variables. For simplicity, we refer to hyperarcs simply as arcs. 



The fundamental operation of most arc consistency algorithms is arc revision [Mack77], which is 

implemented by a procedure Revise(T, C) where (T, C) is an arc. Revise refines AT by deleting 

values which are inconsistent with C. Full arc revision is implemented by having  revise(^, C) 

perform the assignment AT t AT n nT(C), making the arc (T, C) arc consistent. Partial arc 

revision sets AT to some superset of AT n nT(C). 

Full arc consistency algorithms, such as AC-3 [Mack77], call Revise repeatedly with various 

arcs7. These arc consistency algorithms terminate when there is no arc (T, C) such that  revise(^, 

C) can refine AT further. Nicolog employs a similar but partial arc consistency algorithm, called 

PAC. PAC repeatedly applies a partial arc revision algorithm, called PRevise(T, C), to arcs (T, 

C) thereby refining AT to AT n approx(nT(C)), where approx(nT(C)) is some near superset of 

nT(C) which can be computed efficiently. 

PAC terminates when there is no arc (T, C) such that PRevise(T, C) can refine AT further. 

When an arc (T, C) has the property that AT = AT n approx(nT(C)), we say that it is partially arc 

consistent. Thus, PRevise(T, C) makes (T, C) partially arc consistent. To see the difference 

between partially arc consistent and (fully) arc consistent arcs, let us consider the constraint 

with 

The arc (z, C) is not arc consistent because nZ(C) = {2,3,5,6} f Az. Revise(z, C) deletes all 

six inconsistent values. Unfortunately, there is no general way to implement Revise(z, C) that is 

better than summing all combinations of values for x and Y and deleting values in Az which do not 

appear in any sum. This can be a very expensive operation for complex constraints on many 

variables. Moreover, if domains are infinite, for example sets of real numbers which may be 

represented by sets of intervals, then enumeration of values is no longer possible. 

The above discussion shows why partial arc revision is a good idea. We can delete most of the 

inconsistent values from Az by only performing two additions on each of the bounds of Ax and 

AY. Using the bound expressions of table 3 in appendix A for notation, we can define the 

computation of approx(nz(C))  with <X+<Y . . >X+>Y = {2,3,4,5,6}. With this 

7~ctual ly,  the algorithms given in [Mack771 are only for constraints of arity 2, so it only applies to binary arcs. 
We generalize our algorithms for constraints of any arity. 



implementation of approx(nz(C)), PRevise(z, C) deletes five of the six inconsistent values at far 

less cost. Since many pairs of numbers could add up to 4, the one inconsistent value missed by 

this implementation of partial arc revision, it is usually more efficient to wait for a case analysis 

algorithm to make some choices to uncover this fact that 4 is not part of a solution. Only when 

domains are very fragmented, such as when they are the union of many small discontiguous 

intervals, does bound based partial arc consistency begin to suffer from its inability to exploit the 

'holes.' 

1 procedure PAC(A, N): 

2 procedure P R e v i s e ( ~ ,  C): boolean 
3 begin 
4 compute a set approx(nT(C)) such that nT(C) G approx(nT(C)); 
5 REF1 N E t (AT n approx(nT(C)) c AT); 
6 if REF1 N E then AT t AT n approx(nT(C)); 
7 return REFINE 
8 end; 

begin 
Q t N ;  
while Q # 0 do begin 

select and delete any arc (T, C) from Q; 
if P R e v i s e ( ~ ,  C) then 

Q ~ Q U { ( T ~ , C ' ) E A I T E V ( C ' ) \ { T ~ } A C + C ' )  
end 

end; 

Figure 3. PAC: an arc consistency algorithm for real constraints 

2.2.3 PAC: The Arc Consistency Algorithm Used by Nicolog 

Figure 3 presents the PAC algorithm. The input to PAC is a set A of arcs which formulate the 

CSP and a subset N of A. The CSP contains the constraints Nicolog has selected during an SLD- 

derivation. Before we look at the inner workings of PAC, let us describe the situations where it is 

called. 

If a primitive constraint C is selected in the derivation, PAC is called with N set to the subset of 

the A corresponding to C. Any Herbrand variable x in C, that is a variable without an explicitly 

represented domain, is first submitted to the domain constraint x : - i n • ’ .  . i n • ’ ,  which assigns a 

domain as described below. 

If a domain constraint of the form X: Set is selected, where x is a domain variable and Set is 

ground, then the assignment Ax t Ax n Set is performed. If Ax changes, PAC is called with N 



containing the set of arcs with x as a source node. If x is a Herbrand variable then the assignment 

Ax t S e t  is performed. In this case, PAC is not called because no constraints depend on x. If a 

domain constraint of the form T : S e t  is selected, where T is a term and S e t  is ground, it is 

handled handled as a sequence of domain constraints of the form X : S e t ,  one for each variable x 
in the T. For instance, the constraint: 

declares the domains of A, B, and C to be in the set 1 . .5 .  

Domain constraints of the form x : S e t ,  where x is a variable and S e t  contains variables, result in 

the unification of S e t  with a term representing Ax. In this case, PAC is not called unless the 

unification involves domain variables. Unification with domain variables is described next. 

The unification is generalized to include domain variables and sometimes results in calls to PAC. 

If two variables are unified and at least one is a Herbrand variable, then the Herbrand variable is 

bound to the other variable and PAC is not called. Unification of two domain variables, x and Y, 

is handled the same as x : AY followed by Y : Ax. Unification of a domain variable X with a number 

i is handled the same as x : i. All other unifications with domain variables fail and result in 

backtracking. 

PAC is also called when a PC is selected by the theorem prover. As we will see shortly, PCs 

correspond to a single arc where the variable T on the left hand side is the target and the rest of the 

variables are sources. In fact, PCs are usually a specification of how to compute approx(7cT(C)) 

for some constraint C. As we have seen in section 2.1.4 and will see in chapter 3, all domain and 

primitive constraints can be expressed in terms of PCs. If a PC is selected, then PAC is called 

with N set to its corresponding arc. 

Now, let us look at the details of PAC. Calls to the subprocedure PRev i se (~ ,  C) on lines 2-8 

refine AT to 

where 

and returns true if and only if 



Thus, PRevise(~ ,  C) returns true iff and only if some inconsistent values were deleted from AT. 

Nicolog computes the approximation approx(.nT(c)) of nT(C) using interval computation and 

branching constructs. The particular computation is dependent on the constraint C. We discuss 

this further in chapter 3. 

Line 10 of PAC initializes Q to the set N of input arcs. The loop from line 11 to line 15 removes 

and revises one arc from Q in each iteration, so each arc is revised at least once. If PRev i se (~ ,  

C) refines AT in line 13, then Q is updated in line 14 to add just the set of arcs which could further 

refine their target domains. These are of the form (T I , C') with T E v(C')\{T } and C $ C'. This 

is because T is a source variable of C'  so the consistency of some values in AT I may have 

depended on values deleted from AT. That is, KT 1 (C') may have changed since it depends on T. 

Arcs involving the same constraint (C = C') are not added because (T ' , C) is such that T ' is a 

source variable of the arc (T, C) which was just refined. (T I ,  C) cannot have become inconsistent 

because AT was refined. This is because values were deleted from AT precisely because there was 

no corresponding values for the source variables of (T, C). 

By exploiting information about specific constraints, we can make PAC even more efficient by 

more accurately computing the set of constraints added to Q on line 14. Depending on how AT 

was updated, some arcs may not be able to refine their target domains further even though one of 

their sources has changed. For instance, suppose we have the constraint 

with 

If some other constraint causes the deletion of 0 and 1 from Ax, then PRevise(~ ,  C) can delete 1 

from Ay. However, if 3 is deleted from Ax then (Y, C) is still arc consistent and should not be 

added to Q. Furthermore, if 2 is also deleted from Ax then (Y, C) is arc consistent even if the 

domains are further refined. Therefore, (x, C) and (Y, C) should not be added to Q until 

backtracking restores some values. To avoid adding arcs to Q in these situations, they can be 

augmented with trigger and satisfiability tests [EK92]. Trigger tests determine if an arc stays 

consistent even if a value has been deleted from one of its source domains. A reasonable trigger 

test in the example above would block (Y, C) from being added to Q unless the lower bound of Ax 

changes. Satisfiability tests determine if an arc is consistent for all values left in its domains. A 

satisfiability test in the above example could block (Y, C) from being added to Q when the upper 

bound of Ax is smaller than the lower bound of Ay. The addition of these tests are a simple way to 



make the AC-3 based PAC algorithm approximate the more efficient and complex AC-4 [MH86] 

and AC-5 [DVH91] arc consistency algorithms. 

Nicolog automatically derives reasonable trigger tests from the form of a PC as follows. If the PC 

refers to <X or >x, then it is triggered on changes to the lower or upper bound of AX, respectively. 

If a variable x occurs in a set expression (set in table 3 of appendix A), then it is triggered on 

changes to either the lower or upper bound of Ax. If a variable x occurs in an expression (expr in 

table 3) then the PC is not triggered until X is instantiated to a constant. For simplicity in the 

following discussion, we assume PAC is implemented as specified in figure 1, without trigger 

tests. 

To show PAC is guaranteed to terminate, we observe that all computer implementations of 

domains must be finite and that PRevise never increases the size of a domain. Thus, since arcs 

are added to Q only when PRevise reduces the size of a domain, PRevise can only refine a 

domain a finite number of times8. PAC terminates when Q = 0, the exit condition on line 11. 

Otherwise, the loop of lines 1 1- 15 is executed. Line 12 deletes one arc from Q. New arcs are 

added to Q in line 14 after a domain is refined in line 13. At any point in an SLD-derivation, the 

number of variables and constraints in the CSP is finite. Thus, the number of domains is also 

finite. Since each of the domains will be refined only a finite number of times by PRevise, at 

some point no arcs will be added to Q. Thus, Q eventually becomes empty and PAC terminates. 

2.2.4 An Example Run of PAC 

In this section, we give an example run of the PAC. This should give the reader a better 

understanding of how PAC operates. The following also gives a gentle introduction to the content 

of chapter 3 by giving a concrete example of how approximate projections can be: 

1. computed with interval reasoning, and 

2. represented with PCs. 

To get a feel for how PAC operates, consider the following CSP: 

8 ~ o r  infinite domains, computer representations usually place restrictions on how many times they can be refined. 
For instance, floating point intervals cannot be refined when their two endpoints are adjacent floating point numbers, 
except to collapse them to a singleton set or the empty set. [SH92] gives another approach which associates a 
precision parameter with domains to limit the number of times they can be refined. 



Here, we use domain constraints such as A : 1 . . 1 0  as a short way of declaring the domain of a 

variable, ie. AA = { 1,2,. . . ,101. As we will see in chapter 3, each primitive C(xl,. . . ,xk) can be 

compiled into k PCs, one for each variable. Basically, this is done by first isolating each variable 

and then computing a set expression corresponding to the expression on the other side. For 

instance, the isolations of A #= 9 *B + C are 

A #= 9*B+C, 
B #= (A-C) /9, and 
C #= A-9*B. 

These are compiled into: 

In chapter 3, we will see that the conjunction of the PCs in N is equivalent to A #=  9 *B + C. 
Also, we will see that the set denoted by the right hand side of these expressions is an interval 

approximation of projecting the constraint onto the variable in the left hand side. Similarly, B #> 

C is equivalent to 

For this example, we will use the 5 PCs above to represent arcs with the targets being the variables 

on the left hand sides. Consider the call PAC(AuN, N) 

Line 10 initializes Q to N, so we start with 

For concreteness, suppose arcs are deleted on the top at line 12 and added on the bottom at line 14. 

So the first call of PRevise is with A $= 9 * (<B) + (<C) . .9 * (>B) + (>C) . Evaluating the set 

expression, we calculate: 



Thus, we can use 9..90 for the value of approx(lc~(A#=9*B+C)). Intersecting 9  . . 9  0  with AA in 

PRevise changes AA to { 9  , I 0  ) so PRevise returns true. Since the only arcs which have A as a 

source are already present, no arcs are added to Q at line 14 and we end up in the following state: 

ToreviseB $= ( ( < A ) - ( > C )  ) / 9 . .  ( ( > A ) - ( < C ) )  / 9  wecalculate 

( ( < A ) - ( > C ) )  / 9  . . ( ( > A ) - ( < C ) )  / 9 =  
( 9 - 9 )  / 9  . . ( 1 0 - 0 )  / 9  = 
0 .  . 1 0 / 9 =  
{ 0  , 1 1. (since this is an integer range) 

Intersecting { 0 ,  1 ) with AB in PRevise changes AB to 1 so PRevise again returns true. This 

time, two arcs not already present have B  as a source: A  $= 9  * (4) + ( < c )  . . 9  * ( > B )  + ( > C )  

and c $< ( > B )  . However, only the second is added to Q at line 14 since the first was compiled 

from A#=9 *B+c, the same constraint as the one just revised. Thus, we get the following state for 

the next iteration: 

TO revise c $ = ( <A) - 9 * ( >B ) . . ( >A) - 9  * ( <B ) we again calculate a range using bounds: 

Intersecting { 0 ,  1 ) with Ac in PRevise changes Ac to { 0  , 1 ) so PRevise returns true again. 

As before two arcs have C as a source, but only one was compiled from a different constraint, so 

the state for the next iteration is: 



In revising c $< (>B)  , it is easy to see that Ac should be updated to 0. This causes two equality 

arcs to be added to Q, resulting in the following state: 

Revising B $> (<c)  succeeds without any changes to AB. In the next iteration, revising A $ = 

9 * ( < B )  + ( <c) . . 9  * ( >B) + ( >c) changes AA to 9. Since all the arcs with A as a source involve 

the same constraint, no new arcs are added to and the next state is: 

The final arc revision succeeds with no changes, so PAC terminates and, in this case, manages to 

find the single solution to the CSP. 

2.2.5 Complexity of PAC 

The computational complexity of binary arc consistency algorithms has been widely studied 

[MF85]. However, there is little information about the complexity of arc consistency algorithms 

for constraints of arity greater than two. For a CSP, let n be the number of variables, let e be the 

number of constraints, let k be the maximum constraint arity, let dT be the number of constraints 

on variable T, and let a  be the maximum number of possible domain refinements. For finite 

domains, a  is usually the cardinality of the largest domain. 

For binary CSPs, the complexity of an enumeration-based Revise algorithm is 0 ( a 2 )  and the 

complexity of AC-3 is 0 ( a 3 e )  [MF85]. Unfortunately, the situation is not so good for these 

algorithms when they are generalized to the k-ary constraint case. Since Revise enumerates the 

Cartesian product of k domains, it is O(ak). The generalization of AC-3 for k-ary constraints is 

shown in lines 9-16 of figure 3, except Q is initialized to A, since it is not an incremental algorithm 

like PAC. However, the worst case occurs when many arcs are added to Q each time line 14 is 

executed. The total number of arcs added to Q on line 14 in the course of execution can be far 

greater than the number of arcs in A. Thus, we may ignore the fact that Q is initialized to N instead 

of A in our worst case analysis. 



The following analysis of the number of arc revisions for k-ary AC-3 like algorithms generalizes 

that given in [MF85]. The worst case occurs when Revise makes the smallest domain refinement 

possible each time it is called and, moreover, when none of the arcs to be subsequently added to Q 

is already in it. Arcs are added to Q when a call  revise(^, C) succeeds in refining AT. In this 

case, at most (dT - 1) arcs are added to Q. That number may be entered a times per variable, so 

the total number of arcs added to Q is: 

Regardless of whether Revise refines a domain, exactly one arc is deleted on each iteration so the 

number of iterations is at most the original size of Q plus the number of arcs added to Q during the 

run, which is in O(a(ke - n)) = O(ake). Since each iteration calls Revise, the complexity of AC-3 
generalized for k-ary constraints is O(ak+lke). 

AC-3 is exponential in the number of possible domain refinements because Revise blindly 

enumerates domains. With PRevise, we can exploit interval computations to do much better. As 

we will see in chapter 3, PRevise only needs to evaluate an expression on intervals which contain 

variable domains, which takes O(k). Thus, PAC is O(ak2e) for many classes of constraints. 

These complexity results are similar to those found in [DVH91], except here we generalize to 

numeric constraints of arity greater than two and use a consistency algorithm derived from AC-3 

instead of the more efficient AC-4. 



3 .  Compiling Primitive Constraints into Projection Constraints 

Van Hentenryck, Saraswat, and Deville [91] indicate that primitive constraints can be implemented 

with PCs, but they do not describe how to do this in general. In this chapter, we show how all of 

the primitive constraints available in Nicolog can be compiled into PCs. Furthermore, our 

compilation method does not require that complex constraints be decomposed into simple basic 

constraints by introducing extra variables. For instance, in many systems, a constraint such as 

A*B+C#=D would be decomposed into the conjunction A*B#=T, T+C#=D, introducing a new 

variable T. In some cases, it is more efficient to reason with the original constraint directly. 

As suggested by previous discussions, Nicolog compiles a primitive constraint by first 

symbolically processing it to produce a set of equivalent constraints with a variable isolated on one 

side of the constraint predicate symbol and a ctermg on the other. Then, isolations are used to 

compile PCs which implement the approximate projection procedures used in the domain update 

operation of PRevise. Evaluating cterms on domains of variables instead of specific values in 

variable domains roughly corresponds to projecting constraints. Evaluating cterms on intervals 

containing variable domains makes it possible to efficiently compute good approximate projections 

using interval computation methods [AH83; Bund841 combined with branching constructs. 

Section 3.1 formally defines isolations and explains the relationship between them and projections 

of constraint relations. Section 3.2 describes how to compute isolations for various classes of 

constraints. Section 3.3 shows how to translate isolations into PCs which implement domain 

update procedures. On the right hand side of these PCs are set valued expressions which denote 

the approximate projections of constraints. Approximate projections are computed by evaluating a 

cterm on intervals containing variable domains. Sections 3.4 and 3.5 describe how numeric and 

Boolean cterms, respectively, are compiled to PC set expressions which implement their evaluation 

on interval domains. 

3 .1  Isolations and the Relationship with Projections 

Nicolog compiles a constraint C by first producing a set of isolations, usually one isolation of the 

form x r E for each variable x E v(C). In x r E, r is a constraint symbol (eg. #=, #<, etc.) and x r 

E is equivalent to C. For instance, the example in section 2.2.4 represented arcs as isolations of 

the target variables. Thus, isolations of A#=9 *B+C are { ~ # = 9  *B+C, B#= ( A - C )  / 9, C#=A- 

9 * ~ } ,  and isolations of B#>C are {B#>c, c#<B}. 

9~eca l l  that a cterm is a constraint term in the syntax given in table 2 of appendix A. 



The isolations of a primitive constraint C have a relationship with its projections which tells us 

how to compile C into a set of equivalent PCs. The exact relationship depends on whether the 

constraint symbol used in C is an equality, disequality, or inequality. For all constraint symbols, 

the relationship with projections can be defined in terms of the evaluation of a cterm E(xl,. . .,xk) 

with sets of numbers instead of particular numbers substituted for the variables. For sets of 

numbers S1,. . . ,Sk, let 

To describe the relationship between isolations and projections, let 

be a constraint which has isolations of the form 

where ri is one of the constraint symbols (# =, # / =, # =<, #<, # >=, or #>)I0, and let 

Thus, S is the set of all possible values for E given the current domains of its variables. If the 

isolation is an equality (ie. ri is #=) then: 

Informally, we can see this is true because the constraint is equivalent to Xi #= E. The projection 

onto Xi is precisely values for Xi that can make this equality true, which is the same as S, the set of 

possible values for E. For a formal proof, we need to take care to note the difference between a 

constraint and the relation it defines. Recall from section 2.1.1 that a constraint C(xl,. . .,xi,. . . , ~ k )  
together with the domains of its variables defines a relation {(al,.  . . ,ak) E Axlx.. . xAxk I 

C(al ,  ... ,ak)}. Since section 2.1.1, we have been abusing notation by letting C stand for 
{ (al, .  . . ,ak) E Ax,x.. . xAxk I C(a1,. . . ,ak)). Having raised this point, we will continue to not 

- distinguish between constraints and the relations they define. For the following proof, the main 
consequence of this simplification is that the statement (al,. . .,ak) E C implies ajeAxj (1 5 j 5 k). 

1•‹~oolean constraints have one of the Boolean constraint symbols (/ \, \ /, -, =>, <=>, or #) as their principal 
functor. Before compilation, each Boolean constraint B is replaced by B #= 1 so we only have to deal with 
isolations using # =, # / =, # =<, #<, # >=, or #> during compilation . 
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The formal proof of [4] follows from the fact that the following four statements are equivalent: 

151 ai E xxi(C), 

[61 ( 3 ~ 1 ~  Axl, . . . , 3ai-IE Axi-l, 3 a i + l ~  . . . , 3 a k ~  Axk) (a1 ,. . .,ail.. . ,ak) E C, 

[7] ( 3 ~ 1 ~  Ax1, . . ., 3ai-I€ Axcl, 3ai+l€  AX^+^, . . . , 3 a k ~  Axk) ai = E(al,. . . ,ai-l,ai+l,. . . ,ak), 

and 

181 ai E S .  

Using [I] (the definition of projection in section 2.2.2), we can show that [5] is equivalent to [6]. 

To show [5] implies [6], suppose [5] is true. Then by [I] there is a tuple (a], . . . ,ai,. . . ,ak) such 
that (a1 ,... ,ai  ,... ,ak) E C. Thus, since ajE Ax, (1 5 j 5 k), the existence of the tuple 

(al, .  . . ,ai,. . . ,ak) such that (al, .  . . ,ai,. . . ,ak) E C implies [6]. Conversely, suppose [6] is true. 

Then since (a],. ..,ai,.. .,ak) E C, [I] shows us that [6] implies [5]. 

To show [6] is equivalent to [7], we first note that in this case [3] is an equality of the form Xi #= 

E and it is equivalent to C. To show [6] implies [7], suppose [6] is true. Then we have a tuple 

(al,. . . ,ai,. . .,a,$ such that (al,. . . ,ai,. . . ,ak) E C. Since C is equivalent to Xi # = E, (al,. . . ,ai,. . . ,ak) 

E C implies [7]. Conversely, suppose [7] is true. Then, again by the equivalence of the constraint 

with the isolation, we know that (al,. . . ,ai,. . . ,ak) E C.  Since, (al,. . . ,ai,. . . ,ak) E C implies the 

values come from the appropriate domains, (al,. . . ,ai,. . . ,ak) E C implies [6]. 

To show [7] and [8] are equivalent, first suppose [7] is true, Then by using [2], we can see that 

[7] implies E(a1,. . . ,ai-l ,ai+l,. . . ,ak) E S. This implies [8] is true. Conversely, suppose [8] is 
true. Then since S = E*(Axl , . . . ,Axi-   AX^+^,. . . ,Axk), there exists values in the appropriate 

variable domains such that ai = E(a1,. . .,ai-l,ai+l,. . .,ak). Thus, [7] is true. 

The projection is slightly more complicated if the isolation [3] is an inequality, for instance, if ri is 

#=<. It depends on whether S is closed or open above as follows: 

. r91 
{x I x 5 sup S} if S is closed above 
x I x < sup S} if S is  open above 



Here, sup S is the least upper bound of S. That is, the number x such that for all y E S,  y I x or = 

if S is not bounded above. Note that sup S = max S for sets which are closed above but max S is 

undefined if S is open abovell. We can establish [9] by showing that [5] and [6] are equivalent to 

and that [lo] is equivalent to 

if S is closed above, or [lo] is equivalent to 

if S is open above. [5] and [6] are shown equivalent above. The proofs for the remaining 

equivalences are similar to those for equalities, except the proofs are split into different cases for 

when S is closed and open above. Thus, we will not give them in as much detail. 

Since [3], which is Xi #=< E(xl ,..., Xi-l,Xi+l,..., Xk) is equivalent to C, we can see that [6] and 

[lo] are equivalent. By [2], E(a1, ..., ai-l,ai+l,. . .,ak) E S. Thus, if S is closed above, then ai I 

sup S. So in this case, [lo] and [ l l ]  are equivalent. Otherwise, S is open above and ai < sup S. 

So [lo] and [12] are equivalent in this case as well. 

When is #<, the projection is simply: 

[I31 7rx,(C) = {x Ix<sup  s) .  

The proof is the same as when Ti is # =<, except [lo] is a strict inequality and it only needs to be 

proven equivalent to [12]. 

#>= and #> use the lower bound inf S ,  which is number x such that for all y E S,  y 2 x or -= if S 

is not bounded below. They are as follows: 

The proofs are analogous to the #=< and #< cases, respectively. 

[I41 xxi(C) = { {x I x 2 inf S }  if S is closed below 
{x I x > inf S }  if S i s  open below 

l l1t is important to note here that a set can be bounded yet still open above. For instance [0,1) = {x I 0 I x < 1) is 
bounded above by one and also open above since it does not contain one. This complication is only relevant for real 
domains, since integer domains are always closed above if they are bounded above. 



1151 7cxi(C) = {X I x > inf S }  

If ri is the disequality symbol # / =, then the projection is: 

S  if IS1 = 1 
a X i ( c )  = { - w . . . - ) \ { ~  otherwise 

where {-. . .-) is the extended set of extended real numbers, including the two infinities. In the 
case that S  is not a singleton, [16] gives nx,(C) = { --. . . =} . This is correct because there is at 

least two tuples for the variables (xi , .  . . ,xi-l,Xi+l,. . . ,Xk), say (al,. . . ,ai-i,ai+i,. . . ,ak) and 
(bl,. . . ,bi-l,bi+l,. . . ,bk). Thus, every value ai is in zxi(C) since if ai = E(al,. . . ,ai-l,ai+l,. . . ,ak) 

then we have ai # E(b1,. . . ,bi-1 ,bi+l,. . . ,bk) and vice versa. 

In the case that S is a singleton, we can prove that [16] is correct by showing that statements [5], 

161 2 

and 

are all equivalent. 

[5] and [6] are shown equivalent above. Since [3] is equivalent to C, we can see that [6] and 1171 

are equivalent. If IS1 = 1 then S = { E(a1,. . . ,ai-l,ai+l,. . . ,ak)). Thus ai G S  and [17] is equivalent 

to [18]. 

It should be noted that since projection equations [4,9,13-161 apply to isolations of the form Xi ri 

E(xl,. . . ,xi-1, Xi+l,. . . , ~ k ) ,  it is the case that Xi e v(E). We call isolations with this property 

independent. As discussed in the next section, it is not always possible to find independent 

isolations. Fortunately, dependent isolations (where Xi E v(E)) have a useful relationship with 

projections as well. It is possible to show that the projection equations are true for dependent 

isolations if we change the equalities (=) to subset or equal (r). Thus, with dependent isolations, 

the projection equations define how to approximate projections and still give useful information 

about how to implement PAC. In fact, using dependent isolations is a step towards decomposing 

complex constraints by introducing intermediate variables for subexpressions. 



3 .2  Computing Isolations 

It is well understood how to isolate variables in constraints with common mathematical functions. 

The Mathematica [Wolf9 11 function IS o la te  [ I can be used to find independent isolations for a 

wide variety of constraints. The Nicolog compiler implements some of the functionality of the 

Mathematica I s o 1 a t e  [ 1 function so it can find reasonable but not necessarily independent 

isolations for all equalities and disequalities, and most inequalities. Nicolog puts constraints in a 

canonical form and then finds isolations by applying inverse functions to both sides of a constraint 

(changing the direction of inequalities as appropriate) until one side is an isolated variable. 

The canonization and isolation process is straightforward for constraints involving only addition, 

subtraction, multiplication, division by a number, and raising to a positive integer power. These 

constraints are put in the form (x + ( y * ( xAn * . . . ) ) + . . . ) r 0, where r is a constraint 

symbol, x and y are numbers, n is a positive integer, and x is a variable with a positive domain. 

Finding the isolations from a constraint of this form is a simple matter of subtracting, dividing, and 

extracting roots on both sides until the variables are reached. Here and in all cases below, the most 

efficient approximate projection procedures will be constructed if the isolation cterms are simplified 

to minimize their complexity. This usually means minimizing the number of function applications. 

If all the variables occur singly in the canonical form, then the isolations are independent. 

Constraints with linear terms are a special case of this. The problem of polynomial constraints, 

which may have more than one independent isolation per variable, is handled by Nicolog with 

dependent isolations which result in approximate projections. 

Division by more general cterms (instead of just numbers) is allowed. To handle this, Nicolog 

first puts the constraint in the form E / F r G / H. Then the above procedure is applied on E * H r 

G * F. In this case, care must be taken to avoid problems which arise when the denominator could 

be zero. 

Other functions, such as min, max, abs ,  the Boolean valued numeric comparison functions (like 

nested equalities, etc.) and Boolean functions have very different algebraic properties. Many of 

their inverses are not even functions, but relations. Nicolog implements a general way of finding 
- inverses with these varied functions. First, the canonical form is generalized to allow variables or 

cterms involving these functions where only variables were allowed previously. This extended 

canonical form requires that all the arguments to the newly included functions (ie. min, max ,  etc.) 

are also in canonical form. Secondly, a general method of specifying inverses for all functions is 

introduced (see below). With this inverse specification method, it is possible to produce an 



isolation for every variable occurrence in every constraint that does not have problems such as the 

possibility of division by zero and the possibility of inequality direction change. 

For any function f which takes n arguments, we denote the inverse of f on the ith argument by f i. 

In other words, 

is equivalent to 

Note that +1 = +2 = -, -1 = +, - 2  = -, *1 = * 2  = /, etc. Note also that many of these new 

inverses are not functions. For instance, m i n i  ( 0 ,  0 ) can be any non-negative number since 

min (X , 0  ) # = 0 is true with x replaced by any nonnegative number. 

For a cterm E(xl,. . . ,xk) possibly containing these new inverses, we generalize the definition of 

E*(S1, ..., Sk) recursively as follows. If E is a numberx, then E* = {x}. If E(xI, ..., Xk) is a 
function application f ( El,. . .,En) , let Yi be a variable with AYi = Ei*(S1,. . . ,Sk) (1 I i Sn) and z 
be a variable with Az = [-m,+=]. Then E*(Si,. . .,Sk) = nZ(Z #= f ( Y i  I .../ Yn) ). 

3 . 3  From Isolations to Projection Constraints 

We can now start to define the function proj which takes an isolation 

ISO = (Xi r E(x1,. . .,Xi-l,Xi+l,. . . , ~k ) ) .  

Proj Iso returns a PC denoting a procedure which implements the assignment 

If Iso is equivalent to the argument constraint C in an arc (Xi, C) passed to the PRevise procedure 

of figure 3, proj Iso implements the assignment required in line 6 of PRevise. 

If r = '#=' then 

proj ISO = (Xi $= pr E) 

where pr is a function which translates cterms (syntax in table 2 of appendix A) to sets (syntax in 

table 3). We will define pr for the cterms allowed in Nicolog shortly. The result of evaluating pr 



E is the closed interval [a ,  b]12 which is an approximation of E*(Axl ,..., Axi-,,Ax,, ,..., Ax>. 

Using equation [4] , we see that [a,  b] = approx(nx,(C)). Operationally, Xi  $= pr E means 

Axi t Axi n [a,  b]. 

So executing X i  $ = pr E performs Axi t AXi A approx(nxi(C)) as expected. 

If r = '#=<' then 

proj Is0 = ( X i  $=< pr E ) .  

Assuming again that the result of evaluating pr E is [a ,  b], executing X i  $ =< pr E is the same as 

performing 

AXi t Axi n [--, bl. 

Using equation [9 ] ,  we see that [-=, b] = approx(nxi(C)), so executing proj ISO again performs as 

expected. Similarly, if r = #< then 

proj Is0 = (x i  $< pr E ) .  

X i  $< pr E means 

AXi t AXi n [-m, <<b]. 

This definition is justified by equation [13]. The definitions of proj Is0 for r = #>= and r = #> are 

proj ISO = ( X i  $>= pr E )  and 

respectively. I f p r  E = [a ,  b ] ,  then they mean 

Axi t AXi n [a, +-I and 

1 2 ~ o r  simplicity in this presentation, we only use closed bounds. This is fine for integer domain systems such as 
the present implementation of Nicolog. For true real domain systems, open bounds can also be useful. It is 
possible to generalize this work to include open bounds. This gives the system more power for dealing with strict 
real inequalities at the expense of a more complicated implementation. Outward rounding [Clea87; B0921 is applied 
when the computations of a and b are not exact. Our << and >> functions round outward in the integer domain and 
could be generalized to round outward so they could be used with real domains as well. 



respectively. These two definitions are justified by equations [14] and [15], respectively 

I f r =  # / =  then 

proj ISO = (Xi $= 

( ( < p r E )  =:=  ( > p r E )  -> \ p r E  

I -in•’. .in•’)). 

Since (<pr E ) = : = ( >pr E ) is true iff E denotes a singleton set, using [16], we can see that 

means nXi(C) exactly. So once again, executing proj Iso again performs 

as expected. 

3 . 4  Interval Computation, Monotonic Regions, and Numeric Functions 

This section defines the function p r  which translates a cterm E(xl,. . . ,x,) to a set term denoting an 
approximation of E*(Ax,,. . . ,AX,) when E contains the numeric functions and Boolean valued 

numeric comparison functions allowed in Nicolog constraints. 

All cterms may contain numbers and variables. For a number n, p r  n = n. With variables, Nicolog 

approximates each domain Ax with [inf Ax,sup Ax]. Thus, Nicolog only uses domain bounds to 

compute approximate projections and ignores any 'holes' in domains which could be created by 

disequalities or certain ways of handling disjunctive constraints or division by values that could be 

zero, et cetera [SH92]13. Thus, for a variable x, p r  x = < X  . . >x. 

3.4.1 Arithmetic Functions 

For expressions containing numeric functions, Nicolog uses interval computation with branching 

constructs. Bundy [I9841 gives a general theory of functions applied to intervals whereas Alefeld 

13we note here that it is not difficult to use the results of this paper to implement consistency algorithms like 
HACR [SH92], which do account for holes in domains. It is a matter of applying projections to the sets of intervals 
containing the domains of source variables and accumulating the union of the results for intersection with the target 
domain. 



and Herzberger [I9831 give some specific results for the arithmetic functions. The following 

formulas from Alefeld and Herzberger define the four arithmetic operations on intervals: 

Formulas [19] and [20] yield very efficient interval computation procedures. Bundy's theory 

provides a way to improve the efficiency of [21] and [22], a way to deal with 1221 when zero is in 

the denominator, and a theory to handle any function, all by analyzing the monotonicity properties 

of functions. Given a function f of n arguments to an n-tuple (11,. . .,In) of intervals, Bundy shows 

how to compute the set 

He calls a tuple of intervals a region. A function is simply monotonic in a region if it is 

monotonicly increasing or decreasing for each of its arguments for all values in that region. More 

formally, simply monotonic is defined as follows. A function f is simply monotonic on a region 

(11,. ..,In) if for all i (1 I i S n), for each xje I j  # i) and each X,YE Ii such that x < y either f is 

monotonicly increasing in argument i: 

or f is monotonicly decreasing in argument i: 

Bundy's theory gives a way to apply fjF to a region when f is simply monotonic in that region. 

Addition and subtraction are simply monotonic in all regions. Multiplication and division are 

simply monotonic in regions which do not contain 0. The result of applying p to a region R 

where f is simply monotonic is an interval which can be computed from the bounds of R. The 

theory further states thatJNF can be applied to a region where f is not simply monotonic by splitting 

the region into smaller regions where f is simply monotonic, applyingp to each of those regions, 

and taking the union as the result. 

Both Cleary [87] and Benahmou and Older [92] use the term interval convex which is related to the 
term simply monotonic as follows. A constraint C(x1,. . . ,xk) is interval convex if Axj is an 



interval (1 I j I k) and for all i (1 I i I k), given the independent isolation Xi r E(xl, ..., xi- 
1 ,Xi+l,. . . , ~ k )  of C, E is simply monotonic in the region (Ax,, . . . ,Ax,,,Ax,,,. . . ,AX;). Our 

definition generalizes previous ones, which only apply to basic constraints involving at most one 

function symbol, such as A + B #= C  and^ * B #= C. 

Since addition and subtraction are simply monotonic in all regions, Nicolog compiles them into 

projection terms using the following definitions: 

These definitions implement [19] and [20] exactly. Bundy [84] explains these definitions in terms 

of monotonicity properties. The intuition behind computing ranges for monotonic functions is this: 

If a function is monotonicly increasing in an argument A, then the lower (upper) bound of the 

range should be obtained using <pr A (>pr A). If a function is monotonicly decreasing in an 

argument A, then the lower (upper) bound of the range should be obtained using >pr A (<pr A). 

Addition and subtraction are monotonic for all arguments, addition increases in both arguments, 

and subtraction increases in its first and decreases in its second argument. 

Equations [21] and [22] suggest the following general translations for multiplication and division: 

p r  (A*B) = 
Bs = [ (<pr A )  * (<pr B) , (<pr A) * (>pr B) , 

(>prA) * ( < p r B ) ,  (>prA)  * (>p rB)  I ,  
min Bs..max Bs 

For convenience, these two definitions name common subexpressions using =. The translation for 

division tests if zero is in the denominator and returns the set of all numbers if so. In Nicolog, 

-in•’ and in•’ are represented simply by the minimum and maximum numbers allowed in the 

system. Thus, constraints involving possible division by zero usually do nothing until the domain 

refinements eliminate that possibility. 

Though these definitions are correct, it is possible to construct much more efficient translations by 

using Bundy's [84] theory to analyze domains of expressions using knowledge about constant 

values, functions, and compile time declared domains. For instance, since multiplication is 



increasing in positive arguments, if it is known that A and B are positive, multiplication can be 

simplified to: 

Division increases with positive first arguments and decreases with positive second arguments, so 

if A and B are positive, division can be compiled to: 

The general definition for division above only tests if the smallest interval containing denominotor 

domain contains zero. However, it is possible that zero has been deleted from the domain, in 

which case the projection is the union of two disjoint intervals. The PCs currently implemented in 

Nicolog do not support the detection of holes in domains nor the propagation of those holes. 

However, PCs could be generalized for use with the the hierarchical arc consistency algorithm 

decribed in [SH92] to deal more effectively with domains which are sets of disjoint intervals. 

The actual definitions Nicolog uses for multiplication and division are multiple conditional 

expressions which test for various simply monotonic regions and resort to the general definitions 

only in the general cases. These definitions can be found in appendix B. Partially evaluating tests 

with compile time information about ranges of expressions can determine that some tests are 

always true or false. In that case, a conditional construct can be replaced by the appropriate 

branch. A special case is for linear equations which, when isolated, only result in multiplication 

or division by constants. For instance, consider the constraint A #= 9*B + C from the example in 

section 2.2.4. Its isolations are 

A #= 9*B+C, 
B #=  (A-C) /9 ,  and 
C #=  A-9*B. 

These isolations are compiled into 

. respectively. Implementing the constraint with these PCs causes PAC to behave as shown in 

section 2.2.4. 

As a consequence of these definitions and partial evaluation, when constraints only apply functions 

in their simply monotonic regions, Nicolog compiles domain update functions which are efficient 

in the sense that they only need to evaluate the isolation cterms twice. In this case, PRevise takes 



O(k) and PAC takes O(ak2e) time as discussed in section 2.2.4. Moreover, PAC computes the 

same result as AC-3 if domains are all intervals, meaning no values have been deleted between 

their bounds. In this case, projections are computed exactly and PAC is a full (ie. non-partial) arc 

consistency algorithm like AC-3, except PAC can also handle non-finite integer and real interval 

domains as well. There are other consistency algorithms with these properties [VanH89;DVH9 11, 

but for less general classes of constraints. 

Most other common numeric functions, such as exponentiation, root extraction, and the 

trigonometric functions, can be handled with techniques similar to those used here for division 

[SH92]. These techniques are most effective when the functions are monotonic in many classes of 

arguments. 

3.4.2 Conditional Expressions and Comparisons 

Next, we consider the conditional expression function cond. There are various possible ways to 

translate applications of this function. For Nicolog, we chose a way that gives enough power to 

do complex reasoning like that shown in the example at the beginning of section 2.1.2. Of course, 

if a different implementation of the cond primitive is needed, it can always be programmed with 

PCs. Here is the definition used in Nicologl4: 

p r  condl(D,B,C) = 
DneqB = ( ( < p r D ) > ( > p r B )  ; ( > p r D ) < ( < p r B ) ) ,  
DneqC = ( ( < p r D ) > ( > p r C )  ; ( > p r D ) < ( < p r C ) ) I  
( DneqB -> (DneqC -> { >  ; 0 )  
; DneqC -> 1 
I 0 .  . l )  

14~ecall from the end of section 2.1.4 that bl(boolfalse,either) = b(boolfalse,either,either) and b2(bool,true,either) 
= b(bool,either,true,either) are specialized Boolean conditionals for when two of the branches are the same. 



The translation of cond l  is quite complicated. The subexpression DneqB is true if D and B range 

over disjoint sets and thus cannot be equal. A similar statement holds for DneqC. The fail set, 

{ } , which causes backtracking, is the result if D can be equal to neither B nor C. If D can be 

equal to only B, then the result is true and if D can be equal to only C then the result is false. The 

translations for cond2, cond3 and cond  are straightforward, considering that they test if A has 

to be true or false. 

The #= functions are compiled as follows: 

The translation for #=I tests if C has to be true or false, and acts like an equality projection atom if 

true, a disequality projection atom if false, and does nothing otherwise. Since #= is symmetrical, 

# = is the same as #=I. The translation for # = returns true if the arguments have to be the same, 

false if the arguments can not be the same, and both Boolean values (0.  .l) otherwise. These 

definitions allow equality reasoning such as the following: 

Since AA and AB are disjoint, A and B cannot be equal and A#=B is false, Thus, C#=5 is false as 

well. Consequently, 5 is deleted from Ac. 

The # / = functions are compiled using similar reasoning as follows: 



The translations for the #=< functions are as follows: 

The translations of #=<I and #=<2 test if C is true or false, and act like the appropriate inequality 

projection atoms. The translation for #=< returns true if the arguments have to be less than or 

equal to, false if the arguments cannot be less than or equal to, and both Boolean values otherwise. 

The translations for the other inequality functions are similar. 

Given these definitions, Nicolog can do quite sophisticated reasoning for fairly complex 

constraints. For instance, consider the following query: 

?-  E1:1..10, E3:1..4, E4:5..7, 
(El #=< 5)*2 + (E3 #=< E4)*2 #=< 3. 

E4 = -:{5..7) 
E3 = -:{1..4) 
El = -:{6..10) 

Nicolog reasons that El #=< 5 must be false, since E3 #=< E4 is true for any values in the 

domains of E3 and E4. If El #=< 5 were true, then the two products would sum to 4, but the 

sum has to be less than 4. So since ~l must be greater than 5, values below 5 are removed from 

its domain. 



3.4.3 Absolute Value, Minimum, and Maximum 

Now that we have defined translations for the cond and Boolean valued comparison functions, it 

is easy to define the translations for the abs, min, and m a x  functions in terms of these functions. 

For instance, c o n d ( A  #>= 0 ,  A ,  -A)  # =  B is equivalent to a b s ( A )  # =  B. 

Unfortunately, Nicolog does not find independent isolations for the cond formulation, so its direct 

translation results in 3 projection atoms for each occurrence of the variable A. Moreover, each 

projection atom is fairly complicated and weak in its domain refinement capability. For instance, 

we have: 

?-  B : 3 . . 1 0 ,  cond((A #< 0 ) ,  -AI A )  #= B .  
A = - : - i n f . . i n f  
B = - :3.  . 1 0  

If AC-3 were applied to this constraint, the answer would be 

Fortunately, we can compile more efficient PCs which also get this result. Nicolog uses the 

following translations for the abs functions: 

pr (abs ( A )  ) = 
( < p r A )  >= 0 -> P ~ A  

; ( > p r A )  < 0 -> pr -A 
I 0 .  . m a x [ -  ( < p r A ) ,  ( > p r A )  ] 

The translation of absl ( B )  is simply the union of the ranges of -B and B. This gives absolute 

value constraints more power: 

Note that the definition of pr (abs ( A )  ) makes it possible to revise domains even when A ranges 

over both positive and negative numbers. For instance: 

Min can also be implemented with cond, giving the following behavior: 



However, we can see that c cannot really be any bigger than 10, the largest value for A. To do this 

kind of reasoning, we use the following definitions: 

pr ( m i n i  (C ,  B) ) = 
(>prminl(C,B))  =< (<prB) -> prC 

I - in • ’ .  . i n • ’  

The apparently circular definition for pr ( m i n l  (C,  B) ) in terms of itself is actually an abuse of 

notation. Recall that m i n l  ( C , B ) # =  A means the same as m i n  ( A ,  B  ) # =  C, so A is the 

first argument to the minimum function. The definition for mini above depends on whether A is 

known to be less than B. Since A is not present in this context, we use m i n i  ( C , B ) to refer to A. 
Similarly, we use min;! (C,  A )  to refer to B  in the definition of pr ( m i n 2  (C ,  A )  ) . To actually 

implement this, Nicolog keeps track of cterms for both sides of a primitive constraint. While 

recursively descending into one side, Nicolog applies inverse functions to the other side so it can 

be referred to when necessary. For instance, to compile a PC for the variable x using the 

constraint 

the cterm involving x is isolated in two steps: 

X #=  mini (W, Z )  -Y.  

In the first step, we can see that m i n i  (W, Z ) is equal to X+Y. When the second constraint 

isolating X is compiled, we need to evaluate pr(minl (w, z ) ). To do this, we substitute X+Y for 

m i n i  ( W ,  Z ) in the definition of m i n l  above. 



The translations for the m i n  function check if the relationship between the arguments has to be =< 

or >= and do the appropriate thing in each case. Using these definitions, we get: 

The translations for the m a x  functions are similar. 

3 .5  Boolean Functions 

Boolean functions have been implemented by using m i n  for / \, m a x  for \ /, and 1 -B for -B 

[B092]. Codognet and Diaz [93] implement Boolean constraints with PCs using arithmetic only. 

For instance, they use 

However, Nicolog uses a specialized approach for Boolean constraints which more directly 

corresponds to the Boolean propagation rules. 

Boolean cterms are compiled by Nicolog using a four branch generalization of binary decision 

diagrams (DDs) [Brya86; Brya921. A DD is a labeled rooted directed acyclic graph representing a 

Boolean cterm B. We use label(D) to denote the label of the root of a decision diagram D. DDs 

are either terminal or nonterminal. A terminal DD consists of a single terminal root node. A 

nonterminal DD consists of a root node connected to four descendant DDs. Terminal DD roots and 

nonterminal DD branches are labeled by one of {(a, (0  j , { 1 ) , {0,1) ) , each of the possible Boolean 

domains. Nonterminal DD roots are labeled by cterms. Associated with each nonterminal DD D 
there is a function  branch^ which takes a Boolean domain B and returns the descendant DD 

connected to the branch labeled by B. As with cterms, we take D(x~, . .  .,x,) to mean D is a DD 

containing variables xi,.  . . ,x,. 

For each Boolean cterm B(x1, . . . ,X,) we can construct a DD D(x1,. . . ,x,) such that 

where D*(Ax,,. . . ,Axn) is defined by the following two rules: 

I .  If D is terminal then D*(AX .,Axn) = label(D). 

2. If D is nonterrninal with label(D) = E, let 



B = €*(Ax ,,..., Ax,)) n {0,1}. 

Then 

D*(Ax,, . . . ,Ax,) = branchg(B)*(Ax,, . . . ,Axn). 

Informally, this means each nonterminal tests a cterm E(xl,. . . ,x,) (usually a variable, but not 
always with mixed constraints) by evaluating E*(AX,, . . . ,AXn). The branch labeled with 

E*(Ax,, . . . ,Ax,) n {O, 1 } leads toward the terminal labeled with result of evaluating B* on the 

domains of its variables. Following the path from the root of a DD to a terminal according to the 

tests gives the result of evaluating B*. For instance, suppose 

and we wish to compile the PC which projects E # =  B onto E. This PC is of the form 

where evaluating pr B is equal to B* (AA, AB , Ac , AD) . If we depict a DD with circles around 

nonterminal labels, rectangles around terminal labels, and labeled lines directed from top to bottom 

for branches, an appropriate DD is shown graphically in figure 4. To calculate 

B* (AAr AB , AC AD) we follow the path from the root node at the top to a terminal node at the 

bottom. At each nonterminal, we take the branch labeled by the domain of the variable labeling the 

node. Eventually, we reach a terminal which is labeled with the result. Since empty domains 

cause backtracking immediately, we omit the branches on $3, which all lead to a terminal labeled 

with @. An explicit 0 terminal is never needed for the usual Boolean functions. However, an 

explicit 0 terminal is needed for the inverses of some Boolean cterms, as we will see. 



Figure 5. The template DD for C / \ 1B 

To define pr B, for a Boolean cterm B, we first convert B to a DD D and then convert D to pr D, a 

set valued expression. The translation from DDs to set expressions is trivial. If D is a terminal 

labeled 0 ,  {O), { 1 }, or {0,1) the pr D is { } , 0, 1 ,  or 0 . . l ,  respectively. If D is a nonterminal 

of the form 

then pr D is 

If two of the branches go to the same DD, then they are replaced by the b l  or b 2  branches as 

appropriate (see table 3 of appendix A). 

The generalization of binary DD algorithms to four branch DDs is straightforward. To describe the 

algorithm, we use template DDs for each of the Boolean functions. For instance, the template DD 

corresponding to C/ \1B is shown in figure 5. This DD encodes all the usual propagation rules 

for a constraint such as A / \ B #= C. For instance, if c : 1 then AA is set to { 1 ) no matter what 

AB is. If B : 1 and c : 0 then AA is set to {O}. Finally, note that if B : 0 and c : 1 then the result is 

0, which causes backtracking. 

A Boolean cterm B can be converted to a DD as follows. First, define an arbitrary order on the 

non-Boolean subterms. Next, replace all non-binary function symbols by equivalent forms using 

only binary function symbols. For instance -B is replaced by B# 1. Then, replace each 0 with a 



terminal labeled by {0), each 1 with a terminal labeled by { 1 ), and each non-Boolean subterm E 

(ie. variable or nested constraint) by the following DD: 

Then, replace a subexpression of the form Dl b D2 where Dl and D2 are DDs and b is an binary 

Boolean function symbol with template DD T(xl,x2). We describe how to replace such a 

subexpression by a DD next. To finish converting B we replace subexpressions of the form D l  b 

D2 until none remain. 

To convert Dl  b D2 using b's template T(X,Y) to a DD D = combine-r(D1, D2), use the following 

rules, which generalize the APPLY operation in [Brya92] to four branch DDs. 

1. If Dl and D2 are both terminal then D is also terminal with 

2. If one of D l  and D2 is nonterminal and the other is not, without loss of generality, 
assume Dl is nonterminal. Then 

label(D) = label(Dl), 

and for B E {@,{0),{1),{0,1)), 

branch~(B) = combine~(branch~~(B), D2). 

3 .  If both Dl and D2 are nonterrninal and label(D1) ;t label(D1) without loss of generality, 
assume label(D1) is before label(D1) in the cterm order. Then label(D) and  branch^ are 
the same as in rule 2 above. 

4. If both Dl and D2 are nonterminal and label(D1) = label(D1). Then 

branch~(B) = combinq(branch~~ (B), branch~~(B)).  

For example, consider applying these rules with 

Dl (A,B) = A / \ B (figure 6), 

D~(A)  = -A (figure 7), and 

T(X,Y) = X \ / Y (figure 8). 



The result is 

combine~(D~, D2) = D(A,B) = ( A  / \ B \ / -A) = (A => B )  (figure 9). 

First, we apply rule 4 to nonterminals (1) of Dl  and (a) of Dl. This results in a nonterminal (la) 

of with descendents defined by recursive combinations for each of the descendent DDs down 

corresponding branches. Next, we can apply rule 1 to terminals (2) and (b). Evaluating 

T*({O},{l}) gives {I},  the label of terminal (2b) in D. Rule 2 applies to nonterminal (3) and 

terminal (c), resulting in nonterminal(3c) with descendents defined by applications of rule 1 with 

terminals (4), (5), and (6) combined with (c), resulting in terminals (4c), (5c), and (6c), 

respectively. Finally, (7) combines with (d) according to rule 1 to produce (7d). 

7) 

Figure 6. A DD for D~(A,B) = A / \ B 

Figure 7. A DD for D ~ ( A )  = -A 



Figure 8. A template DD for T(X,Y) = X \ / Y 

Figure 9. ADDfor D(A,B) = ( A  / \  B \ /  -A) =(A => B )  



4 .  Comparison with other CLP Languages 

In this chapter, we compare Nicolog with most other CLP languages. Section 4.1 compares 

Nicolog with languages which process constraints using symbolic manipulation. Section 4.2 

looks at the original domain manipulation based CLP languages and their successors. Section 4.3 

explores relationships between Nicolog and domain manipulation based CLP languages with very 

similar capabilities. 

4 . 1  Symbolic Manipulation Languages 

As mentioned in the introduction, many CLP systems like CLP(R) [JM87], CAL [SA89], and 

Prolog 111 [Colm90] process constraints using symbolic manipulation algorithms. CHIP 

[DVS*88] also provides symbolic manipulations for linear rational number and Boolean domains. 

Symbolic manipulation algorithms for all but very limited domains tend to be very inefficient. For 

instance, the polynomial algorithms of CAL are doubly exponential (0(22n)) in the worst case. 

The Boolean algorithms of CHIP, Prolog 111, and CAL, though theoretically no less efficient than 

those of Nicolog (both 0(2n)), are less efficient for many practical problems [DC93]. Evidence 

for this is in the popularity of a standard CHIP package which provides an alternative way to do 

Boolean constraint processing with the finite integer domain system by using the following 

equivalences: 

For efficiency, CLP(R), Prolog I11 and CHIP limit their real and rational domain constraint solving 

to only linear constraints and delay others until they become linear. This means these systems are 

far better than Nicolog for problems which can be formulated well with linear constraints. 

However, very little active constraint processing is possible for problems which are not linear. 

Boolean constraint processing can be formulated in linear systems as above, but again there is a 

loss in active constraint processing since the constraints are nonlinear. No major symbolic 

manipulation system allows mixing of Boolean and numeric constraints. All treat the constraint 

solver as a black box over which the programmer has no control and there is no way to program 

active constraints not supplied by the system. 

4 .2  The Original Domain CLP Languages and Their Successors 

The original domain manipulation based CLP languages are CHIP [VanH89] and BNR Prolog 

[OV90]. A finite domain constraint system is supported by CHIP. It allows domains which are 



small sets of integers or symbolic constants. Symbolic domain constraints are handled with a full 

arc consistency algorithm, while nonlinear integer constraints are handled with partial arc 

consistency algorithms very similar to Nicolog. Nicolog trigger tests are implemented as in the 

new CHIP compiler [AB91]. BNR Prolog also uses partial arc consistency algorithms for the real 

interval domain. BNR Prolog supports all of the usual real functions including exponential and 

trigonometric functions. Nicolog was designed to support the implementation of the BNR Prolog 

real constraint system. BNR Prolog decomposes complex constraints into basic constraints by 

introducing new variables. This is not necessary in Nicolog. CHIP and BNR Prolog were the 

first systems which allowed the user some control over the constraint solving procedure. Like 

Nicolog, both allow the user to write customized case analysis algorithms. 

CHIP also has declarations which allow the user to implement nonprimitive constraints with 

arbitrary logic programs (LP constraints). When so declared, the LP is used to test combinations 

of values in an enumeration-based full arc consistency algorithm. For instance, consider the 

following LP constraint: 

lookahead p (d, d) . 
p (X,Y) : - X + 2  #=< Y ; Y + 2  #=< X .  

The lookahead p (d, d) declaration means that the constraint is triggered on any change to the 

domains of the variables. Other declarations allow LP constraints to be triggered when specified 

variables are instantiated. The above LP constraint is equivalent to 

in Nicolog. However, to achieve the same result, the LP constraint would enumerate the values in 

Ax and Ay, removing values from one domain that fail to satisfy the predicate for any value from 

the other domain. Though this method of programing active constraints is very easy to use, it is 

not nearly as efficient. The PCs take constant time whereas the LP constraints take time 

proportional to the product of the domain sizes. 

Aristo [EK92] improves LP constraints in two ways. The first improvement is lookahead 

declarations are replaced by trigger and satisfiability tests, as described in section 2.2.3. Instead of 

. just any change or instantiation triggering a constraint as in CHIP, changes to the upper and lower 

bounds can also be specified. Nicolog also has this capability. The second improvement is instead 

of using the LP as a passive test in the arc consistency algorithm, Aristo accumulates domains 

which are the union of all solutions found for the LP constraint. This means Aristo only uses a 

partial arc consistency algorithm unless explicit enumeration is performed in the LP constraint. 

Thus, the LP constraint 



does the same thing as the Nicolog PCs above in constant time as well, though the PCs require less 

overhead and thus will be faster. However, if explicit enumeration is done in an LP constraint, 

Aristo gets the same effect as the full arc consistency based CHIP LP constraints. This is not 

available in Nicolog. 

Echidna [HSS*92;SH92] handles the same finite domain constraints as CHIP and implements all 

the real numeric functions of BNR Prolog. However, instead of simple intervals, Echidna allows 

domains which are the union of disjoint intervals. This allows Echidna to handle real numeric 

constraints with discontinuous functions and disjunctive constraints, such as that defined by p / 2 

above, more actively. This is because intervals can be deleted in the middle of real domains. 

Sidebottom and Havens [92] give an arc consistency algorithm called HACR. Like the PAC 
algorithm of figure 3, HACR needs to compute approximate projections of constraints. Thus 

Nicolog constraint compilation techniques and PCs can be applied directly in the implementation of 

HACR as well. 

The original inspiration for Nicolog was CLP(BNR) [B092], which evolved from BNR Prolog. 

As in Nicolog, arbitrary mixing of Boolean and numeric constraints is allowed in CLP(BNR). 

CLP(BNR) also handles both real and integer domains. However, CLP(BNR) has no way for the 

user to program custom nonprimitive constraints which can be programmed in Nicolog with PCs. 

Benhamou and Older [92] give a nice theory of how to compute projections for the various basic 

constraints used in CLP(BNR). However, they do not describe the details of how their theory is 

implemented, so it is hard to compare CLP(BNR) precisely with Nicolog. However, it appears 

that the Nicolog implementation of primitive constraints has the same propagation power as the 

equivalent constraints in CLP(BNR). Instead of DDs, CLP(BNR) implements Boolean constraints 

byusingminfor / \ ,maxfor  \ / ,  and 1- for-B. 

4 . 3  CLP Languages Most Similar to Nicolog 

The two systems most similar to Nicolog are cc(FD) [VHSD91; VHSD931 and clp(FD) [DC93; 

CD931. The implementation of Nicolog is very similar to that of clp(FD) as described in [DC93]. 

Both clp(FD) and cc(FD) include the same subset of Nicolog PCs. The developers of those 

systems call PCs indexical constraints and use a slightly different syntax. The difference between 

Nicolog, cc(FD), and clp(FD) is that only Nicolog has conditional expressions and tests tests. 

However, cc(FD) and clp(FD) do include pointwise arithmetic functions on sets. Pointwise 

arithmetic, which could be added to Nicolog without difficulty, allows the implementation of full 

arc consistency. For instance, consider the constraint 



An extremely active way of processing this constraint is if x is deleted from Ax then x+l should be 

deleted from AY. Similarly, if y  is deleted from AY then y-1 should be deleted from Ax. With its 

current compilatio scheme, Nicolog fails to do this if the deleted value is not a domain bound. In 

cc(FD) and clp(FD), we can program this behavior with the following PCs. 

where 

d o m ( ~ )  -1 = {y -  1 I ~ E  Ay} and 
dom(X) +1= {x+ 1 Ix E AX}. 

More generally, cc(FD) provides two distinct classes of primitive constraints: one which uses full 

arc consistency and one which uses interval based partial arc consistency. Full arc consistency is 

not currently available in Nicolog nor clp(FD). While cc(FD) uses an optimal arc consistency 

algorithm based on AC-4 [MH86; DVH911, Nicolog and clp(FD) use the simpler AC-3 algorithm 

[Mack771 augmented with triggers. Triggers appear to make AC-3 about as efficient as AC-4 in 

practice. 

Boolean constraints can be implemented with PCs using only arithmetic [CD93] . For instance, 

for 

Codognet and Diaz use 

This handling is equivalent to the DD based PCs used by Nicolog. Arbitrary mixtures of Boolean 

and numeric constraints are not currently implemented in clp(FD). However, the PC language in 

clp(FD) can be extended with arbitrary functions programmed in C15, so specific constraints can 

be implemented readily. 

As well as PCs, cc(FD) has three general constraint classes: cardinality, constructive disjunction, 

and blocking implication. Each of these classes can be formulated in Nicolog with primitive 

constraints andlor PCs. 

-- 

l5private communication with Daniel Diaz, September, 1993. 

55 



The general form of a cardinality constraint is 

# (L,  [ C l ,  C 2 ,  . . . , CNI , H ) ,  

which means between L and H of the list of constraints [c l  , c 2  , . . . , CN] are true. This 

can be expressed straightforwardly in Nicolog by nesting constraints as follows: 

Cardinality constraints are implemented by keeping true and false counters for the constraints 

[Cl  , C2, . . . , CN] . The true (false) counter keeps track of the number of constraints which 

are true (false) for all values in their variable domains. If the true counter reaches H, the remaining 

constraints are forced false. If the false counter reaches L, the remaining constraints are forced 

true. This turns out to be exactly the effect of the equivalent Nicolog constraint. Cardinality 

constraints can be used to implement the Boolean constraints which are implemented with DDs in 

Nicolog. Arbitrary nesting of cardinality constraints is allowed. This makes arbitrary 

combinations of Boolean and numeric constraints possible. For instance, 

is equivalent to 

is equivalent to 

Constructive disjunction is motivated by the need to do more active constraint processing than is 

possible with other implementations of disjunction. For instance, 

can also be formulated by the predicate 

Unfortunately, this gives the following behavior: 



which is the same as cc(FD) if the disjunction is implemented with a cardinality constraint: 

1 [ ( C  #= A), ( C  #= B)1, 2 ) .  

However, if we used the primitive maximum constraint, which can be compiled into PCs, we get 

more active constraint processing: 

which is the same result as cc(FD) if constructive disjunction is used in the predicate above. 

Constructive disjunction in cc(FD) is very powerful and has a fairly complicated implementation 

[VHSD93]. Nicolog PCs can implement the same behavior as simple cases of constructive 

disjunction which involve only interval reasoning. 

Blocking implication constraints in cc(FD) are constraints like: 

Declaratively and operationally, this means the same as the Boolean implication: 

In summary, Nicolog can implement a large part of cc(FD) with PCs alone. Major omissions from 

Nicolog are full arc consistency and more complex constructive disjunction constraints. However, 

in some ways, Nicolog is more flexible and extensible than than cc(FD). For instance, cc(FD) 

does not provide facilities for directly specifying constraint propagation rules such as those 

encoded in the square packing PCs of section 2.1.4. Moreover, Nicolog is conceptually simpler 

than cc(FD) and consequently easier to implement. This is demonstrated by the fact that Nicolog 

can be implemented with much less source code than cc(FD) [VHSD93]. 



5 .  Examples and Empirical Results 

In this chapter, we give several examples which further demonstrate Nicolog's capabilities. We 

also compare a simple Nicolog implementation with some of the fastest and most powerful domain 

manipulation based CLP systems. 

The Nicolog system consists of a compiler which translates Nicolog programs to instructions for 

our extension of the Warren abstract machine WAM [Warr83; Kit911 which we call the constraint 

logic abstract machine (CLAM). We use WAM extensions similar to those used by the CHIP 

compiler [AB91] and clp(FD) [DC93]. The Nicolog system is very simple, consisting of about 

5500 lines of Prolog for the compiler and 5500 lines of C++ for the CLAM emulator, both 

including blank lines and comments. The extensions for constraints account for about half of the 

code in both the compiler and the emulator. The machine emulator was implemented rapidly, 

taking one person month to translate it from a Scheme prototype. The machine emulator code has 

not yet been profiled or optimized to any large extent. It was simply implemented in the way that 

seemed best from the outset given our experience with the Lisp prototype. 

Only integer domains are currently implemented, but the emulator is configured to support real 

domains as well. Some intermediate computations (for example, those using division) are done 

using floating point numbers. Small domains, containing less than 32 consecutive integers, are 

implemented as a machine word and a base b where bit i is set iff the value i+b is in the domain. 

Larger domains are implemented as intervals with pairs of bounds. Thus, disequality constraints 

and PCs using the set complement operator sometimes do nothing to large domains when they 

should be able to punch holes in the middle of intervals. 

All computation results in this chapter are given using a Nicolog system running on a Sun 

Sparcstation IPX which runs at 28.5 Mips. Comparative results for other systems are normalized 

to eliminate machine speed differences. 

5 . 1  Cryptarithmetic 

In this section, we see that for cryptarithmetic problems, it can be more efficient to avoid 

decomposing complex constraints into sets of basic constraints by introducting new variables. A 

cryptarithmetic problem is of the following form: given a word equation such as SEND + MORE = 

MONEY, find an assignment of digits to letters which makes the equation true. Each letter must be 

assigned a different digit and no resulting number can start with the digit 0. The cryptarithmetic 

problem is a good test to see if Nicolog's method of handling complex constraints can be more 

efficient than decomposing complex constraints into basic constraints with extra variables. In 

Nicolog, SEND + MORE = MONEY can be naturally encoded as: 



A1 1Di f f sets up a disequality constraint between the argument variables, forcing them to all have 

different values. Label implements a backtrack search (with interleaved calls to the consistency 

algorithm) for values for the given variables. From the complex constraint, Nicolog produces 

eight independent isolations, such as: 

This isolation corresponds to the following optimized PC: 

Using these PCs, the PAC algorithm is identical to the consistency algorithm for linear integer 

arithmetic used in CHIP [VanH89]. For this complex constraint involving 8 variables with 10 

possible values each, arc revision takes time proportional to the number of variables. 

Enumeration-based arc revision like that used in AC-3 is not practical since there are around 108 

combinations to enumerate. Moreover, most of the work done by enumeration-based arc revision 

is useless since almost all the domain refinements can be calculated with only domain bounds. 

To compare the Nicolog approach with systems that decompose constraints, we re-expressed the 

above constraint with a large number of constraints of the form A + B #=  C and n*A #=  B 

where n is a number. Note that not only are decomposed constraints more expensive because of 

the extra constraints and variables, but they are also weaker in search pruning power because the 

consistency algorithm can only use part of the whole constraint at any one arc revision. 

To make the comparison as fair as possible, we implemented special instructions in the Nicolog 

abstract machine to process these two basic constraints as efficiently as possible. Processing the 

. constraint directly took 17.66 ms to complete the search for all solutions (finding only one) and the 

decomposed constraint processing took 26.53 ms. So for this program, processing complex 

constraints directly is about 1.5 times faster. 



N-Queens is the problem of placing n queens on an n by n chess board so that no two queens 

attack each other. It has been widely used to demonstrate the capabilities of various constraint 

processing algorithms. In this section, we experiment with various ways of handling the 'no 

attack' constraint, showing some of the flexibility of Nicolog. 

A now classic CLP solution to the problem is given in [VanH89]. The problem is formulated with 

a variable ~i with domain 1 . . n for each queen. If a solution has Qi = j ,  this means that a queen is 

placed in rank i, file j, on the chess board. In Nicolog, this program is written as follows: 

queens (N, Qs) : - safe( [I). noattack ( [ I , -Q , -N) . 
length(Qs,N), s a f e ( [ ~ I ~ s l )  :- n o a t t a c k ( [ ~ ~ I ~ s l , ~ , N )  : -  
Qs:l. .N, noattack(Qs,Q,l) , QN # / =  Q, 
safe(Qs), safe (Qs) . QN # / =  Q - N, 
label (Qs) . QN # / =  Q + N, 

N1 is N + 1, 
noattack(Qs,Q,Nl) . 

As described in [VH89], if label instantiates the variables in order, the forward checking (FC) 

algorithm is used. If label uses delete f f to instantiate variables in the dynamic order of 

increasing domain size, then forward checking with the first fail principle [HE801 (FCFF) is 

implemented. Since we wish to compare this program with others, we label the FC version 

FCorig. 

With Nicolog's rich constraint language, we can easily try many different approaches to constraint 

processing. For instance, the number of constraints per pair of queens can be reduced from 3 to 2 

using the absolute value function in noattack, as follows: 

noattack([~NI~s] ,Q,N) :- 
QN # / =  Q, 
abs(QN-Q) # / =  N, 
N1 is N + 1, 
noattack (Qs, Q, N1) . 

We will call the FC program with this clause FCabs. 

In Nicolog, we can maximize the efficiency of constraint processing by using PCs instead of 

primitive constraints. Observe that if a queen variable Q becomes instantiated, then we can delete 

the values Q, Q-N, and Q+N from the domain of another queen variable which is N elements away 

in the list of all queens. Thus, we can rewrite noattack with just two PCs as follows: 



These PCs combine the six PC which result from the compilation of the disequalities into just two 

PCs. The two PCs are symmetrical, so we will explain only the first: 

Since QN appears in an expression, this PC is not triggered until QN is instantiated to a constant. 

So operationally, it means when QN is ground, delete QN, QN+N, and QN-N from AQ. This is 

exactly what the three disequalities would do with three different PCs. We call the FC and FCFF 

programs using this clause FCcust and FCFFcust, respectively. 

This custom programmed constraint is more efficient than those above for two reasons. First, it 

does not attach any projection atoms to the variable N, which we know is a constant at run time. 

Of course, a smart compiler could deduce this automatically since N is in a call to is. Second and 

more importantly, the custom constraint combines the three constraints into one, and they all use a 

common groundness test instead of testing the groundness of queen variables independently. 

As efficient as the custom constraint is, it can further be improved when we are using the FC 

algorithm. Since the variables are instantiated in the order given by the list of queen variables, arc 

revisions on arcs which point backward in the list are useless. This is because they only check 

what the converse forward arc has already ensured. Thus, we would be better off doing only 

directed arc consistency by using only arcs which point forward in the list. We can do this by 

deleting the backward PC, as shown in the following noattack clause: 

We call the FC and FCFF programs using this clause FCcustdir and FCFFcustdir, respectively. 

Directed arc consistency is also important because it can be used to efficiently solve CSPs with tree 

like structures [Freu82; Freu85; DP891. 

The following table gives the time in seconds to find the first solution16 for the four constraint 

implementations above using the FC algorithm: 

16we do not use time to find all solutions because, for larger n, there are many, many solutions. 
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The table shows the time in seconds for Nicolog to find the first solution. From these results, we 

can see custom constraints are by far more efficient than the others, and the directed constraint is 

much faster than the non-directed one as n grows. It is also clear that the complexity of processing 

constraints involving absolute value outweighs the benefit of reducing the number of constraints 

they provide. 

As n grows large, Van Hentenryck [89] showed that the FCFF algorithm is far superior to the FF 

algorithm. So we would expect that the FCFF algorithm would beat an FC algorithm if n were 

large enough. Note that FCFF instantiates at least some of the variables in the order given by the 

list. So can directed constraints be used to improve the FCFF algorithm? The following table 

n 

8 

10 

12 

compares time in seconds to find the first solution using the two possibilities: 

FCabs 

0.27 

0.47 

1.637 

FCorig 

0.15 

0.18 

0.48 

So it is clear that as n grows, the pruning performed by the backward arcs is critical to the 

efficiency of the FCFF algorithm. 

5 . 3  The Schur Lemma: a Classic Boolean Benchmark 

FCcust 

0.16 

0.16 

0.23 

In order to see how Nicolog's use of DDs for Boolean constraints compares with other systems, 

we have compiled execution times of a program for the so called Schur lemma problem [B092; 

CD931. The problem is to try to put n balls labelled by the integers { 1,. . .,n) into three boxes so 

FCcustdir 

0.17 

0.16 

0.18 



that for any triple (x,y,z) such that x + y = z, balls x, y, and z are not all in the same box. This 

problem has a solution iff n < 14. 

To benchmark Boolean systems, this problem is formulated as a Boolean matrix Mij (1 I i i n, 1 i 

j I 3) where Mij is true iff ball i is in box j. The constraints for this problem are each ball must be 

in exactly one box: 

and for each (x,y,z) such that x + y = z and j 

for the requirement that these balls are not all in the same box. 

The best results for this problem are obtained by clp(FD) [CD93], which is about 5 times faster 

than CHIP with this formulation for n = 13 and 14, and about 12 times as fast for n = 30. The 

following table compares more recent clp(FD) results with Nicolog both running the same program 

(given in appendix C) on a Sun Sparcstation with a 28.5 Mips processor. The times to find all 

solutions are in seconds. 

n Nicolog Nicolog 
clp(FD) clp(FD) 

As n grows, Nicolog improves relative to clp(FD). Since the same program is run in both 

. systems, the only explanation for the improvement can be differences in how constraints are 

handled. Two differences may contribute to the improvement. First, since clp(FD) does not have 

DDs for Boolean constraints, clp(FD) formulates [23] with arithmetic PCs 



Note that this PC sets Mxj to 0 if Myj and M a  both become 1 .  This is exactly the same behavior of 

the DD based PCs Nicolog compiles from [23]. To see how much difference this makes, we can 

compare the data for the DD based Nicolog constraints in the table above with arithmetic based 

constraints in Nicolog. The following table compares the ratio of the arithmetic handling over the 

DD handling. 

Since the advantage of using DDs decreases as n increases, we can assume that using DDs is not a 

major factor in Nicolog's improvement. 

The correct explanation for Nicolog's improvement is that clp(FD) spends an increasingly larger 

proportion of its execution time generating the CSP before the searching part of the program is 

executed. The following table shows the percentage of total execution time spend by Nicolog and 

clp(FD) constructing the CSP before starting the search. 

So clp(FD) is very fast at searching, but it spends most of its time constructing the CSP as n 

increases. The most likely explanation for this difference is that the Nicolog abstract machine adds 

a constraint to a CSP with a single complex instruction while clp(FD) does the same with several 

simple instructions. This difference appears to be an important factor as n grows large. 

I n I Nicolog clp(FD) 



Figure 10 A full adder 

5 .4 Digital Circuit Diagnosis 

The digital circuit diagnosis problem is as follows. 

Given: 

1. A description of a digital circuit with a set of components C. 

2. A function f computed by the circuit. 

3. A symptom consisting of an input output pair (in,out) such that f(in) + out. 

Find: 

A diagnosis D c C which, if not working correctly, could result in the circuit computing out 
given in. 

The motivation behind the following example is twofold. First, the diagnosis of digital circuits is 

an interesting problem which needs to be solved in the real world. Second, traditional Boolean 

benchmarks are not very good indications of the general usefulness of Boolean constraint solvers. 

For instance, the Boolean formulations of the Schur lemma, n-queens, and pigeon hole principle 

[B092; CD931 have very simple clausal forms and are not difficult to solve. However, many 

interesting Boolean problems have no simple transformation to clausal form. Section 5.3 shows 

that Nicolog performs well on problems with simple formulations in terms of the basic 

connectives: / \, \ /, and -. Here, we are interested in showing Nicolog's capabilities for a 

problem which has no simple basic formulation. We aim to show that a very short, simple and 

clear Nicolog program solves the problem very efficiently. 

. The specific circuit we will be using for benchmarks is an n bit adder with forward carry 

propagation. However, any combinatorial circuit diagnosis problem could easily be formulated 

from its network description. An n bit adder is constructed from n full adders where a full adder 

circuit is shown in figure 10. For bit i, (0 2 i < n) Xi and Yi are the input bits, Zi is the output bit, 

C l i  is the input carry bit and Ci is the output carry bit. C l o  is the input carry to the n bit adder and 



c,-1 is its output carry. Forward carry propagation is achieved by connecting Ci to C l i + l  (0 I i I 

n-2). Let nurn, be a function for converting from n element lists of bits to numbers defined by: 

num, ([XO,. . . ,Xi,. . .,Xn-11) = x0.20 + . . . + xi.Zi + . . . + ~ ~ - ~ . 2 ~ - ~  

Then an n bit adder computes the function: 

where 

num, ([XO,. . . ,~,-11) + num, ([YO,. . . ,Y,-11) + C1) = nurn, ([Zo,. . . ,Z,-1,CI) 

This example was constructed based on an example in [Colm90]. The core of the program is the 

following predicate: 

f u l l A d d e r ( X ,  Y, C1, Z, C ,  DO, D l ,  D2, D3, D 4 )  :- 
-DO => (U1 <=> X / \  Y )  , 
- D l  => (U2 <=> U3 / \  C 1 )  , 
-D2 => ( C  <=> U 1  \ /  U2) ,  
-D3 => (U3 <=> X # Y ) ,  
-D4 => ( Z  <=> U3 # C 1 )  . 

This predicate specifies a full adder as depicted in figure 10 with input wires x, Y, and C1; output 

wires z and C; and internal wires Ul, U2, and U3. Thus, the right hand side of each implication 

specifies the relationship between the wires of a given gate. The full adder has 5 components 

labeled 0 to 4 in figure 10. For each component j we have a Boolean variable D j  which we 

interpret as true iff component j is faulty. Thus, each of the implications means if a component is 

not faulty then it enforces the proper relation between its wires. Moreover, the set of D variables 

which are true define the set of components which form a diagnosis for the circuit. It should be 

noted that each of the constraints in the fullAdder predicate has a very complicated clausal form. 

Even their negation normal forms are reasonably complicated. 

In order to construct an n bit adder, we need n element lists XS, YS, and zs of Boolean variables, 

as well as c l  and c, the initial input and output carries. We index lists from the left starting at 0. 

The call 

will string together n full adders to create an n bit adder with the given inputs and outputs. DS is a 

5n element list of Boolean diagnosis variables where the jth element of D is true iff the component 

c in the adder for bit i is faulty where j = i.5+c and 0 I c < 5. That is i is the quotient of j and 5 

and c is the remainder. 



The adder predicate is defined by the following two clauses: 

adder( [I, [I, [I ,C,C,Ds,Ds). 
a d d e r ( [ ~ ~ ~ s l , [ ~ ~ ~ s l ~  [zIzs]~c~,C~ [D0,D1,D2,D3,~4~~s1],Ds) : -  

• ’ U ~ ~ A ~ ~ ~ ~ ( X , Y , C ~ , Z , C ~ ~ D O ~ D ~ ~ D ~ ~ D ~ ~ D ~ ) ,  
adder (Xs , Ys , Zs , C2, C, Ds) . 

So we can input fault symptoms as atomic numbers instead of binary lists, we define a predicate 

bits (N, X, Xs) which is the relation numN(Xs) = X. It is defined as follows: 

bits(N,X,Xs) :- 
length (Xs, N) , 
xs:o. .l, 
bitsl(Xs,O,N,X) . 

bitsl ( [I ,N,N, 0) . 
bitsl([~il~sl],~,N,X) : -  

I < N, 
I1 is I + 1, 
X #= Xi*2"I+Xl, 
bitsl (Xsl, Il,N,Xl) . 

Bits / 3 can be used to compute both num, and its inverse. 

Now, we need a predicate to put the previous predicates together: 

nadder(N,X,Y,Z,Cl,C,Ds) : -  
[X,Y, Z] : 0. .2"N-1, 
[Cl,C] :o. .I, 
bits (N,X,Xs) , 
bits (N,Y,Ys) , 
bits(N,Z,Zs), 
adder(Xs,Ys,Zs1C1,CIDsI [ I ) .  

Nadder (N, X, Y, z , C1, C , DS ) creates an N bit adder with the given symptom inputs X, Y, cl 

and outputs z, C and produces the diagnosis tuple Ds. Interestingly, it can also be run backwards 

to produces symptoms given diagnoses. 

Now nadderl7 alone is not very useful, since one diagnosis for any symptom is that every 

component is faulty. However, many components breaking simultaneously is very unlikely. 
. What we are really interested in is minimal diagnoses. We can use the following predicates to help 

us find them: 



The predicate diagnose adds an extra variable F which is the number of faults, as well as enforcing 

the f(in) # out constraint from the symptom specification. Note that counting the number of true 

Boolean variables is very complicated using the basic Boolean connectives. For instance, suppose 

we want to state that exactly F elements of an m element list Ds are true. One way to do this is 

with a disjunction 

for each subset of size F and a negated conjunction 

for each subset of size ~ + 1 .  So the number of constraints grows exponentially with the number of 

faults. However, in order to do minimal fault diagnosis, we take F as a variable and minimize it. 

It is not clear that there is any good way to express this using the usual Boolean connectives. Thus, 

pure Boolean logic would probably have to iteratively increase F, attempting a new and bigger 

Boolean problem as F increases. Systems which allow summing of Boolean variables can set up 

the Boolean problem only once and then search for solutions which minimize F. 

Now, we have a fairly powerful system for diagnosing full adders. Here are some examples of its 

capabilities (label (DS) searches for values for the variables in DS using backtrack search): 

? -  diagnose(2,0,0,2,1,0,Ds,l), label(Ds). 
D s = [ 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 1  
Alternatives? (y/n) y 
No more solutions 

So if a 2 bit adder gives the symptom 0+0+1=2+0, then the only possible diagnosis assuming 

exactly 1 fault is component 3 in bit 0. 

As mentioned earlier, we can also run the program backwards to generate symptoms from 

diagnoses: 

?-  diagnose(2,X,Y,Z,C1,CI [11010101010,0101010] ,I) , 
label ( [X,Y, Z,Cl,CI ) . 

C = O  
C1 = 0 
z = 2 
Y = O  
X = O  



For a larger example, consider the following 27 bit adder query: 

?-  diagnose(27,0,1342177271134217727,1,1,Dsll)l label(Ds). 
No solutions 

This means that no single fault diagnosis can explain this symptom. We can try again with exactly 

two faults: 

?-  diagnose(27,0,134217727,1342177271111,Ds12)I label(Ds). 
D = [ . . . ] % bit 0 component 3 and bit 26 component 2 are broken 
Alternatives? (y/n) y 
D = [ . . . ] % bit 0 component 3 and bit 26 component 1 are broken 
Alternatives? (y/n) y 
D = [ . . . ] % bit 0 component 3 and bit 26 component 0 are broken 
Alternatives? (y/n) y 
No more solutions 

So in this example, assuming two faults, bit 0 component 3 is definitely broken and one of 

components 0, 1, or 3 in bit 26 are broken. 

We can also minimize the number of faults in the diagnosis as follows: 

? -  diagnose(27,134217727I134217727I134217727lOlOlDslF)I 
label([~I~s]). 

F = 2 
DS = [ . . .I % bit 0 component 5 and bit 26 component 3 are broken 
~lternatives? (y/n) n 

Since label / 1 tries values in increasing order, the first solution will have the minimal number of 

faults. 

Nicolog answers these queries almost instantly. In fact, it is hard to find an example where more 

than one or two faults are required for diagnosis and it is hard to make Nicolog take any significant 

time to answer these queries. However, at least one class of symptoms requires at least n faults to 

diagnose in an n bit adder: 



Though the probability of this class of failures is almost zero, it makes a good benchmark for 

Boolean systems. Once again, we compare with clp(FD) [CD93;DC93], one of the fastest CLP 

languages that can mix Boolean and numeric constraints. The following table shows the time to 

find the first minimal fault solution in seconds. 

For sufficiently large n , it appears that clp(FD) is about three times faster than Nicolog for this 

problem. We note that the clp(FD) program is identical to the Nicolog program except for the way 

some constraints are handled. Since clp(FD) does not currently support DDs, it uses PCs that 

simulate the effect of DDs using arithmetic. For instance, for a constraint such as17: 

clp(FD) uses 3 PCs of the form 

Nicolog 
clp(FD) 

Z $= ( X + Y )  mod 2. 

c~P(FD) n 

This PC is not triggered until X and Y are both instantiated to Boolean constants. Then, z is set 

true if X and Y are different and false otherwise. This is exactly the same behavior as the DD based 

PC compiled from the Nicolog program. 

Nicolog 

The Schur lemma benchmark for n = 500 generates a far larger CSP than this diagnosis benchmark 

for n = 8. This leads us to believe that the CSP generation efficiency is not a major factor the 

diagnosis benchmark. Since clp(FD) is at least six times faster than Nicolog on the Schur lemma 

17~ecall that # means 'exclusive or.' 



benchmark for n = 500 while only about three times as fast for this diagnosis benchmark for many 

small instances, it appears that DD based PCs are more efficient for hard problems with complex 

Boolean constraints. 

5 . 5  The Magic Sequence Problem 

The magic Sequence problem has been used frequently to test various CLP languages [VanH89; 

VD91; AB91; B092; VHSD931. The magic sequence problem is: find a sequence of n 

nonnegative integers [xo, ..., x,-l] such that for all i (0 5 i < n), xi is the number of occurrences of 

the integer i in the sequence. In other words, for all i (0 5 i < n), 

It turns out that there is only 0, 1, or 2 magic sequences for a given n. Here are some magic 

sequences: 

For n 2 7, there is a single solution of the form [n-4,2,1,0n-7,1,0,0,0]. As equation [24] 

suggests, this problem is naturally formulated in terms of cardinality constraints. Van Hentenryck 

and Deville [91] show that using cardinality constraints is far faster than the usual CLP approach to 

this problem [VanH89]. In Nicolog, we can naturally express cardinality constraints as sums of 

nested equality constraints. Thus, we can write a very elegant Nicolog program to solve the 

problem: 

magic(N,Xs) :- constrs([l,N,-Xs). sum([],-1,O). 
length (Xs, N) , c o n s t r s ( [ ~ ~ J ~ s l ] , ~ ,  SU~([XJIXS],I,S) : -  
Xs:O. .N, Xs) :- S #= (XJ#=I) + S1, 
constrs(Xs,O,Xs), sum(Xs,I,XI), sum(Xs,I,Sl) . 
labelf f (Xs) . I1 is I + 1, 

constrs (Xsl, 11, Xs) . 

Label f f (XS ) does a backtrack search for values for Xs using the first fail principle [VanH89]. 

This means that at each level in the search, a variable with the smallest domain is selected to be 

instantiated next. The call sum (Xs , I , XI ) is equivalent to equation [24] above. The call 



cons ts (XS , O r  Xs ) makes equation [24] true for each element XI of the list Xs. Benhamou 

and Older [92] show that this problem can be solved much faster if the following redundant 

constraints are added: 

These redundant constraints are easy to program in Nicolog using the following two predicates 

suml([llO). 
surnl([Xl~s] ,s) : -  

S #= X + S1, 
sum1 (Xs, S1) . 

Here are the times in seconds for Nicolog to find all solutions using the program above with the 

two redundant constraints added: 

Two of the fastest systems for solving this problem are clp(FD) [DC93] and cc(FD) [VHSD93]. A 

clp(FD) program, which processes the constraints in exactly the same way as Nicolog, runs about 

seven times faster on average. The results in [VHSD93] are for a program which uses cardinality 

constraints instead of summing constraints. For the data given in [VHSD93] (n = 12,17,22), 

cc(FD) is a little over twice faster than Nicolog. 

. 5 . 6  Disjunctive Scheduling 

The bridge scheduling problem described in [VanH89] has been widely used to benchmark CLP 

systems. This problem involves scheduling 45 fixed duration tasks in a way that minimizes the 

completion time of the project. The problem involves precedence, distance, and disjunctive 

constraints. A task i can be formulated by a variable start time Si and a fixed duration Di. The 

initial domains for the start time variables is 0 to the sum of all task durations. A precedence 



constraint between task i and task j means that i must be finished before j starts. This can be 

formulated by the constraint 

Si+Di #=< Sj. 

Distance constraints, such as i must end no later than five days after j starts, can be formulated with 

constraints like 

Disjunctive constraints, which result from tasks that must use the same resource exclusively, can 

be formulated as the disjunction of precedence constraints. 

Van Hentenryck [89] observed that interval based constraint propagation is sufficient to solve 

scheduling problems with only precedence and distance constraints without any search at all. He 

shows that the classical critical path method (CPM) algorithm is identical to applying interval based 

arc consistency, assigning the task completion time to the minimum value in its domain, and then 

applying interval based arc consistency once again. After this, each task with a single possible 

value is on the critical path and all other tasks have slack defined by the range of their domains. 

Scheduling with disjunctive constraints is NP-complete, so the real challenge is how to handle 

disjunctive constraints. Van Hentenryck [89] showed that, since arc consistency solves the 

problem without disjunctive constraints, a good approach is to search for an ordering of the 

disjunctive tasks which minimizes the completion time using a branch and bound algorithm. The 

branch and bound is implemented by a predicate which searches for a solution, asserts its 

completion time as the earliest completion time found so far and then starts the search again with a 

new constraint that the completion time has to be earlier. This process continues until no new 

solution is found. Then, the completion time for the last solution is optimal. 

The solution Van Hentenryck gave formulated disjunctive constraints with a nondeterministic 

predicate: 

disj(Sl,Dl,S2,D2) : -  Sl+Dl#=<S2. 
disj (Sl,Dl, S2,D2) :-  S2+D2#=<Sl. 

This means that only one of the inequalities can be active at a time. However, it is possible to use 

the constraints more actively. Earlier choices can cause one of the inequalities to become false 

(true), forcing the other to be true (false). Frederick Benhamoul* provided a program which uses 

lgprivate communication, May 1993. 



nested inequalities to get more active constraint propagation by using the following predicate for 

disjunctive tasks: 

disjl (Sl,Dl,S2,D2,B) :- (Sl+Dl#=<S2) #= B, B \ /  (S2+D2#=<Sl) . 

In this predicate B is true exactly when task 1 precedes task 2 and false exactly when 2 precedes 1. 

With this predicate, all the disjunctive constraints are active before any searching takes place. The 

search for an ordering of disjunctive tasks is achieved by collecting a list BS of Boolean variables, 

one for the fifth argument of each call to di s j 1 / 5 and then searching for values for each variable 

in Bs. 

We timed Nicolog running a program supplied by Benahmou, which is given appendix D. This 

program implements disjunctive constraints using the dis j 1 / 5 predicate given above. For this 

program, Nicolog takes 2.98 seconds total time to find and prove the optimal solution. In [AB91], 

it is stated that the CHIP compiler system takes 2.2 seconds to do the same. Though they do not 

give their program, we presume that it uses the dis j / 4 predicate above. In [VHSD93], a time of 

2.88 seconds is reported for cc(FD). The indicate that they handle disjunctive constraints in a way 

similar to dis j 1 / 5 above, except they use cardinality constraints instead of embedding 

constraints in a disjunction. 

5.7 Square Packing 

The time in seconds to find the first solution with the square packing program given in section 

2.1.3 are as follows. 

The cc(FD) program in [VHSD93], from which our program was derived, is identical except 

cardinality constraints are used instead of Boolean constraints. Using this program, cc(FD) solves 
- problem 3 in 37.9 seconds. 

The optimizations using PCs given in section 2.1.5 involve the set complement operator. Thus, 

they are only effective when domains are represented in a way that allows deletion of arbitrary 

elements. In Nicolog, this means only domains with less than 32 elements, since larger domains 

are represented by intervals. So currently, only the solution time of problem 1 can be significantly 



decreased with these optimizations. Optimizing both nooverlap2 / 6 and sumof SqsWith/ 4 

with PCs, problem 1 is solved in 1.00 seconds. If the same speedup resulted for problem 3, 

Nicolog could solve it in 41.9 seconds, almost as fast as cc(FD). 

5.8 Summary of Results 

In this chapter, we have shown that the Nicolog approach to CLP is viable. The examples here 

show that the Nicolog compiler can usually automatically generate PCs which implement the same 

constraint propagation algorithms used by other systems. We have also shown that PCs make it 

possible to implement optimized constraint propagation algorithms for complex constraints. 

Nicolog, though it is simple unoptimized research software, is able to solve hard problems in time 

comparable to the most efficient CLP systems. 



6 .  Conclusions and Future Work 

In this thesis, we described Nicolog, a domain based CLP language which is suited to the 

development of hybrid consistency/case analysis algorithms. The main observation exploited in 

this thesis is that the approximate projection of mathematical relations is a key operation in arc 

consistency algorithms suitable for combination with case analysis algorithms such as backtrack 

searching. In order to take advantage of the importance of approximate projection in arc 

consistency, we defined an new class of constraints called projection constraints (PCs). PCs 

encapsulate the knowledge of how to do approximate projection, opening up the arc consistency 

algorithm to Nicolog programmers. PCs allow programmers to fine tune and extend the 

capabilities of an arc consistency algorithm. Moreover, they are well suited as a target language for 

the compilation of many classes of constraints, including mixed Booleadnumeric, non-linear, 

cardinality, constructive disjunction, and implication constraints [VHSD93]. In fact, PCs can be 

seen as a reduced instruction set suitable for implementing most forms of local constraint 

reasoning. We gave and formally verified the translation scheme used by Nicolog to compile a 

very general class of constraints available in CLP(BNR) [B092] into PCs. CLP(BNR) constraints 

include non-linear numeric, Boolean, as well as arbitrary mixtures with nested constraints. 

We showed how the interval reasoning and case analysis supported by PCs can be used to avoid 

inefficient enumeration-based arc revision. We also showed how complex constraints can be 

handled directly, instead of decomposing them to semantically equivalent but sometimes less 

efficient sets of basic constraints. We have seen that PCs can also be used to efficiently implement 

most of the constraint reasoning capabilities available in other domain manipulation based CLP 

languages. 

We gave several short Nicolog programs which solved complex and fairly difficult problems. We 

also observed that a very simple implementation of Nicolog runs with speed comparable to some of 

the fastest CLP systems available. In particular, Nicolog is about as fast as CLP(BNR) [B092] 

and CHIP [VanH89], but much more flexible and extensible. Nicolog is also more flexible and 

extensible than clp(FD) [DC93], which only implements the subset of Nicolog PCs that are also 

found in cc(FD) [VHSD93]19. Though Nicolog is substantially slower than clp(FD), there are 

only superficial differences between the extensions of the WAM used to implement Nicolog and 

clp(FD). Thus, the difference in performance is primarily due to the fact that clp(FD) compiles 

WAM instructions into C code instead of using a software emulator as Nicolog does. cc(FD) is the 

only CLP language with flexibility and extensibility comparable to Nicolog. As well as a subset of 

19~ecall that in cc(FD) and clp(FD), PCs are called indexical constraints. 



PCs, cc(FD) has cardinality, constructive disjunction, and blocking implication constraints which 

are not available in Nicolog. However, Nicolog can solve many problems that require the extra 

constraints in cc(FD) with comparable efficiency. Thus, PCs are a simpler way to obtain the 

power of cc(FD). 

In the future, we plan to compile Nicolog's WAM instructions directly to C, so its efficiency will 

become comparable to clp(FD). We also plan to generalize the Nicolog PCs and algorithms further 

to better exploit 'holes' in domains, so that closer approximations of full arc consistency can be 

programmed. In particular, we plan to add hierarchical domains [SH92] for large integer domains 

and real numeric domains. These additions require only small local changes to Nicolog and will 

not increase the complexity of the whole system by much. In [VHSD93], it is reported that cc(FD) 

can solve many difficult problems with speed comparable to that of specialized programs 

painstakingly developed in procedural languages. We expect that with additional reasoning 

capabilities and better implementation, Nicolog should be able to solve many of these problems in 

comparable time as well. Real domain variables should make Nicolog better suited for solving 

engineering problems involving continuous variables, such as engine [Jone90] and automatic 

transmission [NL93] design. 

We also plan to add support for incremental query editing [Have921 for interactive tasks. This 

means that users, after specifying a query and looking at the solution, will have the option of 

making arbitrary modifications to the query, looking at the new solutions, and continuing the 

process indefinitely. After a query edit, the system will not restart the whole computation from 

scratch, since the system is bound to have done a large amount of work on the user's behalf that is 

independent of the query edit. Instead, it will try to reuse parts of the proof which are independent 

of the query changes and make minimal modifications to the parts of the proof which depend on 

the changes. Implementing this requires maintaining reasons for decisions made by the system and 

using these reasons to identify parts of proofs which depend on query changes. To implement 

this, we plan to modify the WAM such that the stack discipline is no longer strictly followed. 

Incremental query editing will be useful in the implementation of interactive mixed initiative user 

interfaces for applications such as scheduling and configuration. 
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A .  Concise Overview of Nicolog 

This appendix gives a concise overview of how Nicolog extends Prolog with constraints. The 

syntax of Nicolog is the same as the syntax of the Edinburgh family of Prologs as described in 

[SS86]. Nicolog uses some infix and prefix operators for constraints. The operator syntax can be 

described with the op / 3 predicate which is standard in Edinburgh Prolog. Table 1 gives the 

operator precedences for the constraint symbols used in Nicolog. They are defined with the 

standard Prolog predicate 

op (Precedence, Associativity, Symbols). 

Lower precedence numbers mean stronger binding power. Thus A+B * C means A+ ( B * C ) . The 

associativity symbols f x and f y are for unary prefix operators while xf x, xf y, and yf x are for 

binary infix operators which are non, right, and left associative, respectively. Thus, x-Y- z 
means (X-Y) - Z   and^, B, c means A, (B,C). A#=B#=C is a syntax error. See [SS86] for a 

more complete description. 

op(1100, xfy, 

op(1050, xfy, 

op(1000, xfy, 

OP( 900, fy, 

op( 700, xfx, 

op( 700, xfx, 

op( 700, xfx, 

OP( 550, xfy, 

op( 525, xfx, 

OP( 520, yfx, 

OP( 510, yfx, 

op( 505, fx, 

OP( 500, yfx, 

op( 500, fx, 

op( 500, fx, 

OP( 400, yfx, 

op( 300, xfx, 

op( 200, xfy, 

op( 100, fx, [<I>] ) 
Table 1. Precedence of Nicolog constraint symbols 



The following tables give the extended BNF syntax for the domain, primitive, and projection 

constraints in Nicolog. Each syntax table gives a brief description of the meaning of each 

construct. For more details, see section 2.1. 

Table 2 gives the syntax of domain constraints. Table 2 only gives some of the rules for set and 

expr. The other rules for these categories define constructs which are normally only used in 

projection constraints. The complete sets of rules for the set and expr categories are given in table 

4. The syntax for primitive constraints is given in table 3 and the syntax for PCs is given in table 

dconstr ::= term : set (domain declaration) 

term ::= any Edinburgh syntax prolog term 

set ::= range 
variable 
{range, . . . I  
\ set 
... 

range ::= expr . . expr 
expr 

expr : : = 
variable 
number 
in•’ 
- expr 
expr + expr 
expr - expr 
expr * expr 
expr / expr 
expr A expr 
roo t  (expr, expr) 
l o g  (expr, expr) 
min [expr, . . . ] 
max [expr, ...I 

(single range, eg. 1 . .5) 
(domain of variable) 
(union of ranges) 
(complement) 

(multiple element range) 
( expr . . expr) 

(expression) 
(instantiated variable) 
(constant) 
(infinity) 
(negate) 
(add) 
(subtract) 
(multiply) 
(divide) 
(exponentiation) 
(root extraction) 
(logarithm) 
(minimum of sequence) 
(maximum of sequence) 

. . . 
Table 2. Syntax of Nicolog domain constraints 



pconstr : : = (primitive constraint) 
c tem # = ctem (equal) 
ctem # / = ctem (not equal) 
ctem #=< ctem (less or equal) 
ctem #< ctem (less) 
ctem #>= ctem (greater or equal) 
ctem # > ctem (greater) 
c tem / \ ctem (and) 
c tem \ / ctem (inclusive or) 
- ctem (not) 
c tem = > ctem (implies) 
ctem < => ctem (equivalent) 
ctem # ctem (exclusive or) 

ctem ::= (constraint term-argument to constraint) 
variable 
number 
- ctem (negate) 
ctem + ctem (add) 
ctem - ctem (subtract) 
ctem * ctem (multiply) 
ctem / ctem (divide) 
ctem A ctem (exponentiation) 
root ( c t e m ,  c t em)  (root extraction) 
l o g  ( c tem , c tem ) (logarithm) 
abs ( c tem ) (absolute value) 
min ( c tem , c tem ) (minimum) 
max ( c tem , c tem ) (maximum) 
cond ( c tem , c tem , ctem ) (conditional expression) 
pconstr (nested constraht) 

Table 3. Syntax of Nicolog primitive constraints 



proj ::= 
variable $= set 
variable $=< expr 
variable $>= expr 

set ::= range 
variuble 
{ 1 
{range, . . . I  
\ set 
\ \ expr 
expr -> set ; set 
b (set ,  set, set, set) 
b l  (se t ,  setl ,  set21 
b2 (se t ,  set;!, set1 ) 

range ::= expr . . expr 
expr 

expr ::= 
variuble 
number 
i n • ’  
<set 
>set 
f a i l  
<<: expr 
>> expr 
- expr 
expr + expr 
expr - expr 
expr * expr 
expr / expr 
expr A expr 
root  (expr, expr) 
l o g  (expr, expr) 
m i n  [expr, . . . I  
m a x  [expr, . . . I 
expr , expr 
expr ; expr 
expr = : = expr 
expr =\= expr 
expr =< expr 
expr < expr 
expr > = expr 
expr > expr 
expr - > expr ; expr 
b (set ,  expr , expr, expr) 
bl (set ,  exprl , expr;!) 

(projection constraint) 
(means variable E set) 
(= variable $ = - i n • ’  . . expr) 
(= variable $ = expr . . in•’) 
(single range) 
(= (<variable) . . ( >variable) ) 
(fail set) 
(union of ranges) 
(complement) 
(= \ expr. . expr ) 
(conditional set) 
(Boolean conditional set) 
(= b (set ,  set1 , set2, set:!) ) 
(= b (set ,  set1 , set2, set1 ) ) 

(multiple element range) 
(= expr . . expr) 

(expression) 
(instantiated variable) 
(constant) 
(infinity) 
(lower bound) 
(upper bound) 
(fail expression) 
(just smaller) 
(just bigger) 
(negate) 
(add) 
(subtract) 
(mu1 tiply) 
(divide) 
(exponentiation) 
(root extraction) 
(logarithm) 
(minimum of sequence) 
(maximum of sequence) 
(and test) 
(or test) 
(equal test) 
(not equal test) 
(less or equal test) 
(less test) 
(greater or equal test) 
(greater test) 
(conditional expression) 
(Boolean conditional expression) 
(= b (set ,  exprl , expr2, expr2) ) 

b2 (set ,  expr2, exprl ) (= b ( set, exprl , expr2, exprl ) ) 
Table 4. Syntax of Nicolog projection constraints (PCs) 



B . Compiling Multiplication and Division 

The following are the full definitions used to compile multiplication and division into PCs. 

pr (A*B) = 
LBA = (<prA), 
UBA = (>prA), 
LBB = (<prB), 
UBB = (>prB), 
AZero = (LBA =:=  0, UBA =:= O), 
ANotPos = (UBA =< 0) , 
ANotNeg = (LBA >= O), 
BZero = (LBB =:=  0, UBB =:= O), 
BNotPos = (UBB =< O), 
BNotNeg = (LBB >= O), 
Bs = [LBA*LBB,LBA*UBB,UBA*LBB,UBA*UBB], 
AZero -> 0 
BZero -> 0 
ANo~Pos, BNo~Pos -> UBA*UBB . .  LBA*LBB 
ANotPos, BNotNeg -> UBA*LBB . .  LBA*UBB 
ANotNeg, BNotPos -> LBA*UBB . .  UBA*LBB 
ANotNeg, BNotNeg -> LBA*LBB . .  UBA*UBB 
min Bs..max Bs 

pr (A/B) = 
LBA = (<pr A) , 
UBA = (>prA), 
LBB = (XprB), 
UBB = (>prB), 
AZero = (LBA = :=  0, UBA =:=  O), 
ANeg = (UBA < 0 ) , 
APos = (LBA > 0) , 
BZero = (LBB = :=  0, UBB =:=  O), 
BNeg = (UBB < O), 
BPos = (LBB > O), 
Bs = [LBA/LBB,LBA/UBB,UBA/LBB,UBA/UBB], 
AZero -> 0 

; BZero -> { )  % division by 0 fails 
; ANeg, BNeg -> UBA/LBB . .  LBA/UBB 
; ANeg, BPos -> UBA/UBB . .  LBA/LBB 
; APos, BNeg -> LBA/LBB . .  UBA/UBB 
; APos, BPOS -> LBA/UBB . .  UBA/LBB 
; ( BZero -> { )  % division by 0 fails 

; LBB=<O , UBB>=O ->-inf..inf 
; min Bs . .max Bs) 

The start with the definition of common subexpressions and then proceed with a case analysis of 

the arguments. Nicolog does not use these definitions directly at runtime. Instead, it infers 

maximal domains from information which is available at compile time, such as domain constraints 

and variables occuring in calls to built in predicates such as is / 2. Then, for a given multiplication 



or division, the case that applies at compile time is used in the compilation. For instance, the 

constraint in 

has the following isolations: 

To project onto c, we need to evaluate pr (A*B). Since we know from the domain constraints that 

both A and B are non-negative, this compiles into ( <A) * ( <B ) . . ( >A) * ( >B ) . To project 

onto A, we need to evaluate pr (C / B). Since the domain constraints allow B to possibly be zero, 

the final general case is the result? 

( (<B) =:= 0 / (>B) =:= 0) -> 0 
; (<B) =< 0, (>B) >= 0 -> -in•’. . in•’ 
; min [ . . . I  . . max [ . . . I ) 

Since A and c are both know to be positive, projecting onto B gives (<c) / (>A) . . 
(>C) / (<A). 

20~ t  is actually possible to give even more specialized rules for division which consider when one argument contains 
zero and the other does not. It is even possible to perform arc consistency on constraints at compile time to infer 
smaller maximal domains for the variables. In the example here, this would lead to the fact that B cannot be zero. 
The Nicolog compiler currently only does the analysis described in the main text here. 



C. Schur Lemma Program 

This appendix contains the Nicolog program used to generate the results given in section 5.3. It 

was translated from a clp(FD) program which was kindly supplied by Daniel Diaz. Recall that the 

problem is to try to put n balls labelled by the integers { 1,. . . ,n} into three boxes so that for any 

triple (x,y,z) such that x + y = z, balls x, y, and z are not all in the same box. The following 

program formulates the problem as a matrix Mu (1 I i I n, 1 I j I 3) (implemented with a list of 

lists) where Mu is true iff ball i is in box j. The onlyl / 1 predicate sets up the constraints that 

force each ball to be in exactly one box: 

Mil + Mi2+ Mi3 #=  l(1 I i l n ) .  

The other constraints, that for each (x,y,z) such that x -t. y = z 

for the requirement that these balls are not all in the same box, are enforced by the 

constraints/2 predicate. This predicate optimizes the case where x = y by simply using 

schur (N, A) : - 
create_array(N,3,A), 
A:0. .I, 
only1 ( A )  , 
constraints (A, A) , 
array-labeling (A) . 

onlyl([l). 
onlyl([[Il,I2,13] IA]) : -  

I1 + I2 + I3 #=  1, 
onlyl (A) . 

constraints ( [I , -) . 
constraints ( [-] , -) . 
constraints([-, [KlIK2,K31 1~21, [[11,12,13] 1 ~ 1 1 )  :- 

-(I1 / \  Kl) , 
-(I2 / \  K2), 
-(I3 / \  K3), 
trip1et~constraints(A2,Al,[11,12,13]), 
constraints (A2 ,Al) . 

triplet~constraints([1,~,~). 
triplet-constraints([[Kl,K2,K3] A21, 

[ [Jl, J2, J31 All, 
[11,12,13]) :- 

-(I1 / \  Jl / \  Kl), 
-(I2 / \  J2 / \  K2), 



-(I3 / \  5 3  / \  K3) , 
triplet-constraints (A2 , A l ,  [Il, 12,131 ) . 

create-array(NR,NC,A) : -  
length (A, NR) , 
create-array1 (A, NC) . 

create-arrayl([],NC). 
create-arrayl([~I~s],NC) :- 

length(R,NC) , 
create-array1 (Rs , NC) . 

array-labeling([]) . 
array-labeling([ll~]):- 

label ( L )  , 
array-label ing (A) . 

label([]). 
label([~I~]) :- 

indomain (X) , 
label (L) . 



D . Bridge Construction Scheduling Program 

This appendix contains the Nicolog program used to generate the results in 5.6. It is a solution to 

the bridge scheduling problem given in [VanH89] and was translated from a CLP(BNR) program 

which was kindly provided by FredCric Benhamou. 

% the following four predicates define the problem 

% define(K,Xstop) K is a list of tasks where each task 
% consists of a name, variable start time, and fixed 
% duration Xstop is the start time of the psueudo task 
% which signals project completion 
define (K,Xstop) : - 

K = [[start,X0,0],[al,Xa114]I[a21Xa212]I[a31Xa3,2]l 
[a4,Xa4,2l1 [a5,Xa5,2l,[a6,Xa6,51,[~l,X~l~201~ 
[p2,Xp2,13], [ue,Xue, 101 , [slIXslI 81 I [s2,Xs2, 41 , 
[s3,Xs3,4],[~4,Xs4,4]~ [s5,X~5,43~[s6,Xs6,10], 
[bl,Xbl,l], [b2,Xb2,1] , [b3,Xb3,1] , [b4,Xb4,1] , 
[b5,Xb5,1], [b6,Xb6,1] , [abl,Xabl,l] , [ab2,Xab2,1] , 
[ab3,Xab3,1],[ab4,Xab411]I [ab5,1l, [ab6,Xab6,1], 
[ml,Xm1,16], [m2,Xm2,83 , [m3,Xm3,8] , [m4,Xm4,8] , 
[m5,Xm5,81,[m6,Xm6,201, [1lIX1lI2], [tlIXtlIl2], 
[t2,Xt2,12],[t3,Xt3/12]I[t41Xt4112]I [t51xt5,12]1 
[ua,Xua,lO], [vl,Xvl,l5] , [v2,Xv2,10] , [klIXklIO] , 
[k2,Xk2,01, [sto~,Xsto~,Oll, 

L = [XO,Xal,Xa2,Xa3,Xa4IXa5IXa6IXplIXp2IXueIXsl,Xs2lXs3, 
Xs4,Xs5,Xs6,Xbl,Xb2IXb3IXb4IXb5IXb6IXablIXab2,Xab3, 
Xab4,Xab5,Xab6,Xml,Xm2IXm3IXm4IXm5IXm6,XlllXtlIXt2l 
Xt3,Xt4,Xt5,X~a,Xvl~Xv2~Xkl~Xk2~Xstop], 

L : 0..120. 

% list-disjunction(L) L is a list of lists of disjuctive 
% task names. The tasks in a sublist must not overlap in 
% time . 
list-disjunction(L) : - 

L = [[vl,v2], [ll, tl, t2,t3,t4,t5] , [m11m2,m3,m4,m51m6] , 



% addcons-list(L) L is a list of pairs of tasks which satisfy 
% distance constraints. For instance, [ee,sl,bl,4] means 
% the end time of sl must be 4 units of time before the 
% end time of bl. 
addcons-list (L) : - 

L = [ [ee,sl,bl,4], [eels2,b2,41 , [eeIs3,b3,41, 
[ee,~4,b4,4],[ee,s5,b5,4]~[ee,s6,b6,4], 
[ss,sl,ue,6], [ss,s2,ue,6] , [ssIs3,ue,6], 
[ss,s4,ue,6], [ss,s5,ue,6] , [ ~ ~ ~ ~ 6 ~ u e , 6 ]  , 
[se,sl,all3I, [se,s2,a2,31,[seI~31~~~31~ 
[se,s4,~2,31, [se,s5,a5,31,[se,s6,a6,31, 
[es,ua,ml,-2],[es,uaIm21-2]I [e~~ua,m3~-2], 
[e~,ua~m4,-2],[e~~ua,m5,-2]~[e~~ua,m6,-2]]. 

% exact-day-list(L) L is a list of tasks which have to start 
% on a specific day. 
exact~day~list([[ll13011). 

% this is the top level predicate for the program 
bridge : -  

T is cputime, 
define(K,Xstop), 
constraints (K, Bs) , 
T2 is cputime - TI 
write('setup ' ) ,  write(T2), write(ms), nl, 
minimize(Bs,Xstop,MinCompletion), 
T1 is cputime - T, 
write('tota1 I), write(Tl), write(ms), nl. 

constraints (K, B) : - 
precedence (K) , 
extra-constraints(K), 
disjunctions (K, B )  . 

% Precedence Constraints 
precedence(K):- 

listeprec (L) , 
precede (K, L) . 

precede(K, [I ) . 
precede(K, [[Tl,T2] ITS]) :-  

find(K, [Tl,Xl,Dl]), 
find(K, [T2,X2,D2] ) , 
Xl+Dl #=< X2, 
precede (K, Ts) . 

% Extra Constraints 
extra-constraints (K) : - 

addcons-list(L), 
addcons (K, L) , 
exact-day-list(Ll), 
exact-day(K,Ll) . 



% Distance constraints 
addcons (K, [I ) . 
addcons(K, [[C,Tl,T2,N] (LSI) :- 

constype(K,C,Tl,T2,N), 
addcons (K, Ls) . 

constype (K, ee1T1,T2 ,N) : - 
find(K, [Tl,Xl,Dl]), 
find(K, [T2,X2,D21), 
Xl+Dl #=< X2+D2+N 

constype(K,ss,Tl,T2,N):- 
find(K, [Tl,Xl,Dl] ) ,  
find(K, [T2,X2,D2]), 
X2+N #=< X1 

constype(K,se1T1,T2,N) : -  
find(K, [Tl,Xl,DlI), 
find(K, [T2,X2,D21), 
X1 #=< X2+D2+N 

constype(K,es,Tl,T2,N):- 
find (K, [TI, XI, Dl] ) , 

% Exact Day Constraints 
exact-day(K, [ 1 ) . 
exact-day(K, [ [TIN] ILI ) : - 

find(K, [T,X,DI) , 
X #=  N, 
exact-day(K,L) . 

% Disjunctive Constraints 
disjunctions (K,Bs) : - 

list-disjunction (D) , 
disj-constraints (K, D,Bs, [ 1 ) . 

disj-constraints (K, [ 1 , Bs) . 
disj-constraints (K, WDS] ,Bsl,Bs) : - 

disjunction(K,D,Bsl,Bs2), 
disj-constraints (K,DS,BS~~BS) . 

disjunction (L, [ I  , Bs, Bs) . 
disjunction(L, [TI ITS] ,~sl,Bs) : -  

find(L, [Tl,Xl,DlI), 
disj(L,Xl,Dl,Ts,Bsl,Bs2), 
disjunction(L,Ts,Bs2,Bs). 

disj (L,Xl,Dl, [I ,Bs,Bs) . 
disj (L,Xl,Dl, [ T ~ ~ T S ]  , [ B ~ B S ~ ]  ,BS) :- 

find(L, [T2,X2,D21), 
B #= (XI #>= X2+D2), 
B + (X2-Dl #>= XI) #=  1, 
disj (L,X1,D1,Ts,Bsl,Bs). 

% minimize(Vars,X,XMin) XMin is the smallest value for X over 
% all instantiation of variables in Vars 



minimize(Vars,X,XMin):- 
retractall(upperBound(~)), 
assert(upperBo~nd(9999999))~ 
repeat, 
upperBound(XMin), 
( 
X #<: XUB, 
labelf f (Vars) -> 
X:XLB. .-, 
write('Best solution so far, Min = I ) ,  write(X), nl 
retract (upperBound (-) ) , 
assert(upperBound(XLB)), 
fail 

% label variables using first fail principle--try variables 
% with smallest domains first 
label•’•’([]). 
labelff([~I~]) : -  

deletef f ( [X I L] ,V, R )  , 
indomain (V) , 
labelff (R) . 

% Utilities 

repeat. 
repeat:-repeat. 


